code
stringlengths
1
13.8M
apexGameValue<-function(S,n,apexPlayer){ paramCheckResult=getEmptyParamCheckResult() stopOnInvalidCoalitionS(paramCheckResult,S, n=n) stopOnInvalidNumberOfPlayers(paramCheckResult,n) stopOnInvalidNumber(paramCheckResult,apexPlayer) logicapexGameValue(S,n,apexPlayer) } apexGameVector<-function(n,apexPlayer){ bitMatrix = createBitMatrix(n)[,1:n]; A<-c() i<-1 end<-((2^n)-1) while(i<=end){ currCoal<-which(bitMatrix[i,]&1) A[i] = apexGameValue(S=currCoal,n=n,apexPlayer=apexPlayer) i<-i+1 } return(A) } logicapexGameValue<-function(S,n,apexPlayer){ S<-sort(S) retVal<-0 if((apexPlayer %in% S) && (length(S) > 1)){ return (1) } N<-c(1:n) setWithoutApex<-N[-(which(N == apexPlayer))] if(identical(as.numeric(S), as.numeric(setWithoutApex))){ return (1) } return(retVal) } apexGame<-function(n,apexPlayer){ v = apexGameVector(n=n,apexPlayer=apexPlayer) retapexGame=list(n=n,apexPlayer=apexPlayer,v=v) return(retapexGame) }
pmax0 <- function(x){(x + abs(x))/2} apply_bfun <- function(bfun, p, fun = c("bfun", "b1fun")){ k <- attr(bfun, "k") n <- length(p) if(inherits(bfun, "slp.basis")){ pp <- matrix(, n, k + 1) pp[,1] <- 1; pp[,2] <- p if(k > 1){for(j in 2:k){pp[,j + 1] <- pp[,j]*p}} if(fun == "bfun"){out <- tcrossprod(pp, t(bfun$a))} else{out <- cbind(0, tcrossprod(pp[,1:k, drop = FALSE], t(bfun$a1[-1,-1, drop = FALSE])))} if(!attr(bfun, "intB")){out <- out[,-1, drop = FALSE]} } else{ out <- matrix(,n,k) if(fun == "bfun"){for(j in 1:k){out[,j] <- bfun[[j]](p)}} else{for(j in 1:k){out[,j] <- bfun[[j]](p, deriv = 1)}} } out } p.bisec <- function(theta, y,X, bfun, n.it = 20){ n <- length(y); k <- ncol(theta) bp <- attr(bfun, "bp") p <- attr(bfun, "p") Xtheta <- tcrossprod(X, t(theta)) eta <- tcrossprod(Xtheta,bp[512,, drop = FALSE]) m <- as.integer(512 + sign(y - eta)*256) for(i in 3:10){ eta <- .rowSums(Xtheta*bp[m,, drop = FALSE], n, k) m <- m + as.integer(sign(y - eta)*(2^(10 - i))) } m <- p[m] for(i in 11:n.it){ bp <- apply_bfun(bfun, m, "bfun") delta.m <- y - .rowSums(Xtheta*bp, n,k) m <- m + sign(delta.m)/2^i } m <- c(m) out.l <- which(m == 1/2^n.it) out.r <- which(m == 1 - 1/2^n.it) m[out.l] <- 0; m[out.r] <- 1 attr(m, "out") <- c(out.l, out.r) attr(m, "out.r") <- out.r m } p.bisec.internal <- function(theta, y,X,bp){ n <- length(y); k <- ncol(theta) Xtheta <- tcrossprod(X, t(theta)) eta <- tcrossprod(Xtheta,bp[512,, drop = FALSE]) m <- as.integer(512 + sign(y - eta)*256) for(i in 3:10){ eta <- .rowSums(Xtheta*bp[m,, drop = FALSE], n, k) m <- m + as.integer(sign(y - eta)*(2^(10 - i))) } out.l <- which(m == 1) out.r <- which(m == 1023) attr(m, "out") <- c(out.l, out.r) attr(m, "out.r") <- out.r m } make.bfun <- function(p,x){ n <- length(x) x1 <- x[1:(n-1)] x2 <- x[2:n] if(all(x1 < x2) | all(x1 > x2)){method <- "hyman"} else{method <- "fmm"} splinefun(p,x, method = method) } num.fun <- function(dx,fx, op = c("int", "der")){ n <- length(dx) + 1 k <- ncol(fx) fL <- fx[1:(n-1),, drop = FALSE] fR <- fx[2:n,, drop = FALSE] if(op == "int"){out <- apply(rbind(0, 0.5*dx*(fL + fR)),2,cumsum)} else{ out <- (fR - fL)/dx out <- rbind(out[1,],out) } out } extract.p <- function(model,p, cov = FALSE){ theta <- model$coefficients v <- model$covar q <- nrow(theta) k <- ncol(theta) bfun <- attr(model$mf, "bfun") pred.p <- apply_bfun(bfun, p, "bfun") beta <- c(pred.p%*%t(theta)) cov.beta <- matrix(NA,q,q) for(j1 in 1:q){ w1 <- seq.int(j1,q*k,q) for(j2 in j1:q){ w2 <- seq.int(j2,q*k,q) cc <- v[w1,w2, drop = FALSE] cov.beta[j1,j2] <- cov.beta[j2,j1] <- pred.p%*%cc%*%t(pred.p) } } se <- sqrt(diag(cov.beta)) z <- beta/se out <- cbind(beta, se, z, 2*pnorm(-abs(z))) colnames(out) <- c("Estimate", "std.err", "z value", "p(>|z|))") rownames(out) <- colnames(cov.beta) <- rownames(cov.beta) <- rownames(theta) if(cov){list(coef = out, cov = cov.beta)} else{list(coef = out)} } pred.beta <- function(model, p, se = FALSE){ if(se){ Beta <- NULL SE <- NULL for(j in p){ b <- extract.p(model,j)$coef Beta <- rbind(Beta, b[,1]) SE <- rbind(SE, b[,2]) } out <- list() for(j in 1:ncol(Beta)){ low <- Beta[,j] - 1.96*SE[,j] up <- Beta[,j] + 1.96*SE[,j] out[[j]] <- data.frame(p = p, beta = Beta[,j], se = SE[,j], low = low, up = up) } names(out) <- rownames(model$coefficients) return(out) } else{ theta <- model$coefficients beta <- apply_bfun(attr(model$mf, "bfun"), p, "bfun")%*%t(theta) out <- list() for(j in 1:nrow(theta)){out[[j]] <- data.frame(p = p, beta = beta[,j])} names(out) <- rownames(theta) return(out) } } iqr.waldtest <- function(obj){ bfun <- attr(obj$mf, "bfun") ax <- attr(obj$mf, "assign") ap <- attr(bfun, "assign") theta <- obj$coefficients q <- nrow(theta) k <- ncol(theta) s <- obj$s cc <- obj$covar ind.x <- rep(ax,k) ind.p <- sort(rep.int(ap,q)) K <- tapply(rowSums(s), ax, sum) Q <- tapply(colSums(s), ap, sum) testx <- testp <- NULL if(q > 1){ for(i in unique(ax)){ theta0 <- c(theta[which(ax == i),]) w <- which(ind.x == i) c0 <- cc[w,w, drop = FALSE] theta0 <- theta0[theta0 != 0] w <- which(rowSums(c0) != 0) c0 <- c0[w,w, drop = FALSE] if(length(theta0) == 0){tx <- NA} else{tx <- t(theta0)%*%chol2inv(chol(c0))%*%t(t(theta0))} testx <- c(testx, tx) } testx <- cbind(testx, df = K, pchisq(testx, df = K, lower.tail = FALSE)) colnames(testx) <- c("chi-square", "df", "P(> chi)") nx <- attr(attr(obj$mf, "terms"), "term.labels") if(attr(attr(obj$mf, "terms"), "intercept") == 1){nx <- c("(Intercept)", nx)} rownames(testx) <- nx } if(k > 1){ for(i in unique(ap)){ theta0 <- c(theta[,which(ap == i)]) w <- which(ind.p == i) c0 <- cc[w,w, drop = FALSE] theta0 <- theta0[theta0 != 0] w <- which(rowSums(c0) != 0) c0 <- c0[w,w, drop = FALSE] if(length(theta0) == 0){tp <- NA} else{tp <- t(theta0)%*%chol2inv(chol(c0))%*%t(t(theta0))} testp <- c(testp, tp) } testp <- cbind(testp, df = Q, pchisq(testp, df = Q, lower.tail = FALSE)) colnames(testp) <- c("chi-square", "df", "P(> chi)") np <- attr(bfun, "term.labels") if(any(ap == 0)){np <- c("(Intercept)", np)} rownames(testp) <- np } list(test.x = testx, test.p = testp) } test.fit <- function (object, ...){UseMethod("test.fit")} check.out <- function(theta, S, covar){ blockdiag <- function(A, d, type = 1){ h <- nrow(A); g <- d/h if(type == 1){ out <- diag(1,d) for(j in 1:g){ind <- (j*h - h + 1):(j*h); out[ind,ind] <- A} } else{ out <- matrix(0,d,d) for(i1 in 1:h){ for(i2 in 1:h){ ind1 <- (i1*g - g + 1):(i1*g) ind2 <- (i2*g - g + 1):(i2*g) out[ind1, ind2] <- diag(A[i1,i2],g) } } out <- t(out) } out } mydiag <- function(x){ if(length(x) > 1){return(diag(x))} else{matrix(x,1,1)} } th <- cbind(c(theta)) q <- nrow(theta) k <- ncol(theta) g <- q*k aX <- S$X; ay <- S$y; aB <- S$B cX <- aX$const; cB <- aB$const A <- blockdiag(mydiag(1/aX$S), g) th <- A%*%th covar <- A%*%covar%*%t(A) if(aX$intercept){ A <- diag(1,q); A[cX,] <- -aX$M; A[cX, cX] <- 1 A <- blockdiag(A,g) th <- A%*%th covar <- A%*%covar%*%t(A) } A <- blockdiag(mydiag(1/aB$S),g,2) th <- A%*%th covar <- A%*%covar%*%t(A) if(aB$intercept){ A <- diag(1,k); A[,cB] <- -aB$M; A[cB, cB] <- 1 A <- blockdiag(A,g,2) th <- A%*%th covar <- A%*%covar%*%t(A) } A <- blockdiag(aX$rot,g) th <- A%*%th covar <- A%*%covar%*%t(A) A <- blockdiag(t(aB$rot),g,2) th <- A%*%th covar <- A%*%covar%*%t(A) A <- blockdiag(mydiag(1/aX$s),g) th <- A%*%th covar <- A%*%covar%*%t(A) if(aX$intercept){ A <- diag(1,q); A[cX,] <- -aX$m/aX$s[cX]; A[cX, cX] <- 1 A <- blockdiag(A,g) th <- A%*%th covar <- A%*%covar%*%t(A) } A <- blockdiag(mydiag(1/aB$s),g,2) th <- A%*%th covar <- A%*%covar%*%t(A) if(aB$intercept){ A <- diag(1,k); A[,cB] <- -aB$m/aB$s[cB]; A[cB, cB] <- 1 A <- blockdiag(A,g,2) th <- A%*%th covar <- A%*%covar%*%t(A) } v <- (ay$M - ay$m)/10 th <- th*v covar <- covar*(v^2) theta <- matrix(th,q,k) theta[cX,cB] <- theta[cX,cB] + ay$m/aB$s[cB]/aX$s[cX] list(theta = theta, covar = covar) } safesolve <- function(A,B, lambda){ if(any(eigen(A)$values <= 0)){stop("A is not definite positive")} n <- nrow(A) lambda <- seq(lambda,0,length = 20) for(i in 1:length(lambda)){ X <- A - lambda[i]*B inv <- try(chol2inv(chol(X)), silent = TRUE) if(!inherits(inv, "try-error")){break} } list(X = X, inv = inv, lambda = lambda[i], warn = (i > 1)) } maxind <- function(A){ w <- which.max(A) n <- nrow(A) m <- ncol(A) row <- w %% n if(row == 0){row <- n} col <- floor(w/n) + (row < n) c(row, col) }
draw_posterior.dfmodel <- function(object, FUN = NULL, mc.cores = NULL, ...){ only_one_model <- FALSE if ("data" %in% names(object)) { object <- list(object) only_one_model <- TRUE } cat("Estimating models...\n") if (is.null(mc.cores)) { object <- lapply(object, .posterior_dfmodel, use = FUN) } else { object <- parallel::mclapply(object, .posterior_dfmodel, use = FUN, mc.cores = mc.cores, mc.preschedule = FALSE) } if (only_one_model) { object <- object[[1]] } else { class(object) <- append("bvarlist", class(object)) } return(object) } .posterior_dfmodel <- function(object, use) { if (is.null(use)) { object <- try(dfmpost(object)) } else { object <- try(use(object)) } if (inherits(object, "try-error")) { object <- c(object, list(coefficients = NULL)) } return(object) }
GSAtool <- function(parameters_set, out_set, pp_names, steps = 100, save=FALSE, dir=NULL){ data_Bstat <- Bstat(out_set) CM <- Cond_Moments(parameters_set, out_set , pp_names, steps = steps) SOBOL_indices <- SOBOL(data_var = data_Bstat[,3], CM_mean = CM$CM_mean, CM_var = CM$CM_var, pp_names = pp_names) AMA_indices <- AMA(data_Bstat , CM, pp_names, steps = steps) if (save==TRUE){ (save_results(SOBOL = SOBOL_indices[[1]], amae = AMA_indices$AMAE, amav = AMA_indices$AMAV, amar = AMA_indices$AMAR, amak = AMA_indices$AMAK, dir=dir)) } GSA <- list(SOBOL_indices, AMA_indices) return(GSA) }
genera_strippr <- function(tree, tax_frame){ if (!inherits(tree, "phylo")){ stop("tree must be of class 'phylo'") } if (! is.data.frame(tax_frame)){ tax_frame <- as.data.frame(tax_frame) } if (ncol(tax_frame) == 2){ names(tax_frame) <- c("taxon", "age") } else if (ncol(tax_frame) == 1) { names(tax_frame) <- "taxon" } else { stop("Taxon frame must be a dataframe containing, at minimum, a column labeled taxon, which contains the total set of taxa both on the tree and to be added.") } total_set <- unname(unlist(lapply(tax_frame["taxon"], as.character))) (absent <- unlist(total_set[which(!total_set %in% tree$tip.label)])) return(absent) }
mergeVote <- function(x, vote, Office="House", vote.x, check.x=TRUE){ nameOfx <- deparse(substitute(x)) nameOfVote <- deparse(substitute(vote)) nx <- nrow(x) nv <- nrow(vote) nmx <- names(x) nmv <- names(vote) votey <- grep('vote', nmv, value=TRUE) if(length(votey)<1) stop('No vote column found in the vote data.frame = ', deparse(substitute(vote))) if(missing(vote.x)){ vote.x <- grep('vote', names(x), value=TRUE) if(length(vote.x)<1)vote.x <- votey } if(!(vote.x %in% names(x))) x[, vote.x] <- rep('notEligible', nx) if(!('Office' %in% nmv)) vote <- cbind(vote, Office=Office) lnmx <- tolower(nmx) lnmv <- tolower(nmv) surnmx <- nmx[grep('surname', lnmx)] surnmv <- nmv[grep('surname', lnmv)] givenx <- nmx[grep('givenname', lnmx)] givenv <- nmv[grep('givenname', lnmv)] stx <- nmx[grep('state', lnmx)] stv <- nmv[grep('state', lnmv)] distx <- nmx[grep('district', lnmx)] distv <- nmv[grep('district', lnmv)] keyx <- paste(x$Office, x[[surnmx]], sep=":") keyv <- paste(vote$Office, vote[[surnmv]], sep=":") keyx2 <- paste(keyx, x[[givenx]], sep=":") keyv2 <- paste(keyv, vote[[givenv]], sep=':') keyx. <- paste(x$Office, x[[stx]], x[[distx]], sep=":") keyv. <- paste(vote$Office, vote[[stv]], vote[[distv]], sep=":") vote.notFound <- integer(0) voteFound <- rep(0, nv) for(iv in 1:nv){ jv <- which(keyx == keyv[iv]) if(length(jv)<1){ jv <- which(keyx. == keyv.[iv]) if(length(jv)!=1) vote.notFound <- c(vote.notFound, iv) } if(length(jv)>1){ jv <- which(keyx2 == keyv2[iv]) if(length(jv)!=1) jv <- which(keyx.==keyv.[iv]) if(length(jv)!=1){ vote.notFound <- c(vote.notFound, iv) } } if(length(jv)==1) { x[jv, vote.x] <- as.character(vote[iv, votey]) voteFound[iv] <- jv } } if(check.x){ Votex <- which(x[, vote.x] != 'notEligible') oops <- which(!(Votex %in% voteFound)) if(length(oops)>0){ print(x[oops,]) stop('People found voting in x = ', nameOfx[1], '\n not found in the data.frame vote = ', nameOfVote[1], '\n look for and fix the error(s) printed above.') } } x[, vote.x] <- factor(x[, vote.x]) if((no <- length(vote.notFound))>0){ cat(no, 'rows of vote not found:\n') print(vote[vote.notFound,] ) stop('Unable to find vote in x') } x }
densratio.appe <- function(xtrain, xtest, method="uLSIF", sigma=NULL, lambda=NULL, kernel_num=NULL, fold=5, stabilize=TRUE, qstb=0.025) { xtrain = as.matrix(xtrain) xtest = as.matrix(xtest) if (is.null(kernel_num)) kernel_num = 100 if (is.null(sigma)) { center = matrix(xtest[sample(1:nrow(xtest), kernel_num),], kernel_num, ncol(xtest)) sigma = as.array(quantile((dist(center)))) sigma = unique(sigma[ sigma>0.001 ]) } if (is.null(lambda)) lambda = "auto" if (method == "uLSIF" || method == "KLIEP") { wgt = densratio(xtrain, xtest, method, sigma, lambda, kernel_num, fold, verbose=FALSE)$compute_density_ratio(xtest) } else { stop("\n\nmethod should be either in ('uLSIF', 'KLIEP').\n\n") } if (stabilize) { vl = quantile(wgt, qstb) wgt[ wgt < vl ] = vl vl = quantile(wgt, 1-qstb) wgt[ wgt > vl ] = vl } return(wgt) }
plot_gbm <- function(object=stop("no 'object' argument"), smooth = c(0, 0, 0, 1), col = c(1, 2, 3, 4), ylim = "auto", legend.x = NULL, legend.y = NULL, legend.cex = .8, grid.col = NA, n.trees = NA, col.n.trees ="darkgray", ...) { check.classname(object, "object", c("gbm", "GBMFit")) obj <- object if((!is.numeric(smooth) && !is.logical(smooth)) || any(smooth != 0 & smooth != 1)) stop0("smooth should be a four-element vector specifying if train, ", "test, CV, and OOB curves are smoothed, e.g. smooth=c(0,0,0,1)") smooth <- rep_len(smooth, 4) col <- rep_len(col, 4) col[is.na(col)] <- 0 check.integer.scalar(n.trees, min=1, max=n.trees, na.ok=TRUE, logical.ok=FALSE) n.alltrees = gbm.n.trees(obj) train.error <- gbm.train.error(obj) valid.error <- gbm.valid.error(obj) cv.error <- gbm.cv.error(obj) final.max <- max(train.error[length(train.error)], valid.error[length(valid.error)], cv.error [length(cv.error)], na.rm=TRUE) if(any1(col)) { par <- par("mar", "mgp") on.exit(par(mar=par$mar, mgp=par$mgp)) init.gbm.plot(obj, ylim, final.max, par$mar, ...) if(is.specified(grid.col[1])) grid(col=grid.col[1], lty=3) if(is.specified(n.trees)) vertical.line(n.trees, col.n.trees, 1, 0) } leg.text <- leg.col <- leg.lty <- leg.vert <- leg.imin <- NULL voffset <- 0 y <- maybe.smooth(train.error, "train", smooth[1], n.alltrees) imin <- which.min1(y) imins <- c(imin, 0, 0, 0) names(imins) <- c("train", "test", "CV", "OOB") train.fraction <- gbm.train.fraction(obj) if(is.specified(col[1])) { lines(y, col=col[1]) leg.text <- c(leg.text, if(train.fraction == 1) "train" else sprint("train (frac %g)", train.fraction)) leg.col <- c(leg.col, col[1]) leg.lty <- c(leg.lty, 1) leg.vert <- c(leg.vert, FALSE) leg.imin <- imin } if(train.fraction != 1) { y <- maybe.smooth(valid.error, "test", smooth[2], n.alltrees) imin <- imins[2] <- which.min1(y) if(is.specified(col[2])) { if(imin) vertical.line(imin, col[2], 3, voffset) voffset <- voffset + 1 lines(y, col=col[2]) leg.text <- c(leg.text, if(!imin) "test not plotted" else sprint("test (frac %g)", 1-train.fraction)) leg.col <- c(leg.col, col[2]) leg.lty <- c(leg.lty, 1) leg.vert <- c(leg.vert, FALSE) leg.imin <- c(leg.imin, imin) } } if(!is.null(cv.error)) { y <- maybe.smooth(cv.error, "CV", smooth[3], n.alltrees) imin <- imins[3] <- which.min1(y) if(is.specified(col[3])) { if(imin) vertical.line(imin, col[3], 3, voffset) voffset <- voffset + 1 lines(y, col=col[3]) leg.text <- c(leg.text, if(!imin) "CV not plotted" else sprint("CV (%g fold)", gbm.cv.folds(obj))) leg.col <- c(leg.col, col[3]) leg.lty <- c(leg.lty, 1) leg.vert <- c(leg.vert, FALSE) leg.imin <- c(leg.imin, imin) } } bag.fraction <- gbm.bag.fraction(obj) if(bag.fraction != 1) { oobag.improve <- gbm.oobag.improve(obj) y <- maybe.smooth(-cumsum(oobag.improve), "OOB", smooth[4], n.alltrees) imin <- imins[4] <- which.min1(y) if(is.specified(col[4])) { if(imin) draw.oob.curve(y, imin, voffset, col[4], smooth, train.error) voffset <- voffset + 1 leg.text <- c(leg.text, if(!imin) "OOB not plotted" else "OOB (rescaled)") leg.col <- c(leg.col, col[4]) leg.lty <- c(leg.lty, 2) leg.vert <- c(leg.vert, FALSE) leg.imin <- c(leg.imin, imin) } } if(is.specified(n.trees)) { leg.text <- c(leg.text, "predict n.trees") leg.col <- c(leg.col, col.n.trees) leg.lty <- c(leg.lty, 1) leg.vert <- c(leg.vert, TRUE) leg.imin <- c(leg.imin, n.trees) } if(any1(col)) { box() gbm.legend(legend.x, legend.y, legend.cex, leg.text, leg.col, leg.lty, leg.vert, leg.imin) gbm.top.labels(leg.imin, leg.text, leg.col) } invisible(imins) } init.gbm.plot <- function(obj, ylim, final.max, mar, ...) { xlim <- dota("xlim", ...) n.alltrees <- gbm.n.trees(obj) if(!is.specified(xlim)) xlim <- c(0, n.alltrees) xlim <- fix.lim(xlim) ylim <- get.gbm.ylim(obj, xlim, ylim, final.max) ylab <- get.gbm.ylab(obj) main <- dota("main", ...) nlines.needed.for.main <- if(is.specified(main)) nlines(main) + .5 else 0 par(mar=c(mar[1], mar[2], max(mar[3], nlines.needed.for.main + 1), mar[4])) par(mgp=c(1.5, .4, 0)) train.error <- gbm.train.error(obj) call.plot(graphics::plot, force.x=1:n.alltrees, force.y=train.error, force.type="n", force.main="", force.xlim=xlim, def.ylim=ylim, def.xlab="Number of Trees", def.ylab=ylab, ...) if(is.specified(main)) mtext(main, side=3, line=1.3, cex=par("cex")) } get.gbm.ylim <- function(obj, xlim, ylim, final.max) { train.error <- gbm.train.error(obj) valid.error <- gbm.valid.error(obj) cv.error <- gbm.cv.error(obj) if(is.character(ylim) && substr(ylim[1], 1, 1) == "a") { imin <- max(1, min(1, xlim[1])) imax <- min(length(train.error), max(length(train.error), xlim[2])) cv.error <- gbm.cv.error(obj) ylim <- range(train.error[imin:imax], valid.error[imin:imax], cv.error [imin:imax], na.rm=TRUE) ylim[2] <- ylim[1] + 2 * (final.max - ylim[1]) i <- floor(xlim[1] + .25 * (xlim[2] - xlim[1])) if(i >= 1 && i <= length(train.error[imin:imax])) ylim[2] <- max(ylim[2], train.error[i]) } else if(!is.specified(ylim)) ylim <- range(train.error, valid.error, cv.error, na.rm=TRUE) fix.lim(ylim) } get.gbm.ylab <- function(obj) { dist <- gbm.short.distribution.name(obj) if(dist =="pa") switch(obj$distribution$metric, conc="Fraction of Concordant Pairs", ndcg="Normalized Discounted Cumulative Gain", map ="Mean Average Precision", mrr ="Mean Reciprocal Rank", stop0("unrecognized pairwise metric: ", obj$distribution$metric)) else switch(dist, ga="Squared Error Loss", la="Absolute Loss", td="t-distribution deviance", be="Bernoulli Deviance", hu="Huberized Hinge Loss", mu="Multinomial Deviance", ad="Adaboost Exponential Bound", ex="Exponential Loss", po="Poisson Deviance", co="Cox Partial Deviance", qu="Quantile Loss", stop0("unrecognized distribution name: ", obj$distribution.name)) } vertical.line <- function(x, col=1, lty=1, voffset=0) { if(is.specified(col)) { usr <- par("usr") range <- usr[4] - usr[3] lwd <- 1 if(lty == 3) { lwd <- min(1.5, 2 * par("cex")) voffset <- 0.008 * voffset * range } else voffset <- 0 lines(x=c(x, x), y=c(usr[3], usr[4]) - voffset, col=col, lty=lty, lwd=lwd) lines(x=c(x, x), y=c(usr[3], usr[3] + .02 * range), col=col, lty=1) } } maybe.smooth <- function(y, yname, must.smooth, n.alltrees) { if(any(!is.finite(y))) { warning0("plot_gbm: cannot plot ", yname, " curve (it has some non-finite values)") return(NA) } if(must.smooth) { x <- 1:n.alltrees if(n.alltrees < 10) y <- lowess(x, y)$y else y <- loess(y~x, na.action=na.omit, enp.target=min(max(4, n.alltrees/10), 50))$fitted } y } which.min1 <- function(x) { if(all(is.na(x))) return(0) which.min(x) } draw.oob.curve <- function(y, imin, voffset, col, smooth, train.error) { stopifnot(!is.na(imin)) vertical.line(imin, col, 3, voffset) usr <- par("usr") y <- y - min(y) y <- y / max(y) e <- train.error n <- length(e) y <- e[n] + (e[max(1, 0.1 * n)] - e[n]) * y lines(1:n, y, col=col, lty=2) } gbm.legend <- function(legend.x, legend.y, legend.cex, leg.text, leg.col, leg.lty, leg.vert, leg.imin) { xjust <- 0 usr <- par("usr") if(is.null(legend.y)) legend.y <- usr[3] + .65 * (usr[4] - usr[3]) if(is.null(legend.x)) { xjust <- 1 imin <- c(usr[2], leg.imin[which(leg.imin > usr[1] + .7 * (usr[2]-usr[1]))]) legend.x <- min(imin) - .05 * (usr[2] - usr[1]) legend.y <- usr[4] - .05 * (usr[4] - usr[3]) } if(is.specified(legend.x)) elegend(x=legend.x, y=legend.y, legend=leg.text, col=leg.col, lty=leg.lty, vert=leg.vert, bg="white", cex=legend.cex, xjust=xjust, yjust=xjust) } gbm.top.labels <- function(leg.imin, leg.text, leg.col) { stopifnot(substring(leg.text[1], 1, 5) == "train") leg.col[1] <- 0 leg.col[leg.col == "darkgray"] <- lighten("darkgray", -0.1) usr <- par("usr") x <- TeachingDemos::spread.labs(leg.imin, mindiff=par("cex") * max(strwidth(paste0(leg.imin, " "))), min=usr[1], max=usr[2]) margin <- .05 * (usr[2] - usr[1]) ok <- (x > usr[1] - margin) & (x < usr[2] + margin) & (leg.imin != 0) if(any(ok)) text(x=x[ok], y=usr[4] + .4 * strheight("X"), labels=leg.imin[ok], col=leg.col[ok], adj=c(.5, 0), xpd=NA) }
calc_dig <- function(num, build = FALSE) { lengths <- stringr::str_length(num) if (max(lengths) != 18 | min(lengths) != 18) { stop("Lawsuit IDs without check digits should have 18 numerical digits.") } NNNNNNN <- substr(num, 1L, 7L) AAAA <- substr(num, 8L, 11L) JTR <- substr(num, 12L, 14L) OOOO <- substr(num, 15L, 18L) n1 <- sprintf("%02d", as.numeric(NNNNNNN) %% 97) n2 <- sprintf("%02d", as.numeric(sprintf("%s%s%s", n1, AAAA, JTR)) %% 97) n3 <- sprintf("%02d", 98 - ((as.numeric(sprintf("%s%s", n2, OOOO)) * 100) %% 97)) dig <- n3 if (build) { return(sprintf("%s%s%s", substr(num, 1, 7), dig, substr(num, 8, 18))) } return(dig) } check_dig <- function(num) { num <- stringr::str_replace_all(num, "[.-]", "") if (stringr::str_length(num) != 20) { warning("Complete docket numbers should have 20 numerical digits.") return(FALSE) } num_no_dig <- stringr::str_c(substr(num, 1L, 7L), substr(num, 10L, 20L)) num_with_dig <- calc_dig(num_no_dig, build = TRUE) return(identical(num_with_dig, num)) } check_dig_vet <- function(num) { purrr::map_lgl(num, abjutils::check_dig) } verify_cnj <- function(cnj) { nprocesso2 <- dplyr::if_else(is.na(cnj), "", clean_cnj(cnj)) resp <- dplyr::case_when( nprocesso2 == "" ~ "vazio ou NA", stringr::str_length(clean_cnj(cnj)) > 20 ~ "> 20 digitos", !check_dig_vet(stringr::str_pad(dplyr::if_else(stringr::str_length(nprocesso2) > 20, stringr::str_sub(nprocesso2, end = 20), nprocesso2), 20, "left", "0")) ~ "dv invalido ou nao-cnj", T ~ "valido" ) return(resp) } extract_parts <- function(id, parts = "") { parts <- unique(parts) if (any(parts == "")) { parts <- c("N", "D", "A", "J", "T", "O") } if (any(!(parts %in% c("N", "D", "A", "J", "T", "O")))) { stop("Invalid parts") } id <- id %>% clean_id() %>% purrr::modify_if(~ stringr::str_length(.x) == 18, calc_dig, build = TRUE) %>% unlist() get_parts <- function(id, parts) { out <- c() for (part in parts) { range <- switch(part, "N" = list(1, 7), "D" = list(8, 9), "A" = list(10, 13), "J" = list(14, 14), "T" = list(15, 16), "O" = list(17, 20) ) out <- c(out, purrr::set_names( stringr::str_sub(id, range[[1]], range[[2]]), part )) } return(out) } purrr::map(id, get_parts, parts) } clean_id <- function(id) { stringr::str_replace_all(id, pattern = "[\\-\\.]", replacement = "") } build_id <- function(id) { build <- function(id) { stringr::str_c( id[1], "-", id[2], ".", id[3], ".", id[4], ".", id[5], ".", id[6] ) } purrr::map_chr(extract_parts(id), build) } separate_cnj <- function(data, col, ...) { tidyr::separate( data, {{ col }}, into = c("N", "D", "A", "J", "T", "O"), sep = "[\\-\\.]", ... ) } pattern_cnj <- function() { stringr::str_glue( "[0-9]{{3,7}}-?", "[0-9]{{2}}\\.?", "[0-9]{{4}}\\.?", "[0-9]{{1}}\\.?", "[0-9]{{2}}\\.?", "[0-9]{{4}}" ) %>% as.character() } clean_cnj <- function(x) { stringr::str_replace_all(x, "[^0-9]", "") }
na.locf0 <- function(object, fromLast = FALSE, maxgap = Inf, coredata = NULL) { if(is.null(coredata)) coredata <- inherits(object, "ts") || inherits(object, "zoo") || inherits(object, "its") || inherits(object, "irts") if(coredata) { x <- object object <- if (fromLast) rev(coredata(object)) else coredata(object) } else { if(fromLast) object <- rev(object) } ok <- which(!is.na(object)) if(is.na(object[1L])) ok <- c(1L, ok) gaps <- diff(c(ok, length(object) + 1L)) object <- if(any(gaps > maxgap)) { .fill_short_gaps(object, rep(object[ok], gaps), maxgap = maxgap) } else { rep(object[ok], gaps) } if (fromLast) object <- rev(object) if(coredata) { x[] <- object return(x) } else { return(object) } } na.locf <- function(object, na.rm = TRUE, ...) UseMethod("na.locf") na.locf.default <- function(object, na.rm = TRUE, fromLast, rev, maxgap = Inf, rule = 2, ...) { L <- list(...) if ("x" %in% names(L) || "xout" %in% names(L)) { if (!missing(fromLast)) { stop("fromLast not supported if x or xout is specified") } return(na.approx(object, na.rm = na.rm, maxgap = maxgap, method = "constant", rule = rule, ...)) } if (!missing(rev)) { warning("na.locf.default: rev= deprecated. Use fromLast= instead.") if (missing(fromLast)) fromLast <- rev } else if (missing(fromLast)) fromLast <- FALSE rev <- base::rev object[] <- if (length(dim(object)) == 0) na.locf0(object, fromLast = fromLast, maxgap = maxgap) else apply(object, length(dim(object)), na.locf0, fromLast = fromLast, maxgap = maxgap) if (na.rm) na.trim(object, is.na = "all") else object } na.locf.data.frame <- function(object, na.rm = TRUE, fromLast = FALSE, maxgap = Inf, ...) { object[] <- lapply(object, na.locf0, fromLast = fromLast, maxgap = maxgap) if (na.rm) na.omit(object) else object } na.contiguous.data.frame <- na.contiguous.zoo <- function(object, ...) { if (length(dim(object)) == 2) good <- apply(!is.na(object), 1, all) else good <- !is.na(object) if (!sum(good)) stop("all times contain an NA") tt <- cumsum(!good) ln <- sapply(0:max(tt), function(i) sum(tt == i)) seg <- (seq_along(ln)[ln == max(ln)])[1] - 1 keep <- (tt == seg) st <- min(which(keep)) if (!good[st]) st <- st + 1 en <- max(which(keep)) omit <- integer(0) n <- NROW(object) if (st > 1) omit <- c(omit, 1:(st - 1)) if (en < n) omit <- c(omit, (en + 1):n) cl <- class(object) if (length(omit)) { object <- if (length(dim(object))) object[st:en, ] else object[st:en] attr(omit, "class") <- "omit" attr(object, "na.action") <- omit if (!is.null(cl)) class(object) <- cl } object } na.contiguous.list <- function(object, ...) lapply(object, na.contiguous)
cumsum_mu_synch <- function(motor_unit_1, motor_unit_2, order = 1, binwidth = 0.001, get_data = T, plot = F) { recurrence_intervals2 <- function(motor_unit_1, motor_unit_2, order) { if (!is.vector(motor_unit_1) || !is.vector(motor_unit_2)) { stop("'motor_unit_1' and 'motor_unit_2' must be vectors.") } if (length(motor_unit_1) <= 1 || length(motor_unit_2) <= 1) { stop ("'motor_unit_1' and 'motor_unit_2' must be vectors of length > 1.") } if (is.unsorted(motor_unit_1, strictly = T) || is.unsorted(motor_unit_2, strictly = T)) { stop ("'motor_unit_1' and 'motor_unit_2' must be strictly increasing.") } if (!is.numeric(order) || order%%1 != 0) { stop("Order must be whole number.") } if (length(motor_unit_1) < length(motor_unit_2)) { ref.name <- deparse(substitute(motor_unit_1, env = parent.frame())) event.name <- deparse(substitute(motor_unit_2, env = parent.frame())) ref.MU <- motor_unit_1 event.MU <- motor_unit_2 ref.MU.ISI <- diff(motor_unit_1) event.MU.ISI <- diff(motor_unit_2) mean.ref.ISI <- round(mean(ref.MU.ISI), digits = 3) mean.event.ISI <- round(mean(event.MU.ISI), digits = 3) } else { ref.name <- deparse(substitute(motor_unit_2, env = parent.frame())) event.name <- deparse(substitute(motor_unit_1, env = parent.frame())) ref.MU <- motor_unit_2 event.MU <- motor_unit_1 ref.MU.ISI <- diff(motor_unit_2) event.MU.ISI <- diff(motor_unit_1) mean.ref.ISI <- round(mean(ref.MU.ISI), digits = 3) mean.event.ISI <- round(mean(event.MU.ISI), digits = 3) } MU.names <- list(Reference_Unit = ref.name, Number_of_Reference_Discharges = length(ref.MU), Reference_ISI = ref.MU.ISI, Mean_Reference_ISI = mean.ref.ISI, Event_Unit = event.name, Number_of_Event_Discharges = length(event.MU), Event_ISI = event.MU.ISI, Mean_Event_ISI = mean.event.ISI, Duration = max(ref.MU, event.MU) - min(ref.MU, event.MU)) lags <- vector('list', order) for (i in 1:length(ref.MU)) { pre_diff <- rev(event.MU[event.MU < ref.MU[i]]) pre_diff <- pre_diff[1:order] pre_diff <- pre_diff - (ref.MU[i]) post_diff <- event.MU[event.MU >= ref.MU[i]] post_diff <- post_diff[1:order] post_diff <- post_diff - (ref.MU[i]) for (j in 1:order) { y <- c(pre_diff[j], post_diff[j]) lags[[j]] <- append(lags[[j]], y) } } lags <- lapply(lags, Filter, f = Negate(is.na)) names(lags) <- paste(1:order) lags <- append(MU.names, lags) return(lags) } recurrence.data <- recurrence_intervals2(motor_unit_1, motor_unit_2, order) mean.reference.ISI <- recurrence.data$Mean_Reference_ISI frequency.data <- unlist(recurrence.data[paste(1:order)]) frequency.data <- frequency.data[frequency.data >= -mean.reference.ISI & frequency.data <= mean.reference.ISI] frequency.data <- as.vector(frequency.data) frequency.data <- motoRneuron::bin(frequency.data, binwidth = binwidth) baseline.mean <- frequency.data[frequency.data$Bin <= ((min(frequency.data$Bin)) + 0.060) | frequency.data$Bin >= (max(frequency.data$Bin) - 0.060), ] baseline.mean <- mean(as.numeric(unlist(baseline.mean["Freq"]))) baseline.sd <- frequency.data[frequency.data$Bin <= ((min(frequency.data$Bin)) + 0.060) | frequency.data$Bin >= (max(frequency.data$Bin) - 0.060), ] baseline.sd <- sd(as.numeric(unlist(baseline.sd["Freq"]))) cumsum <- data.frame(Bin = frequency.data$Bin, Cumsum = cumsum( as.numeric(frequency.data$Freq) - baseline.mean)) cumsum <- cumsum[cumsum$Bin >= ((min(frequency.data$Bin)) + 0.060) & cumsum$Bin <= (max(frequency.data$Bin) - 0.060),] ninety.percent <- min(cumsum$Cumsum) + ((max(cumsum$Cumsum) - min(cumsum$Cumsum)) * 0.9) ten.percent <- min(cumsum$Cumsum) + ((max(cumsum$Cumsum) - min(cumsum$Cumsum)) * 0.1) bounds <- vector() bounds[1] <- cumsum[(which(abs(cumsum$Cumsum - ten.percent) == min(abs(cumsum$Cumsum - ten.percent)))), 1] bounds[2] <- cumsum[(which(abs(cumsum$Cumsum - ninety.percent) == min(abs(cumsum$Cumsum - ninety.percent)))), 1] if(bounds[1] > bounds[2]) { old.lower <- bounds[1] bounds[1] <- bounds[2] bounds[2] <- old.lower rm(old.lower) } peak <- frequency.data[frequency.data$Bin >= bounds[1] & frequency.data$Bin <= bounds[2],] peak <- as.numeric(unlist(peak["Freq"])) peak.mean <- mean(peak) peak.zscore <- (peak.mean - baseline.mean) / baseline.sd if(peak.zscore < 1.96) { bounds[1] <- -0.005 bounds[2] <- 0.005 peak <- frequency.data[frequency.data$Bin >= bounds[1] & frequency.data$Bin <= bounds[2],] peak <- as.numeric(unlist(peak["Freq"])) peak.mean <- mean(peak) peak.zscore <- (peak.mean - baseline.mean) / baseline.sd } total.peak <- sum(peak) extra.peak <- sum((peak - baseline.mean)[which((peak - baseline.mean) > 0)]) total.count <- sum(as.numeric(unlist(frequency.data$Freq))) q <- as.numeric(vector()) for (m in 1:length(peak)) { if (peak[m] <= baseline.mean) { q <- c(q, peak[m]) } else {next} } expected.peak <- baseline.mean * (length(which(peak > baseline.mean))) + sum(q) Cumsum.Synch <- list() if (get_data) { Cumsum.Synch[["Data"]] <- recurrence.data } if (plot) { show(plot_bins(frequency.data)) } Cumsum.Synch[["Indices"]] <- list(CIS = extra.peak / recurrence.data$Duration, kprime = (total.peak / expected.peak), kminus1 = (extra.peak / expected.peak), E = (extra.peak / recurrence.data$Number_of_Reference_Discharges), S = (extra.peak / (recurrence.data$Number_of_Reference_Discharges + recurrence.data$Number_of_Event_Discharges)), SI = (extra.peak / (total.count / 2)), Peak.duration = bounds[2] - bounds[1], Peak.center = median(c(bounds[2], bounds[1]))) return(Cumsum.Synch) }
context("Tricky Examples") test_that("B <- rep(2:4,9)", { B <- rep(2:4, 9) golden <- structure( c(3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Dim = c(3L, 3L), .Dimnames = structure(list(B = c("2", "3", "4"), c("T1", "T2", "T3")), .Names = c("B", "draw")), class = "table" ) draw <- block_ra(blocks = B, prob_each = rep(1 / 3, 3)) expect_identical(table(B, draw), golden) draw <- block_ra(blocks = B, prob_each = c(.33, .33, .33) / sum(c(.33, .33, .33))) expect_identical(table(B, draw), golden) expect_error(table(B, block_ra( blocks = B, prob_each = c(.33, .33, .33) ))) }) test_that("ABAD", { B <- c("A", "B", "A", "D") draw <- block_ra(blocks = B, prob_each = c(.33, .33, .33) / sum(c(.33, .33, .33))) expect_true(all(table(B, draw) %in% 0:2)) }) test_that("ABD", { B <- c("A", "B", "D") draw <- block_ra(blocks = B, prob_each = c(.33, .33, .33) / sum(c(.33, .33, .33))) expect_true(all(table(B, draw) %in% 0:1)) B <- c(B, B) draw <- block_ra(blocks = B, prob_each = c(.43, .33, .33) / sum(c(.43, .33, .33))) expect_true(all(table(B, draw) %in% 0:2)) }) test_that("B=12121", { B <- c(1, 2, 1, 2, 1) draw <- block_ra(blocks = B, prob_each = c(.33, .33, .33) / sum(c(.33, .33, .33))) expect_equivalent(as.numeric(table(B, draw)[1, ]), c(1, 1, 1)) }) test_that("Complete N=16", { expect_equivalent(as.numeric(table(complete_ra(16))), c(8, 8)) }) test_that("Complete N=16 p=.25", { expect_equivalent(as.numeric(table(complete_ra(16, prob = .25))), c(12, 4)) }) test_that("Complete 16 ABCD", { draw <- complete_ra( 16, prob_each = rep(.25, 4), conditions = c("T00", "T01", "T10", "T11") ) expect_true(all(table(draw) == 4)) }) test_that("B=AABB", { B <- c("A", "A", "B", "B") expect_true(all(table(B, block_ra(blocks = B)) == 1)) }) test_that("B=1122 ABC", { B <- c(1, 1, 2, 2) draw <- block_ra(blocks = B, prob_each = c(.21, .29, .5)) expect_true(all(table(B, draw) %in% 0:1)) }) test_that("B=111222", { B <- c(1, 1, 1, 2, 2, 2) draw <- block_ra(blocks = B, prob = .5) t <- table(B, draw) expect_equivalent(as.numeric(sort(t[1, ])), 1:2) expect_equivalent(as.numeric(sort(t[1, ])), 1:2) }) test_that("B=1112222", { B <- c(1, 1, 1, 2, 2, 2, 2) draw <- block_ra(blocks = B, prob = .5) t <- table(B, draw) expect_equivalent(as.numeric(sort(t[1, ])), 1:2) expect_equivalent(as.numeric(t[2, ]), c(2, 2)) }) test_that("B=111222222", { B <- c(1, 1, 1, 2, 2, 2, 2, 2, 2) draw <- block_ra(blocks = B, prob_each = c(1 / 3, 1 / 3, 1 / 3)) golden <- structure( c(1L, 2L, 1L, 2L, 1L, 2L), .Dim = 2:3, .Dimnames = structure(list( B = c("1", "2"), draw = c("T1", "T2", "T3") ), .Names = c("B", "draw")), class = "table" ) expect_identical(table(B, draw), golden) }) test_that("B=111222222344 ABCD", { B <- c(1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 4, 4) draw <- block_ra( blocks = B, prob_each = c(1 / 6, 1 / 6, 1 / 6, 1 / 2), conditions = c("A", "B", "C", "D") ) expect_true(all(table(B, draw)[2, ] >= 1)) }) test_that("balancing with block_prob_each", { blocks <- rep(c("A", "B", "C"), times = c(51, 103, 207)) block_prob_each <- rbind(c(.3, .6, .1), c(.2, .7, .1), c(.1, .8, .1)) draw <- block_ra(blocks, block_prob_each = block_prob_each) golden <- structure( c(15L, 21L, 20L, 31L, 72L, 165L, 5L, 10L, 22L), .Dim = c(3L, 3L), .Dimnames = structure(list( blocks = c("A", "B", "C"), draw = c("T1", "T2", "T3") ), .Names = c("blocks", "draw")), class = "table" ) expect_true(all (table(blocks, draw) - golden %in% -1:1)) }) test_that("vsample advances rng", { s1 <- .Random.seed complete_ra(5) s2 <- .Random.seed expect_true(!identical(s1, s2)) })
expected <- eval(parse(text="structure(c(1, 2, 3, 4, 0, 1, 2, 3, 4, 0, 1, 2), .Dim = 3:4, .Dimnames = list(c(\"Case_1\", \"Case_2\", \"Case_3\"), NULL))")); test(id=0, code={ argv <- eval(parse(text="list(structure(1:12, .Dim = 3:4, .Dimnames = list(c(\"Case_1\", \"Case_2\", \"Case_3\"), NULL)), 5)")); do.call(`%%`, argv); }, o=expected);
ps_ouss = function(freq, power_o, sigma, rho, lambda, power_e, epsilon, time_step, series_size){ if(missing(freq)){ stop("Missing freq"); } if(missing(time_step)){ stop("Missing time_step"); } if(missing(rho)){ if(missing(lambda)){ stop("Missing rho or lambda"); } rho = exp(-lambda*time_step); }else{ lambda = -log(rho)/time_step; } N = series_size; T = time_step*(N-1); if(missing(sigma)){ if(missing(power_o)){ stop("Missing power_o or sigma"); } sigma = power_o_to_sigma(power_o, lambda, time_step); } if(missing(power_e)){ if(missing(epsilon)){ stop("Missing power_e or epsilon"); } power_e = time_step * epsilon^2; } r = rho*exp(complex(real=0,imaginary=-2*pi*freq*time_step)); q = rho*exp(complex(real=0,imaginary=+2*pi*freq*time_step)); return(power_e + (T/N^2) * sigma^2 * (Re(N * (1/(1-r) + q/(1-q))) - 2*Re(r*(1-r^N)/(1-r)^2))); }
library(nomisr) context("nomis_content_type") test_that("nomis_content_type return expected format", { skip_on_cran() expect_error(nomis_content_type()) content <- nomis_content_type("sources") expect_true(nrow(content) == 16) expect_length(content, 6) expect_type(content, "list") expect_true(tibble::is_tibble(content)) content_id <- nomis_content_type("sources", "jsa") expect_true(nrow(content_id) == 1) expect_length(content_id, 4) expect_type(content_id, "list") expect_true(tibble::is_tibble(content_id)) })
yuen1<-function(x,y=NULL,tr=.2,alpha=.05, ...){ if(is.null(y)){ if(is.matrix(x) || is.data.frame(x)){ y=x[,2] x=x[,1] } if(is.list(x)){ y=x[[2]] x=x[[1]] } } if(tr==.5)stop("Using tr=.5 is not allowed; use a method designed for medians") if(tr>.25)print("Warning: with tr>.25 type I error control might be poor") x<-x[!is.na(x)] y<-y[!is.na(y)] h1<-length(x)-2*floor(tr*length(x)) h2<-length(y)-2*floor(tr*length(y)) q1<-(length(x)-1)*winvar(x,tr)/(h1*(h1-1)) q2<-(length(y)-1)*winvar(y,tr)/(h2*(h2-1)) df<-(q1+q2)^2/((q1^2/(h1-1))+(q2^2/(h2-1))) crit<-qt(1-alpha/2,df) dif<-mean(x,tr)-mean(y,tr) low<-dif-crit*sqrt(q1+q2) up<-dif+crit*sqrt(q1+q2) test<-abs(dif/sqrt(q1+q2)) yuen<-2*(1-pt(test,df)) list(n1=length(x),n2=length(y),est.1=mean(x,tr),est.2=mean(y,tr),ci=c(low,up),p.value=yuen,dif=dif,se=sqrt(q1+q2),teststat=test,alpha = alpha, crit=crit,df=df) }
test_that("flsgen_terrain", { terrain <- rflsgen::flsgen_terrain(200, 200) testthat::expect_s4_class(terrain, class = "RasterLayer") })
isSemidefinite <- function( m, ... ) UseMethod( "isSemidefinite" ) isSemidefinite.default <- function( m, ... ) { stop( "there is currently no default method available" ) } isSemidefinite.matrix <- function( m, positive = TRUE, tol = 100 * .Machine$double.eps, method = ifelse( nrow( m ) < 13, "det", "eigen" ), ... ) { if( !is.matrix( m ) ) { stop( "argument 'm' must be a matrix" ) } else { if( nrow( m ) != ncol( m ) ) { stop( "argument 'm' or each of its elements must be a _quadratic_ matrix" ) } else if( !isSymmetric( unname( m ), tol = 1000 * tol ) ) { stop( "argument 'm' must be a symmetric matrix" ) } m <- ( m + t(m) ) / 2 n <- nrow( m ) if( !positive ) { m <- -m } if( n >= 12 && method == "det" ) { warning( "using method 'det' can take a very long time", " for matrices with more than 12 rows and columns;", " it is suggested to use method 'eigen' for larger matrices", immediate. = TRUE ) } if( method == "det" ) { for( i in 1:n ) { comb <- combn( n, i ) for( j in 1:ncol( comb ) ) { mat <- m[ comb[ , j ], comb[ , j ], drop = FALSE ] if( rcond( mat ) >= tol ) { princMin <- det( mat ) } else { princMin <- 0 } if( princMin < -tol ) { return( FALSE ) } } } return( TRUE ) } else if( method == "eigen" ) { ev <- eigen( m, only.values = TRUE )$values if( is.complex( ev ) ) { stop( "complex (non-real) eigenvalues,", " which could be caused by a non-symmetric matrix" ) } if( all( ev > -tol ) ) { return( TRUE ) } else { if( rcond( m ) >= tol || n == 1 ) { return( FALSE ) } else { k <- max( 1, min( sum( abs( ev ) <= tol ), n - 1 ) ) comb <- combn( n, n-k ) for( j in 1:ncol( comb ) ) { mm <- m[ comb[ , j ], comb[ , j ], drop = FALSE ] if( !semidefiniteness( mm, tol = tol, method = method ) ) { return( FALSE ) } } return( TRUE ) } } } else { stop( "argument 'method' must be either 'det' or 'eigen'" ) } } stop( "internal error: please inform the maintainer", " of the 'miscTools' package", " (preferably with a reproducible example)" ) } isSemidefinite.list <- function( m, ... ) { if( !is.list( m ) ) { stop( "argument 'm' must be a matrix or a list of matrices" ) } else if( !all( sapply( m, is.matrix ) ) ) { stop( "all components of the list specified by argument 'm'", " must be matrices" ) } result <- logical( length( m ) ) for( t in 1:length( m ) ) { result[ t ] <- isSemidefinite( m[[ t ]], ... ) } return( result ) } semidefiniteness <- function( m, ... ) { result <- isSemidefinite( m = m, ... ) return( result ) }
source("helper-diversitree.R") context("QuaSSE (split)") test_that("quasse-split", { lambda <- function(x) sigmoid.x(x, 0.1, 0.2, 0, 2.5) mu <- function(x) constant.x(x, 0.03) char <- make.brownian.with.drift(0, 0.025) load("phy.Rdata") pars <- c(.1, .2, 0, 2.5, .03, 0, .01) pars.s <- rep(pars, 2) sd <- 1/200 control.C.1 <- list(dt.max=1/200) control.C.2 <- c(control.C.1, tips.combined=TRUE) control.M.1 <- list(method="mol") control.R.1 <- list(dt.max=1/200, method="fftR") if (check.fftC(FALSE)) { lik.s <- make.quasse.split(phy, phy$tip.state, sd, sigmoid.x, constant.x, "nd5", Inf, control.C.1) lik.q <- make.quasse(phy, phy$tip.state, sd, sigmoid.x, constant.x, control.C.1) ll.q <- lik.q(pars) expect_that(ll.q, equals(-62.06409424693976)) pars.s <- rep(pars, 2) names(pars.s) <- argnames(lik.s) expect_that(lik.s(pars.s), equals(ll.q)) set.seed(1) pars2 <- pars + runif(length(pars), 0, .05) pars2.s <- rep(pars2, 2) ll.q <- lik.q(pars2) expect_that(ll.q, equals(-55.67237675384200)) expect_that(lik.s(pars2.s), equals(ll.q)) pars3.s <- pars + runif(length(pars.s), 0, .05) expect_that(lik.s(pars3.s), equals(-54.47383577050427)) } })
bs4DashNavbar <- function(..., title = NULL, titleWidth = NULL, disable = FALSE, .list = NULL, leftUi = NULL, rightUi = NULL, skin = "light", status = "white", border = TRUE, compact = FALSE, sidebarIcon = shiny::icon("bars"), controlbarIcon = shiny::icon("th"), fixed = FALSE) { items <- c(list(...), .list) if (skin == "dark" && is.null(status)) status <- "gray-dark" if (!is.null(leftUi)) { if (inherits(leftUi, "shiny.tag.list")) { lapply(leftUi, function(item) { tagAssert(item, type = "li", class = "dropdown") }) } else { tagAssert(leftUi, type = "li", class = "dropdown") } } if (!is.null(rightUi)) { if (inherits(rightUi, "shiny.tag.list")) { lapply(rightUi, function(item) { tagAssert(item, type = "li", class = "dropdown") }) } else { tagAssert(rightUi, type = "li", class = "dropdown") } } headerTag <- shiny::tags$nav( style = if (disable) "display: none;", `data-fixed` = tolower(fixed), class = paste0( "main-header navbar navbar-expand", if (!is.null(status)) paste0(" navbar-", status), " navbar-", skin, if (!border) " border-bottom-0" else NULL, if (compact) " text-sm" else NULL ), shiny::tags$ul( class = "navbar-nav", shiny::tags$li( class = "nav-item", shiny::tags$a( class = "nav-link", `data-widget` = "pushmenu", href = " sidebarIcon ) ), leftUi ), items, shiny::tags$ul( class = "navbar-nav ml-auto navbar-right", rightUi, shiny::tags$li( class = "nav-item", shiny::tags$a( id = "controlbar-toggle", class = "nav-link", `data-widget` = "control-sidebar", href = " controlbarIcon ) ) ) ) list(headerTag, title) } bs4DashBrand <- function(title, color = NULL, href = NULL, image = NULL, opacity = .8) { if (!is.null(color)) validateStatusPlus(color) shiny::tags$a( class = if (!is.null(color)) paste0("brand-link bg-", color) else "brand-link", href = if (!is.null(href)) href else " target = if (!is.null(href)) "_blank", if (!is.null(image)) { shiny::tags$img( src = image, class = "brand-image img-circle elevation-3", style = paste0("opacity: ", opacity) ) }, shiny::tags$span(class = "brand-text font-weight-light", title) ) } bs4DropdownMenu <- function(..., type = c("messages", "notifications", "tasks"), badgeStatus = "primary", icon = NULL, headerText = NULL, .list = NULL, href = NULL) { type <- match.arg(type) if (!is.null(badgeStatus)) validateStatus(badgeStatus) items <- c(list(...), .list) if (is.null(icon)) { icon <- switch( type, messages = shiny::icon("comments"), notifications = shiny::icon("bell"), tasks = shiny::icon("tasks") ) } numItems <- length(items) if (is.null(badgeStatus)) { badge <- NULL } else { badge <- shiny::span(class = paste0("badge badge-", badgeStatus, " navbar-badge"), numItems) } if (is.null(headerText)) { headerText <- paste("You have", numItems, type) } shiny::tags$li( class = "nav-item dropdown", shiny::tags$a( class = "nav-link", `data-toggle` = "dropdown", href = " `aria-expanded` = "false", icon, badge ), shiny::tags$div( class = sprintf("dropdown-menu dropdown-menu-lg"), shiny::tags$span( class = "dropdown-item dropdown-header", headerText ), shiny::tags$div(class = "dropdown-divider"), items, if (!is.null(href)) { shiny::tags$a( class = "dropdown-item dropdown-footer", href = href, target = "_blank", "More" ) } ) ) } messageItem <- function(from, message, icon = shiny::icon("user"), time = NULL, href = NULL, image = NULL, color = "secondary", inputId = NULL) { tagAssert(icon, type = "i") if (is.null(href)) href <- " if (!is.null(color)) validateStatusPlus(color) itemCl <- "dropdown-item" if (!is.null(inputId)) itemCl <- paste0(itemCl, " action-button") shiny::tagList( shiny::a( class = itemCl, id = inputId, href = if (is.null(inputId)) { " } else { href }, target = if (is.null(inputId)) { if (!is.null(href)) "_blank" }, shiny::div( class = "media", if (!is.null(image)) { shiny::img( src = image, alt = "User Avatar", class = "img-size-50 mr-3 img-circle" ) }, shiny::tags$div( class = "media-body", shiny::tags$h3( class = "dropdown-item-title", from, if (!is.null(icon)) { shiny::tags$span( class = paste0("float-right text-sm text-", color), icon ) } ), shiny::tags$p(class = "text-sm", message), if (!is.null(time)) { shiny::tags$p( class = "text-sm text-muted", shiny::tags$i(class = "far fa-clock mr-1"), time ) } ) ) ), shiny::tags$div(class = "dropdown-divider") ) } notificationItem <- function(text, icon = shiny::icon("exclamation-triangle"), status = "success", href = NULL, inputId = NULL) { tagAssert(icon, type = "i") if (is.null(href)) href <- " if (!is.null(status)) validateStatusPlus(status) itemCl <- "dropdown-item" if (!is.null(inputId)) itemCl <- paste0(itemCl, " action-button") if (!is.null(status)) { icon <- shiny::tagAppendAttributes(icon, class = paste0("text-", status)) } shiny::tagList( shiny::tags$a( class = itemCl, `disabled` = if (is.null(inputId)) NA else NULL, href = if (is.null(inputId)) { " } else { href }, target = if (is.null(inputId)) { if (!is.null(href)) "_blank" }, id = inputId, shiny::tagAppendAttributes(icon, class = "mr-2"), text ), shiny::tags$div(class = "dropdown-divider") ) } taskItem <- function(text, value = 0, color = "info", href = NULL, inputId = NULL) { validateStatusPlus(color) if (is.null(href)) href <- " itemCl <- "dropdown-item" if (!is.null(inputId)) itemCl <- paste0(itemCl, " action-button") shiny::tagList( shiny::tags$a( class = itemCl, href = if (is.null(inputId)) { " } else { href }, target = if (is.null(inputId)) { if (!is.null(href)) "_blank" }, id = inputId, shiny::h5( shiny::tags$small(text), shiny::tags$small(class = "float-right", paste0(value, "%")) ), progressBar( value = value, animated = TRUE, striped = TRUE, size = "xs", status = color ) ), shiny::tags$div(class = "dropdown-divider") ) } bs4UserMenu <- function(..., name = NULL, image = NULL, title = NULL, subtitle = NULL, footer = NULL, status = NULL) { if (!is.null(status)) validateStatusPlus(status) if (!is.null(title)) { line_1 <- paste0(name, " - ", title) } else { line_1 <- name } if (!is.null(subtitle)) { user_text <- shiny::tags$p(line_1, shiny::tags$small(subtitle)) user_header_height <- NULL } else { user_text <- shiny::tags$p(line_1) user_header_height <- shiny::tags$script(shiny::HTML('$(".user-header").css("height", "145px")')) } shiny::tagList( shiny::tags$head( shiny::tags$script( "$(function() { $('.dashboard-user').on('click', function(e){ e.stopPropagation(); }); }); " ) ), shiny::tags$a( href = " class = "nav-link dropdown-toggle", `data-toggle` = "dropdown", `aria-expanded` = "false", shiny::tags$img( src = image, class = "user-image img-circle elevation-2", alt = "User Image" ), shiny::tags$span(class = "d-none d-md-inline", name) ), shiny::tags$ul( class = "dropdown-menu dropdown-menu-lg dropdown-menu-right dashboard-user", shiny::tags$li( class = paste0("user-header", if (!is.null(status)) paste0(" bg-", status)), shiny::tags$img( src = image, class = "img-circle elevation-2", alt = "User Image" ), shiny::tags$p(title, shiny::tags$small(subtitle)) ), if (length(list(...)) > 0) shiny::tags$li(class = "user-body", shiny::fluidRow(...)), if (!is.null(footer)) shiny::tags$li(class = "user-footer", footer) ) ) } dashboardUserItem <- function(item, width) { item <- shiny::div( class = paste0("col-", width, " text-center"), item ) } userOutput <- function(id, tag = shiny::tags$li) { shiny::uiOutput(outputId = id, container = tag, class = "nav-item dropdown user-menu") } renderUser <- function(expr, env = parent.frame(), quoted = FALSE, outputArgs = list()) { if (!quoted) { expr <- substitute(expr) quoted <- TRUE } shiny::renderUI(expr, env = env, quoted = quoted, outputArgs = outputArgs) } globalVariables("func")
utils::globalVariables(c("xval", "yval", "type", "batch1.size", "batch2.size", "N1.max", "N2.max", "theta1", "obs1", "obs2", "obs", "N.max", "batch.size")) Type2.fixed_design = function(theta, test.type, side = "right", theta0, N, N1, N2, Type1 = 0.005, sigma = 1, sigma1 = 1, sigma2 = 1){ if((test.type!="oneProp") & (test.type!="oneZ") & (test.type!="oneT") & (test.type!="twoZ") & (test.type!="twoT")){ return(print("Unknown 'test type'. Has to be one of 'oneProp', 'oneZ', 'oneT', 'twoZ' or 'twoT'.")) } if(test.type=="oneProp"){ if(missing(theta0)) theta0 = 0.5 if(side=="right"){ c.alpha = qbinom(p = Type1, size = N, prob = theta0, lower.tail = F) return(pbinom(q = c.alpha, size = N, prob = theta)) }else if(side=="left"){ c.alpha = qbinom(p = Type1, size = N, prob = theta0) return(pbinom(q = c.alpha-1, size = N, prob = theta, lower.tail = F)) } }else if(test.type=="oneZ"){ if(missing(theta0)) theta0 = 0 if(side=="right"){ z.alpha = qnorm(p = Type1, lower.tail = F) return(pnorm(q = theta0 + (z.alpha*sigma)/sqrt(N), mean = theta, sd = sigma/sqrt(N))) }else if(side=="left"){ z.alpha = qnorm(p = Type1, lower.tail = F) return(pnorm(q = theta0 - (z.alpha*sigma)/sqrt(N), mean = theta, sd = sigma/sqrt(N), lower.tail = F)) } }else if(test.type=="oneT"){ if(missing(theta0)) theta0 = 0 if(side=="right"){ t.alpha = qt(p = Type1, df = N-1, lower.tail = F) return(pt(q = t.alpha, df = N-1, ncp = sqrt(N)*(theta - theta0))) }else if(side=="left"){ t.alpha = qt(p = Type1, df = N-1, lower.tail = F) return(pt(q = -t.alpha, df = N-1, ncp = sqrt(N)*(theta - theta0), lower.tail = F)) } }else if(test.type=="twoZ"){ if(missing(theta0)) theta0 = 0 if(side=="right"){ z.alpha = qnorm(p = Type1, lower.tail = F) sigmaD = sqrt((sigma1^2)/N1 + (sigma2^2)/N2) return(pnorm(q = theta0 + z.alpha*sigmaD, mean = theta, sd = sigmaD)) }else if(side=="left"){ z.alpha = qnorm(p = Type1, lower.tail = F) sigmaD = sqrt((sigma1^2)/N1 + (sigma2^2)/N2) return(pnorm(q = theta0 - z.alpha*sigmaD, mean = theta, sd = sigmaD, lower.tail = F)) } }else if(test.type=="twoT"){ if(missing(theta0)) theta0 = 0 if(side=="right"){ t.alpha = qt(p = Type1, df = N1 + N2 - 2, lower.tail = F) return(pt(q = t.alpha, df = N1 + N2 - 2, ncp = (theta - theta0)/sqrt(1/N1 + 1/N2))) }else if(side=="left"){ t.alpha = qt(p = Type1, df = N1 + N2 - 2, lower.tail = F) return(pt(q = -t.alpha, df = N1 + N2 - 2, ncp = (theta - theta0)/sqrt(1/N1 + 1/N2), lower.tail = F)) } } } fixed_design.alt = function(test.type, side = "right", theta0, N, N1, N2, Type1 = 0.005, Type2 = .2, sigma = 1, sigma1 = 1, sigma2 = 1){ if((test.type!="oneProp") & (test.type!="oneZ") & (test.type!="oneT") & (test.type!="twoZ") & (test.type!="twoT")){ return(print("Unknown 'test type'. Has to be one of 'oneProp', 'oneZ', 'oneT', 'twoZ' or 'twoT'.")) } if(test.type=="oneProp"){ if(missing(theta0)) theta0 = 0.5 if(side=="right"){ c.alpha = qbinom(p = Type1, size = N, prob = theta0, lower.tail = F) solve.out = uniroot(interval = c(theta0, 1), f = function(x){ pbinom(q = c.alpha, size = N, prob = x) - Type2 }) return(solve.out$root) }else if(side=="left"){ c.alpha = qbinom(p = Type1, size = N, prob = theta0) solve.out = uniroot(interval = c(0, theta0), f = function(x){ pbinom(q = c.alpha-1, size = N, prob = x, lower.tail = F) - Type2 }) return(solve.out$root) } }else if(test.type=="oneZ"){ if(missing(theta0)==T) theta0 = 0 z.alpha = qnorm(p = Type1, lower.tail = F) if(side=="right"){ return(theta0 - ((qnorm(p = Type2) - z.alpha)*sigma)/sqrt(N)) }else if(side=="left"){ return(theta0 - ((qnorm(p = 1-Type2) + z.alpha)*sigma)/sqrt(N)) } }else if(test.type=="oneT"){ if(missing(theta0)==T) theta0 = 0 t.alpha = qt(p = Type1, df = N-1, lower.tail = F) if(side=="right"){ solve.out = uniroot(interval = c(theta0, .Machine$integer.max), f = function(x){ pt(q = t.alpha, df = N-1, ncp = sqrt(N)*(x - theta0)) - Type2 }) return(solve.out$root) }else if(side=="left"){ solve.out = uniroot(interval = c(-.Machine$integer.max, theta0), f = function(x){ pt(q = -t.alpha, df = N-1, ncp = sqrt(N)*(x - theta0), lower.tail = F) - Type2 }) return(solve.out$root) } }else if(test.type=="twoZ"){ if(missing(theta0)==T) theta0 = 0 z.alpha = qnorm(p = Type1, lower.tail = F) sigmaD = sqrt((sigma1^2)/N1 + (sigma2^2)/N2) if(side=="right"){ return(theta0 - (qnorm(p = Type2) - z.alpha)*sigmaD) }else if(side=="left"){ return(theta0 - (qnorm(p = 1-Type2) + z.alpha)*sigmaD) } }else if(test.type=="twoT"){ if(missing(theta0)==T) theta0 = 0 t.alpha = qt(p = Type1, df = N1 + N2 - 2, lower.tail = F) if(side=="right"){ solve.out = uniroot(interval = c(theta0, .Machine$integer.max), f = function(x){ pt(q = t.alpha, df = N1 + N2 - 2, ncp = (x - theta0)/sqrt(1/N1 + 1/N2)) - Type2 }) return(solve.out$root) }else if(side=="left"){ solve.out = uniroot(interval = c(-.Machine$integer.max, theta0), f = function(x){ pt(q = -t.alpha, df = N1 + N2 - 2, ncp = (x - theta0)/sqrt(1/N1 + 1/N2), lower.tail = F) - Type2 }) return(solve.out$root) } } } UMPBT.alt = function(test.type, side = "right", theta0, N, N1, N2, Type1 = 0.005, sigma = 1, sigma1 = 1, sigma2 = 1, obs, sd.obs, obs1, obs2, pooled.sd){ if((test.type!="oneProp") & (test.type!="oneZ") & (test.type!="oneT") & (test.type!="twoZ") & (test.type!="twoT")){ return(print("Unknown 'test type'. Has to be one of 'oneProp', 'oneZ', 'oneT', 'twoZ' or 'twoT'.")) } if(test.type=="oneProp"){ if(missing(theta0)) theta0 = 0.5 if(side=="right"){ c.alpha = qbinom(p = Type1, size = N, prob = theta0, lower.tail = F) solve.delta.outer = nleqslv::nleqslv(x = 3, fn = function(delta){ out.optimize.UMPBTobjective = optimize(interval = c(theta0, 1), f = function(p){ (log(delta) - N*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) out.optimize.UMPBTobjective$objective - c.alpha }) out.optimize.UMPBTobjective.outer = optimize(interval = c(theta0, 1), f = function(p){ (log(solve.delta.outer$x) - N*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) solve.delta.inner = nleqslv::nleqslv(x = 3, fn = function(delta){ out.optimize.UMPBTobjective = optimize(interval = c(theta0, 1), f = function(p){ (log(delta) - N*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) out.optimize.UMPBTobjective$objective - (c.alpha - 1) }) out.optimize.UMPBTobjective.inner = optimize(interval = c(theta0, 1), f = function(p){ (log(solve.delta.inner$x) - N*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) mix.prob = (Type1 - pbinom(q = c.alpha, size = N, prob = theta0, lower.tail = F))/ dbinom(x = c.alpha, size = N, prob = theta0) return(list("theta" = c(out.optimize.UMPBTobjective.inner$minimum, out.optimize.UMPBTobjective.outer$minimum), "mix.prob" = c(mix.prob, 1-mix.prob))) }else if(side=="left"){ c.alpha = qbinom(p = Type1, size = N, prob = theta0) solve.delta.outer = nleqslv::nleqslv(x = 3, fn = function(delta){ out.optimize.UMPBTobjective = optimize(interval = c(0, theta0), maximum = T, f = function(p){ (log(delta) - N*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) out.optimize.UMPBTobjective$objective - c.alpha }) out.optimize.UMPBTobjective.outer = optimize(interval = c(0, theta0), maximum = T, f = function(p){ (log(solve.delta.outer$x) - N*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) solve.delta.inner = nleqslv::nleqslv(x = 3, fn = function(delta){ out.optimize.UMPBTobjective = optimize(interval = c(0, theta0), maximum = T, f = function(p){ (log(delta) - N*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) out.optimize.UMPBTobjective$objective - (c.alpha + 1) }) out.optimize.UMPBTobjective.inner = optimize(interval = c(0, theta0), maximum = T, f = function(p){ (log(solve.delta.inner$x) - N*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) mix.prob = (Type1 - pbinom(q = c.alpha-1, size = N, prob = theta0))/ dbinom(x = c.alpha, size = N, prob = theta0) return(list("theta" = c(out.optimize.UMPBTobjective.inner$maximum, out.optimize.UMPBTobjective.outer$maximum), "mix.prob" = c(mix.prob, 1-mix.prob))) } }else if(test.type=="oneZ"){ if(missing(theta0)==T) theta0 = 0 z.alpha = qnorm(p = Type1, lower.tail = F) if(side=="right"){ return(theta0 + (z.alpha*sigma)/sqrt(N)) }else if(side=="left"){ return(theta0 - (z.alpha*sigma)/sqrt(N)) } }else if(test.type=="oneT"){ if(missing(theta0)) theta0 = 0 if(missing(sd.obs)){ if(missing(obs)){ return("Need to provide either 'sd.obs' or 'obs'.") }else{ sd.obs = sd(obs) } }else{ if(!missing(obs)){ sd.fromdata = sd(obs) if(round(sd.fromdata, 5)!=sd.obs){ sd.obs = sd.fromdata print(paste("'sd.obs' that is provided doesn't match with the sd (divisor (n-1)) calculated from 'obs'. Working with sd.obs = ", round(sd.fromdata, 5), "calculated from the data provided.")) } } } t.alpha = qt(p = Type1, df = N-1, lower.tail = F) if(side=="right"){ return(theta0 + (t.alpha*sd.obs)/sqrt(N)) }else if(side=="left"){ return(theta0 - (t.alpha*sd.obs)/sqrt(N)) } }else if(test.type=="twoZ"){ if(missing(theta0)) theta0 = 0 z.alpha = qnorm(p = Type1, lower.tail = F) if(side=="right"){ return(theta0 + z.alpha*sqrt((sigma1^2)/N1 + (sigma2^2)/N2)) }else if(side=="left"){ return(theta0 - z.alpha*sqrt((sigma1^2)/N1 + (sigma2^2)/N2)) } }else if(test.type=="twoT"){ if(missing(theta0)) theta0 = 0 if(missing(pooled.sd)){ if(any(c(missing(obs1), missing(obs2)))){ return("Need to provide either 'pooled.sd' or both 'obs1' and 'obs2.") }else{ pooled.sd = sqrt(((length(obs1)-1)*var(obs1) + (length(obs2)-1)*var(obs2))/ (length(obs1) + length(obs2) - 2)) } }else{ if((!missing(obs1))&&(!missing(obs2))){ pooled.sd.fromdata = sqrt(((length(obs1)-1)*var(obs1) + (length(obs2)-1)*var(obs2))/ (length(obs1) + length(obs2) - 2)) if(round(pooled.sd.fromdata, 5)!=pooled.sd){ pooled.sd = pooled.sd.fromdata print(paste("'pooled.sd' that is provided doesn't match with the pooled sd (divisor (n1 + n2 - 1)) calculated from 'obs1' and 'obs2'. Working with pooled.sd = ", round(pooled.sd.fromdata, 5), "calculated from the data provided.")) } } } t.alpha = qt(p = Type1, df = N1 + N2 - 2, lower.tail = F) if(side=="right"){ return(theta0 + t.alpha*pooled.sd*sqrt(1/N1 + 1/N2)) }else if(side=="left"){ return(theta0 - t.alpha*pooled.sd*sqrt(1/N1 + 1/N2)) } } } design.MSPRT_oneProp = function(side = 'right', theta0 = 0.5, theta1 = T, Type1.target =.005, Type2.target = .2, N.max, batch.size, nReplicate = 1e+6, verbose = T, seed = 1){ if(side!='both'){ if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses = length(batch.size) if(verbose){ if(any(batch.size>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a one-sample proportion test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a one-sample proportion test:") print("=========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) } batch.size = c(0, cumsum(batch.size)) if(is.logical(theta1)&&(theta1==F)){ UMPBT = UMPBT.alt(test.type = 'oneProp', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target) if(verbose==T){ print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(UMPBT$theta[1], 3), " & ", round(UMPBT$theta[2], 3), " with respective probabilities ", round(UMPBT$mix.prob[1], 3), " & ", 1 - round(UMPBT$mix.prob[1], 3), sep = '')) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target cumsum0_n = LR0_n = numeric(nReplicate) type1.error.AR = rep(F, nReplicate) N0.AR = rep(N.max, nReplicate) not.reached.decisionH0.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rbinom(length(not.reached.decisionH0.AR), batch.size[n+1]-batch.size[n], theta0) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n[not.reached.decisionH0.AR] = UMPBT$mix.prob[1]*(((1 - UMPBT$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$theta[1])))^cumsum0_n[not.reached.decisionH0.AR] + (1 - UMPBT$mix.prob[2])*(((1 - UMPBT$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$theta[2])))^cumsum0_n[not.reached.decisionH0.AR] AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N0.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } EN0 = mean(N0.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "N0" = list('H0' = N0.AR), "EN" = EN0, "UMPBT" = UMPBT, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneProp', 'side' = side, 'theta0' = theta0, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else if(is.logical(theta1)&&(theta1==T)){ theta1 = fixed_design.alt(test.type = 'oneProp', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target, Type2 = Type2.target) UMPBT = UMPBT.alt(test.type = 'oneProp', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target) if(verbose==T){ print(paste("Alternative under comparison: ", round(theta1, 3), sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(UMPBT$theta[1], 3), " & ", round(UMPBT$theta[2], 3), " with respective probabilities ", round(UMPBT$mix.prob[1], 3), " & ", 1 - round(UMPBT$mix.prob[1], 3), sep = '')) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target cumsum0_n = cumsum1_n = LR0_n = LR1_n = numeric(nReplicate) type1.error.AR = type2.error.AR = rep(F, nReplicate) N0.AR = N1.AR = rep(N.max, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rbinom(length(not.reached.decisionH0.AR), batch.size[n+1]-batch.size[n], theta0) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n[not.reached.decisionH0.AR] = UMPBT$mix.prob[1]*(((1 - UMPBT$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$theta[1])))^cumsum0_n[not.reached.decisionH0.AR] + (1 - UMPBT$mix.prob[2])*(((1 - UMPBT$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$theta[2])))^cumsum0_n[not.reached.decisionH0.AR] AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N0.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } if(length(not.reached.decisionH1.AR)>0){ sum1_n = rbinom(length(not.reached.decisionH1.AR), batch.size[n+1]-batch.size[n], theta1) cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + sum1_n LR1_n[not.reached.decisionH1.AR] = UMPBT$mix.prob[1]*(((1 - UMPBT$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$theta[1])))^cumsum1_n[not.reached.decisionH1.AR] + (1 - UMPBT$mix.prob[2])*(((1 - UMPBT$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$theta[2])))^cumsum1_n[not.reached.decisionH1.AR] AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N1.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold.AR)/nReplicate EN0 = mean(N0.AR) EN1 = mean(N1.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Attained Type II error probability: ", round(actual.type2.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print(paste("Expected sample size at the alternative: ", round(EN1, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = actual.type2.error.AR, "N0" = list('H0' = N0.AR, 'H1' = N1.AR), "EN" = c(EN0, EN1), "UMPBT" = UMPBT, "theta1" = theta1, "Type2.fixed.design" = Type2.fixed_design(theta = theta1, test.type = 'oneProp', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target), "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneProp', 'side' = side, 'theta0' = theta0, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else{ UMPBT = UMPBT.alt(test.type = 'oneProp', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target) if(verbose==T){ print(paste("Alternative under comparison: ", round(theta1, 3), sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(UMPBT$theta[1], 3), " & ", round(UMPBT$theta[2], 3), " with respective probabilities ", round(UMPBT$mix.prob[1], 3), " & ", 1 - round(UMPBT$mix.prob[1], 3), sep = '')) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target cumsum0_n = cumsum1_n = LR0_n = LR1_n = numeric(nReplicate) type1.error.AR = type2.error.AR = rep(F, nReplicate) N0.AR = N1.AR = rep(N.max, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rbinom(length(not.reached.decisionH0.AR), batch.size[n+1]-batch.size[n], theta0) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n[not.reached.decisionH0.AR] = UMPBT$mix.prob[1]*(((1 - UMPBT$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$theta[1])))^cumsum0_n[not.reached.decisionH0.AR] + (1 - UMPBT$mix.prob[2])*(((1 - UMPBT$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$theta[2])))^cumsum0_n[not.reached.decisionH0.AR] AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N0.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } if(length(not.reached.decisionH1.AR)>0){ sum1_n = rbinom(length(not.reached.decisionH1.AR), batch.size[n+1]-batch.size[n], theta1) cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + sum1_n LR1_n[not.reached.decisionH1.AR] = UMPBT$mix.prob[1]*(((1 - UMPBT$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$theta[1])))^cumsum1_n[not.reached.decisionH1.AR] + (1 - UMPBT$mix.prob[2])*(((1 - UMPBT$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$theta[2])))^cumsum1_n[not.reached.decisionH1.AR] AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N1.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold.AR)/nReplicate EN0 = mean(N0.AR) EN1 = mean(N1.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Attained Type II error probability: ", round(actual.type2.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print(paste("Expected sample size at the alternative: ", round(EN1, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = actual.type2.error.AR, "N0" = list('H0' = N0.AR, 'H1' = N1.AR), "EN" = c(EN0, EN1), "UMPBT" = UMPBT, "theta1" = theta1, "Type2.fixed.design" = Type2.fixed_design(theta = theta1, test.type = 'oneProp', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target), "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneProp', 'side' = side, 'theta0' = theta0, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) } }else if(side=='both'){ if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses = length(batch.size) if(verbose){ if(any(batch.size>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a one-sample proportion test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a one-sample proportion test:") print("=========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) } batch.size = c(0, cumsum(batch.size)) if(is.logical(theta1)&&(theta1==F)){ UMPBT = list('right' = UMPBT.alt(test.type = 'oneProp', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2), 'left' = UMPBT.alt(test.type = 'oneProp', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2)) if(verbose==T){ print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(UMPBT$right$theta[1], 3), " & ", round(UMPBT$right$theta[2], 3), " with respective probabilities ", round(UMPBT$right$mix.prob[1], 3), " & ", 1 - round(UMPBT$right$mix.prob[1], 3), sep = "")) print(paste(' On the left: ', round(UMPBT$left$theta[1], 3), " & ", round(UMPBT$left$theta[2], 3), " with respective probabilities ", round(UMPBT$left$mix.prob[1], 3), " & ", 1 - round(UMPBT$left$mix.prob[1], 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) cumsum0_n = LR0_n.r = LR0_n.l = numeric(nReplicate) type1.error.AR = rep(F, nReplicate) N0.AR = N0.AR.r = N0.AR.l = rep(N.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rbinom(length(not.reached.decisionH0.AR), batch.size[n+1]-batch.size[n], theta0) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n.r[not.reached.decisionH0.AR.r] = UMPBT$right$mix.prob[1]*(((1 - UMPBT$right$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[1])))^cumsum0_n[not.reached.decisionH0.AR.r] + (1 - UMPBT$right$mix.prob[2])*(((1 - UMPBT$right$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[2])))^cumsum0_n[not.reached.decisionH0.AR.r] LR0_n.l[not.reached.decisionH0.AR.l] = UMPBT$left$mix.prob[1]*(((1 - UMPBT$left$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[1])))^cumsum0_n[not.reached.decisionH0.AR.l] + (1 - UMPBT$left$mix.prob[2])*(((1 - UMPBT$left$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[2])))^cumsum0_n[not.reached.decisionH0.AR.l] AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N0.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N0.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N0.AR[accepted.by.both0] = pmax(N0.AR.r[accepted.by.both0], N0.AR.l[accepted.by.both0]) N0.AR[onlyrejected.by.right0] = N0.AR.r[onlyrejected.by.right0] N0.AR[onlyrejected.by.left0] = N0.AR.l[onlyrejected.by.left0] N0.AR[rejected.by.both0] = pmin(N0.AR.r[rejected.by.both0], N0.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } EN0 = mean(N0.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, 'N' = list('H0' = N0.AR), 'EN' = EN0, "UMPBT" = UMPBT, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneProp', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else if(is.logical(theta1)&&(theta1==T)){ theta1 = list('right' = fixed_design.alt(test.type = 'oneProp', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2, Type2 = Type2.target), 'left' = fixed_design.alt(test.type = 'oneProp', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2, Type2 = Type2.target)) UMPBT = list('right' = UMPBT.alt(test.type = 'oneProp', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2), 'left' = UMPBT.alt(test.type = 'oneProp', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2)) if(verbose==T){ print("Alternative under comparison:") print(paste(' On the right: ', round(theta1$right, 3), sep = "")) print(paste(' On the left: ', round(theta1$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(UMPBT$right$theta[1], 3), " & ", round(UMPBT$right$theta[2], 3), " with respective probabilities ", round(UMPBT$right$mix.prob[1], 3), " & ", 1 - round(UMPBT$right$mix.prob[1], 3), sep = "")) print(paste(' On the left: ', round(UMPBT$left$theta[1], 3), " & ", round(UMPBT$left$theta[2], 3), " with respective probabilities ", round(UMPBT$left$mix.prob[1], 3), " & ", 1 - round(UMPBT$left$mix.prob[1], 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) cumsum0_n = cumsum1r_n = cumsum1l_n = LR0_n.r = LR0_n.l = LR1r_n.r = LR1r_n.l = LR1l_n.r = LR1l_n.l = numeric(nReplicate) type1.error.AR = PowerH1r.AR = PowerH1l.AR = rep(F, nReplicate) N0.AR = N0.AR.r = N0.AR.l = N1r.AR = N1r.AR.r = N1r.AR.l = N1l.AR = N1l.AR.r = N1l.AR.l = rep(N.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = decision.underH1r.AR.r = decision.underH1r.AR.l = decision.underH1l.AR.r = decision.underH1l.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = not.reached.decisionH1r.AR = not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.l = not.reached.decisionH1l.AR = not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rbinom(length(not.reached.decisionH0.AR), batch.size[n+1]-batch.size[n], theta0) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n.r[not.reached.decisionH0.AR.r] = UMPBT$right$mix.prob[1]*(((1 - UMPBT$right$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[1])))^cumsum0_n[not.reached.decisionH0.AR.r] + (1 - UMPBT$right$mix.prob[2])*(((1 - UMPBT$right$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[2])))^cumsum0_n[not.reached.decisionH0.AR.r] LR0_n.l[not.reached.decisionH0.AR.l] = UMPBT$left$mix.prob[1]*(((1 - UMPBT$left$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[1])))^cumsum0_n[not.reached.decisionH0.AR.l] + (1 - UMPBT$left$mix.prob[2])*(((1 - UMPBT$left$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[2])))^cumsum0_n[not.reached.decisionH0.AR.l] AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N0.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N0.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } if(length(not.reached.decisionH1r.AR)>0){ sum1r_n = rbinom(length(not.reached.decisionH1r.AR), batch.size[n+1]-batch.size[n], theta1$right) cumsum1r_n[not.reached.decisionH1r.AR] = cumsum1r_n[not.reached.decisionH1r.AR] + sum1r_n LR1r_n.r[not.reached.decisionH1r.AR.r] = UMPBT$right$mix.prob[1]*(((1 - UMPBT$right$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[1])))^cumsum1r_n[not.reached.decisionH1r.AR.r] + (1 - UMPBT$right$mix.prob[2])*(((1 - UMPBT$right$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[2])))^cumsum1r_n[not.reached.decisionH1r.AR.r] LR1r_n.l[not.reached.decisionH1r.AR.l] = UMPBT$left$mix.prob[1]*(((1 - UMPBT$left$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[1])))^cumsum1r_n[not.reached.decisionH1r.AR.l] + (1 - UMPBT$left$mix.prob[2])*(((1 - UMPBT$left$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[2])))^cumsum1r_n[not.reached.decisionH1r.AR.l] AcceptedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]<=RejectH1.threshold RejectedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]>=RejectH0.threshold reached.decisionH1r_n.AR.r = AcceptedH0.underH1r_n.AR.r|RejectedH0.underH1r_n.AR.r if(any(reached.decisionH1r_n.AR.r)){ decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[AcceptedH0.underH1r_n.AR.r]] = 'A' decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[RejectedH0.underH1r_n.AR.r]] = 'R' N1r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch.size[n+1] not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.r[!reached.decisionH1r_n.AR.r] } AcceptedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]<=RejectH1.threshold RejectedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]>=RejectH0.threshold reached.decisionH1r_n.AR.l = AcceptedH0.underH1r_n.AR.l|RejectedH0.underH1r_n.AR.l if(any(reached.decisionH1r_n.AR.l)){ decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[AcceptedH0.underH1r_n.AR.l]] = 'A' decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[RejectedH0.underH1r_n.AR.l]] = 'R' N1r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch.size[n+1] not.reached.decisionH1r.AR.l = not.reached.decisionH1r.AR.l[!reached.decisionH1r_n.AR.l] } not.reached.decisionH1r.AR = union(not.reached.decisionH1r.AR.r, not.reached.decisionH1r.AR.l) } if(length(not.reached.decisionH1l.AR)>0){ sum1l_n = rbinom(length(not.reached.decisionH1l.AR), batch.size[n+1]-batch.size[n], theta1$left) cumsum1l_n[not.reached.decisionH1l.AR] = cumsum1l_n[not.reached.decisionH1l.AR] + sum1l_n LR1l_n.r[not.reached.decisionH1l.AR.r] = UMPBT$right$mix.prob[1]*(((1 - UMPBT$right$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[1])))^cumsum1l_n[not.reached.decisionH1l.AR.r] + (1 - UMPBT$right$mix.prob[2])*(((1 - UMPBT$right$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[2])))^cumsum1l_n[not.reached.decisionH1l.AR.r] LR1l_n.l[not.reached.decisionH1l.AR.l] = UMPBT$left$mix.prob[1]*(((1 - UMPBT$left$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[1])))^cumsum1l_n[not.reached.decisionH1l.AR.l] + (1 - UMPBT$left$mix.prob[2])*(((1 - UMPBT$left$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[2])))^cumsum1l_n[not.reached.decisionH1l.AR.l] AcceptedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]<=RejectH1.threshold RejectedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]>=RejectH0.threshold reached.decisionH1l_n.AR.r = AcceptedH0.underH1l_n.AR.r|RejectedH0.underH1l_n.AR.r if(any(reached.decisionH1l_n.AR.r)){ decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[AcceptedH0.underH1l_n.AR.r]] = 'A' decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[RejectedH0.underH1l_n.AR.r]] = 'R' N1l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch.size[n+1] not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.r[!reached.decisionH1l_n.AR.r] } AcceptedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]<=RejectH1.threshold RejectedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]>=RejectH0.threshold reached.decisionH1l_n.AR.l = AcceptedH0.underH1l_n.AR.l|RejectedH0.underH1l_n.AR.l if(any(reached.decisionH1l_n.AR.l)){ decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[AcceptedH0.underH1l_n.AR.l]] = 'A' decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[RejectedH0.underH1l_n.AR.l]] = 'R' N1l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch.size[n+1] not.reached.decisionH1l.AR.l = not.reached.decisionH1l.AR.l[!reached.decisionH1l_n.AR.l] } not.reached.decisionH1l.AR = union(not.reached.decisionH1l.AR.r, not.reached.decisionH1l.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N0.AR[accepted.by.both0] = pmax(N0.AR.r[accepted.by.both0], N0.AR.l[accepted.by.both0]) N0.AR[onlyrejected.by.right0] = N0.AR.r[onlyrejected.by.right0] N0.AR[onlyrejected.by.left0] = N0.AR.l[onlyrejected.by.left0] N0.AR[rejected.by.both0] = pmin(N0.AR.r[rejected.by.both0], N0.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T accepted.by.both1r = intersect(which(decision.underH1r.AR.r=='A'), which(decision.underH1r.AR.l=='A')) onlyrejected.by.right1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l!='R')) onlyrejected.by.left1r = intersect(which(decision.underH1r.AR.r!='R'), which(decision.underH1r.AR.l=='R')) rejected.by.both1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l=='R')) N1r.AR[accepted.by.both1r] = pmax(N1r.AR.r[accepted.by.both1r], N1r.AR.l[accepted.by.both1r]) N1r.AR[onlyrejected.by.right1r] = N1r.AR.r[onlyrejected.by.right1r] N1r.AR[onlyrejected.by.left1r] = N1r.AR.l[onlyrejected.by.left1r] N1r.AR[rejected.by.both1r] = pmin(N1r.AR.r[rejected.by.both1r], N1r.AR.l[rejected.by.both1r]) onlyaccepted.by.right1r = intersect(which(decision.underH1r.AR.r=='A'), which(is.na(decision.underH1r.AR.l))) onlyaccepted.by.left1r = intersect(which(is.na(decision.underH1r.AR.r)), which(decision.underH1r.AR.l=='A')) both.inconclusive1r = intersect(which(is.na(decision.underH1r.AR.r)), which(is.na(decision.underH1r.AR.l))) all.inconclusive1r = c(onlyaccepted.by.right1r, onlyaccepted.by.left1r, both.inconclusive1r) nNot.reached.decisionH1r.AR = length(all.inconclusive1r) PowerH1r.AR[c(onlyrejected.by.right1r, onlyrejected.by.left1r, rejected.by.both1r)] = T accepted.by.both1l = intersect(which(decision.underH1l.AR.r=='A'), which(decision.underH1l.AR.l=='A')) onlyrejected.by.right1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l!