code
stringlengths
1
13.8M
weighted_mannwhitney <- function(data, ...) { UseMethod("weighted_mannwhitney") } weighted_mannwhitney.default <- function(data, x, grp, weights, ...) { x.name <- deparse(substitute(x)) g.name <- deparse(substitute(grp)) w.name <- deparse(substitute(weights)) vars <- c(x.name, g.name, w.name) dat <- suppressMessages(dplyr::select(data, !! vars)) dat <- na.omit(dat) weighted_mannwhitney_helper(dat) } weighted_mannwhitney.formula <- function(formula, data, ...) { vars <- all.vars(formula) dat <- suppressMessages(dplyr::select(data, !! vars)) dat <- na.omit(dat) weighted_mannwhitney_helper(dat) } weighted_mannwhitney_helper <- function(dat, vars) { if (!requireNamespace("survey", quietly = TRUE)) { stop("Package `survey` needed to for this function to work. Please install it.", call. = FALSE) } x.name <- colnames(dat)[1] group.name <- colnames(dat)[2] colnames(dat) <- c("x", "g", "w") if (dplyr::n_distinct(dat$g, na.rm = TRUE) > 2) { m <- "Weighted Kruskal-Wallis test" method <- "KruskalWallis" } else { m <- "Weighted Mann-Whitney-U test" method <- "wilcoxon" } design <- survey::svydesign(ids = ~0, data = dat, weights = ~w) mw <- survey::svyranktest(formula = x ~ g, design, test = method) attr(mw, "x.name") <- x.name attr(mw, "group.name") <- group.name class(mw) <- c("sj_wmwu", "list") mw$method <- m mw }
orient_rpi = function(file, verbose = TRUE){ L = orient_rpi_file(file = file, verbose = verbose) L$img = check_nifti(L$img) return(L) } orient_rpi_file = function(file, verbose = TRUE){ file = checkimg(file) img = RNifti::readNifti(file) sorient = RNifti::orientation(img) RNifti::orientation(img) = "LAS" outfile = tempfile(fileext = ".nii.gz") RNifti::writeNifti(img, file = outfile) L = list(img = outfile, orientation = sorient) return(L) } reverse_orient_rpi = function( file, convention = c("NEUROLOGICAL", "RADIOLOGICAL"), orientation, verbose = TRUE){ img = reverse_orient_rpi_file(file = file, orientation = orientation, verbose = verbose) img = check_nifti(img) return(img) } reverse_orient_rpi_file = function( file, convention = c("NEUROLOGICAL", "RADIOLOGICAL"), orientation, verbose = TRUE){ file = checkimg(file) stopifnot(nchar(orientation) == 3) img = RNifti::readNifti(file) RNifti::orientation(img) = orientation outfile = tempfile(fileext = ".nii.gz") RNifti::writeNifti(img, file = outfile) return(outfile) } is_rpi_oriented = function(file, verbose = FALSE) { img = RNifti::asNifti(file) res = RNifti::orientation(img) == "LAS" return(res) }
"daystoyears" <- function (x, datemin=NULL, dateformat="m/d/Y") { x <- x datemin <- datemin defyearorig <- 1970 if (length(datemin) > 0 && !any(class(datemin) == "POSIXt")) { dateformat <- sub("month", "%B", dateformat) dateformat <- sub("mon", "%b", dateformat) dateformat <- sub("m", "%m", dateformat) dateformat <- sub("d", "%d", dateformat) dateformat <- sub("y", "%y", dateformat) dateformat <- sub("Y", "%Y", dateformat) datemin <- strptime(as.character(datemin), format=dateformat) } "Julian" <- function(x, d, y) { if(is.null(origin. <- getOption("chron.origin"))) origin. <- c(month = 1, day = 1, year = 1970) m <- c(origin.[1], x) d <- c(origin.[2], d) y <- c(origin.[3], y) y <- y + ifelse(m > 2, 0, -1) m <- m + ifelse(m > 2, -3, 9) c <- y %/% 100 ya <- y - 100 * c out <- ((146097 * c) %/% 4 + (1461 * ya) %/% 4 + (153 * m + 2) %/% 5 + d + 1721119) if(all(origin. == 0)) out <- out[-1] else out <- out[-1] - out[1] out } if (length(datemin) > 0) { dateminval <- Julian(datemin$mon+1, datemin$mday, datemin$year+1900) x <- x - trunc(min(x, na.rm=TRUE)) + dateminval } if(is.null(yearorig <- options("chron.origin")$year)) yearorig <- defyearorig x <- x/365.25 + yearorig x }
VERSION <- "2.7.4" if(!file.exists(sprintf("../windows/harfbuzz-%s/include/png.h", VERSION))){ if(getRversion() < "3.3.0") setInternet2() download.file(sprintf("https://github.com/rwinlib/harfbuzz/archive/v%s.zip", VERSION), "lib.zip", quiet = TRUE) dir.create("../windows", showWarnings = FALSE) unzip("lib.zip", exdir = "../windows") unlink("lib.zip") }
knitr::opts_chunk$set( cache = TRUE, collapse = TRUE, comment = " ) load(file.path("..", "R", "sysdata.rda")) estimators <- unique(results.normal$estimator) par(mfrow = c(3, 1)) for (i in seq_along(estimators)) { inds <- which(results.normal[, "estimator"] == estimators[i]) p.value <- results.normal[inds, "size"] std.err <- results.normal[inds, "std.error"] x <- 1:length(inds) m <- results.normal[inds, "m"] n <- results.normal[inds, "n"] cols <- c("black", "red", "green") if (i == 1) { plot(x, p.value, ylim = c(0, 0.18), xlab = "Sample sizes", ylab = "Size of the test", main = "N(0, 1)-distribution", col = cols[i], xaxt = "n", yaxt = "n" ) axis(side = 1, at = 1:10, labels = unique(paste0("(", m, ", ", n, ")"))) axis(side = 2, at = seq(0.025, 0.175, by = 0.025), labels = c("", "0.05", "", "0.1", "", "0.15", "")) } else { points(x, p.value, col = cols[i], ) } abline(h = 0.05, lty = "dashed") } for (i in seq_along(estimators)) { inds <- which(results.t[, "estimator"] == estimators[i]) p.value <- results.t[inds, "size"] std.err <- results.t[inds, "std.error"] x <- 1:length(inds) m <- results.t[inds, "m"] n <- results.t[inds, "n"] cols <- c("black", "red", "green") if (i == 1) { plot(x, p.value, ylim = c(0, 0.18), xlab = "Sample sizes", ylab = "Size of the test", main = "t(2)-distribution", col = cols[i], xaxt = "n", yaxt = "n" ) axis(side = 1, at = 1:10, labels = unique(paste0("(", m, ", ", n, ")"))) axis(side = 2, at = seq(0.025, 0.175, by = 0.025), labels = c("", "0.05", "", "0.1", "", "0.15", "")) } else { points(x, p.value, col = cols[i], ) } abline(h = 0.05, lty = "dashed") } for (i in seq_along(estimators)) { inds <- which(results.chi[, "estimator"] == estimators[i]) p.value <- results.chi[inds, "size"] std.err <- results.chi[inds, "std.error"] x <- 1:length(inds) m <- results.chi[inds, "m"] n <- results.chi[inds, "n"] cols <- c("black", "red", "green") if (i == 1) { plot(x, p.value, ylim = c(0, 0.18), xlab = "Sample sizes", ylab = "Size of the test", main = "Chi^2(3)-distribution", col = cols[i], xaxt = "n", yaxt = "n" ) axis(side = 1, at = 1:10, labels = unique(paste0("(", m, ", ", n, ")"))) axis(side = 2, at = seq(0.025, 0.175, by = 0.025), labels = c("", "0.05", "", "0.1", "", "0.15", "")) } else { points(x, p.value, col = cols[i], ) } legend("bottomleft", legend = c("Huber", "Hampel", "Bisquare"), col = 1:3, pch = 1) abline(h = 0.05, lty = "dashed") } library(robnptests) sessionInfo()
"SMR.clean"
convert_BPFCollection <- function(sourceDir, targetDir, dbName, bpfExt = 'par', audioExt = 'wav', extractLevels = NULL, refLevel = NULL, newLevels = NULL, newLevelClasses = NULL, segmentToEventLevels = NULL, unifyLevels = NULL, verbose = TRUE) { sourceDir = suppressWarnings(normalizePath(sourceDir)) targetDir = suppressWarnings(normalizePath(targetDir)) basePath = file.path(targetDir, paste0(dbName, emuDB.suffix)) res = try(suppressWarnings(dir.create(targetDir))) if(class(res) == "try-error") { stop("Could not create target directory ", targetDir) } check_bpfArgumentWithoutLevelClasses(sourceDir = sourceDir, basePath = basePath, newLevels = newLevels, newLevelClasses = newLevelClasses, standardLevels = BPF_STANDARD_LEVELS, verbose = verbose, refLevel = refLevel, audioExt = audioExt, extractLevels = extractLevels) levelClasses = as.list(BPF_STANDARD_LEVEL_CLASSES) names(levelClasses) = BPF_STANDARD_LEVELS levelClasses[newLevels] = newLevelClasses check_bpfArgumentWithLevelClasses(unifyLevels = unifyLevels, refLevel = refLevel, extractLevels = extractLevels, levelClasses = levelClasses, segmentToEventLevels) filePairList = create_filePairList(sourceDir, sourceDir, bpfExt, audioExt) dbHandle = emuDBhandle(dbName, basePath = basePath, uuid::UUIDgenerate(), ":memory:") queryTxt = paste0("INSERT INTO emu_db (uuid, name) VALUES('", dbHandle$UUID, "', '", dbName,"')") DBI::dbExecute(dbHandle$connection, queryTxt) if(verbose) { progress = 0 nbFilePairs = length(filePairList) / 2 cat("INFO: Parsing BPF collection containing", nbFilePairs, "file pair(s)...\n") pb = utils::txtProgressBar(min = 0, max = nbFilePairs, initial = progress, style=3) utils::setTxtProgressBar(pb, progress) } levelTracker = list() linkTracker = list() warningsTracker = list(semicolonFound = list()) for(idx in 1:nrow(filePairList)[1]) { session = get_bpfSession(filePath = filePairList[idx, 1], sourceDir = sourceDir) bpfPath = normalizePath(filePairList[idx, 1], winslash = .Platform$file.sep) bundle = sub(pattern = "(.*)\\..*$", replacement = "\\1", basename(bpfPath)) annotates = basename(filePairList[idx, 2]) session = stringr::str_replace_all(session, "'", "''") bundle = stringr::str_replace_all(bundle, "'", "''") annotates = stringr::str_replace_all(annotates, "'", "''") asspObj = wrassp::read.AsspDataObj(filePairList[idx, 2]) samplerate = attributes(asspObj)$sampleRate queryTxt = paste0("SELECT name from session WHERE name='", session, "'") all_sessions = DBI::dbGetQuery(dbHandle$connection, queryTxt) if(!session %in% all_sessions) { queryTxt = paste0("INSERT INTO session VALUES('", dbHandle$UUID, "', '", session, "')") DBI::dbExecute(dbHandle$connection, queryTxt) } queryTxt = paste0("INSERT INTO bundle VALUES('", dbHandle$UUID, "', '", session, "', '", bundle, "', '", annotates, "', ", samplerate, ", 'NULL')") DBI::dbExecute(dbHandle$connection, queryTxt) returnContainer = parse_BPF(dbHandle, bpfPath = bpfPath, bundle = bundle, session = session, refLevel = refLevel, extractLevels = extractLevels, samplerate = samplerate, segmentToEventLevels = segmentToEventLevels, levelClasses = levelClasses, unifyLevels = unifyLevels) levelInfo = returnContainer$levelInfo linkInfo = returnContainer$linkInfo semicolonFound = returnContainer$semicolonFound if(semicolonFound) { warningsTracker$semicolonFound[[length(warningsTracker$semicolonFound) + 1L]] = bpfPath } if(length(levelInfo) > 0) { levelTracker = update_bpfLevelTracker(levelInfo = levelInfo, levelTracker = levelTracker) } if(length(linkInfo) > 0) { linkTracker = update_bpfLinkTracker(linkInfo = linkInfo, linkTracker = linkTracker) } if(verbose) { utils::setTxtProgressBar(pb, idx) } } if(verbose) { cat("\n") cat("INFO: Doing some post-processing...\n") } if(length(linkTracker) > 0) { linkTracker = link_bpfDisambiguation(dbHandle, linkTracker = linkTracker, refLevel = refLevel) } if(!is.null(refLevel)) { linkTracker = link_bpfUtteranceLevel(dbHandle, linkTracker = linkTracker, refLevel = refLevel) } if(verbose) { cat("INFO: Creating EMU database config schema...\n") } DBconfig = create_bpfSchema(levelTracker = levelTracker, linkTracker = linkTracker, dbName = dbName, dbUUID = dbHandle$UUID, audioExt = audioExt) res = try(dir.create(basePath)) if(class(res) == "try-error") { stop("Could not create directory ", basePath) } store_DBconfig(dbHandle, DBconfig) make_bpfDbSkeleton(dbHandle) copy_bpfMediaFiles(basePath = basePath, sourceDir = sourceDir, mediaFiles = filePairList[,2], verbose = verbose) rewrite_annots(dbHandle, verbose = verbose) if(verbose) { display_bpfSemicolonWarnings(warningsTracker) } } copy_bpfMediaFiles <- function(basePath, mediaFiles, sourceDir, verbose) { if(verbose) { progress = 0 nbMediaFiles = length(mediaFiles) cat("INFO: Copying", nbMediaFiles, "media files to EMU database...\n") pb = utils::txtProgressBar(min = 0, max = nbMediaFiles, initial = progress, style=3) utils::setTxtProgressBar(pb, progress) } for(idx in 1:length(mediaFiles)) { targetDir = file.path(basePath, paste0(get_bpfSession(filePath = mediaFiles[[idx]], sourceDir = sourceDir), session.suffix), paste0(sub(pattern = "(.*)\\..*$", replacement = "\\1", basename(mediaFiles[[idx]])), bundle.dir.suffix) ) res = try(file.copy(mediaFiles[[idx]], targetDir)) if(class(res) == "try-error") { stop("Could not copy media file from ", mediaFiles[[idx]], " to ", targetDir) } if(verbose) { utils::setTxtProgressBar(pb, idx) } } if(verbose) { cat("\n") } } get_bpfSession <- function(filePath, sourceDir) { DEFAULT_SESSION_NAME = "0000" session = normalizePath(dirname(filePath), winslash = "/") sourceDir = normalizePath(sourceDir, winslash = "/") sourceDir = stringr::str_replace(sourceDir, "/$", "") session = stringr::str_replace_all(session, sourceDir, "") session = stringr::str_replace_all(session, .Platform$file.sep, "_") session = stringr::str_replace_all(session, "^_", "") if(session == "") { session = DEFAULT_SESSION_NAME } return(session) } check_bpfArgumentWithoutLevelClasses <- function(sourceDir, basePath, newLevels, newLevelClasses, standardLevels, verbose, refLevel, audioExt, extractLevels) { if(!file.exists(sourceDir)) { stop("Source directory does not exist!") } if(file.exists(basePath)) { stop('The directory ', basePath, ' already exists. Can not generate a new emuDB here.') } if(length(newLevels) != length(newLevelClasses)) { stop("Length of newLevels and newLevelClasses must be identical.") } if(!all(newLevelClasses %in% c(1,2,3,4,5))) { stop("Level classes must be integers between 1 and 5. See BPF specifications for details.") } if(any(newLevels %in% standardLevels)) { stop("You cannot introduce a standard BPF level via the newLevels argument. ", "Standard BPF levels are: '", paste(standardLevels, collapse = "', '"), "'") } if(is.null(refLevel) && verbose) { ans = readline("WARNING: No reference level has been declared. EMU database will be built without any symbolic links. Do you wish to continue? (y/n)") if(!ans == "y") { stop("BPF converter interrupted.") } } if(!is.null(extractLevels)) { if(!is.null(refLevel)) { if(!refLevel %in% extractLevels) { stop("Reference level is not in extractLevels") } } } } check_bpfArgumentWithLevelClasses <- function(unifyLevels, refLevel, extractLevels, levelClasses, segmentToEventLevels) { for(level in c(unifyLevels, refLevel, extractLevels)) { if(!level %in% names(levelClasses)) { stop("Unknown level: ", level, ". If this is not a standard BPF level you need to declare this level via the newLevels argument, and assign it a class via the newLevelClasses argument") } } if(!is.null(refLevel)) { if(levelClasses[[refLevel]] %in% c(2, 3)) { stop("Link-less level ", refLevel, " cannot be reference level.") } } if(!is.null(unifyLevels)) { if(is.null(refLevel)) { stop("If you want to unify levels with the reference level, you must declare a reference level.") } if(refLevel %in% unifyLevels) { stop("Reference level cannot be unified with itself.") } if(any(levelClasses[unifyLevels] != 1)) { stop("Levels to be unified with the reference level must be of class 1 (time-less).") } } if(any(!levelClasses[segmentToEventLevels] %in% c(2,4))) { stop("Only segment levels (classes 2 and 4) can be listed in segmentToEventLevels.") } } update_bpfLevelTracker <- function(levelInfo, levelTracker) { for(idx in 1:length(levelInfo)) { found = FALSE if(length(levelTracker) > 0) { for(jdx in 1:length(levelTracker)) { if(levelTracker[[jdx]][["key"]] == levelInfo[[idx]][["key"]] && levelTracker[[jdx]][["type"]] == levelInfo[[idx]][["type"]]) { for(label in levelInfo[[idx]][["labels"]]) { if(!label %in% levelTracker[[jdx]][["labels"]]) { levelTracker[[jdx]][["labels"]][[length(levelTracker[[jdx]][["labels"]]) + 1L]] = label } } found = TRUE break } } } if(!found) { levelTracker[[length(levelTracker) + 1L]] = levelInfo[[idx]] } } return(levelTracker) } update_bpfLinkTracker <- function(linkTracker, linkInfo) { for(jdx in 1:length(linkInfo)) { found = FALSE if(length(linkTracker) > 0) { for(kdx in 1:length(linkTracker)) { if(linkTracker[[kdx]][["fromkey"]] == linkInfo[[jdx]][["fromkey"]] && linkTracker[[kdx]][["tokey"]] == linkInfo[[jdx]][["tokey"]] && linkTracker[[kdx]][["type"]] == linkInfo[[jdx]][["type"]]) { found = TRUE linkTracker[[kdx]][["countRight"]] = linkTracker[[kdx]][["countRight"]] + linkInfo[[jdx]][["countRight"]] linkTracker[[kdx]][["countWrong"]] = linkTracker[[kdx]][["countWrong"]] + linkInfo[[jdx]][["countWrong"]] break } } } if(!found) { linkTracker[[length(linkTracker) + 1L]] = linkInfo[[jdx]] } } return(linkTracker) } link_bpfDisambiguation <- function(emuDBhandle, linkTracker, refLevel) { turnAround = get_bpfTurnAround(linkTracker = linkTracker) for(idx in 1:length(linkTracker)) { linkTracker[[idx]][["countRight"]] = NA linkTracker[[idx]][["countWrong"]] = NA } if(length(turnAround) > 0) { turn_bpfLinks(emuDBhandle, turnAround = turnAround) linkTracker = turn_bpfLinkTrackerEntries(turnAround = turnAround, linkTracker = linkTracker) } linkTracker = merge_bpfLinkTypes(linkTracker = linkTracker) return(linkTracker) } get_bpfTurnAround <- function(linkTracker) { turnAround = list() for(idx in 1:length(linkTracker)) { turnAroundNecessary = FALSE countRight = 0 countWrong = 0 for(jdx in 1:length(linkTracker)) { if(linkTracker[[idx]][["fromkey"]] == linkTracker[[jdx]][["fromkey"]] && linkTracker[[idx]][["tokey"]] == linkTracker[[jdx]][["tokey"]]) { countRight = countRight + linkTracker[[jdx]][["countRight"]] countWrong = countWrong + linkTracker[[jdx]][["countWrong"]] } else if(linkTracker[[idx]][["fromkey"]] == linkTracker[[jdx]][["tokey"]] && linkTracker[[idx]][["tokey"]] == linkTracker[[jdx]][["fromkey"]]) { countRight = countRight + linkTracker[[jdx]][["countWrong"]] countWrong = countWrong + linkTracker[[jdx]][["countRight"]] turnAroundNecessary = TRUE } } if(turnAroundNecessary) { if(countRight > countWrong) { turnAround[[length(turnAround) + 1L]] = list(fromkey = linkTracker[[idx]][["tokey"]], tokey = linkTracker[[idx]][["fromkey"]]) } else if(countRight < countWrong) { turnAround[[length(turnAround) + 1L]] = list(fromkey = linkTracker[[idx]][["fromkey"]], tokey = linkTracker[[idx]][["tokey"]]) } else if(countRight == countWrong) { found = FALSE for(link in turnAround) { if(link$fromkey == linkTracker[[idx]][["tokey"]] && link$tokey == linkTracker[[idx]][["fromkey"]]) { found = TRUE break } } if(!found) { turnAround[[length(turnAround) + 1L]] = list(fromkey = linkTracker[[idx]][["fromkey"]], tokey = linkTracker[[idx]][["tokey"]]) } } } } turnAround = unique(turnAround) return(turnAround) } turn_bpfLinks <- function(emuDBhandle, turnAround) { for(link in turnAround) { queryTxt = paste0("UPDATE links SET from_id = to_id, to_id = from_id WHERE from_id IN", "(SELECT item_id FROM items WHERE level = '", link[["fromkey"]], "' AND db_uuid = links.db_uuid AND session = links.session AND bundle = links.bundle) ", "AND to_id IN(SELECT item_id FROM items WHERE level = '", link[["tokey"]], "' ", "AND db_uuid = links.db_uuid AND session = links.session AND bundle = links.bundle);") DBI::dbExecute(emuDBhandle$connection, queryTxt) } } turn_bpfLinkTrackerEntries <- function(turnAround = turnAround, linkTracker = linkTracker) { for(idx in 1:length(turnAround)) { for(jdx in 1:length(linkTracker)) { if(turnAround[[idx]][["fromkey"]] == linkTracker[[jdx]][["fromkey"]] && turnAround[[idx]][["tokey"]] == linkTracker[[jdx]][["tokey"]]) { linkTracker[[jdx]][["fromkey"]] = turnAround[[idx]][["tokey"]] linkTracker[[jdx]][["tokey"]] = turnAround[[idx]][["fromkey"]] if(linkTracker[[jdx]][["type"]] == "ONE_TO_MANY") { linkTracker[[jdx]][["type"]] = "MANY_TO_MANY" } } } } return(linkTracker) } merge_bpfLinkTypes <- function(linkTracker) { for(idx in 1:length(linkTracker)) { for(jdx in 1:length(linkTracker)) { if(linkTracker[[idx]][["fromkey"]] == linkTracker[[jdx]][["fromkey"]] && linkTracker[[idx]][["tokey"]] == linkTracker[[jdx]][["tokey"]]) { if(linkTracker[[idx]][["type"]] %in% c("ONE_TO_ONE", "ONE_TO_MANY") && linkTracker[[jdx]][["type"]] %in% c("ONE_TO_MANY", "MANY_TO_MANY")) { linkTracker[[idx]][["type"]] = linkTracker[[jdx]][["type"]] } } } } linkTracker = unique(linkTracker) return(linkTracker) } link_bpfUtteranceLevel <- function(emuDBhandle, linkTracker, refLevel) { underUtterance = get_bpfLevelsUnderUtterance(linkTracker = linkTracker, refLevel = refLevel) for(level in underUtterance) { nbItems = link_bpfUtteranceLevelToCurrentLevel(emuDBhandle, currentLevel = level) queryTxt = paste0("SELECT DISTINCT db_uuid, session, bundle FROM items WHERE level = '", level, "'") distinctUuidSessionBundle = DBI::dbGetQuery(emuDBhandle$connection, queryTxt) nbBundles = nrow(distinctUuidSessionBundle) if(nbBundles < nbItems) { linkType = "ONE_TO_MANY" } else { linkType = "ONE_TO_ONE" } linkTracker[[length(linkTracker) + 1L]] = list(fromkey = "bundle", tokey = level, type = linkType) } return(linkTracker) } get_bpfLevelsUnderUtterance <- function(linkTracker, refLevel) { underUtterance = list(refLevel) if(length(linkTracker) == 0) { return(underUtterance)} for(idx in 1:length(linkTracker)) { if(linkTracker[[idx]][["tokey"]] == refLevel) { underUtterance[[length(underUtterance) + 1L]] = linkTracker[[idx]][["fromkey"]] } } return(underUtterance) } link_bpfUtteranceLevelToCurrentLevel <- function(emuDBhandle, currentLevel) { queryTxt = paste0("SELECT db_uuid, session, bundle, item_id FROM items WHERE level = '", currentLevel, "'") uuidSessionBundleItemID = DBI::dbGetQuery(emuDBhandle$connection, queryTxt) for(idx in 1:nrow(uuidSessionBundleItemID)) { db_uuid = uuidSessionBundleItemID[idx,][["db_uuid"]] session = uuidSessionBundleItemID[idx,][["session"]] bundle = uuidSessionBundleItemID[idx,][["bundle"]] itemID = uuidSessionBundleItemID[idx,][["item_id"]] queryTxt = paste0("INSERT INTO links VALUES('", db_uuid, "', '", session, "', '", bundle, "', 1, ", itemID, ", NULL)") DBI::dbExecute(emuDBhandle$connection, queryTxt) } nbItems = nrow(uuidSessionBundleItemID) return(nbItems) } create_bpfSchema <- function(levelTracker, linkTracker, dbName, dbUUID, audioExt) { defaultLevelOrder = get_bpfDefaultLevelOrder(levelTracker = levelTracker) levelDefinitions = get_bpfLevelDefinitions(levelTracker = levelTracker) linkDefinitions = get_bpfLinkDefinitions(linkTracker = linkTracker) sc = list(order = c("OSCI","SPEC"), assign = list(), contourLims = list()) defPersp = list(name = 'default', signalCanvases = sc, levelCanvases = list(order = defaultLevelOrder), twoDimCanvases = list(order = list())) dbSchema = list(name = dbName, UUID = dbUUID, mediafileExtension = audioExt, ssffTrackDefinitions = list(), levelDefinitions = levelDefinitions, linkDefinitions = linkDefinitions, EMUwebAppConfig = list(perspectives=list(defPersp), activeButtons = list(saveBundle = TRUE, showHierarchy = TRUE))) return(dbSchema) } get_bpfDefaultLevelOrder <- function(levelTracker) { defaultLevelOrder = list() if(length(levelTracker) > 0) { for(levelIdx in 1:length(levelTracker)) { if(levelTracker[[levelIdx]][["type"]] %in% c("SEGMENT", "EVENT")) { defaultLevelOrder[[length(defaultLevelOrder)+1L]] = levelTracker[[levelIdx]][["key"]] } } } return(defaultLevelOrder) } get_bpfLevelDefinitions <- function(levelTracker) { levelDefinitions = list() if(length(levelTracker) > 0) { for(levelIdx in 1:length(levelTracker)) { attrDefList = list() for(label in levelTracker[[levelIdx]][["labels"]]) { description = "" if(label != "bundle") { description = "Imported from BPF collection" } attrDefList[[length(attrDefList) + 1L]] = list(name = label, type = "STRING", description = description) } levelDefinitions[[length(levelDefinitions) + 1L]] = list(name = levelTracker[[levelIdx]][["key"]], type = levelTracker[[levelIdx]][["type"]], attributeDefinitions = attrDefList) } } return(levelDefinitions) } get_bpfLinkDefinitions <- function(linkTracker = linkTracker) { linkDefinitions = list() if(length(linkTracker) > 0) { for(linkIdx in 1:length(linkTracker)) { linkDefinitions[[length(linkDefinitions)+1L]] = list(type = linkTracker[[linkIdx]][["type"]], superlevelName = linkTracker[[linkIdx]][["fromkey"]], sublevelName = linkTracker[[linkIdx]][["tokey"]]) } } return(linkDefinitions) } make_bpfDbSkeleton <- function(emuDBhandle) { queryTxt = paste0("SELECT name FROM session WHERE db_uuid = '", emuDBhandle$UUID, "'") sessions = DBI::dbGetQuery(emuDBhandle$connection, queryTxt) for(idx in 1:nrow(sessions)) { session = paste0(sessions[idx,], session.suffix) res = try(dir.create(file.path(emuDBhandle$basePath, session))) if(class(res) == "try-error") { stop("Could not create session directory ", file.path(emuDBhandle$basePath, session)) } } queryTxt = paste0("SELECT name, session FROM bundle WHERE db_uuid = '", emuDBhandle$UUID, "'") bundles = DBI::dbGetQuery(emuDBhandle$connection, queryTxt) for(jdx in 1:nrow(bundles)) { bundle = paste0(bundles[jdx,1], bundle.dir.suffix) session = paste0(bundles[jdx,2], session.suffix) res = try(dir.create(file.path(emuDBhandle$basePath, session, bundle))) if(class(res) == "try-error") { stop("Could not create bundle directory ", file.path(emuDBhandle$basePath, session, bundle)) } } } display_bpfSemicolonWarnings <- function(warningsTracker) { msg = paste0("WARNING: The following BPF files contain links pointing to the space between items (using ';'). ", "This feature has not been implemented yet, so the affected items were treated as link-less:\n") for(path in warningsTracker$semicolonFound) { msg = paste0(msg, path, "\n") } if(length(warningsTracker$semicolonFound) > 0) { warning(msg) } } BPF_STANDARD_LEVELS = c( "KAN", "KAS", "PTR", "ORT", "TRL", "TR2", "SUP", "DAS", "PRS", "NOI", "POS", "LMA", "TRS", "TRW", "PRO", "SYN", "FUN", "LEX", "TLN", "IPA", "GES", "USH", "USM", "OCC", "PRM", "LBG", "LBP", "SAP", "MAU", "WOR", "PHO", "MAS", "USP", "TRN", "PRB" ) BPF_STANDARD_LEVEL_CLASSES = c( 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5 )
test_that("bsFolds splits", { d = list(data=data.frame(a=rep.int(0, 10)), best=rep.int(0, 10)) class(d) = "llama.data" dfs = bsFolds(d) expect_equal(length(dfs$train), 10) expect_equal(length(dfs$test), 10) expect_true(all(length(sapply(1:10, function(x) { intersect(dfs$train[[x]], dfs$test[[x]]) }) == 0))) d.algo = list(data=cbind(data.frame(p=rep.int(0, 10), f=rep.int(1, 10), algo=rep("a", 10)), id=c(1:10)), algorithmFeatures=c("f"), algorithmNames=c("a"), ids=c("id"), algos=c("algo"), best=rep.int("a", 10)) class(d.algo) = "llama.data" dfs.algo = bsFolds(d.algo) expect_equal(length(dfs.algo$train), 10) expect_equal(length(dfs.algo$test), 10) expect_true(all(length(sapply(1:10, function(x) { intersect(dfs.algo$train[[x]], dfs.algo$test[[x]]) }) == 0))) }) test_that("bsFolds splits with best list", { d = list(data=data.frame(a=rep.int(0, 10))) d$best = list(0, 0, 0, c(0,1), 0, 0, c(0,1), 0, 0, 0) class(d) = "llama.data" dfs = bsFolds(d, nfolds=2L) expect_equal(length(dfs$train), 2) expect_equal(length(dfs$test), 2) expect_true(all(length(sapply(1:2, function(x) { intersect(dfs$train[[x]], dfs$test[[x]]) }) == 0))) d.algo = list(data=data.frame(p=rep.int(0, 10), f=rep.int(1, 10), algo=rep("a", 10), id=c(1:10)), algorithmFeatures=c("f"), algorithmNames=c("a"), ids=c("id"), algos=c("algo")) d.algo$best = list(rep.int("a", 10)) class(d.algo) = "llama.data" dfs.algo = bsFolds(d.algo, nfolds=2L) expect_equal(length(dfs.algo$train), 2) expect_equal(length(dfs.algo$test), 2) expect_true(all(length(sapply(1:2, function(x) { intersect(dfs.algo$train[[x]], dfs.algo$test[[x]]) }) == 0))) }) test_that("bsFolds allows to specify number of folds", { d = list(data=data.frame(a=rep.int(0, 10)), best=rep.int(0, 10)) class(d) = "llama.data" dfs = bsFolds(d, nfolds=2L) expect_equal(length(dfs$train), 2) expect_equal(length(dfs$test), 2) expect_true(all(length(sapply(1:2, function(x) { intersect(dfs$train[[x]], dfs$test[[x]]) }) == 0))) d.algo = list(data=data.frame(p=rep.int(0, 10), f=rep.int(1, 10), algo=rep("a", 10), id=c(1:10)), algorithmFeatures=c("f"), algorithmNames=c("a"), ids=c("id"), algos=c("algo"), best=rep.int("a", 10)) class(d.algo) = "llama.data" dfs.algo = bsFolds(d.algo, nfolds=2L) expect_equal(length(dfs.algo$train), 2) expect_equal(length(dfs.algo$test), 2) expect_true(all(length(sapply(1:2, function(x) { intersect(dfs.algo$train[[x]], dfs.algo$test[[x]]) }) == 0))) }) test_that("bsFolds stratifies", { d = list(data=data.frame(a=rep.int(0, 10)), best=c(rep.int(0, 5), rep.int(1, 5))) class(d) = "llama.data" dfs = bsFolds(d, nfolds=5L, T) expect_equal(length(dfs$train), 5) expect_equal(length(dfs$test), 5) expect_true(all(length(sapply(1:5, function(x) { intersect(dfs$train[[x]], dfs$test[[x]]) }) == 0))) d.algo = list(data=cbind(data.frame(p=rep.int(0, 20), f=rep.int(1, 20), algo=rep(c("a1", "a2"), 10)), id=rep.int(1:10, rep.int(2, 10))), algorithmFeatures=c("f"), algorithmNames=c("a1", "a2"), ids=c("id"), algos=c("algo"), best=c(rep.int("a1", 10), rep.int("a2", 10))) class(d.algo) = "llama.data" dfs.algo = bsFolds(d.algo, nfolds=5L, T) expect_equal(length(dfs.algo$train), 5) expect_equal(length(dfs.algo$test), 5) expect_true(all(length(sapply(1:5, function(x) { intersect(dfs.algo$train[[x]], dfs.algo$test[[x]]) }) == 0))) }) test_that("bsFolds replaces existing splits", { d = list(data=data.frame(a=rep.int(0, 10)), best=rep.int(0, 10), train=1, test=2) class(d) = "llama.data" dfs = bsFolds(d) expect_equal(length(dfs$train), 10) expect_equal(length(dfs$test), 10) expect_true(all(length(sapply(1:10, function(x) { intersect(dfs$train[[x]], dfs$test[[x]]) }) == 0))) d.algo = list(data=cbind(data.frame(p=rep.int(0, 20), f=rep.int(1, 20), algo=rep(c("a1", "a2"), 10)), id=rep.int(1:10, rep.int(2, 10))), algorithmFeatures=c("f"), ids=c("id"), algos=c("algo"), algorithmNames=c("a1", "a2"), best=rep.int("a1", 20), train=1, test=2) class(d.algo) = "llama.data" dfs.algo = bsFolds(d.algo) expect_equal(length(dfs.algo$train), 10) expect_equal(length(dfs.algo$test), 10) expect_true(all(length(sapply(1:10, function(x) { intersect(dfs.algo$train[[x]], dfs.algo$test[[x]]) }) == 0))) })
subpop.sim <- function(n=list(stage1=32,enrich=NULL,stage2=32),effect=list(early=c(0,0),final=c(0,0)), outcome=list(early="N",final="N"),control=list(early=NULL,final=NULL), sprev=0.5,nsim=1000,corr=0,seed=12345678,select="thresh", weight=NULL,selim=NULL,level=0.025,method="CT-SD",sprev.fixed=TRUE,file=""){ time.out <- function(effect,n,standard=TRUE,method="exponential"){ t.stat <- log(effect[1])-log(effect) if(method=="exponential"){ n.event <- n*(1-exp(-effect)) } var.tstat <- 4/(n.event[1]+n.event) if(standard==TRUE){ t.stat <- -t.stat/sqrt(var.tstat) } var.stat <- rep(1,length(effect)) return(list(t.stat=t.stat[2:length(t.stat)],var.stat=var.stat)) } normal.out <- function(effect,n){ effect <- effect[1]-effect t.stat <- effect*sqrt(n/2) var.tstat <- rep(1,length(effect)) return(list(t.stat=t.stat[2:length(t.stat)],var.stat=var.tstat)) } binary.out <- function(effect,n,standard=TRUE,method="LOR"){ n.risk <- rep(n,length(effect)) n.event <- n*effect if(length(n.event)!=length(n.risk)){stop("need to set length n.risk = n.event")} if(sum(n.risk>n.event)!=length(n.risk)){stop("need to set n.risk > n.event")} lor <- log(n.event/(n.risk-n.event)) t.stat <- lor-lor[1] var.tstat <- 1/n.event[1]+1/(n.risk[1]-n.event[1])+1/n.event+1/(n.risk-n.event) if(standard==TRUE){ t.stat <- t.stat/sqrt(var.tstat) } var.stat <- 1/n.event+1/(n.risk-n.event) return(list(t.stat=t.stat[2:length(t.stat)],var.stat=var.stat)) } report.1 <- function(n,sprev,nsim,enrich,ran.seed,rule,selim,thresh,method,t.level,ofile) { cat("\n",file=ofile,append=TRUE) cat("asd: simulations for adaptive seamless designs: v2.0: 11/11/2013","\n",sep="",file=ofile,append=TRUE) cat("\n",file=ofile,append=TRUE) cat("sample sizes (per arm): sub-pop stage 1 =",as.integer(sprev*n$stage1),": sub-pop stage 1 =",n$stage1,"\n",sep=" ",file=ofile,append=TRUE) cat("sample sizes (per arm): sub-pop stage 2 =",as.integer(sprev*n$stage2),": sub-pop stage 2 =",n$stage2,"\n",sep=" ",file=ofile,append=TRUE) if(enrich==FALSE){ cat("sample sizes (per arm): enrichment: sub-pop stage 2 =",n$enrich,"\n",sep=" ",file=ofile,append=TRUE) } cat("simulations: n =",nsim,", seed =",ran.seed,"and rule =",rule,"with limits =",round(selim,2),"\n",sep=" ",file=ofile,append=TRUE) t.level <- paste(as.character(round(100*t.level,1)),"%",sep="") cat("method:",method,"and level =",t.level," (one-sided)","\n",sep=" ",file=ofile,append=TRUE) } report.2 <- function(out.lab,lab,eff.c,eff.s,eff.f,ofile) { cat(out.lab,lab,"control =",eff.c,": sub-pop =",round(eff.s,2),": full-pop =",round(eff.f,2),"\n",sep=" ",file=ofile,append=TRUE) } report.3 <- function(ecorr.lab,fcorr.lab,correl,ofile) { cat("correlation: early",ecorr.lab,"and final",fcorr.lab,"=",round(correl,2),"\n",sep=" ",file=ofile,append=TRUE) } report.4 <- function(zearly,z1,z2,weight,ofile) { cat("\n",file=ofile,append=TRUE) cat("simulation of test statistics:","\n",sep=" ",file=ofile,append=TRUE) cat("expectation early: sub-pop =",round(zearly[1],2),": full-pop =", round(zearly[2],2),"\n",sep=" ",file=ofile,append=TRUE) cat("expectation final stage 1: sub-pop =",round(z1[1],2),": full-pop =", round(z1[2],2),"\n",sep=" ",file=ofile,append=TRUE) cat("expectation final stage 2: sub-pop only =",round(z2[1],2),": full-pop only =", round(z2[2],2),"\n",sep=" ",file=ofile,append=TRUE) cat("expectation final stage 2, both groups selected: sub-pop =",round(z2[3],2), ": full-pop =",round(z2[4],2),"\n",sep=" ",file=ofile,append=TRUE) cat("weights: stage 1 =",round(sqrt(weight),2),"and stage 2 =",round(sqrt(1-weight),2),"\n",sep=" ",file=ofile,append=TRUE) cat("\n") } report.5 <- function(sim.res,n,ofile) { cat("hypotheses rejected and group selection options at stage 1 (n):","\n",file=ofile,append=TRUE) cat(format(" ",digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format("Hs",digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format("Hf",digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6), "\t",format("Hs+Hf",digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6), "\t",format("Hs+f",digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6), "\t",format("n",digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6), "\t",format("n%",digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6),"\n",file=ofile,append=TRUE) cat(format("sub",digits=1,trim=TRUE,justify="left",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[1,1],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[1,2],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[1,3],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[1,4],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[1,5],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(round(100*sim.res$results[1,5]/n,5),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6),"\n",file=ofile,append=TRUE) cat(format("full",digits=1,trim=TRUE,justify="left",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[2,1],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[2,2],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[2,3],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[2,4],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[2,5],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(round(100*sim.res$results[2,5]/n,5),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6),"\n",file=ofile,append=TRUE) cat(format("both",digits=1,trim=TRUE,justify="left",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[3,1],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[3,2],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[3,3],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[3,4],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sim.res$results[3,5],digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(round(100*sim.res$results[3,5]/n,5),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6),"\n",file=ofile,append=TRUE) cat(format("total",digits=1,trim=TRUE,justify="left",scientific=FALSE,nsmall=0,width=6), "\t",format(sum(sim.res$results[1:3,1]),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sum(sim.res$results[1:3,2]),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sum(sim.res$results[1:3,3]),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sum(sim.res$results[1:3,4]),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format(sum(sim.res$results[1:3,5]),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6), "\t",format("-",digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6),"\n",file=ofile,append=TRUE) cat(format("%",digits=1,trim=TRUE,justify="left",scientific=FALSE,nsmall=0,width=6), "\t",format(round(100*sum(sim.res$results[1:3,1])/n,5),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6), "\t",format(round(100*sum(sim.res$results[1:3,2])/n,5),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6), "\t",format(round(100*sum(sim.res$results[1:3,3])/n,5),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6), "\t",format(round(100*sum(sim.res$results[1:3,4])/n,5),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6), "\t",format(round(100*sum(sim.res$results[1:3,5])/n,5),digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=2,width=6), "\t",format("-",digits=1,trim=TRUE,justify="right",scientific=FALSE,nsmall=0,width=6),"\n",file=ofile,append=TRUE) all.reject <- 100*(sum(sim.res$results[1:3,1])+sum(sim.res$results[1:3,2])-sum(sim.res$results[1:3,3]))/n cat("reject Hs and/or Hf = ",paste(round(all.reject,3),"%",sep=""),"\n",sep=" ",file=ofile,append=TRUE) } if (length(n$stage1)!=1 | length(n$stage2)!=1) { stop("Invalid sample size for stages 1 and 2") } n$stage1 <- as.integer(n$stage1); n$stage2 <- as.integer(n$stage2) if(is.null(n$enrich)==FALSE){n$enrich <- as.integer(n$enrich)} if (length(corr)==1) { if (abs(corr)>1) { stop("Correlation must be value between -1 and 1") } } else { stop("Correlation must be value length between -1 and 1") } outcome.options <- c("N","B","T") e.outcome <- as.integer(match(outcome$early,outcome.options,-1)) if (e.outcome < 1) { stop("Unknown early outcome: current options N, B or T") } if(length(effect$early)!=2){ stop("Early effect: need vector length=2") } if(length(effect$final)!=2){ stop("Final effect: need vector length=2") } if (level >= 1 | level <= 0) { stop("level must be between 0 and 1") } sel.options <- c("thresh","futility") isel <- as.integer(match(select, sel.options, -1)) if (isel < 1) { stop("Unknown method: current option thresh") } if(select=="thresh"){ if(is.null(selim)==TRUE){ selim[1] <- -6 selim[2] <- 6 } if(selim[1]>selim[2]){ stop("Limits for threshold rule: selim[1]<selim[2]") } } selection.rules <- c("threshold","futility") meth.options <- c("CT-Simes","CT-Bonferroni","CT-SD","CEF") imeth <- as.integer(match(method, meth.options, -1)) if (imeth < 1) { stop("unknown method: current options CT-Simes, CT-Bonferroni, CT-SD or CEF") } test.method <- c("CT-Simes","CT-Bonferroni","CT-SD","CEF") if(outcome$early=="N"){ if(is.null(control$early)){ early.S <- c(0,effect$early[1]) early.F <- c(0,effect$early[2]) } else { early.S <- c(control$early,effect$early[1]) early.F <- c(control$early,effect$early[2]) } early.out <- normal.out oearly.lab <- "normal, standardized effect sizes:" ecorr.lab <- "standardized effect" } else if(outcome$early=="B"){ lbin.test <- sum(effect$early<=0); ubin.test <- sum(effect$early>=1) if(lbin.test>0 | ubin.test>0){ stop("early effect: rate must be values between 0 and 1") } if(is.null(control$early)==TRUE){ stop("control effects: rates must be values between 0 and 1") } if(control$early<0 | control$early>1){ stop("control effects: rates must be values between 0 and 1") } early.S <- c(control$early,effect$early[1]) early.F <- c(control$early,effect$early[2]) early.out <- binary.out oearly.lab <- "binary, event rate:" ecorr.lab <- "log(odds)" } else if(outcome$early=="T"){ lhaz.test <- sum(effect$early<=0) if(lhaz.test>0){ stop("Early effect: hazard must be > 0") } if(is.null(control$early)){ early.S <- c(1,effect$early[1]) early.F <- c(1,effect$early[2]) } else { early.S <- c(control$early,effect$early[1]) early.F <- c(control$early,effect$early[2]) } early.out <- time.out oearly.lab <- "time-to-event, hazard rate:" ecorr.lab <- "log(hazard)" } f.outcome <- as.integer(match(outcome$final,outcome.options,-1)) if (f.outcome < 1) { stop("unknown early outcome: current options N, B or T") } if(length(effect$final)!=length(effect$early)){ stop("final effect: should be vector of same length as early effect") } if(outcome$final=="N"){ if(is.null(control$final)){ final.S <- c(0,effect$final[1]) final.F <- c(0,effect$final[2]) } else { final.S <- c(control$final,effect$final[1]) final.F <- c(control$final,effect$final[2]) } final.out <- normal.out ofinal.lab <- "normal, standardized effect sizes:" fcorr.lab <- "standardized effect" } else if(outcome$final=="B"){ lbin.test <- sum(effect$final<=0); ubin.test <- sum(effect$final>=1) if(lbin.test>0 | ubin.test>0){ stop("Final effect: rate must be value length between 0 and 1") } if(is.null(control$final)==TRUE){ stop("control effects: rates must be values between 0 and 1") } if(control$final<0 | control$final>1){ stop("control effects: rates must be values between 0 and 1") } final.S <- c(control$final,effect$final[1]) final.F <- c(control$final,effect$final[2]) final.out <- binary.out ofinal.lab <- "binary, event rate:" fcorr.lab <- "log(odds)" } else if(outcome$final=="T"){ lhaz.test <- sum(effect$final<=0) if(lhaz.test>0){ stop("Final effect: hazard must be > 0") } if(is.null(control$final)){ final.S <- c(1,effect$final[1]) final.F <- c(1,effect$final[2]) } else { final.S <- c(control$final,effect$final[1]) final.F <- c(control$final,effect$final[2]) } final.out <- time.out ofinal.lab <- "time-to-event, hazard rate:" fcorr.lab <- "log(hazard)" } if(is.null(n$enrich)==TRUE){n$enrich <- sprev*n$stage2} zearly.S <- early.out(effect=early.S,n=sprev*n$stage1)$t.stat zearly.F <- early.out(effect=early.F,n=n$stage1)$t.stat zearly <- c(zearly.S,zearly.F) z1.S <- final.out(effect=final.S,n=sprev*n$stage1)$t.stat z1.F <- final.out(effect=final.F,n=n$stage1)$t.stat z1 <- c(z1.S,z1.F) z2.S1 <- final.out(effect=final.S,n=n$enrich)$t.stat z2.F1 <- final.out(effect=final.F,n=n$stage2)$t.stat z2.S2 <- final.out(effect=final.S,n=sprev*n$stage2)$t.stat z2.F2 <- final.out(effect=final.F,n=n$stage2)$t.stat z2 <- c(z2.S1,z2.F1,z2.S2,z2.F2) if(is.null(weight)==TRUE){ weight <- n$stage1/(n$stage1+n$stage2) } else if(weight<0 | weight>1){ stop("weight: must be value between 0 and 1") } if(is.null(selim)==TRUE){ selim[1] <- zearly.S selim[2] <- zearly.F } if(sprev.fixed==TRUE){ results <- gsubpop.sim(z.early=zearly,z1=z1,z2=z2,sprev=rep(sprev,2),selim=selim, corr=corr,nsim=nsim,seed=seed,level=level, select=select,method=method,wt=weight) } else if(sprev.fixed==FALSE){ s.seed <- runif(n=nsim,min=1,max=10000) for(k in 1:nsim){ sprev.1 <- rbinom(1,n$stage1,sprev)/n$stage1 sprev.2 <- rbinom(1,n$stage2,sprev)/n$stage2 if(is.null(n$enrich)==TRUE){n$enrich <- sprev.2*n$stage2} zearly.S <- early.out(effect=early.S,n=sprev.1*n$stage1)$t.stat zearly.F <- early.out(effect=early.F,n=n$stage1)$t.stat zearly <- c(zearly.S,zearly.F) z1.S <- final.out(effect=final.S,n=sprev.1*n$stage1)$t.stat z1.F <- final.out(effect=final.F,n=n$stage1)$t.stat z1 <- c(z1.S,z1.F) z2.S1 <- final.out(effect=final.S,n=n$enrich)$t.stat z2.F1 <- final.out(effect=final.F,n=n$stage2)$t.stat z2.S2 <- final.out(effect=final.S,n=sprev.2*n$stage2)$t.stat z2.F2 <- final.out(effect=final.F,n=n$stage2)$t.stat z2 <- c(z2.S1,z2.F1,z2.S2,z2.F2) if(is.null(weight)==TRUE){ weight <- n$stage1/(n$stage1+n$stage2) } else if(weight<0 | weight>1){ stop("weight: must be value between 0 and 1") } results.k <- gsubpop.sim(z.early=zearly,z1=z1,z2=z2,sprev=c(sprev.1,sprev.2),selim=selim, corr=corr,nsim=1,seed=s.seed[k],level=level, select=select,method=method,wt=weight) if(k==1){results <- results.k} else { results$results <- results$results+results.k$results } } } report.1(n=n,sprev=sprev,nsim=nsim,enrich=is.null(n$enrich),ran.seed=seed,rule=selection.rules[isel], selim=selim,method=method,t.level=level,ofile=file) report.2(out.lab="early outcome:",lab=oearly.lab, eff.c=round(early.S[1],3),eff.s=round(early.S[2],3),eff.f=round(early.F[2],3),ofile=file) report.2(out.lab="final outcome:",lab=ofinal.lab, eff.c=round(final.S[1],3),eff.s=round(final.S[2],3),eff.f=round(final.F[2],3),ofile=file) report.3(ecorr.lab,fcorr.lab,correl=corr,ofile=file) report.4(zearly,z1,z2,weight,ofile=file) report.5(results,n=nsim,ofile=file) invisible(results) }
