code
stringlengths
1
13.8M
mvmeta.vc <- function(Xlist, ylist, Slist, nalist, k, m, p, nall, control, ...) { Psi <- diag(0,k) niter <- 0 converged <- FALSE reltol <- control$reltol while(!converged && niter<control$maxiter) { old.Psi <- Psi gls <- glsfit(Xlist,ylist,Slist,nalist,Psi,onlycoef=FALSE) tXWXtot <- sumlist(lapply(gls$invtUXlist,crossprod)) invtXWXtot <- chol2inv(chol(tXWXtot)) reslist <- mapply(function(y,X) y-X%*%gls$coef,ylist,Xlist,SIMPLIFY=FALSE) if(control$vc.adj) { reslist <- mapply(function(res,X,invU,na) { IH <- diag(1,sum(!na)) - X%*%invtXWXtot%*%crossprod(X,tcrossprod(invU)) eig <- eigen(IH) invsqrtIH <- with(eig,vectors%*%(diag(1/sqrt(values),length(values)))%*% solve(vectors)) return(invsqrtIH%*%res) },reslist,Xlist,gls$invUlist,nalist,SIMPLIFY=FALSE) } Mlist <- mapply(function(res,na) { M <- matrix(0,k,k) M[!na,!na] <- tcrossprod(res) return(M)},reslist,nalist,SIMPLIFY=FALSE) S0list <- mapply(function(S,na) { S0 <- matrix(0,k,k) S0[!na,!na] <- S return(S0)},Slist,nalist,SIMPLIFY=FALSE) ind <- m-sumlist(nalist) Nmat <- matrix(pmin(rep(ind,k),rep(ind,each=k)),k,k) df.corr <- ifelse(control$vc.adj,0,p) Psi <- sumlist(Mlist)/(Nmat-df.corr) - sumlist(S0list)/Nmat eig <- eigen(Psi) negeigen <- sum(eig$values<0) Psi <- eig$vectors %*% diag(pmax(eig$values,control$set.negeigen),k) %*% t(eig$vectors) niter <- niter+1 value <- abs(Psi-old.Psi) converged <- all(value<reltol*abs(Psi+reltol)) if(control$showiter) { cat("iter ",niter,": value ",max(value),"\n",sep="") if(converged) cat("converged\n") } } qrinvtUX <- qr(gls$invtUX) R <- qr.R(qrinvtUX) Qty <- qr.qty(qrinvtUX,gls$invtUy) vcov <- tcrossprod(backsolve(R,diag(1,ncol(gls$invtUX)))) res <- NULL fitted <- lapply(Xlist,"%*%",gls$coef) rank <- qrinvtUX$rank list(coefficients=gls$coef,vcov=vcov,Psi=Psi,residuals=res, fitted.values=fitted,df.residual=nall-rank-length(par),rank=rank,logLik=NA, converged=converged,niter=niter,negeigen=negeigen,control=control) }
isPositiveIntegerOrNaOrNanOrInfScalar <- function(argument, default = NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL) { checkarg(argument, "N", default = default, stopIfNot = stopIfNot, nullAllowed = FALSE, n = 1, zeroAllowed = TRUE, negativeAllowed = FALSE, positiveAllowed = TRUE, nonIntegerAllowed = FALSE, naAllowed = TRUE, nanAllowed = TRUE, infAllowed = TRUE, message = message, argumentName = argumentName) }
knitr::opts_chunk$set(echo = TRUE) library(SparseDC) set.seed(10) data(data_biase) head(data_biase[,1:5]) gene_names_biase <- row.names(data_biase) summary(as.factor(cell_type_biase)) summary(as.factor(condition_biase)) data_A <- data_biase[ , which(condition_biase == "A")] data_B <- data_biase[ , which(condition_biase == "B")] dim(data_A) dim(data_B) head(data_A[ ,1:5]) head(data_B[ ,1:5]) pre_data <- pre_proc_data(data_A, data_B, norm = FALSE, log = TRUE, center = TRUE) pdata_A <- pre_data[[1]] pdata_B <- pre_data[[2]] head(pdata_A[,1:5]) head(pdata_B[,1:5]) summary(rowSums(cbind(pdata_A,pdata_B))) lambda1_value <- lambda1_calculator(pdata_A, pdata_B, ncluster = 3) lambda1_value lambda2_value <- lambda2_calculator(pdata_A, pdata_B, ncluster =3) lambda2_value sdc_res <- sparsedc_cluster(pdata_A, pdata_B, ncluster = 3, lambda1 = lambda1_value, lambda2 = lambda2_value) clusters_1 <- sdc_res$clusters1 clusters_2 <- sdc_res$clusters2 centers_1 <- sdc_res$centers1 centers_2 <- sdc_res$centers2 summary(as.factor(clusters_1)) summary(as.factor(clusters_2)) table(cell_type_biase[which(condition_biase == "A")], clusters_1) table(cell_type_biase[which(condition_biase == "B")], clusters_2) table(c(cell_type_biase),c(clusters_1,clusters_2)) zygote_top_10_index <- which(centers_1[,1] >= tail(sort(centers_1[,1]),10)[1]) zygote_top_10 <- gene_names_biase[zygote_top_10_index] zygote_top_10 zyg_t10_res <- cbind(zygote_top_10, centers_1[zygote_top_10_index]) zyg_t10_res diff_gene_index_2cell <- which(centers_1[,2] != centers_2[,2]) diff_gene_index_2cell
ef_fun <- function(ef, type = "logistic", x = 1:length(ef), x0 = mean(ef), k = 1/4, L = max(ef)) { if(type == "logistic"){ FD <- function(x, x0, L, k) { L/(1 + exp(1)^(-k*(x - x0)) ) } a <- vein::EmissionFactors(FD(x, x0 = x0, k = k, L = L)) return(a) } }
tbl_vars.arrow_dplyr_query <- function(x) names(x$selected_columns) select.arrow_dplyr_query <- function(.data, ...) { check_select_helpers(enexprs(...)) column_select(as_adq(.data), !!!enquos(...)) } select.Dataset <- select.ArrowTabular <- select.arrow_dplyr_query rename.arrow_dplyr_query <- function(.data, ...) { check_select_helpers(enexprs(...)) column_select(as_adq(.data), !!!enquos(...), .FUN = vars_rename) } rename.Dataset <- rename.ArrowTabular <- rename.arrow_dplyr_query column_select <- function(.data, ..., .FUN = vars_select) { out <- .FUN(names(.data), !!!enquos(...)) .data$selected_columns <- set_names(.data$selected_columns[out], names(out)) renamed <- out[names(out) != out] if (length(renamed)) { gbv <- .data$group_by_vars renamed_groups <- gbv %in% renamed gbv[renamed_groups] <- names(renamed)[match(gbv[renamed_groups], renamed)] .data$group_by_vars <- gbv } .data } relocate.arrow_dplyr_query <- function(.data, ..., .before = NULL, .after = NULL) { .data <- as_adq(.data) map(.data$selected_columns, ~ (.$schema <- .data$.data$schema)) mask <- new_environment(.cache$functions, parent = caller_env()) to_move <- eval_select(substitute(c(...)), .data$selected_columns, mask) .before <- enquo(.before) .after <- enquo(.after) has_before <- !quo_is_null(.before) has_after <- !quo_is_null(.after) if (has_before && has_after) { abort("Must supply only one of `.before` and `.after`.") } else if (has_before) { where <- min(unname(eval_select(quo_get_expr(.before), .data$selected_columns, mask))) if (!where %in% to_move) { to_move <- c(to_move, where) } } else if (has_after) { where <- max(unname(eval_select(quo_get_expr(.after), .data$selected_columns, mask))) if (!where %in% to_move) { to_move <- c(where, to_move) } } else { where <- 1L if (!where %in% to_move) { to_move <- c(to_move, where) } } lhs <- setdiff(seq2(1, where - 1), to_move) rhs <- setdiff(seq2(where + 1, length(.data$selected_columns)), to_move) pos <- vec_unique(c(lhs, to_move, rhs)) new_names <- names(pos) .data$selected_columns <- .data$selected_columns[pos] if (!is.null(new_names)) { names(.data$selected_columns)[new_names != ""] <- new_names[new_names != ""] } .data } relocate.Dataset <- relocate.ArrowTabular <- relocate.arrow_dplyr_query check_select_helpers <- function(exprs) { exprs <- lapply(exprs, function(x) if (is_quosure(x)) quo_get_expr(x) else x) unsup_select_helpers <- "where" funs_in_exprs <- unlist(lapply(exprs, all_funs)) unsup_funs <- funs_in_exprs[funs_in_exprs %in% unsup_select_helpers] if (length(unsup_funs)) { stop( "Unsupported selection ", ngettext(length(unsup_funs), "helper: ", "helpers: "), oxford_paste(paste0(unsup_funs, "()"), quote = FALSE), call. = FALSE ) } }
treeSims<-function (node.height,perms=100, tip.label = NULL, br = "coalescent", ...) { node.height<-sort(node.height) n <- length(node.height)+1 nbr <- 2 * n - 2 edge <- matrix(NA, nbr, 2) x <- node.height res<-list() for (j in 1:perms){ edge.length <- numeric(nbr) h <- numeric(2 * n - 1) pool <- 1:n nextnode <- 2L * n - 1L for (i in 1:(n - 1)) { y <- sample(pool, size = 2) ind <- (i - 1) * 2 + 1:2 edge[ind, 2] <- y edge[ind, 1] <- nextnode edge.length[ind] <- node.height[i] - h[y] h[nextnode] <- node.height[i] pool <- c(pool[!pool %in% y], nextnode) nextnode <- nextnode - 1L } phy <- list(edge = edge, edge.length = edge.length) if (is.null(tip.label)) tip.label <- paste("t", 1:n, sep = "") phy$tip.label <- sample(tip.label) phy$Nnode <- n - 1L class(phy) <- "phylo" phy <- reorder(phy) phy$edge[phy$edge[, 2] <= n, 2] <- 1:n res[[j]]<-phy } return(res) }
test_that("cnSpec plot data is formated as expected", { x <- data.frame(chromosome=c('chr1', 'chr1'), start=c(1000, 5000), end=c(5000, 10000), segmean=c(0, 4), sample=c('samp1', 'samp2')) y <- data.frame(chromosome=c('chr1', 'chr1'), start=c(0), end=c(10000)) out <- cnSpec(x, y, out="data") expect_a <- data.frame(chromosome=as.factor(rep(1, 2)), start=c(1000, 5000), end=c(5000, 10000), sample=as.factor(c('samp1', 'samp2')), cn=c(0, 4)) expect_b <- data.frame(chromosome=as.factor(rep(1, 4)), start=rep(c(0, 10000), 2), end=rep(c(0, 10000), 2), sample=c('samp1', 'samp1', 'samp2', 'samp2')) expect_equivalent(out[[1]], expect_a) expect_equivalent(out[[2]], expect_b) })
"quantilize.ecd" <- function(object, show.warning=FALSE) { if (! ecd.has_quantile(object)) { quantile(object) <- ecdq(object) if (show.warning) { warning("I am quantilizing ecd for you. This is slow. Consider ecd(with.quantile=T).") } } object } setGeneric("quantilize", function(object, show.warning=FALSE) standardGeneric("quantilize")) setMethod("quantilize", signature("ecd"), quantilize.ecd)