='R')) onlyrejected.by.left1l = intersect(which(decision.underH1l.AR.r!='R'), which(decision.underH1l.AR.l=='R')) rejected.by.both1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l=='R')) N1l.AR[accepted.by.both1l] = pmax(N1l.AR.r[accepted.by.both1l], N1l.AR.l[accepted.by.both1l]) N1l.AR[onlyrejected.by.right1l] = N1l.AR.r[onlyrejected.by.right1l] N1l.AR[onlyrejected.by.left1l] = N1l.AR.l[onlyrejected.by.left1l] N1l.AR[rejected.by.both1l] = pmin(N1l.AR.r[rejected.by.both1l], N1l.AR.l[rejected.by.both1l]) onlyaccepted.by.right1l = intersect(which(decision.underH1l.AR.r=='A'), which(is.na(decision.underH1l.AR.l))) onlyaccepted.by.left1l = intersect(which(is.na(decision.underH1l.AR.r)), which(decision.underH1l.AR.l=='A')) both.inconclusive1l = intersect(which(is.na(decision.underH1l.AR.r)), which(is.na(decision.underH1l.AR.l))) all.inconclusive1l = c(onlyaccepted.by.right1l, onlyaccepted.by.left1l, both.inconclusive1l) nNot.reached.decisionH1l.AR = length(all.inconclusive1l) PowerH1l.AR[c(onlyrejected.by.right1l, onlyrejected.by.left1l, rejected.by.both1l)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.PowerH1r.AR.r = mean(PowerH1r.AR) + sum(c(LR1r_n.r[onlyaccepted.by.left1r], LR1r_n.l[onlyaccepted.by.right1r], pmax(LR1r_n.r[both.inconclusive1r], LR1r_n.l[both.inconclusive1r]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1r.AR = 1 - actual.PowerH1r.AR.r actual.PowerH1l.AR.r = mean(PowerH1l.AR) + sum(c(LR1l_n.r[onlyaccepted.by.left1l], LR1l_n.l[onlyaccepted.by.right1l], pmax(LR1l_n.r[both.inconclusive1l], LR1l_n.l[both.inconclusive1l]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1l.AR = 1 - actual.PowerH1l.AR.r EN0 = mean(N0.AR) EN1r = mean(N1r.AR) EN1l = mean(N1l.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("Attained Type II error probability:") print(paste(" On the right: ", round(actual.type2.errorH1r.AR, 4))) print(paste(" On the left: ", round(actual.type2.errorH1l.AR, 4))) print("Expected sample size at the alternatives:") print(paste(" On the right: ", round(EN1r, 2))) print(paste(" On the left: ", round(EN1l, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = c(actual.type2.errorH1r.AR, actual.type2.errorH1l.AR), 'N' = list('H0' = N0.AR, 'right' = N1r.AR, 'left' = N1l.AR), 'EN' = c(EN0, EN1r, EN1l), "UMPBT" = UMPBT, "theta1" = theta1, "Type2.fixed.design" = c(Type2.fixed_design(theta = theta1$right, test.type = 'oneProp', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2), Type2.fixed_design(theta = theta1$left, test.type = 'oneProp', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2)), "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneProp', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else{ UMPBT = list('right' = UMPBT.alt(test.type = 'oneProp', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2), 'left' = UMPBT.alt(test.type = 'oneProp', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2)) if(verbose==T){ print("Alternative under comparison:") print(paste(' On the right: ', round(theta1$right, 3), sep = "")) print(paste(' On the left: ', round(theta1$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(UMPBT$right$theta[1], 3), " & ", round(UMPBT$right$theta[2], 3), " with respective probabilities ", round(UMPBT$right$mix.prob[1], 3), " & ", 1 - round(UMPBT$right$mix.prob[1], 3), sep = "")) print(paste(' On the left: ', round(UMPBT$left$theta[1], 3), " & ", round(UMPBT$left$theta[2], 3), " with respective probabilities ", round(UMPBT$left$mix.prob[1], 3), " & ", 1 - round(UMPBT$left$mix.prob[1], 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) cumsum0_n = cumsum1r_n = cumsum1l_n = LR0_n.r = LR0_n.l = LR1r_n.r = LR1r_n.l = LR1l_n.r = LR1l_n.l = numeric(nReplicate) type1.error.AR = PowerH1r.AR = PowerH1l.AR = rep(F, nReplicate) N0.AR = N0.AR.r = N0.AR.l = N1r.AR = N1r.AR.r = N1r.AR.l = N1l.AR = N1l.AR.r = N1l.AR.l = rep(N.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = decision.underH1r.AR.r = decision.underH1r.AR.l = decision.underH1l.AR.r = decision.underH1l.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = not.reached.decisionH1r.AR = not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.l = not.reached.decisionH1l.AR = not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rbinom(length(not.reached.decisionH0.AR), batch.size[n+1]-batch.size[n], theta0) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n.r[not.reached.decisionH0.AR.r] = UMPBT$right$mix.prob[1]*(((1 - UMPBT$right$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[1])))^cumsum0_n[not.reached.decisionH0.AR.r] + (1 - UMPBT$right$mix.prob[2])*(((1 - UMPBT$right$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[2])))^cumsum0_n[not.reached.decisionH0.AR.r] LR0_n.l[not.reached.decisionH0.AR.l] = UMPBT$left$mix.prob[1]*(((1 - UMPBT$left$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[1])))^cumsum0_n[not.reached.decisionH0.AR.l] + (1 - UMPBT$left$mix.prob[2])*(((1 - UMPBT$left$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[2])))^cumsum0_n[not.reached.decisionH0.AR.l] AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N0.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N0.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } if(length(not.reached.decisionH1r.AR)>0){ sum1r_n = rbinom(length(not.reached.decisionH1r.AR), batch.size[n+1]-batch.size[n], theta1$right) cumsum1r_n[not.reached.decisionH1r.AR] = cumsum1r_n[not.reached.decisionH1r.AR] + sum1r_n LR1r_n.r[not.reached.decisionH1r.AR.r] = UMPBT$right$mix.prob[1]*(((1 - UMPBT$right$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[1])))^cumsum1r_n[not.reached.decisionH1r.AR.r] + (1 - UMPBT$right$mix.prob[2])*(((1 - UMPBT$right$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[2])))^cumsum1r_n[not.reached.decisionH1r.AR.r] LR1r_n.l[not.reached.decisionH1r.AR.l] = UMPBT$left$mix.prob[1]*(((1 - UMPBT$left$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[1])))^cumsum1r_n[not.reached.decisionH1r.AR.l] + (1 - UMPBT$left$mix.prob[2])*(((1 - UMPBT$left$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[2])))^cumsum1r_n[not.reached.decisionH1r.AR.l] AcceptedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]<=RejectH1.threshold RejectedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]>=RejectH0.threshold reached.decisionH1r_n.AR.r = AcceptedH0.underH1r_n.AR.r|RejectedH0.underH1r_n.AR.r if(any(reached.decisionH1r_n.AR.r)){ decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[AcceptedH0.underH1r_n.AR.r]] = 'A' decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[RejectedH0.underH1r_n.AR.r]] = 'R' N1r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch.size[n+1] not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.r[!reached.decisionH1r_n.AR.r] } AcceptedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]<=RejectH1.threshold RejectedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]>=RejectH0.threshold reached.decisionH1r_n.AR.l = AcceptedH0.underH1r_n.AR.l|RejectedH0.underH1r_n.AR.l if(any(reached.decisionH1r_n.AR.l)){ decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[AcceptedH0.underH1r_n.AR.l]] = 'A' decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[RejectedH0.underH1r_n.AR.l]] = 'R' N1r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch.size[n+1] not.reached.decisionH1r.AR.l = not.reached.decisionH1r.AR.l[!reached.decisionH1r_n.AR.l] } not.reached.decisionH1r.AR = union(not.reached.decisionH1r.AR.r, not.reached.decisionH1r.AR.l) } if(length(not.reached.decisionH1l.AR)>0){ sum1l_n = rbinom(length(not.reached.decisionH1l.AR), batch.size[n+1]-batch.size[n], theta1$left) cumsum1l_n[not.reached.decisionH1l.AR] = cumsum1l_n[not.reached.decisionH1l.AR] + sum1l_n LR1l_n.r[not.reached.decisionH1l.AR.r] = UMPBT$right$mix.prob[1]*(((1 - UMPBT$right$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[1])))^cumsum1l_n[not.reached.decisionH1l.AR.r] + (1 - UMPBT$right$mix.prob[2])*(((1 - UMPBT$right$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[2])))^cumsum1l_n[not.reached.decisionH1l.AR.r] LR1l_n.l[not.reached.decisionH1l.AR.l] = UMPBT$left$mix.prob[1]*(((1 - UMPBT$left$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[1])))^cumsum1l_n[not.reached.decisionH1l.AR.l] + (1 - UMPBT$left$mix.prob[2])*(((1 - UMPBT$left$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[2])))^cumsum1l_n[not.reached.decisionH1l.AR.l] AcceptedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]<=RejectH1.threshold RejectedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]>=RejectH0.threshold reached.decisionH1l_n.AR.r = AcceptedH0.underH1l_n.AR.r|RejectedH0.underH1l_n.AR.r if(any(reached.decisionH1l_n.AR.r)){ decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[AcceptedH0.underH1l_n.AR.r]] = 'A' decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[RejectedH0.underH1l_n.AR.r]] = 'R' N1l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch.size[n+1] not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.r[!reached.decisionH1l_n.AR.r] } AcceptedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]<=RejectH1.threshold RejectedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]>=RejectH0.threshold reached.decisionH1l_n.AR.l = AcceptedH0.underH1l_n.AR.l|RejectedH0.underH1l_n.AR.l if(any(reached.decisionH1l_n.AR.l)){ decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[AcceptedH0.underH1l_n.AR.l]] = 'A' decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[RejectedH0.underH1l_n.AR.l]] = 'R' N1l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch.size[n+1] not.reached.decisionH1l.AR.l = not.reached.decisionH1l.AR.l[!reached.decisionH1l_n.AR.l] } not.reached.decisionH1l.AR = union(not.reached.decisionH1l.AR.r, not.reached.decisionH1l.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N0.AR[accepted.by.both0] = pmax(N0.AR.r[accepted.by.both0], N0.AR.l[accepted.by.both0]) N0.AR[onlyrejected.by.right0] = N0.AR.r[onlyrejected.by.right0] N0.AR[onlyrejected.by.left0] = N0.AR.l[onlyrejected.by.left0] N0.AR[rejected.by.both0] = pmin(N0.AR.r[rejected.by.both0], N0.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T accepted.by.both1r = intersect(which(decision.underH1r.AR.r=='A'), which(decision.underH1r.AR.l=='A')) onlyrejected.by.right1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l!='R')) onlyrejected.by.left1r = intersect(which(decision.underH1r.AR.r!='R'), which(decision.underH1r.AR.l=='R')) rejected.by.both1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l=='R')) N1r.AR[accepted.by.both1r] = pmax(N1r.AR.r[accepted.by.both1r], N1r.AR.l[accepted.by.both1r]) N1r.AR[onlyrejected.by.right1r] = N1r.AR.r[onlyrejected.by.right1r] N1r.AR[onlyrejected.by.left1r] = N1r.AR.l[onlyrejected.by.left1r] N1r.AR[rejected.by.both1r] = pmin(N1r.AR.r[rejected.by.both1r], N1r.AR.l[rejected.by.both1r]) onlyaccepted.by.right1r = intersect(which(decision.underH1r.AR.r=='A'), which(is.na(decision.underH1r.AR.l))) onlyaccepted.by.left1r = intersect(which(is.na(decision.underH1r.AR.r)), which(decision.underH1r.AR.l=='A')) both.inconclusive1r = intersect(which(is.na(decision.underH1r.AR.r)), which(is.na(decision.underH1r.AR.l))) all.inconclusive1r = c(onlyaccepted.by.right1r, onlyaccepted.by.left1r, both.inconclusive1r) nNot.reached.decisionH1r.AR = length(all.inconclusive1r) PowerH1r.AR[c(onlyrejected.by.right1r, onlyrejected.by.left1r, rejected.by.both1r)] = T accepted.by.both1l = intersect(which(decision.underH1l.AR.r=='A'), which(decision.underH1l.AR.l=='A')) onlyrejected.by.right1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l!='R')) onlyrejected.by.left1l = intersect(which(decision.underH1l.AR.r!='R'), which(decision.underH1l.AR.l=='R')) rejected.by.both1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l=='R')) N1l.AR[accepted.by.both1l] = pmax(N1l.AR.r[accepted.by.both1l], N1l.AR.l[accepted.by.both1l]) N1l.AR[onlyrejected.by.right1l] = N1l.AR.r[onlyrejected.by.right1l] N1l.AR[onlyrejected.by.left1l] = N1l.AR.l[onlyrejected.by.left1l] N1l.AR[rejected.by.both1l] = pmin(N1l.AR.r[rejected.by.both1l], N1l.AR.l[rejected.by.both1l]) onlyaccepted.by.right1l = intersect(which(decision.underH1l.AR.r=='A'), which(is.na(decision.underH1l.AR.l))) onlyaccepted.by.left1l = intersect(which(is.na(decision.underH1l.AR.r)), which(decision.underH1l.AR.l=='A')) both.inconclusive1l = intersect(which(is.na(decision.underH1l.AR.r)), which(is.na(decision.underH1l.AR.l))) all.inconclusive1l = c(onlyaccepted.by.right1l, onlyaccepted.by.left1l, both.inconclusive1l) nNot.reached.decisionH1l.AR = length(all.inconclusive1l) PowerH1l.AR[c(onlyrejected.by.right1l, onlyrejected.by.left1l, rejected.by.both1l)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.PowerH1r.AR.r = mean(PowerH1r.AR) + sum(c(LR1r_n.r[onlyaccepted.by.left1r], LR1r_n.l[onlyaccepted.by.right1r], pmax(LR1r_n.r[both.inconclusive1r], LR1r_n.l[both.inconclusive1r]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1r.AR = 1 - actual.PowerH1r.AR.r actual.PowerH1l.AR.r = mean(PowerH1l.AR) + sum(c(LR1l_n.r[onlyaccepted.by.left1l], LR1l_n.l[onlyaccepted.by.right1l], pmax(LR1l_n.r[both.inconclusive1l], LR1l_n.l[both.inconclusive1l]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1l.AR = 1 - actual.PowerH1l.AR.r EN0 = mean(N0.AR) EN1r = mean(N1r.AR) EN1l = mean(N1l.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("Attained Type II error probability:") print(paste(" On the right: ", round(actual.type2.errorH1r.AR, 4))) print(paste(" On the left: ", round(actual.type2.errorH1l.AR, 4))) print("Expected sample size at the alternatives:") print(paste(" On the right: ", round(EN1r, 2))) print(paste(" On the left: ", round(EN1l, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = c(actual.type2.errorH1r.AR, actual.type2.errorH1l.AR), 'N' = list('H0' = N0.AR, 'right' = N1r.AR, 'left' = N1l.AR), 'EN' = c(EN0, EN1r, EN1l), "UMPBT" = UMPBT, "theta1" = theta1, "Type2.fixed.design" = c(Type2.fixed_design(theta = theta1$right, test.type = 'oneProp', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2), Type2.fixed_design(theta = theta1$left, test.type = 'oneProp', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2)), "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneProp', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) } } } design.MSPRT_oneZ = function(side = 'right', theta0 = 0, theta1 = T, Type1.target =.005, Type2.target = .2, N.max, batch.size, sigma = 1, nReplicate = 1e+6, verbose = T, seed = 1){ if(side!='both'){ if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses = length(batch.size) if(verbose){ if(any(batch.size>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a one-sample z test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a one-sample z test:") print("=========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("Known standard deviation: ", sigma, sep = "")) } batch.size = c(0, cumsum(batch.size)) if(is.logical(theta1)&&(theta1==F)){ theta.UMPBT = UMPBT.alt(test.type = 'oneZ', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target, sigma = sigma) if(verbose==T){ print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target cumsum0_n = LR0_n = numeric(nReplicate) type1.error.AR = rep(F, nReplicate) N0.AR = rep(N.max, nReplicate) not.reached.decisionH0.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rnorm(length(not.reached.decisionH0.AR), (batch.size[n+1]-batch.size[n])*theta0, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n[not.reached.decisionH0.AR] = exp((cumsum0_n[not.reached.decisionH0.AR]*(theta.UMPBT - theta0) - ((batch.size[n+1]*((theta.UMPBT^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N0.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } EN0 = mean(N0.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("=========================================================================") cat('\n') } return(list("TypeI.attained" = actual.type1.error.AR, "N" = list('H0' = N0.AR), "EN" = EN0, "theta.UMPBT" = theta.UMPBT, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneZ', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else if(is.logical(theta1)&&(theta1==T)){ theta1 = fixed_design.alt(test.type = 'oneZ', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target, Type2 = Type2.target, sigma = sigma) theta.UMPBT = UMPBT.alt(test.type = 'oneZ', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target, sigma = sigma) if(verbose==T){ print(paste("Alternative under comparison: ", round(theta1, 3), sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target cumsum0_n = cumsum1_n = LR0_n = LR1_n = numeric(nReplicate) type1.error.AR = type2.error.AR = rep(F, nReplicate) N0.AR = N1.AR = rep(N.max, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rnorm(length(not.reached.decisionH0.AR), (batch.size[n+1]-batch.size[n])*theta0, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n[not.reached.decisionH0.AR] = exp((cumsum0_n[not.reached.decisionH0.AR]*(theta.UMPBT - theta0) - ((batch.size[n+1]*((theta.UMPBT^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N0.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } if(length(not.reached.decisionH1.AR)>0){ sum1_n = rnorm(length(not.reached.decisionH1.AR), (batch.size[n+1]-batch.size[n])*theta1, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + sum1_n LR1_n[not.reached.decisionH1.AR] = exp((cumsum1_n[not.reached.decisionH1.AR]*(theta.UMPBT - theta0) - ((batch.size[n+1]*((theta.UMPBT^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N1.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold.AR)/nReplicate EN0 = mean(N0.AR) EN1 = mean(N1.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Attained Type II error probability: ", round(actual.type2.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print(paste("Expected sample size at the alternative: ", round(EN1, 2))) print("=========================================================================") cat('\n') } return(list("TypeI.attained" = actual.type1.error.AR, "TypeII.attained" = actual.type2.error.AR, "N" = list('H0' = N0.AR, 'H1' = N1.AR), "EN" = c(EN0, EN1), "theta.UMPBT" = theta.UMPBT, "theta1" = theta1, "Type2.fixed.design" = Type2.fixed_design(theta = theta1, test.type = 'oneZ', side = side, theta0 = theta0, sigma = sigma, N = N.max, Type1 = Type1.target), "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneZ', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else{ theta.UMPBT = UMPBT.alt(test.type = 'oneZ', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target, sigma = sigma) if(verbose==T){ print(paste("Alternative under comparison: ", round(theta1, 3), sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target cumsum0_n = cumsum1_n = LR0_n = LR1_n = numeric(nReplicate) type1.error.AR = type2.error.AR = rep(F, nReplicate) N0.AR = N1.AR = rep(N.max, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rnorm(length(not.reached.decisionH0.AR), (batch.size[n+1]-batch.size[n])*theta0, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n[not.reached.decisionH0.AR] = exp((cumsum0_n[not.reached.decisionH0.AR]*(theta.UMPBT - theta0) - ((batch.size[n+1]*((theta.UMPBT^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N0.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } if(length(not.reached.decisionH1.AR)>0){ sum1_n = rnorm(length(not.reached.decisionH1.AR), (batch.size[n+1]-batch.size[n])*theta1, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + sum1_n LR1_n[not.reached.decisionH1.AR] = exp((cumsum1_n[not.reached.decisionH1.AR]*(theta.UMPBT - theta0) - ((batch.size[n+1]*((theta.UMPBT^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N1.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold.AR)/nReplicate EN0 = mean(N0.AR) EN1 = mean(N1.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Attained Type II error probability: ", round(actual.type2.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print(paste("Expected sample size at the alternative: ", round(EN1, 2))) print("=========================================================================") cat('\n') } return(list("TypeI.attained" = actual.type1.error.AR, "TypeII.attained" = actual.type2.error.AR, "N" = list('H0' = N0.AR, 'H1' = N1.AR), "EN" = c(EN0, EN1), "theta.UMPBT" = theta.UMPBT, "theta1" = theta1, "Type2.fixed.design" = Type2.fixed_design(theta = theta1, test.type = 'oneZ', side = side, theta0 = theta0, sigma = sigma, N = N.max, Type1 = Type1.target), "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneZ', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) } }else{ if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses = length(batch.size) if(verbose){ if(any(batch.size>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a one-sample z test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a one-sample z test:") print("=========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("Known standard deviation: ", sigma, sep = "")) } batch.size = c(0, cumsum(batch.size)) if(is.logical(theta1)&&(theta1==F)){ theta.UMPBT = list('right' = UMPBT.alt(test.type = 'oneZ', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2, sigma = sigma), 'left' = UMPBT.alt(test.type = 'oneZ', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2, sigma = sigma)) if(verbose==T){ print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) cumsum0_n = LR0_n.r = LR0_n.l = numeric(nReplicate) type1.error.AR = rep(F, nReplicate) N0.AR = N0.AR.r = N0.AR.l = rep(N.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rnorm(length(not.reached.decisionH0.AR), (batch.size[n+1]-batch.size[n])*theta0, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n.r[not.reached.decisionH0.AR.r] = exp((cumsum0_n[not.reached.decisionH0.AR.r]*(theta.UMPBT$right - theta0) - ((batch.size[n+1]*((theta.UMPBT$right^2) - (theta0^2)))/2))/(sigma^2)) LR0_n.l[not.reached.decisionH0.AR.l] = exp((cumsum0_n[not.reached.decisionH0.AR.l]*(theta.UMPBT$left - theta0) - ((batch.size[n+1]*((theta.UMPBT$left^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N0.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N0.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N0.AR[accepted.by.both0] = pmax(N0.AR.r[accepted.by.both0], N0.AR.l[accepted.by.both0]) N0.AR[onlyrejected.by.right0] = N0.AR.r[onlyrejected.by.right0] N0.AR[onlyrejected.by.left0] = N0.AR.l[onlyrejected.by.left0] N0.AR[rejected.by.both0] = pmin(N0.AR.r[rejected.by.both0], N0.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } EN0 = mean(N0.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, 'N' = list('H0' = N0.AR), 'EN' = EN0, "theta.UMPBT" = theta.UMPBT, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneZ', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else if(is.logical(theta1)&&(theta1==T)){ theta1 = list('right' = fixed_design.alt(test.type = 'oneZ', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2, Type2 = Type2.target, sigma = sigma), 'left' = fixed_design.alt(test.type = 'oneZ', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2, Type2 = Type2.target, sigma = sigma)) theta.UMPBT = list('right' = UMPBT.alt(test.type = 'oneZ', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2, sigma = sigma), 'left' = UMPBT.alt(test.type = 'oneZ', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2, sigma = sigma)) if(verbose==T){ print("Alternative under comparison:") print(paste(' On the right: ', round(theta1$right, 3), sep = "")) print(paste(' On the left: ', round(theta1$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) cumsum0_n = cumsum1r_n = cumsum1l_n = LR0_n.r = LR0_n.l = LR1r_n.r = LR1r_n.l = LR1l_n.r = LR1l_n.l = numeric(nReplicate) type1.error.AR = PowerH1r.AR = PowerH1l.AR = rep(F, nReplicate) N0.AR = N0.AR.r = N0.AR.l = N1r.AR = N1r.AR.r = N1r.AR.l = N1l.AR = N1l.AR.r = N1l.AR.l = rep(N.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = decision.underH1r.AR.r = decision.underH1r.AR.l = decision.underH1l.AR.r = decision.underH1l.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = not.reached.decisionH1r.AR = not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.l = not.reached.decisionH1l.AR = not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rnorm(length(not.reached.decisionH0.AR), (batch.size[n+1]-batch.size[n])*theta0, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n.r[not.reached.decisionH0.AR.r] = exp((cumsum0_n[not.reached.decisionH0.AR.r]*(theta.UMPBT$right - theta0) - ((batch.size[n+1]*((theta.UMPBT$right^2) - (theta0^2)))/2))/(sigma^2)) LR0_n.l[not.reached.decisionH0.AR.l] = exp((cumsum0_n[not.reached.decisionH0.AR.l]*(theta.UMPBT$left - theta0) - ((batch.size[n+1]*((theta.UMPBT$left^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N0.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N0.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } if(length(not.reached.decisionH1r.AR)>0){ sum1r_n = rnorm(length(not.reached.decisionH1r.AR), (batch.size[n+1]-batch.size[n])*theta1$right, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum1r_n[not.reached.decisionH1r.AR] = cumsum1r_n[not.reached.decisionH1r.AR] + sum1r_n LR1r_n.r[not.reached.decisionH1r.AR.r] = exp((cumsum1r_n[not.reached.decisionH1r.AR.r]*(theta.UMPBT$right - theta0) - ((batch.size[n+1]*((theta.UMPBT$right^2) - (theta0^2)))/2))/(sigma^2)) LR1r_n.l[not.reached.decisionH1r.AR.l] = exp((cumsum1r_n[not.reached.decisionH1r.AR.l]*(theta.UMPBT$left - theta0) - ((batch.size[n+1]*((theta.UMPBT$left^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]<=RejectH1.threshold RejectedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]>=RejectH0.threshold reached.decisionH1r_n.AR.r = AcceptedH0.underH1r_n.AR.r|RejectedH0.underH1r_n.AR.r if(any(reached.decisionH1r_n.AR.r)){ decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[AcceptedH0.underH1r_n.AR.r]] = 'A' decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[RejectedH0.underH1r_n.AR.r]] = 'R' N1r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch.size[n+1] not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.r[!reached.decisionH1r_n.AR.r] } AcceptedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]<=RejectH1.threshold RejectedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]>=RejectH0.threshold reached.decisionH1r_n.AR.l = AcceptedH0.underH1r_n.AR.l|RejectedH0.underH1r_n.AR.l if(any(reached.decisionH1r_n.AR.l)){ decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[AcceptedH0.underH1r_n.AR.l]] = 'A' decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[RejectedH0.underH1r_n.AR.l]] = 'R' N1r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch.size[n+1] not.reached.decisionH1r.AR.l = not.reached.decisionH1r.AR.l[!reached.decisionH1r_n.AR.l] } not.reached.decisionH1r.AR = union(not.reached.decisionH1r.AR.r, not.reached.decisionH1r.AR.l) } if(length(not.reached.decisionH1l.AR)>0){ sum1l_n = rnorm(length(not.reached.decisionH1l.AR), (batch.size[n+1]-batch.size[n])*theta1$left, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum1l_n[not.reached.decisionH1l.AR] = cumsum1l_n[not.reached.decisionH1l.AR] + sum1l_n LR1l_n.r[not.reached.decisionH1l.AR.r] = exp((cumsum1l_n[not.reached.decisionH1l.AR.r]*(theta.UMPBT$right - theta0) - ((batch.size[n+1]*((theta.UMPBT$right^2) - (theta0^2)))/2))/(sigma^2)) LR1l_n.l[not.reached.decisionH1l.AR.l] = exp((cumsum1l_n[not.reached.decisionH1l.AR.l]*(theta.UMPBT$left - theta0) - ((batch.size[n+1]*((theta.UMPBT$left^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]<=RejectH1.threshold RejectedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]>=RejectH0.threshold reached.decisionH1l_n.AR.r = AcceptedH0.underH1l_n.AR.r|RejectedH0.underH1l_n.AR.r if(any(reached.decisionH1l_n.AR.r)){ decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[AcceptedH0.underH1l_n.AR.r]] = 'A' decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[RejectedH0.underH1l_n.AR.r]] = 'R' N1l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch.size[n+1] not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.r[!reached.decisionH1l_n.AR.r] } AcceptedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]<=RejectH1.threshold RejectedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]>=RejectH0.threshold reached.decisionH1l_n.AR.l = AcceptedH0.underH1l_n.AR.l|RejectedH0.underH1l_n.AR.l if(any(reached.decisionH1l_n.AR.l)){ decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[AcceptedH0.underH1l_n.AR.l]] = 'A' decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[RejectedH0.underH1l_n.AR.l]] = 'R' N1l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch.size[n+1] not.reached.decisionH1l.AR.l = not.reached.decisionH1l.AR.l[!reached.decisionH1l_n.AR.l] } not.reached.decisionH1l.AR = union(not.reached.decisionH1l.AR.r, not.reached.decisionH1l.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N0.AR[accepted.by.both0] = pmax(N0.AR.r[accepted.by.both0], N0.AR.l[accepted.by.both0]) N0.AR[onlyrejected.by.right0] = N0.AR.r[onlyrejected.by.right0] N0.AR[onlyrejected.by.left0] = N0.AR.l[onlyrejected.by.left0] N0.AR[rejected.by.both0] = pmin(N0.AR.r[rejected.by.both0], N0.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T accepted.by.both1r = intersect(which(decision.underH1r.AR.r=='A'), which(decision.underH1r.AR.l=='A')) onlyrejected.by.right1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l!='R')) onlyrejected.by.left1r = intersect(which(decision.underH1r.AR.r!='R'), which(decision.underH1r.AR.l=='R')) rejected.by.both1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l=='R')) N1r.AR[accepted.by.both1r] = pmax(N1r.AR.r[accepted.by.both1r], N1r.AR.l[accepted.by.both1r]) N1r.AR[onlyrejected.by.right1r] = N1r.AR.r[onlyrejected.by.right1r] N1r.AR[onlyrejected.by.left1r] = N1r.AR.l[onlyrejected.by.left1r] N1r.AR[rejected.by.both1r] = pmin(N1r.AR.r[rejected.by.both1r], N1r.AR.l[rejected.by.both1r]) onlyaccepted.by.right1r = intersect(which(decision.underH1r.AR.r=='A'), which(is.na(decision.underH1r.AR.l))) onlyaccepted.by.left1r = intersect(which(is.na(decision.underH1r.AR.r)), which(decision.underH1r.AR.l=='A')) both.inconclusive1r = intersect(which(is.na(decision.underH1r.AR.r)), which(is.na(decision.underH1r.AR.l))) all.inconclusive1r = c(onlyaccepted.by.right1r, onlyaccepted.by.left1r, both.inconclusive1r) nNot.reached.decisionH1r.AR = length(all.inconclusive1r) PowerH1r.AR[c(onlyrejected.by.right1r, onlyrejected.by.left1r, rejected.by.both1r)] = T accepted.by.both1l = intersect(which(decision.underH1l.AR.r=='A'), which(decision.underH1l.AR.l=='A')) onlyrejected.by.right1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l!='R')) onlyrejected.by.left1l = intersect(which(decision.underH1l.AR.r!='R'), which(decision.underH1l.AR.l=='R')) rejected.by.both1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l=='R')) N1l.AR[accepted.by.both1l] = pmax(N1l.AR.r[accepted.by.both1l], N1l.AR.l[accepted.by.both1l]) N1l.AR[onlyrejected.by.right1l] = N1l.AR.r[onlyrejected.by.right1l] N1l.AR[onlyrejected.by.left1l] = N1l.AR.l[onlyrejected.by.left1l] N1l.AR[rejected.by.both1l] = pmin(N1l.AR.r[rejected.by.both1l], N1l.AR.l[rejected.by.both1l]) onlyaccepted.by.right1l = intersect(which(decision.underH1l.AR.r=='A'), which(is.na(decision.underH1l.AR.l))) onlyaccepted.by.left1l = intersect(which(is.na(decision.underH1l.AR.r)), which(decision.underH1l.AR.l=='A')) both.inconclusive1l = intersect(which(is.na(decision.underH1l.AR.r)), which(is.na(decision.underH1l.AR.l))) all.inconclusive1l = c(onlyaccepted.by.right1l, onlyaccepted.by.left1l, both.inconclusive1l) nNot.reached.decisionH1l.AR = length(all.inconclusive1l) PowerH1l.AR[c(onlyrejected.by.right1l, onlyrejected.by.left1l, rejected.by.both1l)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.PowerH1r.AR.r = mean(PowerH1r.AR) + sum(c(LR1r_n.r[onlyaccepted.by.left1r], LR1r_n.l[onlyaccepted.by.right1r], pmax(LR1r_n.r[both.inconclusive1r], LR1r_n.l[both.inconclusive1r]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1r.AR = 1 - actual.PowerH1r.AR.r actual.PowerH1l.AR.r = mean(PowerH1l.AR) + sum(c(LR1l_n.r[onlyaccepted.by.left1l], LR1l_n.l[onlyaccepted.by.right1l], pmax(LR1l_n.r[both.inconclusive1l], LR1l_n.l[both.inconclusive1l]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1l.AR = 1 - actual.PowerH1l.AR.r EN0 = mean(N0.AR) EN1r = mean(N1r.AR) EN1l = mean(N1l.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("Attained Type II error probability:") print(paste(" On the right: ", round(actual.type2.errorH1r.AR, 4))) print(paste(" On the left: ", round(actual.type2.errorH1l.AR, 4))) print("Expected sample size at the alternatives:") print(paste(" On the right: ", round(EN1r, 2))) print(paste(" On the left: ", round(EN1l, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = c(actual.type2.errorH1r.AR, actual.type2.errorH1l.AR), 'N' = list('H0' = N0.AR, 'right' = N1r.AR, 'left' = N1l.AR), 'EN' = c(EN0, EN1r, EN1l), "theta.UMPBT" = theta.UMPBT, "theta1" = theta1, "Type2.fixed.design" = c(Type2.fixed_design(theta = theta1$right, test.type = 'oneZ', side = 'right', theta0 = theta0, sigma = sigma, N = N.max, Type1 = Type1.target/2), Type2.fixed_design(theta = theta1$left, test.type = 'oneZ', side = 'left', theta0 = theta0, sigma = sigma, N = N.max, Type1 = Type1.target/2)), "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneZ', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else{ theta.UMPBT = list('right' = UMPBT.alt(test.type = 'oneZ', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2, sigma = sigma), 'left' = UMPBT.alt(test.type = 'oneZ', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2, sigma = sigma)) if(verbose==T){ print("Alternative under comparison:") print(paste(' On the right: ', round(theta1$right, 3), sep = "")) print(paste(' On the left: ', round(theta1$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) cumsum0_n = cumsum1r_n = cumsum1l_n = LR0_n.r = LR0_n.l = LR1r_n.r = LR1r_n.l = LR1l_n.r = LR1l_n.l = numeric(nReplicate) type1.error.AR = PowerH1r.AR = PowerH1l.AR = rep(F, nReplicate) N0.AR = N0.AR.r = N0.AR.l = N1r.AR = N1r.AR.r = N1r.AR.l = N1l.AR = N1l.AR.r = N1l.AR.l = rep(N.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = decision.underH1r.AR.r = decision.underH1r.AR.l = decision.underH1l.AR.r = decision.underH1l.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = not.reached.decisionH1r.AR = not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.l = not.reached.decisionH1l.AR = not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum0_n = rnorm(length(not.reached.decisionH0.AR), (batch.size[n+1]-batch.size[n])*theta0, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + sum0_n LR0_n.r[not.reached.decisionH0.AR.r] = exp((cumsum0_n[not.reached.decisionH0.AR.r]*(theta.UMPBT$right - theta0) - ((batch.size[n+1]*((theta.UMPBT$right^2) - (theta0^2)))/2))/(sigma^2)) LR0_n.l[not.reached.decisionH0.AR.l] = exp((cumsum0_n[not.reached.decisionH0.AR.l]*(theta.UMPBT$left - theta0) - ((batch.size[n+1]*((theta.UMPBT$left^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N0.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N0.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } if(length(not.reached.decisionH1r.AR)>0){ sum1r_n = rnorm(length(not.reached.decisionH1r.AR), (batch.size[n+1]-batch.size[n])*theta1$right, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum1r_n[not.reached.decisionH1r.AR] = cumsum1r_n[not.reached.decisionH1r.AR] + sum1r_n LR1r_n.r[not.reached.decisionH1r.AR.r] = exp((cumsum1r_n[not.reached.decisionH1r.AR.r]*(theta.UMPBT$right - theta0) - ((batch.size[n+1]*((theta.UMPBT$right^2) - (theta0^2)))/2))/(sigma^2)) LR1r_n.l[not.reached.decisionH1r.AR.l] = exp((cumsum1r_n[not.reached.decisionH1r.AR.l]*(theta.UMPBT$left - theta0) - ((batch.size[n+1]*((theta.UMPBT$left^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]<=RejectH1.threshold RejectedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]>=RejectH0.threshold reached.decisionH1r_n.AR.r = AcceptedH0.underH1r_n.AR.r|RejectedH0.underH1r_n.AR.r if(any(reached.decisionH1r_n.AR.r)){ decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[AcceptedH0.underH1r_n.AR.r]] = 'A' decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[RejectedH0.underH1r_n.AR.r]] = 'R' N1r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch.size[n+1] not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.r[!reached.decisionH1r_n.AR.r] } AcceptedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]<=RejectH1.threshold RejectedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]>=RejectH0.threshold reached.decisionH1r_n.AR.l = AcceptedH0.underH1r_n.AR.l|RejectedH0.underH1r_n.AR.l if(any(reached.decisionH1r_n.AR.l)){ decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[AcceptedH0.underH1r_n.AR.l]] = 'A' decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[RejectedH0.underH1r_n.AR.l]] = 'R' N1r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch.size[n+1] not.reached.decisionH1r.AR.l = not.reached.decisionH1r.AR.l[!reached.decisionH1r_n.AR.l] } not.reached.decisionH1r.AR = union(not.reached.decisionH1r.AR.r, not.reached.decisionH1r.AR.l) } if(length(not.reached.decisionH1l.AR)>0){ sum1l_n = rnorm(length(not.reached.decisionH1l.AR), (batch.size[n+1]-batch.size[n])*theta1$left, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum1l_n[not.reached.decisionH1l.AR] = cumsum1l_n[not.reached.decisionH1l.AR] + sum1l_n LR1l_n.r[not.reached.decisionH1l.AR.r] = exp((cumsum1l_n[not.reached.decisionH1l.AR.r]*(theta.UMPBT$right - theta0) - ((batch.size[n+1]*((theta.UMPBT$right^2) - (theta0^2)))/2))/(sigma^2)) LR1l_n.l[not.reached.decisionH1l.AR.l] = exp((cumsum1l_n[not.reached.decisionH1l.AR.l]*(theta.UMPBT$left - theta0) - ((batch.size[n+1]*((theta.UMPBT$left^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]<=RejectH1.threshold RejectedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]>=RejectH0.threshold reached.decisionH1l_n.AR.r = AcceptedH0.underH1l_n.AR.r|RejectedH0.underH1l_n.AR.r if(any(reached.decisionH1l_n.AR.r)){ decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[AcceptedH0.underH1l_n.AR.r]] = 'A' decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[RejectedH0.underH1l_n.AR.r]] = 'R' N1l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch.size[n+1] not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.r[!reached.decisionH1l_n.AR.r] } AcceptedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]<=RejectH1.threshold RejectedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]>=RejectH0.threshold reached.decisionH1l_n.AR.l = AcceptedH0.underH1l_n.AR.l|RejectedH0.underH1l_n.AR.l if(any(reached.decisionH1l_n.AR.l)){ decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[AcceptedH0.underH1l_n.AR.l]] = 'A' decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[RejectedH0.underH1l_n.AR.l]] = 'R' N1l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch.size[n+1] not.reached.decisionH1l.AR.l = not.reached.decisionH1l.AR.l[!reached.decisionH1l_n.AR.l] } not.reached.decisionH1l.AR = union(not.reached.decisionH1l.AR.r, not.reached.decisionH1l.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N0.AR[accepted.by.both0] = pmax(N0.AR.r[accepted.by.both0], N0.AR.l[accepted.by.both0]) N0.AR[onlyrejected.by.right0] = N0.AR.r[onlyrejected.by.right0] N0.AR[onlyrejected.by.left0] = N0.AR.l[onlyrejected.by.left0] N0.AR[rejected.by.both0] = pmin(N0.AR.r[rejected.by.both0], N0.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T accepted.by.both1r = intersect(which(decision.underH1r.AR.r=='A'), which(decision.underH1r.AR.l=='A')) onlyrejected.by.right1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l!='R')) onlyrejected.by.left1r = intersect(which(decision.underH1r.AR.r!='R'), which(decision.underH1r.AR.l=='R')) rejected.by.both1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l=='R')) N1r.AR[accepted.by.both1r] = pmax(N1r.AR.r[accepted.by.both1r], N1r.AR.l[accepted.by.both1r]) N1r.AR[onlyrejected.by.right1r] = N1r.AR.r[onlyrejected.by.right1r] N1r.AR[onlyrejected.by.left1r] = N1r.AR.l[onlyrejected.by.left1r] N1r.AR[rejected.by.both1r] = pmin(N1r.AR.r[rejected.by.both1r], N1r.AR.l[rejected.by.both1r]) onlyaccepted.by.right1r = intersect(which(decision.underH1r.AR.r=='A'), which(is.na(decision.underH1r.AR.l))) onlyaccepted.by.left1r = intersect(which(is.na(decision.underH1r.AR.r)), which(decision.underH1r.AR.l=='A')) both.inconclusive1r = intersect(which(is.na(decision.underH1r.AR.r)), which(is.na(decision.underH1r.AR.l))) all.inconclusive1r = c(onlyaccepted.by.right1r, onlyaccepted.by.left1r, both.inconclusive1r) nNot.reached.decisionH1r.AR = length(all.inconclusive1r) PowerH1r.AR[c(onlyrejected.by.right1r, onlyrejected.by.left1r, rejected.by.both1r)] = T accepted.by.both1l = intersect(which(decision.underH1l.AR.r=='A'), which(decision.underH1l.AR.l=='A')) onlyrejected.by.right1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l!='R')) onlyrejected.by.left1l = intersect(which(decision.underH1l.AR.r!='R'), which(decision.underH1l.AR.l=='R')) rejected.by.both1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l=='R')) N1l.AR[accepted.by.both1l] = pmax(N1l.AR.r[accepted.by.both1l], N1l.AR.l[accepted.by.both1l]) N1l.AR[onlyrejected.by.right1l] = N1l.AR.r[onlyrejected.by.right1l] N1l.AR[onlyrejected.by.left1l] = N1l.AR.l[onlyrejected.by.left1l] N1l.AR[rejected.by.both1l] = pmin(N1l.AR.r[rejected.by.both1l], N1l.AR.l[rejected.by.both1l]) onlyaccepted.by.right1l = intersect(which(decision.underH1l.AR.r=='A'), which(is.na(decision.underH1l.AR.l))) onlyaccepted.by.left1l = intersect(which(is.na(decision.underH1l.AR.r)), which(decision.underH1l.AR.l=='A')) both.inconclusive1l = intersect(which(is.na(decision.underH1l.AR.r)), which(is.na(decision.underH1l.AR.l))) all.inconclusive1l = c(onlyaccepted.by.right1l, onlyaccepted.by.left1l, both.inconclusive1l) nNot.reached.decisionH1l.AR = length(all.inconclusive1l) PowerH1l.AR[c(onlyrejected.by.right1l, onlyrejected.by.left1l, rejected.by.both1l)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.PowerH1r.AR.r = mean(PowerH1r.AR) + sum(c(LR1r_n.r[onlyaccepted.by.left1r], LR1r_n.l[onlyaccepted.by.right1r], pmax(LR1r_n.r[both.inconclusive1r], LR1r_n.l[both.inconclusive1r]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1r.AR = 1 - actual.PowerH1r.AR.r actual.PowerH1l.AR.r = mean(PowerH1l.AR) + sum(c(LR1l_n.r[onlyaccepted.by.left1l], LR1l_n.l[onlyaccepted.by.right1l], pmax(LR1l_n.r[both.inconclusive1l], LR1l_n.l[both.inconclusive1l]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1l.AR = 1 - actual.PowerH1l.AR.r EN0 = mean(N0.AR) EN1r = mean(N1r.AR) EN1l = mean(N1l.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("Attained Type II error probability:") print(paste(" On the right: ", round(actual.type2.errorH1r.AR, 4))) print(paste(" On the left: ", round(actual.type2.errorH1l.AR, 4))) print("Expected sample size at the alternatives:") print(paste(" On the right: ", round(EN1r, 2))) print(paste(" On the left: ", round(EN1l, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = c(actual.type2.errorH1r.AR, actual.type2.errorH1l.AR), 'N' = list('H0' = N0.AR, 'right' = N1r.AR, 'left' = N1l.AR), 'EN' = c(EN0, EN1r, EN1l), "theta.UMPBT" = theta.UMPBT, "theta1" = theta1, "Type2.fixed.design" = c(Type2.fixed_design(theta = theta1$right, test.type = 'oneZ', side = 'right', theta0 = theta0, sigma = sigma, N = N.max, Type1 = Type1.target/2), Type2.fixed_design(theta = theta1$left, test.type = 'oneZ', side = 'left', theta0 = theta0, sigma = sigma, N = N.max, Type1 = Type1.target/2)), "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneZ', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) } } } design.MSPRT_oneT = function(side = 'right', theta0 = 0, theta1 = T, Type1.target =.005, Type2.target = .2, N.max, batch.size, nReplicate = 1e+6, verbose = T, seed = 1){ if(side!='both'){ if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = c(2, rep(1, N.max-2))} }else{ if(batch.size[1]<2){ return("First batch size should be at least 2") }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch.size should add up to N.max") } } } nAnalyses = length(batch.size) if(verbose){ if((batch.size[1]>2)||any(batch.size[-1]>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a one-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a one-sample t test:") print("=========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) } batch.size = c(0, cumsum(batch.size)) if(is.logical(theta1)&&(theta1==F)){ if(verbose==T){ print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target signed_t.alpha = (2*(side=='right')-1)*qt(Type1.target, df = N.max -1, lower.tail = F) cumSS0_n = cumsum0_n = LR0_n = numeric(nReplicate) type1.error.AR = rep(F, nReplicate) N0.AR = rep(N.max, nReplicate) not.reached.decisionH0.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ if(length(not.reached.decisionH0.AR)>1){ obs0_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }) }else{ obs0_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + rowSums(obs0_n) cumSS0_n[not.reached.decisionH0.AR] = cumSS0_n[not.reached.decisionH0.AR] + rowSums(obs0_n^2) xbar0_n = cumsum0_n[not.reached.decisionH0.AR]/batch.size[n+1] divisor.s0_n.sq = cumSS0_n[not.reached.decisionH0.AR] - ((cumsum0_n[not.reached.decisionH0.AR])^2)/batch.size[n+1] LR0_n[not.reached.decisionH0.AR] = ((1 + (batch.size[n+1]*((xbar0_n - theta0)^2))/divisor.s0_n.sq)/ (1 + (batch.size[n+1]*((xbar0_n - (theta0 + signed_t.alpha* sqrt(divisor.s0_n.sq/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s0_n.sq))^(batch.size[n+1]/2) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N0.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } EN0 = mean(N0.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("=========================================================================") cat('\n') } return(list("TypeI.attained" = actual.type1.error.AR, "N" = list('H0' = N0.AR), "EN" = EN0, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneT', 'side' = side, 'theta0' = theta0, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else if(is.logical(theta1)&&(theta1==T)){ theta1 = fixed_design.alt(test.type = 'oneT', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target, Type2 = Type2.target) if(verbose==T){ print(paste("Alternative under comparison: ", round(theta1, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target signed_t.alpha = (2*(side=='right')-1)*qt(Type1.target, df = N.max -1, lower.tail = F) cumSS0_n = cumSS1_n = cumsum0_n = cumsum1_n = LR0_n = LR1_n = numeric(nReplicate) type1.error.AR = type2.error.AR = rep(F, nReplicate) N0.AR = N1.AR = rep(N.max, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ if(length(not.reached.decisionH0.AR)>1){ obs0_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }) }else{ obs0_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + rowSums(obs0_n) cumSS0_n[not.reached.decisionH0.AR] = cumSS0_n[not.reached.decisionH0.AR] + rowSums(obs0_n^2) xbar0_n = cumsum0_n[not.reached.decisionH0.AR]/batch.size[n+1] divisor.s0_n.sq = cumSS0_n[not.reached.decisionH0.AR] - ((cumsum0_n[not.reached.decisionH0.AR])^2)/batch.size[n+1] LR0_n[not.reached.decisionH0.AR] = ((1 + (batch.size[n+1]*((xbar0_n - theta0)^2))/divisor.s0_n.sq)/ (1 + (batch.size[n+1]*((xbar0_n - (theta0 + signed_t.alpha* sqrt(divisor.s0_n.sq/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s0_n.sq))^(batch.size[n+1]/2) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N0.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } if(length(not.reached.decisionH1.AR)>0){ if(length(not.reached.decisionH1.AR)>1){ obs1_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1, 1) }) }else{ obs1_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + rowSums(obs1_n) cumSS1_n[not.reached.decisionH1.AR] = cumSS1_n[not.reached.decisionH1.AR] + rowSums(obs1_n^2) xbar1_n = cumsum1_n[not.reached.decisionH1.AR]/batch.size[n+1] divisor.s1_n.sq = cumSS1_n[not.reached.decisionH1.AR] - ((cumsum1_n[not.reached.decisionH1.AR])^2)/batch.size[n+1] LR1_n[not.reached.decisionH1.AR] = ((1 + (batch.size[n+1]*((xbar1_n - theta0)^2))/divisor.s1_n.sq)/ (1 + (batch.size[n+1]*((xbar1_n - (theta0 + signed_t.alpha* sqrt(divisor.s1_n.sq/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1_n.sq))^(batch.size[n+1]/2) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N1.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold.AR)/nReplicate EN0 = mean(N0.AR) EN1 = mean(N1.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Attained Type II error probability: ", round(actual.type2.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print(paste("Expected sample size at the alternative: ", round(EN1, 2))) print("=========================================================================") cat('\n') } return(list("TypeI.attained" = actual.type1.error.AR, "TypeII.attained" = actual.type2.error.AR, "N" = list('H0' = N0.AR, 'H1' = N1.AR), "EN" = c(EN0, EN1), "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneT', 'side' = side, 'theta0' = theta0, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else{ if(verbose==T){ print(paste("Alternative under comparison: ", round(theta1, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target signed_t.alpha = (2*(side=='right')-1)*qt(Type1.target, df = N.max -1, lower.tail = F) cumSS0_n = cumSS1_n = cumsum0_n = cumsum1_n = LR0_n = LR1_n = numeric(nReplicate) type1.error.AR = type2.error.AR = rep(F, nReplicate) N0.AR = N1.AR = rep(N.max, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ if(length(not.reached.decisionH0.AR)>1){ obs0_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }) }else{ obs0_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + rowSums(obs0_n) cumSS0_n[not.reached.decisionH0.AR] = cumSS0_n[not.reached.decisionH0.AR] + rowSums(obs0_n^2) xbar0_n = cumsum0_n[not.reached.decisionH0.AR]/batch.size[n+1] divisor.s0_n.sq = cumSS0_n[not.reached.decisionH0.AR] - ((cumsum0_n[not.reached.decisionH0.AR])^2)/batch.size[n+1] LR0_n[not.reached.decisionH0.AR] = ((1 + (batch.size[n+1]*((xbar0_n - theta0)^2))/divisor.s0_n.sq)/ (1 + (batch.size[n+1]*((xbar0_n - (theta0 + signed_t.alpha* sqrt(divisor.s0_n.sq/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s0_n.sq))^(batch.size[n+1]/2) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N0.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } if(length(not.reached.decisionH1.AR)>0){ if(length(not.reached.decisionH1.AR)>1){ obs1_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1, 1) }) }else{ obs1_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + rowSums(obs1_n) cumSS1_n[not.reached.decisionH1.AR] = cumSS1_n[not.reached.decisionH1.AR] + rowSums(obs1_n^2) xbar1_n = cumsum1_n[not.reached.decisionH1.AR]/batch.size[n+1] divisor.s1_n.sq = cumSS1_n[not.reached.decisionH1.AR] - ((cumsum1_n[not.reached.decisionH1.AR])^2)/batch.size[n+1] LR1_n[not.reached.decisionH1.AR] = ((1 + (batch.size[n+1]*((xbar1_n - theta0)^2))/divisor.s1_n.sq)/ (1 + (batch.size[n+1]*((xbar1_n - (theta0 + signed_t.alpha* sqrt(divisor.s1_n.sq/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1_n.sq))^(batch.size[n+1]/2) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N1.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold.AR)/nReplicate EN0 = mean(N0.AR) EN1 = mean(N1.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Attained Type II error probability: ", round(actual.type2.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print(paste("Expected sample size at the alternative: ", round(EN1, 2))) print("=========================================================================") cat('\n') } return(list("TypeI.attained" = actual.type1.error.AR, "TypeII.attained" = actual.type2.error.AR, "N" = list('H0' = N0.AR, 'H1' = N1.AR), "EN" = c(EN0, EN1), "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneT', 'side' = side, 'theta0' = theta0, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) } }else{ if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = c(2, rep(1, N.max-2))} }else{ if(batch.size[1]<2){ return("First batch size should be at least 2") }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch.size should add up to N.max") } } } nAnalyses = length(batch.size) if(verbose){ if((batch.size[1]>2)||any(batch.size[-1]>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a one-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a one-sample t test:") print("=========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) } batch.size = c(0, cumsum(batch.size)) if(is.logical(theta1)&&(theta1==F)){ if(verbose==T){ print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) t.alpha = qt(Type1.target/2, df = N.max -1, lower.tail = F) cumSS0_n = cumsum0_n = LR0_n.r = LR0_n.l = numeric(nReplicate) type1.error.AR = rep(F, nReplicate) N0.AR = N0.AR.r = N0.AR.l = rep(N.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ if(length(not.reached.decisionH0.AR)>1){ obs0_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }) }else{ obs0_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + rowSums(obs0_n) cumSS0_n[not.reached.decisionH0.AR] = cumSS0_n[not.reached.decisionH0.AR] + rowSums(obs0_n^2) xbar0_n.r = cumsum0_n[not.reached.decisionH0.AR.r]/batch.size[n+1] divisor.s0_n.sq.r = cumSS0_n[not.reached.decisionH0.AR.r] - ((cumsum0_n[not.reached.decisionH0.AR.r])^2)/batch.size[n+1] xbar0_n.l = cumsum0_n[not.reached.decisionH0.AR.l]/batch.size[n+1] divisor.s0_n.sq.l = cumSS0_n[not.reached.decisionH0.AR.l] - ((cumsum0_n[not.reached.decisionH0.AR.l])^2)/batch.size[n+1] LR0_n.r[not.reached.decisionH0.AR.r] = ((1 + (batch.size[n+1]*((xbar0_n.r - theta0)^2))/divisor.s0_n.sq.r)/ (1 + (batch.size[n+1]*((xbar0_n.r - (theta0 + t.alpha* sqrt(divisor.s0_n.sq.r/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s0_n.sq.r))^(batch.size[n+1]/2) LR0_n.l[not.reached.decisionH0.AR.l] = ((1 + (batch.size[n+1]*((xbar0_n.l - theta0)^2))/divisor.s0_n.sq.l)/ (1 + (batch.size[n+1]*((xbar0_n.l - (theta0 - t.alpha* sqrt(divisor.s0_n.sq.l/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s0_n.sq.l))^(batch.size[n+1]/2) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N0.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N0.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N0.AR[accepted.by.both0] = pmax(N0.AR.r[accepted.by.both0], N0.AR.l[accepted.by.both0]) N0.AR[onlyrejected.by.right0] = N0.AR.r[onlyrejected.by.right0] N0.AR[onlyrejected.by.left0] = N0.AR.l[onlyrejected.by.left0] N0.AR[rejected.by.both0] = pmin(N0.AR.r[rejected.by.both0], N0.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } EN0 = mean(N0.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, 'N' = list('H0' = N0.AR), 'EN' = EN0, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneT', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else if(is.logical(theta1)&&(theta1==T)){ theta1 = list('right' = fixed_design.alt(test.type = 'oneT', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2, Type2 = Type2.target), 'left' = fixed_design.alt(test.type = 'oneT', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2, Type2 = Type2.target)) if(verbose==T){ print("Alternative under comparison:") print(paste(' On the right: ', round(theta1$right, 3), sep = "")) print(paste(' On the left: ', round(theta1$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) t.alpha = qt(Type1.target/2, df = N.max -1, lower.tail = F) cumSS0_n = cumSS1r_n = cumSS1l_n = cumsum0_n = cumsum1r_n = cumsum1l_n = LR0_n.r = LR0_n.l = LR1r_n.r = LR1r_n.l = LR1l_n.r = LR1l_n.l = numeric(nReplicate) type1.error.AR = PowerH1r.AR = PowerH1l.AR = rep(F, nReplicate) N0.AR = N0.AR.r = N0.AR.l = N1r.AR = N1r.AR.r = N1r.AR.l = N1l.AR = N1l.AR.r = N1l.AR.l = rep(N.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = decision.underH1r.AR.r = decision.underH1r.AR.l = decision.underH1l.AR.r = decision.underH1l.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = not.reached.decisionH1r.AR = not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.l = not.reached.decisionH1l.AR = not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ if(length(not.reached.decisionH0.AR)>1){ obs0_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }) }else{ obs0_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + rowSums(obs0_n) cumSS0_n[not.reached.decisionH0.AR] = cumSS0_n[not.reached.decisionH0.AR] + rowSums(obs0_n^2) xbar0_n.r = cumsum0_n[not.reached.decisionH0.AR.r]/batch.size[n+1] divisor.s0_n.sq.r = cumSS0_n[not.reached.decisionH0.AR.r] - ((cumsum0_n[not.reached.decisionH0.AR.r])^2)/batch.size[n+1] xbar0_n.l = cumsum0_n[not.reached.decisionH0.AR.l]/batch.size[n+1] divisor.s0_n.sq.l = cumSS0_n[not.reached.decisionH0.AR.l] - ((cumsum0_n[not.reached.decisionH0.AR.l])^2)/batch.size[n+1] LR0_n.r[not.reached.decisionH0.AR.r] = ((1 + (batch.size[n+1]*((xbar0_n.r - theta0)^2))/divisor.s0_n.sq.r)/ (1 + (batch.size[n+1]*((xbar0_n.r - (theta0 + t.alpha* sqrt(divisor.s0_n.sq.r/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s0_n.sq.r))^(batch.size[n+1]/2) LR0_n.l[not.reached.decisionH0.AR.l] = ((1 + (batch.size[n+1]*((xbar0_n.l - theta0)^2))/divisor.s0_n.sq.l)/ (1 + (batch.size[n+1]*((xbar0_n.l - (theta0 - t.alpha* sqrt(divisor.s0_n.sq.l/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s0_n.sq.l))^(batch.size[n+1]/2) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N0.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N0.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } if(length(not.reached.decisionH1r.AR)>0){ if(length(not.reached.decisionH1r.AR)>1){ obs1r_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), theta1$right, 1) }) }else{ obs1r_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), theta1$right, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum1r_n[not.reached.decisionH1r.AR] = cumsum1r_n[not.reached.decisionH1r.AR] + rowSums(obs1r_n) cumSS1r_n[not.reached.decisionH1r.AR] = cumSS1r_n[not.reached.decisionH1r.AR] + rowSums(obs1r_n^2) xbar1r_n.r = cumsum1r_n[not.reached.decisionH1r.AR.r]/batch.size[n+1] divisor.s1r_n.sq.r = cumSS1r_n[not.reached.decisionH1r.AR.r] - ((cumsum1r_n[not.reached.decisionH1r.AR.r])^2)/batch.size[n+1] xbar1r_n.l = cumsum1r_n[not.reached.decisionH1r.AR.l]/batch.size[n+1] divisor.s1r_n.sq.l = cumSS1r_n[not.reached.decisionH1r.AR.l] - ((cumsum1r_n[not.reached.decisionH1r.AR.l])^2)/batch.size[n+1] LR1r_n.r[not.reached.decisionH1r.AR.r] = ((1 + (batch.size[n+1]*((xbar1r_n.r - theta0)^2))/divisor.s1r_n.sq.r)/ (1 + (batch.size[n+1]*((xbar1r_n.r - (theta0 + t.alpha* sqrt(divisor.s1r_n.sq.r/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1r_n.sq.r))^(batch.size[n+1]/2) LR1r_n.l[not.reached.decisionH1r.AR.l] = ((1 + (batch.size[n+1]*((xbar1r_n.l - theta0)^2))/divisor.s1r_n.sq.l)/ (1 + (batch.size[n+1]*((xbar1r_n.l - (theta0 - t.alpha* sqrt(divisor.s1r_n.sq.l/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1r_n.sq.l))^(batch.size[n+1]/2) AcceptedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]<=RejectH1.threshold RejectedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]>=RejectH0.threshold reached.decisionH1r_n.AR.r = AcceptedH0.underH1r_n.AR.r|RejectedH0.underH1r_n.AR.r if(any(reached.decisionH1r_n.AR.r)){ decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[AcceptedH0.underH1r_n.AR.r]] = 'A' decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[RejectedH0.underH1r_n.AR.r]] = 'R' N1r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch.size[n+1] not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.r[!reached.decisionH1r_n.AR.r] } AcceptedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]<=RejectH1.threshold RejectedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]>=RejectH0.threshold reached.decisionH1r_n.AR.l = AcceptedH0.underH1r_n.AR.l|RejectedH0.underH1r_n.AR.l if(any(reached.decisionH1r_n.AR.l)){ decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[AcceptedH0.underH1r_n.AR.l]] = 'A' decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[RejectedH0.underH1r_n.AR.l]] = 'R' N1r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch.size[n+1] not.reached.decisionH1r.AR.l = not.reached.decisionH1r.AR.l[!reached.decisionH1r_n.AR.l] } not.reached.decisionH1r.AR = union(not.reached.decisionH1r.AR.r, not.reached.decisionH1r.AR.l) } if(length(not.reached.decisionH1l.AR)>0){ if(length(not.reached.decisionH1l.AR)>1){ obs1l_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), theta1$left, 1) }) }else{ obs1l_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), theta1$left, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum1l_n[not.reached.decisionH1l.AR] = cumsum1l_n[not.reached.decisionH1l.AR] + rowSums(obs1l_n) cumSS1l_n[not.reached.decisionH1l.AR] = cumSS1l_n[not.reached.decisionH1l.AR] + rowSums(obs1l_n^2) xbar1l_n.r = cumsum1l_n[not.reached.decisionH1l.AR.r]/batch.size[n+1] divisor.s1l_n.sq.r = cumSS1l_n[not.reached.decisionH1l.AR.r] - ((cumsum1l_n[not.reached.decisionH1l.AR.r])^2)/batch.size[n+1] xbar1l_n.l = cumsum1l_n[not.reached.decisionH1l.AR.l]/batch.size[n+1] divisor.s1l_n.sq.l = cumSS1l_n[not.reached.decisionH1l.AR.l] - ((cumsum1l_n[not.reached.decisionH1l.AR.l])^2)/batch.size[n+1] LR1l_n.r[not.reached.decisionH1l.AR.r] = ((1 + (batch.size[n+1]*((xbar1l_n.r - theta0)^2))/divisor.s1l_n.sq.r)/ (1 + (batch.size[n+1]*((xbar1l_n.r - (theta0 + t.alpha* sqrt(divisor.s1l_n.sq.r/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1l_n.sq.r))^(batch.size[n+1]/2) LR1l_n.l[not.reached.decisionH1l.AR.l] = ((1 + (batch.size[n+1]*((xbar1l_n.l - theta0)^2))/divisor.s1l_n.sq.l)/ (1 + (batch.size[n+1]*((xbar1l_n.l - (theta0 - t.alpha* sqrt(divisor.s1l_n.sq.l/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1l_n.sq.l))^(batch.size[n+1]/2) AcceptedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]<=RejectH1.threshold RejectedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]>=RejectH0.threshold reached.decisionH1l_n.AR.r = AcceptedH0.underH1l_n.AR.r|RejectedH0.underH1l_n.AR.r if(any(reached.decisionH1l_n.AR.r)){ decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[AcceptedH0.underH1l_n.AR.r]] = 'A' decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[RejectedH0.underH1l_n.AR.r]] = 'R' N1l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch.size[n+1] not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.r[!reached.decisionH1l_n.AR.r] } AcceptedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]<=RejectH1.threshold RejectedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]>=RejectH0.threshold reached.decisionH1l_n.AR.l = AcceptedH0.underH1l_n.AR.l|RejectedH0.underH1l_n.AR.l if(any(reached.decisionH1l_n.AR.l)){ decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[AcceptedH0.underH1l_n.AR.l]] = 'A' decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[RejectedH0.underH1l_n.AR.l]] = 'R' N1l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch.size[n+1] not.reached.decisionH1l.AR.l = not.reached.decisionH1l.AR.l[!reached.decisionH1l_n.AR.l] } not.reached.decisionH1l.AR = union(not.reached.decisionH1l.AR.r, not.reached.decisionH1l.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N0.AR[accepted.by.both0] = pmax(N0.AR.r[accepted.by.both0], N0.AR.l[accepted.by.both0]) N0.AR[onlyrejected.by.right0] = N0.AR.r[onlyrejected.by.right0] N0.AR[onlyrejected.by.left0] = N0.AR.l[onlyrejected.by.left0] N0.AR[rejected.by.both0] = pmin(N0.AR.r[rejected.by.both0], N0.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T accepted.by.both1r = intersect(which(decision.underH1r.AR.r=='A'), which(decision.underH1r.AR.l=='A')) onlyrejected.by.right1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l!='R')) onlyrejected.by.left1r = intersect(which(decision.underH1r.AR.r!='R'), which(decision.underH1r.AR.l=='R')) rejected.by.both1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l=='R')) N1r.AR[accepted.by.both1r] = pmax(N1r.AR.r[accepted.by.both1r], N1r.AR.l[accepted.by.both1r]) N1r.AR[onlyrejected.by.right1r] = N1r.AR.r[onlyrejected.by.right1r] N1r.AR[onlyrejected.by.left1r] = N1r.AR.l[onlyrejected.by.left1r] N1r.AR[rejected.by.both1r] = pmin(N1r.AR.r[rejected.by.both1r], N1r.AR.l[rejected.by.both1r]) onlyaccepted.by.right1r = intersect(which(decision.underH1r.AR.r=='A'), which(is.na(decision.underH1r.AR.l))) onlyaccepted.by.left1r = intersect(which(is.na(decision.underH1r.AR.r)), which(decision.underH1r.AR.l=='A')) both.inconclusive1r = intersect(which(is.na(decision.underH1r.AR.r)), which(is.na(decision.underH1r.AR.l))) all.inconclusive1r = c(onlyaccepted.by.right1r, onlyaccepted.by.left1r, both.inconclusive1r) nNot.reached.decisionH1r.AR = length(all.inconclusive1r) PowerH1r.AR[c(onlyrejected.by.right1r, onlyrejected.by.left1r, rejected.by.both1r)] = T accepted.by.both1l = intersect(which(decision.underH1l.AR.r=='A'), which(decision.underH1l.AR.l=='A')) onlyrejected.by.right1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l!='R')) onlyrejected.by.left1l = intersect(which(decision.underH1l.AR.r!='R'), which(decision.underH1l.AR.l=='R')) rejected.by.both1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l=='R')) N1l.AR[accepted.by.both1l] = pmax(N1l.AR.r[accepted.by.both1l], N1l.AR.l[accepted.by.both1l]) N1l.AR[onlyrejected.by.right1l] = N1l.AR.r[onlyrejected.by.right1l] N1l.AR[onlyrejected.by.left1l] = N1l.AR.l[onlyrejected.by.left1l] N1l.AR[rejected.by.both1l] = pmin(N1l.AR.r[rejected.by.both1l], N1l.AR.l[rejected.by.both1l]) onlyaccepted.by.right1l = intersect(which(decision.underH1l.AR.r=='A'), which(is.na(decision.underH1l.AR.l))) onlyaccepted.by.left1l = intersect(which(is.na(decision.underH1l.AR.r)), which(decision.underH1l.AR.l=='A')) both.inconclusive1l = intersect(which(is.na(decision.underH1l.AR.r)), which(is.na(decision.underH1l.AR.l))) all.inconclusive1l = c(onlyaccepted.by.right1l, onlyaccepted.by.left1l, both.inconclusive1l) nNot.reached.decisionH1l.AR = length(all.inconclusive1l) PowerH1l.AR[c(onlyrejected.by.right1l, onlyrejected.by.left1l, rejected.by.both1l)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.PowerH1r.AR.r = mean(PowerH1r.AR) + sum(c(LR1r_n.r[onlyaccepted.by.left1r], LR1r_n.l[onlyaccepted.by.right1r], pmax(LR1r_n.r[both.inconclusive1r], LR1r_n.l[both.inconclusive1r]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1r.AR = 1 - actual.PowerH1r.AR.r actual.PowerH1l.AR.r = mean(PowerH1l.AR) + sum(c(LR1l_n.r[onlyaccepted.by.left1l], LR1l_n.l[onlyaccepted.by.right1l], pmax(LR1l_n.r[both.inconclusive1l], LR1l_n.l[both.inconclusive1l]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1l.AR = 1 - actual.PowerH1l.AR.r EN0 = mean(N0.AR) EN1r = mean(N1r.AR) EN1l = mean(N1l.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("Attained Type II error probability:") print(paste(" On the right: ", round(actual.type2.errorH1r.AR, 4))) print(paste(" On the left: ", round(actual.type2.errorH1l.AR, 4))) print("Expected sample size at the alternatives:") print(paste(" On the right: ", round(EN1r, 2))) print(paste(" On the left: ", round(EN1l, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = c(actual.type2.errorH1r.AR, actual.type2.errorH1l.AR), 'N' = list('H0' = N0.AR, 'right' = N1r.AR, 'left' = N1l.AR), 'EN' = c(EN0, EN1r, EN1l), "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneT', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else{ if(verbose==T){ print("Alternative under comparison:") print(paste(' On the right: ', round(theta1$right, 3), sep = "")) print(paste(' On the left: ', round(theta1$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) t.alpha = qt(Type1.target/2, df = N.max -1, lower.tail = F) cumSS0_n = cumSS1r_n = cumSS1l_n = cumsum0_n = cumsum1r_n = cumsum1l_n = LR0_n.r = LR0_n.l = LR1r_n.r = LR1r_n.l = LR1l_n.r = LR1l_n.l = numeric(nReplicate) type1.error.AR = PowerH1r.AR = PowerH1l.AR = rep(F, nReplicate) N0.AR = N0.AR.r = N0.AR.l = N1r.AR = N1r.AR.r = N1r.AR.l = N1l.AR = N1l.AR.r = N1l.AR.l = rep(N.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = decision.underH1r.AR.r = decision.underH1r.AR.l = decision.underH1l.AR.r = decision.underH1l.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = not.reached.decisionH1r.AR = not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.l = not.reached.decisionH1l.AR = not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ if(length(not.reached.decisionH0.AR)>1){ obs0_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }) }else{ obs0_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum0_n[not.reached.decisionH0.AR] = cumsum0_n[not.reached.decisionH0.AR] + rowSums(obs0_n) cumSS0_n[not.reached.decisionH0.AR] = cumSS0_n[not.reached.decisionH0.AR] + rowSums(obs0_n^2) xbar0_n.r = cumsum0_n[not.reached.decisionH0.AR.r]/batch.size[n+1] divisor.s0_n.sq.r = cumSS0_n[not.reached.decisionH0.AR.r] - ((cumsum0_n[not.reached.decisionH0.AR.r])^2)/batch.size[n+1] xbar0_n.l = cumsum0_n[not.reached.decisionH0.AR.l]/batch.size[n+1] divisor.s0_n.sq.l = cumSS0_n[not.reached.decisionH0.AR.l] - ((cumsum0_n[not.reached.decisionH0.AR.l])^2)/batch.size[n+1] LR0_n.r[not.reached.decisionH0.AR.r] = ((1 + (batch.size[n+1]*((xbar0_n.r - theta0)^2))/divisor.s0_n.sq.r)/ (1 + (batch.size[n+1]*((xbar0_n.r - (theta0 + t.alpha* sqrt(divisor.s0_n.sq.r/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s0_n.sq.r))^(batch.size[n+1]/2) LR0_n.l[not.reached.decisionH0.AR.l] = ((1 + (batch.size[n+1]*((xbar0_n.l - theta0)^2))/divisor.s0_n.sq.l)/ (1 + (batch.size[n+1]*((xbar0_n.l - (theta0 - t.alpha* sqrt(divisor.s0_n.sq.l/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s0_n.sq.l))^(batch.size[n+1]/2) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N0.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N0.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } if(length(not.reached.decisionH1r.AR)>0){ if(length(not.reached.decisionH1r.AR)>1){ obs1r_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), theta1$right, 1) }) }else{ obs1r_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), theta1$right, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum1r_n[not.reached.decisionH1r.AR] = cumsum1r_n[not.reached.decisionH1r.AR] + rowSums(obs1r_n) cumSS1r_n[not.reached.decisionH1r.AR] = cumSS1r_n[not.reached.decisionH1r.AR] + rowSums(obs1r_n^2) xbar1r_n.r = cumsum1r_n[not.reached.decisionH1r.AR.r]/batch.size[n+1] divisor.s1r_n.sq.r = cumSS1r_n[not.reached.decisionH1r.AR.r] - ((cumsum1r_n[not.reached.decisionH1r.AR.r])^2)/batch.size[n+1] xbar1r_n.l = cumsum1r_n[not.reached.decisionH1r.AR.l]/batch.size[n+1] divisor.s1r_n.sq.l = cumSS1r_n[not.reached.decisionH1r.AR.l] - ((cumsum1r_n[not.reached.decisionH1r.AR.l])^2)/batch.size[n+1] LR1r_n.r[not.reached.decisionH1r.AR.r] = ((1 + (batch.size[n+1]*((xbar1r_n.r - theta0)^2))/divisor.s1r_n.sq.r)/ (1 + (batch.size[n+1]*((xbar1r_n.r - (theta0 + t.alpha* sqrt(divisor.s1r_n.sq.r/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1r_n.sq.r))^(batch.size[n+1]/2) LR1r_n.l[not.reached.decisionH1r.AR.l] = ((1 + (batch.size[n+1]*((xbar1r_n.l - theta0)^2))/divisor.s1r_n.sq.l)/ (1 + (batch.size[n+1]*((xbar1r_n.l - (theta0 - t.alpha* sqrt(divisor.s1r_n.sq.l/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1r_n.sq.l))^(batch.size[n+1]/2) AcceptedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]<=RejectH1.threshold RejectedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]>=RejectH0.threshold reached.decisionH1r_n.AR.r = AcceptedH0.underH1r_n.AR.r|RejectedH0.underH1r_n.AR.r if(any(reached.decisionH1r_n.AR.r)){ decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[AcceptedH0.underH1r_n.AR.r]] = 'A' decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[RejectedH0.underH1r_n.AR.r]] = 'R' N1r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch.size[n+1] not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.r[!reached.decisionH1r_n.AR.r] } AcceptedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]<=RejectH1.threshold RejectedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]>=RejectH0.threshold reached.decisionH1r_n.AR.l = AcceptedH0.underH1r_n.AR.l|RejectedH0.underH1r_n.AR.l if(any(reached.decisionH1r_n.AR.l)){ decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[AcceptedH0.underH1r_n.AR.l]] = 'A' decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[RejectedH0.underH1r_n.AR.l]] = 'R' N1r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch.size[n+1] not.reached.decisionH1r.AR.l = not.reached.decisionH1r.AR.l[!reached.decisionH1r_n.AR.l] } not.reached.decisionH1r.AR = union(not.reached.decisionH1r.AR.r, not.reached.decisionH1r.AR.l) } if(length(not.reached.decisionH1l.AR)>0){ if(length(not.reached.decisionH1l.AR)>1){ obs1l_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), theta1$left, 1) }) }else{ obs1l_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), theta1$left, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum1l_n[not.reached.decisionH1l.AR] = cumsum1l_n[not.reached.decisionH1l.AR] + rowSums(obs1l_n) cumSS1l_n[not.reached.decisionH1l.AR] = cumSS1l_n[not.reached.decisionH1l.AR] + rowSums(obs1l_n^2) xbar1l_n.r = cumsum1l_n[not.reached.decisionH1l.AR.r]/batch.size[n+1] divisor.s1l_n.sq.r = cumSS1l_n[not.reached.decisionH1l.AR.r] - ((cumsum1l_n[not.reached.decisionH1l.AR.r])^2)/batch.size[n+1] xbar1l_n.l = cumsum1l_n[not.reached.decisionH1l.AR.l]/batch.size[n+1] divisor.s1l_n.sq.l = cumSS1l_n[not.reached.decisionH1l.AR.l] - ((cumsum1l_n[not.reached.decisionH1l.AR.l])^2)/batch.size[n+1] LR1l_n.r[not.reached.decisionH1l.AR.r] = ((1 + (batch.size[n+1]*((xbar1l_n.r - theta0)^2))/divisor.s1l_n.sq.r)/ (1 + (batch.size[n+1]*((xbar1l_n.r - (theta0 + t.alpha* sqrt(divisor.s1l_n.sq.r/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1l_n.sq.r))^(batch.size[n+1]/2) LR1l_n.l[not.reached.decisionH1l.AR.l] = ((1 + (batch.size[n+1]*((xbar1l_n.l - theta0)^2))/divisor.s1l_n.sq.l)/ (1 + (batch.size[n+1]*((xbar1l_n.l - (theta0 - t.alpha* sqrt(divisor.s1l_n.sq.l/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1l_n.sq.l))^(batch.size[n+1]/2) AcceptedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]<=RejectH1.threshold RejectedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]>=RejectH0.threshold reached.decisionH1l_n.AR.r = AcceptedH0.underH1l_n.AR.r|RejectedH0.underH1l_n.AR.r if(any(reached.decisionH1l_n.AR.r)){ decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[AcceptedH0.underH1l_n.AR.r]] = 'A' decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[RejectedH0.underH1l_n.AR.r]] = 'R' N1l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch.size[n+1] not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.r[!reached.decisionH1l_n.AR.r] } AcceptedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]<=RejectH1.threshold RejectedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]>=RejectH0.threshold reached.decisionH1l_n.AR.l = AcceptedH0.underH1l_n.AR.l|RejectedH0.underH1l_n.AR.l if(any(reached.decisionH1l_n.AR.l)){ decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[AcceptedH0.underH1l_n.AR.l]] = 'A' decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[RejectedH0.underH1l_n.AR.l]] = 'R' N1l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch.size[n+1] not.reached.decisionH1l.AR.l = not.reached.decisionH1l.AR.l[!reached.decisionH1l_n.AR.l] } not.reached.decisionH1l.AR = union(not.reached.decisionH1l.AR.r, not.reached.decisionH1l.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N0.AR[accepted.by.both0] = pmax(N0.AR.r[accepted.by.both0], N0.AR.l[accepted.by.both0]) N0.AR[onlyrejected.by.right0] = N0.AR.r[onlyrejected.by.right0] N0.AR[onlyrejected.by.left0] = N0.AR.l[onlyrejected.by.left0] N0.AR[rejected.by.both0] = pmin(N0.AR.r[rejected.by.both0], N0.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T accepted.by.both1r = intersect(which(decision.underH1r.AR.r=='A'), which(decision.underH1r.AR.l=='A')) onlyrejected.by.right1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l!='R')) onlyrejected.by.left1r = intersect(which(decision.underH1r.AR.r!='R'), which(decision.underH1r.AR.l=='R')) rejected.by.both1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l=='R')) N1r.AR[accepted.by.both1r] = pmax(N1r.AR.r[accepted.by.both1r], N1r.AR.l[accepted.by.both1r]) N1r.AR[onlyrejected.by.right1r] = N1r.AR.r[onlyrejected.by.right1r] N1r.AR[onlyrejected.by.left1r] = N1r.AR.l[onlyrejected.by.left1r] N1r.AR[rejected.by.both1r] = pmin(N1r.AR.r[rejected.by.both1r], N1r.AR.l[rejected.by.both1r]) onlyaccepted.by.right1r = intersect(which(decision.underH1r.AR.r=='A'), which(is.na(decision.underH1r.AR.l))) onlyaccepted.by.left1r = intersect(which(is.na(decision.underH1r.AR.r)), which(decision.underH1r.AR.l=='A')) both.inconclusive1r = intersect(which(is.na(decision.underH1r.AR.r)), which(is.na(decision.underH1r.AR.l))) all.inconclusive1r = c(onlyaccepted.by.right1r, onlyaccepted.by.left1r, both.inconclusive1r) nNot.reached.decisionH1r.AR = length(all.inconclusive1r) PowerH1r.AR[c(onlyrejected.by.right1r, onlyrejected.by.left1r, rejected.by.both1r)] = T accepted.by.both1l = intersect(which(decision.underH1l.AR.r=='A'), which(decision.underH1l.AR.l=='A')) onlyrejected.by.right1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l!='R')) onlyrejected.by.left1l = intersect(which(decision.underH1l.AR.r!='R'), which(decision.underH1l.AR.l=='R')) rejected.by.both1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l=='R')) N1l.AR[accepted.by.both1l] = pmax(N1l.AR.r[accepted.by.both1l], N1l.AR.l[accepted.by.both1l]) N1l.AR[onlyrejected.by.right1l] = N1l.AR.r[onlyrejected.by.right1l] N1l.AR[onlyrejected.by.left1l] = N1l.AR.l[onlyrejected.by.left1l] N1l.AR[rejected.by.both1l] = pmin(N1l.AR.r[rejected.by.both1l], N1l.AR.l[rejected.by.both1l]) onlyaccepted.by.right1l = intersect(which(decision.underH1l.AR.r=='A'), which(is.na(decision.underH1l.AR.l))) onlyaccepted.by.left1l = intersect(which(is.na(decision.underH1l.AR.r)), which(decision.underH1l.AR.l=='A')) both.inconclusive1l = intersect(which(is.na(decision.underH1l.AR.r)), which(is.na(decision.underH1l.AR.l))) all.inconclusive1l = c(onlyaccepted.by.right1l, onlyaccepted.by.left1l, both.inconclusive1l) nNot.reached.decisionH1l.AR = length(all.inconclusive1l) PowerH1l.AR[c(onlyrejected.by.right1l, onlyrejected.by.left1l, rejected.by.both1l)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.PowerH1r.AR.r = mean(PowerH1r.AR) + sum(c(LR1r_n.r[onlyaccepted.by.left1r], LR1r_n.l[onlyaccepted.by.right1r], pmax(LR1r_n.r[both.inconclusive1r], LR1r_n.l[both.inconclusive1r]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1r.AR = 1 - actual.PowerH1r.AR.r actual.PowerH1l.AR.r = mean(PowerH1l.AR) + sum(c(LR1l_n.r[onlyaccepted.by.left1l], LR1l_n.l[onlyaccepted.by.right1l], pmax(LR1l_n.r[both.inconclusive1l], LR1l_n.l[both.inconclusive1l]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1l.AR = 1 - actual.PowerH1l.AR.r EN0 = mean(N0.AR) EN1r = mean(N1r.AR) EN1l = mean(N1l.