selfStart <- function(model, initial, parameters, template) UseMethod("selfStart") selfStart.default <- function(model, initial, parameters, template) { structure(as.function(model), initial = as.function(initial), pnames = if(!missing(parameters))parameters, class = "selfStart") } selfStart.formula <- function(model, initial, parameters, template = NULL) { if (is.null(template)) { nm <- all.vars(model) if (any(msng <- is.na(match(parameters, nm)))) { stop(sprintf(ngettext(sum(msng), "parameter %s does not occur in the model formula", "parameters %s do not occur in the model formula"), paste(sQuote(parameters[msng]), collapse=", ")), domain = NA) } template <- function() {} argNams <- c( nm[ is.na( match(nm, parameters) ) ], parameters ) args <- setNames(rep(alist(a = ), length(argNams)), argNams) formals(template) <- args } structure(deriv(model, parameters, template), initial = as.function(initial), pnames = parameters, class = "selfStart") } getInitial <- function(object, data, ...) UseMethod("getInitial") getInitial.formula <- function(object, data, ...) { if(!is.null(attr(data, "parameters"))) { return(attr(data, "parameters")) } switch (length(object), stop("argument 'object' has an impossible length"), { func <- get(as.character(object[[2L]][[1L]])) getInitial(func, data, mCall = as.list(match.call(func, call = object[[2L]])), ...) }, { func <- get(as.character(object[[3L]][[1L]])) getInitial(func, data, mCall = as.list(match.call(func, call = object[[3L]])), LHS = object[[2L]], ...) }) } getInitial.selfStart <- function(object, data, mCall, LHS = NULL, ...) { iniFn <- attr(object, "initial") if(length(formals(iniFn)) > 3L) iniFn(mCall = mCall, data = data, LHS = LHS, ...) else { .Deprecated(msg= "selfStart initializing functions should have a final '...' argument since R 4.1.0") iniFn(mCall = mCall, data = data, LHS = LHS) } } getInitial.default <- function(object, data, mCall, LHS = NULL, ...) { if (is.function(object) && !is.null(attr(object, "initial"))) { stop("old-style self-starting model functions\n", "are no longer supported.\n", "New selfStart functions are available.\n", "Use\n", " SSfpl instead of fpl,\n", " SSfol instead of first.order.log,\n", " SSbiexp instead of biexp,\n", " SSlogis instead of logistic.\n", "If writing your own selfStart model, see\n", " \"help(selfStart)\"\n", "for the new form of the \"initial\" attribute.", domain = NA) } stop(gettextf("no 'getInitial' method found for \"%s\" objects", data.class(object)), domain = NA) } sortedXyData <- function(x, y, data) UseMethod("sortedXyData") sortedXyData.default <- function(x, y, data) { if (is.language(x) || ((length(x) == 1L) && is.character(x))) { x <- eval(asOneSidedFormula(x)[[2L]], data) } x <- as.numeric(x) if (is.language(y) || ((length(y) == 1L) && is.character(y))) { y <- eval(asOneSidedFormula(y)[[2L]], data) } y <- as.numeric(y) y.avg <- tapply(y, x, mean, na.rm = TRUE) xvals <- as.numeric(chartr(getOption("OutDec"), ".", names(y.avg))) ord <- order(xvals) value <- na.omit(data.frame(x = xvals[ord], y = as.vector(y.avg[ord]))) class(value) <- c("sortedXyData", "data.frame") value } NLSstClosestX <- function(xy, yval) UseMethod("NLSstClosestX") NLSstClosestX.sortedXyData <- function(xy, yval) { deviations <- xy$y - yval if (any(deviations==0)) return(xy$x[match(0, deviations)]) if (any(deviations <= 0)) { dev1 <- max(deviations[deviations <= 0]) lim1 <- xy$x[match(dev1, deviations)] if (all(deviations <= 0)) return(lim1) } if (any(deviations >= 0)) { dev2 <- min(deviations[deviations >= 0]) lim2 <- xy$x[match(dev2, deviations)] if (all(deviations >= 0)) return(lim2) } dev1 <- abs(dev1) dev2 <- abs(dev2) lim1 + (lim2 - lim1) * dev1/(dev1 + dev2) } NLSstRtAsymptote <- function(xy) UseMethod("NLSstRtAsymptote") NLSstRtAsymptote.sortedXyData <- function(xy) { in.range <- range(xy$y) last.dif <- abs(in.range - xy$y[nrow(xy)]) if(match(min(last.dif), last.dif) == 2L) in.range[2L] + diff(in.range)/8 else in.range[1L] - diff(in.range)/8 } NLSstLfAsymptote <- function(xy) UseMethod("NLSstLfAsymptote") NLSstLfAsymptote.sortedXyData <- function(xy) { in.range <- range(xy$y) first.dif <- abs(in.range - xy$y[1L]) if(match(min(first.dif), first.dif) == 2L) in.range[2L] + diff(in.range)/8 else in.range[1L] - diff(in.range)/8 } NLSstAsymptotic <- function(xy) UseMethod("NLSstAsymptotic") NLSstAsymptotic.sortedXyData <- function(xy) { xy$rt <- NLSstRtAsymptote(xy) setNames(coef(nls(y ~ cbind(1, 1 - exp(-exp(lrc) * x)), data = xy, start = list(lrc = log(-coef(lm(log(abs(y - rt)) ~ x, data = xy))[[2L]])), algorithm = "plinear"))[c(2, 3, 1)], c("b0", "b1", "lrc")) }
step_stem <- function(recipe, ..., role = NA, trained = FALSE, columns = NULL, options = list(), custom_stemmer = NULL, skip = FALSE, id = rand_id("stem")) { add_step( recipe, step_stem_new( terms = enquos(...), role = role, trained = trained, options = options, custom_stemmer = custom_stemmer, columns = columns, skip = skip, id = id ) ) } step_stem_new <- function(terms, role, trained, columns, options, custom_stemmer, skip, id) { step( subclass = "stem", terms = terms, role = role, trained = trained, columns = columns, options = options, custom_stemmer = custom_stemmer, skip = skip, id = id ) } prep.step_stem <- function(x, training, info = NULL, ...) { col_names <- recipes_eval_select(x$terms, training, info) check_list(training[, col_names]) step_stem_new( terms = x$terms, role = x$role, trained = TRUE, columns = col_names, options = x$options, custom_stemmer = x$custom_stemmer, skip = x$skip, id = x$id ) } bake.step_stem <- function(object, new_data, ...) { col_names <- object$columns stem_fun <- object$custom_stemmer %||% SnowballC::wordStem for (i in seq_along(col_names)) { stemmed_tokenlist <- tokenlist_apply( new_data[, col_names[i], drop = TRUE], stem_fun, object$options ) new_data[, col_names[i]] <- tibble(stemmed_tokenlist) } new_data <- factor_to_text(new_data, col_names) as_tibble(new_data) } print.step_stem <- function(x, width = max(20, options()$width - 30), ...) { cat("Stemming for ", sep = "") printer(x$columns, x$terms, x$trained, width = width) invisible(x) } tidy.step_stem <- function(x, ...) { if (is_trained(x)) { res <- tibble( terms = unname(x$columns), is_custom_stemmer = is.null(x$custom_stemmer) ) } else { term_names <- sel2char(x$terms) res <- tibble( terms = term_names, is_custom_stemmer = is.null(x$custom_stemmer) ) } res$id <- x$id res } required_pkgs.step_stem <- function(x, ...) { c("textrecipes", "SnowballC") }
as_rscontract <- function(x) { UseMethod("as_rscontract") } as_rscontract.rscontract_spec <- function(x) { to_contract(x) } as_rscontract.list <- function(x) { spec <- rscontract_spec() names_x <- names(x) for (i in seq_along(x)) { item <- names_x[[i]] spec[[item]] <- x[[item]] } to_contract(spec) } to_contract <- function(x) { rscontract_ide( connectionObject = eval_list(x$connection_object), type = eval_list(x$type), host = eval_list(x$host), displayName = eval_list(x$name), connectCode = eval_list(x$connect_script), disconnect = eval_char(x$disconnect_code), previewObject = eval_char(x$preview_code), listObjectTypes = eval_char(x$object_types), listObjects = ifelse( is.null(x$object_list), spec_list_objects(eval_char(x$catalog_list)), x$object_list ), listColumns = ifelse( is.null(x$object_columns), spec_list_columns(eval_char(x$catalog_list)), x$object_columns ), actions = x$actions, icon = x$icon ) }
skip_if_not(exists("token")) if (!exists("verifyFields", mode = "function")) source("global.R") context("07. DataProducts Delivery Service") expectedFields <- list( url = "character", status = "character", size = "double", file = "character", index = "character", downloaded = "logical", requestCount = "double", fileDownloadTime = "double" ) F_DUMMY1 <- list(dataProductCode = "TSSD", extension = "csv", locationCode = "BACAX", deviceCategoryCode = "ADCP2MHZ", dateFrom = "2016-07-27T00:00:00.000Z", dateTo = "2016-07-27T00:00:30.000Z", dpo_dataGaps = "0", dpo_qualityControl = "1", dpo_resample = "none") F_DUMMY2 <- list(dataProductCode = "TSSP", extension = "png", locationCode = "CRIP.C1", deviceCategoryCode = "CTD", dateFrom = "2019-03-20T00:00:00.000Z", dateTo = "2019-03-20T00:30:00.000Z", dpo_qualityControl = "1", dpo_resample = "none") F_FAKE <- list(dataProductCode = "FAKECODE", extension = "XYZ", locationCode = "AREA51", deviceCategoryCode = "AK47", dateFrom = "2019-03-20T00:00:00.000Z", dateTo = "2019-03-20T00:30:00.000Z", dpo_qualityControl = "1", dpo_resample = "none") validateRow = function(rows, index="1", status = "complete", downloaded = FALSE) { row <- NULL for (r in rows) { if (r$index == index) { row <- r break } } expect_false(is.null(row)) expect_equal(row$status, status) expect_equal(row$downloaded, downloaded) } test_that("01. Order product links only", { onc <- prepareOnc(outPath = "output/07/01") result <- onc$orderDataProduct(F_DUMMY1, 100, TRUE, FALSE) rows <- result$downloadResults expect_equal(length(rows), 1) expect_true(verifyFields(rows[[1]], expectedFields)) validateRow(rows, index = "1", status = "complete", downloaded = FALSE) filesInPath(onc$outPath, 0) }) test_that("02. Order links with metadata", { onc <- prepareOnc(outPath = "output/07/02") result <- onc$orderDataProduct(F_DUMMY1, 100, TRUE, TRUE) rows <- result$downloadResults expect_equal(length(rows), 2) expect_true(verifyFields(rows[[1]], expectedFields)) validateRow(rows, index = "1", status = "complete", downloaded = FALSE) validateRow(rows, index = "meta", status = "complete", downloaded = FALSE) filesInPath(onc$outPath, 0) }) test_that("03. Order and download", { onc <- prepareOnc(outPath = "output/07/03") result <- onc$orderDataProduct(F_DUMMY1, 100, FALSE, FALSE) rows <- result$downloadResults expect_equal(length(rows), 1) expect_true(verifyFields(rows[[1]], expectedFields)) validateRow(rows, index = "1", status = "complete", downloaded = TRUE) filesInPath(onc$outPath, 1) }) test_that("04. Order and download multiple", { onc <- prepareOnc(outPath = "output/07/04") result <- onc$orderDataProduct(F_DUMMY2, 100, FALSE, FALSE) rows <- result$downloadResults expect_equal(length(rows), 2) expect_true(verifyFields(rows[[1]], expectedFields)) validateRow(rows, index = "1", status = "complete", downloaded = TRUE) validateRow(rows, index = "2", status = "complete", downloaded = TRUE) filesInPath(onc$outPath, 2) }) test_that("05. Order and download with metadata", { onc <- prepareOnc(outPath = "output/07/05") result <- onc$orderDataProduct(F_DUMMY1, 100, FALSE, TRUE) rows <- result$downloadResults expect_equal(length(rows), 2) expect_true(verifyFields(rows[[1]], expectedFields)) validateRow(rows, index = "1", status = "complete", downloaded = TRUE) validateRow(rows, index = "meta", status = "complete", downloaded = TRUE) filesInPath(onc$outPath, 2) }) test_that("06. Order and download multiple with metadata", { onc <- prepareOnc(outPath = "output/07/06") result <- onc$orderDataProduct(F_DUMMY2, 100, FALSE, TRUE) rows <- result$downloadResults expect_equal(length(rows), 3) expect_true(verifyFields(rows[[1]], expectedFields)) validateRow(rows, index = "1", status = "complete", downloaded = TRUE) validateRow(rows, index = "2", status = "complete", downloaded = TRUE) validateRow(rows, index = "meta", status = "complete", downloaded = TRUE) filesInPath(onc$outPath, 3) }) test_that("07. Wrong order request argument", { onc <- prepareOnc(outPath = "output/07/07") result <- onc$orderDataProduct(F_FAKE, 100, TRUE, FALSE) expect_gte(length(result$errors), 1) expect_true(isErrorResponse(result)) }) test_that("08. Manual request, run and download", { onc <- prepareOnc(outPath = "output/07/08") reqId <- onc$requestDataProduct(F_DUMMY1)[["dpRequestId"]] runId <- onc$runDataProduct(reqId)[["runIds"]][[1]] rows <- onc$downloadDataProduct(runId, downloadResultsOnly = FALSE, includeMetadataFile = TRUE) expect_equal(length(rows), 2) validateRow(rows, index = "1", status = "complete", downloaded = TRUE) validateRow(rows, index = "meta", status = "complete", downloaded = TRUE) filesInPath(onc$outPath, 2) }) test_that("09. Manual request, run and download results only", { onc <- prepareOnc(outPath = "output/07/09") reqId <- onc$requestDataProduct(F_DUMMY1)[["dpRequestId"]] runId <- onc$runDataProduct(reqId)[["runIds"]][[1]] rows <- onc$downloadDataProduct(runId, downloadResultsOnly = TRUE, includeMetadataFile = TRUE) expect_equal(length(rows), 2) validateRow(rows, index = "1", status = "complete", downloaded = FALSE) validateRow(rows, index = "meta", status = "complete", downloaded = FALSE) filesInPath(onc$outPath, 0) }) test_that("10. Manual run with wrong argument", { onc <- prepareOnc(outPath = "output/07/10") result <- onc$runDataProduct(1234568790) onc$print(result) expect_true(isErrorResponse(result)) }) test_that("11. Manual download with wrong argument", { onc <- prepareOnc(outPath = "output/07/11") expect_error({onc$downloadDataProduct(1234568790, downloadResultsOnly = FALSE, includeMetadataFile = TRUE)}) })
print.DiscrFact<- function (x, ...) { cat ("Mean overall discriminant factor:", mean (x$assignfact), "\n") cat ("Mean discriminant factor per cluster:\n") print (x$mean.DiscrFact) idx = x$assignfact > x$threshold if(!sum(idx)) cat("No decision is considered as doubtful\n") else cat(sum(idx), "decisions are considered as doubtful\n") invisible(x) }
pred3.crr <- function(z, cov1, cov2, time, lps = FALSE) { np <- length(z$coef) if (length(z$tfs) <= 1.) { if (length(z$coef) == length(cov1)) { lhat <- cumsum(exp(sum(cov1 * z$coef)) * z$bfitj) lp <- sum(cov1 * z$coef) } else { cov1 <- as.matrix(cov1) lhat <- matrix(0., nrow = length(z$uftime), ncol = nrow(cov1)) lp <- matrix(0., nrow = length(z$uftime), ncol = nrow(cov1)) for (j in 1.:nrow(cov1)) { lhat[, j] <- cumsum(exp(sum(cov1[j, ] * z$coef)) * z$bfitj) lp[, j] <- sum(cov1[j, ] * z$coef) } lp <- lp[1., ] } } else { if (length(z$coef) == ncol(as.matrix(z$tfs))) { if (length(z$coef) == length(cov2)) { lhat <- cumsum(exp(z$tfs %*% c(cov2 * z$coef)) * z$bfitj) } else { cov2 <- as.matrix(cov2) lhat <- matrix( 0., nrow = length(z$uftime), ncol = nrow(cov1) ) for (j in 1.:nrow(cov2)) { lhat[, j] <- cumsum(exp(z$tfs %*% c( cov2[j, ] * z$coef )) * z$bfitj) } } } else { if (length(z$coef) == length(cov1) + length(cov2)) { lhat <- cumsum(exp(sum(cov1 * z$coef[1.:length( cov1 )]) + z$tfs %*% c(cov2 * z$coef[ (np - length(cov2) + 1.):np ])) * z$ bfitj) } else { cov1 <- as.matrix(cov1) cov2 <- as.matrix(cov2) lhat <- matrix( 0., nrow = length(z$uftime), ncol = nrow(cov1) ) for (j in 1.:nrow(cov1)) { lhat[, j] <- cumsum( exp(sum( cov1[j, ] * z$coef[1.:ncol(cov1)]) + z$tfs %*% c(cov2[j, ] * z$coef[seq( (np - ncol(cov2) + 1.), np)])) * z$bfitj) } } } } lhat <- cbind(z$uftime, 1. - exp(-lhat)) lhat <- lhat[lhat[, 1.] <= time + 1e-10, ] lhat <- lhat[dim(lhat)[1.], -1.] if (lps) { lp } else { lhat } }
pcaLocalDimEst <- function(data, ver, alphaFO = .05, alphaFan = 10, betaFan = .8, PFan = .95, ngap = 5, maxdim = min(dim(data)), verbose = TRUE) { lambda <- prcomp(data)$sdev^2 if (ver == 'FO') return(FO(lambda, alphaFO)) if (ver == 'fan') return(fan(lambda, alphaFan, betaFan, PFan)) if (ver == 'maxgap') return(maxgap(lambda)) if (ver == 'cal') return(cal(lambda, ngap, dim(data)[1], maxdim, verbose)) stop('Not a valid version.') } FO <- function(lambda, alpha) { de <- sum(lambda > alpha*lambda[1]) n <- length(lambda) gaps <- lambda[1:(n-1)]/lambda[2:n] return(DimEst(de, gap.size = gaps[de])) } fan <- function(lambda, alpha = 10, beta = .8, P = .95) { n <- length(lambda) r <- which(cumsum(lambda)/sum(lambda) > P)[1] sigma <- mean(lambda[r:n]) lambda <- lambda - sigma gaps <- lambda[1:(n-1)]/lambda[2:n] de <- min(c(which(gaps > alpha), which(cumsum(lambda)/sum(lambda) > beta))) return(DimEst(de, gap.size = gaps[de])) } maxgap <- function(lambda) { n <- length(lambda) gaps <- lambda[1:(n-1)]/lambda[2:n] de <- which.max(gaps) return(DimEst(de, gap.size = gaps[de])) } cal <- function(lambda, ngap = 5, Ns, maxdim = min(length(lambda), Ns), verbose = TRUE) { n <- length(lambda) if (Ns < n) { n <- Ns lambda <- lambda[1:n] } gaps <- lambda[1:(n-1)]/lambda[2:n] D <- order(gaps[1:maxdim], decreasing = TRUE)[1:ngap] lik <- rep(NA,ngap) for (j in 1:length(D)) { d <- D[j] sigma.noi <- mean(lambda[(d+1):n]) sigma.data <- mean(lambda[1:d]) sigma.ball <- 1/(d+2) R <- sqrt(sigma.data/sigma.ball) sd.noi <- sqrt(sigma.noi)/R ntest <- 100 if (verbose) { cat('Computing likelihood for d =', d, '\n') cat('R =', R, '\n') cat('sd.noi =', sd.noi, '\n') } tryCatch({ lambdamat <- replicate(ntest, prcomp(cutHyperPlane(Ns, d, n, sd.noi))$sdev^2) gap <- lambdamat[d,]/lambdamat[d+1,] last <- lambdamat[n,] lik[j] <- dt((gaps[d] - mean(gap))/sd(gap), ntest-1)* dt((lambda[n] - mean(last))/sd(last), ntest-1) if (verbose) cat('Likelihood:', lik[j], '\n') }, error = function(ex) { cat(d, 'removed as possible dimension since reference data could not be constructed \n') }) } ind = which.max(lik) return(DimEst(D[ind], likelihood = lik(ind))) }
library(PerformanceAnalytics) data(portfolio_bacon) print(MeanAbsoluteDeviation(portfolio_bacon[,1])) data(portfolio_bacon) print(Frequency(portfolio_bacon[,1])) data(managers) SharpeRatio(managers[,1,drop=FALSE], Rf=.035/12, FUN="StdDev") data(portfolio_bacon) print(MSquared(portfolio_bacon[,1], portfolio_bacon[,2])) data(portfolio_bacon) print(MSquaredExcess(portfolio_bacon[,1], portfolio_bacon[,2])) print(MSquaredExcess(portfolio_bacon[,1], portfolio_bacon[,2], Method="arithmetic")) data(managers) print(CAPM.alpha(managers[,1,drop=FALSE], managers[,8,drop=FALSE], Rf=.035/12)) data(managers) CAPM.beta(managers[, "HAM2", drop=FALSE], managers[, "SP500 TR", drop=FALSE], Rf = managers[, "US 3m TR", drop=FALSE]) data(managers) print(CAPM.epsilon(portfolio_bacon[,1], portfolio_bacon[,2])) data(portfolio_bacon) print(CAPM.jensenAlpha(portfolio_bacon[,1], portfolio_bacon[,2])) data(portfolio_bacon) print(SystematicRisk(portfolio_bacon[,1], portfolio_bacon[,2])) data(portfolio_bacon) print(SpecificRisk(portfolio_bacon[,1], portfolio_bacon[,2])) data(portfolio_bacon) print(TotalRisk(portfolio_bacon[,1], portfolio_bacon[,2])) data(managers) print(round(TreynorRatio(managers[,1,drop=FALSE], managers[,8,drop=FALSE], Rf=.035/12),4)) data(portfolio_bacon) print(TreynorRatio(portfolio_bacon[,1], portfolio_bacon[,2], modified = TRUE)) data(portfolio_bacon) print(AppraisalRatio(portfolio_bacon[,1], portfolio_bacon[,2], method="appraisal")) data(portfolio_bacon) print(AppraisalRatio(portfolio_bacon[,1], portfolio_bacon[,2], method="modified")) data(portfolio_bacon) print(FamaBeta(portfolio_bacon[,1], portfolio_bacon[,2])) data(portfolio_bacon) print(Selectivity(portfolio_bacon[,1], portfolio_bacon[,2])) data(portfolio_bacon) print(NetSelectivity(portfolio_bacon[,1], portfolio_bacon[,2])) data(managers) TrackingError(managers[,1,drop=FALSE], managers[,8,drop=FALSE]) data(managers) InformationRatio(managers[,"HAM1",drop=FALSE], managers[, "SP500 TR", drop=FALSE]) data(managers) skewness(managers) data(portfolio_bacon) print(skewness(portfolio_bacon[,1], method="sample")) data(portfolio_bacon) print(kurtosis(portfolio_bacon[,1], method="moment")) data(portfolio_bacon) print(kurtosis(portfolio_bacon[,1], method="excess")) data(portfolio_bacon) print(kurtosis(portfolio_bacon[,1], method="sample")) data(portfolio_bacon) print(kurtosis(portfolio_bacon[,1], method="sample_excess")) data(portfolio_bacon) print(PainIndex(portfolio_bacon[,1])) data(managers) CalmarRatio(managers[,1,drop=FALSE]) data(managers) SterlingRatio(managers[,1,drop=FALSE]) data(portfolio_bacon) print(BurkeRatio(portfolio_bacon[,1])) data(portfolio_bacon) print(BurkeRatio(portfolio_bacon[,1], modified = TRUE)) data(portfolio_bacon) print(MartinRatio(portfolio_bacon[,1])) data(portfolio_bacon) print(PainRatio(portfolio_bacon[,1])) data(portfolio_bacon) MAR = 0.5 DownsideDeviation(portfolio_bacon[,1], MAR) DownsidePotential(portfolio_bacon[,1], MAR) data(portfolio_bacon) MAR = 0.005 print(UpsideRisk(portfolio_bacon[,1], MAR, stat="risk")) print(UpsideRisk(portfolio_bacon[,1], MAR, stat="variance")) print(UpsideRisk(portfolio_bacon[,1], MAR, stat="potential")) data(portfolio_bacon) MAR = 0.005 print(DownsideFrequency(portfolio_bacon[,1], MAR)) data(portfolio_bacon) print(BernardoLedoitRatio(portfolio_bacon[,1])) data(portfolio_bacon) print(DRatio(portfolio_bacon[,1])) data(portfolio_bacon) MAR = 0.005 print(OmegaSharpeRatio(portfolio_bacon[,1], MAR)) data(managers) round(SortinoRatio(managers[, 1]),4) data(portfolio_bacon) MAR = 0.005 l = 2 print(Kappa(portfolio_bacon[,1], MAR, l)) data(edhec) UpsidePotentialRatio(edhec[, 6], MAR=.05/12) data(portfolio_bacon) MAR = 0.005 print(VolatilitySkewness(portfolio_bacon[,1], MAR, stat="volatility")) data(portfolio_bacon) MAR = 0.005 print(VolatilitySkewness(portfolio_bacon[,1], MAR, stat="variability")) data(portfolio_bacon) print(AdjustedSharpeRatio(portfolio_bacon[,1])) data(portfolio_bacon) print(SkewnessKurtosisRatio(portfolio_bacon[,1])) data(portfolio_bacon) MAR = 0.05 print(ProspectRatio(portfolio_bacon[,1], MAR)) data(portfolio_bacon) MAR = 0.005 print(M2Sortino(portfolio_bacon[,1], portfolio_bacon[,2], MAR)) data(portfolio_bacon) MAR = 0.005 print(OmegaExcessReturn(portfolio_bacon[,1], portfolio_bacon[,2], MAR)) data(managers) table.Variability(managers[,1:8]) data(managers) table.SpecificRisk(managers[,1:8], managers[,8]) data(managers) table.InformationRatio(managers[,1:8], managers[,8]) data(managers) table.Distributions(managers[,1:8]) data(managers) table.DrawdownsRatio(managers[,1:8]) data(managers) table.DownsideRiskRatio(managers[,1:8]) data(managers) table.AnnualizedReturns(managers[,1:8])
session <- RevoIOQ:::saveRUnitSession(packages=c("survival","splines")) melanom <- data.frame(no = c(789, 13, 97, 16, 21, 469, 685, 7, 932, 944, 558, 612, 2, 233, 418, 765, 777, 61, 67, 819, 10, 15, 47, 9, 907, 758, 8, 400, 232, 18, 4, 373, 43, 498, 17, 834, 779, 549, 608, 631, 834, 322, 432, 57, 811, 455, 971, 29, 636, 10, 3, 66, 468, 790, 130, 402, 808, 83, 390, 346, 802, 892, 605, 466, 310, 966, 113, 804, 992, 748, 494, 533, 878, 11, 2, 910, 982, 293, 327, 20, 490, 576, 205, 890, 746, 901, 394, 943, 571, 602, 342, 726, 393, 61, 695, 858, 272, 70, 208, 278, 232, 389, 52, 697, 230, 830, 135, 372, 768, 599, 761, 644, 401, 234, 31, 11, 676, 236, 988, 670, 720, 737, 24, 974, 875, 412, 338, 476, 531, 208, 441, 414, 458, 14, 530, 124, 514, 572, 609, 50, 27, 522, 359, 756, 396, 986, 290, 748, 535, 717, 887, 600, 698, 664, 84, 311, 955, 731, 222, 221, 824, 977, 194, 320, 842, 422, 745, 652, 735, 469, 510, 558, 734, 16, 327, 459, 382, 624, 446, 809, 148, 536, 464, 240, 658, 123, 518, 809, 554, 508, 445, 472, 294, 548, 415, 86, 175, 493, 536, 52, 317, 798, 806, 606, 328), status = as.factor(c(3, 3, 2, 3, 1, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 2, 1, 2, 2, 2, 1, 3, 2, 1, 2, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 3, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 3, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2)), days = c(10, 30, 35, 99, 185, 204, 210, 232, 232, 279, 295, 355, 386, 426, 469, 493, 529, 621, 629, 659, 667, 718, 752, 779, 793, 817, 826, 833, 858, 869, 872, 967, 977, 982, 1041, 1055, 1062, 1075, 1156, 1228, 1252, 1271, 1312, 1427, 1435, 1499, 1506, 1508, 1510, 1512, 1516, 1525, 1542, 1548, 1557, 1560, 1563, 1584, 1605, 1621, 1627, 1634, 1641, 1641, 1648, 1652, 1654, 1654, 1667, 1678, 1685, 1690, 1710, 1710, 1726, 1745, 1762, 1779, 1787, 1787, 1793, 1804, 1812, 1836, 1839, 1839, 1854, 1856, 1860, 1864, 1899, 1914, 1919, 1920, 1927, 1933, 1942, 1955, 1956, 1958, 1963, 1970, 2005, 2007, 2011, 2024, 2028, 2038, 2056, 2059, 2061, 2062, 2075, 2085, 2102, 2103, 2104, 2108, 2112, 2150, 2156, 2165, 2209, 2227, 2227, 2256, 2264, 2339, 2361, 2387, 2388, 2403, 2426, 2426, 2431, 2460, 2467, 2492, 2493, 2521, 2542, 2559, 2565, 2570, 2660, 2666, 2676, 2738, 2782, 2787, 2984, 3032, 3040, 3042, 3067, 3079, 3101, 3144, 3152, 3154, 3180, 3182, 3185, 3199, 3228, 3229, 3278, 3297, 3328, 3330, 3338, 3383, 3384, 3385, 3388, 3402, 3441, 3458, 3459, 3459, 3476, 3523, 3667, 3695, 3695, 3776, 3776, 3830, 3856, 3872, 3909, 3968, 4001, 4103, 4119, 4124, 4207, 4310, 4390, 4479, 4492, 4668, 4688, 4926, 5565 ), ulc = as.factor(c(1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 2, 1, 2, 2, 1, 2, 2, 1, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 2, 2, 1, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 2 )), thick = c(676, 65, 134, 290, 1208, 484, 516, 1288, 322, 741, 419, 16, 387, 484, 242, 1256, 580, 706, 548, 773, 1385, 234, 419, 404, 484, 32, 854, 258, 356, 354, 97, 483, 162, 644, 1466, 258, 387, 354, 134, 224, 387, 354, 1742, 129, 322, 129, 451, 838, 194, 16, 258, 129, 16, 162, 129, 210, 32, 81, 113, 516, 162, 137, 24, 81, 129, 129, 97, 113, 580, 129, 48, 162, 226, 58, 97, 258, 81, 354, 97, 178, 194, 129, 322, 153, 129, 162, 162, 32, 484, 129, 97, 306, 354, 162, 258, 194, 81, 773, 97, 1288, 258, 409, 64, 97, 322, 162, 387, 32, 32, 322, 226, 306, 258, 65, 113, 81, 97, 176, 194, 65, 97, 564, 966, 10, 548, 226, 483, 97, 97, 516, 81, 290, 387, 194, 16, 64, 226, 145, 482, 129, 789, 81, 354, 129, 64, 322, 145, 48, 194, 16, 16, 129, 194, 354, 81, 65, 709, 16, 162, 162, 129, 612, 48, 64, 322, 194, 258, 258, 81, 81, 322, 32, 322, 274, 484, 162, 65, 145, 65, 129, 162, 354, 322, 65, 103, 709, 129, 65, 178, 1224, 806, 81, 210, 387, 65, 194, 65, 210, 194, 113, 706, 612, 48, 226, 290), sex = as.factor(c(2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 2, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 2, 2, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1))) attach(melanom) require(survival) "KM.test.stress" <- function() { surv.all <- survfit(Surv(days, status==1)~1) summary(surv.all) plot(surv.all) surv.bysex <- survfit(Surv(days, status==1)~sex) summary(surv.bysex) plot(surv.bysex, conf.int=T) dev.off() } "logrank.test.stress" <- function() { survdiff(Surv(days, status==1)~ sex) survdiff(Surv(days, status==1)~ sex + strata(ulc)) } "coxph.test.stress" <- function() { fit.single <- summary(coxph(Surv(days, status==1) ~ sex)) fit.strat <- summary(coxph(Surv(days, status == 1) ~ sex + log(thick) + strata(ulc))) } "test.KM.test.stress" <- function() { res <- try(KM.test.stress()) checkTrue(!is(res, "try-error"), msg="KM stress test failed") } "test.logrank.test.stress" <- function() { res <- try(logrank.test.stress()) checkTrue(!is(res, "try-error"), msg="logrank stress test failed") } "test.coxph.test.stress" <- function() { res <- try(coxph.test.stress()) checkTrue(!is(res, "try-error"), msg="coxph stress test failed") } "testzzz.restore.session" <- function() { if ("melanom" %in% search()) detach("melanom") checkTrue(RevoIOQ:::restoreRUnitSession(session), msg="Session restoration failed") }
library(BART) set.seed(12) N=50 P=3 x.train=matrix(runif(N*P, -1, 1), nrow=N, ncol=P) y=x.train[ , 1]^3 x.miss=matrix(1*(runif(N*P)<0.05), nrow=N, ncol=P) x.train=x.train*(1-x.miss) x.train[x.train==0]=NA post=gbart(x.train, y, x.train) summary(post$yhat.train.mean) summary(post$yhat.test.mean) plot(post$yhat.train.mean, post$yhat.test.mean)
set_ipd <- function(data, study, trt, y = NULL, r = NULL, E = NULL, trt_ref = NULL, trt_class = NULL) { if (!inherits(data, "data.frame")) abort("Argument `data` should be a data frame") if (nrow(data) == 0) { return( structure( list(agd_arm = NULL, agd_contrast = NULL, ipd = NULL, treatments = NULL, classes = NULL, studies = NULL), class = "nma_data") ) } if (missing(study)) abort("Specify `study`") .study <- pull_non_null(data, enquo(study)) if (is.null(.study)) abort("`study` cannot be NULL") check_study(.study) if (is.factor(.study)) { study_original_levels <- levels(.study) .study <- forcats::fct_drop(.study) } else { study_original_levels <- NULL } if (missing(trt)) abort("Specify `trt`") .trt <- pull_non_null(data, enquo(trt)) if (is.null(.trt)) abort("`trt` cannot be NULL") check_trt(.trt) if (is.factor(.trt)) { trt_original_levels <- levels(.trt) .trt <- forcats::fct_drop(.trt) } else { trt_original_levels <- NULL } single_arm_studies <- tibble::tibble(.study, .trt) %>% dplyr::distinct(.data$.study, .data$.trt) %>% dplyr::group_by(.data$.study) %>% dplyr::filter(dplyr::n() == 1) %>% dplyr::pull(.data$.study) if (length(single_arm_studies)) { abort(glue::glue("Single-arm studies are not supported: issue with stud{if (length(single_arm_studies) > 1) 'ies' else 'y'} ", glue::glue_collapse(glue::double_quote(single_arm_studies), sep = ", ", last = " and "), ".")) } .trtclass <- pull_non_null(data, enquo(trt_class)) if (!is.null(.trtclass)) { check_trt_class(.trtclass, .trt) if (is.factor(.trtclass)) { trtclass_original_levels <- levels(.trtclass) .trtclass <- forcats::fct_drop(.trtclass) } else { trtclass_original_levels <- NULL } } if (!is.null(trt_ref) && length(trt_ref) > 1) abort("`trt_ref` must be length 1.") .y <- pull_non_null(data, enquo(y)) .r <- pull_non_null(data, enquo(r)) .E <- pull_non_null(data, enquo(E)) check_outcome_continuous(.y, with_se = FALSE) if (!is.null(.r) && inherits(.r, c("multi_ordered", "multi_competing"))) { if (inherits(.r, "multi_competing")) abort("Competing multinomial outcomes are not yet supported.") if (any(! .r[!is.na(.r)] %in% c(0, 1))) abort("Multinomial outcome `r` must equal 0 or 1") if (any(r_zero_rows <- rowSums(.r, na.rm = TRUE) == 0)) abort(glue::glue("Individual{if (sum(r_zero_rows) > 1) 's' else ''} without outcomes in any category, ", "row{if (sum(r_zero_rows) > 1) 's' else ''} ", glue::glue_collapse(which(r_zero_rows), sep = ", ", last = " and "), ".")) if (any(r_multi_rows <- rowSums(.r, na.rm = TRUE) > 1)) abort(glue::glue("Individual{if (sum(r_multi_rows) > 1) 's' else ''} with outcomes in more than one category, ", "row{if (sum(r_multi_rows) > 1) 's' else ''} ", glue::glue_collapse(which(r_multi_rows), sep = ", ", last = " and "), ".")) } else { check_outcome_binary(.r, .E) } o_type <- get_outcome_type(y = .y, se = NULL, r = .r, n = NULL, E = .E) d <- tibble::tibble( .study = nfactor(.study), .trt = nfactor(.trt) ) if (!is.null(trt_ref)) { trt_ref <- as.character(trt_ref) lvls_trt <- levels(d$.trt) if (! trt_ref %in% lvls_trt) abort(sprintf("`trt_ref` does not match a treatment in the data.\nSuitable values are: %s", ifelse(length(lvls_trt) <= 5, paste0(lvls_trt, collapse = ", "), paste0(paste0(lvls_trt[1:5], collapse = ", "), ", ...")))) d$.trt <- forcats::fct_relevel(d$.trt, trt_ref) } if (!is.null(.trtclass)) { d <- tibble::add_column(d, .trtclass = nfactor(.trtclass)) class_lookup <- d %>% dplyr::distinct(.data$.trt, .data$.trtclass) %>% dplyr::arrange(.data$.trt) class_ref <- as.character(class_lookup[[1, ".trtclass"]]) d$.trtclass <- forcats::fct_relevel(d$.trtclass, class_ref) classes <- forcats::fct_relevel(nfactor(class_lookup$.trtclass), class_ref) } else { classes <- NULL } if (o_type == "continuous") { d <- tibble::add_column(d, .y = .y) } else if (o_type == "binary") { d <- tibble::add_column(d, .r = .r) } else if (o_type == "rate") { d <- tibble::add_column(d, .r = .r, .E = .E) } else if (o_type %in% c("ordered", "competing")) { .r <- unclass(.r) d <- tibble::add_column(d, .r = .r) } drop_reserved <- setdiff(colnames(data), colnames(d)) d <- dplyr::bind_cols(d, data[, drop_reserved, drop = FALSE]) d <- drop_original(d, data, enquo(study)) d <- drop_original(d, data, enquo(trt)) if (!is.null(.trtclass)) d <- drop_original(d, data, enquo(trt_class)) out <- structure( list(agd_arm = NULL, agd_contrast = NULL, ipd = d, treatments = forcats::fct_unique(d$.trt), classes = classes, studies = forcats::fct_unique(d$.study), outcome = list(agd_arm = NA, agd_contrast = NA, ipd = o_type)), class = "nma_data") if (is.null(trt_ref)) { trt_ref <- get_default_trt_ref(out) trt_sort <- order(forcats::fct_relevel(out$treatments, trt_ref)) out$treatments <- .default(forcats::fct_relevel(out$treatments, trt_ref)[trt_sort]) out$ipd$.trt <- forcats::fct_relevel(out$ipd$.trt, trt_ref) if (!is.null(.trtclass)) { class_ref <- as.character(out$classes[trt_sort[1]]) if (!is.null(trtclass_original_levels)) class_ref <- c(class_ref, setdiff(intersect(trtclass_original_levels, levels(out$classes)), class_ref)) out$ipd$.trtclass <- forcats::fct_relevel(out$ipd$.trtclass, class_ref) out$classes <- forcats::fct_relevel(out$classes, class_ref)[trt_sort] } } attr(out$treatments, "original_levels") <- trt_original_levels attr(out$studies, "original_levels") <- study_original_levels if (!is.null(.trtclass)) attr(out$classes, "original_levels") <- trtclass_original_levels return(out) } set_agd_arm <- function(data, study, trt, y = NULL, se = NULL, r = NULL, n = NULL, E = NULL, sample_size = NULL, trt_ref = NULL, trt_class = NULL) { if (!inherits(data, "data.frame")) abort("Argument `data` should be a data frame") if (nrow(data) == 0) { return( structure( list(agd_arm = NULL, agd_contrast = NULL, ipd = NULL, treatments = NULL, classes = NULL, studies = NULL), class = "nma_data") ) } if (missing(study)) abort("Specify `study`") .study <- pull_non_null(data, enquo(study)) if (is.null(.study)) abort("`study` cannot be NULL") check_study(.study) if (is.factor(.study)) { study_original_levels <- levels(.study) .study <- forcats::fct_drop(.study) } else { study_original_levels <- NULL } if (missing(trt)) abort("Specify `trt`") .trt <- pull_non_null(data, enquo(trt)) if (is.null(.trt)) abort("`trt` cannot be NULL") check_trt(.trt) if (is.factor(.trt)) { trt_original_levels <- levels(.trt) .trt <- forcats::fct_drop(.trt) } else { trt_original_levels <- NULL } single_arm_studies <- tibble::tibble(.study, .trt) %>% dplyr::group_by(.data$.study) %>% dplyr::filter(dplyr::n() == 1) %>% dplyr::pull(.data$.study) if (length(single_arm_studies)) { abort(glue::glue("Single-arm studies are not supported: issue with stud{if (length(single_arm_studies) > 1) 'ies' else 'y'} ", glue::glue_collapse(glue::double_quote(single_arm_studies), sep = ", ", last = " and "), ".")) } .trtclass <- pull_non_null(data, enquo(trt_class)) if (!is.null(.trtclass)) { check_trt_class(.trtclass, .trt) if (is.factor(.trtclass)) { trtclass_original_levels <- levels(.trtclass) .trtclass <- forcats::fct_drop(.trtclass) } else { trtclass_original_levels <- NULL } } if (!is.null(trt_ref) && length(trt_ref) > 1) abort("`trt_ref` must be length 1.") .y <- pull_non_null(data, enquo(y)) .se <- pull_non_null(data, enquo(se)) .r <- pull_non_null(data, enquo(r)) .n <- pull_non_null(data, enquo(n)) .E <- pull_non_null(data, enquo(E)) check_outcome_continuous(.y, .se, with_se = TRUE) if (!is.null(.r) && inherits(.r, c("multi_ordered", "multi_competing"))) { if (inherits(.r, "multi_competing")) abort("Competing multinomial outcomes are not yet supported.") } else { check_outcome_count(.r, .n, .E) } o_type <- get_outcome_type(y = .y, se = .se, r = .r, n = .n, E = .E) .sample_size <- pull_non_null(data, enquo(sample_size)) if (!is.null(.sample_size)) { check_sample_size(.sample_size) } else if (o_type == "count") { .sample_size <- .n } else if (o_type %in% c("ordered", "competing")) { .sample_size <- rowSums(.r, na.rm = TRUE) } else inform("Note: Optional argument `sample_size` not provided, some features may not be available (see ?set_agd_arm).") d <- tibble::tibble( .study = nfactor(.study), .trt = nfactor(.trt) ) if (!is.null(trt_ref)) { trt_ref <- as.character(trt_ref) lvls_trt <- levels(d$.trt) if (! trt_ref %in% lvls_trt) abort(sprintf("`trt_ref` does not match a treatment in the data.