code
stringlengths 1
13.8M
|
---|
context("na_locf")
test_that("All NA vector gives warning", {
expect_warning(na_locf(c(NA, NA, NA, NA, NA)))
})
test_that("Correct results for all options with a modifed tsAirgap dataset (additionalNAs at end)", {
skip_on_cran()
x <- tsAirgap
x[135:144] <- NA
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "mean")), digits = 1), 271.9)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "mean")), digits = 1), 266.7)
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "rev")), digits = 1), 271.9)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "rev")), digits = 1), 275.3)
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "rm")), digits = 1), 271.9)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "rm")), digits = 1), 266.7)
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "keep"), na.rm = T), digits = 1), 271.9)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "keep"), na.rm = T), digits = 1), 266.7)
})
test_that("Correct results for all options with a modifed tsAirgap dataset (additionalNAs at start)", {
skip_on_cran()
x <- tsAirgap
x[1:5] <- NA
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "mean")), digits = 1), 284.3)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "mean")), digits = 1), 283.0)
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "rev")), digits = 1), 279.2)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "rev")), digits = 1), 283.0)
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "rm")), digits = 1), 284.3)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "rm")), digits = 1), 283.0)
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "keep"), na.rm = T), digits = 1), 284.3)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "keep"), na.rm = T), digits = 1), 283.0)
})
test_that("Correct results for all options with the tsAirgap dataset", {
skip_on_cran()
x <- tsAirgap
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "mean")), digits = 1), 278.8)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "mean")), digits = 1), 282.7)
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "rev")), digits = 1), 278.8)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "rev")), digits = 1), 282.7)
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "rm")), digits = 1), 278.8)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "rm")), digits = 1), 282.7)
expect_equal(round(mean(na_locf(x, option = "locf", na_remaining = "keep"), na.rm = T), digits = 1), 278.8)
expect_equal(round(mean(na_locf(x, option = "nocb", na_remaining = "keep"), na.rm = T), digits = 1), 282.7)
})
test_that("Imputation works for data.frame", {
x <- data.frame(tsAirgap, tsAirgap, tsAirgapComplete)
expect_false(anyNA(na_locf(x, option = "locf", na_remaining = "mean")))
expect_false(anyNA(na_locf(x, option = "nocb", na_remaining = "mean")))
expect_false(anyNA(na_locf(x, option = "locf", na_remaining = "rev")))
expect_false(anyNA(na_locf(x, option = "nocb", na_remaining = "rev")))
expect_false(anyNA(na_locf(x, option = "locf", na_remaining = "rm")))
expect_false(anyNA(na_locf(x, option = "nocb", na_remaining = "rm")))
})
test_that("Warning for wrong input for option parameter", {
expect_error(na_locf(tsAirgap, option = "wrongOption"))
})
test_that("Warning for wrong input for na_remaining parameter", {
x <- tsAirgap
x[1:2] <- NA
expect_error(na_locf(x, na_remaining = "Wrong"))
})
test_that("Test NA at beginning", {
x <- tsAirgap
x[1:2] <- NA
expect_false(anyNA(na_locf(x, option = "locf", na_remaining = "mean")))
expect_false(anyNA(na_locf(x, option = "locf", na_remaining = "rev")))
expect_false(anyNA(na_locf(x, option = "nocb", na_remaining = "mean")))
expect_false(anyNA(na_locf(x, option = "nocb", na_remaining = "rev")))
expect_equal(length(na_locf(x, option = "nocb", na_remaining = "rm")), 144)
expect_equal(length(na_locf(x, option = "locf", na_remaining = "rm")), 142)
expect_equal(length(na_locf(x, option = "nocb", na_remaining = "keep")), 144)
expect_false(anyNA(na_locf(x)))
})
test_that("Test NA at end", {
x <- tsAirgap
x[143:144] <- NA
expect_false(anyNA(na_locf(x, option = "locf", na_remaining = "mean")))
expect_false(anyNA(na_locf(x, option = "locf", na_remaining = "rev")))
expect_false(anyNA(na_locf(x, option = "nocb", na_remaining = "mean")))
expect_false(anyNA(na_locf(x, option = "nocb", na_remaining = "rev")))
expect_equal(length(na_locf(x, option = "nocb", na_remaining = "rm")), 142)
expect_equal(length(na_locf(x, option = "locf", na_remaining = "rm")), 144)
expect_false(anyNA(na_locf(x)))
})
test_that("Multiple NAs in a row", {
x <- tsAirgap
x[40:80] <- NA
expect_false(anyNA(na_locf(x, option = "locf", na_remaining = "mean")))
expect_false(anyNA(na_locf(x, option = "locf", na_remaining = "rev")))
expect_false(anyNA(na_locf(x, option = "nocb", na_remaining = "mean")))
expect_false(anyNA(na_locf(x, option = "nocb", na_remaining = "rev")))
expect_equal(length(na_locf(x, option = "nocb", na_remaining = "rm")), 144)
expect_equal(length(na_locf(x, option = "locf", na_remaining = "rm")), 144)
expect_false(anyNA(na_locf(x)))
})
test_that("Over 90% NAs", {
x <- tsAirgap
x[10:140] <- NA
expect_false(anyNA(na_locf(x, option = "locf", na_remaining = "mean")))
expect_false(anyNA(na_locf(x, option = "locf", na_remaining = "rev")))
expect_false(anyNA(na_locf(x, option = "nocb", na_remaining = "mean")))
expect_false(anyNA(na_locf(x, option = "nocb", na_remaining = "rev")))
expect_false(anyNA(na_locf(x)))
})
|
library("psychotools")
data("VerbalAggression", package = "psychotools")
d <- VerbalAggression[, c("gender", "anger")]
d$poly <- itemresp(VerbalAggression$resp[, 13:18], mscale = 0:2,
labels = c("Want-Curse", "Do-Curse", "Want-Scold", "Do-Scold", "Want-Shout", "Do-Shout"))
head(d$poly)
summary(d$poly)
prop.table(summary(d$poly), 1)
plot(d$poly)
library("likert")
lik <- likert(as.data.frame(as.list(d$poly)))
lik
plot(lik)
d$dich <- d$poly
mscale(d$dich) <- c(0, 1, 1)
par(mfrow = c(1, 2))
plot(d$poly)
plot(d$dich)
par(mfrow = c(1, 1))
ram <- raschmodel(d$dich)
ram
summary(ram)
plot(ram, type = "curves")
par(mfrow = c(1, 2))
plot(ram, type = "profile")
plot(ram, type = "regions")
par(mfrow = c(1, 1))
plot(ram, type = "piplot")
plot(ram, type = "information")
raip <- itempar(ram)
raip
confint(raip)
confint(itempar(ram, ref = 1, alias = FALSE))
library("lmtest")
coeftest(itempar(ram, ref = 1, alias = FALSE))
rapp <- personpar(ram)
rapp
confint(rapp)
rsm <- rsmodel(d$poly)
pcm <- pcmodel(d$poly)
pp <- personpar(pcm)
vcpp <- vcov(pp)
iprm <- itempar(ram, alias = FALSE, ref = 1)
iprsm <- itempar(rsm, alias = FALSE, ref = 1)
ippcm <- itempar(pcm, alias = FALSE, ref = 1)
print(cbind(RM = iprm, RSM = iprsm, PCM = ippcm), digits = 5)
atprsm <- threshpar(rsm, relative = FALSE, ref = 1)
atppcm <- threshpar(pcm, relative = FALSE, ref = 1)
print(cbind(coef(atprsm, type = "matrix"),
coef(atppcm, type = "matrix")), digits = 5)
rtprsm <- threshpar(rsm, ref = 1, relative = TRUE)
rtppcm <- threshpar(pcm, ref = 1, relative = TRUE)
print(cbind(coef(rtprsm, type = "matrix"),
coef(rtppcm, type = "matrix")), digits = 5)
lbs <- labels(d$poly)
tlm <- c(-2, 6)
cols <- colorspace::rainbow_hcl(4, c = 60, l = 75)
cols2 <- colorspace::heat_hcl(6, h = c(0, -100), c = 60, l = 75)
cols3 <- colorspace::rainbow_hcl(3, c = 60, l = 60)
plot(pcm, type = "curves", ref = 1, items = 1:6, layout = matrix(1:6, ncol = 3, nrow = 2, byrow = FALSE),
names = lbs, ylim = c(0, 1), xlim = tlm, col = cols[1:3], lwd = 1.5,
xlab = expression(paste("Latent trait ", theta)), ylab = "Probability")
plot(pcm, type = "regions", names = lbs, parg = list(ref = 1),
ylab = expression(paste("Latent trait ", theta)), ylim = tlm, col = cols[1:3])
plot(pcm, type = "profile", what = "items", names = lbs,
ylab = expression(paste("Latent trait ", theta)), parg = list(ref = 1), ylim = tlm)
plot(rsm, type = "curves", items = 1, ref = 1, xlim = tlm, col = c("
plot(pcm, type = "curves", items = 1, ref = 1, lty = 2, xlim = tlm, col = c("
legend(x = 0.85, y = 6.5, legend = c("RSM", "PCM"), bty = "n", lty = 1:2, lwd = 2)
plot(ram, type = "profile", what = "items", parg = list(ref = 1), col = cbind(cols3[1], "lightgray"), ref = FALSE, names = lbs, ylim = tlm, ylab = "Item location parameters")
plot(rsm, type = "profile", what = "items", parg = list(ref = 1), col = cbind(cols3[2], "lightgray"), ylim = tlm, add = TRUE)
plot(pcm, type = "profile", what = "items", parg = list(ref = 1), col = cbind(cols3[3], "lightgray"), ylim = tlm, add = TRUE)
legend(x = 0.85, y = 6.5, legend = c("RM", "RSM", "PCM"), bty = "n", col = cols3, pch = 16)
plot(rsm, type = "profile", what = "threshold", parg = list(ref = 1), col = cbind(cols3[2], cols3[2]), names = lbs, ylim = tlm)
plot(pcm, type = "profile", what = "threshold", parg = list(ref = 1), col = cbind(cols3[3], cols3[3]), add = TRUE)
legend(x = 0.85, y = 6.5, legend = c("RSM", "PCM"), bty = "n", col = cols3[2:3], pch = 16)
plot(ram, type = "information", what = "items", ref = 1, xlab = expression(paste("Latent trait ", theta)),
names = lbs, lty = 1, xlim = c(-4, 8), ylim = c(0, 0.6), main = "", lwd = 2, col = cols2, ylab = "Item information")
plot(pcm, type = "information", what = "items", ref = 1, lty = 2, xlim = c(-4, 8), lwd = 2, col = cols2, add = TRUE)
legend(x = 6, y = 0.74, legend = c("RM", "PCM"), bty = "n", lwd = 2, lty = 1:2)
plot(pcm, type = "information", what = "categories", ref = 1, items = 1:6, xlab = expression(paste("Latent trait ", theta)), ylab = "Category information",
lwd = 2, names = lbs, col = cols, xlim = c(-4, 8), ylim = c(0, 0.3), layout = matrix(1:6, ncol = 3, nrow = 2, byrow = FALSE))
AIC(rsm, pcm)
BIC(rsm, pcm)
library("lmtest")
lrtest(rsm, pcm)
tp <- threshpar(pcm, type = "mode",
relative = TRUE, ref = 1, alias = FALSE)
C <- cbind(1, diag(-1, nrow = 5, ncol = 5))
library("car")
linearHypothesis(tp, hypothesis.matrix = C, rhs = rep.int(0, 5))
rmall <- raschmodel(d$dich)
rmmale <- raschmodel(subset(d, gender == "male")$dich)
rmfemale <- raschmodel(subset(d, gender == "female")$dich)
(LRT <- as.vector(- 2 * (logLik(rmall) -
(logLik(rmmale) + logLik(rmfemale)))))
pchisq(LRT, df = 5, lower.tail = FALSE)
ipmale <- itempar(rmmale, ref = c(2, 3))
ipfemale <- itempar(rmfemale, ref = c(2, 3))
waldtests <- (coef(ipmale) - coef(ipfemale)) /
sqrt(diag(vcov(ipmale)) + diag(vcov(ipfemale)))
pvalues <- 2*pnorm(abs(waldtests), lower.tail = FALSE)
cbind("Test Statistic" = waldtests, "P-Value" = pvalues)
set.seed(1)
anchortest(rmfemale, rmmale, class = "forward",
method = "MPT", adjust = "holm")
library("psychotree")
rt <- raschtree(dich ~ gender + anger, data = d)
plot(rt, tp_args = list(names = lbs, abbreviate = FALSE))
|
if (require(tree)) {
require(ggplot2)
require(MASS)
data(cpus, package = "MASS")
cpus.ltr <- tree(log10(perf) ~ syct + mmin + mmax + cach + chmin + chmax,
data = cpus)
tree_data <- dendro_data(cpus.ltr)
ggplot(segment(tree_data)) +
geom_segment(aes(x = x, y = y, xend = xend, yend = yend, size = n),
colour = "lightblue"
) +
scale_size("n") +
geom_text(
data = label(tree_data),
aes(x = x, y = y, label = label), vjust = -0.5, size = 4
) +
geom_text(
data = leaf_label(tree_data),
aes(x = x, y = y, label = label), vjust = 0.5, size = 3
) +
theme_dendro()
}
|
expected <- eval(parse(text="187L"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(srcfile = \"/home/lzhao/tmp/RtmpS45wYI/R.INSTALL2aa62411bcd3/rpart/R/rpart.R\", frow = 187L, lrow = 187L), .Names = c(\"srcfile\", \"frow\", \"lrow\"), row.names = c(NA, -1L), class = \"data.frame\"), 2L)"));
do.call(`.subset2`, argv);
}, o=expected);
|
euclidean_distance <- function(point, cloud, threads = 1L) {
results <- euclidean_rcpp(point, as.matrix(cloud), threads)
return(results)
}
|
SurvCD <- function(X0, Y0, status, penalty=c("network", "mcp", "lasso"), lamb.1=NULL, lamb.2=NULL, clv=NULL, r=5,
init=NULL, alpha.i=1, robust=TRUE, standardize=TRUE)
{
intercept = TRUE
status = as.numeric(status)
if(is.null(clv)){
clv = intercept*1
}else{
clv = setdiff(union(intercept, (clv+intercept)), 0)
}
n = nrow(X0); p.c = length(clv); p = ncol(X0)-p.c+intercept;
if(standardize) X1 = scale(X0, center = FALSE, scale = apply(X0, 2, function(t) stats::sd(t)*sqrt((n-1)/n)))
if(intercept) X1 = cbind(Intercept = rep(1, n), X1)
Y1 = Y0
out = KMweight(X1, Y1, status, robust)
X = out$X + 10^-9
Y = out$Y
init = match.arg(init, choices = c("zero","cox","elnet"))
x.c=X[, clv, drop = FALSE]; x.g = X[, -clv, drop = FALSE]
if(init == "cox"){
b0 = initiation_cox(out$Xo, out$Yo, out$So)
} else if(init == "elnet"){
b0 = initiation(X, Y, alpha.i)
} else{
b0 = rep(0, (p+p.c))
}
if(penalty == "network"){
a = Adjacency(x.g)
b = RunNetSurv(x.c, x.g, Y, lamb.1, lamb.2, b0[clv], b0[-clv], r, a, p, p.c, robust)
}else if(penalty == "mcp"){
b = RunMCPSurv(x.c, x.g, Y, lamb.1, b0[clv], b0[-clv], r, p, p.c, robust)
}else{
b = RunLassoSurv(x.c, x.g, Y, lamb.1, b0[clv], b0[-clv], p, p.c, robust)
}
b = as.numeric(b)
vname = colnames(X0)
if(!is.null(vname)){
names(b) = c("Intercept", vname[clv], vname[-clv])
}else if(p.c==1){
names(b) = c("Intercept", paste("g", seq = (1:p), sep=""))
}else{
names(b) = c("Intercept", paste("clv", seq = (1:(p.c-1)), sep=""), paste("g", seq = (1:p), sep=""))
}
return(drop(b))
}
KMweight <- function(X1, Y1, status, robust){
y.log <- log(Y1); inds = order(y.log)
n = nrow(X1)
xs=X1[inds,]
d=status[inds]
yy = y.log[inds]
w <- numeric(n)
w[1]=d[1]/n
for ( i in 2:n ){
tmp = 1
for ( j in 1: (i-1) )
tmp = tmp*((n-j)/(n-j+1))^d[j]
w[i]=d[i]/(n-i+1)*tmp
}
if(robust){
XZ = w * xs
YZ = w * yy
}else{
XZ = sqrt(w) * xs
YZ = sqrt(w) * yy
}
list(X = XZ, Y = YZ, Xo=xs, Yo=Y1[inds], So=d)
}
|
if(getRversion() >= "2.15.1") utils::globalVariables(c(
".", "Nsurv", "Nsurv_q50_check", "ppc_matching_valid", "SE_id",
"Nsurv_q50_valid", "Nsurv_qinf95_valid", "Nsurv_qsup95_valid", "conc", "q50",
"qinf95", "qsup95", "time"))
|
romberg <- function(f, a, b, maxit = 25, tol = 1e-12, ...)
{
stopifnot(is.numeric(a), is.numeric(b), length(a) == 1, length(b) == 1)
tol <- abs(tol)
if (a == b) return(list(value = 0, iter = 0, rel.error = 0))
if (a > b) return(-1 * romberg(f, b, a, tol = tol, ...))
fun <- match.fun(f)
f <- function(x) fun(x, ...)
eps <- .Machine$double.eps
if (!is.finite(f(a))) a <- a + eps * sign(b-a)
if (!is.finite(f(b))) b <- b - eps * sign(b-a)
I <- matrix(0, nrow = maxit+1, ncol = maxit+1)
n <- 1; iter <- 0; err <- 1.0
while (err > tol && iter < maxit) {
iter <- iter+1
n <- 2 * n
h <- (b-a) / n
S <- f(a)
for (i in 1:(n-1)) {
xi <- a + h * i
S <- S + 2*f(xi)
}
S <- (S + f(b)) * h/2
I[iter+1, 1] <- S
for (k in 2:(iter+1)) {
j <- 2+iter-k
I[j,k] <- (4^(k-1)*I[j+1,k-1] - I[j,k-1]) / (4^(k-1)-1)
}
err <- abs(I[1,iter+1] - I[2,iter])
}
if (iter == maxit)
warning("Maximum number of iterations has been reached.")
return(list(value = I[1, iter+1], iter = iter, rel.error = err))
}
|
make.branches.quasse.fftR <- function(control) {
nx <- control$nx
dx <- control$dx
r <- control$r
dt.max <- control$dt.max
tc <- control$tc
f.hi <- make.pde.quasse.fftR(nx*r, dx/r, dt.max, 2L)
f.lo <- make.pde.quasse.fftR(nx, dx, dt.max, 2L)
combine.branches.quasse(f.hi, f.lo, control)
}
make.pde.quasse.fftR <- function(nx, dx, dt.max, nd) {
function(y, len, pars, t0) {
padding <- pars$padding
ndat <- length(pars$lambda)
nt <- as.integer(ceiling(len / dt.max))
dt <- len / nt
if ( !(length(y) %in% (nd * nx)) )
stop("Wrong size y")
if ( length(pars$lambda) != length(pars$mu) ||
length(pars$lambda) > (nx-3) )
stop("Incorrect length pars")
if ( pars$diffusion <= 0 )
stop("Invalid diffusion parameter")
if ( !is.matrix(y) )
y <- matrix(y, nx, nd)
ans <- quasse.integrate.fftR(y, pars$lambda, pars$mu, pars$drift,
pars$diffusion, nt, dt, nx, ndat, dx,
padding[1], padding[2])
q <- sum(ans[,2]) * dx
ans[,2] <- ans[,2] / q
list(log(q), ans)
}
}
quasse.integrate.fftR <- function(vars, lambda, mu, drift, diffusion,
nstep, dt, nx, ndat, dx, nkl, nkr) {
kern <- fftR.make.kern(-dt * drift, sqrt(dt * diffusion),
nx, dx, nkl, nkr)
fy <- fft(kern)
for ( i in seq_len(nstep) ) {
vars <- fftR.propagate.t(vars, lambda, mu, dt, ndat)
vars <- fftR.propagate.x(vars, nx, fy, nkl, nkr)
}
vars
}
fftR.make.kern <- function(mean, sd, nx, dx, nkl, nkr) {
kern <- rep(0, nx)
xkern <- (-nkl:nkr)*dx
ikern <- c((nx - nkl + 1):nx, 1:(nkr + 1))
kern[ikern] <- normalise(dnorm(xkern, mean, sd))
kern
}
fftR.propagate.t <- function(vars, lambda, mu, dt, ndat) {
i <- seq_len(ndat)
r <- lambda - mu
z <- exp(dt * r)
e0 <- vars[i,1]
d0 <- vars[i,-1]
vars[i,1] <- (mu + z*(e0 - 1)*mu - lambda*e0) /
(mu + z*(e0 - 1)*lambda - lambda*e0)
dd <- (z * r * r)/(z * lambda - mu + (1-z)*lambda*e0)^2
vars[i,-1] <- dd * d0
vars
}
fftR.propagate.x <- function(vars, nx, fy, nkl, nkr) {
ifft <- function(x) fft(x, inverse=TRUE)
f <- function(z, fy, n) {
nx <- length(z)
for ( i in seq_len(n) )
z <- Re(ifft(fft(z) * fy))/nx
z
}
vars.out <- Re(apply(apply(vars, 2, fft) * fy, 2, ifft))/nx
ndat <- nx - (nkl + 1 + nkr)
i.prev.l <- 1:nkl
i.prev.r <- (ndat-nkr+1):ndat
i.zero <- (ndat+1):nx
vars.out[c(i.prev.l, i.prev.r),] <- vars[c(i.prev.l, i.prev.r),]
vars.out[i.zero,] <- 0
vars.out[vars.out < 0] <- 0
vars.out
}
|
strictOp <- function(expr, warnOnly = FALSE, errorCall = substitute(expr)) {
condFun <- if(warnOnly) warning else stop
fCall <- substitute(expr)
if(!is.language(fCall)) {
warning("expression supplied to strictOp() was not a function call")
return(expr)
}
fname <- fCall[[1]]
univariate <- length(fCall) == 2 || eval.parent(substitute(missing(E2), list(E2 = fCall[[3]])))
if(is.name(fname)) {
f <- as.character(fname)
gen = getGeneric(f)
}
else {
gen <- getGeneric(eval.parent(fname))
if(is.null(gen) ) f <- deparse(fname)
else f <- gen@generic
fCall[[1]] <- as.name(f)
}
if(univariate) {
localCall <- fCall
localCall[[2]] <- quote(e1);
if(length(localCall) > 2) localCall[[3]] <- NULL
}
else {
localCall <- fCall
localCall[[2]] <- quote(e1); localCall[[3]] <- quote(e2)
}
e1 <- eval.parent(fCall[[2]])
e2 <- if(univariate) .MissingArg else eval.parent(fCall[[3]])
if(is.null(gen)) {
warning("Function \"", f, "\" is not one of the operators that can be checked")
return(eval(localCall))
}
group = gen@group
if(length(group) == 0) {
f <- as.character(f)
if(identical(f, "&&") || identical(f, "||"))
.strictCondOp(f, e1, e2, eval(localCall), errorCall, condFun)
else if(identical(f, "!"))
.strictLogicOp(f, e1, e2, eval(localCall), errorCall, condFun)
else {
warning("Function \"", f, "\" is not one of the operators that can be checked")
eval(localCall)
}
}
else {
g1 = group[[1]]
if(!(is.character(g1) && length(g1) == 1)) {
warning("Function \"", f, "\" has a non-standard generic group")
return(eval(localCall))
}
switch(g1,
Arith = .strictArithOp(f, e1, e2, eval(localCall), errorCall, condFun),
Logic = .strictLogicOp(f, e1, e2, eval(localCall), errorCall, condFun),
Compare = .strictCompareOp(f, e1, e2, localCall, errorCall, condFun),
{
warning("Function \"", f, "\" is not one of the operators that can be checked")
eval(localCall)
})
}
}
.MissingArg <- new.env()
.Missing <- function(obj) identical(obj, .MissingArg)
`.tail<-` <- function(x, value) {
c(x, paste(value, collapse = ""))
}
.strictCondOp <- function(f, e1, e2, expr, errorCall, condFun) {
msg <- character()
if(!is.logical(e1))
.tail(msg) <- c("First argument is not logical: class \"", class(e1), "\"")
else if(length(e1) != 1)
.tail(msg) <- c("Length of first argument shojuld be 1; got ", length(e1))
else if(is.na(e1))
.tail(msg) <- c("First argument is NA")
if(.Missing(e2))
.tail(msg) <- "No univariate version of this operator"
else if(!is.logical(e2))
.tail(msg) <- c("Second argument is not logical: class \"", class(e2), "\"")
else if(length(e2) != 1)
.tail(msg) <- c("Length of second argument shojuld be 1; got ", length(e2))
else if(is.na(e2))
.tail(msg) <- c("Second argument is NA")
if(length(msg) > 0)
.strictOpMessage(errorCall, msg, condFun)
return(expr)
}
.strictLogicOp <- function(f, e1, e2, expr, errorCall, condFun) {
is.raw <- function(x)identical(typeof(x), "raw")
msg <- character()
if(!is.logical(e1) && !is.raw(e1))
.tail(msg) <- c("First argument is not logical or raw: class \"", class(e1), "\"")
if(.Missing(e2)) {
if(!identical(f, "!"))
.tail(msg) <- "No univariate version of this operator"
}
else if(!is.logical(e2) && !is.raw(e2))
.tail(msg) <- c("Second argument is not logical or raw: class \"", class(e2), "\"")
if(length(msg) > 0)
.strictOpMessage(errorCall, msg, condFun)
return(expr)
}
.checkDataType <- function(x)
switch(typeof(x),
double = , integer = "numeric",
character = "character",
logical ="logical",
complex = "complex",
raw = "raw",
environment = if(.Missing(x)) "MISSING" else "other",
"other")
.strictCompareOp <- function(f, e1, e2, expr, errorCall, condFun) {
msg <- character()
typeCheck = paste(.checkDataType(e1), .checkDataType(e2), sep=".")
switch(typeCheck,
numeric.numeric = , character.character = ,
logical.logical = , complex.complex = ,
raw.raw = {}, {
if(length(grep("MISSING", typeCheck))>0)
.tail(msg) <- "Univariate version of this operator undefined"
else
.tail(msg) <- c("Undefined combination of types for comparison: ", typeof(e1),
", ", typeof(e2))
})
l1 = length(e1); l2 = length(e2)
if(l1 != l2 && l1 != 1 && l2 != 1)
.tail(msg) <- c("Ambiguous unequal lengths: ", l1, ", ", l2)
if(length(msg) > 0)
.strictOpMessage(errorCall, msg, condFun)
return(eval.parent(expr))
}
.strictArithOp <- function(f, e1, e2, expr, errorCall, condFun) {
msg <- character()
if(.Missing(e2)) {
switch(f,
"+" = , "-" = {},
.tail(msg) <- c("Univariate version not defined for operator ", f)
)
switch(.checkDataType(e1),
numeric = , complex = {},
.tail(msg) <- c("Undefined type for univariate arithmetic: ", typeof(e1))
)
}
else {
typeCheck = paste(.checkDataType(e1), .checkDataType(e2), sep=".")
switch(typeCheck,
numeric.numeric = , numeric.complex = ,
complex.numeric = {},
.tail(msg) <- c("Undefined combination of types for arithmetic: ", typeof(e1),
", ", typeof(e2))
)
l1 = length(e1); l2 = length(e2)
if(l1 != l2 && l1 != 1 && l2 != 1)
.tail(msg) <- c("Ambiguous unequal lengths: ", l1, ", ", l2)
}
if(length(msg) > 0)
.strictOpMessage(errorCall, msg, condFun)
return(eval.parent(expr))
}
.strictOpMessage <- function(errorCall, msg, condFun) {
condFun("<strictOp>: ", deparse(errorCall)[[1]], ": ", paste(msg, collapse = "; "), call. = FALSE)
}
.makeStrictEnv <- function() {
myEnv <- environment(sys.function())
doOp <- function(f) {
op <- args(f)
if(!is.null(op)) {
body(op) <- substitute(strictOp(WHAT(e1, e2), errorCall = sys.call()),
list(WHAT = call("::",
as.name("base"),
as.name(f))))
assign(f, op, envir = .strictEnv)
}
}
for(group in c("Arith", "Logic", "Compare")) {
groupGen <- getGeneric(group)
for(f in getGroupMembers(groupGen))
doOp(f)
}
for(f in c("&&", "||"))
doOp(f)
assign("!", function(x) strictOp(base::`!`(x), errorCall = sys.call()), envir = .strictEnv)
}
.strictEnv <- new.env(TRUE)
.makeStrictEnv()
withStrictOps <- function(expr, attach) {
if(missing(expr)) {
warning("Cannot attach the environment \"strictOps\" because of CRAN restrictions\n (added long after this function was written)")
}
else
eval(substitute(expr), .strictEnv, enclos = parent.frame())
}
|
library(checkargs)
context("isNonZeroNumberOrNaOrNanOrInfVectorOrNull")
test_that("isNonZeroNumberOrNaOrNanOrInfVectorOrNull works for all arguments", {
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(0, stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroNumberOrNaOrNanOrInfVectorOrNull("", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroNumberOrNaOrNanOrInfVectorOrNull("X", stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_identical(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE)
expect_error(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
expect_error(isNonZeroNumberOrNaOrNanOrInfVectorOrNull(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL))
})
|
.printNamedList <- function(nList, ...) {
na <- names(nList)
for (i in seq(along = na)) {
cat(sprintf("%-20s", na[i]), deparse(nList[[i]]), "\n", ...)