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: ", round(EN0, 2))) print("Attained Type II error probability:") print(paste(" On the right: ", round(actual.type2.errorH1r.AR, 4))) print(paste(" On the left: ", round(actual.type2.errorH1l.AR, 4))) print("Expected sample size at the alternatives:") print(paste(" On the right: ", round(EN1r, 2))) print(paste(" On the left: ", round(EN1l, 2))) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = c(actual.type2.errorH1r.AR, actual.type2.errorH1l.AR), 'N' = list('H0' = N0.AR, 'right' = N1r.AR, 'left' = N1l.AR), 'EN' = c(EN0, EN1r, EN1l), "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'oneT', 'side' = side, 'theta0' = theta0, 'sigma' = sigma, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'N.max' = N.max, 'batch.size' = diff(batch.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) } } } design.MSPRT_twoZ = function(side = 'right', theta0 = 0, theta1 = T, Type1.target =.005, Type2.target = .2, N1.max, N2.max, sigma1 = 1, sigma2 = 1, batch1.size, batch2.size, nReplicate = 1e+6, verbose = T, seed = 1){ if(side!='both'){ if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return(print("Either 'batch1.size' or 'N1.max' needs to be specified")) }else{batch1.size = rep(1, N1.max)} }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return(print("Sum of batch1.size should add up to N1.max")) } } if(missing(batch2.size)){ if(missing(N2.max)){ return(print("Either 'batch2.size' or 'N2.max' needs to be specified")) }else{batch2.size = rep(1, N2.max)} }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N1.max) return(print("Sum of batch2.size should add up to N2.max")) } } nAnalyses = length(batch1.size) if(verbose){ if(any(batch1.size>1)||any(batch2.size>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a two-sample z test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a two-sample z test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma1, sep = "")) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma2, sep = "")) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) if(is.logical(theta1)&&(theta1==F)){ theta.UMPBT = UMPBT.alt(test.type = 'twoZ', side = side, theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target, sigma1 = sigma1, sigma2 = sigma2) if(verbose==T){ print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target cumsum10_n = cumsum20_n = LR0_n = numeric(nReplicate) type1.error.AR = rep(F, nReplicate) N10.AR = rep(N1.max, nReplicate) N20.AR = rep(N2.max, nReplicate) not.reached.decisionH0.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum10_n = rnorm(length(not.reached.decisionH0.AR), (batch1.size[n+1]-batch1.size[n])*(theta0/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum20_n = rnorm(length(not.reached.decisionH0.AR), -(batch2.size[n+1]-batch2.size[n])*(theta0/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + sum10_n cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + sum20_n LR0_n[not.reached.decisionH0.AR] = exp(-(((theta.UMPBT^2) - (theta0^2)) - 2*(theta.UMPBT - theta0)* (cumsum10_n[not.reached.decisionH0.AR]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N10.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch1.size[n+1] N20.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch2.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } EN10 = mean(N10.AR) EN20 = mean(N20.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", actual.type1.error.AR)) print(paste(" Expected sample size under H0: Group 1 - ", round(EN10, 2), ", Group 2 - ", round(EN20, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20)), "theta.UMPBT" = theta.UMPBT, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoZ', 'side' = side, 'theta0' = theta0, 'sigma1' = sigma1, 'sigma2' = sigma2, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else if(is.logical(theta1)&&(theta1==T)){ theta1 = fixed_design.alt(test.type = 'twoZ', side = side, theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target, Type2 = Type2.target, sigma1 = 1, sigma2 = 1) theta.UMPBT = UMPBT.alt(test.type = 'twoZ', side = side, theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target, sigma1 = sigma1, sigma2 = sigma2) if(verbose==T){ print(paste("Alternative under comparison: ", round(theta1, 3), sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target cumsum10_n = cumsum20_n = cumsum11_n = cumsum21_n = LR0_n = LR1_n = numeric(nReplicate) type1.error.AR = type2.error.AR = rep(F, nReplicate) N10.AR = N11.AR = rep(N1.max, nReplicate) N20.AR = N21.AR = rep(N2.max, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum10_n = rnorm(length(not.reached.decisionH0.AR), (batch1.size[n+1]-batch1.size[n])*(theta0/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum20_n = rnorm(length(not.reached.decisionH0.AR), -(batch2.size[n+1]-batch2.size[n])*(theta0/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + sum10_n cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + sum20_n LR0_n[not.reached.decisionH0.AR] = exp(-(((theta.UMPBT^2) - (theta0^2)) - 2*(theta.UMPBT - theta0)* (cumsum10_n[not.reached.decisionH0.AR]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N10.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch1.size[n+1] N20.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch2.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } if(length(not.reached.decisionH1.AR)>0){ sum11_n = rnorm(length(not.reached.decisionH1.AR), (batch1.size[n+1]-batch1.size[n])*(theta1/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum21_n = rnorm(length(not.reached.decisionH1.AR), -(batch2.size[n+1]-batch2.size[n])*(theta1/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum11_n[not.reached.decisionH1.AR] = cumsum11_n[not.reached.decisionH1.AR] + sum11_n cumsum21_n[not.reached.decisionH1.AR] = cumsum21_n[not.reached.decisionH1.AR] + sum21_n LR1_n[not.reached.decisionH1.AR] = exp(-(((theta.UMPBT^2) - (theta0^2)) - 2*(theta.UMPBT - theta0)* (cumsum11_n[not.reached.decisionH1.AR]/batch1.size[n+1] - cumsum21_n[not.reached.decisionH1.AR]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N11.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch1.size[n+1] N21.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch2.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold.AR)/nReplicate EN10 = mean(N10.AR) EN20 = mean(N20.AR) EN11 = mean(N11.AR) EN21 = mean(N21.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Attained Type II error probability: ", round(actual.type2.error.AR, 4))) print(paste(" Expected sample size under H0: Group 1 - ", round(EN10, 2), ", Group 2 - ", round(EN20, 2), sep = '')) print(paste(" Expected sample size at the alternative: Group 1 - ", round(EN11, 2), ", Group 2 - ", round(EN21, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = actual.type2.error.AR, 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR), 'H1' = list('Group1' = N11.AR, 'Group2' = N21.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20), 'H1' = list('Group1' = EN11, 'Group2' = EN21)), "theta.UMPBT" = theta.UMPBT, "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoZ', 'side' = side, 'theta0' = theta0, 'sigma1' = sigma1, 'sigma2' = sigma2, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else{ theta.UMPBT = UMPBT.alt(test.type = 'twoZ', side = side, theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target, sigma1 = sigma1, sigma2 = sigma2) if(verbose==T){ print(paste("Alternative under comparison: ", round(theta1, 3), sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target cumsum10_n = cumsum20_n = cumsum11_n = cumsum21_n = LR0_n = LR1_n = numeric(nReplicate) type1.error.AR = type2.error.AR = rep(F, nReplicate) N10.AR = N11.AR = rep(N1.max, nReplicate) N20.AR = N21.AR = rep(N2.max, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum10_n = rnorm(length(not.reached.decisionH0.AR), (batch1.size[n+1]-batch1.size[n])*(theta0/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum20_n = rnorm(length(not.reached.decisionH0.AR), -(batch2.size[n+1]-batch2.size[n])*(theta0/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + sum10_n cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + sum20_n LR0_n[not.reached.decisionH0.AR] = exp(-(((theta.UMPBT^2) - (theta0^2)) - 2*(theta.UMPBT - theta0)* (cumsum10_n[not.reached.decisionH0.AR]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N10.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch1.size[n+1] N20.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch2.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } if(length(not.reached.decisionH1.AR)>0){ sum11_n = rnorm(length(not.reached.decisionH1.AR), (batch1.size[n+1]-batch1.size[n])*(theta1/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum21_n = rnorm(length(not.reached.decisionH1.AR), -(batch2.size[n+1]-batch2.size[n])*(theta1/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum11_n[not.reached.decisionH1.AR] = cumsum11_n[not.reached.decisionH1.AR] + sum11_n cumsum21_n[not.reached.decisionH1.AR] = cumsum21_n[not.reached.decisionH1.AR] + sum21_n LR1_n[not.reached.decisionH1.AR] = exp(-(((theta.UMPBT^2) - (theta0^2)) - 2*(theta.UMPBT - theta0)* (cumsum11_n[not.reached.decisionH1.AR]/batch1.size[n+1] - cumsum21_n[not.reached.decisionH1.AR]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N11.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch1.size[n+1] N21.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch2.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold.AR)/nReplicate EN10 = mean(N10.AR) EN20 = mean(N20.AR) EN11 = mean(N11.AR) EN21 = mean(N21.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Attained Type II error probability: ", round(actual.type2.error.AR, 4))) print(paste(" Expected sample size under H0: Group 1 - ", round(EN10, 2), ", Group 2 - ", round(EN20, 2), sep = '')) print(paste(" Expected sample size at the alternative: Group 1 - ", round(EN11, 2), ", Group 2 - ", round(EN21, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = actual.type2.error.AR, 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR), 'H1' = list('Group1' = N11.AR, 'Group2' = N21.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20), 'H1' = list('Group1' = EN11, 'Group2' = EN21)), "theta.UMPBT" = theta.UMPBT, "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoZ', 'side' = side, 'theta0' = theta0, 'sigma1' = sigma1, 'sigma2' = sigma2, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) } }else{ if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return(print("Either 'batch1.size' or 'N1.max' needs to be specified")) }else{batch1.size = rep(1, N1.max)} }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return(print("Sum of batch1.size should add up to N1.max")) } } if(missing(batch2.size)){ if(missing(N2.max)){ return(print("Either 'batch2.size' or 'N2.max' needs to be specified")) }else{batch2.size = rep(1, N2.max)} }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N1.max) return(print("Sum of batch2.size should add up to N2.max")) } } nAnalyses = length(batch1.size) if(verbose){ if(any(batch1.size>1)||any(batch2.size>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a two-sample z test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a two-sample z test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma1, sep = "")) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma2, sep = "")) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) if(is.logical(theta1)&&(theta1==F)){ theta.UMPBT = list('right' = UMPBT.alt(test.type = 'twoZ', side = 'right', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, sigma1 = sigma1, sigma2 = sigma2), 'left' = UMPBT.alt(test.type = 'twoZ', side = 'left', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, sigma1 = sigma1, sigma2 = sigma2)) if(verbose==T){ print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) cumsum10_n = cumsum20_n = LR0_n.r = LR0_n.l = numeric(nReplicate) type1.error.AR = rep(F, nReplicate) N10.AR = N10.AR.r = N10.AR.l = rep(N1.max, nReplicate) N20.AR = N20.AR.r = N20.AR.l = rep(N2.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum10_n = rnorm(length(not.reached.decisionH0.AR), (batch1.size[n+1]-batch1.size[n])*(theta0/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum20_n = rnorm(length(not.reached.decisionH0.AR), -(batch2.size[n+1]-batch2.size[n])*(theta0/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + sum10_n cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + sum20_n LR0_n.r[not.reached.decisionH0.AR.r] = exp(-(((theta.UMPBT$right^2) - (theta0^2)) - 2*(theta.UMPBT$right - theta0)* (cumsum10_n[not.reached.decisionH0.AR.r]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.r]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) LR0_n.l[not.reached.decisionH0.AR.l] = exp(-(((theta.UMPBT$left^2) - (theta0^2)) - 2*(theta.UMPBT$left - theta0)* (cumsum10_n[not.reached.decisionH0.AR.l]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.l]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N10.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch1.size[n+1] N20.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch2.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N10.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch1.size[n+1] N20.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch2.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N10.AR[accepted.by.both0] = pmax(N10.AR.r[accepted.by.both0], N10.AR.l[accepted.by.both0]) N10.AR[onlyrejected.by.right0] = N10.AR.r[onlyrejected.by.right0] N10.AR[onlyrejected.by.left0] = N10.AR.l[onlyrejected.by.left0] N10.AR[rejected.by.both0] = pmin(N10.AR.r[rejected.by.both0], N10.AR.l[rejected.by.both0]) N20.AR[accepted.by.both0] = pmax(N20.AR.r[accepted.by.both0], N20.AR.l[accepted.by.both0]) N20.AR[onlyrejected.by.right0] = N20.AR.r[onlyrejected.by.right0] N20.AR[onlyrejected.by.left0] = N20.AR.l[onlyrejected.by.left0] N20.AR[rejected.by.both0] = pmin(N20.AR.r[rejected.by.both0], N20.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } EN10 = mean(N10.AR) EN20 = mean(N20.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: Group 1 - ", round(EN10, 2), ', Group 2 - ', round(EN20, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20)), "theta.UMPBT" = theta.UMPBT, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoZ', 'side' = side, 'theta0' = theta0, 'sigma1' = sigma1, 'sigma2' = sigma2, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else if(is.logical(theta1)&&(theta1==T)){ theta1 = list('right' = fixed_design.alt(test.type = 'twoZ', side = 'right', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, Type2 = Type2.target, sigma1 = sigma1, sigma2 = sigma2), 'left' = fixed_design.alt(test.type = 'twoZ', side = 'left', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, Type2 = Type2.target, sigma1 = sigma1, sigma2 = sigma2)) theta.UMPBT = list('right' = UMPBT.alt(test.type = 'twoZ', side = 'right', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, sigma1 = sigma1, sigma2 = sigma2), 'left' = UMPBT.alt(test.type = 'twoZ', side = 'left', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, sigma1 = sigma1, sigma2 = sigma2)) if(verbose==T){ print("Alternative under comparison:") print(paste(' On the right: ', round(theta1$right, 3), sep = "")) print(paste(' On the left: ', round(theta1$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) cumsum10_n = cumsum20_n = cumsum11r_n = cumsum21r_n = cumsum11l_n = cumsum21l_n = LR0_n.r = LR0_n.l = LR1r_n.r = LR1r_n.l = LR1l_n.r = LR1l_n.l = numeric(nReplicate) type1.error.AR = PowerH1r.AR = PowerH1l.AR = rep(F, nReplicate) N10.AR = N10.AR.r = N10.AR.l = N11r.AR = N11r.AR.r = N11r.AR.l = N11l.AR = N11l.AR.r = N11l.AR.l = rep(N1.max, nReplicate) N20.AR = N20.AR.r = N20.AR.l = N21r.AR = N21r.AR.r = N21r.AR.l = N21l.AR = N21l.AR.r = N21l.AR.l = rep(N2.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = decision.underH1r.AR.r = decision.underH1r.AR.l = decision.underH1l.AR.r = decision.underH1l.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = not.reached.decisionH1r.AR = not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.l = not.reached.decisionH1l.AR = not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum10_n = rnorm(length(not.reached.decisionH0.AR), (batch1.size[n+1]-batch1.size[n])*(theta0/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum20_n = rnorm(length(not.reached.decisionH0.AR), -(batch2.size[n+1]-batch2.size[n])*(theta0/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + sum10_n cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + sum20_n LR0_n.r[not.reached.decisionH0.AR.r] = exp(-(((theta.UMPBT$right^2) - (theta0^2)) - 2*(theta.UMPBT$right - theta0)* (cumsum10_n[not.reached.decisionH0.AR.r]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.r]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) LR0_n.l[not.reached.decisionH0.AR.l] = exp(-(((theta.UMPBT$left^2) - (theta0^2)) - 2*(theta.UMPBT$left - theta0)* (cumsum10_n[not.reached.decisionH0.AR.l]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.l]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N10.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch1.size[n+1] N20.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch2.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N10.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch1.size[n+1] N20.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch2.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } if(length(not.reached.decisionH1r.AR)>0){ sum11r_n = rnorm(length(not.reached.decisionH1r.AR), (batch1.size[n+1]-batch1.size[n])*(theta1$right/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum21r_n = rnorm(length(not.reached.decisionH1r.AR), -(batch2.size[n+1]-batch2.size[n])*(theta1$right/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum11r_n[not.reached.decisionH1r.AR] = cumsum11r_n[not.reached.decisionH1r.AR] + sum11r_n cumsum21r_n[not.reached.decisionH1r.AR] = cumsum21r_n[not.reached.decisionH1r.AR] + sum21r_n LR1r_n.r[not.reached.decisionH1r.AR.r] = exp(-(((theta.UMPBT$right^2) - (theta0^2)) - 2*(theta.UMPBT$right - theta0)* (cumsum11r_n[not.reached.decisionH1r.AR.r]/batch1.size[n+1] - cumsum21r_n[not.reached.decisionH1r.AR.r]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) LR1r_n.l[not.reached.decisionH1r.AR.l] = exp(-(((theta.UMPBT$left^2) - (theta0^2)) - 2*(theta.UMPBT$left - theta0)* (cumsum11r_n[not.reached.decisionH1r.AR.l]/batch1.size[n+1] - cumsum21r_n[not.reached.decisionH1r.AR.l]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]<=RejectH1.threshold RejectedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]>=RejectH0.threshold reached.decisionH1r_n.AR.r = AcceptedH0.underH1r_n.AR.r|RejectedH0.underH1r_n.AR.r if(any(reached.decisionH1r_n.AR.r)){ decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[AcceptedH0.underH1r_n.AR.r]] = 'A' decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[RejectedH0.underH1r_n.AR.r]] = 'R' N11r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch1.size[n+1] N21r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch2.size[n+1] not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.r[!reached.decisionH1r_n.AR.r] } AcceptedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]<=RejectH1.threshold RejectedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]>=RejectH0.threshold reached.decisionH1r_n.AR.l = AcceptedH0.underH1r_n.AR.l|RejectedH0.underH1r_n.AR.l if(any(reached.decisionH1r_n.AR.l)){ decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[AcceptedH0.underH1r_n.AR.l]] = 'A' decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[RejectedH0.underH1r_n.AR.l]] = 'R' N11r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch1.size[n+1] N21r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch2.size[n+1] not.reached.decisionH1r.AR.l = not.reached.decisionH1r.AR.l[!reached.decisionH1r_n.AR.l] } not.reached.decisionH1r.AR = union(not.reached.decisionH1r.AR.r, not.reached.decisionH1r.AR.l) } if(length(not.reached.decisionH1l.AR)>0){ sum11l_n = rnorm(length(not.reached.decisionH1l.AR), (batch1.size[n+1]-batch1.size[n])*(theta1$left/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum21l_n = rnorm(length(not.reached.decisionH1l.AR), -(batch2.size[n+1]-batch2.size[n])*(theta1$left/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum11l_n[not.reached.decisionH1l.AR] = cumsum11l_n[not.reached.decisionH1l.AR] + sum11l_n cumsum21l_n[not.reached.decisionH1l.AR] = cumsum21l_n[not.reached.decisionH1l.AR] + sum21l_n LR1l_n.r[not.reached.decisionH1l.AR.r] = exp(-(((theta.UMPBT$right^2) - (theta0^2)) - 2*(theta.UMPBT$right - theta0)* (cumsum11l_n[not.reached.decisionH1l.AR.r]/batch1.size[n+1] - cumsum21l_n[not.reached.decisionH1l.AR.r]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) LR1l_n.l[not.reached.decisionH1l.AR.l] = exp(-(((theta.UMPBT$left^2) - (theta0^2)) - 2*(theta.UMPBT$left - theta0)* (cumsum11l_n[not.reached.decisionH1l.AR.l]/batch1.size[n+1] - cumsum21l_n[not.reached.decisionH1l.AR.l]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]<=RejectH1.threshold RejectedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]>=RejectH0.threshold reached.decisionH1l_n.AR.r = AcceptedH0.underH1l_n.AR.r|RejectedH0.underH1l_n.AR.r if(any(reached.decisionH1l_n.AR.r)){ decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[AcceptedH0.underH1l_n.AR.r]] = 'A' decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[RejectedH0.underH1l_n.AR.r]] = 'R' N11l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch1.size[n+1] N21l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch2.size[n+1] not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.r[!reached.decisionH1l_n.AR.r] } AcceptedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]<=RejectH1.threshold RejectedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]>=RejectH0.threshold reached.decisionH1l_n.AR.l = AcceptedH0.underH1l_n.AR.l|RejectedH0.underH1l_n.AR.l if(any(reached.decisionH1l_n.AR.l)){ decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[AcceptedH0.underH1l_n.AR.l]] = 'A' decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[RejectedH0.underH1l_n.AR.l]] = 'R' N11l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch1.size[n+1] N21l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch2.size[n+1] not.reached.decisionH1l.AR.l = not.reached.decisionH1l.AR.l[!reached.decisionH1l_n.AR.l] } not.reached.decisionH1l.AR = union(not.reached.decisionH1l.AR.r, not.reached.decisionH1l.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N10.AR[accepted.by.both0] = pmax(N10.AR.r[accepted.by.both0], N10.AR.l[accepted.by.both0]) N10.AR[onlyrejected.by.right0] = N10.AR.r[onlyrejected.by.right0] N10.AR[onlyrejected.by.left0] = N10.AR.l[onlyrejected.by.left0] N10.AR[rejected.by.both0] = pmin(N10.AR.r[rejected.by.both0], N10.AR.l[rejected.by.both0]) N20.AR[accepted.by.both0] = pmax(N20.AR.r[accepted.by.both0], N20.AR.l[accepted.by.both0]) N20.AR[onlyrejected.by.right0] = N20.AR.r[onlyrejected.by.right0] N20.AR[onlyrejected.by.left0] = N20.AR.l[onlyrejected.by.left0] N20.AR[rejected.by.both0] = pmin(N20.AR.r[rejected.by.both0], N20.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T accepted.by.both1r = intersect(which(decision.underH1r.AR.r=='A'), which(decision.underH1r.AR.l=='A')) onlyrejected.by.right1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l!='R')) onlyrejected.by.left1r = intersect(which(decision.underH1r.AR.r!='R'), which(decision.underH1r.AR.l=='R')) rejected.by.both1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l=='R')) N11r.AR[accepted.by.both1r] = pmax(N11r.AR.r[accepted.by.both1r], N11r.AR.l[accepted.by.both1r]) N11r.AR[onlyrejected.by.right1r] = N11r.AR.r[onlyrejected.by.right1r] N11r.AR[onlyrejected.by.left1r] = N11r.AR.l[onlyrejected.by.left1r] N11r.AR[rejected.by.both1r] = pmin(N11r.AR.r[rejected.by.both1r], N11r.AR.l[rejected.by.both1r]) N21r.AR[accepted.by.both1r] = pmax(N21r.AR.r[accepted.by.both1r], N21r.AR.l[accepted.by.both1r]) N21r.AR[onlyrejected.by.right1r] = N21r.AR.r[onlyrejected.by.right1r] N21r.AR[onlyrejected.by.left1r] = N21r.AR.l[onlyrejected.by.left1r] N21r.AR[rejected.by.both1r] = pmin(N21r.AR.r[rejected.by.both1r], N21r.AR.l[rejected.by.both1r]) onlyaccepted.by.right1r = intersect(which(decision.underH1r.AR.r=='A'), which(is.na(decision.underH1r.AR.l))) onlyaccepted.by.left1r = intersect(which(is.na(decision.underH1r.AR.r)), which(decision.underH1r.AR.l=='A')) both.inconclusive1r = intersect(which(is.na(decision.underH1r.AR.r)), which(is.na(decision.underH1r.AR.l))) all.inconclusive1r = c(onlyaccepted.by.right1r, onlyaccepted.by.left1r, both.inconclusive1r) nNot.reached.decisionH1r.AR = length(all.inconclusive1r) PowerH1r.AR[c(onlyrejected.by.right1r, onlyrejected.by.left1r, rejected.by.both1r)] = T accepted.by.both1l = intersect(which(decision.underH1l.AR.r=='A'), which(decision.underH1l.AR.l=='A')) onlyrejected.by.right1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l!='R')) onlyrejected.by.left1l = intersect(which(decision.underH1l.AR.r!='R'), which(decision.underH1l.AR.l=='R')) rejected.by.both1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l=='R')) N11l.AR[accepted.by.both1l] = pmax(N11l.AR.r[accepted.by.both1l], N11l.AR.l[accepted.by.both1l]) N11l.AR[onlyrejected.by.right1l] = N11l.AR.r[onlyrejected.by.right1l] N11l.AR[onlyrejected.by.left1l] = N11l.AR.l[onlyrejected.by.left1l] N11l.AR[rejected.by.both1l] = pmin(N11l.AR.r[rejected.by.both1l], N11l.AR.l[rejected.by.both1l]) N21l.AR[accepted.by.both1l] = pmax(N21l.AR.r[accepted.by.both1l], N21l.AR.l[accepted.by.both1l]) N21l.AR[onlyrejected.by.right1l] = N21l.AR.r[onlyrejected.by.right1l] N21l.AR[onlyrejected.by.left1l] = N21l.AR.l[onlyrejected.by.left1l] N21l.AR[rejected.by.both1l] = pmin(N21l.AR.r[rejected.by.both1l], N21l.AR.l[rejected.by.both1l]) onlyaccepted.by.right1l = intersect(which(decision.underH1l.AR.r=='A'), which(is.na(decision.underH1l.AR.l))) onlyaccepted.by.left1l = intersect(which(is.na(decision.underH1l.AR.r)), which(decision.underH1l.AR.l=='A')) both.inconclusive1l = intersect(which(is.na(decision.underH1l.AR.r)), which(is.na(decision.underH1l.AR.l))) all.inconclusive1l = c(onlyaccepted.by.right1l, onlyaccepted.by.left1l, both.inconclusive1l) nNot.reached.decisionH1l.AR = length(all.inconclusive1l) PowerH1l.AR[c(onlyrejected.by.right1l, onlyrejected.by.left1l, rejected.by.both1l)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.PowerH1r.AR.r = mean(PowerH1r.AR) + sum(c(LR1r_n.r[onlyaccepted.by.left1r], LR1r_n.l[onlyaccepted.by.right1r], pmax(LR1r_n.r[both.inconclusive1r], LR1r_n.l[both.inconclusive1r]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1r.AR = 1 - actual.PowerH1r.AR.r actual.PowerH1l.AR.r = mean(PowerH1l.AR) + sum(c(LR1l_n.r[onlyaccepted.by.left1l], LR1l_n.l[onlyaccepted.by.right1l], pmax(LR1l_n.r[both.inconclusive1l], LR1l_n.l[both.inconclusive1l]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1l.AR = 1 - actual.PowerH1l.AR.r EN10 = mean(N10.AR) EN11r = mean(N11r.AR) EN11l = mean(N11l.AR) EN20 = mean(N20.AR) EN21r = mean(N21r.AR) EN21l = mean(N21l.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: Group 1 - ", round(EN10, 2), ', Group 2 - ', round(EN20, 2), sep = '')) print("Attained Type II error probability:") print(paste(" On the right: ", round(actual.type2.errorH1r.AR, 4))) print(paste(" On the left: ", round(actual.type2.errorH1l.AR, 4))) print("Expected sample size at the alternatives:") print(paste(" On the right: Group 1 - ", round(EN11r, 2), ', Group 2 - ', round(EN21r, 2), sep = '')) print(paste(" On the left: Group 1 - ", round(EN11l, 2), ', Group 2 - ', round(EN21l, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = c(actual.type2.errorH1r.AR, actual.type2.errorH1l.AR), 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR), 'right' = list('Group1' = N11r.AR, 'Group2' = N21r.AR), 'left' = list('Group1' = N11l.AR, 'Group2' = N21l.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20), 'right' = list('Group1' = EN11r, 'Group2' = EN21r), 'left' = list('Group1' = EN11l, 'Group2' = EN21l)), "theta.UMPBT" = theta.UMPBT, "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoZ', 'side' = side, 'theta0' = theta0, 'sigma1' = sigma1, 'sigma2' = sigma2, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else{ theta.UMPBT = list('right' = UMPBT.alt(test.type = 'twoZ', side = 'right', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, sigma1 = sigma1, sigma2 = sigma2), 'left' = UMPBT.alt(test.type = 'twoZ', side = 'left', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, sigma1 = sigma1, sigma2 = sigma2)) if(verbose==T){ print("Alternative under comparison:") print(paste(' On the right: ', round(theta1$right, 3), sep = "")) print(paste(' On the left: ', round(theta1$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) cumsum10_n = cumsum20_n = cumsum11r_n = cumsum21r_n = cumsum11l_n = cumsum21l_n = LR0_n.r = LR0_n.l = LR1r_n.r = LR1r_n.l = LR1l_n.r = LR1l_n.l = numeric(nReplicate) type1.error.AR = PowerH1r.AR = PowerH1l.AR = rep(F, nReplicate) N10.AR = N10.AR.r = N10.AR.l = N11r.AR = N11r.AR.r = N11r.AR.l = N11l.AR = N11l.AR.r = N11l.AR.l = rep(N1.max, nReplicate) N20.AR = N20.AR.r = N20.AR.l = N21r.AR = N21r.AR.r = N21r.AR.l = N21l.AR = N21l.AR.r = N21l.AR.l = rep(N2.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = decision.underH1r.AR.r = decision.underH1r.AR.l = decision.underH1l.AR.r = decision.underH1l.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = not.reached.decisionH1r.AR = not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.l = not.reached.decisionH1l.AR = not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ sum10_n = rnorm(length(not.reached.decisionH0.AR), (batch1.size[n+1]-batch1.size[n])*(theta0/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum20_n = rnorm(length(not.reached.decisionH0.AR), -(batch2.size[n+1]-batch2.size[n])*(theta0/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + sum10_n cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + sum20_n LR0_n.r[not.reached.decisionH0.AR.r] = exp(-(((theta.UMPBT$right^2) - (theta0^2)) - 2*(theta.UMPBT$right - theta0)* (cumsum10_n[not.reached.decisionH0.AR.r]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.r]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) LR0_n.l[not.reached.decisionH0.AR.l] = exp(-(((theta.UMPBT$left^2) - (theta0^2)) - 2*(theta.UMPBT$left - theta0)* (cumsum10_n[not.reached.decisionH0.AR.l]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.l]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N10.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch1.size[n+1] N20.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch2.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N10.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch1.size[n+1] N20.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch2.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } if(length(not.reached.decisionH1r.AR)>0){ sum11r_n = rnorm(length(not.reached.decisionH1r.AR), (batch1.size[n+1]-batch1.size[n])*(theta1$right/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum21r_n = rnorm(length(not.reached.decisionH1r.AR), -(batch2.size[n+1]-batch2.size[n])*(theta1$right/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum11r_n[not.reached.decisionH1r.AR] = cumsum11r_n[not.reached.decisionH1r.AR] + sum11r_n cumsum21r_n[not.reached.decisionH1r.AR] = cumsum21r_n[not.reached.decisionH1r.AR] + sum21r_n LR1r_n.r[not.reached.decisionH1r.AR.r] = exp(-(((theta.UMPBT$right^2) - (theta0^2)) - 2*(theta.UMPBT$right - theta0)* (cumsum11r_n[not.reached.decisionH1r.AR.r]/batch1.size[n+1] - cumsum21r_n[not.reached.decisionH1r.AR.r]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) LR1r_n.l[not.reached.decisionH1r.AR.l] = exp(-(((theta.UMPBT$left^2) - (theta0^2)) - 2*(theta.UMPBT$left - theta0)* (cumsum11r_n[not.reached.decisionH1r.AR.l]/batch1.size[n+1] - cumsum21r_n[not.reached.decisionH1r.AR.l]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]<=RejectH1.threshold RejectedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]>=RejectH0.threshold reached.decisionH1r_n.AR.r = AcceptedH0.underH1r_n.AR.r|RejectedH0.underH1r_n.AR.r if(any(reached.decisionH1r_n.AR.r)){ decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[AcceptedH0.underH1r_n.AR.r]] = 'A' decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[RejectedH0.underH1r_n.AR.r]] = 'R' N11r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch1.size[n+1] N21r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch2.size[n+1] not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.r[!reached.decisionH1r_n.AR.r] } AcceptedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]<=RejectH1.threshold RejectedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]>=RejectH0.threshold reached.decisionH1r_n.AR.l = AcceptedH0.underH1r_n.AR.l|RejectedH0.underH1r_n.AR.l if(any(reached.decisionH1r_n.AR.l)){ decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[AcceptedH0.underH1r_n.AR.l]] = 'A' decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[RejectedH0.underH1r_n.AR.l]] = 'R' N11r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch1.size[n+1] N21r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch2.size[n+1] not.reached.decisionH1r.AR.l = not.reached.decisionH1r.AR.l[!reached.decisionH1r_n.AR.l] } not.reached.decisionH1r.AR = union(not.reached.decisionH1r.AR.r, not.reached.decisionH1r.AR.l) } if(length(not.reached.decisionH1l.AR)>0){ sum11l_n = rnorm(length(not.reached.decisionH1l.AR), (batch1.size[n+1]-batch1.size[n])*(theta1$left/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum21l_n = rnorm(length(not.reached.decisionH1l.AR), -(batch2.size[n+1]-batch2.size[n])*(theta1$left/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum11l_n[not.reached.decisionH1l.AR] = cumsum11l_n[not.reached.decisionH1l.AR] + sum11l_n cumsum21l_n[not.reached.decisionH1l.AR] = cumsum21l_n[not.reached.decisionH1l.AR] + sum21l_n LR1l_n.r[not.reached.decisionH1l.AR.r] = exp(-(((theta.UMPBT$right^2) - (theta0^2)) - 2*(theta.UMPBT$right - theta0)* (cumsum11l_n[not.reached.decisionH1l.AR.r]/batch1.size[n+1] - cumsum21l_n[not.reached.decisionH1l.AR.r]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) LR1l_n.l[not.reached.decisionH1l.AR.l] = exp(-(((theta.UMPBT$left^2) - (theta0^2)) - 2*(theta.UMPBT$left - theta0)* (cumsum11l_n[not.reached.decisionH1l.AR.l]/batch1.size[n+1] - cumsum21l_n[not.reached.decisionH1l.AR.l]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]<=RejectH1.threshold RejectedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]>=RejectH0.threshold reached.decisionH1l_n.AR.r = AcceptedH0.underH1l_n.AR.r|RejectedH0.underH1l_n.AR.r if(any(reached.decisionH1l_n.AR.r)){ decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[AcceptedH0.underH1l_n.AR.r]] = 'A' decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[RejectedH0.underH1l_n.AR.r]] = 'R' N11l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch1.size[n+1] N21l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch2.size[n+1] not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.r[!reached.decisionH1l_n.AR.r] } AcceptedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]<=RejectH1.threshold RejectedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]>=RejectH0.threshold reached.decisionH1l_n.AR.l = AcceptedH0.underH1l_n.AR.l|RejectedH0.underH1l_n.AR.l if(any(reached.decisionH1l_n.AR.l)){ decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[AcceptedH0.underH1l_n.AR.l]] = 'A' decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[RejectedH0.underH1l_n.AR.l]] = 'R' N11l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch1.size[n+1] N21l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch2.size[n+1] not.reached.decisionH1l.AR.l = not.reached.decisionH1l.AR.l[!reached.decisionH1l_n.AR.l] } not.reached.decisionH1l.AR = union(not.reached.decisionH1l.AR.r, not.reached.decisionH1l.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N10.AR[accepted.by.both0] = pmax(N10.AR.r[accepted.by.both0], N10.AR.l[accepted.by.both0]) N10.AR[onlyrejected.by.right0] = N10.AR.r[onlyrejected.by.right0] N10.AR[onlyrejected.by.left0] = N10.AR.l[onlyrejected.by.left0] N10.AR[rejected.by.both0] = pmin(N10.AR.r[rejected.by.both0], N10.AR.l[rejected.by.both0]) N20.AR[accepted.by.both0] = pmax(N20.AR.r[accepted.by.both0], N20.AR.l[accepted.by.both0]) N20.AR[onlyrejected.by.right0] = N20.AR.r[onlyrejected.by.right0] N20.AR[onlyrejected.by.left0] = N20.AR.l[onlyrejected.by.left0] N20.AR[rejected.by.both0] = pmin(N20.AR.r[rejected.by.both0], N20.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T accepted.by.both1r = intersect(which(decision.underH1r.AR.r=='A'), which(decision.underH1r.AR.l=='A')) onlyrejected.by.right1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l!='R')) onlyrejected.by.left1r = intersect(which(decision.underH1r.AR.r!='R'), which(decision.underH1r.AR.l=='R')) rejected.by.both1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l=='R')) N11r.AR[accepted.by.both1r] = pmax(N11r.AR.r[accepted.by.both1r], N11r.AR.l[accepted.by.both1r]) N11r.AR[onlyrejected.by.right1r] = N11r.AR.r[onlyrejected.by.right1r] N11r.AR[onlyrejected.by.left1r] = N11r.AR.l[onlyrejected.by.left1r] N11r.AR[rejected.by.both1r] = pmin(N11r.AR.r[rejected.by.both1r], N11r.AR.l[rejected.by.both1r]) N21r.AR[accepted.by.both1r] = pmax(N21r.AR.r[accepted.by.both1r], N21r.AR.l[accepted.by.both1r]) N21r.AR[onlyrejected.by.right1r] = N21r.AR.r[onlyrejected.by.right1r] N21r.AR[onlyrejected.by.left1r] = N21r.AR.l[onlyrejected.by.left1r] N21r.AR[rejected.by.both1r] = pmin(N21r.AR.r[rejected.by.both1r], N21r.AR.l[rejected.by.both1r]) onlyaccepted.by.right1r = intersect(which(decision.underH1r.AR.r=='A'), which(is.na(decision.underH1r.AR.l))) onlyaccepted.by.left1r = intersect(which(is.na(decision.underH1r.AR.r)), which(decision.underH1r.AR.l=='A')) both.inconclusive1r = intersect(which(is.na(decision.underH1r.AR.r)), which(is.na(decision.underH1r.AR.l))) all.inconclusive1r = c(onlyaccepted.by.right1r, onlyaccepted.by.left1r, both.inconclusive1r) nNot.reached.decisionH1r.AR = length(all.inconclusive1r) PowerH1r.AR[c(onlyrejected.by.right1r, onlyrejected.by.left1r, rejected.by.both1r)] = T accepted.by.both1l = intersect(which(decision.underH1l.AR.r=='A'), which(decision.underH1l.AR.l=='A')) onlyrejected.by.right1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l!='R')) onlyrejected.by.left1l = intersect(which(decision.underH1l.AR.r!='R'), which(decision.underH1l.AR.l=='R')) rejected.by.both1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l=='R')) N11l.AR[accepted.by.both1l] = pmax(N11l.AR.r[accepted.by.both1l], N11l.AR.l[accepted.by.both1l]) N11l.AR[onlyrejected.by.right1l] = N11l.AR.r[onlyrejected.by.right1l] N11l.AR[onlyrejected.by.left1l] = N11l.AR.l[onlyrejected.by.left1l] N11l.AR[rejected.by.both1l] = pmin(N11l.AR.r[rejected.by.both1l], N11l.AR.l[rejected.by.both1l]) N21l.AR[accepted.by.both1l] = pmax(N21l.AR.r[accepted.by.both1l], N21l.AR.l[accepted.by.both1l]) N21l.AR[onlyrejected.by.right1l] = N21l.AR.r[onlyrejected.by.right1l] N21l.AR[onlyrejected.by.left1l] = N21l.AR.l[onlyrejected.by.left1l] N21l.AR[rejected.by.both1l] = pmin(N21l.AR.r[rejected.by.both1l], N21l.AR.l[rejected.by.both1l]) onlyaccepted.by.right1l = intersect(which(decision.underH1l.AR.r=='A'), which(is.na(decision.underH1l.AR.l))) onlyaccepted.by.left1l = intersect(which(is.na(decision.underH1l.AR.r)), which(decision.underH1l.AR.l=='A')) both.inconclusive1l = intersect(which(is.na(decision.underH1l.AR.r)), which(is.na(decision.underH1l.AR.l))) all.inconclusive1l = c(onlyaccepted.by.right1l, onlyaccepted.by.left1l, both.inconclusive1l) nNot.reached.decisionH1l.AR = length(all.inconclusive1l) PowerH1l.AR[c(onlyrejected.by.right1l, onlyrejected.by.left1l, rejected.by.both1l)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.PowerH1r.AR.r = mean(PowerH1r.AR) + sum(c(LR1r_n.r[onlyaccepted.by.left1r], LR1r_n.l[onlyaccepted.by.right1r], pmax(LR1r_n.r[both.inconclusive1r], LR1r_n.l[both.inconclusive1r]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1r.AR = 1 - actual.PowerH1r.AR.r actual.PowerH1l.AR.r = mean(PowerH1l.AR) + sum(c(LR1l_n.r[onlyaccepted.by.left1l], LR1l_n.l[onlyaccepted.by.right1l], pmax(LR1l_n.r[both.inconclusive1l], LR1l_n.l[both.inconclusive1l]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1l.AR = 1 - actual.PowerH1l.AR.r EN10 = mean(N10.AR) EN11r = mean(N11r.AR) EN11l = mean(N11l.AR) EN20 = mean(N20.AR) EN21r = mean(N21r.AR) EN21l = mean(N21l.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: Group 1 - ", round(EN10, 2), ', Group 2 - ', round(EN20, 2), sep = '')) print("Attained Type II error probability:") print(paste(" On the right: ", round(actual.type2.errorH1r.AR, 4))) print(paste(" On the left: ", round(actual.type2.errorH1l.AR, 4))) print("Expected sample size at the alternatives:") print(paste(" On the right: Group 1 - ", round(EN11r, 2), ', Group 2 - ', round(EN21r, 2), sep = '')) print(paste(" On the left: Group 1 - ", round(EN11l, 2), ', Group 2 - ', round(EN21l, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = c(actual.type2.errorH1r.AR, actual.type2.errorH1l.AR), 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR), 'right' = list('Group1' = N11r.AR, 'Group2' = N21r.AR), 'left' = list('Group1' = N11l.AR, 'Group2' = N21l.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20), 'right' = list('Group1' = EN11r, 'Group2' = EN21r), 'left' = list('Group1' = EN11l, 'Group2' = EN21l)), "theta.UMPBT" = theta.UMPBT, "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoZ', 'side' = side, 'theta0' = theta0, 'sigma1' = sigma1, 'sigma2' = sigma2, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) } } } design.MSPRT_twoT = function(side = 'right', theta0 = 0, theta1 = T, Type1.target =.005, Type2.target = .2, N1.max, N2.max, batch1.size, batch2.size, nReplicate = 1e+6, verbose = T, seed = 1){ if(side!='both'){ if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return("Either 'batch1.size' or 'N1.max' needs to be specified") }else{batch1.size = c(2, rep(1, N1.max-2))} }else{ if(batch1.size[1]<2){ return("First batch size in Group 1 should be at least 2") }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return("Sum of batch1.size should add up to N1.max") } } } if(missing(batch2.size)){ if(missing(N2.max)){ return("Either 'batch2.size' or 'N2.max' needs to be specified") }else{batch2.size = c(2, rep(1, N2.max-2))} }else{ if(batch2.size[1]<2){ return("First batch size in Group 2 should be at least 2") }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N2.max) return("Sum of batch2.size should add up to N2.max") } } } nAnalyses = length(batch1.size) if(verbose){ if((batch1.size[1]>2)||any(batch1.size[-1]>1)|| (batch2.size[1]>2)||any(batch2.size[-1]>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a two-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a two-sample t test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) if(is.logical(theta1)&&(theta1==F)){ if(verbose==T){ print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target signed_t.alpha = (2*(side=='right')-1)* qt(Type1.target, df = N1.max + N2.max -2, lower.tail = F) cumSS10_n = cumSS20_n = cumsum10_n = cumsum20_n = LR0_n = LR1_n = numeric(nReplicate) type1.error.AR = rep(F, nReplicate) N10.AR = rep(N1.max, nReplicate) N20.AR = rep(N2.max, nReplicate) not.reached.decisionH0.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ obs10_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0/2, 1) }) obs20_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), -theta0/2, 1) }) cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + rowSums(obs10_n) cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + rowSums(obs20_n) cumSS10_n[not.reached.decisionH0.AR] = cumSS10_n[not.reached.decisionH0.AR] + rowSums(obs10_n^2) cumSS20_n[not.reached.decisionH0.AR] = cumSS20_n[not.reached.decisionH0.AR] + rowSums(obs20_n^2) xbar.diff0_n = cumsum10_n[not.reached.decisionH0.AR]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR]/batch2.size[n+1] divisor.pooled.sd0_n.sq = cumSS10_n[not.reached.decisionH0.AR] - ((cumsum10_n[not.reached.decisionH0.AR])^2)/batch1.size[n+1] + cumSS20_n[not.reached.decisionH0.AR] - ((cumsum20_n[not.reached.decisionH0.AR])^2)/batch2.size[n+1] LR0_n[not.reached.decisionH0.AR] = ((1 + ((xbar.diff0_n - theta0)^2)/(divisor.pooled.sd0_n.sq* (1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff0_n - (theta0 + signed_t.alpha* sqrt((divisor.pooled.sd0_n.sq/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd0_n.sq*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N10.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch1.size[n+1] N20.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch2.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } EN10 = mean(N10.AR) EN20 = mean(N20.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste(" Expected sample size under H0: Group 1 - ", round(EN10, 2), ", Group 2 - ", round(EN20, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20)), "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoT', 'side' = side, 'theta0' = theta0, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else if(is.logical(theta1)&&(theta1==T)){ theta1 = fixed_design.alt(test.type = 'twoT', side = side, theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target, Type2 = Type2.target) if(verbose==T){ print(paste("Alternative under comparison: ", round(theta1, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target signed_t.alpha = (2*(side=='right')-1)* qt(Type1.target, df = N1.max + N2.max -2, lower.tail = F) cumSS10_n = cumSS20_n = cumSS11_n = cumSS21_n = cumsum10_n = cumsum20_n = cumsum11_n = cumsum21_n = LR0_n = LR1_n = numeric(nReplicate) type1.error.AR = type2.error.AR = rep(F, nReplicate) N10.AR = N11.AR = rep(N1.max, nReplicate) N20.AR = N21.AR = rep(N2.max, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ obs10_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0/2, 1) }) obs20_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), -theta0/2, 1) }) cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + rowSums(obs10_n) cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + rowSums(obs20_n) cumSS10_n[not.reached.decisionH0.AR] = cumSS10_n[not.reached.decisionH0.AR] + rowSums(obs10_n^2) cumSS20_n[not.reached.decisionH0.AR] = cumSS20_n[not.reached.decisionH0.AR] + rowSums(obs20_n^2) xbar.diff0_n = cumsum10_n[not.reached.decisionH0.AR]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR]/batch2.size[n+1] divisor.pooled.sd0_n.sq = cumSS10_n[not.reached.decisionH0.AR] - ((cumsum10_n[not.reached.decisionH0.AR])^2)/batch1.size[n+1] + cumSS20_n[not.reached.decisionH0.AR] - ((cumsum20_n[not.reached.decisionH0.AR])^2)/batch2.size[n+1] LR0_n[not.reached.decisionH0.AR] = ((1 + ((xbar.diff0_n - theta0)^2)/(divisor.pooled.sd0_n.sq* (1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff0_n - (theta0 + signed_t.alpha* sqrt((divisor.pooled.sd0_n.sq/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd0_n.sq*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N10.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch1.size[n+1] N20.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch2.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } if(length(not.reached.decisionH1.AR)>0){ obs11_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1/2, 1) }) obs21_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), -theta1/2, 1) }) cumsum11_n[not.reached.decisionH1.AR] = cumsum11_n[not.reached.decisionH1.AR] + rowSums(obs11_n) cumsum21_n[not.reached.decisionH1.AR] = cumsum21_n[not.reached.decisionH1.AR] + rowSums(obs21_n) cumSS11_n[not.reached.decisionH1.AR] = cumSS11_n[not.reached.decisionH1.AR] + rowSums(obs11_n^2) cumSS21_n[not.reached.decisionH1.AR] = cumSS21_n[not.reached.decisionH1.AR] + rowSums(obs21_n^2) xbar.diff1_n = cumsum11_n[not.reached.decisionH1.AR]/batch1.size[n+1] - cumsum21_n[not.reached.decisionH1.AR]/batch2.size[n+1] divisor.pooled.sd1_n.sq = cumSS11_n[not.reached.decisionH1.AR] - ((cumsum11_n[not.reached.decisionH1.AR])^2)/batch1.size[n+1] + cumSS21_n[not.reached.decisionH1.AR] - ((cumsum21_n[not.reached.decisionH1.AR])^2)/batch2.size[n+1] LR1_n[not.reached.decisionH1.AR] = ((1 + ((xbar.diff1_n - theta0)^2)/(divisor.pooled.sd1_n.sq* (1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1_n - (theta0 + signed_t.alpha* sqrt((divisor.pooled.sd1_n.sq/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1_n.sq*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N11.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch1.size[n+1] N21.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch2.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold.AR)/nReplicate EN10 = mean(N10.AR) EN20 = mean(N20.AR) EN11 = mean(N11.AR) EN21 = mean(N21.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Attained Type II error probability: ", round(actual.type2.error.AR, 4))) print(paste(" Expected sample size under H0: Group 1 - ", round(EN10, 2), ", Group 2 - ", round(EN20, 2), sep = '')) print(paste(" Expected sample size at the alternative: Group 1 - ", round(EN11, 2), ", Group 2 - ", round(EN21, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = actual.type2.error.AR, 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR), 'H1' = list('Group1' = N11.AR, 'Group2' = N21.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20), 'H1' = list('Group1' = EN11, 'Group2' = EN21)), "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoT', 'side' = side, 'theta0' = theta0, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else{ if(verbose==T){ print(paste("Alternative under comparison: ", round(theta1, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target signed_t.alpha = (2*(side=='right')-1)* qt(Type1.target, df = N1.max + N2.max -2, lower.tail = F) cumSS10_n = cumSS20_n = cumSS11_n = cumSS21_n = cumsum10_n = cumsum20_n = cumsum11_n = cumsum21_n = LR0_n = LR1_n = numeric(nReplicate) type1.error.AR = type2.error.AR = rep(F, nReplicate) N10.AR = N11.AR = rep(N1.max, nReplicate) N20.AR = N21.AR = rep(N2.max, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ obs10_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0/2, 1) }) obs20_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), -theta0/2, 1) }) cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + rowSums(obs10_n) cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + rowSums(obs20_n) cumSS10_n[not.reached.decisionH0.AR] = cumSS10_n[not.reached.decisionH0.AR] + rowSums(obs10_n^2) cumSS20_n[not.reached.decisionH0.AR] = cumSS20_n[not.reached.decisionH0.AR] + rowSums(obs20_n^2) xbar.diff0_n = cumsum10_n[not.reached.decisionH0.AR]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR]/batch2.size[n+1] divisor.pooled.sd0_n.sq = cumSS10_n[not.reached.decisionH0.AR] - ((cumsum10_n[not.reached.decisionH0.AR])^2)/batch1.size[n+1] + cumSS20_n[not.reached.decisionH0.AR] - ((cumsum20_n[not.reached.decisionH0.AR])^2)/batch2.size[n+1] LR0_n[not.reached.decisionH0.AR] = ((1 + ((xbar.diff0_n - theta0)^2)/(divisor.pooled.sd0_n.sq* (1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff0_n - (theta0 + signed_t.alpha* sqrt((divisor.pooled.sd0_n.sq/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd0_n.sq*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]<=RejectH1.threshold) RejectedH0.underH0_n.AR = which(LR0_n[not.reached.decisionH0.AR]>=RejectH0.threshold) reached.decisionH0_n.AR = union(AcceptedH0.underH0_n.AR, RejectedH0.underH0_n.AR) if(length(reached.decisionH0_n.AR)>0){ N10.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch1.size[n+1] N20.AR[not.reached.decisionH0.AR[reached.decisionH0_n.AR]] = batch2.size[n+1] type1.error.AR[not.reached.decisionH0.AR[RejectedH0.underH0_n.AR]] = T not.reached.decisionH0.AR = not.reached.decisionH0.AR[-reached.decisionH0_n.AR] } } if(length(not.reached.decisionH1.AR)>0){ obs11_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1/2, 1) }) obs21_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), -theta1/2, 1) }) cumsum11_n[not.reached.decisionH1.AR] = cumsum11_n[not.reached.decisionH1.AR] + rowSums(obs11_n) cumsum21_n[not.reached.decisionH1.AR] = cumsum21_n[not.reached.decisionH1.AR] + rowSums(obs21_n) cumSS11_n[not.reached.decisionH1.AR] = cumSS11_n[not.reached.decisionH1.AR] + rowSums(obs11_n^2) cumSS21_n[not.reached.decisionH1.AR] = cumSS21_n[not.reached.decisionH1.AR] + rowSums(obs21_n^2) xbar.diff1_n = cumsum11_n[not.reached.decisionH1.AR]/batch1.size[n+1] - cumsum21_n[not.reached.decisionH1.AR]/batch2.size[n+1] divisor.pooled.sd1_n.sq = cumSS11_n[not.reached.decisionH1.AR] - ((cumsum11_n[not.reached.decisionH1.AR])^2)/batch1.size[n+1] + cumSS21_n[not.reached.decisionH1.AR] - ((cumsum21_n[not.reached.decisionH1.AR])^2)/batch2.size[n+1] LR1_n[not.reached.decisionH1.AR] = ((1 + ((xbar.diff1_n - theta0)^2)/(divisor.pooled.sd1_n.sq* (1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1_n - (theta0 + signed_t.alpha* sqrt((divisor.pooled.sd1_n.sq/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1_n.sq*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N11.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch1.size[n+1] N21.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch2.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } setTxtProgressBar(pb, n) } nNot.reached.decisionH0.AR = length(not.reached.decisionH0.AR) type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max(LR0_n[not.reached.decisionH0.AR])))) termination.threshold.AR = (floor(max(LR0_n[not.reached.decisionH0.AR])* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(LR0_n[not.reached.decisionH0.AR]) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(LR0_n[not.reached.decisionH0.AR])) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(LR0_n[not.reached.decisionH0.AR])))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(min(cumRejFreq_not.reached.decisionH0.AR)>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold.AR)/nReplicate EN10 = mean(N10.AR) EN20 = mean(N20.AR) EN11 = mean(N11.AR) EN21 = mean(N21.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", RejectH0.threshold)) print(paste("Termination threshold: ", termination.threshold.AR)) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Attained Type II error probability: ", round(actual.type2.error.AR, 4))) print(paste(" Expected sample size under H0: Group 1 - ", round(EN10, 2), ", Group 2 - ", round(EN20, 2), sep = '')) print(paste(" Expected sample size at the alternative: Group 1 - ", round(EN11, 2), ", Group 2 - ", round(EN21, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = actual.type2.error.AR, 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR), 'H1' = list('Group1' = N11.AR, 'Group2' = N21.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20), 'H1' = list('Group1' = EN11, 'Group2' = EN21)), "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoT', 'side' = side, 'theta0' = theta0, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) } }else{ if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return("Either 'batch1.size' or 'N1.max' needs to be specified") }else{batch1.size = c(2, rep(1, N1.max-2))} }else{ if(batch1.size[1]<2){ return("First batch size in Group 1 should be at least 2") }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return("Sum of batch1.size should add up to N1.max") } } } if(missing(batch2.size)){ if(missing(N2.max)){ return("Either 'batch2.size' or 'N2.max' needs to be specified") }else{batch2.size = c(2, rep(1, N2.max-2))} }else{ if(batch2.size[1]<2){ return("First batch size in Group 2 should be at least 2") }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N2.max) return("Sum of batch2.size should add up to N2.max") } } } nAnalyses = length(batch1.size) if(verbose){ if((batch1.size[1]>2)||any(batch1.size[-1]>1)|| (batch2.size[1]>2)||any(batch2.size[-1]>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a two-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a two-sample t test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) if(is.logical(theta1)&&(theta1==F)){ if(verbose==T){ print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) t.alpha = qt(Type1.target/2, df = N1.max + N2.max -2, lower.tail = F) cumSS10_n = cumSS20_n = cumsum10_n = cumsum20_n = LR0_n.r = LR0_n.l = numeric(nReplicate) type1.error.AR = rep(F, nReplicate) N10.AR = N10.AR.r = N10.AR.l = rep(N1.max, nReplicate) N20.AR = N20.AR.r = N20.AR.l = rep(N2.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ if(length(not.reached.decisionH0.AR)>1){ obs10_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0/2, 1) }) }else{ obs10_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } if(length(not.reached.decisionH0.AR)>1){ obs20_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), -theta0/2, 1) }) }else{ obs20_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), -theta0/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + rowSums(obs10_n) cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + rowSums(obs20_n) cumSS10_n[not.reached.decisionH0.AR] = cumSS10_n[not.reached.decisionH0.AR] + rowSums(obs10_n^2) cumSS20_n[not.reached.decisionH0.AR] = cumSS20_n[not.reached.decisionH0.AR] + rowSums(obs20_n^2) xbar.diff0_n.r = cumsum10_n[not.reached.decisionH0.AR.r]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.r]/batch2.size[n+1] divisor.pooled.sd0_n.sq.r = cumSS10_n[not.reached.decisionH0.AR.r] - ((cumsum10_n[not.reached.decisionH0.AR.r])^2)/batch1.size[n+1] + cumSS20_n[not.reached.decisionH0.AR.r] - ((cumsum20_n[not.reached.decisionH0.AR.r])^2)/batch2.size[n+1] xbar.diff0_n.l = cumsum10_n[not.reached.decisionH0.AR.l]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.l]/batch2.size[n+1] divisor.pooled.sd0_n.sq.l = cumSS10_n[not.reached.decisionH0.AR.l] - ((cumsum10_n[not.reached.decisionH0.AR.l])^2)/batch1.size[n+1] + cumSS20_n[not.reached.decisionH0.AR.l] - ((cumsum20_n[not.reached.decisionH0.AR.l])^2)/batch2.size[n+1] LR0_n.r[not.reached.decisionH0.AR.r] = ((1 + ((xbar.diff0_n.r - theta0)^2)/ (divisor.pooled.sd0_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff0_n.r - (theta0 + t.alpha* sqrt((divisor.pooled.sd0_n.sq.r/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd0_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) LR0_n.l[not.reached.decisionH0.AR.l] = ((1 + ((xbar.diff0_n.l - theta0)^2)/ (divisor.pooled.sd0_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff0_n.l - (theta0 - t.alpha* sqrt((divisor.pooled.sd0_n.sq.l/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd0_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N10.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch1.size[n+1] N20.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch2.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N10.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch1.size[n+1] N20.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch2.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N10.AR[accepted.by.both0] = pmax(N10.AR.r[accepted.by.both0], N10.AR.l[accepted.by.both0]) N10.AR[onlyrejected.by.right0] = N10.AR.r[onlyrejected.by.right0] N10.AR[onlyrejected.by.left0] = N10.AR.l[onlyrejected.by.left0] N10.AR[rejected.by.both0] = pmin(N10.AR.r[rejected.by.both0], N10.AR.l[rejected.by.both0]) N20.AR[accepted.by.both0] = pmax(N20.AR.r[accepted.by.both0], N20.AR.l[accepted.by.both0]) N20.AR[onlyrejected.by.right0] = N20.AR.r[onlyrejected.by.right0] N20.AR[onlyrejected.by.left0] = N20.AR.l[onlyrejected.by.left0] N20.AR[rejected.by.both0] = pmin(N20.AR.r[rejected.by.both0], N20.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } EN10 = mean(N10.AR) EN20 = mean(N20.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: Group 1 - ", round(EN10, 2), ', Group 2 - ', round(EN20, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20)), "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoT', 'side' = side, 'theta0' = theta0, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else if(is.logical(theta1)&&(theta1==T)){ theta1 = list('right' = fixed_design.alt(test.type = 'twoT', side = 'right', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, Type2 = Type2.target), 'left' = fixed_design.alt(test.type = 'twoT', side = 'left', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, Type2 = Type2.target)) if(verbose==T){ print("Alternative under comparison:") print(paste(' On the right: ', round(theta1$right, 3), sep = "")) print(paste(' On the left: ', round(theta1$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) t.alpha = qt(Type1.target/2, df = N1.max + N2.max -2, lower.tail = F) cumSS10_n = cumSS20_n = cumSS11r_n = cumSS21r_n = cumSS11l_n = cumSS21l_n = cumsum10_n = cumsum20_n = cumsum11r_n = cumsum21r_n = cumsum11l_n = cumsum21l_n = LR0_n.r = LR0_n.l = LR1r_n.r = LR1r_n.l = LR1l_n.r = LR1l_n.l = numeric(nReplicate) type1.error.AR = PowerH1r.AR = PowerH1l.AR = rep(F, nReplicate) N10.AR = N10.AR.r = N10.AR.l = N11r.AR = N11r.AR.r = N11r.AR.l = N11l.AR = N11l.AR.r = N11l.AR.l = rep(N1.max, nReplicate) N20.AR = N20.AR.r = N20.AR.l = N21r.AR = N21r.AR.r = N21r.AR.l = N21l.AR = N21l.AR.r = N21l.AR.l = rep(N2.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = decision.underH1r.AR.r = decision.underH1r.AR.l = decision.underH1l.AR.r = decision.underH1l.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = not.reached.decisionH1r.AR = not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.l = not.reached.decisionH1l.AR = not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ if(length(not.reached.decisionH0.AR)>1){ obs10_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0/2, 1) }) }else{ obs10_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } if(length(not.reached.decisionH0.AR)>1){ obs20_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), -theta0/2, 1) }) }else{ obs20_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), -theta0/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + rowSums(obs10_n) cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + rowSums(obs20_n) cumSS10_n[not.reached.decisionH0.AR] = cumSS10_n[not.reached.decisionH0.AR] + rowSums(obs10_n^2) cumSS20_n[not.reached.decisionH0.AR] = cumSS20_n[not.reached.decisionH0.AR] + rowSums(obs20_n^2) xbar.diff0_n.r = cumsum10_n[not.reached.decisionH0.AR.r]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.r]/batch2.size[n+1] divisor.pooled.sd0_n.sq.r = cumSS10_n[not.reached.decisionH0.AR.r] - ((cumsum10_n[not.reached.decisionH0.AR.r])^2)/batch1.size[n+1] + cumSS20_n[not.reached.decisionH0.AR.r] - ((cumsum20_n[not.reached.decisionH0.AR.r])^2)/batch2.size[n+1] xbar.diff0_n.l = cumsum10_n[not.reached.decisionH0.AR.l]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.l]/batch2.size[n+1] divisor.pooled.sd0_n.sq.l = cumSS10_n[not.reached.decisionH0.AR.l] - ((cumsum10_n[not.reached.decisionH0.AR.l])^2)/batch1.size[n+1] + cumSS20_n[not.reached.decisionH0.AR.l] - ((cumsum20_n[not.reached.decisionH0.AR.l])^2)/batch2.size[n+1] LR0_n.r[not.reached.decisionH0.AR.r] = ((1 + ((xbar.diff0_n.r - theta0)^2)/ (divisor.pooled.sd0_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff0_n.r - (theta0 + t.alpha* sqrt((divisor.pooled.sd0_n.sq.r/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd0_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) LR0_n.l[not.reached.decisionH0.AR.l] = ((1 + ((xbar.diff0_n.l - theta0)^2)/ (divisor.pooled.sd0_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff0_n.l - (theta0 - t.alpha* sqrt((divisor.pooled.sd0_n.sq.l/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd0_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N10.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch1.size[n+1] N20.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch2.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N10.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch1.size[n+1] N20.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch2.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } if(length(not.reached.decisionH1r.AR)>0){ if(length(not.reached.decisionH1r.AR)>1){ obs11r_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), theta1$right/2, 1) }) }else{ obs11r_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), theta1$right/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } if(length(not.reached.decisionH1r.AR)>1){ obs21r_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), -theta1$right/2, 1) }) }else{ obs21r_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), -theta1$right/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } cumsum11r_n[not.reached.decisionH1r.AR] = cumsum11r_n[not.reached.decisionH1r.AR] + rowSums(obs11r_n) cumsum21r_n[not.reached.decisionH1r.AR] = cumsum21r_n[not.reached.decisionH1r.AR] + rowSums(obs21r_n) cumSS11r_n[not.reached.decisionH1r.AR] = cumSS11r_n[not.reached.decisionH1r.AR] + rowSums(obs11r_n^2) cumSS21r_n[not.reached.decisionH1r.AR] = cumSS21r_n[not.reached.decisionH1r.AR] + rowSums(obs21r_n^2) xbar.diff1r_n.r = cumsum11r_n[not.reached.decisionH1r.AR.r]/batch1.size[n+1] - cumsum21r_n[not.reached.decisionH1r.AR.r]/batch2.size[n+1] divisor.pooled.sd1r_n.sq.r = cumSS11r_n[not.reached.decisionH1r.AR.r] - ((cumsum11r_n[not.reached.decisionH1r.AR.r])^2)/batch1.size[n+1] + cumSS21r_n[not.reached.decisionH1r.AR.r] - ((cumsum21r_n[not.reached.decisionH1r.AR.r])^2)/batch2.size[n+1] xbar.diff1r_n.l = cumsum11r_n[not.reached.decisionH1r.AR.l]/batch1.size[n+1] - cumsum21r_n[not.reached.decisionH1r.AR.l]/batch2.size[n+1] divisor.pooled.sd1r_n.sq.l = cumSS11r_n[not.reached.decisionH1r.AR.l] - ((cumsum11r_n[not.reached.decisionH1r.AR.l])^2)/batch1.size[n+1] + cumSS21r_n[not.reached.decisionH1r.AR.l] - ((cumsum21r_n[not.reached.decisionH1r.AR.l])^2)/batch2.size[n+1] LR1r_n.r[not.reached.decisionH1r.AR.r] = ((1 + ((xbar.diff1r_n.r - theta0)^2)/ (divisor.pooled.sd1r_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1r_n.r - (theta0 + t.alpha* sqrt((divisor.pooled.sd1r_n.sq.r/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1r_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) LR1r_n.l[not.reached.decisionH1r.AR.l] = ((1 + ((xbar.diff1r_n.l - theta0)^2)/ (divisor.pooled.sd1r_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1r_n.l - (theta0 - t.alpha* sqrt((divisor.pooled.sd1r_n.sq.l/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1r_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]<=RejectH1.threshold RejectedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]>=RejectH0.threshold reached.decisionH1r_n.AR.r = AcceptedH0.underH1r_n.AR.r|RejectedH0.underH1r_n.AR.r if(any(reached.decisionH1r_n.AR.r)){ decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[AcceptedH0.underH1r_n.AR.r]] = 'A' decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[RejectedH0.underH1r_n.AR.r]] = 'R' N11r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch1.size[n+1] N21r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch2.size[n+1] not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.r[!reached.decisionH1r_n.AR.r] } AcceptedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]<=RejectH1.threshold RejectedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]>=RejectH0.threshold reached.decisionH1r_n.AR.l = AcceptedH0.underH1r_n.AR.l|RejectedH0.underH1r_n.AR.l if(any(reached.decisionH1r_n.AR.l)){ decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[AcceptedH0.underH1r_n.AR.l]] = 'A' decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[RejectedH0.underH1r_n.AR.l]] = 'R' N11r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch1.size[n+1] N21r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch2.size[n+1] not.reached.decisionH1r.AR.l = not.reached.decisionH1r.AR.l[!reached.decisionH1r_n.AR.l] } not.reached.decisionH1r.AR = union(not.reached.decisionH1r.AR.r, not.reached.decisionH1r.AR.l) } if(length(not.reached.decisionH1l.AR)>0){ if(length(not.reached.decisionH1l.AR)>1){ obs11l_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), theta1$left/2, 1) }) }else{ obs11l_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), theta1$left/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } if(length(not.reached.decisionH1l.AR)>1){ obs21l_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), -theta1$left/2, 1) }) }else{ obs21l_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), -theta1$left/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } cumsum11l_n[not.reached.decisionH1l.AR] = cumsum11l_n[not.reached.decisionH1l.AR] + rowSums(obs11l_n) cumsum21l_n[not.reached.decisionH1l.AR] = cumsum21l_n[not.reached.decisionH1l.AR] + rowSums(obs21l_n) cumSS11l_n[not.reached.decisionH1l.AR] = cumSS11l_n[not.reached.decisionH1l.AR] + rowSums(obs11l_n^2) cumSS21l_n[not.reached.decisionH1l.AR] = cumSS21l_n[not.reached.decisionH1l.AR] + rowSums(obs21l_n^2) xbar.diff1l_n.r = cumsum11l_n[not.reached.decisionH1l.AR.r]/batch1.size[n+1] - cumsum21l_n[not.reached.decisionH1l.AR.r]/batch2.size[n+1] divisor.pooled.sd1l_n.sq.r = cumSS11l_n[not.reached.decisionH1l.AR.r] - ((cumsum11l_n[not.reached.decisionH1l.AR.r])^2)/batch1.size[n+1] + cumSS21l_n[not.reached.decisionH1l.AR.r] - ((cumsum21l_n[not.reached.decisionH1l.AR.r])^2)/batch2.size[n+1] xbar.diff1l_n.l = cumsum11l_n[not.reached.decisionH1l.AR.l]/batch1.size[n+1] - cumsum21l_n[not.reached.decisionH1l.AR.l]/batch2.size[n+1] divisor.pooled.sd1l_n.sq.l = cumSS11l_n[not.reached.decisionH1l.AR.l] - ((cumsum11l_n[not.reached.decisionH1l.AR.l])^2)/batch1.size[n+1] + cumSS21l_n[not.reached.decisionH1l.AR.l] - ((cumsum21l_n[not.reached.decisionH1l.AR.l])^2)/batch2.size[n+1] LR1l_n.r[not.reached.decisionH1l.AR.r] = ((1 + ((xbar.diff1l_n.r - theta0)^2)/ (divisor.pooled.sd1l_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1l_n.r - (theta0 + t.alpha* sqrt((divisor.pooled.sd1l_n.sq.r/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1l_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) LR1l_n.l[not.reached.decisionH1l.AR.l] = ((1 + ((xbar.diff1l_n.l - theta0)^2)/ (divisor.pooled.sd1l_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1l_n.l - (theta0 - t.alpha* sqrt((divisor.pooled.sd1l_n.sq.l/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1l_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]<=RejectH1.threshold RejectedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]>=RejectH0.threshold reached.decisionH1l_n.AR.r = AcceptedH0.underH1l_n.AR.r|RejectedH0.underH1l_n.AR.r if(any(reached.decisionH1l_n.AR.r)){ decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[AcceptedH0.underH1l_n.AR.r]] = 'A' decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[RejectedH0.underH1l_n.AR.r]] = 'R' N11l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch1.size[n+1] N21l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch2.size[n+1] not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.r[!reached.decisionH1l_n.AR.r] } AcceptedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]<=RejectH1.threshold RejectedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]>=RejectH0.threshold reached.decisionH1l_n.AR.l = AcceptedH0.underH1l_n.AR.l|RejectedH0.underH1l_n.AR.l if(any(reached.decisionH1l_n.AR.l)){ decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[AcceptedH0.underH1l_n.AR.l]] = 'A' decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[RejectedH0.underH1l_n.AR.l]] = 'R' N11l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch1.size[n+1] N21l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch2.size[n+1] not.reached.decisionH1l.AR.l = not.reached.decisionH1l.AR.l[!reached.decisionH1l_n.AR.l] } not.reached.decisionH1l.AR = union(not.reached.decisionH1l.AR.r, not.reached.decisionH1l.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N10.AR[accepted.by.both0] = pmax(N10.AR.r[accepted.by.both0], N10.AR.l[accepted.by.both0]) N10.AR[onlyrejected.by.right0] = N10.AR.r[onlyrejected.by.right0] N10.AR[onlyrejected.by.left0] = N10.AR.l[onlyrejected.by.left0] N10.AR[rejected.by.both0] = pmin(N10.AR.r[rejected.by.both0], N10.AR.l[rejected.by.both0]) N20.AR[accepted.by.both0] = pmax(N20.AR.r[accepted.by.both0], N20.AR.l[accepted.by.both0]) N20.AR[onlyrejected.by.right0] = N20.AR.r[onlyrejected.by.right0] N20.AR[onlyrejected.by.left0] = N20.AR.l[onlyrejected.by.left0] N20.AR[rejected.by.both0] = pmin(N20.AR.r[rejected.by.both0], N20.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T accepted.by.both1r = intersect(which(decision.underH1r.AR.r=='A'), which(decision.underH1r.AR.l=='A')) onlyrejected.by.right1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l!='R')) onlyrejected.by.left1r = intersect(which(decision.underH1r.AR.r!='R'), which(decision.underH1r.AR.l=='R')) rejected.by.both1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l=='R')) N11r.AR[accepted.by.both1r] = pmax(N11r.AR.r[accepted.by.both1r], N11r.AR.l[accepted.by.both1r]) N11r.AR[onlyrejected.by.right1r] = N11r.AR.r[onlyrejected.by.right1r] N11r.AR[onlyrejected.by.left1r] = N11r.AR.l[onlyrejected.by.left1r] N11r.AR[rejected.by.both1r] = pmin(N11r.AR.r[rejected.by.both1r], N11r.AR.l[rejected.by.both1r]) N21r.AR[accepted.by.both1r] = pmax(N21r.AR.r[accepted.by.both1r], N21r.AR.l[accepted.by.both1r]) N21r.AR[onlyrejected.by.right1r] = N21r.AR.r[onlyrejected.by.right1r] N21r.AR[onlyrejected.by.left1r] = N21r.AR.l[onlyrejected.by.left1r] N21r.AR[rejected.by.both1r] = pmin(N21r.AR.r[rejected.by.both1r], N21r.AR.l[rejected.by.both1r]) onlyaccepted.by.right1r = intersect(which(decision.underH1r.AR.r=='A'), which(is.na(decision.underH1r.AR.l))) onlyaccepted.by.left1r = intersect(which(is.na(decision.underH1r.AR.r)), which(decision.underH1r.AR.l=='A')) both.inconclusive1r = intersect(which(is.na(decision.underH1r.AR.r)), which(is.na(decision.underH1r.AR.l))) all.inconclusive1r = c(onlyaccepted.by.right1r, onlyaccepted.by.left1r, both.inconclusive1r) nNot.reached.decisionH1r.AR = length(all.inconclusive1r) PowerH1r.AR[c(onlyrejected.by.right1r, onlyrejected.by.left1r, rejected.by.both1r)] = T accepted.by.both1l = intersect(which(decision.underH1l.AR.r=='A'), which(decision.underH1l.AR.l=='A')) onlyrejected.by.right1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l!='R')) onlyrejected.by.left1l = intersect(which(decision.underH1l.AR.r!='R'), which(decision.underH1l.AR.l=='R')) rejected.by.both1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l=='R')) N11l.AR[accepted.by.both1l] = pmax(N11l.AR.r[accepted.by.both1l], N11l.AR.l[accepted.by.both1l]) N11l.AR[onlyrejected.by.right1l] = N11l.AR.r[onlyrejected.by.right1l] N11l.AR[onlyrejected.by.left1l] = N11l.AR.l[onlyrejected.by.left1l] N11l.AR[rejected.by.both1l] = pmin(N11l.AR.r[rejected.by.both1l], N11l.AR.l[rejected.by.both1l]) N21l.AR[accepted.by.both1l] = pmax(N21l.AR.r[accepted.by.both1l], N21l.AR.l[accepted.by.both1l]) N21l.AR[onlyrejected.by.right1l] = N21l.AR.r[onlyrejected.by.right1l] N21l.AR[onlyrejected.by.left1l] = N21l.AR.l[onlyrejected.by.left1l] N21l.AR[rejected.by.both1l] = pmin(N21l.AR.r[rejected.by.both1l], N21l.AR.l[rejected.by.both1l]) onlyaccepted.by.right1l = intersect(which(decision.underH1l.AR.r=='A'), which(is.na(decision.underH1l.AR.l))) onlyaccepted.by.left1l = intersect(which(is.na(decision.underH1l.AR.r)), which(decision.underH1l.AR.l=='A')) both.inconclusive1l = intersect(which(is.na(decision.underH1l.AR.r)), which(is.na(decision.underH1l.AR.l))) all.inconclusive1l = c(onlyaccepted.by.right1l, onlyaccepted.by.left1l, both.inconclusive1l) nNot.reached.decisionH1l.AR = length(all.inconclusive1l) PowerH1l.AR[c(onlyrejected.by.right1l, onlyrejected.by.left1l, rejected.by.both1l)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.PowerH1r.AR.r = mean(PowerH1r.AR) + sum(c(LR1r_n.r[onlyaccepted.by.left1r], LR1r_n.l[onlyaccepted.by.right1r], pmax(LR1r_n.r[both.inconclusive1r], LR1r_n.l[both.inconclusive1r]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1r.AR = 1 - actual.PowerH1r.AR.r actual.PowerH1l.AR.r = mean(PowerH1l.AR) + sum(c(LR1l_n.r[onlyaccepted.by.left1l], LR1l_n.l[onlyaccepted.by.right1l], pmax(LR1l_n.r[both.inconclusive1l], LR1l_n.l[both.inconclusive1l]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1l.AR = 1 - actual.PowerH1l.AR.r EN10 = mean(N10.AR) EN11r = mean(N11r.AR) EN11l = mean(N11l.AR) EN20 = mean(N20.AR) EN21r = mean(N21r.AR) EN21l = mean(N21l.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: Group 1 - ", round(EN10, 2), ', Group 2 - ', round(EN20, 2), sep = '')) print("Attained Type II error probability:") print(paste(" On the right: ", round(actual.type2.errorH1r.AR, 4))) print(paste(" On the left: ", round(actual.type2.errorH1l.AR, 4))) print("Expected sample size at the alternatives:") print(paste(" On the right: Group 1 - ", round(EN11r, 2), ', Group 2 - ', round(EN21r, 2), sep = '')) print(paste(" On the left: Group 1 - ", round(EN11l, 2), ', Group 2 - ', round(EN21l, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = c(actual.type2.errorH1r.AR, actual.type2.errorH1l.AR), 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR), 'right' = list('Group1' = N11r.AR, 'Group2' = N21r.AR), 'left' = list('Group1' = N11l.AR, 'Group2' = N21l.