\nSuitable values are: %s", ifelse(length(lvls_trt) <= 5, paste0(lvls_trt, collapse = ", "), paste0(paste0(lvls_trt[1:5], collapse = ", "), ", ...")))) d$.trt <- forcats::fct_relevel(d$.trt, trt_ref) } if (!is.null(.trtclass)) { d <- tibble::add_column(d, .trtclass = nfactor(.trtclass)) class_lookup <- d %>% dplyr::distinct(.data$.trt, .data$.trtclass) %>% dplyr::arrange(.data$.trt) class_ref <- as.character(class_lookup[[1, ".trtclass"]]) d$.trtclass <- forcats::fct_relevel(d$.trtclass, class_ref) classes <- forcats::fct_relevel(nfactor(class_lookup$.trtclass), class_ref) } else { classes <- NULL } if (o_type == "continuous") { d <- tibble::add_column(d, .y = .y, .se = .se) } else if (o_type == "count") { d <- tibble::add_column(d, .r = .r, .n = .n) } else if (o_type == "rate") { d <- tibble::add_column(d, .r = .r, .E = .E) } else if (o_type %in% c("ordered", "competing")) { .r <- unclass(.r) d <- tibble::add_column(d, .r = .r) } if (!is.null(.sample_size)) d <- tibble::add_column(d, .sample_size = .sample_size) drop_reserved <- setdiff(colnames(data), colnames(d)) d <- dplyr::bind_cols(d, data[, drop_reserved, drop = FALSE]) d <- drop_original(d, data, enquo(study)) d <- drop_original(d, data, enquo(trt)) if (!is.null(.trtclass)) d <- drop_original(d, data, enquo(trt_class)) out <- structure( list(agd_arm = d, agd_contrast = NULL, ipd = NULL, treatments = forcats::fct_unique(d$.trt), classes = classes, studies = forcats::fct_unique(d$.study), outcome = list(agd_arm = o_type, agd_contrast = NA, ipd = NA)), class = "nma_data") if (is.null(trt_ref)) { trt_ref <- get_default_trt_ref(out) trt_sort <- order(forcats::fct_relevel(out$treatments, trt_ref)) out$treatments <- .default(forcats::fct_relevel(out$treatments, trt_ref)[trt_sort]) out$agd_arm$.trt <- forcats::fct_relevel(out$agd_arm$.trt, trt_ref) if (!is.null(.trtclass)) { class_ref <- as.character(out$classes[trt_sort[1]]) if (!is.null(trtclass_original_levels)) class_ref <- c(class_ref, setdiff(intersect(trtclass_original_levels, levels(out$classes)), class_ref)) out$agd_arm$.trtclass <- forcats::fct_relevel(out$agd_arm$.trtclass, class_ref) out$classes <- forcats::fct_relevel(out$classes, class_ref)[trt_sort] } } attr(out$treatments, "original_levels") <- trt_original_levels attr(out$studies, "original_levels") <- study_original_levels if (!is.null(.trtclass)) attr(out$classes, "original_levels") <- trtclass_original_levels return(out) } set_agd_contrast <- function(data, study, trt, y = NULL, se = NULL, sample_size = NULL, trt_ref = NULL, trt_class = NULL) { if (!inherits(data, "data.frame")) abort("Argument `data` should be a data frame") if (nrow(data) == 0) { return( structure( list(agd_arm = NULL, agd_contrast = NULL, ipd = NULL, treatments = NULL, classes = NULL, studies = NULL), class = "nma_data") ) } if (missing(study)) abort("Specify `study`") .study <- pull_non_null(data, enquo(study)) if (is.null(.study)) abort("`study` cannot be NULL") check_study(.study) if (is.factor(.study)) { study_original_levels <- levels(.study) .study <- forcats::fct_drop(.study) } else { study_original_levels <- NULL } if (missing(trt)) abort("Specify `trt`") .trt <- pull_non_null(data, enquo(trt)) if (is.null(.trt)) abort("`trt` cannot be NULL") check_trt(.trt) if (is.factor(.trt)) { trt_original_levels <- levels(.trt) .trt <- forcats::fct_drop(.trt) } else { trt_original_levels <- NULL } single_arm_studies <- tibble::tibble(.study, .trt) %>% dplyr::group_by(.data$.study) %>% dplyr::filter(dplyr::n() == 1) %>% dplyr::pull(.data$.study) if (length(single_arm_studies)) { abort(glue::glue("Single-arm studies are not supported: issue with stud{if (length(single_arm_studies) > 1) 'ies' else 'y'} ", glue::glue_collapse(glue::double_quote(single_arm_studies), sep = ", ", last = " and "), ".")) } .trtclass <- pull_non_null(data, enquo(trt_class)) if (!is.null(.trtclass)) { check_trt_class(.trtclass, .trt) if (is.factor(.trtclass)) { trtclass_original_levels <- levels(.trtclass) .trtclass <- forcats::fct_drop(.trtclass) } else { trtclass_original_levels <- NULL } } if (!is.null(trt_ref) && length(trt_ref) > 1) abort("`trt_ref` must be length 1.") .y <- pull_non_null(data, enquo(y)) .se <- pull_non_null(data, enquo(se)) if (is.null(.y)) abort("Specify continuous outcome `y`") if (rlang::is_list(.y) || !is.null(dim(.y))) abort("Continuous outcome `y` must be a regular column (not a list or matrix column)") if (is.null(.se)) abort("Specify standard error `se`") if (rlang::is_list(.se) || !is.null(dim(.se))) abort("Standard error `se` must be a regular column (not a list or matrix column)") .sample_size <- pull_non_null(data, enquo(sample_size)) if (!is.null(.sample_size)) { check_sample_size(.sample_size) } else { inform("Note: Optional argument `sample_size` not provided, some features may not be available (see ?set_agd_contrast).") } bl <- is.na(.y) tibble::tibble(.study, .trt, bl, .se) %>% dplyr::group_by(.data$.study) %>% dplyr::mutate(n_arms = dplyr::n(), n_bl = sum(.data$bl)) %>% { if (any(.$n_bl > 1)) abort("Multiple baseline arms (where y = NA) in a study or studies.") else if (any(.$n_bl == 0)) abort("Study or studies without a specified baseline arm (where y = NA).") else . } %>% dplyr::filter(.data$bl, .data$n_arms > 2) %>% { check_outcome_continuous(1, .$.se, with_se = TRUE, append = " on baseline arms in studies with >2 arms.") } check_outcome_continuous(.y[!bl], .se[!bl], with_se = TRUE, append = " for non-baseline rows (i.e. those specifying contrasts against baseline).") o_type <- get_outcome_type(y = .y[!bl], se = .se[!bl], r = NULL, n = NULL, E = NULL) d <- tibble::tibble( .study = nfactor(.study), .trt = nfactor(.trt), .y = .y, .se = .se) if (!is.null(trt_ref)) { trt_ref <- as.character(trt_ref) lvls_trt <- levels(d$.trt) if (! trt_ref %in% lvls_trt) abort(sprintf("`trt_ref` does not match a treatment in the data.\nSuitable values are: %s", ifelse(length(lvls_trt) <= 5, paste0(lvls_trt, collapse = ", "), paste0(paste0(lvls_trt[1:5], collapse = ", "), ", ...")))) d$.trt <- forcats::fct_relevel(d$.trt, trt_ref) } if (!is.null(.trtclass)) { d <- tibble::add_column(d, .trtclass = nfactor(.trtclass)) class_lookup <- d %>% dplyr::distinct(.data$.trt, .data$.trtclass) %>% dplyr::arrange(.data$.trt) class_ref <- as.character(class_lookup[[1, ".trtclass"]]) d$.trtclass <- forcats::fct_relevel(d$.trtclass, class_ref) classes <- forcats::fct_relevel(nfactor(class_lookup$.trtclass), class_ref) } else { classes <- NULL } if (!is.null(.sample_size)) { d <- tibble::add_column(d, .sample_size = .sample_size) } drop_reserved <- setdiff(colnames(data), colnames(d)) d <- dplyr::bind_cols(d, data[, drop_reserved, drop = FALSE]) d <- drop_original(d, data, enquo(study)) d <- drop_original(d, data, enquo(trt)) if (!is.null(.trtclass)) d <- drop_original(d, data, enquo(trt_class)) d <- dplyr::mutate(d, .study_inorder = forcats::fct_inorder(.data$.study)) %>% dplyr::arrange(.data$.study_inorder) %>% dplyr::select(-.data$.study_inorder) out <- structure( list(agd_arm = NULL, agd_contrast = d, ipd = NULL, treatments = forcats::fct_unique(d$.trt), classes = classes, studies = forcats::fct_unique(d$.study), outcome = list(agd_arm = NA, agd_contrast = o_type, ipd = NA)), class = "nma_data") if (is.null(trt_ref)) { trt_ref <- get_default_trt_ref(out) trt_sort <- order(forcats::fct_relevel(out$treatments, trt_ref)) out$treatments <- .default(forcats::fct_relevel(out$treatments, trt_ref)[trt_sort]) out$agd_contrast$.trt <- forcats::fct_relevel(out$agd_contrast$.trt, trt_ref) if (!is.null(.trtclass)) { class_ref <- as.character(out$classes[trt_sort[1]]) if (!is.null(trtclass_original_levels)) class_ref <- c(class_ref, setdiff(intersect(trtclass_original_levels, levels(out$classes)), class_ref)) out$agd_contrast$.trtclass <- forcats::fct_relevel(out$agd_contrast$.trtclass, class_ref) out$classes <- forcats::fct_relevel(out$classes, class_ref)[trt_sort] } } attr(out$treatments, "original_levels") <- trt_original_levels attr(out$studies, "original_levels") <- study_original_levels if (!is.null(.trtclass)) attr(out$classes, "original_levels") <- trtclass_original_levels return(out) } combine_network <- function(..., trt_ref) { s <- list(...) if (!purrr::every(s, inherits, what = "nma_data")) { abort("Expecting to combine objects of class `nma_data`, created using set_* functions") } trts <- stringr::str_sort(forcats::lvls_union(purrr::map(s, "treatments")), numeric = TRUE) trt_original_levels <- purrr::map(purrr::map(s, "treatments"), attr, which = "original_levels") if (!any(purrr::map_lgl(trt_original_levels, is.null)) && all(purrr::map_lgl(trt_original_levels, ~identical(., trt_original_levels[[1]])))) { trt_original_levels <- trt_original_levels[[1]] trts <- intersect(trt_original_levels, trts) } else { trt_original_levels <- NULL } if (!missing(trt_ref)) { if (! trt_ref %in% trts) { abort(sprintf("`trt_ref` does not match a treatment in the network.\nSuitable values are: %s", ifelse(length(trts) <= 5, paste0(trts, collapse = ", "), paste0(paste0(trts[1:5], collapse = ", "), ", ...")))) } trts <- c(trt_ref, setdiff(trts, trt_ref)) } has_classes <- purrr::map_lgl(purrr::map(s, "classes"), ~!is.null(.)) if (all(has_classes)) { class_lookup <- tibble::tibble(.trt = forcats::fct_c(!!! purrr::map(s, "treatments")), .trtclass = forcats::fct_c(!!! purrr::map(s, "classes"))) %>% dplyr::mutate(.trt = forcats::fct_relevel(.data$.trt, trts)) %>% dplyr::distinct(.data$.trt, .data$.trtclass) %>% dplyr::arrange(.data$.trt) check_trt_class(class_lookup$.trtclass, class_lookup$.trt) class_lvls <- stringr::str_sort(levels(class_lookup$.trtclass), numeric = TRUE) class_original_levels <- purrr::map(purrr::map(s, "classes"), attr, which = "original_levels") if (!any(purrr::map_lgl(class_original_levels, is.null)) && all(purrr::map_lgl(class_original_levels, ~identical(., class_original_levels[[1]])))) { class_original_levels <- class_original_levels[[1]] class_lvls <- intersect(class_original_levels, class_lvls) } else { class_original_levels <- NULL } class_ref <- as.character(class_lookup[[1, ".trtclass"]]) class_lvls <- c(class_ref, setdiff(class_lvls, class_ref)) class_lookup$.trtclass <- forcats::fct_relevel(class_lookup$.trtclass, class_lvls) classes <- class_lookup$.trtclass } else if (any(has_classes)) { warn("Not all data sources have defined treatment classes. Removing treatment class information.") classes <- NULL } else { classes <- NULL } all_studs <- purrr::flatten_chr(purrr::map(s, ~levels(.$studies))) if (anyDuplicated(all_studs)) { abort(sprintf("Studies with same label found in multiple data sources: %s", paste0(unique(all_studs[duplicated(all_studs)]), collapse = ", "))) } studs <- stringr::str_sort(forcats::lvls_union(purrr::map(s, "studies")), numeric = TRUE) study_original_levels <- purrr::map(purrr::map(s, "studies"), attr, which = "original_levels") if (!any(purrr::map_lgl(study_original_levels, is.null)) && all(purrr::map_lgl(study_original_levels, ~identical(., study_original_levels[[1]])))) { study_original_levels <- study_original_levels[[1]] studs <- intersect(study_original_levels, studs) } else { study_original_levels <- NULL } ipd <- purrr::map(s, "ipd") if (!rlang::is_empty(ipd)) { for (j in 1:length(ipd)) { if (rlang::is_empty(ipd[[j]])) next ipd[[j]]$.trt <- forcats::lvls_expand(ipd[[j]]$.trt, trts) ipd[[j]]$.study <- forcats::lvls_expand(ipd[[j]]$.study, studs) if (!is.null(classes)) ipd[[j]]$.trtclass <- forcats::lvls_expand(ipd[[j]]$.trtclass, class_lvls) } } agd_arm <- purrr::map(s, "agd_arm") if (!rlang::is_empty(agd_arm)) { for (j in 1:length(agd_arm)) { if (rlang::is_empty(agd_arm[[j]])) next agd_arm[[j]]$.trt <- forcats::lvls_expand(agd_arm[[j]]$.trt, trts) agd_arm[[j]]$.study <- forcats::lvls_expand(agd_arm[[j]]$.study, studs) if (!is.null(classes)) agd_arm[[j]]$.trtclass <- forcats::lvls_expand(agd_arm[[j]]$.trtclass, class_lvls) } } agd_contrast <- purrr::map(s, "agd_contrast") if (!rlang::is_empty(agd_contrast)) { for (j in 1:length(agd_contrast)) { if (rlang::is_empty(agd_contrast[[j]])) next agd_contrast[[j]]$.trt <- forcats::lvls_expand(agd_contrast[[j]]$.trt, trts) agd_contrast[[j]]$.study <- forcats::lvls_expand(agd_contrast[[j]]$.study, studs) if (!is.null(classes)) agd_contrast[[j]]$.trtclass <- forcats::lvls_expand(agd_contrast[[j]]$.trtclass, class_lvls) } } o_ipd <- unique(purrr::map_chr(purrr::map(s, "outcome"), "ipd")) o_ipd <- o_ipd[!is.na(o_ipd)] if (length(o_ipd) > 1) abort("Multiple outcome types present in IPD.") if (length(o_ipd) == 0) o_ipd <- NA o_agd_arm <- unique(purrr::map_chr(purrr::map(s, "outcome"), "agd_arm")) o_agd_arm <- o_agd_arm[!is.na(o_agd_arm)] if (length(o_agd_arm) > 1) abort("Multiple outcome types present in AgD (arm-based).") if (length(o_agd_arm) == 0) o_agd_arm <- NA o_agd_contrast <- unique(purrr::map_chr(purrr::map(s, "outcome"), "agd_contrast")) o_agd_contrast <- o_agd_contrast[!is.na(o_agd_contrast)] if (length(o_agd_contrast) > 1) abort("Multiple outcome types present in AgD (contrast-based).") if (length(o_agd_contrast) == 0) o_agd_contrast <- NA outcome <- list(agd_arm = o_agd_arm, agd_contrast = o_agd_contrast, ipd = o_ipd) check_outcome_combination(outcome) if (o_ipd %in% c("ordered", "competing")) check_multi_combine(purrr::map(ipd, ".r")) if (o_agd_arm %in% c("ordered", "competing")) check_multi_combine(purrr::map(agd_arm, ".r")) if (o_ipd %in% c("ordered", "competing") && o_agd_arm %in% c("ordered", "competing")) check_multi_combine(purrr::map(c(ipd, agd_arm), ".r")) ipd <- dplyr::bind_rows(ipd) agd_arm <- dplyr::bind_rows(agd_arm) agd_contrast <- dplyr::bind_rows(agd_contrast) out <- structure( list(agd_arm = agd_arm, agd_contrast = agd_contrast, ipd = ipd, treatments = factor(trts, levels = trts), classes = classes, studies = factor(studs, levels = studs), outcome = outcome), class = "nma_data") if (missing(trt_ref)) { trt_ref <- get_default_trt_ref(out) trt_sort <- order(forcats::fct_relevel(out$treatments, trt_ref)) out$treatments <- .default(forcats::fct_relevel(out$treatments, trt_ref)[trt_sort]) if (has_ipd(out)) out$ipd$.trt <- forcats::fct_relevel(out$ipd$.trt, trt_ref) if (has_agd_arm(out)) out$agd_arm$.trt <- forcats::fct_relevel(out$agd_arm$.trt, trt_ref) if (has_agd_contrast(out)) out$agd_contrast$.trt <- forcats::fct_relevel(out$agd_contrast$.trt, trt_ref) if (!is.null(classes)) { class_ref <- as.character(out$classes[trt_sort[1]]) out$classes <- forcats::fct_relevel(out$classes, class_ref)[trt_sort] if (has_ipd(out)) out$ipd$.trtclass <- forcats::fct_relevel(out$ipd$.trtclass, class_ref) if (has_agd_arm(out)) out$agd_arm$.trtclass <- forcats::fct_relevel(out$agd_arm$.trtclass, class_ref) if (has_agd_contrast(out)) out$agd_contrast$.trtclass <- forcats::fct_relevel(out$agd_contrast$.trtclass, class_ref) } } attr(out$treatments, "original_levels") <- trt_original_levels attr(out$studies, "original_levels") <- study_original_levels if (!is.null(classes)) attr(out$classes, "original_levels") <- class_original_levels return(out) } multi <- function(..., inclusive = FALSE, type = c("ordered", "competing")) { if (packageVersion("dplyr") < "1.0.0") abort("Multinomial outcomes require `dplyr` package version 1.0.0 or later.") if (!rlang::is_bool(inclusive)) abort("`inclusive` must be a logical value TRUE/FALSE") type <- rlang::arg_match(type) if (type == "competing" && inclusive) { warn("Ignoring inclusive = TRUE, competing outcomes are always given by exclusive counts.") inclusive <- FALSE } q_dots <- rlang::enquos(..., .named = TRUE) if (length(q_dots) < 2) abort("At least 2 outcomes must be specified in `...`") if (anyDuplicated(names(q_dots))) { dups <- unique(names(q_dots)[duplicated(names(q_dots))]) abort(glue::glue("Duplicate outcome category labels ", glue::glue_collapse(glue::double_quote(dups), sep = ", ", last = " and "), ".")) } dots <- purrr::map(q_dots, rlang::eval_tidy) dots_lengths <- lengths(dots) if (length(unique(dots_lengths[dots_lengths > 1])) > 1) abort("Input vectors in `...` must be the same length (or length 1).") out <- do.call(cbind, dots) if (!is.numeric(out)) abort("Categorical outcome count must be numeric") if (any(is.nan(out))) abort("Categorical outcome count cannot be NaN") if (any(is.infinite(out))) abort("Categorical outcome count cannot be Inf") if (!rlang::is_integerish(out)) abort("Categorical outcome count must be integer-valued") if (any(out < 0, na.rm = TRUE)) abort("Categorical outcome count must be non-negative") if (type == "ordered") { if (any(c1_na <- is.na(out[, 1]))) { abort(glue::glue("Ordered outcome counts cannot be missing in the lowest category.\n", "NAs found in row{if (sum(c1_na) > 1) 's' else ''} ", glue::glue_collapse(which(c1_na), sep = ", ", width = 30, last = " and "), ".")) } } if (any(only1 <- apply(out, 1, function(x) sum(!is.na(x))) < 2)) { abort(glue::glue("Outcome counts must be present for at least 2 categories.\n", "Issues in row{if (sum(only1) > 1) 's' else ''} ", glue::glue_collapse(which(only1), sep = ", ", width = 30, last = " and "), ".")) } if (inclusive) { if (any(non_decreasing <- apply(out, 1, function(x) max(diff(x[!is.na(x)]))) > 0)) { abort(glue::glue("Inclusive ordered outcome counts must be decreasing or constant across increasing categories.\n", "Increasing counts found in row{if (sum(non_decreasing) > 1) 's' else ''} ", glue::glue_collapse(which(non_decreasing), sep = ", ", width = 30, last = " and "), ".")) } ncat <- ncol(out) for (i in 1:nrow(out)) { j <- 1L k <- 2L while (k <= ncat) { if (is.na(out[i, k])) { k <- k + 1L } else { out[i, j] <- out[i, j] - out[i, k] j <- k k <- k + 1L } } } } class(out) <- c(switch(type, ordered = "multi_ordered", competing = "multi_competing"), class(out)) return(out) } pull_non_null <- function(data, var) { var_null <- rlang::quo_is_missing(var) | rlang::quo_is_null(var) if (!var_null) { if (rlang::is_symbolic(rlang::quo_get_expr(var))) return(dplyr::pull(dplyr::transmute(data, {{ var }}))) else return(dplyr::pull(data, {{ var }})) } else return(NULL) } drop_original <- function(data, orig_data, var) { e_var <- rlang::quo_get_expr(var) if (rlang::is_symbol(e_var)) { if (stringr::str_starts(rlang::as_name(e_var), "\\.")) return(data) else return(dplyr::select(data, - {{ var }})) } else if (rlang::is_integerish(e_var)) { orig_var <- colnames(orig_data)[e_var] if (stringr::str_starts(orig_var, "\\.")) return(data) else return(dplyr::select(data, - {{ orig_var }})) } else { return(data) } } get_outcome_type <- function(y, se, r, n, E) { o <- c() if (!is.null(y)) o <- c(o, "continuous") if (!is.null(r)) { if (inherits(r, "multi_ordered")) o <- c(o, "ordered") if (inherits(r, "multi_competing")) o <- c(o, "competing") if (!is.null(E)) o <- c(o, "rate") if (!is.null(n)) o <- c(o, "count") if (!inherits(r, c("multi_ordered", "multi_competing")) && is.null(n) && is.null(E)) o <- c(o, "binary") } if (length(o) == 0) abort("Please specify one and only one outcome.") if (length(o) > 1) abort(glue::glue("Please specify one and only one outcome, instead of ", glue::glue_collapse(o, sep = ", ", last = " and "), ".")) return(o) } check_outcome_continuous <- function(y, se = NULL, with_se = TRUE, append = NULL) { null_y <- is.null(y) null_se <- is.null(se) if (with_se) { if (!null_y && !null_se) { if (rlang::is_list(y) || !is.null(dim(y))) abort("Continuous outcome `y` must be a regular column (not a list or matrix column)") if (rlang::is_list(se) || !is.null(dim(se))) abort("Standard error `se` must be a regular column (not a list or matrix column)") if (!is.numeric(y)) abort(paste0("Continuous outcome `y` must be numeric", append)) if (!is.numeric(se)) abort(paste0("Standard error `se` must be numeric", append)) if (any(is.nan(se))) abort(paste0("Standard error `se` cannot be NaN", append)) if (any(is.na(y))) abort(paste0("Continuous outcome `y` contains missing values", append)) if (any(is.na(se))) abort(paste0("Standard error `se` contains missing values", append)) if (any(is.infinite(se))) abort(paste0("Standard error `se` cannot be infinite", append)) if (any(se <= 0)) abort(paste0("Standard errors must be positive", append)) } else { if (!null_y) abort(paste0("Specify standard error `se` for continuous outcome `y`", append)) if (!null_se) abort(paste0("Specify continuous outcome `y`", append)) } invisible(list(y = y, se = se)) } else { if (!null_y) { if (rlang::is_list(y) || !is.null(dim(y))) abort("Continuous outcome `y` must be a regular column (not a list or matrix column)") if (any(is.na(y))) abort(paste0("Continuous outcome `y` contains missing values", append)) if (!is.numeric(y)) abort(paste0("Continuous outcome `y` must be numeric", append)) } invisible(list(y = y)) } } check_outcome_count <- function(r, n, E) { null_r <- is.null(r) null_n <- is.null(n) null_E <- is.null(E) if (!null_n) { if (rlang::is_list(n) || !is.null(dim(n))) abort("Denominator `n` must be a regular column (not a list or matrix column)") if (!is.numeric(n)) abort("Denominator `n` must be numeric") if (any(is.na(n))) abort("Denominator `n` contains missing values") if (any(n != trunc(n))) abort("Denominator `n` must be integer-valued") if (any(n <= 0)) abort("Denominator `n` must be greater than zero") if (null_r) abort("Specify outcome count `r`.") } if (!null_E) { if (rlang::is_list(E) || !is.null(dim(E))) abort("Time at risk `E` must be a regular column (not a list or matrix column)") if (!is.numeric(E)) abort("Time at risk `E` must be numeric") if (any(is.na(E))) abort("Time at risk `E` contains missing values") if (any(E <= 0)) abort("Time at risk `E` must be positive") if (null_r) abort("Specify outcome count `r`.") } if (!null_r) { if (rlang::is_list(r) || !is.null(dim(r))) abort("Outcome count `r` must be a regular column (not a list or matrix column)") if (null_n && null_E) abort("Specify denominator `n` (count outcome) or time at risk `E` (rate outcome)") if (!is.numeric(r)) abort("Outcome count `r` must be numeric") if (any(is.na(r))) abort("Outcome count `r` contains missing values") if (any(r != trunc(r))) abort("Outcome count `r` must be integer-valued") if (!null_n && any(n < r | r < 0)) abort("Count outcome `r` must be between 0 and `n`") if (!null_E && any(r < 0)) abort("Rate outcome count `r` must be non-negative") } invisible(list(r = r, n = n, E = E)) } check_outcome_binary <- function(r, E) { null_r <- is.null(r) null_E <- is.null(E) if (!null_E) { if (null_r) { abort("Specify count `r` for rate outcome") } else { if (rlang::is_list(r) || !is.null(dim(r))) abort("Rate outcome count `r` must be a regular column (not a list or matrix column)") if (rlang::is_list(E) || !is.null(dim(E))) abort("Time at risk `E` must be a regular column (not a list or matrix column)") if (!is.numeric(E)) abort("Time at risk `E` must be numeric") if (any(is.na(E))) abort("Time at risk `E` contains missing values") if (any(E <= 0)) abort("Time at risk `E` must be positive") if (!is.numeric(r)) abort("Rate outcome count `r` must be numeric") if (any(is.na(r))) abort("Rate outcome count `r` contains missing values") if (any(r != trunc(r))) abort("Rate outcome count `r` must be non-negative integer") if (any(r < 0)) abort("Rate outcome count `r` must be non-negative integer") } } else if (!null_r) { if (rlang::is_list(r) || !is.null(dim(r))) abort("Binary outcome `r` must be a regular column (not a list or matrix column)") if (!is.numeric(r)) abort("Binary outcome `r` must be numeric") if (any(is.na(r))) abort("Binary outcome `r` contains missing values") if (any(! r %in% c(0, 1))) abort("Binary outcome `r` must equal 0 or 1") } invisible(list(r = r, E = E)) } check_outcome_combination <- function(outcomes) { valid <- list( list(agd_arm = c("count", NA), agd_contrast = c("continuous", NA), ipd = c("binary", NA)), list(agd_arm = c("rate", NA), agd_contrast = c("continuous", NA), ipd = c("rate", NA)), list(agd_arm = c("continuous", NA), agd_contrast = c("continuous", NA), ipd = c("continuous", NA)), list(agd_arm = c("ordered", NA), agd_contrast = c("continuous", NA), ipd = c("ordered", NA)) ) if (!any(purrr::map_lgl(valid, ~all(c(outcomes$agd_arm %in% .$agd_arm, outcomes$agd_contrast %in% .$agd_contrast, outcomes$ipd %in% .$ipd))))) { rlang::abort(glue::glue("Combining ", glue::glue_collapse(outcomes[!is.na(outcomes)], sep = ', ', last = ' and '), " outcomes is not supported.")) } } check_sample_size <- function(sample_size) { if (rlang::is_list(sample_size) || !is.null(dim(sample_size))) abort("Sample size `sample_size` must be a regular column (not a list or matrix column)") if (!is.numeric(sample_size)) abort("Sample size `sample_size` must be numeric") if (any(is.nan(sample_size))) abort("Sample size `sample_size` cannot be NaN") if (any(is.na(sample_size))) abort("Sample size `sample_size` contains missing values") if (any(sample_size != trunc(sample_size))) abort("Sample size `sample_size` must be integer-valued") if (any(sample_size <= 0)) abort("Sample size `sample_size` must be greater than zero") if (any(is.infinite(sample_size))) abort("Sample size `sample_size` cannot be infinite") } check_trt <- function(trt) { if (any(is.na(trt))) abort("`trt` cannot contain missing values") if (rlang::is_list(trt) || !is.null(dim(trt))) abort("`trt` must be a regular column (not a list or matrix column)") } check_study <- function(study) { if (any(is.na(study))) abort("`study` cannot contain missing values") if (rlang::is_list(study) || !is.null(dim(study))) abort("`study` must be a regular column (not a list or matrix column)") } check_trt_class <- function(trt_class, trt) { if (rlang::is_list(trt_class) || !is.null(dim(trt_class))) abort("`trt_class` must be a regular column (not a list or matrix column)") if (any(is.na(trt))) abort("`trt` cannot contain missing values") if (any(is.na(trt_class))) abort("`trt_class` cannot contain missing values") if (anyDuplicated(unique(cbind(trt, trt_class))[, "trt"])) abort("Treatment present in more than one class (check `trt` and `trt_class`)") } check_multi_combine <- function(x) { x <- x[!purrr::map_lgl(x, is.null)] is_ordered <- purrr::map_lgl(x, ~inherits(., "multi_ordered")) is_competing <- purrr::map_lgl(x, ~inherits(., "multi_competing")) if (any(is_ordered) && any(is_competing)) abort("Cannot combine ordered and competing multinomial outcomes.") x_u <- purrr::map(x, unclass) n_cat <- purrr::map_int(x_u, ncol) if (any(n_cat != n_cat[1])) abort("Cannot combine multinomial outcomes with different numbers of categories.") l_cat <- purrr::map(x_u, colnames) if (any(purrr::map_lgl(l_cat, ~any(. != l_cat[[1]])))) abort("Cannot combine multinomial outcomes with different category labels.") } has_ipd <- function(network) { if (!inherits(network, "nma_data")) abort("Not nma_data object.") return(!rlang::is_empty(network$ipd)) } has_agd_arm <- function(network) { if (!inherits(network, "nma_data")) abort("Not nma_data object.") return(!rlang::is_empty(network$agd_arm)) } has_agd_contrast <- function(network) { if (!inherits(network, "nma_data")) abort("Not nma_data object.") return(!rlang::is_empty(network$agd_contrast)) } has_agd_sample_size <- function(network) { if (!inherits(network, "nma_data")) abort("Not nma_data object.") ss_a <- !has_agd_arm(network) || tibble::has_name(network$agd_arm, ".sample_size") ss_c <- !has_agd_contrast(network) || tibble::has_name(network$agd_contrast, ".sample_size") return(ss_a && ss_c) } nfactor <- function(x, ..., numeric = TRUE, resort = FALSE) { if (is.factor(x) && !resort) { return(x) } else { return(factor(x, levels = stringr::str_sort(unique(x), numeric = numeric), ...)) } }
correlateC <- function(x, w, data, digits=3, stats=FALSE, printC=FALSE, plot=FALSE, jitter=FALSE, ...) { if(missing(x)) stop("Oops. You need to specify the variables to be analyzed. To see how to use this function, try example(correlateC) or help(correlateC).") if(plot!=FALSE) { old.par <- graphics::par(no.readonly = TRUE) on.exit(graphics::par(old.par)) } if(!missing(w)) w.name = deparse(substitute(w)) check.value(digits, valuetype="numeric") variables.list <- as.list(substitute(x)[-1]) variable.names = rep(NA, length(variables.list)) for(i in 1:length(variables.list)) variable.names[i] <- deparse(variables.list[[i]]) if(length(variable.names)==1) stop("There's a problem: Your list of variables must contain two or more variables for correlation analysis. To see how to use this function, try example(correlateC) or help(correlateC).") if(!missing(data)) { if(is.matrix(data)) data <- data.frame(data) variable.set <- data[, variable.names] if(!missing(w)) w <- vector.from.data(substitute(w), data) } if(missing(data)) { variable.set <- data.frame(variables.list) colnames(variable.set) <- variable.names } if(!missing(w)) { check.variable(w, vartype="numeric") weighted <- TRUE } else { weighted <- FALSE w <- NULL } main.heading <- headingbox("Correlation Analysis", marker="=") if(printC==TRUE) printC(main.heading) if(ncol(variable.set) == 2) { result <- weights::wtd.cor(x=variable.set[, 1], y=variable.set[, 2], weight=w, ...) result <- data.frame(round(result, digits)) rownames(result) <- NULL caption = paste("Correlation between", variable.names[1], "and", variable.names[2]) if(weighted==TRUE) caption = paste(caption, ", weighted by ", w.name, sep="") if(stats==TRUE) { print(knitr::kable(format(result, drop0trailing=F, nsmall=digits, digits=digits, scientific=999), format="simple", caption=caption, align="r")) return.result <- result if(printC==TRUE) printC(knitr::kable(format(result, drop0trailing=F, nsmall=digits, digits=digits, scientific=999), format="html", caption=printCaption(caption), align="r")) } if(stats==FALSE) { cat("\n") coef.only <- c(result[ , 1]) names(coef.only) <- c("Correlation Coefficient:") print(coef.only) rownames(result) <- "Correlation Coefficient:" return.result <- coef.only printc.output <- c("Correlation Coefficient:", coef.only) class(printc.output) <- "statement" if(printC==TRUE) printC(printc.output) } cat("\n") if(plot==TRUE) { for(k in 1:(1+as.numeric(printC))) { if(printC==TRUE & k==2) { imagename <- paste("correlateC.plot.", unclass(Sys.time()), ".png", sep="") grDevices::png(filename=imagename, width=3.5, height=3.5, units="in", type="cairo", pointsize=8, res=300, antialias="default") class(imagename) <- "image" printC(imagename) } if(nrow(variable.set) > 500) { marker.cex = .8 marker.col = " if(missing(jitter)) jitter = TRUE message("Note: Because there are many points to plot, correlateC is jittering them. Set jitter=FALSE to prevent this.") } else { marker.cex = 1 marker.col = " } if(jitter==TRUE) for(j in 1:ncol(variable.set)) variable.set[, j] <- jitter(variable.set[, j], amount=0) par.ask.restore <- graphics::par("ask") if(printC==TRUE & k==2) graphics::par(ask=FALSE) else graphics::par(ask=TRUE) main = paste("Scatterplot of", variable.names[1], "and", variable.names[2]) main <- strwrap(main, width=50) plot(x=variable.set[,1], y=variable.set[,2], xlab=variable.names[1], ylab=variable.names[2], cex=marker.cex, col=marker.col, main=main) graphics::par(ask=par.ask.restore) if(printC==TRUE & k==2) grDevices::dev.off() } } } if(ncol(variable.set) > 2) { result <- suppressWarnings(weights::wtd.cor(x=variable.set, weight=w, ...)) correlation <- round(result[["correlation"]], digits) variable.names.string <- paste(variable.names, collapse = ", ") caption = paste("Correlation among", variable.names.string) if(weighted==TRUE) caption = paste(caption, ", weighted by ", w.name, sep="") print(knitr::kable(format(correlation, drop0trailing=F, nsmall=digits), format="simple", digits=digits, caption=caption, align="r")) slightpause() if(printC==TRUE) printC(knitr::kable(format(correlation, drop0trailing=F, nsmall=digits), digits=digits, caption=printCaption(caption), format="html", align="r")) if(stats==FALSE) { cat("\n") return.result <- correlation } if(stats==TRUE) { restore.options.scipen <- options("scipen") options(scipen = 999) standard.errors <- round(result[["std.err"]], digits) se.caption = "Standard Errors of Correlation Coefficients" for(i in 1:ncol(standard.errors)) standard.errors[i, i] <- NA print(knitr::kable(format(standard.errors, drop0trailing=F, nsmall=digits), format="simple", digits=digits, caption=se.caption, align="r")) slightpause() return.result <- result if(printC==TRUE) printC(knitr::kable(format(standard.errors, drop0trailing=F, nsmall=digits), digits=digits, caption=printCaption(se.caption), format="html")) t.stats <- round(result[["t.value"]], digits) for(i in 1:ncol(t.stats)) t.stats[i, i] <- NA t.stats.caption = "t-Statistics of Correlation Coefficients" print(knitr::kable(format(t.stats, drop0trailing=F, nsmall=digits), format="simple", digits=digits, caption=t.stats.caption, align="r")) slightpause() if(printC==TRUE) printC(knitr::kable(format(t.stats, drop0trailing=F, nsmall=digits), digits=digits, caption=printCaption(t.stats.caption), format="html")) p.values <- round(result[["p.value"]], digits) for(i in 1:ncol(p.values)) p.values[i, i] <- NA p.values.caption = "p-Values of the t-Statistics" print(knitr::kable(format(p.values, drop0trailing=F, nsmall=digits), format="simple", digits=digits, caption=p.values.caption, align="r")) slightpause() if(printC==TRUE) printC(knitr::kable(format(p.values, drop0trailing=F, nsmall=digits), digits=digits, caption=printCaption(p.values.caption), format="html")) cat("\n") options(scipen = restore.options.scipen) } if(plot==TRUE) { for(k in 1:(1+as.numeric(printC))) { if(printC==TRUE & k==2) { imagename <- paste("compmeansC.plot.", unclass(Sys.time()), ".png", sep="") grDevices::png(filename=imagename, width=4, height=4, units="in", type="cairo", pointsize=8, res=300, antialias="default") class(imagename) <- "image" printC(imagename) } if(nrow(variable.set) > 500) { marker.cex = .8 marker.col = " if(missing(jitter)) jitter = TRUE message("Note: Because there are many points to plot, correlateC is jittering them. Set jitter=FALSE to prevent this.") } else { marker.cex = 1 marker.col = " } if(jitter==TRUE) for(j in 1:ncol(variable.set)) variable.set[, j] <- jitter(variable.set[, j], amount=0) par.ask.restore <- graphics::par("ask") if(printC==TRUE & k==2) graphics::par(ask=FALSE) else graphics::par(ask=TRUE) graphics::pairs(x=variable.set, labels=variable.names, cex=marker.cex, cex.labels=1.6, col=marker.col) graphics::par(ask=par.ask.restore) if(printC==TRUE & k==2) grDevices::dev.off() } } } if(printC==T) printC(match.call(expand.dots = FALSE)) invisible(return.result) }
truePrevPools <- function(x, n, SE = 1, SP = 1, prior = c(1, 1), nchains = 2, burnin = 10000, update = 10000, verbose = FALSE) { if (missing(x)) stop("'x' is missing") if (missing(n)) stop("'n' is missing") checkInput(x, "x", class = "integer", value = c(0, 1)) checkInput(n, "n", class = "integer", minEq = 0) if (length(x) > 1 & length(n) == 1) n <- rep(n, length(x)) if (length(x) != length(n)) stop("'x' and 'n' must be of same length") if (length(x) == 1) stop("\"truePrevPools\" requires at least 2 pools") checkInput(SE, "SE", class = c("formula", "list", "numeric")) checkInput(SP, "SP", class = c("formula", "list", "numeric")) Se <- checkBinPrior(SE) Sp <- checkBinPrior(SP) checkInput(prior, "prior", class = "numeric", length = 2, minEq = 0) checkInput(nchains, "nchains", class = "integer", min = 2) checkInput(burnin, "burnin", class = "integer", min = 1) checkInput(update, "update", class = "integer", min = 1) checkInput(verbose, "verbose", class = "logical") model <- character() model[1] <- "model {" model[2] <- "for (i in 1:N) {" model[3] <- "x[i] ~ dbern(AP[i])" model[4] <- paste("AP[i] <- SEpool[i] * (1 - pow(1 - TP, n[i])) +", "(1 - SPpool[i]) * pow(1 - TP, n[i])") model[5] <- paste("SEpool[i] <- 1 - (pow(1 - SE, n[i] * TP) *", "pow(SP, n[i] * (1 - TP)))") model[6] <- "SPpool[i] <- pow(SP, n[i])" model[7] <- "}" model <- c(model, writeSeSp("SE", Se)) model <- c(model, writeSeSp("SP", Sp)) model <- c(model, paste0("TP ~ dbeta(", prior[1], ", ", prior[2], ")")) model <- c(model, "}") class(model) <- "prevModel" data <- list(x = x, n = n, N = length(n)) inits <- NULL if (verbose) cat("JAGS progress:\n\n") JAGSout <- R2JAGS(model = model, data = data, inits = inits, nchains = nchains, burnin = burnin, update = update, nodes = c("SE", "SP", "TP"), verbose = verbose) mcmc.list <- JAGSout$mcmc.list class(mcmc.list) <- c("list", "mcmc.list") nodes <- colnames(mcmc.list[[1]]) mcmc.list_list <- list() for (i in seq_along(nodes)) mcmc.list_list[[i]] <- mcmc.list[, i] names(mcmc.list_list) <- nodes mcmc.list_list <- mcmc.list_list[c("TP", "SE", "SP")] DIC <- JAGSout$dic exclude <- which(apply(mcmc.list[[1]], 2, sd) == 0) if (length(exclude) > 0) { BGR <- gelman.diag(mcmc.list[, -exclude]) } else { BGR <- gelman.diag(mcmc.list) } out <- new("prev", par = list(x = x, n = n, SE = Se, SP = Sp, prior = prior, nchains = nchains, burnin = burnin, update = update, inits = inits), model = model, mcmc = mcmc.list_list, diagnostics = list(DIC = DIC, BGR = BGR)) return(out) }
library("perryExamples") data("coleman") set.seed(1234) fit <- lmrob(Y ~ ., data=coleman) perryFit(fit, data = coleman, y = coleman$Y, splits = foldControl(K = 5, R = 10), cost = rtmspe, costArgs = list(trim = 0.1), seed = 1234) perryFit(lmrob, formula = Y ~ ., data = coleman, splits = foldControl(K = 5, R = 10), cost = rtmspe, costArgs = list(trim = 0.1), seed = 1234) call <- call("lmrob", formula = Y ~ .) perryFit(call, data = coleman, y = coleman$Y, splits = foldControl(K = 5, R = 10), cost = rtmspe, costArgs = list(trim = 0.1), seed = 1234)
