sequence_id
stringlengths
7
7
sequence_name
stringlengths
4
573
sequence
listlengths
1
348
keywords
listlengths
1
8
score
int64
1
2.35k
offset_a
int64
-14,827
666,262,453B
offset_b
int64
0
635M
cross_references
listlengths
1
128
former_ids
listlengths
1
3
author
stringlengths
7
231
timestamp
timestamp[us]date
1999-12-11 03:00:00
2025-07-14 02:38:35
filename
stringlengths
29
29
hash
stringlengths
32
32
A383728
Numbers k such that omega(k) = 4 and the largest prime factor of k equals the sum of its remaining distinct prime factors, where omega(k) = A001221(k).
[ "3135", "6279", "8855", "9405", "10695", "11571", "15675", "16095", "17255", "17391", "18837", "20615", "20735", "26691", "28083", "28215", "31031", "32085", "34485", "34713", "36519", "41151", "41615", "43953", "44275", "45695", "46655", "47025", "47859", "48285", "48495", "50439", "52173", "53475", "54131", "56511", "56823", "57239", "59295", "59565" ]
[ "nonn" ]
11
1
1
[ "A001221", "A365795", "A382469", "A383725", "A383726", "A383728", "A383729" ]
null
Paolo Xausa, May 08 2025
2025-06-09T21:01:25
oeisdata/seq/A383/A383728.seq
4d7a615b2c6352bec4a69fbce4e1c746
A383729
Numbers k such that omega(k) = 5 and the largest prime factor of k equals the sum of its remaining distinct prime factors, where omega(k) = A001221(k).
[ "3570", "7140", "8970", "10626", "10710", "14280", "16530", "17850", "17940", "20706", "21252", "21420", "24738", "24882", "24990", "26910", "28560", "31878", "32130", "33060", "35700", "35880", "36890", "38130", "41412", "42504", "42840", "44330", "44850", "49476", "49590", "49764", "49938", "49980", "52170", "53550", "53820", "54834", "55986", "57120" ]
[ "nonn" ]
10
1
1
[ "A001221", "A365795", "A382469", "A383725", "A383726", "A383728", "A383729" ]
null
Paolo Xausa, May 08 2025
2025-06-09T21:08:48
oeisdata/seq/A383/A383729.seq
77b1a744fbc46d8c2b1648e96f97fa29
A383730
a(0) = 0, a(n) = a(n-1) + A002260(n) * (-1)^(n-1) if not already in the sequence, otherwise a(n) = a(n-1) - A002260(n) * (-1)^(n-1).
[ "0", "1", "2", "4", "3", "5", "8", "9", "7", "10", "6", "5", "7", "4", "8", "13", "12", "14", "11", "15", "20", "26", "25", "27", "24", "28", "23", "29", "22", "21", "19", "16", "20", "15", "21", "14", "22", "21", "23", "20", "24", "19", "25", "32", "40", "49", "48", "50", "47", "51", "46", "52", "45", "53", "44", "54", "55", "57", "60", "64", "59", "65", "58", "66", "75", "85", "74", "73", "71" ]
[ "sign", "look", "hear" ]
28
0
3
[ "A002260", "A005132", "A063733", "A064288", "A064289", "A064387", "A064388", "A064389", "A079053", "A228474", "A383730" ]
null
Markel Zubia, May 06 2025
2025-06-01T22:27:29
oeisdata/seq/A383/A383730.seq
2951a26351523fc6f3df46c66c37d764
A383731
Number of hexagonal n-element polyominoes whose graph is a nonextensible path.
[ "2", "3", "17", "41", "140", "389", "1182", "3369", "9817", "27903", "79936", "226784", "645730", "1831574", "5204271", "14766828", "41938778", "119061270" ]
[ "nonn", "more" ]
13
13
1
[ "A003104", "A383731" ]
null
Bert Dobbelaere, May 07 2025
2025-05-16T17:12:51
oeisdata/seq/A383/A383731.seq
ba690437a0aca72a7f1680de14dcd37c
A383732
a(n) is the smallest k such that every digit from 0 to 9 appears at least n times among the first k digits of Pi (after the decimal point).
[ "32", "50", "54", "65", "71", "77", "96", "99", "120", "139", "156", "166", "209", "224", "232", "235", "242", "288", "299", "301", "306", "320", "343", "351", "405", "407", "412", "429", "439", "452", "458", "463", "468", "475", "478", "486", "506", "538", "540", "544", "548", "556", "559", "560", "567", "569", "575", "577", "584", "591", "609", "621", "622", "625", "626", "631", "633", "634", "641" ]
[ "nonn", "base" ]
47
1
1
[ "A000796", "A037008", "A383732" ]
null
Guy Amit, May 07 2025
2025-05-22T09:53:42
oeisdata/seq/A383/A383732.seq
5021a1e3e6b6b43fb670cfbae14c8896
A383733
Number of proper 3-colorings of the generalized chorded cycle graph C_n^{(3)}.
[ "42", "0", "0", "18", "186", "66", "0", "234", "930", "750", "0", "2244", "4578", "6498", "120" ]
[ "nonn", "hard", "more" ]
8
6
1
[ "A000670", "A001047", "A003049", "A129912", "A383733" ]
null
Rogelio Lopez Bonilla, May 07 2025
2025-05-19T19:57:11
oeisdata/seq/A383/A383733.seq
bf685ffc2a9cb6671545fec48c505fb3
A383734
Numbers k such that 2+k and 2*k are squares.
[ "2", "98", "3362", "114242", "3880898", "131836322", "4478554082", "152139002498", "5168247530882", "175568277047522", "5964153172084898", "202605639573839042", "6882627592338442562", "233806732499933208098", "7942546277405390632802", "269812766699283348307202", "9165691521498228451812098" ]
[ "nonn", "easy" ]
33
1
1
[ "A002315", "A008843", "A008844", "A031396", "A075870", "A088165", "A156164", "A245226", "A382209", "A383734" ]
null
Emilio Martín, May 07 2025
2025-05-28T00:04:14
oeisdata/seq/A383/A383734.seq
1a867cb13ae50e8189ff61aeda10ff4c
A383735
Array read by antidiagonals, where each row is the cluster series for percolation on the cells of a certain type of polyominoids.
[ "1", "0", "1", "0", "2", "1", "0", "2", "0", "1", "0", "2", "0", "2", "1", "0", "2", "0", "2", "4", "1", "0", "2", "0", "2", "12", "6", "1", "0", "2", "0", "2", "24", "18", "0", "1", "0", "2", "0", "2", "52", "48", "0", "4", "1", "0", "2", "0", "2", "108", "126", "0", "12", "4", "1", "0", "2", "0", "2", "224", "300", "0", "24", "12", "8", "1", "0", "2", "0", "2", "412", "762", "0", "52", "24", "32", "0", "1" ]
[ "nonn", "tabl" ]
8
1
5
[ "A000007", "A003198", "A003201", "A003203", "A003207", "A003209", "A003210", "A003211", "A036396", "A036402", "A040000", "A366766", "A366767", "A366768", "A383735", "A383736", "A383737" ]
null
Pontus von Brömssen, May 10 2025
2025-05-14T13:27:47
oeisdata/seq/A383/A383735.seq
073a9bc85529a05a28028f52df712aff
A383736
Cluster series for percolation on polyominoid cells.
[ "1", "12", "92", "604", "3732", "22766", "136564" ]
[ "nonn", "more" ]
8
0
2
[ "A005914", "A075678", "A075679", "A366768", "A383735", "A383736", "A383737" ]
null
Pontus von Brömssen, May 10 2025
2025-05-14T10:50:36
oeisdata/seq/A383/A383736.seq
3e075c315fbfd9ee3589402fbb0a2097
A383737
Cluster series for percolation on polyominoid cells, with connections only between orthogonal cells ("hard" polyominoids).
[ "1", "8", "40", "168", "720", "2886", "11684", "46536", "181328" ]
[ "nonn", "more" ]
7
0
2
[ "A299279", "A365654", "A365655", "A383735", "A383736", "A383737" ]
null
Pontus von Brömssen, May 10 2025
2025-05-14T10:50:33
oeisdata/seq/A383/A383737.seq
3e3f85cca647f29a3391908319185647
A383738
Number of solutions to the n-queens puzzle in a n X n board that are not square root permutations of {n-1,...,2,1,0}.
[ "0", "0", "0", "0", "8", "4", "40", "92", "352", "724", "2680", "14192", "73704", "365596", "2279184", "14772448", "95814976", "666090624", "4968057848", "39029188404", "314666222008", "2691008701644", "24233937684440", "227514171970408", "2207893435805088", "22317699616364044", "234907967154122528" ]
[ "nonn" ]
24
1
5
[ "A000170", "A033148", "A383738" ]
null
Darío Clavijo, May 07 2025
2025-05-13T23:36:51
oeisdata/seq/A383/A383738.seq
bbc39f48022c407eda4a79c99ed6d8d8
A383739
Smallest number that, when displayed on a 7-segment display using A006942, leaves exactly n segments unused.
[ "8", "0", "2", "4", "7", "1", "10", "12", "14", "17", "11", "101", "112", "114", "117", "111", "1011", "1112", "1114", "1117", "1111", "10111", "11112", "11114", "11117", "11111", "101111", "111112", "111114", "111117", "111111", "1011111", "1111112", "1111114", "1111117", "1111111", "10111111", "11111112", "11111114", "11111117", "11111111", "101111111" ]
[ "base", "nonn", "easy" ]
53
0
1
[ "A006942", "A216261", "A383739" ]
null
Renaud Gaudron, May 12 2025
2025-06-06T18:06:36
oeisdata/seq/A383/A383739.seq
64262219de158b95a3955479b3e84b17
A383740
a(0) = 4; a(n) = Pell(4*n)/Pell(n) for n > 0.
[ "4", "12", "204", "2772", "39236", "551532", "7761996", "109216308", "1536797956", "21624369228", "304278011724", "4281516425748", "60245508232004", "847718631046572", "11928306344398284", "167844007448966772", "2361744410638758916", "33232265756370284172", "467613464999874177996", "6579820775754484587348" ]
[ "nonn", "easy" ]
15
0
1
[ "A000129", "A099930", "A383740", "A383742" ]
null
Seiichi Manyama, May 07 2025
2025-05-08T07:25:40
oeisdata/seq/A383/A383740.seq
08dfa523eceff98780117efef7b3cfe5
A383741
a(0) = 5; a(n) = Pell(5*n)/Pell(n) for n > 0.
