sequence_id
stringlengths 7
7
| sequence_name
stringlengths 4
573
| sequence
listlengths 1
348
| keywords
listlengths 1
8
| score
int64 1
2.35k
| offset_a
int64 -14,827
666,262,453B
| offset_b
int64 0
635M
⌀ | cross_references
listlengths 1
128
⌀ | former_ids
listlengths 1
3
⌀ | author
stringlengths 7
231
⌀ | timestamp
timestamp[us]date 1999-12-11 03:00:00
2025-07-14 02:38:35
| filename
stringlengths 29
29
| hash
stringlengths 32
32
|
---|---|---|---|---|---|---|---|---|---|---|---|---|
A383728 | Numbers k such that omega(k) = 4 and the largest prime factor of k equals the sum of its remaining distinct prime factors, where omega(k) = A001221(k). | [
"3135",
"6279",
"8855",
"9405",
"10695",
"11571",
"15675",
"16095",
"17255",
"17391",
"18837",
"20615",
"20735",
"26691",
"28083",
"28215",
"31031",
"32085",
"34485",
"34713",
"36519",
"41151",
"41615",
"43953",
"44275",
"45695",
"46655",
"47025",
"47859",
"48285",
"48495",
"50439",
"52173",
"53475",
"54131",
"56511",
"56823",
"57239",
"59295",
"59565"
]
| [
"nonn"
]
| 11 | 1 | 1 | [
"A001221",
"A365795",
"A382469",
"A383725",
"A383726",
"A383728",
"A383729"
]
| null | Paolo Xausa, May 08 2025 | 2025-06-09T21:01:25 | oeisdata/seq/A383/A383728.seq | 4d7a615b2c6352bec4a69fbce4e1c746 |
A383729 | Numbers k such that omega(k) = 5 and the largest prime factor of k equals the sum of its remaining distinct prime factors, where omega(k) = A001221(k). | [
"3570",
"7140",
"8970",
"10626",
"10710",
"14280",
"16530",
"17850",
"17940",
"20706",
"21252",
"21420",
"24738",
"24882",
"24990",
"26910",
"28560",
"31878",
"32130",
"33060",
"35700",
"35880",
"36890",
"38130",
"41412",
"42504",
"42840",
"44330",
"44850",
"49476",
"49590",
"49764",
"49938",
"49980",
"52170",
"53550",
"53820",
"54834",
"55986",
"57120"
]
| [
"nonn"
]
| 10 | 1 | 1 | [
"A001221",
"A365795",
"A382469",
"A383725",
"A383726",
"A383728",
"A383729"
]
| null | Paolo Xausa, May 08 2025 | 2025-06-09T21:08:48 | oeisdata/seq/A383/A383729.seq | 77b1a744fbc46d8c2b1648e96f97fa29 |
A383730 | a(0) = 0, a(n) = a(n-1) + A002260(n) * (-1)^(n-1) if not already in the sequence, otherwise a(n) = a(n-1) - A002260(n) * (-1)^(n-1). | [
"0",
"1",
"2",
"4",
"3",
"5",
"8",
"9",
"7",
"10",
"6",
"5",
"7",
"4",
"8",
"13",
"12",
"14",
"11",
"15",
"20",
"26",
"25",
"27",
"24",
"28",
"23",
"29",
"22",
"21",
"19",
"16",
"20",
"15",
"21",
"14",
"22",
"21",
"23",
"20",
"24",
"19",
"25",
"32",
"40",
"49",
"48",
"50",
"47",
"51",
"46",
"52",
"45",
"53",
"44",
"54",
"55",
"57",
"60",
"64",
"59",
"65",
"58",
"66",
"75",
"85",
"74",
"73",
"71"
]
| [
"sign",
"look",
"hear"
]
| 28 | 0 | 3 | [
"A002260",
"A005132",
"A063733",
"A064288",
"A064289",
"A064387",
"A064388",
"A064389",
"A079053",
"A228474",
"A383730"
]
| null | Markel Zubia, May 06 2025 | 2025-06-01T22:27:29 | oeisdata/seq/A383/A383730.seq | 2951a26351523fc6f3df46c66c37d764 |
A383731 | Number of hexagonal n-element polyominoes whose graph is a nonextensible path. | [
"2",
"3",
"17",
"41",
"140",
"389",
"1182",
"3369",
"9817",
"27903",
"79936",
"226784",
"645730",
"1831574",
"5204271",
"14766828",
"41938778",
"119061270"
]
| [
"nonn",
"more"
]
| 13 | 13 | 1 | [
"A003104",
"A383731"
]
| null | Bert Dobbelaere, May 07 2025 | 2025-05-16T17:12:51 | oeisdata/seq/A383/A383731.seq | ba690437a0aca72a7f1680de14dcd37c |
A383732 | a(n) is the smallest k such that every digit from 0 to 9 appears at least n times among the first k digits of Pi (after the decimal point). | [
"32",
"50",
"54",
"65",
"71",
"77",
"96",
"99",
"120",
"139",
"156",
"166",
"209",
"224",
"232",
"235",
"242",
"288",
"299",
"301",
"306",
"320",
"343",
"351",
"405",
"407",
"412",
"429",
"439",
"452",
"458",
"463",
"468",
"475",
"478",
"486",
"506",
"538",
"540",
"544",
"548",
"556",
"559",
"560",
"567",
"569",
"575",
"577",
"584",
"591",
"609",
"621",
"622",
"625",
"626",
"631",
"633",
"634",
"641"
]
| [
"nonn",
"base"
]
| 47 | 1 | 1 | [
"A000796",
"A037008",
"A383732"
]
| null | Guy Amit, May 07 2025 | 2025-05-22T09:53:42 | oeisdata/seq/A383/A383732.seq | 5021a1e3e6b6b43fb670cfbae14c8896 |
A383733 | Number of proper 3-colorings of the generalized chorded cycle graph C_n^{(3)}. | [
"42",
"0",
"0",
"18",
"186",
"66",
"0",
"234",
"930",
"750",
"0",
"2244",
"4578",
"6498",
"120"
]
| [
"nonn",
"hard",
"more"
]
| 8 | 6 | 1 | [
"A000670",
"A001047",
"A003049",
"A129912",
"A383733"
]
| null | Rogelio Lopez Bonilla, May 07 2025 | 2025-05-19T19:57:11 | oeisdata/seq/A383/A383733.seq | bf685ffc2a9cb6671545fec48c505fb3 |
A383734 | Numbers k such that 2+k and 2*k are squares. | [
"2",
"98",
"3362",
"114242",
"3880898",
"131836322",
"4478554082",
"152139002498",
"5168247530882",
"175568277047522",
"5964153172084898",
"202605639573839042",
"6882627592338442562",
"233806732499933208098",
"7942546277405390632802",
"269812766699283348307202",
"9165691521498228451812098"
]
| [
"nonn",
"easy"
]
| 33 | 1 | 1 | [
"A002315",
"A008843",
"A008844",
"A031396",
"A075870",
"A088165",
"A156164",
"A245226",
"A382209",
"A383734"
]
| null | Emilio Martín, May 07 2025 | 2025-05-28T00:04:14 | oeisdata/seq/A383/A383734.seq | 1a867cb13ae50e8189ff61aeda10ff4c |
A383735 | Array read by antidiagonals, where each row is the cluster series for percolation on the cells of a certain type of polyominoids. | [
"1",
"0",
"1",
"0",
"2",
"1",
"0",
"2",
"0",
"1",
"0",
"2",
"0",
"2",
"1",
"0",
"2",
"0",
"2",
"4",
"1",
"0",
"2",
"0",
"2",
"12",
"6",
"1",
"0",
"2",
"0",
"2",
"24",
"18",
"0",
"1",
"0",
"2",
"0",
"2",
"52",
"48",
"0",
"4",
"1",
"0",
"2",
"0",
"2",
"108",
"126",
"0",
"12",
"4",
"1",
"0",
"2",
"0",
"2",
"224",
"300",
"0",
"24",
"12",
"8",
"1",
"0",
"2",
"0",
"2",
"412",
"762",
"0",
"52",
"24",
"32",
"0",
"1"
]
| [
"nonn",
"tabl"
]
| 8 | 1 | 5 | [
"A000007",
"A003198",
"A003201",
"A003203",
"A003207",
"A003209",
"A003210",
"A003211",
"A036396",
"A036402",
"A040000",
"A366766",
"A366767",
"A366768",
"A383735",
"A383736",
"A383737"
]
| null | Pontus von Brömssen, May 10 2025 | 2025-05-14T13:27:47 | oeisdata/seq/A383/A383735.seq | 073a9bc85529a05a28028f52df712aff |
A383736 | Cluster series for percolation on polyominoid cells. | [
"1",
"12",
"92",
"604",
"3732",
"22766",
"136564"
]
| [
"nonn",
"more"
]
| 8 | 0 | 2 | [
"A005914",
"A075678",
"A075679",
"A366768",
"A383735",
"A383736",
"A383737"
]
| null | Pontus von Brömssen, May 10 2025 | 2025-05-14T10:50:36 | oeisdata/seq/A383/A383736.seq | 3e075c315fbfd9ee3589402fbb0a2097 |
A383737 | Cluster series for percolation on polyominoid cells, with connections only between orthogonal cells ("hard" polyominoids). | [
"1",
"8",
"40",
"168",
"720",
"2886",
"11684",
"46536",
"181328"
]
| [
"nonn",
"more"
]
| 7 | 0 | 2 | [
"A299279",
"A365654",
"A365655",
"A383735",
"A383736",
"A383737"
]
| null | Pontus von Brömssen, May 10 2025 | 2025-05-14T10:50:33 | oeisdata/seq/A383/A383737.seq | 3e3f85cca647f29a3391908319185647 |
A383738 | Number of solutions to the n-queens puzzle in a n X n board that are not square root permutations of {n-1,...,2,1,0}. | [
"0",
"0",
"0",
"0",
"8",
"4",
"40",
"92",
"352",
"724",
"2680",
"14192",
"73704",
"365596",
"2279184",
"14772448",
"95814976",
"666090624",
"4968057848",
"39029188404",
"314666222008",
"2691008701644",
"24233937684440",
"227514171970408",
"2207893435805088",
"22317699616364044",
"234907967154122528"
]
| [
"nonn"
]
| 24 | 1 | 5 | [
"A000170",
"A033148",
"A383738"
]
| null | Darío Clavijo, May 07 2025 | 2025-05-13T23:36:51 | oeisdata/seq/A383/A383738.seq | bbc39f48022c407eda4a79c99ed6d8d8 |
A383739 | Smallest number that, when displayed on a 7-segment display using A006942, leaves exactly n segments unused. | [
"8",
"0",
"2",
"4",
"7",
"1",
"10",
"12",
"14",
"17",
"11",
"101",
"112",
"114",
"117",
"111",
"1011",
"1112",
"1114",
"1117",
"1111",
"10111",
"11112",
"11114",
"11117",
"11111",
"101111",
"111112",
"111114",
"111117",
"111111",
"1011111",
"1111112",
"1111114",
"1111117",
"1111111",
"10111111",
"11111112",
"11111114",
"11111117",
"11111111",
"101111111"
]
| [
"base",
"nonn",
"easy"
]
| 53 | 0 | 1 | [
"A006942",
"A216261",
"A383739"
]
| null | Renaud Gaudron, May 12 2025 | 2025-06-06T18:06:36 | oeisdata/seq/A383/A383739.seq | 64262219de158b95a3955479b3e84b17 |
A383740 | a(0) = 4; a(n) = Pell(4*n)/Pell(n) for n > 0. | [
"4",
"12",
"204",
"2772",
"39236",
"551532",
"7761996",
"109216308",
"1536797956",
"21624369228",
"304278011724",
"4281516425748",
"60245508232004",
"847718631046572",
"11928306344398284",
"167844007448966772",
"2361744410638758916",
"33232265756370284172",
"467613464999874177996",
"6579820775754484587348"
]
| [
"nonn",
"easy"
]
| 15 | 0 | 1 | [
"A000129",
"A099930",
"A383740",