read_metadata <- function(dataset){ read.csv2(system.file("extdata", paste0(dataset,'_files_metadata_harmonization.csv'), package = "microdadosBrasil"), stringsAsFactors = FALSE, check.names = F) %>% data.frame } read_var_translator <- function(dataset, ft){ read.csv2(system.file("extdata", paste0(dataset,'_',ft,'_varname_harmonization.csv'), package = "microdadosBrasil"), stringsAsFactors = FALSE, check.names =F) } aux_read_fwf <- function(f,dic, nrows = -1L, na = "NA"){ dict = nodic_overlap(dic) aux_read<- function(f, dic,nrows = -1L, na = "NA"){ f %>% read_fwf(fwf_positions(start=dic$int_pos,end=dic$fin_pos,col_names=dic$var_name), col_types=paste(dic$col_type,collapse =''),n_max = nrows, na = na) -> d return(d) } lapply(dict, aux_read, f = f, nrows = nrows, na = na) %>% dplyr::bind_cols() -> d return(d) } read_data <- function(dataset,ft,i, metadata = NULL,var_translator=NULL,root_path=NULL, file=NULL, vars_subset = NULL, nrows = -1L, source_file_mark = F){ if(F){ . <- NULL source_file <- NULL } status<- test_path_arguments(root_path, file) if(status == 0){ stop()} if (!(dataset %in% get_available_datasets())) { stop(paste0(dataset, " is not a valid dataset. Available datasets are: ", paste(get_available_datasets(), collapse = ", "))) } if(is.null(metadata)){metadata<- read_metadata(dataset)} i_range<- get_available_periods(metadata) if (!(i %in% i_range)) { stop(paste0("period must be in ", paste(i_range, collapse = ", "))) } ft_list<- get_available_filetypes(metadata, i) if (!(ft %in% ft_list )) { stop(paste0('ft (file type) must be one of these: ',paste(ft_list, collapse=", "), '. See table of valid file types for each period at "http://www.github.com/lucasmation/microdadosBrasil')) } ft2 <- paste0("ft_",ft) ft_list2 <- paste0("ft_",ft_list) var_list <- names(metadata)[ !(names(metadata) %in% ft_list2)] md <- metadata[metadata$period == i,] %>% select_(.dots =c(var_list,ft2)) %>% rename_(.dots=setNames(ft2,ft)) if (!is.null(var_translator)) { vt <- var_translator %>% rename_( old_varname = as.name(paste0('varname',i))) vt <- vt[!is.na(vt$old_varname), c("std_varname", "old_varname")] } a <- md %>% select_(.dots = ft) %>% collect %>% .[[ft]] file_name <- unlist(strsplit(a, split='&'))[2] delim <- unlist(strsplit(a, split='&'))[1] format <- md %>% select_(.dots = 'format') %>% collect %>% .[['format']] missing_symbol <- md %>% select_(.dots = 'missing_symbols') %>% collect %>% .[['missing_symbols']] missing_symbol <- ifelse(test = is.na(missing_symbol), no = strsplit(missing_symbol,split = "&"), yes = "NA") %>% unlist data_path <- paste(c(root_path,md$path,md$data_folder)[!is.na(c(root_path,md$path,md$data_folder))] ,collapse = "/") if(data_path == ""){data_path <- getwd()} files <- list.files(path=data_path,recursive = TRUE, full.names = TRUE) %>% grep(pattern = paste0(file_name, "$"), value = T, ignore.case = T) if (!any(file.exists(files)) & status != 3) { stop("Data not found. Check if you have unziped the data" ) } if(status == 3){ files = file if (!any(file.exists(file)) & status != 3) { stop("Data not found. Check if you have unziped the data" ) } } t0 <- Sys.time() if(format=='fwf'){ dic <- get_import_dictionary(dataset, i, ft) if(!is.null(vars_subset)){ dic<- dic[dic$var_name %in% vars_subset,] if(dim(dic)[1] == 0){ stop("There are no valid variables in the provided subset") } } lapply(files,function(x,...) aux_read_fwf(x, ...)%>% data.table %>% .[, source_file:= x], dic=dic, nrows = nrows, na = missing_symbol) %>% rbindlist -> d if(any(dic$decimal_places) & dataset == "CENSO"){ sapply(which(as.logical(dic$decimal_places)), function(x){ if(dic$col_type[x] == "d"){ var <- dic$var_name[x] d[, (var):= (d[, var,with = F] /(10**dic$decimal_places[x]))] } }) } } if(format=='csv'){ if(!is.null(vars_subset)){warning("You provided a subset of variables for a dataset that doesn't have a dictionary, make sure to provide valid variable names.", call. = FALSE) d <- lapply(files, function(x,...) data.table::fread(x,...) %>% .[, source_file := x], sep = delim, na.strings = c("NA",missing_symbol), select = vars_subset, nrows = nrows) %>% rbindlist(use.names = T) }else{ d <- lapply(files, function(x,...) data.table::fread(x,...) %>% .[, source_file := x], sep = delim, na.strings = c("NA",missing_symbol), nrows = nrows) %>% rbindlist(use.names = T) } } t1 <- Sys.time() print(t1-t0) print(object.size(d), units = "Gb") if (!is.null(var_translator)) { vt <- vt[vt$old_varname %in% names(d) & vt$old_varname != "" & vt$std_varname != "",] setnames(d, vt$old_varname, vt$std_varname) } if(!source_file_mark & "source_file" %in% names(d)){ d[, source_file:= NULL] } return(d) }
quantile.manual.thresh.scalewise<-function(x, which.levels=c(1,2,3), hard = TRUE,quantile=.9, ...) { wc.shrink <- x if (hard) { for (i in names(x)[which.levels]) { wci <- x[[i]] unithresh <- quantile(abs(wci),quantile) wc.shrink[[i]] <- wci * (abs(wci) > unithresh) } } else { for (i in names(x)[which.levels]) { wci <- x[[i]] unithresh <- quantile(abs(wci),quantile) wc.shrink[[i]] <- sign(wci) * (abs(wci) - unithresh) * (abs(wci) > unithresh) } } wc.shrink }
load_image = function(image, reorient) { reorient_fun = function(x) return(x) if(reorient) { reorient_fun = function(x) { flipud(x) } } if(is.array(image)) { return(reorient_fun(image)) } if(is.character(image)) { if(!file.exists(image)) { stop("file ", image, " wasn't found") } ext = tolower(tools::file_ext(image)) if(ext == "png") { return(reorient_fun(png::readPNG(image))) } else if (ext %in% c("jpg","jpeg")) { return(reorient_fun(jpeg::readJPEG(image))) } else { stop("filetype ", ext, " not supported for overlays") } } } generate_base_shape = function(heightmap, baseshape, angle=0) { if(baseshape == "circle") { radius = ifelse(nrow(heightmap) <= ncol(heightmap),nrow(heightmap)/2-1,ncol(heightmap)/2-1) radmat = gen_circle_psf(radius+1) if(min(dim(heightmap)) != min(dim(radmat))) { radmat = radmat[2:nrow(radmat),2:ncol(radmat)] } if(max(dim(heightmap)) != max(dim(radmat))) { difference = max(dim(heightmap)) - max(dim(radmat)) radtemp = matrix(0,nrow=nrow(heightmap),ncol=ncol(heightmap)) if(ncol(heightmap) != ncol(radmat)) { radtemp[,(difference/2):(difference/2+ncol(radmat)-1)] = radmat } else { radtemp[(difference/2):(difference/2+nrow(radmat)-1),] = radmat } radmat = radtemp } heightmap[radmat == 0] = NA } else if(baseshape == "hex") { radius = ifelse(nrow(heightmap) <= ncol(heightmap),nrow(heightmap)/2-1,ncol(heightmap)/2-1) radmat = gen_hex_psf(radius+1,rotation = angle) if(min(dim(heightmap)) != min(dim(radmat))) { radmat = radmat[2:nrow(radmat),2:ncol(radmat)] } if(max(dim(heightmap)) != max(dim(radmat))) { difference = max(dim(heightmap)) - max(dim(radmat)) radtemp = matrix(0,nrow=nrow(heightmap),ncol=ncol(heightmap)) if(ncol(heightmap) != ncol(radmat)) { radtemp[,(difference/2):(difference/2+ncol(radmat)-1)] = radmat } else { radtemp[(difference/2):(difference/2+nrow(radmat)-1),] = radmat } radmat = radtemp } heightmap[radmat == 0] = NA } return(heightmap) }
NULL setMethod( f = "smooth_rectangular", signature = signature(object = "GammaSpectrum"), definition = function(object, m = 3, ...) { x <- get_counts(object) z <- rectangular(x, m = m) methods::initialize(object, count = z) } ) setMethod( f = "smooth_rectangular", signature = signature(object = "GammaSpectra"), definition = function(object, m = 3, ...) { spc <- lapply(X = object, FUN = smooth_rectangular, m = m) .GammaSpectra(spc) } ) rectangular <- function(x, m) { m <- as.integer(m)[[1L]] if (m %% 2 == 0) stop(sQuote("m"), " must be an odd integer.", call. = FALSE) k <- (m - 1) / 2 index_k <- seq_len(k) index_x <- seq_along(x) index_m <- c(index_k, rep_len(k + 1, length(x) - 2 * k), rev(index_k)) - 1 smoothed <- mapply( FUN = function(i, k, data) { index <- seq(from = i - k, to = i + k, by = 1) mean(data[index]) }, i = index_x, k = index_m, MoreArgs = list(data = x) ) smoothed }
add_pi.lm <- function(df, fit, alpha = 0.05, names = NULL, yhatName = "pred", log_response = FALSE, ...){ if (log_response) add_pi_lm_log(df, fit, alpha, names, yhatName) else { if (is.null(names)){ names[1] <- paste("LPB", alpha/2, sep = "") names[2] <- paste("UPB", 1 - alpha/2, sep = "") } if ((names[1] %in% colnames(df))) { warning ("These PIs may have already been appended to your dataframe. Overwriting.") } out <- predict(fit, df, interval = "prediction", level = 1 - alpha) if(is.null(df[[yhatName]])) df[[yhatName]] <- out[, 1] if (is.null(df[[names[1]]])) df[[names[1]]] <- out[, 2] if (is.null(df[[names[2]]])) df[[names[2]]] <- out[, 3] data.frame(df) } }
pheno.lad.fit <- function(D,limit=1000) { if(!is.data.frame(D) && !is.matrix(D)) { stop("lad.fit: argument must be data frame with 3 columns or matrix") } if(is.data.frame(D) && length(D)!=3) { stop("lad.fit: argument must be data frame with 3 columns or matrix") } if(is.matrix(D)) { D <- matrix2raw(D) } D <- D[order(D[[3]],D[[2]]),] o <- as.vector(D[[1]],"numeric") n <- length(o) f1 <- factor(D[[2]]) n1 <- nlevels(f1) f2 <- factor(D[[3]]) n2 <- nlevels(f2) mm <- model.matrix(~ f1 + f2 - 1,na.action=na.exclude) if(n > limit) { ddm <- as.matrix.csr(mm) m <- ddm@dimension[2] nnzdmax <- ddm@ia[n + 1] - 1 l1fit <- rq.fit.sfn(ddm,o,tau=0.5,control=list(tmpmax=1000*m,nnzlmax=100*nnzdmax,small=1e-06)) } else { l1fit <- rq.fit(mm,o,tau=0.5,method="br") } p2 <-l1fit$coef[-(1:n1)] s1 <- -sum(p2)/n2 p2 <-append(s1,p2+s1) p1 <- as.vector(l1fit$coef[1:n1],"numeric")-s1 resid <- o - (p1[match(f1,levels(f1))]+p2[match(f2,levels(f2))]) ierr <- l1fit$ierr return(list(f1=p1,f1.lev=levels(f1),f2=p2,f2.lev=levels(f2),resid=resid,ierr=ierr,D=D,fit=l1fit)) }
"selec.table"
context('dynamic-class') test_that('dynamic classes work', { stasis_egg <- tr(egg ~ egg, p(0.4)) stasis_larva <- tr(larva ~ larva, p(0.3)) stasis_adult <- tr(adult ~ adult, p(0.8)) hatching <- tr(larva ~ egg, p(0.5)) fecundity <- tr(egg ~ adult, p(0.2) * r(3)) pupation <- tr(adult ~ larva, p(0.2)) clonal <- tr(larva ~ larva, r(1.4)) stasis <- dynamic(stasis_egg, stasis_larva, stasis_adult) growth <- dynamic(hatching, pupation) reproduction <- dynamic(fecundity, clonal) all1 <- dynamic(stasis_egg, stasis_larva, stasis_adult, hatching, pupation, fecundity, clonal) all2 <- dynamic(stasis, growth, reproduction) expect_equal(all2, all1) all3 <- dynamic(stasis_egg, stasis_larva, stasis_adult, growth, reproduction) expect_equal(all3, all1) all4 <- dynamic(stasis_egg, stasis_larva, stasis_adult, growth, fecundity, clonal) expect_equal(all4, all1) growth2 <- dynamic(growth) expect_equal(growth2, growth) expect_s3_class(stasis, 'dynamic') expect_s3_class(growth, 'dynamic') expect_s3_class(reproduction, 'dynamic') expect_s3_class(all1, 'dynamic') expect_s3_class(all2, 'dynamic') expect_true(is.dynamic(stasis)) expect_true(is.dynamic(growth)) expect_true(is.dynamic(reproduction)) expect_true(is.dynamic(all1)) expect_true(is.dynamic(all2)) expect_false(is.dynamic(list())) expect_false(is.dynamic(NA)) expect_false(is.dynamic(NULL)) expect_false(is.dynamic(stasis_egg)) expect_false(is.dynamic(fecundity)) obj1 <- pop:::as.dynamic(list()) obj2 <- pop:::as.dynamic(NA) obj3 <- pop:::as.dynamic(Inf) expect_s3_class(obj1, 'dynamic') expect_s3_class(obj2, 'dynamic') expect_s3_class(obj3, 'dynamic') expect_equal(capture.output(print(all1)), 'dynamic: transitions between: egg, larva, adult') expect_equal(capture.output(print(reproduction)), 'dynamic: transitions between: egg, adult, larva') mat_stasis <- as.matrix(stasis) mat_growth <- as.matrix(growth) mat_reproduction <- as.matrix(reproduction) mat_all1 <- as.matrix(all1) mat_all2 <- as.matrix(all2) expect_s3_class(mat_stasis, c('matrix', 'transition_matrix')) expect_s3_class(mat_growth, c('matrix', 'transition_matrix')) expect_s3_class(mat_reproduction, c('matrix', 'transition_matrix')) expect_s3_class(mat_all1, c('matrix', 'transition_matrix')) expect_s3_class(mat_all2, c('matrix', 'transition_matrix')) expect_equal(dim(mat_stasis), c(3, 3)) expect_equal(dim(mat_growth), c(3, 3)) expect_equal(dim(mat_reproduction), c(3, 3)) expect_equal(dim(mat_all1), c(3, 3)) expect_equal(dim(mat_all2), c(3, 3)) expect_equal(mat_all1, mat_all2) mat_all1_F <- as.matrix(all1, which = 'F') mat_all2_F <- as.matrix(all2, which = 'F') mat_all1_P <- as.matrix(all1, which = 'P') mat_all2_P <- as.matrix(all2, which = 'P') mat_all1_R <- as.matrix(all1, which = 'R') mat_all2_R <- as.matrix(all2, which = 'R') expect_s3_class(mat_all1_F, c('matrix', 'transition_matrix')) expect_s3_class(mat_all2_F, c('matrix', 'transition_matrix')) expect_s3_class(mat_all1_P, c('matrix', 'transition_matrix')) expect_s3_class(mat_all2_P, c('matrix', 'transition_matrix')) expect_s3_class(mat_all1_R, c('matrix', 'transition_matrix')) expect_s3_class(mat_all2_R, c('matrix', 'transition_matrix')) expect_equal(dim(mat_all1_F), c(3, 3)) expect_equal(dim(mat_all2_F), c(3, 3)) expect_equal(dim(mat_all1_P), c(3, 3)) expect_equal(dim(mat_all2_P), c(3, 3)) expect_equal(dim(mat_all1_R), c(3, 3)) expect_equal(dim(mat_all2_R), c(3, 3)) plot_stasis <- plot(stasis) plot_growth <- plot(growth) plot_reproduction <- plot(reproduction) plot_all1 <- plot(all1) plot_all2 <- plot(all2) expect_s3_class(plot_stasis, 'igraph') expect_s3_class(plot_growth, 'igraph') expect_s3_class(plot_reproduction, 'igraph') expect_s3_class(plot_all1, 'igraph') expect_s3_class(plot_all2, 'igraph') expected_param_all <- list(stasis_egg = list(p = 0.4), stasis_larva = list(p = 0.3), stasis_adult = list(p = 0.8), hatching = list(p = 0.5), pupation = list(p = 0.2), fecundity = list(p = 0.2, r = 3), clonal = list(r = 1.4)) expect_equal(parameters(all1), expected_param_all) expect_equal(parameters(all2), expected_param_all) expected_param_all_updated <- expected_param_all expected_param_all_updated$fecundity$p <- 0.5 parameters(all1) <- expected_param_all_updated expect_equal(parameters(all1), expected_param_all_updated) all <- all1 ls <- landscape(all) n <- 10 ls_new <- as.landscape(list(coordinates = data.frame(x = runif(n), y = runif(n)), area = area(ls), population = population(ls), features = features(ls))) landscape(all) <- ls_new mat <- as.matrix(all) expect_true(is.matrix(mat)) expect_equal(dim(mat), rep(n * 3, 2)) adult_dispersal <- tr(adult ~ adult, p(0.5) * d(3)) all_disp <- dynamic(all, adult_dispersal) landscape(all_disp) <- ls_new plot_all_disp <- plot(all_disp) mat_disp <- as.matrix(all_disp) matA_disp <- as.matrix(all_disp, which = 'A') matP_disp <- as.matrix(all_disp, which = 'P') matF_disp <- as.matrix(all_disp, which = 'F') matR_disp <- as.matrix(all_disp, which = 'R') expect_s3_class(mat_disp, c('matrix', 'transition_matrix')) expect_s3_class(matA_disp, c('matrix', 'transition_matrix')) expect_s3_class(matP_disp, c('matrix', 'transition_matrix')) expect_s3_class(matF_disp, c('matrix', 'transition_matrix')) expect_s3_class(matR_disp, c('matrix', 'transition_matrix')) expect_equal(dim(mat_disp), c(30, 30)) expect_equal(dim(matA_disp), c(30, 30)) expect_equal(dim(matP_disp), c(30, 30)) expect_equal(dim(matF_disp), c(30, 30)) expect_equal(dim(matR_disp), c(30, 30)) idx <- seq(0, 30, by = 3)[-1] cells <- as.matrix(expand.grid(idx, idx)) expect_true(all(matA_disp[cells] > 0)) expect_true(all(matP_disp[cells] > 0)) expect_true(all(matF_disp[cells] == 0)) })
load(test_path("data", "asreml_model.Rdata"), .GlobalEnv) test_that("function works", { skip_if_not(requireNamespace("asreml", quietly = TRUE)) quiet(library(asreml)) oats.logl <- logl_test(model.obj = model.asr, rand.terms = c("Blocks", "Blocks:Wplots"), resid.terms = c("ar1(Row)", "ar1(Column)"), decimals = 5, quiet = TRUE) oats.logl2 <- logl_test(model.obj = model.asr, rand.terms = c("Blocks", "Blocks:Wplots"), resid.terms = c("ar1(Row)", "ar1(Column)"), decimals = 5, numeric = TRUE, quiet = TRUE) oats.logl3 <- logl_test(model.obj = model.asr, rand.terms = c("Blocks", "Blocks:Wplots"), resid.terms = c("ar1(Row)", "ar1(Column)"), decimals = 1, quiet = TRUE) expect_equal(oats.logl$Term, c("Blocks", "Blocks:Wplots", "ar1(Row)", "ar1(Column)")) expect_equal(oats.logl$LogLRT.pvalue, c("0.05795", "0.13142", "0.00559", "0.82896")) expect_equal(oats.logl2$LogLRT.pvalue, c(0.05795, 0.13142, 0.00559, 0.82896)) expect_true(is.numeric(oats.logl2$LogLRT.pvalue)) expect_equal(oats.logl3$LogLRT.pvalue, c('0.1', '0.1', '<0.1', '0.8')) expect_warning(logl_test(model.obj = model.asr, rand.terms = c("Blocks", "Blocks:Wplots"), resid.terms = c("ar1(Row)", "ar1(Column)"), decimals = 5), "Model did not converge") }) test_that("logltest gives an error on different model type", { dat.aov <- aov(Petal.Length ~ Petal.Width, data = iris) expect_error(logl_test(dat.aov), "Only asreml models are supported at this time.") }) test_that("logltest gives an error on different model type", { skip_if_not(requireNamespace("asreml", quietly = TRUE)) quiet(library(asreml)) expect_error(logl_test(model.asr), "One of rand.terms or resid.terms must be provided") })
library(testthat); suppressMessages(require(valection)); context("run increasing with overlap"); if (valection::check.for.library()) { out.dir <- tempdir(); out.file <- paste0(out.dir, "/outfile_example.txt"); valection::run.increasing.with.overlap( budget = 5, infile = system.file( "extdata/infile_example.tsv", package = "valection" ), outfile = out.file, seed = 123 ); samplingResult <- read.table(out.file); file.remove(out.file); expectedResult <- read.table("expected.run.increasing.with.overlap.txt"); test_that("Increasing with overlap sampling works", { expect_equal(samplingResult, expectedResult); }); }
gradcols <- function(col_vec = NULL){ cols <- RColorBrewer::brewer.pal(11, 'Spectral') if(!is.null(col_vec)){ chk_cols <- row.names(RColorBrewer::brewer.pal.info) if(any(chk_cols %in% col_vec)){ col_vec <- chk_cols[which(chk_cols %in% col_vec)][1] max_cols <- RColorBrewer::brewer.pal.info[col_vec, 'maxcolors'] cols <- RColorBrewer::brewer.pal(max_cols, col_vec) } else { cols <- col_vec } } return(cols) }
nhl_url_seasons <- function(seasons = NULL) { nhl_url(endPoint = "seasons", suffixes = list(nhl_make_seasons(seasons))) } nhl_seasons <- function(seasons = NULL) { x <- nhl_url_seasons(seasons = seasons) x <- nhl_get_data(x) x <- util_remove_get_data_errors(x) x <- nhl_process_results(x, elName = "seasons") x }
plot.glarma <- function(x, which = c(1L,3L,5L,7L,8L,9L), fits = 1L:3L, ask = prod(par("mfcol")) < length(which) && dev.interactive(), lwdObs = 1, lwdFixed = 1, lwdGLARMA = 1, colObs = "black", colFixed = "blue", colGLARMA = "red", ltyObs = 2, ltyFixed = 1, ltyGLARMA = 1, pchObs = 1, legend = TRUE, residPlotType = "h", bins = 10, line = TRUE, colLine = "red", colHist = "royal blue", lwdLine = 2, colPIT1 = "red", colPIT2 = "black", ltyPIT1 = 1, ltyPIT2 = 2, typePIT = "l", ltyQQ = 2, colQQ = "black", titles, ...) { show <- rep(FALSE, 10) show[which] <- TRUE showFits <- rep(FALSE, 3) showFits[fits] <- TRUE if (missing(titles)) { titles <- vector("list", 10) titles[[5]] <- "Histogram of Uniform PIT" titles[[6]] <- "Q-Q Plot of Uniform PIT" titles[[7]] <- "Histogram of Randomized Residuals" titles[[8]] <- "Q-Q Plot of Randomized Residuals" titles[[9]] <- "ACF of Randomized Residuals" titles[[10]] <- "PACF of Randomized Residuals" } else { defaultTitles <- vector("list", 10) defaultTitles[which] <- titles titles <- defaultTitles } if (x$type == "Poi" | x$type == "NegBin") { if (show[1L] & any(showFits == TRUE)) { obs.logic <- showFits[1] fixed.logic <- showFits[2] glarma.logic <- showFits[3] fits <- list(obs = x$y, fixed = exp(x$eta), glarma = x$mu) legendNames <- names(fits) titleNames <- c("Observed", "Fixed", "GLARMA") ltyAll <- c(ltyObs, ltyFixed, ltyGLARMA) lwdAll <- c(lwdObs, lwdFixed, lwdGLARMA) colAll <- c(colObs, colFixed, colGLARMA) yRange <- c(diff(range(fits$obs)), diff(range(fits$fixed)), diff(range(fits$glarma))) yRange[!showFits] <- -Inf yLim <- which.max(yRange) } if (any(show[2L:4L] == TRUE)) { residuals <- x$residuals if (is.null(titles[[2]])) { titles[2] <- paste("ACF of", x$residType, "Residuals") } if (is.null(titles[[3]])) { titles[3] <- paste(x$residType, "Residuals") } if (is.null(titles[[4]])) { titles[4] <- paste("Normal Q-Q Plot of ",x$residType, "Residuals") } } if (ask) { oask <- devAskNewPage(TRUE) on.exit(devAskNewPage(oask)) } if (show[1L] & any(showFits == TRUE)) { dev.hold() if (is.null(titles[[1]])){ main <- paste(titleNames[showFits], collapse = " vs ") } else { main <- titles[1] } ts.plot(fits[[yLim]], ylab = "Counts", xlab = "Time", col = NA, main = main, ...) if (obs.logic) lines(fits$obs, lwd = lwdObs, lty = ltyObs, col = colObs) if (fixed.logic) lines(fits$fixed, lwd = lwdFixed, lty = ltyFixed, col = colFixed) if (glarma.logic) lines(fits$glarma, lwd = lwdGLARMA, lty = ltyGLARMA, col = colGLARMA) if (legend & any(showFits == TRUE)) { par(xpd = NA) mfrow <- par("mfrow") graph.param <- legend("top", legend = legendNames[showFits], lty = ltyAll[showFits], ncol = 3, cex = 0.7 - (mfrow[1] - 1)/10 - (mfrow[2] - 1)/10, bty = "n", plot = FALSE) legend(graph.param$rect$left, graph.param$rect$top + graph.param$rect$h, legend = legendNames[showFits], col = colAll[showFits], lwd = lwdAll[showFits], lty = ltyAll[showFits], ncol = 3, cex = 0.7 - (mfrow[1] - 1)/10 - (mfrow[2] - 1)/10, bty = "n", text.font = 4) par(xpd = FALSE) } dev.flush() } if (show[2L]) { dev.hold() acf(residuals, main = titles[2], ...) dev.flush() } if (show[3L]) { dev.hold() plot.ts(residuals, ylab = "Residuals", type = residPlotType, main = titles[3], ...) dev.flush() } if (show[4L]) { dev.hold() qqnorm(residuals, ylab = "Residuals", main = titles[4], ...) abline(0, 1, lty = 2) dev.flush() } if (show[5L]) { dev.hold() histPIT(x, bins = bins, line = line, colLine = colLine, colHist = colHist, lwdLine = lwdLine, main = titles[[5]], ...) dev.flush() } if (show[6L]) { dev.hold() qqPIT(x, bins = bins, col1 = colPIT1, col2 = colPIT2, lty1 = ltyPIT1, lty2 = ltyPIT2, type = typePIT, main = titles[[6]], ...) dev.flush() } if (any(show[7L:10L] == TRUE)) { rt <- normRandPIT(x)$rt } if (show[7L]) { dev.hold() hist(rt, breaks = bins, main = titles[[7]], col = colHist, xlab = expression(r[t]), ...) box() dev.flush() } if (show[8L]) { dev.hold() qqnorm(rt, main = titles[[8]], ...) abline(0, 1, lty = ltyQQ, col = colQQ, ...) dev.flush() } if (show[9L]) { dev.hold() acf(rt, main = titles[[9]], ...) dev.flush() } if (show[10L]) { dev.hold() pacf(rt, main = titles[[10]], ...) dev.flush() } } if (x$type == "Bin") { if (show[1L] & any(showFits = TRUE)) { obs.logic <- showFits[1] fixed.logic <- showFits[2] glarma.logic <- showFits[3] observed <- x$y[, 1]/apply(x$y, 1, sum) fits <- list(fixed = 1/(1 + exp(-x$eta)), glarma = 1/(1 + exp(-x$W))) legendNames <- c("obs", names(fits)[1], names(fits)[2]) titleNames <- c("Observed", "Fixed", "GLARMA") pchAll <- c(pchObs, NA, NA) ltyAll <- c(ltyObs, ltyFixed, ltyGLARMA) lwdAll <- c(NA, lwdFixed, lwdGLARMA) colAll <- c(colObs, colFixed, colGLARMA) } if (any(show[2L:4L] == TRUE)) { residuals <- x$residuals residuals <- x$residuals if (is.null(titles[[2]])) { titles[2] <- paste("ACF of", x$residType, "Residuals") } if (is.null(titles[[3]])) { titles[3] <- paste(x$residType, "Residuals") } if (is.null(titles[[4]])) { titles[4] <- paste("Normal Q-Q Plot of ",x$residType, "Residuals") } } if (ask) { oask <- devAskNewPage(TRUE) on.exit(devAskNewPage(oask)) } if (show[1L] & any(showFits == TRUE)) { dev.hold() if (is.null(titles[[1]])){ main <- paste(titleNames[showFits], collapse = " vs ") } else { main <- titles[1] } plot(1:length(observed), observed, ylab = "Counts", xlab = "Time", col = NA, main = main, ...) if (obs.logic) points(observed, pch = pchObs, col = colObs) if (fixed.logic) lines(fits$fixed, lwd = lwdFixed, lty = ltyFixed, col = colFixed) if (glarma.logic) lines(fits$glarma, lwd = lwdGLARMA, lty = ltyGLARMA, col = colGLARMA) if (legend & any(showFits == TRUE)) { par(xpd = NA) mfrow <- par("mfrow") graph.param <- legend("top", legend = legendNames[showFits], pch = pchAll[showFits], lty = ltyAll[showFits], ncol = 3, cex = 0.7 - (mfrow[1] - 1)/10 - (mfrow[2] - 1)/10, text.font = 4, plot = FALSE) legend(graph.param$rect$left, graph.param$rect$top + graph.param$rect$h, legend = legendNames[showFits], pch = pchAll[showFits], col = colAll[showFits], lwd = lwdAll[showFits], lty = ltyAll[showFits], ncol = 3, cex = 0.7 - (mfrow[1] - 1)/10 - (mfrow[2] - 1)/10, bty = "n", text.font = 4) par(xpd = FALSE) } dev.flush() } if (show[2L]) { dev.hold() acf(residuals, main = titles[2], ...) dev.flush() } if (show[3L]) { dev.hold() plot.ts(residuals, ylab = "Residuals", type = residPlotType, main = titles[3], ...) dev.flush() } if (show[4L]) { dev.hold() qqnorm(residuals, ylab = "Residuals", main = titles[4], ...) abline(0, 1, lty = 2) dev.flush() } if (show[5L]) { dev.hold() histPIT(x, bins = bins, line = line, colLine = colLine, colHist = colHist, lwdLine = lwdLine, main = titles[5], ...) dev.flush() } if (show[6L]) { dev.hold() qqPIT(x, bins = bins, col1 = colPIT1, col2 = colPIT2, lty1 = ltyPIT1, lty2 = ltyPIT2, type = typePIT, main = titles[6], ...) dev.flush() } if (any(show[7L:10L] == TRUE)) { rt <- normRandPIT(x)$rt } if (show[7L]) { dev.hold() hist(rt, breaks = bins, main = titles[[7]], col = colHist, xlab = expression(r[t]), ...) box() dev.flush() } if (show[8L]) { dev.hold() qqnorm(rt, main = titles[[8]], ...) abline(0, 1, lty = ltyQQ, col = colQQ, ...) dev.flush() } if (show[9L]) { dev.hold() acf(rt, main = titles[[9]], ...) dev.flush() } if (show[10L]) { dev.hold() pacf(rt, main = titles[[10]], ...) dev.flush() } } invisible() }
corbetw2mat <- function(x, y, what=c("paired", "bestright", "bestpairs", "all"), corthresh=0.9) { if(!is.matrix(x)) x <- as.matrix(x) if(!is.matrix(y)) y <- as.matrix(y) n <- nrow(x) if(nrow(y) != n) stop("nrow(x)=", n, ", which is not equal to nrow(y)=", nrow(y)) px <- ncol(x) py <- ncol(y) what <- match.arg(what) if(is.null(colnames(x))) colnames(x) <- paste("V", 1:ncol(x), sep="") if(is.null(colnames(y))) colnames(y) <- paste("V", 1:ncol(y), sep="") if(what=="paired" && py != px) stop("what=\"paired\", but ncol(x)=", px, ", which is not equal to ncol(y)=", py) if(what=="paired") { res <- .C("R_corbetw2mat_paired", as.integer(n), as.integer(px), as.double(x), as.double(y), cor=as.double(rep(NA, px)), PACKAGE="lineup", NAOK=TRUE)$cor names(res) <- colnames(x) } else if(what=="bestright") { res <- .C("R_corbetw2mat_unpaired_lr", as.integer(n), as.integer(px), as.double(x), as.integer(py), as.double(y), cor=as.double(rep(NA, px)), index=as.integer(rep(NA, px)), PACKAGE="lineup", NAOK=TRUE) res <- data.frame(cor=res$cor, yindex=res$index) rownames(res) <- colnames(x) res <- cbind(res, ycol=colnames(y)[res[,2]]) } else if(what=="bestpairs") { res <- .C("R_corbetw2mat_unpaired_best", as.integer(n), as.integer(px), as.double(x), as.integer(py), as.double(y), cor=as.double(rep(NA, px*py)), xindex=as.integer(rep(NA, px*py)), yindex=as.integer(rep(NA, px*py)), numpairs=as.integer(0), as.double(corthresh), PACKAGE="lineup", NAOK=TRUE) res <- data.frame(cor=res$cor[1:res$numpairs], xindex=res$xindex[1:res$numpairs], yindex=res$yindex[1:res$numpairs]) res <- cbind(res, xcol=colnames(x)[res[,2]], ycol=colnames(y)[res[,3]]) } else { res <- .C("R_corbetw2mat_unpaired_all", as.integer(n), as.integer(px), as.double(x), as.integer(py), as.double(y), cor=as.double(rep(NA, px*py)), PACKAGE="lineup", NAOK=TRUE)$cor res <- matrix(res, nrow=px, ncol=py) dimnames(res) <- list(colnames(x), colnames(y)) } res }
rounding <- function(x, fmt = '%.3f', ...) { idx_na <- is.na(x) if (is.factor(x) || is.logical(x) || is.character(x)) { out <- as.character(x) if (settings_equal("escape", TRUE)) { out <- escape_string(out) } if (settings_equal("output_format", c("latex", "latex_tabular")) && settings_equal("siunitx_scolumns", TRUE)) { out <- sprintf("{%s}", out) } } else { if (is.character(fmt)) { out <- sprintf(fmt, x, ...) } else if (is.numeric(fmt)) { if (fmt == 0) { out <- sprintf("%.0f", x) } else { out <- trimws(format(round(x, fmt), nsmall = fmt, ...)) } } else if (is.function(fmt)) { out <- fmt(x) } else { out <- x } out <- gsub('^NA$|^NaN$|^-Inf$|^Inf$', '', out) if (settings_equal("output_format", c("latex", "latex_tabular"))) { if (!isTRUE(settings_get("siunitx_scolumns"))) { if (settings_equal("format_numeric_latex", "siunitx")) { out <- sprintf("\\num{%s}", out) } else if (settings_equal("format_numeric_latex", c("dollars", "mathmode"))) { out <- sprintf("$%s$", out) } } } if (settings_equal("output_format", c("html", "kableExtra"))) { if (settings_equal("format_numeric_html", "minus")) { out <- gsub("\\-", "\u2212", out) } else if (settings_equal("format_numeric_html", c("mathjax", "dollars"))) { out <- sprintf("$%s$", out) } } } out[idx_na] <- "" return(out) }
plotAbundances <- function(nmfMod,source, slice=1) { dims <- NMF::misc(nmfMod) nRows <- dims$nRows nCols <- dims$nCols strComp <- match(names(dims),"nSlices") if(sum(is.na(strComp)) < length(strComp)) { nSlices <- dims$nSlices } else { nSlices <- 1 } H <- NMF::coef(nmfMod)[source,] H <- array(H,c(nRows,nCols,nSlices)) if (length(dim(H))==3) { H <- H[,,slice] } grDevices::dev.new() graphics::plot(1:nRows, 1:nCols, type = "n") rasterImage::rasterImage2(z = t(H[nRows:1,])) }
ft_max_abs_scaler <- function(x, input_col = NULL, output_col = NULL, uid = random_string("max_abs_scaler_"), ...) { check_dots_used() UseMethod("ft_max_abs_scaler") } ml_max_abs_scaler <- ft_max_abs_scaler ft_max_abs_scaler.spark_connection <- function(x, input_col = NULL, output_col = NULL, uid = random_string("max_abs_scaler_"), ...) { spark_require_version(x, "2.0.0", "MaxAbsScaler") .args <- list( input_col = input_col, output_col = output_col, uid = uid ) %>% c(rlang::dots_list(...)) %>% validator_ml_max_abs_scaler() estimator <- spark_pipeline_stage( x, "org.apache.spark.ml.feature.MaxAbsScaler", input_col = .args[["input_col"]], output_col = .args[["output_col"]], uid = .args[["uid"]] ) %>% new_ml_max_abs_scaler() estimator } ft_max_abs_scaler.ml_pipeline <- function(x, input_col = NULL, output_col = NULL, uid = random_string("max_abs_scaler_"), ...) { stage <- ft_max_abs_scaler.spark_connection( x = spark_connection(x), input_col = input_col, output_col = output_col, uid = uid, ... ) ml_add_stage(x, stage) } ft_max_abs_scaler.tbl_spark <- function(x, input_col = NULL, output_col = NULL, uid = random_string("max_abs_scaler_"), ...) { stage <- ft_max_abs_scaler.spark_connection( x = spark_connection(x), input_col = input_col, output_col = output_col, uid = uid, ... ) if (is_ml_transformer(stage)) { ml_transform(stage, x) } else { ml_fit_and_transform(stage, x) } } new_ml_max_abs_scaler <- function(jobj) { new_ml_estimator(jobj, class = "ml_max_abs_scaler") } new_ml_max_abs_scaler_model <- function(jobj) { new_ml_transformer(jobj, class = "ml_max_abs_scaler_model") } validator_ml_max_abs_scaler <- function(.args) { validate_args_transformer(.args) }
write.sav <- function(x, file = "SPSS_Data.sav", var.attr = NULL, pspp.path = NULL, digits = 2, write.csv = FALSE, sep = c(";", ","), na = "", write.sps = FALSE, check = TRUE) { if (isTRUE(missing(x))) { stop("Please specify a matrix or data frame for the argument 'x'.", call. = FALSE) } if (isTRUE(!is.matrix(x) && !is.data.frame(x))) { stop("Please specifiy a matrix or data frame for the argument 'x'.", call. = FALSE) } x <- as.data.frame(x, stringsAsFactors = FALSE) varnames <- colnames(x) var.length <- length(varnames) file <- ifelse(length(grep(".sav", file)) == 1L, file <- gsub(".sav", "", file), file) sep <- ifelse(all(c(";", ".") %in% sep), ";", sep) if (isTRUE(!is.logical(check))) { stop("Please specify TRUE or FALSE for the argument 'check'.", call. = FALSE) } if (isTRUE(check)) { if (isTRUE(!is.null(pspp.path))) { if (isTRUE(length(grep("pspp.exe", list.files(paste0(pspp.path, "/bin/")))) != 1L)) { stop("PSPP file \'pspp.exe\' was not found in the folder specified in the pspp.path argument.", call. = FALSE) } } if (isTRUE(!is.null(var.attr))) { if (isTRUE(nrow(var.attr) != ncol(x))) { stop("Number of rows in the data frame or matrix specified in the argument var.attr does not match with the number of columns in x.", call. = FALSE) } if (isTRUE(all(is.na(match(names(var.attr), c("label", "values", "missing")))))) { stop("None of the column names of the data frame or matrix specified in the argument var.attr match with \"label\", \"values\" or \"missing\".", call. = FALSE) } if (isTRUE(any(!is.na(match(names(var.attr), "values"))))) { for (i in seq_len(var.length)) { value.labels <- as.character(var.attr[i, "values"]) if (isTRUE(value.labels != "")) { value.labels.split <- unlist(strsplit(value.labels, ";")) value.labels.split.matrix <- matrix(misty::chr.trim(unlist(sapply(value.labels.split, function(y) strsplit(y, "=")))), ncol = length(value.labels.split)) if(isTRUE(!all(as.numeric(value.labels.split.matrix[1, ]) %in% x[, varnames[i]]))) { warning(paste0("Values in the column \"values\" specified in 'var.attr' does not match with the variable '", varnames[i], "'."), call. = FALSE) } } } } } if (isTRUE(digits %% 1L != 0L || digits < 0L)) { stop("Specify a positive integer number for the argument digits.", call. = FALSE) } if (isTRUE(write.csv & any(!sep %in% c(";", ",")))) { stop("Specify either \";\" or \",\" for the argument sep.", call. = FALSE) } } if (isTRUE(is.null(pspp.path))) { if (isTRUE(!requireNamespace("haven", quietly = TRUE))) { stop("Package \"haven\" is needed for this function to work, please install it.", call. = FALSE ) } if (isTRUE(is.null(var.attr))) { haven::write_sav(x, paste0(file, ".sav"), compress = FALSE) } else { labels <- as.character(var.attr[, match("values", colnames(var.attr))]) na <- as.character(var.attr[, match("missing", colnames(var.attr))]) label <- as.character(var.attr[, match("label", colnames(var.attr))]) for (i in which(vapply(x, is.numeric, FUN.VALUE = logical(1L)))) { if (misty::chr.trim(labels[i]) == "") { if (isTRUE(misty::chr.trim(na[i]) == "")) { labels.i <- NULL } else { x.na <- misty::chr.trim(unlist(strsplit(na[i], ";"))) labels.i <- paste0("c(", paste(sapply(x.na, function(y) paste("\"NA\" = ", y)), collapse = ", "), ")") } } else { x.labels <- unlist(strsplit(labels[i], ";")) x.labels <- matrix(misty::chr.trim(unlist(sapply(x.labels, function(y) strsplit(y, "=")))), ncol = length(x.labels)) if (misty::chr.trim(na[i]) == "") { labels.i <- paste0("c(", paste(apply(x.labels, 2, function(y) paste(paste0("\"", y[2L], "\""), y[1], sep = " = ")), collapse = ", "), ")") } else { x.na <- misty::chr.trim(unlist(strsplit(na[i], ";"))) labels.i <- paste0("c(", paste(c(apply(x.labels, 2, function(y) paste(paste0("\"", y[2L], "\""), y[1], sep = " = ")), paste(sapply(x.na, function(y) paste("\"NA\" = ", y)), collapse = ", ")), collapse = ", "), ")") } } if (isTRUE(misty::chr.trim(na[i]) == "")) { na.i <- NULL } else { na.i <- paste0("c(", paste(misty::chr.trim(unlist(strsplit(na[i], ";"))), collapse = ", "), ")") } eval(parse(text = paste0("x$", colnames(x)[i], " <- haven::labelled_spss(as.double(x$", colnames(x)[i], "), labels = ", ifelse(is.null(labels.i), "NULL", labels.i), ", na_values = ", ifelse(is.null(na.i), "NULL", na.i), ", label = \"", label[i], "\")"))) if (isTRUE(all(na.omit(x[, i]) %% 1L == 0L))) { eval(parse(text = paste0("attr(x$", colnames(x)[i], ", \"format.spss\") <- \"F8.0\""))) } else { eval(parse(text = paste0("attr(x$", colnames(x)[i], ", \"format.spss\") <- \"F8.", digits, "\""))) } } haven::write_sav(x, paste0(file, ".sav"), compress = FALSE) } if (isTRUE(write.csv)) { if (isTRUE(sep == ";")) { write.csv2(x, paste0(file, ".csv"), row.names = FALSE, quote = FALSE, na = na) } else { write.csv(x, paste0(file, ".csv"), row.names = FALSE, quote = FALSE, na = na) } } } else { add.quote <- function(x) { paste0("\"", x, "\"") } any.factors <- any(vapply(x, is.factor, FUN.VALUE = logical(1))) if (isTRUE(any.factors)) { xf <- data.frame(lapply(x, function(x) if (is.factor(x) | is.logical(x)) as.numeric(x) else x), stringsAsFactors = FALSE) } else { xf <- x } utils::write.csv2(xf, paste0(file, ".csv"), row.names = FALSE, quote = FALSE, na = na) type <- rep("F", times = var.length) width <- rep(8L, times = var.length) decimals <- rep(NA, times = var.length) for (i in seq_len(var.length)) { if (isTRUE(is.numeric(xf[, i]))) { i.nchar <- nchar(round(xf[, i], digits = digits)) if (isTRUE(any(na.omit(i.nchar) > 8L))) { width[i] <- max(i.nchar) } decimals[i] <- ifelse(is.integer(xf[, i]), 0L, digits) decimals[i] <- ifelse(all(xf[, i] %% 1 == 0L), 0, digits) } else { type[i] <- "A" width[i] <- max(nchar(xf[, i])) } } variables <- paste(varnames, ifelse(!is.na(decimals), paste0(type, paste(width, decimals, sep = ".")), paste0(type, width)), collapse = "\n ") code <- paste0(file, ".sps") cat(paste0("GET DATA\n", " /TYPE=TXT \n", " /FILE='", getwd(), "/", file, ".csv' \n", " /ARRANGEMENT=DELIMITED\n", " /DELCASE=LINE \n", " /FIRSTCASE=2 \n", " /DELIMITERS=';'\n" , " /QUALIFIER='' \n" , " /VARIABLES=\n"), file = code) cat(paste0(" ", variables, " ."), file = code, append = TRUE) if (isTRUE(!is.null(var.attr))) { label <- as.character(var.attr[, match("label", colnames(var.attr))]) indices <- which(label != "") variable.label <- paste(varnames[indices], add.quote(label[indices]), collapse = " \n ") cat("\nVARIABLE LABELS\n ", file = code, append = TRUE) cat(paste0(" ", variable.label, " ."), file = code, append = TRUE) if (isTRUE(any(var.attr[, match("values", colnames(var.attr))] != ""))) { for (i in seq_len(var.length)) { value.labels <- as.character(var.attr[i, match("values", colnames(var.attr))]) if (isTRUE(value.labels != "")) { x <- unlist(strsplit(value.labels, ";")) x <- matrix(misty::chr.trim(unlist(sapply(x, function(x) strsplit(x, "=")))), ncol = length(x)) cat("\nVALUE LABELS\n", paste0(" ", varnames[i], paste0(paste0(" ", x[1L, ], " '", x[2L, ], sep = "'"), collapse = "")), ".", file = code, append = TRUE) } } } if (isTRUE(any.factors)) { x.factor <- which(vapply(x, is.factor, FUN.VALUE = logical(1))) for (i in x.factor) { values <- unique(as.numeric(x[, i])) labels <- levels(x[, i]) cat("\nVALUE LABELS\n", paste0(" ", names(xf)[i], paste0(paste0(" ", values, " '", labels, sep = "'"), collapse = "")), ".", file = code, append = TRUE) } } miss.unique <- unique(misty::chr.trim(as.character(unique(var.attr[, match("missing", colnames(var.attr))])))) miss.unique <- miss.unique[!miss.unique %in% c("", NA)] if (isTRUE(length(miss.unique) == 1L)) { cat(paste0("\nMISSING VALUES\n ", paste(varnames[which(var.attr$missing == miss.unique)], collapse = " "), " (", gsub(";", " ", miss.unique), ")", "."), file = code, append = TRUE) } if (isTRUE(length(miss.unique) > 1L)) { for (i in seq_len(var.length)) { missing.values <- var.attr[i, match("missing", colnames(var.attr))] if (isTRUE(missing.values != "")) { cat("\nMISSING VALUES\n " , paste0(varnames[i], " (", paste(gsub(";", " ", missing.values), collapse = " "), ")", "."), file = code, append = TRUE) } } } } else { if (isTRUE(any.factors)) { x.factor <- which(vapply(x, is.factor, FUN.VALUE = logical(1))) for (i in x.factor) { values <- unique(as.numeric(x[, i])) labels <- levels(x[, i]) cat("\nVALUE LABELS\n", paste0(" ", names(xf)[i], paste0(paste0(" ", values, " '", labels, sep = "'"), collapse = "")), ".", file = code, append = TRUE) } } } cat("\nEXECUTE.\n", file = code, append = TRUE) cat(paste0( "\nSAVE OUTFILE='", getwd() , "/" , file , ".sav'.\nEXECUTE."), file = code, append = TRUE) system(paste0("\"", pspp.path, "/bin/pspp.exe\" ", code)) if (!isTRUE(write.sps)) { unlink(paste0(file, ".sps")) } if (!isTRUE(write.csv) | sep == ",") { unlink(paste0(file, ".csv")) } if (isTRUE(write.csv) & sep == ",") { utils::write.csv(xf, paste0(file, ".csv"), row.names = FALSE, quote = FALSE, na = na) } } }
context("Posterior Frame") test_that("Basic Test", { testData <- rnorm(100) testDP <- DirichletProcessGaussian(testData) testDP <- Fit(testDP, 1, progressBar = FALSE) testFrame <- PosteriorFrame(testDP, seq(-2, 2, length.out = 10)) expect_is(testFrame, "data.frame") expect_equal(nrow(testFrame), 10) expect_equal(ncol(testFrame), 4) })
mean_test1<-function(x, mu=0, sigma=-1, side=0){ n<-length(x); xb<-mean(x) if (sigma>=0){ z<-(xb-mu)/(sigma/sqrt(n)) P<-p_value(pnorm, z, side=side) data.frame(mean=xb, df=n, Z=z, p_value=P) } else{ t<-(xb-mu)/(sd(x)/sqrt(n)) P<-p_value(pt, t, paramet=n-1, side=side) data.frame(mean=xb, df=n-1, T=t, p_value=P) } }