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20), 'right' = list('Group1' = EN11r, 'Group2' = EN21r), 'left' = list('Group1' = EN11l, 'Group2' = EN21l)), "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoT', 'side' = side, 'theta0' = theta0, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) }else{ if(verbose==T){ print("Alternative under comparison: ") print("-------------------------------------------------------------------------") print(paste(' On the right: ', round(theta1$right, 3), sep = "")) print(paste(' On the left: ', round(theta1$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the Termination threshold ...") } RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) t.alpha = qt(Type1.target/2, df = N1.max + N2.max -2, lower.tail = F) cumSS10_n = cumSS20_n = cumSS11r_n = cumSS21r_n = cumSS11l_n = cumSS21l_n = cumsum10_n = cumsum20_n = cumsum11r_n = cumsum21r_n = cumsum11l_n = cumsum21l_n = LR0_n.r = LR0_n.l = LR1r_n.r = LR1r_n.l = LR1l_n.r = LR1l_n.l = numeric(nReplicate) type1.error.AR = PowerH1r.AR = PowerH1l.AR = rep(F, nReplicate) N10.AR = N10.AR.r = N10.AR.l = N11r.AR = N11r.AR.r = N11r.AR.l = N11l.AR = N11l.AR.r = N11l.AR.l = rep(N1.max, nReplicate) N20.AR = N20.AR.r = N20.AR.l = N21r.AR = N21r.AR.r = N21r.AR.l = N21l.AR = N21l.AR.r = N21l.AR.l = rep(N2.max, nReplicate) decision.underH0.AR.r = decision.underH0.AR.l = decision.underH1r.AR.r = decision.underH1r.AR.l = decision.underH1l.AR.r = decision.underH1l.AR.l = rep(NA, nReplicate) not.reached.decisionH0.AR = not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.l = not.reached.decisionH1r.AR = not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.l = not.reached.decisionH1l.AR = not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH0.AR)>0){ if(length(not.reached.decisionH0.AR)>1){ obs10_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0/2, 1) }) }else{ obs10_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), theta0/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } if(length(not.reached.decisionH0.AR)>1){ obs20_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), -theta0/2, 1) }) }else{ obs20_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH0.AR), -theta0/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } cumsum10_n[not.reached.decisionH0.AR] = cumsum10_n[not.reached.decisionH0.AR] + rowSums(obs10_n) cumsum20_n[not.reached.decisionH0.AR] = cumsum20_n[not.reached.decisionH0.AR] + rowSums(obs20_n) cumSS10_n[not.reached.decisionH0.AR] = cumSS10_n[not.reached.decisionH0.AR] + rowSums(obs10_n^2) cumSS20_n[not.reached.decisionH0.AR] = cumSS20_n[not.reached.decisionH0.AR] + rowSums(obs20_n^2) xbar.diff0_n.r = cumsum10_n[not.reached.decisionH0.AR.r]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.r]/batch2.size[n+1] divisor.pooled.sd0_n.sq.r = cumSS10_n[not.reached.decisionH0.AR.r] - ((cumsum10_n[not.reached.decisionH0.AR.r])^2)/batch1.size[n+1] + cumSS20_n[not.reached.decisionH0.AR.r] - ((cumsum20_n[not.reached.decisionH0.AR.r])^2)/batch2.size[n+1] xbar.diff0_n.l = cumsum10_n[not.reached.decisionH0.AR.l]/batch1.size[n+1] - cumsum20_n[not.reached.decisionH0.AR.l]/batch2.size[n+1] divisor.pooled.sd0_n.sq.l = cumSS10_n[not.reached.decisionH0.AR.l] - ((cumsum10_n[not.reached.decisionH0.AR.l])^2)/batch1.size[n+1] + cumSS20_n[not.reached.decisionH0.AR.l] - ((cumsum20_n[not.reached.decisionH0.AR.l])^2)/batch2.size[n+1] LR0_n.r[not.reached.decisionH0.AR.r] = ((1 + ((xbar.diff0_n.r - theta0)^2)/ (divisor.pooled.sd0_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff0_n.r - (theta0 + t.alpha* sqrt((divisor.pooled.sd0_n.sq.r/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd0_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) LR0_n.l[not.reached.decisionH0.AR.l] = ((1 + ((xbar.diff0_n.l - theta0)^2)/ (divisor.pooled.sd0_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff0_n.l - (theta0 - t.alpha* sqrt((divisor.pooled.sd0_n.sq.l/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd0_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]<=RejectH1.threshold RejectedH0.underH0_n.AR.r = LR0_n.r[not.reached.decisionH0.AR.r]>=RejectH0.threshold reached.decisionH0_n.AR.r = AcceptedH0.underH0_n.AR.r|RejectedH0.underH0_n.AR.r if(any(reached.decisionH0_n.AR.r)){ decision.underH0.AR.r[not.reached.decisionH0.AR.r[AcceptedH0.underH0_n.AR.r]] = 'A' decision.underH0.AR.r[not.reached.decisionH0.AR.r[RejectedH0.underH0_n.AR.r]] = 'R' N10.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch1.size[n+1] N20.AR.r[not.reached.decisionH0.AR.r[reached.decisionH0_n.AR.r]] = batch2.size[n+1] not.reached.decisionH0.AR.r = not.reached.decisionH0.AR.r[!reached.decisionH0_n.AR.r] } AcceptedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]<=RejectH1.threshold RejectedH0.underH0_n.AR.l = LR0_n.l[not.reached.decisionH0.AR.l]>=RejectH0.threshold reached.decisionH0_n.AR.l = AcceptedH0.underH0_n.AR.l|RejectedH0.underH0_n.AR.l if(any(reached.decisionH0_n.AR.l)){ decision.underH0.AR.l[not.reached.decisionH0.AR.l[AcceptedH0.underH0_n.AR.l]] = 'A' decision.underH0.AR.l[not.reached.decisionH0.AR.l[RejectedH0.underH0_n.AR.l]] = 'R' N10.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch1.size[n+1] N20.AR.l[not.reached.decisionH0.AR.l[reached.decisionH0_n.AR.l]] = batch2.size[n+1] not.reached.decisionH0.AR.l = not.reached.decisionH0.AR.l[!reached.decisionH0_n.AR.l] } not.reached.decisionH0.AR = union(not.reached.decisionH0.AR.r, not.reached.decisionH0.AR.l) } if(length(not.reached.decisionH1r.AR)>0){ if(length(not.reached.decisionH1r.AR)>1){ obs11r_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), theta1$right/2, 1) }) }else{ obs11r_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), theta1$right/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } if(length(not.reached.decisionH1r.AR)>1){ obs21r_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), -theta1$right/2, 1) }) }else{ obs21r_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1r.AR), -theta1$right/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } cumsum11r_n[not.reached.decisionH1r.AR] = cumsum11r_n[not.reached.decisionH1r.AR] + rowSums(obs11r_n) cumsum21r_n[not.reached.decisionH1r.AR] = cumsum21r_n[not.reached.decisionH1r.AR] + rowSums(obs21r_n) cumSS11r_n[not.reached.decisionH1r.AR] = cumSS11r_n[not.reached.decisionH1r.AR] + rowSums(obs11r_n^2) cumSS21r_n[not.reached.decisionH1r.AR] = cumSS21r_n[not.reached.decisionH1r.AR] + rowSums(obs21r_n^2) xbar.diff1r_n.r = cumsum11r_n[not.reached.decisionH1r.AR.r]/batch1.size[n+1] - cumsum21r_n[not.reached.decisionH1r.AR.r]/batch2.size[n+1] divisor.pooled.sd1r_n.sq.r = cumSS11r_n[not.reached.decisionH1r.AR.r] - ((cumsum11r_n[not.reached.decisionH1r.AR.r])^2)/batch1.size[n+1] + cumSS21r_n[not.reached.decisionH1r.AR.r] - ((cumsum21r_n[not.reached.decisionH1r.AR.r])^2)/batch2.size[n+1] xbar.diff1r_n.l = cumsum11r_n[not.reached.decisionH1r.AR.l]/batch1.size[n+1] - cumsum21r_n[not.reached.decisionH1r.AR.l]/batch2.size[n+1] divisor.pooled.sd1r_n.sq.l = cumSS11r_n[not.reached.decisionH1r.AR.l] - ((cumsum11r_n[not.reached.decisionH1r.AR.l])^2)/batch1.size[n+1] + cumSS21r_n[not.reached.decisionH1r.AR.l] - ((cumsum21r_n[not.reached.decisionH1r.AR.l])^2)/batch2.size[n+1] LR1r_n.r[not.reached.decisionH1r.AR.r] = ((1 + ((xbar.diff1r_n.r - theta0)^2)/ (divisor.pooled.sd1r_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1r_n.r - (theta0 + t.alpha* sqrt((divisor.pooled.sd1r_n.sq.r/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1r_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) LR1r_n.l[not.reached.decisionH1r.AR.l] = ((1 + ((xbar.diff1r_n.l - theta0)^2)/ (divisor.pooled.sd1r_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1r_n.l - (theta0 - t.alpha* sqrt((divisor.pooled.sd1r_n.sq.l/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1r_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]<=RejectH1.threshold RejectedH0.underH1r_n.AR.r = LR1r_n.r[not.reached.decisionH1r.AR.r]>=RejectH0.threshold reached.decisionH1r_n.AR.r = AcceptedH0.underH1r_n.AR.r|RejectedH0.underH1r_n.AR.r if(any(reached.decisionH1r_n.AR.r)){ decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[AcceptedH0.underH1r_n.AR.r]] = 'A' decision.underH1r.AR.r[not.reached.decisionH1r.AR.r[RejectedH0.underH1r_n.AR.r]] = 'R' N11r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch1.size[n+1] N21r.AR.r[not.reached.decisionH1r.AR.r[reached.decisionH1r_n.AR.r]] = batch2.size[n+1] not.reached.decisionH1r.AR.r = not.reached.decisionH1r.AR.r[!reached.decisionH1r_n.AR.r] } AcceptedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]<=RejectH1.threshold RejectedH0.underH1r_n.AR.l = LR1r_n.l[not.reached.decisionH1r.AR.l]>=RejectH0.threshold reached.decisionH1r_n.AR.l = AcceptedH0.underH1r_n.AR.l|RejectedH0.underH1r_n.AR.l if(any(reached.decisionH1r_n.AR.l)){ decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[AcceptedH0.underH1r_n.AR.l]] = 'A' decision.underH1r.AR.l[not.reached.decisionH1r.AR.l[RejectedH0.underH1r_n.AR.l]] = 'R' N11r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch1.size[n+1] N21r.AR.l[not.reached.decisionH1r.AR.l[reached.decisionH1r_n.AR.l]] = batch2.size[n+1] not.reached.decisionH1r.AR.l = not.reached.decisionH1r.AR.l[!reached.decisionH1r_n.AR.l] } not.reached.decisionH1r.AR = union(not.reached.decisionH1r.AR.r, not.reached.decisionH1r.AR.l) } if(length(not.reached.decisionH1l.AR)>0){ if(length(not.reached.decisionH1l.AR)>1){ obs11l_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), theta1$left/2, 1) }) }else{ obs11l_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), theta1$left/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } if(length(not.reached.decisionH1l.AR)>1){ obs21l_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), -theta1$left/2, 1) }) }else{ obs21l_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1l.AR), -theta1$left/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } cumsum11l_n[not.reached.decisionH1l.AR] = cumsum11l_n[not.reached.decisionH1l.AR] + rowSums(obs11l_n) cumsum21l_n[not.reached.decisionH1l.AR] = cumsum21l_n[not.reached.decisionH1l.AR] + rowSums(obs21l_n) cumSS11l_n[not.reached.decisionH1l.AR] = cumSS11l_n[not.reached.decisionH1l.AR] + rowSums(obs11l_n^2) cumSS21l_n[not.reached.decisionH1l.AR] = cumSS21l_n[not.reached.decisionH1l.AR] + rowSums(obs21l_n^2) xbar.diff1l_n.r = cumsum11l_n[not.reached.decisionH1l.AR.r]/batch1.size[n+1] - cumsum21l_n[not.reached.decisionH1l.AR.r]/batch2.size[n+1] divisor.pooled.sd1l_n.sq.r = cumSS11l_n[not.reached.decisionH1l.AR.r] - ((cumsum11l_n[not.reached.decisionH1l.AR.r])^2)/batch1.size[n+1] + cumSS21l_n[not.reached.decisionH1l.AR.r] - ((cumsum21l_n[not.reached.decisionH1l.AR.r])^2)/batch2.size[n+1] xbar.diff1l_n.l = cumsum11l_n[not.reached.decisionH1l.AR.l]/batch1.size[n+1] - cumsum21l_n[not.reached.decisionH1l.AR.l]/batch2.size[n+1] divisor.pooled.sd1l_n.sq.l = cumSS11l_n[not.reached.decisionH1l.AR.l] - ((cumsum11l_n[not.reached.decisionH1l.AR.l])^2)/batch1.size[n+1] + cumSS21l_n[not.reached.decisionH1l.AR.l] - ((cumsum21l_n[not.reached.decisionH1l.AR.l])^2)/batch2.size[n+1] LR1l_n.r[not.reached.decisionH1l.AR.r] = ((1 + ((xbar.diff1l_n.r - theta0)^2)/ (divisor.pooled.sd1l_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1l_n.r - (theta0 + t.alpha* sqrt((divisor.pooled.sd1l_n.sq.r/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1l_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) LR1l_n.l[not.reached.decisionH1l.AR.l] = ((1 + ((xbar.diff1l_n.l - theta0)^2)/ (divisor.pooled.sd1l_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1l_n.l - (theta0 - t.alpha* sqrt((divisor.pooled.sd1l_n.sq.l/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1l_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]<=RejectH1.threshold RejectedH0.underH1l_n.AR.r = LR1l_n.r[not.reached.decisionH1l.AR.r]>=RejectH0.threshold reached.decisionH1l_n.AR.r = AcceptedH0.underH1l_n.AR.r|RejectedH0.underH1l_n.AR.r if(any(reached.decisionH1l_n.AR.r)){ decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[AcceptedH0.underH1l_n.AR.r]] = 'A' decision.underH1l.AR.r[not.reached.decisionH1l.AR.r[RejectedH0.underH1l_n.AR.r]] = 'R' N11l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch1.size[n+1] N21l.AR.r[not.reached.decisionH1l.AR.r[reached.decisionH1l_n.AR.r]] = batch2.size[n+1] not.reached.decisionH1l.AR.r = not.reached.decisionH1l.AR.r[!reached.decisionH1l_n.AR.r] } AcceptedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]<=RejectH1.threshold RejectedH0.underH1l_n.AR.l = LR1l_n.l[not.reached.decisionH1l.AR.l]>=RejectH0.threshold reached.decisionH1l_n.AR.l = AcceptedH0.underH1l_n.AR.l|RejectedH0.underH1l_n.AR.l if(any(reached.decisionH1l_n.AR.l)){ decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[AcceptedH0.underH1l_n.AR.l]] = 'A' decision.underH1l.AR.l[not.reached.decisionH1l.AR.l[RejectedH0.underH1l_n.AR.l]] = 'R' N11l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch1.size[n+1] N21l.AR.l[not.reached.decisionH1l.AR.l[reached.decisionH1l_n.AR.l]] = batch2.size[n+1] not.reached.decisionH1l.AR.l = not.reached.decisionH1l.AR.l[!reached.decisionH1l_n.AR.l] } not.reached.decisionH1l.AR = union(not.reached.decisionH1l.AR.r, not.reached.decisionH1l.AR.l) } setTxtProgressBar(pb, n) } accepted.by.both0 = intersect(which(decision.underH0.AR.r=='A'), which(decision.underH0.AR.l=='A')) onlyrejected.by.right0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l!='R')) onlyrejected.by.left0 = intersect(which(decision.underH0.AR.r!='R'), which(decision.underH0.AR.l=='R')) rejected.by.both0 = intersect(which(decision.underH0.AR.r=='R'), which(decision.underH0.AR.l=='R')) N10.AR[accepted.by.both0] = pmax(N10.AR.r[accepted.by.both0], N10.AR.l[accepted.by.both0]) N10.AR[onlyrejected.by.right0] = N10.AR.r[onlyrejected.by.right0] N10.AR[onlyrejected.by.left0] = N10.AR.l[onlyrejected.by.left0] N10.AR[rejected.by.both0] = pmin(N10.AR.r[rejected.by.both0], N10.AR.l[rejected.by.both0]) N20.AR[accepted.by.both0] = pmax(N20.AR.r[accepted.by.both0], N20.AR.l[accepted.by.both0]) N20.AR[onlyrejected.by.right0] = N20.AR.r[onlyrejected.by.right0] N20.AR[onlyrejected.by.left0] = N20.AR.l[onlyrejected.by.left0] N20.AR[rejected.by.both0] = pmin(N20.AR.r[rejected.by.both0], N20.AR.l[rejected.by.both0]) onlyaccepted.by.right0 = intersect(which(decision.underH0.AR.r=='A'), which(is.na(decision.underH0.AR.l))) onlyaccepted.by.left0 = intersect(which(is.na(decision.underH0.AR.r)), which(decision.underH0.AR.l=='A')) both.inconclusive0 = intersect(which(is.na(decision.underH0.AR.r)), which(is.na(decision.underH0.AR.l))) all.inconclusive0 = c(onlyaccepted.by.right0, onlyaccepted.by.left0, both.inconclusive0) nNot.reached.decisionH0.AR = length(all.inconclusive0) type1.error.AR[c(onlyrejected.by.right0, onlyrejected.by.left0, rejected.by.both0)] = T accepted.by.both1r = intersect(which(decision.underH1r.AR.r=='A'), which(decision.underH1r.AR.l=='A')) onlyrejected.by.right1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l!='R')) onlyrejected.by.left1r = intersect(which(decision.underH1r.AR.r!='R'), which(decision.underH1r.AR.l=='R')) rejected.by.both1r = intersect(which(decision.underH1r.AR.r=='R'), which(decision.underH1r.AR.l=='R')) N11r.AR[accepted.by.both1r] = pmax(N11r.AR.r[accepted.by.both1r], N11r.AR.l[accepted.by.both1r]) N11r.AR[onlyrejected.by.right1r] = N11r.AR.r[onlyrejected.by.right1r] N11r.AR[onlyrejected.by.left1r] = N11r.AR.l[onlyrejected.by.left1r] N11r.AR[rejected.by.both1r] = pmin(N11r.AR.r[rejected.by.both1r], N11r.AR.l[rejected.by.both1r]) N21r.AR[accepted.by.both1r] = pmax(N21r.AR.r[accepted.by.both1r], N21r.AR.l[accepted.by.both1r]) N21r.AR[onlyrejected.by.right1r] = N21r.AR.r[onlyrejected.by.right1r] N21r.AR[onlyrejected.by.left1r] = N21r.AR.l[onlyrejected.by.left1r] N21r.AR[rejected.by.both1r] = pmin(N21r.AR.r[rejected.by.both1r], N21r.AR.l[rejected.by.both1r]) onlyaccepted.by.right1r = intersect(which(decision.underH1r.AR.r=='A'), which(is.na(decision.underH1r.AR.l))) onlyaccepted.by.left1r = intersect(which(is.na(decision.underH1r.AR.r)), which(decision.underH1r.AR.l=='A')) both.inconclusive1r = intersect(which(is.na(decision.underH1r.AR.r)), which(is.na(decision.underH1r.AR.l))) all.inconclusive1r = c(onlyaccepted.by.right1r, onlyaccepted.by.left1r, both.inconclusive1r) nNot.reached.decisionH1r.AR = length(all.inconclusive1r) PowerH1r.AR[c(onlyrejected.by.right1r, onlyrejected.by.left1r, rejected.by.both1r)] = T accepted.by.both1l = intersect(which(decision.underH1l.AR.r=='A'), which(decision.underH1l.AR.l=='A')) onlyrejected.by.right1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l!='R')) onlyrejected.by.left1l = intersect(which(decision.underH1l.AR.r!='R'), which(decision.underH1l.AR.l=='R')) rejected.by.both1l = intersect(which(decision.underH1l.AR.r=='R'), which(decision.underH1l.AR.l=='R')) N11l.AR[accepted.by.both1l] = pmax(N11l.AR.r[accepted.by.both1l], N11l.AR.l[accepted.by.both1l]) N11l.AR[onlyrejected.by.right1l] = N11l.AR.r[onlyrejected.by.right1l] N11l.AR[onlyrejected.by.left1l] = N11l.AR.l[onlyrejected.by.left1l] N11l.AR[rejected.by.both1l] = pmin(N11l.AR.r[rejected.by.both1l], N11l.AR.l[rejected.by.both1l]) N21l.AR[accepted.by.both1l] = pmax(N21l.AR.r[accepted.by.both1l], N21l.AR.l[accepted.by.both1l]) N21l.AR[onlyrejected.by.right1l] = N21l.AR.r[onlyrejected.by.right1l] N21l.AR[onlyrejected.by.left1l] = N21l.AR.l[onlyrejected.by.left1l] N21l.AR[rejected.by.both1l] = pmin(N21l.AR.r[rejected.by.both1l], N21l.AR.l[rejected.by.both1l]) onlyaccepted.by.right1l = intersect(which(decision.underH1l.AR.r=='A'), which(is.na(decision.underH1l.AR.l))) onlyaccepted.by.left1l = intersect(which(is.na(decision.underH1l.AR.r)), which(decision.underH1l.AR.l=='A')) both.inconclusive1l = intersect(which(is.na(decision.underH1l.AR.r)), which(is.na(decision.underH1l.AR.l))) all.inconclusive1l = c(onlyaccepted.by.right1l, onlyaccepted.by.left1l, both.inconclusive1l) nNot.reached.decisionH1l.AR = length(all.inconclusive1l) PowerH1l.AR[c(onlyrejected.by.right1l, onlyrejected.by.left1l, rejected.by.both1l)] = T type1.error.spent.AR = mean(type1.error.AR) if(nNot.reached.decisionH0.AR==0){ nDecimal.accuracy = 2 termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ term.thresh.possible.choices = c(LR0_n.r[onlyaccepted.by.left0], LR0_n.l[onlyaccepted.by.right0], pmin(LR0_n.r[both.inconclusive0], LR0_n.l[both.inconclusive0])) type1.error.max.AR = type1.error.spent.AR + nNot.reached.decisionH0.AR/nReplicate if(type1.error.spent.AR>Type1.target){ max.LR0_n = max(term.thresh.possible.choices) nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - max.LR0_n))) termination.threshold.AR = (floor(max.LR0_n*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else if(type1.error.max.AR<=Type1.target){ nDecimal.accuracy = ceiling(-log10(min(0.01, min(term.thresh.possible.choices) - RejectH1.threshold))) termination.threshold.AR = (floor(RejectH1.threshold*(10^nDecimal.accuracy)) + 1)/ (10^nDecimal.accuracy) actual.type1.error.AR = type1.error.max.AR }else{ uniqLR0.not.reached.decisionH0.inc.AR = sort(unique(term.thresh.possible.choices)) cumRejFreq_not.reached.decisionH0.AR = cumsum(rev(as.numeric(table(term.thresh.possible.choices)))) nNewRejects.AR = floor(nReplicate*(Type1.target - type1.error.spent.AR)) if(cumRejFreq_not.reached.decisionH0.AR[1]>nNewRejects.AR){ nDecimal.accuracy = ceiling(-log10(min(0.01, RejectH0.threshold - uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[length(uniqLR0.not.reached.decisionH0.inc.AR)]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR }else{ opt.indx.AR = max(which(cumRejFreq_not.reached.decisionH0.AR<=nNewRejects.AR)) min.rej.indx.AR = length(uniqLR0.not.reached.decisionH0.inc.AR) - (opt.indx.AR - 1) nDecimal.accuracy = ceiling(-log10(min(0.01, uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR] - uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]))) termination.threshold.AR = (floor(uniqLR0.not.reached.decisionH0.inc.AR[min.rej.indx.AR-1]* (10^nDecimal.accuracy)) + 1)/(10^nDecimal.accuracy) actual.type1.error.AR = type1.error.spent.AR + cumRejFreq_not.reached.decisionH0.AR[opt.indx.AR]/nReplicate } } } actual.PowerH1r.AR.r = mean(PowerH1r.AR) + sum(c(LR1r_n.r[onlyaccepted.by.left1r], LR1r_n.l[onlyaccepted.by.right1r], pmax(LR1r_n.r[both.inconclusive1r], LR1r_n.l[both.inconclusive1r]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1r.AR = 1 - actual.PowerH1r.AR.r actual.PowerH1l.AR.r = mean(PowerH1l.AR) + sum(c(LR1l_n.r[onlyaccepted.by.left1l], LR1l_n.l[onlyaccepted.by.right1l], pmax(LR1l_n.r[both.inconclusive1l], LR1l_n.l[both.inconclusive1l]))>= termination.threshold.AR)/nReplicate actual.type2.errorH1l.AR = 1 - actual.PowerH1l.AR.r EN10 = mean(N10.AR) EN11r = mean(N11r.AR) EN11l = mean(N11l.AR) EN20 = mean(N20.AR) EN21r = mean(N21r.AR) EN21l = mean(N21l.AR) if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3))) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3))) print(paste("Termination threshold: ", round(termination.threshold.AR, 3))) print(paste("Attained Type I error probability: ", round(actual.type1.error.AR, 4))) print(paste("Expected sample size under H0: Group 1 - ", round(EN10, 2), ', Group 2 - ', round(EN20, 2), sep = '')) print("Attained Type II error probability:") print(paste(" On the right: ", round(actual.type2.errorH1r.AR, 4))) print(paste(" On the left: ", round(actual.type2.errorH1l.AR, 4))) print("Expected sample size at the alternatives:") print(paste(" On the right: Group 1 - ", round(EN11r, 2), ', Group 2 - ', round(EN21r, 2), sep = '')) print(paste(" On the left: Group 1 - ", round(EN11l, 2), ', Group 2 - ', round(EN21l, 2), sep = '')) print("=========================================================================") cat('\n') } return(list("Type1.attained" = actual.type1.error.AR, "Type2.attained" = c(actual.type2.errorH1r.AR, actual.type2.errorH1l.AR), 'N' = list('H0' = list('Group1' = N10.AR, 'Group2' = N20.AR), 'right' = list('Group1' = N11r.AR, 'Group2' = N21r.AR), 'left' = list('Group1' = N11l.AR, 'Group2' = N21l.AR)), 'EN' = list('H0' = list('Group1' = EN10, 'Group2' = EN20), 'right' = list('Group1' = EN11r, 'Group2' = EN21r), 'left' = list('Group1' = EN11l, 'Group2' = EN21l)), "theta1" = theta1, "Type2.fixed.design" = Type2.target, "RejectH0.threshold" = RejectH0.threshold, "RejectH1.threshold" = RejectH1.threshold, "termination.threshold" = termination.threshold.AR, 'test.type' = 'twoT', 'side' = side, 'theta0' = theta0, 'N1.max' = N1.max, 'N2.max' = N2.max, 'Type1.target' = Type1.target, 'Type2.target' = Type2.target, 'batch1.size' = diff(batch1.size), 'batch2.size' = diff(batch2.size), 'nAnalyses' = nAnalyses, 'nReplicate' = nReplicate, 'seed' = seed)) } } } design.MSPRT = function(test.type, side = 'right', theta0, theta1 = T, Type1.target = .005, Type2.target = .2, N.max, N1.max, N2.max, sigma = 1, sigma1 = 1, sigma2 = 1, batch.size, batch1.size, batch2.size, nReplicate = 1e+6, verbose = T, seed = 1){ if((test.type!="oneProp") & (test.type!="oneZ") & (test.type!="oneT") & (test.type!="twoZ") & (test.type!="twoT")){ return(print("Unknown 'test type'. Has to be one of 'oneProp', 'oneZ', 'oneT', 'twoZ' or 'twoT'.")) } if(test.type=='oneProp'){ if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } if(missing(theta0)) theta0 = 0.5 return(design.MSPRT_oneProp(side = side, theta0 = theta0, theta1 = theta1, Type1.target = Type1.target, Type2.target = Type2.target, N.max = N.max, batch.size = batch.size, nReplicate = nReplicate, verbose = verbose, seed = seed)) }else if(test.type=='oneZ'){ if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } if(missing(theta0)) theta0 = 0 return(design.MSPRT_oneZ(side = side, theta0 = theta0, theta1 = theta1, Type1.target = Type1.target, Type2.target = Type2.target, N.max = N.max, sigma = sigma, batch.size = batch.size, nReplicate = nReplicate, verbose = verbose, seed = seed)) }else if(test.type=='oneT'){ if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = c(2, rep(1, N.max-2))} }else{ if(batch.size[1]<2){ return("First batch size should be at least 2") }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch.size should add up to N.max") } } } if(missing(theta0)) theta0 = 0 return(design.MSPRT_oneT(side = side, theta0 = theta0, theta1 = theta1, Type1.target = Type1.target, Type2.target = Type2.target, N.max = N.max, batch.size = batch.size, nReplicate = nReplicate, verbose = verbose, seed = seed)) }else if(test.type=='twoZ'){ if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return(print("Either 'batch1.size' or 'N1.max' needs to be specified")) }else{batch1.size = rep(1, N1.max)} }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return(print("Sum of batch1.size should add up to N1.max")) } } if(missing(batch2.size)){ if(missing(N2.max)){ return(print("Either 'batch2.size' or 'N2.max' needs to be specified")) }else{batch2.size = rep(1, N2.max)} }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N1.max) return(print("Sum of batch2.size should add up to N2.max")) } } if(missing(theta0)) theta0 = 0 return(design.MSPRT_twoZ(side = side, theta0 = theta0, theta1 = theta1, Type1.target = Type1.target, Type2.target = Type2.target, N1.max = N1.max, N2.max = N2.max, sigma1 = sigma1, sigma2 = sigma2, batch1.size = batch1.size, batch2.size = batch2.size, nReplicate = nReplicate, verbose = verbose, seed = seed)) }else if(test.type=='twoT'){ if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return("Either 'batch1.size' or 'N1.max' needs to be specified") }else{batch1.size = c(2, rep(1, N1.max-2))} }else{ if(batch1.size[1]<2){ return("First batch size in Group 1 should be at least 2") }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return("Sum of batch1.size should add up to N1.max") } } } if(missing(batch2.size)){ if(missing(N2.max)){ return("Either 'batch2.size' or 'N2.max' needs to be specified") }else{batch2.size = c(2, rep(1, N2.max-2))} }else{ if(batch2.size[1]<2){ return("First batch size in Group 2 should be at least 2") }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N2.max) return("Sum of batch2.size should add up to N2.max") } } } if(missing(theta0)) theta0 = 0 return(design.MSPRT_twoT(side = side, theta0 = theta0, theta1 = theta1, Type1.target = Type1.target, Type2.target = Type2.target, N1.max = N1.max, N2.max = N2.max, batch1.size = batch1.size, batch2.size = batch2.size, nReplicate = nReplicate, verbose = verbose, seed = seed)) } } OCandASN.MSPRT_oneProp = function(theta, design.MSPRT.object, termination.threshold, side = 'right', theta0 = 0.5, Type1.target =.005, Type2.target = .2, N.max, batch.size, nReplicate = 1e+6, nCore = max(1, detectCores() - 1), verbose = T, seed = 1){ if(!missing(design.MSPRT.object)) side = design.MSPRT.object$side if(side!='both'){ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold UMPBT = design.MSPRT.object$UMPBT nAnalyses = design.MSPRT.object$nAnalyses nReplicate = design.MSPRT.object$nReplicate RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample proportion test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample proportion test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", design.MSPRT.object$termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(UMPBT$theta[1], 3), " & ", round(UMPBT$theta[2], 3), " with respective probabilities ", round(UMPBT$mix.prob[1], 3), " & ", 1 - round(UMPBT$mix.prob[1], 3), sep = '')) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) }else{ if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses = length(batch.size) UMPBT = UMPBT.alt(test.type = 'oneProp', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target) RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample proportion test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample proportion test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", design.MSPRT.object$termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(UMPBT$theta[1], 3), " & ", round(UMPBT$theta[2], 3), " with respective probabilities ", round(UMPBT$mix.prob[1], 3), " & ", 1 - round(UMPBT$mix.prob[1], 3), sep = '')) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) } registerDoParallel(cores = nCore) out.OCandASN = foreach(theta1 = theta, .combine = 'rbind') %dopar% { cumsum1_n = LR1_n = numeric(nReplicate) type2.error.AR = rep(F, nReplicate) N1.AR = rep(N.max, nReplicate) not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) for(n in 1:nAnalyses){ if(length(not.reached.decisionH1.AR)>0){ sum1_n = rbinom(length(not.reached.decisionH1.AR), batch.size[n+1]-batch.size[n], theta1) cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + sum1_n LR1_n[not.reached.decisionH1.AR] = UMPBT$mix.prob[1]*(((1 - UMPBT$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$theta[1])))^cumsum1_n[not.reached.decisionH1.AR] + (1 - UMPBT$mix.prob[2])*(((1 - UMPBT$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$theta[2])))^cumsum1_n[not.reached.decisionH1.AR] AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N1.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold)/nReplicate EN1 = mean(N1.AR) c(theta1, actual.type2.error.AR, EN1) } if(length(theta)==1) out.OCandASN = matrix(data = out.OCandASN, nrow = 1, ncol = 3, byrow = T) out.OCandASN = as.data.frame(out.OCandASN) colnames(out.OCandASN) = c('theta', 'acceptH0.prob', 'EN') if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste('Parameter value(s): ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste('Probability of accepting H0: ', paste(round(out.OCandASN$acceptH0.prob, 3), collapse = ', '), sep = '')) print(paste('Expected sample size: ', paste(round(out.OCandASN$EN, 2), collapse = ', '), sep = '')) print("=========================================================================") cat('\n') } return(out.OCandASN) }else{ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max nAnalyses = design.MSPRT.object$nAnalyses Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold nReplicate = design.MSPRT.object$nReplicate UMPBT = design.MSPRT.object$UMPBT RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample proportion test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample proportion test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", design.MSPRT.object$termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(UMPBT$right$theta[1], 3), " & ", round(UMPBT$right$theta[2], 3), " with respective probabilities ", round(UMPBT$right$mix.prob[1], 3), " & ", 1 - round(UMPBT$right$mix.prob[1], 3), sep = "")) print(paste(' On the left: ', round(UMPBT$left$theta[1], 3), " & ", round(UMPBT$left$theta[2], 3), " with respective probabilities ", round(UMPBT$left$mix.prob[1], 3), " & ", 1 - round(UMPBT$left$mix.prob[1], 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) }else{ if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses = length(batch.size) UMPBT = list('right' = UMPBT.alt(test.type = 'oneProp', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2), 'left' = UMPBT.alt(test.type = 'oneProp', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2)) RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample proportion test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample proportion test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", design.MSPRT.object$termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(UMPBT$right$theta[1], 3), " & ", round(UMPBT$right$theta[2], 3), " with respective probabilities ", round(UMPBT$right$mix.prob[1], 3), " & ", 1 - round(UMPBT$right$mix.prob[1], 3), sep = "")) print(paste(' On the left: ', round(UMPBT$left$theta[1], 3), " & ", round(UMPBT$left$theta[2], 3), " with respective probabilities ", round(UMPBT$left$mix.prob[1], 3), " & ", 1 - round(UMPBT$left$mix.prob[1], 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) } registerDoParallel(cores = nCore) out.OCandASN = foreach(theta1 = theta, .combine = 'rbind') %dopar% { cumsum1_n = LR1_n.r = LR1_n.l = numeric(nReplicate) PowerH1.AR = rep(F, nReplicate) N1.AR = N1.AR.r = N1.AR.l = rep(N.max, nReplicate) decision.underH1.AR.r = decision.underH1.AR.l = rep(NA, nReplicate) not.reached.decisionH1.AR = not.reached.decisionH1.AR.r = not.reached.decisionH1.AR.l = 1:nReplicate set.seed(seed) pb = txtProgressBar(min = 1, max = nAnalyses, style = 3) for(n in 1:nAnalyses){ if(length(not.reached.decisionH1.AR)>0){ sum1_n = rbinom(length(not.reached.decisionH1.AR), batch.size[n+1]-batch.size[n], theta1) cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + sum1_n LR1_n.r[not.reached.decisionH1.AR.r] = UMPBT$right$mix.prob[1]*(((1 - UMPBT$right$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[1])))^cumsum1_n[not.reached.decisionH1.AR.r] + (1 - UMPBT$right$mix.prob[2])*(((1 - UMPBT$right$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[2])))^cumsum1_n[not.reached.decisionH1.AR.r] LR1_n.l[not.reached.decisionH1.AR.l] = UMPBT$left$mix.prob[1]*(((1 - UMPBT$left$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[1])))^cumsum1_n[not.reached.decisionH1.AR.l] + (1 - UMPBT$left$mix.prob[2])*(((1 - UMPBT$left$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[2])))^cumsum1_n[not.reached.decisionH1.AR.l] AcceptedH0.underH1_n.AR.r = LR1_n.r[not.reached.decisionH1.AR.r]<=RejectH1.threshold RejectedH0.underH1_n.AR.r = LR1_n.r[not.reached.decisionH1.AR.r]>=RejectH0.threshold reached.decisionH1_n.AR.r = AcceptedH0.underH1_n.AR.r|RejectedH0.underH1_n.AR.r if(any(reached.decisionH1_n.AR.r)){ decision.underH1.AR.r[not.reached.decisionH1.AR.r[AcceptedH0.underH1_n.AR.r]] = 'A' decision.underH1.AR.r[not.reached.decisionH1.AR.r[RejectedH0.underH1_n.AR.r]] = 'R' N1.AR.r[not.reached.decisionH1.AR.r[reached.decisionH1_n.AR.r]] = batch.size[n+1] not.reached.decisionH1.AR.r = not.reached.decisionH1.AR.r[!reached.decisionH1_n.AR.r] } AcceptedH0.underH1_n.AR.l = LR1_n.l[not.reached.decisionH1.AR.l]<=RejectH1.threshold RejectedH0.underH1_n.AR.l = LR1_n.l[not.reached.decisionH1.AR.l]>=RejectH0.threshold reached.decisionH1_n.AR.l = AcceptedH0.underH1_n.AR.l|RejectedH0.underH1_n.AR.l if(any(reached.decisionH1_n.AR.l)){ decision.underH1.AR.l[not.reached.decisionH1.AR.l[AcceptedH0.underH1_n.AR.l]] = 'A' decision.underH1.AR.l[not.reached.decisionH1.AR.l[RejectedH0.underH1_n.AR.l]] = 'R' N1.AR.l[not.reached.decisionH1.AR.l[reached.decisionH1_n.AR.l]] = batch.size[n+1] not.reached.decisionH1.AR.l = not.reached.decisionH1.AR.l[!reached.decisionH1_n.AR.l] } not.reached.decisionH1.AR = union(not.reached.decisionH1.AR.r, not.reached.decisionH1.AR.l) } } accepted.by.both1 = intersect(which(decision.underH1.AR.r=='A'), which(decision.underH1.AR.l=='A')) onlyrejected.by.right1 = intersect(which(decision.underH1.AR.r=='R'), which(decision.underH1.AR.l!='R')) onlyrejected.by.left1 = intersect(which(decision.underH1.AR.r!='R'), which(decision.underH1.AR.l=='R')) rejected.by.both1 = intersect(which(decision.underH1.AR.r=='R'), which(decision.underH1.AR.l=='R')) N1.AR[accepted.by.both1] = pmax(N1.AR.r[accepted.by.both1], N1.AR.l[accepted.by.both1]) N1.AR[onlyrejected.by.right1] = N1.AR.r[onlyrejected.by.right1] N1.AR[onlyrejected.by.left1] = N1.AR.l[onlyrejected.by.left1] N1.AR[rejected.by.both1] = pmin(N1.AR.r[rejected.by.both1], N1.AR.l[rejected.by.both1]) onlyaccepted.by.right1 = intersect(which(decision.underH1.AR.r=='A'), which(is.na(decision.underH1.AR.l))) onlyaccepted.by.left1 = intersect(which(is.na(decision.underH1.AR.r)), which(decision.underH1.AR.l=='A')) both.inconclusive1 = intersect(which(is.na(decision.underH1.AR.r)), which(is.na(decision.underH1.AR.l))) all.inconclusive1 = c(onlyaccepted.by.right1, onlyaccepted.by.left1, both.inconclusive1) nNot.reached.decisionH1.AR = length(all.inconclusive1) PowerH1.AR[c(onlyrejected.by.right1, onlyrejected.by.left1, rejected.by.both1)] = T actual.PowerH1.AR.r = mean(PowerH1.AR) + sum(c(LR1_n.r[onlyaccepted.by.left1], LR1_n.l[onlyaccepted.by.right1], pmax(LR1_n.r[both.inconclusive1], LR1_n.l[both.inconclusive1]))>= termination.threshold)/nReplicate actual.type2.errorH1.AR = 1 - actual.PowerH1.AR.r EN1 = mean(N1.AR) c(theta1, actual.type2.errorH1.AR, EN1) } if(length(theta)==1) out.OCandASN = matrix(data = out.OCandASN, nrow = 1, ncol = 3, byrow = T) out.OCandASN = as.data.frame(out.OCandASN) colnames(out.OCandASN) = c('theta', 'acceptH0.prob', 'EN') if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste('Parameter value(s): ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste('Probability of accepting H0: ', paste(round(out.OCandASN$acceptH0.prob, 3), collapse = ', '), sep = '')) print(paste('Expected sample size: ', paste(round(out.OCandASN$EN, 2), collapse = ', '), sep = '')) print("=========================================================================") cat('\n') } return(out.OCandASN) } } OCandASN.MSPRT_oneZ = function(theta, design.MSPRT.object, termination.threshold, side = 'right', theta0 = 0, Type1.target =.005, Type2.target = .2, N.max, sigma = 1, batch.size, nReplicate = 1e+6, nCore = max(1, detectCores() - 1), verbose = T, seed = 1){ if(!missing(design.MSPRT.object)) side = design.MSPRT.object$side if(side!='both'){ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max nAnalyses = design.MSPRT.object$nAnalyses Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 sigma = design.MSPRT.object$sigma termination.threshold = design.MSPRT.object$termination.threshold nReplicate = design.MSPRT.object$nReplicate theta.UMPBT = design.MSPRT.object$theta.UMPBT RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample z test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("Known standard deviation: ", sigma, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) }else{ if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses = length(batch.size) theta.UMPBT = UMPBT.alt(test.type = 'oneZ', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target, sigma = sigma) RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample z test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("Known standard deviation: ", sigma, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) } registerDoParallel(cores = nCore) out.OCandASN = foreach(theta1 = theta, .combine = 'rbind') %dopar% { cumsum1_n = LR1_n = numeric(nReplicate) type2.error.AR = rep(F, nReplicate) N1.AR = rep(N.max, nReplicate) not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) for(n in 1:nAnalyses){ if(length(not.reached.decisionH1.AR)>0){ sum1_n = rnorm(length(not.reached.decisionH1.AR), (batch.size[n+1]-batch.size[n])*theta1, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + sum1_n LR1_n[not.reached.decisionH1.AR] = exp((cumsum1_n[not.reached.decisionH1.AR]*(theta.UMPBT - theta0) - ((batch.size[n+1]*((theta.UMPBT^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N1.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold)/nReplicate EN1 = mean(N1.AR) c(theta1, actual.type2.error.AR, EN1) } if(length(theta)==1) out.OCandASN = matrix(data = out.OCandASN, nrow = 1, ncol = 3, byrow = T) out.OCandASN = as.data.frame(out.OCandASN) colnames(out.OCandASN) = c('theta', 'acceptH0.prob', 'EN') if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste('Parameter value(s): ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste('Probability of accepting H0: ', paste(round(out.OCandASN$acceptH0.prob, 3), collapse = ', '), sep = '')) print(paste('Expected sample size: ', paste(round(out.OCandASN$EN, 2), collapse = ', '), sep = '')) print("=========================================================================") cat('\n') } return(out.OCandASN) }else{ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max nAnalyses = design.MSPRT.object$nAnalyses Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 sigma = design.MSPRT.object$sigma termination.threshold = design.MSPRT.object$termination.threshold nReplicate = design.MSPRT.object$nReplicate theta.UMPBT = design.MSPRT.object$theta.UMPBT RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample z test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("Known standard deviation: ", sigma, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) }else{ if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses = length(batch.size) theta.UMPBT = list('right' = UMPBT.alt(test.type = 'oneZ', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2, sigma = sigma), 'left' = UMPBT.alt(test.type = 'oneZ', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2, sigma = sigma)) RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample z test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("Known standard deviation: ", sigma, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) } registerDoParallel(cores = nCore) out.OCandASN = foreach(theta1 = theta, .combine = 'rbind') %dopar% { cumsum1_n = LR1_n.r = LR1_n.l = numeric(nReplicate) PowerH1.AR = rep(F, nReplicate) N1.AR = N1.AR.r = N1.AR.l = rep(N.max, nReplicate) decision.underH1.AR.r = decision.underH1.AR.l = rep(NA, nReplicate) not.reached.decisionH1.AR = not.reached.decisionH1.AR.r = not.reached.decisionH1.AR.l = 1:nReplicate set.seed(seed) for(n in 1:nAnalyses){ if(length(not.reached.decisionH1.AR)>0){ sum1_n = rnorm(length(not.reached.decisionH1.AR), (batch.size[n+1]-batch.size[n])*theta1, sqrt(batch.size[n+1]-batch.size[n])*sigma) cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + sum1_n LR1_n.r[not.reached.decisionH1.AR.r] = exp((cumsum1_n[not.reached.decisionH1.AR.r]*(theta.UMPBT$right - theta0) - ((batch.size[n+1]*((theta.UMPBT$right^2) - (theta0^2)))/2))/(sigma^2)) LR1_n.l[not.reached.decisionH1.AR.l] = exp((cumsum1_n[not.reached.decisionH1.AR.l]*(theta.UMPBT$left - theta0) - ((batch.size[n+1]*((theta.UMPBT$left^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0.underH1_n.AR.r = LR1_n.r[not.reached.decisionH1.AR.r]<=RejectH1.threshold RejectedH0.underH1_n.AR.r = LR1_n.r[not.reached.decisionH1.AR.r]>=RejectH0.threshold reached.decisionH1_n.AR.r = AcceptedH0.underH1_n.AR.r|RejectedH0.underH1_n.AR.r if(any(reached.decisionH1_n.AR.r)){ decision.underH1.AR.r[not.reached.decisionH1.AR.r[AcceptedH0.underH1_n.AR.r]] = 'A' decision.underH1.AR.r[not.reached.decisionH1.AR.r[RejectedH0.underH1_n.AR.r]] = 'R' N1.AR.r[not.reached.decisionH1.AR.r[reached.decisionH1_n.AR.r]] = batch.size[n+1] not.reached.decisionH1.AR.r = not.reached.decisionH1.AR.r[!reached.decisionH1_n.AR.r] } AcceptedH0.underH1_n.AR.l = LR1_n.l[not.reached.decisionH1.AR.l]<=RejectH1.threshold RejectedH0.underH1_n.AR.l = LR1_n.l[not.reached.decisionH1.AR.l]>=RejectH0.threshold reached.decisionH1_n.AR.l = AcceptedH0.underH1_n.AR.l|RejectedH0.underH1_n.AR.l if(any(reached.decisionH1_n.AR.l)){ decision.underH1.AR.l[not.reached.decisionH1.AR.l[AcceptedH0.underH1_n.AR.l]] = 'A' decision.underH1.AR.l[not.reached.decisionH1.AR.l[RejectedH0.underH1_n.AR.l]] = 'R' N1.AR.l[not.reached.decisionH1.AR.l[reached.decisionH1_n.AR.l]] = batch.size[n+1] not.reached.decisionH1.AR.l = not.reached.decisionH1.AR.l[!reached.decisionH1_n.AR.l] } not.reached.decisionH1.AR = union(not.reached.decisionH1.AR.r, not.reached.decisionH1.AR.l) } } accepted.by.both1 = intersect(which(decision.underH1.AR.r=='A'), which(decision.underH1.AR.l=='A')) onlyrejected.by.right1 = intersect(which(decision.underH1.AR.r=='R'), which(decision.underH1.AR.l!='R')) onlyrejected.by.left1 = intersect(which(decision.underH1.AR.r!='R'), which(decision.underH1.AR.l=='R')) rejected.by.both1 = intersect(which(decision.underH1.AR.r=='R'), which(decision.underH1.AR.l=='R')) N1.AR[accepted.by.both1] = pmax(N1.AR.r[accepted.by.both1], N1.AR.l[accepted.by.both1]) N1.AR[onlyrejected.by.right1] = N1.AR.r[onlyrejected.by.right1] N1.AR[onlyrejected.by.left1] = N1.AR.l[onlyrejected.by.left1] N1.AR[rejected.by.both1] = pmin(N1.AR.r[rejected.by.both1], N1.AR.l[rejected.by.both1]) onlyaccepted.by.right1 = intersect(which(decision.underH1.AR.r=='A'), which(is.na(decision.underH1.AR.l))) onlyaccepted.by.left1 = intersect(which(is.na(decision.underH1.AR.r)), which(decision.underH1.AR.l=='A')) both.inconclusive1 = intersect(which(is.na(decision.underH1.AR.r)), which(is.na(decision.underH1.AR.l))) all.inconclusive1 = c(onlyaccepted.by.right1, onlyaccepted.by.left1, both.inconclusive1) nNot.reached.decisionH1.AR = length(all.inconclusive1) PowerH1.AR[c(onlyrejected.by.right1, onlyrejected.by.left1, rejected.by.both1)] = T actual.PowerH1.AR = mean(PowerH1.AR) + sum(c(LR1_n.r[onlyaccepted.by.left1], LR1_n.l[onlyaccepted.by.right1], pmax(LR1_n.r[both.inconclusive1], LR1_n.l[both.inconclusive1]))>= termination.threshold)/nReplicate actual.type2.errorH1.AR = 1 - actual.PowerH1.AR EN1 = mean(N1.AR) c(theta1, actual.type2.errorH1.AR, EN1) } if(length(theta)==1) out.OCandASN = matrix(data = out.OCandASN, nrow = 1, ncol = 3, byrow = T) out.OCandASN = as.data.frame(out.OCandASN) colnames(out.OCandASN) = c('theta', 'acceptH0.prob', 'EN') if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste('Parameter value(s): ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste('Probability of accepting H0: ', paste(round(out.OCandASN$acceptH0.prob, 3), collapse = ', '), sep = '')) print(paste('Expected sample size: ', paste(round(out.OCandASN$EN, 2), collapse = ', '), sep = '')) print("=========================================================================") cat('\n') } return(out.OCandASN) } } OCandASN.MSPRT_oneT = function(theta, design.MSPRT.object, termination.threshold, side = 'right', theta0 = 0, Type1.target =.005, Type2.target = .2, N.max, batch.size, nReplicate = 1e+6, nCore = max(1, detectCores() - 1), verbose = T, seed = 1){ if(!missing(design.MSPRT.object)) side = design.MSPRT.object$side if(side!='both'){ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max nAnalyses = design.MSPRT.object$nAnalyses Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold nReplicate = design.MSPRT.object$nReplicate RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if((batch.size[1]>2)||any(batch.size[-1]>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample t test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample t test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) }else{ if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = c(2, rep(1, N.max-2))} }else{ if(batch.size[1]<2){ return("First batch size should be at least 2") }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch.size should add up to N.max") } } } nAnalyses = length(batch.size) RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if((batch.size[1]>2)||any(batch.size[-1]>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample t test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample t test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) } registerDoParallel(cores = nCore) out.OCandASN = foreach(theta1 = theta, .combine = 'rbind') %dopar% { signed_t.alpha = (2*(side=='right')-1)*qt(Type1.target, df = N.max -1, lower.tail = F) cumSS1_n = cumsum1_n = LR1_n = numeric(nReplicate) type2.error.AR = rep(F, nReplicate) N1.AR = rep(N.max, nReplicate) not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) for(n in 1:nAnalyses){ if(length(not.reached.decisionH1.AR)>0){ if(length(not.reached.decisionH1.AR)>1){ obs1_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1, 1) }) }else{ obs1_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + rowSums(obs1_n) cumSS1_n[not.reached.decisionH1.AR] = cumSS1_n[not.reached.decisionH1.AR] + rowSums(obs1_n^2) xbar1_n = cumsum1_n[not.reached.decisionH1.AR]/batch.size[n+1] divisor.s1_n.sq = cumSS1_n[not.reached.decisionH1.AR] - ((cumsum1_n[not.reached.decisionH1.AR])^2)/batch.size[n+1] LR1_n[not.reached.decisionH1.AR] = ((1 + (batch.size[n+1]*((xbar1_n - theta0)^2))/divisor.s1_n.sq)/ (1 + (batch.size[n+1]*((xbar1_n - (theta0 + signed_t.alpha* sqrt(divisor.s1_n.sq/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1_n.sq))^(batch.size[n+1]/2) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N1.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold)/nReplicate EN1 = mean(N1.AR) c(theta1, actual.type2.error.AR, EN1) } if(length(theta)==1) out.OCandASN = matrix(data = out.OCandASN, nrow = 1, ncol = 3, byrow = T) out.OCandASN = as.data.frame(out.OCandASN) colnames(out.OCandASN) = c('theta', 'acceptH0.prob', 'EN') if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste('Parameter value(s): ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste('Probability of accepting H0: ', paste(round(out.OCandASN$acceptH0.prob, 3), collapse = ', '), sep = '')) print(paste('Expected sample size: ', paste(round(out.OCandASN$EN, 2), collapse = ', '), sep = '')) print("=========================================================================") cat('\n') } return(out.OCandASN) }else{ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max nAnalyses = design.MSPRT.object$nAnalyses Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold nReplicate = design.MSPRT.object$nReplicate RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if((batch.size[1]>2)||any(batch.size[-1]>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample t test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample t test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) }else{ if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = c(2, rep(1, N.max-2))} }else{ if(batch.size[1]<2){ return("First batch size should be at least 2") }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch.size should add up to N.max") } } } nAnalyses = length(batch.size) RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if((batch.size[1]>2)||any(batch.size[-1]>1)){ cat('\n') print("==========================================================================") print("OC and ASN of the group sequential MSPRT for a one-sample t test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("OC and ASN of the sequential MSPRT for a one-sample t test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch.size = c(0, cumsum(batch.size)) } registerDoParallel(cores = nCore) out.OCandASN = foreach(theta1 = theta, .combine = 'rbind') %dopar% { t.alpha = qt(Type1.target/2, df = N.max -1, lower.tail = F) cumSS1_n = cumsum1_n = LR1_n.r = LR1_n.l = numeric(nReplicate) PowerH1.AR = rep(F, nReplicate) N1.AR = N1.AR.r = N1.AR.l = rep(N.max, nReplicate) decision.underH1.AR.r = decision.underH1.AR.l = rep(NA, nReplicate) not.reached.decisionH1.AR = not.reached.decisionH1.AR.r = not.reached.decisionH1.AR.l = 1:nReplicate set.seed(seed) for(n in 1:nAnalyses){ if(length(not.reached.decisionH1.AR)>0){ if(length(not.reached.decisionH1.AR)>1){ obs1_n = mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1, 1) }) }else{ obs1_n = matrix(mapply(X = 1:(batch.size[n+1]-batch.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1, 1) }), nrow = 1, ncol = batch.size[n+1]-batch.size[n], byrow = T) } cumsum1_n[not.reached.decisionH1.AR] = cumsum1_n[not.reached.decisionH1.AR] + rowSums(obs1_n) cumSS1_n[not.reached.decisionH1.AR] = cumSS1_n[not.reached.decisionH1.AR] + rowSums(obs1_n^2) xbar1_n.r = cumsum1_n[not.reached.decisionH1.AR.r]/batch.size[n+1] divisor.s1_n.sq.r = cumSS1_n[not.reached.decisionH1.AR.r] - ((cumsum1_n[not.reached.decisionH1.AR.r])^2)/batch.size[n+1] xbar1_n.l = cumsum1_n[not.reached.decisionH1.AR.l]/batch.size[n+1] divisor.s1_n.sq.l = cumSS1_n[not.reached.decisionH1.AR.l] - ((cumsum1_n[not.reached.decisionH1.AR.l])^2)/batch.size[n+1] LR1_n.r[not.reached.decisionH1.AR.r] = ((1 + (batch.size[n+1]*((xbar1_n.r - theta0)^2))/divisor.s1_n.sq.r)/ (1 + (batch.size[n+1]*((xbar1_n.r - (theta0 + t.alpha* sqrt(divisor.s1_n.sq.r/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1_n.sq.r))^(batch.size[n+1]/2) LR1_n.l[not.reached.decisionH1.AR.l] = ((1 + (batch.size[n+1]*((xbar1_n.l - theta0)^2))/divisor.s1_n.sq.l)/ (1 + (batch.size[n+1]*((xbar1_n.l - (theta0 - t.alpha* sqrt(divisor.s1_n.sq.l/(N.max*(batch.size[n+1]-1)))))^2))/ divisor.s1_n.sq.l))^(batch.size[n+1]/2) AcceptedH0.underH1_n.AR.r = LR1_n.r[not.reached.decisionH1.AR.r]<=RejectH1.threshold RejectedH0.underH1_n.AR.r = LR1_n.r[not.reached.decisionH1.AR.r]>=RejectH0.threshold reached.decisionH1_n.AR.r = AcceptedH0.underH1_n.AR.r|RejectedH0.underH1_n.AR.r if(any(reached.decisionH1_n.AR.r)){ decision.underH1.AR.r[not.reached.decisionH1.AR.r[AcceptedH0.underH1_n.AR.r]] = 'A' decision.underH1.AR.r[not.reached.decisionH1.AR.r[RejectedH0.underH1_n.AR.r]] = 'R' N1.AR.r[not.reached.decisionH1.AR.r[reached.decisionH1_n.AR.r]] = batch.size[n+1] not.reached.decisionH1.AR.r = not.reached.decisionH1.AR.r[!reached.decisionH1_n.AR.r] } AcceptedH0.underH1_n.AR.l = LR1_n.l[not.reached.decisionH1.AR.l]<=RejectH1.threshold RejectedH0.underH1_n.AR.l = LR1_n.l[not.reached.decisionH1.AR.l]>=RejectH0.threshold reached.decisionH1_n.AR.l = AcceptedH0.underH1_n.AR.l|RejectedH0.underH1_n.AR.l if(any(reached.decisionH1_n.AR.l)){ decision.underH1.AR.l[not.reached.decisionH1.AR.l[AcceptedH0.underH1_n.AR.l]] = 'A' decision.underH1.AR.l[not.reached.decisionH1.AR.l[RejectedH0.underH1_n.AR.l]] = 'R' N1.AR.l[not.reached.decisionH1.AR.l[reached.decisionH1_n.AR.l]] = batch.size[n+1] not.reached.decisionH1.AR.l = not.reached.decisionH1.AR.l[!reached.decisionH1_n.AR.l] } not.reached.decisionH1.AR = union(not.reached.decisionH1.AR.r, not.reached.decisionH1.AR.l) } } accepted.by.both1 = intersect(which(decision.underH1.AR.r=='A'), which(decision.underH1.AR.l=='A')) onlyrejected.by.right1 = intersect(which(decision.underH1.AR.r=='R'), which(decision.underH1.AR.l!='R')) onlyrejected.by.left1 = intersect(which(decision.underH1.AR.r!='R'), which(decision.underH1.AR.l=='R')) rejected.by.both1 = intersect(which(decision.underH1.AR.r=='R'), which(decision.underH1.AR.l=='R')) N1.AR[accepted.by.both1] = pmax(N1.AR.r[accepted.by.both1], N1.AR.l[accepted.by.both1]) N1.AR[onlyrejected.by.right1] = N1.AR.r[onlyrejected.by.right1] N1.AR[onlyrejected.by.left1] = N1.AR.l[onlyrejected.by.left1] N1.AR[rejected.by.both1] = pmin(N1.AR.r[rejected.by.both1], N1.AR.l[rejected.by.both1]) onlyaccepted.by.right1 = intersect(which(decision.underH1.AR.r=='A'), which(is.na(decision.underH1.AR.l))) onlyaccepted.by.left1 = intersect(which(is.na(decision.underH1.AR.r)), which(decision.underH1.AR.l=='A')) both.inconclusive1 = intersect(which(is.na(decision.underH1.AR.r)), which(is.na(decision.underH1.AR.l))) all.inconclusive1 = c(onlyaccepted.by.right1, onlyaccepted.by.left1, both.inconclusive1) nNot.reached.decisionH1.AR = length(all.inconclusive1) PowerH1.AR[c(onlyrejected.by.right1, onlyrejected.by.left1, rejected.by.both1)] = T actual.PowerH1.AR.r = mean(PowerH1.AR) + sum(c(LR1_n.r[onlyaccepted.by.left1], LR1_n.l[onlyaccepted.by.right1], pmax(LR1_n.r[both.inconclusive1], LR1_n.l[both.inconclusive1]))>= termination.threshold)/nReplicate actual.type2.errorH1.AR = 1 - actual.PowerH1.AR.r EN1 = mean(N1.AR) c(theta1, actual.type2.errorH1.AR, EN1) } if(length(theta)==1) out.OCandASN = matrix(data = out.OCandASN, nrow = 1, ncol = 3, byrow = T) out.OCandASN = as.data.frame(out.OCandASN) colnames(out.OCandASN) = c('theta', 'acceptH0.prob', 'EN') if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste('Parameter value(s): ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste('Probability of accepting H0: ', paste(round(out.OCandASN$acceptH0.prob, 3), collapse = ', '), sep = '')) print(paste('Expected sample size: ', paste(round(out.OCandASN$EN, 2), collapse = ', '), sep = '')) print("=========================================================================") cat('\n') } return(out.OCandASN) } } OCandASN.MSPRT_twoZ = function(theta, design.MSPRT.object, termination.threshold, side = 'right', theta0 = 0, Type1.target =.005, Type2.target = .2, N1.max, N2.max, sigma1 = 1, sigma2 = 1, batch1.size, batch2.size, nReplicate = 1e+6, nCore = max(1, detectCores() - 1), verbose = T, seed = 1){ if(!missing(design.MSPRT.object)) side = design.MSPRT.object$side if(side!='both'){ if(!missing(design.MSPRT.object)){ batch1.size = design.MSPRT.object$batch1.size batch2.size = design.MSPRT.object$batch2.size N1.max = design.MSPRT.object$N1.max N2.max = design.MSPRT.object$N2.max nAnalyses = design.MSPRT.object$nAnalyses Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 sigma1 = design.MSPRT.object$sigma1 sigma2 = design.MSPRT.object$sigma2 termination.threshold = design.MSPRT.object$termination.threshold theta.UMPBT = design.MSPRT.object$theta.UMPBT nReplicate = design.MSPRT.object$nReplicate RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch1.size>1)||any(batch2.size>1)){ cat('\n') print("=========================================================================") print("OC and ASN of the group sequential MSPRT for a two-sample z test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("OC and ASN of the sequential MSPRT for a two-sample z test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma1, sep = "")) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma2, sep = "")) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) }else{ if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return(print("Either 'batch1.size' or 'N1.max' needs to be specified")) }else{batch1.size = rep(1, N1.max)} }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return(print("Sum of batch1.size should add up to N1.max")) } } if(missing(batch2.size)){ if(missing(N2.max)){ return(print("Either 'batch2.size' or 'N2.max' needs to be specified")) }else{batch2.size = rep(1, N2.max)} }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N1.max) return(print("Sum of batch2.size should add up to N2.max")) } } nAnalyses = length(batch1.size) theta.UMPBT = UMPBT.alt(test.type = 'twoZ', side = side, theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target, sigma1 = sigma1, sigma2 = sigma2) RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch1.size>1)||any(batch2.size>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a two-sample z test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a two-sample z test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma1, sep = "")) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma2, sep = "")) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) } registerDoParallel(cores = nCore) out.OCandASN = foreach(theta1 = theta, .combine = 'rbind') %dopar% { cumsum11_n = cumsum21_n = LR1_n = numeric(nReplicate) type2.error.AR = rep(F, nReplicate) N11.AR = rep(N1.max, nReplicate) N21.AR = rep(N2.max, nReplicate) not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) for(n in 1:nAnalyses){ if(length(not.reached.decisionH1.AR)>0){ sum11_n = rnorm(length(not.reached.decisionH1.AR), (batch1.size[n+1]-batch1.size[n])*(theta1/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum21_n = rnorm(length(not.reached.decisionH1.AR), -(batch2.size[n+1]-batch2.size[n])*(theta1/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum11_n[not.reached.decisionH1.AR] = cumsum11_n[not.reached.decisionH1.AR] + sum11_n cumsum21_n[not.reached.decisionH1.AR] = cumsum21_n[not.reached.decisionH1.AR] + sum21_n LR1_n[not.reached.decisionH1.AR] = exp(-(((theta.UMPBT^2) - (theta0^2)) - 2*(theta.UMPBT - theta0)* (cumsum11_n[not.reached.decisionH1.AR]/batch1.size[n+1] - cumsum21_n[not.reached.decisionH1.AR]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N11.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch1.size[n+1] N21.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch2.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold)/nReplicate EN11 = mean(N11.AR) EN21 = mean(N21.AR) c(theta1, actual.type2.error.AR, EN11, EN21) } if(length(theta)==1) out.OCandASN = matrix(data = out.OCandASN, nrow = 1, ncol = 4, byrow = T) out.OCandASN = as.data.frame(out.OCandASN) colnames(out.OCandASN) = c('theta', 'acceptH0.prob', 'EN1', 'EN2') if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste('Parameter value(s): ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste('Probability of accepting H0: ', paste(round(out.OCandASN$acceptH0.prob, 3), collapse = ', '), sep = '')) print("Expected sample size:") print(paste(' Group 1 - ', paste(round(out.OCandASN$EN1, 2), collapse = ', '), sep = '')) print(paste(' Group 2 - ', paste(round(out.OCandASN$EN2, 2), collapse = ', '), sep = '')) print("=========================================================================") cat('\n') } return(out.OCandASN) }else{ if(!missing(design.MSPRT.object)){ batch1.size = design.MSPRT.object$batch1.size batch2.size = design.MSPRT.object$batch2.size N1.max = design.MSPRT.object$N1.max N2.max = design.MSPRT.object$N2.max nAnalyses = design.MSPRT.object$nAnalyses Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 sigma1 = design.MSPRT.object$sigma1 sigma2 = design.MSPRT.object$sigma2 termination.threshold = design.MSPRT.object$termination.threshold theta.UMPBT = design.MSPRT.object$theta.UMPBT nReplicate = design.MSPRT.object$nReplicate RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if(any(batch1.size>1)||any(batch2.size>1)){ cat('\n') print("=========================================================================") print("OC and ASN of the group sequential MSPRT for a two-sample z test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("OC and ASN of the sequential MSPRT for a two-sample z test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma1, sep = "")) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma2, sep = "")) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) }else{ if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return(print("Either 'batch1.size' or 'N1.max' needs to be specified")) }else{batch1.size = rep(1, N1.max)} }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return(print("Sum of batch1.size should add up to N1.max")) } } if(missing(batch2.size)){ if(missing(N2.max)){ return(print("Either 'batch2.size' or 'N2.max' needs to be specified")) }else{batch2.size = rep(1, N2.max)} }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N1.max) return(print("Sum of batch2.size should add up to N2.max")) } } nAnalyses = length(batch1.size) theta.UMPBT = list('right' = UMPBT.alt(test.type = 'twoZ', side = 'right', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, sigma1 = sigma1, sigma2 = sigma2), 'left' = UMPBT.alt(test.type = 'twoZ', side = 'left', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, sigma1 = sigma1, sigma2 = sigma2)) RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if(any(batch1.size>1)||any(batch2.size>1)){ cat('\n') print("=========================================================================") print("OC and ASN of the group sequential MSPRT for a two-sample z test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("OC and ASN of the sequential MSPRT for a two-sample z test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma1, sep = "")) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma2, sep = "")) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) } registerDoParallel(cores = nCore) out.OCandASN = foreach(theta1 = theta, .combine = 'rbind') %dopar% { cumsum11_n = cumsum21_n = LR1_n.r = LR1_n.l = numeric(nReplicate) PowerH1.AR = rep(F, nReplicate) N11.AR = N11.AR.r = N11.AR.l = rep(N1.max, nReplicate) N21.AR = N21.AR.r = N21.AR.l = rep(N2.max, nReplicate) decision.underH1.AR.r = decision.underH1.AR.l = rep(NA, nReplicate) not.reached.decisionH1.AR = not.reached.decisionH1.AR.r = not.reached.decisionH1.AR.l = 1:nReplicate set.seed(seed) for(n in 1:nAnalyses){ if(length(not.reached.decisionH1.AR)>0){ sum11_n = rnorm(length(not.reached.decisionH1.AR), (batch1.size[n+1]-batch1.size[n])*(theta1/2), sqrt(batch1.size[n+1]-batch1.size[n])*sigma1) sum21_n = rnorm(length(not.reached.decisionH1.AR), -(batch2.size[n+1]-batch2.size[n])*(theta1/2), sqrt(batch2.size[n+1]-batch2.size[n])*sigma2) cumsum11_n[not.reached.decisionH1.AR] = cumsum11_n[not.reached.decisionH1.AR] + sum11_n cumsum21_n[not.reached.decisionH1.AR] = cumsum21_n[not.reached.decisionH1.AR] + sum21_n LR1_n.r[not.reached.decisionH1.AR.r] = exp(-(((theta.UMPBT$right^2) - (theta0^2)) - 2*(theta.UMPBT$right - theta0)* (cumsum11_n[not.reached.decisionH1.AR.r]/batch1.size[n+1] - cumsum21_n[not.reached.decisionH1.AR.r]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) LR1_n.l[not.reached.decisionH1.AR.l] = exp(-(((theta.UMPBT$left^2) - (theta0^2)) - 2*(theta.UMPBT$left - theta0)* (cumsum11_n[not.reached.decisionH1.AR.l]/batch1.size[n+1] - cumsum21_n[not.reached.decisionH1.AR.l]/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0.underH1_n.AR.r = LR1_n.r[not.reached.decisionH1.AR.r]<=RejectH1.threshold RejectedH0.underH1_n.AR.r = LR1_n.r[not.reached.decisionH1.AR.r]>=RejectH0.threshold reached.decisionH1_n.AR.r = AcceptedH0.underH1_n.AR.r|RejectedH0.underH1_n.AR.r if(any(reached.decisionH1_n.AR.r)){ decision.underH1.AR.r[not.reached.decisionH1.AR.r[AcceptedH0.underH1_n.AR.r]] = 'A' decision.underH1.AR.r[not.reached.decisionH1.AR.r[RejectedH0.underH1_n.AR.r]] = 'R' N11.AR.r[not.reached.decisionH1.AR.r[reached.decisionH1_n.AR.r]] = batch1.size[n+1] N21.AR.r[not.reached.decisionH1.AR.r[reached.decisionH1_n.AR.r]] = batch2.size[n+1] not.reached.decisionH1.AR.r = not.reached.decisionH1.AR.r[!reached.decisionH1_n.AR.r] } AcceptedH0.underH1_n.AR.l = LR1_n.l[not.reached.decisionH1.AR.l]<=RejectH1.threshold RejectedH0.underH1_n.AR.l = LR1_n.l[not.reached.decisionH1.AR.l]>=RejectH0.threshold reached.decisionH1_n.AR.l = AcceptedH0.underH1_n.AR.l|RejectedH0.underH1_n.AR.l if(any(reached.decisionH1_n.AR.l)){ decision.underH1.AR.l[not.reached.decisionH1.AR.l[AcceptedH0.underH1_n.AR.l]] = 'A' decision.underH1.AR.l[not.reached.decisionH1.AR.l[RejectedH0.underH1_n.AR.l]] = 'R' N11.AR.l[not.reached.decisionH1.AR.l[reached.decisionH1_n.AR.l]] = batch1.size[n+1] N21.AR.l[not.reached.decisionH1.AR.l[reached.decisionH1_n.AR.l]] = batch2.size[n+1] not.reached.decisionH1.AR.l = not.reached.decisionH1.AR.l[!reached.decisionH1_n.AR.l] } not.reached.decisionH1.AR = union(not.reached.decisionH1.AR.r, not.reached.decisionH1.AR.l) } } accepted.by.both1 = intersect(which(decision.underH1.AR.r=='A'), which(decision.underH1.AR.l=='A')) onlyrejected.by.right1 = intersect(which(decision.underH1.AR.r=='R'), which(decision.underH1.AR.l!='R')) onlyrejected.by.left1 = intersect(which(decision.underH1.AR.r!='R'), which(decision.underH1.AR.l=='R')) rejected.by.both1 = intersect(which(decision.underH1.AR.r=='R'), which(decision.underH1.AR.l=='R')) N11.AR[accepted.by.both1] = pmax(N11.AR.r[accepted.by.both1], N11.AR.l[accepted.by.both1]) N11.AR[onlyrejected.by.right1] = N11.AR.r[onlyrejected.by.right1] N11.AR[onlyrejected.by.left1] = N11.AR.l[onlyrejected.by.left1] N11.AR[rejected.by.both1] = pmin(N11.AR.r[rejected.by.both1], N11.AR.l[rejected.by.both1]) N21.AR[accepted.by.both1] = pmax(N21.AR.r[accepted.by.both1], N21.AR.l[accepted.by.both1]) N21.AR[onlyrejected.by.right1] = N21.AR.r[onlyrejected.by.right1] N21.AR[onlyrejected.by.left1] = N21.AR.l[onlyrejected.by.left1] N21.AR[rejected.by.both1] = pmin(N21.AR.r[rejected.by.both1], N21.AR.l[rejected.by.both1]) onlyaccepted.by.right1 = intersect(which(decision.underH1.AR.r=='A'), which(is.na(decision.underH1.AR.l))) onlyaccepted.by.left1 = intersect(which(is.na(decision.underH1.AR.r)), which(decision.underH1.AR.l=='A')) both.inconclusive1 = intersect(which(is.na(decision.underH1.AR.r)), which(is.na(decision.underH1.AR.l))) all.inconclusive1 = c(onlyaccepted.by.right1, onlyaccepted.by.left1, both.inconclusive1) nNot.reached.decisionH1.AR = length(all.inconclusive1) PowerH1.AR[c(onlyrejected.by.right1, onlyrejected.by.left1, rejected.by.both1)] = T actual.PowerH1.AR = mean(PowerH1.AR) + sum(c(LR1_n.r[onlyaccepted.by.left1], LR1_n.l[onlyaccepted.by.right1], pmax(LR1_n.r[both.inconclusive1], LR1_n.l[both.inconclusive1]))>= termination.threshold)/nReplicate actual.type2.errorH1.AR = 1 - actual.PowerH1.AR EN11 = mean(N11.AR) EN21 = mean(N21.AR) c(theta1, actual.type2.errorH1.AR, EN11, EN21) } if(length(theta)==1) out.OCandASN = matrix(data = out.OCandASN, nrow = 1, ncol = 4, byrow = T) out.OCandASN = as.data.frame(out.OCandASN) colnames(out.OCandASN) = c('theta', 'acceptH0.prob', 'EN1', 'EN2') if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste('Parameter value(s): ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste('Probability of accepting H0: ', paste(round(out.OCandASN$acceptH0.prob, 3), collapse = ', '), sep = '')) print("Expected sample size:") print(paste(' Group 1 - ', paste(round(out.OCandASN$EN1, 2), collapse = ', '), sep = '')) print(paste(' Group 2 - ', paste(round(out.OCandASN$EN2, 2), collapse = ', '), sep = '')) print("=========================================================================") cat('\n') } return(out.OCandASN) } } OCandASN.MSPRT_twoT = function(theta, design.MSPRT.object, termination.threshold, side = 'right', theta0 = 0, Type1.target =.005, Type2.target = .2, N1.max, N2.max, batch1.size, batch2.size, nReplicate = 1e+6, nCore = max(1, detectCores() - 1), verbose = T, seed = 1){ if(!missing(design.MSPRT.object)) side = design.MSPRT.object$side if(side!='both'){ if(!missing(design.MSPRT.object)){ batch1.size = design.MSPRT.object$batch1.size batch2.size = design.MSPRT.object$batch2.size N1.max = design.MSPRT.object$N1.max N2.max = design.MSPRT.object$N2.max nAnalyses = design.MSPRT.object$nAnalyses Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold nReplicate = design.MSPRT.object$nReplicate RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch1.size>1)||any(batch2.size>1)){ cat('\n') print("=========================================================================") print("Designing the group sequential MSPRT for a two-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Designing the sequential MSPRT for a two-sample t test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) }else{ if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return("Either 'batch1.size' or 'N1.max' needs to be specified") }else{batch1.size = c(2, rep(1, N1.max-2))} }else{ if(batch1.size[1]<2){ return("First batch size in Group 1 should be at least 2") }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return("Sum of batch1.size should add up to N1.max") } } } if(missing(batch2.size)){ if(missing(N2.max)){ return("Either 'batch2.size' or 'N2.max' needs to be specified") }else{batch2.size = c(2, rep(1, N2.max-2))} }else{ if(batch2.size[1]<2){ return("First batch size in Group 2 should be at least 2") }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N2.max) return("Sum of batch2.size should add up to N2.max") } } } nAnalyses = length(batch1.size) RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if((batch1.size[1]>2)||any(batch1.size[-1]>1)|| (batch2.size[1]>2)||any(batch2.size[-1]>1)){ cat('\n') print("=========================================================================") print("OC and ASN of the group sequential MSPRT for a two-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("OC and ASN of the sequential MSPRT for a two-sample t test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) } registerDoParallel(cores = nCore) out.OCandASN = foreach(theta1 = theta, .combine = 'rbind') %dopar% { signed_t.alpha = (2*(side=='right')-1)* qt(Type1.target, df = N1.max + N2.max -2, lower.tail = F) cumSS11_n = cumSS21_n = cumsum11_n = cumsum21_n = LR1_n = numeric(nReplicate) type2.error.AR = rep(F, nReplicate) N11.AR = rep(N1.max, nReplicate) N21.AR = rep(N2.max, nReplicate) not.reached.decisionH1.AR = 1:nReplicate set.seed(seed) for(n in 1:nAnalyses){ if(length(not.reached.decisionH1.AR)>0){ obs11_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1/2, 1) }) obs21_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), -theta1/2, 1) }) cumsum11_n[not.reached.decisionH1.AR] = cumsum11_n[not.reached.decisionH1.AR] + rowSums(obs11_n) cumsum21_n[not.reached.decisionH1.AR] = cumsum21_n[not.reached.decisionH1.AR] + rowSums(obs21_n) cumSS11_n[not.reached.decisionH1.AR] = cumSS11_n[not.reached.decisionH1.AR] + rowSums(obs11_n^2) cumSS21_n[not.reached.decisionH1.AR] = cumSS21_n[not.reached.decisionH1.AR] + rowSums(obs21_n^2) xbar.diff1_n = cumsum11_n[not.reached.decisionH1.AR]/batch1.size[n+1] - cumsum21_n[not.reached.decisionH1.AR]/batch2.size[n+1] divisor.pooled.sd1_n.sq = cumSS11_n[not.reached.decisionH1.AR] - ((cumsum11_n[not.reached.decisionH1.AR])^2)/batch1.size[n+1] + cumSS21_n[not.reached.decisionH1.AR] - ((cumsum21_n[not.reached.decisionH1.AR])^2)/batch2.size[n+1] LR1_n[not.reached.decisionH1.AR] = ((1 + ((xbar.diff1_n - theta0)^2)/(divisor.pooled.sd1_n.sq* (1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1_n - (theta0 + signed_t.alpha* sqrt((divisor.pooled.sd1_n.sq/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1_n.sq*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]<=RejectH1.threshold) RejectedH0.underH1_n.AR = which(LR1_n[not.reached.decisionH1.AR]>=RejectH0.threshold) reached.decisionH1_n.AR = union(AcceptedH0.underH1_n.AR, RejectedH0.underH1_n.AR) if(length(reached.decisionH1_n.AR)>0){ N11.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch1.size[n+1] N21.AR[not.reached.decisionH1.AR[reached.decisionH1_n.AR]] = batch2.size[n+1] type2.error.AR[not.reached.decisionH1.AR[AcceptedH0.underH1_n.AR]] = T not.reached.decisionH1.AR = not.reached.decisionH1.AR[-reached.decisionH1_n.AR] } } } actual.type2.error.AR = mean(type2.error.AR) + sum(LR1_n[not.reached.decisionH1.AR]<termination.threshold)/nReplicate EN11 = mean(N11.AR) EN21 = mean(N21.AR) c(theta1, actual.type2.error.AR, EN11, EN21) } if(length(theta)==1) out.OCandASN = matrix(data = out.OCandASN, nrow = 1, ncol = 4, byrow = T) out.OCandASN = as.data.frame(out.OCandASN) colnames(out.OCandASN) = c('theta', 'acceptH0.prob', 'EN1', 'EN2') if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste('Parameter value(s): ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste('Probability of accepting H0: ', paste(round(out.OCandASN$acceptH0.prob, 3), collapse = ', '), sep = '')) print("Expected sample size:") print(paste(' Group 1 - ', paste(round(out.OCandASN$EN1, 2), collapse = ', '), sep = '')) print(paste(' Group 2 - ', paste(round(out.OCandASN$EN2, 2), collapse = ', '), sep = '')) print("=========================================================================") cat('\n') } return(out.OCandASN) }else{ if(!missing(design.MSPRT.object)){ batch1.size = design.MSPRT.object$batch1.size batch2.size = design.MSPRT.object$batch2.size N1.max = design.MSPRT.object$N1.max N2.max = design.MSPRT.object$N2.max nAnalyses = design.MSPRT.object$nAnalyses Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold nReplicate = design.MSPRT.object$nReplicate RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if((batch1.size[1]>2)||any(batch1.size[-1]>1)|| (batch2.size[1]>2)||any(batch2.size[-1]>1)){ cat('\n') print("=========================================================================") print("OC and ASN of the group sequential MSPRT for a two-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("OC and ASN of the sequential MSPRT for a two-sample t test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) }else{ if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return("Either 'batch1.size' or 'N1.max' needs to be specified") }else{batch1.size = c(2, rep(1, N1.max-2))} }else{ if(batch1.size[1]<2){ return("First batch size in Group 1 should be at least 2") }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return("Sum of batch1.size should add up to N1.max") } } } if(missing(batch2.size)){ if(missing(N2.max)){ return("Either 'batch2.size' or 'N2.max' needs to be specified") }else{batch2.size = c(2, rep(1, N2.max-2))} }else{ if(batch2.size[1]<2){ return("First batch size in Group 2 should be at least 2") }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N2.max) return("Sum of batch2.size should add up to N2.max") } } } nAnalyses = length(batch1.size) RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if((batch1.size[1]>2)||any(batch1.size[-1]>1)|| (batch2.size[1]>2)||any(batch2.size[-1]>1)){ cat('\n') print("=========================================================================") print("OC and ASN of the group sequential MSPRT for a two-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("OC and ASN of the sequential MSPRT for a two-sample t test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste("Total number of sequential analyses: ", nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste('Parameter value(s) where OC and ASN is desired: ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("Calculating the OC and ASN ...") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) } registerDoParallel(cores = nCore) out.OCandASN = foreach(theta1 = theta, .combine = 'rbind') %dopar% { t.alpha = qt(Type1.target/2, df = N1.max + N2.max -2, lower.tail = F) cumSS11_n = cumSS21_n = cumsum11_n = cumsum21_n = LR1_n.r = LR1_n.l = numeric(nReplicate) PowerH1.AR = rep(F, nReplicate) N11.AR = N11.AR.r = N11.AR.l = rep(N1.max, nReplicate) N21.AR = N21.AR.r = N21.AR.l = rep(N2.max, nReplicate) decision.underH1.AR.r = decision.underH1.AR.l = rep(NA, nReplicate) not.reached.decisionH1.AR = not.reached.decisionH1.AR.r = not.reached.decisionH1.AR.l = 1:nReplicate set.seed(seed) for(n in 1:nAnalyses){ if(length(not.reached.decisionH1.AR)>0){ if(length(not.reached.decisionH1.AR)>1){ obs11_n = mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1/2, 1) }) }else{ obs11_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), theta1/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } if(length(not.reached.decisionH1.AR)>1){ obs21_n = mapply(X = 1:(batch2.size[n+1]-batch2.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), -theta1/2, 1) }) }else{ obs21_n = matrix(mapply(X = 1:(batch1.size[n+1]-batch1.size[n]), FUN = function(X){ rnorm(length(not.reached.decisionH1.AR), -theta1/2, 1) }), nrow = 1, ncol = batch1.size[n+1]-batch1.size[n], byrow = T) } cumsum11_n[not.reached.decisionH1.AR] = cumsum11_n[not.reached.decisionH1.AR] + rowSums(obs11_n) cumsum21_n[not.reached.decisionH1.AR] = cumsum21_n[not.reached.decisionH1.AR] + rowSums(obs21_n) cumSS11_n[not.reached.decisionH1.AR] = cumSS11_n[not.reached.decisionH1.AR] + rowSums(obs11_n^2) cumSS21_n[not.reached.decisionH1.AR] = cumSS21_n[not.reached.decisionH1.AR] + rowSums(obs21_n^2) xbar.diff1_n.r = cumsum11_n[not.reached.decisionH1.AR.r]/batch1.size[n+1] - cumsum21_n[not.reached.decisionH1.AR.r]/batch2.size[n+1] divisor.pooled.sd1_n.sq.r = cumSS11_n[not.reached.decisionH1.AR.r] - ((cumsum11_n[not.reached.decisionH1.AR.r])^2)/batch1.size[n+1] + cumSS21_n[not.reached.decisionH1.AR.r] - ((cumsum21_n[not.reached.decisionH1.AR.r])^2)/batch2.size[n+1] xbar.diff1_n.l = cumsum11_n[not.reached.decisionH1.AR.l]/batch1.size[n+1] - cumsum21_n[not.reached.decisionH1.AR.l]/batch2.size[n+1] divisor.pooled.sd1_n.sq.l = cumSS11_n[not.reached.decisionH1.AR.l] - ((cumsum11_n[not.reached.decisionH1.AR.l])^2)/batch1.size[n+1] + cumSS21_n[not.reached.decisionH1.AR.l] - ((cumsum21_n[not.reached.decisionH1.AR.l])^2)/batch2.size[n+1] LR1_n.r[not.reached.decisionH1.AR.r] = ((1 + ((xbar.diff1_n.r - theta0)^2)/ (divisor.pooled.sd1_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1_n.r - (theta0 + t.alpha* sqrt((divisor.pooled.sd1_n.sq.r/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) LR1_n.l[not.reached.decisionH1.AR.l] = ((1 + ((xbar.diff1_n.l - theta0)^2)/ (divisor.pooled.sd1_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff1_n.l - (theta0 - t.alpha* sqrt((divisor.pooled.sd1_n.sq.l/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max))))^2)/ (divisor.pooled.sd1_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0.underH1_n.AR.r = LR1_n.r[not.reached.decisionH1.AR.r]<=RejectH1.threshold RejectedH0.underH1_n.AR.r = LR1_n.r[not.reached.decisionH1.AR.r]>=RejectH0.threshold reached.decisionH1_n.AR.r = AcceptedH0.underH1_n.AR.r|RejectedH0.underH1_n.AR.r if(any(reached.decisionH1_n.AR.r)){ decision.underH1.AR.r[not.reached.decisionH1.AR.r[AcceptedH0.underH1_n.AR.r]] = 'A' decision.underH1.AR.r[not.reached.decisionH1.AR.r[RejectedH0.underH1_n.AR.r]] = 'R' N11.AR.r[not.reached.decisionH1.AR.r[reached.decisionH1_n.AR.r]] = batch1.size[n+1] N21.AR.r[not.reached.decisionH1.AR.r[reached.decisionH1_n.AR.r]] = batch2.size[n+1] not.reached.decisionH1.AR.r = not.reached.decisionH1.AR.r[!reached.decisionH1_n.AR.r] } AcceptedH0.underH1_n.AR.l = LR1_n.l[not.reached.decisionH1.AR.l]<=RejectH1.threshold RejectedH0.underH1_n.AR.l = LR1_n.l[not.reached.decisionH1.AR.l]>=RejectH0.threshold reached.decisionH1_n.AR.l = AcceptedH0.underH1_n.AR.l|RejectedH0.underH1_n.AR.l if(any(reached.decisionH1_n.AR.l)){ decision.underH1.AR.l[not.reached.decisionH1.AR.l[AcceptedH0.underH1_n.AR.l]] = 'A' decision.underH1.AR.l[not.reached.decisionH1.AR.l[RejectedH0.underH1_n.AR.l]] = 'R' N11.AR.l[not.reached.decisionH1.AR.l[reached.decisionH1_n.AR.l]] = batch1.size[n+1] N21.AR.l[not.reached.decisionH1.AR.l[reached.decisionH1_n.AR.l]] = batch2.size[n+1] not.reached.decisionH1.AR.l = not.reached.decisionH1.AR.l[!reached.decisionH1_n.AR.l] } not.reached.decisionH1.AR = union(not.reached.decisionH1.AR.r, not.reached.decisionH1.AR.l) } } accepted.by.both1 = intersect(which(decision.underH1.AR.r=='A'), which(decision.underH1.AR.l=='A')) onlyrejected.by.right1 = intersect(which(decision.underH1.AR.r=='R'), which(decision.underH1.AR.l!