question_slug
stringlengths 3
77
| title
stringlengths 1
183
| slug
stringlengths 12
45
| summary
stringlengths 1
160
⌀ | author
stringlengths 2
30
| certification
stringclasses 2
values | created_at
stringdate 2013-10-25 17:32:12
2025-04-12 09:38:24
| updated_at
stringdate 2013-10-25 17:32:12
2025-04-12 09:38:24
| hit_count
int64 0
10.6M
| has_video
bool 2
classes | content
stringlengths 4
576k
| upvotes
int64 0
11.5k
| downvotes
int64 0
358
| tags
stringlengths 2
193
| comments
int64 0
2.56k
|
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
determine-color-of-a-chessboard-square | JavaScript Simple Solution 99.1% faster | javascript-simple-solution-991-faster-by-t2z1 | \n/**\n * @param {string} coords\n * @return {boolean}\n */\nconst squareIsWhite = function (coords) {\n const letters = [\'a\', \'b\', \'c\', \'d\', \'e\', | js_pro | NORMAL | 2022-10-07T09:05:37.744952+00:00 | 2024-11-24T07:15:39.979684+00:00 | 595 | false | ```\n/**\n * @param {string} coords\n * @return {boolean}\n */\nconst squareIsWhite = function (coords) {\n const letters = [\'a\', \'b\', \'c\', \'d\', \'e\', \'f\', \'g\', \'h\'];\n const [l, n] = coords.split(\'\');\n\n return (letters.indexOf(l) % 2 == 0 && n % 2 == 0) \n || (letters.indexOf(l) % 2 == 1 && n % 2 == 1);\n};\n\n``` | 2 | 0 | ['JavaScript'] | 1 |
determine-color-of-a-chessboard-square | Java | Math | Faster Than 100% Java Submissions | java-math-faster-than-100-java-submissio-givh | \nclass Solution {\n public boolean squareIsWhite(String coordinates) {\n Character str = coordinates.charAt(0);\n int num = Character.getNumer | Divyansh__26 | NORMAL | 2022-09-14T15:30:29.822855+00:00 | 2022-09-14T15:30:29.822897+00:00 | 173 | false | ```\nclass Solution {\n public boolean squareIsWhite(String coordinates) {\n Character str = coordinates.charAt(0);\n int num = Character.getNumericValue(coordinates.charAt(1));\n int flag=0;\n if(str==\'a\' || str==\'c\' || str==\'e\' || str==\'g\'){\n if(num%2==0)\n flag=1;\n }\n else{\n if(num%2!=0)\n flag=1;\n }\n if(flag==0)\n return false;\n return true;\n }\n}\n```\nKindly upvote if you like the code. | 2 | 0 | ['Math', 'String', 'Java'] | 0 |
determine-color-of-a-chessboard-square | Simple if-else faster than 83% | simple-if-else-faster-than-83-by-aruj900-zl7k | \nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n black = "aceg"\n white = "bdfh"\n if coordinates[0] in black an | aruj900 | NORMAL | 2022-08-29T10:13:12.823343+00:00 | 2022-08-29T10:13:12.823390+00:00 | 373 | false | ```\nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n black = "aceg"\n white = "bdfh"\n if coordinates[0] in black and int(coordinates[1]) % 2 == 1:\n return False\n elif coordinates[0] in white and int(coordinates[1]) % 2 == 0:\n return False\n else:\n return True\n``` | 2 | 0 | ['Python', 'Python3'] | 0 |
determine-color-of-a-chessboard-square | [Python] One Line Solution || Faster than 94% | python-one-line-solution-faster-than-94-2tz5h | Python Code -\n\nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n alphabets=\'abcdefgh\'\n return True if (alphabets.inde | rksreeraj | NORMAL | 2022-08-16T11:49:43.901082+00:00 | 2022-08-16T11:49:43.901128+00:00 | 104 | false | # Python Code -\n```\nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n alphabets=\'abcdefgh\'\n return True if (alphabets.index(coordinates[0]) + int(coordinates[1])) % 2 == 0 else False\n``` | 2 | 0 | ['Python'] | 0 |
determine-color-of-a-chessboard-square | [PYTHON 3] EASY | SELF EXPLANITORY | python-3-easy-self-explanitory-by-omkarx-l53h | ```\nclass Solution:\n def squareIsWhite(self, c: str) -> bool:\n e,o = ["b","d","f","h"], ["a","c","e","g"]\n if int(c[-1]) % 2 == 0:\n | omkarxpatel | NORMAL | 2022-07-13T14:41:03.033188+00:00 | 2022-07-13T14:41:03.033225+00:00 | 610 | false | ```\nclass Solution:\n def squareIsWhite(self, c: str) -> bool:\n e,o = ["b","d","f","h"], ["a","c","e","g"]\n if int(c[-1]) % 2 == 0:\n if c[0] in e: return False\n else: return True\n else:\n if c[0] in e: return True\n else: return False\n | 2 | 0 | ['Python', 'Python3'] | 0 |
determine-color-of-a-chessboard-square | ✔ C++ || one-liner easy O(1) | c-one-liner-easy-o1-by-_aditya_hegde-snlw | Intuition:-\n\n-> You can easily get the pattern in the chessboard.\n-> sum( x, y ) of any co-ordinate is even -> Its black square (return 0)\n-> sum( x, y ) of | _Aditya_Hegde_ | NORMAL | 2022-06-18T09:38:36.421469+00:00 | 2022-06-18T09:38:36.421508+00:00 | 59 | false | **Intuition:-**\n\n-> You can easily get the **pattern** in the chessboard.\n-> sum( x, y ) of any co-ordinate is **even** -> Its **black square** (return 0)\n-> sum( x, y ) of any co-ordinate is **odd** -> its **while square** (return 1)\n-> also I have used **bitwise AND operator** to check odd or even. (&)\n-> I have used **ternary operator** also here.\n\n**Complexity:-**\n\nTime=O(1) \nSpace=O(1) \n\nHoping you understood the solution :)\nPlease **upvote** if you found it usefull !\nThank you..\n\n```\nclass Solution {\npublic:\n bool squareIsWhite(string s) {\n return ((s[0]+s[1])&1)?1:0;\n }\n};\n``` | 2 | 0 | ['C'] | 0 |
determine-color-of-a-chessboard-square | Easy python solution | easy-python-solution-by-rupeshmohanty-eu8q | \nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n odds = [\'a\',\'c\',\'e\',\'g\']\n evens = [\'b\',\'d\',\'f\',\'h\']\n | rupeshmohanty | NORMAL | 2022-06-07T14:40:06.585294+00:00 | 2022-06-07T14:40:06.585343+00:00 | 99 | false | ```\nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n odds = [\'a\',\'c\',\'e\',\'g\']\n evens = [\'b\',\'d\',\'f\',\'h\']\n \n if coordinates[0] in odds:\n if int(coordinates[1]) % 2 != 0:\n return False\n else:\n return True\n else:\n if int(coordinates[1]) % 2 != 0:\n return True\n else:\n return False\n``` | 2 | 0 | ['Python'] | 0 |
determine-color-of-a-chessboard-square | Java One-liner with explanation | java-one-liner-with-explanation-by-alexg-e66r | \nclass Solution {\n public boolean squareIsWhite(String coordinates) {\n return (coordinates.charAt(0) + coordinates.charAt(1)) % 2 != 0;\n }\n}\n | alexgornovoi | NORMAL | 2022-03-19T16:56:02.384628+00:00 | 2022-03-19T16:58:50.524049+00:00 | 102 | false | ```\nclass Solution {\n public boolean squareIsWhite(String coordinates) {\n return (coordinates.charAt(0) + coordinates.charAt(1)) % 2 != 0;\n }\n}\n```\nThe ASCII decimal value for the letter "a" is odd and the ASCII decimal value for "b" is even and "c" is odd ... etc. As for the numbers the ASCII value for an odd number is odd and the ASCII number for an even number is even. (As can be seen by the table below)\n\n<img src="https://upload.wikimedia.org/wikipedia/commons/thumb/1/1b/ASCII-Table-wide.svg/2560px-ASCII-Table-wide.svg.png" alt="closed_paren" title="Closed Parenthesis" width="400"/>\n\n\nHere we take the ASCII value of the char at postion 0 and the ASCII value of the char at postion 1 and check if their sum is odd if it is then we know that we are standing on a white square so we return true otherwise we return false. | 2 | 0 | ['Java'] | 2 |
determine-color-of-a-chessboard-square | Python C one line | python-c-one-line-by-mrchuck-a5fe | py\nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n return sum(map(ord,coordinates)) % 2\n\nc\nbool squareIsWhite(char * coordi | mrchuck | NORMAL | 2022-02-26T13:25:30.600766+00:00 | 2022-02-26T13:26:54.491315+00:00 | 166 | false | ```py\nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n return sum(map(ord,coordinates)) % 2\n```\n```c\nbool squareIsWhite(char * coordinates){\n return (*coordinates + *++coordinates) % 2;\n}\n``` | 2 | 0 | ['C', 'Python'] | 0 |
determine-color-of-a-chessboard-square | Easy Solution 100% fast | easy-solution-100-fast-by-deepank4-udiq | \nclass Solution {\npublic:\n bool squareIsWhite(string c) {\n\t//if sum of cordinates is even than color is black \n int x = c[0]-\'a\'+1;\n i | deepank4 | NORMAL | 2022-01-19T18:09:40.299367+00:00 | 2022-01-19T18:09:40.299411+00:00 | 177 | false | ```\nclass Solution {\npublic:\n bool squareIsWhite(string c) {\n\t//if sum of cordinates is even than color is black \n int x = c[0]-\'a\'+1;\n int y = c[1]-\'1\'+1;\n cout<<y << "\\n ";\n if((x+y)%2==0)\n return false;\n return true;\n }\n};\n``` | 2 | 0 | ['C', 'C++'] | 0 |
determine-color-of-a-chessboard-square | Beginner friendly JavaScript solution | beginner-friendly-javascript-solution-by-k7s1 | Time Complexity : O(n)\n\n/**\n * @param {string} coordinates\n * @return {boolean}\n */\nvar squareIsWhite = function(coordinates) {\n let oddchar = "aceg", | HimanshuBhoir | NORMAL | 2022-01-19T08:53:41.226948+00:00 | 2022-01-19T08:53:41.226981+00:00 | 127 | false | **Time Complexity : O(n)**\n```\n/**\n * @param {string} coordinates\n * @return {boolean}\n */\nvar squareIsWhite = function(coordinates) {\n let oddchar = "aceg", evenchar = "bdfh", ch = coordinates.charAt(0), n = parseInt(coordinates.charAt(1)+"");\n if((n % 2 != 0 && oddchar.includes(ch)) || (n % 2 == 0 && evenchar.includes(ch))){\n return false;\n }\n return true;\n};\n``` | 2 | 0 | ['JavaScript'] | 0 |
determine-color-of-a-chessboard-square | Short || Clean || One Liner || Java | short-clean-one-liner-java-by-himanshubh-30ks | \njava []\nclass Solution {\n public boolean squareIsWhite(String coordinates) {\n return (coordinates.charAt(0)-\'a\'+ coordinates.charAt(1)-\'0\') % | HimanshuBhoir | NORMAL | 2022-01-19T08:52:51.226840+00:00 | 2023-01-05T11:04:10.646269+00:00 | 74 | false | \n```java []\nclass Solution {\n public boolean squareIsWhite(String coordinates) {\n return (coordinates.charAt(0)-\'a\'+ coordinates.charAt(1)-\'0\') % 2 == 0;\n }\n}\n``` | 2 | 0 | ['Java'] | 0 |
determine-color-of-a-chessboard-square | c++ 100 % faster | c-100-faster-by-mannu_story07-wixs | class Solution {\npublic:\n bool squareIsWhite(string coordinates) {\n int x = coordinates[0]-\'a\';\n int y = coordinates[1] - 1;\n if( | Mannu_story07 | NORMAL | 2021-10-02T05:49:31.265547+00:00 | 2021-10-02T05:49:31.265605+00:00 | 61 | false | class Solution {\npublic:\n bool squareIsWhite(string coordinates) {\n int x = coordinates[0]-\'a\';\n int y = coordinates[1] - 1;\n if((x % 2 == 0 && y % 2 ==0 || x % 2 != 0 && y % 2 != 0)){\n return false;\n }\n else {\n return true;\n }\n }\n* 1. * };[](http://) | 2 | 0 | [] | 0 |
determine-color-of-a-chessboard-square | [Java] 3 line simple %100 solution | java-3-line-simple-100-solution-by-zeldo-4uw7 | if you like it pls upvote\n\n\n\nJava\n\nclass Solution {\n public boolean squareIsWhite(String coordinates) {\n int left = coordinates.charAt(0)-\'a\ | zeldox | NORMAL | 2021-08-29T22:48:11.378555+00:00 | 2021-08-29T22:48:11.378585+00:00 | 157 | false | if you like it pls upvote\n\n\n\nJava\n```\nclass Solution {\n public boolean squareIsWhite(String coordinates) {\n int left = coordinates.charAt(0)-\'a\';\n int right = coordinates.charAt(1)-\'1\'; \n return (left %2 == 0 && right % 2 == 1) || (left %2 != 0 && right % 2 != 1);\n }\n}\n```\n | 2 | 0 | ['Java'] | 0 |
determine-color-of-a-chessboard-square | C++ 100% fast | c-100-fast-by-harshattree-ep2o | \n bool squareIsWhite(string coordinates) {\n int a=coordinates[0]+coordinates[1];\n if(a%2==1)\n return true;\n return false;\n | HarshAttree | NORMAL | 2021-07-22T05:16:50.723722+00:00 | 2021-07-22T05:16:50.723766+00:00 | 51 | false | ```\n bool squareIsWhite(string coordinates) {\n int a=coordinates[0]+coordinates[1];\n if(a%2==1)\n return true;\n return false;\n }\n``` | 2 | 0 | [] | 0 |
determine-color-of-a-chessboard-square | 100% faster one line [Java] Solution with explanation | 100-faster-one-line-java-solution-with-e-wlld | Imagine the x cordinate are also 1,2,3...so on. \n\n\nIdea is : Now, when we see this board we can find the logic that.\n- If x and y both are even Or odd then | HemantPatel | NORMAL | 2021-07-02T04:31:36.505750+00:00 | 2021-07-02T04:31:36.505798+00:00 | 148 | false | Imagine the x cordinate are also 1,2,3...so on. <br>\n<img src="https://assets.leetcode.com/users/images/36b5a71a-2639-4344-9edc-f88982b9096a_1625199149.2753234.png" alt="chess board image" width="300" height="auto">\n\n**Idea is :** Now, when we see this board we can find the logic that.\n- If x and y both are even Or odd then square is black.\n- Otherwise square is white.\n\nSo Pseudo code is :\n```\nif( x is even and y is even ) return false ( black square )\nelse if ( x is odd and y is odd ) return false ( black square )\nelse return true;\n```\n\nBut we can short it by this Logic :\nIf x and y both are even Or odd then (x + y) is even\nother wise (x + y) is odd\n```\nif((x + y) is odd) return true\nelse return false;\n```\n\nMy Solution is :\n\n\n\n\n```\n public boolean squareIsWhite(String coordinates) {\n return ((coordinates.charAt(0) - \'a\') + (coordinates.charAt(1) - \'1\')) % 2 != 0 ;\n }\n``` | 2 | 0 | ['Java'] | 0 |
determine-color-of-a-chessboard-square | C++ || One Liner || Easy understanding || With Comments | c-one-liner-easy-understanding-with-comm-iwpi | //Idea behind this to find a unique square number.\n//If that square number is even it will be white , else black.\n\nclass Solution {\npublic:\n bool square | ajaayush | NORMAL | 2021-06-22T07:13:51.944594+00:00 | 2021-06-22T07:13:51.944637+00:00 | 152 | false | //Idea behind this to find a unique square number.\n//If that square number is even it will be white , else black.\n```\nclass Solution {\npublic:\n bool squareIsWhite(string coordinates) {\n int i= (int)(coordinates[0]-\'a\'+1) + (int)(coordinates[1]-\'0\');\n if(i%2==0)\n return false;\n return true;\n }\n};\n``` | 2 | 0 | ['Math', 'C', 'C++'] | 0 |
determine-color-of-a-chessboard-square | PYTHON 1 LINER || WITH EXPLANATION | python-1-liner-with-explanation-by-mahad-wxm0 | \nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n \'\'\'\n check if file/x-coordinate and rank/y-coordinate are both eve | mahadrehan | NORMAL | 2021-06-22T05:33:13.010244+00:00 | 2021-06-22T05:43:05.748527+00:00 | 80 | false | ```\nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n \'\'\'\n check if file/x-coordinate and rank/y-coordinate are both even or are both odd\n must be odd rank with even file, or odd file with even rank for it to be a white square\n \'\'\'\n return int(coordinates[1])%2 != ord(coordinates[0])%2\n```\nHere the y-coordinate/rank is converted to an integer to check if its an odd or even rank. Using the python function ```ord()``` you get the ascii value of the x-coordinate/file to check if the file is an odd or even file (e.g C1, C is the 3rd file after A and B). It then returns True if the check evaluates to False since only 1 coordinate is even, meaning that the coordinate is a white square. | 2 | 0 | [] | 0 |