}
}
|
summary.Gammareg <-
function(object, ...){
covB = object$desvB
covG = object$desvG
desviacion = c(sqrt(diag(covB)),sqrt(diag(covG)))
L = object$interv[,1]
U = object$interv[,2]
n = object$n
r = object$r
coef1 = coef(object)[1:nrow(covB)]
coef2 = coef(object)[(nrow(covB)+1):length(coef(object))]
t1 = abs(coef1/sqrt(diag(covB)))
t2 = abs(coef2/sqrt(diag(covG)))
p1 = round(pt(t1,n-r-1, lower.tail = FALSE),4)
p2 = round(pt(t2,n-r, lower.tail = FALSE), 4)
p = c(p1,p2)
TAB <- cbind( Coefficient = coef(object),
Deviation = desviacion,
pvalue = p,
L.CredIntv = L,
U.CredIntv = U
)
colnames(TAB) <- c("Estimate", "Deviation", "p-value" , "L.Intv", "U.Intv")
res <- list(call=object$call, coefficients=TAB, covB=object$desvB, covG=object$desvG,
AIC=object$AIC, iteration=object$iteration, convergence=object$convergence)
class(res) <- "summary.Gammareg"
res
}
|
test_that("mixture model works", {
data(tracks.list)
tracks.list<- lapply(tracks.list, function(x) x[1:250,])
tracks.list<- dplyr::bind_rows(tracks.list)
tracks<- subset(tracks.list, select = c(SL, TA))
set.seed(1)
alpha=0.1
ngibbs=1000
nburn=ngibbs/2
nmaxclust=7
dat.res<- cluster_obs(dat = tracks, alpha = alpha, ngibbs = ngibbs,
nmaxclust = nmaxclust, nburn = nburn)
expect_length(dat.res, 6)
expect_type(dat.res$loglikel, "double")
expect_is(dat.res$theta, "matrix")
expect_length(dat.res$phi, 2)
expect_type(dat.res$phi, "list")
expect_length(dat.res$z.MAP, nrow(tracks))
expect_equal(rowSums(dat.res$z.posterior), rep(nburn, nrow(tracks)))
})
|
expected <- eval(parse(text="c(\"1\", \"2\", \"3\", \"6\", \"7\", \"7.1\", \"7.2\", \"8\", \"8.1\", \"10\", \"11\", \"12\", \"12.1\", \"12.2\", \"15\", \"15.1\", \"16\", \"17\", \"19\", \"20\", \"21\", \"21.1\", \"23\")"));
test(id=0, code={
argv <- eval(parse(text="list(c(\"1\", \"2\", \"3\", \"6\", \"7\", \"7\", \"7\", \"8\", \"8\", \"10\", \"11\", \"12\", \"12\", \"12\", \"15\", \"15\", \"16\", \"17\", \"19\", \"20\", \"21\", \"21\", \"23\"), \".\")"));
.Internal(make.unique(argv[[1]], argv[[2]]));
}, o=expected);
|
loglik_adherence <- function(adherence, shape, rate, wa, Z, fit) {
res <- sum(adherence*Z) - sum(fit$norm)
if (!is.null(shape)){
res <- res + sum(wa*((shape - 1L)*log(adherence) - rate*adherence))
}
res
}
score_adherence <- function(adherence, ranker, shape, rate, wa, Z, fit) {
res <- Z - rowsum(fit$score, ranker)
if (!is.null(shape)){
res <- res + wa*((shape - 1L)/adherence - rate)
}
res
}
normalization <- function(alpha,
delta,
a,
d,
P,
R,
G,
W = NULL){
nr <- length(a)
score <- numeric(nr)
len <- lengths(G)
pseudo <- len[2L] > nr
if (pseudo) {
real <- G[[2L]] <= nr
len[2L] <- sum(real)
}
norm <- numeric(sum(len))
z <- 1L
for (p in P){
if (p == 2L && pseudo) {
r <- G[[p]][real]
} else r <- G[[p]]
nr <- length(r)
item_id <- as.integer(R[r, 1L:p])
x1 <- matrix(alpha[item_id],
nrow = nr, ncol = p)
y1 <- rowSums(x1^a[r]*log(x1))
z1 <- rowSums(x1^a[r])
e <- d[d <= p][-1]
if (length(e)){
i <- seq_len(max(e))
if (max(e) == p) {
id <- p - 1L
} else id <- max(e)
id2 <- 1L
repeat{
v1 <- alpha[R[r, i[1L]]]
last <- i[id] == p
if (last) {
end <- id
} else end <- min(max(e), id + 1L)
for (k in 2L:end){
v1 <- v1 * alpha[R[r, i[k]]]
if (k < id2 | ! k %in% d) next
v2 <- v1^(a[r]/k)
y1 <- y1 + delta[d == k]*v2*log(v1)/k
z1 <- z1 + delta[d == k]*v2
}
if (i[1L] == (p - 1L)) break
if (last){
id2 <- id - 1L
v <- i[id2]
len <- min(p - 2L - v, max(e) - id2)
id <- id2 + len
i[id2:id] <- v + seq_len(len + 1L)
} else {
id2 <- id
i[id] <- i[id] + 1L
}
}
}
if (!is.null(W)){
if (p == 2L && pseudo) {
w <- W[[p]][real]
} else w <- W[[p]]
norm[z:(z + nr - 1L)] <- norm[z:(z + nr - 1L)] + w * log(z1)
score[r] <- score[r] + w * y1/z1
} else {
norm[z:(z + nr - 1L)] <- norm[z:(z + nr - 1L)] + log(z1)
score[r] <- score[r] + y1/z1
}
z <- z + nr
}
list(norm = norm, score = score)
}
|
.BP_DetectClick <- function(bone) {
click.locn <- locator(n = 1, type = "n")
if (is.null(click.locn)) {
click.locn <- list(x=NA, y=NA)
} else {
if (click.locn$x<1) click.locn$x <- 1
if (click.locn$x>dim(bone)[1]) click.locn$x <- dim(bone)[1]
if (click.locn$y<1) click.locn$y <- 1
if (click.locn$y>dim(bone)[2]) click.locn$y <- dim(bone)[2]
}
return(c(x=click.locn$x, y=click.locn$y))
}
|
UnfoldingSMACOF <- function(P, W = matrix(1, dim(P)[1], dim(P)[2]), Constrained = FALSE,
ENV = NULL, model = "Ratio", condition = "Matrix", r = 2, maxiter = 100,
tolerance = 1e-05, lambda = 1, omega = 0, X0, Y0){
n = dim(P)[1]
m = dim(P)[2]
DimNames = "Dim-1"
for (i in 2:r) DimNames = c(DimNames, paste("Dim-", i, sep = ""))
ColNames = colnames(P)
RowNames = rownames(P)
D = DistUnfold(X0, Y0)
DH = dhatsunfol(P, D, W, modelo = model, condicion = condition)
cv2 = sd(as.vector(DH$Dh))/mean(DH$Dh)
pstress = sum(sum((W * (D - DH$Dh))^2))^lambda * (1 + omega/cv2)
Conf = UpdateUnfol(X0, Y0, W, DH$Dh)
errorest = 1
k = 0
history = NULL
while ((k <= maxiter) & (errorest > tolerance)) {
k = k + 1
if (Constrained)
Conf = UpdateUnfolConstr(X0, Y0, W, DH$Dh, ENV)
else Conf = UpdateUnfol(X0, Y0, W, DH$Dh)
D = DistUnfold(Conf$X, Conf$Y)
DH = dhatsunfol(P, D, W, model, condition)
cv2 = sd(as.vector(DH$Dh))/mean(DH$Dh)
newpstress = sum(sum((W * (D - DH$Dh))^2))^lambda * (1 + omega/cv2)
errorest = (pstress - newpstress)^2
pstress = newpstress
X0 = Conf$X
Y0 = Conf$Y
history = rbind(history, c(k, errorest))
print(c(k, errorest))
}
rownames(Conf$X) = RowNames
colnames(Conf$X) = DimNames
rownames(Conf$Y) = ColNames
colnames(Conf$Y) = DimNames
dmean = sum(sum(D * W))/sum(sum(W))
stress1 = sum(sum(((D - DH$Dh)^2) * W))/sum(sum(((D)^2) * W))
stress2 = sum(sum(((D - DH$Dh)^2) * W))/sum(sum(((D - dmean)^2) * W))
rs = cor(as.vector(DH$Dh * W), as.vector(D * W))
rsq = rs^2
sstress1 = sqrt(sum(sum(((D^2 - DH$Dh^2)^2) * W))/sum(sum(((D^2)^2) * W)))
dmean2 = sum(sum((D^2) * W))/sum(sum(W))
sstress2 = sqrt(sum(sum(((D^2 - DH$Dh^2)^2) * W))/sum(sum(((D^2 - dmean2)^2) * W)))
rho = cor(as.vector(DH$Dh * W), as.vector(D * W), method = "spearman")
tau = cor(as.vector(DH$Dh * W), as.vector(D * W), method = "kendall")
fitcols = matrix(0, m, 1)
for (i in 1:m) fitcols[i] = cor((DH$Dh * W)[, i], (D * W)[, i])^2
rownames(fitcols) = ColNames
colnames(fitcols) = "R-Squared"
colnames(history) = c("Iteration", "Error")
rownames(DH$Tol) = colnames(P)
colnames(DH$Tol) = "Tolerance"
if (Constrained)
Analysis = "Constrained Unfolding - SMACOF"
else Analysis = "Unfolding - SMACOF"
Unfold = list()
Unfold$call <- match.call()
Unfold$Analysis = Analysis
Unfold$nsites = n
Unfold$nspecies = m
Unfold$nvars = NULL
Unfold$alpha = NULL
Unfold$dimens = r
Unfold$Abundances = P
Unfold$TransformedAbundances = P
Unfold$Disparities = DH$Dh
Unfold$Distances = D
Unfold$Environment = ENV
Unfold$TransfEnvironment = ENV
Unfold$Weighted_Averages = NULL
Unfold$Minima_Z = NULL
Unfold$Maxima_Z = NULL
Unfold$Medians_Z = NULL
Unfold$P25_Z = NULL
Unfold$P75_Z = NULL
Unfold$Means = NULL
Unfold$Deviations = NULL
Unfold$IterationHistory = history
Unfold$X = Conf$X
Unfold$Y = Conf$Y
Unfold$Tolerance = DH$Tol
Unfold$RawStress = pstress
Unfold$Stress1 = stress1
Unfold$Stress2 = stress2
Unfold$Sstress1 = sstress1
Unfold$Sstress2 = sstress2
Unfold$Pearson = rs
Unfold$Spearman = rho
Unfold$Kendall = tau
Unfold$RSQ = rsq
Unfold$ColumnsFit = fitcols
Unfold$model = model
Unfold$condition = condition
class(Unfold) = "Unfolding"
return(Unfold)
}
|
precision.simulation <- function(N,
med=2,
disp=1.3,
percentile=.5,
nsim=100,
exact.data=FALSE,
pct.type.A=.5,
exp.win.dat=NULL,
verb=FALSE) {
if(percentile <= 0 | percentile >=1)
stop("percentile must be between 0 and 1.")
if(pct.type.A < 0 | pct.type.A >1)
stop("% of data that is type A must be between 0 and 1.")
if(is.null(exp.win.dat)){
if(verb) message("NYC exposure window data used")
exp.win.dat <- get(data(exp.win.lengths, envir = environment()))
}
if(exact.data) {
out <- precision.simulation.exact(N=N,
med=med,
disp=disp,
percentile=percentile,
nsim=nsim,
verb=verb)
} else {
out <- precision.simulation.coarse(N=N,
med=med,
disp=disp,
percentile=percentile,
nsim=nsim,
pct.type.A=pct.type.A,
exp.win.dat=exp.win.dat,
verb=verb)
}
target <- qlnorm(percentile, log(med), log(disp))
bias <- out[,"ests"]-target
out <- cbind(out, bias)
return(out)
}
precision.simulation.exact <- function(N,
med,
disp,
percentile,
nsim,
verb) {
storage <- matrix(NA, ncol=3, nrow=nsim)
colnames(storage) <- c("ests", "SE", "conv")
data <- matrix(0, ncol=6, nrow=nsim*N)
colnames(data) <- c("dataset.id", "EL", "ER", "SL", "SR", "type")
data[,"dataset.id"] <- rep(1:nsim, each=N)
data[,"SL"] <- rlnorm(N*nsim, meanlog=log(med), sdlog=log(disp))
data[,"SR"] <- data[,"SL"]
data[,"type"] <- 2
for(i in 1:nsim){
tmp.dat <- data[which(data[,"dataset.id"]==i),]
tmp.fit <- dic.fit(tmp.dat, ptiles=percentile)
if(tmp.fit$conv==1){
row.name <- paste("p", round(percentile*100), sep="")
which.row <-
which(rownames(tmp.fit$ests)==row.name)[1]
storage[i,c("ests", "SE")] <-
tmp.fit$ests[which.row, c("est", "StdErr")]
} else {
storage[i,c("ests", "SE")] <- NA
}
storage[i,"conv"] <- tmp.fit$conv
if(verb & i%%(round(nsim/10))==0)
print(paste("iteration",i,"complete ::", Sys.time()))
}
return(storage)
}
precision.simulation.coarse <- function(N,
med,
disp,
percentile,
nsim,
pct.type.A,
exp.win.dat,
verb) {
storage <- matrix(NA, ncol=3, nrow=nsim)
colnames(storage) <- c("ests", "SE", "conv")
for(i in 1:nsim){
tmp.dat <- generate.coarse.data(N=N,
med=med,
disp=disp,
pct.type.A=pct.type.A,
exp.win.dat=exp.win.dat)
tmp.fit <- dic.fit(tmp.dat, ptiles=percentile)
if(tmp.fit$conv==1){
row.name <- paste("p", round(percentile*100), sep="")
which.row <-
which(rownames(tmp.fit$ests)==row.name)[1]
storage[i,c("ests", "SE")] <-
tmp.fit$ests[which.row, c("est", "StdErr")]
} else {
storage[i,c("ests", "SE")] <- NA
}
storage[i,"conv"] <- tmp.fit$conv
if(verb & i%%(round(nsim/10))==0)
print(paste("iteration",i,"complete ::", Sys.time()))
}
return(storage)
}
generate.coarse.data <- function(N, med, disp, pct.type.A, exp.win.dat) {
n.type.A <- round(N*pct.type.A)
n.type.B <- N-n.type.A
E <- runif(N, 10, 11)
T <- rlnorm(N, log(med), log(disp))
S <- T + E
SR <- ceiling(S)
SL <- floor(S)
win.type <- rep(0:1, times=c(n.type.A, n.type.B))
potential.lengths <- sample(exp.win.dat, size=N, replace=TRUE)
win.length <- 1*(win.type==0) + potential.lengths*(win.type>0)
ER <- ceiling(E)*(win.type==0) + SR*(win.type==1)
EL <- pmin(ER-win.length, floor(E))
cbind(EL, E, ER, SL, S, SR, win.length, win.type, type=0)
}
|
library("datasets")
context("Test `find_data()` behavior")
test_that("Test find_data.default()", {
expect_true(inherits(find_data(lm(mpg ~ cyl, data = mtcars)), "data.frame"), label = "find_data.default() works")
m1 <- lm(mpg ~ cyl, data = mtcars, subset = am == 1)
expect_true(nrow(find_data(m1)) == nrow(mtcars[mtcars$am == 1, ]), label = "find_data.default(data, subset) works")
mtcars2 <- mtcars
mtcars2[1:3,] <- NA_real_
m2 <- lm(mpg ~ cyl, data = mtcars2)
expect_true(nrow(find_data(m2)) == nrow(mtcars2[-c(1:3), ]), label = "find_data.default(data, na.action) works")
m3 <- lm(mpg ~ cyl, data = mtcars2, subset = am == 1)
expect_true(nrow(find_data(m3)) == nrow(na.omit(mtcars2[mtcars2$am == 1, ])), label = "find_data.default(data, subset, na.action) works")
expect_error(find_data(StructTS(log10(UKgas), type = "BSM")), label = "find_data.default([no formula]) errors")
})
test_that("Test find_data.lm()", {
expect_true(inherits(find_data(lm(mpg ~ cyl, data = mtcars)), "data.frame"), label = "find_data.lm() works")
})
test_that("Test find_data.glm()", {
expect_true(inherits(find_data(glm(mpg ~ cyl, data = mtcars)), "data.frame"), label = "find_data.glm() works")
})
test_that("Test find_data.data.frame()", {
expect_true(inherits(find_data(mtcars), "data.frame"), label = "find_data.data.frame() works")
})
test_that("Test find_data.lm() and prediction.lm() with missing data", {
mtcars2 <- mtcars
mtcars2$mpg[1:4] <- NA_real_
m1 <- lm(mpg ~ cyl, data = mtcars2, na.action = na.omit)
expect_true(identical(dim(find_data(m1)), dim(na.omit(mtcars2))),
label = "find_data.lm() drops missing data when 'na.action = na.omit'")
expect_true(nrow(prediction(m1)) == nrow(na.omit(mtcars2)),
label = "prediction.lm() returns correct rows when 'na.action = na.omit'")
m2 <- lm(mpg ~ cyl, data = mtcars2, na.action = na.exclude)
expect_true(identical(dim(find_data(m2)), dim(na.omit(mtcars2))),
label = "find_data.lm() drops missing data when 'na.action = na.exclude'")
expect_true(nrow(prediction(m2)) == nrow(na.omit(mtcars2)),
label = "prediction.lm() returns correct rows when 'na.action = na.exclude'")
m3 <- lm(mpg ~ cyl, data = mtcars)
p3 <- prediction(m3, mtcars2, na.action = na.pass)
expect_true(nrow(p3) == nrow(mtcars),
label = "prediction.lm() returns correct rows when prediction(na.action = na.pass) for missing outcome")
expect_true(all(!is.na(p3$fitted)[1:4]),
label = "prediction.lm() returns numeric predictions when prediction(na.action = na.pass) for missing outcome")
expect_true(nrow(prediction(m3, mtcars2, na.action = na.omit)) == nrow(mtcars2),
label = "prediction.lm() returns correct rows when prediction(na.action = na.omit) for missing outcome")
expect_true(nrow(prediction(m3, mtcars2, na.action = na.exclude)) == nrow(mtcars2),
label = "prediction.lm() returns correct rows when prediction(na.action = na.exclude) for missing outcome")
m4 <- lm(cyl ~ mpg, data = mtcars)
p4 <- prediction(m4, mtcars2, na.action = na.pass)
expect_true(nrow(p4) == nrow(mtcars),
label = "prediction.lm() returns correct rows when prediction(na.action = na.pass) for missing covariate")
expect_true(all(is.na(p4$fitted)[1:4]),
label = "prediction.lm() returns NA predictions when prediction(na.action = na.pass) for missing covariate")
expect_error(prediction(m4, mtcars2, na.action = na.omit),
label = "prediction.lm() fails when prediction(na.action = na.omit) for missing covariate")
expect_error(prediction(m4, mtcars2, na.action = na.exclude),
label = "prediction.lm() fails when prediction(na.action = na.exclude) for missing covariate")
rm(mtcars2)
})
test_that("Test find_data.lm() with subsetted data", {
mtcars2 <- mtcars
mtcars2$mpg[1:4] <- NA_real_
m1 <- lm(mpg ~ cyl, data = mtcars2, subset = !is.na(mpg))
expect_true(identical(dim(find_data(m1)), dim(na.omit(mtcars2))),
label = "find_data.lm() has correct dimensions when subsetting")
expect_true(nrow(prediction(m1)) == nrow(na.omit(mtcars2)),
label = "prediction.lm() returns correct rows when subsetting")
x <- c(rep(TRUE, 30), FALSE, FALSE)
m2 <- lm(mpg ~ cyl, data = mtcars2, subset = x)
expect_true(identical(nrow(find_data(m2)), nrow(na.omit(mtcars2))-2L),
label = "find_data.lm() subsets correctly when subsetting variable is global")
expect_true(identical(rownames(find_data(m2)), head(rownames(na.omit(mtcars2)), 26)),
label = "find_data.lm() returns correct rows when subsetting and missing data are present")
rm(mtcars2)
})
|
NULL
"ukg_eeri"
|
library(NetworkInference)
df <- simulate_rnd_cascades(50, n_node = 20)
cascades <- as_cascade_long(df)
df_matrix <- as.matrix(cascades)
cascades <- as_cascade_wide(df_matrix)
result <- netinf(cascades, quiet = TRUE, p_value_cutoff = 0.05)
pander::pandoc.table(head(result))
|
context("checkNull")
test_that("checkNull", {
myobj = NULL
expect_succ_all(Null, myobj)
myobj = TRUE
expect_fail_all(Null, myobj)
expect_false(testNull(integer(0)))
expect_true(testNull(NULL))
expect_error(assertNull(-1), "NULL")
})
|
get_transcription <-
function(
job,
download = TRUE,
...
) {
bod <- list(TranscriptionJobName = job)
out <- transcribeHTTP(action = "GetTranscriptionJob", body = bod, ...)$TranscriptionJob
if (isTRUE(download)) {
transcription_list <- content(httr::GET(out$Transcript$TranscriptFileUri), "text", encoding = "UTF-8")
results <- jsonlite::fromJSON(transcription_list)$results
out$Transcriptions <- unlist(results$transcripts)
out$TranscriptionItems <- results$item
} else {
out$Transcriptions <- NULL
out$TranscriptionItems <- NULL
}
return(structure(out, class = "aws_transcription"))
}
print.aws_transcription <- function(x, ...) {
cat(paste0("Job: ", x$TranscriptionJobName, " (Status: ", x$TranscriptionJobStatus,")\n"))
cat(paste0("Media URI: ", x$Media$MediaFileUri, "\n"))
cat(paste0("MediaFormat: ", x$MediaFormat, " (", x$MediaSampleRateHertz, " Hertz)\n"))
cat(paste0("LanguageCode: ", x$LanguageCode, "\n"))
cat(paste0("CreationTime: ", as.POSIXct(x$CreationTime, origin = "1970-01-01"), "\n"))
cat(paste0("CompletionTime: ", as.POSIXct(x$CompletionTime, origin = "1970-01-01"), "\n"))
cat("Settings:\n")
print(x$Settings)
if ("TranscriptionItems" %in% names(x)) {
cat(sprintf(ngettext(nrow(x$TranscriptionItems),
"TranscriptionItems: 1 transcription",
"TranscriptionItems: %d transcription items"), nrow(x$TranscriptionItems)), "\n")
}
if ("Transcriptions" %in% names(x)) {
cat("Transcriptions:\n")
print(x$Transcriptions)
}
invisible(x)
}
|
genericEGRETDotPlot <- function(x,y, xlim, ylim,
xTicks=pretty(xlim),yTicks=pretty(ylim),
printTitle=TRUE,
xaxs="i",xlab="",yaxs="i",ylab="",plotTitle="",
pch=20,cex=0.7,cex.main=1.3,font.main=2,cex.lab=1.2,
tcl=0.5,cex.axis=1,las=1,xDate=FALSE,
tinyPlot=FALSE,hLine=FALSE,oneToOneLine=FALSE,
rmSciX=FALSE,rmSciY=FALSE,customPar=FALSE,col="black",lwd=1,
showXLabels=TRUE,showYLabels=TRUE,
showXAxis=TRUE,showYAxis=TRUE,
removeFirstX=FALSE,removeLastX=FALSE,
removeFirstY=FALSE,removeLastY=FALSE,
...){
if(!customPar){
if (tinyPlot){
par(mar=c(4,5,1,0.1),mgp=c(2.5,0.5,0))
} else {
par(mar=c(5,6,4,2) + 0.1,mgp=c(3,0.5,0))
}
}
plot(x,y,xlim=xlim,xaxs=xaxs,xlab=if(showXLabels) xlab else "",axes=FALSE,
ylim=ylim,yaxs=yaxs,ylab=if(showYLabels) ylab else "", main=plotTitle,col=col,lwd=lwd,
pch=pch,cex=cex,cex.main=cex.main,font.main=font.main,cex.lab=cex.lab,...)
box()
if (hLine) abline(h = 0)
if (oneToOneLine) abline(a=0,b=1)
if(rmSciX){
xTicksLab <- prettyNum(xTicks)
} else {
xTicksLab <- xTicks
}
if(rmSciY){
yTicksLab <- prettyNum(yTicks)
} else {
yTicksLab <- yTicks
}
if(xDate){
yearStart <- floor(min(xlim))
yearEnd <- ceiling(max(xlim))
if(yearEnd-yearStart >= 4){
xSpan<-c(yearStart,yearEnd)
xTicks<-pretty(xSpan,n=5)
xTicksLab <- xTicks
} else {
xlabels <- c(as.Date(paste(yearStart,"-01-01",sep="")), as.Date(paste(yearEnd,"-01-01",sep="")))
xlabels <- pretty(xlabels,n=5)
xTicksDates <- as.POSIXlt(xlabels)
years <- xTicksDates$year + 1900
day <- xTicksDates$yday
xTicks <- years + day/365
xTicksLab <- format(xlabels, "%Y-%b")
}
}
if (removeFirstX){
xTicks <- c("", xTicks[2:(length(xTicks))])
}
if (removeLastX){
xTicks <- c(xTicks[1:(length(xTicks)-1)] , "")
}
if (removeFirstY){
yTicks <- c("", yTicks[2:(length(yTicks))])
}
if (removeLastY){
yTicks <- c(yTicks[1:(length(yTicks)-1)] , "")
}
if(showXAxis){
axis(1,tcl=tcl,at=xTicks,cex.axis=cex.axis,labels=xTicksLab)
} else {
axis(1,tcl=tcl,at=xTicks,labels=FALSE)
}
axis(3,tcl=tcl,at=xTicks,labels=FALSE)
if(showYAxis){
axis(2,tcl=tcl,las=las,at=yTicks,cex.axis=cex.axis,labels=yTicksLab)
} else {
axis(2,tcl=tcl,at=yTicks,labels=FALSE)
}
axis(4,tcl=tcl,at=yTicks,labels=FALSE)
}
|
true_pairs(eta=0.99, rho=0.75, M=100, R=1)
|
knitr::opts_chunk$set(eval = FALSE)
|
dep.t.test <-
function(formula, data, block, sig.level=.05, digits=3){
xx <- aggregate(formula, data=data, FUN=sumfun)[[2]]
indvar <- unlist(strsplit(as.character(formula), " ")[3])
depvar <- unlist(strsplit(as.character(formula), " ")[2])
datawide <- reshape(data, direction="wide", idvar=block, timevar=indvar)
corr <- cor(datawide[, paste(depvar, ".", levels(data[, indvar]), sep="")])[1,2]
output <- dep.t.test.second(m=xx[,1], sd=xx[,2], n=xx[1,3], corr=corr, sig.level=sig.level,digits=digits)
return(output)
}
|
set_secret_key <- function(key = NULL, secret = NULL, force = FALSE) {
env_id <- Sys.getenv("AWS_ACCESS_KEY_ID")
env_pass <- Sys.getenv("AWS_SECRET_ACCESS_KEY")
if ( (identical(env_id, "") | identical(env_pass, "")) | !force) {
if (!is.null(key) & !is.null(secret)) {
Sys.setenv(AWS_ACCESS_KEY_ID = key)
Sys.setenv(AWS_SECRET_ACCESS_KEY = secret)
} else {
message("Couldn't find env var AWS_ACCESS_KEY_ID or AWS_ACCESS_KEY_ID.
See ?set_secret_key for more details.")
message("Please enter your AWS_ACCESS_KEY_ID and press enter:")
pat <- readline(": ")
Sys.setenv(AWS_ACCESS_KEY_ID = pat)
message("Now please enter your AWS_ACCESS_KEY_ID and press enter:")
pat <- readline(": ")
Sys.setenv(AWS_SECRET_ACCESS_KEY = pat)
}
}
}
|
hc_theme_bloom <- function(...) {
theme <-
list(
colors = c("
chart = list(
backgroundColor = "
style = list(
fontFamily = "Roboto",
color = "
)
),
title = list(
align = "left",
style = list(
fontFamily = "Roboto",
color = "
fontWeight = "bold"
)
),
subtitle = list(
align = "left",
style = list(
fontFamily = "Roboto",
color = "
fontWeight = "bold"
)
),
xAxis = list(
lineColor = "
lineWidth = 2,
tickColor = "
tickWidth = 2,
labels = list(
style = list(
color = "black"
)
),
title = list(
style = list(
color = "black"
)
)
),
yAxis = list(
opposite = TRUE,
gridLineWidth = 2,
gridLineColor = "
lineColor = "
minorGridLineColor = "
labels = list(
align = "left",
style = list(
color = "black"
),
x = 0,
y = -2
),
tickLength = 0,
tickColor = "
tickWidth = 1,
title = list(
style = list(
color = "black"
)
)
),
tooltip = list(
backgroundColor = "
borderColor = "
style = list(
color = "
)
),
legend = list(
layout = "horizontal",
align = "left",
verticalAlign = "top",
itemStyle = list(
color = "
),
itemHiddenStyle = list(
color = "
)
),
credits = list(
style = list(
color = "
)
),
labels = list(
style = list(
color = "
)
),
drilldown = list(
activeAxisLabelStyle = list(
color = "
),
activeDataLabelStyle = list(
color = "
)
),
navigation = list(
buttonOptions = list(
symbolStroke = "
theme = list(
fill = "
)
)
),
legendBackgroundColor = "rgba(0, 0, 0, 0.5)",
background2 = "
dataLabelsColor = "
textColor = "
contrastTextColor = "
maskColor = "rgba(255,255,255,0.3)"
)
theme <- structure(theme, class = "hc_theme")
if (length(list(...)) > 0) {
theme <- hc_theme_merge(
theme,
hc_theme(...)
)
}
theme
}
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(tremendousr)
test_client <- trem_client_new(api_key = "TEST_YOUR-KEY-HERE",
sandbox = TRUE)
test_client
|
covZ <- function(t_seq, Y, C, sigma2)
{
temp <- expand.grid(Y,Y)
t.pair <- expand.grid(t_seq,t_seq)
d <- length(Y)
id <- expand.grid(1:d,1:d)
m <- d
Z <- apply(temp, 1, function(z) prod(z))
Z.info <- as.matrix(cbind(Z,t.pair,id))
Z.info <- Z.info[Z.info[,5] <= Z.info[,4],]
Z.tri <- matrix(NA,nrow=length(Y),ncol=length(Y))
Z.tri[lower.tri(Z.tri, diag=T)] <- Z.info[,1]
Z.tri <- t(Z.tri)
id1 <- as.matrix(expand.grid(1:d,1:d,1:d,1:d))
id2 <- as.matrix(expand.grid(1:d^2,1:d^2))
id.tab <- as.matrix(cbind(id1,id2))
id.tab <- id.tab[id.tab[,5] <= id.tab[,6],]
k.del <- cbind(id.tab[,1]==id.tab[,3],id.tab[,2]==id.tab[,4],
id.tab[,1]==id.tab[,4],id.tab[,2]==id.tab[,3])
c.term <- cbind(C[cbind(id.tab[,1],id.tab[,3])],
C[cbind(id.tab[,2],id.tab[,4])],
C[cbind(id.tab[,1],id.tab[,4])],
C[cbind(id.tab[,2],id.tab[,3])])
id.tab <- cbind(id.tab,k.del,c.term)
CovZZ3.vec = id.tab[,12] * id.tab[,11] + id.tab[,14] * id.tab[,13] +
(id.tab[,8] * id.tab[,7] + id.tab[,10] * id.tab[,9]) *sigma2^2 +
(id.tab[,12] * id.tab[,7] + id.tab[,14] * id.tab[,9] +
id.tab[,13] * id.tab[,10] + id.tab[,11] * id.tab[,8]) * sigma2
CovZZ3 <- matrix(NA,nrow=length(Z),ncol=length(Z))
CovZZ3[upper.tri(CovZZ3, diag=T)] <- CovZZ3.vec
return (list(CovZZ = CovZZ3,CovZZ.vech = CovZZ3.vec,
Z.info = Z.info,Z.tri = Z.tri))
}
|
is.scalar <- function(x){
result <- (is.numeric(x) && length(x) == 1 && is.finite(x))
return(result)
}
ifelse1 <-
function (test, x, y) if (test) x else y
|
function(pr){
pr$run()
}
|
OcpTsSdEwma <- function(data, n.train, threshold, l = 3, m = 5) {
if (!is.numeric(data) | (sum(is.na(data)) > 0)) {
stop("data argument must be a numeric vector and without NA values.")
}
if (!is.numeric(n.train) | n.train > length(data)) {
stop("n.train argument must be a numeric value greater then data length.")
}
if (!is.numeric(threshold) | threshold <= 0 | threshold > 1) {
stop("threshold argument must be a numeric value in (0,1] range.")
}
if (!is.numeric(l)) {
stop("l argument must be a numeric value.")
}
if (!is.numeric(m) | m > length(data)) {
stop("m argument must be a numeric value and smaller than all dataset length.")