='R')) onlyrejected.by.left1 = intersect(which(decision.underH1.AR.r!='R'), which(decision.underH1.AR.l=='R')) rejected.by.both1 = intersect(which(decision.underH1.AR.r=='R'), which(decision.underH1.AR.l=='R')) N11.AR[accepted.by.both1] = pmax(N11.AR.r[accepted.by.both1], N11.AR.l[accepted.by.both1]) N11.AR[onlyrejected.by.right1] = N11.AR.r[onlyrejected.by.right1] N11.AR[onlyrejected.by.left1] = N11.AR.l[onlyrejected.by.left1] N11.AR[rejected.by.both1] = pmin(N11.AR.r[rejected.by.both1], N11.AR.l[rejected.by.both1]) N21.AR[accepted.by.both1] = pmax(N21.AR.r[accepted.by.both1], N21.AR.l[accepted.by.both1]) N21.AR[onlyrejected.by.right1] = N21.AR.r[onlyrejected.by.right1] N21.AR[onlyrejected.by.left1] = N21.AR.l[onlyrejected.by.left1] N21.AR[rejected.by.both1] = pmin(N21.AR.r[rejected.by.both1], N21.AR.l[rejected.by.both1]) onlyaccepted.by.right1 = intersect(which(decision.underH1.AR.r=='A'), which(is.na(decision.underH1.AR.l))) onlyaccepted.by.left1 = intersect(which(is.na(decision.underH1.AR.r)), which(decision.underH1.AR.l=='A')) both.inconclusive1 = intersect(which(is.na(decision.underH1.AR.r)), which(is.na(decision.underH1.AR.l))) all.inconclusive1 = c(onlyaccepted.by.right1, onlyaccepted.by.left1, both.inconclusive1) nNot.reached.decisionH1.AR = length(all.inconclusive1) PowerH1.AR[c(onlyrejected.by.right1, onlyrejected.by.left1, rejected.by.both1)] = T actual.PowerH1.AR = mean(PowerH1.AR) + sum(c(LR1_n.r[onlyaccepted.by.left1], LR1_n.l[onlyaccepted.by.right1], pmax(LR1_n.r[both.inconclusive1], LR1_n.l[both.inconclusive1]))>= termination.threshold)/nReplicate actual.type2.errorH1.AR = 1 - actual.PowerH1.AR EN11 = mean(N11.AR) EN21 = mean(N21.AR) c(theta1, actual.type2.errorH1.AR, EN11, EN21) } if(length(theta)==1) out.OCandASN = matrix(data = out.OCandASN, nrow = 1, ncol = 4, byrow = T) out.OCandASN = as.data.frame(out.OCandASN) colnames(out.OCandASN) = c('theta', 'acceptH0.prob', 'EN1', 'EN2') if(verbose==T){ cat('\n') print('Done.') print("-------------------------------------------------------------------------") cat('\n\n') print("=========================================================================") print("Performance summary:") print("=========================================================================") print(paste('Parameter value(s): ', paste(round(theta, 3), collapse = ', '), sep = '')) print(paste('Probability of accepting H0: ', paste(round(out.OCandASN$acceptH0.prob, 3), collapse = ', '), sep = '')) print("Expected sample size:") print(paste(' Group 1 - ', paste(round(out.OCandASN$EN1, 2), collapse = ', '), sep = '')) print(paste(' Group 2 - ', paste(round(out.OCandASN$EN2, 2), collapse = ', '), sep = '')) print("=========================================================================") cat('\n') } return(out.OCandASN) } } OCandASN.MSPRT = function(theta, design.MSPRT.object, termination.threshold, test.type, side = 'right', theta0, Type1.target =.005, Type2.target = .2, N.max, N1.max, N2.max, sigma = 1, sigma1 = 1, sigma2 = 1, batch.size, batch1.size, batch2.size, nReplicate = 1e+6, nCore = max(1, detectCores() - 1), verbose = T, seed = 1){ if(!missing(design.MSPRT.object)){ test.type = design.MSPRT.object$test.type }else{ if((test.type!="oneProp") & (test.type!="oneZ") & (test.type!="oneT") & (test.type!="twoZ") & (test.type!="twoT")){ return(print("Unknown 'test type'. Has to be one of 'oneProp', 'oneZ', 'oneT', 'twoZ' or 'twoT'.")) } } if(test.type=='oneProp'){ if(!missing(design.MSPRT.object)){ return(OCandASN.MSPRT_oneProp(theta = theta, design.MSPRT.object = design.MSPRT.object, nReplicate = nReplicate, nCore = nCore, verbose = verbose, seed = seed)) }else{ return(OCandASN.MSPRT_oneProp(theta = theta, termination.threshold = termination.threshold, side = side, theta0 = theta0, Type1.target = Type1.target, Type2.target = Type2.target, N.max = N.max, batch.size = batch.size, nReplicate = nReplicate, nCore = nCore, verbose = verbose, seed = seed)) } }else if(test.type=='oneZ'){ if(!missing(design.MSPRT.object)){ return(OCandASN.MSPRT_oneZ(theta = theta, design.MSPRT.object = design.MSPRT.object, nReplicate = nReplicate, nCore = nCore, verbose = verbose, seed = seed)) }else{ return(OCandASN.MSPRT_oneZ(theta = theta, termination.threshold = termination.threshold, side = side, theta0 = theta0, sigma = sigma, Type1.target = Type1.target, Type2.target = Type2.target, N.max = N.max, batch.size = batch.size, nReplicate = nReplicate, nCore = nCore, verbose = verbose, seed = seed)) } }else if(test.type=='oneT'){ if(!missing(design.MSPRT.object)){ return(OCandASN.MSPRT_oneT(theta = theta, design.MSPRT.object = design.MSPRT.object, nReplicate = nReplicate, nCore = nCore, verbose = verbose, seed = seed)) }else{ return(OCandASN.MSPRT_oneT(theta = theta, termination.threshold = termination.threshold, side = side, theta0 = theta0, Type1.target = Type1.target, Type2.target = Type2.target, N.max = N.max, batch.size = batch.size, nReplicate = nReplicate, nCore = nCore, verbose = verbose, seed = seed)) } }else if(test.type=='twoZ'){ if(!missing(design.MSPRT.object)){ return(OCandASN.MSPRT_twoZ(theta = theta, design.MSPRT.object = design.MSPRT.object, nReplicate = nReplicate, nCore = nCore, verbose = verbose, seed = seed)) }else{ return(OCandASN.MSPRT_twoZ(theta = theta, termination.threshold = termination.threshold, side = side, theta0 = theta0, Type1.target = Type1.target, Type2.target = Type2.target, N1.max = N1.max, N2.max = N2.max, sigma1 = sigma1, sigma2 = sigma2, batch1.size = batch1.size, batch2.size = batch2.size, nReplicate = nReplicate, nCore = nCore, verbose = verbose, seed = seed)) } }else if(test.type=='twoT'){ if(!missing(design.MSPRT.object)){ return(OCandASN.MSPRT_twoT(theta = theta, design.MSPRT.object = design.MSPRT.object, nReplicate = nReplicate, nCore = nCore, verbose = verbose, seed = seed)) }else{ return(OCandASN.MSPRT_twoT(theta = theta, termination.threshold = termination.threshold, side = side, theta0 = theta0, Type1.target = Type1.target, Type2.target = Type2.target, N1.max = N1.max, N2.max = N2.max, batch1.size = batch1.size, batch2.size = batch2.size, nReplicate = nReplicate, nCore = nCore, verbose = verbose, seed = seed)) } } } implement.MSPRT_oneProp = function(obs, design.MSPRT.object, termination.threshold, side = 'right', theta0 = 0.5, Type1.target =.005, Type2.target = .2, N.max, batch.size, verbose = T, plot.it = 2){ if(!missing(design.MSPRT.object)) side = design.MSPRT.object$side if(side!='both'){ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold UMPBT = design.MSPRT.object$UMPBT nAnalyses.max = design.MSPRT.object$nAnalyses RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a one-sample proportion test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a one-sample proportion test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(UMPBT$theta[1], 3), " & ", round(UMPBT$theta[2], 3), " with respective probabilities ", round(UMPBT$mix.prob[1], 3), " & ", 1 - round(UMPBT$mix.prob[1], 3), sep = '')) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 }else{ if(!missing(obs1)) print("'obs1' is ignored. Not required in one-sample tests.") if(!missing(obs2)) print("'obs2' is ignored. Not required in one-sample tests.") if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses.max = length(batch.size) if(missing(theta0)) theta0 = 0.5 UMPBT = UMPBT.alt(test.type = 'oneProp', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target) RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a one-sample proportion test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a one-sample proportion test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(UMPBT$theta[1], 3), " & ", round(UMPBT$theta[2], 3), " with respective probabilities ", round(UMPBT$mix.prob[1], 3), " & ", 1 - round(UMPBT$mix.prob[1], 3), sep = '')) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 } cumsum_n = 0 reached.decision = F rejectH0 = NA LR = rep(NA, nAnalyses) for(n in 1:nAnalyses){ if(!reached.decision){ cumsum_n = cumsum_n + sum(obs[(batch.size[n]+1):batch.size[n+1]]) LR[n] = UMPBT$mix.prob[1]*(((1 - UMPBT$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$theta[1])))^cumsum_n + (1 - UMPBT$mix.prob[2])*(((1 - UMPBT$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$theta[2])))^cumsum_n AcceptedH0_n = LR[n]<=RejectH1.threshold RejectedH0_n = LR[n]>=RejectH0.threshold reached.decision = AcceptedH0_n||RejectedH0_n if(reached.decision){ n0 = batch.size[n+1] rejectH0 = RejectedH0_n if(rejectH0){ decision = 'reject.null' }else{decision = 'reject.alt'} } } } if(!reached.decision){ if(nAnalyses==nAnalyses.max){ n0 = N.max rejectH0 = LR[nAnalyses]>=termination.threshold if(rejectH0){ decision = 'reject.null' }else if(!rejectH0){decision = 'reject.alt'} }else{ n0 = batch.size[nAnalyses+1] decision = 'continue' } } if(verbose==T){ if(decision=='continue'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Continue sampling') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.null'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the null hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.alt'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the alternative hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') } } nAnalyses.test = max(which(!is.na(LR))) if(plot.it==0){ return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = LR[1:nAnalyses.test], 'UMPBT' = UMPBT)) }else if(plot.it!=0){ if(side=='right'){ testname = bquote('Right-sided one-sample proportion test ('~ alpha~'='~.(Type1.target)~', '~ beta~'='~.(Type2.target)~')') }else{ testname = bquote('Left-sided one-sample proportion test ('~ alpha~'='~.(Type1.target)~', '~ beta~'='~.(Type2.target)~')') } if((!reached.decision)&&(nAnalyses.test==nAnalyses.max)){ ylow = RejectH1.threshold yup = RejectH0.threshold if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n = ', n0, ')', sep = '') }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n = ', n0, ')', sep = '') } df = rbind.data.frame(data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.test, 'yval' = LR[1:nAnalyses.test], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df$type = factor(as.character(df$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.test)) + ylim(c(ylow, yup)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Wtd. likelihood ratio', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = testname, subtitle = plot.subtitle, y = 'Wtd. likelihood ratio', x = 'Steps in sequential analyses') }else{ if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n = ', n0, ')', sep = '') ylow = min(LR, na.rm = T) yup = max(LR, na.rm = T) }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n = ', n0, ')', sep = '') ylow = RejectH1.threshold yup = max(LR, na.rm = T) }else if(decision=="continue"){ plot.subtitle = paste('Continue sampling (n = ', n0, ')', sep = '') if(LR[nAnalyses.test]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow = RejectH1.threshold yup = max(LR, na.rm = T) }else{ ylow = RejectH1.threshold yup = RejectH0.threshold } } df = rbind.data.frame(data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.test, 'yval' = LR[1:nAnalyses.test], 'type' = 'LR')) df$type = factor(as.character(df$type), levels = c('A', 'R', 'LR')) seqcompare = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.test)) + ylim(c(ylow, yup)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Wtd. likelihood ratio'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = testname, subtitle = plot.subtitle, y = 'Wtd. likelihood ratio', x = 'Steps in sequential analyses') } if(plot.it==2) suppressWarnings(print(seqcompare)) return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = LR[1:nAnalyses.test], 'UMPBT' = UMPBT, 'ggplot.object' = seqcompare)) } }else{ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold UMPBT = design.MSPRT.object$UMPBT nAnalyses.max = design.MSPRT.object$nAnalyses RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a one-sample proportion test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a one-sample proportion test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", design.MSPRT.object$nAnalyses, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(UMPBT$right$theta[1], 3), " & ", round(UMPBT$right$theta[2], 3), " with respective probabilities ", round(UMPBT$right$mix.prob[1], 3), " & ", 1 - round(UMPBT$right$mix.prob[1], 3), sep = "")) print(paste(' On the left: ', round(UMPBT$left$theta[1], 3), " & ", round(UMPBT$left$theta[2], 3), " with respective probabilities ", round(UMPBT$left$mix.prob[1], 3), " & ", 1 - round(UMPBT$left$mix.prob[1], 3), sep = "")) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 }else{ if(!missing(obs1)) print("'obs1' is ignored. Not required in one-sample tests.") if(!missing(obs2)) print("'obs2' is ignored. Not required in one-sample tests.") if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses.max = length(batch.size) RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(missing(theta0)) theta0 = 0.5 UMPBT = list('right' = UMPBT.alt(test.type = 'oneProp', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2), 'left' = UMPBT.alt(test.type = 'oneProp', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2)) if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a one-sample proportion test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a one-sample proportion test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(UMPBT$right$theta[1], 3), " & ", round(UMPBT$right$theta[2], 3), " with respective probabilities ", round(UMPBT$right$mix.prob[1], 3), " & ", 1 - round(UMPBT$right$mix.prob[1], 3), sep = "")) print(paste(' On the left: ', round(UMPBT$left$theta[1], 3), " & ", round(UMPBT$left$theta[2], 3), " with respective probabilities ", round(UMPBT$left$mix.prob[1], 3), " & ", 1 - round(UMPBT$left$mix.prob[1], 3), sep = "")) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 } cumsum_n = 0 reached.decision.r = reached.decision.l = reached.decision = F rejectH0 = NA LR.r = LR.l = rep(NA, nAnalyses) for(n in 1:nAnalyses){ if(!reached.decision){ cumsum_n = cumsum_n + sum(obs[(batch.size[n]+1):batch.size[n+1]]) if(!reached.decision.r){ LR.r[n] = UMPBT$right$mix.prob[1]*(((1 - UMPBT$right$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[1])))^cumsum_n + (1 - UMPBT$right$mix.prob[2])*(((1 - UMPBT$right$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$right$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$right$theta[2])))^cumsum_n AcceptedH0_n.r = LR.r[n]<=RejectH1.threshold RejectedH0_n.r = LR.r[n]>=RejectH0.threshold reached.decision.r = AcceptedH0_n.r||RejectedH0_n.r } if(!reached.decision.l){ LR.l[n] = UMPBT$left$mix.prob[1]*(((1 - UMPBT$left$theta[1])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[1]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[1])))^cumsum_n + (1 - UMPBT$left$mix.prob[2])*(((1 - UMPBT$left$theta[2])/(1 - theta0))^batch.size[n+1])* ((UMPBT$left$theta[2]*(1 - theta0))/(theta0*(1 - UMPBT$left$theta[2])))^cumsum_n AcceptedH0_n.l = LR.l[n]<=RejectH1.threshold RejectedH0_n.l = LR.l[n]>=RejectH0.threshold reached.decision.l = AcceptedH0_n.l||RejectedH0_n.l } if(AcceptedH0_n.r&&AcceptedH0_n.l){ rejectH0 = F decision = 'reject.alt' n0 = batch.size[n+1] reached.decision = T }else if(RejectedH0_n.r||RejectedH0_n.l){ rejectH0 = T decision = 'reject.null' n0 = batch.size[n+1] reached.decision = T } } } if(!reached.decision){ if(nAnalyses==nAnalyses.max){ n0 = N.max if(AcceptedH0_n.l&&(!reached.decision.r)){ rejectH0 = LR.r[nAnalyses]>=termination.threshold }else if(AcceptedH0_n.r&&(!reached.decision.l)){ rejectH0 = LR.l[nAnalyses]>=termination.threshold }else if((!reached.decision.r)&&(!reached.decision.l)){ rejectH0 = max(LR.r[nAnalyses], LR.l[nAnalyses])>=termination.threshold }else{rejectH0 = F} if(rejectH0){ decision = 'reject.null' }else if(!rejectH0){decision = 'reject.alt'} }else{ n0 = batch.size[nAnalyses + 1] decision = 'continue' } } if(verbose==T){ if(decision=='continue'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Continue sampling') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.null'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the null hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.alt'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the alternative hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') } } nAnalyses.r = max(which(!is.na(LR.r))) nAnalyses.l = max(which(!is.na(LR.l))) if(plot.it==0){ return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = list('right' = LR.r[1:nAnalyses.r], 'left' = LR.l[1:nAnalyses.l]), 'UMPBT' = UMPBT)) }else if(plot.it!=0){ testname = paste('Two-sided one-sample proportion test ( \u03B1 =', Type1.target,', ', '\u03B2 =',Type2.target,')') if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n = ', n0, ')', sep = '') }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n = ', n0, ')', sep = '') }else if(decision=="continue"){ plot.subtitle = paste('Continue sampling (n = ', n0, ')', sep = '') } if((!reached.decision.l)&&(nAnalyses.l==nAnalyses.max)){ ylow.l = RejectH1.threshold yup.l = RejectH0.threshold df.l = rbind.data.frame(data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.l, 'yval' = LR.l[1:nAnalyses.l], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df.l$type = factor(as.character(df.l$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare.l = ggplot(data = df.l, aes(x = xval, y = yval, group = type)) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.l)) + ylim(c(ylow.l, yup.l)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Wtd. likelihood ratio', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Left-sided one-sample proportion test at ', Type1.target/2), y = 'Wtd. likelihood ratio', x = 'Steps in sequential analyses') }else{ if(AcceptedH0_n.l){ ylow.l = min(LR.l, na.rm = T) yup.l = max(LR.l, na.rm = T) }else if(RejectedH0_n.l){ ylow.l = RejectH1.threshold yup.l = max(LR.l, na.rm = T) }else if((!reached.decision.l)&&(nAnalyses.l<nAnalyses.max)){ if(LR[nAnalyses.l]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow.l = RejectH1.threshold yup.l = max(LR.l, na.rm = T) }else{ ylow.l = RejectH1.threshold yup.l = RejectH0.threshold } } df.l = rbind.data.frame(data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.l, 'yval' = LR.l[1:nAnalyses.l], 'type' = 'LR')) df.l$type = factor(as.character(df.l$type), levels = c('A', 'R', 'LR')) seqcompare.l = ggplot(data = df.l, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.l)) + ylim(c(ylow.l, yup.l)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Wtd. likelihood ratio'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Left-sided one-sample proportion test at ', Type1.target/2), y = 'Wtd. likelihood ratio', x = 'Steps in sequential analyses') } if((!reached.decision.r)&&(nAnalyses.r==nAnalyses.max)){ ylow.r = RejectH1.threshold yup.r = RejectH0.threshold df.r = rbind.data.frame(data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.r, 'yval' = LR.r[1:nAnalyses.r], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df.r$type = factor(as.character(df.r$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare.r = ggplot(data = df.r, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.r)) + ylim(c(ylow.r, yup.r)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Wtd. likelihood ratio', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Right-sided one-sample proportion test at ', Type1.target/2), y = 'Wtd. likelihood ratio', x = 'Steps in sequential analyses') }else{ if(AcceptedH0_n.r){ ylow.r = min(LR.r, na.rm = T) yup.r = max(LR.r, na.rm = T) }else if(RejectedH0_n.r){ ylow.r = RejectH1.threshold yup.r = max(LR.r, na.rm = T) }else if((!reached.decision.r)&&(nAnalyses.r<nAnalyses.max)){ if(LR[nAnalyses.r]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow.r = RejectH1.threshold yup.r = max(LR.r, na.rm = T) }else{ ylow.r = RejectH1.threshold yup.r = RejectH0.threshold } } df.r = rbind.data.frame(data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.r, 'yval' = LR.r[1:nAnalyses.r], 'type' = 'LR')) df.r$type = factor(as.character(df.r$type), levels = c('A', 'R', 'LR')) seqcompare.r = ggplot(data = df.r, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.r)) + ylim(c(ylow.r, yup.r)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Wtd. likelihood ratio'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Right-sided one-sample proportion test at ', Type1.target/2), y = 'Wtd. likelihood ratio', x = 'Steps in sequential analyses') } seqcompare = annotate_figure(ggarrange(seqcompare.l, seqcompare.r, nrow = 1, ncol = 2, legend = 'bottom', common.legend = T), top = text_grob(paste(testname, '\n', plot.subtitle, '\n'), size = 25, hjust = .5)) if(plot.it==2) suppressWarnings(print(seqcompare)) return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = list('right' = LR.r[1:nAnalyses.r], 'left' = LR.l[1:nAnalyses.l]), 'UMPBT' = UMPBT, 'ggplot.object' = seqcompare)) } } } implement.MSPRT_oneZ = function(obs, design.MSPRT.object, termination.threshold, side = 'right', theta0 = 0, Type1.target =.005, Type2.target = .2, N.max, sigma = 1, batch.size, verbose = T, plot.it = 2){ if(!missing(design.MSPRT.object)) side = design.MSPRT.object$side if(side!='both'){ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 sigma = design.MSPRT.object$sigma termination.threshold = design.MSPRT.object$termination.threshold theta.UMPBT = design.MSPRT.object$theta.UMPBT nAnalyses.max = design.MSPRT.object$nAnalyses RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a one-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a one-sample z test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("Known standard deviation: ", sigma, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 }else{ if(!missing(obs1)) print("'obs1' is ignored. Not required in one-sample tests.") if(!missing(obs2)) print("'obs2' is ignored. Not required in one-sample tests.") if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses.max = length(batch.size) if(missing(theta0)) theta0 = 0 theta.UMPBT = UMPBT.alt(test.type = 'oneZ', side = side, theta0 = theta0, N = N.max, Type1 = Type1.target, sigma = sigma) RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a one-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a one-sample z test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("Known standard deviation: ", sigma, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 } cumsum_n = 0 reached.decision = F rejectH0 = NA LR = rep(NA, nAnalyses) for(n in 1:nAnalyses){ if(!reached.decision){ cumsum_n = cumsum_n + sum(obs[(batch.size[n]+1):batch.size[n+1]]) LR[n] = exp((cumsum_n*(theta.UMPBT - theta0) - ((batch.size[n+1]*((theta.UMPBT^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0_n = LR[n]<=RejectH1.threshold RejectedH0_n = LR[n]>=RejectH0.threshold reached.decision = AcceptedH0_n||RejectedH0_n if(reached.decision){ n0 = batch.size[n+1] rejectH0 = RejectedH0_n if(rejectH0){ decision = 'reject.null' }else{decision = 'reject.alt'} } } } if(!reached.decision){ if(nAnalyses==nAnalyses.max){ n0 = N.max rejectH0 = LR[nAnalyses]>=termination.threshold if(rejectH0){ decision = 'reject.null' }else if(!rejectH0){decision = 'reject.alt'} }else{ n0 = batch.size[nAnalyses+1] decision = 'continue' } } if(verbose==T){ if(decision=='continue'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Continue sampling') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.null'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the null hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.alt'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the alternative hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') } } nAnalyses.test = max(which(!is.na(LR))) if(plot.it==0){ return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = LR[1:nAnalyses.test], 'theta.UMPBT' = theta.UMPBT)) }else if(plot.it!=0){ if(side=='right'){ testname = bquote('Right-sided one-sample z test ('~ alpha~'='~.(Type1.target)~', '~ beta~'='~.(Type2.target)~')') }else{ testname = bquote('Left-sided one-sample z test ('~ alpha~'='~.(Type1.target)~', '~ beta~'='~.(Type2.target)~')') } if((!reached.decision)&&(nAnalyses.test==nAnalyses.max)){ ylow = RejectH1.threshold yup = RejectH0.threshold if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n = ', n0, ')', sep = '') }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n = ', n0, ')', sep = '') } df = rbind.data.frame(data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.test, 'yval' = LR[1:nAnalyses.test], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df$type = factor(as.character(df$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.test)) + ylim(c(ylow, yup)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = testname, subtitle = plot.subtitle, y = 'Likelihood ratio', x = 'Steps in sequential analyses') }else{ if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n = ', n0, ')', sep = '') ylow = min(LR, na.rm = T) yup = max(LR, na.rm = T) }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n = ', n0, ')', sep = '') ylow = RejectH1.threshold yup = max(LR, na.rm = T) }else if(decision=="continue"){ plot.subtitle = paste('Continue sampling (n = ', n0, ')', sep = '') if(LR[nAnalyses.test]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow = RejectH1.threshold yup = max(LR, na.rm = T) }else{ ylow = RejectH1.threshold yup = RejectH0.threshold } } df = rbind.data.frame(data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.test, 'yval' = LR[1:nAnalyses.test], 'type' = 'LR')) df$type = factor(as.character(df$type), levels = c('A', 'R', 'LR')) seqcompare = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.test)) + ylim(c(ylow, yup)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = testname, subtitle = plot.subtitle, y = 'Likelihood ratio', x = 'Steps in sequential analyses') } if(plot.it==2) suppressWarnings(print(seqcompare)) return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = LR[1:nAnalyses.test], 'theta.UMPBT' = theta.UMPBT, 'ggplot.object' = seqcompare)) } }else{ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 sigma = design.MSPRT.object$sigma termination.threshold = design.MSPRT.object$termination.threshold theta.UMPBT = design.MSPRT.object$theta.UMPBT nAnalyses.max = design.MSPRT.object$nAnalyses RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a one-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a one-sample z test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("Known standard deviation: ", sigma, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 }else{ if(!missing(obs1)) print("'obs1' is ignored. Not required in one-sample tests.") if(!missing(obs2)) print("'obs2' is ignored. Not required in one-sample tests.") if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } nAnalyses.max = length(batch.size) RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(missing(theta0)) theta0 = 0 theta.UMPBT = list('right' = UMPBT.alt(test.type = 'oneZ', side = 'right', theta0 = theta0, N = N.max, Type1 = Type1.target/2, sigma = sigma), 'left' = UMPBT.alt(test.type = 'oneZ', side = 'left', theta0 = theta0, N = N.max, Type1 = Type1.target/2, sigma = sigma)) if(verbose){ if(any(batch.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a one-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a one-sample z test:") print("==========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("Known standard deviation: ", sigma, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 } cumsum_n = 0 reached.decision.r = reached.decision.l = reached.decision = F rejectH0 = NA LR.r = LR.l = rep(NA, nAnalyses) for(n in 1:nAnalyses){ if(!reached.decision){ cumsum_n = cumsum_n + sum(obs[(batch.size[n]+1):batch.size[n+1]]) if(!reached.decision.r){ LR.r[n] = exp((cumsum_n*(theta.UMPBT$right - theta0) - ((batch.size[n+1]*((theta.UMPBT$right^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0_n.r = LR.r[n]<=RejectH1.threshold RejectedH0_n.r = LR.r[n]>=RejectH0.threshold reached.decision.r = AcceptedH0_n.r||RejectedH0_n.r } if(!reached.decision.l){ LR.l[n] = exp((cumsum_n*(theta.UMPBT$left - theta0) - ((batch.size[n+1]*((theta.UMPBT$left^2) - (theta0^2)))/2))/(sigma^2)) AcceptedH0_n.l = LR.l[n]<=RejectH1.threshold RejectedH0_n.l = LR.l[n]>=RejectH0.threshold reached.decision.l = AcceptedH0_n.l||RejectedH0_n.l } if(AcceptedH0_n.r&&AcceptedH0_n.l){ rejectH0 = F decision = 'reject.alt' n0 = batch.size[n+1] reached.decision = T }else if(RejectedH0_n.r||RejectedH0_n.l){ rejectH0 = T decision = 'reject.null' n0 = batch.size[n+1] reached.decision = T } } } if(!reached.decision){ if(nAnalyses==nAnalyses.max){ n0 = N.max if(AcceptedH0_n.l&&(!reached.decision.r)){ rejectH0 = LR.r[nAnalyses]>=termination.threshold }else if(AcceptedH0_n.r&&(!reached.decision.l)){ rejectH0 = LR.l[nAnalyses]>=termination.threshold }else if((!reached.decision.r)&&(!reached.decision.l)){ rejectH0 = max(LR.r[nAnalyses], LR.l[nAnalyses])>=termination.threshold }else{rejectH0 = F} if(rejectH0){ decision = 'reject.null' }else if(!rejectH0){decision = 'reject.alt'} }else{ n0 = batch.size[nAnalyses + 1] decision = 'continue' } } if(verbose==T){ if(decision=='continue'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Continue sampling') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.null'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the null hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.alt'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the alternative hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') } } nAnalyses.r = max(which(!is.na(LR.r))) nAnalyses.l = max(which(!is.na(LR.l))) if(plot.it==0){ return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = list('right' = LR.r[1:nAnalyses.r], 'left' = LR.l[1:nAnalyses.l]), 'theta.UMPBT' = theta.UMPBT)) }else if(plot.it!=0){ testname = paste('Two-sided one-sample z test ( \u03B1 =', Type1.target,', ', '\u03B2 =',Type2.target,')') if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n = ', n0, ')', sep = '') }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n = ', n0, ')', sep = '') }else if(decision=="continue"){ plot.subtitle = paste('Continue sampling (n = ', n0, ')', sep = '') } if((!reached.decision.l)&&(nAnalyses.l==nAnalyses.max)){ ylow.l = RejectH1.threshold yup.l = RejectH0.threshold df.l = rbind.data.frame(data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.l, 'yval' = LR.l[1:nAnalyses.l], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df.l$type = factor(as.character(df.l$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare.l = ggplot(data = df.l, aes(x = xval, y = yval, group = type)) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.l)) + ylim(c(ylow.l, yup.l)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Left-sided one-sample z test at ', Type1.target/2), y = 'Likelihood ratio', x = 'Steps in sequential analyses') }else{ if(AcceptedH0_n.l){ ylow.l = min(LR.l, na.rm = T) yup.l = max(LR.l, na.rm = T) }else if(RejectedH0_n.l){ ylow.l = RejectH1.threshold yup.l = max(LR.l, na.rm = T) }else if((!reached.decision.l)&&(nAnalyses.l<nAnalyses.max)){ if(LR[nAnalyses.l]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow.l = RejectH1.threshold yup.l = max(LR.l, na.rm = T) }else{ ylow.l = RejectH1.threshold yup.l = RejectH0.threshold } } df.l = rbind.data.frame(data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.l, 'yval' = LR.l[1:nAnalyses.l], 'type' = 'LR')) df.l$type = factor(as.character(df.l$type), levels = c('A', 'R', 'LR')) seqcompare.l = ggplot(data = df.l, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.l)) + ylim(c(ylow.l, yup.l)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Left-sided one-sample z test at ', Type1.target/2), y = 'Likelihood ratio', x = 'Steps in sequential analyses') } if((!reached.decision.r)&&(nAnalyses.r==nAnalyses.max)){ ylow.r = RejectH1.threshold yup.r = RejectH0.threshold df.r = rbind.data.frame(data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.r, 'yval' = LR.r[1:nAnalyses.r], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df.r$type = factor(as.character(df.r$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare.r = ggplot(data = df.r, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.r)) + ylim(c(ylow.r, yup.r)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Right-sided one-sample z test at ', Type1.target/2), y = 'Likelihood ratio', x = 'Steps in sequential analyses') }else{ if(AcceptedH0_n.r){ ylow.r = min(LR.r, na.rm = T) yup.r = max(LR.r, na.rm = T) }else if(RejectedH0_n.r){ ylow.r = RejectH1.threshold yup.r = max(LR.r, na.rm = T) }else if((!reached.decision.r)&&(nAnalyses.r<nAnalyses.max)){ if(LR[nAnalyses.r]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow.r = RejectH1.threshold yup.r = max(LR.r, na.rm = T) }else{ ylow.r = RejectH1.threshold yup.r = RejectH0.threshold } } df.r = rbind.data.frame(data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.r, 'yval' = LR.r[1:nAnalyses.r], 'type' = 'LR')) df.r$type = factor(as.character(df.r$type), levels = c('A', 'R', 'LR')) seqcompare.r = ggplot(data = df.r, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.r)) + ylim(c(ylow.r, yup.r)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Right-sided one-sample z test at ', Type1.target/2), y = 'Likelihood ratio', x = 'Steps in sequential analyses') } seqcompare = annotate_figure(ggarrange(seqcompare.l, seqcompare.r, nrow = 1, ncol = 2, legend = 'bottom', common.legend = T), top = text_grob(paste(testname, '\n', plot.subtitle, '\n'), size = 25, hjust = .5)) if(plot.it==2) suppressWarnings(print(seqcompare)) return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = list('right' = LR.r[1:nAnalyses.r], 'left' = LR.l[1:nAnalyses.l]), 'theta.UMPBT' = theta.UMPBT, 'ggplot.object' = seqcompare)) } } } implement.MSPRT_oneT = function(obs, design.MSPRT.object, termination.threshold, side = 'right', theta0 = 0, Type1.target =.005, Type2.target = .2, N.max, batch.size, verbose = T, plot.it = 2){ if(!missing(design.MSPRT.object)) side = design.MSPRT.object$side if(side!='both'){ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold nAnalyses.max = design.MSPRT.object$nAnalyses RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if((batch.size[1]>2)||any(batch.size[-1]>1)){ cat('\n') print("=========================================================================") print("Implementing the group sequential MSPRT for a one-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Implementing the sequential MSPRT for a one-sample t test:") print("=========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", design.MSPRT.object$termination.threshold, sep = "")) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 }else{ if(!missing(obs1)) print("'obs1' is ignored. Not required in one-sample tests.") if(!missing(obs2)) print("'obs2' is ignored. Not required in one-sample tests.") if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = c(2, rep(1, N.max-2))} }else{ if(batch.size[1]<2){ return("First batch size should be at least 2") }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch.size should add up to N.max") } } } nAnalyses.max = length(batch.size) RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(missing(theta0)) theta0 = 0 if(verbose){ if((batch.size[1]>2)||any(batch.size[-1]>1)){ cat('\n') print("=========================================================================") print("Implementing the group sequential MSPRT for a one-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Implementing the sequential MSPRT for a one-sample t test:") print("=========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 } signed_t.alpha = (2*(side=='right')-1)*qt(Type1.target, df = N.max -1, lower.tail = F) cumSS_n = cumsum_n = 0 reached.decision = F rejectH0 = NA theta.UMPBT = LR = rep(NA, nAnalyses) for(n in 1:nAnalyses){ if(!reached.decision){ cumsum_n = cumsum_n + sum(obs[(batch.size[n]+1):batch.size[n+1]]) cumSS_n = cumSS_n + sum(obs[(batch.size[n]+1):batch.size[n+1]]^2) xbar_n = cumsum_n/batch.size[n+1] divisor.s_n.sq = cumSS_n - (cumsum_n^2)/batch.size[n+1] theta.UMPBT[n] = theta0 + signed_t.alpha* sqrt(divisor.s_n.sq/(N.max*(batch.size[n+1]-1))) LR[n] = ((1 + (batch.size[n+1]*((xbar_n - theta0)^2))/divisor.s_n.sq)/ (1 + (batch.size[n+1]*((xbar_n - theta.UMPBT[n])^2))/ divisor.s_n.sq))^(batch.size[n+1]/2) AcceptedH0_n = LR[n]<=RejectH1.threshold RejectedH0_n = LR[n]>=RejectH0.threshold reached.decision = AcceptedH0_n||RejectedH0_n if(reached.decision){ n0 = batch.size[n+1] rejectH0 = RejectedH0_n if(rejectH0){ decision = 'reject.null' }else{decision = 'reject.alt'} } } } if(!reached.decision){ if(nAnalyses==nAnalyses.max){ n0 = N.max rejectH0 = LR[nAnalyses]>=termination.threshold if(rejectH0){ decision = 'reject.null' }else if(!rejectH0){decision = 'reject.alt'} }else{ n0 = batch.size[nAnalyses+1] decision = 'continue' } } if(verbose==T){ if(decision=='continue'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Continue sampling') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.null'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the null hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.alt'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the alternative hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') } } nAnalyses.test = max(which(!is.na(LR))) if(plot.it==0){ return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = LR[1:nAnalyses.test], 'theta.UMPBT' = theta.UMPBT[1:nAnalyses.test])) }else if(plot.it!=0){ if(side=='right'){ testname = bquote('Right-sided one-sample t test ('~ alpha~'='~.(Type1.target)~', '~ beta~'='~.(Type2.target)~')') }else{ testname = bquote('Left-sided one-sample t test ('~ alpha~'='~.(Type1.target)~', '~ beta~'='~.(Type2.target)~')') } if((!reached.decision)&&(nAnalyses.test==nAnalyses.max)){ ylow = RejectH1.threshold yup = RejectH0.threshold if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n = ', n0, ')', sep = '') }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n = ', n0, ')', sep = '') } df = rbind.data.frame(data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.test, 'yval' = LR[1:nAnalyses.test], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df$type = factor(as.character(df$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.test)) + ylim(c(ylow, yup)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = testname, subtitle = plot.subtitle, y = 'Bayes factor', x = 'Steps in sequential analyses') }else{ if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n = ', n0, ')', sep = '') ylow = min(LR, na.rm = T) yup = max(LR, na.rm = T) }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n = ', n0, ')', sep = '') ylow = RejectH1.threshold yup = max(LR, na.rm = T) }else if(decision=="continue"){ plot.subtitle = paste('Continue sampling (n = ', n0, ')', sep = '') if(LR[nAnalyses.test]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow = RejectH1.threshold yup = max(LR, na.rm = T) }else{ ylow = RejectH1.threshold yup = RejectH0.threshold } } df = rbind.data.frame(data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.test, 'yval' = LR[1:nAnalyses.test], 'type' = 'LR')) df$type = factor(as.character(df$type), levels = c('A', 'R', 'LR')) seqcompare = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.test)) + ylim(c(ylow, yup)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = testname, subtitle = plot.subtitle, y = 'Bayes factor', x = 'Steps in sequential analyses') } if(plot.it==2) suppressWarnings(print(seqcompare)) return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = LR[1:nAnalyses.test], 'theta.UMPBT' = theta.UMPBT[1:nAnalyses.test], 'ggplot.object' = seqcompare)) } }else{ if(!missing(design.MSPRT.object)){ batch.size = design.MSPRT.object$batch.size N.max = design.MSPRT.object$N.max Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold nAnalyses.max = design.MSPRT.object$nAnalyses RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if((batch.size[1]>2)||any(batch.size[-1]>1)){ cat('\n') print("=========================================================================") print("Implementing the group sequential MSPRT for a one-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Implementing the sequential MSPRT for a one-sample t test:") print("=========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 }else{ if(!missing(obs1)) print("'obs1' is ignored. Not required in one-sample tests.") if(!missing(obs2)) print("'obs2' is ignored. Not required in one-sample tests.") if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = c(2, rep(1, N.max-2))} }else{ if(batch.size[1]<2){ return("First batch size should be at least 2") }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch.size should add up to N.max") } } } nAnalyses.max = length(batch.size) if(missing(theta0)) theta0 = 0 RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if((batch.size[1]>2)||any(batch.size[-1]>1)){ cat('\n') print("=========================================================================") print("Implementing the group sequential MSPRT for a one-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Implementing the sequential MSPRT for a one-sample t test:") print("=========================================================================") } print(paste("Maximum available sample size: ", N.max, sep = "")) print(paste('Batch sizes: ', paste(batch.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") } batch.size = c(0, cumsum(batch.size)) nAnalyses = max(which(batch.size<=length(obs))) - 1 } t.alpha = qt(Type1.target/2, df = N.max -1, lower.tail = F) cumSS_n = cumsum_n = 0 reached.decision.r = reached.decision.l = reached.decision = F rejectH0 = NA theta.UMPBT.r = theta.UMPBT.l = LR.r = LR.l = rep(NA, nAnalyses) for(n in 1:nAnalyses){ if(!reached.decision){ cumsum_n = cumsum_n + sum(obs[(batch.size[n]+1):batch.size[n+1]]) cumSS_n = cumSS_n + sum(obs[(batch.size[n]+1):batch.size[n+1]]^2) if(!reached.decision.r){ xbar_n.r = cumsum_n/batch.size[n+1] divisor.s_n.sq.r = cumSS_n - ((cumsum_n)^2)/batch.size[n+1] theta.UMPBT.r[n] = theta0 + t.alpha* sqrt(divisor.s_n.sq.r/(N.max*(batch.size[n+1]-1))) LR.r[n] = ((1 + (batch.size[n+1]*((xbar_n.r - theta0)^2))/divisor.s_n.sq.r)/ (1 + (batch.size[n+1]*((xbar_n.r - theta.UMPBT.r[n])^2))/ divisor.s_n.sq.r))^(batch.size[n+1]/2) AcceptedH0_n.r = LR.r[n]<=RejectH1.threshold RejectedH0_n.r = LR.r[n]>=RejectH0.threshold reached.decision.r = AcceptedH0_n.r||RejectedH0_n.r } if(!reached.decision.l){ xbar_n.l = cumsum_n/batch.size[n+1] divisor.s_n.sq.l = cumSS_n - ((cumsum_n)^2)/batch.size[n+1] theta.UMPBT.l[n] = theta0 - t.alpha* sqrt(divisor.s_n.sq.l/(N.max*(batch.size[n+1]-1))) LR.l[n] = ((1 + (batch.size[n+1]*((xbar_n.l - theta0)^2))/divisor.s_n.sq.l)/ (1 + (batch.size[n+1]*((xbar_n.l - theta.UMPBT.l[n])^2))/ divisor.s_n.sq.l))^(batch.size[n+1]/2) AcceptedH0_n.l = LR.l[n]<=RejectH1.threshold RejectedH0_n.l = LR.l[n]>=RejectH0.threshold reached.decision.l = AcceptedH0_n.l||RejectedH0_n.l } if(AcceptedH0_n.r&&AcceptedH0_n.l){ rejectH0 = F decision = 'reject.alt' n0 = batch.size[n+1] reached.decision = T }else if(RejectedH0_n.r||RejectedH0_n.l){ rejectH0 = T decision = 'reject.null' n0 = batch.size[n+1] reached.decision = T } } } if(!reached.decision){ if(nAnalyses==nAnalyses.max){ n0 = N.max if(AcceptedH0_n.l&&(!reached.decision.r)){ rejectH0 = LR.r[nAnalyses]>=termination.threshold }else if(AcceptedH0_n.r&&(!reached.decision.l)){ rejectH0 = LR.l[nAnalyses]>=termination.threshold }else if((!reached.decision.r)&&(!reached.decision.l)){ rejectH0 = max(LR.r[nAnalyses], LR.l[nAnalyses])>=termination.threshold }else{rejectH0 = F} if(rejectH0){ decision = 'reject.null' }else if(!rejectH0){decision = 'reject.alt'} }else{ n0 = batch.size[nAnalyses + 1] decision = 'continue' } } if(verbose==T){ if(decision=='continue'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Continue sampling') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.null'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the null hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.alt'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the alternative hypothesis') print(paste("Sample size used: ", n0, sep = '')) print("=========================================================================") cat('\n') } } nAnalyses.r = max(which(!is.na(LR.r))) nAnalyses.l = max(which(!is.na(LR.l))) if(plot.it==0){ return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = list('right' = LR.r[1:nAnalyses.r], 'left' = LR.l[1:nAnalyses.l]), 'theta.UMPBT' = list('right' = theta.UMPBT.r[1:nAnalyses.r], 'left' = theta.UMPBT.l[1:nAnalyses.l]))) }else if(plot.it!=0){ testname = paste('Two-sided one-sample t test ( \u03B1 =', Type1.target,', ', '\u03B2 =',Type2.target,')') if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n = ', n0, ')', sep = '') }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n = ', n0, ')', sep = '') }else if(decision=="continue"){ plot.subtitle = paste('Continue sampling (n = ', n0, ')', sep = '') } if((!reached.decision.l)&&(nAnalyses.l==nAnalyses.max)){ ylow.l = RejectH1.threshold yup.l = RejectH0.threshold df.l = rbind.data.frame(data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.l, 'yval' = LR.l[1:nAnalyses.l], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df.l$type = factor(as.character(df.l$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare.l = ggplot(data = df.l, aes(x = xval, y = yval, group = type)) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.l)) + ylim(c(ylow.l, yup.l)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Left-sided one-sample t test at ', Type1.target/2), y = 'Bayes factor', x = 'Steps in sequential analyses') }else{ if(AcceptedH0_n.l){ ylow.l = min(LR.l, na.rm = T) yup.l = max(LR.l, na.rm = T) }else if(RejectedH0_n.l){ ylow.l = RejectH1.threshold yup.l = max(LR.l, na.rm = T) }else if((!reached.decision.l)&&(nAnalyses.l<nAnalyses.max)){ if(LR[nAnalyses.l]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow.l = RejectH1.threshold yup.l = max(LR.l, na.rm = T) }else{ ylow.l = RejectH1.threshold yup.l = RejectH0.threshold } } df.l = rbind.data.frame(data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.l, 'yval' = LR.l[1:nAnalyses.l], 'type' = 'LR')) df.l$type = factor(as.character(df.l$type), levels = c('A', 'R', 'LR')) seqcompare.l = ggplot(data = df.l, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.l)) + ylim(c(ylow.l, yup.l)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Left-sided one-sample t test at ', Type1.target/2), y = 'Bayes factor', x = 'Steps in sequential analyses') } if((!reached.decision.r)&&(nAnalyses.r==nAnalyses.max)){ ylow.r = RejectH1.threshold yup.r = RejectH0.threshold df.r = rbind.data.frame(data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.r, 'yval' = LR.r[1:nAnalyses.r], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df.r$type = factor(as.character(df.r$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare.r = ggplot(data = df.r, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.r)) + ylim(c(ylow.r, yup.r)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Right-sided one-sample t test at ', Type1.target/2), y = 'Bayes factor', x = 'Steps in sequential analyses') }else{ if(AcceptedH0_n.r){ ylow.r = min(LR.r, na.rm = T) yup.r = max(LR.r, na.rm = T) }else if(RejectedH0_n.r){ ylow.r = RejectH1.threshold yup.r = max(LR.r, na.rm = T) }else if((!reached.decision.r)&&(nAnalyses.r<nAnalyses.max)){ if(LR[nAnalyses.r]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow.r = RejectH1.threshold yup.r = max(LR.r, na.rm = T) }else{ ylow.r = RejectH1.threshold yup.r = RejectH0.threshold } } df.r = rbind.data.frame(data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.r, 'yval' = LR.r[1:nAnalyses.r], 'type' = 'LR')) df.r$type = factor(as.character(df.r$type), levels = c('A', 'R', 'LR')) seqcompare.r = ggplot(data = df.r, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.r)) + ylim(c(ylow.r, yup.r)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Right-sided one-sample t test at ', Type1.target/2), y = 'Bayes factor', x = 'Steps in sequential analyses') } seqcompare = annotate_figure(ggarrange(seqcompare.l, seqcompare.r, nrow = 1, ncol = 2, legend = 'bottom', common.legend = T), top = text_grob(paste(testname, '\n', plot.subtitle, '\n'), size = 25, hjust = .5)) if(plot.it==2) suppressWarnings(print(seqcompare)) return(list('n' = n0, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = list('right' = LR.r[1:nAnalyses.r], 'left' = LR.l[1:nAnalyses.l]), 'theta.UMPBT' = list('right' = theta.UMPBT.r[1:nAnalyses.r], 'left' = theta.UMPBT.l[1:nAnalyses.l]), 'ggplot.object' = seqcompare)) } } } implement.MSPRT_twoZ = function(obs1, obs2, design.MSPRT.object, termination.threshold, side = 'right', theta0 = 0, Type1.target =.005, Type2.target = .2, N1.max, N2.max, sigma1 = 1, sigma2 = 1, batch1.size, batch2.size, verbose = T, plot.it = 2){ if(!missing(design.MSPRT.object)) side = design.MSPRT.object$side if(side!='both'){ if(!missing(design.MSPRT.object)){ batch1.size = design.MSPRT.object$batch1.size batch2.size = design.MSPRT.object$batch2.size N1.max = design.MSPRT.object$N1.max N2.max = design.MSPRT.object$N2.max Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 sigma1 = design.MSPRT.object$sigma1 sigma2 = design.MSPRT.object$sigma2 termination.threshold = design.MSPRT.object$termination.threshold theta.UMPBT = design.MSPRT.object$theta.UMPBT nAnalyses.max = design.MSPRT.object$nAnalyses RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch1.size>1)||any(batch2.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a two-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a two-sample z test:") print("==========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma1, sep = "")) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma2, sep = "")) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) nAnalyses = min(max(which(batch1.size<=length(obs1))), max(which(batch2.size<=length(obs2)))) - 1 }else{ if(!missing(obs)) print("'obs' is ignored. Not required in two-sample tests.") if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return(print("Either 'batch1.size' or 'N1.max' needs to be specified")) }else{batch1.size = rep(1, N1.max)} }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return(print("Sum of batch1.size should add up to N1.max")) } } if(missing(batch2.size)){ if(missing(N2.max)){ return(print("Either 'batch2.size' or 'N2.max' needs to be specified")) }else{batch2.size = rep(1, N2.max)} }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N1.max) return(print("Sum of batch2.size should add up to N2.max")) } } nAnalyses.max = length(batch1.size) if(missing(theta0)) theta0 = 0 theta.UMPBT = UMPBT.alt(test.type = 'twoZ', side = side, theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target, sigma1 = sigma1, sigma2 = sigma2) RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if(any(batch1.size>1)||any(batch2.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a two-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a two-sample z test:") print("==========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma1, sep = "")) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma2, sep = "")) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print(paste("The UMPBT alternative is: ", round(theta.UMPBT, 3))) print("-------------------------------------------------------------------------") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) nAnalyses = min(max(which(batch1.size<=length(obs1))), max(which(batch2.size<=length(obs2)))) - 1 } cumsum1_n = cumsum2_n = 0 reached.decision = F rejectH0 = NA LR = rep(NA, nAnalyses) for(n in 1:nAnalyses){ if(!reached.decision){ cumsum1_n = cumsum1_n + sum(obs1[(batch1.size[n]+1):batch1.size[n+1]]) cumsum2_n = cumsum2_n + sum(obs2[(batch2.size[n]+1):batch2.size[n+1]]) LR[n] = exp(-(((theta.UMPBT^2) - (theta0^2)) - 2*(theta.UMPBT - theta0)* (cumsum1_n/batch1.size[n+1] - cumsum2_n/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0_n = LR[n]<=RejectH1.threshold RejectedH0_n = LR[n]>=RejectH0.threshold reached.decision = AcceptedH0_n||RejectedH0_n if(reached.decision){ n1 = batch1.size[n+1] n2 = batch2.size[n+1] rejectH0 = RejectedH0_n if(rejectH0){ decision = 'reject.null' }else{decision = 'reject.alt'} } } } if(!reached.decision){ if(nAnalyses==nAnalyses.max){ n1 = N1.max n2 = N2.max rejectH0 = LR[nAnalyses]>=termination.threshold if(rejectH0){ decision = 'reject.null' }else if(!rejectH0){decision = 'reject.alt'} }else{ n1 = batch1.size[nAnalyses+1] n2 = batch2.size[nAnalyses+1] decision = 'continue' } } if(verbose==T){ if(decision=='continue'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Continue sampling') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.null'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the null hypothesis') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.alt'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the alternative hypothesis') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') } } nAnalyses.test = max(which(!is.na(LR))) if(plot.it==0){ return(list('n1' = n1, 'n2' = n2, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = LR[1:nAnalyses.test], 'theta.UMPBT' = theta.UMPBT)) }else if(plot.it!=0){ if(side=='right'){ testname = bquote('Right-sided two-sample z test ('~ alpha~'='~.(Type1.target)~', '~ beta~'='~.(Type2.target)~')') }else{ testname = bquote('Left-sided two-sample z test ('~ alpha~'='~.(Type1.target)~', '~ beta~'='~.(Type2.target)~')') } if((!reached.decision)&&(nAnalyses.test==nAnalyses.max)){ ylow = RejectH1.threshold yup = RejectH0.threshold if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') } df = rbind.data.frame(data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.test, 'yval' = LR[1:nAnalyses.test], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df$type = factor(as.character(df$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.test)) + ylim(c(ylow, yup)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = testname, subtitle = plot.subtitle, y = 'Likelihood ratio', x = 'Steps in sequential analyses') }else{ if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') ylow = min(LR, na.rm = T) yup = max(LR, na.rm = T) }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') ylow = RejectH1.threshold yup = max(LR, na.rm = T) }else if(decision=="continue"){ plot.subtitle = paste('Continue sampling (n1 = ', n1, ', n2 = ', n2, ')', sep = '') if(LR[nAnalyses.test]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow = RejectH1.threshold yup = max(LR, na.rm = T) }else{ ylow = RejectH1.threshold yup = RejectH0.threshold } } df = rbind.data.frame(data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.test, 'yval' = LR[1:nAnalyses.test], 'type' = 'LR')) df$type = factor(as.character(df$type), levels = c('A', 'R', 'LR')) seqcompare = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.test)) + ylim(c(ylow, yup)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = testname, subtitle = plot.subtitle, y = 'Likelihood ratio', x = 'Steps in sequential analyses') } if(plot.it==2) suppressWarnings(print(seqcompare)) return(list('n1' = n1, 'n2' = n2, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = LR[1:nAnalyses.test], 'theta.UMPBT' = theta.UMPBT, 'ggplot.object' = seqcompare)) } }else{ if(!missing(design.MSPRT.object)){ batch1.size = design.MSPRT.object$batch1.size batch2.size = design.MSPRT.object$batch2.size N1.max = design.MSPRT.object$N1.max N2.max = design.MSPRT.object$N2.max Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 sigma1 = design.MSPRT.object$sigma1 sigma2 = design.MSPRT.object$sigma2 termination.threshold = design.MSPRT.object$termination.threshold theta.UMPBT = design.MSPRT.object$theta.UMPBT nAnalyses.max = design.MSPRT.object$nAnalyses RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if(any(batch1.size>1)||any(batch2.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a two-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a two-sample z test:") print("==========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma1, sep = "")) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma2, sep = "")) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) nAnalyses = min(max(which(batch1.size<=length(obs1))), max(which(batch2.size<=length(obs2)))) - 1 }else{ if(!missing(obs)) print("'obs' is ignored. Not required in two-sample tests.") if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return(print("Either 'batch1.size' or 'N1.max' needs to be specified")) }else{batch1.size = rep(1, N1.max)} }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return(print("Sum of batch1.size should add up to N1.max")) } } if(missing(batch2.size)){ if(missing(N2.max)){ return(print("Either 'batch2.size' or 'N2.max' needs to be specified")) }else{batch2.size = rep(1, N2.max)} }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N1.max) return(print("Sum of batch2.size should add up to N2.max")) } } nAnalyses.max = length(batch1.size) if(missing(theta0)) theta0 = 0 theta.UMPBT = list('right' = UMPBT.alt(test.type = 'twoZ', side = 'right', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, sigma1 = sigma1, sigma2 = sigma2), 'left' = UMPBT.alt(test.type = 'twoZ', side = 'left', theta0 = theta0, N1 = N1.max, N2 = N2.max, Type1 = Type1.target/2, sigma1 = sigma1, sigma2 = sigma2)) RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if(any(batch1.size>1)||any(batch2.size>1)){ cat('\n') print("==========================================================================") print("Implementing the group sequential MSPRT for a two-sample z test:") print("==========================================================================") }else{ cat('\n') print("==========================================================================") print("Implementing the sequential MSPRT for a two-sample z test:") print("==========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma1, sep = "")) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste(" Known standard deviation: ", sigma2, sep = "")) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") print("The UMPBT alternative:") print(paste(' On the right: ', round(theta.UMPBT$right, 3), sep = "")) print(paste(' On the left: ', round(theta.UMPBT$left, 3), sep = "")) print("-------------------------------------------------------------------------") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) nAnalyses = min(max(which(batch1.size<=length(obs1))), max(which(batch2.size<=length(obs2)))) - 1 } cumsum1_n = cumsum2_n = 0 reached.decision.r = reached.decision.l = reached.decision = F rejectH0 = NA LR.r = LR.l = rep(NA, nAnalyses) for(n in 1:nAnalyses){ if(!reached.decision){ cumsum1_n = cumsum1_n + sum(obs1[(batch1.size[n]+1):batch1.size[n+1]]) cumsum2_n = cumsum2_n + sum(obs2[(batch2.size[n]+1):batch2.size[n+1]]) if(!reached.decision.r){ LR.r[n] = exp(-(((theta.UMPBT$right^2) - (theta0^2)) - 2*(theta.UMPBT$right - theta0)* (cumsum1_n/batch1.size[n+1] - cumsum2_n/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0_n.r = LR.r[n]<=RejectH1.threshold RejectedH0_n.r = LR.r[n]>=RejectH0.threshold reached.decision.r = AcceptedH0_n.r||RejectedH0_n.r } if(!reached.decision.l){ LR.l[n] = exp(-(((theta.UMPBT$left^2) - (theta0^2)) - 2*(theta.UMPBT$left - theta0)* (cumsum1_n/batch1.size[n+1] - cumsum2_n/batch2.size[n+1]))/ (2*((sigma1^2)/batch1.size[n+1] + (sigma2^2)/batch2.size[n+1]))) AcceptedH0_n.l = LR.l[n]<=RejectH1.threshold RejectedH0_n.l = LR.l[n]>=RejectH0.threshold reached.decision.l = AcceptedH0_n.l||RejectedH0_n.l } if(AcceptedH0_n.r&&AcceptedH0_n.l){ rejectH0 = F decision = 'reject.alt' n1 = batch1.size[n+1] n2 = batch2.size[n+1] reached.decision = T }else if(RejectedH0_n.r||RejectedH0_n.l){ rejectH0 = T decision = 'reject.null' n1 = batch1.size[n+1] n2 = batch2.size[n+1] reached.decision = T } } } if(!reached.decision){ if(nAnalyses==nAnalyses.max){ n1 = N1.max n2 = N2.max if(AcceptedH0_n.l&&(!reached.decision.r)){ rejectH0 = LR.r[nAnalyses]>=termination.threshold }else if(AcceptedH0_n.r&&(!reached.decision.l)){ rejectH0 = LR.l[nAnalyses]>=termination.threshold }else if((!reached.decision.r)&&(!reached.decision.l)){ rejectH0 = max(LR.r[nAnalyses], LR.l[nAnalyses])>=termination.threshold }else{rejectH0 = F} if(rejectH0){ decision = 'reject.null' }else if(!rejectH0){decision = 'reject.alt'} }else{ n1 = batch1.size[nAnalyses+1] n2 = batch2.size[nAnalyses+1] decision = 'continue' } } if(verbose==T){ if(decision=='continue'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Continue sampling') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.null'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the null hypothesis') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.alt'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the alternative hypothesis') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') } } nAnalyses.r = max(which(!is.na(LR.r))) nAnalyses.l = max(which(!is.na(LR.l))) if(plot.it==0){ return(list('n1' = n1, 'n2' = n2, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = list('right' = LR.r[1:nAnalyses.r], 'left' = LR.l[1:nAnalyses.l]), 'theta.UMPBT' = theta.UMPBT)) }else if(plot.it!=0){ testname = paste('Two-sided two-sample z test ( \u03B1 =', Type1.target,', ', '\u03B2 =',Type2.target,')') if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') }else if(decision=="continue"){ plot.subtitle = paste('Continue sampling (n1 = ', n1, ', n2 = ', n2, ')', sep = '') } if((!reached.decision.l)&&(nAnalyses.l==nAnalyses.max)){ ylow.l = RejectH1.threshold yup.l = RejectH0.threshold df.l = rbind.data.frame(data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.l, 'yval' = LR.l[1:nAnalyses.l], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df.l$type = factor(as.character(df.l$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare.l = ggplot(data = df.l, aes(x = xval, y = yval, group = type)) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.l)) + ylim(c(ylow.l, yup.l)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Left-sided two-sample z test at ', Type1.target/2), y = 'Likelihood ratio', x = 'Steps in sequential analyses') }else{ if(AcceptedH0_n.l){ ylow.l = min(LR.l, na.rm = T) yup.l = max(LR.l, na.rm = T) }else if(RejectedH0_n.l){ ylow.l = RejectH1.threshold yup.l = max(LR.l, na.rm = T) }else if((!reached.decision.l)&&(nAnalyses.l<nAnalyses.max)){ if(LR[nAnalyses.l]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow.l = RejectH1.threshold yup.l = max(LR.l, na.rm = T) }else{ ylow.l = RejectH1.threshold yup.l = RejectH0.threshold } } df.l = rbind.data.frame(data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.l, 'yval' = LR.l[1:nAnalyses.l], 'type' = 'LR')) df.l$type = factor(as.character(df.l$type), levels = c('A', 'R', 'LR')) seqcompare.l = ggplot(data = df.l, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.l)) + ylim(c(ylow.l, yup.l)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Left-sided two-sample z test at ', Type1.target/2), y = 'Likelihood ratio', x = 'Steps in sequential analyses') } if((!reached.decision.r)&&(nAnalyses.r==nAnalyses.max)){ ylow.r = RejectH1.threshold yup.r = RejectH0.threshold df.r = rbind.data.frame(data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.r, 'yval' = LR.r[1:nAnalyses.r], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df.r$type = factor(as.character(df.r$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare.r = ggplot(data = df.r, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.r)) + ylim(c(ylow.r, yup.r)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Right-sided two-sample z test at ', Type1.target/2), y = 'Likelihood ratio', x = 'Steps in sequential analyses') }else{ if(AcceptedH0_n.r){ ylow.r = min(LR.r, na.rm = T) yup.r = max(LR.r, na.rm = T) }else if(RejectedH0_n.r){ ylow.r = RejectH1.threshold yup.r = max(LR.r, na.rm = T) }else if((!reached.decision.r)&&(nAnalyses.r<nAnalyses.max)){ if(LR[nAnalyses.r]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow.r = RejectH1.threshold yup.r = max(LR.r, na.rm = T) }else{ ylow.r = RejectH1.threshold yup.r = RejectH0.threshold } } df.r = rbind.data.frame(data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.r, 'yval' = LR.r[1:nAnalyses.r], 'type' = 'LR')) df.r$type = factor(as.character(df.r$type), levels = c('A', 'R', 'LR')) seqcompare.r = ggplot(data = df.r, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.r)) + ylim(c(ylow.r, yup.r)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Likelihood ratio'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Right-sided two-sample z test at ', Type1.target/2), y = 'Likelihood ratio', x = 'Steps in sequential analyses') } seqcompare = annotate_figure(ggarrange(seqcompare.l, seqcompare.r, nrow = 1, ncol = 2, legend = 'bottom', common.legend = T), top = text_grob(paste(testname, '\n', plot.subtitle, '\n'), size = 25, hjust = .5)) if(plot.it==2) suppressWarnings(print(seqcompare)) return(list('n1' = n1, 'n2' = n2, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = list('right' = LR.r[1:nAnalyses.r], 'left' = LR.l[1:nAnalyses.l]), 'theta.UMPBT' = theta.UMPBT, 'ggplot.object' = seqcompare)) } } } implement.MSPRT_twoT = function(obs1, obs2, design.MSPRT.object, termination.threshold, side = 'right', theta0 = 0, Type1.target =.005, Type2.target = .2, N1.max, N2.max, batch1.size, batch2.size, verbose = T, plot.it = 2){ if(!missing(design.MSPRT.object)) side = design.MSPRT.object$side if(side!='both'){ if(!missing(design.MSPRT.object)){ batch1.size = design.MSPRT.object$batch1.size batch2.size = design.MSPRT.object$batch2.size N1.max = design.MSPRT.object$N1.max N2.max = design.MSPRT.object$N2.max Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold nAnalyses.max = design.MSPRT.object$nAnalyses RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(verbose){ if((batch1.size[1]>2)||any(batch1.size[-1]>1)|| (batch2.size[1]>2)||any(batch2.size[-1]>1)){ cat('\n') print("=========================================================================") print("Implementing the group sequential MSPRT for a two-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Implementing the sequential MSPRT for a two-sample t test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) nAnalyses = min(max(which(batch1.size<=length(obs1))), max(which(batch2.size<=length(obs2)))) - 1 }else{ if(!missing(obs)) print("'obs' is ignored. Not required in two-sample tests.") if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return("Either 'batch1.size' or 'N1.max' needs to be specified") }else{batch1.size = c(2, rep(1, N1.max-2))} }else{ if(batch1.size[1]<2){ return("First batch size in Group 1 should be at least 2") }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return("Sum of batch1.size should add up to N1.max") } } } if(missing(batch2.size)){ if(missing(N2.max)){ return("Either 'batch2.size' or 'N2.max' needs to be specified") }else{batch2.size = c(2, rep(1, N2.max-2))} }else{ if(batch2.size[1]<2){ return("First batch size in Group 2 should be at least 2") }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N2.max) return("Sum of batch2.size should add up to N2.max") } } } nAnalyses.max = length(batch1.size) RejectH1.threshold = Type2.target/(1 - Type1.target) RejectH0.threshold = (1 - Type2.target)/Type1.target if(missing(theta0)) theta0 = 0 if(verbose){ if((batch1.size[1]>2)||any(batch1.size[-1]>1)|| (batch2.size[1]>2)||any(batch2.size[-1]>1)){ cat('\n') print("=========================================================================") print("Implementing the group sequential MSPRT for a two-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Implementing the sequential MSPRT for a two-sample t test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) nAnalyses = min(max(which(batch1.size<=length(obs1))), max(which(batch2.size<=length(obs2)))) - 1 } signed_t.alpha = (2*(side=='right')-1)* qt(Type1.target, df = N1.max + N2.max -2, lower.tail = F) cumsum1_n = cumsum2_n = cumSS1_n = cumSS2_n = 0 reached.decision = F rejectH0 = NA LR = theta.UMPBT = rep(NA, nAnalyses) for(n in 1:nAnalyses){ if(!reached.decision){ cumsum1_n = cumsum1_n + sum(obs1[(batch1.size[n]+1):batch1.size[n+1]]) cumsum2_n = cumsum2_n + sum(obs2[(batch2.size[n]+1):batch2.size[n+1]]) cumSS1_n = cumSS1_n + sum(obs1[(batch1.size[n]+1):batch1.size[n+1]]^2) cumSS2_n = cumSS2_n + sum(obs2[(batch2.size[n]+1):batch2.size[n+1]]^2) xbar.diff_n = cumsum1_n/batch1.size[n+1] - cumsum2_n/batch2.size[n+1] divisor.pooled.sd_n.sq = cumSS1_n - ((cumsum1_n)^2)/batch1.size[n+1] + cumSS2_n - ((cumsum2_n)^2)/batch2.size[n+1] theta.UMPBT[n] = theta0 + signed_t.alpha* sqrt((divisor.pooled.sd_n.sq/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max)) LR[n] = ((1 + ((xbar.diff_n - theta0)^2)/ (divisor.pooled.sd_n.sq*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff_n - theta.UMPBT[n])^2)/ (divisor.pooled.sd_n.sq*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0_n = LR[n]<=RejectH1.threshold RejectedH0_n = LR[n]>=RejectH0.threshold reached.decision = AcceptedH0_n||RejectedH0_n if(reached.decision){ n1 = batch1.size[n+1] n2 = batch2.size[n+1] rejectH0 = RejectedH0_n if(rejectH0){ decision = 'reject.null' }else{decision = 'reject.alt'} } } } if(!reached.decision){ if(nAnalyses==nAnalyses.max){ n1 = N1.max n2 = N2.max rejectH0 = LR[nAnalyses]>=termination.threshold if(rejectH0){ decision = 'reject.null' }else if(!rejectH0){decision = 'reject.alt'} }else{ n1 = batch1.size[nAnalyses+1] n2 = batch2.size[nAnalyses+1] decision = 'continue' } } if(verbose==T){ if(decision=='continue'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Continue sampling') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.null'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the null hypothesis') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.alt'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the alternative hypothesis') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') } } nAnalyses.test = max(which(!is.na(LR))) if(plot.it==0){ return(list('n1' = n1, 'n2' = n2, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = LR[1:nAnalyses.test], 'theta.UMPBT' = theta.UMPBT[1:nAnalyses.test])) }else if(plot.it!=0){ if(side=='right'){ testname = bquote('Right-sided two-sample t test ('~ alpha~'='~.(Type1.target)~', '~ beta~'='~.(Type2.target)~')') }else{ testname = bquote('Left-sided two-sample t test ('~ alpha~'='~.(Type1.target)~', '~ beta~'='~.(Type2.target)~')') } if((!reached.decision)&&(nAnalyses.test==nAnalyses.max)){ ylow = RejectH1.threshold yup = RejectH0.threshold if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') } df = rbind.data.frame(data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.test, 'yval' = LR[1:nAnalyses.test], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df$type = factor(as.character(df$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.test)) + ylim(c(ylow, yup)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = testname, subtitle = plot.subtitle, y = 'Bayes factor', x = 'Steps in sequential analyses') }else{ if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') ylow = min(LR, na.rm = T) yup = max(LR, na.rm = T) }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') ylow = RejectH1.threshold yup = max(LR, na.rm = T) }else if(decision=="continue"){ plot.subtitle = paste('Continue sampling (n1 = ', n1, ', n2 = ', n2, ')', sep = '') if(LR[nAnalyses.test]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow = RejectH1.threshold yup = max(LR, na.rm = T) }else{ ylow = RejectH1.threshold yup = RejectH0.threshold } } df = rbind.data.frame(data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.test, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.test, 'yval' = LR[1:nAnalyses.test], 'type' = 'LR')) df$type = factor(as.character(df$type), levels = c('A', 'R', 'LR')) seqcompare = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.test)) + ylim(c(ylow, yup)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = testname, subtitle = plot.subtitle, y = 'Bayes factor', x = 'Steps in sequential analyses') } if(plot.it==2) suppressWarnings(print(seqcompare)) return(list('n1' = n1, 'n2' = n2, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = LR[1:nAnalyses.test], 'theta.UMPBT' = theta.UMPBT[1:nAnalyses.test], 'ggplot.object' = seqcompare)) } }else{ if(!missing(design.MSPRT.object)){ batch1.size = design.MSPRT.object$batch1.size batch2.size = design.MSPRT.object$batch2.size N1.max = design.MSPRT.object$N1.max N2.max = design.MSPRT.object$N2.max Type1.target = design.MSPRT.object$Type1.target Type2.target = design.MSPRT.object$Type2.target theta0 = design.MSPRT.object$theta0 termination.threshold = design.MSPRT.object$termination.threshold nAnalyses.max = design.MSPRT.object$nAnalyses RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if((batch1.size[1]>2)||any(batch1.size[-1]>1)|| (batch2.size[1]>2)||any(batch2.size[-1]>1)){ cat('\n') print("=========================================================================") print("Implementing the group sequential MSPRT for a two-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Implementing the sequential MSPRT for a two-sample t test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) nAnalyses = min(max(which(batch1.size<=length(obs1))), max(which(batch2.size<=length(obs2)))) - 1 }else{ if(!missing(obs)) print("'obs' is ignored. Not required in two-sample tests.") if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return("Either 'batch1.size' or 'N1.max' needs to be specified") }else{batch1.size = c(2, rep(1, N1.max-2))} }else{ if(batch1.size[1]<2){ return("First batch size in Group 1 should be at least 2") }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return("Sum of batch1.size should add up to N1.max") } } } if(missing(batch2.size)){ if(missing(N2.max)){ return("Either 'batch2.size' or 'N2.max' needs to be specified") }else{batch2.size = c(2, rep(1, N2.max-2))} }else{ if(batch2.size[1]<2){ return("First batch size in Group 2 should be at least 2") }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N2.max) return("Sum of batch2.size should add up to N2.max") } } } nAnalyses.max = length(batch1.size) if(missing(theta0)) theta0 = 0 RejectH1.threshold = Type2.target/(1 - Type1.target/2) RejectH0.threshold = (1 - Type2.target)/(Type1.target/2) if(verbose){ if((batch1.size[1]>2)||any(batch1.size[-1]>1)|| (batch2.size[1]>2)||any(batch2.size[-1]>1)){ cat('\n') print("=========================================================================") print("Implementing the group sequential MSPRT for a two-sample t test:") print("=========================================================================") }else{ cat('\n') print("=========================================================================") print("Implementing the sequential MSPRT for a two-sample t test:") print("=========================================================================") } print("Group 1:") print(paste(" Maximum available sample sizes: ", N1.max, sep = "")) print(paste(' Batch sizes: ', paste(batch1.size, collapse = ', '), sep = '')) print("Group 2:") print(paste(" Maximum available sample sizes: ", N2.max, sep = "")) print(paste(' Batch sizes: ', paste(batch2.size, collapse = ', '), sep = '')) print(paste("Maximum number of sequential analyses: ", nAnalyses.max, sep = "")) print(paste("Targeted Type I error probability: ", Type1.target, sep = "")) print(paste("Targeted Type II error probability: ", Type2.target, sep = "")) print(paste("Hypothesized value under H0: ", theta0, sep = "")) print(paste("Direction of the H1: ", side, sep = "")) print(paste("H1 rejection threshold: ", round(RejectH1.threshold, 3), sep = '')) print(paste("H0 rejection threshold: ", round(RejectH0.threshold, 3), sep = '')) print(paste("Termination threshold: ", termination.threshold, sep = "")) print("-------------------------------------------------------------------------") } batch1.size = c(0, cumsum(batch1.size)) batch2.size = c(0, cumsum(batch2.size)) nAnalyses = min(max(which(batch1.size<=length(obs1))), max(which(batch2.size<=length(obs2)))) - 1 } t.alpha = qt(Type1.target/2, df = N1.max + N2.max -2, lower.tail = F) cumsum1_n = cumsum2_n = cumSS1_n = cumSS2_n = 0 reached.decision.r = reached.decision.l = reached.decision = F rejectH0 = NA LR.r = LR.l = theta.UMPBT.r = theta.UMPBT.l = rep(NA, nAnalyses) for(n in 1:nAnalyses){ if(!reached.decision){ cumsum1_n = cumsum1_n + sum(obs1[(batch1.size[n]+1):batch1.size[n+1]]) cumsum2_n = cumsum2_n + sum(obs2[(batch2.size[n]+1):batch2.size[n+1]]) cumSS1_n = cumSS1_n + sum(obs1[(batch1.size[n]+1):batch1.size[n+1]]^2) cumSS2_n = cumSS2_n + sum(obs2[(batch2.size[n]+1):batch2.size[n+1]]^2) if(!reached.decision.r){ xbar.diff_n.r = cumsum1_n/batch1.size[n+1] - cumsum2_n/batch2.size[n+1] divisor.pooled.sd_n.sq.r = cumSS1_n - ((cumsum1_n)^2)/batch1.size[n+1] + cumSS2_n - ((cumsum2_n)^2)/batch2.size[n+1] theta.UMPBT.r[n] = theta0 + t.alpha* sqrt((divisor.pooled.sd_n.sq.r/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max)) LR.r[n] = ((1 + ((xbar.diff_n.r - theta0)^2)/ (divisor.pooled.sd_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff_n.r - theta.UMPBT.r[n])^2)/ (divisor.pooled.sd_n.sq.r*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0_n.r = LR.r[n]<=RejectH1.threshold RejectedH0_n.r = LR.r[n]>=RejectH0.threshold reached.decision.r = AcceptedH0_n.r||RejectedH0_n.r } if(!reached.decision.l){ xbar.diff_n.l = cumsum1_n/batch1.size[n+1] - cumsum2_n/batch2.size[n+1] divisor.pooled.sd_n.sq.l = cumSS1_n - ((cumsum1_n)^2)/batch1.size[n+1] + cumSS2_n - ((cumsum2_n)^2)/batch2.size[n+1] theta.UMPBT.l[n] = theta0 - t.alpha* sqrt((divisor.pooled.sd_n.sq.l/(batch1.size[n+1] + batch2.size[n+1] -2))* (1/N1.max + 1/N2.max)) LR.l[n] = ((1 + ((xbar.diff_n.l - theta0)^2)/ (divisor.pooled.sd_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1])))/ (1 + ((xbar.diff_n.l - theta.UMPBT.l[n])^2)/ (divisor.pooled.sd_n.sq.l*(1/batch1.size[n+1] + 1/batch2.size[n+1]))))^((batch1.size[n+1] + batch2.size[n+1])/2) AcceptedH0_n.l = LR.l[n]<=RejectH1.threshold RejectedH0_n.l = LR.l[n]>=RejectH0.threshold reached.decision.l = AcceptedH0_n.l||RejectedH0_n.l } if(AcceptedH0_n.r&&AcceptedH0_n.l){ rejectH0 = F decision = 'reject.alt' n1 = batch1.size[n+1] n2 = batch2.size[n+1] reached.decision = T }else if(RejectedH0_n.r||RejectedH0_n.l){ rejectH0 = T decision = 'reject.null' n1 = batch1.size[n+1] n2 = batch2.size[n+1] reached.decision = T } } } if(!reached.decision){ if(nAnalyses==nAnalyses.max){ n1 = N1.max n2 = N2.max if(AcceptedH0_n.l&&(!reached.decision.r)){ rejectH0 = LR.r[nAnalyses]>=termination.threshold }else if(AcceptedH0_n.r&&(!reached.decision.l)){ rejectH0 = LR.l[nAnalyses]>=termination.threshold }else if((!reached.decision.r)&&(!reached.decision.l)){ rejectH0 = max(LR.r[nAnalyses], LR.l[nAnalyses])>=termination.threshold }else{rejectH0 = F} if(rejectH0){ decision = 'reject.null' }else if(!rejectH0){decision = 'reject.alt'} }else{ n1 = batch1.size[nAnalyses+1] n2 = batch2.size[nAnalyses+1] decision = 'continue' } } if(verbose==T){ if(decision=='continue'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Continue sampling') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.null'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the null hypothesis') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') }else if(decision=='reject.alt'){ cat('\n') print("=========================================================================") print("Sequential comparison summary:") print("=========================================================================") print('Decision: Reject the alternative hypothesis') print(paste("Sample size used: Group 1 - ", n1, ", Group 2 - ", n2, sep = '')) print("=========================================================================") cat('\n') } } nAnalyses.r = max(which(!is.na(LR.r))) nAnalyses.l = max(which(!is.na(LR.l))) if(plot.it==0){ return(list('n1' = n1, 'n2' = n2, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = list('right' = LR.r[1:nAnalyses.r], 'left' = LR.l[1:nAnalyses.l]), 'theta.UMPBT' = list('right' = theta.UMPBT.r[1:nAnalyses.r], 'left' = theta.UMPBT.l[1:nAnalyses.l]))) }else if(plot.it!