sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A383829
Number of medial involutory racks of order n, up to isomorphism.
[ "1", "1", "2", "5", "12", "38", "168", "850", "6090" ]
[ "nonn", "hard", "more" ]
8
0
3
[ "A165200", "A176077", "A177886", "A178432", "A179010", "A181769", "A181770", "A181771", "A193024", "A196111", "A198147", "A225744", "A226172", "A226173", "A226174", "A226193", "A236146", "A242044", "A242275", "A243931", "A248908", "A254434", "A257351", "A374939", "A374942", "A374943", "A374944", "A374945", "A374946", "A374947", "A383144", "A383145", "A383146", "A383828", "A383829", "A383830", "A383831" ]
null
Luc Ta, May 11 2025
2025-05-16T14:33:54
oeisdata/seq/A383/A383829.seq
460ac82eddbb39c146b5c5fa7c1f0cfe
A383830
Number of Legendrian quandles of order n, up to isomorphism.
[ "1", "1", "2", "5", "15", "54", "240", "1306", "9477" ]
[ "nonn", "hard", "more" ]
8
0
3
[ "A165200", "A176077", "A177886", "A178432", "A179010", "A181769", "A181770", "A181771", "A193024", "A196111", "A198147", "A225744", "A226172", "A226173", "A226174", "A226193", "A236146", "A242044", "A242275", "A243931", "A248908", "A254434", "A257351", "A374939", "A374942", "A374943", "A374944", "A374945", "A374946", "A374947", "A383144", "A383145", "A383146", "A383828", "A383829", "A383830", "A383831" ]
null
Luc Ta, May 11 2025
2025-05-16T14:34:27
oeisdata/seq/A383/A383830.seq
a0590ca8272147628d6cd382da42ad44
A383831
Number of medial Legendrian quandles of order n, up to isomorphism.
[ "1", "1", "2", "5", "14", "48", "219", "1207", "9042" ]
[ "hard", "more", "nonn" ]
11
0
3
[ "A165200", "A176077", "A177886", "A178432", "A179010", "A181769", "A181770", "A181771", "A193024", "A196111", "A198147", "A225744", "A226172", "A226173", "A226174", "A226193", "A236146", "A242044", "A242275", "A243931", "A248908", "A254434", "A257351", "A374939", "A374942", "A374943", "A374944", "A374945", "A374946", "A374947", "A383144", "A383145", "A383146", "A383828", "A383830", "A383831" ]
null
Luc Ta, May 16 2025
2025-05-16T09:44:45
oeisdata/seq/A383/A383831.seq
e1d8a98ffb7c1b03d48c68f57dd5c11b
A383833
Area of the unique primitive Pythagorean triple whose inradius is A000217(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "0", "6", "84", "546", "2310", "7440", "19866", "46284", "97236", "188370", "341880", "588126", "967434", "1532076", "2348430", "3499320", "5086536", "7233534", "10088316", "13826490", "18654510", "24813096", "32580834", "42277956", "54270300", "68973450", "86857056", "108449334", "134341746", "165193860", "201738390" ]
[ "nonn", "easy", "changed" ]
13
0
2
[ "A000217", "A002061", "A058919", "A336535", "A383833", "A383834" ]
null
Miguel-Ángel Pérez García-Ortega, May 11 2025
2025-07-13T17:21:48
oeisdata/seq/A383/A383833.seq
9713dab2f6172eb1806559f127d48329
A383834
Sum of the legs of the unique primitive Pythagorean triple whose inradius is A000217(n) and such that its long leg and its hypotenuse are consecutive natural numbers.
[ "1", "7", "31", "97", "241", "511", "967", "1681", "2737", "4231", "6271", "8977", "12481", "16927", "22471", "29281", "37537", "47431", "59167", "72961", "89041", "107647", "129031", "153457", "181201", "212551", "247807", "287281", "331297", "380191", "434311", "494017", "559681", "631687", "710431", "796321", "889777", "991231", "1101127", "1219921", "1348081" ]
[ "nonn", "easy", "changed" ]
18
0
2
[ "A000217", "A002061", "A006007", "A058919", "A336535", "A383833", "A383834" ]
null
Miguel-Ángel Pérez García-Ortega, May 11 2025
2025-07-13T17:25:49
oeisdata/seq/A383/A383834.seq
c2e27056388536e9db18378357f5e29b
A383835
Number of permutations of [n] whose compositional square is the identity permutation or its reverse.
[ "1", "1", "2", "4", "12", "28", "76", "232", "776", "2632", "9496", "35696", "140272", "568624", "2390480", "10349536", "46208416", "211800992", "997313824", "4809701440", "23758694336", "119952723136", "618884638912", "3257843882624", "17492191242880", "95680444425856", "532985208200576", "3020676745975552" ]
[ "nonn", "easy" ]
20
0
3
[ "A000085", "A000142", "A037224", "A383835" ]
null
Darío Clavijo, May 11 2025
2025-05-19T17:58:14
oeisdata/seq/A383/A383835.seq
f029f607612b6725aaae699067a59e12
A383836
Integers k such that d*2^k + k/d is prime for some divisor d of k.
[ "1", "3", "5", "6", "9", "10", "15", "21", "22", "28", "39", "66", "75", "81", "89", "105", "108", "111", "141", "165", "166", "190", "196", "317", "340", "357", "459", "462", "483", "525", "564", "568", "573", "701", "735", "737", "792", "869", "1185", "1311", "1480", "1647", "1794", "1881", "2145", "2405", "2508", "2766", "3081", "3201", "3225", "3243", "4260", "4713", "5369", "5795", "5985" ]
[ "nonn" ]
22
1
2
[ "A057663", "A161904", "A383473", "A383836" ]
null
Juri-Stepan Gerasimov, May 11 2025
2025-05-28T18:09:56
oeisdata/seq/A383/A383836.seq
1615aa63f4ff97dc0cdeb44e68e2bd83
A383837
a(n) = (3*n)!/n! * [x^(3*n)] sinh(x)^n.
[ "1", "1", "16", "820", "87296", "15857205", "4390088704", "1721255653656", "907673633095680", "619593964021650475", "531571294549842067456", "559896149105493602658256", "710322778732936488128872448", "1068386732538408106621063668220", "1879866814874817967233600382304256" ]
[ "nonn" ]
20
0
3
[ "A298851", "A381459", "A381512", "A383837" ]
null
Seiichi Manyama, May 11 2025
2025-05-17T05:03:30
oeisdata/seq/A383/A383837.seq
6bf268ae1188201cb4a7adf838ba2065
A383838
Expansion of 1/((1-x) * (1-4*x) * (1-9*x) * (1-16*x)).
[ "1", "30", "627", "11440", "196053", "3255330", "53157079", "860181300", "13850000505", "222384254950", "3565207699131", "57106865357880", "914281747641757", "14633655168987690", "234184807922193183", "3747373855152257980", "59961734043737254209", "959421515974412698350", "15351048197153778821635" ]
[ "nonn", "easy" ]
25
0
2
[ "A002451", "A269945", "A383838" ]
null
Seiichi Manyama, May 11 2025
2025-05-12T11:53:55
oeisdata/seq/A383/A383838.seq
2d48021913a346d6c1356861b87aa918
A383839
a(n) = [x^n] 1/(1 - n*x) * Product_{k=0..n-1} (1 + k*x)/(1 - k*x).
[ "1", "1", "10", "177", "4576", "156145", "6627006", "336562177", "19906794496", "1344082891761", "102012257669950", "8597688151223281", "796733925564191616", "80516951813773009249", "8812696026991760928766", "1038540275078155878285825", "131107274213106172807069696", "17652158052761888943436783009" ]
[ "nonn" ]
20
0
3
[ "A350366", "A383767", "A383839" ]
null
Seiichi Manyama, May 14 2025
2025-05-14T10:51:00
oeisdata/seq/A383/A383839.seq
1cddffd920cf8cdd42c2d42b42106113
A383840
Expansion of 1/((1-x) * (1-4*x) * (1-9*x) * (1-16*x) * (1-25*x)).
[ "1", "55", "2002", "61490", "1733303", "46587905", "1217854704", "31306548900", "796513723005", "20135227330075", "506945890951006", "12730754139133030", "319183135225967507", "7994212035818175365", "200089485703376577308", "5005984516439566690680", "125209574645032904521209" ]
[ "nonn", "easy" ]
23
0
2
[ "A269945", "A383838", "A383840" ]
null
Seiichi Manyama, May 11 2025
2025-05-12T11:53:59
oeisdata/seq/A383/A383840.seq
682a5bb6bffed53455d86c3a340facf1
A383841
Expansion of 1/((1-x) * (1-2*x) * (1-3*x))^2.
[ "1", "12", "86", "480", "2307", "10044", "40792", "157440", "584693", "2107596", "7420218", "25634880", "87207559", "292924668", "973531964", "3206704800", "10482373305", "34042285260", "109930177630", "353238247200", "1130137576331", "3601849005372", "11440208166816", "36225346150080", "114391746903037", "360325587293004" ]
[ "nonn", "easy" ]
15
0
2
[ "A000392", "A045618", "A383841", "A383843" ]
null
Seiichi Manyama, May 12 2025
2025-05-12T10:01:45
oeisdata/seq/A383/A383841.seq
201099d7f5543a000cecf68566d58394
A383842
Expansion of 1/((1-x) * (1-2*x) * (1-3*x) * (1-4*x))^2.
[ "1", "20", "230", "2000", "14627", "95060", "567240", "3174400", "16904053", "86549620", "429352330", "2075659600", "9822847079", "45665147700", "209129160300", "945597624000", "4229196800505", "18738054705300", "82347219011950", "359322115058000", "1558151553849131", "6719660438870420", "28838298857544080" ]
[ "nonn", "easy" ]
15
0
2
[ "A000453", "A383842", "A383843" ]
null
Seiichi Manyama, May 12 2025
2025-05-12T10:01:49
oeisdata/seq/A383/A383842.seq
2b43abe4519edd47a98c21749ccd4331
A383843
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/Product_{j=0..k} (1 - j*x)^2.