setClass("sp_network_pair", slots = c(orig_net_id = "character", orig_nnodes = "maybe_numeric", dest_net_id = "character", dest_nnodes = "maybe_numeric", network_pair_id = "character", pair_data = "maybe_data.frame", npairs = "maybe_numeric")) setMethod( f = "dat", signature = "sp_network_pair", function(object) { return(object@pair_data) }) setReplaceMethod( f = "dat", signature = "sp_network_pair", function(object, value) { object@pair_data <- value object@npairs <- nrow(value) validObject(object) return(object) }) setMethod( f = "id", signature = "sp_network_pair", function(object) { return(c( "pair" = object@network_pair_id, "orig" = object@orig_net_id, "dest" = object@dest_net_id )) }) setReplaceMethod( f = "id", signature = "sp_network_pair", function(object,value) { split_ids <- unlist(strsplit(value,"_")) new_id_orig <- split_ids[1] new_id_dest <- split_ids[2] object@orig_net_id <- new_id_orig object@dest_net_id <- new_id_dest object@network_pair_id <- value validObject(object) return(object) }) setMethod( f = "npairs", signature = "sp_network_pair", function(object) { return(object@npairs) }) setMethod( f = "nnodes", signature = "sp_network_pair", function(object) { return(c( "orig" = object@orig_nnodes, "dest" = object@dest_nnodes )) }) setMethod( f = "show", signature = "sp_network_pair", function(object){ cat("Spatial network pair with id:",id(object)["pair"]) cat("\n") cat(print_line(50)) od_explain <- "\n%s network id: %s (with %s nodes)" cat(sprintf(od_explain, "Origin", id(object)["orig"], nnodes(object)["orig"] %||% "[?]")) cat(sprintf(od_explain, "Destination", id(object)["dest"], nnodes(object)["dest"] %||% "[?]")) has_all_counts <- length(c(npairs(object),nnodes(object))) == 3 if (has_all_counts) { cat("\nNumber of pairs:", npairs(object)) pair_explain <- "\nCompleteness of pairs: %s (%i/%i)" cat(sprintf(pair_explain, format_percent(npairs(object) / prod(nnodes(object))), npairs(object), prod(nnodes(object)) )) } has_data <- !is.null(dat(object)) if (has_data) { cat("\n\nData on node-pairs:\n") print(dat(object)) } cat("\n") invisible(object) }) setValidity("sp_network_pair", function(object) { ids <- id(object) if (!valid_network_pair_id(ids["pair"])) { error_msg <- "The id of the pair object is invalid.\n Please ensure that the id " %p% "is based on two alphanumeric strings sperated by an underscore, " %p% "as for example 'alnum1_alnum2'!" return(error_msg) } if (is.null(dat(object))) return(TRUE) data_keys <- attr_key_od(dat(object)) keys_exist <- all(data_keys %in% names(dat(object))) if (is(dat(object),"data.table")) { data_keys <- unique(dat(object)[,data_keys, with = FALSE]) } else { data_keys <- unique(dat(object)[,data_keys, drop = FALSE]) } unique_identification <- nrow(data_keys) == nrow(dat(object)) if (!all(keys_exist, unique_identification)) { error_msg <- "Based on the origin and destination key columns the observations " %p% "are not unequely identifyed!" return(error_msg) } return(TRUE) }) sp_network_pair <- function( orig_net_id, dest_net_id, pair_data = NULL, orig_key_column, dest_key_column ) { network_pair <- new( "sp_network_pair", orig_net_id = orig_net_id, orig_nnodes = NULL, dest_net_id = dest_net_id, dest_nnodes = NULL, network_pair_id = orig_net_id %p% "_" %p% dest_net_id, pair_data = NULL, npairs = NULL) if (is.null(pair_data) && validObject(network_pair)) return(network_pair) assert_inherits(pair_data, "data.frame") od_key_cols <- c(orig_key_column, dest_key_column) has_orig_key <- orig_key_column %in% colnames(pair_data) has_dest_key <- assert(all(od_key_cols %in% colnames(pair_data)), "The origin and destination key columns are not found in " %p% "the pair data!") attr_key_od(pair_data) <- od_key_cols pair_data[[od_key_cols[1]]] <- factor_in_order(pair_data[[od_key_cols[1]]]) pair_data[[od_key_cols[2]]] <- factor_in_order(pair_data[[od_key_cols[2]]]) pair_data <- pair_data[order(pair_data[[od_key_cols[1]]], pair_data[[od_key_cols[2]]]), ] network_pair@pair_data <- pair_data network_pair@orig_nnodes <- nlevels(pair_data[[od_key_cols[1]]]) network_pair@dest_nnodes <- nlevels(pair_data[[od_key_cols[2]]]) network_pair@npairs <- nrow(pair_data) validObject(network_pair) return(network_pair) } matrix_form_control <- function(sp_net_pair) { matrix_arguments <- list( "mat_complet" = npairs(sp_net_pair) / prod(nnodes(sp_net_pair)), "mat_within" = id(sp_net_pair)["orig"] == id(sp_net_pair)["dest"], "mat_npairs" = npairs(sp_net_pair), "mat_nrows" = nnodes(sp_net_pair)["orig"], "mat_ncols" = nnodes(sp_net_pair)["dest"], "mat_format" = NULL) if (matrix_arguments[["mat_complet"]] == 1) { matrix_arguments[["mat_format"]] <- function(vec) { matrix(vec, nrow = matrix_arguments[["mat_nrows"]], ncol = matrix_arguments[["mat_ncols"]]) } } if (matrix_arguments[["mat_complet"]] < 1) { od_keys <- attr_key_od(dat(sp_net_pair)) mat_i_rows <- as.integer(dat(sp_net_pair)[[od_keys[1]]]) mat_j_cols <- as.integer(dat(sp_net_pair)[[od_keys[2]]]) matrix_arguments[["mat_format"]] <- function(vec) { mat <- matrix(0, nrow = matrix_arguments[["mat_nrows"]], ncol = matrix_arguments[["mat_ncols"]]) mat[cbind(mat_i_rows, mat_j_cols)] <- vec mat } } if (matrix_arguments[["mat_complet"]] < .5) { od_keys <- attr_key_od(dat(sp_net_pair)) matrix_arguments[["mat_format"]] <- function(vec) { sparseMatrix(i= mat_i_rows, j=mat_j_cols, x= vec, dims = c(matrix_arguments[["mat_nrows"]], matrix_arguments[["mat_ncols"]])) } } return(matrix_arguments) } split_pair_id <- function(pair_id){ strsplit(pair_id,"_")[[1]] } attr_key_orig <- function(df) { attr(df, "orig_key_column") } `attr_key_orig<-` <- function(df, value) { attr(df, "orig_key_column") <- value df } attr_key_dest <- function(df) { attr(df, "dest_key_column") } `attr_key_dest<-` <- function(df, value) { attr(df, "dest_key_column") <- value df } attr_key_od <- function(df) { c(attr_key_orig(df), attr_key_dest(df)) } `attr_key_od<-` <- function(df, value) { attr_key_orig(df) <- value[1] attr_key_dest(df) <- value[2] df } valid_network_pair_id <- function(key) { split_strings <- unlist(strsplit(key,"_",fixed = TRUE)) is_single_character(key) && length(split_strings) == 2 && valid_network_id(split_strings[1]) && valid_network_id(split_strings[2]) }
getclass.DN <- function(model){ mfamily <- NA mclass <- attr(model, "class")[1] if (mclass == "coxph.null") stop("Error in model syntax: the model is null") if (!mclass %in% c("lm", "glm", "coxph", "ols", "lrm", "Glm", "cph", "gam", "Gam", "glmnet")) stop("Unrecognized model object type.") if (mclass %in% c("elnet", "lognet", "multnet", "fishnet", "coxnet", "mrelnet")){ mclass <- "glmnet" mfamily <- attr(model, "class")[1] } if (mclass %in% c("glm", "Glm")) mfamily <- model$family$family if (mclass == "lrm") mfamily <- mclass list(model.class = mclass, model.family = mfamily) }
getKernel <- function(Kernel){ if (class(Kernel) != "character"){ return (Kernel) } switch( Kernel, "gaussian" = { kernelFun <- stats::dnorm }, "epanechnikov" = { kernelFun <- function(x){return( as.numeric(abs(x) < 1) * (1-x^2) * 3 / 4 )} }, "triangular" = { kernelFun <- function(x){return( as.numeric(abs(x) < 1) * ( 1-abs(x) ) )} }, {stop("kernel ", Kernel, " not implemented yet. ", "Possible choices are 'gaussian', 'epanechnikov' and 'triangular'. ")} ) return (kernelFun) }
rfkrigeidwcv <- function (longlat, trainx, trainy, mtry = function(p) max(1, floor(sqrt(p))), ntree = 500, transformation = "none", delta = 1, formula = res1 ~ 1, vgm.args = c("Sph"), anis = c(0, 1), alpha = 0, block = 0, beta, nmaxkrige = 12, idp = 2, nmaxidw = 12, hybrid.parameter = 2, lambda = 1, validation = "CV", cv.fold = 10, predacc = "VEcv", ...) { if (validation == "LOO") {idx <- 1:length(trainy)} if (validation == "CV") {idx <- datasplit(trainy, k.fold = cv.fold)} names(longlat) <- c("long", "lat") n <- nrow(trainx) p <- ncol(trainx) cv.pred <- NULL if (validation == "LOO") { for (i in 1 : length(trainy)) { data.dev <- trainx[idx != i, , drop = FALSE] data.pred <- trainx[idx == i, , drop = FALSE] rf1 <- randomForest::randomForest(data.dev, trainy[idx != i], mtry = mtry(p), ntree=ntree) pred.rf1 <- stats::predict(rf1, data.pred) dev.rf1 <- stats::predict(rf1, data.dev) data.dev1 <- longlat[idx != i, , drop = FALSE] data.pred1 <- longlat[idx == i, , drop = FALSE] res1 <- trainy[idx != i] - dev.rf1 data.dev1$res1 <- res1 gstat1 <- gstat::gstat(id = "res1", formula = res1 ~ 1, locations = ~ long + lat, data = data.dev1, set = list(idp = idp), nmax = nmaxidw) pred.idw1 <- stats::predict(gstat1, data.pred1) if (transformation == "none") {data.dev1$res1 = res1} else ( if (transformation == "sqrt") {data.dev1$res1 = sqrt(res1 + abs(min(res1)))} else ( if (transformation == "arcsine") {data.dev1$res1 = asin(sqrt((res1 + abs(min(res1))) / 100))} else ( if (transformation == "log") {data.dev1$res1 = log(res1 + abs(min(res1)) + delta)} else ( stop ("This transfromation is not supported in this version!"))))) sp::coordinates(data.dev1) = ~ long + lat vgm1 <- gstat::variogram(object = formula, data.dev1, alpha = alpha) model.1 <- gstat::fit.variogram(vgm1, gstat::vgm(mean(vgm1$gamma), vgm.args, mean(vgm1$dist), min(vgm1$gamma)/10, anis = anis)) if (model.1$range[2] <= 0) (cat("A zero or negative range was fitted to variogram", "\n")) if (model.1$range[2] <= 0) (model.1$range[2] <- min(vgm1$dist)) sp::coordinates(data.pred1) = ~long + lat pred.krige1 <- gstat::krige(formula = formula, data.dev1, data.pred1, model = model.1, nmax=nmaxkrige, block = block, beta = beta)$var1.pred if (transformation == "none") {pred.krige = pred.krige1} if (transformation == "sqrt") {pred.krige = pred.krige1 ^ 2 - abs(min(res1))} if (transformation == "arcsine") {pred.krige = (sin(pred.krige1)) ^ 2 * 100 - abs(min(res1))} if (transformation == "log") {pred.krige = exp(pred.krige1) - abs(min(res1)) - delta} cv.pred[idx == i] <- (pred.krige * (2 - lambda) + pred.idw1$res1.pred * lambda + pred.rf1 * hybrid.parameter) / hybrid.parameter } } if (validation == "CV") { for (i in 1 : cv.fold) { data.dev <- trainx[idx != i, , drop = FALSE] data.pred <- trainx[idx == i, , drop = FALSE] rf1 <- randomForest::randomForest(data.dev, trainy[idx != i], mtry = mtry(p), ntree=ntree) pred.rf1 <- stats::predict(rf1, data.pred) dev.rf1 <- stats::predict(rf1, data.dev) data.dev1 <- longlat[idx != i, , drop = FALSE] data.pred1 <- longlat[idx == i, , drop = FALSE] res1 <- trainy[idx != i] - dev.rf1 data.dev1$res1 <- res1 gstat1 <- gstat::gstat(id = "res1", formula = res1 ~ 1, locations = ~ long + lat, data = data.dev1, set = list(idp = idp), nmax = nmaxidw) pred.idw1<- stats::predict(gstat1, data.pred1) if (transformation == "none") {data.dev1$res1 = res1} else ( if (transformation == "sqrt") {data.dev1$res1 = sqrt(res1 + abs(min(res1)))} else ( if (transformation == "arcsine") {data.dev1$res1 = asin(sqrt((res1 + abs(min(res1))) / 100))} else ( if (transformation == "log") {data.dev1$res1 = log(res1 + abs(min(res1)) + delta)} else ( stop ("This transfromation is not supported in this version!"))))) sp::coordinates(data.dev1) = ~ long + lat vgm1 <- gstat::variogram(object = formula, data.dev1, alpha = alpha) model.1 <- gstat::fit.variogram(vgm1, gstat::vgm(mean(vgm1$gamma), vgm.args, mean(vgm1$dist), min(vgm1$gamma)/10, anis = anis)) if (model.1$range[2] <= 0) (cat("A zero or negative range was fitted to variogram", "\n")) if (model.1$range[2] <= 0) (model.1$range[2] <- min(vgm1$dist)) sp::coordinates(data.pred1) = ~long + lat pred.krige1 <- gstat::krige(formula = formula, data.dev1, data.pred1, model = model.1, nmax=nmaxkrige, block = block, beta = beta)$var1.pred if (transformation == "none") {pred.krige = pred.krige1} if (transformation == "sqrt") {pred.krige = pred.krige1 ^ 2 - abs(min(res1))} if (transformation == "arcsine") {pred.krige = (sin(pred.krige1)) ^ 2 * 100 - abs(min(res1))} if (transformation == "log") {pred.krige = exp(pred.krige1) - abs(min(res1)) - delta} cv.pred[idx == i] <- (pred.krige * (2 - lambda) + pred.idw1$res1.pred * lambda + pred.rf1* hybrid.parameter) / hybrid.parameter } } if (predacc == "VEcv") {predictive.accuracy = spm::vecv(trainy, cv.pred)} else ( if (predacc == "ALL") {predictive.accuracy = spm::pred.acc(trainy, cv.pred)} else ( stop ("This measure is not supported in this version!"))) predictive.accuracy }
print.cv.relaxed <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall: ", deparse(x$call), "\n\n") cat("Measure:", x$name, "\n\n") x = x$relaxed optlams = c(x$lambda.min, x$lambda.1se) wg1 = match(x$gamma.min, x$gamma) wl1 = match(x$lambda.min, x$statlist[[wg1]]$lambda) s1 = with(x$statlist[[wg1]], c(x$gamma.min,wg1, x$lambda.min,wl1, cvm[wl1], cvsd[wl1], x$nzero.min)) wg2 = match(x$gamma.1se, x$gamma) wl2 = match(x$lambda.1se, x$statlist[[wg2]]$lambda) s2 = with(x$statlist[[wg2]], c(x$gamma.1se,wg2, x$lambda.1se,wl2, cvm[wl2], cvsd[wl2], x$nzero.1se)) mat = rbind(s1, s2) dimnames(mat) = list(c("min", "1se"), c("Gamma","Index", "Lambda","Index", "Measure", "SE", "Nonzero")) mat = data.frame(mat, check.names = FALSE) class(mat) = c("anova", class(mat)) print(mat, digits = digits) }
screen_duplicates <- function( x, max_file_size ){ if(!missing(max_file_size)){ initial_file_size <- options("shiny.maxRequestSize") options(shiny.maxRequestSize = max_file_size * 1024^2) on.exit(options(initial_file_size)) } input_data <- list( raw = NULL, columns = NULL, grouped = NULL ) if(missing(x)){ x <- NULL } if(!is.null(x)){ accepted_inputs <- c("bibliography", "data.frame") if(any(accepted_inputs == class(x)) == FALSE){ stop("only classes 'bibliography' or 'data.frame' accepted by screen_duplicates")} if(class(x) == "bibliography"){ x <- as.data.frame(x) } colnames(x) <- tolower(colnames(x)) input_data$columns <- colnames(x) if(!any(colnames(x) == "label")){ x$label <- create_index("ref", nrow(x)) x <- x[, c(ncol(x), seq_len(ncol(x)-1))] }else{ x$label <- make.unique(x$label, sep = "_") } } input_data$raw <- x ui_data <- screen_duplicates_ui() ui <- shinydashboard::dashboardPage( title = "revtools | screen_duplicates", ui_data$header, ui_data$sidebar, ui_data$body, skin = "black" ) server <- function(input, output, session){ data <- reactiveValues( raw = input_data$raw, columns = input_data$columns, grouped = NULL ) display <- reactiveValues( data_present = FALSE, columns = input_data$columns ) progress <- reactiveValues( entry = NULL ) output$header <- renderPlot({ revtools_logo(text = "screen_duplicates") }) observeEvent(input$data_in, { if(is.null(data$raw)){ data_in <- x }else{ data_in <- data$raw } import_result <- import_shiny( source = input$data_in, current_data = data_in ) if(any(colnames(import_result) == "label")){ import_result$label <- make.unique( names = import_result$label, sep = "_" ) }else{ import_result$label <- paste0( "v", seq_len(nrow(import_result)) ) } data$raw <- import_result data$columns <- colnames(import_result) display$columns <- data$columns }) output$data_selector <- renderUI({ if(!is.null(data$raw)){ selectInput( inputId = "duplicates_present", label = "Is there a variable describing duplicates in this dataset?", choices = c("No", "Yes") ) } }) observeEvent(input$duplicates_present, { if(input$duplicates_present == "Yes"){ display$data_present <- TRUE }else{ display$data_present <- FALSE } }) output$response_selector <- renderUI({ if(!is.null(data$columns)){ if(display$data_present){ if(any(data$columns == "matches")){ selected <- "matches" }else{ selected <- data$columns[1] } shiny::tagList( selectInput( inputId = "match_columns", label = "Select column containing duplicate data", choices = data$columns, selected = selected ), actionButton( inputId = "go_duplicates", label = "Select", width = "85%" ) ) }else{ if(any(data$columns == "title")){ selected <- "title" }else{ selected <- data$columns[1] } selectInput( inputId = "response_selector_result", label = "Select column to search for duplicates", choices = data$columns, selected = selected ) } } }) output$group_selector <- renderUI({ if(!is.null(data$columns) & !display$data_present){ checkboxGroupInput( inputId = "group_selector_result", label = "Select grouping variable(s)", choices = data$columns, selected = NULL ) } }) output$display_selector <- renderUI({ if(!is.null(data$columns)){ checkboxGroupInput( inputId = "display_result", label = "Select variables to display", choices = data$columns, selected = data$columns ) } }) observeEvent(input$display_result, { display$columns <- input$display_result }) observe({ output$algorithm_selector <- renderUI({ if(input$match_function == "fuzzdist"){ algorithm_list <- list( "M Ratio" = "fuzz_m_ratio", "Partial Ratio" = "fuzz_partial_ratio", "Token Sort Ratio" = "fuzz_token_sort_ratio", "Token Set Ratio" = "fuzz_token_set_ratio" ) }else{ algorithm_list <- c( "osa", "lv", "dl", "hamming", "lcs", "qgram", "cosine", "jaccard", "jw", "soundex" ) } if(input$match_function != "exact"){ selectInput( inputId = "match_algorithm", label = "Select method", choices = algorithm_list ) } }) }) observe({ output$threshold_selector <- renderUI({ if(input$match_function == "fuzzdist"){ max_val <- 1 initial_val <- 0.1 step_val <- 0.05 }else{ max_val <- 20 initial_val <- 5 step_val <- 1 } if(input$match_function != "exact"){ sliderInput( inputId = "match_threshold", label = "Select maximum distance", min = 0, max = max_val, value = initial_val, step = step_val ) } }) }) observeEvent(input$go_duplicates, { data$raw$matches <- data$raw[, input$match_columns] group_result <- split(data$raw, data$raw$matches) group_result <- group_result[ which(unlist(lapply(group_result, nrow)) > 1) ] if(length(group_result) > 0){ progress$entry <- 1 data$grouped <- group_result }else{ progress$entry <- NULL } }) observeEvent(input$calculate_duplicates, { if(length(input$response_selector_result) < 1 & length(input$group_selector_result) < 1){ if(length(input$response_selector_result) < 1){ error_modal("Please select a variable to match records by<br><br> <em>Click anywhere to exit</em>" ) }else{ error_modal("Please select 1 or more variables to group records by<br><br> <em>Click anywhere to exit</em>" ) } }else{ calculating_modal() data$raw$matches <- find_duplicates( data = data$raw, match_variable = input$response_selector_result, group_variables = input$group_selector_result, match_function = input$match_function, method = input$match_algorithm, threshold = input$match_threshold, to_lower = input$match_lower, remove_punctuation = input$match_punctuation ) group_result <- split(data$raw, data$raw$matches) row_counts <- unlist(lapply(group_result, nrow)) if(any(row_counts > 2)){ large_list <- group_result[which(row_counts > 2)] cleaned_list <- lapply(large_list, function(a){ apply( combn(nrow(a), 2), 2, function(b, lookup){lookup[as.numeric(b), ]}, lookup = a ) }) extracted_list <- do.call(c, cleaned_list) if(any(row_counts == 2)){ group_result <- c( group_result[which(row_counts == 2)], extracted_list ) }else{ group_result <- extracted_list } }else{ group_result <- group_result[which(row_counts > 1)] } if(length(group_result) > 0){ progress$entry <- 1 data$grouped <- group_result removeModal() }else{ progress$entry <- NULL removeModal() no_duplicates_modal() } } }) output$selector_1 <- renderUI({ if(!is.null(progress$entry)){ actionButton( inputId = "selected_1", label = "Select Entry width = "100%" ) } }) output$selector_2 <- renderUI({ if(!is.null(progress$entry)){ actionButton( inputId = "selected_2", label = "Select Entry width = "100%" ) } }) output$selector_bar <- renderUI({ if(is.null(data$raw)){ div( style = " display: inline-block; vertical-align: top; text-align: right; width: 780px", renderText({"Load data to continue"}) ) }else{ if(is.null(data$grouped)){ text_out <- HTML( paste0( "Dataset with ", nrow(data$raw), " entries" ) ) div( style = " display: inline-block; vertical-align: top; text-align: right; width: 780px", renderText({text_out}) ) }else{ text_out <- HTML( paste0("Dataset with ", nrow(data$raw), " entries | ", " Showing duplicate ", progress$entry, " of ", length(data$grouped) ) ) div( list( div( style = " display: inline-block; vertical-align: top; text-align: right; width: 556px", renderText({text_out}) ), div( style = " display: inline-block; vertical-align: top; text-align: right; width: 20px", renderText(" ") ), div( style = " display: inline-block; vertical-align: top; text-align: right; width: 40px", actionButton( inputId = "selected_previous", label = "<", width = "40px", style = "background-color: ) ), div( style = " display: inline-block; vertical-align: top; text-align: right; width: 110px", actionButton( inputId = "selected_none", label = "Not duplicates", width = "110px", style = "background-color: ) ), div( style = " display: inline-block; vertical-align: top; text-align: right; width: 40px", actionButton( inputId = "selected_next", label = ">", width = "40px", style = "background-color: ) ) ) ) } } }) output$text_1 <- renderPrint({ validate( need(length(data$grouped) > 0, "") ) format_duplicates( x = data$grouped[[progress$entry]][1, ], columns = display$columns, breaks = input$author_line_breaks ) }) output$text_2 <- renderPrint({ validate( need(length(data$grouped) > 0, "") ) format_duplicates( x = data$grouped[[progress$entry]][2, ], columns = display$columns, breaks = input$author_line_breaks ) }) observeEvent(input$selected_1, { label_exclude <- data$grouped[[progress$entry]]$label[2] data$raw <- data$raw[which(data$raw$label != label_exclude), ] data$grouped <- data$grouped[-progress$entry] if(progress$entry > length(data$grouped)){ if(length(data$grouped) == 0){ progress$entry <- NULL save_modal( x = data$raw, title = "Screening Complete: Save results?" ) }else{ progress$entry <- length(data$grouped) } } }) observeEvent(input$selected_2, { label_exclude <- data$grouped[[progress$entry]]$label[1] data$raw <- data$raw[which(data$raw$label != label_exclude), ] data$grouped <- data$grouped[-progress$entry] if(progress$entry > length(data$grouped)){ if(length(data$grouped) == 0){ progress$entry <- NULL save_modal( x = data$raw, title = "Screening Complete: Save results?" ) }else{ progress$entry <- length(data$grouped) } } }) observeEvent(input$selected_none, { label_exclude <- data$grouped[[progress$entry]]$label[2] data$raw$matches[which(data$raw$label == label_exclude)] <- max(data$raw$matches)+1 data$grouped <- data$grouped[-progress$entry] if(progress$entry > length(data$grouped)){ if(length(data$grouped) == 0){ progress$entry <- NULL save_modal( x = data$raw, title = "Screening Complete: Save results?" ) }else{ progress$entry <- length(data$grouped) } } }) observeEvent(input$selected_previous, { if(progress$entry > 1){ progress$entry <- progress$entry - 1 } }) observeEvent(input$selected_next, { if((progress$entry + 1) <= length(data$grouped)){ progress$entry <- progress$entry + 1 } }) observeEvent(input$clear_data, { clear_data_modal() }) observeEvent(input$clear_data_confirmed, { data$raw <- NULL data$columns <- NULL data$grouped <- NULL progress$entry <- NULL removeModal() }) observeEvent(input$save_data, { save_modal(data$raw) }) observeEvent(input$save_data_execute, { if(nchar(input$save_filename) == 0){ filename <- "revtools_data" }else{ if(grepl("\\.[[:lower:]]{3}$", input$save_filename)){ filename <- substr( input$save_filename, 1, nchar(input$save_filename) - 4 ) }else{ filename <- input$save_filename } } filename <- paste(filename, input$save_type , sep = ".") switch(input$save_type, "csv" = { write.csv(data$raw, file = filename, row.names = FALSE ) }, "rds" = { saveRDS( data$raw, file = filename ) } ) removeModal() }) observeEvent(input$exit_app, { exit_modal() }) observeEvent(input$exit_app_confirmed, { stopApp(returnValue = invisible(data$raw)) }) } print(shinyApp(ui, server)) }
Return.annualized.excess <- function (Rp, Rb, scale = NA, geometric = TRUE ) { Rp = checkData(Rp) Rb = checkData(Rb) Rp = na.omit(Rp) Rb = na.omit(Rb) n = nrow(Rp) if(is.na(scale)) { freq = periodicity(Rp) switch(freq$scale, minute = {stop("Data periodicity too high")}, hourly = {stop("Data periodicity too high")}, daily = {scale = 252}, weekly = {scale = 52}, monthly = {scale = 12}, quarterly = {scale = 4}, yearly = {scale = 1} ) } Rpa = apply(1 + Rp, 2, prod)^(scale/n) - 1 Rba = apply(1 + Rb, 2, prod)^(scale/n) - 1 if (geometric) { result = (1 + Rpa) / (1 + Rba) - 1 } else { result = Rpa - Rba } dim(result) = c(1,NCOL(Rp)) colnames(result) = colnames(Rp) rownames(result) = "Annualized Return" return(result) }
byf.mshapiro <- function(formula,data) { if (missing(formula)||(length(formula)!=3)) {stop("missing or incorrect formula")} m <- match.call() m[[1]] <- as.name("model.frame") mf <- eval(m,parent.frame()) for (i in 1:ncol(mf)) { if (all(is.na(suppressWarnings(as.numeric(as.character(mf[,i])))))) { fact1 <- i break } } resp <- mf[,1:(fact1-1)] fact <- interaction(mf[,fact1:ncol(mf)],sep=":") dname <- paste(names(mf)[1]," by ",paste(names(mf)[fact1:ncol(mf)],collapse=":"),sep="") nlev <- nlevels(fact) tab <- data.frame(W=integer(nlev),"p-value"=integer(nlev),check.names=FALSE) rownames(tab) <- levels(fact) for (i in 1:nlev) { test <- mshapiro.test(resp[as.numeric(fact)==i,]) tab[i,1] <- test$statistic tab[i,2] <- test$p.value } result <- list(method="Multivariate Shapiro-Wilk normality tests",data.name=dname,tab=tab) class(result) <- "byf.test" return(result) }
StatHalfPoint <- ggproto( "StatHalfPoint", StatBoxplot, required_aes = c("y"), non_missing_aes = "weight", setup_data = function(data, params) { data$x <- data$x %||% 0 data <- remove_missing( data, na.rm = FALSE, vars = "x", name = "stat_boxplot" ) data }, compute_group = function(data, scales, width = NULL, na.rm = FALSE, coef = 1.5) { df <- StatBoxplot$compute_group(data, scales, width, na.rm, coef) df$point_y <- list(data$y) df$point_colour <- list(data$colour) df$point_shape <- list(data$shape) df$point_size <- list(data$size) df$point_fill <- list(data$fill) df$point_alpha <- list(data$alpha) df$point_stroke <- list(data$stroke) df$y <- df$ymax df } )
context("aovEffectSize") test_that("aovEffectSize", { set.seed(1) dat <- createDF(nVP = 20, nTrl = 1, design = list("Comp" = c("comp", "incomp"))) dat <- addDataDF(dat, RT = list("Comp comp" = c(500, 150, 100), "Comp incomp" = c(550, 150, 100))) aovRT <- aov(RT ~ Comp + Error(VP/(Comp)), dat) testthat::expect_error(aovEffectSize(aovRT, effectSize = "pes"), NA) testthat::expect_error(aovEffectSize(aovRT, effectSize = "ges"), NA) aovRT <- ezANOVA(dat, dv = .(RT), wid = .(VP), within = .(Comp), return_aov = TRUE, detailed = TRUE) testthat::expect_error(aovEffectSize(aovRT, effectSize = "pes"), NA) testthat::expect_error(aovEffectSize(aovRT, effectSize = "ges"), NA) })
beach_tc <- generate_transitive_closure(beach_preferences) beach_init_rank <- generate_initial_ranking(beach_tc) constr <- generate_constraints(beach_tc, n_items = 15) model_fit <- compute_mallows(rankings = beach_init_rank, preferences = beach_tc, constraints = constr) \dontrun{ library(parallel) cl <- makeCluster(detectCores() - 1) constr <- generate_constraints(beach_tc, n_items = 15, cl = cl) stopCluster(cl) }
knitr::opts_chunk$set(fig.width=6, fig.height=4.5) options(width=800) library(bayes4psy) library(cowplot) library(dplyr) library(ggplot2) data_all <- after_images stimuli <- after_images_stimuli data_red <- data_all %>% filter(stimuli == "red") data_red <- data.frame(r=data_red$r, g=data_red$g, b=data_red$b) fit_red <- b_color(colors=data_red, chains=1, iter=200, warmup=100) plot_trace(fit_red) plot_hsv(fit_red) data_green <- data_all %>% filter(stimuli == "green") data_green <- data.frame(r=data_green$r, g=data_green$g, b=data_green$b) fit_green <- b_color(colors=data_green, chains=1, iter=200, warmup=100) data_blue <- data_all %>% filter(stimuli == "blue") data_blue <- data.frame(r=data_blue$r, g=data_blue$g, b=data_blue$b) fit_blue <- b_color(colors=data_blue, chains=1, iter=200, warmup=100) data_yellow <- data_all %>% filter(stimuli == "yellow") data_yellow <- data.frame(r=data_yellow$r, g=data_yellow$g, b=data_yellow$b) fit_yellow <- b_color(colors=data_yellow, chains=1, iter=200, warmup=100) data_cyan <- data_all %>% filter(stimuli == "cyan") data_cyan <- data.frame(r=data_cyan$r, g=data_cyan$g, b=data_cyan$b) fit_cyan <- b_color(colors=data_cyan, chains=1, iter=200, warmup=100) data_magenta <- data_all %>% filter(stimuli == "magenta") data_magenta <- data.frame(r=data_magenta$r, g=data_magenta$g, b=data_magenta$b) fit_magenta <- b_color(colors=data_magenta, chains=1, iter=200, warmup=100) trichromatic <- after_images_trichromatic opponent_process <- after_images_opponent_process stimulus <- "red" lines <- list() lines[[1]] <- c(trichromatic[trichromatic$stimuli == stimulus, ]$h, trichromatic[trichromatic$stimuli == stimulus, ]$s, trichromatic[trichromatic$stimuli == stimulus, ]$v) lines[[2]] <- c(opponent_process[opponent_process$stimuli == stimulus, ]$h, opponent_process[opponent_process$stimuli == stimulus, ]$s, opponent_process[opponent_process$stimuli == stimulus, ]$v) points <- list() points[[1]] <- c(stimuli[stimuli$stimuli == stimulus, ]$h_s, stimuli[stimuli$stimuli == stimulus, ]$s_s, stimuli[stimuli$stimuli == stimulus, ]$v_s) plot_red <- plot_distributions_hsv(fit_red, points=points, lines=lines, hsv=TRUE) plot_red <- plot_red + ggtitle("Red") + theme(plot.title = element_text(hjust = 0.5)) stimulus <- "green" lines <- list() lines[[1]] <- c(trichromatic[trichromatic$stimuli == stimulus, ]$h, trichromatic[trichromatic$stimuli == stimulus, ]$s, trichromatic[trichromatic$stimuli == stimulus, ]$v) lines[[2]] <- c(opponent_process[opponent_process$stimuli == stimulus, ]$h, opponent_process[opponent_process$stimuli == stimulus, ]$s, opponent_process[opponent_process$stimuli == stimulus, ]$v) points <- list() points[[1]] <- c(stimuli[stimuli$stimuli == stimulus, ]$h_s, stimuli[stimuli$stimuli == stimulus, ]$s_s, stimuli[stimuli$stimuli == stimulus, ]$v_s) plot_green <- plot_distributions_hsv(fit_green, points=points, lines=lines, hsv=TRUE) plot_green <- plot_green + ggtitle("Green") + theme(plot.title = element_text(hjust = 0.5)) stimulus <- "blue" lines <- list() lines[[1]] <- c(trichromatic[trichromatic$stimuli == stimulus, ]$h, trichromatic[trichromatic$stimuli == stimulus, ]$s, trichromatic[trichromatic$stimuli == stimulus, ]$v) lines[[2]] <- c(opponent_process[opponent_process$stimuli == stimulus, ]$h, opponent_process[opponent_process$stimuli == stimulus, ]$s, opponent_process[opponent_process$stimuli == stimulus, ]$v) points <- list() points[[1]] <- c(stimuli[stimuli$stimuli == stimulus, ]$h_s, stimuli[stimuli$stimuli == stimulus, ]$s_s, stimuli[stimuli$stimuli == stimulus, ]$v_s) plot_blue <- plot_distributions_hsv(fit_blue, points=points, lines=lines, hsv=TRUE) plot_blue <- plot_blue + ggtitle("Blue") + theme(plot.title = element_text(hjust = 0.5)) stimulus <- "yellow" lines <- list() lines[[1]] <- c(trichromatic[trichromatic$stimuli == stimulus, ]$h, trichromatic[trichromatic$stimuli == stimulus, ]$s, trichromatic[trichromatic$stimuli == stimulus, ]$v) lines[[2]] <- c(opponent_process[opponent_process$stimuli == stimulus, ]$h, opponent_process[opponent_process$stimuli == stimulus, ]$s, opponent_process[opponent_process$stimuli == stimulus, ]$v) points <- list() points[[1]] <- c(stimuli[stimuli$stimuli == stimulus, ]$h_s, stimuli[stimuli$stimuli == stimulus, ]$s_s, stimuli[stimuli$stimuli == stimulus, ]$v_s) plot_yellow <- plot_distributions_hsv(fit_yellow, points=points, lines=lines, hsv=TRUE) plot_yellow <- plot_yellow + ggtitle("Yellow") + theme(plot.title = element_text(hjust = 0.5)) stimulus <- "cyan" lines <- list() lines[[1]] <- c(trichromatic[trichromatic$stimuli == stimulus, ]$h, trichromatic[trichromatic$stimuli == stimulus, ]$s, trichromatic[trichromatic$stimuli == stimulus, ]$v) lines[[2]] <- c(opponent_process[opponent_process$stimuli == stimulus, ]$h, opponent_process[opponent_process$stimuli == stimulus, ]$s, opponent_process[opponent_process$stimuli == stimulus, ]$v) points <- list() points[[1]] <- c(stimuli[stimuli$stimuli == stimulus, ]$h_s, stimuli[stimuli$stimuli == stimulus, ]$s_s, stimuli[stimuli$stimuli == stimulus, ]$v_s) plot_cyan <- plot_distributions_hsv(fit_cyan, points=points, lines=lines, hsv=TRUE) plot_cyan <- plot_cyan + ggtitle("Cyan") + theme(plot.title = element_text(hjust = 0.5)) stimulus <- "magenta" lines <- list() lines[[1]] <- c(trichromatic[trichromatic$stimuli == stimulus, ]$h, trichromatic[trichromatic$stimuli == stimulus, ]$s, trichromatic[trichromatic$stimuli == stimulus, ]$v) lines[[2]] <- c(opponent_process[opponent_process$stimuli == stimulus, ]$h, opponent_process[opponent_process$stimuli == stimulus, ]$s, opponent_process[opponent_process$stimuli == stimulus, ]$v) points <- list() points[[1]] <- c(stimuli[stimuli$stimuli == stimulus, ]$h_s, stimuli[stimuli$stimuli == stimulus, ]$s_s, stimuli[stimuli$stimuli == stimulus, ]$v_s) plot_magenta <- plot_distributions_hsv(fit_magenta, points=points, lines=lines, hsv=TRUE) plot_magenta <- plot_magenta + ggtitle("Magenta") + theme(plot.title = element_text(hjust = 0.5)) plot_grid(plot_red, plot_green, plot_blue, plot_yellow, plot_cyan, plot_magenta, ncol=3, nrow=2, scale=0.9)
retrieve <- function(sso, what, ...) { sso_check(sso) .retrieve(sso, what, ...) } .retrieve <- function(sso, what, ...) { if (what %in% c("rhat", "rhats", "Rhat", "Rhats", "r_hat", "R_hat")) return(retrieve_rhat(sso, ...)) if (what %in% c("N_eff", "n_eff", "neff", "Neff", "ess", "ESS")) return(retrieve_neff(sso, ...)) if (grepl_ic("mean", what)) return(retrieve_mean(sso, ...)) if (grepl_ic("sd", what)) return(retrieve_sd(sso, ...)) if (what %in% c("se_mean", "mcse")) return(retrieve_mcse(sso, ...)) if (grepl_ic("quant", what)) return(retrieve_quant(sso, ...)) if (grepl_ic("median", what)) return(retrieve_median(sso, ...)) if (grepl_ic("tree", what) | grepl_ic("depth", what)) return(retrieve_max_treedepth(sso, ...)) if (grepl_ic("step", what)) return(retrieve_avg_stepsize(sso, ...)) if (grepl_ic("diverg", what)) return(retrieve_prop_divergent(sso, ...)) if (grepl_ic("accept", what)) return(retrieve_avg_accept(sso, ...)) } retrieve_rhat <- function(sso, pars) { if (missing(pars)) return(slot(sso, "summary")[, "Rhat"]) slot(sso, "summary")[pars, "Rhat"] } retrieve_neff <- function(sso, pars) { if (missing(pars)) return(slot(sso, "summary")[, "n_eff"]) slot(sso, "summary")[pars, "n_eff"] } retrieve_mcse <- function(sso, pars) { if (missing(pars)) return(slot(sso, "summary")[, "se_mean"]) slot(sso, "summary")[pars, "se_mean"] } retrieve_quant <- function(sso, pars) { cols <- paste0(100 * c(0.025, 0.25, 0.5, 0.75, 0.975), "%") if (missing(pars)) return(slot(sso, "summary")[, cols]) slot(sso, "summary")[pars, cols] } retrieve_median <- function(sso, pars) { if (missing(pars)) return(retrieve_quant(sso)[, "50%"]) retrieve_quant(sso, pars)[, "50%"] } retrieve_mean <- function(sso, pars) { if (missing(pars)) return(slot(sso, "summary")[, "mean"]) slot(sso, "summary")[pars, "mean"] } retrieve_sd <- function(sso, pars) { if (missing(pars)) return(slot(sso, "summary")[, "sd"]) slot(sso, "summary")[pars, "sd"] } .sp_check <- function(sso) { if (identical(slot(sso, "sampler_params"), list(NA))) stop("No sampler parameters found", call. = FALSE) } .which_rows <- function(sso, inc_warmup) { if (inc_warmup) { seq_len(slot(sso, "n_iter")) } else { seq(from = 1 + slot(sso, "n_warmup"), to = slot(sso, "n_iter")) } } retrieve_max_treedepth <- function(sso, inc_warmup = FALSE) { .sp_check(sso) rows <- .which_rows(sso, inc_warmup) max_td <- sapply(slot(sso, "sampler_params"), function(x) max(x[rows, "treedepth__"])) names(max_td) <- paste0("chain", 1:length(max_td)) max_td } retrieve_prop_divergent <- function(sso, inc_warmup = FALSE) { .sp_check(sso) rows <- .which_rows(sso, inc_warmup) prop_div <- sapply(slot(sso, "sampler_params"), function(x) mean(x[rows, "divergent__"])) names(prop_div) <- paste0("chain", 1:length(prop_div)) prop_div } retrieve_avg_stepsize <- function(sso, inc_warmup = FALSE) { .sp_check(sso) rows <- .which_rows(sso, inc_warmup) avg_ss <- sapply(slot(sso, "sampler_params"), function(x) mean(x[rows, "stepsize__"])) names(avg_ss) <- paste0("chain", 1:length(avg_ss)) avg_ss } retrieve_avg_accept <- function(sso, inc_warmup = FALSE) { .sp_check(sso) rows <- .which_rows(sso, inc_warmup) avg_accept <- sapply(slot(sso, "sampler_params"), function(x) mean(x[rows, "accept_stat__"])) names(avg_accept) <- paste0("chain", 1:length(avg_accept)) avg_accept }
test_that("Test derivative checker.", { f <- function(x, a) { sum((x - a )^2) } f_grad <- function(x, a) { 2 * (x - a) } a <- c(0.754995959345251, 0.964991861954331, 0.0414307734463364, 0.42781219445169, 0.6517094373703, 0.838369226781651, 0.774285392835736, 0.531992698321119, 0.768715722020715, 0.785174649208784) res <- suppressMessages(check.derivatives( .x = 1:10, func = f, func_grad = f_grad, check_derivatives_print = 'none', a = a )) expect_equal(sum(res$flag_derivative_warning), 0) f_grad <- function(x, a) { 2 * (x - a) + c(0, .1, rep(0, 8)) } res <- suppressMessages(check.derivatives( .x = 1:10, func = f, func_grad = f_grad, check_derivatives_print = 'none', a = a )) expect_equal(sum(res$flag_derivative_warning), 1) g <- function(x, a) { c(sum(x - a), sum((x - a)^2)) } g_grad <- function(x, a) { rbind(rep(1, length(x)) + c(0, .01, rep(0, 8)), 2 * (x - a) + c(0, .1, rep(0, 8))) } res <- suppressMessages(check.derivatives( .x = 1:10, func = g, func_grad = g_grad, check_derivatives_print = 'none', a = a )) expect_equal(sum(res$flag_derivative_warning), 2) })
xwfGridsearch <- function(y, xx, t, n.i, psi.list = default_psi(), F = NULL, z = NULL, iter = 3, w = function(t, i, b, left) ifelse(left, min(1, (1-F(xx[[i]](t)))/(1-b)), min(1, F(xx[[i]](t))/b)), rel.shift = .001, progressbar = TRUE) { if(!is.function(psi.list[[1]])) stop("local feature 'psi.list' is not specified as a list of functions") if(!is.function(xx[[1]])) stop("trajectories 'xx' is not specified as a list of functions") n <- length(xx) if(length(n.i) == 1) n.i <- rep(n.i, n) t.min <- apply(X = t, MARGIN = 1, FUN = min, na.rm = T) t.max <- apply(X = t, MARGIN = 1, FUN = max, na.rm = T) t.range <- t.max-t.min p <- length(psi.list) XWFmatL <- matrix(data = NA_real_, nrow = p*2^(iter+1), ncol = n+2) XWFmatR <- matrix(data = NA_real_, nrow = p*2^(iter+1), ncol = n+2) countL <- 0 countR <- 0 findXWFl <- function(p, b) { temp <- which(XWFmatL[ , 1] == p & XWFmatL[ , 2] == b) if(length(temp) == 1) return(XWFmatL[temp, -(1:2)]) countL <<- countL+1 XWFmatL[countL, 1:2] <<- c(p, b) XWFmatL[countL, -(1:2)] <<- xwf(xx = xx, t = t, n.i = n.i, psi = psi.list[[p]], w = function(t, i) w(t, i, b = b, left = TRUE), t.min = t.min, t.max = t.max, t.range = t.range) return(XWFmatL[countL, -(1:2)]) } findXWFr <- function(p, b) { temp <- which(XWFmatR[ , 1] == p & XWFmatR[ , 2] == b) if(length(temp) == 1) return(XWFmatR[temp, -(1:2)]) countR <<- countR+1 XWFmatR[countR, 1:2] <<- c(p, b) XWFmatR[countR, -(1:2)] <<- xwf(xx = xx, t = t, n.i = n.i, psi = psi.list[[p]], w = function(t, i) w(t, i, b = b, left = FALSE), t.min = t.min, t.max = t.max, t.range = t.range) return(XWFmatR[countR, -(1:2)]) } wL <- matrix(nrow = n, ncol = p) wR <- wL for(pp in 1:p) { wL[, pp] <- findXWFl(p = pp, b = .25) wR[, pp] <- findXWFr(p = pp, b = .75) } modelfit <- xwfGAM(wL = wL, wR = wR, y = y, z = z) score <- modelfit$gcv.ubre left <- rep(.25, p) right <- rep(.75, p) if(progressbar) pb <- txtProgressBar(max = iter, style = 3) for(s in 1:iter) { grid.width <- .5/2^s for(pp in 1:p) { wLl <- wL wLl[, pp] <- findXWFl(p = pp, b = left[pp] - grid.width) modelfit.l <- tryCatch( xwfGAM(wL = wLl, wR = wR, y = y, z = z), error = function(e) { cat("ERROR :",conditionMessage(e), "\n") return(modelfit) } ) score.l <- modelfit.l$gcv.ubre wLr <- wL wLr[, pp] <- findXWFl(p = pp, b = left[pp] + grid.width) modelfit.r <- tryCatch( xwfGAM(wL = wLr, wR = wR, y = y, z = z), error = function(e) { cat("ERROR :",conditionMessage(e), "\n") return(modelfit) } ) score.r <- modelfit.l$gcv.ubre temp <- which.min(c(score.l, score.r, score)) if(temp == 1) { left[pp] <- left[pp] - grid.width/2 wL <- wLl score <- score.l modelfit <- modelfit.l } else if(temp == 2) { left[pp] <- left[pp] + grid.width/2 wL <- wLr score <- score.r modelfit <- modelfit.r } wRl <- wR wRl[, pp] <- findXWFr(p = pp, b = right[pp] - grid.width) modelfit.l <- tryCatch( xwfGAM(wL = wL, wR = wRl, y = y, z = z), error = function(e) { cat("ERROR :",conditionMessage(e), "\n") return(modelfit) } ) score.l <- modelfit.l$gcv.ubre wRr <- wR wRr[, pp] <- findXWFr(p = pp, b = right[pp] + grid.width) modelfit.r <- tryCatch( xwfGAM(wL = wL, wR = wRr, y = y, z = z), error = function(e) { cat("ERROR :",conditionMessage(e), "\n") return(modelfit) } ) score.r <- modelfit.r$gcv.ubre temp <- which.min(c(score.l, score.r, score)) if(temp == 1) { right[pp] <- right[pp] - grid.width/2 wR <- wRl score <- score.l modelfit <- modelfit.l } else if(temp == 2) { right[pp] <- right[pp] + grid.width/2 wR <- wRr score <- score.r modelfit <- modelfit.r } } if(progressbar) setTxtProgressBar(pb, s) } if(progressbar) close(pb) return(list(wL = wL, wR = wR, b.left = left, b.right = right, GAMobject = modelfit)) }