determine-color-of-a-chessboard-square | JAVA ONE LINER | java-one-liner-by-tanmaymishrapersonal-xu6a | \nclass Solution {\n public boolean squareIsWhite(String coordinates) \n {\n return ((coordinates.charAt(0)-\'a\'+coordinates.charAt(1)-\'1\')%2!=0) | tanmaymishrapersonal | NORMAL | 2021-06-12T18:25:15.159085+00:00 | 2021-06-12T18:25:15.159117+00:00 | 66 | false | ```\nclass Solution {\n public boolean squareIsWhite(String coordinates) \n {\n return ((coordinates.charAt(0)-\'a\'+coordinates.charAt(1)-\'1\')%2!=0);\n }\n}\n\n \n``` | 2 | 0 | [] | 2 |
determine-color-of-a-chessboard-square | Java || 1 Liner || 0ms || beats 100% || T.C - O(1) S.C - O(1) | java-1-liner-0ms-beats-100-tc-o1-sc-o1-b-rm6v | \n\tpublic boolean squareIsWhite(String coordinates) {\n \n char ch = coordinates.charAt(0);\n int num = coordinates.charAt(1);\n \n | LegendaryCoder | NORMAL | 2021-05-18T17:08:00.715892+00:00 | 2021-05-18T17:08:00.715935+00:00 | 63 | false | \n\tpublic boolean squareIsWhite(String coordinates) {\n \n char ch = coordinates.charAt(0);\n int num = coordinates.charAt(1);\n \n int val = (ch - \'a\') + (num - \'0\');\n return (val % 2 == 0) ? true : false;\n } | 2 | 1 | [] | 0 |
determine-color-of-a-chessboard-square | Easy C# Solution | easy-c-solution-by-venendroid-x3vx | \n public bool SquareIsWhite(string coordinates)\n {\n //From the chess board we can see BLACK box are in ODD integer places for these columns \n | venendroid | NORMAL | 2021-04-22T06:15:24.130890+00:00 | 2021-04-22T06:15:24.130929+00:00 | 59 | false | ```\n public bool SquareIsWhite(string coordinates)\n {\n //From the chess board we can see BLACK box are in ODD integer places for these columns \n var oddBlackList = new HashSet<char>(){\'a\', \'c\', \'e\', \'g\'};\n \n //Whole idea is:\n //From the give coordinates, if first char falls in oddBlackList \n //then we know white will be always at even block\n return oddBlackList.Contains(coordinates[0])? (coordinates[1] - \'0\')%2 == 0: (coordinates[1] - \'0\')%2 != 0;\n }\n``` | 2 | 0 | [] | 0 |
determine-color-of-a-chessboard-square | python one line sol (faster than 93%) (less mem than 100%) | python-one-line-sol-faster-than-93-less-6h4vm | \nclass Solution(object):\n def squareIsWhite(self, coordinates):\n return ((ord(coordinates[0])) + int(coordinates[1])) % 2\n | elayan | NORMAL | 2021-04-15T11:00:10.235463+00:00 | 2021-04-15T11:00:10.235505+00:00 | 48 | false | ```\nclass Solution(object):\n def squareIsWhite(self, coordinates):\n return ((ord(coordinates[0])) + int(coordinates[1])) % 2\n``` | 2 | 1 | [] | 2 |
determine-color-of-a-chessboard-square | [C++] [Time-O(1)] | c-time-o1-by-turbotorquetiger-qmjg | Time Complexity: O(1)\nSpace Complexity: O(1)\n\n\nclass Solution \n{\npublic:\n bool squareIsWhite(string cood)\n {\n int f = cood[0]-\'a\';\n | ihavehiddenmyid | NORMAL | 2021-04-10T15:23:10.874530+00:00 | 2021-04-10T15:23:10.874555+00:00 | 117 | false | **Time Complexity: O(1)\nSpace Complexity: O(1)**\n\n```\nclass Solution \n{\npublic:\n bool squareIsWhite(string cood)\n {\n int f = cood[0]-\'a\';\n int s = cood[1]-\'0\';\n \n // f = a, c, e, g\n if ( f % 2 == 0 ) {\n if ( s % 2 == 0 ) {\n return true;\n }\n }\n // f = b, d, f, h\n else if ( f % 2 != 0 ) {\n if ( s % 2 != 0 ) {\n return true;\n }\n }\n return false;\n }\n};\n```\n\n**If you liked it, please upvote it**\n | 2 | 0 | ['C'] | 0 |
determine-color-of-a-chessboard-square | Javascript, 100% faster, simple | javascript-100-faster-simple-by-mstaso1-vte3 | \nvar squareIsWhite = function(coordinates) {\n const columns = [\'a\', \'b\', \'c\', \'d\', \'e\', \'f\', \'g\', \'h\']\n \n let i = 0;\n \n whi | mstaso1 | NORMAL | 2021-04-07T18:44:29.238181+00:00 | 2021-04-07T18:44:29.238213+00:00 | 114 | false | ```\nvar squareIsWhite = function(coordinates) {\n const columns = [\'a\', \'b\', \'c\', \'d\', \'e\', \'f\', \'g\', \'h\']\n \n let i = 0;\n \n while(coordinates[0] !== columns[i]) {\n i++;\n }\n \n let num = i + parseInt(coordinates[1]);\n \n \n return num % 2 === 0 \n \n};\n``` | 2 | 0 | [] | 1 |
determine-color-of-a-chessboard-square | [Python] 1-lines | python-1-lines-by-maiyude-7ccm | \nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n return True if ((ord(coordinates[0]))+int(coordinates[1])) % 2 else False\n | maiyude | NORMAL | 2021-04-03T16:46:43.207322+00:00 | 2021-04-03T16:46:43.207365+00:00 | 208 | false | ```\nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n return True if ((ord(coordinates[0]))+int(coordinates[1])) % 2 else False\n``` | 2 | 0 | ['Python', 'Python3'] | 1 |
determine-color-of-a-chessboard-square | Simple Python 3 solution | simple-python-3-solution-by-swap24-jnc9 | \nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n x, y = ord(coordinates[0]) - 65, int(coordinates[1])\n return y % 2 == | swap24 | NORMAL | 2021-04-03T16:28:22.022359+00:00 | 2021-04-03T16:28:22.022401+00:00 | 83 | false | ```\nclass Solution:\n def squareIsWhite(self, coordinates: str) -> bool:\n x, y = ord(coordinates[0]) - 65, int(coordinates[1])\n return y % 2 == 1 if x % 2 == 1 else y % 2 == 0\n``` | 2 | 0 | [] | 0 |
determine-color-of-a-chessboard-square | C# one liner | 0ms, beats 100% | c-one-liner-0ms-beats-100-by-bkga9sasfa-xoas | Complexity
Time complexity: O(1)
Space complexity: O(1)
Code | bKGa9sAsfA | NORMAL | 2025-03-07T10:03:28.191008+00:00 | 2025-03-07T10:03:28.191008+00:00 | 23 | false | # Complexity
- Time complexity: $$O(1)$$
- Space complexity: $$O(1)$$
# Code
```csharp []
public class Solution {
public bool SquareIsWhite(string coordinates) {
return ((coordinates[0] + coordinates[1]) & 1) == 1;
}
}
``` | 1 | 0 | ['C#'] | 0 |
determine-color-of-a-chessboard-square | Beats 100% , simple approach... | beats-100-simple-approach-by-arun_george-3hvo | IntuitionThe problem involves determining the color of a square on a chessboard given its coordinates. Chessboards have alternating colors, and the color of a s | Arun_George_ | NORMAL | 2025-03-05T16:55:30.003942+00:00 | 2025-03-06T16:12:03.709795+00:00 | 91 | false | # Intuition
The problem involves determining the color of a square on a chessboard given its coordinates. Chessboards have alternating colors, and the color of a square can be determined based on the combination of its letter (column) and number (row).

# Approach
1. **Chessboard Pattern**: On a chessboard, the color of a square alternates between white and black. For example, 'a1' is black, 'a2' is white, 'a3' is black, and so on.
2. **Coordinate Analysis**: The letter part of the coordinate (a-h) and the number part (1-8) can be used to determine the color:
- If the letter is in 'a', 'c', 'e', 'g' (odd columns), and the number is odd, the square is black.
- If the letter is in 'a', 'c', 'e', 'g' (odd columns), and the number is even, the square is white.
- If the letter is in 'b', 'd', 'f', 'h' (even columns), and the number is odd, the square is white.
- If the letter is in 'b', 'd', 'f', 'h' (even columns), and the number is even, the square is black.
3. **Implementation**: We can use conditional statements to check the letter and number parts of the coordinate and return the appropriate color.
# Complexity
- **Time Complexity**: O(1) because the operations are constant time checks.
- **Space Complexity**: O(1) as no additional space is used apart from the input.
# Code
```python
class Solution:
def squareIsWhite(self, coordinates: str) -> bool:
# Check if the letter is in 'a', 'c', 'e', 'g'
if coordinates[0] in 'aceg':
# If the number is odd, the square is black (False)
if coordinates[1] in '1357':
return False
else:
return True
else:
# If the letter is in 'b', 'd', 'f', 'h' and the number is odd, the square is white (True)
if coordinates[1] in '1357':
return True
else:
return False | 1 | 0 | ['Python3'] | 0 |
delete-columns-to-make-sorted-iii | [Java/C++/Python] Maximum Increasing Subsequence | javacpython-maximum-increasing-subsequen-wio6 | Intuition\n\nTake n cols as n elements, so we have an array of n elements.\n=> The final array has every row in lexicographic order.\n=> The elements in final s | lee215 | NORMAL | 2018-12-16T04:05:25.923137+00:00 | 2021-01-07T07:05:24.078617+00:00 | 8,771 | false | # **Intuition**\n\nTake `n` cols as `n` elements, so we have an array of `n` elements.\n=> The final array has every row in lexicographic order.\n=> The elements in final state is in increasing order.\n=> The final elements is a sub sequence of initial array.\n=> Transform the problem to find the maximum increasing sub sequence.\n<br>\n\n# **Explanation**\nNow let\'s talking about how to find maximum increasing subsequence.\nHere we apply a O(N^2) dp solution.\n\n\n`dp[i]` means the longest subsequence ends with `i`-th element.\nFor all `i < j`, if `A[][i] < A[][j]`, then `dp[j] = max(dp[j], dp[i] + 1)`\n<br>\n\n# **Complexity**:\n`O(N^2)` to find increasing subsequence\n`O(M)` for comparing elements.\nSo Overall `O(MN^2)` time.\nSpace `O(N)` for dp.\n<br>\n\n**C++:**\n```cpp\n int minDeletionSize(vector<string>& A) {\n int m = A.size(), n = A[0].length(), res = n - 1, k;\n vector<int>dp(n, 1);\n for (int j = 0; j < n; ++j) {\n for (int i = 0; i < j; ++i) {\n for (k = 0; k < m; ++k) {\n if (A[k][i] > A[k][j]) break;\n }\n if (k == m && dp[i] + 1 > dp[j])\n dp[j] = dp[i] + 1;\n }\n res = min(res, n - dp[j]);\n }\n return res;\n }\n```\n\n**Java:**\n```java\n public int minDeletionSize(String[] A) {\n int m = A.length, n = A[0].length(), res = n - 1, k;\n int[] dp = new int[n];\n Arrays.fill(dp, 1);\n for (int j = 0; j < n; ++j) {\n for (int i = 0; i < j; ++i) {\n for (k = 0; k < m; ++k) {\n if (A[k].charAt(i) > A[k].charAt(j)) break;\n }\n if (k == m && dp[i] + 1 > dp[j])\n dp[j] = dp[i] + 1;\n }\n res = Math.min(res, n - dp[j]);\n }\n return res;\n }\n```\n**Python:**\n```py\n def minDeletionSize(self, A):\n n = len(A[0])\n dp = [1] * n\n for j in xrange(1, n):\n for i in xrange(j):\n if all(a[i] <= a[j] for a in A):\n dp[j] = max(dp[j], dp[i] + 1)\n return n - max(dp)\n```\n | 151 | 3 | [] | 23 |
delete-columns-to-make-sorted-iii | C++ 7 lines, DP O(n * n * m) | c-7-lines-dp-on-n-m-by-votrubac-pe0i | A twist of the 300. Longest Increasing Subsequence problem.\n\nFor each position i,we track the maximum increasing subsequence. To do that, we analyze all j < i | votrubac | NORMAL | 2018-12-19T04:54:05.665157+00:00 | 2018-12-19T04:54:05.665223+00:00 | 3,064 | false | A twist of the [300. Longest Increasing Subsequence](https://leetcode.com/problems/longest-increasing-subsequence/description/) problem.\n\nFor each position ```i```,we track the maximum increasing subsequence. To do that, we analyze all ```j < i```, and if ```A[j] < A[i]``` for *all strings* , then ```dp[i] = dp[j] + 1```.The runtime complexity is O(n * n * m), where n is the number of characters, and m is the number of strings.\n\nUnlike #300, we cannot use the binary search approach here because there is no stable comparasion (e.g. ```["ba", "ab"]``` are both "less" than each other).\n```\nint minDeletionSize(vector<string>& A) {\n vector<int> dp(A[0].size(), 1);\n for (auto i = 0; i < A[0].size(); ++i) {\n for (auto j = 0; j < i; ++j)\n for (auto k = 0; k <= A.size(); ++k) {\n if (k == A.size()) dp[i] = max(dp[i], dp[j] + 1);\n else if (A[k][j] > A[k][i]) break;\n }\n }\n return A[0].size() - *max_element(begin(dp), end(dp));\n}\n``` | 45 | 2 | [] | 7 |
delete-columns-to-make-sorted-iii | C++. Variation of LIS. Easy to understand. | c-variation-of-lis-easy-to-understand-by-yv99 | \nclass Solution {\npublic:\n int minDeletionSize(vector<string>& A) {\n int m = A.size();\n int n = A[0].size();\n vector<int> dp(A[0]. | user5787i | NORMAL | 2019-06-16T13:28:28.008161+00:00 | 2019-06-16T13:28:28.008199+00:00 | 1,367 | false | ```\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& A) {\n int m = A.size();\n int n = A[0].size();\n vector<int> dp(A[0].size(), 1);\n for(int i = 0; i < n; i++) {\n for(int j = 0; j < i; j++) {\n if(cmp(A, i, j)) {\n dp[i] = max(dp[i], dp[j] + 1);\n }\n }\n }\n return n - *max_element(dp.begin(), dp.end());\n }\n \n bool cmp(vector<string> &arr, int i, int j) {\n for(int k = 0; k < arr.size(); k++) {\n if(arr[k][j] > arr[k][i]) return 0;\n }\n return 1;\n }\n};\n``` | 13 | 0 | [] | 2 |
delete-columns-to-make-sorted-iii | TypeScript | Memory beats 100% | typescript-memory-beats-100-by-r9n-2wg9 | Intuition\nKeep rows in order by deleting the minimum number of columns.\n\n# Approach\nDynamic Programming (DP): Track the longest sequence of valid columns.\n | r9n | NORMAL | 2024-09-10T21:47:13.610396+00:00 | 2024-09-10T21:47:13.610422+00:00 | 37 | false | # Intuition\nKeep rows in order by deleting the minimum number of columns.\n\n# Approach\nDynamic Programming (DP): Track the longest sequence of valid columns.\n\nCompare Columns: Check if one column can follow another in all rows.\n\nCompute Deletions: The result is the total columns minus the length of the longest valid sequence.\n\n# Complexity\n- Time complexity:\nO(C2(square) \xD7 R), checking pairs of columns for each row.\n\n- Space complexity:\nO(C), for the DP array.\n\n# Code\n```typescript []\nconst minDeletionSize = (strs: string[]): number => {\n const numRows = strs.length;\n const numCols = strs[0].length;\n const dp: number[] = new Array(numCols).fill(1);\n let minDeletions = numCols;\n\n for (let i = 0; i < numCols; ++i) {\n for (let j = 0; j < i; ++j) {\n let valid = true;\n for (let k = 0; k < numRows; ++k) {\n if (strs[k][j] > strs[k][i]) {\n valid = false;\n break;\n }\n }\n if (valid) {\n dp[i] = Math.max(dp[i], dp[j] + 1);\n }\n }\n minDeletions = Math.min(minDeletions, numCols - dp[i]);\n }\n\n return minDeletions;\n};\n\n``` | 9 | 0 | ['TypeScript'] | 0 |
delete-columns-to-make-sorted-iii | Python 3 || 6 lines, dp || T/S: 75% / 99% | python-3-6-lines-dp-ts-75-99-by-spauldin-v61m | \nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n\n n = len(strs[0])\n\n isValid = lambda x: all(s[x] <= s[j] for s in s | Spaulding_ | NORMAL | 2023-08-17T20:28:48.267668+00:00 | 2024-05-31T18:55:55.578372+00:00 | 257 | false | ```\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n\n n = len(strs[0])\n\n isValid = lambda x: all(s[x] <= s[j] for s in strs)\n\n dp = [1] * n\n\n for j in range(1, n):\n\n dp[j] = max((dp[x] for x in \n filter(isValid,range(j))), default = 0) + 1\n \n return n - max(dp)\n```\n[https://leetcode.com/problems/delete-columns-to-make-sorted-iii/submissions/1024237785/](https://leetcode.com/problems/delete-columns-to-make-sorted-iii/submissions/1024237785/)\n\nI could be wrong, but I think that time complexity is *O*(*MN*) and space complexity is *O*(*N*), in which *N* ~ `len(strs)` and *M* ~ `len(strs[0])`. | 8 | 0 | ['Python3'] | 0 |