[ "1", "1", "0", "1", "2", "0", "1", "6", "3", "0", "1", "12", "23", "4", "0", "1", "20", "86", "72", "5", "0", "1", "30", "230", "480", "201", "6", "0", "1", "42", "505", "2000", "2307", "522", "7", "0", "1", "56", "973", "6300", "14627", "10044", "1291", "8", "0", "1", "72", "1708", "16464", "65002", "95060", "40792", "3084", "9", "0", "1", "90", "2796", "37632", "227542", "587580", "567240", "157440", "7181", "10", "0" ]
[ "nonn", "tabl" ]
22
0
5
[ "A000007", "A000027", "A045618", "A106800", "A287532", "A350376", "A383841", "A383842", "A383843", "A383880" ]
null
Seiichi Manyama, May 12 2025
2025-05-15T08:17:09
oeisdata/seq/A383/A383843.seq
72c597c1686a36bb0bceee65c12cf334
A383844
a(n) is the number of occurences of n in A024934.
[ "3", "3", "0", "1", "2", "0", "1", "1", "3", "0", "1", "0", "1", "1", "0", "0", "0", "0", "1", "0", "1", "1", "0", "0", "0", "0", "1", "1", "1", "1", "0", "1", "0", "1", "0", "0", "0", "3", "0", "0", "0", "0", "0", "0", "0", "0", "2", "0", "0", "0", "0", "0", "0", "1", "1", "0", "1", "1", "0", "1", "0", "1", "2", "0", "0", "1", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "0", "0", "0", "1", "0", "0", "0", "1", "1", "0", "0", "0", "0", "0", "1", "0", "0", "1" ]
[ "nonn" ]
29
0
1
[ "A024934", "A049802", "A383327", "A383844" ]
null
Miles Englezou, May 12 2025
2025-05-28T19:00:41
oeisdata/seq/A383/A383844.seq
fccb9ff56fcfbb189299ff0dd1d7d1c2
A383845
Triangle T(n,k) read by rows: where T(n,k) is the number of the k-th eliminated person in the variation of the Josephus elimination process for n people, where the elimination pattern is eliminate-eliminate-skip.
[ "1", "1", "2", "1", "2", "3", "1", "2", "4", "3", "1", "2", "4", "5", "3", "1", "2", "4", "5", "3", "6", "1", "2", "4", "5", "7", "3", "6", "1", "2", "4", "5", "7", "8", "6", "3", "1", "2", "4", "5", "7", "8", "3", "6", "9", "1", "2", "4", "5", "7", "8", "10", "3", "9", "6", "1", "2", "4", "5", "7", "8", "10", "11", "6", "9", "3", "1", "2", "4", "5", "7", "8", "10", "11", "3", "6", "12", "9", "1", "2", "4", "5", "7", "8", "10", "11", "13", "3", "9", "12", "6" ]
[ "nonn", "tabl" ]
14
1
3
[ "A001651", "A006257", "A383845", "A383846", "A383847", "A384753" ]
null
Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, May 12 2025
2025-06-15T09:34:55
oeisdata/seq/A383/A383845.seq
c1fa74ce93442a3c9ce4d8e9a2e55961
A383846
A version of the Josephus problem: a(n) is the surviving integer under the eliminate-eliminate-skip version of the elimination process.
[ "1", "2", "3", "3", "3", "6", "6", "3", "9", "6", "3", "9", "6", "12", "9", "15", "12", "18", "15", "3", "18", "6", "21", "9", "24", "12", "27", "15", "3", "18", "6", "21", "9", "24", "12", "27", "15", "30", "18", "33", "21", "36", "24", "39", "27", "42", "30", "45", "33", "48", "36", "51", "39", "54", "42", "3", "45", "6", "48", "9", "51", "12", "54", "15", "57", "18", "60", "21", "63", "24", "66", "27" ]
[ "nonn" ]
8
1
2
[ "A001651", "A006257", "A337191", "A381051", "A383845", "A383846", "A383847" ]
null
Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, May 12 2025
2025-05-26T17:17:09
oeisdata/seq/A383/A383846.seq
0c06542e65c9bf03dda32c27f0016569
A383847
Triangle T(n,k) read by rows, where row n is a permutation of the numbers 1 through n, such that if a deck of n cards is prepared in this order, and down-down-under dealing is used, then the resulting cards will be dealt in increasing order.
[ "1", "1", "2", "1", "2", "3", "1", "2", "4", "3", "1", "2", "5", "3", "4", "1", "2", "5", "3", "4", "6", "1", "2", "6", "3", "4", "7", "5", "1", "2", "8", "3", "4", "7", "5", "6", "1", "2", "7", "3", "4", "8", "5", "6", "9", "1", "2", "8", "3", "4", "10", "5", "6", "9", "7", "1", "2", "11", "3", "4", "9", "5", "6", "10", "7", "8", "1", "2", "9", "3", "4", "10", "5", "6", "12", "7", "8", "11", "1", "2", "10", "3", "4", "13", "5", "6", "11", "7", "8", "12", "9" ]
[ "nonn", "tabl" ]
8
1
3
[ "A001651", "A006257", "A225381", "A321298", "A378635", "A381050", "A382528", "A383845", "A383846", "A383847" ]
null
Tanya Khovanova, Nathan Sheffield, and the MIT PRIMES STEP junior group, May 12 2025
2025-05-23T16:06:14
oeisdata/seq/A383/A383847.seq
7736d1bc94cc735499b313e4fad0f1fd
A383848
In the binary representation of n, rotate left by the number of ones.
[ "0", "1", "1", "3", "1", "6", "3", "7", "1", "6", "10", "13", "3", "14", "7", "15", "1", "6", "10", "28", "18", "13", "21", "27", "3", "14", "22", "29", "7", "30", "15", "31", "1", "6", "10", "28", "18", "44", "52", "57", "34", "13", "21", "58", "37", "27", "43", "55", "3", "14", "22", "60", "38", "29", "45", "59", "7", "30", "46", "61", "15", "62", "31", "63", "1", "6", "10", "28", "18", "44", "52", "120", "34" ]
[ "nonn", "base", "easy" ]
14
0
4
[ "A006257", "A007088", "A383848", "A383849", "A383850" ]
null
Paolo Xausa, May 13 2025
2025-05-14T14:09:07
oeisdata/seq/A383/A383848.seq
781833c4b70cc186ac5838ba18a2e20a
A383849
In the binary representation of n, rotate right by the number of ones.
[ "0", "1", "1", "3", "2", "3", "5", "7", "4", "6", "10", "7", "3", "11", "13", "15", "8", "12", "20", "14", "5", "22", "26", "15", "6", "7", "11", "23", "19", "27", "29", "31", "16", "24", "40", "28", "9", "44", "52", "30", "10", "13", "21", "46", "37", "54", "58", "31", "12", "14", "22", "15", "38", "23", "27", "47", "7", "39", "43", "55", "51", "59", "61", "63", "32", "48", "80", "56", "17", "88", "104", "60", "18" ]
[ "nonn", "base", "easy" ]
10
0
4
[ "A007088", "A038572", "A383848", "A383849", "A383850" ]
null
Paolo Xausa, May 13 2025
2025-05-14T14:09:14
oeisdata/seq/A383/A383849.seq
20cfbb21039cd3cbb3ca0290f2d14e2d
A383850
Fixed points of A383848 and A383849.
[ "0", "1", "3", "7", "10", "15", "31", "63", "127", "153", "170", "204", "255", "292", "365", "438", "511", "1023", "2047", "2275", "2405", "2470", "2665", "2730", "2860", "3185", "3250", "3380", "3640", "4095", "8191", "16383", "32767", "34695", "34952", "35723", "36237", "36494", "37779", "38293", "38550", "39321", "39578", "40092", "41891", "42405", "42662", "43433", "43690" ]
[ "nonn", "base" ]
7
1
3
[ "A000225", "A383848", "A383849", "A383850" ]
null
Paolo Xausa, May 13 2025
2025-05-14T14:09:22
oeisdata/seq/A383/A383850.seq
c688f7fa5513c6da8e6c76e1045b26c6
A383851
Decimal expansion of exp(8*G/Pi)*((1 - exp(-Pi/2))/(1 + exp(-Pi/2)))^2, where G is Catalan's constant (A006752).
[ "4", "4", "3", "1", "2", "0", "1", "3", "0", "7", "1", "9", "4", "1", "9", "9", "1", "9", "7", "0", "8", "2", "3", "6", "7", "7", "2", "8", "3", "5", "5", "2", "8", "7", "2", "9", "3", "2", "8", "3", "8", "0", "1", "5", "2", "8", "1", "0", "1", "2", "2", "7", "4", "7", "3", "5", "6", "3", "2", "0", "9", "2", "1", "4", "3", "8", "9", "6", "8", "0", "7", "5", "8", "5", "8", "7", "0", "0", "3", "6", "5", "3", "8", "3", "2", "5", "6", "4", "2", "0" ]
[ "nonn", "cons", "easy" ]
11
1
1
[ "A006752", "A049006", "A377753", "A383851" ]
null
Paolo Xausa, May 13 2025
2025-05-14T14:09:34
oeisdata/seq/A383/A383851.seq
40d593a5843c5f63678531269af8d96c
A383852
Decimal expansion of the volume of an elongated triangular pyramid with unit edge.
[ "5", "5", "0", "8", "6", "3", "8", "3", "2", "0", "8", "9", "9", "7", "7", "2", "4", "4", "1", "1", "5", "3", "3", "5", "6", "4", "5", "7", "2", "7", "2", "7", "6", "2", "6", "4", "9", "4", "9", "8", "4", "0", "6", "3", "6", "4", "0", "0", "6", "7", "4", "1", "6", "3", "1", "1", "2", "0", "0", "8", "3", "8", "9", "6", "9", "5", "5", "4", "4", "2", "9", "4", "0", "9", "9", "0", "4", "2", "2", "6", "2", "5", "0", "7", "8", "1", "8", "8", "4", "1" ]
[ "nonn", "cons", "easy" ]
11
0
1
[ "A002193", "A010482", "A165663", "A383852" ]
null
Paolo Xausa, May 19 2025
2025-05-22T09:54:33
oeisdata/seq/A383/A383852.seq
dc84142e8a8b4404637b5ace03a49d5b
A383853
a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(4*n).