[ "5", "29", "1189", "39005", "1332869", "45232349", "1536836005", "52205623709", "1773463509509", "60245500431005", "2046573861616549", "69523263984968669", "2361744412174224005", "80229786688466775389", "2725451003353980465829", "92585104325258634975005", "3145168096067610728884229" ]
[ "nonn", "easy" ]
17
0
1
[ "A000129", "A099931", "A383741", "A383742" ]
null
Seiichi Manyama, May 07 2025
2025-05-08T07:12:13
oeisdata/seq/A383/A383741.seq
983199c1485e4c784b93e49d6f6e48af
A383742
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of g.f. x/(1 - A002203(k)*x + (-1)^k*x^2).
[ "0", "0", "1", "0", "1", "2", "0", "1", "2", "3", "0", "1", "6", "5", "4", "0", "1", "14", "35", "12", "5", "0", "1", "34", "197", "204", "29", "6", "0", "1", "82", "1155", "2772", "1189", "70", "7", "0", "1", "198", "6725", "39236", "39005", "6930", "169", "8", "0", "1", "478", "39203", "551532", "1332869", "548842", "40391", "408", "9", "0", "1", "1154", "228485", "7761996", "45232349", "45278310", "7722793", "235416", "985", "10" ]
[ "nonn", "tabl", "easy" ]
22
0
6
[ "A000004", "A000012", "A000129", "A001109", "A001477", "A002203", "A028412", "A041085", "A091761", "A097731", "A292423", "A380083", "A383720", "A383740", "A383741", "A383742" ]
null
Seiichi Manyama, May 07 2025
2025-05-08T08:56:00
oeisdata/seq/A383/A383742.seq
7e33a6e7a1b9bf32e0e8296e8dcdb5c2
A383743
a(n) is the smallest prime not yet in the sequence that satisfies the following: for some pair of different digits i and j in a(n-1), i preceding j (from left to right), j precedes i in a(n). Leading 0s are not allowed; a(1)=13. See Comments for details.
[ "13", "31", "103", "101", "107", "71", "17", "271", "127", "211", "1021", "109", "191", "19", "491", "139", "131", "113", "311", "137", "73", "37", "173", "307", "373", "317", "163", "61", "167", "461", "149", "41", "1049", "241", "421", "1123", "251", "151", "157", "521", "257", "523", "353", "53", "359", "193", "239", "293", "349", "43", "347", "431" ]
[ "nonn", "base" ]
21
1
1
[ "A107801", "A381130", "A383743" ]
null
Enrique Navarrete, May 08 2025
2025-06-15T22:53:54
oeisdata/seq/A383/A383743.seq
a1cc9000e975da71f51555c9cf7ab8ae
A383744
The number of distinct straightedge-and-compass constructions that can be made with a total of n lines and circles up to rigid motion.
[ "1", "2", "2", "6", "44", "1000", "90585" ]
[ "nonn", "hard", "more" ]
16
0
2
[ "A241600", "A250001", "A383082", "A383083", "A383273", "A383744" ]
null
Peter Kagey and N. J. A. Sloane, May 08 2025
2025-05-11T09:25:52
oeisdata/seq/A383/A383744.seq
0e46cf24ba57e5f0165f7b44c711632b
A383745
Numbers k of the form x*(x+1) whose sum of digits is of the form y*(y+1).
[ "0", "2", "6", "20", "42", "110", "132", "156", "240", "420", "462", "552", "600", "930", "992", "1056", "1122", "1560", "1722", "1892", "2352", "2550", "2756", "3306", "3540", "3782", "4422", "4556", "4970", "5700", "5852", "6006", "6806", "7140", "7832", "8372", "8930", "9120", "9506", "10100", "10302", "10506", "10920", "11130", "11990", "12210", "12432" ]
[ "nonn", "base" ]
45
1
2
[ "A002378", "A007953", "A028839", "A128203", "A383745" ]
null
Huaineng He, May 08 2025
2025-06-10T01:16:01
oeisdata/seq/A383/A383745.seq
add3ce2571227911ebe60de5604110d5
A383746
Numbers k such that k divides the sum of the digits of k^(3k).
[ "1", "2", "3", "6", "9", "11", "18", "38", "43", "87", "126", "670", "1098", "2421", "3588", "4201", "5114", "5877", "5922", "6048", "11799", "46119", "46419", "55098", "55945", "77439", "91541", "129624", "153229", "182402" ]
[ "nonn", "base", "hard", "more" ]
19
1
2
[ "A083282", "A108859", "A383746" ]
null
J.W.L. (Jan) Eerland, May 08 2025
2025-05-13T16:42:53
oeisdata/seq/A383/A383746.seq
78c7c33ab554f3d12976af44978fde5c
A383747
Consider the polynomial P(m,z) = Sum_{k=1..r} d(k)*z^(k-1) where d(1) < d(2) < ... < d(r) are the r divisors of m. The sequence lists the numbers m such that P(m,z) contains at least three zeros of the form -1/q, i/q, -i/q, for some integer q, i = sqrt(-1).
[ "8", "27", "88", "104", "125", "128", "136", "152", "184", "232", "248", "296", "328", "343", "344", "376", "424", "472", "488", "536", "568", "584", "632", "664", "712", "776", "783", "808", "824", "837", "856", "872", "904", "968", "999", "1016", "1048", "1096", "1107", "1112", "1161", "1192", "1208", "1256", "1269", "1304", "1331", "1336", "1352", "1384", "1431" ]
[ "nonn" ]
11
1
1
[ "A027750", "A291127", "A383747", "A383748" ]
null
Michel Lagneau, May 08 2025
2025-05-16T18:53:05
oeisdata/seq/A383/A383747.seq
3cfe29290425eb4b25cd4d915ce75552
A383748
a(n) = q is the smallest integer, such that the numbers -1/q, i/q, -i/q with i = sqrt(-1), are three zeros of the polynomial P(A783747(n),z) = Sum_{k=1..r} d(k)*z^(k-1) where d(1) < d(2), ..., < d(r) are the r divisors of A383747(n).
[ "2", "3", "2", "2", "5", "2", "2", "2", "2", "2", "2", "2", "2", "7", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "2", "3", "2", "2", "3", "2", "2", "2", "2", "3", "2", "2", "2", "3", "2", "3", "2", "2", "2", "3", "2", "11", "2", "2", "2", "3", "2", "2", "2", "2", "2", "2", "3", "3", "2", "2", "3", "2", "2", "2", "2", "3", "2", "3", "2", "2", "2", "2", "3", "2", "2", "3", "13", "2", "3", "2", "2", "2", "2", "3", "2", "2" ]
[ "nonn" ]
10
1
1
[ "A027750", "A291127", "A383747", "A383748" ]
null
Michel Lagneau, May 08 2025
2025-05-16T18:51:48
oeisdata/seq/A383/A383748.seq
ab1c57774c26bfff8e1e779636dadf4e
A383749
Positive numbers k whose decimal expansion does not contain the decimal expansion of any proper divisor of k.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "23", "27", "29", "34", "37", "38", "43", "46", "47", "49", "53", "54", "56", "57", "58", "59", "67", "68", "69", "73", "74", "76", "78", "79", "83", "86", "87", "89", "94", "97", "98", "203", "207", "209", "223", "227", "229", "233", "239", "247", "249", "253", "257", "259", "263", "267", "269", "277", "283", "289", "293", "299", "307" ]
[ "nonn", "base" ]
23
1
2
[ "A011531", "A027751", "A038603", "A038772", "A121042", "A173041", "A383592", "A383749" ]
null
Rémy Sigrist, May 08 2025
2025-05-12T14:00:57
oeisdata/seq/A383/A383749.seq
11d112eafb84b425b7f829dbe820c490
A383750
a(n) = number of iterations of z -> z^2 + c(n) with c(n) = 1/n + (2/(n^2))*i - 1/8 + (3*sqrt(3)/8)*i to reach |z| > 2, starting with z = 0.
[ "1", "2", "4", "6", "8", "10", "11", "13", "15", "17", "19", "20", "22", "24", "26", "28", "29", "31", "33", "35", "37", "38", "40", "42", "44", "46", "47", "49", "51", "53", "55", "57", "58", "60", "62", "64", "66", "68", "69", "71", "73", "75", "77", "78", "80", "82", "84", "86", "87", "89", "91", "93", "95", "96", "98", "100", "102", "104", "105", "107", "109", "111", "113", "115", "116", "118", "120" ]
[ "nonn" ]
24
1
2
[ "A093602", "A097486", "A383750", "A384509", "A384513" ]
null
Luke Bennet, May 08 2025
2025-06-05T23:46:33
oeisdata/seq/A383/A383750.seq
90bf18801badcf10acbf28f1dc18eabf
A383751
Number of Carlitz compositions of n with parts in standard order.
[ "1", "1", "0", "1", "1", "0", "2", "3", "2", "5", "8", "10", "19", "31", "44", "73", "123", "193", "315", "524", "847", "1392", "2317", "3810", "6303", "10506", "17451", "29066", "48603", "81223", "135965", "228153", "383014", "643756", "1083693", "1825640", "3078574", "5197246", "8780823", "14847669", "25128385", "42558687", "72131730", "122343844" ]
[ "nonn", "easy" ]
12
0
7
[ "A000110", "A003242", "A011782", "A047998", "A107429", "A126347", "A278984", "A380822", "A383253", "A383713", "A383751" ]
null
John Tyler Rascoe, May 08 2025
2025-05-09T16:54:31
oeisdata/seq/A383/A383751.seq
85453214ca0802e2196f9c42769c8ea9
A383752
Product of nonzero remainders n mod p, over all primes p < n.
[ "1", "1", "1", "1", "2", "1", "2", "6", "8", "3", "8", "10", "36", "24", "8", "30", "288", "420", "1920", "2268", "640", "270", "2880", "9240", "13824", "7560", "19200", "17820", "120960", "64064", "362880", "5054400", "1881600", "475200", "165888", "464100", "6386688", "4082400", "1228800", "2120580", "34836480", "23474880", "217728000" ]
[ "nonn" ]
69
1
5
[ "A000040", "A013939", "A024934", "A102647", "A309912", "A383752" ]
null
Darío Clavijo, May 28 2025
2025-06-06T14:46:14
oeisdata/seq/A383/A383752.seq
9f083c4b14a6bc90e248f466e827ebf7
A383753
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = 2^(n-k) * T(n-1,k-1) + 3^k * T(n-1,k) with T(n,k) = n^k if n*k=0.