delete-columns-to-make-sorted-iii | Java simple LIS for all Strings. Faster than 98.76% | java-simple-lis-for-all-strings-faster-t-icp4 | ```\n\tpublic int minDeletionSize(String[] A) {\n int max= 1;\n int[] Lis= new int[A[0].length()];\n for(int i=0; i<A[0].length(); i++){\n | sunnydhotre | NORMAL | 2021-02-13T01:07:07.638573+00:00 | 2021-02-13T01:07:07.638617+00:00 | 605 | false | ```\n\tpublic int minDeletionSize(String[] A) {\n int max= 1;\n int[] Lis= new int[A[0].length()];\n for(int i=0; i<A[0].length(); i++){\n Lis[i]= 1;\n for(int j=0; j<i; j++){\n if(checkLexicographic(A,i,j)){\n Lis[i]= Math.max(Lis[i],Lis[j]+1);\n }\n }\n max=Math.max(max,Lis[i]);\n }\n return A[0].length() - max;\n }\n public boolean checkLexicographic(String[] A,int i,int j){\n for(String str: A){\n if(str.charAt(i)<str.charAt(j)) return false;\n }\n return true;\n } | 6 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | c++ solution based on graph theory and bfs | c-solution-based-on-graph-theory-and-bfs-52am | Regard this problem as the longest connection path problem for a graph, refer to the codes and comments below.\n\nclass Solution {\npublic:\n int minDeletion | jiayinggao | NORMAL | 2022-05-27T17:50:05.632910+00:00 | 2022-05-27T17:50:05.632957+00:00 | 547 | false | Regard this problem as the longest connection path problem for a graph, refer to the codes and comments below.\n``` \nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n int single_size = strs.front().size();\n // printf("step1: establish the edges of the graph.\\n");\n vector<vector<int>> edges(single_size);\n for (int i = 0; i < single_size; i++){\n // as for index i, which index it can connect to\n for (int j = i + 1; j < single_size; j++){\n // take a look at the connection from index=i to index=j\n bool connect = true;\n for (int k = 0; k < strs.size(); k++){// scan each of the string in strs\n char former = strs[k][i], latter = strs[k][j];\n if (former > latter){\n connect = false;\n break;\n }\n }\n if (connect){// yes, the connection from index=i to index=j is satisfied, save it in edges\n edges[i].push_back(j);\n }\n }\n }\n // printf("step2: bfs search to find the longest connection path for the graph\\n");\n // printf("this part can also be solved by Dijkstra algorithm.\\n");\n vector<int> marked(single_size, 1);\n queue<pair<int, int>> units;\n for (int node = 0; node < single_size; node++){\n units.push({node, 1});\n }\n while(!units.empty()){\n int round_size = units.size();\n for (int i = 0; i < round_size; i++){\n auto unit = units.front(); units.pop();\n int node = unit.first, update_move = unit.second + 1;\n for (int j = 0; j < edges[node].size(); j++){\n int update_node = edges[node][j];\n if (update_move > marked[update_node]){\n marked[update_node] = update_move;\n units.push({update_node, update_move});\n }\n }\n }\n }\n // printf("step3: according to the vector<int> marked, select the longest path.\\n");\n int longest_move = 1;\n for (int node = 0; node < single_size; node++){\n longest_move = max(longest_move, marked[node]);\n }\n return single_size - longest_move;\n }\n};\n``` | 5 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | C++ Solution | Longest Increasing Subsequence | c-solution-longest-increasing-subsequenc-17hf | Make a vector of strings (in this case, v) in same column, and find maximum increasing subsequence among those strings. \nCheck function checks whether a string | harshnadar23 | NORMAL | 2021-09-03T05:29:01.442756+00:00 | 2021-09-03T05:29:35.143252+00:00 | 472 | false | Make a vector of strings (in this case, v) in same column, and find maximum increasing subsequence among those strings. \nCheck function checks whether a string a is less than b according to the definition given. (every character should be lexographically less than or equal to corresponding one in b).\nI would suggest you to solve https://leetcode.com/problems/longest-increasing-subsequence/ first.\n```\nclass Solution {\npublic:\n bool check(string a, string b ){\n int n=a.size();\n for(int i=0;i<n;i++){\n if(a[i]<=b[i]) continue;\n else return false;\n }\n return true;\n }\n int minDeletionSize(vector<string>& strs) {\n vector<string> v;\n int n = strs.size();\n int m=strs[0].size();\n for(int i=0;i<m;i++){\n string s;\n for(int j=0;j<n;j++){\n s+=strs[j][i];\n }\n v.push_back(s);\n }\n vector<int> dp(m+1,1);\n \n for(int i=0;i<m;i++){\n for(int j=0;j<i;j++){\n if(check(v[j], v[i]) && dp[j]+1>dp[i]){\n dp[i]=dp[j]+1;\n }\n }\n }\n for(int i=0;i<m;i++) cout<<dp[i]<<endl;\n return m-(*max_element(dp.begin(), dp.end()));\n }\n};\n``` | 5 | 0 | ['Dynamic Programming'] | 0 |
delete-columns-to-make-sorted-iii | [Python3] top-down dp | python3-top-down-dp-by-ye15-qps3 | \n\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n m, n = len(strs), len(strs[0]) # dimensions\n \n @cache \n | ye15 | NORMAL | 2021-06-08T03:40:02.347707+00:00 | 2021-06-08T03:40:26.624368+00:00 | 333 | false | \n```\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n m, n = len(strs), len(strs[0]) # dimensions\n \n @cache \n def fn(k, prev):\n """Return min deleted columns to make sorted."""\n if k == n: return 0 \n ans = 1 + fn(k+1, prev) # delete kth column\n if prev == -1 or all(strs[i][prev] <= strs[i][k] for i in range(m)): \n ans = min(ans, fn(k+1, k)) # retain kth column\n return ans \n \n return fn(0, -1)\n``` | 5 | 0 | ['Python3'] | 0 |
delete-columns-to-make-sorted-iii | Java Solution With Explanation | java-solution-with-explanation-by-naveen-1kfu | Idea\nPrereq https://leetcode.com/problems/longest-increasing-subsequence/discuss/342274/Intuitive-Java-Solution-With-Explanation\n\nNow, when filling the dp ar | naveen_kothamasu | NORMAL | 2019-07-24T04:00:22.142200+00:00 | 2019-07-24T04:00:22.142232+00:00 | 642 | false | **Idea**\n**Prereq** https://leetcode.com/problems/longest-increasing-subsequence/discuss/342274/Intuitive-Java-Solution-With-Explanation\n\nNow, when filling the `dp` array instead of looking at one string for comparing `i` and `j` indices, we need to look at all strings at those indices and confirm char at `i` can be prepended to char at `j` in all rows.\n\n```\npublic int minDeletionSize(String[] a) {\n int n = a[0].length(), res = n-1;\n int[] dp = new int[n];\n for(int k=0; k < a.length; k++){\n int max = 0;\n for(int i=n-1; i >= 0; i--){\n dp[i] = 1;\n for(int j=i+1; j < n; j++)\n if(compare(a, i, j) == -1)\n dp[i] = Math.max(dp[i], 1+dp[j]);\n max = Math.max(max, dp[i]);\n }\n res = Math.min(res, n-max);\n }\n return res;\n }\n private int compare(String[] a, int i, int j){\n for(int k=0; k < a.length; k++){\n if(a[k].charAt(i) > a[k].charAt(j))\n return 1;\n }\n return -1;\n }\n``` | 4 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | Solution | solution-by-deleted_user-d7gn | C++ []\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n \n int n = strs.size();\n int m = strs[0].length();\n\ | deleted_user | NORMAL | 2023-05-16T12:39:56.258657+00:00 | 2023-05-16T13:34:13.691015+00:00 | 377 | false | ```C++ []\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n \n int n = strs.size();\n int m = strs[0].length();\n\n vector<int> dp(m, 1);\n int res = 1;\n for(int i = 0; i < m; i++) {\n for(int j = 0; j < i; j++) {\n for(int k = 0; k <= n; k++) {\n if(k == n) {\n dp[i] = max(dp[i], dp[j] + 1);\n res = max(res, dp[i]);\n } else if (strs[k][j] > strs[k][i]) {\n break;\n }\n }\n }\n }\n return m - res;\n }\n};\n```\n\n```Python3 []\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n n = len(strs[0])\n dp = [1] * n\n for i in range(1, n):\n for j in range(i):\n valid = True\n for a in strs:\n if a[j] > a[i]: \n valid = False\n break\n if valid:\n dp[i] = max(dp[i], dp[j] + 1)\n return n - max(dp)\n```\n\n```Java []\nclass Solution {\n public int minDeletionSize(String[] strs) {\n \n int length = strs[0].length();\n int[] dp = new int[length];\n \n int max = 0;\n for (int i = 0; i < length; i++){\n dp[i] = 1;\n for (int j = 0; j < i; j++){\n if (checkLager(j,i, strs)){\n dp[i] = Math.max(dp[i], dp[j] + 1);\n }\n }\n max = Math.max(max, dp[i]);\n }\n return length - max;\n }\n public boolean checkLager(int j, int i, String[] strs){\n for (String s : strs){\n if (s.charAt(j) > s.charAt(i)){\n return false;\n }\n }\n return true;\n }\n}\n```\n | 3 | 0 | ['C++', 'Java', 'Python3'] | 0 |
delete-columns-to-make-sorted-iii | Beats 98% || C++ || DP || Memoization | beats-98-c-dp-memoization-by-akash92-o71h | Intuition\n Describe your first thoughts on how to solve this problem. \nIf we can find the longest non decreasing common subsequence in all the strings, then w | akash92 | NORMAL | 2024-09-07T04:35:42.866345+00:00 | 2024-09-07T04:35:42.866388+00:00 | 107 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nIf we can find the longest non decreasing common subsequence in all the strings, then we can subtract its length from the total length of the string to get the minimum deletions.\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\nThe solution uses dynamic programming (DP) to solve the problem of finding the minimum number of columns to delete such that each row in the matrix remains lexicographically sorted. The function f explores two options at each column: either skip the column or include it if the strings remain lexicographically sorted. We use a DP table to store results for subproblems.\n\n# Complexity\n- Time complexity: $$O(n^2 * m)$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $$O(n^2)$$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```cpp []\nclass Solution {\n int m, n;\n int dp[101][102];\nprivate:\n int f(int curr, int prev, vector<string>& strs){\n if(curr == n) return 0;\n if(dp[curr][prev+1] != -1) return dp[curr][prev+1];\n int ans = 0;\n if(prev == -1){\n ans = max(f(curr+1,prev,strs), 1+f(curr+1,curr,strs));\n }\n else{\n bool flag = true;\n for(int i=0; i<m; i++){\n if(strs[i][prev] > strs[i][curr]){\n flag = false;\n break;\n }\n }\n if(flag){\n ans = max(f(curr+1,prev,strs), 1+f(curr+1,curr,strs));\n }\n else{\n ans = f(curr+1,prev,strs);\n }\n }\n\n return dp[curr][prev+1] = ans;\n }\npublic:\n int minDeletionSize(vector<string>& strs) {\n m = strs.size();\n n = strs[0].size();\n memset(dp, -1, sizeof(dp));\n return n-f(0,-1,strs);\n }\n};\n``` | 2 | 0 | ['Array', 'String', 'Dynamic Programming', 'Recursion', 'Memoization', 'C++'] | 0 |
delete-columns-to-make-sorted-iii | [C++] Simple Dynamic Programming || Memoization | c-simple-dynamic-programming-memoization-oiqg | Approach: \n We need to ensure that after all the deletions, all the strings remain lexicographically sorted (increasing order i.e prev_char<=current_char). \n | yagni99 | NORMAL | 2024-05-02T06:21:47.720549+00:00 | 2024-05-02T06:32:09.298911+00:00 | 118 | false | **Approach**: \n* We need to ensure that after all the deletions, all the strings remain lexicographically sorted (increasing order i.e ```prev_char<=current_char```). \n* We maintain current index and a previous index as our dp states. At each current index we choose whether to delete that index or not (deleting will delete all the chars at that index in all strings). \n* Now while deleting there\'s no condition to check, but for not deleting a character (keeping it as it is) we must ensure that the ```previous_char <= current_char``` for all the strings to ensure increasing order. \n\n```\n\tint rows,cols;\n vector<vector<int>>dp;\n \n int solve(vector<string>&v,int currentIndex,int prevIndex){\n \n //Base condition\n if(currentIndex==cols){\n return 0;\n }\n \n if(dp[currentIndex][prevIndex]!=-1)return dp[currentIndex][prevIndex];\n \n int ans=INT_MAX;\n if(prevIndex==cols){\n ans=min(solve(v,currentIndex+1,currentIndex),1+solve(v,currentIndex+1,prevIndex));\n }\n else{\n\t //If I choose to keep, it should be greater than equal to prev char for all the strings. \n int canKeep=1; \n for(int i=0;i<rows;i++){\n if(v[i][currentIndex]<v[i][prevIndex]){\n canKeep=0;\n break;\n }\n }\n \n\t\t\t//keep\n if(canKeep)ans=min(ans,solve(v,currentIndex+1,currentIndex));\n\t\t\t\n\t\t\t//delete\n ans=min(ans,1+solve(v,currentIndex+1,prevIndex));\n }\n \n return dp[currentIndex][prevIndex]=ans;\n }\n \n int minDeletionSize(vector<string>& strs) {\n rows=strs.size();\n cols=strs[0].size();\n dp.resize(cols+1,vector<int>(cols+1,-1));\n // (prevIndex = cols) shows that no prevIndex is chosen currently (better than using -1 to reduce extra lines of code)\n return solve(strs,0,cols);\n }\n```\n\n**Time Complexity**: O(n^3) = O(rows * cols * cols)\n**Space Complexity**: O(n^2) = O(cols) (recursion depth) + O(rows * cols) (for memoization) | 2 | 0 | ['Dynamic Programming', 'Recursion', 'Memoization'] | 0 |
delete-columns-to-make-sorted-iii | C++| Recursion + Memo | c-recursion-memo-by-kumarabhi98-ofen | In simple words, a String in lexicographically increasing if last character is smaller than or equal to the current character in a string.\n1. Using this idea, | kumarabhi98 | NORMAL | 2022-03-25T13:58:10.906498+00:00 | 2022-03-25T14:00:22.369931+00:00 | 342 | false | In simple words, a String in lexicographically increasing if last character is smaller than or equal to the current character in a string.\n1. Using this idea, try to delete every index keeping the record of `last` (closest previous index which is not deleted). \n1. There is also a possibility that we do not need to delete the current index if all the string is lexicographically increasing w.r.t `last` and `in`(current index).\n\nTake the min of the two result for every `in` and `last`. DP[i][j] represent minimum no. of deletion from `i`th index to end of string if the previous non-deleted index is `j`\n```\nclass Solution {\npublic:\n int dp[101][101];\n int dfs(vector<string>& strs,int n,int in,int last){ // in = current index, last = closest previous non-deleted index\n if(in>=n) return 0;\n if(dp[in][last]) return dp[in][last];\n \n bool st = 1; \n for(int i = 0; i<strs.size();++i){\n if(strs[i][in]<strs[i][last]) {st=0; break;} // check if strings are exicographically increasing\n\t\t\t //w.r.t to current and last index\n }\n \n int re = INT_MAX;\n int l = last;\n if(in==last) l=in+1;\n re = 1+dfs(strs,n,in+1,l); // delete the current index\n if(st) re = min(re, dfs(strs,n,in+1,in)); // if the strings are not lexicographically increasing,\n \t\t//than only choice we have is to delete the in\'th index\n \n return dp[in][last]=re;\n }\n int minDeletionSize(vector<string>& strs) {\n return dfs(strs,strs[0].size(),0,0);\n }\n};\n``` | 2 | 1 | ['Memoization', 'C'] | 0 |
