question_slug
stringlengths
3
77
title
stringlengths
1
183
slug
stringlengths
12
45
summary
stringlengths
1
160
author
stringlengths
2
30
certification
stringclasses
2 values
created_at
stringdate
2013-10-25 17:32:12
2025-04-12 09:38:24
updated_at
stringdate
2013-10-25 17:32:12
2025-04-12 09:38:24
hit_count
int64
0
10.6M
has_video
bool
2 classes
content
stringlengths
4
576k
upvotes
int64
0
11.5k
downvotes
int64
0
358
tags
stringlengths
2
193
comments
int64
0
2.56k
most-profitable-path-in-a-tree
C++✅✅| O(n) | Simplest approach🚀🚀
c-on-simplest-approach-by-aayu_t-qhqt
Complexity Time complexity: O(N) Space complexity: O(N) Code
aayu_t
NORMAL
2025-03-22T11:54:48.999281+00:00
2025-03-22T11:54:48.999281+00:00
10
false
# Complexity - Time complexity: O(N) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: O(N) <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n = amount.size(); vector<vector<int>> adj(n); vector<int> vis(n, 0); for(auto& edge : edges) { adj[edge[0]].push_back(edge[1]); adj[edge[1]].push_back(edge[0]); } function<bool(int, int)> dfsBob = [&](int node, int time) { vis[node] = time; if(node == 0) return true; for(auto& it : adj[node]) { if(vis[it] == 0 && dfsBob(it, time + 1)) return true; } vis[node] = 0; return false; }; dfsBob(bob, 1); int ans = INT_MIN; function<void(int, int, int)> dfsAlice = [&](int node, int amt, int time) { if(vis[node] == 0 || vis[node] > time) amt += amount[node]; else if(vis[node] == time) amt += amount[node] / 2; if(adj[node].size() == 1 && node != 0) ans = max(ans, amt); vis[node] = -1; for(auto& it : adj[node]) { if(vis[it] != -1) dfsAlice(it, amt, time + 1); } }; dfsAlice(0, 0, 1); return ans; } }; ```
1
0
['Array', 'Tree', 'Depth-First Search', 'Graph', 'C++']
0
most-profitable-path-in-a-tree
python easy solution💯💯💀💀
python-easy-solution-by-rode_atharva-9a3y
Code
rode_atharva
NORMAL
2025-03-12T10:04:21.608354+00:00
2025-03-12T10:04:21.608354+00:00
8
false
# Code ```python3 [] class Solution: def mostProfitablePath(self, edges: List[List[int]], bob: int, amount: List[int]) -> int: nodes = len(amount) adj = [ [] for _ in range(nodes)] parent = [-1] * nodes for u, v in edges: adj[u].append(v) adj[v].append(u) queue = deque([(0, 0)]) distance = [float('inf')] * nodes distance[0] = 0 while queue: dist, node = queue.popleft() for v in adj[node]: if distance[v] == float('inf'): distance[v] = dist+1 queue.append((dist+1, v)) parent[v] = node dist = 0 bob_path = {} while bob != -1: bob_path[bob] = dist bob = parent[bob] dist += 1 queue = deque([(amount[0], 0, 0)]) #amt, node, time max_collected = float('-inf') while queue: amt, node, time = queue.popleft() if node in bob_path: if bob_path[node] == time: amt -= (amount[node] // 2) elif bob_path[node] < time: amt -= amount[node] for v in adj[node]: if v == parent[node]: continue queue.append((amt+amount[v], v, time+1)) if node != 0 and len(adj[node]) == 1: max_collected = max(max_collected, amt) return max_collected ```
1
0
['Python3']
0
most-profitable-path-in-a-tree
C#
c-by-adchoudhary-kge8
Code
adchoudhary
NORMAL
2025-02-26T04:46:13.717653+00:00
2025-02-26T04:46:13.717653+00:00
9
false
# Code ```csharp [] public class Solution { private class Node { public int distFromBob = int.MaxValue; public int pathForBob = int.MaxValue; public readonly List<int> neighbors = new(); } public int MostProfitablePath(int[][] edges, int bob, int[] amount) { // build initial array of nodes Node[] nodes = new Node[amount.Length]; for (int ni = 0; ni < amount.Length; ni++) { nodes[ni] = new Node(); } // connect the nodes foreach (var e in edges) { int ni1 = e[0], ni2 = e[1]; nodes[ni1].neighbors.Add(ni2); nodes[ni2].neighbors.Add(ni1); } // BFS from Bob outward to record distance List<int> curr = new() { bob }, next = new(); int distFromBob = 0; bool[] visited = new bool[nodes.Length]; bool found0 = false; while (!found0 && curr.Count > 0) { foreach (var ci in curr) { visited[ci] = true; Node node = nodes[ci]; node.distFromBob = distFromBob; if (ci == 0) { found0 = true; break; } foreach (var ni in node.neighbors) { if (!visited[ni]) { next.Add(ni); } } } curr.Clear(); (curr, next) = (next, curr); distFromBob++; } // Retrace Bob's path to 0 for (int ni = 0; ;) { Node node = nodes[ni]; node.pathForBob = node.distFromBob; if (ni == bob) { break; } int nextDist = node.distFromBob - 1; foreach (var nni in node.neighbors) { if (nodes[nni].distFromBob == nextDist) { ni = nni; break; } } } Array.Clear(visited); visited[0] = true; // recursively find best path for Alice starting from node 0 return BestPath(0, 0); int BestPath(int ni, int distFrom0) { Node node = nodes[ni]; int sum = amount[ni], pathForBob = node.pathForBob; // adjust amount if Bob's been here already if (distFrom0 == pathForBob) sum >>= 1; if (distFrom0 > pathForBob) sum = 0; distFrom0++; // Recursively find the best path going down unvisited neighbors int best = int.MinValue, bestNode = -1; foreach (var nni in node.neighbors) { if (!visited[nni]) { visited[nni] = true; int s = BestPath(nni, distFrom0); if (s > best) { best = s; bestNode = nni; } visited[nni] = false; } } // adjust sum if we found a unvisited neighbor if (bestNode >= 0) { sum += best; visited[bestNode] = true; } return sum; } } } ```
1
0
['C#']
0
most-profitable-path-in-a-tree
DFS Approach
dfs-approach-by-tthieu0409-r043
IntuitionApproachOne important note is no. edges = no. nodes - 1. This means there is no cycle! There is only one path that Bob can go (to the node 0). Save his
tthieu0409
NORMAL
2025-02-25T17:43:44.760856+00:00
2025-02-25T17:43:44.760856+00:00
5
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach One important note is no. edges = no. nodes - 1. This means there is no cycle! There is only one path that Bob can go (to the node 0). Save his path and then dfs for alice move which maximize the outcome. # Complexity - Time complexity: O(n) - Space complexity: O(n) # Code ```java [] class Solution { boolean bobMove(List<List<Integer>> graph, int curIdx, int[] bobPath, int step) { bobPath[curIdx] = step; if (curIdx == 0) { return true; } for (var node : graph.get(curIdx)) { if (bobPath[node] != 0) continue; if (bobMove(graph, node, bobPath, step + 1)) return true; } bobPath[curIdx] = 0; return false; } int aliceMove(List<List<Integer>> graph, int curIdx, int[] amount, int parent, int[] bobPath, int step) { var val = amount[curIdx]; if (bobPath[curIdx] != 0 && bobPath[curIdx] < step) { val = 0; } else if (bobPath[curIdx] == step) { val /= 2; } var maxNet = Integer.MIN_VALUE; boolean isLeaf = true; for (var node : graph.get(curIdx)) { if (parent == node) continue; isLeaf = false; maxNet = Math.max(maxNet, aliceMove(graph, node, amount, curIdx, bobPath, step + 1)); } return isLeaf ? val : val + maxNet; } List<List<Integer>> constructGraph(int[][] edges) { List<List<Integer>> graph = new ArrayList<>(); for (int[] edge : edges) { while (graph.size() <= Math.max(edge[0], edge[1])) { graph.add(new ArrayList<>()); } graph.get(edge[0]).add(edge[1]); graph.get(edge[1]).add(edge[0]); } return graph; } public int mostProfitablePath(int[][] edges, int bob, int[] amount) { List<List<Integer>> graph = constructGraph(edges); int[] bobPath = new int[edges.length + 1]; bobMove(graph, bob, bobPath, 1); return aliceMove(graph, 0, amount, -1, bobPath, 1); } } ```
1
0
['Java']
0
most-profitable-path-in-a-tree
Python | Beats 100% | 😊 | Explanation
python-beats-100-by-ashishgupta291-ym8r
Intuitionbob's path is fixed. if alice and bob travels on same path they can meet each other at the mid of root-bob path. bob can open first half of the gates i
ashishgupta291
NORMAL
2025-02-25T05:14:30.776425+00:00
2025-02-25T05:15:21.719423+00:00
8
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> bob's path is fixed. if alice and bob travels on same path they can meet each other at the mid of root-bob path. bob can open first half of the gates in his path. if alice diverts from bob's path before meeting bob. in this case alice can never visit the node which bob has already visited, note that in any case bob will be able to open the first half of the gates in its path. so we can directly make zero amount for first half of the nodes in bob's path and calculate maximum path sum from root-leaf for alice with simple dfs. # Approach <!-- Describe your approach to solving the problem. --> using backtracking to get bob's path otherwise gets MLE. making amount zero for the first half of the nodes of bob's path. then do dfs for alice. # Complexity - Time complexity: O(n) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: O(n) <!-- Add your space complexity here, e.g. $$O(n)$$ --> ![image.png](https://assets.leetcode.com/users/images/05c3e549-e8c8-4d83-929c-14ad9497a36b_1740460363.2576253.png) # Code ```python [] class Solution(object): def mostProfitablePath(self, edges, bob, amount): adja = {} for e in edges: if e[0] in adja: adja[e[0]].append(e[1]) else: adja[e[0]]=[e[1]] if e[1] in adja: adja[e[1]].append(e[0]) else: adja[e[1]]=[e[0]] def bob_p(p, root): path.append(root) if root == bob: return True for c in adja[root]: if c!=p: if bob_p(root, c): return True path.pop() return False path=[] bob_p(None, 0) l = len(path) for i in range(l//2): amount[path.pop()] =0 if l%2: t = path.pop() amount[t] = amount[t]//2 self.out = float('-inf') def alice(p, root, tot): tot+=amount[root] flag = True for c in adja[root]: if c!=p: flag = False alice(root, c, tot) if flag: self.out = max(self.out, tot) alice(None, 0, 0) return self.out ```
1
0
['Python']
0
most-profitable-path-in-a-tree
✅ 🎯 📌 Simple Solution || DFS+BFS || Fastest Solution ✅ 🎯 📌
simple-solution-dfsbfs-fastest-solution-vlam1
Code
vvnpais
NORMAL
2025-02-24T21:17:46.478678+00:00
2025-02-24T21:17:46.478678+00:00
19
false
# Code ```python3 [] class Solution: def mostProfitablePath(self, edges: List[List[int]], bob: int, amount: List[int]) -> int: d=defaultdict(list) for u,v in edges: d[u].append(v) d[v].append(u) bobs={i:float('inf') for i in range(len(edges)+1)} def dfs(node,par,time): if node==0: bobs[node]=time return True for neighbour in d[node]: if neighbour==par: continue if dfs(neighbour,node,time+1): bobs[node]=time return True return False dfs(bob,-1,0) dq=deque([(0,0,-1,amount[0])]) #node, time, parent, totalprof ans=float('-inf') while dq: node,time,par,profit=dq.popleft() for neighbour in d[node]: if neighbour==par: continue neighbour_time=time+1 neighbour_profit=amount[neighbour] if neighbour_time>bobs[neighbour]: neighbour_profit=0 if neighbour_time==bobs[neighbour]: neighbour_profit>>=1 dq.append((neighbour,neighbour_time,node,profit+neighbour_profit)) if len(d[neighbour])==1 and profit+neighbour_profit>ans: ans=profit+neighbour_profit return ans ```
1
0
['Array', 'Tree', 'Depth-First Search', 'Breadth-First Search', 'Graph', 'Python3']
0
most-profitable-path-in-a-tree
java and erlang solution
java-and-erlang-solution-by-sidraq-amrb
the erlang one needs some tweakingCode
sidraq
NORMAL
2025-02-24T20:00:16.726793+00:00
2025-02-24T20:00:16.726793+00:00
15
false
# the erlang one needs some tweaking # Code ```erlang -export([most_profitable_path/3]). most_profitable_path(Edges, Bob, Amount) -> Graph = build_graph(Edges, maps:new()), BobPath = find_bob_path(Bob, 0, Graph, []), BobPathMap = lists:foldl(fun({Node, Index}, Acc) -> maps:put(Node, Index, Acc) end, maps:new(), lists:zip(BobPath, lists:seq(0, length(BobPath) - 1))), get_alice_max_score(0, -1, 0, BobPathMap, Graph, 0, Amount). build_graph([], Graph) -> Graph; build_graph([[A, B] | Rest], Graph) -> Graph1 = maps:update_with(A, fun(V) -> [B | V] end, [B], Graph), Graph2 = maps:update_with(B, fun(V) -> [A | V] end, [A], Graph1), build_graph(Rest, Graph2). find_bob_path(0, _, _, Path) -> lists:reverse([0 | Path]); find_bob_path(Node, Parent, Graph, Path) -> case maps:get(Node, Graph, []) of [] -> []; Neighbors -> lists:foldl( fun(Neighbor, Acc) when Neighbor /= Parent -> NewPath = [Node | Path], Result = find_bob_path(Neighbor, Node, Graph, NewPath), if Result /= [] -> Result; true -> Acc end; (_, Acc) -> Acc end, [], Neighbors ) end. get_alice_max_score(Node, Parent, CurrScore, BobPath, Graph, Timestamp, Amount) -> BobTime = maps:get(Node, BobPath, -1), NodeAmount = lists:nth(Node + 1, Amount), NewScore = case BobTime of -1 -> CurrScore + NodeAmount; T when T > Timestamp -> CurrScore + NodeAmount; T when T =:= Timestamp -> CurrScore + (NodeAmount div 2); _ -> CurrScore end, case lists:filter(fun(N) -> N /= Parent end, maps:get(Node, Graph, [])) of [] -> NewScore; Neighbors -> lists:max([get_alice_max_score(Neighbor, Node, NewScore, BobPath, Graph, Timestamp + 1, Amount) || Neighbor <- Neighbors]) end. ``` ```java [] class Solution { public int mostProfitablePath(int[][] edges, int bob, int[] amount) { ArrayList<Integer>[] graph = new ArrayList[amount.length]; for (int i = 0; i < graph.length; i++) graph[i] = new ArrayList<>(); for (int[] edge : edges) { graph[edge[0]].add(edge[1]); graph[edge[1]].add(edge[0]); } int[] bobPath = new int[amount.length]; Arrays.fill(bobPath, -1); ArrayList<Integer> path = new ArrayList<>(); fillBobPath(bob, -1, path, graph); for (int i = 0; i < path.size(); i++) { bobPath[path.get(i)] = i; } return getAliceMaxScore(0, -1, 0, bobPath, graph, 0, amount); } private boolean fillBobPath(int node, int parentNode, ArrayList<Integer> path, ArrayList<Integer>[] graph) { if (node == 0) return true; for (int neighborNode : graph[node]) { if (neighborNode != parentNode) { path.add(node); if (fillBobPath(neighborNode, node, path, graph)) return true; path.remove(path.size() - 1); } } return false; } private int getAliceMaxScore(int node, int parentNode, int currScore, int[] bobPath, ArrayList<Integer>[] graph, int timestamp, int[] amount) { if (bobPath[node] == -1 || bobPath[node] > timestamp) { currScore += amount[node]; } else if (bobPath[node] == timestamp) { currScore += amount[node] / 2; } if (graph[node].size() == 1 && node != 0) return currScore; int maxScore = Integer.MIN_VALUE; for (int neighborNode : graph[node]) { if (neighborNode != parentNode) { maxScore = Math.max(maxScore, getAliceMaxScore(neighborNode, node, currScore, bobPath, graph, timestamp + 1, amount)); } } return maxScore; } } ```
1
0
['Java']
0
most-profitable-path-in-a-tree
Best easy and simple explanation in python 🚀
best-easy-and-simple-explanation-in-pyth-s77d
IntuitionThe problem involves two players, Alice and Bob, traversing a tree represented as an undirected graph. Alice aims to maximize her profit, while Bob fol
harshit197
NORMAL
2025-02-24T19:38:25.211258+00:00
2025-02-24T19:38:25.211258+00:00
14
false
# Intuition The problem involves two players, Alice and Bob, traversing a tree represented as an undirected graph. Alice aims to maximize her profit, while Bob follows a specific path to the root. The key observation is that: - Bob's movement can be simulated using **DFS**, where we track the time he reaches each node in path to root. BOB doesn't have any choice to make. So we need to check only nodes in path to root. - Alice's movement can be simulated using **BFS**, while adjusting the profit at each node based on Bob's presence. Alice have choices to make to reach any leaf note. So we need to check the profit at each leaf node and return whichever is maximum. # Approach ## 1. Graph Construction - Use an **adjacency list** (dictionary of lists) to store edges because it is easier that way. ## 2. Simulate Bob's Path (DFS) - Perform a **DFS** from Bob's starting node towards the root (node `0`). - Track the **visit time** for each node in a dictionary `bob_visit`. ## 3. Simulate Alice's Path (BFS) - Perform **BFS** from the root (`0`). - Maintain a queue storing tuples `(node, parent, time, profit)`. - Adjust the profit at each node: - If Bob reaches the node **before Alice**, profit is `0`. - If Bob and Alice reach at the **same time**, profit is **halved**. ## 4. Track Maximum Profit - Update the result when Alice reaches a **leaf node**. # Complexity | Complexity | Analysis | |------------|------------| | **Time Complexity** | $$O(n)$$ - DFS + BFS traverse each node once | | **Space Complexity** | $$O(n)$$ - Adjacency list, queue, and hash table | # Code ```python class Solution: def mostProfitablePath( self, edges: List[List[int]], bob: int, amount: List[int] ) -> int: # Construct adjacency list adj = defaultdict(list) for v1, v2 in edges: adj[v1].append(v2) adj[v2].append(v1) # Bob's Path Simulation (DFS) bob_visit = {} # Stores nodes Bob visits with their timestamps def dfs(src, parent, time): if src == 0: bob_visit[src] = time return True for nei in adj[src]: if nei == parent: continue if dfs(nei, src, time + 1): bob_visit[src] = time return True return False dfs(bob, -1, 0) # Alice's Path Simulation (BFS) q = deque([(0, -1, 0, amount[0])]) # (node, parent, time, profit) res = float("-inf") while q: node, parent, time, profit = q.popleft() for nei in adj[node]: if nei == parent: continue nei_time = time + 1 nei_profit = amount[nei] # Adjust profit based on Bob's visit if nei in bob_visit: if nei_time > bob_visit[nei]: nei_profit = 0 # Bob already took it elif nei_time == bob_visit[nei]: nei_profit //= 2 # Split profit q.append((nei, node, nei_time, profit + nei_profit)) # Update result if Alice reaches a leaf if len(adj[nei]) == 1: res = max(res, profit + nei_profit) return res
1