}
ApplyKolmogorovTest <- function(pos) {
if ((pos - (m - 1)) > 0 & (pos + m) <= length(data)) {
part1 <- data[(pos - (m - 1)):pos]
part2 <- data[(pos + 1):(pos + m)]
res.test <- suppressWarnings(stats::ks.test(part1, part2, exact = FALSE))
return(ifelse(res.test$p.value > 0.05, 0, 1))
} else {
return(1)
}
}
result <- OcpSdEwma(data, n.train, threshold, l)
anomaly.pos <- which(result$is.anomaly == 1)
result[anomaly.pos, "is.anomaly"] <- sapply(anomaly.pos, ApplyKolmogorovTest)
return(result)
}
|
Optimal.Similarity <-
function(Distance, CheckArguments = TRUE)
{
if (CheckArguments)
CheckentropartArguments()
if (is.matrix(Distance)) {
if (nrow(Distance) != ncol(Distance)) {
stop("Distance must be a square matrix")
}
if (any(diag(Distance) != 0)) {
stop("The diagonal of Distance must contain zeros only")
}
} else {
if (!inherits(Distance, "dist")) {
stop("Distance must be a matrix or a dist object")
}
}
Distances <- as.numeric(Distance/max(Distance))
u <- 1
Optim <- stats::optim(u, function(u) stats::var(exp(-u*Distances)), lower=0, upper=1000, method="L-BFGS-B", control=list(fnscale=-1))
Result <- list(u=Optim$par, Matrix=exp(-u*as.matrix(Distance)/max(Distances)))
return (Result)
}
|
pos<-function(vec){
(abs(vec)+vec)/2
}
const<-function(signs,knots,degree){
cc<-prod(((signs+1)/2 - signs*knots))^degree
if(cc==0)
return(1)
return(cc)
}
makeBasis<-function(signs,vars,knots,datat,degree){
cc<-const(signs,knots,degree)
temp1<-pos(signs*(datat[vars,,drop=F]-knots))^degree
if(length(vars)==1){
return(c(temp1)/cc)
} else{
temp2<-1
for(pp in 1:length(vars)){
temp2<-temp2*temp1[pp,]
}
return(temp2/cc)
}
}
makeBasisCat<-function(vars,sub,data){
temp<-1
for(ii in 1:length(vars)){
temp<-temp*as.numeric(data[,vars[ii]] %in% sub[[ii]])
}
return(temp)
}
|
taxize_nexml <- function(nexml,
type = c("ncbi", "itis", "col", "tpl",
"gbif", "wd"),
warnings = TRUE,
...){
if (!requireNamespace("taxadb", quietly = TRUE)) {
stop("taxadb package required to convert look up taxonomic ids",
call. = FALSE)
}
get_ids <- getExportedValue("taxadb", "get_ids")
type <- tolower(type)
type <- match.arg(type)
for(j in 1:length(nexml@otus)){
labels <- unname(vapply(nexml@otus[[j]]@otu, slot, character(1L), "label"))
clean_labels <- gsub("_", " ", labels)
taxa_ids <- get_ids(clean_labels, type, format = "uri", ...)
for(i in 1:length(taxa_ids)){
id <- taxa_ids[[i]]
if(is.na(id) & warnings)
warning(paste("ID for otu",
nexml@otus[[j]]@otu[[i]]@label,
"not found. Consider checking the spelling
or alternate classification"))
else
nexml@otus[[j]]@otu[[i]]@meta <-
c(nexml@otus[[j]]@otu[[i]]@meta,
meta(href = taxa_ids[[i]],
rel = "tc:toTaxon"))
}
}
nexml
}
|
context("Test repetition functions")
test_that("maybe", {
expect_equal(maybe(Digit())("a123"),
list(result=NULL, leftover="a123"))
expect_equal(maybe(Digit())("123"),
list(result="1",
leftover="23"))
})
test_that("many", {
expect_equal(many(Digit())("a123"),
list(result=NULL, leftover="a123"))
expect_equal(many(Digit())("123"),
list(result=list("1", "2", "3", NULL),
leftover=""))
})
test_that("some", {
expect_equal(some(Digit())("a123"),
list())
expect_equal(some(Digit())("1a23"),
list(result=list("1", NULL),
leftover="a23"))
expect_equal(some(Digit())("123a"),
list(result=list("1", "2", "3", NULL),
leftover="a"))
})
|
delta_Bel<-function(x,K,q=0.9){
n<-nrow(x)
nn<-get.knn(x,K)
D<-nn$nn.dist
is<-nn$nn.index
alpha<-1/K
if(is.null(q)) g<-rep(1,n) else g <- 1/apply(D,1,quantile,prob=q)
BelC<-rep(0,n)
for(i in 1:n) BelC[i]<-1-prod(1-alpha*exp(-g[is[i,]]^2*D[i,]^2))
Dist <- as.matrix(dist(x))
maxdist<-max(Dist)
tri<-sort(BelC,decreasing =TRUE,index.return = TRUE)
bel_sorted<-tri$x
ordbel<-tri$ix
delta<-rep(0,n)
delta[ordbel[1]]<- -1
for(i in 2:n){
delta[ordbel[i]]<-maxdist
for(j in 1:(i-1)){
if(Dist[ordbel[i],ordbel[j]]<delta[ordbel[i]]) delta[ordbel[i]]<-Dist[ordbel[i],ordbel[j]]
}
}
delta[ordbel[1]]<-max(delta)
plot(delta,BelC,ylim=range(min(BelC)-0.1,max(BelC)+0.1))
print("With the mouse, select the lower left corner of a rectangle containing the prototypes.")
t<-locator(1)
abline(v=t$x,lty=2)
abline(h=t$y,lty=2)
ii<-which(delta>t$x & BelC>t$y)
print(ii)
points(delta[ii],BelC[ii],pch=3,col="red")
g0<-x[ii,]
return(list(BelC=BelC,delta=delta,g0=g0,ii=ii))
}
|
if (requireNamespace("extrafont", quietly = TRUE)) {
library("extrafont", quietly = TRUE)
extrafont::loadfonts(device = "pdf", quiet = TRUE)
}
server <- function(input, output, session) {
current_project_df <- shiny::eventReactive(
{
input$go
input$by_date_radio
input$precision_radio
}, {
if (input$source_type=="demo") {
if (input$by_date_radio=="By date") {
if (input$precision_radio=="Day") {
ganttrify::test_project_date_day
} else {
ganttrify::test_project_date_month
}
} else {
ganttrify::test_project
}
} else if (input$source_type=="csv") {
req(input$project_file)
readr::read_csv(file = input$project_file$datapath)
} else if (input$source_type=="googledrive") {
googlesheets4::gs4_deauth()
googlesheets4::read_sheet(ss = input$googledrive_link,
sheet = 1,
col_names = TRUE,
col_types = "c")
} else if (input$source_type=="xlsx") {
req(input$project_file_xlsx)
readxl::read_excel(path = input$project_file_xlsx$datapath, sheet = 1)
}
}, ignoreNULL = FALSE)
current_spots_df <- shiny::eventReactive({
input$go
input$by_date_radio
input$precision_radio
}, {
if (input$source_type=="demo") {
if (input$by_date_radio=="By date") {
if (input$precision_radio=="Day") {
ganttrify::test_spots_date_day
} else {
ganttrify::test_spots_date_month
}
} else {
ganttrify::test_spots
}
} else if (input$source_type=="csv") {
req(input$spot_file)
readr::read_csv(file = input$spot_file$datapath)
} else if (input$source_type=="googledrive") {
googlesheets4::gs4_deauth()
googlesheets4::read_sheet(ss = input$googledrive_link,
sheet = 2,
col_names = TRUE,
col_types = "c")
} else if (input$source_type=="xlsx") {
req(input$project_file_xlsx)
if (length(readxl::excel_sheets(input$project_file_xlsx$datapath))>1) {
readxl::read_excel(path = input$project_file_xlsx$datapath, sheet = 2)
}
}
}, ignoreNULL = FALSE)
output$current_project_table <- renderTable(
if (input$go==0) {
ganttrify::test_project
} else if (is.null(current_project_df())==FALSE) {
current_project_df()
},
striped = TRUE,
hover = TRUE,
digits = 0,
align = "c",
width = "100%")
output$current_spots_table <- renderTable(
if (input$go==0) {
ganttrify::test_spots
} else if (is.null(current_spots_df())==FALSE) {
current_spots_df()
},
striped = TRUE,
hover = TRUE,
digits = 0,
align = "c",
width = "100%"
)
gantt_chart <- shiny::reactive({
gantt_gg <- ganttrify::ganttrify(project = current_project_df(),
project_start_date = input$start_date,
spots = if (length(current_spots_df())>0) {
if (tibble::is_tibble(current_spots_df())&nrow(current_spots_df()>0)) {
current_spots_df()}
else {NULL}} else {NULL},
by_date = ifelse(input$by_date_radio=="By date", TRUE, FALSE),
exact_date = ifelse(input$precision_radio=="Day", ifelse(input$by_date_radio=="By date", TRUE, FALSE), FALSE),
mark_quarters = input$mark_quarters,
font_family = "Roboto Condensed",
month_number = input$month_number,
size_wp = input$size_wp,
size_activity = input$size_activity,
size_text_relative = input$size_text_relative/100,
colour_palette = unlist(ifelse(test = input$custom_palette_check, strsplit(input$custom_palette_text, split = ","), list(as.character(wesanderson::wes_palette(input$wes_palette))))))
if (ggplot2::is.ggplot(gantt_gg)==FALSE) {
warning("Please make sure that you have provided properly formatted data and selected the relevant option between 'By project month number' and 'By date'. Check the demo file for reference.")
} else {
gantt_gg
}
})
output$gantt <- renderPlot({
gantt_chart()
})
output$download_gantt_png <- downloadHandler(filename = "gantt.png",
content = function(con) {
ggplot2::ggsave(filename = con,
plot = gantt_chart(),
width = input$download_width,
height = input$download_height,
units = "cm",
type = "cairo")
}
)
output$download_gantt_pdf <- downloadHandler(filename = "gantt.pdf",
content = function(con) {
ggplot2::ggsave(filename = con,
plot = gantt_chart(),
width = input$download_width,
height = input$download_height,
device = cairo_pdf,
units = "cm")
}
)
output$download_gantt_svg <- downloadHandler(filename = "gantt.svg",
content = function(con) {
ggplot2::ggsave(filename = con,
plot = gantt_chart(),
width = input$download_width,
height = input$download_height,
units = "cm")
}
)
shiny::observeEvent(eventExpr = input$a4_button, {
shiny::updateNumericInput(inputId = "download_width", value = 29.7, session = session)
shiny::updateNumericInput(inputId = "download_height", value = 21, session = session)
})
}
|
nycflights13_create_sql <- function(con, schema = "", ...) {
check_for_pkg("nycflights13", message)
local_tables <- utils::data(package = "nycflights13")$results[, "Item"]
unique_index <- list(
airlines = list("carrier"),
planes = list("tailnum")
)
index <- list(
airports = list("faa"),
flights = list(
c("year", "month", "day"), "carrier", "tailnum", "origin", "dest"
),
weather = list(c("year", "month", "day"), "origin")
)
if (inherits(con, "SQLiteConnection") | schema == "") {
remote_tables <- dbListTables(con)
} else {
remote_schemas <- DBI::dbGetQuery(
con,
glue::glue_sql("SELECT schema_name FROM information_schema.schemata",
.con = con
)
)
remote_schemas <- as.character(remote_schemas$schema_name)
if (!(schema %in% remote_schemas)) {
DBI::dbExecute(
con,
glue::glue_sql("CREATE SCHEMA {`schema`}",
.con = con
)
)
}
remote_tables <- DBI::dbGetQuery(
con,
glue::glue_sql(
paste0(
"SELECT table_name FROM information_schema.tables WHERE ",
"table_schema={schema}"
),
.con = con
)
)
remote_tables <- as.character(remote_tables$table_name)
}
tables <- setdiff(local_tables, remote_tables)
message("Creating the testing database from nycflights13")
for (table in tables) {
df <- getExportedValue("nycflights13", table)
message("Creating table: ", table)
if (schema != "") {
if (class(con) %in% "PostgreSQLConnection") {
table_name <- c(schema, table)
} else {
table_name <- DBI::Id(schema = schema, table = table)
}
} else {
table_name <- table
}
DBI::dbWriteTable(
con,
table_name,
df,
temporary = FALSE,
row.names = FALSE,
overwrite = TRUE
)
}
return(invisible(con))
}
nycflights13_create_sqlite <- function(location = ":memory:", ...) {
check_for_pkg("RSQLite")
sqlite_con <- dbConnect(RSQLite::SQLite(), location)
sqlite_con <- nycflights13_create_sql(sqlite_con, schema = "", ...)
return(invisible(sqlite_con))
}
nycflights_sqlite <- function() {
check_for_pkg("RSQLite")
path <- system.file("nycflights.sqlite", package = "dittodb")
return(DBI::dbConnect(RSQLite::SQLite(), path))
}
|
load.genelist<-function(file="genelist.txt", format="column", sep="\t")
{
if (format=="row")
{ glist<-readLines(file)
glist<-strsplit(glist[1], sep)[[1]]
}
else if(format=="column")
{
glist<-read.delim(file, as.is = TRUE)[[1]]
}
else{
print ("Gene list has to be a single row or a single column")
}
glist<-unique(toupper(glist))
return (glist)
}
load.genesets<-function(file="geneset.gmt.txt")
{
gs<-readLines(file)
return (gs)
}
geneListProfile<-function(gs, glist, threshold=10)
{
num.gs<-length(gs)
labels<-NULL
sizes<-NULL
symbols<-NULL
othercommon<-NULL
for (i in 1: num.gs){
line<-strsplit(gs[i],"\t")[[1]]
sym<-toupper(line[3:length(line)])
common<-intersect(glist, sym)
size<-length(common)
if(size<threshold){
othercommon=union(othercommon, common)
}
else{
labels<-c(labels, line[1])
sizes<-c(sizes,length(common))
symbols<-c(symbols, list(common))
}
}
if(length(othercommon)>0)
{
labels<-c(labels, "Others")
sizes<-c(sizes, length(othercommon))
symbols<-c(symbols, list(othercommon))
}
return (list(labels=labels, sizes=sizes, symbols=symbols))
}
printGeneListProfile<-function(r, file="", format=NULL)
{
if(is.character(format))
{
if(toupper(format)=="MSIGDB")
{
for (i in 1:length(r$labels))
{
cat(paste(r$labels[i],"\t"), file=file, append=TRUE)
cat(paste("na","\t"), file=file, append=TRUE)
for (j in 1: length(r$symbols[[i]]))
{
cat(paste(r$symbols[[i]][j],"\t"), file=file, append=TRUE)
}
cat("\n", file=file, append=TRUE)
}
}
}
else
{
for (i in 1:length(r$labels))
{
cat(paste(r$labels[i],"\t"), file=file, append=TRUE)
cat(paste(r$sizes[i],"\n"), file=file, append=TRUE)
}
}
}
|
Spider.Plot<-function( data,
data.label,
data.fill,
data.color,
data.linetype,
data.alpha,
data.size,
data.label.color,
data.label.size,
group,
criteria,
valor,
title,
title.color,
title.size,
label.size,
label.color,
label.angle,
label.position,
theta,
grid,
grid.color,
grid.radius.color,
grid.linetype,
grid.size,
grid.radius.linetype,
grid.radius.size,
axis,
axis.label,
axis.color,
axis.size,
axis.linetype,
axis.angle,
axis.label.color,
axis.label.size,
axis.label.displace,
axis.label.angle,
legend.position,
legend.size,
legend.text.color,
plot.margin
) {
find.radius<-function( r, tl, tk, t ) {
M<-matrix( c( r * ( cos( tl ) - cos( tk ) ), -cos( t ),
r * ( sin( tl ) - sin( tk ) ), -sin( t ) ), 2, 2, byrow = TRUE )
b<-c( -r * cos( tk ), -r * sin( tk ) )
return( solve( M, b )[2] )
}
Grp<-deparse( substitute( group ) )
Cri<-deparse( substitute( criteria ) )
Val<-deparse( substitute( valor ) )
n<-nlevels( data[,Cri] )
m<-length( grid )
N<-n + 1
t<-( seq( 0, 2 * pi, length.out = N ) + theta ) %% (2*pi)
t<-t[-N]
Data<-data
Data$x<-Data$val * cos( t[ as.numeric( Data[[Cri]] ) ] )
Data$y<-Data$val * sin( t[ as.numeric( Data[[Cri]] ) ] )
Labels<-data.frame( label = levels( Data[[Cri]] ) )
Labels$x<-label.position * cos( t )
Labels$y<-label.position * sin( t )
ald<-axis.label.displace * c( -sin( axis.angle ), cos( axis.angle ) )
k<-max( which( t <= axis.angle ) )
l<-(k+1) %% n
alpha<-sapply( grid, FUN = find.radius, t[l], t[k], axis.angle )
axis.break.position<-data.frame( x = grid[m] * alpha * cos( axis.angle ),
y = grid[m] * alpha * sin( axis.angle ),
xlab = grid[m] * alpha * cos( axis.angle ) + ald[1],
ylab = grid[m] * alpha * sin( axis.angle ) + ald[2] )
axis.break.position<-data.frame( axis.break.position, label = axis.label )
with( Data, {
p<-ggplot( data = Data, aes( x = x, y = y ) )
for ( i in 1:m ) {
X<-data.frame( x = grid[i] * cos( t ), y = grid[i] * sin( t ) )
p<-p + geom_polygon( data = X, aes( x = x, y = y ),
fill = 'white',
colour = grid.color,
linetype = grid.linetype,
size = grid.size,
alpha = 0.0 )
}
p<-p + geom_segment( data = X, aes( x = 0, y = 0, xend = x, yend = y ),
colour = grid.radius.color,
linetype = grid.radius.linetype,
size = grid.radius.size )
p<-p + geom_segment( data = X,
aes( x = 0, y = 0,
xend = axis.break.position[m,1],
yend = axis.break.position[m,2] ),
colour = axis.color,
linetype = axis.linetype,
size = axis.size )
p<-p + geom_text( data = axis.break.position,
aes( x = xlab, y = ylab, label = label ),
size = axis.label.size,
color = axis.label.color,
angle = axis.label.angle )
p<-p + geom_polygon( aes( fill = Data[[Grp]],
group = Data[[Grp]],
colour = Data[[Grp]],
linetype = Data[[Grp]],
alpha = Data[[Grp]],
size = Data[[Grp]] ),
show.legend = TRUE )
p<-p + scale_fill_manual( values = data.fill,
labels = data.label,
guide = guide_legend( label.theme = element_text( family = 'Times', angle = 0,
colour = data.label.color,
size = data.label.size ) ) ) +
scale_color_manual( values = data.color, guide = "none" ) +
scale_linetype_manual( values = data.linetype, guide = "none" ) +
scale_alpha_manual( values = data.alpha, guide = "none" ) +
scale_size_manual( values = data.size, guide = "none" )
p<-p + geom_text( data = Labels,
aes( x = x, y = y, label = label ),
size = label.size,
color = label.color,
angle = label.angle )
p<-p + theme( plot.margin = plot.margin,
panel.background = element_rect( fill = "white", colour = NA ),
panel.border = element_blank() ,
panel.grid.major.x = element_blank(),
panel.grid.major.y = element_blank(),
panel.grid.minor.x = element_blank(),
panel.grid.minor.y = element_blank(),
title = element_text( family = 'Times', colour = title.color, size = title.size ),
axis.ticks = element_blank(),
axis.text.x = element_blank(),
axis.title.x = element_blank(),
axis.text.y = element_blank(),
axis.title.y = element_blank(),
legend.position = legend.position,
legend.background = element_blank(),
legend.title = element_blank() )
return( p )
})
}
|
rootSplit <- function(tree){
if(!inherits(tree,"phylo")){
stop("tree must be of class 'phylo'")
}
tips <- lapply(tree$edge[tree$edge[,1] == (Ntip(tree)+1),2],function(zz)
if(zz>Ntip(tree)){tree$tip.label[prop.part(tree)[[zz-Ntip(tree)]]]
}else{tree$tip.label[zz]})
return(tips)
}
|
context("cor_heatmap")
test_that("cor_heatmap takes numeric values only", {
data(bpd_phy); data(bpd_clin)
set <- tidy_micro(otu_tabs = list("P" = bpd_phy), clinical = bpd_clin,
prev_cutoff = 5, ra_cutoff = 0.1, exclude_taxa = "Bacteria",
filter_summary = FALSE, count_summary = FALSE) %>%
filter(day == 7)
expect_error( cor_heatmap(set, table = "P", bpd1), "'x' must be numeric" )
expect_error( cor_heatmap(set, table = "P") )
})
test_that("cor_heatmap takes numeric values only", {
data(bpd_phy); data(bpd_clin)
set <- tidy_micro(otu_tabs = list("P" = bpd_phy), clinical = bpd_clin,
prev_cutoff = 5, ra_cutoff = 0.1, exclude_taxa = "Bacteria",
filter_summary = FALSE, count_summary = FALSE) %>%
filter(day == 7)
expect_error( cor_heatmap(set, table = "P", weight, method = "X"),
"'method' must be one of: pearson, kendall, spearman")
})
|
constrmbbefd <- function(x, fix.arg, obs, ddistnam)
{
res <- x[1]*(1-x[2])
names(res) <- NULL
res
}
constrmbbefd1 <- function(x, fix.arg, obs, ddistnam)
{
res <- c(x[1]+1, -x[1], x[2]-1, x[1]*(1-x[2]))
names(res) <- NULL
res
}
constrmbbefd1jac <- function(x, fix.arg, obs, ddistnam)
{
j <- matrix(0, 4, 2)
j[1,] <- c(1, 0)
j[2,] <- c(0, -1)
j[3,] <- c(1, 0)
j[4,] <- c(-x[2], -x[1])
dimnames(j) <- NULL
j
}
constrmbbefd2 <- function(x, fix.arg, obs, ddistnam)
{
res <- c(x[1], x[1], 1-x[2], x[1]*(1-x[2]))
names(res) <- NULL
res
}
constrmbbefd2jac <- function(x, fix.arg, obs, ddistnam)
{
j <- matrix(0, 4, 2)
j[1,] <- c(1, 0)
j[2,] <- c(0, 1)
j[3,] <- c(0, -1)
j[4,] <- c(-x[2], -x[1])
dimnames(j) <- NULL
j
}
constrMBBEFD <- function(x, fix.arg, obs, ddistnam)
{
res <- c(x[1]-1, x[2])
names(res) <- NULL
res
}
constrMBBEFD1 <- function(x, fix.arg, obs, ddistnam)
{
res <- c(x[1]-1, x[2]-1, x[1]*x[2]-1)
names(res) <- NULL
res
}
constrMBBEFD1jac <- function(x, fix.arg, obs, ddistnam)
{
j <- matrix(0, 3, 2)
j[1,] <- c(1, 0)
j[2,] <- c(0, 1)
j[3,] <- c(x[2], x[1])
dimnames(j) <- NULL
j
}
constrMBBEFD2 <- function(x, fix.arg, obs, ddistnam)
{
res <- c(x[1]-1, 1-x[2], x[2], 1-x[1]*x[2])
names(res) <- NULL
res
}
constrMBBEFD2jac <- function(x, fix.arg, obs, ddistnam)
{
j <- matrix(0, 4, 2)
j[1,] <- c(1, 0)
j[2,] <- c(0, -1)
j[3,] <- c(0, 1)
j[4,] <- c(-x[2], -x[1])
dimnames(j) <- NULL
j
}
|
mklag <-
function(lag) {
if(any(!is.numeric(lag))||length(lag)>2)
stop("'lag' must a integer vector or length 2 or 1")
if(length(lag)==1L) lag <- if(lag<0L) c(lag,0L) else c(0L,lag)
if(diff(lag)<0L) stop("lag[1] must be <= lag[2]")
return(round(lag[1L:2L]))
}
|
print.quantile.prodlim <- function(x,digits=2,na.val="--",...){
if (attr(x,"reverse")==FALSE)
cat("Quantiles of the event time distribution based on the ",
ifelse(x$type=="surv","Kaplan-Meier","Aalen-Johansen"),
"method.")
else
cat("Quantiles of the potential follow up time distribution based on the Kaplan-Meier method",
"\napplied to the censored times reversing the roles of event status and censored.")
thisfmt <- paste0("%1.",digits[[1]],"f")
printx <- function(u){
ifelse(is.na(u),na.val,sprintf(thisfmt,u))
}
cat("\n")
lapply(1:length(x),function(i){
tab <- x[[i]]
cat("\nTable of quantiles and corresponding confidence limits:\n")
if (attr(x,"cotype")!=1) {
if(length(names(x)[i])){
cat("\n",names(x)[i],"\n\n")
}
}
print(tab,digits=digits)
if(all(c(0.25,0.5,0.75) %in% tab$q)){
if (attr(x,"model")=="survival")
cat("Median time (IQR):",printx(tab[tab$q==0.5,"quantile"])," (",printx(tab[tab$q==0.75,"quantile"]),";",printx(tab[tab$q==0.25,"quantile"]),")","\n",sep="")
else
cat("Median time (IQR):",printx(tab[tab$q==0.5,"quantile"])," (",printx(tab[tab$q==0.25,"quantile"]),";",printx(tab[tab$q==0.75,"quantile"]),")","\n",sep="")
}
})
invisible(x)
}
|
SRSin <- function(Species_list, Occurrence_data, Raster_list,Pro_areas=NULL, Gap_Map=FALSE){
taxon <- NULL
longitude <- NULL
par_names <- c("species","latitude","longitude","type")
if(missing(Occurrence_data)){
stop("Please add a valid data frame with columns: species, latitude, longitude, type")
}
if(isFALSE(identical(names(Occurrence_data),par_names))){
stop("Please format the column names in your dataframe as species, latitude, longitude, type")
}
if (isTRUE("RasterStack" %in% class(Raster_list))) {
Raster_list <- raster::unstack(Raster_list)
} else {
Raster_list <- Raster_list
}
if(is.null(Gap_Map) | missing(Gap_Map)){ Gap_Map <- FALSE
} else if(isTRUE(Gap_Map) | isFALSE(Gap_Map)){
Gap_Map <- Gap_Map
} else {
stop("Choose a valid option for GapMap (TRUE or FALSE)")
}
if(is.null(Pro_areas) | missing(Pro_areas)){
if(file.exists(system.file("data/preloaded_data/protectedArea/wdpa_reclass.tif",package = "GapAnalysis"))){
Pro_areas <- raster::raster(system.file("data/preloaded_data/protectedArea/wdpa_reclass.tif",package = "GapAnalysis"))
} else {
stop("Protected areas file is not available yet. Please run the function GetDatasets() and try again")
}
} else{
Pro_areas <- Pro_areas
}
if(isTRUE(Gap_Map)){
GapMapIn_list <- list()
}
df <- data.frame(matrix(ncol = 2, nrow = length(Species_list)))
colnames(df) <- c("species", "SRSin")
for(i in seq_len(length(Species_list))){
for(j in seq_len(length(Raster_list))){
if(grepl(j, i, ignore.case = TRUE)){
sdm <- Raster_list[[j]]
}
d1 <- Occurrence_data[Occurrence_data$species == Species_list[i],]
test <- GapAnalysis::ParamTest(d1, sdm)
if(isTRUE(test[1])){
stop(paste0("No Occurrence data exists, but and SDM was provide. Please check your occurrence data input for ", Species_list[i]))
}
};rm(j)
if(isFALSE(test[2])){
df$species[i] <- as.character(Species_list[i])
df$GRSex[i] <- 0
warning(paste0("Either no occurrence data or SDM was found for species ", as.character(Species_list[i]),
" the conservation metric was automatically assigned 0"))
}else{
Pro_areas1 <- raster::crop(x = Pro_areas,y = sdm)
if(raster::res(Pro_areas1)[1] != raster::res(sdm)[1]){
Pro_areas1 <- raster::resample(x = Pro_areas1, y = sdm)
}
sdm[sdm[] != 1] <- NA
Pro_areasSpecies <- sdm * Pro_areas1
occData1 <- Occurrence_data[which(Occurrence_data$species==Species_list[i] & !is.na(Occurrence_data$latitude) & !is.na(Occurrence_data$longitude) ),]
sp::coordinates(occData1) <- ~longitude+latitude
if(is.na(raster::crs(sdm))){
warning("No coordinate system was provided, assuming +proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0","\n")
raster::projection(sdm) <- "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0"
}
suppressWarnings(sp::proj4string(occData1) <- sp::CRS(raster::projection(sdm)))
inSDM <- occData1[!is.na(raster::extract(x = sdm,y = occData1)),]
protectPoints <- sum(!is.na(raster::extract(x = Pro_areas1,y = inSDM)))
totalNum <- dim(inSDM)[1]
if(protectPoints >= 0 ){
SRSin <- 100 *(protectPoints/totalNum)
}else{
SRSin <- 0
}
df$species[i] <- as.character(Species_list[i])
df$SRSin[i] <- SRSin
if(isTRUE(Gap_Map)){
message(paste0("Calculating SRSin gap map for ",as.character(Species_list[i])),"\n")
gapP <- inSDM[is.na(raster::extract(x = Pro_areas1,y = inSDM)),]
gapP<- sp::SpatialPoints(coords = gapP@coords)
gap_map <- raster::rasterize(x = gapP, field = rep(x = 1, length(gapP)),
y = sdm, fun='count')
gap_map[is.na(gap_map),] <- 0
sdm[sdm[] !=1] <- NA
gap_map <- sdm * gap_map
GapMapIn_list[[i]] <- gap_map
names(GapMapIn_list[[i]] ) <- Species_list[[i]]
}
}
}
if(isTRUE(Gap_Map)){
df <- list(SRSin=df, gap_maps = GapMapIn_list )
}else{
df <- df
}
return(df)
}
|
ptbs <- function(time,lambda=1,xi=1,beta=1,x=NULL,dist=dist.error("norm")) {
if(is.character(dist)) dist=dist.error(dist)
aux <- .test.tbs(lambda,xi,beta,x,time=time,type="d")
return(.ptbs(time,lambda,xi,aux$beta,aux$x,dist))
}
.ptbs <- function(time,lambda=1,xi=1,beta=1,x=NULL,dist="norm") {
out <- dist$p(c(.g.lambda(log(time),lambda)-.g.lambda(c(x%*%beta),lambda)),xi)
return(c(out))
}
|
library(LEANR)
library(ROCR)
set.seed(123456)
instances<-LEANR:::instances
LEAN_results_sim<-LEANR:::LEAN_results_sim
gene.order<-rownames(instances[[1]]$pvals)
class_matrix<-t(foreach(i=1:length(instances),.combine=rbind) %do% {
tmp<-!grepl('BG',instances[[i]]$pvals$NodeType);
names(tmp)<-rownames(instances[[i]]$pvals);
tmp[gene.order]
})
LEAN_matrix<-t(foreach(i=1:length(instances),.combine=rbind) %do% {
tmp<-LEAN_results_sim[[i]]$restab[,'pstar']
names(tmp)<-rownames(LEAN_results_sim[[i]]$restab);
tmp[gene.order]
})
SG_matrix<-t(foreach(i=1:length(instances),.combine=rbind) %do% {
tmp<-instances[[i]]$pvals[,'P.Value']
names(tmp)<-rownames(instances[[i]]$pvals);
tmp[gene.order]
})
predictions<-list(LEAN=prediction(-LEAN_matrix,class_matrix),
SG=prediction(-SG_matrix,class_matrix))
performances<-lapply(predictions,function(pred){performance(pred,"tpr","fpr")})
names(performances)<-names(predictions)
aucs_ind<-lapply(predictions,function(pred){performance(pred,"auc")@y.values})
aucs<-lapply(aucs_ind,function(x)mean(unlist(x)))
names(aucs)<-names(predictions)
plot(performances$LEAN,xlim=c(0,.2),col='black',avg='vertical',lwd=3,
spread.estimate='stderror',show.spread.at=seq(.02,.2,l=9),main='ROC performance on simulated subnetworks')
plot(performances$SG,col='orange',avg='vertical',lwd=3,add=T,
spread.estimate='stderror',show.spread.at=seq(.02,.2,l=9))
abline(a=0,b=1,lty=2,col='cyan')
legend('topleft',c(sprintf('LEAN (AUC=%0.3g)',aucs$LEAN),sprintf('Single-gene (AUC=%0.3g)',aucs$SG)),fill=c('black','orange'))
|
setClass(
"Aggregation.matrix.default",
representation( ),
contains = "Aggregation.matrix",
prototype = list(name = "Aggregation.matrix.default"),
validity = function(object) {
TRUE
}
)
setMethod(
f = "initialize",
signature = "Aggregation.matrix.default",
definition = function(.Object)
{
methods::validObject(.Object)
return(.Object)
}
)
setMethod(
"Aggregate",
signature = c( "Aggregation.matrix.default",
"character",
"character",
"logical",
"numeric"),
function(
aggregation.matrix,
factor.evaluation,
resource.evaluation,
factor.is.specific,
nrfactors){
if (factor.evaluation == "Cr") {
if (resource.evaluation == "Ex") return(1)
if (factor.is.specific) return(NA)
return(0)
}
if (factor.evaluation == "C") {
if (resource.evaluation == "Ex") return(1 + 1/nrfactors)
if (resource.evaluation == "G") return(1)
if (factor.is.specific) return(NA)
return(0)
}
if (factor.evaluation == "LC") {
if (resource.evaluation == "Ex") return(1 + 2/nrfactors)
if (resource.evaluation == "G") return(1 + 1/nrfactors)
if (resource.evaluation == "R") return(1)
if (factor.is.specific) return(NA)
return(0)
}
if (factor.evaluation == "I") {
if (resource.evaluation == "Ex") return(1 + 3/nrfactors)
if (resource.evaluation == "G") return(1 + 2/nrfactors)
if (resource.evaluation == "R") return(1 + 1/nrfactors)
if (resource.evaluation == "W") return(1)
if (resource.evaluation == "Em") return(0.01)
if (resource.evaluation == "Z") return(0.001)
if (factor.is.specific) return(NA)
return(0)
}
stop("fail when agregating - invalid factor or resource evaluation")
}
)
setMethod("show", "Aggregation.matrix.default",
function(object){
cat("\nAgregation Matrix Default:\n")
cat("general evaluation matrix")
cr <- c( "1", "0", "0", "0", "0",
"0", "0")
c <- c("(1 + 1/nf)", "1", "0", "0", "0",
"0", "0")
lc <- c("(1 + 2/nf)", "(1 + 1/nf)", "1", "0", "0",
"0", "0")
i <- c("(1 + 3/nf)", "(1 + 2/nf)", "(1 + 1/nf)", "1", "0.01",
"0.001", "0")
df <- rbind(cr, c, lc, i)
colnames(df) <- c("Ex", "G", "R", "W", "Em", "Z", "In")
row.names(df) <- c("Cr", "C", "LC", "I")
cat("\n")
print(df)
cat("\nSpecfics factors to a project must achieve a value bigger
then 0, otherwise they are evaluated as NA and causes the full
option not being acceptable.\n ")
cat("More information about the model see: Cosenza, Carlos Alberto
Nunes, Francisco Antonio Doria, and Leonardo Antonio Monteiro
Pessoa. Hierarchy Models for the Organization of Economic
Spaces. Procedia Computer Science 55 (2015): 82-91.