delete-columns-to-make-sorted-iii | [C++] O(n^2) Alternate intuition (not LIS) Bottom-up DP. 16ms | c-on2-alternate-intuition-not-lis-bottom-sd2m | Define dp[i+1] as min deletions in strs[0...i] necessary to make every string in strs[0...i]\'s columns in lexicographical order where we are not deleting the | jossheim | NORMAL | 2021-07-16T03:55:13.084624+00:00 | 2021-07-16T04:33:22.233589+00:00 | 252 | false | Define `dp[i+1]` as min deletions in `strs[0...i]` necessary to make every string in `strs[0...i]`\'s columns in lexicographical order where we are **not deleting** the `i+1th` column (`strs[i]`).\n\n`m`: Number of strings in `strs`.\n\nRelation:\n```dp[i] = min {dp[k] + (i-k-1)} for all k in [0, i-1] such that strs[j][i-1] comes after strs[j][k-1] in lexicographic order for each j```\nWe can always remove all the columns `strs[0...i-2]` to have only the `i-1th` column so `dp[i]` will start with upper bound `i-1`.\n\nBase cases:\n`dp[0] = dp[1]= 0`.\n\nThe final answer is given by `dp[m+1]` where we assume that we have added the character `z` at the end of each string in `strs` since our dp condition says that we **must** pick up the `ith` column for `dp[i+1]` but we still want the freedom to delete the `mth` column(`strs[m-1]`). \n```\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n int m = strs[0].size(), n= strs.size();\n vector<int> dp = vector<int>(m+2);\n for (int i = 2;i<=m+1;i++) {\n dp[i] = i-1;\n \n for (int k = 1;k <i;k++) { \n bool sat = true;\n if (i <= m) { // assuming we pushed \'z\' at the end of every string in strs, so below check is not needed for i == m+1\n for (auto & s: strs) { // checking if column i-1 is lexicographically larger or equal than column k-1.\n if (s[i-1] < s[k-1]) {\n sat = false;\n break;\n }\n } \n }\n \n if (sat) {\n dp[i] = min(dp[i], dp[k] + i-k-1);\n }\n }\n }\n return dp.back();\n }\n};\n``` | 2 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | Python3 - Longest Increasing Subsequence | python3-longest-increasing-subsequence-b-b1ar | For each column iterate all columns before it which forms a increasing sequence of characters which will give you the longest such subsequence. Then you can del | havingfun | NORMAL | 2020-06-15T11:25:19.884179+00:00 | 2020-06-15T11:25:19.884215+00:00 | 277 | false | For each column iterate all columns before it which forms a increasing sequence of characters which will give you the longest such subsequence. Then you can delete all other columns to get one of the longest subsequence.\n\nIntution -\nThink about how will you solve this problem if you have a single string ->\n1st Idea -> Sort the string. See the maximum length sorted substring in single string.\nThis can be easily applied to multiple strings.\n\n```\nclass Solution:\n def minDeletionSize(self, A: List[str]) -> int:\n dp = [1 for i in range(len(A[0]))]\n for i in range(1, len(A[0])):\n for j in range(i-1, -1, -1):\n poss = True\n for k in range(len(A)):\n if A[k][i] < A[k][j]:\n poss = False\n break\n if poss:\n dp[i] = max(dp[i], 1 + dp[j])\n return len(A[0]) - max(dp)\n``` | 2 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | easy python solution with memoization | easy-python-solution-with-memoization-by-uw69 | for A = ["babca","bbazb"]\nfirst we conver it to\nb,b line 1\na,b line 2\nb,a line 3\nc,z line 4\na,b line 5\n\nwhether we should left line 1 or not is determin | bupt_wc | NORMAL | 2018-12-16T04:11:44.940037+00:00 | 2018-12-16T04:11:44.940135+00:00 | 737 | false | for A = ["babca","bbazb"]\nfirst we conver it to\n`b,b` line 1\n`a,b` line 2\n`b,a` line 3\n`c,z` line 4\n`a,b` line 5\n\nwhether we should left `line 1` or not is determined by which will get smaller `D.length`.\nif we do not delete this line, then the next line\'s element should all be larger than this line, otherwise we must delete next line\n\nwe define function `solve(A, index, start)` means the `D.length` if we use `start` as the first element in `A[index:]`.\n`index` means the line which we are considering\n`start` is a list, represent the last line we choose left.\n\nso if `any(A[index][i] < start[i])`, we delete this line, and analyse solve(A, index+1, start)\n\notherwise, if `all(A[index][i] >= start[i])`, we choose the min D.length in case `left A[index]` and case `delete A[index]`, e.g. `min(solve(A,index+1,tuple(A[index])), 1+solve(A,index+1, start))`\n\ncause there are many double count, so I use `tuple format` to represent `start`\n```python\nclass Solution(object):\n def minDeletionSize(self, A):\n cache = {}\n def solve(A, index, start):\n if index >= len(A): return 0\n if (index, start) in cache: return cache[index,start]\n \n if any(A[index][j] < start[j] for j in range(len(A[index]))):\n cache[index,start] = 1 + solve(A, index+1, start)\n return cache[index,start]\n \n cache[index,start] = min(solve(A,index+1,tuple(A[index])), 1+solve(A,index+1, start))\n return cache[index,start]\n \n return solve(list(zip(*A)), 0, tuple([\'a\']*len(A)))\n``` | 2 | 0 | [] | 1 |
delete-columns-to-make-sorted-iii | DP | Memoization | Pick/Notpick approach | C++ | dp-memoization-picknotpick-approach-c-by-ezw9 | \nclass Solution {\npublic:\n int dp[105][105];\n int solve(int ind, int n, int prev, vector<string>& strs) {\n if(ind == n) return 0;\n if( | siddh5599 | NORMAL | 2023-09-08T10:07:40.977690+00:00 | 2023-09-08T10:07:40.977720+00:00 | 318 | false | ```\nclass Solution {\npublic:\n int dp[105][105];\n int solve(int ind, int n, int prev, vector<string>& strs) {\n if(ind == n) return 0;\n if(prev >= 0 && dp[ind][prev] != -1) return dp[ind][prev];\n int minval = 150;\n int flag = 0;\n for(int i = 0;i < strs.size();i++) {\n if(prev == -1) break;\n if(prev >= 0 && strs[i][prev] > strs[i][ind]) {\n flag = 1;\n break;\n }\n }\n //pick\n if(flag == 0) minval = solve(ind+1, n, ind, strs);\n \n //not-pick\n minval = min(minval, 1+solve(ind+1, n, prev, strs));\n if(prev >= 0) return dp[ind][prev] = minval;\n return minval;\n }\n \n int minDeletionSize(vector<string>& strs) {\n memset(dp, -1, sizeof dp);\n int n = strs[0].size();\n return solve(0, n, -1, strs);\n }\n};\n``` | 1 | 0 | ['Dynamic Programming', 'Memoization'] | 1 |
delete-columns-to-make-sorted-iii | java easiest solution | java-easiest-solution-by-codewithlegend-vr3k | Code\n\nclass Solution {\npublic int minDeletionSize(String[] strs) {\n int n = strs.length;\n int m = strs[0].length();\n int[] dp = new int[m];\n | CodeWithLegend | NORMAL | 2023-05-11T14:55:40.746191+00:00 | 2023-05-11T14:55:40.746276+00:00 | 105 | false | # Code\n```\nclass Solution {\npublic int minDeletionSize(String[] strs) {\n int n = strs.length;\n int m = strs[0].length();\n int[] dp = new int[m];\n \n int overallMax = 0;\n for(int i=0;i<m;i++){\n dp[i] = 1;\n for(int j=0;j<i;j++){\n \n if(isValid(strs,i,j)){\n dp[i] = Math.max(dp[i],dp[j]+1);\n }\n \n }\n overallMax = Math.max(dp[i],overallMax);\n }\n \n return m-overallMax;\n}\n\nprivate boolean isValid(String[] strs ,int i,int j){\n for(int k=0;k<strs.length;k++){\n if(strs[k].charAt(j)>strs[k].charAt(i))\n return false;\n }\n return true;\n}\n}\n``` | 1 | 0 | ['Java'] | 0 |
delete-columns-to-make-sorted-iii | EASY UNDERSTAND 70% FASTER C++ SOLUTION | easy-understand-70-faster-c-solution-by-dwz0p | \nclass Solution {\npublic:\n int check(vector<string> &v,int i,int j){\n for(int k = 0; k < v.size(); k++){\n if(v[k][j]>v[k][i])\n | abhay_12345 | NORMAL | 2022-12-01T09:07:50.080864+00:00 | 2022-12-01T09:07:50.080905+00:00 | 427 | false | ```\nclass Solution {\npublic:\n int check(vector<string> &v,int i,int j){\n for(int k = 0; k < v.size(); k++){\n if(v[k][j]>v[k][i])\n return 0;\n }\n return 1;\n }\n int minDeletionSize(vector<string>& strs) {\n vector<int> dp(strs[0].length(),1);\n int ans = 0;\n for(int i = 0; i < strs[0].length(); i++){\n for(int j = 0; j < i; j++){\n if(check(strs,i,j)){\n dp[i] = max(dp[j]+1,dp[i]);\n }\n }\n ans = max(ans,dp[i]);\n }\n return strs[0].length()-ans;\n }\n};\n``` | 1 | 0 | ['Dynamic Programming', 'Depth-First Search', 'C', 'C++'] | 1 |
delete-columns-to-make-sorted-iii | [Python3] O(mn^2) DP | python3-omn2-dp-by-cava-uygs | Intuition\n Describe your first thoughts on how to solve this problem. \nThis problem is similar to longest non-decrease subseqence, except we need to consider | cava | NORMAL | 2022-11-30T09:34:39.962255+00:00 | 2022-11-30T09:34:39.962299+00:00 | 183 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nThis problem is similar to longest non-decrease subseqence, except we need to consider all strings at the same time.\n\n\n# Code\n```\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n m, n = len(strs), len(strs[0])\n dp = [1] * n\n for i in range(1, n):\n for j in range(i):\n if all(strs[k][i] >= strs[k][j] for k in range(m)):\n dp[i] = max(dp[i], dp[j] + 1)\n return n - max(dp)\n``` | 1 | 0 | ['Python3'] | 0 |
delete-columns-to-make-sorted-iii | JavaScript Solution | javascript-solution-by-crisdev2705-4m8m | Complexity\n- Memory: 42.8 MB\n\n- Runtime: 103 ms\n\n- Beats: 100%\n\n# Code\n\n/**\n * @param {string[]} strs\n * @return {number}\n */\nvar minDeletionSize = | crisdev2705 | NORMAL | 2022-11-18T04:46:40.934270+00:00 | 2022-11-18T04:48:42.819892+00:00 | 167 | false | # Complexity\n- Memory: 42.8 MB\n\n- Runtime: 103 ms\n\n- Beats: 100%\n\n# Code\n```\n/**\n * @param {string[]} strs\n * @return {number}\n */\nvar minDeletionSize = function(strs) {\n if (strs.length === 0) return 0\n let dp = new Array(strs[0].length).fill(1)\n for (let i = 1; i < strs[0].length; i++) {\n for (let j = 0; j < i; j++) {\n let flag = true\n for (let k = 0; k < strs.length; k++) {\n if (strs[k][j] > strs[k][i]) {\n flag = false\n break\n }\n }\n if (flag) {\n dp[i] = Math.max(dp[i], dp[j] + 1)\n }\n }\n }\n return strs[0].length - Math.max(...dp)\n};\n``` | 1 | 0 | ['JavaScript'] | 0 |
delete-columns-to-make-sorted-iii | [C++] | MEMOIZATION | DYNAMIC PROGRAAMING | c-memoization-dynamic-prograaming-by-jat-q8bv | \nclass Solution {\npublic:\n int dp[101][101];\n int helper(vector<string>&strs, int i, int j){\n if(i==strs[0].length()){\n return 0;\ | jatinbansal1179 | NORMAL | 2022-10-01T08:18:23.304192+00:00 | 2022-10-01T08:18:23.304234+00:00 | 318 | false | ```\nclass Solution {\npublic:\n int dp[101][101];\n int helper(vector<string>&strs, int i, int j){\n if(i==strs[0].length()){\n return 0;\n }\n if(dp[i][j]!=-1){\n return dp[i][j];\n }\n int ans = INT_MIN;\n bool b = false;\n \n for(int k = 0; k < strs.size();k++){\n if(strs[k][i]<strs[k][j]){\n b = true;\n break;\n }\n }\n if(b == false){\n \n ans = 1 + helper(strs,i+1,j);\n \n ans = min(ans,helper(strs,i+1,i));\n }\n else{\n ans = 1 + helper(strs,i+1,j);\n }\n return dp[i][j] = ans;\n \n \n }\n \n \n int minDeletionSize(vector<string>& strs) {\n // vector<char> last(strs.size(),\'A\');\n // if(strs[0].length()==1) return 0;\n memset(dp,-1,sizeof(dp));\n for(int i = 0; i < strs.size();i++){\n strs[i] = \'A\' + strs[i];\n }\n return helper(strs,1,0);\n }\n};\n``` | 1 | 1 | ['Dynamic Programming', 'Recursion', 'Memoization', 'C', 'C++'] | 1 |
delete-columns-to-make-sorted-iii | Delete Columns to Make Sorted III Solution Java | delete-columns-to-make-sorted-iii-soluti-ef2v | class Solution {\n public int minDeletionSize(String[] A) {\n final int n = A[0].length();\n // dp[i] := LIS ending at A[*][i]\n int[] dp = new int[n] | bhupendra786 | NORMAL | 2022-09-26T08:20:20.889886+00:00 | 2022-09-26T08:20:20.889924+00:00 | 270 | false | class Solution {\n public int minDeletionSize(String[] A) {\n final int n = A[0].length();\n // dp[i] := LIS ending at A[*][i]\n int[] dp = new int[n];\n Arrays.fill(dp, 1);\n\n for (int i = 1; i < n; ++i)\n for (int j = 0; j < i; ++j)\n if (isSorted(A, j, i))\n dp[i] = Math.max(dp[i], dp[j] + 1);\n\n return n - Arrays.stream(dp).max().getAsInt();\n }\n\n private boolean isSorted(String[] A, int j, int i) {\n for (final String a : A)\n if (a.charAt(j) > a.charAt(i))\n return false;\n return true;\n }\n}\n | 1 | 0 | ['Array', 'String', 'Dynamic Programming'] | 0 |