[ "1", "1", "260", "556032", "4641176128", "106519579045760", "5472276566891956224", "549375993583284180705280", "97867116732573493470161420288", "28783909470167571938915053763592192", "13216052972619446942074113385580542689280", "9058922175695195359062480694771506779050213376" ]
[ "nonn" ]
7
0
3
[ "A209289", "A298851", "A345876", "A383853" ]
null
Vaclav Kotesovec, May 12 2025
2025-05-13T00:57:57
oeisdata/seq/A383/A383853.seq
fce9b7b3ec0bd04435b4bcab9925e9de
A383854
a(n) = 4*n^3 + 5*n - 1.
[ "8", "41", "122", "275", "524", "893", "1406", "2087", "2960", "4049", "5378", "6971", "8852", "11045", "13574", "16463", "19736", "23417", "27530", "32099", "37148", "42701", "48782", "55415", "62624", "70433", "78866", "87947", "97700", "108149", "119318", "131231", "143912", "157385", "171674", "186803", "202796", "219677" ]
[ "nonn", "easy", "changed" ]
30
1
1
[ "A005893", "A014106", "A383854" ]
null
Ed Pegg Jr, May 12 2025
2025-06-30T09:57:33
oeisdata/seq/A383/A383854.seq
7f573f6bac814a4855e87c836ebbae29
A383855
The n-th term of the sequence is k after every k*(k+1)/2 occurrences of 1, with multiple values following a 1 listed in order.
[ "1", "1", "1", "2", "1", "1", "1", "2", "3", "1", "1", "1", "2", "1", "4", "1", "1", "2", "3", "1", "1", "1", "2", "5", "1", "1", "1", "2", "3", "1", "1", "4", "1", "2", "6", "1", "1", "1", "2", "3", "1", "1", "1", "2", "1", "7", "1", "1", "2", "3", "4", "5", "1", "1", "1", "2", "1", "1", "1", "2", "3", "8", "1", "1", "1", "2", "1", "4", "1", "1", "2", "3", "6", "1", "1", "1", "2", "5", "9", "1", "1", "1", "2", "3", "1", "1", "4", "1", "2", "1", "1", "1", "2", "3", "1", "10" ]
[ "nonn" ]
16
1
4
[ "A245254", "A383855", "A383899" ]
null
Jwalin Bhatt, May 12 2025
2025-05-24T16:21:15
oeisdata/seq/A383/A383855.seq
5e56a6373bcae45f452c7237b14a6fd6
A383856
Dimension in which a random vector of length n has the highest probability to fall into a single hypercube with side length of 10.
[ "1", "1", "1", "1", "1", "1", "1", "1", "2", "4" ]
[ "nonn", "more", "hard" ]
27
1
9
null
null
Ruediger Jehn, May 12 2025
2025-06-16T18:30:38
oeisdata/seq/A383/A383856.seq
2b62b9f3c3246abdb6b54f0dae499b80
A383857
Number of permutations of [n] such that precisely one rising or falling succession occurs, but without either n(n-1) or (n-1)n.
[ "0", "0", "2", "8", "34", "196", "1366", "10928", "98330", "983036", "10811134", "129714184", "1686103522", "23603603540", "354033474374", "5664286296416", "96289603698346", "1733166940314028", "32929480177913230", "658578501071986616", "13829959293448920434", "304255691156335505924" ]
[ "nonn", "easy" ]
16
1
3
[ "A000130", "A001100", "A002464", "A086852", "A086856", "A383857" ]
null
Wolfdieter Lang, May 19 2025
2025-05-24T21:48:41
oeisdata/seq/A383/A383857.seq
e3f72496fa34746918411fb6d39e4f89
A383858
Irregular triangle read by rows: T(n,k) (n >= 4, 4 <= k <= A384502(n)) is the smallest n-digit number m with k distinct prime factors, such that these factors can be divided into two subsets of at least two elements each, both summing to the same value. If no such number exists, T(n,k) = -1.
[ "2145", "2310", "10725", "10374", "101065", "100050", "255255", "510510", "1005993", "1000350", "1036035", "1009470", "10006081", "10000130", "10012065", "10004610", "100010225", "100001300", "100001195", "100009910", "111546435", "223092870", "1000083889", "1000008758", "1000001751", "1000005270", "1002569295", "1001110110" ]
[ "sign", "base", "tabf", "more" ]
53
4
1
[ "A001221", "A365795", "A382469", "A383677", "A383725", "A383726", "A383728", "A383729", "A383858", "A384502" ]
null
Jean-Marc Rebert, May 12 2025
2025-06-24T16:18:53
oeisdata/seq/A383/A383858.seq
b876613d9f975d69daa9188b319a815a
A383859
Central angle of the solution of the Tammes problem for 7 points on the sphere (in radians).
[ "1", "3", "5", "9", "0", "7", "9", "8", "9", "7", "6", "3", "2", "6", "6", "0", "1", "4", "1", "8", "8", "5", "0", "0", "2", "8", "8", "1", "6", "4", "7", "3", "3", "2", "7", "5", "3", "7", "8", "3", "0", "2", "1", "4", "5", "9", "8", "6", "1", "2", "8", "2", "4", "9", "1", "3", "2", "6", "2", "8", "0", "7", "8", "3", "7", "1", "5", "9", "7", "3", "9", "8", "1", "6", "5", "8", "7", "6", "9", "7", "2", "4", "2", "6" ]
[ "nonn", "cons" ]
9
1
2
[ "A019669", "A019819", "A105199", "A137914", "A217695", "A340918", "A381756", "A383859", "A383860", "A383861" ]
null
R. J. Mathar, May 12 2025
2025-05-19T15:47:00
oeisdata/seq/A383/A383859.seq
12e3142bc922f50fa73ffb2c91598e7e
A383860
Central angle of the solution of the Tammes problem for 14 points on the sphere (in radians).
[ "9", "7", "1", "6", "3", "4", "7", "4", "2", "8", "8", "6", "2", "2", "4", "0", "7", "5", "9", "4", "1", "6", "9", "4", "9", "4", "7", "6", "2", "8", "5", "4", "1", "1", "3", "8", "1", "7", "9", "0", "1", "0", "6", "8", "2", "7", "6", "8", "4", "7", "8", "2", "0", "7", "0", "2", "6", "8", "0", "3", "3", "4", "8", "1", "3", "5", "4", "5", "5", "6", "5", "0", "7", "3", "5", "4", "4", "0", "3", "2", "9", "4", "6", "3", "9", "9", "5", "3", "9", "9", "4" ]
[ "nonn", "cons" ]
8
0
1
[ "A019669", "A105199", "A137914", "A217695", "A340918", "A381756", "A383859", "A383860", "A383861" ]
null
R. J. Mathar, May 12 2025
2025-05-19T15:46:41
oeisdata/seq/A383/A383860.seq
c3e9e0e79e41278f57d9266c13e2aa0c
A383861
Central angle of the solution of the Tammes problem for 24 points on the sphere (in radians).
[ "7", "6", "2", "5", "4", "7", "7", "3", "8", "7", "5", "0", "9", "8", "2", "5", "5", "6", "7", "4", "3", "1", "0", "6", "0", "9", "2", "1", "1", "4", "8", "8", "2", "8", "1", "8", "0", "6", "9", "1", "3", "9", "1", "6", "3", "6", "8", "6", "5", "5", "2", "2", "9", "4", "0", "5", "6", "6", "1", "4", "0", "6", "6", "5", "5", "5", "8", "6", "3", "8", "1", "8", "5", "9", "4", "2", "4", "3", "1", "2", "9", "4", "1", "8", "0", "2", "4", "4", "8", "6", "0", "4", "5", "9", "2", "2", "9", "6", "4", "9", "5", "7", "7", "9", "3", "5", "8", "9", "9", "8", "0", "6", "4", "2" ]
[ "nonn", "cons" ]
8
0
1
[ "A019669", "A058265", "A105199", "A137914", "A217695", "A340918", "A381756", "A383859", "A383860", "A383861" ]
null
R. J. Mathar, May 12 2025
2025-05-19T15:46:20
oeisdata/seq/A383/A383861.seq
d23343792f851c6ebe27ed0f0ce8fc7b
A383862
a(n) = [x^n] Product_{k=0..n} 1/(1 - k*x)^3.
[ "1", "3", "48", "1386", "58278", "3225915", "221726711", "18216234288", "1741626159966", "189977753488050", "23285057201978520", "3168272346322892094", "473878954663846060735", "77281168674525142984020", "13647787698908399220563400", "2594721838238358445753776000", "528401900314147344955336365822" ]
[ "nonn" ]
52
0
2
[ "A007820", "A350376", "A383862", "A384012", "A384022", "A384060" ]
null
Seiichi Manyama, May 17 2025
2025-05-19T04:56:26
oeisdata/seq/A383/A383862.seq
e9dcfa3126152142dd8a9bfec7dbee22
A383863
The number of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a unitary divisor of the p-adic valuation of n.
[ "1", "2", "2", "3", "2", "4", "2", "3", "3", "4", "2", "6", "2", "4", "4", "3", "2", "6", "2", "6", "4", "4", "2", "6", "3", "4", "3", "6", "2", "8", "2", "3", "4", "4", "4", "9", "2", "4", "4", "6", "2", "8", "2", "6", "6", "4", "2", "6", "3", "6", "4", "6", "2", "6", "4", "6", "4", "4", "2", "12", "2", "4", "6", "5", "4", "8", "2", "6", "4", "8", "2", "9", "2", "4", "6", "6", "4", "8", "2", "6", "3", "4", "2", "12", "4", "4", "4" ]
[ "nonn", "easy", "mult" ]
10
1
2
[ "A001221", "A034444", "A049419", "A049599", "A073184", "A209061", "A278908", "A322791", "A361255", "A383863", "A383864", "A383865", "A383867" ]
null
Amiram Eldar, May 12 2025
2025-05-16T18:19:44
oeisdata/seq/A383/A383863.seq
c2e9bfbc7ad075f4ae69e1546ca1e6a8
A383864
The sum of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a unitary divisor of the p-adic valuation of n.