[ "1", "1", "1", "1", "5", "1", "1", "19", "19", "1", "1", "65", "247", "65", "1", "1", "211", "2743", "2743", "211", "1", "1", "665", "28063", "96005", "28063", "665", "1", "1", "2059", "273847", "3041143", "3041143", "273847", "2059", "1", "1", "6305", "2596399", "90873965", "294990871", "90873965", "2596399", "6305", "1", "1", "19171", "24174631", "2619766591", "26802227431", "26802227431", "2619766591", "24174631", "19171", "1" ]
[ "nonn", "tabl" ]
24
0
5
[ "A000012", "A001047", "A019443", "A022167", "A383753", "A383754" ]
null
Seiichi Manyama, May 09 2025
2025-05-09T11:42:14
oeisdata/seq/A383/A383753.seq
cd2bee2414e7b833b85aeec6310b2847
A383754
Expansion of 1/Product_{k=0..3} (1 - 2^k * 3^(3-k) * x).
[ "1", "65", "2743", "96005", "3041143", "90873965", "2619766591", "73828050725", "2050312110055", "56398823205725", "1541678963379919", "41967937119356885", "1139327805030810487", "30873653666483535245", "835604944706085813727", "22597672980558843070085", "610791835087816964370439" ]
[ "nonn", "easy" ]
18
0
2
[ "A006101", "A383753", "A383754" ]
null
Seiichi Manyama, May 09 2025
2025-05-10T11:28:06
oeisdata/seq/A383/A383754.seq
e26b77aab209471768183bc7db0095cd
A383755
Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = 3^(n-k) * T(n-1,k-1) + 4^k * T(n-1,k) with T(n,k) = n^k if n*k=0.
[ "1", "1", "1", "1", "7", "1", "1", "37", "37", "1", "1", "175", "925", "175", "1", "1", "781", "19525", "19525", "781", "1", "1", "3367", "375661", "1776775", "375661", "3367", "1", "1", "14197", "6828757", "144142141", "144142141", "6828757", "14197", "1", "1", "58975", "119609725", "10884484975", "48575901517", "10884484975", "119609725", "58975", "1" ]
[ "nonn", "tabl" ]
20
0
5
[ "A000012", "A005061", "A022168", "A383755", "A383756", "A383757" ]
null
Seiichi Manyama, May 09 2025
2025-05-09T11:42:07
oeisdata/seq/A383/A383755.seq
c7f7da7b4eb818887b3665e06a37392c
A383756
Expansion of 1/Product_{k=0..2} (1 - 3^k * 4^(2-k) * x).
[ "1", "37", "925", "19525", "375661", "6828757", "119609725", "2042733925", "34274529421", "567869330677", "9323118394525", "152047784616325", "2467581667044781", "39901653896747797", "643493505828795325", "10356906506162786725", "166444482073618177741", "2671936126059753592117" ]
[ "nonn", "easy" ]
13
0
2
[ "A383755", "A383756" ]
null
Seiichi Manyama, May 09 2025
2025-05-09T11:41:36
oeisdata/seq/A383/A383756.seq
5c9de56b87274bf6e277e1536a12bb2d
A383757
Expansion of 1/Product_{k=0..3} (1 - 3^k * 4^(3-k) * x).
[ "1", "175", "19525", "1776775", "144142141", "10884484975", "783802527925", "54630820881175", "3721247723926381", "249337226367003775", "16508103305566548325", "1083453420457687217575", "70652392978007927384221", "4585369275138131990546575", "296541443098920894741800725", "19127262646595562017053105975" ]
[ "nonn", "easy" ]
13
0
2
[ "A383755", "A383757" ]
null
Seiichi Manyama, May 09 2025
2025-05-09T16:19:57
oeisdata/seq/A383/A383757.seq
e90cb4fd418d597ddc51d63ce301fcf1
A383758
Least integer k for which sigma(k - x) + sigma(k + x) = n*k has at least one solution.
[ "1", "2", "6", "24", "93", "1952", "14412", "361881", "61824672" ]
[ "nonn", "more" ]
59
2
2
[ "A000203", "A000396", "A141643", "A317681", "A383268", "A383269", "A383758" ]
null
Jean-Marc Rebert, May 09 2025
2025-06-18T00:48:01
oeisdata/seq/A383/A383758.seq
91f69abad101c617825912001ec0c338
A383759
Decimal expansion of infinite nested radical sqrt(8-sqrt(8-sqrt(8+sqrt(8-...)))).
[ "2", "4", "1", "1", "4", "7", "4", "1", "2", "7", "8", "0", "9", "7", "7", "2", "8", "3", "8", "5", "1", "3", "0", "0", "3", "8", "5", "5", "7", "6", "0", "2", "9", "6", "2", "8", "7", "7", "4", "4", "0", "8", "1", "1", "8", "2", "6", "8", "9", "7", "1", "9", "7", "5", "7", "8", "8", "8", "6", "6", "3", "8", "9", "4", "8", "3", "2", "7", "5", "3", "1", "9", "9", "7", "0", "5", "5", "2", "8", "3", "6", "4", "9", "5", "5", "9", "5", "0", "3", "3", "3", "0", "3", "6", "9", "9", "3", "1", "2", "1", "8", "2", "3", "7", "6" ]
[ "nonn", "cons" ]
22
1
1
[ "A019889", "A383759" ]
null
Artur Jasinski, May 09 2025
2025-05-15T00:11:59
oeisdata/seq/A383/A383759.seq
c96a338564906dd0ed4c1b5f4f661312
A383760
Irregular triangle read by rows in which the n-th row lists the exponential infinitary divisors of n.
[ "1", "2", "3", "2", "4", "5", "6", "7", "2", "8", "3", "9", "10", "11", "6", "12", "13", "14", "15", "2", "16", "17", "6", "18", "19", "10", "20", "21", "22", "23", "6", "24", "5", "25", "26", "3", "27", "14", "28", "29", "30", "31", "2", "32", "33", "34", "35", "6", "12", "18", "36", "37", "38", "39", "10", "40", "41", "42", "43", "22", "44", "15", "45", "46", "47", "6", "48", "7", "49", "10", "50" ]
[ "nonn", "tabf", "easy" ]
12
1
2
[ "A077609", "A307848", "A322791", "A361175", "A361255", "A383760", "A383761" ]
null
Amiram Eldar, May 09 2025
2025-05-11T01:20:09
oeisdata/seq/A383/A383760.seq
69a87acee98071d0e4f73f9dd90a0878
A383761
Irregular triangle read by rows in which the n-th row lists the exponential squarefree exponential divisors of n.
[ "1", "2", "3", "2", "4", "5", "6", "7", "2", "8", "3", "9", "10", "11", "6", "12", "13", "14", "15", "2", "4", "17", "6", "18", "19", "10", "20", "21", "22", "23", "6", "24", "5", "25", "26", "3", "27", "14", "28", "29", "30", "31", "2", "32", "33", "34", "35", "6", "12", "18", "36", "37", "38", "39", "10", "40", "41", "42", "43", "22", "44", "15", "45", "46", "47", "6", "12", "7", "49", "10", "50" ]
[ "nonn", "tabf", "easy" ]
12
1
2
[ "A278908", "A322791", "A361174", "A361255", "A383760", "A383761" ]
null
Amiram Eldar, May 09 2025
2025-05-30T08:02:23
oeisdata/seq/A383/A383761.seq
cf24359edc4b51c2f367d6408b37ac8a
A383762
The number of unitary divisors of n that are exponentially squarefree numbers.
[ "1", "2", "2", "2", "2", "4", "2", "2", "2", "4", "2", "4", "2", "4", "4", "1", "2", "4", "2", "4", "4", "4", "2", "4", "2", "4", "2", "4", "2", "8", "2", "2", "4", "4", "4", "4", "2", "4", "4", "4", "2", "8", "2", "4", "4", "4", "2", "2", "2", "4", "4", "4", "2", "4", "4", "4", "4", "4", "2", "8", "2", "4", "4", "2", "4", "8", "2", "4", "4", "8", "2", "4", "2", "4", "4", "4", "4", "8", "2", "2", "1", "4", "2", "8", "4", "4", "4" ]
[ "nonn", "easy", "mult" ]
10
1
2
[ "A005117", "A034444", "A077610", "A209061", "A365499", "A365680", "A383762", "A383763", "A383764" ]
null
Amiram Eldar, May 09 2025
2025-05-11T01:19:38
oeisdata/seq/A383/A383762.seq
ceec529c962e5c218b4e818df3ef9f96
A383763
The sum of unitary divisors of n that are exponentially squarefree numbers.
[ "1", "3", "4", "5", "6", "12", "8", "9", "10", "18", "12", "20", "14", "24", "24", "1", "18", "30", "20", "30", "32", "36", "24", "36", "26", "42", "28", "40", "30", "72", "32", "33", "48", "54", "48", "50", "38", "60", "56", "54", "42", "96", "44", "60", "60", "72", "48", "4", "50", "78", "72", "70", "54", "84", "72", "72", "80", "90", "60", "120", "62", "96", "80", "65", "84", "144", "68" ]
[ "nonn", "easy", "mult" ]
9
1
2
[ "A005117", "A034448", "A077610", "A209061", "A365682", "A383762", "A383763", "A383764" ]
null
Amiram Eldar, May 09 2025
2025-05-11T01:19:23
oeisdata/seq/A383/A383763.seq
81f49256d5ca8172a9719cc25279517d
A383764
The largest unitary divisor of n that is an exponentially squarefree number.
[ "1", "2", "3", "4", "5", "6", "7", "8", "9", "10", "11", "12", "13", "14", "15", "1", "17", "18", "19", "20", "21", "22", "23", "24", "25", "26", "27", "28", "29", "30", "31", "32", "33", "34", "35", "36", "37", "38", "39", "40", "41", "42", "43", "44", "45", "46", "47", "3", "49", "50", "51", "52", "53", "54", "55", "56", "57", "58", "59", "60", "61", "62", "63", "64", "65", "66", "67", "68" ]
[ "nonn", "easy", "mult" ]
9
1
2
[ "A005117", "A053165", "A077610", "A209061", "A365683", "A383762", "A383763", "A383764" ]
null
Amiram Eldar, May 09 2025
2025-05-11T01:18:41
oeisdata/seq/A383/A383764.seq
f6d654c613d0b7bf9c54d115a5fc8457
A383765
Number of compositions of n such that between any pair of equal adjacent parts there can be a pair of brackets enclosing a new nonempty composition with the same rules.