delete-columns-to-make-sorted-iii | Java Basic Dp | java-basic-dp-by-mi1-ap3k | \nclass Solution {\n public int minDeletionSize(String[] strs) {\n for(int i=0;i<strs.length;i++){\n strs[i] = "0"+strs[i];\n }\n | mi1 | NORMAL | 2021-11-06T05:38:28.000759+00:00 | 2021-11-06T05:38:28.000805+00:00 | 99 | false | ```\nclass Solution {\n public int minDeletionSize(String[] strs) {\n for(int i=0;i<strs.length;i++){\n strs[i] = "0"+strs[i];\n }\n int[][]dp= new int[105][105];\n for(int[]row:dp) Arrays.fill(row,-1);\n return solve(strs,0,1,dp);\n }\n \n private int solve(String [] strs,int prev,int idx,int[][]dp){\n if(idx>=strs[0].length()){\n return 0;\n }\n if(dp[prev][idx]!=-1){\n return dp[prev][idx];\n }\n if(!isValid(strs,prev,idx)){\n int count = 1+solve(strs,prev,idx+1,dp);\n return dp[prev][idx]=count;\n }else{\n int count = 1+solve(strs,prev,idx+1,dp);\n count = Math.min(count,solve(strs,idx,idx+1,dp));\n return dp[prev][idx]=count;\n }\n }\n \n private boolean isValid(String[] strs,int prev,int idx){\n for(int i=0;i<strs.length;i++){\n String curr = strs[i];\n if(curr.charAt(idx)<curr.charAt(prev)){\n return false;\n }\n }\n return true;\n }\n \n}\n``` | 1 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | Java DP | java-dp-by-prathihaspodduturi-37q8 | \nclass Solution {\n public boolean check(String s[],int i,int j)\n {\n for(int p=0;p<s.length;p++)\n {\n if(s[p].charAt(i)>s[p]. | prathihaspodduturi | NORMAL | 2021-10-16T08:51:37.837432+00:00 | 2021-10-16T08:51:37.837462+00:00 | 83 | false | ```\nclass Solution {\n public boolean check(String s[],int i,int j)\n {\n for(int p=0;p<s.length;p++)\n {\n if(s[p].charAt(i)>s[p].charAt(j))\n return false;\n }\n return true;\n }\n public int minDeletionSize(String[] s) {\n int n=s.length,m=s[0].length(),ans=1;\n int dp[]=new int[m];\n for(int i=m-1;i>=0;i--)\n {\n dp[i]=1;\n for(int j=i+1;j<m;j++)\n {\n if(check(s,i,j)==true)\n dp[i]=Math.max(1+dp[j],dp[i]);\n }\n ans=Math.max(ans,dp[i]);\n }\n return m-ans;\n }\n}\n``` | 1 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | Python3 maximum increasing sequence with explanation (Runtime: 96 ms, faster than 100.00%) | python3-maximum-increasing-sequence-with-kcnh | Explanation:\nSave to dp[i] max len of possible string can be made out of all strings of str[0:i] when all satisfy the requirement.\nSo, first dp[0] is 1, becau | MVR11 | NORMAL | 2021-10-06T21:47:34.077788+00:00 | 2021-10-06T21:47:34.079699+00:00 | 124 | false | **Explanation:**\nSave to dp[i] max len of possible string can be made out of all strings of str[0:i] when all satisfy the requirement.\nSo, first dp[0] is 1, because if all strs are 1 char, then all satisfy the requirements.\nFor dp[1]:\n- check if all str[0] and [1] satisfy requirements. If so, save to dp[1] max of (already saved, dp[0]+1)\nFor dp[2]\n- check if all str[0] and [2] satisfy requirements. If so, save to dp[2] max of (already saved, dp[0]+1)\n- check if all str[1] and [2] satisfy requirements. If so, save to dp[2] max of (already saved, dp[1]+1)\nFor dp[3] - same, compare with 0,1,2.\nAnd so on.\n\nNow we have dp that has information about longest string can be made before i, like [1,2,3,2,2]\nTo know minimum possible deletion of chars we get max(dp) and substract from len(str)\n\nTo speed up and exit from subiteration we added break (instead of more beautiful realisation with all() )\n\n```\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n n = len(strs[0])\n dp = [1] * n\n for i in range(1, n):\n for j in range(i):\n ok = True\n for s in strs:\n if s[i] < s[j]:\n ok = False\n break\n if ok:\n dp[i] = max(dp[i], dp[j] + 1)\n return n - max(dp)\n``` | 1 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | C++ | Solution | Fast and short | c-solution-fast-and-short-by-paraslaul-gl9d | \n int minDeletionSize(vector<string>& strs) {\n// so what question demands is internal sorting of strings (not among each other)\n// so what | ParasLaul | NORMAL | 2021-06-12T22:48:47.307330+00:00 | 2021-06-12T22:48:47.307372+00:00 | 214 | false | ```\n int minDeletionSize(vector<string>& strs) {\n// so what question demands is internal sorting of strings (not among each other)\n// so what this is a good variation of LIS and truly a hard question\n// so let me draw what i want to explain\n// 1. k-> b a b c a\n// 2. k-> b b a z b\n// i\n// j\n// so at every i th and jth column we make comparison in each kth row if(strs[k][j]>strs[k][i]) then we have to remove this column\n// optimal way is to just count columns which does not violate above conditions because that are columns we want to keep ;)\n// at last our answer -----> total columns(n) - columns to keep(should max so that we can minimise no of columns to be deleted)\n// Lets code it;\n \n int i,j, k;\n int n=strs[0].size();\n int m=strs.size();\n vector<int>dp(n,1);\n for(i=0;i<n;i++){\n for(j=0;j<i;j++){\n for(k=0;k<m;k++){\n if(strs[k][j]>strs[k][i]) break;\n }\n if(k==m&&dp[i]<1+dp[j]) dp[i]=1+dp[j];\n }\n \n }\n return n - *max_element(dp.begin(), dp.end());\n }\n};\n``` | 1 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | Solution in Go + Explanation | solution-in-go-explanation-by-lutraman-0y53 | After a long time and some pain, I figured that this problem can be seen as a graph problem:\n\nlet\'s look at this example: ["aaaaabaa", "abcdefgb"]\nrearrange | lutraman | NORMAL | 2021-04-09T11:05:27.907263+00:00 | 2021-04-26T09:30:42.175793+00:00 | 107 | false | After a long time and some pain, I figured that this problem can be seen as a graph problem:\n\nlet\'s look at this example: ["aaaaabaa", "abcdefgb"]\nrearranged to a matrix shape:\n```\n\ta a a a a b a a\n\ta b c d e f g b\n```\nWe can think of each column in the matrix as a node in the graph\n\nFrom each node to another node there is a path if and only if:\n1. the source node is a column from the left of the destination node (i.e. we can only move from left to right)\n2. all the rows in the column of the source node are smaller or equal to their corrosponding row in the destination node\n\nfor example, there is a path from column 0 to column 7 (last one) because for the first string [0] and [7] are both \'a\' and for the second [0] is a and [7] is b\n\n```\n\ta ----------> a\n\ta ----------> b\n```\nThe cost of which is 6, since we have to delete 6 characters to get there directly. The cost can be calculated `nextColumn - column - 1` where `column` and `nextColumn` are index numbers.\n\nHowever, there is no route from 6 to 7:\n```\n\ta ----------> a\n\tg ----X-----> b\n```\n\nMoving from one column to the next is free (if possible), no deletions.\n\nLet\'s also add a Start and an End node to our graph (they are placeholders)\n```\nS a a a a a b a a E\nS\ta b c d e f g b E\n```\nand rephrase our question as follows:\n**What\'s the cheapest route to get from S to E?**\n\nNow the question looks much simpler. At first I thought of Dijkstra, but it was just too complex to impement in this scenario (setting up a priority queue in go is a bit too much work for what we need). Then I tried DFS, but that was too slow. So I added some memory to the solution in the form of an array keeping the cheapest route to evey node at any point of the search, and now I get to call it dynamic programming :-)\n\nSo, here\'s the solution in Go. A DFS with memory:\n\n```go\nfunc minDeletionSize(strs []string) int {\n deletionsToColumn := make([]int, len(strs[0])+1) // deletionsToColumn is 1 place longer, to accomodate for the very important End node\n\t// this loop simulates going from our placeholder start node to every other node (the cost is just the column index)\n\t// also there will always be a path from S to any other node, it translates to where we choose to start\n for i := 0; i < len(deletionsToColumn); i++ {\n deletionsToColumn[i] = i\n }\n return minDeletionsRoute(strs, deletionsToColumn)\n}\n\n// I guess there was no real need for me to split to another function, just a remainder of my previous DFS attempt\nfunc minDeletionsRoute(strs []string, deletionsToColumn []int) int {\n for column := 0; column < len(strs[0]); column++ {\n for nextColumn := column + 1; nextColumn < len(deletionsToColumn); nextColumn++ {\n\t\t\t// it\'s cheaper (computationally) to check if the cost of the edge is cheaper than the previous best way to arrive to it, so that condition comes before the call to hasRoute\n if deletionsToColumn[nextColumn] >= deletionsToColumn[column] + nextColumn - column - 1 && hasRoute(strs, column, nextColumn) {\n deletionsToColumn[nextColumn] = deletionsToColumn[column] + nextColumn - column - 1\n }\n }\n }\n return deletionsToColumn[len(deletionsToColumn)-1]\n}\n\n// hasRoute checks that all the chars in the column (c) are in order with the chars in the next column (nc)\nfunc hasRoute(strs []string, c, nc int) bool {\n if c == -1 || nc == len(strs[0]) { return true } // if nc is out of bounds, that means it\'s the end node, to which all nodes are free to reach (at a cost!)\n for si := 0; si < len(strs); si++ {\n if strs[si][c] > strs[si][nc] {\n return false\n }\n } \n return true\n}\n```\n | 1 | 0 | ['Dynamic Programming', 'Depth-First Search', 'Graph', 'Go'] | 0 |
delete-columns-to-make-sorted-iii | [Rust] 100% | rust-100-by-nickx720-n651 | \nimpl Solution {\n pub fn min_deletion_size(a: Vec<String>) -> i32 {\n let len = a[0].len();\n let mut dp: Vec<i32> = vec![1; len];\n let mut r | nickx720 | NORMAL | 2020-12-01T11:03:05.113883+00:00 | 2020-12-01T11:03:05.115136+00:00 | 84 | false | ```\nimpl Solution {\n pub fn min_deletion_size(a: Vec<String>) -> i32 {\n let len = a[0].len();\n let mut dp: Vec<i32> = vec![1; len];\n let mut res = 1;\n for i in 0..len {\n for j in 0..i {\n let mut flag: bool = false;\n for item in a.iter() {\n let item = item.chars().collect::<Vec<char>>();\n if item[i] >= item[j] {\n flag = true;\n continue;\n }\n flag = false;\n break;\n }\n if flag {\n dp[i] = std::cmp::max(dp[i], 1 + dp[j]);\n res = std::cmp::max(res, dp[i]);\n }\n }\n }\n let len = len as i32;\n len - res\n }\n}\n``` | 1 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | Longest Increasing Subsequence - 1D DP | longest-increasing-subsequence-1d-dp-by-vsq0f | For general LIS problem, there is a nice O(nlogn) solution https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pd | huangdachuan | NORMAL | 2020-10-15T22:58:42.201100+00:00 | 2020-10-15T22:58:42.201144+00:00 | 178 | false | For general LIS problem, there is a nice O(nlogn) solution https://www.cs.princeton.edu/courses/archive/spring13/cos423/lectures/LongestIncreasingSubsequence.pdf\n```\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& A) {\n int n = A[0].size();\n vector<int> dp(n, 1);\n int lis = 1;\n for (int i = 1; i < n; ++i) {\n for (int j = 0; j < i; ++j) {\n if (lexiOrder(A, j, i)) {\n dp[i] = max(dp[i], dp[j] + 1);\n }\n }\n lis = max(lis, dp[i]);\n }\n return n - lis;\n }\n\nprivate:\n bool lexiOrder(vector<string>& A, int j, int i) {\n for (int r = 0; r < A.size(); ++r) {\n if (A[r][i] < A[r][j]) {\n return false;\n }\n }\n return true;\n }\n};\n``` | 1 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | Simple Java sol | simple-java-sol-by-cuny-66brother-yx49 | \nclass Solution {\n public int minDeletionSize(String[] A) {\n int dp[]=new int[A[0].length()];\n int res=1;\n Arrays.fill(dp,1);\n | CUNY-66brother | NORMAL | 2020-05-01T22:48:26.404305+00:00 | 2020-05-01T22:48:26.404360+00:00 | 128 | false | ```\nclass Solution {\n public int minDeletionSize(String[] A) {\n int dp[]=new int[A[0].length()];\n int res=1;\n Arrays.fill(dp,1);\n for(int i=1;i<A[0].length();i++){\n int longest=1;\n for(int j=i-1;j>=0;j--){\n boolean all=true;\n for(int k=0;k<A.length;k++){\n if(A[k].charAt(i)<A[k].charAt(j))all=false;\n }\n if(all)longest=Math.max(longest,1+dp[j]);\n }\n dp[i]=longest;\n }\n for(int n:dp)res=Math.max(res,n);\n return A[0].length()-res;\n }\n}\n``` | 1 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | Accepted C# DP Solution | accepted-c-dp-solution-by-maxpushkarev-hya0 | \n public class Solution\n {\n public int MinDeletionSize(string[] rows)\n {\n int length = rows[0].Length;\n int [] d | maxpushkarev | NORMAL | 2020-03-18T02:55:49.301123+00:00 | 2020-03-18T02:55:49.301177+00:00 | 90 | false | ```\n public class Solution\n {\n public int MinDeletionSize(string[] rows)\n {\n int length = rows[0].Length;\n int [] dp = new int[length];\n\n for (int i = length - 1; i >= 0; i--)\n {\n dp[i] = length - i - 1;\n\n for (int j = i + 1; j < length; j++)\n {\n int inner = (j - i) - 1;\n bool valid = true;\n\n foreach (var row in rows)\n {\n if (row[i] > row[j])\n {\n valid = false;\n break;\n }\n }\n\n if (valid)\n {\n dp[i] = Math.Min(dp[i], dp[j] + inner);\n }\n }\n }\n\n int res = int.MaxValue;\n for (int i = 0; i < length; i++)\n {\n res = Math.Min(res, dp[i] + i);\n }\n\n return res;\n }\n }\n``` | 1 | 1 | ['Dynamic Programming'] | 0 |
delete-columns-to-make-sorted-iii | [C++] DP with Memo | c-dp-with-memo-by-shaktirajpandey1996-4xcw | Assumptions:-\nDP[i][j] will give information about minimum number of deletion required to make array index upto i lexicographically sorted where j is the previ | shaktirajpandey1996 | NORMAL | 2019-08-28T18:09:36.432235+00:00 | 2019-08-28T18:09:36.432272+00:00 | 303 | false | Assumptions:-\n**DP[i][j]** will give information about ***minimum number of deletion*** required to make array index upto **i** lexicographically sorted where j is the previously used value.\n\n```\nconst int inf = 1e8;\nclass Solution {\npublic:\n int N, M;\n vector<string > P;\n vector<vector<int> > DP;\n int solve(int id, int prev){\n if(id >= N){\n return 0;\n }\n if(DP[id][prev] != -1){\n return DP[id][prev];\n }\n int ans = inf;\n int f = 0;\n for(int i=0;i<P.size();i++){\n if ( P[i][id] < P[i][prev]){\n f = 1;\n break;\n }\n }\n if(f == 0){\n ans = solve(id+1,id);\n }\n ans = min(ans,1 + solve(id+1, prev));\n return DP[id][prev]=ans; \n }\n\n int minDeletionSize(vector<string>& A) {\n for(int i=0;i<A.size();i++){\n P.push_back("_"+A[i]);\n }\n N = P[0].size();\n M = P.size();\n DP.resize(N+5,vector<int > (N+5,-1));\n return solve(1,0);\n }\n};\n\n\n``` | 1 | 0 | [] | 1 |
delete-columns-to-make-sorted-iii | Java 10ms DP solution | java-10ms-dp-solution-by-brianjr-8dg9 | \nclass Solution {\n public int minDeletionSize(String[] A) {\n int len = A[0].length();\n int min = len;\n int[] dp = new int[len];\n | brianjr | NORMAL | 2018-12-16T18:44:01.095058+00:00 | 2018-12-16T18:44:01.095146+00:00 | 180 | false | ```\nclass Solution {\n public int minDeletionSize(String[] A) {\n int len = A[0].length();\n int min = len;\n int[] dp = new int[len];\n for(int i=1; i<len; i++) {\n dp[i] = i;\n for(int j=i-1; j>=0; j--) {\n if(canCompare(A, i, j)) {\n dp[i] = Math.min(dp[i], dp[j]+(i-j-1));\n }\n }\n min = Math.min(min, dp[i]+(len-i-1));\n }\n return min;\n }\n \n private boolean canCompare(String[] A, int x, int y) {\n for(int i=0; i<A.length; i++) {\n if(A[i].charAt(x)<A[i].charAt(y)) {\n return false;\n }\n }\n return true;\n }\n}\n``` | 1 | 1 | [] | 0 |
delete-columns-to-make-sorted-iii | [Java] DP | Longest Increasing Subsequence | java-dp-longest-increasing-subsequence-b-ihss | My solution is O(kn^2) \n\n\n public int minDeletionSize(String[] A) {\n int[] dp = new int[A[0].length()];\n int max = 1;\n dp[0] = 1;\ | gcarrillo | NORMAL | 2018-12-16T04:00:53.003447+00:00 | 2018-12-16T04:00:53.003519+00:00 | 346 | false | My solution is ```O(kn^2)``` \n\n```\n public int minDeletionSize(String[] A) {\n int[] dp = new int[A[0].length()];\n int max = 1;\n dp[0] = 1;\n for(int i = 1; i < dp.length; i++){\n dp[i] = 1;\n for(int j = 0; j < i; j++){\n boolean mark = true;\n\t\t// if all characters in column i are greater than j then its a valid subsequence\n for(String k : A){\n if(k.charAt(j) > k.charAt(i)){\n mark = false;\n break;\n }\n \n }\n \n if(mark)\n dp[i] = Math.max(dp[j] + 1, dp[i]);\n }\n \n max = Math.max(max,dp[i]);\n }\n \n return A[0].length() - max;\n \n }\n``` | 1 | 1 | [] | 1 |
delete-columns-to-make-sorted-iii | C++ DP Solution based on LIS | c-dp-solution-based-on-lis-by-gengar33-ic61 | IntuitionInstead of caring for what to delete, think of what to keep. Since the questions says lexicographic, we can think of LIS approach.ApproachComplexity
T | gengar33 | NORMAL | 2025-03-14T04:48:10.111023+00:00 | 2025-03-14T04:48:10.111023+00:00 | 5 | false | # Intuition
Instead of caring for what to delete, think of what to keep. Since the questions says lexicographic, we can think of LIS approach.