https://doi.org/10.1016/j.procs.2015.07.010")
}
)
|
NULL
getShippingZones <- function(...) {
private$.request("shipping_zones", ...)$shipping_zones
}
|
OZ <- function(mat, n.step=1, spks=1, eps=0.001) {
time.minutes.check <- time.minutes <- id_cycle <- rit <-time.minutes.zero<-temperature.s<-heat.flow<-T.deg<- NULL
mat.zero <- mat[mat$ri > 0][, time.minutes.check := (time.minutes.zero - min(time.minutes.zero)), by = id_cycle][]
T.peak.max <- (mat.zero[, temperature.s[which.max(heat.flow)], by = id_cycle])
T.step <- ceil(((max(T.peak.max$V1) - min(T.peak.max$V1)) / nrow(T.peak.max))) / n.step
T.range <- seq((floor(min(T.peak.max$V1))), (ceil(max(T.peak.max$V1)) + T.step), by = T.step)
DT <- lapply(T.range, function(x) mat.zero[, .SD[which.min(abs(temperature.s - x))], by = list(id_cycle)])
for (i in 1:length(T.range))
{
DT[[i]]$T.deg <- T.range[[i]]
}
DT <- rbindlist(DT)
Xc <- na.omit(DT$ri)
logPhi <- log10(na.omit(DT$rate))
x <- logPhi
y <- log10(-log((1 - Xc)))
xy <- data.table(x, y, DT$id_cycle, DT$T.deg)
setnames(xy, c("x", "y", "id_cycle", "T.deg"))
xy <- xy[is.finite(rowSums(xy)), ]
formulas <- list(y ~ x)
mod <- xy[, lapply(formulas, function(x) list(lm(x, data = .SD))), by = T.deg]
m <- lapply(mod$V1, function(x) -x$coeff[[2]])
my.list <- list("mod" = mod, "xy" = xy, "m" = m)
print(summaryTableOz(my.list))
return(my.list)
}
|
library(hamcrest)
library(utils)
test.typeConvert.1 <- function() {
assertThat(type.convert(c('1','2','3'), 'NA', FALSE), identicalTo(c(1L,2L,3L)))
}
test.typeConvert.2 <- function() {
assertThat(type.convert(c('T','NA','F'), 'NA', FALSE), identicalTo(c(TRUE, NA, FALSE)))
}
test.typeConvert.3 <- function() {
assertThat(type.convert(c('bing', 'bop'), 'FOO', TRUE), equalTo(c("bing","bop")))
}
test.typeConvert.4 <- function() {
assertThat(type.convert(c('bing', 'bop'), 'FOO', FALSE), identicalTo(structure(1:2, class = "factor", .Label = c("bing", "bop"))))
}
test.typeConvert.5 <- function() {
assertThat(type.convert(c('T','NA',''), 'NA', FALSE), identicalTo(c(TRUE, NA, NA)))
}
test.typeConvert.6 <- function() {
assertThat(type.convert(c('T','FALSE','BOB'), 'BOB', FALSE), identicalTo(c(TRUE, FALSE, NA)))
}
test.typeConvert.7 <- function() {
assertThat(type.convert(c('3.5','3.6','FOO'), 'FOO', FALSE), identicalTo(c(3.5,3.6,NA)))
}
test.typeConvert.8 <- function() {
assertThat(type.convert(c('C','A','B'), 'FOO', FALSE), identicalTo( structure(c(3L, 1L, 2L), .Label = c("A", "B", "C"), class = "factor") ))
}
|
yahooImport <-
function (query, file = "tempfile", source = NULL,
frequency = c("daily", "weekly", "monthly"),
from = NULL, to = Sys.timeDate(), nDaysBack = 366,
save = FALSE, sep = ";", try = TRUE)
{
stopifnot(length(query) == 1)
freq <- match.arg(frequency)
aggregation <- substr(freq, 1, 1)
if (is.null(to)) to <- Sys.timeDate()
to <- trunc(as.timeDate(to),"days")
if (is.null(from)) {
if (is.null(nDaysBack)) {
stop("The \"from\" and \"nDaysBack\" arguments cannot be NULL at the same time.")
} else {
from <- to - nDaysBack*24*3600
}
}
from <- trunc(as.timeDate(from),"days")
from <- as.character(from)
to <- as.character(to)
yearFrom <- substring(from, 1, 4)
monthFrom <- as.character(as.integer(substring(from, 6, 7))-1)
dayFrom <- substring(from, 9, 10)
yearTo <- substring(to, 1, 4)
monthTo <- as.character(as.integer(substring(to, 6, 7))-1)
dayTo <- substring(to, 9, 10)
Query <- paste("s=", query, "&a=", monthFrom, "&b=", dayFrom,
"&c=", yearFrom, "&d=", monthTo, "&e=", dayTo, "&f=", yearTo,
"&g=", aggregation, "&q=q&y=0&z=", query, "&x=.csv", sep = "")
if (is.null(source))
source <- "http://chart.yahoo.com/table.csv?"
if (try) {
z <- try(yahooImport(query, file, source, frequency, from, to,
nDaysBack, save, sep, try = FALSE))
if (inherits(z, "try-error") || inherits(z, "Error")) {
return("No Internet Access")
} else {
return(z)
}
} else {
url <- paste(source, Query, sep = "")
tmp <- tempfile()
download.file(url = url, destfile = tmp)
mat <- read.table(tmp, header = TRUE, sep = ",")
X <- rev(as.timeSeries(mat))
colnames(X) <- paste(sub("\\^","",query), colnames(X), sep = ".")
}
if (save) {
write.table(as.data.frame(X), file = file, sep = sep)
} else {
unlink(file)
}
ans <- new("fWEBDATA",
call = match.call(),
param = c(
"Instrument" = query,
"Frequency " = freq),
data = X,
title = "Data Import from www.yahoo.com",
description = description() )
ans
}
yahooSeries <-
function(symbols, from = NULL, to = Sys.timeDate(), nDaysBack = 366, ...)
{
X <- yahooImport(query = symbols[1],
from = from, to = to, nDaysBack=nDaysBack, ...)@data
N <- length(symbols)
if (N > 1) {
for (i in 2:N) {
Y <- yahooImport(query = symbols[i],
from = from, to = to, nDaysBack=nDaysBack, ...)@data
X <- merge(X, Y)
}
}
X
}
|
library(hamcrest)
test.paste <- function() {
s1 <- paste("foo", "bar")
s2 <- paste("x", 0, sep = "")
s3 <- paste(c("A", "B"), collapse = ", ")
assertThat(s1, equalTo("foo bar"))
assertThat(s2, equalTo("x0"))
assertThat(s3, equalTo("A, B"))
}
test.paste.factors <- function() {
x <- as.factor(c("Geothermal", "Electricity"))
assertThat(paste(x[1], x[2]), identicalTo("Geothermal Electricity"))
}
test.paste.null <- function() {
assertThat(paste(NULL), identicalTo(character(0)))
assertThat(paste(NULL, collapse=""), identicalTo(""))
}
test.paste.eval <- function() {
assertThat(paste(quote(a)), identicalTo("a"))
}
|
lmvar_no_fit <- function( y, X_mu = NULL, X_sigma = NULL,
intercept_mu = TRUE, intercept_sigma = TRUE, sigma_min = 0,
slvr_options = list(method = "NR"), control = list(), ...){
control_call = control
isnull_X = FALSE
isnull_X_sigma = FALSE
if(is.null(X_mu)){
isnull_X = TRUE
intercept_mu = TRUE
}
if(is.null(X_sigma)){
isnull_X_sigma = TRUE
intercept_sigma = TRUE
}
if (inherits( X_mu, 'numeric')){
X_mu = as.matrix(X_mu)
}
if (inherits( X_sigma, 'numeric')){
X_sigma = as.matrix(X_sigma)
}
if (!("mu_full_rank" %in% names(control))){
control$mu_full_rank = FALSE
}
if (!("sigma_full_rank" %in% names(control))){
control$sigma_full_rank = FALSE
}
if (!isnull_X){
if (nrow(X_mu) != length(y)){
stop("Number of rows of matrix X_mu not equal to length of response vector y")
}
if (is.element( "(Intercept)", colnames(X_mu))){
stop("Matrix X_mu can not have a column with the name '(Intercept)'")
}
}
if
(!isnull_X_sigma){
if (nrow(X_sigma) != length(y)){
stop("Number of rows of matrix X_sigma not equal to length of response vector y")
}
if (is.element( "(Intercept_s)", colnames(X_sigma))){
stop("Matrix X_sigma can not have a column with the name '(Intercept_s)'")
}
}
if (length(sigma_min) > 1 & length(sigma_min) != length(y)){
stop("The length of 'sigma_min' must be 1, or equal to the length of the response vector y")
}
if(any(sigma_min > 0) & any(sigma_min <= 0)){
stop("All values in 'sigma_min' must be strictly positive, or all values must be zero")
}
n = length(y)
Intercept = rep.int(1, n)
if (isnull_X){
X_mu = matrix(Intercept, nrow=n, ncol=1)
}
else if (intercept_mu){
X_mu = cbind( Intercept, X_mu)
}
if (isnull_X_sigma){
X_sigma = matrix(Intercept, nrow=n, ncol=1)
}
else if (intercept_sigma){
X_sigma = cbind( Intercept, X_sigma)
}
names = matrix_column_names( X_mu, X_sigma, intercept_mu, intercept_sigma)
colnames(X_mu) = names$colnames_X
colnames(X_sigma) = names$colnames_X_sigma
aliased_mu = logical(length = ncol(X_mu))
aliased_sigma = logical(length = ncol(X_sigma))
names(aliased_mu) = colnames(X_mu)
names(aliased_sigma) = colnames(X_sigma)
equal_matrices = FALSE
if (!control$sigma_full_rank & ncol(X_mu) == ncol(X_sigma)){
if (all(X_mu == X_sigma)){
equal_matrices = TRUE
}
}
qX = Matrix::qr(X_mu)
if (!control$mu_full_rank){
X_mu = make_matrix_full_rank( qX, X_mu)
}
if (!control$sigma_full_rank){
if (equal_matrices){
i = names(aliased_mu) %in% colnames(X_mu)
X_sigma = X_mu
colnames(X_sigma) = names(aliased_sigma)[i]
}
else X_sigma = make_matrix_full_rank(X_sigma)
}
names = names(aliased_mu)
aliased_mu = !is.element( names, colnames(X_mu))
names(aliased_mu) = names
names = names(aliased_sigma)
aliased_sigma = !is.element( names, colnames(X_sigma))
names(aliased_sigma) = names
if (nrow(X_mu) < (ncol(X_mu) + ncol(X_sigma))){
stop("Too few observations. There must be at least ", ncol(X_mu) + ncol(X_sigma), " observations.")
}
rlist = list( call = match.call(),
aliased_mu = aliased_mu,
aliased_sigma = aliased_sigma,
y = y,
X_mu = X_mu,
X_sigma = X_sigma,
intercept_mu = intercept_mu,
intercept_sigma = intercept_sigma,
sigma_min = sigma_min,
slvr_options = slvr_options,
control = control_call)
class(rlist) = "lmvar_no_fit"
return(rlist)
}
|
knitr::opts_chunk$set(
warning = FALSE,
message = FALSE
)
options(digits=4)
par(mar=c(5,4,1,1)+.1)
library(matlib)
A <- matrix( c(1, 2, 3,
2, 3, 0,
0, 1,-2), nrow=3, byrow=TRUE)
(AI <- cbind(A, diag(3)))
(AI[2,] <- AI[2,] - 2*AI[1,])
(AI[3,] <- AI[3,] + AI[2,])
(AI[2,] <- -1 * AI[2,])
(AI[3,] <- -(1/8) * AI[3,])
AI
AI[2,] <- AI[2,] - 6 * AI[3,]
AI[1,] <- AI[1,] - 3 * AI[3,]
AI[1,] <- AI[1,] - 2 * AI[2,]
AI
(AInv <- AI[,-(1:3)])
inv(A)
AI <- cbind(A, diag(3))
AI <- rowadd(AI, 1, 2, -2)
AI <- rowadd(AI, 2, 3, 1)
AI <- rowmult(AI, 2, -1)
AI <- rowmult(AI, 3, -1/8)
AI
AI <- rowadd(AI, 3, 2, -6)
AI <- rowadd(AI, 2, 1, -2)
AI <- rowadd(AI, 3, 1, -3)
AI
echelon( cbind(A, diag(3)))
echelon( cbind(A, diag(3)), verbose=TRUE, fractions=TRUE)
|
power.single.cost<-function(initial,protein,n1,artifact,budget,s,assaycost2.function,assaycost3.function,recruit,optimize=FALSE)
{
set.seed(100)
sigma_m=diag(protein$sigma^2)
BETA.ARTIFACT<-protein$beta*artifact
SIGMA<-protein$sigma
PROTEINID<-protein$proteinid
sample.frame=mvrnorm(n=10000,BETA.ARTIFACT,sigma_m)
sample.t=t(sample.frame)
SAMPLE.MATRIX<-cbind(sample.t,protein$group)
N1=n1
BUDGET<-budget;RECRUIT<-recruit;S=s;
COST2.FUNCTION<-match.fun(assaycost2.function)
COST3.FUNCTION<-match.fun(assaycost3.function)
Ttest<-function(sample,n,m,beta.artifact=BETA.ARTIFACT,sigma=SIGMA,sample.matrix=SAMPLE.MATRIX,n1=N1,recruit=RECRUIT,cost2=COST2.FUNCTION,cost3=COST3.FUNCTION,proteinid=PROTEINID)
{
proteingr2=sample;proteinsample=t(sample)[,1:m]
beta.sample=rowMeans(proteingr2[,1:n]); sigma.sample=apply(proteinsample,2,sd);tstat=beta.sample/sigma.sample*sqrt(n)
proteingr3<-cbind(proteingr2,beta.sample,sigma.sample)
prob.t=pt(abs(tstat),df=n-1,lower.tail=FALSE)*2
c(prob.t)
}
calculate.n3<-function(n2,p2,p3,budget=BUDGET,s=S,cost2=COST2.FUNCTION,cost3=COST3.FUNCTION,recruit=RECRUIT)
{
return(((budget-s)-match.fun(cost2)(n2,p2)-recruit*n2)/(match.fun(cost3)(p3)+recruit))
}
do.one.experiment.t<-function(initial,budget=BUDGET,s=S,sigma=SIGMA,beta.artifact=BETA.ARTIFACT,proteinID=PROTEINID,sample.matrix=SAMPLE.MATRIX,n1=N1,cost2=COST2.FUNCTION,cost3=COST3.FUNCTION,proteinid=PROTEINID,recruit=RECRUIT)
{
n2=round(initial[3]);p=dim(sample.matrix)[1];
sample.stage1<-sample(c(1:10000),n1)
sample.data=sample.matrix[,sample.stage1]
t.pvalue=Ttest(sample=sample.data,n=n1,m=p)
in.stage2<-(t.pvalue<initial[1])
p2<-sum(in.stage2)
beta2<-beta.artifact[in.stage2]
sigma2<-sigma[in.stage2]
proteinid2<-proteinID[in.stage2]
sample.stageII=sample(c(1:10000),n2)
sample.data2=sample.matrix[in.stage2,sample.stageII]
t.pvalue2=Ttest(sample=sample.data2,n=n2,m=p2)
in.stage3<-(t.pvalue2<initial[2])
beta3<-beta2[in.stage3]
sigma3<-sigma2[in.stage3]
p3<-sum(in.stage3)
proteinid3<-proteinid2[in.stage3]
n3=calculate.n3(n2=n2,p2=p2,p3=p3,budget=BUDGET,s=S,cost2=COST2.FUNCTION,cost3=COST3.FUNCTION,recruit=RECRUIT)
if (n3>100)
{
final.power<-power.t.test(n3,delta=beta3,sd=sigma3,sig.level=0.05,type="paired",alternative="two.sided")$power
final.stage<-(final.power>0.85)
detect.positive=sum(final.power)
p4=sum(final.stage)
proteinid4<-proteinid3[final.stage]
return(c(detect.positive=p4,n3=n3,p2=p2,p3=p3,p4=p4,proteinid2=proteinid2,proteinid3=proteinid3,proteinid4=proteinid4))
}
else return(c(0,0,p2,p3,1,rep(0,p2),rep(0,p3),rep(0,1)))
}
expect.positive=c(rep(0,1000))
n3.vect=c(rep(0,1000))
n2=round(initial[3])
no.protein=length(BETA.ARTIFACT);num.col=6+no.protein
stage2.cost=c(rep(0,1000));stage3.cost=c(rep(0,1000))
SELECT1<-matrix(nrow=1000,ncol=num.col,rep(0,1000*num.col))
SELECT2<-matrix(nrow=1000,ncol=num.col,rep(0,1000*num.col))
SELECT3<-matrix(nrow=1000,ncol=num.col,rep(0,1000*num.col))
for (i in 1:1000)
{
set.seed(i*100)
esolution=do.one.experiment.t(initial)
expect.positive[i]=esolution[1]
n3.vect[i]=esolution[2]
p2=esolution[3]
p3=esolution[4]
p4=esolution[5]
if(p2 !=0 & p3 !=0 & p4!=0)
{SELECT1[i,1:p2]=esolution[6:(6+p2-1)]
SELECT2[i,1:p3]=esolution[(6+p2):(6+p2+p3-1)]
SELECT3[i,1:p4]=esolution[(6+p2+p3):(6+p2+p3+p4-1)]}
else print ("NO protein selected at final stage")
stage2.cost[i]=match.fun(COST2.FUNCTION)(n2,p2)+recruit*n2;stage3.cost[i]=match.fun(COST3.FUNCTION)(p3)*n3.vect[i]+recruit*n3.vect[i]
}
mean.expect.pos=mean(expect.positive[expect.positive>=0])
mean.n3<-mean(n3.vect[n3.vect>=0])
mean.stage2.cost=mean(stage2.cost);mean.stage3.cost=mean(stage3.cost)
if(optimize) return(-mean.expect.pos)
else {
print("no. of expected positive:");print(expect.positive)
print("n3:");print(n3.vect)
print("summary of expected positive:");print(summary(expect.positive))
print("n3 vector"); print(summary(n3.vect));
print(table(SELECT1));print(table(SELECT2));print(table(SELECT3))
par(mfcol=c(3,1))
hist(expect.positive,main="expected positive",xlim=c(0,(mean.expect.pos+1)));hist(n3.vect,main="n3",xlim=c(0,(mean.n3+100)));plot(expect.positive,n3.vect,xlab="expected positive",ylab="n3")
print(paste("cost at stage II:",mean.stage2.cost),quote=FALSE)
print(paste("cost at stage III:",mean.stage3.cost),quote=FALSE)
return(c(mean.n3,mean.stage2.cost,mean.stage3.cost))
}
}
|
FPTsimul <-
function(obj,M)
{
spikes <- numeric(M)
time.points <- obj$time
rate.vec <- obj$g0/(1-obj$gg0)
N1time <- length(obj$time)
t0 <- time.points[1]
deltat <- time.points[2]-time.points[1]
Nmin <- floor(N1time/10)
Nmax <- which.min(abs(rate.vec[(Nmin+1):(N1time+1)]-rate.vec[Nmin:N1time]))+Nmin
tol <- 0.0001
tmax <- t0 + Nmax*deltat
lamax <- 1.01*max(rate.vec)
nreject <- 0
for (ifire in 1:M) {
Tcurr <- t0
repeat {
Tcurr <- Tcurr - log(runif(1))/lamax
lambdacurr <- rate.vec[Nmax]
if (Tcurr < tmax) {
icurr <- min(floor((Tcurr-t0)/deltat+1.001),(N1time-1))
lambdacurr <- rate.vec[icurr]+(rate.vec[icurr+1]-rate.vec[icurr])*(Tcurr-time.points[icurr])/deltat
}
u2 <- runif(1)
lacheck <- abs(lambdacurr/lamax - u2)
if (lacheck <= tol ) {
nreject <- nreject + 1
Tcurr <- t0
}
if ((lacheck > tol) & (lambdacurr/lamax >= u2) ) break()
}
spikes[ifire] <- Tcurr
}
return(spikes)
}
|
expect_equal(
mtcars %>% summarise(mean(mpg)),
data.frame("mean(mpg)" = mean(mtcars$mpg), check.names = FALSE),
info = "Test single summaries"
)
expect_equal(
mtcars %>% summarise(meanMpg = mean(mpg)),
data.frame("meanMpg" = mean(mtcars$mpg)),
info = "Test single summaries with column name"
)
expect_equal(
mtcars %>% summarise(mean(mpg), sum(disp)),
data.frame("mean(mpg)" = mean(mtcars$mpg), "sum(disp)" = sum(mtcars$disp), check.names = FALSE),
info = "Test multiple summarise"
)
expect_equal(
mtcars %>% summarise(meanMpg = mean(mpg), sumDisp = sum(disp)),
data.frame("meanMpg" = mean(mtcars$mpg), "sumDisp" = sum(mtcars$disp), check.names = FALSE),
info = "Test multiple summarise with column names"
)
expect_equal(
summarise(data.frame(x = 1:10), y = mean(x), z = y + 1),
data.frame(y = 5.5, z = 6.5),
info = "Can use freshly create variables"
)
expect_equal(
mtcars %>% summarise(n(), range(mpg)),
structure(list(`n()` = c(32L, 32L), `range(mpg)` = c(10.4, 33.9)), class = "data.frame", row.names = c(NA, -2L)),
info = "Functions returning multiple values get split over rows"
)
expect_equal(
mtcars %>% summarise(n(), list(range(mpg))),
structure(list(`n()` = 32L, `list(range(mpg))` = list(c(10.4, 33.9))), class = "data.frame", row.names = c(NA, -1L)),
info = "Functions returning multiple values that are wrapped in list are returned as nested columns"
)
res <- mtcars %>% group_by(am, cyl, gear) %>% summarise(meanMpg = mean(mpg), sumDisp = sum(disp))
gd <- group_data(res)
expect_equal(
gd,
structure(
list(
am = c(0, 0, 0, 1, 1, 1),
cyl = c(4, 6, 8, 4, 6, 8),
.rows = list(1:2, 3:4, 5L, 6:7, 8:9, 10L)
), row.names = c(NA, 6L), class = "data.frame", .drop = TRUE
),
info = "Ensure the summarised data still contains group attributes"
)
attr(res, "groups") <- NULL
expect_equal(
res,
structure(
list(
am = c(0, 0, 0, 0, 0, 1, 1, 1, 1, 1),
cyl = c(4, 4, 6, 6, 8, 4, 4, 6, 6, 8),
gear = c(3, 4, 3, 4, 3, 4, 5, 4, 5, 5),
meanMpg = c(21.5, 23.6, 19.75, 18.5, 15.05, 28.0333333333333, 28.2, 21, 19.7, 15.4),
sumDisp = c(120.1, 287.5, 483, 335.2, 4291.4, 533.5, 215.4, 320, 145, 652)
),
row.names = c(NA, 10L),
class = c("grouped_df", "data.frame")
),
info = "Test multiple groups and multiple summary functions"
)
expect_equal(
summarise(mtcars),
data.frame(),
info = "empty summarise returns empty data.frame"
)
res <- mtcars %>% group_by(am) %>% summarise()
expect_equal(
class(res),
c("grouped_df", "data.frame"),
info = "empty grouped summarise() returns groups
)
expect_equal(
{
attr(res, "groups") <- NULL
class(res) <- "data.frame"
res
},
data.frame(am = c(0, 1)),
info = "empty grouped summarise() returns groups
)
df <- data.frame(x = 1, y = 2) %>% group_by(x, y)
expect_equal(
df %>% summarise() %>% group_vars(),
"x",
info = ".groups = NULL drops the last grouping variable when the results return a single value"
)
expect_equal(
df %>% summarise(.groups = "drop_last") %>% group_vars(),
"x",
info = ".groups = 'drop_last' drops the last grouping variable"
)
expect_equal(
df %>% summarise(.groups = "drop") %>% group_vars(),
character(),
info = ".groups = 'drop' drops all grouping variables"
)
expect_equal(
df %>% summarise(.groups = "keep") %>% group_vars(),
c("x", "y"),
info = ".groups = 'keep' keeps all grouping variables"
)
expect_equal(
mtcars %>%
group_by(cyl, vs) %>%
summarise(cyl_n = n()) %>%
group_vars(),
"cyl",
info = ".groups = NULL drops the last grouping variable when the results return a single value for multiple groups"
)
|
exists.ftp.file <- function(url, file.path) {
tryCatch({test_connection <- curl::curl_fetch_memory(url = url)}, error = return(FALSE))
if (test_connection$status_code == 226) {
con <-
curl::curl(url = url,
open = "rb",
curl::new_handle(dirlistonly = TRUE))
ftp.content <-
suppressMessages(readr::read_delim(con,
delim = "\n",
col_names = FALSE))
close(con)
return(is.element(as.character(basename(file.path)),
as.character(ftp.content$X1)))
} else {
return(FALSE)
}
}
exists.ftp.file.new <- function(url, file.path) {
if (!RCurl::url.exists(dirname(url)))
return(FALSE)
con <- RCurl::getURL(url, ftp.use.epsv = FALSE, dirlistonly = TRUE)
ftp.content <-
suppressMessages(readr::read_delim(con,
delim = "\n",
col_names = FALSE))
return(is.element(as.character(basename(file.path)),
as.character(ftp.content$X1)))
}
|
output$amstock1 <- renderAmCharts({
data("data_stock_2")
amTimeSeries(data_stock_2, "date", c("ts1", "ts2"))
})
output$code_amstock1 <- renderText({
"
data('data_stock_2')
amTimeSeries(data_stock_2, 'date', c('ts1', 'ts2'))
"
})
output$amstock2 <- renderAmCharts({
data('data_stock_2')
amTimeSeries(data_stock_2, "date", c("ts1", "ts2"), bullet = "round",
groupToPeriods = c('hh', 'DD', '10DD'),
linewidth = c(3, 1))
})
output$code_amstock2 <- renderText({
"
data('data_stock_2')
amTimeSeries(data_stock_2, 'date', c('ts1', 'ts2'), bullet = 'round',
groupToPeriods = c('hh', 'DD', '10DD'),
linewidth = c(3, 1))
"
})
output$amstock3 <- renderAmCharts({
data('data_stock_2')
ZoomButton <- data.frame(Unit = c("DD", "DD", "MAX"), multiple = c(1, 10 ,1),
label = c("Day","10 days", "MAX"))
amTimeSeries(data_stock_2, 'date', c('ts1', 'ts2'), bullet = 'round',
ZoomButton = ZoomButton, main = 'My title',
ylab = 'Interest', export = TRUE,
creditsPosition = 'bottom-left', group = 'a')
})
output$code_amstock3 <- renderText({
"
data('data_stock_2')
ZoomButton <- data.frame(Unit = c('DD', 'DD', 'MAX'), multiple = c(1, 10 ,1),
label = c('Day','10 days', 'MAX'))
amTimeSeries(data_stock_2, 'date', c('ts1', 'ts2'), bullet = 'round',
ZoomButton = ZoomButton, main = 'My title',
ylab = 'Interest', export = TRUE,
creditsPosition = 'bottom-left', group = 'a')
"
})
output$amstock4 <- renderAmCharts({
data('data_stock_2')
amTimeSeries(data_stock_2, 'date', c('ts1', 'ts2'), aggregation = 'Sum', legend = TRUE,
maxSeries = 1300, group = 'a')
})
output$code_amstock4 <- renderText({
"
data('data_stock_2')
amTimeSeries(data_stock_2, 'date', c('ts1', 'ts2'), aggregation = 'Sum', legend = TRUE,
maxSeries = 1300, group = 'a')
"
})
output$amstock5 <- renderAmCharts({
data(data_stock_3)
amStockMultiSet(data = data_stock_3)
})
output$code_amstock5 <- renderText({
"
data(data_stock_3)
amStockMultiSet(data = data_stock_3)
"
})
output$amstock6 <- renderAmCharts({
data(data_stock_3)
amStockMultiSet(data = data_stock_3, panelColumn = c(1,2,1,1))
})
output$code_amstock6 <- renderText({
"
data(data_stock_3)
amStockMultiSet(data = data_stock_3, panelColumn = c(1,2,1,1))
"
})
output$amstock7 <- renderAmCharts({
data(data_stock_3)
ZoomButton <- data.frame(Unit = c("DD", "DD", "MAX"), multiple = c(10, 15 ,1),
label = c("10 days","15 days", "MAX"))
amStockMultiSet(data = data_stock_3, panelColumn = c(1,2,1,1), percentHeightPanel = c(3,1),
ZoomButtonPosition = "top", ZoomButton = ZoomButton, export = TRUE)
})
output$code_amstock7 <- renderText({
"
data(data_stock_3)
ZoomButton <- data.frame(Unit = c('DD', 'DD', 'MAX'), multiple = c(10, 15 ,1),
label = c('10 days','15 days', 'MAX'))
amStockMultiSet(data = data_stock_3, panelColumn = c(1,2,1,1), percentHeightPanel = c(3,1),
ZoomButtonPosition = 'top', ZoomButton = ZoomButton, export = TRUE)
"
})
|
options(na.action=na.exclude)
options(contrasts=c('contr.treatment', 'contr.poly'))
library(survival)
lung2 <- na.omit(lung[c('time', 'status', 'wt.loss')])
fit <- coxph(Surv(time, status) ~ pspline(wt.loss,3), lung2, x=T)
fit0<- coxph(Surv(time, status) ~ 1, lung2)
fit1<- coxph(Surv(time, status) ~ fit$x, lung2, iter=0, init=fit$coef)
all.equal(fit$loglik[1], fit0$loglik)
all.equal(fit$loglik[2], fit1$loglik[2])
imat <- solve(fit1$var)
var2 <- fit$var %*% imat %*% fit$var
all.equal(fit$var2, var2)
|
setGeneric("as.PiecewiseLinearFuzzyNumber",
function(object, ...) standardGeneric("as.PiecewiseLinearFuzzyNumber"))
setMethod(
f="as.PiecewiseLinearFuzzyNumber",
signature(object="TrapezoidalFuzzyNumber"),
definition=function(object, knot.n=0, knot.alpha=seq(0, 1, length.out=knot.n+2)[-c(1,knot.n+2)])
{
stopifnot(length(knot.n) == 1, knot.n >= 0)
stopifnot(knot.n == length(knot.alpha))
a <- alphacut(object, c(0, knot.alpha, 1))
PiecewiseLinearFuzzyNumber(knot.left=a[,1], knot.right=rev(a[,2]), knot.alpha=knot.alpha)
})
setMethod(
f="as.PiecewiseLinearFuzzyNumber",
signature(object="numeric"),
definition=function(object, knot.n=0, knot.alpha=seq(0, 1, length.out=knot.n+2)[-c(1,knot.n+2)])
{
stopifnot(is.finite(object))
stopifnot(length(knot.n) == 1, knot.n >= 0)
stopifnot(knot.n == length(knot.alpha))
if (length(object) == 1)
PiecewiseLinearFuzzyNumber(a1=object, a2=object, a3=object, a4=object,
knot.n=knot.n, knot.alpha=knot.alpha,
knot.left=rep(object, knot.n),
knot.right=rep(object, knot.n))
else if (length(object) == 2)
PiecewiseLinearFuzzyNumber(a1=object[1], a2=object[1], a3=object[2], a4=object[2],
knot.n=knot.n, knot.alpha=knot.alpha,
knot.left=rep(object, knot.n),
knot.right=rep(object, knot.n))
else
stop("`object` should be a numeric vector of length 1 or 2")
})
setMethod(
f="as.PiecewiseLinearFuzzyNumber",
signature(object="FuzzyNumber"),
definition=function(object, knot.n=0, knot.alpha=seq(0, 1, length.out=knot.n+2)[-c(1,knot.n+2)])
{
stop("This method is only for exact conversion. Use piecewiseLinearApproximation() instead.")