0
['Array', 'Tree', 'Depth-First Search', 'Breadth-First Search', 'Graph', 'Simulation', 'Python3']
0
most-profitable-path-in-a-tree
Java Solution for Most Profitable Path In a Tree Problem
java-solution-for-most-profitable-path-i-emw9
IntuitionThe problem involves a tree structure where Alice and Bob move simultaneously in opposite directions. Alice tries to maximize her profit by moving towa
Aman_Raj_Sinha
NORMAL
2025-02-24T18:52:10.458298+00:00
2025-02-24T18:52:10.458298+00:00
36
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> The problem involves a tree structure where Alice and Bob move simultaneously in opposite directions. Alice tries to maximize her profit by moving towards a leaf, while Bob moves towards the root, potentially blocking Alice’s access to some rewards. The key observations are: • If Alice reaches a node first, she gets the full amount. • If Bob reaches a node first, Alice gets nothing. • If they reach simultaneously, they split the amount. • Alice should choose the most profitable leaf path. # Approach <!-- Describe your approach to solving the problem. --> 1. Graph Representation (Adjacency List) • Convert the edge list into an adjacency list for easier tree traversal. 2. Find Bob’s Path to Root • Use DFS from Bob’s starting position to record the depth of each node on his path. • This helps determine whether Bob reaches a node before, after, or at the same time as Alice. 3. Depth-First Search (DFS) for Alice • Start DFS from the root (Alice’s initial position). • At each node: • Determine Alice’s profit based on Bob’s arrival. • If the node is a leaf, return the profit. • Recursively explore all child nodes and maximize the profit. # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> • Building the adjacency list takes O(n). • Finding Bob’s path requires a single DFS traversal, taking O(n). • Alice’s DFS traversal also takes O(n) in the worst case. • Overall complexity: O(n) + O(n) = O(n). - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> • Adjacency list: O(n) (for storing edges). • Bob’s distance array: O(n). • Recursive stack depth (for DFS calls): O(n) in the worst case (if the tree is skewed). • Total space: O(n) + O(n) + O(n) = O(n). # Code ```java [] class Solution { public int mostProfitablePath(int[][] edges, int bob, int[] amount) { int n = amount.length; List<Integer>[] tree = new ArrayList[n]; for (int i = 0; i < n; i++) { tree[i] = new ArrayList<>(); } for (int[] edge : edges) { tree[edge[0]].add(edge[1]); tree[edge[1]].add(edge[0]); } int[] bobDist = new int[n]; Arrays.fill(bobDist, -1); findBobPath(bob, -1, 0, tree, bobDist); return dfsAlice(0, -1, 0, 0, tree, bobDist, amount); } private boolean findBobPath(int node, int parent, int depth, List<Integer>[] tree, int[] bobDist) { bobDist[node] = depth; if (node == 0) return true; for (int neighbor : tree[node]) { if (neighbor == parent) continue; if (findBobPath(neighbor, node, depth + 1, tree, bobDist)) { return true; } } bobDist[node] = -1; return false; } private int dfsAlice(int node, int parent, int depth, int currentProfit, List<Integer>[] tree, int[] bobDist, int[] amount) { if (bobDist[node] == -1 || depth < bobDist[node]) { currentProfit += amount[node]; } else if (depth == bobDist[node]) { currentProfit += amount[node] / 2; } if (tree[node].size() == 1 && node != 0) { return currentProfit; } int maxProfit = Integer.MIN_VALUE; for (int neighbor : tree[node]) { if (neighbor == parent) continue; maxProfit = Math.max(maxProfit, dfsAlice(neighbor, node, depth + 1, currentProfit, tree, bobDist, amount)); } return maxProfit; } } ```
1
0
['Java']
0
most-profitable-path-in-a-tree
Best Easy Solution - Most Profitable Path in a Tree
best-easy-solution-most-profitable-path-jbir9
Code
deepakkoshta
NORMAL
2025-02-24T18:39:07.889547+00:00
2025-02-24T18:39:07.889547+00:00
11
false
# Code ```cpp [] class Solution { public: unordered_map<int, vector<int>> umpv; unordered_map<int, int> bobtime; int aliceprofit = INT_MIN; bool DFSBob(int currnode, int time, vector<bool>& visited) { visited[currnode] = true; bobtime[currnode] = time; if (currnode == 0) return true; for (auto& ngbr : umpv[currnode]) { if (!visited[ngbr]) if (DFSBob(ngbr, time + 1, visited) == true) return true; } bobtime.erase(currnode); return false; } void DFSAlice(int currnode, int time, int income, vector<bool>& visited, vector<int>& amount) { visited[currnode] = true; if (bobtime.find(currnode) == bobtime.end() || time < bobtime[currnode]) income += amount[currnode]; else if (time == bobtime[currnode]) income += amount[currnode] / 2; if (umpv[currnode].size() == 1 && currnode != 0) aliceprofit = max(aliceprofit, income); for (auto& ngbr : umpv[currnode]) { if (!visited[ngbr]) DFSAlice(ngbr, time + 1, income, visited, amount); } } int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n = amount.size(); for (auto edge : edges) { umpv[edge[0]].push_back(edge[1]); umpv[edge[1]].push_back(edge[0]); } vector<bool> visited(n, false); DFSBob(bob, 0, visited); int income = 0; visited.assign(n, false); DFSAlice(0, 0, income, visited, amount); return aliceprofit; } }; ```
1
0
['C++']
0
most-profitable-path-in-a-tree
2467 LeetCode - Most Profitable Path in a Tree
2467-leetcode-most-profitable-path-in-a-4gplg
2467 LeetCode - Most Profitable Path in a TreeProblem StatementYou are given an undirected tree with n nodes labeled from 0 to n-1, where the root node is 0. Th
ayushrawat220804
NORMAL
2025-02-24T18:07:11.984953+00:00
2025-02-24T18:07:11.984953+00:00
35
false
## **2467 LeetCode - Most Profitable Path in a Tree** ### Problem Statement You are given an undirected tree with `n` nodes labeled from `0` to `n-1`, where the root node is `0`. The tree is described by an array `edges`, where `edges[i] = [ui, vi]` means that there is an undirected edge between the nodes `ui` and `vi`. Each node has a value stored in an array `amount`, where `amount[i]` represents the profit at node `i`. A game is played between Alice and Bob: - Alice starts at node `0` and can move to any connected node. - Bob starts at a given node `bob` and moves towards node `0` using the shortest path. - If both Alice and Bob reach the same node at the same time, Alice only earns half the profit from that node. - Alice’s goal is to maximize her total profit. Return the **maximum profit Alice can earn** by choosing an optimal path. --- ## **Intuition** 1. **Bob's Shortest Path Calculation**: - Bob moves towards node `0`, so we must determine the time he takes to reach each node. - We use **DFS** to record the exact time when Bob reaches a node. 2. **Alice's DFS for Maximum Profit**: - Alice starts from node `0` and explores all possible paths. - If Bob has not visited a node, Alice gets the full amount. - If Bob and Alice arrive at the same time, Alice gets **half** the amount. - If Bob has already passed through a node, Alice gets **nothing**. 3. **Finding Maximum Profit**: - Alice explores all paths using **DFS**, keeping track of profit. - At leaf nodes (nodes with no children except the parent), we update the maximum profit. --- ## **Approach - Using DFS for Bob and Alice** ### **Algorithm** 1. **Build the adjacency list** from the given edges. 2. **Find Bob's path** to `0`: - Use a DFS (`DFSBob`) to record the time Bob takes to reach each node. - Store Bob's arrival times in `bobMap`. 3. **Simulate Alice's movement**: - Use another DFS (`DFSAlice`) to explore all paths. - Track Alice’s profit based on Bob’s recorded arrival times. - Update `aliceIncome` whenever a leaf node is reached. ### **Complexity Analysis** - **Time Complexity**: `O(n)` since each node is visited at most twice (once for Bob, once for Alice). - **Space Complexity**: `O(n)` for recursion stack and adjacency list storage. --- ## **Code Implementation** ```cpp /** * Approach - Using DFS for Bob and Alice * Time Complexity : O(n) * Space Complexity : O(n) (for recursion stack and adjacency list) */ class Solution { public: unordered_map<int, vector<int>> adj; unordered_map<int, int> bobMap; int aliceIncome; // DFS for Bob to record the time taken to reach each node bool DFSBob(int curr, int t, vector<bool>& visited) { visited[curr] = true; bobMap[curr] = t; // Store time taken to reach this node if (curr == 0) // Reached root return true; for (auto &ngbr : adj[curr]) { if (!visited[ngbr]) { if (DFSBob(ngbr, t + 1, visited)) return true; } } bobMap.erase(curr); // Remove node if it's not in the shortest path return false; } // DFS for Alice to maximize profit void DFSAlice(int curr, int t, int income, vector<bool>& visited, vector<int>& amount) { visited[curr] = true; if (bobMap.find(curr) == bobMap.end() || t < bobMap[curr]) { income += amount[curr]; // Alice gets full profit if Bob is not there yet } else if (t == bobMap[curr]) { income += (amount[curr] / 2); // Split profit if they arrive at the same time } // If current node is a leaf node, update maximum profit if (adj[curr].size() == 1 && curr != 0) { aliceIncome = max(aliceIncome, income); } // Explore neighbors for (int &ngbr : adj[curr]) { if (!visited[ngbr]) { DFSAlice(ngbr, t + 1, income, visited, amount); } } } int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n = amount.size(); // Number of nodes aliceIncome = INT_MIN; for (vector<int>& edge : edges) { int u = edge[0]; int v = edge[1]; adj[u].push_back(v); adj[v].push_back(u); } // DFS on Bob to determine his path to node 0 int time = 0; vector<bool> visited(n, false); DFSBob(bob, time, visited); // DFS for Alice to maximize profit int income = 0; visited.assign(n, false); DFSAlice(0, 0, income, visited, amount); return aliceIncome; } }; ``` --- ## **Explanation with Example** ### **Example 1** #### **Input:** ```cpp edges = [[0,1],[1,2],[1,3],[3,4]] bob = 3 amount = [-2,4,2,-4,6] ``` #### **Output:** `6` #### **Explanation:** ``` 0 | 1 / \ 2 3 | 4 ``` - Bob moves from `3 → 1 → 0`. - Alice moves from `0 → 1 → 3 → 4`. - Alice collects: `amount[0] + amount[1] + amount[3]/2 + amount[4] = -2 + 4 + (-4)/2 + 6 = 6`. --- ### **Example 2** #### **Input:** ```cpp edges = [[0,1],[1,2],[1,3],[3,4],[3,5]] bob = 4 amount = [5,3,2,1,4,-1] ``` #### **Output:** `7` #### **Explanation:** ``` 0 | 1 / \ 2 3 / \ 4 5 ``` - Bob moves from `4 → 3 → 1 → 0`. - Alice moves from `0 → 1 → 3 → 4`. - Alice collects: `amount[0] + amount[1] + amount[3]/2 + amount[4] = 5 + 3 + (1)/2 + 4 = 7`. --- ## **Conclusion** - We efficiently calculate **Bob's shortest path** to the root using DFS. - We simulate **Alice's movement** using DFS to find the optimal path for maximum profit. - The algorithm runs in **O(n) time**, making it efficient for large trees. **Hope this helps! 🚀**
1
0
['C++']
0
most-profitable-path-in-a-tree
Most Profitable Path in a Tree
most-profitable-path-in-a-tree-by-dinesh-4qra
IntuitionApproachComplexity Time complexity:O(V+E) Space complexity:O(V) Code
Dinesh-Saladi
NORMAL
2025-02-24T17:56:25.372013+00:00
2025-02-24T17:56:25.372013+00:00
25
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: $$O(V+E)$$ <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: $$O(V)$$ <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: int bob0(vector<vector<int>>& adj, int bob, int visited, vector<int>& obob) { if (bob == 0) { obob.push_back(bob); return 0; } for (int i = 0; i < adj[bob].size(); i++) { if (adj[bob][i] != visited) { int s = bob0(adj, adj[bob][i], bob, obob); if (s == 0) { obob.push_back(bob); return 0; } } } return 1; } void alice(int i, vector<vector<int>>& adj, int cur, int visited, vector<int>& bobvis, int sum, int& opt, vector<int>& amount) { if (i < bobvis[cur]) { sum += amount[cur]; } else if (i == bobvis[cur]) { sum += amount[cur] / 2; } bool isLeaf = true; for (int j = 0; j < adj[cur].size(); j++) { if (adj[cur][j] != visited) { isLeaf = false; alice(i + 1, adj, adj[cur][j], cur, bobvis, sum, opt, amount); } } if (isLeaf) { opt = max(opt, sum); } } int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { vector<vector<int>> adj(amount.size()); for (auto v : edges) { adj[v[0]].push_back(v[1]); adj[v[1]].push_back(v[0]); } vector<int> obob; bob0(adj, bob, -1, obob); reverse(obob.begin(), obob.end()); vector<int> bobvis(amount.size(), 1e7); for (int i = 0; i < obob.size(); i++) { bobvis[obob[i]] = i; } int opt = INT_MIN; alice(0, adj, 0, -1, bobvis, 0, opt, amount); return opt; } }; ```
1
0
['Array', 'Depth-First Search', 'Breadth-First Search', 'Graph', 'C++']
0
most-profitable-path-in-a-tree
✅ 🌟 JAVA SOLUTION ||🔥 BEATS 100% PROOF🔥|| 💡 CONCISE CODE ✅ || 🧑‍💻 BEGINNER FRIENDLY
java-solution-beats-100-proof-concise-co-gple
Complexity Time complexity:O(n) Space complexity:O(n) Code
Shyam_jee_
NORMAL
2025-02-24T17:40:36.055369+00:00
2025-02-24T17:40:36.055369+00:00
35
false
# Complexity - Time complexity:$$O(n)$$ <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity:$$O(n)$$ <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```java [] class Solution { HashMap<Integer, List<Integer>> adj=new HashMap<>(); HashMap<Integer, Integer> bobMap=new HashMap<>(); int aliceIncome; public int mostProfitablePath(int[][] edges, int bob, int[] amount) { int n=amount.length; aliceIncome=Integer.MIN_VALUE; for(int[] edge:edges) { int u=edge[0]; int v=edge[1]; adj.computeIfAbsent(u, k->new ArrayList<>()).add(v); adj.computeIfAbsent(v, k->new ArrayList<>()).add(u); } boolean[] visited=new boolean[n]; dfsBob(bob, 0, visited); int income=0; Arrays.fill(visited, false); dfsAlice(0, 0, income, visited, amount); return aliceIncome; } private boolean dfsBob(int curr, int t, boolean[] visited) { visited[curr]=true; bobMap.put(curr, t); if(curr==0) return true; for(int ngbr:adj.getOrDefault(curr, new ArrayList<>())) { if(!visited[ngbr]) { if(dfsBob(ngbr, t+1, visited)) return true; } } bobMap.remove(curr); visited[curr]=false; return false; } private void dfsAlice(int curr, int t, int income, boolean[] visited, int[] amount) { visited[curr]=true; if(!bobMap.containsKey(curr) || t<bobMap.get(curr)) income+=amount[curr]; else if(t==bobMap.get(curr)) income+=amount[curr]/2; if(adj.getOrDefault(curr, new ArrayList<>()).size()==1 && curr!=0) aliceIncome=Math.max(income, aliceIncome); for(int ngbr : adj.getOrDefault(curr, new ArrayList<>())) { if(!visited[ngbr]) { dfsAlice(ngbr, t+1, income, visited, amount); } } } } ```
1
0
['Array', 'Tree', 'Depth-First Search', 'Graph', 'Java']
0
most-profitable-path-in-a-tree
Most Profitable path in the Tree easy solution in c++
most-profitable-path-in-the-tree-easy-so-zb5h
IntuitionApproachComplexity Time complexity: Space complexity: Code
Tushar_1920
NORMAL
2025-02-24T16:55:28.752568+00:00
2025-02-24T16:55:28.752568+00:00
108
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n = amount.size(), maxIncome = INT_MIN; tree.resize(n); visited.assign(n, false); queue<vector<int>> nodeQueue; nodeQueue.push({0, 0, 0}); for (vector<int> edge : edges) { tree[edge[0]].push_back(edge[1]); tree[edge[1]].push_back(edge[0]); } findBobPath(bob, 0); visited.assign(n, false); while (!nodeQueue.empty()) { int sourceNode = nodeQueue.front()[0], time = nodeQueue.front()[1], income = nodeQueue.front()[2]; if (bobPath.find(sourceNode) == bobPath.end() || time < bobPath[sourceNode]) { income += amount[sourceNode]; } else if (time == bobPath[sourceNode]) { income += (amount[sourceNode] / 2); } if (tree[sourceNode].size() == 1 && sourceNode != 0) { maxIncome = max(maxIncome, income); } for (int adjacentNode : tree[sourceNode]) { if (!visited[adjacentNode]) { nodeQueue.push({adjacentNode, time + 1, income}); } } visited[sourceNode] = true; nodeQueue.pop(); } return maxIncome; } private: unordered_map<int, int> bobPath; vector<bool> visited; vector<vector<int>> tree; bool findBobPath(int sourceNode, int time) { bobPath[sourceNode] = time; visited[sourceNode] = true; if (sourceNode == 0) { return true; } for (auto adjacentNode : tree[sourceNode]) { if (!visited[adjacentNode]) { if (findBobPath(adjacentNode, time + 1)) { return true; } } } bobPath.erase(sourceNode); return false; } }; ```
1
0
['C++']
1
most-profitable-path-in-a-tree
hehheh
hehheh-by-abhay0_20-gphc
IntuitionApproachComplexity Time complexity: Space complexity: Code
abhay0_20
NORMAL
2025-02-24T16:51:31.753043+00:00
2025-02-24T16:51:31.753043+00:00
22
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```python3 [] class Solution: def mostProfitablePath(self, edges: List[List[int]], bob: int, amount: List[int]) -> int: n=len(edges)+1 adj=[[] for _ in range(n)] parent=[-1]*n Bob=[float('inf')]*n for u, v in edges: adj[u].append(v) adj[v].append(u) def dfs(i, p): parent[i] = p for j in adj[i]: if j == p: continue dfs(j, i) dfs(0, -1) x=bob move=0 while x!=-1: Bob[x]=move move+=1 x=parent[x] def dfs_sum(i, dist, prev): alice=0 if dist < Bob[i]: alice=amount[i] # Alice takes full amount elif dist==Bob[i]: alice=amount[i]//2 # Both reach at the same time isLeaf=True maxLeafSum=-float('inf') for j in adj[i]: if j == prev: continue isLeaf=False maxLeafSum = max(maxLeafSum, dfs_sum(j, dist+1, i)) return alice if isLeaf else alice + maxLeafSum return dfs_sum(0, 0, -1) ```
1
0
['Python3']
