code
stringlengths 1
13.8M
|
---|
binder_builder <-
function(path = ".",
hub = "mybinder.org",
urlpath = "rstudio") {
path <- sanitize_path(path)
if (!has_a_git_remote()) {
stop(
"Cannot build without the project having a Git remote. Please connec this to a public repository on GitHub"
)
}
user <- gh_tree_remote(path)$username
repo <- gh_tree_remote(path)$repo
binder_runtime <-
glue::glue("https://{hub}/build/gh/{user}/{repo}/master")
res <- httr::GET(binder_runtime)
url <-
glue("https://{hub}/v2/gh/{user}/{repo}/master?urlpath={urlpath}")
return(url)
}
build_binder <-
function(path = ".",
hub = "mybinder.org",
urlpath = "rstudio") {
proceed <- TRUE
if (!is_clean(path)) {
if (interactive()) {
proceed <- usethis::ui_yeah(
"There are uncommitted files in your repo. Until committed and pushed to GitHub, Binder cannot build from these files. Do you still wish to continue?"
)
} else {
warning("There are uncommitted files in your repo. Until committed and pushed to GitHub, Binder cannot build from these files.")
}
}
if (proceed) {
cliapp::cli_alert_info(
glue::glue(
"Your Binder is being built in the background. Once built, your browser will automatically launch. You can also click the binder badge on your README at any time."
)
)
`%...>%` <- promises::`%...>%`
multisession <- "future" %:::% "multisession"
future::plan(multisession, workers = 2)
future::future({
binder_builder(path, hub, urlpath)
}) %...>% utils::browseURL
}
}
|
RWMH<- function(data,propob=NULL,posterior=NULL,iter=1500,burn=500,vscale=1.5,
start=NULL,prior="Normal",mu=0,sig=10){
if(is.null(posterior)){
logpost<- function(start,data) posterior(start,data,Log=TRUE,mu=mu,sig=sig,prior=prior)
}
if(is.null(propob)){
propob = lapl_aprx(data[,1],data[,-1])
}
varprop = vscale*propob$var
npar = length(propob$mode)
Mat = array(0, c(iter, npar))
if(is.null(start)){
start = MASS::mvrnorm(n=1,propob$mode,varprop)
}
e = 0.000001
Mat[1,] = start; AccptRate<-0
for(i in 2:iter){
start= Mat[i-1,]
prop = MASS::mvrnorm(n=1,start,varprop) + stats::runif(1,-e,e)
lpa = logpost(prop,data); lpb = logpost(start,data)
accprob = exp(lpa-lpb)
if(stats::runif(1)< accprob){
Mat[i,]=prop
AccptRate<- AccptRate +1
}else{
Mat[i,]=start
}
}
AcceptanceRate = AccptRate/iter
val = list(Matpram=Mat[-c(1:burn),],AcceptanceRate=AcceptanceRate)
cat("Random Walk MH algorithm successful. Acceptance ratio = ", AcceptanceRate," \n")
return(val)
}
IndepMH<- function(data,propob=NULL,posterior=NULL,iter=1500,burn=500,vscale=1.5,
start=NULL,prior="Uniform",mu=0,sig=10){
if(is.null(posterior)){
logpost<- function(start,data) posterior(start,data,Log=T,mu=mu,sig=sig,prior=prior)
}
if(is.null(propob)){
propob = lapl_aprx(data[,1],data[,-1])
}
varprop = vscale*propob$var
npar = length(propob$mode)
Mat = array(0, c(iter, npar))
if(is.null(start)){
start = MASS::mvrnorm(n=1,propob$mode,varprop)
}
Mat[1,] = start; AccptRate<-0
for(i in 2:iter){
start= Mat[i-1,]
prop = MASS::mvrnorm(n=1,propob$mode,varprop)
lpa = logpost(prop,data); lpb = logpost(start,data)
accprob = exp(lpa-lpb)
if(stats::runif(1)< accprob){
Mat[i,]=prop
AccptRate<- AccptRate +1
}else{
Mat[i,]=start
}
}
Accept_Rate = AccptRate/iter
val = list(Matpram=Mat[-c(1:burn),],Accept_Rate = AccptRate/iter)
cat("IndepMH algorithm successful. Acceptance ratio = ", Accept_Rate," \n")
return(val)
}
|
svc <- paws::kinesisvideo()
test_that("describe_signaling_channel", {
expect_error(svc$describe_signaling_channel(), NA)
})
test_that("describe_stream", {
expect_error(svc$describe_stream(), NA)
})
test_that("list_signaling_channels", {
expect_error(svc$list_signaling_channels(), NA)
})
test_that("list_signaling_channels", {
expect_error(svc$list_signaling_channels(MaxResults = 20), NA)
})
test_that("list_streams", {
expect_error(svc$list_streams(), NA)
})
test_that("list_streams", {
expect_error(svc$list_streams(MaxResults = 20), NA)
})
test_that("list_tags_for_stream", {
expect_error(svc$list_tags_for_stream(), NA)
})
|
uniprot <- function(accid) {
oops <- requireNamespace("XML", quietly = TRUE)
if(!oops)
stop("Please install the XML package from CRAN")
url <- paste('http://www.uniprot.org/uniprot/', accid, '.xml', sep="")
tmpfile <- tempfile()
download.file(url, tmpfile)
xml <- XML::xmlRoot(XML::xmlParse(tmpfile))
node.names <- XML::xmlSApply(xml[[1]], XML::xmlName)
inds <- which(node.names=="accession")
accession <- NULL
for(i in 1:length(inds))
accession <- c(accession, XML::xmlValue(xml[[1]][[inds[i]]]))
inds <- which(node.names=="name")
name <- NULL
for(i in 1:length(inds))
name <- c(name, XML::xmlValue(xml[[1]][[inds[i]]]))
inds <- which(node.names=="sequence")
sequence <- gsub("\n", "", XML::xmlValue(xml[[1]][[inds]]))
inds <- which(node.names=="organism")
node <- xml[[1]][[inds]]
organism <- NULL
tmpl <- unlist(XML::xmlApply(node, XML::xmlAttrs))
if("scientific" %in% tmpl)
organism <- XML::xmlValue(node[[which(tmpl %in% "scientific")]])
if("common" %in% tmpl)
organism <- c(organism, XML::xmlValue(node[[which(tmpl %in% "common")]]))
inds <- which(node.names=="organism")
node <- xml[[1]][[inds]]
taxon <- NULL
for ( i in 1:XML::xmlSize(node[['lineage']]) ) {
taxon <- c(taxon, XML::xmlValue(node[['lineage']][[i]]))
}
node <- xml[[1]][['protein']]
fullName <- XML::xmlValue(node[['recommendedName']][['fullName']])
shortName <- XML::xmlValue(node[['recommendedName']][['shortName']])
node <- xml[[1]][['gene']]
gene <- XML::xmlValue(node[[1]])
inds <- which(node.names=="dbReference")
dbref <- list()
for(i in 1:length(inds)) {
node <- xml[[1]][[inds[i]]]
dbref[[i]] <- XML::xmlAttrs(node)
}
dbref <- unlist(dbref)
type.inds <- names((dbref)) == "type"
id.inds <- names((dbref)) == "id"
dbref <- data.frame(type=dbref[type.inds], id=dbref[id.inds],
stringsAsFactors=FALSE)
out <- list(accession = accession, name = name,
fullName = fullName, shortName = shortName,
sequence = sequence, gene = gene,
organism = organism, taxon = taxon,
dbref=dbref)
return(out)
}
|
model.binary.het.eqcor <- function(prior.type = "unif", rank.prob = TRUE){
if(prior.type == "unif" & rank.prob){
modelstring<-"
model{
for(i in 1:len){
p[i] <- phi(mu[t[i]] + vi[s[i], t[i]])
r[i] ~ dbin(p[i], totaln[i])
}
for(j in 1:nstudy){
vi[j, 1:ntrt] ~ dmnorm(zeros[1:ntrt], T[1:ntrt, 1:ntrt])
}
for(j in 1:ntrt){
AR[j] <- phi(mu[j]/sqrt(1 + pow(sigma[j], 2)))
mu[j] ~ dnorm(0, 0.001)
sigma[j] ~ dunif(0.0001, c)
}
for(j in 1:ntrt){
for(k in 1:ntrt){
T[j,k] <- 1/sigma[j]*1/sigma[k]*ifelse(j == k, diag, offdiag)
}
}
diag <- (1 + (ntrt - 2)*rho)/(1 + (ntrt - 2)*rho - (ntrt - 1)*rho^2)
offdiag <- (-rho/(1 + (ntrt - 2)*rho - (ntrt - 1)*rho^2))
rho ~ dunif(-1/(ntrt - 1), 0.9999)
for(j in 1:ntrt){
for(k in 1:ntrt){
LRR[j,k] <- log(RR[j,k])
LOR[j,k] <- log(OR[j,k])
RR[j,k] <- AR[j]/AR[k]
RD[j,k] <- AR[j]-AR[k]
OR[j,k] <- AR[j]/(1 - AR[j])/AR[k]*(1 - AR[k])
}
}
rk[1:ntrt] <- (ntrt + 1 - rank(AR[]))*ifelse(higher.better, 1, 0) + (rank(AR[]))*ifelse(higher.better, 0, 1)
for(i in 1:ntrt){
rank.prob[1:ntrt, i] <- equals(rk[], i)
}
}
"
}
if(prior.type == "unif" & !rank.prob){
modelstring<-"
model{
for(i in 1:len){
p[i] <- phi(mu[t[i]] + vi[s[i], t[i]])
r[i] ~ dbin(p[i], totaln[i])
}
for(j in 1:nstudy){
vi[j, 1:ntrt] ~ dmnorm(zeros[1:ntrt], T[1:ntrt, 1:ntrt])
}
for(j in 1:ntrt){
AR[j] <- phi(mu[j]/sqrt(1 + pow(sigma[j], 2)))
mu[j] ~ dnorm(0, 0.001)
sigma[j] ~ dunif(0.0001, c)
}
for(j in 1:ntrt){
for(k in 1:ntrt){
T[j,k] <- 1/sigma[j]*1/sigma[k]*ifelse(j == k, diag, offdiag)
}
}
diag <- (1 + (ntrt - 2)*rho)/(1 + (ntrt - 2)*rho - (ntrt - 1)*rho^2)
offdiag <- (-rho/(1 + (ntrt - 2)*rho - (ntrt - 1)*rho^2))
rho ~ dunif(-1/(ntrt - 1), 0.9999)
for(j in 1:ntrt){
for(k in 1:ntrt){
LRR[j,k] <- log(RR[j,k])
LOR[j,k] <- log(OR[j,k])
RR[j,k] <- AR[j]/AR[k]
RD[j,k] <- AR[j] - AR[k]
OR[j,k] <- AR[j]/(1 - AR[j])/AR[k]*(1 - AR[k])
}
}
}
"
}
if(prior.type == "invgamma" & rank.prob){
modelstring<-"
model{
for(i in 1:len){
p[i] <- phi(mu[t[i]] + vi[s[i], t[i]])
r[i] ~ dbin(p[i], totaln[i])
}
for(j in 1:nstudy){
vi[j, 1:ntrt] ~ dmnorm(zeros[1:ntrt], T[1:ntrt, 1:ntrt])
}
for(j in 1:ntrt){
AR[j] <- phi(mu[j]/sqrt(1 + pow(sigma[j], 2)))
mu[j] ~ dnorm(0, 0.001)
sigma[j] <- 1/sqrt(inv.sig.sq[j])
inv.sig.sq[j] ~ dgamma(a, b)
}
for(j in 1:ntrt){
for(k in 1:ntrt){
T[j,k] <- 1/sigma[j]*1/sigma[k]*ifelse(j == k, diag, offdiag)
}
}
diag <- (1 + (ntrt - 2)*rho)/(1 + (ntrt - 2)*rho - (ntrt - 1)*rho^2)
offdiag <- (-rho/(1 + (ntrt - 2)*rho - (ntrt - 1)*rho^2))
rho ~ dunif(-1/(ntrt - 1), 0.9999)
for(j in 1:ntrt){
for(k in 1:ntrt){
LRR[j,k] <- log(RR[j,k])
LOR[j,k] <- log(OR[j,k])
RR[j,k] <- AR[j]/AR[k]
RD[j,k] <- AR[j] - AR[k]
OR[j,k] <- AR[j]/(1 - AR[j])/AR[k]*(1 - AR[k])
}
}
rk[1:ntrt] <- (ntrt + 1 - rank(AR[]))*ifelse(higher.better, 1, 0) + (rank(AR[]))*ifelse(higher.better, 0, 1)
for(i in 1:ntrt){
rank.prob[1:ntrt, i] <- equals(rk[], i)
}
}
"
}
if(prior.type == "invgamma" & !rank.prob){
modelstring<-"
model{
for(i in 1:len){
p[i] <- phi(mu[t[i]] + vi[s[i], t[i]])
r[i] ~ dbin(p[i], totaln[i])
}
for(j in 1:nstudy){
vi[j, 1:ntrt] ~ dmnorm(zeros[1:ntrt], T[1:ntrt, 1:ntrt])
}
for(j in 1:ntrt){
AR[j] <- phi(mu[j]/sqrt(1 + pow(sigma[j], 2)))
mu[j] ~ dnorm(0, 0.001)
sigma[j] <- 1/sqrt(inv.sig.sq[j])
inv.sig.sq[j] ~ dgamma(a, b)
}
for(j in 1:ntrt){
for(k in 1:ntrt){
T[j,k] <- 1/sigma[j]*1/sigma[k]*ifelse(j == k, diag, offdiag)
}
}
diag <- (1 + (ntrt - 2)*rho)/(1 + (ntrt - 2)*rho - (ntrt - 1)*rho^2)
offdiag <- (-rho/(1 + (ntrt - 2)*rho - (ntrt - 1)*rho^2))
rho ~ dunif(-1/(ntrt - 1), 0.9999)
for(j in 1:ntrt){
for(k in 1:ntrt){
LRR[j,k] <- log(RR[j,k])
LOR[j,k] <- log(OR[j,k])
RR[j,k] <- AR[j]/AR[k]
RD[j,k] <- AR[j] - AR[k]
OR[j,k] <- AR[j]/(1 - AR[j])/AR[k]*(1 - AR[k])
}
}
}
"
}
if(!is.element(prior.type, c("unif", "invgamma"))){
stop("specified prior type is wrong.")
}
return(modelstring)
}
|
summary.snowprofileSet <- function(object, ...) {
Summaries <- lapply(object, summary)
Summaries <- data.table::rbindlist(Summaries, fill = TRUE)
Summaries <- as.data.frame(Summaries)
return(Summaries)
}
|
AVERAGE <-
function(number1,number2 = NA,number3 = NA,number4 = NA,number5 = NA,number6 = NA,number7 = NA,number8 = NA,number9 = NA,number10 = NA,number11 = NA,number12 = NA,number13 = NA,number14 = NA,number15 = NA,number16 = NA,number17 = NA,number18 = NA,number19 = NA,number20 = NA,number21 = NA,number22 = NA,number23 = NA,number24 = NA){
mean(c(number1,number2,number3,number4,number5,number6,number7,
number8,number9,number10,number11,number12,number13,number14,number15,
number16,number17,number18,number19,number20,number21,number22,number23,number24),na.rm = TRUE)
}
|
NA
utils::globalVariables(c("stat", "value", "response_var_"))
rhs_or_expr <- function(x) {
e <- enexpr(x)
if (rlang::is_formula(e)) {
return(rlang::f_rhs(e))
}
return(e)
}
cond2sum <- function(formula) {
e <- environment(formula)
res <- as.formula(sub("\\|", "+", format(formula)))
environment(res) <- e
res
}
df_stats <- function(formula, data, ..., drop = TRUE, fargs = list(),
sep = "_",
format = c("wide", "long"), groups = NULL,
long_names = FALSE, nice_names = FALSE,
na.action = "na.warn") {
qdots <- rlang::enquos(...)
format <- match.arg(format)
if (length(qdots) < 1) {
qdots <- list(dplyr::quo(df_favstats))
names(qdots) <- ""
na.action = "na.pass"
}
if (inherits(formula, "data.frame") && inherits(data, "formula")) {
tmp <- data
data <- formula
formula <- tmp
}
if ( ! inherits(formula, "formula")) stop("first arg must be a formula")
if ( ! inherits(data, "data.frame")) stop("second arg must be a data.frame")
formula <- cond2sum(mosaic_formula_q(reop_formula(formula), groups = !!rlang::enexpr(groups)))
if (length(formula) == 2L) {
formula <- substitute(x ~ 1, list(x = formula[[2]]))
}
left <- rlang::f_lhs(formula)
if (left == "." || (length(left) > 1 && left[[1]] == "+")) {
if (left == ".") {
lefts <-
setdiff(
names(data),
sapply(parse_call(rlang::f_rhs(formula)), deparse)
)
lefts <- lapply(lefts, as.name)
} else {
lefts <- parse_call(left)
}
long_names <- FALSE
formulas <-
lapply(
lefts,
function(x) {
my_form <- substitute(L ~ R, list(L = x, R = rlang::f_rhs(formula)))
class(my_form) <- "formula"
my_form
}
)
res <-
lapply(
formulas,
function(f) {
df_stats(f, data, ..., drop = drop,
fargs = fargs, sep = sep, format = format,
nice_names = nice_names, na.action = na.action)
}
)
return(bind_rows(res))
}
if (identical(na.action, "na.warn")) na.action <- na.warn
MF <- model.frame(formula, data, na.action = na.action)
one_group <- FALSE
if (ncol(MF) == 1) {
one_group <- TRUE
if ("group" %in% names(MF)) {
MF[, "..group.."] <- 1
} else {
MF[, "group"] <- 1
}
}
res <-
lapply(
qdots,
function(f) {
if (inherits(rlang::f_rhs(f), "call")) {
df_aggregate(MF[, 1], by = MF[, -1, drop = FALSE],
FUN = function(x) eval(substitute(x %>% foo, list(foo = rlang::f_rhs(f)))),
drop = drop)
} else {
df_aggregate(MF[, 1], by = MF[, -1, drop = FALSE],
FUN = function(x) do.call(rlang::eval_tidy(f), c(list(x), fargs)),
drop = drop)
}
}
)
arg_names <- names(res)
num_grouping_vars <- ncol(MF) - 1
groups <- res[[1]][, 1:num_grouping_vars, drop = FALSE]
res0 <- res
res1 <- lapply(res, function(x) make_df(x[[dim(x)[2]]]))
res <- res1
res_names <- lapply(res1, names)
res_names <- lapply(res_names, function(x) if(all(x == ".")) NULL else x)
ncols <- sapply(res, ncol)
fun_names <-
sapply(
qdots,
function(x) {
if (rlang::is_character(rlang::f_rhs(x)))
rlang::f_rhs(x)
else
deparse(rlang::f_rhs(x))
}
)
fun_names <- ifelse(sapply(res_names, is.null), fun_names, "")
part1 <-
rep(ifelse(arg_names == "", fun_names, arg_names), ncols)
part1 <- gsub("df_favstats", "", part1)
part2 <-
rep(ifelse(arg_names == "" & long_names & ! fun_names == "df_favstats",
deparse(formula[[2]]), ""),
ncols)
part2 <-
ifelse(part1 == "", "", part2)
res_names <-
ifelse(sapply(res_names, is.null), "", res_names)
alt_res_names <- lapply(ncols, function(nc) if (nc > 1) format(1:nc) else "")
part3 <-
ifelse(res_names == "", alt_res_names, res_names)
part3 <- unlist(part3)
final_names <-
paste(part1, part2, part3, sep = sep)
final_names <- gsub(paste0(sep, sep), sep, final_names)
final_names <- gsub(paste0(sep, "$"), "", final_names)
final_names <- gsub(paste0("^", sep), "", final_names)
res <- do.call(cbind, c(list(groups), res))
names(res) <- c(names(res)[1:num_grouping_vars], unlist(final_names))
if (nice_names) names(res) <- base::make.names(names(res), unique = TRUE)
if (one_group) {
res <- res[, -1, drop = FALSE]
}
row.names(res) <- NULL
res <-
res %>%
dplyr::mutate(response_var_ = deparse(rlang::f_lhs(formula))) %>%
dplyr::select(response_var_, names(res))
if (! "response" %in% names(res)) {
res <- dplyr::rename(res, response = response_var_)
}
if (format == "long") {
res %>%
tidyr::pivot_longer(names_to = "stat", values_to = "value", !! -(1:(1 + num_grouping_vars)))
} else {
res
}
}
df_favstats <- function (x, ..., na.rm = TRUE, type = 7)
{
if (!is.null(dim(x)) && min(dim(x)) != 1)
warning("Not respecting matrix dimensions. Hope that's OK.")
if (! is.numeric(x)) {
warning("Auto-converting ", class(x), " to numeric.")
x <- as.numeric(x)
if (!is.numeric(x)) stop("Auto-conversion to numeric failed.")
}
qq <- if (na.rm)
stats::quantile(x, na.rm = na.rm, type = type)
else
rep(NA, 5)
val <- data.frame(
min=qq[1],
Q1 = qq[2],
median = qq[3],
Q3 = qq[4],
max = qq[5],
mean = base::mean(x, na.rm = na.rm),
sd = stats::sd(x, na.rm = na.rm),
n = base::sum(! is.na(x)),
missing = base::sum( is.na(x) )
)
rownames(val) <- ""
return(val)
}
na.warn <- function(object, ...) {
res <- stats::na.exclude(object, ...)
n_excluded <- nrow(object) - nrow(res)
if (n_excluded > 0L) {
warning(paste0("Excluding ", n_excluded, " rows due to missing data [df_stats()]."), call. = FALSE)
}
res
}
|
addMetaInformation <- function(series,map_list,
meta_env = NULL,
overwrite_objects = F,
overwrite_elements = T){
stopifnot(is.list(map_list))
class(map_list) <- c('miro','list')
map_list[map_list == ''] <- NULL
if(length(map_list) == 0) map_list <- NULL
if(is.null(meta_env)){
meta_env <- new.env()
if(!is.null(map_list)){
meta_env[[series]] <- map_list
}
} else {
if(overwrite_objects){
if(!is.null(map_list)){
meta_env[[series]] <- map_list
}
} else {
if(!is.null(meta_env[[series]])){
elements_in_old <- (names(map_list) %in% names(meta_env[[series]]))
new_elements <- map_list[!elements_in_old]
meta_env[[series]] <- c(meta_env[[series]],new_elements)
if(overwrite_elements & length(map_list[elements_in_old]) != 0){
meta_env[[series]][names(map_list[elements_in_old])] <- map_list[elements_in_old]
}
} else {
meta_env[[series]] <- map_list
}
}
}
class(meta_env) <- c('meta_env','environment')
meta_env
}
|
test_that("posterior_interval pi has the correct form", {
ds_pi_interval <- posterior_interval(ds_fit, pars = "pi")
expect_equal(dim(ds_pi_interval), c(4, 2))
expect_equal(colnames(ds_pi_interval), c("5%", "95%"))
ccds_pi_interval <- posterior_interval(ccds_fit, pars = "pi")
expect_equal(dim(ccds_pi_interval), c(4, 2))
expect_equal(colnames(ccds_pi_interval), c("5%", "95%"))
hds_pi_interval <- posterior_interval(hds_fit, pars = "pi")
expect_equal(dim(hds_pi_interval), c(4, 2))
expect_equal(colnames(hds_pi_interval), c("5%", "95%"))
})
test_that("Can change interval probability", {
default <- posterior_interval(ds_fit, pars = "pi")
smaller <- posterior_interval(ds_fit, pars = "pi", prob = 0.5)
expect_lte(default[1, 1], smaller[1, 1])
expect_gte(default[1, 2], smaller[1, 2])
larger <- posterior_interval(ds_fit, pars = "pi", prob = 0.99)
expect_gte(default[1, 1], larger[1, 1])
expect_lte(default[1, 2], larger[1, 2])
})
test_that("posterior_interval for theta has the correct form", {
J <- 5
K <- 4
ds_theta_interval <- posterior_interval(ds_fit, pars = "theta")
expect_equal(dim(ds_theta_interval), c(J * K * K , 2))
expect_equal(colnames(ds_theta_interval), c("5%", "95%"))
ccds_theta_interval <- posterior_interval(ds_fit, pars = "theta")
expect_equal(dim(ccds_theta_interval), c(J * K * K , 2))
expect_equal(colnames(ccds_theta_interval), c("5%", "95%"))
})
test_that("DS and CCDS posterior_interval for theta have the same rownames", {
ds_theta_interval <- posterior_interval(ds_fit, pars = "theta")
ccds_theta_interval <- posterior_interval(ds_fit, pars = "theta")
expect_equal(rownames(ds_theta_interval), rownames(ccds_theta_interval))
})
test_that("posterior_interval errors correctly", {
expect_error(
posterior_interval(ds_fit_optim, pars = "z"),
"Can't calculate posterior intervals for a model fit using optimisation."
)
expect_error(
posterior_interval(ds_fit, pars = "z"),
"Cannot calculate quantiles for z"
)
})
test_that("posterior_interval errors informatively with the HDS", {
expect_snapshot(posterior_interval(hds_fit), error = TRUE)
})
test_that("posterior_interval orders parameters correctly", {
correct_rownames <- sprintf("theta[1, 1, %s]", 1:K)
expect_equal(rownames(posterior_interval(ds_fit, pars = "theta"))[1:K],
correct_rownames)
})
|
source(system.file(file.path('tests', 'testthat', 'test_utils.R'), package = 'nimble'))
RwarnLevel <- options('warn')$warn
options(warn = 1)
nimbleVerboseSetting <- nimbleOptions('verbose')
nimbleOptions(verbose = FALSE)
nimbleProgressBarSetting <- nimbleOptions('MCMCprogressBar')
nimbleOptions(MCMCprogressBar = FALSE)
context('Testing of BNP functionality')
getSamplesDPmeasure_old <- function(MCMC, epsilon = 1e-4) {
if(exists('model',MCMC, inherits = FALSE)) compiled <- FALSE else compiled <- TRUE
if(compiled) {
if(!exists('Robject', MCMC, inherits = FALSE) || !exists('model', MCMC$Robject, inherits = FALSE))
stop("getSamplesDPmeasure: problem with finding model object in compiled MCMC")
model <- MCMC$Robject$model
mvSamples <- MCMC$Robject$mvSamples
} else {
model <- MCMC$model
mvSamples <- MCMC$mvSamples
}
rsampler <- sampleDPmeasure_old(model, mvSamples, epsilon)
if(compiled) {
csampler <- compileNimble(rsampler, project = model)
csampler$run()
samplesMeasure <- csampler$samples
} else {
rsampler$run()
samplesMeasure <- rsampler$samples
}
dcrpVar <- rsampler$dcrpVar
clusterVarInfo <- nimble:::findClusterNodes(model, dcrpVar)
namesVars <- rsampler$tildeVars
p <- length(namesVars)
truncG <- ncol(samplesMeasure) / (rsampler$tildeVarsColsSum[p+1]+1)
namesW <- sapply(seq_len(truncG), function(i) paste0("weight[", i, "]"))
namesAtoms <- nimble:::getSamplesDPmeasureNames(clusterVarInfo, model, truncG, p)
colnames(samplesMeasure) <- c(namesW, namesAtoms)
output <- list(samples = samplesMeasure, trunc = truncG)
return(output)
}
sampleDPmeasure_old <- nimbleFunction(
name = 'sampleDPmeasure_old',
setup=function(model, mvSaved, epsilon){
mvSavedVars <- mvSaved$varNames
stochNodes <- model$getNodeNames(stochOnly = TRUE)
distributions <- model$getDistribution(stochNodes)
dcrpIndex <- which(distributions == 'dCRP')
if(length(dcrpIndex) == 1) {
dcrpNode <- stochNodes[dcrpIndex]
dcrpVar <- model$getVarNames(nodes = dcrpNode)
} else {
if(length(dcrpIndex) == 0 ){
stop('sampleDPmeasure: One node with a dCRP distribution is required.\n')
}
stop('sampleDPmeasure: Currently only models with one node with a dCRP distribution are allowed.\n')
}
if(sum(dcrpVar == mvSavedVars) == 0)
stop('sampleDPmeasure: The node having the dCRP distribution has to be monitored in the MCMC (and therefore stored in the modelValues object).\n')
dcrpElements <- model$expandNodeNames(dcrpNode, returnScalarComponents = TRUE)
clusterVarInfo <- nimble:::findClusterNodes(model, dcrpVar)
tildeVars <- clusterVarInfo$clusterVars
if( is.null(tildeVars) )
stop('sampleDPmeasure: The model should have at least one cluster variable.\n')
isIID <- TRUE
for(i in seq_along(clusterVarInfo$clusterNodes)) {
clusterNodes <- clusterVarInfo$clusterNodes[[i]]
clusterIDs <- clusterVarInfo$clusterIDs[[i]]
splitNodes <- split(clusterNodes, clusterIDs)
valueExprs <- lapply(splitNodes, function(x) {
out <- sapply(x, model$getValueExpr)
names(out) <- NULL
out
})
if(length(unique(valueExprs)) != 1)
isIID <- FALSE
}
if(!isIID && length(tildeVars) == 2 && nimble:::checkNormalInvGammaConjugacy(model, clusterVarInfo, length(dcrpElements), 'dinvgamma'))
isIID <- TRUE
if(!isIID && length(tildeVars) == 2 && nimble:::checkNormalInvGammaConjugacy(model, clusterVarInfo, length(dcrpElements), 'dgamma'))
isIID <- TRUE
if(!isIID && length(tildeVars) == 2 && nimble:::checkNormalInvWishartConjugacy(model, clusterVarInfo, length(dcrpElements), 'dinvwish'))
isIID <- TRUE
if(!isIID && length(tildeVars) == 2 && nimble:::checkNormalInvWishartConjugacy(model, clusterVarInfo, length(dcrpElements), 'dwish'))
isIID <- TRUE
if(!isIID) stop('sampleDPmeasure: cluster parameters have to be independent and identically distributed. \n')
counts <- tildeVars %in% mvSavedVars
if( sum(counts) != length(tildeVars) )
stop('sampleDPmeasure: The node(s) representing the cluster variables must be monitored in the MCMC (and therefore stored in the modelValues object).\n')
parentNodesTildeVars <- NULL
candidateParentNodes <- model$getNodeNames(includeData = FALSE, stochOnly = TRUE)
candidateParentNodes <- candidateParentNodes[!candidateParentNodes %in% unlist(clusterVarInfo$clusterNodes)]
for(i in seq_along(candidateParentNodes)) {
aux <- model$getDependencies(candidateParentNodes[i], self = FALSE)
for(j in seq_along(tildeVars)) {
if(sum(aux == clusterVarInfo$clusterNodes[[j]][1]))
parentNodesTildeVars <- c(parentNodesTildeVars, candidateParentNodes[i])
}
}
if(length(parentNodesTildeVars)) {
parentNodesTildeVarsDeps <- model$getDependencies(parentNodesTildeVars, self = FALSE)
} else parentNodesTildeVarsDeps <- NULL
parentNodesTildeVarsDeps <- model$topologicallySortNodes(c(parentNodesTildeVarsDeps, unlist(clusterVarInfo$clusterNodes)))
if(!all(model$getVarNames(nodes = parentNodesTildeVars) %in% mvSavedVars))
stop('sampleDPmeasure: The stochastic parent nodes of the cluster variables have to be monitored in the MCMC (and therefore stored in the modelValues object).\n')
if(is.null(parentNodesTildeVars)) parentNodesTildeVars <- tildeVars
parentNodesXi <- NULL
candidateParentNodes <- model$getNodeNames(includeData = FALSE, stochOnly = TRUE)
candidateParentNodes <- candidateParentNodes[!candidateParentNodes == dcrpNode]
for(i in seq_along(candidateParentNodes)) {
aux <- model$getDependencies(candidateParentNodes[i], self = FALSE)
if(sum(aux == dcrpNode)) {
parentNodesXi <- c(parentNodesXi, candidateParentNodes[i])
}
}
if(!all(model$getVarNames(nodes = parentNodesXi) %in% mvSavedVars))
stop('sampleDPmeasure: The stochastic parent nodes of the membership variables have to be monitored in the MCMC (and therefore stored in the modelValues object).\n')
if(is.null(parentNodesXi)) parentNodesXi <- dcrpNode
fixedConc <- TRUE
if(length(parentNodesXi)) {
fixedConc <- FALSE
parentNodesXiDeps <- model$getDependencies(parentNodesXi, self = FALSE)
parentNodesXiDeps <- parentNodesXiDeps[!parentNodesXiDeps == dcrpNode]
} else {
parentNodesXiDeps <- dcrpNode
}
dataNodes <- model$getDependencies(dcrpNode, stochOnly = TRUE, self = FALSE)
N <- length(model$expandNodeNames(dcrpNode, returnScalarComponents = TRUE))
p <- length(tildeVars)
lengthData <- length(model$expandNodeNames(dataNodes[1], returnScalarComponents = TRUE))
dimTildeVarsNim <- numeric(p+1)
dimTildeVars <- numeric(p+1)
for(i in 1:p) {
dimTildeVarsNim[i] <- model$getDimension(clusterVarInfo$clusterNodes[[i]][1])
dimTildeVars[i] <- lengthData^(dimTildeVarsNim[i])
}
nTildeVarsPerCluster <- clusterVarInfo$numNodesPerCluster
nTilde <- numeric(p+1)
nTilde[1:p] <- clusterVarInfo$nTilde / nTildeVarsPerCluster
if(any(nTilde[1:p] != nTilde[1])){
stop('sampleDPmeasure: All cluster parameters must have the same number of parameters.\n')
}
tildeVarsCols <- c(dimTildeVars[1:p]*nTildeVarsPerCluster, 0)
tildeVarsColsSum <- c(0, cumsum(tildeVarsCols))
mvIndexes <- matrix(0, nrow=nTilde[1], ncol=(sum(dimTildeVars[1:p]*nTildeVarsPerCluster)))
for(j in 1:p) {
tildeNodesModel <- model$expandNodeNames(clusterVarInfo$clusterVars[j], returnScalarComponents=TRUE)
allIndexes <- 1:length(tildeNodesModel)
for(l in 1:nTilde[1]) {
clusterID <- l
tildeNodesPerClusterID <- model$expandNodeNames(clusterVarInfo$clusterNodes[[j]][clusterVarInfo$clusterIDs[[j]] == clusterID], returnScalarComponents=TRUE)
aux <- match(tildeNodesModel, tildeNodesPerClusterID, nomatch = 0)
mvIndexes[l,(tildeVarsColsSum[j]+1):tildeVarsColsSum[j+1] ] <- which(aux != 0)
}
}
samples <- matrix(0, nrow = 1, ncol = 1)
truncG <- 0
niter <- 0
setupOutputs(lengthData, dcrpVar)
},
run=function(){
niter <<- getsize(mvSaved)
if( fixedConc ) {
concSamples <- nimNumeric(length = niter, value = model$getParam(dcrpNode, 'conc'))
} else {
concSamples <- numeric(niter)
for( iiter in 1:niter ) {
nimCopy(from = mvSaved, to = model, nodes = parentNodesXi, row=iiter)
model$calculate(parentNodesXiDeps)
concSamples[iiter] <- model$getParam(dcrpNode, 'conc')
}
}
dcrpAux <- mean(concSamples) + N
truncG <<- log(epsilon) / log(dcrpAux / (dcrpAux+1))
truncG <<- ceiling(truncG)
samples <<- matrix(0, nrow = niter, ncol = truncG*(tildeVarsColsSum[p+1]+1))
for(iiter in 1:niter){
checkInterrupt()
vaux <- rbeta(1, 1, concSamples[iiter] + N)
v1prod <- 1
samples[iiter, 1] <<- vaux
for(l1 in 2:truncG) {
v1prod <- v1prod * (1-vaux)
vaux <- rbeta(1, 1, concSamples[iiter] + N)
samples[iiter, l1] <<- vaux * v1prod
}
samples[iiter, 1:truncG] <<- samples[iiter, 1:truncG] / (1 - v1prod * (1-vaux))
probs <- nimNumeric(N)
uniqueValues <- matrix(0, nrow = N, ncol = tildeVarsColsSum[p+1])
xiiter <- mvSaved[dcrpVar, iiter]
range <- min(xiiter):max(xiiter)
index <- 1
for(i in seq_along(range)){
cond <- sum(xiiter == range[i])
if(cond > 0){
probs[index] <- cond
nimCopy(mvSaved, model, tildeVars, row = iiter)
for(j in 1:p){
jcols <- (tildeVarsColsSum[j]+1):tildeVarsColsSum[j+1]
uniqueValues[index, jcols] <- values(model, tildeVars[j])[mvIndexes[range[i], jcols]]
}
index <- index+1
}
}
probs[index] <- concSamples[iiter]
newValueIndex <- index
nimCopy(mvSaved, model, parentNodesTildeVars, row = iiter)
sumCol <- truncG
for(l1 in 1:truncG) {
index <- rcat(prob = probs[1:newValueIndex])
if(index == newValueIndex){
model$simulate(parentNodesTildeVarsDeps)
for(j in 1:p){
jcols <- (sumCol + 1):(sumCol + tildeVarsCols[j])
samples[iiter, jcols] <<- values(model, tildeVars[j])[mvIndexes[1, (tildeVarsColsSum[j]+1):tildeVarsColsSum[j+1]]]
sumCol <- sumCol + tildeVarsCols[j]
}
} else {
for(j in 1:p){
jcols <- (sumCol +1):(sumCol + tildeVarsCols[j])
samples[iiter, jcols] <<- uniqueValues[index, (tildeVarsColsSum[j]+1):tildeVarsColsSum[j+1]]
sumCol <- sumCol + tildeVarsCols[j]
}
}
}
}
},
methods = list( reset = function () {} )
)
test_that("Test computations (prior predictive and posterior) and sampler assignment for conjugate CRP samplers", {
set.seed(0)
code <- nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
y[i,j] ~ dnorm( mu[xi[i], j] , var = j/2)
mu[i, j] ~ dnorm(0.2*j, var=j)
}
}
xi[1:5] ~ dCRP(1, size=5)
})
inits <- list(xi = 1:5,
mu = matrix(rnorm(5*2, 0), nrow=5, ncol=2))
y <- matrix(rnorm(5*2, 10, 1), ncol=2, nrow=5)
y[4:5, ] <- rnorm(2*2, -10, 1)
data <- list(y=y)
model <- nimbleModel(code, data=data, inits=inits, dimensions=list(mu=c(5,2)), calculate=TRUE)
mConf <- configureMCMC(model, monitors = c('xi','mu'))
mcmc <- buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
pYgivenT <- sum(c(model$getLogProb('y[1, 1]'), model$getLogProb('y[1, 2]')))
pT <- sum(c(model$getLogProb('mu[1, 1]'), model$getLogProb('mu[1, 2]')))
dataVar <- c(model$getParam('y[1,1]', 'var') , model$getParam('y[1,2]', 'var') )
priorVar <- c(model$getParam('mu[1, 1]', 'var'), model$getParam('mu[1, 2]', 'var'))
priorMean <- c(model$getParam('mu[1, 1]', 'mean') , model$getParam('mu[1, 2]', 'mean'))
postVar <- 1 / (1 / dataVar + 1 / priorVar)
postMean <- postVar * (c(data$y[1, 1], data$y[1, 2]) / dataVar + priorMean / priorVar)
pTgivenY <- dnorm(model$mu[1, 1] , postMean[1], sqrt(postVar[1]), log = TRUE) + dnorm(model$mu[1, 2] , postMean[2], sqrt(postVar[2]), log = TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- rnorm(2 , postMean, sqrt(postVar))
expect_identical(smp, c(model$mu[1, 1], model$mu[1, 2]))
code=nimbleCode(
{
for(i in 1:5){
for(j in 1:2) {
mu[i, 1:2, j] ~ dmnorm(mu0[1:2, j], cov=Cov0[1:2, 1:2, j])
y[i, 1:2, j] ~ dmnorm(mu[xi[i], 1:2, j], cov=Sigma0[1:2, 1:2, j])
}
}
xi[1:5] ~ dCRP(conc=1, size=5)
}
)
mu <- array(0, c(5, 2, 2))
for(j in 1:2) {
mu[ , ,j] <- matrix(rnorm(5*2, 0, sqrt(0.01)), nrow=5, ncol=2)
}
y <- array(0, c(5, 2, 5))
for(i in 1:5) {
for(j in 1:2) {
y[i, ,j] <- rnorm(2, 5, sqrt(0.01))
}
}
mu0 <- matrix(rnorm(2*2), ncol=2, nrow=2)
Cov0 <- array(0, c(2, 2, 2))
Sigma0 <- array(0, c(2, 2, 2))
for(j in 1:2) {
Cov0[, , j] <- rinvwish_chol(1, chol(matrix(c(10, .7, .7, 10), 2)), 2)
Sigma0[, , j] <- rinvwish_chol(1, chol(matrix(c(1, .5, .5, 1), 2)), 2)
}
model = nimbleModel(code,
data = list(y = y),
inits = list(xi = 1:5, mu=mu),
constants=list(mu0 =mu0, Cov0 = Cov0, Sigma0 = Sigma0))
conf <- configureMCMC(model, monitors=c('xi', 'mu'))
mcmc <- buildMCMC(conf)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dmnorm_dmnorm")
pYgivenT <- sum(c(model$getLogProb('y[1, 1:2, 1]'), model$getLogProb('y[1, 1:2, 2]')))
pT <- sum(c(model$getLogProb('mu[1, 1:2, 1]'), model$getLogProb('mu[1, 1:2, 2]')))
dataCov <- list(model$getParam('y[1, 1:2, 1]', 'cov') , model$getParam('y[1, 1:2, 2]', 'cov') )
priorCov <- list(model$getParam('mu[1, 1:2, 1]', 'cov'), model$getParam('mu[1, 1:2, 2]', 'cov'))
priorMean <- list(model$getParam('mu[1, 1:2, 1]', 'mean') , model$getParam('mu[1, 1:2, 2]', 'mean'))
dataPrec <- list(inverse(dataCov[[1]]), inverse(dataCov[[2]]))
priorPrec <- list(inverse(priorCov[[1]]), inverse(priorCov[[2]]))
postPrecChol <- list(chol(dataPrec[[1]] + priorPrec[[1]]), chol(dataPrec[[2]] + priorPrec[[2]]))
postMean <- list(backsolve(postPrecChol[[1]], forwardsolve(t(postPrecChol[[1]]),
(dataPrec[[1]] %*% y[1, 1:2, 1] + priorPrec[[1]] %*% priorMean[[1]])[,1])),
backsolve(postPrecChol[[2]], forwardsolve(t(postPrecChol[[2]]),
(dataPrec[[2]] %*% y[1, 1:2, 2] + priorPrec[[2]] %*% priorMean[[2]])[,1])))
pTgivenY <- dmnorm_chol(model$mu[1, 1:2, 1], postMean[[1]], postPrecChol[[1]], prec_param = TRUE, log = TRUE) +
dmnorm_chol(model$mu[1, 1:2, 2], postMean[[2]], postPrecChol[[2]], prec_param = TRUE, log = TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp1 <- rmnorm_chol(1, postMean[[1]], postPrecChol[[1]], prec_param = TRUE)
smp2 <- rmnorm_chol(1, postMean[[2]], postPrecChol[[2]], prec_param = TRUE)
expect_identical(smp1, model$mu[1, 1:2, 1])
expect_identical(smp2, model$mu[1, 1:2, 2])
code <- nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
y[i,j] ~ dnorm( mu[i, j] , var = s2[xi[i], j])
s2[i, j] ~ dinvgamma(shape = 2*j, scale = 0.1*j)
}
}
xi[1:5] ~ dCRP(1, size=5)
})
inits <- list(xi = 1:5,
mu = matrix(rnorm(5*2, 0), nrow=5, ncol=2),
s2 = matrix(rinvgamma(5*2, 2, 0.1), nrow=5, ncol=2))
y <- matrix(rnorm(5*2, 10, 1), ncol=2, nrow=5)
y[4:5, ] <- rnorm(2*2, -10, 1)
data <- list(y=y)
model <- nimbleModel(code, data=data, inits=inits, dimensions=list(mu=c(5,2)), calculate=TRUE)
mConf <- configureMCMC(model, monitors = c('xi','s2'))
mcmc <- buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dinvgamma_dnorm")
pYgivenT <- sum(c(model$getLogProb('y[1, 1]'), model$getLogProb('y[1, 2]')))
pT <- sum(c(model$getLogProb('s2[1, 1]'), model$getLogProb('s2[1, 2]')))
dataMean <- c(model$getParam('y[1,1]', 'mean') , model$getParam('y[1,2]', 'mean') )
priorShape <- c(model$getParam('s2[1, 1]', 'shape'), model$getParam('s2[1, 2]', 'shape'))
priorScale <- c(model$getParam('s2[1, 1]', 'scale') , model$getParam('s2[1, 2]', 'scale'))
postShape <- priorShape + 0.5
postScale <- priorScale + 0.5 * (c(data$y[1, 1], data$y[1, 2]) - dataMean)^2
pTgivenY <- dinvgamma(model$s2[1, 1] , shape = postShape[1], scale = postScale[1], log = TRUE) +
dinvgamma(model$s2[1, 2] , shape = postShape[2], scale = postScale[2], log = TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- rinvgamma(2 , shape = postShape, scale = postScale)
expect_identical(smp, c(model$s2[1, 1], model$s2[1, 2]))
code <- nimbleCode({
xi[1:5] ~ dCRP(conc = 1, size = 5)
for(i in 1:5){
for(j in 1:2) {
Sigma[1:2, 1:2, i, j] ~ dinvwish(S = R0[1:2, 1:2, j], df = v0[j])
y[i, 1:2, j] ~ dmnorm(mu[i, 1:2, j], cov = Sigma[1:2, 1:2, xi[i], j] )
}
}
})
R0 <- array(0, c(2, 2, 2))
for(j in 1:2) {
R0[, , j] <- rinvwish_chol(1, chol(matrix(c(10, .7, .7, 10), 2)), 2)
}
Sigma <- array(0, c(2,2,5, 2))
for(i in 1:5){
for(j in 1:2) {
Sigma[, , i, j] <- rinvwish_chol(1, chol(matrix(c(1, .5, .5, 1), 2)), 2)
}
}
mu <- array(0, c(5, 2, 2))
for(j in 1:2) {
mu[ , ,j] <- matrix(rnorm(5*2, 0, sqrt(0.01)), nrow=5, ncol=2)
}
y <- array(0, c(5, 2, 2))
for(i in 1:5) {
for(j in 1:2) {
y[i, ,j] <- rnorm(2, 0, sqrt(0.01))
}
}
data = list(y = y)
inits = list(xi = 1:5, mu = mu, Sigma = Sigma)
Consts <- list(v0 = rpois(2, 5), R0 = R0)
model = nimbleModel(code, data=data, inits=inits, constants = Consts)
mConf = configureMCMC(model, monitors = c('xi', 'Sigma'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dinvwish_dmnorm")
dataMean <- list(model$getParam('y[1, 1:2, 1]', 'mean'), model$getParam('y[1, 1:2, 2]', 'mean'))
pYgivenT <- sum(model$getLogProb('y[1, 1:2, 1]'), model$getLogProb('y[1, 1:2, 2]'))
pT <- sum(model$getLogProb('Sigma[1:2, 1:2, 1, 1]'), model$getLogProb('Sigma[1:2, 1:2, 1, 2]'))
df0 <- c(model$getParam('Sigma[1:2, 1:2, 1, 1]', 'df'), model$getParam('Sigma[1:2, 1:2, 1, 2]', 'df'))
priorScale <- list(model$getParam('Sigma[1:2, 1:2, 1, 1]', 'S'), model$getParam('Sigma[1:2, 1:2, 1, 2]', 'S'))
pTgivenY <- dinvwish_chol(model$Sigma[1:2, 1:2, 1, 1],
chol(priorScale[[1]] + (data$y[1, 1:2, 1]-dataMean[[1]])%*%t(data$y[1, 1:2, 1]-dataMean[[1]])),
df = (df0[1]+1), scale_param=TRUE, log = TRUE) +
dinvwish_chol(model$Sigma[1:2, 1:2, 1, 2],
chol(priorScale[[2]] + (data$y[1, 1:2, 2]-dataMean[[2]])%*%t(data$y[1, 1:2, 2]-dataMean[[2]])),
df = (df0[2]+1), scale_param=TRUE, log = TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)[1]
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp1 <- list()
smp2 <- list()
smp1[[1]] <- rinvwish_chol(1, chol(priorScale[[1]] + (data$y[1, 1:2, 1]-dataMean[[1]])%*%t(data$y[1, 1:2, 1]-dataMean[[1]])),
df = (df0[1]+1), scale_param=TRUE )
smp1[[2]] <- rinvwish_chol(1, chol(priorScale[[2]] + (data$y[1, 1:2, 2]-dataMean[[2]])%*%t(data$y[1, 1:2, 2]-dataMean[[2]])),
df = (df0[2]+1), scale_param=TRUE )
expect_identical(smp1[[1]], model$Sigma[1:2, 1:2, 1, 1])
expect_identical(smp1[[2]], model$Sigma[1:2, 1:2, 1, 2])
code <- nimbleCode({
xi[1:5] ~ dCRP(conc = 1, size = 5)
for(i in 1:5){
for(j in 1:2) {
Sigma[1:2, 1:2, i, j] ~ dwish(R = R0[1:2, 1:2, j], df = v0[j])
y[i, 1:2, j] ~ dmnorm(mu[i, 1:2, j], prec = Sigma[1:2, 1:2, xi[i], j] )
}
}
})
R0 <- array(0, c(2, 2, 2))
for(j in 1:2) {
R0[, , j] <- rwish_chol(1, chol(matrix(c(10, .7, .7, 10), 2)), 2)
}
Sigma <- array(0, c(2,2,5, 2))
for(i in 1:5){
for(j in 1:2) {
Sigma[, , i, j] <- rwish_chol(1, chol(matrix(c(1, .5, .5, 1), 2)), 2)
}
}
mu <- array(0, c(5, 2, 2))
for(j in 1:2) {
mu[ , ,j] <- matrix(rnorm(5*2, 0, sqrt(0.01)), nrow=5, ncol=2)
}
y <- array(0, c(5, 2, 2))
for(i in 1:5) {
for(j in 1:2) {
y[i, ,j] <- rnorm(2, 0, sqrt(0.01))
}
}
data = list(y = y)
inits = list(xi = 1:5, mu = mu, Sigma = Sigma)
Consts <- list(v0 = rpois(2, 5), R0 = R0)
model = nimbleModel(code, data=data, inits=inits, constants = Consts)
mConf = configureMCMC(model, monitors = c('xi', 'Sigma'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dwish_dmnorm")
dataMean <- list(model$getParam('y[1, 1:2, 1]', 'mean'), model$getParam('y[1, 1:2, 2]', 'mean'))
pYgivenT <- sum(model$getLogProb('y[1, 1:2, 1]'), model$getLogProb('y[1, 1:2, 2]'))
pT <- sum(model$getLogProb('Sigma[1:2, 1:2, 1, 1]'), model$getLogProb('Sigma[1:2, 1:2, 1, 2]'))
df0 <- c(model$getParam('Sigma[1:2, 1:2, 1, 1]', 'df'), model$getParam('Sigma[1:2, 1:2, 1, 2]', 'df'))
priorScale <- list(model$getParam('Sigma[1:2, 1:2, 1, 1]', 'R'), model$getParam('Sigma[1:2, 1:2, 1, 2]', 'R'))
pTgivenY <- dwish_chol(model$Sigma[1:2, 1:2, 1, 1],
chol(priorScale[[1]] + (data$y[1, 1:2, 1]-dataMean[[1]])%*%t(data$y[1, 1:2, 1]-dataMean[[1]])),
df = (df0[1]+1), scale_param=FALSE, log = TRUE) +
dwish_chol(model$Sigma[1:2, 1:2, 1, 2],
chol(priorScale[[2]] + (data$y[1, 1:2, 2]-dataMean[[2]])%*%t(data$y[1, 1:2, 2]-dataMean[[2]])),
df = (df0[2]+1), scale_param=FALSE, log = TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)[1]
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp1 <- list()
smp2 <- list()
smp1[[1]] <- rwish_chol(1, chol(priorScale[[1]] + (data$y[1, 1:2, 1]-dataMean[[1]])%*%t(data$y[1, 1:2, 1]-dataMean[[1]])),
df = (df0[1]+1), scale_param=FALSE )
smp1[[2]] <- rwish_chol(1, chol(priorScale[[2]] + (data$y[1, 1:2, 2]-dataMean[[2]])%*%t(data$y[1, 1:2, 2]-dataMean[[2]])),
df = (df0[2]+1), scale_param=FALSE )
expect_identical(smp1[[1]], model$Sigma[1:2, 1:2, 1, 1])
expect_identical(smp1[[2]], model$Sigma[1:2, 1:2, 1, 2])
code = nimbleCode({
xi[1:5] ~ dCRP(conc=1, size=5)
for(i in 1:5) {
for(j in 1:2) {
mu[i, j] ~ dnorm(j, var = s2[i, j]/kappa[j])
s2[i, j] ~ dinvgamma(shape=j+1, scale=j)
y[i, j] ~ dnorm(mu[xi[i], j], var=s2[xi[i], j])
}
}
for(j in 1:2) {
kappa[j] <- 2+j
}
})
y <- matrix(rnorm(5*2, 10, 1), ncol=2, nrow=5)
y[4:5, ] <- rnorm(2*2, -10, 1)
data = list(y = y)
inits = list(xi = 1:5, mu=matrix(rnorm(5*2), ncol=2, nrow=5), s2=matrix(rinvgamma(5*2, 2, 1), ncol=2, nrow=5))
model = nimbleModel(code, data=data, inits=inits)
mConf = configureMCMC(model, monitors = c('xi','mu', 's2'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_invgamma_dnorm")
pYgivenT <- sum(model$getLogProb('y[1, 1]'), model$getLogProb('y[1, 2]'))
pT1 <- sum(model$getLogProb('mu[1,1]'), model$getLogProb('mu[1, 2]'))
pT2 <- sum(model$getLogProb('s2[1, 1]'), model$getLogProb('s2[1, 2]'))
priorMean <- c(model$getParam('mu[1, 1]', 'mean'), model$getParam('mu[1, 2]', 'mean'))
kappa <- c(values(model, 's2[1, 1]')[1]/model$getParam('mu[1, 1]', 'var'), values(model, 's2[1, 2]')[1]/model$getParam('mu[1, 2]', 'var'))
priorShape <- c(model$getParam('s2[1, 1]', 'shape'), model$getParam('s2[1, 2]', 'shape'))
priorScale <- c(model$getParam('s2[1, 1]', 'scale'), model$getParam('s2[1, 2]', 'scale'))
pTgivenY2 <- dinvgamma(model$s2[1, 1], shape = priorShape[1] + 1/2,
scale = priorScale[1] + kappa[1] * (data$y[1,1] - priorMean[1])^2 / (2*(1+kappa[1])),
log=TRUE) + dinvgamma(model$s2[1, 2], shape = priorShape[2] + 1/2,
scale = priorScale[2] + kappa[2] * (data$y[1,2] - priorMean[2])^2 / (2*(1+kappa[2])),
log=TRUE)
pTgivenY1 <- dnorm(model$mu[1, 1], mean = (kappa[1] * priorMean[1] + data$y[1, 1])/(1 + kappa[1]),
sd = sqrt(model$s2[1, 1] / (1+kappa[1])),
log=TRUE) + dnorm(model$mu[1, 2], mean = (kappa[2] * priorMean[2] + data$y[1, 2])/(1 + kappa[2]),
sd = sqrt(model$s2[1, 2] / (1+kappa[2])),
log=TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT1 + pT2 + pYgivenT - pTgivenY1 - pTgivenY2)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp1 <- rep(0,2)
smp2 <- rep(0,2)
smp1[1] <- rinvgamma(1, shape = priorShape[1] + 1/2,
scale = priorScale[1] + kappa[1] * (data$y[1,1] - priorMean[1])^2 / (2*(1+kappa[1])))
smp2[1] <- rnorm(1, mean = (kappa[1] * priorMean[1] + data$y[1,1])/(1 + kappa[1]),
sd = sqrt(smp1[1] / (1+kappa[1])))
smp1[2] <- rinvgamma(1, shape = priorShape[2] + 1/2,
scale = priorScale[2] + kappa[2] * (data$y[1,2] - priorMean[2])^2 / (2*(1+kappa[2])) )
smp2[2] <- rnorm(1, mean = (kappa[2] * priorMean[2] + data$y[1, 2])/(1 + kappa[2]),
sd = sqrt(smp1[2] / (1+kappa[2])))
expect_identical(smp1, c(model$s2[1, 1], model$s2[1, 2]))
expect_identical(smp2, c(model$mu[1, 1], model$mu[1, 2]) )
code = nimbleCode({
xi[1:5] ~ dCRP(conc=1, size=5)
for(i in 1:5) {
for(j in 1:2) {
mu[i, j] ~ dnorm(j, tau = s2[i, j]*kappa[j])
s2[i, j] ~ dgamma(shape=j+1, rate=j)
y[i, j] ~ dnorm(mu[xi[i], j], tau=s2[xi[i], j])
}
}
for(j in 1:2) {
kappa[j] <- 2+j
}
})
y <- matrix(rnorm(5*2, 10, 1), ncol=2, nrow=5)
y[4:5, ] <- rnorm(2*2, -10, 1)
data = list(y = y)
inits = list(xi = 1:5, mu=matrix(rnorm(5*2), ncol=2, nrow=5), s2=matrix(rgamma(5*2, 1, 2), ncol=2, nrow=5))
model = nimbleModel(code, data=data, inits=inits)
mConf = configureMCMC(model, monitors = c('xi','mu', 's2'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_gamma_dnorm")
pYgivenT <- sum(model$getLogProb('y[1, 1]'), model$getLogProb('y[1, 2]'))
pT1 <- sum(model$getLogProb('mu[1,1]'), model$getLogProb('mu[1, 2]'))
pT2 <- sum(model$getLogProb('s2[1, 1]'), model$getLogProb('s2[1, 2]'))
priorMean <- c(model$getParam('mu[1, 1]', 'mean'), model$getParam('mu[1, 2]', 'mean'))
kappa <- c(model$getParam('mu[1, 1]', 'tau') / values(model, 's2[1, 1]')[1], model$getParam('mu[1, 2]', 'tau') / values(model, 's2[1, 2]')[1])
priorShape <- c(model$getParam('s2[1, 1]', 'shape'), model$getParam('s2[1, 2]', 'shape'))
priorRate <- c(model$getParam('s2[1, 1]', 'rate'), model$getParam('s2[1, 2]', 'rate'))
pTgivenY2 <- dgamma(model$s2[1, 1], shape = priorShape[1] + 1/2,
rate = priorRate[1] + kappa[1] * (data$y[1,1] - priorMean[1])^2 / (2*(1+kappa[1])),
log=TRUE) + dgamma(model$s2[1, 2], shape = priorShape[2] + 1/2,
rate = priorRate[2] + kappa[2] * (data$y[1,2] - priorMean[2])^2 / (2*(1+kappa[2])),
log=TRUE)
pTgivenY1 <- dnorm(model$mu[1, 1], mean = (kappa[1] * priorMean[1] + data$y[1, 1])/(1 + kappa[1]),
sd = sqrt(1/(model$s2[1, 1] *(1+kappa[1]))),
log=TRUE) + dnorm(model$mu[1, 2], mean = (kappa[2] * priorMean[2] + data$y[1, 2])/(1 + kappa[2]),
sd = sqrt(1/(model$s2[1, 2] *(1+kappa[2]))),
log=TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT1 + pT2 + pYgivenT - pTgivenY1 - pTgivenY2)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp1 <- rep(0,2)
smp2 <- rep(0,2)
smp1[1] <- rgamma(1, shape = priorShape[1] + 1/2,
rate = priorRate[1] + kappa[1] * (data$y[1,1] - priorMean[1])^2 / (2*(1+kappa[1])))
smp2[1] <- rnorm(1, mean = (kappa[1] * priorMean[1] + data$y[1,1])/(1 + kappa[1]),
sd = sqrt(1 / (smp1[1]*(1+kappa[1]))))
smp1[2] <- rgamma(1, shape = priorShape[2] + 1/2,
rate = priorRate[2] + kappa[2] * (data$y[1,2] - priorMean[2])^2 / (2*(1+kappa[2])) )
smp2[2] <- rnorm(1, mean = (kappa[2] * priorMean[2] + data$y[1, 2])/(1 + kappa[2]),
sd = sqrt(1 / (smp1[2]*(1+kappa[2]))))
expect_identical(smp1, c(model$s2[1, 1], model$s2[1, 2]))
expect_identical(smp2, c(model$mu[1, 1], model$mu[1, 2]) )
code <- nimbleCode({
xi[1:5] ~ dCRP(conc = 1, size = 5)
for(i in 1:5){
for(j in 1:2) {
Sigma[1:2, 1:2, i, j] ~ dinvwish(S = R0[1:2, 1:2, j], df = v0[j])
SigmaAux[1:2, 1:2, i, j] <- Sigma[1:2, 1:2, i, j] / k0[j]
mu[i, 1:2, j] ~ dmnorm(mu0[1:2, j], cov = SigmaAux[1:2, 1:2, i, j] )
y[i, 1:2, j] ~ dmnorm(mu[xi[i], 1:2, j], cov = Sigma[1:2, 1:2, xi[i], j] )
}
}
})
R0 <- array(0, c(2, 2, 2))
for(j in 1:2) {
R0[, , j] <- rinvwish_chol(1, chol(matrix(c(10, .7, .7, 10), 2)), 2)
}
Sigma <- array(0, c(2,2,5, 2))
for(i in 1:5){
for(j in 1:2) {
Sigma[, , i, j] <- rinvwish_chol(1, chol(matrix(c(1, .5, .5, 1), 2)), 2)
}
}
mu <- array(0, c(5, 2, 2))
for(j in 1:2) {
mu[ , ,j] <- matrix(rnorm(5*2, 0, sqrt(0.01)), nrow=5, ncol=2)
}
y <- array(0, c(5, 2, 2))
for(i in 1:5) {
for(j in 1:2) {
y[i, ,j] <- rnorm(2, 0, sqrt(0.01))
}
}
data = list(y = y)
inits = list(xi = 1:5, mu = mu, Sigma = Sigma)
Consts <- list(mu0 = matrix(rnorm(4), ncol=2, nrow=2), v0 = rpois(2, 5),
k0 = rgamma(2, 1, 1),
R0 = R0)
model = nimbleModel(code, data=data, inits=inits, constants = Consts)
mConf = configureMCMC(model, monitors = c('xi','mu', 'Sigma'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dmnorm_invwish_dmnorm")
pYgivenT <- sum(model$getLogProb('y[1, 1:2, 1]'), model$getLogProb('y[1, 1:2, 2]'))
pT1 <- sum(model$getLogProb('mu[1,1:2, 1]'), model$getLogProb('mu[1, 1:2, 2]'))
pT2 <- sum(model$getLogProb('Sigma[1:2, 1:2, 1, 1]'), model$getLogProb('Sigma[1:2, 1:2, 1, 2]'))
priorMean <- list(model$getParam('mu[1, 1:2, 1]', 'mean'), model$getParam('mu[1, 1:2, 2]', 'mean'))
kappa <- c(values(model, 'Sigma[1:2, 1:2, 1, 1]')[1]/model$getParam('mu[1, 1:2, 1]', 'cov')[1, 1],
values(model, 'Sigma[1:2, 1:2, 1, 2]')[1]/model$getParam('mu[1, 1:2, 2]', 'cov')[1, 1])
df0 <- c(model$getParam('Sigma[1:2, 1:2, 1, 1]', 'df'), model$getParam('Sigma[1:2, 1:2, 1, 2]', 'df'))
priorScale <- list(model$getParam('Sigma[1:2, 1:2, 1, 1]', 'S'), model$getParam('Sigma[1:2, 1:2, 1, 2]', 'S'))
pTgivenY2 <- dinvwish_chol(model$Sigma[1:2, 1:2, 1, 1],
chol(priorScale[[1]] + (kappa[1]/(kappa[1]+1)) * (data$y[1, 1:2, 1]-priorMean[[1]])%*%t(data$y[1, 1:2, 1]-priorMean[[1]])),
df = (df0[1]+1), scale_param=TRUE, log = TRUE) +
dinvwish_chol(model$Sigma[1:2, 1:2, 1, 2],
chol(priorScale[[2]] + (kappa[2]/(kappa[2]+1)) * (data$y[1, 1:2, 2]-priorMean[[2]])%*%t(data$y[1, 1:2, 2]-priorMean[[2]])),
df = (df0[2]+1), scale_param=TRUE, log = TRUE)
pTgivenY1 <- dmnorm_chol(model$mu[1, 1:2, 1], mean = (kappa[1] * priorMean[[1]] + data$y[1, 1:2, 1])/(1 + kappa[1]),
chol( model$Sigma[1:2, 1:2, 1, 1] / (1+kappa[1]) ),
prec_param = FALSE, log = TRUE) +
dmnorm_chol(model$mu[1, 1:2, 2], mean = (kappa[2] * priorMean[[2]] + data$y[1, 1:2, 2])/(1 + kappa[2]),
chol( model$Sigma[1:2, 1:2, 1, 2] / (1+kappa[2]) ),
prec_param = FALSE, log = TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)[1]
expect_equal(pY, pT1 + pT2 + pYgivenT - pTgivenY1 - pTgivenY2)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp1 <- list()
smp2 <- list()
smp1[[1]] <- rinvwish_chol(1, chol(priorScale[[1]] + (kappa[1]/(kappa[1]+1)) * (data$y[1, 1:2, 1]-priorMean[[1]])%*%t(data$y[1, 1:2, 1]-priorMean[[1]])),
df = (df0[1]+1), scale_param=TRUE )
smp2[[1]] <- rmnorm_chol(1, mean = (kappa[1] * priorMean[[1]] + data$y[1, 1:2, 1])/(1 + kappa[1]),
chol( smp1[[1]] / (1+kappa[1]) ), prec_param = FALSE)
smp1[[2]] <- rinvwish_chol(1, chol(priorScale[[2]] + (kappa[2]/(kappa[2]+1)) * (data$y[1, 1:2, 2]-priorMean[[2]])%*%t(data$y[1, 1:2, 2]-priorMean[[2]])),
df = (df0[2]+1), scale_param=TRUE )
smp2[[2]] <- rmnorm_chol(1, mean = (kappa[2] * priorMean[[2]] + data$y[1, 1:2, 2])/(1 + kappa[2]),
chol( smp1[[2]] / (1+kappa[2]) ), prec_param = FALSE)
expect_identical(smp1[[1]], model$Sigma[1:2, 1:2, 1, 1])
expect_identical(smp1[[2]], model$Sigma[1:2, 1:2, 1, 2])
expect_identical(smp2[[1]], model$mu[1, 1:2, 1])
expect_identical(smp2[[2]], model$mu[1, 1:2, 2])
code <- nimbleCode({
xi[1:5] ~ dCRP(conc = 1, size = 5)
for(i in 1:5){
for(j in 1:2) {
Sigma[1:2, 1:2, i, j] ~ dwish(R = R0[1:2, 1:2, j], df = v0[j])
SigmaAux[1:2, 1:2, i, j] <- Sigma[1:2, 1:2, i, j] * k0[j]
mu[i, 1:2, j] ~ dmnorm(mu0[1:2, j], prec = SigmaAux[1:2, 1:2, i, j] )
y[i, 1:2, j] ~ dmnorm(mu[xi[i], 1:2, j], prec = Sigma[1:2, 1:2, xi[i], j] )
}
}
})
R0 <- array(0, c(2, 2, 2))
for(j in 1:2) {
R0[, , j] <- rwish_chol(1, chol(matrix(c(10, .7, .7, 10), 2)), 2)
}
Sigma <- array(0, c(2,2,5, 2))
for(i in 1:5){
for(j in 1:2) {
Sigma[, , i, j] <- rwish_chol(1, chol(matrix(c(1, .5, .5, 1), 2)), 2)
}
}
mu <- array(0, c(5, 2, 2))
for(j in 1:2) {
mu[ , ,j] <- matrix(rnorm(5*2, 0, sqrt(0.01)), nrow=5, ncol=2)
}
y <- array(0, c(5, 2, 2))
for(i in 1:5) {
for(j in 1:2) {
y[i, ,j] <- rnorm(2, 0, sqrt(0.01))
}
}
data = list(y = y)
inits = list(xi = 1:5, mu = mu, Sigma = Sigma)
Consts <- list(mu0 = matrix(rnorm(4), ncol=2, nrow=2), v0 = rpois(2, 5),
k0 = rgamma(2, 1, 1),
R0 = R0)
model = nimbleModel(code, data=data, inits=inits, constants = Consts)
mConf = configureMCMC(model, monitors = c('xi','mu', 'Sigma'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dmnorm_wish_dmnorm")
pYgivenT <- sum(model$getLogProb('y[1, 1:2, 1]'), model$getLogProb('y[1, 1:2, 2]'))
pT1 <- sum(model$getLogProb('mu[1,1:2, 1]'), model$getLogProb('mu[1, 1:2, 2]'))
pT2 <- sum(model$getLogProb('Sigma[1:2, 1:2, 1, 1]'), model$getLogProb('Sigma[1:2, 1:2, 1, 2]'))
priorMean <- list(model$getParam('mu[1, 1:2, 1]', 'mean'), model$getParam('mu[1, 1:2, 2]', 'mean'))
kappa <- c(model$getParam('mu[1, 1:2, 1]', 'prec')[1, 1]/values(model, 'Sigma[1:2, 1:2, 1, 1]')[1],
model$getParam('mu[1, 1:2, 2]', 'prec')[1, 1]/values(model, 'Sigma[1:2, 1:2, 1, 2]')[1])
df0 <- c(model$getParam('Sigma[1:2, 1:2, 1, 1]', 'df'), model$getParam('Sigma[1:2, 1:2, 1, 2]', 'df'))
priorRate <- list(model$getParam('Sigma[1:2, 1:2, 1, 1]', 'R'), model$getParam('Sigma[1:2, 1:2, 1, 2]', 'R'))
pTgivenY2 <- dwish_chol(model$Sigma[1:2, 1:2, 1, 1],
chol(priorRate[[1]] + (kappa[1]/(kappa[1]+1)) * (data$y[1, 1:2, 1]-priorMean[[1]])%*%t(data$y[1, 1:2, 1]-priorMean[[1]])),
df = (df0[1]+1), scale_param=FALSE, log = TRUE) +
dwish_chol(model$Sigma[1:2, 1:2, 1, 2],
chol(priorRate[[2]] + (kappa[2]/(kappa[2]+1)) * (data$y[1, 1:2, 2]-priorMean[[2]])%*%t(data$y[1, 1:2, 2]-priorMean[[2]])),
df = (df0[2]+1), scale_param=FALSE, log = TRUE)
pTgivenY1 <- dmnorm_chol(model$mu[1, 1:2, 1], mean = (kappa[1] * priorMean[[1]] + data$y[1, 1:2, 1])/(1 + kappa[1]),
chol( model$Sigma[1:2, 1:2, 1, 1] * (1+kappa[1]) ),
prec_param = TRUE, log = TRUE) +
dmnorm_chol(model$mu[1, 1:2, 2], mean = (kappa[2] * priorMean[[2]] + data$y[1, 1:2, 2])/(1 + kappa[2]),
chol( model$Sigma[1:2, 1:2, 1, 2] * (1+kappa[2]) ),
prec_param = TRUE, log = TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)[1]
expect_equal(pY, pT1 + pT2 + pYgivenT - pTgivenY1 - pTgivenY2)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp1 <- list()
smp2 <- list()
smp1[[1]] <- rwish_chol(1, chol(priorRate[[1]] + (kappa[1]/(kappa[1]+1)) * (data$y[1, 1:2, 1]-priorMean[[1]])%*%t(data$y[1, 1:2, 1]-priorMean[[1]])),
df = (df0[1]+1), scale_param=FALSE )
smp2[[1]] <- rmnorm_chol(1, mean = (kappa[1] * priorMean[[1]] + data$y[1, 1:2, 1])/(1 + kappa[1]),
chol( smp1[[1]] * (1+kappa[1]) ), prec_param = TRUE)
smp1[[2]] <- rwish_chol(1, chol(priorRate[[2]] + (kappa[2]/(kappa[2]+1)) * (data$y[1, 1:2, 2]-priorMean[[2]])%*%t(data$y[1, 1:2, 2]-priorMean[[2]])),
df = (df0[2]+1), scale_param=FALSE )
smp2[[2]] <- rmnorm_chol(1, mean = (kappa[2] * priorMean[[2]] + data$y[1, 1:2, 2])/(1 + kappa[2]),
chol( smp1[[2]] * (1+kappa[2]) ), prec_param = TRUE)
expect_identical(smp1[[1]], model$Sigma[1:2, 1:2, 1, 1])
expect_identical(smp1[[2]], model$Sigma[1:2, 1:2, 1, 2])
expect_identical(smp2[[1]], model$mu[1, 1:2, 1])
expect_identical(smp2[[2]], model$mu[1, 1:2, 2])
code <- nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
y[i,j] ~ dnorm( mu[i, j] , tau = s2[xi[i], j])
s2[i, j] ~ dgamma(shape = j, rate = j+1)
}
}
xi[1:5] ~ dCRP(1, size=5)
})
inits <- list(xi = 1:5,