[ "1", "1", "2", "5", "12", "32", "87", "247", "719", "2143", "6501", "20020", "62413", "196602", "624777", "2000583", "6448418", "20905700", "68124244", "223008863", "733029865", "2418389200", "8005456180", "26581030889", "88505553642", "295449465970", "988604513361", "3315211853122", "11139876837837", "37503193583796" ]
[ "nonn" ]
30
0
3
[ "A000217", "A001006", "A003242", "A011782", "A106356", "A383765" ]
null
John Tyler Rascoe, May 16 2025
2025-05-22T19:52:45
oeisdata/seq/A383/A383765.seq
31d21a07dac92bda1a35deae27c886e7
A383766
a(n) is the number of numbers k (0 <= k < n) such that there exist solutions of x^3 + x == y^2 + 1 == k (mod n).
[ "1", "1", "2", "1", "2", "2", "3", "1", "4", "2", "3", "2", "6", "3", "4", "2", "5", "4", "7", "2", "6", "3", "8", "2", "10", "6", "11", "3", "12", "4", "11", "4", "6", "5", "6", "4", "13", "7", "12", "2", "11", "6", "16", "3", "8", "8", "13", "4", "21", "10", "10", "6", "17", "11", "6", "3", "14", "12", "18", "4", "20", "11", "12", "8", "12", "6", "27", "5", "16", "6", "26", "4", "27", "13", "20", "7", "9", "12", "26", "4", "31", "11", "25" ]
[ "nonn" ]
35
1
3
null
null
SiYang Hu, May 09 2025
2025-05-23T23:00:40
oeisdata/seq/A383/A383766.seq
7aec5dbd3583ad06c0876b07de2ab42a
A383767
a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)/(1 - k*x).
[ "1", "0", "2", "42", "1152", "40520", "1751850", "90087522", "5376546560", "365487900192", "27886922161650", "2360357986720250", "219495753481590432", "22246783602163580616", "2440974108105319141082", "288270640787372104920450", "36459004369727317927680000", "4916744437454382604092493952", "704282170015570676249171941218" ]
[ "nonn" ]
28
0
3
[ "A350366", "A383767" ]
null
Seiichi Manyama, May 14 2025
2025-05-14T10:05:59
oeisdata/seq/A383/A383767.seq
41466313201818bc1dcbb647517c4298
A383768
Numerators of the sequence whose Dirichlet convolution with itself yields cubes (A000578).
[ "1", "4", "27", "24", "125", "54", "343", "160", "2187", "250", "1331", "324", "2197", "686", "3375", "1120", "4913", "2187", "6859", "1500", "9261", "2662", "12167", "2160", "46875", "4394", "98415", "4116", "24389", "3375", "29791", "8064", "35937", "9826", "42875", "6561", "50653", "13718", "59319", "10000", "68921", "9261", "79507", "15972", "273375" ]
[ "nonn", "frac" ]
11
1
2
[ "A000578", "A299149", "A299150", "A318512", "A318649", "A383768", "A383769" ]
null
Vaclav Kotesovec, May 09 2025
2025-05-09T10:34:21
oeisdata/seq/A383/A383768.seq
58291bfc34dd85d330a8d3d4cd1b14a6
A383769
Denominators of the sequence whose Dirichlet convolution with itself yields cubes (A000578).
[ "1", "1", "2", "1", "2", "1", "2", "1", "8", "1", "2", "1", "2", "1", "4", "1", "2", "2", "2", "1", "4", "1", "2", "1", "8", "1", "16", "1", "2", "1", "2", "1", "4", "1", "4", "1", "2", "1", "4", "1", "2", "1", "2", "1", "16", "1", "2", "1", "8", "2", "4", "1", "2", "4", "4", "1", "4", "1", "2", "1", "2", "1", "16", "1", "4", "1", "2", "1", "4", "1", "2", "1", "2", "1", "16", "1", "4", "1", "2", "1", "128", "1", "2", "1", "4", "1", "4" ]
[ "nonn", "frac" ]
8
1
3
[ "A000578", "A299149", "A299150", "A318512", "A318649", "A383768", "A383769" ]
null
Vaclav Kotesovec, May 09 2025
2025-05-09T10:34:17
oeisdata/seq/A383/A383769.seq
348458b6f9b5f78a7882b0c38af6301c
A383770
Number of nonnesting permutations of [n] avoiding 231 (and by symmetry 132, 213, or 312).
[ "1", "1", "4", "17", "77", "367", "1815", "9233", "48014", "254123", "1364491", "7414733", "40701346", "225359021", "1257148285", "7058816337", "39863261170", "226270553575", "1290212119208", "7387057794679", "42450966727899", "244771835135261", "1415678529391032", "8210790845555365", "47744558865042855" ]
[ "nonn" ]
21
0
3
[ "A383770", "A383771" ]
null
Robert P. Laudone, May 09 2025
2025-06-16T23:35:29
oeisdata/seq/A383/A383770.seq
a480cd54960cb270b85d7224a64f68d9
A383771
Number of noncrossing permutations of [n] avoiding 213 (and by symmetry 132, 213, or 312).
[ "1", "1", "4", "19", "102", "590", "3588", "22617", "146460", "968520", "6513034", "44403604", "306209746", "2132165062", "14970030506", "105862919427", "753344866662", "5390772814578", "38765692377100", "279999861952626", "2030439981144348", "14776796428607224", "107891287190000212", "790105506941871258" ]
[ "nonn" ]
13
0
3
[ "A383770", "A383771" ]
null
Robert P. Laudone, May 09 2025
2025-05-14T00:18:56
oeisdata/seq/A383/A383771.seq
c458fd728ae58ea94e96f2647b8fceed
A383772
a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1, 2, ... , n), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
[ "0", "-4", "-18", "-610", "-15675", "-772122", "-47282844", "-3918873376", "-410168886615", "-53329052728000", "-8417451284317614", "-1586200451151892608", "-351735180091505203539", "-90667510133054591492224", "-26884188746929397888775000", "-9086147134545912835276742656" ]
[ "sign" ]
6
1
2
[ "A052182", "A085719", "A380661", "A383772", "A383773", "A383774", "A383775" ]
null
Clark Kimberling, May 15 2025
2025-05-21T16:38:59
oeisdata/seq/A383/A383772.seq
3eb546cb7fc6f835637118d52b1742e4
A383773
a(n) = pos(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1, 2, ... , n), and pos(M(n)) is the positive part of the determinant of M(n); see A380661.
[ "1", "1", "36", "450", "17550", "744906", "47753440", "3909436192", "410384120220", "53323552728000", "8417606908865220", "1586195621597483136", "351735343178101060906", "90667504180193792086144", "26884188980472806091900000", "9086147124746080046118543360", "3472279409772212369077001352888" ]
[ "nonn" ]
5
1
3
[ "A052182", "A085719", "A380661", "A383772", "A383773", "A383774", "A383775" ]
null
Clark Kimberling, May 17 2025
2025-05-21T16:40:47
oeisdata/seq/A383/A383773.seq
74c3f7ccd3626b7d64c8e105aeba77ac
A383774
a(n) = neg(M(n)), where M(n) is the n X n left circulant matrix with (row 1) = (1, 2, ... , n), and neg(M(n)) is the negative part of the determinant of M(n); see A380661.
[ "0", "-4", "-36", "-450", "-15675", "-772122", "-47753440", "-3909436192", "-410168886615", "-53329052728000", "-8417606908865220", "-1586195621597483136", "-351735180091505203539", "-90667510133054591492224", "-26884188980472806091900000", "-9086147124746080046118543360" ]
[ "sign" ]
8
1
2
[ "A052182", "A085719", "A380661", "A383772", "A383773", "A383774", "A383775" ]
null
Clark Kimberling, May 17 2025
2025-05-27T22:11:50
oeisdata/seq/A383/A383774.seq
ec41198cec3ede4afe8d0f505191e305
A383775
a(n) = pos(M(n)), where M(n) is the n X n left circulant matrix with (row 1) = (1, 2, ... , n), and pos(M(n)) is the positive part of the determinant of M(n); see A380661.
[ "1", "1", "18", "610", "17550", "744906", "47282844", "3918873376", "410384120220", "53323552728000", "8417451284317614", "1586200451151892608", "351735343178101060906", "90667504180193792086144", "26884188746929397888775000", "9086147134545912835276742656", "3472279409772212369077001352888" ]
[ "nonn" ]
6
1
3
[ "A052182", "A085719", "A380661", "A383772", "A383773", "A383774", "A383775" ]
null
Clark Kimberling, May 22 2025
2025-05-27T22:13:59
oeisdata/seq/A383/A383775.seq
a57722ff0957795309031c0d1a678ea8
A383776
a(n) = (11*n + 3 + 6/(n+2)) * Catalan(n).
[ "6", "16", "53", "186", "672", "2472", "9207", "34606", "130988", "498576", "1906346", "7316596", "28170768", "108760560", "420889995", "1632155670", "6340808820", "24673450560", "96148670310", "375164728620", "1465589068320", "5731488987120", "22436098732710", "87905595401676", "344702077523352", "1352701532137312", "5312100899224532", "20874451526714856" ]
[ "nonn", "easy" ]
26
0
1
[ "A000108", "A000984", "A007054", "A051960", "A383776" ]
null
F. Chapoton, May 09 2025
2025-05-15T17:09:09
oeisdata/seq/A383/A383776.seq
6e51784c595246c17d065130a5e29b1e
A383777
a(n) is the number of steps that n requires to reach 0 under the map: x -> 2*x + 1 if x is even; 0 if x = 1; x - lpf(x) otherwise where lpf(x) is the least prime factor of x. a(n) = -1 if 0 is never reached.
[ "0", "1", "2", "1", "4", "1", "2", "1", "2", "3", "4", "1", "4", "1", "2", "5", "4", "1", "2", "1", "2", "3", "10", "1", "10", "3", "2", "11", "4", "1", "2", "1", "10", "3", "12", "3", "2", "1", "6", "3", "4", "1", "8", "1", "2", "9", "4", "1", "2", "9", "2", "3", "6", "1", "2", "3", "2", "3", "4", "1", "8", "1", "4", "9", "10", "9", "10", "1", "2", "11", "4", "1", "4", "1", "2", "5", "10", "5", "2", "1", "6", "3", "6", "1" ]
[ "nonn" ]
16
0
3
[ "A005408", "A006577", "A046666", "A383777" ]
null
Ya-Ping Lu, May 17 2025
2025-05-22T06:52:54
oeisdata/seq/A383/A383777.seq
c302162f768b77f667891018e4b98e07
A383778
a(n) = n*(n^2 - 3*n + 10)*2^(n-4).