"A383742"
]
| null | Seiichi Manyama, May 07 2025 | 2025-05-08T07:25:40 | oeisdata/seq/A383/A383740.seq | 08dfa523eceff98780117efef7b3cfe5 |
A383741 | a(0) = 5; a(n) = Pell(5*n)/Pell(n) for n > 0. | [
"5",
"29",
"1189",
"39005",
"1332869",
"45232349",
"1536836005",
"52205623709",
"1773463509509",
"60245500431005",
"2046573861616549",
"69523263984968669",
"2361744412174224005",
"80229786688466775389",
"2725451003353980465829",
"92585104325258634975005",
"3145168096067610728884229"
]
| [
"nonn",
"easy"
]
| 17 | 0 | 1 | [
"A000129",
"A099931",
"A383741",
"A383742"
]
| null | Seiichi Manyama, May 07 2025 | 2025-05-08T07:12:13 | oeisdata/seq/A383/A383741.seq | 983199c1485e4c784b93e49d6f6e48af |
A383742 | Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of g.f. x/(1 - A002203(k)*x + (-1)^k*x^2). | [
"0",
"0",
"1",
"0",
"1",
"2",
"0",
"1",
"2",
"3",
"0",
"1",
"6",
"5",
"4",
"0",
"1",
"14",
"35",
"12",
"5",
"0",
"1",
"34",
"197",
"204",
"29",
"6",
"0",
"1",
"82",
"1155",
"2772",
"1189",
"70",
"7",
"0",
"1",
"198",
"6725",
"39236",
"39005",
"6930",
"169",
"8",
"0",
"1",
"478",
"39203",
"551532",
"1332869",
"548842",
"40391",
"408",
"9",
"0",
"1",
"1154",
"228485",
"7761996",
"45232349",
"45278310",
"7722793",
"235416",
"985",
"10"
]
| [
"nonn",
"tabl",
"easy"
]
| 22 | 0 | 6 | [
"A000004",
"A000012",
"A000129",
"A001109",
"A001477",
"A002203",
"A028412",
"A041085",
"A091761",
"A097731",
"A292423",
"A380083",
"A383720",
"A383740",
"A383741",
"A383742"
]
| null | Seiichi Manyama, May 07 2025 | 2025-05-08T08:56:00 | oeisdata/seq/A383/A383742.seq | 7e33a6e7a1b9bf32e0e8296e8dcdb5c2 |
A383743 | a(n) is the smallest prime not yet in the sequence that satisfies the following: for some pair of different digits i and j in a(n-1), i preceding j (from left to right), j precedes i in a(n). Leading 0s are not allowed; a(1)=13. See Comments for details. | [
"13",
"31",
"103",
"101",
"107",
"71",
"17",
"271",
"127",
"211",
"1021",
"109",
"191",
"19",
"491",
"139",
"131",
"113",
"311",
"137",
"73",
"37",
"173",
"307",
"373",
"317",
"163",
"61",
"167",
"461",
"149",
"41",
"1049",
"241",
"421",
"1123",
"251",
"151",
"157",
"521",
"257",
"523",
"353",
"53",
"359",
"193",
"239",
"293",
"349",
"43",
"347",
"431"
]
| [
"nonn",
"base"
]
| 21 | 1 | 1 | [
"A107801",
"A381130",
"A383743"
]
| null | Enrique Navarrete, May 08 2025 | 2025-06-15T22:53:54 | oeisdata/seq/A383/A383743.seq | a1cc9000e975da71f51555c9cf7ab8ae |
A383744 | The number of distinct straightedge-and-compass constructions that can be made with a total of n lines and circles up to rigid motion. | [
"1",
"2",
"2",
"6",
"44",
"1000",
"90585"
]
| [
"nonn",
"hard",
"more"
]
| 16 | 0 | 2 | [
"A241600",
"A250001",
"A383082",
"A383083",
"A383273",
"A383744"
]
| null | Peter Kagey and N. J. A. Sloane, May 08 2025 | 2025-05-11T09:25:52 | oeisdata/seq/A383/A383744.seq | 0e46cf24ba57e5f0165f7b44c711632b |
A383745 | Numbers k of the form x*(x+1) whose sum of digits is of the form y*(y+1). | [
"0",
"2",
"6",
"20",
"42",
"110",
"132",
"156",
"240",
"420",
"462",
"552",
"600",
"930",
"992",
"1056",
"1122",
"1560",
"1722",
"1892",
"2352",
"2550",
"2756",
"3306",
"3540",
"3782",
"4422",
"4556",
"4970",
"5700",
"5852",
"6006",
"6806",
"7140",
"7832",
"8372",
"8930",
"9120",
"9506",
"10100",
"10302",
"10506",
"10920",
"11130",
"11990",
"12210",
"12432"
]
| [
"nonn",
"base"
]
| 45 | 1 | 2 | [
"A002378",
"A007953",
"A028839",
"A128203",
"A383745"
]
| null | Huaineng He, May 08 2025 | 2025-06-10T01:16:01 | oeisdata/seq/A383/A383745.seq | add3ce2571227911ebe60de5604110d5 |
A383746 | Numbers k such that k divides the sum of the digits of k^(3k). | [
"1",
"2",
"3",
"6",
"9",
"11",
"18",
"38",
"43",
"87",
"126",
"670",
"1098",
"2421",
"3588",
"4201",
"5114",
"5877",
"5922",
"6048",
"11799",
"46119",
"46419",
"55098",
"55945",
"77439",
"91541",
"129624",
"153229",
"182402"
]
| [
"nonn",
"base",
"hard",
"more"
]
| 19 | 1 | 2 | [
"A083282",
"A108859",
"A383746"
]
| null | J.W.L. (Jan) Eerland, May 08 2025 | 2025-05-13T16:42:53 | oeisdata/seq/A383/A383746.seq | 78c7c33ab554f3d12976af44978fde5c |
A383747 | Consider the polynomial P(m,z) = Sum_{k=1..r} d(k)*z^(k-1) where d(1) < d(2) < ... < d(r) are the r divisors of m. The sequence lists the numbers m such that P(m,z) contains at least three zeros of the form -1/q, i/q, -i/q, for some integer q, i = sqrt(-1). | [
"8",
"27",
"88",
"104",
"125",
"128",
"136",
"152",
"184",
"232",
"248",
"296",
"328",
"343",
"344",
"376",
"424",
"472",
"488",
"536",
"568",
"584",
"632",
"664",
"712",
"776",
"783",
"808",
"824",
"837",
"856",
"872",
"904",
"968",
"999",
"1016",
"1048",
"1096",
"1107",
"1112",
"1161",
"1192",
"1208",
"1256",
"1269",
"1304",
"1331",
"1336",
"1352",
"1384",
"1431"
]
| [
"nonn"
]
| 11 | 1 | 1 | [
"A027750",
"A291127",
"A383747",
"A383748"
]
| null | Michel Lagneau, May 08 2025 | 2025-05-16T18:53:05 | oeisdata/seq/A383/A383747.seq | 3cfe29290425eb4b25cd4d915ce75552 |
A383748 | a(n) = q is the smallest integer, such that the numbers -1/q, i/q, -i/q with i = sqrt(-1), are three zeros of the polynomial P(A783747(n),z) = Sum_{k=1..r} d(k)*z^(k-1) where d(1) < d(2), ..., < d(r) are the r divisors of A383747(n). | [
"2",
"3",
"2",
"2",
"5",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"7",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"3",
"2",
"3",
"2",
"2",
"2",
"3",
"2",
"11",
"2",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"2",
"2",
"3",
"3",
"2",
"2",
"3",
"2",
"2",
"2",
"2",
"3",
"2",
"3",
"2",
"2",
"2",
"2",
"3",
"2",
"2",
"3",
"13",
"2",
"3",
"2",
"2",
"2",
"2",
"3",
"2",
"2"
]
| [
"nonn"
]
| 10 | 1 | 1 | [
"A027750",
"A291127",
"A383747",
"A383748"
]
| null | Michel Lagneau, May 08 2025 | 2025-05-16T18:51:48 | oeisdata/seq/A383/A383748.seq | ab1c57774c26bfff8e1e779636dadf4e |
A383749 | Positive numbers k whose decimal expansion does not contain the decimal expansion of any proper divisor of k. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"23",
"27",
"29",
"34",
"37",
"38",
"43",
"46",
"47",
"49",
"53",
"54",
"56",
"57",
"58",
"59",
"67",
"68",
"69",
"73",
"74",
"76",
"78",
"79",
"83",
"86",
"87",
"89",
"94",
"97",
"98",
"203",
"207",
"209",
"223",
"227",
"229",
"233",
"239",
"247",
"249",
"253",
"257",
"259",
"263",
"267",
"269",
"277",
"283",
"289",
"293",
"299",
"307"
]
| [
"nonn",
"base"
]
| 23 | 1 | 2 | [
"A011531",
"A027751",
"A038603",
"A038772",
"A121042",
"A173041",
"A383592",
"A383749"
]
| null | Rémy Sigrist, May 08 2025 | 2025-05-12T14:00:57 | oeisdata/seq/A383/A383749.seq | 11d112eafb84b425b7f829dbe820c490 |
A383750 | a(n) = number of iterations of z -> z^2 + c(n) with c(n) = 1/n + (2/(n^2))*i - 1/8 + (3*sqrt(3)/8)*i to reach |z| > 2, starting with z = 0. | [
"1",
"2",
"4",
"6",
"8",
"10",
"11",
"13",
"15",
"17",
"19",
"20",
"22",
"24",
"26",
"28",
"29",
"31",
"33",
"35",
"37",
"38",
"40",
"42",
"44",
"46",
"47",
"49",
"51",
"53",
"55",
"57",
"58",
"60",
"62",
"64",
"66",
"68",
"69",
"71",
"73",
"75",
"77",
"78",
"80",
"82",
"84",
"86",
"87",
"89",
"91",
"93",
"95",
"96",
"98",
"100",
"102",
"104",
"105",
"107",
"109",
"111",
"113",
"115",
"116",
"118",
"120"
]
| [
"nonn"
]
| 24 | 1 | 2 | [
"A093602",
"A097486",
"A383750",
"A384509",
"A384513"
]
| null | Luke Bennet, May 08 2025 | 2025-06-05T23:46:33 | oeisdata/seq/A383/A383750.seq | 90bf18801badcf10acbf28f1dc18eabf |
A383751 | Number of Carlitz compositions of n with parts in standard order. | [
"1",
"1",
"0",
"1",
"1",
"0",
"2",
"3",
"2",
"5",
"8",
"10",
"19",
"31",
"44",
"73",
"123",
"193",
"315",
"524",
"847",
"1392",
"2317",
"3810",
"6303",
"10506",
"17451",
"29066",
"48603",
"81223",
"135965",
"228153",
"383014",
"643756",
"1083693",
"1825640",
"3078574",
"5197246",
"8780823",
"14847669",
"25128385",
"42558687",
"72131730",
"122343844"
]
| [
"nonn",
"easy"
]
| 12 | 0 | 7 | [
"A000110",
"A003242",
"A011782",
"A047998",
"A107429",
"A126347",
"A278984",
"A380822",
"A383253",
"A383713",
"A383751"
]
| null | John Tyler Rascoe, May 08 2025 | 2025-05-09T16:54:31 | oeisdata/seq/A383/A383751.seq | 85453214ca0802e2196f9c42769c8ea9 |
A383752 | Product of nonzero remainders n mod p, over all primes p < n. | [
"1",
"1",
"1",
"1",
"2",
"1",
"2",
"6",
"8",
"3",
"8",
"10",
"36",
"24",
"8",
"30",
"288",
"420",
"1920",
"2268",
"640",
"270",
"2880",
"9240",
"13824",
"7560",
"19200",
"17820",
"120960",
"64064",
"362880",
"5054400",
"1881600",
"475200",
"165888",
"464100",
"6386688",
"4082400",
"1228800",
"2120580",
"34836480",
"23474880",
"217728000"
]
| [
"nonn"
]
| 69 | 1 | 5 | [
"A000040",
"A013939",
"A024934",
"A102647",
"A309912",
"A383752"
]