})
setMethod(
f="as.PiecewiseLinearFuzzyNumber",
signature(object="PiecewiseLinearFuzzyNumber"),
definition=function(object, knot.n=0, knot.alpha=seq(0, 1, length.out=knot.n+2)[-c(1,knot.n+2)])
{
stopifnot(length(knot.n) == 1, knot.n >= 0)
stopifnot(knot.n == length(knot.alpha))
if (length(setdiff([email protected], knot.alpha)) != 0)
stop("This method is only for exact conversion. Use piecewiseLinearApproximation() instead.")
a <- alphacut(object, c(0, knot.alpha, 1))
PiecewiseLinearFuzzyNumber(knot.left=a[,1], knot.right=rev(a[,2]))
})
|
hsic.clust <- function( x,
y,
z,
sig=1,
p=100,
numCluster=10,
numCol=50,
eps=0.1,
paral=1
){
x = as.matrix(x)
y = as.matrix(y)
z = as.matrix(z)
n = nrow(as.matrix(x))
H = diag(n)-1/n*matrix(rep(x = 1, length.out = n*n), n, n)
pval.perm=matrix(0,p)
tempx = inchol(as.matrix(x), kernel = 'rbfdot', kpar = list(sigma = 1/sig), maxiter = numCol)
iCHx = [email protected]
tempy = inchol(as.matrix(y), kernel = 'rbfdot', kpar = list(sigma = 1/sig), maxiter = numCol)
iCHy = [email protected]
tempz = inchol(as.matrix(z), kernel = 'rbfdot', kpar = list(sigma = 1/sig), maxiter = numCol)
iCHz = [email protected]
a = svd(x = H%*%iCHx)
Ux = a$u
Sx = a$d
b = svd(x = H%*%iCHy)
Uy = b$u
Sy = b$d
c = svd(x = H%*%iCHz)
Uz = c$u
Sz = c$d
if (length(Sx) != 1){ MSx <- diag(Sx^2) } else {MSx <- as.matrix(Sx^2)}
if (length(Sy) != 1){ MSy <- diag(Sy^2) } else {MSy <- as.matrix(Sy^2)}
if (length(Sz) != 1){ MSz <- diag(Sz^2/(Sz^2+eps)) } else {MSz <- as.matrix(Sz^2/(Sz^2+eps))}
hsic = 1/(n*n)*sum(diag( Ux%*%((MSx%*%t(Ux))%*%(Uy%*%MSy))%*%t(Uy) -2*Ux%*%((((MSx%*%t(Ux))%*%(Uz%*%MSz))%*%t(Uz))%*%(Uy%*%MSy))%*%t(Uy) + Ux%*%((((MSx%*%t(Ux))%*%(Uz%*%MSz))%*%t(Uz))%*%(Uy%*%((MSy%*%t(Uy))%*%(Uz%*%MSz))))%*%t(Uz)))
if (paral == 1){
pval.perm = lapply(X = 1:p, function(m, Ux, Sx, Uy, Sy, Uz, Sz, sig, numCol, numCluster) {
t = kmeans(z,numCluster)
perm = c(1:n)
for (j in 1:numCluster){
perm[t$cluster==j] = perm[t$cluster==j][sample(sum(t$cluster==j))]
}
Uyp <- Uy[perm,]
result = 1/(n*n)*sum(diag( Ux%*%((MSx%*%t(Ux))%*%(Uyp%*%MSy))%*%t(Uyp) -2*Ux%*%((((MSx%*%t(Ux))%*%(Uz%*%MSz))%*%t(Uz))%*%(Uyp%*%MSy))%*%t(Uyp) + Ux%*%((((MSx%*%t(Ux))%*%(Uz%*%MSz))%*%t(Uz))%*%(Uyp%*%((MSy%*%t(Uyp))%*%(Uz%*%MSz))))%*%t(Uz)))
return ( result ) }, Ux=Ux, Sx=Sx, Uy=Uy, Sy=Sy, Uz=Uz, Sz=Sz, sig, numCol, numCluster=numCluster)
}
else {
cl <- makeCluster(mc <- getOption('cl.cores',paral))
clusterEvalQ(cl, library(kernlab))
clusterEvalQ(cl, library(psych))
pval.perm <- parLapply(cl = cl, X = 1:p, function(m, Ux, Sx, Uy, Sy, Uz, Sz, sig, eps, numCol, numCluster) { m
t <- kmeans(z,numCluster)
perm <- c(1:n)
for (j in 1:numCluster){
perm[t$cluster==j] <- perm[t$cluster==j][sample(sum(t$cluster==j))]
}
Uyp <- Uy[perm,]
result <- 1/(n*n)*sum(diag( Ux%*%((diag(Sx^2)%*%t(Ux))%*%(Uyp%*%diag(Sy^2)))%*%t(Uyp) -2*Ux%*%((((diag(Sx^2)%*%t(Ux))%*%(Uz%*%diag(Sz^2/(Sz^2+eps))))%*%t(Uz))%*%(Uyp%*%diag(Sy^2)))%*%t(Uyp) + Ux%*%((((diag(Sx^2)%*%t(Ux))%*%(Uz%*%diag(Sz^2/(Sz^2+eps))))%*%t(Uz))%*%(Uyp%*%((diag(Sy^2)%*%t(Uyp))%*%(Uz%*%diag(Sz^2/(Sz^2+eps))))))%*%t(Uz)))
return ( result ) }, Ux=Ux, Sx=Sx, Uy=Uy, Sy=Sy, Uz=Uz, Sz=Sz, sig=sig, eps=eps, numCol=numCol, numCluster=numCluster)
stopCluster(cl)
}
pval.perm2 <- matrix(0,ncol=p)
for (i in 1:p){pval.perm2[i]<-pval.perm[[i]]}
pval <- mean(c(pval.perm2,hsic)>=hsic)
HSMean <- mean(pval.perm2)
HSVariance <- var(pval.perm2)
names(hsic) <- "HSIC"
names(HSMean) <-"HSIC mean"
names(HSVariance) <- "HSIC variance"
dataname <- paste("Cluster permutation approximation", sep = "")
e <- list(method = paste("HSIC test of conditional independence", sep = ""),
statistic = hsic,
estimate = hsic,
estimates = c(hsic,HSMean,HSVariance),
p.value = pval,
replicates = pval.perm2,
data.name = dataname)
class(e) <- "htest"
return(e)
}
|
function_to_pmml <- function(expr) {
xformed <- .pmmlU(expr)
return(xformed)
}
|
heat.lin <- function(n, part) {
shape <- 0:(n-1)
return(shape)
}
heat.exp <- function(n, part, base=1.015) {
shape <- base^(0:(n-1))
if(part == 2) shape <- max(shape) - rev(shape)
return(shape)
}
heat <- function(colors=c("
n <- as.integer(n)
if(length(colors) != 3) stop("'colors' must contain 3 color names or hexadecimal representations")
if(n %% 2L == 1L) stop("'n' must be a multiple of 2")
input <- col2rgb(colors)
output <- matrix(as.integer(NA), nrow=nrow(input), ncol=n, dimnames=list(rownames(input), NULL))
for(channel in rownames(input)) {
shape1 <- shapeFun(n=n/2L, part=1L, ...)
shape2 <- shapeFun(n=n/2L, part=2L, ...)
output[channel,] <- c(
shape1 / max(shape1) * (input[channel,2L] - input[channel,1L]) + input[channel,1L],
shape2 / max(shape2) * (input[channel,3L] - input[channel,2L]) + input[channel,2L]
)
}
output <- rgb(t(output), maxColorValue=255L)
return(output)
}
|
lumpedMatrix = function(mutmat, lump, afreq = attr(mutmat, 'afreq')) {
als = colnames(mutmat)
if(setequal(lump, als)) {
newM = matrix(1, ncol=1, nrow=1, dimnames=list("lump", "lump"))
mod = newMutationMatrix(newM, model = "trivial")
return(mod)
}
if(!isLumpable(mutmat, lump))
stop2("The model is not lumpable for this set of alleles")
keep = setdiff(als, lump)
N = length(keep) + 1
lump_idx = match(lump, als)
keep_idx = match(keep, als)
newM = mutmat[c(keep, lump[1]), c(keep, lump[1])]
newM[, N] = 1 - rowSums(newM[, 1:(N-1), drop = F])
colnames(newM)[N] = rownames(newM)[N] = "lump"
if(!is.null(afreq)) {
lumpedFreq = c(afreq[keep_idx], sum(afreq[lump_idx]))
names(lumpedFreq) = colnames(newM)
}
else {
lumpedFreq = NULL
}
newMutationMatrix(newM, afreq = lumpedFreq, lumpedAlleles = lump,
model = attr(mutmat, 'model'), rate = attr(mutmat, 'rate'),
seed = attr(mutmat, 'seed'))
}
|
append_chains <- function(...) UseMethod("append_chains")
append_chains.default <- function(...) {
dots <- list(...)
dots <- dots[sapply(dots, length) > 0L]
if (coda::is.mcmc(dots[[1]]))
do.call(append_chains.mcmc, dots)
else if (coda::is.mcmc.list(dots[[1]]))
do.call(append_chains.mcmc, dots)
else
stop("No method available to append these chains.", call. = FALSE)
}
append_chains.mcmc.list <- function(...) {
dots <- list(...)
if (length(dots) == 1L)
return(dots[[1]])
nchains <- sapply(dots, coda::nchain)
if (length(unique(nchains)) != 1)
stop(
"All mcmc.list objects must have the same number of chains. ",
"The passed objects have ", paste(nchains, collapse = ", "),
" respectively.",
call. = FALSE
)
ans <- vector("list", nchains[1])
for (i in 1:nchains[1])
ans[[i]] <- do.call(append_chains.mcmc, lapply(dots, "[[", i))
coda::as.mcmc.list(ans)
}
append_chains.mcmc <- function(...) {
dots <- list(...)
if (length(dots) == 1L)
return(dots[[1]])
thin <- sapply(dots, coda::thin)
if (length(unique(thin)) != 1L)
stop("All `mcmc` objects have to have the same `thin` parameter.",
"Observed: ", paste(thin, collapse=", "), " respectively.", call.=FALSE)
nvar <- sapply(dots, coda::nvar)
if (length(unique(nvar)) != 1L)
stop("All `mcmc` objects have to have the same number of parameters.",
"Observed: ", paste(nvar, collapse=", "), " respectively.", call.=FALSE)
mcpar <- lapply(dots, coda::mcpar)
start <- sapply(mcpar, "[[", 1)
end <- sapply(mcpar, "[[", 2)
rn <- lapply(dots, function(d) {
as.integer(rownames(unclass(d)))
})
midnames <- Map(function(rn., add) {
as.character(rn. - rn.[1] + add + thin[1])
}, rn = rn[-1], add=cumsum(end[-length(end)])
)
rn <- c(as.character(rn[[1]]), unlist(midnames))
end[-1] <- end[-1] + thin[-1] - start[-1]
dat <- do.call(rbind, unclass(dots))
rownames(dat) <- rn
coda::mcmc(
data = dat,
start = start[1],
end = sum(end),
thin = thin[1]
)
}
|
f <- '{"type":"Feature","properties":{"id":1,"name":"foo"},"geometry":{"type":"LineString","coordinates":[[101,0],[102,1]]}}'
sf <- geojson_sf(f)
wkt <- geojson_wkt(f)
expect_true(all(names(sf) %in% c("id", "name","geometry")))
expect_true(all(names(wkt) %in% c("id","name","geometry")))
expect_true(sf$id == 1)
expect_true(wkt$id == 1)
expect_true(sf$name == "foo")
expect_true(wkt$name == "foo")
js <- '[{"type": "Feature",
"properties" : {},
"geometry": {
"type": "Polygon","coordinates": [[[-10.0, -10.0],[10.0, -10.0],[10.0, 10.0],[-10.0, -10.0]]]}
},{"type": "Feature",
"properties" : {"id":1},
"geometry": {"type": "MultiPolygon",
"coordinates": [[[[180.0, 40.0], [180.0, 50.0], [170.0, 50.0],[170.0, 40.0], [180.0, 40.0]]],
[[[-170.0, 40.0], [-170.0, 50.0], [-180.0, 50.0],[-180.0, 40.0], [-170.0, 40.0]]]]}
},{"type": "FeatureCollection",
"features": [{
"type": "Feature",
"properties": {"id" : 2, "value" : "foo"},
"geometry": {"type": "Point","coordinates": [100.0, 0.0]}
},{"type": "Feature",
"properties": null,
"geometry": {
"type": "LineString",
"coordinates": [[101.0, 0.0],[102.0, 1.0]]}}]
},{"type": "GeometryCollection",
"geometries": [
{"type": "Point","coordinates": [100.0, 0.0]},
{"type": "LineString","coordinates": [[101.0, 0.0],[102.0, 1.0]]},
{"type" : "MultiPoint","coordinates" : [[0,0],[1,1],[2,2]]}
]},{"type": "Polygon","coordinates": [[[-10.0, -10.0],[10.0, -10.0],[10.0, 10.0],[-10.0, -10.0]]]}]'
sf <- geojson_sf(js)
wkt <- geojson_wkt(js)
expect_true(ncol(sf) == 3)
expect_true(ncol(wkt) == 3)
expect_true(sum(sf$id, na.rm = T) == 3)
expect_true(sum(wkt$id, na.rm = T) == 3)
expect_true(sf$value[!is.na(sf$value)] == "foo")
expect_true(wkt$value[!is.na(wkt$value)] == "foo")
f <- '{"type":"Feature","properties":{"id":1,"name":"foo"},"geometry":{"type":"LineString","coordinates":[[101,0],[102,1]]}}'
sf <- geojson_sf(f)
sfc <- geojson_sfc(f)
expect_true(all(class(sf$geometry) == class(sfc)))
js <- '{"type":"Point","coordinates":[null,null]}'
expect_error( geojson_sf(js), "Invalid lon/lat object")
js <- '{"type":"Point","coordinates":[,]}'
expect_error(geojson_sf(js), "Invalid JSON")
js <- '{"type":"Point","coordinates":[]}'
expect_error(geojson_sf(js), "Invalid lon/lat object")
js <- '{"type":"Point","coordinates":{}}'
expect_error(geojson_sf(js), "No 'array' member at object index 0 - invalid GeoJSON")
js <- '{"type","Feature","geometry":null}'
expect_error(geojson_sf(js), "Invalid JSON")
js <- '{"type","Feature","geometry":null,"properties":{}}'
expect_error(geojson_sf(js), "Invalid JSON")
js <- '{"type":"FeatureCollection","features":[
{"type":"Feature","properties":{"id":1},"geometry":{"type":"Point","coordinates":[0,0]}},
{"type":"Feature","properties":{"id":2},"geometry":null}]}'
expect_true(nrow(geojson_sf(js)) == 2)
js <- '{"type":"Feature","properties":{"id":2},"geometry": null}'
expect_true(nrow(geojson_sf(js)) == 1)
js <- '{"type":"FeatureCollection","features":[
{"type":"Feature","properties":{"id":1.0},"geometry":{"type":"MultiPoint","coordinates":[[0.0,0.0],[1.0,1.0]]}},
{"type":"Feature","properties":{"id":2.0},"geometry":{"type":"Point","coordinates":[0.0,0.0]}},
{"type":"Feature","properties":{"id":3.0},"geometry":null}]}'
expect_true(nrow(geojson_sf(js)) == 3)
expect_true(all(geojson_sf(js)[['id']] == 1:3))
sf <- geojson_sf(js)
expect_true(all( is.na( as.numeric( sf$geometry[[3]] ) ) ) )
expect_true( as.character( sf_geojson( sf ) ) == gsub("\\t|\\n|\\r","",js) )
js <- '{"type":"FeatureCollection","features":[
{"type":"Feature","properties":{"id":3},"geometry":{"type":"MultiPoint","coordinates":[[0,0],[1,1]]}},
{"type":"Feature","properties":{"id":1},"geometry":null},
{"type":"Feature","properties":{"id":2},"geometry":{"type":"Point","coordinates":[0,0]}}]}'
expect_true(nrow(geojson_sf(js)) == 3)
expect_true(all(geojson_sf(js)[['id']] == c(3,1,2)))
sf <- geojson_sf(js)
expect_true(length(sf$geometry[[2]]) == 0)
js <- '{"type":"Point","coordinates":null}'
expect_error(geojson_sf(js), "No 'array' member at object index 0 - invalid GeoJSON")
js <- '{"type":"FeatureCollection","features":[
{"type":"Feature","properties":{"id":3.0},"geometry":{"type":"MultiPoint","coordinates":[[0.0,0.0],[1.1,1.1]]}},
{"type":"Feature","properties":{"id":1.0},"geometry":null},
{"type":"Feature","properties":{"id":2.0},"geometry":{"type":"Point","coordinates":[0.0,0.0]}}]}'
sf <- geojson_sf( js )
js2 <- sf_geojson( sf )
expect_true( as.character( js2 ) == gsub("\\t|\\r|\\n", "", js) )
sf2 <- geojson_sf( js2 )
expect_equal(sf, sf2)
s <- geojson_sf( geo_melbourne )
g <- sf_geojson( s )
s2 <- geojson_sf( g )
expect_true( all( names(s) %in% names(s2) ) )
expect_true( all(s$AREASQKM == s2$AREASQKM) )
expect_true( all(s$SA2_NAME == s2$SA2_NAME) )
expect_true( all(s$SA3_NAME == s2$SA3_NAME) )
expect_true( all(s$fillColor == s2$fillColor) )
expect_true( all(s$polygonId == s2$polygonId) )
expect_true( all(s$strokeColor == s2$strokeColor) )
expect_true( all(s$strokeWeight == s2$strokeWeight) )
|
context("getG")
for (nCores in seq_len(2)) {
test_that(paste("getGi", "on", nCores, "cores"), {
hasCores(nCores)
n <- 10
p <- 100
X <- matrix(data = rnorm(n * p), nrow = n, ncol = p)
for (chunkSize in c(NULL, p, ceiling(p / 3))) {
G <- tcrossprod(scale(X))
G <- G / mean(diag(G))
G2 <- getG(X = X, scale = TRUE, scaleG = TRUE, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G, G2)
G <- tcrossprod(scale(X))
G2 <- getG(X = X, scale = TRUE, scaleG = FALSE, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G, G2)
G <- tcrossprod(scale(X, center = TRUE, scale = FALSE))
G <- G / mean(diag(G))
G2 <- getG(X = X, scale = FALSE, scaleG = TRUE, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G, G2)
G <- tcrossprod(scale(X, center = TRUE, scale = FALSE))
G2 <- getG(X = X, scale = FALSE, scaleG = FALSE, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G, G2)
G <- tcrossprod(X)
G2 <- getG(X = X, center = FALSE, scale = FALSE, scaleG = FALSE, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G, G2)
}
X[sample(1:length(X), size = 20)] <- NA
G <- getG(X, nCores = nCores)
expect_true(!any(is.na(G)))
})
test_that(paste("getGij", "on", nCores, "cores"), {
hasCores(nCores)
n <- 10
p <- 100
X <- matrix(data = rnorm(n * p), nrow = n, ncol = p)
for (chunkSize in c(NULL, p, ceiling(p / 3))) {
i <- sample(1:nrow(X), size = 3)
i2 <- sample(1:nrow(X), size = 4)
centers <- colMeans(X)
scales <- apply(X, 2, sd) * sqrt((n - 1)/n)
G <- tcrossprod(scale(X))
G <- G / mean(diag(G))
G_12 <- getG(X = X, center = centers, scale = scales, scaleG = TRUE, i = i, i2 = i2, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G[i, i2], G_12)
G_12 <- getG(X = X, center = centers, scale = scales, scaleG = TRUE, i = i, i2 = i, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G[i, i], G_12)
G <- tcrossprod(scale(X) * sqrt(n/(n - 1)))
G_12 <- getG(X = X, center = centers, scale = scales, scaleG = FALSE, i = i, i2 = i2, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G[i, i2], G_12)
G_12 <- getG(X = X, center = centers, scale = scales, scaleG = FALSE, i = i, i2 = i, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G[i, i], G_12)
scales <- rep(1, ncol(X))
G <- tcrossprod(scale(X, center = TRUE, scale = FALSE))
G <- G / ncol(X)
G_12 <- getG(X = X, center = centers, scale = scales, scaleG = TRUE, i = i, i2 = i2, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G[i, i2], G_12)
G_12 <- getG(X = X, center = centers, scale = scales, scaleG = TRUE, i = i, i2 = i, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G[i, i], G_12)
G <- tcrossprod(scale(X, center = TRUE, scale = FALSE))
G_12 <- getG(X = X, center = centers, scale = scales, scaleG = FALSE, i = i, i2 = i2, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G[i, i2], G_12)
G_12 <- getG(X = X, center = centers, scale = scales, scaleG = FALSE, i = i, i2 = i, chunkSize = chunkSize, nCores = nCores)
expect_equivalent(G[i, i], G_12)
}
})
test_that(paste("getG_symDMatrix", "on", nCores, "cores"), {
hasCores(nCores)
W <- matrix(data = rnorm(200), nrow = 10, ncol = 20)
G1 <- tcrossprod(scale(W))
G1 <- G1 / mean(diag(G1))
G2 <- getG_symDMatrix(X = W, blockSize = ceiling(nrow(W) / 3), folderOut = testDir(), nCores = nCores)
expect_equivalent(G2[], G1)
})
}
|
prodestOP <- function(Y, fX, sX, pX, idvar, timevar, R = 20, cX = NULL, opt = 'optim',
theta0 = NULL, cluster = NULL, tol = 1e-100, exit = FALSE){
Start = Sys.time()
Y <- checkM(Y)
fX <- checkM(fX)
sX <- checkM(sX)
pX <- checkM(pX)
idvar <- checkM(idvar)
timevar <- checkM(timevar)
snum <- ncol(sX)
fnum <- ncol(fX)
if (!is.null(cX)) {cX <- checkM(cX); cnum <- ncol(cX)} else {cnum <- 0}
polyframe <- data.frame(cbind(sX,pX))
mod <- model.matrix( ~ .^2 - 1, data = polyframe)
mod <- mod[match(rownames(polyframe), rownames(mod)),]
if (exit[1] == TRUE){
att = TRUE
if (is.logical(exit)){
exitdata = data.frame(idvar = idvar, timevar = timevar)
maxdate <- max(exitdata$timevar)
exit <- as.matrix(do.call(rbind, lapply(split(exitdata, list(exitdata$idvar)),
function(x){
maxid = max(x$timevar)
x$ans <- x$timevar == maxid & maxid != maxdate
cbind(x$ans) } )))
} else {
exit <- checkMD(exit)
}
if ( (mean(exit) == 1) | (mean(exit) == 0) ){
stop("No ID appears to exit the sample. Check the exit variable or run the model without exit = TRUE")
} else {
lagProbitvars <- cbind(mod, sX^2, pX^2)
for (i in 1:dim(lagProbitvars)[2]){
lagProbitvars[, i] <- lagPanel(lagProbitvars[, i], idvar = idvar, timevar = timevar)
}
probreg <- glm(exit ~ lagProbitvars, family = binomial(link = 'probit'))
Pr.hat <- predict(probreg, newdata = as.data.frame(lagProbitvars), type = 'response')
}
} else {
att = FALSE
Pr.hat <- matrix(0, nrow = nrow(mod), ncol = 1)
}
regvars <- cbind(fX, cX, mod, sX^2, pX^2)
lag.sX = sX
for (i in 1:snum) {
lag.sX[, i] = lagPanel(sX[, i], idvar = idvar, timevar = timevar)
}
data <- suppressWarnings(as.matrix(data.frame(state = sX, lag.sX = lag.sX, free = fX, Y = Y, idvar = idvar,
timevar = timevar, regvars = regvars, Pr.hat = Pr.hat)))
if (!is.null(cX)) {
data <- suppressWarnings(as.matrix(data.frame(data, cX = cX)))
}
betas <- finalOPLP(ind = TRUE, data = data, fnum = fnum, snum = snum, cnum = cnum, opt = opt,
theta0 = theta0, boot = FALSE, tol = tol, att = att)
boot.indices <- block.boot.resample(idvar, R)
if (is.null(cluster)){
nCores = NULL
boot.betas <- matrix(unlist(lapply(boot.indices, finalOPLP, data = data, fnum = fnum, snum = snum, cnum = cnum,
opt = opt, theta0 = theta0, boot = TRUE, tol = tol, att = att)), ncol = fnum+snum+cnum, byrow = TRUE)
} else {
nCores = length(cluster)
clusterEvalQ(cl = cluster, library(prodest))
boot.betas <- matrix(unlist(parLapply(cl = cluster, boot.indices, finalOPLP, data = data,
fnum = fnum, snum = snum, cnum = cnum,
opt = opt, theta0 = theta0, boot = TRUE, tol = tol, att = att)), ncol = fnum+snum+cnum,
byrow = TRUE)
}
boot.errors <- apply(boot.betas,2,sd,na.rm=TRUE)
res.names <- c(colnames(fX, do.NULL = FALSE, prefix = 'fX'),
colnames(sX, do.NULL = FALSE, prefix = 'sX') )
if (!is.null(cX)) {res.names <- c(res.names,colnames(cX, do.NULL = FALSE, prefix = 'cX'))}
names(betas$betas) <- res.names
names(betas$FSbetas)[2 : length(betas$FSbetas)] <- c(res.names, rep(" ", (length(betas$FSbetas) - length(res.names) - 1)))
names(boot.errors) <- res.names
elapsedTime = Sys.time() - Start
out <- new("prod",
Model = list(method = 'OP', FSbetas = betas$FSbetas, boot.repetitions = R, elapsed.time = elapsedTime,
theta0 = theta0 , opt = opt, opt.outcome = betas$opt.outcome, nCores = nCores),
Data = list(Y = Y, free = fX, state = sX, proxy = pX, control = cX, idvar = idvar, timevar = timevar,
FSresiduals = betas$FSresiduals),
Estimates = list(pars = betas$betas, std.errors = boot.errors))
return(out)
}
prodestLP <- function(Y, fX, sX, pX, idvar, timevar, R = 20, cX = NULL, opt = 'optim',
theta0 = NULL, cluster = NULL, tol = 1e-100, exit = FALSE){
Start = Sys.time()
Y <- checkM(Y)
fX <- checkM(fX)
sX <- checkM(sX)
pX <- checkM(pX)
idvar <- checkM(idvar)
timevar <- checkM(timevar)
snum <- ncol(sX)
fnum <- ncol(fX)
if (!is.null(cX)) {cX <- checkM(cX); cnum <- ncol(cX)} else {cnum <- 0}
polyframe <- data.frame(cbind(sX,pX))
mod <- model.matrix( ~.^2-1, data = polyframe)
mod <- mod[match(rownames(polyframe),rownames(mod)),]
if (exit[1] == TRUE){
att = TRUE
if (is.logical(exit)){
exitdata = data.frame(idvar = idvar, timevar = timevar)
maxdate <- max(exitdata$timevar)
exit <- as.matrix(do.call(rbind, lapply(split(exitdata, list(exitdata$idvar)),
function(x){
maxid = max(x$timevar)
x$ans <- x$timevar == maxid & maxid != maxdate
cbind(x$ans) } )))
} else {
exit <- checkMD(exit)
}
if ( (mean(exit) == 1) | (mean(exit) == 0) ){
stop("No ID appears to exit the sample. Check the exit variable or run the model without exit = TRUE")
} else {
lagProbitvars <- cbind(mod, sX^2, pX^2)
for (i in 1:dim(lagProbitvars)[2]){
lagProbitvars[, i] <- lagPanel(lagProbitvars[, i], idvar = idvar, timevar = timevar)
}
probreg <- glm(exit ~ lagProbitvars, family = binomial(link = 'probit'))
Pr.hat <- predict(probreg, newdata = as.data.frame(lagProbitvars), type = 'response')
}
} else {
att = FALSE
Pr.hat <- matrix(0, nrow = nrow(mod), ncol = 1)
}
regvars <- cbind(fX, cX, mod, sX^2, pX^2)
lag.sX = sX
for (i in 1:snum) {
lag.sX[, i] = lagPanel(sX[, i], idvar = idvar, timevar = timevar)
}
data <- suppressWarnings(as.matrix(data.frame(state = sX, lag.sX = lag.sX, free = fX, Y = Y, idvar = idvar,
timevar = timevar, regvars = regvars, Pr.hat = Pr.hat)))
if (!is.null(cX)) {
data <- suppressWarnings(as.matrix(data.frame(data, cX = cX)))
}
betas <- finalOPLP(ind = TRUE, data = data, fnum = fnum, snum = snum, cnum = cnum, opt = opt,
theta0 = theta0, boot = FALSE, tol = tol, att = att)
boot.indices <- block.boot.resample(idvar, R)
if (is.null(cluster)){
nCores = NULL
boot.betas <- matrix(NA, R, (fnum + snum + cnum))
for (i in 1:R){
boot.betas[i,] <- finalOPLP(ind = boot.indices[[i]], data = data, fnum = fnum, snum = snum, cnum = cnum,
opt = opt, theta0 = theta0, boot = TRUE, tol = tol, att = att)
}
} else {
nCores = length(cluster)
clusterEvalQ(cl = cluster, library(prodest))
boot.betas <- matrix(unlist(parLapply(cl = cluster, boot.indices, finalOPLP, data = data,
fnum = fnum, snum = snum, cnum = cnum,
opt = opt, theta0 = theta0, boot = TRUE, tol = tol, att = att)), ncol = fnum + snum + cnum,
byrow = TRUE)
}
boot.errors <- apply(boot.betas, 2, sd, na.rm = TRUE)
res.names <- c(colnames(fX, do.NULL = FALSE, prefix = 'fX'),
colnames(sX, do.NULL = FALSE, prefix = 'sX') )
if (!is.null(cX)) {res.names <- c(res.names,colnames(cX, do.NULL = FALSE, prefix = 'cX'))}
names(betas$betas) <- res.names
names(betas$FSbetas)[2 : length(betas$FSbetas)] <- c(res.names, rep(" ", (length(betas$FSbetas) - length(res.names) - 1)))
names(boot.errors) <- res.names
elapsedTime = Sys.time() - Start
out <- new("prod",
Model = list(method = 'LP', FSbetas = betas$FSbetas, boot.repetitions = R, elapsed.time = elapsedTime,
