code
stringlengths
1
13.8M
neon_db <- function (dir = neon_db_dir(), read_only = TRUE, memory_limit = getOption("duckdb_memory_limit", NA), ...) { if (!dir.exists(dir)){ dir.create(dir, FALSE, TRUE) } dbname <- file.path(dir, "database") if (!file.exists(dbname) && read_only) { db <- DBI::dbConnect(duckdb::duckdb(), dbdir = dbname, read_only = FALSE) DBI::dbWriteTable(db, "init", data.frame(NEON="NEON")) DBI::dbDisconnect(db, shutdown=TRUE) } db <- mget("neon_db", envir = neonstore_cache, ifnotfound = NA)[[1]] if (inherits(db, "DBIConnection")) { if (DBI::dbIsValid(db)) { dir_matches <- db@driver@dbdir == dbname if (read_only & dir_matches) { return(db) } else { dbDisconnect(db, shutdown = TRUE) } } } db <- DBI::dbConnect(duckdb::duckdb(), dbdir = dbname, read_only = read_only, ...) if(!is.na(memory_limit)){ pragma <- paste0("PRAGMA memory_limit='", memory_limit, "GB'") DBI::dbExecute(db, pragma) } if (read_only) { assign("neon_db", db, envir = neonstore_cache) } db } neon_disconnect <- function (db = neon_db()) { if (inherits(db, "DBIConnection")) { DBI::dbDisconnect(db, shutdown = TRUE) } if (exists("neon_db", envir = neonstore_cache)) { suppressWarnings( rm("neon_db", envir = neonstore_cache) ) } } neonstore_cache <- new.env() neon_delete_db <- function(db_dir = neon_db_dir(), ask = interactive()){ continue <- TRUE if(ask){ continue <- utils::askYesNo(paste("Delete local DB in", db_dir, "?")) } if(continue){ db_files <- list.files(db_dir, "^database.*", full.names = TRUE) lapply(db_files, unlink, TRUE) } if (exists("neon_db", envir = neonstore_cache)) { suppressWarnings( rm("neon_db", envir = neonstore_cache) ) } return(invisible(continue)) }
`sr.loc.test` <- function(X,Y=NULL,g=NULL,score=c("sign","rank"),nullvalue=NULL,cond=FALSE,cond.n=1000,na.action=na.fail,...) { if (all(is.null(Y),is.null(g))) { DNAME<-deparse(substitute(X)) X<-na.action(X) X<-as.matrix(X) g<-as.factor(rep(1,dim(X)[1])) } else if(!is.null(Y)) { X<-as.matrix(X) Y<-as.matrix(Y) if(dim(X)[2]!=dim(Y)[2]) stop("X and Y must have the same number of columns") DNAME<-paste(deparse(substitute(X)),"and",deparse(substitute(Y))) X<-na.action(X) Y<-na.action(Y) g<-factor(c(rep(1,dim(X)[1]),rep(2,dim(Y)[1]))) X<-rbind(X,Y) } else if(!is.factor(g)) stop("g must be a factor or NULL") else { DNAME<-paste(deparse(substitute(X)),"by",deparse(substitute(g))) X<-as.matrix(X) Xandg<-cbind(g,X) Xandg<-na.action(Xandg) g<-factor(Xandg[,1]) X<-as.matrix(Xandg[,-1]) rm(Xandg) } n<-dim(X)[1] p<-dim(X)[2] c<-nlevels(g) if(!is.null(nullvalue)) { if(length(nullvalue)!=p) stop("'nullvalue' must have length equal to the number of columns of 'X'") } else nullvalue<-rep(0,p) X<-sweep(X,2,nullvalue) NVAL<-paste("c(",paste(nullvalue,collapse=","),")",sep="") if(c==1) names(NVAL)<-"location" else if(c==2) names(NVAL)<-"difference between group locations" else names(NVAL)<-"difference between some group locations" score=match.arg(score) switch(score, "sign"= { if (c==1) { METHOD<-"One sample location test using spatial signs" scoremat<-spatial.signs(X,center=F) } else { METHOD<-"Several samples location test using spatial signs" scoremat<-spatial.signs(X) } }, "rank"= { if (c==1) { METHOD<-"One sample location test using spatial signed ranks" if (p>1) V<-signrank.shape(X) } else { METHOD<-"Several samples location test using spatial ranks" if (p>1) V<-rank.shape(X) } if (p==1) V<-diag(1) scoremat<-spatial.rank(X%*%solve(mat.sqrt(V)),shape=FALSE) c2<-mean(norm(scoremat)^2) }) if (c==1) { STATISTIC<-switch(score, "sign"= { n*p*sum(apply(scoremat,2,mean)^2) }, "rank"= { sums<-pairsum(X)%*%mat.sqrt(solve(V)) ave<-apply(spatial.signs(rbind(sums,X),center=F,shape=F),2,mean) rm(sums) n*p*sum(ave^2)/(4*c2) }) } else { bar<-numeric(0) sizes<-numeric(0) for (i in 1:c) { bar<-rbind(bar,apply(scoremat[g==levels(g)[i],,drop=F],2,mean)) sizes<-c(sizes,sum(g==levels(g)[i])) } STATISTIC<-p*sum(sizes*(norm(bar)^2))/switch(score,"sign"=1,"rank"=c2) } if (all(cond,score=="sign")) { Qd<-numeric(0) if(c==1) { for (i in 1:cond.n) { d<-sample(c(-1,1),n,replace=T) Qd<-c(Qd,n*p*sum(apply(sweep(scoremat,1,d,"*"),2,mean)^2)) } } else { for (i in 1:cond.n) { gd<-sample(g) bar<-numeric(0) for (j in 1:c) bar<-rbind(bar,apply(scoremat[gd==levels(gd)[j],,drop=F],2,mean)) Qd<-c(Qd,p*sum(sizes*(norm(bar)^2))) } } PARAMETER<-cond.n names(PARAMETER)<-"replications" PVAL<-mean(Qd>=STATISTIC) } else { PVAL<-1-pchisq(STATISTIC,(df<-p*max(1,c-1))) PARAMETER<-df names(PARAMETER)<-"df" } ALTERNATIVE<-"two.sided" names(STATISTIC)<-"Q.2" res<-c(list(statistic=STATISTIC,parameter=PARAMETER,p.value=PVAL,null.value=NVAL,alternative=ALTERNATIVE,method=METHOD,data.name=DNAME)) class(res)<-"htest" return(res) }
EEpre = function(A, B, d, seed = NULL, AB_dist = NULL){ n.A = dim(A)[1]; n.B = dim(B)[1]; outa = apply(A, 1, sum); outb = apply(B, 1, sum); if(!isSymmetric(A)) stop("Error! A is not symmetric!"); if(!isSymmetric(B)) stop("Error! B is not symmetric!"); if(d %% 1 != 0) stop("Error! d is not an integer!") if(d <= 0) stop("Error! Nonpositive d!") if(!is.null(seed)){ if(dim(seed)[1] == 1) stop("Error! Only one pair of seeds!") } if(!is.null(AB_dist)){ if(min(AB_dist) < 0) stop("Error! Negative elements in distance matrix!") if(dim(AB_dist)[1] != n.A | dim(AB_dist)[2] != n.B) stop("Error! Matrices are not conformable!") } if (!is.null(seed)){ seedmatch1 = apply(seed, 1, sum); seedmatch2 = apply(seed, 2, sum); if(max(seedmatch1, seedmatch2) > 1) stop("Error: no perfect matching for the seed") else{ W = seeded.match(A, B, seed); Z = matrix(0, nrow = n.A, ncol = n.B); for (i in 1: n.A){ tmp = sort(W[i,], decreasing = T) ind = which(W[i,] >= tmp[d]) Z[i, ind] = 1 } AB_dist = W; } } else{ if (is.null(AB_dist)){ AB_dist = DPdistance(A, B); } tmp = apply(AB_dist, 1, min); grid1 = c(0.5, 0.55, 0.6, 0.65, 0.7, 0.75, 0.8); grid2 = c(0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5); seed_list = array(0, dim=c(n.A, n.B, length(grid1)*length(grid2))); seed_match1 = rep(0, length(grid1)*length(grid2)); seed_match2 = rep(0, length(grid1)*length(grid2)); for (j in 1: length(grid1)){ tau1 = quantile(outa, grid1[j]); for (i in 1: length(grid2)){ tau2 = quantile(tmp, grid2[i]); seed = seed.generate(A, B, tau1, tau2); seedmatch1 = apply(seed, 1, sum); seedmatch2 = apply(seed, 2, sum); seed_match1[(j-1)*length(grid2) + i] = max(seedmatch1); seed_match2[(j-1)*length(grid2) + i] = max(seedmatch2); seed_list[, , (j-1)*length(grid2) + i] = seed; } } temp1 = seed_match1 + seed_match2; if (2 %in% temp1 == TRUE){ temp2 = which(temp1 == 2); perm_num = c(); for (i in 1: length(temp2)){ seed = seed_list[, , temp2[i]]; gseed <- graph.incidence(seed); perm <- as_edgelist(gseed); perm_num[i] = dim(perm)[1]; } seed = seed_list[, , temp2[which.max(perm_num)]]; if (max(perm_num) == 1){ warning("Warning: Only one pair of seeds. Run EE instead.") Z = matrix(0, nrow = n.A, ncol = n.B); for (i in 1: n.A){ tmp = sort(AB_dist[i,], decreasing = F) ind = which(AB_dist[i,] <= tmp[d]) Z[i, ind] = 1 } } else{ W = seeded.match(A, B, seed); Z = matrix(0, nrow = n.A, ncol = n.B); for (i in 1: n.A){ tmp = sort(W[i,], decreasing = T) ind = which(W[i,] >= tmp[d]) Z[i, ind] = 1 } } } if (2 %in% temp1 == FALSE){ warning("Warning: No perfect matching for the seed. Run EE instead.") Z = matrix(0, nrow = n.A, ncol = n.B); for (i in 1: n.A){ tmp = sort(AB_dist[i,], decreasing = F) ind = which(AB_dist[i,] <= tmp[d]) Z[i, ind] = 1 } } } return(list(Dist = AB_dist, Z = Z)) } seed.generate <- function(A, B, tau1, tau2){ n.A = dim(A)[1] n.B = dim(B)[1] outa = apply(A, 1, sum); outb = apply(B, 1, sum); seed = matrix(0, nrow = n.A, ncol = n.B); seedA = which(outa >= tau1); seedB = which(outb >= tau1); for(i in seedA){ temp_a = outa[A[i, ] != 0]; temp = rep(tau2+1, n.B); temp[seedB] = apply(B[seedB, ], 1, function(x) wasserstein1d(temp_a, outb[x!=0])); seed[i,] = 1*(temp <= tau2); } return(seed) } seeded.match <- function(A, B, seed, n, tau3 = NULL){ colnames(seed) = 1:dim(B)[1]; rownames(seed) = 1:dim(A)[1] gseed <- graph.incidence(seed) perm <- as_edgelist(gseed) rownames(A) = 1:dim(A)[1]; rownames(B) = 1:dim(B)[1]; Acomp = A[-as.integer(perm[,1]), as.integer(perm[,1])]; Bcomp = t(B[-as.integer(perm[,2]), as.integer(perm[,2])]) H1 = Acomp%*%Bcomp; H = H1; H[H != 0] = 0; if (is.null(tau3)){ temp = as.vector(H1); tau3 = quantile(temp, 1-1/max(dim(A)[1], dim(B)[1])); } H[H1 >= tau3] <- 1; gH <- graph.incidence(H, weighted = TRUE); match1 <- max_bipartite_match(gH); matcha <- match1$matching[1:dim(Acomp)[1]] matchb <- match1$matching[-c(1:dim(Acomp)[1])]; matcha[is.na(matcha)] <- names(matchb)[is.na(matchb)]; permformat = as.vector(perm[,2]); names(permformat) = perm[,1]; perm1 = c(matcha, permformat); A1 = A[,as.integer(names(perm1))]; B1 = B[as.integer(perm1),]; w = A1%*%B1; return(w) }
check.1 <- function(data, id.var, time.var, x.vars, y.vars, w.vars, p.vars) { if (!(is.data.frame(data))) stop("data must be a dataframe") names.var <- names(data) if (missing(id.var)) { stop("Missing id variable (id.var)", call. = FALSE) } else { if (length(id.var) > 1) stop("Too many id variables (id.var). Only one can be defined", call. = FALSE) if (is.numeric(id.var)) { id.var.1 <- names.var[id.var] } else { id.var.1 <- id.var } var_logical <- id.var.1 %in% names.var if (!var_logical) stop("Unrecognizable variable in id.var: ", paste(id.var), call. = FALSE) } if (missing(time.var)) { stop("Missing time variable (time.var)", call. = FALSE) } else { if (length(time.var) > 1) stop("Too many time variables (time.var). Only one can be defined", call. = FALSE) if (is.numeric(time.var)) { time.var.1 <- names.var[time.var] } else { time.var.1 <- time.var } var_logical <- time.var.1 %in% names.var if (!var_logical) stop("Unrecognizable variable in time.var:", paste(time.var), call. = FALSE) } if (missing(x.vars)) { stop("Missing x variables (x.vars)", call. = FALSE) } else { if (is.numeric(x.vars)) { x.vars.1 <- names.var[x.vars] } else { x.vars.1 <- x.vars } var_logical <- x.vars.1 %in% names.var if (!(all(var_logical))) stop("Unrecognizable variables in x.vars:", paste(x.vars[var_logical == F], collapse = ","), call. = FALSE) } if (missing(y.vars)) { stop("Missing y variables (y.vars)", call. = FALSE) } else { if (is.numeric(y.vars)) { y.vars.1 <- names.var[y.vars] } else { y.vars.1 <- y.vars } var_logical <- y.vars.1 %in% names.var if (!(all(var_logical))) stop("Unrecognizable variables in y.vars:", paste(y.vars[var_logical == F], collapse = ","), call. = FALSE) } if (is.null(w.vars) & is.null(p.vars)) { list(id.var = id.var.1, time.var = time.var.1, x.vars = x.vars.1, y.vars = y.vars.1) } else { if (!(is.null(w.vars)) & !(is.null(p.vars))) { if (length(w.vars) != length(x.vars)) stop("x.vars and w.vars must be of the same length", call. = FALSE) if (length(p.vars) != length(y.vars)) stop("y.vars and p.vars must be of the same length", call. = FALSE) if (is.numeric(w.vars)) { w.vars.1 <- names.var[w.vars] } else { w.vars.1 <- w.vars } var_logical <- w.vars.1 %in% names.var if (!(all(var_logical))) stop("Unrecognizable variables in w.vars:", paste(w.vars[var_logical == F], collapse = ","), call. = FALSE) if (is.numeric(p.vars)) { p.vars.1 <- names.var[p.vars] } else { p.vars.1 <- p.vars } var_logical <- p.vars.1 %in% names.var if (!(all(var_logical))) stop("Unrecognizable variables in p.vars:", paste(p.vars[var_logical == F], collapse = ","), call. = FALSE) list(id.var = id.var.1, time.var = time.var.1, x.vars = x.vars.1, y.vars = y.vars.1, w.vars = w.vars.1, p.vars = p.vars.1) } else { if (!(is.null(w.vars)) & is.null(p.vars)) { stop("Output prices p.vars must also be supplied", call. = FALSE) } else { stop("Input prices w.vars must also be supplied", call. = FALSE) } } } } check.2 <- function(data, id.var, time.var, x.vars, y.vars, w.vars, p.vars) { if (!(is.data.frame(data))) stop("data must be a dataframe") names.var <- names(data) if (missing(id.var)) { stop("Missing id variable (id.var)", call. = FALSE) } else { if (length(id.var) > 1) stop("Too many id variables (id.var). Only one can be defined", call. = FALSE) if (is.numeric(id.var)) { id.var.1 <- names.var[id.var] } else { id.var.1 <- id.var } var_logical <- id.var.1 %in% names.var if (!var_logical) stop("Unrecognizable variable in id.var: ", paste(id.var), call. = FALSE) } if (missing(time.var)) { stop("Missing time variable (time.var)", call. = FALSE) } else { if (length(time.var) > 1) stop("Too many time variables (time.var). Only one can be defined", call. = FALSE) if (is.numeric(time.var)) { time.var.1 <- names.var[time.var] } else { time.var.1 <- time.var } var_logical <- time.var.1 %in% names.var if (!var_logical) stop("Unrecognizable variable in time.var:", paste(time.var), call. = FALSE) } if (missing(x.vars)) { stop("Missing x variables (x.vars)", call. = FALSE) } else { if (is.numeric(x.vars)) { x.vars.1 <- names.var[x.vars] } else { x.vars.1 <- x.vars } var_logical <- x.vars.1 %in% names.var if (!(all(var_logical))) stop("Unrecognizable variables in x.vars:", paste(x.vars[var_logical == F], collapse = ","), call. = FALSE) } if (missing(y.vars)) { stop("Missing y variables (y.vars)", call. = FALSE) } else { if (is.numeric(y.vars)) { y.vars.1 <- names.var[y.vars] } else { y.vars.1 <- y.vars } var_logical <- y.vars.1 %in% names.var if (!(all(var_logical))) stop("Unrecognizable variables in y.vars:", paste(y.vars[var_logical == F], collapse = ","), call. = FALSE) } if (missing(w.vars)) { stop("Missing w variables (w.vars)", call. = FALSE) } else { if (is.numeric(w.vars)) { w.vars.1 <- names.var[w.vars] } else { w.vars.1 <- w.vars } var_logical <- w.vars.1 %in% names.var if (!(all(var_logical))) stop("Unrecognizable variables in w.vars:", paste(w.vars[var_logical == F], collapse = ","), call. = FALSE) } if (missing(p.vars)) { stop("Missing p variables (p.vars)", call. = FALSE) } else { if (is.numeric(p.vars)) { p.vars.1 <- names.var[p.vars] } else { p.vars.1 <- p.vars } var_logical <- p.vars.1 %in% names.var if (!(all(var_logical))) stop("Unrecognizable variables in p.vars:", paste(p.vars[var_logical == F], collapse = ","), call. = FALSE) } if (length(w.vars) != length(x.vars)) stop("x.vars and w.vars must be of the same length", call. = FALSE) if (length(p.vars) != length(y.vars)) stop("y.vars and p.vars must be of the same length", call. = FALSE) list(id.var = id.var.1, time.var = time.var.1, x.vars = x.vars.1, y.vars = y.vars.1, w.vars = w.vars.1, p.vars = p.vars.1) } check.3 <- function(data, id.var, time.var, x.vars, y.vars) { if (!(is.data.frame(data))) stop("data must be a dataframe") names.var <- names(data) if (missing(id.var)) { stop("Missing id variable (id.var)", call. = FALSE) } else { if (length(id.var) > 1) stop("Too many id variables (id.var). Only one can be defined", call. = FALSE) if (is.numeric(id.var)) { id.var.1 <- names.var[id.var] } else { id.var.1 <- id.var } var_logical <- id.var.1 %in% names.var if (!var_logical) stop("Unrecognizable variable in id.var: ", paste(id.var), call. = FALSE) } if (missing(time.var)) { stop("Missing time variable (time.var)", call. = FALSE) } else { if (length(time.var) > 1) stop("Too many time variables (time.var). Only one can be defined", call. = FALSE) if (is.numeric(time.var)) { time.var.1 <- names.var[time.var] } else { time.var.1 <- time.var } var_logical <- time.var.1 %in% names.var if (!var_logical) stop("Unrecognizable variable in time.var:", paste(time.var), call. = FALSE) } if (missing(x.vars)) { stop("Missing x variables (x.vars)", call. = FALSE) } else { if (is.numeric(x.vars)) { x.vars.1 <- names.var[x.vars] } else { x.vars.1 <- x.vars } var_logical <- x.vars.1 %in% names.var if (!(all(var_logical))) stop("Unrecognizable variables in x.vars:", paste(x.vars[var_logical == F], collapse = ","), call. = FALSE) } if (missing(y.vars)) { stop("Missing y variables (y.vars)", call. = FALSE) } else { if (is.numeric(y.vars)) { y.vars.1 <- names.var[y.vars] } else { y.vars.1 <- y.vars } var_logical <- y.vars.1 %in% names.var if (!(all(var_logical))) stop("Unrecognizable variables in y.vars:", paste(y.vars[var_logical == F], collapse = ","), call. = FALSE) } list(id.var = id.var.1, time.var = time.var.1, x.vars = x.vars.1, y.vars = y.vars.1) } DO.teseme <- function(XOBS, YOBS, XREF, YREF, PRICESO, rts) { n_x <- dim(XREF)[1] n_y <- dim(YREF)[1] n_t <- dim(XREF)[2] built.lp <- make.lp(n_x + n_y, 1 + n_t) for (i in 1:n_x) { set.row(built.lp, i, c(0, XREF[i, ])) } for (j in 1:n_y) { set.row(built.lp, n_x + j, c(-YOBS[j], YREF[j, ])) } set.objfn(built.lp, c(1, rep(0, n_t))) set.constr.type(built.lp, c(rep("<=", n_x), rep(">=", n_y))) set.bounds(built.lp, lower = -Inf, upper = Inf, columns = 1) set.rhs (built.lp, c(XOBS, rep(0, n_y))) lp.control(built.lp, sense = "max") solve(built.lp) ote_crs <- 1/get.objective(built.lp) if (rts != "crs") { ctyp <- if (rts == "vrs") { "=" } else { if (rts == "nirs") { "<=" } else { if (rts == "ndrs") { ">=" } } } add.constraint(built.lp, c(0, rep(1, n_t)), type = ctyp, rhs = 1) } solve(built.lp) OTE <- 1/get.objective(built.lp) OSE <- ote_crs/OTE built.lp <- make.lp(n_x + n_y, n_y + n_t) for (i in 1:n_x) { set.row(built.lp, i, c(rep(0, n_y), XREF[i, ])) } for (j in 1:n_y) { set.row(built.lp, n_x + j, c(-diag(1, ncol = n_y, nrow = n_y)[j, ], YREF[j, ])) } set.objfn(built.lp, c(PRICESO/sum(YOBS * PRICESO), rep(0, n_t))) set.constr.type(built.lp, c(rep("<=", n_x), rep(">=", n_y))) set.rhs (built.lp, c(XOBS, rep(0, n_y))) if (rts != "crs") { ctyp <- if (rts == "vrs") { "=" } else { if (rts == "nirs") { "<=" } else { if (rts == "ndrs") { ">=" } } } add.constraint(built.lp, c(rep(0, n_y), rep(1, n_t)), type = ctyp, rhs = 1) } lp.control(built.lp, sense = "max") solve(built.lp) OME <- 1/(get.objective(built.lp) * OTE) c(OTE = OTE, OSE = OSE, OME = OME) } DO.sh <- function(XOBS, YOBS, XREF, YREF, rts) { n_x <- dim(XREF)[1] n_y <- dim(YREF)[1] n_t <- dim(XREF)[2] built.lp <- make.lp(n_x + n_y, 1 + n_t) for (i in 1:n_x) { set.row(built.lp, i, c(0, XREF[i, ])) } for (j in 1:n_y) { set.row(built.lp, n_x + j, c(-YOBS[j], YREF[j, ])) } set.objfn(built.lp, c(1, rep(0, n_t))) set.constr.type(built.lp, c(rep("<=", n_x), rep(">=", n_y))) set.bounds(built.lp, lower = -Inf, upper = Inf, columns = 1) set.rhs (built.lp, c(XOBS, rep(0, n_y))) lp.control(built.lp, sense = "max") if (rts == "crs") { solve(built.lp) DO <- 1/get.objective(built.lp) } else { ctyp <- if (rts == "vrs") { "=" } else { if (rts == "nirs") { "<=" } else { if (rts == "ndrs") { ">=" } } } add.constraint(built.lp, c(0, rep(1, n_t)), type = ctyp, rhs = 1) solve(built.lp) DO <- 1/get.objective(built.lp) } DO } DI.teseme <- function(XOBS, YOBS, XREF, PRICESI, YREF, rts) { n_x <- dim(XREF)[1] n_y <- dim(YREF)[1] n_t <- dim(XREF)[2] built.lp <- make.lp(n_x + n_y, 1 + n_t) for (i in 1:n_x) { set.row(built.lp, i, c(-XOBS[i], XREF[i, ])) } for (j in 1:n_y) { set.row(built.lp, n_x + j, c(0, YREF[j, ])) } set.objfn(built.lp, c(1, rep(0, n_t))) set.constr.type(built.lp, c(rep("<=", n_x), rep(">=", n_y))) set.rhs (built.lp, c(rep(0, n_x), YOBS)) set.bounds(built.lp, lower = -Inf, upper = Inf, columns = 1) lp.control(built.lp, sense = "min") solve(built.lp) ite_crs <- get.objective(built.lp) if (rts != "crs") { ctyp <- if (rts == "vrs") { "=" } else { if (rts == "nirs") { "<=" } else { if (rts == "ndrs") { ">=" } } } add.constraint(built.lp, c(0, rep(1, n_t)), type = ctyp, rhs = 1) } solve(built.lp) ITE <- get.objective(built.lp) ISE <- ite_crs/ITE built.lp <- make.lp(n_x + n_y , n_x + n_t) for (i in 1:n_x) { set.row(built.lp, i, c(-diag(1, nrow = n_x, ncol = n_x)[i, ], XREF[i, ])) } for (j in 1:n_y) { set.row(built.lp, n_x + j, c(rep(0, n_x), YREF[j, ])) } set.objfn(built.lp, c(PRICESI/sum(XOBS * PRICESI), rep(0, n_t))) set.constr.type(built.lp, c(rep("<=", n_x), rep(">=", n_y))) set.rhs (built.lp, c(rep(0, n_x), YOBS)) if (rts != "crs") { ctyp <- if (rts == "vrs") { "=" } else { if (rts == "nirs") { "<=" } else { if (rts == "ndrs") { ">=" } } } add.constraint(built.lp, c(rep(0, n_x), rep(1, n_t)), type = ctyp, rhs = 1) } lp.control(built.lp, sense = "min") solve(built.lp) IME <- get.objective(built.lp)/ITE c(ITE = ITE, ISE = ISE, IME = IME) } DI.sh <- function(XOBS, YOBS, XREF, YREF, rts) { n_x <- dim(XREF)[1] n_y <- dim(YREF)[1] n_t <- dim(XREF)[2] built.lp <- make.lp(n_x + n_y, 1 + n_t) for (i in 1:n_x) { set.row(built.lp, i, c(-XOBS[i], XREF[i, ])) } for (j in 1:n_y) { set.row(built.lp, n_x + j, c(0, YREF[j, ])) } set.objfn(built.lp, c(1, rep(0, n_t))) set.constr.type(built.lp, c(rep("<=", n_x), rep(">=", n_y))) set.rhs (built.lp, c(rep(0, n_x), YOBS)) set.bounds(built.lp, lower = -Inf, upper = Inf, columns = 1) lp.control(built.lp, sense = "min") if (rts == "crs") { solve(built.lp) DI <- 1/get.objective(built.lp) } else { ctyp <- if (rts == "vrs") { "=" } else { if (rts == "nirs") { "<=" } else { if (rts == "ndrs") { ">=" } } } add.constraint(built.lp, c(0, rep(1, n_t)), type = ctyp, rhs = 1) solve(built.lp) DI <- 1/get.objective(built.lp) } DI } D.tfp <- function(XOBS, YOBS, XREF, YREF, PRICESO, PRICESI, rts) { n_x <- dim(XREF)[1] n_y <- dim(YREF)[1] n_t <- dim(XREF)[2] built.lp <- make.lp(n_x + n_y + 1, n_y + n_x + n_t + 1) for (i in 1:n_x) { set.row(built.lp, i, c(rep(0, n_y), diag(-1, nrow = n_x, ncol = n_x)[i, ], XREF[i, ], 0)) } for (j in 1:n_y) { set.row(built.lp, n_x + j, c(diag(-1, ncol = n_y, nrow = n_y)[j, ], rep(0, n_x), YREF[j, ], 0)) } set.row(built.lp, n_x + n_y + 1, c(rep(0, n_y), PRICESI, rep(0, n_t + 1))) set.objfn(built.lp, c(PRICESO, rep(0, n_x), rep(0, n_t), 0)) set.constr.type(built.lp, c(rep("<=", n_x), rep(">=", n_y), "=")) set.rhs (built.lp, c(rep(0, n_x), rep(0, n_y), 1)) if (rts != "crs") { ctyp <- if (rts == "vrs") { "=" } else { if (rts == "nirs") { "<=" } else { if (rts == "ndrs") { ">=" } } } add.constraint(built.lp, c(rep(0, n_x + n_y), rep(1, n_t), -1), type = ctyp, rhs = 0) } lp.control(built.lp, sense = "max") solve(built.lp) return(get.objective(built.lp)) } DO.shdu <- function(XOBS, YOBS, XREF, YREF, rts) { n_x <- dim(XREF)[1] n_y <- dim(YREF)[1] n_t <- dim(XREF)[2] built.lp <- make.lp(n_t + 1, n_y + n_x) for (i in 1:n_y) { set.column(built.lp, i, c(-YREF[i, ], YOBS[i])) } for (j in 1:n_x) { set.column(built.lp, n_y + j, c(XREF[j, ], 0)) } if (rts %in% c("vrs", "nirs")) { add.column(built.lp, c(rep(1, n_t), 0)) } else { if (rts == "ndrs") { add.column(built.lp, c(rep(-1, n_t), 0)) } } obj <- if (rts == "crs") { c(rep(0, n_y), XOBS) } else { if (rts %in% c("vrs", "nirs")) { c(rep(0, n_y), XOBS, 1) } else { if (rts == "ndrs") { c(rep(0, n_y), XOBS, -1) } } } set.objfn(built.lp, obj) set.constr.type(built.lp, c(rep(">=", n_t), "=")) set.rhs (built.lp, c(rep(0, n_t), 1)) if (rts == "vrs") set.bounds(built.lp, lower = -Inf, upper = Inf, columns = n_x + n_y + 1) lp.control(built.lp, sense = "min") solve(built.lp) prices_o <- get.variables(built.lp)[1:n_y]/(sum(get.variables(built.lp)[(1 + n_y):(n_y + n_x)] * XOBS) + if (rts == "crs") { 0 } else { if (rts %in% c("vrs", "nirs")) { get.variables(built.lp)[n_y + n_x + 1] } else { if (rts == "ndrs") { -get.variables(built.lp)[n_y + n_x + 1] } } }) names(prices_o) <- paste("U", 1:n_y, sep = "") prices_o } DI.shdu <- function(XOBS, YOBS, XREF, YREF, rts) { n_x <- dim(XREF)[1] n_y <- dim(YREF)[1] n_t <- dim(XREF)[2] built.lp <- make.lp(n_t + 1, n_y + n_x) for (i in 1:n_y) { set.column(built.lp, i, c(YREF[i, ], 0)) } for (j in 1:n_x) { set.column(built.lp, n_y + j, c(-XREF[j, ], XOBS[j])) } if (rts %in% c("vrs", "ndrs")) { add.column(built.lp, c(rep(1, n_t), 0)) } else { if (rts == "nirs") { add.column(built.lp, c(rep(-1, n_t), 0)) } } obj <- if (rts == "crs") { c(YOBS, rep(0, n_x)) } else { if (rts %in% c("vrs", "ndrs")) { c(YOBS, rep(0, n_x), 1) } else { if (rts == "nirs") { c(YOBS, rep(0, n_x), -1) } } } set.objfn(built.lp, obj) set.constr.type(built.lp, c(rep("<=", n_t), "=")) set.rhs (built.lp, c(rep(0, n_t), 1)) if (rts == "vrs") set.bounds(built.lp, lower = -Inf, upper = Inf, columns = n_x + n_y + 1) lp.control(built.lp, sense = "max") solve(built.lp) prices_i <- get.variables(built.lp)[(n_y + 1):(n_y + n_x)]/ (sum(get.variables(built.lp)[1:n_y] * YOBS) + if (rts == "crs") { 0 } else { if (rts %in% c("vrs", "ndrs")) { get.variables(built.lp)[n_x + n_y + 1] } else { if (rts == "nirs") { -get.variables(built.lp)[n_x + n_y + 1] } } }) names(prices_i) <- paste("V", 1:n_x, sep = "") prices_i } fdiv <- function(x) x[, 1]/x[, 2] balanced <- function(data, id.var, time.var) { x <- data[, id.var] y <- data[, time.var] if (length(x) != length(y)) stop(paste0("The length of the two vectors (i.e. ", id.var, " and ", time.var, ") differs\n")) x <- data[, id.var][drop = TRUE] y <- data[, time.var][drop = TRUE] z <- table(x, y) if (any(as.vector(z) == 0)) { balanced <- FALSE } else { balanced <- TRUE } return(balanced) } Levels <- function(object, ...) { if (!is(object, c("FarePrimont", "Fisher", "Laspeyres", "Lowe", "Malmquist", "Paasche", "HicksMoorsteen"))) { stop("Function 'Levels' can not be applied to an object of class \"", class(object), "\"") } if (is(object, c("FarePrimont", "Fisher", "Laspeyres", "Lowe", "Malmquist", "Paasche")) | (is(object, "HicksMoorsteen") & (length(object) == 2))) { return(object$Levels) } if (is(object, "HicksMoorsteen") & (length(object) > 2)) { return(lapply(object, function(x) x$Levels)) } } Changes <- function(object, ...) { if (!is(object, c("FarePrimont", "Fisher", "Laspeyres", "Lowe", "Malmquist", "Paasche", "HicksMoorsteen"))) { stop("Function 'Changes' can not be applied to an object of class \"", class(object), "\"") } if (is(object, c("FarePrimont", "Fisher", "Laspeyres", "Lowe", "Malmquist", "Paasche")) | (is(object, "HicksMoorsteen") & (length(object) == 2))) { return(object$Changes) } if (is(object, "HicksMoorsteen") & (length(object) > 2)) { return(lapply(object, function(x) x$Changes)) } } Shadowp <- function(object, ...) { if (is(object, c("Malmquist"))) { stop("Function 'Shadowp' can not be applied to an object of class \"", class(object)[2], "\"") } if (!is(object, c("FarePrimont", "Fisher", "Laspeyres", "Lowe", "Paasche", "HicksMoorsteen"))) { stop("Function 'Shadowp' can not be applied to an object of class \"", class(object), "\"") } if (is(object, c("FarePrimont", "Fisher", "Laspeyres", "Lowe", "Paasche")) & is.null(object$Shadowp)) { stop("No shadow prices are returned in your \"", class(object)[2], "\"", " object. Specifying 'shadow = TRUE' should be considered in the function generating the \"", class(object)[2], "\"", " object.") } if (is(object, "HicksMoorsteen")) { if (length(object) == 2) { stop("No shadow prices are returned in your \"", class(object)[2], "\"", " object. Specifying 'components = TRUE' should be considered in the function generating the \"", class(object)[2], "\"", " object.") } else { List <- lapply(object, function(x) x$Shadowp) return(List[!sapply(List,is.null)]) } } return(object$Shadowp) }
TOL <- 1e-4 x_bool <- Variable(boolean=TRUE) y_int <- Variable(integer=TRUE) A_bool <- Variable(3, 2, boolean=TRUE) B_int <- Variable(2, 3, integer=TRUE) MIP_SOLVERS <- c("ECOS_BB", "GUROBI", "MOSEK") solvers <- intersect(MIP_SOLVERS, installed_solvers()) bool_prob <- function(solver) { test_that("Test Boolean problems", { obj <- Minimize((x_bool - 0.2)^2) p <- Problem(obj, list()) result <- solve(p, solver = solver, verbose = TRUE) expect_equal(result$value, 0.04, tolerance = TOL) expect_equal(result$getValue(x_bool), 0, tolerance = TOL) t <- Variable() obj <- Minimize(t) p <- Problem(obj, list(x_bool^2 <= t)) result <- solve(p, solver = solver, verbose = TRUE) expect_equal(result$value, 0, tolerance = TOL) expect_equal(result$getValue(x_bool), 0, tolerance = 1e-4) C <- cbind(c(0,1,0), c(1,1,1)) obj <- Minimize(sum_squares(A_bool - C)) p <- Problem(obj, list()) result <- solve(p, solver = solver, verbose = TRUE) expect_equal(result$value, 0, tolerance = TOL) expect_equal(result$getValue(A_bool), C, tolerance = 1e-4) t <- Variable() obj <- Minimize(t) p <- Problem(obj, list(sum_squares(A_bool - C) <= t)) result <- solve(p, solver = solver, verbose = TRUE) expect_equal(result$value, 0, tolerance = TOL) expect_equal(result$getValue(A_bool), C, tolerance = 1e-4) }) } int_prob <- function(solver) { test_that("Test Integer problems", { obj <- Minimize((y_int - 0.2)^2) p <- Problem(obj, list()) result <- solve(p, solver = solver, verbose = TRUE) expect_equal(result$value, 0.04, tolerance = TOL) expect_equal(result$getValue(y_int), 0, tolerance = TOL) obj <- Minimize(0) p <- Problem(obj, list(y_int == 0.5)) result <- solve(p, solver = solver, verbose = TRUE) expect_true(result$status %in% CVXR:::INF_OR_UNB) }) } int_socp <- function(solver) { test_that("Test SOCP problems", { t <- Variable() obj <- Minimize(t) p <- Problem(obj, list(square(y_int - 0.2) <= t)) result <- solve(p, solver = solver, verbose = TRUE) expect_equal(result$value, 0.04, tolerance = TOL) expect_equal(result$getValue(y_int), 0, tolerance = TOL) }) } bool_socp <- function(solver) { test_that("Test Bool SOCP problems", { t <- Variable() obj <- Minimize(t) p <- Problem(obj, list(square(x_bool - 0.2) <= t)) result <- solve(p, solver = solver, verbose = TRUE) expect_equal(result$value, 0.04, tolerance = TOL) expect_equal(result$getValue(x_bool), 0, tolerance = TOL) }) } test_all_solvers <- function() { for (solver in solvers) { bool_prob(solver) int_prob(solver) bool_socp(solver) int_socp(solver) } } test_all_solvers()
context("testing of export to image") test_that("Function fails for wrong inputs", { skip_on_cran() skip_on_os('windows') expect_error( mtcars %>% tableHTML() %>% add_theme('scientific') %>% tableHTML_to_image(type = 'abc'), 'should be one of' ) expect_error( mtcars %>% tableHTML() %>% tableHTML_to_image(add = 2), "add must be TRUE or FALSE" ) expect_true({ myfile <- tempfile(fileext = '.jpeg') mtcars %>% tableHTML() %>% tableHTML_to_image(type = 'jpeg', file = myfile) out <- file.size(myfile) > 1 file.remove(myfile) out }) expect_true({ myfile <- tempfile(fileext = '.png') mtcars %>% tableHTML() %>% tableHTML_to_image(type = 'png', file = myfile) out <- file.size(myfile) > 1 file.remove(myfile) out }) expect_true({ myfile <- tempfile(fileext = '.png') mtcars %>% tableHTML() %>% add_theme('rshiny-blue') %>% tableHTML_to_image(type = 'png', file = myfile) out <- file.size(myfile) > 1 file.remove(myfile) out }) expect_true({ par_1 <- par() mtcars %>% tableHTML() %>% tableHTML_to_image(add = TRUE) par_2 <- par() identical(par_1, par_2) }) expect_false({ plot(1:5) par_1 <- par() mtcars %>% tableHTML() %>% tableHTML_to_image(add = FALSE) par_2 <- par() identical(par_1, par_2) }) })
bnc_aode <- function(models, class_var, features) { stopifnot(length(models) > 0, identical(names(models), unname(features))) stopifnot(all(vapply(models, is_ode, FUN.VALUE = logical(1)))) bnc <- bnc_base(class = class_var, features = features) bnc$.models <- models class(bnc) <- c('bnc_aode', class(bnc)) bnc } bnc_aode_bns <- function(x, fit_models) { stopifnot(inherits(x, 'bnc_aode')) x$.models <- fit_models class(x) <- c('bnc_aode_bns', class(x), 'bnc_fit') x } is_aode <- function(x) { if (!inherits(x, c('bnc_aode'))) return (FALSE) if (length(x$.models) < 2) return (FALSE) all(sapply(x$.models, is_ode)) } nmodels <- function(x) { stopifnot(inherits(x, 'bnc_aode')) length(x$.models) } models <- function(x) { stopifnot(inherits(x, 'bnc_aode')) x$.models }
tsea.expression.decode <- function(query_mat_normalized_score, score, ratio = 0.05, p.adjust.method = "BH"){ query.tsea_t.mat = matrix(1, nrow = ncol(score), ncol = ncol(query_mat_normalized_score)); rownames(query.tsea_t.mat) = colnames(score); colnames(query.tsea_t.mat) = colnames(query_mat_normalized_score); for(k.tissue in 1:ncol(score)){ which(as.numeric(as.vector(score[,k.tissue])) > quantile(as.numeric(as.vector(score[,k.tissue])), probs = (1 - ratio), na.rm = TRUE )) -> ii genes.for.test = rownames(score)[ii] match(genes.for.test,rownames(query_mat_normalized_score)) -> idx idx = idx[!is.na(idx)] for(k.query in 1:ncol(query_mat_normalized_score)){ p1 = t.test(query_mat_normalized_score[idx, k.query], query_mat_normalized_score[-idx, k.query ], alternative= "greater")$p.value query.tsea_t.mat[k.tissue, k.query] = p1 } query.tsea_t.mat[k.tissue,] = p.adjust(query.tsea_t.mat[k.tissue,], p.adjust.method) cat(".", sep="") } return(query.tsea_t.mat) }
cond_N <- function(j, Sigma, Z , Z_new, diag_element, lower_upper) { p <- ncol(Sigma) tmp <- matrix(Sigma[j, -j], 1, p-1) tmp1 <- solve(Sigma[-j, -j]) mu <- tmp %*% tmp1 %*% t(Z[, -j]) mu <- as.vector(mu) sigma <- Sigma[j, j] - tmp %*% tmp1 %*% t(tmp) sigma <- sqrt(sigma) obj <- element_S( lower= lower_upper$lower[ ,j], upper= lower_upper$upper[ ,j], mu=mu, sigma=sigma) Z_new <- obj$EX diag_element <- mean(obj$EXX) rm(tmp, tmp1, mu, sigma, obj ) gc() return(list(Z_new=Z_new, diag_element=diag_element)) }
bprobgHsContUnivBIN <- function(params, respvec, VC, ps, AT = FALSE){ p1 <- p2 <- pdf1 <- pdf2 <- c.copula.be2 <- c.copula.be1 <- c.copula2.be1be2 <- NA weights <- VC$weights l.lnun <- NULL eta2 <- VC$X1%*%params pd <- probm(eta2, VC$margins[1], only.pr = FALSE, tau = VC$gev.par, min.dn = VC$min.dn, min.pr = VC$min.pr, max.pr = VC$max.pr) y <- respvec$y1 tauetaIND <- pd$tauetaIND == FALSE pr <- pd$pr[tauetaIND] d.n <- pd$d.n[tauetaIND] der2p.dereta <- pd$der2p.dereta[tauetaIND] X1 <- VC$X1[tauetaIND,] y <- y[tauetaIND] weights <- weights[tauetaIND] l.par <- weights*( y*log(pr) + (1-y)*log(1-pr) ) res <- -sum(l.par) dl.dbe <- weights*( ( y/pr - (1-y)/(1-pr) )*d.n ) d2l.be.be <- weights*( ( y/pr - (1-y)/(1-pr) )*der2p.dereta + d.n^2*( -y/pr^2 - (1-y)/(1-pr)^2 ) ) G <- -c( colSums( c(dl.dbe)*X1 ) ) H <- -crossprod(X1*c(d2l.be.be),X1) if(VC$extra.regI == "pC") H <- regH(H, type = 1) S.h <- ps$S.h if( length(S.h) != 1 ){ S.h1 <- 0.5*crossprod(params,S.h)%*%params S.h2 <- S.h%*%params } else S.h <- S.h1 <- S.h2 <- 0 S.res <- res res <- S.res + S.h1 G <- G + S.h2 H <- H + S.h if(VC$extra.regI == "sED") H <- regH(H, type = 2) list(value=res, gradient=G, hessian=H, S.h=S.h, S.h1=S.h1, S.h2=S.h2, l=S.res, l.lnun = l.lnun, l.par=l.par, ps = ps, sigma2.st = NULL, etas1 = NULL, eta1 = eta2, BivD=VC$BivD, eta2 = eta2, sigma2 = NULL, nu = NULL, tauetaIND = tauetaIND, p1 = pr, p2 = d.n, pdf1 = pdf1, pdf2 = pdf2, c.copula.be2 = c.copula.be2, c.copula.be1 = c.copula.be1, c.copula2.be1be2 = c.copula2.be1be2) }
Err_exp <-function(X){ J <- colnames(X) n <- nrow(X) K <- ncol(X) p <- apply(X,2,sum) / n EO<-array(rep(0,K*K*K),dim=c(K,K,K),dimnames=list(J,J,J)) for (i in 1 : K) for (j in 1 : K) for(k in 1 : K) { EO[i,j,k]<- p[i]*(1- p[j])*p[k]*n } dimnames(EO) <- list(J,J,J) return(EO) }
"cantidades"
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(Select) library(lattice) library(FD) Spp <- 5 trait <- as.matrix(data.frame(trait = c(1:Spp))) rownames(trait) <- c(letters[1:nrow(trait)]) result1 <- selectSpecies(t2c = trait, constraints = c(trait=3.5), t2d = trait, obj = "H") plotProbs(result1, trait, xlab = "Species") round(FD::maxent(constr = c(3.5), states = trait)$prob, 5) round(t(result1$prob), 5) result2 <- selectSpecies(t2c = trait, constraints = c(trait=3.5), t2d = trait, obj = "Q") plotProbs(result2, trait, xlab = "Species") result3 <- selectSpecies(t2c = trait, constraints = c(trait=3.5), t2d = trait, obj="QH") plotProbs(result3, trait, xlab = "Species") result4 <- selectSpecies(t2d = trait, obj = "QH") plotProbs(result4, trait, xlab = "Species") trait.matrix <- as.matrix(cbind(traitX = c(rep(1,4), rep(2,4), rep(3,4), rep(4,4)), traitY = c(rep(c(1,2,3,4),4)))) rownames(trait.matrix) <- c(letters[1:16]) traitX <- matrix(c(rep(1,4), rep(2,4), rep(3,4), rep(4,4))) traitY <- matrix(c(rep(c(1,2,3,4),4))) rownames(traitX) <- c(letters[1:16]); colnames(traitX) <- c("traitX") rownames(traitY) <- c(letters[1:16]); colnames(traitY) <- c("traitY") result5 <- selectSpecies(t2c = traitX, constraints = c(traitX=3.5), t2d = traitY, obj = "Q", capd = FALSE) trait.matrix <- cbind(traitX, traitY) plotProbs(result5, trait.matrix, cex.lab = 0.7) result6 <- selectSpecies(t2c = traitX, constraints = c(traitX=3.5), t2d = traitY, obj = "QH", capd = TRUE) plotProbs(result6, trait.matrix, cex.lab = 0.7) serpentine <- read.csv("traits.serpentine.california.csv", header = TRUE, row.names = 1) wue <- data.frame(wue = scale(log(serpentine$wue))) rootdepth <- data.frame(rootdepth = scale(log(serpentine$rootdepth))) rownames(wue) <- rownames(serpentine) rownames(rootdepth) <- rownames(serpentine) wue.constraint <- c(quantile(wue$wue, 0.67)) names(wue.constraint) <- c("wue") result7 <- selectSpecies(t2c = as.matrix(wue), constraints = c(wue.constraint), t2d = as.matrix(rootdepth), capd = TRUE, obj = "QH") plotProbs(result7, traits = cbind(wue,rootdepth), xlab = "Water use efficiency", ylab = "Rooting depth", colors = c("darkolivegreen4", "gold2"), cex.lab = 0.7)
write.GisticSummary = function(gistic, basename = NULL){ if(is.null(basename)){ stop('Please provide a basename for output files.') } write.table(x = gistic@data, file = paste(basename,'_gisticData.txt', sep=''), sep='\t', quote = FALSE, row.names = FALSE) write.table(x = [email protected], file = paste(basename,'_gisticCNVSummary.txt', sep=''), sep='\t', quote = FALSE, row.names = FALSE) write.table(x = [email protected], file = paste(basename,'_gisticCytobandSummary.txt', sep=''), sep='\t', quote = FALSE, row.names = FALSE) write.table(x = [email protected], file = paste(basename,'_gisticGeneSummary.txt', sep=''), sep='\t', quote = FALSE, row.names = FALSE) }
EffectiveNumberSamplesMLE=function(FstVect, Fstbar, NumberOfSamples, SmallestFstInTrimmedList, LargestFstInTrimmedList){ sortedFst=FstVect[order(FstVect)] LowTrimPoint=max(Fstbar/100,SmallestFstInTrimmedList) trimmedFstVect =FstVect[which((FstVect>=LowTrimPoint)&(FstVect<=LargestFstInTrimmedList))] trimmedFstArray=as.array(trimmedFstVect) localNLLAllData=function(dfInferred){ localNLLOneLocus=function(Fst){ negLLdfFstTrim(Fst,dfInferred,Fstbar,LowTrimPoint,LargestFstInTrimmedList) } sum(localNLLOneLocus(trimmedFstVect)) } stats::optim(NumberOfSamples, localNLLAllData, lower=2, method="L-BFGS-B")$par } IncompleteGammaFunction=function(a, z) { stats::pgamma(z,a,lower.tail=FALSE)*gamma(a) } negLLdfFstTrim=function(Fst, dfInferred, Fstbar, LowTrimPoint, HighTrimPoint){ df=dfInferred 1/(2*Fstbar)*(df * Fst +df * Fstbar * log(2) - df * Fstbar *log(df)-(df-2)*Fstbar * log(Fst)+df * Fstbar * log(Fstbar) + 2*Fstbar * log(-IncompleteGammaFunction(df/2,df*HighTrimPoint/(2*Fstbar))+IncompleteGammaFunction(df/2,df*LowTrimPoint/(2*Fstbar)))) }
get_edgelist <- function(dat, network) { if (get_control(dat, "tergmLite")) { el <- dat[["el"]][[network]] } else { at <- get_current_timestep(dat) if (!is.null(dat[["temp"]][["nw_list"]])) { if (!get_control(dat, "resimulate.network")) { el <- network::as.edgelist(dat[["temp"]][["nw_list"]][[at]]) } else { el <- network::as.edgelist(dat[["nw"]][[network]]) } } else { el <- networkDynamic::get.dyads.active(dat[["nw"]][[network]], at = at) } } return(el) } get_cumulative_edgelist <- function(dat, network) { if (length(dat[["el.cuml"]]) < network) { el_cuml <- NULL } else { el_cuml <- dat[["el.cuml"]][[network]] } if (is.null(el_cuml)) { el_cuml <- tibble::tibble( head = numeric(0), tail = numeric(0), start = numeric(0), stop = numeric(0) ) } return(el_cuml) } update_cumulative_edgelist <- function(dat, network, truncate = 0) { el <- get_edgelist(dat, network) el_cuml <- get_cumulative_edgelist(dat, network) el <- tibble::tibble( head = get_unique_ids(dat, el[, 1]), tail = get_unique_ids(dat, el[, 2]), current = TRUE ) el_cuml <- dplyr::full_join(el_cuml, el, by = c("head", "tail")) at <- get_current_timestep(dat) new_edges <- is.na(el_cuml[["start"]]) if (any(new_edges)) { el_cuml[new_edges, ][["start"]] <- at } terminated_edges <- is.na(el_cuml[["current"]]) & is.na(el_cuml[["stop"]]) if (any(terminated_edges)) { el_cuml[terminated_edges, ][["stop"]] <- at - 1 } if (truncate != Inf) { rel.age <- at - el_cuml[["stop"]] rel.age <- ifelse(is.na(rel.age), 0, rel.age) el_cuml <- el_cuml[rel.age <= truncate, ] } dat[["el.cuml"]][[network]] <- el_cuml[, c("head", "tail", "start", "stop")] return(dat) } get_cumulative_edgelists_df <- function(dat, networks = NULL) { networks <- if (is.null(networks)) seq_along(dat[["nwparam"]]) else networks el_cuml_list <- lapply(networks, get_cumulative_edgelist, dat = dat) el_cuml_df <- dplyr::bind_rows(el_cuml_list) el_sizes <- vapply(el_cuml_list, nrow, numeric(1)) el_cuml_df[["network"]] <- rep(networks, el_sizes) return(el_cuml_df) } get_partners <- function(dat, index_posit_ids, networks = NULL, truncate = Inf, only.active.nodes = FALSE) { el_cuml_df <- get_cumulative_edgelists_df(dat, networks) index_unique_ids <- get_unique_ids(dat, index_posit_ids) partner_head_df <- el_cuml_df[el_cuml_df[["head"]] %in% index_unique_ids, ] partner_tail_df <- el_cuml_df[ el_cuml_df[["tail"]] %in% index_unique_ids, c(2, 1, 3:5) ] colnames(partner_head_df) <- c("index", "partner", "start", "stop", "network") colnames(partner_tail_df) <- colnames(partner_head_df) partner_df <- dplyr::bind_rows(partner_head_df, partner_tail_df) if (only.active.nodes) { active_partners <- is_active_unique_ids(dat, partner_df[["partner"]]) partner_df <- partner_df[active_partners, ] } if (truncate != Inf) { at <- get_current_timestep(dat) rel.age <- at - partner_df[["stop"]] rel.age <- ifelse(is.na(rel.age), 0, rel.age) partner_df <- partner_df[rel.age <= truncate, ] } return(partner_df) }
radf_sb_ <- function(data, minw, lag, nboot, seed = NULL) { y <- parse_data(data) assert_na(y) minw <- minw %||% psy_minw(data) assert_positive_int(minw, greater_than = 2) assert_positive_int(lag, strictly = FALSE) assert_positive_int(nboot, greater_than = 2) nc <- ncol(y) nr <- nrow(y) snames <- colnames(y) pointer <- nr - minw - lag initmat <- matrix(0, nc, 1 + lag) resmat <- matrix(0, nr - 2 - lag, nc) coefmat <- matrix(0, nc, 2 + lag) set_rng(seed) for (j in 1:nc) { ys <- y[, j] dy <- ys[-1] - ys[-nr] ym <- embed(dy, lag + 2) lr_dy <- lm(ym[, 1] ~ ym[, -1]) res <- as.vector(lr_dy$residuals) coef <- as.vector(lr_dy$coefficients) initmat[j, ] <- ym[1, -1] coefmat[j, ] <- coef resmat[, j] <- res } nres <- NROW(resmat) show_pb <- getOption("exuber.show_progress") pb <- set_pb(nboot) pb_opts <- set_pb_opts(pb) do_par <- getOption("exuber.parallel") if (do_par) { cl <- parallel::makeCluster(getOption("exuber.ncores"), type = "PSOCK") registerDoSNOW(cl) on.exit(parallel::stopCluster(cl)) } set_rng(seed) `%fun%` <- if (do_par) `%dorng%` else `%do%` edf_bsadf_panel <- foreach( i = 1:nboot, .export = c("rls_gsadf", "unroot"), .combine = "cbind", .options.snow = pb_opts, .inorder = FALSE ) %fun% { boot_index <- sample(1:nres, replace = TRUE) if (show_pb && !do_par) pb$tick() for (j in 1:nc) { boot_res <- resmat[boot_index, j] dboot_res <- boot_res - mean(boot_res) dy_boot <- c( initmat[j, lag:1], stats::filter(coefmat[j, 1] + dboot_res, coefmat[j, -1], "rec", init = initmat[j, ] ) ) y_boot <- cumsum(c(y[1, j], dy_boot)) yxmat_boot <- unroot(x = y_boot, lag) aux_boot <- rls_gsadf(yxmat_boot, minw, lag) bsadf_boot <- aux_boot[-c(1:(pointer + 3))] } bsadf_boot / nc } bsadf_crit <- unname(edf_bsadf_panel) gsadf_crit <- apply(edf_bsadf_panel, 2, max) %>% unname() list(bsadf_panel = bsadf_crit, gsadf_panel = gsadf_crit) %>% add_attr( index = attr(y, "index"), series_names = snames, method = "Sieve Bootstrap", n = nr, minw = minw, lag = lag, iter = nboot, seed = get_rng_state(seed), parallel = do_par) } radf_sb_cv <- function(data, minw = NULL, lag = 0L, nboot = 500L, seed = NULL) { results <- radf_sb_(data, minw, nboot = nboot, lag = lag, seed = seed) pcnt <- c(0.9, 0.95, 0.99) bsadf_crit <- apply(results$bsadf_panel, 1, quantile, probs = pcnt) %>% t() gsadf_crit <- quantile(results$gsadf_panel, probs = pcnt) list(gsadf_panel_cv = gsadf_crit, bsadf_panel_cv = bsadf_crit) %>% inherit_attrs(results) %>% add_class("radf_cv", "sb_cv") } radf_sb_distr <- function(data, minw = NULL, lag = 0L, nboot = 500L, seed = NULL) { results <- radf_sb_(data, minw, nboot = nboot, lag = lag, seed = seed) c(results$gsadf_panel) %>% inherit_attrs(results) %>% add_class("radf_distr", "sb_distr") }