| null | Darío Clavijo, May 28 2025 | 2025-06-06T14:46:14 | oeisdata/seq/A383/A383752.seq | 9f083c4b14a6bc90e248f466e827ebf7 |
A383753 | Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = 2^(n-k) * T(n-1,k-1) + 3^k * T(n-1,k) with T(n,k) = n^k if n*k=0. | [
"1",
"1",
"1",
"1",
"5",
"1",
"1",
"19",
"19",
"1",
"1",
"65",
"247",
"65",
"1",
"1",
"211",
"2743",
"2743",
"211",
"1",
"1",
"665",
"28063",
"96005",
"28063",
"665",
"1",
"1",
"2059",
"273847",
"3041143",
"3041143",
"273847",
"2059",
"1",
"1",
"6305",
"2596399",
"90873965",
"294990871",
"90873965",
"2596399",
"6305",
"1",
"1",
"19171",
"24174631",
"2619766591",
"26802227431",
"26802227431",
"2619766591",
"24174631",
"19171",
"1"
]
| [
"nonn",
"tabl"
]
| 24 | 0 | 5 | [
"A000012",
"A001047",
"A019443",
"A022167",
"A383753",
"A383754"
]
| null | Seiichi Manyama, May 09 2025 | 2025-05-09T11:42:14 | oeisdata/seq/A383/A383753.seq | cd2bee2414e7b833b85aeec6310b2847 |
A383754 | Expansion of 1/Product_{k=0..3} (1 - 2^k * 3^(3-k) * x). | [
"1",
"65",
"2743",
"96005",
"3041143",
"90873965",
"2619766591",
"73828050725",
"2050312110055",
"56398823205725",
"1541678963379919",
"41967937119356885",
"1139327805030810487",
"30873653666483535245",
"835604944706085813727",
"22597672980558843070085",
"610791835087816964370439"
]
| [
"nonn",
"easy"
]
| 18 | 0 | 2 | [
"A006101",
"A383753",
"A383754"
]
| null | Seiichi Manyama, May 09 2025 | 2025-05-10T11:28:06 | oeisdata/seq/A383/A383754.seq | e26b77aab209471768183bc7db0095cd |
A383755 | Triangle T(n,k), n >= 0, 0 <= k <= n, read by rows, where T(n,k) = 3^(n-k) * T(n-1,k-1) + 4^k * T(n-1,k) with T(n,k) = n^k if n*k=0. | [
"1",
"1",
"1",
"1",
"7",
"1",
"1",
"37",
"37",
"1",
"1",
"175",
"925",
"175",
"1",
"1",
"781",
"19525",
"19525",
"781",
"1",
"1",
"3367",
"375661",
"1776775",
"375661",
"3367",
"1",
"1",
"14197",
"6828757",
"144142141",
"144142141",
"6828757",
"14197",
"1",
"1",
"58975",
"119609725",
"10884484975",
"48575901517",
"10884484975",
"119609725",
"58975",
"1"
]
| [
"nonn",
"tabl"
]
| 20 | 0 | 5 | [
"A000012",
"A005061",
"A022168",
"A383755",
"A383756",
"A383757"
]
| null | Seiichi Manyama, May 09 2025 | 2025-05-09T11:42:07 | oeisdata/seq/A383/A383755.seq | c7f7da7b4eb818887b3665e06a37392c |
A383756 | Expansion of 1/Product_{k=0..2} (1 - 3^k * 4^(2-k) * x). | [
"1",
"37",
"925",
"19525",
"375661",
"6828757",
"119609725",
"2042733925",
"34274529421",
"567869330677",
"9323118394525",
"152047784616325",
"2467581667044781",
"39901653896747797",
"643493505828795325",
"10356906506162786725",
"166444482073618177741",
"2671936126059753592117"
]
| [
"nonn",
"easy"
]
| 13 | 0 | 2 | [
"A383755",
"A383756"
]
| null | Seiichi Manyama, May 09 2025 | 2025-05-09T11:41:36 | oeisdata/seq/A383/A383756.seq | 5c9de56b87274bf6e277e1536a12bb2d |
A383757 | Expansion of 1/Product_{k=0..3} (1 - 3^k * 4^(3-k) * x). | [
"1",
"175",
"19525",
"1776775",
"144142141",
"10884484975",
"783802527925",
"54630820881175",
"3721247723926381",
"249337226367003775",
"16508103305566548325",
"1083453420457687217575",
"70652392978007927384221",
"4585369275138131990546575",
"296541443098920894741800725",
"19127262646595562017053105975"
]
| [
"nonn",
"easy"
]
| 13 | 0 | 2 | [
"A383755",
"A383757"
]
| null | Seiichi Manyama, May 09 2025 | 2025-05-09T16:19:57 | oeisdata/seq/A383/A383757.seq | e90cb4fd418d597ddc51d63ce301fcf1 |
A383758 | Least integer k for which sigma(k - x) + sigma(k + x) = n*k has at least one solution. | [
"1",
"2",
"6",
"24",
"93",
"1952",
"14412",
"361881",
"61824672"
]
| [
"nonn",
"more"
]
| 59 | 2 | 2 | [
"A000203",
"A000396",
"A141643",
"A317681",
"A383268",
"A383269",
"A383758"
]
| null | Jean-Marc Rebert, May 09 2025 | 2025-06-18T00:48:01 | oeisdata/seq/A383/A383758.seq | 91f69abad101c617825912001ec0c338 |
A383759 | Decimal expansion of infinite nested radical sqrt(8-sqrt(8-sqrt(8+sqrt(8-...)))). | [
"2",
"4",
"1",
"1",
"4",
"7",
"4",
"1",
"2",
"7",
"8",
"0",
"9",
"7",
"7",
"2",
"8",
"3",
"8",
"5",
"1",
"3",
"0",
"0",
"3",
"8",
"5",
"5",
"7",
"6",
"0",
"2",
"9",
"6",
"2",
"8",
"7",
"7",
"4",
"4",
"0",
"8",
"1",
"1",
"8",
"2",
"6",
"8",
"9",
"7",
"1",
"9",
"7",
"5",
"7",
"8",
"8",
"8",
"6",
"6",
"3",
"8",
"9",
"4",
"8",
"3",
"2",
"7",
"5",
"3",
"1",
"9",
"9",
"7",
"0",
"5",
"5",
"2",
"8",
"3",
"6",
"4",
"9",
"5",
"5",
"9",
"5",
"0",
"3",
"3",
"3",
"0",
"3",
"6",
"9",
"9",
"3",
"1",
"2",
"1",
"8",
"2",
"3",
"7",
"6"
]
| [
"nonn",
"cons"
]
| 22 | 1 | 1 | [
"A019889",
"A383759"
]
| null | Artur Jasinski, May 09 2025 | 2025-05-15T00:11:59 | oeisdata/seq/A383/A383759.seq | c96a338564906dd0ed4c1b5f4f661312 |
A383760 | Irregular triangle read by rows in which the n-th row lists the exponential infinitary divisors of n. | [
"1",
"2",
"3",
"2",
"4",
"5",
"6",
"7",
"2",
"8",
"3",
"9",
"10",
"11",
"6",
"12",
"13",
"14",
"15",
"2",
"16",
"17",
"6",
"18",
"19",
"10",
"20",
"21",
"22",
"23",
"6",
"24",
"5",
"25",
"26",
"3",
"27",
"14",
"28",
"29",
"30",
"31",
"2",
"32",
"33",
"34",
"35",
"6",
"12",
"18",
"36",
"37",
"38",
"39",
"10",
"40",
"41",
"42",
"43",
"22",
"44",
"15",
"45",
"46",
"47",
"6",
"48",
"7",
"49",
"10",
"50"
]
| [
"nonn",
"tabf",
"easy"
]
| 12 | 1 | 2 | [
"A077609",
"A307848",
"A322791",
"A361175",
"A361255",
"A383760",
"A383761"
]
| null | Amiram Eldar, May 09 2025 | 2025-05-11T01:20:09 | oeisdata/seq/A383/A383760.seq | 69a87acee98071d0e4f73f9dd90a0878 |
A383761 | Irregular triangle read by rows in which the n-th row lists the exponential squarefree exponential divisors of n. | [
"1",
"2",
"3",
"2",
"4",
"5",
"6",
"7",
"2",
"8",
"3",
"9",
"10",
"11",
"6",
"12",
"13",
"14",
"15",
"2",
"4",
"17",
"6",
"18",
"19",
"10",
"20",
"21",
"22",
"23",
"6",
"24",
"5",
"25",
"26",
"3",
"27",
"14",
"28",
"29",
"30",
"31",
"2",
"32",
"33",
"34",
"35",
"6",
"12",
"18",
"36",
"37",
"38",
"39",
"10",
"40",
"41",
"42",
"43",
"22",
"44",
"15",
"45",
"46",
"47",
"6",
"12",
"7",
"49",
"10",
"50"
]
| [
"nonn",
"tabf",
"easy"
]
| 12 | 1 | 2 | [
"A278908",
"A322791",
"A361174",
"A361255",
"A383760",
"A383761"
]
| null | Amiram Eldar, May 09 2025 | 2025-05-30T08:02:23 | oeisdata/seq/A383/A383761.seq | cf24359edc4b51c2f367d6408b37ac8a |
A383762 | The number of unitary divisors of n that are exponentially squarefree numbers. | [
"1",
"2",
"2",
"2",
"2",
"4",
"2",
"2",
"2",
"4",
"2",
"4",
"2",
"4",
"4",
"1",
"2",
"4",
"2",
"4",
"4",
"4",
"2",
"4",
"2",
"4",
"2",
"4",
"2",
"8",
"2",
"2",
"4",
"4",
"4",
"4",
"2",
"4",
"4",
"4",
"2",
"8",
"2",
"4",
"4",
"4",
"2",
"2",
"2",
"4",
"4",
"4",
"2",
"4",
"4",
"4",
"4",
"4",
"2",
"8",
"2",
"4",
"4",
"2",
"4",
"8",
"2",
"4",
"4",
"8",
"2",
"4",
"2",
"4",
"4",
"4",
"4",
"8",
"2",
"2",
"1",
"4",
"2",
"8",
"4",
"4",
"4"
]
| [
"nonn",
"easy",
"mult"
]
| 10 | 1 | 2 | [
"A005117",
"A034444",
"A077610",
"A209061",
"A365499",
"A365680",
"A383762",
"A383763",
"A383764"
]
| null | Amiram Eldar, May 09 2025 | 2025-05-11T01:19:38 | oeisdata/seq/A383/A383762.seq | ceec529c962e5c218b4e818df3ef9f96 |
A383763 | The sum of unitary divisors of n that are exponentially squarefree numbers. | [
"1",
"3",
"4",
"5",
"6",
"12",
"8",
"9",
"10",
"18",
"12",
"20",
"14",
"24",
"24",
"1",
"18",
"30",
"20",
"30",
"32",
"36",
"24",
"36",
"26",
"42",
"28",
"40",
"30",
"72",
"32",
"33",
"48",
"54",
"48",
"50",
"38",
"60",
"56",
"54",
"42",
"96",
"44",
"60",
"60",
"72",
"48",
"4",
"50",
"78",
"72",
"70",
"54",
"84",
"72",
"72",
"80",
"90",
"60",
"120",
"62",
"96",
"80",
"65",
"84",
"144",
"68"
]
| [
"nonn",
"easy",
"mult"
]
| 9 | 1 | 2 | [
"A005117",
"A034448",
"A077610",
"A209061",
"A365682",
"A383762",
"A383763",
"A383764"
]
| null | Amiram Eldar, May 09 2025 | 2025-05-11T01:19:23 | oeisdata/seq/A383/A383763.seq | 81f49256d5ca8172a9719cc25279517d |
A383764 | The largest unitary divisor of n that is an exponentially squarefree number. | [
"1",
"2",
"3",
"4",
"5",
"6",
"7",
"8",
"9",
"10",
"11",
"12",
"13",
"14",
"15",
"1",
"17",
"18",
"19",
"20",
"21",
"22",
"23",
"24",
"25",
"26",
"27",
"28",
"29",
"30",
"31",
"32",
"33",
"34",
"35",
"36",
"37",
"38",
"39",
"40",
"41",
"42",
"43",
"44",
"45",
"46",
"47",
"3",
"49",
"50",
"51",
"52",
"53",
"54",
"55",
"56",
"57",
"58",
"59",
"60",
"61",
"62",
"63",
"64",
"65",
"66",
"67",
"68"
]
| [
"nonn",
"easy",
"mult"
]
| 9 | 1 | 2 | [
"A005117",
"A053165",
"A077610",
"A209061",
"A365683",
"A383762",
"A383763",
"A383764"
]
| null | Amiram Eldar, May 09 2025 | 2025-05-11T01:18:41 | oeisdata/seq/A383/A383764.seq | f6d654c613d0b7bf9c54d115a5fc8457 |
A383765 | Number of compositions of n such that between any pair of equal adjacent parts there can be a pair of brackets enclosing a new nonempty composition with the same rules. | [
"1",
"1",
"2",
"5",
"12",