theta0 = theta0 , opt = opt, opt.outcome = betas$opt.outcome, nCores = nCores),
Data = list(Y = Y, free = fX, state = sX, proxy = pX, control = cX, idvar = idvar, timevar = timevar,
FSresiduals = betas$FSresiduals),
Estimates = list(pars = betas$betas, std.errors = boot.errors))
return(out)
}
finalOPLP <- function(ind, data, fnum, snum, cnum, opt, theta0, boot, tol, att){
if (sum(as.numeric(ind)) == length(ind)){
newid <- data[ind, 'idvar', drop = FALSE]
} else {
newid <- as.matrix(as.numeric(rownames(ind)))
ind <- as.matrix(ind)
}
data <- data[ind,]
first.stage <- lm(data[,'Y'] ~ data[,grepl('regvars', colnames(data))], na.action = na.exclude)
fX <- data[,grepl('free', colnames(data)), drop = FALSE]
phi <- fitted(first.stage)
beta.free <- coef(first.stage)[2:(1 + fnum)]
if (cnum != 0) {
beta.control <- coef(first.stage)[(2 + fnum):(1 + fnum + cnum)]
} else {
beta.control <- NULL
}
if (is.null(theta0)) {
theta0 <- coef(first.stage)[(2 + fnum):(1 + fnum + snum)] + rnorm((snum), 0, 0.01)
}
phi <- phi - (fX %*% beta.free)
newtime <- data[,'timevar', drop = FALSE]
rownames(phi) <- NULL
rownames(newtime) <- NULL
lag.phi <- lagPanel(value = phi, idvar = newid, timevar = newtime)
res <- data[,'Y', drop = FALSE] - (fX %*% beta.free)
state = data[, grepl('state', colnames(data)), drop = FALSE]
lag.sX = data[, grepl('lag.sX', colnames(data)), drop = FALSE]
Pr.hat <- data[, grepl('Pr.hat', colnames(data)), drop = FALSE]
tmp.data <- model.frame(state ~ lag.sX + phi + lag.phi + res + Pr.hat)
if (opt == 'optim'){
try.state <- try(optim(theta0, gOPLP, method = "BFGS", mX = tmp.data$state, mlX = tmp.data$lag.sX, vphi = tmp.data$phi,
vlag.phi = tmp.data$lag.phi, vres = tmp.data$res, stol = tol, Pr.hat = tmp.data$Pr.hat, att = att), silent = TRUE)
if (!inherits(try.state, "try-error")) {
beta.state <- try.state$par
opt.outcome <- try.state
} else {
beta.state <- matrix(NA,(snum),1)
opt.outcome <- list(convergence = 99)
}
} else if (opt == 'DEoptim') {
try.state <- try(DEoptim(fn = gOPLP, lower = c(theta0), upper = rep.int(1,length(theta0)),
mX = tmp.data$state, mlX = tmp.data$lag.sX,
vphi = tmp.data$phi, vlag.phi = tmp.data$lag.phi,
vres = tmp.data$res, stol = tol, Pr.hat = tmp.data$Pr.hat, att = att, control = DEoptim.control(trace = FALSE)),
silent = TRUE)
if (!inherits(try.state, "try-error")) {
beta.state <- try.state$optim$bestmem
opt.outcome <- try.state
} else {
beta.state <- matrix(NA,(snum), 1)
opt.outcome <- list(convergence = 99)
}
} else if (opt == 'solnp') {
try.state <- try(suppressWarnings(solnp(theta0, gOPLP, mX = tmp.data$state, mlX = tmp.data$lag.sX,
vphi = tmp.data$phi, vlag.phi = tmp.data$lag.phi,
vres = tmp.data$res, stol = tol, Pr.hat = tmp.data$Pr.hat, att = att, control = list(trace = FALSE))), silent = TRUE)
if (!inherits(try.state, "try-error")) {
beta.state <- try.state$pars
opt.outcome <- try.state
} else {
beta.state <- matrix(NA,(snum),1)
opt.outcome <- list(convergence = 99)
}
}
if (boot == FALSE){
return(list(betas = c(beta.free, beta.state, beta.control), opt.outcome = opt.outcome, FSbetas = coef(first.stage),
FSresiduals = resid(first.stage)))
} else{
return(c(beta.free, beta.state, beta.control))
}
}
gOPLP <- function(vtheta, mX, mlX, vphi, vlag.phi, vres, stol, Pr.hat, att){
Omega <- vphi - mX %*% vtheta
Omega_lag <- vlag.phi - mlX %*% vtheta
if (att == FALSE){
Omega_lag_pol <- cbind(1, Omega_lag, Omega_lag^2, Omega_lag^3)
} else {
Omega_lag_pol <- cbind(1, Omega_lag, Omega_lag^2, Omega_lag^3, Pr.hat, Pr.hat^2, Pr.hat^3, Pr.hat * Omega_lag,
Pr.hat^2 * Omega_lag, Pr.hat * Omega_lag^2)
}
g_b <- solve(crossprod(Omega_lag_pol), tol = stol) %*% t(Omega_lag_pol) %*% Omega
XI <- vres - (mX %*% vtheta) - (Omega_lag_pol %*% g_b)
crit <- crossprod(XI)
return(crit)
}
|
classCode=function(value,indicator="fertility"){
if(indicator== "saltclass"){
classcode=ifelse(value<2,"None",ifelse(value<3,"Saline",ifelse(value<4,"Saline_sodic",ifelse(value<5,"Sodic",ifelse(value<6,"Alkaline","Class not included")))))
}
else if(indicator=="saltseverity"){
class0=ifelse(value>4,"Alkaline",ifelse(value>3,"Sodic",ifelse(value>2,"saline_sodic",ifelse(value>1,"saline",ifelse(value>0,"None","Class not included")))))
class01 =ifelse(value>11,"ExtremeSalinity",ifelse(value>10,"VeryStrongSalinity",ifelse(value>9,"StrongSalinity",ifelse(value>8,"ModerateSalinity",ifelse(value>7,"SlightSalinity", ifelse(value>6,"SlightSalinity",ifelse(value>5,"None",class0)))))))
class02=ifelse(value>16,"VeryStrongSodicity",ifelse(value>15,"StrongSodicity",ifelse(value>14,"ModerateSodicity",ifelse(value>13,"SlightSodicity",ifelse(value>12,"None",class01)))))
classcode=ifelse(value>17,"None",ifelse(value>18,"class not included",class02))
}
else if(indicator=="texture"){
classcode=ifelse(value==1,"Cl",ifelse(value==2,"SiCl",ifelse(value==3,"SiClLo",ifelse(value==4,"SiLo",
ifelse(value==5,"SaLo",ifelse(value==6,"Si",ifelse(value==7,"ClLo",ifelse(value==8,"SaCl",
ifelse(value==9,"SaClLo",ifelse(value==10,"LoSa",ifelse(value==11,"Lo",ifelse(value==12,"Sa",
ifelse(value==13,"CSa",ifelse(value==14,"MSa",ifelse(value==15,"FSa",ifelse(value==16,"HCl", "Texture not included"))))))))))))))))
}
else if(indicator=="suitability"){
classcode=ifelse(value==1,"High",ifelse(value==2,"Moderate",ifelse(value==3,"Marginal",ifelse(value==4,"NotsuitableNow",ifelse(value==5,"Notsuitable", "Class not included")))))
}
else if(indicator=="fertility"){
classcode=ifelse(value<1.449,"High",ifelse(value<2.449,"Moderate",ifelse(value<3.449,"Low",ifelse(value<4.5,"VeryLow","Class not included"))))
}
else if(indicator=="drainage"){
classcode=ifelse(value==1,"VPD",ifelse(value==2,"PDr",ifelse(value==3,"ImDr",ifelse(value==4,"MoDr",ifelse(value==5,"WDr",ifelse(value==6,"SDr",ifelse(value==7,"ExDr", "Class not included")))))))
}
else if(indicator=="erodibility"){classcode=ifelse(value>0.01,"VeryLow",ifelse(value>0.1,"Low",ifelse(value>0.2,"Moderate",ifelse(value>0.6,"High",ifelse(value>0.7,"Extreme", "Class not included")))))
}
else if(indicator=="permeability"){classcode=ifelse(value==1,"VerySlow",ifelse(value==2,"Slow",ifelse(value==3,"ModeratelySlow",ifelse(value==4,"Moderate",ifelse(value==5,"ModeratelyRapid",ifelse(value==6,"Rapid",ifelse(value==7,"VeryRapid","Class not included")))))))}
else if(indicator=="structure"){
classcode=ifelse(structure==1,"Granular",ifelse(structure==2,"Crumby", ifelse(structure==3,"AngularBlocky",ifelse(structure==4,"Columnar",
ifelse(structure==5,"SubAngularBlocky", ifelse(structure==6,"Platty",ifelse(structure==7,"SingleGrain",ifelse(structure==8,"Massive",
ifelse(structure==9,"Prismatic",ifelse(structure==10,"Cloddy","Class not included"))))))))))
}
classcode=as.factor(classcode)
return(classcode)
}
|
signed_blockmodel <- function(g,k,alpha = 0.5,annealing = FALSE){
if(!"sign"%in%igraph::edge_attr_names(g)){
stop("network does not have a sign edge attribute")
}
if(missing(k)){
stop('argument "k" is missing, with no default')
}
A <- igraph::get.adjacency(g,"both","sign",sparse = TRUE)
if(!annealing){
init_cluster <- sample(0:(k-1),nrow(A),replace = TRUE)
res <- optimBlocks1(A,init_cluster,k,alpha)
res$membership <- res$membership+1
} else{
init_cluster <- sample(1:k,nrow(A),replace = TRUE)
tmp <- stats::optim(par = init_cluster, fn = blockCriterion1, A = A,alpha=alpha,k=k,gr = genclu,method = "SANN",
control = list(maxit = 50000, temp = 100, tmax = 500, trace = FALSE,
REPORT = 5))
tmp <- stats::optim(par = tmp$par, fn = blockCriterion1, A = A,alpha=alpha,k=k,gr = genclu,method = "SANN",
control = list(maxit = 5000, temp = 5, tmax = 500, trace = FALSE,
REPORT = 5))
res <- list(membership = tmp$par,criterion = tmp$value)
}
res
}
signed_blockmodel_general <- function(g,blockmat,alpha = 0.5){
if(!"sign"%in%igraph::edge_attr_names(g)){
stop("network does not have a sign edge attribute")
}
if(missing(blockmat)){
stop('argument "blockmat" is missing, with no default')
}
if(!all(blockmat%in%c(-1,1))){
stop('"blockmat" may only contain -1 and 1')
}
A <- igraph::get.adjacency(g,"both","sign",sparse = TRUE)
init_cluster <- sample(0:(nrow(blockmat)-1),nrow(A),replace = TRUE)
res <- optimBlocksSimS(A,init_cluster,blockmat,alpha)
res$membership <- res$membership+1
res
}
genclu <- function(blocks,A,alpha,k){
v <- sample(1:length(blocks),1)
clu <- 1:k
clu <- clu[-blocks[v]]
knew <- sample(clu,1)
blocks[v] <- knew
blocks
}
|
setMethod('sampleRegular', signature(x='Raster'),
function( x, size, ext=NULL, cells=FALSE, xy=FALSE, asRaster=FALSE, sp=FALSE, useGDAL=FALSE, ...) {
stopifnot(hasValues(x) | isTRUE(xy))
size <- round(size)
stopifnot(size > 0)
nl <- nlayers(x)
rotated <- rotated(x)
if (is.null(ext)) {
rcut <- raster(x)
firstrow <- 1
lastrow <- nrow(rcut)
firstcol <- 1
lastcol <- ncol(rcut)
} else {
rcut <- crop(raster(x), ext)
ext <- extent(rcut)
yr <- yres(rcut)
xr <- xres(rcut)
firstrow <- rowFromY(x, [email protected] *yr)
lastrow <- rowFromY(x, ext@ymin+0.5*yr)
firstcol <- colFromX(x, ext@xmin+0.5*xr)
lastcol <- colFromX(x, [email protected]*xr)
}
allx <- FALSE
if (size >= ncell(rcut)) {
if (!is.null(ext)) {
x <- crop(x, ext)
}
if (asRaster & !rotated) {
return(x)
}
nr <- nrow(rcut)
nc <- ncol(rcut)
allx <- TRUE
} else {
Y <- X <- sqrt(ncell(rcut)/size)
nr <- max(1, floor((lastrow - firstrow + 1) / Y))
nc <- max(1, floor((lastcol - firstcol + 1) / X))
rows <- (lastrow - firstrow + 1)/nr * 1:nr + firstrow - 1
rows <- rows - (0.5 * (lastrow - firstrow + 1)/nr)
cols <- (lastcol - firstcol + 1)/nc * 1:nc + firstcol - 1
cols <- cols - (0.5 * (lastcol - firstcol + 1)/nc)
cols <- unique(round(cols))
rows <- unique(round(rows))
cols <- cols[cols > 0]
rows <- rows[rows > 0]
nr <- length(rows)
nc <- length(cols)
}
hv <- hasValues(x)
if (fromDisk(x) & useGDAL & hv) {
if ( any(rotated | .driver(x, FALSE) != 'gdal') ) {
useGDAL <- FALSE
} else {
offs <- c(firstrow,firstcol)-1
reg <- c(nrow(rcut), ncol(rcut))-1
if ( nl > 1 ) {
v <- matrix(NA, ncol=nl, nrow=prod(nr, nc))
for (i in 1:nl) {
xx <- x[[i]]
con <- rgdal::GDAL.open(xx@file@name, silent=TRUE)
band <- bandnr(xx)
vv <- rgdal::getRasterData(con, band=band, offset=offs, region.dim=reg, output.dim=c(nr, nc))
rgdal::closeDataset(con)
if (xx@data@gain != 1 | xx@data@offset != 0) {
vv <- vv * xx@data@gain + xx@data@offset
}
if (xx@file@nodatavalue < 0) {
vv[vv <= xx@file@nodatavalue] <- NA
} else {
vv[vv == xx@file@nodatavalue] <- NA
}
v[, i] <- vv
}
} else {
band <- bandnr(x)
con <- rgdal::GDAL.open(x@file@name, silent=TRUE)
v <- rgdal::getRasterData(con, band=band, offset=offs, region.dim=reg, output.dim=c(nr, nc))
rgdal::closeDataset(con)
v <- matrix(v, ncol=1)
colnames(v) <- names(x)
if (x@data@gain != 1 | x@data@offset != 0) {
v <- v * x@data@gain + x@data@offset
}
if (.naChanged(x)) {
if (x@file@nodatavalue < 0) {
v[v <= x@file@nodatavalue] <- NA
} else {
v[v == x@file@nodatavalue] <- NA
}
}
}
if (asRaster) {
if (is.null(ext)) {
outras <- raster(x)
} else {
outras <- raster(ext)
crs(outras) <- crs(x)
}
nrow(outras) <- nr
ncol(outras) <- nc
if (nl > 1) {
outras <- brick(outras, nl=nl)
outras <- setValues(outras, v)
} else {
outras <- setValues(outras, as.vector(v))
}
names(outras) <- names(x)
if (any(is.factor(x))) {
levels(outras) <- levels(x)
}
return(outras)
} else {
if (cells) {
warning("'cells=TRUE' is ignored when 'useGDAL=TRUE'")
}
if (xy) {
warning("'xy=TRUE' is ignored when 'useGDAL=TRUE'")
}
if (sp) {
warning("'sp=TRUE' is ignored when 'useGDAL=TRUE'")
}
return( v )
}
}
}
if (allx) {
cell <- 1:ncell(rcut)
} else {
cell <- cellFromRowCol(x, rep(rows, each=nc), rep(cols, times=nr))
}
if (asRaster) {
if (rotated) {
if (is.null(ext)) {
outras <- raster(extent(x))
} else {
outras <- raster(ext)
crs(outras) <- crs(x)
}
ncol(outras) <- nc
nrow(outras) <- nr
xy <- xyFromCell(outras, 1:ncell(outras))
if (hv) {
m <- .xyValues(x, xy)
} else {
m <- NA
}
} else {
if (allx) {
if (!is.null(ext)) {
return(crop(x, ext))
} else {
return(x)
}
}
cell <- cellFromRowCol(x, rep(rows, each=nc), rep(cols, times=nr))
if (hv) {
m <- .cellValues(x, cell)
} else {
m <- NA
}
if (is.null(ext)) {
outras <- raster(x)
} else {
outras <- raster(ext)
crs(outras) <- crs(x)
}
nrow(outras) <- nr
ncol(outras) <- nc
}
if (nl > 1) {
outras <- brick(outras, nl=nl)
}
outras <- setValues(outras, m)
names(outras) <- names(x)
if (any(is.factor(x))) {
levels(outras) <- levels(x)
}
return(outras)
} else {
if (allx) {
cell <= 1:ncell(rcut)
} else {
cell <- cellFromRowCol(x, rep(rows, each=nc), rep(cols, times=nr))
}
m <- NULL
nstart <- 1
if (xy) {
m <- xyFromCell(x, cell)
nstart <- 3
}
if (cells) {
m <- cbind(m, cell=cell)
nstart <- nstart + 1
}
if (hv) {
m <- cbind(m, .cellValues(x, cell))
colnames(m)[nstart:(nstart+nl-1)] <- names(x)
}
if (sp) {
if (hv) {
m <- sp::SpatialPointsDataFrame(xyFromCell(x, cell), data.frame(m), proj4string=.getCRS(x))
} else {
m <- sp::SpatialPoints(xyFromCell(x, cell), proj4string=.getCRS(x))
}
}
return(m)
}
}
)
|
xnet<-function(Y,fm=suppressWarnings(require("network")),seed=1)
{
if(!is.null(seed)) { set.seed(seed) }
if(fm)
{
x<-network::as.network(Y)
n <- network::network.size(x)
d <- network::as.matrix.network(x, matrix.type = "adjacency")
d[is.na(d)] <- 0
d <- network::as.network(matrix(as.numeric(d > 0), n, n))
U<-network::network.layout.fruchtermanreingold(d,layout.par=NULL)
}
if(!fm)
{
Y0<-Y ; diag(Y0)<-1
U<-Re(eigen(Y0)$vec[,1:2])
}
U<-sweep(U,2,apply(U,2,mean)) ; U<-sweep(U,2,apply(U,2,sd),"/")
U
}
|
source("ESEUR_config.r")
rg=read.csv(paste0(ESEUR_dir, "reliability/RelGrowth.csv"), as.is=TRUE)
ccf(rg$Total_failures, rg$Monthly_Sales, lag.max=4,
ylab = "Cross-correlation\n")
|
GenBSpline <- function(x,nIntKnot=NULL,order=NULL) {
if (is.null(nIntKnot)==TRUE) {
nIntKnot <- 10
}
if (is.null(order)==TRUE) {
order <- 3
}
if (nIntKnot < order) {
stop('The number of knots should be greater than the order of B-spline basis.')
}
kOrder <- 0
n <- length(x)
t0 <- seq(0,1,length.out=(nIntKnot+2))[-c(1,nIntKnot+2)]
newB <- matrix(0,nrow=n,ncol=(nIntKnot+1))
t <- c(0,t0,1)
for (i in 1:n) {
for (k in 1:(nIntKnot)) {
if (x[i] >= t[k] && x[i] < t[k+1]) {
newB[i,k] <- 1
}
if (x[i]>=t[nIntKnot+1])
newB[i,nIntKnot+1] <- 1
}
}
if (order == 0) {
return(B=newB)
} else {
while (kOrder < order) {
kOrder <- kOrder + 1
oldB <- cbind(rep(0,n),newB,rep(0,n))
newB <- matrix(0,nrow=n,ncol=(nIntKnot+1+kOrder))
t <- c(0,t,1)
for (i in 1:n) {
newB[i,1] <- (t[1+1+kOrder]-x[i])/(t[1+1+kOrder]-t[1+1])*oldB[i,1+1]
for (k in 2:(nIntKnot+kOrder)) {
newB[i,k] <- (x[i]-t[k])/(t[k+kOrder]-t[k])*oldB[i,k] + (t[k+1+kOrder]-x[i])/(t[k+1+kOrder]-t[k+1])*oldB[i,k+1]
}
newB[i,nIntKnot+1+kOrder] <- (x[i]-t[nIntKnot+1+kOrder])/(t[nIntKnot+1+2*kOrder]-t[nIntKnot+1+kOrder])*oldB[i,nIntKnot+1+kOrder]
}
}
return(B=newB)
}
}
|
RCM_int <- function(OM, RCMdata, condition = c("catch", "catch2", "effort"), selectivity = "logistic", s_selectivity = "B", LWT = list(),
comp_like = c("multinomial", "lognormal"), prior = list(),
max_F = 3, cores = 1L, integrate = FALSE, mean_fit = FALSE, drop_nonconv = FALSE,
drop_highF = FALSE,
control = list(iter.max = 2e+05, eval.max = 4e+05), ...) {
dots <- list(...)
if(!is.null(dots$maxF)) max_F <- dots$maxF
comp_like <- match.arg(comp_like)
condition <- match.arg(condition)
dat_update <- check_RCMdata(RCMdata, OM, condition)
OM <- dat_update$OM
RCMdata <- dat_update$RCMdata
StockPars <- dat_update$StockPars
FleetPars <- dat_update$FleetPars
ObsPars <- dat_update$ObsPars
nsim <- OM@nsim
proyears <- OM@proyears
maxage <- OM@maxage
nyears <- RCMdata@Misc$nyears
nfleet <- RCMdata@Misc$nfleet
nsurvey <- RCMdata@Misc$nsurvey
OM@maxF <- max_F
message("OM@maxF updated to ", max_F, ".")
if(!any(RCMdata@CAA > 0, na.rm = TRUE) && !any(RCMdata@CAL > 0, na.rm = TRUE)) {
fix_sel <- TRUE
message("No fishery length or age compositions were provided. Selectivity is fixed to values from OM.")
} else {
fix_sel <- FALSE
}
if(length(selectivity) == 1) selectivity <- rep(selectivity, RCMdata@Misc$nsel_block)
if(length(selectivity) < RCMdata@Misc$nsel_block) stop("selectivity vector should be of length ", RCMdata@Misc$nsel_block, ").", call. = FALSE)
sel <- int_sel(selectivity)
if(nsurvey > 0) {
if(is.null(s_selectivity)) s_selectivity <- rep("B", nsurvey)
if(length(s_selectivity) == 1) s_selectivity <- rep(s_selectivity, nsurvey)
s_sel <- int_s_sel(s_selectivity, nfleet)
} else {
s_sel <- int_s_sel("B")
}
RCMdata@Misc$LWT <- make_LWT(LWT, nfleet, nsurvey)
message(ifelse(OM@SRrel == 1, "Beverton-Holt", "Ricker"), " stock-recruitment relationship used.")
prior <- make_prior(prior, nsurvey, OM@SRrel, dots)
par_identical_sims <- par_identical_sims_fn(StockPars, FleetPars, ObsPars, RCMdata, dots)
if(!is.null(dots$resample) && dots$resample) {
if(!requireNamespace("mvtnorm", quietly = TRUE)) stop("Please install the mvtnorm package.", call. = FALSE)
message("\nResample = TRUE. Running mean fit model first...")
mean_fit_output <- RCM_est(RCMdata = RCMdata, selectivity = sel, s_selectivity = s_sel,
LWT = RCMdata@Misc$LWT, comp_like = comp_like, prior = prior,
max_F = max_F, integrate = integrate, StockPars = StockPars, ObsPars = ObsPars,
FleetPars = FleetPars, mean_fit = TRUE, dots = dots)
if(length(mean_fit_output) > 0 && !mean_fit_output$report$conv) {
warning("Mean fit model did not appear to converge. Will not be able to sample the covariance matrix.")
message("Model did not converge. Returning the mean-fit model for evaluation.")
drop_nonconv <- TRUE
samps <- mean_fit_output$obj$env$last.par.best %>% matrix(nrow = nsim, ncol = length(mean_fit_output$obj$par), byrow = TRUE)
} else {
message("Model converged. Sampling covariance matrix for nsim = ", nsim, " replicates...")
if(!all(par_identical_sims)) {
message("Note: not all ", nsim, " replicates are identical.")
message("These parameters should be identical among simulations: ",
which(!par_identical_sims) %>% names() %>% paste0(collapse = " "))
}
samps <- mvtnorm::rmvnorm(nsim, mean_fit_output$opt$par, mean_fit_output$SD$cov.fixed)
}
report_internal_fn <- function(x, samps, obj, conv) {
report <- obj$report(samps[x, ]) %>% RCM_posthoc_adjust(obj, par = samps[x, ])
report$conv <- conv
return(report)
}
res <- lapply(1:nsim, report_internal_fn, samps = samps, obj = mean_fit_output$obj, conv = mean_fit_output$report$conv)
mod <- lapply(res, function(x) list(obj = mean_fit_output$obj, report = x))
conv <- rep(mean_fit_output$report$conv, nsim)
} else {
if(all(par_identical_sims)) {
message("\nAll ", nsim, " replicates are identical. Fitting once and replicating single fit...")
mean_fit_output <- RCM_est(RCMdata = RCMdata, selectivity = sel, s_selectivity = s_sel,
LWT = RCMdata@Misc$LWT, comp_like = comp_like, prior = prior,
max_F = max_F, integrate = integrate, StockPars = StockPars, ObsPars = ObsPars,
FleetPars = FleetPars, mean_fit = TRUE, control = control, dots = dots)
mod <- lapply(1:nsim, function(x) return(mean_fit_output))
} else {
message("\nFitting model (", nsim, " simulations) ...")
if(cores > 1 && !snowfall::sfIsRunning()) MSEtool::setup(as.integer(cores))
if(snowfall::sfIsRunning()) {
mod <- snowfall::sfClusterApplyLB(1:nsim, RCM_est, RCMdata = RCMdata, selectivity = sel, s_selectivity = s_sel,
LWT = RCMdata@Misc$LWT, comp_like = comp_like, prior = prior,
max_F = max_F, integrate = integrate, StockPars = StockPars, ObsPars = ObsPars,
FleetPars = FleetPars, control = control, dots = dots)
} else {
mod <- lapply(1:nsim, RCM_est, RCMdata = RCMdata, selectivity = sel, s_selectivity = s_sel,
LWT = RCMdata@Misc$LWT, comp_like = comp_like, prior = prior,
max_F = max_F, integrate = integrate, StockPars = StockPars, ObsPars = ObsPars,
FleetPars = FleetPars, control = control, dots = dots)
}
if(mean_fit) {
message("Generating additional model fit from mean values of parameters in the operating model...\n")
mean_fit_output <- RCM_est(RCMdata = RCMdata, selectivity = sel, s_selectivity = s_sel,
LWT = RCMdata@Misc$LWT, comp_like = comp_like, prior = prior,
max_F = max_F, integrate = integrate, StockPars = StockPars, ObsPars = ObsPars,
FleetPars = FleetPars, mean_fit = TRUE, control = control, dots = dots)
if(!mean_fit_output$report$conv) warning("Mean fit model did not appear to converge.")
} else mean_fit_output <- list()
}
res <- lapply(mod, getElement, "report")
conv <- vapply(res, getElement, logical(1), name = "conv")
}
if(drop_highF) {
highF <- vapply(res, function(x) max(getElement(x, "F"), na.rm = TRUE) >= max_F, logical(1))
if(sum(highF)) message(sum(highF), " out of ", nsim , " model fits had F on the upper boundary (F = ", max_F, "; ", round(100*sum(highF)/nsim, 2), "% of simulations).\n")
conv <- conv & !highF
}
if(drop_nonconv) {
NaF <- vapply(res, function(x) any(is.na(x$F) | is.infinite(x$F)), logical(1))
if(sum(NaF)) message(sum(NaF), " out of ", nsim , " iterations had F with NA's")
conv <- conv & !NaF
}
if(sum(conv) < nsim) message("Non-converged iteration(s): ", paste(which(!conv), collapse = " "), "\n")
if(!sum(conv)) {
message("Non-converged for all iterations. Returning all for evaluation.")
keep <- !logical(OM@nsim)
} else if(sum(conv) < nsim && (drop_nonconv | drop_highF)) {
message("Non-converged and/or highF iterations will be removed.\n")
keep <- conv
} else {
keep <- !logical(OM@nsim)
}
OM@cpars$R0 <- vapply(res, getElement, numeric(1), "R0")
message("Range of unfished age-0 recruitment (OM@cpars$R0): ", paste(round(range(OM@cpars$R0), 2), collapse = " - "))
initD <- vapply(res, function(x) x$E[1]/x$E0_SR, numeric(1))
message("Range of initial spawning depletion: ", paste(round(range(initD), 2), collapse = " - "))
OM@cpars$D <- vapply(res, function(x) x$E[length(x$E)-1]/x$E0_SR, numeric(1))
message("Range of spawning depletion (OM@cpars$D): ", paste(round(range(OM@cpars$D), 2), collapse = " - "), "\n")
OM@isRel <- FALSE
make_F <- function(x) {
apicalF <- x$F
apicalF[apicalF < 1e-4] <- 1e-4
F_at_age <- lapply(1:ncol(apicalF), function(xx) apicalF[, xx] * x$vul[1:nyears, , xx]) %>%
simplify2array() %>% apply(1:2, sum)
return(F_at_age)
}
F_matrix <- lapply(res, make_F)
apical_F <- lapply(F_matrix, function(x) apply(x, 1, max))
expand_V_matrix <- function(x) {
y <- matrix(x[nyears, ], proyears, maxage + 1, byrow = TRUE)
rbind(x, y)
}
V <- Map("/", e1 = F_matrix, e2 = apical_F) %>% lapply(expand_V_matrix)
OM@cpars$V <- simplify2array(V) %>% aperm(c(3, 2, 1))
OM@cpars$Find <- do.call(rbind, apical_F)
message("Historical F and selectivity trends set in OM@cpars$Find and OM@cpars$V, respectively.")
message("Selectivity during projection period is set to that in most recent historical year.")
