sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-14 02:38:35
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A383957 | Sum of the legs of the unique primitive Pythagorean triple whose inradius is A000108(n) and such that its long leg and its hypotenuse are consecutive natural numbers. | [
"7",
"7",
"17",
"71",
"449",
"3697",
"35377",
"369799",
"4095521",
"47297537",
"564278417",
"6911822737",
"86538816337",
"1103803791601",
"14305269324961",
"187980077927431",
"2500329797088481",
"33615543666867361",
"456277457385934801",
"6246438372527004961",
"86175353802778434481",
"1197196443885744428881",
"16738118900659230353761"
]
| [
"nonn",
"easy",
"changed"
]
| 21 | 0 | 1 | [
"A000108",
"A006007",
"A058919",
"A336535",
"A381483",
"A382114",
"A383251",
"A383957"
]
| null | Miguel-Ángel Pérez García-Ortega, May 16 2025 | 2025-07-13T17:24:49 | oeisdata/seq/A383/A383957.seq | 3a208616e2fae3bee5c71451cfa53100 |
A383958 | Sum of the legs of the unique primitive Pythagorean triple (a,b,c) such that (a-b+c)/2 = A000108(n) and its long leg and hypotenuse are consecutive natural numbers. | [
"1",
"1",
"7",
"49",
"391",
"3527",
"34847",
"368081",
"4089799",
"47278087",
"564211231",
"6911587591",
"86537984287",
"1103800819999",
"14305258627199",
"187980039148049",
"2500329655657799",
"33615543148288199",
"456277455475379999",
"6246438365457952199",
"86175353776521952799",
"1197196443787879360799",
"16738118900293300099199"
]
| [
"nonn",
"easy",
"changed"
]
| 18 | 0 | 3 | [
"A000108",
"A001246",
"A131428",
"A381846",
"A383615",
"A383616",
"A383958"
]
| null | Miguel-Ángel Pérez García-Ortega, May 16 2025 | 2025-07-13T17:24:33 | oeisdata/seq/A383/A383958.seq | dc6e4f525e51157932b899e532ff2b97 |
A383959 | The number of prime powers p^e having the property that e is a unitary divisor of the p-adic valuation of n. | [
"0",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"3",
"2",
"2",
"1",
"3",
"2",
"2",
"2",
"3",
"1",
"3",
"1",
"2",
"2",
"2",
"2",
"4",
"1",
"2",
"2",
"3",
"1",
"3",
"1",
"3",
"3",
"2",
"1",
"3",
"2",
"3",
"2",
"3",
"1",
"3",
"2",
"3",
"2",
"2",
"1",
"4",
"1",
"2",
"3",
"4",
"2",
"3",
"1",
"3",
"2",
"3",
"1",
"4",
"1",
"2",
"3",
"3",
"2",
"3",
"1",
"3",
"2",
"2",
"1",
"4",
"2",
"2",
"2"
]
| [
"nonn",
"easy"
]
| 9 | 1 | 4 | [
"A001221",
"A034444",
"A077761",
"A085548",
"A238949",
"A278908",
"A361255",
"A383863",
"A383959",
"A383960"
]
| null | Amiram Eldar, May 16 2025 | 2025-05-17T08:15:10 | oeisdata/seq/A383/A383959.seq | 93d2428794aadd5c0ac032b4957c041c |
A383960 | The number of prime powers p^e having the property that e is an infinitary divisor of the p-adic valuation of n. | [
"0",
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"2",
"2",
"2",
"1",
"3",
"1",
"3",
"2",
"2",
"1",
"3",
"2",
"2",
"2",
"3",
"1",
"3",
"1",
"2",
"2",
"2",
"2",
"4",
"1",
"2",
"2",
"3",
"1",
"3",
"1",
"3",
"3",
"2",
"1",
"3",
"2",
"3",
"2",
"3",
"1",
"3",
"2",
"3",
"2",
"2",
"1",
"4",
"1",
"2",
"3",
"4",
"2",
"3",
"1",
"3",
"2",
"3",
"1",
"4",
"1",
"2",
"3",
"3",
"2",
"3",
"1",
"3",
"2",
"2",
"1",
"4",
"2",
"2",
"2"
]
| [
"nonn",
"easy"
]
| 7 | 1 | 4 | [
"A037445",
"A085548",
"A238949",
"A383760",
"A383865",
"A383959",
"A383960"
]
| null | Amiram Eldar, May 16 2025 | 2025-05-17T08:14:54 | oeisdata/seq/A383/A383960.seq | 23d2447a3cc3513f8dd3ba6720956b95 |
A383961 | Square array read by upward antidiagonals: T(n,k) is the n-th number whose largest odd divisor is its k-th divisor, n >= 1, k >= 1. | [
"1",
"2",
"3",
"4",
"5",
"6",
"8",
"7",
"9",
"15",
"16",
"11",
"10",
"20",
"18",
"32",
"13",
"12",
"21",
"50",
"36",
"64",
"17",
"14",
"27",
"81",
"45",
"30",
"128",
"19",
"22",
"28",
"88",
"63",
"42",
"105",
"256",
"23",
"24",
"33",
"98",
"75",
"54",
"135",
"60",
"512",
"29",
"25",
"35",
"104",
"99",
"66",
"165",
"84",
"120",
"1024",
"31",
"26",
"39",
"136",
"117",
"70",
"189",
"108",
"140",
"90"
]
| [
"nonn",
"nice",
"tabl"
]
| 34 | 1 | 2 | [
"A000005",
"A000079",
"A000265",
"A001227",
"A001248",
"A001749",
"A027750",
"A030078",
"A038547",
"A046388",
"A065091",
"A070875",
"A091629",
"A100484",
"A174090",
"A182469",
"A290110",
"A383401",
"A383402",
"A383961"
]
| null | Omar E. Pol, May 16 2025 | 2025-05-22T23:23:19 | oeisdata/seq/A383/A383961.seq | 078e8cc4a44f515f2c8db8f995acd714 |
A383962 | Irregular triangle read by rows: T(n,k) is the index of the k-th odd divisor in the list of divisors of n, with n >= 1, k >= 1. | [
"1",
"1",
"1",
"2",
"1",
"1",
"2",
"1",
"3",
"1",
"2",
"1",
"1",
"2",
"3",
"1",
"3",
"1",
"2",
"1",
"3",
"1",
"2",
"1",
"3",
"1",
"2",
"3",
"4",
"1",
"1",
"2",
"1",
"3",
"5",
"1",
"2",
"1",
"4",
"1",
"2",
"3",
"4",
"1",
"3",
"1",
"2",
"1",
"3",
"1",
"2",
"3",
"1",
"3",
"1",
"2",
"3",
"4",
"1",
"4",
"1",
"2",
"1",
"3",
"4",
"7",
"1",
"2",
"1",
"1",
"2",
"3",
"4",
"1",
"3",
"1",
"2",
"3",
"4",
"1",
"3",
"6",
"1",
"2",
"1",
"3",
"1",
"2",
"3",
"4",
"1",
"4",
"1",
"2",
"1",
"3",
"5",
"7",
"1",
"2",
"1",
"4",
"1",
"2",
"3",
"4",
"5",
"6"
]
| [
"nonn",
"tabf"
]
| 12 | 1 | 4 | [
"A000005",
"A000012",
"A000027",
"A000079",
"A001227",
"A027750",
"A065091",
"A174090",
"A182469",
"A383401",
"A383962"
]
| null | Omar E. Pol, May 26 2025 | 2025-05-30T16:05:52 | oeisdata/seq/A383/A383962.seq | c2b91b983c1bfcc5d9b0fd3a5ff660a2 |
A383963 | Irregular triangle read by rows: T(n,k) is the sum of the k-th pair of conjugate divisors of n. If n is a square then the central term in the row n is equal to 2*sqrt(n), with n >= 1, 1 <= k <= A000005(n). | [
"2",
"3",
"3",
"4",
"4",
"5",
"4",
"5",
"6",
"6",
"7",
"5",
"5",
"7",
"8",
"8",
"9",
"6",
"6",
"9",
"10",
"6",
"10",
"11",
"7",
"7",
"11",
"12",
"12",
"13",
"8",
"7",
"7",
"8",
"13",
"14",
"14",
"15",
"9",
"9",
"15",
"16",
"8",
"8",
"16",
"17",
"10",
"8",
"10",
"17",
"18",
"18",
"19",
"11",
"9",
"9",
"11",
"19",
"20",
"20",
"21",
"12",
"9",
"9",
"12",
"21",
"22",
"10",
"10",
"22",
"23",
"13",
"13",
"23",
"24",
"24",
"25",
"14",
"11",
"10",
"10",
"11",
"14",
"25"
]
| [
"nonn",
"tabf"
]
| 39 | 1 | 1 | [
"A000005",
"A000027",
"A000203",
"A027750",
"A056538",
"A074400",
"A237270",
"A272025",
"A383963"
]
| null | Omar E. Pol, Jun 17 2025 | 2025-06-25T00:35:00 | oeisdata/seq/A383/A383963.seq | 1b27fa255ee017b370b17c4311a00d72 |
A383964 | Integers k such that there exists an integer 0<m<k such that (1/sigma(m)^2 + 1/sigma(k)^2)*(m+k)^2 = 1. | [
"168",
"1320",
"3792",
"4968",
"7176",
"8184",
"14364",
"15240",
"20076",
"29904",
"30672",
"41952",
"48312",
"48768",
"54264",
"56856",
"57960",
"60144",
"64296",
"72996",
"73344",
"83328",
"90552",
"91512",
"99828",
"106020",
"110952",
"113280",
"114156",
"119016",
"128592",
"149292",
"150024",
"151272",
"157608",
"168588",
"175584",
"183240"
]
| [
"nonn"
]
| 30 | 1 | 1 | [
"A063990",
"A259180",
"A383239",
"A383483",
"A383484",
"A383964"
]
| null | S. I. Dimitrov, May 16 2025 | 2025-06-24T16:17:39 | oeisdata/seq/A383/A383964.seq | 586812a06035397bf505958bcf39652d |
A383965 | Self-convolution square-root of A004381, where A004381(n) = binomial(8*n,n). | [
"1",
"4",
"52",
"804",
"13412",
"233548",
"4180932",
"76307228",
"1412731844",
"26443784224",
"499310856828",
"9494966722696",
"181620437132820",
"3491268491768400",
"67396227598309788",
"1305787014634864584",
"25380012805871145604",
"494684878753394992992",
"9665968233663380580256",
"189289570996914582016788"
]
| [
"nonn"
]
| 46 | 0 | 2 | [
"A004381",
"A208977",
"A383965",
"A384695"
]
| null | Vaclav Kotesovec, Jun 06 2025 | 2025-06-07T08:13:01 | oeisdata/seq/A383/A383965.seq | 14df8e7c0df863c71e31fa3e2be2cc39 |
A383966 | Numbers k such that floor(2^k / 5) is a prime. | [
"4",
"11",
"15",
"23",
"35",
"71",
"95",
"183",
"475",
"579",
"631",
"759",
"1519",
"1771",
"3031",
"6035",
"6951",
"11423",
"37451",
"51935",
"68051"
]
| [
"nonn",
"more"
]
| 18 | 1 | 1 | null | null | Vincenzo Librandi, Jun 07 2025 | 2025-06-08T15:19:06 | oeisdata/seq/A383/A383966.seq | 4696c77210c5626ef219f3c260c639ea |
A383967 | Inventory sequence recording number of terms with 1,2,3,... decimal digits. Count until occurrence of a term = 0, whereupon reset the count; continue. | [
"0",
"1",
"0",
"3",
"0",
"5",
"0",
"7",
"0",
"9",
"0",
"11",
"1",
"0",
"13",
"2",
"0",
"15",
"3",
"0",
"17",
"4",
"0",
"19",
"5",
"0",
"21",
"6",
"0",
"23",
"7",
"0",
"25",
"8",
"0",
"27",
"9",
"0",
"29",
"10",
"0",
"30",
"12",
"0",
"31",
"14",
"0",
"32",
"16",
"0",
"33",
"18",
"0",
"34",
"20",
"0",
"35",
"22",
"0",
"36",
"24",
"0",
"37",
"26",
"0",
"38",
"28",
"0",
"39",
"30",
"0",
"40",
"32",
"0",
"41",
"34"
]
| [
"nonn",
"easy"
]
| 21 | 1 | 4 | [
"A342585",
"A345730",
"A347738",
"A383967"
]
| null | David James Sycamore, May 16 2025 | 2025-06-07T05:53:22 | oeisdata/seq/A383/A383967.seq | 9f210a0eb0907fca3eb5d625772e2d20 |
A383968 | Number of distinct subsets S of [1..n] such that for all 1 <= k <= n, there exists two elements x,y in S (not necessarily distinct) such that x+y = 2k. | [
"1",
"1",
"2",
"3",
"5",
"9",
"17",
"30",
"58",