"orient.pdb" <- function (pdb, atom.subset = NULL, verbose = TRUE ) { if (missing(pdb)) { stop("pdb.orient: must supply 'pdb' object, e.g. from 'read.pdb'") } if(is.list(pdb)) { xyz <- pdb$xyz } else { if (!is.vector(pdb)) { stop("pdb.orient: input 'pdb' should NOT be a matrix") } xyz <- pdb } xyz <- matrix( xyz, ncol=3, byrow=TRUE ) if (is.null(atom.subset)) atom.subset <- c(1:nrow(xyz)) if (length(atom.subset) > nrow(xyz)) { stop("pdb.orient: there are more 'atom.subset' inds than there atoms") } xyz.bar <- apply(xyz[atom.subset, ], 2, mean) xyz <- sweep(xyz, 2, xyz.bar) S <- var(xyz[atom.subset, ]) prj <- eigen(S, symmetric = TRUE) A <- prj$vectors b <- A[,1]; c <- A[,2] A[1,3] <- (b[2] * c[3]) - (b[3] * c[2]) A[2,3] <- (b[3] * c[1]) - (b[1] * c[3]) A[3,3] <- (b[1] * c[2]) - (b[2] * c[1]) z <- xyz %*% (A) if (verbose) { cat("Dimensions:", "\n") cat(" x min=", round(min(z[, 1]), 3), " max=", round(max(z[, 1]), 3), " range=", round(max(z[, 1]) - min(z[, 1]), 3), "\n") cat(" y min=", round(min(z[, 2]), 3), " max=", round(max(z[, 2]), 3), " range=", round(max(z[, 2]) - min(z[, 2]), 3), "\n") cat(" z min=", round(min(z[, 3]), 3), " max=", round(max(z[, 3]), 3), " range=", round(max(z[, 3]) - min(z[, 3]), 3), "\n") } z <- round(as.vector(t(z)),3) z <- as.xyz(z) invisible(z) }
create_git_log_file <- function( username = c("Dean Attali", "daattali"), repos = c("daattali/beautiful-jekyll", "daattali/shinyjs", "daattali/timevis", "jennybc/bingo"), dir ="git_repos_vis", logfile = "project-logs.csv") { if (!requireNamespace("git2r", quietly = TRUE)) { stop("You need to install the 'git2r' package", call. = FALSE) } if (!dir.exists(dir)) { dir.create(dir, recursive = TRUE, showWarnings = FALSE) } dir <- normalizePath(dir) logs <- lapply(repos, function(repo) { if (!grepl("/", repo)) { stop(repo, " is not a valid repo name (you forgot to specify the user)", call. = FALSE) } repo_name <- sub(".*/(.*)", replacement = "\\1", repo) repo_dir <- file.path(dir, repo_name) if (dir.exists(repo_dir)) { message("Note: Not cloning ", repo, " because a folder with that name already exists") } else { message("Cloning ", repo) repo_url <- paste0("https://github.com/", repo) git2r::clone(url = repo_url, local_path = repo_dir, progress = FALSE) } repo <- git2r::repository(repo_dir) commits <- git2r::commits(repo) dates <- unlist(lapply(commits, function(commit) { if (commit$author$name %in% username) { as.character(as.POSIXlt(commit$author$when$time, origin = "1970-01-01")) } else { NULL } })) data.frame(project = rep(repo_name, length(dates)), timestamp = dates, stringsAsFactors = FALSE) }) logs <- do.call(rbind, logs) logfile <- file.path(dir, logfile) write.csv(logs, logfile, quote = FALSE, row.names = FALSE) if (file.exists(logfile)) { message("Created logfile at ", normalizePath(logfile)) } else { stop("The git log file could not get creatd for some reason", call. = FALSE) } return(logfile) } create_git_log_file( username = c("Dean Attali", "daattali"), repos = c("daattali/addinslist", "daattali/beautiful-jekyll", "jennybc/bingo", "daattali/colourpicker", "daattali/daattali.github.io", "daattali/ddpcr","daattali/ggExtra", "daattali/lightsout", "daattali/rsalad", "daattali/shinyjs", "daattali/statsTerrorismProject", "daattali/timevis", "daattali/shinyforms", "daattali/advanced-shiny", "daattali/shinyalert"), logfile = "dean-projects.csv" ) create_git_log_file( username = c("Hadley Wickham", "hadley"), repos = c("tidyverse/forcats", "r-lib/pkgdown", "tidyverse/haven", "hadley/adv-r", "tidyverse/purrr", "tidyverse/dplyr", "tidyverse/dbplyr","tidyverse/tidyr", "tidyverse/ggplot2", "tidyverse/stringr", "r-lib/fs", "r-lib/testthat", "r-lib/usethis", "r-lib/devtools", "rstudio/ggvis", "r-lib/httr", "tidyverse/tibble","hadley/lazyeval", "hadley/multidplyr", "tidyverse/readr", "hadley/plyr", "hadley/rvest", "r-lib/xml2"), logfile = "hadley-projects.csv" ) create_git_log_file( username = c("Jenny Bryan", "jennybc"), repos = c("jennybc/bingo", "rsheets/cellranger", "r-lib/devtools", "jennybc/gapminder", "jennybc/githug", "jennybc/googlesheets", "jennybc/jadd", "rsheets/jailbreakr", "rsheets/linen", "jennybc/r-graph-catalog", "rsheets/rexcel", "tidyverse/reprex", "r-lib/usethis", "tidyverse/googledrive"), logfile = "jenny-projects.csv" ) create_git_log_file( username = c("Yihui Xie", "yihui"), repos = c("rstudio/leaflet", "rstudio/bookdown", "yihui/formatR", "yihui/knitr", "yihui/knitr-examples", "yihui/r-ninja", "rstudio/rmarkdown", "rstudio/shiny", "rstudio/DT", "yihui/servr", "rstudio/bookdown"), logfile = "yihui-projects.csv" ) create_git_log_file( username = c("Jim Hester", "jimhester"), repos = c("r-lib/devtools", "r-lib/fs", "r-lib/covr", "tidyverse/glue", "jimhester/lintr", "jimhester/gmailr", "r-lib/xml2", "r-dbi/odbc", "tidyverse/readr", "jimhester/knitrBootstrap", "travis-ci/travis-build"), logfile = "jim-projects.csv" )
signature_xpath <- paste( "(*|descendant-or-self::exprlist/*)[LEFT_ASSIGN/preceding-sibling::expr[count(*)=1]/SYMBOL[text() = '{token_quote}' and @line1 <= {row}]]/expr[FUNCTION|OP-LAMBDA]", "(*|descendant-or-self::exprlist/*)[EQ_ASSIGN/preceding-sibling::expr[count(*)=1]/SYMBOL[text() = '{token_quote}' and @line1 <= {row}]]/expr[FUNCTION|OP-LAMBDA]", sep = "|") signature_reply <- function(id, uri, workspace, document, point) { if (!check_scope(uri, document, point)) { return(Response$new(id, list(signatures = NULL))) } result <- document$detect_call(point) SignatureInformation <- list() activeSignature <- -1 sig <- NULL if (nzchar(result$token)) { xdoc <- workspace$get_parse_data(uri)$xml_doc if (result$accessor == "" && !is.null(xdoc)) { row <- point$row + 1 col <- point$col + 1 enclosing_scopes <- xdoc_find_enclosing_scopes(xdoc, row, col, top = TRUE) xpath <- glue(signature_xpath, row = row, token_quote = xml_single_quote(result$token)) all_defs <- xml_find_all(enclosing_scopes, xpath) if (length(all_defs)) { last_def <- all_defs[[length(all_defs)]] func_line1 <- as.integer(xml_attr(last_def, "line1")) func_col1 <- as.integer(xml_attr(last_def, "col1")) func_line2 <- as.integer(xml_attr(last_def, "line2")) func_col2 <- as.integer(xml_attr(last_def, "col2")) func_text <- get_range_text(document$content, line1 = func_line1, col1 = func_col1, line2 = func_line2, col2 = func_col2 ) func_expr <- parse(text = func_text, keep.source = FALSE) sig <- get_signature(result$token, func_expr[[1]]) documentation <- "" doc_line1 <- detect_comments(document$content, func_line1 - 1) + 1 if (doc_line1 < func_line1) { comment <- document$content[doc_line1:(func_line1 - 1)] doc <- convert_comment_to_documentation(comment) doc_string <- NULL if (is.character(doc)) { doc_string <- doc } else if (is.list(doc)) { if (is.null(doc$markdown)) { doc_string <- doc$description } else { doc_string <- doc$markdown } } if (is.null(doc_string)) { doc_string <- "" } documentation <- list(kind = "markdown", value = doc_string) } SignatureInformation <- list(list( label = sig, documentation = documentation )) activeSignature <- 0 } } if (is.null(sig)) { sig <- workspace$get_signature(result$token, result$package, exported_only = result$accessor != ":::") logger$info("sig: ", sig) if (!is.null(sig)) { doc <- workspace$get_documentation(result$token, result$package, isf = TRUE) doc_string <- NULL if (is.character(doc)) { doc_string <- doc } else if (is.list(doc)) { doc_string <- doc$description } if (is.null(doc_string)) { doc_string <- "" } documentation <- list(kind = "markdown", value = doc_string) SignatureInformation <- list(list( label = sig, documentation = documentation )) activeSignature <- 0 } } } Response$new( id, result = list( signatures = SignatureInformation, activeSignature = activeSignature ) ) }
safetruncate <- function(flatfile, right, left){ sl <- unique(flatfile$Sample.Label) find <- flatfile$distance <= right & flatfile$distance >= left find[is.na(find)] <- TRUE fsl <- unique(flatfile$Sample.Label[find]) if(length(fsl) != length(sl)){ sl_diff <- setdiff(sl, fsl) find[flatfile$Sample.Label %in% sl_diff] <- TRUE flatfile[flatfile$Sample.Label %in% sl_diff, ]$distance <- NA if(!is.null(flatfile$object)){ flatfile[flatfile$Sample.Label %in% sl_diff, ]$object <- NA } if(!is.null(flatfile$size)){ flatfile[flatfile$Sample.Label %in% sl_diff, ]$size <- NA } } flatfile <- flatfile[find, , drop=FALSE] return(flatfile) }
gnedenko.exp.test<-function(x, R=length(x)/2, simulate.p.value=FALSE, nrepl=2000) { DNAME <- deparse(substitute(x)) R<-round(R) n<-length(x) x<-sort(x) x<-c(0,x) D<-(n:1)*(x[2:(n+1)]-x[1:n]) t<-(sum(D[1:R])/R)/(sum(D[(R+1):n])/(n-R)) l<-0 if(simulate.p.value) { for(i in 1:nrepl) { z<-rexp(n) z<-sort(z) z<-c(0,z) D<-(n:1)*(z[2:(n+1)]-z[1:n]) T<-(sum(D[1:R])/R)/(sum(D[(R+1):n])/(n-R)) if(abs(T)>abs(t)) l=l+1 } p.value<-l/nrepl } else { p.value<-2*min(pf(t,2*R,2*(n-R)),1-pf(t,2*R,2*(n-R))) } RVAL<-list(statistic=c(Q=t), p.value=p.value, method="Gnedenko's F-test of exponentiality",data.name = DNAME) class(RVAL)<-"htest" return(RVAL) }
HWIlr <-function(X,zeroadj=0.5) { X[X==0] <- zeroadj if(is.matrix(X)) { c1 <- (log(X[,1]/X[,3]))/sqrt(2) c2 <- (log(X[,1]*X[,3]/(X[,2]^2)))/sqrt(6) Y <- cbind(c1,c2) } if(is.vector(X)) { c1 <- (log(X[1]/X[3]))/sqrt(2) c2 <- (log(X[1]*X[3]/(X[2]^2)))/sqrt(6) Y <- c(c1,c2) } return(Y) }
mod_SSPD_ui <- function(id){ ns <- NS(id) tagList( sidebarLayout( sidebarPanel(width = 4, radioButtons(inputId = ns("owndataSSPD"), label = "Do you have your own data?", choices = c("Yes", "No"), selected = "No", inline = TRUE, width = NULL, choiceNames = NULL, choiceValues = NULL), selectInput(inputId = ns("kindSSPD"), label = "Select SSPD Type:", choices = c("Split-Split Plot in a RCBD" = "SSPD_RCBD", "Split-Split Plot in a CRD" = "SSPD_CRD"), multiple = FALSE), conditionalPanel("input.owndataSSPD == 'Yes'", ns = ns, fluidRow( column(8, style=list("padding-right: 28px;"), fileInput(ns("file.SSPD"), label = "Upload a csv File:", multiple = FALSE)), column(4,style=list("padding-left: 5px;"), radioButtons(ns("sep.sspd"), "Separator", choices = c(Comma = ",", Semicolon = ";", Tab = "\t"), selected = ",")) ) ), conditionalPanel("input.owndataSPD != 'Yes'", ns = ns, numericInput(ns("mp.sspd"), label = "Whole-plots:", value = NULL, min = 2), numericInput(ns("sp.sspd"), label = "Sub-plots Within Whole-plots:", value = NULL, min = 2), numericInput(ns("ssp.sspd"), label = "Sub-Sub-plots within Sub-plots:", value = NULL, min = 2) ), fluidRow( column(6, style=list("padding-right: 28px;"), numericInput(ns("reps.sspd"), label = "Input value = 2, min = 2) ), column(6, style=list("padding-left: 5px;"), numericInput(ns("l.sspd"), label = "Input value = 1, min = 1) ) ), fluidRow( column(6,style=list("padding-right: 28px;"), textInput(ns("plot_start.sspd"), "Starting Plot Number:", value = 101) ), column(6,style=list("padding-left: 5px;"), textInput(ns("Location.sspd"), "Input Location:", value = "FARGO") ) ), numericInput(inputId = ns("myseed.sspd"), label = "Seed Number:", value = 123, min = 1), fluidRow( column(6, downloadButton(ns("downloadData.sspd"), "Save Experiment!", style = "width:100%") ), column(6, actionButton(ns("Simulate.sspd"), "Simulate!", icon = icon("cocktail"), width = '100%') ) ) ), mainPanel( width = 8, tabsetPanel( tabPanel("Field Book", DT::DTOutput(ns("SSPD.output"))) ) ) ) ) } mod_SSPD_server <- function(id){ moduleServer( id, function(input, output, session){ ns <- session$ns wp <- paste("IRR_", c("NO", "Yes"), sep = "") sp <- c("NFung", paste("Fung", 1:4, sep = "")) ssp <- paste("Beans", 1:10, sep = "") entryListFormat_SSPD <- data.frame(list(WHOLPLOT = c(wp, rep("", 8)), SUBPLOT = c(sp, rep("", 5)), SUB_SUBPLOTS = ssp)) entriesInfoModal_SSPD <- function() { modalDialog( title = div(tags$h3("Important message", style = "color: red;")), h4("Please, follow the format shown in the following example. Make sure to upload a CSV file!"), renderTable(entryListFormat_SSPD, bordered = TRUE, align = 'c', striped = TRUE), easyClose = FALSE ) } toListen <- reactive({ list(input$owndataSSPD) }) observeEvent(toListen(), { if (input$owndataSSPD == "Yes") { showModal( shinyjqui::jqui_draggable( entriesInfoModal_SSPD() ) ) } }) getData.sspd <- reactive({ req(input$file.SSPD) inFile <- input$file.SSPD dataUp.sspd <- load_file(name = inFile$name, path = inFile$datapat, sep = input$sep.sspd) return(list(dataUp.sspd = dataUp.sspd)) }) sspd_reactive <- reactive({ req(input$plot_start.sspd) req(input$Location.sspd) req(input$myseed.sspd) req(input$l.sspd) l.sspd <- as.numeric(input$l.sspd) seed.sspd <- as.numeric(input$myseed.sspd) plot_start.sspd <- as.vector(unlist(strsplit(input$plot_start.sspd, ","))) plot_start.sspd <- as.numeric(plot_start.sspd) loc.sspd <- as.vector(unlist(strsplit(input$Location.sspd, ","))) req(input$reps.sspd) reps.sspd <- as.numeric(input$reps.sspd) if (input$kindSSPD == "SSPD_RCBD") { if (input$owndataSSPD == "Yes") { wp.sspd <- NULL sp.sspd <- NULL ssp.sspd <- NULL data.sspd <- getData.sspd()$dataUp.sspd }else { req(input$mp.sspd, input$sp.sspd) req(input$ssp.sspd) wp.sspd <- as.numeric(input$mp.sspd) sp.sspd <- as.numeric(input$sp.sspd) ssp.sspd <- as.numeric(input$ssp.sspd) data.sspd <- NULL } type <- 2 }else { if (input$owndataSSPD == "Yes") { wp.sspd <- NULL sp.sspd <- NULL ssp.sspd <- NULL data.sspd <- getData.sspd()$dataUp.sspdd }else { req(input$mp.sspd, input$sp.sspd) req(input$ssp.sspd) wp.sspd <- as.numeric(input$mp.sspd) sp.sspd <- as.numeric(input$sp.sspd) ssp.sspd <- as.numeric(input$ssp.sspd) data.sspd <- NULL } type <- 1 } SSPD <- split_split_plot(wp = wp.sspd, sp = sp.sspd, ssp = ssp.sspd, reps = reps.sspd, l = l.sspd, plotNumber = plot_start.sspd, seed = seed.sspd, type = type, locationNames = loc.sspd, data = data.sspd) }) valsspd <- reactiveValues(maxV.sspd = NULL, minV.sspd = NULL, Trial.sspd = NULL) simuModal.sspd <- function(failed = FALSE) { modalDialog( selectInput(inputId = ns("TrialsRowCol"), label = "Select One:", choices = c("YIELD", "MOISTURE", "HEIGHT", "Other")), conditionalPanel("input.TrialsRowCol == 'Other'", ns = ns, textInput(inputId = ns("Otherspd"), label = "Input Trial Name:", value = NULL) ), fluidRow( column(6, numericInput(ns("min.sspd"), "Input the min value", value = NULL) ), column(6, numericInput(ns("max.sspd"), "Input the max value", value = NULL) ) ), if (failed) div(tags$b("Invalid input of data max and min", style = "color: red;")), footer = tagList( modalButton("Cancel"), actionButton(ns("ok.sspd"), "GO") ) ) } observeEvent(input$Simulate.sspd, { req(sspd_reactive()$fieldBook) showModal( shinyjqui::jqui_draggable( simuModal.sspd() ) ) }) observeEvent(input$ok.sspd, { req(input$max.sspd, input$min.sspd) if (input$max.sspd > input$min.sspd && input$min.sspd != input$max.sspd) { valsspd$maxV.sspd <- input$max.sspd valsspd$minV.sspd <- input$min.sspd if(input$TrialsRowCol == "Other") { req(input$Otherspd) if(!is.null(input$Otherspd)) { valsspd$Trial.sspd <- input$Otherspd }else showModal(simuModal.sspd(failed = TRUE)) }else { valsspd$Trial.sspd <- as.character(input$TrialsRowCol) } removeModal() }else { showModal( shinyjqui::jqui_draggable( simuModal.sspd(failed = TRUE) ) ) } }) simuData_sspd <- reactive({ req(sspd_reactive()$fieldBook) if(!is.null(valsspd$maxV.sspd) && !is.null(valsspd$minV.sspd) && !is.null(valsspd$Trial.sspd)) { max <- as.numeric(valsspd$maxV.sspd) min <- as.numeric(valsspd$minV.sspd) df.sspd <- sspd_reactive()$fieldBook cnamesdf.sspd <- colnames(df.sspd) df.sspd <- norm_trunc(a = min, b = max, data = df.sspd) colnames(df.sspd) <- c(cnamesdf.sspd[1:(ncol(df.sspd) - 1)], valsspd$Trial.sspd) df.sspd <- df.sspd[order(df.sspd$ID),] }else { df.sspd <- sspd_reactive()$fieldBook } return(list(df = df.sspd, a = a)) }) output$SSPD.output <- DT::renderDataTable({ df <- simuData_sspd()$df options(DT.options = list(pageLength = nrow(df), autoWidth = FALSE, scrollX = TRUE, scrollY = "500px")) DT::datatable(df, rownames = FALSE, options = list( columnDefs = list(list(className = 'dt-center', targets = "_all")))) }) output$downloadData.sspd <- downloadHandler( filename = function() { loc <- paste("Split-Split-Plot_", sep = "") paste(loc, Sys.Date(), ".csv", sep = "") }, content = function(file) { df <- as.data.frame(simuData_sspd()$df) write.csv(df, file, row.names = FALSE) } ) }) }
context("Workspace") source("utils.R") subscription_id <- Sys.getenv("TEST_SUBSCRIPTION_ID") resource_group <- Sys.getenv("TEST_RESOURCE_GROUP") location <- Sys.getenv("TEST_LOCATION") test_that("create, get, save, load and delete workspace", { skip('skip') workspace_name <- paste0("test_ws", build_num) existing_ws <- create_workspace(workspace_name, subscription_id = subscription_id, resource_group = resource_group, location = location) ws <- get_workspace(workspace_name, subscription_id = subscription_id, resource_group = resource_group) expect_equal(ws$name, existing_ws$name) get_workspace_details(ws) kv <- get_default_keyvault(ws) expect_equal(length(kv$list_secrets()), 0) write_workspace_config(existing_ws) loaded_ws <- load_workspace_from_config(".") expect_equal(loaded_ws$name, workspace_name) delete_workspace(existing_ws) ws <- get_workspace("random", subscription_id = subscription_id) expect_equal(ws, NULL) })
if (requiet("testthat") && requiet("insight") && requiet("lme4")) { data(mtcars) data(sleepstudy) data(iris) m1 <- lm(mpg ~ 0 + gear, data = mtcars) m2 <- lm(mpg ~ gear, data = mtcars) m3 <- suppressWarnings(lmer(Reaction ~ 0 + Days + (Days | Subject), data = sleepstudy)) m4 <- lmer(Reaction ~ Days + (Days | Subject), data = sleepstudy) m5 <- suppressWarnings(lmer(Reaction ~ 0 + (Days | Subject), data = sleepstudy)) m6 <- lm(Sepal.Length ~ 0 + Petal.Width + Species, data = iris) m7 <- lm(Sepal.Length ~ -1 + Petal.Width + Species, data = iris) m8 <- lm(Sepal.Length ~ Petal.Width + Species, data = iris) m9 <- lm(Sepal.Length ~ Petal.Width + Species + 1, data = iris) test_that("has_intercept", { expect_true(has_intercept(m2)) expect_false(has_intercept(m1)) expect_true(has_intercept(m4)) expect_false(has_intercept(m3)) expect_false(has_intercept(m5)) expect_false(has_intercept(m6)) expect_false(has_intercept(m7)) expect_true(has_intercept(m8)) expect_true(has_intercept(m9)) }) }
plot.gconsensus <- function(x, ...) { display.order <- getOption("display.order") display.shownames <- getOption("display.shownames") display.orientation <- getOption("display.orientation") display.length.out <- getOption("display.length.out") display.tab.size <- getOption("display.tab.size") display.signif.digits <- getOption("display.signif.digits") if (is.null(display.order)) display.order <- "location" if (is.null(display.shownames)) display.shownames <- FALSE if (is.null(display.orientation)) display.orientation <- "horizontal" if (is.null(display.length.out)) display.length.out <- 101 if (is.null(display.tab.size)) display.tab.size <- 12 if (is.null(display.signif.digits)) display.signif.digits <- 2 mss <- rep(TRUE, length(x$ilab$data$mean)) n <- length(x$ilab$data$mean[mss]) subset <- x$ilab$data$included[mss] == 1 if (display.order == "location") { os <- order(x$ilab$data$mean[mss]) } else if (display.order == "dispersion") { os <- order(x$ilab$data$sd[mss]) } else { os <- order(x$ilab$data$participant[mss]) } if (display.shownames) { xlab <- x$ilab$data$participant[mss] } else { xlab <- x$ilab$data$code[mss] } my.pch <- x$ilab$data$symbol[mss] my.color <- x$ilab$data$symbol.fillcolor[mss] p <- length(x$ilab$data$mean[mss]) ss <- x$ilab$data$included[mss] == 1 mm <- sum(ss) k <- 2 if (x$config$expansion.factor.type == "naive") { k <- 2 } else { if (x$config$expansion.factor.type == "large sample") { k <- qnorm(1 - x$config$alpha / 2) } else { k <- qt(1 - x$config$alpha / 2, mm - 1) } } tau2 <- 0 if (x$method == "DL1" | x$method == "DL2" | x$method == "PM" | x$method == "MPM") { tau2 <- x$sb2 } else if (x$method == "VRMLE" | x$method == "MCM.median" | x$method == "HB" | x$method == "MPM.LP") { tau2 <- x$var.b } else { tau2 <- 0 } sxlab <- c(xlab) for (i in 1:p) if (!subset[i]) { sxlab[i] <- paste0("<", xlab[i], ">") } else sxlab[i] <- paste(xlab[i]) wlim <- c(0, p+3) zlim <- range(c(x$ilab$data$mean - x$ilab$data$k * sqrt(x$ilab$data$sd^2 + (x$fit$tau)^2), x$fit$value - x$fit$U), c(x$ilab$data$mean + x$ilab$data$k * sqrt(x$ilab$data$sd^2 + (x$fit$tau)^2), x$fit$value + x$fit$U), na.rm = TRUE) wlab <- "" zlab <- x$ilab$info$value[x$ilab$info$variable == "Units"] if (display.orientation == "horizontal") { xx <- c(1:p) yy <- x$ilab$data$mean[mss][os] xlim <- wlim ylim <- zlim xlab <- wlab ylab <- zlab xaxis <- 1 yaxis <- 2 x.separator <- c(p+1, p+1) y.separator <- c(-1, 1)*10*max(abs(x$ilab$data$mean), na.rm = TRUE) } else { xx <- x$ilab$data$mean[mss][os] yy <- c(1:p) xlim <- zlim ylim <- wlim xlab <- zlab ylab <- wlab xaxis <- 2 yaxis <- 1 x.separator <- c(-1, 1)*10*max(abs(x$ilab$data$mean), na.rm = TRUE) y.separator <- c(p+1, p+1) } plot(xx, yy, xlim = xlim, ylim = ylim, axes = FALSE, xlab = xlab, ylab = ylab, main = paste0(x$study, " - ", x$measurand), cex = 1.5, pch = 20, ... ) axis(yaxis) axis(xaxis, at = 1:p, labels = sxlab[os], las = 2) for (i in 1:p) if (!subset[os][i]) { axis(xaxis, at = i, labels = sxlab[os][i], las = 2, col.axis = 2) } box() lines(x.separator, y.separator) xx.pdf <- seq(min(zlim), max(zlim), length.out = display.length.out) yy.mat <- matrix(NA, display.length.out, p) for (i in (c(1:p)[ss])) yy.mat[,i] <- dnorm(xx.pdf, x$ilab$data$mean[i], x$ilab$data$sd[i]) yy.pdf <- apply(yy.mat, 1, mean, na.rm = TRUE) mu.pdf <- sum(xx.pdf * yy.pdf) / sum(yy.pdf) u.pdf <- sqrt(sum((xx.pdf - mu.pdf) ^ 2 * yy.pdf)/sum(yy.pdf)) yy.eq <- dnorm(xx.pdf, x$fit$value, x$fit$U*sqrt(p)/x$fit$k) if (display.orientation == "horizontal") { tcol<- rgb(118, 238, 0, maxColorValue = 255, alpha=127) polygon(c(1, p, p, 1, 1), x$fit$value+c(-1, -1, 1, 1, -1)*x$fit$U, border = NA, col = tcol) lines(c(0, p+1), rep(x$fit$value, 2), col = "darkgreen") lines(p + 1 + 2*yy.pdf/max(c(yy.eq,yy.pdf)), xx.pdf, lwd = 2) lines(p + 1 + 2*yy.eq/max(c(yy.eq,yy.pdf)), xx.pdf, lwd = 2, col = 4) for (i in 1:p) { lines(rep(i, 2), x$ilab$data$mean[mss][os][i] + c(-1,1) * x$ilab$data$k[mss][os][i] * x$ilab$data$sd[mss][os][i], lwd = 3, col = 4) lines(rep(i, 2), x$ilab$data$mean[mss][os][i] + c(-1,1) * x$ilab$data$k[mss][os][i] * sqrt(x$ilab$data$sd[mss][os][i] ^ 2 + x$fit$tau^2), lwd = 1, col = 4) } } else { for (i in 1:p) { lines(x$ilab$data$mean[os][i] + c(-1,1) * x$ilab$data$k[os][i] * x$ilab$data$sd[os][i], rep(i, 2), lwd = 3, col = 4) lines(x$ilab$data$mean[os][i] + c(-1,1) * x$ilab$data$k[os][i] * sqrt(x$ilab$data$sd[os][i] ^ 2 + x$fit$tau^2), rep(i, 2), lwd = 1, col = 4) } tcol<- rgb(118, 238, 0, maxColorValue = 255, alpha=127) polygon(x$fit$value+c(-1, -1, 1, 1, -1)*x$fit$U, c(1, p, p, 1, 1), border = NA, col = tcol) lines(rep(x$fit$value, 2), c(1, p), col = "darkgreen") lines(xx.pdf, p + 1 + 2*yy.pdf/max(c(yy.eq,yy.pdf)), lwd = 2) lines(xx.pdf, p + 1 + 2*yy.eq/max(c(yy.eq,yy.pdf)), lwd = 2, col = 4) } points(xx, yy, pch = 20, cex = 1, col = 2 ) }
context("Scenario of un wanted inputs") test_that("NA values are avoided",{ expect_that(mazTRI(NA,0.1), throws_error("NA or Infinite or NAN values in the Input")) }) test_that("Infinite values are avoided",{ expect_that(mazTRI(Inf,0.1), throws_error("NA or Infinite or NAN values in the Input")) }) test_that("NAN values are avoided",{ expect_that(mazTRI(NaN,0.1), throws_error("NA or Infinite or NAN values in the Input")) }) context("Scenario of mode") test_that("Mode out of range",{ expect_that(mazTRI(1,5), throws_error("Mode cannot be less than zero or greater than one")) }) test_that("Mode out of range",{ expect_that(mazTRI(1,-5), throws_error("Mode cannot be less than zero or greater than one")) }) context("Moments issues") test_that("Moments being negative or zero",{ expect_that(mazTRI(-3,0.3), throws_error("Moments cannot be less than or equal to zero")) })
if (identical(Sys.getenv("NOT_CRAN"), "true")) { ascot_vale <- search_stops("Ascot Vale") test_that("search_stops result has class \"ptvapi\"", { expect_s3_class(ascot_vale, "ptvapi") }) test_that("results in search_stops can relate to stop name alone", { expect_gte( nrow( dplyr::filter( ascot_vale, grepl("Ascot Vale", stop_name, ignore.case = TRUE), !grepl("Ascot Vale", stop_suburb, ignore.case = TRUE) ) ), 1 ) }) test_that("results in search_stops can relate to stop suburb alone", { expect_gte( nrow( dplyr::filter( ascot_vale, !grepl("Ascot Vale", stop_name, ignore.case = TRUE), grepl("Ascot Vale", stop_suburb, ignore.case = TRUE) ) ), 1 ) }) test_that("all results in search_stops relate to search term somehow", { expect_equal( nrow( dplyr::filter( ascot_vale, !grepl("Ascot Vale", stop_name , ignore.case = TRUE), !grepl("Ascot Vale", stop_suburb, ignore.case = TRUE) ) ), 0 ) }) test_that("search_stops can be filtered with multiple route types", { expect_equal( search_stops("South Yarra", route_types = c(0, 1)) %>% pull(route_type) %>% unique %>% sort, c(0, 1) ) expect_equal( search_stops("South Yarra", route_types = c(0, 2)) %>% pull(route_type) %>% unique %>% sort, c(0, 2) ) }) }
dens <- function(dist){ fun <- get(paste0("d", dist)) return(fun) } quant <- function(dist){ fun <- get(paste0("q", dist)) return(fun) } p <- function(dist){ fun <- get(paste0("p", dist)) return(fun) } rand <- function(dist){ fun <- get(paste0("r", dist)) return(fun) } slope <- function(rho, costs=matrix(c(0,0,1,(1-rho)/rho), 2, 2, byrow=TRUE)){ c.t.pos <- costs[1, 1] c.t.neg <- costs[1, 2] c.f.pos <- costs[2, 1] c.f.neg <- costs[2, 2] beta <- ((1 - rho)/rho) * ((c.t.neg - c.f.pos)/(c.t.pos - c.f.neg)) return(beta) } sqroot <- function(k1, k2, rho, costs){ ctrl <- (mean(k2) - mean(k1))^2 + 2*log((sd(k2)/sd(k1))*slope(rho,costs))*(var(k2) - var(k1)) return(ctrl) } DensRatio2 <- function(p, dist1, dist2, par1.1, par1.2, par2.1, par2.2, rho, costs) { ratio <- (dens(dist2)(p,par2.1,par2.2)/dens(dist1)(p,par1.1,par1.2)) - slope(rho,costs) return(ratio) } thresTH2 <- function(dist1, dist2, par1.1, par1.2, par2.1, par2.2, rho, costs=matrix(c(0, 0, 1, (1-rho)/rho), 2, 2, byrow=TRUE), R=NULL, q1=0.05, q2=0.95, tol=10^(-8)){ if (!(rho > 0 & rho < 1)){ stop("The disease prevalence rho must be a number in (0,1)") } if (is.null(costs) & is.null(R)){ stop("Both 'costs' and 'R' are NULL. Please specify one of them.") }else if (!is.null(costs) & !is.null(R)){ stop("Either 'costs' or 'R' must be NULL") }else if (is.null(costs) & !is.null(R)){ if (!is.numeric(R) | length(R)!=1){ stop("R must be a single number") } costs <- matrix(c(0, 0, 1, (1-rho)/(R*rho)), 2, 2, byrow=TRUE) }else if (!is.null(costs) & is.null(R)){ if (!is.matrix(costs)){ stop("'costs' must be a matrix") } if (dim(costs)[1] != 2 | dim(costs)[2] != 2){ stop("'costs' must be a 2x2 matrix") } } costs.origin <- costs rho.origin <- rho median1 <- quant(dist1)(0.5, par1.1, par1.2) median2 <- quant(dist2)(0.5, par2.1, par2.2) if(median1 > median2){ rho <- 1-rho costs <- costs[, 2:1] g <- par2.1; par2.1 <- par1.1; par1.1 <- g f <- par2.2; par2.2 <- par1.2; par1.2 <- f auxdist <- dist2; dist2 <- dist1; dist1 <- auxdist } p1 <- quant(dist1)(q1, par1.1, par1.2) p2 <- quant(dist2)(q2, par2.1, par2.2) cut.t <- uniroot(DensRatio2,c(p1,p2),tol=tol,dist1,dist2,par1.1,par1.2,par2.1,par2.2,rho,costs,extendInt="yes")$root beta <- slope(rho, costs) if (dist1=="norm" & dist2=="norm" & par1.2!=par2.2){ LL <- par1.2/par2.2*exp(-(par2.1-par1.1)^2/(2*par2.2^2)) UL <- par1.2/par2.2*exp((par2.1-par1.1)^2/(2*par1.2^2)) if (!(LL<=beta & beta<=UL)) warning("The choice of costs/R leads to a cut-off that is not between the means of the two distributions") } re <- list(thres=cut.t, prev=rho.origin, costs=costs.origin, R=beta, method="theoretical") class(re) <- "thresTH2" return(re) } print.thresTH2 <- function(x, ...){ cat("\nThreshold:", x$thres) cat("\n") cat("\nParameters used") cat("\n Disease prevalence:", x$prev) cat("\n Costs (Ctp, Cfp, Ctn, Cfn):", x$costs) cat("\n R:", x$R) cat("\n") } secondDer2 <- function(x){ if (class(x) != "thres2"){ stop("'x' must be of class 'thres2'") } if (x$T$method=="empirical"){ stop("'x' has been computed with method='empirical', cannot compute the second derivative of the cost function") }else if (x$T$method=="equal" | x$T$method=="unequal"){ k1 <- x$T$k1 k2 <- x$T$k2 rho <- x$T$prev costs <- x$T$costs Thr <- x$T$thres par1.1 <- mean(k1) par2.1 <- mean(k2) par1.2 <- sd(k1) par2.2 <- sd(k2) n1 <- length(k1) n2 <- length(k2) beta <- slope(rho,costs) de <- (n1+n2)*rho*(costs[1,1]-costs[2,2]) der <- de/sqrt(2*pi)*(((Thr-par2.1)/par2.2^3)*exp(-(Thr-par2.1)^2/(2*par2.2^2))-beta*((Thr-par1.1)/par1.2^3)*exp(-(Thr-par1.1)^2/(2*par1.2^2))) }else if (x$T$method=="parametric"){ dist1 <- x$T$dist1 dist2 <- x$T$dist2 pars1 <- x$T$pars1 pars2 <- x$T$pars2 densratio <- function(y){ DR <- dens(dist2)(y, pars2[1], pars2[2])/dens(dist1)(y, pars1[1], pars1[2])-x$T$R return(DR) } der <- grad(densratio, x$T$thres) } return(der) } varPooled <- function(k1, k2){ n1 <- length(k1) n2 <- length(k2) pool <- ((n1 - 1)*var(k1) + (n2 - 1)*var(k2))/(n1 + n2 - 2) return(pool) } thresEq2 <- function(k1, k2, rho, costs=matrix(c(0, 0, 1, (1-rho)/rho), 2, 2, byrow=TRUE)){ costs.origin <- costs k1.origin <- k1 k2.origin <- k2 rho.origin <- rho if(mean(k1)>mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g } beta <- slope(rho, costs) cut <- (2*varPooled(k1,k2)*log(beta) - (mean(k1)^2 - mean(k2)^2))/(2*(mean(k2) - mean(k1))) re <- list(thres=cut, prev=rho.origin, costs=costs.origin, R=beta, method="equal", k1=k1.origin, k2=k2.origin) return(re) } thresUn2 <- function(k1, k2, rho, costs=matrix(c(0, 0, 1, (1-rho)/rho), 2, 2, byrow=TRUE)){ costs.origin <- costs k1.origin <- k1 k2.origin <- k2 rho.origin <- rho if(mean(k1)>mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g } ctrl <- sqroot(k1, k2, rho, costs) if (ctrl>=0){ cut <- (var(k2)*mean(k1) - var(k1)*mean(k2) + sd(k1)*sd(k2)*sqrt(ctrl))/(var(k2) - var(k1))} else{ cut <- NA warning("Negative discriminant; cannot solve the second-degree equation") } beta <- slope(rho, costs) LL <- sd(k1)/sd(k2)*exp(-(mean(k2)-mean(k1))^2/(2*sd(k2)^2)) UL <- sd(k1)/sd(k2)*exp((mean(k2)-mean(k1))^2/(2*sd(k1)^2)) if (!(LL<=beta & beta<=UL)) warning("The choice of costs/R leads to a cut-off that is not between the means of the two distributions") re <- list(thres=cut, prev=rho.origin, costs=costs.origin, R=beta, method="unequal", k1=k1.origin, k2=k2.origin) return(re) } thresEmp2 <- function(k1, k2, rho, costs=matrix(c(0, 0, 1, (1-rho)/rho), 2, 2, byrow=TRUE), extra.info=FALSE){ k1.origin <- k1 k2.origin <- k2 rho.origin <- rho costs.origin <- costs if (mean(k1)>mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g } c.t.pos <- costs[1,1] c.t.neg <- costs[1,2] c.f.pos <- costs[2,1] c.f.neg <- costs[2,2] n1 <- length(k1) n2 <- length(k2) n <- n1+n2 v <- c(k1, k2) ind.origin <- c(rep(0, n1), rep(1, n2)) vi <- cbind(v, ind.origin) ord.v <- vi[order(vi[, 1], vi[, 2]), ] sens <- rep(NA, n) spec <- rep(NA, n) for (j in 1:n){ cut <- ord.v[j, 1] sens[j] <- sum(ord.v[, 1]>=cut & ord.v[, 2]==1)/n2 spec[j] <- sum(ord.v[, 1]<cut & ord.v[, 2]==0)/n1 } D <- n*rho*(c.t.pos-c.f.neg) R <- ((1-rho)/rho)*((c.t.neg-c.f.pos)/(c.t.pos-c.f.neg)) G <- (rho*c.f.neg+(1-rho)*c.f.pos)/(rho*(c.t.pos-c.f.neg)) cost.non.par <- D*(sens+spec*R+G) total <- data.frame(ord.v, cost.non.par, sens, spec) ind.min.cost <- which(total[, "cost.non.par"]==min(total[, "cost.non.par"])) sens.min <- total[ind.min.cost, "sens"] spec.min <- total[ind.min.cost, "spec"] cut.min <- total[ind.min.cost, "v"] cost.min <- total[ind.min.cost, "cost.non.par"] howmany <- length(cut.min) if (howmany>1){ interval <- subset(total, v >= cut.min[1] & v <= cut.min[length(cut.min)]) cut.min <- mean(interval$v) sens.min <- sum(ord.v[, 1]>=cut.min & ord.v[, 2]==1)/n2 spec.min <- sum(ord.v[, 1]<cut.min & ord.v[, 2]==0)/n1 cost.min <- D*(sens.min+spec.min*R+G) warning(paste(howmany, "observations lead to the minimum cost. The mean of the values between them is returned as threshold."), call.=FALSE) } beta <- slope(rho, costs) re <- list(thres=cut.min, prev=rho.origin, costs=costs.origin, R=beta, method="empirical", k1=k1.origin, k2=k2.origin, sens=sens.min, spec=spec.min, cost=cost.min) if (extra.info){ re$tot.thres <- total[, "v"] re$tot.cost <- total[, "cost.non.par"] re$tot.spec <- spec re$tot.sens <- sens } return(re) } thresSmooth2 <- function(k1, k2, rho, costs=matrix(c(0, 0, 1, (1-rho)/rho), 2, 2, byrow=TRUE), extra.info=FALSE){ k1.origin <- k1 k2.origin <- k2 rho.origin <- rho costs.origin <- costs if (mean(k1)>mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g } c.t.pos <- costs[1,1] c.t.neg <- costs[1,2] c.f.pos <- costs[2,1] c.f.neg <- costs[2,2] dk1 <- kde(k1) dk2 <- kde(k2) lmin <- mean(k1) lmax <- mean(k2) beta <- slope(rho, costs) fx <- function(x) predict(dk2, x=x)-beta*predict(dk1, x=x) out <- uniroot(fx, c(lmin, lmax)) re <- list(thres=out$root, prev=rho.origin, costs=costs.origin, R=beta, method="smooth", k1=k1.origin, k2=k2.origin) return(re) } print.thres2 <- function(x, ...){ if (x$T$method == "parametric"){ cat("\nEstimate:") cat("\n Threshold: ", x$T$thres) if (!is.null(x$CI)){ cat("\n") cat("\nConfidence intervals (parametric bootstrap):") cat("\n CI based on normal distribution:", x$CI$low.norm, " - ", x$CI$up.norm) cat("\n CI based on percentiles:", x$CI$low.perc, " - ", x$CI$up.perc) cat("\n Bootstrap resamples:", x$CI$B) } cat("\n") cat("\nParameters used:") cat("\n Disease prevalence:", x$T$prev) cat("\n Costs (Ctp, Cfp, Ctn, Cfn):", x$T$costs) cat("\n R:", x$T$R) if (!is.null(x$CI)){ cat("\n Significance Level: ", x$CI$alpha) } cat("\n Method:", x$T$method) cat("\n Distribution assumed for the healthy sample: ", x$T$dist1, "(", round(x$T$pars1[1], 2), ", ", round(x$T$pars1[2], 2), ")", sep="") cat("\n Distribution assumed for the diseased sample: ", x$T$dist2, "(", round(x$T$pars2[1], 2), ", ", round(x$T$pars2[2], 2), ")", sep="") cat("\n") } if (x$T$method == "empirical"){ cat("\nEstimate:") cat("\n Threshold: ", x$T$thres) cat("\n Minimum Cost: ", x$T$cost) if (!is.null(x$CI)){ cat("\n") cat("\nConfidence intervals (bootstrap):") cat("\n CI based on normal distribution:", x$CI$low.norm, " - ", x$CI$up.norm) cat("\n CI based on percentiles:", x$CI$low.perc, " - ", x$CI$up.perc) cat("\n Bootstrap resamples:", x$CI$B) } cat("\n") cat("\nParameters used:") cat("\n Disease prevalence:", x$T$prev) cat("\n Costs (Ctp, Cfp, Ctn, Cfn):", x$T$costs) cat("\n R:", x$T$R) cat("\n Method:", x$T$method) if (!is.null(x$CI)){ cat("\n Significance Level:", x$CI$alpha) } cat("\n") } if (x$T$method == "smooth"){ cat("\nEstimate:") cat("\n Threshold: ", x$T$thres) if (!is.null(x$CI)){ cat("\n") cat("\nConfidence intervals (bootstrap):") cat("\n CI based on normal distribution:", x$CI$low.norm, " - ", x$CI$up.norm) cat("\n CI based on percentiles:", x$CI$low.perc, " - ", x$CI$up.perc) cat("\n Bootstrap resamples:", x$CI$B) } cat("\n") cat("\nParameters used:") cat("\n Disease prevalence:", x$T$prev) cat("\n Costs (Ctp, Cfp, Ctn, Cfn):", x$T$costs) cat("\n R:", x$T$R) cat("\n Method:", x$T$method) if (!is.null(x$CI)){ cat("\n Significance Level:", x$CI$alpha) } cat("\n") } if (x$T$method == "equal" | x$T$method == "unequal"){ cat("\nEstimate:") cat("\n Threshold: ", x$T$thres) cat("\n") if (!is.null(x$CI)){ if(x$CI$ci.method == "delta"){ cat("\nConfidence interval (delta method):") cat("\n Lower Limit:", x$CI$lower) cat("\n Upper Limit:", x$CI$upper) cat("\n") } if(x$CI$ci.method == "boot"){ cat("\nConfidence intervals (bootstrap):") cat("\n CI based on normal distribution: ", x$CI$low.norm, " - ", x$CI$up.norm) cat("\n CI based on percentiles: ", x$CI$low.perc, " - ", x$CI$up.perc) cat("\n Bootstrap resamples: ", x$CI$B) cat("\n") } } cat("\nParameters used:") cat("\n Disease prevalence:", x$T$prev) cat("\n Costs (Ctp, Cfp, Ctn, Cfn):", x$T$costs) cat("\n R:", x$T$R) cat("\n Method:", x$T$method) if (!is.null(x$CI)){ cat("\n Significance Level: ", x$CI$alpha) } cat("\n") } } getParams <- function(k, dist){ if (dist %in% c("cauchy", "gamma", "weibull")){ pars <- fitdistr(k, dist)$estimate }else if(dist=="beta"){ sigma2 <- var(k) mu <- mean(k) shape1.start <- ((1-mu)/sigma2-1/mu)*mu^2 shape2.start <- shape1.start*(1/mu-1) pars <- fitdistr(k, "beta", start=list(shape1=shape1.start, shape2=shape2.start))$estimate }else if(dist=="chisq"){ sigma2 <- var(k) mu <- mean(k) ncp.start <- sigma2/2-mu df.start <- mu-ncp.start pars <- fitdistr(k, "chi-squared", start=list(df=df.start, ncp=ncp.start))$estimate }else if(dist=="lnorm"){ pars <- fitdistr(k, "lognormal")$estimate }else if(dist=="logis"){ pars <- fitdistr(k, "logistic")$estimate }else if(dist=="norm"){ pars <- fitdistr(k, "normal")$estimate } out <- pars return(out) } thres2 <- function(k1, k2, rho, costs=matrix(c(0, 0, 1, (1-rho)/rho), 2, 2, byrow=TRUE), R=NULL, method=c("equal", "unequal", "empirical", "smooth", "parametric"), dist1=NULL, dist2=NULL, ci=TRUE, ci.method=c("delta", "boot"), B=1000, alpha=0.05, extra.info=FALSE, na.rm=FALSE, q1=0.05, q2=0.95){ if (!(rho > 0 & rho < 1)){ stop("The disease prevalence 'rho' must be a number in (0,1)") } if (!is.numeric(k1) | !is.numeric(k2)){ stop("'k1' and 'k2' must be numeric vectors") } if (!is.logical(ci) | is.na(ci)){ stop("'ci' must be TRUE or FALSE") } if (is.null(costs) & is.null(R)){ stop("Both 'costs' and 'R' are NULL. Please specify one of them.") }else if (!is.null(costs) & !is.null(R)){ stop("Either 'costs' or 'R' must be NULL") }else if (is.null(costs) & !is.null(R)){ if (!is.numeric(R) | length(R)!=1){ stop("R must be a single number") } costs <- matrix(c(0, 0, 1, (1-rho)/(R*rho)), 2, 2, byrow=TRUE) }else if (!is.null(costs) & is.null(R)){ if (!is.matrix(costs)){ stop("'costs' must be a matrix") } if (dim(costs)[1] != 2 | dim(costs)[2] != 2){ stop("'costs' must be a 2x2 matrix") } } if (na.rm){ k1 <- k1[!is.na(k1)] k2 <- k2[!is.na(k2)] } method <- match.arg(method) ci.method <- match.arg(ci.method) if (method=="equal"){ T <- thresEq2(k1, k2, rho, costs) if (ci){ if (ci.method=="delta"){ CI <- icDeltaEq2(k1, k2, rho, costs, T$thres, a=alpha) } if (ci.method=="boot"){ CI <- icBootEq2(k1, k2, rho, costs, T$thres, B=B, a=alpha) } }else{ CI <- NULL } } if (method=="unequal"){ T <- thresUn2(k1, k2, rho, costs) if (ci){ if (ci.method=="delta"){ CI <- icDeltaUn2(k1, k2, rho, costs, T$thres, a=alpha) } if (ci.method=="boot"){ CI <- icBootUn2(k1, k2, rho, costs, T$thres, B=B, a=alpha) } }else{ CI <- NULL } } if (method=="empirical"){ if (ci.method=="delta" & ci){ stop("When method='empirical', CIs cannot be computed based on delta method (choose ci.method='boot')") } T <- thresEmp2(k1, k2, rho, costs, extra.info) if (ci){ CI <- icEmp2(k1, k2, rho, costs, T$thres, B=B, a=alpha) }else{ CI <- NULL } } if (method=="smooth"){ if (ci.method=="delta" & ci){ stop("When method='smooth', CIs cannot be computed based on delta method (choose ci.method='boot')") } T <- thresSmooth2(k1, k2, rho, costs) if (ci){ CI <- icSmooth2(k1, k2, rho, costs, T$thres, B=B, a=alpha) }else{ CI <- NULL } } if (method=="parametric"){ if (ci.method=="delta" & ci){ stop("When method='parametric', CIs cannot be computed based on delta method (choose ci.method='boot')") } if (is.null(dist1) | is.null(dist2)){ stop("When method='parametric', 'dist1' and 'dist2' must be specified") } if (dist1=="norm" & dist2=="norm"){ stop("When assuming a binormal distribution, choose method='equal' or 'unequal'") } if (!