[ "1", "3", "4", "7", "6", "12", "8", "11", "13", "18", "12", "28", "14", "24", "24", "19", "18", "39", "20", "42", "32", "36", "24", "44", "31", "42", "31", "56", "30", "72", "32", "35", "48", "54", "48", "91", "38", "60", "56", "66", "42", "96", "44", "84", "78", "72", "48", "76", "57", "93", "72", "98", "54", "93", "72", "88", "80", "90", "60", "168", "62", "96", "104", "79", "84", "144" ]
[ "nonn", "easy", "mult" ]
11
1
2
[ "A051377", "A209061", "A322791", "A322857", "A361255", "A383863", "A383864", "A383866" ]
null
Amiram Eldar, May 12 2025
2025-05-17T08:15:53
oeisdata/seq/A383/A383864.seq
1c83b368e28cc6fb4494da9c8f126955
A383865
The number of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or an infinitary divisor of the p-adic valuation of n.
[ "1", "2", "2", "3", "2", "4", "2", "3", "3", "4", "2", "6", "2", "4", "4", "3", "2", "6", "2", "6", "4", "4", "2", "6", "3", "4", "3", "6", "2", "8", "2", "3", "4", "4", "4", "9", "2", "4", "4", "6", "2", "8", "2", "6", "6", "4", "2", "6", "3", "6", "4", "6", "2", "6", "4", "6", "4", "4", "2", "12", "2", "4", "6", "5", "4", "8", "2", "6", "4", "8", "2", "9", "2", "4", "6", "6", "4", "8", "2", "6", "3", "4", "2", "12", "4", "4", "4" ]
[ "nonn", "easy", "mult" ]
7
1
2
[ "A036537", "A037445", "A049419", "A049599", "A307848", "A322791", "A383760", "A383863", "A383865", "A383866" ]
null
Amiram Eldar, May 12 2025
2025-05-16T18:23:45
oeisdata/seq/A383/A383865.seq
3649dbcd55064df42383b5976c6ce2e9
A383866
The sum of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or an infinitary divisor of the p-adic valuation of n.
[ "1", "3", "4", "7", "6", "12", "8", "11", "13", "18", "12", "28", "14", "24", "24", "19", "18", "39", "20", "42", "32", "36", "24", "44", "31", "42", "31", "56", "30", "72", "32", "35", "48", "54", "48", "91", "38", "60", "56", "66", "42", "96", "44", "84", "78", "72", "48", "76", "57", "93", "72", "98", "54", "93", "72", "88", "80", "90", "60", "168", "62", "96", "104", "79", "84", "144" ]
[ "nonn", "easy", "mult" ]
12
1
2
[ "A036537", "A051377", "A051378", "A077609", "A322791", "A361175", "A383760", "A383864", "A383865", "A383866" ]
null
Amiram Eldar, May 13 2025
2025-05-17T08:15:48
oeisdata/seq/A383/A383866.seq
49a914de0b4774023588262e6624b7a9
A383867
The sum of divisors d of n having the property that for every prime p dividing n the p-adic valuation of d is either 0 or a squarefree divisor of the p-adic valuation of n.
[ "1", "3", "4", "7", "6", "12", "8", "11", "13", "18", "12", "28", "14", "24", "24", "7", "18", "39", "20", "42", "32", "36", "24", "44", "31", "42", "31", "56", "30", "72", "32", "35", "48", "54", "48", "91", "38", "60", "56", "66", "42", "96", "44", "84", "78", "72", "48", "28", "57", "93", "72", "98", "54", "93", "72", "88", "80", "90", "60", "168", "62", "96", "104", "79", "84", "144", "68" ]
[ "nonn", "easy", "mult" ]
11
1
2
[ "A051378", "A209061", "A322791", "A361174", "A383761", "A383863", "A383867" ]
null
Amiram Eldar, May 13 2025
2025-05-17T08:15:25
oeisdata/seq/A383/A383867.seq
9c85553856bd8938d661f0aa6219e6d3
A383868
a(n) = 2^(n-3)*(3*binomial(n,4) + 4*binomial(n,2) + 8).
[ "1", "2", "6", "20", "70", "252", "904", "3152", "10560", "33920", "104704", "311808", "899584", "2524160", "6912000", "18526208", "48726016", "126025728", "321126400", "807403520", "2005794816", "4929093632", "11994136576", "28924968960", "69185044480", "164240556032", "387201368064", "907009851392", "2112083722240" ]
[ "nonn", "easy" ]
10
0
2
[ "A383778", "A383868" ]
null
Enrique Navarrete, May 12 2025
2025-05-18T18:40:12
oeisdata/seq/A383/A383868.seq
4206c05a111409f794c27923aca0f715
A383869
a(n) = [x^n] 1/Product_{k=0..n} (1 - (n+k)*x).
[ "1", "3", "55", "1890", "95781", "6427575", "537306484", "53791898160", "6275077781973", "835898091070185", "125195263380478655", "20825548503275385870", "3809430011164368694260", "759987002381075483922180", "164221938436980055710082200", "38209754165858724861944820000", "9524153723280871205135022364485" ]
[ "nonn" ]
15
0
2
[ "A007820", "A129506", "A143395", "A383869" ]
null
Seiichi Manyama, May 13 2025
2025-05-17T04:20:39
oeisdata/seq/A383/A383869.seq
e0f02b7ce1d96eb92d9dbda757dbf224
A383870
Number of compositions of n such that none of the smallest parts are adjacent.
[ "1", "1", "1", "3", "4", "9", "15", "29", "53", "98", "180", "336", "618", "1142", "2110", "3899", "7197", "13283", "24509", "45218", "83396", "153769", "283463", "522449", "962732", "1773742", "3267417", "6018030", "11082693", "20407174", "37572633", "69169726", "127326924", "234362474", "431343281", "793831500", "1460854117" ]
[ "nonn", "easy" ]
15
0
4
[ "A003242", "A007318", "A011782", "A074909", "A105039", "A238342", "A383870" ]
null
John Tyler Rascoe, May 13 2025
2025-05-14T10:31:55
oeisdata/seq/A383/A383870.seq
b58aebb9ba79a285e146c5805d8cdd94
A383871
Number of labeled 3-nilpotent semigroups of order n
[ "0", "0", "6", "180", "11720", "3089250", "5944080072", "147348275209800", "38430603831264883632", "90116197775746464859791750", "2118031078806486819496589635743440", "966490887282837500134221233339527160717340", "17165261053166610940029331024343115375665769316911576", "6444206974822296283920298148689544172139277283018112679406098010" ]
[ "nonn" ]
12
1
3
[ "A023814", "A023815", "A383871", "A383885", "A383886" ]
null
Elijah Beregovsky, May 13 2025
2025-05-14T01:15:20
oeisdata/seq/A383/A383871.seq
1bf49a1f16b8a0e4032c46b72fc038a4
A383872
Nonprime numbers whose sum of proper divisors is a power of 4.
[ "9", "12", "26", "56", "76", "122", "332", "992", "2042", "3344", "4336", "8186", "16256", "32762", "227744", "266176", "269072", "299576", "856544", "2097146", "5385812", "8388602", "16580864", "17895664", "19173944", "33554426", "61008020", "67100672", "201931760", "1074789376", "1108378592", "17179738112", "62472251540", "68700578816" ]
[ "nonn" ]
43
1
1
[ "A001065", "A048699", "A135535", "A279731", "A383872" ]
null
Hans Ulrich Keller, May 13 2025
2025-05-20T00:27:51
oeisdata/seq/A383/A383872.seq
a949bba53eb8c50ad4fce749b8ab6d3e
A383873
a(n) = 3*a(n-1) - 2*a(n-2) + 5*a(n-3) starting with 1, 2, 3.
[ "1", "2", "3", "10", "34", "97", "273", "795", "2324", "6747", "19568", "56830", "165089", "479447", "1392313", "4043490", "11743079", "34103822", "99042758", "287636025", "835341669", "2425966747", "7045397028", "20460965935", "59421937484", "172570865722", "501173551873", "1455488611595", "4226973059649" ]
[ "nonn", "easy" ]
86
0
2
null
null
Raul Prisacariu, May 18 2025
2025-05-21T01:22:29
oeisdata/seq/A383/A383873.seq
9a8952647f1d7bed501255f4b5732ff8
A383874
a(n) = (3*n+1)!*(3*n)!/((2*n)!*((n+1)!)^2).
[ "1", "18", "4200", "3175200", "5137292160", "14544244915200", "64008493310361600", "405192226643043840000", "3493057136053143859200000", "39378260464472988708249600000", "562659674639968187756457984000000", "9940535265182157971578474463232000000", "212816707229761791940688046273331200000000" ]
[ "nonn" ]
124
0
2
[ "A064352", "A166149", "A166384", "A166494", "A166750", "A166771", "A271049", "A383874" ]
null
Karol A. Penson, May 22 2025
2025-05-26T11:27:43
oeisdata/seq/A383/A383874.seq
710a49806e224d2e46afd285ff13752c
A383875
Number of pairs in the Bruhat order of type A_n.
[ "1", "3", "19", "213", "3781", "98407", "3550919" ]
[ "nonn", "more", "changed" ]
51
0
2
[ "A000142", "A002538", "A005130", "A383875", "A384061", "A384062" ]
null
Dmitry I. Ignatov, May 18 2025
2025-07-02T15:50:14
oeisdata/seq/A383/A383875.seq
d6eb3e155757fe5081f66aecbdcd1a79
A383876
a(0) = 0, a(1) = 1. Let n be greatest index such that a(0),...a(n) are already known. If a(n) is not a record term, a(n+1) = number of k < n such that a(k) = a(n). If a(n) is a record term a(n+1) = a(r) where r is the greatest record < a(n).