OM@cpars$qs <- rep(1, nsim)
Eff <- apply(OM@cpars$Find, 2, range)
OM@EffLower <- Eff[1, ]
OM@EffUpper <- Eff[2, ]
if(length(OM@EffYears) != nyears) OM@EffYears <- 1:nyears
if(length(OM@Esd) == 0 && is.null(OM@cpars$Esd)) OM@Esd <- c(0, 0)
message("Historical effort trends set in OM@EffLower and OM@EffUpper.\n")
OM@cpars$Perr <- StockPars$procsd
message("Recruitment standard deviation set in OM@cpars$Perr.")
make_Perr <- function(x) {
bias_corr <- ifelse(x$obj$env$data$est_rec_dev, exp(-0.5 * x$report$tau^2), 1)
res <- exp(x$report$log_rec_dev) * bias_corr
res[1] <- res[1] * x$report$R_eq/x$report$R0
return(res)
}
Perr <- do.call(rbind, lapply(mod, make_Perr))
make_early_Perr <- function(x) {
res <- x$report$R_eq * x$report$NPR_equilibrium / x$report$R0 / x$report$NPR_unfished[1, ]
bias_corr <- ifelse(x$obj$env$data$est_early_rec_dev, exp(-0.5 * x$report$tau^2), 1)
early_dev <- exp(x$report$log_early_rec_dev) * bias_corr
out <- res[-1] * early_dev
return(rev(out))
}
early_Perr <- do.call(rbind, lapply(mod, make_early_Perr))
OM@cpars$Perr_y <- StockPars$Perr_y
OM@cpars$Perr_y[, 1:OM@maxage] <- early_Perr
OM@cpars$Perr_y[, (OM@maxage+1):(OM@maxage + nyears)] <- Perr
message("Historical recruitment set in OM@cpars$Perr_y.")
log_rec_dev <- do.call(rbind, lapply(res, getElement, "log_rec_dev"))
if(!all(log_rec_dev == 0)) {
OM@cpars$AC <- apply(log_rec_dev, 1, function(x) {
out <- acf(x, lag.max = 1, plot = FALSE)$acf[2]
ifelse(is.na(out), 0, out)
})
OM@AC <- range(OM@cpars$AC)
message("Range of recruitment autocorrelation OM@AC: ", paste(round(range(OM@AC), 2), collapse = " - "))
sample_future_dev <- function() {
if(!is.null(dots$map_log_rec_dev) && any(is.na(dots$map_log_rec_dev))) {
yr_fixed_rec_dev <- which(is.na(dots$map_log_rec_dev))
if(any(yr_fixed_rec_dev > max(dots$map_log_rec_dev, na.rm = TRUE))) {
yr_hist_sample <- yr_fixed_rec_dev[yr_fixed_rec_dev > max(dots$map_log_rec_dev, na.rm = TRUE)] %>% min()
samp_hist <- Map(dev_AC, AC = OM@cpars$AC, stdev = StockPars$procsd, chain_start = log_rec_dev[, yr_hist_sample - 1],
MoreArgs = list(n = length(yr_hist_sample:nyears), mu = 1))
log_rec_dev[, yr_hist_sample:nyears] <<- do.call(rbind, samp_hist)
OM@cpars$Perr_y[, (OM@maxage + yr_hist_sample):(OM@maxage + nyears)] <<- exp(log_rec_dev[, yr_hist_sample:nyears])
message("Historical recruitment deviations sampled with autocorrelation starting in year ", yr_hist_sample, " out of OM@nyears = ", nyears)
}
}
samp_proj <- Map(dev_AC, AC = OM@cpars$AC, stdev = StockPars$procsd, chain_start = log_rec_dev[, nyears],
MoreArgs = list(n = proyears, mu = 1))
return(exp(do.call(rbind, samp_proj)))
}
OM@cpars$Perr_y[, (OM@maxage+nyears+1):ncol(OM@cpars$Perr_y)] <- sample_future_dev()
message("Future recruitment deviations sampled with autocorrelation (in OM@cpars$Perr_y).\n")
}
OM@cpars$Len_age <- StockPars$Len_age
OM@cpars$Linf <- StockPars$Linf
OM@cpars$K <- StockPars$K
OM@cpars$t0 <- StockPars$t0
OM@cpars$LenCV <- StockPars$LenCV
OM@cpars$LatASD <- StockPars$LatASD
OM@cpars$Wt_age <- StockPars$Wt_age
if(any(apply(StockPars$Mat_age, 1, function(x) all(x >= 0.5)))) {
OM@cpars$L50 <- StockPars$L50
OM@cpars$L95 <- StockPars$L95
} else {
OM@cpars$Mat_age <- StockPars$Mat_age
}
if(prior$use_prior[2]) {
OM@cpars$h <- vapply(res, getElement, numeric(1), "h")
} else {
OM@cpars$h <- StockPars$hs
}
if(prior$use_prior[3]) {
OM@cpars$M_ageArray <- vapply(res, getElement, numeric(1), "Mest") %>%
array(c(nsim, maxage+1, nyears + proyears))
} else {
OM@cpars$M_ageArray <- StockPars$M_ageArray
}
if(any(RCMdata@CAL > 0, na.rm = TRUE) || (any(RCMdata@MS > 0, na.rm = TRUE) & RCMdata@MS_type == "length") ||
any(RCMdata@IAL > 0, na.rm = TRUE)) {
OM@cpars$CAL_bins <- RCMdata@Misc$lbin
OM@cpars$CAL_binsmid <- RCMdata@Misc$lbinmid
message("RCM length bins will be added to OM.")
}
if(!is.null(dots$plusgroup) && !dots$plusgroup) OM@cpars$plusgroup <- 0L
if(!any(RCMdata@I_sd > 0, na.rm = TRUE)) OM@cpars$Iobs <- ObsPars$Iobs
message("Growth, maturity, natural mortality, and steepness values from RCM are set in OM@cpars.\n")
RCMdata@Misc$prior <- prior
output <- new("RCModel", OM = MSEtool::SubCpars(OM, keep),
SSB = do.call(rbind, lapply(res[keep], getElement, "E")),
NAA = lapply(res[keep], getElement, "N") %>% simplify2array() %>% aperm(c(3, 1, 2)),
CAA = lapply(res[keep], getElement, "CAApred") %>% simplify2array() %>% aperm(c(4, 1:3)),
CAL = lapply(res[keep], getElement, "CALpred") %>% simplify2array() %>% aperm(c(4, 1:3)),
mean_fit = mean_fit_output, conv = conv[keep], data = RCMdata, Misc = res[keep])
output@config <- list(drop_sim = which(!keep))
if(sum(RCMdata@Chist > 0, na.rm = TRUE) || nsurvey > 0) {
real_Data <- new("Data")
real_Data@Year <- (output@OM@CurrentYr - output@OM@nyears + 1):output@OM@CurrentYr
real_Data@LHYear <- max(real_Data@Year)
real_Data@MaxAge <- maxage
if(sum(RCMdata@Chist > 0, na.rm = TRUE) && all(!is.na(RCMdata@Chist))) {
real_Data@Cat <- matrix(rowSums(RCMdata@Chist, na.rm = TRUE), 1, nyears)
real_Data@CV_Cat <- sqrt(exp((rowSums(RCMdata@C_sd * RCMdata@Chist)/rowSums(RCMdata@Chist))^2 - 1)) %>%
matrix(1, nyears)
message("Historical catch data added to OM@cpars$Data@Cat.")
if(nfleet > 1) message("Annual catch CV is a weighted average by fleet-specific catch.")
}
if(nfleet == 1) {
if(sum(RCMdata@CAA, na.rm = TRUE)) {
real_Data@CAA <- aperm(RCMdata@CAA, c(3, 1, 2))
message("Age comps added to OM@cpars$Data@CAA (nfleet = 1).")
}
if(sum(RCMdata@CAL, na.rm = TRUE)) {
real_Data@CAL <- aperm(RCMdata@CAL, c(3, 1, 2))
real_Data@CAL_mids <- RCMdata@Misc$lbinmid
real_Data@CAL_bins <- RCMdata@Misc$lbin
message("Length comps added to OM@cpars$Data@CAL (nfleet = 1).")
}
}
if(.hasSlot(real_Data, "AddInd") && nsurvey > 0) {
real_Data@AddInd <- array(RCMdata@Index, c(nyears, nsurvey, output@OM@nsim)) %>%
aperm(perm = c(3, 2, 1))
real_Data@CV_AddInd <- array(sqrt(exp(RCMdata@I_sd^2) - 1), c(nyears, nsurvey, output@OM@nsim)) %>%
aperm(perm = c(3, 2, 1))
real_Data@AddIndType <- vapply(s_sel, process_AddIndType, numeric(1), nfleet = nfleet)
real_Data@AddIndV <- lapply(1:nsurvey, process_AddIndV, Misc = output@Misc, s_sel = s_sel,
n_age = maxage + 1, nfleet = nfleet, nyears = nyears) %>%
simplify2array() %>% aperm(c(1, 3, 2))
real_Data@AddIunits <- RCMdata@I_units
output@OM@cpars$AddIbeta <- matrix(1, output@OM@nsim, nsurvey)
message("Historical indices added to OM@cpars$Data@AddInd.")
}
output@OM@cpars$Data <- real_Data
}
if(RCMdata@Misc$condition == "catch2") {
catch_check_fn <- function(x, report, data) {
if(report[[x]]$conv) {
catch_diff <- report[[x]]$Cpred/RCMdata@Chist - 1
flag <- max(abs(catch_diff), na.rm = TRUE) > 0.01 | any(is.na(report[[x]]$Cpred))
} else {
flag <- FALSE
}
return(flag)
}
do_catch_check <- vapply(1:length(res), catch_check_fn, logical(1), report = res, data = data)
if(any(do_catch_check)) {
flag_ind <- paste(which(do_catch_check), collapse = " ")
message("Note: there is predicted catch that deviates from observed catch by more than 1% in simulations:")
message(flag_ind)
}
}
message("Complete.")
return(output)
}
process_AddIndType <- function(s_sel, nfleet) {
if(s_sel == -4 || s_sel == -2 || s_sel == -1 || s_sel == 0) {
return(1)
} else if(s_sel == -3) {
return(2)
} else {
return(ifelse(nfleet > 1, 1, 3))
}
}
process_AddIndV <- function(sur, Misc, s_sel, n_age, nfleet, nyears) {
if(s_sel[sur] < -2 || (s_sel[sur] == 1 & nfleet == 1)) {
out <- matrix(1, length(Misc), n_age)
} else {
out <- do.call(rbind, lapply(Misc, function(x) x$ivul[nyears, , sur]))
}
return(out)
}
RCM_retro <- function(x, nyr = 5) {
if(length(x@mean_fit) == 0) stop("Re-run RCM() with argument `mean_fit = TRUE`", .call = FALSE)
data <- x@mean_fit$obj$env$data
params <- x@mean_fit$obj$env$parameters
n_y <- data$n_y
map <- x@mean_fit$obj$env$map
if(data$nfleet > 1) {
retro_ts <- array(NA, dim = c(nyr+1, n_y + 1, data$nfleet + 4))
TS_var <- c(paste("Fleet", 1:data$nfleet, "F"), "Apical F", "SSB", "SSB_SSB0", "R")
} else {
retro_ts <- array(NA, dim = c(nyr+1, n_y + 1, 4))
TS_var <- c("Apical F", "SSB", "SSB_SSB0", "R")
}
dimnames(retro_ts) <- list(Peel = 0:nyr, Year = (x@OM@CurrentYr - n_y):x@OM@CurrentYr + 1, Var = TS_var)
new_args <- lapply(n_y - 0:nyr, RCM_retro_subset, data = data, params = params, map = map)
lapply_fn <- function(i, new_args, x) {
obj2 <- MakeADFun(data = new_args[[i+1]]$data, parameters = new_args[[i+1]]$params, map = new_args[[i+1]]$map,
random = x@mean_fit$obj$env$random, DLL = "SAMtool", silent = TRUE)
if(new_args[[i+1]]$data$condition == "catch2") {
if(any(is.na(obj2$report(obj2$par)$F)) || any(is.infinite(obj2$report(obj2$par)$F))) {
for(ii in 1:10) {
obj2$par["R0x"] <- 0.5 + obj2$par["R0x"]
if(all(!is.na(obj2$report(obj2$par)$F)) && all(!is.infinite(obj2$report(obj2$par)$F))) break
}
}
}
mod <- optimize_TMB_model(obj2, control = list(iter.max = 2e+05, eval.max = 4e+05), restart = 0)
opt2 <- mod[[1]]
SD <- mod[[2]]
if(!is.character(opt2)) {
report <- obj2$report(obj2$env$last.par.best) %>% RCM_posthoc_adjust(obj2, dynamic_SSB0 = FALSE)
FMort <- rbind(report$F, matrix(NA, i + 1, ncol(report$F)))
if(data$nfleet > 1) FMort <- cbind(FMort, apply(report$F_at_age, 1, max, na.rm = TRUE) %>% c(rep(NA, i+1)))
SSB <- c(report$E, rep(NA, i))
SSB_SSB0 <- SSB/report$E0_SR
R <- c(report$R, rep(NA, i))
retro_ts[i+1, , ] <<- cbind(FMort, SSB, SSB_SSB0, R)
return(SD$pdHess)
}
return(FALSE)
}
conv <- vapply(0:nyr, lapply_fn, logical(1), new_args = new_args, x = x)
if(any(!conv)) warning("Peels that did not converge: ", paste0(which(!conv) - 1, collapse = " "))
retro <- new("retro", Model = "RCM", Name = x@OM@Name, TS_var = TS_var, TS = retro_ts)
if(data$nfleet > 1) {
attr(retro, "TS_lab") <- c(paste("Fishing mortality of Fleet", 1:data$nfleet), "Apical F",
"Spawning biomass", "Spawning depletion", "Recruitment")
} else {
attr(retro, "TS_lab") <- c(paste("Fishing mortality of Fleet", 1:data$nfleet),
"Spawning biomass", "Spawning depletion", "Recruitment")
}
return(retro)
}
RCM_retro_subset <- function(yr, data, params, map) {
data_out <- structure(data, check.passed = NULL)
params_out <- lapply(params, function(x) if(!is.null(attr(x, "map"))) attr(x, "shape") else x)
if(yr < data$n_y) {
mat <- c("C_hist", "E_hist", "I_hist", "sigma_I", "sigma_C", "CAA_n", "CAL_n", "IAA_n", "IAL_n", "msize")
if(!is.null(map$log_M)) mat <- c(mat, "M_data")
mat_ind <- match(mat, names(data_out))
data_out[mat_ind] <- lapply(data_out[mat_ind], function(x) x[1:yr, , drop = FALSE])
mat2 <- c("len_age", "wt", "mat", "sel_block")
mat_ind2 <- match(mat2, names(data_out))
data_out[mat_ind2] <- lapply(data_out[mat_ind2], function(x) x[1:(yr+1), , drop = FALSE])
data_out$nsel_block <- data_out$sel_block %>% as.vector() %>% unique() %>% length()
data_out$n_y <- yr
arr <- c("CAA_hist", "CAL_hist", "IAA_hist", "IAL_hist")
arr_ind <- match(arr, names(data_out))
data_out[arr_ind] <- lapply(data_out[arr_ind], function(x) x[1:yr, , , drop = FALSE])
data_out$est_rec_dev <- data_out$est_rec_dev[1:yr]
params_out$log_rec_dev <- params_out$log_rec_dev[1:yr]
if(!is.null(map$log_rec_dev)) map$log_rec_dev <- map$log_rec_dev[1:yr] %>% factor()
if(data_out$condition == "catch") {
params_out$log_F_dev <- params_out$log_F_dev[1:yr, , drop = FALSE]
if(any(data_out$yind_F + 1 > yr)) {
data_out$yind_F <- as.integer(0.5 * yr)
params_out$log_F_dev[data_out$yind_F + 1, ] <- params$log_F_dev[data$yind_F + 1, ]
}
}
if(data$nsel_block > data_out$nsel_block) {
sel_block_ind <- data_out$sel_block %>% as.vector() %>% unique()
params_out$vul_par <- params_out$vul_par[, sel_block_ind, drop = FALSE]
if(!is.null(map$vul_par)) map$vul_par <- map$vul_par[, sel_block_ind, drop = FALSE] %>% factor()
}
}
return(list(data = data_out, params = params_out, map = map))
}
profile_likelihood_RCM <- function(x, ...) {
dots <- list(...)
if(!length(x@mean_fit)) stop("No model found. Re-run RCM with mean_fit = TRUE.")
data <- x@mean_fit$obj$env$data
params <- x@mean_fit$obj$env$parameters
n_y <- data$n_y
map <- x@mean_fit$obj$env$map
LWT <- try(x@data@Misc$LWT, silent = TRUE)
if(is.character(LWT)) LWT <- x@data$LWT
new_args <- RCM_retro_subset(n_y, data = data, params = params, map = map)
if(!is.null(dots$D)) {
if(length(dots) > 1) message("Only doing depletion profile...")
if(!requireNamespace("abind", quietly = TRUE)) {
stop("Please install the abind package to run this profile.")
}
if(!requireNamespace("reshape2", quietly = TRUE)) {
stop("Please install the reshape2 package to run this profile.")
}
profile_grid <- expand.grid(D = dots$D)
new_args$data$IAA_hist <- abind::abind(new_args$data$IAA_hist,
array(NA, c(n_y, new_args$data$n_age, 1)),
along = 3)
new_args$data$IAL_hist <- abind::abind(new_args$data$IAL_hist,
array(NA, c(n_y, length(new_args$data$lbinmid), 1)),
along = 3)
new_args$data$IAA_n <- cbind(new_args$data$IAA_n, rep(0, n_y))
new_args$data$IAL_n <- cbind(new_args$data$IAL_n, rep(0, n_y))
new_args$data$nsurvey <- new_args$data$nsurvey + 1
new_args$data$ivul_type <- c(new_args$data$ivul_type, -3)
new_args$data$abs_I <- c(new_args$data$abs_I, 0)
new_args$data$I_units <- c(new_args$data$I_units, 1)
new_args$data$LWT_index <- rbind(new_args$data$LWT_index, rep(1, 3))
new_args$data$use_prior <- c(new_args$data$use_prior, 0)
new_args$data$prior_dist <- rbind(new_args$data$prior_dist, rep(NA_real_, 2))
new_args$params$ivul_par <- cbind(new_args$params$ivul_par, rep(0, nrow(new_args$params$ivul_par)))
if(!is.null(new_args$map$ivul_par)) {
new_args$map$ivul_par <- factor(c(new_args$map$ivul_par, rep(NA, nrow(new_args$params$ivul_par))))
}
LWT$Index <- c(LWT$Index, 1)
LWT$IAA <- c(LWT$IAA, 1)
LWT$IAL <- c(LWT$IAL, 1)
profile_fn <- function(i, new_args, x) {
SSB_index <- SSB_Isd <- rep(NA_real_, n_y)
SSB_index[1] <- 1
SSB_index[n_y] <- profile_grid$D[i]
SSB_Isd[c(1, n_y)] <- 0.01
new_args$data$I_hist <- cbind(new_args$data$I_hist, SSB_index)
new_args$data$sigma_I <- cbind(new_args$data$sigma_I, SSB_Isd)
obj2 <- MakeADFun(data = new_args$data, parameters = new_args$params, map = new_args$map,
random = x@mean_fit$obj$env$random, DLL = "SAMtool", silent = TRUE)
mod <- optimize_TMB_model(obj2, control = list(iter.max = 2e+05, eval.max = 4e+05), restart = 0)
report <- obj2$report(obj2$env$last.par.best)
RCM_get_likelihoods(report, LWT = LWT, f_name = paste0("Fleet_", 1:new_args$data$nfleet),
s_name = paste0("Index_", 1:(new_args$data$nsurvey-1)) %>% c("SSB_depletion"))
}
do_profile <- lapply(1:nrow(profile_grid), profile_fn, new_args = new_args, x = x)
profile_grid$nll <- vapply(do_profile, function(xx) xx[[1]][1, 1], numeric(1))
prof <- sapply(do_profile, nll_depletion_profile) %>% t()
prof_out <- apply(prof, 2, sum) %>% as.logical()
profile_grid <- cbind(profile_grid, prof[, prof_out] %>% as.data.frame())
output <- new("prof", Model = "RCM", Par = "D",
MLE = x@mean_fit$report$E[n_y]/x@mean_fit$report$E0_SR, grid = profile_grid)
} else {
if(is.null(dots$R0) && is.null(dots$h)) stop("Sequence of neither D, R0, nor h was found. See help file.")
if(!is.null(dots$R0)) {
R0 <- dots$R0
} else {
R0 <- x@mean_fit$report$R0
profile_par <- "h"
}
if(!is.null(dots$h)) {
h <- dots$h
} else {
h <- x@mean_fit$report$h
profile_par <- "R0"
}
profile_grid <- expand.grid(R0 = R0, h = h)
joint_profile <- !exists("profile_par", inherits = FALSE)
profile_fn <- function(i, new_args, x) {
new_args$params$R0x <- log(profile_grid$R0[i] * new_args$data$rescale)
if(new_args$data$SR_type == "BH") {
new_args$params$transformed_h <- logit((profile_grid$h[i] - 0.2)/0.8)
} else {
new_args$params$transformed_h <- log(profile_grid$h[i] - 0.2)
}
if(joint_profile) {
new_args$map$R0x <- new_args$map$transformed_h <- factor(NA)
} else {
if(profile_par == "R0") new_args$map$R0x <- factor(NA) else new_args$map$transformed_h <- factor(NA)
}
obj2 <- MakeADFun(data = new_args$data, parameters = new_args$params, map = new_args$map,
random = x@mean_fit$obj$env$random, DLL = "SAMtool", silent = TRUE)
mod <- optimize_TMB_model(obj2, control = list(iter.max = 2e+05, eval.max = 4e+05), restart = 0)
report <- obj2$report(obj2$env$last.par.best)
RCM_get_likelihoods(report, LWT = LWT, f_name = paste0("Fleet_", 1:new_args$data$nfleet),
s_name = paste0("Index_", 1:new_args$data$nsurvey))
}
do_profile <- lapply(1:nrow(profile_grid), profile_fn, new_args = new_args, x = x)
profile_grid$nll <- vapply(do_profile, function(xx) xx[[1]][1, 1], numeric(1))
prof <- sapply(do_profile, nll_depletion_profile) %>% t()
prof_out <- apply(prof, 2, sum) %>% as.logical()
profile_grid <- cbind(profile_grid, prof[, prof_out] %>% as.data.frame())
if(joint_profile) {
pars <- c("R0", "h")
MLE <- c(x@mean_fit$report$R0, x@mean_fit$report$h)
} else {
pars <- profile_par
MLE <- getElement(x@mean_fit$report, pars)
}
output <- new("prof", Model = "RCM", Par = pars, MLE = MLE, grid = profile_grid)
}
return(output)
}
nll_depletion_profile <- function(xx) {
nll_fleet <- xx[[2]][-nrow(xx[[2]]), ] %>% select(starts_with("Fleet"))
nll_fleet$Data <- rownames(nll_fleet)
nll_fleet <- reshape2::melt(nll_fleet, id.var = "Data", value.var = "nll")
nll_index <- xx[[4]][-nrow(xx[[4]]), ] %>% select(starts_with("Index"))
nll_index$Data <- rownames(nll_index)
nll_index <- reshape2::melt(nll_index, id.var = "Data", value.var = "nll")
nll <- rbind(nll_fleet, nll_index)
nll$Name <- paste(nll$variable, nll$Data)
c(nll$value, xx[[1]][c(2, 5, 6), 1]) %>%
structure(names = paste(nll$variable, nll$Data) %>% c("Recruitment Deviations", "Penalty", "Prior"))
}
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(igate)
set.seed(123)
n <- nrow(iris)*2/3
rows <- sample(1:nrow(iris), n)
df <- iris[rows, ]
results <- igate(df, target = "Sepal.Length", good_end = "high", savePlots = TRUE)
results
igate.regressions(df, target = "Sepal.Length", ssv = results$Causes, savePlots = TRUE)
validation_df <- iris[-rows,]
val <- validate(iris, target = "Sepal.Length", causes = results$Causes, results_df = results)
head(val[[1]])
val[[2]]
val[[3]]
|
ve <- 2
fn <- NULL
rf <- c("def-model.RDS", "validate-clean.txt")
em <- EnvManager$new(ve = ve, rp = "./")
ed <- em$setup_env(rf, fn)
mfn <- paste0(ed, "/def-model.RDS")
vfn <- paste0(ed, "/validate-clean.txt")
me <- ModelEvaluator$new(mf = mfn, ve = ve)
stats <- me$intrinsic_evaluation(lc = 20, fn = vfn)
print(stats)
em$td_env()
|
prep_fa <- function(df_fa){
cc <- NA
use <- NA
fa_names <- NA
if(!(is.data.frame(df_fa) | is.list(df_fa))){
err_code <- 1
err_message <- "The fatty acid data are not in a valid data frame."
return(list(cc = cc,
use = use,
fa_names = fa_names,
err_code = err_code,
err_message = err_message))
}
to_use <- df_fa[1,] == 1
if(sum(to_use) != 2){
err_code <- 2
err_message <- paste("One and only one set of calibration coefficients and",
"fatty acid suites must be selected.", sep=" ")
return(list(cc = cc,
use = use,
fa_names = fa_names,
err_code = err_code,
err_message = err_message))
}
cc_to_use <- max.col(to_use, "first")
fa_to_use <- max.col(to_use, "last")
cc <- df_fa[,cc_to_use][-1]
use <- as.logical(df_fa[,fa_to_use][-1])
fa_names <- as.character(df_fa[,1][-1])
if(sum(use) < 2){
err_code <- 3
err_message <- "The number of fatty acids to use must exceed 1."
return(list(cc = cc,
use = use,
fa_names = fa_names,
err_code = err_code,
err_message = err_message))
}
err_code <- 0
err_message <- "Success!"
return(list(cc = cc,
use = use,
fa_names = fa_names,
err_code = err_code,
err_message = err_message))
}
|
gibbs_met <- function(log_f,no_var,ini_value,iters,iters_per.iter=1,iters_met,
stepsizes_met, ...)
{
if(no_var != length(ini_value))
stop("The number of variables in initial values does NOT match no_var")
if(!is.finite(log_f(ini_value,...)))
stop("The initial value has 0 probability")
chain <- matrix(0, iters + 1, no_var)
chain[1,] <- ini_value
gibbs_update_per.iter_per.par <- function(iter, i_par)
{ log_f_condition <- function(x_i)
{ x <- chain[iter,]
x[i_par] <- x_i
log_f(x,...)
}
chain[iter,i_par] <<-
met_gaussian(log_f=log_f_condition,
iters=iters_met,no_var=1,
ini_value=chain[iter,i_par],
stepsizes_met=stepsizes_met[i_par])[iters_met+1]
}
gibbs_update_per.iter <- function(iter) {
chain[iter,] <<- chain[iter-1,]
replicate(iters_per.iter,
sapply(1:no_var,gibbs_update_per.iter_per.par,iter=iter) )
}
sapply(seq(2,iters+1), gibbs_update_per.iter)
chain
}
met_gaussian <- function(log_f, no_var, ini_value,
iters,iters_per.iter=1,stepsizes_met, ...)