"check.matrix" <- function(X, Z=NULL) { if(is.null(X)) return(NULL) n <- nrow(X) if(is.null(n)) { n <- length(X); X <- matrix(X, nrow=n) } X <- as.matrix(X) if(!is.null(Z)) { Z <- as.vector(as.matrix(Z)) if(length(Z) != n) stop("mismatched row dimension in X and Z") nna <- (1:n)[!is.na(Z) == 1] nnan <- (1:n)[!is.nan(Z) == 1] ninf <- (1:n)[!is.infinite(Z) == 1] if(length(nna) < n) warning(paste(n-length(nna), "NAs removed from input vector")) if(length(nnan) < n) warning(paste(n-length(nnan), "NaNs removed from input vector")) if(length(ninf) < n) warning(paste(n-length(ninf), "Infs removed from input vector")) neitherZ <- intersect(nna, intersect(nnan, ninf)) } else neitherZ <- (1:n) nna <- (1:n)[apply(!is.na(X), 1, prod) == 1] nnan <- (1:n)[apply(!is.nan(X), 1, prod) == 1] ninf <- (1:n)[apply(!is.infinite(X), 1, prod) == 1] if(length(nna) < n) warning(paste(n-length(nna), "NAs removed from input matrix")) if(length(nnan) < n) warning(paste(n-length(nnan), "NaNs removed from input matrix")) if(length(ninf) < n) warning(paste(n-length(ninf), "Infs removed from input matrix")) neitherX <- intersect(nna, intersect(nnan, ninf)) if(length(neitherX) == 0) stop("no valid (non-NA NaN or Inf) data found") neither <- intersect(neitherZ, neitherX) X <- matrix(X[neither,], nrow=length(neither)) Z <- Z[neither] return(list(X=X, Z=Z)) } "framify.X" <- function(X, Xnames, d) { X <- data.frame(t(matrix(X, nrow=d))) if(is.null(Xnames)) { nms <- c(); for(i in 1:d) { nms <- c(nms, paste("x", i, sep="")) } names(X) <- nms } else { names(X) <- Xnames } return(X) }
getDistArg <- function(dist) { if (exists(paste0('d', dist))) { x <- unlist(strsplit(deparse(args(paste0('q', dist)))[1], ',')) out <- gsub(' |= [0-9]+', '', x[grep('function|lower.tail|log.p = FALSE|/', x, invert = TRUE)]) return(out) } else { message('Distribution in not defined') } } getACSArg <- function(id) { if (exists(paste0('acf', id))) { x <- unlist(strsplit(deparse(args(paste0('acf', id)))[1], ',')) out <- gsub(' |= [0-9]+|)', '', x[grep('function', x, invert = TRUE)]) return(out) } else { message('ACS in not defined') } }
ATA.Decomposition <- function(input, s.model, s.type, s.frequency, seas_attr_set) { tsp_input <- tsp(input) last_seas_type <- s.type if (s.model == "none" | min(s.frequency)==1){ if (s.type=="A"){ adjX <- input SeasActual <- rep(0,times=length(input)) SeasActual <- ts(SeasActual, frequency = tsp_input[3], start = tsp_input[1]) s.frequency <- frequency(input) SeasIndex <- rep(0,times=s.frequency) }else { adjX <- input SeasActual <- rep(1,times=length(input)) SeasActual <- ts(SeasActual, frequency = tsp_input[3], start = tsp_input[1]) s.frequency <- frequency(input) SeasIndex <- rep(1,times=s.frequency) } }else { if (class(input)[1]!="ts" & class(input)[1]!="msts"){ return("The data set must be time series object (ts or msts) ATA Method was terminated!") } input <- forecast::msts(input, start=tsp_input[1], seasonal.periods = s.frequency) tsp_input <- tsp(input) if (s.model=="decomp"){ if (s.type=="A"){ desX <- stats::decompose(input, type = c("additive")) adjX <- forecast::seasadj(desX) SeasActual <- desX$seasonal SeasIndex <- rep(NA,times=s.frequency) for (s in 1:s.frequency){ SeasIndex[s] <- as.numeric(SeasActual[cycle(SeasActual)==s][1]) } }else { desX <- stats::decompose(input, type = c("multiplicative")) adjX <- forecast::seasadj(desX) SeasActual <- desX$seasonal SeasIndex <- rep(NA,times=s.frequency) for (s in 1:s.frequency){ SeasIndex[s] <- as.numeric(SeasActual[cycle(SeasActual)==s][1]) } } }else if (s.model=="stl"){ if (length(s.frequency)==1){ stldesX <- stats::stl(input, s.window = "per", robust=TRUE) adjX <- forecast::seasadj(stldesX) SeasActual <- forecast::seasonal(stldesX) SeasIndex <- rep(NA,times=s.frequency) for (s in 1:s.frequency){ SeasIndex[s] <- as.numeric(SeasActual[cycle(SeasActual)==s][1]) } }else { stldesX <- forecast::mstl(input, lambda = NULL, s.window = "per") nameCol <- colnames(stldesX) nameCol <- grep('Season', nameCol, value=TRUE) if (length(nameCol)==0){ if (s.type=="A"){ adjX <- input SeasActual <- forecast::msts(rep(0,times=length(input)), start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(0,times=max(s.frequency)) }else { adjX <- input SeasActual <- forecast::msts(rep(1,times=length(input)), start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(1,times=max(s.frequency)) } }else { adjX <- forecast::seasadj(stldesX) if (length(s.frequency)==1){ SeasActual <- stldesX[,nameCol] SeasIndex <- rep(NA,times=s.frequency) for (s in 1:s.frequency){ SeasIndex[s] <- as.numeric(SeasActual[cycle(SeasActual)==s][1]) } }else { SeasActual <- rowSums(stldesX[,nameCol],na.rm=TRUE) SeasActual <- forecast::msts(SeasActual, start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(NA,times=max(s.frequency)) for (s in 1:max(s.frequency)){ SeasIndex[s] <- as.numeric(SeasActual[cycle(SeasActual)==s][1]) } } } } }else if (s.model=="stlplus"){ stlplusdesX <- stlplus::stlplus(input, s.window = "per", robust=TRUE) adjX <- input - stlplusdesX$data$seasonal SeasActual <- stlplusdesX$data$seasonal SeasActual <- forecast::msts(SeasActual, start=tsp_input[1], seasonal.periods = s.frequency) SeasIndex <- rep(NA,times=s.frequency) for (s in 1:s.frequency){ SeasIndex[s] <- as.numeric(SeasActual[cycle(SeasActual)==s][1]) } }else if (s.model=="stR"){ if (length(input)>1600){ stRdesX <- stR::AutoSTR(input) }else { stRdesX <- stR::AutoSTR(input, robust=TRUE) } stRcomp <- stR_components(stRdesX) nameCol <- colnames(stRcomp) nameCol <- grep('Seasonal', nameCol, value=TRUE) if (length(nameCol)==0){ if (s.type=="A"){ adjX <- input SeasActual <- forecast::msts(rep(0,times=length(input)), start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(0,times=max(s.frequency)) }else { adjX <- input SeasActual <- forecast::msts(rep(1,times=length(input)), start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(1,times=max(s.frequency)) } }else { adjX <- stR_seasadj(stRdesX) if (length(s.frequency)==1){ SeasActual <- stRcomp[,nameCol] SeasIndex <- rep(NA,times=s.frequency) for (s in 1:s.frequency){ SeasIndex[s] <- as.numeric(SeasActual[cycle(SeasActual)==s][1]) } }else { SeasActual <- rowSums(stRcomp[,nameCol],na.rm=TRUE) SeasActual <- forecast::msts(SeasActual, start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(NA,times=max(s.frequency)) for (s in 1:max(s.frequency)){ SeasIndex[s] <- as.numeric(SeasActual[cycle(SeasActual)==s][1]) } } } }else if (s.model=="tbats"){ tbatsdesX <- forecast::tbats(input, use.box.cox = FALSE) tbatscomp <- forecast::tbats.components(tbatsdesX) nameCol <- colnames(tbatscomp) nameCol <- grep('season', nameCol, value=TRUE) if (length(nameCol)==0){ if (s.type=="A"){ adjX <- input SeasActual <- forecast::msts(rep(0,times=length(input)), start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(0,times=max(s.frequency)) }else { adjX <- input SeasActual <- forecast::msts(rep(1,times=length(input)), start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(1,times=max(s.frequency)) } }else { adjX <- forecast::seasadj(tbatsdesX) if (length(s.frequency)==1){ SeasActual <- tbatscomp[,nameCol] SeasIndex <- rep(NA,times=s.frequency) for (s in 1:s.frequency){ SeasIndex[s] <- as.numeric(SeasActual[cycle(SeasActual)==s][1]) } }else { SeasActual <- rowSums(tbatscomp[,nameCol],na.rm=TRUE) SeasActual <- forecast::msts(SeasActual, start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(NA,times=max(s.frequency)) for (s in 1:max(s.frequency)){ SeasIndex[s] <- as.numeric(mean(SeasActual[cycle(SeasActual)==s])) } } } }else if (s.model=="x13"){ x13desX <- seasonal::seas(input, transform.function="none", estimate.maxiter=seas_attr_set$x13.estimate.maxiter, estimate.tol=seas_attr_set$x13.estimate.tol) SeasActual <- seasonal::series(x13desX,"seats.adjustfac") ifelse(seasonal::udg(x13desX, stats = "finmode")=="additive", s.type <- "A", s.type <- "M") if (is.null(SeasActual)) { if (s.type=="A"){ adjX <- input SeasActual <- forecast::msts(rep(0,times=length(input)), start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(0,times=max(s.frequency)) }else { adjX <- input SeasActual <- forecast::msts(rep(1,times=length(input)), start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(1,times=max(s.frequency)) } }else { adjX <- seasonal::series(x13desX,"seats.seasonaladj") SeasIndex <- rep(NA,times=s.frequency) for (s in 1:s.frequency){ SeasIndex[s] <- as.numeric(mean(SeasActual[cycle(SeasActual)==s])) } } }else if (s.model=="x11"){ x11desX <- seasonal::seas(input, x11 = "", transform.function="none", estimate.maxiter=seas_attr_set$x11.estimate.maxiter, estimate.tol=seas_attr_set$x11.estimate.tol) SeasActual <- seasonal::series(x11desX,"x11.adjustfac") ifelse(seasonal::udg(x11desX, stats = "finmode")=="additive", s.type <- "A", s.type <- "M") if (is.null(SeasActual)) { if (s.type=="A"){ adjX <- input SeasActual <- forecast::msts(rep(0,times=length(input)), start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(0,times=max(s.frequency)) }else { adjX <- input SeasActual <- forecast::msts(rep(1,times=length(input)), start=tsp_input[1], seasonal.periods = tsp_input[3]) SeasIndex <- rep(1,times=max(s.frequency)) } }else { adjX <- seasonal::series(x11desX,"x11.seasadj") SeasIndex <- rep(NA,times=s.frequency) for (s in 1:s.frequency){ SeasIndex[s] <- as.numeric(mean(SeasActual[cycle(SeasActual)==s])) } } }else { } } my_list <- list("AdjustedX" = adjX, "SeasIndex" = SeasIndex, "SeasActual" = SeasActual, "SeasType" = s.type) return(my_list) gc() } stR_components <- function(object) { len_y <- length(object$input$data) len_x <- length(object$output$predictors) + 2 str_cmp <- matrix(0, len_y, len_x) str_cmp[, 1] <- as.vector(object$input$data) str_cmp[, ncol(str_cmp)] <- as.vector(object$output$random$data) names <- rep("", ncol(str_cmp)) names[c(1, ncol(str_cmp))] = c("Data", "Random") for(i in seq_along(object$output$predictors)) { str_cmp[, i+1] <- object$output$predictors[[i]]$data names[i+1] <- object$input$predictors[[i]]$name } colnames(str_cmp) <- names str_cmp <- ts(str_cmp) if("ts" %in% class(object$input$data)) tsp(str_cmp) <- tsp(object$input$data) return(str_cmp) } stR_seasadj <- function(object, include = c("Trend", "Random")) { str_cmp <- stR_components(object) nameTrend <- colnames(str_cmp)[2] if(is.null(nameTrend) || is.na(nameTrend) || nchar(nameTrend) == 0) { warning("Trend component is not specified by name, using the first component as the Trend component.") colnames(str_cmp)[2] <- "Trend" } for(cmpname in include[!(include %in% colnames(str_cmp))]) { warning(paste(cmpname, "is not one of the components of the decomposion, skipping...")) } result <- NULL for(i in include[include %in% colnames(str_cmp)]) { if(is.null(result)) { result <- str_cmp[,i] } else { result <- result + str_cmp[,i] } } return(result) }
read_fwf <- function(file, col_positions = fwf_empty(file, skip, n = guess_max), col_types = NULL, col_select = NULL, id = NULL, locale = default_locale(), na = c("", "NA"), comment = "", trim_ws = TRUE, skip = 0, n_max = Inf, guess_max = min(n_max, 1000), progress = show_progress(), name_repair = "unique", num_threads = readr_threads(), show_col_types = should_show_types(), lazy = should_read_lazy(), skip_empty_rows = TRUE) { if (edition_first()) { ds <- datasource(file, skip = skip, skip_empty_rows = skip_empty_rows) if (inherits(ds, "source_file") && empty_file(file)) { return(tibble::tibble()) } tokenizer <- tokenizer_fwf(col_positions$begin, col_positions$end, na = na, comment = comment, trim_ws = trim_ws, skip_empty_rows = skip_empty_rows) spec <- col_spec_standardise( file, skip = skip, guess_max = guess_max, tokenizer = tokenizer, locale = locale, col_names = col_positions$col_names, col_types = col_types, drop_skipped_names = TRUE ) if (is.null(col_types) && !inherits(ds, "source_string") && !is_testing()) { show_cols_spec(spec) } out <- read_tokens(datasource(file, skip = spec$skip, skip_empty_rows = skip_empty_rows), tokenizer, spec$cols, names(spec$cols), locale_ = locale, n_max = if (n_max == Inf) -1 else n_max, progress = progress ) out <- name_problems(out, names(spec$cols), source_name(file)) attr(out, "spec") <- spec return(warn_problems(out)) } vroom::vroom_fwf(file, col_positions = col_positions, col_types = col_types, col_select = {{col_select}}, id = id, .name_repair = name_repair, locale = locale, na = na, comment = comment, skip_empty_rows = skip_empty_rows, trim_ws = trim_ws, skip = skip, n_max = n_max, guess_max = guess_max, show_col_types = show_col_types, progress = progress, altrep = lazy, num_threads = num_threads ) } fwf_empty <- function(file, skip = 0, skip_empty_rows = FALSE, col_names = NULL, comment = "", n = 100L) { if (edition_first()) { ds <- datasource(file, skip = skip, skip_empty_rows = skip_empty_rows) out <- whitespaceColumns(ds, comment = comment, n = n) out$end[length(out$end)] <- NA col_names <- fwf_col_names(col_names, length(out$begin)) out$col_names <- col_names return(out) } if (!missing(skip_empty_rows)) { lifecycle::deprecate_soft("2.0.0", "readr::fwf_empty(skip_empty_rows = )") } vroom::fwf_empty(file = file, skip = skip, col_names = col_names, comment = comment, n = n) } fwf_widths <- function(widths, col_names = NULL) { if (edition_first()) { pos <- cumsum(c(1L, abs(widths))) return(fwf_positions(pos[-length(pos)], pos[-1] - 1L, col_names)) } vroom::fwf_widths(widths = widths, col_names = col_names) } fwf_positions <- function(start, end = NULL, col_names = NULL) { if (edition_first()) { stopifnot(length(start) == length(end)) col_names <- fwf_col_names(col_names, length(start)) return(tibble( begin = start - 1L, end = end, col_names = as.character(col_names) )) } vroom::fwf_positions(start = start, end = end, col_names = col_names) } fwf_cols <- function(...) { if (edition_first()) { x <- lapply(list(...), as.integer) names(x) <- fwf_col_names(names(x), length(x)) x <- tibble::as_tibble(x) if (nrow(x) == 2) { res <- fwf_positions(as.integer(x[1, ]), as.integer(x[2, ]), names(x)) } else if (nrow(x) == 1) { res <- fwf_widths(as.integer(x[1, ]), names(x)) } else { stop("All variables must have either one (width) two (start, end) values.", call. = FALSE ) } return(res) } vroom::fwf_cols(...) } fwf_col_names <- function(nm, n) { nm <- nm %||% rep("", n) nm_empty <- (nm == "") nm[nm_empty] <- paste0("X", seq_len(n))[nm_empty] nm }
predictL.lcmm <- function(x,newdata,var.time,na.action=1,confint=FALSE,...) { if(missing(newdata)) stop("The argument newdata should be specified") if(missing(x)) stop("The argument x should be specified") if (!inherits(x, "lcmm")) stop("use only with \"lcmm\" objects") if (!all(x$Xnames2 %in% c(colnames(newdata),"intercept"))) { stop(paste(c("newdata should at least include the following covariates: ","\n",x$Xnames2[-1]),collapse=" "))} if (!inherits(newdata, "data.frame")) stop("newdata should be a data.frame object") call_fixed <- x$call$fixed[3] if(is.null(x$call$random)) {call_random <- -1} else call_random <- x$call$random[2] if(is.null(x$call$classmb)) {call_classmb <- -1} else call_classmb <- x$call$classmb[2] if(is.null(x$call$mixture)) {call_mixture <- -1} else call_mixture <- x$call$mixture[2] if(x$conv==1|x$conv==2|x$conv==3) { if(x$Xnames2[1]!="intercept"){ newdata1 <- newdata[,x$Xnames2] colnames(newdata1) <- x$Xnames newdata1 <- data.frame(newdata1) }else{ newdata1 <- cbind(rep(1,length=length(newdata[,1])),newdata[,x$Xnames2[-1]]) colnames(newdata1) <- c("intercept",x$Xnames2[-1]) newdata1 <- data.frame(newdata1) } X1 <- NULL X2 <- NULL b1 <- NULL b2 <- NULL if(!(na.action%in%c(1,2)))stop("only 1 for 'na.omit' or 2 for 'na.fail' are required in na.action argument") if(na.action==1){ na.action=na.omit }else{ na.action=na.fail } if(!is.null(x$data)) { olddata <- x$data } else { olddata <- eval(x$call$data) } for(v in x$Xnames2[-1]) { if (is.factor(olddata[,v]) & !(is.factor(newdata[,v]))) { mod <- levels(olddata[,v]) if (!(levels(as.factor(newdata1[,v])) %in% mod)) stop(paste("invalid level in factor", v)) newdata1[,v] <- factor(newdata1[,v], levels=mod) } } z <- all.names(call_fixed) ind_factor <- which(z=="factor") if(length(ind_factor)) { nom.factor <- z[ind_factor+1] for (v in nom.factor) { mod <- levels(as.factor(olddata[,v])) if (!all(levels(as.factor(newdata1[,v])) %in% mod)) stop(paste("invalid level in factor", v)) newdata1[,v] <- factor(newdata1[,v], levels=mod) } } call_fixed <- gsub("factor","",call_fixed) z <- all.names(call_random) ind_factor <- which(z=="factor") if(length(ind_factor)) { nom.factor <- z[ind_factor+1] for (v in nom.factor) { mod <- levels(as.factor(olddata[,v])) if (!all(levels(as.factor(newdata1[,v])) %in% mod)) stop(paste("invalid level in factor", v)) newdata1[,v] <- factor(newdata1[,v], levels=mod) } } call_random <- gsub("factor","",call_random) z <- all.names(call_classmb) ind_factor <- which(z=="factor") if(length(ind_factor)) { nom.factor <- z[ind_factor+1] for (v in nom.factor) { mod <- levels(as.factor(olddata[,v])) if (!all(levels(as.factor(newdata1[,v])) %in% mod)) stop(paste("invalid level in factor", v)) newdata1[,v] <- factor(newdata1[,v], levels=mod) } } call_classmb <- gsub("factor","",call_classmb) z <- all.names(call_mixture) ind_factor <- which(z=="factor") if(length(ind_factor)) { nom.factor <- z[ind_factor+1] for (v in nom.factor) { mod <- levels(as.factor(olddata[,v])) if (!all(levels(as.factor(newdata1[,v])) %in% mod)) stop(paste("invalid level in factor", v)) newdata1[,v] <- factor(newdata1[,v], levels=mod) } } call_mixture <- gsub("factor","",call_mixture) mcall <- match.call()[c(1,match(c("data","subset","na.action"),names(match.call()),0))] mcall$na.action <- na.action mcall$data <- newdata1 m <- mcall m$formula <- formula(paste("~",call_fixed,sep="")) m[[1]] <- as.name("model.frame") m <- eval(m, sys.parent()) na.fixed <- attr(m,"na.action") if(!is.null(x$call$mixture)){ m <- mcall m$formula <- formula(paste("~",call_mixture,sep="")) m[[1]] <- as.name("model.frame") m <- eval(m, sys.parent()) na.mixture <- attr(m,"na.action") }else{ na.mixture <- NULL } if(!is.null(x$call$random)){ m <- mcall m$formula <- formula(paste("~",call_random,sep="")) m[[1]] <- as.name("model.frame") m <- eval(m, sys.parent()) na.random <- attr(m,"na.action") }else{ na.random <- NULL } if(!is.null(x$call$classmb)){ m <- mcall m$formula <- formula(paste("~",call_classmb,sep="")) m[[1]] <- as.name("model.frame") m <- eval(m, sys.parent()) na.classmb <- attr(m,"na.action") }else{ na.classmb <- NULL } if(!missing( var.time)) { if(!(var.time %in% colnames(newdata))) stop("'var.time' should be included in newdata") if(var.time %in% colnames(newdata1)) { times <- newdata1[,var.time,drop=FALSE] } else { times <- newdata[,var.time,drop=FALSE] } } else { times <- newdata[,1,drop=FALSE] } na.action <- unique(c(na.fixed,na.mixture,na.random,na.classmb)) if(!is.null(na.action)){ newdata1 <- newdata1[-na.action,] times <- times[-na.action] } X_fixed <- model.matrix(formula(paste("~",call_fixed,sep="")),data=newdata1) if(colnames(X_fixed)[1]=="(Intercept)"){ colnames(X_fixed)[1] <- "intercept" int.fixed <- 1 } if(!is.null(x$call$mixture)){ X_mixture <- model.matrix(formula(paste("~",call_mixture,sep="")),data=newdata1) if(colnames(X_mixture)[1]=="(Intercept)"){ colnames(X_mixture)[1] <- "intercept" int.mixture <- 1 } id.X_mixture <- 1 }else{ id.X_mixture <- 0 } if(!is.null(x$call$random)){ X_random <- model.matrix(formula(paste("~",call_random,sep="")),data=newdata1) if(colnames(X_random)[1]=="(Intercept)"){ colnames(X_random)[1] <- "intercept" int.random <- 1 } id.X_random <- 1 }else{ id.X_random <- 0 } if(!is.null(x$call$classmb)){ X_classmb <- model.matrix(formula(paste("~",call_classmb,sep="")),data=newdata1) colnames(X_classmb)[1] <- "intercept" id.X_classmb <- 1 }else{ id.X_classmb <- 0 } if(x$N[6]>0) { z <- which(x$idcor0==1) var.cor <- newdata1[,x$Xnames[z]] } newdata1 <- X_fixed colX <- colnames(X_fixed) if(id.X_mixture == 1){ for(i in 1:length(colnames(X_mixture))){ if((colnames(X_mixture)[i] %in% colnames(newdata1))==F){ newdata1 <- cbind(newdata1,X_mixture[,i]) colnames(newdata1) <- c(colX,colnames(X_mixture)[i]) colX <- colnames(newdata1) } } } if(id.X_random == 1){ for(i in 1:length(colnames(X_random))){ if((colnames(X_random)[i] %in% colnames(newdata1))==F){ newdata1 <- cbind(newdata1,X_random[,i]) colnames(newdata1) <- c(colX,colnames(X_random)[i]) colX <- colnames(newdata1) } } } if(id.X_classmb == 1){ for(i in 1:length(colnames(X_classmb))){ if((colnames(X_classmb)[i] %in% colnames(newdata1))==F){ newdata1 <- cbind(newdata1,X_classmb[,i]) colnames(newdata1) <- c(colX,colnames(X_classmb)[i]) colX <- colnames(newdata1) } } } if(x$N[6]>0) { if( x$idg0[z]==0 & x$idea0[z]==0 & x$idprob0[z]==0) { newdata1 <- cbind(newdata1,var.cor) colnames(newdata1) <- c(colX,x$Xnames[z]) colX <- colnames(newdata1) } } placeV <- list() placeV$commun <- NA for(i in 1:x$ng) { placeV[paste("class",i,sep="")] <- NA } kk<-0 for(k in 1:length(x$idg0)) { if(x$idg0[k]==1) { X1 <- cbind(X1,newdata1[,k]) if (k==1) b1 <- c(b1,0) if (k>1) { place <- x$N[1]+kk b1 <- c(b1,x$best[place+1]) placeV$commun <- c(placeV$commun,place+1) kk <- kk+1 } } if(x$idg0[k]==2) { X2 <- cbind(X2,newdata1[,k]) if (k==1) { place1 <- x$N[1]+kk+1 place2 <- x$N[1]+kk+x$ng-1 b2 <- rbind(b2,c(0,x$best[place1:place2])) for(i in 2:x$ng) { placeV[[paste("class",i,sep="")]] <- c(placeV[[paste("class",i,sep="")]],x$N[1]+kk+i-1) } kk <- kk+x$ng-1 } if (k>1) { place1 <- x$N[1]+kk+1 place2 <- x$N[1]+kk+x$ng b2 <- rbind(b2,x$best[place1:place2]) for(i in 1:x$ng) { placeV[[paste("class",i,sep="")]] <- c(placeV[[paste("class",i,sep="")]],x$N[1]+kk+i) } kk <- kk+x$ng } } } Y<-matrix(0,length(newdata1[,1]),x$ng) colnames(Y) <- paste("class",1:x$ng,sep="") for(g in 1:x$ng){ if(length(b1) != 0){ Y[,g]<- X1 %*% b1 } if(length(b2) != 0){ Y[,g]<- Y[,g] + X2 %*% b2[,g] } } Vbeta <- matrix(0,x$N[2],x$N[2]) npm <- length(x$best) indice <- 1:npm * (1:npm+1) /2 indtmp <- indice[(x$N[1]+1):(x$N[1]+x$N[2])] indtmp <- cbind(indtmp-0:(length(indtmp)-1),indtmp) indV <- NULL for(i in 1:nrow(indtmp)) { indV <- c(indV,seq(indtmp[i,1],indtmp[i,2])) } Vbeta[upper.tri(Vbeta, diag=TRUE)] <- x$V[indV] Vbeta <- t(Vbeta) Vbeta[upper.tri(Vbeta, diag=TRUE)] <- x$V[indV] lower <- matrix(0,nrow(Y),ncol(Y)) upper <- matrix(0,nrow(Y),ncol(Y)) colnames(lower) <- paste("lower.class",1:x$ng,sep="") colnames(upper) <- paste("upper.class",1:x$ng,sep="") if(x$ng==1) { varpred <- apply(X1[,-1,drop=FALSE],1,function(x) matrix(x,nrow=1) %*% Vbeta %*% matrix(x,ncol=1)) lower[,1] <- Y[,1] -1.96 * sqrt(varpred) upper[,1] <- Y[,1] +1.96 * sqrt(varpred) } else { for(g in 1:x$ng) { ind <- na.omit(c(placeV[["commun"]],placeV[[paste("class",g,sep="")]])) if(g==1) { if(x$idg0[1]==1) { X12 <- X12 <- cbind(X1[,-1,drop=FALSE],X2) } if(x$idg0[1]==2) { X12 <- X12 <- cbind(X1,X2[,-1,drop=FALSE]) } } else { X12 <- cbind(X1,X2) } X12 <- X12[,order(ind),drop=FALSE] varclass <- Vbeta[sort(ind)-x$N[1],sort(ind)-x$N[1]] varpred <- apply(X12,1,function(x) matrix(x,nrow=1) %*% varclass %*% matrix(x,ncol=1)) lower[,g] <- Y[,g] -1.96 * sqrt(varpred) upper[,g] <- Y[,g] +1.96 * sqrt(varpred) } } if(confint==TRUE) { res <- cbind(Y,lower,upper) if(x$ng==1) colnames(res) <- c("pred","lower.pred","upper.pred") if(x$ng>1) colnames(res) <- c(paste("pred_class",1:x$ng,sep=""),paste("lower.pred_class",1:x$ng,sep=""),paste("upper.pred_class",1:x$ng,sep="")) res.list <- NULL res.list$pred <- res res.list$times <- times } if(confint==FALSE) { if(x$ng==1) colnames(Y) <- "pred" if(x$ng>1) colnames(Y) <- paste("pred_class",1:x$ng,sep="") res.list <- NULL res.list$pred <- Y res.list$times <- times } } else{ cat("Output can not be produced since the program stopped abnormally.") res.list <- list(pred=NA,times=NA) } class(res.list) <- "predictL" return(res.list) } predictL <- function(x,newdata,var.time,na.action=1,confint=FALSE,...) UseMethod("predictL")
"realdata_covariates" "realdata_alpha"
hanning <- function(n){ generate_window(n, 1L) } hamming <- function(n){ generate_window(n, 2L) } blackman <- function(n){ generate_window(n, 3L) } bartlett <- function(n){ generate_window(n, 4L) } welch <- function(n){ generate_window(n, 5L) } flattop <- function(n){ generate_window(n, 6L) } bharris <- function(n){ generate_window(n, 7L) } bnuttall <- function(n){ generate_window(n, 8L) } sine <- function(n){ generate_window(n, 9L) } nuttall <- function(n){ generate_window(n, 10L) } bhann <- function(n){ generate_window(n, 11L) } lanczos <- function(n){ generate_window(n, 12L) } gauss <- function(n){ generate_window(n, 13L) } tukey <- function(n){ generate_window(n, 14L) } dolph <- function(n){ generate_window(n, 15L) } cauchy <- function(n){ generate_window(n, 16L) } parzen <- function(n){ generate_window(n, 17L) } bohman <- function(n){ generate_window(n, 19L) } generate_window <- function(n, type){ n <- as.integer(n) type <- as.integer(type) assert_range(n) assert_range(type, max = 19) .Call(R_generate_window, n, type) } assert_range <- function(x, min = 0, max = Inf){ stopifnot(length(x) == 1) stopifnot(x >= min) stopifnot(x <= max) }
calculateEllipse <- function(means, sd, alpha = 0.05){ if(!is.vector(means, mode = "numeric") | length(means)!= 2){ stop("means must be a length 2 numeric vector.") } if(!is.vector(sd, mode = "numeric") | length(sd)!= 2){ stop("sd must be a length 2 numeric vector.") } if(!is.vector(alpha, mode = "numeric") | length(alpha)!= 1){ stop("alpha must be a length 1 numeric vector.") } if(alpha > 1 | alpha < 0){ stop("alpha must take a value between 0 and 1") } p <- (1-alpha) + (alpha/2) a <- qnorm(p)*sd[1] b <- qnorm(p)*sd[2] t <- seq(0, 2*pi, by=pi/100) xt <- means[1] + a*cos(t) yt <- means[2] + b*sin(t) return(list(x = xt, y = yt)) }
test_that("calcCohensD produces known result", { g1 = c(11, 12, 13, 14, 15) g2 = c(26, 27, 28, 29) twoGpsVec = c(g1, g2) grpLabels = rep(c("A", "B"), times=c(length(g1), length(g2))) freqVec = rep(1, length(twoGpsVec)) lambdas = c(A=1, B=-1) truth = (mean(g1) - mean(g2)) / bootES:::pooledSD(twoGpsVec, grpLabels) d.res = bootES:::calcCohensD(twoGpsVec, freq=freqVec, grps=grpLabels, contrast=lambdas) expect_equal(truth, d.res, tolerance=1e-4) d.res.switched = bootES:::calcCohensD(twoGpsVec, freq=freqVec, grps=grpLabels, contrast=c(A=-1, B=1)) expect_equal(-1 * truth, d.res.switched, tolerance=1e-4) truth = (mean(g1) - mean(g2)) / bootES:::pooledSD(twoGpsVec, grpLabels, pop.sd=TRUE) d.res = bootES:::calcCohensD(twoGpsVec, freq=freqVec, grps=grpLabels, contrast=lambdas, cohens.d.sigma=TRUE) expect_equal(truth, d.res, tolerance=1e-4) truth = (mean(g1) - mean(g2)) / sqrt(sum(((g1 - mean(g1))^2) / length(g1))) d.res.glass = bootES:::calcCohensD(twoGpsVec, freq=freqVec, grps=grpLabels, contrast=lambdas, cohens.d.sigma=TRUE, glass.control="A") expect_equal(truth, d.res.glass, tolerance=1e-4) truth = (mean(g1) - mean(g2)) / sd(g1) d.res.glass = bootES:::calcCohensD(twoGpsVec, freq=freqVec, grps=grpLabels, contrast=lambdas, cohens.d.sigma=FALSE, glass.control="A") expect_equal(truth, d.res.glass, tolerance=1e-4) })
library(testthat) test_that('getWFmean works for simple example of linear densities', { x = seq(0,1,length.out =512) y = t(sapply(seq(0.5, 1.5, length.out = 4), function(b) b + 2*(1 - b)*x)) y.qd = t(sapply(seq(0.5, 1.5, length.out = 4), function(b) (b^2 + 4*(1-b)*x)^(-1/2))) expect_equal( getWFmean(dmatrix = y, dSup = x), qd2dens(qd = colMeans(y.qd), qdSup = x, dSup = x) , tol = 1e-2) })
findBottlenecks <- function(file, unit="min", cumulative=TRUE) { if(length(file)>1 || any(grepl("\n",file))) { f <- unlist(strsplit(file,"\n")) } else { f <- readLines(file) } f <- grep("in [0-9.]* seconds",f,value=TRUE) x <- data.frame(level = nchar(gsub(paste0("^(", getConfig("indentationCharacter"), "*).*$"), "\\1", f))) x$class <- NA x$class[grepl("readSource",f)] <- "read" x$class[grepl("downloadSource",f)] <- "download" x$class[grepl("calcOutput",f)] <- "calc" x$class[grepl("retrieveData",f)] <- "retrieve" if(anyNA(x$class)) { warning("Some classes could not be properly detected!") x$class[is.na(x$class)] <- "unknown" } x$level[x$class=="retrieve"] <- -1 x$type <- gsub("([\"= ]|type)","",gsub("^[^(]*\\(([^,)]*)[),].*$","\\1",f)) x$"time[s]" <- as.numeric(gsub("^.* in ([0-9.]*) seconds.*$","\\1",f)) x$"net[s]" <- NA runtime <- rep(0,max(x$level)+3) for(i in 1:nrow(x)) { l <- x$level[i]+2 runtime[l] <- runtime[l] + x$time[i] x$"net[s]"[i] <- x$"time[s]"[i] - runtime[l+1] runtime[l+1] <- 0 } if(cumulative) { out <- NULL for (cl in unique(x$class)) { y <- x[x$class==cl,] for (i in unique(y$type)) { z <- y[y$type==i,] z$`time[s]`[1] <- sum(z$`time[s]`) z$`net[s]`[1] <- sum(z$`net[s]`) out <- rbind(out,z[1,]) } } x <- out } if (unit == "min") { x$"time[min]" <- round(x$"time[s]"/60,2) x$"net[min]" <- round(x$"net[s]"/60,2) } else if (unit == "h") { x$"time[h]" <- round(x$"time[s]"/60/60,2) x$"net[h]" <- round(x$"net[s]"/60/60,2) } totalruntime <- sum(x$"time[s]"[x$level == -1]) th <- floor(totalruntime/3600) tmin <- floor((totalruntime - th*3600)/60) ts <- floor(totalruntime - th*3600 - tmin*60) message("Total runtime: ", th, " hours ", tmin, " minutes ",ts," seconds") x$"time[%]" <- round(x$"time[s]"/totalruntime*100,2) x$"net[%]" <- round(x$"net[s]"/totalruntime*100,2) x <- x[robustOrder(x$"net[s]", decreasing = TRUE),] if (unit %in% c("min","h")) { x$"time[s]" <- NULL x$"net[s]" <- NULL } x <- x[c(1:3,grep("time",names(x)),grep("net",names(x)))] return(x) }
stopifnot(require("dplyr")) stopifnot(require("testthat")) stopifnot(require("yaml")) stopifnot(require("knitr")) stopifnot(require("readr")) stopifnot(file.exists("inst/docs/tests.csv")) test <- read_csv("inst/docs/tests.csv", show_col_types=FALSE) stories <- yaml.load_file("inst/docs/stories.yaml") story <- Map(stories, names(stories), f = function(story, storylabel) { tibble( STID = storylabel, STORY = story$summary, test = story$tests ) }) story <- bind_rows(story) all <- left_join(story, test, by = "test") if(any(is.na(all$failed))) { warning("some NA found") } write_csv(all, "inst/docs/stories-tests.csv") x <- kable(all, format = "markdown") writeLines(x, con = "inst/docs/stories.md")
setMethod(f=".composeFilename", signature=signature(x="AbstractMassObject"), definition=function(x, fileExtension="csv") { if (!is.null(metaData(x)$fullName)) { if (length(metaData(x)$fullName) > 1) { filename <- paste0(metaData(x)$fullName, collapse="_") } else { filename <- metaData(x)$fullName } } else { filename <- .withoutFileExtension(metaData(x)$file[1]) } paste(filename, fileExtension, sep=".") }) setMethod(f=".composeFilename", signature=signature(x="list"), definition=function(x, fileExtension="csv") { stopifnot(MALDIquant:::.isMassObjectList(x)) filenames <- unlist(lapply(x, .composeFilename, fileExtension=fileExtension)) .uniqueBaseFilenames(filenames, fileExtension) })
print.qanova <- function(x,...) { cat("Call:\n") print(x$call) partable <- data.frame(x$p.value) cat("\n") print(round(partable, 4)) cat("\n") }
set.seed(290875) pkgs <- sapply(c("mlt", "survival", "tram", "lme4", "gridExtra", "lattice", "latticeExtra", "mvtnorm", "ordinalCont"), require, char = TRUE) if (any(!pkgs)) { cat(paste("Package(s)", paste(names(pkgs)[!pkgs], collapse = ", "), "not available, stop processing.", "\\end{document}\n")) knitr::knit_exit() } if (file.exists("packages.bib")) file.remove("packages.bib") pkgversion <- function(pkg) { pkgbib(pkg) packageDescription(pkg)$Version } pkgbib <- function(pkg) { x <- citation(package = pkg, auto = TRUE)[[1]] b <- toBibtex(x) b <- gsub("Buehlmann", "B{\\\\\"u}hlmann", b) b[1] <- paste("@Manual{pkg:", pkg, ",", sep = "") if (is.na(b["url"])) { b[length(b)] <- paste(" URL = {http://CRAN.R-project.org/package=", pkg, "}", sep = "") b <- c(b, "}") } cat(b, sep = "\n", file = "packages.bib", append = TRUE) } pkg <- function(pkg) { vrs <- try(pkgversion(pkg)) if (inherits(vrs, "try-error")) return(NA) paste("\\\\pkg{", pkg, "} \\\\citep[version~", vrs, ",][]{pkg:", pkg, "}", sep = "") } pkg("mlt") pkg("tram") pkg("SparseGrid") cat(c("@Manual{vign:mlt.docreg,", " title = {Most Likely Transformations: The mlt Package},", " author = {Torsten Hothorn},", paste(" year = ", substr(packageDescription("mlt.docreg")$Date, 1, 4), ",", sep = ""), paste(" note = {R package vignette version ", packageDescription("mlt.docreg")$Version, "},", sep = ""), " url = {https://CRAN.R-project.org/package=mlt.docreg},", "}"), file = "packages.bib", append = TRUE, sep = "\n")
BinUplift <- function(data, treat, outcome, x, n.split = 10, alpha = 0.05, n.min = 30){ if (n.split <= 0 ) { stop("Number of splits must be positive") } if (alpha < 0 | alpha > 1 ) { stop("alpha must be between 0 and 1") } if (sum(is.na(data[[outcome]])) > 0 ) { stop("Dependent variable contains missing values: remove the observations and proceed") } if (sum(is.na(data[[treat]])) > 0 ) { stop("Treatment variable contains missing values: remove the observations and proceed") } if (length(unique(data[[x]])) < 3) { stop("Independent variable must contain at least 3 different unique values") } if (sum(is.na(data[[x]])) > 0 ) { warning("Independent variable contains missing values: remove the observations and proceed") } data <- data[is.na(data[[x]])==FALSE,] BinUpliftStump <- function(data, outcome, treat, x, n.split){ x.cut <- unique(quantile(data[[x]], seq(0, 1, 1/n.split))) splits <- matrix(data = NA, nrow = length(x.cut), ncol = 16) colnames(splits) <- c("x.cut", "n.lt", "n.lc", "p.lt", "p.lc", "u.l", "n.rt", "n.rc", "p.rt", "p.rc", "u.r", "diff", "p.t", "p.c", "p.t.n.t", "p.c.n.c") for(i in 1:length(x.cut)){ index.l <- data[[x]] < x.cut[i] index.r <- data[[x]] >= x.cut[i] splits[i,1] <- x.cut[i] left <- data[index.l,] right <- data[index.r,] splits[i, 2] <- sum(left[[treat]]==1) splits[i, 3] <- sum(left[[treat]]==0) splits[i, 4] <- sum(left[[treat]]==1 & left[[outcome]]==1)/splits[i, 2] splits[i, 5] <- sum(left[[treat]]==0 & left[[outcome]]==1)/splits[i, 3] splits[i, 6] <- splits[i, 4] - splits[i, 5] splits[i, 7] <- sum(right[[treat]]==1) splits[i, 8] <- sum(right[[treat]]==0) splits[i, 9] <- sum(right[[treat]]==1 & right[[outcome]]==1)/splits[i, 7] splits[i, 10] <- sum(right[[treat]]==0 & right[[outcome]]==1)/splits[i, 8] splits[i, 11] <- splits[i, 9] - splits[i, 10] splits[i, 12] <- abs(splits[i, 6] - splits[i, 11]) splits[i, 13] <- sum(data[[treat]]==1 & data[[outcome]]==1)/sum(data[[treat]]==1) splits[i, 14] <- sum(data[[treat]]==0 & data[[outcome]]==1)/sum(data[[treat]]==0) splits[i, 15] <- sum(data[[treat]]==1 & data[[outcome]]==1) splits[i, 16] <- sum(data[[treat]]==0 & data[[outcome]]==1) } return(splits) } BinUpliftTest <- function(splits, alpha, n.min){ z.a <- qnorm(0.5*alpha, mean = 0, sd = 1, lower.tail = FALSE, log.p = FALSE) test.splits <- data.frame(splits) test.splits$sign <- 0 test.splits <- test.splits[complete.cases(test.splits),] test.splits$n.t <- test.splits$n.lt + test.splits$n.rt test.splits$n.c <- test.splits$n.lc + test.splits$n.rc test.splits$z_t <- test.splits$n.lt * test.splits$p.lt test.splits$z_c <- test.splits$n.lc * test.splits$p.lc test.splits$odds_ratio_t <- (test.splits$z_t / (test.splits$n.lt - test.splits$z_t)) / ((test.splits$p.t * test.splits$n.t - test.splits$z_t)/(test.splits$n.rt - (test.splits$p.t * test.splits$n.t - test.splits$z_t))) test.splits$odds_ratio_c <- (test.splits$z_c / (test.splits$n.lc - test.splits$z_c)) / ((test.splits$p.c * test.splits$n.c - test.splits$z_c)/(test.splits$n.rc - (test.splits$p.c * test.splits$n.c - test.splits$z_c))) test.splits <- test.splits[is.finite(test.splits$odds_ratio_t) == TRUE,] test.splits <- test.splits[is.finite(test.splits$odds_ratio_c) == TRUE,] test.splits <- test.splits[test.splits$odds_ratio_t > 0,] test.splits <- test.splits[test.splits$odds_ratio_c > 0,] if (nrow(test.splits) == 0) { return(test.splits) } test.splits$esp_t <- 0 test.splits$esp_c <- 0 test.splits$var_t <- 0 test.splits$var_c <- 0 for (i in 1:nrow(test.splits)){ test.splits[i,]$esp_t <- BiasedUrn::meanFNCHypergeo(m1=test.splits[i,]$n.lt, m2=test.splits[i,]$n.rt, n=test.splits[i,]$p.t.n.t, odds=test.splits$odds_ratio_t[i]) test.splits[i,]$esp_c <- BiasedUrn::meanFNCHypergeo(m1=test.splits[i,]$n.lc, m2=test.splits[i,]$n.rc, n=test.splits[i,]$p.c.n.c, odds=test.splits$odds_ratio_c[i]) test.splits[i,]$var_t <- BiasedUrn::varFNCHypergeo(m1=test.splits[i,]$n.lt, m2=test.splits[i,]$n.rt, n=test.splits[i,]$p.t.n.t, odds=test.splits$odds_ratio_t[i]) test.splits[i,]$var_c <- BiasedUrn::varFNCHypergeo(m1=test.splits[i,]$n.lc, m2=test.splits[i,]$n.rc, n=test.splits[i,]$p.c.n.c, odds=test.splits$odds_ratio_c[i]) } test.splits$z.num <- (test.splits$p.lt - test.splits$p.lc - test.splits$p.rt + test.splits$p.rc) test.splits$z.den <- sqrt( (test.splits$n.t^2)*test.splits$var_t / ((test.splits$n.lt^2)*(test.splits$n.rt^2)) + (test.splits$n.c^2)*test.splits$var_c / ((test.splits$n.lc^2)*(test.splits$n.rc^2)) ) test.splits$z.obs <- abs(test.splits$z.num / test.splits$z.den) test.splits$sign <- 1*(test.splits$z.obs > z.a) argmax.size <- test.splits[test.splits$n.lt > n.min & test.splits$n.lc > n.min & test.splits$n.rt > n.min & test.splits$n.rc > n.min,] argmax.cut <- argmax.size[which.max(argmax.size$z.obs),] argmax.cut$x.pos <- which(test.splits$x.cut == argmax.cut$x.cut) return(argmax.cut) } BinUpliftTree <- function(data, outcome, treat, x, n.split, alpha, n.min){ stump <- BinUpliftStump(data, outcome, treat, x, n.split) best <- BinUpliftTest(stump, alpha, n.min) if (best$sign == 0 || nrow(best) == 0) { return("oups..no significant split") } else if (best$sign == 1) { print(paste("The variable", x, "has been cut at:")) print(best$x.cut) l.cuts <- best$x.pos - 1 r.cuts <- n.split-best$x.pos + 1 l.index <- data[[x]] < best$x.cut r.index <- data[[x]] >= best$x.cut l.create <- data[l.index,] r.create <- data[r.index,] l.stump <- BinUpliftStump(l.create, outcome, treat, x, l.cuts) r.stump <- BinUpliftStump(r.create, outcome, treat, x, r.cuts) l.best <- BinUpliftTest(l.stump, alpha, n.min) r.best <- BinUpliftTest(r.stump, alpha, n.min) if (l.best$sign == 0 || nrow(l.best) == 0) { if (r.best$sign == 0 || nrow(r.best) == 0) { return (best) } else if (r.best$sign == 1) { return (rbind(best, BinUpliftTree(r.create, outcome, treat, x, r.cuts, alpha, n.min))) } } else if (l.best$sign == 1) { if (r.best$sign == 0 || nrow(r.best) == 0){ return (rbind(BinUpliftTree(l.create, outcome, treat, x, l.cuts, alpha, n.min), best)) } else if (r.best$sign == 1) { return (rbind(BinUpliftTree(l.create, outcome, treat, x, l.cuts, alpha, n.min), best, BinUpliftTree(r.create, outcome, treat, x, r.cuts, alpha, n.min))) } } } } BinUpliftCatRank <- function(data, outcome, treat, x){ splits <- matrix(data = NA, nrow = length(levels(data[[x]])), ncol=6) colnames(splits) <- c("cat", "n.t", "n.c", "p.t", "p.c", "u") splits <- as.data.frame(splits) for(i in 1:nrow(splits)){ splits[i, 1] <- levels(data[[x]])[[i]] splits[i, 2] <- sum(data[[treat]]==1 & data[[x]]== splits[i, 1]) splits[i, 3] <- sum(data[[treat]]==0 & data[[x]]== splits[i, 1]) splits[i, 4] <- sum(data[[treat]]==1 & data[[x]]== splits[i, 1] & data[[outcome]]==1)/splits[i, 2] splits[i, 5] <- sum(data[[treat]]==0 & data[[x]]== splits[i, 1] & data[[outcome]]==1)/splits[i, 3] splits[i, 6] <- splits[i, 4] - splits[i, 5] } splits$cat.rank <- rank(splits$u, ties.method = "random") x.rank <- splits[, c(1,7)] x.merge <- merge(x.rank, data, by.x = 'cat', by.y = 'x') names(x.merge)[names(x.merge) == 'cat.rank'] <- 'x' x.rank <- x.rank[order(x.rank$cat.rank),] x.rank$cat <- paste0("'", x.rank$cat, "'") res <- list(x.rank, x.merge) return(res) } if (is.factor(data[[x]])==TRUE) { out.cat <- BinUpliftCatRank(data, outcome, treat, x)[[2]] out.link <- BinUpliftCatRank(data, outcome, treat, x)[[1]] out.tree <- BinUpliftTree(out.cat, outcome, treat, x, length(unique(out.cat$x))-1, alpha, n.min) out.tree.cat <- list("out.tree" = out.tree, "out.link" = out.link) return(out.tree.cat) } else if (is.factor(data[[x]])==FALSE) { out.tree <- BinUpliftTree(data, outcome, treat, x, n.split, alpha, n.min) class(out.tree) <- "BinUplift" return(out.tree) } }
savit.gol <- function(x, filt, filt_order = 4, der_order = 0) { if(is.numeric(x)==F) stop("Argument 'x' must be numeric") if(is.numeric(filt)==F) stop("Argument 'filt' must be numeric") if (filt <= 1 || filt %% 2 == 0) stop("Argument 'filt' must be a odd integer number, > than 1") filt_coef <- (filt-1)/2 X <- outer(-filt_coef:filt_coef, 0:filt_order, FUN="^") s <- svd(X) ypp = .Machine$double.eps^(2/3) p <- ( s$d > max(ypp * s$d[1], 0) ) if (all(p)) { mp <- s$v %*% (1/s$d * t(s$u)) } else if (any(p)) { mp <- s$v[, p, drop=FALSE] %*% (1/s$d[p] * t(s$u[, p, drop=FALSE])) } else { mp <- matrix(0, nrow=ncol(X), ncol=nrow(X)) } Y<-mp x2 <- convolve(x, rev(Y[(der_order+1),]), type="o") len<-length(x2) x2 <- x2[(filt_coef+1):(len-filt_coef)] final_val <- ((-1)^der_order * x2) return(final_val) }