mu = matrix(rnorm(5*2, 0), nrow=5, ncol=2),
s2 = matrix(rgamma(5*2, 0.1, rate=1), nrow=5, ncol=2))
y <- matrix(rnorm(5*2, 10, 1), ncol=2, nrow=5)
data <- list(y=y)
model <- nimbleModel(code, data=data, inits=inits, dimensions=list(mu=c(5,2)), calculate=TRUE)
mConf <- configureMCMC(model, monitors = c('xi','s2'))
mcmc <- buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dgamma_dnorm")
pYgivenT <- sum(c(model$getLogProb('y[1, 1]'), model$getLogProb('y[1, 2]')))
pT <- sum(c(model$getLogProb('s2[1, 1]'), model$getLogProb('s2[1, 2]')))
dataMean <- c(model$getParam('y[1,1]', 'mean') , model$getParam('y[1,2]', 'mean') )
priorShape <- c(model$getParam('s2[1, 1]', 'shape'), model$getParam('s2[1, 2]', 'shape'))
priorRate <- c(model$getParam('s2[1, 1]', 'rate') , model$getParam('s2[1, 2]', 'rate'))
postShape <- priorShape + 0.5
postRate <- priorRate + 0.5 * (c(data$y[1, 1], data$y[1, 2]) - dataMean)^2
pTgivenY <- dgamma(model$s2[1, 1] , shape = postShape[1], rate = postRate[1], log = TRUE) +
dgamma(model$s2[1, 2] , shape = postShape[2], rate = postRate[2], log = TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- rgamma(2 , shape = postShape, rate = postRate)
expect_identical(smp, c(model$s2[1, 1], model$s2[1, 2]))
code = nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
mu[i, j] ~ dbeta(1+j,j)
y[i, j] ~ dbern(mu[xi[i], j])
}
}
xi[1:5] ~ dCRP(conc=1, size=5)
})
y = matrix(rbinom(10, size=1, prob=0.1), ncol=2, nrow=5)
y[4:5, ] <- rbinom(4, size=1, prob=0.9)
data = list(y=y)
inits = list(xi = 1:5, mu=matrix(rbeta(10, 1, 1), ncol=2, nrow=5))
m = nimbleModel(code, data=data, inits = inits)
mConf = configureMCMC(m, monitors = c('xi','mu'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dbeta_dbern")
pYgivenT <- sum(m$getLogProb('y[1, 1]'), m$getLogProb('y[1, 2]'))
pT <- sum(m$getLogProb('mu[1, 1]'), m$getLogProb('mu[1, 2]'))
priorShape1 <- c(m$getParam('mu[1, 1]', 'shape1'), m$getParam('mu[1, 2]', 'shape1'))
priorShape2 <- c(m$getParam('mu[1, 1]', 'shape2'), m$getParam('mu[1, 2]', 'shape2'))
pTgivenY <- dbeta(m$mu[1, 1], shape1=priorShape1[1]+data$y[1, 1], shape2=priorShape2[1]+1-data$y[1, 1], log=TRUE) +
dbeta(m$mu[1, 2], shape1=priorShape1[2]+data$y[1, 2], shape2=priorShape2[2]+1-data$y[1, 2], log=TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- c(rbeta(1 , shape1=priorShape1[1]+data$y[1, 1], shape2=priorShape2[1]+1-data$y[1, 1]),
rbeta(1 , shape1=priorShape1[2]+data$y[1, 2], shape2=priorShape2[2]+1-data$y[1, 2]) )
expect_identical(smp, c(m$mu[1, 1], m$mu[1, 2]))
code = nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
mu[i, j] ~ dbeta(j,5+j)
y[i, j] ~ dbinom(size=10, prob=mu[xi[i], j])
}
}
xi[1:5] ~ dCRP(conc=1, size=5)
})
y = matrix(rbinom(10, size=10, prob=0.1), ncol=2, nrow=5)
data = list(y=y)
inits = list(xi = 1:5, mu=matrix(rbeta(10, 1, 1), ncol=2, nrow=5))
m = nimbleModel(code, data=data, inits = inits)
mConf = configureMCMC(m, monitors = c('xi','mu'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dbeta_dbin")
pYgivenT <- sum(m$getLogProb('y[1, 1]'), m$getLogProb('y[1, 2]'))
pT <- sum(m$getLogProb('mu[1, 1]'), m$getLogProb('mu[1, 2]'))
priorShape1 <- c(m$getParam('mu[1, 1]', 'shape1'), m$getParam('mu[1, 2]', 'shape1'))
priorShape2 <- c(m$getParam('mu[1, 1]', 'shape2'), m$getParam('mu[1, 2]', 'shape2'))
dataSize <- c(m$getParam('y[1, 1]', 'size'), m$getParam('y[1, 2]', 'size'))
pTgivenY <- dbeta(m$mu[1, 1], shape1=priorShape1[1]+data$y[1, 1], shape2=priorShape2[1]+dataSize[1]-data$y[1, 1], log=TRUE)+
dbeta(m$mu[1, 2], shape1=priorShape1[2]+data$y[1, 2], shape2=priorShape2[2]+dataSize[2]-data$y[1, 2], log=TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- c(rbeta(1 , shape1=priorShape1[1]+data$y[1, 1], shape2=priorShape2[1]+dataSize[1]-data$y[1, 1]),
rbeta(1 , shape1=priorShape1[2]+data$y[1, 2], shape2=priorShape2[2]+dataSize[2]-data$y[1, 2]) )
expect_identical(smp, c(m$mu[1, 1], m$mu[1, 2]))
code = nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
mu[i, j] ~ dbeta(j,j+1)
y[i, j] ~ dnegbin(size=10, prob=mu[xi[i], j])
}
}
xi[1:5] ~ dCRP(conc=1, size=5)
})
y = matrix(rnbinom(10, size=10, prob=0.1), ncol=2, nrow=5)
data = list(y=y)
inits = list(xi = 1:5, mu=matrix(rbeta(10, 1, 1), ncol=2, nrow=5))
m = nimbleModel(code, data=data, inits= inits)
mConf = configureMCMC(m, monitors = c('xi','mu'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dbeta_dnegbin")
pYgivenT <- sum(m$getLogProb('y[1, 1]'), m$getLogProb('y[1, 2]'))
pT <- sum(m$getLogProb('mu[1, 1]'), m$getLogProb('mu[1, 2]'))
priorShape1 <- c(m$getParam('mu[1, 1]', 'shape1'), m$getParam('mu[1, 2]', 'shape1'))
priorShape2 <- c(m$getParam('mu[1, 1]', 'shape2'), m$getParam('mu[1, 2]', 'shape2'))
dataSize <- c(m$getParam('y[1, 1]', 'size'), m$getParam('y[1, 2]', 'size'))
pTgivenY <- dbeta(m$mu[1, 1], shape1=priorShape1[1]+dataSize[1], shape2=priorShape2[1]+data$y[1, 1], log=TRUE) +
dbeta(m$mu[1, 2], shape1=priorShape1[2]+dataSize[2], shape2=priorShape2[2]+data$y[1, 2], log=TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- c(rbeta(1 , shape1=priorShape1[1]+dataSize[1], shape2=priorShape2[1]+data$y[1, 1]),
rbeta(1 , shape1=priorShape1[2]+dataSize[2], shape2=priorShape2[2]+data$y[1, 2]))
expect_identical(smp, c(m$mu[1, 1], m$mu[1, 2]) )
code = nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
mu[i, j] ~ dgamma(j,j+1)
y[i, j] ~ dpois(mu[xi[i], j])
}
}
xi[1:5] ~ dCRP(conc=1, size=5)
})
y = matrix(rpois(10, 1), ncol=2, nrow=5)
data = list(y=y)
inits = list(xi = 1:5, mu=matrix(rgamma(10, 1, 5), ncol=2, nrow=5))
m = nimbleModel(code, data=data, inits= inits)
cm<-compileNimble(m)
mConf = configureMCMC(m, monitors=c('mu', 'xi'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dgamma_dpois")
pYgivenT <- sum(m$getLogProb('y[1, 1]'), m$getLogProb('y[1, 2]'))
pT <- sum(m$getLogProb('mu[1, 1]'), m$getLogProb('mu[1, 2]'))
priorShape <- c(m$getParam('mu[1, 1]', 'shape'), m$getParam('mu[1, 2]', 'shape'))
priorRate <- c(m$getParam('mu[1, 1]', 'rate'), m$getParam('mu[1, 2]', 'rate'))
pTgivenY <- dgamma(m$mu[1, 1], shape = priorShape[1] + data$y[1, 1], rate = priorRate[1] + 1, log=TRUE) +
dgamma(m$mu[1, 2], shape = priorShape[2] + data$y[1, 2], rate = priorRate[2] + 1, log=TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- c(rgamma(1 , shape = priorShape[1] + data$y[1, 1], rate = priorRate[1] + 1),
rgamma(1 , shape = priorShape[2] + data$y[1, 2], rate = priorRate[2] + 1))
expect_identical(smp, c(m$mu[1, 1], m$mu[1, 2]))
code = nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
mu[i, j] ~ dgamma(j,j+1)
y[i, j] ~ dexp(mu[xi[i], j])
}
}
xi[1:5] ~ dCRP(conc=1, size=5)
})
y = matrix(rexp(10, 1), ncol=2, nrow=5)
data = list(y=y)
inits = list(xi = 1:5, mu=matrix(rgamma(10, 1, 1), ncol=2, nrow=5))
m = nimbleModel(code, data=data, inits= inits)
mConf = configureMCMC(m, monitors = c('xi','mu'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dgamma_dexp")
pYgivenT <- sum(m$getLogProb('y[1, 1]'),m$getLogProb('y[1, 2]'))
pT <- sum(m$getLogProb('mu[1, 1]'), m$getLogProb('mu[1, 2]'))
priorShape <- c(m$getParam('mu[1, 1]', 'shape'), m$getParam('mu[1, 2]', 'shape'))
priorRate <- c(m$getParam('mu[1, 1]', 'rate'), m$getParam('mu[1, 2]', 'rate'))
pTgivenY <- dgamma(m$mu[1,1], shape=priorShape[1]+1, rate=priorRate[1]+data$y[1, 1], log=TRUE)+
dgamma(m$mu[1, 2], shape=priorShape[2]+1, rate=priorRate[2]+data$y[1, 2], log=TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- c(rgamma(1, shape=priorShape[1]+1, rate=priorRate[1]+data$y[1, 1]),
rgamma(1, shape=priorShape[2]+1, rate=priorRate[2]+data$y[1, 2]))
expect_identical(smp, c(m$mu[1, 1], m$mu[1, 2]))
code = nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
mu[i, j] ~ dgamma(j, rate = j+1)
y[i, j] ~ dgamma(4, rate = mu[xi[i], j])
}
}
xi[1:5] ~ dCRP(conc=1, size=5)
})
y = matrix(rgamma(10, 4, 4), ncol=2, nrow=5)
data = list(y = y)
inits = list(xi = 1:5, mu=matrix(rgamma(10, 1, 5), ncol=2, nrow=5))
m = nimbleModel(code, data=data, inits= inits)
mConf = configureMCMC(m, monitors = c('xi','mu'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dgamma_dgamma")
pYgivenT <- sum(m$getLogProb('y[1, 1]'), m$getLogProb('y[1, 2]'))
pT <- sum(m$getLogProb('mu[1, 1]'), m$getLogProb('mu[1, 2]'))
priorShape <- c(m$getParam('mu[1, 1]', 'shape'), m$getParam('mu[1, 2]', 'shape'))
priorRate <- c(m$getParam('mu[1, 1]', 'rate'), m$getParam('mu[1, 2]', 'rate'))
dataShape <- c(m$getParam('y[1, 1]', 'shape'), m$getParam('y[1, 2]', 'shape'))
pTgivenY <- dgamma(m$mu[1, 1], shape=dataShape[1]+priorShape[1], rate=priorRate[1]+data$y[1, 1], log=TRUE) +
dgamma(m$mu[1, 2], shape=dataShape[2]+priorShape[2], rate=priorRate[2]+data$y[1, 2], log=TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- c(rgamma(1, shape=dataShape[1]+priorShape[1], rate=priorRate[1]+data$y[1, 1]),
rgamma(1, shape=dataShape[2]+priorShape[2], rate=priorRate[2]+data$y[1, 2]))
expect_identical(smp, c(m$mu[1, 1], m$mu[1, 2]))
code = nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
mu[i, j] ~ dgamma(j, 5+j)
y[i, j] ~ dweib(shape=4*j, lambda = mu[xi[i], j])
}
}
xi[1:5] ~ dCRP(conc=1, size=5)
})
y <- matrix(rweibull(10, 4, 4), ncol=2, nrow=5)
data = list(y = y)
inits = list(xi = 1:5, mu=matrix(rgamma(10, 1, 5), ncol=2, nrow=5))
m = nimbleModel(code, data=data, inits= inits)
mConf = configureMCMC(m, monitors=list('xi', 'mu'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dgamma_dweib")
pYgivenT <- sum(m$getLogProb('y[1, 1]'), m$getLogProb('y[1, 2]'))
pT <- sum(m$getLogProb('mu[1, 1]'), m$getLogProb('mu[1, 2]'))
priorShape <- c(m$getParam('mu[1, 1]', 'shape'), m$getParam('mu[1, 2]', 'shape'))
priorRate <- c(m$getParam('mu[1, 1]', 'rate'), m$getParam('mu[1, 2]', 'rate'))
dataShape <- c(m$getParam('y[1, 1]', 'shape'), m$getParam('y[1, 2]', 'shape'))
pTgivenY <- dgamma(m$mu[1, 1], shape=1+priorShape[1], rate=priorRate[1]+data$y[1,1]^dataShape[1], log=TRUE) +
dgamma(m$mu[1, 2], shape=1+priorShape[2], rate=priorRate[2]+data$y[1, 2]^dataShape[2], log=TRUE)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- c(rgamma(1, shape=1+priorShape[1], rate=priorRate[1]+data$y[1, 1]^dataShape[1]),
rgamma(1, shape=1+priorShape[2], rate=priorRate[2]+data$y[1, 2]^dataShape[2]))
expect_identical(smp, c(m$mu[1, 1], m$mu[1, 2]))
code = nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
mu[i, j] ~ dgamma(j, rate=5+j)
y[i, j] ~ dinvgamma(shape=4*j, scale = mu[xi[i], j])
}
}
xi[1:5] ~ dCRP(conc=1, size=5)
})
y <- matrix(rinvgamma(10, 4, 3), ncol=2, nrow=5)
data = list(y = y)
inits = list(xi = 1:5, mu=matrix(rgamma(10, 1, 5), ncol=2, nrow=5))
m = nimbleModel(code, data=data, inits= inits)
mConf = configureMCMC(m, monitors = list('xi', 'mu'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dgamma_dinvgamma")
pYgivenT <- sum(m$getLogProb('y[1, 1]'), m$getLogProb('y[1, 2]'))
pT <- sum(m$getLogProb('mu[1, 1]'), m$getLogProb('mu[1, 2]'))
priorShape <- c(m$getParam('mu[1, 1]', 'shape'), m$getParam('mu[1, 2]', 'shape'))
priorRate <- c(m$getParam('mu[1, 1]', 'rate'), m$getParam('mu[1, 2]', 'rate'))
dataShape <- c(m$getParam('y[1, 1]', 'shape'), m$getParam('y[1, 2]', 'shape'))
pTgivenY <- dgamma(m$mu[1, 1], shape=dataShape[1]+priorShape[1], rate=priorRate[1]+1/data$y[1, 1], log=TRUE)+
dgamma(m$mu[1, 2], shape=dataShape[2]+priorShape[2], rate=priorRate[2]+1/data$y[1, 2], log=TRUE)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- c(rgamma(1, shape=dataShape[1]+priorShape[1], rate=priorRate[1]+1/data$y[1, 1]),
rgamma(1, shape=dataShape[2]+priorShape[2], rate=priorRate[2]+1/data$y[1, 2]))
expect_identical(smp, c(m$mu[1, 1], m$mu[1, 2]))
code=nimbleCode(
{
for(i in 1:5){
for(j in 1:2) {
p[i, 1:3, j] ~ ddirch(alpha=alpha0[1:3, j])
y[i, 1:3, j] ~ dmulti(prob=p[xi[i], 1:3, j], size=3)
}
}
xi[1:5] ~ dCRP(conc=1, size=5)
}
)
alpha0 <- matrix(rgamma(3*2, 1, 1), ncol=2, nrow=3)
p <- array(0, c(5, 3, 2))
for(i in 1:5) {
for(j in 1:2) {
p[i, , j] <- rdirch(1, c(1, 1, 1))
}
}
y <- array(0, c(5, 3, 2))
for(i in 1:5){
for(j in 1:2) {
y[i, , j] = rmulti(1, prob=c(0.01,0.01,0.98), size=3)
}
}
data = list(y = y)
m = nimbleModel(code,
data = data,
inits = list(xi = 1:5, p=p),
constants=list(alpha0 = alpha0))
mConf = configureMCMC(m, monitors = list('xi', 'p'))
mcmc = buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_ddirch_dmulti")
pYgivenT <- sum(m$getLogProb('y[1, 1:3, 1]'), m$getLogProb('y[1, 1:3, 2]'))
pT <- sum(m$getLogProb('p[1, 1:3, 1]'), m$getLogProb('p[1, 1:3, 2]'))
priorAlpha <- list(m$getParam('p[1, 1:3, 1]', 'alpha'), m$getParam('p[1, 1:3, 2]', 'alpha'))
pTgivenY <- ddirch(m$p[1,1:3, 1], alpha = priorAlpha[[1]]+data$y[1, 1:3, 1], log=TRUE) +
ddirch(m$p[1,1:3, 2], alpha = priorAlpha[[2]]+data$y[1, 1:3, 2], log=TRUE)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$storeParams()
pY <- mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY)
set.seed(1)
mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]]$sample(1, 1)
set.seed(1)
smp <- list(rdirch(1, alpha = priorAlpha[[1]]+data$y[1, 1:3, 1]),
rdirch(1, alpha = priorAlpha[[2]]+data$y[1, 1:3, 2]))
expect_identical(smp[[1]], m$p[1, 1:3, 1])
expect_identical(smp[[2]], m$p[1, 1:3, 2])
}
)
test_that("sampleDPmeasure: testing that required variables in MCMC modelValues are monitored", {
set.seed(1)
code <- nimbleCode({
xi[1:6] ~ dCRP(conc0, 6)
conc0 ~ dgamma(1, 1)
for(i in 1:6){
mu[i] ~ dnorm(0, 1)
y[i] ~ dnorm(mu[xi[i]], 1)
}
})
Inits <- list(xi = c(1,1,2,1,1,2), mu = 1:6, conc0 = 1)
Data <- list( y = rnorm(6))
m <- nimbleModel(code, data=Data, inits=Inits)
mConf <- configureMCMC(m)
mMCMC <- buildMCMC(mConf)
expect_error(getSamplesDPmeasure(mMCMC),
'sampleDPmeasure: The node having the dCRP distribution')
mConf <- configureMCMC(m, monitors = c('xi', 'conc0', 'mu'))
mMCMC <- buildMCMC(mConf)
expect_message(output <- runMCMC(mMCMC, niter=1))
expect_silent(output <- getSamplesDPmeasure(mMCMC))
code <- nimbleCode({
xi[1:6] ~ dCRP(1, 6)
mu0 ~ dnorm(0, 1)
s20 ~ dgamma(1, 1)
for(i in 1:6){
mu[i] ~ dnorm(mu0, s20)
y[i] ~ dnorm(mu[xi[i]], 1)
}
})
Inits <- list(xi = c(1,1,2,1,1,2), mu = 1:6, mu0 = 0, s20 = 1)
Data <- list( y = rnorm(6))
m <- nimbleModel(code, data=Data, inits=Inits)
mConf <- configureMCMC(m)
mMCMC <- buildMCMC(mConf)
expect_error(getSamplesDPmeasure(mMCMC),
'sampleDPmeasure: The node\\(s\\) representing the cluster variables')
mConf <- configureMCMC(m, monitors = c('mu', 'xi'))
mMCMC <- buildMCMC(mConf)
expect_error(getSamplesDPmeasure(mMCMC),
'sampleDPmeasure: The stochastic parent nodes')
mConf <- configureMCMC(m, monitors = c('mu', 'xi', 'mu0', 's20'))
mMCMC <- buildMCMC(mConf)
expect_message(output <- runMCMC(mMCMC, niter=1))
expect_silent(output <- getSamplesDPmeasure(mMCMC))
code <- nimbleCode({
xi[1:6] ~ dCRP(conc0, 6)
conc0 ~ dgamma(a, rate=b)
a ~ dgamma(1, rate=1)
b ~ dgamma(1, rate=0.1)
for(i in 1:6){
mu[i] ~ dnorm(0, 1)
y[i] ~ dnorm(mu[xi[i]], 1)
}
})
Inits <- list(xi = c(1,1,2,1,1,2), mu = 1:6, conc0 = 1, a = 1, b = 1)
Data <- list( y = rnorm(6))
m <- nimbleModel(code, data=Data, inits=Inits)
mConf <- configureMCMC(m, monitors = c('xi', 'mu'))
mMCMC <- buildMCMC(mConf)
expect_error(getSamplesDPmeasure(mMCMC),
'sampleDPmeasure: The stochastic parent nodes of the membership')
mConf <- configureMCMC(m, monitors = c('xi', 'mu', 'conc0'))
mMCMC <- buildMCMC(mConf)
expect_message(output <- runMCMC(mMCMC, niter=1))
outputG <- getSamplesDPmeasure(mMCMC)
code <- nimbleCode({
xi[1:6] ~ dCRP(conc0, 6)
conc0 <- a + b
a ~ dgamma(1, rate=1)
b <- d + 1
d ~ dgamma(1, 1)
for(i in 1:6){
mu[i] ~ dnorm(0, 1)
y[i] ~ dnorm(mu[xi[i]], 1)
}
})
Inits <- list(xi = c(1,1,2,1,1,2), mu = 1:6, a = 1,d=1, conc0=1)
Data <- list( y = rnorm(6))
m <- nimbleModel(code, data=Data, inits=Inits)
mConf <- configureMCMC(m, monitors = c('xi', 'mu'))
mMCMC <- buildMCMC(mConf)
expect_error(getSamplesDPmeasure(mMCMC),
'sampleDPmeasure: The stochastic parent nodes of the membership')
mConf <- configureMCMC(m, monitors = c('xi', 'mu', 'conc0'))
mMCMC <- buildMCMC(mConf)
expect_error(getSamplesDPmeasure(mMCMC),
'sampleDPmeasure: The stochastic parent nodes of the membership')
mConf <- configureMCMC(m, monitors = c('xi', 'mu', 'a', 'b'))
mMCMC <- buildMCMC(mConf)
expect_error(getSamplesDPmeasure(mMCMC),
'sampleDPmeasure: The stochastic parent nodes of the membership')
mConf <- configureMCMC(m, monitors = c('xi', 'mu', 'a', 'b', 'd'))
mMCMC <- buildMCMC(mConf)
expect_message(output <- runMCMC(mMCMC, niter=1))
expect_silent(outputG <- getSamplesDPmeasure(mMCMC))
mConf <- configureMCMC(m, monitors = c('xi', 'mu', 'a', 'd'))
mMCMC <- buildMCMC(mConf)
expect_message(output <- runMCMC(mMCMC, niter=1))
expect_silent(outputG <- getSamplesDPmeasure(mMCMC))
})
test_that("check iid assumption in sampleDPmeasure", {
set.seed(1)
code <- nimbleCode({
for(i in 1:10){
muTilde[i] ~ dnorm(i, 1)
y[i] ~ dnorm(muTilde[xi[i]], 1)
}
xi[1:10] ~ dCRP(conc = 1, size=10)
})
Inits <- list( xi = sample(1:2, size=10, replace=TRUE),
muTilde = rep(1, 10))
Data <- list(y = c(rnorm(10, 0,1)))
m <- nimbleModel(code, data=Data, inits=Inits)
cm <- compileNimble(m)
mConf <- configureMCMC(m, monitors = c('muTilde','xi'))
mMCMC <- buildMCMC(mConf)
cMCMC <- compileNimble(mMCMC, project = m, showCompilerOutput = FALSE)
output <- runMCMC(cMCMC, niter=1, nburnin = 0, thin=1)
expect_error(samplesG <- getSamplesDPmeasure(cMCMC),
'sampleDPmeasure: cluster parameters have to be independent and identically')
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(m)
}
code=nimbleCode({
xi[1:3] ~ dCRP(1, size = 3)
thetatilde[1] ~ dnorm(0, 1)
thetatilde[2] ~ dt(0, 1, 1)
thetatilde[3] ~ dt(0, 1, 1)
s2tilde[1] ~ dinvgamma(2, 1)
s2tilde[2] ~ dgamma(1, 1)
s2tilde[3] ~ dgamma(1, 1)
for(i in 1:3){
y[i] ~ dnorm(thetatilde[xi[i]], var=s2tilde[xi[i]])
}
}
)
Inits <- list(xi = rep(1, 3), thetatilde=rep(0,3), s2tilde=rep(1,3))
Data <- list(y = rnorm(3,-5, 1))
m <- nimbleModel(code, data=Data, inits=Inits)
cm <- compileNimble(m)
mConf <- configureMCMC(m, monitors = c('thetatilde', 's2tilde', 'xi'))
expect_silent(mMCMC <- buildMCMC(mConf))
cMCMC <- compileNimble(mMCMC, project = m)
output <- cMCMC$run(1)
expect_error(getSamplesDPmeasure(cMCMC),
'sampleDPmeasure: cluster parameters have to be independent and identically')
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(m)
}
code=nimbleCode(
{
xi[1:10] ~ dCRP(1 , size=10)
thetatilde[1] ~ dnorm(0, 1)
thetatilde[2] ~ dt(0, 1, 1)
thetatilde[3] ~ dt(0, 1, 1)
for(i in 1:10){
y[i] ~ dnorm(thetatilde[xi[i]], var=1)
}
}
)
Inits=list(xi=rep(1, 10), thetatilde=rep(0,3))
Data=list(y=rnorm(10, 0,1))
m <- nimbleModel(code, data=Data, inits=Inits)
cm <- compileNimble(m)
mConf <- configureMCMC(m, monitors = c('thetatilde', 'xi'))
expect_warning(mMCMC <- buildMCMC(mConf))
cMCMC <- compileNimble(mMCMC, project = m)
cMCMC$run(1)
expect_error(getSamplesDPmeasure(cMCMC),
'sampleDPmeasure: cluster parameters have to be independent and identically')
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(m)
}
code=nimbleCode(
{
xi[1:10] ~ dCRP(1 , size=10)
thetatilde[1] ~ dnorm(0, 1)
thetatilde[2] ~ dt(0, 1, 1)
thetatilde[3] ~ dt(0, 1, 1)
s2tilde[1] ~ dinvgamma(2, 1)
s2tilde[2] ~ dgamma(1, 1)
s2tilde[3] ~ dgamma(1, 1)
for(i in 1:10){
y[i] ~ dnorm(thetatilde[xi[i]], var=s2tilde[xi[i]])
}
}
)
Inits=list(xi=rep(1, 10), thetatilde=rep(0,3), s2tilde=rep(1,3))
Data=list(y=rnorm(10, 0,1))
m <- nimbleModel(code, data=Data, inits=Inits)
cm <- compileNimble(m)
mConf <- configureMCMC(m, monitors = c('thetatilde', 's2tilde', 'xi'))
expect_warning(mMCMC <- buildMCMC(mConf))
cMCMC <- compileNimble(mMCMC, project = m)
cMCMC$run(1, reset=FALSE)
expect_error(getSamplesDPmeasure(cMCMC),
'sampleDPmeasure: cluster parameters have to be independent and identically')
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(m)
}
code=nimbleCode(
{
for(j in 1:3) {
for(i in 1:4){
muj[j, 1:2, i] <- (i+j)*mu0[1:2]
muTilde[j, 1:2, i] ~ dmnorm(muj[j, 1:2, i], cov=Cov0[1:2, 1:2])
y[j, 1:2, i] ~ dmnorm(muTilde[j, 1:2, xi[i]], cov=Sigma0[1:2, 1:2])
}
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
)
muTilde <- array(0, c(3, 2, 4))
for(j in 1:3) {
muTilde[ j, ,] <- matrix(0, nrow=4, ncol=2)
}
y <- array(0, c(3, 2, 4))
for(i in 1:2) {
for(j in 1:2) {
y[j, ,i] <- rnorm(2, 5, sqrt(0.01))
}
y[3, ,i] <- rnorm(2,10, sqrt(0.01))
}
for(i in 3:4) {
for(j in 1:2) {
y[j, ,i] <- rnorm(2, -5, sqrt(0.01))
}
y[3, ,i] <- rnorm(2, -10, sqrt(0.01))
}
m = nimbleModel(code,
data = list(y = y),
inits = list(xi = 1:4, muTilde=muTilde),
constants=list(mu0 = rep(0,2), Cov0 = diag(10, 2), Sigma0 = diag(1, 2)))
cmodel <- compileNimble(m)
conf <- configureMCMC(m, monitors=c('xi', 'muTilde'))
mcmc <- buildMCMC(conf)
cMCMC <- compileNimble(mcmc, project = m)
cMCMC$run(1)
expect_error(getSamplesDPmeasure(cMCMC),
'sampleDPmeasure: cluster parameters have to be independent and identically')
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(m)
}
})
test_that("check use of epsilon parameter in getSamplesDPmeasure", {
set.seed(1)
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(mu[i], 1)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n) {
muTilde[i] ~ dnorm(mu0, sd = sd0)
}
xi[1:n] ~ dCRP(alpha, size = n)
sd0 ~ dgamma(1, 1)
alpha ~ dgamma(1, 1)
mu0 ~ dnorm(0, var=10)
})
n <- 30
constants <- list(n = n)
data <- list(y = rnorm(n, 0, 1))
inits <- list(alpha = 1, mu0 = 0, sd0 = 5, xi = 1:n,
muTilde = rep(0,n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cmodel <- compileNimble(model)
conf <- configureMCMC(model, monitors = c('xi', 'muTilde', 'sd0', 'alpha', 'mu0'))
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project = model)
output <- runMCMC(cmcmc, niter=1, nburnin=0, thin=1 , inits=inits, setSeed=FALSE)
outputG <- getSamplesDPmeasure(cmcmc, setSeed = 1)
tr1 <- nrow(outputG[[1]])
outputG <- getSamplesDPmeasure(cmcmc, epsilon = 0.1, setSeed = 1)
tr2 <- nrow(outputG[[1]])
outputG <- getSamplesDPmeasure(cmcmc, epsilon = 0.00001, setSeed = 1)
tr3 <- nrow(outputG[[1]])
expect_true(tr1 > tr2,
info='getSamplesDPmeasure: truncation level for larger epsilon incorrectly computed')
expect_true(tr1 < tr3,
info='getSamplesDPmeasure: truncation level for smaller epsilon incorrectly computed')
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(model)
}
})
test_that("Test opening of new clusters in CRP sampler ", {
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(mu[i], 1)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n) {
muTilde[i] ~ dnorm(mu0, sd = sd0)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 20
constants <- list(n = n)
data <- list(y = c(50, rep(0, n-1)))
inits <- list(alpha = 1, mu0 = 0, sd0 = 5, xi = rep(1, n),
muTilde = c(0, -50, rep(0, n-2)))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cmodel <- compileNimble(model)
conf <- configureMCMC(model, monitors = c('xi', 'muTilde', 'sd0', 'alpha', 'mu0'))
conf$removeSamplers('muTilde')
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project = model)
set.seed(1)
output <- runMCMC(cmcmc, niter=1, nburnin=0, thin=1 , inits=inits, setSeed=FALSE)
expect_lt(abs(output[1, 'muTilde[2]'] - 50), 3, label = 'incorrect update of parameter for second cluster')
expect_identical(output[1, 'xi[1]'], c('xi[1]'=2), 'incorrect cluster for first obs')
expect_identical(output[1, 'muTilde[1]'], c('muTilde[1]'=0), 'incorrect update of parameter for first cluster')
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(model)
}
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ T(dnorm(mu[i], 1), -500, 500)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n) {
muTilde[i] ~ dnorm(mu0, sd = sd0)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 20
constants <- list(n = n)
data <- list(y = c(50, rep(0, n-1)))
inits <- list(alpha = 1, mu0 = 50, sd0 = 5, xi = rep(1, n),
muTilde = c(0, -50, rep(0, n-2)))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cmodel <- compileNimble(model)
conf <- configureMCMC(model, monitors = c('xi', 'muTilde', 'sd0', 'alpha', 'mu0'))
conf$removeSamplers('muTilde')
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project = model)
set.seed(1)
output <- runMCMC(cmcmc, niter=1, nburnin=0, thin=1 , inits=inits, setSeed=FALSE)
expect_true(output[1, 'muTilde[2]'] != -50, 'incorrect update of parameter for second cluster')
expect_identical(output[1, 'xi[1]'], c('xi[1]'=2), 'incorrect cluster for first obs')
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(model)
}
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ T(dnorm(mu[i], 1), -500, 500)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n) {
muTilde[i] ~ dnorm(mu0, sd = sd0)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 20
constants <- list(n = n)
data <- list(y = c(50, rep(0, n-1)))
inits <- list(alpha = 1, mu0 = -50, sd0 = 5, xi = rep(1, n),
muTilde = c(0, 50, rep(0, n-2)))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cmodel <- compileNimble(model)
conf <- configureMCMC(model, monitors = c('xi', 'muTilde', 'sd0', 'alpha', 'mu0'))
conf$removeSamplers('muTilde')
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project = model)
set.seed(1)
output <- runMCMC(cmcmc, niter=1, nburnin=0, thin=1 , inits=inits, setSeed=FALSE)
expect_true(output[1, 'muTilde[2]'] == 50, 'incorrect update of parameter for second cluster')
expect_identical(output[1, 'xi[1]'], c('xi[1]'=1), 'incorrect cluster for first obs')
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(model)
}
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ T(dnorm(mu[i], 1), -500, 500)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n) {
muTilde[i] ~ dnorm(mu0, sd = sd0)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 20
constants <- list(n = n)
data <- list(y = c(50, rep(0, n-1)))
inits <- list(alpha = 1, mu0 = -50, sd0 = 5, xi = rep(1, n),
muTilde = c(0, -50, rep(0, n-2)))
inits$xi[1] <- 2
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cmodel <- compileNimble(model)
conf <- configureMCMC(model, monitors = c('xi', 'muTilde', 'sd0', 'alpha', 'mu0'))
conf$removeSamplers('muTilde')
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project = model)
set.seed(1)
output <- runMCMC(cmcmc, niter=1, nburnin=0, thin=1 , inits=inits, setSeed=FALSE)
expect_true(output[1, 'muTilde[2]'] == -50, 'incorrect update of parameter for second cluster')
expect_identical(output[1, 'xi[1]'], c('xi[1]'=1), 'incorrect cluster for first obs')
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(model)
}
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ T(dnorm(mu[i], 1), -500, 500)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n) {
muTilde[i] ~ dnorm(mu0, sd = sd0)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 20
constants <- list(n = n)
data <- list(y = c(50, rep(0, n-1)))
inits <- list(alpha = 1, mu0 = 50, sd0 = 5, xi = rep(1, n),
muTilde = c(0, -50, rep(0, n-2)))
inits$xi[1] <- 2
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cmodel <- compileNimble(model)
conf <- configureMCMC(model, monitors = c('xi', 'muTilde', 'sd0', 'alpha', 'mu0'))
conf$removeSamplers('muTilde')
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project = model)
set.seed(1)
output <- runMCMC(cmcmc, niter=1, nburnin=0, thin=1 , inits=inits, setSeed=FALSE)
expect_lt(abs(output[1, 'muTilde[2]'] - 50), 5,
label = 'incorrect update of parameter for second cluster')
expect_identical(output[1, 'xi[1]'], c('xi[1]'=2), 'incorrect cluster for first obs')
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(model)
}
})
test_that("Test reset frunction in CRP sampler ", {
set.seed(1)
code=nimbleCode(
{
xi[1:10] ~ dCRP(1 , size=10)
for(i in 1:2)
thetatilde[i] ~ dnorm(0, 1)
for(i in 1:10){
y[i] ~ dnorm(thetatilde[xi[i]], var=1)
}
}
)
Inits=list(xi=rep(1, 10), thetatilde=rep(0,2))
Data=list(y=c(rnorm(3,-5, 1), rnorm(3,5, 1), rnorm(4, 0,1)))
m <- nimbleModel(code, data=Data, inits=Inits)
cm <- compileNimble(m)
mConf <- configureMCMC(m, monitors = c('thetatilde', 'xi'))
expect_warning(mMCMC <- buildMCMC(mConf))
cMCMC <- compileNimble(mMCMC, project = m)
expect_output(cMCMC$run(1), info='CRP_sampler: This MCMC is for a parametric model')
cMCMC$run(1, reset=FALSE)
if(.Platform$OS.type != "windows") {
nimble:::clearCompiled(m)
}
})
test_that("Test that not nonparametric MCMC message in CRP sampler is printed", {
set.seed(1)
code=nimbleCode(
{
xi[1:10] ~ dCRP(1 , size=10)
for(i in 1:2)
thetatilde[i] ~ dnorm(mean=0, var=10)
for(i in 1:10){
y[i] ~ dnorm(thetatilde[xi[i]], var=1)
}
}
)
Inits=list(xi=rep(1, 10),
thetatilde=c(0,0))
Data=list(y=c(rnorm(3,-5, 1), rnorm(4, 0, 1), rnorm(3,5,1)))
m <- nimbleModel(code, data=Data, inits=Inits)
cm <- compileNimble(m)
mConf <- configureMCMC(m, monitors = c('thetatilde', 'xi'))
expect_warning(mMCMC <- buildMCMC(mConf))
cMCMC <- compileNimble(mMCMC, project = m)
expect_output(out <- runMCMC(mcmc=cMCMC, niter=1, nburnin = 0, thin=1),
'CRP_sampler: This MCMC is for a parametric model.')
code=nimbleCode(
{
xi[1:10] ~ dCRP(conc0 , size=10)
conc0 ~ dgamma(1, 1)
for(i in 1:2)
thetatilde[i] ~ dnorm(mean=0, var=10)
for(i in 1:10){
y[i] ~ dnorm(thetatilde[xi[i]], var=1)
}
}
)
Inits=list(xi=rep(1, 10),
thetatilde=c(0,0), conc0=1)
Data=list(y=c(rnorm(3,-5, 1), rnorm(4, 0, 1), rnorm(3,5,1)))
m <- nimbleModel(code, data=Data, inits=Inits)
cm <- compileNimble(m)
mConf <- configureMCMC(m)
expect_warning(mMCMC <- buildMCMC(mConf))
cMCMC <- compileNimble(mMCMC, project = m)
expect_output(out <- runMCMC(mcmc=cMCMC, niter=1, nburnin = 0, thin=1),
'CRP_sampler: This MCMC is not for a proper model.')
code=nimbleCode(
{
xi[1:10] ~ dCRP(1 , size=10)
for(i in 1:5)
thetatilde[i] ~ dnorm(mean=0, var=10)
for(i in 1:10){
y[i] ~ dnorm(thetatilde[xi[i]], var=1)
}
}
)
Inits=list(xi=rep(1:5, 2),
thetatilde=rep(0,5))
Data=list(y=c(rnorm(3,-5, 1), rnorm(4, 0, 1), rnorm(3,5,1)))
m <- nimbleModel(code, data=Data, inits=Inits)
cm <- compileNimble(m)
mConf <- configureMCMC(m, monitors = c('thetatilde', 'xi'))
expect_warning(mMCMC <- buildMCMC(mConf))
cMCMC <- compileNimble(mMCMC, project = m)
expect_output(out <- runMCMC(cMCMC, niter=1, nburnin = 0, thin=1),
'CRP_sampler: This MCMC is for a parametric model.')
code=nimbleCode(
{
xi[1:10] ~ dCRP(1 , size=10)
for(i in 1:5)
thetatilde[i] ~ dt(0,1,1)
for(i in 1:10){
y[i] ~ dnorm(thetatilde[xi[i]], var=1)
}
}
)
Inits=list(xi=rep(1:5, 2),
thetatilde=rep(0,5))
Data=list(y=c(rnorm(3,-5, 1), rnorm(4, 0, 1), rnorm(3,5,1)))
m <- nimbleModel(code, data=Data, inits=Inits)
cm <- compileNimble(m)
mConf <- configureMCMC(m, monitors = c('thetatilde', 'xi'))
expect_warning(mMCMC <- buildMCMC(mConf))
cMCMC <- compileNimble(mMCMC, project = m)
expect_output(out <- runMCMC(cMCMC, niter=1, nburnin = 0, thin=1),
'CRP_sampler: This MCMC is for a parametric model.')
code=nimbleCode(
{
xi[1:10] ~ dCRP(1 , size=10)
for(i in 1:10){
thetatilde[i] ~ dnorm(mean=0, var=10)
y[i] ~ dnorm(thetatilde[xi[i]], var=1)
}
}
)
Inits=list(xi=1:10,
thetatilde=rep(0,10))
Data=list(y=c(rnorm(3,-5, 1), rnorm(4, 0, 1), rnorm(3,5,1)))
m <- nimbleModel(code, data=Data, inits=Inits)
cm <- compileNimble(m)
mConf <- configureMCMC(m, monitors = c('thetatilde', 'xi'))
mMCMC <- buildMCMC(mConf)
cMCMC <- compileNimble(mMCMC, project = m)
expect_silent(out <- runMCMC(cMCMC, niter=1, nburnin = 0, thin=1))
code=nimbleCode(
{
for(i in 1:4){
p[i,1:3] ~ ddirch(alpha=alpha0[1:3])
y[i,1:3] ~ dmulti(prob=p[xi[i],1:3], size=3)
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
)
p0 <- matrix(0, ncol=3, nrow=4)
y0 <- matrix(0, ncol=3, nrow=4)
for(i in 1:4){
p0[i,]=rdirch(1, c(1, 1, 1))
y0[i,] = rmulti(1, prob=c(0.3,0.3,0.4), size=3)
}
m = nimbleModel(code,
data = list(y = y0),
inits = list(xi = 1:4, p=p0),
constants=list(alpha0 = c(1,1,1)))
conf <- configureMCMC(m, monitors=c('p', 'xi'))
mcmc <- buildMCMC(conf)
cm = compileNimble(m)
cmcmc=compileNimble(mcmc,project=m)
expect_silent(cmcmc$run(100))
})
test_that("Check error given when model has no cluster variables", {
set.seed(1)
code <- nimbleCode({
xi[1:6] ~ dCRP(conc0, 6)
conc0 ~ dgamma(1, 1)
for(i in 1:6){
y[i] ~ dnorm(xi[i], 1)
}
})
Inits <- list(xi = c(1,1,2,1,1,2), conc0 = 1)
Data <- list( y = rnorm(6))
m <- nimbleModel(code, data=Data, inits=Inits)
mConf <- configureMCMC(m)
expect_error(buildMCMC(mConf) ,
'sampler_CRP: Detected that the CRP variable is used in some way not as an index')
})
test_that("dCRP nimble function calculates density correctly",{
x <- c(1,1,2,1,1,2)
conc <- 1
truth <- (conc/(conc+1-1))*(1/(conc+2-1))*(conc/(conc+3-1))*
(2/(conc+4-1))*(3/(conc+5-1))*(1/(conc+6-1))
ltruth <- log(truth)
expect_equal(dCRP(x, conc, size=length(x), log=FALSE),
truth,
info = paste0("incorrect dCRP nimble function calculation"))
expect_equal(dCRP(x, conc, size=length(x), log=TRUE),
ltruth,
info = paste0("incorrect dCRP nimble function calculation in log scale"))
cdCRP <- compileNimble(dCRP)
expect_equal(cdCRP(x, conc, size=length(x)), (truth),
info = paste0("incorrect dCRP value in compiled nimble function"))
expect_equal(cdCRP(x, conc, size=length(x), log=TRUE), (ltruth),
info = paste0("incorrect dCRP value in compiled nimble function in log scale"))
expect_equal(dCRP(x, conc=-1, size=length(x), log=FALSE),
NaN,
info = paste0("incorrect parameters space allowed"))
expect_error(dCRP(x, conc=1, size=3, log=FALSE), "length of 'x' has to be equal to 'size'")
expect_error(dCRP(x, conc=1, size=10, log=FALSE), "length of 'x' has to be equal to 'size'")
})
test_that("CRP model calculation and dimensions are correct:", {
x <- c(1,1,2,1,1,2)
conc <- 1
truth <- (conc/(conc+1-1))*(1/(conc+2-1))*(conc/(conc+3-1))*
(2/(conc+4-1))*(3/(conc+5-1))*(1/(conc+6-1))
ltruth <- log(truth)
CRP_code <- nimbleCode({
x[1:6] ~ dCRP(conc, size=6)
})
Consts <- list(conc = 1)
Inits <- list(x = c(1,1,2,1,1,2))
CRP_model <- nimbleModel(CRP_code, data=Inits, constants=Consts)
CRP_model$x <- x
expect_equal(exp(CRP_model$calculate()), truth,
info = paste0("incorrect likelihood value for dCRP"))
c_CRP_model <- compileNimble(CRP_model)
c_CRP_model$x
expect_equal(exp(c_CRP_model$calculate()), truth,
info = paste0("incorrect likelihood value for compiled dCRP"))
CRP_code2 <- nimbleCode({
x[1:6] ~ dCRP(1, size=10)
})
Inits <- list(x = c(1,1,2,1,1,2))
CRP_model2 <- nimbleModel(CRP_code2, data=Inits)
expect_error(CRP_model2$calculate(), "length of 'x' has to be equal to 'size'")
CRP_code3 <- nimbleCode({
x[1:6] ~ dCRP(1, size=3)
})
Inits <- list(x = c(1,1,2,1,1,2))
CRP_model3 <- nimbleModel(CRP_code3, data=Inits)
expect_error(CRP_model3$calculate(), "length of 'x' has to be equal to 'size'")
})
test_that("random sampling from CRP in model with additional levels", {
conc <- 1
set.seed(0)
size <- 6
r_samps <- t(replicate(10000, rCRP(n = 1, conc, size = size)))
true_EK <- sum(conc/(conc+1:size-1))
expect_lt(abs(mean(apply(r_samps, 1, function(x)length(unique(x)))) - true_EK), 0.01,
label = "Difference in expected mean of K exceeds tolerance")
set.seed(1)
CRP_code <- nimbleCode({
x[1:6] ~ dCRP(conc=1, size=6)
for(i in 1:6){
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[x[i]], 1)
}
})
Inits <- list(x = c(1,1,2,1,1,2), mu = 1:6)
Data <- list( y = rnorm(6))
CRP_model <- nimbleModel(CRP_code, data=Data, inits=Inits)
c_CRP_model <- compileNimble(CRP_model)
simul_samp <- function(model) {
model$simulate()
return(model$x)
}
simul_samps <- t(replicate(10000, simul_samp(c_CRP_model)))
expect_lt(abs(mean(apply(simul_samps, 1, function(x)length(unique(x)))) - true_EK), 0.01,
label = "Difference in expected mean of K, from compiled model, exceeds tolerance")
})
test_that("Testing conjugacy detection with models using CRP", {
code = nimbleCode({
for(i in 1:4)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
for(i in 1:2){
mu[i] ~ dnorm(0,1)}
xi[1:4] ~ dCRP(conc=1, size=4)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu=rnorm(4)))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_warning(mcmc <- buildMCMC(conf), "sampler_CRP: The number of clusters based on the cluster parameters is less")
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dnorm(beta,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
xi[1:4] ~ dCRP(conc=1, size=4)
beta ~ dnorm(0,1)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu=rnorm(4), beta =1))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
mui[i] <- mu[xi[i]]
y[i] ~ dnorm(mui[i], sd = 1)
}
xi[1:4] ~ dCRP(conc=1, size=4)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu=rnorm(4)))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
code = nimbleCode({
for(i in 1:4) {
mui[i] <- mu[xi[i]]
y[i] ~ dnorm(mui[i], sd = 1)
}
for(i in 1:2){
mu[i] ~ dnorm(0,1)}
xi[1:4] ~ dCRP(conc=1, size=4)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu=rnorm(4)))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
code = nimbleCode({
for(i in 1:4) {
mu[i, 2] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i], 2], sd = 1)
}
xi[1:4] ~ dCRP(conc=1, size=4)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu=cbind(rnorm(4),rnorm(4))))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
code = nimbleCode({
for(i in 1:4) {
mu[2, i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[2, xi[i]], sd = 1)
}
xi[1:4] ~ dCRP(conc=1, size=4)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu=t(cbind(rnorm(4),rnorm(4)))))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dpois(10)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
xi[1:4] ~ dCRP(conc=1, size=4)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu=rpois(4, 10)))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
code = nimbleCode({
for(i in 1:4) {
s2tilde[i] ~ dinvgamma(a,b)
s2[i] <- lambda * s2tilde[xi[i]]
y[i] ~ dnorm(0, var = s2[i])
}
xi[1:4] ~ dCRP(conc=1, size=4)
lambda ~ dgamma(1, 1)
a ~ dgamma(1, 1)
b ~ dgamma(1, 1)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), s2=rinvgamma(4, 1,1), a=1, b=1, lambda=2))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
code <- nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
y[i,j] ~ dnorm( mu[xi[i], j] , var = 1)
mu[i, j] ~ dnorm(i+j, var=100)
}
}
xi[1:5] ~ dCRP(1, size=5)
})
inits <- list(xi = rep(1, 5),
mu = matrix(rnorm(5*2, 0), nrow=5, ncol=2))
y <- matrix(rnorm(5*2, 10, 1), ncol=2, nrow=5)
y[4:5, ] <- rnorm(2*2, -10, 1)
data <- list(y=y)
model <- nimbleModel(code, data=data, inits=inits, dimensions=list(mu=c(5,2)), calculate=TRUE)
mConf <- configureMCMC(model, monitors = c('xi','mu'))
mcmc <- buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
code <- nimbleCode({
for(i in 1:5) {
for(j in 1:2) {
y[i,j] ~ dnorm( mu[xi[i], j] , var = sigma2[xi[i], j])
mu[i, j] ~ dnorm(0, var=100)
sigma2[i, j] ~ dinvgamma(2, 1)
}
}
xi[1:5] ~ dCRP(1, size=5)
})
inits <- list(xi = rep(1, 5),
mu = matrix(rnorm(5*2), nrow=5, ncol=2),
sigma2 = matrix(rinvgamma(5*2, 2, 1), nrow=5, ncol=2))
y <- matrix(rnorm(5*2, 10, 1), ncol=2, nrow=5)
y[4:5, ] <- rnorm(2*2, -10, 1)
data <- list(y=y)
model <- nimbleModel(code, data=data, inits=inits, dimensions=list(mu=c(5,2), sigma2=c(5,2)), calculate=TRUE)
cmodel<-compileNimble(model)
mConf <- configureMCMC(model, monitors = c('xi','mu', 'sigma2'))
mcmc <- buildMCMC(mConf)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
code=nimbleCode(
{
for(i in 1:4){
p[1:3, i] ~ ddirch(alpha=alpha0[1:3])
y[i,1:3] ~ dmulti(prob=p[1:3, xi[i]], size=3)
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
)
set.seed(1)
p0 <- matrix(0, ncol=3, nrow=4)
y0 <- matrix(0, ncol=3, nrow=4)
for(i in 1:4){
p0[i,]=rdirch(1, c(1, 1, 1))
y0[i,] = rmulti(1, prob=c(0.3,0.3,0.4), size=3)
}
m = nimbleModel(code,
data = list(y = y0),
inits = list(xi = rep(1,4), p=t(p0)),
constants=list(alpha0 = c(1,1,1)))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc <- buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_ddirch_dmulti")
code=nimbleCode(
{
for(i in 1:4){
p[i, 2:4] ~ ddirch(alpha=alpha0[1:3])
y[i,1:3] ~ dmulti(prob=p[xi[i], 2:4], size=3)
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
)
set.seed(1)
p0 <- matrix(0, ncol=3, nrow=4)
y0 <- matrix(0, ncol=3, nrow=4)
for(i in 1:4){
p0[i,]=rdirch(1, c(1, 1, 1))
y0[i,] = rmulti(1, prob=c(0.3,0.3,0.4), size=3)
}
p0 <- cbind(rep(0, 4), p0)
m = nimbleModel(code,
data = list(y = y0),
inits = list(xi = rep(1,4), p=p0),
constants=list(alpha0 = c(1,1,1)))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc <- buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_ddirch_dmulti")
code = nimbleCode({
for(i in 1:4) {
s2[i] ~ dinvgamma(1, 1)
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], var = s2[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu=rnorm(4), s2=rinvgamma(4, 1,1)))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
code = nimbleCode({
for(i in 1:4) {
sigma[i] ~ dinvgamma(1, 1)
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], sd = sigma[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu = rnorm(4), sigma = rinvgamma(4, 1,1)))
conf <- configureMCMC(m)
mcmc=buildMCMC(conf)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
code = nimbleCode({
for(i in 1:4) {
s2[i] ~ dinvgamma(a,b)
mu[i] ~ dnorm(0, var = s2[i]/kappa)
y[i] ~ dnorm(mu[xi[i]], var = s2[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
kappa ~ dgamma(1, 1)
a ~ dgamma(1, 1)
b ~ dgamma(1, 1)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu=rnorm(4), s2=rinvgamma(4, 1,1), a=1, b=1, kappa=2))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(nimble:::checkCRPconjugacy(m, 'xi[1:4]'), "conjugate_dnorm_invgamma_dnorm")
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_invgamma_dnorm")
code = nimbleCode({
for(i in 1:4) {
s2Tilde[i] ~ dinvgamma(a,b)
s2[i] <- s2Tilde[xi[i]]
muTilde[i] ~ dnorm(0, var = s2Tilde[i]/kappa)
mu[i] <- muTilde[xi[i]]
y[i] ~ dnorm(mu[i], var = s2[i])
}
xi[1:4] ~ dCRP(conc=1, size=4)
kappa ~ dgamma(1, 1)
a ~ dgamma(1, 1)
b ~ dgamma(1, 1)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), muTilde=rnorm(4), s2Tilde=rinvgamma(4, 1,1), a=1, b=1, kappa=2))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(nimble:::checkCRPconjugacy(m, 'xi[1:4]'), "conjugate_dnorm_invgamma_dnorm")
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_invgamma_dnorm")
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dgamma(1,1)
mui[i] <- mu[xi[i]]
y[i] ~ dexp(mui[i])
}
xi[1:4] ~ dCRP(conc=1, size=4)
})
m = nimbleModel(code, data = list(y = rexp(4, 4)),
inits = list(xi = rep(1,4), mu=rgamma(4, 1, 1)))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dgamma_dexp")
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dgamma(1,1)
mui[i] <- mu[xi[i]]
y[i] ~ dexp(mui[i]+3)
}
xi[1:4] ~ dCRP(conc=1, size=4)
})
m = nimbleModel(code, data = list(y = rexp(4, 4)),
inits = list(xi = rep(1,4), mu=rgamma(4, 1, 1)))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dgamma(1,1)
mui[i] <- mu[xi[i]]
y[i] ~ dexp(3*mui[i])
}
xi[1:4] ~ dCRP(conc=1, size=4)
})
m = nimbleModel(code, data = list(y = rexp(4, 4)),
inits = list(xi = rep(1,4), mu=rgamma(4, 1, 1)))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
code = nimbleCode({
for(i in 1:4){
mu[i] <- muTilde[xi[i]]
y[i] ~ dnorm(mu[i], sd = 1)
muTilde[i] ~ dnorm(mu0[i], sd = s0)
mu0[i] ~ dnorm(0,1)
}
xi[1:4] ~ dCRP(1, 4)
s0 ~ dhalfflat()
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4)))
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
mcmc=buildMCMC(conf)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
})
test_that("Testing handling (including error detection) with non-standard CRP model specification",{
n <- 20
const <- list(n = n)
inits <- list(xi = rep(1,n), muTilde = rnorm(n), conc = 1)
data <- list(y = rnorm(n))
tildeNames <- paste0("muTilde[", 1:n, "]")
target <- paste0("xi[1:", n, "]")
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n){
muTilde[i] ~ dnorm(0,1)
}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(TRUE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(n, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i], 2]
}
for(i in 1:n){muTilde[i, 2] ~ dnorm(0,1)}
})
inits2 <- inits
inits2$muTilde <- matrix(rnorm(n*2), n)
m <- nimbleModel(code, data = data, constants = const, inits = inits2)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", 1:n, ", 2]"))
expect_equal(TRUE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(2, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(n, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:(n-2)){muTilde[i] ~ dnorm(0,1)}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_warning(mcmc <- buildMCMC(conf), "less than the number of potential clusters")
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(TRUE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(n-2, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[b[i]]
}
for(j in 1:n)
b[j] <- xi[j]
for(i in 1:n)
muTilde[i] ~ dnorm(0,1)
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
expect_error(mcmc <- buildMCMC(conf), "Detected that the CRP variable is used in some way not as an index")
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(muTilde[2, xi[i]], var = 1)
}
for(i in 1:n)
{muTilde[2, i] ~ dnorm(0,1)}
})
inits2 <- inits
inits2$muTilde <- rbind(rnorm(n), rnorm(n))
m <- nimbleModel(code, data = data, constants = const, inits = inits2)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[2, ", 1:n, "]"))
expect_equal(2, clusterNodeInfo$numIndexes)
expect_equal(2, clusterNodeInfo$indexPosition)
expect_equal(TRUE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(muTilde[2, xi[i]], var = 1)
}
for(j in 1:2)
for(i in 1:n)
{muTilde[j, i] ~ dnorm(0,1)}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits2)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[2, ", 1:n, "]"))
expect_equal(2, clusterNodeInfo$numIndexes)
expect_equal(2, clusterNodeInfo$indexPosition)
expect_equal(TRUE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]+1]
}
for(i in 1:(n+1))
{muTilde[i] ~ dnorm(0,1)}
})
inits2$muTilde <- rnorm(n+1)
m <- nimbleModel(code, data = data, constants = const, inits = inits2)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", 2:(n+1), "]"))
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(FALSE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(n, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]+1]
}
for(i in 2:(n+1))
{muTilde[i] ~ dnorm(0,1)}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits2)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", 2:(n+1), "]"))
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(FALSE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(n, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[n-xi[i]+1]
}
for(i in 1:n)
{muTilde[i] ~ dnorm(0,1)}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", n:1, "]"))
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(FALSE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(n, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[n-i+1]]
}
for(i in 1:n)
{muTilde[i] ~ dnorm(0,1)}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
expect_error(conf <- configureMCMC(m), "findClusterNodes: Detected that a cluster parameter is indexed by a function")
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]+2]
}
for(i in 3:(n+2))
{muTilde[i] ~ dnorm(0,1)}
})
inits2$muTilde <- rnorm(n+2)
m <- nimbleModel(code, data = data, constants = const, inits = inits2)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", 3:(n+2), "]"))
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(FALSE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(n, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:(2*n))
{muTilde[i] ~ dnorm(0,1)}
})
inits2$muTilde <- rnorm(2*n)
m <- nimbleModel(code, data = data, constants = const, inits = inits2)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", 1:n, "]"))
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(TRUE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(n, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]]
}
for(i in 2:(n-2))
muTilde[i] ~ dnorm(0,1)
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
expect_warning(mcmc <- buildMCMC(conf), "sampler_CRP: The number of clusters based on the cluster parameters is less")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", 2:(n-2), "]"))
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(TRUE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(n-3, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]+1]
}
for(i in 2:(n-2))
{muTilde[i] ~ dnorm(0,1)}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_warning(mcmc <- buildMCMC(conf), "sampler_CRP: The number of clusters based on the cluster parameters is less")
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", 2:(n-2), "]"))
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(FALSE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(n-3, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n)
{muTilde[i] ~ dnorm(0, 1)}
z ~ dnorm(muTilde[1], 1)
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
expect_error(mcmc <- buildMCMC(conf), "Only the variables being clustered")
code=nimbleCode({
for(i in 1:10) {
muTilde[i] ~ dnorm(log(xi[1]), 1)
mu[i] <- muTilde[xi[i]]
y[i] ~ dnorm(mu[i], 1)
}
xi[1:10] ~ dCRP(1 , size=10)
})
Inits=list(xi=rep(1, 10), muTilde=rep(0,10))
Data=list(y=rnorm(10,0, 1))
m <- nimbleModel(code, data=Data, inits=Inits)
mConf <- configureMCMC(m)
expect_error(mcmc <- buildMCMC(mConf),
'sampler_CRP: Detected that the CRP variable is used in some way not as an index')
code=nimbleCode({
for(i in 1:10) {
muTilde[i] ~ dnorm(0, 1)
mu[i] <- muTilde[xi[i]]
y[i] ~ dnorm(mu[i], 1)
}
xi[1:10] ~ dCRP(1 , size=10)
tau ~ dnorm(muTilde[xi[1]], 1)
})
Inits=list(xi=rep(1, 10), muTilde=rep(0,10), tau=1)
Data=list(y=rnorm(10,0, 1))
m <- nimbleModel(code, data=Data, inits=Inits)
mConf <- configureMCMC(m)
expect_error(mcmc <- buildMCMC(mConf),
'sampler_CRP: Detected unusual indexing')
code <- nimbleCode({
xi[1:n] ~ dCRP(alpha, n)
for(i in 1:n){
mu[i] ~ dnorm(0, var = s2[i]/lambda)
s2[i] ~ dinvgamma(2, 1)
y[i] ~ dnorm(mu[xi[i]], var = s2[xi[i]])
x[i] ~ dnorm(mu[xi[i]], 1)
}
lambda ~ dgamma(1, 1)
alpha ~ dgamma(1, 1)
})
m <- nimbleModel(code, data=c(data, list(x = rnorm(n))), inits=inits, constants = const)
mConf <- configureMCMC(m)
mMCMC <- buildMCMC(mConf)
code <- nimbleCode({
xi[1:n] ~ dCRP(alpha, n)
for(i in 1:n){
mu[i] ~ dnorm(0, var = s2[i]/lambda)
s2[i] ~ dinvgamma(2, 1)
y[i] ~ dnorm(mu[xi[i]], var = s2[xi[i]])
}
for(i in 1:5)
x[i] ~ dnorm(mu[xi[i]], 1)
lambda ~ dgamma(1, 1)
alpha ~ dgamma(1, 1)
})
m <- nimbleModel(code, data=c(data, list(x = rnorm(5))), inits=inits, constants = const)
mConf <- configureMCMC(m)
expect_error(mMCMC <- buildMCMC(mConf), "sampler_CRP: Inconsistent indexing")
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n)
muTilde[i] ~ dnorm(0,1)
z ~ dnorm(muTilde[n+1], 1)
})
inits2$muTilde <- rnorm(n+1)
m <- nimbleModel(code, data = data, constants = const, inits = inits2)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", 1:n, "]"))
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(TRUE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(n, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n)
y[i] ~ dnorm(mu[i], var = 1)
for(i in 1:(n-2))
mu[i] <- muTilde[xi[i]]
for(j in (n-1):n)
mu[j] <- exp(muTilde[xi[j]])
for(i in 1:n)
muTilde[i] ~ dnorm(0, 1)
})
constSave <- const
const$n <- 4
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
expect_error(mcmc <- buildMCMC(conf), "differing number of clusters indicated by")
const <- constSave
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = s2[i])
mu[i] <- muTilde[xi[i]]
s2[i] ~ dgamma(1,1)
}
for(i in 1:n)
{muTilde[i] ~ dnorm(0,1)}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", 1:n, "]"))
expect_equal(TRUE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(n, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:(n/2)) {
y[i] ~ dnorm(mu[i], var = 1)
}
for(i in ((n/2)+1):n)
{y[i] ~ dnorm(mu[i], var = 1)}
for(i in 1:n)
{mu[i] <- muTilde[xi[i]]}
for(i in 1:n)
{muTilde[i] ~ dnorm(0,1)}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", 1:n, "]"))
expect_equal(TRUE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(n, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
y[1] ~ dnorm(mu[1], var = s2[1])
for(i in 2:n)
y[i] ~ dnorm(mu[i]+y[i-1], var = s2[i])
for(i in 1:n) {
mu[i] <- muTilde[xi[i]]
s2[i] ~ dgamma(1,1)
}
for(i in 1:n)
{muTilde[i] ~ dnorm(0,1)}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
expect_error(mcmc <- buildMCMC(conf), "Variables being clustered must be conditionally independent.")