{
if(no_var != length(ini_value))
stop("The number of variables in initial values does NOT match p")
if(!is.finite(log_f(ini_value,...)))
stop("The initial value has 0 probability")
chain <- matrix(0,iters+1,no_var)
chain[1,] <- ini_value
old_log_f <- log_f(ini_value,...)
one_transition <- function(i)
{ chain[i,] <<- chain[i-1,]
i_inside <- 0
repeat{
i_inside <- i_inside + 1
x_prop <- rnorm(no_var) * stepsizes_met + chain[i,]
new_log_f <- log_f(x_prop,...)
if(log(runif(1)) < new_log_f - old_log_f)
{ chain[i,] <<- x_prop
old_log_f <<- new_log_f
}
if(i_inside == iters_per.iter) break
}
}
sapply(seq(2,iters+1),one_transition)
chain
}
|
expected <- eval(parse(text="structure(list(dim = c(1L, 1L), a = c(NA, 3, -1, 2), class = structure(\"B\", package = \".GlobalEnv\")), .Names = c(\"dim\", \"a\", \"class\"))"));
test(id=0, code={
argv <- eval(parse(text="list(structure(1, .Dim = c(1L, 1L), a = c(NA, 3, -1, 2), class = structure(\"B\", package = \".GlobalEnv\")))"));
do.call(`attributes`, argv);
}, o=expected);
|
X <- rbind(diag(8), -diag(8)) * sqrt(8)
beta <- c(-1,-1,-1,-1,2,2,2,2)
y <- as.numeric(X %*% beta)
group <- c(1,1,1,1,2,2,2,2)
fit <- grpreg(X, y, group, lambda=c(2, 1.999999, 1, 0))
expect_equal(predict(fit, type='nvars', which=2), 4)
expect_equivalent(coef(fit, lambda=0), c(0, beta))
expect_equivalent(coef(fit, lambda=1), c(0, 0, 0, 0, 0, 1, 1, 1, 1))
|
"Hastings.coeff" <-
function(object,...){
UseMethod("Hastings.coeff")
}
|
context("Wavelet clustering (wclust)")
t1 <- cbind(1:100, sin(seq(0, 10 * 2 * pi, length.out = 100)))
t2 <- cbind(1:100, sin(seq(0, 10 * 2 * pi, length.out = 100) + 0.1 * pi))
t3 <- cbind(1:100, rnorm(100))
wt.t1 <- wt(t1)
wt.t2 <- wt(t2)
wt.t3 <- wt(t3)
w.arr <- array(dim = c(3, NROW(wt.t1$wave), NCOL(wt.t1$wave)))
w.arr[1, , ] <- wt.t1$wave
w.arr[2, , ] <- wt.t2$wave
w.arr[3, , ] <- wt.t3$wave
test_that("Basic test of wclust without progress bar", {
c <- wclust(w.arr, quiet = TRUE)
expect_true(is.matrix(c$diss.mat))
expect_equal(dim(c$diss.mat), c(3,3))
expect_equal(class(c$dist.mat), "dist")
})
test_that("Progressbar should not cause errors", {
expect_output(
out <- wclust(w.arr),
regexp = "\\|=+=\\| 100%"
)
})
|
d = read.csv('https://raw.githubusercontent.com/m-clark/Datasets/master/us%20cpi/USCPI.csv', header=F)
inflation = d[,1]
summary(inflation)
statespaceEM = function(
params,
y,
omega2_0,
omega2,
tol = .00001,
maxits = 100,
showits = T
) {
require(spam)
n = length(y)
sigma2 = params$sigma2
H = diag(n)
for (i in 1:(ncol(H) - 1)) {
H[i + 1, i] = -1
}
Omega2 = as.spam(diag(omega2, n))
Omega2[1, 1] = omega2_0
H = as.spam(H)
HinvOmega2H = t(H) %*% chol2inv(chol(Omega2)) %*% H
it = 0
converged = FALSE
if (showits)
cat(paste("Iterations of EM:", "\n"))
while ((!converged) & (it < maxits)) {
sigma2Old = sigma2[1]
Sigma2invOld = diag(n)/sigma2Old
K = HinvOmega2H + Sigma2invOld
tau = solve(K, y/sigma2Old)
K_inv_tr = sum(1/eigen(K)$values)
sigma2 = 1/n * (K_inv_tr + crossprod(y-tau))
converged = max(abs(sigma2 - sigma2Old)) <= tol
it = it + 1
if (showits & it == 1 | it%%5 == 0)
cat(paste(format(it), "...", "\n", sep = ""))
}
Kfinal = HinvOmega2H + diag(n) / sigma2[1]
taufinal = solve(K, (y / sigma2[1]))
out = list(sigma2 = sigma2, tau = taufinal)
}
ssMod_1 = statespaceEM(
params = data.frame(sigma2 = var(inflation)),
y = inflation,
tol = 1e-4,
omega2_0 = 9,
omega2 = 1 ^ 2
)
ssMod_.5 = statespaceEM(
params = data.frame(sigma2 = var(inflation)),
y = inflation,
tol = 1e-4,
omega2_0 = 9,
omega2 = .5 ^ 2
)
ssMod_1$sigma2
ssMod_.5$sigma2
library(lubridate)
series = ymd(paste0(rep(1947:2014, e = 4), '-', c('01', '04', '07', '10'), '-', '01'))
seriestext = series[1:length(inflation)]
library(tidyverse)
data.frame(
series = series[1:length(inflation)],
inflation,
Mod_1 = ssMod_1$tau,
Mod_.5 = ssMod_.5$tau
) %>%
ggplot(aes(x = series, y = inflation)) +
geom_point(color = 'gray50') +
geom_line(aes(y = Mod_1), color = '
geom_line(aes(y = Mod_.5), color = 'skyblue3') +
scale_x_date(date_breaks = '10 years') +
theme_light()
|
plot.loadings <- function(x, reorder = TRUE, gray=FALSE, grey=FALSE, ...) {
args <- list(...)
if (is.null(args$main)) args$main <- paste(deparse(substitute(x)), collapse = "\n")
if (is.null(args$breaks)) args$breaks <- c(-sqrt(c(1, 0.75, 0.5, 0.25, 0.16)), sqrt(c(0.16, 0.25, 0.50, 0.75, 1)))
if (is.null(args$digits)) args$digits <- 2
if (is.null(args$xlab)) args$xlab <- "Component"
if (is.null(args$ylab)) args$ylab <- "Variable"
args$x <- unclass(x)
if (is.null(args$col)) {
args$col <- if (grey||gray) colorRampPalette(c("black", "white", "black")) else colorRampPalette(c("blue", "white", "red"))
}
if (is.null(rownames(args$x))) rownames(args$x) <- sprintf("V%.0f", 1:nrow(x))
if (reorder) {
o <- apply(x, 1, function(v) { v<-v^2; c(which.max(v), -max(v))})
o <- order(o[1,], o[2,])
args$x <- args$x[o,]
}
do.call("plot.matrix", args)
}
|
npcs <- function(x, y, algorithm = c("CX", "ER"), classifier = c("logistic", "knn", "randomforest", "tree", "neuralnet", "svm", "lda", "qda", "nb", "nnb"),
w, alpha, split.ratio = 0.5, split.mode = c("by-class", "merged"), tol = 1e-6, refit = TRUE, protect = TRUE, opt.alg = c("Hooke-Jeeves", "Nelder-Mead"), ...) {
algorithm <- match.arg(algorithm)
classifier <- match.arg(classifier)
split.mode <- match.arg(split.mode)
opt.alg <- match.arg(opt.alg)
n <- length(y)
K <- length(unique(y))
w.ori <- w
w <- w/sum(w)
index <- which(!is.na(alpha))
if (algorithm == "CX") {
pik <- as.numeric(table(y)/n)
if (classifier == "logistic") {
fit <- multinom(y ~ ., data = data.frame(x = x, y = y), trace = FALSE, ...)
if (K> 2) {
posterior <- predict(fit, newdata = data.frame(x = x, y = y), type = "prob")
} else {
pt1 <- predict(fit, newdata = data.frame(x = x, y = y) , type = "prob")
posterior <- cbind(1-pt1, pt1)
}
} else if (classifier == "knn") {
fit <- knn3(x = x, y = factor(y), ...)
posterior <- predict(fit, newdata = x, type = "prob")
} else if (classifier == "randomforest") {
fit <- randomForest(x = x, y = factor(y), ...)
posterior <- predict(fit, newdata = x, type = "prob")
} else if (classifier == "svm") {
fit <- svm(x = x, y = factor(y), probability = TRUE, ...)
posterior <- attr(predict(fit, newdata = x, probability = TRUE), "probabilities")
posterior <- posterior[, match(1:K, as.numeric(colnames(posterior)))]
} else if (classifier == "nb") {
fit <- naiveBayes(x = x, y = factor(y), ...)
posterior <- predict(fit, newdata = x, type = "raw")
} else if (classifier == "tree") {
fit <- rpart(y ~ ., data = data.frame(x = x, y = factor(y)), ...)
posterior <- predict(fit, newdata = data.frame(x = x, y = factor(y)), type = "prob")
} else if (classifier == "neuralnet") {
fit <- nnet(y ~ ., data = data.frame(x = x, y = factor(y)), trace = FALSE, ...)
if (K> 2) {
posterior <- predict(fit, newdata = data.frame(x = x, y = factor(y)) , type = "raw")
} else {
pt1 <- predict(fit, newdata = data.frame(x = x, y = factor(y)), type = "raw")
posterior <- cbind(1-pt1, pt1)
}
} else if (classifier == "lda") {
fit <- lda(x = x, grouping = factor(y), ...)
posterior <- predict(fit, x)$posterior
} else if (classifier == "qda") {
fit <- qda(x = x, grouping = factor(y), ...)
posterior <- predict(fit, x)$posterior
} else if (classifier == "nnb") {
if (is.null(colnames(x))) {
colnames(x) <- paste0("x", 1:ncol(x))
}
fit <- nonparametric_naive_bayes(x = x, y = factor(y), ...)
posterior <- predict(fit, x, type = "prob")
}
if (length(index) == 1) {
if (opt.alg == "Nelder-Mead"){
lambda <- optimize(f = obj.CX, lower = 0, maximum = T, upper = 200, alpha = alpha, pik = pik, posterior = posterior, w = w, index = index, tol = tol)
} else if (opt.alg == "Hooke-Jeeves") {
lambda <- hjkb1(par = rep(0, length(index)), fn = obj.CX, upper = rep(200, length(index)), lower = rep(0, length(index)), control = c(maximize = TRUE, tol = tol), alpha = alpha, pik = pik, posterior = posterior, w = w, index = index)
}
} else if (length(index) > 1) {
if (opt.alg == "Nelder-Mead"){
lambda <- nmkb(par = rep(0.0001, length(index)), fn = obj.CX, upper = rep(200, length(index)), lower = rep(0, length(index)), control = c(maximize = TRUE, tol = tol), alpha = alpha, pik = pik, posterior = posterior, w = w, index = index)
} else if (opt.alg == "Hooke-Jeeves") {
lambda <- hjkb(par = rep(0, length(index)), fn = obj.CX, upper = rep(200, length(index)), lower = rep(0, length(index)), control = c(maximize = TRUE, tol = tol), alpha = alpha, pik = pik, posterior = posterior, w = w, index = index)
}
}
}
if (algorithm == "ER") {
if (split.mode == "merged") {
ind <- sample(n, floor(n*split.ratio))
pik <- as.numeric(table(y[-ind])/length(y[-ind]))
} else {
ind <- Reduce("c", sapply(1:K, function(k){
ind.k <- which(y == k)
sample(ind.k, floor(length(ind.k)*split.ratio))
}, simplify = F))
pik <- as.numeric(table(y[-ind])/length(y[-ind]))
}
if (classifier == "logistic") {
fit <- multinom(y~., data = data.frame(x = x[-ind, ], y = y[-ind]) , trace = F)
if (K> 2) {
posterior <- predict(fit, newdata = data.frame(x = x[ind, ], y = y[ind]), type = "prob")
} else {
pt1 <- predict(fit, newdata = data.frame(x = x[ind, ], y = y[ind]), type = "prob")
posterior <- cbind(1-pt1, pt1)
}
if (refit) {
fit <- multinom(y~., data = data.frame(x = x, y = y), trace = F)
pik <- as.numeric(table(y)/length(y))
}
} else if (classifier == "knn") {
fit <- knn3(x = x[-ind, ], y = factor(y)[-ind], ...)
posterior <- predict(fit, newdata = x[ind, ], type = "prob")
if (refit) {
fit <- knn3(x = x, y = factor(y), ...)
pik <- as.numeric(table(y)/length(y))
}
} else if (classifier == "randomforest") {
fit <- randomForest(x = x[-ind, ], y = factor(y)[-ind], ...)
posterior <- predict(fit, newdata = x[ind, ], type = "prob")
if (refit) {
fit <- randomForest(x = x, y = factor(y), ...)
pik <- as.numeric(table(y)/length(y))
}
} else if (classifier == "svm") {
fit <- svm(x = x[-ind, ], y = factor(y)[-ind], probability = TRUE, ...)
posterior <- attr(predict(fit, newdata = x[ind, ], probability = TRUE), "probabilities")
posterior <- posterior[, match(1:K, as.numeric(colnames(posterior)))]
if (refit) {
fit <- svm(x = x, y = factor(y), probability = TRUE, ...)
pik <- as.numeric(table(y)/length(y))
}
} else if (classifier == "nb") {
fit <- naiveBayes(x = x[-ind, ], y = factor(y)[-ind], ...)
posterior <- predict(fit, newdata = x[ind, ], type = "raw")
if (refit) {
fit <- naiveBayes(x = x, y = factor(y), ...)
pik <- as.numeric(table(y)/length(y))
}
} else if (classifier == "tree") {
fit <- rpart(y ~ ., data = data.frame(x = x[-ind, ], y = factor(y)[-ind]), ...)
posterior <- predict(fit, newdata = data.frame(x = x[ind, ]), type = "prob")
if (refit) {
fit <- rpart(y ~ ., data = data.frame(x = x, y = factor(y)), ...)
pik <- as.numeric(table(y)/length(y))
}
} else if (classifier == "neuralnet") {
fit <- nnet(y ~ ., data = data.frame(x = x[-ind, ], y = factor(y)[-ind]), trace = FALSE, ...)
if (K> 2) {
posterior <- predict(fit, newdata = data.frame(x = x[ind, ]), type = "raw")
} else {
pt1 <- predict(fit, newdata = data.frame(x = x[ind, ]), type = "raw")
posterior <- cbind(1-pt1, pt1)
}
if (refit) {
fit <- nnet(y ~ ., data = data.frame(x = x, y = factor(y)), trace = FALSE, ...)
pik <- as.numeric(table(y)/length(y))
}
} else if (classifier == "lda") {
fit <- lda(x = x[-ind, ], grouping = factor(y)[-ind])
posterior <- predict(fit, x[ind, ])$posterior
if (refit) {
fit <- lda(x = x, grouping = factor(y), ...)
pik <- as.numeric(table(y)/length(y))
}
} else if (classifier == "qda") {
fit <- qda(x = x[-ind, ], grouping = factor(y)[-ind])
posterior <- predict(fit, x[ind, ])$posterior
if (refit) {
fit <- qda(x = x, grouping = factor(y), ...)
pik <- as.numeric(table(y)/length(y))
}
} else if (classifier == "nnb") {
if (is.null(colnames(x))) {
colnames(x) <- paste0("x", 1:ncol(x))
}
fit <- nonparametric_naive_bayes(x = x[-ind, ], y = factor(y)[-ind], ...)
posterior <- predict(fit, x[ind, ], type = "prob")
if (refit) {
fit <- nonparametric_naive_bayes(x = x, y = factor(y), ...)
pik <- as.numeric(table(y)/length(y))
}
}
if (length(index) == 1) {
if (opt.alg == "Nelder-Mead"){
lambda <- optimize(f = obj.ER, lower = 0, maximum = T, upper = 200, alpha = alpha, pik = pik, posterior = posterior, w = w, index = index, y = y[ind], tol = tol)
} else if (opt.alg == "Hooke-Jeeves") {
lambda <- hjkb1(par = rep(0, length(index)), fn = obj.ER, upper = rep(200, length(index)), lower = rep(0, length(index)), control = c(maximize = TRUE, tol = tol), alpha = alpha, pik = pik, posterior = posterior, w = w, index = index, y = y[ind])
}
} else if (length(index) > 1) {
if (opt.alg == "Nelder-Mead"){
lambda <- nmkb(par = rep(0.0001, length(index)), fn = obj.ER, upper = rep(200, length(index)), lower = rep(0, length(index)), control = c(maximize = TRUE, tol = tol), alpha = alpha, pik = pik, posterior = posterior, w = w, index = index, y = y[ind])
} else if (opt.alg == "Hooke-Jeeves") {
lambda <- hjkb(par = rep(0, length(index)), fn = obj.ER, upper = rep(200, length(index)), lower = rep(0, length(index)), control = c(maximize = TRUE, tol = tol), alpha = alpha, pik = pik, posterior = posterior, w = w, index = index, y = y[ind])
}
}
}
if (length(index) == 1 && opt.alg == "Nelder-Mead") {
obj.value <- lambda$objective
lambda <- lambda$maximum
} else {
obj.value <- lambda$value
lambda <- lambda$par
}
if (obj.value > 1) {
stop("The NP problem is infeasible!")
}
if (protect) {
lambda[lambda <= 1e-3] <- 1e-3
}
lambda.full <- rep(NA, length(alpha))
lambda.full[index] <- lambda
L <- list(lambda = lambda.full*sum(w.ori), fit = fit, classifier = classifier, algorithm = algorithm, alpha = alpha, w = w.ori, pik = pik)
class(L) <- "npcs"
return(L)
}
|
setDecisionNodes <- function(network, ...)
{
nodes <- as.character(substitute(list(...)))[-1]
network[["nodeDecision"]][nodes] <-
lapply(X = network[["nodeDecision"]][nodes],
FUN = function(x) TRUE)
network
}
setUtilityNodes <- function(network, ...)
{
nodes <- as.character(substitute(list(...)))[-1]
network[["nodeUtility"]][nodes] <-
lapply(X = network[["nodeUtility"]][nodes],
FUN = function(x) TRUE)
network
}
|
`[.labelled` <- function(x, i, ...){
structure(
NextMethod(),
label = attr(x, "label"),
class = class(x)
)
}
`[<-.labelled` <- function(x, i, ..., value){
structure(
NextMethod(),
label = attr(x, "label"),
class = c("labelled", class(x)[!class(x) %in% "labelled"])
)
}
|
.makeTinyMap <- function(geom = NULL){
assertClass(x = geom, classes = "geom")
theWindow <- getWindow(x = geom)
thePoints <- getPoints(x = geom)
xmin <- round(min(theWindow$x), 2)
xminFill <- paste0(rep(" ", nchar(xmin)), collapse = "")
xmax <- round(max(theWindow$x), 2)
xmaxFill <- paste0(rep(" ", nchar(xmax)), collapse = "")
ymin <- round(min(theWindow$y), 2)
ymax <- round(max(theWindow$y), 2)
full <- '\u25C9'
half <- '\u25CE'
quarter <- '\u25CB'
empty <- '\u25CC'
filled <- NULL
nrPoints <- dim(thePoints)[1]
for(i in 1:4){
for(j in 1:4){
x <- xmin + c(((xmax-xmin)/4 * j) - (xmax-xmin)/4, (xmax-xmin)/4 * j)
y <- ymin + c(((ymax-ymin)/4 * i) - (ymax-ymin)/4, (ymax-ymin)/4 * i)
target <- data.frame(x = c(x[1], x[2], x[2], x[1], x[1]),
y = c(y[1], y[1], y[2], y[2], y[1]))
inside <- pointInGeomC(vert = as.matrix(thePoints[c("x", "y")]),
geom = as.matrix(target),
invert = FALSE)
pointsInside <- sum(inside != 0)
ratio <- pointsInside/nrPoints
if(ratio <= 1/16){
recent <- empty
} else if(ratio > 1/16 & ratio <= 1/8){
recent <- quarter
} else if(ratio > 1/8 & ratio <= 1/4){
recent <- half
} else if(ratio > 1/4){
recent <- full
}
filled <- c(filled, recent)
}
}
out <- paste0(c("", xminFill, ymax, "\n",
" ", xminFill, filled[13], filled[14], filled[15], filled[16], xmaxFill, "\n",
" ", xminFill, filled[9], filled[10], filled[11], filled[12], xmaxFill, "\n",
" ", xminFill, filled[5], filled[6], filled[7], filled[8], xmaxFill, "\n",
" ", xmin, filled[1], filled[2], filled[3], filled[4], xmax, "\n",
" ", xminFill, ymin, ""))
return(out)
}
|
logdr.gui <- function( base.txt) {
ebase <- tclVar(1)
bb <- tclVar( 10)
refresh <- function() {
tkdelete( col.listbox, 0.0, "end")
if( !is.nothing) {
dd.select <- as.numeric( tkcurselection( data.listbox))+1
dd <- get( full.list[ dd.select])
} else dd <- in2extRemesData
for( i in 1:ncol( dd$data)) tkinsert( col.listbox, "end", paste( colnames( dd$data)[i]))
invisible()
}
ldr.trans <- function() {
if( !is.nothing) {
data.select <- as.numeric( tkcurselection( data.listbox))+1
dd.cmd <- paste( "dd <- get( \"", full.list[ data.select], "\")", sep="")
ddname <- full.list[ data.select]
} else dd.cmd <- "dd <- in2extRemesData"
eval( parse( text=dd.cmd))
write( dd.cmd, file="in2extRemes.log", append=TRUE)
if( tclvalue(ebase) == 1 ) log.b <- exp(1)
else {
log.b <- as.numeric( tclvalue( bb))
bbext <- deparse( log.b)
}
cols.selected.cmd <- "cols.selected <- character(0)"
eval( parse( text=cols.selected.cmd))
write( cols.selected.cmd, file="in2extRemes.log", append=TRUE)
temp <- as.numeric( tkcurselection( col.listbox)) + 1
if( is.na( temp)) return()
cnames.cmd <- "cnames <- colnames( dd[[\"data\"]])"
eval( parse( text=cnames.cmd))
write( cnames.cmd, file="in2extRemes.log", append=TRUE)
for( i in 1:length( temp)) {
cols.selected.cmd <- paste(" cols.selected <- c( cols.selected, \"", cnames[ temp[i]], "\")", sep="")
eval( parse( text=cols.selected.cmd))
write( cols.selected.cmd, file="in2extRemes.log", append=TRUE)
}
N.cmd <- "N <- dim( dd[[\"data\"]])[1]"
eval( parse( text=N.cmd))
write( N.cmd, file="in2extRemes.log", append=TRUE)
tmp.ldr.cmd <- "tmp.ldr <- matrix( NA, nrow=N, ncol=length( cols.selected) )"
eval( parse( text=tmp.ldr.cmd))
write( tmp.ldr.cmd, file="in2extRemes.log", append=TRUE)
tmp.ldr.cmd <- paste( "tmp.ldr[ 1:(N-1),] <- log( dd[[\"data\"]][2:N, cols.selected], base=", log.b, ") -",
" log( dd[[\"data\"]][1:(N-1), cols.selected], base=", log.b, ")", sep="")
eval( parse( text=tmp.ldr.cmd))
write( tmp.ldr.cmd, file="in2extRemes.log", append=TRUE)
CMD <- "for( i in 1: dim( tmp.ldr)[2]) tmp.ldr[is.na( tmp.ldr[,i]),i] <- mean(tmp.ldr[,i],na.rm=TRUE)"
eval( parse( text=CMD))
write( CMD, file="in2extRemes.log", append=TRUE)
if( tclvalue(ebase) == 1) newnames <- paste( cnames[temp], ".ldr", sep="")
else newnames <- paste( cnames[temp], ".", bbext, "ldr", sep="")
for( i in 1:length( newnames)) {
cnames.cmd <- paste( "cnames <- c( cnames, \"", newnames[i], "\")", sep="")
eval( parse( text=cnames.cmd))
write( cnames.cmd, file="in2extRemes.log", append=TRUE)
}
newdata.cmd <- "dd[[\"data\"]] <- cbind( dd[[\"data\"]], tmp.ldr)"
eval( parse( text=newdata.cmd))
write( newdata.cmd, file="in2extRemes.log", append=TRUE)
colnamesCMD <- "colnames( dd[[\"data\"]]) <- cnames"
eval( parse( text=colnamesCMD))
write( colnamesCMD, file="in2extRemes.log", append=TRUE)
assignCMD <- paste( "assign( \"", full.list[ data.select], "\", dd, pos=\".GlobalEnv\")", sep="")
eval( parse( text=assignCMD))
write( assignCMD, file="in2extRemes.log", append=TRUE)
msg <- paste( "\n", "log daily return (base= ", round( log.b, digits=6),
") taken for", "\n",
" ", cols.selected, " and assigned to ", newnames, sep="")
cat( msg)
tkdestroy( base)
invisible()
}
ldrhelp <- function() {
help.msg1 <- paste( " ",
"This is a simple function that takes an n X 1 data set Y and computes the ",
"log (base bb) daily return. That is:", " ", sep="\n")
help.msg2 <- paste(" ",
"log( Y[2:n], base=bb) - log( Y[1:(n-1)], base=bb)", " ", sep="\n")
help.msg3 <- paste(" ",
"Returns an object of class \"in2extRemesDataObject\" ", " ", sep="\n")
cat( help.msg1)
cat( help.msg2)
cat( help.msg3)
invisible()
}
endprog <- function() {
tkdestroy( base)
}
base <- tktoplevel()
tkwm.title( base, "Log Daily Returns Transformation")
top.frm <- tkframe( base, borderwidth=2, relief="groove")
mid.frm <- tkframe( base, borderwidth=2, relief="groove")
bot.frm <- tkframe( base, borderwidth=2, relief="groove")
data.listbox <- tklistbox( top.frm,
yscrollcommand=function(...) tkset(data.scroll, ...),
selectmode="single",
width=20,
height=5,
exportselection=0)
data.scroll <- tkscrollbar( top.frm, orient="vert",
command=function(...) tkyview( data.listbox, ...))
temp <- ls(all.names=TRUE, name=".GlobalEnv")
full.list <- character(0)
is.nothing <- TRUE
for( i in 1:length( temp)) {
if( is.null( class( get( temp[i])))) next
if( (class(get( temp[i]))[1] == "in2extRemesDataObject")) {
tkinsert( data.listbox, "end", paste( temp[i]))
full.list <- c( full.list, temp[i])
is.nothing <- FALSE
}
}
tkpack( tklabel( top.frm, text="Data Object", padx=4), side="top")
tkpack( data.listbox, data.scroll, side="left", fill="y")
tkpack( top.frm)
tkbind( data.listbox, "<Button-1>", "")
tkbind( data.listbox, "<ButtonRelease-1>", refresh)
leftmid.frm <- tkframe( mid.frm, borderwidth=2, relief="groove")
col.listbox <- tklistbox( leftmid.frm,
yscrollcommand=function(...) tkset( col.scroll, ...),
selectmode="multiple",
width=20,
height=5,
exportselection=0)
col.scroll <- tkscrollbar( leftmid.frm, orient="vert",
command=function(...) tkyview( col.listbox, ...))
if( is.nothing) {
for( i in 1:ncol( in2extRemesData$data))
tkinsert( col.listbox, "end", paste( colnames( dd$data)[i]))
} else tkinsert( col.listbox, "end", "")
tkpack( tklabel( leftmid.frm, text="Variables to Transform", padx=4),
side="top")
tkpack( col.listbox, side="left")
tkpack( col.scroll, side="right")
rightmid.frm <- tkframe( mid.frm, borderwidth=2, relief="groove")
exp.base <- tkcheckbutton( rightmid.frm, text="Use Exponential Base",
variable=ebase)
other.base <- tkentry( rightmid.frm, textvariable=bb, width=4)
tkpack( exp.base, side="top")
tkpack( other.base,
tklabel( rightmid.frm, text="Use other base", padx=4), side="bottom")
tkpack( leftmid.frm, rightmid.frm, side="left")
ok.but <- tkbutton( bot.frm, text="OK", command=ldr.trans)
cancel.but <- tkbutton( bot.frm, text="Cancel", command=endprog)
help.but <- tkbutton( bot.frm, text="Help", command=ldrhelp)
tkpack( ok.but, cancel.but, side="left")
tkpack( help.but, side="right")
tkbind( ok.but, "<Return>", ldr.trans)
tkbind( cancel.but, "<Return>", endprog)
tkbind( help.but, "<Return>", ldrhelp)
tkpack( top.frm, fill="x")
tkpack( mid.frm, fill="x")
tkpack( bot.frm, side="bottom")
}
|
prediction.nls <- function(model, data = find_data(model, parent.frame()), at = NULL, calculate_se = FALSE, ...) {
data <- data
if (missing(data) || is.null(data)) {
pred <- make_data_frame(fitted = predict(model, ...),
se.fitted = NA_real_)
} else {
if (is.null(at)) {
out <- data
} else {
out <- build_datalist(data, at = at, as.data.frame = TRUE)
at_specification <- attr(out, "at_specification")
}
tmp <- predict(model,
newdata = out,
...)
pred <- make_data_frame(out, fitted = tmp, se.fitted = rep(NA_real_, length(tmp)))
}
vc <- NA_real_
structure(pred,
class = c("prediction", "data.frame"),
at = if (is.null(at)) at else at_specification,
type = NA_character_,
call = if ("call" %in% names(model)) model[["call"]] else NULL,
model_class = class(model),
row.names = seq_len(nrow(pred)),
vcov = vc,
jacobian = NULL,
weighted = FALSE)
}
|
pgfIpoissonbinomial <-
function(s,params) {
k<-s[abs(s)>1]
if (length(k)>0)
warning("At least one element of the vector s are out of interval [-1,1]")
if (length(params)<3) stop("At least one value in params is missing")
if (length(params)>3) stop("The length of params is 3")
theta<-params[1]
p<-params[2]
n<-params[3]
if (theta<=0)
stop ("Parameter theta must be positive")
if ((p>=1)|(p<=0))
stop ("Parameter p belongs to the interval (0,1)")
if (n<0)
stop("Parameter n must be positive")
if(!(abs(n-round(n))<.Machine$double.eps^0.5))
stop("Parameter n must be positive integer")
zval<-1+log(s)/theta
(zval^(1/n)-1+p)/p
}
|
bc_test_cond<-function(x,y,z,ic.chosen="SC",max.lag=min(4,length(x)-1),plot=F,type.chosen="none",p=0,conf=0.95){
if(length(x)==1){
return("The length of x is only 1")
}
if(length(x)!=length(y)){
return("x and y do not have the same length")
}
if(max.lag>length(x)-1){
return("The chosen number of lags is larger than or equal to the time length")
}
if(!requireNamespace("vars")){
return("The packages 'vars' could not be found. Please install it to
proceed.")
}
requireNamespace("vars")
if(p<=0){
mod=VAR(cbind(x,y,z),lag.max=max.lag,ic=ic.chosen,type.chosen)
if(mod$p>1){
p=mod$p
}
if(mod$p==1){
p=2
mod=VAR(cbind(x,y,z),lag.max=max.lag,ic=ic.chosen,type.chosen)
}
}
if(p>0){
if(p>1){
mod=VAR(cbind(x,y,z),p=p,ic=ic.chosen,type.chosen)
}
if(p==1){
p=2
mod=VAR(cbind(x,y,z),p=p,ic=ic.chosen,type.chosen)
}
}
r<-c(0,0)
r<-matrix(0,2,1)
beta<-matrix(mod$p,1)
for(k in 1:mod$p){
beta[k]<-coef(mod)$x[2+(k-1)*mod$K,1]
}
freq.good=spec.pgram(y,plot=F)$freq/frequency(x);
R<-matrix(0,2,mod$p)
R_all<-array(0,dim=c(2,mod$p,length(freq.good)))
for (l in 1:length(freq.good)){
for(k in 1:mod$p){
R[1,k]<-cos(freq.good[l]*pi*k)
R[2,k]<-sin(freq.good[l]*pi*k)
}
R_all[,,l]<-R;
}
X_design<-cbind(x,y)
n<-dim(X_design)[1]
X_all<-matrix(0,n-as.numeric(mod$p),mod$p)
X_past<-matrix(0,n-as.numeric(mod$p),1)
for(k in 1:mod$p){
X_past<-as.matrix(X_design[seq(1+k,1+k+n-as.numeric(mod$p)-1)-1,2])
X_all[1:(n-as.numeric(mod$p)),k]<-X_past
}
X_all<-X_all[,dim(X_all)[2]:1]
res_yes<-residuals(mod)[,1]
sse<-sum(t(res_yes)%*%res_yes)
F_test<-vector(mode="numeric",length(freq.good))
F_test_pre<-vector(mode="numeric",length(freq.good))
F_thr<-vector(mode="numeric",length(freq.good))
for (l in 1:length(freq.good)){
if(l<length(freq.good)){
r_matrix<-r;
R_matrix<-as.matrix(R_all[,,l]);
F_test_pre[l]<-t(r_matrix-R_matrix%*%beta)%*%solve(R_matrix%*%solve(t(X_all)%*%(X_all))%*%t(R_matrix))%*%(r_matrix-R_matrix%*%beta)
F_test[l]<-(F_test_pre[l]/2)/(sse/(n-2*mod$p))}
if(l==length(freq.good)){
r_matrix<-r[1];
R_matrix<-matrix(R_all[1,,l],1,p);
F_test_pre[l]<-t(r_matrix-R_matrix%*%beta)%*%solve(R_matrix%*%solve(t(X_all)%*%(X_all))%*%t(R_matrix))%*%(r_matrix-R_matrix%*%beta)
F_test[l]<-(F_test_pre[l]/1)/(sse/(n-1*mod$p))
}
}
quant_bc<-vector(mode="numeric",length(freq.good))
for (l in 1:length(freq.good)){
quant_bc[l]<-pf(F_test[l],2,n-2*mod$p,lower.tail=F)
if(l==length(freq.good)){
quant_bc[l]<-pf(F_test[l],1,n-1*mod$p,lower.tail=F)
}
}
alpha<-1-conf
signif_bc<-which(quant_bc<alpha)
length(signif_bc)
F_thr[1:length(freq.good)-1]<-qf(conf,2,n-2*mod$p)
F_thr[length(freq.good)]<-qf(conf,1,n-1*mod$p)
GG<-list(
freq.good,length(x),
freq.good[signif_bc],
conf,
F_test,
F_thr,
roots(mod),
as.numeric(mod$p)
)
names(GG)<-c("frequency","n","confidence_level","significant_frequencies","F-test","F-threshold","roots","delays")
if(plot==F){
return(GG)}
if(plot==T){
plot(F_test,type="l")
abline(F_thr,type="l")
}
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.