prcomp_irlba <- function(x, n = 3, retx = TRUE, center = TRUE, scale. = FALSE, ...) { a <- names(as.list(match.call())) ans <- list(scale=scale.) if ("tol" %in% a) warning("The `tol` truncation argument from `prcomp` is not supported by `prcomp_irlba`. If specified, `tol` is passed to the `irlba` function to control that algorithm's convergence tolerance. See `?prcomp_irlba` for help.") if (is.data.frame(x)) x <- as.matrix(x) args <- list(A=x, nv=n) if (is.logical(center)) { if (center) args$center <- colMeans(x) } else args$center <- center if (is.logical(scale.)) { if (is.numeric(args$center)) { f <- function(i) sqrt(sum((x[, i] - args$center[i]) ^ 2) / (nrow(x) - 1L)) scale. <- vapply(seq(ncol(x)), f, pi, USE.NAMES=FALSE) if (ans$scale) ans$totalvar <- ncol(x) else ans$totalvar <- sum(scale. ^ 2) } else { if (ans$scale) { scale. <- apply(x, 2L, function(v) sqrt(sum(v ^ 2) / max(1, length(v) - 1L))) f <- function(i) sqrt(sum((x[, i] / scale.[i]) ^ 2) / (nrow(x) - 1L)) ans$totalvar <- sum(vapply(seq(ncol(x)), f, pi, USE.NAMES=FALSE) ^ 2) } else { f <- function(i) sum(x[, i] ^ 2) / (nrow(x) - 1L) ans$totalvar <- sum(vapply(seq(ncol(x)), f, pi, USE.NAMES=FALSE)) } } if (ans$scale) args$scale <- scale. } else { args$scale <- scale. f <- function(i) sqrt(sum((x[, i] / scale.[i]) ^ 2) / (nrow(x) - 1L)) ans$totalvar <- sum(vapply(seq(ncol(x)), f, pi, USE.NAMES=FALSE)) } if (!missing(...)) args <- c(args, list(...)) s <- do.call(irlba, args=args) ans$sdev <- s$d / sqrt(max(1, nrow(x) - 1)) ans$rotation <- s$v colnames(ans$rotation) <- paste("PC", seq(1, ncol(ans$rotation)), sep="") ans$center <- args$center if (retx) { ans <- c(ans, list(x = sweep(s$u, 2, s$d, FUN=`*`))) colnames(ans$x) <- paste("PC", seq(1, ncol(ans$rotation)), sep="") } class(ans) <- c("irlba_prcomp", "prcomp") ans } summary.irlba_prcomp <- function(object, ...) { chkDots(...) vars <- object$sdev ^ 2 vars <- vars / object$totalvar importance <- rbind("Standard deviation" = object$sdev, "Proportion of Variance" = round(vars, 5), "Cumulative Proportion" = round(cumsum(vars), 5)) k <- ncol(object$rotation) colnames(importance) <- c(colnames(object$rotation), rep("", length(vars) - k)) object$importance <- importance class(object) <- "summary.prcomp" object }
do.lda <- function(X, label, ndim=2){ if (!is.matrix(X)){ stop("* do.lda : 'X' should be a matrix.") } n = nrow(X) p = ncol(X) label = check_label(label, n) ulabel = unique(label) K = length(ulabel) if (K==1){ stop("* do.lda : 'label' should have at least 2 unique labelings.") } if (K==n){ warning("* do.lda : given 'label' has all unique elements.") } if (any(is.na(label))||(any(is.infinite(label)))){ stop("* Supervised Learning : any element of 'label' as NA or Inf will simply be considered as a class, not missing entries.") } if (!check_ndim(ndim,p)){ stop("* do.lda : 'ndim' should be a positive integer in [1, } ndim = as.integer(ndim) if (ndim>=K){ warning("* do.lda : by the nature of LDA, target dimension 'ndim' needs to be adjusted to match maximally permissible subspace.") } datlist = list() for (i in 1:length(ulabel)){ datlist[[i]] = X[which(label==ulabel[i]),] } scattermat <- function(x){ return(cov(x)*(nrow(x)-1)) } matE = array(0,c(p,p)) for (i in 1:length(ulabel)){ matE = matE + cov(datlist[[i]])*(nrow(datlist[[i]])-1) } matH = array(0,c(p,p)) meanlist = lapply(datlist, colMeans) meantott = colMeans(X) for (i in 1:length(ulabel)){ meandiff = as.vector(meanlist[[i]]-meantott) matH = matH + nrow(datlist[[i]])*outer(meandiff,meandiff) } W = aux.traceratio(matH, matE, ndim, 1e-6, 123) result = list() result$Y = X%*%W result$projection = W result$algorithm = "linear:LDA" return(structure(result, class="Rdimtools")) } lda_outer <- function(X){ p = ncol(X) output = array(0,c(p,p)) for (i in 1:nrow(X)){ output = output + outer(X[i,],X[i,]) } return(output) }
library(quickmatch) context("reg_estimator") match_count <- function(x) { out_count <- rep(NA, length(x)) for (i in unique(x)) out_count[x == i] <- sum(x == i, na.rm = TRUE) out_count } raw_data <- c( -0.4872, 0.7451, -0.5165, 1.9151, -1.0990, 0.1415, -1.6650, -0.7701, 0.8870, -1.7677, 0.4690, -0.7884, -1.5393, -1.7362, -0.2024, 1.0733, -1.3620, -0.4470, 0.8180, -0.0763, 0.9161, 0.1498, -0.4148, -0.3479, 0.0125, 0.4151, -0.7968, -1.1322, 0.3485, 1.4876, 0.0120, -0.6994, 1.3863, 0.8316, 1.5635, -0.8186, -1.1553, 0.9905, 0.4355, -0.3541, 0.1017, 1.6381, -1.0360, -0.3388, -0.3153, -0.8831, 1.5329, 0.8185, 0.6928, 0.3537, 1.3176, 1.0420, 0.9509, 0.0724, 1.1712, 1.4547, -1.2928, -0.7068, 0.9908, 0.9348, 0.7290, -1.1964, -0.5767, 1.4289, 0.1575, 0.8106, 1.8869, -2.1967, 1.1377, -0.4083, -0.1881, 1.0856, 0.3577, 1.5250, 0.2335, -1.0602, 0.1323, -0.1126, 0.3117, 0.7388, -0.2705, 0.6851, 0.1205, 0.9823, 0.9160, -1.3916, -0.0303, -2.6696, 0.4105, -0.5251, 0.2119, 0.5794, 0.8496, 1.3887, 0.4537, 0.2799, -0.6344, 0.1534, 0.3601, 1.7681, 0.0953, 3.1733, -0.6397, 0.6969, 1.2124, 0.0444, 0.2699, 0.5722, 1.4017, -2.0091, -0.2097, 1.1762, -0.8968, 0.4630, -1.0038, 0.9264, 0.0769, 0.6999, -0.7871, -0.1970, 1.6685, 2.2448, 1.8787, -0.0526, -0.3524, 0.1996, 0.4861, -2.3330, 1.7631, -0.2454, 1.9811, 1.7298, -1.3136, 0.4381, -1.7302, -0.5488, -0.4629, 1.0734, 0.4401, 1.9076, 0.7295, 0.8086, -1.1172, -1.0829, 0.2377, 0.5529, 0.8747, -0.3075, 0.3003, 0.0108, -0.9400, -2.3602, -0.6517, 0.3543, 1.1219, 1.2237, 1.2876, -0.4258, -0.5316, 1.5097, -0.9258, -0.2263, -1.6545, -0.5118, 0.8067, -0.4161, -1.3016, 0.6354, 0.5915, -1.3470, -0.8744, 0.1387, 0.6643, -0.2910, -0.3412, 0.1793, 0.7138, 0.2433, 0.6125, -0.2464, 0.0057, 0.6646, 0.0736, 0.6896, -0.7782, -1.8728, 0.8456, 0.9308, -0.4463, -1.8400, -0.5621, 1.5114, -1.0632, 0.1462, 1.9489, 0.3121, -0.6328, 0.0918, 0.2918, 0.4331, 1.2829, 0.3552, 0.4426, 0.2720, 2.3246, 0.7779, 0.9825, 1.7908, -0.6747, 1.0587, 0.2962, 1.2923, -1.1576, 0.4971, -2.0785, 0.8715, 2.2522, -0.4881, 0.2309, -0.0164, -1.4632, 1.7606, -0.3353, -0.1725, -0.4967, 0.1605, 1.3567, 0.4294, 1.8146, -0.5629, 0.0107, 1.0025, -0.9478, -0.1239, -0.9951, 1.4195, 0.4877, -1.8599, 1.7040, 0.0246, 1.1572, -0.4044, 0.2038, -0.6518, 0.5821, 0.3766, -0.7009, -1.0738, 0.9604, 0.1802, 0.5913, 0.0365, 0.4543, -1.0197, -0.7051, -0.6344, -1.0327, -0.9951, 0.6972, 0.8006, 0.8440, -1.3340, -0.4797, -0.2743, -1.0535, -0.0091, -0.4318, 0.3279, -0.1839, -0.5958, 1.5160, -0.0422, 0.3614, -0.8697, -1.1830, -1.1213, 1.5815, 1.6135, -0.3470, 0.0419, -0.4221, -0.6461, -1.0033, -0.0900, -0.5785, 1.7861, -0.1090, -1.0358, 0.1087, -0.0332, -0.3088, -0.4634, -0.0462, 0.6296, 1.7265, 0.4197, -0.7898, -1.7844, 1.9471, 0.7274, -0.8677, -0.2795, 0.2455, -0.9393, 1.1793, -0.3175, -0.8311, -0.6760, 0.2970, -0.9475, -0.2148, 0.5637, 0.4079, 0.0066, 0.9437, -0.0163, -1.0125, 0.2154, -0.2482, -1.8247, -1.0617, 0.7498, 0.4034, 0.5635, -0.4876, 1.9992, 0.9648, -0.8537, 0.0063, -1.1641, -1.6558, 0.8655, 0.9480, -0.5356, 0.2981, 0.5342, -1.0418, 1.0282, -0.2379, 0.1199, 1.4087, 0.5974, 1.0881, -0.6855, 2.0377, -0.5227, -1.0928, 0.6629, 1.2590, 1.7140, 0.3889, -1.1810, 0.5250, 1.0377, -2.8392, 0.2053, -0.2867, 0.0450, -1.3993, 0.4165, 2.9334, -0.0015, 0.5121, 0.1672, -0.5330, -0.1301, -0.6468, 0.4862, 1.4244, 0.3494, -0.7650, -3.0832, -0.2569, -0.7141, -0.9665, -1.2767, 0.6289, -0.6010, -0.2776, -1.5355, -0.5862, -0.6076, -0.3462, -1.6480, -0.4506, -0.0737, 2.1826, 0.3112, -1.4866, 0.3100, -0.1294, 0.0274, 1.0829, -0.0825, -1.6882, 0.8567, -0.2415, 0.1970, -1.1719, 0.8883, -0.3625, 0.5567, 0.3272, -0.7696, -0.6935, 0.2545, -0.4362, -1.0174, 0.9380, 0.8912, 0.6014, -0.4535, 0.8919, 0.3829, -0.2889, -1.6220, -0.3766, -0.0062, 1.2260, -1.3599, -0.9028, 0.8031, 0.4731, 1.1029, -0.4523, -1.4486, -0.5979, 0.3783, 0.0164, 0.8578, -1.5953, -0.8259, -1.6055, 0.4267, -1.4018, 0.0276, 1.3672, 0.0181, 1.1177, -1.7308, 1.0657, -0.1088, 2.4203, -0.5355, -2.0901, -1.5322, -1.7706, 0.2952, 1.5633, 0.3468, -0.7159, 0.7950, 0.5505, -0.5370, -0.4594, 0.1716, -0.8158, 1.3633, -0.9603, 1.1322, -0.4228, -0.3554, 1.2230, 0.2992, 1.7149, -0.0627, 0.2368, -0.1479, -2.0702, -1.8919, 0.6002, -0.3636, -1.5506, 0.2206, -0.8984, 0.9310, 1.5714, 1.0776, 0.7620, -1.2547, 2.2364, -0.5050, 1.1581, 0.9402, -0.2105, 0.5425, -1.7107, 0.9627, 0.2343, 1.0857, 0.4265, 0.9014, -2.2587, -0.4009, 0.1736, 0.5412, -0.6627, 1.0283, -0.3611, -0.0952, 1.1076, 0.1142, -0.8730, -0.4041, -0.1622, 0.6180, -1.4230, 0.7598, -1.1315, -1.4547, 0.9569, -1.1144, -0.8974, -1.8576, 0.3025, -0.2148, 0.0795, 1.7697, 0.5964, 1.3837, -0.3508, -0.4489, -1.0038, 0.7689, -0.9172, -0.2032, 0.1305, 0.7555, -1.1910, 0.6642, 1.8022, -0.2778, 0.2482, -2.1934, 0.9776, -0.5258, 1.4201, 0.9297, 0.7087, 1.1819, -0.8285, 0.5929, -1.6667, 1.4040, 0.6843, 0.1170, -2.5217, 0.5207, -0.5059, -1.8744, 0.8313, -0.0058, -1.4890, 1.7169, -0.9529, 0.1913, 1.5248, 0.9072, 0.6951, 0.9039, 1.1450, -0.7990, -0.8951, 0.0930, 1.8007, -0.8398, 0.1976, 0.0284, 1.6596, -0.2373, 1.6222, 0.5146, 0.5970, -0.9764, -1.1838, 0.9578, -0.1807, 0.0804, 0.1399, 1.5009, 1.1879, 0.4374, -0.5793, 0.5963, -1.2124, 1.2813, -0.7977, -0.2510, -0.4962, -0.5805, 0.5271, -0.1430, -0.4335, 0.3752, 0.4296, 0.9512, 2.5223, 0.0944, 0.4732, 0.8319, 0.1064, -1.5534, 0.5204, -0.3217, 0.6548, 1.8891, 1.8319, -0.5004, -0.5851, -0.4657, 1.5465, -1.3594, 1.0047, -0.4412, -0.0397, 0.2357, 2.0599, 1.0330, -0.3042, 1.4978, 1.4697, 0.0848, 0.5442, -0.3818, 0.0743, 1.9379, 1.3631, 0.2789, 0.3412, -0.9296, 0.6453, -0.4919, 1.4866, -0.2201, 1.9315, 0.0905, -1.8105, 0.8638, -0.7237, -0.2104, -0.4444, 0.7172, -0.3825, 0.2067, -0.0333, -1.1909, 1.1056, 0.9053, -0.6597, -0.6914, 0.4585, -0.7110, 0.0690, 0.5465, 1.9854, 0.8117, 1.0793, 1.2360, -1.9689, -0.6541, -0.2067, -0.9436, -0.2843, 0.3925, -0.5058, 0.2156, -0.2359, 0.3010, 2.1301, 1.5143, 0.0042, 0.3615, -0.6853, 0.8183, -0.5962, -0.5115, -0.0717, -0.3841, -0.5058, -1.0159, 0.8669, 0.0163, -0.3912, 0.9714, 2.1844, 0.9561, 1.2363, -1.2320, 1.0044, -2.8297, -0.5989, 0.9072, -0.4030, -1.9363, -0.7543, 1.0802, 0.2087, 0.0241, 1.7565, -0.8564, 0.2633, 1.1214, 1.1939, -0.1404, -0.5400, -0.5482, -0.6363, 1.5533, -1.0036, 0.0684, -0.7229, -0.3722, 2.0825, 0.1669, 1.1343, 0.8718, -1.0742, 0.6947, 0.6584, -1.5386, -0.4617, -0.4007, -0.4141, -0.9637, 1.2189, 0.0330, 0.8760, -0.7897, -0.2739, 0.1020, -0.0052, -1.2279, 0.7426, -0.2921, -0.1473, 0.9460, 2.2570, -0.9717, 1.4505, 1.0058, 2.1400, 0.4182, -1.3513, -0.0570, -0.3588, 0.1365, 0.6475, -0.6026, 0.4890, -1.7305, 0.4392, -1.6688, -0.4057, 0.2632, -1.7420, -0.1697, 0.6454, 1.6009, 0.2703, -0.2497, -0.5316, 0.8671, 0.6408, 0.9662, 1.7522, -0.4981, -0.6324, 0.7571, -0.4545, -1.5518, 0.7337, 0.4030, 0.1092, -0.2047, -0.7430, 1.1214, 0.7836, -0.3992, -0.3865, -0.9020, -0.9157, -0.0421, 0.3431, -0.8068, 0.1751, 0.5083, -0.5680, 0.1369, -0.4947, 2.2623, 1.2339, 0.3881, -0.2316, -1.6752, 0.2572, 1.0593, -0.4890, -0.0756, -0.5038, -1.8795, -1.5513, -1.0853, 1.0083, 1.1964, -2.1472, 0.6647, 0.2958, 0.0789, 0.5603, 2.5896, -0.5381, -0.7058, 0.1116, 0.1473, -0.5630, 0.6310, -0.0618, 0.4437, 0.7692, -2.1426, -2.2755, -0.1039, -0.1375, -0.2636, -0.0682, 0.4290, 1.5298, -0.4661, 0.2780, -0.3979, 0.9276, -0.4869, 1.5589, 0.7911, 0.0278, 0.1342, 0.6081, -1.2963, 0.6305, -0.5811, -1.3431, -0.3408, 2.7015, -0.0249, -1.5477, -0.7342, -0.5546, 0.4840, -0.1092, -0.3016, -0.4935, -0.8670, -1.3928, 0.3843, -0.1520, -0.6043, -1.5804, -0.2794, -0.0220, -0.3274, 0.3435, 0.4598, -0.0506, -0.0693, -0.5182, -0.7082, -0.2513, 0.5971, -0.0448, -1.1931, 0.2547, 0.5547, 0.7275, 0.0790, 0.7290, -1.7580, 1.4076, 0.0707, -1.3745, -0.9425, -1.7886, 1.0114, 0.6533, -2.4790, 0.7734, -1.2740, 1.4678, 1.0326, 2.4520, -0.3818, 0.4637, 0.0647, 0.5835, -0.6451, 0.1827, 0.3267, 2.9147, 0.8831, 0.3677, 0.0840, 1.8727, -1.9208, 0.5406, -0.9817, 0.4599, 0.6025, -0.0785, 0.2673, 0.3753, -2.0838, -0.7829, 1.3637, 1.2702, 0.6830, -0.2844, 1.1863, -0.1296, -0.7212, 1.1061, 0.5191, -2.0950, -1.1772, 1.4060, -0.5879, -0.2722, 0.7108, -0.3690, 0.0525, 1.3578, -1.4684, 0.0200, -1.5456, 0.7970, -0.4809, -0.7506, -0.5057, -1.5580, 1.0935, -1.0784, -1.0562, -0.1146, -0.9110, 0.8766, -0.7964, -2.4560, 0.1778, 1.4359, 0.2717, -0.5767, 0.2234, 1.2251, 1.5370, -0.5174, 1.1125, 0.1106, 0.6372, 0.1512, 0.3230, 2.2387, -0.4424, -1.0800, 1.3210, -1.2190, -0.6978, 0.2300, 0.3607, 1.8892, 0.5572, 0.9886, 1.3938, 0.3778, 0.9841, -0.4031, -0.9848, 0.2440, -1.3726, -0.9412, 0.2147, -0.4574, 0.5361, 1.0282, 0.9216, 0.4758, 0.3440, 1.2460, -0.3306, -0.3788, 0.0800, 1.2618, 0.7217, -0.5614, 0.1019, 0.0530, -0.2299, 0.8542, -0.4069, 0.5273, 0.1136, -1.4586, 1.5515) outcomes <- c(0.0205, -0.3570, -0.1800, 1.6027, 0.6040, 0.0446, 1.1410, 0.6459, 0.2176, 1.0053, 0.8606, -1.6118, 0.5874, 1.1100, -1.3736, -0.0285, 0.3507, 0.7171, -1.3828, 0.8234, -0.7631, -0.4639, -0.4376, 0.0730, 0.1047, -0.5083, -0.2196, 0.5361, -1.5352, -0.8881, -0.8442, 0.0563, -1.5486, -0.5264, -0.8658, 1.5356, 0.2647, -0.0963, 0.4131, -1.1494, -1.9345, -0.5645, 1.1416, 0.0773, -0.5720, 0.5793, -0.3981, -0.9894, -1.2676, -0.6354, -0.1311, -0.1716, 0.7746, 1.6090, 2.8755, -0.2764, 0.7829, 0.4025, -0.2133, 0.2556, -0.2961, 0.1277, -1.1842, 0.5236, 1.2570, -0.3152, 0.2932, -1.0783, -0.3862, -0.8232, -1.1835, -1.3552, -0.0789, -0.0066, 0.3635, 0.5077, 1.2753, -0.8967, 0.4159, -0.7981, 0.2287, -0.4356, -0.7993, -0.2827, -0.7846, 1.2104, 1.0357, -1.5568, 2.3634, -0.1235, -0.6127, -1.2388, 1.3979, -0.2042, 0.5417, 1.1585, 0.1019, -0.4110, 1.7379, 1.0779, 0.4450, 3.2147, 1.0197, 1.3007, -0.1291, 0.9400, 0.4611, 1.3303, 0.1158, 0.1236, 1.6459, -0.3607, 0.5939, -0.3914, -0.0605, -1.0023, 1.6778, 0.6189, -0.9104, -1.5664, -0.8702, 0.7727, -1.0583, -0.7396, 0.5931, -0.6804, 2.3084, -0.1429, 2.4170, 1.5413, 0.8579, -0.2773, 0.5879, 0.7498, 0.1557, 0.3880, 0.4225, -1.1402, 1.7665, 0.4245, -0.3918, 0.4971, 0.7368, -0.9356, 0.4586, 1.7515, 1.2829, 0.2030, -0.6820, 0.0969, -1.0878, 0.0772, 2.5644, -0.3377, 1.1355, -0.6275, -0.3647, 0.1621, -0.1468, 1.6987, -0.8734, -0.9340, 0.5531, 1.4509, -0.3212, -1.2277, 0.6314, 0.9667, -1.6311, 0.3286, -1.9934, -1.6888, 0.3473, 0.6372, 0.3762, -0.0419, -0.7407, -1.2121, 0.7571, -0.5526, 0.1421, 0.1362, -0.2806, 0.0616, -1.2681, -0.4562, -0.7822, 1.4473, -0.9530, 0.4526, -1.1236, 1.0511, -0.8775, 0.1029, -1.4251, -1.2171, 0.3472, -0.2190, 0.0336, 0.1680, 0.1281, -1.9779, 0.1375, 1.8399, -0.0493, 0.6907, 0.7541, 0.5287, -0.8845, 1.4811, 0.3286, 0.8972, 0.5654, 0.8593, -0.1344, 0.8320, -0.8736, -0.7748, 0.6392, -1.1989, 0.3728, -0.4211, -0.3649, -0.4534, -0.0137, 0.3928, 1.2608, 1.2502, 0.3193, 1.1112, -1.8545, 0.5773, 0.2744, 0.0725, 0.2167, -0.7172, -0.7628, 0.8344, -0.2046, 1.0611, 1.2770, -1.6743, 1.3876, -0.4273, 0.4789, -0.8904, -2.2173, 0.6997, -1.8759, 0.7042, -0.2366, -0.8236, -0.5462, 1.8462, 0.5542, -0.9172, -2.1855, -0.6027, -2.0782, 0.5249, 1.9438, 0.4261, -0.2575, -2.7734, -0.7753, 0.0163, -0.8262, -1.6110, -0.1041, -0.7182, 0.3477, 1.3551, -0.2285, -0.9560, -0.8441, 1.2757, -0.9876, 1.0534, -0.9341, -0.3950, -2.2642, -0.4673, -1.2123, -1.0671, 1.0994, -1.0178, 1.1849, 1.9378, -0.1527, -0.8706, 0.2871, 0.9813, -0.2128, 1.7363, -0.2256, 1.3844, -0.5083, 0.0575, -0.2202, -2.0043, 0.3946, 0.8989, 0.5002, 0.9511, 1.1091, 0.7113, 1.3659, -0.0582, 1.6949, -0.7345, -0.6111, -0.5422, -2.6116, -0.9190, 0.4477, 1.2454, 1.2049, -0.2520, 0.5938, 0.4758, 0.1826, -1.1340, 0.4525, 0.1237, -0.7409, -0.8201, 0.1525, 0.2695, -1.5823, -1.2049, 0.9168, 0.0510, -0.3695, -0.4639, -0.4096, 0.9551, -0.6061, -0.7474, 0.8266, 2.0093, 0.7526, 1.4513, -0.3172, 0.0437, 1.9979, 1.0427, -0.3827, -0.3352, -0.7851, 0.7902, -0.8383, -0.1463, 1.7544, -0.6223, 0.5491, 1.0549, -1.2745, 0.6006, 1.0724, 1.7022, -1.4415, 1.3337, 1.4286, 0.1131, 0.6909, -0.3527, 1.0276, -1.7789, -2.3209, 0.4760, 0.2717, -1.4556, -0.2188, -0.7969, 1.1241, 1.6584, 0.1295, -0.0227, 0.3267, -1.7511, 0.1707, -0.0164, -0.6512, 1.3965, 0.1340, 0.3256, -0.5760, 0.0319, 0.3296, -0.8830, 0.5726, -1.5751, -0.7329, -0.7542, -0.7859, -0.3914, -0.2288, 1.5780, -1.7739, 0.0440, -0.0925, -1.8832, 1.3091, 0.2592, 1.8375, -1.5061, 1.4029, -1.0109, 1.1734, -0.6569, -0.7112, -2.3794, 0.7054, 1.5654, 0.8891, 0.0091, -0.6947, 1.4746, 0.7423, -1.7094, -0.3652, -0.8040, -0.0838, -0.0832, -0.7429, -0.1221, -0.2304, 0.3326, -0.2007, 0.7618, 0.6339, 1.0916, 0.2606, 1.9462, -0.0962, -0.0238, 0.3406, -0.4235, 1.5965, -1.3173, -0.5833, 0.9931, -0.6504, -1.6696, -0.1766, -0.0618, 0.9042, -1.8983, -0.7147, 0.0607, -0.3663, -0.3427, 0.0150, 2.0077, -1.5831, -1.1572, -2.3661, 0.5794, 0.3421, -1.2125, 2.0121, -0.2505, 1.0036, 2.1437, -1.5260, 0.6540, 0.5038, -0.1488, 0.3597, 0.3622, 0.9767, -0.3947, -0.5022, 0.5277, -0.7256, -1.8513, -2.3371, 1.2231, -0.6757, 0.0961, -0.5849, -0.2429, 0.5242, 0.7977, -0.2923, 0.4917, -0.6212, -2.3871, -2.0155, -1.1342, 0.3785, -0.2179, -0.0241, -0.1828, 0.8068, -0.0506, -0.8762, -1.3112, 0.6008, 1.5089) treatmentsUse <- c("B", "A", "A", "A", "A", "A", "B", "A", "B", "A", "B", "B", "A", "B", "A", "A", "B", "A", "B", "A", "A", "A", "A", "B", "A", "B", "A", "B", "A", "B", "B", "A", "A", "A", "A", "A", "B", "A", "A", "A", "A", "A", "B", "B", "A", "A", "A", "B", "A", "A", "B", "B", "B", "B", "B", "A", "A", "A", "B", "A", "B", "B", "A", "A", "A", "B", "B", "B", "B", "A", "A", "B", "B", "B", "A", "A", "A", "B", "B", "A", "B", "A", "A", "B", "B", "B", "B", "A", "A", "B", "B", "B", "B", "B", "A", "B", "B", "A", "A", "B", "B", "B", "B", "B", "A", "A", "B", "B", "A", "A", "B", "B", "B", "A", "B", "A", "B", "A", "B", "B", "B", "B", "A", "B", "A", "B", "B", "B", "B", "A", "B", "A", "B", "A", "A", "A", "A", "A", "A", "B", "A", "A", "A", "A", "B", "B", "A", "B", "A", "B", "B", "B", "A", "A", "B", "A", "B", "A", "A", "B", "A", "A", "A", "A", "A", "B", "B", "A", "A", "B", "B", "A", "B", "B", "A", "B", "B", "B", "A", "A", "B", "A", "A", "A", "B", "A", "A", "A", "A", "B", "A", "A", "B", "B", "B", "B", "B", "A", "A", "B", "B", "A", "A", "A", "A", "B", "B", "A", "A", "A", "A", "B", "B", "B", "B", "A", "B", "A", "A", "B", "A", "A", "A", "A", "A", "A", "B", "B", "A", "A", "B", "A", "B", "A", "A", "A", "A", "B", "A", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "A", "B", "A", "A", "B", "A", "B", "B", "B", "B", "B", "B", "B", "A", "B", "B", "B", "B", "A", "B", "A", "A", "B", "B", "B", "A", "A", "A", "B", "A", "A", "A", "A", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "A", "A", "B", "A", "B", "A", "B", "B", "B", "A", "A", "A", "A", "B", "A", "B", "B", "A", "A", "A", "A", "A", "A", "B", "B", "A", "A", "B", "A", "A", "B", "B", "A", "B", "B", "B", "A", "B", "A", "A", "A", "B", "B", "A", "A", "B", "B", "B", "A", "A", "B", "B", "B", "A", "A", "A", "B", "A", "B", "A", "B", "B", "B", "B", "A", "B", "A", "B", "B", "A", "A", "A", "B", "B", "B", "A", "A", "B", "A", "A", "A", "B", "B", "B", "B", "B", "A", "A", "A", "B", "B", "B", "B", "A", "A", "B", "B", "A", "A", "A", "A", "A", "B", "A", "B", "A", "A", "B", "A", "A", "B", "A", "A", "B", "B", "B", "A", "A", "A", "B", "A", "A", "A", "A", "B", "B", "B", "B", "A", "A", "A", "B", "B", "B", "B", "A", "A", "B", "A", "A", "A", "A", "B", "A", "B", "A", "A", "B", "B", "A", "B", "A", "A", "A", "B", "B", "A", "A", "B", "B", "B", "B", "A", "A", "B", "A", "B", "B", "A", "A", "B", "B", "B", "A", "B", "B", "B", "B", "A", "A", "A", "A", "A", "B", "B", "A", "B", "B", "A", "B", "A", "B", "A", "A", "A", "A", "B", "B", "A", "B", "B", "A", "A", "B", "A") treatmentsUse2 <- c("B", "A", "A", "A", "A", "A", "B", "A", "B", "A", "B", "B", "A", "B", "A", "A", "B", "A", "B", "A", "A", "A", "A", "B", "A", "A", "C", "A", "A", "C", "A", "A", "A", "A", "A", "C", "C", "A", "A", "C", "C", "A", "C", "C", "A", "C", "C", "C", "A", "A", "C", "B", "A", "B", "A", "B", "B", "A", "A", "A", "A", "A", "B", "A", "A", "A", "A", "A", "B", "B", "A", "A", "A", "B", "A", "A", "B", "C", "C", "C", "C", "A", "A", "A", "C", "A", "C", "C", "A", "A", "A", "C", "C", "C", "C", "A", "A", "C", "C", "C", "A", "A", "A", "A", "A", "A", "A", "C", "C", "C", "C", "A", "C", "A", "A", "C", "A", "A", "A", "A", "A", "A", "C", "C", "A", "A", "C", "A", "C", "C", "C", "C", "C", "C", "C", "A", "C", "C", "C", "C", "A", "C", "A", "A", "C", "C", "C", "A", "A", "A", "C", "A", "A", "A", "A", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "A", "A", "B", "A", "B", "A", "B", "B", "B", "A", "A", "A", "A", "B", "A", "B", "A", "A", "A", "C", "A", "A", "A", "A", "C", "A", "A", "C", "C", "C", "C", "C", "A", "A", "C", "C", "A", "A", "A", "A", "C", "C", "B", "A", "A", "A", "A", "A", "A", "B", "B", "A", "A", "B", "A", "A", "B", "B", "A", "B", "B", "B", "A", "B", "A", "A", "A", "B", "B", "A", "A", "B", "B", "B", "A", "A", "B", "B", "B", "A", "A", "A", "B", "A", "B", "A", "B", "B", "B", "B", "A", "B", "A", "B", "C", "A", "A", "C", "C", "A", "A", "C", "C", "C", "A", "C", "A", "C", "A", "C", "C", "C", "C", "A", "C", "A", "C", "C", "C", "C", "A", "C", "A", "C", "A", "A", "A", "A", "A", "A", "C", "A", "A", "A", "A", "C", "C", "A", "C", "A", "C", "C", "C", "A", "A", "C", "B", "A", "A", "A", "B", "B", "B", "A", "A", "B", "A", "A", "A", "B", "B", "B", "B", "B", "A", "A", "A", "B", "B", "B", "B", "A", "A", "B", "B", "A", "A", "A", "A", "A", "B", "A", "B", "A", "A", "B", "A", "A", "B", "A", "A", "B", "B", "B", "A", "A", "A", "B", "A", "A", "A", "A", "B", "B", "B", "B", "A", "A", "A", "B", "B", "B", "B", "A", "A", "B", "A", "A", "A", "A", "B", "A", "B", "A", "A", "A", "A", "A", "C", "A", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "A", "C", "A", "A", "C", "A", "C", "A", "B", "B", "A", "B", "A", "A", "A", "B", "B", "A", "A", "B", "B", "B", "B", "A", "A", "B", "A", "B", "B", "A", "A", "B", "B", "C", "C", "A", "C", "A", "A", "C", "C", "C", "C", "A", "A", "C", "C", "C", "C", "C", "A", "C", "C", "A", "A", "C", "C", "C", "C", "B", "A", "B", "B", "B", "B", "A", "A", "A", "A", "A", "B", "B", "A", "B", "B", "A", "B", "A", "B", "A", "A", "A", "A", "B", "B", "A", "B", "B", "A", "A", "B", "A") treatmentsUse3 <- c("B", "A", "A", "A", "A", "A", "B", "A", "B", "A", "B", "B", "A", "B", "D", "A", "B", "A", "B", "A", "A", "A", "A", "B", "A", "A", "C", "A", "A", "C", "A", "A", "A", "A", "A", "C", "C", "A", "A", "C", "C", "A", "C", "C", "A", "C", "C", "C", "A", "A", "C", "B", "A", "B", "A", "B", "B", "A", "A", "A", "A", "A", "B", "A", "A", "A", "A", "A", "B", "B", "A", "A", "A", "B", "A", "A", "B", "C", "C", "C", "C", "A", "A", "A", "C", "A", "C", "C", "A", "A", "A", "C", "C", "C", "C", "A", "A", "C", "C", "C", "A", "A", "A", "A", "A", "A", "A", "C", "C", "C", "C", "A", "C", "A", "A", "C", "A", "A", "A", "A", "A", "A", "C", "C", "A", "A", "C", "A", "C", "C", "C", "C", "C", "C", "C", "A", "C", "C", "C", "C", "A", "C", "A", "A", "C", "C", "C", "A", "A", "A", "C", "A", "A", "A", "A", "D", "B", "B", "B", "B", "B", "B", "B", "B", "B", "A", "A", "B", "A", "B", "A", "B", "B", "B", "A", "A", "A", "A", "B", "A", "B", "A", "A", "A", "C", "A", "D", "A", "A", "C", "A", "A", "C", "C", "C", "C", "C", "A", "A", "C", "C", "A", "A", "A", "A", "C", "C", "B", "A", "A", "A", "A", "A", "A", "D", "B", "A", "A", "B", "A", "A", "B", "B", "A", "B", "B", "B", "A", "B", "A", "A", "A", "B", "B", "A", "A", "B", "B", "B", "A", "A", "B", "B", "B", "A", "A", "A", "B", "A", "B", "A", "B", "B", "B", "B", "A", "B", "A", "B", "C", "A", "A", "C", "C", "A", "A", "C", "C", "C", "A", "C", "A", "C", "A", "C", "C", "C", "C", "A", "C", "A", "C", "C", "C", "C", "A", "C", "A", "C", "A", "A", "A", "A", "A", "A", "C", "A", "A", "A", "A", "C", "C", "A", "C", "A", "C", "C", "C", "A", "A", "C", "B", "A", "A", "A", "B", "B", "B", "A", "A", "B", "A", "A", "A", "B", "B", "B", "B", "B", "A", "A", "A", "B", "B", "B", "B", "A", "A", "B", "B", "A", "A", "A", "A", "A", "B", "A", "B", "A", "A", "B", "A", "A", "B", "A", "A", "B", "B", "B", "A", "A", "A", "B", "A", "A", "A", "A", "B", "B", "B", "B", "A", "A", "A", "B", "B", "B", "B", "D", "A", "B", "A", "A", "A", "A", "B", "A", "B", "A", "A", "A", "D", "A", "C", "A", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "A", "C", "A", "A", "C", "A", "C", "A", "B", "B", "A", "B", "A", "A", "A", "B", "B", "A", "A", "B", "B", "B", "B", "A", "A", "B", "A", "B", "B", "A", "A", "B", "B", "C", "C", "A", "C", "A", "A", "C", "C", "C", "C", "A", "A", "C", "C", "C", "C", "C", "A", "C", "C", "A", "A", "C", "C", "C", "C", "B", "A", "B", "B", "B", "B", "A", "A", "A", "A", "A", "B", "B", "A", "B", "B", "A", "B", "A", "B", "A", "A", "A", "A", "B", "B", "A", "B", "B", "A", "A", "B", "A") df <- data.frame(y = outcomes, x1 = raw_data[1:500], x2 = raw_data[501:1000], treat1 = treatmentsUse, treat2 = treatmentsUse2, treat3 = treatmentsUse3) df1 <- df[c("y", "x1", "x2", "treat1")] matching1 <- quickmatch(distances(df1[c("x1", "x2")]), df1$treat1) df1$tot_count <- match_count(as.integer(matching1)) df1$unit_weight <- NA df1$unit_weight[df1$treat1 == "A"] <- match_count(as.integer(matching1)[df1$treat1 == "A"]) df1$unit_weight[df1$treat1 == "B"] <- match_count(as.integer(matching1)[df1$treat1 == "B"]) df1$unit_weight <- df1$tot_count / (df1$unit_weight * 500) lm_res <- stats::lm(y ~ 0 + treat1, data = df1, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[2] - lm_res$coefficients[1], 0), ncol = 2, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0), ncol = 2, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B"), c("A", "B")) dimnames(control_variances) <- list(c("A", "B"), c("A", "B")) test_that("`lm_match` vanilla", { expect_silent(package_result <- lm_match(df1$y, df1$treat1, matching1)) expect_equal(package_result$effects, control_effects) expect_equal(package_result$effect_variances, control_variances) }) lm_res <- stats::lm(y ~ 0 + treat1 + x1 + x2, data = df1, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[2] - lm_res$coefficients[1], 0), ncol = 2, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0), ncol = 2, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B"), c("A", "B")) dimnames(control_variances) <- list(c("A", "B"), c("A", "B")) test_that("`lm_match` covariates", { expect_silent(package_result <- lm_match(df1$y, df1$treat1, matching1, df1[c("x1", "x2")])) expect_equal(package_result$effects, control_effects) expect_equal(package_result$effect_variances, control_variances) }) df1 <- df[c("y", "x1", "x2", "treat1")] matching1 <- quickmatch(distances(df1[c("x1", "x2")]), df1$treat1) target <- df1$treat1 == "B" df1$tot_count <- NA tmp_int_match <- as.integer(matching1) for (i in unique(tmp_int_match)) { df1$tot_count[tmp_int_match == i] <- sum(target[tmp_int_match == i]) } df1$unit_weight <- NA df1$unit_weight[df1$treat1 == "A"] <- match_count(as.integer(matching1)[df1$treat1 == "A"]) df1$unit_weight[df1$treat1 == "B"] <- match_count(as.integer(matching1)[df1$treat1 == "B"]) df1$unit_weight <- df1$tot_count / (df1$unit_weight * sum(target)) lm_res <- stats::lm(y ~ 0 + treat1, data = df1, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[2] - lm_res$coefficients[1], 0), ncol = 2, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0), ncol = 2, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B"), c("A", "B")) dimnames(control_variances) <- list(c("A", "B"), c("A", "B")) test_that("`lm_match` target", { expect_silent(package_result1 <- lm_match(df1$y, df1$treat1, matching1, target = "B")) expect_silent(package_result2 <- lm_match(df1$y, df1$treat1, matching1, target = target)) expect_silent(package_result3 <- lm_match(df1$y, df1$treat1, matching1, target = which(target))) expect_silent(package_result4 <- lm_match(df1$y, df1$treat1, matching1, target = rev(which(target)))) expect_equal(package_result1$effects, control_effects) expect_equal(package_result1$effect_variances, control_variances) expect_equal(package_result2$effects, control_effects) expect_equal(package_result2$effect_variances, control_variances) expect_equal(package_result3$effects, control_effects) expect_equal(package_result3$effect_variances, control_variances) expect_equal(package_result4$effects, control_effects) expect_equal(package_result4$effect_variances, control_variances) }) lm_res <- stats::lm(y ~ 0 + treat1 + x1 + x2, data = df1, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[2] - lm_res$coefficients[1], 0), ncol = 2, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0), ncol = 2, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B"), c("A", "B")) dimnames(control_variances) <- list(c("A", "B"), c("A", "B")) test_that("`lm_match` target + covariates", { expect_silent(package_result1 <- lm_match(df1$y, df1$treat1, matching1, df1[c("x1", "x2")], target = "B")) expect_silent(package_result2 <- lm_match(df1$y, df1$treat1, matching1, df1[c("x1", "x2")], target = target)) expect_silent(package_result3 <- lm_match(df1$y, df1$treat1, matching1, df1[c("x1", "x2")], target = which(target))) expect_silent(package_result4 <- lm_match(df1$y, df1$treat1, matching1, df1[c("x1", "x2")], target = rev(which(target)))) expect_equal(package_result1$effects, control_effects) expect_equal(package_result1$effect_variances, control_variances) expect_equal(package_result2$effects, control_effects) expect_equal(package_result2$effect_variances, control_variances) expect_equal(package_result3$effects, control_effects) expect_equal(package_result3$effect_variances, control_variances) expect_equal(package_result4$effects, control_effects) expect_equal(package_result4$effect_variances, control_variances) }) df2 <- df[c("y", "x1", "x2", "treat2")] matching2 <- quickmatch(distances(df2[c("x1", "x2")]), df2$treat2) df2$tot_count <- match_count(as.integer(matching2)) df2$unit_weight <- NA df2$unit_weight[df2$treat2 == "A"] <- match_count(as.integer(matching2)[df2$treat2 == "A"]) df2$unit_weight[df2$treat2 == "B"] <- match_count(as.integer(matching2)[df2$treat2 == "B"]) df2$unit_weight[df2$treat2 == "C"] <- match_count(as.integer(matching2)[df2$treat2 == "C"]) df2$unit_weight <- df2$tot_count / (df2$unit_weight * 500) lm_res <- stats::lm(y ~ 0 + treat2, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[1] - lm_res$coefficients[3], lm_res$coefficients[2] - lm_res$coefficients[1], 0, lm_res$coefficients[2] - lm_res$coefficients[3], lm_res$coefficients[3] - lm_res$coefficients[1], lm_res$coefficients[3] - lm_res$coefficients[2], 0), ncol = 3, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], 0), ncol = 3, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C"), c("A", "B", "C")) dimnames(control_variances) <- list(c("A", "B", "C"), c("A", "B", "C")) test_that("`lm_match` three treatments", { expect_silent(package_result <- lm_match(df2$y, df2$treat2, matching2)) expect_equal(package_result$effects, control_effects) expect_equal(package_result$effect_variances, control_variances) }) lm_res <- stats::lm(y ~ 0 + treat2 + x1 + x2, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[1] - lm_res$coefficients[3], lm_res$coefficients[2] - lm_res$coefficients[1], 0, lm_res$coefficients[2] - lm_res$coefficients[3], lm_res$coefficients[3] - lm_res$coefficients[1], lm_res$coefficients[3] - lm_res$coefficients[2], 0), ncol = 3, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], 0), ncol = 3, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C"), c("A", "B", "C")) dimnames(control_variances) <- list(c("A", "B", "C"), c("A", "B", "C")) test_that("`lm_match` three treatments + covariates", { expect_silent(package_result <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")])) expect_equal(package_result$effects, control_effects) expect_equal(package_result$effect_variances, control_variances) }) df2 <- df[c("y", "x1", "x2", "treat2")] matching2 <- quickmatch(distances(df2[c("x1", "x2")]), df2$treat2) target <- df2$treat2 == "B" df2$tot_count <- NA tmp_int_match <- as.integer(matching2) for (i in unique(tmp_int_match)) { df2$tot_count[tmp_int_match == i] <- sum(target[tmp_int_match == i]) } df2$unit_weight <- NA df2$unit_weight[df2$treat2 == "A"] <- match_count(as.integer(matching2)[df2$treat2 == "A"]) df2$unit_weight[df2$treat2 == "B"] <- match_count(as.integer(matching2)[df2$treat2 == "B"]) df2$unit_weight[df2$treat2 == "C"] <- match_count(as.integer(matching2)[df2$treat2 == "C"]) df2$unit_weight <- df2$tot_count / (df2$unit_weight * sum(target)) lm_res <- stats::lm(y ~ 0 + treat2, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[1] - lm_res$coefficients[3], lm_res$coefficients[2] - lm_res$coefficients[1], 0, lm_res$coefficients[2] - lm_res$coefficients[3], lm_res$coefficients[3] - lm_res$coefficients[1], lm_res$coefficients[3] - lm_res$coefficients[2], 0), ncol = 3, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], 0), ncol = 3, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C"), c("A", "B", "C")) dimnames(control_variances) <- list(c("A", "B", "C"), c("A", "B", "C")) test_that("`lm_match` three treatments + target", { expect_silent(package_result1 <- lm_match(df2$y, df2$treat2, matching2, target = "B")) expect_silent(package_result2 <- lm_match(df2$y, df2$treat2, matching2, target = target)) expect_silent(package_result3 <- lm_match(df2$y, df2$treat2, matching2, target = which(target))) expect_silent(package_result4 <- lm_match(df2$y, df2$treat2, matching2, target = rev(which(target)))) expect_equal(package_result1$effects, control_effects) expect_equal(package_result1$effect_variances, control_variances) expect_equal(package_result2$effects, control_effects) expect_equal(package_result2$effect_variances, control_variances) expect_equal(package_result3$effects, control_effects) expect_equal(package_result3$effect_variances, control_variances) expect_equal(package_result4$effects, control_effects) expect_equal(package_result4$effect_variances, control_variances) }) lm_res <- stats::lm(y ~ 0 + treat2 + x1 + x2, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[1] - lm_res$coefficients[3], lm_res$coefficients[2] - lm_res$coefficients[1], 0, lm_res$coefficients[2] - lm_res$coefficients[3], lm_res$coefficients[3] - lm_res$coefficients[1], lm_res$coefficients[3] - lm_res$coefficients[2], 0), ncol = 3, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], 0), ncol = 3, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C"), c("A", "B", "C")) dimnames(control_variances) <- list(c("A", "B", "C"), c("A", "B", "C")) test_that("`lm_match` three treatments + covariates + target", { expect_silent(package_result1 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = "B")) expect_silent(package_result2 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = target)) expect_silent(package_result3 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = which(target))) expect_silent(package_result4 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = rev(which(target)))) expect_equal(package_result1$effects, control_effects) expect_equal(package_result1$effect_variances, control_variances) expect_equal(package_result2$effects, control_effects) expect_equal(package_result2$effect_variances, control_variances) expect_equal(package_result3$effects, control_effects) expect_equal(package_result3$effect_variances, control_variances) expect_equal(package_result4$effects, control_effects) expect_equal(package_result4$effect_variances, control_variances) }) df2 <- df[c("y", "x1", "x2", "treat2")] matching2 <- quickmatch(distances(df2[c("x1", "x2")]), df2$treat2, target = "B") target <- df2$treat2 == "B" df2$tot_count <- NA tmp_int_match <- as.integer(matching2) for (i in unique(tmp_int_match)) { df2$tot_count[tmp_int_match == i] <- sum(target[tmp_int_match == i], na.rm = TRUE) } df2$unit_weight <- NA df2$unit_weight[df2$treat2 == "A"] <- match_count(as.integer(matching2)[df2$treat2 == "A"]) df2$unit_weight[df2$treat2 == "B"] <- match_count(as.integer(matching2)[df2$treat2 == "B"]) df2$unit_weight[df2$treat2 == "C"] <- match_count(as.integer(matching2)[df2$treat2 == "C"]) df2$unit_weight <- df2$tot_count / (df2$unit_weight * sum(target)) lm_res <- stats::lm(y ~ 0 + treat2, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[1] - lm_res$coefficients[3], lm_res$coefficients[2] - lm_res$coefficients[1], 0, lm_res$coefficients[2] - lm_res$coefficients[3], lm_res$coefficients[3] - lm_res$coefficients[1], lm_res$coefficients[3] - lm_res$coefficients[2], 0), ncol = 3, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], 0), ncol = 3, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C"), c("A", "B", "C")) dimnames(control_variances) <- list(c("A", "B", "C"), c("A", "B", "C")) test_that("`lm_match` three treatments + target", { expect_silent(package_result1 <- lm_match(df2$y, df2$treat2, matching2, target = "B")) expect_silent(package_result2 <- lm_match(df2$y, df2$treat2, matching2, target = target)) expect_silent(package_result3 <- lm_match(df2$y, df2$treat2, matching2, target = which(target))) expect_silent(package_result4 <- lm_match(df2$y, df2$treat2, matching2, target = rev(which(target)))) expect_equal(package_result1$effects, control_effects) expect_equal(package_result1$effect_variances, control_variances) expect_equal(package_result2$effects, control_effects) expect_equal(package_result2$effect_variances, control_variances) expect_equal(package_result3$effects, control_effects) expect_equal(package_result3$effect_variances, control_variances) expect_equal(package_result4$effects, control_effects) expect_equal(package_result4$effect_variances, control_variances) }) lm_res <- stats::lm(y ~ 0 + treat2 + x1 + x2, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[1] - lm_res$coefficients[3], lm_res$coefficients[2] - lm_res$coefficients[1], 0, lm_res$coefficients[2] - lm_res$coefficients[3], lm_res$coefficients[3] - lm_res$coefficients[1], lm_res$coefficients[3] - lm_res$coefficients[2], 0), ncol = 3, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], 0), ncol = 3, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C"), c("A", "B", "C")) dimnames(control_variances) <- list(c("A", "B", "C"), c("A", "B", "C")) test_that("`lm_match` three treatments + covariates + target", { expect_silent(package_result1 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = "B")) expect_silent(package_result2 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = target)) expect_silent(package_result3 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = which(target))) expect_silent(package_result4 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = rev(which(target)))) expect_equal(package_result1$effects, control_effects) expect_equal(package_result1$effect_variances, control_variances) expect_equal(package_result2$effects, control_effects) expect_equal(package_result2$effect_variances, control_variances) expect_equal(package_result3$effects, control_effects) expect_equal(package_result3$effect_variances, control_variances) expect_equal(package_result4$effects, control_effects) expect_equal(package_result4$effect_variances, control_variances) }) df2 <- df[c("y", "x1", "x2", "treat2")] matching2 <- quickmatch(distances(df2[c("x1", "x2")]), df2$treat2, target = "B", secondary_unassigned_method = "ignore") target <- df2$treat2 == "B" df2$tot_count <- NA tmp_int_match <- as.integer(matching2) for (i in unique(tmp_int_match)) { df2$tot_count[tmp_int_match == i] <- sum(target[tmp_int_match == i], na.rm = TRUE) } df2$unit_weight <- NA df2$unit_weight[df2$treat2 == "A"] <- match_count(as.integer(matching2)[df2$treat2 == "A"]) df2$unit_weight[df2$treat2 == "B"] <- match_count(as.integer(matching2)[df2$treat2 == "B"]) df2$unit_weight[df2$treat2 == "C"] <- match_count(as.integer(matching2)[df2$treat2 == "C"]) df2$unit_weight <- df2$tot_count / (df2$unit_weight * sum(target)) lm_res <- stats::lm(y ~ 0 + treat2, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[1] - lm_res$coefficients[3], lm_res$coefficients[2] - lm_res$coefficients[1], 0, lm_res$coefficients[2] - lm_res$coefficients[3], lm_res$coefficients[3] - lm_res$coefficients[1], lm_res$coefficients[3] - lm_res$coefficients[2], 0), ncol = 3, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], 0), ncol = 3, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C"), c("A", "B", "C")) dimnames(control_variances) <- list(c("A", "B", "C"), c("A", "B", "C")) test_that("`lm_match` three treatments + target", { expect_silent(package_result1 <- lm_match(df2$y, df2$treat2, matching2, target = "B")) expect_silent(package_result2 <- lm_match(df2$y, df2$treat2, matching2, target = target)) expect_silent(package_result3 <- lm_match(df2$y, df2$treat2, matching2, target = which(target))) expect_silent(package_result4 <- lm_match(df2$y, df2$treat2, matching2, target = rev(which(target)))) expect_equal(package_result1$effects, control_effects) expect_equal(package_result1$effect_variances, control_variances) expect_equal(package_result2$effects, control_effects) expect_equal(package_result2$effect_variances, control_variances) expect_equal(package_result3$effects, control_effects) expect_equal(package_result3$effect_variances, control_variances) expect_equal(package_result4$effects, control_effects) expect_equal(package_result4$effect_variances, control_variances) }) lm_res <- stats::lm(y ~ 0 + treat2 + x1 + x2, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], lm_res$coefficients[1] - lm_res$coefficients[3], lm_res$coefficients[2] - lm_res$coefficients[1], 0, lm_res$coefficients[2] - lm_res$coefficients[3], lm_res$coefficients[3] - lm_res$coefficients[1], lm_res$coefficients[3] - lm_res$coefficients[2], 0), ncol = 3, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], coef_var[1,1] + coef_var[3,3] - 2 * coef_var[1,3], coef_var[2,2] + coef_var[3,3] - 2 * coef_var[2,3], 0), ncol = 3, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C"), c("A", "B", "C")) dimnames(control_variances) <- list(c("A", "B", "C"), c("A", "B", "C")) test_that("`lm_match` three treatments + covariates + target", { expect_silent(package_result1 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = "B")) expect_silent(package_result2 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = target)) expect_silent(package_result3 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = which(target))) expect_silent(package_result4 <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")], target = rev(which(target)))) expect_equal(package_result1$effects, control_effects) expect_equal(package_result1$effect_variances, control_variances) expect_equal(package_result2$effects, control_effects) expect_equal(package_result2$effect_variances, control_variances) expect_equal(package_result3$effects, control_effects) expect_equal(package_result3$effect_variances, control_variances) expect_equal(package_result4$effects, control_effects) expect_equal(package_result4$effect_variances, control_variances) }) df2 <- df[c("y", "x1", "x2", "treat2")] matching2 <- quickmatch(distances(df2[c("x1", "x2")]), df2$treat2, treatment_constraints = c("A" = 1L, "B" = 1L)) df2$tot_count <- match_count(as.integer(matching2)) df2$unit_weight <- NA df2$unit_weight[df2$treat2 == "A"] <- match_count(as.integer(matching2)[df2$treat2 == "A"]) df2$unit_weight[df2$treat2 == "B"] <- match_count(as.integer(matching2)[df2$treat2 == "B"]) df2$unit_weight[df2$treat2 == "C"] <- NA df2$unit_weight <- df2$tot_count / (df2$unit_weight * 500) lm_res <- stats::lm(y ~ 0 + treat2, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], NA, lm_res$coefficients[2] - lm_res$coefficients[1], 0, NA, NA, NA, NA), ncol = 3, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], NA, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, NA, NA, NA, NA), ncol = 3, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C"), c("A", "B", "C")) dimnames(control_variances) <- list(c("A", "B", "C"), c("A", "B", "C")) test_that("`lm_match` three treatments + missing treatment in matched group", { expect_warning(package_result <- lm_match(df2$y, df2$treat2, matching2)) expect_equal(package_result$effects, control_effects) expect_equal(package_result$effect_variances, control_variances) }) lm_res <- stats::lm(y ~ 0 + treat2 + x1 + x2, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(0, lm_res$coefficients[1] - lm_res$coefficients[2], NA, lm_res$coefficients[2] - lm_res$coefficients[1], 0, NA, NA, NA, NA), ncol = 3, byrow = TRUE) control_variances <- matrix(c(0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], NA, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, NA, NA, NA, NA), ncol = 3, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C"), c("A", "B", "C")) dimnames(control_variances) <- list(c("A", "B", "C"), c("A", "B", "C")) test_that("`lm_match` three treatments + missing treatment + covariates", { expect_warning(package_result <- lm_match(df2$y, df2$treat2, matching2, df2[c("x1", "x2")])) expect_equal(package_result$effects, control_effects) expect_equal(package_result$effect_variances, control_variances) }) df2 <- df[c("y", "x1", "x2", "treat3")] matching2 <- quickmatch(distances(df2[c("x1", "x2")]), df2$treat3, treatment_constraints = c("B" = 1L, "C" = 1L)) df2$tot_count <- match_count(as.integer(matching2)) df2$unit_weight <- NA df2$unit_weight[df2$treat3 == "A"] <- NA df2$unit_weight[df2$treat3 == "B"] <- match_count(as.integer(matching2)[df2$treat3 == "B"]) df2$unit_weight[df2$treat3 == "C"] <- match_count(as.integer(matching2)[df2$treat3 == "C"]) df2$unit_weight[df2$treat3 == "D"] <- NA df2$unit_weight <- df2$tot_count / (df2$unit_weight * 500) lm_res <- stats::lm(y ~ 0 + treat3, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(NA, NA, NA, NA, NA, 0, lm_res$coefficients[1] - lm_res$coefficients[2], NA, NA, lm_res$coefficients[2] - lm_res$coefficients[1], 0, NA, NA, NA, NA, NA), ncol = 4, byrow = TRUE) control_variances <- matrix(c(NA, NA, NA, NA, NA, 0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], NA, NA, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, NA, NA, NA, NA, NA), ncol = 4, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C", "D"), c("A", "B", "C", "D")) dimnames(control_variances) <- list(c("A", "B", "C", "D"), c("A", "B", "C", "D")) test_that("`lm_match` four treatments + missing treatment in matched group", { expect_warning(package_result <- lm_match(df2$y, df2$treat3, matching2)) expect_equal(package_result$effects, control_effects) expect_equal(package_result$effect_variances, control_variances) }) lm_res <- stats::lm(y ~ 0 + treat3 + x1 + x2, data = df2, weights = unit_weight) coef_var <- sandwich::vcovHC(lm_res, type = "HC1") control_effects <- matrix(c(NA, NA, NA, NA, NA, 0, lm_res$coefficients[1] - lm_res$coefficients[2], NA, NA, lm_res$coefficients[2] - lm_res$coefficients[1], 0, NA, NA, NA, NA, NA), ncol = 4, byrow = TRUE) control_variances <- matrix(c(NA, NA, NA, NA, NA, 0, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], NA, NA, coef_var[1,1] + coef_var[2,2] - 2 * coef_var[1,2], 0, NA, NA, NA, NA, NA), ncol = 4, byrow = TRUE) dimnames(control_effects) <- list(c("A", "B", "C", "D"), c("A", "B", "C", "D")) dimnames(control_variances) <- list(c("A", "B", "C", "D"), c("A", "B", "C", "D")) test_that("`lm_match` four treatments + missing treatment + covariates", { expect_warning(package_result <- lm_match(df2$y, df2$treat3, matching2, df2[c("x1", "x2")])) expect_equal(package_result$effects, control_effects) expect_equal(package_result$effect_variances, control_variances) })