0
most-profitable-path-in-a-tree
Python Solution:
python-solution-by-a_nishkumar-t92i
Code
A_nishkumar
NORMAL
2025-02-24T16:31:20.971057+00:00
2025-02-24T16:31:20.971057+00:00
27
false
# Code ```python3 [] class Solution: def mostProfitablePath(self, edges: List[List[int]], bob: int, amount: List[int]) -> int: n=len(edges)+1 adj=[[] for _ in range(n)] parent=[-1]*n Bob=[float('inf')]*n for u, v in edges: adj[u].append(v) adj[v].append(u) # Step 1: Build parent information using DFS def dfs(i, p): parent[i] = p for j in adj[i]: if j == p: continue dfs(j, i) dfs(0, -1) # Start with -1 as the parent of root # Step 2: Compute Bob's arrival times x=bob move=0 while x!=-1: Bob[x]=move move+=1 x=parent[x] # Step 3: DFS to compute Alice's best profit path def dfs_sum(i, dist, prev): alice=0 if dist < Bob[i]: alice=amount[i] # Alice takes full amount elif dist==Bob[i]: alice=amount[i]//2 # Both reach at the same time isLeaf=True maxLeafSum=-float('inf') for j in adj[i]: if j == prev: continue isLeaf=False maxLeafSum = max(maxLeafSum, dfs_sum(j, dist+1, i)) return alice if isLeaf else alice + maxLeafSum return dfs_sum(0, 0, -1) ```
1
0
['Python3']
0
most-profitable-path-in-a-tree
Very Easy Intuitive Simple BFS Solution, No DFS Used
very-easy-intuitive-simple-bfs-solution-e8evu
IntuitionApproachComplexity Time complexity: Space complexity: Code
utk50090
NORMAL
2025-02-24T16:20:50.930969+00:00
2025-02-24T16:20:50.930969+00:00
44
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n = amount.size(); vector<int> adj[n]; for(auto it : edges){ int u = it[0]; int v = it[1]; adj[u].push_back(v); adj[v].push_back(u); } vector<int> distAlice(n,-1); vector<int> distBob(n,-1); distAlice[0] = 0; queue<pair<int,int>> q; q.push({0,0}); while(!q.empty()){ auto it = q.front(); q.pop(); int node = it.first; int dist = it.second; for(auto adjNode : adj[node]){ if(distAlice[adjNode] == -1){ distAlice[adjNode] = dist+1; q.push({adjNode,dist+1}); } } } vector<int> parent(n,-1); queue<int> q2; q2.push(0); parent[0] = -1; while(!q2.empty()){ int node = q2.front(); q2.pop(); for(auto adjNode : adj[node]){ if(parent[adjNode] == -1 && adjNode != 0){ parent[adjNode] = node; q2.push(adjNode); } } } vector<int> bobPath; int currNode = bob; while(currNode != -1){ bobPath.push_back(currNode); currNode = parent[currNode]; } for(int i=0; i<bobPath.size(); i++){ distBob[bobPath[i]] = i; } queue<pair<int,int>> q3; q3.push({0,amount[0]}); int ans = INT_MIN; vector<int> vis(n,0); vis[0] = 1; while(!q3.empty()){ auto it = q3.front(); q3.pop(); int node = it.first; int profit = it.second; bool flag = 1; //ans = max(ans,profit); //cout<<profit<<" "; for(auto adjNode : adj[node]){ if(!vis[adjNode]){ flag = 0; if(distBob[adjNode] != -1 && distBob[adjNode] == distAlice[adjNode]){ q3.push({adjNode,profit+(amount[adjNode]/2)}); }else if(distBob[adjNode] != -1 && distBob[adjNode] < distAlice[adjNode]){ q3.push({adjNode,profit}); } else{ q3.push({adjNode,profit + amount[adjNode]}); } vis[adjNode] = 1; } } if(flag){ ans = max(ans,profit); } } return ans; } }; ```
1
0
['C++']
0
most-profitable-path-in-a-tree
Two-Pass O(n) Approach: Most Profitable Path
two-pass-on-approach-most-profitable-pat-g45b
IntuitionImagine the problem as a map of connected locations (nodes) with money amounts at each location. We have Alice starting at location 0 and Bob starting
rashid_sid
NORMAL
2025-02-24T15:20:14.581443+00:00
2025-02-24T15:57:35.803548+00:00
53
false
# Intuition Imagine the problem as a map of connected locations (nodes) with money amounts at each location. We have Alice starting at location 0 and Bob starting at another location. Bob moves towards location 0, and Alice also moves towards one of the leaf nodes. We want to find the path Alice can take that gives her the maximum income, considering Bob's movements and how they affect the amounts at each location. # Approach 1. Build the Map: We first create a map (adjacency list) representing the connections between the locations. 2. Find Bob's Path and Timestamps: We then find the path Bob takes from his starting location to location 0. As Bob moves, we record the time he reaches each location along his path. This "timestamp" tells us when Bob was at each location. 3. Calculate Alice's Maximum Profit: We use a depth-first search (DFS) to explore all possible paths Alice can take from location 0. As Alice moves, we check: If Alice and Bob reach the same location at the same time, Alice gets half the money. If Bob reached the location before Alice, Alice gets no money. Otherwise, Alice gets the full money amount. We keep track of the maximum profit Alice can get by exploring all paths. 4. Return the Result: We return the maximum profit. # Complexity - Time complexity: $$O(n)$$ This is because we visit each node at most once during the Bob's path finding and the DFS. <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: $$O(n)$$ <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n = amount.size(); vector<vector<int>> adj(n); for(auto i: edges){ adj[i[0]].push_back(i[1]); adj[i[1]].push_back(i[0]); } vector<int> timeStamp(n, 1e6); vector<int> parent(n, -1); function<bool(int, int, int)> findBobPath = [&](int node, int par, int time) { if (node == 0) { timeStamp[node] = time; return true; } for (int neighbor : adj[node]) { if (neighbor != par) { if (findBobPath(neighbor, node, time + 1)) { timeStamp[node] = time; return true; } } } return false; }; findBobPath(bob, -1, 0); function<int(int, int, int)> dfs = [&](int node, int par, int time) { int profit = amount[node]; if (timeStamp[node] == time) { profit /= 2; } else if (timeStamp[node] < time) { profit = 0; } int maxChildProfit = INT_MIN; bool isLeaf = true; for (int neighbor : adj[node]) { if (neighbor != par) { isLeaf = false; maxChildProfit = max(maxChildProfit, dfs(neighbor, node, time + 1)); } } if (isLeaf) { return profit; } else { return profit + maxChildProfit; } }; return dfs(0, -1, 0); } }; ```
1
0
['C++']
0
most-profitable-path-in-a-tree
Using DFS and BFS
using-dfs-and-bfs-by-sanjoli_121-0bm1
IntuitionThe problem requires us to maximize Alice's profit as she traverses a tree while Bob moves towards the root. Since Bob and Alice move independently, we
Sanjoli_121
NORMAL
2025-02-24T14:58:30.048079+00:00
2025-02-24T14:58:30.048079+00:00
58
false
# Intuition The problem requires us to maximize Alice's profit as she traverses a tree while Bob moves towards the root. Since Bob and Alice move independently, we need to track Bob’s path to correctly apply the reward-sharing rules. # Approach 1. **Build the Tree**: Convert the given `edges` list into an adjacency list representation. 2. **Find Bob's Path to Root**: Use DFS from Bob's starting node to track the time Bob reaches each node. 3. **Simulate Alice's Movement**: Use BFS to explore Alice’s paths and calculate her maximum possible income: - If Alice reaches a node first, she collects the full reward. - If Alice and Bob reach a node simultaneously, they split the reward. - If Bob reaches first, Alice gets nothing from that node. 4. **Identify Leaf Nodes**: Track Alice’s income only when she reaches a leaf node and update the maximum profit. # Complexity - **Time Complexity**: $$O(n)$$ - Constructing the tree takes $$O(n)$$. - Bob’s DFS takes $$O(n)$$. - Alice’s BFS takes $$O(n)$$. - **Space Complexity**: $$O(n)$$ - The adjacency list, visited array, and queue all use $$O(n)$$ space. # Code ```python from collections import defaultdict, deque class Solution(object): def mostProfitablePath(self, edges, bob, amount): """ :type edges: List[List[int]] :type bob: int :type amount: List[int] :rtype: int """ n = len(amount) self.tree = [[] for i in range(n)] self.bob_t = {} self.is_open = [False] * n profit = -float("inf") # Build adjacency list representation of the tree for u, v in edges: self.tree[u].append(v) self.tree[v].append(u) # Bob's DFS to determine time to reach each node self.dfs(bob, 0) # Alice's BFS traversal self.is_open = [False] * n q = deque([(0, 0, 0)]) # (node, time, income) while q: s, t, inc = q.popleft() # Apply reward-sharing rules if s not in self.bob_t or t < self.bob_t[s]: inc += amount[s] elif t == self.bob_t[s]: inc += amount[s] // 2 # Check if it's a leaf node (except root) if len(self.tree[s]) == 1 and s != 0: profit = max(inc, profit) # Expand search to child nodes for node in self.tree[s]: if not self.is_open[node]: q.append((node, t + 1, inc)) # Mark current node as visited self.is_open[s] = True return profit def dfs(self, s, t): """ DFS to find Bob’s time of arrival at each node """ self.is_open[s] = True self.bob_t[s] = t if s == 0: return True for node in self.tree[s]: if not self.is_open[node]: if self.dfs(node, t + 1): return True self.bob_t.pop(s, None) return False ```
1
0
['Python']
0
most-profitable-path-in-a-tree
Beats 100% || Basic and Simple
beats-100-basic-and-simple-by-akshatchaw-2yil
IntuitionStore path of Bob from node 'bob' to root. Also store timestamps for each node in the path.Now for Alice, just find max sum path from root to leaf with
akshatchawla1307
NORMAL
2025-02-24T14:14:59.086177+00:00
2025-02-24T14:14:59.086177+00:00
74
false
# Intuition **Store path of Bob from node 'bob' to root. Also store timestamps for each node in the path. Now for Alice, just find max sum path from root to leaf with conditions:** 1. if Alice reaches a node that is not in the path of bob, then Alice will get the full amount of profit or loss for that node. 2. else if Alice reaches the node before Bob, then also Alice will get full amount of profit or loss. 3. else if Alice reaches the node in the same time as Bob then Alice will get half the amount of profit or loss. 4. else Alice will not get any profit or loss. <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: O(V+E) <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: O(V) <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: int helper(vector<vector<int>>&adj,vector<int>&path,vector<int>&amount,vector<bool>&visited,int node,int time) { int sum=0; visited[node]=1; if(path[node]==-1 || path[node]>time) sum+=amount[node]; else if(path[node]==time) sum+=(amount[node]/2); int sum1=INT_MIN; for(int i=0;i<adj[node].size();i++) { if(!visited[adj[node][i]]) sum1=max(sum1,helper(adj,path,amount,visited,adj[node][i],time+1)); } if(sum1!=INT_MIN) sum+=sum1; return sum; } int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n=edges.size()+1; vector<int>bpath; vector<vector<int>>adj(n); for(vector<int>i:edges) { adj[i[0]].push_back(i[1]); adj[i[1]].push_back(i[0]); } queue<int>q; vector<bool>visited(n,0); vector<int>parent(n,-1); q.push(0); visited[0]=1; while(!q.empty()) { int node=q.front(); q.pop(); for(int i=0;i<adj[node].size();i++) { if(visited[adj[node][i]]) continue; visited[adj[node][i]]=1; parent[adj[node][i]]=node; q.push(adj[node][i]); if(adj[node][i]==bob) { int temp=adj[node][i]; while(temp!=-1) { bpath.push_back(temp); temp=parent[temp]; } break; } } if(bpath.size()) break; } vector<int>path(n,-1); for(int i=0;i<bpath.size();i++) path[bpath[i]]=i; fill(visited.begin(),visited.end(),0); return helper(adj,path,amount,visited,0,0); } }; ```
1
0
['C++']
0
most-profitable-path-in-a-tree
Beats 87.15% | C++ | DFS Approach | Linear Solution 🔥🔥🔥
beats-8715-c-dfs-approach-linear-solutio-p35s
IntuitionIn this problem, we need to find the most profitable path for Alice, given that Bob also moves towards the root node (0). Since the input is a tree, th
kdds598
NORMAL
2025-02-24T13:53:53.408353+00:00
2025-02-24T13:53:53.408353+00:00
44
false
# Intuition In this problem, we need to find the most profitable path for Alice, given that Bob also moves towards the root node (0). Since the input is a tree, there exists only one unique path between any two nodes, which simplifies our traversal. Key observations: 1. Since the input is a tree (i.e., a connected acyclic graph), we can use DFS to explore paths efficiently. 2. Bob will always move towards node `0`, meaning we can precompute Bob’s path. 3. Alice explores the tree using DFS while collecting profits based on the condition that Bob may have already visited or be present at certain nodes. # Approach 1. **Graph Representation:** Convert the `edges` list into an adjacency list representation of the tree. 2. **Finding Bob’s Path:** - Use DFS to trace Bob’s unique path from `bob` to the root (`0`). - Store Bob’s path to later adjust the `amount` values accordingly. 3. **Modifying Profits Based on Bob’s Path:** - Nodes in the first half of Bob’s path are set to `0` (as Bob reaches them before Alice). - If Bob and Alice reach a node simultaneously, we divide the `amount` by `2`. 4. **DFS for Maximum Profit Calculation:** - Alice starts at `0` and explores the tree recursively. - The goal is to find the path that yields the maximum total profit. # Complexity - **Time Complexity:** - Constructing the adjacency list takes **O(n)**. - Finding Bob’s path using DFS takes **O(n)**. - Modifying the amount array takes **O(n)**. - The final DFS traversal takes **O(n)**. - Overall, the complexity is **O(n)**. - **Space Complexity:** - The adjacency list takes **O(n)**. - Storing Bob’s path takes **O(n)** in the worst case. - The recursion stack for DFS takes **O(n)** in the worst case. - Hence, the overall space complexity is **O(n)**. # Code ```cpp class Solution { public: // Function to find Bob's path from his start position to node 0 bool findBobPath(vector<vector<int>> &adj, vector<int> &curr, vector<int> &bobpath, int start, int parent) { if (start == 0) { // If we reached root node, store the path bobpath = curr; return true; } curr.push_back(start); for (auto j : adj[start]) { if (j != parent) { if (findBobPath(adj, curr, bobpath, j, start)) return true; } } curr.pop_back(); return false; } // DFS to calculate maximum profit for Alice int dfs(vector<vector<int>> &adj, int start, int parent, vector<int>& amount) { int maxProfit = INT_MIN; for (auto nbr : adj[start]) { if (nbr != parent) { int subTreeProfit = amount[start] + dfs(adj, nbr, start, amount); maxProfit = max(maxProfit, subTreeProfit); } } return maxProfit == INT_MIN ? amount[start] : maxProfit; } int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n = edges.size() + 1; vector<vector<int>> adj(n); // Construct adjacency list for (auto &edge : edges) { adj[edge[0]].push_back(edge[1]); adj[edge[1]].push_back(edge[0]); } vector<int> bobpath, curr; findBobPath(adj, curr, bobpath, bob, -1); int pathLen = bobpath.size(); // Adjust amount array based on Bob's path for (int i = 0; i < pathLen / 2; i++) { amount[bobpath[i]] = 0; } if (pathLen % 2 == 1) { amount[bobpath[pathLen / 2]] = 0; } else { amount[bobpath[pathLen / 2]] /= 2; } // Alice starts DFS from node 0 return dfs(adj, 0, -1, amount); } };
1
0
['Tree', 'Depth-First Search', 'Graph', 'C++']
0
most-profitable-path-in-a-tree
Traversing Alice and Bob Path at the same time | Bidirectional Graph | Backtracking DFS + DP |
traversing-alice-and-bob-path-at-the-sam-hatt
IntuitionThere are 2 ways to solve this problem.1. To simulate both Alice and Bob path simultaneously.2. To seperatly calculate Bob Path and use it with time co
Prateek_Sarna_24
NORMAL
2025-02-24T13:25:34.719401+00:00
2025-02-24T20:03:52.679499+00:00
46