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]]
}
muTilde[1] ~ dnorm(0, 1)
for(i in 2:n)
{muTilde[i] ~ dnorm(muTilde[i-1],1)}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: cluster parameters must be independent across clusters")
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:(n-1) )
{muTilde[i] ~ dnorm(mu0[i],1)}
muTilde[n] ~ dgamma(1,1)
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("muTilde[", 1:n, "]"))
expect_equal(TRUE, clusterNodeInfo$targetIsIndex)
expect_equal(FALSE, clusterNodeInfo$targetIndexedByFunction)
expect_equal(1, clusterNodeInfo$numIndexes)
expect_equal(1, clusterNodeInfo$indexPosition)
expect_equal(n, clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc + muTilde[1], n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n)
{muTilde[i] ~ dnorm(0,1)}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
expect_error(mcmc <- buildMCMC(conf), "Only the variables being clustered can depend")
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = 1)
mu[i] <- muTilde[xi[i]]
tmp[i] ~ dnorm(0,1)
}
for(i in 1:n)
muTilde[i] ~ dnorm(tmp[xi[i]],1)
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
expect_error(mcmc <- buildMCMC(conf), "Only the variables being clustered can depend")
inits$s2Tilde <- rep(1, n)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = s2Tilde[xi[i]])
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n) {
muTilde[i] ~ dnorm(0, var = s2Tilde[i])
s2Tilde[i] ~ dinvgamma(1,1)
}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_invgamma_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[2]], paste0("muTilde[", 1:n, "]"))
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("s2Tilde[", 1:n, "]"))
expect_equal(c(1,1), clusterNodeInfo$numIndexes)
expect_equal(c(1,1), clusterNodeInfo$indexPosition)
expect_equal(rep(TRUE, 2), clusterNodeInfo$targetIsIndex)
expect_equal(rep(FALSE, 2), clusterNodeInfo$targetIndexedByFunction)
expect_equal(rep(n,2), clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = s2Tilde[xi[i]])
mu[i] <- muTilde[xi[i]]
}
kappa ~ dgamma(1,1)
for(i in 1:n)
muTilde[i] ~ dnorm(0, var = s2Tilde[i]/kappa)
for(i in 1:(n-1))
s2Tilde[i] ~ dinvgamma(1,1)
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: In a model with multiple cluster parameters, the number")
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = s2Tilde[xi[i]])
mu[i] <- muTilde[xi[i]]
}
kappa ~ dgamma(1,1)
for(i in 1:(n-1)) {
muTilde[i] ~ dnorm(0,var = s2Tilde[i]/kappa)
s2Tilde[i] ~ dinvgamma(1,1)
}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_warning(mcmc <- buildMCMC(conf), "less than the number of potential clusters")
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_invgamma_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[2]], paste0("muTilde[", 1:(n-1), "]"))
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("s2Tilde[", 1:(n-1), "]"))
expect_equal(c(1,1), clusterNodeInfo$numIndexes)
expect_equal(c(1,1), clusterNodeInfo$indexPosition)
expect_equal(rep(TRUE, 2), clusterNodeInfo$targetIsIndex)
expect_equal(rep(FALSE, 2), clusterNodeInfo$targetIndexedByFunction)
expect_equal(c(n-1, n-1), clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = s2Tilde[xi[i]])
mu[i] <- muTilde[xi[i],xi[i]]
}
for(i in 1:n) {
for(j in 1:n)
{muTilde[i,j] ~ dnorm(0,var=s2Tilde[i]/3)}
s2Tilde[i] ~ dinvgamma(1,1)
}
})
inits2 <- inits
inits2$muTilde <- matrix(rnorm(n^2),n)
m <- nimbleModel(code, data = data, constants = const, inits = inits2)
expect_error(conf <- configureMCMC(m), "CRP variable used multiple times")
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = s2Tilde[n-xi[i]+1])
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n) {
muTilde[i] ~ dnorm(0,var=s2Tilde[n-i+1]/3)
s2Tilde[i] ~ dinvgamma(1,1)
}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_invgamma_dnorm")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[2]], paste0("muTilde[", 1:n, "]"))
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("s2Tilde[", n:1, "]"))
expect_equal(c(1,1), clusterNodeInfo$numIndexes)
expect_equal(c(1,1), clusterNodeInfo$indexPosition)
expect_equal(c(FALSE, TRUE), clusterNodeInfo$targetIsIndex)
expect_equal(rep(FALSE, 2), clusterNodeInfo$targetIndexedByFunction)
expect_equal(rep(n,2), clusterNodeInfo$nTilde)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(mu[i], var = s2Tilde[n-xi[i]+1])
mu[i] <- muTilde[xi[i]]
}
for(i in 1:n) {
muTilde[i] ~ dnorm(0,var=s2Tilde[i]/3)
s2Tilde[i] ~ dinvgamma(1,1)
}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: cluster parameters must be independent across clusters")
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
y[i] ~ dnorm(muTilde[xi[i]], var = exp(s2Tilde[xi[i]]))
}
for(i in 1:n) {
muTilde[i] ~ dnorm(0,1)
s2Tilde[i] ~ dgamma(1,1)
}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
conf <- configureMCMC(m)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
clusterNodeInfo <- nimble:::findClusterNodes(m, target)
expect_equal(clusterNodeInfo$clusterNodes[[2]], paste0("muTilde[", 1:n, "]"))
expect_equal(clusterNodeInfo$clusterNodes[[1]], paste0("s2Tilde[", 1:n, "]"))
expect_equal(c(1,1), clusterNodeInfo$numIndexes)
expect_equal(c(1,1), clusterNodeInfo$indexPosition)
expect_equal(rep(TRUE, 2), clusterNodeInfo$targetIsIndex)
expect_equal(rep(FALSE, 2), clusterNodeInfo$targetIndexedByFunction)
expect_equal(rep(n,2), clusterNodeInfo$nTilde)
data$y <- matrix(rnorm(n^2), n)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
for(j in 1:n)
y[i,j] ~ dnorm(muTilde[xi[i]], var = s2Tilde[xi[j]])
}
for(i in 1:n) {
muTilde[i] ~ dnorm(0,1)
s2Tilde[i] ~ dinvgamma(1,1)
}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
expect_error(conf <- configureMCMC(m), "findClusterNodes: found cluster membership parameters that use different indexing variables")
inits$muTilde <- matrix(rnorm(n^2), n)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc, n)
for(i in 1:n) {
for(j in 1:n)
{y[i,j] ~ dnorm(muTilde[xi[i],xi[j]], var = s2Tilde[xi[i]])}
}
for(i in 1:n) {
for(j in 1:n)
{muTilde[i,j] ~ dnorm(0,1)}
s2Tilde[i] ~ dinvgamma(1,1)
}
})
m <- nimbleModel(code, data = data, constants = const, inits = inits)
expect_error(conf <- configureMCMC(m), "CRP variable used multiple times in")
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], 1)
thetaTilde[i, j] ~ dnorm(0, 1)
}}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
expect_identical(cn$clusterNodes[[1]], c(matrix(model$expandNodeNames('thetaTilde'), J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, each = J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], 1)
}}
for(i in 1:n2) {
for(j in 1:J) {
thetaTilde[i, j] ~ dnorm(0, 1)
}}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
n2 <- 4
J <- 3
constants <- list(n = n, n2 = n2, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n2), n2, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
expect_identical(cn$clusterNodes[[1]], c(matrix(model$expandNodeNames('thetaTilde'), J, n2, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_warning(mcmc <- buildMCMC(conf), "is less than the number of potential")
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n2*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n2, each = J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(theta[i, j], 1)
theta[i, j] <- thetaTilde[xi[i], j]
}}
for(i in 1:n2)
for(j in 1:J)
thetaTilde[i, j] ~ dnorm(0, 1)
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
n2 <- 4
J <- 3
constants <- list(n = n, n2 = n2, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
nodes <- nodes[nodes %in% model$getNodeNames()]
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n2, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_warning(mcmc <- buildMCMC(conf), "is less than the number of potential")
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(J))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n2*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n2, each = J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[j, i] ~ dnorm(thetaTilde[j, xi[i]], 1)
thetaTilde[j, i] ~ dnorm(0, 1)
}}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),J,n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), J, n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
expect_identical(cn$clusterNodes[[1]], model$expandNodeNames('thetaTilde'))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, each = J))
code <- nimbleCode({
for(j in 1:J) {
for(i in 1:n) {
y[j, i] ~ dnorm(thetaTilde[j, xi[i]], 1)
thetaTilde[j, i] ~ dnorm(0, 1)
}}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),J,n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), J, n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
expect_identical(cn$clusterNodes[[1]], model$expandNodeNames('thetaTilde'))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[j, i] ~ dnorm(theta[j, i], 1)
theta[j, i] <- thetaTilde[xi[i], j]
thetaTilde[i, j] ~ dnorm(0, 1)
}}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),J,n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(J))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, each = J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i]+1, j], 1)
}}
for(i in 2:(n+1)) {
for(j in 1:J) {
thetaTilde[i, j] ~ dnorm(0, 1)
}}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*(n+1)), n+1, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n+1, byrow = TRUE)[,-1]))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, each = J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(theta[i, j], 1)
theta[i,j] <- thetaTilde[xi[i]+1, j]
}}
for(i in 2:(n+1)) {
for(j in 1:J) {
thetaTilde[i, j] ~ dnorm(0, 1)
}}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*(n+1)), n+1, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n+1, byrow = TRUE)[,-1]))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(J))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, each = J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i]], 1)
}
thetaTilde[i] ~ dnorm(0, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
expect_identical(cn$clusterNodes[[1]], model$expandNodeNames('thetaTilde'))
expect_identical(cn$numNodesPerCluster, 1L)
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(thetaTilde[xi[i]], s2tilde[xi[i]])
s2tilde[i] ~ dunif(0, 10)
}
for(i in 1:n2)
thetaTilde[i] ~ dnorm(0, 1)
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
n2 <- 4
J <- 3
constants <- list(n = n, n2 = n2, J = J)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n2), s2tilde = runif(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: In a model with multiple cluster parameters")
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(thetaTilde[xi[i]], s2tilde[xi[i]+1])
s2tilde[i] ~ dunif(0, 10)
thetaTilde[i] ~ dnorm(0, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n), s2tilde = runif(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: In a model with multiple cluster parameters")
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(theta[i], sd = sigma[i])
theta[i] <- thetaTilde[xi[i]]
sigma[i] <- sigmaTilde[xi[i]]
sigmaTilde[i] <- 1 / tauTilde[i]
thetaTilde[i] ~ dnorm(mu, var = sigmaTilde[i])
tauTilde[i] ~ dgamma(a, b)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 2
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n), tauTilde = rgamma(n, 1, 1))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "findClusterNodes: detected that deterministic nodes are being clustered")
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J)
y[i,j] ~ dnorm(thetaTilde[xi[i],j], 1)
thetaTilde[i, 1:J] ~ dmnorm(mn[1:J], iden[1:J,1:J])
}
mn[1:J] <- mu*ones[1:J]
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J),
iden = diag(3), mu = 0)
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, 1L)
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:2) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], 1)
}
thetaTilde[i, 1] ~ dnorm(0, 1)
thetaTilde[i, 2] ~ dnorm(0, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 2
constants <- list(n = n, J=J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, J))
code <- nimbleCode({
for(i in 1:n) {
y[i, 1:J] ~ dmnorm(thetaTilde[xi[i],1:J], iden[1:J,1:J])
thetaTilde[i, 1:J] ~ dmnorm(mn[1:J], iden[1:J,1:J])
}
mn[1:J] <- mu*ones[1:J]
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J),
iden = diag(3), mu = 0)
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, 1L)
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dmnorm_dmnorm")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:n) {
y[i, 1:J] ~ dmnorm(thetaTilde[xi[i],1:J], iden[1:J,1:J])
for(j in 1:J)
thetaTilde[i, j] ~ dnorm(0,1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J),
iden = diag(J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, each = J))
code <- nimbleCode({
for(i in 1:n) {
y[i, 1:2] ~ dmnorm(thetaTilde[xi[i],1:2], iden[1:2,1:2])
thetaTilde[i, 1] ~ dnorm(0,1)
thetaTilde[i, 2] ~ dnorm(0,1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 2
constants <- list(n = n)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J),
iden = diag(J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, J))
code <- nimbleCode({
for(i in 1:n) {
y1[i] ~ dnorm(thetaTilde1[xi[i]], 1)
y2[i] ~ dnorm(thetaTilde2[xi[i]], 1)
thetaTilde1[i] ~ dnorm(mu, sigma)
thetaTilde2[i] ~ dnorm(mu, sigma)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y1 = rnorm(n), y2 = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde1 = rnorm(n), thetaTilde2 = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde1')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde1')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(thetaTilde[xi[i]], 1)
}
thetaTilde[1] ~ dnorm(mu, sigma)
for(i in 2:n)
thetaTilde[i] ~ dgamma(1,1)
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, 1L)
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), as.integer(c(2:n, 1)))
code <- nimbleCode({
for(i in 3:n) {
y[i] ~ dt(thetaTilde[xi[i]], 1, 1)
}
for(i in 1:2)
y[i] ~ dnorm(thetaTilde[xi[i]], 1)
for(i in 1:n)
thetaTilde[i] ~ dnorm(0,1)
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: In a model with multiple cluster parameters")
code <- nimbleCode({
for(i in 2:n) {
y[i] ~ dt(thetaTilde[xi[i]], 1, 1)
}
y[1] ~ dnorm(thetaTilde[xi[1]], 1)
for(i in 1:n)
thetaTilde[i] ~ dnorm(0,1)
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: Detected unusual indexing")
code <- nimbleCode({
for(i in 1:(n-1)) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], 1)
thetaTilde[i, j] ~ dnorm(0, 1)
}}
for(j in 1:J) {
y[n, j] ~ dt(thetaTilde[xi[n], j], 1 ,1)
thetaTilde[n, j] ~ dnorm(0, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: Detected unusual indexing")
code <- nimbleCode({
for(i in 1:n) {
y1[i] ~ dnorm(thetaTilde[xi[i], 1], 1)
y2[i] ~ dnorm(thetaTilde[xi[i], 2], 1)
for(j in 1:2)
thetaTilde[i, j] ~ dnorm(0, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 2
constants <- list(n = n)
data <- list(y1 = rnorm(n), y2 = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(n*J),n,J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes[1:n])
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, J))
code <- nimbleCode({
for(i in 1:n) {
y1[i] ~ dnorm(thetaTilde[xi[i], 1], 1)
y2[i] ~ dnorm(thetaTilde[xi[i], 2], 1)
thetaTilde[i, 1] ~ dnorm(0, 1)
thetaTilde[i, 2] ~ dnorm(0, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 2
constants <- list(n = n)
data <- list(y1 = rnorm(n), y2 = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(n*J),n,J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes[1:n])
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, J))
code <- nimbleCode({
for(i in 1:n) {
y1[i] ~ dnorm(thetaTilde[xi[i], 1], 1)
y2[i] ~ dnorm(thetaTilde[xi[i], 2], 1)
thetaTilde[i, 1:2] ~ dmnorm(mn[1:2], iden[1:2,1:2])
}
mn[1:2] <- mu*ones[1:2]
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 2
constants <- list(n = n)
data <- list(y1 = rnorm(n), y2 = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n), iden = diag(1, 2),
thetaTilde = matrix(rnorm(n*J), n, J), ones = rep(1,2))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i,j] ~ dnorm(theta[i], sd = sigma[i,j])
sigma[i,j] <- sigmaTilde[xi[i], j]
sigmaTilde[i,j] ~ dinvgamma(a, b)
}
theta[i] <- thetaTilde[xi[i]]
thetaTilde[i] ~ dnorm(mu, phi)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 2
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J), n, J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n), sigmaTilde = matrix(rgamma(n*J, 1, 1), n, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[2]], nodes)
nodes <- model$expandNodeNames('sigmaTilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, c(2L, 1L))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(J+1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- c(conf$getSamplers('thetaTilde'), conf$getSamplers('sigmaTilde'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*(J+1)))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), c(1:n, rep(1:n, each = J)))
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(theta[i], sd = sigma[i])
theta[i] <- thetaTilde[xi[i]]
sigma[i] <- 1 / tau[i]
tau[i] <- tauTilde[xi[i]]
thetaTilde[i] ~ dnorm(mu, var = sigmaTilde[i])
sigmaTilde[i] <- 1 / tauTilde[i]
tauTilde[i] ~ dgamma(a, b)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 2
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n), tauTilde = rgamma(n, 1, 1))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[2]], nodes)
nodes <- model$expandNodeNames('tauTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(3))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- c(conf$getSamplers('thetaTilde'), conf$getSamplers('tauTilde'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i,j] ~ dnorm(thetaTilde[xi[i], 2, j] , var = 1)
}
}
for(i in 1:n) {
for(j in 1:J) {
for(k in 1:2) {
thetaTilde[i, k, j] ~ dnorm(0,1)
}
}
}
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
inits <- list(xi = rep(1, n),
thetaTilde = array(0, c(n,2,J)))
y <- matrix(0, nrow = n , ncol= J)
data <- list(y = y)
model <- nimbleModel(code, data = data, inits = inits, constants = constants)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], c(t(array(nodes, c(n, 2, J))[,2,])))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')[16:30]
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, each = J))
code <- nimbleCode({
for(i in 1:n) {
for(k in 1:2) {
for(j in 1:J) {
y[k,i,j] ~ dnorm(thetaTilde[k, xi[i], j] , var = 1)
}
}
}
for(i in 1:n) {
for(j in 1:J) {
for(k in 1:2) {
thetaTilde[k, i, j] ~ dnorm(0,1)
}
}
}
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
inits <- list(xi = rep(1, n),
thetaTilde = array(0, c(2, n, J)))
y <- array(0, c(2, n, J))
data <- list(y = y)
model <- nimbleModel(code, data = data, inits = inits, constants = constants)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- c(matrix(model$expandNodeNames('thetaTilde[1:2, 1, 1:3]'), J, 2, byrow = TRUE),
matrix(model$expandNodeNames('thetaTilde[1:2, 2, 1:3]'), J, 2, byrow = TRUE),
matrix(model$expandNodeNames('thetaTilde[1:2, 3, 1:3]'), J, 2, byrow = TRUE),
matrix(model$expandNodeNames('thetaTilde[1:2, 4, 1:3]'), J, 2, byrow = TRUE),
matrix(model$expandNodeNames('thetaTilde[1:2, 5, 1:3]'), J, 2, byrow = TRUE))
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, 6L)
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, 2*J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, each = J*2))
code <- nimbleCode({
for(i in 1:3) {
for(j in 1:4) {
y[i,j] ~ dnorm(thetaTilde[xi[3-i+1], j] , var = 1)
thetaTilde[i, j] ~ dnorm(0,1)
}
}
xi[1:3] ~ dCRP(1, size=3)
})
inits <- list(xi = c(1, 1, 1),
thetaTilde = matrix(0, nrow=3, ncol=4))
y <- matrix(5, nrow=3, ncol=4)
data <- list(y = y)
model <- nimbleModel(code, data = data, inits = inits)
expect_error(conf <- configureMCMC(model, print = FALSE),
"findClusterNodes: Detected that a cluster parameter is indexed by a function")
code <- nimbleCode({
for(i in 1:3) {
for(j in 1:4) {
y[i,j] ~ dnorm(thetaTilde[xi[i+j], j] , var = 1)
thetaTilde[i, j] ~ dnorm(0,1)
}
}
xi[1:7] ~ dCRP(1, size=7)
})
inits <- list(xi = rep(1,7),
thetaTilde = matrix(0, nrow=3, ncol=4))
y <- matrix(5, nrow=3, ncol=4)
data <- list(y = y)
model <- nimbleModel(code, data = data, inits = inits)
expect_error(conf <- configureMCMC(model, print = FALSE),
"findClusterNodes: Detected that a cluster parameter is indexed by a function")
code <- nimbleCode({
for(i in 1:3) {
for(j in 1:4) {
y[i,j] ~ dnorm(thetaTilde[xi[i], xi[j]] , var = 1)
thetaTilde[i, j] ~ dnorm(0,1)
}
}
xi[1:4] ~ dCRP(1, size=4)
})
inits <- list(xi = rep(1,7),
thetaTilde = matrix(0, nrow=3, ncol=4))
y <- matrix(5, nrow=3, ncol=4)
data <- list(y = y)
model <- nimbleModel(code, data = data, inits = inits)
expect_error(conf <- configureMCMC(model, print = FALSE),
"findClusterNodes: CRP variable used multiple times")
code <- nimbleCode({
for(i in 1:4) {
for(j in 1:4) {
y[i,j] ~ dnorm(thetaTilde[xi[i], xi[i]] , var = 1)
thetaTilde[i, j] ~ dnorm(0,1)
}
}
xi[1:4] ~ dCRP(1, size=4)
})
inits <- list(xi = rep(1,7),
thetaTilde = matrix(0, nrow=4, ncol=4))
y <- matrix(5, nrow=4, ncol=4)
data <- list(y = y)
model <- nimbleModel(code, data = data, inits = inits)
expect_error(conf <- configureMCMC(model, print = FALSE),
"findClusterNodes: CRP variable used multiple times")
code <- nimbleCode({
for(i in 1:4) {
for(j in 1:4) {
y[i,j] ~ dnorm(thetaTilde[xi[i]], var = s2Tilde[xi[j]])
}
}
for(i in 1:4)
thetaTilde[i] ~ dnorm(0,1)
for(i in 1:4)
s2Tilde[i] ~ dnorm(0,1)
xi[1:4] ~ dCRP(1, size=4)
})
inits <- list(xi = rep(1,4))
y <- matrix(5, nrow=4, ncol=4)
data <- list(y = y)
model <- nimbleModel(code, data = data, inits = inits)
expect_error(conf <- configureMCMC(model, print = FALSE),
"findClusterNodes: found cluster membership parameters that use different indexing variables")
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(b0[xi[i]] + b1[xi[i]]*x[i], var = 1)
}
for(i in 1:n) {
b0[i] ~ dnorm(0,1)
b1[i] ~ dnorm(0,1)
}
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
constants <- list(n = n)
data = list(y = rnorm(n))
inits = list(x = rnorm(n), xi = rep(1,n))
model <- nimbleModel(code, data = data, inits = inits, constants = constants)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('b0')
expect_identical(cn$clusterNodes[[1]], nodes)
nodes <- model$expandNodeNames('b1')
expect_identical(cn$clusterNodes[[2]], nodes)
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- c(conf$getSamplers('b0'), conf$getSamplers('b1'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, 2))
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(beta[xi[i], 1] + beta[xi[i], 2]*x[i], var = 1)
}
for(i in 1:n) {
beta[i,1] ~ dnorm(0,1)
beta[i,2] ~ dnorm(0,1)
}
xi[1:n] ~ dCRP(1, size = n)
})
n <- 5
constants <- list(n = n)
data = list(y = rnorm(n))
inits = list(x = rnorm(n), xi = rep(1,n))
model <- nimbleModel(code, data = data, inits = inits, constants = constants)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('beta')
expect_identical(cn$clusterNodes[[1]], nodes[1:n])
expect_identical(cn$clusterNodes[[2]], nodes[(n+1):(2*n)])
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('beta')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, 2))
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(beta[xi[i], 1] + beta[xi[i], 2]*x[i], var = 1)
}
for(i in 1:n)
for(j in 1:2)
beta[i,j] ~ dnorm(0,1)
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
constants <- list(n = n)
data = list(y = rnorm(n))
inits = list(x = rnorm(n), xi = rep(1,n))
model <- nimbleModel(code, data = data, inits = inits, constants = constants)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('beta')
expect_identical(cn$clusterNodes[[1]], nodes[1:n])
expect_identical(cn$clusterNodes[[2]], nodes[(n+1):(2*n)])
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('beta')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, 2))
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(inprod(beta[1:J, xi[i]], x[i,1:J]), var = 1)
}
for(i in 1:n)
for(j in 1:J)
beta[j, i] ~ dnorm(0,1)
xi[1:n] ~ dCRP(1, size = n)
})
n <- 5
J <- 2
constants <- list(n = n, J = J)
data = list(y = rnorm(n))
inits = list(x = matrix(rnorm(n*J),n,J), xi = rep(1,n))
model <- nimbleModel(code, data = data, inits = inits, constants = constants)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('beta')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('beta')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, each = J))
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(inprod(beta[1:J, xi[i]], x[i,1:J]), var = 1)
}
for(i in 1:n)
beta[1:J, i] ~ dmnorm(z[1:J], pr[1:J,1:J])
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
J <- 2
constants <- list(n = n, J = J)
data = list(y = rnorm(n))
inits = list(x = matrix(rnorm(n*J),n,J), xi = rep(1,n), pr = diag(J))
model <- nimbleModel(code, data = data, inits = inits, constants = constants)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('beta')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, as.integer(1))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('beta')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:4) {
for(j in 2:3) {
y[i,j] ~ dnorm(mu[xi[i]] + y[i,j-1], 1)
}
}
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
}
xi[1:4] ~ dCRP(1, size=4)
})
data = list(y =matrix( rnorm(4*3), 4 ,3))
inits = list(xi = rep(1,4))
model <- nimbleModel(code, data = data, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: Variables being clustered must be conditionally independent")
code <- nimbleCode({
for(i in 1:4) {
for(j in 2:3) {
y[i,j] ~ dnorm(mu[xi[i]], exp(y[i,j-1]))
}
}
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
}
xi[1:4] ~ dCRP(1, size=4)
})
data = list(y =matrix( rnorm(4*3), 4 ,3))
inits = list(xi = rep(1,4))
model <- nimbleModel(code, data = data, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: Variables being clustered must be conditionally independent")
code <- nimbleCode({
for(i in 2:4) {
for(j in 1:3) {
y[i,j] ~ dnorm(mu[xi[i]] + y[i-1,j], 1)
}
}
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
}
xi[1:4] ~ dCRP(1, size=4)
})
data = list(y =matrix( rnorm(4*3), 4 ,3))
inits = list(xi = rep(1,4))
model <- nimbleModel(code, data = data, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: Variables being clustered must be conditionally independent")
code <- nimbleCode({
for(i in 1:3) {
for(j in 1:3) {
y[i,j] ~ dnorm(mu[xi[i]] + y[i+1,j], 1)
}
}
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
}
xi[1:4] ~ dCRP(1, size=4)
})
data = list(y =matrix( rnorm(4*3), 4 ,3))
inits = list(xi = rep(1,4))
model <- nimbleModel(code, data = data, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: Variables being clustered must be conditionally independent")
code <- nimbleCode({
for(i in 1:4) {
y[i,1] ~ dnorm(mu[xi[i]], 1)
for(j in 2:3) {
y[i,j] ~ dnorm(mu[xi[i]] + y[i,j-1], 1)
}
}
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
}
xi[1:4] ~ dCRP(1, size=4)
})
data = list(y =matrix( rnorm(4*3), 4 ,3))
inits = list(xi = rep(1,4))
model <- nimbleModel(code, data = data, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: Variables being clustered must be conditionally independent")
code <- nimbleCode({
for(i in 1:n) {
y[i,1:2] ~ dmnorm(mu[xi[i], 1:2], cov = sigma[xi[i],1:2,1:2])
mu[i, 1:2] ~ dmnorm(mu0[1:2], iden[1:2,1:2])
sigma[i,1:2,1:2] ~ dinvwish(S[1:2,1:2], nu)
}
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
data = list(y =matrix( rnorm(n*2), n ,2))
sigma <- array(0, c(n, 2, 2))
for(i in 1:n)
sigma[i, 1:2, 1:2] <- diag(2)
inits = list(xi = rep(1,n), iden = diag(2), sigma = sigma, S = diag(2))
model <- nimbleModel(code, constants = list(n = n), data = data, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('mu')
expect_identical(cn$clusterNodes[[2]], nodes)
nodes <- model$expandNodeNames('sigma')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- c(conf$getSamplers('mu'), conf$getSamplers('sigma'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, 2))
sigma <- array(0, c(n, 2, 2))
for(i in 1:n)
sigma[i, 1:2, 1:2] <- diag(2)
code <- nimbleCode({
for(i in 1:n) {
y[i,1:2] ~ dmnorm(mu[xi[i], 1:2], cov = sigma[xi[i],1:2,1:2])
mu[i, 1:2] ~ dmnorm(mu0[1:2], cov = sigmaAux[i,1:2,1:2])
sigmaAux[i,1:2,1:2] <- sigma[i,1:2,1:2]/kappa
sigma[i,1:2,1:2] ~ dinvwish(S[1:2,1:2], nu)
}
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
data = list(y =matrix( rnorm(n*2), n ,2))
inits = list(xi = rep(1,n), S = diag(2), sigma = sigma, kappa = 1)
model <- nimbleModel(code, constants = list(n = n), data = data, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('mu')
expect_identical(cn$clusterNodes[[2]], nodes)
nodes <- model$expandNodeNames('sigma')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dmnorm_invwish_dmnorm")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- c(conf$getSamplers('mu'), conf$getSamplers('sigma'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, 2))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:2) {
y[i, j,1:2] ~ dmnorm(mu[xi[i], j, 1:2], cov = sigma[xi[i], j, 1:2,1:2])
mu[i, j, 1:2] ~ dmnorm(mu0[1:2], cov = sigmaAux[i, j, 1:2,1:2])
sigmaAux[i, j, 1:2,1:2] <- sigma[i, j, 1:2,1:2]/kappa
sigma[i, j, 1:2,1:2] ~ dinvwish(S[1:2,1:2], nu)
}}
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
sigma <- array(0, c(n, 2, 2, 2))
for(i in 1:n)
for(j in 1:2)
sigma[i, j, 1:2, 1:2] <- diag(2)
data = list(y =array(rnorm(n*2*2), c(n, 2, 2)))
inits = list(xi = rep(1,n), kappa = 1, sigma = sigma, S = diag(2))
model <- nimbleModel(code, constants = list(n=n), data = data, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('mu')
expect_identical(cn$clusterNodes[[2]], c(matrix(nodes, 2, n, byrow = TRUE)))
nodes <- model$expandNodeNames('sigma')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, 2, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, rep(2L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dmnorm_invwish_dmnorm")
expect_identical(crpSampler$nObsPerClusID, 2)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(2))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- c(conf$getSamplers('mu'), conf$getSamplers('sigma'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(rep(1:n, each = 2), 2))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:2) {
y[i, j,1:2] ~ dmnorm(mu[xi[i], j, 1:2], cov = sigma[xi[i], j, 1:2,1:2])
mu[i, j, 1:2] ~ dmnorm(mu0[i, 1:2], cov = sigmaAux[i, j, 1:2,1:2])
sigmaAux[i, j, 1:2,1:2] <- sigma[i, j, 1:2,1:2]/kappa
sigma[i, j, 1:2,1:2] ~ dinvwish(S[1:2,1:2], nu)
}}
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
data = list(y =array(rnorm(n*2*2), c(n, 2, 2)))
inits = list(xi = rep(1,n), kappa = 1, S = diag(2), sigma = sigma)
model <- nimbleModel(code, data = data, inits = inits, constants = list(n = n))
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('mu')
expect_identical(cn$clusterNodes[[2]], c(matrix(nodes, 2, n, byrow = TRUE)))
nodes <- model$expandNodeNames('sigma')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, 2, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, rep(2L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 2)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(2))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- c(conf$getSamplers('mu'), conf$getSamplers('sigma'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(rep(1:n, each = 2), 2))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:2) {
y[i, j,1:2] ~ dmnorm(mu[xi[i], j, 1:2], cov = sigma[xi[i], j, 1:2,1:2])
mu[i, j, 1:2] ~ dmnorm(mu0[j, 1:2], cov = sigmaAux[i, j, 1:2,1:2])
sigmaAux[i, j, 1:2,1:2] <- sigma[i, j, 1:2,1:2]/kappa
sigma[i, j, 1:2,1:2] ~ dinvwish(S[1:2,1:2], nu)
}}
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
data = list(y =array(rnorm(n*2*2), c(n, 2, 2)))
inits = list(xi = rep(1,n), kappa = 1, sigma = sigma, S = diag(2))
model <- nimbleModel(code, data = data, inits = inits, constants = list(n=n))
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('mu')
expect_identical(cn$clusterNodes[[2]], c(matrix(nodes, 2, n, byrow = TRUE)))
nodes <- model$expandNodeNames('sigma')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, 2, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, rep(2L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dmnorm_invwish_dmnorm")
expect_identical(crpSampler$nObsPerClusID, 2)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(2))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- c(conf$getSamplers('mu'), conf$getSamplers('sigma'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(rep(1:n, each = 2), 2))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:2) {
y[i, j,1:2] ~ dmnorm(mu[xi[i], j, 1:2], cov = sigma[xi[i], j, 1:2,1:2])
mu[i, j, 1:2] ~ dmnorm(mu0[1:2], cov = pr[1:2,1:2])
sigma[i, j, 1:2,1:2] ~ dinvwish(S[1:2,1:2], nu)
}}
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
data = list(y =array(rnorm(n*2*2), c(n, 2, 2)))
inits = list(xi = rep(1,n), sigma = sigma, pr = diag(2), S = diag(2))
model <- nimbleModel(code, data = data, inits = inits, constants = list(n=n))
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('mu')
expect_identical(cn$clusterNodes[[2]], c(matrix(nodes, 2, n, byrow = TRUE)))
nodes <- model$expandNodeNames('sigma')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, 2, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, rep(2L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 2)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(2))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- c(conf$getSamplers('mu'), conf$getSamplers('sigma'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(rep(1:n, each = 2), 2))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:2) {
y[i, j, 1:2] ~ dmnorm(mu[xi[i], j, 1:2], cov = sigma[xi[i], 1:2,1:2])
mu[i, j, 1:2] ~ dmnorm(mu0[1:2], cov = sigmaAux[i, 1:2,1:2])
}
sigmaAux[i, 1:2,1:2] <- sigma[i, 1:2,1:2]/kappa
sigma[i, 1:2,1:2] ~ dinvwish(S[1:2,1:2], nu)
}
xi[1:n] ~ dCRP(1, size=n)
})
sigma <- array(0, c(n, 2, 2))
for(i in 1:n)
sigma[i, 1:2, 1:2] <- diag(2)
n <- 5
data = list(y =array(rnorm(n*2*2), c(n, 2, 2)))
inits = list(xi = rep(1,n), sigma = sigma, S = diag(2), kappa = 1)
model <- nimbleModel(code, data = data, inits = inits, constants = list(n = n))
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('mu')
expect_identical(cn$clusterNodes[[2]], c(matrix(nodes, 2, n, byrow = TRUE)))
nodes <- model$expandNodeNames('sigma')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, c(1L, 2L))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 2)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- c(conf$getSamplers('mu'), conf$getSamplers('sigma'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*3))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), c(rep(1:n, each = 2), 1:n))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:2)
y[i, j,1:2] ~ dmnorm(mu[xi[i], 1:2], cov = sigma[xi[i], 1:2,1:2])
mu[i, 1:2] ~ dmnorm(mu0[1:2], cov = sigmaAux[i, 1:2,1:2])
sigmaAux[i, 1:2,1:2] <- sigma[i, 1:2,1:2]/kappa
sigma[i, 1:2,1:2] ~ dinvwish(S[1:2,1:2], nu)
}
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
data = list(y =array(rnorm(n*2*2), c(5, 2, 2)))
inits = list(xi = rep(1,n), kappa = 1, S = diag(2), sigma = sigma)
model <- nimbleModel(code, data = data, inits = inits, constants = list(n=n))
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('mu')
expect_identical(cn$clusterNodes[[2]], nodes)
nodes <- model$expandNodeNames('sigma')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 2)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- c(conf$getSamplers('mu'), conf$getSamplers('sigma'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, 2))
code <- nimbleCode({
for(i in 1:n) {
y[i,1:2] ~ dmnorm(mu[xi[i], 1:2], cov = sigma[1:2,1:2])
mu[i, 1:2] ~ dmnorm(mu0[1:2], iden[1:2,1:2])
}
xi[1:n] ~ dCRP(1, size=n)
})
n <- 5
data = list(y =matrix( rnorm(n*2), n ,2))
inits = list(xi = rep(1,n), iden = diag(2), sigma = diag(2))
model <- nimbleModel(code, data = data, inits = inits, constants = list(n=n))
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('mu')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, 1L)
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dmnorm_dmnorm")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('mu')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:4)
y[i] ~ dnorm(thetaTilde[xi[i]], 1)
thetaTilde[1] ~ dnorm(a,1)
for(i in 2:4)
thetaTilde[i] ~ dnorm(thetaTilde[i-1], 1)
xi[1:4] ~ dCRP(1, size=4)
a ~ dunif(0,1)
})
data = list(y = rnorm(4))
inits = list(xi = rep(1,4))
model <- nimbleModel(code, data = data, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: cluster parameters must be independent across clusters")
code <- nimbleCode({
for(i in 1:4)
y[i] ~ dnorm(thetaTilde[xi[i]], 1)
thetaTilde[4] ~ dnorm(0,1)
for(i in 1:3)
thetaTilde[i] ~ dnorm(thetaTilde[i+1], 1)
xi[1:4] ~ dCRP(1, size=4)
})
data = list(y = rnorm(4))
inits = list(xi = rep(1,4))
model <- nimbleModel(code, data = data, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: cluster parameters must be independent across clusters")
code <- nimbleCode({
for(i in 1:4)
y[i] ~ dnorm(thetaTilde[xi[i]], 1)
thetaTilde[1:4] ~ dmnorm(z[1:4], iden[1:4,1:4])
xi[1:4] ~ dCRP(1, size=4)
})
data = list(y = rnorm(4))
inits = list(xi = rep(1,4), iden = diag(4))
model <- nimbleModel(code, data = data, inits = inits)
expect_error(conf <- configureMCMC(model, print = FALSE),
"Cannot determine wrapped sampler for cluster parameter")
code <- nimbleCode({
for(i in 1:4) {
y[i] ~ dnorm(thetaTilde[xi[i]], 1)
thetaTilde[i] ~ dnorm(i, 1)
}
xi[1:4] ~ dCRP(1, size=4)
})
n <- 4
data = list(y = rnorm(4))
inits = list(xi = rep(1,4))
model <- nimbleModel(code, data = data, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:4]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, 1L)
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:4)
y[i] ~ dnorm(thetaTilde[xi[i]], 1)
for(i in 1:3)
thetaTilde[i] ~ dnorm(0, 1)
thetaTilde[4] ~ dnorm(5, 2)
xi[1:4] ~ dCRP(1, size=4)
})
n <- 4
data = list(y = rnorm(4))
inits = list(xi = rep(1,4))
model <- nimbleModel(code, data = data, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:4]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, 1L)
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:3) {
y[i] ~ dnorm(thetaTilde[xi[i]], 1)
}
thetaTilde[1] ~ dnorm(0, 1)
thetaTilde[2] ~ dgamma(1, 1)
thetaTilde[3] ~ dnorm(5, 1)
xi[1:3] ~ dCRP(alpha, size = 3)
})
n <- 3
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:4]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, 1L)
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:3) {
y[i] ~ dnorm(theta[i], 1)
theta[i] <- thetaTilde[xi[i]]
}
thetaTilde[1] ~ dnorm(0, 1)
thetaTilde[2] ~ dgamma(1, 1)
thetaTilde[3] ~ dnorm(5, 1)
xi[1:3] ~ dCRP(alpha, size = 3)
})
n <- 3
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:4]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, 1L)
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:3) {
y[i] ~ dnorm(theta[i], 1)
thetaTilde[i] ~ dnorm(0,1)
}
theta[1] <- thetaTilde[xi[1]]
theta[2] <- exp(thetaTilde[xi[2]])
theta[3] <- thetaTilde[xi[3]]
xi[1:3] ~ dCRP(alpha, size = 3)
})
n <- 3
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: Detected unusual indexing")
code <- nimbleCode({
for(i in 1:4) {
y[i] ~ dnorm(theta[i], 1)
thetaTilde[i] ~ dnorm(0,1)
}
for(i in 1:2)
theta[i] <- thetaTilde[xi[i]]
for(j in 3:4)
theta[j] <- exp(thetaTilde[xi[j]])
xi[1:4] ~ dCRP(alpha, size = 4)
})
n <- 4
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: differing number of clusters")
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], 1)
thetaTilde[i, j] ~ dnorm(i, 1)
}}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, each = J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], 1)
thetaTilde[i, j] ~ dnorm(j, 1)
}}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, each = J))
code <- nimbleCode({
for(i in 1:n) {
y[i, 1] ~ dnorm(thetaTilde[xi[i], 1], 1)
y[i, 2] ~ dgamma(thetaTilde[xi[i], 2], 1)
thetaTilde[i, 1] ~ dnorm(0, 1)
thetaTilde[i, 2] ~ dgamma(1, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 2
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = cbind(rnorm(n), rgamma(n,1,1)))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes[1:n])
expect_identical(cn$clusterNodes[[2]], nodes[(n+1):(2*n)])
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], 1)
}
thetaTilde[i, 1] ~ dnorm(0, 1)
thetaTilde[i, 2] ~ dgamma(3, 1)
thetaTilde[i, 3] ~ dnorm(5, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], 1)
}
thetaTilde[i, 1] ~ dnorm(0,1)
thetaTilde[i, 2] ~ dnorm(thetaTilde[i,1], 1)
thetaTilde[i, 3] ~ dnorm(thetaTilde[i,2], 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, as.integer(J))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, J))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], var = s2tilde[xi[i]])
thetaTilde[i, j] ~ dnorm(0, 1)
}
s2tilde[i] ~ dinvgamma(1,1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J), s2tilde = rgamma(n, 1, 1))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('s2tilde')
expect_identical(cn$clusterNodes[[1]], nodes)
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[2]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, c(1L, 3L))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers(c('thetaTilde', 's2tilde'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*(J+1)))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), c(1:n, rep(1:n, each = J)))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i]], var = s2tilde[xi[i]])
}
thetaTilde[i] ~ dnorm(0, 1)
s2tilde[i] ~ dinvgamma(1,1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n), s2tilde = rgamma(n, 1, 1))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('s2tilde')
expect_identical(cn$clusterNodes[[1]], nodes)
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[2]], nodes)
expect_identical(cn$numNodesPerCluster, c(1L, 1L))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers(c('thetaTilde', 's2tilde'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, 2))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], var = s2tilde[xi[i], j])
thetaTilde[i, j] ~ dnorm(theta0, var = s2tilde[i, j]/kappa)
s2tilde[i, j] ~ dinvgamma(1,1)
}
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J), s2tilde = matrix(rgamma(J*n, 1, 1),n,J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('s2tilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[2]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, rep(as.integer(J), 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_invgamma_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(J))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers(c('thetaTilde', 's2tilde'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(rep(1:n, each = J), 2))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], var = s2tilde[xi[i]+1, j])
thetaTilde[i, j] ~ dnorm(theta0, var = s2tilde[i+1, j]/kappa)
}
}
for(i in 1:(n+1)) {
for(j in 1:J) {
s2tilde[i, j] ~ dinvgamma(1,1)
}
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J), s2tilde = matrix(rgamma(J*(n+1), 1, 1),n+1,J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('s2tilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n+1, byrow = TRUE)[,-1]))
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[2]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, rep(as.integer(J), 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_invgamma_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(J))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers(c('thetaTilde', 's2tilde'))[-(1:J)]
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(rep(1:n, each = J), 2))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], var = s2tilde[xi[i], j])
thetaTilde[i, j] ~ dnorm(j, var = s2tilde[i, j]/kappa)
s2tilde[i, j] ~ dinvgamma(1,1)
}
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J), s2tilde = matrix(rgamma(J*n, 1, 1),n,J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('s2tilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[2]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, rep(as.integer(J), 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_conjugate_dnorm_invgamma_dnorm")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(J))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers(c('thetaTilde', 's2tilde'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(rep(1:n, each = J), 2))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], var = s2tilde[xi[i], j])
thetaTilde[i, j] ~ dnorm(i, var = s2tilde[i, j]/kappa)
s2tilde[i, j] ~ dinvgamma(1,1)
}
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J), s2tilde = matrix(rgamma(J*n, 1, 1),n,J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('s2tilde')
expect_identical(cn$clusterNodes[[1]], c(matrix(nodes, J, n, byrow = TRUE)))
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[2]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, rep(as.integer(J), 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(J))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers(c('thetaTilde', 's2tilde'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*J*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(rep(1:n, each = J), 2))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i]], var = s2tilde[xi[i]])
}
thetaTilde[i] ~ dnorm(theta0, var = s2tilde[i]/kappa)
s2tilde[i] ~ dinvgamma(1,1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n), s2tilde = rgamma(n, 1, 1))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('s2tilde')
expect_identical(cn$clusterNodes[[1]], nodes)
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[2]], nodes)
expect_identical(cn$numNodesPerCluster, rep(as.integer(1), 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers(c('thetaTilde', 's2tilde'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*2))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), rep(1:n, 2))
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], var = s2tilde[xi[i]])
thetaTilde[i,j] ~ dnorm(theta0, var = s2tilde[i]/kappa)
}
s2tilde[i] ~ dinvgamma(1,1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
J <- 3
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = matrix(rnorm(J*n), n, J), s2tilde = rgamma(n, 1, 1))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('s2tilde')
expect_identical(cn$clusterNodes[[1]], nodes)
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[2]], c(matrix(nodes, J, n, byrow = TRUE)))
expect_identical(cn$numNodesPerCluster, c(1L, 3L))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, J)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers(c('thetaTilde', 's2tilde'))
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n*(J+1)))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), c(1:n, rep(1:n, each = J)))
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(thetaTilde[xi[n-i+1]], 1)
}
for(i in 1:n) {
thetaTilde[i] ~ dnorm(0, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_error(conf <- configureMCMC(model, print = FALSE),
"findClusterNodes: Detected that a cluster parameter is indexed by a function")
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(thetaTilde[xi[exp(i)]], 1)
}
for(i in 1:n) {
thetaTilde[i] ~ dnorm(0, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
expect_error(model <- nimbleModel(code, data = data, constants = constants, inits = inits),
"dimensions specified are smaller than")
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(thetaTilde[xi[i]], s2tilde[xi[n-i+1]])
}
for(i in 1:n) {
thetaTilde[i] ~ dnorm(0, 1)
}
for(i in 1:n)
s2tilde[i] ~ dunif(0, 10)
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n), s2tilde = runif(n+1))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_error(conf <- configureMCMC(model, print = FALSE),
"findClusterNodes: Detected that a cluster parameter is indexed by a function")
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(thetaTilde[xi[i]], exp(thetaTilde[xi[i]]))
}
for(i in 1:n) {
thetaTilde[i] ~ dnorm(0, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(1))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(theta[i], exp(thetaTilde[xi[i]]))
}
for(i in 1:n) {
thetaTilde[i] ~ dnorm(0, 1)
theta[i] <- thetaTilde[xi[i]]
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 1)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(2))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(thetaTilde[xi[i]+1], exp(thetaTilde[xi[i]]))
}
for(i in 1:(n+1)) {
thetaTilde[i] ~ dnorm(0, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n+1))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: Inconsistent indexing")
code <- nimbleCode({
for(i in 1:n) {
y1[i] ~ dnorm(thetaTilde[xi[i]], 1)
y2[i] ~ dnorm(thetaTilde[xi[i]], 1)
thetaTilde[i] ~ dnorm(mu, sigma)
}
xi[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y1 = rnorm(n), y2 = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
cn <- nimble:::findClusterNodes(model, 'xi[1:5]')
nodes <- model$expandNodeNames('thetaTilde')
expect_identical(cn$clusterNodes[[1]], nodes)
expect_identical(cn$numNodesPerCluster, rep(1L, 2))
expect_silent(conf <- configureMCMC(model, print = FALSE))
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_silent(mcmc <- buildMCMC(conf))
crpSampler <- mcmc$samplerFunctions[[crpIndex]]
expect_equal(crpSampler$sampler, "CRP_nonconjugate")
expect_identical(crpSampler$nObsPerClusID, 2)
expect_identical(crpSampler$nIntermClusNodesPerClusID, as.integer(0))
expect_identical(crpSampler$n, as.integer(n))
paramSamplers <- conf$getSamplers('thetaTilde')
expect_identical(sapply(paramSamplers, function(x) x$name), rep('CRP_cluster_wrapper', n))
ids <- sapply(paramSamplers, function(x) x$control$clusterID)
expect_identical(as.integer(ids), 1:n)
code <- nimbleCode({
for(i in 1:n) {
y[i] ~ dnorm(thetaTilde[xi[i]], 1)
z[i] ~ dnorm(thetaTilde[eta[i]], 1)
thetaTilde[i] ~ dnorm(0, 1)
}
xi[1:n] ~ dCRP(alpha, size = n)
eta[1:n] ~ dCRP(alpha, size = n)
})
n <- 5
constants <- list(n = n)
data <- list(y = rnorm(n), z = rnorm(n))
inits <- list(alpha = 1, xi = rep(1, n), eta = rep(1,n),
thetaTilde = rnorm(n))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "sampler_CRP: Only the variables being clustered")
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], 1)
}}
for(i in 1:n) {
for(j in 1:J) {
thetaTilde[i, j] ~ dnorm(0, 1)
}}
xi[1:(n+1)] ~ dCRP(alpha, size = n+1)
})
n <- 5
n2 <- 4
J <- 3
constants <- list(n = n, n2 = n2, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n+1),
thetaTilde = matrix(rnorm(J*n), n, J))
model <- nimbleModel(code, data = data, constants = constants, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf), "The number of nodes that are jointly clustered must be the same")
code <- nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
y[i, j] ~ dnorm(thetaTilde[xi[i], j], 1)
}}
for(i in 1:n) {
for(j in 1:J) {
thetaTilde[i, j] ~ dnorm(0, 1)
}}
xi[1:(n-1)] ~ dCRP(alpha, size = n-1)
})
n <- 5
n2 <- 4
J <- 3
constants <- list(n = n, n2 = n2, J = J)
data <- list(y = matrix(rnorm(n*J),n,J))
inits <- list(alpha = 1, xi = rep(1, n-1),
thetaTilde = matrix(rnorm(J*n), n, J))
expect_error(model <- nimbleModel(code, data = data, constants = constants, inits = inits),
"dimensions specified are smaller than model specification")
code <- nimbleCode({
for(i in 1:3) {
for(j in 1:4) {
y[i,j] ~ dnorm( thetaTilde[xi[i], eta[j]] , var = 1)
thetaTilde[i, j] ~ dnorm(0, 1)
}
}
xi[1:3] ~ dCRP(1, size=3)
eta[1:4] ~ dCRP(1, size=4)
})
inits <- list(xi = rep(1,3), eta = rep(1,4),
thetaTilde = matrix(0, nrow=3, ncol=4))
y <- matrix(5, nrow=3, ncol=4)
data <- list(y = y)
model <- nimbleModel(code, data = data, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf),
"sampler_CRP: Detected use of multiple stochastic indexes of a variable")
code <- nimbleCode({
for(i in 1:3) {
for(j in 1:4) {
y[i,j] ~ dnorm( thetaTilde[xi[i], eta[j]] , var = 1)
}}
for(i in 1:2) {
for(j in 1:3) {
thetaTilde[i, j] ~ dnorm(0, 1)
}
}
xi[1:3] ~ dCRP(1, size=3)
eta[1:4] ~ dCRP(1, size=4)
})
inits <- list(xi = rep(1,3), eta = rep(1,4),
thetaTilde = matrix(0, nrow=3, ncol=4))
y <- matrix(5, nrow=3, ncol=4)
data <- list(y = y)
model <- nimbleModel(code, data = data, inits = inits)
expect_silent(conf <- configureMCMC(model, print = FALSE))
expect_error(mcmc <- buildMCMC(conf),
"sampler_CRP: Detected use of multiple stochastic indexes of a variable")
})
model <- function() {
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = 1:4, mu=rnorm(4))
data = list(y = rnorm(4))
testBUGSmodel(example = 'test1', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4) {
mu[i] ~ dgamma(1,1)
y[i] ~ dpois(mu[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = 1:4, mu=rgamma(4, 1, 1))
data = list(y = rpois(4, 4))
testBUGSmodel(example = 'test2', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4) {
mu[i] ~ dgamma(1,1)
y[i] ~ dexp(mu[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = 1:4, mu=rgamma(4, 1, 1))
data = list(y = rexp(4, 4))
testBUGSmodel(example = 'test3', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4) {
mu[i] ~ dgamma(1,1)
y[i] ~ dgamma(4, mu[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = 1:4, mu=rgamma(4, 1, 1))
data = list(y = rgamma(4, 4, 4))
testBUGSmodel(example = 'test4', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4) {
mu[i] ~ dbeta(1,1)
y[i] ~ dbern(mu[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = 1:4, mu=rbeta(4, 1, 1))
data = list(y = rbinom(4, size=1, prob=0.5))
testBUGSmodel(example = 'test5', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4){
p[i,1:3] ~ ddirch(alpha=alpha0[1:3])
y[i,1:3] ~ dmulti(prob=p[xi[i],1:3], size=3)
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
set.seed(1)
p0 <- matrix(0, ncol=3, nrow=4)
y0 <- matrix(0, ncol=3, nrow=4)
for(i in 1:4){
p0[i,]=rdirch(1, c(1, 1, 1))
y0[i,] = rmulti(1, prob=c(0.3,0.3,0.4), size=3)
}
inits = list(xi = 1:4, p=p0)
data = list(y = y0)
alpha0 = c(1,1,1)
testBUGSmodel(example = 'test6', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4) {
s2[i] ~ dinvgamma(1, 1)
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], var = s2[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = 1:4, mu=rnorm(4), s2=rinvgamma(4, 1,1))
data = list(y = rnorm(4))
testBUGSmodel(example = 'test7', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4) {
mu[i] ~ dgamma(1, rate=1)
y[i] ~ dinvgamma(shape=4, scale = mu[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = rep(1,4), mu=rgamma(4, 1, 1))
data = list(y = rinvgamma(4, 4, 4))
testBUGSmodel(example = 'test8', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4) {
mu[i] ~ dgamma(1,1)
y[i] ~ dweib(shape=4, lambda = mu[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = rep(1,4), mu=rgamma(4, 1, 1))
data = list(y = rweibull(4, 4, 4))
testBUGSmodel(example = 'test9', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4) {
mu[i] ~ dgamma(1,1)
y[i] ~ dnorm(4, tau = mu[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = rep(1,4), mu=rgamma(4, 1, 1))
data = list(y = rnorm(4, 4, 4))
testBUGSmodel(example = 'test10', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4) {
mu[i] ~ dbeta(1,1)
y[i] ~ dbinom(size=10, prob=mu[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = rep(1,4), mu=rbeta(4, 1, 1))
data = list(y = rbinom(4, size=10, prob=0.5))
testBUGSmodel(example = 'test11', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4) {
mu[i] ~ dbeta(1,1)
y[i] ~ dnegbin(size=10, prob=mu[xi[i]])
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = rep(1,4), mu=rbeta(4, 1, 1))
data = list(y = rnbinom(4, size=10, prob=0.5))
testBUGSmodel(example = 'test12', dir = "",
model = model, data = data, inits = inits,
useInits = TRUE)
model <- function() {
for(i in 1:4){
mu[i,1:4] ~ dmnorm(mu0[1:4], cov=Cov0[1:4, 1:4])
y[i,1:4] ~ dmnorm(mu[xi[i],1:4], cov=Sigma0[1:4, 1:4])
}
xi[1:4] ~ dCRP(conc=1, size=4)
}
inits = list(xi = 1:4, mu=matrix(rnorm(16), 4, 4))
data = list(y = matrix(rnorm(16), 4, 4))
constants = list(mu0 = rep(0,4), Cov0 = diag(10, 4), Sigma0 = diag(1, 4))
testBUGSmodel(example = 'test13', dir = "",
model = model, data = data, inits = c(inits, constants),
useInits = TRUE)
test_that("Testing of misspecification of dimension when using CRP", {
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
xi[1:10] ~ dCRP(conc=1, size=10)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,10), mu=rnorm(4)))
conf <- configureMCMC(m)
expect_error(buildMCMC(conf), "sampler_CRP: At least one variable has to be clustered")
code = nimbleCode({
for(i in 1:10) {
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
xi[1:4] ~ dCRP(conc=1, size=4)
})
expect_error(nimbleModel(code, data = list(y = rnorm(10)),
inits = list(xi = rep(1,4), mu=rnorm(10))),
"dimensions specified are smaller")
code = nimbleCode({
mu[1] ~ dnorm(0,1)
mu[2] ~ dnorm(0,1)
y[1] ~ dnorm(mu[xi[1]], 1)
y[2] ~ dnorm(mu[xi[1]], 1)
xi[1:2] ~ dCRP(conc=1, size=2)
})
m <- nimbleModel(code, data = list(y = rnorm(2)),
inits = list(xi = rep(1,2), mu=rnorm(2)))
conf <- configureMCMC(m)
expect_error(buildMCMC(conf), "sampler_CRP: Detected unusual indexing")
code = nimbleCode({
mu[1] ~ dnorm(0,1)
mu[2] ~ dnorm(0,1)
y[1] ~ dnorm(mu[xi[1]], 1)
y[1] ~ dnorm(mu[xi[2]], 1)
xi[1:2] ~ dCRP(conc=1, size=2)
})
expect_error(nimbleModel(code, data = list(y = rnorm(2)),
inits = list(xi = rep(1,2), mu=rnorm(2))),
"There are multiple definitions")
code = nimbleCode({
for(i in 1:50){
mu[i] ~ dnorm(0,1)
}
for(i in 1:100){
y[i] ~ dnorm(mu[xi[i]], var=1)
}
xi[1:100] ~ dCRP(conc=1, size=100)
})
m <- nimbleModel(code, data = list(y = rnorm(100)),
inits = list(xi = rep(1,100), mu=rnorm(50)))
conf <- configureMCMC(m)
expect_warning(buildMCMC(conf),
"sampler_CRP: The number of clusters based on the cluster parameters is less than the number of potential clusters")
code = nimbleCode({
for(i in 1:50){
mu[i] ~ dnorm(0,1)
s2[i] ~ dinvgamma(1,1)
}
for(i in 1:100){
y[i] ~ dnorm(mu[xi[i]], var=s2[xi[i]])
}
xi[1:100] ~ dCRP(conc=1, size=100)
})
m <- nimbleModel(code, data = list(y = rnorm(100)),
inits = list(xi = rep(1,100), mu=rnorm(50), s2=rinvgamma(50,1,1)))
conf <- configureMCMC(m)
expect_warning(buildMCMC(conf),
"sampler_CRP: The number of clusters based on the cluster parameters is less than the number of potential clusters")
code = nimbleCode({
for(i in 1:50){
mu[i] ~ dnorm(0,1)
s2[i] ~ dinvgamma(1,1)
}
for(i in 1:100){
y[i] ~ dnorm(mu[xi[i]], var=s2[xi[1]])
}
xi[1:100] ~ dCRP(conc=1, size=100)
})
m <- nimbleModel(code, data = list(y = rnorm(100)),
inits = list(xi = rep(1,100), mu=rnorm(50), s2=rinvgamma(1,1,1)))
expect_error(conf <- configureMCMC(m), "findClusterNodes: found cluster membership parameters that use different indexing")
code = nimbleCode({
for(i in 1:50){
mu[i] ~ dnorm(0,1)
}
for(i in 1:99){
y[i] ~ dnorm(mu[xi[i]]+mu[xi[i+1]], var=1)
}
y[100] ~ dnorm(mu[xi[100]], 1)
xi[1:100] ~ dCRP(conc=1, size=100)
})
m <- nimbleModel(code, data = list(y = rnorm(100)),
inits = list(xi = rep(1,100), mu=rnorm(50)))
expect_error(conf <- configureMCMC(m), "findClusterNodes: Detected that a cluster parameter is indexed by a function")
code = nimbleCode({
for(i in 1:3){
mu[i] ~ dnorm(0,1)
}
for(i in 1:100){
y[i] ~ dnorm(mu[xi[i]], var=1)
}
xi[1:100] ~ dCRP(conc=1, size=100)
})
m <- nimbleModel(code, data = list(y = c(rnorm(20, -5) , rnorm(20, 0), rnorm(20, 5),
rnorm(20, 10), rnorm(20, 20))),
inits = list(xi = rep(1,100), mu=rnorm(3)))
cm <- compileNimble(m)
conf <- configureMCMC(m)
expect_warning(mMCMC <- buildMCMC(conf))
cmMCMC=compileNimble(mMCMC, project=m, resetFunctions=TRUE)
set.seed(1)
expect_output(cmMCMC$run(1), "CRP_sampler: This MCMC is for a parametric model")
})
test_that("Testing more BNP models based on CRP", {
codeBNP <- nimbleCode({
for(i in 1:nStudies) {
y[i] ~ dbin(size = nStudies, prob = q[i])
x[i] ~ dbin(size = nStudies, prob = p[i])
q[i] <- expit(theta + gamma[i])
p[i] <- expit(gamma[i])
gamma[i] ~ dnorm(mu[i], var = tau[i])
mu[i] <- muTilde[xi[i]]
tau[i] <- tauTilde[xi[i]]
}
for(i in 1:nStudies) {
muTilde[i] ~ dnorm(mu0, sd = sd0)
tauTilde[i] ~ dinvgamma(a0, b0)
}
xi[1:nStudies] ~ dCRP(conc, size = nStudies)
conc ~ dgamma(1, 1)
mu0 ~ dflat()
sd0 ~ dunif(0, 100)
a0 ~ dunif(0, 100)
b0 ~ dunif(0, 100)
theta ~ dflat()
})
Consts=list(nStudies=10)
set.seed(1)
Inits=list(gamma=rep(1,10),
muTilde=rep(1,10),
tauTilde=rep(1,10),
xi=rep(1,10),
conc =1,
mu0 = 0,
sd0 = 1,
a0 = 1,
b0 = 1,
theta = 0)
Data=list(y=rbinom(10, 10, 0.5), x=rbinom(10, 10, 0.5))
model<-nimbleModel(codeBNP, data=Data, inits=Inits, constants=Consts, calculate=TRUE)
cmodel<-compileNimble(model)
mConf <- configureMCMC(model)
crpIndex <- which(sapply(mConf$getSamplers(), function(x) x[['name']]) == 'CRP')
mMCMC <- buildMCMC(mConf)
expect_equal(mConf$getSamplers()[[1]]$name, "CRP_concentration")
expect_equal(class(mMCMC$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
model <- function() {
for(i in 1:10) {
y[i] ~ dbin(size = 10, prob = q[i])
x[i] ~ dbin(size = 10, prob = p[i])
q[i] <- expit(theta + gamma[i])
p[i] <- expit(gamma[i])
gamma[i] ~ dnorm(mu[i], var = tau[i])
mu[i] <- muTilde[xi[i]]
tau[i] <- tauTilde[xi[i]]
}
for(i in 1:10) {
muTilde[i] ~ dnorm(mu0, sd = sd0)
tauTilde[i] ~ dinvgamma(a0, b0)
}
xi[1:10] ~ dCRP(conc, size = 10)
conc ~ dgamma(1, 1)
mu0 ~ dflat()
sd0 ~ dunif(0, 100)
a0 ~ dunif(0, 100)
b0 ~ dunif(0, 100)
theta ~ dflat()
}