(dist1 %in% c("beta", "cauchy", "chisq", "gamma", "lnorm", "logis", "nbinom", "norm", "weibull"))){ stop("Unsupported distribution for 'dist1'") } if (!(dist2 %in% c("beta", "cauchy", "chisq", "gamma", "lnorm", "logis", "nbinom", "norm", "weibull"))){ stop("Unsupported distribution for 'dist2'") } pars1 <- getParams(k1, dist1) pars2 <- getParams(k2, dist2) T <- thresTH2(dist1, dist2, pars1[1], pars1[2], pars2[1], pars2[2], rho, costs, q1=q1, q2=q2) T <- unclass(T) T$method <- "parametric" T$k1 <- k1 T$k2 <- k2 T$dist1 <- dist1 T$dist2 <- dist2 T$pars1 <- pars1 T$pars2 <- pars2 if (ci){ CI <- icBootTH(dist1, dist2, pars1[1], pars1[2], pars2[1], pars2[2], length(k1), length(k2), rho, costs, T$thres, B=B, a=alpha) }else{ CI <- NULL } } out <- list(T=T, CI=CI) class(out) <- "thres2" return(out) } varVarEq <- function(k1, k2){ n1 <- length(k1) n2 <- length(k2) est <- 2*(varPooled(k1,k2))^2/(n1 + n2 - 1) return(est) } varMeanEq <- function(k1, k2, t){ est <- varPooled(k1, k2)/t return(est) } derVarEq <- function(k1, k2, rho, costs){ est <- log(slope(rho,costs))/(mean(k2) - mean(k1)) return(est) } derMeanDisEq <- function(k1, k2, rho, costs){ est <- 1/2 - (varPooled(k1,k2)*log(slope(rho,costs)))/((mean(k2) - mean(k1))^2) return(est) } derMeanNDisEq <- function(k1, k2, rho, costs){ est <- 1/2 + (varPooled(k1,k2)*log(slope(rho,costs)))/((mean(k2) - mean(k1))^2) return(est) } varDeltaEq2 <- function(k1, k2, rho, costs){ if(mean(k1) > mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g } n1 <- length(k1) n2 <- length(k2) d <- matrix(c(derMeanNDisEq(k1, k2, rho, costs), derMeanDisEq(k1, k2, rho, costs), derVarEq(k1, k2, rho, costs)), byrow=T, ncol=3, nrow=1) sigma <- matrix(c(varMeanEq(k1, k2, n2), 0, 0, 0, varMeanEq(k1, k2, n1), 0, 0, 0, varVarEq(k1, k2)), byrow=T, ncol=3, nrow=3) est <- d%*%sigma%*%t(d) return(est) } icDeltaEq2 <- function(k1, k2, rho, costs=matrix(c(0, 0, 1, (1-rho)/rho), 2, 2, byrow=TRUE), Thres, a=0.05){ stdev <- sqrt(varDeltaEq2(k1, k2, rho, costs)) ic1 <- Thres + qnorm(a/2)*stdev ic2 <- Thres + qnorm(1-a/2)*stdev ic <- list(lower=ic1, upper=ic2, se=stdev, alpha=a, ci.method="delta") return(ic) } varVarUn <- function(k, t){ est <- 2*(var(k))^2/(t - 1) return(est) } varMeanUn <- function(k, t){ est <- var(k)/t return(est) } derMeanDisUn <- function(k1, k2, rho, costs){ est <- (sd(k2)*sd(k1)*(mean(k2) - mean(k1))/sqrt((mean(k2) - mean(k1))^2+2*(var(k2) - var(k1))*log(sd(k2)*slope(rho,costs)/sd(k1))) - var(k1))/(var(k2) - var(k1)) return(est) } derMeanNDisUn <- function(k1, k2, rho, costs){ est <- (var(k2) - sd(k2)*sd(k1)*(mean(k2) - mean(k1))/sqrt((mean(k2) - mean(k1))^2+2*(var(k2) - var(k1))*log(sd(k2)*slope(rho,costs)/sd(k1))))/(var(k2) - var(k1)) return(est) } derVarDisUn <- function(k1, k2, rho, costs){ beta <- slope(rho,costs) est <- (sd(k1)*sd(k2)*((var(k2) - var(k1))/var(k2) + 2*log(beta*sd(k2)/sd(k1)))/(2*sqrt(2*log(beta*sd(k2)/sd(k1))*(var(k2) - var(k1))+(mean(k2) - mean(k1))^2)) + sd(k1)*sqrt(2*log(beta*sd(k2)/sd(k1))*(var(k2) - var(k1)) + (mean(k2) - mean(k1))^2)/(2*sd(k2)) + mean(k1)) /(var(k2) - var(k1)) - (sd(k1)*sd(k2)*sqrt(2*log(beta*sd(k2)/sd(k1))*(var(k2) - var(k1))+(mean(k2)-mean(k1))^2)+mean(k1)*var(k2)-mean(k2)*var(k1))/(var(k2)-var(k1))^2 return(est) } derVarNDisUn <- function(k1, k2, rho, costs){ beta <- slope(rho, costs) est <- (-mean(k2)*var(k1)+sd(k2)*sqrt(2*log(sd(k2)*beta/sd(k1))*(var(k2)-var(k1))+(mean(k2)-mean(k1))^2)*sd(k1)+mean(k1)*var(k2)) /(var(k2)-var(k1))^2 +(sd(k2)*(-(var(k2)-var(k1))/var(k1)-2*log(sd(k2)*beta/sd(k1)))*sd(k1) /(2*sqrt(2*log(sd(k2)*beta/sd(k1))*(var(k2)-var(k1))+(mean(k2)-mean(k1))^2)) +sd(k2)*sqrt(2*log(sd(k2)*beta/sd(k1))*(var(k2)-var(k1))+(mean(k2)-mean(k1))^2)/(2*sd(k1))-mean(k2)) /(var(k2)-var(k1)) return(est) } varDeltaUn2 <- function(k1, k2, rho, costs){ if(mean(k1) > mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g } n1 <- length(k1) n2 <- length(k2) ctrl <- sqroot(k1,k2,rho,costs) if(ctrl < 0){ est <- NA warning("Negative discriminant; cannot solve the second-degree equation") }else{ d <- matrix(c(derMeanNDisUn(k1, k2, rho, costs), derMeanDisUn(k1, k2, rho, costs), derVarNDisUn(k1, k2, rho, costs), derVarDisUn(k1, k2, rho, costs)), byrow=T, ncol=4, nrow=1) sigma <- matrix(c(varMeanUn(k1, n1), 0, 0, 0, 0, varMeanUn(k2, n2), 0, 0, 0, 0, varVarUn(k1, n1), 0, 0, 0, 0, varVarUn(k2, n2)), byrow=T, ncol=4, nrow=4) est <- d%*%sigma%*%t(d) } return(est) } icDeltaUn2 <- function(k1, k2, rho, costs=matrix(c(0, 0, 1, (1-rho)/rho), 2, 2, byrow=TRUE), Thres, a=0.05){ stdev <- sqrt(varDeltaUn2(k1, k2, rho, costs)) ic1 <- Thres + qnorm(a/2)*stdev ic2 <- Thres + qnorm(1-a/2)*stdev ic <- list(lower=ic1, upper=ic2, se=stdev, alpha=a, ci.method="delta") return(ic) } resample2 <- function(k1, k2, B){ n1 <- length(k1) n2 <- length(k2) t0 <- matrix(sample(k1, n1*B, replace=TRUE), nrow=n1) t1 <- matrix(sample(k2, n2*B, replace=TRUE), nrow=n2) t <- list(t0, t1) return(t) } icBootEq2 <- function(k1, k2, rho, costs=matrix(c(0, 0, 1, (1-rho)/rho), 2, 2, byrow=TRUE), Thres, B, a=0.05){ if(mean(k1) > mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g } t <- resample2(k1, k2, B) t0 <- t[[1]] t1 <- t[[2]] cut <- sapply(1:B,function(i){thresEq2(t0[,i],t1[,i],rho,costs)[[1]]}) est.se <- sd(cut) norm.bootSE <- c(Thres + qnorm(a/2)*est.se, Thres + qnorm(1-a/2)*est.se) percentil <- (c(quantile(cut,a/2), quantile(cut,1-a/2))) re <- list(low.norm=norm.bootSE[1], up.norm=norm.bootSE[2], se=est.se, low.perc=percentil[1], up.perc=percentil[2], alpha=a, B=B, ci.method="boot") return(re) } icBootUn2 <- function(k1, k2, rho, costs=matrix(c(0, 0, 1, (1-rho)/rho), 2, 2, byrow=TRUE), Thres, B, a=0.05){ if(mean(k1) > mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g } t <- resample2(k1, k2, B) t0 <- t[[1]] t1 <- t[[2]] cut <- sapply(1:B,function(i){thresUn2(t0[,i],t1[,i],rho,costs)[[1]]}) est.se <- sd(na.omit(cut)) norm.bootSE <- c(Thres + qnorm(a/2)*est.se, Thres + qnorm(1-a/2)*est.se) percentil <- (c(quantile(na.omit(cut),a/2), quantile(na.omit(cut),1-a/2))) re <- list(low.norm=norm.bootSE[1], up.norm=norm.bootSE[2], se=est.se, low.perc=percentil[1], up.perc=percentil[2], alpha=a, B=B, ci.method="boot") return(re) } icEmp2 <- function(k1,k2,rho,costs=matrix(c(0,0,1,(1-rho)/rho),2,2, byrow=TRUE),Thres,B=500,a=0.05){ if(mean(k1)>mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g } t <- resample2(k1, k2, B) t0 <- t[[1]] t1 <- t[[2]] cut <- rep(NA,B) cut <- suppressWarnings(sapply(1:B,function(j){thresEmp2(t0[,j],t1[,j],rho,costs)[[1]]})) est.se <- sd(cut) norm <- c(Thres+qnorm(a/2)*est.se, Thres+qnorm(1-a/2)*est.se) percentil <- (c(quantile(cut,a/2), quantile(cut,1-a/2))) re <- list(low.norm=norm[1], up.norm=norm[2], se=est.se, low.perc=percentil[1], up.perc=percentil[2], alpha=a, B=B, ci.method="boot") return(re) } icSmooth2 <- function(k1,k2,rho,costs=matrix(c(0,0,1,(1-rho)/rho),2,2, byrow=TRUE),Thres,B=500,a=0.05){ if(mean(k1)>mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g } t <- resample2(k1, k2, B) t0 <- t[[1]] t1 <- t[[2]] cut <- rep(NA,B) cut <- suppressWarnings(sapply(1:B,function(j){thresSmooth2(t0[,j],t1[,j],rho,costs)[[1]]})) est.se <- sd(cut) norm <- c(Thres+qnorm(a/2)*est.se, Thres+qnorm(1-a/2)*est.se) percentil <- (c(quantile(cut,a/2), quantile(cut,1-a/2))) re <- list(low.norm=norm[1], up.norm=norm[2], se=est.se, low.perc=percentil[1], up.perc=percentil[2], alpha=a, B=B, ci.method="boot") return(re) } aux.par.boot <- function(dist1, dist2, par1.1, par1.2, par2.1, par2.2, n1, n2, B){ t0 <- matrix(rand(dist1)(n1*B, par1.1, par1.2), nrow=n1) t1 <- matrix(rand(dist2)(n2*B, par2.1, par2.2), nrow=n2) t <- list(t0,t1) return(t) } icBootTH <- function(dist1, dist2, par1.1, par1.2, par2.1, par2.2, n1, n2, rho, costs=matrix(c(0,0,1,(1-rho)/rho), 2, 2, byrow=TRUE), Thres, B=500, a=0.05){ median1 <- quant(dist1)(0.5, par1.1, par1.2) median2 <- quant(dist2)(0.5, par2.1, par2.2) if(median1 > median2){ rho <- 1-rho costs <- costs[, 2:1] g <- par2.1; par2.1 <- par1.1; par1.1 <- g f <- par2.2; par2.2 <- par1.2; par1.2 <- f auxdist <- dist2; dist2 <- dist1; dist1 <- auxdist } t <- aux.par.boot(dist1, dist2, par1.1, par1.2, par2.1, par2.2, n1, n2, B) t0 <- t[[1]] t1 <- t[[2]] pars1 <- sapply(1:B, function(i){getParams(t0[, i], dist1)}) pars2 <- sapply(1:B, function(i){getParams(t1[, i], dist2)}) cut <- sapply(1:B,function(i){thresTH2(dist1, dist2, pars1[1, i], pars1[2, i], pars2[1, i], pars2[2, i], rho, costs)[[1]]}) est.se <- sd(na.omit(cut)) norm.bootSE <- c(Thres + qnorm(a/2)*est.se, Thres + qnorm(1-a/2)*est.se) percentil <- (c(quantile(na.omit(cut),a/2), quantile(na.omit(cut),1-a/2))) re <- list(low.norm=norm.bootSE[1], up.norm=norm.bootSE[2], se=est.se, low.perc=percentil[1], up.perc=percentil[2], alpha=a, B=B, ci.method="boot") return(re) } plotCostROC <- function(x, type="l", ...){ if (!(class(x) %in% c("thres2", "thres3"))){ stop("'x' must be a 'thres2' or 'thres3' object") } if (class(x)=="thres2"){ if (x$T$method == "smooth"){ k1 <- x$T$k1; k2 <- x$T$k2; rho <- x$T$prev; costs <- x$T$costs changed <- FALSE if (mean(k1)>mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g changed <- TRUE } k <- c(x$T$k1, x$T$k2) rangex <- range(k) xlim <- c(floor(rangex[1]), ceiling(rangex[2])) y <- thres2(x$T$k1, x$T$k2, x$T$prev, x$T$costs, method="empirical", extra.info=TRUE, ci=FALSE) xx <- y$T$tot.thres yy <- y$T$tot.cost lo <- loess(yy~xx) pred <- predict(lo) plot(xx, yy, xlim=xlim, ylim=c(min(pred), max(pred)), type="n", xlab="t", ylab="cost(t)") lines(xx, pred, ...) par(ask=T) CUT <- x$T$thres if (!changed){ resp.CUT <- ifelse(k<CUT, 0, 1) }else{ resp.CUT <- ifelse(k>CUT, 0, 1) } resp <- c(rep(0, length(x$T$k1)), rep(1, length(x$T$k2))) resp.CUT <- factor(resp.CUT, c("0", "1")) roc <- roc(response=resp, predictor=k, quiet=TRUE) plot(smooth(roc)) par(ask=F) } if (x$T$method == "empirical"){ if (length(x$T) != 14){ stop("use argument 'extra.info = TRUE' in 'thres2()'") } plot(x$T$tot.thres, x$T$tot.cost, xlab="Threshold", ylab="Cost", main="Empirical Cost function", type=type, ...) points(x$T$thres, x$T$cost, col=2, pch=19) par(ask=T) plot(1-x$T$tot.spec,x$T$tot.sens, main="Empirical ROC curve", xlab="1-Specificity", ylab="Sensitivity", type=type, ...) points(1-x$T$spec, x$T$sens, col=2, pch=19) par(ask=F) } if (x$T$method =="equal"){ k1 <- x$T$k1; k2 <- x$T$k2; rho <- x$T$prev; costs <- x$T$costs changed <- FALSE if (mean(k1)>mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g changed <- TRUE } k <- c(x$T$k1, x$T$k2) rangex <- range(k) xlim <- c(floor(rangex[1]), ceiling(rangex[2])) cost <- function(t){ sd <- sqrt(varPooled(k1, k2)) TP <- (1-pnorm(t, mean(k2), sd))*rho FN <- (pnorm(t, mean(k2), sd))*rho FP <- (1-pnorm(t, mean(k1), sd))*(1-rho) TN <- (pnorm(t, mean(k1), sd))*(1-rho) n <- length(k1)+length(k2) C <- n*(TP*costs[1,1]+FN*costs[2, 2]+FP*costs[2, 1]+TN*costs[1, 2]) return(as.numeric(C)) } plot(cost, xlim=xlim, type=type, xlab="t", ylab="cost(t)", ...) points(x$T$thres, cost(x$T$thres), col=2, pch=19) par(ask=T) CUT <- x$T$thres if (!changed){ resp.CUT <- ifelse(k<CUT, 0, 1) }else{ resp.CUT <- ifelse(k>CUT, 0, 1) } resp <- c(rep(0, length(x$T$k1)), rep(1, length(x$T$k2))) resp.CUT <- factor(resp.CUT, c("0", "1")) roc <- roc(response=resp, predictor=k, quiet=TRUE) plot(roc) tab <- table(resp.CUT, resp)[2:1, 2:1] SENS <- tab[1, 1]/(tab[1, 1]+tab[2, 1]) SPEC <- tab[2, 2]/(tab[2, 2]+tab[1, 2]) points(SPEC, SENS, col=2, pch=19) par(ask=F) } if (x$T$method=="unequal"){ k1 <- x$T$k1; k2 <- x$T$k2; rho <- x$T$prev; costs <- x$T$costs changed <- FALSE if (mean(k1)>mean(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g changed <- TRUE } k <- c(x$T$k1, x$T$k2) rangex <- range(k) xlim <- c(floor(rangex[1]), ceiling(rangex[2])) cost <- function(t){ sd1 <- sd(k1) sd2 <- sd(k2) TP <- (1-pnorm(t, mean(k2), sd2))*rho FN <- (pnorm(t, mean(k2), sd2))*rho FP <- (1-pnorm(t, mean(k1), sd1))*(1-rho) TN <- (pnorm(t, mean(k1), sd1))*(1-rho) n <- length(k1)+length(k2) C <- n*(TP*costs[1,1]+FN*costs[2, 2]+FP*costs[2, 1]+TN*costs[1, 2]) return(as.numeric(C)) } plot(cost, xlim=xlim, type=type, xlab="t", ylab="cost(t)", ...) points(x$T$thres, cost(x$T$thres), col=2, pch=19) par(ask=T) CUT <- x$T$thres if (!changed){ resp.CUT <- ifelse(k<CUT, 0, 1) }else{ resp.CUT <- ifelse(k>CUT, 0, 1) } resp <- c(rep(0, length(x$T$k1)), rep(1, length(x$T$k2))) resp.CUT <- factor(resp.CUT, c("0", "1")) roc <- roc(response=resp, predictor=k, quiet=TRUE) plot(roc) tab <- table(resp.CUT, resp)[2:1, 2:1] SENS <- tab[1, 1]/(tab[1, 1]+tab[2, 1]) SPEC <- tab[2, 2]/(tab[2, 2]+tab[1, 2]) points(SPEC, SENS, col=2, pch=19) par(ask=F) } if (x$T$method=="parametric"){ k1 <- x$T$k1; k2 <- x$T$k2; rho <- x$T$prev; costs <- x$T$costs dist1 <- x$T$dist1; dist2 <- x$T$dist2 par1.1 <- x$T$pars1[1]; par1.2 <- x$T$pars1[2]; par2.1 <- x$T$pars2[1]; par2.2 <- x$T$pars2[2] changed <- FALSE if (median(k1)>median(k2)){ rho <- 1-rho costs <- costs[, 2:1] g <- k1; k1 <- k2; k2 <- g changed <- TRUE g <- par2.1; par2.1 <- par1.1; par1.1 <- g f <- par2.2; par2.2 <- par1.2; par1.2 <- f auxdist <- dist2; dist2 <- dist1; dist1 <- auxdist } k <- c(x$T$k1, x$T$k2) rangex <- range(k) xlim <- c(floor(rangex[1]), ceiling(rangex[2])) cost <- function(t){ TP <- (1-p(dist2)(t, par2.1, par2.2))*rho FN <- (p(dist2)(t, par2.1, par2.2))*rho FP <- (1-p(dist1)(t, par1.1, par1.2))*(1-rho) TN <- (p(dist1)(t, par1.1, par1.2))*(1-rho) n <- length(k1)+length(k2) C <- n*(TP*costs[1,1]+FN*costs[2, 2]+FP*costs[2, 1]+TN*costs[1, 2]) return(as.numeric(C)) } plot(cost, xlim=xlim, type=type, xlab="t", ylab="cost(t)", ...) points(x$T$thres, cost(x$T$thres), col=2, pch=19) par(ask=T) CUT <- x$T$thres if (!changed){ resp.CUT <- ifelse(k<CUT, 0, 1) }else{ resp.CUT <- ifelse(k>CUT, 0, 1) } resp <- c(rep(0, length(x$T$k1)), rep(1, length(x$T$k2))) resp.CUT <- factor(resp.CUT, c("0", "1")) roc <- roc(response=resp, predictor=k, quiet=TRUE) plot(roc) tab <- table(resp.CUT, resp)[2:1, 2:1] SENS <- tab[1, 1]/(tab[1, 1]+tab[2, 1]) SPEC <- tab[2, 2]/(tab[2, 2]+tab[1, 2]) points(SPEC, SENS, col=2, pch=19) par(ask=F) } }else{ k <- c(x$T$k1, x$T$k2, x$T$k3) rangex <- range(k) xlim <- c(floor(rangex[1]), ceiling(rangex[2])) dist1 <- x$T$dist1; dist2 <- x$T$dist2; dist3 <- x$T$dist3 rho <- x$T$prev; costs <- x$T$costs if (dist1 =="norm" & dist2=="norm" & dist3=="norm"){ par1.1 <- mean(x$T$k1); par1.2 <- sd(x$T$k1) par2.1 <- mean(x$T$k2); par2.2 <- sd(x$T$k2) par3.1 <- mean(x$T$k3); par3.2 <- sd(x$T$k3) }else{ par1.1 <- x$T$pars1[1]; par1.2 <- x$T$pars1[2] par2.1 <- x$T$pars2[1]; par2.2 <- x$T$pars2[2] par3.1 <- x$T$pars3[1]; par3.2 <- x$T$pars3[2] } cost.t1 <- function(t){ aux1 <- rho[1]*p(dist1)(t, par1.1, par1.2)*(costs[1, 1]-costs[1, 2]) aux2 <- rho[2]*p(dist2)(t, par2.1, par2.2)*(costs[2, 1]-costs[2, 2]) aux3 <- rho[3]*p(dist3)(t, par3.1, par3.2)*(costs[3, 1]-costs[3, 2]) C <- aux1+aux2+aux3 return(as.numeric(C)) } cost.t2 <- function(t){ aux1 <- rho[1]*p(dist1)(t, par1.1, par1.2)*(costs[1, 2]-costs[1, 3]) aux2 <- rho[2]*p(dist2)(t, par2.1, par2.2)*(costs[2, 2]-costs[2, 3]) aux3 <- rho[3]*p(dist3)(t, par3.1, par3.2)*(costs[3, 2]-costs[3, 3]) C <- aux1+aux2+aux3 return(as.numeric(C)) } plot(cost.t1, xlim=xlim, type=type, ylab="Cost(thres1)", xlab="thres1", ...) points(x$T$thres1, cost.t1(x$T$thres1), col=2, pch=19) par(ask=T) plot(cost.t2, xlim=xlim, type=type, ylab="Cost(thres2)", xlab="thres2", ...) points(x$T$thres2, cost.t2(x$T$thres2), col=2, pch=19) par(ask=F) } } plot.thres2 <- function(x, bw=c("nrd0", "nrd0"), ci=TRUE, which.boot=c("norm", "perc"), col=c(1, 2, 3), lty=c(1, 1, 1, 2), lwd=c(1, 1, 1), legend=TRUE, leg.pos="topleft", leg.cex=1, xlim=NULL, ylim=NULL, main=paste0("Threshold estimate ", ifelse(ci, "and CI ", ""), "(method ", x$T$method, ")"), xlab="", ...){ if (!is.logical(ci) | is.na(ci)){ stop("'ci' must be TRUE or FALSE") } if (!is.logical(legend) | is.na(legend)){ stop("'legend' must be TRUE or FALSE") } if (!is.null(xlim)){ if (any(is.na(xlim)) | length(xlim)!=2){ stop("'xlim' must be NULL or a 2-dimensional vector containing no NAs") } } if (!is.null(ylim)){ if (any(is.na(ylim)) | length(ylim)!=2){ stop("'ylim' must be NULL or a 2-dimensional vector containing no NAs") } } if (length(col)!=3){ col <- rep_len(col, 3) } if (length(lty)!=4){ lty <- rep_len(lty, 4) } if (length(lwd)!=3){ lwd <- rep_len(lwd, 3) } which.boot <- match.arg(which.boot) k1 <- x$T$k1 k2 <- x$T$k2 dens.k1 <- density(k1, bw=bw[1]) dens.k2 <- density(k2, bw=bw[2]) if (is.null(xlim)){ min.x <- min(min(dens.k1$x), min(dens.k2$x)) max.x <- max(max(dens.k1$x), max(dens.k2$x)) }else{ min.x <- xlim[1] max.x <- xlim[2] } if (is.null(ylim)){ min.y <- 0 max.y <- max(max(dens.k1$y), max(dens.k2$y)) }else{ min.y <- ylim[1] max.y <- ylim[2] } plot(dens.k1, xlim=c(min.x, max.x), ylim=c(min.y, max.y), col=col[1], lty=lty[1], lwd=lwd[1], main=main, xlab=xlab, ...) lines(dens.k2, col=col[2], lty=lty[2], lwd=lwd[2]) abline(v=x$T$thres, col=col[3], lty=lty[3], lwd=lwd[3]) if(ci & !is.null(x$CI)){ if (x$CI$ci.method != "boot"){ abline(v=c(x$CI$lower, x$CI$upper), col=col[3], lty=lty[4], lwd=lwd[3]) }else{ abline(v=c(x$CI[paste0("low.", which.boot)], x$CI[paste0("up.", which.boot)]), col=col[3], lty=lty[4], lwd=lwd[3]) } } if (legend){ legend(leg.pos, c(expression(bar(D)), "D", ifelse(ci & !is.null(x$CI), "Thres+CI", "Thres")), col=col, lty=lty, lwd=lwd, cex=leg.cex) } } lines.thres2 <- function(x, ci=TRUE, which.boot=c("norm", "perc"), col=1, lty=c(1, 2), lwd=1, ...){ if (!is.logical(ci) | is.na(ci)){ stop("'ci' must be TRUE or FALSE") } if (length(lty)!=2){ lty <- rep_len(lty, 2) } which.boot <- match.arg(which.boot) abline(v=x$T$thres, col=col, lty=lty[1], lwd=lwd) if(ci & !is.null(x$CI)){ if (x$CI$ci.method != "boot"){ abline(v=c(x$CI$lower, x$CI$upper), col=col, lty=lty[2], lwd=lwd, ...) }else{ abline(v=c(x$CI[paste0("low.", which.boot)], x$CI[paste0("up.", which.boot)]), col=col, lty=lty[2], lwd=lwd, ...) } } } control <- function(par1.1,par1.2,par2.1,par2.2,rho,costs){ ctrl <- (par2.1-par1.1)^2+2*log((par2.2/par1.2)*slope(rho,costs))*(par2.2^2-par1.2^2) return(ctrl) } parVarUn <- function(sdev, t){ est <- 2*sdev^4/(t-1) return(est) } parMeanUn <- function(sdev,t){ est <- sdev^2/t return(est) } parDerMeanDisUn <- function(par1.1,par1.2,par2.1,par2.2,rho,costs){ est <- (par2.2*par1.2*(par2.1-par1.1)/sqrt(control(par1.1,par1.2,par2.1,par2.2,rho,costs) )-par1.2^2)/(par2.2^2-par1.2^2) return(est) } parDerMeanNonDisUn <- function(par1.1,par1.2,par2.1,par2.2,rho,costs){ est <- (par2.2^2-par2.2*par2.1*(par1.2-par1.1)/sqrt(control(par1.1,par1.2,par2.1,par2.2,rho,costs)))/(par2.2^2-par2.1^2) return(est) } parDerVarDisUn <- function(par1.1,par1.2,par2.1,par2.2,rho,costs){ est <- ((par1.2*par2.2*((par2.2^2-par1.2^2)/par2.2^2+2*log(slope(rho,costs)*par2.2/par1.2)))/(2*sqrt(control(par1.1,par1.2,par2.1,par2.2,rho,costs)))+par1.2*sqrt(control(par1.1,par1.2,par2.1,par2.2,rho,costs))/(2*par2.2)+par1.1)/(par2.2^2-par1.2^2)-(par1.2*par2.2*sqrt(control(par1.1,par1.2,par2.1,par2.2,rho,costs))+par1.1*par2.2^2-par2.1*par1.2^2)/(par2.2^2-par1.2^2)^2 return(est) } parDerVarNonDisUn <- function(par1.1,par1.2,par2.1,par2.2,rho,costs){ est <- ((par1.2*par2.2*((par1.2^2-par2.2^2)/par2.2^2-2*log(slope(rho,costs)*par2.2/par1.2)))/(2*sqrt(control(par1.1,par1.2,par2.1,par2.2,rho,costs)))+par2.2*sqrt(control(par1.1,par1.2,par2.1,par2.2,rho,costs))/(2*par1.2)-par2.1)/(par2.2^2-par1.2^2)+(par1.2*par2.2*sqrt(control(par1.1,par1.2,par2.1,par2.2,rho,costs))+par1.1*par2.2^2-par2.1*par1.2^2)/(par2.2^2-par1.2^2)^2 return(est) } SS <- function(par1.1, par1.2, par2.1, par2.2=NULL, rho, width, costs=matrix(c(0,0,1,(1-rho)/rho),2,2, byrow=TRUE), R=NULL, var.equal=FALSE, alpha=0.05){ if (!(rho > 0 & rho < 1)){ stop("The disease prevalence rho must be a number in (0,1)") } if (width<=0){ stop("'width' must be a positive number") } if (!is.logical(var.equal) | is.na(var.equal)){ stop("'var.equal' must be TRUE or FALSE") } if (var.equal){ if (!is.null(par2.2)){ if (par1.2 != par2.2){ stop("'var.equal' is set to TRUE, but 'par1.2' and 'par2.2' are different") } }else{ par2.2 <- par1.2 } }else{ if (is.null(par2.2)){ stop("When 'var.equal' is set to FALSE, a value for 'par2.2' must be given") } if (par1.2==par2.2){ stop("'var.equal' is set to FALSE, but par1.2==par2.2") } } if (is.null(costs) & is.null(R)){ stop("Both 'costs' and 'R' are NULL. Please specify one of them.") }else if (!is.null(costs) & !is.null(R)){ stop("Either 'costs' or 'R' must be NULL") }else if (is.null(costs) & !is.null(R)){ if (!is.numeric(R) | length(R)!=1){ stop("R must be a single number") } costs <- matrix(c(0, 0, 1, (1-rho)/(R*rho)), 2, 2, byrow=TRUE) }else if (!is.null(costs) & is.null(R)){ if (!is.matrix(costs)){ stop("'costs' must be a matrix") } if (dim(costs)[1] != 2 | dim(costs)[2] != 2){ stop("'costs' must be a 2x2 matrix") } } costs.origin <- costs rho.origin <- rho par1.1.origin <- par1.1 par2.1.origin <- par2.1 L <- width/2 if (par1.1 > par2.1){ rho <- 1 - rho costs <- costs[, 2:1] g <- par1.1; par1.1 <- par2.1; par2.1 <- g f <- par1.2; par1.2 <- par2.2; par2.2 <- f } R <- slope(rho, costs) if(var.equal){ num <- 1/2-par1.2^2*log(R)/(par2.1-par1.1)^2 den <- 1/2+par1.2^2*log(R)/(par2.1-par1.1)^2 epsilon <- abs(num/den) est.non.dis <- (qnorm(1-alpha/2)/L)^2*((log(R)/(par2.1-par1.1))^2*2*par1.2^4/(1+epsilon) +(1/2-par1.2^2*log(R)/(par2.1-par1.1)^2)^2*par1.2^2/epsilon +(1/2+par1.2^2*log(R)/(par2.1-par1.1)^2)^2*par1.2^2) }else{ threshold <- expression((sigma2D*muND-sigma2ND*muD+sqrt(sigma2ND*sigma2D)*sqrt((muD-muND)^2+2*log(R*sqrt(sigma2D/sigma2ND))*(sigma2D-sigma2ND)))/(sigma2D-sigma2ND)) where <- list(muND=par1.1, sigma2ND=par1.2^2, muD=par2.1, sigma2D=par2.2^2, R=R) a <- (as.numeric(attributes(eval(deriv(threshold, "muD"), where))$gradient))^2 b <- (as.numeric(attributes(eval(deriv(threshold, "muND"), where))$gradient))^2 c <- (as.numeric(attributes(eval(deriv(threshold, "sigma2D"), where))$gradient))^2 d <- (as.numeric(attributes(eval(deriv(threshold, "sigma2ND"), where))$gradient))^2 epsilon <- sqrt((a*par2.2^2+2*c*par2.2^4)/(b*par1.2^2+2*d*par1.2^4)) est.non.dis <- (qnorm(1-alpha/2)/L)^2*(a*par2.2^2/epsilon+b*par1.2^2+2*c*par2.2^4/epsilon+2*d*par1.2^4) } est.dis <- epsilon*est.non.dis if (par1.1.origin > par2.1.origin){ auxiliar <- est.non.dis est.non.dis <- est.dis est.dis <- auxiliar epsilon <- 1/epsilon } re <- list(ss2=est.dis, ss1=est.non.dis, epsilon=epsilon, width=width, alpha=alpha, costs=costs.origin, R=R, prev=rho.origin) class(re) <- "SS" return(re) } print.SS <- function(x, ...){ cat("Optimum SS Ratio: ", x$epsilon) cat("\n\nSample size for") cat("\n Diseased: ", x$ss2) cat("\n Non-diseased: ", x$ss1) cat("\n") cat("\nParameters used") cat("\n Significance Level: ", x$alpha) cat("\n CI width: ", x$width) cat("\n Disease prevalence:", x$prev) cat("\n Costs (Ctp, Cfp, Ctn, Cfn):", x$costs) cat("\n R:", x$R) cat("\n") }
cat("\014") rm(list = ls()) setwd("~/git/of_dollars_and_data") source(file.path(paste0(getwd(),"/header.R"))) library(scales) library(readxl) library(lubridate) library(ggrepel) library(gganimate) library(tidyverse) folder_name <- "0158_fwd_ret_visual" out_path <- paste0(exportdir, folder_name) dir.create(file.path(paste0(out_path)), showWarnings = FALSE) animate <- 0 raw <- read.csv(paste0(importdir, "0158_dfa_sp500/DFA_PeriodicReturns_20191223103141.csv"), skip = 7, col.names = c("date", "ret_sp500", "blank_col")) %>% select(-blank_col) %>% filter(!is.na(ret_sp500)) %>% mutate(date = as.Date(date, format = "%m/%d/%Y")) %>% select(date, ret_sp500) df <- raw for(i in 1:nrow(df)){ ret <- df[i, "ret_sp500"] if(i == 1){ df[i, "index"] <- 1 } else{ df[i, "index"] <- df[(i-1), "index"] * (1 + ret) } } lag_years <- c(1, 5, 10, 15, 20) years_seq <- seq(1, 10, 1) for(l in lag_years){ lag_months <- l * 12 for(y in years_seq){ fwd_months <- y * 12 tmp <- df %>% mutate(lag_ret = (index/lag(index, lag_months))^(1/l) - 1, lead_ret = (lead(index, fwd_months)/index), n_years_ret = y) %>% filter(!is.na(lag_ret), !is.na(lead_ret)) if(y == min(years_seq)){ final_results <- tmp } else{ final_results <- bind_rows(final_results, tmp) } } to_plot <- final_results %>% select(lag_ret, lead_ret, n_years_ret) source_string <- str_wrap(paste0("Source: Returns 2.0 (OfDollarsAndData.com)"), width = 80) note_string <- str_wrap(paste0("Note: Performance shown includes dividends, but is not adjusted for inflation."), width = 80) plot <- ggplot(to_plot, aes(x=lag_ret, y=lead_ret)) + geom_point() + geom_hline(yintercept = 1, linetype = "dashed") + scale_x_continuous(label = percent) + scale_y_continuous(label = dollar, breaks = seq(0, 8, 1), limits = c(0, 8)) + of_dollars_and_data_theme + ggtitle(paste0("S&P 500\n{closest_state}-Year Future Growth\nBased on ", l, "-Year Prior Return")) + labs(x= paste0(l, "-Year Annualized Prior Return"), y = "Growth of $1", caption = paste0(source_string, "\n", note_string)) + transition_states(n_years_ret) + ease_aes('linear') if(animate == 1){ anim <- animate(plot, fps = 7) anim_save(filename = paste0("annual_fwd_ret_lag_", l, "_scatter.gif"), animation = anim, path = out_path) } if(l == 10 | l == 20){ n_future <- 10 if(l == 10){ upper_flag <- 0.135 lower_flag <- 0.13 } else if (l == 20){ upper_flag <- 0.065 lower_flag <- 0.06 } to_plot <- final_results %>% filter(n_years_ret == n_future) %>% mutate(flagged = ifelse(lag_ret > lower_flag & lag_ret < upper_flag, 1, 0)) %>% select(date, lag_ret, lead_ret, n_years_ret, flagged) print(paste0("N year lookback = ", l)) print(paste0("The correlation is: ", cor(to_plot$lag_ret, to_plot$lead_ret))) flagged_points <- to_plot %>% filter(flagged == 1) %>% arrange(date) print(flagged_points) source_string <- str_wrap(paste0("Source: Returns 2.0 (OfDollarsAndData.com)"), width = 80) note_string <- str_wrap(paste0("Note: Performance shown includes dividends, but is not adjusted for inflation."), width = 80) file_path <- paste0(out_path, "/10_fwd_growth_", l, "_prior_plot.jpeg") plot <- ggplot(to_plot, aes(x=lag_ret, y=lead_ret, col = as.factor(flagged))) + geom_point() + scale_color_manual(values = c("black", "black"), guide = FALSE) + geom_hline(yintercept = 1, linetype = "dashed") + scale_x_continuous(label = percent) + scale_y_continuous(label = dollar, breaks = seq(0, 8, 1), limits = c(0, 8)) + of_dollars_and_data_theme + ggtitle(paste0("S&P 500\n", n_future, "-Year Future Growth\nBased on ", l, "-Year Prior Return")) + labs(x= paste0(l, "-Year Annualized Prior Return"), y = "Growth of $1\nOver Next Decade", caption = paste0(source_string, "\n", note_string)) ggsave(file_path, plot, width = 15, height = 12, units = "cm") } }
morphomapRaster<-function(cp,mp,pixel=1,filename,save=FALSE){ XX <- extendrange(cp[, 1]) YY <- extendrange(cp[, 2]) maxx <- max(XX) minx <- min(XX) maxy <- max(YY) miny <- min(YY) X <- seq(minx + pixel/2, maxx - pixel/2, pixel) Y <- seq(miny + pixel/2, maxy - pixel/2, pixel) M <- matrix(0, length(X), length(Y)) grid_sect <- as.matrix(expand.grid(X, Y)) A <- point.in.polygon(grid_sect[, 1], grid_sect[, 2], cp[, 1], cp[, 2], mode.checked = FALSE) B <- point.in.polygon(grid_sect[, 1], grid_sect[, 2], mp[, 1], mp[, 2], mode.checked = FALSE) sel <- which(A == 1 & B == 0) selt <- rep(0, length(X) * length(Y)) selt[sel] <- 1 img <- list() img$x <- (X) img$y <- (Y) img$z <- (matrix(t(selt), length(X), length(Y), byrow = F)) check_dx<-dim(img$z)[1] check_dy<-dim(img$z)[2] if(check_dx != check_dy){ if(check_dx>check_dy){ diff<-check_dx-check_dy for(i in 1:diff){ img$z<-cbind(img$z,0) } if(check_dx<check_dy){ diff<-check_dy-check_dx for(i in 1:diff){ img$z<-rbind(img$z,0) } } } } r <- raster(t(img$z), xmn = 0, xmx = dim(img$z)[2], ymn = 0, ymx = dim(img$z)[1], crs = CRS("+proj=utm +zone=11 +datum=NAD83")) rimg <- flip(r, 2) if (save == TRUE) { writeRaster(rimg, filename, "GTiff",overwrite=TRUE) } return(rimg) }
EotCycle <- function(x, y, n = 1, standardised, orig.var, write.out, path.out, prefix, type, verbose, ...) { x.vals <- raster::getValues(x) y.vals <- raster::getValues(y) type <- type[1] if (verbose) { cat("\nCalculating linear model ...", "\n") } type <- type[1] if (type == "rsq") { a <- predRsquaredSum(pred_vals = x.vals, resp_vals = y.vals, standardised = standardised) } else { a <- iodaSumC(pred_vals = x.vals, resp_vals = y.vals) } if (verbose) { cat("Locating ", n, ". EOT ...", "\n", sep = "") } maxxy.all <- which(a == max(a, na.rm = TRUE)) maxxy <- maxxy.all[1] if (length(maxxy.all) != 1) { if (verbose) { cat("WARNING:", "\n", "LOCATION OF EOT AMBIGUOUS!", "\n", "MULTIPLE POSSIBLE LOCATIONS DETECTED, USING ONLY THE FIRST!\n\n") } } if (verbose) { cat("Location:", raster::xyFromCell(x, maxxy), "\n", sep = " ") } y.lm.param.t <- respLmParam(x.vals, y.vals, maxxy - 1) y.lm.param.p <- lapply(y.lm.param.t, function(i) { tmp <- i tmp[[5]] <- 2 * pt(-abs(tmp[[5]]), df = tmp[[6]]) return(tmp) }) rst.y.template <- raster::raster(nrows = raster::nrow(y), ncols = raster::ncol(y), xmn = raster::xmin(y), xmx = raster::xmax(y), ymn = raster::ymin(y), ymx = raster::ymax(y)) rst.y.r <- rst.y.rsq <- rst.y.intercept <- rst.y.slp <- rst.y.p <- rst.y.template brck.y.resids <- raster::brick(nrows = raster::nrow(y), ncols = raster::ncol(y), xmn = raster::xmin(y), xmx = raster::xmax(y), ymn = raster::ymin(y), ymx = raster::ymax(y), nl = raster::nlayers(y)) rst.y.r[] <- sapply(y.lm.param.p, "[[", 1) rst.y.rsq[] <- sapply(y.lm.param.p, "[[", 1) ^ 2 rst.y.intercept[] <- sapply(y.lm.param.p, "[[", 2) rst.y.slp[] <- sapply(y.lm.param.p, "[[", 3) rst.y.p[] <- sapply(y.lm.param.p, "[[", 5) brck.y.resids[] <- matrix(sapply(y.lm.param.p, "[[", 4), ncol = raster::nlayers(x), byrow = TRUE) eot.ts <- as.numeric(raster::extract(x, maxxy)[1, ]) x.lm.param.t <- respLmParam(x.vals, x.vals, maxxy - 1) x.lm.param.p <- lapply(x.lm.param.t, function(i) { tmp <- i tmp[[5]] <- 2 * pt(-abs(tmp[[5]]), df = tmp[[6]]) return(tmp) }) rst.x.template <- raster::raster(nrows = raster::nrow(x), ncols = raster::ncol(x), xmn = raster::xmin(x), xmx = raster::xmax(x), ymn = raster::ymin(x), ymx = raster::ymax(x)) rst.x.r <- rst.x.rsq <- rst.x.rsq.sums <- rst.x.intercept <- rst.x.slp <- rst.x.p <- rst.x.template brck.x.resids <- raster::brick(nrows = raster::nrow(x), ncols = raster::ncol(x), xmn = raster::xmin(x), xmx = raster::xmax(x), ymn = raster::ymin(x), ymx = raster::ymax(x), nl = raster::nlayers(x)) rst.x.r[] <- sapply(x.lm.param.p, "[[", 1) rst.x.rsq[] <- sapply(x.lm.param.p, "[[", 1) ^ 2 rst.x.rsq.sums[] <- a rst.x.intercept[] <- sapply(x.lm.param.p, "[[", 2) rst.x.slp[] <- sapply(x.lm.param.p, "[[", 3) rst.x.p[] <- sapply(x.lm.param.p, "[[", 5) brck.x.resids[] <- matrix(sapply(x.lm.param.p, "[[", 4), ncol = raster::nlayers(x), byrow = TRUE) resid.var <- calcVar(brck.y.resids, standardised = standardised) cum.expl.var <- (orig.var - resid.var) / orig.var if (verbose) { cat("Cum. expl. variance (%):", cum.expl.var * 100, "\n", sep = " ") } xy <- raster::xyFromCell(x, maxxy) location.df <- as.data.frame(cbind(xy, paste("mode", sprintf("%02.f", n), sep = "_"), cum.expl.var, if (length(maxxy.all) != 1) "ambiguous" else "ok"), stringsAsFactors = FALSE) names(location.df) <- c("x", "y", "mode", "cum_expl_var", "comment") mode(location.df$x) <- "numeric" mode(location.df$y) <- "numeric" mode(location.df$cum_expl_var) <- "numeric" out <- new('EotMode', mode = n, name = paste("mode", sprintf("%02.f", n), sep = "_"), eot = eot.ts, coords_bp = xy, cell_bp = maxxy, cum_exp_var = cum.expl.var, r_predictor = rst.x.r, rsq_predictor = rst.x.rsq, rsq_sums_predictor = rst.x.rsq.sums, int_predictor = rst.x.intercept, slp_predictor = rst.x.slp, p_predictor = rst.x.p, resid_predictor = brck.x.resids, r_response = rst.y.r, rsq_response = rst.y.rsq, int_response = rst.y.intercept, slp_response = rst.y.slp, p_response = rst.y.p, resid_response = brck.y.resids) if (write.out) { writeEot(out, path.out = path.out, prefix = prefix, ...) df.name <- paste(prefix, "eot_locations.csv", sep = "_") if (n == 1) { write.table(location.df, col.names = TRUE, paste(path.out, df.name, sep = "/"), row.names = FALSE, append = FALSE, sep = ",") } else { write.table(location.df, col.names = FALSE, paste(path.out, df.name, sep = "/"), row.names = FALSE, append = TRUE, sep = ",") } rm(list = c("eot.ts", "maxxy", "location.df", "expl.var", "rst.x.r", "rst.x.rsq", "rst.x.rsq.sums", "rst.x.intercept", "rst.x.slp", "rst.x.p", "brck.x.resids", "rst.y.r", "rst.y.rsq", "rst.y.intercept", "rst.y.slp", "rst.y.p", "brck.y.resids")) gc() } return(out) }
freqpolygon( ~ Exercise, data = StudentSurvey, breaks = seq(0, 45, by = 4), lwd = 3, par.settings = col.whitebg(), panel = function(x, ...) { panel.xhistogram(x, ...); panel.freqpolygon(x, ...)} )
transform_to_min_spanning_tree <- function(graph) { fcn_name <- get_calling_fcn() if (graph_object_valid(graph) == FALSE) { emit_error( fcn_name = fcn_name, reasons = "The graph object is not valid") } igraph <- to_igraph(graph) igraph_mst <- igraph::mst(igraph) from_igraph(igraph_mst) }
initStrategy <- function(strategy, portfolio, symbols, parameters = NULL, get.Symbols = FALSE, init.Portf = TRUE, init.Acct = TRUE, init.Orders = TRUE, unique = TRUE, ...) { if (!is.strategy(strategy)) { strategy<-try(getStrategy(strategy)) if(inherits(strategy,"try-error")) stop ("You must supply an object or the name of an object of type 'strategy'.") store=TRUE } if(!hasArg(currency)){ if(!is.null(strategy$currency)) currency <- strategy$currency else currency<-'USD' } if(isTRUE(get.Symbols)){ getsyms <- NULL for (sym in symbols) { if(!is.instrument(getInstrument(sym,silent=TRUE))) { instrument.auto(sym, currency=currency) } tmp <- try(get(sym,pos=env),silent=TRUE) if (inherits(tmp, 'try-error')) getsyms <- c(getsyms, sym) } if (!is.null(getsyms)) getSymbols(getsyms,from=initDate, ...=...) } if(isTRUE(init.Portf) & !isTRUE(is.portfolio(portfolio))){ if(hasArg(portfolio)) portfolio<-portfolio else portfolio<-strategy$name initPortf(name=portfolio, symbols=symbols, currency=currency, ...=...) } if(isTRUE(init.Acct)){ if(hasArg(account)) account<-account else account<-portfolio if(!isTRUE(is.account(account))) initAcct(name=account, portfolios=portfolio, currency=currency, ...=...) } if(isTRUE(init.Orders)){ initOrders(portfolio=portfolio, symbols=symbols, ...=...) } for (init_o in strategy$init){ if(is.function(init_o$name)) { init_oFun <- init_o$name } else { if(exists(init_o$name, mode="function")) { init_oFun <- get(init_o$name, mode="function") } else { message("Skipping initialization function ", init_o$name, " because there is no function by that name to call.") } } if(!isTRUE(init_o$enabled)) next() .formals <- formals(init_o$name) .formals <- modify.args(.formals, init_o$arguments, dots=TRUE) .formals <- modify.args(.formals, parameters, dots=TRUE) .formals <- modify.args(.formals, NULL, ..., dots=TRUE) .formals$`...` <- NULL do.call(init_oFun, .formals) } } add.init <- function(strategy, name, arguments, parameters=NULL, label=NULL, ..., enabled=TRUE, indexnum=NULL, store=FALSE) { if (!is.strategy(strategy)) { strategy<-try(getStrategy(strategy)) if(inherits(strategy,"try-error")) stop ("You must supply an object or the name of an object of type 'strategy'.") store=TRUE } tmp_init<-list() tmp_init$name<-name if(is.null(label)) label = paste(name,"ind",sep='.') tmp_init$label<-label tmp_init$enabled=enabled if (!is.list(arguments)) stop("arguments must be passed as a named list") tmp_init$arguments<-arguments if(!is.null(parameters)) tmp_init$parameters = parameters if(length(list(...))) tmp_init<-c(tmp_init,list(...)) if(!hasArg(indexnum) | (hasArg(indexnum) & is.null(indexnum))) indexnum = length(strategy$inits)+1 tmp_init$call<-match.call() class(tmp_init)<-'strat_init' strategy$init[[indexnum]]<-tmp_init if (store) assign(strategy$name,strategy,envir=as.environment(.strategy)) else return(strategy) } initSymbol <- function(strategy, symbol, ...){ getSymbols(symbol, env = .GlobalEnv) init_s <- strategy$init_symbol if(is.function(init_s$name)) { init_sFun <- init_s$name } else { if(exists(init_s$name, mode="function")) { init_sFun <- get(init_s$name, mode="function") } else { message("Initialization function ", init_s$name, " not found. Skipping") return() } } if(!isTRUE(init_s$enabled)) return() .formals <- formals(init_s$name) .formals <- modify.args(.formals, init_s$arguments, dots=TRUE) .formals <- modify.args(.formals, NULL, ..., dots=TRUE) .formals$`...` <- NULL do.call(init_sFun, .formals) }
expected <- eval(parse(text="structure(numeric(0), .Dim = c(0L, 0L))")); test(id=0, code={ argv <- eval(parse(text="list(structure(numeric(0), .Dim = c(0L, 0L)))")); do.call(`cosh`, argv); }, o=expected);
bar2.plot<-function(x, y, file, var.label.x, var.label.y, perc, byrow, ...) { kk<-!is.na(x) & !is.na(y) x<-x[kk] y<-y[kk] dots.args <- eval(substitute(alist(...))) onefile <- FALSE if (!is.null(dots.args$onefile)) onefile<- dots.args$onefile if (is.null(file)) {} else { if (length(grep("bmp$",file))) bmp(file,...) if (length(grep("png$",file))) png(file,...) if (length(grep("tif$",file))) tiff(file,...) if (length(grep("jpg$",file))) jpeg(file,...) if (length(grep("pdf$",file))) if (!onefile) pdf(file,...) } pp <- table(x, y) ylab <- "Freq (n)" main <- paste("Barplot of '",var.label.x,"' by '",var.label.y,"'", sep="") if (!is.na(byrow) & byrow) { main <- paste("Barplot of '",var.label.y,"' by '",var.label.x,"'", sep="") pp <- table(y, x) } if (perc){ if (!is.na(byrow)) pp <- prop.table(pp, margin=2)*100 else pp <- prop.table(pp, margin=NULL)*100 ylab <- "Freq (%)" } if (!is.na(byrow) & byrow){ barplot(pp, beside=TRUE, main=main, ylim=c(0,max(pp)*1.3),ylab=ylab,col=rainbow(nlevels(y))) legend("topleft",levels(y),fill=rainbow(nlevels(y)),bty="n") }else{ barplot(pp, beside=TRUE, main=main, ylim=c(0,max(pp)*1.3),ylab=ylab,col=rainbow(nlevels(x))) legend("topleft",levels(x),fill=rainbow(nlevels(x)),bty="n") } if (!is.null(file) && (length(grep("pdf$",file))==0 || !onefile)) dev.off() }