=0){ testname = paste('Two-sided two-sample t test ( \u03B1 =', Type1.target,', ', '\u03B2 =',Type2.target,')') if(decision=="reject.alt"){ plot.subtitle = paste('Reject the alternative hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') }else if(decision=="reject.null"){ plot.subtitle = paste('Reject the null hypothesis (n1 = ', n1, ', n2 = ', n2, ')', sep = '') }else if(decision=="continue"){ plot.subtitle = paste('Continue sampling (n1 = ', n1, ', n2 = ', n2, ')', sep = '') } if((!reached.decision.l)&&(nAnalyses.l==nAnalyses.max)){ ylow.l = RejectH1.threshold yup.l = RejectH0.threshold df.l = rbind.data.frame(data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.l, 'yval' = LR.l[1:nAnalyses.l], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df.l$type = factor(as.character(df.l$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare.l = ggplot(data = df.l, aes(x = xval, y = yval, group = type)) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.l)) + ylim(c(ylow.l, yup.l)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Left-sided two-sample t test at ', Type1.target/2), y = 'Bayes factor', x = 'Steps in sequential analyses') }else{ if(AcceptedH0_n.l){ ylow.l = min(LR.l, na.rm = T) yup.l = max(LR.l, na.rm = T) }else if(RejectedH0_n.l){ ylow.l = RejectH1.threshold yup.l = max(LR.l, na.rm = T) }else if((!reached.decision.l)&&(nAnalyses.l<nAnalyses.max)){ if(LR[nAnalyses.l]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow.l = RejectH1.threshold yup.l = max(LR.l, na.rm = T) }else{ ylow.l = RejectH1.threshold yup.l = RejectH0.threshold } } df.l = rbind.data.frame(data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.l, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.l, 'yval' = LR.l[1:nAnalyses.l], 'type' = 'LR')) df.l$type = factor(as.character(df.l$type), levels = c('A', 'R', 'LR')) seqcompare.l = ggplot(data = df.l, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.l)) + ylim(c(ylow.l, yup.l)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Left-sided two-sample t test at ', Type1.target/2), y = 'Bayes factor', x = 'Steps in sequential analyses') } if((!reached.decision.r)&&(nAnalyses.r==nAnalyses.max)){ ylow.r = RejectH1.threshold yup.r = RejectH0.threshold df.r = rbind.data.frame(data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.r, 'yval' = LR.r[1:nAnalyses.r], 'type' = 'LR'), data.frame('xval' = nAnalyses.max, 'yval' = termination.threshold, 'type' = 'term.thresh')) df.r$type = factor(as.character(df.r$type), levels = c('A', 'R', 'LR', 'term.thresh')) seqcompare.r = ggplot(data = df.r, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH1.threshold, xend = nAnalyses.max, yend = termination.threshold), color="forestgreen", size = 1) + geom_segment(aes(x = nAnalyses.max, y = RejectH0.threshold, xend = nAnalyses.max, yend = termination.threshold), color = "red2", size=1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.r)) + ylim(c(ylow.r, yup.r)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor', 'Termination threshold'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue', 'term.thresh' = 'black'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1,0), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Right-sided two-sample t test at ', Type1.target/2), y = 'Bayes factor', x = 'Steps in sequential analyses') }else{ if(AcceptedH0_n.r){ ylow.r = min(LR.r, na.rm = T) yup.r = max(LR.r, na.rm = T) }else if(RejectedH0_n.r){ ylow.r = RejectH1.threshold yup.r = max(LR.r, na.rm = T) }else if((!reached.decision.r)&&(nAnalyses.r<nAnalyses.max)){ if(LR[nAnalyses.r]<(RejectH1.threshold + RejectH0.threshold)/2){ ylow.r = RejectH1.threshold yup.r = max(LR.r, na.rm = T) }else{ ylow.r = RejectH1.threshold yup.r = RejectH0.threshold } } df.r = rbind.data.frame(data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH1.threshold, 'type' = 'A'), data.frame('xval' = 1:nAnalyses.r, 'yval' = RejectH0.threshold, 'type' = 'R'), data.frame('xval' = 1:nAnalyses.r, 'yval' = LR.r[1:nAnalyses.r], 'type' = 'LR')) df.r$type = factor(as.character(df.r$type), levels = c('A', 'R', 'LR')) seqcompare.r = ggplot(data = df.r, aes(x = xval, y = yval, group = type)) + geom_line(aes(colour = type), size = 1) + geom_point(aes(colour = type), size = 2) + xlim(c(1, nAnalyses.r)) + ylim(c(ylow.r, yup.r)) + scale_color_manual(labels = c('Reject Alternative', 'Reject Null', 'Bayes factor'), values = c('A' = 'forestgreen', 'R' = 'red2', 'LR' = 'dodgerblue'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(1,1,1), shape = 16))) + theme(plot.title = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=18), legend.position = 'bottom') + labs(title = paste('Right-sided two-sample t test at ', Type1.target/2), y = 'Bayes factor', x = 'Steps in sequential analyses') } seqcompare = annotate_figure(ggarrange(seqcompare.l, seqcompare.r, nrow = 1, ncol = 2, legend = 'bottom', common.legend = T), top = text_grob(paste(testname, '\n', plot.subtitle, '\n'), size = 25, hjust = .5)) if(plot.it==2) suppressWarnings(print(seqcompare)) return(list('n1' = n1, 'n2' = n2, 'decision' = decision, 'RejectH1.threshold' = RejectH1.threshold, 'RejectH0.threshold' = RejectH0.threshold, 'LR' = list('right' = LR.r[1:nAnalyses.r], 'left' = LR.l[1:nAnalyses.l]), 'theta.UMPBT' = list('right' = theta.UMPBT.r[1:nAnalyses.r], 'left' = theta.UMPBT.l[1:nAnalyses.l]), 'ggplot.object' = seqcompare)) } } } implement.MSPRT = function(obs, obs1, obs2, design.MSPRT.object, termination.threshold, test.type, side = 'right', theta0, Type1.target =.005, Type2.target = .2, N.max, N1.max, N2.max, sigma = 1, sigma1 = 1, sigma2 = 1, batch.size, batch1.size, batch2.size, verbose = T, plot.it = 2){ if(!missing(design.MSPRT.object)){ test.type = design.MSPRT.object$test.type }else{ if((test.type!="oneProp") & (test.type!="oneZ") & (test.type!="oneT") & (test.type!="twoZ") & (test.type!="twoT")){ return(print("Unknown 'test type'. Has to be one of 'oneProp', 'oneZ', 'oneT', 'twoZ' or 'twoT'.")) } } if(test.type=='oneProp'){ if(!missing(design.MSPRT.object)){ return(suppressWarnings(implement.MSPRT_oneProp(obs = obs, design.MSPRT.object = design.MSPRT.object, verbose = verbose, plot.it = plot.it))) }else{ if(!missing(obs1)) print("'obs1' is ignored. Not required in one-sample tests.") if(!missing(obs2)) print("'obs2' is ignored. Not required in one-sample tests.") if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } if(missing(theta0)) theta0 = 0.5 return(suppressWarnings(implement.MSPRT_oneProp(obs = obs, termination.threshold = termination.threshold, side = side, theta0 = theta0, Type1.target = Type1.target, Type2.target = Type2.target, N.max = N.max, batch.size = batch.size, verbose = verbose, plot.it = plot.it))) } }else if(test.type=='oneZ'){ if(!missing(design.MSPRT.object)){ return(suppressWarnings(implement.MSPRT_oneZ(obs = obs, design.MSPRT.object = design.MSPRT.object, verbose = verbose, plot.it = plot.it))) }else{ if(!missing(obs1)) print("'obs1' is ignored. Not required in one-sample tests.") if(!missing(obs2)) print("'obs2' is ignored. Not required in one-sample tests.") if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = rep(1, N.max)} }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch sizes should add up to N.max") } } if(missing(theta0)) theta0 = 0 return(suppressWarnings(implement.MSPRT_oneZ(obs = obs, termination.threshold = termination.threshold, side = side, theta0 = theta0, sigma = sigma, Type1.target = Type1.target, Type2.target = Type2.target, N.max = N.max, batch.size = batch.size, verbose = verbose, plot.it = plot.it))) } }else if(test.type=='oneT'){ if(!missing(design.MSPRT.object)){ return(suppressWarnings(implement.MSPRT_oneT(obs = obs, design.MSPRT.object = design.MSPRT.object, verbose = verbose, plot.it = plot.it))) }else{ if(!missing(obs1)) print("'obs1' is ignored. Not required in one-sample tests.") if(!missing(obs2)) print("'obs2' is ignored. Not required in one-sample tests.") if(!missing(batch1.size)) print("'batch1.size' is ignored. Not required in one-sample tests.") if(!missing(batch2.size)) print("'batch2.size' is ignored. Not required in one-sample tests.") if(!missing(N1.max)) print("'N1.max' is ignored. Not required in one-sample tests.") if(!missing(N2.max)) print("'N2.max' is ignored. Not required in one-sample tests.") if(missing(batch.size)){ if(missing(N.max)){ return("Either 'batch.size' or 'N.max' needs to be specified") }else{batch.size = c(2, rep(1, N.max-2))} }else{ if(batch.size[1]<2){ return("First batch size should be at least 2") }else{ if(missing(N.max)){ N.max = sum(batch.size) }else{ if(sum(batch.size)!=N.max) return("Sum of batch.size should add up to N.max") } } } if(missing(theta0)) theta0 = 0 return(suppressWarnings(implement.MSPRT_oneT(obs = obs, termination.threshold = termination.threshold, side = side, theta0 = theta0, Type1.target = Type1.target, Type2.target = Type2.target, N.max = N.max, batch.size = batch.size, verbose = verbose, plot.it = plot.it))) } }else if(test.type=='twoZ'){ if(!missing(design.MSPRT.object)){ return(suppressWarnings(implement.MSPRT_twoZ(obs1 = obs1, obs2 = obs2, design.MSPRT.object = design.MSPRT.object, verbose = verbose, plot.it = plot.it))) }else{ if(!missing(obs)) print("'obs' is ignored. Not required in two-sample tests.") if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return(print("Either 'batch1.size' or 'N1.max' needs to be specified")) }else{batch1.size = rep(1, N1.max)} }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return(print("Sum of batch1.size should add up to N1.max")) } } if(missing(batch2.size)){ if(missing(N2.max)){ return(print("Either 'batch2.size' or 'N2.max' needs to be specified")) }else{batch2.size = rep(1, N2.max)} }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N1.max) return(print("Sum of batch2.size should add up to N2.max")) } } if(missing(theta0)) theta0 = 0 return(suppressWarnings(implement.MSPRT_twoZ(obs1 = obs1, obs2 = obs2, termination.threshold = termination.threshold, side = side, theta0 = theta0, Type1.target = Type1.target, Type2.target = Type2.target, N1.max = N1.max, N2.max = N2.max, sigma1 = sigma1, sigma2 = sigma2, batch1.size = batch1.size, batch2.size = batch2.size, verbose = verbose, plot.it = plot.it))) } }else if(test.type=='twoT'){ if(!missing(design.MSPRT.object)){ return(suppressWarnings(implement.MSPRT_twoT(obs1 = obs1, obs2 = obs2, design.MSPRT.object = design.MSPRT.object, verbose = verbose, plot.it = plot.it))) }else{ if(!missing(obs)) print("'obs' is ignored. Not required in two-sample tests.") if(!missing(batch.size)) print("'batch.size' is ignored. Not required in two-sample tests.") if(!missing(N.max)) print("'N.max' is ignored. Not required in two-sample tests.") if((!missing(batch1.size)) && (!missing(batch2.size)) && (length(batch1.size)!=length(batch2.size))) return("Lenghts of batch1.size and batch2.size should be same") if(missing(batch1.size)){ if(missing(N1.max)){ return("Either 'batch1.size' or 'N1.max' needs to be specified") }else{batch1.size = c(2, rep(1, N1.max-2))} }else{ if(batch1.size[1]<2){ return("First batch size in Group 1 should be at least 2") }else{ if(missing(N1.max)){ N1.max = sum(batch1.size) }else{ if(sum(batch1.size)!=N1.max) return("Sum of batch1.size should add up to N1.max") } } } if(missing(batch2.size)){ if(missing(N2.max)){ return("Either 'batch2.size' or 'N2.max' needs to be specified") }else{batch2.size = c(2, rep(1, N2.max-2))} }else{ if(batch2.size[1]<2){ return("First batch size in Group 2 should be at least 2") }else{ if(missing(N2.max)){ N2.max = sum(batch2.size) }else{ if(sum(batch2.size)!=N2.max) return("Sum of batch2.size should add up to N2.max") } } } if(missing(theta0)) theta0 = 0 return(suppressWarnings(implement.MSPRT_twoT(obs1 = obs1, obs2 = obs2, termination.threshold = termination.threshold, side = side, theta0 = theta0, Type1.target = Type1.target, Type2.target = Type2.target, N1.max = N1.max, N2.max = N2.max, batch1.size = batch1.size, batch2.size = batch2.size, verbose = verbose, plot.it = plot.it))) } } } effectiveN.oneProp = function(N, side = "right", Type1 = 0.005, theta0 = 0.5, plot.it = T){ N.seq = seq(1, N, by = 1) if(side=="right"){ UMPBT.seq = mapply(n = N.seq, FUN = function(n){ c.alpha = qbinom(p = Type1, size = n, prob = theta0, lower.tail = F) solve.delta.outer = nleqslv::nleqslv(x = 3, fn = function(delta){ out.optimize.UMPBTobjective = optimize(interval = c(theta0, 1), f = function(p){ (log(delta) - n*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) out.optimize.UMPBTobjective$objective - c.alpha }) out.optimize.UMPBTobjective.outer = optimize(interval = c(theta0, 1), f = function(p){ (log(solve.delta.outer$x) - n*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) round(out.optimize.UMPBTobjective.outer$minimum, 5) }) u = N.eff = rep(NA, N) i.change = numeric() u[1] = UMPBT.seq[1] N.eff[1] = N.seq[1] i.change = i = 1 while (i<N) { if(UMPBT.seq[i+1]<u[i]){ u[i+1] = UMPBT.seq[i+1] N.eff[i+1] = N.seq[i+1] i.change = c(i.change, i+1) }else{ u[i+1] = u[i] N.eff[i+1] = N.eff[i] } i = i+1 } if(plot.it){ range.UMPBT = range(UMPBT.seq) df = rbind.data.frame(data.frame('xval' = N.seq, 'yval' = UMPBT.seq, 'type' = 'UMPBT'), data.frame('xval' = N.seq, 'yval' = u, 'type' = 'decreasing'), data.frame('xval' = N.seq[i.change], 'yval' = u[i.change], 'type' = 'effective'), data.frame('xval' = rep(N.eff[N], 2), 'yval' = range.UMPBT, 'type' = 'effectiveN')) df$type = factor(as.character(df$type), levels = c('UMPBT', 'decreasing', 'effective', 'effectiveN')) plot.df = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(linetype = type, colour = type), size = 0.5) + geom_vline(xintercept = N.eff[N], size = 0.5, colour = 'blue') + scale_linetype_manual(labels = c('Original point UMPBT alternatives', 'Decreasing point UMPBT alternatives', 'Desirable maximum sample size values', 'The effective N' ), values = c("dashed", "dashed", "blank", "solid"), guide = guide_legend(nrow = 2)) + geom_point(aes(colour = type, shape = type, size = type)) + scale_shape_manual(labels = c('Original point UMPBT alternatives', 'Decreasing point UMPBT alternatives', 'Desirable maximum sample size values', 'The effective N' ), values = c(16, 16, 1, 0), guide = guide_legend(nrow = 2)) + scale_size_manual(labels = c('Original point UMPBT alternatives', 'Decreasing point UMPBT alternatives', 'Desirable maximum sample size values', 'The effective N' ), values = c(3, 3, 5, 0.1), guide = guide_legend(nrow = 2)) + scale_color_manual(labels = c('Original point UMPBT alternatives', 'Decreasing point UMPBT alternatives', 'Desirable maximum sample size values', 'The effective N' ), values = c('black', 'red2', 'forestgreen', 'blue'), guide = guide_legend(nrow = 2)) + annotate('text', x = N.eff[N]-1, size = 5, y = (UMPBT.seq[1] + UMPBT.seq[N])/2, label = paste('N = ', N.eff[N], sep = '')) + ylim(range.UMPBT) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=15), legend.position = 'bottom') + labs(title = 'One-sample proportion test', subtitle = paste('Design the MSPRT using N = ', N.eff[N], sep = ''), y = 'UMPBT alternatives', x = 'Sample size') suppressWarnings(print(plot.df)) } }else if(side=="left"){ UMPBT.seq = mapply(n = N.seq, FUN = function(n){ c.alpha = qbinom(p = Type1, size = n, prob = theta0) solve.delta.outer = nleqslv::nleqslv(x = 3, fn = function(delta){ out.optimize.UMPBTobjective = optimize(interval = c(0, theta0), maximum = T, f = function(p){ (log(delta) - n*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) out.optimize.UMPBTobjective$objective - c.alpha }) out.optimize.UMPBTobjective.outer = optimize(interval = c(0, theta0), maximum = T, f = function(p){ (log(solve.delta.outer$x) - n*(log(1 - p) - log(1 - theta0)))/ (log(p/(1 - p)) - log(theta0/(1 - theta0))) }) round(out.optimize.UMPBTobjective.outer$maximum, 5) }) u = N.eff = rep(NA, N) i.change = numeric() u[1] = UMPBT.seq[1] N.eff[1] = N.seq[1] i.change = i = 1 while (i<N) { if(UMPBT.seq[i+1]>u[i]){ u[i+1] = UMPBT.seq[i+1] N.eff[i+1] = N.seq[i+1] i.change = c(i.change, i+1) }else{ u[i+1] = u[i] N.eff[i+1] = N.eff[i] } i = i+1 } if(plot.it){ range.UMPBT = range(UMPBT.seq) df = rbind.data.frame(data.frame('xval' = N.seq, 'yval' = UMPBT.seq, 'type' = 'UMPBT'), data.frame('xval' = N.seq, 'yval' = u, 'type' = 'decreasing'), data.frame('xval' = N.seq[i.change], 'yval' = u[i.change], 'type' = 'effective'), data.frame('xval' = rep(N.eff[N], 2), 'yval' = range.UMPBT, 'type' = 'effectiveN')) df$type = factor(as.character(df$type), levels = c('UMPBT', 'decreasing', 'effective', 'effectiveN')) plot.df = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(linetype = type, colour = type), size = 0.5) + geom_vline(xintercept = N.eff[N], size = 0.5, colour = 'blue') + scale_linetype_manual(labels = c('Original point UMPBT alternatives', 'Decreasing point UMPBT alternatives', 'Desirable maximum sample size values', 'The effective N'), values = c("dashed", "dashed", "blank", "solid"), guide = guide_legend(nrow = 2)) + geom_point(aes(colour = type, shape = type, size = type)) + scale_shape_manual(labels = c('Original point UMPBT alternatives', 'Decreasing point UMPBT alternatives', 'Desirable maximum sample size values', 'The effective N'), values = c(16, 16, 1, 0), guide = guide_legend(nrow = 2)) + scale_size_manual(labels = c('Original point UMPBT alternatives', 'Decreasing point UMPBT alternatives', 'Desirable maximum sample size values', 'The effective N'), values = c(3, 3, 5, 0.1), guide = guide_legend(nrow = 2)) + scale_color_manual(labels = c('Original point UMPBT alternatives', 'Decreasing point UMPBT alternatives', 'Desirable maximum sample size values', 'The effective N'), values = c('black', 'red2', 'forestgreen', 'blue'), guide = guide_legend(nrow = 2)) + annotate('text', x = N.eff[N]-1, size = 5, y = (UMPBT.seq[1] + UMPBT.seq[N])/2, label = paste('N = ', N.eff[N], sep = '')) + ylim(range.UMPBT) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=15), legend.position = 'bottom') + labs(title = 'One-sample proportion test', subtitle = paste('Design the MSPRT using N = ', N.eff[N], sep = ''), y = 'UMPBT alternatives', x = 'Sample size') suppressWarnings(print(plot.df)) } } return(N.eff[N]) } Nstar = function(test.type, N, N1, N2, N.increment = 1, N1.increment = 1, N2.increment = 1, lower.signif = 0.05, higher.signif = 0.005, theta0, side = "right", Type2.target = 0.2, theta, sigma = 1, sigma1 = 1, sigma2 = 1, plot.it = T){ if((test.type!="oneProp") & (test.type!="oneZ") & (test.type!="oneT") & (test.type!="twoZ") & (test.type!="twoT")){ return(print("Unknown 'test type'. Has to be one of 'oneProp', 'oneZ', 'oneT', 'twoZ' or 'twoT'.")) } if(any(test.type==c('oneProp', 'oneT'))){ if(missing(theta)) theta = fixed_design.alt(test.type = test.type, side = side, theta0 = theta0, N = N, Type1 = lower.signif, Type2 = Type2.target) i = 0 incr.seq = 1 N.seq = N Type2.seq = Type2.fixed_design(theta = theta, test.type = test.type, side = side, theta0 = theta0, N = N.seq[i+1], Type1 = higher.signif) i = 1 if(Type2.seq[i]>Type2.target){ while(Type2.seq[i]>Type2.target){ incr.seq = c(incr.seq, i+1) N.seq = c(N.seq, N.seq[i] + N.increment) Type2.seq = c(Type2.seq, Type2.fixed_design(theta = theta, test.type = test.type, side = side, theta0 = theta0, N = N.seq[i+1], Type1 = higher.signif)) i = i+1 } } if(plot.it){ df = rbind.data.frame(data.frame('xval' = incr.seq, 'yval' = Type2.seq, 'type' = 'type2'), data.frame('xval' = incr.seq[i], 'yval' = Type2.seq[i], 'type' = 'chosen'), data.frame('xval' = incr.seq[i], 'yval' = c(Type2.seq[1], Type2.seq[i]), 'type' = 'chosen.vline'), data.frame('xval' = incr.seq, 'yval' = Type2.target, 'type' = 'desired.type2')) df$type = factor(as.character(df$type), levels = c('type2', 'chosen', 'chosen.vline', 'desired.type2')) plot.df = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(linetype = type, colour = type), size = 0.5) + geom_vline(xintercept = incr.seq[i], size = 0.5, colour = 'blue') + geom_hline(yintercept = Type2.target, size = 0.5, colour = 'forestgreen') + scale_linetype_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c("dashed", "solid", "solid", "solid"), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + geom_point(aes(colour = type, shape = type, size = type)) + scale_shape_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c(16, 16, 0, 0), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + scale_size_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c(3, 3, 0.001, 0.001), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + scale_color_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c('black', 'red2', 'blue', 'forestgreen'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=15), legend.position = 'bottom') + labs(title = bquote('N'^'*'~'='~.(N.seq[i])), y = paste('Type II error probability at ', round(theta, 4), sep = ''), x = 'Steps of sample size increment') suppressWarnings(print(plot.df)) } return(N.seq[i]) }else if(test.type=='oneZ'){ if(missing(theta)) theta = fixed_design.alt(test.type = test.type, side = side, theta0 = theta0, sigma = sigma, N = N, Type1 = lower.signif, Type2 = Type2.target) i = 0 incr.seq = 1 N.seq = N Type2.seq = Type2.fixed_design(theta = theta, test.type = test.type, side = side, theta0 = theta0, sigma = sigma, N = N.seq[i+1], Type1 = higher.signif) i = 1 if(Type2.seq[i]>Type2.target){ while(Type2.seq[i]>Type2.target){ incr.seq = c(incr.seq, i+1) N.seq = c(N.seq, N.seq[i] + N.increment) Type2.seq = c(Type2.seq, Type2.fixed_design(theta = theta, test.type = test.type, side = side, theta0 = theta0, sigma = sigma, N = N.seq[i+1], Type1 = higher.signif)) i = i + 1 } } if(plot.it){ df = rbind.data.frame(data.frame('xval' = incr.seq, 'yval' = Type2.seq, 'type' = 'type2'), data.frame('xval' = incr.seq[i], 'yval' = Type2.seq[i], 'type' = 'chosen'), data.frame('xval' = incr.seq[i], 'yval' = c(Type2.seq[1], Type2.seq[i]), 'type' = 'chosen.vline'), data.frame('xval' = incr.seq, 'yval' = Type2.target, 'type' = 'desired.type2')) df$type = factor(as.character(df$type), levels = c('type2', 'chosen', 'chosen.vline', 'desired.type2')) plot.df = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(linetype = type, colour = type), size = 0.5) + geom_vline(xintercept = incr.seq[i], size = 0.5, colour = 'blue') + geom_hline(yintercept = Type2.target, size = 0.5, colour = 'forestgreen') + scale_linetype_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c("dashed", "solid", "solid", "solid"), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + geom_point(aes(colour = type, shape = type, size = type)) + scale_shape_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c(16, 16, 0, 0), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + scale_size_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c(3, 3, 0.001, 0.001), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + scale_color_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c('black', 'red2', 'blue', 'forestgreen'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=15), legend.position = 'bottom') + labs(title = bquote('N'^'*'~'='~.(N.seq[i])), y = paste('Type II error probability at ', round(theta, 4), sep = ''), x = 'Steps of sample size increment') suppressWarnings(print(plot.df)) } return(N.seq[i]) }else if(test.type=='twoZ'){ if(missing(theta)) theta = fixed_design.alt(test.type = test.type, side = side, theta0 = theta0, sigma1 = sigma1, sigma2 = sigma2, N1 = N1, N2 = N2, Type1 = lower.signif, Type2 = Type2.target) i = 0 incr.seq = 1 N1.seq = N1 N2.seq = N2 Type2.seq = Type2.fixed_design(theta = theta, test.type = test.type, side = side, theta0 = theta0, sigma1 = sigma1, sigma2 = sigma2, N1 = N1.seq[i+1], N2 = N2.seq[i+1], Type1 = higher.signif) i = 1 if(Type2.seq[i]>Type2.target){ while(Type2.seq[i]>Type2.target){ incr.seq = c(incr.seq, i+1) N1.seq = c(N1.seq, N1.seq[i] + N1.increment) N2.seq = c(N2.seq, N2.seq[i] + N2.increment) Type2.seq = c(Type2.seq, Type2.fixed_design(theta = theta, test.type = test.type, side = side, theta0 = theta0, sigma1 = sigma1, sigma2 = sigma2, N1 = N1.seq[i+1], N2 = N2.seq[i+1], Type1 = higher.signif)) i = i + 1 } } if(plot.it){ df = rbind.data.frame(data.frame('xval' = incr.seq, 'yval' = Type2.seq, 'type' = 'type2'), data.frame('xval' = incr.seq[i], 'yval' = Type2.seq[i], 'type' = 'chosen'), data.frame('xval' = incr.seq[i], 'yval' = c(Type2.seq[1], Type2.seq[i]), 'type' = 'chosen.vline'), data.frame('xval' = incr.seq, 'yval' = Type2.target, 'type' = 'desired.type2')) df$type = factor(as.character(df$type), levels = c('type2', 'chosen', 'chosen.vline', 'desired.type2')) plot.df = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(linetype = type, colour = type), size = 0.5) + geom_vline(xintercept = incr.seq[i], size = 0.5, colour = 'blue') + geom_hline(yintercept = Type2.target, size = 0.5, colour = 'forestgreen') + scale_linetype_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c("dashed", "solid", "solid", "solid"), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + geom_point(aes(colour = type, shape = type, size = type)) + scale_shape_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c(16, 16, 0, 0), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + scale_size_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c(3, 3, 0.001, 0.001), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + scale_color_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c('black', 'red2', 'blue', 'forestgreen'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=15), legend.position = 'bottom') + labs(title = bquote('N'[1]^'*'~'='~.(N1.seq[i])~', N'[2]^'*'~'='~.(N2.seq[i])), y = paste('Type II error probability at ', round(theta, 4), sep = ''), x = 'Steps of sample size increment') suppressWarnings(print(plot.df)) } return(c(N1.seq[i], N2.seq[i])) }else if(test.type=='twoT'){ if(missing(theta)) theta = fixed_design.alt(test.type = test.type, side = side, theta0 = theta0, N1 = N1, N2 = N2, Type1 = lower.signif, Type2 = Type2.target) i = 0 incr.seq = 1 N1.seq = N1 N2.seq = N2 Type2.seq = Type2.fixed_design(theta = theta, test.type = test.type, side = side, theta0 = theta0, N1 = N1.seq[i+1], N2 = N2.seq[i+1], Type1 = higher.signif) i = 1 if(Type2.seq[i]>Type2.target){ while(Type2.seq[i]>Type2.target){ incr.seq = c(incr.seq, i+1) N1.seq = c(N1.seq, N1.seq[i] + N1.increment) N2.seq = c(N2.seq, N2.seq[i] + N2.increment) Type2.seq = c(Type2.seq, Type2.fixed_design(theta = theta, test.type = test.type, side = side, theta0 = theta0, N1 = N1.seq[i+1], N2 = N2.seq[i+1], Type1 = higher.signif)) i = i + 1 } } if(plot.it){ df = rbind.data.frame(data.frame('xval' = incr.seq, 'yval' = Type2.seq, 'type' = 'type2'), data.frame('xval' = incr.seq[i], 'yval' = Type2.seq[i], 'type' = 'chosen'), data.frame('xval' = incr.seq[i], 'yval' = c(Type2.seq[1], Type2.seq[i]), 'type' = 'chosen.vline'), data.frame('xval' = incr.seq, 'yval' = Type2.target, 'type' = 'desired.type2')) df$type = factor(as.character(df$type), levels = c('type2', 'chosen', 'chosen.vline', 'desired.type2')) plot.df = ggplot(data = df, aes(x = xval, y = yval, group = type)) + geom_line(aes(linetype = type, colour = type), size = 0.5) + geom_vline(xintercept = incr.seq[i], size = 0.5, colour = 'blue') + geom_hline(yintercept = Type2.target, size = 0.5, colour = 'forestgreen') + scale_linetype_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c("dashed", "solid", "solid", "solid"), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + geom_point(aes(colour = type, shape = type, size = type)) + scale_shape_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c(16, 16, 0, 0), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + scale_size_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c(3, 3, 0.001, 0.001), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + scale_color_manual(labels = c('Type II error probabilities for \ndifferent sample sizes', 'Type II error probability for the \nchosen sample size', 'The chosen sample size', 'Desired Type II error probability'), values = c('black', 'red2', 'blue', 'forestgreen'), guide = guide_legend(nrow = 2, override.aes = list(linetype = c(2,0,1,1)))) + theme(plot.title = element_text(size = 25), plot.subtitle = element_text(size = 22), axis.title.x = element_text(size = 18), axis.title.y = element_text(size = 18), axis.text.x = element_text(color = "black", size = 15), axis.text.y = element_text(color = "black", size = 15), panel.border = element_rect(linetype = "solid", fill = NA, size = 1.2), panel.background = element_blank(), legend.title = element_blank(), legend.key.width = unit(1.4, "cm"), legend.spacing.x = unit(1, 'cm'), legend.text = element_text(size=15), legend.position = 'bottom') + labs(title = bquote('N'[1]^'*'~'='~.(N1.seq[i])~', N'[2]^'*'~'='~.(N2.seq[i])), y = paste('Type II error probability at ', round(theta, 4), sep = ''), x = 'Steps of sample size increment') suppressWarnings(print(plot.df)) } return(c(N1.seq[i], N2.seq[i])) } }
gce_get_zone <- function(project, zone) { url <- sprintf("https://www.googleapis.com/compute/v1/projects/%s/zones/%s", project, zone) f <- gar_api_generator(url, "GET", data_parse_function = function(x) x) zone <- f() structure(zone, class = "gce_zone") } gce_list_zones <- function(project, filter = NULL, maxResults = NULL, pageToken = NULL) { url <- sprintf("https://www.googleapis.com/compute/v1/projects/%s/zones", project) pars <- list(filter = filter, maxResults = maxResults, pageToken = pageToken) pars <- rmNullObs(pars) f <- gar_api_generator(url, "GET", pars_args = pars, data_parse_function = function(x) x) f() } gce_global_zone <- function(zone){ if(inherits(zone, "gce_zone")){ zone <- zone$name } stopifnot(inherits(zone, "character"), length(zone) == 1) .gce_env$zone <- zone message("Set default zone name to '", zone,"'") return(invisible(.gce_env$zone)) } gce_get_global_zone <- function(){ if(!exists("zone", envir = .gce_env)){ stop("zone is NULL and couldn't find global zone name. Set it via gce_global_zone") } .gce_env$zone }
marca <- function(T) { if (T<15) marca<-c(1:T) else{ b<-signif(T,-1)/10 marca<- c(1,seq(b,T, by=b)) } return(marca) }
pfvn <- function (x, r, q) { ifelse(isTRUE("Multilevel" %in% attr(x, "class")) == TRUE, x <- x$mlnet, NA) mx <- norm(as.matrix(x), type = "F") note <- NULL n <- dim(x)[1] if (missing(q) == TRUE) { q <- (n - 1) } else { if (isTRUE(q < 2) == TRUE) { q <- 2 warning("'q' is set to the minimum possible value of 2.") } } ifelse(missing(r) == TRUE, r <- Inf, NA) ifelse(isTRUE(is.data.frame(x) == TRUE) == TRUE, x <- as.matrix(x), NA) if (isTRUE(is.array(x) == TRUE) == FALSE) stop("Input data must be data frame, matrix or array type.") if (isTRUE(is.na(dim(x)[3]) == TRUE) == TRUE) { Q <- x D <- x if (isTRUE(isSymmetric(x) == TRUE) == TRUE) { sim <- "Symmetric" for (k in seq(2, q)) { QO <- Q for (i in seq_len(n)) { for (j in seq_len(n)) { if (r == Inf) { Q[i, j] <- min(pmax(x[i, ], QO[, j])) } else { Q[i, j] <- min(x[i, ]^r + QO[, j]^r)^(1/r) } if (D[i, j] > Q[i, j]) { D[i, j] <- Q[i, j] } } rm(j) } rm(i) } rm(k) for (i in seq_len(n)) { for (j in seq_len(n)) { if (D[i, j] < x[i, j]) { Q[i, j] <- Inf } } rm(j) } rm(i) QQ <- Q } else { sim <- "NonSymmetric" note <- paste("For non-symmetyric arrays, triangle inequality only for r=", r, "and q=", q, "(?) is supported") QQ <- ti(x) } } else if (isTRUE(is.na(dim(x)[3]) == FALSE) == TRUE) { sim <- NULL QQ <- array(NA, dim = c(dim(x)[1], dim(x)[2], dim(x)[3]), dimnames = list(dimnames(x)[[1]], dimnames(x)[[2]], dimnames(x)[[3]])) for (K in seq_len(dim(x)[3])) { X <- x[, , K] Q <- x[, , K] D <- x[, , K] if (isTRUE(isSymmetric(X) == TRUE) == TRUE) { ifelse(isTRUE(length(sim) == 0) == TRUE, sim <- "Symmetric", NA) for (k in seq(2, q)) { QO <- Q for (i in seq_len(n)) { for (j in seq_len(n)) { if (r == Inf) { Q[i, j] <- min(pmax(X[i, ], QO[, j])) } else { Q[i, j] <- min(X[i, ]^r + QO[, j]^r)^(1/r) } if (D[i, j] > Q[i, j]) { D[i, j] <- Q[i, j] } } rm(j) } rm(i) } rm(k) for (i in seq_len(n)) { for (j in seq_len(n)) { if (D[i, j] < X[i, j]) { Q[i, j] <- Inf } } rm(j) } rm(i) } else { sim <- "NonSymmetric" Q <- ti(X) } QQ[, , K] <- Q } rm(K) } ifelse(isTRUE(length(note) > 0L) == TRUE, lst <- list(max = mx, r = r, q = q, Q = QQ, Note = note), lst <- list(max = mx, r = r, q = q, Q = QQ)) class(lst) <- c("pathfinder", sim) return(lst) }
vector2Q <- function(p){ m <- 0.5 + sqrt(1+4*length(p))/2 p <- exp(p) Q <- matrix(0, ncol=m, nrow=m) k <- 1 for (j in 1:m){ for (i in 1:m){ if (i!=j){ Q[i,j] <- p[k] k <- k+1 } } } diag(Q) <- -(Q %*% rep(1, m)) return(Q) }
randtest.hist <- function(results.file="raw_results_run1.csv", df=1, p.val=0.05, main="Default", xlim=NULL, PCTSlcol = "black", vlcol=c("red","orange"), ...) { crit.val.nom <- qchisq(1-p.val, df=df) results <- read.csv(results.file) if (!isClass("xpose.data") || !isClass("xpose.prefs")) { createXposeClasses() } xpobj <- new("xpose.data", Runno="PsN Randomization Test", Data = NULL) if (is.readable.file("xpose.ini")) { xpobj <- xpose.read(xpobj, file="xpose.ini") } else { rhome <- R.home() xdefini <- paste(rhome, "\\library\\xpose4\\xpose.ini", sep="") if (is.readable.file(xdefini)) { xpobj <- xpose.read(xpobj, file=xdefini) }else{ xdefini2 <- paste(rhome, "\\library\\xpose4\\xpose.ini", sep="") if (is.readable.file(xdefini2)) { xpobj <- xpose.read(xpobj, file=xdefini2) } } } results$ID <-1 results$WRES <- 1 num_na <- length(results$deltaofv[is.na(results$deltaofv)]) if(num_na>0){ warning("Removing ",num_na," NONMEM runs that did not result in OFV values") results <- results[!is.na(results$deltaofv),] } Data(xpobj,keep.structure=T) <- results[-c(1,2),] crit.val.emp <- quantile(xpobj@Data$deltaofv,probs=p.val) orig = results$deltaofv[2] xpose.plot.histogram("deltaofv", xpobj, bins.per.panel.equal=FALSE, xlim = if(is.null(xlim)){c(min(c(orig,crit.val.emp,xpobj@Data$deltaofv))-1, max(c(orig,crit.val.emp,xpobj@Data$deltaofv,0))+0.2)}, showPCTS=TRUE, PCTS=c(p.val), PCTSlcol = PCTSlcol, vline=c(orig,-crit.val.nom), vlcol=vlcol, main=if(main=="Default"){"Change in OFV for Randomization Test"}else{main}, key=list( columns = 1, lines = list(type="l",col =c(vlcol,PCTSlcol)), text = list(c("Original data", "Nominal", "Empirical (rand. test)")), corner=c(0.05,0.95), border=T, alpha.background=1, background = "white" ), ... ) }
DJI <- function(level){ x <- NULL if(level==1){ x1 <- github.cssegisanddata.covid19(country = "Djibouti") x2 <- ourworldindata.org(id = "DJI") x <- full_join(x1, x2, by = "date") } return(x) }
significance_analysis <- function(x, n) { num_groups = length(x) p = x/n my_rank = rank(-p) pt = prop.test(x=x, n=n) lower = rep(NA, num_groups) upper = rep(NA, num_groups) significance = rep(NA, num_groups) best = rep(0, num_groups) b = best_binomial_bandit(x, n) if (pt$p.value < 0.05) { is_best = 1 for (cur_rank in sort(unique(my_rank))) { cur_indices = which(my_rank==cur_rank) if (length(cur_indices) >= 1) { cur_index = max(cur_indices) ranks_above = my_rank[my_rank > cur_rank] if (length(ranks_above) > 0) { comparison_index = min(which(my_rank==min(ranks_above))) pt = prop.test(x=x[c(cur_index, comparison_index)], n=n[c(cur_index, comparison_index)], conf.level = (1 - 0.05)) significance[cur_indices] = pt$p.value lower[cur_indices] = pt$conf.int[1] upper[cur_indices] = pt$conf.int[2] best[cur_indices] = is_best if (pt$p.value < 0.05) { is_best = 0 } } } } } return(data.frame(successes=x, totals=n, estimated_proportion=p, lower=lower, upper=upper, significance=significance, rank=my_rank, best=best, p_best=b)) }
remove(list = ls()) library(MortalityLaws) library(testthat) x1 <- c(0, 1, seq(5, 100, by = 5)) mx <- c(.08592, .00341, .00099, .00073, .00169, .00296, .00364, .00544, .00539, .01460, .01277, .02694, .01703, .04331, .03713, .07849, .09307, .13990, .18750, .22500, .25000, .30000) names(mx) <- x1 M1 <- function() MortalityLaw(x = x1, mx = mx, law = law, fit.this.x = x2, opt.method = opt.method) M2 <- function() MortalityLaw(x = x2, mx = mx[paste(x2)], law = law, fit.this.x = x2, opt.method = opt.method) opt.method = "LF2" testFN <- function(M1, M2) { test_that(paste(law, "Model"), { expect_identical(fitted(M1)[paste(x2)], fitted(M2)) expect_identical(fitted(M1)[paste(x2)], predict(M1, x = x2)) expect_identical(fitted(M1), predict(M1, x = x1)) expect_identical(fitted(M1), predict(M2, x = x1)) expect_identical(coef(M1), coef(M2)) expect_false(is.null(plot(M1))) expect_false(is.null(plot(M2))) }) } law = "gompertz" x2 = seq(40, 75, by = 5) testFN(M1(), M2()) law = "gompertz0" x2 = seq(40, 75, by = 5) testFN(M1(), M2()) law = "invgompertz" x2 = seq(5, 30, by = 5) testFN(M1(), M2()) law = "makeham" x2 = seq(35, 90, by = 5) testFN(M1(), M2()) law = "makeham0" x2 = seq(35, 90, by = 5) testFN(M1(), M2()) law = "opperman" x2 = c(0,1, seq(5, 25, by = 5)) testFN(M1(), M2()) law = "thiele" x2 = x1 testFN(M1(), M2()) law = "wittstein" x2 = x1 testFN(M1(), M2()) law = "perks" x2 = seq(20, 80, 5) testFN(M1(), M2()) law = "weibull" x2 = c(0, 1, 5, 10, 15) testFN(M1(), M2()) law = "invweibull" x2 = seq(10, 30, 5) testFN(M1(), M2()) law = "vandermaen" x2 = seq(20, 95, by = 5) testFN(M1(), M2()) law = "vandermaen2" x2 = seq(60, 95, by = 5) testFN(M1(), M2()) law = "strehler_mildvan" x2 = seq(40, 75, by = 5) testFN(M1(), M2()) law = "quadratic" x2 = seq(60, 95, by = 5) testFN(M1(), M2()) law = "beard" x2 = seq(60, 95, by = 5) testFN(M1(), M2()) law = "beard_makeham" x2 = seq(60, 95, by = 5) testFN(M1(), M2()) law = "ggompertz" x2 = seq(60, 95, by = 5) testFN(M1(), M2()) law = "siler" x2 = x1 testFN(M1(), M2()) law = "HP" x2 = x1 testFN(M1(), M2()) law = "HP2" x2 = x1 testFN(M1(), M2()) law = "HP3" x2 = x1 testFN(M1(), M2()) law = "HP4" x2 = x1 testFN(M1(), M2()) law = "rogersplanck" x2 = x1 testFN(M1(), M2()) law = "martinelle" x2 = c(0, 1, seq(5, 75, 5)) testFN(M1(), M2()) law = "carriere1" x2 = x1 testFN(M1(), M2()) law = "carriere2" x2 = x1 testFN(M1(), M2()) law = "kostaki" x2 = x1 testFN(M1(), M2()) law = "kannisto" x2 = c(80, 85, 90, 95) testFN(M1(), M2()) law = "kannisto_makeham" x2 = c(80, 85, 90, 95) testFN(M1(), M2())
fmpc_13f_cik_list <- function() { Result <- fmpc_get_url('cik_list?') Result <- hlp_chkResult(Result) dplyr::as_tibble(Result) } fmpc_13f_cik_search <- function(query = 'Berkshire') { URL = paste0('cik-search/',gsub(' ','%20',query),'?') Result <- fmpc_get_url(URL) Result <- hlp_chkResult(Result) dplyr::as_tibble(Result) } fmpc_13f_cik_name <- function(cik = '0001067983') { cikReq = unique(cik) Result <- hlp_bindURLs(paste0('cik/',cikReq,'?')) Result <- hlp_chkResult(Result) Result } fmpc_13f_data <- function(cik = '0001067983', date = '2019-12-31') { fillingDate <- NULL cikPull = unique(cik) datePull = unique(lubridate::ceiling_date(as.Date(date), unit = 'quarter') - 1) checkDate = unique(date) != datePull if (TRUE %in% checkDate) warning('13F can only be pulled for quarter end.', call. = FALSE) CrossCikDate = tidyr::crossing(cik = cikPull, date = datePull) %>% dplyr::mutate(URL = paste0('form-thirteen/',cik,'?date=',date,'&')) cikDate = hlp_bindURLs(CrossCikDate$URL) hlp_respCheck(cikPull,cikDate$cik,'Missing cik(s) for fmpc_13f_data: ') hlp_respCheck(datePull,unique(cikDate$date),'Missing date(s) fmpc_13f_data: ') if (is.null(cikDate)) return(NULL) cikDate %>% dplyr::distinct() %>% dplyr::mutate_at(dplyr::vars(date,fillingDate),as.Date) } fmpc_rss_sec <- function(limit = 100) { Result <- fmpc_get_url(paste0('rss_feed?limit=',limit,'&')) Result <- hlp_chkResult(Result) dplyr::as_tibble(Result) } fmpc_held_by_mfs <- function(symbols = c('AAPL')) { symbReq = hlp_symbolCheck(symbols) mf_df = data.frame(URL = paste0('mutual-fund-holder/',symbReq,'?'), label = gsub('%5E','\\^',symbReq)) mutualFundDF = hlp_bindURLs(mf_df$URL, label_df = mf_df, label_name = 'symbol') hlp_respCheck(symbReq,mutualFundDF$symbol,'fmpc_held_by_mfs: ') mutualFundDF } fmpc_holdings_etf <- function(etfs = c('SPY'), holding = c('symbol', 'sector', 'country')) { etfReq = hlp_symbolCheck(etfs) if (missing(holding)) holding = 'symbol' if (!(holding %in% c('symbol', 'sector', 'country'))){ stop('Holding must be one of the following: symbol, sector, or country') } holdReq = switch(holding, 'symbol' = 'holder', 'sector' = 'sector-weightings', 'country' = 'country-weightings') etf_df = data.frame(URL = paste0('etf-',holdReq,'/',etfReq,'?'), label = etfReq) etfDF = hlp_bindURLs(etf_df$URL, label_df = etf_df, label_name = 'etf') hlp_respCheck(etfReq,etfDF$etf,'fmpc_holdings_etf: ') etfDF }
get_pcawg_gene_value <- function(identifier) { host <- "pcawgHub" dataset <- "tophat_star_fpkm_uq.v2_aliquot_gl.sp.log" expression <- get_data(dataset, identifier, host) unit <- "log2(fpkm-uq+0.001)" report_dataset_info(dataset) res <- list(data = expression, unit = unit) res } get_pcawg_fusion_value <- function(identifier) { host <- "pcawgHub" dataset <- "pcawg3_fusions_PKU_EBI.gene_centric.sp.xena" expression <- get_data(dataset, identifier, host) unit <- "binary fusion call, 1 fusion, 0 otherwise" report_dataset_info(dataset) res <- list(data = expression, unit = unit) res } get_pcawg_promoter_value <- function(identifier, type = c("raw", "relative", "outlier")) { host <- "pcawgHub" type <- match.arg(type) if (type == "raw") { dataset <- "rawPromoterActivity.sp" unit <- "raw promoter activity" } else if (type == "relative") { dataset <- "relativePromoterActivity.sp" unit <- "portion of transcription activity of the gene driven by the promoter" } else { dataset <- "promoterCentricTable_0.2_1.0.sp" unit <- "-1 (low expression), 0 (normal), 1 (high expression)" } if (!startsWith(identifier, "prmtr")) { map <- load_data("pcawg_promoter_id") id_map <- map[names(map) == identifier] if (length(id_map) > 1) { expression <- purrr::reduce( purrr::map( as.character(id_map), ~ get_data(dataset, ., host) ), `+` ) } else { expression <- get_data(dataset, as.character(id_map), host) } } else { expression <- get_data(dataset, identifier, host) } report_dataset_info(dataset) res <- list(data = expression, unit = unit) res } get_pcawg_miRNA_value <- function(identifier, norm_method = c("TMM", "UQ")) { host <- "pcawgHub" norm_method <- match.arg(norm_method) if (norm_method == "TMM") { dataset <- "x3t2m1.mature.TMM.mirna.matrix.log" unit <- "log2(cpm-TMM+0.1)" } else { dataset <- "x3t2m1.mature.UQ.mirna.matrix.log" unit <- "log2(cpm-uq+0.1)" } expression <- get_data(dataset, identifier, host) report_dataset_info(dataset) res <- list(data = expression, unit = unit) res } get_pcawg_APOBEC_mutagenesis_value <- function(identifier = c( "tCa_MutLoad_MinEstimate", "APOBECtCa_enrich", "A3A_or_A3B", "APOBEC_tCa_enrich_quartile", "APOBECrtCa_enrich", "APOBECytCa_enrich", "APOBECytCa_enrich-APOBECrtCa_enrich", "BH_Fisher_p-value_tCa", "ntca+tgan", "rtCa_to_G+rtCa_to_T", "rtca+tgay", "tCa_to_G+tCa_to_T", "ytCa_rtCa_BH_Fisher_p-value", "ytCa_rtCa_Fisher_p-value", "ytCa_to_G+ytCa_to_T", "ytca+tgar" )) { identifier <- match.arg(identifier) host <- "pcawgHub" dataset <- "MAF_Aug31_2016_sorted_A3A_A3B_comparePlus.sp" expression <- get_data(dataset, identifier, host) unit <- "" report_dataset_info(dataset) res <- list(data = expression, unit = unit) res }
library(portfolio) load("portfolio.expandData.test.RData") result <- expandData(test) stopifnot( all.equal(truth$id, result@data$id), all.equal(truth$price, result@data$price), all.equal(truth$in.var, result@data$in.var) )
if(getRversion() >= "2.15.1") { utils::globalVariables(c("lower", "upper", "label", "y")) } plotBoundary <- function(b1, b0, p, glrTables=NULL, tol=1e-7, legend=FALSE, textXOffset=2, textYSkip=2) { boundary <- computeBoundary(b1=b1, b0=b0, p=p, glrTables=glrTables) estimate <- boundary$estimate N <- length(boundary$upper) d <- data.frame(x=1:N, lower=boundary$lower, upper=boundary$upper) plot <- ggplot() plot <- plot + geom_step(aes(x=x, y=lower), data=d, colour="blue") + geom_step(aes(x=x, y=upper), data=d, colour = 'red') plot <- plot + theme(legend.position = "none") plot <- plot + scale_x_continuous('Total No. of AEs') + scale_y_continuous('No. of Vaccine AEs') x <- floor(sum(range(d$upper, na.rm=TRUE)/2)) y1 <- d$upper[x] + 2 plot <- plot + geom_text(aes(x, y, label=label), data=data.frame(x=floor(x/2), y=y1, label="Reject H_0"), color="red", hjust=0.0) y2 <- d$lower[x] - 2 plot <- plot + geom_text(aes(x,y,label=label), data=data.frame(x=ceiling((x + length(d$upper))/2), y=y2, label="Accept H_0"), color="blue", hjust=0.0) if (legend) { leg1 <- paste("Hypothesis: (p[0] *\",\" * p[1]) * \"=\" * (", p[1], "* \",\" * ", p[2], ")", sep="") leg2 <- paste("SGLR *\" \" * Boundaries: (b[0] *\",\" * b[1]) * \"=\" * (", b0, "*\",\" * ", b1, ")", sep="") leg3 <- paste("Type *\" \" * I * \", \" * II * \" \" * Errors: (alpha *\", \"* beta) *\"=\" * (", round(estimate[1], 5), "*\", \" * ", round(estimate[2], 5), ")", sep="") leg4 <- paste("Max.* \" top <- max(d$upper, na.rm=TRUE) plot <- plot + geom_text(aes(x,y,label=label), data=data.frame(x=textXOffset, y=top, label=leg1), parse=TRUE, hjust=0.0) plot <- plot + geom_text(aes(x,y,label=label), data=data.frame(x=textXOffset, y=top-textYSkip, label=leg2), parse=TRUE, hjust=0.0) plot <- plot + geom_text(aes(x,y,label=label), data=data.frame(x=textXOffset, y=top-2*textYSkip, label=leg3), parse=TRUE, hjust=0.0) plot <- plot + geom_text(aes(x,y,label=label), data=data.frame(x=textXOffset, y=top-3*textYSkip, label=leg4), parse=TRUE, hjust=0.0) } plot }
scope.logistic = function ( x, y, gamma = 8, lambda = NULL, nlambda = 100, lambda_min_ratio = 0.01, nfolds = 5, include_intercept = TRUE, return_full_beta = FALSE, max_iter = 1000, max_out_iter = 1000, early_stopping = ifelse(pshrink > 1, TRUE, FALSE), early_stopping_rounds = 20, early_stopping_criterion = "AIC", noise_variance = NULL, terminate_eps = 1e-7, silent = TRUE, only_cross_validate = FALSE, grid_safe = 10, block_order = NULL, fold_assignment = NULL, zero_penalty = FALSE) { inv.logit = function ( x ) return(exp(x) / ( 1 + exp(x) )) logit = function( x ) return(log( x / ( 1 + x ))) scopemod = list() attr(scopemod,"class")<-"scope.logistic" scopemod$cverrors = NULL scopemod$lambdaseq = NULL scopemod$beta.full = NULL scopemod$beta.best = NULL scopemod$fold.assign = NULL n = length(y) p = dim(x)[ 2 ] factor_ind = rep(F, p) for ( j in 1:p ) { if (( class(x[ , j ]) != "numeric" ) && ( class(x[ , j ]) != "numeric" )) factor_ind[ j ] = T } xshrink = data.frame(x[ , factor_ind, drop = F ]) if ( include_intercept == FALSE ) { xlinear = as.matrix(x[ , !factor_ind, drop = F ]) } else { xlinear = as.matrix(cbind(1, x[ , !factor_ind, drop = F ])) } plinear = dim(xlinear)[ 2 ] pshrink = dim(xshrink)[ 2 ] for ( j in 1:pshrink ) xshrink[ , j ] = as.factor(xshrink[ , j ]) include_intercept = FALSE P = solve(t(xlinear) %*% xlinear) %*% t(xlinear) catnumbers = rep(0, pshrink) mcpContribution = rep(0, pshrink) catnames = list() for ( j in 1:pshrink ) { catnames[[ j ]] = levels(xshrink[ , j ]) catnumbers[ j ] = length(catnames[[ j ]]) } if ( is.null(lambda) ) { pathlength = nlambda } else { if ( is.null(dim(lambda)) ) { lambda = t(as.matrix(lambda)) } pathlength = dim(lambda)[ 2 ] } coefficientshrink = list() if ( is.null(block_order) ) block_order = sample(1:pshrink) for ( j in 1:pshrink ) { coefficientshrink[[ j ]] = matrix(0, catnumbers[ j ], pathlength) rownames(coefficientshrink[[ j ]]) = catnames[[ j ]] } coefficientlinear = matrix(0, plinear, pathlength) beta = rep(0, plinear) subaverages = list() weights = list() weightsbool = list() for ( j in 1:pshrink ) { weights[[ j ]] = rep(0, catnumbers[ j ]) weightsbool[[ j ]] = rep(FALSE, catnumbers[ j ]) subaverages[[ j ]] = rep(0, catnumbers[ j ]) for ( k in 1:catnumbers[ j ] ) { weights[[ j ]][ k ] = sum(xshrink[ , j ] == catnames[[ j ]][ k ]) / n } weightsbool[[ j ]] = (weights[[ j ]] > 0) } partialresiduals = y beta = P %*% partialresiduals partialresiduals = partialresiduals - xlinear %*% beta minstdev = Inf for ( j in 1:pshrink ) { subaverages[[ j ]] = tapply(partialresiduals, xshrink[ , j ], mean)[ catnames[[ j ]] ] minstdev = min(minstdev, sqrt(var(subaverages[[ j ]][ weightsbool[[ j ]] ] * sqrt(n * weights[[ j ]][ weightsbool[[ j ]] ])))) } if ( is.null(noise_variance) ) { noise_variance = 0.0125 * minstdev } if ( is.null(lambda) ) { baseseq = as.matrix(exp(seq(log( 8 * noise_variance / sqrt(n)), log(lambda_min_ratio * 8 * noise_variance / sqrt(n)), length = nlambda))) lambda = t(baseseq %*% (catnumbers^(0.5))) } else { if (sum(lambda <= 0) > 0) { stop('All lambda values must be strictly positive') } else if (dim(lambda)[ 1 ] != pshrink) { stop('lambda must be pshrink times pathlength matrix with each row a positive decreasing sequence') } else for (j in 1:pshrink) { if (sum(diff(lambda[ j, ]) > 0) > 0) { stop('lambda sequence for each categorical variable must be decreasing') } } } if ( zero_penalty == TRUE ) { lambda = lambda[ , 1:2 ] lambda[ , 2 ] = rep(0, pshrink) } if ( nfolds > 1 ) { if ( is.null(fold_assignment) ) { fold_assignment = as.integer(sample(ceiling((1:n)*nfolds/n))) scopemod$fold.assign = fold_assignment } cverrors = matrix(0, n, dim(lambda)[ 2 ]) removecounter = 0 counter = 0 for ( k in 1:nfolds ) { if ( silent == FALSE ) print(paste0("Fold ", k)) yfold = y[ (fold_assignment != k), drop = FALSE ] xlinearfold = xlinear[ (fold_assignment != k), , drop = FALSE ] xshrinkfold = xshrink[ (fold_assignment != k), , drop = FALSE ] yremove = y[ (fold_assignment == k), drop = FALSE ] xlinearremove = xlinear[ (fold_assignment == k), , drop = FALSE ] xshrinkremove = xshrink[ (fold_assignment == k), , drop = FALSE ] nremove = length(yremove) keepidentifier = rep(TRUE, nremove) for ( i in 1:nremove ) { for ( j in 1:pshrink ) { if ( xshrinkremove[ i, j ] %in% xshrinkfold[ , j ] == FALSE ) { keepidentifier[ i ] = FALSE removecounter = removecounter + 1 } } } yremove = yremove[ keepidentifier, drop = FALSE ] xlinearremove = xlinearremove[ keepidentifier, , drop = FALSE ] xshrinkremove = xshrinkremove[ keepidentifier, , drop = FALSE ] cvsolution = core_scope.logistic(yfold, xlinearfold, xshrinkfold, block_order, k, gamma, (early_stopping_criterion == "AIC"), early_stopping_criterion, lambda, terminate_eps, !include_intercept, max_iter, max_out_iter, early_stopping, early_stopping_rounds, silent, grid_safe) if ( k == 1 ) { lambda = cvsolution[[ 4 ]] if ( is.null(dim(lambda)) ) { lambda = t(as.matrix(lambda)) } } cvtemp = xlinearremove %*% cvsolution[[ 1 ]] for ( j in 1:pshrink ) { cvtemp = cvtemp + cvsolution[[ 2 ]][[ j ]][ xshrinkremove[ , j], ] } cverrorstemp = abs(yremove - inv.logit(cvtemp)) cverrors[ (counter + 1):(counter + length(yremove)), 1:dim(cverrorstemp)[ 2 ] ] = as.numeric(cverrorstemp) counter = counter + length(yremove) } cverrors = as.matrix(cverrors[ 1:(n - removecounter), 1:dim(cverrorstemp)[ 2 ] ]) if ( removecounter > 0 ) { warning(paste0(removecounter, " observations removed from test sets; number of evaluated predictions is ", n - removecounter, ".")) } cverrors = colMeans(cverrors > 0.5) cverrors[ is.na(cverrors) ] = Inf scopemod$cverrors = cverrors if ( only_cross_validate == TRUE ) { return(scopemod) } pathlengthfinal = which.min(cverrors) lambdaseqused = lambda lambda = lambda[ , 1:pathlengthfinal, drop = FALSE ] if ( silent == FALSE ) print(paste0("Minimal cross-validation error = ", min(cverrors), " at pathpoint ", pathlengthfinal)) scopemod$lambda = lambdaseqused fullsolution = core_scope.logistic(y, xlinear, xshrink, block_order, 2, gamma, (early_stopping_criterion == "AIC"), early_stopping_criterion, lambda, terminate_eps, !include_intercept, max_iter, max_out_iter, early_stopping, early_stopping_rounds, silent, grid_safe ) if ( return_full_beta == TRUE ) { scopemod$beta.full = list() scopemod$beta.full[[ 1 ]] = fullsolution[[ 1 ]] scopemod$beta.full[[ 2 ]] = fullsolution[[ 2 ]] } fullsolution[[ 1 ]] = matrix(fullsolution[[ 1 ]], plinear, pathlengthfinal)[ , pathlengthfinal ] for ( j in 1:pshrink ) { fullsolution[[ 2 ]][[ j ]] = as.matrix(fullsolution[[ 2 ]][[ j ]])[ , pathlengthfinal ] } fullsolution = list(fullsolution[[ 1 ]], fullsolution[[ 2 ]]) scopemod$beta.best = list() scopemod$beta.best[[ 1 ]] = fullsolution[[ 1 ]] scopemod$beta.best[[ 2 ]] = fullsolution[[ 2 ]] return(scopemod) } else { solution = core_scope.logistic(y, xlinear, xshrink, block_order, 1, gamma, (early_stopping_criterion == "AIC"), early_stopping_criterion, lambda, terminate_eps, !include_intercept, max_iter, max_out_iter, early_stopping, early_stopping_rounds, silent, grid_safe ) pathlengthfinal = dim(solution[[ 2 ]][[ 1 ]])[ 2 ] if ( plinear > 1 ) { solution[[ 1 ]] = solution[[ 1 ]][ , 1:pathlengthfinal ] } else { solution[[ 1 ]] = solution[[ 1 ]][ 1:pathlengthfinal ] } for ( j in 1:pshrink ) { if ( pathlengthfinal > 1 ) { solution[[ 2 ]][[ j ]] = solution[[ 2 ]][[ j ]][ , 1:pathlengthfinal ] } } fullsolution = list() fullsolution$beta.full[[ 1 ]] = solution[[ 1 ]] fullsolution$beta.full[[ 2 ]] = solution[[ 2 ]] scopemod$beta.full = fullsolution$beta.full lambda = lambda[ , 1:pathlengthfinal ] scopemod$lambda = lambda return(scopemod) } }
library(knotR) filename <- "8_9.svg" a <- reader(filename) sym89 <- symmetry_object(a,xver=7) a <- symmetrize(a,sym89) ou89 <- matrix(c( 17,06, 05,15, 14,03, 02,18, 09,01, 23,11, 10,21, 19,09 ),ncol=2,byrow=TRUE) jj <- knotoptim(filename, symobj = sym89, ou = ou89, prob = 0, iterlim=1000, print.level=2) ) write_svg(jj, filename,safe=FALSE) dput(jj,file=sub('.svg','.S',filename))
backgroundIndex <- function(img, bg_condition) { img_dims <- dim(img) flattened_img <- img dim(flattened_img) <- c(img_dims[1] * img_dims[2], img_dims[3]) if (class(bg_condition) == "bg_rect") { lower <- bg_condition$lower upper <- bg_condition$upper idx <- which((lower[1] <= img[ , , 1] & img[ , , 1] <= upper[1]) & (lower[2] <= img[ , , 2] & img[ , , 2] <= upper[2]) & (lower[3] <= img[ , , 3] & img[ , , 3] <= upper[3])) } else if (class(bg_condition) == "bg_t") { if (ncol(flattened_img) != 4) { warning("Image has no transparency channel; clustering all pixels") idx <- character(0) } else { idx <- which(round(flattened_img[ , 4]) < 1) } } else if (class(bg_condition) == "bg_sphere") { stop("Center/radius masking coming soon...") } else if (class(bg_condition) == "bg_none") { idx <- character(0) } else { stop("bg_condition must be output from backgroundCondition()") } flattened_img <- flattened_img[ , 1:3] img_dims[3] <- 3 if (length(idx) == 0) { non_bg <- flattened_img idx_flat <- idx message("No pixels satisfying masking conditions; clustering all pixels") } else { non_bg <- flattened_img[-idx, ] idx_flat <- idx idx <- arrayInd(idx_flat, .dim = dim(flattened_img)) } bg_index <- list(flattened_img = flattened_img, img_dims = img_dims, non_bg = non_bg[ , 1:3], idx = idx, idx_flat = idx_flat) class(bg_index) <- "bg_index" return(bg_index) }
scaleColumns <- function(df){ scaled_df <- as.data.frame( apply(df, 2, function(x){ (x - min(x, na.rm = T))/(max(x, na.rm = T) - min(x, na.rm = T)) }) ) return(scaled_df) }
[ { "title": "Infinite generators in R", "href": "https://cartesianfaith.com/2013/01/05/infinite-generators-in-r/" }, { "title": "Encrypt user’s password with md5 for you Shiny-app", "href": "https://web.archive.org/web/http://withr.me/blog/2014/02/14/encrypt-users-password-with-md5-for-you-shiny-app/" }, { "title": "A Case Study in Reproducible Model Building", "href": "http://jfisher-usgs.github.io/r/2016/08/04/wrv-case-study" }, { "title": "oro.nifti 0.1.5", "href": "http://rigorousanalytics.blogspot.com/2010/06/oronifti-015.html" }, { "title": "state-by-state pendulum", "href": "https://web.archive.org/web/http://jackman.stanford.edu/blog/?p=1725" }, { "title": "One week left to enter the $20,000 \"Applications of R\" contest", "href": "http://blog.revolutionanalytics.com/2011/10/r-contest-deadline-oct-31.html" }, { "title": "Boxplots and Beyond – Part II: Asymmetry", "href": "http://exploringdatablog.blogspot.com/2011/02/boxplots-and-beyond-part-ii-asymmetry.html" }, { "title": "New R User Group at Berkeley", "href": "http://blog.revolutionanalytics.com/2012/02/new-r-user-group-at-berkeley.html" }, { "title": "Interactive time series with dygraphs", "href": "https://blog.rstudio.org/2015/04/14/interactive-time-series-with-dygraphs/" }, { "title": "RcppExamples 0.1.5 and RcppClassicExamples 0.1.0", "href": "http://dirk.eddelbuettel.com/blog/2012/12/29/" }, { "title": "Search r documentation and manuals with Rdocumentation", "href": "https://www.datacamp.com/community/blog/help" }, { "title": "Nov 20 Data Science Talklet: Incorporating Text Data into Your Feature Set", "href": "http://www.obscureanalytics.com/2014/11/22/nov-20-data-science-talklet-incorporating-text-data-into-your-feature-set/" }, { "title": "Pills, half pills and probabilities", "href": "http://freakonometrics.hypotheses.org/3322" }, { "title": "Using Discussion Forum Activity to Estimate Analytics Software Market Share", "href": "http://r4stats.com/2015/10/19/using-discussion-forum-activity-to-estimate-analytics-software-market-share/" }, { "title": "New project: RInside", "href": "http://dirk.eddelbuettel.com/blog/2009/02/12/" }, { "title": "NYC is a city that does sleep, a bit", "href": "http://blog.revolutionanalytics.com/2015/03/nyc-is-a-city-that-does-sleep-a-bit.html" }, { "title": "Compound Poisson and vectorized computations", "href": "http://blog.free.fr/" }, { "title": "RcppArmadillo 0.3.820", "href": "http://dirk.eddelbuettel.com/blog/2013/05/13/" }, { "title": "Resources for Learning R in Iraq?", "href": "https://benmazzotta.wordpress.com/2009/05/06/resources-for-learning-r-in-iraq/" }, { "title": "Is it crowded in here?", "href": "http://jcarroll.com.au/2016/03/09/is-it-crowded-in-here/" }, { "title": "Oldies but Goldies: Statistical Graphics Books", "href": "https://www.r-bloggers.com/oldies-but-goldies-statistical-graphics-books/" }, { "title": "Notes from the Kölner R meeting, 26 June 2015", "href": "http://www.magesblog.com/2015/06/notes-from-kolner-r-meeting-26-june-2015.html" }, { "title": "New R User Group in Slovenia", "href": "http://blog.revolutionanalytics.com/2010/07/new-r-user-group-in-slovenia.html" }, { "title": "Crayfish or crawdad? Mapping US dialect variations with R", "href": "http://blog.revolutionanalytics.com/2013/06/r-and-language.html" }, { "title": "Learning Statistics on Youtube", "href": "http://flavioazevedo.com/stats-and-r-blog/2016/9/13/learning-r-on-youtube" }, { "title": "Lambda.r 1.1.0 released", "href": "https://cartesianfaith.com/2013/01/25/lambda-r-1-1-0-released/" }, { "title": "The Win-Vector R data science value pack", "href": "http://www.win-vector.com/blog/2015/03/the-win-vector-r-data-science-value-pack/" }, { "title": "Euro 2016 Squads Part Deux", "href": "https://gjabel.wordpress.com/2016/06/21/euro-2016-squads-part-deux/" }, { "title": "“R for Developers” Course | May 30-31", "href": "http://www.milanor.net/blog/r-for-developers/" }, { "title": "ggplot2 primer in 10 minutes", "href": "https://robertgrantstats.wordpress.com/2012/10/15/ggplot2-primer-in-10-minutes/" }, { "title": "Learning R — Documentation", "href": "http://mazamascience.com/WorkingWithData/?p=619" }, { "title": "Kendall Rank Coefficient by GPU", "href": "http://www.r-tutor.com/gpu-computing/correlation/kendall-rank-coefficient" }, { "title": "Using MANOVA to Analyse a Banking Crisis Exercises", "href": "http://r-exercises.com/2016/08/24/using-manova-to-analyse-banking-crises/" }, { "title": "Slides from my online forecasting course", "href": "https://www.r-bloggers.com/slides-from-my-online-forecasting-course/" }, { "title": "Evolving Domestic Frontier", "href": "http://timelyportfolio.blogspot.com/2011/11/evolving-domestic-frontier.html" }, { "title": "Top 77 R posts for 2014 (+R jobs)", "href": "https://www.r-bloggers.com/77-most-read-r-posts-r-jobs-for-2014/" }, { "title": "Next Kölner R User Meeting: 12 April 2013", "href": "http://www.magesblog.com/2013/04/next-kolner-r-user-meeting-12-april-2013.html" }, { "title": "Array exercises", "href": "http://r-exercises.com/2015/12/01/array-exercises/" }, { "title": "MCMC and faster Gibbs Sampling using Rcpp", "href": "http://dirk.eddelbuettel.com/blog/2011/07/14/" }, { "title": "The Joy of Visualizations", "href": "http://blog.revolutionanalytics.com/2010/11/the-joy-of-visualizations.html" }, { "title": "Normalising data within groups", "href": "https://aghaynes.wordpress.com/2012/06/21/normalising-data-within-groups/" }, { "title": "Recovering Marginal Effects and Standard Errors of Interactions Terms Pt. II: Implement and Visualize", "href": "https://web.archive.org/web/http://davenportspatialanalytics.squarespace.com/journal/2012/3/9/recovering-marginal-effects-and-standard-errors-of-interacti.html" }, { "title": "Model for nothing – and the bootstrap for free", "href": "https://web.archive.org/web/http://timotheepoisot.fr/2011/01/model-%E2%80%93-bootstrap-free/" }, { "title": "Unprincipled Component Analysis", "href": "http://www.win-vector.com/blog/2014/02/unprincipled-component-analysis/?utm_source=rss&utm_medium=rss&utm_campaign=unprincipled-component-analysis" }, { "title": "Zurich, Aug 2012 – Swiss SBBI Data", "href": "https://www.rmetrics.org/SBBIDataAugust2012" }, { "title": "Symmetric set differences in R", "href": "http://helmingstay.blogspot.com/2013/06/symmetric-set-differences-in-r.html" }, { "title": "devtools 1.4 now available", "href": "https://blog.rstudio.org/2013/11/27/devtools-1-4/" }, { "title": "On Panel Sizes", "href": "https://web.archive.org/web/http://flovv.github.io/www.nypon.de/Panel-Sizes/" }, { "title": "Survey: R used by more data miners than any other tool", "href": "http://blog.revolutionanalytics.com/2011/03/survey-r-used-by-more-data-miners-than-any-other-tool.html" }, { "title": "Great Maps with ggplot2", "href": "http://spatial.ly/2012/02/great-maps-ggplot2/" } ]
NULL covcor.check.y = function(y) { if (!is.null(y)) comm.stop("only supported when argument 'y' is NULL") } cov.shaq = function (x, y=NULL, use="everything", method="pearson") { covcor.check.y(y) crossprod(scale(x, TRUE, FALSE)) / (nrow(x) - 1) } cor.shaq = function (x, y=NULL, use="everything", method="pearson") { covcor.check.y(y) crossprod(scale(x, TRUE, TRUE)) / (nrow(x) - 1) } setMethod("cov", signature(x="shaq"), cov.shaq) setMethod("cor", signature(x="shaq"), cor.shaq)
Component.Notification <- function(status = "info", context = "") { return(fluidRow( box( width = 12, closable = T, enable_label = T, label_text = "New", label_status = "warning", solidHeader = T, status = status, title = tagList(icon("bullhorn"), i18n$t("お知らせ")), collapsible = T, collapsed = T, tags$small(context) ) )) }
knitr::opts_chunk$set(comment = " library(LPWC) data(simdata) simdata[1:5, ] str(simdata) timepoints <- c(0, 2, 4, 6, 8, 18, 24, 32, 48, 72) timepoints library(ggplot2) set.seed(29876) a <- rbind(c(rep(0, 5), 8, 0), c(rep(0, 4), 4.3, 0, 0)) + rnorm(2, 0, 0.5) dat <- data.frame(intensity = as.vector(a), time = rep(c(0, 5, 15, 30, 45, 60, 75), each = 2), genes = factor(rep(c(1, 2), 7))) a2 <- a a2[1, ] <- c(a2[1, 2:7], NA) dat2 <- data.frame(intensity = as.vector(a2), time = rep(c(0, 5, 15, 30, 45, 60, 75), each = 2), genes = factor(rep(c(1, 2), 7))) a3 <- a a3[2, ] <- c(NA, a3[2, 1:6]) a3[1, ] <- c(a3[1, 2:7], NA) dat3 <- data.frame(intensity = as.vector(a3), time = rep(c(0, 5, 15, 30, 45, 60, 75), each = 2), genes = factor(rep(c(1, 2), 7))) plot1 <- ggplot(dat, aes(x= time, y = intensity, group = genes)) + geom_line(aes(color = genes), size = 1.5) + labs(x = "Time (min)") + labs(y = "Intensity") plot1 row1 <- c(0, 5, 15, 30, 45, 60, 75) knitr::kable(t(data.frame(Original = row1, Gene1 = row1, Gene2 = row1)), align = 'c') plot2 <- ggplot(dat2, aes(x= time, y = intensity, group = genes)) + geom_line(aes(color = genes), size = 1.5) + labs(x = "Time (min)") + labs(y = "Intensity") plot2 row2 <- c(5, 15, 30, 45, 60, 75, "-") knitr::kable(t(data.frame(Original = row1, Gene1 = row2, Gene2 = row1)), align = 'c') plot3 <- ggplot(dat3, aes(x= time, y = intensity, group = genes)) + geom_line(aes(color = genes), size = 1.5) + labs(x = "Time (min)") + labs(y = "Intensity") plot3 row3 <- c("-", 0, 5, 15, 30, 45, 60) knitr::kable(t(data.frame(Original = row1, Gene1 = row2, Gene2 = row3)), align = 'c') LPWC::corr.bestlag(simdata[49:58, ], timepoints = timepoints, max.lag = 2, penalty = "high", iter = 10) dist <- 1 - LPWC::corr.bestlag(simdata[11:20, ], timepoints = timepoints, max.lag = 2, penalty = "low", iter = 10)$corr plot(hclust(dist)) dist <- 1 - LPWC::corr.bestlag(simdata[11:20, ], timepoints = timepoints, max.lag = 2, penalty = "low", iter = 10)$corr cutree(hclust(dist), k = 3) sessionInfo()
plot.BayesMallows <- function(x, burnin = x$burnin, parameter = "alpha", items = NULL, ...){ if(is.null(burnin)){ stop("Please specify the burnin.") } if(x$nmc <= burnin) stop("burnin must be <= nmc") stopifnot(parameter %in% c("alpha", "rho", "cluster_probs", "cluster_assignment", "theta")) if(parameter == "alpha") { df <- dplyr::filter(x$alpha, .data$iteration > burnin) p <- ggplot2::ggplot(df, ggplot2::aes(x = .data$value)) + ggplot2::geom_density() + ggplot2::xlab(expression(alpha)) + ggplot2::ylab("Posterior density") if(x$n_clusters > 1){ p <- p + ggplot2::facet_wrap(~ .data$cluster, scales = "free_x") } return(p) } else if(parameter == "rho") { if(is.null(items) && x$n_items > 5){ message("Items not provided by user. Picking 5 at random.") items <- sample.int(x$n_items, 5) } else if (is.null(items) && x$n_items > 0) { items <- seq.int(from = 1, to = x$n_items) } if(!is.character(items)){ items <- x$items[items] } df <- dplyr::filter(x$rho, .data$iteration > burnin, .data$item %in% items) df <- dplyr::group_by(df, .data$cluster, .data$item, .data$value) df <- dplyr::summarise(df, n = dplyr::n()) df <- dplyr::mutate(df, pct = .data$n / sum(.data$n)) p <- ggplot2::ggplot(df, ggplot2::aes(x = .data$value, y = .data$pct)) + ggplot2::geom_col() + ggplot2::scale_x_continuous(labels = scalefun) + ggplot2::xlab("rank") + ggplot2::ylab("Posterior probability") if(x$n_clusters == 1){ p <- p + ggplot2::facet_wrap(~ .data$item) } else { p <- p + ggplot2::facet_wrap(~ .data$cluster + .data$item) } return(p) } else if(parameter == "cluster_probs"){ df <- dplyr::filter(x$cluster_probs, .data$iteration > burnin) ggplot2::ggplot(df, ggplot2::aes(x = .data$value)) + ggplot2::geom_density() + ggplot2::xlab(expression(tau[c])) + ggplot2::ylab("Posterior density") + ggplot2::facet_wrap(~ .data$cluster) } else if(parameter == "cluster_assignment"){ if(is.null(x$cluster_assignment)){ stop("Please rerun compute_mallows with save_clus = TRUE") } df <- assign_cluster(x, burnin = burnin, soft = FALSE, expand = FALSE) df <- dplyr::arrange(df, .data$map_cluster) assessor_order <- dplyr::pull(df, .data$assessor) df <- assign_cluster(x, burnin = burnin, soft = TRUE, expand = TRUE) df <- dplyr::mutate(df, assessor = factor(.data$assessor, levels = assessor_order)) ggplot2::ggplot(df, ggplot2::aes(.data$assessor, .data$cluster)) + ggplot2::geom_tile(ggplot2::aes(fill = .data$probability)) + ggplot2::theme( legend.title = ggplot2::element_blank(), axis.title.y = ggplot2::element_blank(), axis.ticks.x = ggplot2::element_blank(), axis.text.x = ggplot2::element_blank() ) + ggplot2::xlab(paste0("Assessors (", min(assessor_order), " - ", max(assessor_order), ")")) } else if(parameter == "theta") { if(is.null(x$theta)){ stop("Please run compute_mallows with error_model = 'bernoulli'.") } df <- dplyr::filter(x$theta, .data$iteration > burnin) p <- ggplot2::ggplot(df, ggplot2::aes(x = .data$value)) + ggplot2::geom_density() + ggplot2::xlab(expression(theta)) + ggplot2::ylab("Posterior density") return(p) } }
rotation_f = function(a) matrix(c(cos(a), sin(a), -sin(a), cos(a)), 2, 2)
design.rcbd <- function (trt, r,serie=2,seed=0,kinds="Super-Duper",first=TRUE,continue=FALSE,randomization=TRUE ) { number<-10 if(serie>0) number<-10^serie ntr <- length(trt) if (seed == 0) { genera<-runif(1) seed <-.Random.seed[3] } set.seed(seed,kinds) parameters<-list(design="rcbd",trt=trt,r=r,serie=serie,seed=seed,kinds=kinds,randomization) mtr <-trt if(randomization)mtr <- sample(trt, ntr, replace = FALSE) block <- c(rep(1, ntr)) for (y in 2:r) { block <- c(block, rep(y, ntr)) if(randomization)mtr <- c(mtr, sample(trt, ntr, replace = FALSE)) } if(randomization){ if(!first) mtr[1:ntr]<-trt } plots <- block*number+(1:ntr) book <- data.frame(plots, block = as.factor(block), trt = as.factor(mtr)) names(book)[3] <- c(paste(deparse(substitute(trt)))) names(book)[3]<-c(paste(deparse(substitute(trt)))) if(continue){ start0<-10^serie if(serie==0) start0<-0 book$plots<-start0+1:nrow(book) } outdesign<-list(parameters=parameters,sketch=matrix(book[,3], byrow = TRUE, ncol = ntr),book=book) return(outdesign) }
slurm_apply <- function(f, params, ..., jobname = NA, nodes = 2, cpus_per_node = 2, processes_per_node = cpus_per_node, preschedule_cores = TRUE, job_array_task_limit = NULL, global_objects = NULL, add_objects = NULL, pkgs = rev(.packages()), libPaths = NULL, rscript_path = NULL, r_template = NULL, sh_template = NULL, slurm_options = list(), submit = TRUE) { if (!is.function(f)) { stop("first argument to slurm_apply should be a function") } if (!is.data.frame(params)) { stop("second argument to slurm_apply should be a data.frame") } if (is.null(names(params)) || (!is.primitive(f) && !"..." %in% names(formals(f)) && any(!names(params) %in% names(formals(f))))) { stop("column names of params must match arguments of f") } if (!is.numeric(nodes) || length(nodes) != 1) { stop("nodes should be a single number") } if (!is.numeric(cpus_per_node) || length(cpus_per_node) != 1) { stop("cpus_per_node should be a single number") } if (!missing("add_objects")) { warning("Argument add_objects is deprecated; use global_objects instead.", .call = FALSE) global_objects <- add_objects } if(is.null(r_template)) { r_template <- system.file("templates/slurm_run_R.txt", package = "rslurm") } if(is.null(sh_template)) { sh_template <- system.file("templates/submit_sh.txt", package = "rslurm") } jobname <- make_jobname(jobname) tmpdir <- paste0("_rslurm_", jobname) dir.create(tmpdir, showWarnings = FALSE) more_args <- list(...) saveRDS(params, file = file.path(tmpdir, "params.RDS")) saveRDS(f, file = file.path(tmpdir, "f.RDS")) saveRDS(more_args, file = file.path(tmpdir, "more_args.RDS")) if (!is.null(global_objects)) { save(list = global_objects, file = file.path(tmpdir, "add_objects.RData"), envir = environment(f)) } if (nrow(params) < cpus_per_node * nodes) { nchunk <- cpus_per_node } else { nchunk <- ceiling(nrow(params) / nodes) } nodes <- ceiling(nrow(params) / nchunk) template_r <- readLines(r_template) script_r <- whisker::whisker.render(template_r, list(pkgs = pkgs, add_obj = !is.null(global_objects), nchunk = nchunk, cpus_per_node = cpus_per_node, processes_per_node = processes_per_node, preschedule_cores = preschedule_cores, libPaths = libPaths)) writeLines(script_r, file.path(tmpdir, "slurm_run.R")) template_sh <- readLines(sh_template) slurm_options <- format_option_list(slurm_options) if (is.null(rscript_path)){ rscript_path <- file.path(R.home("bin"), "Rscript") } script_sh <- whisker::whisker.render(template_sh, list(max_node = nodes - 1, job_array_task_limit = ifelse(is.null(job_array_task_limit), "", paste0("%", job_array_task_limit)), cpus_per_node = cpus_per_node, jobname = jobname, flags = slurm_options$flags, options = slurm_options$options, rscript = rscript_path)) writeLines(script_sh, file.path(tmpdir, "submit.sh")) if (submit && system('squeue', ignore.stdout = TRUE)) { submit <- FALSE cat("Cannot submit; no Slurm workload manager found\n") } if (submit) { jobid <- submit_slurm_job(tmpdir) } else { jobid <- NA cat(paste("Submission scripts output in directory", tmpdir,"\n")) } slurm_job(jobname, jobid, nodes) }
context("assertions about row reduction functions in row-redux.R") set.seed(1) exmpl.data <- data.frame(x=c(8, 9, 6, 5, 9, 5, 6, 7, 8, 9, 6, 5, 5, 6, 7), y=c(82, 91, 61, 49, 40, 49, 57, 74, 78, 90, 61, 49, 51, 62, 68)) nexmpl.data <- exmpl.data nexmpl.data[12,2] <- NA mnexmpl.data <- nexmpl.data mnexmpl.data[12,1] <- NA nanmnexmpl.data <- mnexmpl.data nanmnexmpl.data[10,1] <- 0/0 manswers.mtcars <- c(8.95, 8.29, 8.94, 6.10, 5.43, 8.88, 9.14, 10.03, 22.59, 12.39, 11.06, 9.48, 5.59, 6.03, 11.20, 8.67, 12.26, 9.08, 14.95, 10.30, 13.43, 6.23, 5.79, 11.68, 6.72, 3.65, 18.36, 14.00, 21.57, 11.15, 19.19, 9.89) manswers.iris <- c(2.28, 2.88, 2.13, 2.46, 2.58, 3.96, 2.89, 1.88, 3.39, 2.52, 3.50, 2.77, 2.79, 3.83, 9.84, 9.75, 5.78, 2.33, 4.52, 3.44, 2.68, 2.99, 3.93, 2.91, 5.41, 2.45, 1.98, 2.30, 2.68, 2.47, 1.99, 4.61, 8.88, 7.74, 1.99, 3.65, 5.82, 3.79, 3.16, 1.96, 2.57, 11.53, 3.32, 4.73, 4.91, 3.00, 4.48, 2.36, 3.18, 2.01, 5.33, 2.36, 5.27, 4.35, 4.13, 4.74, 4.68, 4.50, 3.40, 4.41, 7.72, 2.11, 7.61, 3.68, 1.11, 3.42, 6.60, 3.34, 9.97, 2.19, 10.77, 1.57, 6.08, 5.34, 1.97, 3.08, 5.69, 6.68, 2.82, 2.57, 2.82, 3.24, 0.92, 8.94, 9.72, 5.92, 3.74, 7.31, 2.28, 2.68, 5.85, 2.96, 1.50, 4.79, 2.38, 2.99, 1.92, 1.15, 5.17, 1.22, 10.22, 4.28, 2.66, 4.98, 2.35, 6.06, 13.52, 8.53, 4.57, 7.86, 3.99, 2.78, 2.96, 5.53, 11.47, 5.92, 3.99, 12.86, 8.03, 10.10, 4.04, 6.34, 8.83, 5.39, 3.16, 7.55, 5.32, 4.55, 1.81, 11.19, 6.56, 13.71, 2.55, 8.90, 17.55, 9.66, 8.37, 5.18, 5.09, 4.31, 6.04, 12.88, 4.28, 3.16, 7.83, 9.25, 6.20, 3.14, 7.68, 5.83) manswers.exmpl <- c(1.28, 3.11, 0.25, 1.36, 12.82, 1.36, 0.26, 0.48, 0.88, 2.96, 0.25, 1.36, 1.29, 0.28, 0.06) manswers.nexmpl <- c(1.17, 3.01, 0.23, 1.45, 12.04, 1.45, 0.31, 0.35, 0.83, 2.87, 0.23, NA, 1.34, 0.24, 0.04) manswers.nexmpl.no.na <- manswers.nexmpl manswers.nexmpl.no.na[12] <- 2.03 manswers.mnexmpl <- c(1.13, 2.91, 0.33, 1.62, 11.84, 1.62, 0.37, 0.40, 0.75, 2.76, 0.33, NA, 1.54, 0.36, 0.03) manswers.mnexmpl.no.na <- manswers.mnexmpl manswers.mnexmpl.no.na[12] <- 0 test_that("regular (non-robust) one works correctly", { expect_equal(round(maha_dist(mtcars), 2), manswers.mtcars) expect_equal(round(maha_dist(iris), 2), manswers.iris) expect_equal(round(maha_dist(exmpl.data), 2), manswers.exmpl) }) test_that("robust one works correctly", { expect_equal(which.max(maha_dist(exmpl.data, robust=TRUE)), 5) }) test_that("regular one works correctly with NAs", { expect_equal(round(maha_dist(mtcars, keep.NA=FALSE), 2), manswers.mtcars) expect_equal(round(maha_dist(nexmpl.data), 2), manswers.nexmpl) expect_equal(round(maha_dist(nexmpl.data, keep.NA=FALSE), 2), manswers.nexmpl.no.na) expect_equal(round(maha_dist(mnexmpl.data), 2), manswers.mnexmpl) expect_equal(round(maha_dist(mnexmpl.data, keep.NA=FALSE), 2), manswers.mnexmpl.no.na) }) test_that("maha_dist breaks like it is supposed to", { expect_error(maha_dist(), "argument \"data\" is missing, with no default") expect_error(maha_dist(lm(mpg ~ am, data=mtcars)), "\"data\" must be a data.frame \\(or matrix\\)") expect_error(maha_dist("William, it was really nothing"), "\"data\" must be a data.frame \\(or matrix\\)") expect_error(maha_dist(exmpl.data[,1, drop=FALSE]), "\"data\" needs to have at least two columns") expect_error(maha_dist(nexmpl.data, robust=TRUE), "cannot use robust maha_dist with missing values") }) test_that("num_row_NAs works correctly", { expect_equal(num_row_NAs(iris), rep(0, 150)) expect_equal(num_row_NAs(exmpl.data), rep(0, 15)) expect_equal(num_row_NAs(nexmpl.data), c(rep(0, 11), 1, rep(0,3))) expect_equal(num_row_NAs(mnexmpl.data), c(rep(0, 11), 2, rep(0,3))) expect_equal(num_row_NAs(nanmnexmpl.data), c(rep(0, 11), 2, rep(0,3))) expect_equal(num_row_NAs(nanmnexmpl.data, allow.NaN=TRUE), c(rep(0, 9), 1, 0, 2, rep(0,3))) }) test_that("num_row_NAs breaks correctly", { expect_error(num_row_NAs(), "argument \"data\" is missing, with no default") expect_error(num_row_NAs(exmpl.data[1,1]), "\"data\" must be a data.frame \\(or matrix\\)") }) this <- c("882") names(this)[1] <- "1" unname <- function(this){ names(this) <- NULL this } test_that("col_concat works correctly", { expect_equal(unname(col_concat(exmpl.data[1,])), "882") expect_equal(unname(col_concat(head(exmpl.data))), c("882", "991", "661", "549", "940", "549")) expect_equal(unname(col_concat(head(exmpl.data), sep="<>")), c("8<>82", "9<>91", "6<>61", "5<>49", "9<>40", "5<>49")) expect_equal(unname(col_concat(tail(nexmpl.data))), c("990", "661", "5NA", "551", "662", "768")) expect_equal(unname(col_concat(head(iris, n=2))), c("5.13.51.40.2setosa", "4.93.01.40.2setosa")) }) test_that("col_concat breaks correctly", { expect_error(col_concat(), "argument \"data\" is missing, with no default") expect_error(col_concat(exmpl.data[1,1]), "\"data\" must be a data.frame \\(or matrix\\)") })