[ "0", "1", "0", "1", "1", "2", "1", "3", "0", "2", "1", "4", "1", "5", "1", "6", "2", "2", "3", "1", "7", "1", "8", "3", "2", "4", "1", "9", "0", "3", "3", "4", "2", "5", "1", "10", "2", "6", "1", "11", "1", "12", "4", "3", "5", "2", "7", "1", "13", "1", "14", "5", "3", "6", "2", "8", "1", "15", "1", "16", "6", "3", "7", "2", "9", "1", "17", "2", "10", "1", "18", "2", "11", "1", "19", "3", "8", "2", "12", "1", "20", "1", "21" ]
[ "nonn", "easy" ]
15
0
6
[ "A001477", "A025480", "A181391", "A346175", "A383876" ]
null
David James Sycamore, May 13 2025
2025-05-19T23:03:22
oeisdata/seq/A383/A383876.seq
90b686b4dd19d50df5202b5a1105724e
A383877
a(n) is the smallest integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^3, where 0 < x < y < z < w has exactly n integer solutions, or 0 if there is no such k.
[ "14", "13", "55", "26", "52", "63", "70", "66", "56", "104", "102", "143", "161", "91", "117", "112", "78", "236", "180", "217", "198", "192", "140", "292", "216", "259", "156", "196", "344", "168", "210", "264", "325", "252", "406", "360", "380", "402", "315", "338", "234", "308", "351", "182", "396", "408", "399", "432", "441", "312", "474", "636", "513", "273", "336", "476", "618", "666" ]
[ "nonn" ]
38
1
1
[ "A377444", "A383877", "A384439" ]
null
Zhining Yang, May 13 2025
2025-06-14T17:58:48
oeisdata/seq/A383/A383877.seq
6b9b00d677eb7d83b8f99c0ffedc8c7f
A383878
Number of permutations of [n] with distinct cycle lengths whose GCD is 1.
[ "0", "1", "0", "3", "8", "50", "264", "2394", "15840", "158976", "1490400", "20124720", "181543680", "3213905760", "36459964800", "602127540000", "9045463311360", "187660890063360", "2596164765465600", "64849189355274240", "1037566851245568000", "24684232291242854400", "498833466644833689600" ]
[ "nonn" ]
10
0
4
[ "A079128", "A382781", "A383878" ]
null
Alois P. Heinz, May 13 2025
2025-05-13T11:16:31
oeisdata/seq/A383/A383878.seq
0987c9a93e5724977e30dcf9c395dc2f
A383879
a(n) is the smallest integer k such that the Diophantine equation x^3 + y^3 + z^3 + w^3 = k^n, where 0 < x < y < z < w has exactly n integer solutions.
[ "100", "42", "55", "34", "74" ]
[ "nonn", "hard", "more" ]
11
1
1
[ "A383689", "A383879" ]
null
Zhining Yang, May 13 2025
2025-05-19T15:30:29
oeisdata/seq/A383/A383879.seq
00593eacd4f7b4fc27bc65976f5e60e5
A383880
a(n) = [x^n] 1/Product_{k=0..n-1} (1 - k*x)^2.
[ "1", "0", "3", "72", "2307", "95060", "4817990", "290523576", "20333487251", "1621036680120", "145057745669850", "14399349523416000", "1570425994090538574", "186674663305762642296", "24021930409036829669036", "3327140929951823209016400", "493515678917684006649451651", "78054583374364036172432641200" ]
[ "nonn" ]
12
0
3
[ "A342111", "A350376", "A383880", "A383883" ]
null
Seiichi Manyama, May 13 2025
2025-05-14T04:08:42
oeisdata/seq/A383/A383880.seq
36eb47f4c3e2bbad25a5d8358a508db5
A383881
a(n) = [x^n] Product_{k=1..3*n} 1/(1 - k*x).
[ "1", "6", "266", "22275", "2757118", "452329200", "92484925445", "22653141490980", "6466506598695390", "2108114165258886708", "772778072287000494520", "314641228029527540596455", "140880584836935832288402135", "68799366730032076856334789900", "36392216443342587869022660451080", "20728132932716479897744043460870000" ]
[ "nonn" ]
11
0
2
[ "A007820", "A217913", "A348084", "A383881", "A383882" ]
null
Vaclav Kotesovec, May 13 2025
2025-05-21T11:14:40
oeisdata/seq/A383/A383881.seq
a0c405ec124713f11c1df4fb23a529b8
A383882
a(n) = [x^n] Product_{k=1..4*n} 1/(1 - k*x).
[ "1", "10", "750", "106470", "22350954", "6220194750", "2157580085700", "896587036640680", "434225240080346858", "240175986308550372366", "149377949042637543000150", "103192471874508023383125750", "78394850841083734162487127720", "64957213308036504429927388238088", "58298851680969051596827194829579744" ]
[ "nonn" ]
9
0
2
[ "A007820", "A187646", "A217913", "A348084", "A383881", "A383882", "A384129", "A384130" ]
null
Vaclav Kotesovec, May 13 2025
2025-05-23T06:15:52
oeisdata/seq/A383/A383882.seq
c23b80ac7996680a85f78d6c3e638e8f
A383883
a(n) = [x^n] 1/((1 - n*x) * Product_{k=0..n-1} (1 - k*x)^2).
[ "1", "1", "11", "222", "6627", "262570", "12978758", "769079444", "53138842515", "4194648739710", "372421403333850", "36733739199892020", "3985122473105099406", "471598870326072262644", "60456151456891375730860", "8345905345383943433713800", "1234395864446065862689721475", "194738649118647202909304657910" ]
[ "nonn" ]
17
0
3
[ "A187235", "A287532", "A350376", "A383880", "A383883" ]
null
Seiichi Manyama, May 13 2025
2025-05-14T09:08:19
oeisdata/seq/A383/A383883.seq
511ee0cc3c0fc395dc2bfde9de744105
A383885
Number of nonisomorphic 3-nilpotent semigroups of order n
[ "0", "0", "1", "9", "118", "4671", "1199989", "3661522792", "105931872028455", "24834563582168716305", "53061406576514239124327751", "2017720196187069550262596208732035", "2756576827989210680367439732667802738773384", "73919858836708511517426763179873538289329852786253510", "29599937964452484359589007277447538854227891149791717673581110642" ]
[ "nonn" ]
12
1
4
[ "A023814", "A027851", "A383871", "A383885", "A383886" ]
null
Elijah Beregovsky, May 13 2025
2025-05-14T01:16:29
oeisdata/seq/A383/A383885.seq
cf42135994bdf126d460223dbccc4436
A383886
Number of 3-nilpotent semigroups, considered to be equivalent when they are isomorphic or anti-isomorphic (by reversal of the operator).
[ "0", "0", "1", "8", "84", "2660", "609797", "1831687022", "52966239062973", "12417282095522918811", "26530703289252298687053072", "1008860098093547692911901804990610", "1378288413994605341053354105969660808031163", "36959929418354255758713676933402538920157765946956889", "14799968982226242179794503639146983952853044950740907666303436922" ]
[ "nonn" ]
7
1
4
[ "A001423", "A023814", "A383871", "A383885", "A383886" ]
null
Elijah Beregovsky, May 13 2025
2025-05-14T01:16:42
oeisdata/seq/A383/A383886.seq
fd9f00cd910a4e455a365890fbafe2db
A383887
Smallest non-palindromic number that is congruent to its reverse mod n.
[ "10", "13", "10", "15", "16", "13", "18", "19", "10", "1011", "100", "15", "1017", "1027", "16", "1025", "1039", "13", "1048", "1021", "18", "103", "1026", "19", "1026", "1017", "14", "1033", "1013", "1011", "1068", "1049", "100", "1039", "1046", "15", "1000", "1055", "1017", "1041", "1066", "1027", "1048", "105", "16", "1077", "1032", "1025", "1014", "1051", "1039", "1017", "1103", "17", "106", "1065" ]
[ "nonn", "base", "easy" ]
98
1
1
[ "A004086", "A056965", "A070837", "A383887" ]
null
Erick B. Wong, May 29 2025, at the suggestion of Lanny Wong
2025-06-04T10:24:38
oeisdata/seq/A383/A383887.seq
bca312a25682b784845856f773a419b8
A383889
Record high points in A083533.
[ "1", "2", "4", "6", "10", "12", "16", "18", "20", "22", "24", "26", "28", "32", "36", "40", "44", "50", "60", "64", "72", "74", "76", "78", "80", "90", "96", "108", "112" ]
[ "nonn", "more" ]
20
1
2
[ "A000010", "A002202", "A083533", "A383889", "A383890" ]
null
Jud McCranie, May 13 2025
2025-05-22T09:53:23
oeisdata/seq/A383/A383889.seq
75167c169dc225f9ed0605d79410acea
A383890
Index of record gaps between totient numbers.
[ "1", "2", "7", "30", "85", "257", "1031", "2493", "3288", "7604", "13392", "22663", "26818", "31377", "110175", "186971", "400432", "890621", "1536566", "17176199", "27501485", "102834105", "173246634", "182261294", "214104745", "268935021", "1781734397", "4010389565", "6213586719" ]
[ "nonn", "more" ]
12
1
2
[ "A000010", "A002202", "A083533", "A383889", "A383890" ]
null
Jud McCranie, May 13 2025
2025-05-22T09:11:41
oeisdata/seq/A383/A383890.seq
32f23630b6362e1baa4c3c7dc15fcec8
A383891
a(n) is the length of chunks of the prime number sequence such that each chunk’s sum of reciprocals is no less than 1/n, chunks being consecutive and of minimal length, for n>=2.
[ "1", "1", "2", "3", "5", "8", "13", "22", "36", "60", "100", "168", "284", "482", "819", "1397", "2389", "4096", "7044", "12137", "20956", "36259" ]
[ "nonn", "more" ]
11
2
3
[ "A000040", "A383891" ]
null
Xiaoliang Zhang, May 13 2025
2025-05-19T17:47:16
oeisdata/seq/A383/A383891.seq
e41582cc263556aa8be53fe3d91daa8a
A383892
Expansion of 1/( ((1-x)*(1-2*x)*(1-3*x)*(1-4*x))^2 * (1-5*x) ).