testBUGSmodel(example = 'test8', dir = "",
model = model, data = Data, inits = Inits,
useInits = TRUE)
time <- c(1.25,1.25,2,2,2,3,5,5,6,6,6,6,7,7,7,9,11,11,11,11,11,13,14,15,16,16,17,17,18,19,19,24,25,26,32,35,37,41,41,51,52,54,58,66,67,88,89,92,4,4,7,7,8,12,11,12,13,16,19,19,28,41,53,57,77)
vstatus <- c(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
logBUN <- c(2.2175,1.9395,1.5185,1.7482,1.301,1.5441,2.2355,1.6812,1.3617,2.1139,1.1139,1.415,1.9777,1.0414,1.1761,1.7243,1.1139,1.2304,1.301,1.5682,1.0792,0.7782,1.3979,1.6021,1.3424,1.3222,1.2304,1.5911,1.4472,1.0792,1.2553,1.301,1,1.2304,1.3222,1.1139,1.6021,1,1.1461,1.5682,1,1.2553,1.2041,1.4472,1.3222,1.1761,1.3222,1.4314,1.9542,1.9243,1.1139,1.5315,1.0792,1.1461,1.6128,1.3979,1.6628,1.1461,1.3222,1.3222,1.2304,1.7559,1.1139,1.2553,1.0792)
HGB <- c(9.4,12,9.8,11.3,5.1,6.7,10.1,6.5,9,10.2,9.7,10.4,9.5,5.1,11.4,8.2,14,12,13.2,7.5,9.6,5.5,14.6,10.6,9,8.8,10,11.2,7.5,14.4,7.5,14.6,12.4,11.2,10.6,7,11,10.2,5,7.7,10.1,9,12.1,6.6,12.8,10.6,14,11,10.2,10,12.4,10.2,9.9,11.6,14,8.8,4.9,13,13,10.8,7.3,12.8,12,12.5,14)
n <- length(time)
alive <- vstatus == 0
cens_time <- rep(NA, n)
cens_time[alive] <- time[alive]
cens_time[!alive] <- Inf
time[alive] <- NA
logBUN <- (logBUN - mean(logBUN)) / sd(logBUN)
HGB <- (HGB - mean(HGB)) / sd(HGB)
codeAFT <- nimbleCode({
for(i in 1:n) {
x[i] ~ dweib(alpha, exp(lambda[i]))
is_cens[i] ~ dinterval(x[i], c[i])
lambda[i] <- inprod(Z[i, 1:p], delta[1:p]) + eta[i]
eta[i] <- etaTilde[xi[i]]
}
xi[1:n] ~ dCRP(conc, size = n)
conc ~ dgamma(1, 1)
for(i in 1:n){
etaTilde[i] ~ dunif(b0, B0)
}
alpha ~ dunif(a0, A0)
for(j in 1:p){
delta[j] ~ dflat()
}
})
constants = list(b0 = -10, B0 = 10, a0 = 0.1, A0 = 10, p = 2, n = n, c
= cens_time, Z = cbind(logBUN, HGB))
data = list(is_cens = as.numeric(alive), x = time)
xInit <- rep(NA, n)
xInit[alive] <- cens_time[alive] + 10
inits = list(alpha = 1, delta = c(0, 0), conc = 1,
etaTilde = runif(n,constants$b0, constants$B0),
xi = sample(1:3, n, replace = TRUE), x = xInit)
model <- nimbleModel(codeAFT, constants = constants, data = data, inits = inits)
conf = configureMCMC(model)
mcmc = buildMCMC(conf)
expect_equal(conf$getSamplers()[[1]]$name, "CRP_concentration")
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_identical(length(crpIndex), 1L)
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_nonconjugate")
model <- function() {
for(i in 1:n) {
x[i] ~ dweib(alpha, 1+exp(lambda[i]))
is_cens[i] ~ dinterval(x[i], c[i])
lambda[i] <- inprod(Z[i, 1:p], delta[1:p]) + eta[i]
eta[i] <- etaTilde[xi[i]]
}
xi[1:n] ~ dCRP(conc, size = n)
conc ~ dgamma(1, 1)
for(i in 1:n){
etaTilde[i] ~ dunif(b0, B0)
}
alpha ~ dunif(a0, A0)
for(j in 1:p){
delta[j] ~ dflat()
}
}
Data = list(is_cens = as.numeric(alive), x = time,
b0 = -10, B0 = 10, a0 = 0.1, A0 = 10, p = 2, n = n,
c = cens_time, Z = cbind(logBUN, HGB))
xInit <- rep(NA, n)
xInit[alive] <- cens_time[alive] + 10
Inits = list(alpha = 1, delta = c(0, 0), conc = 1,
etaTilde = runif(n,Data$b0, Data$B0),
xi = sample(1:3, n, replace = TRUE), x = xInit)
testBUGSmodel(example = 'test9', dir = "",
model = model, data = Data, inits = Inits,
useInits = TRUE)
})
test_that("stick_breaking nimble function calculation and use is correct", {
set.seed(0)
x <- rbeta(5, 1, 1)
truth <- c(x[1], x[2:5]*cumprod(1-x[1:4]), prod(1-x[1:5]))
ltruth <- log(truth)
expect_equal(stick_breaking(x, log=FALSE),
truth,
info = paste0("incorrect stick_breaking nimble function calculation"))
expect_equal(stick_breaking(x, log=TRUE),
ltruth,
info = paste0("incorrect stick_breaking nimble function log calculation"))
cSB <- compileNimble(stick_breaking)
expect_equal(cSB(x, log=FALSE),
truth,
info = paste0("incorrect compiled stick_breaking nimble function calculation"))
expect_equal(cSB(x, log=TRUE),
ltruth,
info = paste0("incorrect compiled stick_breaking nimble function log calculation"))
x <- c(0.1, 0.4, -0.1, 0.3)
expect_output(aux <- stick_breaking(x, log=FALSE), "values in 'z' have to be in",
info = "stick_breaking not warning of negative component")
expect_equal(aux, rep(NaN, length(x)+1),
info = "stick_breaking not correctly handling negative component")
x <- c(0.1, 5, 0.4, 0.3)
expect_output(aux <- stick_breaking(x, log=FALSE), "values in 'z' have to be in")
expect_equal(aux, rep(NaN, length(x)+1),
info = "stick_breaking incorrectly handling larger than 1 component")
x <- c(0.1, 0.2, 0, 0.3, 0.8)
truth <- c(x[1], x[2:5]*cumprod(1-x[1:4]), prod(1-x[1:5]))
expect_equal(stick_breaking(x, log=FALSE),
truth,
info = paste0("incorrect stick_breaking nimble function calculation with one 0 component"))
x <- c(0.1, 0.2, 1, 0.3, 0.8)
truth <- c(x[1], x[2:5]*cumprod(1-x[1:4]), prod(1-x[1:5]))
expect_equal(stick_breaking(x, log=FALSE),
truth,
info = paste0("incorrect stick_breaking nimble function calculation with one 1 component"))
})
test_that("Stick breaking model calculation is correct", {
set.seed(0)
x <- rbeta(5, 1, 1)
truth <- c(x[1], x[2:5]*cumprod(1-x[1:4]), prod(1-x[1:5]))
SB_code <- nimbleCode({
for(i in 1:5) z[i] ~ dbeta(1, 1)
w[1:6] <- stick_breaking(z[1:5])
})
set.seed(1)
Inits <- list(z = rbeta(5, 1, 1))
SB_model <- nimbleModel(SB_code, data=Inits)
SB_model$z <- x
SB_model$calculate()
expect_equal(c(SB_model$w), truth,
info = paste0("incorrect stick breaking weights in model"))
c_SB_model <- compileNimble(SB_model)
c_SB_model$z <- x
c_SB_model$calculate()
c_SB_model$w
expect_equal(c(c_SB_model$w), truth,
info = paste0("incorrect stick breaking weights in compiled model"))
})
model <- function() {
for(j in 1:5)
z[j] ~ dbeta(1, 1)
w[1:6] <- stick_breaking(z[1:5])
for(i in 1:10){
xi[i] ~ dcat(w[1:6])
}
}
Inits <- list(z = rep(0.5,5))
Data <- list(xi = 1:10)
testBUGSmodel(example = 'test1', dir = "",
model = model, data = Data, inits = Inits,
useInits = TRUE)
model <- function(){
for(i in 1:10){
xi[i] ~ dcat(w[1:10])
y[i] ~ dnorm( thetatilde[xi[i]], var=1)
}
for(i in 1:10){
thetatilde[i] ~ dnorm(0, var=20)
}
for(i in 1:9){
z[i] ~ dbeta(1,1)
}
w[1:10] <- stick_breaking(z[1:9])
}
Inits=list(thetatilde=rep(0,10), z=rep(0.5, 9), xi=1:10)
Data=list(y=rnorm(10))
testBUGSmodel(example = 'test2', dir = "",
model = model, data = Data, inits = Inits,
useInits = TRUE)
model <- function(){
for(i in 1:10){
xi[i] ~ dcat(w[1:10])
theta[i] <- thetatilde[xi[i]]
y[i] ~ dnorm( theta[i], var=1)
}
for(i in 1:10){
thetatilde[i] ~ dnorm(0, var=20)
}
for(i in 1:9){
z[i] ~ dbeta(1,1)
}
w[1:10] <- stick_breaking(z[1:9])
}
Inits=list(thetatilde=rep(0,10), z=rep(0.5, 9), xi=1:10)
Data=list(y=rnorm(10))
testBUGSmodel(example = 'test3', dir = "",
model = model, data = Data, inits = Inits,
useInits = TRUE)
model <- function(){
for(i in 1:10){
xi[i] ~ dcat(w[1:10])
theta[i] <- thetatilde[xi[i]]
y[i] ~ dnorm( theta[i], var=s2tilde[xi[i]])
}
for(i in 1:10){
thetatilde[i] ~ dnorm(0, var=20)
s2tilde[i] ~ dinvgamma(1, 1)
}
for(i in 1:9){
z[i] ~ dbeta(1,1)
}
w[1:10] <- stick_breaking(z[1:9])
}
Inits=list(thetatilde=rep(0,10), z=rep(0.5, 9), xi=1:10, s2tilde=rep(1,10))
Data=list(y=rnorm(10))
testBUGSmodel(example = 'test4', dir = "",
model = model, data = Data, inits = Inits,
useInits = TRUE)
test_that("Testing conjugacy detection with bnp stick breaking models", {
code=nimbleCode(
{
for(i in 1:5){
thetatilde[i] ~ dnorm(mean=0, var=10)
}
for(i in 1:4){
z[i] ~ dbeta(1, 1)
}
w[1:5] <- stick_breaking(z[1:4])
for(i in 1:5){
xi[i] ~ dcat(w[1:5])
y[i] ~ dnorm(thetatilde[xi[i]], var=1)
}
}
)
m = nimbleModel(code, data = list(y = rnorm(5)),
inits = list(xi = rep(1,5), thetatilde=rep(0,5), z=rep(0.5,4)))
conf <- configureMCMC(m)
expect_match(conf$getSamplers()[[6]]$name, "conjugate_dbeta_dcat",
info = "failed to detect categorical-beta conjugacy")
code=nimbleCode(
{
for(i in 1:5){
thetatilde[i] ~ dnorm(mean=0, var=10)
}
for(i in 1:4){
z[i] ~ dunif(0,1)
}
w[1:5] <- stick_breaking(z[1:4])
for(i in 1:5){
xi[i] ~ dcat(w[1:5])
y[i] ~ dnorm(thetatilde[xi[i]], var=1)
}
}
)
m = nimbleModel(code, data = list(y = rnorm(5)),
inits = list(xi = rep(1,5), thetatilde=rep(0,5), z=rep(0.5,4)))
conf <- configureMCMC(m)
expect_failure(expect_match(conf$getSamplers()[[6]]$name,
"conjugate_dbeta_dcat",
info = "failed to detect categorical-beta conjugacy"))
code=nimbleCode(
{
for(i in 1:5){
thetatilde[i] ~ dnorm(mean=0, var=10)
}
for(i in 1:4){
z[i] ~ dbeta(1, conc)
}
conc ~ dgamma(1,1)
w[1:5] <- stick_breaking(z[1:4])
for(i in 1:5){
xi[i] ~ dcat(w[1:5])
y[i] ~ dnorm(thetatilde[xi[i]], var=1)
}
}
)
m = nimbleModel(code, data = list(y = rnorm(5)),
inits = list(xi = rep(1,5), thetatilde=rep(0,5), z=rep(0.5,4), conc=1))
conf <- configureMCMC(m)
expect_match(conf$getSamplers()[[7]]$name, "conjugate_dbeta_dcat",
info = "failed to detect categorical-beta conjugacy")
})
test_that("Testing BNP model using stick breaking representation", {
Code=nimbleCode(
{
for(i in 1:Trunc) {
thetatilde[i] ~ dnorm(mean=0, var=40)
s2tilde[i] ~ dinvgamma(shape=1, scale=0.5)
}
for(i in 1:(Trunc-1)) {
z[i] ~ dbeta(1, 1)
}
w[1:Trunc] <- stick_breaking(z[1:(Trunc-1)])
for(i in 1:N) {
xi[i] ~ dcat(w[1:Trunc])
theta[i] <- thetatilde[xi[i]]
s2[i] <- s2tilde[xi[i]]
y[i] ~ dnorm(theta[i], var=s2[i])
}
}
)
Consts <- list(N=50, Trunc=25)
set.seed(1)
Inits <- list(thetatilde = rnorm(Consts$Trunc, 0, sqrt(40)),
s2tilde = rinvgamma(Consts$Trunc, shape=1, scale=0.5),
z = rbeta(Consts$Trunc-1, 1, 1),
xi = sample(1:10, size=Consts$N, replace=TRUE))
Data = list(y = c(rnorm(Consts$N/2,5,sqrt(4)), rnorm(Consts$N/2,-5,sqrt(4))))
model = nimbleModel(Code, data=Data, inits=Inits, constants=Consts, calculate=TRUE)
cmodel = compileNimble(model)
modelConf = configureMCMC(model, thin=100)
expect_match(modelConf$getSamplers()[[51]]$name, "conjugate_dbeta_dcat",
info = "failed to detect categorical-beta conjugacy in BNP model")
modelMCMC = buildMCMC(modelConf)
CmodelMCMC = compileNimble(modelMCMC, project=model, resetFunctions=TRUE)
CmodelMCMC$run(10000)
samples = as.matrix(CmodelMCMC$mvSamples)
s2Sam = samples[, 1:25]
thetaSam = samples[, 26:50]
zSam = samples[, 51:74]
Tr = 25
Wpost = t(apply(zSam, 1, function(x)c(x[1], x[2:(Tr-1)]*cumprod(1-x[1:(Tr-2)]), cumprod(1-x[1:(Tr-1)])[N=Tr-1])))
ngrid = 302
grid = seq(-10, 25,len=ngrid)
nsave = 100
predSB = matrix(0, ncol=ngrid, nrow=nsave)
for(i in 1:nsave) {
predSB[i, ] = sapply(1:ngrid, function(j)sum(Wpost[i, ]*dnorm(grid[j], thetaSam[i,],sqrt(s2Sam[i,]))))
}
f0 <- function(x) 0.5*dnorm(x,5,sqrt(4)) + 0.5*dnorm(x,-5,sqrt(4))
fhat <- apply(predSB, 2, mean)
f0grid <- sapply(grid, f0)
L1dist <- mean(abs(f0grid - fhat))
expect_lt(abs(L1dist - 0.01), 0.01,
label = "wrong estimation of density in DPM of normal distrbutions")
})
test_that("random sampling from model works fine", {
set.seed(0)
x <- rbeta(5, 1, 1)
truth <- c(x[1], x[2:5]*cumprod(1-x[1:4]), prod(1-x[1:5]))
SB_code2 <- nimbleCode({
for(i in 1:5)
z[i] ~ dbeta(1, 1)
w[1:6] <- stick_breaking(z[1:5])
for(i in 1:10){
xi[i] ~ dcat(w[1:6])
}
})
set.seed(1)
Inits <- list(z = rbeta(5, 1, 1))
data <- list(xi = rep(1,10))
SB_model2 <- nimbleModel(SB_code2, data=data, inits=Inits)
c_SB_model2 <- compileNimble(SB_model2)
c_SB_model2$z <- x
c_SB_model2$calculate()
expect_equal(c_SB_model2$w, truth,
info = paste0("incorrect stick breaking weights in SB_model2"))
set.seed(0)
simul_samp <- function(model) {
model$simulate()
return(model$w)
}
simul_samps <- t(replicate(10000, simul_samp(c_SB_model2)))
trueE <- c(0.5^(1:5) )
expect_lt(max(abs(apply(simul_samps, 2, mean)[1:5] - trueE)), 0.01,
label = paste0("incorrect weights (w) sampling in SB_model2"))
SB_code3 <- nimbleCode({
for(i in 1:5)
z[i] ~ dgamma(10, 10)
w[1:6] <- stick_breaking(z[1:5])
for(i in 1:10){
xi[i] ~ dcat(w[1:6])
}
})
set.seed(1)
Inits <- list(z = rgamma(5, 10, 10))
data <- list(xi = 1:10)
expect_output(m <- nimbleModel(SB_code3, data=data, inits=Inits),
"values in 'z' have to be in \\(0,1\\)")
set.seed(1)
Inits <- list(z = rbeta(5, 1, 1))
data <- list(xi = rep(1,10))
SB_model3 <- nimbleModel(SB_code3, data=data, inits=Inits)
expect_output(m <- SB_model3$simulate(), "values in 'z' have to be in \\(0,1\\)")
SB_code4 <- nimbleCode({
for(i in 1:4)
z[i] ~ dbeta(1,1)
w[1:6] <- stick_breaking(z[1:4])
for(i in 1:10){
xi[i] ~ dcat(w[1:6])
}
})
set.seed(1)
Inits <- list(z = rbeta(4, 10, 10))
data <- list(xi = rep(1,10))
expect_warning(m <- nimbleModel(SB_code4, data=data, inits=Inits),
"number of items to replace")
SB_code5 <- nimbleCode({
for(i in 1:2)
z[i] ~ dbeta(1,1)
w[1:6] <- stick_breaking(z[1:2])
for(i in 1:10){
xi[i] ~ dcat(w[1:6])
}
})
set.seed(1)
Inits <- list(z = rbeta(2, 10, 10))
data <- list(xi = rep(1,10))
expect_failure(expect_error(SB_model5 <- nimbleModel(SB_code5, data=data, inits=Inits)))
cSB_model5 <- compileNimble(SB_model5)
expect_output(cSB_model5$calculate('w'), "Error in mapCopy")
SB_code6 <- nimbleCode({
for(i in 1:10)
z[i] ~ dbeta(1,1)
w[1:6] <- stick_breaking(z[1:10])
for(i in 1:10){
xi[i] ~ dcat(w[1:6])
}
})
set.seed(1)
Inits <- list(z = rbeta(10, 10, 10))
data <- list(xi = rep(1,10))
expect_warning(SB_model6 <- nimbleModel(SB_code6, data=data, inits=Inits),
"number of items to replace")
cSB_model6 <- compileNimble(SB_model6)
expect_output(cSB_model6$calculate('w'), "Error in mapCopy")
})
test_that("Testing sampler assignment and misspecification of priors for conc parameter", {
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
xi[1:4] ~ dCRP(alpha, size=4)
alpha ~ dgamma(1, 1)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu = rnorm(4), alpha = 1))
conf <- configureMCMC(m)
expect_equal(conf$getSamplers('alpha')[[1]]$name, "CRP_concentration")
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
xi[1:4] ~ dCRP(alpha, size=4)
alpha ~ dexp(1)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu = rnorm(4), alpha = 1))
conf <- configureMCMC(m)
expect_equal(conf$getSamplers('alpha')[[1]]$name, "RW")
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
xi[1:4] ~ dCRP(alpha, size=4)
alpha ~ dunif(0,1)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu = rnorm(4), alpha = 1))
conf <- configureMCMC(m)
expect_equal(conf$getSamplers('alpha')[[1]]$name, "RW")
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
xi[1:4] ~ dCRP(alpha, size=4)
alpha ~ dnorm(-10,1)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu = rnorm(4), alpha = 1))
expect_failure(expect_output(m$simulate(), "value of concentration parameter"))
expect_output(out <- m$calculate(), "Dynamic index out of bounds")
code = nimbleCode({
for(i in 1:4) {
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
xi[1:4] ~ dCRP(0, size=4)
})
m = nimbleModel(code, data = list(y = rnorm(4)),
inits = list(xi = rep(1,4), mu = rnorm(4)))
expect_failure(expect_output(m$simulate(), "value of concentration parameter has to be larger than zero"))
expect_output(out <- m$calculate(), "Dynamic index out of bounds")
})
test_that("Testing dnorm_dnorm non-identity conjugacy setting, regression setting", {
set.seed(1)
code = nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
b1[i,j] ~ dnorm(beta, 0.25)
y[i,j] ~ dnorm(b0 + b1[xi[i],j]*x[i], sd = 0.7)
}
}
xi[1:n] ~ dCRP(conc=1, size=n)
beta ~ dnorm(0,1)
b0 ~ dnorm(0,1)
})
n <- 4
J <- 2
constants <- list(n = n, J = J)
data <- list(y = matrix(rnorm(n*J),n,J), x = rnorm(n))
m = nimbleModel(code, data = data, constants = constants,
inits = list(xi = c(4,3,2,1), b1 = matrix(rnorm(n*J),n,J), beta = rnorm(1), b0 = rnorm(1)))
conf <- configureMCMC(m)
mcmc <- buildMCMC(conf)
crpIndex <- which(sapply(conf$getSamplers(), function(x) x[['name']]) == 'CRP')
expect_equal(class(mcmc$samplerFunctions[[crpIndex]]$helperFunctions$contentsList[[1]])[1], "CRP_conjugate_dnorm_dnorm_nonidentity", info = 'dnorm_dnorm_nonidentity conjugacy not detected')
mcmc$samplerFunctions[[1]]$helperFunctions[[1]]$calculate_offset_coeff(1,4)
expect_identical(mcmc$samplerFunctions[[1]]$helperFunctions[[1]]$offset[1:J], rep(m$b0, J), info = 'calculation of offset in dnorm_dnorm_nonidentity incorrect')
expect_lt(max(abs(mcmc$samplerFunctions[[crpIndex]]$helperFunctions[[1]]$coeff[1:J] - rep(m$x[1], J))), 1e-15,
label = 'calculation of offset in dnorm_dnorm_nonidentity incorrect')
mcmc$samplerFunctions[[1]]$helperFunctions[[1]]$calculate_offset_coeff(2,3)
expect_identical(mcmc$samplerFunctions[[1]]$helperFunctions[[1]]$offset[1:J], rep(m$b0, J), info = 'calculation of offset in dnorm_dnorm_nonidentity incorrect')
expect_lt(max(abs(mcmc$samplerFunctions[[crpIndex]]$helperFunctions[[1]]$coeff[1:J] - rep(m$x[2], J))), 1e-15,
label = 'calculation of offset in dnorm_dnorm_nonidentity incorrect')
tmp <- m$calculate()
pYgivenT <- m$getLogProb('y[1, 1:2]')
pT <- m$getLogProb('b1[4, 1:2]')
dataVar <- c(m$getParam('y[1, 1]', 'var'), m$getParam('y[1, 2]', 'var'))
priorVar <- c(m$getParam('b1[4, 1]', 'var'), m$getParam('b1[4, 2]', 'var'))
priorMean <- c(m$getParam('b1[4, 1]', 'mean'), m$getParam('b1[4, 2]', 'mean'))
postVar <- 1 / (m$x[1]^2 / dataVar + 1 / priorVar)
postMean <- postVar * (m$x[1]*(data$y[1, 1:2]-m$b0) / dataVar + priorMean / priorVar)
pTgivenY <- dnorm(m$b1[4, 1] , postMean[1], sqrt(postVar[1]), log = TRUE) +
dnorm(m$b1[4, 2] , postMean[2], sqrt(postVar[2]), log = TRUE)
mcmc$samplerFunctions[[1]]$helperFunctions$contentsList[[1]]$storeParams()
mcmc$samplerFunctions[[1]]$helperFunctions$contentsList[[1]]$calculate_offset_coeff(1, 4)
pY <- mcmc$samplerFunctions[[1]]$helperFunctions$contentsList[[1]]$calculate_prior_predictive(1)
expect_equal(pY, pT + pYgivenT - pTgivenY, info = "problem with predictive distribution for dnorm_dnorm_nonidentity")
set.seed(1)
mcmc$samplerFunctions[[1]]$helperFunctions$contentsList[[crpIndex]]$sample(1, 4)
set.seed(1)
smp <- rnorm(2, postMean, sqrt(postVar))
expect_lt(max(abs(smp - m$b1[4, 1:2])), 1e-15, label = "problem with predictive sample for dnorm_dnorm_nonidentity")
set.seed(1)
n <- 100
data <- list(y = matrix(rnorm(n*J),n,J), x = rnorm(n))
constants <- list(n = n, J = J)
inits <- list(xi = rep(1, n), b1 = matrix(4,n,J), beta = 1)
set.seed(1)
code = nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
b1[i,j] ~ dnorm(beta, 1)
y[i,j] ~ dnorm(b0 + b1[xi[i],j]*x[i], sd = 1)
}
}
xi[1:n] ~ dCRP(conc=1, size=n)
beta ~ dnorm(0,1)
})
m = nimbleModel(code, data = data, constants = constants,
inits = c(inits, list(b0 = 0)))
conf <- configureMCMC(m, monitors = c('b1','beta','xi'))
mcmc <- buildMCMC(conf)
cm <- compileNimble(m)
cmcmc <- compileNimble(mcmc, project = m)
smp1 <- runMCMC(cmcmc, 1000, setSeed = 1)
set.seed(1)
code = nimbleCode({
for(i in 1:n) {
for(j in 1:J) {
b1[i,j] ~ dnorm(beta, 1)
y[i,j] ~ dnorm(b1[xi[i],j]*x[i], sd = 1)
}
}
xi[1:n] ~ dCRP(conc=1, size=n)
beta ~ dnorm(0,1)
})
m = nimbleModel(code, data = data, constants = constants,
inits = inits)
conf <- configureMCMC(m, monitors = c('b1','beta','xi'))
mcmc<-buildMCMC(conf)
cm <- compileNimble(m)
cmcmc <- compileNimble(mcmc, project = m)
smp2 <- runMCMC(cmcmc, 1000, setSeed = 1)
expect_identical(smp1, smp2, "sampling for identity and special case of non-identity not identical")
})
test_that("Testing that cluster parameters are appropriately updated and mvSaved in good state", {
set.seed(1)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu[i] ~ T(dnorm(50, 1), -200, 200)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
})
n <- 15
data <- list(y = rnorm(n))
inits <- list(xi = rep(1,n), mu = rep(0, n))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m, nodes = 'xi')
cm <- compileNimble(m)
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project=m)
cmcmc$run(1)
expect_identical(cm$mu[2], 0, info = 'mu[2] is changed')
expect_identical(cm$mu[3], 0, info = 'mu[3] is changed')
expect_identical(cmcmc$mvSaved[['mu']], cm$mu)
expect_identical(cmcmc$mvSaved[['logProb_mu']], cm$logProb_mu)
expect_identical(sum(cm$logProb_mu), cm$calculate('mu'))
expect_identical(cmcmc$mvSaved[['xi']], cm$xi)
expect_identical(cmcmc$mvSaved[['logProb_xi']], cm$logProb_xi)
expect_identical(sum(cm$logProb_xi), cm$calculate('xi'))
expect_equal(sum(cmcmc$mvSaved[['logProb_mu']]) + sum(cmcmc$mvSaved[['logProb_xi']]) + sum(cmcmc$mvSaved[['logProb_y']]), cm$calculate())
set.seed(1)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu[i] ~ T(dnorm(0, 1), -200, 200)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
})
n <- 15
data <- list(y = c(0, rnorm(n-1, 50, 1)))
inits <- list(xi = rep(1,n), mu = rep(50, n))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m, nodes = 'xi')
cm <- compileNimble(m)
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project=m)
cmcmc$run(1)
expect_lt(abs(cm$mu[2]), 3, label = 'mu[2] is not changed')
expect_identical(cm$mu[3], 50, info = 'mu[3] is changed')
expect_identical(cm$mu[4], 50, info = 'mu[4] is changed')
expect_identical(cmcmc$mvSaved[['mu']], cm$mu)
expect_identical(cmcmc$mvSaved[['logProb_mu']], cm$logProb_mu)
expect_identical(sum(cm$logProb_mu), cm$calculate('mu'))
expect_identical(cmcmc$mvSaved[['xi']], cm$xi)
expect_identical(cmcmc$mvSaved[['logProb_xi']], cm$logProb_xi)
expect_identical(sum(cm$logProb_xi), cm$calculate('xi'))
expect_equal(sum(cmcmc$mvSaved[['logProb_mu']]) + sum(cmcmc$mvSaved[['logProb_xi']]) + sum(cmcmc$mvSaved[['logProb_y']]), cm$calculate())
set.seed(1)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu[i] ~ dnorm(50, 1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
})
n <- 15
data <- list(y = rnorm(n))
inits <- list(xi = rep(1,n), mu = rep(0, n))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m, nodes = 'xi')
cm <- compileNimble(m)
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project=m)
cmcmc$run(1)
expect_identical(cm$mu[2], 0, info = 'mu[2] is changed')
expect_identical(cm$mu[3], 0, info = 'mu[3] is changed')
expect_identical(cmcmc$mvSaved[['mu']], cm$mu)
expect_identical(cmcmc$mvSaved[['logProb_mu']], cm$logProb_mu)
expect_identical(sum(cm$logProb_mu), cm$calculate('mu'))
expect_identical(cmcmc$mvSaved[['xi']], cm$xi)
expect_identical(cmcmc$mvSaved[['logProb_xi']], cm$logProb_xi)
expect_identical(sum(cm$logProb_xi), cm$calculate('xi'))
expect_equal(sum(cmcmc$mvSaved[['logProb_mu']]) + sum(cmcmc$mvSaved[['logProb_xi']]) + sum(cmcmc$mvSaved[['logProb_y']]), cm$calculate())
set.seed(1)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu[i] ~ dnorm(0, 1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
})
n <- 15
data <- list(y = c(0, rnorm(n-1, 50, 1)))
inits <- list(xi = rep(1,n), mu = rep(50, n))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m, nodes = 'xi')
cm <- compileNimble(m)
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project=m)
cmcmc$run(1)
expect_lt(abs(cm$mu[2]), 3, label = 'mu[2] is not changed')
expect_identical(cm$mu[3], 50, info = 'mu[3] is changed')
expect_identical(cmcmc$mvSaved[['mu']], cm$mu)
expect_identical(cmcmc$mvSaved[['logProb_mu']], cm$logProb_mu)
expect_identical(sum(cm$logProb_mu), cm$calculate('mu'))
expect_identical(cmcmc$mvSaved[['xi']], cm$xi)
expect_identical(cmcmc$mvSaved[['logProb_xi']], cm$logProb_xi)
expect_identical(sum(cm$logProb_xi), cm$calculate('xi'))
expect_equal(sum(cmcmc$mvSaved[['logProb_mu']]) + sum(cmcmc$mvSaved[['logProb_xi']]) + sum(cmcmc$mvSaved[['logProb_y']]), cm$calculate())
set.seed(1)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
muTilde[i] ~ T(dnorm(0, 1), -200, 200)
sigmaTilde[i] ~ dinvgamma(a,b)
mu[i] <- muTilde[xi[i]]
y[i] ~ dnorm(mu[i], sd = sigmaTilde[xi[i]])
}
a ~ dgamma(1,1)
b ~ dgamma(1,1)
})
n <- 15
data <- list(y = rnorm(n))
inits <- list(xi = rep(1,n), muTilde = rnorm(n), sigmaTilde = rinvgamma(n, 1, 1))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m, nodes = 'xi')
cm <- compileNimble(m)
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project=m)
cmcmc$run(10)
expect_identical(cmcmc$mvSaved[['muTilde']], cm$muTilde)
expect_identical(cmcmc$mvSaved[['logProb_muTilde']], cm$logProb_muTilde)
expect_identical(cmcmc$mvSaved[['sigmaTilde']], cm$sigmaTilde)
expect_identical(cmcmc$mvSaved[['logProb_sigmaTilde']], cm$logProb_sigmaTilde)
expect_identical(cmcmc$mvSaved[['mu']], cm$mu)
expect_identical(cmcmc$mvSaved[['xi']], cm$xi)
expect_identical(cmcmc$mvSaved[['logProb_xi']], cm$logProb_xi)
expect_identical(cmcmc$mvSaved[['y']], cm$y)
expect_identical(cmcmc$mvSaved[['logProb_y']], cm$logProb_y)
expect_identical(cmcmc$mvSaved[['a']], cm$a)
expect_identical(cmcmc$mvSaved[['logProb_a']], cm$logProb_a)
expect_identical(cmcmc$mvSaved[['b']], cm$b)
expect_identical(cmcmc$mvSaved[['logProb_b']], cm$logProb_b)
})
test_that("Testing wrapper sampler that avoids sampling empty clusters", {
set.seed(1)
code = nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
})
n <- 15
data <- list(y = rnorm(n))
inits <- list(xi = rep(1,n), mu=rnorm(n))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m)
samplers <- conf$getSamplers()
expect_identical(samplers[[2]]$name, 'CRP_cluster_wrapper',
info = "cluster wrapper sampler not set")
expect_identical(samplers[[2]]$control$wrapped_type, 'conjugate_dnorm_dnorm_identity_dynamicDeps',
info = "cluster wrapper sampler not conjugate")
cm <- compileNimble(m)
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project=m)
out <- runMCMC(cmcmc, 500)
expect_identical(1L, length(unique(out[ , paste0('mu[', n, ']')])), info = "last cluster is sampled")
focalCluster <- max(out[ , (n+1):(2*n)])-1
focalClusterName <- paste0('mu[', focalCluster, ']')
focalClusterPresent <- apply(out[ , (n+1):(2*n)], 1, function(x) focalCluster %in% x)
focalClusterNew <- which(diff(focalClusterPresent) == 1)+1
focalClusterAbsent <- which(!focalClusterPresent[-1])+1
smp <- out[ , focalClusterName]
expect_false(any(smp[focalClusterNew]- smp[focalClusterNew - 1] == 0),
info = 'no new cluster parameter value when new cluster opened')
expect_true(all(smp[focalClusterAbsent] - smp[focalClusterAbsent - 1] == 0),
info = 'new cluster parameter value despite cluster being closed')
set.seed(1)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu[i] ~ dgamma(1,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
})
n <- 15
data <- list(y = rnorm(n))
inits <- list(xi = rep(1,n), mu=rgamma(n,1,1))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m)
samplers <- conf$getSamplers()
expect_identical(samplers[[2]]$name, 'CRP_cluster_wrapper',
info = "cluster wrapper sampler not set")
expect_identical(samplers[[2]]$control$wrapped_type, 'RW',
info = "cluster wrapper sampler conjugate")
cm <- compileNimble(m)
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project=m)
out <- runMCMC(cmcmc, 500)
expect_identical(1L, length(unique(out[ , paste0('mu[', n, ']')])), info = "last cluster is sampled")
focalCluster <- max(out[ , (n+1):(2*n)])-1
focalClusterName <- paste0('mu[', focalCluster, ']')
focalClusterPresent <- apply(out[ , (n+1):(2*n)], 1, function(x) focalCluster %in% x)
focalClusterNew <- which(diff(focalClusterPresent) == 1)+1
focalClusterAbsent <- which(!focalClusterPresent[-1])+1
smp <- out[ , focalClusterName]
expect_false(any(smp[focalClusterNew]- smp[focalClusterNew - 1] == 0),
info = 'no new cluster parameter value when new cluster opened')
expect_true(all(smp[focalClusterAbsent] - smp[focalClusterAbsent - 1] == 0),
info = 'new cluster parameter value despite cluster being closed')
set.seed(1)
code = nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu[i] ~ dnorm(0,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
})
n <- 15
data <- list(y = rnorm(n))
inits <- list(xi = rep(1,n), mu=rnorm(n))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m)
conf$removeSamplers('mu')
cm <- compileNimble(m)
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project=m)
out <- runMCMC(cmcmc, 500)
expect_identical(1L, length(unique(out[ , paste0('mu[', n, ']')])), info = "last cluster is sampled")
focalCluster <- max(out[ , (n+1):(2*n)])-1
focalClusterName <- paste0('mu[', focalCluster, ']')
focalClusterPresent <- apply(out[ , (n+1):(2*n)], 1, function(x) focalCluster %in% x)
focalClusterNew <- which(diff(focalClusterPresent) == 1)+1
focalClusterAbsent <- which(!focalClusterPresent[-1])+1
smp <- out[ , focalClusterName]
expect_false(any(smp[focalClusterNew]- smp[focalClusterNew - 1] == 0),
info = 'no new cluster parameter value when new cluster opened')
expect_true(all(smp[focalClusterAbsent] - smp[focalClusterAbsent - 1] == 0),
info = 'new cluster parameter value despite cluster being closed')
set.seed(1)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu[i] ~ dgamma(1,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
})
n <- 15
data <- list(y = rnorm(n))
inits <- list(xi = rep(1,n), mu=rgamma(n,1,1))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m)
conf$removeSamplers('mu')
cm <- compileNimble(m)
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project=m)
out <- runMCMC(cmcmc, 500)
expect_identical(1L, length(unique(out[ , paste0('mu[', n, ']')])), info = "last cluster is sampled")
focalCluster <- max(out[ , (n+1):(2*n)])-1
focalClusterName <- paste0('mu[', focalCluster, ']')
focalClusterPresent <- apply(out[ , (n+1):(2*n)], 1, function(x) focalCluster %in% x)
focalClusterNew <- which(diff(focalClusterPresent) == 1)+1
focalClusterAbsent <- which(!focalClusterPresent[-1])+1
smp <- out[ , focalClusterName]
expect_false(any(smp[focalClusterNew]- smp[focalClusterNew - 1] == 0),
info = 'no new cluster parameter value when new cluster opened')
expect_true(all(smp[focalClusterAbsent] - smp[focalClusterAbsent - 1] == 0),
info = 'new cluster parameter value despite cluster being closed')
set.seed(1)
code <- nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu[i] ~ dnorm(0,1)
sigma[i] ~ dinvgamma(1,1)
y[i] ~ dnorm(mu[xi[i]], var = sigma[xi[i]])
}
})
n <- 15
data <- list(y = rnorm(n))
inits <- list(xi = rep(1,n), mu = rnorm(n), sigma = rinvgamma(n, 1, 1))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m)
samplers <- conf$getSamplers()
expect_identical(samplers[[2]]$name, 'CRP_cluster_wrapper',
info = "cluster wrapper sampler not set")
expect_identical(samplers[[17]]$name, 'CRP_cluster_wrapper',
info = "cluster wrapper sampler not set")
cm <- compileNimble(m)
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project=m)
out <- runMCMC(cmcmc, 500)
expect_identical(1L, length(unique(out[ , paste0('mu[', n, ']')])), info = "last cluster is sampled")
focalCluster <- max(out[ , (2*n+1):(3*n)])-1
focalClusterPresent <- apply(out[ , (2*n+1):(3*n)], 1, function(x) focalCluster %in% x)
focalClusterNew <- which(diff(focalClusterPresent) == 1)+1
focalClusterAbsent <- which(!focalClusterPresent[-1])+1
focalClusterName <- paste0('mu[', focalCluster, ']')
smp <- out[ , focalClusterName]
expect_false(any(smp[focalClusterNew]- smp[focalClusterNew - 1] == 0),
info = 'no new cluster parameter value when new cluster opened')
expect_true(all(smp[focalClusterAbsent] - smp[focalClusterAbsent - 1] == 0),
info = 'new cluster parameter value despite cluster being closed')
focalClusterName <- paste0('sigma[', focalCluster, ']')
smp <- out[ , focalClusterName]
expect_false(any(smp[focalClusterNew]- smp[focalClusterNew - 1] == 0),
info = 'no new cluster parameter value when new cluster opened')
expect_true(all(smp[focalClusterAbsent] - smp[focalClusterAbsent - 1] == 0),
info = 'new cluster parameter value despite cluster being closed')
set.seed(1)
code = nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu[i, 1:3] ~ dmnorm(z[1:3], pr[1:3,1:3])
tmp[i, 1:3] <- exp(mu[xi[i],1:3])
y[i,1:3] ~ dmnorm(tmp[i,1:3], pr[1:3,1:3])
}
})
n <- 15
data <- list(y = matrix(rnorm(n*3, 1, 1),n))
inits <- list(xi = rep(1,n), mu = matrix(rnorm(n*3), n), pr = diag(3), z = rep(0,3))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m)
samplers <- conf$getSamplers()
expect_identical(samplers[[2]]$name, 'CRP_cluster_wrapper',
info = "cluster wrapper sampler not set")
expect_identical(samplers[[2]]$control$wrapped_type, 'RW_block',
info = "cluster wrapper sampler conjugate")
cm <- compileNimble(m)
mcmc <- buildMCMC(conf)
cmcmc <- compileNimble(mcmc, project=m)
out <- runMCMC(cmcmc, 500)
expect_identical(1L, length(unique(out[ , paste0('mu[', n, ', 3]')])), info = "last cluster is sampled")
focalCluster <- max(out[ , (3*n+1):(4*n)])-1
focalClusterName <- paste0('mu[', focalCluster, ', 3]')
focalClusterPresent <- apply(out[ , (3*n+1):(4*n)], 1, function(x) focalCluster %in% x)
focalClusterNew <- which(diff(focalClusterPresent) == 1)+1
focalClusterAbsent <- which(!focalClusterPresent[-1])+1
smp <- out[ , focalClusterName]
expect_false(any(smp[focalClusterNew]- smp[focalClusterNew - 1] == 0),
info = 'no new cluster parameter value when new cluster opened')
expect_true(all(smp[focalClusterAbsent] - smp[focalClusterAbsent - 1] == 0),
info = 'new cluster parameter value despite cluster being closed')
code <- nimbleCode({
xi[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu[i] ~ dgamma(1,1)
y[i] ~ dnorm(mu[xi[i]], sd = 1)
}
xi2[1:n] ~ dCRP(conc=1, size=n)
for(i in 1:n) {
mu2[i] ~ dnorm(0,1)
y2[i] ~ dnorm(mu2[xi2[i]], sd = 1)
}
})
n <- 15
data <- list(y = rnorm(n), y2 = rnorm(n))
inits <- list(xi = rep(1,n), mu=rgamma(n,1,1), xi2 = rep(1,n), mu2 = rnorm(n))
m <- nimbleModel(code, data=data, inits= inits, constants = list(n=n))
conf <- configureMCMC(m)
mcmc <- buildMCMC(conf)
cm <- compileNimble(m)
cmcmc <- compileNimble(mcmc,project=m)
out <- runMCMC(cmcmc, 10)
})
test_that("offset and coeff set up in conjugacy for BNP so that non-dependencies are screened out", {
code <- nimbleCode({
for(i in 1:2) {
y[i] ~ dnorm(mu[xi[i]], 1)
mu[i] ~ dnorm(0,1)
}
xi[1:2] ~ dCRP(1, 2)
})
m <- nimbleModel(code, data = list (y = rnorm(2)),
inits = list(mu = rnorm(2), xi = rep(1,2)))
conf <- configureMCMC(m)
mcmc <- buildMCMC(conf)
expect_identical(mcmc$samplerFunctions[[2]]$regular_sampler[[1]]$N_dep_dnorm_identity, 2L)
expect_identical(c('dep_dnorm_identity_offset', 'dep_dnorm_identity_coeff') %in%
ls(mcmc$samplerFunctions[[2]]$regular_sampler[[1]]), rep(TRUE, 2))
code <- nimbleCode({
for(i in 1:2) {
y[i, 1:3] ~ dmnorm(mu[xi[i], 1:3], pr[1:3,1:3])
mu[i, 1:3] ~ dmnorm(z[1:3], pr[1:3,1:3])
}
xi[1:2] ~ dCRP(1, 2)
})
m <- nimbleModel(code, data = list (y = matrix(rnorm(6), 2)),
inits = list(mu = matrix(rnorm(6),2), xi = rep(1,2), pr = diag(3)))
conf <- configureMCMC(m)
mcmc <- buildMCMC(conf)
expect_identical(mcmc$samplerFunctions[[2]]$regular_sampler[[1]]$N_dep_dmnorm_identity, 2L)
expect_identical(c('dep_dmnorm_identity_offset', 'dep_dmnorm_identity_coeff') %in%
ls(mcmc$samplerFunctions[[2]]$regular_sampler[[1]]), rep(TRUE, 2))
code <- nimbleCode({
for(i in 1:2) {
mn[i, 1:3] <- A[1:3,1:3]%*%mu[xi[i], 1:3]
y[i, 1:3] ~ dmnorm(mn[i, 1:3], pr[1:3,1:3])
mu[i, 1:3] ~ dmnorm(z[1:3], pr[1:3,1:3])
}
xi[1:2] ~ dCRP(1, 2)
})
m <- nimbleModel(code, data = list (y = matrix(rnorm(6), 2)),
inits = list(A = diag(3), mu = matrix(rnorm(6),2), xi = rep(1,2), pr = diag(3)))
conf <- configureMCMC(m)
mcmc <- buildMCMC(conf)
expect_identical(mcmc$samplerFunctions[[2]]$regular_sampler[[1]]$N_dep_dmnorm_multiplicative, 2L)
expect_identical(c('dep_dmnorm_multiplicative_offset', 'dep_dmnorm_multiplicative_coeff') %in%
ls(mcmc$samplerFunctions[[2]]$regular_sampler[[1]]), rep(TRUE, 2))
code <- nimbleCode({
for(i in 1:2) {
y[i, 1:3] ~ dmnorm(mu[1:3], pr[xi[i], 1:3,1:3])
pr[i, 1:3,1:3] ~ dwish(R[1:3,1:3], 8)
}
xi[1:2] ~ dCRP(1, 2)
})
pr <- array(0, c(2, 3, 3)); pr[1,,] <- pr[2,,] <- diag(3)
m <- nimbleModel(code, data = list(y = matrix(rnorm(6),2)),
inits = list(xi = rep(1,2), pr = pr, R = diag(3)))
conf <- configureMCMC(m)
mcmc <- buildMCMC(conf)
expect_identical(mcmc$samplerFunctions[[2]]$regular_sampler[[1]]$N_dep_dmnorm_identity, 2L)
expect_identical(c('dep_dmnorm_identity_offset', 'dep_dmnorm_identity_coeff') %in%
ls(mcmc$samplerFunctions[[2]]$regular_sampler[[1]]), c(FALSE, TRUE))
code <- nimbleCode({
for(i in 1:2) {
y[i, 1:3] ~ dmnorm(mu[1:3], pr0[i, 1:3, 1:3])
pr0[i, 1:3,1:3] <- theta * pr[xi[i], 1:3,1:3]
pr[i, 1:3,1:3] ~ dwish(R[1:3,1:3], 8)
}
xi[1:2] ~ dCRP(1, 2)
})
pr <- array(0, c(2, 3, 3)); pr[1,,] <- pr[2,,] <- diag(3)
m <- nimbleModel(code, data = list(y = matrix(rnorm(6),2)),
inits = list(xi = rep(1,2), pr = pr, R = diag(3)))
conf <- configureMCMC(m)
mcmc <- buildMCMC(conf)
expect_identical(mcmc$samplerFunctions[[2]]$regular_sampler[[1]]$N_dep_dmnorm_multiplicativeScalar, 2L)
expect_identical(c('dep_dmnorm_multiplicativeScalar_offset', 'dep_dmnorm_multiplicativeScalar_coeff') %in%
ls(mcmc$samplerFunctions[[2]]$regular_sampler[[1]]), c(FALSE, TRUE))
})
options(warn = RwarnLevel)
nimbleOptions(verbose = nimbleVerboseSetting)
nimbleOptions(MCMCprogressBar = nimbleProgressBarSetting)
|
plsRglm <- function(x, ...) UseMethod("plsRglmmodel")
plsRglmmodel <- plsRglm
|
ARM2.order <-
function(x,y,pmax)
{
aicmat=matrix(NA,nrow=pmax);
bicmat=matrix(NA,nrow=pmax);
for (i in 1:pmax)
{
M = ARM2(x,y,p=i)
aicmat[i,]=M$aic;bicmat[i,]=M$bic;
}
p.aic=which.min(aicmat)
p.bic=which.min(bicmat)
return(list(p.aic=p.aic,p.bic=p.bic))
}
|
context("Final tests")
test_that("tmp_load does not exist", {
expect_false(any(grepl("tmp_load", list.files(".", recursive = TRUE))))
})
test_that("~/R/sdmpredictors was not created", {
if(dir.exists("~/R/sdmpredictors")) {
skip_on_cran()
skip_on_ci()
creation_time <- file.info("~/R/sdmpredictors")[1,"ctime"]
modified_time <- file.info("~/R/sdmpredictors")[1,"mtime"]
expect_gt(as.double(difftime(Sys.time(), creation_time, units = "mins")), 20)
expect_gt(as.double(difftime(Sys.time(), modified_time, units = "mins")), 10)
} else {
expect_false(dir.exists("~/R/sdmpredictors"))
}
})
|
document_waves <- function( survey_list ) {
validate_survey_list(survey_list)
n_survey <- length(survey_list)
tmp <- tibble(
id = vapply ( survey_list, function(x) attr(x, "id"), character(1)),
filename = vapply ( survey_list, function(x) attr(x, "filename"), character(1)),
ncol = vapply (survey_list, ncol, integer(1)),
nrow = vapply ( survey_list, nrow, integer(1)),
object_size = vapply ( survey_list, object.size, double(1))
)
attr(tmp, "original_list") <- deparse(substitute(survey_list))
tmp
}
|
select_seasons = function(x, max.season = 4, lrt = FALSE, print = TRUE) {
listOfFits = list()
n.seasons = 0
while (n.seasons <= max.season) {
message(paste("Fitting model with", n.seasons, "seasons...\n"))
listOfFits[[n.seasons+1]] = fit_cyclomort(x, n.seasons = n.seasons)
names(listOfFits)[n.seasons + 1] = paste0("fit",n.seasons)
n.seasons = n.seasons + 1
}
lof.summary <- summarize_listOfFits(listOfFits, lrt = lrt, print = print)
class(listOfFits) = "cmfitlist"
return(list(fits = listOfFits, summary = lof.summary))
}
summarize_listOfFits <- function(listOfFits, lrt = lrt, print = print){
AIC.table <- ldply(listOfFits, summarize,
n.seasons = n.seasons,
logLik = logLik,
d.f. = ifelse(n.seasons == 0, 1, n.seasons * 3),
AIC = AIC) %>% mutate(dAIC = AIC - min(AIC), .id = NULL)
n.seasons <- length(listOfFits) - 1
if(print){
cat("\nDelta AIC table of fitted models:\n")
print(AIC.table, row.names = FALSE)
}
if(lrt){
fits.ll <- AIC.table$logLik %>% as.numeric
ks <- AIC.table$d.f.
chisq.vals <- (outer(fits.ll, fits.ll, `-`) %>% abs) * 2
dfs <- outer(ks, ks, `-`) %>% abs
p.vals <- 1-pchisq(chisq.vals, ks)
mat.names <- outer(0:n.seasons, 0:n.seasons, paste, sep = "-")
ut <- upper.tri(mat.names)
LRT.table <- data.frame( comparison = mat.names[ut],
ChiSq = chisq.vals[ut] %>% round(2),
d.f. = dfs[ut],
p.value = p.vals[ut] %>% signif(3)) %>%
arrange(comparison) %>%
mutate(signif = cut(p.value, c(-1,0.001, 0.01, 0.05, 0.1, 1),
labels = c("***", "**", "*", "-", "")))
if(print){
cat("\nNested likelihood-ratio tests:\n")
print(LRT.table, row.names = FALSE)
}
} else LRT.table <- NULL
return(list(AIC.table = AIC.table, LRT.table = LRT.table))
}
|
context("test-create_importance_data")
test_that("create importance data works", {
model_final <- lm(mpg ~ cyl + wt + hp + gear + carb, data=mtcars)
model_null <- lm(mpg ~ 1, data=mtcars)
tab_summary <- .create_tab_summary(model_final, model_null, dict=NA, isDeviance=FALSE)
expect_equal("data.frame", class(tab_summary))
expect_equal(1, tab_summary$cum_contr[nrow(tab_summary)])
dat2 <- .create_common_importance_data(tab_summary)
expect_equal(class(dat2), "data.frame")
})
|
requiet("betareg")
requiet("margins")
requiet("emmeans")
requiet("broom")
test_that("marginaleffects: vs. margins vs. emmeans", {
set.seed(1024)
data("GasolineYield", package = "betareg")
tmp <- GasolineYield
tmp$batch <- factor(tmp$batch)
mod <- betareg::betareg(yield ~ batch + temp, data = tmp)
suppressWarnings({
res <- marginaleffects(mod, variables = "temp")
mar <- data.frame(margins::margins(mod, unit_ses = TRUE))
})
expect_true(test_against_margins(res, mar, tolerance = 0.1))
mfx <- marginaleffects(mod, newdata = datagrid(batch = 1), variables = "temp")
em <- suppressWarnings(
emtrends(mod, ~temp, "temp", at = list("batch" = GasolineYield$batch[1])))
em <- tidy(em)
expect_equal(mfx$dydx, em$temp.trend, tolerance = .001)
expect_equal(mfx$std.error, em$std.error, tolerance = .001)
})
test_that("marginaleffects: vs. Stata", {
stata <- readRDS(test_path("stata/stata.rds"))[["betareg_betareg_01"]]
dat <- read.csv(test_path("stata/databases/betareg_betareg_01.csv"))
mod <- betareg::betareg(yield ~ factor(batch) + temp, data = dat)
mfx <- merge(tidy(marginaleffects(mod)), stata)
expect_equal(mfx$estimate, mfx$dydxstata, tolerance = .0001)
expect_equal(mfx$std.error, mfx$std.errorstata, tolerance = .0001)
})
test_that("predictions: no validity", {
set.seed(1024)
data("GasolineYield", package = "betareg")
mod <- betareg::betareg(yield ~ batch + temp, data = GasolineYield)
pred <- predictions(mod)
expect_predictions(pred, n_row = nrow(GasolineYield))
pred <- predictions(mod, newdata = datagrid(batch = 1:3, temp = c(300, 350)))
expect_predictions(pred, n_row = 6)
})
test_that("marginalmeans: vs. emmeans", {
set.seed(1024)
data("GasolineYield", package = "betareg")
mod <- betareg::betareg(yield ~ batch + temp, data = GasolineYield)
mm <- marginalmeans(mod)
expect_marginalmeans(mm, n_row = 10)
mm <- tidy(mm)
em <- broom::tidy(emmeans::emmeans(mod, "batch"))
expect_equal(mm$estimate, em$estimate)
expect_equal(mm$std.error, em$std.error, tolerance = .01)
})
|
sink(stdout(), type = "message")
overwrite <- TRUE
verbose <- TRUE
args <- commandArgs(trailingOnly = TRUE)
usage <- function(msg) {
print(msg)
print(paste0("Usage: ", args[0], " cf-nc_Input_File outputfile [tempfolder]"))
print(paste0("Example1: ", args[0], " US-Dk3.pecan.nc US-Dk3.clim [/tmp/watever]"))
print(paste0("Example2: ", args[0], " US-Dk3.pecan.zip US-Dk3.clim [/tmp/watever]"))
stop()
}
if (length(args) < 2) {
usage("Not enough arguments")
}
if (length(args) > 2) {
tempDir <- args[3]
} else {
tempDir <- "temp"
}
inputFile <- args[1]
outputFile <- args[2]
cffolder <- file.path(tempDir, "cf")
dir.create(cffolder, showWarnings = FALSE, recursive = TRUE)
outfolder <- file.path(tempDir, "clim")
dir.create(outfolder, showWarnings = FALSE, recursive = TRUE)
if (grepl("pecan.zip$", args[1])) {
system2(Sys.which("unzip"), c("-o", "-d", cffolder, inputFile))
site <- NA
startYear <- NA
endYear <- NA
for (file in list.files(path = cffolder, pattern = "*.nc$")) {
pieces <- strsplit(file, ".", fixed = TRUE)[[1]]
if (length(pieces) != 3) {
usage(paste0("invalid file ", file, " should be <site>.<year>.nc"))
}
if (is.na(site)) {
site <- pieces[1]
} else if (site != pieces[1]) {
usage(paste0("inconsistent sites ", file, " should be ", site, ".<year>.nc"))
}
if (is.na(startYear) || pieces[2] < startYear) {
startYear <- pieces[2]
}
if (is.na(endYear) || pieces[2] > endYear) {
endYear <- pieces[2]
}
startDate <- as.POSIXlt(paste0(startYear, "-01-01 00:00:00"), tz = "UTC")
endDate <- as.POSIXlt(paste0(endYear, "-12-31 23:59:59"), tz = "UTC")
}
} else if (grepl("pecan.nc$", inputFile)) {
pieces <- strsplit(inputFile, ".", fixed = TRUE)[[1]]
if (length(piecesx) != 4) {
usage("Input file name should be of format <site>.<year>.pecan.nc")
}
site <- pieces[1]
year <- pieces[2]
file.copy(inputFile, file.path(cffolder, paste(site, year, "nc", sep = ".")))
startDate <- as.POSIXlt(paste0(year, "-01-01 00:00:00"), tz = "UTC")
endDate <- as.POSIXlt(paste0(year, "-12-31 23:59:59"), tz = "UTC")
} else {
usage("Did not recognize type of file")
}
library(PEcAn.SIPNET)
result <- met2model.SIPNET(cffolder, site, outfolder, start_date = startDate, end_date = endDate,
overwrite = overwrite)
file.rename(result$file, outputFile)
|
"cpmexample1"
|
A1 <- matrix(c(1,0,0,0,0, 0,0,1,0,0,
0,0,0,1,0, 0,0,0,0,1),
nrow=5, ncol=4)
A2 <- matrix(c(1,0,0,0,0, 0,1,0,0,0,
0,0,1,0,0, 0,0,0,1,0),
nrow=5, ncol=4)
H41 <- summary(alrtest(z = H1, A = A1, r = 2))
H42 <- summary(alrtest(z = H1, A = A2, r = 2))
|
require(BB)
dgaussmix <- function (p) {
prop <- p[1:nmix]
mu <- p[(nmix+1):(2*nmix)]
sigma <- p[(2*nmix+1)]
sapply(y, function(y)sum(prop*dnorm(y,mean=mu,sd=sqrt(sigma))))
}
rgaussmix <- function (n, prop, mu, sigma) {
nmix <- length(mu)
imix <- sample(1:nmix, size=n, prob=prop, rep=TRUE)
y <- rnorm(n, mean = mu[imix], sd = sqrt(sigma))
return(y)
}
gaussmix.mloglik <- function(p){
- sum(log(dgaussmix(p)))
}
gaussmix.grad <- function(p){
g <- rep(NA, length(p))
f <- dgaussmix(p)
pj <- p[1:nmix]
mu <- p[(nmix+1): (2*nmix)]
sigma <- p[2*nmix + 1]
phi <- outer(y, mu, function(y, mu) dnorm(y,mean=mu,sd=sqrt(sigma)))
g[1:nmix] <- - colSums(phi/f)
phi2 <- outer(y, mu, function(y, mu) (y - mu)/sigma)
fimuj <- t(t(phi * phi2) * pj)
g[(nmix+1): (2*nmix)] <- - colSums(fimuj/f)
phi3 <- outer(y, mu, function(y, mu) (y - mu)^2/sigma)
fisig <- apply(t(t(phi * ( 1 - phi3) ) * pj), 1, sum)
g[2*nmix+1] <- sum(fisig / f) / (2 * sigma)
g
}
heq <- function(x) {
x[1] + x[2] + x[3] + x[4] - 1
}
hin <- function(x) {
h <- rep(NA, 9)
h[1] <- x[1]
h[2] <- x[2]
h[3] <- x[3]
h[4] <- x[4]
h[5] <- 1 - x[1]
h[6] <- 1 - x[2]
h[7] <- 1 - x[3]
h[8] <- 1 - x[4]
h[9] <- x[9]
h
}
Amat <- matrix(0, 10, 9)
Amat[1, 1:4] <- 1
Amat[2,1] <- Amat[3,2] <- Amat[4,3] <- Amat[5,4] <- Amat[10,9] <- 1
Amat[6, 1] <- Amat[7, 2] <- Amat[8, 3] <- Amat[9, 4] <- -1
b <- c(1,0,0,0,0,-1,-1,-1,-1, 0)
meq <- 1
p <- c(0.2,0.4,0.2,0.2)
nmix <- length(p)
mu <- c(0,3,7,11)
sigma <- 2
npts <- 500
set.seed(12345)
y <- rgaussmix(npts, p, mu, sigma)
ymean <- mean(y)
ysd <- sd(y)
p0 <- rep(1/nmix, nmix)
ymean0 <- ymean + ysd * runif(nmix, -1.2, 1.2)
ysd0 <- ysd
par0 <- c(p0,ymean0, ysd0^2)
ans <- spg(par=par0, fn=gaussmix.mloglik, gr=gaussmix.grad,
project="projectLinear", projectArgs=list(A=Amat, b=b, meq=meq))
if (0 != ans$convergence) stop("test did not converge!")
fuzz <- 5e-5
if(fuzz < max(abs(ans$par -
c( 0.2103359277577284137, 0.2191738028962620377, 0.2174358494266191433,
0.3530544199193904609, 7.0060291485783237064, 11.2527073428970716407,
-0.0166017473519236673, 2.9360474287487265954, 2.0609328632879644339)))){
print(ans$par, digits=18)
cat("difference:\n")
print(ans$par -
c( 0.2103359277577284137, 0.2191738028962620377, 0.2174358494266191433,
0.3530544199193904609, 7.0060291485783237064, 11.2527073428970716407,
-0.0166017473519236673, 2.9360474287487265954, 2.0609328632879644339),
digits=18)
stop("converged to different parameter values!")
}
if(fuzz < max(abs(ans$value - 1388.64728677794915))){
print(ans$value, digits=18)
stop("converged to different function value!")
}
ans
Amat <- matrix(0, 1, 9)
Amat[1, 1:4] <- 1
b <- 1
meq <- 1
ans2 <- spg(par=par0, fn=gaussmix.mloglik, gr=gaussmix.grad,
lower=c(rep(0,4), rep(-Inf, 4), 0), upper=c(rep(1,4), rep(Inf, 4), Inf),
project="projectLinear", projectArgs=list(A=Amat, b=b, meq=meq))
if(fuzz < max(abs(ans$par - ans2$par))){
print(ans2$par, digits=18)
cat("difference:\n")
print(ans$par - ans2$par, digits=18)
stop("converged to different parameter values with lower and upper!")
}
if(fuzz < max(abs(ans$value - ans2$value))){
print(ans2$value, digits=18)
stop("converged to different function value with lower and upper!")
}
ans2
|
fitted.mix <- function(object, digits = NULL, ...)
{
mixobj<-object
pmat <- grpintprob(mixobj$mixdata, mixobj$parameters, mixobj$distribution,
mixobj$constraint)
n <- sum(mixobj$mixdata[, 2])
joint <- n * sweep(pmat, 2, mixobj$parameters[, 1], "*")
mixed <- apply(joint, 1, sum)
conditprob <- sweep(joint, 1, mixed, "/")
if (mixobj$usecondit) {
conditional <- sweep(conditprob, 1, apply(mixobj$mixdata[,
-(1:2)], 1, sum), "*")
outlist <- list(mixed = mixed, joint = joint, conditional = conditional,
conditprob = conditprob)
}
else outlist <- list(mixed = mixed, joint = joint, conditprob = conditprob)
if (is.null(digits))
outlist
else sapply(outlist, round, digits)
}
|
if(requireNamespace("numDeriv", quietly = TRUE)){
q <- c(rep(1, 2), rep(0, 20))
xnames <- c("W", "H",
paste("x", 1:5, sep = ""),
paste("y", 1:5, sep = ""),
paste("w", 1:5, sep = ""),
paste("h", 1:5, sep = "")
)
gamma <- 5.0
rho <- 1.0
Amin <- 100
G <- matrix(0.0, nrow = 26, ncol = 22)
h <- matrix(0.0, nrow = 26, ncol = 1)
G[1, 3] <- -1.0
G[2, 4] <- -1.0
G[3, 6] <- -1.0
G[4, c(3, 5, 13)] <- c(1.0, -1.0, 1.0)
h[4, 1] <- -rho
G[5, c(4, 5, 14)] <- c(1.0, -1.0, 1.0)
h[5, 1] <- -rho
G[6, c(5, 7, 15)] <- c(1.0, -1.0, 1.0)
h[6, 1] <- -rho
G[7, c(6, 7, 16)] <- c(1.0, -1.0, 1.0)
h[7, 1] <- -rho
G[8, c(1, 7, 17)] <- c(-1.0, 1.0, 1.0)
G[9, 9] <- -1.0
G[10, 10] <- -1.0
G[11, 12] <- -1.0
G[12, c(8, 9, 19)] <- c(-1.0, 1.0, 1.0)
h[12, 1] <- -rho
G[13, c(8, 11, 18)] <- c(1.0, -1.0, 1.0)
h[13, 1] <- -rho
G[14, c(10, 11, 20)] <- c(1.0, -1.0, 1.0)
h[14, 1] <- -rho
G[15, c(2, 11, 21)] <- c(-1.0, 1.0, 1.0)
G[16, c(2, 12, 22)] <- c(-1.0, 1.0, 1.0)
G[17, c(13, 18)] <- c(-1.0, 1.0 / gamma)
G[18, c(13, 18)] <- c(1.0, -gamma)
G[19, c(14, 19)] <- c(-1.0, 1.0 / gamma)
G[20, c(14, 19)] <- c(1.0, -gamma)
G[21, c(15, 19)] <- c(-1.0, 1.0 / gamma)
G[22, c(15, 20)] <- c(1.0, -gamma)
G[23, c(16, 20)] <- c(-1.0, 1.0 / gamma)
G[24, c(16, 21)] <- c(1.0, -gamma)
G[25, c(16, 21)] <- c(-1.0, 1.0 / gamma)
G[26, c(17, 22)] <- c(1.0, -gamma)
nno1 <- nnoc(G = G, h = h)
f1 <- function(x) -x[13] + Amin / x[18]
f2 <- function(x) -x[14] + Amin / x[19]
f3 <- function(x) -x[15] + Amin / x[20]
f4 <- function(x) -x[16] + Amin / x[21]
f5 <- function(x) -x[17] + Amin / x[22]
g1 <- function(x, func = f1) numDeriv::grad(func = func, x = x)
g2 <- function(x, func = f2) numDeriv::grad(func = func, x = x)
g3 <- function(x, func = f3) numDeriv::grad(func = func, x = x)
g4 <- function(x, func = f4) numDeriv::grad(func = func, x = x)
g5 <- function(x, func = f5) numDeriv::grad(func = func, x = x)
h1 <- function(x, func = f1) numDeriv::hessian(func = func, x = x)
h2 <- function(x, func = f2) numDeriv::hessian(func = func, x = x)
h3 <- function(x, func = f3) numDeriv::hessian(func = func, x = x)
h4 <- function(x, func = f4) numDeriv::hessian(func = func, x = x)
h5 <- function(x, func = f5) numDeriv::hessian(func = func, x = x)
x0 <- rep(1, 22)
ans <- cccp(q = q, cList = list(nno1), x0 = x0,
nlfList = list(f1, f2, f3, f4, f5),
nlgList = list(g1, g2, g3, g4, g5),
nlhList = list(h1, h2, h3, h4, h5))
xsol <- getx(ans)
names(xsol) <- xnames
xsol
plot(c(0, xsol["W"]), c(0, xsol["H"]), type = "n", xlab = "", ylab = "",
main = "Floor Planning")
for(i in 1:5){
rect(xleft = xsol[i + 2],
ybottom = xsol[i + 7],
xright = xsol[i + 2] + xsol[i + 12],
ytop = xsol[i + 7] + + xsol[i + 17],
col = "gray", border = "black", lty = 1, lwd = 1)
text(x = c(xsol[i + 2] + xsol[i + 12] / 2),
y = c(xsol[i + 7] + + xsol[i + 17] / 2), labels = i)
}
}
|
NULL
getExamplePkModel <- function( ) {
dataParametersFile <- system.file("extData", "examplePkParameters.csv" , package = "microsamplingDesign")
exampleParameters <- read.csv( dataParametersFile , stringsAsFactors = FALSE , na.strings = NULL )
nParam <- nrow( exampleParameters )
parameterNames <- exampleParameters$parameter
correlationMatrix <- diag( rep( 1 , nParam ) )
colnames( correlationMatrix ) <- parameterNames
rownames( correlationMatrix ) <- parameterNames
pkModel <- new( "PkModel" ,
modelFunction = get2ComptModelCurve ,
parameters = exampleParameters ,
correlationMatrix = correlationMatrix ,
coeffVariationError = 0.1 ,
dosingInfo = data.frame( time = c( 0 , 2 ) , dose = c( 20 , 30 ) , stringsAsFactors = TRUE )
)
return( pkModel )
}
construct2CompModel <- function( parameters , dosingInfo , correlationMatrix = NULL , coeffVariationError = 0 ) {
nParameters <- nrow( parameters )
parameterNames <- parameters$parameter
if( is.null( correlationMatrix ) ) {
correlationMatrix <- diag( 1 , nParameters )
colnames( correlationMatrix ) <- parameterNames
rownames( correlationMatrix ) <- parameterNames
}
pkModel <- new( "PkModel" ,
modelFunction = get2ComptModelCurve ,
parameters = parameters ,
dosingInfo = dosingInfo ,
correlationMatrix = correlationMatrix,
coeffVariationError = coeffVariationError
)
return( pkModel )
}
if( 0 == 1 ) {
model <- getExampleModel
object <- model
setParameters(object) <- data.frame(zever = 1)
object <- getExamplePkModel()
validatePkModel( object )
object@correlationMatrix <- rbind(cbind(object@correlationMatrix , 1 ) , 1 )
validatePkModel( object )
}
validatePkModel <- function( object ) {
errors <- character( )
parameterSlot <- object@parameters
nParameters <- nrow( parameterSlot )
parameterSlotNamesMin <- c( "parameter" , "value" , "coeffVariation" )
paramSlotNames <- colnames( parameterSlot )
checkParamNames <- all( parameterSlotNamesMin %in% paramSlotNames )
if( ! checkParamNames ) {
msg <- paste0( "column names of slot parameters should be: ( " ,
paste0( parameterSlotNamesMin , collapse = ", " ) ,")" , "\n" )
errors <- c( errors , msg )
}
CVResidual <- object@coeffVariationError
checkOneValue <- length( CVResidual ) == 1
checkNumeric <- is.numeric( CVResidual )
if( ! ( checkOneValue && checkNumeric ) ) {
msg <- paste0( "coeffVariationError should be one numeric value" , "\n")
errors <- c( errors , msg )
}
if ( length( errors) == 0 ) {
return( TRUE )
} else {
cat( errors )
return( FALSE )
}
}
setClass("PkModel", contains = c( "PkModelParent" ) )
setValidity( "PkModel" , validatePkModel )
plotPkModel <- function( object , times , nCurves = 12 , nSamplesIntegration = 1000 , seed = 134 ,
sampleCurvesOnly = FALSE , indSamplingPoints = FALSE ) {
set.seed( seed )
nTimes <- length( times )
set.seed( seed )
exampleCurves <- getPkData( pkModel = object, timePoints = times , nSubjectsPerScheme = 1 , nSamples = nCurves )
plotObject( object = exampleCurves , nCurves = NULL , nSamplesIntegration = nSamplesIntegration ,
sampleCurvesOnly = sampleCurvesOnly , seed = seed , indSamplingPoints = indSamplingPoints )
}
setMethod( f = "plotObject" , signature = "PkModel" , definition = plotPkModel )
checkPkData <- function( object ) {
errors <- character( )
dimData <- dim( [email protected] )
nDimensions <- length( dimData )
if( !nDimensions == 3 ) {
msg <- paste0( "Dimensions of data array should be 3, not: ", nDimensions, "\n" )
errors <- c ( errors, msg )
}
timeDimension <- dimData[ 2 ]
if( !timeDimension == length( object@timePoints ) ) {
msg <- paste0( "time dimension in data does not correspond to number of timePoints", "\n" )
errors <- c( errors, msg )
}
if( ! is.numeric( [email protected] ) ) {
msg <- paste("Data values should be numeric" , "\n" )
errors <- c( errors, msg )
}
if ( length(errors) == 0 ) {
TRUE
} else {
cat( errors )
FALSE
}
}
setClass("PkData",
contains = "PkModel",
slots = c( .Data = "array", timePoints = "vector" ) ,
validity = checkPkData
)
setMethod( f = "getPkModel" , signature = "PkData" , definition = function( object ) {
model <- object@modelFunction
parameters <- object@parameters
dosingInfo <- object@dosingInfo
corrMat <- object@correlationMatrix
addError <- object@coeffVariationError
pkModel <- new( "PkModel" , modelFunction = model , parameters = parameters ,
correlationMatrix = corrMat ,
coeffVariationError = addError , dosingInfo = dosingInfo )
return( pkModel )
}
)
getExampleData <- function( ) {
timePoints <- c( 0.5 , 1 , 2 , 10 )
pkModel <- getExamplePkModel()
dataExample <- getPkData( pkModel , timePoints , nSubjectsPerScheme = 2 , nSamples = 7 )
return( dataExample )
}
setMethod( "getTimePoints", "PkData",
function( object ) {
return( object@timePoints )
}
)
setMethod( "getData", "PkData",
function( object ) {
return( [email protected] )
}
)
if( 0 == 1 ) {
object <- getExampleData()
timePointsSelect <- c( 0.5 , 1 )
.PkDataClass.timePointSubset( object, timePointsSelect )
subsetOnTimePoints.PkData( object, c( 1 , 3 , 20 ) )
subsetOnTimePoints.PkData( object, "blablabla" )
subsetOnTimePoints.PkData( object, "blablabla" )
}
subsetOnTimePoints.PkData <- function( object, timePointsSelect ) {
timePoints <- getTimePoints(object)
flagSubset <- timePointsSelect %in% timePoints
if( !all( flagSubset ) ) {
stop( "timePointsSelect is not a subset of the objects' timePoints" )
}
flagTimeSelect <- timePoints %in% timePointsSelect
dataNew <- getData( object )[ , flagTimeSelect , ]
timePointsNew <- getTimePoints( object ) [ flagTimeSelect ]
flagGoodTimePointsSelect <- identical( timePointsNew , timePointsSelect)
if( !flagGoodTimePointsSelect ) { stop( "incorrect timePoint selection" ) }
output <- object
output@timePoints <- timePointsNew
[email protected] <- dataNew
validObject( output )
return( output )
}
setMethod( f = subsetOnTimePoints ,
signature = "PkModel",
definition = subsetOnTimePoints.PkData
)
rm( subsetOnTimePoints.PkData )
if( 0 == 1 ) {
object <- getPkData( getExamplePkModel() , 1:10 , 5 , 10 )
nCurves <- 3
plotObject( object = exampleCurves , nCurves = NULL , nSamplesIntegration = nSamplesIntegration ,
sampleCurvesOnly = sampleCurvesOnly , seed = seed , indSamplingPoints = indSamplingPoints )
}
plotPkData <- function( object , nCurves = NULL , nSamplesIntegration = 1000 , sampleCurvesOnly = TRUE , seed = NULL ,
indSamplingPoints = TRUE , addZeroIsZero = FALSE ) {
pkDataFlat <- flattenPkData( object )
times <- getTimePoints( object )
if( addZeroIsZero ){
pkDataFlat <- cbind( 0 , pkDataFlat )
times <- c( 0 , times )
}
nSubjects <- nrow( pkDataFlat )
if( ( is.null( nCurves ) ) ) {
dataSelect <- pkDataFlat
} else if ( nCurves >= nSubjects ) {
dataSelect <- pkDataFlat
} else {
dataSelect <- pkDataFlat[ seq_len( nCurves ) , , drop = FALSE ]
}
nCurvesSelect <- nrow( dataSelect )
nTimes <- length( times )
exampleCurvesVector <- as.vector( t( dataSelect ) )
curveDataPlot <- data.frame(
subject = rep( 1 : nCurvesSelect , rep( nTimes , nCurvesSelect ) ) ,
time = rep( times , nCurvesSelect) ,
concentration = exampleCurvesVector ,
curve = "sample curve" , stringsAsFactors = TRUE
)
if( !is.null(seed) ) {
set.seed( seed )
}
if( ! sampleCurvesOnly ) {
popAveragedcurve <- getPopAveragedCurve( timePoints = times , pkModel = object , nSamples = nSamplesIntegration )
avCurve <- data.frame(
subject = NA ,
time = times ,
concentration = as.vector( popAveragedcurve ) ,
curve = " averaged curve" , stringsAsFactors = TRUE
)
plotData <- rbind( curveDataPlot , avCurve )
lineWidth <- c( 1.75 , 3 )
} else {
plotData <- curveDataPlot
lineWidth <- 2.5
}
with( data = plotData , {
plot <- ggplot(data = plotData , aes( x = time , y = concentration , group = subject , size = curve , color = curve ) ) +
geom_path() +
ylab("\n Concentration in plasma \n") +
xlab("\n Time in hours ") +
theme( axis.title = element_text(size = rel(1.2)),
axis.text = element_text(size = rel(1.2))
) +
scale_colour_grey( start = 0.8 , end = 0.2 ) +
scale_size_manual( values = lineWidth )
if( indSamplingPoints ) {
plot = plot + geom_point( colour = "dodgerblue3" )
}
plot
}
)
}
setMethod( f = "plotObject" , signature = "PkData" , definition = plotPkData )
|
library(httr)
oauth_endpoints("google")
myapp <- oauth_app("google",
key = "16795585089.apps.googleusercontent.com",
secret = "hlJNgK73GjUXILBQvyvOyurl"
)
google_token <- oauth2.0_token(oauth_endpoints("google"), myapp,
scope = "https://www.googleapis.com/auth/userinfo.profile"
)
req <- GET(
"https://www.googleapis.com/oauth2/v1/userinfo",
config(token = google_token)
)
stop_for_status(req)
content(req)
|
setGeneric("overlap", function(venn, slice = "all") {
standardGeneric("overlap")
}
)
setMethod("overlap", c(venn = "Venn", slice = "ANY"),
function(venn, slice = "all") {
if (slice[1] != "all") {
venn2 = venn@sets[slice]
inter = purrr::reduce(venn2, function(x, y) intersect(x, y))
} else {
inter = purrr::reduce(venn@sets, function(x, y) intersect(x, y))
}
inter
}
)
setGeneric("unite", function(venn, slice = "all") {
standardGeneric("unite")
}
)
setMethod("unite", c(venn = "Venn", slice = "ANY"),
function(venn, slice = "all") {
if (slice[1] != "all") {
venn2 = venn@sets[slice]
uni = purrr::reduce(venn2, function(x, y) union(x, y))
} else {
uni = purrr::reduce(venn@sets, function(x, y) union(x, y))
}
uni
}
)
setGeneric("discern", function(venn,
slice1,
slice2 = "all") {
standardGeneric("discern")
}
)
setMethod("discern", c(venn = "Venn", slice1 = "ANY", slice2 = "ANY"),
function(venn,
slice1,
slice2 = "all") {
if (is.numeric(slice1)) {
slice1 = names(venn@sets)[slice1]
}
if (is.numeric(slice2)) {
slice2 = names(venn@sets)[slice2]
}
if (slice2[1] == "all") {
slice2 = setdiff(names(venn@sets), slice1)
set1 = venn@sets[slice1] %>% purrr::reduce(function(x, y) union(x, y))
set2 = venn@sets[slice2] %>% purrr::reduce(function(x, y) union(x, y))
differ = setdiff(set1, set2)
} else {
set1 = venn@sets[slice1] %>% purrr::reduce(function(x, y) union(x, y))
set2 = venn@sets[slice2] %>% purrr::reduce(function(x, y) union(x, y))
differ = setdiff(set1, set2)
}
differ
}
)
|
options(digits=12)
if(!require("optimx"))stop("this test requires package optimx.")