is.rapport <- function(x) inherits(x, 'rapport') as.character.rapport.meta <- function(x, ...){ if (!inherits(x, 'rapport.meta')) stop("Template metadata not provided.") as.yaml(x) } as.character.rapport.inputs <- function(x, ...){ if (!inherits(x, 'rapport.inputs')) stop("Template inputs not provided.") as.yaml(x) } get.tags <- function(tag.type = c('all', 'header.open', 'header.close', 'comment.open', 'comment.close'), preset = c('user', 'default')){ t.type <- match.arg(tag.type) t.preset <- match.arg(preset) tag.default <- c( header.open = '^<!--head$', header.close = '^head-->$', comment.open = '^<!--', comment.close = '-->' ) tag.default.names <- names(tag.default) tag.current <- getOption('rapport.tags') tag.current.names <- names(tag.current) if (is.null(tag.current)) stop('Tag list does not exist.') if (length(tag.default) != length(tag.current)) stop('Tag list incomplete.') if (!all(sort(tag.default.names) == sort(tag.current.names))){ tgs <- paste(setdiff(tag.current.names, tag.default.names), collapse = ", ") stopf('Tag list malformed!\nproblematic tags: %s', tgs) } res <- switch(t.preset, user = { if (t.type == 'all') tag.current else tag.current[t.type] }, default = { tags.diff <- tag.current != tag.default if (any(tags.diff)){ w <- paste(sprintf('`%s` set by user to:\t"%s"\t(default: "%s")\n', tag.current.names[tags.diff], tag.current[tags.diff], tag.default[tags.diff]), collapse = '') warning(sprintf('Default tag values were changed!\n%s', w)) } do.call(switch, c(EXPR = t.type, all = tag.default, tag.default)) }, stopf('Unknown preset option "%s"', t.preset) ) return (res) } check.tpl <- function(txt, open.tag = get.tags('header.open'), close.tag = get.tags('header.close'), ...) { hopen.ind <- grep(open.tag, txt, ...)[1] hclose.ind <- grep(close.tag, txt, ...)[1] if (!isTRUE(hopen.ind == 1L)) stop('Opening header tag not found in first line.') if (is.na(hclose.ind)) stop('Closing header tag not found.') if (hclose.ind - hopen.ind <= 1) stop('Template header not found.') h <- txt[(hopen.ind + 1):(hclose.ind - 1)] if (all(trim.space(h) == '')) stop('Template header is empty.') b <- txt[(hclose.ind + 1):length(txt)] if (hclose.ind == length(txt) || all(sapply(trim.space(b), function(x) x == ''))) stop('What good is a template if it has no body? http://bit.ly/11E5BQM') } rapport.ls <- function(...){ mc <- match.call() if (is.null(mc$path)) mc$path <- c('./', getOption('rapport.paths'), system.file('templates', package = 'rapport')) if (is.null(mc$pattern)) mc$pattern <- '^.+\\.rapport$' mc[[1]] <- as.symbol('dir') eval(mc) } tpl.list <- rapport.ls rapport.path <- function() getOption('rapport.path') tpl.paths <- rapport.path rapport.path.reset <- function() options('rapport.path' = NULL) tpl.paths.reset <- rapport.path.reset rapport.path.add <- function(...) { paths <- as.character(substitute(list(...)))[-1L] if (!all(sapply(paths, is.character))) stop('Wrong arguments (not characters) supplied!') if (!all(file.exists(paths))) stop('Specified paths do not exists on filesystem!') options('rapport.path' = union(rapport.path(), paths)) invisible(TRUE) } tpl.paths.add <- rapport.path.add rapport.path.remove <- function(...) { paths <- as.character(substitute(list(...)))[-1L] if (!all(sapply(paths, is.character))) stop('Wrong arguments (not characters) supplied!') if (!all(paths %in% rapport.path())) warning('Specified paths were not added to custom paths list before!') options('rapport.path' = setdiff(rapport.path(), paths)) invisible(TRUE) } tpl.paths.remove <- rapport.path.remove
getLinePosns <- function(axis.posns, endspace = 0.5) { endsonly <- FALSE if (length(axis.posns) <= 2) endsonly <- TRUE axis.posns <- sort(unique(axis.posns)) half.diffs <- diff(axis.posns)/2 if (endsonly) line.posns <- c(axis.posns[1]-endspace, axis.posns[2]+endspace) else line.posns <- c(axis.posns[1]-endspace, axis.posns[1:(length(axis.posns)-1)] + half.diffs, axis.posns[length(axis.posns)]+endspace) return(line.posns) } "designGGPlot" <- function(design, labels = NULL, label.size = NULL, row.factors = "Rows", column.factors = "Columns", scales.free = "free", cellfillcolour.column=NULL, colour.values=NULL, cellalpha = 1, celllinetype = "solid", celllinesize = 0.5, celllinecolour = "black", cellheight = 1, cellwidth = 1, reverse.x = FALSE, reverse.y = TRUE, x.axis.position = "top", xlab, ylab, title, labeller = label_both, title.size = 15, axis.text.size = 15, blocksequence = FALSE, blockdefinition = NULL, blocklinecolour = "blue", blocklinesize = 2, printPlot = TRUE, ggplotFuncs = NULL, ...) { opts <- c("top", "bottom") x.axis.position <- opts[check.arg.values(x.axis.position, opts)] if (length(row.factors) == 1) { grid.y <- row.factors facet.y <- NULL } else { grid.y <- row.factors[length(row.factors)] facet.y <- row.factors[-length(row.factors)] if (reverse.y) for (fac in facet.y) design[fac] <- factor(design[[fac]], levels = rev(levels(design[[fac]]))) facet.y <- paste0("vars(", paste(facet.y, collapse = ","), ")") } if (length(column.factors) == 1) { grid.x <- column.factors facet.x <- NULL } else { grid.x <- column.factors[length(column.factors)] facet.x <- column.factors[-length(column.factors)] if (reverse.x) for (fac in facet.x) design[fac] <- factor(design[[fac]], levels = rev(levels(design[[fac]]))) facet.x <- paste0("vars(", paste(facet.x, collapse = ","), ")") } if (missing(xlab)) xlab <- grid.x if (missing(ylab)) ylab <- grid.y if (missing(title)) title <- paste("Plot of",labels,sep = " ") plt <- ggplot(data = design, aes_string(x = grid.x, y = grid.y)) + labs(x = xlab, y = ylab, title = title) + theme(panel.background = element_blank(), legend.position = "none", title = element_text(size = title.size, face = "bold"), axis.text = element_text(size = axis.text.size, face = "bold"), strip.background = element_blank(), strip.text = element_text(size=title.size, face="bold")) if (!(is.null(colour.values))) plt <- plt + scale_fill_manual(values = colour.values) if (is.null(labels) && is.null(cellfillcolour.column)) stop("At least one of labels and cellfillcolour.column must be set") if (is.null((cellfillcolour.column))) plt <- plt + geom_tile(aes_string(fill = labels), colour = celllinecolour, alpha = cellalpha, linetype = celllinetype, size = celllinesize, height = cellheight, width = cellwidth) else plt <- plt + geom_tile(aes_string(fill = cellfillcolour.column), colour = celllinecolour, alpha = cellalpha, linetype = celllinetype, size = celllinesize, height = cellheight, width = cellwidth) if (!is.null(labels)) { if (!is.null(label.size)) plt <- plt + geom_text(aes_string(label = labels), size = label.size, fontface = "bold", ...) else plt <- plt + geom_text(aes_string(label = labels), fontface = "bold", ...) } if (inherits(design[[grid.y]], what = "factor")) { nrows <- length(levels(design[[grid.y]])) if (reverse.y) plt <- plt + scale_y_discrete(limits = rev, expand = c(0,0)) else plt <- plt + scale_y_discrete(expand = c(0,0)) } else { rows <- sort(unique(design[[grid.y]])) nrows <- length(rows) row.posns <- getLinePosns(rows) if (reverse.y) plt <- plt + scale_y_reverse(limits = c(row.posns[c(1,length(row.posns))]), expand = c(0,0)) else plt <- plt + scale_y_continuous(limits = c(row.posns[c(1,length(row.posns))]), expand = c(0,0)) } if (inherits(design[[grid.x]], what = "factor")) { ncolumns <- length(levels(design[[grid.x]])) if (reverse.x) plt <- plt + scale_x_discrete(limits = rev, expand = c(0,0), position = x.axis.position) else plt <- plt + scale_x_discrete(expand = c(0,0), position = x.axis.position) } else { columns <- sort(unique(design[[grid.x]])) ncolumns <- length(columns) col.posns <- getLinePosns(columns) if (reverse.x) plt <- plt + scale_x_reverse(limits = c(col.posns[c(1,length(col.posns))]), expand = c(0,0), position = x.axis.position) else plt <- plt + scale_x_continuous(limits = c(col.posns[c(1,length(col.posns))]), expand = c(0,0), position = x.axis.position) } if (!is.null(facet.x)) { if (!is.null(facet.y)) plt <- plt + facet_grid(rows = eval(parse(text=facet.y)), cols = eval(parse(text=facet.x)), labeller = labeller, scales = scales.free, as.table = FALSE) else plt <- plt + facet_grid(cols = eval(parse(text=facet.x)), labeller = labeller, scales = scales.free, as.table = FALSE) } else { if (!is.null(facet.y)) plt <- plt + facet_grid(rows = eval(parse(text=facet.y)), labeller = labeller, scales = scales.free, as.table = FALSE) } if (!is.null(ggplotFuncs)) { for (f in ggplotFuncs) plt <- plt + f } if (!is.null(blockdefinition)) plt <- designBlocksGGPlot(plt, nrows = nrows, ncolumns = ncolumns, blocksequence = blocksequence, blockdefinition = blockdefinition, blocklinecolour = blocklinecolour, blocklinesize = blocklinesize, printPlot = printPlot) else { if (printPlot) print(plt) invisible(plt) } } "plotarectangle" <- function(plt, xi,yi,xoff,yoff,nrows,ncolumns,nri,nci,blocklinesize,blocklinecolour) { ncimod <- nci nrimod <- nri if (xoff + nci > ncolumns) { ncimod <- ncolumns - xoff } if (yoff + nri > nrows) { nrimod <- nrows - yoff } lines.dat <- data.frame(x = xi + xoff + c(1, 1, ncimod, ncimod, 1), y = yi + yoff + c(nrimod, 1, 1, nrimod, nrimod)) plt <- plt + geom_path(data = lines.dat, mapping = aes_string(x="x",y="y"), colour = blocklinecolour, size = blocklinesize) invisible(plt) } "designBlocksGGPlot" <- function(ggplot.obj, blockdefinition = NULL, blocksequence = FALSE, originrow = 0, origincolumn = 0, nrows, ncolumns, blocklinecolour = "blue", blocklinesize = 2, printPlot = TRUE) { if (!is.null(blockdefinition)) { rstart <- originrow cstart <- origincolumn dims <- dim(blockdefinition) xi <- c(-0.5, -0.5, 0.5, 0.5, -0.5) yi <- c(0.5, -0.5, -0.5, 0.5, 0.5) if (!blocksequence) { for (i in seq(dims[1])) { nri <- blockdefinition[i, 1] nci <- blockdefinition[i, 2] for (j in seq(ceiling((nrows - rstart)/nri))) { for (k in seq(ceiling((ncolumns - cstart)/nci))) { xoff <- nci * (k - 1) + cstart yoff <- nri * (j - 1) + rstart ggplot.obj <- plotarectangle(ggplot.obj, xi, yi, xoff, yoff, nrows, ncolumns, nri, nci, blocklinesize, blocklinecolour) } } } } else { if (dims[1] > 1) { yoff <- rstart for (k in seq(dims[1])) { if (dims[2] > 2) { xoff <- cstart nri <- blockdefinition[k, 1] for (i in seq(2,dims[2])) { nci <- blockdefinition[k, i] ggplot.obj <- plotarectangle(ggplot.obj, xi, yi, xoff, yoff, nrows, ncolumns, nri, nci, blocklinesize, blocklinecolour) xoff <- xoff + nci } } else { nri <- blockdefinition[k, 1] nci <- blockdefinition[k, 2] for (j in seq(ceiling((ncolumns - cstart)/nci))) { xoff <- nci * (j - 1) + cstart ggplot.obj <- plotarectangle(ggplot.obj, xi, yi, xoff, yoff, nrows, ncolumns, nri, nci, blocklinesize, blocklinecolour) } } yoff <- yoff + nri } } else { if (dims[2] > 2) { xoff <- cstart nri <- blockdefinition[1, 1] for (i in seq(2,dims[2])) { nci <- blockdefinition[1, i] for (j in seq(ceiling(nrows/nri - rstart))) { yoff <- nri * (j - 1) + rstart ggplot.obj <- plotarectangle(ggplot.obj, xi, yi, xoff, yoff, nrows, ncolumns, nri, nci, blocklinesize, blocklinecolour) } xoff <- xoff + nci } } else { nri <- blockdefinition[1, 1] nci <- blockdefinition[1, 2] for (j in seq(ceiling((nrows - rstart)/nri))) { for (k in seq(ceiling((ncolumns - cstart)/nci))) { xoff <- nci * (k - 1) + cstart yoff <- nri * (j - 1) + rstart ggplot.obj <- plotarectangle(ggplot.obj, xi, yi, xoff, yoff, nrows, ncolumns, nri, nci, blocklinesize, blocklinecolour) } } } } } } if (printPlot) print(ggplot.obj) invisible(ggplot.obj) invisible(ggplot.obj) }
"RSlo" <- function(x, r, n=length(x)) { y <- sort(x) ( y[r] - mean(y[(r+1):(n-r)]) ) / sqrt( var(y[(r+1):(n-r)]) ) }
makeQuantileSurfaces <- function(probabilitySurface, rename = FALSE){ p <- probabilitySurface f <- stats::ecdf(stats::na.omit(probabilitySurface[])) quantile_surface <- p quantile_surface[] <- f(p[]) if(rename == FALSE){ names(quantile_surface) <- names(p) } else { if(class(rename) != "character") stop("argument 'rename' should be of character class.") names(quantile_surface) <- paste0(names(p), rename) } return(quantile_surface) }
clean.retrieval <- function(x, gunzip = TRUE) { if (any(!file.exists(x))) stop("Some of the meta.retrieval() output files seem not to exist. Please provide valid file paths to meta.retrieval() output files.", call. = FALSE) if (gunzip) message("Cleaning file names and unzipping files ...") if (!gunzip) message("Cleaning file names ...") folder_files <- list.files(dirname(x)[1]) if (length(folder_files) == 0) stop("Unfortunately, your specified folder '", x, "' does not include any files.", call. = FALSE) file_ext <- "[.]*a$" if (any(stringr::str_detect(folder_files, "[.]faa.gz$"))) { seq_type <- "ncbi_protein" file_ext <- "[.]faa$" } if (any(stringr::str_detect(folder_files, "[.]fna.gz$"))) { seq_type <- "ncbi_nucleotide" file_ext <- "[.]fna$" } if (any(stringr::str_detect(folder_files, "[.]gff.gz$"))) { seq_type <- "ncbi_gff" file_ext <- "[.]gff$" } if (any(stringr::str_detect(folder_files, "[.]out.gz$"))) { seq_type <- "ncbi_rm" file_ext <- "[.]out$" } if (any(stringr::str_detect(folder_files, "[.]gff3.gz$"))) { seq_type <- "ensembl_gff3" file_ext <- "[.]gff3$" } if (any(stringr::str_detect(folder_files, "[.]gtf.gz$"))) { seq_type <- "ensembl_gtf" file_ext <- "[.]gtf$" } if (any(stringr::str_detect(folder_files, "[.]fa.gz$"))) { seq_type <- "ensembl_fasta" file_ext <- "[.]fa$" } find_doc <- which(stringr::str_detect(folder_files, "doc_")) find_md5 <- which(stringr::str_detect(folder_files, "md5checksum")) find_documentaion <- which(stringr::str_detect(folder_files, "documentation")) find_unzipped_files <- which(stringr::str_detect(folder_files, file_ext)) if (length(c(find_doc, find_md5, find_documentaion, find_unzipped_files)) > 0) { folder_files_reduced <- folder_files[-c(find_doc, find_md5, find_documentaion, find_unzipped_files)] } if (length(folder_files_reduced) == 0) { message("It seems that nothing needs to be done. All files are unzipped.") return(file.path(x, folder_files[-c(find_doc, find_md5, find_documentaion)])) } else { input_files <- folder_files_reduced } input_files_without_appendix <- unlist(lapply(input_files, function(x) return(unlist(stringr::str_split(x, "[.]"))[1]))) file_ext <- stringr::str_replace(file_ext, "\\$", "") file_ext <- stringr::str_replace(file_ext, "\\[.]", "") if (gunzip) output_files <- paste0(tidy_name(input_files_without_appendix), ".", file_ext) if (!gunzip) output_files <- paste0(tidy_name(input_files_without_appendix),".",file_ext,".gz") if (!all(file.exists(file.path(dirname(x)[1], input_files)))) stop("Something went wrong during the cleaning process. Some input files seem not to exist.", call. = FALSE) if (gunzip) { for (i in seq_len(length(input_files))) { if (file.exists(file.path(dirname(x)[1], input_files[i]))) { message("Unzipping file ", input_files[i],"' ...") R.utils::gunzip(file.path(dirname(x)[1], input_files[i]), destname = file.path(dirname(x)[1], output_files[i])) } } } message("Finished formatting.") return(file.path(dirname(x)[1], output_files)) }
if(getRversion() >= "2.15.1") utils::globalVariables(c("config")) NULL
rinvgamma<-function (n, shape, scale = 1) { return(1/rgamma(n, shape, scale)) }
print.CopyDetectMany<- function(x, ...){ cat("************************************************************************","\n") cat("CopyDetect - An R Package to Compute Response Similarity Indices for Multiple-Choice Tests","\n") cat("","\n") cat("Version 1.3, released on October 2018","\n") cat("","\n") cat("Cengiz Zopluoglu","\n") cat("","\n") cat("Assistant Professor","\n") cat("University of Miami - Department of Educational and Psychological Studies","\n") cat("Research, Measurement, and Evaluation Program","\n") cat("","\n") cat("[email protected]","\n") cat("*************************************************************************","\n") cat("","\n") cat("Processing Date: ",date(),"\n") cat("","\n") cat(" Probability Values Obtained from Various Response Similarity Indices \n") cat("","\n") x$output.manypairs[,5:12] <- round(x$output.manypairs[,5:12],3) print(x$output.manypairs[,c(1,2,5:12)]) }
"ICAapp"
get.oc <- function (target, p.true, ncohort, cohortsize, n.earlystop = 100, startdose = 1, titration = FALSE, p.saf = 0.6 * target, p.tox = 1.4 * target, cutoff.eli = 0.95, extrasafe = FALSE, offset = 0.05,boundMTD=FALSE, ntrial = 1000, seed = 6) { if (target < 0.05) { stop("the target is too low!") } if (target > 0.6) { stop("the target is too high!") } if ((target - p.saf) < (0.1 * target)) { stop("the probability deemed safe cannot be higher than or too close to the target!") } if ((p.tox - target) < (0.1 * target)) { stop("the probability deemed toxic cannot be lower than or too close to the target!") } if (offset >= 0.5) { stop("the offset is too large!") } if (n.earlystop <= 6) { warning("the value of n.earlystop is too low to ensure good operating characteristics. Recommend n.earlystop = 9 to 18.") } set.seed(seed) if (cohortsize == 1) titration = FALSE lambda_e = log((1 - p.saf)/(1 - target))/log(target * (1 - p.saf)/(p.saf * (1 - target))) lambda_d = log((1 - target)/(1 - p.tox))/log(p.tox * (1 - target)/(target * (1 - p.tox))) ndose = length(p.true) npts = ncohort * cohortsize Y = matrix(rep(0, ndose * ntrial), ncol = ndose) N = matrix(rep(0, ndose * ntrial), ncol = ndose) dselect = rep(0, ntrial) if (cohortsize > 1) { temp = get.boundary(target, ncohort, cohortsize, n.earlystop=ncohort*cohortsize, p.saf, p.tox, cutoff.eli, extrasafe)$full_boundary_tab } else { temp = get.boundary(target, ncohort, cohortsize, n.earlystop=ncohort*cohortsize, p.saf, p.tox, cutoff.eli, extrasafe)$boundary_tab } b.e = temp[2, ] b.d = temp[3, ] b.elim = temp[4, ] for (trial in 1:ntrial) { y <- rep(0, ndose) n <- rep(0, ndose) earlystop = 0 d = startdose elimi = rep(0, ndose) ft=TRUE if (titration) { z <- (runif(ndose) < p.true) if (sum(z) == 0) { d = ndose n[1:ndose] = 1 } else { d = which(z == 1)[1] n[1:d] = 1 y[d] = 1 } } for (i in 1:ncohort) { if (titration && n[d] < cohortsize && ft){ ft=FALSE y[d] = y[d] + sum(runif(cohortsize - 1) < p.true[d]) n[d] = n[d] + cohortsize - 1 } else { newcohort = runif(cohortsize)<p.true[d]; if((sum(n)+cohortsize) >= npts){ nremain = npts - sum(n); y[d] = y[d] + sum(newcohort[1:nremain]); n[d] = n[d] + nremain; break; } else{ y[d] = y[d] + sum(newcohort); n[d] = n[d] + cohortsize; } } if (!is.na(b.elim[n[d]])) { if (y[d] >= b.elim[n[d]]) { elimi[d:ndose] = 1 if (d == 1) { earlystop = 1 break } } if (extrasafe) { if (d == 1 && n[1] >= 3) { if (1 - pbeta(target, y[1] + 1, n[1] - y[1] + 1) > cutoff.eli - offset) { earlystop = 1 break } } } } if(n[d]>=n.earlystop && ( (y[d]>b.e[n[d]] && y[d]<b.d[n[d]])|| (d==1 && y[d]>=b.d[n[d]]) || ((d==ndose||elimi[d+1]==1) && y[d]<=b.e[n[d]]) ) ) break; if (y[d] <= b.e[n[d]] && d != ndose) { if (elimi[d + 1] == 0) d = d + 1 } else if (y[d] >= b.d[n[d]] && d != 1) { d = d - 1 } else { d = d } } Y[trial, ] = y N[trial, ] = n if (earlystop == 1) { dselect[trial] = 99 } else { dselect[trial] = select.mtd(target, n, y, cutoff.eli, extrasafe, offset, boundMTD = boundMTD, p.tox=p.tox)$MTD } } selpercent = rep(0, ndose) nptsdose = apply(N, 2, mean) ntoxdose = apply(Y, 2, mean) for (i in 1:ndose) { selpercent[i] = sum(dselect == i)/ntrial * 100 } if (length(which(p.true == target)) > 0) { if (which(p.true == target) == ndose - 1) { overdosing60 = mean(N[, p.true > target] > 0.6 * npts) * 100 overdosing80 = mean(N[, p.true > target] > 0.8 * npts) * 100 } else { overdosing60 = mean(rowSums(N[, p.true > target]) > 0.6 * npts) * 100 overdosing80 = mean(rowSums(N[, p.true > target]) > 0.8 * npts) * 100 } out = list(selpercent = selpercent, npatients = nptsdose, ntox = ntoxdose, totaltox = sum(Y)/ntrial, totaln = sum(N)/ntrial, percentstop = sum(dselect == 99)/ntrial * 100, overdose60 = overdosing60, overdose80 = overdosing80, simu.setup = data.frame(target = target, p.true = p.true, ncohort = ncohort, cohortsize = cohortsize, startdose = startdose, p.saf = p.saf, p.tox = p.tox, cutoff.eli = cutoff.eli, extrasafe = extrasafe, offset = offset, ntrial = ntrial, dose = 1:ndose), flowchart = TRUE, lambda_e = lambda_e, lambda_d = lambda_d) } else { out = list(selpercent = selpercent, npatients = nptsdose, ntox = ntoxdose, totaltox = sum(Y)/ntrial, totaln = sum(N)/ntrial, percentstop = sum(dselect == 99)/ntrial * 100, simu.setup = data.frame(target = target, p.true = p.true, ncohort = ncohort, cohortsize = cohortsize, startdose = startdose, p.saf = p.saf, p.tox = p.tox, cutoff.eli = cutoff.eli, extrasafe = extrasafe, offset = offset, ntrial = ntrial, dose = 1:ndose), flowchart = TRUE, lambda_e = lambda_e, lambda_d = lambda_d) } class(out)<-"boin" return(out) }
getOAuth <- function(x, verbose=TRUE){ if (class(x)[1]=="list"){ options("httr_oauth_cache"=FALSE) app <- httr::oauth_app("twitter", key = x$consumer_key, secret = x$consumer_secret) credentials <- list(oauth_token = x$access_token, oauth_token_secret = x$access_token_secret) my_oauth <- httr::Token1.0$new(endpoint = httr::oauth_endpoints("twitter"), params = list(as_header = TRUE), app = app, credentials = credentials) } if (class(x)[1]=="OAuth"){ options("httr_oauth_cache"=FALSE) app <- httr::oauth_app("twitter", key = x$consumerKey, secret = x$consumerSecret) credentials <- list(oauth_token = x$oauth_token, oauth_token_secret = x$oauth_token_secret) my_oauth <- httr::Token1.0$new(endpoint = httr::oauth_endpoints("twitter"), params = list(as_header = TRUE), app = app, credentials = credentials) } if (class(x)[1]=="Token1.0"){ my_oauth <- x } if (class(x)[1] %in% c("list", "OAuth", "Token1.0") == FALSE && file.exists(x)){ info <- file.info(x) if (info$isdir){ creds <- list.files(x, full.names=TRUE) cr <- sample(creds, 1) if (verbose){message(cr)} load(cr) my_oauth <- getOAuth(my_oauth) } if (!info$isdir){ if (!grepl("csv", x)){ if (verbose){message(x)} load(x) my_oauth <- getOAuth(my_oauth) } if (grepl("csv", x)){ d <- read.csv(x, stringsAsFactors=F) creds <- d[sample(1:nrow(d),1),] options("httr_oauth_cache"=FALSE) app <- httr::oauth_app("twitter", key = creds$consumer_key, secret = creds$consumer_secret) credentials <- list(oauth_token = creds$access_token, oauth_token_secret = creds$access_token_secret) my_oauth <- httr::Token1.0$new(endpoint = httr::oauth_endpoints("twitter"), params = list(as_header = TRUE), app = app, credentials = credentials) } } } return(my_oauth) } getLimitFriends <- function(my_oauth){ url <- "https://api.twitter.com/1.1/application/rate_limit_status.json" params <- list(resources = "friends,application") query <- lapply(params, function(x) URLencode(as.character(x))) url.data <- httr::GET(url, query=query, httr::config(token=my_oauth)) json.data <- httr::content(url.data) return(json.data$resources$friends$`/friends/ids`$remaining) } getLimitRate <- function(my_oauth){ url <- "https://api.twitter.com/1.1/application/rate_limit_status.json" params <- list(resources = "followers,application") query <- lapply(params, function(x) URLencode(as.character(x))) url.data <- httr::GET(url, query=query, httr::config(token=my_oauth)) json.data <- httr::content(url.data) return(json.data$resources$application$`/application/rate_limit_status`$remaining) } getLimitFollowers <- function(my_oauth){ url <- "https://api.twitter.com/1.1/application/rate_limit_status.json" params <- list(resources = "followers,application") query <- lapply(params, function(x) URLencode(as.character(x))) url.data <- httr::GET(url, query=query, httr::config(token=my_oauth)) json.data <- httr::content(url.data) return(json.data$resources$followers$`/followers/ids`$remaining) } getLimitUsers <- function(my_oauth){ url <- "https://api.twitter.com/1.1/application/rate_limit_status.json" params <- list(resources = "users,application") query <- lapply(params, function(x) URLencode(as.character(x))) url.data <- httr::GET(url, query=query, httr::config(token=my_oauth)) json.data <- httr::content(url.data) return(json.data$resources$users$`/users/lookup`$remaining) } getLimitSearch <- function(my_oauth){ url <- "https://api.twitter.com/1.1/application/rate_limit_status.json" params <- list(resources = "search") query <- lapply(params, function(x) URLencode(as.character(x))) url.data <- httr::GET(url, query=query, httr::config(token=my_oauth)) json.data <- httr::content(url.data) return(json.data$resources$search$`/search/tweets`$remaining) } getLimitList <- function(my_oauth){ url <- "https://api.twitter.com/1.1/application/rate_limit_status.json" params <- list(resources = "lists,application") query <- lapply(params, function(x) URLencode(as.character(x))) url.data <- httr::GET(url, query=query, httr::config(token=my_oauth)) json.data <- httr::content(url.data) return(json.data$resources$lists$`/lists/members`$remaining) } getLimitRetweets <- function(my_oauth){ url <- "https://api.twitter.com/1.1/application/rate_limit_status.json" params <- list(resources = "statuses,application") query <- lapply(params, function(x) URLencode(as.character(x))) url.data <- httr::GET(url, query=query, httr::config(token=my_oauth)) json.data <- httr::content(url.data) return(json.data$resources$statuses$`/statuses/retweeters/ids`$remaining) } getLimitStatuses <- function(my_oauth){ url <- "https://api.twitter.com/1.1/application/rate_limit_status.json" params <- list(resources = "statuses,application") query <- lapply(params, function(x) URLencode(as.character(x))) url.data <- httr::GET(url, query=query, httr::config(token=my_oauth)) json.data <- httr::content(url.data) return(json.data$resources$statuses$`/statuses/lookup`$remaining) } getLimitTimeline <- function(my_oauth){ url <- "https://api.twitter.com/1.1/application/rate_limit_status.json" params <- list(resources = "statuses,application") query <- lapply(params, function(x) URLencode(as.character(x))) url.data <- httr::GET(url, query=query, httr::config(token=my_oauth)) json.data <- httr::content(url.data) return(json.data$resources$statuses$`/statuses/user_timeline`$remaining) }
utils::globalVariables(c("Result")) read.pgn <- function(con,add.tags = NULL,n.moves = T, extract.moves = 10,last.move = T,stat.moves = T,big.mode = F,quiet = F,ignore.other.games = F,source.movetext = F){ st <- Sys.time() tags <- c(c("Event","Site","Date","Round","White","Black","Result"),add.tags) if(big.mode) al = con else{ al = readLines(con) if("connection" %in% class(con)) close(con) } s <- "^\\[([\\S]+)\\s\"([\\S\\s]+|\\B)\"\\]$" tmp1 <- gsub(s,"\\1",al,perl = T) tmp2 <- gsub(s,"\\2",al, perl = T) tmp3 <- grepl("^\\[[^%]+\\]$",al,perl = T) tmp4 <- cumsum(grepl("\\[Event ",al)) tmp1[!tmp3] <- "Movetext" r2 <- data.frame(tmp1,tmp2,tmp3,tmp4,stringsAsFactors = F) gt <- paste(subset(r2,tmp1=="Movetext",select = c(tmp2))[,1],collapse = " ") if(source.movetext) gt2 <- gt gt <- gsub("{[^}]+}","",gt,perl = T) gt <- gsub("\\((?>[^()]|(?R))*\\)","",gt,perl = T) gt <- gsub("[\\?\\!]","",gt,perl = T) gt <- gsub("[0-9]+\\.\\.\\.","",gt,perl = T) gt <- gsub("\\$[0-9]+","",gt,perl = T) for(i in c("1-0","1\\/2-1\\/2","0-1","\\*")) gt <- unlist(strsplit(gt,split = i)) if(source.movetext) for(i in c("1-0","1\\/2-1\\/2","0-1","\\*")) gt2 <- unlist(strsplit(gt2,split = i)) r <- subset(r2,tmp1 == "Event",select = c(tmp4,tmp2)) colnames(r) <- c("GID","Event") for(i in c(setdiff(tags,"Event"))){ tmp <- subset(r2,tmp1 == i,select = c(tmp4,tmp2)) colnames(tmp) <- c("GID",i) r <- merge(r,tmp,all.x = T) } r$Movetext <- trimws(gsub("[[:space:]]+"," ",head(gt,nrow(r)))) if(source.movetext) r$SourceMovetext <- head(gt2,nrow(r)) tal <- tail(al,1) if(big.mode) if(!grepl("\\[",tal)&!(tal=="")) { r[nrow(r),"Movetext"] <- "" } if(big.mode) if(r[nrow(r),"Movetext"]=="") r <- r[-nrow(r),] if(!quiet) message(paste0(Sys.time(),", successfully imported ",nrow(r)," games")) if(n.moves||extract.moves) r$NMoves <- n_moves(r$Movetext) if(!quiet) message(paste0(Sys.time(),", N moves computed")) if(extract.moves){ if(extract.moves==-1) {N <- max(r$NMoves)} else {N <- extract.moves} r <- cbind(r,extract_moves(r$Movetext,N,last.move = last.move)) if(!quiet) message(paste0(Sys.time(),", extract moves done")) } if(stat.moves) { r <- cbind(r,stat_moves(r$Movetext)) if(!quiet) message(paste0(Sys.time(),", stat moves computed")) } if(ignore.other.games) { nr <- nrow(r) r <- subset(r,Result!="*") r$Result <- factor(r$Result,levels = c("1-0","1/2-1/2","0-1"),labels=c("1-0","1/2-1/2","0-1"),ordered = T) if(!quiet) message(paste0(Sys.time(),", subset done (",nr-nrow(r)," games with Result '*' removed) ")) } else{ r$Result <- factor(r$Result,levels = c("1-0","1/2-1/2","0-1","*"),labels=c("1-0","1/2-1/2","0-1","*"),ordered = T) } r <- droplevels(r) for(i in intersect(colnames(r),c("WhiteElo","BlackElo","SetUp"))) r[,i] <- as.integer(r[,i]) return(r[,-1]) }
R2 <- function(x, y){ if(length(x)!=length(y)){stop("r.sq measure: length of x must equal length of y")} xh <- x-mean(x) yh <- y-mean(y) num <- sum(xh*yh)^2 den <- sum(xh^2)*sum(yh^2) R2 <- num/den return(R2) } cap1 <- function(x) { s <- strsplit(x, " ")[[1]] paste(toupper(substring(s,1,1)), substring(s, 2), sep="", collapse=" ") } pcdfs <- function(dof, order=6, ndecimals=3, dist='normal', par1=0, par2=1){ if(order>=7){stop(paste("order is too large (10M) -- calculation time too long. Make order<7. Fractions OK."))} N=round(10^order,0) bw=1/10^ndecimals dN = dof*N rnums <- rep(0,dN) R2c <- rep(0,N) if( dist=="normal") { rnums <- rnorm( n=dN, mean=par1, sd=par2) } else if( dist=="uniform") { rnums <- runif( n=dN, min=par1, max=par2) } else if( dist=="lognormal") { rnums <- rlnorm(n=dN, meanlog=par1, sdlog=par2) } else if( dist=="poisson") { rnums <- rpois( n=dN, lambda=par1) } else if( dist=="binomial") { rnums <- rbinom(n=dN, size=par1, prob=par2)} x <- seq(1,dof) xb <- mean(x) xd <- x-xb xd <- t(matrix(rep(xd, N), nrow=dof, ncol=N)) e <- matrix(rnums, nrow=N, ncol=dof) eb <- rowSums(e)/dof ed <- e-eb n1 = xd*ed n1s = rowSums(n1) num = n1s*n1s d1 = xd^2 d2 = ed^2 d1s = rowSums(d1) d2s = rowSums(d2) den = d1s*d2s R2c = num/den br = seq(0, 1, by=bw) R2 = br[2:length(br)] R2h = hist(R2c, breaks=br, plot=F) pdf <- R2h$counts/sum(R2h$counts) cdf <- cumsum(pdf) R2df <- data.frame(R2, pdf, cdf) return(R2df) } R2p <- function(dof, pct=0.95, ndecimals=3,...){ cdf <- pcdfs(dof, ndecimals=ndecimals,...)[,c(1,3)] R2p <- cdf$R2[cdf[,2]>=pct][1] R2p <- R2p + rnorm(1)*10^(-(ndecimals+2)) R2p <- round(R2p,ndecimals) return(R2p) } R2k <- function(R2, dof, pct=0.95, ndecimals=3,...){ r2p <- R2p(dof=dof, pct=pct, ndecimals=ndecimals,...) r2k <- (R2-r2p)/(1-r2p + 0.00000000001) fl <- floor(r2p) nd=rep(0,length(R2)) if(r2p-fl>0){ nd <- nchar(sapply(strsplit(as.character(r2p), ".",fixed=T), "[[", 2))} r2k <- round(r2k, ndecimals) return(r2k) } R2pTable <- function(doflist=NULL, pctlist=NULL, order=4, ndecimals=2,...){ if(is.null(doflist)){doflist=c(4,8,16,32,64,128)} if(is.null(pctlist)){pctlist=c(0.7,0.9,0.95,0.99)} nds <- length(doflist) nps <- length(pctlist) rownams = as.character(doflist) colnams = as.character(pctlist) shell <- matrix(nrow=nds, ncol=nps) r2ptab <- matrix(mapply(function(x,i,j) R2p(doflist[i],pctlist[j], order=order, ndecimals=ndecimals,...), shell,row(shell),col(shell)), nrow=nds, ncol=nps) r2ptab <- as.data.frame(r2ptab) colnames(r2ptab) <- colnams rownames(r2ptab) <- rownams return(r2ptab) } plotpdf <- function(dof, order=4, dist='normal',...){ df <- pcdfs(dof=dof,order=order,dist=dist,...) N = 10^order dist2 <- sapply(dist, cap1) mxy = max(df$pdf) plot <- ggplot(df) + geom_point(aes(R2, pdf),size=1) + ggtitle(paste("Probability Density Function")) + ylim(0,mxy) + xlab(expression(R^2)) + ylab("Probability Density") + ggtitle(paste("Probability Density Function")) + geom_text(aes(x=0.95,y=0.9*mxy,label=paste("Noise Distribution:",dist2, "\nDegrees of Freedom:",dof, "\nNumber of Samples:",floor(N))),size=3,hjust=1) return(plot) } plotcdf <- function(dof, order=4, dist='normal',...){ r2cdf <- pcdfs(dof=dof,order=order,dist=dist,...) cdf <- NULL N = 10^order dist2 <- sapply(dist, cap1) mxy <- max(r2cdf$cdf) plot <- ggplot(r2cdf) + geom_point(aes(R2, cdf),size=1) + ylim(0,mxy) + xlab(expression(R^2)) + ylab("Cumulative Probability") + ggtitle(paste("Cumulative Probability Density Function")) + geom_text(aes(x=0.95,y=0.3*mxy,label=paste("Noise Distribution:",dist2, "\nDegrees of Freedom:",dof, "\nNumber of Samples:",floor(N))),size=3,hjust=1) return(plot) } plotR2p <- function(doflist=c(2:30), pctlist=c(0.95), order=4, ndecimals=3, ...){ if(length(pctlist)>5){stop(paste("Too many percentiles to calculate", length(pctlist)))} doflist <- doflist[doflist>1] doflim <- min(30, length(doflist)) doflist <- doflist[1:doflim] pctlim <- min(5,length(pctlist)) pctlist <- pctlist[1:pctlim] pctlist <- formatC(as.numeric(pctlist),width=(ndecimals+1),format='f',digits=ndecimals,flag='0') doflength <- length(doflist) pctlength <- length(pctlist) mcolor <- c("black", "blue", "red", "green", "darkgreen") sizes <- c(3.6, 3.2, 2.8, 2.4, 2.0)/2 r2pdf <- R2pTable(doflist=doflist, pctlist=pctlist, order=order,...) mxy <- 0.9*max(r2pdf[,1]) N = 10^order plt <- ggplot(r2pdf) if(pctlength>=1){plt <- plt + geom_point(aes(as.numeric(row.names(r2pdf)), r2pdf[,1]), color=mcolor[1], size=sizes[1]) + geom_text(aes(x=max(doflist), y=mxy-0.00, label=paste0("p = ",pctlist[1])), color=mcolor[1], hjust=1, size=4)} if(pctlength>=2){plt <- plt + geom_point(aes(as.numeric(row.names(r2pdf)), r2pdf[,2]), color=mcolor[2], size=sizes[2]) + geom_text(aes(x=max(doflist), y=mxy-0.05, label=paste0("p = ",pctlist[2])), color=mcolor[2], hjust=1, size=4)} if(pctlength>=3){plt <- plt + geom_point(aes(as.numeric(row.names(r2pdf)), r2pdf[,3]), color=mcolor[3], size=sizes[3]) + geom_text(aes(x=max(doflist), y=mxy-0.10, label=paste0("p = ",pctlist[3])), color=mcolor[3], hjust=1, size=4)} if(pctlength>=4){plt <- plt + geom_point(aes(as.numeric(row.names(r2pdf)), r2pdf[,4]), color=mcolor[4], size=sizes[4]) + geom_text(aes(x=max(doflist), y=mxy-0.15, label=paste0("p = ",pctlist[4])), color=mcolor[4], hjust=1, size=4)} if(pctlength>=5){plt <- plt + geom_point(aes(as.numeric(row.names(r2pdf)), r2pdf[,5]), color=mcolor[5], size=sizes[5]) + geom_text(aes(x=max(doflist), y=mxy-0.20, label=paste0("p = ",pctlist[5])), color=mcolor[5], hjust=1, size=4)} plt <- plt + ggtitle("R2 Baseline Noise Level (R2p) \nfor Various Noise Percentiles (p)") + xlab("Degrees of Freedom") + ylab(expression(R^2)) + geom_text(aes(x=max(doflist), y=mxy-0.25, label=paste0("Number of Samples:",N)), color='black', hjust=1, size=3) return(plt) } plotR2k <- function(R2, doflist=c(2:30), pct=0.95, order=4, ndecimals=3,...){ pct <- pct[1] df <- R2pTable(doflist=doflist, pctlist=pct, ndecimals=ndecimals, order=order,...) df$R2k <- NA n <- nrow(df) for(i in 1:n){df$R2k[i] <- R2k(R2, dof=as.numeric(row.names(df)[i]), pct=pct, ndecimals=ndecimals, order=order,...)} maxx=max(doflist) plot <- ggplot(df) + geom_point(aes(as.numeric(row.names(df)),df[,1]),color='red') + geom_point(aes(as.numeric(row.names(df)),R2k),color='blue',na.rm=T) + geom_hline(aes(yintercept=R2),color='black') + ylim(0,1) + xlab("Degrees of Freedom") + ylab("R2") + ggtitle("R2k for a Given Baseline Noise Level (R2p) and \na Constant Measured R2") + geom_text(aes(x=maxx, y=0.17), label=paste0("Baseline Noise Level\np = ",pct), color='red', hjust=1) + geom_text(aes(x=maxx, y=(R2-0.1)), label=paste0("R2k"), color='blue', hjust=1) + geom_text(aes(x=maxx, y=(R2+0.05)), label=paste0("Measured R2 = ",R2), color='black',hjust=1) return(plot) } plotR2Equiv <- function(R2, dof, pct=0.95, order=4, plot_pctr2=F,...){ mcolor <- c("red", "blue", "forestgreen", "slategray4", "gray20", "black") df <- pcdfs(dof=dof, order=order,...) doflist = c(2:30) pctlist = c(pct) if(plot_pctr2){ pct_R2 <- df$cdf[df$R2>=R2][1] pctlist=c(pctlist,pct_R2) } doflength = length(doflist) pctlength = length(pctlist) ptable <- R2pTable(doflist=doflist,pctlist=pctlist,order=order,...) r2p <- ptable[(dof-1),1] r2k <- R2k(R2,dof=dof,...) f = (R2-r2p)/(1-r2p) ptable$R2Equiv <- f*(1-ptable[,1]) + ptable[,1] tx = max(doflist[doflength]) if(length(ptable)==3){ptable <- ptable[c(1,3,2)]} plt <- ggplot(ptable) + geom_point(aes(as.numeric(row.names(ptable)),ptable[,1]),color=mcolor[1],size=2,na.rm=T) + geom_point(aes(as.numeric(row.names(ptable)),ptable[,2]),color=mcolor[6],size=2,na.rm=T) + geom_ribbon(aes(x=as.numeric(row.names(ptable)), ymin=ptable[,2], ymax=1),fill=mcolor[4],alpha=0.3,na.rm=T) + geom_point(data=data.frame(R2,dof), aes(dof,R2),shape=8, color=mcolor[3],size=5,na.rm=T) + ggtitle("Noise Baseline and R2 Equivalent (R2k)") + xlab("Degrees of Freedom") + ylab(expression(R^2)) + geom_text(x=tx, y=0.80, label=paste0("R2 = ",R2," dof = ",dof), color=mcolor[3], hjust=1, size=4) + geom_text(x=tx, y=0.75, label=paste0("R2k = ",r2k), color=mcolor[6], hjust=1, size=4) + geom_text(x=tx, y=0.70, label=paste0("Noise Baseline: R2p = ",pctlist[1]), color=mcolor[1], hjust=1,size=4) + geom_text(x=tx, y=0.65, label=paste0("Improved R2 Measure"), color=mcolor[4], hjust=1, size=4) if(plot_pctr2){plt <- plt + geom_point(aes(as.numeric(row.names(ptable)),ptable[,3]),color=mcolor[2],size=2) + geom_text(x=tx, y=0.60, label=paste0("R2 Noise Percentile = ",pctlist[2]), color=mcolor[2], hjust=1,size=4,na.rm=T)} if(any(ptable[,2]<ptable[,1])){ plt <- plt + geom_ribbon(aes(x=as.numeric(row.names(ptable)), ymin=ptable[,2], ymax=ptable[,1]),fill=mcolor[5],alpha=0.7,na.rm=T) + geom_text(x=tx, y=0.55, label=paste0("Unacceptable Noise"), color=mcolor[5], hjust=1, size=4) + geom_point(data=data.frame(R2,dof), aes(dof,R2),size=4,shape=8, color=mcolor[3],na.rm=T) } return(plt) }
plot_pvals <- function(pvals){ t <- c(1:length(pvals)) s <- (t/length(pvals))*0.05 df_plot_perm <- data.frame("y" = sort(pvals), "x" = c(1:length(pvals))) ggplot()+ scale_y_log10()+ geom_point(data = df_plot_perm,aes_string(x = "x", y = "y", color = shQuote(viridis(4)[1])), size = 0.5)+ geom_line(data = df_plot_perm, aes_string(y = "s", x = "x",color = shQuote(viridis(4)[2])), size = 0.5) + geom_line(data = df_plot_perm, aes_string(y = 0.05, x = "x", color = shQuote("red")), size = 0.5) + scale_color_manual(name = "", labels = c("B-H limit", "p-values", "5% threshold"), values = c(viridis(4)[c(1,2)], "red")) + xlab("rank") + ylab("log10 scale") + xlim(0, length(df_plot_perm$y)) + theme_bw() }
"race_justice"
xsplineTangent.s1pos.s2pos.A0.A3.x <- function(px0, px1, px2, px3, py0, py1, py2, py3, s1, s2, t) { (((((1/(-1 - s1) * ((t - s1)/(-1 - s1)) + ((t - s1)/(-1 - s1)) * (1/(-1 - s1))) * ((t - s1)/(-1 - s1)) + ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * (1/(-1 - s1))) * (10 - (2 * (-1 - s1) * (-1 - s1)) + (2 * (2 * (-1 - s1) * (-1 - s1)) - 15) * ((t - s1)/(-1 - s1)) + (6 - (2 * (-1 - s1) * (-1 - s1))) * ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1))) + ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * ((2 * (2 * (-1 - s1) * (-1 - s1)) - 15) * (1/(-1 - s1)) + ((6 - (2 * (-1 - s1) * (-1 - s1))) * (1/(-1 - s1)) * ((t - s1)/(-1 - s1)) + (6 - (2 * (-1 - s1) * (-1 - s1))) * ((t - s1)/(-1 - s1)) * (1/(-1 - s1))))) * px0 + (((1/(-1 - s2) * ((t - 1 - s2)/(-1 - s2)) + ((t - 1 - s2)/(-1 - s2)) * (1/(-1 - s2))) * ((t - 1 - s2)/(-1 - s2)) + ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * (1/(-1 - s2))) * (10 - (2 * (-1 - s2) * (-1 - s2)) + (2 * (2 * (-1 - s2) * (-1 - s2)) - 15) * ((t - 1 - s2)/(-1 - s2)) + (6 - (2 * (-1 - s2) * (-1 - s2))) * ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2))) + ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * ((2 * (2 * (-1 - s2) * (-1 - s2)) - 15) * (1/(-1 - s2)) + ((6 - (2 * (-1 - s2) * (-1 - s2))) * (1/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) + (6 - (2 * (-1 - s2) * (-1 - s2))) * ((t - 1 - s2)/(-1 - s2)) * (1/(-1 - s2))))) * px1 + (((1/(1 + s1) * ((t + s1)/(1 + s1)) + ((t + s1)/(1 + s1)) * (1/(1 + s1))) * ((t + s1)/(1 + s1)) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * (1/(1 + s1))) * (10 - (2 * (1 + s1) * (1 + s1)) + (2 * (2 * (1 + s1) * (1 + s1)) - 15) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1))) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((2 * (2 * (1 + s1) * (1 + s1)) - 15) * (1/(1 + s1)) + ((6 - (2 * (1 + s1) * (1 + s1))) * (1/(1 + s1)) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * (1/(1 + s1))))) * px2 + (((1/(1 + s2) * ((t - 1 + s2)/(1 + s2)) + ((t - 1 + s2)/(1 + s2)) * (1/(1 + s2))) * ((t - 1 + s2)/(1 + s2)) + ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * (1/(1 + s2))) * (10 - (2 * (1 + s2) * (1 + s2)) + (2 * (2 * (1 + s2) * (1 + s2)) - 15) * ((t - 1 + s2)/(1 + s2)) + (6 - (2 * (1 + s2) * (1 + s2))) * ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2))) + ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * ((2 * (2 * (1 + s2) * (1 + s2)) - 15) * (1/(1 + s2)) + ((6 - (2 * (1 + s2) * (1 + s2))) * (1/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) + (6 - (2 * (1 + s2) * (1 + s2))) * ((t - 1 + s2)/(1 + s2)) * (1/(1 + s2))))) * px3)/(((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * (10 - (2 * (-1 - s1) * (-1 - s1)) + (2 * (2 * (-1 - s1) * (-1 - s1)) - 15) * ((t - s1)/(-1 - s1)) + (6 - (2 * (-1 - s1) * (-1 - s1))) * ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1))) + ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * (10 - (2 * (-1 - s2) * (-1 - s2)) + (2 * (2 * (-1 - s2) * (-1 - s2)) - 15) * ((t - 1 - s2)/(-1 - s2)) + (6 - (2 * (-1 - s2) * (-1 - s2))) * ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2))) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * (10 - (2 * (1 + s1) * (1 + s1)) + (2 * (2 * (1 + s1) * (1 + s1)) - 15) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1))) + ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * (10 - (2 * (1 + s2) * (1 + s2)) + (2 * (2 * (1 + s2) * (1 + s2)) - 15) * ((t - 1 + s2)/(1 + s2)) + (6 - (2 * (1 + s2) * (1 + s2))) * ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)))) - (((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * (10 - (2 * (-1 - s1) * (-1 - s1)) + (2 * (2 * (-1 - s1) * (-1 - s1)) - 15) * ((t - s1)/(-1 - s1)) + (6 - (2 * (-1 - s1) * (-1 - s1))) * ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1))) * px0 + ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * (10 - (2 * (-1 - s2) * (-1 - s2)) + (2 * (2 * (-1 - s2) * (-1 - s2)) - 15) * ((t - 1 - s2)/(-1 - s2)) + (6 - (2 * (-1 - s2) * (-1 - s2))) * ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2))) * px1 + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * (10 - (2 * (1 + s1) * (1 + s1)) + (2 * (2 * (1 + s1) * (1 + s1)) - 15) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1))) * px2 + ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * (10 - (2 * (1 + s2) * (1 + s2)) + (2 * (2 * (1 + s2) * (1 + s2)) - 15) * ((t - 1 + s2)/(1 + s2)) + (6 - (2 * (1 + s2) * (1 + s2))) * ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2))) * px3) * (((1/(-1 - s1) * ((t - s1)/(-1 - s1)) + ((t - s1)/(-1 - s1)) * (1/(-1 - s1))) * ((t - s1)/(-1 - s1)) + ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * (1/(-1 - s1))) * (10 - (2 * (-1 - s1) * (-1 - s1)) + (2 * (2 * (-1 - s1) * (-1 - s1)) - 15) * ((t - s1)/(-1 - s1)) + (6 - (2 * (-1 - s1) * (-1 - s1))) * ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1))) + ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * ((2 * (2 * (-1 - s1) * (-1 - s1)) - 15) * (1/(-1 - s1)) + ((6 - (2 * (-1 - s1) * (-1 - s1))) * (1/(-1 - s1)) * ((t - s1)/(-1 - s1)) + (6 - (2 * (-1 - s1) * (-1 - s1))) * ((t - s1)/(-1 - s1)) * (1/(-1 - s1)))) + (((1/(-1 - s2) * ((t - 1 - s2)/(-1 - s2)) + ((t - 1 - s2)/(-1 - s2)) * (1/(-1 - s2))) * ((t - 1 - s2)/(-1 - s2)) + ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * (1/(-1 - s2))) * (10 - (2 * (-1 - s2) * (-1 - s2)) + (2 * (2 * (-1 - s2) * (-1 - s2)) - 15) * ((t - 1 - s2)/(-1 - s2)) + (6 - (2 * (-1 - s2) * (-1 - s2))) * ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2))) + ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * ((2 * (2 * (-1 - s2) * (-1 - s2)) - 15) * (1/(-1 - s2)) + ((6 - (2 * (-1 - s2) * (-1 - s2))) * (1/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) + (6 - (2 * (-1 - s2) * (-1 - s2))) * ((t - 1 - s2)/(-1 - s2)) * (1/(-1 - s2))))) + (((1/(1 + s1) * ((t + s1)/(1 + s1)) + ((t + s1)/(1 + s1)) * (1/(1 + s1))) * ((t + s1)/(1 + s1)) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * (1/(1 + s1))) * (10 - (2 * (1 + s1) * (1 + s1)) + (2 * (2 * (1 + s1) * (1 + s1)) - 15) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1))) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((2 * (2 * (1 + s1) * (1 + s1)) - 15) * (1/(1 + s1)) + ((6 - (2 * (1 + s1) * (1 + s1))) * (1/(1 + s1)) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * (1/(1 + s1))))) + (((1/(1 + s2) * ((t - 1 + s2)/(1 + s2)) + ((t - 1 + s2)/(1 + s2)) * (1/(1 + s2))) * ((t - 1 + s2)/(1 + s2)) + ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * (1/(1 + s2))) * (10 - (2 * (1 + s2) * (1 + s2)) + (2 * (2 * (1 + s2) * (1 + s2)) - 15) * ((t - 1 + s2)/(1 + s2)) + (6 - (2 * (1 + s2) * (1 + s2))) * ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2))) + ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * ((2 * (2 * (1 + s2) * (1 + s2)) - 15) * (1/(1 + s2)) + ((6 - (2 * (1 + s2) * (1 + s2))) * (1/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) + (6 - (2 * (1 + s2) * (1 + s2))) * ((t - 1 + s2)/(1 + s2)) * (1/(1 + s2))))))/(((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1)) * (10 - (2 * (-1 - s1) * (-1 - s1)) + (2 * (2 * (-1 - s1) * (-1 - s1)) - 15) * ((t - s1)/(-1 - s1)) + (6 - (2 * (-1 - s1) * (-1 - s1))) * ((t - s1)/(-1 - s1)) * ((t - s1)/(-1 - s1))) + ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2)) * (10 - (2 * (-1 - s2) * (-1 - s2)) + (2 * (2 * (-1 - s2) * (-1 - s2)) - 15) * ((t - 1 - s2)/(-1 - s2)) + (6 - (2 * (-1 - s2) * (-1 - s2))) * ((t - 1 - s2)/(-1 - s2)) * ((t - 1 - s2)/(-1 - s2))) + ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1)) * (10 - (2 * (1 + s1) * (1 + s1)) + (2 * (2 * (1 + s1) * (1 + s1)) - 15) * ((t + s1)/(1 + s1)) + (6 - (2 * (1 + s1) * (1 + s1))) * ((t + s1)/(1 + s1)) * ((t + s1)/(1 + s1))) + ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2)) * (10 - (2 * (1 + s2) * (1 + s2)) + (2 * (2 * (1 + s2) * (1 + s2)) - 15) * ((t - 1 + s2)/(1 + s2)) + (6 - (2 * (1 + s2) * (1 + s2))) * ((t - 1 + s2)/(1 + s2)) * ((t - 1 + s2)/(1 + s2))))^2) }
extract_features <- function(.data) { feature_names <- unlist(purrr::map( .data[[2]], .f = function(feature) { feature$get_name() } )) feature_actuals <- purrr::map( .data[[2]], .f = function(feature) { feature } ) return( tibble::tibble( name = feature_names, feature = feature_actuals ) ) }
NULL summary.RcppClock <- function(object, units = "auto", ...){ min_time <- min(object$timer[object$timer != 0]) if(is.na(min_time)) min_time <- 0 if(units == "auto"){ if(min_time > 1e8){ units <- "s" } else if(min_time > 1e5){ units <- "ms" } else if(min_time > 1e2){ units <- "us" } else { units <- "ns" } } if(units == "s"){ object$timer <- object$timer / 1e9 } else if (units == "ms") { object$timer <- object$timer / 1e6 } else if (units == "us") { object$timer <- object$timer / 1e3 } object <- data.frame("timer" = object$timer, "ticker" = object$ticker) df2 <- aggregate(object$timer, list(ticker = object$ticker), mean) colnames(df2)[2] <- "mean" df2$sd <- aggregate(object$timer, list(ticker = object$ticker), sd)$x df2$min <- aggregate(object$timer, list(ticker = object$ticker), min)$x df2$max <- aggregate(object$timer, list(ticker = object$ticker), max)$x object$timer <- 1 df2$neval <- aggregate(object$timer, list(ticker = object$ticker), sum)$x long_units <- c("seconds", "milliseconds", "microseconds", "nanoseconds") short_units <- c("s", "ms", "us", "ns") attr(df2, "units") <- long_units[which(short_units == units)] df2 } print.RcppClock <- function(x, ...){ df <- summary(x, units = "auto") cat("Unit:", attr(df, "units"), "\n") print(df, digits = 4, row.names = FALSE) invisible(x) } plot.RcppClock <- function(x, ...) { min_time <- min(x$timer[x$timer != 0]) if(is.na(min_time)) min_time <- 0 if(min_time > 1e8) { units <- "s" x$timer <- x$timer / 1e9 } else if(min_time > 1e7) { units <- "ms" x$timer <- x$timer / 1e6 } else if(min_time > 1e2) { units <- "us" x$timer <- x$timer / 1e3 } else { units <- "ns" } long_units <- c("seconds", "milliseconds", "microseconds", "nanoseconds") short_units <- c("s", "ms", "us", "ns") df <- data.frame("timer" = x$timer, "ticker" = x$ticker) suppressWarnings(print(ggplot(df, aes_string(y = "ticker", x = "timer")) + geom_violin() + geom_jitter(height = 0.1) + theme_classic() + scale_x_continuous(trans = "log10") + theme(axis.text.x = element_text(angle = 45, hjust = 1)) + labs(y = "", x = paste0("runtime (", long_units[which(short_units == units)], ")")))) }
createDistMat <- function(ssn, predpts = NULL, o.write = FALSE, amongpreds = FALSE) { if(amongpreds && (missing(predpts) || is.null(predpts))) { stop("A named collection of prediction points must be specified via the predpts option when amongpreds is TRUE") } if (!file.exists(file.path(ssn@path, "distance"))) { dir.create(file.path(ssn@path, "distance")) } if (!file.exists(file.path(ssn@path, "distance", "obs"))) { dir.create(file.path(ssn@path, "distance", "obs")) } if (!is.null(predpts)) { if(!file.exists(file.path(ssn@path, "distance", predpts))) { dir.create(file.path(ssn@path, "distance", predpts)) } count <- 0 if(length(ssn@predpoints@ID) > 0) { for (m in 1:length(ssn@predpoints@ID)) { if (ssn@predpoints@ID[m] == predpts) { pred.num <- m count <- count + 1} } } if (count==0) { stop(predpts, " does not exist in SSN")} if (count > 1) { stop("SSN contains more than one copy of ", predpts)} ssn@predpoints@SSNPoints[[pred.num]]@point.data$netID<- as.factor(ssn@predpoints@SSNPoints[[pred.num]]@point.data$netID) } if (is.null(predpts)) { pred.num <- 0} if (file.exists(file.path(ssn@path,"binaryID.db")) == FALSE) stop("binaryID.db is missing from ssn object") driver <- RSQLite::SQLite() connect.name <- file.path(ssn@path,"binaryID.db") connect <- dbConnect(SQLite(), connect.name) on.exit({ dbDisconnect(connect) }) if (file.exists(file.path(ssn@path, "binaryID.db")) == FALSE) stop("binaryID.db is missing from ssn object") ssn@obspoints@SSNPoints[[1]]@network.point.coords$NetworkID<- as.factor(ssn@obspoints@SSNPoints[[1]]@network.point.coords$NetworkID) net.count <- length(levels([email protected]$NetworkID)) warned.overwrite <- FALSE for (i in 1:net.count) { net.num <- levels([email protected]$NetworkID)[i] ind.obs <- ssn@obspoints@SSNPoints[[1]]@network.point.coords$NetworkID == as.numeric(net.num) site.no <- nrow(ssn@obspoints@SSNPoints[[1]]@network.point.coords[ind.obs,]) if (pred.num > 0) { ind.preds <- ssn@predpoints@SSNPoints[[pred.num]]@network.point.coords$NetworkID == as.numeric(net.num) pred.site.no <- nrow(ssn@predpoints@SSNPoints[[pred.num]]@network.point.coords[ind.preds,]) } else { pred.site.no <-0 } if (site.no > 0) { obs.pids<- sort(as.numeric(rownames(ssn@obspoints@SSNPoints[[1]]@network.point.coords[ind.obs,]))) if(!is.null(predpts)){ pred.pids<- sort(as.numeric(rownames(ssn@predpoints@SSNPoints[[pred.num]]@network.point.coords[ind.preds,]))) if(pred.site.no > 0){ current_distance_matrix_a <- matrix(NA, nrow = site.no, ncol = pred.site.no, dimnames=list(obs.pids, pred.pids)) current_distance_matrix_b <- matrix(NA, nrow = pred.site.no, ncol = site.no, dimnames=list(pred.pids, obs.pids)) } } net.name <- paste("net", net.num, sep = "") workspace.name.a <- paste("dist.net", net.num, ".a.RData", sep = "") workspace.name.b <- paste("dist.net", net.num, ".b.RData", sep = "") bin.table <- dbReadTable(connect, net.name) workspace.name <- paste("dist.net", net.num, ".RData", sep = "") if(!o.write) { exists <- file.exists(file.path(ssn@path, "distance", "obs", workspace.name)) if (!missing(predpts) && !is.null(predpts)) { exists <- c(exists, file.exists(file.path(ssn@path, "distance", predpts, workspace.name.a)), file.exists(file.path(ssn@path, "distance", predpts, workspace.name.b))) } if(all(exists)) { if(!warned.overwrite) { warned.overwrite <- TRUE cat("Distance matrices already existed while o.write was set to FALSE. Not overwriting existing matrices\n")} next } else if(any(exists) && any(!exists)) { stop("o.write was set to FALSE and some (but not all) distance matrices already existed")} } current_distance_matrix <- matrix(NA, nrow = site.no, ncol = site.no,dimnames = list(obs.pids, obs.pids)) diag(current_distance_matrix)<- 0 rownames(current_distance_matrix) <- obs.pids colnames(current_distance_matrix) <- obs.pids locID.obi <- attributes(ssn@obspoints@SSNPoints[[1]]@network.point.coords[ind.obs,])$locID ob.i <- as.data.frame(cbind(as.numeric(rownames(ssn@obspoints@SSNPoints[[1]]@network.point.coords[ind.obs,])), as.numeric(levels(ssn@obspoints@SSNPoints[[1]]@network.point.coords$SegmentID[ind.obs]))[ssn@obspoints@SSNPoints[[1]]@network.point.coords$SegmentID[ind.obs]], locID.obi[ind.obs])) colnames(ob.i)<- c("pid","rid","locID") ob.i$locID <- as.factor(ob.i$locID) ob.i$binaryID <- bin.table$binaryID[match(ob.i$rid, bin.table$rid)] ob.i <-ob.i[order(ob.i[,"pid"]),] rownames(ob.i)<- ob.i$pid ob.i_by_locID <- ob.i[order(ob.i[,"locID"]),] ob.i_by_locID$pid <- as.numeric(ob.i_by_locID$pid) ob.i_by_locID$locID <- as.numeric(ob.i_by_locID$locID) ob.j_reordering <- order(ob.i_by_locID$pid) locID.old <- -1 ind.dup <- !duplicated(ob.i_by_locID$locID) for (j in 1:nrow(ob.i)) { pid.i <- ob.i[j,"pid"] locID.i <- ob.i[j, "locID"] if (locID.i != locID.old) { junk <- get.rid.fc(ob.i_by_locID[ind.dup,"binaryID"], ob.i$binaryID[j]) ob.j <- getObsRelationshipsDF(ssn, pid.i, junk, ind.dup, ob.i, ob.i_by_locID,bin.table) upDist.i <- ssn@obspoints@SSNPoints[[1]]@network.point.coords[paste(pid.i), "DistanceUpstream"] ob.j <-ob.j[ob.j_reordering,] ind.fc<-ob.j$fc==1 dist.obs <- ifelse(ind.fc, upDist.i - ob.j$upDist.j, upDist.i - ob.j$juncDist) current_distance_matrix[,paste(pid.i)] <- ifelse(dist.obs<0, 0, dist.obs) } else { current_distance_matrix[,paste(pid.i)]<- current_distance_matrix[,paste(pid.old)] } if (locID.i != locID.old) { if (!is.null(predpts) && pred.site.no > 0) { ob.j <- getPredRelationshipsDF(ssn, pred.num, ind.preds, bin.table, ob.i, j) ob.j <-ob.j[order(ob.j[,"pid"]),] ind.fc<-ob.j$fc==1 dist.a <- ifelse(ind.fc, ob.j$upDist.j-upDist.i, ob.j$upDist.j - ob.j$juncDist) current_distance_matrix_a[paste(pid.i), ] <- ifelse(dist.a<0, 0, dist.a) dist.b <- ifelse(ind.fc, upDist.i - ob.j$upDist.j, upDist.i - ob.j$juncDist) current_distance_matrix_b[, paste(pid.i)] <- ifelse(dist.b<0, 0, dist.b) } } else { if (!is.null(predpts) && pred.site.no > 0) { current_distance_matrix_a[paste(pid.i),]<- current_distance_matrix_a[paste(pid.old),] current_distance_matrix_b[,paste(pid.i)]<- current_distance_matrix_b[,paste(pid.old)]} } pid.old <- pid.i locID.old <- locID.i } file_handle = file(file.path(ssn@path, "distance", "obs", workspace.name), open="wb") serialize(current_distance_matrix, file_handle, ascii=FALSE) close(file_handle) if(pred.site.no > 0) { file_handle = file(file.path(ssn@path, "distance", predpts, workspace.name.a), open="wb") serialize(current_distance_matrix_a, file_handle, ascii=FALSE) close(file_handle) file_handle = file(file.path(ssn@path, "distance", predpts, workspace.name.b), open="wb") serialize(current_distance_matrix_b, file_handle, ascii=FALSE) close(file_handle) } } if (amongpreds & pred.site.no > 0) { workspace.name <- paste("dist.net", net.num, ".RData", sep = "") pred.pids<- sort(as.numeric(rownames(ssn@predpoints@SSNPoints[[pred.num]]@network.point.coords[ind.preds,]))) net.name <- paste("net", net.num, sep = "") bin.table <- dbReadTable(connect, net.name) among_distance_matrix <- amongPredsDistMat(ssn, pred.pids, pred.num, bin.table) file_handle = file(file.path(ssn@path, "distance", predpts, workspace.name), open="wb") serialize(among_distance_matrix, file_handle, ascii=FALSE) close(file_handle) } }}
summary.BIFIE.lavaan.survey <- function(object, ... ) { BIFIE.summary(object) print(BIFIE_lavaan_summary(object$lavfit, ...)) cat("\n\nModel Fit Statistics\n") print(object$fit) }
logivec <- function(har.rule,label,nodenumb,newsim) { r.name <- rownames(har.rule) logvec <- rep(TRUE, nrow(newsim)) for (i in 1:length(r.name)){ if(!is.infinite(har.rule[i,1]) | !is.infinite(har.rule[i,2])){ logvec <- newsim[, r.name[i]]>= har.rule[i,1] & newsim[, r.name[i]] < har.rule[i,2] & logvec } else if(!is.na(har.rule[i,3])) { logvec <- sapply(newsim[,r.name[i]],function(x) grepl(x,har.rule[i,3])) & logvec } else logvec <- logvec } logvec[which(!newsim$rownn %in% nodenumb)] <- FALSE logvec[which(is.na(logvec))] <- newsim$rownn[which(is.na(logvec))]==label return(logvec) }
on_ada_stumps_button_clicked <- function(button) { setGuiDefaultsAda(stumps=TRUE) } on_ada_stumps_checkbutton_toggled <- function(button) { if (theWidget("ada_stumps_checkbutton")$getActive()) setGuiDefaultsAda(stumps=TRUE) else setGuiDefaultsAda() } on_ada_defaults_button_clicked <- function(button) { setGuiDefaultsAda() } on_ada_importance_button_clicked <- function(button) { if (theWidget("model_boost_ada_radiobutton")$getActive()) plotImportanceAda() else if (theWidget("model_boost_xgb_radiobutton")$getActive()) plotImportanceXgb() } on_ada_errors_button_clicked <- function(button) { if (theWidget("model_boost_ada_radiobutton")$getActive()) plotErrorsAda() else if (theWidget("model_boost_xgb_radiobutton")$getActive()) plotErrorsXgb() } on_ada_list_button_clicked <- function(button) { listTreesAdaGui() } on_ada_draw_button_clicked <- function(button) { drawTreesAdaGui() } on_ada_continue_button_clicked <- function(button) { continueModelAdaGui() } on_help_ada_activate <- function(action, window) { displayHelpAda() } listTreesAdaGui <- function() { TV <- "ada_textview" tree.num <- theWidget("ada_draw_spinbutton")$getValue() if (tree.num > length(crs$ada$model$trees)) { errorDialog(sprintf(Rtxt("You have requested tree number %d,", "but there are only %d trees in the model.", "Choose a tree number between 1 and %d."), tree.num, length(crs$ada$model$trees), length(crs$ada$model$trees))) return(FALSE) } display.cmd <- sprintf("listTreesAda(crs$ada, %d)", tree.num) appendLog(sprintf(Rtxt("Display tree number %d."), tree.num), display.cmd) addTextview(TV, collectOutput(display.cmd, TRUE), textviewSeparator()) setStatusBar(sprintf(Rtxt("Tree %d has been added to the textview.", "You may need to scroll the textview to see it."), tree.num)) } drawTreesAdaGui <- function() { tree.num <- theWidget("ada_draw_spinbutton")$getValue() if (tree.num > length(crs$ada$model$trees)) { errorDialog(sprintf(Rtxt("You have requested tree number %d,", "but there are only %d trees in the model.", "Choose a tree number between 1 and %d."), tree.num, length(crs$ada$model$trees), length(crs$ada$model$trees))) return(FALSE) } draw.cmd <- sprintf('drawTreesAda(crs$ada, %d, ": %s")', tree.num, paste(crs$dataname, "$", crs$target)) appendLog(sprintf(Rtxt("Display tree number %d."), tree.num), draw.cmd) eval(parse(text=draw.cmd)) setStatusBar(sprintf(Rtxt("Tree %d has been drawn."), tree.num)) } setGuiDefaultsAda <- function(stumps=FALSE) { theWidget("ada_target_label")$setText(Rtxt("No Target")) xgb <- theWidget("model_boost_xgb_radiobutton")$getActive() if (stumps) { theWidget("ada_maxdepth_spinbutton")$setValue(1) theWidget("ada_minsplit_spinbutton")$setValue(0) theWidget("ada_cp_spinbutton")$setValue(-1) theWidget("ada_xval_spinbutton")$setValue(0) theWidget("ada_max_depth_label")$setSensitive(FALSE) theWidget("ada_min_split_label")$setSensitive(FALSE) theWidget("ada_complexity_label")$setSensitive(FALSE) theWidget("ada_xval_label")$setSensitive(FALSE) theWidget("ada_maxdepth_spinbutton")$setSensitive(FALSE) theWidget("ada_minsplit_spinbutton")$setSensitive(FALSE) theWidget("ada_cp_spinbutton")$setSensitive(FALSE) theWidget("ada_xval_spinbutton")$setSensitive(FALSE) } else { theWidget("ada_maxdepth_spinbutton")$setValue(ifelse(xgb,6,30)) theWidget("ada_minsplit_spinbutton")$setValue(20) theWidget("ada_cp_spinbutton")$setValue(0.01) theWidget("ada_xval_spinbutton")$setValue(10) theWidget("ada_max_depth_label")$setSensitive(TRUE) theWidget("ada_min_split_label")$setSensitive(!xgb) theWidget("ada_complexity_label")$setSensitive(!xgb) theWidget("ada_xval_label")$setSensitive(!xgb) theWidget("ada_maxdepth_spinbutton")$setSensitive(TRUE) theWidget("ada_minsplit_spinbutton")$setSensitive(!xgb) theWidget("ada_cp_spinbutton")$setSensitive(!xgb) theWidget("ada_xval_spinbutton")$setSensitive(!xgb) } } showModelAdaExists <- function(state=!is.null(crs$ada)) { xgb <- theWidget("model_boost_xgb_radiobutton")$getActive() if (state) { theWidget("ada_importance_button")$show() theWidget("ada_importance_button")$setSensitive(TRUE) theWidget("ada_errors_button")$show() theWidget("ada_errors_button")$setSensitive(TRUE) if (!xgb) theWidget("ada_list_button")$show() theWidget("ada_list_button")$setSensitive(!xgb) if (!xgb) theWidget("ada_draw_button")$show() theWidget("ada_draw_button")$setSensitive(!xgb) if (!xgb) theWidget("ada_continue_button")$show() theWidget("ada_continue_button")$setSensitive(!xgb) if (!xgb) theWidget("ada_draw_spinbutton")$show() theWidget("ada_draw_spinbutton")$setSensitive(!xgb) } else { theWidget("ada_importance_button")$hide() theWidget("ada_errors_button")$hide() theWidget("ada_list_button")$hide() theWidget("ada_draw_button")$hide() theWidget("ada_continue_button")$hide() theWidget("ada_draw_spinbutton")$hide() } } continueModelAdaGui <- function() { niter <- theWidget("ada_ntree_spinbutton")$getValue() if (niter <= crs$ada$iter) { infoDialog(sprintf(Rtxt("The new Number of Trees, %d, is no larger", "than the old Number of Trees, %d,", "and so there is nothing to do.", "You may like to choose a larger number of trees."), niter, crs$ada$iter)) return() } set.cursor("watch") continueModelAda(niter) set.cursor() }
fill.tbl_lazy <- function(.data, ..., .direction = c("down", "up")) { sim_data <- simulate_vars(.data) cols_to_fill <- syms(names(tidyselect::eval_select(expr(c(...)), sim_data))) order_by_cols <- op_sort(.data) .direction <- arg_match0(.direction, c("down", "up")) if (is_empty(order_by_cols)) { abort( c( x = "`.data` does not have explicit order.", i = "Please use arrange() or window_order() to make determinstic." ) ) } if (.direction == "up") { order_by_cols <- purrr::map(order_by_cols, ~ quo(-!!.x)) } dbplyr_fill0( .con = remote_con(.data), .data = .data, cols_to_fill = cols_to_fill, order_by_cols = order_by_cols, .direction = .direction ) } dbplyr_fill0 <- function(.con, .data, cols_to_fill, order_by_cols, .direction) { UseMethod("dbplyr_fill0") } dbplyr_fill0.DBIConnection <- function(.con, .data, cols_to_fill, order_by_cols, .direction) { grps <- op_grps(.data) fill_sql <- purrr::map( cols_to_fill, ~ win_over( last_value_sql(.con, .x), partition = if (!is_empty(grps)) escape(ident(op_grps(.data)), con = .con), order = translate_sql(!!!order_by_cols, con = .con), con = .con ) ) %>% set_names(as.character(cols_to_fill)) .data %>% transmute( !!!syms(colnames(.data)), !!!fill_sql ) } dbplyr_fill0.SQLiteConnection <- function(.con, .data, cols_to_fill, order_by_cols, .direction) { partition_sql <- purrr::map( cols_to_fill, ~ translate_sql( cumsum(ifelse(is.na(!!.x), 0L, 1L)), vars_order = translate_sql(!!!order_by_cols, con = .con), vars_group = op_grps(.data), ) ) %>% set_names(paste0("..dbplyr_partion_", seq_along(cols_to_fill))) dp <- .data %>% mutate(!!!partition_sql) fill_sql <- purrr::map2( cols_to_fill, names(partition_sql), ~ translate_sql( max(!!.x, na.rm = TRUE), con = .con, vars_group = c(op_grps(.data), .y), ) ) %>% set_names(purrr::map_chr(cols_to_fill, as_name)) dp %>% transmute( !!!syms(colnames(.data)), !!!fill_sql ) %>% select(!!!colnames(.data)) } dbplyr_fill0.PostgreSQL <- dbplyr_fill0.SQLiteConnection dbplyr_fill0.PqConnection <- dbplyr_fill0.SQLiteConnection dbplyr_fill0.HDB <- dbplyr_fill0.SQLiteConnection dbplyr_fill0.ACCESS <- dbplyr_fill0.SQLiteConnection dbplyr_fill0.MariaDBConnection <- dbplyr_fill0.SQLiteConnection dbplyr_fill0.MySQLConnection <- dbplyr_fill0.SQLiteConnection dbplyr_fill0.MySQL <- dbplyr_fill0.SQLiteConnection last_value_sql <- function(con, x) { UseMethod("last_value_sql") } last_value_sql.DBIConnection <- function(con, x) { build_sql("LAST_VALUE(", ident(as.character(x)), " IGNORE NULLS)", con = con) } last_value_sql.Hive <- function(con, x) { translate_sql(last_value(!!x, TRUE), con = con) } globalVariables("last_value")
checksumXIF = function(fileName, ...) { return(cpp_checksum(fileName)) }
library(hamcrest) expected <- c(-0x1.0c36e9e2bc4d2p+0 + 0x0p+0i, -0x1.445604a2af506p-2 + 0x1.9806e7159367p-3i, 0x1.f16b4d6fba9d7p-1 + 0x1.d37268d4eded8p-5i, 0x1.724a081ca3476p-1 + -0x1.0c08c2f76eacdp+0i, -0x1.df01ebdf91a54p-1 + 0x1.348e514b79ad6p-3i, -0x1.cb9de4e259588p-3 + -0x1.2d095741ca21p-2i, 0x1.e35ec93a3f197p-2 + 0x1.ce52b4f22260cp-4i, -0x1.e06821943dec3p-1 + -0x1.3b12848f1def7p-1i, 0x1.25535303934cp-6 + -0x1.a98690b2b64f2p-2i, -0x1.8eea748778926p-2 + 0x1.c117c287c1a8p-8i, 0x1.f2dad5e50d2dcp-3 + 0x1.4e61724f7afcfp-1i, 0x1.985dccb9ae21cp-2 + -0x1.e76a1b1c09ad4p-4i, 0x1.c81bec63a665cp+0 + 0x0p+0i, 0x1.985dccb9ae21ep-2 + 0x1.e76a1b1c09adfp-4i, 0x1.f2dad5e50d2e4p-3 + -0x1.4e61724f7afdp-1i, -0x1.8eea74877891dp-2 + -0x1.c117c287c1dp-8i, 0x1.25535303934bp-6 + 0x1.a98690b2b64f5p-2i, -0x1.e06821943dec6p-1 + 0x1.3b12848f1def6p-1i, 0x1.e35ec93a3f193p-2 + -0x1.ce52b4f22261p-4i, -0x1.cb9de4e259594p-3 + 0x1.2d095741ca21p-2i, -0x1.df01ebdf91a54p-1 + -0x1.348e514b79addp-3i, 0x1.724a081ca3475p-1 + 0x1.0c08c2f76eacep+0i, 0x1.f16b4d6fba9d7p-1 + -0x1.d37268d4ededp-5i, -0x1.445604a2af4fep-2 + -0x1.9806e7159367p-3i ) assertThat(stats:::fft(z=c(0.0324555631488638, 0.0311687013269092, 0.233266393502539, -0.235029230487276, 0.0687990325456456, -0.339944754056818, -0.327608907825235, -0.176636011202763, 0.0467078820368223, 0.164116768372802, 0.0492953179285646, 0.0241803411499137, 0.156955723107496, -0.281094774590679, -0.0687433091989791, 0.0586114721631971, 0.21400597103785, -0.19658683603818, -0.0453613071548341, -0.127446284062493, -0.0994127476133393, -0.141442275195147, 0.106621969444523, -0.194591613621975)) , identicalTo( expected, tol = 1e-6 ) )
library("curl") library("twitteR") library("ROAuth") library("syuzhet") download.file(url="http://curl.haxx.se/ca/cacert.pem",destfile="cacert.pem") consumerKey="uRDuync3BziwQnor1MZFBKp0x" consumerSecret="t8QPLr7RKpAg4qa7vth1SBsDvoPKawwwdEhNRjdpY0mfMMdRnV" AccessToken="14366551-Fga25zWM1YefkTb2TZYxsrx2LVVSsK0uSpF08sugW" AccessTokenSecret="3ap8BZNVoBhE2GaMGLfuvuPF2OrHzM3MhGuPm96p3k6Cz" cred <- OAuthFactory$new(consumerKey=consumerKey, consumerSecret=consumerSecret, requestURL='https://api.twitter.com/oauth/request_token', accessURL='https://api.twitter.com/oauth/access_token', authURL='https://api.twitter.com/oauth/authorize') cred$handshake(cainfo="cacert.pem") save(cred, file="twitter authentication.Rdata") load("twitter authentication.Rdata") setup_twitter_oauth(consumerKey, consumerSecret, AccessToken, AccessTokenSecret) search.string <- " no.of.tweets <- 100 tweets <- searchTwitter(search.string, n=no.of.tweets,lang="en") tweets tweets[1:10] search.string <- " no.of.tweets <- 100 tweets <- searchTwitter(search.string, n=no.of.tweets,lang="en") tweets[1:5] ?searchTwitter ?searchTwitteR homeTimeline(n=15) mentions(n=15) mentions(n=5) (tweets = userTimeline("10rishav", n=10)) userTimeline("drisha_sinha", n=5) ?userTimeline tweets = userTimeline("realDonaldTrump", n=100) tweets[1:5] n.tweet <- length(tweets) n.tweet tweets.df = twListToDF(tweets) head(tweets.df) summary(tweets.df) tweets.df2 <- gsub("http.*","",tweets.df$text) tweets.df2 <- gsub("https.*","",tweets.df2) tweets.df2 <- gsub(" tweets.df2 <- gsub("@.*","",tweets.df2) head(tweets.df2) library("syuzhet") word.df <- as.vector(tweets.df2) word.df emotion.df <- get_nrc_sentiment(word.df) emotion.df word.df[3] emotion.df2 <- cbind(tweets.df2, emotion.df) head(emotion.df2) sent.value <- get_sentiment(word.df) ?get_sentiment most.positive <- word.df[sent.value == max(sent.value)] most.positive most.negative<- word.df[sent.value <= min(sent.value)] most.negative sent.value positive.tweets <- word.df[sent.value > 0] head(positive.tweets) negative.tweets <- word.df[sent.value < 0] head(negative.tweets) neutral.tweets <- word.df[sent.value == 0] head(neutral.tweets) category_senti <- ifelse(sent.value < 0, "Negative", ifelse(sent.value > 0, "Positive", "Neutral")) head(category_senti) category_senti2 <- cbind(tweets,category_senti,sent.value) head(category_senti2) table(category_senti)
product <- function(x, y) { out <- x*y out[(x == 0 | y == 0)] <- 0 return (out) }
test_that(desc="Test that multi_model_1 works as intended", code={ skip_on_oldrel() set.seed(520) train_set<-createDataPartition(yields$normal, p=0.8, list=FALSE) valid_set<-yields[-train_set,] train_set<-yields[train_set,] ctrl<-trainControl(method="cv", number=5) m<-multi_model_1(train_set,"normal",".", c("knn","rpart"), "Accuracy",ctrl, new_data =valid_set) expect_error(multi_model_1(yields[1:120,],"normal", ".",c("knn","svmRadial"), "Accuracy",ctrl), "new_data,metric,method, and control must all be supplied", fixed=TRUE) expect_error(multi_model_1(yields[1:120,], "normal",".", c("knn","svmRadial"), metric=NULL,ctrl, new_data = yields[1:120,]), "new_data,metric,method, and control must all be supplied", fixed=TRUE) expect_error(multi_model_1(yields[1:120,], "normal",".",method=NULL, metric="Accuracy",ctrl, new_data = yields[1:120,]), "new_data,metric,method, and control must all be supplied", fixed=TRUE) expect_false(any(is.null(m$metric),is.null(m$predictions))) })
delScattering2 <- function(EEM, rep = 0, first = 30, second = 40){ dimMat <- sapply(EEM , dim) if (sum(!apply(dimMat, 2, function (x) identical(dimMat[,1], x))) > 0){ stop("Dimensions do not match. Please check your data.") } Ex <- as.numeric(colnames(EEM[[1]])) Em <- as.numeric(rownames(EEM[[1]])) numEx <- length(Ex) numEm <- length(Em) Ex_grid <- t(matrix(rep(Ex, numEm), numEx, numEm)) Em_grid <- matrix(rep(Em, numEx), numEm, numEx) delIndex <- Ex_grid >= Em_grid for (i in 1:2){ increment <- switch(i, first, second) plusInd <- i * Ex_grid + increment > Em_grid minusInd <- i * Ex_grid - increment < Em_grid tempInd <- plusInd & minusInd delIndex <- delIndex | tempInd } delIndex <- delIndex | (Em_grid >= 2*Ex_grid) numSamp <- length(EEM) EEM_delS <- EEM for (i in 1:numSamp){ EEM_delS[[i]][delIndex] <- rep } return(EEM_delS) }
scRNAtools_Gene2exp_1 <- function(example,types_all,gene1,gene2,n,col_1,col_2,pch,lwd) { type=types_all[n,] example<-as.matrix(example) gene1<-as.matrix(gene1) gene2<-as.matrix(gene2) exp1<-example[which(example[,1]%in%gene1),] exp2<-example[which(example[,1]%in%gene2),] exp1<-as.matrix(exp1) subtype1<-as.matrix(example[1,]) exp11<-cbind(example[1,],exp1) colnames(exp11)<-exp11[1,] exp11<-exp11[-1,] eee1<-as.numeric(exp11[,1]) exp12<-exp11[which(eee1%in%as.numeric(type[,2])),] num_type<-type[which(type[,2]%in%unique(eee1)),] geneexp1<-as.numeric(exp12[,2]) exp2<-as.matrix(exp2) subtype2<-as.matrix(example[1,]) exp21<-cbind(example[1,],exp2) colnames(exp21)<-exp21[1,] exp21<-exp21[-1,] eee2<-as.numeric(exp21[,1]) exp22<-exp21[which(eee2%in%as.numeric(type[,2])),] num_type<-type[which(type[,2]%in%unique(eee2)),] geneexp2<-as.numeric(exp22[,2]) pdf(file=file.path(tempdir(), "two-genes expression1.pdf")) main = paste("Gene expression in",type[,1],"cells") max_v<-as.numeric(max(geneexp1,geneexp2)) plot(1:nrow(exp12),geneexp1,type="o",main=main,ylim=c(0,max_v),xlab = paste(type[,1],"cells"),ylab="Gene expression",col=col_1,pch=pch,lwd=lwd) lines(1:nrow(exp22),geneexp2,type="o",ylim=c(0,max_v),xlab = paste(type[,1],"cells"),ylab="Gene expression",col=col_2,pch=pch,lwd=lwd) dev.off() }
astar_1 <- function(g1, w1, g2, w2){ n <- length(g1) prod1 <- g1 * w1 c.gw1 <- cumsum(prod1) c.w1 <- cumsum(w1) tmp1 <- max(c.gw1 / c.w1) tmp2 <- matrix(NA, nrow = n, ncol = n) prod2 <- g2 * w2 c.gw2 <- cumsum(prod2) c.w2 <- cumsum(w2) for (tbar in 1:n){tmp2[tbar:n, tbar] <- (c.gw1[tbar:n] + c.gw2[tbar]) / (c.w1[tbar:n] + c.w2[tbar])} tmp2 <- max(tmp2, na.rm = TRUE) res <- max(tmp1, tmp2) return(res) }
cv.vectors <- function( x, y, weights, family, control, acoefs, lambda, phis, weight, start, offset, L.index, T.index, indices, ... ) { n <- nrow(x) which.a <- acoefs$which.a acoefs <- acoefs$A losses <- matrix(ncol=length(lambda), nrow=1) losses.sd <- matrix(ncol=length(lambda), nrow=1) colnames(losses) <- colnames(losses.sd) <- as.character(lambda) coefs <- matrix(ncol=length(lambda), nrow=nrow(acoefs)) colnames(coefs) <- as.character(lambda) if (control$tuning.criterion %in% c("GCV", "UBRE")) { if(control$tuning.criterion == "GCV"){ crit <- function(n, dev, rank, sc=1) {n * dev/(n-rank)^2} } if(control$tuning.criterion == "UBRE"){ crit <- function(n, dev, rank, sc=1) {dev/n + 1*rank*sc/n - sc} } if(control$cv.refit == FALSE){ evalcv <- function(x, coefficients, control, y, weights, dev, rank) { output <- list(deviance=dev, rank=rank) return(output) } } else { evalcv <- function(x, coefficients, control, y, weights, dev, rank){ reductionC <- reduce(coefficients, indices, control$assured.intercept, control$accuracy)$C x.reduced <- as.matrix(x %*% reductionC) try(refitted <- glm.fit(x.reduced, y, weights, family=family, intercept = FALSE)) dev.refitted <- refitted$deviance rank.refitted <- refitted$rank output <- list(deviance=dev.refitted, rank=rank.refitted) return(output) } } for (i in 1:length(lambda)) { suppressWarnings(model <- gvcmcatfit(x, y, weights=weights, family, control, acoefs, lambda=lambda[i], phis=phis, weight, which.a, start = start, offset = offset)) eval.cv <- evalcv(x, model$coefficients, control, y, weights, model$deviance, model$rank) losses[1,i] <- crit(n, eval.cv$deviance, eval.cv$rank, sc=1) coefs[,i] <- model$coefficients } } if(control$tuning.criterion %in% c("deviance", "1SE")){ if(family$family == "binomial"){ l <- function(y,mudach,weights=weights){sum((y*log(mudach) + (1-y)*log(1-mudach))*weights + lchoose(weights,y*weights))} d <- function(y,mudach,weights=weights){e <- matrix(0, nrow=length(y), ncol=1) rein.binaere <- if (any(y==0) || any(y==1)) c(which(y==0),which(y==1)) else -(1:length(y)) e[rein.binaere,] <- (-2*log(1-abs(y-mudach))*weights)[rein.binaere] e[-rein.binaere,] <- (weights*(y*log(y/mudach)+(1-y)*log((1-y)/(1-mudach))))[-rein.binaere] return(e)} } if(family$family == "gaussian"){ l <- function(y,mudach,weights=weights){-1/2 * sum(weights*(y - mudach)^2) - n*log(sqrt(2*pi))} d <- function(y,mudach,weights=weights){weights*(y-mudach)^2} } if(family$family == "poisson"){ l <- function(y,mudach,weights=weights){sum(weights*((y*log(mudach)) - mudach - lgamma(y+1)))} d <- function(y,mudach,weights=weights){e <- matrix(0, nrow=length(y), ncol=1) e[which(y==0),] <-(2*mudach*weights)[which(y==0)] e[which(y!=0),] <- (2*weights*((y*log(y/mudach))+mudach-y))[which(y!=0)] return(e)} } if(family$family == "Gamma"){ l <- function(y,mudach,weights=weights){sum(weights*(log(mudach) - y/mudach))} d <- function(y,mudach,weights=weights){2*(-log(y) + log(mudach) + y/mudach -1)*weights} } dev.res <- function(y,mudach,weights) {(y-mudach)/abs(y-mudach) * sqrt(d(y, mudach, weights)) } dev <- function(y,mudach,weights) {sum(d(y=y,mudach=mudach, weights))} crit <- dev if(control$cv.refit == FALSE){ evalcv. <- function(x.tr, x.te, coefficients, control, training.y, training.weights) { output <- list(coefficients=coefficients, test.x=x.te) return(output) } } else { evalcv. <- function(x.tr, x.te, coefficients, control, training.y, training.weights){ reductionC <- reduce(coefficients, indices, control$assured.intercept, control$accuracy)$C x.reduced.tr <- as.matrix(x.tr %*% reductionC) x.reduced.te <- as.matrix(x.te %*% reductionC) try(beta.refitted <- glm.fit(x.reduced.tr,training.y, training.weights, family=family, intercept = FALSE)$coefficients) output <- list(coefficients=beta.refitted, test.x=x.reduced.te) return(output) } } for (i in 1:length(lambda)) { loss <- c() for (j in 1:control$K){ training.x <- x[L.index[[j]],] training.y <- y[L.index[[j]]] training.weights <- weights[L.index[[j]]] test.x <- x[T.index[[j]],] test.y <- y[T.index[[j]]] test.weights <- weights[T.index[[j]]] if(control$standardize){ if (sum(x[,1])==n || sum(x[,1])==sum(weights)) { scaling <- c(1, sqrt(colSums(t((t(training.x[,-1]) - colSums(diag(training.weights)%*%training.x[,-1])/sum(training.weights))^2*training.weights))/(sum(training.weights)-1))) } else { scaling <- sqrt(colSums(t((t(training.x) - colSums(diag(training.weights)%*%training.x) /sum(training.weights))^2*training.weights))/(sum(training.weights)-1)) } training.x <- scale(training.x, center = FALSE, scale = scaling) test.x <- scale(test.x, center = FALSE, scale = scaling) } suppressWarnings(model <- gvcmcatfit(training.x, training.y, weights=training.weights, family, control, acoefs, lambda=lambda[i], phis=phis, weight, which.a, start = start, offset = offset)) eval.cv <- evalcv.(training.x, test.x, model$coefficients, control, training.y, training.weights) test.mudach <- family$linkinv(eval.cv$test.x %*% eval.cv$coefficients) loss <- c(loss, crit(test.y, test.mudach, test.weights)) } losses[1,i] <- sum(loss) / control$K losses.sd[1,i] <- sd(loss) * (control$K-1) / control$K } coefs <- NA } opt <- max(lambda[which(losses==min(losses))])[1] return(list( lambda=opt, lambdas=lambda, score=losses, coefs=coefs, score.sd = losses.sd )) }