[ "1", "25", "355", "3775", "33502", "262570", "1880090", "12574850", "79778303", "485441135", "2856558005", "16358449625", "91615095204", "503740623720", "2727832278900", "14584759018500", "77152991893005", "404503014170325", "2104862289863575", "10883633564375875", "55976319375728506", "286601257317512950" ]
[ "nonn", "easy" ]
18
0
2
[ "A287532", "A383842", "A383892" ]
null
Seiichi Manyama, May 14 2025
2025-05-28T18:39:57
oeisdata/seq/A383/A383892.seq
02883b9b1ac6a0c81f3dd82a442f0131
A383893
Expansion of 1/( ((1-x)*(1-2*x)*(1-3*x)*(1-4*x)*(1-5*x))^2 * (1-6*x) ).
[ "1", "36", "721", "10626", "128758", "1360128", "12978758", "114537348", "950326391", "7502910996", "56878787231", "416937779286", "2971567050420", "20682844799760", "141092113563660", "946112664225960", "6251628891468765", "40789040893547940", "263235445374827965", "1682802305881045290", "10669738322822387746" ]
[ "nonn", "easy" ]
17
0
2
[ "A287532", "A383893" ]
null
Seiichi Manyama, May 14 2025
2025-05-28T18:39:45
oeisdata/seq/A383/A383893.seq
39b8d654fd26b0852af050fdda7720fa
A383894
Number of arborescent partitions with exactly n parts.
[ "1", "1", "2", "4", "9", "19", "44", "96", "220", "489", "1115", "2483", "5646", "12571", "28343", "63152", "141621", "314330", "701327", "1552149", "3445128", "7599990", "16789039", "36908077" ]
[ "nonn", "more" ]
15
1
3
[ "A000081", "A382440", "A383894", "A383895" ]
null
Ludovic Schwob, May 14 2025
2025-05-28T01:08:42
oeisdata/seq/A383/A383894.seq
b234fe4d49c3e0204780fc5afc62a7fe
A383895
Number of spiny partitions with exactly n parts.
[ "1", "1", "2", "4", "9", "20", "47", "111", "267", "646", "1582", "3892", "9636", "23961", "59871", "150128", "377738", "953029", "2410626", "6111055", "15524013", "39508683", "100719223", "257150952", "657454544", "1683042629", "4313582090", "11067748352", "28426813910", "73082880708", "188059428289", "484330230117", "1248338233493" ]
[ "nonn", "changed" ]
20
0
3
[ "A382440", "A383894", "A383895" ]
null
Ludovic Schwob, May 14 2025
2025-06-30T16:00:08
oeisdata/seq/A383/A383895.seq
d190db8b7b89c38c3d386ef90f25242c
A383896
Echo numbers: positive integers k such that the largest prime factor of k-1 is a suffix of k.
[ "13", "57", "73", "111", "127", "163", "193", "197", "313", "323", "337", "419", "433", "687", "757", "817", "847", "897", "929", "931", "973", "1037", "1153", "1177", "1211", "1641", "2017", "2311", "2593", "2623", "2647", "2913", "3073", "3137", "3659", "3661", "3829", "4031", "4117", "4213", "4453", "4483", "4537", "4673", "4737", "4971", "5377", "5741" ]
[ "nonn", "base" ]
39
1
1
[ "A006530", "A383296", "A383896", "A383927" ]
null
Giorgos Kalogeropoulos, May 14 2025
2025-05-29T00:53:15
oeisdata/seq/A383/A383896.seq
f25fd17e23315a3598feb2d58771bcc4
A383897
Expansion of e.g.f. log(1 + x)/(1 - 2*x).
[ "0", "1", "3", "20", "154", "1564", "18648", "261792", "4183632", "75345696", "1506551040", "33147751680", "795506123520", "20683638213120", "579135642946560", "17374156466688000", "555971699259648000", "18903058697617920000", "680509757426817024000", "25859377184592752640000", "1034374965738609696768000" ]
[ "nonn", "easy" ]
49
0
3
[ "A024167", "A068102", "A383897", "A384199" ]
null
Seiichi Manyama, May 22 2025
2025-05-29T00:52:08
oeisdata/seq/A383/A383897.seq
d431f48970d7fb7b5fcec13d340b27c9
A383898
a(n) is the smallest nonnegative integer k such that n + k and n*k are squares, or -1 if there is no such number.
[ "0", "2", "-1", "0", "20", "-1", "-1", "8", "0", "90", "-1", "-1", "4212", "-1", "-1", "0", "272", "18", "-1", "5", "-1", "-1", "-1", "-1", "0", "650", "-1", "-1", "142100", "-1", "-1", "32", "-1", "-1", "-1", "0", "1332", "-1", "-1", "360", "41984", "-1", "-1", "-1", "180", "-1", "-1", "-1", "0", "50", "-1", "117", "1755572", "-1", "-1", "-1", "-1", "568458", "-1", "-1", "53872730964" ]
[ "sign" ]
37
1
2
[ "A245226", "A382209", "A383734", "A383898" ]
null
Gonzalo Martínez, May 15 2025
2025-05-24T10:35:24
oeisdata/seq/A383/A383898.seq
e12786c0b921756b164fb91466c1262d
A383899
A sequence constructed by greedily sampling the Yule-Simon distribution for parameter value 1, 1/(i*(i+1)) to minimize discrepancy.
[ "1", "2", "1", "3", "1", "4", "1", "2", "1", "5", "1", "6", "1", "2", "1", "3", "1", "7", "1", "2", "1", "8", "1", "9", "1", "2", "1", "4", "1", "3", "1", "2", "1", "10", "1", "11", "1", "2", "1", "3", "1", "5", "1", "2", "1", "4", "1", "12", "1", "2", "1", "3", "1", "13", "1", "2", "1", "6", "1", "14", "1", "2", "1", "3", "1", "4", "1", "2", "1", "5", "1", "15", "1", "2", "1", "7", "1", "3", "1", "2", "1", "16", "1", "17" ]
[ "nonn" ]
13
1
2
[ "A245254", "A383855", "A383899" ]
null
Jwalin Bhatt, May 14 2025
2025-06-06T00:15:41
oeisdata/seq/A383/A383899.seq
95bd6b39ae249266328732193bf9b6d8
A383900
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of Product_{j=0..k} (1 + j*x)/(1 - j*x).
[ "1", "1", "0", "1", "2", "0", "1", "6", "2", "0", "1", "12", "18", "2", "0", "1", "20", "72", "42", "2", "0", "1", "30", "200", "312", "90", "2", "0", "1", "42", "450", "1400", "1152", "186", "2", "0", "1", "56", "882", "4650", "8000", "3912", "378", "2", "0", "1", "72", "1568", "12642", "38250", "40520", "12672", "762", "2", "0", "1", "90", "2592", "29792", "142002", "271770", "190400", "39912", "1530", "2", "0" ]
[ "nonn", "tabl" ]
29
0
5
[ "A000007", "A040000", "A068293", "A350366", "A383767", "A383818", "A383843", "A383900", "A383910", "A383911" ]
null
Seiichi Manyama, May 14 2025
2025-05-15T08:22:02
oeisdata/seq/A383/A383900.seq
f5fa3f2341596ae5765162afa88544cd
A383902
Square table read by ascending antidiagonals where T(n,k) = binomial(k+2^n-2,k).
[ "1", "1", "0", "1", "1", "0", "1", "3", "1", "0", "1", "7", "6", "1", "0", "1", "15", "28", "10", "1", "0", "1", "31", "120", "84", "15", "1", "0", "1", "63", "496", "680", "210", "21", "1", "0", "1", "127", "2016", "5456", "3060", "462", "28", "1", "0", "1", "255", "8128", "43680", "46376", "11628", "924", "36", "1", "0", "1", "511", "32640", "349504", "720720", "324632", "38760", "1716", "45", "1", "0" ]
[ "nonn", "tabl" ]
18
0
8
[ "A092056", "A383902", "A383905" ]
null
Isaac R. Browne, May 15 2025
2025-05-26T17:48:56
oeisdata/seq/A383/A383902.seq
2f64b4d2dbc62693cd88324b05ab4c5b
A383905
Square table read by descending antidiagonals where T(n,k) = binomial(k+2^n-2,k).
[ "1", "0", "1", "0", "1", "1", "0", "1", "3", "1", "0", "1", "6", "7", "1", "0", "1", "10", "28", "15", "1", "0", "1", "15", "84", "120", "31", "1", "0", "1", "21", "210", "680", "496", "63", "1", "0", "1", "28", "462", "3060", "5456", "2016", "127", "1", "0", "1", "36", "924", "11628", "46376", "43680", "8128", "255", "1", "0", "1", "45", "1716", "38760", "324632", "720720", "349504", "32640", "511", "1" ]
[ "nonn", "tabl" ]
14
0
9
[ "A137153", "A383902", "A383905" ]
null
Isaac R. Browne, May 15 2025
2025-05-26T17:48:15
oeisdata/seq/A383/A383905.seq
4378c2cac24279b28a811434e5660f8f
A383907
Echo primes: primes p such that the greatest prime factor of p-1 is a suffix of p.
[ "13", "73", "127", "163", "193", "197", "313", "337", "419", "433", "757", "929", "1153", "2017", "2311", "2593", "2647", "3137", "3659", "4483", "4673", "5741", "6857", "7057", "12071", "12097", "13267", "13313", "13619", "14407", "15877", "17191", "18041", "18433", "18439", "19273", "19531", "20353", "21319", "21961", "22279", "24103", "24697", "25411" ]
[ "nonn", "base" ]
16
1
1
[ "A000040", "A006530", "A383896", "A383907" ]
null
Giorgos Kalogeropoulos, May 15 2025
2025-05-20T18:40:55
oeisdata/seq/A383/A383907.seq
2bd1c6e4cffe87ed89828632b5732001
A383908
Number of generalized polyforms with n cells on the snub trihexagonal tiling.