"32",
"87",
"247",
"719",
"2143",
"6501",
"20020",
"62413",
"196602",
"624777",
"2000583",
"6448418",
"20905700",
"68124244",
"223008863",
"733029865",
"2418389200",
"8005456180",
"26581030889",
"88505553642",
"295449465970",
"988604513361",
"3315211853122",
"11139876837837",
"37503193583796"
]
| [
"nonn"
]
| 30 | 0 | 3 | [
"A000217",
"A001006",
"A003242",
"A011782",
"A106356",
"A383765"
]
| null | John Tyler Rascoe, May 16 2025 | 2025-05-22T19:52:45 | oeisdata/seq/A383/A383765.seq | 31d21a07dac92bda1a35deae27c886e7 |
A383766 | a(n) is the number of numbers k (0 <= k < n) such that there exist solutions of x^3 + x == y^2 + 1 == k (mod n). | [
"1",
"1",
"2",
"1",
"2",
"2",
"3",
"1",
"4",
"2",
"3",
"2",
"6",
"3",
"4",
"2",
"5",
"4",
"7",
"2",
"6",
"3",
"8",
"2",
"10",
"6",
"11",
"3",
"12",
"4",
"11",
"4",
"6",
"5",
"6",
"4",
"13",
"7",
"12",
"2",
"11",
"6",
"16",
"3",
"8",
"8",
"13",
"4",
"21",
"10",
"10",
"6",
"17",
"11",
"6",
"3",
"14",
"12",
"18",
"4",
"20",
"11",
"12",
"8",
"12",
"6",
"27",
"5",
"16",
"6",
"26",
"4",
"27",
"13",
"20",
"7",
"9",
"12",
"26",
"4",
"31",
"11",
"25"
]
| [
"nonn"
]
| 35 | 1 | 3 | null | null | SiYang Hu, May 09 2025 | 2025-05-23T23:00:40 | oeisdata/seq/A383/A383766.seq | 7aec5dbd3583ad06c0876b07de2ab42a |
A383767 | a(n) = [x^n] Product_{k=0..n-1} (1 + k*x)/(1 - k*x). | [
"1",
"0",
"2",
"42",
"1152",
"40520",
"1751850",
"90087522",
"5376546560",
"365487900192",
"27886922161650",
"2360357986720250",
"219495753481590432",
"22246783602163580616",
"2440974108105319141082",
"288270640787372104920450",
"36459004369727317927680000",
"4916744437454382604092493952",
"704282170015570676249171941218"
]
| [
"nonn"
]
| 28 | 0 | 3 | [
"A350366",
"A383767"
]
| null | Seiichi Manyama, May 14 2025 | 2025-05-14T10:05:59 | oeisdata/seq/A383/A383767.seq | 41466313201818bc1dcbb647517c4298 |
A383768 | Numerators of the sequence whose Dirichlet convolution with itself yields cubes (A000578). | [
"1",
"4",
"27",
"24",
"125",
"54",
"343",
"160",
"2187",
"250",
"1331",
"324",
"2197",
"686",
"3375",
"1120",
"4913",
"2187",
"6859",
"1500",
"9261",
"2662",
"12167",
"2160",
"46875",
"4394",
"98415",
"4116",
"24389",
"3375",
"29791",
"8064",
"35937",
"9826",
"42875",
"6561",
"50653",
"13718",
"59319",
"10000",
"68921",
"9261",
"79507",
"15972",
"273375"
]
| [
"nonn",
"frac"
]
| 11 | 1 | 2 | [
"A000578",
"A299149",
"A299150",
"A318512",
"A318649",
"A383768",
"A383769"
]
| null | Vaclav Kotesovec, May 09 2025 | 2025-05-09T10:34:21 | oeisdata/seq/A383/A383768.seq | 58291bfc34dd85d330a8d3d4cd1b14a6 |
A383769 | Denominators of the sequence whose Dirichlet convolution with itself yields cubes (A000578). | [
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"8",
"1",
"2",
"1",
"2",
"1",
"4",
"1",
"2",
"2",
"2",
"1",
"4",
"1",
"2",
"1",
"8",
"1",
"16",
"1",
"2",
"1",
"2",
"1",
"4",
"1",
"4",
"1",
"2",
"1",
"4",
"1",
"2",
"1",
"2",
"1",
"16",
"1",
"2",
"1",
"8",
"2",
"4",
"1",
"2",
"4",
"4",
"1",
"4",
"1",
"2",
"1",
"2",
"1",
"16",
"1",
"4",
"1",
"2",
"1",
"4",
"1",
"2",
"1",
"2",
"1",
"16",
"1",
"4",
"1",
"2",
"1",
"128",
"1",
"2",
"1",
"4",
"1",
"4"
]
| [
"nonn",
"frac"
]
| 8 | 1 | 3 | [
"A000578",
"A299149",
"A299150",
"A318512",
"A318649",
"A383768",
"A383769"
]
| null | Vaclav Kotesovec, May 09 2025 | 2025-05-09T10:34:17 | oeisdata/seq/A383/A383769.seq | 348458b6f9b5f78a7882b0c38af6301c |
A383770 | Number of nonnesting permutations of [n] avoiding 231 (and by symmetry 132, 213, or 312). | [
"1",
"1",
"4",
"17",
"77",
"367",
"1815",
"9233",
"48014",
"254123",
"1364491",
"7414733",
"40701346",
"225359021",
"1257148285",
"7058816337",
"39863261170",
"226270553575",
"1290212119208",
"7387057794679",
"42450966727899",
"244771835135261",
"1415678529391032",
"8210790845555365",
"47744558865042855"
]
| [
"nonn"
]
| 21 | 0 | 3 | [
"A383770",
"A383771"
]
| null | Robert P. Laudone, May 09 2025 | 2025-06-16T23:35:29 | oeisdata/seq/A383/A383770.seq | a480cd54960cb270b85d7224a64f68d9 |
A383771 | Number of noncrossing permutations of [n] avoiding 213 (and by symmetry 132, 213, or 312). | [
"1",
"1",
"4",
"19",
"102",
"590",
"3588",
"22617",
"146460",
"968520",
"6513034",
"44403604",
"306209746",
"2132165062",
"14970030506",
"105862919427",
"753344866662",
"5390772814578",
"38765692377100",
"279999861952626",
"2030439981144348",
"14776796428607224",
"107891287190000212",
"790105506941871258"
]
| [
"nonn"
]
| 13 | 0 | 3 | [
"A383770",
"A383771"
]
| null | Robert P. Laudone, May 09 2025 | 2025-05-14T00:18:56 | oeisdata/seq/A383/A383771.seq | c458fd728ae58ea94e96f2647b8fceed |
A383772 | a(n) = neg(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1, 2, ... , n), and neg(M(n)) is the negative part of the determinant of M(n); see A380661. | [
"0",
"-4",
"-18",
"-610",
"-15675",
"-772122",
"-47282844",
"-3918873376",
"-410168886615",
"-53329052728000",
"-8417451284317614",
"-1586200451151892608",
"-351735180091505203539",
"-90667510133054591492224",
"-26884188746929397888775000",
"-9086147134545912835276742656"
]
| [
"sign"
]
| 6 | 1 | 2 | [
"A052182",
"A085719",
"A380661",
"A383772",
"A383773",
"A383774",
"A383775"
]
| null | Clark Kimberling, May 15 2025 | 2025-05-21T16:38:59 | oeisdata/seq/A383/A383772.seq | 3eb546cb7fc6f835637118d52b1742e4 |
A383773 | a(n) = pos(M(n)), where M(n) is the n X n circulant matrix with (row 1) = (1, 2, ... , n), and pos(M(n)) is the positive part of the determinant of M(n); see A380661. | [
"1",
"1",
"36",
"450",
"17550",
"744906",
"47753440",
"3909436192",
"410384120220",
"53323552728000",
"8417606908865220",
"1586195621597483136",
"351735343178101060906",
"90667504180193792086144",
"26884188980472806091900000",
"9086147124746080046118543360",
"3472279409772212369077001352888"
]
| [
"nonn"
]
| 5 | 1 | 3 | [
"A052182",
"A085719",
"A380661",
"A383772",
"A383773",
"A383774",
"A383775"
]
| null | Clark Kimberling, May 17 2025 | 2025-05-21T16:40:47 | oeisdata/seq/A383/A383773.seq | 74c3f7ccd3626b7d64c8e105aeba77ac |
A383774 | a(n) = neg(M(n)), where M(n) is the n X n left circulant matrix with (row 1) = (1, 2, ... , n), and neg(M(n)) is the negative part of the determinant of M(n); see A380661. | [
"0",
"-4",
"-36",
"-450",
"-15675",
"-772122",
"-47753440",
"-3909436192",
"-410168886615",
"-53329052728000",
"-8417606908865220",
"-1586195621597483136",
"-351735180091505203539",
"-90667510133054591492224",
"-26884188980472806091900000",
"-9086147124746080046118543360"
]
| [
"sign"
]
| 8 | 1 | 2 | [
"A052182",
"A085719",
"A380661",
"A383772",
"A383773",
"A383774",
"A383775"
]
| null | Clark Kimberling, May 17 2025 | 2025-05-27T22:11:50 | oeisdata/seq/A383/A383774.seq | ec41198cec3ede4afe8d0f505191e305 |
A383775 | a(n) = pos(M(n)), where M(n) is the n X n left circulant matrix with (row 1) = (1, 2, ... , n), and pos(M(n)) is the positive part of the determinant of M(n); see A380661. | [
"1",
"1",
"18",
"610",
"17550",
"744906",
"47282844",
"3918873376",
"410384120220",
"53323552728000",
"8417451284317614",
"1586200451151892608",
"351735343178101060906",
"90667504180193792086144",
"26884188746929397888775000",
"9086147134545912835276742656",
"3472279409772212369077001352888"
]
| [
"nonn"
]
| 6 | 1 | 3 | [
"A052182",
"A085719",
"A380661",
"A383772",
"A383773",
"A383774",
"A383775"
]
| null | Clark Kimberling, May 22 2025 | 2025-05-27T22:13:59 | oeisdata/seq/A383/A383775.seq | a57722ff0957795309031c0d1a678ea8 |
A383776 | a(n) = (11*n + 3 + 6/(n+2)) * Catalan(n). | [
"6",
"16",
"53",
"186",
"672",
"2472",
"9207",
"34606",
"130988",
"498576",
"1906346",
"7316596",
"28170768",
"108760560",
"420889995",
"1632155670",
"6340808820",
"24673450560",
"96148670310",
"375164728620",
"1465589068320",
"5731488987120",
"22436098732710",
"87905595401676",
"344702077523352",
"1352701532137312",
"5312100899224532",
"20874451526714856"
]
| [
"nonn",
"easy"
]
| 26 | 0 | 1 | [
"A000108",
"A000984",
"A007054",
"A051960",
"A383776"
]
| null | F. Chapoton, May 09 2025 | 2025-05-15T17:09:09 | oeisdata/seq/A383/A383776.seq | 6e51784c595246c17d065130a5e29b1e |
A383777 | a(n) is the number of steps that n requires to reach 0 under the map: x -> 2*x + 1 if x is even; 0 if x = 1; x - lpf(x) otherwise where lpf(x) is the least prime factor of x. a(n) = -1 if 0 is never reached. | [
"0",
"1",
"2",
"1",
"4",
"1",
"2",
"1",
"2",
"3",
"4",
"1",
"4",
"1",
"2",
"5",
"4",
"1",
"2",
"1",
"2",
"3",
"10",
"1",
"10",
"3",
"2",
"11",
"4",
"1",
"2",
"1",
"10",
"3",
"12",
"3",
"2",
"1",
"6",
"3",
"4",
"1",
"8",
"1",
"2",
"9",
"4",
"1",
"2",
"9",
"2",
"3",
"6",
"1",
"2",
"3",
"2",
"3",
"4",
"1",
"8",
"1",
"4",
"9",
"10",
"9",
"10",
"1",
"2",
"11",
"4",
"1",