if(!require("setRNG"))stop("this test requires setRNG.")
test.rng <- list(kind="Wichmann-Hill", normal.kind="Box-Muller", seed=c(979,1479,1542))
old.seed <- setRNG(test.rng)
cat("optimx test brown-x.f ...\n")
brown.f <- function(x) {
p <- x
n <- length(p)
odd <- seq(1,n,by=2)
even <- seq(2,n,by=2)
sum((p[odd]^2)^(p[even]^2 + 1) + (p[even]^2)^(p[odd]^2 + 1))
}
npar<-50
p0 <- rnorm(npar,sd=2)
system.time(ans.optx <- optimx(par=p0, fn=brown.f, control=list(all.methods=TRUE, save.failures=TRUE, maxit=2500)))[1]
print(ans.optx)
|
fSolI <- function(solD, sample='hour', BTi,
EoT=TRUE, keep.night=TRUE,
method='michalsky'){
Bo <- 1367
lat <- d2r(attr(solD, 'lat'))
signLat <- ifelse(sign(lat)==0, 1, sign(lat))
if (missing(BTi)){
sampleDiff <- char2diff(sample)
start.sol <- start(solD)
end.sol <- end(solD)
seqby <- seq(start.sol, end.sol+86400-1, by = sampleDiff)
} else {
seqby <- BTi
sampleDiff <- median(diff(BTi))
}
seqby.day<-truncDay(seqby)
solD.day<-index(solD)
mtch<-match(seqby.day, solD.day, nomatch = 0)
mtch.in <- which(mtch>0)
mtch <- mtch[mtch>0]
sol.rep<-data.frame(solD)[mtch,]
seqby.match<-seqby[mtch.in]
decl<-sol.rep$decl
ws<-sol.rep$ws
Bo0d<-sol.rep$Bo0d
eo<-sol.rep$eo
if (EoT) {EoT <- sol.rep$EoT} else {EoT <- 0}
jd <- as.numeric(julian(seqby.match, origin='2000-01-01 12:00:00 UTC'))
TO <- hms(seqby.match)
methods <- c('cooper', 'spencer', 'michalsky', 'strous')
method <- match.arg(method, methods)
w=switch(method,
cooper = h2r(TO-12)+EoT,
spencer = h2r(TO-12)+EoT,
michalsky = {
meanLong <- (280.460+0.9856474*jd)%%360
meanAnomaly <- (357.528+0.9856003*jd)%%360
eclipLong <- (meanLong +1.915*sin(d2r(meanAnomaly))+0.02*sin(d2r(2*meanAnomaly)))%%360
excen <- 23.439-0.0000004*jd
sinEclip <- sin(d2r(eclipLong))
cosEclip <- cos(d2r(eclipLong))
cosExcen <- cos(d2r(excen))
ascension <- r2d(atan2(sinEclip*cosExcen, cosEclip))%%360
lmst <- (h2d(6.697375 + 0.0657098242*jd + TO))%%360
w <- (lmst-ascension)
w <- d2r(w + 360*(w < -180) - 360*(w > 180))
},
strous = {
meanAnomaly <- (357.5291 + 0.98560028*jd)%%360
coefC <- c(1.9148, 0.02, 0.0003)
sinC <- sin(outer(1:3, d2r(meanAnomaly), '*'))
C <- colSums(coefC*sinC)
trueAnomaly <- (meanAnomaly + C)%%360
eclipLong <- (trueAnomaly + 282.9372)%%360
excen <- 23.435
sinEclip <- sin(d2r(eclipLong))
cosEclip <- cos(d2r(eclipLong))
cosExcen <- cos(d2r(excen))
ascension <- r2d(atan2(sinEclip*cosExcen, cosEclip))%%360
lmst <- (280.1600+360.9856235*jd)%%360
w <- (lmst-ascension)
w <- d2r(w + 360*(w< -180) - 360*(w>180))
}
)
aman<-abs(w)<=abs(ws)
cosThzS<-sin(decl)*sin(lat)+cos(decl)*cos(w)*cos(lat)
cosThzS[cosThzS>1]<-1
AlS <- asin(cosThzS)
cosAzS <- signLat*(cos(decl)*cos(w)*sin(lat)-cos(lat)*sin(decl))/cos(AlS)
cosAzS[cosAzS > 1] <- 1
cosAzS[cosAzS < -1] <- -1
AzS <- sign(w)*acos(cosAzS)
Bo0<-Bo*eo*cosThzS
Bo0[!aman] <- 0
a <- 0.409-0.5016*sin(ws+pi/3)
b <- 0.6609+0.4767*sin(ws+pi/3)
rd<-Bo0/Bo0d
rg<-rd*(a+b*cos(w))
resultDF<-data.frame(w, aman, cosThzS, AlS, AzS, Bo0, rd, rg)
if (!keep.night){
resultDF <- resultDF[aman==TRUE,]
seqby.match <- seqby.match[aman==TRUE]
mtch <- mtch[aman==TRUE]
} else {}
result <- zoo(resultDF, order.by=seqby.match)
attr(result, 'match') <- mtch
attr(result, 'lat') <- r2d(lat)
attr(result, 'sample') <- sampleDiff
result
}
|
cur_vars_env <- new.env()
current_vars <- function() cur_vars_env$selected
select_helpers <- list(starts_with = function(...) starts_with(vars, ...),
ends_with = function(...) ends_with(vars, ...),
contains = function(...) contains(vars, ...),
matches = function(...) matches(vars, ...),
num_range = function(...) num_range(vars, ...),
one_of = function(...) one_of(vars, ...),
everything = function(...) everything(vars, ...))
starts_with <- function(match, ignore.case = TRUE, vars = current_vars()) {
stopifnot(assertthat::is.string(match), !is.na(match), nchar(match) > 0)
if (ignore.case) match <- tolower(match)
n <- nchar(match)
if (ignore.case) vars <- tolower(vars)
which_vars(match, substr(vars, 1, n))
}
ends_with <- function(match, ignore.case = TRUE, vars = current_vars()) {
stopifnot(assertthat::is.string(match), !is.na(match), nchar(match) > 0)
if (ignore.case) match <- tolower(match)
n <- nchar(match)
if (ignore.case) vars <- tolower(vars)
length <- nchar(vars)
which_vars(match, substr(vars, pmax(1, length - n + 1), length))
}
contains <- function(match, ignore.case = TRUE, vars = current_vars()) {
stopifnot(assertthat::is.string(match), nchar(match) > 0)
if (ignore.case) {
vars <- tolower(vars)
match <- tolower(match)
}
grep_vars(match, vars, fixed = TRUE)
}
matches <- function(match, ignore.case = TRUE, vars = current_vars()) {
stopifnot(assertthat::is.string(match), nchar(match) > 0)
grep_vars(match, vars, ignore.case = ignore.case)
}
num_range <- function(prefix, range, width = NULL, vars = current_vars()) {
if (!is.null(width)) {
range <- sprintf(paste0("%0", width, "d"), range)
}
match_vars(paste0(prefix, range), vars)
}
one_of <- function(..., vars = current_vars()) {
keep <- c(...)
if (!is.character(keep)) {
stop("`c(...)` must be a character vector", call. = FALSE)
}
if (!all(keep %in% vars)) {
bad <- setdiff(keep, vars)
warning("Unknown variables: ", paste0("`", bad, "`", collapse = ", "))
}
match_vars(keep, vars)
}
everything <- function(vars = current_vars()) {
seq_along(vars)
}
match_vars <- function(needle, haystack) {
x <- match(needle, haystack)
x <- x[!is.na(x)]
fill_out(x, haystack)
}
grep_vars <- function(needle, haystack, ...) {
fill_out(grep(needle, haystack, ...), haystack)
}
which_vars <- function(needle, haystack) {
fill_out(which(needle == haystack), haystack)
}
fill_out <- function(x, haystack) {
if (length(x) > 0) return(x)
-seq_along(haystack)
}
|
context("Testing class definitions")
test_that("funData class constructor", {
expect_error(funData(argvals = "Test", X = matrix(2, nrow = 1)),
"unable to find an inherited method")
expect_error(funData(argvals = list(1,"Test"), X = array(1:2, dim = c(1,1,1))),
"All argvals elements must be numeric")
expect_error(funData(argvals = list(1:5), X = list(cbind(1:5,6:10))),
"unable to find an inherited method")
expect_error(funData(argvals = list(1:5), X = array(1:25, dim = c(1,5,5))),
"argvals and X element have different support dimensions! X-Dimensions must be of the form N x M1 x ... x Md")
expect_error(funData(argvals = list(1:5, 1:4), X = array(1:25, dim = c(1,5,5))),
"argvals and X have different number of sampling points! X-Dimensions must be of the form N x M1 x ... x Md")
expect_is(funData(argvals = c(1:5), X = matrix(c(1:19, NA), nrow = 4)), "funData")
expect_equal(funData(argvals = 1:5, X = matrix(1:20, nrow = 4)), funData(argvals = list(1:5), X = matrix(1:20, nrow = 4)))
})
test_that("multiFunData class constructor", {
f1 <- funData(argvals = 1:5, X = matrix(1:20, nrow = 4))
expect_error(multiFunData(list(5, 5)),
"Elements of multiFunData must be of class funData!")
expect_error(multiFunData(list(f1, funData(argvals = list(1:5, 6:10), X = array(1:125, c(5,5,5))))),
"All elements must have the same number of observations!")
expect_is(as(f1, "multiFunData"), "multiFunData")
expect_equal(multiFunData(f1,f1), multiFunData(list(f1,f1)))
})
test_that("irregfunData class constructor", {
expect_error(irregFunData(argvals = "Test", X = list(5)),
"unable to find an inherited method")
expect_error(irregFunData(argvals = list("Test"), X = list(5)),
"argvals must be supplied as list of numerics")
expect_error(irregFunData(argvals = list(5), X = "Test"),
"unable to find an inherited method")
expect_error(irregFunData(argvals = list(5), X = list("Test")),
"X must be supplied as list of numerics")
expect_error(irregFunData(argvals = list(1:5), X = list(1:5, 2:4)),
"Different number of observations for argvals and X")
expect_error(irregFunData(argvals = list(1:5, 1:4), X = list(1:5, 2:4)),
"Different numbers of observation points in argvals and X")
})
test_that("coerce methods", {
x <- seq(0,1,0.01)
f <- funData(argvals = x, X = 1:5 %o% x)
i1 <- irregFunData(argvals = list(1:5, 3:6), X = list(2:6, 4:7))
expect_error(as.irregFunData(tensorProduct(f,f)),
"The funData object must be defined on a one-dimensional domain.")
expect_equal(f, as.multiFunData(f)[[1]])
expect_equal(as.funData(i1), {f1 <- funData(1:6, rbind(c(2:6, NA), c(NA,NA,4:7)))})
expect_equal(unique(unlist(i1@argvals)), f1@argvals[[1]])
expect_equal(i1@X, apply(f1@X, 1, na.omit), check.attributes = FALSE)
expect_equal(i1, as.irregFunData(f1))
fName <- f; names(fName) <- letters[1:nObs(fName)]
expect_equal(head(as.data.frame(f), nObsPoints(f)), data.frame(obs = "1", argvals1 = x, X = f@X[1,]), check.attributes = FALSE)
expect_equal(tail(as.data.frame(f), nObsPoints(f)), data.frame(obs = "5", argvals1 = x, X = f@X[5,]), check.attributes = FALSE)
expect_equal(tail(as.data.frame(fName), nObsPoints(fName)), data.frame(obs = "e", argvals1 = x, X = f@X[5,]), check.attributes = FALSE)
expect_equal(as.data.frame(as.multiFunData(f)), list(as.data.frame(f)))
expect_equal(as.data.frame(i1), data.frame(obs = rep(c("1","2"), times = c(5,4)), argvals = unlist(argvals(i1)), X = unlist(X(i1))))
if(!(requireNamespace("fda", quietly = TRUE)))
{
expect_warning(funData2fd(f), "Please install the fda package to use the funData2fd function for funData objects.")
expect_warning(fd2funData(NULL), "Please install the fda package to use the fd2funData function for funData objects.")
}
else
{
library("fda")
daybasis <- create.fourier.basis(c(0, 365), nbasis=65)
tempfd <- Data2fd(argvals = day.5, y = CanadianWeather$dailyAv[,,"Temperature.C"], daybasis)
expect_error(funData2fd("fun", daybasis), "Argument is not of class 'funData'.")
expect_error(funData2fd(funData(argvals = list(1:5, 1:4), X = 3:1 %o% 1:5 %o% 1:4)), "funData2fd is only defined for functions on one-dimensional domains.")
expect_error(fd2funData(tempfd, letters[1:5]), "Parameter 'argvals' must be either a vector of argument values or a list containing such a vector.")
tempFun <- fd2funData(tempfd, argvals = day.5)
tempFun2 <- fd2funData(tempfd, argvals = list(day.5))
expect_equal(nObs(tempFun), 35)
expect_equal(nObsPoints(tempFun), 365)
expect_equal(mean(norm(tempFun)), 60906.17, tol = 1e-5)
expect_equal(norm(tempFun)[1], 27068, tol = 1e-5)
expect_equal(tempFun, tempFun2)
reTempfd <- funData2fd(tempFun, daybasis)
reTempfd$fdnames$time <- tempfd$fdnames$time
expect_equal(tempfd, reTempfd)
}
})
|
context("get_ids")
test_that("get_ids returns the correct values and classses", {
skip_on_cran()
tt <- get_ids("Chironomus riparius", db = "ncbi",
messages = FALSE, suppress = TRUE)
expect_equal(tt[[1]][[1]], "315576")
expect_is(tt, "ids")
expect_is(tt[[1]], "uid")
expect_is(tt[[1]][[1]], "character")
})
test_that("get_ids accepts ask and verbose arguments", {
skip_on_cran()
expect_message(get_ids("Pinus contorta", db = "ncbi",
suppress = TRUE))
expect_message(get_ids("Pinus contorta", db = "ncbi",
messages = FALSE, suppress = TRUE), NA)
})
nn <- c('Imperata brasiliensis','Hylebates cordatus','Apocopis intermedius',
'Paspalum subciliatum','Bromus nottowayanus','Chimonobambusa marmorea',
'Panicum adenophorum','Otatea glauca','Himalayacalamus falconeri',
'Briza lamarckiana','Trisetum turcicum','Brachiaria subulifolia',
'Boissiera squarrosa','Arthrostylidium pubescens','Neyraudia reynaudiana'
,'Bromus gunckelii','Poa sudicola','Pentameris thuarii',
'Calamagrostis inexpansa','Willkommia texana','Helictotrichon cantabricum',
'Muhlenbergia tenuifolia','Sporobolus ioclados','Bambusa cerosissima',
'Axonopus flabelliformis','Glyceria lithuanica','Pentaschistis malouinensis',
'Perrierbambus madagascariensis','Hierochloe alpina','Hemarthria compressa',
'Zizania latifolia','Festuca altaica','Gigantochloa wrayi','Festuca alpina',
'Aegilops caudata','Elymus cognatus','Agrostis gracililaxa',
'Gymnopogon foliosus')
test_that("works on a variety of names", {
skip_on_cran()
skip_on_ci()
expect_is(sw(get_ids(nn[13], db = c("ncbi", "itis", "tropicos"),
suppress = TRUE, ask = FALSE, messages = FALSE)), "ids")
expect_is(sw(get_ids(nn[14], db = c("ncbi", "tropicos"),
suppress = TRUE, ask = FALSE, messages = FALSE)), "ids")
expect_is(sw(get_ids(nn[15], db = c("ncbi", "itis", "tropicos"),
suppress = TRUE, ask = FALSE, messages = FALSE)), "ids")
})
|
context("test-na-warn")
test_that("na.warn warns when dropping", {
df <- data.frame(x = 1:5, y = c(1, NA, 3, NA, 5))
expect_warning(mod <- lm(y ~ x, data = df, na.action = na.warn), "Dropping 2")
pred <- unname(predict(mod))
expect_equal(is.na(pred), is.na(df$y))
})
|
library(lattice)
library(latticeExtra)
library(microplot)
options(latexcmd='pdflatex')
options(dviExtension='pdf')
if (nchar(Sys.which("open"))) {
options(xdvicmd="open")
} else {
options(xdvicmd="xdg-open")
}
irisBW <-
bwplot( ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width | Species,
data=iris, outer=TRUE, as.table=TRUE,
scales=list(alternating=FALSE),
xlab=NULL,
par.strip.text=list(cex=1.5))
names(dimnames(irisBW))[[2]] <- "Measurement"
pdf("irisBW.pdf", width=7, height=7)
useOuterStrips(irisBW)
suppress <- dev.off()
irisBW.update <-
update(irisBW,
xlab=NULL,
par.settings=list(
layout.heights=layoutHeightsCollapse(),
layout.widths=layoutWidthsCollapse(),
axis.line=list(col="transparent")),
layout=c(1,1)
)
irisBW.axis <-
update(irisBW.update[1,1],
scales=list(cex=.6),
par.settings=list(layout.heights=list(axis.bottom=1, panel=0),
axis.line=list(col="black")))
pdf("irisBW%03d.pdf", onefile=FALSE, height=.4, width=1.6)
irisBW.update
suppress <- dev.off()
pdf("irisBW013.pdf", height=.4, width=1.6)
irisBW.axis
suppress <- dev.off()
graphnames <- paste0("irisBW", sprintf("%03i", 1:13), ".pdf")
graphicsnames <- t(matrix(as.includegraphics(graphnames[1:12], height="2em", raise="-1.3ex"),
nrow=3, ncol=4,
dimnames=dimnames(irisBW)))
BWMS.latex <- Hmisc::latex(graphicsnames, caption="\\Large Measurement by Species", where="!htbp",
label="BWMS", title="Measurement", file="BWMS.tex",
size="Large")
BWMS.latex$style <- "graphicx"
graphicsnamesA <- rbind(graphicsnames, as.includegraphics(graphnames[13], height="2em", raise="-1.3ex"))
BWMSA.latex <- Hmisc::latex(graphicsnamesA, caption="\\Large Measurement by Species, with $x$-scale",
where="!htbp",
n.rgroup=c(4, 1),
rgroup=c("\\vspace*{-1em}", "\\vspace*{-1.25em}"),
label="BWMSA", title="Measurement", file="BWMSA.tex",
size="Large")
BWMSA.latex$style <- "graphicx"
BWSM.latex <- Hmisc::latex(t(graphicsnames), caption="\\Large Species by Measurement", where="!htbp",
label="BWSM", title="Species", file="BWSM.tex", size="large")
BWSM.latex$style <- "graphicx"
iris.fivenum <-
sapply(levels(iris$Species),
function(i) {
tmp <- sapply(iris[iris$Species==i, 1:4], fivenum)
dimnames(tmp)[[1]] <- c("min", "Q1", "med", "Q3", "max")
tmp
},
simplify=FALSE)
BW5num <-
rbind(
data.frame(t(iris.fivenum[[1]]), "Box Plots"=graphicsnames[,1], check.names=FALSE),
data.frame(t(iris.fivenum[[2]]), "Box Plots"=graphicsnames[,2], check.names=FALSE),
data.frame(t(iris.fivenum[[3]]), "Box Plots"=graphicsnames[,3], check.names=FALSE))
BW5num$Measurement=names(iris)[1:4]
BW5num <- BW5num[, c(7,1:6)]
BW5num.latex <-
Hmisc::latex(BW5num,
rowname=" ",
rowlabel="Species",
rgroup=levels(iris$Species),
n.rgroup=c(4,4,4),
cgroup=c("", "Five Number Summary", ""),
n.cgroup=c(1, 5, 1),
caption="\\Large Five Number Summary and Boxplots for each Species and Measurement",
label="irisBW5num",
where="!htbp")
BW5num.latex$style <- "graphicx"
|
context("add_dummy_variables")
test_that("Function create the correct columns", {
cols_expected <- c("mpg","disp","hp","drat","wt","qsec","vs","am","gear","carb","cyl_6","cyl_8")
expect_equal(
colnames(add_dummy_variables(mtcars, cyl, c(4,6,8))),
cols_expected
)
expect_equal(
colnames(add_dummy_variables(mtcars, cyl, auto_values = TRUE)),
cols_expected
)
})
test_that("Function fails when no values are passed and auto_values is FALSE",{
expect_error(add_dummy_variables(mtcars, cyl))
expect_error(add_dummy_variables(mtcars, cyl, auto_values = FALSE))
})
test_that("Has error when variable is missing",{
expect_error(add_dummy_variables(mtcars, error))
})
|
tess.plot.singlechain.diagnostics = function(output,
parameters=c("speciation rates",
"speciation shift times",
"extinction rates",
"extinction shift times",
"net-diversification rates",
"relative-extinction rates",
"mass extinction times"),
diagnostics=c("ESS","geweke"),
ess.crit=c(100,200),
geweke.crit=0.05,
correction="bonferroni",
xlab="million years ago",
col=NULL,
xaxt="n",
yaxt="s",
pch=19,
...){
validFigTypes <- c("speciation rates",
"speciation shift times",
"extinction rates",
"extinction shift times",
"net-diversification rates",
"relative-extinction rates",
"mass extinction times")
invalidFigTypes <- parameters[!parameters %in% validFigTypes]
if ( length( invalidFigTypes ) > 0 ) {
stop("\nThe following figure types are invalid: ",paste(invalidFigTypes,collapse=", "),".",
"\nValid options are: ",paste(validFigTypes,collapse=", "),".")
}
validDiagnostics <- c("ESS","geweke")
invalidDiagnostics <- diagnostics[!diagnostics %in% validDiagnostics]
if ( length( invalidFigTypes ) > 0 ) {
stop("\nThe following diagnostics are invalid: ",paste(invalidDiagnostics,collapse=", "),".",
"\nValid options are: ",paste(validDiagnostics,collapse=", "),".")
}
if ( is.null(col) ) {
col <- c("
} else if ( length(col) != 3 ){
stop("\nYou must supply 3 input colors.")
}
treeAge <- max(branching.times(output$tree))
numIntervals <- length(output$intervals)-1
plotAt <- 0:numIntervals
intervalSize <- treeAge/numIntervals
labels <- pretty(c(0,treeAge))
labelsAt <- numIntervals - (labels / intervalSize)
for ( type in parameters ) {
for ( diag in diagnostics ) {
if ( diag == "ESS" ) {
thisOutput <- output[[type]]
thisESS <- effectiveSize(thisOutput)
thisCol <- col[findInterval(thisESS,ess.crit)+1]
ylim <- range(pretty(c(0,max(thisESS))))
thisCol[thisESS == 0] <- 'grey90'
thisESS[thisESS == 0] <- max(ylim)
barplot(thisESS,space=0,xaxt=xaxt,col=thisCol,border=NA,main=type,ylab="effective sample size",xlab=xlab,ylim=ylim,...)
abline(h=ess.crit,lty=2,...)
axis(1,at=labelsAt,labels=labels)
box()
} else if ( diag == "geweke" ) {
thisOutput <- output[[type]]
thisGeweke <- geweke.diag(thisOutput)$z
if ( !is.null(correction) ) {
if ( correction == "bonferroni" ) {
crit <- geweke.crit / numIntervals
}
if ( correction == "sidak" ) {
crit <- 1 - (1 - geweke.crit)^(1/numIntervals)
}
} else {
crit <- geweke.crit
}
thisPvalue <- pnorm(thisGeweke)
thisPvalue[is.na(thisPvalue)] <- 0
failed <- thisPvalue < crit | thisPvalue > 1 - (crit)
thisCol <- ifelse(failed,col[1],col[3])
criticalGewekeValues <- qnorm(c(crit,1-crit))
ylim <- range(pretty(c(thisGeweke,criticalGewekeValues)),finite=TRUE)
plot(thisGeweke,col=thisCol,type="p",xaxt=xaxt,ylab="Geweke statistic",main=type,xlab=xlab,ylim=ylim,xlim=range(plotAt),pch=pch,...)
abline(h=criticalGewekeValues,lty=2,...)
axis(1,at=labelsAt,labels=labels)
}
}
}
}
|
options(width = 120)
options(warn = 1)
options(bitmapType = "cairo")
suppressPackageStartupMessages({
library(tidyverse)
library(minfi)
library(RColorBrewer)
library(ggsci)
})
plot_colors = c(brewer.pal(5, "Set1"), brewer.pal(8, "Dark2"), pal_igv("default")(51))
load_data = function(sample_sheet) {
if (!file.exists(sample_sheet)) stop("sample sheet ", sample_sheet, " does not exist")
samples_tbl = read_csv(sample_sheet)
if (!("Basename" %in% colnames(samples_tbl))) stop("sample sheet must contain \"Basename\" column")
if (!("Sentrix_ID" %in% colnames(samples_tbl))) stop("sample sheet must contain \"Sentrix_ID\" column")
if (!("Sample" %in% colnames(samples_tbl))) stop("sample sheet must contain \"Sample\" column")
if (!("Condition" %in% colnames(samples_tbl))) stop("sample sheet must contain \"Condition\" column")
samples_tbl$Array = gsub(".*/([0-9]*)_R[0-9][0-9]C[0-9][0-9]", "\\1", samples_tbl$Basename)
message("\n\n ===== minfi::read.metharray.exp() ===== \n\n")
raw_set = read.metharray.exp(targets = samples_tbl, recursive = TRUE, verbose = FALSE)
if (!(identical(sampleNames(raw_set), sub(".*/", "", pData(raw_set)$Basename)))) stop("sample names not identical")
sampleNames(raw_set) = pData(raw_set)$Sample
message("array: ", annotation(raw_set)[["array"]])
message("annotation: ", annotation(raw_set)[["annotation"]])
message("samples per condition: ")
raw_set$Condition %>% table(useNA = "ifany") %>% print()
message("\n\n ===== minfi::read.qcReport() ===== \n\n")
qcReport(raw_set, sampGroups=pData(raw_set)$Condition, pdf="plot.qcreport.pdf")
png("plot.density.raw.condition.png", width = 8, height = 5, units = "in", res = 300)
densityPlot(raw_set, sampGroups = pData(raw_set)$Condition, pal = plot_colors)
dev.off()
png("plot.density.raw.array.png", width = 8, height = 5, units = "in", res = 300)
densityPlot(raw_set, sampGroups = pData(raw_set)$Array, pal = plot_colors)
dev.off()
if (file.exists("Rplots.pdf")) file.remove("Rplots.pdf")
message("\n\n ===== minfi::detectionP() ===== \n\n")
det_p = detectionP(raw_set)
det_p_summary =
tibble(
sample = colnames(det_p),
detected_positions = colSums(det_p < 0.01),
failed_positions = colSums(det_p >= 0.01),
failed_positions_pct = round(colMeans(det_p > 0.01), digits = 3)
) %>%
arrange(-failed_positions) %>%
mutate(failed_positions_pct = failed_positions_pct * 100)
write_csv(det_p_summary, "summary.detection.csv")
return(raw_set)
}
normalize_data = function(raw_channel_set) {
message("\n\n ===== minfi::preprocessRaw() ===== \n\n")
mset = preprocessRaw(raw_channel_set)
qc = getQC(mset)
mset = addQC(mset, qc = qc)
png("plot.medianintensity.png", width = 8, height = 8, units = "in", res = 300)
plotQC(qc)
dev.off()
message("\n\n ===== minfi::preprocessFunnorm() ===== \n\n")
norm_set = preprocessFunnorm(raw_set, bgCorr = TRUE, dyeCorr = TRUE)
write(paste0("total probes: ", nrow(norm_set)), file = "norm.log", append = TRUE)
det_p = detectionP(raw_set)
det_p = det_p[intersect(rownames(det_p), rownames(norm_set)), ]
norm_set = norm_set[rowSums(det_p < 0.01) == ncol(det_p), ]
write(paste0("detected probes: ", nrow(norm_set)), file = "norm.log", append = TRUE)
norm_set = addSnpInfo(norm_set)
norm_set = dropLociWithSnps(norm_set, snps = c("SBE","CpG"), maf = 0)
write(paste0("non-SNP probes: ", nrow(norm_set)), file = "norm.log", append = TRUE)
png("plot.sex.png", width = 8, height = 8, units = "in", res = 300)
plotSex(getSex(norm_set), id = sampleNames(norm_set))
dev.off()
annot = getAnnotation(norm_set)
annot_tbl = annot %>% as_tibble(rownames = "probe") %>% arrange(probe)
remove_cols = c(
"AddressA", "AddressB", "ProbeSeqA", "ProbeSeqB", "NextBase", "Color", "Forward_Sequence", "SourceSeq",
"Probe_rs", "CpG_rs", "SBE_rs","Probe_maf", "CpG_maf", "SBE_maf", "Islands_Name", "UCSC_RefGene_Accession",
"GencodeBasicV12_NAME", "GencodeBasicV12_Accession", "GencodeBasicV12_Group", "GencodeCompV12_Accession",
"DNase_Hypersensitivity_NAME", "OpenChromatin_NAME", "Methyl27_Loci", "Methyl450_Loci", "Random_Loci")
annot_tbl = annot_tbl %>% dplyr::select(!any_of(remove_cols))
write_csv(head(annot_tbl, 100), "annot.head100.csv")
write_csv(annot_tbl, "annot.csv.gz")
sex_probes = annot$Name[annot$chr %in% c("chrX", "chrY")]
norm_set = norm_set[!(rownames(norm_set) %in% sex_probes), ]
write(paste0("non-sex probes: ", nrow(norm_set)), file = "norm.log", append = TRUE)
beta = getBeta(norm_set)
png("plot.density.norm.fnorm.png", width = 8, height = 5, units = "in", res = 300)
densityPlot(beta, sampGroups = pData(norm_set)$Condition, pal = plot_colors)
dev.off()
png("plot.mds.raw.condition.png", width = 8, height = 8, units = "in", res = 300)
mdsPlot(raw_set, numPositions = 10000, sampNames = sampleNames(raw_set), sampGroups = pData(raw_set)$Condition,
legendPos = "topright", legendNCol = 1, pal = plot_colors)
dev.off()
png("plot.mds.norm.fnorm.condition.png", width = 8, height = 8, units = "in", res = 300)
mdsPlot(beta, numPositions = 10000, sampNames = sampleNames(norm_set), sampGroups = pData(norm_set)$Condition,
legendPos = "topright", legendNCol = 1, pal = plot_colors)
dev.off()
png("plot.mds.norm.fnorm.array.png", width = 8, height = 8, units = "in", res = 300)
mdsPlot(beta, numPositions = 10000, sampNames = sampleNames(norm_set), sampGroups = pData(norm_set)$Array,
legendPos = "topright", legendNCol = 1, pal = plot_colors)
dev.off()
beta = getBeta(norm_set)
beta_tbl = beta %>% round(3) %>% as_tibble(rownames = "probe") %>% arrange(probe)
write_csv(head(beta_tbl, 100), "beta.head100.csv")
write_csv(beta_tbl, "beta.csv.gz")
return(norm_set)
}
|
byclade <-
function (x, remperc, groups) {
ngroups<-length(unique(groups))
if(class(x)=="matrix"){
remove.dat <- function(specimen, removes) {
ndat <- length(specimen)
rems <- sample(ndat, removes, replace = FALSE)
for (k in 1:removes) {
m <- rems[k]
specimen[m] <- NA
}
return(specimen)
}
newx1 <- as.matrix(x)
grouping <- as.factor(groups)
newx2 <- as.matrix(x)
totaldata <- nrow(x) * ncol(x)
n <- round(totaldata * remperc)
ndat <- 1:totaldata
remove <- sample(ndat, n, replace = FALSE)
for (k in 1:n) {
i <- remove[k]
newx1[i] <- NA
}
binary <- ifelse(is.na(newx1), 1, 0)
numberper <- apply(binary, 1, sum)
rows <- 1:nrow(x)
numbersp <- ifelse(numberper == 0, 0, 1) * rows
nsp <- length(numbersp)
sorted <- sort(numberper, decreasing = TRUE)
splitgroups <- split(as.data.frame(x), grouping)
npergroup <- sapply(splitgroups, nrow, simplify = TRUE)
counts <- 1:nsp
for (i in 1:nsp) {
m <- groups[i]
a <- npergroup[m]
counts[i] <- a
}
counts <- counts
sums <- sum(npergroup)
ratio <- sums/counts
probs <- ratio/sum(ratio)
orders <- sample(1:nsp, nsp, replace = FALSE, prob = probs)
for (k in 1:nsp) {
removes <- sorted[k]
spnumber <- orders[k]
specimen <- newx2[spnumber, ]
newsp <- remove.dat(specimen, removes)
newx2[spnumber, ] <- newsp
}
return(newx2)}
if(class(x)=="array"){
remove.dat <- function(specimen, removes) {
ndat <- nrow(specimen)
rems <- sample(ndat, removes, replace = FALSE)
for (k in 1:removes) {
specimen[rems[k],] <- rep(NA,dim(specimen)[[2]])
}
return(specimen)
}
newx1 <- x
grouping <- as.factor(groups)
totaldata <- nrow(x) * dim(x)[[3]]
n <- round(totaldata * remperc)
all.spl<-cbind(rep(1:dim(x)[3],each=nrow(x)),rep(1:nrow(x),dim(x)[[3]]))
remove <- all.spl[sample(1:totaldata, n, replace = FALSE),]
outs <- table(remove[,1])
remove<-rep(0,dim(x)[[3]])
remove[as.numeric(names(outs))]<-outs
sorted <- sort(remove, decreasing = TRUE)
npergroup <- table(groups)
counts <- rep(0,dim(x)[[3]])
for (i in 1:length(remove)) {
m <- groups[i]
a <- npergroup[m]
counts[i] <- a
}
counts <- counts
sums <- sum(npergroup)
ratio <- sums/counts
probs <- ratio/sum(ratio)
orders <- sample(1:dim(x)[[3]], dim(x)[[3]], replace = FALSE, prob = probs)
for (k in 1:length(sorted)){
removes <- sorted[k]
spnumber <- orders[k]
specimen <- newx1[,,spnumber]
if(removes==0){newsp<-specimen
} else {
newsp <- remove.dat(specimen, removes)}
newx1[,,spnumber] <- newsp
}
dimnames(newx1)[[3]]<-dimnames(x)[[3]]
return(newx1)}
}
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
rm(list=ls())
library(ModelMatrixModel)
set.seed(10)
traindf= data.frame(x1 = sample(LETTERS[1:5], replace = T, 20),
x2 = rnorm(20, 100, 5),
x3 = factor(sample(c("U","L","P"), replace = T, 20)),
y = rnorm(20, 10, 2))
set.seed(20)
newdf=data.frame(x1 = sample(LETTERS[1:5], replace = T, 3),
x2 = rnorm(3, 100, 5),
x3 = sample(c("U","L","P"), replace = T, 3))
head(traindf)
sapply(traindf,class)
f1=formula("~x1+x2")
head(model.matrix(f1, traindf),2)
head(model.matrix(f1, newdf),2)
f2=formula("~ 1+x1+x2")
mm=ModelMatrixModel( f2,traindf,remove_1st_dummy =T,sparse = F)
class(mm)
head(mm$x,2)
mm_pred=predict(mm,newdf)
head(mm_pred$x,2)
mm=ModelMatrixModel(~x1+x2+x3,traindf,remove_1st_dummy = F)
data.frame(as.matrix(head(mm$x,2)))
mm_pred=predict(mm,newdf)
data.frame(as.matrix(head(mm_pred$x,2)))
mm=ModelMatrixModel(~x2+x3+x2:x3,traindf)
data.frame(as.matrix(head(mm$x,2)))
mm_pred=predict(mm,newdf)
data.frame(as.matrix(head(mm_pred$x,2)))
mm=ModelMatrixModel(~x2*x3,traindf,remove_1st_dummy = T)
data.frame(as.matrix(head(mm$x,2)))
mm_pred=predict(mm,newdf)
data.frame(as.matrix(head(mm_pred$x,2)))
mm=ModelMatrixModel(~x2+x3,traindf)
data.frame(as.matrix(head(mm$x,2)))
newdf2=newdf
newdf2[1,'x3']='z'
mm_pred=predict(mm,newdf2,handleInvalid = "keep")
data.frame(as.matrix(head(mm_pred$x,2)))
mm=ModelMatrixModel(~poly(x2,3)+x3,traindf)
data.frame(as.matrix(head(mm$x,2)))
mm_pred=predict(mm,newdf)
data.frame(as.matrix(head(mm_pred$x,2)))
mm=ModelMatrixModel(~poly(x2,3,raw=T)+x3, traindf)
data.frame(as.matrix(head(mm$x,2)))
mm_pred=predict(mm,newdf)
data.frame(as.matrix(head(mm_pred$x,2)))
mm=ModelMatrixModel(~x2+x3,traindf,scale = T,center = T)
data.frame(as.matrix(head(mm$x,2)))
mm_pred=predict(mm,newdf)
data.frame(as.matrix(head(mm_pred$x,2)))
|
canvas_function <- function(colors, background = "
polar = TRUE, formula = NULL) {
.checkUserInput(background = background)
if (is.null(formula)) {
painting_formulas <- list()
painting_formulas[[1]] <- list(
x = quote(runif(1, -10, 10) * x_i^sample(c(0.5, 1:6), 1) - sin(y_i^sample(c(0.5, 1:6), 1)) * runif(1, -100, 100)),
y = quote(runif(1, -10, 10) * y_i^sample(c(0.5, 1:6), 1) - cos(x_i^sample(c(0.5, 1:6), 1)) * y_i^sample(1:6, 1) + runif(1, -100, 100))
)
painting_formulas[[2]] <- list(
x = quote(runif(1, -1, 10) * x_i^sample(c(0.5, 1:6), 1) - sin(y_i^sample(c(0.5, 1:6), 1))),
y = quote(runif(1, -1, 10) * y_i^sample(c(0.5, 1:6), 1) - cos(x_i^sample(c(0.5, 1:6), 1)) * y_i^sample(c(0.5, 1:6), 1))
)
painting_formulas[[3]] <- list(
x = quote(runif(1, -5, 5) * x_i^sample(1:5, 1) - sin(y_i^sample(1:5, 1))),
y = quote(runif(1, -5, 5) * y_i^sample(1:5, 1) - cos(x_i^sample(1:5, 1)))
)
painting_formula <- painting_formulas[[sample(1:length(painting_formulas), 1)]]
} else {
if (!is.list(formula) || !("x" %in% names(formula)) || !("y" %in% names(formula))) {
stop("'formula' must be a named list containing 'x' and 'y'")
}
painting_formula <- list(x = formula[["x"]], y = formula[["y"]])
}
grid <- expand.grid(x_i = seq(from = -pi, to = pi, by = by), y_i = seq(from = -pi, to = pi, by = by))
x_i <- grid$x_i
y_i <- grid$y_i
full_canvas <- data.frame(x = eval(painting_formula$x), y = eval(painting_formula$y))
z <- y_i[stats::complete.cases(full_canvas)]
full_canvas <- full_canvas[stats::complete.cases(full_canvas), ]
artwork <- ggplot2::ggplot(data = full_canvas, ggplot2::aes(x = x, y = y, color = z)) +
ggplot2::geom_point(alpha = 0.1, size = 0, shape = 20) +
ggplot2::scale_color_gradientn(colors = colors)
if (polar) {
artwork <- artwork + ggplot2::coord_polar()
}
artwork <- theme_canvas(artwork, background)
return(artwork)
}
|
mb_bet_cancel <- function(session_data,bet_id=NULL,event_id=NULL,market_id=NULL,runner_id=NULL,cancel_all=FALSE)
{
content <- list(status_code=0)
if(is.null(session_data)|!is.list(session_data)){
print(paste("You have not provided data about your session in the session_data parameter. Please execute mb_login('my_user_name','verysafepassword') and save the resulting object in a variable e.g. my_session <- mb_login(username,pwd); and pass session_data=my_session as a parameter in this function."));return(content)
}
if(sum(bet_id%%1)>0) {print(paste("The bet_id values must be in integer format. Please amend and try again."));return(content)}
if(sum(event_id%%1)>0) {print(paste("The event_id values must be in integer format. Please amend and try again."));return(content)}
if(sum(market_id%%1)>0) {print(paste("The market_id values must be in integer format. Please amend and try again."));return(content)}
if(sum(runner_id%%1)>0) {print(paste("The runner_id values must be in integer format. Please amend and try again."));return(content)}
if(sum(!is.null(bet_id))==0&sum(!is.null(event_id))==0&sum(!is.null(market_id))==0&sum(!is.null(runner_id))==0&cancel_all==FALSE){
print(paste("No bets have been specified for cancellation, please try again."));return(content)
}
offer_action <- "";event_action <- "";market_action <- "";runner_action <- "";
if(sum(!is.null(bet_id))>0){
offer_action <- paste(',offer-ids'=paste(bet_id,collapse=","),sep="")
}
if(sum(!is.null(event_id))>0){
event_action <- paste(',event-ids'=paste(event_id,collapse=","),sep="")
}
if(sum(!is.null(market_id))>0){
market_action <- paste(',market-ids'=paste(market_id,collapse=","),sep="")
}
if(sum(!is.null(runner_id))>0){
runner_action <- paste(',runner-ids'=paste(runner_id,collapse=","),sep="")
}
body_data <- paste("{'exchange-type':'back-lay','currency':'",session_data$currency,"','odds-type':'",session_data$odds_type,"' ",offer_action,event_action,market_action,runner_action,"}",sep="")
cancel_bet_resp <- httr::DELETE(paste("https://www.matchbook.com/edge/rest/offers",sep=""),body=body_data,httr::set_cookies('session-token'=session_data$session_token),httr::content_type_json(),httr::accept_json(),httr::add_headers('User-Agent'='rlibnf'))
status_code <- cancel_bet_resp$status_code
if(status_code==200)
{
content <- jsonlite::fromJSON(content(cancel_bet_resp, "text", "application/json"))
content$status_code <- status_code
} else if(status_code==401){
print(paste("Please login as your session may have expired ...",sep=""))
content <- jsonlite::fromJSON(content(cancel_bet_resp, "text", "application/json"))
content$status_code <- status_code
} else{
print(paste("Warning/Error in communicating with cancel bet at https://www.matchbook.com/edge/rest/offers",sep=""))
content <- jsonlite::fromJSON(content(cancel_bet_resp, "text", "application/json"))
content$status_code <- status_code
}
return(content)
}
|
context("sprinkle_discrete")
x <- dust(mtcars)
test_that(
"Correctly reassigns `bg`",
{
expect_equal(
sprinkle_discrete(
x,
cols = "gear",
discrete = "bg",
discrete_color = c("red", "blue", "green"))[["body"]][["bg"]][289:320],
c("red", "blue", "green")[match(mtcars$gear, c(3, 4, 5))]
)
}
)
test_that(
"Correctly reassigns `font_color`",
{
expect_equal(
sprinkle_discrete(
x,
cols = "gear",
discrete = "font",
discrete_color = c("red", "blue", "green"))[["body"]][["font_color"]][289:320],
c("red", "blue", "green")[match(mtcars$gear, c(3, 4, 5))]
)
}
)
test_that(
"Correctly reassigns `font_color`",
{
expect_equal(
sprinkle_discrete(
x,
cols = "gear",
discrete = "font_color",
discrete_color = c("red", "blue", "green"))[["body"]][["font_color"]][289:320],
c("red", "blue", "green")[match(mtcars$gear, c(3, 4, 5))]
)
}
)
test_that(
"Selects default colors when discrete_color is NULL",
{
expect_silent(
sprinkle_discrete(x, cols = "gear", discrete = "bg")
)
}
)
test_that(
"Correctly reassigns `border`",
{
expect_equal(
sprinkle_discrete(
x,
cols = "gear",
discrete = "border",
discrete_color = c("red", "blue", "green"))[["body"]][["left_border"]][289:320],
sprintf("1px solid %s", c("red", "blue", "green")[match(mtcars$gear, c(3, 4, 5))])
)
}
)
test_that(
"Correctly reassigns `border`",
{
expect_equal(
sprinkle_discrete(
x,
cols = "gear",
discrete = "right_border",
discrete_color = c("red", "blue", "green"))[["body"]][["right_border"]][289:320],
sprintf("1px solid %s", c("red", "blue", "green")[match(mtcars$gear, c(3, 4, 5))])
)
}
)
test_that(
"Function succeeds when called on a dust_list object",
{
expect_silent(
dplyr::group_by(mtcars, am, vs) %>%
dust(ungroup = FALSE) %>%
sprinkle_discrete(cols = "gear",
discrete = "bg",
discrete_color = c("red", "blue", "green"))
)
}
)
test_that(
"Cast an error if x is not a dust object",
{
expect_error(sprinkle_discrete(x = mtcars,
cols = "gear",
discrete = "bg"))
}
)
test_that(
"Cast an error if discrete is not a subset of bg, border, font, ...",
{
expect_error(sprinkle_discrete(x = x,
cols = "gear",
discrete = "font_height"))
}
)
test_that(
"Cast an error if discrete_color is not character",
{
expect_error(sprinkle_discrete(x = x,
cols = "gear",
discrete_colors = 1:3))
}
)
test_that(
"Cast an error if discrete_color is not a recognized color",
{
expect_error(sprinkle_discrete(x = x,
cols = "gear",
discrete_colors = c("my own red",
"my own blue",
"my own green")))
}
)
test_that(
"Cast an error if discrete_color has too few values",
{
expect_error(sprinkle_discrete(x = x,
cols = "gear",
discrete_colors = c('red', 'blue')))
}
)
test_that(
"Cast an error if part is not one of body, head, foot, interfoot",
{
expect_error(
sprinkle_discrete(x = x,
cols = "gear",
part = "not a part")
)
}
)
test_that(
"Cast an error if fixed is not logical(1)",
expect_error(
sprinkle_discrete(x = x,
cols = "gear",
fixed = "FALSE")
)
)
test_that(
"Cast an error if fixed is not logical(1)",
expect_error(
sprinkle_discrete(x = x,
cols = "gear",
fixed = c(TRUE, FALSE))
)
)
test_that(
"Cast an error if recycle is not one of none, rows, cols",
{
expect_error(
sprinkle_discrete(x = x,
cols = "gear",
recycle = "not a value")
)
}
)
|
lgpa <- function(x, sub.id = 1:(dim(x)[1]), scale=TRUE, reflect=FALSE){
if ((!is.array(x))||(length(dim(x))!=3)){
stop("* lgpa : input 'x' should be a 3d array.")
}
dimsx = dim(x)
k = dimsx[1]
m = dimsx[2]
n = dimsx[3]
sub.id = round(sub.id)
sub.id = base::intersect(sub.id, 1:k)
if ((max(sub.id) > k)||(!is.vector(sub.id))){
stop("* lgpa : an input 'sub.id' should be a vector containing indices in [1,nrow(x)].")
}
par.scale = scale
par.reflect = reflect
nsubid = length(sub.id)
xsub = x[sub.id,,]
meanvecs = list()
for (i in 1:n){
meanvecs[[i]] = colMeans(xsub[,,i])
}
for (i in 1:n){
xsub[,,i] = xsub[,,i] - matrix(rep(meanvecs[[i]],nsubid), ncol=m, byrow = TRUE)
}
xout = shapes::procGPA(xsub, scale=par.scale, reflect = par.reflect)$rotated
rotmats = list()
for (i in 1:n){
tgt1 = xsub[,,i]
tgt2 = xout[,,i]
rotmats[[i]] = aux_pinv((t(tgt1)%*%tgt1))%*%(t(tgt1)%*%tgt2)
}
output = array(0,dim(x))
for (i in 1:n){
tgtx = x[,,i]
output[,,i] = (tgtx - matrix(rep(meanvecs[[i]],k), ncol=m, byrow = TRUE))%*%(rotmats[[i]])
}
return(output)
}
|
sockettest = function() {
expect_error(parallelStartSocket(cpus = 2, socket.hosts = "localhost"), "You cannot set both")
parallelStop()
parallelStartSocket(2)
partest1()
parallelStop()
parallelStartSocket(2, load.balancing = TRUE)
partest1()
parallelStop()
parallelStartSocket(socket.hosts = c("localhost", "localhost"))
partest1()
parallelStop()
parallelStartSocket(2, logging = TRUE, storagedir = tempdir())
partest2(tempdir())
parallelStop()
parallelStartSocket(2)
partest3()
parallelStop()
parallelStartSocket(2)
partest4(slave.error.test = TRUE)
parallelStop()
parallelStartSocket(2)
partest5()
parallelStop()
parallelStartSocket(2)
partest6(slave.error.test = TRUE)
parallelStop()
}
|
FeatureImp <- R6::R6Class("FeatureImp",
inherit = InterpretationMethod,
public = list(
initialize = function(predictor, loss, compare = "ratio",
n.repetitions = 5) {
assert_choice(compare, c("ratio", "difference"))
assert_number(n.repetitions)
self$compare <- compare
if (!inherits(loss, "function")) {
allowedLosses <- c(
"ce", "f1", "logLoss", "mae", "mse", "rmse", "mape", "mdae",
"msle", "percent_bias", "rae", "rmse", "rmsle", "rse", "rrse", "smape"
)
checkmate::assert_choice(loss, allowedLosses)
private$loss_string <- loss
loss <- getFromNamespace(loss, "Metrics")
} else {
private$loss_string <- head(loss)
}
if (is.null(predictor$data$y)) {
stop("Please call Predictor$new() with the y target vector.")
}
super$initialize(predictor = predictor)
self$loss <- private$set_loss(loss)
private$getData <- private$sampler$get.xy
self$n.repetitions <- n.repetitions
actual <- private$sampler$y[[1]]
predicted <- private$run.prediction(private$sampler$X)[[1]]
self$original.error <- loss(actual, predicted)
if (self$original.error == 0 & self$compare == "ratio") {
warning("Model error is 0, switching from compare='ratio' to compare='difference'")
self$compare <- "difference"
}
suppressPackageStartupMessages(private$run(self$predictor$batch.size))
},
loss = NULL,
original.error = NULL,
n.repetitions = NULL,
compare = NULL
),
private = list(
loss_string = NULL,
q = function(pred) probs.to.labels(pred),
combine.aggregations = function(agg, dat) {
if (is.null(agg)) {
return(dat)
}
},
run = function(n) {
private$dataSample <- private$getData()
result <- NULL
estimate_feature_imp <- function(feature,
data.sample,
y,
n.repetitions,
y.names,
pred,
loss) {
cnames <- setdiff(colnames(data.sample), y.names)
qResults <- data.table::data.table()
y.vec <- data.table::data.table()
for (repi in 1:n.repetitions) {
mg <- MarginalGenerator$new(data.sample, data.sample,
features = feature, n.sample.dist = 1, y = y, cartesian = FALSE,
id.dist = TRUE
)
while (!mg$finished) {
data.design <- mg$next.batch(n, y = TRUE)
y.vec <- rbind(y.vec, data.design[, y.names, with = FALSE])
qResults <- rbind(
qResults,
pred(data.design[, cnames, with = FALSE])
)
}
}
results <- data.table::data.table(
feature = feature, actual = y.vec[[1]], predicted = qResults[[1]],
num_rep = rep(1:n.repetitions, each = nrow(data.sample))
)
results <- results[, list("permutation_error" = loss(actual, predicted)),
by = list(feature, num_rep)
]
results
}
n.repetitions <- self$n.repetitions
data.sample <- private$dataSample
y <- private$sampler$y
y.names <- private$sampler$y.names
pred <- private$run.prediction
loss <- self$loss
result <- rbindlist(unname(
future.apply::future_lapply(private$sampler$feature.names, function(x) {
estimate_feature_imp(x,
data.sample = data.sample,
y = y,
n.repetitions = n.repetitions,
y.names = y.names,
pred = pred,
loss = loss
)
},
future.seed = TRUE,
future.globals = FALSE,
future.packages = loadedNamespaces()
)
), use.names = TRUE)
if (self$compare == "ratio") {
result[, importance_raw := permutation_error / self$original.error]
} else {
result[, importance_raw := permutation_error - self$original.error]
}
result <- result[, list(
"importance" = median(importance_raw),
"permutation.error" = median(permutation_error),
"importance.05" = quantile(importance_raw, probs = 0.05),
"importance.95" = quantile(importance_raw, probs = 0.95)
), by = list(feature)]
result <- result[order(result$importance, decreasing = TRUE), ]
result <- result[, list(
feature, importance.05, importance, importance.95,
permutation.error
)]
private$finished <- TRUE
self$results <- data.frame(result)
},
generatePlot = function(sort = TRUE, ...) {
requireNamespace("ggplot2", quietly = TRUE)
res <- self$results
if (sort) {
res$feature <- factor(res$feature,
levels = res$feature[order(res$importance)]
)
}
xstart <- ifelse(self$compare == "ratio", 1, 0)
ggplot(res, aes(y = feature, x = importance)) +
geom_segment(aes(y = feature, yend = feature, x = importance.05, xend = importance.95), size = 1.5, color = "darkslategrey") +
geom_point(size = 3) +
scale_x_continuous(sprintf("Feature Importance (loss: %s)", private$loss_string)) +
scale_y_discrete("")
},
set_loss = function(loss) {
self$loss <- loss
},
printParameters = function() {
cat("error function:", private$loss_string)
}
)
)
plot.FeatureImp <- function(x, sort = TRUE, ...) {
x$plot(sort = sort, ...)
}
|
context("trim")
s <- createMassSpectrum(mass=1:10, intensity=11:20)
test_that("trim throws errors", {
expect_error(trim(s, range=1:10), "has to be a vector of length 2")
expect_error(trim(s, range=1), "has to be a vector of length 2")
expect_error(trim(c(s, createMassSpectrum(mass=21:30, intensity=1:10))),
"No overlap")
})
test_that("trim throws warnings", {
expect_warning(trim(s, range=c(20, 30)), "No data points left")
})
test_that("trim", {
expect_equal(trim(s, c(2, 9)),
createMassSpectrum(mass=2:9, intensity=12:19))
})
test_that("trim,list throws errors", {
expect_error(trim(list(x=1, y=2)),
"no list of MALDIquant::AbstractMassObject objects")
})
test_that("trim works with list of AbstractMassObject objects", {
r <- createMassSpectrum(mass=2:9, intensity=12:19)
expect_equal(trim(list(s, s), c(2, 9)), list(r, r))
expect_equal(trim(list(s, r)), list(r, r))
})
|
plot.inequality <- function(x, title = NULL, ...) {
if (!is.inequality(x)) {
stop("Not an object of class 'inequality'")
}
Q <- Qmax <- NULL
if (is.null(title)) {
title <- "Lorenz curve"
}
lor <- x[["Lorenz"]]
gini <- x[["Gini"]]
lor <- 100*lor
lor$Qmax <- c(rep(0,nrow(lor)-1), max(lor$Q))
p <- ggplot(data = lor, aes(F, Q)) +
theme(panel.background = element_rect(fill = "transparent"), plot.title = element_text(size = 12)) +
geom_ribbon(aes(x = F, ymax = F, ymin = Q), fill = "dodgerblue4", alpha = 1) +
geom_line(aes(y = Q), col = "dodgerblue", lwd = 1.2) +
geom_line(aes(y = Qmax), col = "dodgerblue", lwd = 1.2) +
geom_line(aes(y = F), col = "dodgerblue", lwd = 1.2) +
annotate("text", x = 25, y = 80, label = paste("Gini index = ", gini, "%", sep = ""), size = 5) +
labs(title=title, x="", y="")
return(p)
}
|
cognito_ui <- function(id){
ns <- NS(id)
jscode <- "Shiny.addCustomMessageHandler('redirect', function(url) { window.location = url;});"
addResourcePath('cognitor', system.file('', package='cognitoR'))
fluidRow(
shinyjs::useShinyjs(),
HTML('<div id="cognitor_loader"></div>'),
tags$link(rel = "stylesheet", type = "text/css", href = "cognitor/css/loader.css"),
tags$head(tags$script(jscode)),
cookie_ui(ns("cookiemod"))
)
}
|
NBR <- function (NIR, SWIR2) {
if (missing(NIR)) {
stop("Required data missing. Please, select the reflectance values for the Near Infrared band")
}
if (missing(SWIR2)) {
stop("Required data missing. Please, enter the reflectance values for the Short Wave Infrared 2 band")
}
NBR <- (NIR-SWIR2)/(NIR+SWIR2)
}
|
app <- ShinyDriver$new("../../")
app$snapshotInit("offsets", screenshot = FALSE)
app$setInputs(advOpts_cores = 2, wait_ = FALSE, values_ = FALSE)
app$setInputs(navbar_ID = "Data",
ex_da_sel = "epilepsy")
app$setInputs(navbar_ID = "Likelihood",
outc_sel = "count",
dist_sel = "negbinomial")
app$setInputs(likelihood_navlist_ID = "Predictors",
pred_mainCP_sel = c("Trt", "zAge"),
pred_mainPP_sel = c("patient", "visit"))
app$setInputs(pred_int_build = c("Trt", "zAge"),
pred_int_add = "click")
app$setInputs(pred_int_build = c("Trt", "visit"),
pred_int_add = "click")
app$setInputs(offs_sel = c("zBase", "Base"))
app$setInputs(likelihood_navlist_ID = "Formula preview")
app$setInputs(navbar_ID = "Prior")
app$snapshot()
app$setInputs(navbar_ID = "Data",
ex_da_sel = "")
app$setInputs(navbar_ID = "Likelihood")
app$setInputs(likelihood_navlist_ID = "Predictors")
app$setInputs(likelihood_navlist_ID = "Outcome")
app$setInputs(navbar_ID = "Prior")
app$snapshot()
|
NULL
complementarityIndex <- function(g1,g2, seed.set1, seed.set2, threshold = 0,
p = FALSE, nperm = 1000){
normalize_complementarity <- function(complement.cpd, seed.set1) {
if (length(complement.cpd)) {
norm.seed <- lapply(seed.set1,
function(x)match(complement.cpd,x, nomatch = 0)) %>%
sapply(sum) %>% is_greater_than(0) %>% sum
complementary.index <- norm.seed / length(seed.set1)
} else
complementary.index <- 0
}
perm_complementary <- function(seed.set1, seed.set2, g1, nonseed2){
seed1.len <- lengths(seed.set1)
sample.seed1 <- sample(V(g1)$name,sum(seed1.len)) %>%
split(rep(1:length(seed.set1), seed1.len))
complement.cpd <- setdiff(unlist(sample.seed1),unlist(seed.set2)) %>%
intersect(., nonseed2)
perm.complementary <- normalize_complementarity(complement.cpd, sample.seed1)
return(perm.complementary)
}
if (!is.igraph(g1) || !is.igraph(g2))
stop("Both g1 and g2 must be igraph object")
nonseed2 <- setdiff(V(g2)$name, unlist(seed.set2))
complement.cpd <- setdiff(unlist(seed.set1),unlist(seed.set2)) %>%
intersect(., nonseed2)
complementary.index <- normalize_complementarity(complement.cpd, seed.set1)
if (p){
perm.complementary <- replicate(nperm,
perm_complementary(seed.set1, seed.set2, g1, nonseed2))
p.value <- sum(perm.complementary < complementary.index, 1)/(nperm + 1)
p.value <- round(p.value, digits = 5)
return(list(complementary.index = complementary.index,
p.value = p.value))
}else
return(complementary.index)
}
competitionIndex <- function(g1,g2, seed.set1, seed.set2, threshold=0,
p = FALSE, nperm = 1000){
normalize_competition <- function(intersect.seed, seed.set1){
if(length(intersect.seed)){
norm.seed <- lapply(seed.set1,
function(x)match(intersect.seed, x, nomatch = 0)) %>%
sapply(sum) %>% is_greater_than(0) %>% sum
competition.index <- norm.seed/length(seed.set1)
}else{
competition.index <- 0
}
}
perm_competition <- function(seed.set1, seed.set2, g1){
seed1.len <- lengths(seed.set1)
sample.seed1 <- sample(V(g1)$name,sum(seed1.len)) %>%
split(rep(1:length(seed.set1), seed1.len))
intersect.seed <- intersect(unlist(sample.seed1),unlist(seed.set2))
return(normalize_competition(intersect.seed, sample.seed1))
}
if (!is.igraph(g1) || !is.igraph(g2))
stop("Both g1 and g2 must be igraph object")
intersect.seed <- intersect(unlist(seed.set1),unlist(seed.set2))
if(length(intersect.seed)){
norm.seed <- lapply(intersect.seed,function(x)lapply(seed.set1,
function(y)match(x,y,nomatch=0))) %>%
lapply(.,function(x)which(x>0)) %>%
unique %>%
length
competition.index <- norm.seed/length(seed.set1)
}else{
competition.index <- 0
}
if (p){
perm.competition <- replicate(nperm,
perm_competition(seed.set1, seed.set2, g1))
p.value <- sum(perm.competition > competition.index, 1)/(nperm + 1)
p.value <- round(p.value, digits = 5)
return(list(competition.index = competition.index, p.value = p.value))
}else
return(competition.index)
}
calculateCooperationIndex <- function(g, ...,threshold=0, p = FALSE, nperm = 1000){
if (is.igraph(g)){
g <- c(list(g), list(...))
}else{
g <- c(g, list(...))
}
l <- length(g)
if (l < 2)
stop("At least two species to compare")
seed.set <- lapply(g, getSeedSets) %>% lapply(function(x)x@seeds)
competition.index <- matrix(1,l,l)
complementarity.index <- matrix(0,l,l)
index <- permutations(l,2) %>% t %>% as.data.frame
perm.seed.set <- lapply(index,function(x)seed.set[x])
perm.g <- lapply(index, function(x)g[x])
competition.v <- map2(perm.g,perm.seed.set,
function(x,y)competitionIndex(x[[1]],x[[2]],y[[1]],y[[2]],
threshold, p, nperm))
complementarity.v <- map2(perm.g, perm.seed.set,
function(x,y)complementarityIndex(x[[1]],x[[2]],y[[1]],y[[2]],
threshold, p, nperm))
for(i in 1:length(index)){
competition.index[index[1,i],index[2,i]] = unlist(competition.v[i])[1]
complementarity.index[index[1,i],index[2,i]] = unlist(complementarity.v[i])[1]
}
row.names(competition.index) <- names(g)
colnames(competition.index) <- names(g)
row.names(complementarity.index) = colnames(complementarity.index) <- names(g)
if (p){
competition.index.p <- matrix(0,l,l)
row.names(competition.index.p) = colnames(competition.index.p) <- names(g)
complementarity.index.p <- matrix(0,l,l)
row.names(complementarity.index.p) = colnames(complementarity.index.p) <- names(g)
for(i in 1:length(index)){
competition.index.p[index[1,i],index[2,i]] = unlist(competition.v[i])[2]
complementarity.index.p[index[1,i],index[2,i]] = unlist(complementarity.v[i])[2]
}
return(list(competition.index = competition.index,
competition.index.p = competition.index.p,
complementarity.index = complementarity.index,
complementarity.index.p = complementarity.index.p))
} else
return(list(competition.index = competition.index,
complementarity.index = complementarity.index))
}
|
`PathList` <-
function(C,D){
L <- nrow(C)
for(i in D:1) {
L <- c(C[L[1],i],L)
}
return(L)
}
|
plot(child ~ parent, galton)
|
fun.lm.theo.gld <-
function (L1, L2, L3, L4, param)
{
if (length(L1) > 1) {
L4 <- L1[4]
L3 <- L1[3]
L2 <- L1[2]
L1 <- L1[1]
}
result <- rep(NA, 4)
if(fun.check.gld(L1,L2,L3,L4,param)==FALSE){
return(result)}
if (tolower(param) == "rs") {
result[1] <- L1 + 1/L2 * ((L3 + 1)^-1 - (L4 + 1)^-1)
result[2] <- fun.Lm.gt.2.rs(L3, L4, 2)/L2
result[3] <- fun.Lm.gt.2.rs(L3, L4, 3)/L2
result[4] <- fun.Lm.gt.2.rs(L3, L4, 4)/L2
}
if (tolower(param) == "fmkl" | tolower(param)=="fkml") {
if (L3 != 0 & L4 != 0) {
result[1] <- L1 - 1/L2 * ((L3 + 1)^-1 - (L4 + 1)^-1)
}
if (L3 == 0 & L4 == 0) {
result[1] <- fun.fmkl0(1)/L2 + L1
}
if (L3 != 0 & L4 == 0) {
result[1] <- fun.fmkl.L40(1, L3)/L2 + L1
}
if (L3 == 0 & L4 != 0) {
result[1] <- fun.fmkl.L30(1, L4)/L2 + L1
}
result[2] <- fun.Lm.gt.2.fmkl(L3, L4, 2)/L2
result[3] <- fun.Lm.gt.2.fmkl(L3, L4, 3)/L2
result[4] <- fun.Lm.gt.2.fmkl(L3, L4, 4)/L2
}
return(result)
}
|
my_test_progress <- function(format = "[:bar] :percent ") {
test_progress(format)
}
my_is_option_enabled <- function() {
test_is_option_enabled()
}
|
project_to <- function(sample_file, to_fy, fy.year.of.sample.file = NULL, ...) {
if (is.null(fy.year.of.sample.file)) {
fy.year.of.sample.file <-
match(nrow(sample_file), c(254318L, 258774L, 263339L, 269639L, 277202L))
if (is.na(fy.year.of.sample.file)) {
stop("`fy.year.of.sample.file` was not provided, yet its value could not be ",
"inferred from nrow(sample_file) = ", nrow(sample_file), ". Either use ",
"a 2% sample file of the years 2012-13, 2013-14, 2014-15, 2015-16, 2016-17, or ",
"supply `fy.year.of.sample.file` manually.")