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> #### There are 2 ways to solve this problem. #### 1. To simulate both Alice and Bob path simultaneously. #### 2. To seperatly calculate Bob Path and use it with time constraints while traversing Alice path. ### We will use the 1st Approach. ## Note : We are given a bidirectional Graph. --- # Approach <!-- Describe your approach to solving the problem. --> #### 1. Requirments : 1. Find `N` or the total number of nodes by traversing the given edge list and finding the maxValue. Then Since indexed 0 based, so do N++. 2. Create an edge list of format `{0 : {child1, child2...}, 1: ...}` This could either be a Map OR a vector, since the keys are `[0, N)`. 3. Create GateState vector, this signifies the state of node at any point of traversal. This is different from Visited Array. 4. Make visited Array, since we are traversing a graph, we dont want to traverse a visited node again. 5. Use BFS to find parents of each Node, Make a Parent Vactor. #### 2. Backtracking : 1. Use a backtracking DFS function to explore Alice Path, But also note that we are simtaneously traversing bob path as well. `void func(CurrNode, BobNode, AliceIncome, visited, gateStateVector, EdgeList, AmountVector)` 2. At currNode, we check if BobNode == AliceNode, if that is the case then we share the amount, **Note : At this point the gate will always be closed, since no one reached it before**. 3. we mark the gateState as open, and also store the current information in a boolean variable which we will be using further. 4. If the they are on different nodes, then also check if gates are closed then only add to income. and mark open. 5. Make dfs calls. **Bob call will go to Parent[bobNode]**. Also note that we only call the unvisited child. 6. After we are back from recursive calls, we backtrack the state of visited array, and gateStates of both Alice and Bob. #### Base case : Although the code acts a self base case, but here we need a base case to update the maxNetIncome, So if all children of the node are Visited, then that means we are at leaf node, and we update the maxNetIncome. --- # Complexity - Time complexity: $$O(V + E)$$ <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: $$O(V + E)$$ <!-- Add your space complexity here, e.g. $$O(n)$$ --> --- # Code ```cpp [] class Solution { private: // final answer int maxNetIncome = INT_MIN; // function to find parent of each Node. void bfsFindParent(vector<vector<int>>& edgeList, vector<bool>& visited, vector<int>& parent) { queue<pair<int, int>> q; q.push({0, 0}); visited[0] = 1; while (q.size()) { auto front = q.front(); q.pop(); int Parent = front.first; int child = front.second; parent[child] = Parent; for (int& childNode : edgeList[child]) { if (!visited[childNode]) { visited[childNode] = 1; q.push({child, childNode}); } } } } // function to calcuate optimal path of Alice. void dfsBacktrack(vector<vector<int>>& edgeList, vector<int>& amount, vector<int>& parent, int aliceNode, int bobNode, int aliceIncome, vector<bool>& gateState, vector<bool>& visited) { // mark visited visited[aliceNode] = 1; // check gateState and if Alice and Bob are at same Node or not. bool AliceGateOpened = false; bool bobGateOpened = false; if (aliceNode == bobNode) { aliceIncome += amount[aliceNode] / 2; gateState[aliceNode] = true; AliceGateOpened = true; bobGateOpened = true; } else { if (!gateState[aliceNode]) { AliceGateOpened = true; gateState[aliceNode] = true; aliceIncome += amount[aliceNode]; } if (!gateState[bobNode]) { bobGateOpened = true; gateState[bobNode] = true; } } bool allChildUnvisited = true; for (int& childNode : edgeList[aliceNode]) { if (!visited[childNode]) { allChildUnvisited = false; // make recursive call dfsBacktrack(edgeList, amount, parent, childNode, parent[bobNode], aliceIncome, gateState, visited); } } // BASE CASE, IF CURR Node is Leaf node or not, if it is then update maxIncome if (allChildUnvisited) { maxNetIncome = max(maxNetIncome, aliceIncome); } // backtrack the states of visited array and gateState if (AliceGateOpened) { gateState[aliceNode] = false; } if (bobGateOpened) { gateState[bobNode] = false; } visited[aliceNode] = 0; } public: int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { // Find the total number of Nodes 'N'. int n = 0; for (auto& edge : edges) { n = max(n, max(edge[0], edge[1])); } n++; vector<vector<int>> edgeList(n); vector<int> parent(n, 0); // create required ege list for (auto& edge : edges) { int u = edge[0]; int v = edge[1]; edgeList[u].push_back(v); edgeList[v].push_back(u); } vector<bool> gateState(n, 0); vector<bool> visited(n, 0); bfsFindParent(edgeList, visited, parent); for (int i = 0; i < n; i++) { visited[i] = 0; } dfsBacktrack(edgeList, amount, parent, 0, bob, 0, gateState, visited); // return the result return maxNetIncome; } }; ```
1
0
['Hash Table', 'Dynamic Programming', 'Backtracking', 'Greedy', 'Tree', 'Depth-First Search', 'Breadth-First Search', 'Graph', 'Shortest Path', 'C++']
0
most-profitable-path-in-a-tree
Easy C++ Approach | DFS + BFS 🔥🔥🔥
easy-c-approach-dfs-bfs-by-rayleigh_123-drui
IntuitionApproachComplexity Time complexity: Space complexity: Code
RayLeigh_123
NORMAL
2025-02-24T13:25:11.163588+00:00
2025-02-24T13:25:11.163588+00:00
10
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```cpp [] class Solution { public: bool filltimer(vector<int>& timer, int node, unordered_map<int, list<int>>& adj,vector<bool>&vis,int count) { if(node==0){ return true; } vis[node] = true; for(auto neigh:adj[node]){ if(!vis[neigh]){ if(filltimer(timer,neigh,adj,vis,count+1)){ timer[neigh] = count+1; return true; } } } return false; } int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { unordered_map<int, list<int>> adj; for (auto edge : edges) { int u = edge[0]; int v = edge[1]; adj[u].push_back(v); adj[v].push_back(u); } int n = edges.size(); vector<int> timer(n + 1, -1); vector<bool> vis1(timer.size(), false); filltimer(timer, bob, adj,vis1,0); timer[bob] =0; int counter = 1; queue<int> q; q.push(0); vector<int> nodemax(n + 1, 0); nodemax[0] = amount[0]; vector<bool> vis(timer.size(), false); vis[0] = true; while (!q.empty()) { int sz = q.size(); for (int i = 0; i < sz; i++) { auto node = q.front(); q.pop(); for (auto neigh : adj[node]) { if (!vis[neigh]) { vis[neigh] = true; if (timer[neigh] == counter) { nodemax[neigh] =nodemax[node] + (amount[neigh]) / 2; }else if(timer[neigh]==-1 ||timer[neigh] > counter ){ nodemax[neigh] = amount[neigh]+ nodemax[node]; }else if (timer[neigh] < counter) { nodemax[neigh] = nodemax[node]; } q.push(neigh); } } } counter++; } int maxi = -1e9; for(int i=1;i<=n;i++){ if(adj[i].size()==1){ maxi = max(maxi,nodemax[i]); } } return maxi; } }; ```
1
0
['C++']
0
most-profitable-path-in-a-tree
simple thought process
simple-thought-process-by-harismanzar977-x0t1
Code
harismanzar977
NORMAL
2025-02-24T13:02:58.745599+00:00
2025-02-24T13:02:58.745599+00:00
49
false
# Code ```cpp [] class Solution { public: vector<int> leafnodes(int n, vector<vector<int>>& adj) { vector<int> leaf; for (int i = 0; i < n; i++) { if (adj[i].size() == 1) { leaf.push_back(i); } } sort(leaf.begin(), leaf.end()); return leaf; } int dfs(int node, vector<vector<int>> &adj, vector<int> &amount, vector<bool> &vis) { vis[node] = true; if (adj[node].size() == 1 && node != 0) { return amount[node]; } int maxProfit = INT_MIN; for (auto &neighbor : adj[node]) { if (!vis[neighbor]) { maxProfit = max(maxProfit, dfs(neighbor, adj, amount, vis)); } } vis[node] = false; return amount[node] + (maxProfit == INT_MIN ? 0 : maxProfit); } bool boba(int node, vector<vector<int>>& adj, vector<int>& v, vector<bool>& vis) { vis[node] = 1; if (node == 0) { v.push_back(node); return true; } for (auto& it : adj[node]) { if (!vis[it]) { if (boba(it, adj, v, vis)) { v.push_back(node); return true; } } } return false; } int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n = edges.size(); vector<vector<int>> adj(n + 1); for (auto& it : edges) { adj[it[0]].push_back(it[1]); adj[it[1]].push_back(it[0]); } vector<int> store(n + 1); for (int i = 0; i <= n; i++) { store[i] = amount[i]; } // for (auto &it : adj) { // for (auto &i : it) { // cout << i << " "; // } // cout << endl; // } vector<int> leafs = leafnodes(n + 1, adj); vector<int> b; vector<bool> vis(n + 1, 0); boba(bob, adj, b, vis); // for (auto& it : b) { // cout << it << " "; // } // cout << endl; int z = b.size(); for (int i = b.size() - 1; i > b.size() / 2; i--) { store[b[i]] = 0; } // int z = b.size(); if (z % 2 != 0) { int midIndex = z / 2; store[b[midIndex]] /= 2; } else { store[b[z/2]]=0; } // for (int i = 0; i <= n; i++) { // cout<<store[i]<<" "; // } // cout<<endl; vector<bool> visited(n+1,false); int ans = dfs(0,adj,store,visited); return ans; } }; ```
1
0
['Tree', 'Depth-First Search', 'Breadth-First Search', 'Graph', 'C++']
0
most-profitable-path-in-a-tree
Easiest solution in Java !!!!!!!!!!!!!!!!!!!!!!
easiest-solution-in-java-by-bips7aa-7t95
IntuitionThe problem presents Alice and Bob navigating through a tree structure, where Alice seeks to maximize her net income by reaching leaf nodes while Bob r
bips7aa
NORMAL
2025-02-24T12:17:36.277082+00:00
2025-02-24T12:17:36.277082+00:00
21
false
# Intuition The problem presents Alice and Bob navigating through a tree structure, where Alice seeks to maximize her net income by reaching leaf nodes while Bob returns to the root. The gates at each node either cost money (which negatively impacts Alice’s income) or provide cash rewards (which boosts Alice's income). To maximize her net income, Alice needs to strategically navigate the tree towards leaf nodes while considering Bob's path towards the root. In particular, we need to keep track of nodes where Alice and Bob might meet (their paths overlap), and how this influences Alice's total result. # Approach 1. Graph Representation: First, represent the tree using an adjacency list from the given edges. 2. Breadth-First Search (BFS): To determine the depth of each node and also find out how Bob will traverse the tree back to the root, perform a BFS from the root node (0). Maintain two arrays: one for the depth of each node and another to keep track of Bob’s travel path to each node. 3. DFS for Alice: Perform a Depth-First Search (DFS) from the root node (0) to explore all paths, aiming to reach every leaf node. As you explore each node, calculate Alice’s net income: If Alice arrives at a node before Bob, she collects the full reward or pays the full cost. If they arrive simultaneously, they split the cost/reward. Keep track of the maximum net income at each leaf node. 4. Calculating the Net Income: For each node Alice visits during her DFS, determine the cost/reward based on the timing of her and Bob's arrival. Aggregate the income and update the maximum when she reaches a leaf node. 5. Optimization: Since there can be many paths (due to the potential size of n), ensure that the algorithm remains efficient by avoiding redundant calculations. # Complexity - Time complexity: The overall time complexity is O(n) since both BFS and DFS will traverse each node and edge once, leading to a linear relationship with the number of nodes. - Space complexity: The space complexity is also O(n) due to the adjacency list representation of the tree and the additional space used for the depth and net income calculations. # Code ```java [] class Solution { public int mostProfitablePath(int[][] edges, int bob, int[] amount) { final int n = amount.length; List<Integer>[] tree = new List[n]; int[] parent = new int[n]; int[] aliceDist = new int[n]; Arrays.fill(aliceDist, -1); for (int i = 0; i < n; ++i) tree[i] = new ArrayList<>(); for (int[] edge : edges) { final int u = edge[0]; final int v = edge[1]; tree[u].add(v); tree[v].add(u); } dfs(tree, 0, -1, 0, parent, aliceDist); // Modify the amount along the path from node Bob to node 0. // For each node, // 1. If Bob reaches earlier than Alice does, change the amount to 0. // 2. If Bob and Alice reach simultaneously, devide the amount by 2. for (int u = bob, bobDist = 0; u != 0; u = parent[u], ++bobDist) if (bobDist < aliceDist[u]) amount[u] = 0; else if (bobDist == aliceDist[u]) amount[u] /= 2; return getMoney(tree, 0, -1, amount); } // Fills `parent` and `dist`. private void dfs(List<Integer>[] tree, int u, int prev, int d, int[] parent, int[] dist) { parent[u] = prev; dist[u] = d; for (final int v : tree[u]) { if (dist[v] == -1) dfs(tree, v, u, d + 1, parent, dist); } } private int getMoney(List<Integer>[] tree, int u, int prev, int[] amount) { // a leaf node if (tree[u].size() == 1 && tree[u].get(0) == prev) return amount[u]; int maxPath = Integer.MIN_VALUE; for (final int v : tree[u]) if (v != prev) maxPath = Math.max(maxPath, getMoney(tree, v, u, amount)); return amount[u] + maxPath; } } ```
1
0
['Java']
0
most-profitable-path-in-a-tree
Beat 44% complexity
beat-44-complexity-by-usac_07-atud
Code
Usac_07
NORMAL
2025-02-24T12:13:09.366527+00:00
2025-02-24T12:13:09.366527+00:00
43
false
# Code ```python3 [] class Solution: def mostProfitablePath(self, edges: List[List[int]], bob: int, amount: List[int]) -> int: n=len(edges)+1 adj=[[] for _ in range(n)] parent=[-1]*n Bob=[float('inf')]*n for u, v in edges: adj[u].append(v) adj[v].append(u) # Step 1: Build parent information using DFS def dfs(i, p): parent[i] = p for j in adj[i]: if j == p: continue dfs(j, i) dfs(0, -1) # Start with -1 as the parent of root # Step 2: Compute Bob's arrival times x=bob move=0 while x!=-1: Bob[x]=move move+=1 x=parent[x] # Step 3: DFS to compute Alice's best profit path def dfs_sum(i, dist, prev): alice=0 if dist < Bob[i]: alice=amount[i] # Alice takes full amount elif dist==Bob[i]: alice=amount[i]//2 # Both reach at the same time isLeaf=True maxLeafSum=-float('inf') for j in adj[i]: if j == prev: continue isLeaf=False maxLeafSum = max(maxLeafSum, dfs_sum(j, dist+1, i)) return alice if isLeaf else alice + maxLeafSum return dfs_sum(0, 0, -1) ```
1
0
['Python3']
0
most-profitable-path-in-a-tree
Python3: Map nodes to levels, build Bob's path, simulate Alice's path (BFS)
python3-map-nodes-to-levels-build-bobs-p-ccvh
Intuition & ApproachThere's only one way of going from a leaf to the root, so we calculate Bob's path first.In order to do that, we can just move Bob up the tre
bb-ctrl
NORMAL
2025-02-24T11:18:14.124194+00:00
2025-02-24T11:18:14.124194+00:00
47
false
# Intuition & Approach There's only one way of going from a leaf to the root, so we calculate Bob's path first. In order to do that, we can just move Bob up the tree. To know what is "up", we can pre-calculate the level of each node (BFS). Then we move Alice down the tree, level by level (BFS), while simultaneously moving Bob along his calculated path. At each level, we first halve the amount at the node that Bob is currently visiting, then we process the level from Alice's perspective. Whenever Alice encounters a node that doesn't have deeper adjacent nodes, we know that it's a leaf, so we update the best possible score accordingly. Technically, we could probably build Bob's path as we go (in the simulation for Alice), but it wouldn't change the time complexity. # Complexity - Time complexity: $$O(n)$$ - We traverse each node/edge a constant number of times. - Space complexity: $$O(n)$$ - We're keeping the level for each node, seen nodes (for the first BFS) and Bob's path, all of which are O(n). # Code ```python3 [] from collections import defaultdict import heapq class Solution: def mostProfitablePath(self, edges: List[List[int]], bob: int, amount: List[int]) -> int: # Build adjacencies adjs = defaultdict(list) for a, b in edges: adjs[a].append(b) adjs[b].append(a) # Map each node to its level levels_by_node = dict() q = deque([0]) seen = set() level = 0 while q: for _ in range(len(q)): x = q.popleft() seen.add(x) levels_by_node[x] = level for adj in adjs[x]: if adj not in seen: q.append(adj) level += 1 # Calculate Bob's path bob_path = [] q = deque([bob]) while q: x = q.popleft() bob_path.append(x) for adj in adjs[x]: if levels_by_node[adj] == levels_by_node[x] - 1: q.append(adj) # Do BFS from Alice's perspective q = deque([(0,0)]) # (node, total_score) level = 0 bob_idx = 0 best = -inf while q: if bob_idx < len(bob_path): amount[bob_path[bob_idx]] //= 2 for _ in range(len(q)): x, score = q.popleft() score += amount[x] is_leaf = True for adj in adjs[x]: if levels_by_node[adj] == levels_by_node[x] + 1: q.append((adj, score)) is_leaf = False if is_leaf: best = max(best, score) if bob_idx < len(bob_path): # Not strictly necessary, since we won't be returning to the node amount[bob_path[bob_idx]] = 0 bob_idx += 1 return best ```
1
0
['Python3']
1
most-profitable-path-in-a-tree
easy dfs solution
easy-dfs-solution-by-afatwapas-i06q
IntuitionApproachComplexity Time complexity: Space complexity: Code
afatwapas
NORMAL
2025-02-24T10:35:06.622301+00:00
2025-02-24T10:35:06.622301+00:00
58
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ -->O(v+e) - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ -->O(v^2) # Code ```cpp [] class Solution { vector<int> path; bool dfs(int node,int pa,vector<vector<int>>& adj,int d){ if(node==0 ){ return true; } bool f=0; for(auto i:adj[node]){ if(i!= pa && path[i]==-1){ path[i]= d; if(dfs(i,node,adj,d+1)) return true; path[i]=-1; } } return 0; } int solve(int node,int pa,vector<vector<int>>& adj,int d,vector<int>& amount){ int maxi=INT_MIN; int x=0; if(path[node] ==-1 || path[node]> d) x+= amount[node]; else if(path[node]==d) x+= amount[node]/2; for(auto i:adj[node]){ if(i!= pa){ maxi= max(maxi,solve(i,node,adj,d+1,amount)+x); } } if(maxi== INT_MIN) return x; return maxi; } public: int mostProfitablePath(vector<vector<int>>& edges, int bob, vector<int>& amount) { int n= edges.size()+1; vector<vector<int>> adj(n); for(auto i: edges){ adj[i[0]].push_back(i[1]); adj[i[1]].push_back(i[0]); } path.resize(n,-1); path[bob]=0; dfs(bob,-1,adj,1); int ans= solve(0,-1,adj,0,amount); return ans; } }; ```
1
0
['Array', 'Tree', 'Depth-First Search', 'Graph', 'C++']
0
most-profitable-path-in-a-tree
Two DFS. Simple solution
two-dfs-simple-solution-by-xxxxkav-0jz8
null
xxxxkav
NORMAL
2025-02-24T10:20:41.016784+00:00
2025-02-24T12:08:56.593182+00:00
72
false
``` class Solution: def mostProfitablePath(self, edges: List[List[int]], bob: int, amount: List[int]) -> int: def dfs_bob(node, parent, time): if node == 0: reach_time[node] = time return True for neighbor in graph[node]: if neighbor != parent and dfs_bob(neighbor, node, time+1): reach_time[node] = time return True return False def dfs_alice(node, parent, time): income = -inf for neighbor in graph[node]: if neighbor != parent: income = max(dfs_alice(neighbor, node, time+1), income) if income == -inf: # Current node is a leaf income = 0 if time < reach_time[node]: return income + amount[node] if time == reach_time[node]: return income + amount[node] // 2 return income graph = [[] for _ in range(len(edges)+1)] for u, v in edges: graph[u].append(v) graph[v].append(u) reach_time = [inf]*(len(edges)+1) dfs_bob(bob, -1, 0) return dfs_alice(0, -1, 0) ```
1
0
['Depth-First Search', 'Python3']