df <- eval(parse(text = 'structure(list(yi = c(1.01, 0.82, 0.59, 0.44, 0.84, 0.73, 1.12, 0.04, 0.24, 0.32, 1.04, 1.31, 0.59, 0.66, 0.62, 0.47, 1.08, 0.98, 0.26, 0.39, 0.6, 0.94, 0.11), vi = c(0.2704, 0.2116, 0.0529, 0.0324, 0.0841, 0.0841, 0.1296, 0.1369, 0.0225, 0.16, 0.1024, 0.3249, 0.0841, 0.0361, 0.0961, 0.0729, 0.1024, 0.1024, 0.0324, 0.0324, 0.0961, 0.2809, 0.0729), year = c(1992L, 2000L, 2000L, 2004L, 2005L, 2008L, 2008L, 2010L, 1992L, 1998L, 2006L, 2008L, 1992L, 2002L, 1995L, 1998L, 1998L, 2001L, 2002L, 2003L, 2004L, 2008L, 2008L), score = c(6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 7L, 7L, 7L, 7L, 18L, 8L, 9L, 9L, 9L, 9L, 9L, 9L, 10L, 10L, 12L), fumonths = c(19L, 18L, 24L, 21L, 24L, 6L, 18L, 26L, 3L, 12L, 12L, 9L, 12L, 21L, 12L, 18L, 22L, 18L, 21L, 21L, 30L, 6L, 13L), retention = c(83, 100, 90.1649966666667, 57, 100, 87, 89, 86, 79, 100, 92, 100, 96, 100, 93.3, 94, 100, 98, 95, 95, 100, 100, 100), outcomes = c(2L, 4L, 35L, 16L, 3L, 26L, 4L, 11L, 2L, 1L, 7L, 1L, 16L, 10L, 4L, 5L, 10L, 13L, 7L, 12L, 4L, 6L, 53L), duration = c(18L, 12L, 12L, 21L, 24L, 12L, 18L, 26L, 2L, 12L, 5L, 9L, 21L, 3L, 12L, 12L, 22L, 18L, 21L, 21L, 24L, 6L, 12L), meetings = c(30, 5, 4, 15, 4, 12, 3, 4.5, 2, 3, 5, 18, 15, 3, 1, 10, 4, 33, 15, 15, 9, 18, 9), hours = c(1, 1, 1.5, 1, 1, 1.5, 6, 6, 0.25, 1, 1, 6, 1, 1, 15, 0.75, 3, 1.75, 1, 1, 1, 4, 0.75)), row.names = c(NA, -23L), class = "data.frame") ')) res <- tryCatch({ suppressWarnings(brma(yi ~. , df, iter = 10)) }, error = function(e){NULL}) test_that("pema runs", { expect_true(!is.null(res)) })
library(tinytest) .runThisTest <- Sys.getenv("RunRblpapiUnitTests") == "yes" if (!.runThisTest) exit_file("Skipping this file") library(Rblpapi) res <- bds("DAX Index", "INDX_MEMBERS", simplify=FALSE) expect_true(inherits(res, "list"), info = "checking return type") expect_true(inherits(res[[1]], "data.frame"), info = "checking return type of first element") expect_error(bds(c("DAX Index", "SPX Index"), "INDX_MEMBERS"), info = "more than one security") expect_error(bds(c("DAX Index", "SPX Index"), c("INDX_MEMBERS", "IVOL_SURFACE")), info = "more than one security and more than one field") expect_error(bds("DAX Index", c("INDX_MEMBERS", "IVOL_SURFACE")), info = "more than one field") res <- bds("DAX Index", "INDX_MEMBERS") expect_true(inherits(res, "data.frame"), info = "checking return type under simplify")
getGenomeSet <- function(db = "refseq", organisms, reference = FALSE, release = NULL, clean_retrieval = TRUE, gunzip = TRUE, update = FALSE, path = "set_genomes", assembly_type = "toplevel") { message( "Starting genome retrieval of the following genomes: ", paste0(organisms, collapse = ", "), " ..." ) if (!file.exists(path)) { message("Generating folder ", path, " ...") dir.create(path, recursive = TRUE) } if (!(assembly_type %in% c("toplevel", "primary_assembly"))) stop("Please select one the available assembly types: \ntoplevel, primary_assembly") if (!file.exists(file.path(path, "documentation"))) dir.create(file.path(path, "documentation")) clean_names <- clean_species_names_helper(list.files(path), gunzip = gunzip) message("\n") if (length(clean_names) > 0) { for (j in seq_len(length(clean_names))) { if (file.exists(file.path(path, clean_names[j]))) { if (!update) { message("The file ", clean_names[j], " seems to exist already in ", path, ".", "The existing file will be retained. Please specify 'update = TRUE' in case you wish to re-load the file.") } if (update) { message("The file ", clean_names[j], " seems to