plotCoef.enetLTS <- function(object,vers=c("reweighted","raw"), colors=NULL,...){ nam <- NULL if(is.null(colors)){ colors <- list(bars=" background=" scores=" badouts="darkred", modouts="black") } family <- object$inputs$family vers <- match.arg(vers) if (isTRUE(object$inputs$intercept)){ coefficients <- c(object$a0,object$coefficients) raw.coefficients <- c(object$a00,object$raw.coefficients) } else { coefficients <- object$coefficients raw.coefficients <- object$raw.coefficients } if (vers=="reweighted"){ plotcoefs <- data.frame(coefficients=coefficients,nam=names(coefficients), llim=coefficients,ulim=coefficients) plotcoefs$nam <- factor(plotcoefs$nam, levels=names(coefficients)) if (family=="binomial"){ plot <- ggplot(plotcoefs,aes(nam,coefficients))+geom_bar(stat="identity",size=3,fill=colors$bars,position="identity")+ labs(title=paste(names(object$inputs$yy),"enetLTS coefficients for logistic regression")) } else if (family=="gaussian"){ plot <- ggplot(plotcoefs,aes(nam,coefficients))+geom_bar(stat="identity",size=3,fill=colors$bars,position="identity")+ labs(title=paste(names(object$inputs$yy),"enetLTS coefficients for regression")) } plot <- plot + theme(panel.background=element_rect(fill=colors$background), plot.title=element_text(size=rel(1),face="bold"), axis.text.x=element_text(angle=-90),axis.title.x=element_blank(), axis.title.y=element_blank()) print(plot) } else if (vers=="raw"){ raw.plotcoefs <- data.frame(raw.coefficients=raw.coefficients,nam=names(raw.coefficients), llim=raw.coefficients,ulim=raw.coefficients) raw.plotcoefs$nam <- factor(raw.plotcoefs$nam, levels=names(raw.coefficients)) if (family=="binomial"){ raw.plot <- ggplot(raw.plotcoefs,aes(nam,raw.coefficients))+geom_bar(stat="identity",size=3,fill=colors$bars,position="identity")+ labs(title=paste(names(object$inputs$yy),"enetLTS raw coefficients for logistic regression")) } else if (family=="gaussian"){ raw.plot <- ggplot(raw.plotcoefs,aes(nam,raw.coefficients))+geom_bar(stat="identity",size=3,fill=colors$bars,position="identity")+ labs(title=paste(names(object$inputs$yy),"enetLTS raw coefficients for regression")) } raw.plot <- raw.plot + theme(panel.background=element_rect(fill=colors$background), plot.title=element_text(size=rel(1),face="bold"), axis.text.x=element_text(angle=-90),axis.title.x=element_blank(), axis.title.y=element_blank()) print(raw.plot) } }
sqndwdecomp <- function (x, J, filter.number, family) { lx <- length(x) ans <- matrix(0, nrow = J, ncol = length(x)) dw <- hwwn.dw(J, filter.number, family) longest.support <- length(dw[[J]]) scale.shift <- 0 for (j in 1:J) { l <- length(dw[[j]]) init <- (filter.number - 1) * (lx - 2^j) for (k in 1:lx) { yix <- seq(from = k, by = 1, length = l) yix <- ((yix - 1)%%lx) + 1 ans[j, k] <- sum(x[yix] * dw[[j]]^2) } if (filter.number == 1) scale.shift <- 0 else { scale.shift <- (filter.number - 1) * 2^j } ans[j, ] <- guyrot(ans[j, ], scale.shift) } return(ans) }
EEw1s3 <- function(des='',randomize=FALSE) { if (des=='') { cat(" ", "\n") cat("Catalog of D-efficient Estimation Equivalent RS","\n") cat(" Designs for (1 wp factor and 3 sp factors) ","\n") cat(" ", "\n") cat(" Jones and Goos, JQT(2012) pp. 363-374","\n") cat(" ", "\n") cat(format("Design Name",width=11),format("whole plots",width=11),format("sub-plots/whole plot",width=21),"\n") cat("----------------------------------------","\n") cat(format("EE18R6WP", width=11),format(" 6",width=11),format(" 3",width=21),"\n") cat(format("EE20R4WP", width=11),format(" 4",width=11),format(" 5",width=21),"\n") cat(format("EE20R5WP", width=11),format(" 5",width=11),format(" 4",width=21),"\n") cat(format("EE24R4WP", width=11),format(" 4",width=11),format(" 6",width=21),"\n") cat(format("EE24R6WP", width=11),format(" 6",width=11),format(" 4",width=21),"\n") cat(format("EE30R6WP", width=11),format(" 6",width=11),format(" 5",width=21),"\n") cat(format("EE36R6WP", width=11),format(" 6",width=11),format(" 6",width=21),"\n") cat(" ","\n") cat("==> to retrieve a design type EEw1s3('EE18R6WP') etc.","\n") } else if (des=='EE15R5WP') {v <- c(241, 391, 121, 132, 42, 147, 218, 98, 293, 374, 74, 314, 320, 305, 5) Full <-expand.grid(WP=c(1:5),w1=c(-1,0,1),s1=c(-1,0,1),s2=c(-1,0,1),s3=c(-1,0,1)) EE <- Full[v, ] rownames(EE)<- c(1:15) if (randomize==TRUE) { o<-c(rep(sample(1:5),each=3)) EE<-EE[order(order(o)), ] rownames(EE)<-c(1:15) s<-3 w<-5 rowp<-c(sample(1:s)) for (i in 1:(w-1)) {rowp<-c(rowp,i*s+sample(1:s))} EE<-EE[order(rowp), ] } return(EE) } else if(des=='EE16R4WP') { v <- c(17, 161, 209, 257, 74, 314, 26, 218, 243, 99, 291, 3, 312, 252, 120, 72) Full <-expand.grid(WP=c(1:4),w1=c(-1,0,1),s1=c(-1,0,1),s2=c(-1,0,1),s3=c(-1,0,1)) EE <- Full[v, ] rownames(EE)<- c(1:16) if (randomize==TRUE) { o<-c(rep(sample(1:4),each=4)) EE<-EE[order(order(o)), ] rownames(EE)<-c(1:16) s<-4 w<-4 rowp<-c(sample(1:s)) for (i in 1:(w-1)) {rowp<-c(rowp,i*s+sample(1:s))} EE<-EE[order(rowp), ] } return(EE) } else if(des=='EE18R6WP') { v <- c(316, 106, 400, 205, 142, 37, 521, 185, 437, 445, 151, 235, 551, 5, 551, 55, 391, 286) Full <-expand.grid(WP=c(1:7),w1=c(-1,0,1),s1=c(-1,0,1),s2=c(-1,0,1),s3=c(-1,0,1)) EE <- Full[v, ] rownames(EE)<- c(1:18) if (randomize==TRUE) { o<-c(rep(sample(1:6),each=3)) EE<-EE[order(order(o)), ] rownames(EE)<-c(1:18) s<-3 w<-6 rowp<-c(sample(1:s)) for (i in 1:(w-1)) {rowp<-c(rowp,i*s+sample(1:s))} EE<-EE[order(rowp), ] } return(EE) } else if(des=='EE20R4WP') {WP<-c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4) w1<-c(-1.0000, -1.0000, -1.0000, -1.0000, -1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, 1.0000, -0.2478, -0.2478, -0.2478, -0.2478, -0.2478) s1<-c(-1, -1, 1, 1, -1, 1, -1, 0, 1, -1, -1, 0, -1, 1, 1, -1, 1, -1, 1, 0) s2<-c(0, 1, 1, -1, -1, 0, 1, -1, 1, -1, 0, 1, -1, 1, -1, -1, 1, 1, -1, 0) s3<-c(-1, 1, -1, 1, 0, -1, 0, -1, 1, 1, 1, 1, -1, -1, 0, 1, 1, -1, -1, 0) EE<-data.frame(WP,w1,s1,s2,s3) if (randomize==TRUE) { o<-c(rep(sample(1:4),each=5)) EE<-EE[order(order(o)), ] rownames(EE)<-c(1:20) s<-5 w<-4 rowp<-c(sample(1:s)) for (i in 1:(w-1)) {rowp<-c(rowp,i*s+sample(1:s))} EE<-EE[order(rowp), ] } return(EE) } else if(des=='EE20R5WP') {v <- c(391, 91, 31, 271, 2, 362, 122, 302, 88, 238, 298, 13, 399, 204, 39, 279, 15, 330, 120, 180) Full <-expand.grid(WP=c(1:5),w1=c(-1,0,1),s1=c(-1,0,1),s2=c(-1,0,1),s3=c(-1,0,1)) EE <- Full[v, ] rownames(EE)<- c(1:20) if (randomize==TRUE) { o<-c(rep(sample(1:5),each=4)) EE<-EE[order(order(o)), ] rownames(EE)<-c(1:20) s<-4 w<-5 rowp<-c(sample(1:s)) for (i in 1:(w-1)) {rowp<-c(rowp,i*s+sample(1:s))} EE<-EE[order(rowp), ] } return(EE) } else if(des=='EE24R4WP') {v <- c(221, 17, 77, 161, 317, 29, 290, 2, 254, 242, 206, 86, 315, 63, 231, 291, 75, 111, 228, 108, 288, 144, 300, 12) Full <-expand.grid(WP=c(1:4),w1=c(-1,0,1),s1=c(-1,0,1),s2=c(-1,0,1),s3=c(-1,0,1)) EE <- Full[v, ] rownames(EE)<- c(1:24) if (randomize==TRUE) { o<-c(rep(sample(1:4),each=6)) EE<-EE[order(order(o)), ] rownames(EE)<-c(1:24) s<-6 w<-4 rowp<-c(sample(1:s)) for (i in 1:(w-1)) {rowp<-c(rowp,i*s+sample(1:s))} EE<-EE[order(rowp), ] } return(EE) } else if(des=='EE24R6WP') {v <- c(1, 145, 361, 433, 80, 404, 242, 242, 471, 39, 327, 111, 412, 412, 250, 88, 485, 53, 179, 125, 432, 396, 72, 270) Full <-expand.grid(WP=c(1:6),w1=c(-1,0,1),s1=c(-1,0,1),s2=c(-1,0,1),s3=c(-1,0,1)) EE <- Full[v, ] rownames(EE)<- c(1:24) if (randomize==TRUE) { o<-c(rep(sample(1:6),each=4)) EE<-EE[order(order(o)), ] rownames(EE)<-c(1:24) s<-4 w<-6 rowp<-c(sample(1:s)) for (i in 1:(w-1)) {rowp<-c(rowp,i*s+sample(1:s))} EE<-EE[order(rowp), ] } return(EE) } else if(des=='EE25R5WP') {v <- c(136, 91, 376, 31, 346, 402, 282, 207, 42, 102, 233, 398, 278, 83, 113, 49, 364, 259, 19, 304, 210, 135, 375, 315, 15) Full <-expand.grid(WP=c(1:5),w1=c(-1,0,1),s1=c(-1,0,1),s2=c(-1,0,1),s3=c(-1,0,1)) EE <- Full[v, ] rownames(EE)<- c(1:25) if (randomize==TRUE) { o<-c(rep(sample(1:5),each=5)) EE<-EE[order(order(o)), ] rownames(EE)<-c(1:25) s<-5 w<-5 rowp<-c(sample(1:s)) for (i in 1:(w-1)) {rowp<-c(rowp,i*s+sample(1:s))} EE<-EE[order(rowp), ] } return(EE) } else if(des=='EE30R6WP') {WP<-c(1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6 ) w1<-c(-1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1) s1<-c(0.1467, 0.4372, -0.9533, 0.9523, -0.8610, 0.7324, 0.6926, -0.8613, 0.1524, -0.9942, -1.0000, -0.1228, 0.5316, -0.6869, 1.0000, 0.8588, -0.9366, 1.0000, 0.8337, 0.9420, -0.8481, 0.6643, -0.8878, 0.8998, -0.1064, 1.0000, 0.1705, -0.7848, 0.9997, -0.8476) s2<-c(0.9970, 0.7162, 0.0875, -0.8638, -0.9352, 0.8870, -0.7992, 0.8500, 0.0558, -0.9919, 0.9949, -1.0000, 0.5110, -0.8674, 0.3632, -0.6348, 1.0000, -0.8105, 0.9934, -0.8724, 0.8085, -0.8940, -0.8715, 0.9606, -0.0019, 0.8828, 1.0000, 0.9896, -0.9783, 0.8635) s3<-c(-0.9659, 0.7165, 1.0000, 0.2234, -0.8596, -0.8207, 0.9175, 0.9220, 0.0277, -0.9321, -0.0126, -1.0000, -0.7197, 0.8467, 1.0000, -1.0000, -1.0000, 0.9976, 0.5478, -0.9948, -0.8287, -0.8866, 0.9148, 0.9609, -0.0459, -0.9117, 0.9884, -0.8769, 0.9997, -0.9999) EE<-data.frame(WP,w1,s1,s2,s3) if (randomize==TRUE) { o<-c(rep(sample(1:6),each=5)) EE<-EE[order(order(o)), ] rownames(EE)<-c(1:30) s<-5 w<-6 rowp<-c(sample(1:s)) for (i in 1:(w-1)) {rowp<-c(rowp,i*s+sample(1:s))} EE<-EE[order(rowp), ] } return(EE) } else if(des=='EE36R6WP') {WP<-c(1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6 ) w1<-c(0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1, 1, 1, 1, 1, 1, 1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, -1, -1, -1, -1, -1, -1) s1<-c(0.53908, 0.76183, 0.85120, -0.65988, -0.94260, 0.96642, 0.47852, 0.53728, 0.32607, -0.81904, -1.00000, -0.92735, 0.50225, -0.19625, -0.60576, 1.00000, 1.00000, 0.08923, -0.58067, -0.16993, -0.94720, -0.96033, 0.92974, 0.32387, 0.92279, -1.00000, 0.87572, -0.45357, 0.17111, 1.00000, -0.40728, -0.82531, -1.00000, -0.57218, 0.70431, 0.69594) s2<-c(-0.79936, 0.89476, 0.42489, 0.63926, 0.88700, -0.37711, 0.88231, -0.76266, 0.16716, -0.74521, -0.50252, 0.90081, -0.11153, 0.46263, 0.85752, -0.02876, 0.00745, 0.35810, -0.93614, 1.00000, -0.10915, -0.20044, -0.63579, 0.82141, 0.39575, 0.65611, -1.00000, 1.00000, 0.00885, 0.60873, 0.90481, 0.28202, -0.54116, -0.71167, -0.80632, 0.81221) s3<-c(-0.92414, 0.88755, -0.57336, 0.66455, 0.25221, -0.03008, -0.24680, 0.10316, 0.80028, -0.72825, 1.00000, -0.66508, -0.75278, 0.70306, -0.60648, 0.89481, 0.90464, 1.00000, -0.39641, 0.12134, -0.61963, 0.98790, 0.83953, -0.66942, 0.20694, 0.35728, -0.50765, 1.00000, -1.00000, 0.22016, -0.02109, 0.76701, -0.79858, -0.00717, 1.00000, -0.67686) EE<-data.frame(WP,w1,s1,s2,s3) if (randomize==TRUE) { o<-c(rep(sample(1:6),each=6)) EE<-EE[order(order(o)), ] rownames(EE)<-c(1:36) s<-6 w<-6 rowp<-c(sample(1:s)) for (i in 1:(w-1)) {rowp<-c(rowp,i*s+sample(1:s))} EE<-EE[order(rowp), ] } return(EE) } else cat(" Design name misspelled-Enter EEw1s3( ) to display list of names","\n") }
print_parameters <- function(x, ..., split_by = c("Effects", "Component", "Group", "Response"), format = "text", parameter_column = "Parameter", keep_parameter_column = TRUE, remove_empty_column = FALSE, titles = NULL, subtitles = NULL) { obj <- list(...) att <- do.call(c, .compact_list(lapply(obj, function(i) { a <- attributes(i) a$names <- a$class <- a$row.names <- NULL a }))) att <- att[!duplicated(names(att))] cp <- if (!inherits(x, "clean_parameters")) { clean_parameters(x) } else { x } obj <- Reduce( function(x, y) { if (parameter_column != "Parameter" && parameter_column %in% colnames(y) && !"Parameter" %in% colnames(y)) { colnames(y)[colnames(y) == parameter_column] <- "Parameter" } merge_by <- unique(c("Parameter", intersect(colnames(y), intersect(c("Effects", "Component", "Group", "Response"), colnames(x))))) merge(x, y, all.x = FALSE, by = merge_by, sort = FALSE) }, c(list(cp), obj) ) if (.is_empty_object(split_by)) { return(obj) } split_by <- split_by[split_by %in% colnames(obj)] f <- lapply(split_by, function(i) { if (i %in% colnames(obj)) obj[[i]] }) names(f) <- split_by out <- split(obj, f) out <- .compact_list(lapply(out, function(i) { if (nrow(i) > 0) i })) names(out) <- list_names <- gsub("(.*)\\.$", "\\1", names(out)) has_zeroinf <- any(grepl("zero_inflated", names(out), fixed = TRUE)) out <- lapply(names(out), function(i) { title1 <- title2 <- "" element <- out[[i]] parts <- unlist(strsplit(i, ".", fixed = TRUE)) for (j in 1:length(parts)) { if (parts[j] %in% c("fixed", "random") || (has_zeroinf && parts[j] %in% c("conditional", "zero_inflated"))) { tmp <- switch(parts[j], "fixed" = "Fixed effects", "random" = "Random effects", "dispersion" = "Dispersion", "conditional" = "(conditional)", "zero_inflated" = "(zero-inflated)" ) title1 <- paste0(title1, " ", tmp) } else if (!parts[j] %in% c("conditional", "zero_inflated")) { tmp <- switch(parts[j], "simplex" = "(monotonic effects)", parts[j] ) title2 <- paste0(title2, " ", tmp) } } .effects <- unique(element$Effects) .component <- unique(element$Component) .group <- unique(element$Group) columns_to_remove <- c("Effects", "Component", "Cleaned_Parameter") if (.n_unique(.group) == 1) { columns_to_remove <- c(columns_to_remove, "Group") } else { .group <- NULL } keep <- setdiff(colnames(element), columns_to_remove) element <- element[, c("Cleaned_Parameter", keep)] if ("pretty_names" %in% names(att)) { attr(element, "pretty_names") <- stats::setNames(att$pretty_names[element$Parameter], element$Cleaned_Parameter) } if (!isTRUE(keep_parameter_column)) { element$Parameter <- NULL colnames(element)[colnames(element) == "Cleaned_Parameter"] <- "Parameter" } if (isTRUE(remove_empty_column)) { for (j in colnames(element)) { if (all(is.na(element[[j]])) || (is.character(element[[j]]) && all(element[[j]] == ""))) { element[[j]] <- NULL } } } if (is.null(format) || format == "text") { title_prefix <- " } else { title_prefix <- "" } title1 <- .capitalize(title1) title2 <- .capitalize(title2) attr(element, "main_title") <- .trim(title1) attr(element, "sub_title") <- .trim(title2) if (is.null(format) || format == "text") { attr(element, "table_caption") <- c(paste0(title_prefix, .trim(title1)), "blue") attr(element, "table_subtitle") <- c(.trim(title2), "blue") } else { attr(element, "table_caption") <- .trim(title1) attr(element, "table_subtitle") <- .trim(title2) } attr(element, "Effects") <- .effects attr(element, "Component") <- .component attr(element, "Group") <- .group element }) if (!is.null(titles) && length(titles) <= length(out)) { for (i in 1:length(titles)) { attr(out[[i]], "table_caption") <- c(titles[i], "blue") } } if (!is.null(subtitles) && length(subtitles) <= length(out)) { for (i in 1:length(subtitles)) { attr(out[[i]], "table_subtitle") <- c(subtitles[i], "blue") } } att$pretty_names <- NULL attr(out, "additional_attributes") <- att names(out) <- list_names out }
getFrequencyBasedPrior <- function(x, showplot=FALSE){ z <- fft(x) zmod <- Mod(z) zmodEffective <- zmod[-1] zmodEffective <- zmodEffective[1:(length(zmodEffective)/2)] if(showplot) { plot(as.numeric(x), xlab="index", ylab="x") names(zmod) <- NULL plot(zmod, col=c(1,rep(2, (length(zmod)-1)/2),rep(1, (length(zmod)-1)/2))) title("modulus of fft", line=7) names(zmodEffective) <- 1:length(zmodEffective) upperQuarter = sort(zmodEffective)[ceiling(length(zmodEffective) * 0.75)] lowerQuarter = sort(zmodEffective)[floor(length(zmodEffective) * 0.25)] iqr = upperQuarter - lowerQuarter outliers = zmodEffective[zmodEffective > upperQuarter + 1.5 * iqr] if (length(outliers) == 0) { freq <- which.max(zmodEffective) abline(v=1+freq, col=4) } else { outliers <- outliers[outliers > median(zmodEffective)] whichOutliers <- which(zmodEffective %in% outliers) abline(v=1+whichOutliers, col=4) freq <- max(whichOutliers) } meanFactor <- 0.5/freq legend("top", c("range of frequencies with large loadings", "modulus of effective frequency loading"), lty=c(1, NA), pch=c(NA, 1), col=c(4, 2)) msg <- paste0("WANT: frequency with largest loading = ", which.max(zmodEffective), ", corresponding prior factor = ", round(0.5/which.max(zmodEffective), digits = 4)) freq_wtd <- weighted.mean(whichOutliers, outliers^2) msg <- paste0(msg, "\nWANT: mod^2 weighted average frequency with large loadings = ", freq_wtd, ", corresponding prior factor = ", round(0.5/freq_wtd, digits = 4)) freq_wtd <- weighted.mean(1:length(zmodEffective), zmodEffective^2) msg <- paste0(msg, "\nWANT: mod^2 weighted average frequency among all = ", freq_wtd, ", corresponding prior factor = ", round(0.5/freq_wtd, digits = 4)) period_wtd <- weighted.mean(0.5/whichOutliers, outliers^2) msg <- paste0(msg, "\nWANT: mod^2 weighted average half periodicity (i.e. prior factor) with large loadings = ", period_wtd) period_wtd <- weighted.mean(0.5/(1:length(zmodEffective)), zmodEffective^2) msg <- paste0(msg, "\nWANT: mod^2 weighted average half periodicity (i.e. prior factor) among all = ", period_wtd) msg <- paste0(msg, "\nCURRENT: highest frequency with large loadings = ", freq, ", corresponding prior factor = ", round(0.5/freq, digits = 4)) mtext(msg) } freq <- weighted.mean(1:length(zmodEffective), zmodEffective^2) meanFactor <- 0.5 / freq sdFactor <- (1 - meanFactor) / 3 c(meanFactor=meanFactor, sdFactor=sdFactor) }
SpaceFilling <- function(asch){ fun1<-function() { n<-readline("Number of lines of association schemes array :\n") l<-readline("Number of columns of association schemes array :\n") n<-as.integer(n);l<-as.integer(l) return(c(n,l))} fun2<-function() { n<-readline("Number of lines of association schemes array :\n") l<-readline("Number of columns of association schemes array :\n") w<-readline("Number of the association scheme arrays :\n") n<-as.integer(n);l<-as.integer(l);w<-as.integer(w) return(c(n,l,w))} if (asch == "Div"){ V<-fun1();n<-V[1];l<-V[2] s<-n*l;A<-matrix(1:s, ncol = V[2], byrow=TRUE) SF<-matrix(ncol=s,nrow=s) for (d in 1:s) { SF[d,d]<-1 for (dd in 1:s){ D<-which(A==d); d1<-D%%n ; if (d1==0){d1<-n};DD<-which(A==dd); d2<-DD%%n ; if (d2==0){d2<-n} if (d1==d2) {SF[d,dd]<-1;SF[dd,d]<-1} else {SF[d,dd]<-2;SF[dd,d]<-2}}}} if (asch == "Rect"){ V<-fun1();n<-V[1];l<-V[2];s<-n*l;A<-matrix(1:s, ncol =l, byrow=TRUE) SF<-matrix(ncol=s,nrow=s) for (d in 1:s) { SF[d,d]<-1 for (dd in 1:s){ B<-t(A) D<-which(A==d); d1<-D%%n ; if (d1==0){d1<-n};DD<-which(A==dd); d2<-DD%%n if (d2==0){d2<-n} D1<-which(B==d); d11<-D1%%l ; if (d11==0){d11<-l};DD1<-which(B==dd); d12<-DD1%%l if (d12==0){d12<-l} if (d1==d2) {SF[d,dd]<-1;SF[dd,d]<-1} if (is.na(SF[d,dd])==TRUE){ if (d11==d12) {SF[d,dd]<-2;SF[dd,d]<-2}}}} for (d in 1:s) { for (dd in 1:s){ if (is.na(SF[d,dd])==TRUE){ SF[d,dd]<-3;SF[dd,d]<-3}}}} if (asch == "Nestdiv"){ V<-fun2();n<-V[1];l<-V[2];w<-V[3] s<-l*n;A<-NULL;S<-l*n*w SF<-matrix(ncol=S,nrow=S) for (i in 1:w){ A[[i]]<-matrix(1:s, ncol=l, byrow=TRUE) z<-(i-1)*s A[[i]]<-A[[i]]+z};B<-Reduce("rbind",A) for (i in 1:w) { a<-A[[i]];mi<-min(a);ma<-max(a) for (d in mi:ma){ for (dd in mi:ma){ D<-which(a==d); d1<-D%%n ; if (d1==0){d1<-n} DD<-which(a==dd); d2<-DD%%n ; if (d2==0){d2<-n} if (d1==d2) {SF[d,dd]<-1;SF[dd,d]<-1} else {SF[d,dd]<-2;SF[dd,d]<-2}}}} for (d in 1:S) { for (dd in 1:S){ if (is.na(SF[d,dd])==TRUE){ SF[d,dd]<-3;SF[dd,d]<-3}}}} if (asch == "RightAng"){ V<-fun2();n<-V[1];l<-V[2];w<-V[3];s<-l*n;A<-NULL;S<-l*n*w SF<-matrix(ncol=S,nrow=S) for (i in 1:w){ A[[i]]<-matrix(1:s, ncol=l, byrow=TRUE) z<-(i-1)*s A[[i]]<-A[[i]]+z};B<-Reduce("rbind",A) for (i in 1:w) { a<-A[[i]];mi<-min(a);ma<-max(a) for (d in mi:ma){ for (dd in mi:ma){ D<-which(a==d); d1<-D%%n ; if (d1==0){d1<-n} DD<-which(a==dd); d2<-DD%%n ; if (d2==0){d2<-n} if (d1==d2) {SF[d,dd]<-1;SF[dd,d]<-1} else {SF[d,dd]<-2;SF[dd,d]<-2}} for (i in 1:w) { if (i < w){ b<-A[[i+1]];mib<-min(b);mab<-max(b) for (db in mib:mab){ DB<-which(b==db); db2<-DB%%n ; if (db2==0){db2<-n} if (d1==db2) {if (is.na(SF[d,db])==TRUE){ SF[d,db]<-3;SF[db,d]<-3}} else {if (is.na(SF[d,db])==TRUE){ SF[d,db]<-4;SF[db,d]<-4}}}}}}}} if (asch == "GrectRightAng4"){ V<-fun2();n<-V[1];l<-V[2];w<-V[3];s<-l*n;A<-NULL;S<-l*n*w;SF<-matrix(ncol=S,nrow=S) for (i in 1:w){ A[[i]]<-matrix(1:s, ncol=l, byrow=TRUE);z<-(i-1)*s A[[i]]<-A[[i]]+z};B<-Reduce("rbind",A) for (i in 1:w) { a<-A[[i]];mi<-min(a);ma<-max(a) B<-t(a) for (d in mi:ma){ for (dd in mi:ma){ D<-which(a==d); d1<-D%%n ; if (d1==0){d1<-n} DD<-which(a==dd); d2<-DD%%n ; if (d2==0){d2<-n} if (d1==d2) {SF[d,dd]<-1;SF[dd,d]<-1} D1<-which(B==d); d11<-D1%%n ; if (d11==0){d11<-n} DD1<-which(B==dd); d21<-DD1%%n ; if (d21==0){d21<-n} if (d11==d21) if (is.na(SF[d,dd])==TRUE){ {SF[d,dd]<-2;SF[dd,d]<-2}} if (is.na(SF[d,dd])==TRUE){ SF[d,dd]<-3;SF[dd,d]<-3}}}} for (d in 1:S) { for (dd in 1:S){ if (is.na(SF[d,dd])==TRUE){ SF[d,dd]<-4;SF[dd,d]<-4}}}} if (asch == "GrectRightAng5"){ V<-fun2();n<-V[1];l<-V[2];w<-V[3];s<-l*n;A<-NULL;S<-l*n*w;SF<-matrix(ncol=S,nrow=S) for (i in 1:w){ A[[i]]<-matrix(1:s, ncol=l, byrow=TRUE);z<-(i-1)*s A[[i]]<-A[[i]]+z};B<-Reduce("rbind",A);SF<-matrix(ncol=S,nrow=S) for (i in 1:w) { a<-A[[i]];mi<-min(a);ma<-max(a);B<-t(a) for (d in mi:ma){ for (dd in mi:ma){ D<-which(a==d); d1<-D%%n ; if (d1==0){d1<-n} DD<-which(a==dd); d2<-DD%%n ; if (d2==0){d2<-n} if (d1==d2) {SF[d,dd]<-1;SF[dd,d]<-1} D1<-which(B==d); d11<-D1%%n ; if (d11==0){d11<-n} DD1<-which(B==dd); d21<-DD1%%n ; if (d21==0){d21<-n} if (d11==d21) if (is.na(SF[d,dd])==TRUE){ {SF[d,dd]<-2;SF[dd,d]<-2}} if (is.na(SF[d,dd])==TRUE){ SF[d,dd]<-3;SF[dd,d]<-3}} for (i in 1:w) { if (i < w){ bb<-A[[i+1]];mib<-min(bb);mab<-max(bb) for (db in mib:mab){ DB<-which(bb==db); db2<-DB%%n ; if (db2==0){db2<-n} if (d1==db2) {if (is.na(SF[d,db])==TRUE){SF[d,db]<-4;SF[db,d]<-4}} else {if (is.na(SF[d,db])==TRUE){SF[d,db]<-5;SF[db,d]<-5}}}}}}}} if (asch == "GrectRightAng7"){ V<-fun2();n<-V[1];l<-V[2];w<-V[3];s<-l*n;S<-l*n*w;A<-NULL for (i in 1:w){ A[[i]]<-matrix(1:s, ncol=l, byrow=TRUE);z<-(i-1)*s A[[i]]<-A[[i]]+z};B<-Reduce("rbind",A);SF<-matrix(ncol=S,nrow=S) for (i in 1:w) { a<-A[[i]];mi<-min(a);ma<-max(a);B<-t(a) for (d in mi:ma){ for (dd in mi:ma){ D<-which(a==d); d1<-D%%n ; if (d1==0){d1<-n};DD<-which(a==dd); d2<-DD%%n if (d2==0){d2<-n} if (d1==d2) {SF[d,dd]<-1;SF[dd,d]<-1} D1<-which(B==d); d11<-D1%%n ; if (d11==0){d11<-n};DD1<-which(B==dd);d21<-DD1%%n if (d21==0){d21<-n} if (d11==d21) if (is.na(SF[d,dd])==TRUE){ {SF[d,dd]<-2;SF[dd,d]<-2}} if (is.na(SF[d,dd])==TRUE){ SF[d,dd]<-3;SF[dd,d]<-3}} for (i in 1:w) { if (i < w){ bb<-A[[i+1]];mib<-min(bb);mab<-max(bb) for (db in mib:mab){ B2<-t(bb);DB<-which(bb==db); db2<-DB%%n ; if (db2==0){db2<-n} n1<-which(B2==db); n21<-n1%%n ; if (n21==0){n21<-n} if (D==DB) {if (is.na(SF[d,db])==TRUE){SF[d,db]<-4;SF[db,d]<-4}} if (d11==db2) {if (is.na(SF[d,db])==TRUE){SF[d,db]<-5;SF[db,d]<-5}} if (d1==n21) if (is.na(SF[d,db])==TRUE){ {SF[d,db]<-6;SF[db,d]<-6}}}}}}} for (d in 1:S) { for (dd in 1:S){ if (is.na(SF[d,dd])==TRUE){ SF[d,dd]<-7;SF[dd,d]<-7}}}} NN<-max(SF) RR<-dim(SF)[1] return(list(SFDesign=SF,Runs=RR,Factors=RR,Levels=NN))}
plindleylogarithmic <- function(x , lambda , theta , log.p = FALSE) { stopifnot(theta < 1,theta > 0,lambda > 0,x > 0,is.logical(log.p)) phi = theta * (1 - (lambda + 1 + lambda * x) / (lambda + 1) * exp(-lambda * x)) aphi = -log(1 - phi) atheta = -log(1 - theta) cdf = aphi / atheta if(log.p) return(log(cdf)) else return(cdf) } dlindleylogarithmic <- function(x, lambda, theta) { stopifnot(theta < 1,theta > 0,lambda > 0,x > 0) phi = theta * (1 - (lambda + 1 + lambda * x) / (lambda + 1) * exp(-lambda * x)) adphi = 1 / (1 - phi) atheta = -log(1 - theta) rest = theta * lambda ** 2 / ((lambda + 1) * atheta) * (1 + x) * exp(-lambda * x) pdf = rest * adphi return(pdf) } hlindleylogarithmic <- function(x, lambda, theta) { stopifnot(theta < 1,theta > 0,lambda > 0,x > 0) phi = theta * (1 - (lambda + 1 + lambda * x) / (lambda + 1) * exp(-lambda * x)) adphi = 1 / (1 - phi) aphi = -log(1 - phi) atheta = -log(1 - theta) rest = theta * lambda ** 2 / (lambda + 1) * (1 + x) * exp(-lambda * x) hazard = rest * adphi / (atheta - aphi) return(hazard) } qlindleylogarithmic <- function(p, lambda, theta) { stopifnot(theta < 1,theta > 0,lambda > 0) atheta = -log(1 - theta) t0 = 1 - exp(-p * atheta) t1 = t0 / theta - 1 t2 = (lambda + 1) / exp(lambda + 1) * t1 x = - lamW::lambertWm1(t2) / lambda - 1 / lambda -1 return(x) } rlindleylogarithmic <- function(n, lambda, theta) { stopifnot(theta < 1,theta > 0,lambda > 0,n %% 1==0) y=stats::runif(n, min=0, max = 1) randdata=qlindleylogarithmic(y, lambda, theta) return(randdata) }
isNonZeroNumberOrNaVector <- function(argument, default = NULL, stopIfNot = FALSE, n = NA, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = NA, zeroAllowed = FALSE, negativeAllowed = TRUE, positiveAllowed = TRUE, nonIntegerAllowed = TRUE, naAllowed = TRUE, nanAllowed = FALSE, infAllowed = FALSE, message = message, argumentName = argumentName) }
LKSN_test<-function(x,trend=c("none","linear"),tau=0.2,lmax=0,simu=0,M=10000) { trend<-match.arg(trend,c("none","linear")) if(tau<=0 | tau>=0.5) stop("It must hold that 0<tau<0.5") if (any(is.na(x))) stop("x contains missing values") if (mode(x) %in% ("numeric") == FALSE | is.vector(x)==FALSE) stop("x must be a univariate numeric vector") T<-length(x) if ((T*tau)<11) stop("T*tau needs to be at least 11 to guarantee that the test statistic can be calculated") if(tau!=0.2 & simu==0) warning("Note that the critical values stated are not valid for a tau different from 0.2") if(lmax>0 & simu==0) warning("Note that the small sample critical values stated might be different for lmax different from 0") stat<-LKSN(x=x,trend=trend,tau=tau,lmax=lmax) t_stats<-c(min(stat$tstat1),min(stat$tstat2),min(stat$tstat1,stat$tstat2)) if(simu==1){Crit<-CV(x=x,trend=trend,type="LKSN",M=M,tau=tau,lmax=lmax)} else{ if(trend=="none") Crit<-getCV()$cv_LKSN_test[1:3,] if(trend=="linear") Crit<-getCV()$cv_LKSN_test[4:6,] if(T<100) Crit<-Crit[,1:2] if(T>1000) Crit<-Crit[,9:10] if(T>99 & T<1001){ if(min(abs(as.numeric(colnames(Crit))-T))==0){Crit<-Crit[,rank(abs(as.numeric(colnames(Crit))-T))<2]} else{ Tdif<-as.numeric(colnames(Crit))-T if(Tdif[which.min(abs(Tdif))]<0){ Crit<-Crit[,(which.min(abs(Tdif))):(which.min(abs(Tdif))+3)] Tdif<-Tdif[(which.min(abs(Tdif))):(which.min(abs(Tdif))+3)] } else{ Crit<-Crit[,(which.min(abs(Tdif))-2):(which.min(abs(Tdif))+1)] Tdif<-Tdif[(which.min(abs(Tdif))-2):(which.min(abs(Tdif))+1)] } Tdif<-abs(Tdif)[c(1,3)] Crit[,1:2]<-(sum(Tdif)-Tdif[1])/(sum(Tdif))*Crit[,1:2]+(sum(Tdif)-Tdif[2])/(sum(Tdif))*Crit[,3:4] Crit<-Crit[,1:2] } } } result<-cbind(Crit,t_stats) colnames(result)<-c("90%","95%","Teststatistic") rownames(result)<-c("Against change from I(0) to I(1)","Against change from I(1) to I(0)","Against change in unknown direction") return(result) } ers_test=function (y, trend, lag.max,T) { lag.max <- lag.max + 1 nobs <- length(y) if (trend == "none") { ahat <- 1 - 25/T ya <- c(y[1], y[2:nobs] - ahat * y[1:(nobs - 1)]) za1 <- c(1, rep(1 - ahat, nobs - 1)) yd.reg <- summary(stats::lm(ya ~ -1 + za1)) yd <- y - stats::coef(yd.reg)[1] } else if (trend == "linear") { ahat <- 1 - 25/T ya <- c(y[1], y[2:nobs] - ahat * y[1:(nobs - 1)]) za1 <- c(1, rep(1 - ahat, nobs - 1)) trd <- 1:nobs za2 <- c(1, trd[2:nobs] - ahat * trd[1:(nobs - 1)]) yd.reg <- summary(stats::lm(ya ~ -1 + za1 + za2)) yd <- y - stats::coef(yd.reg)[1] - stats::coef(yd.reg)[2] * trd } yd.l <- yd[1:(nobs - 1)] yd.diff <- diff(yd) if (lag.max > 1) { yd.dlags <- stats::embed(diff(yd), lag.max)[, -1] data.dfgls <- data.frame(cbind(yd.diff[-(1:(lag.max - 1))], yd.l[-(1:(lag.max - 1))], yd.dlags)) colnames(data.dfgls) <- c("yd.diff", "yd.lag", paste("yd.diff.lag", 1:(lag.max - 1), sep = "")) dfgls.form <- stats::formula(paste("yd.diff ~ -1 + ", paste(colnames(data.dfgls)[-1], collapse = " + "))) } else if (lag.max <= 1) { data.dfgls <- data.frame(cbind(yd.diff, yd.l)) colnames(data.dfgls) <- c("yd.diff", "yd.lag") dfgls.form <- stats::formula("yd.diff ~ -1 + yd.lag") } dfgls.reg <- summary(stats::lm(dfgls.form, data = data.dfgls)) teststat <- stats::coef(dfgls.reg)[1, 3] return(teststat) } LKSN<-function(x,trend,tau,lmax) { T<-length(x) Ttau<-(floor(T*tau)):(ceiling(T*(1-tau))) T1<-rep(NA,length(Ttau)) T2<-rep(NA,length(Ttau)) q<-1 if(trend=="linear"){ for(i in Ttau) { T1[q]<-ers_test(x[1:i],trend="linear",T=T,lag.max=lmax) T2[q]<-ers_test(rev(x)[1:i],trend="linear",T=T,lag.max=lmax) q<-q+1 } } else{ for(i in Ttau) { T1[q]<-ers_test(x[1:i],trend="none",T=T,lag.max=lmax) T2[q]<-ers_test(rev(x)[1:i],trend="none",T=T,lag.max=lmax) q<-q+1 } } return(list(tstat1=T1,tstat2=T2)) }
test_that("NHL - Get NHL Teams Roster", { skip_on_cran() x <- nhl_teams_roster(team_id=14) cols <- c("jersey_number", "player_id", "player_full_name", "player_link", "position_code", "position_name", "position_type", "position_abbreviation", "team_id", "season") expect_equal(colnames(x), cols) expect_s3_class(x, 'data.frame') })
print.ridgeLogistic <- function(x, all.coef = FALSE, ...) { cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") print(coef(x, all.coef = all.coef), ...) cat("\n") invisible(x) }
read_soc <- function(path, use_names=TRUE, .verbose=FALSE) { if (is_url(path)) { tf <- tempfile() httr::stop_for_status(GET(path, httr::write_disk(tf))) path <- tf } path <- normalizePath(path.expand(path)) pal <- NULL soc <- xml2::read_xml(path) col_nodes <- xml2::xml_find_all(soc, "//draw:color", ns = xml2::xml_ns(soc)) x_names <- xml2::xml_attr(col_nodes, "draw:name", ns = xml2::xml_ns(soc)) x_names <- trimws(x_names) pal <- xml2::xml_attr(col_nodes, "draw:color", ns = xml2::xml_ns(soc)) names(pal) <- x_names n_colors <- length(pal) if (.verbose) message(" if (!use_names) { pal <- unname(pal) } gsub(" ", "0", pal) }
test_that("link_network_map works without lookup table", { net=network::network(matrix(c(0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0), nrow=4, byrow=TRUE)) network::set.vertex.attribute(net, "name", value=c("a", "e", "c", "d")) wkb = structure(list("01010000204071000000000000801A064100000000AC5C1641", "01010000204071000000000000801A084100000000AC5C1441", "01010000204071000000000000801A044100000000AC5C1241", "01010000204071000000000000801A024100000000AC5C1841"), class = "WKB") map=sf::st_sf(id=c("a", "b", "c", "e"), sf::st_as_sfc(wkb, EWKB=TRUE)) res=link_network_map(map, net, "id", "name") expect_equal(res, list(m=c("a", "c", "e"), n=c("a", "e", "c"))) }) test_that("link_network_map works with a lookup table", { net=network::network(matrix(c(0, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0), nrow=4, byrow=TRUE)) network::set.vertex.attribute(net, "name", value=c("a", "b", "c", "d")) wkb = structure(list("01010000204071000000000000801A064100000000AC5C1641", "01010000204071000000000000801A084100000000AC5C1441", "01010000204071000000000000801A044100000000AC5C1241", "01010000204071000000000000801A024100000000AC5C1841"), class = "WKB") map=sf::st_sf(id=c("a1", "b2", "c3", "d4"), sf::st_as_sfc(wkb, EWKB=TRUE)) lkptbl=data.frame(id=c("a1", "b2", "c4", "d4"), name=c("a", "b", "c", "d")) res=link_network_map2(map, net, lkptbl, "id", "name") expect_equal(res, list(m=c("a1", "b2", "d4"), n=c("a", "b", "d"))) }) test_that("is_* functions recognize objects of the class they test for", { expect_true(is_network(network::network(matrix(1))), TRUE) wkb = structure(list("01010000204071000000000000801A064100000000AC5C1641", "01010000204071000000000000801A084100000000AC5C1441", "01010000204071000000000000801A044100000000AC5C1241", "01010000204071000000000000801A024100000000AC5C1841"), class = "WKB") map=sf::st_sf(id=c("a1", "b2", "c3", "d4"), sf::st_as_sfc(wkb, EWKB=TRUE)) expect_true(is_sf(map)) }) test_that("is_lookup recognizes a complete data frame with two columns", { expect_equal(is_lookup_table(data.frame(id=c("a1", "b2", "c3", "d4"), name=c("a", "b", "c", "d"))), c("id", "name")) }) test_that("is_lookup fails with duplicates or missing/empty values", { expect_false(is_lookup_table(data.frame(id=c("a1", "b2", "c3", "d4"), name=c("a", "b", "b", "d")))) expect_false(is_lookup_table(data.frame(id=c("a1", "", "c3", "d4"), name=c("a", "b", "c", "d")))) expect_false(is_lookup_table(data.frame(id=c("a1", "b2", NA, "d4"), name=c("a", "b", "b", "d")))) }) test_that("is_lookup fails with column names not found in df", { expect_false(is_lookup_table(data.frame(id=c("a1", "b2", "c3", "d4"), name=c("a", "b", "c", "d")), m_name="id", n_name="vertex.names")) })
gdm_create_delta_designmatrix <- function( delta.designmatrix, TP, D, theta.k, skill.levels,G) { if ( is.null(delta.designmatrix) ){ delta.designmatrix <- rep(1,TP) for (dd in 1:D){ for ( pp in 1:(min( skill.levels[dd]-1,3) ) ){ delta.designmatrix <- cbind( delta.designmatrix, theta.k[,dd]^pp ) } } if (D>1){ for (dd1 in 1:(D-1) ){ for (dd2 in (dd1+1):D) { delta.designmatrix <- cbind( delta.designmatrix, theta.k[,dd1]*theta.k[,dd2] ) } } } } delta <- matrix(0,ncol(delta.designmatrix),G) covdelta <- NULL res <- list( delta=delta, covdelta=covdelta, delta.designmatrix=delta.designmatrix ) return(res) }
senm <- function (y, z, mset, gamma = 1, inner = 0, trim = 3, lambda = 1/2, tau = 0, alternative="greater", TonT = FALSE) { stopifnot((alternative=="greater")|(alternative=="less")) stopifnot(gamma>=1) stopifnot((inner>=0)&(inner<=trim)) stopifnot((lambda>0)&(lambda<1)) stopifnot(is.vector(y)&is.vector(z)&is.vector(mset)) stopifnot((length(z)==length(y))) stopifnot((length(z)==length(mset))) stopifnot(all(!is.na(y))) stopifnot(all((z==0)|(z==1))) tbcheck<-table(z,mset) ck<-all(tbcheck[2,]==1)&all(tbcheck[1,]>=1) if (!ck){ warning("Every matched set must contain one treated subject and at least one control.") stopifnot(ck) } mset<-as.integer(mset) o<-order(mset,1-z) y<-y[o] z<-z[o] mset<-mset[o] tb<-table(mset) nset<-length(tb) setsize<-max(tb) makeymat<-function(yj){ ymat<-matrix(NA,nset,setsize) m<-0 for (i in 1:nset){ ymat[i,1:tb[i]] <- yj[(m+1):(m+tb[i])] m<-m+tb[i] } ymat } ymat<-makeymat(y) if (alternative=="less"){ ymat<-(-ymat) tau<-(-tau) } if (!(tau == 0)) ymat[, 1] <- ymat[, 1] - tau ms <- mscorev(ymat, inner = inner, trim = trim, qu = lambda, TonT = TonT) separable1v(ms, gamma = gamma) }
library(checkmate) library(testthat) library(raster) context("getFeatures") test_that("getFeatures of a 'geom'", { coords <- data.frame(x = c(40, 70, 70, 50), y = c(40, 40, 60, 70), fid = 1) window <- data.frame(x = c(0, 80), y = c(0, 80)) aGeom <- gs_polygon(anchor = coords, window = window) output <- getFeatures(aGeom) expect_data_frame(output, any.missing = FALSE, nrows = 1, ncols = 2) expect_names(names(output), identical.to = c("fid", "gid")) output <- getFeatures(gtGeoms$grid$categorical) expect_data_frame(output, any.missing = FALSE, nrows = 3360) expect_names(x = names(output), permutation.of = c("fid", "values")) output <- getFeatures(gtGeoms$grid$continuous) expect_data_frame(output, any.missing = FALSE, nrows = 3360) expect_names(x = names(output), permutation.of = c("fid", "continuous")) }) test_that("getFeatures of a Spatial* object", { input <- gtSP$SpatialPolygons output <- getFeatures(input) expect_data_frame(output, any.missing = FALSE, nrows = 2, ncols = 2) expect_names(names(output), identical.to = c("fid", "gid")) }) test_that("getFeatures of a sf object", { input <- gtSF$polygon output <- getFeatures(input) expect_data_frame(output, any.missing = FALSE, nrows = 2, ncols = 3) expect_names(names(output), identical.to = c("fid", "gid", "a")) }) test_that("getFeatures of any other object", { output <- getFeatures("bla") expect_null(object = output) })
NP_it<-function(prev.results){ if (missing(prev.results)){ stop("No elementos para iteracion, No elements for iteration") } else { if(prev.results$bin[1]==0){ stop("El proceso ya esta bajo control, The process is already under control") } else { np.0<-prev.results$data.1 p.0<-prev.results$data.1/prev.results$data.n m <-length(np.0) n <-prev.results$data.n LCS.np.0<-expression(n*mean(p.0)+3*sqrt(n*mean(p.0)*(1-mean(p.0)))) LCI.np.0<-expression(n*mean(p.0)-3*sqrt(n*mean(p.0)*(1-mean(p.0)))) LC.np.0<-expression(n*mean(p.0)) if (eval(LCI.np.0)>0){ LCI.p.0<-eval(LCI.np.0) } else { LCI.np.0 <- 0 } np.pos<-which(np.0 >= eval(LCI.np.0) & np.0 < eval(LCS.np.0)) np.1<-np.0[np.pos] np.fi.0<-which(np.0 < eval(LCI.np.0)) np.fs.0<-which(np.0 >= eval(LCS.np.0)) bin.np<-if(length(np.pos)< m){ bin.np<-1 } else { bin.np<-0 } plot.np<-function(NP=np.0,type="b",col="blue",pch =19){ plot(NP, xlab= "Numero de muestra", ylab="Numero de No conformes", main="Grafica NP, Control Estadistico de la Calidad",type=type, col=col, ylim=c(eval(LCI.np.0)-mean(np.0)*0.05, max(eval(LCS.np.0)*1.1, max(np.0)*1.1)), xlim=c(-0.05*m, 1.05*m), pch = pch) abline(h= c(eval(LCS.np.0), eval(LCI.np.0), eval(LC.np.0)),col="lightgray") text(c(rep(1,3),rep(7,3)), rep(c(eval(LCS.np.0),eval(LC.np.0),eval(LCI.np.0)),2), c(c("LCS = ","LC = ","LCI = "), c(round(eval(LCS.np.0),3), round(eval(LC.np.0),3), round(eval(LCI.np.0),3))), col="red") } plot.np() structure(list("in.control" = np.pos, "out.control"= c(np.fi.0,np.fs.0), "Iteraciones" = prev.results$Iteraciones + 1, "data.n"= prev.results$data.n, "data.0"= prev.results$data.0, "data.1"= np.1, "bin" = bin.np, "Limites de Control Grafica np" = c("LCI.np"=eval(LCI.np.0),"LCS.np"=eval(LCS.np.0), "LC.np"=eval(LC.np.0)), "Conclusion del proceso"= c(if(length(np.pos)< m){ print("Proceso fuera de Control en Grafica np") } else { print("El proceso esta bajo control en Grafica np") }))) } } }
nbn_search <- function(sci_com, fq = NULL, order = NULL, sort = NULL, start = 0, rows = 25, facets = NULL, q = NULL, ...) { pchk(q, "sci_com") args <- tc(list( q = sci_com, fq = fq, pageSize = rows, startIndex = start, sort = sort, dir = order, facets = facets )) nbn_GET(file.path(nbn_base(), "search"), args, ...) } nbn_GET <- function(url, args, ...){ cli <- crul::HttpClient$new(url = url, headers = tx_ual,) tt <- cli$get(query = argsnull(args), ...) tt$raise_for_status() json <- jsonlite::fromJSON(tt$parse("UTF-8"))$searchResults list(meta = pop(json, "results"), data = json$results) } nbn_base <- function() "https://species-ws.nbnatlas.org"
context("File-backed") test_that("file-backed entries are discarded after the file is modified", { file <- renv_scope_tempfile("renv-test-") contents <- "Hello, world!" writeLines(contents, con = file) renv_filebacked_set("test", file, contents) expect_equal(renv_filebacked_get("test", file), contents) writeLines("Goodbye, world!", con = file) expect_identical(renv_filebacked_get("test", file), NULL) }) test_that("file-backed entries are discarded after the file is deleted", { file <- renv_scope_tempfile("renv-test-") contents <- "Hello, world!" writeLines(contents, con = file) renv_filebacked_set("test", file, contents) expect_equal(renv_filebacked_get("test", file), contents) unlink(file) expect_identical(renv_filebacked_get("test", file), NULL) })
snap_sites <- function(sites, flow_acc, max_move, out, overwrite = FALSE, max_memory = 300, use_sp = TRUE, ...){ if(!check_running()) stop("There is no valid GRASS session. Program halted.") if(use_sp) rgrass7::use_sp() else rgrass7::use_sf() flags <- "quiet" if(overwrite) flags <- c(flags, "overwrite") grass_out <- basename(out) grass_out <- gsub(".shp", "", grass_out) execGRASS( "r.stream.snap", flags = flags, parameters = list( input = sites, output = grass_out, accumulation = flow_acc, radius = max_move, memory = max_memory, ... ) ) sites <- readVECT(sites) grass_out <- readVECT(grass_out) grass_out$SnapDist <- pointDistance(sites, grass_out) raster::shapefile(x = grass_out, filename = out, overwrite = overwrite) vector_to_mapset(out, overwrite = overwrite) invisible() }
pcaRobS <- SMPCA <-function(X, ncomp, desprop=0.9, deltasca=0.5, maxit=100) { Wf <- function(r){ return((1-r)^2*(r<=1)) } n=dim(X)[1]; p=dim(X)[2] tol=1.e-4; sp= rrcov::PcaLocantore(X, k=p) mu0=sp@center; lamL=sp@eigenvalues lamL=lamL/sum(lamL); propSPC=cumsum(lamL) q1=sum(propSPC<desprop)+1 q=min(c(q1,ncomp)) QL=sp@loadings[,1:q]; Xcen=scale(X, center=mu0, scale=FALSE) fitL=scale(Xcen%*%QL%*%t(QL), center=-mu0,scale=FALSE) rr=colSums(t(Xcen)^2); sigini=mscale(sqrt(rr), delta=deltasca, tuning.chi = 1, family='bisquare')^2 rr=colSums(t(X-fitL)^2); sig0=mscale(sqrt(rr), delta=deltasca, tuning.chi = 1, family='bisquare')^2 ww=Wf(rr/sig0); B0=QL iter=0; del=100; while (iter<maxit & abs(del)>tol) { iter=iter+1; mu=colSums(X*ww)/sum(ww) Xcen=scale(X, center=mu, scale=FALSE) C=t(Xcen)%*%diag(ww)%*%Xcen B <- svd(C, nu=q, nv=q)$u fit=Xcen%*%B%*%t(B) res=Xcen-fit rr=colSums(t(res)^2) sig=mscale(sqrt(rr),delta=deltasca, tuning.chi = 1, family='bisquare') ^2 del1=1-sig/sig0; U=diag(q)-abs(t(B)%*%B0) del2=mean(abs(U)); del=max(c(del1,del2)) sig0=sig; B0=B ww=Wf(rr/sig); repre=Xcen%*%B } propex=1-sig/sigini fit=scale(fit, center=-mu, scale=FALSE) resu=list(eigvec=B, fit=fit, repre=repre, propex=propex, propSPC=propSPC, mu=mu, q=q) return(resu) }