[ "0", "1", "4", "15", "56", "200", "672", "2128", "6400", "18432", "51200", "137984", "362496", "931840", "2351104", "5836800", "14286848", "34537472", "82575360", "195493888", "458752000", "1067974656", "2468347904", "5667553280", "12935233536", "29360128000", "66303557632", "149032009728", "333531054080", "743431995392" ]
[ "nonn", "easy" ]
8
0
3
[ "A060354", "A383778" ]
null
Enrique Navarrete, May 09 2025
2025-05-14T18:52:33
oeisdata/seq/A383/A383778.seq
70429c2db51bb2d79277f9d230a9c2ed
A383779
Primes where successively deleting the least significant digit yields a sequence that alternates between a prime and a nonprime at every step until a single-digit number remains.
[ "2", "3", "5", "7", "11", "13", "17", "19", "41", "43", "47", "61", "67", "83", "89", "97", "211", "223", "227", "229", "241", "251", "257", "263", "269", "271", "277", "281", "283", "307", "331", "337", "347", "349", "353", "359", "367", "383", "389", "397", "503", "509", "521", "523", "541", "547", "557", "563", "569", "571", "577", "587", "701", "709", "727", "743", "751", "757", "761", "769", "773", "787" ]
[ "nonn", "base", "fini" ]
28
1
1
[ "A024770", "A069090", "A383779", "A383780", "A383781" ]
null
Stefano Spezia, May 09 2025
2025-05-17T01:48:50
oeisdata/seq/A383/A383779.seq
7e09fffee8c7490d5a0724d59703cb9b
A383780
a(n) is the number of n-digit terms in A383779.
[ "4", "12", "46", "103", "396", "717", "2451", "3929", "11803", "17202", "46916", "62668", "157138", "197114", "458064", "541267", "1180018", "1323543", "2718398", "2915696", "5675113", "5839596", "10821575", "10724938", "18983655", "18174231", "30856021", "28608908", "46708476", "42036009", "66157433", "57908390", "88020231", "75070514" ]
[ "nonn", "base" ]
45
1
1
[ "A383779", "A383780" ]
null
Stefano Spezia, May 09 2025
2025-05-16T15:54:29
oeisdata/seq/A383/A383780.seq
03684df5f1c2bf911c122af705b627f5
A383781
Primes where successively deleting the most significant digit yields a sequence that alternates between a prime and a nonprime at every step until a single-digit number remains.
[ "2", "3", "5", "7", "11", "19", "29", "31", "41", "59", "61", "71", "79", "89", "127", "157", "163", "193", "227", "233", "257", "263", "277", "293", "433", "457", "463", "487", "557", "563", "577", "587", "593", "677", "727", "733", "757", "787", "827", "857", "863", "877", "887", "977", "1129", "1171", "1231", "1259", "1279", "1289", "1319", "1361", "1429", "1459" ]
[ "nonn", "base" ]
13
1
1
[ "A024785", "A383780", "A383781", "A383782" ]
null
Stefano Spezia, May 09 2025
2025-05-15T17:48:26
oeisdata/seq/A383/A383781.seq
b8ead4f141902534e1f80d4118bb07db
A383782
a(n) is the number of n-digit terms in A383781.
[ "4", "10", "30", "147", "408", "1823", "4353", "17690", "38419", "143219", "284441", "980166", "1806038", "5813294", "10037352", "30426498", "49595776", "142437454", "220519428", "603013312", "890961094", "2329755538" ]
[ "nonn", "base", "more" ]
22
1
1
[ "A383781", "A383782" ]
null
Stefano Spezia, May 09 2025
2025-05-19T09:26:30
oeisdata/seq/A383/A383782.seq
cae5019c04bfa1b1ace42e205cee85ac
A383783
a(n) = Sum_{k=1..2^n} mu(k) * (floor(2^n/k)^4 - floor((2^n-1)/k)^4).
[ "1", "14", "160", "1520", "13216", "110144", "899200", "7266560", "58425856", "468583424", "3753379840", "30045900800", "240442679296", "1923843375104", "15391954862080", "123140470538240", "985143091265536", "7881222038749184", "63050085546065920", "504401921315962880", "4035220318323736576" ]
[ "nonn" ]
19
0
2
[ "A082540", "A344597", "A383783" ]
null
Chai Wah Wu, May 09 2025
2025-05-10T11:58:28
oeisdata/seq/A383/A383783.seq
e0dab4bf43f8540eee37c5302e06c586
A383784
Norms of vectors in any regular planar tiling (square or A2 lattice).
[ "0", "1", "2", "3", "4", "5", "7", "8", "9", "10", "12", "13", "16", "17", "18", "19", "20", "21", "25", "26", "27", "28", "29", "31", "32", "34", "36", "37", "39", "40", "41", "43", "45", "48", "49", "50", "52", "53", "57", "58", "61", "63", "64", "65", "67", "68", "72", "73", "74", "75", "76", "79", "80", "81", "82", "84", "85", "89", "90", "91", "93", "97", "98", "100", "101", "103", "104" ]
[ "nonn" ]
8
1
3
[ "A000401", "A001481", "A003136", "A383784", "A383785" ]
null
C. S. Davis, May 09 2025
2025-05-12T14:41:30
oeisdata/seq/A383/A383784.seq
07bf28f85efc557a572292c6ef5dbafb
A383785
Numbers not occurring as norms of vectors in any regular planar lattice.
[ "6", "11", "14", "15", "22", "23", "24", "30", "33", "35", "38", "42", "44", "46", "47", "51", "54", "55", "56", "59", "60", "62", "66", "69", "70", "71", "77", "78", "83", "86", "87", "88", "92", "94", "95", "96", "99", "102", "105", "107", "110", "114", "115", "118", "119", "120", "123", "126", "131", "132", "134", "135", "138", "140", "141", "142", "143", "150", "152", "154" ]
[ "nonn" ]
18
1
1
[ "A022544", "A034020", "A055039", "A383784", "A383785" ]
null
C. S. Davis, May 09 2025
2025-05-23T18:34:28
oeisdata/seq/A383/A383785.seq
45360c0507e5b29d3775e088aaaf52a8
A383786
Number of polyforms with n cells on the faces of a pentagonal hexecontahedron up to rotation.
[ "1", "1", "3", "8", "25", "80", "281", "967", "3451", "12256", "43924", "157090" ]
[ "nonn", "fini", "more" ]
14
0
3
[ "A030137", "A030138", "A197159", "A383491", "A383493", "A383495", "A383498", "A383786" ]
null
Peter Kagey, May 09 2025
2025-05-11T09:24:52
oeisdata/seq/A383/A383786.seq
3d58b3e56785bb5bd75cc4cb82afdc88
A383787
Largest number obtainable by either keeping each decimal digit d in n or replacing it with 9-d.
[ "8", "7", "6", "5", "5", "6", "7", "8", "9", "89", "88", "87", "86", "85", "85", "86", "87", "88", "89", "79", "78", "77", "76", "75", "75", "76", "77", "78", "79", "69", "68", "67", "66", "65", "65", "66", "67", "68", "69", "59", "58", "57", "56", "55", "55", "56", "57", "58", "59", "59", "58", "57", "56", "55", "55", "56", "57", "58", "59", "69", "68", "67", "66", "65", "65", "66", "67", "68", "69", "79", "78", "77", "76", "75", "75", "76", "77", "78" ]
[ "nonn", "base" ]
33
1
1
[ "A061601", "A383787", "A383788" ]
null
Ali Sada, May 09 2025
2025-05-12T10:35:24
oeisdata/seq/A383/A383787.seq
89cdcdb6cb210fb24898acda06c55fa7
A383788
Smallest number obtainable by either keeping each decimal digit d in n or replacing it with 9-d.
[ "1", "2", "3", "4", "4", "3", "2", "1", "0", "10", "11", "12", "13", "14", "14", "13", "12", "11", "10", "20", "21", "22", "23", "24", "24", "23", "22", "21", "20", "30", "31", "32", "33", "34", "34", "33", "32", "31", "30", "40", "41", "42", "43", "44", "44", "43", "42", "41", "40", "40", "41", "42", "43", "44", "44", "43", "42", "41", "40", "30", "31", "32", "33", "34", "34", "33", "32", "31", "30", "20", "21", "22", "23", "24", "24", "23", "22" ]
[ "nonn", "base" ]
33
1
2
[ "A061601", "A383787", "A383788" ]
null
Ali Sada, May 09 2025
2025-05-12T10:02:08
oeisdata/seq/A383/A383788.seq
bd7269884250b0cafe0d1ef2022dabd0
A383789
a(1) = 1; for n > 1, a(n) is the smallest positive integer not already in the sequence such that it shares at least one digit with a(n-1), and it has a different number of digits from a(n-1).
[ "1", "10", "100", "11", "101", "12", "2", "20", "102", "13", "3", "23", "103", "14", "4", "24", "104", "15", "5", "25", "105", "16", "6", "26", "106", "17", "7", "27", "107", "18", "8", "28", "108", "19", "9", "29", "109", "21", "110", "30", "113", "31", "111", "41", "112", "22", "120", "32", "121", "42", "114", "34", "123", "33", "130", "35", "115", "45", "124", "40", "134", "36", "116", "46", "126", "51", "117", "37", "127", "47", "137" ]
[ "nonn", "base" ]
26
1
2
[ "A184992", "A303848", "A383789" ]
null
Ali Sada, May 09 2025
2025-05-18T07:56:53
oeisdata/seq/A383/A383789.seq
9e82f7fac182c9238b4564419c0e744b
A383790
Prime numbers in order of occurrence as substrings in the concatenation of natural numbers 123456789101112....
[ "2", "23", "3", "5", "4567", "67", "7", "23456789", "89", "1234567891", "4567891", "67891", "56789101", "789101", "89101", "101", "11", "12345678910111", "45678910111", "10111", "45678910111213", "678910111213", "78910111213", "11213", "1213", "13", "9101112131", "1112131", "2131", "131", "31", "11213141", "1213141", "41", "91011121314151", "151", "123456789101112131415161" ]
[ "nonn", "base" ]
22
1
1
[ "A033307", "A073175", "A176942", "A383790" ]
null
Gonzalo Martínez, May 09 2025
2025-05-27T17:19:05
oeisdata/seq/A383/A383790.seq
e18ac6148d8fb32cf11a2b96861b0747
A383791
Numerators of the sequence whose Dirichlet convolution with itself yields fourth powers (A000583).