0
big-countries
Union and OR and the Explanation
union-and-or-and-the-explanation-by-new2-5xav
Two obvious solutions:\n\n#OR\nSELECT name, population, area\nFROM World\nWHERE area > 3000000 OR population > 25000000\n\nAnd Faster Union\n\n#Union\nSELECT na
new2500
NORMAL
2017-07-16T03:27:02.692000+00:00
2018-10-19T00:22:35.565708+00:00
39,133
false
Two obvious solutions:\n```\n#OR\nSELECT name, population, area\nFROM World\nWHERE area > 3000000 OR population > 25000000\n```\nAnd Faster Union\n```\n#Union\nSELECT name, population, area\nFROM World\nWHERE area > 3000000 \n\nUNION\n\nSELECT name, population, area\nFROM World\nWHERE population > 25000000\n```\n\nWhy `Union` is faster than `OR`? \n\nStrictly speaking, Using ` UNION` is faster when it comes to cases like **scan two different column like this**. \n\n(Of course using `UNION ALL` is much faster than `UNION` since we don't need to sort the result. But it violates the requirements)\n\n\nSuppose we are searching `population` and `area`, Given that MySQL usually uses one one index per table in a given query, so when it uses the 1st index rather than 2nd index, it would still have to do a table-scan to find rows that fit the 2nd index. \n\nWhen using `UNION`, each sub-query can use the index of its search, then combine the sub-query by `UNION`.\n\n\nI quote from a [benchmark](http://www.sql-server-performance.com/2011/union-or-sql-server-queries/) about `UNION` and `OR`, feel free to check it out:\n\n```\nScenario 3: Selecting all columns for different fields\n CPU Reads Duration Row Counts\nOR 47 1278 443 1228\nUNION 31 1334 400 1228\n\nScenario 4: Selecting Clustered index columns for different fields\n CPU Reads Duration Row Counts\nOR 0 319 366 1228\nUNION 0 50 193 1228\n```
300
6
[]
29
big-countries
One Line Of Code using UNION and OR
one-line-of-code-using-union-and-or-by-g-wfl5
\n\n# 1. Using OR\n\nselect name,population,area from world where (area>=3000000 or population>=25000000)\n\n# 2. Using UNION\n\nselect area,population,name\nfr
GANJINAVEEN
NORMAL
2023-03-31T13:15:07.772449+00:00
2023-03-31T13:15:07.772491+00:00
20,529
false
\n\n# 1. Using OR\n```\nselect name,population,area from world where (area>=3000000 or population>=25000000)\n```\n# 2. Using UNION\n```\nselect area,population,name\nfrom world\nwhere area>=3000000\nunion\nselect area,population,name\nfrom world\nwhere population>=25000000\n\n```\n# please upvote me it would encourage me alot\n
93
0
['MySQL']
5
big-countries
✅EASY MY SQL SOLUTION
easy-my-sql-solution-by-swayam28-s1da
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
swayam28
NORMAL
2024-08-07T11:35:32.260080+00:00
2024-08-10T08:20:42.291407+00:00
19,774
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\n# Write your MySQL query statement below\nselect name ,population,area from world where area>=3000000 or population>=25000000;\n```\n![Upvote.png](https://assets.leetcode.com/users/images/8bbfd48c-38db-4bdd-8928-11088f260c45_1723277982.4851594.png)
68
0
['MySQL']
2
big-countries
Pandas vs SQL | Elegant & Short | All 30 Days of Pandas solutions ✅
pandas-vs-sql-elegant-short-all-30-days-4d3qr
Complexity\n- Time complexity: O(n)\n- Space complexity: O(n)\n\n# Code\nPython []\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n return world[\n
Kyrylo-Ktl
NORMAL
2023-08-01T14:25:24.294468+00:00
2023-08-06T16:37:10.291172+00:00
12,759
false
# Complexity\n- Time complexity: $$O(n)$$\n- Space complexity: $$O(n)$$\n\n# Code\n```Python []\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n return world[\n (world[\'area\'] >= 3_000_000) | \\\n (world[\'population\'] >= 25_000_000)\n ][[\'name\', \'population\', \'area\']]\n```\n```SQL []\nSELECT name,\n population,\n area\n FROM World\n WHERE population >= 25000000\n OR area >= 3000000;\n```\n\n# Important!\n###### If you like the solution or find it useful, feel free to **upvote** for it, it will support me in creating high quality solutions)\n\n# 30 Days of Pandas solutions\n\n### Data Filtering \u2705\n- [Big Countries](https://leetcode.com/problems/big-countries/solutions/3848474/pandas-elegant-short-1-line/)\n- [Recyclable and Low Fat Products](https://leetcode.com/problems/recyclable-and-low-fat-products/solutions/3848500/pandas-elegant-short-1-line/)\n- [Customers Who Never Order](https://leetcode.com/problems/customers-who-never-order/solutions/3848527/pandas-elegant-short-1-line/)\n- [Article Views I](https://leetcode.com/problems/article-views-i/solutions/3867192/pandas-elegant-short-1-line/)\n\n\n### String Methods \u2705\n- [Invalid Tweets](https://leetcode.com/problems/invalid-tweets/solutions/3849121/pandas-elegant-short-1-line/)\n- [Calculate Special Bonus](https://leetcode.com/problems/calculate-special-bonus/solutions/3867209/pandas-elegant-short-1-line/)\n- [Fix Names in a Table](https://leetcode.com/problems/fix-names-in-a-table/solutions/3849167/pandas-elegant-short-1-line/)\n- [Find Users With Valid E-Mails](https://leetcode.com/problems/find-users-with-valid-e-mails/solutions/3849177/pandas-elegant-short-1-line/)\n- [Patients With a Condition](https://leetcode.com/problems/patients-with-a-condition/solutions/3849196/pandas-elegant-short-1-line-regex/)\n\n\n### Data Manipulation \u2705\n- [Nth Highest Salary](https://leetcode.com/problems/nth-highest-salary/solutions/3867257/pandas-elegant-short-1-line/)\n- [Second Highest Salary](https://leetcode.com/problems/second-highest-salary/solutions/3867278/pandas-elegant-short/)\n- [Department Highest Salary](https://leetcode.com/problems/department-highest-salary/solutions/3867312/pandas-elegant-short-1-line/)\n- [Rank Scores](https://leetcode.com/problems/rank-scores/solutions/3872817/pandas-elegant-short-1-line-all-30-days-of-pandas-solutions/)\n- [Delete Duplicate Emails](https://leetcode.com/problems/delete-duplicate-emails/solutions/3849211/pandas-elegant-short/)\n- [Rearrange Products Table](https://leetcode.com/problems/rearrange-products-table/solutions/3849226/pandas-elegant-short-1-line/)\n\n\n### Statistics \u2705\n- [The Number of Rich Customers](https://leetcode.com/problems/the-number-of-rich-customers/solutions/3849251/pandas-elegant-short-1-line/)\n- [Immediate Food Delivery I](https://leetcode.com/problems/immediate-food-delivery-i/solutions/3872719/pandas-elegant-short-1-line-all-30-days-of-pandas-solutions/)\n- [Count Salary Categories](https://leetcode.com/problems/count-salary-categories/solutions/3872801/pandas-elegant-short-1-line-all-30-days-of-pandas-solutions/)\n\n\n### Data Aggregation \u2705\n- [Find Total Time Spent by Each Employee](https://leetcode.com/problems/find-total-time-spent-by-each-employee/solutions/3872715/pandas-elegant-short-1-line-all-30-days-of-pandas-solutions/)\n- [Game Play Analysis I](https://leetcode.com/problems/game-play-analysis-i/solutions/3863223/pandas-elegant-short-1-line/)\n- [Number of Unique Subjects Taught by Each Teacher](https://leetcode.com/problems/number-of-unique-subjects-taught-by-each-teacher/solutions/3863239/pandas-elegant-short-1-line/)\n- [Classes More Than 5 Students](https://leetcode.com/problems/classes-more-than-5-students/solutions/3863249/pandas-elegant-short/)\n- [Customer Placing the Largest Number of Orders](https://leetcode.com/problems/customer-placing-the-largest-number-of-orders/solutions/3863257/pandas-elegant-short-1-line/)\n- [Group Sold Products By The Date](https://leetcode.com/problems/group-sold-products-by-the-date/solutions/3863267/pandas-elegant-short-1-line/)\n- [Daily Leads and Partners](https://leetcode.com/problems/daily-leads-and-partners/solutions/3863279/pandas-elegant-short-1-line/)\n\n\n### Data Aggregation \u2705\n- [Actors and Directors Who Cooperated At Least Three Times](https://leetcode.com/problems/actors-and-directors-who-cooperated-at-least-three-times/solutions/3863309/pandas-elegant-short/)\n- [Replace Employee ID With The Unique Identifier](https://leetcode.com/problems/replace-employee-id-with-the-unique-identifier/solutions/3872822/pandas-elegant-short-1-line-all-30-days-of-pandas-solutions/)\n- [Students and Examinations](https://leetcode.com/problems/students-and-examinations/solutions/3872699/pandas-elegant-short-1-line-all-30-days-of-pandas-solutions/)\n- [Managers with at Least 5 Direct Reports](https://leetcode.com/problems/managers-with-at-least-5-direct-reports/solutions/3872861/pandas-elegant-short/)\n- [Sales Person](https://leetcode.com/problems/sales-person/solutions/3872712/pandas-elegant-short-1-line-all-30-days-of-pandas-solutions/)\n
41
0
['Python', 'Python3', 'MySQL', 'Pandas']
4
big-countries
FULL Explanation UNLIKE ANYOTHERS - PANDAS SOLUTION 🤔🧠🤯
full-explanation-unlike-anyothers-pandas-y5me
Intuition\nAs a begginer with pandas , I\'ll try my best to explain it.\nSo , What is pandas ? \nIt\'s a data visualization library in python and it\'s extremle
Sarah-2002
NORMAL
2023-08-02T08:28:36.838387+00:00
2023-08-02T08:28:36.838412+00:00
3,396
false
# Intuition\nAs a begginer with pandas , I\'ll try my best to explain it.\n***So , What is pandas ?*** \nIt\'s a data visualization library in python and it\'s extremley helpful for data science and data analysis .\n\n***What is our problem here ?***\n1. We have 1 table called "World"\n2. 5 rows\n*We need to return the name , population and area of big countries*\n\n\n***What makes a country Big ?***\n- if it has an area of at least three million (i.e., 3000000 km2)\n- if it has a population of at least twenty-five million (i.e., 25000000).\n# Lets get started :)\n\n# Approach\n- We first import the pandas library to be able to use it as \'pd \'\n- Define a function called \'big_countries\' in which it takes a dataframe called \'world\'and must return a dataframe .\n- Moving on to our third line of code , we create a new dataframe called \' big_countries_df \' .\n- The new dataframe filters our exisiting dataframe \'world\' to match our condition of areas and population as follows :\n\n```\nworld[(world[\'area\'] >= 3000000) | (world[\'population\'] >= 25000000)]\n```\n- We then create a results dataframe , which only contains the name , population and area returned .\n- Finally we return the results dataframe \n# A QUESTION YOU MIGHT BE ASKING : WHAT\'S A DATAFRAME ?\nIn pandas , a dataframe is a datastructure and it\'s similar to a table in Relational database . If you\'re comming from SQL Background , you can think of it as a 2-D tabular dara with rows and columns .\n\n\n**Very Important : In pandas we take dataframe as an input and return one as an output , it\'s very important to remmember this !**\n\n\n\n\nNow that\'s it , hope my explnation was clear enough : )\n\n# Code\n```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n\n big_countries_df = world[(world[\'area\'] >= 3000000) | (world[\'population\'] >= 25000000)]\n\n\n result_df = big_countries_df[[\'name\', \'population\', \'area\']]\n\n return result_df\n```
30
0
['Brainteaser', 'Pandas']
2
big-countries
Easy and Simple Solution
easy-and-simple-solution-by-mayankluthya-69b5
Please Like ❤️IntuitionThe task is to filter countries from the World table based on their population or area. The condition for a country to be included is: It
mayankluthyagi
NORMAL
2025-01-28T01:22:38.017121+00:00
2025-01-28T01:22:38.017121+00:00
8,194
false
```mysql SELECT name, population, area FROM World WHERE area >= 3000000 OR population >= 25000000; ``` # Please Like ❤️ ![Please Like](https://media.tenor.com/heEyHbV8iaUAAAAM/puss-in-boots-shrek.gif) # Intuition The task is to filter countries from the `World` table based on their population or area. The condition for a country to be included is: 1. Its area is greater than or equal to 3,000,000 square kilometers. 2. Its population is greater than or equal to 25,000,000. # Approach 1. **Filter Conditions**: Use the `WHERE` clause with the logical operator `OR` to check for either of the conditions: - `area >= 3000000` - `population >= 25000000` 2. **Select Columns**: Return the `name`, `population`, and `area` columns for the filtered countries. # Complexity - **Time complexity**: $$O(n)$$, where $$n$$ is the number of rows in the `World` table. - **Space complexity**: $$O(1)$$, as no additional data structures are used.
25
0
['MySQL']
0
big-countries
Simple Two liner pandas code. Very easy to understand!!!
simple-two-liner-pandas-code-very-easy-t-9qnt
\n# Approach\n Describe your approach to solving the problem. \n- Use boolean indexing to filter the rows where either the "area" is greater than or equal to 3
sriganesh777
NORMAL
2023-08-01T13:22:56.855820+00:00
2023-08-01T13:22:56.855852+00:00
12,844
false
\n# Approach\n<!-- Describe your approach to solving the problem. -->\n- Use boolean indexing to filter the rows where either the "area" is greater than or equal to 3 million or the "population" is greater than or equal to 25 million.\n- Select only the columns "name," "population," and "area" from the filtered DataFrame.\n- Return the resulting DataFrame containing the name, population, and area of the big countries.\n\n# Code\n```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n big_countries_df = world[(world[\'area\'] >= 3000000) | (world[\'population\'] >= 25000000)]\n return big_countries_df[[\'name\', \'population\', \'area\']]\n\n```
19
0
['Database', 'Pandas']
6
big-countries
📌 Simple MySql query easy to understand
simple-mysql-query-easy-to-understand-by-oyhv
\nselect name, population, area from World where area>=3000000 or population>=25000000\n
dark_wolf_jss
NORMAL
2022-06-24T10:33:58.774222+00:00
2022-06-24T10:33:58.774258+00:00
5,211
false
```\nselect name, population, area from World where area>=3000000 or population>=25000000\n```
19
0
['MySQL']
1
big-countries
Easy AC
easy-ac-by-leiyu-ma9n
\nSELECT name,population,area \nFROM World \nWHERE population>25000000 OR area>3000000;\n
leiyu
NORMAL
2017-05-22T12:16:38.899000+00:00
2017-05-22T12:16:38.899000+00:00
12,904
false
```\nSELECT name,population,area \nFROM World \nWHERE population>25000000 OR area>3000000;\n```
18
3
[]
2
big-countries
✅💯Beats 98.63% of users || Best solution in MySQL || Beginner friendly👍🤝
beats-9863-of-users-best-solution-in-mys-gg7c
PLEASE DO UPVOTE\n\n\n\n# Code\nMySQL []\n# Write your MySQL query statement below\nselect name, population, area from World where area>=3000000 \nunion \nselec
anand18402
NORMAL
2024-01-13T12:03:06.155874+00:00
2024-01-13T12:03:06.155904+00:00
2,268
false
# PLEASE DO UPVOTE\n![image_2024-01-13_173056315.png](https://assets.leetcode.com/users/images/2de8d914-7c29-4952-8dc1-11ab89c24c6c_1705147255.0091817.png)\n\n\n# Code\n```MySQL []\n# Write your MySQL query statement below\nselect name, population, area from World where area>=3000000 \nunion \nselect name, population, area from World where population>=25000000\n```\n\n
13
0
['Database', 'MySQL']
1
big-countries
SQL | Oracle Union and OR
sql-oracle-union-and-or-by-jainshubham76-c13r
\nIs Union is faster than OR?\n\n\nUsing UNION is faster in some cases when it comes to cases like scan two different column like this.\n\n(Of course using UNIO
jainshubham766
NORMAL
2022-04-20T19:41:58.906689+00:00
2022-04-20T19:41:58.906722+00:00
2,589
false
```\nIs Union is faster than OR?\n```\n\nUsing UNION is faster in some cases when it comes to cases like scan two different column like this.\n\n(Of course using UNION ALL is much faster than UNION since we don\'t need to sort the result. But it violates the requirements)\n\nUnion not always faster than or!\nMost good DBMSs use an internal query optimizer to combine the SELECT statements\nbefore they are even processed. In theory, this means that from a performance\nperspective, there should be no real difference between using multiple WHERE clause\nconditions or a UNION. I say in theory, because, in practice, most query optimizers\ndon\u2019t always do as good a job as they should. Your best bet is to test both methods to\nsee which will work best for you.\n\n```\n/* Write your PL/SQL query statement below */\n \n -- Approach 01: Using OR Operator\n SELECT name, population, area\n FROM World\n Where (area >= 3000000 ) OR (population >=25000000);\n \n \n -- Approach 02: Using UNION Operator --faster than OR\n SELECT name, population, area\n FROM World\n Where (area >= 3000000 ) \n \n UNION\n\n SELECT name, population, area\n FROM World\n Where (population >=25000000);\n```\n\n
12
0
['MySQL', 'Oracle']
2
big-countries
pandas || 1 line, filter || T/S: 81% / 57%
pandas-1-line-filter-ts-81-57-by-spauldi-xams
\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n \n return world.loc[(world[\'population\'] >= 25_000_000) |\n
Spaulding_
NORMAL
2024-05-14T07:42:38.579723+00:00
2024-05-29T05:30:03.352116+00:00
3,709
false
```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n \n return world.loc[(world[\'population\'] >= 25_000_000) |\n (world[\'area\'] >= 3_000_000)].iloc[:,[0,3,2]]\n \n```\n[https://leetcode.com/problems/big-countries/submissions/1265055097/](https://leetcode.com/problems/big-countries/submissions/1265055097/)\n\n\n\nI could be wrong, but I think that time complexity is *O*(*N*) and space complexity is *O*(*N*), in which *N* ~ `len(world)`.