# Approach
Idea here is to use LIS.
If you see the first 2 loops they are pretty much standard LIS way.
Now for each string, we check that if the order is non-decreasing for s[i] and s[j] where j < i
If for any string, we see that s[i] >= s[j] does not hold true, that means index i characters need to be removed for all strs
The k == strs.size check ensures that we have not come out of the loop due to above reason
we increase the LIS length by 1
At the end, we find the max LIS length. This represents the no. of characters we are going to keep in all strings.
So n-MaxLISLength is the total deleted characters.
# Complexity
- Time complexity:
O(StringLength * StringLength * strs.length)
- Space complexity:
O(StringLength)
# Code
```cpp []
class Solution {
public:
int minDeletionSize(vector<string>& strs) {
int n = strs[0].length();
vector<int> dp(n, 1);
for(int i = 1; i<n; i++) {
for(int j=0; j<i; j++) {
int k =0 ;
while(k < strs.size()) {
if(strs[k][i] < strs[k][j]) {
break;
}
k++;
}
if(k == strs.size()) {
dp[i] = max(dp[i], 1 + dp[j]);
}
}
}
int res = 0;
for(int i: dp)
res = max(res, i);
return n-res;
}
};
``` | 0 | 0 | ['Dynamic Programming', 'C++'] | 0 |
delete-columns-to-make-sorted-iii | C++ DP Solution based on LIS | c-dp-solution-based-on-lis-by-gengar33-ug2j | IntuitionInstead of caring for what to delete, think of what to keep. Since the questions says lexicographic, we can think of LIS approach.ApproachComplexity
T | gengar33 | NORMAL | 2025-03-14T04:45:24.671422+00:00 | 2025-03-14T04:45:24.671422+00:00 | 7 | false | # Intuition
Instead of caring for what to delete, think of what to keep. Since the questions says lexicographic, we can think of LIS approach.
# Approach
Idea here is to use LIS.
If you see the first 2 loops they are pretty much standard LIS way.
Now for each string, we check that if the order is non-decreasing for s[i] and s[j] where j < i
If for any string, we see that s[i] >= s[j] does not hold true, that means index i characters need to be removed for all strs
The k == strs.size check ensures that we have not come out of the loop due to above reason
we increase the LIS length by 1
At the end, we find the max LIS length. This represents the no. of characters we are going to keep in all strings.
So n-MaxLISLength is the total deleted characters.
# Complexity
- Time complexity:
O(StringLength * StringLength * strs.length)
- Space complexity:
O(StringLength)
# Code
```cpp []
class Solution {
public:
int minDeletionSize(vector<string>& strs) {
int n = strs[0].length();
vector<int> dp(n, 1);
for(int i=n-2; i>=0; i--) {
for(int j = i+1; j < n; j++) {
int c=0;
for(string s: strs) {
if(s[i] > s[j])
break;
c++;
}
if(c == strs.size())
dp[i] = max(dp[i], 1+dp[j]);
}
}
int res = 0;
for(int i: dp)
res = max(res, i);
return n-res;
}
};
``` | 0 | 0 | ['Dynamic Programming', 'C++'] | 0 |
delete-columns-to-make-sorted-iii | 960. Delete Columns to Make Sorted III | 960-delete-columns-to-make-sorted-iii-by-hl4u | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | G8xd0QPqTy | NORMAL | 2025-01-02T03:48:18.851028+00:00 | 2025-01-02T03:48:18.851028+00:00 | 6 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```python []
class Solution:
def minDeletionSize(self, strs):
n = len(strs)
m = len(strs[0])
dp = [1] * m
for j in range(1, m):
for i in range(j):
if all(strs[k][i] <= strs[k][j] for k in range(n)):
dp[j] = max(dp[j], dp[i] + 1)
return m - max(dp)
``` | 0 | 0 | ['Python'] | 0 |
delete-columns-to-make-sorted-iii | EASY PICK NOT PICK SOLUTION | easy-pick-not-pick-solution-by-uppalaaka-dhuq | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | UppalaAkash | NORMAL | 2025-01-01T13:31:08.627559+00:00 | 2025-01-01T13:31:08.627559+00:00 | 14 | false | # Intuition
<!-- Describe your first thoughts on how to solve this problem. -->
# Approach
<!-- Describe your approach to solving the problem. -->
# Complexity
- Time complexity:
<!-- Add your time complexity here, e.g. $$O(n)$$ -->
- Space complexity:
<!-- Add your space complexity here, e.g. $$O(n)$$ -->
# Code
```cpp []
class Solution {
public:
int n;
int dp[105][105];
int solve(int ind, int prev, vector<string>& strs) {
if (ind >= n) return 0;
if (dp[ind][prev + 1] != -1) return dp[ind][prev + 1];
int flag = 0;
for (int i = 0; i < strs.size(); i++) {
if (prev != -1 && strs[i][prev] > strs[i][ind]) {
flag = 1;
break;
}
}
int minval = INT_MAX;
// We don't need to remove the index
if (!flag) minval = solve(ind + 1, ind, strs);
// Consider deleting the current index
minval = min(minval, 1 + solve(ind + 1, prev, strs));
return dp[ind][prev + 1] = minval;
}
int minDeletionSize(vector<string>& strs) {
memset(dp, -1, sizeof dp);
n = strs[0].size();
return solve(0, -1, strs);
}
};
``` | 0 | 0 | ['C++'] | 0 |
delete-columns-to-make-sorted-iii | 100% Memory || 100% Runtime || DP || Memoized || with witout approach | 100-memory-100-runtime-dp-memoized-with-cw2hy | IntuitionApproachComplexity
Time complexity:
Space complexity:
Code | twinwal | NORMAL | 2024-12-17T12:03:14.711414+00:00 | 2024-12-17T12:03:14.711414+00:00 | 4 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```kotlin []\nclass Solution {\n fun minDeletionSize(strs: Array<String>): Int {\n val dp = Array(strs[0].length) { Array<Int?>(strs[0].length) { -1 } }\n return minDeletionSize1(strs, 0, -1, dp) ?: -1\n }\n\n fun minDeletionSize1(strs: Array<String>, index: Int, pre: Int, dp: Array<Array<Int?>>): Int? {\n if (index == strs[0].length) {\n return 0\n }\n if(dp[index][pre + 1] != -1) return dp[index][pre + 1]\n val without = minDeletionSize1(strs, index + 1, pre, dp)?.let { 1 + it }\n var with: Int? = null\n var isWithValid = true\n for (i in 0..strs.lastIndex) {\n if (pre != -1 && strs[i][index] < strs[i][pre]) {\n isWithValid = false\n break\n }\n }\n if (isWithValid) {\n with = minDeletionSize1(strs, index + 1, index, dp)\n }\n dp[index][pre + 1] = listOfNotNull(with, without).minOrNull()\n return dp[index][pre + 1]\n }\n}\n``` | 0 | 0 | ['Kotlin'] | 0 |
delete-columns-to-make-sorted-iii | Python (Simple DP) | python-simple-dp-by-rnotappl-lkh2 | Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time | rnotappl | NORMAL | 2024-11-28T06:28:46.681586+00:00 | 2024-11-28T06:28:46.681622+00:00 | 3 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```python3 []\nclass Solution:\n def minDeletionSize(self, strs):\n n, m = len(strs), len(strs[0])\n\n @lru_cache(None)\n def function(cur,prev):\n if cur == m:\n return 0 \n\n min_val = 1 + function(cur+1,prev)\n\n if prev == -1 or all(strs[i][prev] <= strs[i][cur] for i in range(n)):\n min_val = min(min_val,function(cur+1,cur))\n\n return min_val \n\n return function(0,-1)\n``` | 0 | 0 | ['Python3'] | 0 |
delete-columns-to-make-sorted-iii | python3 recursive dp | python3-recursive-dp-by-0icy-n0vh | \n# Code\npython3 []\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n\n @cache\n def dp(prev,i):\n if i>=len( | 0icy | NORMAL | 2024-11-22T05:26:49.390307+00:00 | 2024-11-22T05:26:49.390357+00:00 | 3 | false | \n# Code\n```python3 []\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n\n @cache\n def dp(prev,i):\n if i>=len(strs[0]):\n return 0\n t1 = 1+dp(prev,i+1)\n t2 = inf\n if prev == -1:\n t2 = dp(i,i+1)\n else:\n flag = True\n for e in strs:\n if e[i] >= e[prev]:\n continue\n else:\n flag = False\n break\n if flag:\n t2 = dp(i,i+1)\n return min(t1,t2)\n \n return dp(-1,0)\n``` | 0 | 0 | ['Python3'] | 0 |
delete-columns-to-make-sorted-iii | DP | dp-by-linda2024-2vy0 | Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time | linda2024 | NORMAL | 2024-10-19T22:33:48.700246+00:00 | 2024-10-19T22:33:48.700262+00:00 | 3 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```csharp []\npublic class Solution {\n private bool ValidOrder(string[] strs, int idx1, int idx2)\n {\n int size = strs.Length;\n for(int i = 0; i < size; i++)\n {\n if(idx2 >= strs[i].Length)\n return false;\n\n if(strs[i][idx1]>strs[i][idx2])\n return false;\n }\n\n return true;\n }\n\n public int MinDeletionSize(string[] strs) {\n int row = strs.Length, col = strs[0].Length;\n int[] dp = Enumerable.Repeat(1, col).ToArray();\n\n int minDel = col;\n for(int i = 0; i < col; i++)\n {\n for(int j = 0; j < i; j++)\n {\n if(ValidOrder(strs, j, i))\n dp[i] = Math.Max(dp[i], dp[j]+1);\n }\n \n minDel = Math.Min(minDel, col-dp[i]);\n }\n\n return minDel;\n }\n}\n``` | 0 | 0 | ['C#'] | 0 |
delete-columns-to-make-sorted-iii | pyhthon | pyhthon-by-hassam_472-q4cb | \n# Code\npython3 []\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n if not strs:\n return 0\n \n n = | hassam_472 | NORMAL | 2024-10-19T13:15:46.149910+00:00 | 2024-10-19T13:15:46.149944+00:00 | 5 | false | \n# Code\n```python3 []\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n if not strs:\n return 0\n \n n = len(strs)\n m = len(strs[0])\n \n # dp[i] represents the maximum length of the sorted subsequence ending at index i\n dp = [1] * m\n \n for i in range(1, m):\n for j in range(i):\n if all(s[j] <= s[i] for s in strs):\n dp[i] = max(dp[i], dp[j] + 1)\n \n return m - max(dp)\n``` | 0 | 0 | ['Python3'] | 0 |
delete-columns-to-make-sorted-iii | Pick max indices | pick-max-indices-by-theabbie-9nn8 | \nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n m = len(strs[0])\n @lru_cache(maxsize = None)\n def dp(i, prev) | theabbie | NORMAL | 2024-10-17T11:48:04.191704+00:00 | 2024-10-17T11:48:04.191727+00:00 | 0 | false | ```\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n m = len(strs[0])\n @lru_cache(maxsize = None)\n def dp(i, prev):\n if i >= m:\n return 0\n take = True\n for s in strs:\n if prev != -1 and s[prev] > s[i]:\n take = False\n break\n res = dp(i + 1, prev)\n if take:\n res = max(res, 1 + dp(i + 1, i))\n return res\n return m - dp(0, -1)\n``` | 0 | 0 | ['Python'] | 0 |
delete-columns-to-make-sorted-iii | delete-columns-to-make-sorted-iii - TypeScript Solution | delete-columns-to-make-sorted-iii-typesc-uckr | \n\n# Code\ntypescript []\nfunction minDeletionSize(strs: string[]): number {\n const numRows = strs.length;\n const numCols = strs[0].length;\n const | himashusharma | NORMAL | 2024-10-10T04:59:28.876193+00:00 | 2024-10-10T04:59:28.876229+00:00 | 2 | false | \n\n# Code\n```typescript []\nfunction minDeletionSize(strs: string[]): number {\n const numRows = strs.length;\n const numCols = strs[0].length;\n const dp: number[] = new Array(numCols).fill(1);\n let minDeletions = numCols;\n\n for(let i = 0; i < numCols; ++i){\n for(let j = 0; j<i; ++j){\n let valid = true;\n for(let k = 0; k < numRows; ++k){\n if(strs[k][j] > strs[k][i]){\n valid = false;\n break;\n }\n }\n if(valid){\n dp[i] = Math.max(dp[i], dp[j] + 1)\n }\n }\n minDeletions = Math.min(minDeletions, numCols - dp[i]);\n }\n return minDeletions;\n \n};\n``` | 0 | 0 | ['Array', 'String', 'Dynamic Programming', 'TypeScript', 'JavaScript'] | 0 |
delete-columns-to-make-sorted-iii | Delete Column With DP | delete-column-with-dp-by-ansh1707-jt1l | Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time | Ansh1707 | NORMAL | 2024-10-04T01:09:28.093089+00:00 | 2024-10-04T01:09:28.093112+00:00 | 1 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```python []\nclass Solution(object):\n def minDeletionSize(self, strs):\n n = len(strs[0])\n \n def checkRest(idx1, idx2):\n for i in range(1, len(strs)):\n if not strs[i][idx1] <= strs[i][idx2]: \n return False\n return True\n \n def lis(idx, memo):\n if idx in memo:\n return memo[idx]\n \n longest = 1\n for i in range(idx + 1, n):\n if strs[0][idx] <= strs[0][i] and checkRest(idx, i):\n longest = max(longest, 1 + lis(i, memo))\n \n memo[idx] = longest\n return longest\n\n longest = 0\n memo = {}\n for i in range(n):\n longest = max(longest, lis(i, memo))\n \n return n - longest\n\n\n``` | 0 | 0 | ['Python'] | 0 |
delete-columns-to-make-sorted-iii | Delete Columns to Make Sorted III | delete-columns-to-make-sorted-iii-by-sha-zmkk | Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time | Shaludroid | NORMAL | 2024-09-06T21:24:23.664368+00:00 | 2024-09-06T21:24:23.664399+00:00 | 19 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```java []\nclass Solution {\n public int minDeletionSize(String[] strs) {\n int n = strs.length;\n int m = strs[0].length();\n \n // dp[j] represents the length of the longest increasing subsequence of columns ending at column j\n int[] dp = new int[m];\n Arrays.fill(dp, 1); // Each column itself can be a subsequence\n \n for (int j = 1; j < m; j++) {\n for (int i = 0; i < j; i++) {\n // Check if column i can come before column j in the sequence\n boolean valid = true;\n for (int k = 0; k < n; k++) {\n if (strs[k].charAt(i) > strs[k].charAt(j)) {\n valid = false;\n break;\n }\n }\n if (valid) {\n dp[j] = Math.max(dp[j], dp[i] + 1);\n }\n }\n }\n \n // The length of the longest subsequence is the maximum value in dp\n int lis = 0;\n for (int len : dp) {\n lis = Math.max(lis, len);\n }\n \n // Minimum deletions = total columns - length of longest increasing subsequence\n return m - lis;\n }\n}\n\n``` | 0 | 0 | ['Java'] | 0 |
delete-columns-to-make-sorted-iii | 960. Delete Columns to Make Sorted III.cpp | 960-delete-columns-to-make-sorted-iiicpp-p6d9 | Code\n\nclass Solution {\npublic:\n vector<bitset<100>>t; \n void fill_table(vector<string>& strs){\n for(auto &w: strs){\n vector<vector<int>>v(26, | 202021ganesh | NORMAL | 2024-08-22T10:09:53.330250+00:00 | 2024-08-22T10:09:53.330281+00:00 | 1 | false | **Code**\n```\nclass Solution {\npublic:\n vector<bitset<100>>t; \n void fill_table(vector<string>& strs){\n for(auto &w: strs){\n vector<vector<int>>v(26, vector<int>());\n v[w.back() - \'a\'].push_back(w.size()-1);\n for(int j = w.size()-2; j >= 0; j--){\n bitset<100>b;\n int id = w[j] - \'a\'; \n for(int k = id; k != 26; k++)\n for(auto id: v[k]) b[id] = 1; \n v[id].push_back(j); \n t[j] &= b;\n }\n }\n } \n int minDeletionSize(vector<string>& strs){\n int n = strs[0].size();\n t.resize(n-1);\n for(auto &b : t) b.set();\n fill_table(strs); \n vector<int>dp(n, 0); \n queue<pair<int, int>>; \n for(int i = 0; i != t.size(); i++)\n for(int j = 0; t[i].any(); j++)\n if(t[i][j]) dp[j] = max(dp[j], dp[i] + 1), t[i][j] = 0; \n return n - ( *max_element(dp.begin(), dp.end()) + 1);\n }\n};\n``` | 0 | 0 | ['C'] | 0 |