[ "1", "8", "81", "96", "625", "324", "2401", "1280", "19683", "2500", "14641", "3888", "28561", "9604", "50625", "17920", "83521", "19683", "130321", "30000", "194481", "58564", "279841", "51840", "1171875", "114244", "2657205", "115248", "707281", "101250", "923521", "258048", "1185921", "334084", "1500625", "236196", "1874161", "521284", "2313441" ]
[ "nonn", "frac" ]
10
1
2
[ "A000583", "A299149", "A299150", "A318512", "A318649", "A383768", "A383769", "A383791", "A383792" ]
null
Vaclav Kotesovec, May 10 2025
2025-05-10T09:16:23
oeisdata/seq/A383/A383791.seq
3fd1ad61598648a53240b8710e960d54
A383792
Denominators of the sequence whose Dirichlet convolution with itself yields fourth powers (A000583).
[ "1", "1", "2", "1", "2", "1", "2", "1", "8", "1", "2", "1", "2", "1", "4", "1", "2", "1", "2", "1", "4", "1", "2", "1", "8", "1", "16", "1", "2", "1", "2", "1", "4", "1", "4", "1", "2", "1", "4", "1", "2", "1", "2", "1", "16", "1", "2", "1", "8", "1", "4", "1", "2", "2", "4", "1", "4", "1", "2", "1", "2", "1", "16", "1", "4", "1", "2", "1", "4", "1", "2", "1", "2", "1", "16", "1", "4", "1", "2", "1", "128", "1", "2", "1", "4" ]
[ "nonn", "frac" ]
7
1
3
[ "A000583", "A299149", "A299150", "A318512", "A318649", "A318658", "A383768", "A383769", "A383791", "A383792" ]
null
Vaclav Kotesovec, May 10 2025
2025-05-10T09:18:00
oeisdata/seq/A383/A383792.seq
555c1c89ffa71e715f148ad80390ee93
A383793
Numerators of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s-1)^(1/3).
[ "1", "2", "1", "8", "5", "2", "7", "112", "2", "10", "11", "8", "13", "14", "5", "560", "17", "4", "19", "40", "7", "22", "23", "112", "50", "26", "14", "56", "29", "10", "31", "2912", "11", "34", "35", "16", "37", "38", "13", "560", "41", "14", "43", "88", "10", "46", "47", "560", "98", "100", "17", "104", "53", "28", "55", "784", "19", "58", "59", "40", "61", "62", "14", "46592", "65" ]
[ "nonn", "frac", "mult" ]
13
1
2
[ "A256688", "A256689", "A257099", "A383705", "A383793", "A383794" ]
null
Vaclav Kotesovec, May 10 2025
2025-05-11T07:38:19
oeisdata/seq/A383/A383793.seq
91c63d889dd9660cc1be20c4572bc352
A383794
Denominators of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s-1)^(1/3).
[ "1", "3", "1", "9", "3", "3", "3", "81", "1", "9", "3", "9", "3", "9", "3", "243", "3", "3", "3", "27", "3", "9", "3", "81", "9", "9", "3", "27", "3", "9", "3", "729", "3", "9", "9", "9", "3", "9", "3", "243", "3", "9", "3", "27", "3", "9", "3", "243", "9", "27", "3", "27", "3", "9", "9", "243", "3", "9", "3", "27", "3", "9", "3", "6561", "9", "9", "3", "27", "3", "27", "3", "81", "3", "9", "9", "27", "9", "9", "3", "729" ]
[ "nonn", "frac", "mult" ]
9
1
2
[ "A256688", "A256689", "A257099", "A383705", "A383793", "A383794" ]
null
Vaclav Kotesovec, May 10 2025
2025-05-11T07:38:45
oeisdata/seq/A383/A383794.seq
dbc03368e16eecdd641db9477b88ba84
A383795
Dirichlet g.f.: zeta(2*s-2) * zeta(s)^2.
[ "1", "2", "2", "7", "2", "4", "2", "12", "12", "4", "2", "14", "2", "4", "4", "33", "2", "24", "2", "14", "4", "4", "2", "24", "28", "4", "22", "14", "2", "8", "2", "54", "4", "4", "4", "84", "2", "4", "4", "24", "2", "8", "2", "14", "24", "4", "2", "66", "52", "56", "4", "14", "2", "44", "4", "24", "4", "4", "2", "28", "2", "4", "24", "139", "4", "8", "2", "14", "4", "8", "2", "144", "2", "4", "56", "14", "4", "8", "2", "66", "113" ]
[ "nonn", "mult" ]
15
1
2
[ "A035316", "A057521", "A383795" ]
null
Vaclav Kotesovec, May 10 2025
2025-05-24T02:15:51
oeisdata/seq/A383/A383795.seq
9badcc9ce15afed17370cbb27ea3ab3b
A383796
Expansion of g.f.: exp(Sum_{n>=1} A295432(n)*x^n/n).
[ "1", "462", "396453", "425295010", "511915968714", "661059663660060", "895093835464198893", "1254056426977089876570", "1802794259810040618367902", "2644298823194748929633091780", "3941742074897786728895080586082", "5954164159064906497558129244865108", "9094122817144126105637193154022530612" ]
[ "nonn" ]
87
0
2
[ "A166990", "A229451", "A243953", "A255881", "A295432", "A383796" ]
null
Karol A. Penson, Jun 11 2025
2025-06-12T00:51:39
oeisdata/seq/A383/A383796.seq
7a016b38ba7bb7e56cf62922ba78e3d5
A383797
a(n) = 10*binomial(n,5) + 4*binomial(n,3) + n.
[ "0", "1", "2", "7", "20", "55", "146", "357", "792", "1605", "3010", "5291", "8812", "14027", "21490", "31865", "45936", "64617", "88962", "120175", "159620", "208831", "269522", "343597", "433160", "540525", "668226", "819027", "995932", "1202195", "1441330", "1717121", "2033632", "2395217", "2806530", "3272535", "3798516", "4390087", "5053202" ]
[ "nonn", "easy" ]
40
0
3
[ "A000292", "A000389", "A383797" ]
null
Enrique Navarrete, May 15 2025
2025-05-21T11:17:11
oeisdata/seq/A383/A383797.seq
3a8b4e8802515b89d64515ce6d33ee05
A383798
Consecutive states of the linear congruential pseudo-random number generator for SIMSCRIPT II when started at 1.
[ "1", "630360016", "1549035330", "264620982", "529512731", "1896697821", "2116530888", "1923129168", "1674201058", "108088067", "859154222", "1946499387", "1377890442", "1382793310", "768302678", "1014576563", "514017889", "2050350098", "1928578391", "863848128", "246801402", "166165530", "709020555" ]
[ "nonn", "easy" ]
39
1
2
[ "A096550", "A383798", "A384406" ]
null
Sean A. Irvine, May 28 2025
2025-06-22T18:17:08
oeisdata/seq/A383/A383798.seq
126d7bf07b820ab586c51f0b03be8001
A383799
Irregular triangle: T(n,k) gives the number of k-polysticks on edges of the n-cube up to rotational symmetries of the n-cube, with 0 <= k <= A001787(n).
[ "1", "1", "1", "1", "1", "1", "1", "1", "1", "1", "4", "6", "14", "24", "32", "25", "13", "5", "1", "1", "1", "1", "1", "4", "10", "35", "131", "510", "1932", "7123", "24466", "76829", "214685", "518820", "1050433", "1727591", "2273998", "2446653", "2212119", "1709579", "1143416", "663450", "335186", "146371", "55327", "17767", "4898", "1103", "226", "35", "7", "1", "1" ]
[ "nonn", "tabf" ]
29
1
11
[ "A001787", "A222186", "A333333", "A383799" ]
null
Peter Kagey, May 10 2025
2025-06-13T08:19:51
oeisdata/seq/A383/A383799.seq
3a1257e69d0850d81c13bfdc0d337ec7
A383800
Number of polyforms with n cells on the faces of a triakis octahedron up to rotation and reflection.
[ "1", "1", "2", "2", "4", "4", "10", "13", "28", "42", "81", "130", "239", "369", "587", "817", "1072", "1170", "1054", "594", "217", "46", "11", "1", "1" ]
[ "nonn", "fini", "full" ]
10
0
3
[ "A030135", "A030136", "A333333", "A340635", "A383490", "A383492", "A383494", "A383496", "A383800", "A383801", "A383802", "A383804", "A383806" ]
null
Peter Kagey, May 10 2025
2025-05-11T09:24:44
oeisdata/seq/A383/A383800.seq
c22640b2d155872629d69a2b0eb330d5
A383801
Number of polyforms with n cells on the faces of a triakis octahedron up to rotation.
[ "1", "1", "2", "3", "5", "7", "15", "24", "48", "81", "149", "255", "458", "730", "1148", "1623", "2112", "2325", "2075", "1175", "410", "84", "16", "1", "1" ]
[ "nonn", "fini", "full" ]
15
0
3
[ "A030137", "A030138", "A383491", "A383493", "A383495", "A383497", "A383498", "A383786", "A383799", "A383800", "A383801", "A383803", "A383805", "A383807", "A383808", "A383826" ]
null
Peter Kagey, May 10 2025
2025-05-12T14:34:56
oeisdata/seq/A383/A383801.seq
a518e76992323576408f6682dcf411f2
A383802
Number of polyforms with n cells on the faces of a tetrakis hexahedron up to rotation and reflection.
[ "1", "1", "2", "2", "6", "8", "21", "36", "84", "164", "356", "691", "1361", "2342", "3707", "4830", "5082", "3843", "2128", "798", "248", "50", "12", "1", "1" ]
[ "nonn", "fini", "full" ]
13
0
3
[ "A030135", "A030136", "A197465", "A333333", "A340635", "A383490", "A383492", "A383494", "A383496", "A383800", "A383802", "A383803", "A383804", "A383806" ]
null
Peter Kagey, May 10 2025
2025-05-11T09:25:58
oeisdata/seq/A383/A383802.seq
a96be3f94f763b79e5470bc47a66262a
A383803
Number of polyforms with n cells on the faces of a tetrakis hexahedron up to rotation.