11
0
['Pandas']
0
big-countries
Simplest SOlution (With Approach) 😎😎 -> 😮😮 -> 🤯🤯
simplest-solution-with-approach-by-jeele-zb98
Intuition The query retrieves information (name, population, and area) for countries that either have a large area (over 3 million) or a high population (over 2
jeeleej
NORMAL
2024-12-30T16:05:24.975773+00:00
2024-12-30T16:05:24.975773+00:00
1,338
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> - The query retrieves information (`name`, `population`, and `area`) for countries that either have a large area (over 3 million) or a high population (over 25 million). It uses the `OR` operator to include countries that meet at least one of these criteria. # Approach <!-- Describe your approach to solving the problem. --> - **Table and Columns:** The query operates on the `World` table, filtering by `name`, `population`, and `area` columns. 2. **Conditions:** It filters rows where `area >= 3000000` or `population >= 25000000`. 3. **Combination of Conditions:** The `OR` operator ensures that if either condition is true, the row is included. 4. **Selection:** It returns `name`, `population`, and `area` for the matching rows. --- # Code ```PostgreSQL [] -- Write your PostgreSQL query statement below SELECT name , population , area FROM World WHERE area >= 3000000 OR population >= 25000000; ``` ```MySQL [] -- Write your PostgreSQL query statement below SELECT name , population , area FROM World WHERE area >= 3000000 OR population >= 25000000; ``` ```MSSQL [] -- Write your PostgreSQL query statement below SELECT name , population , area FROM World WHERE area >= 3000000 OR population >= 25000000; ``` ```Oracle [] -- Write your PostgreSQL query statement below SELECT name , population , area FROM World WHERE area >= 3000000 OR population >= 25000000; ``` --- ![sution section image.jpeg](https://assets.leetcode.com/users/images/907e9aee-df0e-44f1-b0f8-28f43451da06_1735574506.7454605.jpeg)
10
0
['Database', 'MySQL', 'Oracle', 'MS SQL Server', 'PostgreSQL']
1
big-countries
✅100% Beast Solution || Easy Sql Query
100-beast-solution-easy-sql-query-by-gou-ngeu
Intuition\nThis SQL query selects the name, population, and area columns from the World table where either the population is greater than or equal to 25,000,000
gouravsharma2806
NORMAL
2024-02-10T06:31:18.087768+00:00
2024-02-10T06:31:18.087801+00:00
6,986
false
# Intuition\nThis SQL query selects the name, population, and area columns from the World table where either the population is greater than or equal to 25,000,000 or the area is greater than or equal to 3,000,000.\n\n# Approach\nThe approach is to filter rows from the World table based on the conditions specified in the WHERE clause. We want to retrieve countries or entities with either a large population or a large area.\n\n# Complexity\n- Time Complexity: The time complexity depends on the indexing of the population and area columns in the World table. If properly indexed, the time complexity will be O(log n) where n is the number of rows in the World table. Otherwise, it could be O(n) if a full table scan is required.\n- Space Complexity: The space complexity is O(1) because we are only retrieving a fixed number of columns (name, population, and area) and it doesn\'t depend on the size of the data being queried.\n\n# Code\n```\nselect \nname,population,area\nfrom World\nwhere population>=25000000 or area>=3000000;\n\n```
9
0
['MySQL']
0
big-countries
Easiest MYSQL Solution with EXPLANATION✅
easiest-mysql-solution-with-explanation-u8ito
1. Understanding the Question :\n\nThe question wants us to fetch 3 columns ( name, population, area) from the world table. The condition is to return the rows
aftabalam2209
NORMAL
2022-10-28T10:18:43.410491+00:00
2022-10-28T10:18:43.410638+00:00
4,279
false
**1. Understanding the Question :**\n\nThe question wants us to fetch 3 columns ( name, population, area) from the world table. The condition is to return the rows where the area is atleast 3000000 (which means - area>=3000000) and the population is atleast 25000000 (i.e population>=25000000 ).\n\n**2. Simply structure the query using SELECT and WHERE keyword.**\n\n```\nSELECT name,population,area FROM world WHERE area>=3000000 OR population>=25000000;\n```\n\n
9
0
['MySQL', 'Oracle']
0
big-countries
✅3/50 | All SQL50 Explained
350-all-sql50-explained-by-piotr_maminsk-1zl5
\nmysql [MySQL]\nSELECT \n name\n ,population\n ,area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000\n;\n\nmssql [MS SQL Server]\nSELECT
Piotr_Maminski
NORMAL
2024-09-25T20:45:01.288591+00:00
2024-10-04T14:24:04.346424+00:00
2,431
false
\n```mysql [MySQL]\nSELECT \n name\n ,population\n ,area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000\n;\n```\n```mssql [MS SQL Server]\nSELECT \n name\n ,population\n ,area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000\n;\n```\n```oraclesql [Oracle]\nSELECT \n name\n ,population\n ,area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000\n;\n```\n```postgresql [PostgreSQL]\nSELECT \n name\n ,population\n ,area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000\n;\n```\n```pythondata [Pandas]\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n return world[\n (world[\'area\'] >= 3_000_000) | (world[\'population\'] >= 25_000_000)\n ][[\'name\', \'population\', \'area\']]\n```\n\n# Explained\n\n- **WHERE area >= 3000000 OR population >= 25000000**\nThe **WHERE** clause is used to filter records based on specified conditions. Here, it filters the rows to include only those where either:\nThe area column has a value greater than or equal to 3,000,000 (indicating the country has a large area), or\nThe population column has a value greater than or equal to 25,000,000 (indicating the country has a large population).\nThe **OR** operator ensures that a row is included if either of the conditions is true.\n# Order of Execution \n\n**FROM** World > **WHERE** area >= 3000000 OR population >= 25000000 > **SELECT** name, population, area\n\n![image.png](https://assets.leetcode.com/users/images/8e79f743-e4a2-446a-811c-f4941d9a0d63_1727286203.1927686.png)\n![image.png](https://assets.leetcode.com/users/images/cdbcac52-b5c7-45e2-823e-87b59d33a741_1727295353.7574322.png)\n
8
0
['Python', 'Python3', 'MySQL', 'Oracle', 'MS SQL Server', 'PostgreSQL', 'Pandas']
0
big-countries
📌 Simple MySql query || use of OR ✅
simple-mysql-query-use-of-or-by-mayankgu-qc2a
upvote if you like the sol \uD83D\uDC4D\n# Code\n\n# Write your MySQL query statement below\nselect name , population , area from world where area >= 3000000 or
mayankgurjar1570
NORMAL
2024-06-03T11:36:49.303950+00:00
2024-06-03T11:36:49.303971+00:00
5,228
false
# upvote if you like the sol \uD83D\uDC4D\n# Code\n```\n# Write your MySQL query statement below\nselect name , population , area from world where area >= 3000000 or population >=25000000;\n\n```
8
0
['MySQL']
1
big-countries
MySql | simple one
mysql-simple-one-by-ahmedna126-prmv
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
ahmedna126
NORMAL
2023-04-20T18:49:08.798416+00:00
2023-11-07T11:48:44.908188+00:00
1,349
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\n# Write your MySQL query statement below\nSELECT name,population,area FROM World WHERE area >= 3000000 OR population >= 25000000;\n```\n\n## For additional problem-solving solutions, you can explore my repository on GitHub: [GitHub Repository](https://github.com/ahmedna126/java_leetcode_challenges)\n\n![abcd1.jpeg](https://assets.leetcode.com/users/images/2f64acf9-b686-43c3-badd-e45cc6fb9362_1699357720.4804177.jpeg)\n
8
0
['MySQL']
0
big-countries
SQL easy solution
sql-easy-solution-by-tovam-szbb
\nselect name, population, area \nfrom World\nwhere area > 3000000 or population > 25000000\n\n\nLike it ? please upvote !
TovAm
NORMAL
2021-10-24T16:22:42.156986+00:00
2021-10-24T16:22:42.157027+00:00
1,951
false
```\nselect name, population, area \nfrom World\nwhere area > 3000000 or population > 25000000\n```\n\n**Like it ? please upvote !**
8
2
['MySQL']
1
big-countries
✔✔✔EZ - beats 99%⚡⚡⚡MySQL || MS SQL Server || Oracle || PostgreSQL⚡⚡⚡
ez-beats-99mysql-ms-sql-server-oracle-po-x8fu
Code\n\nSELECT name, population, area\nFROM World\nWHERE area >= \'3000000\' OR population >= \'25000000\'\n\n\n# for all LeetCode SQL50 solutions...
anish_sule
NORMAL
2024-02-27T05:31:09.498552+00:00
2024-04-25T05:27:34.978028+00:00
1,795
false
# Code\n```\nSELECT name, population, area\nFROM World\nWHERE area >= \'3000000\' OR population >= \'25000000\'\n```\n\n# [for all LeetCode SQL50 solutions...](https://github.com/anish-sule/LeetCode-SQL-50)
7
0
['MySQL', 'Oracle', 'MS SQL Server', 'PostgreSQL']
2
big-countries
Easy solution using Where
easy-solution-using-where-by-swayam248-d5ln
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
Swayam248
NORMAL
2024-10-01T17:03:33.302976+00:00
2024-10-01T17:03:33.303007+00:00
6,752
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```mysql []\n# Write your MySQL query statement below\nSELECT name, population, area from World where area >= 3000000 OR population >= 25000000;\n```
6
0
['MySQL']
3
big-countries
MySQL Clean Solution
mysql-clean-solution-by-shree_govind_jee-abct
Code\n\n# Write your MySQL query statement below\nSELECT name, population, area FROM World\nWHERE population >= 25000000 OR area >= 3000000;\n
Shree_Govind_Jee
NORMAL
2024-07-03T15:50:29.564134+00:00
2024-07-03T15:50:29.564158+00:00
4,932
false
# Code\n```\n# Write your MySQL query statement below\nSELECT name, population, area FROM World\nWHERE population >= 25000000 OR area >= 3000000;\n```
6
0
['Database', 'MySQL']
0
big-countries
✅Easiest Basic SQL Solution | 3 Approaches | Beginner Level🏆
easiest-basic-sql-solution-3-approaches-f7748
\n# Approach 1\nSELECT \nname, population, area\nFROM World\nHAVING area >= 3000000 OR population >= 25000000;\n\n or\n \nSELECT\nname,population,area\nFROM Wor
dev_yash_
NORMAL
2024-02-25T11:45:48.612696+00:00
2024-03-17T09:26:00.139555+00:00
651
false
```\n# Approach 1\nSELECT \nname, population, area\nFROM World\nHAVING area >= 3000000 OR population >= 25000000;\n ```\n or\n ```\nSELECT\nname,population,area\nFROM World\nWHERE area>=3000000 OR population>=25000000;\n```\n\nApproach to achieve the same result is by using a UNION of two queries: one selecting countries based on area criteria and the other based on population criteria. Here\'s how you can do it:\n```\n\n#Approach 2\nSELECT name, population, area\nFROM World\nWHERE area >= 3000000\n\nUNION\n\nSELECT name, population, area\nFROM World\nWHERE population >= 25000000;\n```\n\n\nAnother approach involves using a CASE statement to check each country\'s area and population against the defined thresholds. We can use this to create a new column indicating whether a country is considered big or not based on the given criteria, and then filter out the rows where this column equals 1. Here\'s how you can implement it:\n```\n#Approach 3\nSELECT name, population, area\nFROM (\n SELECT \n name, population, area,\n CASE\n WHEN area >= 3000000 OR population >= 25000000 THEN 1\n ELSE 0\n END AS is_big\n FROM World\n) AS big_countries\nWHERE is_big = 1;\n```\n
6
0
['Union Find', 'MySQL', 'MS SQL Server']
2
big-countries
Simple Two liner SQL code. Very easy to understand!!!
simple-two-liner-sql-code-very-easy-to-u-arb0
- This SQL query selects the name, population, and area columns from the World table and filters the results to include countries with either a large area (grea
komronabdulloev
NORMAL
2023-10-10T05:48:03.694359+00:00
2023-10-10T05:48:03.694387+00:00
783
false
##### ***- This SQL query selects the name, population, and area columns from the World table and filters the results to include countries with either a large area (greater than or equal to 3,000,000 square units) or a large population (greater than or equal to 25,000,000 people).***\n\n# Code\nSELECT name, population, area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000;\n```
6
0
['MySQL']
1
big-countries
Easy Code || MySQL
easy-code-mysql-by-me_avi-3der
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
me_avi
NORMAL
2023-10-05T18:04:31.704718+00:00
2023-10-05T18:04:31.704747+00:00
2,949
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\n# Write your MySQL query statement below\nselect name,population,area\nfrom World\nwhere area >= 3000000 or population >=25000000\n```
6
0
['MySQL']
1
big-countries
Beats 91.03% || Easy || Fast || Clean Solution with detailed explanation
beats-9103-easy-fast-clean-solution-with-tc9l
\n# Approach\n1. Data Creation: The code starts by creating a pandas DataFrame world using the provided data dictionary. The DataFrame consists of columns \'nam
rimapanja
NORMAL
2023-08-01T02:15:14.840718+00:00
2023-08-01T02:15:14.840738+00:00
4,339
false
\n# Approach\n1. **Data Creation**: The code starts by creating a pandas DataFrame `world` using the provided data dictionary. The DataFrame consists of columns \'name\', \'continent\', \'area\', \'population\', and \'gdp\', where each row represents information about a country.\n\n2. **Filtering**: The code then filters the DataFrame using boolean indexing. It creates a new DataFrame `big_countries_df`, which contains only the rows that satisfy the specified conditions:\n - Rows with an area greater than or equal to 3,000,000 square kilometers (3 million km\xB2).\n - Rows with a population greater than or equal to 25,000,000 people (25 million).\n\n3. **Column Selection**: After filtering, the code selects only the \'name\', \'population\', and \'area\' columns from the `big_countries_df`. This creates the final result DataFrame `result_df` containing the name, population, and area of the big countries.\n\n4. **Output**: Finally, the code prints the `result_df`, which shows the names, populations, and areas of the countries that meet the criteria for being big.\n\nOverall, the code efficiently uses pandas DataFrame operations to filter and select the relevant data, resulting in a concise and readable solution to find the big countries based on the given conditions.\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- **Time complexity**:\n1. DataFrame Creation: The time complexity of creating the pandas DataFrame `world` from the input data dictionary is O(n), where n is the number of rows in the DataFrame. This is because each row\'s data needs to be processed and inserted into the DataFrame.\n\n2. Filtering: The time complexity of the filtering step using boolean indexing is O(n), where n is the number of rows in the DataFrame. This is because it iterates through each row to check the conditions (area >= 3000000 or population >= 25000000) and keeps the rows that satisfy these conditions.\n\n3. Column Selection: The time complexity of selecting the \'name\', \'population\', and \'area\' columns from the filtered DataFrame is O(1), as it\'s a constant-time operation to extract specific columns from the DataFrame.\n\n**Overall Time Complexity: O(n)**, where n is the number of rows in the DataFrame.\n\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- **Space complexity**:\n1. DataFrame: The space complexity of the `world` DataFrame is O(n), as it stores all the rows of the data.\n\n2. Filtering: The space complexity of the `big_countries_df` DataFrame, which contains the filtered rows, is also O(n) as it keeps all the rows that meet the filtering conditions.\n\n3. Result DataFrame: The space complexity of the `result_df` DataFrame, which contains the \'name\', \'population\', and \'area\' columns of the big countries, is O(m), where m is the number of big countries (the number of rows that meet the filtering conditions).\n\n**Overall Space Complexity: O(n)**, as the space complexity is primarily dominated by the DataFrame storing all the data and the filtered rows.\n\nNote: The space complexity does not consider the space taken by temporary variables or data structures used during the intermediate steps, as they usually have constant space requirements and do not grow with the input size.\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n # Filtering the big countries\n big_countries_df = world[(world[\'area\'] >= 3000000) | (world[\'population\'] >= 25000000)]\n\n # Selecting the desired columns\n result_df = big_countries_df[[\'name\', \'population\', \'area\']]\n\n return result_df\n```
6
0
['Pandas']
3
big-countries
My Solution
my-solution-by-momo89-u7uf
\nSELECT name, population, area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000\n
momo89
NORMAL
2022-09-20T08:08:19.796639+00:00
2022-09-22T06:12:11.173276+00:00
2,142
false
```\nSELECT name, population, area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000\n```
6
0
[]
0
big-countries
Day 1 || Pandas || Clean Code || Python
day-1-pandas-clean-code-python-by-nadeem-s76z
\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n # selecting the required columns\n df = world[[\'name\',\'population\',
nadeem_ansari14
NORMAL
2023-08-01T08:26:19.553117+00:00
2023-08-01T09:14:54.401746+00:00
974
false
```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n # selecting the required columns\n df = world[[\'name\',\'population\',\'area\']]\n \n\t# operation to get result\n resdf = df[(df[\'population\']>=25000000) | (df[\'area\']>=3000000)]\n \n return resdf\n```
5
0
['Python3']
0
big-countries
MySQL || Best Solution ✅
mysql-best-solution-by-primordial_black-w9ix
Code\n\n# Write your MySQL query statement below\nSELECT name,population,area FROM World\nWHERE area >= 3000000 or population >= 25000000;\n\n> Please Upvote if
Primordial_Black
NORMAL
2023-01-31T11:23:16.452485+00:00
2023-01-31T11:23:49.272224+00:00
3,745
false
# Code\n```\n# Write your MySQL query statement below\nSELECT name,population,area FROM World\nWHERE area >= 3000000 or population >= 25000000;\n```\n> Please Upvote if it was Helpful.