}
fy.year.of.sample.file <-
c("2012-13", "2013-14", "2014-15", "2015-16", "2016-17")[fy.year.of.sample.file]
}
h <- as.integer(fy2yr(to_fy) - fy2yr(fy.year.of.sample.file))
project(sample_file = sample_file, h = h,
fy.year.of.sample.file = fy.year.of.sample.file,
...)
}
|
create_beast2_screenlog_folder <- function(beast2_options) {
testthat::expect_true(file.exists(beast2_options$input_filename))
screenlog_filename <- beastier::extract_screenlog_filename_from_beast2_input_file(
input_filename = beast2_options$input_filename
)
if (is.na(screenlog_filename)) {
return(invisible(beast2_options))
}
dir.create(
dirname(screenlog_filename),
showWarnings = FALSE,
recursive = TRUE
)
testthat::expect_true(
dir.exists(dirname(screenlog_filename))
)
invisible(beast2_options)
}
|
.onUnload <- function(libpath)
library.dynam.unload("survival", libpath)
|
context("canvasXpress Web Charts - Sunburst")
test_that("cXsunburst1", {
check_ui_test(cXsunburst1())
})
test_that("cXsunburst2", {
check_ui_test(cXsunburst2())
})
test_that("cXsunburst3", {
check_ui_test(cXsunburst3())
})
test_that("cXsunburst4", {
check_ui_test(cXsunburst4())
})
|
setClass(Class = "clv.pnbd", contains = "clv.fitted.transactions",
slots = c(
cbs = "data.table"),
prototype = list(
cbs = data.table()))
clv.pnbd <- function(cl, clv.data){
dt.cbs.pnbd <- pnbd_cbs(clv.data = clv.data)
clv.model <- clv.model.pnbd.no.cov()
return(new("clv.pnbd",
clv.fitted.transactions(cl=cl, clv.model=clv.model, clv.data=clv.data),
cbs = dt.cbs.pnbd))
}
pnbd_cbs <- function(clv.data){
Date <- Price <- x <- date.first.actual.trans <- date.last.transaction <- NULL
trans.dt <- clv.data.get.transactions.in.estimation.period(clv.data = clv.data)
cbs <- trans.dt[ , list(x =.N,
date.first.actual.trans = min(Date),
date.last.transaction = max(Date)),
by="Id"]
cbs[, x := x - 1]
cbs[, ':='(t.x = clv.time.interval.in.number.tu([email protected], interv=interval(start = date.first.actual.trans, end = date.last.transaction)),
T.cal = clv.time.interval.in.number.tu([email protected], interv=interval(start = date.first.actual.trans, end = [email protected]@timepoint.estimation.end)))]
cbs[, date.last.transaction := NULL]
setkeyv(cbs, c("Id", "date.first.actual.trans"))
setcolorder(cbs, c("Id","x","t.x","T.cal", "date.first.actual.trans"))
return(cbs)
}
|
"weir3a5.broadcrest" <-
function(h, ht=NULL, b=NULL, B=NULL, P=NULL, L=NULL,
R=0, r=0, A=NULL, alpha=1,
slopeus="vertical", slopeds="vertical",
kc=NULL, kr=NULL, ks=NULL, C=NULL,
low.head.class=c("paved", "gravel"),
contractratio=NULL,
extended=TRUE,
header="",
flowdigits=2, coedigits=3,
verbose=FALSE, eps=0.001, maxit=20) {
low.head.class <- match.arg(low.head.class);
if(slopeus != "vertical") {
if(as.logical(length(grep(":",slopeus)))) {
slopeus <- as.numeric(unlist(strsplit(slopeus,":")));
slopeus <- slopeus[1]/slopeus[2];
} else {
stop("slopeus does not contain a colon (:)");
}
} else {
slopeus <- 0;
}
if(slopeds != "vertical") {
if(as.logical(length(grep(":",slopeds)))) {
slopeds <- as.numeric(unlist(strsplit(slopeds,":")));
slopeds <- slopeds[1]/slopeds[2];
} else {
stop("slopeds does not contain a colon (:)");
}
} else {
slopeds <- 0;
}
if(slopeus < 0) stop("upstream slope can not be negative");
if(slopeds < 0) stop("downstream slope can not be negative");
if(is.null(h)) {
stop("head is NULL");
}
if(is.null(ht)) ht <- rep(0, length(h));
if(length(h) != length(ht)) {
stop("length of head vector is not equal to length of tail water head vector");
}
if(is.null(L)) {
stop("weir length (along flow) is NULL");
}
if(is.null(B) | B <= 0) {
stop("channel width is NULL or <= 0");
}
if(is.null(P) | P <= 0) {
stop("weir height is NULL or <= 0");
}
if(! is.null(contractratio) & length(contractratio) != length(h)) {
stop("user provided contraction ratio vector is not equal to length of head vector");
}
if(! is.null(A) & length(A) != length(h)) {
stop("user provided approach area vector is not equal to length of head vector");
}
if(B < b) {
stop("user provided channel width and weir width are incompatible");
}
if(length(L) == 1) L <- rep(L, length(h));
if(length(L) != length(h)) {
stop("length of weir-length vector is not equal to length of head vector");
}
if(! is.null(R) & (R < 0 | R > min(L))) {
stop("implausible radius of curvature on crest");
}
if(! is.null(r) & (r < 0 | r > b)) {
stop("implausible radius of curvature on abutment");
}
if(length(alpha) == 1) alpha <- rep(alpha, length(h));
if(length(alpha) != length(h)) {
stop("alpha vector is not equal to length of head vector");
}
if(! is.null(kc)) {
if(length(kc) == 1) kc <- rep(kc, length(h));
if(length(kc) != length(h)) {
stop("contraction coefficient is not equal to length of head vector");
}
}
if(! is.null(kr)) {
if(length(kr) == 1) kr <- rep(kr, length(h));
if(length(kr) != length(h)) {
stop("rounding coefficient is not equal to length of head vector");
}
}
if(! is.null(ks)) {
if(length(ks) == 1) ks <- rep(ks, length(h));
if(length(ks) != length(h)) {
stop("downstream slope coefficient is not equal to length of head vector");
}
}
if(! is.null(C)) {
if(length(C) == 1) C <- rep(C, length(h));
if(length(C) != length(h)) {
stop("discharge coefficient is not equal to length of head vector");
}
}
Qs <- Qo <- Qerr <- vector(mode="numeric", length=length(h));
messages <- Cs <- kcs <- krs <- kss <- Vels <- bBs <- Qs;
g <- 32.2; g2 <- 2*g;
Rhkr <- get("broadcrest.roundingtable", .weir.nomographs);
for(i in 1:length(h)) {
it <- 0;
messages[i] <- "ok";
hh <- h[i];
R.over.h <- R/hh;
r.over.b <- r/b;
if(ht[i]/hh >= 0.85) {
Qo[i] <- NA;
Qs[i] <- NA;
Qerr[i] <- NA;
Vels[i] <- NA;
Cs[i] <- NA;
kcs[i] <- NA;
krs[i] <- NA;
kss[i] <- NA;
messages[i] <- "submerged";
next;
}
if(hh == 0) {
Qo[i] <- 0.00;
Qs[i] <- 0.00;
Qerr[i] <- 0.00;
Vels[i] <- 0.00;
Cs[i] <- NA;
kcs[i] <- NA;
krs[i] <- NA;
kss[i] <- NA;
messages[i] <- "head zero";
next;
}
if(is.null(kr)) {
the.kr <- approx(Rhkr$R.over.h, Rhkr$kr, R.over.h, rule=2)$y
} else {
the.kr <- kr[i];
}
h.over.L <- hh/L[i];
h.over.P <- hh/P;
if(slopeus == 0) {
fig6 <- get("0.0000", .weir.nomographs$fig6);
h.over.L.critical <- approx(fig6$h.over.P, fig6$h.over.L, h.over.P, rule=2)$y;
} else if(slopeus == 1) {
fig6 <- get("1.0000", .weir.nomographs$fig6);
h.over.L.critical <- approx(fig6$h.over.P, fig6$h.over.L, h.over.P, rule=2)$y;
} else {
slopes6 <- as.numeric(ls(.weir.nomographs$fig6));
tmp <- slopes6[slopes6 <= slopeus];
if(length(tmp) != 0) slopes6.min <- max(tmp);
tmp <- slopes6[slopes6 >= slopeus];
if(length(tmp) != 0) slopes6.max <- min(tmp);
if(slopeus < 1) {
if(slopes6.min == slopes6.max) {
fig6 <- get(sprintf("%.4f",slopes6.min), .weir.nomographs$fig6);
h.over.L.critical <- approx(fig6$h.over.P, fig6$h.over.L, h.over.P, rule=2)$y;
} else {
fig6 <- get(sprintf("%.4f",slopes6.min), .weir.nomographs$fig6);
h.over.L.min <- approx(fig6$h.over.P, fig6$h.over.L, h.over.P, rule=2)$y;
fig6 <- get(sprintf("%.4f",slopes6.max), .weir.nomographs$fig6);
h.over.L.max <- approx(fig6$h.over.P, fig6$h.over.L, h.over.P, rule=2)$y;
h.over.L.critical <- approx(c(slopes6.min,slopes6.max),
c(h.over.L.min, h.over.L.max), slopeus)$y;
}
} else {
h.over.L.critical <- 2.4;
}
}
if(h.over.L >= h.over.L.critical) {
Qo[i] <- NA;
Qs[i] <- NA;
Qerr[i] <- NA;
Vels[i] <- NA;
Cs[i] <- NA;
kcs[i] <- NA;
krs[i] <- NA;
kss[i] <- NA;
messages[i] <- "sharp-crested";
next;
}
if(is.null(kc)) {
if(is.null(contractratio)) {
b.over.B <- b/B;
} else {
b.over.B <- contractratio[i];
}
bBs[i] <- b.over.B;
b.over.B.ratios <- as.numeric(ls(.weir.nomographs$fig3));
tmp <- b.over.B.ratios[b.over.B.ratios < b.over.B];
if(length(tmp) != 0) b.over.B.ratios.min <- max(tmp);
tmp <- b.over.B.ratios[b.over.B.ratios > b.over.B];
if(length(tmp) != 0) b.over.B.ratios.max <- min(tmp);
if(b.over.B < 0.90 & b.over.B >= 0.20) {
if(b.over.B == 0.20) b.over.B.ratios.min <- 0.20;
fig3 <- get(sprintf("%.2f",b.over.B.ratios.min),
.weir.nomographs$fig3);
kc.min <- approx(fig3$h.over.P, fig3$kc, h.over.P, rule=2)$y;
fig3 <- get(sprintf("%.2f",b.over.B.ratios.max),
.weir.nomographs$fig3);
kc.max <- approx(fig3$h.over.P, fig3$kc, h.over.P, rule=2)$y;
the.kc <- approx(c(b.over.B.ratios.min,b.over.B.ratios.max),
c(kc.min, kc.max), b.over.B)$y;
} else if(b.over.B <= 0.20) {
Qo[i] <- NA;
Qs[i] <- NA;
Qerr[i] <- NA;
Vels[i] <- NA;
Cs[i] <- NA;
kcs[i] <- NA;
krs[i] <- NA;
kss[i] <- NA;
messages[i] <- "too much contraction";
next;
} else {
fig3 <- get(sprintf("%.2f",b.over.B.ratios.min),
.weir.nomographs$fig3);
kc.min <- approx(fig3$h.over.P, fig3$kc, h.over.P, rule=2)$y;
the.kc <- approx(c(b.over.B.ratios.min, 1),
c(kc.min, 1), b.over.B)$y;
}
if(r.over.b > 0.12) {
the.kc <- 1.00;
} else if(r.over.b > 0) {
the.kc <- approx(c(0,0.12), c(the.kc,1), r.over.b, rule=2)$y;
}
} else {
the.kc <- kc[i];
}
if(is.null(C)) {
if(h.over.L < 0.10) {
if(low.head.class == "paved") {
lowhead <- get("fig23.paved", .weir.nomographs);
} else {
lowhead <- get("fig23.gravel", .weir.nomographs);
}
the.C <- approx(lowhead$H, lowhead$C, hh, rule=2)$y;
} else {
if(slopeus == 0) {
fig7 <- get("0.0000", .weir.nomographs$fig7);
the.C <- approx(fig7$h.over.L, fig7$C, h.over.L, rule=2)$y;
} else if(slopeus == 2) {
fig7 <- get("2.0000", .weir.nomographs$fig7);
the.C <- approx(fig7$h.over.L, fig7$C, h.over.L, rule=2)$y;
} else {
slopes7 <- as.numeric(ls(.weir.nomographs$fig7));
tmp <- slopes7[slopes7 <= slopeus];
if(length(tmp) != 0) slopes7.min <- max(tmp);
tmp <- slopes7[slopes7 >= slopeus];
if(length(tmp) != 0) slopes7.max <- min(tmp);
if(slopeus < 2) {
if(slopes7.min == slopes7.max) {
fig7 <- get(sprintf("%.4f",slopes7.min), .weir.nomographs$fig7);
the.C <- approx(fig7$h.over.L, fig7$C, h.over.L, rule=2)$y;
} else {
fig7 <- get(sprintf("%.4f",slopes7.min), .weir.nomographs$fig7);
C.min <- approx(fig7$h.over.L, fig7$C, h.over.L, rule=2)$y;
fig7 <- get(sprintf("%.4f",slopes7.max), .weir.nomographs$fig7);
C.max <- approx(fig7$h.over.L, fig7$C, h.over.L, rule=2)$y;
the.C <- approx(c(slopes7.min, slopes7.max),
c(C.min, C.max), slopeus)$y;
}
} else {
Qo[i] <- NA;
Qs[i] <- NA;
Qerr[i] <- NA;
Vels[i] <- NA;
Cs[i] <- NA;
kcs[i] <- NA;
krs[i] <- NA;
kss[i] <- NA;
messages[i] <- "slopeus too shallow to determine C";
next;
}
}
}
} else {
the.C <- C[i];
}
if(is.null(ks)) {
if(slopeds > 1) {
if(slopeds < 2) {
the.ks <- 1;
} else if(slopeds > 5) {
Qo[i] <- NA;
Qs[i] <- NA;
Qerr[i] <- NA;
Vels[i] <- NA;
Cs[i] <- the.C;
kcs[i] <- the.kc;
krs[i] <- the.kr;
kss[i] <- NA;
messages[i] <- "slopeds too shallow to determine ks";
next;
} else {
tmpe <- get("broadcrest.downstreamtable", .weir.nomographs);
slopes <- as.numeric(get("slopes", tmpe));
h.over.Ls <- get("h.over.L", tmpe);
tmp <- slopes[slopes <= slopeds];
if(length(tmp) != 0) slopes.min <- max(tmp);
tmp <- slopes[slopes >= slopeds];
if(length(tmp) != 0) slopes.max <- min(tmp);
if(slopes.min == slopes.max) {
tmp <- get(sprintf("%.4f", slopes.min), tmpe);
the.ks <- approx(h.over.Ls, tmp, h.over.P, rule=2)$y;
} else {
tmp <- get(sprintf("%.4f", slopes.min), tmpe);
ks.min <- approx(h.over.Ls, tmp, h.over.L, rule=2)$y;
tmp <- get(sprintf("%.4f", slopes.max), tmpe);
ks.max <- approx(h.over.Ls, tmp, h.over.L, rule=2)$y;
the.ks <- approx(c(slopes.min, slopes.max),
c(ks.min, ks.max), slopeds)$y;
}
}
} else {
the.ks <- 1;
}
} else {
the.ks <- ks[i];
}
Cs[i] <- the.C;
kcs[i] <- the.kc;
krs[i] <- the.kr;
kss[i] <- the.ks;
bigOval <- the.kc*the.kr*the.ks*b;
Qint <- bigOval*the.C*hh^1.5;
Qo[i] <- Qold <- Qint;
the.alpha <- alpha[i];
the.A <- ifelse(is.null(A), (hh+P)*B, A[i]);
"afunc" <- function(Q) {
vel <- Q/the.A;
vhead <- vel^2/g2;
Vels[i] <- vhead;
H <- hh + the.alpha * vhead;
if(h.over.L < 0.10) {
if(low.head.class == "paved") {
lowhead <- get("fig23.paved", .weir.nomographs);
} else {
lowhead <- get("fig23.gravel", .weir.nomographs);
}
if(is.null(C)) {
the.C <- approx(lowhead$H, lowhead$C, hh, rule=2)$y;
Cs[i] <- the.C;
} else {
the.C <- C[i];
}
}
Qtmp <- bigOval*the.C*H^1.5;
return(Qtmp);
}
while(1) {
it <- it + 1;
Qnew <- afunc(Qold);
if(Qnew == Inf) {
Qo[i] <- NA;
Qs[i] <- NA;
messages[i] <- "nonconvergence";
break;
}
err <- abs(Qnew - Qold);
Qerr[i] <- err;
if(it > maxit || err < eps) break;
Qold <- Qnew;
}
Qs[i] <- Qnew;
Vels[i] <- (Qnew/the.A)^2/g2;
}
if(extended) {
z <- data.frame(head=h,
flow=round(Qs, digits=flowdigits),
delta=c(NA,diff(Qs)),
flowo=round(Qo, digits=flowdigits),
error=Qerr,
velhead=round(Vels, digits=flowdigits),
H=round(h+Vels, digits=flowdigits),
ht=ht,
L=L,
b.over.B=bBs,
h.over.L=h/L,
h.over.P=h/P,
C=round(Cs, digits=coedigits),
kc=round(kcs, digits=coedigits),
kr=round(krs, digits=coedigits),
ks=round(kss, digits=coedigits),
source="weir3a5.broadcrest",
message=messages);
} else {
z <- data.frame(head=h,
flow=round(Qs, digits=flowdigits),
flowo=round(Qo, digits=flowdigits),
velhead=round(Vels, digits=flowdigits),
C=round(Cs, digits=coedigits),
kc=round(kcs, digits=coedigits),
kr=round(krs, digits=coedigits),
ks=round(kss, digits=coedigits),
source="weir3a5.broadcrest",
message=messages);
}
att <- attributes(z);
att$header <- header;
attributes(z) <- att;
return(z);
}
|
delete_cols <- function (ht, idx) {
if (any(is.na(idx))) stop("Tried to delete a non-existent column")
subset_idx <- seq_len(ncol(ht))[-idx]
subset_cols(ht, subset_idx)
}
subset_cols <- function (ht, idx) {
assert_that(is_huxtable(ht), is.numeric(idx), all(idx >= 1L),
all(idx <= ncol(ht)))
res <- as.data.frame(ht)[, idx, drop = FALSE]
res <- new_huxtable(res)
res <- arrange_spans(res, ht, cols = idx)
for (a in huxtable_table_attrs) {
attr(res, a) <- attr(ht, a)
}
for (a in huxtable_row_attrs) {
attr(res, a) <- attr(ht, a)
}
for (a in huxtable_col_attrs) {
attr(res, a) <- attr(ht, a)[idx]
}
for (a in setdiff(huxtable_cell_attrs, c("rowspan", "colspan"))) {
attr(res, a) <- attr(ht, a)[, idx, drop = FALSE]
}
res <- prune_borders(res, ht, cols = idx)
res <- renormalize_col_width(res)
res <- set_attr_dimnames(res)
res
}
subset_rows <- function (ht, idx) {
assert_that(is_huxtable(ht), is.numeric(idx), all(idx >= 1L),
all(idx <= nrow(ht)))
res <- as.data.frame(ht)[idx, , drop = FALSE]
res <- new_huxtable(res)
res <- arrange_spans(res, ht, rows = idx)
for (a in huxtable_table_attrs) {
attr(res, a) <- attr(ht, a)
}
for (a in huxtable_row_attrs) {
attr(res, a) <- attr(ht, a)[idx]
}
for (a in huxtable_col_attrs) {
attr(res, a) <- attr(ht, a)
}
for (a in setdiff(huxtable_cell_attrs, c("rowspan", "colspan"))) {
attr(res, a) <- attr(ht, a)[idx, , drop = FALSE]
}
res <- prune_borders(res, ht, rows = idx)
res <- renormalize_row_height(res)
res <- set_attr_dimnames(res)
res
}
replace_properties <- function (ht, i, j, value) {
assert_that(
is_hux(ht), is_hux(value),
is.numeric(i), all(i >= 1L), all(i <= nrow(ht)),
is.numeric(j), all(j >= 1L), all(j <= ncol(ht)),
length(i) == nrow(value), length(j) == ncol(value)
)
for (a in huxtable_cell_attrs) {
attr(ht, a)[i, j] <- attr(value, a)
}
if (identical(i, seq_len(nrow(ht)))) {
old_cw <- col_width(ht)[j]
for (a in huxtable_col_attrs) {
attr(ht, a)[j] <- attr(value, a)
}
new_cw <- col_width(ht)[j]
if (is.numeric(old_cw) && is.numeric(new_cw)) {
col_width(ht)[j] <- new_cw/sum(new_cw) * sum(old_cw)
}
}
if (identical(j, seq_len(ncol(ht)))) {
old_rh <- row_height(ht)[j]
for (a in huxtable_row_attrs) {
attr(ht, a)[i] <- attr(value, a)
}
new_rh <- row_height(ht)[j]
if (is.numeric(old_rh) && is.numeric(new_rh)) {
row_height(ht)[j] <- new_rh/sum(new_rh) * sum(old_rh)
}
}
replace_props <- function (getter, setter) {
ht <<- setter(ht, `[<-`(getter(ht), i, j, value = getter(value)))
}
mapply(
FUN = replace_props,
huxtable_border_df$getter,
huxtable_border_df$setter
)
ht <- set_attr_dimnames(ht)
ht
}
arrange_spans <- function (
new_ht,
old_ht,
rows = seq_len(nrow(old_ht)),
cols = seq_len(ncol(old_ht))
) {
if (ncol(new_ht) == 0 || nrow(new_ht) == 0) return(new_ht)
dc <- display_cells(old_ht)
stride <- max(dim(old_ht))
merge_sets <- dc$display_row * stride + dc$display_col
dim(merge_sets) <- dim(old_ht)
row_number <- dc$row - dc$display_row + 1L
col_number <- dc$col - dc$display_col + 1L
dim(row_number) <- dim(col_number) <- dim(old_ht)
merge_sets <- merge_sets[rows, cols, drop = FALSE]
row_number <- row_number[rows, cols, drop = FALSE]
col_number <- col_number[rows, cols, drop = FALSE]
merge_sets <- rbind(merge_sets, 0)
merge_sets <- cbind(merge_sets, 0)
row_number <- rbind(row_number, 0)
row_number <- cbind(row_number, 0)
col_number <- rbind(col_number, 0)
col_number <- cbind(col_number, 0)
nrs <- rowspan(new_ht)
ncs <- colspan(new_ht)
row_seq <- seq_len(nrow(new_ht) + 1)
col_seq <- seq_len(ncol(new_ht) + 1)
done <- matrix(FALSE, nrow(new_ht), ncol(new_ht))
for (i in seq_len(nrow(new_ht))) for (j in seq_len(ncol(new_ht))) {
ms <- merge_sets[i, j]
if (done[i, j]) next
end_row <- min(which(row_seq >= i & merge_sets[, j] != ms)) - 1
end_col <- min(which(col_seq >= j & merge_sets[i, ] != ms)) - 1
rn <- row_number[seq(i, end_row), j]
cn <- col_number[i, seq(j, end_col)]
all_rn <- seq(min(rn), max(rn))
all_cn <- seq(min(cn), max(cn))
all_matched_row <- i - 1 + max(match(all_rn, rn))
all_matched_col <- j - 1 + max(match(all_cn, cn))
end_row <- min(end_row, all_matched_row, na.rm = TRUE)
end_col <- min(end_col, all_matched_col, na.rm = TRUE)
nrs[i, j] <- end_row - i + 1
ncs[i, j] <- end_col - j + 1
done[seq(i, end_row), seq(j, end_col)] <- TRUE
}
rowspan(new_ht) <- nrs
colspan(new_ht) <- ncs
new_ht
}
prune_borders <- function (
new_ht,
old_ht,
rows = seq_len(nrow(old_ht)),
cols = seq_len(ncol(old_ht))
) {
prune_props <- function (getter, setter) {
new_ht <<- setter(new_ht, getter(old_ht)[rows, cols])
}
mapply(
FUN = prune_props,
huxtable_border_df$getter,
huxtable_border_df$setter
)
new_ht
}
normalize_index <- function(idx, max_dim, dim_names) {
if (missing(idx)) return(seq_len(max_dim))
UseMethod("normalize_index")
}
normalize_index.matrix <- function(idx, max_dim, dim_names) {
stop("You can't subset a huxtable with a matrix")
}
normalize_index.logical <- function(idx, max_dim, dim_names) {
if (length(idx) > max_dim) {
stop("More rows/columns specified than found in huxtable")
}
if (max_dim %% length(idx) > 0) {
warning("Length of subscript does not divide huxtable dimension exactly")
}
idx <- rep(idx, length.out = max_dim)
which(idx)
}
normalize_index.character <- function(idx, max_dim, dim_names) {
if (any(is.na(idx))) stop("NA in subscript")
match(idx, dim_names)
}
normalize_index.numeric <- function(idx, max_dim, dim_names) {
if (any(is.na(idx))) stop("NA in subscript")
if (any(idx < 0)) {
if (! all(idx <= 0)) stop("Can't mix positive and negative subscripts")
if (any(-idx > max_dim)) stop("Negative subscript out of bounds")
idx <- seq_len(max_dim)[idx]
}
idx_oob <- idx > max_dim
if (any(idx_oob)) {
filled_in_seq <- seq(max_dim + 1, max(idx[idx_oob]))
if (! identical(as.integer(sort(idx[idx_oob])), filled_in_seq)) {
stop("Missing new rows/columns in subscript: huxtable dimension is ", max_dim,
"but subscripts were ", paste(idx, collapse = " "))
}
idx[idx_oob] <- NA_integer_
}
idx
}
normalize_index.default <- function(idx, max_dim, dim_names) {
stop("Unrecognized subscript of type ", typeof(idx))
}
|
predict_survival.model_fit <-
function(object, new_data, time, interval = "none", level = 0.95, ...) {
check_spec_pred_type(object, "survival")
if (inherits(object$fit, "try-error")) {
rlang::warn("Model fit failed; cannot make predictions.")
return(NULL)
}
new_data <- prepare_data(object, new_data)
if (!is.null(object$spec$method$pred$survival$pre))
new_data <- object$spec$method$pred$survival$pre(new_data, object)
object$spec$method$pred$survival$args$time <- time
pred_call <- make_pred_call(object$spec$method$pred$survival)
res <- eval_tidy(pred_call)
if(!is.null(object$spec$method$pred$survival$post)) {
res <- object$spec$method$pred$survival$post(res, object)
}
res
}
predict_survival <- function (object, ...)
UseMethod("predict_survival")
|
nullSp <- function(A){
m <- dim(A)[1]
n <- dim(A)[2]
val <- svd(A, nv = n)
V <- val$v
S <- val$d
if(m > 1){
s <- S
} else if(m == 1){
s <- S[1]
} else{
s <- 0
}
tol <- max(m,n)*max(s)*.Machine$double.eps
r <- sum(s > tol)
if(r+1>n){
N <- matrix(0,dim(V)[1],0)
} else{
N <- V[,(r+1):n, drop = FALSE]
}
return(N)
}
|
context("plot missing data profile")
test_that("test return object", {
plot_obj <- plot_missing(airquality)
expect_true(is.ggplot(plot_obj))
})
|
table.SFM <- table.CAPM <- function (Ra, Rb, scale = NA, Rf = 0, digits = 4)
{
Ra = checkData(Ra)
Rb = checkData(Rb)
if(!is.null(dim(Rf)))
Rf = checkData(Rf)
columns.a = ncol(Ra)
columns.b = ncol(Rb)
columnnames.a = colnames(Ra)
columnnames.b = colnames(Rb)
Ra.excess = Return.excess(Ra, Rf)
Rb.excess = Return.excess(Rb, Rf)
if(is.na(scale)) {
freq = periodicity(Ra)
switch(freq$scale,
minute = {stop("Data periodicity too high")},
hourly = {stop("Data periodicity too high")},
daily = {scale = 252},
weekly = {scale = 52},
monthly = {scale = 12},
quarterly = {scale = 4},
yearly = {scale = 1}
)
}
for(column.a in 1:columns.a) {
for(column.b in 1:columns.b) {
merged.assets = merge(Ra.excess[,column.a,drop=FALSE], Rb.excess[,column.b,drop=FALSE])
merged.assets = as.data.frame(na.omit(merged.assets))
model.lm = lm(merged.assets[,1] ~ merged.assets[,2])
alpha = coef(model.lm)[[1]]
beta = coef(model.lm)[[2]]
CAPMbull = CAPM.beta.bull(Ra[,column.a], Rb[,column.b],Rf)
CAPMbear = CAPM.beta.bear(Ra[,column.a], Rb[,column.b],Rf)
htest = cor.test(as.numeric(merged.assets[,1]), as.numeric(merged.assets[,2]))
active.premium = ActivePremium(Ra=Ra[,column.a],Rb=Rb[,column.b], scale = scale)
tracking.error = TrackingError(Ra[,column.a], Rb[,column.b],scale=scale)
treynor.ratio = TreynorRatio(Ra=Ra[,column.a], Rb=Rb[,column.b], Rf = Rf, scale = scale)
z = c(
alpha,
beta,
CAPMbull,
CAPMbear,
summary(model.lm)$r.squared,
((1+alpha)^scale - 1),
htest$estimate,
htest$p.value,
tracking.error,
active.premium,
active.premium/tracking.error,
treynor.ratio
)
znames = c(
"Alpha",
"Beta",
"Beta+",
"Beta-",
"R-squared",
"Annualized Alpha",
"Correlation",
"Correlation p-value",
"Tracking Error",
"Active Premium",
"Information Ratio",
"Treynor Ratio"
)
if(column.a == 1 & column.b == 1) {
result.df = data.frame(Value = z, row.names = znames)
colnames(result.df) = paste(columnnames.a[column.a], columnnames.b[column.b], sep = " to ")
}
else {
nextcolumn = data.frame(Value = z, row.names = znames)
colnames(nextcolumn) = paste(columnnames.a[column.a], columnnames.b[column.b], sep = " to ")
result.df = cbind(result.df, nextcolumn)
}
}
}
result.df = base::round(result.df, digits)
result.df
}
|
open_tunnel <- function(remote_host, user = NULL, password = NULL, tunnel_dir = "~/.pecan/tunnel/",
wait.time = 15, tunnel_script = '~/pecan/web/sshtunnel.sh'){
dir.create(tunnel_dir)
if(is.null(user)){
user <- readline("Username:: ")
}
if(is.null(password)){
password <- getPass::getPass()
}
sshTunnel <- file.path(tunnel_dir, "tunnel")
sshPID <- file.path(tunnel_dir, "pid")
sshPassFile <- file.path(tunnel_dir, "password")
if(file.exists(sshTunnel)){
PEcAn.logger::logger.warn("Tunnel already exists. If tunnel is not working try calling kill.tunnel then reopen")
return(TRUE)
}
PEcAn.logger::logger.warn(sshPassFile)
write(password, file = sshPassFile)
stat <- system(paste(tunnel_script, remote_host, user, tunnel_dir), wait=FALSE)
Sys.sleep(wait.time)
if (file.exists(sshPassFile)) {
file.remove(sshPassFile)
PEcAn.logger::logger.error("Tunnel open failed")
return(FALSE)
}
if (file.exists(sshPID)) {
pid <- readLines(sshPID, n = -1)
return(as.numeric(pid))
} else {
return(TRUE)
}
}
|
pimamh=function(Niter=10^4,scale=.01){
library(MASS)
da=cbind(Pima.tr$type,Pima.tr$bmi)
da[,1]=da[,1]-1
like=function(a,b){
sum(pnorm(q=a+outer(X=b,Y=da[,2],FUN="*"),log=T)*da[,1]+pnorm(q=-a-outer(X=b,Y=da[,2],FUN="*"),log=T)*(1-da[,1]))}
grad=function(a,b){
don=pnorm(q=a+outer(X=b,Y=da[,2],FUN="*"))
x1=sum((dnorm(x=a+outer(X=b,Y=da[,2],FUN="*"))/don)*da[,1]-
(dnorm(x=-a-outer(X=b,Y=da[,2],FUN="*"))/(1-don))*(1-da[,1]))
x2=sum((dnorm(x=a+outer(X=b,Y=da[,2],FUN="*"))/don)*da[,2]*da[,1]-
(dnorm(x=-a-outer(X=b,Y=da[,2],FUN="*"))/(1-don))*da[,2]*(1-da[,1]))
return(c(x1,x2))
}
the=matrix(glm(da[,1]~da[,2],family=binomial(link="probit"))$coef,ncol=2)
curmean=the[1,]+0.5*scale^2*grad(the[1,1],the[1,2])
likecur=like(the[1,1],the[1,2])
for (t in 2:Niter){
prop=curmean+scale*rnorm(2)
propmean=prop+0.5*scale^2*grad(prop[1],prop[2])
if (log(runif(1))>like(prop[1],prop[2])-likecur-sum(dnorm(prop,mean=curmean,sd=scale,lo=T))+
sum(dnorm(the[t-1,],mean=propmean,sd=scale,lo=T))){
prop=the[t-1,];propmean=curmean
}
the=rbind(the,prop)
curmean=propmean
}
be1=seq(min(the[,1]),max(the[,1]),le=100)
be2=seq(min(the[,2]),max(the[,2]),le=130)
li=matrix(0,ncol=130,nro=100)
for (i in 1:100) for (j in 1:130) li[i,j]=like(be1[i],be2[j])
par(mar=c(4,4,1,1))
image(be1,be2,li,xlab=expression(beta[1]),ylab=expression(beta[2]))
contour(be1,be2,li,add=T,ncla=100)
subs=seq(1,Niter,le=10^3)
points(unique(the[subs,1]),unique(the[subs,2]),cex=.4,pch=19)
}
|
calc_cat_stats <- function(stat_dat,
stat_key,
rv,
plausibility = FALSE,
plausibility_key) {
if (base::missing(plausibility_key)) {
stopifnot(isFALSE(plausibility))
}
statistics <- list()
key_cols <- get_key_col(rv)
key_col_name_src <- key_cols$source
key_col_name_tar <- key_cols$target
statistics$source_data <- tryCatch(
expr = {
f <- stat_dat[get("source_system_name") ==
rv$source$system_name,
get("filter")]
f <- setdiff(f, NA)
if (length(f) > 0) {
where_filter <- get_where_filter(f)
} else {
where_filter <- NULL
}
if (isFALSE(plausibility)) {
source_data <- categorical_analysis(
data = rv$data_source[[stat_dat[get("source_system_name") ==
rv$source$system_name,
get(key_col_name_src)]]],
var = stat_key,
levellimit = Inf,
filter = where_filter
)
} else {
source_data <- categorical_analysis(
data = rv$data_source[[plausibility_key]],
var = stat_key,
levellimit = Inf,
filter = where_filter
)
}
source_data
}, error = function(e) {
DIZutils::feedback(
paste0("Error occured when calculating source catStats: ", e),
findme = "b8e039a302",
type = "Error",
logfile_dir = rv$log$logfile_dir
)
source_data <- NULL
source_data
})
statistics$target_data <- tryCatch(
expr = {
f <- stat_dat[get("source_system_name") ==
rv$target$system_name,
get("filter")]
f <- setdiff(f, NA)
if (length(f) > 0) {
where_filter <- get_where_filter(f)
} else {
where_filter <- NULL
}
if (isFALSE(plausibility)) {
target_data <- categorical_analysis(
data = rv$data_target[[stat_dat[get("source_system_name") ==
rv$target$system_name,
get(key_col_name_tar)]]],
var = stat_key,
levellimit = Inf,
filter = where_filter
)
} else {
target_data <- categorical_analysis(
data = rv$data_target[[plausibility_key]],
var = stat_key,
levellimit = Inf,
filter = where_filter
)
}
target_data
}, error = function(e) {
DIZutils::feedback(
paste0("Error occured when calculating target catStats: ", e),
findme = "5b1a5937e5",
type = "Error",
logfile_dir = rv$log$logfile_dir
)
target_data <- NULL
target_data
})
return(statistics)
}
|
getauthorrecordfull <- function(id, code = NA) {
repec_api_with_id(method = 'getauthorrecordfull', id = id, code = code)
}
get_author_record_full <- getauthorrecordfull
|
gensilwidth <- function (clust, dist, p=1)
{
clust <- clustify(clust)
if (any(table(clust)<1))
stop("All clusters must have at least one member")
clust <- as.numeric(clustify(clust))
numclu <- max(clust)
numplt <- length(clust)
home <- rep(0,numplt)
neigh <- rep(0,numplt)
val <- rep(0,numplt)
names <- attr(dist,'Labels')
disptc <- matrix(0, nrow = numplt, ncol = numclu)
if (!inherits(dist,'dist')) {
stop("The second argument must be an object of class 'dist'")
}
dist <- as.matrix(dist)
if (max(dist) > 1) dist <- dist/max(dist)
card <- rep(0,numclu)
for (i in 1:numclu) {
card[i] <- sum(clust==i)
}
if (p == -Inf) {
for (i in 1:numplt) {
for (j in 1:numclu) {
if (clust[i] == j) {
if (card[j] > 1) {
mask <- clust==j
mask[i] <- FALSE
disptc[i,j] <- min(dist[i,mask])
} else {
disptc[i,j] <- 0
}
} else {
disptc[i,j] <- min(dist[i,clust==j])
}
}
}
} else if (p == Inf) {
for (i in 1:numplt) {
for (j in 1:numclu) {
if (clust[i] == j) {
if (card[j] > 1) {
mask <- clust==j
mask[i] <- FALSE
disptc[i,j] <- max(dist[i,mask])
} else {
disptc[i,j] <- 0
}
} else {
disptc[i,j] <- max(dist[i,clust==j])
}
}
}
} else if (p == 0) {
for (i in 1:numplt) {
for (j in 1:numclu) {
if (clust[i] == j) {
if (card[j] > 1) {
mask <- clust==j
mask[i] <- FALSE
tmp <- dist[i,mask]
tmp[tmp==0] <- 1e-10
disptc[i,j] <- prod(tmp)^(1/(card[j]-1))
} else {
disptc[i,j] <- 0
}
} else {
disptc[i,j] <- prod(dist[i,clust==j])^(1/card[j])
}
}
}
} else {
for (i in 1:numplt) {
for (j in 1:numclu) {
if (clust[i] == j) {
if (card[j] > 1) {
mask <- clust == j
mask[i] <- FALSE
disptc[i,j] <- mean(dist[i,mask]^p)^(1/p)
} else {
disptc[i, j] <- 0
}
} else {
disptc[i, j] <- mean(dist[i,clust==j]^p)^(1/p)
}
}
}
}
for (i in 1:numplt) {
home[i] <- disptc[i,clust[i]]
val[i] <- min(disptc[i,-clust[i]])
neigh[i] <- which(disptc[i,] == val[i])[1]
}
sils <- (val - home) / pmax(home,val)
for (i in 1:numclu) {
if (card[i] == 1) sils[clust==i] <- 0
}
out <- as.matrix(cbind(clust,neigh,sils))
colnames(out) <- c('cluster','neighbor','sil_width')
rownames(out) <- names
attr(out,'class') <- 'silhouette'
attr(out,'call') <- match.call()
attr(out,'Ordered') <- FALSE
out
}
|
anova.glmRob <- function(object, ..., test = c("none", "Chisq", "F", "Cp"))
{
test <- match.arg(test)
margs <- function(...)
nargs()
if(margs(...))
return(anova.glmRoblist(list(object, ...), test = test))
Terms <- object$terms
term.labels <- attr(Terms, "term.labels")
nt <- length(term.labels)
m <- model.frame(object)
x <- model.matrix(Terms, m, contrasts = object$contrasts)
asgn <- attr(x, "assign")
control <- object$control
if(is.null(control)) {
fit.method <- object$fit.method
if(fit.method=="cubif")
control <- glmRob.cubif.control()
else if(fit.method == "mallows")
control <- glmRob.mallows.control()
else if(fit.method == "misclass")
control <- glmRob.misclass.control()
else
stop(paste("method ", fit.method," does not exist"))
}
Family <- family(object)
a <- attributes(m)
y <- model.extract(m, "response")
w <- model.extract(m, "weights")
if(!length(w))
w <- rep(1, nrow(m))
offset <- attr(Terms, "offset")
if(is.null(offset))
offset <- 0
else
offset <- m[[offset]]
dev.res <- double(nt)
df.res <- dev.res
nulld <- object$null.deviance
if(is.null(nulld))
nulld <- sum(w * (y - weighted.mean(y, w))^2)
dev.res[1] <- nulld
df.res[1] <- nrow(x) - attr(Terms, "intercept")
if(nt > 1) {
for(iterm in seq(nt, 2)) {
idx <- which(asgn == iterm)
x <- x[ , -idx, drop = FALSE]
asgn <- asgn[-idx]
fit.call <- object$call
fit.call[[1]] <- as.name(paste('glmRob.', object$method, sep = ''))
fit.call$x <- x
fit.call$y <- y
fit.call$control <- control
fit.call$family <- family(object)
fit.call$offset <- offset
fit.call$Terms <- NULL
fit.call$null.dev <- TRUE
fit.call$formula <- NULL
fit.call$data <- NULL
fit <- eval(fit.call, sys.parent())
dev.res[iterm] <- deviance(fit)
df.res[iterm] <- fit$df.resid
}
}
if(nt) {
dev.res <- c(dev.res, deviance(object))
df.res <- c(df.res, object$df.resid)
dev <- c(NA, - diff(dev.res))
df <- c(NA, - diff(df.res))
}
else dev <- df <- as.numeric(NA)
heading <- c("Analysis of Deviance Table\n",
paste(Family$family[1], "model\n"),
paste("Response: ",
as.character(formula(object))[2],
"\n", sep = ""),
"Terms added sequentially (first to last)")
aod <- data.frame(Df = df, Deviance = dev,
"Resid. Df" = df.res, "Resid. Dev" = dev.res,
row.names = c("NULL", term.labels),
check.names = FALSE)
attr(aod, "heading") <- heading
oldClass(aod) <- c("anova", "data.frame")
if(test == "none")
return(aod)
else
stat.anova(aod, test,
deviance(object)/object$df.resid,
object$df.resid, nrow(x))
}
|
rmrow.foldert <- function(object, name) {
if (!is.foldert(object))
stop("rmrow.foldert applies to an object of class 'foldert'.")
xf <- list()
for (k in 1:length(object)) {
objk <- object[[k]]
xf[[k]] <- objk[!(rownames(objk) %in% name), ]
}
attributes(xf) <- attributes(object)
return(xf)
}
|
setClass("modelObjFormula",
contains = c("modelObj"))
.newModelObjFormula <- function(model,
solver.method,
solver.args,
predict.method,
predict.args) {
solver <- .newMethodObjSolverFormula(method = solver.method,
args = solver.args)
predictor <- .newMethodObjPredict(method = predict.method,
args = predict.args)
return( new("modelObjFormula",
model = model,
solver = solver,
predictor = predictor) )
}
|
names_dbrows <- function(w_map = NULL, myWay = "By Row", kindExpt = "DBUDC", data_dim_each_block = NULL,
planter = "serpentine", w_map_letters = NULL, expt_name = NULL, Checks = NULL) {
checks <- Checks
if (kindExpt == "DBUDC") {
if (myWay == "By Row") {
my_row_sets <- automatically_cuts(data = w_map, planter_mov = planter,
way = "By Row", dim_data = data_dim_each_block)[[1]]
blocks <- length(my_row_sets)
w_map_letters1 <- w_map_letters
Index_block <- LETTERS[1:blocks]
Name_expt <- expt_name
if (length(Name_expt) == blocks || !is.null(Name_expt)) {
name_blocks <- Name_expt
}else {
name_blocks <- paste(rep("Expt", blocks), 1:blocks, sep = "")
}
z <- 1
for(i in Index_block){
w_map_letters1[w_map_letters1 == i] <- name_blocks[z]
z <- z + 1
}
checks_ch <- as.character(checks)
for(i in nrow(w_map_letters1):1) {
for(j in 1:ncol(w_map_letters1)) {
if (any(checks_ch %in% w_map_letters1[i, j]) && w_map_letters1[i,j] != "Filler") {
if (j != ncol(w_map_letters1)){
if(w_map_letters1[i, j + 1] == "Filler") {
w_map_letters1[i, j] <- w_map_letters1[i, j - 1]
}else w_map_letters1[i, j] <- w_map_letters1[i, j + 1]
}else if (j == ncol(w_map_letters1)) {
w_map_letters1[i, j] <- w_map_letters1[i, j - 1]
}
}
}
}
split_names <- w_map_letters1
}else{
return(NULL)
}
}
return(list(my_names = split_names))
}
|
fdata2model <- function(vfunc, vnf, response, data, basis.x=NULL,pf,tf){
print("fdata2model")
kterms = 1
vs.list=mean.list=name.coef=nam=beta.l=list()
bsp1=TRUE
if (length(vnf)>0) {
XX=data[["df"]][,c(response,vnf)]
for ( i in 1:length(vnf)){
if (kterms > 1) pf <- paste(pf, "+", vnf[i], sep = "")
else pf <- paste(pf, vnf[i], sep = "")
kterms <- kterms + 1
}
if (attr(tf,"intercept")==0) {
pf<- paste(pf,-1,sep="")
}
} else {
XX=data$df[response]
names(XX)=response
}
lenfunc<-length(vfunc)>0
if (lenfunc) {
for (i in 1:length(vfunc)) {
if (class(data[[vfunc[i]]])[1]=="fdata"){
tt<-data[[vfunc[i]]][["argvals"]]
rtt<-data[[vfunc[i]]][["rangeval"]]
fdat<-data[[vfunc[i]]]; dat<-data[[vfunc[i]]]$data
if (is.null(basis.x[[vfunc[i]]])) basis.x[[vfunc[i]]]<-create.fdata.basis(fdat,l=1:7)
else if (basis.x[[vfunc[i]]]$type=="pc" | basis.x[[vfunc[i]]]$type=="pls") bsp1=FALSE
if (bsp1) {
if (is.null(rownames(dat))) rownames(fdat$data)<-1:nrow(dat)
fdnames=list("time"=tt,"reps"=rownames(fdat[["data"]]),"values"="values")
xcc<-fdata.cen(data[[vfunc[i]]])
mean.list[[vfunc[i]]]=xcc[[2]]
if (!is.null( basis.x[[vfunc[i]]]$dropind)) {
int<-setdiff(1:basis.x[[vfunc[i]]]$nbasis,basis.x[[vfunc[i]]]$dropind)
basis.x[[vfunc[i]]]$nbasis<-length(int)
basis.x[[vfunc[i]]]$dropind<-NULL
basis.x[[vfunc[i]]]$names<-basis.x[[vfunc[i]]]$names[int]
}
x.fd = Data2fd(argvals = tt, y = t(xcc[[1]]$data),basisobj = basis.x[[vfunc[i]]],fdnames=fdnames)
r=x.fd[[2]][[3]]
J=inprod(basis.x[[vfunc[i]]],basis.x[[vfunc[i]]])
J12=inprod(basis.x[[vfunc[i]]])
Z =t(x.fd$coefs) %*% J
colnames(J)=colnames(Z) = name.coef[[vfunc[i]]]=paste(vfunc[i],".",basis.x[[vfunc[i]]]$names,sep="")
XX = cbind(XX,Z)
for ( j in 1:length(colnames(Z))){
if (kterms >= 1) pf <- paste(pf, "+", colnames(Z)[j], sep = "")
else pf <- paste(pf, colnames(Z)[j], sep = "")
kterms <- kterms + 1
}
vs.list[[vfunc[i]]]<-J
} else {
l<-basis.x[[vfunc[i]]]$l
lenl<-length(l)
vs <- t(basis.x[[vfunc[i]]]$basis$data)
Z<-basis.x[[vfunc[i]]]$x[,l,drop=FALSE]
response = "y"
colnames(Z) = name.coef[[vfunc[i]]]=paste(vfunc[i], ".",colnames(Z),sep ="")
name.coef[[vfunc[i]]]<-colnames(Z)
XX = cbind(XX,Z)
vs.list[[vfunc[i]]]=basis.x[[vfunc[i]]]$basis
mean.list[[vfunc[i]]]=basis.x[[vfunc[i]]]$mean
for ( j in 1:length(colnames(Z))){
if (kterms >= 1) pf <- paste(pf, "+", name.coef[[vfunc[i]]][j], sep = "")
else pf <- paste(pf, name.coef[[vfunc[i]]][j], sep = "")
kterms <- kterms + 1
}
}
}
} }
else pf <- tf
pf<-as.formula(pf)
if (!is.data.frame(XX)) XX=data.frame(XX)
print("sale fdata2model")
return(list(pf=pf,vs.list=vs.list,mean.list=mean.list,XX=XX,basis.x=basis.x))
}
|
ConvertData <- function(input, yesLabel = NULL, noLabel = NULL, missLabel = NULL, data.type = c("WHO2012", "WHO2016")[1]){
if(is.null(yesLabel) || is.null(noLabel) || is.null(missLabel)){
stop("Error: please specify what values are used in the data to represent yes, no, and missing")
}
ynm <- c("Y", "", ".")
if(data.type == "WHO2016") ynm <- c("y", "n", "-")
output <- data.frame(matrix("", dim(input)[1], dim(input)[2]),
stringsAsFactors = FALSE)
unchanged <- NULL
if(length(unique(input[, 1])) != length(input[, 1])){
stop("Error: duplicate ID in the first column, please check the first column is ID and contains only unique values.")
}
output[, 1] <- input[, 1]
for(i in 2:dim(input)[2]){
tmp <- as.character(input[, i])
if(sum(!(tmp %in% c(yesLabel, noLabel, missLabel))) > 0){
unchanged <- c(unchanged, colnames(input)[i])
output[, i] <- tmp
}else{
output[which(tmp %in% yesLabel), i] <- ynm[1]
output[which(tmp %in% noLabel), i] <- ynm[2]
output[which(tmp %in% missLabel), i] <- ynm[3]
}
}
if(length(unchanged) > 0){
warning(paste("The following columns not recognized as symptoms and not modified:\n", paste(unchanged, collapse = ", "), "\n"))
}
colnames(output) <- colnames(input)
return(output)
}
getPHMRC_url <- function(type){
if(type == "adult"){
return(url('http://ghdx.healthdata.org/sites/default/files/record-attached-files/IHME_PHMRC_VA_DATA_ADULT_Y2013M09D11_0.csv'))
}else if(type == "child"){
return(url('http://ghdx.healthdata.org/sites/default/files/record-attached-files/IHME_PHMRC_VA_DATA_CHILD_Y2013M09D11_0.csv'))
}else if(type == "neonate"){
return(url('http://ghdx.healthdata.org/sites/default/files/record-attached-files/IHME_PHMRC_VA_DATA_NEONATE_Y2013M09D11_0.csv'))
}else{
stop("Unknown type")
}
}
ConvertData.phmrc <- function(input, input.test = NULL, cause = NULL, phmrc.type = c("adult", "child", "neonate")[1], cutoff = c("default", "adapt")[1], ...){
if(phmrc.type == "adult"){
out <- .phmrc_adult_convert(input, input.test, cause = cause, type = cutoff)
}else if(phmrc.type == "child"){
out <- .phmrc_child_convert(input, input.test, cause = cause, type = cutoff)
warnings("Child data conversion is experimental.")
}else if(phmrc.type == "neonate"){
stop("child data conversion still under development...")
}
return(out)
}
.phmrc_adult_convert <- function(input, input.test, cause, type = c("default", "adapt")[1]){
if(is.null(cause)){
cause <- "va34"
}
if(!is.null(input.test)){
if(length(which(colnames(input) != colnames(input.test)))){
stop("Columns do not match in the two dataset")
}
N <- dim(input)[1]
input <- rbind(input, input.test)
}else{
N <- dim(input)[1]
}
if(colnames(input)[1] != "site"){
cat("The first column is assumed to be ID by default\n")
id <- input[, 1]
}else{
cat("The first column is site, assign IDs to each row by default\n")
id <- seq(1:dim(input)[1])
}
if(cause %in% colnames(input) == FALSE){
stop("No cause of death column find in data")
}else{
gs <- input[, cause]
}
age <- which(colnames(input) == "g1_07a")
sex <- which(colnames(input) == "g1_05")
first_symp <- which(colnames(input) == "a1_01_1")
last_symp <- which(colnames(input) == "a5_04")
if(length(age) != 1){
stop("Age variable g1_07a not in input data.")
}
if(length(sex) != 1){
stop("Gender variable g1_05 not in input data.")
}
if(length(first_symp) != 1 || length(last_symp) != 1){
stop("Symptoms not correctly specified in input format.")
}
symps_raw <- input[, c(sex, age, first_symp : last_symp)]
symps_raw <- data.frame(symps_raw, stringsAsFactors = FALSE)
symps_binary <- matrix("", dim(symps_raw)[1], dim(symps_raw)[2])
symps_binary[which(symps_raw == "Yes")] <- "Y"
symps_binary[which(symps_raw == "No")] <- ""
symps_binary[which(symps_raw == "Don't Know")] <- "."
symps_binary[which(symps_raw == "Refused to Answer")] <- "."
symps_binary[which(symps_raw == "")] <- "."
symps_binary <- data.frame(symps_binary)
colnames(symps_binary) <- colnames(as.matrix(symps_raw))
if(type == "default"){
symps_binary <- .toBinary_file9(symps_raw, symps_binary,
adapt = FALSE, cause = NULL)
}else if(type == "adapt"){
symps_binary <- .toBinary_file9(symps_raw, symps_binary,
adapt = TRUE, cause = gs)
}else{
stop("Unknown cutoff type argument given.")
}
symps_binary <- .toBinary_file10(symps_raw, symps_binary)
symps_binary <- .toBinary_unhandeled(symps_raw, symps_binary)
for(i in 1:dim(symps_binary)[2]){
symps_binary[, i] <- as.character(symps_binary[, i])
symps_binary[which(symps_binary[,i] == "YesYes"), i] <- "Y"
symps_binary[which(symps_binary[,i] == "NoNo"), i] <- ""
symps_binary[which(symps_binary[,i] == "MissingMissing"), i] <- "."
}
n.empty <- length(which(is.na(symps_binary)))
n.yes <- length(which(symps_binary == "Y"))
n.no <- length(which(symps_binary == ""))
n.notknown <- length(which(symps_binary == "."))
if(n.empty != 0){
cat("There are cells not converted by default rules! Left as NA\n")
}
if(N == dim(input)[1]){
cat(paste0(N, " deaths in input. Format: adult\n"))
}else{
cat(paste0(N, " deaths in input. Format: adult\n"))
cat(paste0(dim(input)[1]-N, " deaths in test input. Format: adult\n"))
}
cat(paste0(dim(symps_binary)[2], " binary symptoms generated\n"))
cat(paste0("\nNumber of Yes ", n.yes, "\n",
"Number of No ", n.no, "\n",
"Number of Not known ", n.notknown, "\n"))
data.out <- cbind(id, gs, symps_binary)
colnames(data.out)[1:2] <- c("ID", "Cause")
if(!is.null(input.test)){
out <- data.out[1:N, ]
out.test <- data.out[-(1:N), ]
}else{
out <- data.out
out.test <- NULL
}
return(list(output = out, output.test = out.test))
}
.phmrc_child_convert <- function(input, input.test, cause, type = c("default", "adapt")[2]) {
cause <- NULL
type <- "default"
if(is.null(cause)){
cause <- "va34"
}
if(!is.null(input.test)){
if(length(which(colnames(input) != colnames(input.test)))){
stop("Columns do not match in the two dataset")
}
if(cause %in% colnames(input.test)){
}
N <- dim(input)[1]
input <- rbind(input, input.test)
}else{
N <- dim(input)[1]
}
if(colnames(input)[1] != "site"){
cat("The first column is assumed to be ID by default\n")
id <- input[, 1]
}else{
cat("The first column is site, assign IDs to each row by default\n")
id <- seq(1:dim(input)[1])
}
if(cause %in% colnames(input) == FALSE){
stop("No cause of death column find in data")
}else{
gs <- input[, cause]
}
age <- which(colnames(input) == "g1_07a")
sex <- which(colnames(input) == "g1_05")
first_symp <- which(colnames(input) == "c1_01")
last_symp <- which(colnames(input) == "c5_19")
if(length(age) != 1){
stop("Age variable g1_07a not in input data.")
}
if(length(sex) != 1){
stop("Gender variable g1_05 not in input data.")
}
if(length(first_symp) != 1 || length(last_symp) != 1){
stop("Symptoms not correctly specified in input format.")
}
symps_raw <- input[, c(sex, age, first_symp : last_symp)]
symps_raw <- data.frame(symps_raw, stringsAsFactors = FALSE)
symps_binary <- matrix("", dim(symps_raw)[1], dim(symps_raw)[2])
symps_binary[which(symps_raw == "Yes")] <- "Y"
symps_binary[which(symps_raw == "No")] <- ""
symps_binary[which(symps_raw == "Don't Know")] <- "."
symps_binary[which(symps_raw == "Refused to Answer")] <- "."
symps_binary[which(symps_raw == "")] <- "."
symps_binary <- data.frame(symps_binary)
colnames(symps_binary) <- colnames(as.matrix(symps_raw))
if(type == "default"){
symps_binary <- .toBinary_file9_child(symps_raw, symps_binary,
adapt = FALSE, cause = NULL)
}else if(type == "adapt"){
symps_binary <- .toBinary_file9_child(symps_raw, symps_binary,
adapt = TRUE, cause = gs)
}else{
stop("Unknown cutoff argument given")
}
symps_binary <- .toBinary_file10_child(symps_raw, symps_binary)
symps_binary <- .toBinary_unhandeled_child(symps_raw, symps_binary)
for(i in 1:dim(symps_binary)[2]){
symps_binary[, i] <- as.character(symps_binary[, i])
symps_binary[which(is.na(symps_binary[,i])), i] <- "MissingMissing"
symps_binary[which(symps_binary[,i] == "YesYes"), i] <- "Y"
symps_binary[which(symps_binary[,i] == "NoNo"), i] <- ""
symps_binary[which(symps_binary[,i] == "MissingMissing"), i] <- "."