"107",
"205",
"392",
"768",
"1466",
"2883",
"5597",
"11038",
"21572",
"42675",
"83711",
"166371",
"327893",
"651199",
"1288480",
"2564032",
"5082878",
"10127472",
"20115845",
"40104636",
"79781149",
"159174500",
"316962113",
"632716744",
"1261189166",
"2518287361",
"5023170116",
"10034132101",
"20025033970"
]
| [
"nonn"
]
| 23 | 1 | 3 | null | null | SiYang Hu, May 16 2025 | 2025-05-29T00:12:01 | oeisdata/seq/A383/A383968.seq | 7abf2c1aa3f0e0f673e021681132069d |
A383969 | a(n) is the smallest even number m such that the set {m+1, m+3, m+5, ..., m+(2*n-1)} contains no prime numbers. | [
"0",
"24",
"90",
"114",
"114",
"114",
"524",
"524",
"888",
"1130",
"1328",
"1328",
"1328",
"1328",
"1328",
"1328",
"9552",
"15684",
"15684",
"15684",
"15684",
"19610",
"19610",
"19610",
"19610",
"31398",
"31398",
"31398",
"31398",
"31398",
"31398",
"31398",
"31398",
"31398",
"31398",
"155922",
"155922",
"155922",
"155922",
"155922",
"155922",
"155922"
]
| [
"nonn"
]
| 17 | 1 | 2 | [
"A000040",
"A002386",
"A002808",
"A008950",
"A018252",
"A383969"
]
| null | David James Sycamore, May 16 2025 | 2025-06-05T23:45:05 | oeisdata/seq/A383/A383969.seq | 89c31026110956a0155e340bcf41a140 |
A383970 | Inventory sequence: record the number of prior terms such that if 2 then 4, then 6,... are added the result is a prime. Reset the count at each term = 0. | [
"0",
"1",
"1",
"2",
"0",
"4",
"2",
"2",
"0",
"5",
"2",
"3",
"2",
"3",
"3",
"4",
"5",
"4",
"3",
"2",
"2",
"6",
"6",
"2",
"2",
"4",
"4",
"6",
"6",
"4",
"4",
"2",
"2",
"4",
"2",
"2",
"6",
"6",
"2",
"2",
"4",
"4",
"6",
"6",
"2",
"2",
"4",
"4",
"4",
"2",
"2",
"4",
"2",
"0",
"12",
"6",
"4",
"6",
"6",
"4",
"6",
"6",
"4",
"4",
"2",
"2",
"6",
"6",
"2",
"2",
"4",
"4",
"6",
"6",
"4",
"4",
"2",
"2",
"4",
"2",
"2",
"6",
"6",
"2",
"2",
"4",
"4"
]
| [
"nonn"
]
| 19 | 1 | 4 | [
"A342585",
"A383969",
"A383970"
]
| null | David James Sycamore, May 16 2025 | 2025-06-09T00:23:25 | oeisdata/seq/A383/A383970.seq | 55e1168b39266c65f543e018836757d8 |
A383971 | Triprimes with sum of digits 3. | [
"12",
"30",
"102",
"1002",
"2001",
"10002",
"10011",
"11001",
"20001",
"100101",
"101001",
"110001",
"200001",
"1000002",
"10001001",
"10010001",
"11000001",
"20000001",
"100000101",
"1000000011",
"1000001001",
"1000010001",
"1000100001",
"1001000001",
"1010000001",
"10000000002",
"10000000011",
"10000010001",
"11000000001",
"100000000101",
"100000001001"
]
| [
"nonn",
"base"
]
| 27 | 1 | 1 | [
"A001222",
"A007953",
"A014612",
"A050689",
"A052217",
"A076850",
"A083207",
"A383971"
]
| null | Robert Israel, May 16 2025 | 2025-06-01T10:06:43 | oeisdata/seq/A383/A383971.seq | 3d24c5edbe2b7657a221688e6cb2114f |
A383972 | Smallest number m such that (m*(m + 1)/2)^2 is divisible by n. | [
"1",
"3",
"2",
"3",
"4",
"3",
"6",
"7",
"2",
"4",
"10",
"3",
"12",
"7",
"5",
"7",
"16",
"3",
"18",
"4",
"6",
"11",
"22",
"8",
"4",
"12",
"8",
"7",
"28",
"15",
"30",
"15",
"11",
"16",
"14",
"3",
"36",
"19",
"12",
"15",
"40",
"20",
"42",
"11",
"5",
"23",
"46",
"8",
"6",
"4",
"17",
"12",
"52",
"8",
"10",
"7",
"18",
"28",
"58",
"15",
"60",
"31",
"6",
"15",
"25",
"11",
"66",
"16",
"23",
"20",
"70",
"8",
"72",
"36",
"5",
"19",
"21",
"12",
"78"
]
| [
"nonn"
]
| 27 | 1 | 2 | [
"A000537",
"A002145",
"A007520",
"A011772",
"A383075",
"A383972"
]
| null | Ctibor O. Zizka, May 16 2025 | 2025-05-26T21:57:57 | oeisdata/seq/A383/A383972.seq | 6333adb6a5525c37ea4211f694e4bde1 |
A383973 | Irregular triangle: T(n,k) gives the number of connected subsets of k edges of the n-dimensional cross-polytope up to isometries of the polytope, with 0 <= k <= A046092(n-1). | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"2",
"5",
"11",
"21",
"28",
"24",
"18",
"9",
"4",
"1",
"1",
"1",
"1",
"2",
"7",
"22",
"82",
"292",
"876",
"2023",
"3699",
"5587",
"7099",
"7712",
"7129",
"5668",
"3843",
"2234",
"1099",
"475",
"169",
"57",
"16",
"5",
"1",
"1",
"1",
"1",
"2",
"7",
"25",
"114",
"584",
"3055"
]
| [
"nonn",
"tabf"
]
| 21 | 1 | 9 | [
"A046092",
"A333333",
"A369605",
"A383973"
]
| null | Peter Kagey, May 16 2025 | 2025-05-17T00:39:33 | oeisdata/seq/A383/A383973.seq | 2509bdac68ea1217aff8af82a975569c |
A383974 | Number of connected subsets of n edges of the icosahedron up to the 120 rotations and reflections of the icosahedron. | [
"1",
"1",
"2",
"8",
"27",
"126",
"557",
"2503",
"10270",
"37542",
"114926",
"283958",
"552542",
"866843",
"1129291",
"1250835",
"1195298",
"993613",
"720889",
"456329",
"251444",
"119989",
"49269",
"17238",
"5113",
"1257",
"262",
"46",
"8",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 16 | 0 | 3 | [
"A333333",
"A383490",
"A383973",
"A383974",
"A383975"
]
| null | Peter Kagey, May 16 2025 | 2025-05-26T00:25:58 | oeisdata/seq/A383/A383974.seq | 9fdbf2c86d763628c0f4fbf65600fe1d |
A383975 | Irregular triangle: T(n,k) gives the number of connected subsets of k edges of the n-simplex up to isometries of the n-simplex, with 0 <= k <= A000217(n). | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"2",
"1",
"1",
"1",
"1",
"1",
"3",
"5",
"6",
"6",
"4",
"2",
"1",
"1",
"1",
"1",
"1",
"3",
"5",
"12",
"19",
"23",
"24",
"21",
"15",
"9",
"5",
"2",
"1",
"1",
"1",
"1",
"1",
"3",
"5",
"12",
"30",
"56",
"91",
"128",
"147",
"147",
"131",
"97",
"65",
"41",
"21",
"10",
"5",
"2",
"1",
"1",
"1",
"1",
"1",
"3",
"5",
"12",
"30",
"79",
"180",
"364",
"633",
"961",
"1300",
"1551",
"1644",
"1556",
"1311",
"980",
"663",
"402",
"221",
"115",
"56",
"24",
"11",
"5",
"2",
"1",
"1"
]
| [
"nonn",
"tabf"
]
| 38 | 0 | 11 | [
"A000217",
"A002905",
"A292300",
"A333333",
"A383490",
"A383973",
"A383974",
"A383975"
]
| null | Peter Kagey, May 16 2025 | 2025-05-28T10:53:31 | oeisdata/seq/A383/A383975.seq | d25f6fc79c3601dc2d4a0fb498c604f8 |
A383976 | In the binary expansion of n, expand bits 1 -> 11 and 0 -> 10. | [
"2",
"3",
"14",
"15",
"58",
"59",
"62",
"63",
"234",
"235",
"238",
"239",
"250",
"251",
"254",
"255",
"938",
"939",
"942",
"943",
"954",
"955",
"958",
"959",
"1002",
"1003",
"1006",
"1007",
"1018",
"1019",
"1022",
"1023",
"3754",
"3755",
"3758",
"3759",
"3770",
"3771",
"3774",
"3775",
"3818",
"3819",
"3822",
"3823",
"3834",
"3835",
"3838",
"3839",
"4010",
"4011",
"4014"
]
| [
"nonn",
"base",
"easy"
]
| 30 | 0 | 1 | [
"A000523",
"A374625",
"A383976"
]
| null | Darío Clavijo, May 16 2025 | 2025-05-21T23:36:39 | oeisdata/seq/A383/A383976.seq | 8ed8231961097fd2410597f2430f380e |
A383977 | Sequence of successive merge positions when Fibonacci-sorting an infinite list. | [
"1",
"2",
"4",
"3",
"6",
"7",
"5",
"9",
"10",
"12",
"11",
"8",
"14",
"15",
"17",
"16",
"19",
"20",
"18",
"13",
"22",
"23",
"25",
"24",
"27",
"28",
"26",
"30",
"31",
"33",
"32",
"29",
"21",
"35",
"36",
"38",
"37",
"40",
"41",
"39",
"43",
"44",
"46",
"45",
"42",
"48",
"49",
"51",
"50",
"53",
"54",
"52",
"47",
"34",
"56",
"57",
"59",
"58",
"61",
"62",
"60",
"64",
"65",
"67",
"66",
"63",
"69",
"70",
"72",
"71",
"74",
"75"
]
| [
"easy",
"nonn"
]
| 25 | 1 | 2 | [
"A000045",
"A383977"
]
| null | Lucilla Blessing, May 16 2025 | 2025-05-17T22:42:35 | oeisdata/seq/A383/A383977.seq | 981b9c3b90fd31b30bcf0846fcbd7d10 |
A383978 | Primes with at least two identical trailing digits. | [
"11",
"199",
"211",
"233",
"277",
"311",
"433",
"499",
"577",
"599",
"677",
"733",
"811",
"877",
"911",
"977",
"1033",
"1277",
"1399",
"1433",
"1499",
"1511",
"1699",
"1733",
"1777",
"1811",
"1877",
"1933",
"1999",
"2011",
"2099",
"2111",
"2311",
"2333",
"2377",
"2399",
"2411",
"2477",
"2633",
"2677",
"2699",
"2711",
"2777",
"2833",
"2999",
"3011",
"3299"
]
| [
"nonn",
"base"
]
| 20 | 1 | 1 | [
"A050758",
"A061022",
"A131306",
"A383978",
"A383979",
"A384013",
"A384015"
]
| null | Stefano Spezia, May 16 2025 | 2025-05-20T19:12:44 | oeisdata/seq/A383/A383978.seq | f5e2eb1a9e43d2e9801403329e6bdffa |
A383979 | a(n) is the number of n-digit terms in A383978. | [
"0",
"1",
"15",
"106",
"821",
"6909",
"58683",
"509654",
"4508611",
"40421003",
"366300162",
"3348975103",
"30845805300",
"285887726304",
"2663962455661"
]
| [
"nonn",
"base",
"more",
"changed"
]
| 38 | 1 | 3 | [
"A383978",
"A383979",
"A384014",
"A384016"
]
| null | Stefano Spezia, May 16 2025 | 2025-07-13T23:51:46 | oeisdata/seq/A383/A383979.seq | 0c653d53238d2b634d992eb4bc26ed34 |
A383980 | Length of shortest path (in Chebyshev distance) that touches all cells in an n X n grid. | [
"0",
"0",
"0",
"3",
"6",
"10",
"14",
"20",
"25",
"31",
"39"
]
| [
"nonn",
"more"
]
| 43 | 0 | 4 | null | null | Fülöp Tamás, May 16 2025 | 2025-05-18T07:57:44 | oeisdata/seq/A383/A383980.seq | cb59e01a7985793e51f1fa8cedd567b7 |
A383981 | Number of connected subsets of n edges of the rhombic dodecahedron up to the 48 rotations and reflections of the rhombic dodecahedron. | [
"1",
"1",
"3",
"5",
"16",
"39",
"127",
"357",
"1067",
"2861",
"7071",
"14827",
"25638",
"33730",
"33189",
"24838",
"14954",
"7188",
"2905",
"912",
"254",
"49",
"11",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 15 | 0 | 3 | [