delete-columns-to-make-sorted-iii | In C++ | in-c-by-ranjithgopinath-0mfu | Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time | RanjithGopinath | NORMAL | 2024-08-10T13:56:29.960076+00:00 | 2024-08-10T13:56:29.960103+00:00 | 13 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n int n = strs.size();\n int m = strs[0].size();\n vector<int> dp(m, 1); // dp[i] stores the length of the longest increasing subsequence ending at column i\n \n for (int i = 1; i < m; ++i) {\n for (int j = 0; j < i; ++j) {\n bool valid = true;\n for (int k = 0; k < n; ++k) {\n if (strs[k][j] > strs[k][i]) {\n valid = false;\n break;\n }\n }\n if (valid) {\n dp[i] = max(dp[i], dp[j] + 1);\n }\n }\n }\n \n return m - *max_element(dp.begin(), dp.end());\n }\n};\n``` | 0 | 0 | ['C++'] | 0 |
delete-columns-to-make-sorted-iii | very easy | very-easy-by-omsonekar4-tuhv | Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time | omsonekar4 | NORMAL | 2024-08-06T20:51:54.270521+00:00 | 2024-08-06T20:51:54.270545+00:00 | 4 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n int n = strs.size();\n int m = strs[0].size();\n vector<int> ways(m,0);\n for(int i=m-1;i>=0;i--){\n int ans = 0;\n for(int j=i+1;j<m;j++){\n int k;\n for(k=0;k<n && strs[k][i] <= strs[k][j];k++);\n if (k == n)\n ans = max(ans, ways[j]+1);\n }\n ways[i] = ans;\n }\n return m-*max_element(ways.begin(),ways.end())-1;\n }\n};\n``` | 0 | 0 | ['C++'] | 0 |
delete-columns-to-make-sorted-iii | DP: Maximal increasing subsequence(all strings through) | dp-maximal-increasing-subsequenceall-str-fpkf | Approach\nSimilar to the search for the maximum length of an increasing subsequence.\n\u041Enly the comparison goes through all strings in a special function\n# | sav20011962 | NORMAL | 2024-08-01T09:25:14.834287+00:00 | 2024-08-01T11:57:56.844867+00:00 | 9 | false | # Approach\nSimilar to the search for the maximum length of an increasing subsequence.\n\u041Enly the comparison goes through all strings in a special function\n# Complexity\n\n# Code\n```\n// similar to the search for the maximum length of an increasing subsequence\n// only the comparison goes through all strings \n// in a special function\nclass Solution {\n fun minDeletionSize(strs: Array<String>): Int {\n val length = strs[0].length\n val dp = IntArray(length, {1})\n var max = 0\n fun checkAllStrs(j: Int, i: Int): Boolean {\n for (s in strs) \n if (s[j] > s[i]) return false\n return true\n }\n for (i in 0 until length) {\n for (j in 0 until i) {\n if (checkAllStrs(j, i)) {\n dp[i] = Math.max(dp[i], dp[j] + 1)\n }\n }\n max = Math.max(max, dp[i])\n }\n return length - max\n }\n\n}\n``` | 0 | 0 | ['Dynamic Programming', 'Kotlin'] | 0 |
delete-columns-to-make-sorted-iii | simple lis | simple-lis-by-harsh99429-ucd4 | \n# Complexity\n- Time complexity:\nO(n^2*m)\nm is the size of each string \n\n- Space complexity:\nO(n)\n\n# Code\n\nclass Solution:\n def minDeletionSize(s | harsh99429 | NORMAL | 2024-07-25T19:45:48.394421+00:00 | 2024-07-25T19:45:48.394457+00:00 | 8 | false | \n# Complexity\n- Time complexity:\n$$O(n^2*m)$$\nm is the size of each string \n\n- Space complexity:\n$$O(n)$$\n\n# Code\n```\nclass Solution:\n def minDeletionSize(self, l: List[str]) -> int:\n n=len(l[0]) #len of each str\n m=len(l) #len of list\n dp=[1 for _ in range(n)]\n\n for i in range(n):\n for k in range(i):\n ct=0\n for j in range(m):\n if l[j][k]<=l[j][i]:\n ct+=1\n else:\n break\n if(ct==m):\n dp[i]=max(dp[i],1+dp[k])\n \n return n-max(dp)\n\n``` | 0 | 0 | ['Python3'] | 0 |
delete-columns-to-make-sorted-iii | C++ || DP || Commented | c-dp-commented-by-saiteja_balla0413-mk3c | \nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n int n=strs[0].size();\n vector<vector<int>> dp(n+1,vector<int>(n+1, | saiteja_balla0413 | NORMAL | 2024-04-19T15:03:30.879577+00:00 | 2024-04-19T15:03:30.879614+00:00 | 19 | false | ```\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n int n=strs[0].size();\n vector<vector<int>> dp(n+1,vector<int>(n+1,-1));\n return dfs(0,1,strs,dp);\n }\n //returns true if every string\'s char at ind is >= char at last, since it should be in lexicographical order\n bool isValid(vector<string>& strs,int ind,int last)\n {\n if(last==0)\n return true;\n int n=strs.size();\n ind-=1;\n last-=1;\n for(int i=0;i<n;i++)\n {\n if(strs[i][ind] < strs[i][last])\n return false;\n }\n return true;\n }\n int dfs(int last,int ind,vector<string>& strs,vector<vector<int>>& dp)\n {\n //we have calculated all columns and reached end \n if(ind==strs[0].size()+1)\n return 0;\n \n //if pre computed then return the ans\n if(dp[ind][last]!=-1)\n return dp[ind][last];\n \n int curr=INT_MAX;\n \n //we choose to delete it and find ans\n curr=min(curr, 1+ dfs(last,ind+1,strs,dp));\n \n //Choose not to delete only if the last char and ind char are in lexicographical order\n if(isValid(strs,ind,last))\n curr=min(curr, dfs(ind,ind+1,strs,dp));\n return dp[ind][last]=curr;\n }\n};\n``` | 0 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | JS/TS Solution, beats 100% | jsts-solution-beats-100-by-jamauss-pgts | Able to determine the deletion size by using .charAt to compare with what\'s still left.\n\n# Code\n\nconst minDeletionSize = (strs: string[]): number => {\n | jamauss | NORMAL | 2023-12-21T18:33:48.869478+00:00 | 2023-12-21T18:33:48.869516+00:00 | 19 | false | Able to determine the deletion size by using `.charAt` to compare with what\'s still left.\n\n# Code\n```\nconst minDeletionSize = (strs: string[]): number => {\n \n const totalStrs = strs.length;\n const strSize = strs[0].length;\n let result:number = strSize - 1;\n let k:number = 0;\n\n let dp:number[] = new Array<number>(strSize).fill(1); // using fill so compile with tsc --lib "es2015,dom"\n\n for(let i = 0; i < strSize; ++i) {\n for(let j = 0; j < i; ++j) {\n for(k = 0; k < totalStrs; ++k) {\n if(strs[k].charAt(j) > strs[k].charAt(i)) break;\n }\n if(k === totalStrs && dp[j] + 1 > dp[i]) {\n dp[i] = dp[j] + 1;\n }\n }\n result = Math.min(result, strSize - dp[i]);\n }\n\n return result;\n\n};\n```\nSee more `TypeScript`/`JavaScript` (and other language) LeetCode solutions at https://github.com/jasonmauss/LeetCode | 0 | 0 | ['TypeScript', 'JavaScript'] | 0 |
delete-columns-to-make-sorted-iii | Solution to 960. Delete Columns to Make Sorted III | solution-to-960-delete-columns-to-make-s-vh1e | Intuition\n Describe your first thoughts on how to solve this problem. \nThe intuition behind this problem is to find the longest increasing subsequence of colu | Askalany | NORMAL | 2023-12-15T09:14:11.070911+00:00 | 2023-12-15T09:14:11.070934+00:00 | 44 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nThe intuition behind this problem is to find the longest increasing subsequence of columns. This is because the columns in the longest increasing subsequence do not need to be deleted to make the rows sorted. The remaining columns, which are not part of this subsequence, need to be deleted.\n# Approach\n<!-- Describe your approach to solving the problem. -->\nThe approach is to use dynamic programming. We iterate over the columns of the input from right to left. For each column, we check if it is lexicographically less than or equal to all other columns to its right. If it is, we update the dynamic programming array to keep track of the maximum increasing subsequence of columns. The final answer is the total number of columns minus the length of the maximum increasing subsequence.\n# Pseudocode\n```\nProcedure minDeletionSize(strs: List of strings) -> int:\n Initialize W as the width of the input (length of any string in strs)\n Initialize dp as an array of size W with all elements as 1\n\n For i from W-2 to 0 (inclusive) in reverse order:\n For j from i+1 to W (exclusive):\n If all characters at index j in strs are greater than or equal to characters at index i:\n Update dp[i] as the maximum of dp[i] and 1 + dp[j]\n\n Return W - maximum value in dp\nEnd Procedure\n\n```\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\nThe time complexity is $$O(W2\u22C5N)$$, where $$W$$ is the width of the input and $$N$$ is the number of strings. This is because for each column, we compare it with all other columns to its right, and for each comparison, we check all the strings.\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\nThe space complexity is $$O(W)$$, where $$W$$ is the width of the input. This is because we use a dynamic programming array of size $$W$$ to keep track of the maximum increasing subsequence of columns.\n# Code\n```\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n W = len(strs[0])\n dp = [1] * W\n for i in range(W-2, -1, -1):\n for j in range(i+1, W):\n if all(row[i] <= row[j] for row in strs):\n dp[i] = max(dp[i], 1 + dp[j])\n\n return W - max(dp)\n\n``` | 0 | 0 | ['Array', 'String', 'Dynamic Programming', 'Python3'] | 0 |
delete-columns-to-make-sorted-iii | python super easy to understand (dp top down) | python-super-easy-to-understand-dp-top-d-ce41 | Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time | harrychen1995 | NORMAL | 2023-11-06T15:04:41.802657+00:00 | 2023-11-06T15:04:41.802687+00:00 | 25 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n \n @functools.lru_cache(None)\n def dp(i, j): # i -> current index , j -> prev index after deletion\n\n if i == len(strs[0]):\n return 0\n ans = float("inf")\n\n if j == -1: # -> delete or not delete beginning of characters\n ans = min(ans, dp(i+1, i), 1 + dp(i+1, j))\n return ans\n\n for x in range(len(strs)):\n if strs[x][i] < strs[x][j]: # if current index is less than prev index, must delete current index\n ans = min(ans, 1 + dp(i+1, j))\n return ans\n # delete current index or not delete current index\n ans = min(ans, dp(i+1, i), 1 + dp(i+1, j))\n return ans\n\n return dp(0, -1)\n \n``` | 0 | 0 | ['Dynamic Programming', 'Python3'] | 0 |
delete-columns-to-make-sorted-iii | Solution | solution-by-user0352v-85l4 | \n\n# Code\n\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n \n int n = strs.size();\n int m = strs[0].length | user0352V | NORMAL | 2023-10-30T15:13:21.014742+00:00 | 2023-10-30T15:13:21.014762+00:00 | 18 | false | \n\n# Code\n```\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n \n int n = strs.size();\n int m = strs[0].length();\n\n vector<int> dp(m, 1);\n int res = 1;\n for(int i = 0; i < m; i++) {\n for(int j = 0; j < i; j++) {\n for(int k = 0; k <= n; k++) {\n if(k == n) {\n dp[i] = max(dp[i], dp[j] + 1);\n res = max(res, dp[i]);\n } else if (strs[k][j] > strs[k][i]) {\n break;\n }\n }\n }\n }\n return m - res;\n }\n};\n``` | 0 | 0 | ['C++'] | 0 |
delete-columns-to-make-sorted-iii | CPP || INCLUDE - EXCLUDE CALL ONLY || DP || memoization | cpp-include-exclude-call-only-dp-memoiza-ciks | Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time | abhi_bittu2525 | NORMAL | 2023-10-12T17:39:33.803279+00:00 | 2023-10-12T17:39:33.803312+00:00 | 36 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int solve(vector<string>& strs,int len,int index,int prev,vector<vector<int> >&dp){\n if(index >= len){\n return 0;\n }\n if(dp[index][prev+1] != -1){\n return dp[index][prev+1];\n }\n bool isD = true;\n for(int i =0;i<strs.size();i++){\n if(prev == -1){\n break;\n }\n if(strs[i][prev] > strs[i][index]){\n isD = false;\n break;\n }\n }\n int include = INT_MAX;\n if(isD){//AGR AB TK DIKKAT NHI H TOH AAGE BDA \n include = solve(strs,len,index+1,index,dp);\n }\n int exclude = 1+ solve(strs,len,index+1,prev,dp); //ek ko exclude kr rhe h mtlb ek colom dlt krna pdega \n\n return dp[index][prev+1] = min(include,exclude);\n }\n int minDeletionSize(vector<string>& strs) {\n int len = strs[0].length();\n vector<vector<int> >dp(len+1,vector<int>(len+1,-1));\n return solve(strs,len,0,-1,dp);\n }\n};\n``` | 0 | 0 | ['C++'] | 0 |
delete-columns-to-make-sorted-iii | Efficient JS Solution (Beat over 80% time and 100% memory) | efficient-js-solution-beat-over-80-time-q9wr2 | \n\n# Approach\nClassic LIS.\n\n# Complexity\n- let n = strs.length, m = max(strs[i].length)\n- Time complexity: O(nm^2)\n- Space complexity: O(m)\n\n# Code\njs | CuteTN | NORMAL | 2023-10-03T19:13:31.043576+00:00 | 2023-10-03T19:13:31.043606+00:00 | 15 | false | \n\n# Approach\nClassic LIS.\n\n# Complexity\n- let `n = strs.length`, `m = max(strs[i].length)`\n- Time complexity: $$O(nm^2)$$\n- Space complexity: $$O(m)$$\n\n# Code\n```js\nlet dp = new Uint8Array(100);\n/**\n * @param {string[]} strs\n * @return {number}\n */\nvar minDeletionSize = function(strs) {\n let m = strs.length;\n let n = strs[0].length;\n\n dp.fill(1, 0, n);\n let res = 1;\n\n for (let r = 1; r < n; r++) {\n for (let l = r - 1; l >= 0; l--) {\n let t = dp[l] + 1;\n if (t <= dp[r]) continue;\n\n for (let i = 0; i < m; i++) {\n if (strs[i].charCodeAt(l) > strs[i].charCodeAt(r)) {\n t = 0;\n break;\n }\n }\n if (t) dp[r] = t;\n res = Math.max(dp[r], res);\n }\n }\n\n return n - res;\n};\n``` | 0 | 0 | ['Dynamic Programming', 'JavaScript'] | 0 |
delete-columns-to-make-sorted-iii | C++, JavaScript, Java Solution. | c-javascript-java-solution-by-samuel-akt-w12n | \n\n# C++\n\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n int n = strs.size();\n int m = strs[0].size();\n | Samuel-Aktar-Laskar | NORMAL | 2023-09-12T16:25:19.747819+00:00 | 2023-09-12T16:41:39.518380+00:00 | 13 | false | \n\n# C++\n```\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n int n = strs.size();\n int m = strs[0].size();\n vector<int> ways(m,0);\n for(int i=m-1;i>=0;i--){\n int ans = 0;\n for(int j=i+1;j<m;j++){\n int k;\n for(k=0;k<n && strs[k][i] <= strs[k][j];k++);\n if (k == n)\n ans = max(ans, ways[j]+1);\n }\n ways[i] = ans;\n }\n return m-*max_element(ways.begin(),ways.end())-1;\n }\n};\n```\n\n# JavaScript\n```\n/**\n * @param {string[]} strs\n * @return {number}\n */\nvar minDeletionSize = function(strs) {\n const n = strs.length;\n const m = strs[0].length;\n const ways = new Array(m).fill(0);\n for(let i=m-1;i>=0;i--){\n let ans = 0;\n for(let j=i+1;j<m;j++){\n let k;\n for(k=0;k<n && strs[k][i] <= strs[k][j];k++);\n if (k == n) ans = Math.max(ans, ways[j]+1);\n }\n ways[i] = ans;\n }\n return m - Math.max(...ways)-1;\n};\n```\n\n# Java\n```\nclass Solution {\n public int minDeletionSize(String[] strs) {\n int n = strs.length;\n int m = strs[0].length();\n int ways[] = new int[m];\n int res = 0;\n for(int i=m-1;i>=0;i--){\n int ans = 0;\n for(int j=i+1;j<m;j++){\n int k;\n for(k=0;k<n && strs[k].charAt(i) <= strs[k].charAt(j);k++);\n if (k == n)\n ans = Math.max(ans, ways[j]+1);\n }\n ways[i] = ans;\n res = Math.max(res,ans);\n }\n return m-res-1; \n }\n}\n``` | 0 | 0 | ['C++', 'JavaScript'] | 0 |