[ "1", "1", "2", "3", "8", "14", "35", "68", "154", "318", "683", "1362", "2668", "4645", "7326", "9594", "10048", "7605", "4145", "1539", "445", "86", "16", "1", "1" ]
[ "nonn", "fini", "full" ]
12
0
3
[ "A030137", "A030138", "A383491", "A383493", "A383495", "A383497", "A383498", "A383786", "A383799", "A383801", "A383802", "A383803", "A383805", "A383807", "A383808", "A383826", "A383827" ]
null
Peter Kagey, May 10 2025
2025-05-12T14:35:03
oeisdata/seq/A383/A383803.seq
a7a0ddce0de0bfa906ee695c05134f2a
A383804
Number of polyforms with n cells on the faces of a deltoidal icositetrahedron up to rotation and reflection.
[ "1", "1", "2", "4", "10", "23", "65", "166", "453", "1157", "2849", "6252", "11894", "18183", "21614", "19139", "12966", "6691", "2813", "901", "253", "49", "11", "1", "1" ]
[ "nonn", "fini", "full" ]
10
0
3
[ "A030135", "A030136", "A333333", "A340635", "A383490", "A383492", "A383494", "A383496", "A383800", "A383802", "A383804", "A383805", "A383806" ]
null
Peter Kagey, May 10 2025
2025-05-11T09:24:39
oeisdata/seq/A383/A383804.seq
5b8af6610a86fef5900271b87eb1a57c
A383805
Number of polyforms with n cells on the faces of a deltoidal icositetrahedron up to rotation.
[ "1", "1", "2", "6", "16", "41", "119", "321", "880", "2286", "5640", "12443", "23668", "36260", "43038", "38135", "25727", "13262", "5506", "1751", "468", "87", "16", "1", "1" ]
[ "nonn", "fini", "full" ]
11
0
3
[ "A030137", "A030138", "A383491", "A383493", "A383495", "A383497", "A383498", "A383786", "A383799", "A383801", "A383803", "A383804", "A383805", "A383807", "A383808", "A383826" ]
null
Peter Kagey, May 10 2025
2025-05-12T14:35:11
oeisdata/seq/A383/A383805.seq
404aa96e0205005ae4724fc2886ac7aa
A383806
Number of polyforms with n cells on the faces of a disdyakis dodecahedron up to rotation and reflection.
[ "1", "1", "3", "3", "9", "14", "38", "74", "184", "406", "981", "2262", "5398", "12589", "29700", "69289", "161727", "373879", "858884", "1948493", "4358729", "9560977", "20489431", "42663444", "85863997", "165915428", "305531365", "531313203", "863339197", "1294513104", "1765472012", "2153407639", "2304457468", "2119172241", "1641722694" ]
[ "nonn", "fini", "full" ]
15
0
3
[ "A030135", "A030136", "A333333", "A340635", "A383490", "A383492", "A383494", "A383496", "A383800", "A383802", "A383804", "A383806", "A383807" ]
null
Peter Kagey, May 10 2025
2025-06-08T15:19:14
oeisdata/seq/A383/A383806.seq
c9ad4dd6b683de1a287b977cfab9de8c
A383807
Number of polyforms with n cells on the faces of a disdyakis dodecahedron up to rotation.
[ "1", "2", "3", "6", "13", "28", "66", "148", "348", "812", "1921", "4524", "10708", "25178", "59211", "138578", "323063", "747758", "1716982", "3896986", "8715931", "19121954", "40976038", "85326888", "171723106", "331830856", "611054918", "1062626406", "1726666853", "2589026208", "3530928400", "4306815278", "4608896060", "4238344482" ]
[ "nonn", "fini", "full" ]
18
0
2
[ "A030137", "A030138", "A383491", "A383493", "A383495", "A383497", "A383498", "A383786", "A383799", "A383801", "A383803", "A383805", "A383806", "A383807", "A383808", "A383826" ]
null
Peter Kagey, May 10 2025
2025-06-08T15:18:51
oeisdata/seq/A383/A383807.seq
f14f9dfe8c5a279d83f82d5ccae05fa7
A383808
Number of polyforms with n cells on the faces of a pentagonal icositetrahedron up to rotation.
[ "1", "1", "3", "8", "25", "72", "234", "701", "2119", "5872", "14772", "31331", "53512", "68794", "66816", "49714", "29706", "14235", "5679", "1770", "469", "87", "16", "1", "1" ]
[ "nonn", "full", "fini" ]
11
0
3
[ "A030137", "A030138", "A197159", "A383491", "A383493", "A383495", "A383497", "A383498", "A383786", "A383799", "A383801", "A383803", "A383805", "A383807", "A383808", "A383826" ]
null
Peter Kagey, May 11 2025
2025-05-12T14:35:29
oeisdata/seq/A383/A383808.seq
c48e86262d409937f44647760703065d
A383809
Consecutive states of a linear congruential pseudo-random number generator for Lisp 1985 when started at 1.
[ "1", "17", "38", "144", "189", "201", "154", "108", "79", "88", "241", "81", "122", "66", "118", "249", "217", "175", "214", "124", "100", "194", "35", "93", "75", "20", "89", "7", "119", "15", "4", "68", "152", "74", "3", "51", "114", "181", "65", "101", "211", "73", "237", "13", "221", "243", "115", "198", "103", "245", "149", "23", "140", "121", "49", "80", "105", "28" ]
[ "nonn", "easy" ]
31
1
2
[ "A001026", "A096550", "A096561", "A383809" ]
null
Sean A. Irvine, May 17 2025
2025-05-26T06:33:11
oeisdata/seq/A383/A383809.seq
d072a553e3803816fb6ecac76422c7f8
A383810
Primes which satisfy the requirements of A380943 in more than one way.
[ "373", "1913", "3733", "6737", "7937", "11353", "13997", "19937", "19997", "23773", "24113", "29347", "31181", "31193", "31907", "34729", "37277", "38237", "41593", "47293", "59929", "71971", "72719", "73823", "74177", "79337", "79613", "82373", "83773", "83911", "88397", "100913", "103997" ]
[ "base", "nonn" ]
13
1
1
[ "A000040", "A380943", "A383810", "A383811", "A383812", "A383813", "A383814", "A383815", "A383816" ]
null
James C. McMahon and Robert G. Wilson v, May 11 2025
2025-05-22T00:56:51
oeisdata/seq/A383/A383810.seq
c6092568c14e8666427195c5ad8d537f
A383811
Primes which satisfy the requirements of A380943 in exactly two ways.
[ "373", "1913", "3733", "6737", "7937", "11353", "13997", "19997", "23773", "24113", "29347", "31181", "31193", "31907", "34729", "37277", "38237", "41593", "47293", "59929", "71971", "72719", "73823", "74177", "79337", "79613", "82373", "83773", "83911", "88397", "100913", "111773", "111973", "118171", "118273", "118747", "132113", "132137", "139547" ]
[ "nonn", "base" ]
9
1
1
[ "A000040", "A238057", "A380943", "A383810", "A383811", "A383812", "A383813", "A383814", "A383815", "A383816" ]
null
James C. McMahon and Robert G. Wilson v, May 17 2025
2025-05-27T23:44:15
oeisdata/seq/A383/A383811.seq
a7fc525418813d80eed6b76be7ada7b0
A383812
Primes which satisfy the requirements of A380943 in exactly three ways.
[ "19937", "103997", "377477", "577937", "738677", "739397", "877937", "2116397", "3110273", "3314513", "3343337", "3634313", "3833359", "5935393", "7147397", "7276337", "7511033", "7699157", "7723337", "11816911", "14713613", "19132213", "19132693", "19998779", "22739317", "23201359", "31189757", "31614377", "31669931", "31687151" ]
[ "nonn", "base" ]
10
1
1
[ "A000040", "A238499", "A380943", "A383810", "A383811", "A383812", "A383813", "A383814", "A383815", "A383816" ]
null
James C. McMahon and Robert G. Wilson v, May 18 2025
2025-05-27T23:44:34
oeisdata/seq/A383/A383812.seq
d72b36685e877c232956e868391affb8
A383813
Primes which satisfy the requirements of A380943 in exactly four ways.
[ "257931013", "1394821313", "2699357347", "3122419127", "3132143093", "3647381953", "3736320359", "3799933727", "6130099337", "7622281937", "7943701397", "7991407367" ]
[ "nonn", "base", "more" ]
14
1
1
[ "A000040", "A238500", "A380943", "A383810", "A383811", "A383812", "A383813", "A383814", "A383815", "A383816" ]
null
James C. McMahon and Robert G. Wilson v, May 23 2025
2025-05-31T14:37:55
oeisdata/seq/A383/A383813.seq
f9ecd8cbafee10cd43a785b2975515db
A383814
Least number which satisfies the requirements of A380943 in exactly n ways.
[ "2", "37", "373", "19937", "257931013", "4199993923" ]
[ "nonn", "base", "more" ]
7
0
1
[ "A000040", "A173935", "A380943", "A383810", "A383811", "A383812", "A383813", "A383814", "A383815", "A383816" ]
null
James C. McMahon and Robert G. Wilson v, May 29 2025
2025-06-06T18:40:10
oeisdata/seq/A383/A383814.seq
6987d99d6f0546d4a1f147c0e0cb26d0
A383815
Palindromic primes in A380943.
[ "313", "373", "797", "11311", "13331", "13931", "17971", "19991", "31013", "35353", "36263", "36563", "38783", "71317", "79397", "97379", "98389", "1129211", "1196911", "1611161", "1793971", "1982891", "3106013", "3166613", "3193913", "3236323", "3288823", "3304033", "3319133", "3329233", "3365633", "3417143", "3447443", "3449443", "3515153", "3670763" ]
[ "base", "nonn" ]
18
1
1
[ "A000040", "A002385", "A105184", "A380943", "A383810", "A383811", "A383812", "A383813", "A383815" ]
null
James C. McMahon and Robert G. Wilson v, Jun 06 2025
2025-06-11T00:56:15
oeisdata/seq/A383/A383815.seq
4ea556be53b918021394ba9a8961fe6f
A383816
Palindromic primes which satisfy the requirements of A380943 in at least two ways.
[ "373", "1793971", "7933397", "374636473", "714707417", "727939727", "787333787", "790585097", "947939749", "991999199", "10253935201", "11365556311", "11932823911", "13127372131", "34390609343", "35369996353", "35381318353", "36297179263", "37018281073", "37423332473", "37773537773", "38233333283", "38914541983", "39064546093" ]
[ "base", "nonn" ]
15
1
1
[ "A000040", "A002385", "A105184", "A380943", "A383810", "A383816" ]
null
James C. McMahon and Robert G. Wilson v, Jun 09 2025
2025-06-22T22:05:46
oeisdata/seq/A383/A383816.seq
e995813c3a797fa300bc0d41940385c1
A383817
Decimal expansion of -Sum_{k>=1} mu(3*k)/(3^k - 1), where mu is the Möbius function A008683.