"A019988",
"A333333",
"A383490",
"A383973",
"A383974",
"A383981",
"A383982",
"A383983",
"A383984"
]
| null | Peter Kagey, May 16 2025 | 2025-05-17T00:39:46 | oeisdata/seq/A383/A383981.seq | 4d8bd54af9af91fc6ca4c8746a9f5483 |
A383982 | Number of connected subsets of n edges of the cuboctahedron up to the 48 rotations and reflections of the cuboctahedron. | [
"1",
"1",
"3",
"7",
"24",
"74",
"269",
"876",
"2788",
"7639",
"17828",
"32326",
"44375",
"46456",
"39213",
"26865",
"15470",
"7278",
"2917",
"913",
"254",
"49",
"11",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 11 | 0 | 3 | [
"A019988",
"A333333",
"A383490",
"A383973",
"A383974",
"A383981",
"A383982",
"A383983",
"A383984"
]
| null | Peter Kagey, May 16 2025 | 2025-05-17T00:39:51 | oeisdata/seq/A383/A383982.seq | 0bbc746bebbe70dad8ee2b61d65d2a6c |
A383983 | Number of connected subsets of n edges of the rhombic triacontahedron up to the 120 rotations and reflections of the rhombic triacontahedron. | [
"1",
"1",
"3",
"7",
"24",
"84",
"334",
"1330",
"5495",
"22776",
"94920",
"394706"
]
| [
"nonn",
"fini",
"more"
]
| 10 | 0 | 3 | [
"A019988",
"A333333",
"A383490",
"A383973",
"A383974",
"A383981",
"A383982",
"A383983",
"A383984"
]
| null | Peter Kagey, May 16 2025 | 2025-05-17T00:40:01 | oeisdata/seq/A383/A383983.seq | 439bc15c0022fa97d9a9defdde924625 |
A383984 | Number of connected subsets of n edges of the icosidodecahedron up to the 120 rotations and reflections of the icosidodecahedron. | [
"1",
"1",
"3",
"7",
"24",
"81",
"323",
"1265",
"5202",
"21335",
"88412",
"364897"
]
| [
"nonn",
"fini",
"more"
]
| 9 | 0 | 3 | [
"A019988",
"A333333",
"A383490",
"A383973",
"A383974",
"A383981",
"A383982",
"A383983",
"A383984"
]
| null | Peter Kagey, May 16 2025 | 2025-05-17T00:40:08 | oeisdata/seq/A383/A383984.seq | 0e8e84671ae912c105716fcf02a77582 |
A383985 | Series expansion of the exponential generating function LambertW(1-exp(x)), see A000169. | [
"0",
"1",
"-1",
"4",
"-23",
"181",
"-1812",
"22037",
"-315569",
"5201602",
"-97009833",
"2019669961",
"-46432870222",
"1168383075471",
"-31939474693297",
"942565598033196",
"-29866348653695203",
"1011335905644178273",
"-36446897413531401020",
"1392821757824071815641",
"-56259101478392975833333"
]
| [
"sign",
"easy"
]
| 17 | 0 | 4 | [
"A000169",
"A002050",
"A006531",
"A084099",
"A101851",
"A114285",
"A177885",
"A225883",
"A383985",
"A383986",
"A383987",
"A383988",
"A383989"
]
| null | Michael De Vlieger, May 16 2025 | 2025-05-24T00:21:11 | oeisdata/seq/A383/A383985.seq | c83fc8ba4a60b78d6beec762be9d279a |
A383986 | Expansion of the exponential generating function sqrt(4*exp(x) - exp(2*x) - 2) - 1. | [
"0",
"1",
"-1",
"1",
"-13",
"61",
"-601",
"5881",
"-73333",
"1021861",
"-16334401",
"290146561",
"-5707536253",
"122821558861",
"-2873553719401",
"72586328036041",
"-1969306486088773",
"57106504958139061",
"-1762735601974347601",
"57705363524117482321",
"-1996916624448159410893"
]
| [
"sign",
"easy"
]
| 10 | 0 | 5 | [
"A002050",
"A006531",
"A084099",
"A101851",
"A114285",
"A182037",
"A225883",
"A383985",
"A383986",
"A383987",
"A383988",
"A383989"
]
| null | Michael De Vlieger, May 16 2025 | 2025-05-21T01:26:30 | oeisdata/seq/A383/A383986.seq | 375377256b26e7aec1e3b27ee7a76491 |
A383987 | Series expansion of the exponential generating function -tridend(-(1-exp(x))) where tridend(x) = (1 - 3*x - sqrt(1+6*x+x^2)) / (4*x) (A001003). | [
"0",
"1",
"-5",
"49",
"-725",
"14401",
"-360005",
"10863889",
"-384415925",
"15612336481",
"-715930020005",
"36592369889329",
"-2062911091119125",
"127170577711282561",
"-8510569547826528005",
"614491222512504748369",
"-47615614242877583230325",
"3941408640018910366196641"
]
| [
"sign",
"easy"
]
| 23 | 0 | 3 | [
"A001003",
"A002050",
"A006531",
"A084099",
"A101851",
"A114285",
"A225883",
"A383985",
"A383986",
"A383987",
"A383988",
"A383989",
"A383991"
]
| null | Michael De Vlieger, May 16 2025 | 2025-05-24T00:20:56 | oeisdata/seq/A383/A383987.seq | 0c8336262f0f435db80b65cfa972a70a |
A383988 | Series expansion of the exponential generating function -postLie(1-exp(x)) where postLie(x) = -log((1 + sqrt(1-4*x)) / 2) (given by A006963). | [
"0",
"1",
"-2",
"12",
"-110",
"1380",
"-22022",
"426972",
"-9747950",
"256176660",
"-7617417302",
"252851339532",
"-9268406209790",
"371843710214340",
"-16206868062692582",
"762569209601624892",
"-38525315595630383630",
"2079964082064837282420",
"-119513562475103977951862"
]
| [
"sign",
"easy"
]
| 31 | 0 | 3 | [
"A002050",
"A006531",
"A006963",
"A084099",
"A097388",
"A101851",
"A114285",
"A225883",
"A383985",
"A383986",
"A383987",
"A383988",
"A383989"
]
| null | Michael De Vlieger, May 16 2025 | 2025-05-28T09:19:43 | oeisdata/seq/A383/A383988.seq | 1e4bd94fe28989c53f28a3c8b0a42482 |
A383989 | Series expansion of the exponential generating function ff6^!(exp(x)-1) where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3). | [
"0",
"1",
"-11",
"61",
"-467",
"4381",
"-49091",
"643021",
"-9615827",
"161844541",
"-3026079971",
"62243374381",
"-1396619164787",
"33949401567901",
"-888725861445251",
"24926889744928141",
"-745755560487363347",
"23705772035082494461",
"-797875590555470224931",
"28346366547928396344301"
]
| [
"sign",
"easy"
]
| 17 | 0 | 3 | [
"A002050",
"A006531",
"A084099",
"A101851",
"A114285",
"A225883",
"A383985",
"A383986",
"A383987",
"A383988",
"A383989",
"A383995"
]
| null | Michael De Vlieger, May 16 2025 | 2025-05-27T10:32:10 | oeisdata/seq/A383/A383989.seq | a1e8be77114c5600ba7ef8577fd5ec1f |
A383990 | Series expansion of the exponential generating function exp(-dend(-x))-1 where dend(x) = (1 - sqrt(1+4*x)) / (2*x) + 1 (given by A000108). | [
"0",
"1",
"-3",
"19",
"-191",
"2661",
"-47579",
"1040047",
"-26888511",
"802727209",
"-27178685459",
"1029077910411",
"-43086906080063",
"1976633329627789",
"-98597207392040811",
"5313105048925173991",
"-307587436319162110079",
"19038773384213189214417",
"-1254686724727364725716131"
]
| [
"sign"
]
| 24 | 0 | 3 | [
"A000108",
"A003725",
"A006531",
"A097388",
"A111884",
"A112242",
"A177885",
"A318215",
"A383990",
"A383991",
"A383992",
"A383993",
"A383994",
"A383995"
]
| null | Michael De Vlieger, May 16 2025 | 2025-05-28T09:19:48 | oeisdata/seq/A383/A383990.seq | 2169985a793d1a7b6f80ec7db6ae4151 |
A383991 | Series expansion of the exponential generating function exp(-tridend(-x)) - 1 where tridend(x) = (1 - 3*x - sqrt(1-6*x+x^2)) / (4*x) (A001003). | [
"0",
"1",
"-5",
"49",
"-743",
"15421",
"-407909",
"13135165",
"-498874991",
"21838772377",
"-1082819193029",
"59983280191561",
"-3671752681190615",
"246130081055714389",
"-17932045676505509093",
"1410893903131294766101",
"-119227840965746009631839",
"10769985399394862863318705"
]
| [
"sign",
"easy"
]
| 25 | 0 | 3 | [
"A003725",
"A097388",
"A111884",
"A112242",
"A177885",
"A318215",
"A383987",
"A383990",
"A383991",
"A383992",
"A383993",
"A383994",
"A383995"
]
| null | Michael De Vlieger, May 16 2025 | 2025-05-28T09:19:19 | oeisdata/seq/A383/A383991.seq | d8aef4329b298c4e4b63a8c84914dc8a |
A383992 | Series expansion of the exponential generating function exp(arbustive(x)) - 1 where arbustive(x) = (log(1+x) - x^2) / (1+x). | [
"0",
"1",
"-4",
"3",
"40",
"-330",
"1626",
"-3150",
"-54592",
"1060920",
"-13022280",
"127171440",
"-889086648",
"-283184616",
"179750627616",
"-4895777544840",
"99124001788800",
"-1721513264431680",
"25736021675994816",
"-292896125040673728",
"639149345262276480",
"106178474282318726400"
]
| [
"sign",
"easy"
]
| 9 | 0 | 3 | [
"A003725",
"A097388",
"A111884",
"A112242",
"A114285",
"A177885",
"A318215",
"A383990",
"A383991",
"A383992",
"A383993",
"A383994",
"A383995"
]
| null | Michael De Vlieger, May 16 2025 | 2025-05-21T01:25:57 | oeisdata/seq/A383/A383992.seq | a1e6c94c3653936856e994cfba214117 |
A383993 | Series expansion of the exponential generating function exp(tridup^!(x)) - 1 where tridup^!(x) = x / ((1+x) * (1+2*x)). | [
"0",
"1",
"-5",
"25",
"-119",
"301",
"5611",
"-171275",
"3574705",
"-68597639",
"1282415131",
"-23479249199",
"409082338105",
"-6146707844315",
"46462772999371",
"2072826643602541",
"-160983324879816479",
"8004468391727017585",
"-352443295329194182085",
"14817357881274444545161"
]
| [
"sign",
"easy"
]
| 12 | 0 | 3 | [
"A002050",
"A003725",
"A097388",
"A111884",
"A112242",
"A177885",
"A318215",
"A383990",
"A383991",
"A383992",
"A383993",
"A383994",
"A383995"
]
| null | Michael De Vlieger, May 16 2025 | 2025-05-28T16:38:18 | oeisdata/seq/A383/A383993.seq | c2e0773eae3350ece78e0a42c690f155 |
A383994 | Series expansion of the exponential generating function exp(wnp^!(x)) - 1 where wnp^!(x) = log(1+x) - x^2/(1+x). | [
"0",
"1",
"-2",
"0",
"12",
"-60",
"240",
"-840",
"1680",
"15120",
"-332640",
"4656960",
"-59209920",
"735134400",
"-9098369280",
"112345833600",
"-1365274310400",
"15746578848000",
"-155630893017600",
"762963647846400",
"22567767443020800",
"-1126188650069683200",
"35900904478389350400"
]