"4",
"1",
"2",
"5",
"10",
"5",
"2",
"1",
"6",
"3",
"6",
"1"
]
| [
"nonn"
]
| 16 | 0 | 3 | [
"A005408",
"A006577",
"A046666",
"A383777"
]
| null | Ya-Ping Lu, May 17 2025 | 2025-05-22T06:52:54 | oeisdata/seq/A383/A383777.seq | c302162f768b77f667891018e4b98e07 |
A383778 | a(n) = n*(n^2 - 3*n + 10)*2^(n-4). | [
"0",
"1",
"4",
"15",
"56",
"200",
"672",
"2128",
"6400",
"18432",
"51200",
"137984",
"362496",
"931840",
"2351104",
"5836800",
"14286848",
"34537472",
"82575360",
"195493888",
"458752000",
"1067974656",
"2468347904",
"5667553280",
"12935233536",
"29360128000",
"66303557632",
"149032009728",
"333531054080",
"743431995392"
]
| [
"nonn",
"easy"
]
| 8 | 0 | 3 | [
"A060354",
"A383778"
]
| null | Enrique Navarrete, May 09 2025 | 2025-05-14T18:52:33 | oeisdata/seq/A383/A383778.seq | 70429c2db51bb2d79277f9d230a9c2ed |
A383779 | Primes where successively deleting the least significant digit yields a sequence that alternates between a prime and a nonprime at every step until a single-digit number remains. | [
"2",
"3",
"5",
"7",
"11",
"13",
"17",
"19",
"41",
"43",
"47",
"61",
"67",
"83",
"89",
"97",
"211",
"223",
"227",
"229",
"241",
"251",
"257",
"263",
"269",
"271",
"277",
"281",
"283",
"307",
"331",
"337",
"347",
"349",
"353",
"359",
"367",
"383",
"389",
"397",
"503",
"509",
"521",
"523",
"541",
"547",
"557",
"563",
"569",
"571",
"577",
"587",
"701",
"709",
"727",
"743",
"751",
"757",
"761",
"769",
"773",
"787"
]
| [
"nonn",
"base",
"fini"
]
| 28 | 1 | 1 | [
"A024770",
"A069090",
"A383779",
"A383780",
"A383781"
]
| null | Stefano Spezia, May 09 2025 | 2025-05-17T01:48:50 | oeisdata/seq/A383/A383779.seq | 7e09fffee8c7490d5a0724d59703cb9b |
A383780 | a(n) is the number of n-digit terms in A383779. | [
"4",
"12",
"46",
"103",
"396",
"717",
"2451",
"3929",
"11803",
"17202",
"46916",
"62668",
"157138",
"197114",
"458064",
"541267",
"1180018",
"1323543",
"2718398",
"2915696",
"5675113",
"5839596",
"10821575",
"10724938",
"18983655",
"18174231",
"30856021",
"28608908",
"46708476",
"42036009",
"66157433",
"57908390",
"88020231",
"75070514"
]
| [
"nonn",
"base"
]
| 45 | 1 | 1 | [
"A383779",
"A383780"
]
| null | Stefano Spezia, May 09 2025 | 2025-05-16T15:54:29 | oeisdata/seq/A383/A383780.seq | 03684df5f1c2bf911c122af705b627f5 |
A383781 | Primes where successively deleting the most significant digit yields a sequence that alternates between a prime and a nonprime at every step until a single-digit number remains. | [
"2",
"3",
"5",
"7",
"11",
"19",
"29",
"31",
"41",
"59",
"61",
"71",
"79",
"89",
"127",
"157",
"163",
"193",
"227",
"233",
"257",
"263",
"277",
"293",
"433",
"457",
"463",
"487",
"557",
"563",
"577",
"587",
"593",
"677",
"727",
"733",
"757",
"787",
"827",
"857",
"863",
"877",
"887",
"977",
"1129",
"1171",
"1231",
"1259",
"1279",
"1289",
"1319",
"1361",
"1429",
"1459"
]
| [
"nonn",
"base"
]
| 13 | 1 | 1 | [
"A024785",
"A383780",
"A383781",
"A383782"
]
| null | Stefano Spezia, May 09 2025 | 2025-05-15T17:48:26 | oeisdata/seq/A383/A383781.seq | b8ead4f141902534e1f80d4118bb07db |
A383782 | a(n) is the number of n-digit terms in A383781. | [
"4",
"10",
"30",
"147",
"408",
"1823",
"4353",
"17690",
"38419",
"143219",
"284441",
"980166",
"1806038",
"5813294",
"10037352",
"30426498",
"49595776",
"142437454",
"220519428",
"603013312",
"890961094",
"2329755538"
]
| [
"nonn",
"base",
"more"
]
| 22 | 1 | 1 | [
"A383781",
"A383782"
]
| null | Stefano Spezia, May 09 2025 | 2025-05-19T09:26:30 | oeisdata/seq/A383/A383782.seq | cae5019c04bfa1b1ace42e205cee85ac |
A383783 | a(n) = Sum_{k=1..2^n} mu(k) * (floor(2^n/k)^4 - floor((2^n-1)/k)^4). | [
"1",
"14",
"160",
"1520",
"13216",
"110144",
"899200",
"7266560",
"58425856",
"468583424",
"3753379840",
"30045900800",
"240442679296",
"1923843375104",
"15391954862080",
"123140470538240",
"985143091265536",
"7881222038749184",
"63050085546065920",
"504401921315962880",
"4035220318323736576"
]
| [
"nonn"
]
| 19 | 0 | 2 | [
"A082540",
"A344597",
"A383783"
]
| null | Chai Wah Wu, May 09 2025 | 2025-05-10T11:58:28 | oeisdata/seq/A383/A383783.seq | e0dab4bf43f8540eee37c5302e06c586 |
A383784 | Norms of vectors in any regular planar tiling (square or A2 lattice). | [
"0",
"1",
"2",
"3",
"4",
"5",
"7",
"8",
"9",
"10",
"12",
"13",
"16",
"17",
"18",
"19",
"20",
"21",
"25",
"26",
"27",
"28",
"29",
"31",
"32",
"34",
"36",
"37",
"39",
"40",
"41",
"43",
"45",
"48",
"49",
"50",
"52",
"53",
"57",
"58",
"61",
"63",
"64",
"65",
"67",
"68",
"72",
"73",
"74",
"75",
"76",
"79",
"80",
"81",
"82",
"84",
"85",
"89",
"90",
"91",
"93",
"97",
"98",
"100",
"101",
"103",
"104"
]
| [
"nonn"
]
| 8 | 1 | 3 | [
"A000401",
"A001481",
"A003136",
"A383784",
"A383785"
]
| null | C. S. Davis, May 09 2025 | 2025-05-12T14:41:30 | oeisdata/seq/A383/A383784.seq | 07bf28f85efc557a572292c6ef5dbafb |
A383785 | Numbers not occurring as norms of vectors in any regular planar lattice. | [
"6",
"11",
"14",
"15",
"22",
"23",
"24",
"30",
"33",
"35",
"38",
"42",
"44",
"46",
"47",
"51",
"54",
"55",
"56",
"59",
"60",
"62",
"66",
"69",
"70",
"71",
"77",
"78",
"83",
"86",
"87",
"88",
"92",
"94",
"95",
"96",
"99",
"102",
"105",
"107",
"110",
"114",
"115",
"118",
"119",
"120",
"123",
"126",
"131",
"132",
"134",
"135",
"138",
"140",
"141",
"142",
"143",
"150",
"152",
"154"
]
| [
"nonn"
]
| 18 | 1 | 1 | [
"A022544",
"A034020",
"A055039",
"A383784",
"A383785"
]
| null | C. S. Davis, May 09 2025 | 2025-05-23T18:34:28 | oeisdata/seq/A383/A383785.seq | 45360c0507e5b29d3775e088aaaf52a8 |
A383786 | Number of polyforms with n cells on the faces of a pentagonal hexecontahedron up to rotation. | [
"1",
"1",
"3",
"8",
"25",
"80",
"281",
"967",
"3451",
"12256",
"43924",
"157090"
]
| [
"nonn",
"fini",
"more"
]
| 14 | 0 | 3 | [
"A030137",
"A030138",
"A197159",
"A383491",
"A383493",
"A383495",
"A383498",
"A383786"
]
| null | Peter Kagey, May 09 2025 | 2025-05-11T09:24:52 | oeisdata/seq/A383/A383786.seq | 3d58b3e56785bb5bd75cc4cb82afdc88 |
A383787 | Largest number obtainable by either keeping each decimal digit d in n or replacing it with 9-d. | [
"8",
"7",
"6",
"5",
"5",
"6",
"7",
"8",
"9",
"89",
"88",
"87",
"86",
"85",
"85",
"86",
"87",
"88",
"89",
"79",
"78",
"77",
"76",
"75",
"75",
"76",
"77",
"78",
"79",
"69",
"68",
"67",
"66",
"65",
"65",
"66",
"67",
"68",
"69",
"59",
"58",
"57",
"56",
"55",
"55",
"56",
"57",
"58",
"59",
"59",
"58",
"57",
"56",
"55",
"55",
"56",
"57",
"58",
"59",
"69",
"68",
"67",
"66",
"65",
"65",
"66",
"67",
"68",
"69",
"79",
"78",
"77",
"76",
"75",
"75",
"76",
"77",
"78"
]
| [
"nonn",
"base"
]
| 33 | 1 | 1 | [
"A061601",
"A383787",
"A383788"
]
| null | Ali Sada, May 09 2025 | 2025-05-12T10:35:24 | oeisdata/seq/A383/A383787.seq | 89cdcdb6cb210fb24898acda06c55fa7 |
A383788 | Smallest number obtainable by either keeping each decimal digit d in n or replacing it with 9-d. | [
"1",
"2",
"3",
"4",
"4",
"3",
"2",
"1",
"0",
"10",
"11",
"12",
"13",
"14",
"14",
"13",
"12",
"11",
"10",
"20",
"21",
"22",
"23",
"24",
"24",
"23",
"22",
"21",
"20",
"30",
"31",
"32",
"33",
"34",
"34",
"33",
"32",
"31",
"30",
"40",
"41",
"42",
"43",
"44",
"44",
"43",
"42",
"41",
"40",
"40",
"41",
"42",
"43",
"44",
"44",
"43",
"42",
"41",
"40",
"30",
"31",
"32",
"33",
"34",
"34",
"33",
"32",
"31",
"30",
"20",
"21",
"22",
"23",
"24",
"24",
"23",
"22"
]
| [
"nonn",
"base"
]
| 33 | 1 | 2 | [
"A061601",
"A383787",
"A383788"
]
| null | Ali Sada, May 09 2025 | 2025-05-12T10:02:08 | oeisdata/seq/A383/A383788.seq | bd7269884250b0cafe0d1ef2022dabd0 |
A383789 | a(1) = 1; for n > 1, a(n) is the smallest positive integer not already in the sequence such that it shares at least one digit with a(n-1), and it has a different number of digits from a(n-1). | [
"1",
"10",
"100",
"11",
"101",
"12",
"2",
"20",
"102",
"13",
"3",
"23",
"103",
"14",
"4",
"24",
"104",
"15",
"5",
"25",
"105",
"16",
"6",
"26",
"106",
"17",
"7",
"27",
"107",
"18",
"8",
"28",
"108",
"19",
"9",
"29",
"109",
"21",
"110",
"30",
"113",
"31",
"111",
"41",
"112",
"22",
"120",
"32",
"121",
"42",
"114",
"34",
"123",
"33",
"130",
"35",
"115",
"45",
"124",
"40",
"134",
"36",
"116",
"46",
"126",
"51",
"117",
"37",
"127",
"47",
"137"
]
| [
"nonn",
"base"
]
| 26 | 1 | 2 | [
"A184992",
"A303848",
"A383789"
]
| null | Ali Sada, May 09 2025 | 2025-05-18T07:56:53 | oeisdata/seq/A383/A383789.seq | 9e82f7fac182c9238b4564419c0e744b |
A383790 | Prime numbers in order of occurrence as substrings in the concatenation of natural numbers 123456789101112.... | [
"2",
"23",
"3",
"5",
"4567",
"67",
"7",
"23456789",
"89",
"1234567891",
"4567891",
"67891",
"56789101",
"789101",
"89101",
"101",
"11",
"12345678910111",
"45678910111",
"10111",