source("ESEUR_config.r") le=read.csv(paste0(ESEUR_dir, "economics/msr2018b_evol.csv.xz"), as.is=TRUE) npm=subset(le, Network == "NPM") npm$Network=NULL rownames(npm)=npm$From.To npm$From.To=NULL rs=rowSums(npm) le_perc=t(sapply(1:nrow(npm), function(X) 100*npm[X, ]/rs[X])) rownames(le_perc)=colnames(le_perc)
"sign.boot" <- function(x, i, p1=0.2, p2=0.8) { x <- x[i] n <- length(x) Nplus <- sum(x > 0) Nzero <- sum(x == 0) Nminus <- n - Nplus - Nzero if(sum(Nzero) > 0) cat("WARNING:", sum(Nzero), "ties occurred.\n") S1 <- qbinom(0.95, n, p1) S2 <- qbinom(0.05, n, p2) result <- sum(Nplus >= S1 & Nplus <= S2) }
context("Check ms_update_observations() function") source("test_objects.R") if (requireNamespace("ranger", quietly=TRUE)) { ms <- modelStudio::modelStudio(explain_rf, apartments[1:2,], N = 5, B = 2, show_info = v) testthat::test_that("modelStudio class", { testthat::expect_is(ms, "modelStudio") testthat::expect_silent(ms) }) testthat::test_that("ms_update_observations", { testthat::expect_silent(new_ms1 <- modelStudio::ms_update_observations(ms, explain_rf, B = 2, show_info = v)) testthat::expect_is(new_ms1, "modelStudio") testthat::expect_silent(new_ms2 <- modelStudio::ms_update_observations(ms, explain_rf, B = 2, show_info = v, new_observation = apartments[100:101,], overwrite = FALSE)) testthat::expect_is(new_ms2, "modelStudio") testthat::expect_silent(new_ms3 <- modelStudio::ms_update_observations(ms, explain_rf, B = 2, show_info = v, new_observation = apartments[1:2,], overwrite = TRUE)) testthat::expect_is(new_ms3, "modelStudio") testthat::test_that("ms_merge_observations", { testthat::expect_silent(merged_ms <- ms_merge_observations(new_ms1, new_ms2, new_ms3)) testthat::expect_is(merged_ms, "modelStudio") }) }) }
library(tidyverse) sza <- readr::read_csv(file = "data-raw/sza.csv") %>% dplyr::mutate(month = factor( month, levels = c( "jan", "feb", "mar", "apr", "may", "jun", "jul", "aug", "sep", "oct", "nov", "dec")) )
imNine <- function(items){ if(missing(items)){ stop("Please include x number of items to generate") } if(items > 15){ stop("Please select less than 16 items.") } fib <- matrix(c(1,1), ncol=1) x <- NULL for (i in 1:18) { x[i] <- c(fib[i,1] + fib[(i+1),1]) fib <- rbind(fib, x[i]) } vector.fib <- fib[ ,1] bank_fib <- matrix(ncol=6) colnames(bank_fib) <- colnames(bank_fib, do.NULL = FALSE, prefix = "Q") colnames(bank_fib)[6] <- "A" for (i in 1:items) { item <- c(vector.fib[i:(i+5)]) bank_fib <- rbind(bank_fib, item) bank_fib <- na.omit(bank_fib) } return(bank_fib) }
get_estimates_naive <- function(Y1 = NULL, Y2 = NULL, predictors_Y1 = NULL, predictors_Y2 = NULL, copula_param = "both") { if (is.null(Y1) | is.null(Y2)) { stop("Both Y1 and Y2 have to be supplied.") } dataframe_Y1 <- data.frame(Y1 = Y1) dataframe_Y2 <- data.frame(Y2 = Y2) n_ind <- dim(dataframe_Y1)[1] if ((!class(predictors_Y1) == "data.frame" & !is.null(predictors_Y1)) | (!class(predictors_Y2) == "data.frame" & !is.null(predictors_Y2))) { stop("predictors_Y1 and predictors_Y2 have to be a dataframe or NULL.") } if (class(predictors_Y1) == "data.frame") { if (!all(sapply(predictors_Y1, is.numeric))) { predictors_Y1 <- as.data.frame(data.matrix(predictors_Y1)) warning("predictors_Y1 contains non-numeric Variables, which have automatically been transformed.") } } if (class(predictors_Y2) == "data.frame") { if (!all(sapply(predictors_Y2, is.numeric))) { predictors_Y2 <- as.data.frame(data.matrix(predictors_Y2)) warning("predictors_Y2 contains non-numeric Variables, which have automatically been transformed.") } } if (!is.null(predictors_Y1)) { predictors_Y1 <- data.frame(predictors_Y1) } if (!is.null(predictors_Y2)) { predictors_Y2 <- data.frame(predictors_Y2) } if (!n_ind == dim(dataframe_Y2)[1]) { stop("Variables must have same length.") } if (!is.null(predictors_Y1)) { if (!n_ind == dim(predictors_Y1)[1]) { stop("Variables must have same length.") } } if (!is.null(predictors_Y2)) { if (!n_ind == dim(predictors_Y2)[1]) { stop("Variables must have same length.") } } if (!is.null(predictors_Y1)) { dataframe_Y1 <- cbind(dataframe_Y1, predictors_Y1) } if (!is.null(predictors_Y2)) { dataframe_Y2 <- cbind(dataframe_Y2, predictors_Y2) } res_Y1 <- stats::lm(Y1 ~ ., data = dataframe_Y1) res_Y2 <- stats::lm(Y2 ~ ., data = dataframe_Y2) param_Y1_sigma <- log(stats::sd(res_Y1$residuals, na.rm = T)) names(param_Y1_sigma) <- "Y1_log_sigma" param_Y2_sigma <- log(stats::sd(res_Y2$residuals, na.rm = T)) names(param_Y2_sigma) <- "Y2_log_sigma" tau <- stats::cor(Y1, Y2, use = "complete.obs", method = c("kendall")) if (tau == 0) { tau <- 1e-04 } log_phi <- log(2 * tau/(1 - tau)) log_theta <- log((1/(1 - tau)) - 1) param_Y1_Y2 <- c(log_phi, log_theta) names(param_Y1_Y2) <- c("log_phi", "log_theta_minus1") if (copula_param == "phi") { param_Y1_Y2 <- param_Y1_Y2[1] } if (copula_param == "theta") { param_Y1_Y2 <- param_Y1_Y2[2] } param_Y1_predictors <- res_Y1$coefficients names(param_Y1_predictors) <- paste("Y1_", names(param_Y1_predictors), sep = "") param_Y2_predictors <- res_Y2$coefficients names(param_Y2_predictors) <- paste("Y2_", names(param_Y2_predictors), sep = "") if (any(is.na(param_Y1_Y2))) { warning("One or both dependence parameters could not be estimated.") } if (any(is.na(param_Y1_sigma)) | any(is.na(param_Y2_sigma))) { warning("One or both marginal variances could not be estimated.") } if (any(is.na(param_Y1_predictors)) | any(is.na(param_Y2_predictors))) { warning("One or more marginal parameters could not be estimated.") } estimates <- c(param_Y1_Y2, param_Y1_sigma, param_Y2_sigma, param_Y1_predictors, param_Y2_predictors) return(estimates) }
"lL.gaussian" <- function(params){ sigma <- params[p] mu <- c(X %*% params[-p]) -sum(log(pnorm(qb, mu, sigma) - pnorm(qa, mu, sigma))) }
fit_members <- function(model_stack, ...) { check_model_stack(model_stack) dat <- model_stack[["train"]] member_names <- .get_glmn_coefs( model_stack[["coefs"]][["fit"]], model_stack[["coefs"]][["spec"]][["args"]][["penalty"]] ) %>% dplyr::filter(estimate != 0 & terms != "(Intercept)") %>% dplyr::pull(terms) if (model_stack[["mode"]] == "classification") { member_dict <- sanitize_classification_names(model_stack, member_names) member_names <- member_dict$new %>% unique() } metrics_dict <- tibble::enframe(model_stack[["model_metrics"]]) %>% tidyr::unnest(cols = value) %>% dplyr::mutate(.config = process_.config(.config, ., name = make.names(name))) if (model_stack[["mode"]] == "regression") { members_map <- tibble::enframe(model_stack[["cols_map"]]) %>% tidyr::unnest(cols = value) %>% dplyr::full_join(metrics_dict, by = c("value" = ".config")) } else { members_map <- tibble::enframe(model_stack[["cols_map"]]) %>% tidyr::unnest(cols = value) %>% dplyr::full_join(member_dict, by = c("value" = "old")) %>% dplyr::filter(!is.na(new)) %>% dplyr::select(name, value = new) %>% dplyr::filter(!duplicated(.$value)) %>% dplyr::full_join(metrics_dict, by = c("value" = ".config")) } if (foreach::getDoParWorkers() > 1) { `%do_op%` <- foreach::`%dopar%` } else { `%do_op%` <- foreach::`%do%` } member_fits <- foreach::foreach(mem = member_names, .inorder = FALSE) %do_op% { asNamespace("stacks")$fit_member( name = mem, wflows = model_stack[["model_defs"]], members_map = members_map, train_dat = dat ) } model_stack[["member_fits"]] <- setNames(member_fits, member_names) if (model_stack_constr(model_stack)) {model_stack} } fit_member <- function(name, wflows, members_map, train_dat) { member_row <- members_map %>% dplyr::filter(value == name) member_params <- wflows[[member_row$name.x[1]]] %>% dials::parameters() %>% dplyr::pull(id) needs_finalizing <- length(member_params) != 0 if (needs_finalizing) { member_metrics <- members_map %>% dplyr::filter(value == name) %>% dplyr::slice(1) member_wf <- wflows[[member_metrics$name.x]] new_member <- tune::finalize_workflow(member_wf, member_metrics[,member_params]) %>% generics::fit(data = train_dat) } else { member_model <- members_map %>% dplyr::filter(value == name) %>% dplyr::select(name.x) %>% dplyr::pull() new_member <- generics::fit(wflows[[member_model[1]]], data = train_dat) } new_member } sanitize_classification_names <- function(model_stack, member_names) { outcome_levels <- model_stack[["train"]] %>% dplyr::select(!!.get_outcome(model_stack)) %>% dplyr::pull() %>% as.character() %>% unique() pred_strings <- paste0(".pred_", outcome_levels, "_") %>% make.names() new_member_names <- gsub( pattern = paste0(pred_strings, collapse = "|"), x = member_names, replacement = "" ) tibble::tibble( old = member_names, new = new_member_names ) } check_model_stack <- function(model_stack) { if (inherits(model_stack, "model_stack")) { if (!is.null(model_stack[["member_fits"]])) { glue_warn( "The members in the supplied `model_stack` have already been fitted ", "and need not be fitted again." ) } return(invisible(TRUE)) } else if (inherits(model_stack, "data_stack")) { glue_stop( "The supplied `model_stack` argument is a data stack rather than ", "a model stack. Did you forget to first evaluate the ensemble's ", "stacking coefficients with `blend_predictions()`?" ) } else { check_inherits(model_stack, "model_stack") } }
library(ggplot2) library(ggiraph) df <- expand.grid(x = 1:10, y=1:10) df$angle <- runif(100, 0, 2*pi) df$speed <- runif(100, 0, sqrt(0.1 * df$x)) p <- ggplot(df, aes(x, y)) + geom_point() + geom_spoke_interactive(aes(angle = angle, tooltip=round(angle, 2)), radius = 0.5) x <- girafe(ggobj = p) if( interactive() ) print(x) p2 <- ggplot(df, aes(x, y)) + geom_point() + geom_spoke_interactive(aes(angle = angle, radius = speed, tooltip=paste(round(angle, 2), round(speed, 2), sep="\n"))) x2 <- girafe(ggobj = p2) if( interactive() ) print(x2)
setClass("madness", representation(val="array", dvdx="matrix", xtag="character", vtag="character", varx="matrix"), prototype(val=matrix(nrow=0,ncol=0), dvdx=matrix(nrow=0,ncol=0), xtag=NA_character_, vtag=NA_character_, varx=matrix(nrow=0,ncol=0)), validity=function(object) { if (length(object@val) != dim(object@dvdx)[1]) { return("bad dimensionality or derivative not in numerator layout.") } if (dim(object@varx)[1] != dim(object@varx)[2]) { return("must give empty or square varx variance covariance.") } if ((dim(object@varx)[1] != 0) && (dim(object@varx)[1] != dim(object@dvdx)[2])) { return("must give empty or conformable varx variance covariance.") } return(TRUE) } ) setMethod('initialize', signature('madness'), function(.Object,val,dvdx,xtag=NA_character_,vtag=NA_character_,varx=matrix(nrow=0,ncol=0)) { if (length(val) != dim(dvdx)[1]) { stop("bad dimensionality or derivative not in numerator layout.") } if (dim(varx)[1] != dim(varx)[2]) { stop("must give empty or square varx variance covariance.") } if ((dim(varx)[1] != 0) && (dim(varx)[1] != dim(dvdx)[2])) { stop("must give empty or conformable varx variance covariance.") } if (is.null(dim(val))) { if (length(val) > 1) { warning('no dimension given, turning val into a column') } dim(val) <- c(length(val),1) } .Object@val <- val .Object@dvdx <- dvdx .Object@xtag <- xtag .Object@vtag <- vtag .Object@varx <- varx .Object }) madness <- function(val,dvdx=NULL,vtag=NULL,xtag=NULL,varx=NULL) { if (missing(vtag)) { vtag <- deparse(substitute(val)) } if (missing(dvdx) || is.null(dvdx)) { dvdx <- diag(1,nrow=length(val)) if (missing(xtag)) { xtag <- vtag } } else if (missing(xtag)) { xtag <- 'x' } if (is.null(dim(val))) { if (length(val) > 1) { warning('no dimension given, turning val into a column') } dim(val) <- c(length(val),1) } if (is.null(dim(dvdx))) { if (length(dvdx) > length(val)) { warning('no dimension given, turning independent variable into a column') } taild <- length(dvdx) / length(val) dim(dvdx) <- c(length(val),taild) } if (is.null(varx)) { varx <- matrix(nrow=0,ncol=0) } retv <- new("madness", val=val, dvdx=dvdx, xtag=xtag, vtag=vtag, varx=varx) invisible(retv) } as.madness <- function(x, vtag=NULL, xtag=NULL) { UseMethod("as.madness", x) } as.madness.default <- function(x, vtag=NULL, xtag=NULL) { if (missing(vtag)) { vtag <- deparse(substitute(val)) } if (missing(xtag)) { xtag <- vtag } val <- coef(x) if (is.null(dim(val))) { dim(val) <- c(length(val),1) } varx <- tryCatch({ vcov(x) },error = function(e) { NULL }) invisible(madness(val,xtag=xtag,vtag=vtag,varx=varx)) } setGeneric('val', signature="x", function(x) standardGeneric('val')) setMethod('val', 'madness', function(x) x@val ) setMethod('dim', 'madness', function(x) dim(val(x)) ) setMethod('length', 'madness', function(x) length(val(x)) ) setGeneric('dvdx', signature="x", function(x) standardGeneric('dvdx')) setMethod('dvdx', 'madness', function(x) x@dvdx ) setGeneric('xtag', signature="x", function(x) standardGeneric('xtag')) setMethod('xtag', 'madness', function(x) x@xtag ) setGeneric('vtag', signature="x", function(x) standardGeneric('vtag')) setMethod('vtag', 'madness', function(x) x@vtag ) setGeneric('varx', signature="x", function(x) standardGeneric('varx')) setMethod('varx', 'madness', function(x) x@varx ) setGeneric('xtag<-', signature="x", function(x,value) standardGeneric('xtag<-')) setReplaceMethod('xtag', 'madness', function(x,value) initialize(x, val=x@val, dvdx=x@dvdx, xtag=value, vtag=x@vtag, varx=x@varx)) setGeneric('vtag<-', signature="x", function(x,value) standardGeneric('vtag<-')) setReplaceMethod('vtag', 'madness', function(x,value) initialize(x, val=x@val, dvdx=x@dvdx, xtag=x@xtag, vtag=value, varx=x@varx)) setGeneric('varx<-', signature="x", function(x,value) standardGeneric('varx<-')) setReplaceMethod('varx', 'madness', function(x,value) initialize(x, val=x@val, dvdx=x@dvdx, xtag=x@xtag, vtag=x@xtag, varx=value)) NULL setMethod('show', signature('madness'), function(object) { rchar <- function(achr,alen) { paste0(rep(achr,ceiling(alen)),collapse='') } cat('class:', class(object), '\n') xlen <- nchar(object@xtag) + 4 ylen <- nchar(object@vtag) + 4 mlen <- max(xlen,ylen) repr <- sprintf(paste0(' %',ceiling((mlen + ylen)/2),'s\n', ' calc: ',rchar('-',mlen), ' \n', ' %',ceiling((mlen + xlen)/2),'s\n'), paste0(rchar(' ',(mlen-ylen)/2),'d ',object@vtag), paste0(rchar(' ',(mlen-xlen)/2),'d ',object@xtag)) cat(repr) cat(' val:', head(object@val,1L), '...\n') cat(' dvdx:', head(object@dvdx,1L), '...\n') cat(' varx:', head(object@varx,1L), '...\n') })
lexicon <- function(lexicon){ check_lexicon_name(lexicon) get(paste0("lexicon_", lexicon)) }
library(shiny.fluent) if (interactive()) { shinyApp( ui = TooltipHost( content = "This is the tooltip content", delay = 0, Text("Hover over me") ), server = function(input, output) {} ) }
CrinsEtAl2014 <- data.frame("publication"=c("Spada (2006)", "Ganschow (2005)", "Gibelli (2004)", "Heffron (2003)", "Schuller (2005)", "Gras (2008)"), "year"=c(2006, 2005, 2004, 2003, 2005, 2008), "randomized"=factor(c("yes","no")[c(1,2,2,1,2,2)], levels=c("yes","no","n.s.")), "control.type"=factor(c("concurrent","historical", "historical","concurrent", "concurrent","historical"), levels=c("concurrent","historical")), "comparison"=factor(c("IL-2RA only","delayed CNI","no/low steroids")[c(3,1,1,2,1,3)], levels=c("IL-2RA only","delayed CNI","no/low steroids")), "IL2RA"=factor(c("basiliximab","daclizumab")[c(1,1,1,2,2,1)]), "CNI"=factor(c("cyclosporine A","tacrolimus")[c(2,1,1,2,2,2)]), "MMF"=factor(c("yes","no")[c(2,2,2,1,1,2)], levels=c("yes","no")), "followup"=c(12,36,6,24,6,36), "exp.AR.events"=c(4,9,16,14,3,0), "exp.SRR.events"=c(NA,4,NA,2,NA,1), "exp.PTLD.events"=c(1,1,NA,NA,0,NA), "exp.deaths"=c(4,1,NA,4,NA,2), "exp.total"=c(36,54,28,61,18,50), "cont.AR.events"=c(11,29,19,15,8,3), "cont.SRR.events"=c(NA,6,NA,4,NA,4), "cont.PTLD.events"=c(1,0,NA,NA,0,NA), "cont.deaths"=c(3,3,NA,3,NA,3), "cont.total"=c(36,54,28,20,12,34), stringsAsFactors=FALSE)[c(4,3,5,2,1,6),] rownames(CrinsEtAl2014) <- as.character(1:6)
max_expo <- function(indiv, adrug){ expo_no <- cbind("indiv"=indiv, "adrug"=adrug) expo_no_unique <- data.frame(unique(expo_no)) no_of_expo <- table(expo_no_unique$indiv) max_no_of_expo <- max(no_of_expo) return(max_no_of_expo) }
generate_dot2 <- function(graph) { attr_type <- attr <- value <- string <- NULL nodes_df <- graph$nodes_df edges_df <- graph$edges_df directed <- graph$directed global_attrs <- graph$global_attrs if ("graph" %in% global_attrs$attr_type) { graph_attrs <- global_attrs %>% dplyr::filter(attr_type == "graph") %>% dplyr::mutate(string = paste0(attr, " = '", value, "'")) graph_attrs <- graph_attrs %>% dplyr::pull(string) } else { graph_attrs <- NA } if ("node" %in% global_attrs$attr_type) { node_attrs <- global_attrs %>% dplyr::filter(attr_type == "node") %>% dplyr::mutate(string = paste0(attr, " = '", value, "'")) node_attrs <- node_attrs %>% dplyr::pull(string) for (i in 1:nrow(global_attrs %>% dplyr::filter(attr_type == "node"))) { node_attr_to_set <- (global_attrs %>% dplyr::filter(attr_type == "node"))[i, 1] if (node_attr_to_set %in% colnames(nodes_df)) { col_num <- which(colnames(nodes_df) == node_attr_to_set) nodes_df[which(is.na(nodes_df[, col_num])), col_num] <- (global_attrs %>% dplyr::filter(attr_type == "node"))[i, 2] } } } else { node_attrs <- NA } if ("edge" %in% global_attrs$attr_type) { edge_attrs <- global_attrs %>% dplyr::filter(attr_type == "edge") %>% dplyr::mutate(string = paste0(attr, " = '", value, "'")) edge_attrs <- edge_attrs %>% dplyr::pull(string) for (i in 1:nrow(global_attrs %>% dplyr::filter(attr_type == "edge"))) { edge_attr_to_set <- (global_attrs %>% dplyr::filter(attr_type == "edge"))[i, 1] if (edge_attr_to_set %in% colnames(edges_df)) { col_num <- which(colnames(edges_df) == edge_attr_to_set) edges_df[which(is.na(edges_df[, col_num])), col_num] <- (global_attrs %>% dplyr::filter(attr_type == "edge"))[i, 2] } } } else { edge_attrs <- NA } if (!is.null(nodes_df)) { if (ncol(nodes_df) >= 4) { for (i in 4:ncol(nodes_df)) { nodes_df[, i] <- as.character(nodes_df[, i]) nodes_df[, i] <- ifelse(is.na(nodes_df[, i]), "", nodes_df[, i]) } } } if (!is.null(edges_df)) { if (ncol(edges_df) >= 4) { for (i in 4:ncol(edges_df)) { edges_df[, i] <- ifelse(is.na(edges_df[, i]), "", edges_df[, i]) edges_df[, i] <- as.character(edges_df[, i]) } } } if ("equation" %in% colnames(nodes_df)) { equation_col <- which(colnames(nodes_df) == "equation") for (i in 1:nrow(nodes_df)) { if (grepl("^\\$.*\\$$", nodes_df[i, equation_col])) { nodes_df[i, equation_col] <- str_replace_all( nodes_df[i, equation_col], "\\\\", "\\\\\\\\") } else { nodes_df[i, equation_col] <- "" } } } if ("display" %in% colnames(nodes_df)) { display_col <- which(colnames(nodes_df) == "display") label_col <- which(colnames(nodes_df) == "label") for (i in 1:nrow(nodes_df)) { if (nodes_df[i, display_col] != "") { nodes_df[i, label_col] <- nodes_df[ i, which(colnames(nodes_df) == nodes_df[i, display_col])] } else { nodes_df[i, label_col] <- "" } } } if ("display" %in% colnames(edges_df)) { display_col <- which(colnames(edges_df) == "display") if (!("label" %in% colnames(edges_df))) { edges_df <- edges_df %>% mutate(label = as.character(NA)) } label_col <- which(colnames(edges_df) == "label") for (i in 1:nrow(edges_df)) { if (!is.na(edges_df[i, display_col]) ) { if (edges_df[i, display_col] != "") { edges_df[i, label_col] <- edges_df[ i, which(colnames(edges_df) == edges_df[i, display_col])] } } else { edges_df[i, label_col] <- "" } } } graph_attributes <- c("layout", "bgcolor", "rankdir", "overlap", "outputorder", "fixedsize", "mindist", "nodesep", "ranksep", "stylesheet") node_attributes <- c("shape", "style", "penwidth", "color", "fillcolor", "fontname", "fontsize", "fontcolor", "image", "fa_icon", "height", "width", "group", "tooltip", "xlabel", "URL", "distortion", "sides", "skew", "peripheries", "gradientangle", "label", "fixedsize", "labelloc", "margin", "orientation", "pos") edge_attributes <- c("style", "penwidth", "color", "arrowsize", "arrowhead", "arrowtail", "fontname", "fontsize", "fontcolor", "len", "tooltip", "URL", "label", "labelfontname", "labelfontsize", "labelfontcolor", "labeltooltip", "labelURL", "edgetooltip", "edgeURL", "headtooltip", "headURL", "headclip", "headlabel", "headport", "tailtooltip", "tailURL", "tailclip", "taillabel", "tailport", "dir", "decorate") if (nrow(nodes_df) == 0 & nrow(edges_df) == 0) { dot_code <- paste0(ifelse(directed, "digraph", "graph"), " {\n", "\n}") } else { if (!(any(is.na(graph_attrs)))) { graph_attr_stmt <- paste0("graph [", paste(graph_attrs, collapse = ",\n "), "]\n") } else { graph_attr_stmt <- "" } if (!(any(is.na(node_attrs)))) { node_attr_stmt <- paste0("node [", paste(node_attrs, collapse = ",\n "), "]\n") } else { node_attr_stmt <- "" } if (!(any(is.na(edge_attrs)))) { edge_attr_stmt <- paste0("edge [", paste(edge_attrs, collapse = ",\n "), "]\n") } else { edge_attr_stmt <- "" } combined_attr_stmts <- paste( graph_attr_stmt, node_attr_stmt, edge_attr_stmt, sep = "\n") if (nrow(nodes_df) > 0) { column_with_x <- which(colnames(nodes_df) %in% "x")[1] column_with_y <- which(colnames(nodes_df) %in% "y")[1] if (!is.na(column_with_x) & !is.na(column_with_y)) { pos <- data.frame( "pos" = paste0( nodes_df[, column_with_x], ",", nodes_df[, column_with_y], "!")) nodes_df$pos <- pos$pos } if (any(grepl("$alpha^", colnames(nodes_df)))) { column_with_alpha_assigned <- grep("$alpha^", colnames(nodes_df)) } else { column_with_alpha_assigned <- NA } if (!is.na(column_with_alpha_assigned)) { number_of_col_attr <- length(which(colnames(nodes_df) %in% c("color", "fillcolor", "fontcolor"))) if (number_of_col_attr == 1) { name_of_col_attr <- colnames(nodes_df)[ which(colnames(nodes_df) %in% c("color", "fillcolor", "fontcolor"))] colnames(nodes_df)[column_with_alpha_assigned] <- paste0("alpha:", name_of_col_attr) } } if (any(grepl("alpha:.*", colnames(nodes_df)))) { alpha_column_no <- grep("alpha:.*", colnames(nodes_df)) color_attr_column_name <- unlist(strsplit(colnames(nodes_df)[ (which(grepl("alpha:.*", colnames(nodes_df)))) ], ":"))[-1] color_attr_column_no <- which(colnames(nodes_df) %in% color_attr_column_name) if (any(c("color", "fillcolor", "fontcolor") %in% colnames(nodes_df)[color_attr_column_no])) { if (all(grepl("[a-z]*", as.character(nodes_df[, color_attr_column_no]))) & all(as.character(nodes_df[, color_attr_column_no]) %in% x11_hex()[, 1])) { for (i in 1:nrow(nodes_df)) { nodes_df[i, color_attr_column_no] <- paste0(x11_hex()[ which(x11_hex()[, 1] %in% as.character(nodes_df[i, color_attr_column_no])), 2], formatC(round(as.numeric(nodes_df[i, alpha_column_no]), 0), flag = "0", width = 2)) } } if (all(grepl(" as.character(nodes_df[, color_attr_column_no])))) { for (i in 1:nrow(nodes_df)) { nodes_df[, color_attr_column_no] <- as.character(nodes_df[, color_attr_column_no]) nodes_df[i, color_attr_column_no] <- paste0(nodes_df[i, color_attr_column_no], round(as.numeric(nodes_df[i, alpha_column_no]), 0)) } } } } other_columns_with_node_attributes <- which(colnames(nodes_df) %in% node_attributes) for (i in 1:nrow(nodes_df)) { if (i == 1) { node_block <- vector(mode = "character", length = 0) } if (length(other_columns_with_node_attributes) > 0) { for (j in other_columns_with_node_attributes) { if (j == other_columns_with_node_attributes[1]) { attr_string <- vector(mode = "character", length = 0) } if (all(colnames(nodes_df)[j] %in% c("label", "tooltip"), is.na(nodes_df[i, j]))) { attribute <- NULL } else if (all(colnames(nodes_df)[j] %in% c("label", "tooltip"), !is.na(nodes_df[i, j]))) { attribute <- paste0(colnames(nodes_df)[j], " = ", "'", nodes_df[i, j], "'") } else if (all(!(colnames(nodes_df)[j] %in% c("label", "tooltip")), is.na(nodes_df[i, j]))) { attribute <- NULL } else if (all(!(colnames(nodes_df)[j] %in% c("label", "tooltip")), !is.na(nodes_df[i, j]))) { attribute <- paste0(colnames(nodes_df)[j], " = ", "'", nodes_df[i, j], "'") } attr_string <- c(attr_string, attribute) } if (j == other_columns_with_node_attributes[ length(other_columns_with_node_attributes)]) { attr_string <- paste(attr_string, collapse = ", ") } } if (exists("attr_string")) { line <- paste0(" '", nodes_df[i, 1], "'", " [", attr_string, "] ") } if (!exists("attr_string")) { line <- paste0(" '", nodes_df[i, 1], "'") } node_block <- c(node_block, line) } if ("rank" %in% colnames(nodes_df)) { node_block <- c(node_block, tapply(node_block, nodes_df$rank, FUN = function(x) { if(length(x) > 1) { x <- paste0('subgraph{rank = same\n', paste0(x, collapse = '\n'), '}\n') } return(x) })) } else if ('cluster' %in% colnames(nodes_df)) { clustered_node_block <- character(0) clusters <- split(node_block, nodes_df$cluster) for (i in seq_along(clusters)) { if (names(clusters)[[i]] == "") { cluster_block <- clusters[[i]] } else { cluster_block <- paste0("subgraph cluster", i, "{\nlabel='", names(clusters)[[i]], "'\n", paste0(clusters[[i]], collapse="\n"), "}\n") } clustered_node_block <- c(clustered_node_block, cluster_block) } node_block <- clustered_node_block rm(clustered_node_block, clusters, cluster_block) } node_block <- paste(node_block, collapse = "\n") if (exists("attr_string")) { rm(attr_string) } if (exists("attribute")) { rm(attribute) } } if (nrow(edges_df) > 0) { from_to_columns <- ifelse(any(c("from", "to") %in% colnames(edges_df)), TRUE, FALSE) other_columns_with_edge_attributes <- which(colnames(edges_df) %in% edge_attributes) if (from_to_columns) { both_from_to_columns <- all(c(any(c("from") %in% colnames(edges_df))), any(c("to") %in% colnames(edges_df))) } if (exists("both_from_to_columns")) { if (both_from_to_columns) { from_column <- which(colnames(edges_df) %in% c("from"))[1] to_column <- which(colnames(edges_df) %in% c("to"))[1] } } if (exists("from_column") & exists("to_column")) { if (length(from_column) == 1 & length(from_column) == 1) { for (i in 1:nrow(edges_df)) { if (i == 1) { edge_block <- vector(mode = "character", length = 0) } if (length(other_columns_with_edge_attributes) > 0) { for (j in other_columns_with_edge_attributes) { if (j == other_columns_with_edge_attributes[1]) { attr_string <- vector(mode = "character", length = 0) } if (all(colnames(edges_df)[j] %in% c("edgetooltip", "headtooltip", "label", "labeltooltip", "taillabel", "tailtooltip", "tooltip"), is.na(edges_df[i, j]))) { attribute <- NULL } else if (all(colnames(edges_df)[j] %in% c("edgetooltip", "headtooltip", "label", "labeltooltip", "taillabel", "tailtooltip", "tooltip"), edges_df[i, j] != '')) { attribute <- paste0(colnames(edges_df)[j], " = ", "'", edges_df[i, j], "'") } else if (all(!(colnames(edges_df)[j] %in% c("edgetooltip", "headtooltip", "label", "labeltooltip", "taillabel", "tailtooltip", "tooltip")), is.na(edges_df[i, j]))) { attribute <- NULL } else if (all(!(colnames(edges_df)[j] %in% c("edgetooltip", "headtooltip", "label", "labeltooltip", "taillabel", "tailtooltip", "tooltip")), edges_df[i, j] != '')) { attribute <- paste0(colnames(edges_df)[j], " = ", "'", edges_df[i, j], "'") } attr_string <- c(attr_string, attribute) } if (j == other_columns_with_edge_attributes[ length(other_columns_with_edge_attributes)]) { attr_string <- paste(attr_string, collapse = ", ") } } if (exists("attr_string")) { line <- paste0("'", edges_df[i, from_column], "'", ifelse(directed, "->", "--"), "'", edges_df[i, to_column], "'", paste0(" [", attr_string, "] ")) } if (!exists("attr_string")) { line <- paste0(" ", "'", edges_df[i, from_column], "'", ifelse(directed, "->", "--"), "'", edges_df[i, to_column], "'", " ") } edge_block <- c(edge_block, line) } } } if (exists("edge_block")) { edge_block <- paste(edge_block, collapse = "\n") } } if (exists("combined_attr_stmts")) { if (exists("edge_block") & exists("node_block")) { combined_block <- paste(combined_attr_stmts, node_block, edge_block, sep = "\n") } if (!exists("edge_block") & exists("node_block")) { combined_block <- paste(combined_attr_stmts, node_block, sep = "\n") } } if (!exists("combined_attr_stmts")) { if (exists("edge_block")) { combined_block <- paste(node_block, edge_block, sep = "\n") } if (!exists("edge_block")) { combined_block <- node_block } } dot_code <- paste0(ifelse(directed, "digraph", "graph"), " {\n", "\n", combined_block, "\n}") dot_code <- gsub(" \\[\\] ", "", dot_code) } dot_code }
print.comp.cutpoints.binary <- function(x, digits = 4, ...) { cat("\n\n*************************************************\n") cat("Compare optimal number of cut points") cat("\n*************************************************\n\n") cat(paste("Bias corrected AUC difference:", round(x$AUC.cor.diff, 4), sep=" "), fill=TRUE) cat(paste("95% Bootstrap Confidence Interval:","(",round(x$icb.auc.diff[1], 4),",", round(x$icb.auc.diff[2], 4), ")" ,sep=" "), fill=TRUE) invisible(x) }
scale_colour_brewer <- function(..., type = "seq", palette = 1, direction = 1, aesthetics = "colour") { discrete_scale(aesthetics, "brewer", brewer_pal(type, palette, direction), ...) } scale_fill_brewer <- function(..., type = "seq", palette = 1, direction = 1, aesthetics = "fill") { discrete_scale(aesthetics, "brewer", brewer_pal(type, palette, direction), ...) } scale_colour_distiller <- function(..., type = "seq", palette = 1, direction = -1, values = NULL, space = "Lab", na.value = "grey50", guide = "colourbar", aesthetics = "colour") { type <- match.arg(type, c("seq", "div", "qual")) if (type == "qual") { warn("Using a discrete colour palette in a continuous scale.\n Consider using type = \"seq\" or type = \"div\" instead") } continuous_scale(aesthetics, "distiller", gradient_n_pal(brewer_pal(type, palette, direction)(7), values, space), na.value = na.value, guide = guide, ...) } scale_fill_distiller <- function(..., type = "seq", palette = 1, direction = -1, values = NULL, space = "Lab", na.value = "grey50", guide = "colourbar", aesthetics = "fill") { type <- match.arg(type, c("seq", "div", "qual")) if (type == "qual") { warn("Using a discrete colour palette in a continuous scale.\n Consider using type = \"seq\" or type = \"div\" instead") } continuous_scale(aesthetics, "distiller", gradient_n_pal(brewer_pal(type, palette, direction)(7), values, space), na.value = na.value, guide = guide, ...) } scale_colour_fermenter <- function(..., type = "seq", palette = 1, direction = -1, na.value = "grey50", guide = "coloursteps", aesthetics = "colour") { type <- match.arg(type, c("seq", "div", "qual")) if (type == "qual") { warn("Using a discrete colour palette in a binned scale.\n Consider using type = \"seq\" or type = \"div\" instead") } binned_scale(aesthetics, "fermenter", binned_pal(brewer_pal(type, palette, direction)), na.value = na.value, guide = guide, ...) } scale_fill_fermenter <- function(..., type = "seq", palette = 1, direction = -1, na.value = "grey50", guide = "coloursteps", aesthetics = "fill") { type <- match.arg(type, c("seq", "div", "qual")) if (type == "qual") { warn("Using a discrete colour palette in a binned scale.\n Consider using type = \"seq\" or type = \"div\" instead") } binned_scale(aesthetics, "fermenter", binned_pal(brewer_pal(type, palette, direction)), na.value = na.value, guide = guide, ...) }
exo <- function(x) { if (!"semPlotModel"%in%class(x)) stop("'semPlotModel' object is required") x@Vars$name[!is.na(x@Vars$exogenous)][x@Vars$exogenous[!is.na(x@Vars$exogenous)]] } "exo<-" <- function(x,value) { if (!"semPlotModel"%in%class(x)) stop("'semPlotModel' object is required") x@Vars$name[!is.na(x@Vars$exogenous)][x@Vars$exogenous[!is.na(x@Vars$exogenous)]] <- FALSE x@Vars$exogenous[x@Vars$name%in%value] <- TRUE return(x) } endo <- function(x) { if (!"semPlotModel"%in%class(x)) stop("'semPlotModel' object is required") x@Vars$name[!is.na(x@Vars$exogenous)][!x@Vars$exogenous[!is.na(x@Vars$exogenous)]] } "endo<-" <- function(x,value) { if (!"semPlotModel"%in%class(x)) stop("'semPlotModel' object is required") x@Vars$name[!is.na(x@Vars$exogenous)][!x@Vars$exogenous[!is.na(x@Vars$exogenous)]] <- TRUE x@Vars$exogenous[x@Vars$name%in%value] <- FALSE return(x) } man <- function(x) { if (!"semPlotModel"%in%class(x)) stop("'semPlotModel' object is required") x@Vars$name[x@Vars$manifest] } "man<-" <- function(x,value) { if (!"semPlotModel"%in%class(x)) stop("'semPlotModel' object is required") x@Vars$manifest[x@Vars$name%in%value] <- TRUE return(x) } lat <- function(x) { if (!"semPlotModel"%in%class(x)) stop("'semPlotModel' object is required") x@Vars$name[!x@Vars$manifest] } "lat<-" <- function(x,value) { if (!"semPlotModel"%in%class(x)) stop("'semPlotModel' object is required") x@Vars$manifest[x@Vars$name%in%value] <- FALSE return(x) }
context("getObjetFunctionArgumentNames") source('pathResolver.R') source(file.path(computeRootPath(), 'code-samples', 'classes', 'sample-classes.R')) test_that("getObjetFunctionArgumentNames", { expect_true(is.na(getObjectFunctionArgumentNames(new.env()))) expect_length(getObjectFunctionArgumentNames(EmptyEnv()), 0) expect_length(getObjectFunctionArgumentNames(MyEnv()), 1) expect_length(getObjectFunctionArgumentNames(Bu_S3()), 2) expect_length(getObjectFunctionArgumentNames(Accumulator_R6$new(), FALSE), 1) expect_length(getObjectFunctionArgumentNames(new('Person_RC', name = 'neonira'), FALSE), 2) expect_true(length(getObjectFunctionArgumentNames(new('Person_S4', name = 'neonira'), FALSE)) <= 1) })
library(networkreporting) library(surveybootstrap) hidden.q <- c("sex.workers", "msm", "idu", "clients") hm.q <- c("widower", "nurse.or.doctor", "male.community.health", "teacher", "woman.smoke", "priest", "civil.servant", "woman.gave.birth", "muslim", "incarcerated", "judge", "man.divorced", "treatedfortb", "nsengimana", "murekatete", "twahirwa", "mukandekezi", "nsabimana", "mukamana", "ndayambaje", "nyiraneza", "bizimana", "nyirahabimana", "ndagijimana", "mukandayisenga", "died") tot.pop.size <- 10718378 example.knownpop.dat kp.vec <- df.to.kpvec(example.knownpop.dat, kp.var="known.popn", kp.value="size") kp.vec tot.pop.size <- 10e6 head(example.survey) known.popn.vars <- paste(example.knownpop.dat$known.popn) summary(example.survey[,known.popn.vars]) example.survey <- topcode.data(example.survey, vars=known.popn.vars, max=30) summary(example.survey[,known.popn.vars]) d.hat <- kp.degree.estimator(survey.data=example.survey, known.popns=kp.vec, total.popn.size=tot.pop.size, missing="complete.obs") summary(d.hat) library(ggplot2) theme_set(theme_minimal()) qplot(d.hat, binwidth=25) example.survey$d.hat <- d.hat idu.est <- nsum.estimator(survey.data=example.survey, d.hat.vals=d.hat, total.popn.size=tot.pop.size, y.vals="idu", missing="complete.obs") idu.est idu.est <- bootstrap.estimates( survey.design = ~ cluster + strata(region), num.reps=100, estimator.fn="nsum.estimator", weights="indweight", bootstrap.fn="rescaled.bootstrap.sample", survey.data=example.survey, d.hat.vals=d.hat, total.popn.size=tot.pop.size, y.vals="idu", missing="complete.obs") library(plyr) all.idu.estimates <- ldply(idu.est, function(x) { data.frame(estimate=x$estimate) }) qplot(all.idu.estimates$estimate, binwidth=50) summary(all.idu.estimates$estimate) quantile(all.idu.estimates$estimate, probs=c(0.025, 0.975)) iv.result <- nsum.internal.validation(survey.data=example.survey, known.popns=kp.vec, missing="complete.obs", killworth.se=TRUE, total.popn.size=tot.pop.size, kp.method=TRUE, return.plot=TRUE) iv.result$results print(iv.result$plot) print(iv.result$plot + ggtitle("internal validation checks")) example.survey <- add.kp(example.survey, kp.vec, tot.pop.size) d.hat.new <- kp.degree.estimator(survey.data=example.survey, missing="complete.obs") summary(d.hat.new)
adKSampleTest <- function(x, ...) UseMethod("adKSampleTest") adKSampleTest.default <- function(x, g, ...) { if (is.list(x)) { if (length(x) < 2L) stop("'x' must be a list with at least 2 elements") DNAME <- deparse(substitute(x)) x <- lapply(x, function(u) u <- u[complete.cases(u)]) k <- length(x) l <- sapply(x, "length") if (any(l == 0)) stop("all groups must contain data") g <- factor(rep(1 : k, l)) x <- unlist(x) } else { if (length(x) != length(g)) stop("'x' and 'g' must have the same length") DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(g))) OK <- complete.cases(x, g) x <- x[OK] g <- g[OK] if (!all(is.finite(g))) stop("all group levels must be finite") g <- factor(g) k <- nlevels(g) if (k < 2) stop("all observations are in the same group") } ix <- order(as.character(g)) g <- g[ix] x <- x[ix] n <- tapply(x, g, length) N <- sum(n) ADstatV1 <- function(x, g){ lev <- levels(g) Zstar <- sort(x) Zstar <- unique(Zstar) L <- length(Zstar) f <- matrix(0, ncol=L, nrow=k) for (i in 1:k){ tmp <- x[g == lev[i]] f[i,] <- sapply(Zstar, function(Z){ return(length(tmp[tmp == Z])) } ) } l <- sapply(1:L, function(j) sum(f[,j])) tmp <- rep(NA,k) for (i in 1:k){ tm <- 0 for (j in 1:(L-1)){ Bj <- sum(l[1:j]) Mij <- sum(f[i, 1:j]) tm <- tm + (l[j] / N) * ((N * Mij - n[i] * Bj)^2 / (Bj * (N - Bj))) } tmp[i] <- tm } AsqkN <- sum(1/n * tmp) return(AsqkN) } AsqkN <- ADstatV1(x, g) H <- sum(1/n) h <- sum(1/(1:(N-1))) G <- 0 for (i in 1:(N-2)){ G <- G + sum( 1 / ((N - i) * (i+1):(N-1))) } a <- (4 * G - 6) * (k - 1) + (10 - 6 * G) * H b <- (2 * G - 4) * k^2 + 8 * h * k + (2 * G - 14 * h - 4) * H - 8 * h + 4 * G - 6 c <- (6 * h + 2 * G - 2) * k^2 + (4 * h - 4 * G + 6) * k + (2 * h - 6) * H + 4 * h d <- (2 * h + 6) * k^2 - 4 * h * k varAsqkN <- (a * N^3 + b * N^2 + c * N + d) / ((N - 1) * (N - 2) * (N- 3)) m <- k - 1 TkN <- (AsqkN - m) / sqrt(varAsqkN) PVAL <- ad.pval(tx=TkN, m=m, version=1) METHOD <- paste("Anderson-Darling k-Sample Test") ans <- list(method = METHOD, data.name = DNAME, p.value = PVAL, statistic = c(TkN = TkN), parameter = c(m = m), estimate = c(A2kN = AsqkN, "sigmaN" = sqrt(varAsqkN))) class(ans) <- "htest" ans } adKSampleTest.formula <- function(formula, data, subset, na.action, ...) { mf <- match.call(expand.dots=FALSE) m <- match(c("formula", "data", "subset", "na.action"), names(mf), 0L) mf <- mf[c(1L, m)] mf[[1L]] <- quote(stats::model.frame) if(missing(formula) || (length(formula) != 3L)) stop("'formula' missing or incorrect") mf <- eval(mf, parent.frame()) if(length(mf) > 2L) stop("'formula' should be of the form response ~ group") DNAME <- paste(names(mf), collapse = " by ") names(mf) <- NULL y <- do.call("adKSampleTest", as.list(mf)) y$data.name <- DNAME y }
tlsce <- function(A, B, Wa=NULL, Wb=NULL, minA=NULL, maxA=NULL, A_init=A, Xratios=TRUE, ...) { A <- as.matrix(A) B <- as.matrix(B) l <- nrow(A) m <- ncol(A) n <- NCOL(B) w <- which(A>0) lw <- length(w) A_c <- A[w] if (Xratios ) { E <- t(rep(1,m)); F <- t(rep(1,n))} else { E <- t(rep(0,m)); F <- t(rep(0,n))} G <- diag(1,m); H <- matrix(0,m,n) if (is.null(Wa)) Wa <- 1 if (length(Wa)==1) Wa <- matrix(Wa,l,m) if (length(Wa)==length(A)) Wa_c <- Wa[w] if (length(Wb)==1) Wb <- matrix(Wb,l,n) A_c_init <- A_init[w] if (is.null(minA)) minA_c <- rep(0,lw) else minA_c <- minA[w] if (is.null(maxA)) maxA_c <- rep(+Inf,lw) else maxA_c <- maxA[w] residuals <- function(A_c_new) { A_new <- A A_new[w] <- A_c_new X <- LSEI(A_new,B,E,F,G,H,Wa=Wb)$X if (is.null(Wb)) return(c(Wa_c*(A_c-A_c_new),A_new%*%X-B)) return(c(Wa_c*(A_c-A_c_new),Wb*(A_new%*%X-B))) } tlsce_fit <- modFit(residuals,A_c,lower=minA_c,upper=maxA_c,...) A_c_fit <- tlsce_fit$par A_fit <- A; A_fit[w] <- A_c_fit LSEI_fit <- LSEI(A_fit,B,E,F,G,H,Wa=Wb) X <- LSEI_fit$X; rownames(X) <- colnames(A); colnames(X) <- colnames(B) B_fit <- A_fit%*%X ssr <- tlsce_fit$ssr ssr_B <- LSEI_fit$solutionNorm ssr_A <- ssr-ssr_B solutionNorms <- c(ssr,ssr_A,ssr_B); names(solutionNorms) <- c("total","A","B") return(list(X=X, A_fit=A_fit, B_fit=B_fit, SS=solutionNorms, fit=tlsce_fit)) } LSEI <- function(A=NULL,B=NULL,E=NULL,F=NULL,G=NULL,H=NULL,Wa=NULL,...) { if (is.vector(B)) return(lsei(A,B,E,F,G,H,Wa=Wa,...)) else { X <- matrix(NA,ncol(A),ncol(B)) solutionNorm <- 0 for (i in 1:ncol(B)) { BnotNA <- !is.na(B[,i]) ls <- lsei(A[BnotNA,],B[BnotNA,i],E,F[,i],G,H[,i],Wa=Wa[BnotNA,i],...) X[,i] <- ls$X solutionNorm <- solutionNorm + ls$solutionNorm } return(list(X=X,solutionNorm=solutionNorm)) } }