5
0
['MySQL']
0
big-countries
✅ MySQL || Straightforward && SIMPLE SQL query
mysql-straightforward-simple-sql-query-b-dlad
\n\n\n\tSELECT name, population, area FROM world WHERE (population >= 25000000 OR area >= 3000000 );
abhinav_0107
NORMAL
2023-01-16T18:42:02.740354+00:00
2023-01-16T18:42:02.740390+00:00
3,842
false
![image](https://assets.leetcode.com/users/images/c32aa70f-8ce4-40a5-b064-a8b97ced00c5_1673894432.987766.png)\n\n\n\tSELECT name, population, area FROM world WHERE (population >= 25000000 OR area >= 3000000 );
5
0
['MySQL']
0
big-countries
MySql | simple one
mysql-simple-one-by-venkat089-ekwn
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
Venkat089
NORMAL
2022-12-29T06:02:53.209936+00:00
2022-12-29T06:02:53.209991+00:00
4,005
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\n# Write your MySQL query statement below\nselect name,population,area from World\nwhere area >=3000000 or population >= 25000000;\n```
5
0
['MySQL']
1
big-countries
✔️ easy mySQL solution
easy-mysql-solution-by-coding_menance-l7xr
Remember, mySQL is case-insensitive. Typing the table names in lower case or all upper case makes on difference. Same goes for data contents within the table.\n
coding_menance
NORMAL
2022-10-24T18:48:03.851552+00:00
2022-10-27T08:09:47.637742+00:00
1,755
false
Remember, mySQL is case-insensitive. Typing the table names in lower case or all upper case makes on difference. Same goes for data contents within the table.\n\n```\nSELECT name, population, area FROM World WHERE area>=3000000 OR population>=25000000;\n```
5
0
['MySQL']
0
big-countries
[MY SQL] Easy and Faster than 89%
my-sql-easy-and-faster-than-89-by-overec-mjao
```\nselect name,population,area\nfrom World\nwhere (World.area >=3000000) or (World.population >=25000000) ;
overeckon
NORMAL
2022-08-12T09:55:50.862773+00:00
2022-08-12T09:55:50.862815+00:00
2,650
false
```\nselect name,population,area\nfrom World\nwhere (World.area >=3000000) or (World.population >=25000000) ;
5
0
['MySQL']
1
big-countries
Easy to Understand | SQL | Union | OR
easy-to-understand-sql-union-or-by-sai72-w29l
\n#OR\nselect \nname, population, area \nfrom world \nwhere area>=3000000 \nor population>=25000000;\n\n\n#UNION\nselect \nname, population, area \nfrom world\n
sai721
NORMAL
2022-04-17T05:44:49.571818+00:00
2022-04-17T05:44:49.571859+00:00
578
false
```\n#OR\nselect \nname, population, area \nfrom world \nwhere area>=3000000 \nor population>=25000000;\n\n\n#UNION\nselect \nname, population, area \nfrom world\nwhere area>=3000000\n\nunion\n\nselect \nname, population, area \nfrom world \nwhere \npopulation>=25000000;\n```\n\n**UNION** is faster than **OR**\n\n\nIf you have any **doubts**, feel **free to ask**...\nIf you understand the **concept**. Don\'t Forget to **upvote**\n\n
5
0
['Union Find', 'MySQL']
1
big-countries
Very Fast Solution using WITH clause:Runtime: 492 ms, faster than 99.03%
very-fast-solution-using-with-clauserunt-eqbf
\nwith \n a AS\n (select name, population, area\n from world\n where area > 3000000),\n b AS\n (select name, population, area\n
apewithakeyboard
NORMAL
2020-01-31T05:41:01.590126+00:00
2020-01-31T05:43:24.756573+00:00
1,280
false
```\nwith \n a AS\n (select name, population, area\n from world\n where area > 3000000),\n b AS\n (select name, population, area\n from world\n where population > 25000000)\nselect * from a\nunion\nselect * from b\n;\n```\n\nSolution here will compute the aggregation first, give it a variable and allow us to reference it later in the query(could be multiple times too). The result from two querys are materialized(this boosts performence), oracle database optimizes the query by treating the query name as either an inline view or as a temporary table.\n
5
0
['Oracle']
2
big-countries
Help! Same code getting run time error when using Microsoft SQL Server
help-same-code-getting-run-time-error-wh-fbu3
Same code as below works in MySQL but returns run-time error using SQL Server. What have I missed? Anybody knows? Thanks!\n\n\nSELECT name, population, area\nFR
__nick__
NORMAL
2019-03-04T00:52:35.853395+00:00
2019-03-04T00:52:35.853438+00:00
2,473
false
Same code as below works in MySQL but returns run-time error using SQL Server. What have I missed? Anybody knows? Thanks!\n\n```\nSELECT name, population, area\nFROM World\nWHERE area>3000000 OR population>25000000;\n```\n\nError message:\n```\nRuntime Error Message:\nsql: insert into World (name, continent, area, population, gdp) values (?, ?, ?, ?, ?), values: [(\'Afghanistan\', \'Asia\', 652230, 25500100, 20343000000), (\'Albania\', \'Europe\', 28748, 2831741, 12960000000), (\'Algeria\', \'Africa\', 2381741, 37100000, 188681000000), (\'Andorra\', \'Europe\', 468, 78115, 3712000000), (\'Angola\', \'Africa\', 1246700, 20609294, 100990000000)]\n```
5
0
[]
16
big-countries
✅💯🔥✔️Simple My SQL Code || 🔥✔️✅💯
simple-my-sql-code-by-patilprajakta-ul4o
We need to find the name, population, and area of the big countries. A "big" country is defined as one with either an area greater than or equal to 3,000,000 or
patilprajakta
NORMAL
2025-01-12T14:01:12.926686+00:00
2025-01-12T14:01:12.926686+00:00
1,601
false
We need to find the name, population, and area of the big countries. A **"big"** country is defined as one with either an area greater than or equal to 3,000,000 or a population greater than or equal to 25,000,000. To do this, we first select the columns name, population, and area from the table. ![Screenshot 2025-01-12 192718.png](https://assets.leetcode.com/users/images/493b5001-c0b1-4c2f-98e5-c9ae21622ea3_1736690354.6433594.png) Then, we add a WHERE condition to filter the results, using OR to check if the area is greater than or equal to 3,000,000 or the population is greater than or equal to 25,000,000.exity here, e.g. $$O(n)$$ --> ![Screenshot 2025-01-12 192835.png](https://assets.leetcode.com/users/images/6ab4135e-c67e-4821-abc2-c4ab28c6f6b0_1736690412.1961052.png) # Code select name,population,area from World where area>=3000000 or population>=25000000;
4
0
['MySQL']
0
big-countries
1 line solution
1-line-solution-by-victorhpxavier-aviq
\n# Code\n\n# Write your MySQL query statement below\nSELECT name, population, area FROM World WHERE area >= 3000000 or population >= 25000000;\n
VictorhpXavier
NORMAL
2024-07-30T20:32:46.530916+00:00
2024-07-30T20:32:46.530938+00:00
446
false
\n# Code\n```\n# Write your MySQL query statement below\nSELECT name, population, area FROM World WHERE area >= 3000000 or population >= 25000000;\n```
4
0
['MySQL']
0
big-countries
Beats 94% | Python pandas
beats-94-python-pandas-by-u23cs159-0amu
\n\n\n\n# Code\n\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n return world[(world.area >= 3000000) | (world.population >
u23cs159
NORMAL
2024-06-12T17:22:49.487516+00:00
2024-06-12T17:22:49.487539+00:00
3,042
false
![Screenshot 2024-06-12 225205.png](https://assets.leetcode.com/users/images/5feaf96f-6428-47ed-9840-43f547e30465_1718212955.0255735.png)\n\n\n\n# Code\n```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n return world[(world.area >= 3000000) | (world.population >= 25000000)][[\'name\',\'population\',\'area\']]\n```
4
0
['Pandas']
1
big-countries
🔥 Clean & Easy || Oracle 🔥
clean-easy-oracle-by-someonescoding-krdw
Code\n\nSELECT name, population, area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000\n\n\n
SomeonesCoding
NORMAL
2024-04-11T07:05:05.112190+00:00
2024-04-11T07:05:05.112234+00:00
2,355
false
# Code\n```\nSELECT name, population, area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000\n```\n![1676295806139337963.png](https://assets.leetcode.com/users/images/9e2a91b9-a343-4aba-8ab4-aa6d96abab01_1712819024.985364.png)\n
4
0
['Oracle']
0
big-countries
Easy SQL Quary
easy-sql-quary-by-deepakumar-developer-oycc
\n\n# Quary\n\nselect name,population,area\nfrom World \nwhere population >= 25000000\nor area >= 3000000\n
deepakumar-developer
NORMAL
2023-12-27T15:19:31.647417+00:00
2023-12-27T15:19:31.647439+00:00
1,809
false
\n\n# Quary\n```\nselect name,population,area\nfrom World \nwhere population >= 25000000\nor area >= 3000000\n```
4
0
['MySQL']
2
big-countries
Filtering and applying conditional selection
filtering-and-applying-conditional-selec-yoap
Intuition\n Describe your first thoughts on how to solve this problem. \n We need to select certain entities which meet our condition, then we should select the
abdelazizSalah
NORMAL
2023-09-15T18:01:00.696095+00:00
2023-09-15T18:01:00.696116+00:00
152
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n* We need to select certain entities which meet our condition, then we should select the name, population, and area columns only. \n* This will be done using conditional selection\n* Then applying filtering function\n# Approach\n<!-- Describe your approach to solving the problem. -->\n* Apply conditionl selection by selecting elements which are \n 1. (world.population >= 25000000)\n 2. (world.area >= 3000000)\n* After that, use the filter function, to select the needed columns only\n * .filter(items=[\'name\', \'population\', \'area\'])\n\n# Code\n```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n # world = world[(world.population >= 25000000) | (world.area >= 3000000)]\n\n # # Drop all columns except \'name\',\'population\',\'area\'\n # columns_to_keep = [\'name\',\'population\',\'area\',]\n\n # world = world[columns_to_keep]\n # return world\n return world[(world.population >= 25000000) | (world.area >= 3000000)].filter(items=[\'name\', \'population\', \'area\'])\n\n```
4
0
['Pandas']
0
big-countries
One Liner Solution - Optimum Solution
one-liner-solution-optimum-solution-by-d-8ogk
Please Upvote my solution, if you find it helpful ;)\n\n# Intuition\nThe problem asks us to find "big" countries based on certain conditions related to their ar
deepankyadav
NORMAL
2023-05-30T16:25:15.275780+00:00
2023-05-30T20:30:53.475361+00:00
395
false
## ***Please Upvote my solution, if you find it helpful ;)***\n\n# Intuition\nThe problem asks us to find "big" countries based on certain conditions related to their area and population. We need to retrieve the name, population, and area of countries that have either an area greater than or equal to 3,000,000 or a population greater than or equal to 25,000,000. To do this, we will query the **\'World\'** table and apply the necessary filtering conditions.\n\n# Approach\nHere is a step-by-step explanation of your approach:\n\n1. We start by selecting the name, population, and area columns from the World table. This allows us to retrieve the necessary information about the countries.\n1. We use the WHERE clause to apply the filtering conditions. In this case, the conditions state that we want to include countries with an area greater than or equal to 3,000,000 or a population greater than or equal to 25,000,000.\n1. Finally, we retrieve the name, population, and area of countries that satisfy the filtering conditions.\n\n# Complexity\n- Time complexity:\nThe time complexity of your solution depends on the number of countries in the World table. We need to scan through each row in the table to retrieve the required information. Therefore, the time complexity can be considered $$O(N)$$, where N is the number of countries.\n\n- Space complexity:\nThe space complexity of your solution depends on the number of "big" countries that satisfy the given conditions. Since we are selecting the name, population, and area columns, the space required to store the result set will depend on the number of countries that meet the criteria. Let\'s assume this is M countries. Therefore, the space complexity can be considered $$O(M)$$.\n\n# Code\n```\n# Write your MySQL query statement below\nselect name, population, area from World where area>= 3000000 or population>=25000000\n```\n***Please Upvote my solution, if you find it helpful ;)***\n![6a87bc25-d70b-424f-9e60-7da6f345b82a_1673875931.8933976.jpeg](https://assets.leetcode.com/users/images/a8b1fa49-3b41-42a7-9a62-7693f9cca234_1685478652.2438877.jpeg)\n\n
4
0
['Database', 'MySQL']
0
big-countries
595: Solution with step by step explanation
595-solution-with-step-by-step-explanati-yjfs
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
Marlen09
NORMAL
2023-03-17T04:54:22.780058+00:00
2023-03-17T04:54:22.780107+00:00
3,148
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nSELECT name, population, area \nFROM World \nWHERE area >= 3000000 OR population >= 25000000;\n\n```
4
0
['Database', 'MySQL']
0
big-countries
MySQL Solution
mysql-solution-by-pranto1209-nsjj
Code\n\n# Write your MySQL query statement below\nselect name, population, area from World \nwhere area >= 3000000 or population >= 25000000;\n
pranto1209
NORMAL
2023-03-07T17:29:03.032597+00:00
2023-03-13T16:01:15.206501+00:00
5,541
false
# Code\n```\n# Write your MySQL query statement below\nselect name, population, area from World \nwhere area >= 3000000 or population >= 25000000;\n```
4
0
['MySQL']
0
big-countries
Easy-peezy SQL Query Solution
easy-peezy-sql-query-solution-by-anshika-oopa
1) Simple Method\n\nselect name, population, area from World where area>=3000000 or population>=25000000\n\n\n2) Using Union\n```\nselect name, population, area
anshika_yadav
NORMAL
2022-06-05T06:33:20.469425+00:00
2022-06-05T06:36:13.513019+00:00
368
false
1) Simple Method\n```\nselect name, population, area from World where area>=3000000 or population>=25000000\n```\n\n2) Using Union\n```\nselect name, population, area \nfrom World \nwhere area >= 3000000\n\nunion\n\nselect name, population, area \nfrom World \nwhere population >= 25000000\n
4
0
['MySQL']
0
big-countries
SQL easy-peasy
sql-easy-peasy-by-yehudisk-77jv
\nSELECT name, population, area\nFROM World\nWHERE area > 3000000 or population > 25000000\n
yehudisk
NORMAL
2020-08-20T14:14:29.893271+00:00
2020-08-20T14:14:29.893324+00:00
697
false
```\nSELECT name, population, area\nFROM World\nWHERE area > 3000000 or population > 25000000\n```
4
0
[]
1
big-countries
Easy and Simple Solution | Beginner-friendly🚀
easy-and-simple-solution-beginner-friend-vc6h
SQL QueryIf you found this solution helpful, please give it an upvote! 🌟✨ It really motivates me to share more solutions like this. 😊👍 Happy coding! 💻🐱‍🏍 Intuit
Yadav_Akash_
NORMAL
2025-01-30T18:19:17.387984+00:00
2025-01-30T18:19:17.387984+00:00
634
false
## **SQL Query** ```sql SELECT name, population, area FROM World WHERE area >= 3000000 OR population >= 25000000; ``` **If you found this solution helpful, please give it an upvote! 🌟✨ It really motivates me to share more solutions like this. 😊👍 Happy coding! 💻🐱‍🏍** <img src="https://assets.leetcode.com/users/images/6e8c623a-1111-4d21-9a5b-54e00e7feabb_1738093236.165277.jpeg" width=250px> ## **Intuition** We need to find countries that are considered **big**, which means they must satisfy at least one of these conditions: 1. **Area is at least 3,000,000 km²** (`area >= 3000000`). 2. **Population is at least 25,000,000** (`population >= 25000000`). Since a country only needs to meet **one** of these conditions, we use the **OR** operator in the `WHERE` clause. --- ## **Approach** 1. **Select the required columns**: `name`, `population`, and `area`. 2. **Filter big countries** using the `WHERE` clause: - `area >= 3000000` OR - `population >= 25000000`. 3. **Return the result in any order** as sorting is not required. --- ## **Complexity Analysis** - **Time Complexity**: **O(N)** → The query scans all `N` rows and applies the `WHERE` conditions. - **Space Complexity**: **O(1)** → The query does not use extra space beyond the result set.