| [
"sign"
]
| 15 | 0 | 3 | [
"A003725",
"A084099",
"A097388",
"A111884",
"A112242",
"A177885",
"A318215",
"A383990",
"A383991",
"A383992",
"A383993",
"A383994",
"A383995"
]
| null | Michael De Vlieger, May 16 2025 | 2025-05-28T16:38:00 | oeisdata/seq/A383/A383994.seq | d235f9f482836fd0abdef94c92ce44f5 |
A383995 | Series expansion of the exponential generating function exp(ff6^!(x)) - 1 where ff6^!(x) = x * (1-3*x-x^2+x^3) / (1+3*x+x^2-x^3). | [
"0",
"1",
"-11",
"61",
"-215",
"-1559",
"62941",
"-1371131",
"26310481",
"-474554735",
"7824076741",
"-98881279859",
"-176260664711",
"87457412423161",
"-5077434546358355",
"234510433823788501",
"-10016559114085864799",
"413333665704129673249",
"-16704968283664639137899",
"660340818239784197391325"
]
| [
"sign"
]
| 14 | 0 | 3 | [
"A003725",
"A097388",
"A111884",
"A112242",
"A177885",
"A318215",
"A383989",
"A383990",
"A383991",
"A383992",
"A383993",
"A383994",
"A383995"
]
| null | Michael De Vlieger, May 16 2025 | 2025-05-28T16:38:06 | oeisdata/seq/A383/A383995.seq | 268a95b397b6cb3efddfae44326c8b6a |
A383996 | a(n) = Product_{k=0..n-1} (n-4*k). | [
"1",
"1",
"-4",
"15",
"0",
"-1155",
"20160",
"-208845",
"0",
"68139225",
"-2075673600",
"34976316375",
"0",
"-25949801752875",
"1126343522304000",
"-26264240610733125",
"0",
"34770736214117528625",
"-1958486116582195200000",
"58318039100493206409375",
"0",
"-120842042784862988395681875",
"8366746697372733839769600000"
]
| [
"sign",
"easy"
]
| 16 | 0 | 3 | [
"A303487",
"A383996",
"A384216"
]
| null | Seiichi Manyama, May 22 2025 | 2025-05-23T02:00:42 | oeisdata/seq/A383/A383996.seq | b968ecd05b6ba4e674f9f06bea55f293 |
A383997 | a(n) = Product_{k=0..n-1} (n-5*k). | [
"1",
"1",
"-6",
"42",
"-264",
"0",
"57456",
"-1808352",
"40715136",
"-643458816",
"0",
"583285038336",
"-32763345398784",
"1237080874917888",
"-31193431756591104",
"0",
"64105508174249558016",
"-5177532237241354518528",
"274167069135623993032704",
"-9487174826303791319678976",
"0"
]
| [
"sign",
"easy"
]
| 14 | 0 | 3 | [
"A303488",
"A383997",
"A384216"
]
| null | Seiichi Manyama, May 22 2025 | 2025-05-23T02:00:45 | oeisdata/seq/A383/A383997.seq | e34ac18ef6fd7e09232cbb3c4b2537a5 |
A383999 | Sequence obtained by replacing 3-term subwords of A003849 by 0,1,2,3 as described in Comments. | [
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"2",
"0",
"1",
"3",
"1",
"2",
"0",
"1",
"2"
]
| [
"nonn"
]
| 6 | 1 | 2 | [
"A003622",
"A003623",
"A003849",
"A035336",
"A035513",
"A101864",
"A381848",
"A383999"
]
| null | Clark Kimberling, May 23 2025 | 2025-05-29T00:34:26 | oeisdata/seq/A383/A383999.seq | 27c4d57cfbfe02094452971e5ea68657 |
A384000 | Smallest number k with n distinct prime factors such that A010846(k) = A024718(n) (a tight lower bound), or -1 if such k does not exist. | [
"1",
"2",
"6",
"1001",
"268801",
"3433936673",
"2603508937756211"
]
| [
"nonn",
"hard",
"more"
]
| 13 | 0 | 2 | [
"A001221",
"A001700",
"A005117",
"A007947",
"A010846",
"A024718",
"A138109",
"A162306",
"A383177",
"A383178",
"A383179",
"A384000"
]
| null | Michael De Vlieger, May 19 2025 | 2025-06-11T01:07:55 | oeisdata/seq/A384/A384000.seq | 7622c9409d82132fc209c34546cddb4d |
A384003 | Irregular triangle T(n,k), n >= 0, k = 0..2^(n-1)-1, where a(n) = Product_{j=0..n-1} prime(j+1)^((n-j)*d_j), where d_j is the bit with digit weight 2^j in the binary expansion of 2^n+k. | [
"1",
"2",
"3",
"12",
"5",
"40",
"45",
"360",
"7",
"112",
"189",
"3024",
"175",
"2800",
"4725",
"75600",
"11",
"352",
"891",
"28512",
"1375",
"44000",
"111375",
"3564000",
"539",
"17248",
"43659",
"1397088",
"67375",
"2156000",
"5457375",
"174636000",
"13",
"832",
"3159",
"202176",
"8125",
"520000",
"1974375",
"126360000",
"4459",
"285376",
"1083537"
]
| [
"nonn",
"tabf",
"easy",
"base"
]
| 17 | 0 | 2 | [
"A000040",
"A003961",
"A006939",
"A007947",
"A019565",
"A060175",
"A061395",
"A071178",
"A251720",
"A384003"
]
| null | Michael De Vlieger and Peter Munn, May 28 2025 | 2025-06-21T16:16:32 | oeisdata/seq/A384/A384003.seq | 111c18cb3f87728488c5f9bc97a78bb8 |
A384004 | a(n) = smallest k such that A010846(k) = n. | [
"1",
"2",
"4",
"8",
"6",
"10",
"22",
"12",
"44",
"18",
"24",
"50",
"98",
"36",
"48",
"54",
"224",
"30",
"42",
"70",
"108",
"66",
"78",
"162",
"102",
"60",
"138",
"84",
"174",
"260",
"132",
"90",
"126",
"228",
"354",
"120",
"234",
"168",
"350",
"306",
"150",
"516",
"408",
"180",
"252",
"552",
"696",
"294",
"240",
"336",
"612",
"378",
"270",
"1416",
"300",
"702",
"1332",
"360"
]
| [
"nonn"
]
| 15 | 1 | 2 | [
"A000079",
"A001222",
"A002110",
"A010846",
"A024619",
"A162306",
"A244052",
"A384004"
]
| null | Michael De Vlieger, Jun 10 2025 | 2025-06-18T00:31:33 | oeisdata/seq/A384/A384004.seq | dbd6616ef1f2da01e1de5e806dca3362 |
A384005 | Number of ways to choose disjoint strict integer partitions, one of each conjugate prime index of n. | [
"1",
"1",
"0",
"1",
"0",
"1",
"0",
"2",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"2",
"0",
"1",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"2",
"0",
"0",
"1",
"0",
"3",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"1",
"0",
"0",
"0",
"4",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"0",
"2",
"0",
"0",
"0",
"0",
"0",
"0"
]
| [
"nonn"
]
| 6 | 1 | 8 | [
"A000009",
"A000041",
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A098859",
"A112798",
"A122111",
"A130091",
"A179009",
"A217605",
"A239455",
"A279375",
"A279790",
"A299200",
"A317141",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A382525",
"A382771",
"A382913",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A384005",
"A384010",
"A384011",
"A384179"
]
| null | Gus Wiseman, May 22 2025 | 2025-05-23T10:15:13 | oeisdata/seq/A384/A384005.seq | c308ba9177c090c06f385f8d28c86431 |
A384006 | Heinz numbers of Look-and-Say partitions without distinct multiplicities (non Wilf). | [
"216",
"1000",
"1296",
"2744",
"3375",
"7776",
"9261",
"10000",
"10648",
"17576",
"32400",
"35937",
"38416",
"38880",
"39304",
"42875",
"46656",
"50625",
"54000",
"54432",
"54872",
"59319",
"63504",
"81000",
"85536",
"90000",
"97336",
"100000"
]
| [
"nonn"
]
| 5 | 1 | 1 | [
"A000720",
"A001222",
"A001223",
"A048767",
"A051903",
"A055396",
"A056239",
"A061395",
"A098859",
"A112798",
"A122111",
"A130091",
"A130092",
"A212166",
"A239455",
"A325368",
"A336866",
"A351293",
"A351592",
"A381432",
"A381433",
"A383506",
"A383511",
"A383512",
"A383513",
"A383514",
"A383518",
"A383520",
"A383531",
"A384006"
]
| null | Gus Wiseman, May 19 2025 | 2025-05-22T17:06:09 | oeisdata/seq/A384/A384006.seq | 11a5a8b32992114967df555ce0cadf45 |
A384007 | Heinz numbers of non Look-and-Say section-sum partitions. | [
"10",
"14",
"15",
"22",
"26",
"33",
"34",
"35",
"38",
"39",
"46",
"51",
"55",
"57",
"58",
"62",
"65",
"69",
"74",
"77",
"82",
"85",
"86",
"87",
"91",
"93",
"94",
"95",
"100",
"106",
"111",
"115",
"118",
"119",
"122",
"123",
"129",
"130",
"133",
"134",
"141",
"142",
"143",
"145",
"146",
"155",
"158",
"159",
"161",
"166",
"170",
"177",
"178",
"182",
"183",
"185",
"187",
"190"
]
| [
"nonn"
]
| 5 | 1 | 1 | [
"A000720",
"A001222",
"A001223",
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A098859",
"A112798",
"A122111",
"A130091",
"A212166",
"A217605",
"A238745",
"A239455",
"A325368",
"A351293",
"A351294",
"A351295",
"A381432",
"A381433",
"A383508",
"A383509",
"A383510",
"A383511",
"A383512",
"A383514",
"A383515",
"A383516",
"A383517",
"A383518",
"A383520",
"A383531",
"A384006",
"A384007"
]
| null | Gus Wiseman, May 19 2025 | 2025-05-22T17:06:03 | oeisdata/seq/A384/A384007.seq | 70a5b3f73cf5676e1929faec0388eee0 |
A384008 | Irregular triangle read by rows where row n lists the first differences of the 0-prepended prime indices of the n-th squarefree number. | [
"1",
"2",
"3",
"1",
"1",
"4",
"1",
"2",
"5",
"6",
"1",
"3",
"2",
"1",
"7",
"8",
"2",
"2",
"1",
"4",
"9",
"1",
"5",
"10",
"1",
"1",
"1",
"11",
"2",
"3",
"1",
"6",
"3",
"1",
"12",
"1",
"7",
"2",
"4",
"13",
"1",
"1",
"2",
"14",
"1",
"8",
"15",
"2",
"5",
"16",
"3",
"2",
"2",
"6",
"1",
"9",
"17",
"18",
"1",
"10",
"3",
"3",
"1",
"1",
"3",
"19",
"2",
"7",
"1",
"2",
"1",
"20",
"21",
"1",
"11",
"4",
"1",
"1",
"1",
"4",
"22",
"1",
"12",
"23",
"3",
"4"
]
| [
"nonn",
"tabf"
]
| 5 | 1 | 2 | [
"A000040",
"A001221",
"A001222",
"A001223",
"A005117",
"A048767",
"A055396",
"A056239",
"A061395",
"A072047",
"A112798",
"A243290",
"A320348",
"A325324",
"A325325",
"A325367",
"A325388",
"A351294",
"A351295",
"A355536",
"A358137",
"A383534",
"A383535",
"A384008",
"A384009"
]
| null | Gus Wiseman, May 23 2025 | 2025-05-23T10:15:08 | oeisdata/seq/A384/A384008.seq | 31cb110077468d026c0877c0a34d492e |
A384009 | Irregular triangle read by rows where row n lists the positive first differences of the prime indices of n. | [
"1",
"2",
"1",
"3",
"1",
"1",
"2",
"2",
"4",
"1",
"5",
"3",
"1",
"1",
"3",
"6",
"1",
"1",
"7",
"4",
"2",
"1",
"2",
"4",
"1",
"8",
"1",
"2",
"5",
"5",
"1",
"2",
"3",
"6",
"9",