exist already in ", path, ".", "You specified 'update = TRUE', thus the file ", clean_names[j], " will be downloaded again.") unlink(file.path(path, clean_names[j]), force = TRUE) } } } } if (!update && (length(organisms) > 1)) { organisms_short <- tidy_name2(organisms) clean_names_short <- unlist(sapply(clean_names, function(x) unlist(stringr::str_split(x, "[.]")))) organisms_short_setdiff <- as.character(as.vector(dplyr::setdiff(organisms_short, clean_names_short))) if (length(organisms) > 0) { organisms <- organisms[which(organisms_short %in% organisms_short_setdiff)] } } if (length(organisms) > 0) { paths <- vector("character", length(organisms)) message("\n") for (i in seq_len(length(organisms))) { paths[i] <- getGenome(db = db, organism = organisms[i], reference = reference, release = release, path = path, assembly_type = assembly_type) message("\n") } meta_files <- list.files(path) meta_files <- meta_files[stringr::str_detect(meta_files, "doc_")] file.rename(from = file.path(path, meta_files), to = file.path(path, "documentation", meta_files)) doc_tsv_files <- file.path(path,"documentation", meta_files[stringr::str_detect(meta_files, "[.]tsv")]) summary_log <- dplyr::bind_rows(lapply(doc_tsv_files, function(data) { suppressMessages(readr::read_tsv(data)) })) readr::write_excel_csv(summary_log, file.path(path, "documentation", paste0(basename(path), "_summary.csv"))) message("A summary file (which can be used as supplementary information file in publications) containig retrieval information for all species has been stored at '",file.path(path, "documentation", paste0(basename(path), "_summary.csv")),"'.") if (clean_retrieval) { message("\n") message("Cleaning file names for more convenient downstream processing ...") } if (clean_retrieval && gunzip) clean.retrieval(paths, gunzip = TRUE) if (clean_retrieval && !gunzip) clean.retrieval(paths, gunzip = FALSE) new_files <- list.files(path) new_files <- new_files[-which(stringr::str_detect(new_files, "documentation"))] return(file.path(path, new_files)) } else { files <- file.path(path, list.files(path)) files <- files[-which(stringr::str_detect(files, "documentation"))] return(files) } }
use singleton( tags$head( tags$script(src = " ) ) } session$sendCustomMessage(" }
make_ExG <- function(color_image) { df_field <- as.data.frame(color_image, wide="c") df_field <- df_field %>% mutate(r_small = c.1/(c.1 + c.2 + c.3)) %>% mutate(g_small = c.2/(c.1 + c.2 + c.3)) %>% mutate(b_small = c.3/(c.1 + c.2 + c.3)) df_field <- df_field %>% mutate(ExG = 2*g_small - r_small - b_small) df_bw <- df_field %>% dplyr::select(c("x","y","ExG")) df_bw <- melt(df_bw, id = c("x","y")) names(df_bw)[3] <- "cc" df_bw <- na.omit(df_bw) df_bw$cc <- as.integer(df_bw$cc) df_bw <- Image(df_bw$value, dim = c(max(df_bw$x),max(df_bw$y)), colormode = 'Grayscale') return(df_bw) }