}
n.empty <- length(which(is.na(symps_binary)))
n.yes <- length(which(symps_binary == "Y"))
n.no <- length(which(symps_binary == ""))
n.notknown <- length(which(symps_binary == "."))
if(n.empty != 0){
cat("There are cells not converted by default rules! Left as NA\n")
}
if(N == dim(input)[1]){
cat(paste0(N, " deaths in input. Format: adult\n"))
}else{
cat(paste0(N, " deaths in input. Format: adult\n"))
cat(paste0(dim(input)[1]-N, " deaths in test input. Format: adult\n"))
}
cat(paste0(dim(symps_binary)[2], " binary symptoms generated\n"))
cat(paste0("\nNumber of Yes ", n.yes, "\n",
"Number of No ", n.no, "\n",
"Number of Not known ", n.notknown, "\n"))
data.out <- cbind(id, gs, symps_binary)
colnames(data.out)[1:2] <- c("ID", "Cause")
if(!is.null(input.test)){
out <- data.out[1:N, ]
out.test <- data.out[-(1:N), ]
}else{
out <- data.out
out.test <- NULL
}
return(list(output = out, output.test = out.test))
}
.toBinary_cutoff <- function(vec, cut, missLabel = NULL,
adapt = FALSE, cause = NULL){
if(is.null(missLabel)){
missLabel <- c("Don't Know", "Refused to Answer")
}
vec <- as.character(vec)
vec[which(vec %in% missLabel)] <- "."
vec.num <- suppressWarnings(as.numeric(vec))
num <- which(!is.na(vec.num))
if(adapt){
tmp <- data.frame(cause = cause[num], duration = vec.num[num])
tmp2 <- aggregate(duration ~ cause, tmp, function(x){
mean(x)})
med <- median(tmp2[, 2])
MAD <- median(abs(tmp[, 2] - med))
if(!(is.na(med) || is.na(MAD))){
cut <- med + 2 * MAD
}
}
vec[num] <- as.character(as.numeric(vec[num]) > cut)
vec[vec == "TRUE"] <- "YesYes"
vec[vec == "FALSE"] <- "NoNo"
return(vec)
}
.toBinary_file9 <- function(symps_raw, symps, missLabel = NULL, adapt = FALSE, cause = NULL){
symps$a2_01 <- .toBinary_cutoff(symps_raw$a2_01, 528.8, missLabel, adapt, cause)
symps$a2_03 <- .toBinary_cutoff(symps_raw$a2_03, 8.8, missLabel, adapt, cause)
symps$a2_08 <- .toBinary_cutoff(symps_raw$a2_08, 3.1, missLabel, adapt, cause)
symps$a2_15 <- .toBinary_cutoff(symps_raw$a2_15, 0.3, missLabel, adapt, cause)
symps$a2_22 <- .toBinary_cutoff(symps_raw$a2_22, 54.1, missLabel, adapt, cause)
symps$a2_24 <- .toBinary_cutoff(symps_raw$a2_24, 55.2, missLabel, adapt, cause)
symps$a2_26 <- .toBinary_cutoff(symps_raw$a2_26, 36, missLabel, adapt, cause)
symps$a2_28 <- .toBinary_cutoff(symps_raw$a2_28, 20.3, missLabel, adapt, cause)
symps$a2_33 <- .toBinary_cutoff(symps_raw$a2_33, 107, missLabel, adapt, cause)
symps$a2_37 <- .toBinary_cutoff(symps_raw$a2_37, 100.3, missLabel, adapt, cause)
symps$a2_41 <- .toBinary_cutoff(symps_raw$a2_41, 43, missLabel, adapt, cause)
symps$a2_48 <- .toBinary_cutoff(symps_raw$a2_48, 4.9, missLabel, adapt, cause)
symps$a2_54 <- .toBinary_cutoff(symps_raw$a2_54, 3.2, missLabel, adapt, cause)
symps$a2_58 <- .toBinary_cutoff(symps_raw$a2_58, 55.2, missLabel, adapt, cause)
symps$a2_62 <- .toBinary_cutoff(symps_raw$a2_62, 16.7, missLabel, adapt, cause)
symps$a2_65 <- .toBinary_cutoff(symps_raw$a2_65, 45.4, missLabel, adapt, cause)
symps$a2_68 <- .toBinary_cutoff(symps_raw$a2_68, 34.4, missLabel, adapt, cause)
symps$a2_70 <- .toBinary_cutoff(symps_raw$a2_70, 3.2, missLabel, adapt, cause)
symps$a2_73 <- .toBinary_cutoff(symps_raw$a2_73, 2.2, missLabel, adapt, cause)
symps$a2_76 <- .toBinary_cutoff(symps_raw$a2_76, 1.1, missLabel, adapt, cause)
symps$a2_79 <- .toBinary_cutoff(symps_raw$a2_79, 7.8, missLabel, adapt, cause)
symps$a2_83 <- .toBinary_cutoff(symps_raw$a2_83, 0.0, missLabel, adapt, cause)
symps$a2_86 <- .toBinary_cutoff(symps_raw$a2_86, 20.4, missLabel, adapt, cause)
symps$a3_08 <- .toBinary_cutoff(symps_raw$a3_08, 2.9, missLabel, adapt, cause)
symps$a4_03 <- .toBinary_cutoff(symps_raw$a4_03, 1.2, missLabel, adapt, cause)
symps$a4_04 <- .toBinary_cutoff(symps_raw$a4_03, 4.2, missLabel, adapt, cause)
symps$a5_04 <- .toBinary_cutoff(symps_raw$a5_04, 8.5, missLabel, adapt, cause)
symps$g1_07a <- .toBinary_cutoff(symps_raw$g1_07a, 67.6, missLabel, adapt, cause)
return(symps)
}
.toBinary_file9_child <- function(symps_raw, symps, missLabel = NULL, adapt = FALSE, cause = NULL){
symps$c1_05 <- .toBinary_cutoff(symps_raw$c1_05, 21.4, missLabel, adapt, cause)
symps$c1_08b <- .toBinary_cutoff(symps_raw$c1_08b, 2623, missLabel, adapt, cause)
symps$c1_20 <- .toBinary_cutoff(symps_raw$c1_20, 1574.3, missLabel, adapt, cause)
symps$c1_21 <- .toBinary_cutoff(symps_raw$c1_21, 63.4, missLabel, adapt, cause)
symps$c1_25 <- .toBinary_cutoff(symps_raw$c1_25, 1618.6, missLabel, adapt, cause)
symps$c4_02 <- .toBinary_cutoff(symps_raw$c4_02, 337.3, missLabel, adapt, cause)
symps$c4_08 <- .toBinary_cutoff(symps_raw$c4_08, 99.9, missLabel, adapt, cause)
symps$c4_10 <- .toBinary_cutoff(symps_raw$c4_10, 15.6, missLabel, adapt, cause)
symps$c4_13 <- .toBinary_cutoff(symps_raw$c4_13, 5.7, missLabel, adapt, cause)
symps$c4_17 <- .toBinary_cutoff(symps_raw$c4_17, 9.1, missLabel, adapt, cause)
symps$c4_19 <- .toBinary_cutoff(symps_raw$c4_19, 1.5, missLabel, adapt, cause)
symps$c4_33 <- .toBinary_cutoff(symps_raw$c4_33, 1.1, missLabel, adapt, cause)
symps$c4_37 <- .toBinary_cutoff(symps_raw$c4_37, 2.2, missLabel, adapt, cause)
symps$c4_49 <- .toBinary_cutoff(symps_raw$c4_49, .6, missLabel, adapt, cause)
symps$g1_07a <- .toBinary_cutoff(symps_raw$g1_07a, 2.4, missLabel, adapt, cause)
return(symps)
}
.toBinary_group <- function(vec, gtrue, gfalse, gna){
vec <- as.character(vec)
for(i in gtrue){
vec[which(vec == i)] <- "YesYes"
}
for(i in gfalse){
vec[which(vec == i)] <- "NoNo"
}
for(i in gna){
vec[which(vec == i)] <- "MissingMissing"
}
return(vec)
}
.toBinary_group2 <- function(vec1, vec2, gtrue, gfalse, gna){
vec1 <- as.character(vec1)
vec2 <- as.character(vec2)
for(i in gtrue){
vec1[which(vec1 == i)] <- "YesYes"
}
for(i in gfalse){
vec1[which(vec1 == i)] <- "NoNo"
}
for(i in gna){
vec1[which(vec1 == i)] <- "MissingMissing"
}
for(i in gtrue){
vec1[which(vec2 == i)] <- "YesYes"
}
return(vec1)
}
.toBinary_file10 <- function(raw, new){
new$a2_19 <- .toBinary_group(raw$a2_19,
c("Moderate", "Large"),
c("Slight"),
c("Don't Know"))
new$a2_04 <- .toBinary_group(raw$a2_04,
c("Moderate", "Severe"),
c("Mild"),
c("Don't Know"))
new$a2_05 <- .toBinary_group(raw$a2_05,
c("Continuous"),
c("On and Off", "Only at Night"),
c("Don't Know"))
new$a2_05_s1 <- .toBinary_group(raw$a2_05,
c("On and Off"),
c("Continuous", "Only at Night"),
c("Don't Know"))
new$a2_09_1a <- .toBinary_group2(raw$a2_09_1a, raw$a2_09_2a,
c("Face"),
c("Trunk", "Extremities", "Everywhere", "Other"),
c("Don't Know"))
new$a2_09_1a_s1 <- .toBinary_group2(raw$a2_09_1a, raw$a2_09_2a,
c("Trunk"),
c("Face", "Extremities", "Everywhere", "Other"),
c("Don't Know"))
new$a2_09_1a_s2 <- .toBinary_group2(raw$a2_09_1a, raw$a2_09_2a,
c("Extremities"),
c("Trunk", "Face", "Everywhere", "Other"),
c("Don't Know"))
new$a2_09_1a_s3 <- .toBinary_group2(raw$a2_09_1a, raw$a2_09_2a,
c("Everywhere"),
c("Trunk", "Extremities", "Face", "Other"),
c("Don't Know"))
new$a2_09_1b <- .toBinary_group2(raw$a2_09_1a, raw$a2_09_2a,
c("Other"),
c("Trunk", "Extremities", "Face", "Everywhere"),
c("Don't Know"))
new <- new[, -which(colnames(new) == "a2_09_2a")]
new <- new[, -which(colnames(new) == "a2_09_2b")]
new$a2_39_1 <- .toBinary_group2(raw$a2_39_1, raw$a2_39_2,
c("Lying"),
c("Sitting", "Walking/Exertion", "Didn't matter"),
c("Didn't matter", "Refused to Answer","Don't Know"))
new$a2_39_1_s1 <- .toBinary_group2(raw$a2_39_1, raw$a2_39_2,
c("Sitting"),
c("Lying", "Walking/Exertion", "Didn't matter"),
c("Didn't matter", "Refused to Answer","Don't Know"))
new$a2_39_1_s2 <- .toBinary_group2(raw$a2_39_1, raw$a2_39_2,
c("Walking/Exertion"),
c("Sitting", "Lying", "Didn't matter"),
c("Didn't matter", "Refused to Answer","Don't Know"))
new$a2_39_1_s3 <- .toBinary_group2(raw$a2_39_1, raw$a2_39_2,
c("Didn't matter"),
c("Lying", "Sitting", "Walking/Exertion"),
c("Refused to Answer","Don't Know"))
new <- new[, -which(colnames(new) == "a2_39_2")]
new$a2_38 <- .toBinary_group(raw$a2_38,
c("Continuous"),
c("On and Off" ),
c("Don't Know"))
new$a2_38_s1 <- .toBinary_group(raw$a2_38,
c("On and Off"),
c("Continuous" ),
c("Don't Know"))
new$a2_44 <- .toBinary_group(raw$a2_44,
c(">24 hr" ),
c("<30 minutes", "0.5-24 hours"),
c("Don't Know", "Refused to Answer"))
new$a2_46a <- .toBinary_group(raw$a2_46a,
c("Upper/middle chest", "Lower chest" ),
c("Left Arm", "Other" ),
c("Don't Know", "Refused to Answer"))
new$a2_46a_s1 <- .toBinary_group(raw$a2_46a,
c("Left Arm" ),
c("Upper/middle chest", "Lower chest", "Other"),
c("Don't Know", "Refused to Answer"))
new$a2_46b <- .toBinary_group(raw$a2_46a,
c("Other" ),
c("Left Arm", "Upper/middle chest", "Lower chest" ),
c("Don't Know", "Refused to Answer"))
new$a2_59 <- .toBinary_group(raw$a2_59,
c("Both" ),
c("Liquids", "Solids"),
c("Don't Know", "Refused to Answer"))
new$a2_63_1 <- .toBinary_group(raw$a2_63_1,
c("Lower belly" ),
c("Upper belly"),
c("Don't Know", "Refused to Answer"))
new$a2_63_2 <- .toBinary_group(raw$a2_63_2,
c("Lower belly" ),
c("Upper belly"),
c("Don't Know", "Refused to Answer"))
new$a2_71 <- .toBinary_group(raw$a2_71,
c("Rapidly/Fast"),
c("Slow(ly)"),
c("Don't Know", "Refused to Answer"))
new$a2_75 <- .toBinary_group(raw$a2_75,
c("Suddenly"),
c("Slowly"),
c("Don't Know"))
new$a2_80 <- .toBinary_group(raw$a2_80,
c("Suddenly"),
c("Slowly"),
c("Don't Know"))
new$a4_06 <- .toBinary_group(raw$a4_06,
c("Moderate", "High"),
c("Low"),
c("Don't Know", "Refused to Answer"))
new$a4_06_s1 <- .toBinary_group(raw$a4_06,
c("Low"),
c("Moderate", "High"),
c("Don't Know", "Refused to Answer"))
return(new[, order(colnames(new))])
}
.toBinary_file10_child <- function(raw, new){
new$c1_01 <- .toBinary_group(raw$c1_01,
c("Multiple"),
c("Singleton"),
c("Don't Know", ""))
new$c1_02 <- .toBinary_group(raw$c1_02,
c("Second", "Third or More"),
c("First"),
c("Don't Know"))
new$c1_04 <- .toBinary_group(raw$c1_04,
c("After"),
c("During"),
c("Don't Know"))
new$c1_06a <- .toBinary_group(raw$c1_06a,
c("Home", "Other"),
c("Hospital", "On Route to Health Facility",
"Other Health Facility"),
c("Don't Know"))
new$c1_07 <- .toBinary_group(raw$c1_07,
c("Very small", "smaller than usual"),
c("About average", "larger than usual"),
c("Don't Know", ""))
new$c1_22a <- .toBinary_group(raw$c1_22a,
c("Home", "On Route to Health Facility"),
c("Hospital", "Other",
"Other Health Facility"),
c("Don't Know"))
new$c4_04 <- .toBinary_group(raw$c4_04,
c("Severe"),
c("Mild", "Moderate"),
c("Don't Know"))
new$c4_05 <- .toBinary_group(raw$c4_05,
c("On and Off", "Only at Night"),
c("Continuous"),
c("Don't Know"))
new$c4_07b <- .toBinary_group(raw$c4_07b,
2:30,
0:1,
NA)
new$c4_31_1 <- .toBinary_group(raw$c4_31_1,
c("Face"),
c("Everywhere", "Extremities",
"Other", "Trunk"),
c("Don't Know"))
new$c4_32 <- .toBinary_group(raw$c4_32,
c("Face"),
c("Everywhere", "Extremities",
"Other", "Trunk"),
c("Don't Know"))
return(new[, order(colnames(new))])
}
.toBinary_unhandeled <- function(raw, new){
new$a2_66 <- .toBinary_group(raw$a2_66,
c("Rapidly/Fast"),
c("Slow(ly)"),
c("Don't Know"))
new <- new[, -which(colnames(new) == "a2_87_10b")]
new <- new[, -which(colnames(new) == "a3_11")]
new <- new[, -which(colnames(new) == "a3_16")]
new <- new[, -which(colnames(new) == "a4_02_5b")]
new$g1_05 <- .toBinary_group(raw$g1_05 ,
c("Female"),
c("Male" ),
c("Don't Know", ""))
new$g1_05_s1 <- .toBinary_group(raw$g1_05 ,
c("Male"),
c("Female" ),
c("Don't Know", ""))
return(new[, order(colnames(new))])
}
.toBinary_unhandeled_child <- function(raw, new){
cols.to.remove <- c("c1_08a", "c1_10", "c1_11", "c1_10d", "c1_10m", "c1_10y",
"c1_194b", "c1_24", paste0("c1_24", c("d", "m", "y")),
"c1_26", "c4_07a", "c4_31_2", "c4_45", "c4_47_8b",
paste0("c5_06_1", c("d", "m", "y")),
paste0("c5_06_2", c("d", "m", "y")),
"c5_07_1", "c5_07_2",
paste0("c5_08", c("d", "m", "y")))
new <- new[, -which(colnames(new) %in% cols.to.remove)]
new$c4_27 <- .toBinary_group(raw$c4_27,
c("<6 hours"),
c("24 hours or more", "6-23 hours"),
c("Don't Know"))
new$g1_05 <- .toBinary_group(raw$g1_05 ,
c("Female"),
c("Male" ),
c("Don't Know", ""))
new$g1_05_s1 <- .toBinary_group(raw$g1_05 ,
c("Male"),
c("Female" ),
c("Don't Know", ""))
return(new[, order(colnames(new))])
}
|
rotonmat <- function(X,refmat,tarmat,scale=TRUE,reflection=FALSE, weights=NULL, centerweight=FALSE,getTrafo=FALSE) {
ro <- rotonto(tarmat,refmat,scale=scale,signref=F,reflection=reflection, weights=weights, centerweight=centerweight)
hmat <- getTrafo4x4(ro)
Xrot <- homg2mat(hmat%*%mat2homg(X))
if (!getTrafo)
return(Xrot)
else
return(list(Xrot=Xrot,trafo=hmat))
}
|
checkSPC <- function(x) {
sn <- slotNames(x)
s.test <- sapply(sn, function(i) .hasSlot(x, name=i))
res <- FALSE
if(all(s.test)) {
res <- TRUE
}
return(res)
}
|
rectint <- function(x, y) {
stopifnot(is.numeric(x), is.numeric(y))
if (is.vector(x) && length(x) == 4 &&
is.vector(y) && length(y) == 4) {
if (any(c(x[3], x[4], y[3], y[4]) < 0))
stop("All widths and heights must be greater than 0.")
if (x[1]+x[3] <= y[1] || y[1]+y[3] <= x[1] ||
x[2]+x[4] <= y[2] || y[2]+y[4] <= x[2]) {
return(0)
} else {
if (x[1] > y[1]) {
tmp <- x; x <- y; y <- tmp
}
z1 <- y[1]
z2 <- max(x[2], y[2])
z3 <- min(x[1]+x[3], y[1]+y[3])
z4 <- min(x[2]+x[4], y[2]+y[4])
area <- (z3-z1) * (z4-z2)
return(area)
}
} else if (is.matrix(x) && ncol(x) == 4 &&
is.matrix(y) && ncol(y) == 4) {
nx <- nrow(x); ny <- nrow(y)
R <- matrix(NA, nrow = nx, ncol = ny)
for (i in 1:nx) {
for (j in 1:ny) {
R[i, j] <- rectint(x[i, ], y[j, ])
}
}
return(R)
} else {
stop("All lengths and no. of matrix columns must be equal to 4.")
}
}
|
qat_analyse_roc_rule_dynamic_1d <-
function(measurement_vector, max_upward_vector=NULL, max_downward_vector=NULL, upward_vector_name=NULL, downward_vector_name=NULL, upward_vector_identifier=NULL, downward_vector_identifier=NULL) {
flagvector <- array(0.0, length(measurement_vector))
if(length(measurement_vector) != length(max_downward_vector)) {
max_downward_vector <- array(NaN, length(measurement_vector))
}
if(length(measurement_vector) != length(max_upward_vector)) {
max_upward_vector <- array(NaN, length(measurement_vector))
}
for (ii in 2:length(measurement_vector)) {
if (!is.na(measurement_vector[ii]) && !is.na(measurement_vector[ii-1])) {
if (!is.na(max_upward_vector[ii])) {
if ((measurement_vector[ii]-measurement_vector[ii-1]) > max_upward_vector[ii]) {
flagvector[ii] <- 1
}
}
if (!is.na(max_downward_vector[ii])) {
if ((measurement_vector[ii]-measurement_vector[ii-1]) < (-1.* max_downward_vector[ii])) {
flagvector[ii] <- -1
}
}
}
}
resultlist<- c(list(flagvector), list(max_upward_vector), list(max_downward_vector), list(upward_vector_name), list(downward_vector_name), list(upward_vector_identifier), list(downward_vector_identifier))
names(resultlist)<-c("flagvector", "max_upward_vector", "max_downward_vector", "upward_vector_name", "downward_vector_name", "upward_vector_identifier", "downward_vector_identifier")
return(resultlist)
}
|
limer_get_participant_property <- function(iSurveyID, aTokenQueryProperties, aTokenProperties) {
params <- as.list(environment())
result <- limer_call_limer(method = "get_participant_properties", params = params)
return(result)
}
|
diff_abundance <-
function(...) {
lifecycle::deprecate_warn("0.2.0",
"diff_abundance()",
"calculate_diff_abundance()",
details = "This function has been renamed."
)
calculate_diff_abundance(...)
}
calculate_diff_abundance <-
function(data,
sample,
condition,
grouping,
intensity_log2,
missingness = missingness,
comparison = comparison,
mean = NULL,
sd = NULL,
n_samples = NULL,
ref_condition = "all",
filter_NA_missingness = TRUE,
method = c("moderated_t-test", "t-test", "t-test_mean_sd", "proDA"),
p_adj_method = "BH",
retain_columns = NULL) {
. <- NULL
if (!(ref_condition %in% unique(pull(data, {{ condition }}))) & ref_condition != "all") {
stop(strwrap("The name provided to ref_condition cannot be found in your conditions!
Please provide a valid reference condition.", prefix = "\n", initial = ""))
}
method <- match.arg(method)
if (method != "t-test_mean_sd") {
if (max(pull(data, {{ intensity_log2 }}), na.rm = TRUE) > 1000) {
stop("Please log2 transform your intensities.")
}
}
if (method == "t-test_mean_sd") {
if (max(pull(data, {{ mean }}), na.rm = TRUE) > 1000) {
stop("Please log2 transform your data.")
}
}
if (method == "t-test") {
message("[1/2] Create input for t-tests ... ", appendLF = FALSE)
t_test_missingness_obs <- data %>%
tidyr::drop_na({{ missingness }}, {{ intensity_log2 }}) %>%
dplyr::group_by({{ comparison }}, {{ grouping }}) %>%
dplyr::mutate(n_obs = dplyr::n()) %>%
dplyr::ungroup() %>%
dplyr::distinct({{ grouping }}, {{ comparison }}, {{ missingness }}, .data$n_obs)
t_test_input <- data %>%
tidyr::drop_na({{ intensity_log2 }}) %>%
dplyr::group_by({{ comparison }}, {{ grouping }}, {{ condition }}) %>%
dplyr::summarize(intensity = list({{ intensity_log2 }}), .groups = "drop") %>%
dplyr::mutate(type = ifelse({{ condition }} == stringr::str_extract({{ comparison }}, pattern = "(?<=_vs_).+"),
"control",
"treated"
)) %>%
dplyr::select(-{{ condition }}) %>%
tidyr::pivot_wider(names_from = .data$type, values_from = .data$intensity, values_fill = list(NA))
message("DONE", appendLF = TRUE)
message("[2/2] Calculate t-tests ... ", appendLF = FALSE)
t_test_result <- t_test_input %>%
dplyr::mutate(pval = purrr::map2(
.x = .data$treated,
.y = .data$control,
.f = function(.x, .y) {
tryCatch(
{
suppressWarnings(stats::t.test(.x, .y))
},
error = function(error) {
NA
}
)
}
)) %>%
dplyr::mutate(std_error = purrr::map_dbl(
.x = .data$pval,
.f = ~ tryCatch(
{
.x$stderr
},
error = function(error) {
NA
}
)
)) %>%
dplyr::mutate(pval = purrr::map_dbl(
.x = .data$pval,
.f = ~ tryCatch(
{
.x$p.value
},
error = function(error) {
NA
}
)
)) %>%
dplyr::mutate(diff = map2_dbl(
.x = .data$treated,
.y = .data$control,
.f = function(.x, .y) {
suppressWarnings(mean(.x, na.rm = TRUE)) - suppressWarnings(mean(.y, na.rm = TRUE))
}
)) %>%
dplyr::mutate(diff = ifelse(diff == "NaN", NA, diff)) %>%
dplyr::group_by({{ comparison }}) %>%
dplyr::mutate(adj_pval = stats::p.adjust(.data$pval, method = p_adj_method)) %>%
dplyr::ungroup() %>%
dplyr::select(-c(.data$control, .data$treated)) %>%
dplyr::left_join(t_test_missingness_obs, by = c(rlang::as_name(rlang::enquo(grouping)), "comparison")) %>%
dplyr::arrange(.data$adj_pval, .data$pval)
message("DONE", appendLF = TRUE)
if (!missing(retain_columns)) {
t_test_result <- data %>%
dplyr::ungroup() %>%
dplyr::select(
!!enquo(retain_columns),
{{ intensity_log2 }},
colnames(t_test_result)[!colnames(t_test_result) %in%
c(
"pval",
"std_error",
"diff",
"adj_pval",
"n_obs"
)]
) %>%
tidyr::drop_na({{ intensity_log2 }}) %>%
dplyr::select(-{{ intensity_log2 }}) %>%
dplyr::distinct() %>%
dplyr::right_join(t_test_result, by = colnames(t_test_result)[!colnames(t_test_result) %in%
c(
"pval",
"std_error",
"diff",
"adj_pval",
"n_obs"
)]) %>%
dplyr::arrange(.data$adj_pval, .data$pval)
}
if (filter_NA_missingness == TRUE) {
t_test_result <- t_test_result %>%
tidyr::drop_na({{ missingness }}) %>%
dplyr::group_by({{ comparison }}) %>%
dplyr::mutate(adj_pval = stats::p.adjust(.data$pval, method = p_adj_method)) %>%
dplyr::ungroup() %>%
dplyr::arrange(.data$adj_pval, .data$pval)
return(t_test_result)
}
if (filter_NA_missingness == FALSE) {
return(t_test_result)
}
}
if (method == "t-test_mean_sd") {
if (ref_condition == "all") {
all_conditions <- unique(dplyr::pull(data, {{ condition }}))
all_combinations <- tibble::as_tibble(t(combn(all_conditions, m = 2))) %>%
dplyr::mutate(combinations = paste0(.data$V1, "_vs_", .data$V2))
message(
strwrap("All pairwise comparisons are created from all conditions and their
missingness type is assigned.\n The created comparisons are: \n", prefix = "\n", initial = ""),
paste(all_combinations$combinations, collapse = "\n")
)
}
if (ref_condition != "all") {
conditions_no_ref <- unique(dplyr::pull(data, !!ensym(condition)))[!unique(pull(data, !!ensym(condition))) %in% ref_condition]
all_combinations <- tibble::tibble(V1 = conditions_no_ref, V2 = ref_condition) %>%
dplyr::mutate(combinations = paste0(.data$V1, "_vs_", .data$V2))
}
all_combinations <- all_combinations %>%
tidyr::pivot_longer(cols = c(.data$V1, .data$V2), names_to = "name", values_to = rlang::as_name(rlang::enquo(condition))) %>%
dplyr::select(-.data$name) %>%
dplyr::group_by({{ condition }}) %>%
dplyr::mutate(comparison = list(.data$combinations)) %>%
dplyr::distinct(.data$comparison, {{ condition }})
t_test_mean_sd_result <- data %>%
dplyr::ungroup() %>%
dplyr::distinct({{ condition }}, {{ grouping }}, {{ mean }}, {{ sd }}, {{ n_samples }}) %>%
tidyr::drop_na() %>%
dplyr::left_join(all_combinations, by = rlang::as_name(rlang::enquo(condition))) %>%
tidyr::unnest(.data$comparison) %>%
dplyr::rename(mean = {{ mean }}, sd = {{ sd }}, n = {{ n_samples }}) %>%
dplyr::mutate({{ condition }} := ifelse({{ condition }} == stringr::str_extract(.data$comparison, pattern = "(?<=_vs_).+"),
"control",
"treated"
)) %>%
tidyr::pivot_wider(names_from = {{ condition }}, values_from = c(.data$mean, .data$sd, .data$n)) %>%
dplyr::mutate(ttest_protti(
mean1 = .data$mean_control,
mean2 = .data$mean_treated,
sd1 = .data$sd_control,
sd2 = .data$sd_treated,
n1 = .data$n_control,
n2 = .data$n_treated
)) %>%
tidyr::drop_na(.data$pval) %>%
dplyr::group_by(.data$comparison) %>%
dplyr::mutate(adj_pval = stats::p.adjust(.data$pval, method = p_adj_method)) %>%
dplyr::arrange(.data$adj_pval, .data$pval)
if (!missing(retain_columns)) {
t_test_mean_sd_result <- data %>%
dplyr::ungroup() %>%
dplyr::select(!!enquo(retain_columns), colnames(t_test_mean_sd_result)[!colnames(t_test_mean_sd_result) %in%
c(
"mean_control",
"mean_treated",
"sd_control",
"sd_treated",
"n_control",
"n_treated",
"pval",
"std_error",
"diff",
"adj_pval",
"t_statistic",
"comparison"
)]) %>%
dplyr::distinct() %>%
dplyr::right_join(t_test_mean_sd_result, by = colnames(t_test_mean_sd_result)[!colnames(t_test_mean_sd_result) %in%
c(
"mean_control",
"mean_treated",
"sd_control",
"sd_treated",
"n_control",
"n_treated",
"pval",
"std_error",
"diff",
"adj_pval",
"t_statistic",
"comparison"
)]) %>%
dplyr::arrange(.data$adj_pval, .data$pval)
}
return(t_test_mean_sd_result)
}
if (method == "moderated_t-test") {
if (!requireNamespace("limma", quietly = TRUE)) {
stop("Package \"limma\" is needed for this function to work. Please install it.", call. = FALSE)
}
conditions_no_ref <- unique(pull(data, {{ condition }}))[!unique(pull(data, {{ condition }})) %in% ref_condition]
message("[1/7] Creating moderated t-test input data ... ", appendLF = FALSE)
moderated_t_test_input <- data %>%
dplyr::distinct({{ grouping }}, {{ sample }}, {{ intensity_log2 }}) %>%
tidyr::drop_na({{ intensity_log2 }}) %>%
dplyr::arrange({{ sample }}) %>%
tidyr::pivot_wider(names_from = {{ sample }}, values_from = {{ intensity_log2 }}) %>%
tibble::column_to_rownames(var = rlang::as_name(rlang::enquo(grouping))) %>%
as.matrix()
message("DONE", appendLF = TRUE)
message("[2/7] Defining moderated t-test design ... ", appendLF = FALSE)
moderated_t_test_map <- data %>%
dplyr::distinct({{ sample }}, {{ condition }}) %>%
dplyr::mutate({{ condition }} := paste0("x", {{ condition }})) %>%
dplyr::arrange({{ sample }})
moderated_t_test_design <- stats::model.matrix(~ 0 + factor(
stringr::str_replace_all(
dplyr::pull(moderated_t_test_map, {{ condition }}),
pattern = " ",
replacement = "_"
)
))
colnames(moderated_t_test_design) <- levels(factor(
stringr::str_replace_all(
dplyr::pull(
moderated_t_test_map,
{{ condition }}
),
pattern = " ",
replacement = "_"
)
))
message("DONE", appendLF = TRUE)
message("[3/7] Fitting lmFit model ... ", appendLF = FALSE)
moderated_t_test_fit <- suppressWarnings(limma::lmFit(moderated_t_test_input, moderated_t_test_design))
message("DONE", appendLF = TRUE)
message("[4/7] Construct matrix of custom contrasts ... ", appendLF = FALSE)
names <- paste0(
"x", stringr::str_extract(unique(dplyr::pull(data, {{ comparison }})), pattern = ".+(?=_vs_)"), "_vs_x",
stringr::str_extract(unique(dplyr::pull(data, {{ comparison }})), pattern = "(?<=_vs_).+")
)
comparisons <- paste0(
"x", stringr::str_extract(
stringr::str_replace_all(
unique(dplyr::pull(
data,
{{ comparison }}
)),
pattern = " ",
replacement = "_"
),
pattern = ".+(?=_vs_)"
),
"-x", stringr::str_extract(
stringr::str_replace_all(
unique(dplyr::pull(
data,
{{ comparison }}
)),
pattern = " ",
replacement = "_"
),
pattern = "(?<=_vs_).+"
)
)
combinations <- purrr::map2(
.x = names,
.y = comparisons,
.f = function(x, y) {
rlang::exprs(!!rlang::as_name(x) := !!y)
}
)
contrast_matrix <- eval(rlang::expr(limma::makeContrasts(!!!unlist(combinations), levels = moderated_t_test_design)))
message("DONE", appendLF = TRUE)
message("[5/7] Compute contrasts from linear model fit ... ", appendLF = FALSE)
moderated_t_test_fit2 <- limma::contrasts.fit(moderated_t_test_fit, contrast_matrix)
message("DONE", appendLF = TRUE)
message("[6/7] Compute empirical Bayes statistics ... ", appendLF = FALSE)
moderated_t_test_fit3 <- limma::eBayes(moderated_t_test_fit2)
message("DONE", appendLF = TRUE)
message("[7/7] Create result table ... ", appendLF = FALSE)
moderated_t_test_missingness <-
data %>%
tidyr::drop_na({{ missingness }}, {{ intensity_log2 }}) %>%
dplyr::group_by({{ comparison }}, {{ grouping }}) %>%
dplyr::mutate(n_obs = dplyr::n()) %>%
dplyr::ungroup() %>%
dplyr::distinct({{ grouping }}, {{ comparison }}, {{ missingness }}, .data$n_obs)
moderated_t_test_result <- purrr::map_dfr(
.x = names,
.f = ~ limma::topTable(moderated_t_test_fit3,
coef = .x,
number = Inf,
confint = TRUE,
sort.by = "p",
adjust.method = p_adj_method
) %>%
tibble::rownames_to_column(rlang::as_name(rlang::enquo(grouping))) %>%
dplyr::mutate(comparison = .x)
) %>%
dplyr::mutate(comparison = stringr::str_replace_all({{ comparison }}, pattern = "^x|(?<=_vs_)x", replacement = "")) %>%
dplyr::rename(
diff = .data$logFC,
CI_2.5 = .data$CI.L,
CI_97.5 = .data$CI.R,
t_statistic = .data$t,
avg_abundance = .data$AveExpr,
pval = .data$P.Value,
adj_pval = .data$adj.P.Val
) %>%
dplyr::left_join(moderated_t_test_missingness, by = c(rlang::as_name(rlang::enquo(grouping)), "comparison"))
message("DONE", appendLF = TRUE)
if (!missing(retain_columns)) {
moderated_t_test_result <- data %>%
dplyr::ungroup() %>%
dplyr::select(
!!enquo(retain_columns),
{{ intensity_log2 }},
colnames(moderated_t_test_result)[!colnames(moderated_t_test_result) %in%
c(
"CI_2.5",
"CI_97.5",
"avg_abundance",
"pval",
"diff",
"adj_pval",
"t_statistic",
"B",
"n_obs"
)]
) %>%
tidyr::drop_na({{ intensity_log2 }}) %>%
dplyr::select(-{{ intensity_log2 }}) %>%
dplyr::distinct() %>%
dplyr::right_join(moderated_t_test_result, by = colnames(moderated_t_test_result)[!colnames(moderated_t_test_result) %in%
c(
"CI_2.5",
"CI_97.5",
"avg_abundance",
"pval",
"diff",
"adj_pval",
"t_statistic",
"B",
"n_obs"
)]) %>%
dplyr::arrange(.data$adj_pval, .data$pval)
}
if (filter_NA_missingness == TRUE) {
moderated_t_test_result <- moderated_t_test_result %>%
tidyr::drop_na({{ missingness }}) %>%
dplyr::group_by(.data$comparison) %>%
dplyr::mutate(adj_pval = stats::p.adjust(.data$pval, method = p_adj_method)) %>%
dplyr::ungroup() %>%
dplyr::arrange(.data$adj_pval, .data$pval)
return(moderated_t_test_result)
}
if (filter_NA_missingness == FALSE) {
return(moderated_t_test_result)
}
}
if (method == "proDA") {
if (!requireNamespace("proDA", quietly = TRUE)) {
stop("Package \"proDA\" is needed for this function to work. Please install it.", call. = FALSE)
}
message("[1/5] Creating proDA input data ... ", appendLF = FALSE)
proDA_input <- data %>%
dplyr::distinct({{ grouping }}, {{ sample }}, {{ intensity_log2 }}) %>%
dplyr::arrange({{ sample }}) %>%
tidyr::pivot_wider(names_from = {{ sample }}, values_from = {{ intensity_log2 }}) %>%
tibble::column_to_rownames(var = rlang::as_name(rlang::enquo(grouping))) %>%
as.matrix()
message("DONE", appendLF = TRUE)
message("[2/5] Defining proDA design ... ", appendLF = FALSE)
proDA_map <- data %>%
dplyr::distinct({{ sample }}, {{ condition }}) %>%
dplyr::arrange({{ sample }})
proDA_design <- paste0("x", stringr::str_replace_all(dplyr::pull(proDA_map, {{ condition }}), pattern = " ", replacement = "_"))
message("DONE", appendLF = TRUE)
message("[3/5] Fitting proDA model (can take a few minutes) ... ", appendLF = FALSE)
proDA_fit <-
proDA::proDA(proDA_input,
design = proDA_design
)
message("DONE", appendLF = TRUE)
message("[4/5] Define missingness levels for filtering ... ", appendLF = FALSE)
proDA_missingness <-
data %>%
tidyr::drop_na({{ missingness }}, {{ intensity_log2 }}) %>%
dplyr::group_by({{ comparison }}, {{ grouping }}) %>%
dplyr::mutate(n_obs = dplyr::n()) %>%
dplyr::ungroup() %>%
dplyr::distinct({{ grouping }}, {{ comparison }}, {{ missingness }}, .data$n_obs)
proDA_filter <- proDA_missingness %>%
dplyr::distinct({{ grouping }}, {{ comparison }}) %>%
split(.$comparison) %>%
purrr::map(dplyr::select, -{{ comparison }})
message("DONE", appendLF = TRUE)
message("[5/5] Extracting differential abundance from model and apply filter ... ", appendLF = FALSE)
names <- unique(dplyr::pull(data, {{ comparison }}))
comparisons <- paste0(
"x",
stringr::str_extract(
stringr::str_replace_all(
unique(dplyr::pull(
data,
{{ comparison }}
)),
pattern = " ",
replacement = "_"
),
pattern = ".+(?=_vs_)"
), " - x",
stringr::str_extract(
stringr::str_replace_all(
unique(dplyr::pull(
data,
{{ comparison }}
)),
pattern = " ",
replacement = "_"
),
pattern = "(?<=_vs_).+"
)
)
proDA_result <- names %>%
purrr::map(~proDA_fit) %>%
purrr::set_names(nm = names) %>%
purrr::map2(
.y = comparisons,
.f = ~ proDA::test_diff(.x, contrast = .y, sort_by = "adj_pval")
)
if (filter_NA_missingness == TRUE) {
proDA_result <- proDA_result %>%
purrr::map2(
.y = proDA_filter,
.f = ~ dplyr::inner_join(.x, .y, by = c("name" = as_label(enquo(grouping))))
) %>%
purrr::map2(
.y = names(.),
.f = ~ dplyr::mutate(.x, comparison = str_replace_all(.y, pattern = "`", replacement = ""))
) %>%
purrr::map_dfr(~ dplyr::mutate(.x, adj_pval = p.adjust(.data$pval, method = p_adj_method))) %>%
dplyr::select(-.data$n_obs, -.data$n_approx) %>%
dplyr::rename({{ grouping }} := .data$name, std_error = .data$se) %>%
dplyr::left_join(proDA_missingness, by = c(rlang::as_name(rlang::enquo(grouping)), "comparison"))
message("DONE", appendLF = TRUE)
}
if (filter_NA_missingness == FALSE) {
proDA_result <- proDA_result %>%
purrr::map2(
.y = names(.),
.f = ~ dplyr::mutate(.x, comparison = str_replace_all(.y, pattern = "`", replacement = ""))
) %>%
purrr::map_dfr(~ dplyr::mutate(.x, adj_pval = p.adjust(.data$pval, method = p_adj_method))) %>%
dplyr::select(-.data$n_obs) %>%
dplyr::select(-.data$n_obs, -.data$n_approx) %>%
dplyr::rename({{ grouping }} := .data$name, std_error = .data$se) %>%
dplyr::left_join(proDA_missingness, by = c(rlang::as_name(rlang::enquo(grouping)), "comparison"))
message("DONE", appendLF = TRUE)
}
if (!missing(retain_columns)) {
proDA_result <- data %>%
dplyr::ungroup() %>%
dplyr::select(
!!enquo(retain_columns),
{{ intensity_log2 }},
colnames(proDA_result)[!colnames(proDA_result) %in%
c(
"std_error",
"avg_abundance",
"pval",
"diff",
"adj_pval",
"t_statistic",
"df",
"n_obs"
)]
) %>%
tidyr::drop_na({{ intensity_log2 }}) %>%
dplyr::select(-{{ intensity_log2 }}) %>%
dplyr::distinct() %>%
dplyr::right_join(proDA_result, by = colnames(proDA_result)[!colnames(proDA_result) %in%
c(
"std_error",
"avg_abundance",
"pval",
"diff",
"adj_pval",
"t_statistic",
"df",
"n_obs"
)]) %>%
dplyr::arrange(.data$adj_pval, .data$pval)
}
return(proDA_result)
}
}
|
update.Rout <- FALSE
SEED <- 123456
mkmsg.e <- function(...) { makemsg.e("unuran\\.details",...) }
context("[details] - print 'Runuran' objects")
test_unuran.details <- function(distr, method, name=toupper(method), skip.on.cran=TRUE) {
set.seed(SEED)
unr <- unuran.new(distr, method)
test_that(paste0("[details-",name,"]"), {
if (isTRUE(skip.on.cran)) { skip_on_cran() }
expect_known_output( {
print(unuran.details(unr,show=TRUE, return.list=FALSE))
print(unuran.details(unr,show=FALSE,return.list=TRUE))
print(unuran.details(unr,show=FALSE,debug=TRUE))
},
file=file.path("saves", paste0(name,".Rout")),
update=update.Rout)
})
}
test_unuran.details("binomial(20,0.5)", "dari")
test_unuran.details("binomial(20,0.5)", "dau")
test_unuran.details("binomial(20,0.5)", "dgt")
test_unuran.details("binomial(20,0.5)", "dsrou")
test_unuran.details("binomial(20,0.5)", "dss")
test_unuran.details("binomial(20,0.5)", "dstd")
test_unuran.details("normal(1,2)", "arou")
test_unuran.details("normal(1,2)", "ars")
test_unuran.details("normal(1,2)", "cstd")
test_unuran.details("normal(1,2)", "hinv", skip.on.cran=TRUE)
test_unuran.details("gamma(0.5)", "itdr")
test_unuran.details("normal(1,2)", "ninv")
test_unuran.details("normal(1,2)", "nrou")
test_unuran.details("normal(1,2)", "pinv", skip.on.cran=TRUE)
test_unuran.details("normal(1,2)", "srou")
test_unuran.details("normal(1,2)", "ssr")
test_unuran.details("normal(1,2)", "tabl")
test_unuran.details("normal(1,2)", "tdr")
test_unuran.details("normal(1,2)", "utdr")
context("[details] - Invalid arguments")
test_that("[details-i01] calling unuran.details with invalid arguments", {
msg <- mkmsg.e("Argument 'unr' must be of class 'unuran'")
expect_error( unuran.details(1), msg)
})
|
print.animint <- function(x, ...){
if(is.null(x$out.dir)){
message('Saving animint in temporary directory; specify output directory using animint(out.dir="path/to/directory")')
}
animint2dir(x, x$out.dir, ...)
}
animint <- function(...){
L <- list(...)
default.name.vec <- plot.num.vec <- paste0("plot", seq_along(L))
match.name.list <- lapply(match.call()[-1], paste)
first.name.vec <- sapply(match.name.list, "[", 1)
sub.name.vec <- gsub("[^a-zA-Z0-9]", "", first.name.vec)
name.ok <- grepl("^[a-zA-Z][a-zA-Z0-9]*$", sub.name.vec)
use.name <- sapply(match.name.list, length)==1 & name.ok
default.name.vec[use.name] <- sub.name.vec[use.name]
if(is.null(names(L))){
names(L) <- default.name.vec
}
still.empty <- names(L)==""
names(L)[still.empty] <- default.name.vec[still.empty]
name.tab <- table(names(L))
is.rep <- names(L) %in% names(name.tab)[1 < name.tab]
names(L)[is.rep] <- plot.num.vec[is.rep]
structure(L, class="animint")
}
|
Utilities3 <-
Utilities %>% filter(year > 2000 | month > 6)
ut.lm3 <- lm(thermsPerDay ~ month + I(month^2), data = Utilities3)
msummary(ut.lm3)
fit3 <- makeFun(ut.lm3)
gf_point(thermsPerDay ~ month, data = Utilities3) %>%
gf_function(fit3, color = "red", alpha = 0.6)
ut.lm3 %>% Effect("month", ., partial.residuals = TRUE) %>% plot("month")
plot(ut.lm3, w = 1:2)
|
build.dist.struct <-
function(z, X, exact = NULL, calip.option = 'propensity', calip.cov = NULL, caliper = 0.2, verbose = FALSE){
cal.penalty <- 100
if(is.null(exact)) exact = rep(1, length(z))
if(!(calip.option %in% c('propensity','user','none'))){
stop('Invalid calip.option specified.')
}
if (is.vector(X)) X <- matrix(X, length(X), 1)
if(!(length(z) == (dim(X)[1]))){
stop("Length of z does not match row count in X")
}
if(!(length(exact) == length(z))){
stop("Length of exact does not match length of z")
}
if(!(all((z == 1) | (z == 0)))){
stop("The z argument must contain only 1s and 0s")
}
if(is.data.frame(X) || is.character(X)){
if(!is.data.frame(X)) X <- as.data.frame(X)
X.chars <- which(laply(X, function(y) 'character' %in% class(y)))
if(length(X.chars) > 0){
if (verbose) print('Character variables found in X, converting to factors.')
for(i in X.chars){
X[,i] <- factor(X[,i])
}
}
X.factors <- which(laply(X, function(y) 'factor' %in% class(y)))
for(i in which(laply(X, function(x) any(is.na(x))))){
if (verbose) print(paste('Missing values found in column', i ,'of X; imputing and adding missingness indicators'))
if(i %in% X.factors){
X[,i] <- addNA(X[,i])
}else{
X[[paste(colnames(X)[i],'NA', sep = '')]] <- is.na(X[,i])
X[which(is.na(X[,i])),i] <- mean(X[,i], na.rm = TRUE)
}
}
for(i in rev(X.factors)){
dummyXi <- model.matrix(as.formula(
paste('~',colnames(X)[i], '-1')),data=X)
X <- cbind(X[,-i], dummyXi)
}
}else{
for(i in c(1:ncol(X))){
if(any(is.na(X[,i]))){
X <- cbind(X,is.na(X[,i]))
colnames(X)[ncol(X)] <- paste(colnames(X)[i],'NA', sep = '')
X[which(is.na(X[,i])),i] <- mean(X[,i], na.rm = TRUE)
}
}
}
varying <- apply(X,2, function(x) length(unique(x)) > 1)
if(!all(varying) && verbose) print('Constant-value columns found in X, they will not be used to calculate Mahalanobis distance.')
X <- X[,which(varying),drop = FALSE]
if (calip.option == 'propensity') {
calip.cov <- glm.fit(cbind(rep(1, nrow(X)),X), z, family = binomial())$linear.predictors
cal <- sd(calip.cov) * caliper
}else if(calip.option == 'user'){
stopifnot(!is.null(calip.cov))
cal <- sd(calip.cov) * caliper
}
nobs <- length(z)
rX <- as.matrix(X)
for (j in 1:(dim(rX)[2])) rX[, j] <- rank(rX[, j])
cv <- cov(rX)
vuntied <- var(1:nobs)
rat <- sqrt(vuntied/diag(cv))
if(length(rat) == 1){
cv <- as.matrix(rat) %*% cv %*% as.matrix(rat)
}else{
cv <- diag(rat) %*% cv %*% diag(rat)
}
icov <- ginv(cv)
nums <- 1:nobs
ctrl.nums <- 1:(sum(z == 0))
treated <- nums[z == 1]
dist.struct <- list()
for (i in c(1:length(treated))) {
controls <- nums[(z == 0) & (exact == exact[treated[i]])]
control.names <- ctrl.nums[exact[z == 0] == exact[treated[i]]]
costi <- mahalanobis(rX[controls, ,drop=FALSE], rX[treated[i], ], icov, inverted = T)
if (calip.option != 'none') {
calip.update <- rep(0, length(costi))
calip.update[abs(calip.cov[treated[i]] - calip.cov[controls]) - cal > 0] <- Inf
costi <- costi + calip.update
}
names(costi) <- control.names
dist.struct[[i]] <- costi[is.finite(costi)]
}
if (sum(laply(dist.struct, length)) == 0) stop('All matches forbidden. Considering using a wider caliper?')
return(dist.struct)
}
|
set.branch.mode <- function(lprec, columns, modes)
{
if(length(columns) != length(modes))
stop(sQuote("columns"), " and ", sQuote("modes"),
" must be the same length")
if(is.character(modes)) {
modes <- pmatch(modes, c("ceiling", "floor", "auto", "default"),
nomatch = NA)
if(any(is.na(modes)))
stop("invalid mode")
else
modes <- modes - 1
}
.Call(RlpSolve_set_var_branch, lprec, as.integer(columns), as.integer(modes))
invisible()
}
|
forest_plot = function(coef, se, sort = TRUE, exp = FALSE) {
if(is.null(rownames(coef))) rownames(coef) = paste0('SNP', 1:nrow(coef))
if(is.null(colnames(coef))) colnames(coef) = paste0('Study', 1:ncol(coef))
if(sort) {
means = rowMeans(coef)
coef = coef[order(means),]
se = se[order(means),]
}
lower = coef - qnorm(.975)*se
upper = coef + qnorm(.975)*se
snp = rownames(coef)
study = colnames(coef)
d3 = cbind(as.vector(t(coef)), as.vector(t(lower)), as.vector(t(upper)))
if(exp) d3 = exp(d3)
colnames(d3) = c('coef', 'lower', 'upper')
rownames(d3) = rep(snp, rep(length(study), length(snp)))
clrs = fpColors(box="black", lines="black", summary="black")
tabletext =list(rep(snp, rep(length(study), length(snp))), rep(study, length(snp)))
hrzl_lines = vector('list', nrow(coef) - 1)
for(i in 1:(nrow(coef) - 1)) hrzl_lines[[i]] = gpar(lty=2)
names(hrzl_lines) = as.character((1:(nrow(coef) - 1)) * length(study) + 1)
forestplot(tabletext, hrzl_lines = hrzl_lines,
d3, ol = clrs, zero = ifelse(exp, 1, 0), xlab="GxE effect size")
}
|
.addAxis <- function(xlim, ylim, tckLab, tck, tckMinor, ...)
{
tckLab <- rep(tckLab, length.out = 2);
tck <- rep(tck, length.out = 2);
tckMinor <- rep(tckMinor, length.out = 2);
mai <- par()$mai;
par(cex = par()$cex * 0.8);
par(mai = mai);
par(mex = par()$cex);
lim <- list(xlim, ylim);
rotate <- list(0, 90)
for (i in 1:2) {
if (((i == 1) && (par()$xaxt != "n")) ||
((i == 2) && (par()$yaxt != "n"))) {
ticks <- pretty(lim[[i]]);
ticksMinor <- pretty(c(0, diff(ticks)[1]));
ticksMinor <- (sort(rep(ticks, length(ticksMinor))) +
rep(ticksMinor, length(ticks)));
ticks <- ticks[ticks > lim[[i]][1] & ticks < lim[[i]][2]];
ticksMinor <-
ticksMinor[ticksMinor > lim[[i]][1] & ticksMinor < lim[[i]][2]];
if (!tckLab[i]) {
tickLabels <- FALSE;
} else {
tickLabels <- as.character(ticks);
}
axis(side = i, at = ticks, labels = tickLabels, tck = tck[i],
srt = rotate[[i]]);
axis(side = i, at = ticksMinor, labels = FALSE, tck = tckMinor[i]);
}
}
invisible(NULL);
}
.addAxis2 <- function (side=1:2, xlim, ylim, tckLab, tck, tckMinor, ...)
{
tckLab <- rep(tckLab, length.out = 4)
tck <- rep(tck, length.out = 4)
tckMinor <- rep(tckMinor, length.out = 4)
mai <- par()$mai
lim <- list(xlim,ylim,xlim,ylim)
rotate <- list(0,90,0,90)
for (i in side) {
if (((i %in% c(1,3)) && (par()$xaxt != "n")) || ((i %in% c(2,4)) && (par()$yaxt != "n"))) {
ticks <- pretty(lim[[i]])
ticksMinor <- pretty(c(0, diff(ticks)[1]))
ticksMinor <- (sort(rep(ticks, length(ticksMinor))) +
rep(ticksMinor, length(ticks)))
ticks <- ticks[ticks > lim[[i]][1] & ticks < lim[[i]][2]]
ticksMinor <- ticksMinor[ticksMinor > lim[[i]][1] &
ticksMinor < lim[[i]][2]]
if (!tckLab[i]) {
tickLabels <- FALSE
}
else {
tickLabels <- as.character(ticks)
}
axis(side = i, at = ticks, labels = tickLabels, tck = tck[i], srt = rotate[[i]], ...)
axis(side = i, at = ticksMinor, labels = FALSE, tck = tckMinor[i], ...)
}
}
invisible(NULL)
}
.addCorners <- function(polys, ptSummary)
{
xlim <- range(polys$X)
ylim <- range(polys$Y)
corners <- list(tl=c(xlim[1], ylim[2]), tr=c(xlim[2], ylim[2]),
bl=c(xlim[1], ylim[1]), br=c(xlim[2], ylim[1]));
tests <- list(tl=c(min, max), tr=c(max, max),
bl=c(min, min), br=c(max, min));
for (c in names(corners)) {
if (nrow(polys[polys$X == (corners[[c]])[1] &
polys$Y == (corners[[c]])[2], ]) > 0)
next
polysA <- polys[polys$X == (corners[[c]])[1], ]
if (nrow(polysA) > 0)
PIDsA <- polysA[polysA$Y == ((tests[[c]])[2])[[1]](polysA$Y), "PID"]
polysB <- polys[polys$Y == (corners[[c]])[2], ]
if (nrow(polysB) > 0)
PIDsB <- polysB[polysB$X == ((tests[[c]])[1])[[1]](polysB$X), "PID"]
if (nrow(polysA) == 0 || nrow(polysB) == 0) {
warning(paste("Unable to close a corner (", c, ").", sep=""));
next
}
cand <- intersect(PIDsA, PIDsB)
if (length(cand) == 0)
stop(paste("Unable to close a corner (", c, ") since no candidates exist.",
sep=""));
if (length(cand) > 1) {
pts <- data.frame (x=ptSummary[cand, "x"], y=ptSummary[cand, "y"])
pts$cornerX <- (corners[[c]])[1];
pts$cornerY <- (corners[[c]])[2];
pts$dist <- sqrt((pts$x - pts$cornerX)^2 + (pts$y - pts$cornerY)^2)
shortest <- which(pts$dist == min(pts$dist))
if (length(shortest) != 1)
stop(paste(
"Unable to determine the appropriate polygon to close corner ", c, ".", sep=""))
cand <- cand[shortest]
}
newPoly <- polys[polys$PID == cand, ]
polys <- polys[polys$PID != cand, ]
xydata <- data.frame(X=c(newPoly$X, corners[[c]][1]),
Y=c(newPoly$Y, corners[[c]][2]));
newPoly <- calcConvexHull(xydata)
newPoly$PID <- cand
polys <- rbind(polys, newPoly);
}
polys <- polys[order(polys$PID), ]
return (polys)
}
.addBubblesLegend <- function(radii.leg, usr.xdiff, usr.ydiff,
symbol.zero, symbol.fg, symbol.bg,
legend.pos, legend.breaks,
legend.type, legend.title, legend.cex, ...)
{
ratio.y.x = (usr.ydiff / par("pin")[2]) / (usr.xdiff / par("pin")[1])
gap.x <- par("cxy")[1] * legend.cex / 2
gap.y <- par("cxy")[2] * legend.cex / 2
radii.leg.y <- radii.leg * ratio.y.x
leg.tex.w <- strwidth(legend.breaks, units = "user") * legend.cex
title.w = strwidth(legend.title)
max.tex.w <- max(leg.tex.w)
switch(legend.type,
nested = {
legend.height <- 2 * max(radii.leg.y) + 3 * gap.y
legend.width <- 2 * max(radii.leg) + gap.x + max.tex.w },
horiz = {
legend.height <- 2 * max(radii.leg.y) + 3 * gap.y
legend.width <- 2 * sum(radii.leg) +
(length(legend.breaks) - 1) * gap.x },
vert = {
legend.height <- 2 * sum(radii.leg.y) +
(length(legend.breaks) - 1) * gap.y + 3 * gap.y
legend.width <- 2 * max(radii.leg) + gap.x + max.tex.w }
)
if (title.w > legend.width) {
w.adj <- (title.w - legend.width) / 2
} else {
w.adj <- 0
}
if (class(legend.pos) == "numeric") {
legend.loc <- legend.pos
} else {
corners <- c("bottomleft", "bottomright", "topleft", "topright")
if (legend.pos %in% corners) {
legend.loc <- switch(legend.pos,
bottomleft =
c(par("usr")[1] + 0.025 * usr.xdiff + w.adj,
par("usr")[3] + 0.025 * usr.ydiff + legend.height),
bottomright =
c(par("usr")[2] - (0.025 * usr.xdiff + legend.width + w.adj),
par("usr")[3] + 0.025 * usr.ydiff + legend.height),
topleft =
c(par("usr")[1] + 0.025 * usr.xdiff + w.adj,
par("usr")[4] - 0.025 * usr.ydiff),
topright =
c(par("usr")[2] - (0.025 * usr.xdiff + legend.width + w.adj),
par("usr")[4] - 0.025 * usr.ydiff));
}
}
switch(legend.type,
nested = {
legend.loc[1] <- legend.loc[1] + max(radii.leg)
legend.loc[2] <- legend.loc[2] - legend.height
r <- rev(radii.leg)
bb <- rev(legend.breaks)
x.text.leg <- legend.loc[1] + max(r) + gap.x + max.tex.w
for (i in 1:length(r)) {
symbols(legend.loc[1], legend.loc[2] + r[i] * ratio.y.x,
circles=r[i], inches=FALSE, add=TRUE, bg=symbol.bg[length(r)-i+1],
fg=symbol.fg)
lines(c(legend.loc[1], legend.loc[1] + r[1] + gap.x),
rep(legend.loc[2] + 2 * r[i] * ratio.y.x, 2))
text(x.text.leg, legend.loc[2] + 2 * r[i] * ratio.y.x, bb[i],
adj=c(1, .5), cex=legend.cex)
}
x.title.leg <- legend.loc[1] - max(radii.leg) + (legend.width / 2)
text(x.title.leg, legend.loc[2]+legend.height, legend.title,
adj=c(0.5,0.5), cex=legend.cex+0.2, col="black")
zlab <- c(x.title.leg, legend.loc[2]+legend.height/4) },
horiz = {
legend.loc[2] <- legend.loc[2] + max(radii.leg.y) - legend.height
offset <- vector()
for (i in 1:length(radii.leg))
offset[i] <- 2 * sum(radii.leg[1:i]) - radii.leg[i] +
(i - 1) * gap.x
symbols(legend.loc[1] + offset,
rep(legend.loc[2],length(radii.leg)),
circles = radii.leg, inches = FALSE, bg = symbol.bg,
fg = symbol.fg, add = TRUE)
text(legend.loc[1] + offset, legend.loc[2] + radii.leg.y + gap.y,
legend.breaks, adj = c(0.5, 0.5), cex = legend.cex)
text(legend.loc[1] + legend.width / 2,
legend.loc[2] + legend.height - max(radii.leg.y),
legend.title, adj = c(0.5, 0.5), cex = legend.cex + 0.2,
col = "black")
zlab <- c(legend.loc[1], legend.loc[2] - legend.height / 8) },
vert = {
if (any(legend.pos == c("bottomleft","topleft")))
legend.loc[1] <- legend.loc[1] + 0.05 * usr.xdiff
offset <- vector()
for (i in 1:length(legend.breaks))
offset[i] <- gap.y + 2 * sum(radii.leg.y[1:i]) - radii.leg.y[i] +
i * gap.y
symbols(rep(legend.loc[1], length(legend.breaks)),
legend.loc[2] - offset,
circles = radii.leg, bg = symbol.bg, fg = symbol.fg,
inches = FALSE, add = TRUE)
x.text.leg <- legend.loc[1] + max(radii.leg) + gap.x + max.tex.w
text(rep(x.text.leg, length(legend.breaks)), legend.loc[2] - offset,
legend.breaks,
cex = legend.cex, adj = c(1, 0.5), col="black")
text(legend.loc[1] + legend.width / 2 - max(radii.leg),
legend.loc[2], legend.title, adj = c(0.5, 0.5),
cex = legend.cex + 0.2, col = "black")
zlab <- c(legend.loc[1] + legend.width / 8, legend.loc[2]) }
)
if (!is.logical(symbol.zero))
legend(zlab[1], zlab[2], legend = "zero", pch = symbol.zero, xjust = 0,
yjust = 1, bty = "n", cex = 0.8, x.intersp = 0.5)
invisible()
}
.addFeature <- function(feature, data, polyProps, isEventData,
cex = NULL, col = NULL, font = NULL, pch = NULL, ...)
{
data <- .mat2df(data);
if (isEventData) {
type <- "e";
} else {
type <- "p";
}
if (feature == "points") {
relevantProps <- c("cex", "col", "pch");
} else {
relevantProps <- c("cex", "col", "font");
}
polyProps <- .validatePolyProps(polyProps, parCols = relevantProps);
if (is.character(polyProps))
stop(paste("Invalid PolyData 'polyProps'.\n", polyProps, sep=""));
parValues <- list(cex = par("cex"), col = par("col"),
font = par("font"), pch = par("pch"));
parValues <- parValues[setdiff(names(parValues), names(polyProps))];
parValues <- parValues[intersect(names(parValues), relevantProps)];
if (!is.null(cex)) parValues[["cex"]] <- cex;
if (!is.null(col)) parValues[["col"]] <- col;
if (!is.null(font)) parValues[["font"]] <- font;
if (!is.null(pch)) parValues[["pch"]] <- pch;
if (is.null(polyProps)) {
if (isEventData) {
polyProps <- data.frame(EID = unique(data$EID));
} else {
polyProps <- data.frame(PID = unique(data$PID));
}
}
if (!isEventData
&& is.element("SID", names(data))
&& !is.element("SID", names(polyProps))) {
p <- data[is.element(data$PID, unique(polyProps$PID)), c("PID", "SID")];
polyProps <- merge(polyProps,
p[!duplicated(paste(p$PID, p$SID)), c("PID", "SID")],
by="PID");
}
if (length(parValues) > 1)
polyProps <- .addProps(type = type, polyProps = polyProps, parValues);
polyPropsReturn <- polyProps;
if (isEventData) {
data <- data.frame(data[is.element(data$EID, unique(polyProps$EID)), ]);
} else {
if (is.element("SID", names(polyProps))) {
if (!is.element("SID", names(data)))
stop("Since 'polyProps' contains an SID column, 'data' must as well.\n");
data <- data[is.element(paste(data$PID, data$SID),
unique(paste(polyProps$PID, polyProps$SID))), ];
} else {
data <- data[is.element(data$PID, unique(polyProps$PID)), ];
}
}
propColumns <- intersect(names(polyProps), relevantProps);
exprStr <- paste("paste(",
paste(paste('polyProps[, "', propColumns, '"]', sep=""),
collapse=", "),
");", sep="");
polyProps$props <- eval(parse(text=exprStr))
if (isEventData) {
data <- merge(data, polyProps[, c("EID", "props")], by="EID");
} else {
if (is.element("SID", names(polyProps))) {
data <- merge(data,
polyProps[, c("PID", "SID", "props")], by=c("PID", "SID"));
} else {
data <- merge(data, polyProps[, c("PID", "props")], by="PID");
}
}
data <- split(data, data$props);
polyProps <- polyProps[!duplicated(polyProps$props), ];
for (c in names(data)) {
d <- (data[[c]]);
p <- (as.list(polyProps[polyProps$props == c, propColumns]));
if (feature == "labels") {
text(x = d$X, y = d$Y, labels = as.character(d$label),
cex = p$cex, col = p$col, font = p$font, ...);
} else {
points (x = d$X, y = d$Y,
cex = p$cex, col = p$col, pch = p$pch, ...);
}
}
return (polyPropsReturn);
}
.addLabels <- function(projection = NULL, ...)
{
dots <- list(...);
main=dots$main; sub=dots$sub; xlab=dots$xlab; ylab=dots$ylab;
if (!is.null(projection) && !is.na(projection) && projection == "UTM") {
if (is.null(xlab)) xlab <- "UTM Easting (km)";
if (is.null(ylab)) ylab <- "UTM Northing (km)";
} else if (!is.null(projection) && !is.na(projection) && projection == "LL") {
if (is.null(xlab)) xlab <- "Longitude (\u00B0)"
if (is.null(ylab)) ylab <- "Latitude (\u00B0)"
} else {
if (is.null(xlab)) xlab <- "X";
if (is.null(ylab)) ylab <- "Y";
}
if (is.null(main)) main <- "";
if (is.null(sub)) sub <- "";
title (main=main, sub=sub, xlab=xlab, ylab=ylab)
invisible(NULL);
}
.addProps <- function(type, polyProps, ...)
{
param <- list(...);
newParam <- list();
for (i in 1:length(param)) {
if (is.list(param[[i]])) {
newParam <- c(newParam, param[[i]]);
} else {
newParam <- c(newParam, param[i]);
}
}
param <- newParam;
if (type == "e") {
polyProps$IDX <- polyProps$EID;
} else if (type == "p") {
polyProps$IDX <- polyProps$PID;
} else {
stop (
"Unknown 'type'. Must be either \"e\" or \"p\".");
}
uIDX <- unique(polyProps$IDX);
for (c in names(param)) {
if (!is.null(param[[c]])) {
if (is.element(c, names(polyProps))) {
polyProps <- data.frame(polyProps[, !is.element(names(polyProps), c)]);
if (ncol(polyProps) == 1) {
if (type == "p") names(polyProps) <- "PID";
if (type == "e") names(polyProps) <- "EID";
}
}
newColumn <- data.frame(IDX=uIDX);
newColumn[, c] <- rep(param[[c]], length.out = length(uIDX));
polyProps <- merge(polyProps, newColumn, by = "IDX");
}
}
polyProps <- data.frame(polyProps[, !is.element(names(polyProps), "IDX")]);
if (ncol(polyProps) == 1) {
if (type == "p") names(polyProps) <- "PID";
if (type == "e") names(polyProps) <- "EID";
}
return (polyProps);
}
.calcDist <- function(polys)
{
if (!is.null(attr(polys, "projection"))
&& !is.na(attr(polys, "projection"))
&& ((attr(polys, "projection") == "UTM")
|| (attr(polys, "projection") == 1))) {
len <- nrow(polys)
D <- c(sqrt((polys$X[1:(len-1)] - polys$X[2:len])^2
+ (polys$Y[1:(len-1)] - polys$Y[2:len])^2),
0);
}
else if (!is.null(attr(polys, "projection"))
&& !is.na(attr(polys, "projection"))
&& (attr(polys, "projection") == "LL")) {
R <- 6371.3;
polys[, c("X", "Y")] <- polys[, c("X", "Y")] * pi / 180.0
len <- nrow(polys)
s0 <- 1:(len - 1);
s1 <- 2:len;
dlon <- polys$X[s1] - polys$X[s0];
dlat <- polys$Y[s1] - polys$Y[s0];
cosPolysY <- cos(polys$Y);
a <- (sin(dlat / 2))^2 + cosPolysY[s0] * cosPolysY[s1] *
(sin(dlon / 2))^2;
a <- sqrt(a);
a[a > 1] <- 1;
cc <- 2 * asin(a);
D <- c(R * cc, 0);
}
else {
stop(paste(
"Invalid projection attribute. Supported projections include \"LL\",",
"\"UTM\", and 1.\n"));
}
return (D);
}
.calcOrientation <- function(polys)
{
inRows <- nrow(polys);
outCapacity <- nrow(polys);
if (!is.element("SID", names(polys))) {
inID <- c(polys$PID, integer(length = inRows), polys$POS);
} else {
inID <- c(polys$PID, polys$SID, polys$POS);
}
inXY <- c(polys$X, polys$Y);
results <- .C("calcOrientation",
inID = as.integer(inID),
inXY = as.double(inXY),
inVerts = as.integer(inRows),
outID = integer(2 * outCapacity),
outOrientation = double(outCapacity),
outRows = as.integer(outCapacity),
outStatus = integer(1),
PACKAGE = "PBSmapping");
if (results$outStatus == 1) {
stop(
"Insufficient physical memory for processing.\n");
}
if (results$outStatus == 2) {
stop(paste(
"Insufficient memory allocated for output. Please upgrade to the latest",
"version of the software, and if that does not fix this problem, please",
"file a bug report.\n",
sep = "\n"));
}
outRows <- as.vector(results$outRows);
if (outRows > 0) {
d <- data.frame(PID = results$outID[1:outRows],
SID = results$outID[(outCapacity+1):(outCapacity+outRows)],
orientation = results$outOrientation[1:outRows]);
if (!is.element("SID", names(polys)))
d$SID <- NULL;
invisible(d);
} else {
invisible(NULL);
}
}
.checkClipLimits <- function(limits)
{
if (limits[1] > limits[2])
stop("xlim[1] is larger than xlim[2]")
if (limits[3] > limits[4])
stop("ylim[1] is larger than ylim[2]")
if (limits[1] > 360 || limits[2] < -20)
stop("xlim are outside of the range of c(-20,360)")
if (limits[3] > 90 || limits[4] < -90)
stop("ylim are outside of the range of c(-90,90)")
}
.checkProjection <- function(projectionPlot, projectionPoly)
{
if (is.null(projectionPlot)) {
projMapStr <- "NULL";
} else {
projMapStr <- as.character(projectionPlot);
}
if (is.null(projectionPoly)) {
projPolyStr <- "NULL";
} else {
projPolyStr <- as.character(projectionPoly);
}
msg <- paste(
"The data's 'projection' attribute (", projPolyStr, ") differs from the\n",
"projection of the plot region (", projMapStr, ").\n", sep="");
if (xor(is.null(projectionPlot), is.null(projectionPoly))) {
warning(msg);
} else if ((!is.null(projectionPlot) && !is.null(projectionPoly)) &&
(xor(is.na(projectionPlot), is.na(projectionPoly)))) {
warning(msg);
} else if (!is.null(projectionPlot) && !is.null(projectionPoly) &&
!is.na(projectionPlot) && !is.na(projectionPoly) &&
(projectionPlot != projectionPoly)) {
warning(msg);
}
}
.checkRDeps <- function(caller = "unspecified", requires = NULL)
{
if (is.null(version$language) || (version$language != "R")) {
stop (paste ("
The function '", caller, "' requires several dependencies available only in R.\n",
"Please try again from within R.\n", sep=""));
}
err <- NULL;
for (pkg in requires) {
if (!require(pkg, character.only = TRUE)) {
err <- append (err, pkg);
}
}
if (!is.null (err)) {
err <- paste (err, collapse="', '");
stop (paste ("
The function '", caller, "' requires the package(s) '", err, "'.\n",
"Please install the package(s) and try again.\n", sep=""));
}
}
.clip <- function(polys, xlim, ylim, isPolygons, keepExtra)
{
if (keepExtra)
pdata <- extractPolyData(polys);
attrNames <- setdiff(names(attributes(polys)),
c("names", "row.names", "class"));
attrValues <- attributes(polys)[attrNames];
inRows <- nrow(polys);
outCapacity <- as.integer(2 * inRows);
if (!is.element("SID", names(polys))) {
inID <- c(polys$PID, integer(length = inRows), polys$POS);
} else {
inID <- c(polys$PID, polys$SID, polys$POS);
}
inXY <- c(polys$X, polys$Y);
limits <- c(xlim, ylim);
results <- .C("clip",
inID = as.integer(inID),
inXY = as.double(inXY),
inVerts = as.integer(inRows),
polygons = as.integer(isPolygons),
limits = as.double(limits),
outID = integer(4 * outCapacity),
outXY = double(2 * outCapacity),
outRows = as.integer(outCapacity),
outStatus = integer(1),
PACKAGE = "PBSmapping");
if (results$outStatus == 1) {
stop(
"Insufficient physical memory for processing.\n");
}
if (results$outStatus == 2) {
stop(paste(
"Insufficient memory allocated for output. Please upgrade to the latest",
"version of the software, and if that does not fix this problem, please",
"file a bug report.\n",
sep = "\n"));
}
outRows <- as.vector(results$outRows);
if (outRows > 0) {
d <- data.frame(PID = results$outID[1:outRows],
SID = results$outID[(outCapacity+1):(outCapacity+outRows)],
POS = results$outID[(2*outCapacity+1):(2*outCapacity+outRows)],
oldPOS = results$outID[(3*outCapacity+1):(3*outCapacity+outRows)],
X = results$outXY[1:outRows],
Y = results$outXY[(outCapacity+1):(outCapacity+outRows)]);
if (!is.element("SID", names(polys)))
d$SID <- NULL;
d$oldPOS[d$oldPOS == -1] <- NA;
if (keepExtra)
d <- merge(x = d, y = pdata, all.x = TRUE,
by = intersect(c("PID", "SID"), names(d)));
attributes(d) <- c(attributes(d), attrValues);
if (all(d$X == xlim[1]) || all(d$X == xlim[2]) ||
all(d$Y == ylim[1]) || all(d$Y == ylim[2]))
return(NULL);
return(d);
} else {
return(NULL);
}
}
.closestPoint <- function(pts, pt)
{
pts$Xorig <- pt$X
pts$Yorig <- pt$Y
pts$dist <- (pts$Xorig - pts$X) ^ 2 + (pts$Yorig - pts$Y) ^ 2
return (pts$dist == min(pts$dist))
}
.createFastIDdig <- function(polysA, polysB = NULL, cols)
{
if ((length(cols) == 2)
&& all(is.element(cols, names(polysA)))) {
digitsL <- floor(log10(max(polysA[[cols[1]]])) + 1);
digitsR <- floor(log10(max(polysA[[cols[2]]])) + 1);
if (!is.null(polysB)) {
if (is.element(cols[1], names(polysB)))
digitsL <- max(digitsL, floor(log10(max(polysB[[cols[1]]])) + 1));
if (is.element(cols[2], names(polysB)))
digitsR <- max(digitsR, floor(log10(max(polysB[[cols[2]]])) + 1));
}
if ((digitsL + digitsR) <= 15) {
return (digitsR);
} else {
return (0);
}
} else {
return (NULL);
}
}
.createGridIDs <- function(d, addSID, byrow)
{
if (addSID && !byrow) {
tmp <- d$PID;
d$PID <- d$SID;
d$SID <- tmp;
} else if (!addSID && byrow) {
d$PID <- (d$SID - 1) * (length(unique(d$X)) - 1) + d$PID;
d$SID <- NULL;
} else if (!addSID && !byrow) {
d$PID <- (d$PID - 1) * (length(unique(d$Y)) - 1) + d$SID;
d$SID <- NULL;
}
return (d);
}
.createIDs <- function(x, cols, fastIDdig = NULL)
{
presentCols <- cols[is.element(cols, names(x))]
if (length(presentCols) == 1) {
return (x[[presentCols]]);
} else if (length(presentCols) == 2) {
if (is.null(fastIDdig)) {
fastIDdig <- .createFastIDdig(polysA=x, polysB=NULL, cols=presentCols);
}
if (fastIDdig > 0) {
return (as.double(x[[presentCols[1]]]
+ (x[[presentCols[2]]] / 10^fastIDdig)));
} else {
return (paste(x[[presentCols[1]]], x[[presentCols[2]]], sep = "-"));
}
} else if (length(presentCols) > 2) {
exprStr <- paste("paste(",
paste(paste("x$", presentCols, sep=""),
collapse=", "),
");", sep="");
return (eval(parse(text=exprStr)));
}
return (NULL);
}
.expandEdges <- function(polys, pts, xlim, ylim)
{
polyRange <- c(range(polys$X), range(polys$Y))
ptsRange <- c(range(pts$X), range(pts$Y))
toFixPts <- c(ptsRange[1] < polyRange[1],
ptsRange[2] > polyRange[2],
ptsRange[3] < polyRange[3],
ptsRange[4] > polyRange[4])
toFixLim <- c(signif(xlim[1], 5) < signif(polyRange[1], 5),
signif(xlim[2], 5) > signif(polyRange[2], 5),
signif(ylim[1], 5) < signif(polyRange[3], 5),
signif(ylim[2], 5) > signif(polyRange[4], 5))
toFix <- toFixPts | toFixLim
if (!any(toFix))
return (polys)
for (side in which(toFix)) {
if (side == 1) {
PID <- which(pts$X < polyRange[side])
} else if (side == 2) {
PID <- which(pts$X > polyRange[side])
} else if (side == 3) {
PID <- which(pts$Y < polyRange[side])
} else if (side == 4) {
PID <- which(pts$Y > polyRange[side])
} else {
stop ("Internal error: unrecognized value of \"size\" in point check.")
}
if (length(PID) == 0) {
if (side == 1 || side == 2) {
PID <- which(.closestPoint(pts, data.frame(X=xlim[side], Y=mean(ylim))))
} else if (side == 3 || side == 4) {
PID <- which(.closestPoint(pts, data.frame(X=mean(xlim), Y=ylim[side - 2])))
} else {
stop ("Internal error: unrecognized value of \"size\" in limit check.")