"1",
"1",
"10",
"2",
"3",
"1",
"3",
"6",
"7",
"2",
"1",
"1",
"11",
"1",
"7",
"1",
"1",
"4",
"2",
"12",
"1",
"2",
"4",
"13",
"8",
"4",
"1",
"1",
"2",
"8",
"9",
"14",
"5",
"1",
"3",
"3",
"2",
"1",
"5",
"5",
"1",
"1",
"15",
"1",
"2",
"2",
"10",
"3",
"1",
"6",
"6"
]
| [
"nonn",
"tabf"
]
| 6 | 1 | 2 | [
"A000040",
"A001221",
"A001222",
"A001223",
"A039956",
"A048767",
"A055396",
"A056239",
"A061395",
"A112798",
"A124010",
"A130091",
"A243055",
"A287352",
"A320348",
"A325325",
"A325349",
"A325368",
"A325992",
"A355536",
"A358137",
"A381431",
"A383534",
"A384009"
]
| null | Gus Wiseman, May 23 2025 | 2025-05-23T10:15:03 | oeisdata/seq/A384/A384009.seq | 374fc719638d8a47b15dba213881fb20 |
A384010 | Heinz numbers of integer partitions such that it is possible to choose a family of disjoint strict partitions, one of each conjugate part. | [
"1",
"2",
"4",
"6",
"8",
"12",
"16",
"18",
"24",
"27",
"30",
"32",
"36",
"48",
"54",
"60",
"64",
"72",
"81",
"90",
"96",
"108",
"120",
"128",
"144",
"150",
"162",
"180",
"192"
]
| [
"nonn",
"more"
]
| 10 | 1 | 2 | [
"A000009",
"A000041",
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A098859",
"A112798",
"A122111",
"A130091",
"A217605",
"A239455",
"A279375",
"A279790",
"A299200",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A382525",
"A382912",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A383711",
"A384005",
"A384010",
"A384011"
]
| null | Gus Wiseman, May 23 2025 | 2025-05-24T11:00:35 | oeisdata/seq/A384/A384010.seq | 00c53e30b5f113b13fcf8b9af4276c38 |
A384011 | Numbers k such that it is not possible to choose disjoint strict integer partitions of each conjugate prime index of k. | [
"3",
"5",
"7",
"9",
"10",
"11",
"13",
"14",
"15",
"17",
"19",
"20",
"21",
"22",
"23",
"25",
"26",
"28",
"29",
"31",
"33",
"34",
"35",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"49",
"50",
"51",
"52",
"53",
"55",
"56",
"57",
"58",
"59",
"61",
"62",
"63",
"65",
"66",
"67",
"68",
"69",
"70",
"71",
"73",
"74",
"75",
"76",
"77",
"78",
"79",
"80",
"82",
"83",
"84",
"85"
]
| [
"nonn"
]
| 12 | 1 | 1 | [
"A000009",
"A000041",
"A048767",
"A048768",
"A055396",
"A056239",
"A061395",
"A098859",
"A112798",
"A122111",
"A130091",
"A217605",
"A239455",
"A279375",
"A279790",
"A351293",
"A351294",
"A351295",
"A357982",
"A381432",
"A381433",
"A382525",
"A382912",
"A382913",
"A383533",
"A383706",
"A383707",
"A383708",
"A383710",
"A383711",
"A384005",
"A384010",
"A384011"
]
| null | Gus Wiseman, May 23 2025 | 2025-06-08T14:20:12 | oeisdata/seq/A384/A384011.seq | 145bec307376cd9c6a0b255974fc443c |
A384012 | a(n) = [x^n] Product_{k=0..n} (1 + k*x)^3. | [
"1",
"3",
"33",
"630",
"17247",
"616770",
"27264976",
"1436603616",
"87922855935",
"6131105251425",
"479931312805425",
"41674568874964740",
"3975727750503656820",
"413360925414308633034",
"46523118781014280909560",
"5635356193271621706436800",
"730994763063708819170060751",
"101099888222006502307905386445"
]
| [
"nonn"
]
| 22 | 0 | 2 | [
"A129256",
"A351507",
"A383862",
"A384012",
"A384017",
"A384031"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-19T04:55:58 | oeisdata/seq/A384/A384012.seq | 533ab5461760607800658ab7b962c85e |
A384013 | Primes with at least two identical leading digits. | [
"11",
"113",
"223",
"227",
"229",
"331",
"337",
"443",
"449",
"557",
"661",
"773",
"881",
"883",
"887",
"991",
"997",
"1103",
"1109",
"1117",
"1123",
"1129",
"1151",
"1153",
"1163",
"1171",
"1181",
"1187",
"1193",
"2203",
"2207",
"2213",
"2221",
"2237",
"2239",
"2243",
"2251",
"2267",
"2269",
"2273",
"2281",
"2287",
"2293",
"2297",
"3301",
"3307",
"3313"
]
| [
"nonn",
"base"
]
| 9 | 1 | 1 | [
"A050758",
"A062353",
"A383978",
"A384013",
"A384014",
"A384015"
]
| null | Stefano Spezia, May 17 2025 | 2025-05-20T00:20:57 | oeisdata/seq/A384/A384013.seq | d042438aa31c567eface63ad92bf654a |
A384014 | a(n) is the number of n-digit terms in A384013. | [
"0",
"1",
"16",
"108",
"834",
"6893",
"58659",
"510839",
"4515301",
"40477023",
"366751460",
"3352789726",
"30877698604",
"286159371452",
"2666303391801",
"24959756192476",
"234610874384116",
"2213224276178123",
"20945897352118544",
"198802912201260034",
"1891788092230264832",
"18044365524165259927",
"172479703095316537972"
]
| [
"nonn",
"base"
]
| 15 | 1 | 3 | [
"A383979",
"A384013",
"A384014",
"A384016"
]
| null | Stefano Spezia, May 17 2025 | 2025-05-20T11:48:24 | oeisdata/seq/A384/A384014.seq | fe27cba5be315502f2e2f24016723401 |
A384015 | Primes with at least two identical trailing digits and at least two identical leading digits. | [
"11",
"11177",
"11299",
"11311",
"11399",
"11411",
"11633",
"11677",
"11699",
"11777",
"11833",
"11933",
"22111",
"22133",
"22277",
"22433",
"22511",
"22699",
"22777",
"22811",
"22877",
"33199",
"33211",
"33311",
"33377",
"33533",
"33577",
"33599",
"33811",
"33911",
"44111",
"44533",
"44633",
"44699",
"44711",
"44777",
"55333",
"55399"
]
| [
"nonn",
"base"
]
| 11 | 1 | 1 | [
"A050758",
"A383978",
"A384013",
"A384015",
"A384016"
]
| null | Stefano Spezia, May 17 2025 | 2025-05-20T15:48:29 | oeisdata/seq/A384/A384015.seq | 833a6aab20dbd35ec415700f1f2ebf77 |
A384016 | a(n) is the number of n-digit terms in A384015. | [
"0",
"1",
"0",
"0",
"74",
"673",
"5851",
"50977",
"451608",
"4048657",
"36675547",
"335269867",
"3087739250",
"28615970101"
]
| [
"nonn",
"base",
"more"
]
| 22 | 1 | 5 | [
"A383979",
"A384014",
"A384015",
"A384016"
]
| null | Stefano Spezia, May 17 2025 | 2025-05-22T09:35:04 | oeisdata/seq/A384/A384016.seq | 2def1b86393f92a3630f9d6a1dbd6e79 |
A384017 | a(n) = [x^n] Product_{k=0..n} (1 + k*x)^5. | [
"1",
"5",
"100",
"3510",
"177370",
"11732175",
"960453825",
"93791830160",
"10644367637490",
"1376936603007075",
"200002385378370350",
"32233130183113838550",
"5708169533474858008905",
"1101836121788665346133960",
"230256048227047074266497400",
"51791322674249971562728368000"
]
| [
"nonn"
]
| 42 | 0 | 2 | [
"A000142",
"A129256",
"A351507",
"A384012",
"A384017",
"A384031"
]
| null | Seiichi Manyama, May 18 2025 | 2025-05-19T04:35:45 | oeisdata/seq/A384/A384017.seq | 138a463a4984156bc43cb61f23730ce7 |
A384018 | a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^3. | [
"1",
"0",
"3",
"63",
"1767",
"63690",
"2822740",
"148810032",
"9104502015",
"634448680884",
"49622704133175",
"4305280182748875",
"410376649359397380",
"42633179822414174760",
"4794685285831034253660",
"580373328155358031572600",
"75234419898396217903091151",
"10398952352945773993329785448",
"1526704288048697734221906020641"
]
| [
"nonn"
]
| 10 | 0 | 3 | [
"A342111",
"A384018",
"A384026",
"A384029"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-17T14:02:05 | oeisdata/seq/A384/A384018.seq | d5b3139d4a1dc02bf38acf1e5d9a18fb |
A384019 | a(n) = [x^n] Product_{k=0..n-1} 1/(1 - k*x)^3. | [
"1",
"0",
"6",
"198",
"8718",
"493620",
"34379705",
"2848881861",
"274014843102",
"30021594006888",
"3692052527349420",
"503688013660560300",
"75497500934983279207",
"12333902414342152783230",
"2181353542325197013657520",
"415235853517370112251703000",
"84651012612907530893554863870",
"18400893142622338322496213279696",
"4248568325843735030714223895999412"
]
| [
"nonn"
]
| 7 | 0 | 3 | [
"A384019",
"A384023"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-17T13:59:31 | oeisdata/seq/A384/A384019.seq | 6a87a06a51a000601224ed9d2486230e |
A384020 | Numbers k > 0 such that sigma(A018804(k)) = k*tau(A018804(k)) where sigma denotes the sum of divisors (A000203) and tau denotes the number of divisors (A000005). | [
"1",
"2",
"3",
"6",
"7",
"10",
"14",
"19",
"21",
"30",
"31",
"37",
"38",
"39",
"42",
"57",
"62",
"70",
"74",
"78",
"79",
"93",
"97",
"111",
"114",
"133",
"139",
"157",
"158",
"186",
"190",
"194",
"199",
"210",
"211",
"217",
"222",
"229",
"237",
"259",
"266",
"271",
"273",
"278",
"291",
"307",
"310",
"314",
"331",
"337",
"367",
"370",
"379",
"390",
"398",
"399",
"410"
]
| [
"nonn"
]
| 14 | 1 | 2 | [
"A000005",
"A000203",
"A018804",
"A382872",
"A384020"
]
| null | Ctibor O. Zizka, May 17 2025 | 2025-05-28T23:31:54 | oeisdata/seq/A384/A384020.seq | 96c0b17c9f593d1e7aefbbe2ff9e4d65 |
A384021 | Powers of 2 along with numbers one power of 2 less than binary repunits, but the power of two subtracted does not flip the leading bit. | [
"1",
"2",
"4",
"5",
"6",
"8",
"11",
"13",
"14",
"16",
"23",
"27",
"29",
"30",
"32",
"47",
"55",
"59",
"61",
"62",
"64",
"95",
"111",
"119",
"123",
"125",
"126",
"128",
"191",
"223",
"239",
"247",
"251",
"253",
"254",
"256",
"383",
"447",
"479",
"495",
"503",
"507",
"509",
"510",
"512",
"767",
"895",
"959",
"991",
"1007",
"1015",
"1019",
"1021",
"1022",
"1024",
"1535",
"1791",
"1919"
]
| [
"nonn",
"base",
"easy"
]
| 43 | 1 | 2 | [
"A000079",
"A030130",
"A164874",
"A383666",
"A384021"
]
| null | David A. Corneth, May 17 2025 | 2025-06-13T08:20:28 | oeisdata/seq/A384/A384021.seq | f9f230fe9a2c82bfcd6c6ccba7115fc0 |
A384022 | a(n) = [x^(2*n)] Product_{k=0..n} 1/(1 - k*x)^3. | [
"1",
"6",