[ "1", "3", "3", "7", "23", "69", "228", "766", "2642", "9309", "33382", "120629", "439752", "1613135", "5953061", "22075011", "82204128", "307213215", "1151820825", "4330858682", "16326297768", "61690058385" ]
[ "nonn", "more", "hard" ]
17
0
2
[ "A000105", "A000228", "A000577", "A197156", "A197159", "A197459", "A197462", "A197465", "A309159", "A343398", "A343406", "A343577", "A344211", "A344213", "A383908" ]
null
Peter Kagey, May 14 2025
2025-06-06T08:35:32
oeisdata/seq/A383/A383908.seq
b6b95881b59ba0dbaadcb53dbfd53732
A383909
In the base 4 expansion of n, map: 0 -> 20, 1 -> 21, 2 -> 30, 3 -> 31.
[ "8", "9", "12", "13", "152", "153", "156", "157", "200", "201", "204", "205", "216", "217", "220", "221", "2440", "2441", "2444", "2445", "2456", "2457", "2460", "2461", "2504", "2505", "2508", "2509", "2520", "2521", "2524", "2525", "3208", "3209", "3212", "3213", "3224", "3225", "3228", "3229", "3272", "3273", "3276", "3277", "3288", "3289", "3292", "3293" ]
[ "nonn", "base", "easy" ]
25
0
1
[ "A014577", "A383909" ]
null
Darío Clavijo, May 14 2025
2025-05-22T09:34:45
oeisdata/seq/A383/A383909.seq
e2fbcdccfa7f1885916952417b720034
A383910
Expansion of Product_{k=0..3} (1 + k*x)/(1 - k*x).
[ "1", "12", "72", "312", "1152", "3912", "12672", "39912", "123552", "378312", "1150272", "3481512", "10505952", "31640712", "95167872", "285995112", "858968352", "2578871112", "7740545472", "23229500712", "69704230752", "209144149512", "627495363072", "1882611918312", "5648087413152", "16944765555912", "50835303300672" ]
[ "nonn", "easy" ]
18
0
2
[ "A091344", "A383900", "A383910", "A383912" ]
null
Seiichi Manyama, May 14 2025
2025-05-15T07:10:35
oeisdata/seq/A383/A383910.seq
20ed8b2f76a976f8384758c8e9869300
A383911
Expansion of Product_{k=0..4} (1 + k*x)/(1 - k*x).
[ "1", "20", "200", "1400", "8000", "40520", "190400", "852200", "3692000", "15640520", "65225600", "268985000", "1100372000", "4475152520", "18122340800", "73156029800", "294627068000", "1184523016520", "4756148096000", "19078784066600", "76477758500000", "306398995072520", "1227060052251200", "4912632802375400", "19663709744588000" ]
[ "nonn", "easy" ]
16
0
2
[ "A383900", "A383911", "A383913" ]
null
Seiichi Manyama, May 14 2025
2025-05-15T06:56:01
oeisdata/seq/A383/A383911.seq
3b68572fd3003b21e267447b50d12765
A383912
Expansion of (1+x) * (1+2*x)/((1-x) * (1-2*x) * (1-3*x)).
[ "1", "9", "45", "177", "621", "2049", "6525", "20337", "62541", "190689", "578205", "1746897", "5265261", "15844929", "47633085", "143095857", "429680781", "1289828769", "3871059165", "11616323217", "34855261101", "104578366209", "313760264445", "941331124977", "2824094038221", "8472483441249", "25417852976925" ]
[ "nonn", "easy" ]
11
0
2
[ "A383818", "A383910", "A383912" ]
null
Seiichi Manyama, May 15 2025
2025-05-15T06:57:52
oeisdata/seq/A383/A383912.seq
24e3ad0545f6f73765985800faa9c314
A383913
Expansion of (1+x) * (1+2*x) * (1+3*x)/((1-x) * (1-2*x) * (1-3*x) * (1-4*x)).
[ "1", "16", "136", "856", "4576", "22216", "101536", "446056", "1907776", "8009416", "33187936", "136233256", "555438976", "2253396616", "9108754336", "36721012456", "147743018176", "593550943816", "2381944320736", "9551006783656", "38273731365376", "153304069611016", "613843773807136", "2457257707146856" ]
[ "nonn", "easy" ]
10
0
2
[ "A383818", "A383911", "A383913" ]
null
Seiichi Manyama, May 15 2025
2025-05-15T07:01:00
oeisdata/seq/A383/A383913.seq
8e55c173fbf88b258c2a20cb8e4a8629
A383914
Primes p such that 12*2^p + 1 is also prime.
[ "3", "199", "3187", "44683", "59971", "213319", "303091", "916771" ]
[ "nonn", "more" ]
11
1
1
[ "A002253", "A175172", "A322301", "A322302", "A383914" ]
null
Vincenzo Librandi, May 17 2025
2025-05-21T01:39:16
oeisdata/seq/A383/A383914.seq
1ab2f5570d996ea3bb0bc9ab3ae60486
A383915
Number of points enclosed by the unique circle that goes through the 8 points (-n, 0), (-n, 1), (0, n+1), (1, n+1), (n+1, 1), (n+1, 0), (1, -n), (0, -n).
[ "4", "16", "32", "60", "88", "124", "172", "216", "276", "332", "408", "484", "560", "648", "740", "848", "952", "1060", "1184", "1304", "1436", "1576", "1716", "1876", "2032", "2188", "2348", "2536", "2724", "2912", "3096", "3300", "3512", "3720", "3940", "4160", "4404", "4644", "4872", "5140", "5388", "5664", "5924", "6180", "6488", "6772", "7080", "7368", "7668", "8000" ]
[ "nonn" ]
31
1
1
[ "A000328", "A162431", "A383915" ]
null
Michel Marcus, May 15 2025
2025-05-22T20:57:13
oeisdata/seq/A383/A383915.seq
99093db1642a1e0237cb85868e4909bd
A383916
a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(3*n).
[ "1", "1", "68", "22770", "21143488", "41904629550", "151957171590144", "910666718387157732", "8390164064875701321728", "112583179357513548960803670", "2109812207969377622615440752640", "53397692462483465346961668429307836", "1775866125092261344436828225211633500160", "75857512919848315654302238627976991244564300" ]
[ "nonn" ]
7
0
3
[ "A032443", "A209289", "A345876", "A383853", "A383916", "A383917" ]
null
Vaclav Kotesovec, May 15 2025
2025-05-15T08:18:10
oeisdata/seq/A383/A383916.seq
566fe87dcaae4bdde120945586927b7a
A383917
a(n) = Sum_{k=0..n} binomial(2*n, k) * (n-k)^(5*n).
[ "1", "1", "1028", "14545530", "1127435263168", "309320354959336350", "232325928732003715014144", "403150958104730561230009068564", "1432706082674749593552098155989352448", "9528431104471630510834164178027409070527670", "110580781643902847320855308323644986008860441968640" ]
[ "nonn" ]
7
0
3
[ "A032443", "A209289", "A345876", "A383853", "A383916", "A383917" ]
null
Vaclav Kotesovec, May 15 2025
2025-05-15T08:18:06
oeisdata/seq/A383/A383917.seq
50ef888ca3069252e0460b060852b295
A383918
Primes made up of 0's and five 1's only.
[ "101111", "10011101", "10101101", "10110011", "10111001", "11000111", "11100101", "100100111", "100111001", "101001011", "101100011", "110010101", "110101001", "111000101", "111001001", "1000011011", "1000110101", "1001000111", "1001001011", "1001010011", "1010000111", "1010001101", "1010010011", "1010100011", "1010110001" ]
[ "nonn", "base" ]
23
1
1
[ "A020449", "A038447", "A157711", "A383918" ]
null
René-Louis Clerc, May 15 2025
2025-05-29T14:40:13
oeisdata/seq/A383/A383918.seq
3a1575c3b67320adec36bbab0033d3a8
A383919
Primes made up of 0's and seven 1's only.
[ "11110111", "11111101", "101101111", "101111011", "110111011", "111010111", "1001110111", "1010011111", "1011110011", "1100101111", "1101010111", "1101110011", "1110011101", "1110110011", "1111100101", "1111110001", "10010110111", "10011101011", "10011110101", "10100111101", "10111001011", "10111110001", "11001011101" ]
[ "nonn", "base" ]
23
1
1
[ "A020449", "A038447", "A062337", "A157711", "A383919" ]
null
René-Louis Clerc, May 15 2025
2025-05-28T21:27:26
oeisdata/seq/A383/A383919.seq
6453cc32a0082b82b20877f4f5891ab4
A383920
Smallest m such that sigma(m) >= n*m/2.
[ "1", "2", "6", "24", "120", "1680", "27720", "720720", "122522400", "41902660800", "130429015516800", "3066842656354276800", "1970992304700453905270400", "168721307030313765796546413936000", "1897544233056092162003806758651798777216000", "8201519488959040182625924708238885435575055666675808000" ]
[ "nonn" ]
22
2
2
[ "A000203", "A004394", "A004490", "A023199", "A317681", "A383920" ]
null
Michel Marcus, May 15 2025
2025-05-22T11:45:55
oeisdata/seq/A383/A383920.seq
79ecb552a5cdf944aae67a234ab9a638
A383921
Least integer k for which sigma(k - x) + sigma(k + x) >= n*k has at least one solution.
[ "1", "2", "6", "24", "91", "841", "13861", "360361" ]
[ "nonn", "more" ]
19
2
2
[ "A000203", "A004394", "A383758", "A383920", "A383921" ]
null
Michel Marcus, May 15 2025
2025-05-22T09:39:19
oeisdata/seq/A383/A383921.seq
d63fed80dba988d431f1733b83f73e63
A383922
a(n) = A002104(n) + A002104(n+1) - 1.
[ "0", "3", "10", "31", "112", "503", "2786", "18443", "141744", "1237755", "12088266", "130457479", "1541023936", "19769882767", "273671845058", "4065274481939", "64493941507232", "1088226653465139", "19458541429154250", "367527663494842671", "7311506648705326672", "152804399672163086695", "3347034732868985727202", "76675452816691696778843" ]
[ "nonn" ]
24
0
2
[ "A002104", "A188545", "A383922" ]
null
Jianing Song, May 15 2025
2025-05-20T21:44:32
oeisdata/seq/A383/A383922.seq
e2796d63d941eea7a82b1f62bd68aa5e
A383923
Numbers of the form m^p where both p and (m^(p^2) - 1)/(m^p - 1) are prime.