3
0
['MySQL']
0
big-countries
Easy solution on select query using MySQL
easy-solution-on-select-query-using-mysq-na74
IntuitionApproachComplexity Time complexity: Space complexity: Code
Siddarth9911
NORMAL
2024-12-19T07:30:29.346844+00:00
2024-12-19T07:30:29.346844+00:00
1,189
false
# Intuition <!-- Describe your first thoughts on how to solve this problem. --> # Approach <!-- Describe your approach to solving the problem. --> # Complexity - Time complexity: <!-- Add your time complexity here, e.g. $$O(n)$$ --> - Space complexity: <!-- Add your space complexity here, e.g. $$O(n)$$ --> # Code ```mysql [] SELECT name,population,area FROM World where population>=25000000 or area>=3000000; ```
3
0
['MySQL']
0
big-countries
simple and easy solution || MySQL
simple-and-easy-solution-mysql-by-shishi-tw1t
\n# if it\'s help, please up \u2B06 vote! \u2764\uFE0F\n\n###### Let\'s Connect on LinkedIn: www.linkedin.com/in/shishirrsiam\n###### Let\'s Connect on Facebook
shishirRsiam
NORMAL
2024-09-27T14:37:27.529667+00:00
2024-09-27T14:37:27.529709+00:00
2,873
false
\n# if it\'s help, please up \u2B06 vote! \u2764\uFE0F\n\n###### Let\'s Connect on LinkedIn: www.linkedin.com/in/shishirrsiam\n###### Let\'s Connect on Facebook: www.fb.com/shishirrsiam\n\n# Code\n```mysql []\nselect name, population, area from World\nwhere population >= 25000000 or area >= 3000000;\n```
3
0
['Database', 'MySQL']
6
big-countries
Big Countries
big-countries-by-tejdekiwadiya-81ba
SQL Query\n\nsql\nSELECT name, population, area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000;\n\n\n# Explanation\n\nThis SQL query is designed t
tejdekiwadiya
NORMAL
2024-07-03T18:41:14.582442+00:00
2024-07-03T18:41:14.582473+00:00
973
false
# SQL Query\n\n```sql\nSELECT name, population, area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000;\n```\n\n# Explanation\n\nThis SQL query is designed to retrieve specific columns from a table named `World`. Let\'s break down each part:\n\n1. **SELECT Clause**:\n - `SELECT name, population, area`: This specifies the columns to be returned in the query result. It selects the `name`, `population`, and `area` columns from the `World` table.\n\n2. **FROM Clause**:\n - `FROM World`: This specifies the table from which to retrieve the data. The data is being selected from a table named `World`.\n\n3. **WHERE Clause**:\n - `WHERE area >= 3000000 OR population >= 25000000`: This is the condition that filters the rows to be returned.\n - `area >= 3000000`: This condition checks if the area of a country is greater than or equal to 3,000,000 square kilometers.\n - `OR population >= 25000000`: This condition checks if the population of a country is greater than or equal to 25,000,000 people.\n - The `OR` operator means that rows that meet either one of these conditions will be included in the result set.\n\n# Query Result\nThe query returns the `name`, `population`, and `area` of countries that either have an area of at least 3,000,000 square kilometers or a population of at least 25,000,000 people.\n\nThis query can be used to find large or highly populated countries based on the criteria defined in the `WHERE` clause. The use of the `OR` operator ensures that countries meeting either of the conditions will be included in the results, making it possible to identify significant countries based on either their geographical size or their population.
3
0
['Database', 'MySQL']
0
big-countries
100 % FAST && EASY SQL Query || Well - Explained || Beats 99.9 %
100-fast-easy-sql-query-well-explained-b-dlru
Intuition\n Describe your first thoughts on how to solve this problem. \nSELECT --> for show the table...\nname, population, area --> column names...\nFROM -->
ganpatinath07
NORMAL
2024-01-27T14:39:42.739589+00:00
2024-01-27T14:39:42.739607+00:00
2,167
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nSELECT --> for show the table...\nname, population, area --> column names...\nFROM --> for association...\nWorld --> Table name...\nWHERE --> Clause...\narea >= 3000000 --> Condition 01...\nOR --> Connector...\npopulation >= 25000000 --> Condition 02...\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\nUsing Fundamentals of SQL...\n\n# Complexity\n- Time complexity: O(n)\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: O(1)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nSELECT name, population, area FROM World\nWHERE area >= 3000000 OR population >= 25000000;\n```
3
0
['Database', 'MySQL']
0
big-countries
Simple Two liner pandas code.
simple-two-liner-pandas-code-by-ankita29-45n1
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\nUse boolean indexing to filter the rows where either the "area" is greate
Ankita2905
NORMAL
2023-11-21T09:20:01.388935+00:00
2023-11-21T09:20:01.388963+00:00
3,157
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\nUse boolean indexing to filter the rows where either the "area" is greater than or equal to 3 million or the "population" is greater than or equal to 25 million.\nSelect only the columns "name," "population," and "area" from the filtered DataFrame.\nReturn the resulting DataFrame containing the name, population, and area of the big countries.\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n big_countries_df = world[(world[\'area\'] >= 3000000) | (world[\'population\'] >= 25000000)]\n return big_countries_df[[\'name\', \'population\', \'area\']] \n```
3
0
['Pandas']
1
big-countries
Find Big Countries using MySQL
find-big-countries-using-mysql-by-samabd-zj24
Intuition\n Describe your first thoughts on how to solve this problem. \nWe need to find countries that meet the specified conditions.\n\n# Approach\n Describe
samabdullaev
NORMAL
2023-10-13T21:35:00.158868+00:00
2023-10-13T21:35:00.158885+00:00
956
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nWe need to find countries that meet the specified conditions.\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n1. Select specific columns from the table.\n\n > `SELECT` \u2192 This command retrieves data from a database\n\n2. Check if they meet the given conditions.\n\n > `WHERE` \u2192 This command filters a result set to include only records that fulfill a specified condition\n\n > `OR` \u2192 This operator displays a record if any of the conditions separated by it are `TRUE`\n\n > `>=` \u2192 This operator compares if one value is greater than or equal to another value\n\n# Complexity\n- Time complexity: $O(n)$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n`n` is the number of rows in the table. This is because the query examines each row in the table once to check the conditions.\n\n# Code\n```\nSELECT name, population, area\nFROM World\nWHERE area >= 3000000 OR population >= 25000000\n```
3
0
['MySQL']
0
big-countries
Python/Pandas One Liner Solution, Common Error addressed
pythonpandas-one-liner-solution-common-e-k5jy
Intuition\n Describe your first thoughts on how to solve this problem. \nA mistake that might be hard to debug for beginners is that the \'or\' and \'and\' Pyth
sonalibasu24
NORMAL
2023-08-06T17:42:16.871923+00:00
2023-08-06T17:42:58.967961+00:00
1,354
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nA mistake that might be hard to debug for beginners is that the \'or\' and \'and\' Python statements require truth-values, resulting in the following error:\n```\nValueError: The truth value of a Series is ambiguous.\n Use a.empty, a.bool(), a.item(), a.any() or a.all().\n```\n\nThis happens because for pandas, these are considered ambiguous\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\nUse "bitwise" | (or) or & (and) operations. \nThese are overriden for the dataframe structures and allow us to perform the SQL equivalent of and/or in a where clause.\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nO(n) - Checks through all rows to validate specified conditions.\n\n\n# Code\n```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n return world[(world.population >= 25000000) | (world.area >= 3000000)].filter(items=[\'name\', \'population\', \'area\'])\n```
3
0
['Database', 'Python3', 'Pandas']
0
big-countries
SIMPLE 2 LINE SOLUTION|| ❤️❤️
simple-2-line-solution-by-khushantgola-4fnq
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \nIt is very simple just
KhushantGola
NORMAL
2023-08-03T18:52:21.927611+00:00
2023-08-03T18:52:21.927642+00:00
190
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n*It is very simple just create a DataFrame \n*Put the condition into the DataFrame\n*Return the DataFrame\n(You can also store the required DataFrame into another DataFrame)\n\n# Code\n```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n df=world[(world[\'area\']>=3000000)| (world[\'population\']>=25000000)]\n return df[[\'name\',\'population\',\'area\']]\n\n# if want to store values into another dataframe just use thiS approach---->\n\n\ndf=world[(world[\'area\']>=3000000)| (world[\'population\']>=25000000)]\nresult=df[[\'name\',\'population\',\'area\']]\nreturn result\n\n\n\n```
3
0
['Pandas']
0
big-countries
Python easy solutions
python-easy-solutions-by-purvi85-0u0t
Intuition\nThe problem requires finding and displaying information about countries that are considered "big" based on specific criteria. The two criteria for a
Purvi85
NORMAL
2023-08-02T05:51:20.755026+00:00
2023-08-02T05:51:20.755057+00:00
644
false
# Intuition\nThe problem requires finding and displaying information about countries that are considered "big" based on specific criteria. The two criteria for a country to be considered big are:\n\n* Area >= 3000000 (3 million square kilometers)\n* Population >= 25000000 (25 million people)\n\nThe task is to filter out countries from the given data that meet either of these criteria and then present their names, populations, and areas.\n\n# Approach\n(world[\'area\'] >= 3000000) and (world[\'area\'] >= 3000000)\nThese are the two conditons we are using an return with specific columns.\n\n# Code\n```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n big_countries_df = world[(world[\'area\'] >= 3000000) | (world[\'population\'] >= 25000000)]\n result = big_countries_df[[\'name\', \'population\', \'area\']]\n return result\n```
3
0
['Pandas']
0
big-countries
1-line solution
1-line-solution-by-ost_k-con5
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
Ost_K
NORMAL
2023-08-01T15:21:58.307671+00:00
2023-08-01T15:21:58.307701+00:00
608
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n return world[(world[\'area\'] >= 3_000_000) | ( world[\'population\'] >= 25_000_000)][[\'name\', \'population\', \'area\']]\n```
3
0
['Pandas']
0
big-countries
simple solution
simple-solution-by-amevide-5qzn
Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time
amevide
NORMAL
2023-08-01T13:42:42.537706+00:00
2023-08-01T13:42:42.537735+00:00
1,831
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nimport pandas as pd\n\ndef big_countries(world: pd.DataFrame) -> pd.DataFrame:\n world = world[(world.area >= 3000000) | (world.population >= 25000000)]\n return world[[\'name\', \'population\', \'area\']]\n```
3
0
['Pandas']
1
big-countries
Easy Mysql Solution
easy-mysql-solution-by-2005115-aomv
\n\n# Code\n\n# Write your MySQL query statement below\nSELECT name , population ,area from World where area >=3000000 OR population >=25000000;\n
2005115
NORMAL
2023-07-16T15:51:19.984039+00:00
2023-07-16T15:51:19.984068+00:00
2,409
false
\n\n# Code\n```\n# Write your MySQL query statement below\nSELECT name , population ,area from World where area >=3000000 OR population >=25000000;\n```
3
0
['MySQL']
1
big-countries
sql || simple Straight forward approach
sql-simple-straight-forward-approach-by-znu9s
\n# Write your MySQL query statement below\n\nselect name, population, area from World\nwhere area >= 3000000 or population >= 25000000;\n\n\n\n\nplease upvote!
haneelkumar
NORMAL
2023-07-01T13:15:29.198684+00:00
2023-07-01T13:15:29.198703+00:00
345
false
```\n# Write your MySQL query statement below\n\nselect name, population, area from World\nwhere area >= 3000000 or population >= 25000000;\n```\n\n![image](https://assets.leetcode.com/users/images/39451a8b-4887-46f6-9b8f-b994e2e40253_1687453528.6643982.jpeg)\n\n**please upvote!! if you like.**\ncomment below\uD83D\uDC47
3
0
['MySQL']
1
big-countries
EASILY UNDERSTANDABLE SOLUTION
easily-understandable-solution-by-himans-d9nc
\nSelect name,population,area from world \nwhere area >= 3000000 or population >=25000000\n```
himanshu__mehra__
NORMAL
2023-06-28T22:32:32.303025+00:00
2023-06-28T22:32:32.303052+00:00
4,046
false
\nSelect name,population,area from world \nwhere area >= 3000000 or population >=25000000\n```
3
0
['MySQL']
3
big-countries
MySQL Solution for Big Countries Problem
mysql-solution-for-big-countries-problem-vsqg
Intuition\n Describe your first thoughts on how to solve this problem. \nThe given query selects the name, population, and area of countries from the "World" ta
Aman_Raj_Sinha
NORMAL
2023-05-16T03:59:55.955947+00:00
2023-05-16T03:59:55.955980+00:00
4,101
false
# Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nThe given query selects the name, population, and area of countries from the "World" table where either the area is greater than or equal to 3,000,000 or the population is greater than or equal to 25,000,000.\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n1. It selects the name, population, and area columns from the "World" table.\n2. The query applies the filter condition area >= 3000000 or population >= 25000000 to select records where either the area is greater than or equal to 3,000,000 or the population is greater than or equal to 25,000,000.\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nThe time complexity of this query depends on the size of the "World" table and the efficiency of indexing on the area and population columns. The query involves scanning the entire table and applying the filter condition, which has a time complexity of O(N), where N is the number of rows in the table. The performance can be further improved if there are indexes on the area and population columns, as it allows for faster filtering.\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\nThe space complexity of this query is determined by the memory required to process the query and store the result set. The space complexity is proportional to the size of the result set, which depends on the number of countries where either the area is greater than or equal to 3,000,000 or the population is greater than or equal to 25,000,000. If the result set is large, it may require additional memory resources to store and return the data. However, if the result set is small compared to the total table size, the impact on space complexity is minimal.\n\n# Code\n```\n# Write your MySQL query statement below\nselect name, population, area from World \nwhere area >= 3000000 or population >= 25000000\n```
3
0
['MySQL']
0
big-countries
EASY SOLUTION
easy-solution-by-sarah-2002-sw3m
\n\n# Code\n\n# Write your MySQL query statement below\nSelect name,population,area from world \nwhere area >= 3000000 or population >=25000000\n
Sarah-2002
NORMAL
2023-05-05T10:35:30.329880+00:00
2023-05-05T10:35:30.329907+00:00
8,791
false
\n\n# Code\n```\n# Write your MySQL query statement below\nSelect name,population,area from world \nwhere area >= 3000000 or population >=25000000\n```
3
0
['MySQL']
0
big-countries
✔ Beats 99% || Easy SQL Solution
beats-99-easy-sql-solution-by-gourav_sin-54lg
\n\n# Complexity\n- Time complexity:\nBeats 99%\n\n# Code\n\n# Write your MySQL query statement below\n\nSELECT name,population,area FROM WORLD WHERE population
Gourav_Sinha
NORMAL
2023-04-26T20:52:42.603565+00:00
2023-04-26T20:53:37.072592+00:00
2,177
false
\n\n# Complexity\n- Time complexity:\nBeats 99%\n\n# Code\n```\n# Write your MySQL query statement below\n\nSELECT name,population,area FROM WORLD WHERE population >= 25000000 or area >= 3000000\n```
3
0
['MySQL']
0
big-countries
SQL Server CLEAN & EASY
sql-server-clean-easy-by-rhazem13-rz71
\n/* Write your T-SQL query statement below */\nSELECT name, population, area\nFROM World\nWHERE area>=3000000 OR population >= 25000000\n
rhazem13
NORMAL
2023-03-08T15:37:25.752933+00:00
2023-03-08T15:37:25.752978+00:00
881
false
```\n/* Write your T-SQL query statement below */\nSELECT name, population, area\nFROM World\nWHERE area>=3000000 OR population >= 25000000\n```
3
0
[]
0
big-countries
Easy Simple || MySQL Solution ✔✔
easy-simple-mysql-solution-by-akanksha98-yt0h
Code\n\n# Write your MySQL query statement below\nSELECT name, population, area\nFROM World\nWHERE area>= 3000000 or population>= 25000000 ; \n
akanksha984
NORMAL
2023-02-26T14:21:07.699983+00:00
2023-02-26T14:21:07.700024+00:00
4,081
false
## Code\n```\n# Write your MySQL query statement below\nSELECT name, population, area\nFROM World\nWHERE area>= 3000000 or population>= 25000000 ; \n```
3
0
['MySQL']
0
big-countries
|| BASIC SQL COMMAND || ONE LINERS ||
basic-sql-command-one-liners-by-ujjwalva-xxyi
\n# Code\n\nselect name,population,area\nfrom World\nwhere area>=3000000 or population>=25000000;\n
ujjwalvarma6948
NORMAL
2023-02-17T16:38:37.751862+00:00
2023-02-17T16:38:37.751904+00:00
1,717
false
\n# Code\n```\nselect name,population,area\nfrom World\nwhere area>=3000000 or population>=25000000;\n```
3
0
['MySQL']
0
big-countries
Easy MySQL || beginner solution
easy-mysql-beginner-solution-by-nikhil_m-8fqa
\n\n# Code\n\n# Write your MySQL query statement below\nselect name, population, area\nfrom world\nwhere (area >= 3000000 or population >= 25000000);\n
nikhil_mane
NORMAL
2022-11-05T17:14:47.887287+00:00
2022-11-05T17:14:47.887323+00:00
1,864
false
\n\n# Code\n```\n# Write your MySQL query statement below\nselect name, population, area\nfrom world\nwhere (area >= 3000000 or population >= 25000000);\n```
3
0
['MySQL']
2
big-countries
✅MySQL-1 Liner Solution || Beginner level||Simple-Short -Solution✅
mysql-1-liner-solution-beginner-levelsim-49kj
Please upvote to motivate me in my quest of documenting all leetcode solutions. HAPPY CODING:)\nAny suggestions and improvements are always welcome.\n==========
Anos
NORMAL
2022-08-15T22:39:40.720867+00:00
2022-08-15T22:41:22.138843+00:00
431
false
**Please upvote to motivate me in my quest of documenting all leetcode solutions. HAPPY CODING:)\nAny suggestions and improvements are always welcome.***\n*====================================================================*\n\u2705 **MySQL Code :**\n**Runtime:** 253 ms, faster than 91.58% of MySQL online submissions for Big Countries.\n```\nSELECT name,area,population FROM World WHERE area>=3000000 OR population>=25000000\n```\n**Runtime:** 253 ms\n**Memory Usage:** 0B\n________________________________\n__________________________________\n\nIf you like the solution, please upvote \uD83D\uDD3C\nFor any questions, or discussions, comment below. \uD83D\uDC47\uFE0F
3
0
['MySQL']
1
big-countries
Oracle | Memory 100%
oracle-memory-100-by-sirojiddinnematov-eq4v
```\nSELECT name, population, area FROM world WHERE area >= 3000000\nUNION \nSELECT name, population, area FROM world WHERE population >= 25000000
sirojiddinnematov
NORMAL
2022-07-05T08:34:32.393652+00:00
2022-07-05T08:34:32.393702+00:00
248
false
```\nSELECT name, population, area FROM world WHERE area >= 3000000\nUNION \nSELECT name, population, area FROM world WHERE population >= 25000000
3
0
[]
0