"699",
"242434",
"170580831",
"202617635850",
"364680579642546",
"926271490234962816",
"3156974021179142865351",
"13905988122027295313489800",
"76896867190774672671251191752",
"521595538342870729288480053506382",
"4258687803431080424982372253063299050",
"41202042785933045982333959380025893914894"
]
| [
"nonn"
]
| 13 | 0 | 2 | [
"A383862",
"A384022"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-22T05:27:33 | oeisdata/seq/A384/A384022.seq | c8ef6de56639242bdfdcbe373675fbfd |
A384023 | a(n) = [x^(2*n)] Product_{k=0..n-1} 1/(1 - k*x)^3. | [
"1",
"0",
"15",
"6562",
"5011791",
"6200184825",
"11429262789510",
"29485293941863746",
"101592807373290699207",
"451093709664199690854238",
"2509724586752840748604036752",
"17105620782434790456521322932280",
"140205097075941134305471628610608762",
"1360788914644085139603907391284501566930"
]
| [
"nonn"
]
| 8 | 0 | 3 | [
"A384019",
"A384023"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-17T14:00:05 | oeisdata/seq/A384/A384023.seq | f60d5639690ce0ddc7ef08f08414f1ba |
A384024 | a(n) = [x^n] Product_{k=0..n} (1 + (n+k)*x). | [
"1",
"3",
"26",
"342",
"5944",
"127860",
"3272688",
"97053936",
"3270729600",
"123418922400",
"5154170774400",
"235977273544320",
"11752173128586240",
"632474276804697600",
"36576553723886131200",
"2261980049125982976000",
"148956705206745595084800",
"10406288081667512679321600",
"768701832940487804295168000"
]
| [
"nonn"
]
| 19 | 0 | 2 | [
"A000407",
"A165675",
"A201546",
"A383869",
"A384024"
]
| null | Vaclav Kotesovec, May 17 2025 | 2025-05-18T09:58:09 | oeisdata/seq/A384/A384024.seq | 1c3644ffa1ffb071e0da4bd2cc3718ff |
A384025 | a(n) = [x^(2*n)] Product_{k=0..n} (1 + k*x)^3. | [
"1",
"3",
"66",
"3815",
"424428",
"77530530",
"21106440064",
"8021533034676",
"4060456997959152",
"2642189599046492000",
"2149789283054191431744",
"2139041823964877704864992",
"2555760236856152336740829440",
"3611539707805518014521602175296",
"5958533262158042791156143146398464"
]
| [
"nonn"
]
| 13 | 0 | 2 | [
"A129256",
"A382925",
"A384025"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-22T11:58:59 | oeisdata/seq/A384/A384025.seq | fc11d4ba2d9441cda07b0004d3d5b69d |
A384026 | a(n) = [x^(2*n)] Product_{k=0..n-1} (1 + k*x)^3. | [
"1",
"0",
"0",
"8",
"1188",
"240480",
"68630824",
"26730127872",
"13715719388784",
"8994742935058880",
"7351374493516431744",
"7333037983443263351040",
"8772990646534399559904256",
"12403600039078715891159873280",
"20464777911173655904724421045504",
"38976211807455406964301439206318080"
]
| [
"nonn"
]
| 10 | 0 | 4 | [
"A342111",
"A384018",
"A384026",
"A384027"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-17T14:01:50 | oeisdata/seq/A384/A384026.seq | 38a32c41196df5e1a383435aa99de444 |
A384027 | a(n) = [x^(3*n)] Product_{k=0..n-1} (1 + k*x)^4. | [
"1",
"0",
"0",
"0",
"1296",
"2764800",
"8041766400",
"34726710251520",
"219045033712578816",
"1956771788423009992704",
"24009126017002632247173120",
"393692515265172002272138690560",
"8424620140673205407840209386541056",
"230472036551670538296109810120063451136",
"7917891968134805796965854747528387122954240"
]
| [
"nonn"
]
| 9 | 0 | 5 | [
"A342111",
"A384026",
"A384027",
"A384029",
"A384030"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-17T14:01:39 | oeisdata/seq/A384/A384027.seq | 2405ff4106485acbcd2f31feb8997d61 |
A384028 | a(n) = Sum_{k=0..2*n} Stirling1(2*n+1, 2*n+1-k) * Stirling1(2*n+1, k+1). | [
"1",
"13",
"2273",
"1184153",
"1251320145",
"2232012515445",
"6032418472347265",
"23007314730623658225",
"117745011140615270168865",
"778780810721500176081199325",
"6466413475830749109197652489569",
"65861328745485785925705177696147337",
"807448787241269228642562251336079833585"
]
| [
"nonn"
]
| 12 | 0 | 2 | [
"A129256",
"A234324",
"A384028"
]
| null | Vaclav Kotesovec, May 17 2025 | 2025-05-17T13:58:32 | oeisdata/seq/A384/A384028.seq | e4e6448fd5dbe52f6087c8904e1f968e |
A384029 | a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)^4. | [
"1",
"0",
"6",
"180",
"7206",
"370880",
"23477380",
"1768061064",
"154544373158",
"15387101825184",
"1719596420272980",
"213181689525888600",
"29036623040055512332",
"4310582688852993653568",
"692756995680614782818992",
"119830419866883597939018000",
"22198322332579642585088580870",
"4384714751330840129324051474880"
]
| [
"nonn"
]
| 10 | 0 | 3 | [
"A342111",
"A384018",
"A384027",
"A384029",
"A384030",
"A384031"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-17T14:00:56 | oeisdata/seq/A384/A384029.seq | dfac2d50adfadf1e754ba6d3e2549273 |
A384030 | a(n) = [x^(2*n)] Product_{k=0..n-1} (1 + k*x)^4. | [
"1",
"0",
"1",
"248",
"79441",
"38878520",
"27741179521",
"27412462941136",
"35965398129639713",
"60588665662486807184",
"127588718827126433989569",
"328596587850349392471155720",
"1016488989627693108972046560497",
"3720090951049096346043302894560648",
"15901046580509525131539058273675597889"
]
| [
"nonn"
]
| 9 | 0 | 4 | [
"A384027",
"A384029",
"A384030"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-17T14:01:08 | oeisdata/seq/A384/A384030.seq | 6d483d6566080e0b6edf4287e20c18e8 |
A384031 | a(n) = [x^n] Product_{k=0..n} (1 + k*x)^4. | [
"1",
"4",
"62",
"1680",
"65446",
"3334800",
"210218956",
"15803243456",
"1380404187558",
"137419388080920",
"15359405910256580",
"1904647527097204032",
"259511601503239509004",
"38539384808775589973416",
"6195988524478342471690200",
"1072149116496356641327200000",
"198683315255720972000976370950"
]
| [
"nonn"
]
| 19 | 0 | 2 | [
"A129256",
"A351507",
"A382925",
"A384012",
"A384017",
"A384029",
"A384031",
"A384032",
"A384060"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-19T04:54:48 | oeisdata/seq/A384/A384031.seq | 7a26aecde934d90b9533a55d01fffb34 |
A384032 | a(n) = [x^(2*n)] Product_{k=0..n} (1 + k*x)^4. | [
"1",
"6",
"321",
"46364",
"13052881",
"6077950570",
"4237586784577",
"4137911590389080",
"5394217192300621089",
"9055251708372687577550",
"19032397641903957029149569",
"48970167155426122072661229684",
"151429299992138418402024853511537",
"554184682895238619253412365302575346"
]
| [
"nonn"
]
| 15 | 0 | 2 | [
"A382925",
"A384031",
"A384032"
]
| null | Seiichi Manyama, May 17 2025 | 2025-05-22T13:20:38 | oeisdata/seq/A384/A384032.seq | 07aaabb1d09075212578493b025372b4 |
A384033 | a(n) is the number of solutions to n = sopfr(k*sopfr(n)) where sopfr(m) is sum of prime factors of m counted with multiplicity. | [
"0",
"1",
"1",
"1",
"1",
"0",
"1",
"1",
"1",
"1",
"1",
"2",
"1",
"3",
"4",
"5",
"1",
"7",
"1",
"10",
"10",
"4",
"1",
"19",
"19",
"19",
"30",
"17",
"1",
"40",
"1",
"52",
"46",
"12",
"77",
"87",
"1",
"77",
"111",
"87",
"1",
"175",
"1",
"197",
"157",
"197",
"1",
"219",
"302",
"413",
"372",
"175",
"1",
"413",
"614",
"413",
"456",
"67",
"1",
"1083",
"1",
"677",
"819",
"1552",
"1552",
"1695",
"1"
]
| [
"nonn",
"new"
]
| 48 | 1 | 12 | [
"A000607",
"A001414",
"A384033"
]
| null | Michael Terhoeven, May 17 2025 | 2025-07-02T00:55:06 | oeisdata/seq/A384/A384033.seq | 704186b81a3f05a6db165219fbad92a9 |
A384034 | Irregular triangle read by rows. Start with T(1,1) = 1. For each subsequent row, traverse the array so far. For each value m, insert m new values from the next unused integers immediately to the right of m. The process is repeated row by row, where each number in the array dictates how many new values are added after it. | [
"1",
"1",
"2",
"1",
"3",
"2",
"4",
"5",
"1",
"6",
"3",
"7",
"8",
"9",
"2",
"10",
"11",
"4",
"12",
"13",
"14",
"15",
"5",
"16",
"17",
"18",
"19",
"20",
"1",
"21",
"6",
"22",
"23",
"24",
"25",
"26",
"27",
"3",
"28",
"29",
"30",
"7",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"8",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"9",
"46",
"47",
"48",
"49",
"50",
"51",
"52",
"53",
"54",
"2",
"55",
"56"
]
| [
"nonn",
"tabf"
]
| 27 | 1 | 3 | null | null | Ali Sada, May 21 2025 | 2025-06-04T10:24:47 | oeisdata/seq/A384/A384034.seq | b31af0f586ab2f97dcebea402448b5af |
A384035 | Number of vector differences between two permutations of order n, up to multiplication by positive rational numbers and permutations of the components. | [
"1",
"1",
"2",
"4",
"13",
"49",
"228",
"1034",
"5133",
"25710",
"133872",
"708976",
"3846150",
"21170077",
"118429072",
"670537495"
]
| [
"nonn",
"more",
"hard"
]
| 6 | 0 | 3 | [
"A019589",
"A175176",
"A362968",
"A381243",
"A381244",
"A381339",
"A384035"
]
| null | Max Alekseyev, May 17 2025 | 2025-05-18T02:30:36 | oeisdata/seq/A384/A384035.seq | 58df9ef1024fe8ccb7aa3a8a09259955 |
A384036 | Decimal expansion of the surface area of a regular pentagonal prism of edge length 1. | [
"8",
"4",
"4",
"0",
"9",
"5",
"4",
"8",
"0",
"1",
"1",
"7",
"7",
"9",
"3",
"3",
"8",
"4",
"5",
"5",
"1",
"8",
"0",
"2",
"3",
"9",
"5",
"4",
"7",
"7",
"7",
"2",
"1",
"9",
"1",
"9",
"8",
"8",
"1",
"4",
"7",
"4",
"8",
"3",
"4",
"0",
"0",
"2",
"0",
"3",
"9",
"6",
"6",
"5",
"8",
"4",
"1",
"4",
"1",
"8",
"9",
"4",
"1",
"4",
"0",
"4",
"7",
"7",
"3",
"7",
"9",
"8",
"4",