"45678910111213",
"678910111213",
"78910111213",
"11213",
"1213",
"13",
"9101112131",
"1112131",
"2131",
"131",
"31",
"11213141",
"1213141",
"41",
"91011121314151",
"151",
"123456789101112131415161"
]
| [
"nonn",
"base"
]
| 22 | 1 | 1 | [
"A033307",
"A073175",
"A176942",
"A383790"
]
| null | Gonzalo Martínez, May 09 2025 | 2025-05-27T17:19:05 | oeisdata/seq/A383/A383790.seq | e18ac6148d8fb32cf11a2b96861b0747 |
A383791 | Numerators of the sequence whose Dirichlet convolution with itself yields fourth powers (A000583). | [
"1",
"8",
"81",
"96",
"625",
"324",
"2401",
"1280",
"19683",
"2500",
"14641",
"3888",
"28561",
"9604",
"50625",
"17920",
"83521",
"19683",
"130321",
"30000",
"194481",
"58564",
"279841",
"51840",
"1171875",
"114244",
"2657205",
"115248",
"707281",
"101250",
"923521",
"258048",
"1185921",
"334084",
"1500625",
"236196",
"1874161",
"521284",
"2313441"
]
| [
"nonn",
"frac"
]
| 10 | 1 | 2 | [
"A000583",
"A299149",
"A299150",
"A318512",
"A318649",
"A383768",
"A383769",
"A383791",
"A383792"
]
| null | Vaclav Kotesovec, May 10 2025 | 2025-05-10T09:16:23 | oeisdata/seq/A383/A383791.seq | 3fd1ad61598648a53240b8710e960d54 |
A383792 | Denominators of the sequence whose Dirichlet convolution with itself yields fourth powers (A000583). | [
"1",
"1",
"2",
"1",
"2",
"1",
"2",
"1",
"8",
"1",
"2",
"1",
"2",
"1",
"4",
"1",
"2",
"1",
"2",
"1",
"4",
"1",
"2",
"1",
"8",
"1",
"16",
"1",
"2",
"1",
"2",
"1",
"4",
"1",
"4",
"1",
"2",
"1",
"4",
"1",
"2",
"1",
"2",
"1",
"16",
"1",
"2",
"1",
"8",
"1",
"4",
"1",
"2",
"2",
"4",
"1",
"4",
"1",
"2",
"1",
"2",
"1",
"16",
"1",
"4",
"1",
"2",
"1",
"4",
"1",
"2",
"1",
"2",
"1",
"16",
"1",
"4",
"1",
"2",
"1",
"128",
"1",
"2",
"1",
"4"
]
| [
"nonn",
"frac"
]
| 7 | 1 | 3 | [
"A000583",
"A299149",
"A299150",
"A318512",
"A318649",
"A318658",
"A383768",
"A383769",
"A383791",
"A383792"
]
| null | Vaclav Kotesovec, May 10 2025 | 2025-05-10T09:18:00 | oeisdata/seq/A383/A383792.seq | 555c1c89ffa71e715f148ad80390ee93 |
A383793 | Numerators of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s-1)^(1/3). | [
"1",
"2",
"1",
"8",
"5",
"2",
"7",
"112",
"2",
"10",
"11",
"8",
"13",
"14",
"5",
"560",
"17",
"4",
"19",
"40",
"7",
"22",
"23",
"112",
"50",
"26",
"14",
"56",
"29",
"10",
"31",
"2912",
"11",
"34",
"35",
"16",
"37",
"38",
"13",
"560",
"41",
"14",
"43",
"88",
"10",
"46",
"47",
"560",
"98",
"100",
"17",
"104",
"53",
"28",
"55",
"784",
"19",
"58",
"59",
"40",
"61",
"62",
"14",
"46592",
"65"
]
| [
"nonn",
"frac",
"mult"
]
| 13 | 1 | 2 | [
"A256688",
"A256689",
"A257099",
"A383705",
"A383793",
"A383794"
]
| null | Vaclav Kotesovec, May 10 2025 | 2025-05-11T07:38:19 | oeisdata/seq/A383/A383793.seq | 91c63d889dd9660cc1be20c4572bc352 |
A383794 | Denominators of Dirichlet g.f.: Sum_{n>=1} a(n)/n^s = zeta(s-1)^(1/3). | [
"1",
"3",
"1",
"9",
"3",
"3",
"3",
"81",
"1",
"9",
"3",
"9",
"3",
"9",
"3",
"243",
"3",
"3",
"3",
"27",
"3",
"9",
"3",
"81",
"9",
"9",
"3",
"27",
"3",
"9",
"3",
"729",
"3",
"9",
"9",
"9",
"3",
"9",
"3",
"243",
"3",
"9",
"3",
"27",
"3",
"9",
"3",
"243",
"9",
"27",
"3",
"27",
"3",
"9",
"9",
"243",
"3",
"9",
"3",
"27",
"3",
"9",
"3",
"6561",
"9",
"9",
"3",
"27",
"3",
"27",
"3",
"81",
"3",
"9",
"9",
"27",
"9",
"9",
"3",
"729"
]
| [
"nonn",
"frac",
"mult"
]
| 9 | 1 | 2 | [
"A256688",
"A256689",
"A257099",
"A383705",
"A383793",
"A383794"
]
| null | Vaclav Kotesovec, May 10 2025 | 2025-05-11T07:38:45 | oeisdata/seq/A383/A383794.seq | dbc03368e16eecdd641db9477b88ba84 |
A383795 | Dirichlet g.f.: zeta(2*s-2) * zeta(s)^2. | [
"1",
"2",
"2",
"7",
"2",
"4",
"2",
"12",
"12",
"4",
"2",
"14",
"2",
"4",
"4",
"33",
"2",
"24",
"2",
"14",
"4",
"4",
"2",
"24",
"28",
"4",
"22",
"14",
"2",
"8",
"2",
"54",
"4",
"4",
"4",
"84",
"2",
"4",
"4",
"24",
"2",
"8",
"2",
"14",
"24",
"4",
"2",
"66",
"52",
"56",
"4",
"14",
"2",
"44",
"4",
"24",
"4",
"4",
"2",
"28",
"2",
"4",
"24",
"139",
"4",
"8",
"2",
"14",
"4",
"8",
"2",
"144",
"2",
"4",
"56",
"14",
"4",
"8",
"2",
"66",
"113"
]
| [
"nonn",
"mult"
]
| 15 | 1 | 2 | [
"A035316",
"A057521",
"A383795"
]
| null | Vaclav Kotesovec, May 10 2025 | 2025-05-24T02:15:51 | oeisdata/seq/A383/A383795.seq | 9badcc9ce15afed17370cbb27ea3ab3b |
A383796 | Expansion of g.f.: exp(Sum_{n>=1} A295432(n)*x^n/n). | [
"1",
"462",
"396453",
"425295010",
"511915968714",
"661059663660060",
"895093835464198893",
"1254056426977089876570",
"1802794259810040618367902",
"2644298823194748929633091780",
"3941742074897786728895080586082",
"5954164159064906497558129244865108",
"9094122817144126105637193154022530612"
]
| [
"nonn"
]
| 87 | 0 | 2 | [
"A166990",
"A229451",
"A243953",
"A255881",
"A295432",
"A383796"
]
| null | Karol A. Penson, Jun 11 2025 | 2025-06-12T00:51:39 | oeisdata/seq/A383/A383796.seq | 7a016b38ba7bb7e56cf62922ba78e3d5 |
A383797 | a(n) = 10*binomial(n,5) + 4*binomial(n,3) + n. | [
"0",
"1",
"2",
"7",
"20",
"55",
"146",
"357",
"792",
"1605",
"3010",
"5291",
"8812",
"14027",
"21490",
"31865",
"45936",
"64617",
"88962",
"120175",
"159620",
"208831",
"269522",
"343597",
"433160",
"540525",
"668226",
"819027",
"995932",
"1202195",
"1441330",
"1717121",
"2033632",
"2395217",
"2806530",
"3272535",
"3798516",
"4390087",
"5053202"
]
| [
"nonn",
"easy"
]
| 40 | 0 | 3 | [
"A000292",
"A000389",
"A383797"
]
| null | Enrique Navarrete, May 15 2025 | 2025-05-21T11:17:11 | oeisdata/seq/A383/A383797.seq | 3a8b4e8802515b89d64515ce6d33ee05 |
A383798 | Consecutive states of the linear congruential pseudo-random number generator for SIMSCRIPT II when started at 1. | [
"1",
"630360016",
"1549035330",
"264620982",
"529512731",
"1896697821",
"2116530888",
"1923129168",
"1674201058",
"108088067",
"859154222",
"1946499387",
"1377890442",
"1382793310",
"768302678",
"1014576563",
"514017889",
"2050350098",
"1928578391",
"863848128",
"246801402",
"166165530",
"709020555"
]
| [
"nonn",
"easy"
]
| 39 | 1 | 2 | [
"A096550",
"A383798",
"A384406"
]
| null | Sean A. Irvine, May 28 2025 | 2025-06-22T18:17:08 | oeisdata/seq/A383/A383798.seq | 126d7bf07b820ab586c51f0b03be8001 |
A383799 | Irregular triangle: T(n,k) gives the number of k-polysticks on edges of the n-cube up to rotational symmetries of the n-cube, with 0 <= k <= A001787(n). | [
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"1",
"4",
"6",
"14",
"24",
"32",
"25",
"13",
"5",
"1",
"1",
"1",
"1",
"1",
"4",
"10",
"35",
"131",
"510",
"1932",
"7123",
"24466",
"76829",
"214685",
"518820",
"1050433",
"1727591",
"2273998",
"2446653",
"2212119",
"1709579",
"1143416",
"663450",
"335186",
"146371",
"55327",
"17767",
"4898",
"1103",
"226",
"35",
"7",
"1",
"1"
]
| [
"nonn",
"tabf"
]
| 29 | 1 | 11 | [
"A001787",
"A222186",
"A333333",
"A383799"
]
| null | Peter Kagey, May 10 2025 | 2025-06-13T08:19:51 | oeisdata/seq/A383/A383799.seq | 3a1257e69d0850d81c13bfdc0d337ec7 |
A383800 | Number of polyforms with n cells on the faces of a triakis octahedron up to rotation and reflection. | [
"1",
"1",
"2",
"2",
"4",
"4",
"10",
"13",
"28",
"42",
"81",
"130",
"239",
"369",
"587",
"817",
"1072",
"1170",
"1054",
"594",
"217",
"46",
"11",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 10 | 0 | 3 | [
"A030135",
"A030136",
"A333333",
"A340635",
"A383490",
"A383492",
"A383494",
"A383496",
"A383800",
"A383801",
"A383802",
"A383804",
"A383806"
]
| null | Peter Kagey, May 10 2025 | 2025-05-11T09:24:44 | oeisdata/seq/A383/A383800.seq | c22640b2d155872629d69a2b0eb330d5 |
A383801 | Number of polyforms with n cells on the faces of a triakis octahedron up to rotation. | [
"1",
"1",
"2",
"3",
"5",
"7",
"15",
"24",
"48",
"81",
"149",
"255",
"458",
"730",
"1148",
"1623",
"2112",
"2325",
"2075",
"1175",
"410",
"84",
"16",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 15 | 0 | 3 | [
"A030137",
"A030138",
"A383491",
"A383493",
"A383495",
"A383497",
"A383498",
"A383786",
"A383799",
"A383800",
"A383801",
"A383803",
"A383805",
"A383807",
"A383808",
"A383826"
]
| null | Peter Kagey, May 10 2025 | 2025-05-12T14:34:56 | oeisdata/seq/A383/A383801.seq | a518e76992323576408f6682dcf411f2 |
A383802 | Number of polyforms with n cells on the faces of a tetrakis hexahedron up to rotation and reflection. | [
"1",
"1",
"2",
"2",
"6",
"8",
"21",
"36",
"84",
"164",
"356",
"691",
"1361",
"2342",
"3707",
"4830",
"5082",
"3843",
"2128",
"798",
"248",
"50",
"12",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 13 | 0 | 3 | [
"A030135",
"A030136",
"A197465",
"A333333",
"A340635",
"A383490",
"A383492",
"A383494",
"A383496",
"A383800",
"A383802",
"A383803",
"A383804",
"A383806"
]
| null | Peter Kagey, May 10 2025 | 2025-05-11T09:25:58 | oeisdata/seq/A383/A383802.seq | a96be3f94f763b79e5470bc47a66262a |