delete-columns-to-make-sorted-iii | C++ Easy Solution | c-easy-solution-by-md_aziz_ali-mg71 | Code\n\nclass Solution {\npublic:\n vector<vector<int>>dp;\n int solve(vector<string>& strs,int i,int n,int prev){\n if(i == n)\n return | Md_Aziz_Ali | NORMAL | 2023-09-09T02:32:39.001297+00:00 | 2023-09-09T02:32:39.001318+00:00 | 23 | false | # Code\n```\nclass Solution {\npublic:\n vector<vector<int>>dp;\n int solve(vector<string>& strs,int i,int n,int prev){\n if(i == n)\n return 0;\n if(dp[i][prev+1] != -1)\n return dp[i][prev + 1];\n bool flag = true;\n for(int j = 0;j < strs.size();j++){\n if(prev == -1)\n break;\n if(strs[j][prev] > strs[j][i]){\n flag = false;\n break;\n }\n }\n int take = INT_MAX;\n if(flag)\n take = solve(strs,i+1,n,i);\n return dp[i][prev + 1] = min(take,1 + solve(strs,i+1,n,prev));\n }\n int minDeletionSize(vector<string>& strs) {\n dp = vector<vector<int>>(strs[0].length(),vector<int>(strs[0].length(),-1));\n return solve(strs,0,strs[0].length(),-1);\n }\n};\n``` | 0 | 0 | ['C++'] | 0 |
delete-columns-to-make-sorted-iii | Easy to Understand DP solution | easy-to-understand-dp-solution-by-raj_ti-yaco | Explanation\nHere dp[i] means the solution for 1...i and taking the ith index in our solution. Similarly dp1[i] means the solution for i...n taking in the ith | raj_tirtha | NORMAL | 2023-08-30T08:09:56.963591+00:00 | 2023-08-30T08:09:56.963621+00:00 | 19 | false | # Explanation\nHere dp[i] means the solution for 1...i and taking the ith index in our solution. Similarly dp1[i] means the solution for i...n taking in the ith index. But for dp11 we will maintain the reverse order as after i the string should be increasing. Hence our final answer will be dp[i]+dp1[i]. Time complexity is O(m*n^2).\n\n# Code\n```\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n int n=strs[0].size();\n vector<int> dp(n);\n for(int i=0;i<n;i++){\n dp[i]=i;\n for(int j=i-1;j>=0;j--){\n bool ok=true;\n for(int k=0;k<strs.size();k++){\n if(strs[k][j]>strs[k][i]){\n ok=false;\n break;\n }\n }\n if(ok){\n dp[i]=min(dp[i],dp[j]+(i-j)-1);\n }\n }\n }\n vector<int> dp1(n);\n for(int i=n-1;i>=0;i--){\n dp1[i]=n-i-1;\n for(int j=i+1;j<n;j++){\n bool ok=true;\n for(int k=0;k<strs.size();k++){\n if(strs[k][j]<strs[k][i]){\n ok=false;\n break;\n }\n }\n if(ok){\n dp1[i]=min(dp1[i],dp1[j]+(j-i)-1);\n }\n }\n }\n int ans=n;\n for(int i=0;i<n;i++){\n ans=min(ans,dp[i]+dp1[i]);\n }\n return ans;\n }\n};\n``` | 0 | 0 | ['C++'] | 0 |
delete-columns-to-make-sorted-iii | Python 3: LIS DP Solution with comments; TC - 99.37% | python-3-lis-dp-solution-with-comments-t-62l0 | Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time | hootielander | NORMAL | 2023-08-28T14:50:07.200436+00:00 | 2023-08-28T14:50:07.200468+00:00 | 23 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n\n # dp[i], including i for every strs, the length of the LIS\n N = len(strs[0])\n dp = [1] * N\n\n for i in range(N - 1, -1, -1):\n for j in range(i + 1, N):\n canIncrease = True\n\n # check against every strings whether including current\n # can still mean it is LIS\n for s in strs:\n if s[i] > s[j]:\n canIncrease = False\n break\n \n # if including current char, for all string, does not go against LIS\n if canIncrease:\n dp[i] = max(dp[i], dp[j] + 1)\n\n return N - max(dp)\n\n``` | 0 | 0 | ['Python3'] | 0 |
delete-columns-to-make-sorted-iii | Python: pick or skip DP: top-down to 1D bottom-up optimized | python-pick-or-skip-dp-top-down-to-1d-bo-8xnh | "Pick or Skip DP" (Knapsack)\n\nYou can pick a column or skip it. Then you need to figure out when you can pick a column.\nYou can pick it when it\'s either the | vokasik | NORMAL | 2023-08-24T02:26:31.750267+00:00 | 2023-08-24T02:44:18.415820+00:00 | 26 | false | **"Pick or Skip DP" (Knapsack)**\n\nYou can pick a column or skip it. Then you need to figure out when you can pick a column.\nYou can pick it when it\'s either the first time you pick any column or `all_rows[prev_picked_col] < all_rows[trying_to_pick_col]`\nReturn `COLS - max(picked_columns)`\n\nLooks like medium LIS #300\n\n```\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n # 1. top-down\n @cache\n def dfs(i, prev):\n if i == C:\n return 0\n pick = 0\n can_pick = True\n for r in range(R):\n if prev != -1 and strs[r][prev] > strs[r][i]:\n can_pick = False\n break\n if can_pick:\n pick = 1 + dfs(i + 1, i)\n skip = dfs(i + 1, prev)\n return max(pick, skip)\n C,R = len(strs[0]), len(strs) \n return C - dfs(0, -1)\n\n # 2. bottom-up\n C,R = len(strs[0]), len(strs) \n dp = defaultdict(int)\n for c in reversed(range(C)):\n for prev in range(-1, c):\n dp[c, prev] = dp[c + 1, prev]\n if not any(prev != -1 and strs[r][prev] > strs[r][c] for r in range(R)):\n dp[c, prev] = max(1 + dp[c + 1, c], dp[c + 1, prev])\n return C - dp[0, -1]\n\n # 3. shift indices coz you can\'t have negative\n C,R = len(strs[0]), len(strs)\n dp = defaultdict(int)\n for c in reversed(range(1, C + 1)):\n for prev in range(c + 1):\n if not any(prev and strs[r][prev - 1] > strs[r][c - 1] for r in range(R)):\n dp[c, prev] = max(1 + dp[c + 1, c], dp[c + 1, prev])\n else:\n dp[c, prev] = dp[c + 1, prev]\n return C - dp[1, 0]\n\n # 4. defaultdict to 2D\n C,R = len(strs[0]), len(strs)\n dp = [[0] * (C + 2) for _ in range(C + 2)]\n for c in reversed(range(1, C + 1)):\n for prev in range(c + 1):\n dp[c][prev] = dp[c + 1][prev]\n if not any(prev and strs[r][prev - 1] > strs[r][c - 1] for r in range(R)):\n dp[c][prev] = max(dp[c][prev], 1 + dp[c + 1][c], dp[c + 1][prev])\n return C - dp[1][0]\n\n # 5. 2D to 1D\n C,R = len(strs[0]), len(strs)\n dp = [0] * (C + 1)\n for c in reversed(range(1, C + 1)):\n for prev in range(c):\n if not any(prev and strs[r][prev - 1] > strs[r][c - 1] for r in range(R)):\n dp[prev] = max(dp[prev], 1 + dp[c])\n return C - dp[0]\n```\n``` | 0 | 0 | ['Dynamic Programming', 'Python'] | 0 |
delete-columns-to-make-sorted-iii | Easy C# 100% | easy-c-100-by-kuramshin34-y9b4 | Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time | kuramshin34 | NORMAL | 2023-08-23T08:02:08.901371+00:00 | 2023-08-23T08:02:08.901393+00:00 | 9 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity:\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity:\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\npublic class Solution {\n public int MinDeletionSize(string[] strs) {\n int n = strs.Length;\n int m = strs[0].Length;\n\n int[] dp = Enumerable.Repeat(1, m).ToArray();\n int res = 1;\n for(int i = 0; i < m; i++)\n {\n for (int j = 0; j < i; j++) \n {\n for (int k = 0; k <= n; k++) \n {\n if (k == n) \n {\n dp[i] = Math.Max(dp[i], dp[j] + 1);\n res = Math.Max(res, dp[i]);\n }\n else if(strs[k][j] > strs[k][i]) \n {\n break;\n }\n } \n }\n }\n return m - res;\n }\n}\n``` | 0 | 0 | ['C#'] | 0 |
delete-columns-to-make-sorted-iii | Simple C++ solution Based on LIS | simple-c-solution-based-on-lis-by-tag_98-1j1d | Intuition\n Describe your first thoughts on how to solve this problem. \nSame intuition as LIS\n\nIn this Problem we find the maximum length so our answer is ( | Tag_989 | NORMAL | 2023-07-10T14:22:18.688158+00:00 | 2023-07-10T14:22:18.688177+00:00 | 57 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\nSame intuition as LIS\n\nIn this Problem we find the maximum length so our answer is **( strs[0].size() - maxlength )**\n\n# Code\n```\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n int n=strs.size();\n int m=strs[0].size();\n\n if(m==1)return 0;\n vector<int> dp(m,1);\n\n int ans=0;\n for(int i=1;i<m;i++)\n {\n int j=0;\n while(j<i)\n {\n bool flag=1;\n for(int k=0;k<n;k++)\n {\n if(strs[k][j]>strs[k][i])\n {\n flag=0;\n }\n }\n if(flag==1)\n {\n if(dp[i]<dp[j]+1)\n {\n dp[i]=dp[j]+1;\n }\n }\n\n j++;\n }\n\n ans=max(dp[i],ans);\n }\n return m-ans;\n }\n};\n``` | 0 | 0 | ['Dynamic Programming', 'C++'] | 0 |
delete-columns-to-make-sorted-iii | My Solution | my-solution-by-hope_ma-5ovj | \n/**\n * Time Complexity: O(rows * cols * cols)\n * Space Complexity: O(cols)\n * where `rows` is the length of the vector `strs`\n * `cols` is the lengt | hope_ma | NORMAL | 2023-07-06T07:57:58.876254+00:00 | 2023-07-06T07:57:58.876284+00:00 | 18 | false | ```\n/**\n * Time Complexity: O(rows * cols * cols)\n * Space Complexity: O(cols)\n * where `rows` is the length of the vector `strs`\n * `cols` is the length of the string `strs.front()`\n */\nclass Solution {\n public:\n int minDeletionSize(const vector<string> &strs) {\n const int cols = static_cast<int>(strs.front().size());\n int dp[cols];\n fill(dp, dp + cols, 1);\n for (int c = 0; c < cols; ++c) {\n for (int pc = 0; pc < c; ++pc) {\n if (less_than(strs, pc, c)) {\n dp[c] = max(dp[c], dp[pc] + 1);\n }\n }\n }\n return cols - *max_element(dp, dp + cols);\n }\n \n private:\n bool less_than(const vector<string> &strs, const int c1, const int c2) {\n const int n = static_cast<int>(strs.front().size());\n bool ret = true;\n for (const string &str : strs) {\n if (str[c1] > str[c2]) {\n ret = false;\n break;\n }\n }\n return ret;\n }\n};\n``` | 0 | 0 | [] | 0 |
delete-columns-to-make-sorted-iii | (Python) Delete Columns to Make Sorted III | python-delete-columns-to-make-sorted-iii-28ef | Intuition\nThe intuition behind the approach is to use dynamic programming to find the length of the longest increasing subsequence (LIS) for each position in t | codewithsom | NORMAL | 2023-07-01T17:45:47.832552+00:00 | 2023-07-01T17:45:47.832571+00:00 | 32 | false | # Intuition\nThe intuition behind the approach is to use dynamic programming to find the length of the longest increasing subsequence (LIS) for each position in the strings. By keeping track of this information, we can determine the minimum number of deletions required to make all the strings lexicographically sorted.\n\n# Approach\n1. Initialize a 1D array dp of length `n` (number of columns) with all elements set to 1. This array will keep track of the length of the LIS at each position.\n2. Iterate through each column (j) from 1 to n.\n3. For each column (j), iterate through all the previous columns (i) from 0 to j-1.\n4. Check if all elements in the current column (j) are greater than or equal to the corresponding elements in the previous column (i) for all rows. If this condition is true, it means we can extend the LIS by including the current column (j).\n5. If the condition in step 4 is met, update `dp[j]` to be the maximum of `dp[j]` and `dp[i] + 1`, indicating the extended length of the LIS at column j.\n6. After iterating through all previous columns for the current column (j), we will have the length of the LIS at position j in the dp array.\n7. The minimum number of deletions required to make all the strings lexicographically sorted will be the total number of columns (n) minus the length of the longest increasing subsequence, which is `n - max(dp)`.\n# Complexity\n- Time complexity:\nThe time complexity of the solution is `O(n^2)`, where n is the number of columns in the strings. The dynamic programming approach involves two nested loops to fill the dp array.\n- Space complexity:\nThe space complexity is `O(n)`, where n is the number of columns. We use a 1D array dp of length n to store the LIS at each position.\n# Code\n```\nfrom typing import List\n\nclass Solution:\n def minDeletionSize(self, strs: List[str]) -> int:\n m, n = len(strs), len(strs[0])\n dp = [1] * n\n\n for j in range(1, n):\n for i in range(j):\n if all(strs[k][i] <= strs[k][j] for k in range(m)):\n dp[j] = max(dp[j], dp[i] + 1)\n\n return n - max(dp)\n\n``` | 0 | 0 | ['Array', 'String', 'Dynamic Programming', 'Sorting', 'Python3'] | 0 |
delete-columns-to-make-sorted-iii | Scala solution | scala-solution-by-malovig-uy1m | Intuition\n Describe your first thoughts on how to solve this problem. \n\n# Approach\n Describe your approach to solving the problem. \n\n# Complexity\n- Time | malovig | NORMAL | 2023-06-16T20:02:10.773556+00:00 | 2023-06-16T20:02:10.773576+00:00 | 24 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\n\n# Approach\n<!-- Describe your approach to solving the problem. -->\n\n# Complexity\n- Time complexity: O(m^2 * n)\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: O(m)\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nobject Solution {\n def minDeletionSize(strs: Array[String]): Int = {\n val m = strs(0).length\n val dp = Array.fill(m)(1)\n var overallMax = 0\n for (i <- 0 until m) {\n for (j <- 0 until i)\n if (strs.indices.forall(k => strs(k).charAt(j) <= strs(k).charAt(i))) dp(i) = math.max(dp(i), dp(j) + 1)\n overallMax = math.max(dp(i), overallMax)\n }\n m - overallMax\n }\n\n}\n``` | 0 | 0 | ['Scala'] | 0 |
delete-columns-to-make-sorted-iii | O(n*m*m) DP solution | onmm-dp-solution-by-xjpig-bjpf | Intuition\n Describe your first thoughts on how to solve this problem. \ndp[i] memorize the longest increasing subsequnce up to ith position in the string.\n\n- | XJPIG | NORMAL | 2023-05-01T12:14:22.632308+00:00 | 2023-05-01T12:14:36.792077+00:00 | 46 | false | # Intuition\n<!-- Describe your first thoughts on how to solve this problem. -->\ndp[i] memorize the longest increasing subsequnce up to ith position in the string.\n\n- Time complexity: $$O(n*m*m)$$\n<!-- Add your time complexity here, e.g. $$O(n)$$ -->\n\n- Space complexity: $$O(m)$$\n<!-- Add your space complexity here, e.g. $$O(n)$$ -->\n\n# Code\n```\nclass Solution {\npublic:\n int minDeletionSize(vector<string>& strs) {\n int result=INT_MAX;\n vector<int> dp(strs[0].size(),1);\n for(int i=0;i<strs[0].size();i++){\n for(int j=0;j<i;j++){\n int k=0;\n for(;k<strs.size();k++)\n if(strs[k][i]<strs[k][j]) break;\n if(k==strs.size()) dp[i]=max(dp[i],dp[j]+1);\n }\n result=min(result,(int)strs[0].size()-dp[i]);\n }\n return result;\n }\n};\n``` | 0 | 0 | ['C++'] | 0 |
Subsets and Splits