"4",
"1",
"7",
"9",
"3",
"2",
"4",
"6",
"2",
"6",
"6",
"4",
"8",
"8"
]
| [
"nonn",
"cons"
]
| 28 | 1 | 1 | [
"A102771",
"A178809",
"A300074",
"A384036",
"A384059"
]
| null | Kritsada Moomuang, May 17 2025 | 2025-05-22T19:08:12 | oeisdata/seq/A384/A384036.seq | 8db17a363c112ae98b363cd379efd7d8 |
A384037 | Number of paths with length A383980(n) touching all cells in an n X n grid, where rotations, reflections, and translations are not counted as distinct. | [
"1",
"1",
"1",
"1",
"1",
"1",
"3",
"6",
"3",
"9",
"42"
]
| [
"nonn",
"more",
"hard",
"walk"
]
| 14 | 0 | 7 | [
"A383980",
"A384037"
]
| null | Fülöp Tamás, May 17 2025 | 2025-05-18T12:28:02 | oeisdata/seq/A384/A384037.seq | a90f4b4490a2c57f54ffd43fcb9b36a6 |
A384038 | Number of 2n X 2n matrices M over GF(2) such that the column space of M is equal to the null space of M. | [
"1",
"3",
"210",
"234360",
"4047865920",
"1092146608143360",
"4650098142288472473600",
"314462403262051153026062745600",
"338960040818652280796119613717033779200",
"5834618256563872511581456247120956565738854809600",
"1605370810586153268821245248112723240374305354675084328960000"
]
| [
"nonn"
]
| 15 | 0 | 2 | [
"A002884",
"A006098",
"A053763",
"A346214",
"A384038"
]
| null | Geoffrey Critzer, May 17 2025 | 2025-05-18T07:57:20 | oeisdata/seq/A384/A384038.seq | 9ceace2345cf9448b7960fb977c1d104 |
A384039 | The number of integers k from 1 to n such that gcd(n,k) is a powerful number. | [
"1",
"1",
"2",
"3",
"4",
"2",
"6",
"6",
"7",
"4",
"10",
"6",
"12",
"6",
"8",
"12",
"16",
"7",
"18",
"12",
"12",
"10",
"22",
"12",
"21",
"12",
"21",
"18",
"28",
"8",
"30",
"24",
"20",
"16",
"24",
"21",
"36",
"18",
"24",
"24",
"40",
"12",
"42",
"30",
"28",
"22",
"46",
"24",
"43",
"21",
"32",
"36",
"52",
"21",
"40",
"36",
"36",
"28",
"58",
"24",
"60",
"30",
"42",
"48",
"48",
"20",
"66",
"48",
"44"
]
| [
"nonn",
"easy",
"mult"
]
| 12 | 1 | 3 | [
"A000010",
"A001694",
"A005117",
"A026741",
"A050873",
"A055231",
"A062570",
"A063658",
"A063659",
"A078429",
"A116512",
"A117494",
"A126246",
"A206369",
"A254926",
"A372671",
"A384039",
"A384040",
"A384041",
"A384042"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-18T04:34:21 | oeisdata/seq/A384/A384039.seq | b3238b20481fa53b3d61cfc1d8fc00b7 |
A384040 | The number of integers k from 1 to n such that gcd(n,k) is a cubefull number. | [
"1",
"1",
"2",
"2",
"4",
"2",
"6",
"5",
"6",
"4",
"10",
"4",
"12",
"6",
"8",
"10",
"16",
"6",
"18",
"8",
"12",
"10",
"22",
"10",
"20",
"12",
"19",
"12",
"28",
"8",
"30",
"20",
"20",
"16",
"24",
"12",
"36",
"18",
"24",
"20",
"40",
"12",
"42",
"20",
"24",
"22",
"46",
"20",
"42",
"20",
"32",
"24",
"52",
"19",
"40",
"30",
"36",
"28",
"58",
"16",
"60",
"30",
"36",
"40",
"48",
"20",
"66",
"32",
"44",
"24"
]
| [
"nonn",
"easy",
"mult"
]
| 7 | 1 | 3 | [
"A005117",
"A026741",
"A036966",
"A062570",
"A063659",
"A078429",
"A116512",
"A117494",
"A126246",
"A206369",
"A254926",
"A360539",
"A372671",
"A384039",
"A384040",
"A384041",
"A384042"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-18T04:24:26 | oeisdata/seq/A384/A384040.seq | 04b1979f2306f799f4c109f62e125be2 |
A384041 | The number of integers k from 1 to n such that gcd(n,k) is an exponentially odd number. | [
"1",
"2",
"3",
"3",
"5",
"6",
"7",
"7",
"8",
"10",
"11",
"9",
"13",
"14",
"15",
"13",
"17",
"16",
"19",
"15",
"21",
"22",
"23",
"21",
"24",
"26",
"25",
"21",
"29",
"30",
"31",
"27",
"33",
"34",
"35",
"24",
"37",
"38",
"39",
"35",
"41",
"42",
"43",
"33",
"40",
"46",
"47",
"39",
"48",
"48",
"51",
"39",
"53",
"50",
"55",
"49",
"57",
"58",
"59",
"45",
"61",
"62",
"56",
"53",
"65",
"66",
"67",
"51"
]
| [
"nonn",
"easy",
"mult"
]
| 7 | 1 | 2 | [
"A000010",
"A026741",
"A062570",
"A063659",
"A078429",
"A116512",
"A117494",
"A126246",
"A206369",
"A254926",
"A268335",
"A372671",
"A384039",
"A384040",
"A384041",
"A384042"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-18T04:29:34 | oeisdata/seq/A384/A384041.seq | 197d75421aad6bef206d09d6639da3ae |
A384042 | The number of integers k from 1 to n such that gcd(n,k) is a 5-rough number (A007310). | [
"1",
"1",
"2",
"2",
"5",
"2",
"7",
"4",
"6",
"5",
"11",
"4",
"13",
"7",
"10",
"8",
"17",
"6",
"19",
"10",
"14",
"11",
"23",
"8",
"25",
"13",
"18",
"14",
"29",
"10",
"31",
"16",
"22",
"17",
"35",
"12",
"37",
"19",
"26",
"20",
"41",
"14",
"43",
"22",
"30",
"23",
"47",
"16",
"49",
"25",
"34",
"26",
"53",
"18",
"55",
"28",
"38",
"29",
"59",
"20",
"61",
"31",
"42",
"32",
"65",
"22",
"67",
"34",
"46"
]
| [
"nonn",
"easy",
"mult"
]
| 9 | 1 | 3 | [
"A000010",
"A003586",
"A007310",
"A026741",
"A062570",
"A063659",
"A065330",
"A065331",
"A078429",
"A116512",
"A117494",
"A126246",
"A206369",
"A254926",
"A372671",
"A384039",
"A384040",
"A384041",
"A384042"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-25T12:36:39 | oeisdata/seq/A384/A384042.seq | 1cecc39386917a021d4a59c413af7060 |
A384043 | a(n) = [x^n] Product_{k=1..n} (1 + k^2*x) / (1 - k^2*x). | [
"1",
"2",
"50",
"4188",
"735600",
"221302710",
"101667388082",
"66218673102680",
"58048466179356672",
"65901249246347377770",
"94061755750395244537250",
"164863945136411230998746612",
"348110204753572939058548570000",
"871547135491620353615820806025918",
"2552918049709989779004770502542335650"
]
| [
"nonn"
]
| 5 | 0 | 2 | [
"A001044",
"A298851",
"A350366",
"A351764",
"A384043",
"A384044"
]
| null | Vaclav Kotesovec, May 18 2025 | 2025-05-18T04:10:05 | oeisdata/seq/A384/A384043.seq | 7bbfe3d7db783bf9e2c879e012b75f77 |
A384044 | a(n) = [x^n] Product_{k=1..n} (1 + k^3*x) / (1 - k^3*x). | [
"1",
"2",
"162",
"75672",
"104312000",
"317309605650",
"1803288012589602",
"17180843554017736544",
"254292459616733559570432",
"5525508321588276184345621650",
"168733575675064578625834983478850",
"6994229599670887851052241626545021912",
"382562895157136117988572795915676719695680"
]
| [
"nonn"
]
| 4 | 0 | 2 | [
"A000442",
"A350366",
"A351764",
"A351800",
"A384043",
"A384044"
]
| null | Vaclav Kotesovec, May 18 2025 | 2025-05-18T04:09:59 | oeisdata/seq/A384/A384044.seq | 3ea5bb8384531f4cb17804affac275b2 |
A384045 | a(1) = 1, a(2) = 2; for n > 2, a(n) is the smallest unused positive number that shares a factor with a(n-1) if it is greater than it, else it is coprime to a(n-1) if it is less than it. | [
"1",
"2",
"4",
"3",
"6",
"5",
"10",
"7",
"14",
"9",
"8",
"12",
"11",
"22",
"13",
"26",
"15",
"18",
"17",
"16",
"20",
"19",
"38",
"21",
"24",
"23",
"46",
"25",
"30",
"29",
"27",
"33",
"28",
"32",
"31",
"62",
"35",
"34",
"36",
"39",
"37",
"74",
"41",
"40",
"42",
"44",
"43",
"86",
"45",
"48",
"47",
"94",
"49",
"56",
"51",
"50",
"52",
"54",
"53",
"106",
"55",
"60",
"59",
"57",
"63",
"58",
"64",
"61"
]
| [
"nonn"
]
| 13 | 1 | 2 | [
"A064413",
"A373545",
"A373546",
"A375563",
"A375564",
"A384045"
]
| null | Scott R. Shannon, May 18 2025 | 2025-05-27T10:34:43 | oeisdata/seq/A384/A384045.seq | 27e3e3be9de4593b52aa30bf20b6abae |
A384046 | Triangle in which the n-th row gives the numbers from 1 to n whose largest divisor that is a unitary divisor of n is 1. | [
"1",
"1",
"1",
"2",
"1",
"2",
"3",
"1",
"2",
"3",
"4",
"1",
"5",
"1",
"2",
"3",
"4",
"5",
"6",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"1",
"3",
"7",
"9",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"1",
"2",
"5",
"7",
"10",
"11",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"1",
"3",
"5",
"9",
"11",
"13",
"1",
"2",
"4",
"7",
"8",
"11",
"13",
"14",
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15"
]
| [
"nonn",
"tabf",
"easy"
]
| 12 | 1 | 4 | [
"A038566",
"A047994",
"A077610",
"A225174",
"A333576",
"A384046",
"A384047"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-24T03:32:22 | oeisdata/seq/A384/A384046.seq | b33d27ede964a286a8b664a0f640b9f0 |
A384047 | Triangle read by rows: T(n, k) for 1 <= k <= n is the largest divisor of k that is a unitary divisor of n. | [
"1",
"1",
"2",
"1",
"1",
"3",
"1",
"1",
"1",
"4",
"1",
"1",
"1",
"1",
"5",
"1",
"2",
"3",
"2",
"1",
"6",
"1",
"1",
"1",
"1",
"1",
"1",
"7",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"8",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"9",
"1",
"2",
"1",
"2",
"5",
"2",
"1",
"2",
"1",
"10",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"11",
"1",
"1",
"3",
"4",
"1",
"3",
"1",
"4",
"3",
"1",
"1",
"12",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"13"
]
| [
"nonn",
"tabl",
"easy"
]
| 11 | 1 | 3 | [
"A005117",
"A050873",
"A077610",
"A145388",
"A165430",
"A225174",
"A322482",
"A384046",
"A384047"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-24T03:32:26 | oeisdata/seq/A384/A384047.seq | 46485c9ffb5c2f496daf5ac6436b6879 |
A384048 | The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is squarefree. | [
"1",
"2",
"3",
"3",
"5",
"6",
"7",
"7",
"8",
"10",
"11",
"9",
"13",
"14",
"15",
"15",
"17",
"16",
"19",
"15",
"21",
"22",
"23",
"21",
"24",
"26",
"26",
"21",
"29",
"30",
"31",
"31",
"33",
"34",
"35",
"24",
"37",
"38",
"39",
"35",
"41",