knitr::opts_chunk$set( collapse = TRUE, comment = " message = FALSE, warning = FALSE, fig.height = 7, fig.width = 7, dpi = 75 ) check_namespaces <- function(pkgs){ return(all(unlist(sapply(pkgs, requireNamespace,quietly = TRUE)))) } library(geofi) muni <- get_municipalities(year = 2019) libs <- c("pxweb","dplyr","tidyr","janitor","ggplot2") if (check_namespaces(pkgs = libs)) { library(pxweb) pxweb_query_list <- list("Alue 2020"=c("*"), "Tiedot"=c("*"), "Vuosi"=c("2019")) px_raw <- pxweb_get(url = "https://pxnet2.stat.fi/PXWeb/api/v1/en/Kuntien_avainluvut/2020/kuntien_avainluvut_2020_aikasarja.px", query = pxweb_query_list) library(dplyr) library(tidyr) library(janitor) library(sf) px_data <- as_tibble( as.data.frame(px_raw, column.name.type = "text", variable.value.type = "text") ) %>% setNames(make_clean_names(names(.))) %>% pivot_longer(names_to = "information", values_to = "municipal_key_figures", 3:ncol(.)) px_data } else { message("One or more of the following packages is not available: ", paste(libs, collapse = ", ")) } if (check_namespaces(pkgs = libs)) { count(px_data, region_2020) } else { message("One or more of the following packages is not available: ", paste(libs, collapse = ", ")) } if (check_namespaces(pkgs = libs)) { map_data <- right_join(muni, px_data, by = c("municipality_name_fi" = "region_2020")) } else { message("One or more of the following packages is not available: ", paste(libs, collapse = ", ")) } if (check_namespaces(pkgs = libs)) { library(ggplot2) map_data %>% filter(grepl("swedish|foreign", information)) %>% ggplot(aes(fill = municipal_key_figures)) + geom_sf() + facet_wrap(~information) + theme(legend.position = "top") } else { message("One or more of the following packages is not available: ", paste(libs, collapse = ", ")) } if (FALSE){ library(readr) cols( Area = col_character(), Time = col_date(format = ""), val = col_double() ) -> cov_cols thl_korona_api <- "https://sampo.thl.fi/pivot/prod/en/epirapo/covid19case/fact_epirapo_covid19case.csv?row=dateweek20200101-508804L&column=hcdmunicipality2020-445222L" status <- httr::status_code(httr::GET(thl_korona_api)) xdf_raw <- read_csv2(thl_korona_api, col_types = cov_cols) xdf <- xdf_raw %>% rename(date = Time, shp = Area, day_cases = val) %>% group_by(shp) %>% arrange(shp,date) %>% filter(!is.na(day_cases)) %>% mutate(total_cases = cumsum(day_cases)) %>% ungroup() %>% group_by(shp) %>% filter(date == max(date, na.rm = TRUE)) %>% ungroup() } xdf <- structure(list(shp = c("Åland", "All areas", "Central Finland Hospital District", "Central Ostrobothnia Hospital District", "Helsinki and Uusimaa Hospital District", "Itä-Savo Hospital District", "Kainuu Hospital District", "Kanta-Häme Hospital District", "Kymenlaakso Hospital District", "Länsi-Pohja Hospital District", "Lappi Hospital District", "North Karelia Hospital District", "North Ostrobothnia Hospital District", "North Savo Hospital District", "Päijät-Häme Hospital District", "Pirkanmaa Hospital District", "Satakunta Hospital District", "South Karelia Hospital District", "South Ostrobothnia Hospital District", "South Savo Hospital District", "Southwest Finland Hospital District", "Vaasa Hospital District" ), date = structure(c(18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674, 18674), class = "Date"), day_cases = c(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0), total_cases = c(120, 51047, 1850, 177, 29519, 141, 227, 873, 854, 478, 465, 516, 2265, 850, 1243, 2662, 671, 348, 534, 573, 4803, 1878)), row.names = c(NA, -22L), class = c("tbl_df", "tbl", "data.frame")) xdf %>% count(shp) muni <- get_municipalities(year = 2021) muni %>% st_drop_geometry() %>% count(sairaanhoitop_name_en) libs <- c("ggplot2") if (check_namespaces(pkgs = libs)) { muni %>% count(sairaanhoitop_name_en) %>% left_join(xdf, by = c("sairaanhoitop_name_en" = "shp")) %>% ggplot(aes(fill = total_cases)) + geom_sf() + geom_sf_text(aes(label = paste0(sairaanhoitop_name_en, "\n", total_cases)), color = "white") + labs(title = "Number of total COVID-19 cases reported since January 2020", fill = NULL) } else { message("One or more of the following packages is not available: ", paste(libs, collapse = ", ")) } libs <- c("ggplot2","pxweb","janitor") if (check_namespaces(pkgs = libs)) { library(pxweb) pxweb_query_list <- list("Postinumeroalue"=c("*"), "Tiedot"=c("*")) px_raw <- pxweb_get(url = "https://pxnet2.stat.fi/PXWeb/api/v1/en/Postinumeroalueittainen_avoin_tieto/2019/paavo_1_he_2019.px", query = pxweb_query_list) px_data <- as_tibble( as.data.frame(px_raw, column.name.type = "text", variable.value.type = "text") ) %>% setNames(make_clean_names(names(.))) px_data %>% filter(postal_code_area != "Finland") } else { message("One or more of the following packages is not available: ", paste(libs, collapse = ", ")) } libs <- c("ggplot2","pxweb","janitor") if (check_namespaces(pkgs = libs)) { px_data$posti_alue <- sub(" .+$", "", px_data$postal_code_area) zipcodes19 <- get_zipcodes(year = 2019) zipcodes_map <- left_join(zipcodes19, px_data %>% filter(data == "Average age of inhabitants, 2017 (HE)")) ggplot(zipcodes_map) + geom_sf(aes(fill = paavo_open_data_by_postal_code_area_2019), color = alpha("white", 1/3)) + labs(title = "Average age of inhabitants, 2017 (HE)", fill = NULL) } else { message("One or more of the following packages is not available: ", paste(libs, collapse = ", ")) }
dufour_etal <- function(mainlm, hettest, R = 1000L, alternative = c("greater", "less", "two.sided"), errorgen = stats::rnorm, errorparam = list(), seed = 1234, ...) { alternative <- match.arg(alternative, c("greater", "less", "two.sided")) if (is.character(hettest)) { hettestfunc <- get(hettest) } else { stop("hettest must be a character naming a function") } if (is.character(errorgen)) errorgen <- get(errorgen) arguments <- list(...) invisible(list2env(arguments, envir = environment())) if ("alternative" %in% names(formals(hettestfunc))) arguments$alternative <- alternative processmainlm(m = mainlm) n <- length(e) if (hettest == "horn") { if (exists("exact", where = environment(), inherits = FALSE)) { if (exact) stop("This method is only available for tests with a continuous test statistic") } else { if (n - p <= 11) stop("This method is only available for tests with a continuous test statistic") } } else if (hettest %in% c("anscombe", "bickel", "wilcox_keselman")) { stop("This method is only available for tests that are invariant with respect to nuisance parameters and for which the test statistic can be computed based only on the design matrix and the OLS residuals.") } else if (hettest == "simonoff_tsai") { if (!exists("method", where = environment(), inherits = FALSE)) { stop("This function is only available for hettest `simonoff_tsai` with `method` argument set to \"score\".") } else if (method != "score") { stop("This function is only available for hettest `simonoff_tsai` with `method` argument set to \"score\".") } } else if (hettest == "zhou_etal" && p > 2) { if (exists("method", where = environment(), inherits = FALSE)) { if (method %in% c("covariate-specific", "hybrid")) { stop("`zhou_etal` cannot be used in godfrey_orme with method \"covariate-specific\" or \"hybrid\" when model has more than two covariates") } } } if (exists("deflator", where = environment(), inherits = FALSE)) { if (is.character(deflator)) arguments$deflator <- which(colnames(X) == deflator) } statobs <- do.call(what = hettestfunc, args = append(list("mainlm" = list("y" = y, "X" = X), "statonly" = TRUE), arguments)) if (!(hettest == "goldfeld_quandt")) { M <- fastM(X, n) if (!is.na(seed)) set.seed(seed) epsgen <- replicate(R, do.call(errorgen, c("n" = n, errorparam)), simplify = FALSE) egen <- lapply(epsgen, function(eps) M %*% eps) statgen <- vapply(1:R, function(j) do.call(what = hettestfunc, args = append(list("mainlm" = list("X" = X, "e" = egen[[j]]), "statonly" = TRUE), arguments)), NA_real_) } else { if (exists("method", where = environment(), inherits = FALSE)) { method <- match.arg(method, c("parametric", "nonparametric")) if (method == "nonparametric") stop("This method is only available for tests with a continuous test statistic") } if (!is.na(seed)) set.seed(seed) epsgen <- replicate(R, do.call(errorgen, c("n" = n, errorparam)), simplify = FALSE) hasintercept <- columnof1s(X) if (class(mainlm) == "list") { if (hasintercept[[1]]) { if (hasintercept[[2]] != 1) stop("Column of 1's must be first column of design matrix") colnames(X) <- c("(Intercept)", paste0("X", 1:(p - 1))) } else { colnames(X) <- paste0("X", 1:p) } } if (!exists("deflator", where = environment(), inherits = FALSE)) deflator <- NA if (!exists("prop_central", where = environment(), inherits = FALSE)) prop_central <- 1 / 3 if (!exists("group1prop", where = environment(), inherits = FALSE)) group1prop <- 1 / 2 checkdeflator(deflator, X, p, hasintercept[[1]]) theind <- gqind(n, p, prop_central, group1prop) if (!is.na(deflator) && !is.null(deflator)) { if (!is.na(suppressWarnings(as.integer(deflator)))) { deflator <- as.integer(deflator) } X <- X[order(X[, deflator]), , drop = FALSE] } M1 <- fastM(X[theind[[1]], , drop = FALSE], length(theind[[1]])) M2 <- fastM(X[theind[[2]], , drop = FALSE], length(theind[[2]])) thedf2 <- (length(theind[[2]]) - p) thedf1 <- (length(theind[[1]]) - p) egen1 <- lapply(epsgen, function(eps) M1 %*% eps[theind[[1]]]) egen2 <- lapply(epsgen, function(eps) M2 %*% eps[theind[[2]]]) statgen <- unlist(mapply(FUN = function(e1, e2) (sum(e2 ^ 2) / thedf2) / (sum(e1 ^ 2) / thedf1), egen1, egen2, SIMPLIFY = FALSE)) } if (alternative == "greater") { teststat <- sum(statgen >= statobs) } else if (alternative == "less") { teststat <- sum(statgen <= statobs) } else if (alternative == "two.sided") { teststat <- min(sum(statgen >= statobs), sum(statgen <= statobs)) } pval <- (teststat + 1) / (R + 1) * ifelse(alternative == "two.sided", 2, 1) rval <- structure(list(statistic = teststat, parameter = R, p.value = pval, null.value = "Homoskedasticity", alternative = alternative, method = "Monte Carlo"), class = "htest") broom::tidy(rval) }
NLDoCommandWhile <- function(condition, ..., max.minutes=10, nl.obj=NULL) { if (is.null(nl.obj)) { nl.obj <- "_nl.intern_" } if (nl.obj %in% .rnetlogo$objects) { nl.obj <- get(nl.obj, envir=.rnetlogo) } else { stop(paste('There is no NetLogo reference stored under the name ',nl.obj,".", sep="")) } commands <- lapply(list(...), function(x) {eval.commandobject(x)}) command <- paste(commands, collapse=" ") .jcall(nl.obj, "V", "doCommandWhile", .jnew("java/lang/String", command), .jnew("java/lang/String", condition), .jnew("java/lang/Integer", as.integer(max.minutes))) if (!is.null(e<-.jgetEx())) { if (.jcheck(silent=TRUE)) { print(e) stop() } } }
library(shiny) library(shinyWidgets) ui <- fluidPage( tags$h1("Update pretty radio buttons"), br(), fluidRow( column( width = 6, prettyRadioButtons( inputId = "radio1", label = "Update my value!", choices = month.name[1:4], status = "danger", icon = icon("remove") ), verbatimTextOutput(outputId = "res1"), br(), radioButtons( inputId = "update1", label = "Update value :", choices = month.name[1:4], inline = TRUE ) ), column( width = 6, prettyRadioButtons( inputId = "radio2", label = "Update my choices!", thick = TRUE, choices = month.name[1:4], animation = "pulse", status = "info" ), verbatimTextOutput(outputId = "res2"), br(), actionButton(inputId = "update2", label = "Update choices !") ) ) ) server <- function(input, output, session) { output$res1 <- renderPrint(input$radio1) observeEvent(input$update1, { updatePrettyRadioButtons( session = session, inputId = "radio1", selected = input$update1 ) }, ignoreNULL = FALSE) output$res2 <- renderPrint(input$radio2) observeEvent(input$update2, { updatePrettyRadioButtons( session = session, inputId = "radio2", choices = sample(month.name, 4), prettyOptions = list(animation = "pulse", status = "info", shape = "round") ) }, ignoreInit = TRUE) } if (interactive()) shinyApp(ui, server)
HWidentify <- function(x,y,label=seq_along(x), lab.col='darkgreen', pt.col='red', adj=c(0,0), clean=TRUE, xlab=deparse(substitute(x)), ylab=deparse(substitute(y)), ...) { plot(x,y,xlab=xlab, ylab=ylab,...) dx <- grconvertX(x,to='ndc') dy <- grconvertY(y,to='ndc') mm <- function(buttons, xx, yy) { d <- (xx-dx)^2 + (yy-dy)^2 if ( all( d > .01 ) ){ plot(x,y,xlab=xlab,ylab=ylab,...) return() } w <- which.min(d) plot(x,y,xlab=xlab,ylab=ylab,...) points(x[w],y[w], cex=2, col=pt.col) text(grconvertX(xx,from='ndc'),grconvertY(yy,from='ndc'), label[w], col=lab.col, adj=adj) return() } md <- function(buttons, xx, yy) { if (any(buttons=='2')) return(1) return() } getGraphicsEvent('Right Click to exit', onMouseMove = mm, onMouseDown=md) if(clean) mm( , Inf, Inf ) invisible() } HTKidentify <- function(x,y,label=seq_along(x), lab.col='darkgreen', pt.col='red', adj=c(0,0), xlab=deparse(substitute(x)), ylab=deparse(substitute(y)), ...) { if( !requireNamespace("tkrplot", quietly=TRUE) ) stop ('tkrplot package is required') dx <- numeric(0) dy <- numeric(0) xx <- yy <- 0 replot <- function() { d <- (xx-dx)^2 + (yy-dy)^2 if ( all( d > .01 ) ) { plot(x,y,xlab=xlab,ylab=ylab,...) if( length(dx)==0 ) { dx <<- grconvertX(x, to='ndc') dy <<- grconvertY(y, to='ndc') } return() } w <- which.min(d) plot(x,y,xlab=xlab,ylab=ylab,...) points(x[w],y[w], cex=2, col=pt.col) text(grconvertX(xx,from='ndc'),grconvertY(yy,from='ndc'), label[w], col=lab.col, adj=adj) } tt <- tcltk::tktoplevel() img <- tkrplot::tkrplot(tt, replot, hscale=1.5, vscale=1.5) tcltk::tkpack(img, side='top') iw <- as.numeric(tcltk::tcl("image","width", tcltk::tkcget(img, "-image"))) ih <- as.numeric(tcltk::tcl("image","height", tcltk::tkcget(img, "-image"))) cc <- function(x,y) { x <- (as.double(x) -1)/iw y <- 1-(as.double(y)-1)/ih c(x,y) } mm <- function(x, y) { xy <- cc(x,y) xx <<- xy[1] yy <<- xy[2] tkrplot::tkrreplot(img) } tcltk::tkbind(img, "<Motion>", mm) invisible() }
phi = function(x, y=NULL, ci=FALSE, conf=0.95, type="perc", R=1000, histogram=FALSE, verbose=FALSE, digits=3, reportIncomplete=FALSE, ...) { PHI=NULL if(is.factor(x)){x=as.vector(x)} if(is.factor(y)){x=as.vector(y)} if(is.vector(x) & is.vector(y)){ if((length(unique(x)) != 2) || (length(unique(y)) != 2)) {stop("phi is applicable only for 2 binomial variables")} Tab = xtabs(~ x + y) } if(is.matrix(x)){Tab=as.table(x)} if(is.table(x)){Tab = x} if((nrow(Tab) != 2) || (ncol(Tab) != 2)) {stop("phi is applicable only for a 2 x 2 table")} if(verbose){print(Tab) ;cat("\n")} Tab2 = Tab / sum(Tab) a=Tab2[1,1]; b=Tab2[1,2]; c=Tab2[2,1]; d=Tab2[2,2] PHI = (a- (a+b)*(a+c))/sqrt((a+b)*(c+d)*(a+c)*(b+d) ) Phi= signif(as.numeric(PHI), digits=digits) if(is.nan(Phi) & ci==TRUE){ return(data.frame(phi=Phi, lower.ci=NA, upper.ci=NA))} if(ci==TRUE){ Counts = as.data.frame(Tab) Long = Counts[rep(row.names(Counts), Counts$Freq), c(1, 2)] rownames(Long) = seq(1:nrow(Long)) L1 = length(unique(droplevels(Long[,1]))) L2 = length(unique(droplevels(Long[,2]))) Function = function(input, index){ Input = input[index,] NOTEQUAL=0 if(length(unique(droplevels(Input[,1]))) != L1 | length(unique(droplevels(Input[,2]))) != L2){NOTEQUAL=1} if(NOTEQUAL==1){FLAG=1; return(c(NA,FLAG))} if(NOTEQUAL==0){ Tab = xtabs(~ Input[,1] + Input[,2]) Tab2 = Tab / sum(Tab) a=Tab2[1,1]; b=Tab2[1,2]; c=Tab2[2,1]; d=Tab2[2,2] PHI = (a- (a+b)*(a+c))/sqrt((a+b)*(c+d)*(a+c)*(b+d)) FLAG = 0 return(c(PHI,FLAG))} } Boot = boot(Long, Function, R=R) BCI = boot.ci(Boot, conf=conf, type=type) if(type=="norm") {CI1=BCI$normal[2]; CI2=BCI$normal[3]} if(type=="basic"){CI1=BCI$basic[4]; CI2=BCI$basic[5]} if(type=="perc") {CI1=BCI$percent[4]; CI2=BCI$percent[5]} if(type=="bca") {CI1=BCI$bca[4]; CI2=BCI$bca[5]} if(sum(Boot$t[,2])>0 & reportIncomplete==FALSE) {CI1=NA; CI2=NA} CI1=signif(CI1, digits=digits) CI2=signif(CI2, digits=digits) if(histogram==TRUE){hist(Boot$t[,1], col = "darkgray", xlab="phi", main="")} } if(ci==FALSE){names(Phi)="phi"; return(Phi)} if(ci==TRUE){return(data.frame(phi=Phi, lower.ci=CI1, upper.ci=CI2))} }
library(hgutils) load_packages("stringr","magrittr") cols = list(orange="orange",blue="blue",red="red") col = cols$blue packages = c("metafor","shiny","ggplot2","mice","rms","magrittr","dplyr","hgutils") txts = sapply(packages, function(x) paste0(x,"-",str_replace_all(packageDescription(x)$Version,"-","--"))) urls = paste0("https://img.shields.io/badge/",txts,"-",col,".png") for(i in 1:length(urls)) { download.file(urls[i],paste0("tools/output/",packages[i],".png"),mode="wb") }
NULL if (!methods::isClass("Weight")) methods::setOldClass("Weight") NULL NULL Weight <- pproto("Weight", ProjectModifier) add_default_weights <- function(x) { assertthat::assert_that(inherits(x, "ProjectProblem"), !is.Waiver(x$objective)) add_feature_weights(x, x$objective$default_feature_weights()) }
item_upload_create = function(parent_id, files, ..., scrape_files = TRUE, session=current_session()){ if(length(files) > 50){ warning('Trying to attach a large number of files to a SB item. SB imposes file limits which may cause this to fail') } item <- as.sbitem(parent_id) params <- '?title=title' if(!scrape_files) { params <- paste0(params, '&scrapeFile=false') } r = sbtools_POST(url = paste0(pkg.env$url_upload_create, item$id, params), ..., body = multi_file_body(files), session = session) if (grepl('josso/signon', r$url)) { stop('Not authenticated or lack of permission to parent object\nAunthenticate with the authenticate_sb function.') } item <- as.sbitem(content(r)) return(check_upload(item, files)) } item_append_files = function(sb_id, files, ..., scrape_files = TRUE, session=current_session()){ if(length(files) > 50){ warning('Trying to attach a large number of files to a SB item. SB imposes file limits which may cause this to fail') } item <- as.sbitem(sb_id) if(is.null(item)) return(NULL) params <- paste0("?id=", item$id) if(!scrape_files) { params <- paste0(params, "&scrapeFile=false") } r = sbtools_POST(url = paste0(pkg.env$url_upload, params), ..., body = multi_file_body(files), session = session) item <- as.sbitem(content(r)) return(check_upload(item, files)) } check_upload <- function(item, files) { if(!all(basename(files) %in% sapply(item$files, function(x) x$name))) { warning("Not all files ended up in the item files. \n", "This indicates that a sciencebase extension was created with the file. \n", "set 'scrape_files' to FALSE to avoid this behavior. \n", "NOTE: 'scrape_files' will default to FALSE in a future version of sbtools.") } item } multi_file_body <- function(files){ body = list() for(i in 1:length(files)){ if(!file.exists(files[i])){ stop('This file does not exist or cannot be accessed: ', files[i]) } body[[paste0('file', i)]] = upload_file(files[i]) } names(body) = rep('file', length(body)) return(body) }
AmerPutLSM <- function (Spot=1, sigma=0.2, n=1000, m=365, Strike=1.1, r=0.06, dr=0.0, mT=1) { GBM<-matrix(NA, nrow=n, ncol=m) for(i in 1:n) { GBM[i,]<-Spot*exp(cumsum(((r-dr)*(mT/m)-0.5*sigma*sigma*(mT/m))+(sigma*(sqrt(mT/m))*rnorm(m, mean= 0, sd=1)))) } X<-ifelse(GBM<Strike,GBM,NA) CFL<-matrix(pmax(0,Strike-GBM), nrow=n, ncol=m) Xsh<-X[,-m] X2sh<-Xsh*Xsh Y1<-CFL*exp(-1*r*(mT/m)) Y2<-cbind((matrix(NA, nrow=n, ncol=m-1)), Y1[,m]) CV<-matrix(NA, nrow=n, ncol=m-1) try(for(i in (m-1):1) { reg1<-lm(Y2[,i+1]~Xsh[,i]+X2sh[,i]) CV[,i]<-(matrix(reg1$coefficients)[1,1])+((matrix(reg1$coefficients)[2,1])*Xsh[,i])+((matrix(reg1$coefficients)[3,1])*X2sh[,i]) CV[,i]<-(ifelse(is.na(CV[,i]),0,CV[,i])) Y2[,i]<-ifelse(CFL[,i]>CV[,i], Y1[,i], Y2[,i+1]*exp(-1*r*(mT/m))) } , silent = TRUE) CV<-ifelse(is.na(CV),0,CV) CVp<-cbind(CV, (matrix(0, nrow=n, ncol=1))) POF<-ifelse(CVp>CFL,0,CFL) FPOF<-firstValueRow(POF) dFPOF<-matrix(NA, nrow=n, ncol=m) for(i in 1:m) { dFPOF[,i]<-FPOF[,i]*exp(-1*mT/m*r*i) } PRICE<-mean(rowSums(dFPOF)) res<- list(price=(PRICE), Spot, Strike, sigma, n, m, r, dr, mT) class(res)<-"AmerPut" return(res) }
plot.cv.ncvreg <- function(x, log.l=TRUE, type=c("cve", "rsq", "scale", "snr", "pred", "all"), selected=TRUE, vertical.line=TRUE, col="red", ...) { type <- match.arg(type) if (type=="all") { plot(x, log.l=log.l, type="cve", selected=selected, ...) plot(x, log.l=log.l, type="rsq", selected=selected, ...) plot(x, log.l=log.l, type="snr", selected=selected, ...) if (length(x$fit$family)) { if (x$fit$family == "binomial") plot(x, log.l=log.l, type="pred", selected=selected, ...) if (x$fit$family == "gaussian") plot(x, log.l=log.l, type="scale", selected=selected, ...) } return(invisible(NULL)) } l <- x$lambda if (log.l) { l <- log(l) xlab <- expression(log(lambda)) } else xlab <- expression(lambda) L.cve <- x$cve - x$cvse U.cve <- x$cve + x$cvse if (type=="cve") { y <- x$cve L <- L.cve U <- U.cve ylab <- "Cross-validation error" } else if (type=="rsq" | type == "snr") { if (length(x$fit$family) && x$fit$family=='gaussian') { rsq <- pmin(pmax(1 - x$cve/x$null.dev, 0), 1) rsql <- pmin(pmax(1 - U.cve/x$null.dev, 0), 1) rsqu <- pmin(pmax(1 - L.cve/x$null.dev, 0), 1) } else { rsq <- pmin(pmax(1 - exp(x$cve-x$null.dev), 0), 1) rsql <- pmin(pmax(1 - exp(U.cve-x$null.dev), 0), 1) rsqu <- pmin(pmax(1 - exp(L.cve-x$null.dev), 0), 1) } if (type == "rsq") { y <- rsq L <- rsql U <- rsqu ylab <- ~R^2 } else if(type=="snr") { y <- rsq/(1-rsq) L <- rsql/(1-rsql) U <- rsqu/(1-rsqu) ylab <- "Signal-to-noise ratio" } } else if (type=="scale") { if (x$fit$family == "binomial") stop("Scale parameter for binomial family fixed at 1", call.=FALSE) y <- sqrt(x$cve) L <- sqrt(L.cve) U <- sqrt(U.cve) ylab <- ~hat(sigma) } else if (type=="pred") { y <- x$pe n <- x$fit$n CI <- sapply(y, function(x) {binom.test(x*n, n, conf.level=0.68)$conf.int}) L <- CI[1,] U <- CI[2,] ylab <- "Prediction error" } ind <- if (type=="pred") which(is.finite(l[1:length(x$pe)])) else which(is.finite(l[1:length(x$cve)])) ylim <- if (is.null(x$cvse)) range(y[ind]) else range(c(L[ind], U[ind])) aind <- intersect(ind, which((U-L)/diff(ylim) > 1e-3)) plot.args = list(x=l[ind], y=y[ind], ylim=ylim, xlab=xlab, ylab=ylab, type="n", xlim=rev(range(l[ind])), las=1) new.args = list(...) if (length(new.args)) plot.args[names(new.args)] = new.args do.call("plot", plot.args) if (vertical.line) abline(v=l[x$min], lty=2, lwd=.5) suppressWarnings(arrows(x0=l[aind], x1=l[aind], y0=L[aind], y1=U[aind], code=3, angle=90, col="gray80", length=.05)) points(l[ind], y[ind], col=col, pch=19, cex=.5) if (selected) { n.s <- predict(x$fit, lambda=x$lambda, type="nvars") axis(3, at=l, labels=n.s, tick=FALSE, line=-0.5) mtext("Variables selected", cex=0.8, line=1.5) } }
tokenizer_set <- function(conn, index, body, ...) { is_conn(conn) if (length(index) > 1) stop("Only one index allowed", call. = FALSE) url <- conn$make_url() url <- sprintf("%s/%s", url, esc(index)) tokenizer_PUT(conn, url, body, ...) } tokenizer_PUT <- function(conn, url, body, ...){ body <- check_inputs(body) out <- conn$make_conn(url, json_type(), ...)$put( body = body, encode = "json") if (out$status_code > 202) geterror(conn, out) if (conn$warn) catch_warnings(out) jsonlite::fromJSON(out$parse('UTF-8')) }
.onAttach <- function(libname, pkgname){ if (!interactive()) return() Rcmdr <- options()$Rcmdr plugins <- Rcmdr$plugins options(list(".RcmdrPlugin.orloca.l2" = T)) options(list(".RcmdrPlugin.orloca.lp" = NA)) if (!pkgname %in% plugins) { Rcmdr$plugins <- c(plugins, pkgname) options(Rcmdr=Rcmdr) if("package:Rcmdr" %in% search()) { if(!getRcmdr("autoRestart")) { closeCommander(ask=FALSE, ask.save=TRUE) Commander() } } else { Commander() } } } .RcmdrPlugin.orloca.get.norma <- function(sep=",") { l2 <- options(".RcmdrPlugin.orloca.l2") command <- "" if (l2 != TRUE) { lp <- options(".RcmdrPlugin.orloca.lp") command <- paste(sep, " lp = ", lp, sep="") } command } gettext("Planar location", domain="R-RcmdrPlugin.orloca") Rcmdr.new.loca.p <- function(){ initializeDialog(title=gettext("New loca.p", domain="R-RcmdrPlugin.orloca")) nameVar <- tclVar(gettextRcmdr("Data")) nameEntry <- tkentry(top, width="8", textvariable=nameVar) onOK <- function(){ closeDialog() name <- tclvalue(nameVar) if (!is.valid.name(name)) { errorCondition(recall=Rcmdr.new.loca.p, message=paste('"', name, '" ', gettextRcmdr("is not a valid name."), sep="")) return() } if (is.element(name, listDataSets())) { if ("no" == tclvalue(checkReplace(name, gettextRcmdr("Data set")))) { errorCondition(recall=Rcmdr.new.loca.p, message=gettextRcmdr("Introduce the name (another) for the new data.frame.")) return() } } command <- paste(name, "<- edit(data.frame(x=numeric(0), y=numeric(0), w=numeric(0)))") doItAndPrint(command) if (nrow(get(name)) == 0){ errorCondition(recall=Rcmdr.new.loca.p, message=gettextRcmdr("empty data set.")) return() } activeDataSet(name) closeDialog() tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="loca.p") tkgrid(tklabel(top, text=gettext("Name of new loca.p object", domain="R-RcmdrPlugin.orloca")), nameEntry, sticky="e") tkgrid(buttonsFrame, sticky="w", columnspan=2) tkgrid.configure(nameEntry, sticky="w") dialogSuffix(rows=2, columns=2, focus=nameEntry) } Rcmdr.rloca.p <- function(){ initializeDialog(title=gettext("New loca.p Random Instance", domain="R-RcmdrPlugin.orloca")) nameVar <- tclVar(gettextRcmdr("Data")) nameEntry <- tkentry(top, width="8", textvariable=nameVar) nVar <- tclVar("100") nEntry <- tkentry(top, width="8", textvariable=nVar) xminVar <- tclVar("0") xminEntry <- tkentry(top, width="8", textvariable=xminVar) xmaxVar <- tclVar("1") xmaxEntry <- tkentry(top, width="8", textvariable=xmaxVar) yminVar <- tclVar("0") yminEntry <- tkentry(top, width="8", textvariable=yminVar) ymaxVar <- tclVar("1") ymaxEntry <- tkentry(top, width="8", textvariable=ymaxVar) groupsVar <- tclVar("0") groupsEntry <- tkentry(top, width="8", textvariable=groupsVar) onOK <- function(){ closeDialog() name <- tclvalue(nameVar) if (!is.valid.name(name)) { errorCondition(recall=Rcmdr.rloca.p, message=paste('"', name, '" ', gettextRcmdr("is not a valid name."), sep="")) return() } if (is.element(name, listDataSets())) { if ("no" == tclvalue(checkReplace(name, gettextRcmdr("Data set")))) { errorCondition(recall=Rcmdr.rloca.p, message=gettextRcmdr("Introduce the name (another) for the new data.frame.")) return() } } n <- round(as.numeric(tclvalue(nVar))) if (is.na(n) || n <= 0){ errorCondition(recall=Rcmdr.rloca.p, message=gettext("The number of demand points must be a positive integer.", domain="R-RcmdrPlugin.orloca")) return() } xmin <- as.numeric(tclvalue(xminVar)) if (is.na(xmin)){ errorCondition(recall=Rcmdr.rloca.p, message=gettext("xmin must be a real number.", domain="R-RcmdrPlugin.orloca")) return() } xmax <- as.numeric(tclvalue(xmaxVar)) if (is.na(xmax) || xmax < xmin){ errorCondition(recall=Rcmdr.rloca.p, message=gettext("xmax must be a real number bigger that xmin.", domain="R-RcmdrPlugin.orloca")) return() } ymin <- as.numeric(tclvalue(yminVar)) if (is.na(ymin)){ errorCondition(recall=Rcmdr.rloca.p, message=gettext("ymin must be a real number.", domain="R-RcmdrPlugin.orloca")) return() } ymax <- as.numeric(tclvalue(ymaxVar)) if (is.na(ymax) || ymax < ymin){ errorCondition(recall=Rcmdr.rloca.p, message=gettext("ymax must be a real number bigger that ymin.", domain="R-RcmdrPlugin.orloca")) return() } groups <- round(as.numeric(tclvalue(groupsVar))) if (is.na(groups) || groups < 0){ errorCondition(recall=Rcmdr.rloca.p, message=gettext("groups must be a non negative integer.", domain="R-RcmdrPlugin.orloca")) return() } command <- paste(name, " <- rloca.p(n = ", n,", xmin = ", xmin,", xmax = ", xmax,", ymin = ", ymin,", ymax = ", ymax,", groups = ", groups,")", sep="") doItAndPrint(command) command <- paste(name, " <- as(", name, ", \"data.frame\")", sep="") doItAndPrint(command) activeDataSet(name) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="rloca.p") tkgrid(tklabel(top, text=gettext("Name of new loca.p object", domain="R-RcmdrPlugin.orloca")), nameEntry, sticky="e") tkgrid(tklabel(top, text=gettext("Number of demand points", domain="R-RcmdrPlugin.orloca")), nEntry, sticky="e") tkgrid(tklabel(top, text=gettext("x Minimum", domain="R-RcmdrPlugin.orloca")), xminEntry, sticky="e") tkgrid(tklabel(top, text=gettext("x Maximum", domain="R-RcmdrPlugin.orloca")), xmaxEntry, sticky="e") tkgrid(tklabel(top, text=gettext("y Minimum", domain="R-RcmdrPlugin.orloca")), yminEntry, sticky="e") tkgrid(tklabel(top, text=gettext("y Maximum", domain="R-RcmdrPlugin.orloca")), ymaxEntry, sticky="e") tkgrid(tklabel(top, text=gettext("Number of groups", domain="R-RcmdrPlugin.orloca")), groupsEntry, sticky="e") tkgrid(buttonsFrame, sticky="w", columnspan=2) tkgrid.configure(nameEntry, sticky="w") tkgrid.configure(nEntry, sticky="w") tkgrid.configure(xminEntry, sticky="w") tkgrid.configure(xmaxEntry, sticky="w") tkgrid.configure(yminEntry, sticky="w") tkgrid.configure(ymaxEntry, sticky="w") tkgrid.configure(groupsEntry, sticky="w") dialogSuffix(rows=7, columns=2, focus=nEntry) } Rcmdr.distsum <- function(){ initializeDialog(title=gettext("Evaluation of Objective Function for weighted sum Location Problem", domain="R-RcmdrPlugin.orloca")) xVar <- tclVar("0") xEntry <- tkentry(top, width="6", textvariable=xVar) yVar <- tclVar("0") yEntry <- tkentry(top, width="6", textvariable=yVar) onOK <- function(){ closeDialog() x <- as.numeric(tclvalue(xVar)) if (is.na(x)){ errorCondition(recall=Rcmdr.distsum, message=gettext("x-axis must be a number.", domain="R-RcmdrPlugin.orloca")) return() } y <- as.numeric(tclvalue(yVar)) if (is.na(y)){ errorCondition(recall=Rcmdr.distsum, message=gettext("y-axis must be a number.", domain="R-RcmdrPlugin.orloca")) return() } command <- paste("distsum(as(", ActiveDataSet(), ", \"loca.p\") , x = ", x,", y = ", y, sep="") command <- paste(command, .RcmdrPlugin.orloca.get.norma(), sep="") command <- paste(command, ") \n command <- paste(command, gettext("Weighted sum of distances", domain="R-RcmdrPlugin.orloca"), sep="") doItAndPrint(command) command <- paste("distsumgra(as(", ActiveDataSet(), ", \"loca.p\") , x = ", x,", y = ", y, sep="") command <- paste(command, .RcmdrPlugin.orloca.get.norma(), sep="") command <- paste(command, ") command <- paste(command, gettext("Gradient of the weighted sum of distances function", domain="R-RcmdrPlugin.orloca"), sep="") doItAndPrint(command) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="distsum") tkgrid(tklabel(top, text=gettext("x-axis", domain="R-RcmdrPlugin.orloca")), xEntry, sticky="e") tkgrid(tklabel(top, text=gettext("y-axis", domain="R-RcmdrPlugin.orloca")), yEntry, sticky="e") tkgrid(buttonsFrame, sticky="w", columnspan=2) tkgrid.configure(xEntry, sticky="w") tkgrid.configure(yEntry, sticky="w") dialogSuffix(rows=2, columns=2, focus=xEntry) } Rcmdr.distsummin <- function(){ initializeDialog(title=gettext("Solve weighted sum Location Problem", domain="R-RcmdrPlugin.orloca")) xVar <- tclVar("0") xEntry <- tkentry(top, width="6", textvariable=xVar) yVar <- tclVar("0") yEntry <- tkentry(top, width="6", textvariable=yVar) nVar <- tclVar("100") nEntry <- tkentry(top, width="6", textvariable=nVar) epsVar <- tclVar("0.001") epsEntry <- tkentry(top, width="6", textvariable=epsVar) gettext("Gradient", domain="R-RcmdrPlugin.orloca") gettext("Search method", domain="R-RcmdrPlugin.orloca") radioButtons(name="algorithm", buttons=c("Weiszfeld", "gradient", "ucminf", "NelderMead", "BFGS", "CG", "LBFGSB", "SANN"), values=c("Weiszfeld", "gradient", "ucminf", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"), initialValue="Weiszfeld", labels=gettext(c("Weiszfeld", "gradient", "ucminf", "Nelder-Mead", "BFGS", "CG", "L-BFGS-B", "SANN"), domain="R-RcmdrPlugin.orloca"), title=gettext("Select algorithm", domain="R-RcmdrPlugin.orloca")) onOK <- function(){ closeDialog() x <- as.numeric(tclvalue(xVar)) if (is.na(x)){ errorCondition(recall=Rcmdr.distsummin, message=gettext("x-axis must be a number.", domain="R-RcmdrPlugin.orloca")) return() } y <- as.numeric(tclvalue(yVar)) if (is.na(y)){ errorCondition(recall=Rcmdr.distsummin, message=gettext("y-axis must be a number.", domain="R-RcmdrPlugin.orloca")) return() } n <- as.numeric(tclvalue(nVar)) if (is.na(n) || n <= 0){ errorCondition(recall=Rcmdr.distsummin, message=gettext("The maximum number of iterations must be a positive integer", domain="R-RcmdrPlugin.orloca")) return() } eps <- as.numeric(tclvalue(epsVar)) if (is.na(eps) || eps <= 0){ errorCondition(recall=Rcmdr.distsummin, message=gettext("The norm of the gradient must be positive.", domain="R-RcmdrPlugin.orloca")) return() } algorithm <- tclvalue(algorithmVariable) command <- paste(".sol <- distsummin(as(", ActiveDataSet(), ", \"loca.p\") , x = ", x,", y = ", y,", eps =", eps, ", algorithm =\"", algorithm, "\"", sep="") command <- paste(command, .RcmdrPlugin.orloca.get.norma(), " ) doItAndPrint(command) doItAndPrint(paste(".sol command <- paste("distsum(as(", ActiveDataSet(), ", \"loca.p\") , x =", .sol[1], ", y = ", .sol[2], wep="") command <- paste(command, .RcmdrPlugin.orloca.get.norma(), sep="") command <- paste(command, ") doItAndPrint(command) doItAndPrint("remove(.sol)") tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="distsummin") tkgrid(tklabel(top, text=gettext("Maximum number of iterations", domain="R-RcmdrPlugin.orloca")), nEntry, sticky="w") tkgrid.configure(nEntry, sticky="e") tkgrid(tklabel(top, text=gettext("x-axis", domain="R-RcmdrPlugin.orloca")), xEntry, sticky="w") tkgrid.configure(xEntry, sticky="e") tkgrid(tklabel(top, text=gettext("y-axis", domain="R-RcmdrPlugin.orloca")), yEntry, sticky="w") tkgrid.configure(yEntry, sticky="e") tkgrid(tklabel(top, text=gettext("Maximum gradient norm", domain="R-RcmdrPlugin.orloca")), epsEntry, sticky="w") tkgrid.configure(epsEntry, sticky="e") tkgrid.configure(algorithmFrame, sticky="w") tkgrid(algorithmFrame, sticky="w", columnspan=2) tkgrid.configure(buttonsFrame, sticky="w") tkgrid(buttonsFrame, sticky="w", columnspan=2) dialogSuffix(rows=20, columns=2, focus=xEntry) } Rcmdr.help.orloca <- function(){ gettext("Help about orloca", domain="R-RcmdrPlugin.orloca") command <- paste("help(\"", gettext("orloca", domain="R-orloca"), sep="") command <- paste(command, "\")", sep="") doItAndPrint(command) invisible(NULL) } Rcmdr.help.orloca.vignettes <- function(){ gettext("Planar Location with orloca", domain="R-RcmdrPlugin.orloca") command <- paste("vignette(\"", gettext("planarlocation", domain="R-RcmdrPlugin.orloca"), sep="") command <- paste(command, "\")", sep="") doItAndPrint(command) invisible(NULL) } Rcmdr.help.RcmdrPlugin.orloca <- function(){ gettext("Help about RcmdrPlugin.orloca", domain="R-RcmdrPlugin.orloca") command <- paste("help(\"", gettext("RcmdrPlugin.orloca", domain="R-RcmdrPlugin.orloca"), sep="") command <- paste(command, "\")", sep="") doItAndPrint(command) invisible(NULL) } Rcmdr.help.RcmdrPlugin.orloca.vignettes <- function(){ gettext("Planar Location with Rcmdr", domain="R-RcmdrPlugin.orloca") command <- paste("vignette(\"", gettext("planarlocationRcmdr", domain="R-RcmdrPlugin.orloca"), sep="") command <- paste(command, "\")", sep="") doItAndPrint(command) invisible(NULL) } Rcmdr.summary.loca.p <- function(){ gettext("Summary", domain="R-RcmdrPlugin.orloca") command <- paste("summary(as(", ActiveDataSet(), ", \"loca.p\"))", sep="") doItAndPrint(command) invisible(NULL) } activeDataSetLocaP <- function() activeDataSetP() && validObject(new("loca.p",x=get(ActiveDataSet())$x, y=get(ActiveDataSet())$y, w=get(ActiveDataSet())$w)) activeDataSetLocaP <- function() { if (activeDataSetP()) { .activeDataSet <- get(ActiveDataSet()) (nrow(.activeDataSet)==length(.activeDataSet$x)) && (nrow(.activeDataSet)==length(.activeDataSet$y)) && (nrow(.activeDataSet)==length(.activeDataSet$w)) && (sum(is.na(.activeDataSet$x))+sum(is.na(.activeDataSet$y)+sum(is.na(.activeDataSet$w)))==0) } else FALSE } Rcmdr.orloca.norm <- function(){ gettext("Show/Set norm", domain="R-RcmdrPlugin.orloca") l2 <- options(".RcmdrPlugin.orloca.l2") if (l2 == TRUE) { lp <- "" iv <- "l2" } else { lp <- as.character(options(".RcmdrPlugin.orloca.lp")) iv <- 'lp' } initializeDialog(title=gettext("Selection of the norm", domain="R-RcmdrPlugin.orloca")) radioButtons(name="norma", title= gettext("Select the norm", domain="R-RcmdrPlugin.orloca"), buttons=c("l2", "lp"), labels=gettext(c("l_2 ", "l_p "), domain="R-RcmdrPlugin.orloca"), values=c("l2", "lp"), initialValue=iv) nameVar <- tclVar(lp) nameEntry <- tkentry(top, width="8", textvariable=nameVar) onOK <- function(){ closeDialog() name <- as.numeric(tclvalue(nameVar)) on <- tclvalue(normaVariable) if (identical(on, 'l2')) options(list(".RcmdrPlugin.orloca.l2" = T)) else if (name >= 1) { options(list(".RcmdrPlugin.orloca.l2" = F)) options(list(".RcmdrPlugin.orloca.lp" = name)) tkfocus(CommanderWindow()) } else { errorCondition(recall=Rcmdr.orloca.norm, message=paste('"', name, '" ', gettext("is not a valid l_p norm.", domain="R-RcmdrPlugin.orloca"), sep="")) } return() } OKCancelHelp(helpSubject="distsum") tkgrid(normaFrame, sticky="w") tkgrid(tklabel(top, text=gettext("p = ", domain="R-RcmdrPlugin.orloca")), nameEntry, sticky="e") tkgrid(buttonsFrame, sticky="w", columnspan=2) tkgrid.configure(nameEntry, sticky="w") dialogSuffix(rows=3, columns=2, focus=normaFrame) }
RTIGER = function(expDesign, rigidity=NULL, outputdir=NULL, nstates = 3, seqlengths = NULL, eps=0.01, max.iter=50, trace = FALSE, tiles = 4e5, all = TRUE, random = FALSE, specific = FALSE, nsamples = 20, post.processing = TRUE, save.results = FALSE, verbose = TRUE){ if(any(seqlengths < tiles)) stop("Your tiling distance is larger than some of your chromosomes. Reduce the tiling parameter.\n") if(is.null(rigidity)) stop("Rigidity must be specified. This is a data specific parameter. Check vignette.\n") if(!is.integer(rigidity)) rigidity = as.integer(rigidity) if(is.null(outputdir) & save.results ) stop("Outputdir must be specified. The results are automatichally saved inside the folder.\n") if(!is.null(outputdir)) if(!file.exists(outputdir)) if(verbose) cat(paste0("The new directory: ", outputdir, " will be created.\n")) if(!is.integer(nstates)) nstates = as.integer(nstates) if(is.null(seqlengths)) stop("seqlengths are necessary to create the Genomic Ranges object to store the data. Please, introduce the chromosome lengths of your organism.\n") if(!is.integer(max.iter)) max.iter = as.integer(max.iter) if(save.results){ requireNamespace("Gviz") requireNamespace("rtracklayer") } if(verbose) cat("Loading data and generating RTIGER object.\n") newn = paste("Sample", 1:nrow(expDesign), sep = "_") names(newn) = expDesign$name expDesign$OName = expDesign$name expDesign$name = newn myDat = generateObject(experimentDesign = expDesign,nstates = nstates,rigidity = rigidity, seqlengths = seqlengths, verbose = verbose) info = myDat@info obs.l = sapply(myDat@matobs, function(x) sapply(x, ncol)) if(any(obs.l < 2*rigidity)) stop("Some of your observations is smaller than 2 times rigidity. Decrease your rigidity value.") if(verbose) cat("\n\nFitting the parameters and Viterbi decoding. \n") if(verbose) cat("post processing value is:", post.processing,"\n") myDat = fit(rtigerobj = myDat, max.iter = max.iter, eps = eps, trace = trace, all = all, random = random, specific = specific, nsamples = nsamples, post.processing = post.processing ) if(all(info$sample_names == expDesign$name)) info$sample_names = expDesign$OName myDat@info$expDesign = expDesign if(verbose) cat("Number of iterations run: ", [email protected], "\n\n") if([email protected] == max.iter) cat("--------------------------\n Warning!! The maximum number of iterations were needed without reaching convergence.\n We recommend to increase the number of iterations. \n\n--------------------------\n\n") if(save.results){ if(!dir.exists(outputdir)) dir.create(outputdir) if(verbose) cat("Plotting samples Genotypes.\n") for(samp in info$sample_names){ sampdir = file.path(outputdir, samp) myx = paste0("GenotypePlot_",samp, ".pdf") if(!dir.exists(sampdir)) dir.create(sampdir) on = file.path(sampdir, myx) pdf(on) for(chr in info$part_names){ ren = newn[as.character(samp)] plotGenotype(myDat, ren, chr, ratio = TRUE, window = 10) } dev.off() } if(verbose) cat("PLotting CO number per chromosome. \n") myf = file.path(outputdir, "COs-per-Chromosome.pdf") plotCOs(myDat, myf) cos = calcCOnumber(myDat) cos = melt(cos) rev.newn = myDat@info$expDesign$OName names(rev.newn) = myDat@info$expDesign$name colnames(cos) = c("Chr", "Sample", "COs") cos$Sample = rev.newn[cos$Sample] myf = file.path(outputdir, "CO-count-perSample.pdf") pdf(myf) p <- ggplot(data=cos, aes(x=Sample, y=COs)) + geom_bar(stat="identity") + theme(axis.text.x = element_text(angle = 90, vjust = 0.5, hjust=1)) + ylab("Number of COs")+ theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank(), panel.background = element_blank(), axis.line = element_line(colour = "black")) print(p) dev.off() if(verbose) cat("Creating bed and IGV output formats.\n") for(samp in info$sample_names){ export2IGV(myDat, sample = samp, dir = outputdir, ratio = TRUE, newn = newn) } if(nstates < 4){ if(verbose) cat("Plotting goodness of fit.\n") vit = myDat@Viterbi if(length(vit) >= 10)vit = vit[sample(1:length(vit), ceiling(.1*length(vit)))] hetrat = unlist(lapply(vit, function(x) x$P1.Allele.Count[x$Viterbi == "het"]/x$total[x$Viterbi == "het"] * 100)) patrat = unlist(lapply(vit, function(x) x$P1.Allele.Count[x$Viterbi == "pat"]/x$total[x$Viterbi == "pat"]* 100)) matrat = unlist(lapply(vit, function(x) x$P1.Allele.Count[x$Viterbi == "mat"]/x$total[x$Viterbi == "mat"]* 100)) if(nstates == 3 & any(c(length(hetrat), length(patrat), length(matrat)) == 0)){ if(verbose) cat("Your data probably comes form a back-crossed population. Please fit the model with nstates = 2.\n The plot Goodness-Of-Fit.pdf might be erroneous.") myl = list(hetrat, patrat, matrat) myl = myl[which(c(length(hetrat), length(patrat), length(matrat)) != 0)] hetrat = myl[[1]] patrat = myl[[2]] } if(nstates < 4){ alphas = as.vector(myDat@params$paraBetaAlpha) names(alphas) = rownames(myDat@params$paraBetaAlpha) betas = as.vector(myDat@params$paraBetaBeta) names(betas) = rownames(myDat@params$paraBetaBeta) x = 0:100 y = NULL ecolors = c("red","violet","blue") for (e_state in names(alphas)) { y = cbind(y,dbb(x,100,alphas[e_state],betas[e_state])) } colnames(y) = names(alphas) myf = file.path(outputdir, "Goodness-Of-Fit.pdf") pdf(myf) if(length(patrat) > 0){ hist(patrat, probability = TRUE, col = rgb(1,0,0,0.25), main = "P1 homozygous states", xlab = "Allele ratio", xlim = c(0,100)) points(x,y[,"pat"],type="l",col=ecolors[1]) legend("topleft",c("Fitted P1 distribution"), lty = 1, col = c("red"), cex = .7) } if(length(hetrat) > 0){ hist(hetrat, probability = TRUE, col = rgb( 0.744,0.34,0.844,0.25), main = "P1 homozygous states", xlab = "Allele ratio", xlim = c(0,100)) points(x,y[,"het"],type="l",col=ecolors[2]) legend("topleft",c( "Fitted Heterozygous\n distribution"), lty = 1, col = c( "violet"), cex = .7) } if(length(matrat) > 0){ hist(matrat, probability = TRUE, col = rgb(0,0,1,0.25), main = "P1 homozygous states", xlab = "Allele ratio", xlim = c(0,100)) points(x,y[,"mat"],type="l",col=ecolors[3]) legend("topleft",c("Fitted P2 distribution"), lty = 1, col = c("blue"), cex = .7) } dev.off() } } myx = lapply(vit, function(samp){ myp = lapply(seqlevels(samp), function(chr){ myn = samp[seqnames(samp) == chr] myn = Vit2GrangesGen(myn, "Viterbi") seqlengths(myn) = seqlengths(samp) return(myn) }) names(myp) = seqlevels(samp) return(myp) }) myf = file.path(outputdir, "GenomicFrequencies.pdf") plotFreqgen(myx = myx, tiles = tiles, file = myf, info = info, groups = NULL, verbose = verbose) } return(myDat) }