module_ui_extract_code_fileconfig <- function(id) { ns <- shiny::NS(id) shiny::tagList( shiny::uiOutput(ns("codeconfig")), shiny::uiOutput(ns("codebuttons")), shiny::uiOutput(ns("fileRawExportConfig")), shiny::uiOutput(ns("fileCleanedExportConfig")), shiny::uiOutput(ns("savebutton")) ) } module_server_extract_code_fileconfig <- function(input, output, session, df_label, is_on_disk, has_processed) { ns <- session$ns output$codeconfig <- shiny::renderUI({ shiny::validate(shiny::need(has_processed(), message = "Filter or manually select data to set and save outputs." )) shiny::tagList( shiny::br(), shiny::checkboxInput(ns("overwrite"), label = "Concise code?", value = TRUE ) ) }) output$codebuttons <- shiny::renderUI({ shiny::req(has_processed()) shiny::tagList(shiny::fluidRow( style = "margin-bottom: 20px;", shiny::column( width = 6, align = "left", shiny::actionButton( inputId = ns("codebtn"), label = "Send to RStudio", class = ifelse(is_on_disk, "btn-secondary", "btn-info"), icon = shiny::icon("share-square") ) ), shiny::column( width = 6, align = "center", shiny::actionButton( inputId = ns("copybtn"), label = "Copy to clipboard", class = ifelse(is_on_disk, "btn-secondary", "btn-info"), icon = shiny::icon("copy") ) ) )) }) output$fileRawExportConfig <- shiny::renderUI({ shiny::req(is_on_disk) shiny::req(has_processed()) shiny::tagList( shiny::h4(shiny::tags$strong("Set Output Locations")), shiny::fluidRow( style = "margin-top: 25px;", shiny::column(5, shinyFiles::shinyDirButton( id = ns("dirraw"), "Meta & Recipe", "Set and/or create a directory for the raw data and the reproducible recipe.", FALSE, class = "btn-info", icon = shiny::icon("folder") )), shiny::column( 7, shiny::checkboxInput( inputId = ns("dirchooseIdentical"), label = "Same folder for cleaned data?", value = TRUE ) ) ) ) }) output$fileCleanedExportConfig <- shiny::renderUI({ shiny::req(input$dirchooseIdentical == FALSE) shiny::req(has_processed()) shiny::tagList( shinyFiles::shinyDirButton( style = "margin-bottom: 25px;", id = ns("dirclean"), "Cleaned Data", "Set and/or create a directory for the cleaned data.", FALSE, class = "btn-info", icon = shiny::icon("folder") ) ) }) output$savebutton <- shiny::renderUI({ shiny::req(is_on_disk) shiny::req(has_processed()) shiny::tagList( shiny::h4(shiny::tags$strong("Set and Save Outputs")), shiny::textInput( inputId = ns("suffixClean"), label = "Suffix: Cleaned Data", value = "cleaned" ), shiny::textInput( inputId = ns("suffixRawFile"), label = "Suffix: Filter + Outlier Data", value = "meta_RAW" ), shiny::textInput( inputId = ns("suffixCleaningScript"), label = "Suffix: Recipe", value = "cleaning_script" ), shiny::br(), shiny::actionButton( inputId = ns("save"), label = "Save Recipe & Data", icon = shiny::icon("save"), class = "btn-success" ) ) }) roots <- c( `Dataset dir` = fs::path_dir(df_label), `Working dir` = ".", `Home dir` = Sys.getenv("HOME") ) shinyFiles::shinyDirChoose(input, id = "dirraw", roots = roots ) shinyFiles::shinyDirChoose(input, id = "dirclean", roots = roots ) outpath <- shiny::reactive({ dirraw <- shinyFiles::parseDirPath( roots = roots, input$dirraw ) dirraw <- ifelse(length(dirraw) == 0, fs::path_dir(df_label), dirraw ) dirclean <- shinyFiles::parseDirPath( roots = roots, input$dirclean ) dirclean <- ifelse(length(dirclean) == 0, dirraw, dirclean ) file_out_raw <- make_save_filepath( save_dir = dirraw, input_filepath = df_label, suffix = input$suffixRawFile, ext = "Rds" ) file_out_cleaned <- make_save_filepath( save_dir = dirclean, input_filepath = df_label, suffix = input$suffixClean, ext = "Rds" ) file_script_cleaning <- make_save_filepath( save_dir = dirraw, input_filepath = df_label, suffix = input$suffixCleaningScript, ext = "R" ) return(list( dirraw = dirraw, dirclean = dirclean, file_out_raw = file_out_raw, file_out_cleaned = file_out_cleaned, file_script_cleaning = file_script_cleaning )) }) return(outpath) }
knitr::opts_chunk$set( collapse = TRUE, comment = " echo = FALSE, message = FALSE ) library(ggip) knitr::include_graphics("bits_raw.png") knitr::include_graphics("bits_half_reduced.png") knitr::include_graphics("bits_reduced.png") ordinal_suffix <- function(x) { suffix <- c("st", "nd", "rd", rep("th", 17)) suffix[((x-1) %% 10 + 1) + 10*(((x %% 100) %/% 10) == 1)] } plot_curve <- function(curve, curve_order) { pixel_prefix <- 32L canvas_prefix <- as.integer(pixel_prefix - (2 * curve_order)) canvas_network <- ip_network(ip_address("0.0.0.0"), canvas_prefix) n_pixels <- 2^curve_order ggplot(data.frame(address = seq(canvas_network))) + geom_path(aes(address$x, address$y)) + coord_ip( canvas_network = canvas_network, pixel_prefix = pixel_prefix, curve = curve, expand = TRUE ) + theme_ip_light() + labs(title = paste0( curve_order, ordinal_suffix(curve_order), " order (", n_pixels, "x", n_pixels, " grid)" )) } plot_curve("hilbert", 2) plot_curve("hilbert", 3) plot_curve("hilbert", 4) plot_curve("morton", 2) plot_curve("morton", 3) plot_curve("morton", 4) curve_order <- 2 pixel_prefix <- 2 * curve_order vertices <- subnets(ip_network("0.0.0.0/0"), new_prefix = pixel_prefix) data <- data.frame(ip = network_address(vertices), label = as.character(vertices)) nudge <- c(1, 0, 0, 1, 1, 1, 0, 0, 0, 0, -1, -1, -1, 0, 0, -1) ggplot(data, aes(ip$x, ip$y)) + geom_path() + geom_label(aes(label = label), nudge_x = 0.2 * nudge) + coord_ip(pixel_prefix = pixel_prefix, expand = TRUE) + theme_ip_light() + labs(title = paste0("Hilbert curve: ", curve_order, ordinal_suffix(curve_order), " order"))
setClass("fibonacci_heap", contains = "heap") fibonacci_heap <- function( key.class = c("character", "numeric", "integer")) { key.class <- match.arg(key.class) heap <- switch(key.class, "character" = methods::new(fibonacci_heap_s), "numeric" = methods::new(fibonacci_heap_d), "integer" = methods::new(fibonacci_heap_i), stop("Error defining key class") ) methods::new("fibonacci_heap", .key.class = key.class, .heap = heap ) }
TRAMPsamples <- function(data, info=NULL, warn.factors=TRUE, ...) { if ( is.null(info) ) info <- data.frame(sample.pk=unique(data$sample.fk)) if ( is.null(info$species) ) info$species <- as.character(NA) obj <- list(info=defactor(info, warn.factors), data=defactor(data, warn.factors), ...) class(obj) <- "TRAMPsamples" tidy.TRAMPsamples(obj) } is.TRAMPsamples <- function(x) inherits(x, "TRAMPsamples") valid.TRAMPsamples <- function(x) { if ( !is.TRAMPsamples(x) ) stop("Not a TRAMPsamples object") data.cols <- c("sample.fk", "primer", "enzyme", "size", "height") must.contain.cols(x$info, c("sample.pk", "species")) must.contain.cols(x$data, data.cols) if ( any(duplicated(x$info$sample.pk)) ) stop("x$info$sample.pk must be unique") if ( !(is.numeric(x$info$sample.pk) && all(x$info$sample.pk > 0)) ) stop("Numeric, positive sample.pk required") if ( any(is.na(x$data[data.cols])) ) stop("NA values are not permitted for columns: ", paste(data.cols, collapse=", ")) orphan <- setdiff(x$data$sample.fk, x$info$sample.pk) if ( length(orphan) > 0 ) stop(sprintf("Orphaned data with no info: (sample.fk: %s)", paste(orphan, collapse=", "))) invisible(TRUE) } print.TRAMPsamples <- function(x, ...) cat("[TRAMPsamples object]\n") labels.TRAMPsamples <- function(object, ...) { valid.TRAMPsamples(object) sort(object$info$sample.pk) } summary.TRAMPsamples <- function(object, include.info=FALSE, ...) { valid.TRAMPsamples(object) res <- object$data res$code <- paste(res$primer, res$enzyme, sep="_") res <- tapply(res$sample.fk, res[c("sample.fk", "code")], length) res <- res[match(object$info$sample.pk, rownames(res)),,drop=FALSE] rownames(res) <- object$info$sample.pk if ( include.info ) cbind(object$info, res) else res } plot.TRAMPsamples <- function(x, sample.fk=labels(x), ...) for ( i in sample.fk ) TRAMPsamples.plotone(x, i, ...) TRAMPsamples.plotone <- function(x, sample.fk, all.samples.global=FALSE, col=1:10, xmax=NULL, mar.default=.5, mar.labels=8, cex=1) { sample.data <- x[sample.fk]$data d.samples <- if (all.samples.global) x$data else sample.data enzyme.primer <- unique(d.samples[c("enzyme", "primer")]) enzyme.primer <- enzyme.primer[order(enzyme.primer$enzyme, enzyme.primer$primer),] n <- nrow(enzyme.primer) if ( n < 1 ) { warning("No data for sample: ", sample.fk) layout(1) plot(0:1, 0:1, type="n", axes=FALSE, xlab="", ylab="") text(.5, .5, "(No data)") title(main=paste("Sample:", sample.fk), outer=TRUE) } if ( length(col) < n ) stop(sprintf("Too few colours provided (%d, %d required)", length(col), n)) sample.data$code <- classify(sample.data, enzyme.primer) if ( is.null(xmax) ) xmax <- ceiling(max(x$data$size)/100)*100 else if ( is.na(xmax) ) xmax <- ceiling(max(sample.data$size)/100)*100 layout(matrix(1:n, n)) par(oma=c(4, 0, 3, 0) + mar.default, mar=c(.75, mar.labels, 0, 0), las=1, cex=cex) for ( i in seq(n) ) { dsub <- sample.data[sample.data$code == i,] plot(height ~ size, dsub, type="h", xlim=c(0, xmax), ylim=range(dsub$height, 0:1), xaxt="n", yaxt="n", bty="l", xlab="", ylab="", col=col[dsub$code]) axis(1, labels=i == n) axis(2, mean(par("usr")[3:4]), with(enzyme.primer[i,], paste(enzyme, primer, sep="/")), tick=FALSE) if ( i == n ) title(xlab="Fragment length", xpd=NA) } title(main=paste("Sample:", sample.fk), outer=TRUE) } combine.TRAMPsamples <- function(x, y, rewrite.sample.pk=FALSE, ...) { valid.TRAMPsamples(x) valid.TRAMPsamples(y) if ( any(labels(y) %in% labels(x)) ) if ( rewrite.sample.pk ) { y$info$sample.pk <- y$info$sample.pk + max(labels(x)) y$data$sample.fk <- y$data$sample.fk + max(labels(x)) } else { stop("sample.pk conflict - see ?combine.TRAMPsamples") } x$info <- rbind2(x$info, y$info) x$data <- rbind2(x$data, y$data) extra <- setdiff(names(y), c("info", "data")) if ( length(extra) > 0 ) warning("Additional objects in 'y' were ignored: ", paste(dQuote(extra), collapse=", ")) tidy.TRAMPsamples(x) } tidy.TRAMPsamples <- function(x) { valid.TRAMPsamples(x) x$info <- x$info[order(x$info$sample.pk),] x$data <- x$data[do.call(order, x$data),] rownames(x$info) <- seq(length=nrow(x$info)) rownames(x$data) <- seq(length=nrow(x$data)) x } "[.TRAMPsamples" <- function(x, i, na.interp=TRUE, ...) { if ( is.numeric(i) ) { if ( !all(i %in% labels(x)) ) stop("Unknown samples: ", paste(i[!(i %in% labels(x))], collapse=", ")) } else if ( is.logical(i) ) { if ( length(i) != nrow(x$info) ) stop("Logical index of incorrect length") i[is.na(i)] <- na.interp i <- x$info$sample.pk[i] } else stop("Invalid index type") x$info <- subset(x$info, x$info$sample.pk %in% i) x$data <- subset(x$data, x$data$sample.fk %in% i) tidy.TRAMPsamples(x) }
PlotAM <- function(AMobj=NULL, itnum=1, chr="All", type="Manhattan", interactive=TRUE ) { if(is.null(AMobj)){ message(" PlotAM function requires AMobj object to be specified. This object is obtained by running AM().") return(NULL) } if(!is.list(AMobj)){ message(" PlotAM function requires AMobj object to be a list object.") return(NULL) } if (!is.integer(itnum)){ if(itnum < 1 || (itnum > length(AMobj$outlierstat) )){ message(" The parameter itnum must have an integer value between ", 1, " and ", length(AMobj$outlierstat)) return(NULL) } } if (!(chr=="All") && !any(chr %in% unique(AMobj$map[,2])) ) { message(" The parameter chr does not match any of the chromosome labels. ") message(" The allowable chromosome labels are ", c("All", cat(unique(AMobj$map[,2])))) return(NULL) } xindx <- 1:length( AMobj$outlierstat[[itnum]] ) xvals <- xindx yvals <- AMobj$outlierstat[[itnum]] isit <- IsItBigger(vals=AMobj$outlierstat, itnum=itnum ) bigger <- isit$bigger chrm <- rep(1, length(xindx)) pos <- xvals if(!is.null(AMobj$map)){ oindx <- order(AMobj$map[,2], AMobj$map[, ncol(AMobj$map)]) yvals <- AMobj$outlierstat[[as.numeric(itnum)]][oindx] mapordered <- AMobj$map[oindx,] chrm <- mapordered[,2] pos <- rep(NA, nrow(mapordered)) t <- 0 for(ii in 1:nrow(mapordered)){ t <- t + mapordered[ii,ncol(mapordered)] pos[ii] <- t } if(length(AMobj$Indx) > 1){ Indx <- rep(NA, length(AMobj$Mrk)) NewMrkPos <- rep(NA, length(AMobj$Mrk)) for(ii in 2:length(AMobj$Mrk)){ Indx[ii] <- which(mapordered[,1]==AMobj$Mrk[ii]) NewMrkPos[ii] <- pos[Indx[ii]] } Indx <- Indx[!is.na(Indx)] NewMrkPos <- NewMrkPos[!is.na(NewMrkPos)] } if( as.numeric(itnum) > 1){ bigger <- rep("" , length(yvals) ) percentagechange <- rep(0, length(yvals) ) a <- AMobj$outlierstat[[as.numeric(itnum)]][oindx] b <- AMobj$outlierstat[[as.numeric(itnum) - 1 ]][oindx] indx <- which( a > b ) bigger[indx] <- "Increased value" percentagechange[indx] <- (( b - a)) [indx] indx <- which( a <= b ) bigger[indx] <- "Decreased value" percentagechange[indx] <- (( a - b)) [indx] } } xlabel <- "Map Position (bp)" if(is.null(AMobj$map )) xlabel <- "Column Position of SNP" ylabel <- "Score Statistic" if(type=="Manhattan") ylabel <- "-log10(p value)" if(type=="Manhattan"){ yvals[is.nan(yvals)] <- 0 yvals[yvals < 0] <- 0 ts <- sqrt(yvals) pval <- 1 - pnorm(ts) logp <- -1*log10(pval) yvals <- logp } df <- data.frame(xvals=pos, yvals=yvals, chrm=chrm ) if(chr!="All"){ indx <- which(df$chrm==chr) df <- df[indx,] if (itnum >1){ bigger <- bigger[indx] percentagechange <- percentagechange[indx] } } geomX <- NULL if(length(AMobj$Indx) > 1){ Labels <- 1:length(Indx) indx <- which( NewMrkPos %in% df$xvals ) if (length(indx) > 0 ){ geomX <- NewMrkPos[indx] geomLabels <- Labels[indx ] } } if(itnum==1){ p <- ggplot(data=df, aes(x=xvals, y=yvals )) + geom_point() } else { percentagechange <- abs(percentagechange) sd <- sqrt(var(percentagechange)) indx <- which( 2.0 *sd < percentagechange) percentagechange[indx] <- 2.0*sd p <- ggplot(data=df, aes(x=xvals, y=yvals , color=bigger, size=percentagechange ) ) + geom_point() + scale_color_manual(values=c(" p <- p + scale_size(percentagechange, range=c(0.4 ,2 ), guide="none") } p <- p + theme_hc() p <- p + ylab(ylabel) + xlab(xlabel) p <- p + theme(legend.title=element_blank()) p <- p + theme(legend.position="right") if(!is.null(geomX)){ if (itnum >1){ for(ii in geomLabels) { if (ii < itnum){ yadj <- sample(seq(0.5,0.9,0.1), 1) p <- p + geom_vline(xintercept = geomX[which(ii==geomLabels)], linetype="solid", color=" p <- p + annotate("text", size=6, label=ii, x=(geomX[which(ii==geomLabels)] - ( diff(range(df$xvals))*0.00) ) , y = max(df$yvals)*yadj ) } if (ii == itnum){ p <- p + geom_vline(xintercept = geomX[which(ii==geomLabels)] , linetype="solid", color="red", size=0.75) } } } else { ii <- 1 p <- p + geom_vline(xintercept = geomX[which(ii==geomLabels)], linetype="solid", color="red", size=0.75) } } p <- p + theme( axis.text.x = element_text(size=16), axis.text.y = element_text(size=16), axis.title.x=element_text(size=16), axis.title.y=element_text(size=16), legend.text=element_text(size=14) ) p <- p + guides(colour = guide_legend(override.aes = list(size=8))) p <- p + theme(legend.position = 'bottom', legend.spacing.x = unit(0.5, 'cm')) if(chr=="All"){ txt2 <- "across all chromosomes" if(type=="Manhattan"){ txt1 <- " -log p value of the score statistic" txt3 <- "-log p value" } else { txt1 <- "score statistic" txt3 <- txt1 } } else{ txt2 <- paste("on chromosome", chr) if(type=="Manhattan"){ txt1 <- " -log p value of the score statistic" txt3 <- "-log p value" } else { txt1 <- "score statistic" txt3 <- txt1 } } p <- p + ylim(0, (max(df$yvals)*1.2) ) p <- p + guides(colour = guide_legend(override.aes = list(size=5))) if(interactive){ ggplotly(p) %>% layout(legend = list( orientation = "h", x=0, y=-0.4, itemsizing="constant" )) } else { return(p) } } IsItBigger <- function(vals, itnum, xindx=NULL){ bigger <- NULL percentagechange <- NULL if(as.numeric(itnum) > 1){ bigger <- rep("" , length(vals[[as.numeric(itnum)]]) ) percentagechange <- rep(0, length(vals[[as.numeric(itnum)]]) ) a <- vals[[as.numeric(itnum)]] b <- vals[[as.numeric(itnum) - 1 ]] indx <- which( a > b ) bigger[indx] <- "Increased value" percentagechange[indx] <- ( (a - b ) )[indx] indx <- which( a <= b ) bigger[indx] <- "Decreased value" percentagechange[indx] <- ( (b - a ) )[indx] if(!is.null(xindx)){ bigger <- bigger[xindx] percentagechange <- percentagechange[xindx] } } res <- list(bigger=bigger, percentagechange=percentagechange) return(res) }
require(geometa, quietly = TRUE) require(testthat) context("ISOMemberName") test_that("encoding",{ testthat::skip_on_cran() md <- ISOMemberName$new(aName = "name", attributeType = "type") expect_is(md, "ISOMemberName") xml <- md$encode() expect_is(xml, "XMLInternalNode") md2 <- ISOMemberName$new(xml = xml) xml2 <- md2$encode() expect_true(ISOAbstractObject$compare(md, md2)) }) test_that("encoding - i18n",{ testthat::skip_on_cran() md <- ISOMemberName$new() md$setName( "name", locales = list( EN = "name in english", FR = "nom en français", ES = "Nombre en español", AR = "الاسم باللغة العربية", RU = "имя на русском", ZH = "中文名" )) md$setAttributeType("type") expect_is(md, "ISOMemberName") xml <- md$encode() expect_is(xml, "XMLInternalNode") md2 <- ISOMemberName$new(xml = xml) xml2 <- md2$encode() expect_true(ISOAbstractObject$compare(md, md2)) })
faces<-function(xy,which.row,fill=FALSE,face.type=1, nrow.plot,ncol.plot,scale=TRUE,byrow=FALSE,main, labels,print.info = TRUE,na.rm = FALSE, ncolors=20, col.nose=rainbow(ncolors), col.eyes=rainbow(ncolors,start=0.6,end=0.85), col.hair=terrain.colors(ncolors), col.face=heat.colors(ncolors), col.lips=rainbow(ncolors,start=0.0,end=0.2), col.ears=rainbow(ncolors,start=0.0,end=0.2), plot.faces=TRUE, cex = 2){ if((demo<-missing(xy))){ xy<-rbind( c(1,3,5),c(3,5,7), c(1,5,3),c(3,7,5), c(3,1,5),c(5,3,7), c(3,5,1),c(5,7,3), c(5,1,3),c(7,3,5), c(5,3,1),c(7,5,3), c(1,1,1),c(4,4,4),c(7,7,7) ) labels<-apply(xy,1,function(x) paste(x,collapse="-")) } spline<-function(a,y,m=200,plot=FALSE){ n<-length(a) h<-diff(a) dy<-diff(y) sigma<-dy/h lambda<-h[-1]/(hh<-h[-1]+h[-length(h)]) mu<-1-lambda d<-6*diff(sigma)/hh tri.mat<-2*diag(n-2) tri.mat[2+ (0:(n-4))*(n-1)] <-mu[-1] tri.mat[ (1:(n-3))*(n-1)] <-lambda[-(n-2)] M<-c(0,solve(tri.mat)%*%d,0) x<-seq(from=a[1],to=a[n],length=m) anz.kl <- hist(x,breaks=a,plot=FALSE)$counts adj<-function(i) i-1 i<-rep(1:(n-1),anz.kl)+1 S.x<- M[i-1]*(a[i]-x )^3 / (6*h[adj(i)]) + M[i] *(x -a[i-1])^3 / (6*h[adj(i)]) + (y[i-1] - M[i-1]*h[adj(i)]^2 /6) * (a[i]-x)/ h[adj(i)] + (y[i] - M[i] *h[adj(i)]^2 /6) * (x-a[i-1]) / h[adj(i)] if(plot){ plot(x,S.x,type="l"); points(a,y) } return(cbind(x,S.x)) } n.char<-15 xy<-rbind(xy) if(byrow) xy<-t(xy) if(any(is.na(xy))){ if(na.rm){ xy<-xy[!apply(is.na(xy),1,any),,drop=FALSE] if(nrow(xy)<3) {print("not enough data points"); return()} print("Warning: NA elements have been removed!!") }else{ xy.means<-colMeans(xy,na.rm=TRUE) for(j in 1:length(xy[1,])) xy[is.na(xy[,j]),j]<-xy.means[j] print("Warning: NA elements have been exchanged by mean values!!") } } if(!missing(which.row)&& all( !is.na(match(which.row,1:dim(xy)[2])) )) xy<-xy[,which.row,drop=FALSE] mm<-dim(xy)[2]; n<-dim(xy)[1] xnames<-dimnames(xy)[[1]] if(is.null(xnames)) xnames<-as.character(1:n) if(!missing(labels)) xnames<-labels if(scale){ xy<-apply(xy,2,function(x){ x<-x-min(x); x<-if(max(x)>0) 2*x/max(x)-1 else x }) } else xy[]<-pmin(pmax(-1,xy),1) xy<-rbind(xy);n.c<-dim(xy)[2] xy<-xy[,(rows.orig<-h<-rep(1:mm,ceiling(n.char/mm))),drop=FALSE] if(fill) xy[,-(1:n.c)]<-0 face.orig<-list( eye =rbind(c(12,0),c(19,8),c(30,8),c(37,0),c(30,-8),c(19,-8),c(12,0)) ,iris =rbind(c(20,0),c(24,4),c(29,0),c(24,-5),c(20,0)) ,lipso=rbind(c(0,-47),c( 7,-49),lipsiend=c( 16,-53),c( 7,-60),c(0,-62)) ,lipsi=rbind(c(7,-54),c(0,-54)) ,nose =rbind(c(0,-6),c(3,-16),c(6,-30),c(0,-31)) ,shape =rbind(c(0,44),c(29,40),c(51,22),hairend=c(54,11),earsta=c(52,-4), earend=c(46,-36),c(38,-61),c(25,-83),c(0,-89)) ,ear =rbind(c(60,-11),c(57,-30)) ,hair =rbind(hair1=c(72,12),hair2=c(64,50),c(36,74),c(0,79)) ) lipso.refl.ind<-4:1 lipsi.refl.ind<-1 nose.refl.ind<-3:1 hair.refl.ind<-3:1 shape.refl.ind<-8:1 shape.xnotnull<-2:8 nose.xnotnull<-2:3 nr<-n^0.5; nc<-n^0.5 if(!missing(nrow.plot)) nr<-nrow.plot if(!missing(ncol.plot)) nc<-ncol.plot if(plot.faces){ opar<-par(mfrow=c(ceiling(c(nr,nc))),oma=rep(6,4), mar=rep(.7,4)) on.exit(par(opar)) } face.list<-list() for(ind in 1:n){ factors<-xy[ind,] face<-face.orig m<-mean(face$lipso[,2]) face$lipso[,2]<-m+(face$lipso[,2]-m)*(1+0.7*factors[4]) face$lipsi[,2]<-m+(face$lipsi[,2]-m)*(1+0.7*factors[4]) face$lipso[,1]<-face$lipso[,1]*(1+0.7*factors[5]) face$lipsi[,1]<-face$lipsi[,1]*(1+0.7*factors[5]) face$lipso["lipsiend",2]<-face$lipso["lipsiend",2]+20*factors[6] m<-mean(face$eye[,2]) face$eye[,2] <-m+(face$eye[,2] -m)*(1+0.7*factors[7]) face$iris[,2]<-m+(face$iris[,2]-m)*(1+0.7*factors[7]) m<-mean(face$eye[,1]) face$eye[,1] <-m+(face$eye[,1] -m)*(1+0.7*factors[8]) face$iris[,1]<-m+(face$iris[,1]-m)*(1+0.7*factors[8]) m<-min(face$hair[,2]) face$hair[,2]<-m+(face$hair[,2]-m)*(1+0.2*factors[9]) m<-0 face$hair[,1]<-m+(face$hair[,1]-m)*(1+0.2*factors[10]) m<-0 face$hair[c("hair1","hair2"),2]<-face$hair[c("hair1","hair2"),2]+50*factors[11] m<-mean(face$nose[,2]) face$nose[,2]<-m+(face$nose[,2]-m)*(1+0.7*factors[12]) face$nose[nose.xnotnull,1]<-face$nose[nose.xnotnull,1]*(1+factors[13]) m<-mean(face$shape[c("earsta","earend"),1]) face$ear[,1]<-m+(face$ear[,1]-m)* (1+0.7*factors[14]) m<-min(face$ear[,2]) face$ear[,2]<-m+(face$ear[,2]-m)* (1+0.7*factors[15]) face<-lapply(face,function(x){ x[,2]<-x[,2]*(1+0.2*factors[1]);x}) face<-lapply(face,function(x){ x[,1]<-x[,1]*(1+0.2*factors[2]);x}) face<-lapply(face,function(x){ x[,1]<-ifelse(x[,1]>0, ifelse(x[,2] > -30, x[,1], pmax(0,x[,1]+(x[,2]+50)*0.2*sin(1.5*(-factors[3])))),0);x}) invert<-function(x) cbind(-x[,1],x[,2]) face.obj<-list( eyer=face$eye ,eyel=invert(face$eye) ,irisr=face$iris ,irisl=invert(face$iris) ,lipso=rbind(face$lipso,invert(face$lipso[lipso.refl.ind,])) ,lipsi=rbind(face$lipso["lipsiend",],face$lipsi, invert(face$lipsi[lipsi.refl.ind,,drop=FALSE]), invert(face$lipso["lipsiend",,drop=FALSE])) ,earr=rbind(face$shape["earsta",],face$ear,face$shape["earend",]) ,earl=invert(rbind(face$shape["earsta",],face$ear,face$shape["earend",])) ,nose=rbind(face$nose,invert(face$nose[nose.refl.ind,])) ,hair=rbind(face$shape["hairend",],face$hair,invert(face$hair[hair.refl.ind,]), invert(face$shape["hairend",,drop=FALSE])) ,shape=rbind(face$shape,invert(face$shape[shape.refl.ind,])) ) face.list<-c(face.list,list(face.obj)) if(plot.faces){ plot(1,type="n",xlim=c(-105,105)*1.1, axes=FALSE, ylab="",ylim=c(-105,105)*1.3) title(xnames[ind], cex.main = cex, xpd = NA) f<-1+(ncolors-1)*(factors+1)/2 xtrans<-function(x){x}; ytrans<-function(y){y} for(obj.ind in seq(face.obj)[c(10:11,1:9)]) { x <-face.obj[[obj.ind]][,1]; y<-face.obj[[obj.ind]][,2] xx<-spline(1:length(x),x,40,FALSE)[,2] yy<-spline(1:length(y),y,40,FALSE)[,2] if(plot.faces){ lines(xx,yy) if(face.type>0){ if(obj.ind==10) polygon(xtrans(xx),ytrans(yy),col=col.hair[ceiling(mean(f[9:11]))],xpd=NA) if(obj.ind==11){ polygon(xtrans(xx),ytrans(yy),col=col.face[ceiling(mean(f[1:2 ]))],xpd=NA) if(face.type==2){ for(zzz in seq(hhh<-max(face.obj[[8]][,1]),-hhh,length=30)){ hrx<-rnorm(8,zzz,2); hry<-0:7*-3*rnorm(1,3)+abs(hrx)^2/150 hry<-min(face.obj[[9]][,2])+hry lines(xtrans(hrx),ytrans(hry),lwd=5,col=" } ind<-which.max(xx); wx<-xx[ind]; ind<-which.max(yy); wy<-yy[ind] wxh<-wx<-seq(-wx,wx,length=20); wyh<-wy<-wy-(wx-mean(wx))^2/250+runif(20)*3 lines(xtrans(wxh),ytrans(wyh)); wx<-c(wx,rev(wx)); wy<-c(wy-10,rev(wy)+20) wmxy1<-wmxy0<-c(min(wx),min(wy)+20) wmxy2<-wmxy3<-c(runif(1,wmxy0[1],-wmxy0[1]), wy[1]+100) wmxy1[2]<-0.5*(wmxy0[2]+wmxy3[2]); wmxy2[1]<-0.5*(wmxy2[1]+wmxy0[1]) npxy<-20; pxy<-seq(0,1,length=npxy) gew<-outer(pxy,0:3,"^")*outer(1-pxy,3:0,"^")* matrix(c(1,3,3,1),npxy,4,byrow=TRUE) wxl<-wmxy0[1]*gew[,1]+wmxy1[1]*gew[,2]+wmxy2[1]*gew[,3]+wmxy3[1]*gew[,4] wyl<-wmxy0[2]*gew[,1]+wmxy1[2]*gew[,2]+wmxy2[2]*gew[,3]+wmxy3[2]*gew[,4] lines(xtrans(wxl),ytrans(wyl),col="green") wmxy1[1]<- wmxy0[1]<- -wmxy0[1] wmxy1[2]<-0.5*(wmxy0[2]+wmxy3[2]); wmxy2[1]<-0.5*(wmxy2[1]+wmxy0[1]) wxr<-wmxy0[1]*gew[,1]+wmxy1[1]*gew[,2]+wmxy2[1]*gew[,3]+wmxy3[1]*gew[,4] wyr<-wmxy0[2]*gew[,1]+wmxy1[2]*gew[,2]+wmxy2[2]*gew[,3]+wmxy3[2]*gew[,4] points(xtrans(wmxy3[1]),ytrans(wmxy3[2]),pch=19,cex=2,col=" points(xtrans(wmxy3[1]),ytrans(wmxy3[2]),pch=11,cex=2.53,col="red",xpd=NA) polygon(xtrans(c(wxl,rev(wxr))),ytrans(c(wyl,rev(wyr))),col="red",xpd=NA) polygon(xtrans(wx),ytrans(wy),col=" } } xx<-xtrans(xx); yy<-ytrans(yy) if(obj.ind %in% 1:2) polygon(xx,yy,col=" if(obj.ind %in% 3:4) polygon(xx,yy,col=col.eyes[ceiling(mean(f[7:8 ]))],xpd=NA) if(obj.ind %in% 9) polygon(xx,yy,col=col.nose[ceiling(mean(f[12:13]))],xpd=NA) if(obj.ind %in% 5:6) polygon(xx,yy,col=col.lips[ceiling(mean(f[1:3]))],xpd=NA) if(obj.ind %in% 7:8) polygon(xx,yy,col=col.ears[ceiling(mean(f[14:15]))],xpd=NA) } } } } } if(plot.faces&&!missing(main)){ par(opar);par(mfrow=c(1,1)) mtext(main, 3, 3, TRUE, 0.5) title(main) } info<-c( "var1"="height of face ", "var2"="width of face ", "var3"="structure of face", "var4"="height of mouth ", "var5"="width of mouth ", "var6"="smiling ", "var7"="height of eyes ", "var8"="width of eyes ", "var9"="height of hair ", "var10"="width of hair ", "var11"="style of hair ", "var12"="height of nose ", "var13"="width of nose ", "var14"="width of ear ", "var15"="height of ear ") var.names<-dimnames(xy)[[2]] if(0==length(var.names)) var.names<-paste("Var",rows.orig,sep="") info<-cbind("modified item"=info,"Var"=var.names[1:length(info)]) rownames(info)<-rep("",15) if(print.info){ cat("effect of variables:\n") print(info) } if(demo&&plot.faces) { plot(1:15,1:15,type="n",axes=FALSE,bty="n") text(rep(1,15),15:1,adj=0,apply(info,1,function(x) paste(x,collapse=" - ")),cex=0.7) } names(face.list)<-xnames out<-list(faces=face.list,info=info,xy=t(xy)) class(out)<-"faces" invisible(out) }
frenchdata <- new.env() NULL print.french_data_list <- function(x, ...) { cli::cli_h3("Kenneth's French data library") cli::cli_alert_info(x$info) cli::cli_text("") cli::cli_h3("Files list") print(x$files_list, ...) } browse_french_site <- function() { utils::browseURL("https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html") } get_french_data_list <- function(max_tries = 3, refresh = FALSE) { assertthat::assert_that(is.numeric(max_tries), length(max_tries) == 1) assertthat::assert_that(assertthat::is.flag(refresh)) if ((refresh == TRUE) || (!exists("french_data_files_list", envir = frenchdata))) { base_url <- "https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html" trial <- 1 success <- FALSE while (trial <= as.integer(max_tries)) { request <- httr::GET(base_url) if (httr::status_code(request) == 200) { success <- TRUE page <- httr::content(request, encoding = "UTF-8") links <- get_info(page) break() } else { trial <- trial + 1 cli::cli_h3("Error reading the page") cli::cli_alert_danger(httr::http_status(request)$message) cli::cli_alert_info("Trying again in 5 seconds. Please wait...") Sys.sleep(5) } } if (success == FALSE) { cli::cli_h3("Unable to get the file list") cli::cli_alert_danger("Max trials reached!") cli::cli_alert( "Check your internet connection; please check if you can visit the site <https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html> on a browser." ) cli::cli_alert( "Try again in a couple of minutes and if the problem persists please open a ticket on the package github site." ) files_list <- NULL } else { files_list <- structure(list( info = paste( "Information collected from:", base_url, "on", format(Sys.time(), "%a %b %d %H:%M:%S %Y") ), files_list = links ), class = "french_data_list") assign("french_data_files_list", files_list, envir = frenchdata) } } else { files_list <- get("french_data_files_list", envir = frenchdata) } return(files_list) } get_info <- function(page) { links <- tibble::tibble(file_url = page %>% rvest::html_elements("a") %>% rvest::html_attr("href")) %>% dplyr::filter(stringr::str_detect(.data$file_url, "_CSV.zip")) %>% dplyr::mutate( name = purrr::map(.data$file_url, find_file_description, page), details_url = purrr::map(.data$file_url, find_details, page) ) %>% dplyr::select(.data$name, .data$file_url, .data$details_url) %>% tidyr::unnest(cols = c(.data$name, .data$details_url)) return(links) } find_file_description <- function(url, page) { page %>% rvest::html_elements(xpath = paste0("//a[contains(@href,'", url, "')]/preceding::b[2]")) %>% rvest::html_text() } find_details <- function(url, page) { page %>% rvest::html_elements(xpath = paste0("//a[contains(@href,'", url, "')]/following::a[1]")) %>% rvest::html_attr("href") }
vt_create_node <- function (total_lab = "Total") { stopifnot(is_scalar_character(total_lab)) node <- Node$new(total_lab) node } vt_add_nodes <- function(node, refnode, node_names, colors=NULL, weights=NULL, codes=NULL) { cur_node <- FindNode(node, refnode) if (is.null(cur_node)) { return(NULL) } stopifnot(is.character(node_names)) if (!is.null(colors)) { stopifnot(is.character(colors), length(colors)==length(node_names)) } if (!is.null(weights)) { stopifnot(is.numeric(weights), length(weights)==length(node_names)) } if (!is.null(codes)) { stopifnot(is.character(codes), length(codes)==length(node_names)) } col <- ww <- cc <- NULL for (i in seq_along(node_names)) { lab <- node_names[i] if (!is.null(FindNode(cur_node, lab))) { cat("Node", lab, "already exists under", shQuote(refnode), "--> skipping\n") } else { if(!is.null(weights)) { ww <- weights[i] } if(!is.null(colors)) { col <- colors[i] } if(!is.null(codes)) { cc <- codes[i] } cur_node$AddChild(lab, color=col, weight=ww, code=cc) } } return(node) }
rplotsClass <- R6::R6Class( "rplotsClass", inherit = rplotsBase, private = list( .run = function() { vars <- self$options$vars factor <- self$options$splitBy for (var in vars) { image <- self$results$plots$get(key=var) v <- jmvcore::toNumeric(self$data[[var]]) df <- data.frame(v=v) if ( ! is.null(self$options$splitBy)) df$f <- factor(self$data[[factor]]) else df$f <- factor(rep('var', length(v))) df <- jmvcore::naOmit(df) image$setState(df) } }, .plot = function(image, ggtheme, theme, ...) { if (is.null(image$state)) return(FALSE) factor <- self$options$splitBy p <- ggplot2::ggplot(data=image$state, ggplot2::aes(x = f, y = v)) + ggtheme + ggplot2::theme(legend.position = "none") + ggplot2::labs(x=factor, y=image$key) if (self$options$violin) p <- p + ggplot2::geom_violin(fill=theme$fill[1], color=theme$color[1]) if (self$options$dot) { if (self$options$dotType == 'jitter') p <- p + ggplot2::geom_jitter(color=theme$color[1], width=0.1, alpha=0.4) else p <- p + ggplot2::geom_dotplot(binaxis = "y", stackdir = "center", color=theme$color[1], alpha=0.4, stackratio=0.9, dotsize=0.7) } if (self$options$boxplot) p <- p + ggplot2::geom_boxplot(color=theme$color[1], width=0.2, alpha=0.9, fill=theme$fill[2], outlier.colour=theme$color[1]) if (is.null(self$options$splitBy)) { p <- p + ggplot2::theme(axis.text.x = ggplot2::element_blank(), axis.ticks.x = ggplot2::element_blank(), axis.title.x = ggplot2::element_blank()) } suppressWarnings({ suppressMessages({ print(p) }) }) TRUE }) )
SS_readdat_3.00 <- function(file,verbose=TRUE,echoall=FALSE,section=NULL){ if(verbose) cat("running SS_readdat_3.00\n") dat <- readLines(file,warn=FALSE) if(!is.null(section)){ Nsections <- as.numeric(substring(dat[grep("Number_of_datafiles",dat)],24)) if(!section %in% 1:Nsections) stop("The 'section' input should be within the 'Number_of_datafiles' in a data.ss_new file.\n") if(section==1){ end <- grep(" if (length(end) == 0) end <- length(dat) dat <- dat[grep(" } if(section==2){ end <- grep(" if (length(end) == 0) end <- length(dat) dat <- dat[grep(" } if(section>=3){ start <- grep(paste(" end <- grep(paste(" if(length(end)==0) end <- length(dat) dat <- dat[start:end] } } temp <- strsplit(dat[2]," ")[[1]][1] if(!is.na(temp) && temp=="Start_time:") dat <- dat[-(1:2)] allnums <- NULL for(i in 1:length(dat)){ mysplit <- strsplit(dat[i],split="[[:blank:]]+")[[1]] mysplit <- mysplit[mysplit!=""] nvals <- length(mysplit) if(nvals>0) mysplit[nvals] <- strsplit(mysplit[nvals]," nums <- suppressWarnings(as.numeric(mysplit)) if(sum(is.na(nums)) > 0) maxcol <- min((1:length(nums))[is.na(nums)])-1 else maxcol <- length(nums) if(maxcol > 0){ nums <- nums[1:maxcol] allnums <- c(allnums, nums) } } i <- 1 datlist <- list() datlist$eof <- FALSE datlist$sourcefile <- file datlist$type <- "Stock_Synthesis_data_file" datlist$ReadVersion <- "3.00" if (verbose){ message("SS_readdat_3.00 - SS version = ", datlist$ReadVersion) } datlist$styr <- allnums[i]; i <- i+1 datlist$endyr <- allnums[i]; i <- i+1 datlist$nseas <- nseas <- allnums[i]; i <- i+1 datlist$months_per_seas <- allnums[i:(i+nseas-1)]; i <- i+nseas datlist$spawn_seas <- allnums[i]; i <- i+1 datlist$Nfleet <- Nfleet <- allnums[i]; i <- i+1 datlist$Nsurveys <- Nsurveys <- allnums[i]; i <- i+1 Ntypes <- Nfleet+Nsurveys datlist$N_areas <- allnums[i]; i <- i+1 fleetnames.good <- NULL if(Ntypes>1){ percentlines <- grep('%',dat) for(iline in percentlines){ fleetnames <- dat[iline] fleetnames <- strsplit(fleetnames,'%')[[1]] fleetnames[length(fleetnames)] <- strsplit(fleetnames[length(fleetnames)],"[[:blank:]]+")[[1]][1] if(length(fleetnames)==Ntypes) fleetnames.good <- fleetnames } fleetnames <- fleetnames.good if(is.null(fleetnames)) fleetnames <- c(paste("fishery",1:Nfleet),paste("survey",1:Nsurveys)) }else{ fleetnames <- "fleet1" } datlist$fleetnames <- fleetnames datlist$surveytiming <- surveytiming <- allnums[i:(i+Ntypes-1)]; i <- i+Ntypes datlist$areas <- areas <- allnums[i:(i+Ntypes-1)]; i <- i+Ntypes if(verbose){ cat("areas:",areas,'\n') cat("fleet info:\n") print(data.frame(fleet = 1:Ntypes, name = fleetnames, area = areas, timing = surveytiming, type = c(rep("FISHERY",Nfleet), rep("SURVEY",Nsurveys)))) } fleetinfo1 <- data.frame(rbind(surveytiming,areas)) names(fleetinfo1) <- fleetnames fleetinfo1$input <- c(" datlist$fleetinfo1 <- fleetinfo1 datlist$units_of_catch <- units_of_catch <- allnums[i:(i+Nfleet-1)]; i <- i+Nfleet datlist$se_log_catch <- se_log_catch <- allnums[i:(i+Nfleet-1)]; i <- i+Nfleet fleetinfo2 <- data.frame(rbind(units_of_catch,se_log_catch)) names(fleetinfo2) <- fleetnames[1:Nfleet] fleetinfo2$input <- c(" datlist$fleetinfo2 <- fleetinfo2 datlist$Ngenders <- Ngenders <- allnums[i]; i <- i+1 datlist$Nages <- Nages <- allnums[i]; i <- i+1 datlist$init_equil <- allnums[i:(i+Nfleet-1)]; i <- i+Nfleet datlist$N_catch <- N_catch <- allnums[i]; i <- i+1 if(verbose) cat("N_catch =",N_catch,"\n") Nvals <- N_catch*(Nfleet+2) catch <- data.frame(matrix(allnums[i:(i+Nvals-1)], nrow=N_catch,ncol=(Nfleet+2),byrow=TRUE)) names(catch) <- c(fleetnames[1:Nfleet],"year","seas") datlist$catch <- catch i <- i+Nvals if(echoall) print(catch) datlist$N_cpue <- N_cpue <- allnums[i]; i <- i+1 if(verbose) cat("N_cpue =",N_cpue,"\n") if(N_cpue > 0){ CPUEinfo <- data.frame(matrix(c(1:Ntypes,rep(1,Ntypes),rep(0,Ntypes)), nrow=Ntypes,ncol=3,byrow=FALSE)) names(CPUEinfo) <- c("Fleet","Units","Errtype") CPUE <- data.frame(matrix( allnums[i:(i+N_cpue*5-1)],nrow=N_cpue,ncol=5,byrow=TRUE)) i <- i+N_cpue*5 names(CPUE) <- c('year','seas','index','obs','se_log') CPUE<-CPUE[which(CPUE$obs>=0),] }else{ CPUEinfo <- NULL CPUE <- NULL } datlist$CPUEinfo <- CPUEinfo datlist$CPUE <- CPUE if(echoall){ print(CPUEinfo) print(CPUE) } Dis_type <- allnums[i]; i <- i+1 datlist$N_discard <- N_discard <- allnums[i]; i <- i+1 if(verbose) cat("N_discard =",N_discard,"\n") if(N_discard > 0){ Ncols <- 5 discard_data <- data.frame(matrix( allnums[i:(i+N_discard*Ncols-1)],nrow=N_discard,ncol=Ncols,byrow=TRUE)) i <- i+N_discard*Ncols names(discard_data) <- c('Yr','Seas','Flt','Discard','Std_in') datlist$discard_data <- discard_data datlist$N_discard_fleets <- N_discard_fleets <- length(unique(discard_data$Flt)) datlist$discard_fleet_info <- data.frame(matrix(c(unique(discard_data$Flt), rep(Dis_type,N_discard_fleets),rep(0,N_discard_fleets)), nrow=N_discard_fleets,ncol=3,byrow=FALSE)) names(datlist$discard_fleet_info) <- c("Fleet","units","errtype") }else{ datlist$N_discard_fleets <- 0 datlist$discard_data <- NULL datlist$discard_fleet_info <- NULL } datlist$N_meanbodywt <- N_meanbodywt <- allnums[i]; i <- i+1 if(verbose) cat("N_meanbodywt =",N_meanbodywt,"\n") if(N_meanbodywt > 0){ Ncols <- 6 meanbodywt <- data.frame(matrix( allnums[i:(i+N_meanbodywt*Ncols-1)],nrow=N_meanbodywt,ncol=Ncols,byrow=TRUE)) i <- i+N_meanbodywt*Ncols names(meanbodywt) <- c('Year','Seas','Type','Partition','Value','CV') datlist$DF_for_meanbodywt <- NULL }else{ datlist$DF_for_meanbodywt <- NULL meanbodywt <- NULL } datlist$meanbodywt <- meanbodywt if(echoall) print(meanbodywt) datlist$lbin_method <- lbin_method <- allnums[i]; i <- i+1 if(echoall) cat("lbin_method =",lbin_method,"\n") if(lbin_method==2){ datlist$binwidth <- allnums[i]; i <- i+1 datlist$minimum_size <- allnums[i]; i <- i+1 datlist$maximum_size <- allnums[i]; i <- i+1 if(echoall) cat("bin width, min, max =",datlist$binwidth,", ",datlist$minimum_size,", ",datlist$maximum_size,"\n") }else{ datlist$binwidth <- NA datlist$minimum_size <- NA datlist$maximum_size <- NA } if(lbin_method==3){ datlist$N_lbinspop <- N_lbinspop <- allnums[i]; i <- i+1 datlist$lbin_vector_pop <- allnums[i:(i+N_lbinspop-1)]; i <- i+N_lbinspop if(echoall) cat("N_lbinspop =",N_lbinspop,"\nlbin_vector_pop:\n") }else{ datlist$N_lbinspop <- NA datlist$lbin_vector_pop <- NA } datlist$comp_tail_compression <- allnums[i]; i <- i+1 datlist$add_to_comp <- allnums[i]; i <- i+1 datlist$max_combined_age <- allnums[i]; i <- i+1 datlist$N_lbins <- N_lbins <- allnums[i]; i <- i+1 datlist$lbin_vector <- lbin_vector <- allnums[i:(i+N_lbins-1)]; i <- i+N_lbins if(echoall) print(lbin_vector) datlist$N_lencomp <- N_lencomp <- allnums[i]; i <- i+1 if(verbose) cat("N_lencomp =",N_lencomp,"\n") if(N_lencomp > 0){ Ncols <- N_lbins*Ngenders+6 lencomp <- data.frame(matrix( allnums[i:(i+N_lencomp*Ncols-1)],nrow=N_lencomp,ncol=Ncols,byrow=TRUE)) i <- i+N_lencomp*Ncols names(lencomp) <- c("Yr","Seas","FltSvy","Gender","Part","Nsamp", if(Ngenders==1){paste("l",lbin_vector,sep="")}else{NULL}, if(Ngenders>1){ c(paste("f",lbin_vector,sep=""),paste("m",lbin_vector,sep="")) }else{ NULL } ) }else{ lencomp <- NULL } datlist$lencomp <- lencomp datlist$N_agebins <- N_agebins <- allnums[i]; i <- i+1 if(verbose) cat("N_agebins =",N_agebins,"\n") if(N_agebins > 0){ agebin_vector <- allnums[i:(i+N_agebins-1)]; i <- i+N_agebins }else{ agebin_vector <- NULL } datlist$agebin_vector <- agebin_vector if(echoall) print(agebin_vector) datlist$N_ageerror_definitions <- N_ageerror_definitions <- allnums[i]; i <- i+1 if(N_ageerror_definitions > 0){ Ncols <- Nages+1 ageerror <- data.frame(matrix( allnums[i:(i+2*N_ageerror_definitions*Ncols-1)], nrow=2*N_ageerror_definitions,ncol=Ncols,byrow=TRUE)) i <- i+2*N_ageerror_definitions*Ncols names(ageerror) <- paste("age",0:Nages,sep="") }else{ ageerror <- NULL } datlist$ageerror <- ageerror datlist$N_agecomp <- N_agecomp <- allnums[i]; i <- i+1 if(verbose) cat("N_agecomp =",N_agecomp,"\n") datlist$Lbin_method <- allnums[i]; i <- i+1 datlist$max_combined_lbin <- allnums[i]; i <- i+1 if(N_agecomp > 0){ if(N_agebins==0) stop("N_agecomp =",N_agecomp," but N_agebins = 0") Ncols <- N_agebins*Ngenders+9 agecomp <- data.frame(matrix(allnums[i:(i+N_agecomp*Ncols-1)], nrow=N_agecomp,ncol=Ncols,byrow=TRUE)) i <- i+N_agecomp*Ncols names(agecomp) <- c("Yr","Seas","FltSvy","Gender","Part","Ageerr","Lbin_lo","Lbin_hi","Nsamp", if(Ngenders==1){paste("a",agebin_vector,sep="")}else{NULL}, if(Ngenders>1){ c(paste("f",agebin_vector,sep=""),paste("m",agebin_vector,sep="")) }else{ NULL } ) }else{ agecomp <- NULL } datlist$agecomp <- agecomp datlist$N_MeanSize_at_Age_obs <- N_MeanSize_at_Age_obs <- allnums[i]; i <- i+1 if(verbose) cat("N_MeanSize_at_Age_obs =",N_MeanSize_at_Age_obs,"\n") if(N_MeanSize_at_Age_obs > 0){ Ncols <- 2*N_agebins*Ngenders + 7 MeanSize_at_Age_obs <- data.frame(matrix( allnums[i:(i+N_MeanSize_at_Age_obs*Ncols-1)],nrow=N_MeanSize_at_Age_obs,ncol=Ncols,byrow=TRUE)) i <- i+N_MeanSize_at_Age_obs*Ncols names(MeanSize_at_Age_obs) <- c('Yr','Seas','FltSvy','Gender','Part','AgeErr','Ignore', if(Ngenders==1){paste("a",agebin_vector,sep="")}else{NULL}, if(Ngenders>1){ c(paste("f",agebin_vector,sep=""),paste("m",agebin_vector,sep="")) }else{ NULL }, if(Ngenders==1){paste("N_a",agebin_vector,sep="")}else{NULL}, if(Ngenders>1){ c(paste("N_f",agebin_vector,sep=""),paste("N_m",agebin_vector,sep="")) }else{ NULL } ) }else{ MeanSize_at_Age_obs <- NULL } datlist$MeanSize_at_Age_obs <- MeanSize_at_Age_obs datlist$N_environ_variables <- N_environ_variables <- allnums[i]; i <- i+1 datlist$N_environ_obs <- N_environ_obs <- allnums[i]; i <- i+1 if(N_environ_obs > 0){ Ncols <- 3 envdat <- data.frame(matrix( allnums[i:(i+Ncols*N_environ_obs-1)],nrow=N_environ_obs,ncol=Ncols,byrow=TRUE)) i <- i+N_environ_obs*Ncols names(envdat) <- c("Yr","Variable","Value") }else{ envdat <- NULL } datlist$envdat <- envdat datlist$N_sizefreq_methods <- N_sizefreq_methods <- allnums[i]; i <- i+1 if(verbose) cat("N_sizefreq_methods =",N_sizefreq_methods,"\n") if(N_sizefreq_methods > 0){ datlist$nbins_per_method <- nbins_per_method <- allnums[i:(i+N_sizefreq_methods-1)] i <- i+N_sizefreq_methods datlist$units_per_method <- units_per_method <- allnums[i:(i+N_sizefreq_methods-1)] i <- i+N_sizefreq_methods datlist$scale_per_method <- scale_per_method <- allnums[i:(i+N_sizefreq_methods-1)] i <- i+N_sizefreq_methods datlist$mincomp_per_method <- mincomp_per_method <- allnums[i:(i+N_sizefreq_methods-1)] i <- i+N_sizefreq_methods datlist$Nobs_per_method <- Nobs_per_method <- allnums[i:(i+N_sizefreq_methods-1)] i <- i+N_sizefreq_methods if(verbose){ cat("details of generalized size frequency methods:\n") print(data.frame(method = 1:N_sizefreq_methods, nbins = nbins_per_method, units = units_per_method, scale = scale_per_method, mincomp = mincomp_per_method, nobs = Nobs_per_method)) } sizefreq_bins_list <- list() for(imethod in 1:N_sizefreq_methods){ sizefreq_bins_list[[imethod]] <- allnums[i:(i+nbins_per_method[imethod]-1)] i <- i+nbins_per_method[imethod] } datlist$sizefreq_bins_list <- sizefreq_bins_list sizefreq_data_list <- list() for(imethod in 1:N_sizefreq_methods){ Ncols <- 7+Ngenders*nbins_per_method[imethod] Nrows <- Nobs_per_method[imethod] sizefreq_data_tmp <- data.frame(matrix(allnums[i:(i+Nrows*Ncols-1)], nrow=Nrows,ncol=Ncols,byrow=TRUE)) names(sizefreq_data_tmp) <- c("Method","Yr","Seas","FltSvy","Gender","Part","Nsamp", if(Ngenders==1){ paste("a",sizefreq_bins_list[[imethod]],sep="") }else{NULL}, if(Ngenders>1){ c(paste("f",sizefreq_bins_list[[imethod]],sep=""), paste("m",sizefreq_bins_list[[imethod]],sep="")) }else{NULL}) if(verbose){ cat("Method =",imethod," (first two rows, ten columns):\n") print(sizefreq_data_tmp[1:min(Nrows,2),1:min(Ncols,10)]) } if(any(sizefreq_data_tmp$Method!=imethod)) stop("Problem with method in size frequency data:\n", "Expecting method: ",imethod,"\n", "Read method(s): ",paste(unique(sizefreq_data_tmp$Method),collapse=", ")) sizefreq_data_list[[imethod]] <- sizefreq_data_tmp i <- i+Nrows*Ncols } datlist$sizefreq_data_list <- sizefreq_data_list }else{ datlist$nbins_per_method <- NULL datlist$units_per_method <- NULL datlist$scale_per_method <- NULL datlist$mincomp_per_method <- NULL datlist$Nobs_per_method <- NULL datlist$sizefreq_bins_list <- NULL datlist$sizefreq_data_list <- NULL } datlist$do_tags <- do_tags <- allnums[i]; i <- i+1 if(verbose) cat("do_tags =",do_tags,"\n") if(do_tags != 0){ datlist$N_tag_groups <- N_tag_groups <- allnums[i]; i <- i+1 datlist$N_recap_events <- N_recap_events <- allnums[i]; i <- i+1 datlist$mixing_latency_period <- mixing_latency_period <- allnums[i]; i <- i+1 datlist$max_periods <- max_periods <- allnums[i]; i <- i+1 if(N_tag_groups > 0){ Ncols <- 8 tag_releases <- data.frame(matrix(allnums[i:(i+N_tag_groups*Ncols-1)],nrow=N_tag_groups,ncol=Ncols,byrow=TRUE)) i <- i+N_tag_groups*Ncols names(tag_releases) <- c('TG', 'Area', 'Yr', 'Season', 'tfill', 'Gender', 'Age', 'Nrelease') if(verbose){ cat("Head of tag release data:\n") print(head(tag_releases)) } }else{ tag_releases <- NULL } datlist$tag_releases <- tag_releases if(N_recap_events > 0){ Ncols <- 5 tag_recaps <- data.frame(matrix(allnums[i:(i+N_recap_events*Ncols-1)],nrow=N_recap_events,ncol=Ncols,byrow=TRUE)) i <- i+N_recap_events*Ncols names(tag_recaps) <- c('TG', 'Yr', 'Season', 'Fleet', 'Nrecap') if(verbose){ cat("Head of tag recapture data:\n") print(head(tag_recaps)) } }else{ tag_recaps <- NULL } datlist$tag_recaps <- tag_recaps } datlist$morphcomp_data <- do_morphcomps <- allnums[i]; i <- i+1 if(verbose) cat("do_morphcomps =",do_morphcomps,"\n") if(allnums[i]==999){ if(verbose) cat("read of data file 3.00 complete (final value = 999)\n") datlist$eof <- TRUE }else{ cat("Error: final value is", allnums[i]," but should be 999\n") datlist$eof <- FALSE } return(datlist) }
`ltrend.test` <- function (y, group, score = NULL, location = c("median", "mean", "trim.mean"), tail = c("right", "left", "both"), trim.alpha = 0.25, bootstrap = FALSE, num.bootstrap = 1000, correction.method = c("none", "correction.factor", "zero.removal", "zero.correction"), correlation.method = c("pearson", "kendall", "spearman")) { if (is.null(score)) { score <- group } if (length(y) != length(group)) { stop("the length of the data (y) does not match the length of the group") } location <- match.arg(location) tail <- match.arg(tail) correlation.method <- match.arg(correlation.method) correction.method <- match.arg(correction.method) DNAME <- deparse(substitute(y)) y <- y[!is.na(y)] score <- score[!is.na(y)] group <- group[!is.na(y)] if ((location == "trim.mean") & (trim.alpha > 0.5)) { stop("trim.alpha value of 0 to 0.5 should be provided for the trim.mean location") } reorder <- order(group) group <- group[reorder] y <- y[reorder] score <- score[reorder] gr <- score group <- as.factor(group) if (location == "mean") { means <- tapply(y, group, mean) METHOD <- "ltrend test based on classical Levene's procedure using the group means" } else if (location == "median") { means <- tapply(y, group, median) METHOD <- "ltrend test based on the modified Brown-Forsythe Levene-type procedure using the group medians" } else { location <- "trim.mean" means <- tapply(y, group, mean, trim = trim.alpha) METHOD <- "ltrend test based on the modified Brown-Forsythe Levene-type procedure using the group trimmed means" } n <- tapply(y, group, length) ngroup <- n[group] resp.mean <- abs(y - means[group]) if (location != "median" && correction.method != "correction.factor") { METHOD <- paste( METHOD, "(", correction.method, "not applied because the location is not set to median", ")" ) correction.method <- "none" } if (correction.method == "correction.factor") { METHOD <- paste(METHOD, "with correction factor applied") correction <- 1 / sqrt(1 - 1 / ngroup) resp.mean <- resp.mean * correction } if (correction.method == "zero.removal" || correction.method == "zero.correction") { if (correction.method == "zero.removal") { METHOD <- paste(METHOD, "with Hines-Hines structural zero removal method") } if (correction.method == "zero.correction") { METHOD <- paste( METHOD, "with modified structural zero removal method and correction factor" ) } resp.mean <- y - means[group] k <- length(n) temp <- double() endpos <- double() startpos <- double() for (i in 1:k) { group.size <- n[i] j <- i - 1 if (i == 1) start <- 1 else start <- sum(n[1:j]) + 1 startpos <- c(startpos, start) end <- sum(n[1:i]) endpos <- c(endpos, end) sub.resp.mean <- resp.mean[start:end] sub.resp.mean <- sub.resp.mean[order(sub.resp.mean)] if (group.size %% 2 == 1) { mid <- (group.size + 1) / 2 temp2 <- sub.resp.mean[-mid] if (correction.method == "zero.correction") { ntemp <- length(temp2) + 1 correction <- sqrt((ntemp - 1) / ntemp) temp2 <- correction * temp2 } } if (group.size %% 2 == 0) { mid <- group.size / 2 if (correction.method == "zero.removal") { denom <- sqrt(2) } else { denom <- 1 } replace1 <- (sub.resp.mean[mid + 1] - sub.resp.mean[mid]) / denom temp2 <- sub.resp.mean[c(-mid, -mid - 1)] temp2 <- c(temp2, replace1) if (correction.method == "zero.correction") { ntemp <- length(temp2) + 1 correction <- sqrt((ntemp - 1) / ntemp) temp2 <- correction * temp2 } } temp <- c(temp, temp2) } ngroup2 <- ngroup[-endpos] - 1 resp.mean <- abs(temp) zero.removal.gr <- gr[-endpos] } else { correction.method = "none" } mu <- mean(resp.mean) z <- as.vector(resp.mean - mu) if (correction.method == "zero.removal" || correction.method == "zero.correction") { d <- as.numeric(zero.removal.gr) } else { d <- as.numeric(gr) } t.statistic <- summary(lm(z ~ d))$coefficients[2, 3] df <- summary(lm(z ~ d))$df[2] if (correlation.method == "pearson") { correlation <- cor(d, z, method = "pearson") if (tail == "left") { METHOD <- paste(METHOD, "(left-tailed with Pearson correlation coefficient)") p.value <- pt(t.statistic, df, lower.tail = TRUE) log.p.value <- pt(t.statistic, df, lower.tail = TRUE, log.p = TRUE) log.q.value <- pt(t.statistic, df, lower.tail = FALSE, log.p = TRUE) } else if (tail == "right") { METHOD <- paste(METHOD, "(right-tailed with Pearson correlation coefficient)") p.value <- pt(t.statistic, df, lower.tail = FALSE) log.p.value <- pt(t.statistic, df, lower.tail = FALSE, log.p = TRUE) log.q.value <- pt(t.statistic, df, lower.tail = TRUE, log.p = TRUE) } else { tail <- "both" METHOD <- paste(METHOD, "(two-tailed with Pearson correlation coefficient)") p.value <- pt(t.statistic, df, lower.tail = TRUE) log.p.value <- pt(t.statistic, df, lower.tail = TRUE, log.p = TRUE) log.q.value <- pt(t.statistic, df, lower.tail = FALSE, log.p = TRUE) if (p.value >= 0.5) { p.value <- pt(t.statistic, df, lower.tail = FALSE) log.p.value <- pt(t.statistic, df, lower.tail = FALSE, log.p = TRUE) log.q.value <- pt(t.statistic, df, lower.tail = TRUE, log.p = TRUE) } p.value <- p.value * 2 log.p.value <- log.p.value + log(2) log.q.value <- log(1 - p.value) } } else if (correlation.method == "kendall") { correlation <- cor(d, z, method = "kendall") if (tail == "left") { METHOD <- paste(METHOD, "(left-tailed with Kendall correlation coefficient)") p.value.temp <- Kendall(d, z)$sl if (correlation < 0) { p.value <- p.value.temp / 2 } else { p.value <- 1 - p.value.temp / 2 } q.value <- 1 - p.value log.p.value <- log(p.value) log.q.value <- log(q.value) } if (tail == "right") { METHOD <- paste(METHOD, "(right-tailed with Kendall correlation coefficient)") p.value.temp <- Kendall(d, z)$sl if (correlation > 0) { p.value <- p.value.temp / 2 } else { p.value <- 1 - p.value.temp / 2 } q.value <- 1 - p.value log.p.value <- log(p.value) log.q.value <- log(q.value) } if (tail == "both") { METHOD <- paste(METHOD, "(two-tailed with Kendall correlation coefficient)") p.value <- Kendall(d, z)$sl q.value <- 1 - p.value log.p.value <- log(p.value) log.q.value <- log(q.value) } } else { correlation <- cor(d, z, method = "spearman") if (tail == "left") { METHOD <- paste(METHOD, "(left-tailed with Spearman correlation coefficient)") p.value.temp <- cor.test(d, z, method = "spearman")$p.value if (correlation < 0) { p.value <- p.value.temp / 2 } else { p.value <- 1 - p.value.temp / 2 } q.value <- 1 - p.value log.p.value <- log(p.value) log.q.value <- log(q.value) } if (tail == "right") { METHOD <- paste(METHOD, "(right-tailed with Spearman correlation coefficient)") p.value.temp <- cor.test(d, z, method = "spearman")$p.value if (correlation > 0) { p.value <- p.value.temp / 2 } else { p.value <- 1 - p.value.temp / 2 } q.value <- 1 - p.value log.p.value <- log(p.value) log.q.value <- log(q.value) } if (tail == "both") { METHOD <- paste(METHOD, "(two-tailed with Spearman correlation coefficient)") p.value <- cor.test(d, z, method = "spearman")$p.value q.value <- 1 - p.value log.p.value <- log(p.value) log.q.value <- log(q.value) } } non.bootstrap.p.value <- p.value if (bootstrap == TRUE) { METHOD = paste("bootstrap", METHOD) R <- 0 N <- length(y) frac.trim.alpha = 0.2 b.trimmed.mean <- function(y) { nn <- length(y) wt <- rep(0, nn) y2 <- y[order(y)] lower <- ceiling(nn * frac.trim.alpha) + 1 upper <- floor(nn * (1 - frac.trim.alpha)) if (lower > upper) stop("frac.trim.alpha value is too large") m <- upper - lower + 1 frac <- (nn * (1 - 2 * frac.trim.alpha) - m) / 2 wt[lower - 1] <- frac wt[upper + 1] <- frac wt[lower:upper] <- 1 return(weighted.mean(y2, wt)) } b.trim.means <- tapply(y, group, b.trimmed.mean) rm <- y - b.trim.means[group] for (j in 1:num.bootstrap) { sam <- sample(rm, replace = TRUE) boot.sample <- sam if (min(n) < 10) { U <- runif(1) - 0.5 means <- tapply(y, group, mean) v <- sqrt(sum((y - means[group]) ^ 2) / N) boot.sample <- ((12 / 13) ^ (0.5)) * (sam + v * U) } if (location == "mean") { boot.means <- tapply(boot.sample, group, mean) } else if (location == "median") { boot.means <- tapply(boot.sample, group, median) } else { location <- "trim.mean" boot.means <- tapply(boot.sample, group, mean, trim = trim.alpha) } resp.boot.mean <- abs(boot.sample - boot.means[group]) if (correction.method == "correction.factor") { correction <- 1 / sqrt(1 - 1 / ngroup) resp.boot.mean <- resp.boot.mean * correction } if (correction.method == "zero.removal" || correction.method == "zero.correction") { resp.mean <- boot.sample - boot.means[group] k <- length(n) temp <- double() endpos <- double() startpos <- double() for (i in 1:k) { group.size <- n[i] j <- i - 1 if (i == 1) start <- 1 else start <- sum(n[1:j]) + 1 startpos <- c(startpos, start) end <- sum(n[1:i]) endpos <- c(endpos, end) sub.resp.mean <- resp.mean[start:end] sub.resp.mean <- sub.resp.mean[order(sub.resp.mean)] if (group.size %% 2 == 1) { mid <- (group.size + 1) / 2 temp2 <- sub.resp.mean[-mid] if (correction.method == "zero.correction") { ntemp <- length(temp2) + 1 correction <- sqrt((ntemp - 1) / ntemp) temp2 <- correction * temp2 } } if (group.size %% 2 == 0) { mid <- group.size / 2 if (correction.method == "zero.removal") { denom <- sqrt(2) } else { denom <- 1 } replace1 <- (sub.resp.mean[mid + 1] - sub.resp.mean[mid]) / denom temp2 <- sub.resp.mean[c(-mid, -mid - 1)] temp2 <- c(temp2, replace1) if (correction.method == "zero.correction") { ntemp <- length(temp2) + 1 correction <- sqrt((ntemp - 1) / ntemp) temp2 <- correction * temp2 } } temp <- c(temp, temp2) } ngroup2 <- ngroup[-endpos] - 1 resp.boot.mean <- abs(temp) zero.removal.gr <- gr[-endpos] } if (correction.method == "zero.removal" || correction.method == "zero.correction") { d <- as.numeric(zero.removal.gr) } else { d <- as.numeric(gr) } boot.mu <- mean(resp.boot.mean) boot.z <- as.vector(resp.boot.mean - boot.mu) correlation2 <- cor(boot.z, d, method = correlation.method) if (tail == "right") { if (correlation2 > correlation) R <- R + 1 } else if (tail == "left") { if (correlation2 < correlation) R <- R + 1 } else { tail = "both" if (abs(correlation2) > abs(correlation)) R <- R + 1 } } p.value <- R / num.bootstrap } STATISTIC = correlation names(STATISTIC) = "Test Statistic (Correlation)" structure( list( statistic = STATISTIC, p.value = p.value, method = METHOD, data.name = DNAME, t.statistic = t.statistic, non.bootstrap.p.value = non.bootstrap.p.value, log.p.value = log.p.value, log.q.value = log.q.value ), class = "htest" ) }
parallelPermFun = function(offsets, lefttemp, rghttemp, obs_zscr){ if( is.character(lefttemp) ) { leftSets = readRDS(file = lefttemp) } else { leftSets = lefttemp; } if( is.character(rghttemp) ) { rghtSets = readRDS(file = rghttemp) } else { rghtSets = rghttemp; } obs_cntE = matrix(NA_real_, length(leftSets), length(rghtSets)); obs_cntD = matrix(NA_real_, length(leftSets), length(rghtSets)); obs_cntO = matrix(NA_real_, length(leftSets), length(rghtSets)); all_zmin = Inf; all_zmax = -Inf; for(i in seq_along(leftSets)){ for(j in seq_along(rghtSets)){ z = shiftrPermBinary( left = leftSets[[i]], right = rghtSets[[j]], offsets = offsets, alsoDoFisher = FALSE, returnPermOverlaps = TRUE); all_z = cramerV(z$overlapsPerm, z$lfeatures, z$rfeatures, z$nfeatures); obs_cntE[i, j] = sum(all_z >= obs_zscr[i,j]); obs_cntD[i, j] = sum(all_z <= obs_zscr[i,j]); obs_cntO[i, j] = sum(abs(all_z) >= abs(obs_zscr[i,j])); all_zmin = pmin.int(all_zmin, all_z); all_zmax = pmax.int(all_zmax, all_z); rm(z, all_z); } } obs_zmax = max(obs_zscr); obs_zmin = min(obs_zscr); all_cntE = sum(all_zmax >= obs_zmax); all_cntD = sum(all_zmin <= obs_zmin); all_cntO = sum(pmax(all_zmax, -all_zmin) >= max(obs_zmax, -obs_zmin)); result = list( npermute = length(offsets), obs_cntE = obs_cntE, obs_cntD = obs_cntD, obs_cntO = obs_cntO, all_cntE = all_cntE, all_cntD = all_cntD, all_cntO = all_cntO); return(result); } enrichmentAnalysis = function( pvstats1, pvstats2, percentiles1 = NULL, percentiles2 = NULL, npermute, margin = 0.05, threads = 1){ stopifnot( length(pvstats1) == length(pvstats2) ); n = length(pvstats1); if(margin > 1) margin = margin / length(pvstats1); maxperm = getNOffsetsMax(n = n, margin = margin); if(npermute >= maxperm) { npermute = maxperm; offsets = getOffsetsAll(n = n, margin = margin); } else { offsets = getOffsetsRandom(n = n, npermute = npermute, margin = margin); } if(is.null(threads)) threads = TRUE; if(is.logical(threads)){ if(threads){ threads = detectCores(); } else { threads = 1L; } } if(sum(!duplicated(pvstats1)) > 2){ thresholds1 = quantile( x = pvstats1, probs = percentiles1, na.rm = TRUE, names = FALSE); } else { thresholds1 = min(pvstats1); } if(sum(!duplicated(pvstats2)) > 2){ thresholds2 = quantile( x = pvstats2, probs = percentiles2, na.rm = TRUE, names = FALSE); } else { thresholds2 = min(pvstats2); } leftSets = vector('list', length(thresholds1)); for(i in seq_along(thresholds1)){ bool1 = (pvstats1 <= thresholds1[i]); if((!any(bool1)) || all(bool1)) stop("No variaton in primary data after mapping and thresholding"); leftSets[[i]] = shiftrPrepareLeft(bool1); rm(bool1); } rghtSets = vector('list', length(thresholds2)); for(j in seq_along(thresholds2)){ bool2 = (pvstats2 <= thresholds2[j]); if((!any(bool2)) || all(bool2)) stop("No variaton in enrichment data after mapping and thresholding"); rghtSets[[j]] = shiftrPrepareRight(bool2); rm(bool2); } obs_zscr = matrix(NA_real_, length(thresholds1), length(thresholds2)); for(i in seq_along(thresholds1)){ for(j in seq_along(thresholds2)){ z = shiftrPermBinary( left = leftSets[[i]], right = rghtSets[[j]], offsets = c(), alsoDoFisher = FALSE, returnPermOverlaps = FALSE); obs_zscr[i, j] = cramerV( z$overlap, z$lfeatures, z$rfeatures, z$nfeatures); rm(z); } } if( threads > 1){ lefttemp = tempfile(); rghttemp = tempfile(); saveRDS(file = lefttemp, leftSets, compress = FALSE) saveRDS(file = rghttemp, rghtSets, compress = FALSE) cl = makeCluster(threads); clres = clusterApplyLB( cl, clusterSplit(cl, offsets), parallelPermFun, lefttemp = lefttemp, rghttemp = rghttemp, obs_zscr = obs_zscr); stopCluster(cl); file.remove(lefttemp); file.remove(rghttemp); sumlist = lapply(names(clres[[1]]), function(nm){ Reduce('+',lapply(clres,`[[`,nm)) }); names(sumlist) = names(clres[[1]]); } else { sumlist = parallelPermFun( offsets = offsets, lefttemp = leftSets, rghttemp = rghtSets, obs_zscr = obs_zscr); } stopifnot(npermute == sumlist$npermute) result = list( overallPV = c( TwoSided = sumlist$all_cntO / npermute, Enrichment = sumlist$all_cntE / npermute, Depletion = sumlist$all_cntD / npermute), byThresholdPV = list( TwoSided = sumlist$obs_cntO / npermute, Enrichment = sumlist$obs_cntE / npermute, Depletion = sumlist$obs_cntD / npermute) ); return(result); }
asym2sym <- function(foodweb, problem, name, single) { if (any(duplicated(t(foodweb[1,-(1)]))) || any(duplicated(foodweb[-(1),1]))) { if (single==TRUE) { print("Your matrix contains duplicate species names. The first row and column of the matrix must be species names.")} else { write.table(cbind(name, "Duplicated species names"), file = problem, append=TRUE, quote=FALSE, sep=",", col.names=FALSE, row.names=FALSE)} } else { if (length(setdiff(foodweb[1,], foodweb[,1]))+length(setdiff(foodweb[,1], foodweb[1,]))==0){} else { foodweb[1,1] <- 9999 colnames(foodweb) <- foodweb[1,] row.names(foodweb) <- foodweb[,1] non.basal.sp <- ncol(foodweb) no.col <- as.vector(setdiff(row.names(foodweb), colnames(foodweb))) for (i in no.col) { foodweb <- cbind(foodweb, as.numeric(c(i,rep(0, times=nrow(foodweb)-1)))) colnames(foodweb)[(which(no.col==i) + non.basal.sp)] <- i } no.row <- as.vector(setdiff(colnames(foodweb), row.names(foodweb))) for (i in no.row) { foodweb <- rbind(foodweb, as.numeric(c(i,rep(0, times=ncol(foodweb)-1)))) row.names(foodweb)[nrow(foodweb)] <- i } foodweb <- foodweb[-(1),-(1)] foodweb <- foodweb[,order(as.numeric(colnames(foodweb)))] foodweb <<- foodweb[order(as.numeric(row.names(foodweb))),] } } }
.getstructure <- function(fid, strgp){ gid <- rhdf5::H5Gopen(fid, strgp) data <- rhdf5::h5dump(gid) rhdf5::H5Gclose(gid) if(length(which(data$reCalcVar!="")) > 0) { data$reCalcVar <- data$reCalcVar[which(data$reCalcVar!="")] data$variable <- c(data$variable, data$reCalcVar) data$reCalcVar <- NULL } data } .tryCloseH5 <- function(){ try(rhdf5::H5close(), silent = TRUE) }
exptab <- function(tab, file, dids = names(tab), aggiungi = FALSE, ...) { for (i in seq_along(tab)){ write(dids[[i]], file, append = ifelse(i == 1, aggiungi, TRUE)) write.table(tab[[i]], file, dec = ",", sep = ";", na = "", row.names = ifelse(length(dimnames(tab[[i]]))==1, FALSE, TRUE), col.names = ifelse(length(dimnames(tab[[i]]))==1, TRUE, NA), append = TRUE, ...) write(" ", file, append = TRUE) } }
ge_factanal <- function(.data, env, gen, rep, resp, mineval = 1, verbose = TRUE) { factors <- .data %>% select({{env}}, {{gen}}, {{rep}}) %>% mutate(across(everything(), as.factor)) vars <- .data %>% select({{resp}}, -names(factors)) vars %<>% select_numeric_cols() factors %<>% set_names("ENV", "GEN", "REP") listres <- list() nvar <- ncol(vars) for (var in 1:nvar) { data <- factors %>% mutate(Y = vars[[var]]) if(has_na(data)){ data <- remove_rows_na(data) has_text_in_num(data) } means <- make_mat(data, GEN, ENV, Y) cor.means <- cor(means) eigen.decomposition <- eigen(cor.means) eigen.values <- eigen.decomposition$values eigen.vectors <- eigen.decomposition$vectors colnames(eigen.vectors) <- paste("PC", 1:ncol(cor.means), sep = "") rownames(eigen.vectors) <- colnames(means) if (length(eigen.values[eigen.values >= mineval]) == 1) { eigen.values.factors <- as.vector(c(as.matrix(sqrt(eigen.values[eigen.values >= mineval])))) initial.loadings <- cbind(eigen.vectors[, eigen.values >= mineval] * eigen.values.factors) A <- initial.loadings } else { eigen.values.factors <- t(replicate(ncol(cor.means), c(as.matrix(sqrt(eigen.values[eigen.values >= mineval]))))) initial.loadings <- eigen.vectors[, eigen.values >= mineval] * eigen.values.factors A <- varimax(initial.loadings)[[1]][] } partial <- solve_svd(cor.means) k <- ncol(means) seq_k <- seq_len(ncol(means)) for (j in seq_k) { for (i in seq_k) { if (i == j) { next } else { partial[i, j] <- -partial[i, j]/sqrt(partial[i, i] * partial[j, j]) } } } KMO <- sum((cor.means[!diag(k)])^2)/(sum((cor.means[!diag(k)])^2) + sum((partial[!diag(k)])^2)) MSA <- unlist(lapply(seq_k, function(i) { sum((cor.means[i, -i])^2)/(sum((cor.means[i, -i])^2) + sum((partial[i, -i])^2)) })) names(MSA) <- colnames(means) colnames(A) <- paste("FA", 1:ncol(initial.loadings), sep = "") variance <- (eigen.values/sum(eigen.values)) * 100 cumulative.var <- cumsum(eigen.values/sum(eigen.values)) * 100 pca <- data.frame(PCA = paste("PC", 1:ncol(means), sep = ""), Eigenvalues = eigen.values, Variance = variance, Cumul_var = cumulative.var) Communality <- diag(A %*% t(A)) Uniquenesses <- 1 - Communality fa <- data.frame(Env = names(means), A, Communality, Uniquenesses) z <- scale(means, center = FALSE, scale = apply(means, 2, sd)) canonical.loadings <- t(t(A) %*% solve_svd(cor.means)) scores <- z %*% canonical.loadings colnames(scores) <- paste("FA", 1:ncol(scores), sep = "") rownames(scores) <- rownames(means) pos.var.factor <- which(abs(A) == apply(abs(A), 1, max), arr.ind = TRUE) var.factor <- lapply(1:ncol(A), function(i) { rownames(pos.var.factor)[pos.var.factor[, 2] == i] }) names(var.factor) <- paste("FA", 1:ncol(A), sep = "") names.pos.var.factor <- rownames(pos.var.factor) means.factor <- means[, names.pos.var.factor] genv <- data.frame(Env = names(means.factor), Factor = paste("FA", pos.var.factor[, 2], sep = ""), Mean = colMeans(means.factor), Min = apply(means.factor, 2, min), Max = apply(means.factor, 2, max), CV = (apply(means.factor, 2, sd)/apply(means.factor, 2, mean)) * 100) colnames(initial.loadings) <- paste("FA", 1:ncol(initial.loadings), sep = "") if(ncol(scores) < 2){ warning("The number of retained factors is ",ncol(scores), ".\nA plot with the scores cannot be obtained.\nUse 'mineval' to increase the number of factors retained", call. = FALSE) } temp <- (structure(list(data = as_tibble(data), cormat = as.matrix(cor.means), PCA = as_tibble(pca), FA = as_tibble(fa), env_strat = as_tibble(genv), KMO = KMO, MSA = MSA, communalities = Communality, communalities.mean = mean(Communality), initial.loadings = as_tibble(cbind(Env = names(means), as_tibble(initial.loadings))), finish.loadings = as_tibble(cbind(Env = names(means), as_tibble(A))), canonical.loadings = as_tibble(cbind(Env = names(means), as_tibble(canonical.loadings))), scores.gen = as_tibble(cbind(Gen = rownames(means), as_tibble(scores)))), class = "ge_factanal")) listres[[paste(names(vars[var]))]] <- temp } return(structure(listres, class = "ge_factanal")) } plot.ge_factanal <- function(x, var = 1, plot_theme = theme_metan(), x.lim = NULL, x.breaks = waiver(), x.lab = NULL, y.lim = NULL, y.breaks = waiver(), y.lab = NULL, shape = 21, col.shape = "gray30", col.alpha = 1, size.shape = 2.2, size.bor.tick = 0.3, size.tex.lab = 12, size.tex.pa = 3.5, force.repel = 1, line.type = "dashed", line.alpha = 1, col.line = "black", size.line = 0.5, ...) { x <- x[[var]] if (!class(x) == "ge_factanal") { stop("The object 'x' is not of class 'ge_factanal'") } data <- data.frame(x$scores.gen) if(ncol(data) == 2){ stop("A plot cannot be generated with only one factor. \nUse 'mineval' argument in 'ge_factanal()' to increase the number of factors retained.", call. = FALSE) } if (is.null(y.lab) == FALSE) { y.lab <- y.lab } else { y.lab <- paste("Factor 2 (",round(x$PCA$Variance[[2]],2), "%)", sep = "") } if (is.null(x.lab) == FALSE) { x.lab <- x.lab } else { x.lab <- paste("Factor 1 (",round(x$PCA$Variance[[1]],2), "%)", sep = "") } p <- ggplot(data = data, aes(x = FA1, y = FA2)) + geom_hline(yintercept = mean(data[,3]), linetype = line.type, color = col.line, size = size.line, alpha = line.alpha)+ geom_vline(xintercept = mean(data[,2]), linetype = line.type, color = col.line, size = size.line, alpha = line.alpha)+ geom_point(shape = shape, size = size.shape, fill = col.shape, stroke = size.bor.tick, alpha = col.alpha)+ labs(x = x.lab, y = y.lab)+ geom_text_repel(aes(label = Gen), size = size.tex.pa, force = force.repel)+ scale_x_continuous(limits = x.lim, breaks = x.breaks) + scale_y_continuous(limits = y.lim, breaks = y.breaks) + plot_theme %+replace% theme(aspect.ratio = 1, axis.text = element_text(size = size.tex.lab, color = "black"), axis.title = element_text(size = size.tex.lab, color = "black"), axis.ticks = element_line(color = "black")) return(p) } print.ge_factanal <- function(x, export = FALSE, file.name = NULL, digits = 4, ...) { if (!class(x) == "ge_factanal") { stop("The object must be of class 'ge_factanal'") } opar <- options(pillar.sigfig = digits) on.exit(options(opar)) if (export == TRUE) { file.name <- ifelse(is.null(file.name) == TRUE, "ge_factanal print", file.name) sink(paste0(file.name, ".txt")) } for (i in 1:length(x)) { var <- x[[i]] cat("Variable", names(x)[i], "\n") cat("------------------------------------------------------------------------------------\n") cat("Correlation matrix among environments\n") cat("------------------------------------------------------------------------------------\n") print(as_tibble(var$cormat, rownames = "ENV")) cat("------------------------------------------------------------------------------------\n") cat("Eigenvalues and explained variance\n") cat("------------------------------------------------------------------------------------\n") print(var$PCA) cat("------------------------------------------------------------------------------------\n") cat("Initial loadings\n") cat("------------------------------------------------------------------------------------\n") print(var$initial.loadings) cat("------------------------------------------------------------------------------------\n") cat("Loadings after varimax rotation and commonalities\n") cat("------------------------------------------------------------------------------------\n") print(var$FA) cat("------------------------------------------------------------------------------------\n") cat("Environmental stratification based on factor analysis\n") cat("------------------------------------------------------------------------------------\n") print(var$env_strat) cat("------------------------------------------------------------------------------------\n") cat("Mean = mean; Min = minimum; Max = maximum; CV = coefficient of variation (%)\n") cat("------------------------------------------------------------------------------------\n") cat("\n\n\n") } if (export == TRUE) { sink() } }
board_blob <- board_azure_test(path = "", type = "blob") test_api_basic(board_blob) test_api_versioning(board_blob) test_api_meta(board_blob) board_blob2 <- board_azure_test(path = "test/path", type = "blob") test_api_basic(board_blob2) test_api_versioning(board_blob2) test_api_meta(board_blob2) test_that("can deparse", { board <- board_azure_test(path = "test/path", type = "blob") expect_snapshot(board_deparse(board)) })
context("Tidy dataframe with scriptures") suppressPackageStartupMessages(library(dplyr)) test_that("tidy frame for LDS scriptures books is right", { scriptures <- lds_scriptures() expect_equal(nrow(scriptures), 41995) expect_equal(ncol(scriptures), 19) scriptures_test <- scriptures %>% group_by(volume_title) %>% summarise(total_verses = n()) expect_equal(nrow(scriptures_test), 5) expect_equal(ncol(scriptures_test), 2) })
wilcoxtestClust <- function(x, ...) { UseMethod("wilcoxtestClust") } wilcoxtestClust.default <- function (x, y = NULL, idx, idy=NULL, alternative = c("two.sided", "less", "greater"), mu = 0, paired = FALSE, method = c("cluster", "group"), ...) { meth <- match.arg(method) alternative <- match.arg(alternative) if (!missing(mu) && ((length(mu) > 1L) || !is.finite(mu))) stop("'mu' must be a single number") if (!is.numeric(x)) stop("'x' must be numeric") if (!is.null(y)) { if (!is.numeric(y)) stop("'y' must be numeric") DNAME <- paste(deparse(substitute(x)), "and", deparse(substitute(y))) if (paired) { if (length(x) != length(y)) stop("'x' and 'y' must have the same length") OK <- stats::complete.cases(x, y, idx) x <- x[OK] - y[OK] idx <- idx[OK] y <- idy <- NULL m <- length(unique(idx)) METHOD <- "Paired cluster-weighted signed rank test" } else { xok <- stats::complete.cases(x, idx) yok <- stats::complete.cases(y, idy) x <- x[xok] idx <- factor(as.factor(idx[xok]), levels=unique(as.factor(idx[xok]))) y <- y[yok] idy <- factor(as.factor(idy[yok]), levels=unique(as.factor(idy[yok]))) xdat <- data.frame(idx, x, rep(0,length(x))) ydat <- data.frame(idy, y, rep(1,length(y))) colnames(xdat) <- c("ID", "X", "grp") colnames(ydat) <- c("ID", "X", "grp") dat <- rbind(xdat, ydat) dat[,1] <- as.numeric(dat[,1]) dat <- dat[with(dat, order(ID)),] } } else { DNAME <- deparse(substitute(x)) if (paired) stop("'y' is missing for paired test") xok <- stats::complete.cases(x, idx) yok <- NULL x <- x[xok] idx <- idx[xok] m <- length(unique(idx)) METHOD <- "One sample cluster-weighted signed rank test" } if (length(x) < 1L) stop("not enough (finite) 'x' observations") if (is.null(y)) { x <- x - mu datx <- cbind.data.frame(idx, x) datx <- datx[with(datx, order(idx)),] x <- datx$x idx <- factor(as.factor(datx$idx), levels=unique(as.factor(datx$idx))) Fi <- function(x,i) { Xi <- Xij[(cni[i]+1):(cni[i+1])]; (sum(abs(Xi)<=x)+sum(abs(Xi)<x))/(2*ni[i])} Ftot <- function(x) { st <- 0; for (i in 1:g) st <- st + Fi(x,i); return(st)} Fcom <- function(x) { st <- 0; for (i in 1:g) st <- st + Fi(x,i)*ni[i]; return(st/n)} Xij <- x ni <- as.vector(table(idx)) g <- length(ni) n <- sum(ni) cni <- c(0, cumsum(ni)) TS <- VTS <- 0 for (i in 1:g) { Xi <- Xij[(cni[i]+1):(cni[i+1])] first <- (sum(Xi>0)-sum(Xi<0))/length(Xi) second <- 0 third <- 0 for (x in Xi) { second <- second + sign(x)*(Ftot(abs(x))-Fi(abs(x),i)); third <- third + sign(x)*Fcom(abs(x))} TS <- TS + first+second/length(Xi) VTS <- VTS + (first+ (g-1)*third/length(Xi))^2 } Z <- TS/sqrt(VTS) PVAL <- switch(alternative, less = stats::pnorm(Z), greater = stats::pnorm(Z, lower.tail = FALSE), two.sided = 2*(1-stats::pnorm(abs(Z)))) } else { mu <- 0 m <- length(unique(dat[,1])) if (meth=="cluster") { METHOD <- "Cluster-weighted rank sum test" clus.rank.sum<-function(Cluster,X,grp) { if (length(unique(Cluster[grp==1]))!=length(unique(Cluster[grp==0]))) stop ("Incomplete intra-cluster group structure: can not apply cluster-weighted rank sum test") n<-length(X) F.hat<-numeric(n) for (i in 1:n){ F.hat[i]<-(sum(X<=X[i])+sum(X<X[i]))/(2*n) } M<-length(unique(Cluster)) n.i<-table(Cluster) F.prop<-numeric(n) for(ii in 1:n){ F.j<-numeric(M) for (i in 1:M){ F.j[i]<-(sum(X[Cluster==i]<X[ii])+0.5*sum(X[Cluster==i]==X[ii]))/(n.i[i]) } F.prop[ii]<-sum(F.j[-Cluster[ii]]) } a<-numeric(M) b<-1+F.prop for (i in 1:M){ a[i]<-sum((grp[Cluster==i]*b[Cluster==i])/(n.i[i])) } c<-1/(M+1) S<-c*sum(a) n.i1 <- table(Cluster, grp)[,2] d<-n.i1/n.i E.S<-(1/2)*sum(d) W.hat<-numeric(M) a<-n.i1/n.i for (i in 1:M){ b<-1/(n.i[i]*(M+1)) c<-(grp[Cluster==i])*(M-1) d<-sum(a[-i]) W.hat[i]<-b*sum((c-d)*F.hat[Cluster==i]) } a<-n.i1/n.i E.W<-(M/(2*(M+1)))*(a-sum(a)/M) var.s<-sum((W.hat-E.W)^2) stat<-(S-E.S)/sqrt(var.s) stat } Z <- clus.rank.sum(dat$ID, dat$X, dat$grp) PVAL <- switch(alternative, less = stats::pnorm(Z), greater = stats::pnorm(Z, lower.tail = FALSE), two.sided = 2*(1-stats::pnorm(abs(Z)))) } else { METHOD <- "Group-weighted rank sum test" rn<-function(dv){ ik=dv[1] x=dv[2] ds1=dat[dat[,3]==1,] vs1=(kh==2)*(ds1[,2]<x)+(kh==1)*(ds1[,2]<=x) ic1 <- subset(unique(dat[,1]), !(unique(dat[,1]) %in% unique(ds1[,1]))) if (length(ic1)==0) { sl1=stats::aggregate(vs1,list(ds1[,1]),mean)[,2] } else { cmp1 <- stats::aggregate(vs1,list(ds1[,1]),mean) incp1 <- data.frame(cbind(ic1, rep(0, length(ic1)))) colnames(incp1) <- colnames(cmp1) tmp1 <- rbind(cmp1, incp1) sl1 <- tmp1[with(tmp1, order(tmp1[,1])), 2] } ds2=dat[dat[,3]==0,] vs2=(kh==2)*(ds2[,2]<x)+(kh==1)*(ds2[,2]<=x) ic2 <- subset(unique(dat[,1]), !(unique(dat[,1]) %in% unique(ds2[,1]))) if (length(ic2)==0) { sl2=stats::aggregate(vs2,list(ds2[,1]),mean)[,2] } else { cmp2 <- stats::aggregate(vs2,list(ds2[,1]),mean) incp2 <- data.frame(cbind(ic2, rep(0, length(ic2)))) colnames(incp2) <- colnames(cmp2) tmp2 <- rbind(cmp2, incp2) sl2 <- tmp2[with(tmp2, order(tmp2[,1])), 2] } Fwt <- 1*unique(dat[,1])%in%c(ic1,ic2) + 2*(1-1*unique(dat[,1])%in%c(ic1,ic2)) fg=(sl1+sl2)/Fwt fg[ik]=0 return(fg) } rst <- function(il){ ly=sum(mat[-which(dw[,1]==il),-il]) return(ly) } m <- g <- length(unique(dat[,1])) dw <- dat[(dat[,3]==1),] ns <- (dw[,1]) incc1 <- subset(unique(dat[,1]), !(unique(dat[,1]) %in% unique(dat[(dat[,3]==0),][,1]))) incc0 <- subset(unique(dat[,1]), !(unique(dat[,1]) %in% unique(dat[(dat[,3]==1),][,1]))) nv <- 4*(1-1*(ns%in%incc1))*as.vector(table(ns)[match(ns,names(table(ns)))]) + 2*(1*(ns%in%incc1)) kh <- 1 mat <- t(apply(cbind(dw[,1:2]),1,rn))/nv vf1 <- apply(cbind(seq(1,m)),1,rst) sFs1 <- sum(mat) kh <- 2 mat <- t(apply(cbind(dw[,1:2]),1,rn))/nv vf2 <- apply(cbind(seq(1,m)),1,rst) sFs2 <- sum(mat) I <- sum(1*unique(dat[,1])%in%c(incc1, incc0)) C <- sum(1-1*unique(dat[,1])%in%c(incc1, incc0)) v1=(sFs1+sFs2)+(C+2*I)/2 vd= (vf1+vf2)+((C+2*I)-1)/2 h=1 TS <- v1 E.T<- 0.25*m*(m+1) test=(m/m^h)*v1-((m-1)/(m-1)^h)*vd v.test=stats::var(test) v_hat=(((m^h)^2)/(m-1))*v.test v.hat=ifelse(v_hat==0,0.00000001,v_hat) Z <- (TS-E.T)/sqrt(v.hat) PVAL <- switch(alternative, less = stats::pnorm(Z), greater = stats::pnorm(Z, lower.tail = FALSE), two.sided = 2*(1-stats::pnorm(abs(Z)))) } } names(Z) <- "z" DNAME <- paste0(paste0(DNAME, ", M = "), as.character(m)) names(mu) <- if (paired || !is.null(y)) "location shift" else "location" rval <- list(statistic=Z, p.value=PVAL, null.value = mu, data.name=DNAME, method=METHOD, alternative=alternative, M = m) class(rval) <- "htest" if (m < 30) warning('Number of clusters < 30. Normal approximation may be incorrect') return(rval) } wilcoxtestClust.formula <- function (formula, id, data, subset, na.action, ...) { if (missing(formula) || (length(formula) != 3L) || (length(attr(stats::terms(formula[-2L]), "term.labels")) != 1L)) stop("'formula' missing or incorrect") m <- match.call(expand.dots = FALSE) if (is.matrix(eval(m$data, parent.frame()))) m$data <- as.data.frame(data) m[[1L]] <- quote(stats::model.frame) m$... <- NULL mf <- eval(m, parent.frame()) DNAME <- paste(names(mf)[1:2], collapse = " by ") names(mf) <- c("r", "group", "id") g <- factor(mf$group) if (nlevels(g) != 2L) stop("grouping factor must have exactly 2 levels") DATA <- stats::setNames(split(mf[,-2], g), c("x", "y")) y <- do.call("wilcoxtestClust", args=c(list(DATA$x$r, DATA$y$r, DATA$x$id, DATA$y$id,...))) y$data.name <- paste0(paste0(DNAME, ", M = "), as.character(length(unique(mf$id)))) y }
ckmeans <- function(data, k, mustLink, cantLink, maxIter = 100) { dist <- function(x, y) { tmp <- x - y sum(tmp * tmp) } violate <- function(i, j) { for (u in mlw[[i]]) { if (label[u] != 0 && label[u] != j) return(1); } for (u in clw[[i]]) { if (label[u] == j) return(1); } 0 } findMustLink <- function(i) { tmp = c() for (j in 1:n) { if (M[i, j] == 1) tmp = c(tmp, j) } tmp } findCantLink <- function(i) { tmp = c() for (j in 1:n) { if (C[i, j] == 1) tmp = c(tmp, j) } tmp } data = as.matrix(data) n <- nrow(data) d <- ncol(data) nm <- nrow(mustLink) nc <- nrow(cantLink) M = matrix(0, nrow = n, ncol = n) for (i in 1:nm) { if (i > nm) break; u = mustLink[i, 1] v = mustLink[i, 2] M[u, v] = 1 M[v, u] = 1 } for (u in 1:n) { for (i in 1:n) { for (j in 1:n) { if (M[i, u] == 1 && M[u, j] == 1) M[i, j] = 1 } } } tp = rep(0, n) ntp = 0 for (i in 1:n) { if (tp[i] == 0) { ntp = ntp + 1 tp[i] = ntp j = i + 1 while (j <= n) { if (tp[j] == 0 && M[i, j] == 1) tp[j] = ntp j = j + 1 } } } findMember <- function(v) { tmp = c() for (u in 1:n) { if (tp[u] == v) tmp = c(tmp, u) } tmp } tmpPi = lapply(1:ntp, findMember) C = matrix(0, nrow = n, ncol = n) for (i in 1:nc) { if (i > nc) break; u = cantLink[i, 1] v = cantLink[i, 2] x = tp[u] y = tp[v] if (x != y) { for (p in tmpPi[[x]]) { for (q in tmpPi[[y]]) { C[p, q] = 1 C[q, p] = 1 } } } } mlw <- lapply(1:n, findMustLink) clw <- lapply(1:n, findCantLink) tmp <- sample(1:n, k) C <- matrix(nrow = k, ncol = d) for (i in 1:k) { C[i,] = data[tmp[i],] } for (iter in 1:maxIter) { label <- rep(0, n) for (i in 1:n) { dd <- rep(1e15, k) best <- -1 for (j in 1:k) { if (violate(i, j) == 0) { dd[j] <- dist(data[i,], C[j,]) if (best == -1 || dd[j] < dd[best]) { best = j } } } if (best == -1) return(0) label[i] <- best } if (iter == maxIter) return(label) C2 <- matrix(0, nrow = k, ncol = d) dem <- rep(0, k) for (i in 1:n) { j = label[i] C2[j,] = C2[j,] + data[i,] dem[j] = dem[j] + 1 } for (i in 1:k) { if (dem[i] > 0) C[i,] = 1.0 * C2[i,] / dem[i] } } }
tidy_feature_matrix <- function( .data, remove_nzv = FALSE, nan_is_na = FALSE, clean_names = FALSE ) { to_r <- tibble::as_tibble(.data[[1]]) nondupe <- to_r[, !duplicated(names(to_r))] if(remove_nzv) { nzvs <- purrr::map_dfr( lapply( X = names(nondupe), FUN = function(colname) { t <- caret::nearZeroVar(nondupe[, colname], saveMetrics = TRUE) t$variable <- colname return(t) } ), c) nondupe <- nondupe[, !nzvs$nzv] } if(nan_is_na) { for (colname in names(nondupe)) { nondupe[, colname][[1]][is.nan(nondupe[, colname][[1]])] <- NA } } if(clean_names) { n <- tolower(names(nondupe)) tn <- gsub("[^A-z0-9]", "_", n) tn <- gsub("(_+?$)|(__+?)", "", tn) names(nondupe) <- tn } result <- as.data.frame(nondupe) return(result) }