"42",
"43",
"33",
"40",
"46",
"47",
"45",
"48",
"48",
"51",
"39",
"53",
"52",
"55",
"49",
"57",
"58",
"59",
"45",
"61",
"62",
"56",
"63",
"65",
"66",
"67",
"51"
]
| [
"nonn",
"easy",
"mult"
]
| 11 | 1 | 2 | [
"A000010",
"A005117",
"A047994",
"A055231",
"A057521",
"A063659",
"A065466",
"A384046",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-21T01:32:16 | oeisdata/seq/A384/A384048.seq | 17774ce0c94e2d3255970b288723ccc2 |
A384049 | The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is cubefree. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"7",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"15",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"21",
"25",
"26",
"26",
"28",
"29",
"30",
"31",
"31",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"35",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"45",
"49",
"50",
"51",
"52",
"53",
"52",
"55",
"49",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"63",
"65",
"66",
"67",
"68"
]
| [
"nonn",
"easy",
"mult"
]
| 10 | 1 | 2 | [
"A004709",
"A047994",
"A065468",
"A254926",
"A360539",
"A360540",
"A384046",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-21T01:32:09 | oeisdata/seq/A384/A384049.seq | 8e709e48ea0225fa815577ec698ed676 |
A384050 | The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a powerful number. | [
"1",
"1",
"2",
"4",
"4",
"2",
"6",
"8",
"9",
"4",
"10",
"8",
"12",
"6",
"8",
"16",
"16",
"9",
"18",
"16",
"12",
"10",
"22",
"16",
"25",
"12",
"27",
"24",
"28",
"8",
"30",
"32",
"20",
"16",
"24",
"36",
"36",
"18",
"24",
"32",
"40",
"12",
"42",
"40",
"36",
"22",
"46",
"32",
"49",
"25",
"32",
"48",
"52",
"27",
"40",
"48",
"36",
"28",
"58",
"32",
"60",
"30",
"54",
"64",
"48",
"20",
"66",
"64",
"44"
]
| [
"nonn",
"easy",
"mult"
]
| 10 | 1 | 3 | [
"A000010",
"A001694",
"A047994",
"A055231",
"A057521",
"A330596",
"A384039",
"A384046",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-21T01:32:21 | oeisdata/seq/A384/A384050.seq | b042620b797b0dfe16222b5e0e887962 |
A384051 | The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a cubefull number. | [
"1",
"1",
"2",
"3",
"4",
"2",
"6",
"8",
"8",
"4",
"10",
"6",
"12",
"6",
"8",
"16",
"16",
"8",
"18",
"12",
"12",
"10",
"22",
"16",
"24",
"12",
"27",
"18",
"28",
"8",
"30",
"32",
"20",
"16",
"24",
"24",
"36",
"18",
"24",
"32",
"40",
"12",
"42",
"30",
"32",
"22",
"46",
"32",
"48",
"24",
"32",
"36",
"52",
"27",
"40",
"48",
"36",
"28",
"58",
"24",
"60",
"30",
"48",
"64",
"48",
"20",
"66",
"48",
"44"
]
| [
"nonn",
"easy",
"mult"
]
| 10 | 1 | 3 | [
"A036966",
"A047994",
"A360539",
"A360540",
"A384040",
"A384046",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-21T01:33:29 | oeisdata/seq/A384/A384051.seq | c901314bedeea2d757cb1339d4a9d2d6 |
A384052 | The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a square. | [
"1",
"1",
"2",
"4",
"4",
"2",
"6",
"7",
"9",
"4",
"10",
"8",
"12",
"6",
"8",
"16",
"16",
"9",
"18",
"16",
"12",
"10",
"22",
"14",
"25",
"12",
"26",
"24",
"28",
"8",
"30",
"31",
"20",
"16",
"24",
"36",
"36",
"18",
"24",
"28",
"40",
"12",
"42",
"40",
"36",
"22",
"46",
"32",
"49",
"25",
"32",
"48",
"52",
"26",
"40",
"42",
"36",
"28",
"58",
"32",
"60",
"30",
"54",
"64",
"48",
"20",
"66",
"64",
"44"
]
| [
"nonn",
"easy",
"mult"
]
| 8 | 1 | 3 | [
"A013662",
"A047994",
"A206369",
"A350388",
"A350389",
"A384046",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-21T01:32:27 | oeisdata/seq/A384/A384052.seq | cef07b7846fc5bc5ee095ced60bd766f |
A384053 | The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a cube. | [
"1",
"1",
"2",
"3",
"4",
"2",
"6",
"8",
"8",
"4",
"10",
"6",
"12",
"6",
"8",
"15",
"16",
"8",
"18",
"12",
"12",
"10",
"22",
"16",
"24",
"12",
"27",
"18",
"28",
"8",
"30",
"31",
"20",
"16",
"24",
"24",
"36",
"18",
"24",
"32",
"40",
"12",
"42",
"30",
"32",
"22",
"46",
"30",
"48",
"24",
"32",
"36",
"52",
"27",
"40",
"48",
"36",
"28",
"58",
"24",
"60",
"30",
"48",
"64",
"48",
"20",
"66",
"48",
"44"
]
| [
"nonn",
"easy",
"mult"
]
| 8 | 1 | 3 | [
"A013664",
"A047994",
"A078429",
"A384046",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-21T01:33:24 | oeisdata/seq/A384/A384053.seq | c170cffdc706b8f409ebc99afe645ca1 |
A384054 | The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is an exponentially odd number. | [
"1",
"2",
"3",
"3",
"5",
"6",
"7",
"8",
"8",
"10",
"11",
"9",
"13",
"14",
"15",
"15",
"17",
"16",
"19",
"15",
"21",
"22",
"23",
"24",
"24",
"26",
"27",
"21",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"24",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"33",
"40",
"46",
"47",
"45",
"48",
"48",
"51",
"39",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"45",
"61",
"62",
"56",
"63",
"65",
"66",
"67",
"51"
]
| [
"nonn",
"easy",
"mult"
]
| 12 | 1 | 2 | [
"A013662",
"A047994",
"A268335",
"A350388",
"A350389",
"A384041",
"A384046",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-21T23:19:01 | oeisdata/seq/A384/A384054.seq | 933972a8f591c820b48dacccba923cdc |
A384055 | The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is odd. | [
"1",
"1",
"3",
"3",
"5",
"3",
"7",
"7",
"9",
"5",
"11",
"9",
"13",
"7",
"15",
"15",
"17",
"9",
"19",
"15",
"21",
"11",
"23",
"21",
"25",
"13",
"27",
"21",
"29",
"15",
"31",
"31",
"33",
"17",
"35",
"27",
"37",
"19",
"39",
"35",
"41",
"21",
"43",
"33",
"45",
"23",
"47",
"45",
"49",
"25",
"51",
"39",
"53",
"27",
"55",
"49",
"57",
"29",
"59",
"45",
"61",
"31",
"63",
"63",
"65",
"33",
"67",
"51",
"69"
]
| [
"nonn",
"easy",
"mult"
]
| 8 | 1 | 3 | [
"A000265",
"A006519",
"A026741",
"A047994",
"A384046",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-21T01:33:18 | oeisdata/seq/A384/A384055.seq | 01d948ab9728a925883aa2625ce32435 |
A384056 | The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a power of 2. | [
"1",
"2",
"2",
"4",
"4",
"4",
"6",
"8",
"8",
"8",
"10",
"8",
"12",
"12",
"8",
"16",
"16",
"16",
"18",
"16",
"12",
"20",
"22",
"16",
"24",
"24",
"26",
"24",
"28",
"16",
"30",
"32",
"20",
"32",
"24",
"32",
"36",
"36",
"24",
"32",
"40",
"24",
"42",
"40",
"32",
"44",
"46",
"32",
"48",
"48",
"32",
"48",
"52",
"52",
"40",
"48",
"36",
"56",
"58",
"32",
"60",
"60",
"48",
"64",
"48",
"40",
"66",
"64",
"44"
]
| [
"nonn",
"easy",
"mult"
]
| 8 | 1 | 2 | [
"A000079",
"A000265",
"A006519",
"A047994",
"A062570",
"A065463",
"A384046",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-21T01:33:07 | oeisdata/seq/A384/A384056.seq | fd715a34b94a90a4c4156db0dd2b96c4 |
A384057 | The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a 3-smooth number. | [
"1",
"2",
"3",
"4",
"4",
"6",
"6",
"8",
"9",
"8",
"10",
"12",
"12",
"12",
"12",
"16",
"16",
"18",
"18",
"16",
"18",
"20",
"22",
"24",
"24",
"24",
"27",
"24",
"28",
"24",
"30",
"32",
"30",
"32",
"24",
"36",
"36",
"36",
"36",
"32",
"40",
"36",
"42",
"40",
"36",
"44",
"46",
"48",
"48",
"48",
"48",
"48",
"52",
"54",
"40",
"48",
"54",
"56",
"58",
"48",
"60",
"60",
"54",
"64",
"48",
"60",
"66",
"64"
]
| [
"nonn",
"easy",
"mult"
]
| 11 | 1 | 2 | [
"A003586",
"A047994",
"A065330",
"A065331",
"A065463",
"A372671",
"A384046",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-21T01:32:56 | oeisdata/seq/A384/A384057.seq | a4e8b0c60061d92df0455417675d081d |
A384058 | The number of integers k from 1 to n such that the greatest divisor of k that is a unitary divisor of n is a 5-rough number (A007310). | [
"1",
"1",
"2",
"3",
"5",
"2",
"7",
"7",
"8",
"5",
"11",
"6",
"13",
"7",
"10",
"15",
"17",
"8",
"19",
"15",
"14",
"11",
"23",
"14",
"25",
"13",
"26",
"21",
"29",
"10",
"31",
"31",
"22",
"17",
"35",
"24",
"37",
"19",
"26",
"35",
"41",
"14",
"43",
"33",
"40",
"23",
"47",
"30",
"49",
"25",
"34",
"39",
"53",
"26",
"55",
"49",
"38",
"29",
"59",
"30",
"61",
"31",
"56",
"63",
"65",
"22",
"67",
"51",
"46"
]
| [
"nonn",
"easy",
"mult"
]
| 10 | 1 | 3 | [
"A007310",
"A047994",
"A065330",
"A065331",
"A384042",
"A384046",
"A384047",
"A384048",
"A384049",
"A384050",
"A384051",
"A384052",
"A384053",
"A384054",
"A384055",
"A384056",
"A384057",
"A384058"
]
| null | Amiram Eldar, May 18 2025 | 2025-05-21T01:33:02 | oeisdata/seq/A384/A384058.seq | 22afacfa256729d2697460ddf6b0438a |
A384059 | Decimal expansion of the circumradius of a regular pentagonal prism of edge length 1. | [
"9",
"8",
"6",
"7",
"1",
"5",
"1",
"5",
"5",
"3",
"2",
"5",
"9",
"8",
"3",
"1",
"0",
"7",
"3",
"2",
"0",
"7",
"0",
"0",
"0",
"5",
"5",
"8",
"4",
"0",
"6",
"6",
"8",
"9",
"1",
"7",
"8",
"7",
"2",
"8",
"5",
"0",
"4",
"5",
"2",
"2",
"3",
"2",
"0",
"3",
"5",
"0",
"7",
"3",
"7",
"8",
"6",
"4",
"3",
"1",
"5",
"5",
"2",
"4",
"8",
"6",
"1",
"9",
"6",
"1",
"0",
"4",
"0",
"5",
"4",
"5",
"3",
"8",
"1",
"0",
"3",
"3",
"0",
"5",
"7",
"9",
"1"
]
| [
"nonn",
"cons"
]
| 12 | 0 | 1 | [
"A102771",
"A300074",
"A384036",
"A384059"
]
| null | Kritsada Moomuang, May 18 2025 | 2025-05-22T19:08:23 | oeisdata/seq/A384/A384059.seq | ff90190fcb1619593e905848eb41988f |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.