fit.ns <- function(points, lims, R, disp = "gaussian", child.dist = "pois", child.info = NULL, sibling.list = NULL, edge.correction = "pbc", start = NULL, bounds = NULL, use.bobyqa = FALSE, trace = FALSE){ classes.list <- setup.classes(fit = TRUE, family = "ns", family.info = list(child.dist = child.dist, child.info = child.info, disp = disp, sibling.list = sibling.list), fit.info = list(edge.correction = edge.correction, use.bobyqa = use.bobyqa)) obj <- create.obj(classes = classes.list$classes, points = points, lims = lims, R = R, child.list = classes.list$child.list, parent.locs = NULL, sibling.list = sibling.list, trace = trace, start = start, bounds = bounds) obj$fit() obj } sim.ns <- function(pars, lims, disp = "gaussian", child.dist = "pois", parents = NULL, child.info = NULL){ classes.list <- setup.classes(fit = FALSE, family = "ns", family.info = list(child.dist = child.dist, child.info = child.info, parent.locs = parents, disp = disp), fit.info = NULL) obj <- create.obj(classes = classes.list$classes, points = NULL, lims = lims, R = NULL, child.list = classes.list$child.list, parent.locs = classes.list$parent.locs, sibling.list = NULL, trace = NULL, start = NULL, bounds = NULL) obj$simulate(pars) } fit.void <- function(points, lims, R, edge.correction = "pbc", start = NULL, bounds = NULL, use.bobyqa = FALSE, trace = FALSE){ classes.list <- setup.classes(fit = TRUE, family = "void", family.info = NULL, fit.info = list(edge.correction = edge.correction, use.bobyqa = use.bobyqa)) obj <- create.obj(classes = classes.list$classes, points = points, lims = lims, R = R, child.list = NULL, parent.locs = NULL, sibling.list = NULL, trace = trace, start = start, bounds = bounds) obj$fit() obj } sim.void <- function(pars, lims, parents = NULL){ classes.list <- setup.classes(fit = FALSE, family = "void", family.info = list(parent.locs = parents), fit.info = NULL) obj <- create.obj(classes = classes.list$classes, points = NULL, lims = lims, R = NULL, child.list = NULL, parent.locs = classes.list$parent.locs, sibling.list = NULL, trace = NULL, start = NULL, bounds = NULL) obj$simulate(pars) } setup.classes <- function(fit, family, family.info, fit.info){ use.fit.class <- FALSE use.nlminb.class <- FALSE use.bobyqa.class <- FALSE use.pbc.class <- FALSE use.buffer.class <- FALSE use.ns.class <- FALSE use.sibling.class <- FALSE use.poischild.class <- FALSE use.binomchild.class <- FALSE use.twocamerachild.class <- FALSE child.list <- NULL parent.locs <- NULL use.thomas.class <- FALSE use.matern.class <- FALSE use.void.class <- FALSE use.totaldeletion.class <- FALSE use.giveparent.class <- FALSE if (fit){ use.fit.class <- TRUE if (fit.info$use.bobyqa){ use.bobyqa.class <- TRUE } else { use.nlminb.class <- TRUE } if (fit.info$edge.correction == "pbc"){ use.pbc.class <- TRUE } else if (fit.info$edge.correction == "buffer"){ use.buffer.class <- TRUE } else { stop("Edge correction method not recognised; use either 'pbc' or 'buffer'.") } } if (family == "ns"){ use.ns.class <- TRUE if (!is.null(family.info$sibling.list)){ use.sibling.class <- TRUE } if (family.info$child.dist == "pois"){ use.poischild.class <- TRUE } else if (substr(family.info$child.dist, 1, 5) == "binom"){ use.binomchild.class <- TRUE n <- as.numeric(substr(family.info$child.dist, 6, nchar(family.info$child.dist))) child.list <- list(size = n) } else if (family.info$child.dist == "twocamera"){ use.twocamerachild.class <- TRUE child.list <- list(twocamera.w = family.info$child.info$w, twocamera.b = family.info$child.info$b, twocamera.l = family.info$child.info$l, twocamera.tau = family.info$child.info$tau) } else { stop("Only 'pois', 'binomx', or 'twocamera' can currently be used for 'child.dist'.") } if (family.info$disp == "gaussian"){ use.thomas.class <- TRUE } else if (family.info$disp == "uniform"){ use.matern.class <- TRUE } else { stop("Dispersion type not recognised; use either 'gaussian' or 'uniform'.") } } else if (family == "void"){ use.void.class <- TRUE use.totaldeletion.class <- TRUE } if (!is.null(family.info$parent.locs)){ use.giveparent.class <- TRUE parent.locs <- family.info$parent.locs } classes <- c("fit"[use.fit.class], "bobyqa"[use.bobyqa.class], "nlminb"[use.nlminb.class], "pbc"[use.pbc.class], "buffer"[use.buffer.class], "ns"[use.ns.class], "sibling"[use.sibling.class], "poischild"[use.poischild.class], "binomchild"[use.binomchild.class], "twocamerachild"[use.twocamerachild.class], "thomas"[use.thomas.class], "matern"[use.matern.class], "void"[use.void.class], "totaldeletion"[use.totaldeletion.class], "giveparent"[use.giveparent.class]) list(classes = classes, child.list = child.list, parent.locs = parent.locs) } fit.twocamera <- function(points, cameras = NULL, d, w, b, l, tau, R, edge.correction = "pbc", start = NULL, bounds = NULL, trace = FALSE){ if (is.vector(points)){ points <- matrix(points, ncol = 1) } if (is.null(cameras)){ sibling.list <- NULL } else { sibling.list <- siblings.twocamera(cameras) } if (is.null(bounds)){ bounds <- list(sigma = c(0, min(R, b/3))) } else if (!any(names(bounds) == "sigma")){ bounds[["sigma"]] <- c(0, min(R, b/3)) } fit.ns(points = points, lims = rbind(c(0, d)), R = R, child.dist = "twocamera", child.info = list(w = w, b = b, l = l, tau = tau), sibling.list = sibling.list, edge.correction = edge.correction, start = start, bounds = bounds, trace = trace) } sim.twocamera <- function(pars, d, w, b, l, tau, parents = NULL){ if (!is.null(parents)){ parents <- matrix(parents, ncol = 1) } family.info <- list(child.dist = "twocamera", child.info = list(w = w, b = b, l = l, tau = tau), parent.locs = parents, disp = "gaussian") classes.list <- setup.classes(fit = FALSE, family = "ns", family.info = family.info) obj <- create.obj(classes = classes.list$classes, points = NULL, lims = rbind(c(0, d)), R = NULL, child.list = classes.list$child.list, parent.locs = classes.list$parent.locs, sibling.list = NULL, trace = NULL, bounds = NULL) obj$simulate(pars) } boot.palm <- function(fit, N, prog = TRUE){ fit$boot(N, prog) fit }
overly<- function(veg,Plot.no,y,sint,...) UseMethod("overly") overly.default<- function(veg,Plot.no,y,sint,...) { o.overly<- overly2(veg,Plot.no,y,sint) o.overly$call<- match.call() cat("Call:\n") class(o.overly) <- "overly" print(o.overly$call) o.overly nt<- o.overly$n.tsteps cat("Number of time steps in new time series: ",nt,"\n") cat("Time span of the new time series: 0 -",o.overly$tsteps[nt],"\n") o.overly } plot.overly<- function(x,...,colors=NULL,l.widths=NULL) { o.overly<- x tree<- o.overly$tree out<- pco(o.overly$d.mat,k=2) plot(out$points[,1],out$points[,2],xlab="PCOA axis 1",ylab="PCOA axis 2",asp=1,cex.axis=0.7,cex.lab=0.7,mgp=c(1.8,0.4,0)) abline(h=0,v=0,lwd=1.0,col="gray") lines(tree,ord=out,display="sites",col="lightblue",lwd=1.5) pos.corr<-c(3,1,1,1,3,1,2,3,3,3,3,3,3,3,4,3,2,2,1,4,3,3,3,3,3,3,3,4,3,3,3, 3,3,3,4,3,3,3,2,3,3,2,3,3,3,4,3,3,3,2,2,3,3,4,3,2,4,3,3) text(out$points[,1],out$points[,2],o.overly$plot.labels,pos=pos.corr,cex=0.6) veg<- o.overly$vegraw nspec<- ncol(veg) nt<- ncol(o.overly$d.mat) range<- o.overly$n.tsteps plot(c(0,range*1.05),c(0,nt),type="n",xlab="Time step no.",ylab="Time series",cex.lab=0.7) for (i in 1:nt) { lines(c(o.overly$linex1[i],o.overly$linex2[i]),c(i,i),lwd=2.5,col="gray") text(o.overly$linex2[i],i,o.overly$ltext[i],pos=4,cex=0.6) } abline(v=0,lwd=1.0,col="gray") defwidth<- is.null(l.widths) if(defwidth == TRUE) ll.widths<- seq(0.5,4.0,0.5) if(defwidth != TRUE) ll.widths<- l.widths defcol<- is.null(colors) if(defcol == TRUE) c.colors<- c("darkred","red1","darkorange","gold","lightgreen","darkolivegreen4") if(defcol != TRUE) c.colors<- colors sint<- o.overly$sint M<- o.overly$tser.data vegtypes<- o.overly$vegtypes timescal<- seq(0,(range-1)*sint,sint) par(mfrow=c(1,1),omi=c(2,0,0,0)) plot(c(0,range*sint),c(0,max(M)),xlab="Time units",ylab="Cover scale",type="n") for(i in 1:nspec) lines(timescal,M[,i],col=c.colors[i],lwd=ll.widths[i],lty=1) legend("topleft",vegtypes,lty=1,lwd=ll.widths,col=c.colors,ncol=2,bty="n",cex=0.8,text.font=3) } overly2<- function(veg,Plot.no,y,sint) { vegtypes<- names(veg) veg<- veg^y veg<- veg[order(Plot.no),] ser<- as.integer(table(Plot.no)) lev<- levels(as.factor(Plot.no)) nt<- length(ser) dser<- rep(0,nt*nt) dim(dser)<-c(nt,nt) mser<- rep(0,nt*nt*2) dim(mser)<-c(nt,nt,2) kids<-rep(0,nt) jj<-rep(0,2) drel<- as.matrix(dist(veg)) nspec <- length(veg[1,]) i1<- 0 ; i2<- 0 for (i in 1:nt){ i1<- i2+1 i2<- i2+ser[i] j1<- 0 ; j2<- 0 for (j in 1:nt) { j1<- j2+1 j2<- j2+ser[j] if (i != j) { m<- min(drel[i1:i2,j1:j2]) jj<- which(drel[i1:i2,j1:j2] == m) dser[j,i]<- m mser[j,i,2]<- ceiling(jj[1]/ser[i]) mser[j,i,1]<- jj[1]-((ser[i]*(mser[j,i,2]-1))) } } } out <- pco(dser,k=2) tree<- spantree(dser) kids[2:nt]<- tree$kid ; kids[1]<-kids[2] parents<- c(1:nt) merged<- rep(0,nt) ; merged[1]<- 1 shift<- rep(0,nt) shift[parents[2]]<- mser[kids[2],parents[2],1]-mser[kids[2],parents[2],2]+shift[kids[2]] merged[2]<- 1 while(sum(merged) < nt) { for (i in 2:nt) { if (merged[kids[i]]==1 & merged[parents[i]]==0) { shift[parents[i]]<- mser[kids[i],parents[i],2]-mser[kids[i],parents[i],1]+shift[kids[i]] merged[parents[i]]<- 1 } } } shift<- shift-min(shift) range<-max(shift+ser) veg<- veg^(1/y) linex1<- rep(0,nt) linex2<- rep(0,nt) ltext<- rep("x",nt) is<- 1 count.null<- rep(0,range) count.temp<- count.null count.sum<- count.null nrel<- nrow(veg) itim<- rep(0,nrel) is<-1 for(i in 1:nt) { l<- is:(is+ser[i]-1) m<- (shift[i]+1):(shift[i]+ser[i]) itim[l]<- m is<-is+ser[i] count.temp[(shift[i]+1):(shift[i]+ser[i])]<- rep(1,ser[i]) linex1[i]<- shift[i]+1 linex2[i]<- shift[i]+ser[i] ltext[i]<- lev[i] count.sum<- count.sum+count.temp count.temp<- count.null } agg<- aggregate(veg,list(itim),sum) S<- agg[,-1] C<- count.sum M<- S/C timescal<- seq(0,(range-1)*sint,sint) M<- as.data.frame(M) colnames(M) <- vegtypes rownames(M) <- as.character(seq(1,range,1)) overly<- list(plot.labels=levels(Plot.no),n.tsteps=range,tsteps=timescal,tser.data=M,ord.scores=out$points,d.mat=dser,tree=tree,vegraw=veg,linex1=linex1,linex2=linex2,ltext=ltext,sint=sint,vegtypes=vegtypes) }
expected <- eval(parse(text="structure(numeric(0), .Dim = c(20L, 0L), .Dimnames = list(c(\"ant\", \"bee\", \"cat\", \"cpl\", \"chi\", \"cow\", \"duc\", \"eag\", \"ele\", \"fly\", \"fro\", \"her\", \"lio\", \"liz\", \"lob\", \"man\", \"rab\", \"sal\", \"spi\", \"wha\"), NULL))")); test(id=0, code={ argv <- eval(parse(text="list(structure(numeric(0), .Dim = c(20L, 0L), .Dimnames = list(c(\"ant\", \"bee\", \"cat\", \"cpl\", \"chi\", \"cow\", \"duc\", \"eag\", \"ele\", \"fly\", \"fro\", \"her\", \"lio\", \"liz\", \"lob\", \"man\", \"rab\", \"sal\", \"spi\", \"wha\"), NULL)))")); do.call(`log10`, argv); }, o=expected);
info.design <- function(seqs = NA) { sequences <- length(seqs) if (sequences < 2) stop("At least 2 sequences required.") if (!is.character(seqs)) stop("Sequences must be given as strings, not numbers.") if (sequences != length(unique(seqs))) stop(paste("The", sequences,"sequences must be unique.")) periods <- unique(nchar(seqs)) if (periods < 2) stop("Not a crossover design.") if (periods == 2 & sequences == 2) { stop("Not a replicate design.") } if (length(periods) > 1) stop("Each sequence must have the same number of periods.") reordered <- NA if (periods == 4 & sequences == 4 & is.na(reordered[1])) { if (sum(seqs %in% c("RTRT", "RTTR", "TRRT", "TRTR")) == 4) { reordered <- seqs[order(match(seqs, c("TRTR", "RTRT", "TRRT", "RTTR")))] } if (sum(seqs %in% c("RRTT", "RTTR", "TRRT", "TTRR")) == 4 & is.na(reordered[1])) { reordered <- seqs[order(match(seqs, c("TRRT", "RTTR", "TTRR", "RRTT")))] } if (is.na(reordered[1])) { message("Untested design.") reordered <- rev(seqs) } design <- "full" } if (periods == 4 & sequences == 2 & is.na(reordered[1])) { if (sum(seqs %in% c("RTRT", "TRTR")) == 2 & is.na(reordered[1])) { reordered <- seqs[order(match(seqs, c("TRTR", "RTRT")))] } if (sum(seqs %in% c("RTTR", "TRRT")) == 2 & is.na(reordered[1])) { reordered <- seqs[order(match(seqs, c("TRRT", "RTTR")))] } if (sum(seqs %in% c("TTRR", "RRTT")) == 2 & is.na(reordered[1])) { reordered <- seqs[order(match(seqs, c("TTRR", "RRTT")))] } if (is.na(reordered[1])) { message("Untested design.") reordered <- rev(seqs) } design <- "full" } if (periods == 3 & sequences == 2 & is.na(reordered[1])) { if (sum(seqs %in% c("RTR", "TRT")) == 2 & is.na(reordered[1])) { reordered <- seqs[order(match(seqs, c("TRT", "RTR")))] design <- "full" } if (sum(seqs %in% c("RTT", "TRR")) == 2 & is.na(reordered[1])) { reordered <- seqs[order(match(seqs, c("TRR", "RTT")))] design <- "full" } if (sum(seqs %in% c("RTR", "TRR")) == 2 & is.na(reordered[1])) { reordered <- seqs[order(match(seqs, c("TRR", "RTR")))] design <- "partial" } if (is.na(reordered[1])) { message("Untested design.") reordered <- rev(seqs) design <- "partial" } } if (periods == 3 & sequences == 3 & is.na(reordered[1])) { if (sum(seqs %in% c("RRT", "RTR", "TRR")) == 3 & is.na(reordered[1])) { reordered <- seqs[order(match(seqs, c("TRR", "RTR", "RRT")))] } if (is.na(reordered[1])) { message("Untested design.") reordered <- rev(seqs) } design <- "partial" } if (periods == 2 & sequences == 4 & is.na(reordered[1])) { if (sum(seqs %in% c("RR", "RT", "TR", "TT")) == 4 & is.na(reordered[1])) { reordered <- seqs[order(match(seqs, c("TR", "RT", "TT", "RR")))] } if (is.na(reordered[1])) { message("Untested design.") reordered <- rev(seqs) } design <- "full" } design <- list(reordered, paste0(reordered, collapse="|"), sequences, periods, design) names(design) <- c("reordered", "type", "sequences", "periods", "design") return(design) }
expand_ar <- function(ar, sar, s){ x <- polynom(c(0,1)) phi <- polynom(c(1, -ar)) sphi <- polynom(c(1, -sar))(x^s) coef(phi * sphi) } poly_x <- polynom(c(0,1)) poly_delta <- polynom(c(1, -1)) .sarima_env <- function(){ .process_fixed <- function(x, fixed = NULL){ if(is.null(x)) stop("'x' must have a value here") xlen <- length(x) if(is.null(fixed)) rep(FALSE, xlen) else if(isTRUE(fixed)) rep(TRUE, xlen) else if(is.logical(fixed)){ if(length(fixed) == 1) rep(fixed, xlen) else if(length(fixed) == xlen) fixed else stop("if 'fixed' is logical, its length must be equal to one or the order.") }else if(is.numeric(fixed)){ if(!is.integer(fixed) && any(round(fixed) != fixed)) stop("if numeric, 'fixed' must contain integer numbers") if(any(fixed <= 0) || any(fixed > xlen)) stop("if numeric, 'fixed' must contain integers between 1 and 'order'") res <- rep(FALSE, xlen) res[fixed] <- TRUE res }else{ stop("unsupported type of 'fixed'") } } .process_atanh.tr <- function(x, transf = NULL){ if(is.null(x)) stop("'x' must have a value here") xlen <- length(x) if(is.null(transf)) rep(FALSE, xlen) else if(isTRUE(transf)) rep(TRUE, xlen) else if(is.logical(transf)){ if(length(transf) == 1) rep(transf, xlen) else if(length(transf) == xlen) transf else stop("if 'transf' is logical, its length must be equal to one or the order.") }else if(is.numeric(transf)){ if(!is.integer(transf) && any(round(transf) != transf)) stop("if numeric, 'transf' must contain integer numbers") if(any(transf <= 0) || any(transf > xlen)) stop("if numeric, 'transf' must contain integers between 1 and 'order'") res <- rep(FALSE, xlen) res[transf] <- TRUE res }else{ stop("unsupported type of 'transf'") } } .set_coef <- function(order, coef = NULL, fixed = NULL, nonfixed = NULL, atanh.tr = NULL, ...){ wrk <- NULL coef.type <- "coef" if(!is.null(order)) wrk <- rep(NA_real_, order) if(!missing(coef) && !is.null(coef)){ if(is.null(wrk)) wrk <- coef else{ if(length(coef) != length(wrk)) stop("if given, 'coef' must have length equal to 'order'") wrk[seq_along(coef)] <- coef } } a <- .process_fixed(wrk, fixed) b <- .process_atanh.tr(wrk, atanh.tr) if(!missing(nonfixed) || !is.null(nonfixed)){ bb <- .process_fixed(wrk, nonfixed) a <- a & !bb } res <- wrk attr(res, "fixed") <- a attr(res, "atanh.tr") <- b dots <- list(...) for(at in names(dots)) attr(res, at) <- dots[[at]] res } ar <- function(p = 0, ar, sign = "-", atanh.tr = TRUE, ...){ coef <- .set_coef(p, ar, sign = sign, dispname = "ar", atanh.tr = atanh.tr, ...) list(name = "ar", p = p, coef = coef) } ma <- function(q = 0, ma, sign = "+", atanh.tr = TRUE, ...){ coef <- .set_coef(q, ma, sign = sign, dispname = "ma", atanh.tr = atanh.tr, ...) list(name = "ma", q = q, coef = coef) } s <- function(...){ dots <- c(...) if(length(dots) != 1) stop("currently only one argument is supported") p <- dots[1] - 1 coef <- .set_coef(p, rep(1, p), sign = "+", fixed = TRUE, operator = TRUE, dispname = "s") list(name = "s", p = p, coef = coef) } i <- function(d, ...){ coef <- .set_coef(1, 1, sign = "-", fixed = TRUE, d = d, operator = TRUE, dispname = "i", ...) list(name = "i", d = d, p = 1, coef = coef) } u <- function(u, fixed = TRUE, operator = all(fixed), ...){ f <- function(x){ if(is.complex(x)) -2*cos(Arg(x)) else -2 * cospi(2*x) } co <- sapply(u, f) coef <- lapply(co, function(x) .set_coef(2, c(x, 1), sign = "+", fixed = fixed, operator = operator, dispname = "su") ) list(name = "u", u = u, coef = coef) } uar <- function(p = 2, parcor, sign = "-", atanh.tr = TRUE, fixed = NULL, ...){ if(p < 2) stop("'p' must be greater than 2 for unit AR polynomials") if(abs(parcor[p]) != 1) stop("the last coefficient supplied should be +1 or -1") if(is.null(fixed)){ fixed <- rep(FALSE, p) if(p > 0) fixed[p] <- TRUE } coef <- .set_coef(p, parcor, sign = sign, dispname = "uar", atanh.tr = atanh.tr, fixed = fixed, ...) list(name = "uar", p = p, coef = coef) } sar <- function(s, p = 0, ar, sign = "-", atanh.tr = TRUE, ...){ coef <- .set_coef(p, ar, sign = sign, nseasons = s, dispname = "sar", atanh.tr = atanh.tr, ...) list(name = "sar", s = s, p = p, coef = coef) } sma <- function(s, q = 0, ma, sign = "+", atanh.tr = TRUE, ...){ coef <- .set_coef(q, ma, sign = sign, nseasons = s, dispname = "sma", atanh.tr = atanh.tr, ...) list(name = "sma", s = s, q = q, coef = coef) } ss <- function(s, ...){ dots <- c(...) if(length(dots) != 1) stop("currently only one argument is supported") p <- dots[1] - 1 coef <- .set_coef(p, rep(1, p), sign = "+", nseasons = s, fixed = TRUE, operator = TRUE, dispname = "ss") list(name = "ss", s = s, p = p, coef = coef) } si <- function(s, d, ...){ coef <- .set_coef(1, 1, sign = "-", nseasons = s, fixed = TRUE, operator = TRUE, dispname = "si", ...) list(name = "si", s = s, d = d, coef = coef) } su <- function(s, h){ int_cond <- any(h %% 1 > 0) if(int_cond) stop("'h' must contain only (positive) integer values") pos_cond <- any(h < 1) if(int_cond) stop("'h' must contain only positive (integer) values") max_cond <- !all(h < s/2) if(max_cond) stop("'h' must be a positive integer less than 's/2'") coef <- lapply(h, function(x) .set_coef(2, c(- 2 * cospi(2*x/s), 1), sign = "+", fixed = TRUE, operator = TRUE, dispname = "su", su.nseasons = s, su.harmonic = x) ) list(name = "su", s = s, u = h, coef = coef) } .specials <- ls() .sarima_descr <- list() class(.sarima_descr) <- "sarimadescr" environment() } SARIMA <- function(formula){ e <- .sarima_env() parent.env(e) <- environment(formula) te <- terms(formula, specials = e$.specials, keep.order = TRUE) termvars <- attr(te, "variables") sp <- attr(te, "specials") res <- list() indices <- lapply(names(sp), function(nam){ ind <- sp[[nam]] if(is.null(ind)) return(integer(0)) names(ind) <- rep(nam, length(ind)) ind } ) indices <- sort(unlist(indices)) nams <- names(indices) indices <- indices + 1 res <- vector("list", length = length(indices)) names(res) <- nams for(i in seq_along(indices)){ res[[i]] <- eval(termvars[[indices[i]]], envir = e) } res } trendMaker <- function(formula, data = NULL, time = NULL){ if(is.null(data)) data.env <- new.env(hash = FALSE, parent = environment(formula)) else{ stopifnot(is.environment(data)) data.env <- data } environment(formula) <- data.env data.env$formula <- formula data.env$.t.orig <- data.env$t <- time .t.orig <- "dummy for R CMD check; .t.orig is needed in dataenv, as set above" data.env$.p <- function(degree){ if(identical(t, .t.orig)) res <- poly(t, degree = degree, simple = TRUE) else{ wrk <- poly(.t.orig, degree = degree, simple = FALSE) res <- predict(wrk, newdata = t) } colnames(res) <- paste0("ortht", seq_len(degree)) res } environment(data.env$.p) <- data.env data.env$.cs <- function(s, k){ res <- if(length(k) == 1){ structure(c(cospi(2*t*k/s), sinpi(2*t*k/s)), dim = c(length(t), 2), .Dimnames = list(NULL, paste0(c("c", "s"), s, ".", k) )) }else if(length(k) > 1){ wrk <- lapply(k, function(x) cbind(cospi(2*t*x/s), sinpi(2*t*x/s)) ) wrk <- do.call("cbind", wrk) colnames(wrk) <- paste0(c("c", "s"), s, ".", rep(k, each = 2) ) wrk }else stop("'k' must have positive length") res } environment(data.env$.cs) <- data.env data.env$.B <- function(x, lags){ flags <- t > 0 t.pos <- t[flags] t.neg <- t[!flags] if(any(flags)){ if(is.matrix(x)){ res <- matrix(NA_real_, nrow = length(t), ncol = ncol(x) * length(lags)) nc.x <- ncol(x) curcols <- seq_len(nc.x) for(i in seq_along(lags)){ lag <- lags[i] res[t - lag > 0, curcols] <- x[pmax(t - lag, 0), ] curcols <- curcols + nc.x } xnam <- deparse(substitute(x)) colnames(res) <- paste0("L(", xnam, rep(seq_len(ncol(x)), length(lags)), ", ", rep(lags, each = ncol(x)), ")") }else{ res <- matrix(NA_real_, nrow = length(t), ncol = length(lags)) for(i in seq_along(lags)){ lag <- lags[i] res[t - lag > 0, i] <- x[pmax(t - lag, 0)] } } } res } environment(data.env$.B) <- data.env res <- function(index){ if(missing(index)){ res <- model.matrix(formula, model.frame(formula, na.action = NULL)) }else{ t.old <- t t <<- index formula <- formula(Formula::Formula(formula), lhs = FALSE, rhs = 1) txt <- paste0(".dummy", paste0(as.character(formula), collapse = "")) formula <- as.formula(txt, env = environment(formula)) res <- model.frame(formula, data = data.frame(.dummy = t), na.action = NULL) res <- model.matrix(formula, res) t <<- t.old res } } environment(res) <- data.env res } .cat_u_delta <- function(x){ f <- function(poly){ s <- environment(poly)$nseasons if(!is.null(s)) poly <- poly(poly_x^s) if(all(coef(poly) == 1) && (deg <- length(coef(poly)) - 1) > 3) res <- paste0("1 + B + ... + B^", deg) else res <- as.character(poly, "B") d <- environment(poly)$d if(is.null(d) || d == 1) paste0("(", res, ")") else paste0("(", res, ")^", d) } paste0(sapply(x, f), collapse = "") } .Sarima_fixed <- function(x) x$internal$fixed .capture_fo <- function(x) if(is.numeric(x)) x else capture.output(print(x, FALSE)) .Fo.xreg <- function(x) x$internal$Fo.xreg .Fo.sarima <- function(x) x$internal$Fo.sarima .Fo.regx <- function(x) if(is.null(res <- x$internal$Fo.regx)) 0 else res print.Sarima <- function (x, digits = max(3L, getOption("digits") - 3L), se = TRUE, ...){ cat("*Sarima model*") cat("\nCall:", deparse(x$call, width.cutoff = 75L), "", sep = "\n") delta <- x$internal$delta if(length(delta) > 0){ cat("Unit root terms:\n", " ") cat(.cat_u_delta(x$internal$delta_poly), sep = "") cat("\n\n") } if (length(x$coef)) { cat("Coefficients:\n") coef <- round(x$coef, digits = digits) if (se && NROW(x$var.coef)) { ses <- rep.int(0, length(coef)) ses[x$mask] <- round(sqrt(diag(x$var.coef)), digits = digits) coef <- matrix(coef, 1L, dimnames = list(NULL, names(coef))) coef <- rbind(coef, s.e. = ses) } print.default(coef, print.gap = 2) } cm <- x$call$method if(is.null(cm) || cm != "css") cat("\nsigma^2 estimated as ", format(x$sigma2, digits = digits), ": log likelihood = ", format(round(x$loglik, 2L)), ", aic = ", format(round(x$aic, 2L)), "\n", sep = "") else cat("\nsigma^2 estimated as ", format(x$sigma2, digits = digits), ": part log likelihood = ", format(round(x$loglik,2)), "\n", sep = "") invisible(x) } summary.Sarima <- function(object, ...){ cat("\nCall:\n", paste(deparse(object$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") Fo.xreg <- .Fo.xreg (object) Fo.sarima <- .Fo.sarima(object) Fo.regx <- .Fo.regx (object) xfo <- .capture_fo(Fo.xreg) fosarima <- .capture_fo(Fo.sarima) fox <- .capture_fo(Fo.regx) cat("Model: Y_t - xreg_t is SarimaX\n") cat(" xreg: ", xfo, "\n") cat(" sarima: ", fosarima, "\n") cat(" regx: ", fox, "\n") cat("\n") delta <- object$internal$delta if(length(delta) > 0){ cat("Unit root terms:\n", " ") cat(.cat_u_delta(object$internal$delta_poly), sep = "") cat("\n\n") } fixed <- .Sarima_fixed(object) est <- object$coef[!fixed] se <- sqrt(diag(object$var.coef))[!fixed] zval <- est / se pval <- 2 * pnorm(abs(zval), lower.tail = FALSE) coefs <- cbind(est, se, zval, pval) dimnames(coefs) <- list(names(est), c("Estimate", "Std. Error", "Z value", "Pr(>|z|)") ) cat("Coefficients:\n") printCoefmat(coefs ) cat("\nestimated sigma^2 = ", format(object$sigma2, digits = 3), ", log-likelihood = ", format(round(object$loglik, 2)), ", aic = ", format(round(object$aic, 2L)), sep = "") cat("\n") invisible(object) } .tsdiag_choices <- c( "residuals", "acf of residuals", "p values for Ljung-Box statistic", "p values for Li-McLeod statistic", "p values for Box-Pierce statistic", "pacf of residuals" ) tsdiag.Sarima <- function(object, gof.lag = NULL, ask = FALSE, ..., plot = 1:3, layout = NULL) { if(is.null(gof.lag)) gof.lag <- 20 else if(!is.numeric(gof.lag)) stop("'gof.lag' must be numeric and contain positive integers") lag.max <- max(gof.lag) err <- object$residuals stdres <- err / sqrt(object$sigma2) choices <- .tsdiag_choices chnum <- 1:length(choices) if(!isTRUE(plot)){ choices <- choices[plot] chnum <- chnum[plot] if(anyNA(choices)){ warning("'plot' should be TRUE/FALSE or vector of positive integers <= ", length(.tsdiag_choices), ",\n", "ignoring non-existent values") chnum <- chnum[!is.na(choices)] choices <- choices[!is.na(choices)] } } if(length(choices) > 0){ old.par <- par(no.readonly = TRUE) on.exit(par(old.par)) n_per_page <- if(is.null(layout)) layout(matrix(1:3, nrow = 3)) else do.call("layout", layout) choice_title <- "Select a plot number or 0 to exit" ch_index <- if(length(choices) == 1) 1 else if(ask) menu(choices, title = choice_title) else if(!identical(plot, FALSE)) 1 else integer(0) choice <- chnum[ch_index] nlag <- gof.lag pval <- numeric(nlag) fitdf <- if(inherits(object, "Sarima")) length(object$internal$nonfixed) else if(inherits(object, "Arima")) sum(object$arma[1:4]) else 0 sacf <- autocorrelations(err, maxlag = nlag) res <- list(residuals = err, "LjungBox" = NULL, "LiMcLeod" = NULL, "BoxPierce" = NULL) while(length(choice) != 0){ switch(choice, { plot(stdres, type = "h", main = "Standardized Residuals", ylab = "") abline(h = 0) }, { acf(err, plot = TRUE, main = "ACF of Residuals", lag.max = lag.max, na.action = na.pass) }, { acftest <- acfIidTest(sacf, npar = fitdf, nlags = 1:nlag, method = "LjungBox", interval = NULL) res[["LjungBox"]] <- acftest }, { acftest <- acfIidTest(sacf, npar = fitdf, nlags = 1:nlag, method = "LiMcLeod", interval = NULL) res[["LiMcLeod"]] <- acftest }, { acftest <- acfIidTest(sacf, npar = fitdf, nlags = 1:nlag, method = "BoxPierce", interval = NULL) res[["BoxPierce"]] <- acftest }, { pacf(err, plot = TRUE, main = "PACF of Residuals", lag.max = lag.max, na.action = na.pass) }, ) if(choice %in% 3:5){ pval <- acftest$test[ , "pvalue"] plot(1L:nlag, pval, xlab = "lag", ylab = "p value", ylim = c(0,1), main = .tsdiag_choices[choice]) abline(h = 0.05, lty = 2, col = "blue") } if(length(chnum) == 1) break if(interactive() && (ask || length(choices) > n_per_page)){ ch_index <- menu(choices, title = choice_title) choice <- chnum[ch_index] }else{ chnum <- chnum[-1] choice <- chnum[1] } } } class(res) <- "tsdiagSarima" invisible(res) } armapqss <- function(ar, ma, sigma) { p <- length(ar) q <- length(ma) r <- max(p, q + 1) ear <- c(ar, numeric(max(r - p, 0))) ema <- c(ma, numeric(max(r - q - 1, 0))) Tt <- cbind(ear, rbind(diag(r - 1), 0)) Rt <- matrix(c(1, ema), ncol = 1) Zt <- matrix(c(1, numeric(r - 1)), nrow = 1) ct <- matrix(0) dt <- matrix(0, nrow = r, ncol = 1) GGt <- matrix(0) H <- Rt * sigma HHt <- H %*% t(H) a0 <- numeric(r) P0 <- diag(1e6, nrow = r) list(a0 = a0, P0 = P0, ct = ct, dt = dt, Zt = Zt, Tt = Tt, GGt = GGt, HHt = HHt) } xarmaxss <- function(ar, ma, sigma, xreg, regx) { d <- 1 p <- length(ar) q <- length(ma) r <- max(p, q + 1) ear <- c(ar, numeric(max(r - p, 0))) ema <- c(ma, numeric(max(r - q - 1, 0))) Tt <- cbind(ear, rbind(diag(r - 1), 0)) Rt <- matrix(c(1, ema), ncol = 1) Zt <- matrix(c(1, numeric(r - 1)), nrow = d) ct <- if(missing(xreg) || length(xreg) == 0) matrix(0, nrow = d) else xreg dt <- if(missing(regx) || length(regx) == 0) matrix(0, nrow = r, ncol = 1) else if(nrow(regx) == r) regx else rbind(regx, matrix(0, nrow = r - nrow(regx), ncol = ncol(regx))) GGt <- matrix(0, nrow = d) H <- Rt * sigma HHt <- H %*% t(H) a0 <- numeric(r) P0 <- diag(1e6, nrow = r) list(a0 = a0, P0 = P0, ct = ct, dt = dt, Zt = Zt, Tt = Tt, GGt = GGt, HHt = HHt) } xarimaxss <- function(ar, ma, sigma, xreg, regx, delta = numeric(0)) { model <- xarmaxss(ar, ma, sigma, xreg, regx) dd <- length(delta) if(dd == 0) return(model) model$dt <- c(model$dt, numeric(dd)) model$Tt <- rbind(c(delta, 1, numeric(ncol(model$Tt) - 1)), dbind(diag(1, nrow = dd - 1, ncol = dd), model$Tt )) model$Ht <- dbind(matrix(0, dd, dd), model$Ht) model$Zt <- c(model$Zt, numeric(dd)) model$a0 <- c(numeric(dd), model$a0) model$P0 <- dbind(diag(1e6, nrow = dd), model$P0) model } makeArimaGnb <- function(phi, theta, Delta, kappa = 1e6, SSinit = "gnb", tol = .Machine$double.eps){ if(anyNA(phi)) warning(gettextf("NAs in '%s'", "phi"), domain=NA) if(anyNA(theta)) warning(gettextf("NAs in '%s'", "theta"), domain=NA) p <- length(phi) q <- length(theta) d <- length(Delta) r <- max(p, q + 1L) rd <- r + d V <- Pn <- P <- T <- matrix(0., rd, rd) h <- 0. a <- rep(0., rd) Z <- c(1., rep.int(0, r-1L), Delta) if(q > 0) V[1:(q+1), 1:(q+1)] <- c(1, theta) %o% c(1, theta) else V[1, 1] <- 1.0 if(q < r - 1L) theta <- c(theta, rep.int(0, r - 1L - q)) if(p > 0) T[1L:p, 1L] <- phi if(r > 1L) { ind <- 2:r T[cbind(ind-1L, ind)] <- 1 } if(r > 1L) Pn[1L:r, 1L:r] <- switch(match.arg(SSinit), "gnb" = .Call(`_sarima_arma_Q0gnb`, phi, theta, tol), stop("invalid 'SSinit'")) else Pn[1L, 1L] <- if(p > 0) 1/(1 - phi^2) else 1 if(d > 0L) { T[r + 1L, ] <- Z if(d > 1L) { ind <- r + 2:d T[cbind(ind, ind-1)] <- 1 } Pn[cbind(r + 1L:d, r + 1L:d)] <- kappa } list(phi = phi, theta = theta, Delta = Delta, Z = Z, a = a, P = P, T = T, V = V, h = h, Pn = Pn) } sarimaReport <- function(o1, o2, ...){ list( all.equal(coef(o1), coef(o2)) ) } factorizeMA <- function(x, theta = NULL, tol = 1e-12, maxiter = 1000){ q <- length(x) - 1 if(is.null(theta)) theta <- c(sqrt(x[1] + 2 * sum(x[-1])), rep(0, q)) storage.mode(theta) <- "double" r <- .Call("_sarima_MAacvf0", theta) crit <- 1e100 iter <- 0 while(crit > tol && iter <= maxiter){ iter <- iter + 1 T <- .Call("_sarima_DAcvfWrtMA", theta) theta <- solve(T, r + x) r <- ltsa::tacvfARMA(theta = -theta[-1]/theta[1], maxLag = q, sigma2 = theta[1]^2) rnew <- .Call("_sarima_MAacvf0", as.double(theta)) crit <- sum((x - r)^2) } list(par = theta, value.objfn = crit, fpevals = iter, objfevals = iter, convergence = if(iter > maxiter) 1 else 0) }
summary.bootwrq <- function(object,...) { noms <- rownames(object)[-nrow(object)] tabnoms <- matrix(unlist(str_split(rownames(object)[-nrow(object)], pattern="_", n=3)),ncol=3,byrow=TRUE) tau <- unique(as.numeric(tabnoms[,2])) dots <- list(...) isrq <- sapply(dots,function(x) class(x) %in% c("rq","rqs")) m <- NULL if(any(isrq)) { j <- which(isrq==TRUE)[1] m <- dots[[j]] } if(!is.null(m)) { if(any(tau != m$tau)) stop("Quantiles should be the same in model m as in the bootstrap results") if(length(tau==1)) { if(any(tabnoms[,3] != names(m$coef))) stop("Coefficients should be in the same order in the model m than in the bootstrap results") } else { if(any(tabnoms[,3] != rep(rownames(m$coef),length(tau)))) stop("Coefficients should be in the same order in the model m than in the bootstrap results") } } res0 <- NULL if(length(grep("calc0",noms))) { for(j in 1:length(tau)) { x0tau <- object[grep(paste("calc0",tau[j],sep="_"),noms),,drop=FALSE] if(is.null(m)) { m0tau <- apply(x0tau,1,mean) } else { if(length(tau)>1) { m0tau <- coef(m)[,j] } else { m0tau <- coef(m) } } s0tau <- apply(x0tau,1,sd) p0tau <- 2*pnorm(abs(m0tau/s0tau),lower.tail=FALSE) res0 <- rbind(res0,cbind(m0tau,s0tau,p0tau)) } colnames(res0) <- c("coef","se","p-value") rownames(res0) <- tabnoms[1:nrow(res0),3] cat(" Without computation of the weights in each bootstrap sample :\n") cat("\n") k <- 0 for(j in 1:length(tau)) { cat("Quantile regression estimates for tau =",tau[j]," :\n") print(res0[k+1:(nrow(res0)/length(tau)),]) k <- k+nrow(res0)/length(tau) cat("\n") } } res1 <- NULL if(length(grep("calc1",noms))) { for(j in 1:length(tau)) { x1tau <- object[grep(paste("calc1",tau[j],sep="_"),noms),,drop=FALSE] if(is.null(m)) { m1tau <- apply(x1tau,1,mean) } else { if(length(tau)>1) { m1tau <- coef(m)[,j] } else { m1tau <- coef(m) } } s1tau <- apply(x1tau,1,sd) p1tau <- 2*pnorm(abs(m1tau/s1tau),lower.tail=FALSE) res1 <- rbind(res1,cbind(m1tau,s1tau,p1tau)) } colnames(res1) <- c("coef","se","p-value") rownames(res1) <- tabnoms[length(tabnoms[,3])-(nrow(res1)-1):0,3] cat(" With computation of the weights in each bootstrap sample :\n") cat("\n") k <- 0 for(j in 1:length(tau)) { cat("Quantile regression estimates for tau =",tau[j]," :\n") print(res1[k+1:(nrow(res1)/length(tau)),]) k <- k+nrow(res1)/length(tau) cat("\n") } } return(invisible(list(results0=res0,results1=res1))) }
showNotification <- function(ui, action = NULL, duration = 5, closeButton = TRUE, id = NULL, type = c("default", "message", "warning", "error"), session = getDefaultReactiveDomain()) { if (is.null(id)) id <- createUniqueId(8) res <- processDeps(ui, session) actionRes <- processDeps(action, session) session$sendNotification("show", list( html = res$html, action = actionRes$html, deps = c(res$deps, actionRes$deps), duration = if (!is.null(duration)) duration * 1000, closeButton = closeButton, id = id, type = match.arg(type) ) ) id } removeNotification <- function(id, session = getDefaultReactiveDomain()) { force(id) session$sendNotification("remove", id) id }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(readr) library(tibble) library(ggplot2) theme_set(theme_dark()) library(speakr) formants <- read_lines(system.file("extdata", "formants.csv", package = "speakr")) cat(formants) cat(formants) f_tbl <- read_csv(I(formants)) class(f_tbl) glimpse(f_tbl) f_bark <- read_csv(system.file("extdata", "formants-bark.csv", package = "speakr")) f_bark f_bark %>% ggplot(aes(F2, F1, label = vowel)) + geom_label(size = 10) + labs( title = "Vowel plot", x = "F2 (Bark)", y = "F1 (Bark)" ) + scale_x_reverse(position = "top", limits = c(14, 7)) + scale_y_reverse(position = "right", limits = c(8, 2))
ukc_crime_no_location <- function(force, crime_category = NULL, date = NULL) { if (missing(force)) { stop("The police force must be specified", call. = FALSE) } else { force_query <- paste0("&force=", force) } date_query <- ukc_date_processing(date) if (is.null(crime_category)) { crime_query <- "all-crime&" } else { crime_query <- paste0(crime_category, "&") } query <- paste0( "crimes-no-location?category=", crime_query, force_query, date_query ) df <- ukc_get_data(query) df }
gob.ar <- function(level){ if(!level %in% 1:3) return(NULL) if(level==1) by <- NULL if(level==2) by <- "prov" if(level==3) by <- "dep" url.cases <- "https://sisa.msal.gov.ar/datos/descargas/covid-19/files/Covid19Casos.zip" x.cases <- read.zip(url.cases, files = "Covid19Casos.csv", method = "wget", xsv = TRUE, select = c("clasificacion_resumen", "fecha_apertura", "fecha_fallecimiento", "residencia_provincia_id", "residencia_departamento_id")) x.cases <- map_data(x.cases[[1]], c( "clasificacion_resumen" = "type", "fecha_apertura" = "date_confirmed", "fecha_fallecimiento" = "date_deaths", "residencia_provincia_id" = "prov", "residencia_departamento_id" = "dep" )) x.cases <- x.cases[x.cases$type=="Confirmado",] x.cases$prov <- sprintf("%.02d", x.cases$prov) x.cases$dep <- paste0(x.cases$prov, sprintf("%.03d", x.cases$dep)) x.confirmed <- x.cases %>% rename(date = date_confirmed) %>% group_by_at(c("date", by)) %>% summarize(confirmed = n()) %>% group_by_at(by) %>% arrange(date) %>% mutate(confirmed = cumsum(confirmed)) x.deaths <- x.cases %>% rename(date = date_deaths) %>% filter(!is.na(date)) %>% group_by_at(c("date", by)) %>% summarize(deaths = n()) %>% group_by_at(by) %>% arrange(date) %>% mutate(deaths = cumsum(deaths)) url.tests <- "https://sisa.msal.gov.ar/datos/descargas/covid-19/files/Covid19Determinaciones.zip" x.tests <- read.zip(url.tests, files = "Covid19Determinaciones.csv", fread = TRUE) x.tests <- map_data(x.tests[[1]], c( "fecha" = "date", "codigo_indec_provincia" = "prov", "codigo_indec_departamento" = "dep", "positivos" = "confirmed", "total" = "tests" )) x.tests$prov <- sprintf("%.02d", x.tests$prov) x.tests$dep <- paste0(x.tests$prov, sprintf("%.03d", x.tests$dep)) x.tests <- x.tests %>% group_by_at(c("date", by)) %>% summarise(tests = sum(tests), confirmed = sum(confirmed)) %>% group_by_at(by) %>% arrange(date) %>% mutate(tests = cumsum(tests), confirmed = cumsum(confirmed)) url.vacc <- "https://sisa.msal.gov.ar/datos/descargas/covid-19/files/datos_nomivac_covid19.zip" x.vacc <- read.zip(url.vacc, files = "datos_nomivac_covid19.csv", method = "wget", xsv = TRUE, select = c("fecha_aplicacion", "jurisdiccion_residencia_id", "depto_residencia_id", "orden_dosis")) x.vacc <- map_data(x.vacc[[1]], c( "fecha_aplicacion" = "date", "jurisdiccion_residencia_id" = "prov", "depto_residencia_id" = "dep", "orden_dosis" = "dose" )) x.vacc$prov <- sprintf("%.02d", x.vacc$prov) x.vacc$dep <- paste0(x.vacc$prov, sprintf("%.03d", x.vacc$dep)) x.vacc <- x.vacc %>% group_by_at(c("date", by)) %>% summarize(vaccines = n(), people_vaccinated = sum(dose==1), people_fully_vaccinated = sum(dose==2)) %>% group_by_at(by) %>% arrange(date) %>% mutate(vaccines = cumsum(vaccines), people_vaccinated = cumsum(people_vaccinated), people_fully_vaccinated = cumsum(people_fully_vaccinated)) x <- x.deaths %>% full_join(x.tests, by = c("date", by)) %>% full_join(x.vacc, by = c("date", by)) if(level!=3){ x <- x %>% select(-confirmed) %>% full_join(x.confirmed, by = c("date", by)) } x <- x %>% mutate(date = as.Date(date)) %>% filter(!is.na(date) & date>="2020-01-01") x <- x %>% group_by_at(by) %>% arrange(date) %>% fill(confirmed, deaths, tests, vaccines, people_vaccinated, people_fully_vaccinated) %>% ungroup() %>% mutate(confirmed = replace(confirmed, date>max(x.confirmed$date), NA), deaths = replace(deaths, date>max(x.deaths$date), NA), tests = replace(tests, date>max(x.tests$date), NA), vaccines = replace(vaccines, date>max(x.vacc$date), NA), people_vaccinated = replace(people_vaccinated, date>max(x.vacc$date), NA), people_fully_vaccinated = replace(people_fully_vaccinated, date>max(x.vacc$date), NA)) if(level==2){ x <- x %>% filter(prov!="99" & prov!="00") %>% mutate(prov = as.integer(prov)) } if(level==3){ x <- x %>% filter(!startsWith(dep, "99") & !endsWith(dep, "999") & !startsWith(dep, "00") & !endsWith(dep, "000")) %>% mutate(dep = as.integer(dep)) } return(x) }
setMethod("center", "RobModel", function(object) object@center) setMethod("neighbor", "RobModel", function(object) object@neighbor) setReplaceMethod("center", "RobModel", function(object, value){ object@center <- value; object }) setReplaceMethod("neighbor", "RobModel", function(object, value){ object@neighbor <- value; object })
get_subsample_definitions <- function(country=NULL, loadtype='t', species='PCAB') { stopifnot(loadtype %in% c('be', 't')); stopifnot(species %in% c('PCAB')); gdps <- WoodSimulatR::gdp_data; gdps <- gdps[gdps$loadtype == loadtype & gdps$species == species, ]; stopifnot(all(c('country', 'subsample', 'share', 'f_mean', 'f_sd') %in% names(gdps))) if (is.null(country)) { gdps$share <- 1; } else { if (is.character(country)) { n <- country; country <- rep(1, length(n)) names(country) <- n; } stopifnot(is.numeric(country)); stopifnot(all(country > 0)); if (length(country) == 1 && is.null(names(country))) { country <- rep(1, country); } if (is.null(names(country))) { names(country) <- paste0('C', 1 : length(country)); } n <- names(country); if (any(n == '')) { names(country) <- ifelse( n == '', paste0('C', 1 : length(country)), names(country) ); } f_mean <- range(gdps$f_mean); f_cov <- range(gdps$f_sd / gdps$f_mean); E_mean <- range(gdps$E_mean); E_cov <- range(gdps$E_sd / gdps$E_mean); rho_mean <- range(gdps$rho_mean); rho_cov <- range(gdps$rho_sd / gdps$rho_mean); gdps <- dplyr::left_join( tibble::tibble(subsample = names(country), share=country), dplyr::select(gdps, -.data$share), by='subsample') i <- is.na(gdps$country); if (sum(i) > 0) { n_subsets <- sum(i); gdps$loadtype[i] <- loadtype; gdps$country[i] <- gdps$subsample[i]; gdps$f_mean[i] <- stats::runif(n_subsets, f_mean[1], f_mean[2]); gdps$f_sd[i] <- stats::runif(n_subsets, f_cov[1], f_cov[2]) * gdps$f_mean[i]; gdps$E_mean[i] <- stats::runif(n_subsets, E_mean[1], E_mean[2]); gdps$E_sd[i] <- stats::runif(n_subsets, E_cov[1], E_cov[2]) * gdps$E_mean[i]; gdps$rho_mean[i] <- stats::runif(n_subsets, rho_mean[1], rho_mean[2]); gdps$rho_sd[i] <- stats::runif(n_subsets, rho_cov[1], rho_cov[2]) * gdps$rho_mean[i]; gdps$literature[i] <- '<simulated>'; gdps$species[i] <- species; } gdps$subsample[!i] <- gdps$country[!i]; dups <- dplyr::summarise(dplyr::group_by(gdps, .data$subsample), n=dplyr::n()); nums <- dplyr::mutate(dplyr::group_by(gdps, .data$subsample), i=1, i=cumsum(i)); nums <- dplyr::left_join(dplyr::select(nums, .data$subsample, i), dups, by='subsample'); nums <- dplyr::mutate(nums, s2 = ifelse(n==1, .data$subsample, paste0(.data$subsample, '_', i))); gdps$subsample <- nums$s2; gdps$project <- NULL; } dplyr::ungroup(gdps); }
coef.gensvm <- function(object, ...) { V <- object$V x <- eval.parent(object$call$x) if (!is.null(colnames(x)) && length(colnames(x)) == dim(V)[1]) { name <- c("translation", colnames(x)) rownames(V) <- name } return(V) }
sevennum <- function(x){ x<-na.omit(x) result<-matrix(c(rep(0,7)),ncol=7) result[,1]<-min(x);result[,2]<-quantile(x,0.1);result[,3]<-quantile(x,0.25) result[,4]<-quantile(x,0.5);result[,5]<-quantile(x,0.75) result[,6]<-quantile(x,0.90);result[,7]<-max(x) dimnames(result)<-list(c(" "),c("Min.","10th Quan.","25th Quan.","50th Quan.","75th Quan.", "90th Quan.","Max.")) result }