}
}
if (length(PID) != 1)
stop ("Internal error: unable to determine appropriate PID for expansion.")
newPoly <- polys[polys$PID == PID, ]
polys <- polys[polys$PID != PID, ]
if (side == 1 || side == 2) {
newXY <- data.frame(X=c(newPoly$X, rep(xlim[side], 2)),
Y=c(newPoly$Y, range(newPoly$Y)))
} else if (side == 3 || side == 4) {
newXY <- data.frame(X=c(newPoly$X, range(newPoly$X)),
Y=c(newPoly$Y, rep(ylim[side - 2], 2)))
} else {
stop ("Internal error: unrecognized value of \"size\" in data frame setup.")
}
newPoly <- calcConvexHull(newXY)
newPoly$PID <- PID
polys <- rbind(polys, newPoly)
}
polys <- polys[order(polys$PID), ]
return (polys);
}
.fixGSHHSWorld <- function (world) {
xlim <- range(world$X)
ylim <- range(world$Y)
ylim[1] <- -90
event <- data.frame(EID = 1, X = 85, Y = -72)
event <- findPolys(event, world)
pid <- event$PID[1]
curAnt <- world[is.element(world$PID,pid), ]
if (curAnt$X[1] > curAnt$X[nrow(curAnt)])
curAnt <- curAnt[nrow(curAnt):1, ]
left <- curAnt[c(1,1:nrow(curAnt)), ]
left$X <- left$X - 360
left$Y[1] <- -90
right <- curAnt[c(1:nrow(curAnt), nrow(curAnt)), ]
right$X <- right$X + 360
right$Y[nrow(right)] <- -90
curAnt <- rbind(left, curAnt, right)
curAnt$POS <- 1:nrow(curAnt)
curAnt <- clipPolys(curAnt, xlim, ylim)
curAnt$oldPOS <- NULL
world <- rbind(world[world$PID < pid, ], curAnt, world[world$PID > pid, ])
row.names(world) <- 1:length(row.names(world))
invisible(world)
}
.getBasename <- function (fn, ext)
{
if (!file.exists (paste(fn, ".", ext, sep=""))) {
fn <- sub ("\\..{3}$", "", fn);
if (!file.exists (paste(fn, ".", ext, sep=""))) {
stop (paste ("Cannot find the file \"", fn, ".", ext, "\".", sep=""));
}
}
return (fn);
}
.getGridPars <- function (polys, fullValidation = TRUE)
{
res <- list();
res$x <- sort(unique(polys$X));
res$y <- sort(unique(polys$Y));
lenx <- length(res$x);
leny <- length(res$y);
if ((lenx < 2) || (leny < 2)) {
return (NULL);
}
if (is.element("SID", names(polys))) {
res$addSID <- TRUE;
} else {
res$addSID <- FALSE;
}
if (lenx == 2 && leny == 2) {
res$byrow <- TRUE;
} else if (lenx == 2) {
if (polys[1, "PID"] + 1 == polys[5, "PID"]) {
res$byrow <- FALSE;
} else {
res$byrow <- TRUE;
}
} else {
if (polys[1, "PID"] + 1 == polys[5, "PID"]) {
res$byrow <- TRUE;
} else {
res$byrow <- FALSE;
}
}
res$projection <- attr(polys, "projection");
res$zone <- attr(polys, "zone");
if (fullValidation) {
t <- makeGrid(x = res$x, y = res$y, byrow = res$byrow,
addSID = res$addSID, projection = res$projection,
zone = res$zone);
if (is.character (all.equal (polys, t))) {
return (NULL);
}
}
return (res);
}
.initPlotRegion <- function(projection, xlim, ylim, plt)
{
if ((missing(xlim) || is.null(xlim)) || !is.vector(xlim) ||
(length(xlim) != 2) ||
(missing(ylim) || is.null(ylim)) || !is.vector(ylim) ||
(length(ylim) != 2)) {
stop(
"xlim and/or ylim is missing or invalid.\n");
}
if (diff(ylim) == 0 || diff(xlim) == 0) {
stop(
"xlim/ylim must specify a region with area greater than 0.\n");
}
if(!par()$new)
frame();
if (is.null(plt))
plt <- par("plt");
if (is.null(projection))
stop(
"'projection' argument must not equal NULL.\n");
if (!is.na(projection))
{
xyRatio <- ifelse(projection == "LL", cos((mean(ylim) * pi) / 180), 1);
aspPlotRegion <-
(par()$fin[1]*diff(plt[1:2])) / (par()$fin[2]*diff(plt[3:4]));
if (is.infinite(aspPlotRegion))
stop("Plot region must have an area greater than 0.\n");
aspPolySet <- diff(xlim) / diff(ylim) * xyRatio;
if (is.numeric(projection))
aspPolySet <- aspPolySet / projection;
if (is.infinite(aspPolySet) || (aspPolySet == 0))
stop(paste(
"Either 'projection' is 0 or 'xlim'/'ylim' specify a region with an area",
"of 0.\n", sep="\n"));
if (aspPlotRegion < aspPolySet) {
pinX <- par()$fin[1]*diff(plt[1:2]);
pinY <- pinX * aspPolySet^-1;
toMove <- (diff(plt[3:4]) - pinY/par()$fin[2]) / 2;
plt[3:4] <- plt[3:4] + c(toMove, -toMove);
} else if (aspPlotRegion > aspPolySet) {
pinY <- par()$fin[2]*diff(plt[3:4]);
pinX <- pinY * aspPolySet;
toMove <- (diff(plt[1:2]) - pinX/par()$fin[1]) / 2;
plt[1:2] <- plt[1:2] + c(toMove, -toMove);
}
par(mai=c(par()$fin[2]*plt[3], par()$fin[1]*plt[1],
par()$fin[2]*(1-plt[4]), par()$fin[1]*(1-plt[2])));
parPlt <- signif(as.double(par()$plt), digits=5);
locPlt <- signif(as.double(plt), digits=5);
if (any(parPlt != locPlt))
par(plt = plt);
}
par(usr = c(xlim, ylim));
invisible(NULL);
}
.insertNAs <- function(polys, idx) {
sel.polys <- polys[is.element(names(polys), idx)]
if (is.null(unlist(sel.polys)))
return (NA)
lenPolys <- lapply(sel.polys, "length")
nPolys <- length(lenPolys)
TFT <- rep(c(TRUE, FALSE), length.out=(nPolys * 2) - 1)
reps <- rep(1, len=(nPolys * 2) - 1)
reps[TFT] <- unlist(lenPolys)
NAs <- rep(!TFT, times=reps)
new.polys <- vector(length=(length(unlist(sel.polys)) + nPolys - 1))
new.polys[NAs] <- NA
new.polys[!NAs] <- unlist(sel.polys)
return (new.polys)
}
.is.in =function(events, polys, use.names=TRUE)
{
if (!is.PolySet(polys))
stop("Supply a PolySet to argument 'polys'")
if (!all(c(is.element(c("X","Y"),colnames(events)),is.element(c("X","Y"),colnames(polys)))))
stop("Objects 'events' and 'polys' must have column names 'X' and 'Y'")
if (!is.EventData(events))
events = as.EventData(data.frame(EID=1:nrow(events), events), projection=attributes(polys)$projection)
inEvents = nrow(events)
inEventsID = events$EID
inEventsXY = c(events$X, events$Y)
inPolys = nrow(polys)
if (!is.element("SID", names(polys))) {
inPolysID = c(polys$PID, integer(length=inPolys), polys$POS)
} else {
inPolysID = c(polys$PID, polys$SID, polys$POS)
}
inPolysXY = c(polys$X, polys$Y)
outCapacity <- nrow(events)
results <- .C("findPolys",
inEventsID = as.integer(inEventsID),
inEventsXY = as.double(inEventsXY),
inEvents = as.integer(inEvents),
inPolysID = as.integer(inPolysID),
inPolysXY = as.double(inPolysXY),
inPolys = as.integer(inPolys),
outID = integer(4 * outCapacity),
outRows = as.integer(outCapacity),
outStatus = integer(1),
PACKAGE = "PBSmapping")
outRows <- as.vector(results$outRows)
if (outRows == 0) {
e.out = events
e.in = events[0,]
e.bdry = 0
} else {
d <- data.frame(EID = results$outID[1:outRows],
PID = results$outID[(outCapacity+1):(outCapacity+outRows)],
SID = results$outID[(2*outCapacity+1):(2*outCapacity+outRows)],
Bdry = results$outID[(3*outCapacity+1):(3*outCapacity+outRows)])
e.in = events[is.element(events$EID,d$EID),]
e.out = events[!is.element(events$EID,d$EID),]
e.bdry = d$Bdry
}
out= list()
out[["e.in"]] = e.in
out[["e.out"]] = e.out
out[["all.in"]] = nrow(e.in)==nrow(events)
out[["all.out"]] = nrow(e.out)==nrow(events)
out[["all.bdry"]] = all(e.bdry==1)
return(out)
}
.is.in.defunct =function(events, polys, use.names=TRUE) {
if (!all(c(is.element(c("X","Y"),colnames(events)),is.element(c("X","Y"),colnames(polys)))))
stop("Objects 'events' and 'polys' must have column names 'X' and 'Y'")
.checkRDeps(".is.in", c("sp"))
eval(parse(text="in.out = .Call(\"R_point_in_polygon_sp\", as.numeric(events[,\"X\"]), as.numeric(events[,\"Y\"]), as.numeric(polys[,\"X\"]), as.numeric(polys[,\"Y\"]), PACKAGE = \"sp\")"))
if (use.names) {
if(is.PolySet(events) || is.PolyData(events))
names(in.out) = .createIDs(events, intersect(c("PID","SID"), colnames(events)))
if(is.EventData(events))
names(in.out) = events[,"EID"]
}
out = list()
out[["in.out"]] = in.out
out[["all.in"]] = all(as.logical(in.out))
return(out)
}
.mat2df <- function(data) {
pbsClass <- intersect(attributes(data)$class, c("EventData", "LocationSet",
"PolyData", "PolySet"));
attrNames <- names(attributes(data));
if(all(is.element(attrNames, c("dim", "dimnames", "class")) == TRUE)) {
addValues <- NULL;
} else {
addNames <- setdiff(attrNames, c("dim", "dimnames", "class"));
addValues <- attributes(data)[addNames];
}
data <- data.frame(unclass(data));
if(!is.null(addValues)) {
attributes(data) <- c(attributes(data), addValues);
}
if(length(pbsClass) > 0) {
attr(data, "class") <- c(pbsClass, "data.frame");
}
return(data);
}
.rollupPolys <- function(polys, rollupMode, exteriorCCW, closedPolys,
addRetrace)
{
attrNames <- setdiff(names(attributes(polys)),
c("names", "row.names", "class"));
attrValues <- attributes(polys)[attrNames];
inRows <- nrow(polys);
outCapacity <- 2 * inRows;
if (!is.element("SID", names(polys))) {
inID <- c(polys$PID, integer(length = inRows));
} else {
inID <- c(polys$PID, polys$SID);
}
inXY <- c(polys$X, polys$Y);
results <- .C("rollupPolys",
inID = as.integer(inID),
inPOS = as.double(polys$POS),
inXY = as.double(inXY),
inVerts = as.integer(inRows),
outID = integer(3 * outCapacity),
outXY = double(2 * outCapacity),
outRows = as.integer(outCapacity),
rollupMode = as.integer(rollupMode),
exteriorCCW = as.integer(exteriorCCW),
closedPolys = as.integer(closedPolys),
addRetrace = as.integer(addRetrace),
outStatus = integer(1),
PACKAGE = "PBSmapping");
if (results$outStatus == 1) {
stop(
"Insufficient physical memory for processing.\n");
}
if (results$outStatus == 2) {
stop(paste(
"Insufficient memory allocated for output. Please upgrade to the latest",
"version of the software, and if that does not fix this problem, please",
"file a bug report.\n",
sep = "\n"));
}
if (results$outStatus == 3) {
stop(paste(
"Unable to rollup the polygons, as one or more children did not have a",
"parent.\n"));
}
outRows <- as.vector(results$outRows);
if (outRows > 0) {
d <- data.frame(PID = results$outID[1:outRows],
SID = results$outID[(outCapacity+1):(outCapacity+outRows)],
POS = results$outID[(2*outCapacity+1):(2*outCapacity+outRows)],
X = results$outXY[1:outRows],
Y = results$outXY[(outCapacity+1):(outCapacity+outRows)]);
if (!is.element("SID", names(polys)) || rollupMode == 1)
d$SID <- NULL;
attributes(d) <- c(attributes(d), attrValues);
invisible(d);
} else {
invisible(NULL);
}
}
.plotMaps <- function(polys, xlim, ylim, projection, plt, polyProps,
border, lty, col, colHoles, density, angle, bg,
axes, tckLab, tck, tckMinor, isType, ...)
{
legalNames <- c("adj", "ann", "ask", "bg", "bty", "cex", "cex.axis",
"cex.lab", "cex.main", "cex.sub", "col", "col.axis",
"col.lab", "col.main", "col.sub", "crt", "csi", "err",
"exp", "fg", "font", "font.axis", "font.lab",
"font.main", "font.sub", "lab", "las", "lty",
"lwd", "mgp", "mkh", "pch", "smo", "srt", "tck",
"tcl", "tmag", "type", "xaxp", "xaxs", "xaxt", "xpd",
"yaxp", "yaxs", "yaxt");
if (!is.null(version$language) && (version$language == "R")) {
legalNames <- setdiff(legalNames, "csi");
}
legalNames <- intersect(legalNames, names(par()));
backupPar <- par(legalNames);
on.exit(par(backupPar));
dots <- list(...);
extraArgs <- setdiff(names(dots), legalNames);
extraArgs <- setdiff(extraArgs, c("main", "sub", "type", "xlab", "ylab"));
if (length(extraArgs) > 0) {
warning(paste(
"Ignored unrecognized argument '", paste(extraArgs, collapse="', '"), "'.\n",
sep = ""));
}
if (isType == "points")
legalNames <- setdiff(legalNames, c("cex", "pch"));
par(dots[intersect(names(dots), legalNames)]);
if (is.null(projection) || is.na(projection))
projection <- FALSE;
if (is.logical(projection)) {
if (projection) {
if (!is.null(attr(polys, "projection"))) {
projection <- attr(polys, "projection");
} else {
projection <- 1;
warning(
"'projection' set to 1:1 since unspecified 'projection' argument/attribute.\n");
}
} else {
projection <- NA;
}
} else {
if (is.numeric(projection) || is.element(projection, c("LL", "UTM"))) {
if (!is.null(attr(polys, "projection")) &&
!is.element(projection, attr(polys, "projection"))) {
projection <- attr(polys, "projection");
warning(
"'projection' argument overwritten with PolySet's 'projection' attribute.\n");
}
} else {
stop(paste(
"Either omit 'projection' argument or set it to a numeric value, \"LL\", or",
"\"UTM\".\n",
sep="\n"));
}
}
if (!is.null(polys))
attr(polys, "projection") <- projection;
labelProjection <- projection;
if (is.null(polys)) {
if (is.null(xlim) || is.null(ylim) || is.null(projection)) {
stop(
"To plot a NULL PolySet, pass 'xlim', 'ylim', and 'projection' arguments.\n");
}
}
else {
polys <- .validateXYData(polys);
if (is.character(polys)) stop(paste("Invalid PolySet.\n", polys, sep=""));
}
if (is.null(xlim)) xlim <- range(polys$X);
if (is.null(ylim)) ylim <- range(polys$Y);
if (is.element("type", names(dots))) {
if (dots$type == "n") {
polys <- NULL;
} else {
stop(
"Either omit 'type' argument or set it to \"n\".\n");
}
}
if (!is.null(polys)) {
par(col = 1);
} else {
if (length(col) > 1) {
stop(paste(
"Either omit 'col' argument or set it to a single-element vector when 'polys'",
"equals NULL or 'type = \"n\"'.\n",
sep = "\n"));
} else if (!is.null(col)) {
par(col = col);
}
}
options(map.xlim = xlim);
options(map.ylim = ylim);
options(map.projection = projection);
.initPlotRegion(projection=projection, xlim=xlim, ylim=ylim, plt=plt);
if (!is.null(bg))
polygon(x=xlim[c(1,2,2,1)], y=ylim[c(1,1,2,2)], col=bg, border=0, xpd=TRUE);
if (!is.null(polys)) {
if (isType == "polygons") {
ret <- addPolys(polys, xlim = xlim, ylim = ylim, polyProps = polyProps,
border = border, lty = lty, col = col, colHoles = colHoles,
density = density, angle = angle);
} else if (isType == "lines") {
ret <- addLines(polys, xlim = xlim, ylim = ylim, polyProps = polyProps,
lty = lty, col = col);
} else if (isType == "points") {
cex <- list(...)$cex;
pch <- list(...)$pch;
ret <- addPoints(polys, xlim = xlim, ylim = ylim, polyProps = polyProps,
cex = cex, col = col, pch = pch);
} else {
stop(
"Unrecognized 'isType'.\n");
}
} else {
ret <- NULL;
}
if (axes) {
.addAxis(xlim = xlim, ylim = ylim, tckLab = tckLab, tck = tck,
tckMinor = tckMinor, ...);
}
else {
options(map.xline = 1);
options(map.yline = 1);
}
.addLabels(projection = labelProjection, ...);
if (axes) {
box();
}
invisible(ret);
}
.preparePolyProps <- function(polysPID, polysSID, polyProps)
{
if (is.null(polyProps)) {
polyProps <- data.frame(PID = unique(polysPID));
} else {
polyProps <- .validatePolyData(polyProps);
if (is.character(polyProps))
stop(paste("Invalid PolyData 'polyProps'.\n", polyProps, sep=""));
}
if (!is.null(polysSID) && !is.element("SID", names(polyProps))) {
p <- data.frame(PID=polysPID, SID=polysSID);
p <- p[!duplicated(.createIDs(p, cols = c("PID", "SID"))), ]
p <- p[is.element(p$PID, unique(polyProps$PID)), ];
polyProps <- merge(polyProps, p, by="PID");
}
return (polyProps);
}
.validateData <- function(data, className,
requiredCols=NULL, requiredAttr=NULL, noFactorCols=NULL,
noNACols=NULL, keyCols=NULL, numericCols=NULL)
{
fnam = as.character(substitute(data))
if (is.matrix(data)) {
data <- .mat2df(data);
}
if (is.data.frame(data) && (nrow(data) > 0)) {
if (!is.null(className) && (class(data)[1] != "data.frame")) {
if (class(data)[1] != className) {
return(paste("Unexpected class (", class(data)[1], ").\n", sep=""));
}
}
if (!is.null(requiredCols) && !all(is.element(requiredCols, names(data)))) {
return(paste("One or more of the required columns is missing.\n",
"Required columns: ", paste(requiredCols, collapse = ", "), ".\n", sep=""));
}
if (!is.null(requiredAttr) && !all(is.element(requiredAttr, names(attributes(data))))) {
return(paste("One or more of the required attributes is missing.\n",
"Required attributes: ", paste(requiredAttr, collapse = ", "), ".\n", sep=""));
}
presentCols <- intersect(noNACols, names(data));
if (length(presentCols) > 0) {
exprStr <- paste(paste("any(is.na(data$", presentCols, "))", sep=""), collapse=" || ");
if (eval(parse(text=exprStr))) {
return(paste("One or more columns (where NAs are not allowed) contains NAs.\n",
"Columns that cannot contain NAs: ", paste(presentCols, collapse = ", "),
".\n", sep=""));
}
}
presentCols <- intersect(noFactorCols, names(data));
if (length(presentCols) > 0) {
exprStr <- paste(paste("is.factor(data$", presentCols, ")", sep=""), collapse=" || ");
if (eval(parse(text=exprStr))) {
return(paste("One or more columns contains factors where they are not allowed.\n",
"Columns that cannot contain factors: ", paste(presentCols, collapse = ", "),
".\n", sep=""));
}
}
presentCols <- intersect(keyCols, names(data));
if (length(presentCols) > 0) {
if (length(presentCols) == 1) {
keys <- data[[presentCols]];
} else if ((length(presentCols) == 2) && ((length(intersect(presentCols, c("PID","SID","POS","EID"))) == 2)
|| (all(is.integer(data[[presentCols[1]]])) && all(is.integer(data[[presentCols[2]]]))))) {
keys <- .createIDs(data, cols=presentCols);
} else {
keys = apply(data[,presentCols],1,paste0,collapse=".")
}
if (any(duplicated(keys))) {
return(paste("The 'key' for each record is not unique.\n",
"Columns in key: ", paste(presentCols, collapse = ", "), ".\n", sep=""));
}
}
presentCols <- intersect(numericCols, names(data));
if (length(presentCols) > 0) {
exprStr <- paste(paste("any(!is.numeric(data$", presentCols, "))", sep=""), collapse=" || ");
if (eval(parse(text=exprStr))) {
return(paste("One or more columns requires numeric values, but contains non-numerics.\n",
"Columns that must contain numerics: ", paste(presentCols, collapse = ", "),
".\n", sep=""));
}
}
if (!is.null(className) && className == "PolySet") {
idx <- .createIDs(data, cols=c("PID", "SID"));
idxFirst <- which(!duplicated(idx));
idxLast <- c((idxFirst-1)[-1], length(idx));
holes <- (data$POS[idxFirst] > data$POS[idxLast])
idxOuter <- rep(!holes, times=((idxLast-idxFirst)+1))
idxInner <- !idxOuter;
lt <- c(data$POS[1:(nrow(data)-1)] < data$POS[2:(nrow(data))], FALSE);
lt[idxLast] <- TRUE;
j <- any(!lt[idxOuter])
if (j) {
j <- !lt;
j[idxInner] <- FALSE;
j <- which(j) + 1;
return(paste("POS column must contain increasing values for outer contours.\n",
"Offending rows: ", paste(j, collapse=", "), ".\n", sep=""));
}
lt[idxLast] <- FALSE;
j <- any(lt[idxInner])
if (j) {
j <- lt;
j[idxOuter] <- FALSE;
j <- which(j);
return(paste("POS column must contain decreasing values for inner contours.\n",
"Offending rows: ", paste(j, collapse=", "), ".\n", sep=""));
}
if (any(class(data) == "PolySet")) {
polys = data
polys$idx <- .createIDs(polys, cols=c("PID", "SID"));
names(holes) = unique(idx)
if (any(holes)) {
solids = !holes
snams = names(solids)[solids]
snums = (1:length(solids))[solids]
plist = list()
for (i in 1:length(snums)) {
ii = snums[i]
iii = snams[i]
if (iii==rev(names(solids))[1] || solids[ii+1]) next
endhole = ifelse (is.na(snums[i+1]) && rev(holes)[1], length(holes), (snums[i+1]-1))
iholes = holes[(ii+1):endhole]
if (!all(iholes)) stop ("Check '.validateData' code")
jjj = names(iholes)
jdx = idx[is.element(idx,jjj)]
isolid = polys[is.element(polys$idx,iii),]
ihole = polys[is.element(polys$idx, jjj),]
e.in.p = .is.in(ihole, isolid)
if (e.in.p$all.in) next
e.bad = e.in.p$e.out
plist[[iii]] = list()
plist[[iii]][["solid"]] = isolid
plist[[iii]][["hole.vout"]] = list()
j.bad = split(e.bad, e.bad$idx)
plist[[iii]][["hole.vout"]] = j.bad
}
if (length(plist)>0) {
assign ("solids_holes", plist, envir=.PBSmapEnv)
swo = sapply(plist, function(x){length(x$hole.vout)})
swo = sapply(plist, function(x){nh=length(x$hole.vout); nv=sapply(x$hole.vout,nrow); paste0(nh, " hole",ifelse(nh>1,"s",""),": ", paste0("[",names(nv),"]=", nv,"v",collapse="; "))})
swo.txt = paste0(" Solid ",names(swo)," --> ", swo, collapse="\n")
cat(paste0("\n******* WARNING *******\n", fnam, ": Hole vertices (v) exist outside solids [PID.SID]:\n", swo.txt, "\nSee object '.PBSmapEnv$solids_holes' for details.\n\n"))
}
}
}
}
} else {
return(paste("The object must be either a matrix or a data frame.\n"));
}
return(data);
}
.validateEventData <- function(EventData)
{
return(.validateData(EventData,
className = "EventData",
requiredCols = c("EID", "X", "Y"),
requiredAttr = NULL,
noFactorCols = c("EID", "X", "Y"),
noNACols = c("EID", "X", "Y"),
keyCols = c("EID"),
numericCols = c("EID", "X", "Y")));
}
.validateLocationSet <- function(LocationSet)
{
return(.validateData(LocationSet,
className = "LocationSet",
requiredCols = c("EID", "PID", "Bdry"),
requiredAttr = NULL,
noFactorCols = c("EID", "PID", "SID", "Bdry"),
noNACols = c("EID", "PID", "SID", "Bdry"),
keyCols = c("EID", "PID", "SID"),
numericCols = c("EID", "PID", "SID")));
}
.validatePolyData <- function(PolyData)
{
return(.validateData(PolyData,
className = "PolyData",
requiredCols = c("PID"),
requiredAttr = NULL,
noFactorCols = c("PID", "SID"),
noNACols = c("PID", "SID"),
keyCols = c("PID", "SID"),
numericCols = c("PID", "SID")));
}
.validatePolyProps <- function(polyProps, parCols = NULL)
{
if (is.null(polyProps))
return (NULL);
return (.validateData(polyProps,
className = "PolyData",
requiredCols = NULL,
requiredAttr = NULL,
noFactorCols = parCols,
noNACols = NULL,
keyCols = NULL,
numericCols = NULL));
}
.validatePolySet <- function(polys)
{
return(.validateData(polys,
className = "PolySet",
requiredCols = c("PID", "POS", "X", "Y"),
requiredAttr = NULL,
noFactorCols = c("PID", "SID", "POS", "X", "Y"),
noNACols = c("PID", "SID", "POS", "X", "Y"),
keyCols = c("PID", "SID", "POS"),
numericCols = c("PID", "SID", "POS", "X", "Y")));
}
.validateXYData <- function(xyData)
{
return(.validateData(xyData,
className = NULL,
requiredCols = c("X", "Y"),
requiredAttr = NULL,
noFactorCols = c("X", "Y"),
noNACols = c("X", "Y"),
keyCols = NULL,
numericCols = c("X", "Y")));
}
|
.onAttach <- function(...) {
ver <- utils::packageVersion("bayesplot")
packageStartupMessage("This is bayesplot version ", ver)
packageStartupMessage("- Online documentation and vignettes at mc-stan.org/bayesplot")
packageStartupMessage("- bayesplot theme set to bayesplot::theme_default()")
packageStartupMessage(" * Does _not_ affect other ggplot2 plots")
packageStartupMessage(" * See ?bayesplot_theme_set for details on theme setting")
}
|
"spCopulaCoxph" <- function(formula, data, na.action, prediction=NULL,
mcmc=list(nburn=3000, nsave=2000, nskip=0, ndisplay=500),
prior=NULL, state=NULL, scale.designX=TRUE,
Coordinates, DIST=NULL, Knots=NULL) {
Call <- match.call();
indx <- match(c("formula", "data", "na.action", "truncation_time", "subject.num"),
names(Call), nomatch=0)
if (indx[1] ==0) stop("A formula argument is required");
temp <- Call[c(1,indx)]
temp[[1L]] <- quote(stats::model.frame)
special <- c("baseline", "frailtyprior", "truncation_time", "subject.num", "bspline")
temp$formula <- if (missing(data))
terms(formula, special)
else terms(formula, special, data = data)
if (is.R())
m <- eval(temp, parent.frame())
else m <- eval(temp, sys.parent())
Terms <- attr(m, 'terms')
if(any(names(m)=="(truncation_time)")){
truncation_time = m[,"(truncation_time)"]
}else{
truncation_time = NULL
}
if(any(names(m)=="(subject.num)")){
subject.num = m[,"(subject.num)"]
}else{
subject.num = NULL
}
Y <- model.extract(m, "response")
if (!inherits(Y, "Surv")) stop("Response must be a survival object")
baseline0 <- attr(Terms, "specials")$baseline
frailtyprior0<- attr(Terms, "specials")$frailtyprior
bspline0<- attr(Terms, "specials")$bspline
if (length(frailtyprior0)) {
temp <- survival::untangle.specials(Terms, 'frailtyprior', 1)
dropfrail <- c(temp$terms)
frail.terms <- m[[temp$vars]]
}else{
dropfrail <- NULL
frail.terms <- NULL;
}
if (length(baseline0)) {
temp <- survival::untangle.specials(Terms, 'baseline', 1)
dropXtf <- c(temp$terms)
Xtf <- m[[temp$vars]]
}else{
dropXtf <- NULL
Xtf <- NULL
}
if (length(bspline0)) {
temp <- survival::untangle.specials(Terms, 'bspline', 1)
X.bs = NULL;
n.bs = rep(0, length(temp$vars));
for(ii in 1:length(temp$vars)){
X.bs = cbind(X.bs, m[[temp$vars[ii]]]);
n.bs[ii] = ncol(m[[temp$vars[ii]]]);
}
}else{
X.bs <- NULL;
n.bs <- NULL;
}
dropx <- c(dropfrail, dropXtf)
if (length(dropx)) {
newTerms <- Terms[-dropx]
if (is.R()) attr(newTerms, 'intercept') <- attr(Terms, 'intercept')
} else newTerms <- Terms
X <- model.matrix(newTerms, m);
if (is.R()) {
assign <- lapply(survival::attrassign(X, newTerms)[-1], function(x) x-1)
xlevels <- .getXlevels(newTerms, m)
contr.save <- attr(X, 'contrasts')
}else {
assign <- lapply(attr(X, 'assign')[-1], function(x) x -1)
xvars <- as.character(attr(newTerms, 'variables'))
xvars <- xvars[-attr(newTerms, 'response')]
if (length(xvars) >0) {
xlevels <- lapply(m[xvars], levels)
xlevels <- xlevels[!unlist(lapply(xlevels, is.null))]
if(length(xlevels) == 0)
xlevels <- NULL
} else xlevels <- NULL
contr.save <- attr(X, 'contrasts')
}
adrop <- 0
Xatt <- attributes(X)
xdrop <- Xatt$assign %in% adrop
X <- X[, !xdrop, drop=FALSE]
attr(X, "assign") <- Xatt$assign[!xdrop]
n <- nrow(X)
p <- ncol(X)
if(p==0){
stop("covariate is required")
X.scaled <- NULL;
X1 = cbind(rep(1,n), X.scaled);
}else{
if(scale.designX){
X.scaled <- scale(X);
}else{
X.scaled <- scale(X, center=rep(0,p), scale=rep(1,p));
}
X.center = attributes(X.scaled)$`scaled:center`;
X.scale = attributes(X.scaled)$`scaled:scale`;
X1 = cbind(rep(1,n), X.scaled);
}
t1 = Y[,1]; t2 = Y[,1];
type <- attr(Y, "type")
exactsurv <- Y[,ncol(Y)] ==1
if (any(exactsurv)) {
t1[exactsurv]=Y[exactsurv,1];
t2[exactsurv]=Y[exactsurv,1];
}
if (type== 'counting') stop ("Invalid survival type")
if (type=='interval') {
intsurv <- Y[,3]==3;
if (any(intsurv)){
t1[intsurv]=Y[intsurv,1];
t2[intsurv]=Y[intsurv,2];
}
}
delta = Y[,ncol(Y)];
if (!all(is.finite(Y))) {
stop("Invalid survival times for this distribution")
} else {
if (type=='left') delta <- 2- delta;
}
if(is.null(DIST)){
DIST <- function(x, y) fields::rdist(x, y)
}
model.name <- "Spatial Copula Cox PH model with piecewise constant baseline hazards"
if(sum(delta%in%c(0,1))!=n) stop("This function currently only supports right-censored data.")
if(p==0){
s0 <- prediction$spred;
if(ncol(s0)!=2) stop("Make sure that prediction$spred is a matrix with two columns.")
if(is.null(s0)) s0=Coordinates
npred = nrow(s0);
xpred = cbind(rep(1,npred));
}else{
xpred <- prediction$xpred;
s0 <- prediction$spred;
if(is.null(xpred)){
xpred = X;
s0 = Coordinates;
}
if(is.vector(xpred)) xpred=matrix(xpred, nrow=1);
if(ncol(xpred)!=p) stop("Please make sure the number of columns for xpred equals the number of covariates!");
xpred = cbind(xpred);
npred = nrow(xpred);
if(nrow(s0)!=npred) stop("Error: nrow(xpred) is not equal to nrow(spred) in prediction");
for(i in 1:npred) xpred[i,] = (xpred[i,]-X.center)/X.scale;
}
s = Coordinates;
if(is.null(s)) stop("please specify Coordinates for each subject");
if(nrow(s)!=n) stop("the number of coordinates should be equal to the sample size")
dnn = DIST(s, s);
if(min(dnn[row(dnn)!=col(dnn)])<=0) stop("each subject should have different Coordinates");
if(is.null(Knots)){
nknots = prior$nknots; if(is.null(nknots)) nknots=n;
}else{
nknots = nrow(Knots);
}
if(is.null(Knots)){
if(nknots<n){
ss = as.matrix(fields::cover.design(s, nd=nknots, DIST=DIST)$design);
}else{
ss = s;
}
}else{
ss = Knots;
}
dnm = DIST(s, ss);
dmm = DIST(ss, ss);
nblock=prior$nblock; if(is.null(nblock)) nblock=n;
if(nblock==n){
s0tmp = s;
Dtmp = DIST(s, s0tmp);
idtmp = apply(Dtmp, 1, which.min);
clustindx=diag(1,n, n);
}else{
s0tmp = as.matrix(fields::cover.design(s, nd=nblock, DIST=DIST)$design);
Dtmp = DIST(s, s0tmp);
idtmp = apply(Dtmp, 1, which.min);
nblock=length(table(idtmp));
idnames = as.numeric(names(table(idtmp)))
clustindx=matrix(0, n, nblock);
for(jj in 1:nblock){
clustindx[which(idtmp==idnames[jj]),jj] = 1;
}
}
ds0n <- DIST(s, s0);
ds0m <- DIST(ss, s0);
Ds0tmps0 <- DIST(s0, s0tmp);
idpred <- apply(Ds0tmps0, 1, which.min);
ds0block <- matrix(0, n, npred);
for(i in 1:n){
for(j in 1:npred){
ds0block[i,j] = (idtmp[i]==idpred[j])+0
}
}
tbase1 = t1; tbase2 = t2; deltabase = delta;
Xbase.scaled = X.scaled;
for(i in 1:n){
if(deltabase[i]==0) tbase2[i]=NA;
if(deltabase[i]==2) tbase1[i]=NA;
}
fit0 <- survival::survreg(formula = survival::Surv(tbase1, tbase2, type="interval2")~Xbase.scaled,
dist="exponential");
nburn <- mcmc$nburn;
nsave <- mcmc$nsave;
nskip <- mcmc$nskip;
ndisplay <- mcmc$ndisplay;
r0 <- prior$r0; if(is.null(r0)) r0 = 1;
h0 <- prior$h0; if(is.null(h0)) h0 = as.vector( exp( -fit0$coefficients[1] ) );
v0 <- prior$v0; if(is.null(v0)) v0=0;
vhat <- prior$vhat; if(is.null(vhat)) vhat <- as.vector( exp( -2*fit0$coefficients[1] )*fit0$var[1,1] );
beta0 <- prior$beta0; if(is.null(beta0)) beta0 <- rep(0,p);
S0 <- prior$S0; if(is.null(S0)) S0=diag(1e10, p);
S0inv <- solve(S0);
Shat <- prior$Shat; if(is.null(Shat)) Shat <- as.matrix(fit0$var[c(2:(1+p)),c(2:(1+p))])/(fit0$scale)^2;
M <- prior$M; if(is.null(M)) M <- 20;
M1<- M+1;
d <- prior$cutpoints;
if(is.null(d)){
d = as.vector(quantile(t1, probs=seq(0,1,length=M1)));
d = d[-1];
d[M] = Inf;
}
d <- c(0, d);
if(!(M1==length(d))) stop("error: M is not equal to length(cutpoints)");
theta0 <- prior$theta0; if(is.null(theta0)) theta0 <- c(1.0, 1.0, 1.0, 1.0);
spS0 <- prior$spS0; if(is.null(spS0)) spS0 <- diag(c(0.5,0.1));
h = c(0, rep(h0, M));
hcen=state$hcen; if(is.null(hcen)) hcen=h0;
beta=state$beta; if(is.null(beta)) beta=as.vector( -fit0$coefficients[-1] );
theta = state$theta; if(is.null(theta)) theta <- c(0.98, 1);
foo <- .Call("spCopulaCoxph", nburn_ = nburn, nsave_ = nsave, nskip_ = nskip, ndisplay_ = ndisplay,
tobs_ = t1, delta_ = delta, X_=X.scaled, d_ = d, h_ = h, r0_ = r0, hcen_=hcen,
h0_ = h0, v0_ = v0, vhat_ = vhat, beta_ = beta, beta0_ = beta0, S0inv_ = S0inv,
Shat_=Shat, l0_ = round(min(1000,nburn/2)), adapter_ = (2.38)^2,
xpred_ = as.matrix(xpred), ds0n_=ds0n, dnn_=dnn, theta_=theta, theta0_=theta0,
spS0_=spS0, dnm_=dnm, dmm_=dmm, clustindx_=clustindx, ds0m_=ds0m,
ds0block_=ds0block, PACKAGE = "spBayesSurv");
beta.scaled = matrix(foo$beta, p, nsave);
beta.original = matrix(beta.scaled, p, nsave)/matrix(rep(X.scale, nsave), p, nsave);
coeff1 <- c(apply(beta.original, 1, mean));
coeff2 <- c(apply(foo$theta, 1, mean));
coeff <- c(coeff1, coeff2);
names(coeff) = c(colnames(X.scaled), "sill", "range");
output <- list(modelname=model.name,
terms=m,
coefficients=coeff,
call=Call,
prior=prior,
mcmc=mcmc,
n=n,
p=p,
Surv=survival::Surv(tbase1, tbase2, type="interval2"),
X.scaled=X.scaled,
X = X,
beta = beta.original,
beta.scaled = beta.scaled,
h.scaled = foo$h,
d.scaled = foo$d,
cutpoints = foo$d[,1],
hcen.scaled = foo$hcen,
M=M,
ratebeta = foo$ratebeta,
ratehcen = foo$ratehcen,
theta = foo$theta,
ratebeta = foo$ratebeta,
ratetheta = foo$ratetheta,
rateh = foo$rateh,
cpo = foo$cpo,
Coordinates = s,
Tpred = foo$Tpred,
Zpred = foo$Zpred);
class(output) <- c("spCopulaCoxph")
output
}
"print.spCopulaCoxph" <- function (x, digits = max(3, getOption("digits") - 3), ...)
{
cat(x$modelname,"\nCall:\n", sep = "")
print(x$call)
cat("\nPosterior means for regression coefficients:\n")
if(x$p>0){
print.default(format(x$coefficients[1:x$p], digits = digits), print.gap = 2,
quote = FALSE)
}
cat("\nLPML:", sum(log(x$cpo)))
cat("\nn=",x$n, "\n", sep="")
invisible(x)
}
"plot.spCopulaCoxph" <- function(x, xnewdata, tgrid=NULL, CI=0.95, PLOT=TRUE, ...) {
if(is.null(tgrid)) tgrid = seq(0.01, max(x$Surv[,1], na.rm=T), length.out=200)
if(missing(xnewdata)) {
stop("please specify xnewdata")
}else{
rnames = row.names(xnewdata)
m = x$terms
Terms = attr(m, 'terms')
baseline0 <- attr(Terms, "specials")$baseline
frailtyprior0<- attr(Terms, "specials")$frailtyprior
dropx <- NULL
if (length(frailtyprior0)) {
temp <- survival::untangle.specials(Terms, 'frailtyprior', 1)
dropx <- c(dropx, temp$terms)
frail.terms <- m[[temp$vars]]
}else{
frail.terms <- NULL;
}
if (length(baseline0)) {
temp <- survival::untangle.specials(Terms, 'baseline', 1)
dropx <- c(dropx, temp$terms)
Xtf <- m[[temp$vars]]
}else{
Xtf <- NULL;
}
if (length(dropx)) {
newTerms <- Terms[-dropx]
if (is.R()) attr(newTerms, 'intercept') <- attr(Terms, 'intercept')
} else newTerms <- Terms
newTerms <- delete.response(newTerms)
mnew <- model.frame(newTerms, xnewdata, na.action = na.omit, xlev = .getXlevels(newTerms, m))
Xnew <- model.matrix(newTerms, mnew);
if (is.R()) {
assign <- lapply(survival::attrassign(Xnew, newTerms)[-1], function(x) x-1)
xlevels <- .getXlevels(newTerms, mnew)
contr.save <- attr(Xnew, 'contrasts')
}else {
assign <- lapply(attr(Xnew, 'assign')[-1], function(x) x -1)
xvars <- as.character(attr(newTerms, 'variables'))
xvars <- xvars[-attr(newTerms, 'response')]
if (length(xvars) >0) {
xlevels <- lapply(mnew[xvars], levels)
xlevels <- xlevels[!unlist(lapply(xlevels, is.null))]
if(length(xlevels) == 0)
xlevels <- NULL
} else xlevels <- NULL
contr.save <- attr(Xnew, 'contrasts')
}
adrop <- 0
Xatt <- attributes(Xnew)
xdrop <- Xatt$assign %in% adrop
Xnew <- Xnew[, !xdrop, drop=FALSE]
attr(Xnew, "assign") <- Xatt$assign[!xdrop]
xpred = Xnew
if(ncol(xpred)!=x$p) stop("please make sure the number of columns matches!");
}
X.center = attributes(x$X.scaled)$`scaled:center`;
X.scale = attributes(x$X.scaled)$`scaled:scale`;
xpred = cbind(xpred);
nxpred = nrow(xpred);
for(i in 1:nxpred) xpred[i,] = (xpred[i,]-X.center)/X.scale;
betafitted = x$beta.scaled;
estimates <- .Call("CoxPHplots", xpred, tgrid, betafitted, x$h.scaled, x$d.scaled, CI,
PACKAGE = "spBayesSurv");
if(PLOT){
par(cex=1.5,mar=c(4.1,4.1,1,1),cex.lab=1.4,cex.axis=1.1)
plot(tgrid, estimates$Shat[,1], "l", lwd=3, xlab="time", ylab="survival",
xlim=c(0, max(tgrid)), ylim=c(0,1));
for(i in 1:nxpred){
polygon(x=c(rev(tgrid),tgrid),
y=c(rev(estimates$Shatlow[,i]),estimates$Shatup[,i]),
border=NA,col="lightgray");
}
for(i in 1:nxpred){
lines(tgrid, estimates$Shat[,i], lty=i, lwd=3, col=i);
}
legend("topright", rnames, col = 1:nxpred, lty=1:nxpred, ...)
}
estimates$tgrid=tgrid;
invisible(estimates)
}
"summary.spCopulaCoxph" <- function(object, CI.level=0.95, ...) {
ans <- c(object[c("call", "modelname")])
ans$cpo <- object$cpo
mat <- as.matrix(object$beta)
coef.p <- object$coefficients[(1:object$p)];
coef.m <- apply(mat, 1, median)
coef.sd <- apply(mat, 1, sd)
limm <- apply(mat, 1, function(x) as.vector(quantile(x, probs=c((1-CI.level)/2, 1-(1-CI.level)/2))) )
coef.l <- limm[1,]
coef.u <- limm[2,]
coef.table <- cbind(coef.p, coef.m, coef.sd, coef.l , coef.u)
dimnames(coef.table) <- list(names(coef.p), c("Mean", "Median", "Std. Dev.",
paste(CI.level*100, "%CI-Low", sep=""),
paste(CI.level*100, "%CI-Upp", sep="")))
ans$coeff <- coef.table
mat <- as.matrix(object$theta)
coef.p <- object$coefficients[-(1:object$p)];
coef.m <- apply(mat, 1, median)
coef.sd <- apply(mat, 1, sd)
limm <- apply(mat, 1, function(x) as.vector(quantile(x, probs=c((1-CI.level)/2, 1-(1-CI.level)/2))) )
coef.l <- limm[1,]
coef.u <- limm[2,]
coef.table <- cbind(coef.p, coef.m, coef.sd, coef.l , coef.u)
dimnames(coef.table) <- list(names(coef.p), c("Mean", "Median", "Std. Dev.",
paste(CI.level*100, "%CI-Low", sep=""),
paste(CI.level*100, "%CI-Upp", sep="")))
ans$sill.range <- coef.table
ans$n <- object$n
ans$p <- object$p
ans$LPML <- sum(log(object$cpo))
ans$ratebeta = object$ratebeta;
ans$ratetheta = object$ratetheta;
class(ans) <- "summary.spCopulaCoxph"
return(ans)
}
"print.summary.spCopulaCoxph"<-function (x, digits = max(3, getOption("digits") - 3), ...)
{
cat(x$modelname,"\nCall:\n", sep = "")
print(x$call)
if(x$p>0){
cat("\nPosterior inference of regression coefficients\n")
cat("(Adaptive M-H acceptance rate: ", x$ratebeta, "):\n", sep="")
print.default(format(x$coeff, digits = digits), print.gap = 2,
quote = FALSE)
}
cat("\nPosterior inference of spatial sill and range parameters\n")
cat("(Adaptive M-H acceptance rate: ", x$ratetheta, "):\n", sep="")
print.default(format(x$sill.range, digits = digits), print.gap = 2,
quote = FALSE)
cat("\nLog pseudo marginal likelihood: LPML=", x$LPML, sep="")
cat("\nNumber of subjects: n=", x$n, "\n", sep="")
invisible(x)
}
|
Rcpp::sourceCpp("test-BSpline.cpp")
x <- seq.int(0, 10, 0.02)
inter_knots <- c(2.4, 3.5, 5.2, 8)
bound_knots <- c(- 1, 12)
degree <- 4
foo <- function(...) {
mat <- bSpline(..., intercept = TRUE)
imat <- ibs(..., intercept = TRUE)
d1mat <- deriv(mat)
d2mat <- deriv(d1mat)
d3mat <- deriv(d2mat)
list(basis = mat, integral = imat,
d1 = d1mat, d2 = d2mat, d3 = d3mat,
degree = attr(mat, "degree"),
internal_knots = knots(mat),
boundary_knots = attr(mat, "Boundary.knots"))
}
res <- foo(x = x, knots = inter_knots, degree = degree,
Boundary.knots = bound_knots)
res00 <- rcpp_bspline00(x, inter_knots, degree, bound_knots)
expect_equivalent(res, res00)
res01 <- rcpp_bspline01(x, inter_knots, degree, bound_knots)
expect_equivalent(res, res01)
res02 <- rcpp_bspline02(x, inter_knots, degree, bound_knots)
expect_equivalent(res, res02)
res03 <- rcpp_bspline03(x, inter_knots, degree, bound_knots)
expect_equivalent(res, res03)
res04 <- rcpp_bspline04(x, inter_knots, degree, bound_knots)
expect_equivalent(res, res04)
res05 <- rcpp_bspline05(x, inter_knots, degree, bound_knots)
expect_equivalent(res, res05)
res1 <- rcpp_bspline1(x, inter_knots, degree, bound_knots)
expect_equivalent(res, res1)
res2 <- rcpp_bspline2(x, 10, degree, bound_knots)
res20 <- foo(x = x, degree = degree, df = 10,
Boundary.knots = bound_knots)
expect_equivalent(res20, res2)
knot_seq <- sort(c(rep(bound_knots, each = degree + 1), inter_knots))
res31 <- rcpp_bspline3(x, degree, knot_seq)
expect_equivalent(res, res31)
knot_seq <- sort(c(seq.int(0, 10, 1), 1, rep(4, 3), rep(7, 2)))
res32 <- rcpp_bspline3(x, degree, knot_seq)
expect_equivalent(
res32$basis,
splines::splineDesign(knot_seq, x, ord = degree + 1, outer.ok = TRUE)
)
expect_equivalent(
res32$d1,
splines::splineDesign(knot_seq, x, ord = degree + 1, outer.ok = TRUE,
derivs = 1)
)
expect_equivalent(
res32$d2,
splines::splineDesign(knot_seq, x, ord = degree + 1, outer.ok = TRUE,
derivs = 2)
)
res4 <- rcpp_bspline4(x, inter_knots, degree, bound_knots)
expect_equivalent(res, res4)
res5 <- rcpp_bspline5(x, inter_knots, degree, bound_knots)
expect_equivalent(res, res5)
res6 <- rcpp_bspline6(x, inter_knots, degree, bound_knots)
expect_equivalent(res, res6)
|
test_that("dd_interaction works", {
skip_on_os('solaris')
skip_if_not(sf::sf_use_s2())
.act <- ds_dd_interaction(de_county, starts_with('pop_'))
.exp <- c(0.307176832960713, 0.307176832960713, 0.307176832960713)
expect_equal(.act, .exp, tolerance = 1e-6)
})
test_that("dd_interaction .name works", {
.act <- ds_dd_interaction(de_county, starts_with('pop_'), .name = 'special_name')
expect_true('special_name' %in% names(.act))
})
test_that("dd_interaction .comp works", {
skip_on_os('solaris')
skip_if_not(sf::sf_use_s2())
.act <- ds_dd_interaction(de_county, starts_with('pop_'), .comp = TRUE)
.exp <- c(0.0554361331858142, 0.173723023598303, 0.0780176761765964)
expect_equal(.act, .exp, tolerance = 1e-6)
})
|
get_facets <- function(plot_click) {
is_panel_var <- grepl("panelvar", names(plot_click), fixed = TRUE)
panelvars <- names(plot_click)[is_panel_var]
facet_levels <- plot_click[is_panel_var]
facet_vars <- plot_click$mapping[names(plot_click$mapping) %in%
panelvars]
facets <- list(levels = facet_levels, vars = facet_vars)
facets
}
get_facet_characteristics <- function(built_plot) {
facets_quos <- get_facet_quos(built_plot)
facets_names <- names(facets_quos)
plot_data <- built_plot$plot$data
facets_data <- lapply(facets_quos,
ggann_eval_facet,
data = plot_data
)
facets_out <- list()
for (facet_name in facets_names) {
facet_data <- facets_data[[facet_name]]
if (!facet_name %in% names(plot_data)) {
data_name <- match_facet_var(
facet_name,
facet_data, plot_data
)
} else {
data_name <- facet_name
}
facet_factor <- inherits(facets_data[[facet_name]], "factor")
facet_list <- list(facet = list(
facet_name = facet_name,
data_name = data_name,
facet_factor = facet_factor
))
names(facet_list) <- facet_name
facets_out <- c(facets_out, facet_list)
}
facets_out
}
correct_facets <- function(clicked_facets, facet_characteristics) {
facets_out <- clicked_facets
if (length(clicked_facets$vars) > 0) {
for (panelvar in names(clicked_facets$vars)) {
facet_name <- clicked_facets$vars[[panelvar]]
facets_out$vars[[panelvar]] <- facet_characteristics[[facet_name]]$data_name
facet_factor <- facet_characteristics[[facet_name]]$facet_factor
if (isTRUE(facet_factor)) {
facets_out$levels[[panelvar]] <- call(
"factor",
facets_out$levels[[panelvar]]
)
}
}
}
facets_out
}
ggann_eval_facet <- function(facet, data) {
if (rlang::quo_is_symbol(facet)) {
facet <- as.character(rlang::quo_get_expr(facet))
if (facet %in% names(data)) {
out <- data[[facet]]
}
else {
out <- NULL
}
return(out)
}
rlang::eval_tidy(facet, data)
}
get_facet_quos <- function(built_plot) {
plot_facets <- list(
built_plot$layout$facet_params$rows,
built_plot$layout$facet_params$cols,
built_plot$layout$facet_params$facets
)
plot_facets <- purrr::compact(plot_facets)
unlist(plot_facets)
}
match_facet_var <- function(facet, facet_data, plot_data) {
matching_cols <- purrr::map_lgl(
plot_data,
function(x) all(as.character(x) == as.character(facet_data))
)
matching_cols <- matching_cols[matching_cols == TRUE]
if (length(matching_cols) == 1) {
matched_facet_var <- names(matching_cols)
} else {
var_between_brackets <- sub("^.*?\\((.*)\\)[^)]*$", "\\1", facet)
if (!var_between_brackets %in% names(plot_data)) {
var_before_comma <- sub(",.*", "\\1", var_between_brackets)
if (!var_before_comma %in% names(plot_data)) {
stop(
"facet variable `", facet,
"` could not be found in the plot data"
)
}
matched_facet_var <- var_before_comma
} else {
matched_facet_var <- var_between_brackets
}
}
matched_facet_var
}
|
context("Ex script 9/9 (isopod)")
test_that("Isopod ex works",{
mix.filename <- system.file("extdata", "isopod_consumer.csv", package = "MixSIAR")
mix <- load_mix_data(filename=mix.filename,
iso_names=c("c16.4w3","c18.2w6","c18.3w3","c18.4w3","c20.4w6","c20.5w3","c22.5w3","c22.6w3"),
factors="Site",
fac_random=TRUE,
fac_nested=FALSE,
cont_effects=NULL)
source.filename <- system.file("extdata", "isopod_sources.csv", package = "MixSIAR")
source <- load_source_data(filename=source.filename,
source_factors=NULL,
conc_dep=FALSE,
data_type="means",
mix)
discr.filename <- system.file("extdata", "isopod_discrimination.csv", package = "MixSIAR")
discr <- load_discr_data(filename=discr.filename, mix)
model_filename <- "MixSIAR_model.txt"
resid_err <- TRUE
process_err <- FALSE
write_JAGS_model(model_filename, resid_err, process_err, mix, source)
run <- list(chainLength=3, burn=1, thin=1, chains=3, calcDIC=TRUE)
invisible(capture.output(
jags.1 <- run_model(run, mix, source, discr, model_filename)
))
expect_is(jags.1,"rjags")
file.remove(model_filename)
})
|
circle_points = function(center = c(0, 0), radius = 1, npoints = 360) {
angles = seq(0, 2 * pi, length.out = npoints)
return(tibble(x = center[1] + radius * cos(angles),
y = center[2] + radius * sin(angles)))
}
width = 50
height = 94 / 2
key_height = 19
inner_key_width = 12
outer_key_width = 16
backboard_width = 6
backboard_offset = 4
neck_length = 0.5
hoop_radius = 0.75
hoop_center_y = backboard_offset + neck_length + hoop_radius
three_point_radius = 23.75
three_point_side_radius = 22
three_point_side_height = 14
plot_court = function(court_theme = court_themes$dark, use_short_three = FALSE) {
if (use_short_three) {
three_point_radius = 22
three_point_side_height = 0
}
court_points = tibble(
x = c(width / 2, width / 2, -width / 2, -width / 2, width / 2),
y = c(height, 0, 0, height, height),
desc = "perimeter"
)
court_points = bind_rows(court_points , tibble(
x = c(outer_key_width / 2, outer_key_width / 2, -outer_key_width / 2, -outer_key_width / 2),
y = c(0, key_height, key_height, 0),
desc = "outer_key"
))
court_points = bind_rows(court_points , tibble(
x = c(-backboard_width / 2, backboard_width / 2),
y = c(backboard_offset, backboard_offset),
desc = "backboard"
))
court_points = bind_rows(court_points , tibble(
x = c(0, 0), y = c(backboard_offset, backboard_offset + neck_length), desc = "neck"
))
foul_circle = circle_points(center = c(0, key_height), radius = inner_key_width / 2)
foul_circle_top = filter(foul_circle, y > key_height) %>%
mutate(desc = "foul_circle_top")
foul_circle_bottom = filter(foul_circle, y < key_height) %>%
mutate(
angle = atan((y - key_height) / x) * 180 / pi,
angle_group = floor((angle - 5.625) / 11.25),
desc = paste0("foul_circle_bottom_", angle_group)
) %>%
filter(angle_group %% 2 == 0) %>%
select(x, y, desc)
hoop = circle_points(center = c(0, hoop_center_y), radius = hoop_radius) %>%
mutate(desc = "hoop")
restricted = circle_points(center = c(0, hoop_center_y), radius = 4) %>%
filter(y >= hoop_center_y) %>%
mutate(desc = "restricted")
three_point_circle = circle_points(center = c(0, hoop_center_y), radius = three_point_radius) %>%
filter(y >= three_point_side_height, y >= hoop_center_y)
three_point_line = tibble(
x = c(three_point_side_radius, three_point_side_radius, three_point_circle$x, -three_point_side_radius, -three_point_side_radius),
y = c(0, three_point_side_height, three_point_circle$y, three_point_side_height, 0),
desc = "three_point_line"
)
court_points = bind_rows(
court_points,
foul_circle_top,
foul_circle_bottom,
hoop,
restricted,
three_point_line
)
court_points <<- court_points
ggplot() +
geom_path(
data = court_points,
aes(x = x, y = y, group = desc),
color = court_theme$lines
) +
coord_fixed(ylim = c(0, 35), xlim = c(-25, 25)) +
theme_minimal(base_size = 22) +
theme(
text = element_text(color = court_theme$text),
plot.background = element_rect(fill = court_theme$court, color = court_theme$court),
panel.background = element_rect(fill = court_theme$court, color = court_theme$court),
panel.grid = element_blank(),
panel.border = element_blank(),
axis.text = element_blank(),
axis.title = element_blank(),
axis.ticks = element_blank(),
legend.background = element_rect(fill = court_theme$court, color = court_theme$court),
legend.margin = margin(-1, 0, 0, 0, unit = "lines"),
legend.position = "bottom",
legend.key = element_blank(),
legend.text = element_text(size = rel(1.0))
)
}
|
dataTOSTpairedClass <- R6::R6Class(
"dataTOSTpairedClass",
inherit = dataTOSTpairedBase,
private = list(
.init = function() {
ci <- 100 - as.integer(self$options$alpha * 200)
tt <- self$results$tost
eqb <- self$results$eqb
desc <- self$results$desc
plots <- self$results$plots
for (pair in self$options$pairs) {
tt$setRow(rowKey=pair, list(i1=pair[[1]], i2=pair[[2]]))
eqb$setRow(rowKey=pair, list(i1=pair[[1]], i2=pair[[2]]))
desc$setRow(rowKey=pair, list(`name[1]`=pair[[1]], `name[2]`=pair[[2]]))
plots$get(key=pair)$setTitle(paste(pair[[1]], '-', pair[[2]]))
}
eqb$getColumn('cil[cohen]')$setSuperTitle(jmvcore::format('{}% Confidence interval', ci))
eqb$getColumn('ciu[cohen]')$setSuperTitle(jmvcore::format('{}% Confidence interval', ci))
eqb$getColumn('cil[raw]')$setSuperTitle(jmvcore::format('{}% Confidence interval', ci))
eqb$getColumn('ciu[raw]')$setSuperTitle(jmvcore::format('{}% Confidence interval', ci))
},
.run = function() {
tt <- self$results$tost
eqb <- self$results$eqb
desc <- self$results$desc
plots <- self$results$plots
for (pair in self$options$pairs) {
if (is.null(pair[[1]]))
next()
if (is.null(pair[[2]]))
next()
i1 <- jmvcore::toNumeric(self$data[[pair[[1]] ]])
i2 <- jmvcore::toNumeric(self$data[[pair[[2]] ]])
data <- data.frame(i1=i1, i2=i2)
data <- na.omit(data)
n <- nrow(data)
i1 <- data$i1
i2 <- data$i2
m1 <- base::mean(i1)
m2 <- base::mean(i2)
med1 <- stats::median(i1)
med2 <- stats::median(i2)
sd1 <- stats::sd(i1)
sd2 <- stats::sd(i2)
se1 <- sd1/sqrt(n)
se2 <- sd2/sqrt(n)
res <- t.test(i1, i2, paired=TRUE)
t <- unname(res$statistic)
p <- unname(res$p.value)
df <- unname(res$parameter)
alpha <- self$options$alpha
low_eqbound <- self$options$low_eqbound
high_eqbound <- self$options$high_eqbound
low_eqbound_dz <- self$options$low_eqbound_dz
high_eqbound_dz <- self$options$high_eqbound_dz
r12 <- stats::cor(i1, i2)
sdif<-sqrt(sd1^2+sd2^2-2*r12*sd1*sd2)
if (low_eqbound_dz != -999999999 && low_eqbound_dz != -999999999) {
low_eqbound <- low_eqbound_d * sdif
high_eqbound <- high_eqbound_d * sdif
}
else if (self$options$eqbound_type == 'd') {
low_eqbound_dz <- low_eqbound
high_eqbound_dz <- high_eqbound
low_eqbound <- low_eqbound * sdif
high_eqbound <- high_eqbound * sdif
} else {
low_eqbound_dz <- low_eqbound / sdif
high_eqbound_dz <- high_eqbound / sdif
}
se<-sdif/sqrt(n)
t<-(m1-m2)/se
degree_f<-n-1
pttest<-2*pt(abs(t), degree_f, lower.tail=FALSE)
t1<-((m1-m2)-(low_eqbound_dz*sdif))/se
p1<-pt(t1, degree_f, lower.tail=FALSE)
t2<-((m1-m2)-(high_eqbound_dz*sdif))/se
p2<-pt(t2, degree_f, lower.tail=TRUE)
ttost<-ifelse(abs(t1) < abs(t2), t1, t2)
LL90<-((m1-m2)-qt(1-alpha, degree_f)*se)
UL90<-((m1-m2)+qt(1-alpha, degree_f)*se)
ptost<-max(p1,p2)
dif<-(m1-m2)
LL95<-((m1-m2)-qt(1-(alpha/2), degree_f)*se)
UL95<-((m1-m2)+qt(1-(alpha/2), degree_f)*se)
tt$setRow(rowKey=pair, list(
`t[0]`=t, `df[0]`=df, `p[0]`=p,
`t[1]`=t2, `df[1]`=degree_f, `p[1]`=p2,
`t[2]`=t1, `df[2]`=degree_f, `p[2]`=p1))
eqb$setRow(rowKey=pair, list(
`low[raw]`=low_eqbound, `high[raw]`=high_eqbound, `cil[raw]`=LL90, `ciu[raw]`=UL90,
`low[cohen]`=low_eqbound_dz, `high[cohen]`=high_eqbound_dz))
desc$setRow(rowKey=pair, list(
`n[1]`=n, `m[1]`=m1, `med[1]`=med1, `sd[1]`=sd1, `se[1]`=se1,
`n[2]`=n, `m[2]`=m2, `med[2]`=med2, `sd[2]`=sd2, `se[2]`=se2))
plot <- plots$get(key=pair)
points <- data.frame(
m=dif,
cil=LL90,
ciu=UL90,
low=low_eqbound,
high=high_eqbound,
stringsAsFactors=FALSE)
plot$setState(points)
}
},
.plot=function(image, ggtheme, theme, ...) {
if (is.null(image$state))
return(FALSE)
tostplot(image, ggtheme, theme)
return(TRUE)
})
)
|
UhligPenalty <-
function(g, first, last, constrained, impulses, scales, pen){
func <- 0.0
q <- matrix(stereo(v=g))
for(k in first:last){
ik <- (impulses[k, , ]%*%q) / scales
for(i in 1:length(constrained)){
if(constrained[i]<0){
value <- ik[-1.0*constrained[i]]
}else{
value <- -1.0 * ik[constrained[i]]
}
if(value<0){
func <- func + value
}else{
func <- func + pen * value
}
}
}
acc <- func
return(acc)
}
|
pandemic_stats <- function(object){
if (!is(object, "pandemicPredicted")) stop("Please use the output of the posterior_predict() function.")
if(missing(object)) stop("object is a required argument. See help(pandemic_stats) for more information.")
t = length(object$data[[1]])
ST_horizon = ncol(object$predictive_Short)
LT_horizon = ncol(object$predictive_Long)
longHorizon = ncol(methods::slot(object$fit,"sim")$fullPred$thousandLongPred)
date_full <- as.Date(object$data$date[1]:(max(object$data$date) + longHorizon), origin = "1970-01-01")
ST_predict <- data.frame( date = date_full[(t+1):(t+ST_horizon)],
q2.5 = apply(object$predictive_Short,2,stats::quantile,.025),
med = apply(object$predictive_Short,2,stats::median),
q97.5 = apply(object$predictive_Short,2,stats::quantile,.975),
mean = colMeans(object$predictive_Short))
row.names(ST_predict) <- NULL
if(object$cases_type == "confirmed"){
cumulative_y = object$data$cases[t]
} else{
cumulative_y = object$data$deaths[t]
}
if(cumulative_y > 1000){
lowquant <- apply(methods::slot(object$fit,"sim")$fullPred$thousandLongPred,2,stats::quantile,.025)
medquant <- apply(methods::slot(object$fit,"sim")$fullPred$thousandLongPred,2,stats::median)
highquant <- apply(methods::slot(object$fit,"sim")$fullPred$thousandLongPred,2,stats::quantile,.975)
} else{
lowquant <- c(cumulative_y , apply(methods::slot(object$fit,"sim")$fullPred$thousandShortPred,2,stats::quantile,.025))
lowquant <- (lowquant - lag(lowquant, default = 0))[-1]
medquant <- c(cumulative_y, apply(methods::slot(object$fit,"sim")$fullPred$thousandShortPred,2,stats::median))
medquant <- (medquant - lag(medquant,default = 0))[-1]
highquant <- c(cumulative_y, apply(methods::slot(object$fit,"sim")$fullPred$thousandShortPred,2,stats::quantile,.975))
highquant <- (highquant - lag(highquant, default = 0))[-1]
}
TNC2.5 = sum(lowquant) + cumulative_y
TNC50 = sum(medquant) + cumulative_y
TNC97.5 = sum(highquant) + cumulative_y
peak2.5 <- peak50 <- peak97.5 <- NULL
end2.5 <- end50 <- end97.5 <- NULL
index_season <-NULL
if(!is.null(object$seasonal_effect)){
s_code <- seasonal_code(date_full, object$seasonal_effect)
for (i in 1:length(s_code)){
index_aux <- which((seq(1,(t+longHorizon),1) - s_code[i]) %% 7 == 0)
index_season<-c(index_aux, index_season)
}
index_season<-sort(index_season)
}
chain_mu <- cbind(object$pastMu, methods::slot(object$fit,"sim")$fullPred$thousandMus)
mu50 <- apply(chain_mu, 2, stats::quantile, probs = 0.5)
peak50 <- date_full[which.max(mu50)]
q <- .99
med_cumulative <- apply(as.matrix(mu50),2,cumsum)
med_percent<- med_cumulative / med_cumulative[t + longHorizon]
med_end <- which(med_percent - q > 0)[1]
end50 <- date_full[med_end]
mu25 <- apply(chain_mu, 2, stats::quantile, probs = 0.025)
mu975 <- apply(chain_mu, 2, stats::quantile, probs = .975)
mu25_aux <- if(is.null(object$seasonal_effect)) mu25 else mu25[-index_season]
posMaxq2.5 <- which.max(mu25_aux)
aux <- if (is.null(object$seasonal_effect)) mu975 - mu25_aux[posMaxq2.5] else mu975[-index_season] - mu25_aux[posMaxq2.5]
aux2 <- aux[ posMaxq2.5 : length(aux)]
val <- ifelse( length(aux2[aux2 < 0]) > 0, min(aux2[aux2 > 0]), aux[length(aux)])
date_max <- which(aux == val)
aux <- if(is.null(object$seasonal_effect)) mu975 - mu25_aux[posMaxq2.5] else mu975[-index_season] - mu25_aux[posMaxq2.5]
aux2 <- aux[1:posMaxq2.5]
val <- min(aux2[aux2>0])
date_min <- which(aux == val)
date_full_aux <- if(is.null(object$seasonal_effect)) date_full else date_full[-index_season]
peak2.5 <- date_full_aux[date_min]
peak97.5 <- date_full_aux[date_max]
low_cumulative <- apply(as.matrix(mu25),2,cumsum)
low_percent <- low_cumulative / low_cumulative[t + longHorizon]
low_end <- which(low_percent - q > 0)[1]
end2.5 <- date_full[low_end]
high_cumulative <- apply(as.matrix(mu975),2,cumsum)
high_percent <- high_cumulative / high_cumulative[t + longHorizon]
high_end <- which( high_percent - q > 0)[1]
end97.5 <- date_full[high_end]
LT_predict <- data.frame( date = date_full[(t+1):(t+LT_horizon)],
q2.5 = lowquant[1:LT_horizon],
med = medquant[1:LT_horizon],
q97.5 = highquant[1:LT_horizon],
mean = colMeans(object$predictive_Long))
row.names(LT_predict) <- NULL
LT_summary <- list(total_cases_LB = TNC2.5,
total_cases_med = TNC50,
total_cases_UB = TNC97.5,
peak_date_LB = peak2.5 ,
peak_date_med = peak50 ,
peak_date_UB = peak97.5,
end_date_LB = end2.5,
end_date_med = end50,
end_date_UB = end97.5)
muplot <- data.frame(date = date_full[1:(t+LT_horizon)], mu = mu50[1:(t+LT_horizon)])
row.names(muplot) <-NULL
dataplot <- list(data = object$data, location = object$location, case_type = object$cases_type)
output <- list( data = dataplot, ST_predict = ST_predict, LT_predict = LT_predict,
LT_summary = LT_summary, mu = muplot )
class(output) = "pandemicStats"
return(output)
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.