A383803 | Number of polyforms with n cells on the faces of a tetrakis hexahedron up to rotation. | [
"1",
"1",
"2",
"3",
"8",
"14",
"35",
"68",
"154",
"318",
"683",
"1362",
"2668",
"4645",
"7326",
"9594",
"10048",
"7605",
"4145",
"1539",
"445",
"86",
"16",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 12 | 0 | 3 | [
"A030137",
"A030138",
"A383491",
"A383493",
"A383495",
"A383497",
"A383498",
"A383786",
"A383799",
"A383801",
"A383802",
"A383803",
"A383805",
"A383807",
"A383808",
"A383826",
"A383827"
]
| null | Peter Kagey, May 10 2025 | 2025-05-12T14:35:03 | oeisdata/seq/A383/A383803.seq | a7a0ddce0de0bfa906ee695c05134f2a |
A383804 | Number of polyforms with n cells on the faces of a deltoidal icositetrahedron up to rotation and reflection. | [
"1",
"1",
"2",
"4",
"10",
"23",
"65",
"166",
"453",
"1157",
"2849",
"6252",
"11894",
"18183",
"21614",
"19139",
"12966",
"6691",
"2813",
"901",
"253",
"49",
"11",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 10 | 0 | 3 | [
"A030135",
"A030136",
"A333333",
"A340635",
"A383490",
"A383492",
"A383494",
"A383496",
"A383800",
"A383802",
"A383804",
"A383805",
"A383806"
]
| null | Peter Kagey, May 10 2025 | 2025-05-11T09:24:39 | oeisdata/seq/A383/A383804.seq | 5b8af6610a86fef5900271b87eb1a57c |
A383805 | Number of polyforms with n cells on the faces of a deltoidal icositetrahedron up to rotation. | [
"1",
"1",
"2",
"6",
"16",
"41",
"119",
"321",
"880",
"2286",
"5640",
"12443",
"23668",
"36260",
"43038",
"38135",
"25727",
"13262",
"5506",
"1751",
"468",
"87",
"16",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 11 | 0 | 3 | [
"A030137",
"A030138",
"A383491",
"A383493",
"A383495",
"A383497",
"A383498",
"A383786",
"A383799",
"A383801",
"A383803",
"A383804",
"A383805",
"A383807",
"A383808",
"A383826"
]
| null | Peter Kagey, May 10 2025 | 2025-05-12T14:35:11 | oeisdata/seq/A383/A383805.seq | 404aa96e0205005ae4724fc2886ac7aa |
A383806 | Number of polyforms with n cells on the faces of a disdyakis dodecahedron up to rotation and reflection. | [
"1",
"1",
"3",
"3",
"9",
"14",
"38",
"74",
"184",
"406",
"981",
"2262",
"5398",
"12589",
"29700",
"69289",
"161727",
"373879",
"858884",
"1948493",
"4358729",
"9560977",
"20489431",
"42663444",
"85863997",
"165915428",
"305531365",
"531313203",
"863339197",
"1294513104",
"1765472012",
"2153407639",
"2304457468",
"2119172241",
"1641722694"
]
| [
"nonn",
"fini",
"full"
]
| 15 | 0 | 3 | [
"A030135",
"A030136",
"A333333",
"A340635",
"A383490",
"A383492",
"A383494",
"A383496",
"A383800",
"A383802",
"A383804",
"A383806",
"A383807"
]
| null | Peter Kagey, May 10 2025 | 2025-06-08T15:19:14 | oeisdata/seq/A383/A383806.seq | c9ad4dd6b683de1a287b977cfab9de8c |
A383807 | Number of polyforms with n cells on the faces of a disdyakis dodecahedron up to rotation. | [
"1",
"2",
"3",
"6",
"13",
"28",
"66",
"148",
"348",
"812",
"1921",
"4524",
"10708",
"25178",
"59211",
"138578",
"323063",
"747758",
"1716982",
"3896986",
"8715931",
"19121954",
"40976038",
"85326888",
"171723106",
"331830856",
"611054918",
"1062626406",
"1726666853",
"2589026208",
"3530928400",
"4306815278",
"4608896060",
"4238344482"
]
| [
"nonn",
"fini",
"full"
]
| 18 | 0 | 2 | [
"A030137",
"A030138",
"A383491",
"A383493",
"A383495",
"A383497",
"A383498",
"A383786",
"A383799",
"A383801",
"A383803",
"A383805",
"A383806",
"A383807",
"A383808",
"A383826"
]
| null | Peter Kagey, May 10 2025 | 2025-06-08T15:18:51 | oeisdata/seq/A383/A383807.seq | f14f9dfe8c5a279d83f82d5ccae05fa7 |
A383808 | Number of polyforms with n cells on the faces of a pentagonal icositetrahedron up to rotation. | [
"1",
"1",
"3",
"8",
"25",
"72",
"234",
"701",
"2119",
"5872",
"14772",
"31331",
"53512",
"68794",
"66816",
"49714",
"29706",
"14235",
"5679",
"1770",
"469",
"87",
"16",
"1",
"1"
]
| [
"nonn",
"full",
"fini"
]
| 11 | 0 | 3 | [
"A030137",
"A030138",
"A197159",
"A383491",
"A383493",
"A383495",
"A383497",
"A383498",
"A383786",
"A383799",
"A383801",
"A383803",
"A383805",
"A383807",
"A383808",
"A383826"
]
| null | Peter Kagey, May 11 2025 | 2025-05-12T14:35:29 | oeisdata/seq/A383/A383808.seq | c48e86262d409937f44647760703065d |
A383809 | Consecutive states of a linear congruential pseudo-random number generator for Lisp 1985 when started at 1. | [
"1",
"17",
"38",
"144",
"189",
"201",
"154",
"108",
"79",
"88",
"241",
"81",
"122",
"66",
"118",
"249",
"217",
"175",
"214",
"124",
"100",
"194",
"35",
"93",
"75",
"20",
"89",
"7",
"119",
"15",
"4",
"68",
"152",
"74",
"3",
"51",
"114",
"181",
"65",
"101",
"211",
"73",
"237",
"13",
"221",
"243",
"115",
"198",
"103",
"245",
"149",
"23",
"140",
"121",
"49",
"80",
"105",
"28"
]
| [
"nonn",
"easy"
]
| 31 | 1 | 2 | [
"A001026",
"A096550",
"A096561",
"A383809"
]
| null | Sean A. Irvine, May 17 2025 | 2025-05-26T06:33:11 | oeisdata/seq/A383/A383809.seq | d072a553e3803816fb6ecac76422c7f8 |
A383810 | Primes which satisfy the requirements of A380943 in more than one way. | [
"373",
"1913",
"3733",
"6737",
"7937",
"11353",
"13997",
"19937",
"19997",
"23773",
"24113",
"29347",
"31181",
"31193",
"31907",
"34729",
"37277",
"38237",
"41593",
"47293",
"59929",
"71971",
"72719",
"73823",
"74177",
"79337",
"79613",
"82373",
"83773",
"83911",
"88397",
"100913",
"103997"
]
| [
"base",
"nonn"
]
| 13 | 1 | 1 | [
"A000040",
"A380943",
"A383810",
"A383811",
"A383812",
"A383813",
"A383814",
"A383815",
"A383816"
]
| null | James C. McMahon and Robert G. Wilson v, May 11 2025 | 2025-05-22T00:56:51 | oeisdata/seq/A383/A383810.seq | c6092568c14e8666427195c5ad8d537f |
A383811 | Primes which satisfy the requirements of A380943 in exactly two ways. | [
"373",
"1913",
"3733",
"6737",
"7937",
"11353",
"13997",
"19997",
"23773",
"24113",
"29347",
"31181",
"31193",
"31907",
"34729",
"37277",
"38237",
"41593",
"47293",
"59929",
"71971",
"72719",
"73823",
"74177",
"79337",
"79613",
"82373",
"83773",
"83911",
"88397",
"100913",
"111773",
"111973",
"118171",
"118273",
"118747",
"132113",
"132137",
"139547"
]
| [
"nonn",
"base"
]
| 9 | 1 | 1 | [
"A000040",
"A238057",
"A380943",
"A383810",
"A383811",
"A383812",
"A383813",
"A383814",
"A383815",
"A383816"
]
| null | James C. McMahon and Robert G. Wilson v, May 17 2025 | 2025-05-27T23:44:15 | oeisdata/seq/A383/A383811.seq | a7fc525418813d80eed6b76be7ada7b0 |
A383812 | Primes which satisfy the requirements of A380943 in exactly three ways. | [
"19937",
"103997",
"377477",
"577937",
"738677",
"739397",
"877937",
"2116397",
"3110273",
"3314513",
"3343337",
"3634313",
"3833359",
"5935393",
"7147397",
"7276337",
"7511033",
"7699157",
"7723337",
"11816911",
"14713613",
"19132213",
"19132693",
"19998779",
"22739317",
"23201359",
"31189757",
"31614377",
"31669931",
"31687151"
]
| [
"nonn",
"base"
]
| 10 | 1 | 1 | [
"A000040",
"A238499",
"A380943",
"A383810",
"A383811",
"A383812",
"A383813",
"A383814",
"A383815",
"A383816"
]
| null | James C. McMahon and Robert G. Wilson v, May 18 2025 | 2025-05-27T23:44:34 | oeisdata/seq/A383/A383812.seq | d72b36685e877c232956e868391affb8 |
A383813 | Primes which satisfy the requirements of A380943 in exactly four ways. | [
"257931013",
"1394821313",
"2699357347",
"3122419127",
"3132143093",
"3647381953",
"3736320359",
"3799933727",
"6130099337",
"7622281937",
"7943701397",
"7991407367"
]
| [
"nonn",
"base",
"more"
]
| 14 | 1 | 1 | [
"A000040",
"A238500",
"A380943",
"A383810",
"A383811",
"A383812",
"A383813",
"A383814",
"A383815",
"A383816"
]
| null | James C. McMahon and Robert G. Wilson v, May 23 2025 | 2025-05-31T14:37:55 | oeisdata/seq/A383/A383813.seq | f9ecd8cbafee10cd43a785b2975515db |
A383814 | Least number which satisfies the requirements of A380943 in exactly n ways. | [
"2",
"37",
"373",
"19937",
"257931013",
"4199993923"
]
| [
"nonn",
"base",
"more"
]
| 7 | 0 | 1 | [
"A000040",
"A173935",
"A380943",
"A383810",
"A383811",
"A383812",
"A383813",
"A383814",
"A383815",
"A383816"
]
| null | James C. McMahon and Robert G. Wilson v, May 29 2025 | 2025-06-06T18:40:10 | oeisdata/seq/A383/A383814.seq | 6987d99d6f0546d4a1f147c0e0cb26d0 |
A383815 | Palindromic primes in A380943. | [
"313",
"373",
"797",
"11311",
"13331",
"13931",
"17971",
"19991",
"31013",
"35353",
"36263",
"36563",
"38783",
"71317",
"79397",
"97379",
"98389",
"1129211",
"1196911",
"1611161",
"1793971",
"1982891",
"3106013",
"3166613",
"3193913",
"3236323",
"3288823",
"3304033",
"3319133",
"3329233",
"3365633",
"3417143",
"3447443",
"3449443",
"3515153",
"3670763"
]
| [
"base",
"nonn"
]
| 18 | 1 | 1 | [
"A000040",
"A002385",
"A105184",
"A380943",
"A383810",
"A383811",
"A383812",
"A383813",
"A383815"
]
| null | James C. McMahon and Robert G. Wilson v, Jun 06 2025 | 2025-06-11T00:56:15 | oeisdata/seq/A383/A383815.seq | 4ea556be53b918021394ba9a8961fe6f |