context('multivar') x <- NULL y <- NULL d <- NULL o <- NULL local({ suppressWarnings(RNGversion("3.5.0")) set.seed(123, kind = "Mersenne-Twister", normal.kind = "Inversion") N <- 3 T <- 2 K <- 2 beta <- c(.1, -.5) dd <- generate_data(N=N, T=T, K=K, beta=beta) x <<- dd$x y <<- dd$y d <<- data.frame(i = rep(seq_len(N), each=T+1), t = rep(seq_len(T+1), N), matrix(aperm(x, c(1, 3, 2)), N*(T+1), K, dimnames = list(NULL, paste0('x', seq(K)))), y = c(y)) suppressWarnings(RNGversion("3.5.0")) set.seed(123, kind = "Mersenne-Twister", normal.kind = "Inversion") o <<- opm(y~x1+x2, d, n.samp = 10) }) test_that('data', { expect_equal(x, array(c(-1.31047564655221, -0.289083794010798, -0.349228549405948, -0.679491608575424, -1.19566197009996, 1.03691313680308, -0.23017748948328, -1.26506123460653, 0.11068271594512, 0.129287735160946, 1.22408179743946, 0.497850478229239, 2.30870831414912, 0.0631471481064739, 0.194158865245925, 2.46506498688328, 1.10981382705736, -1.21661715662964), dim = c(3, 2, 3))) expect_equal(y, matrix(c(-0.0899458588038237, -0.694025238411308, -2.52543131039704, -0.560453024256735, -2.04477798261599, -2.94693926957052, -1.06948536801357, -0.812226112015961, 2.05939845332596), nrow = 3, ncol = 3)) }) test_that('default', { suppressWarnings(RNGversion("3.5.0")) set.seed(123, kind = "Mersenne-Twister", normal.kind = "Inversion") expect_equal(opm(x, y, n = 10), structure(list(samples = list(rho = c(0.805, 0.425, -0.181, 0.763, 0.581, 0.965, 0.0559999999999999, 0.533, 0.648, -0.086), sig2 = 1 / c(11.6175662271191, 0.919115793520271, 0.989369792715488, 0.00440918521157215, 1.35621264272223, 4.24440799476086, 0.0931249250470442, 1.56847551750474, 0.371922970545138, 5.00022577787265), beta = matrix(c(0.149966256134789, -1.07201170366086, -3.32784640301039, 6.31976053552415, 0.399370400131068, -0.409833517459282, 0.942409502841064, -1.01613441888489, -1.06148590924992, -1.70364397749032, -0.746392848950218, -1.22143920569537, -1.63866906134468, 7.01947247537598, -0.536929048279301, -0.845295844019301, -0.565341215754439, 0.0765501718682319, -0.171463431207414, -1.13494915857112), 10, 2)), fitted.values = matrix(c(0.878931188971585, -0.878931188971585, 0.665670601363721, -0.665670601363721, -0.787856768435423, 0.787856768435423), 2, 3), residuals = matrix(c(0.0367718470212829, -0.0367718470212828, -0.214589957886459, 0.214589957886458, -0.647955514235535, 0.647955514235536), 2, 3), df.residual = 2*3 - 3, logLik = 0.704787094195681, design = "balanced", call = quote(opm(x = x, y = y, n.samp = 10)), .Environment = environment(), time.indicators = FALSE), class = 'opm')) }) test_that('named matrix', { suppressWarnings(RNGversion("3.5.0")) set.seed(123, kind = "Mersenne-Twister", normal.kind = "Inversion") colnames(x) <- c('x1', 'x2') expect_equal(opm(x, y, n = 10), structure(list(samples = list(rho = c(0.805, 0.425, -0.181, 0.763, 0.581, 0.965, 0.0559999999999999, 0.533, 0.648, -0.086), sig2 = 1 / c(11.6175662271191, 0.919115793520271, 0.989369792715488, 0.00440918521157215, 1.35621264272223, 4.24440799476086, 0.0931249250470442, 1.56847551750474, 0.371922970545138, 5.00022577787265), beta = matrix(c(0.149966256134789, -1.07201170366086, -3.32784640301039, 6.31976053552415, 0.399370400131068, -0.409833517459282, 0.942409502841064, -1.01613441888489, -1.06148590924992, -1.70364397749032, -0.746392848950218, -1.22143920569537, -1.63866906134468, 7.01947247537598, -0.536929048279301, -0.845295844019301, -0.565341215754439, 0.0765501718682319, -0.171463431207414, -1.13494915857112), 10, 2, dimnames = list(NULL, c('x1', 'x2')))), fitted.values = matrix(c(0.878931188971585, -0.878931188971585, 0.665670601363721, -0.665670601363721, -0.787856768435423, 0.787856768435423), 2, 3), residuals = matrix(c(0.0367718470212829, -0.0367718470212828, -0.214589957886459, 0.214589957886458, -0.647955514235535, 0.647955514235536), 2, 3), df.residual = 2*3 - 3, logLik = 0.704787094195681, design = "balanced", call = quote(opm(x = x, y = y, n.samp = 10)), .Environment = environment(), time.indicators = FALSE), class = 'opm')) }) test_that('formula', { expected <- structure(list(samples = list(rho = c(0.805, 0.425, -0.181, 0.763, 0.581, 0.965, 0.0559999999999999, 0.533, 0.648, -0.086), sig2 = 1 / c(11.6175662271191, 0.919115793520271, 0.989369792715488, 0.00440918521157215, 1.35621264272223, 4.24440799476086, 0.0931249250470442, 1.56847551750474, 0.371922970545138, 5.00022577787265), beta = matrix(c(0.149966256134789, -1.07201170366086, -3.32784640301039, 6.31976053552415, 0.399370400131068, -0.409833517459282, 0.942409502841064, -1.01613441888489, -1.06148590924992, -1.70364397749032, -0.746392848950218, -1.22143920569537, -1.63866906134468, 7.01947247537598, -0.536929048279301, -0.845295844019301, -0.565341215754439, 0.0765501718682319, -0.171463431207414, -1.13494915857112), 10, 2, dimnames = list(NULL, c('x1', 'x2')))), fitted.values = matrix(c(0.878931188971585, -0.878931188971585, 0.665670601363721, -0.665670601363721, -0.787856768435423, 0.787856768435423), 2, 3), residuals = matrix(c(0.0367718470212829, -0.0367718470212828, -0.214589957886459, 0.214589957886458, -0.647955514235535, 0.647955514235536), 2, 3, dimnames = list(t=2:3, i=1:3)), df.residual = 2*3 - 3, logLik = 0.704787094195681, design = "balanced", call = quote(opm(x = y~x1+x2, data = d, n.samp = 10)), .Environment = environment(), time.indicators = FALSE, index = c('i', 't'), terms = structure(y~x1+x2, variables = quote(list(y, x1, x2)), factors = matrix(c(0, 1, 0, 0, 0, 1), 3, 2, dimnames=list(c('y', 'x1', 'x2'), c('x1', 'x2'))), term.labels = c('x1', 'x2'), order = c(1L, 1L), intercept = 0L, response = 1L, .Environment = parent.frame(), predvars = quote(list(y, x1, x2)), dataClasses = c(y='numeric', x1='numeric', x2='numeric'), class=c('terms', 'formula'))), class = 'opm') suppressWarnings(RNGversion("3.5.0")) set.seed(123, kind = "Mersenne-Twister", normal.kind = "Inversion") expect_equal(opm(y~x1+x2, d, n.samp = 10), expected) d <- d[,c('y', 'x1', 't', 'i', 'x2')] suppressWarnings(RNGversion("3.5.0")) set.seed(123, kind = "Mersenne-Twister", normal.kind = "Inversion") expected$call <- quote(opm(x = y~x1+x2, data = d, index = 4:3, n.samp = 10)) expect_equal(opm(y~x1+x2, d, index=4:3, n.samp = 10), expected) set.seed(123) expected$call <- quote(opm(x = y~x1+x2, data = d, index = c('i', 't'), n.samp = 10)) expect_equal(opm(y~x1+x2, d, index=c('i', 't'), n.samp = 10), expected) }) test_that('early dropouts', { suppressWarnings(RNGversion("3.5.0")) set.seed(123, kind = "Mersenne-Twister", normal.kind = "Inversion") xx <- array(NA, dim=dim(x) + c(0, 0, 1)) xx[,,seq_len(ncol(y))] <- x yy <- matrix(NA, nrow(y), ncol(y)+1) yy[,seq_len(ncol(y))] <- y expect_equal(dim(xx), dim(x)+c(0,0,1)) expect_equal(dim(yy), dim(y)+c(0,1)) expect_equal(opm(xx, yy, n = 10), structure(list(samples = list(rho = c(0.805, 0.425, -0.181, 0.763, 0.581, 0.965, 0.0559999999999999, 0.533, 0.648, -0.086), sig2 = 1 / c(11.6175662271191, 0.919115793520271, 0.989369792715488, 0.00440918521157215, 1.35621264272223, 4.24440799476086, 0.0931249250470442, 1.56847551750474, 0.371922970545138, 5.00022577787265), beta = matrix(c(0.149966256134789, -1.07201170366086, -3.32784640301039, 6.31976053552415, 0.399370400131068, -0.409833517459282, 0.942409502841064, -1.01613441888489, -1.06148590924992, -1.70364397749032, -0.746392848950218, -1.22143920569537, -1.63866906134468, 7.01947247537598, -0.536929048279301, -0.845295844019301, -0.565341215754439, 0.0765501718682319, -0.171463431207414, -1.13494915857112), 10, 2)), fitted.values = matrix(c(0.878931188971585, -0.878931188971585, 0.665670601363721, -0.665670601363721, -0.787856768435423, 0.787856768435423, 0, 0), 2, 4), residuals = matrix(c(0.0367718470212829, -0.0367718470212828, -0.214589957886459, 0.214589957886458, -0.647955514235535, 0.647955514235536, 0, 0), 2, 4), df.residual = 2*3 - 3, logLik = 0.637475935193608, design = "unbalanced (with dropouts)", call = quote(opm(x = xx, y = yy, n.samp = 10)), .Environment = environment(), time.indicators = FALSE), class = 'opm')) }) test_that('confint', { expect_equal(confint(o), matrix(c(-0.159625, 0.111707292991574, -2.96240085726837, -1.54479234382358, 0.929, 178.18554581309, 5.10985655317045, 5.45731495708674), nrow = 4, ncol = 2, dimnames = list(c("rho", "sig2", "beta.x1", "beta.x2"), c("2.5%", "97.5%")))) expect_equal(confint(o, 1:2, level = 0.68), matrix(c(-0.0235200000000001, 0.215660754512765, 0.78652, 7.19646832807839), nrow = 2, ncol = 2, dimnames = list(c("rho", "sig2"), c("16%", "84%")))) }) test_that('coef', { expect_equal(coef(o), c(rho = 0.557, sig2 = 0.874045960780248, beta.x1 = -0.712983968172086, beta.x2 = -0.655867032352328)) expect_error(coef(o, probs = .6), "Arguments 'probs' and 'names' are not allowed") expect_error(coef(o, names = TRUE), "Arguments 'probs' and 'names' are not allowed") }) test_that('print', { expect_equal(capture.output(o), c('\tPanel design: balanced', '', 'Call:', 'opm(x = y ~ x1 + x2, data = d, n.samp = 10)', '', 'Coefficients:', ' mean (SD) med 95-CI', 'rho 0.450900 (0.39) 0.55700 (-0.16, 0.93)', 'sig2 24.422159 (71.18) 0.87405 (0.11, 178.19)', 'beta.x1 -0.077945 (2.55) -0.71298 (-3.0, 5.1)', 'beta.x2 0.023554 (2.51) -0.65587 (-1.5, 5.5)', '')) }) test_that('summary', { expect_equal(capture.output(summary(o)), c('Call:', 'opm(x = y ~ x1 + x2, data = d, n.samp = 10)', '', 'Parameter estimates:', ' <--95CI <--68CI med 68CI--> 95CI-->', 'rho -0.15962 -0.02352 0.55700 0.786520 0.9290', 'sig2 0.11171 0.21566 0.87405 7.196468 178.1855', 'beta.x1 -2.96240 -1.42573 -0.71298 0.703472 5.1099', 'beta.x2 -1.54479 -1.18338 -0.65587 -0.032576 5.4573')) }) test_that('DIC', { expect_equal(DIC(o), 24.8318940856621) })
LKinfoUpdate<- function( LKinfo, ...){ argList<- list( ...) nArgs<- length( argList) if( nArgs==0 ){ return( LKinfo) } argNames<- names( argList) if( (argNames[1]=="lambda")& (nArgs==1) ){ LKinfo$lambda<- argList$lambda return( LKinfo) } LKinfoNames<- names( LKinfo) LKinfoSetupArgsNames<- names( LKinfo$setupArgs) ind1<- match( argNames, LKinfoNames) ind2<- match( argNames, LKinfoSetupArgsNames ) bad<- is.na(ind1)& is.na( ind2) if( any( bad)) { stop( cat( "No match in current LKinfo for these new argument(s) ", argNames[bad] ) ) } setupArgsNew<- LKinfo$setupArgs LKinfoNew<- LKinfo LKinfoNew$setupArgs<- NULL if( any( !is.na(ind1) ) ){ for( argN in LKinfoNames[ind1]){ LKinfoNew[[ argN]] <- argList[[ argN ]] } } if( any( !is.na(ind2) ) ){ for( argN in LKinfoSetupArgsNames[ind2]){ setupArgsNew[[argN]] <- argList[[ argN]] } } LKinfoNew <- do.call( "LKrigSetup" , c( LKinfoNew, setupArgsNew) ) return(LKinfoNew) }
set.seed(1234) test_that("quick plots render correctly", { expect_doppelganger("ggdag_m_bias() is an M", ggdag_m_bias()) expect_doppelganger("ggdag_butterfly_bias() is a butterfly", ggdag_butterfly_bias()) expect_doppelganger("ggdag_confounder_triangle() is triangle", ggdag_confounder_triangle()) expect_doppelganger("ggdag_collider_triangle() is triangle, too", ggdag_collider_triangle()) })
options_b90 <- set_optionsLWFB90() param_b90 <- set_paramLWFB90() standprop <- make_standprop(options_b90, param_b90, out_yrs = 2002:2004) plot(standprop$dates, standprop$lai, type = "l")
"er_network"
context('test stats') test_that('fortify.stl works for AirPassengers', { fortified <- ggplot2::fortify(stats::stl(AirPassengers, s.window = 'periodic')) expect_true(is.data.frame(fortified)) expected_names <- c('Index', 'Data', 'seasonal', 'trend', 'remainder') expect_equal(names(fortified), expected_names) expect_equal(as.vector(AirPassengers), as.vector(fortified[['Data']])) expect_equal(fortified$Index[1], as.Date('1949-01-01')) expect_equal(fortified$Index[nrow(fortified)], as.Date('1960-12-01')) fortified <- ggplot2::fortify(stats::decompose(AirPassengers)) expect_true(is.data.frame(fortified)) expected_names <- c('Index', 'Data', 'seasonal', 'trend', 'remainder') expect_equal(names(fortified), expected_names) expect_equal(as.vector(AirPassengers), as.vector(fortified[['Data']])) expect_equal(fortified$Index[1], as.Date('1949-01-01')) expect_equal(fortified$Index[nrow(fortified)], as.Date('1960-12-01')) }) test_that('fortify.Arima works for AirPassengers', { skip_if_not_installed("forecast") skip_if_not_installed("fGarch") fortified <- ggplot2::fortify(ar(AirPassengers)) expect_true(is.data.frame(fortified)) expected_names <- c('Index', 'Data', 'Fitted', 'Residuals') expect_equal(names(fortified), expected_names) expect_equal(as.vector(AirPassengers), as.vector(fortified[['Data']])) expect_equal(fortified$Index[1], as.Date('1949-01-01')) expect_equal(fortified$Index[nrow(fortified)], as.Date('1960-12-01')) x <- AirPassengers m <- stats::ar(x) x <- NULL fortified2 <- ggplot2::fortify(m, data = AirPassengers) expect_equal(fortified, fortified2) ggplot2::autoplot(m, data = AirPassengers) fortified <- ggplot2::fortify(stats::arima(AirPassengers)) expect_true(is.data.frame(fortified)) expected_names <- c('Index', 'Data', 'Fitted', 'Residuals') expect_equal(names(fortified), expected_names) expect_equal(as.vector(AirPassengers), as.vector(fortified[['Data']])) expect_equal(fortified$Index[1], as.Date('1949-01-01')) expect_equal(fortified$Index[nrow(fortified)], as.Date('1960-12-01')) ggplot2::autoplot(stats::arima(AirPassengers)) x <- AirPassengers m <- stats::arima(x) x <- NULL fortified2 <- ggplot2::fortify(m, data = AirPassengers) expect_equal(fortified, fortified2) ggplot2::autoplot(m, data = AirPassengers) fortified <- ggplot2::fortify(stats::HoltWinters(AirPassengers)) expect_true(is.data.frame(fortified)) expected_names <- c('Index', 'Data', 'xhat', 'level', 'trend', 'season', 'Residuals') expect_equal(names(fortified), expected_names) expect_equal(as.vector(AirPassengers), as.vector(fortified[['Data']])) expect_equal(fortified$Index[1], as.Date('1949-01-01')) expect_equal(fortified$Index[nrow(fortified)], as.Date('1960-12-01')) library(fGarch) d.fGarch <- fGarch::garchFit(formula = ~arma(1, 1) + garch(1, 1), data = UKgas, trace = FALSE) fortified <- ggplot2::fortify(d.fGarch) expected_names <- c('Index', 'Data', 'Fitted', 'Residuals') expect_equal(names(fortified), expected_names) }) test_that('fortify.prcomp works for iris', { df <- iris[c(1, 2, 3, 4)] pcs <- c('PC1', 'PC2', 'PC3', 'PC4') expected_names <- c(names(df), pcs) fortified <- ggplot2::fortify(stats::prcomp(df, center = TRUE, scale = TRUE)) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), df) expect_equal(rownames(fortified), rownames(df)) fortified <- ggplot2::fortify(stats::prcomp(df, center = FALSE, scale = TRUE)) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), df) expect_equal(rownames(fortified), rownames(df)) fortified <- ggplot2::fortify(stats::prcomp(df, center = TRUE, scale = FALSE)) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), df) expect_equal(rownames(fortified), rownames(df)) fortified <- ggplot2::fortify(stats::prcomp(df, center = FALSE, scale = FALSE)) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), df) expect_equal(rownames(fortified), rownames(df)) expected_names <- c(names(df), 'Species', pcs) fortified <- ggplot2::fortify(stats::prcomp(df), data = iris) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4, 5)]), iris) expect_equal(rownames(fortified), rownames(df)) tmp <- stats::prcomp(df) class(tmp) <- 'unsupportedClass' expect_error(ggplot2::fortify(tmp, data = iris)) }) test_that('fortify.princomp works for iris', { df <- iris[c(1, 2, 3, 4)] pcs <- c('Comp.1', 'Comp.2', 'Comp.3', 'Comp.4') expected_names <- c(names(df), pcs) fortified <- ggplot2::fortify(stats::princomp(df)) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), df) expect_equal(rownames(fortified), rownames(df)) expected_names <- c(names(df), 'Species', pcs) fortified <- ggplot2::fortify(stats::princomp(df), data = iris) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4, 5)]), iris) expect_equal(rownames(fortified), rownames(df)) p <- ggplot2::autoplot(stats::princomp(df), data = iris, colour = 'Species') expect_true(is(p, 'ggplot')) p <- ggplot2::autoplot(stats::princomp(df), data = iris, loadings.label = TRUE) expect_true(is(p, 'ggplot')) p <- ggplot2::autoplot(stats::princomp(df), data = iris, frame.type = 'convex') expect_true(is(p, 'ggplot')) expect_error(ggplot2::autoplot(stats::princomp(df), frame.type = 'invalid')) }) test_that('fortify.factanal works for state.x77', { d.factanal <- stats::factanal(state.x77, factors = 3, scores = 'regression') pcs <- c('Factor1', 'Factor2', 'Factor3') fortified <- ggplot2::fortify(d.factanal) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), pcs) expect_equal(rownames(fortified), rownames(state.x77)) fortified <- ggplot2::fortify(d.factanal, data = state.x77) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), c(colnames(state.x77), pcs)) expect_equal(rownames(fortified), rownames(state.x77)) }) test_that('fortify.prcomp works for USArrests', { pcs <- c('PC1', 'PC2', 'PC3', 'PC4') expected_names <- c(names(USArrests), pcs) fortified <- ggplot2::fortify(stats::prcomp(USArrests, center = TRUE, scale = TRUE)) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), USArrests) expect_equal(rownames(fortified), rownames(USArrests)) fortified <- ggplot2::fortify(stats::prcomp(USArrests, center = FALSE, scale = TRUE)) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), USArrests) expect_equal(rownames(fortified), rownames(USArrests)) fortified <- ggplot2::fortify(stats::prcomp(USArrests, center = TRUE, scale = FALSE)) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), USArrests) expect_equal(rownames(fortified), rownames(USArrests)) fortified <- ggplot2::fortify(stats::prcomp(USArrests, center = FALSE, scale = FALSE)) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), USArrests) expect_equal(rownames(fortified), rownames(USArrests)) fortified <- ggplot2::fortify(stats::prcomp(USArrests), data = USArrests) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), USArrests) expect_equal(rownames(fortified), rownames(USArrests)) }) test_that('fortify.princomp works for USArrests', { pcs <- c('Comp.1', 'Comp.2', 'Comp.3', 'Comp.4') expected_names <- c(names(USArrests), pcs) fortified <- ggplot2::fortify(stats::princomp(USArrests)) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), USArrests) expect_equal(rownames(fortified), rownames(USArrests)) fortified <- ggplot2::fortify(stats::princomp(USArrests), data = USArrests) expect_true(is.data.frame(fortified)) expect_equal(names(fortified), expected_names) expect_equal(data.frame(fortified[c(1, 2, 3, 4)]), USArrests) expect_equal(rownames(fortified), rownames(USArrests)) }) test_that('autoplot.prcomp works for iris with scale (default)', { skip_on_cran() obj <- stats::prcomp(iris[-5]) exp_x <- c(-0.10658039, -0.10777226, -0.11471510, -0.10901118, -0.10835099, -0.09056763) exp_y <- c(-0.05293913, 0.02933742, 0.02402493, 0.05275710, -0.05415858, -0.12287329) p <- ggplot2::autoplot(obj) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 1) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep('black', 6)) p <- ggplot2::autoplot(obj, data = iris, colour = 'Species') expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 1) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep(" p <- ggplot2::autoplot(obj, data = iris, loadings = TRUE, loadings.label = FALSE) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 2) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomSegment' %in% class(p$layers[[2]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep("black", 6)) ld <- ggplot2:::layer_data(p, 2) expect_equal(ld$x, rep(0, 4), tolerance = 1e-4) expect_equal(ld$xend, c(0.05086374, -0.01189621, 0.12057301, 0.05042779), tolerance = 1e-4) expect_equal(ld$y, rep(0, 4), tolerance = 1e-4) expect_equal(ld$colour, rep(" p <- ggplot2::autoplot(obj, data = iris, loadings.label = TRUE) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 3) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomSegment' %in% class(p$layers[[2]]$geom)) expect_true('GeomText' %in% class(p$layers[[3]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep("black", 6)) ld <- ggplot2:::layer_data(p, 2) expect_equal(ld$x, rep(0, 4), tolerance = 1e-4) expect_equal(ld$xend, c(0.05086374, -0.01189621, 0.12057301, 0.05042779), tolerance = 1e-4) expect_equal(ld$y, rep(0, 4)) expect_equal(ld$colour, rep(" ld <- ggplot2:::layer_data(p, 3) expect_equal(ld$x, c(0.05086374, -0.01189621, 0.12057301, 0.05042779), tolerance = 1e-4) expect_equal(ld$y, c(-0.09241228, -0.10276734, 0.02440152, 0.01062366), tolerance = 1e-4) expect_equal(ld$colour, rep(" expect_equal(ld$label, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")) p <- ggplot2::autoplot(obj, data = iris, frame.type = 'convex') expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 2) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomPolygon' %in% class(p$layers[[2]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep("black", 6)) ld <- head(ggplot2:::layer_data(p, 2)) expect_equal(ld$x, c(0.15071626, 0.13846286, 0.12828254, -0.09474406, -0.10501689, -0.12769748), tolerance = 1e-4) expect_equal(ld$y, c(-0.04265051, -0.19487526, -0.22776373, -0.22177981, -0.19537669, -0.02212193), tolerance = 1e-4) expect_equal(ld$fill, rep("grey20", 6)) expect_equal(ld$alpha, rep(0.2, 6)) p <- ggplot2::autoplot(obj, data = iris, frame.type = 'convex', shape = FALSE) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 2) expect_true('GeomText' %in% class(p$layers[[1]]$geom)) expect_true('GeomPolygon' %in% class(p$layers[[2]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep(" expect_equal(ld$label, c('1', '2', '3', '4', '5', '6')) ld <- head(ggplot2:::layer_data(p, 2)) expect_equal(ld$x, c(0.15071626, 0.13846286, 0.12828254, -0.09474406, -0.10501689, -0.12769748), tolerance = 1e-4) expect_equal(ld$y, c(-0.04265051, -0.19487526, -0.22776373, -0.22177981, -0.19537669, -0.02212193), tolerance = 1e-4) expect_equal(ld$fill, rep("grey20", 6)) expect_equal(ld$alpha, rep(0.2, 6)) }) test_that('autoplot.prcomp works for iris without scale', { skip_on_cran() obj <- stats::prcomp(iris[-5]) exp_x <- c(-2.684126, -2.714142, -2.888991, -2.745343, -2.728717, -2.280860) exp_y <- c(-0.3193972, 0.1770012, 0.1449494, 0.3182990, -0.3267545, -0.7413304) p <- ggplot2::autoplot(obj, scale = 0.) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 1) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep('black', 6)) p <- ggplot2::autoplot(obj, scale = 0., data = iris, colour = 'Species') expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 1) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep(" p <- ggplot2::autoplot(obj, scale = 0, data = iris, loadings = TRUE, loadings.label = FALSE) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 2) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomSegment' %in% class(p$layers[[2]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep("black", 6)) ld <- ggplot2:::layer_data(p, 2) expect_equal(ld$x, rep(0, 4), tolerance = 1e-4) expect_equal(ld$xend, c(0.5441042, -0.1272572, 1.2898045, 0.5394407), tolerance = 1e-4) expect_equal(ld$y, rep(0, 4), tolerance = 1e-4) expect_equal(ld$colour, rep(" p <- ggplot2::autoplot(obj, scale = 0., data = iris, loadings.label = TRUE) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 3) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomSegment' %in% class(p$layers[[2]]$geom)) expect_true('GeomText' %in% class(p$layers[[3]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep("black", 6)) ld <- ggplot2:::layer_data(p, 2) expect_equal(ld$x, rep(0, 4), tolerance = 1e-4) expect_equal(ld$xend, c(0.5441042, -0.1272572, 1.2898045, 0.5394407), tolerance = 1e-4) expect_equal(ld$y, rep(0, 4)) expect_equal(ld$colour, rep(" ld <- ggplot2:::layer_data(p, 3) expect_equal(ld$x, c(0.5441042, -0.1272572, 1.2898045, 0.5394407), tolerance = 1e-4) expect_equal(ld$y, c(-0.9885610, -1.0993321, 0.2610301, 0.1136443), tolerance = 1e-4) expect_equal(ld$colour, rep(" expect_equal(ld$label, c("Sepal.Length", "Sepal.Width", "Petal.Length", "Petal.Width")) p <- ggplot2::autoplot(obj, scale = 0., data = iris, frame.type = 'convex') expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 2) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomPolygon' %in% class(p$layers[[2]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep("black", 6)) ld <- head(ggplot2:::layer_data(p, 2)) expect_equal(ld$x, c(3.795645, 3.487055, 3.230674, -2.386039, -2.644750, -3.215939), tolerance = 1e-4) expect_equal(ld$y, c(-0.2573230, -1.1757393, -1.3741651, -1.3380623, -1.1787646, -0.1334681), tolerance = 1e-4) expect_equal(ld$fill, rep("grey20", 6)) expect_equal(ld$alpha, rep(0.2, 6)) p <- ggplot2::autoplot(obj, scale = 0., data = iris, frame.type = 'convex', shape = FALSE) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 2) expect_true('GeomText' %in% class(p$layers[[1]]$geom)) expect_true('GeomPolygon' %in% class(p$layers[[2]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep(" expect_equal(ld$label, c('1', '2', '3', '4', '5', '6')) ld <- head(ggplot2:::layer_data(p, 2)) expect_equal(ld$x, c(3.795645, 3.487055, 3.230674, -2.386039, -2.644750, -3.215939), tolerance = 1e-4) expect_equal(ld$y, c(-0.2573230, -1.1757393, -1.3741651, -1.3380623, -1.1787646, -0.1334681), tolerance = 1e-4) expect_equal(ld$fill, rep("grey20", 6)) expect_equal(ld$alpha, rep(0.2, 6)) }) test_that('autoplot.prcomp works for USArrests', { skip_on_cran() obj <- stats::prcomp(USArrests) exp_x <- c(0.10944879, 0.15678261, 0.20954726, 0.03097574, 0.18143395, 0.05907333) exp_y <- c(-0.11391408, -0.17894035, 0.08786745, -0.16621327, 0.22408730, 0.13651754) p <- ggplot2::autoplot(obj, label = TRUE) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 2) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomText' %in% class(p$layers[[2]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep("black", 6)) ld <- head(ggplot2:::layer_data(p, 2)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$label, c("Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado")) expect_equal(ld$colour, rep(" exp_x <- c(64.80216, 92.82745, 124.06822, 18.34004, 107.42295, 34.97599) exp_y <- c(-11.448007, -17.982943, 8.830403, -16.703911, 22.520070, 13.719584) p <- ggplot2::autoplot(obj, scale = 0., label = TRUE) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 2) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomText' %in% class(p$layers[[2]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep("black", 6)) ld <- head(ggplot2:::layer_data(p, 2)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$label, c("Alabama", "Alaska", "Arizona", "Arkansas", "California", "Colorado")) expect_equal(ld$colour, rep(" }) test_that('autoplot.princomp works for iris', { obj <- stats::princomp(iris[-5]) p <- ggplot2::autoplot(obj, data = iris, colour = 'Species') expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 1) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) p <- ggplot2::autoplot(obj, data = iris, loadings = TRUE, loadings.label = FALSE) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 2) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomSegment' %in% class(p$layers[[2]]$geom)) p <- ggplot2::autoplot(obj, data = iris, loadings.label = TRUE) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 3) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomSegment' %in% class(p$layers[[2]]$geom)) expect_true('GeomText' %in% class(p$layers[[3]]$geom)) p <- ggplot2::autoplot(obj, data = iris, frame.type = 'convex') expect_true(is(p, 'ggplot')) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 2) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomPolygon' %in% class(p$layers[[2]]$geom)) }) test_that('autoplot.prcomp plots the desired components', { skip_on_cran() obj <- stats::prcomp(iris[-5]) exp_x <- c(-0.0529391329513015, 0.0293374206773287, 0.0240249314006331, 0.0527570984441502, -0.0541585777198945, -0.1228732921883) exp_y <- c(0.00815003672083961, 0.0614473273321588, -0.00522617400592586, -0.00921410146450414, -0.0262996114135432, -0.0492472720451544 ) p <- ggplot2::autoplot(obj, x = 2, y = 3) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 1) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$x, exp_x, tolerance = 1e-4) expect_equal(ld$y, exp_y, tolerance = 1e-4) expect_equal(ld$colour, rep('black', 6)) expect_equal(p$labels$x, "PC2 (5.31%)") expect_equal(p$labels$y, "PC3 (1.71%)") }) test_that('autoplot.princomp plots the desired components', { skip_on_travis() skip_on_cran() obj <- stats::princomp(iris[-5]) exp_x <- c(-0.0531164839772263, 0.0294357037689672, 0.0241054171584106, 0.052933839637522, -0.0543400139993682, -0.123284929161055) exp_y <- c(-0.00817734010291634, -0.0616531816016784, 0.00524368217559065, 0.00924496956257505, 0.0263877175612184, 0.0494122549931978) p <- ggplot2::autoplot(obj, x = 2, y = 3) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 1) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) ld <- head(ggplot2:::layer_data(p, 1)) expect_equal(ld$colour, rep('black', 6)) expect_equal(p$labels$x, "Comp.2 (5.31%)") expect_equal(p$labels$y, "Comp.3 (1.71%)") }) test_that('autoplot.factanal works for state.x77', { obj <- stats::factanal(state.x77, factors = 3, scores = 'regression') p <- ggplot2::autoplot(obj) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 1) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) p <- ggplot2::autoplot(obj, label = TRUE) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 2) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_true('GeomText' %in% class(p$layers[[2]]$geom)) }) test_that('autoplot.factanal plots the desired components', { obj <- stats::factanal(state.x77, factors = 3, scores = 'regression') p <- ggplot2::autoplot(obj, x = 2, y = 3) expect_true(is(p, 'ggplot')) expect_equal(length(p$layers), 1) expect_true('GeomPoint' %in% class(p$layers[[1]]$geom)) expect_equal(p$labels$x, "Factor2 (20.15%)") expect_equal(p$labels$y, "Factor3 (18.24%)") }) test_that('fortify.dist works for eurodist', { fortified <- ggplot2::fortify(eurodist) expect_true(is.data.frame(fortified)) expect_equal(dim(fortified), c(21, 21)) }) test_that('fortify.lfda works for iris', { skip_on_cran() library(lfda) k <- iris[, -5] y <- iris[, 5] r <- 3 model <- lfda(k, y, r, metric = "plain") fortified <- ggplot2::fortify(model) expect_true(is.data.frame(fortified)) model <- klfda(kmatrixGauss(k), y, r, metric = "plain") fortified <- ggplot2::fortify(model) expect_true(is.data.frame(fortified)) model <- self(k, y, beta=0.1, r, metric = "plain") fortified <- ggplot2::fortify(model) expect_true(is.data.frame(fortified)) }) test_that('autoplot.lfda works for iris', { skip_on_cran() k <- iris[, -5] y <- iris[, 5] r <- 4 model <- lfda::lfda(k, y, r, metric = "plain") p <- autoplot(model, data=iris, frame = TRUE, frame.colour='Species') expect_true(is(p, 'ggplot')) }) test_that('autoplot.acf works', { p <- autoplot(stats::acf(AirPassengers, plot = FALSE)) expect_true(is(p, 'ggplot')) p <- autoplot(stats::acf(AirPassengers, plot = FALSE), conf.int.type = 'ma') expect_true(is(p, 'ggplot')) p <- autoplot(stats::pacf(AirPassengers, plot = FALSE)) expect_true(is(p, 'ggplot')) p <- autoplot(stats::ccf(AirPassengers, AirPassengers, plot = FALSE)) expect_true(is(p, 'ggplot')) }) test_that('autoplot.stepfun works', { p <- autoplot(stepfun(c(1, 2, 3), c(4, 5, 6, 7))) expect_true(is(p, 'ggplot')) fortified <- fortify(stepfun(c(1, 2, 3), c(4, 5, 6, 7))) expected <- data.frame(x = c(0, 1, 1, 2, 2, 3, 3, 4), y = c(4, 4, 5, 5, 6, 6, 7, 7)) expect_equal(fortified, expected) fortified <- fortify(stepfun(c(1), c(4, 5))) expected <- data.frame(x = c(0.9375, 1.0000, 1.0000, 1.0625), y = c(4, 4, 5, 5)) expect_equal(fortified, expected) fortified <- fortify(stepfun(c(1, 3, 4, 8), c(4, 5, 2, 3, 5))) expected <- data.frame(x = c(-1, 1, 1, 3, 3, 4, 4, 8, 8, 10), y = c(4, 4, 5, 5, 2, 2, 3, 3, 5, 5)) expect_equal(fortified, expected) fortified <- fortify(stepfun(c(1, 2, 3, 4, 5, 6, 7, 8, 10), c(4, 5, 6, 7, 8, 9, 10, 11, 12, 9))) expected <- data.frame(x = c(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 10, 10, 11), y = c(4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10, 11, 11, 12, 12, 9, 9)) expect_equal(fortified, expected) }) test_that('autoplot.spec works', { result <- stats::spec.ar(AirPassengers) p <- autoplot(result) expect_true(is(p, 'ggplot')) expect_equal(sum(fortify(result)[1]), 1500, tolerance = 0.01) expect_equal(sum(fortify(result)[2]), 684799.7, tolerance = 0.01) })
coefficients.boots <- function(object, ncomp = object$ncomp, conf = .95) { if ((object$val.method == "none" | object$val.method == "loo")) { stop("No bootstrapping was done for this model") } conf <- conf coefficients.boot.a <- do.call("rbind", object$validation$coefficients) coefficients.boot <- as.matrix(coefficients.boot.a) Upper <- 1 - (((1 - conf)/2)) Lower <- 1 - Upper coefficients.boot.cis <- llply(ncomp, function(y) { do.call("rbind", as.list( by(coefficients.boot[, y], list(row.names(coefficients.boot)), function(x){ c(ncomp = y, boot.mean = mean(x, na.rm = T), Skewness = skewness(x, na.rm = T), quantile(x, c(Lower, Upper), na.rm = T), 'Bootstrap Error' = sd(x, na.rm = T)) } ))) }) names(coefficients.boot.cis) <- ncomp OC <- data.frame(object$coefficients[, ncomp]) names(OC) <- ncomp A <- llply(1:length(coefficients.boot.cis), function(x) { x. <- names(coefficients.boot.cis)[x] coefficients.boot.cis2 <- as.data.frame(coefficients.boot.cis[[x.]]) coefficients.boot.cis2$variable <- row.names(coefficients.boot.cis[[x.]]) row.names(coefficients.boot.cis2) <- NULL Out <- coefficients.boot.cis2[as.factor(row.names(OC)), ] Out$Actual <- OC[, x.] Out$Bias <- Out$boot.mean - Out$Actual Out$'t value' <- Out$Actual / Out$'Bootstrap Error' Out$'bias t value' <- Out$Bias / Out$'Bootstrap Error' Out[, c(1, 7, 8, 4:5, 2, 3, 9, 6, 10:11)] }) A }
get_genius_song_lyrics<-function(song_id, output = 'tibble', url = NULL, access_token = Sys.getenv('GENIUS_API_TOKEN')){ output<-match.arg(output, c('tibble', 'text')) if(is.null(url)){ url<-get_genius_song(song_id = song_id, access_token = access_token) %>% .$url } else {url<-url} lyrics<-read_html(url) %>% html_nodes('p') %>% html_text() removing<-purrr::partial(str_replace_all, pattern = '\\[.*?\\]', replacement = '') removing2<-purrr::partial(str_replace_all, pattern = '\n', replacement = ' ') if(output == 'text'){ lyrics<-lyrics[1] %>% removing() %>% removing2() } else{ lyrics<- str_split(lyrics, pattern = '\n')[[1]] %>% enframe(name = NULL, value = 'Lyrics') %>% apply(., 2, removing) %>% as_tibble() %>% filter(Lyrics != '') } return(lyrics) }
utils::globalVariables(c("dscore", "donor_proportion", "ctypes", "AUC", "Specificity", "Precision", "subtype_names","subtype_associations","dsc", "prop", "cell_types", "myx", "myy")) get_subtype_prop_associations <- function(container, max_res, stat_type, integration_var=NULL, min_cells_group=50, use_existing_subc=FALSE, alt_ct_names=NULL,n_col=2) { if (!(stat_type %in% c("fstat","adj_rsq","adj_pval"))) { stop("stat_type parameter is not one of the three options") } if (is.null(integration_var)) { if (!use_existing_subc) { if (is.null(container$embedding)) { stop("need to set integration_var parameter to get an embedding") } } } else { container <- reduce_dimensions(container,integration_var) } container$embedding$clusters$leiden$groups <- factor(container$embedding$clusters$leiden$groups, levels=unique(container$embedding$clusters$leiden$groups)) donor_scores <- container$tucker_results[[1]] res <- data.frame(matrix(ncol = 4, nrow = 0)) colnames(res) <- c(stat_type,'resolution','factor','ctype') if (use_existing_subc) { subc_all <- container$subclusters } else { subc_all <- list() } for (ct in container$experiment_params$ctypes_use) { scMinimal <- container[["scMinimal_ctype"]][[ct]] cluster_res <- seq(.5,max_res,by=.1) for (r in cluster_res) { if (!use_existing_subc) { subclusts <- get_subclusters(container,ct,r,min_cells_group=min_cells_group, small_clust_action='remove') subclusts <- subclusts + 1 subc_all[[ct]][[paste0('res:',as.character(r))]] <- subclusts } else { if (!is.null(alt_ct_names)) { ct_ndx <- which(container$experiment_params$ctypes_use==ct) ct_new <- alt_ct_names[ct_ndx] subclusts <- container$subclusters[[ct_new]][[paste0('res:',as.character(r))]] } else { subclusts <- container$subclusters[[ct]][[paste0('res:',as.character(r))]] } } num_subclusts <- length(unique(subclusts)) if (num_subclusts > 1) { cell_intersect <- intersect(names(subclusts),rownames(scMinimal$metadata)) sub_meta_tmp <- scMinimal$metadata[cell_intersect,] donor_props <- compute_donor_props(subclusts,sub_meta_tmp) donor_balances <- coda.base::coordinates(donor_props) rownames(donor_balances) <- rownames(donor_props) reg_stats <- compute_associations(donor_balances,donor_scores,stat_type) colnames(donor_props) <- sapply(1:ncol(donor_props),function(x){paste0(ct,'_',x)}) } else { if (stat_type=='fstat' || stat_type=='adj_rsq') { reg_stats <- rep(0,ncol(container$tucker_results[[1]])) } else if (stat_type=='adj_pval') { reg_stats <- rep(1,ncol(container$tucker_results[[1]])) } } for (i in 1:length(reg_stats)) { new_row <- as.data.frame(list(reg_stats[i], r, paste0("Factor ", as.character(i)), ct),stringsAsFactors = F) colnames(new_row) <- colnames(res) res <- rbind(res,new_row) } } } if (stat_type=='adj_pval') { res$adj_pval <- p.adjust(res$adj_pval,method = 'fdr') } reg_stat_plots <- plot_subclust_associations(res,n_col=n_col) container$plots$subtype_prop_factor_associations <- reg_stat_plots container$subclusters <- subc_all container$subc_factor_association_res <- res return(container) } get_subclusters <- function(container,ctype,resolution,min_cells_group=50,small_clust_action='merge') { con <- container$embedding clusts <- conos::findSubcommunities(con,method=conos::leiden.community, resolution=resolution, target.clusters=ctype) ctype_bcodes <- rownames(container$scMinimal_ctype[[ctype]]$metadata) clusts <- clusts[names(clusts) %in% ctype_bcodes] if (small_clust_action=='remove') { clust_sizes <- table(clusts) clusts_keep <- names(clust_sizes)[clust_sizes > min_cells_group] large_clusts <- clusts[clusts %in% clusts_keep] } else if (small_clust_action=='merge') { large_clusts <- merge_small_clusts(con,clusts,min_cells_group) } large_clusts <- sapply(large_clusts,function(x) { return(as.numeric(strsplit(x,split='_')[[1]][2])) }) return(large_clusts) } merge_small_clusts <- function(con,clusts,min_cells_group) { clust_sizes <- table(clusts) clusts_keep <- names(clust_sizes)[clust_sizes > min_cells_group] clusts_merge <- names(clust_sizes)[clust_sizes <= min_cells_group] coords <- con[["embedding"]] get_centroid <- function(clust_name) { ndx <- names(clusts)[clusts==clust_name] x_y <- coords[ndx,] if (length(ndx)>1) { x_med <- stats::median(x_y[,1]) y_med <- stats::median(x_y[,2]) return(c(x_med,y_med)) } else { return(x_y) } } main_centroids <- lapply(clusts_keep,get_centroid) names(main_centroids) <- clusts_keep small_centroids <- lapply(clusts_merge,get_centroid) names(small_centroids) <- clusts_merge get_nearest_large_clust <- function(clust_name) { cent <- small_centroids[[clust_name]] c_distances <- c() for (big_clust in names(main_centroids)) { clust_dist <- sqrt(sum((main_centroids[[big_clust]] - cent)**2)) c_distances[big_clust] <- clust_dist } nearest_big_clust <- names(main_centroids)[which(c_distances == min(c_distances))] return(nearest_big_clust) } for (cmerge in clusts_merge) { merge_partner <- get_nearest_large_clust(cmerge) clusts[clusts==cmerge] <- merge_partner } return(clusts) } get_ctype_prop_associations <- function(container,stat_type,n_col=2) { all_cells <- c() for (ct in container$experiment_params$ctypes_use) { cells_in_ctype <- rownames(container$scMinimal_ctype[[ct]]$metadata) all_cells <- c(all_cells,cells_in_ctype) } container$scMinimal_full$metadata <- container$scMinimal_full$metadata[all_cells,] container$scMinimal_full$count_data <- container$scMinimal_full$count_data[,all_cells] scMinimal <- container$scMinimal_full donor_scores <- container$tucker_results[[1]] metadata <- scMinimal$metadata all_ctypes <- unique(as.character(metadata$ctypes)) cell_clusters <- sapply(as.character(metadata$ctypes),function(x){ return(which(all_ctypes %in% x)) }) names(cell_clusters) <- rownames(metadata) donor_props <- compute_donor_props(cell_clusters,metadata) donor_balances <- coda.base::coordinates(donor_props) rownames(donor_balances) <- rownames(donor_props) sig_res <- compute_associations(donor_balances,donor_scores,stat_type) prop_figure <- plot_donor_props(donor_props, donor_scores, sig_res, all_ctypes, stat_type, n_col=n_col) container$plots$ctype_prop_factor_associations <- prop_figure return(container) } get_ctype_subc_prop_associations <- function(container,ctype,res,n_col=2,alt_name=NULL) { scMinimal <- container$scMinimal_ctype[[ctype]] donor_scores <- container$tucker_results[[1]] metadata <- scMinimal$metadata if (!is.null(alt_name)) { cell_clusters <- container[["subclusters"]][[alt_name]][[paste0('res:',as.character(res))]] } else { cell_clusters <- container[["subclusters"]][[ctype]][[paste0('res:',as.character(res))]] } cells_both <- intersect(names(cell_clusters),rownames(metadata)) cell_clusters <- cell_clusters[cells_both] metadata <- metadata[cells_both,] donor_props <- compute_donor_props(cell_clusters,metadata) donor_balances <- coda.base::coordinates(donor_props) rownames(donor_balances) <- rownames(donor_props) sig_res <- compute_associations(donor_balances,donor_scores,'adj_pval') all_ctypes <- sapply(1:ncol(donor_props), function(x) { paste0(ctype,"_",x) }) prop_figure <- plot_donor_props(donor_props, donor_scores, sig_res, all_ctypes, 'adj_pval', n_col=n_col) container$plots$ctype_prop_factor_associations <- prop_figure return(container) } reduce_dimensions <- function(container, integration_var, ncores =container$experiment_params$ncores) { all_cells <- c() for (ct in container$experiment_params$ctypes_use) { cells_in_ctype <- rownames(container$scMinimal_ctype[[ct]]$metadata) all_cells <- c(all_cells,cells_in_ctype) } container$scMinimal_full$metadata <- container$scMinimal_full$metadata[all_cells,] container$scMinimal_full$count_data <- container$scMinimal_full$count_data[,all_cells] panel <- list() meta <- as.character(container$scMinimal_full$metadata[,integration_var]) var_vals <- unique(meta) for (v in var_vals) { cell_ndx <- which(meta == v) panel[[v]] <- container$scMinimal_full$count_data[,cell_ndx] } panel.preprocessed <- lapply(panel, pagoda2::basicP2proc, n.cores=ncores, min.cells.per.gene=0, n.odgenes=2e3, get.largevis=FALSE, make.geneknn=FALSE) con <- conos::Conos$new(panel.preprocessed, n.cores=ncores) con$buildGraph() con$embedGraph(method="UMAP", min.dist=0.01, spread=15, min.prob.lower=1e-3) con$findCommunities(method=conos::leiden.community, resolution=1) cell_assigns <- container$scMinimal_full$metadata[,"ctypes"] names(cell_assigns) <- rownames(container$scMinimal_full$metadata) con$clusters$leiden$groups <- cell_assigns[names(con$clusters$leiden$groups)] container$embedding <- con return(container) } compute_donor_props <- function(clusts,metadata) { names(clusts) <- metadata[names(clusts),"donors"] all_donors <- unique(as.character(metadata$donors)) donor_props <- data.frame(matrix(0,ncol=length(unique(clusts)),nrow = length(all_donors))) colnames(donor_props) <- sapply(1:ncol(donor_props),function(x) { paste0('K',as.character(x)) }) rownames(donor_props) <- all_donors for (d in all_donors) { tmp_clusts <- clusts[names(clusts)==d] counts <- table(tmp_clusts) names(counts) <- sapply(names(counts),function(x) { paste0('K',as.character(x)) }) for (j in 1:length(counts)) { donor_props[d,names(counts)[j]] <- counts[j] } } donor_props <- donor_props + 1 donor_props <- t(apply(donor_props, 1, function(i) i/sum(i))) return(donor_props) } compute_associations <- function(donor_balances, donor_scores, stat_type) { all_reg_stats <- c() for (f in 1:ncol(donor_scores)) { tmp <- as.data.frame(cbind(donor_scores[,f],donor_balances[rownames(donor_scores),])) if (ncol(tmp)==2) { colnames(tmp) <- c('dscore','ilr1') } else { colnames(tmp)[1] <- "dscore" } if (ncol(donor_balances)==1) { prop_model <- stats::as.formula('ilr1 ~ dscore') } else { prop_model <- stats::as.formula(paste0("dscore ~ ", paste(colnames(donor_balances),collapse=" + "))) } if (rowSums(donor_balances)[1]==1) { breg <- betareg::betareg(prop_model, data = tmp) tmp <- summary(breg) reg_stat <- tmp$coefficients$mean['dscore','Pr(>|z|)'] } else { lmres <- stats::lm(prop_model, data=tmp) if (stat_type == 'fstat') { reg_stat <- summary(lmres)$fstatistic[[1]] } else if (stat_type == 'adj_rsq') { reg_stat <- summary(lmres)$adj.r.squared } else if (stat_type == 'adj_pval') { x <- summary(lmres) reg_stat <- stats::pf(x$fstatistic[1],x$fstatistic[2],x$fstatistic[3],lower.tail=FALSE) } } all_reg_stats <- c(all_reg_stats,reg_stat) } return(all_reg_stats) } get_subclust_enr_fig <- function(container,all_ctypes,all_res) { container <- get_subclust_enr_hmap(container,all_ctypes,all_res,1:ncol(container$tucker_results[[1]])) enr_hmap <- container$plots$subc_enr_hmap enr_hmap <- grid::grid.grabExpr(draw(enr_hmap)) de_hmaps <- get_subclust_de_hmaps(container,all_ctypes,all_res) container <- get_subclust_umap(container,all_ctypes=all_ctypes,all_res=all_res) all_umaps <- list() for (j in 1:length(all_ctypes)) { ctype <- all_ctypes[j] res <- all_res[j] ct_res <- paste0(ctype,':',as.character(res)) all_umaps[[j]] <- container$plots$subc_umaps[[ct_res]] } r1 <- cowplot::plot_grid(plotlist=all_umaps,nrow=1,scale = 0.97) r2 <- cowplot::plot_grid(plotlist=de_hmaps,nrow=1) fig <- cowplot::plot_grid(r1,r2,enr_hmap,ncol=1,rel_heights=c(1,1.65,1)) container$plots$subc_fig <- fig return(container) } get_subclust_enr_hmap <- function(container,all_ctypes,all_res,all_factors) { res_df <- data.frame(matrix(ncol=length(all_factors),nrow=0)) hmap_groupings <- c() for (j in 1:length(all_ctypes)) { ctype <- all_ctypes[j] res <- all_res[j] resolution_name <- paste0('res:',as.character(res)) subclusts <- container$subclusters[[ctype]][[resolution_name]] subclusts <- sapply(subclusts,function(x){paste0(ctype,'_',x)}) donor_scores <- container$tucker_results[[1]] donor_vec <- container$scMinimal_full$metadata[names(subclusts),'donors'] subclusts <- subclusts[donor_vec %in% rownames(donor_scores)] subclusts_num <- sapply(subclusts,function(x){as.numeric(strsplit(x,split="_")[[1]][[2]])}) scMinimal <- container$scMinimal_ctype[[ctype]] sub_meta_tmp <- scMinimal$metadata[names(subclusts),] donor_props <- compute_donor_props(subclusts_num,sub_meta_tmp) tmp_df <- data.frame(matrix(ncol=length(all_factors),nrow=length(unique(subclusts)))) rownames(tmp_df) <- rownames(tmp_df) <- sapply(1:length(unique(subclusts)),function(x){ paste0(ctype,"_",x)}) hmap_groupings <- c(hmap_groupings, rep(ctype,length(unique(subclusts)))) for (factor_use in all_factors) { subtype_associations <- get_indv_subtype_associations(container,donor_props,factor_use) for (i in 1:length(subtype_associations)) { subc_name <- names(subtype_associations)[i] subc_name <- strsplit(subc_name,split="_")[[1]][1] scores_eval <- donor_scores[,factor_use] cutoffs <- stats::quantile(scores_eval, c(.25, .75)) donors_low <- names(scores_eval)[scores_eval < cutoffs[1]] donors_high <- names(scores_eval)[scores_eval > cutoffs[2]] donors_high_props <- donor_props[donors_high,subc_name] donors_low_props <- donor_props[donors_low,subc_name] donors_high_props_mean <- mean(donors_high_props) donors_low_props_mean <- mean(donors_low_props) subtype_associations[i] <- -log10(subtype_associations[i]) if (donors_high_props_mean < donors_low_props_mean) { subtype_associations[i] <- subtype_associations[i] * -1 } } tmp_df[,factor_use] <- subtype_associations } res_df <- rbind(res_df,tmp_df) } hmap_groupings <- factor(hmap_groupings,levels=all_ctypes) neg_vals <- res_df < 0 res_df <- abs(res_df) res_df <- 10**-res_df res_vec <- unlist(res_df) res_vec <- stats::p.adjust(res_vec, method = 'fdr') res_df_adj <- matrix(res_vec, nrow = nrow(res_df), ncol = ncol(res_df)) colnames(res_df_adj) <- colnames(res_df) rownames(res_df_adj) <- rownames(res_df) res_df_adj <- -log10(res_df_adj) res_df_adj[neg_vals] <- res_df_adj[neg_vals] * -1 res_df_adj <- t(res_df_adj) rownames(res_df_adj) <- sapply(all_factors,function(x) { paste0('Factor',x) }) col_fun = colorRamp2(c(-8, log10(.05), 0, -log10(.05), 8), c("blue", "white", "white", "white", "red")) res_df_adj <- as.matrix(res_df_adj) p <- Heatmap(res_df_adj, name='enr', cluster_columns = FALSE, cluster_rows = FALSE, column_names_gp = gpar(fontsize = 8), row_names_gp = gpar(fontsize = 10), col = col_fun, column_split = hmap_groupings, border=TRUE, row_names_side='left', cluster_column_slices=FALSE, column_gap = unit(8, "mm")) container$subc_associations <- res_df_adj container$plots$subc_enr_hmap <- p return(container) } get_subclust_enr_dotplot <- function(container,ctype,res,subtype,factor_use,ctype_cur=ctype) { resolution_name <- paste0('res:',as.character(res)) subclusts <- container$subclusters[[ctype]][[resolution_name]] names_stored <- names(subclusts) subclusts <- sapply(subclusts,function(x){paste0(ctype,'_',x)}) names(subclusts) <- names_stored donor_scores <- container$tucker_results[[1]] cell_intersect <- intersect(names(subclusts),rownames(container$scMinimal_full$metadata)) donor_vec <- container$scMinimal_full$metadata[cell_intersect,'donors'] subclusts <- subclusts[cell_intersect] subclusts <- subclusts[donor_vec %in% rownames(donor_scores)] subclusts_num <- sapply(subclusts,function(x){as.numeric(strsplit(x,split="_")[[1]][[2]])}) scMinimal <- container$scMinimal_ctype[[ctype_cur]] sub_meta_tmp <- scMinimal$metadata[names(subclusts),] donor_props <- compute_donor_props(subclusts_num,sub_meta_tmp) donor_props <- donor_props[,subtype,drop=FALSE] colnames(donor_props) <- 'prop' donor_props2 <- cbind(donor_props,donor_scores[rownames(donor_props),factor_use]) colnames(donor_props2)[ncol(donor_props2)] <- 'dsc' donor_props2 <- as.data.frame(donor_props2) donor_props2$dsc <- as.numeric(donor_props2$dsc) donor_props2$prop <- as.numeric(donor_props2$prop) lmres <- lm(prop~dsc,data=donor_props2) line_range <- seq(min(donor_props2$dsc),max(donor_props2$dsc),.001) line_dat <- c(line_range*lmres$coefficients[[2]] + lmres$coefficients[[1]]) line_df <- cbind.data.frame(line_range,line_dat) line_df <- cbind.data.frame(line_df,rep('1',nrow(line_df))) colnames(line_df) <- c('myx','myy') p <- ggplot(donor_props2,aes(x=dsc,y=prop)) + geom_point(alpha = 0.5,pch=19,size=2) + geom_line(data=line_df,aes(x=myx,y=myy)) + xlab(paste0('Factor ',as.character(factor_use),' Donor Score')) + ylab(paste0('Proportion of All ',ctype)) + ylim(0,1) + ggtitle(paste0(ctype,'_',as.character(subtype),' Proportions')) + theme_bw() + theme(plot.title = element_text(hjust = 0.5), axis.text=element_text(size=12), axis.title=element_text(size=14)) ndx_mark <- which(subclusts_num==subtype) ndx_other <- which(subclusts_num!=subtype) subclusts_num[ndx_mark] <- 1 subclusts_num[ndx_other] <- 2 donor_props <- compute_donor_props(subclusts_num,sub_meta_tmp) donor_balances <- coda.base::coordinates(donor_props) rownames(donor_balances) <- rownames(donor_props) f1 <- get_one_factor(container,factor_use) f1_dsc <- f1[[1]] tmp <- cbind.data.frame(f1_dsc[rownames(donor_balances),1,drop=FALSE],donor_balances) colnames(tmp) <- c('dsc','my_balance') lmres <- summary(lm(my_balance~dsc,data=tmp)) pval <- stats::pf(lmres$fstatistic[1],lmres$fstatistic[2],lmres$fstatistic[3],lower.tail=FALSE) message(paste0('p-value = ',pval)) return(p) } get_subclust_de_hmaps <- function(container,all_ctypes,all_res) { all_plots <- list() con <- container$embedding for (j in 1:length(all_ctypes)) { ctype <- all_ctypes[j] res <- all_res[j] ct_res <- paste0(ctype,':',as.character(res)) resolution_name <- paste0('res:',as.character(res)) if (is.null(container$plots$subtype_de[[ct_res]])) { subclusts <- container$subclusters[[ctype]][[resolution_name]] subclusts <- sapply(subclusts,function(x){paste0(ctype,'_',x)}) donor_scores <- container$tucker_results[[1]] donor_vec <- container$scMinimal_full$metadata[names(subclusts),'donors'] subclusts <- subclusts[donor_vec %in% rownames(donor_scores)] orig_embed <- con[["embedding"]] orig_clusts <- con$clusters$leiden$groups con$clusters$leiden$groups <- as.factor(subclusts) con[["embedding"]] <- orig_embed[names(subclusts),] myde <- con$getDifferentialGenes(groups=as.factor(subclusts),append.auc=TRUE,z.threshold=0,upregulated.only=TRUE) subc_de_hmap <- plotDEheatmap_conos(con, groups=as.factor(subclusts), de=myde, container, row.label.font.size=8) subc_hmap_grob <- grid::grid.grabExpr(draw(subc_de_hmap,annotation_legend_side = "bottom")) container$plots$subtype_de[[ct_res]] <- subc_hmap_grob all_plots[[j]] <- subc_hmap_grob con$clusters$leiden$groups <- orig_clusts con[["embedding"]] <- orig_embed } else { all_plots[[j]] <- container$plots$subtype_de[[ct_res]] } } return(all_plots) } get_subclust_umap <- function(container,all_ctypes,all_res,n_col=3) { all_plts <- list() plots_store <- list() for (i in 1:length(all_ctypes)) { ctype <- all_ctypes[i] res <- all_res[i] con <- container[["embedding"]] ct_res <- paste0(ctype,':',as.character(res)) resolution_name <- paste0('res:',as.character(res)) subclusts <- container$subclusters[[ctype]][[resolution_name]] subclusts <- sapply(subclusts,function(x){paste0(ctype,'_',x)}) orig_embed <- con[["embedding"]] orig_clusts <- con$clusters$leiden$groups donor_scores <- container$tucker_results[[1]] donor_vec <- container$scMinimal_full$metadata[names(subclusts),'donors'] subclusts <- subclusts[donor_vec %in% rownames(donor_scores)] con$clusters$leiden$groups <- as.factor(subclusts) con[["embedding"]] <- orig_embed[names(subclusts),] qt_x <- stats::quantile(con[["embedding"]][,1], c(.25,.75)) qt_y <- stats::quantile(con[["embedding"]][,2], c(.25,.75)) iqr_x <- qt_x[2] - qt_x[1] iqr_y <- qt_y[2] - qt_y[1] outlier_up_lim_x <- qt_x[2] + 1.5 * iqr_x outlier_down_lim_x <- qt_x[1] - 1.5 * iqr_x outlier_up_lim_y <- qt_y[2] + 1.5 * iqr_y outlier_down_lim_y <- qt_y[1] - 1.5 * iqr_y n_throw_out <- sum(con[["embedding"]][,1] > outlier_up_lim_x) while (n_throw_out > 100) { xlimits <- outlier_up_lim_x - outlier_down_lim_x move_by <- .05 * xlimits outlier_up_lim_x <- outlier_up_lim_x + move_by n_throw_out <- sum(con[["embedding"]][,1] > outlier_up_lim_x) } n_throw_out <- sum(con[["embedding"]][,1] < outlier_down_lim_x) while (n_throw_out > 100) { xlimits <- outlier_up_lim_x - outlier_down_lim_x move_by <- .05 * xlimits outlier_down_lim_x <- outlier_down_lim_x - move_by n_throw_out <- sum(con[["embedding"]][,1] < outlier_down_lim_x) } n_throw_out <- sum(con[["embedding"]][,2] > outlier_up_lim_y) while (n_throw_out > 100) { ylimits <- outlier_up_lim_y - outlier_down_lim_y move_by <- .05 * ylimits outlier_up_lim_y <- outlier_up_lim_y + move_by n_throw_out <- sum(con[["embedding"]][,2] > outlier_up_lim_y) } n_throw_out <- sum(con[["embedding"]][,2] < outlier_down_lim_y) while (n_throw_out > 100) { ylimits <- outlier_up_lim_y - outlier_down_lim_y move_by <- .05 * ylimits outlier_down_lim_y <- outlier_down_lim_y - move_by n_throw_out <- sum(con[["embedding"]][,2] < outlier_down_lim_y) } subc_embed_plot <- con$plotGraph() subc_embed_plot <- subc_embed_plot + ggtitle(paste0(ctype,' res = ',as.character(res))) + xlab('UMAP 1') + ylab('UMAP 2') + xlim(outlier_down_lim_x,outlier_up_lim_x) + ylim(outlier_down_lim_y,outlier_up_lim_y) + theme(plot.title = element_text(hjust = 0.5), axis.title.y = element_text(size = rel(.8)), axis.title.x = element_text(size = rel(.8))) all_plts[[i]] <- subc_embed_plot plots_store[[ct_res]] <- subc_embed_plot con$clusters$leiden$groups <- orig_clusts con[["embedding"]] <- orig_embed } container$plots$subc_umaps <- plots_store container$plots$subc_umap_fig <- cowplot::plot_grid(plotlist=all_plts, ncol=n_col, scale = 0.95) return(container) } get_indv_subtype_associations <- function(container, donor_props, factor_select) { reg_stats_all <- list() for (j in 1:ncol(donor_props)) { prop_test <- donor_props[,j,drop=FALSE] colnames(prop_test) <- 'ilr1' rownames(prop_test) <- rownames(donor_props) reg_stats <- compute_associations(prop_test,container$tucker_results[[1]],"adj_pval") names(reg_stats) <- as.character(c(1:ncol(container$tucker_results[[1]]))) reg_stats_all[[paste0("K",j,"_")]] <- reg_stats } reg_stats_all <- unlist(reg_stats_all) parsed_name <- sapply(names(reg_stats_all),function(x){ return(as.numeric(strsplit(x,split="_.")[[1]][2])) }) reg_stats_all <- reg_stats_all[parsed_name==factor_select] return(reg_stats_all) } plot_donor_props <- function(donor_props, donor_scores, significance, ctype_mapping=NULL, stat_type='adj_pval', n_col=2) { if (stat_type == 'adj_pval') { significance <- stats::p.adjust(significance) } all_plots <- list() for (f in 1:ncol(donor_scores)) { tmp <- cbind(donor_scores[,f],as.data.frame(donor_props[rownames(donor_scores),])) colnames(tmp)[1] <- "dscore" tmp2 <- reshape2::melt(data=tmp, id.vars = 'dscore', variable.name = 'ctypes', value.name = 'donor_proportion') if (!is.null(ctype_mapping)) { tmp2$ctypes <- sapply(tmp2$ctypes,function(x){ return(ctype_mapping[x]) }) } colnames(tmp2)[2] <- 'cell_types' if (stat_type=='fstat') { plot_stat_name <- 'F-Statistic' round_digits <- 3 } else if (stat_type=='adj_rsq') { plot_stat_name <- 'adj r-sq' round_digits <- 3 } else if (stat_type == 'adj_pval') { plot_stat_name <- 'adj p-val' round_digits <- 4 } p <- ggplot(tmp2, aes(x=dscore,y=donor_proportion,color=cell_types)) + geom_smooth(method='lm', formula= y~x) + ggtitle(paste0("Factor ",as.character(f))) + labs(color = "Cell Type") + xlab("Donor Factor Score") + ylab("Cell Type Proportion") + theme_bw() + theme(plot.title = element_text(hjust = 0.5),legend.position="bottom") + annotate(geom="text", x=Inf, y=Inf, hjust=1,vjust=1, col="black", label=paste0(plot_stat_name,': ',format(significance[f], scientific = TRUE, digits=2))) legend <- cowplot::get_legend( p + theme(legend.box.margin = margin(0, 0, 30, 0)) ) p <- p + theme(legend.position="none") all_plots[[f]] <- p } fig <- cowplot::plot_grid(plotlist=all_plots, ncol=n_col) fig <- cowplot::plot_grid(fig, legend, ncol = 1, rel_heights = c(1, .1)) return(fig) } plot_subclust_associations <- function(res,n_col=2) { stat_type <- colnames(res)[1] if (stat_type == 'adj_pval') { res[,stat_type] <- -log10(res[,stat_type]) } if (stat_type=='fstat') { y_axis_name <- 'F-Statistic' } else if (stat_type=='adj_rsq') { y_axis_name <- 'adj r-sq' } else if (stat_type == 'adj_pval') { y_axis_name <- '-log10(adj p-val)' } num_factors <- length(unique(res$factor)) ctypes <- unique(res$ctype) plot_list <- list() for (f in 1:num_factors) { factor_name <- paste0("Factor ",as.character(f)) res_factor <- res[res$factor==factor_name,] p <- ggplot(res_factor,aes_string(x='resolution',y=stat_type,color='ctype')) + geom_line() + xlab("Leiden Resolution") + ylab(y_axis_name) + labs(color = "Cell Type") + ggtitle(factor_name) + theme_bw() + theme(plot.title = element_text(hjust = 0.5), legend.position="bottom") if (stat_type == 'adj_rsq') { p <- p + ylim(c(-.1,1)) } if (stat_type == 'adj_pval') { p <- p + geom_hline(yintercept=-log10(.01), linetype="dashed", color = "red") } legend <- cowplot::get_legend( p + theme(legend.box.margin = margin(0, 0, 30, 0)) ) p <- p + theme(legend.position="none") plot_list[[factor_name]] <- p } fig <- cowplot::plot_grid(plotlist=plot_list, ncol=n_col) fig <- cowplot::plot_grid(fig, legend, ncol = 1, rel_heights = c(1, .1)) return(fig) } plotDEheatmap_conos <- function(con,groups,container,de=NULL,min.auc=NULL,min.specificity=NULL,min.precision=NULL,n.genes.per.cluster=10,additional.genes=NULL,exclude.genes=NULL, labeled.gene.subset=NULL, expression.quantile=0.99,pal=grDevices::colorRampPalette(c('dodgerblue1','grey95','indianred1'))(1024),ordering='-AUC',column.metadata=NULL,show.gene.clusters=TRUE, remove.duplicates=TRUE, column.metadata.colors=NULL, show.cluster.legend=TRUE, show_heatmap_legend=FALSE, border=TRUE, return.details=FALSE, row.label.font.size=10, order.clusters=FALSE, split=FALSE, split.gap=0, cell.order=NULL, averaging.window=0, ...) { if (!requireNamespace("ComplexHeatmap", quietly = TRUE) || utils::packageVersion("ComplexHeatmap") < "2.4") { stop("ComplexHeatmap >= 2.4 package needs to be installed to use plotDEheatmap. Please run \"devtools::install_github('jokergoo/ComplexHeatmap')\".") } getGeneExpression <- utils::getFromNamespace("getGeneExpression", "conos") groups <- as.factor(groups) if(is.null(de)) { de <- con$getDifferentialGenes(groups=groups,append.auc=TRUE,z.threshold=0,upregulated.only=TRUE) } de <- de[unlist(lapply(de,nrow))>0] de <- de[names(de) %in% levels(groups)] de <- de[order(match(names(de),levels(groups)))] if(!is.null(min.auc)) { if(!is.null(de[[1]]$AUC)) { de <- lapply(de,function(x) x %>% dplyr::filter(AUC>min.auc)) } else { warning("AUC column lacking in the DE results - recalculate with append.auc=TRUE") } } if(!is.null(min.specificity)) { if(!is.null(de[[1]]$Specificity)) { de <- lapply(de,function(x) x %>% dplyr::filter(Specificity>min.specificity)) } else { warning("Specificity column lacking in the DE results - recalculate append.specificity.metrics=TRUE") } } if(!is.null(min.precision)) { if(!is.null(de[[1]]$Precision)) { de <- lapply(de,function(x) x %>% dplyr::filter(Precision>min.precision)) } else { warning("Precision column lacking in the DE results - recalculate append.specificity.metrics=TRUE") } } if(n.genes.per.cluster==0) { if(is.null(additional.genes)) stop("if n.genes.per.cluster is 0, additional.genes must be specified") additional.genes.only <- TRUE; n.genes.per.cluster <- 30; } else { additional.genes.only <- FALSE; } de <- lapply(de,function(x) x%>%dplyr::arrange(!!rlang::parse_expr(ordering))%>%head(n.genes.per.cluster)) de <- de[unlist(lapply(de, nrow))>0] gns <- lapply(de,function(x) as.character(x$Gene)) %>% unlist sn <- function(x) stats::setNames(x,x) expl <- lapply(de,function(d) do.call(rbind,lapply(sn(as.character(d$Gene)),function(gene) getGeneExpression(con,gene)))) if(!is.null(additional.genes)) { genes.to.add <- setdiff(additional.genes,unlist(lapply(expl,rownames))) if(length(genes.to.add)>0) { x <- setdiff(genes.to.add,conos::getGenes(con)); if(length(x)>0) warning('the following genes are not found in the dataset: ',paste(x,collapse=' ')) age <- do.call(rbind,lapply(sn(genes.to.add),function(gene) getGeneExpression(con,gene))) acc <- do.call(rbind,lapply(expl,function(og) rowMeans(cor(t(age),t(og)),na.rm=TRUE))) acc <- acc[,apply(acc,2,function(x) any(is.finite(x))),drop=FALSE] acc.best <- stats::na.omit(apply(acc,2,which.max)) for(i in 1:length(acc.best)) { gn <- names(acc.best)[i]; expl[[acc.best[i]]] <- rbind(expl[[acc.best[i]]],age[gn,,drop=FALSE]) } if(additional.genes.only) { expl <- lapply(expl,function(d) d[rownames(d) %in% additional.genes,,drop=FALSE]) expl <- expl[unlist(lapply(expl,nrow))>0] } } } if(!is.null(exclude.genes)) { expl <- lapply(expl,function(x) { x[!rownames(x) %in% exclude.genes,,drop=FALSE] }) } exp <- do.call(rbind,expl) exp <- stats::na.omit(exp[,colnames(exp) %in% names(stats::na.omit(groups))]) if(order.clusters) { xc <- do.call(cbind,tapply(1:ncol(exp),groups[colnames(exp)],function(ii) rowMeans(exp[,ii,drop=FALSE]))) hc <- stats::hclust(stats::as.dist(2-cor(xc)),method='ward.D2') groups <- factor(groups,levels=hc$labels[hc$order]) expl <- expl[levels(groups)] exp <- do.call(rbind,expl) exp <- stats::na.omit(exp[,colnames(exp) %in% names(stats::na.omit(groups))]) } if(averaging.window>0) { if(requireNamespace("zoo", quietly = TRUE)) { exp <- do.call(cbind,tapply(1:ncol(exp),as.factor(groups[colnames(exp)]),function(ii) { xa <- t(zoo::rollapply(as.matrix(t(exp[,ii,drop=FALSE])),averaging.window,mean,align='left',partial=TRUE)) colnames(xa) <- colnames(exp)[ii] xa })) } else { warning("window averaging requires zoo package to be installed. skipping.") } } x <- t(apply(as.matrix(exp), 1, function(xp) { if(expression.quantile<1) { qs <- stats::quantile(xp,c(1-expression.quantile,expression.quantile)) if(diff(qs)==0) { xps <- unique(xp) if(length(xps)<3) { qs <- range(xp) } xpm <- stats::median(xp) if(sum(xp<xpm) > sum(xp>xpm)) { qs[1] <- max(xp[xp<xpm]) } else { qs[2] <- min(xps[xps>xpm]) } } xp[xp<qs[1]] <- qs[1] xp[xp>qs[2]] <- qs[2] } xp <- xp-min(xp); if(max(xp)>0) xp <- xp/max(xp); xp })) if(!is.null(cell.order)) { o <- cell.order[cell.order %in% colnames(x)] } else { o <- order(groups[colnames(x)]) } x=x[,o] annot <- data.frame(clusters=groups[colnames(x)],row.names = colnames(x)) if(!is.null(column.metadata)) { if(is.data.frame(column.metadata)) { annot <- cbind(annot,column.metadata[colnames(x),]) } else if(is.list(column.metadata)) { annot <- cbind(annot,data.frame(do.call(cbind.data.frame,lapply(column.metadata,'[',rownames(annot))))) } else { warning('column.metadata must be either a data.frame or a list of cell-named factors') } } annot <- annot[,rev(1:ncol(annot)),drop=FALSE] if(is.null(column.metadata.colors)) { column.metadata.colors <- list(); } else { if(!is.list(column.metadata.colors)) stop("column.metadata.colors must be a list in a format accepted by HeatmapAnnotation col argument") if(!is.null(column.metadata.colors[['clusters']])) { if(!all(levels(groups) %in% names(column.metadata.colors[['clusters']]))) { stop("column.metadata.colors[['clusters']] must be a named vector of colors containing all levels of the specified cell groups") } column.metadata.colors[['clusters']] <- column.metadata.colors[['clusters']][levels(groups)] } } if(is.null(column.metadata.colors[['clusters']])) { uc <- unique(annot$clusters); column.metadata.colors$clusters <- stats::setNames(grDevices::rainbow(length(uc)),uc) } tt <- unlist(lapply(expl,nrow)); rannot <- stats::setNames(rep(names(tt),tt),unlist(lapply(expl,rownames))) rannot <- rannot[!duplicated(names(rannot))] rannot <- rannot[names(rannot) %in% rownames(x)] rannot <- data.frame(clusters=factor(rannot,levels=names(expl))) if(remove.duplicates) { x <- x[!duplicated(rownames(x)),] } ha <- ComplexHeatmap::HeatmapAnnotation(df=annot,border=border, col=column.metadata.colors, show_legend=TRUE, show_annotation_name=FALSE, annotation_legend_param = list(nrow=1)) if(show.gene.clusters) { ra <- ComplexHeatmap::HeatmapAnnotation(df=rannot,which='row',show_annotation_name=FALSE, show_legend=FALSE, border=border,col=column.metadata.colors) } else { ra <- NULL } ht_opt$message = FALSE if(split) { ha <- ComplexHeatmap::Heatmap(x, name='expression', row_title=" ", row_title_gp = gpar(fontsize = 50), col=pal, row_labels=convert_gn(container,rownames(x)), cluster_rows=FALSE, cluster_columns=FALSE, show_row_names=is.null(labeled.gene.subset), show_column_names=FALSE, top_annotation=ha , left_annotation=ra, border=border, show_heatmap_legend=show_heatmap_legend, row_names_gp = grid::gpar(fontsize = row.label.font.size), column_split=groups[colnames(x)], row_split=rannot[,1], row_gap = unit(split.gap, "mm"), column_gap = unit(split.gap, "mm"), ...); } else { ha <- ComplexHeatmap::Heatmap(x, name='expression', col=pal, row_labels=convert_gn(container,rownames(x)), row_title=" ", row_title_gp = gpar(fontsize = 50), cluster_rows=FALSE, cluster_columns=FALSE, show_row_names=is.null(labeled.gene.subset), show_column_names=FALSE, top_annotation=ha, left_annotation=ra, border=border, show_heatmap_legend=show_heatmap_legend, row_names_gp = grid::gpar(fontsize = row.label.font.size), ...); } if(!is.null(labeled.gene.subset)) { if(is.numeric(labeled.gene.subset)) { labeled.gene.subset <- unique(unlist(lapply(de,function(x) x$Gene[1:min(labeled.gene.subset,nrow(x))]))) } gene.subset <- which(rownames(x) %in% labeled.gene.subset) labels <- rownames(x)[gene.subset]; ha <- ha + ComplexHeatmap::rowAnnotation(link = ComplexHeatmap::anno_mark(at = gene.subset, labels = labels, labels_gp = grid::gpar(fontsize = row.label.font.size))) } if(return.details) { return(list(ha=ha,x=x,annot=annot,rannot=rannot,expl=expl,pal=pal,labeled.gene.subset=labeled.gene.subset)) } return(ha) }
library("ggplot2") library("plotly") library("gganimate") library("tidyverse") library('PEcAn.all') library("RCurl") source("/fs/data3/kzarada/NEFI/Willow_Creek/forecast.graphs.R") WLEF.num = 678 WLEF.abv = "WLEF" WLEF.outdir = '/fs/data3/kzarada/NEFI/US_WLEF/output/' WLEF.db.num = "0-678" WCR.num = 676 WCR.abv = "WCr" WCR.outdir = '/fs/data3/kzarada/output/' WCR.db.num = "0-676" Potato.num = 1000026756 Potato.abv = 'Potato' Potato.outdir = '/fs/data3/kzarada/NEFI/US_Potato/output/' Potato.db.num = "1-26756" Syv.num = 622 Syv.abv = "Syv" Syv.outdir = '/fs/data3/kzarada/NEFI/US_Syv/output/' Syv.db.num = "0-622" Los.num = 679 Los.abv = "Los" Los.outdir = '/fs/data3/kzarada/NEFI/US_Los/output/' Los.db.num = "0-679" Harvard.num = 646 Harvard.abv = "Harvard" Harvard.outdir = '/fs/data3/kzarada/NEFI/US_Harvard/output/' Harvard.db.num = '0-646' tower.graphs <- function(site.num, site.abv, outdir, db.num){ frame_end = Sys.Date() + lubridate::days(16) frame_start = Sys.Date() - lubridate::days(10) ftime = seq(as.Date(frame_start), as.Date(frame_end), by="days") ctime = seq(as.Date(frame_start), Sys.Date(), by = "days") vars = c("NEE", "LE", "soil") for(j in 1:length(vars)){ for(i in 1:length(ctime)){ args = c(as.character(ctime[i]), vars[j], site.num, outdir) assign(paste0(ctime[i], "_", vars[j]), forecast.graphs(args)) } } NEE.index <- ls(pattern = paste0("_NEE"), envir=environment()) LE.index <- ls(pattern = paste0("_LE"), envir=environment()) soil.index <- ls(pattern = paste0("_soil"), envir=environment()) nee.data = get(NEE.index[1]) for(i in 2:length(NEE.index)){ nee.data = rbind(nee.data, get(NEE.index[i])) } le.data = get(LE.index[1]) for(i in 2:length(LE.index)){ le.data = rbind(le.data, get(LE.index[i])) } soil.data = get(soil.index[1]) for(i in 2:length(LE.index)){ soil.data = rbind(soil.data, get(soil.index[i])) } nee.data$Time <- as.POSIXct(paste(nee.data$date, nee.data$Time, sep = " "), format = "%Y-%m-%d %H") nee.data$Time <- lubridate::force_tz(nee.data$Time, "UTC") nee.data$start_date <- as.factor(nee.data$start_date) le.data$Time <- as.POSIXct(paste(le.data$date, le.data$Time, sep = " "), format = "%Y-%m-%d %H") le.data$Time <- lubridate::force_tz(le.data$Time, "UTC") le.data$start_date <- as.factor(le.data$start_date) soil.data$Time <- as.POSIXct(paste(soil.data$date, soil.data$Time, sep = " "), format = "%Y-%m-%d %H") soil.data$Time <- lubridate::force_tz(soil.data$Time, "UTC") soil.data$start_date <- as.factor(soil.data$start_date) source(paste0('/fs/data3/kzarada/NEFI/US_', site.abv,"/download_", site.abv, ".R")) real_data <- do.call(paste0("download_US_", site.abv), list(frame_start, frame_end)) real_data$Time = lubridate::with_tz(as.POSIXct(real_data$Time, format = "%Y-%m-%d %H:%M:%S", tz = "UTC"), "UTC") real_data_nee <- as_tibble(real_data %>% dplyr::select(Time, NEE)) real_data_le <- as_tibble(real_data %>% dplyr::select(Time, LE)) nee.data <- left_join(as_tibble(nee.data), real_data_nee, by = c("Time"), suffix = c("nee", "real")) le.data <- left_join(as_tibble(le.data), real_data_le, by = c("Time"), suffix = c("le", "real")) ftime = lubridate::with_tz(as.POSIXct(ftime), tz = "UTC") x.breaks <- match(ftime, nee.data$Time) x.breaks <- x.breaks[!is.na(x.breaks)] nee_upper = max(nee.data %>% dplyr::select(Upper, Lower, Predicted, NEE), na.rm = TRUE) nee_lower = min(nee.data %>% dplyr::select(Upper, Lower, Predicted, NEE), na.rm = TRUE) qle_upper = max(le.data %>% dplyr::select(Upper, Predicted, LE) %>% drop_na()) qle_lower = min(le.data %>% dplyr::select(Lower, Predicted, LE) %>% drop_na()) p <-ggplot(nee.data, aes(group = start_date, ids = start_date, frame = start_date)) + geom_ribbon(aes(x = Time, ymin=Lower, ymax=Upper, fill="95% Confidence Interval"), alpha = 0.4) + geom_line(aes(x = Time, y = NEE, color = "Observed Data"), size = 1) + geom_line(aes(x = Time, y = Predicted, color = "Predicted Mean")) + ggtitle(paste0("Net Ecosystem Exchange for ", frame_start, " to ", frame_end, ", at ", site.abv)) + scale_color_manual(name = "Legend", labels = c("Predicted Mean", "Observed Data"), values=c("Predicted Mean" = "skyblue1", "Observed Data" = "firebrick4")) + scale_fill_manual(labels = c("95% Confidence Interval"), values=c("95% Confidence Interval" = "blue1")) + scale_y_continuous(name="NEE (kg C m-2 s-1)", limits = c(nee_lower, nee_upper)) + theme_minimal() + theme(plot.title = element_text(hjust = 0.5, size = 16), legend.title = element_blank(), legend.text = element_text(size = 12), axis.text.x = element_text(size = 12, angle = 45), axis.text.y = element_text(size = 13), axis.title.y = element_text(size = 16)) q <- ggplot(le.data, aes(group = start_date, ids = start_date, frame = start_date)) + geom_ribbon(aes(x = Time, ymin=Lower, ymax=Upper, fill="95% Confidence Interval"), alpha = 0.4) + geom_line(aes(x = Time, y = LE, color = "Observed Data"), size = 1) + geom_line(aes(x = Time, y = Predicted, color = "Predicted Mean")) + ggtitle(paste0("Latent Energy for ", frame_start, " to ", frame_end, ", at ", site.abv)) + scale_color_manual(name = "Legend", labels = c("Predicted Mean", "Observed Data"), values=c("Predicted Mean" = "skyblue1", "Observed Data" = "firebrick4")) + scale_fill_manual(labels = c("95% Confidence Interval"), values=c("95% Confidence Interval" = "blue1")) + scale_y_continuous(name="LE (W m-2 s-1)") + theme_minimal() + theme(plot.title = element_text(hjust = 0.5, size = 16), legend.title = element_blank(), legend.text = element_text(size = 12), axis.text.x = element_text(size = 12, angle = 45), axis.text.y = element_text(size = 13), axis.title.y = element_text(size = 16)) ggplot.nee<-ggplotly(p, tooltip = 'all') %>% animation_opts(frame = 1200, easing = 'linear-in', transition = 0, redraw = F, mode = "next") %>% animation_slider(x = 0, y = -0.1, visible = T, currentvalue = list(prefix = "Forecast Date:", font = list(color = 'black'))) %>% animation_button(x = 0, xanchor = "left", y = 1.5, yanchor= "top") %>% layout(legend = list(orientation = "h", x = 0.25, y = 1.1)) %>% layout(showlegend = T, margin = c(30,50,30,50)) ggplot.nee$x$data[[1]]$name <-"95% Confidence Interval" ggplot.nee$x$data[[2]]$name <- "Observed Data" ggplot.nee$x$data[[3]]$name <- "Predicted Mean" ggplot.le<-ggplotly(q, tooltip = 'all', layerData = 2) %>% animation_opts(frame = 1200, easing = 'linear-in', transition = 0, redraw = F, mode = "next") %>% animation_slider(x = 0, y = -0.1, visible = T, currentvalue = list(prefix = "Forecast Date:", font = list(color = 'black'))) %>% animation_button(x = 0, xanchor = "left", y = 1.5, yanchor= "top") %>% layout(legend = list(orientation = "h", x = 0.25, y = 1.1)) %>% layout(showlegend = T, margin = c(30,50,30,50)) ggplot.le$x$data[[1]]$name <-"95% Confidence Interval" ggplot.le$x$data[[2]]$name <- "Observed Data" ggplot.le$x$data[[3]]$name <- "Predicted Mean" if(file.exists(paste0("/fs/data3/kzarada/NEFI/US_", site.abv, "/download_", site.abv,"_met.R"))){ source(paste0("/fs/data3/kzarada/NEFI/US_", site.abv, "/download_", site.abv,"_met.R")) met = do.call(paste0("download_US_", site.abv,"_met"), list(frame_start, Sys.Date())) if("Tsoil" %in% names(met)){ met <- as_tibble(met) %>% mutate(Time = as.POSIXct(date)) %>% dplyr::select(Time, Tair,Tsoil, rH) }else{met <- as_tibble(met) %>% mutate(Time = as.POSIXct(date)) %>% dplyr::select(Time, Tair, rH)} nee.met <- nee.data %>% inner_join(met,nee.data, by = c("Time")) nee.met$error <- (nee.met$NEE - nee.met$Predicted) } nee.data$error = nee.data$NEE - nee.data$Predicted le.data$error = le.data$LE - le.data$Predicted library(ncdf4) if(dir.exists(paste0("/fs/data3/kzarada/pecan.data/dbfiles/NOAA_GEFS_downscale_site_", db.num, "/"))){ forecast.path <-paste0("/fs/data3/kzarada/pecan.data/dbfiles/NOAA_GEFS_downscale_site_", db.num, "/") }else(forecast.path <- paste0("/fs/data3/kzarada/pecan.data/dbfiles/NOAA_GEFS_site_", db.num, "/")) forecasted_data <- data.frame() dirs <- list.dirs(path = forecast.path) dir.1 <- dirs[grepl(paste0(".21.", Sys.Date(), "T*"), dirs)] nc.files = list() index = list() dir.index = list() index= strsplit(dir.1[1], split = ".21.20")[[1]][2] dir.index= dirs[grepl(index[1], dirs)] for(k in 1:21){ nc.files[k]<- list.files(path = dir.index[k], pattern = '*.nc' ) } forecasted_data <- data.frame() for(i in 1:21){ setwd(dir.index[i]) nc <- nc_open(nc.files[[i]][1]) sec <- nc$dim$time$vals sec <- udunits2::ud.convert(sec, unlist(strsplit(nc$dim$time$units, " "))[1], "seconds") dt <- mean(diff(sec), na.rm=TRUE) tstep <- round(86400 / dt) dt <- 86400 / tstep Tair <-ncdf4::ncvar_get(nc, "air_temperature") Tair_C <- udunits2::ud.convert(Tair, "K", "degC") Qair <-ncdf4::ncvar_get(nc, "specific_humidity") ws <- try(ncdf4::ncvar_get(nc, "wind_speed")) if (!is.numeric(ws)) { U <- ncdf4::ncvar_get(nc, "eastward_wind") V <- ncdf4::ncvar_get(nc, "northward_wind") ws <- sqrt(U ^ 2 + V ^ 2) PEcAn.logger::logger.info("wind_speed absent; calculated from eastward_wind and northward_wind") } Rain <- ncdf4::ncvar_get(nc, "precipitation_flux") pres <- ncdf4::ncvar_get(nc,'air_pressure') SW <- ncdf4::ncvar_get(nc, "surface_downwelling_shortwave_flux_in_air") LW <- ncdf4::ncvar_get(nc, "surface_downwelling_longwave_flux_in_air") RH <- PEcAn.data.atmosphere::qair2rh(Qair, Tair_C, press = 950) file.name <- nc.files[[i]][1] hour <- strsplit(strsplit(index, split = "T")[[1]][2], split = ".20")[[1]][1] start_date <- as.POSIXct(paste0(strsplit(strsplit(nc$dim$time$units, " ")[[1]][3], split = "T")[[1]][1]," ", hour), format = "%Y-%m-%d %H:%M") sec <- nc$dim$time$vals timestamp <- seq(from = start_date + lubridate::hours(6), by = "1 hour", length.out = length(sec)) ensemble <- rep(i, times = length(timestamp)) tmp <- as.data.frame(cbind( ensemble, Tair_C, Qair, RH, Rain = Rain * dt, ws, SW, LW )) tmp$timestamp <- timestamp nc_close(nc) forecasted_data <- rbind(forecasted_data, tmp) } forecasted_data$ensemble = as.factor(forecasted_data$ensemble) save(list = ls(), file = paste0("/srv/shiny-server/Flux_Dashboard/data/", site.abv, ".RData")) save(list = ls(), file = paste0("/fs/data3/kzarada/NEFI/", site.abv, ".RData")) print(ls()) } try(tower.graphs(WLEF.num, WLEF.abv, WLEF.outdir, WLEF.db.num)) try(tower.graphs(WCR.num, WCR.abv, WCR.outdir, WCR.db.num)) try(tower.graphs(Potato.num, Potato.abv, Potato.outdir, Potato.db.num)) try(tower.graphs(Syv.num, Syv.abv, Syv.outdir, Syv.db.num)) try(tower.graphs(Los.num, Los.abv, Los.outdir, Los.db.num)) try(tower.graphs(Harvard.num, Harvard.abv, Harvard.outdir, Harvard.db.num))
context("commands - transactions") test_that("DISCARD", { expect_equal(redis_cmds$DISCARD(), list("DISCARD")) }) test_that("EXEC", { expect_equal(redis_cmds$EXEC(), list("EXEC")) }) test_that("MULTI", { expect_equal(redis_cmds$MULTI(), list("MULTI")) }) test_that("UNWATCH", { expect_equal(redis_cmds$UNWATCH(), list("UNWATCH")) }) test_that("WATCH", { expect_equal(redis_cmds$WATCH("aa"), list("WATCH", "aa")) expect_equal(redis_cmds$WATCH(c("aa", "bb")), list("WATCH", c("aa", "bb"))) })
[ { "title": "R2admb", "href": "http://sgsong.blogspot.com/2009/12/r2admb.html" }, { "title": "Data analysis example with ggplot and dplyr (analyzing ‘supercar’ data, part 2)", "href": "http://sharpsightlabs.com/blog/2014/12/23/data-analysis-example-r-supercars-part2/" }, { "title": "Fama/French Factors in 1 line of code", "href": "http://timelyportfolio.blogspot.com/2014/08/famafrench-factors-in-1-line-of-code.html" }, { "title": "Getting started with MongoDB in R", "href": "https://www.opencpu.org/posts/mongolite-release-0-3/" }, { "title": "R Ec2", "href": "http://cbwheadon.github.io/R/2012/01/17/r-ec2/" }, { "title": "A look at market returns by month", "href": "http://blog.datapunks.com/2011/11/returns-by-month/" }, { "title": "R is a language", "href": "http://www.quantumforest.com/2012/01/r-is-a-language/" }, { "title": "Dynamically annotate graphs with Shiny", "href": "http://blog.rolffredheim.com/2013/01/annotating-graphs-with-shiny.html" }, { "title": "Crashed!!", "href": "http://strugglingthroughproblems.blogspot.com/2011/06/crashed.html" }, { "title": "I thought R was a letter…intro/installation", "href": "https://learningomics.wordpress.com/2013/01/28/i-thought-r-was-a-letter-an-introduction/" }, { "title": "More on R-Studio", "href": "http://quantitativeecology.blogspot.com/2011/03/more-on-r-studio.html" }, { "title": "Using Inkscape to Post-edit Labels in R Graphs", "href": "https://web.archive.org/web/http://blog.carlislerainey.com/2011/09/26/using-inkscape-to-post-edit-labels-in-r-graphs/?utm_source=rss&utm_medium=rss&utm_campaign=using-inkscape-to-post-edit-labels-in-r-graphs" }, { "title": "Maps of changes in area boundaries, with R", "href": "http://civilstat.com/2012/06/maps-of-changes-in-area-boundaries-with-r/" }, { "title": "MCMSki IV (call for proposals)", "href": "https://xianblog.wordpress.com/2012/10/15/mcmski-iv-call-for-proposals/" }, { "title": "Spring Cleaning Data: 6 of 6- Saving the Data", "href": "http://0utlier.blogspot.com/2013/04/spring-cleaning-data-6-of-6-saving-data.html" }, { "title": "another lottery coincidence", "href": "https://xianblog.wordpress.com/2011/08/30/another-lottery-coincidence/" }, { "title": "I, Rbot: Tweeting from R", "href": "https://johnbaumgartner.wordpress.com/2011/08/19/rbot/" }, { "title": "Third, and Hopefully Final, Post on Correlated Random Normal Generation (Cholesky Edition)", "href": "http://www.cerebralmastication.com/2010/09/cholesk-post-on-correlated-random-normal-generation/" }, { "title": "Geomorph and MacOS X", "href": "http://ww1.geomorph.net/2014/01/geomorph-and-macos-x.html" }, { "title": "Yet Another plyr Example", "href": "https://casoilresource.lawr.ucdavis.edu/" }, { "title": "R for dummies", "href": "https://xianblog.wordpress.com/2013/05/02/r-for-dummies-2/" }, { "title": "Updated tty Connection for R", "href": "http://biostatmatt.com/archives/1029" }, { "title": "R Developer", "href": "https://www.r-users.com/jobs/r-developer/" }, { "title": "abc", "href": "https://xianblog.wordpress.com/2010/10/22/abc/" }, { "title": "“Data Mining with R” Course | May 17-18", "href": "http://www.milanor.net/blog/data-mining-with-r-course-may-17-18/" }, { "title": "The Evolution of Distributed Programming in R", "href": "http://www.mango-solutions.com/wp/2016/01/the-evolution-of-distributed-programming-in-r/" }, { "title": "Multivariate Medians", "href": "http://davegiles.blogspot.com/2014/12/the-multivariate-median.html" }, { "title": "Predicting Wine Quality with Azure ML and R", "href": "http://blog.revolutionanalytics.com/2016/04/predicting-wine-quality.html" }, { "title": "Simple Regime Change Detection with t-test", "href": "http://hameddaily.blogspot.com/2015/05/simple-regime-change-detection-with-t.html" }, { "title": "Usage of R functions \"table\" & \"ifelse\" when NA’s exist", "href": "http://costaleconomist.blogspot.com/2011/01/usage-of-r-functions-table-ifelse-when.html" }, { "title": "ML-Class Ex 7 – kMeans clustering", "href": "https://web.archive.org/web/http://ygc.name/2011/12/24/ml-class-7-kmeans-clustering/" }, { "title": "knitcitations", "href": "http://www.carlboettiger.info/2012/05/30/knitcitations.html" }, { "title": "Three tips for posting good questions to R-help and Stack Overflow", "href": "https://web.archive.org/web/http://www.sigmafield.org/2011/01/18/three-tips-for-posting-good-questions-to-r-help-and-stack-overflow" }, { "title": "New video course: Campaign Response Testing", "href": "http://www.win-vector.com/blog/2015/04/new-video-course-campaign-response-testing/" }, { "title": "Parallel computation [back]", "href": "https://xianblog.wordpress.com/2011/02/13/parallel-computation-back/" }, { "title": "Hadley Wickham’s \"Ask Me Anything\" on Reddit", "href": "http://blog.revolutionanalytics.com/2015/10/hadley-wickhams-ask-me-anything-on-reddit.html" }, { "title": "sab-R-metrics Sidetrack: Bubble Plots", "href": "http://princeofslides.blogspot.com/2011/03/sab-r-metrics-sidetrack-bubble-plots.html" }, { "title": "useR 2015: Romain Francois: My R adventures", "href": "https://csgillespie.wordpress.com/2015/07/01/user-2015-romain-francois-my-r-adventures/" }, { "title": "Your flight is moving …", "href": "http://www.decisionsciencenews.com/2009/03/02/your-flight-is-moving/" }, { "title": "dplyr 0.1.1", "href": "https://blog.rstudio.org/2014/01/30/dplyr-0-1-1/" }, { "title": "High-Performance in Cloud Computing", "href": "https://web.archive.org/web/http://cloudnumbers.com/high-performance-in-cloud-computing" }, { "title": "Extract values from numerous rasters in less time", "href": "http://r-video-tutorial.blogspot.com/2015/05/extract-values-from-numerous-rasters-in.html" }, { "title": "A phylogenetic ordination in one line: magrittr Challenge!", "href": "http://www.mepheoscience.com/magrittr-challenge/" }, { "title": "satRday Cape Town: Call for Submissions", "href": "http://www.exegetic.biz/blog/2016/10/satrday-cape-town-call-submissions/" }, { "title": "Mango at RBelgium: Analytical Web Services", "href": "http://www.mango-solutions.com/wp/2015/10/mango-at-rbelgium-analytical-web-services/" }, { "title": "head and tail for strings", "href": "http://factbased.blogspot.com/2010/10/head-and-tail-for-strings.html" }, { "title": "Rooks in the cloud", "href": "https://web.archive.org/web/http://empty-moon-9726.heroku.com//blog/2012/01/19/rooks-in-the-cloud/" }, { "title": "Near-instant high quality graphs in R", "href": "https://seriousstats.wordpress.com/2012/09/05/highqualitygraphs/" }, { "title": "SIR Model – The Flue Season – Dynamic Programming", "href": "http://www.econometricsbysimulation.com/2013/05/sir-model-flue-season-dynamic.html" }, { "title": "R tutorials", "href": "https://www.r-bloggers.com/" } ]
addToLog <- function(fullLog, ..., showLog = FALSE) { if (showLog) { cat(paste0(..., collapse="\n")) } return(paste0(fullLog, "\n", paste0(..., collapse="\n"))); }