[ "3", "7", "0", "4", "2", "1", "1", "7", "5", "6", "3", "3", "9", "2", "6", "7", "9", "8", "4", "9", "5", "7", "4", "3", "1", "8", "9", "4", "1", "1", "2", "6", "8", "1", "0", "0", "9", "7", "8", "1", "2", "8", "5", "9", "6", "7", "8", "4", "6", "0", "5", "3", "3", "4", "8", "1", "5", "3", "8", "8", "6", "0", "2", "7", "8", "1", "5", "4", "3", "8", "6", "7", "8", "3", "1", "5", "7", "3", "5", "1", "5", "6", "5", "6", "0", "1", "0" ]
[ "nonn", "cons" ]
31
0
1
[ "A007404", "A055777", "A383817", "A383818", "A383819", "A383820" ]
null
Artur Jasinski, May 11 2025
2025-05-16T17:35:19
oeisdata/seq/A383/A383817.seq
4177747733e42b3861b3ee9fc3c690a7
A383818
Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - k*x) * Product_{j=0..k-1} (1 + j*x)/(1 - j*x).
[ "1", "1", "0", "1", "1", "0", "1", "4", "1", "0", "1", "9", "10", "1", "0", "1", "16", "45", "22", "1", "0", "1", "25", "136", "177", "46", "1", "0", "1", "36", "325", "856", "621", "94", "1", "0", "1", "49", "666", "3025", "4576", "2049", "190", "1", "0", "1", "64", "1225", "8646", "23125", "22216", "6525", "382", "1", "0", "1", "81", "2080", "21217", "90126", "156145", "101536", "20337", "766", "1", "0" ]
[ "nonn", "tabl" ]
25
0
8
[ "A000007", "A000012", "A033484", "A287532", "A383818", "A383839", "A383900", "A383912", "A383913" ]
null
Seiichi Manyama, May 14 2025
2025-05-15T08:22:05
oeisdata/seq/A383/A383818.seq
1ff611b3208b5e302a07f54eb660c13e
A383819
Decimal expansion of -Sum_{k>=1} mu(3*k)/(27^k + 1), where mu is the Möbius function.
[ "0", "3", "4", "3", "4", "4", "3", "5", "2", "9", "1", "3", "2", "7", "8", "1", "7", "5", "2", "8", "8", "8", "2", "7", "5", "2", "9", "0", "3", "4", "4", "9", "6", "9", "3", "1", "4", "1", "9", "9", "4", "4", "2", "0", "3", "2", "9", "7", "5", "2", "1", "0", "4", "9", "5", "4", "4", "8", "0", "3", "9", "8", "6", "3", "4", "3", "9", "1", "5", "3", "9", "1", "9", "4", "8", "1", "0", "2", "0", "7", "3", "3", "9", "5", "4", "4", "6", "3", "0", "0", "2", "7", "4", "5", "6", "4", "8", "7", "7", "4", "3", "0", "1", "7", "5", "0", "4", "4", "1", "8", "2" ]
[ "nonn", "cons" ]
13
0
2
[ "A008683", "A383817", "A383819", "A383820" ]
null
Artur Jasinski, May 16 2025
2025-05-21T00:59:53
oeisdata/seq/A383/A383819.seq
a1cac04c5f6dc9d4cc36c38a6519e552
A383820
Decimal expansion of Sum_{k>=1} 1/3^(3^k).
[ "0", "3", "7", "0", "8", "7", "8", "4", "2", "3", "0", "0", "5", "9", "3", "4", "6", "5", "1", "6", "2", "4", "0", "9", "8", "5", "6", "0", "7", "7", "9", "3", "4", "7", "6", "7", "6", "4", "4", "7", "9", "5", "2", "6", "3", "4", "5", "1", "2", "7", "2", "0", "0", "1", "4", "8", "2", "0", "5", "5", "2", "6", "9", "4", "4", "8", "2", "1", "0", "5", "3", "4", "4", "9", "8", "2", "4", "0", "1", "8", "2", "3", "2", "2", "6", "7", "7", "2", "3", "9", "2", "4", "3", "1", "0", "0", "7", "9", "4", "9", "4", "8", "2", "3", "8", "5" ]
[ "nonn", "cons" ]
24
0
2
[ "A008683", "A383817", "A383819", "A383820" ]
null
Artur Jasinski, May 16 2025
2025-05-24T00:14:16
oeisdata/seq/A383/A383820.seq
e18224af2ebe102d1302629cdc0b8861
A383821
3-automorphic numbers: positive integers k such that 3k^2 ends with k.
[ "2", "5", "7", "67", "75", "92", "667", "792", "875", "6667", "6875", "9792", "66667", "69792", "96875", "296875", "369792", "666667", "2369792", "4296875", "6666667", "62369792", "66666667", "262369792", "404296875", "666666667", "6666666667", "7262369792", "9404296875", "27262369792", "39404296875", "66666666667", "639404296875" ]
[ "nonn", "base" ]
27
1
1
[ "A003226", "A030985", "A030986", "A033428", "A067275", "A383821" ]
null
Shyam Sunder Gupta, May 11 2025
2025-05-16T14:34:11
oeisdata/seq/A383/A383821.seq
65dd534ce5819163813b33e3f36f1aa4
A383822
Decimal expansion of 16*log(2)/(8*log(2) - 5).
[ "2", "0", "3", "4", "2", "6", "5", "1", "7", "3", "8", "9", "1", "4", "4", "8", "1", "8", "1", "0", "1", "2", "0", "3", "8", "4", "4", "3", "9", "4", "0", "6", "9", "0", "2", "8", "4", "5", "9", "4", "4", "9", "2", "0", "2", "7", "6", "0", "0", "3", "4", "3", "4", "0", "1", "8", "4", "8", "5", "8", "2", "0", "2", "4", "9", "4", "1", "1", "6", "9", "3", "8", "5", "3", "7", "7", "4", "2", "8", "8", "2", "8", "4", "2", "4", "0", "2", "0", "5", "9", "0", "2", "5", "9", "2", "6", "0", "2", "3", "9" ]
[ "nonn", "cons" ]
10
2
1
[ "A002162", "A013663", "A257872", "A382497", "A382778", "A383822", "A383824" ]
null
Stefano Spezia, May 11 2025
2025-05-12T00:26:20
oeisdata/seq/A383/A383822.seq
e8dbf335bbc072a88abeb295db9f122f
A383824
Decimal expansion of 12*log(2)/(6*log(2) - 3).
[ "7", "1", "7", "7", "3", "9", "8", "8", "9", "9", "1", "2", "4", "1", "7", "9", "6", "6", "1", "6", "1", "0", "7", "6", "8", "8", "6", "3", "8", "8", "4", "1", "7", "9", "9", "7", "6", "2", "6", "1", "0", "1", "1", "8", "2", "4", "0", "8", "6", "8", "0", "1", "1", "9", "7", "8", "8", "6", "7", "1", "0", "7", "5", "3", "6", "4", "1", "0", "9", "4", "6", "0", "2", "6", "1", "5", "4", "1", "2", "4", "2", "1", "0", "5", "5", "4", "2", "4", "1", "3", "4", "7", "3", "2", "5", "8", "1", "3", "4", "2" ]
[ "nonn", "cons" ]
8
1
1
[ "A002162", "A016687", "A382497", "A382778", "A383822", "A383824" ]
null
Stefano Spezia, May 11 2025
2025-05-12T00:26:10
oeisdata/seq/A383/A383824.seq
dfd0a848be46150fd76e54eeee4b5d70
A383825
Number of polyforms with n cells on the faces of a triakis tetrahedron up to rotation and reflection.
[ "1", "1", "2", "2", "4", "4", "9", "9", "14", "10", "5", "1", "1" ]
[ "nonn", "fini", "full" ]
11
0
3
[ "A030135", "A030136", "A333333", "A340635", "A383490", "A383492", "A383494", "A383496", "A383800", "A383802", "A383804", "A383806", "A383825", "A383826" ]
null
Peter Kagey, May 11 2025
2025-05-12T14:35:36
oeisdata/seq/A383/A383825.seq
757c0aadbeca68c20ea51eea325ee1f4
A383826
Number of polyforms with n cells on the faces of a triakis tetrahedron up to rotation.
[ "1", "1", "2", "3", "5", "7", "14", "16", "23", "18", "7", "1", "1" ]
[ "nonn", "fini", "full" ]
8
0
3
[ "A030137", "A030138", "A383491", "A383493", "A383495", "A383497", "A383498", "A383786", "A383799", "A383801", "A383803", "A383805", "A383807", "A383808", "A383825", "A383826" ]
null
Peter Kagey, May 11 2025
2025-05-12T14:35:44
oeisdata/seq/A383/A383826.seq
4a904ea988593d0e347b10fff8d972e1
A383827
Number of polyforms with n cells on the faces of a tetrakis hexahedron up to tetrahedral symmetry.
[ "1", "1", "3", "3", "9", "14", "37", "68", "156", "318", "685", "1362", "2664", "4645", "7306", "9594", "10016", "7605", "4130", "1539", "444", "86", "16", "1", "1" ]
[ "nonn", "fini", "full" ]
4
0
3
[ "A383802", "A383803", "A383827" ]
null
Peter Kagey, May 11 2025
2025-05-12T14:36:00
oeisdata/seq/A383/A383827.seq
4647d6d0e5307e3080c13350f96b8989
A383828
Number of involutory racks of order n, up to isomorphism.
[ "1", "1", "2", "5", "13", "42", "180", "906", "6317" ]
[ "nonn", "hard", "more" ]
9
0
3
[ "A165200", "A176077", "A177886", "A178432", "A179010", "A181769", "A181770", "A181771", "A193024", "A196111", "A198147", "A225744", "A226172", "A226173", "A226174", "A226193", "A236146", "A242044", "A242275", "A243931", "A248908", "A254434", "A257351", "A374939", "A374942", "A374943", "A374944", "A374945", "A374946", "A374947", "A383144", "A383145", "A383146", "A383828", "A383829", "A383831" ]
null
Luc Ta, May 11 2025
2025-05-16T14:33:58
oeisdata/seq/A383/A383828.seq
b231f8ef19b004a289e8e8412e473e1e