A383816 | Palindromic primes which satisfy the requirements of A380943 in at least two ways. | [
"373",
"1793971",
"7933397",
"374636473",
"714707417",
"727939727",
"787333787",
"790585097",
"947939749",
"991999199",
"10253935201",
"11365556311",
"11932823911",
"13127372131",
"34390609343",
"35369996353",
"35381318353",
"36297179263",
"37018281073",
"37423332473",
"37773537773",
"38233333283",
"38914541983",
"39064546093"
]
| [
"base",
"nonn"
]
| 15 | 1 | 1 | [
"A000040",
"A002385",
"A105184",
"A380943",
"A383810",
"A383816"
]
| null | James C. McMahon and Robert G. Wilson v, Jun 09 2025 | 2025-06-22T22:05:46 | oeisdata/seq/A383/A383816.seq | e995813c3a797fa300bc0d41940385c1 |
A383817 | Decimal expansion of -Sum_{k>=1} mu(3*k)/(3^k - 1), where mu is the Möbius function A008683. | [
"3",
"7",
"0",
"4",
"2",
"1",
"1",
"7",
"5",
"6",
"3",
"3",
"9",
"2",
"6",
"7",
"9",
"8",
"4",
"9",
"5",
"7",
"4",
"3",
"1",
"8",
"9",
"4",
"1",
"1",
"2",
"6",
"8",
"1",
"0",
"0",
"9",
"7",
"8",
"1",
"2",
"8",
"5",
"9",
"6",
"7",
"8",
"4",
"6",
"0",
"5",
"3",
"3",
"4",
"8",
"1",
"5",
"3",
"8",
"8",
"6",
"0",
"2",
"7",
"8",
"1",
"5",
"4",
"3",
"8",
"6",
"7",
"8",
"3",
"1",
"5",
"7",
"3",
"5",
"1",
"5",
"6",
"5",
"6",
"0",
"1",
"0"
]
| [
"nonn",
"cons"
]
| 31 | 0 | 1 | [
"A007404",
"A055777",
"A383817",
"A383818",
"A383819",
"A383820"
]
| null | Artur Jasinski, May 11 2025 | 2025-05-16T17:35:19 | oeisdata/seq/A383/A383817.seq | 4177747733e42b3861b3ee9fc3c690a7 |
A383818 | Square array A(n,k), n>=0, k>=0, read by antidiagonals downwards, where column k is the expansion of 1/(1 - k*x) * Product_{j=0..k-1} (1 + j*x)/(1 - j*x). | [
"1",
"1",
"0",
"1",
"1",
"0",
"1",
"4",
"1",
"0",
"1",
"9",
"10",
"1",
"0",
"1",
"16",
"45",
"22",
"1",
"0",
"1",
"25",
"136",
"177",
"46",
"1",
"0",
"1",
"36",
"325",
"856",
"621",
"94",
"1",
"0",
"1",
"49",
"666",
"3025",
"4576",
"2049",
"190",
"1",
"0",
"1",
"64",
"1225",
"8646",
"23125",
"22216",
"6525",
"382",
"1",
"0",
"1",
"81",
"2080",
"21217",
"90126",
"156145",
"101536",
"20337",
"766",
"1",
"0"
]
| [
"nonn",
"tabl"
]
| 25 | 0 | 8 | [
"A000007",
"A000012",
"A033484",
"A287532",
"A383818",
"A383839",
"A383900",
"A383912",
"A383913"
]
| null | Seiichi Manyama, May 14 2025 | 2025-05-15T08:22:05 | oeisdata/seq/A383/A383818.seq | 1ff611b3208b5e302a07f54eb660c13e |
A383819 | Decimal expansion of -Sum_{k>=1} mu(3*k)/(27^k + 1), where mu is the Möbius function. | [
"0",
"3",
"4",
"3",
"4",
"4",
"3",
"5",
"2",
"9",
"1",
"3",
"2",
"7",
"8",
"1",
"7",
"5",
"2",
"8",
"8",
"8",
"2",
"7",
"5",
"2",
"9",
"0",
"3",
"4",
"4",
"9",
"6",
"9",
"3",
"1",
"4",
"1",
"9",
"9",
"4",
"4",
"2",
"0",
"3",
"2",
"9",
"7",
"5",
"2",
"1",
"0",
"4",
"9",
"5",
"4",
"4",
"8",
"0",
"3",
"9",
"8",
"6",
"3",
"4",
"3",
"9",
"1",
"5",
"3",
"9",
"1",
"9",
"4",
"8",
"1",
"0",
"2",
"0",
"7",
"3",
"3",
"9",
"5",
"4",
"4",
"6",
"3",
"0",
"0",
"2",
"7",
"4",
"5",
"6",
"4",
"8",
"7",
"7",
"4",
"3",
"0",
"1",
"7",
"5",
"0",
"4",
"4",
"1",
"8",
"2"
]
| [
"nonn",
"cons"
]
| 13 | 0 | 2 | [
"A008683",
"A383817",
"A383819",
"A383820"
]
| null | Artur Jasinski, May 16 2025 | 2025-05-21T00:59:53 | oeisdata/seq/A383/A383819.seq | a1cac04c5f6dc9d4cc36c38a6519e552 |
A383820 | Decimal expansion of Sum_{k>=1} 1/3^(3^k). | [
"0",
"3",
"7",
"0",
"8",
"7",
"8",
"4",
"2",
"3",
"0",
"0",
"5",
"9",
"3",
"4",
"6",
"5",
"1",
"6",
"2",
"4",
"0",
"9",
"8",
"5",
"6",
"0",
"7",
"7",
"9",
"3",
"4",
"7",
"6",
"7",
"6",
"4",
"4",
"7",
"9",
"5",
"2",
"6",
"3",
"4",
"5",
"1",
"2",
"7",
"2",
"0",
"0",
"1",
"4",
"8",
"2",
"0",
"5",
"5",
"2",
"6",
"9",
"4",
"4",
"8",
"2",
"1",
"0",
"5",
"3",
"4",
"4",
"9",
"8",
"2",
"4",
"0",
"1",
"8",
"2",
"3",
"2",
"2",
"6",
"7",
"7",
"2",
"3",
"9",
"2",
"4",
"3",
"1",
"0",
"0",
"7",
"9",
"4",
"9",
"4",
"8",
"2",
"3",
"8",
"5"
]
| [
"nonn",
"cons"
]
| 24 | 0 | 2 | [
"A008683",
"A383817",
"A383819",
"A383820"
]
| null | Artur Jasinski, May 16 2025 | 2025-05-24T00:14:16 | oeisdata/seq/A383/A383820.seq | e18224af2ebe102d1302629cdc0b8861 |
A383821 | 3-automorphic numbers: positive integers k such that 3k^2 ends with k. | [
"2",
"5",
"7",
"67",
"75",
"92",
"667",
"792",
"875",
"6667",
"6875",
"9792",
"66667",
"69792",
"96875",
"296875",
"369792",
"666667",
"2369792",
"4296875",
"6666667",
"62369792",
"66666667",
"262369792",
"404296875",
"666666667",
"6666666667",
"7262369792",
"9404296875",
"27262369792",
"39404296875",
"66666666667",
"639404296875"
]
| [
"nonn",
"base"
]
| 27 | 1 | 1 | [
"A003226",
"A030985",
"A030986",
"A033428",
"A067275",
"A383821"
]
| null | Shyam Sunder Gupta, May 11 2025 | 2025-05-16T14:34:11 | oeisdata/seq/A383/A383821.seq | 65dd534ce5819163813b33e3f36f1aa4 |
A383822 | Decimal expansion of 16*log(2)/(8*log(2) - 5). | [
"2",
"0",
"3",
"4",
"2",
"6",
"5",
"1",
"7",
"3",
"8",
"9",
"1",
"4",
"4",
"8",
"1",
"8",
"1",
"0",
"1",
"2",
"0",
"3",
"8",
"4",
"4",
"3",
"9",
"4",
"0",
"6",
"9",
"0",
"2",
"8",
"4",
"5",
"9",
"4",
"4",
"9",
"2",
"0",
"2",
"7",
"6",
"0",
"0",
"3",
"4",
"3",
"4",
"0",
"1",
"8",
"4",
"8",
"5",
"8",
"2",
"0",
"2",
"4",
"9",
"4",
"1",
"1",
"6",
"9",
"3",
"8",
"5",
"3",
"7",
"7",
"4",
"2",
"8",
"8",
"2",
"8",
"4",
"2",
"4",
"0",
"2",
"0",
"5",
"9",
"0",
"2",
"5",
"9",
"2",
"6",
"0",
"2",
"3",
"9"
]
| [
"nonn",
"cons"
]
| 10 | 2 | 1 | [
"A002162",
"A013663",
"A257872",
"A382497",
"A382778",
"A383822",
"A383824"
]
| null | Stefano Spezia, May 11 2025 | 2025-05-12T00:26:20 | oeisdata/seq/A383/A383822.seq | e8dbf335bbc072a88abeb295db9f122f |
A383824 | Decimal expansion of 12*log(2)/(6*log(2) - 3). | [
"7",
"1",
"7",
"7",
"3",
"9",
"8",
"8",
"9",
"9",
"1",
"2",
"4",
"1",
"7",
"9",
"6",
"6",
"1",
"6",
"1",
"0",
"7",
"6",
"8",
"8",
"6",
"3",
"8",
"8",
"4",
"1",
"7",
"9",
"9",
"7",
"6",
"2",
"6",
"1",
"0",
"1",
"1",
"8",
"2",
"4",
"0",
"8",
"6",
"8",
"0",
"1",
"1",
"9",
"7",
"8",
"8",
"6",
"7",
"1",
"0",
"7",
"5",
"3",
"6",
"4",
"1",
"0",
"9",
"4",
"6",
"0",
"2",
"6",
"1",
"5",
"4",
"1",
"2",
"4",
"2",
"1",
"0",
"5",
"5",
"4",
"2",
"4",
"1",
"3",
"4",
"7",
"3",
"2",
"5",
"8",
"1",
"3",
"4",
"2"
]
| [
"nonn",
"cons"
]
| 8 | 1 | 1 | [
"A002162",
"A016687",
"A382497",
"A382778",
"A383822",
"A383824"
]
| null | Stefano Spezia, May 11 2025 | 2025-05-12T00:26:10 | oeisdata/seq/A383/A383824.seq | dfd0a848be46150fd76e54eeee4b5d70 |
A383825 | Number of polyforms with n cells on the faces of a triakis tetrahedron up to rotation and reflection. | [
"1",
"1",
"2",
"2",
"4",
"4",
"9",
"9",
"14",
"10",
"5",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 11 | 0 | 3 | [
"A030135",
"A030136",
"A333333",
"A340635",
"A383490",
"A383492",
"A383494",
"A383496",
"A383800",
"A383802",
"A383804",
"A383806",
"A383825",
"A383826"
]
| null | Peter Kagey, May 11 2025 | 2025-05-12T14:35:36 | oeisdata/seq/A383/A383825.seq | 757c0aadbeca68c20ea51eea325ee1f4 |
A383826 | Number of polyforms with n cells on the faces of a triakis tetrahedron up to rotation. | [
"1",
"1",
"2",
"3",
"5",
"7",
"14",
"16",
"23",
"18",
"7",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 8 | 0 | 3 | [
"A030137",
"A030138",
"A383491",
"A383493",
"A383495",
"A383497",
"A383498",
"A383786",
"A383799",
"A383801",
"A383803",
"A383805",
"A383807",
"A383808",
"A383825",
"A383826"
]
| null | Peter Kagey, May 11 2025 | 2025-05-12T14:35:44 | oeisdata/seq/A383/A383826.seq | 4a904ea988593d0e347b10fff8d972e1 |
A383827 | Number of polyforms with n cells on the faces of a tetrakis hexahedron up to tetrahedral symmetry. | [
"1",
"1",
"3",
"3",
"9",
"14",
"37",
"68",
"156",
"318",
"685",
"1362",
"2664",
"4645",
"7306",
"9594",
"10016",
"7605",
"4130",
"1539",
"444",
"86",
"16",
"1",
"1"
]
| [
"nonn",
"fini",
"full"
]
| 4 | 0 | 3 | [
"A383802",
"A383803",
"A383827"
]
| null | Peter Kagey, May 11 2025 | 2025-05-12T14:36:00 | oeisdata/seq/A383/A383827.seq | 4647d6d0e5307e3080c13350f96b8989 |
A383828 | Number of involutory racks of order n, up to isomorphism. | [
"1",
"1",
"2",
"5",
"13",
"42",
"180",
"906",
"6317"
]
| [
"nonn",
"hard",
"more"
]
| 9 | 0 | 3 | [
"A165200",
"A176077",
"A177886",
"A178432",
"A179010",
"A181769",
"A181770",
"A181771",
"A193024",
"A196111",
"A198147",
"A225744",
"A226172",
"A226173",
"A226174",
"A226193",
"A236146",
"A242044",
"A242275",
"A243931",
"A248908",
"A254434",
"A257351",
"A374939",
"A374942",
"A374943",
"A374944",
"A374945",
"A374946",
"A374947",
"A383144",
"A383145",
"A383146",
"A383828",
"A383829",
"A383831"
]
| null | Luc Ta, May 11 2025 | 2025-05-16T14:33:58 | oeisdata/seq/A383/A383828.seq | b231f8ef19b004a289e8e8412e473e1e |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.