[ "4", "8", "16", "27", "36", "100", "196", "256", "400", "512", "576", "676", "1296", "1331", "1600", "2916", "3136", "4356", "5476", "7056", "8000", "8100", "8836", "9261", "12100", "13456", "14400", "15376", "15876", "16900", "17576", "17956", "21316", "22500", "24336", "25600", "27000", "28900", "30976", "32400", "33856", "41616", "42436", "44100", "50176", "52900" ]
[ "nonn" ]
10
1
1
[ "A383923", "A383924", "A383925", "A383926" ]
null
Max Alekseyev, May 15 2025
2025-05-18T02:29:29
oeisdata/seq/A383/A383923.seq
fa9f0bbd519b93051e860f6765b59225
A383924
Primes of the form (m^(p^2) - 1)/(m^p - 1) with a prime p, sorted with respect to the value of m^p.
[ "5", "73", "17", "757", "37", "101", "197", "257", "401", "513", "577", "677", "1297", "1772893", "1601", "2917", "3137", "4357", "5477", "7057", "64008001", "8101", "8837", "85775383", "12101", "13457", "14401", "15377", "15877", "16901", "308933353", "17957", "21317", "22501", "24337", "25601", "729027001", "28901", "30977", "32401", "33857", "41617", "42437", "44101" ]
[ "nonn" ]
7
1
1
[ "A383923", "A383924", "A383925", "A383926" ]
null
Max Alekseyev, May 15 2025
2025-05-18T02:29:47
oeisdata/seq/A383/A383924.seq
d705b9f2b8102cc0720aa8827c87a86f
A383925
Primes of the form (m^(p^2) - 1)/(m^p - 1) with prime p and integer m >= 2.
[ "5", "17", "37", "73", "101", "197", "257", "401", "577", "677", "757", "1297", "1601", "2917", "3137", "4357", "5477", "7057", "8101", "8837", "12101", "13457", "14401", "15377", "15877", "16901", "17957", "21317", "22501", "24337", "25601", "28901", "30977", "32401", "33857", "41617", "42437", "44101", "50177", "52901", "55697", "57601", "62501", "65537", "67601", "69697" ]
[ "nonn" ]
7
1
1
[ "A383923", "A383924", "A383925", "A383926" ]
null
Max Alekseyev, May 15 2025
2025-05-18T02:30:09
oeisdata/seq/A383/A383925.seq
b9f43ddb946ab8b66554e5f06d8d319d
A383926
Powers m^p with prime p, producing primes (m^(p^2) - 1)/(m^p - 1) in A383925.
[ "4", "16", "36", "8", "100", "196", "256", "400", "576", "676", "27", "1296", "1600", "2916", "3136", "4356", "5476", "7056", "8100", "8836", "12100", "13456", "14400", "15376", "15876", "16900", "17956", "21316", "22500", "24336", "25600", "28900", "30976", "32400", "33856", "41616", "42436", "44100", "50176", "52900", "55696", "57600", "62500", "65536", "67600", "69696" ]
[ "nonn" ]
7
1
1
[ "A383923", "A383924", "A383925", "A383926" ]
null
Max Alekseyev, May 15 2025
2025-05-18T02:30:22
oeisdata/seq/A383/A383926.seq
20b48263a8560fb9097da1ebb94df306
A383927
Binary echo numbers: positive integers k such that the gpf(k-1) is a suffix of k when gpf(k-1) and k are written in binary.
[ "7", "15", "19", "21", "55", "61", "63", "71", "101", "115", "127", "155", "157", "163", "181", "255", "273", "295", "301", "331", "349", "351", "365", "487", "501", "541", "573", "585", "599", "631", "687", "711", "723", "741", "781", "817", "827", "901", "1055", "1135", "1211", "1277", "1331", "1361", "1387", "1405", "1459", "1471", "1475", "1501", "1621", "1641", "1751" ]
[ "nonn", "base" ]
17
1
1
[ "A006530", "A383296", "A383896", "A383927" ]
null
Michael S. Branicky, May 15 2025
2025-05-23T10:19:09
oeisdata/seq/A383/A383927.seq
09b3fae8f51cde507c78b21a5fbd146a
A383928
Expansion of g.f. cosh(9*arctanh(4*sqrt(x))).
[ "1", "648", "76896", "4601088", "194102784", "6662320128", "199818854400", "5451206492160", "138644854013952", "3341194489757696", "77151510667984896", "1720777996555517952", "37293854107184922624", "788969931176505507840", "16350749459194860011520", "332885987884833366343680", "6673058165121160335851520" ]
[ "nonn", "easy" ]
20
0
2
[ "A285043", "A285044", "A285045", "A285046", "A383928" ]
null
Karol A. Penson, May 15 2025
2025-05-18T07:41:48
oeisdata/seq/A383/A383928.seq
ee69784bc90d287a166fef170773cdb0
A383929
a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n, k) * (n-k)^(3*n).
[ "1", "1", "60", "16626", "12640320", "20421928750", "60233972198400", "293230314199497444", "2192804991244707840000", "23869875368184417393486678", "362747302615636095725568000000", "7442995512384107947406685870219196", "200637069747857913587015560318156800000", "6945549555749361962465324588957867814958924" ]
[ "nonn" ]
6
0
3
[ "A002674", "A298851", "A383916", "A383929", "A383930" ]
null
Vaclav Kotesovec, May 15 2025
2025-05-16T07:29:58
oeisdata/seq/A383/A383929.seq
404d5230e511fa3992b711101c169426
A383930
a(n) = Sum_{k=0..n} (-1)^k * binomial(2*n, k) * (n-k)^(5*n).
[ "1", "1", "1020", "14152314", "1071646712640", "286802348769420190", "209974096349134108992000", "355016116241074708829385321492", "1228958111984894631846657261766656000", "7960240318398277162915923478914410838135990", "89961580311571094335785117669395413813764096000000" ]
[ "nonn" ]
7
0
3
[ "A002674", "A298851", "A383917", "A383929", "A383930" ]
null
Vaclav Kotesovec, May 15 2025
2025-05-16T07:29:54
oeisdata/seq/A383/A383930.seq
7542be78a9142257169ce5d40aeefdfb
A383931
Minimal nonnegative integer which reaches a cycle after exactly n iterations of the modified Sisyphus function of order 5 (A375208).
[ "613200", "100123", "100012", "10", "1023", "100", "0", "10234", "10000123", "10000000000002" ]
[ "nonn", "base" ]
14
0
1
[ "A308002", "A352752", "A375208", "A383931" ]
null
Matt Coppenbarger, May 15 2025
2025-05-29T00:15:18
oeisdata/seq/A383/A383931.seq
86a59b6e6c435c12c7ed405e1e57be09
A383932
Integers k such that there exists an integer 0<m<k such that sigma(m)*sigma(k) = (m+k)^2.
[ "84", "102", "160", "186", "276", "284", "330", "582", "624", "762", "868", "1164", "1210", "1372", "1404", "1446", "1488", "1540", "1988", "2156", "2640", "2716", "2898", "2924", "3556", "3708", "3882", "4074", "4228", "4536", "5382", "5564", "5610", "5802", "6018", "6282", "6368", "6392", "6486", "6612", "6748", "7140", "7452", "7494", "7960", "8358", "8432", "9222", "9834" ]
[ "nonn" ]
16
1
1
[ "A063990", "A259180", "A383239", "A383483", "A383484", "A383932" ]
null
S. I. Dimitrov, May 15 2025
2025-06-02T11:58:30
oeisdata/seq/A383/A383932.seq
c554f458b96f9d0d81d593835b3127dc
A383933
Numbers k such that primorial base expansion of A276086(k) has the primorial base expansion of A003415(k) as its suffix, where A003415 is the arithmetic derivative, and A276086 is the primorial base exp-function.
[ "0", "1", "2", "6", "26", "95", "122", "185", "206", "1382", "1919", "2006", "2285", "2306", "2966", "4681", "4841", "5909", "13961", "14269", "21446", "30026", "34249", "37231", "54589", "54611", "61459", "90065", "135229", "145309", "204566", "217621", "262099", "266950", "289621", "306302", "310939", "341699", "350099", "353779", "356809", "358091", "364361", "496751", "501289", "503669", "510506", "515059" ]
[ "nonn", "base" ]
8
1
3
[ "A003415", "A049345", "A276086", "A276087", "A383300", "A383303", "A383933" ]
null
Antti Karttunen, May 15 2025
2025-05-15T17:11:45
oeisdata/seq/A383/A383933.seq
71d2ab9d06b4b1f2844a6bccc1cee265
A383940
Consecutive states of the linear congruential pseudo-random number generator (25173*s+13849) mod 2^16 when started at s=1.
[ "1", "39022", "61087", "20196", "45005", "3882", "21259", "65216", "19417", "30502", "20919", "26076", "16421", "44130", "63139", "32824", "14513", "51934", "36303", "35284", "8573", "11930", "41787", "65200", "9865", "29590", "743", "39628", "46037", "30162", "47315", "23080", "30049", "20814", "4351", "30916", "22317", "25098" ]
[ "nonn", "easy" ]
27
1
2
[ "A096550", "A096561", "A383940", "A384082", "A384085", "A384150", "A384194", "A384220" ]
null
Sean A. Irvine, May 21 2025
2025-06-17T17:48:01
oeisdata/seq/A383/A383940.seq
73460a4bb693c139290c5c09c0af2ef8
A383956
Consecutive states of the linear congruential pseudo-random number generator used by BASIC on the Poly-1 computer when started at 1.
[ "1", "7771826", "12906479", "12752200", "14370573", "4177230", "16102619", "5888068", "8967385", "14199722", "1838727", "7559424", "14513509", "9092550", "15771891", "2282364", "11580593", "15929250", "14479391", "2474936", "6872765", "1998142", "6754315", "6251956", "4652937", "6660762", "6157495", "1357168" ]
[ "nonn", "easy" ]
21
1
2
[ "A096550", "A096561", "A383956" ]
null
Sean A. Irvine, May 15 2025
2025-05-25T20:48:31
oeisdata/seq/A383/A383956.seq
a3faea7683d2e131f91bf55487af91ca