ConceptSet <- R6::R6Class( classname = "ConceptSet", public = list( initialize = function(extents, intents, objects, attributes, I = NULL) { private$objects <- objects private$attributes <- attributes private$pr_extents <- extents private$pr_intents <- intents private$I <- I }, size = function() { if (self$is_empty()) { return(0) } return(ncol(private$pr_extents)) }, is_empty = function() { return(is.null(private$pr_extents)) }, extents = function() { return(private$pr_extents) }, intents = function() { return(private$pr_intents) }, print = function() { if (self$is_empty()) { cat("An empty set of concepts.\n") } else { n <- ncol(private$pr_extents) cat("A set of", n, "concepts:\n") str <- sapply(seq(n), function(i) { vA <- Matrix::Matrix(private$pr_extents[, i], sparse = TRUE) vB <- Matrix::Matrix(private$pr_intents[, i], sparse = TRUE) paste0(i, ": ", .concept_to_string(vA, vB, objects = private$objects, attributes = private$attributes)) }) cat(str, sep = "\n") } }, to_latex = function(print = TRUE, ncols = 1, numbered = TRUE, align = TRUE) { if (!self$is_empty()) { output <- concepts_to_latex(private$pr_extents, private$pr_intents, private$objects, private$attributes, ncols = ncols, align = align, numbered = numbered) if (print) { cat(output) } return(invisible(output)) } }, to_list = function() { if (self$is_empty()) { return(list()) } elements <- .matrix_to_concepts( M_ext = private$pr_extents, M_int = private$pr_intents, objects = private$objects, attributes = private$attributes) class(elements) <- c("list") return(elements) }, `[` = function(indices) { if (!self$is_empty()) { if (is.logical(indices)) { indices <- which(indices) } indices <- indices[indices <= ncol(private$pr_extents)] return(ConceptSet$new( extents = Matrix::Matrix(private$pr_extents[, indices], sparse = TRUE), intents = Matrix::Matrix(private$pr_intents[, indices], sparse = TRUE), objects = private$objects, attributes = private$attributes, I = private$I)) } return(ConceptSet$new(extents = NULL, intents = NULL, objects = private$objects, attributes = private$attributes, I = private$I)) }, sub = function(index) { if (!self$is_empty()) { index <- index[index <= ncol(private$pr_extents)] if (length(index) > 0) { return(self[index]$to_list()[[1]]) } } return(NULL) }, support = function() { if (!is.null(private$concept_support)) { return(private$concept_support) } my_I <- private$I my_I@x <- as.numeric(my_I@x) subsets <- .subset(private$pr_intents, my_I) private$concept_support <- Matrix::rowMeans(subsets) return(private$concept_support) } ), private = list( pr_extents = NULL, pr_intents = NULL, objects = NULL, attributes = NULL, I = NULL, concept_support = NULL ) )
estat_getStatsData <- function(appId, statsDataId, startPosition = NULL, limit = NULL, lang = c("J", "E"), .fetch_all = TRUE, ...) { lang <- match.arg(lang) total_number <- estat_getStatsDataCount(appId, statsDataId, lang = lang, ...) ranges <- calc_ranges(startPosition, limit, total_number, .fetch_all) result <- list() for (i in seq_len(nrow(ranges))) { cur_limit <- ranges$limits[i] cur_start <- ranges$starts[i] message(sprintf( "Fetching record %.0f-%.0f... (total: %.0f records)\n", cur_start, cur_start + cur_limit - 1, total_number )) j <- estat_api("rest/3.0/app/getSimpleStatsData", appId = appId, statsDataId = statsDataId, startPosition = format(cur_start, scientific = FALSE), limit = format(cur_limit, scientific = FALSE), lang = lang, metaGetFlg = "N", sectionHeaderFlg = "2", ... ) result[[i]] <- j } dplyr::bind_rows(result) } estat_getStatsDataCount <- function(appId, statsDataId, ...) { j <- estat_api("rest/3.0/app/json/getStatsData", appId = appId, statsDataId = statsDataId, metaGetFlg = "N", cntGetFlg = "Y", ... ) as.numeric(j$GET_STATS_DATA$STATISTICAL_DATA$RESULT_INF$TOTAL_NUMBER) } calc_ranges <- function(startPosition, limit, record_count, .fetch_all, .max_records_at_once = 100000) { ranges <- list() if (is.null(startPosition)) { startPosition <- 1 } if (is.null(limit)) { endPosition <- record_count } else { endPosition <- min(startPosition + limit - 1, record_count) } if (.fetch_all) { ranges$starts <- seq(from = startPosition, to = endPosition, by = .max_records_at_once) ranges$limits <- rep(.max_records_at_once, length(ranges$starts)) fraction <- (endPosition - startPosition + 1) %% .max_records_at_once if (fraction != 0) { ranges$limits[length(ranges$limits)] <- fraction } } else { ranges$starts <- startPosition ranges$limits <- min(startPosition + .max_records_at_once - 1, endPosition) } tibble::tibble(!!!ranges) }
tenFoldCV.glm <- function(dat.glm, mod, conf_level = 0.95) { N <- nrow(dat.glm) dat.glm <- dat.glm[sample(1:N, size = N, replace = FALSE) , ] MatRes <- matrix(nrow = N, ncol = 3) colnames(MatRes) <- c("True_sex", "Proba_10CV", "Predict_sex_10CV") MatRes <- data.frame(MatRes) MatRes[ , 1] <- as.character(dat.glm$Sex) for (k in 1:10) { pioch <- (1:N <= k*N/10) & (1:N > (k-1)*N/10) app <- dat.glm[!pioch, ] val <- dat.glm[pioch, ] modTemp <- glm(mod$call$formula, family = binomial, data = app) MatRes[pioch, 2] <- predict(modTemp, newdata = val, type = "response") } MatRes[ , 3] <- finalSE(MatRes[ , 2], conf_level) indet_rate <- nrow(MatRes[MatRes$Predict_sex_10CV == "I", ]) / nrow(MatRes) if (indet_rate < 1) { success_rate <- nrow(MatRes[(MatRes$Predict_sex_10CV=="F" & MatRes$True_sex=="F") | (MatRes$Predict_sex_10CV=="M" & MatRes$True_sex=="M"), ]) / nrow(MatRes[MatRes$Predict_sex_10CV!="I", ]) } else { success_rate <- NA } return(list(ClassifResults = MatRes, IndetRate = indet_rate, SuccessRate = success_rate)) }
CompareSubTrees.k <- function(trees,focal,maxk,mod.id=c(1,0,0,0),min.val=0.01){ res<-list() Ks<-1:maxk for (i in 1:maxk){ cat("\n",i,"of k =",maxk) res[[i]]<-compareSubTrees(trees,focal=focal,k=Ks[i],mod.id=mod.id,min.val=min.val) } cat("\n") return(res) }
"tradeModel" <- function(x, signal.threshold=c(0,0), leverage=1, return.model=TRUE, plot.model=FALSE, trade.dates=NULL, exclude.training=TRUE, ret.type=c('weeks','months','quarters','years'),...) { trade.offset = 0; quantmod <- getModelData(x); if(class(quantmod) != "quantmod") stop("model must be of class quantmod"); if(!is.null(trade.dates) && length(trade.dates) < 2) stop("trade.dates must be of length 2"); model.data <- modelData(quantmod,trade.dates,exclude.training=exclude.training); fitted.zoo <- predictModel([email protected],model.data,...) if(class(fitted.zoo) != "zoo") { fitted.zoo <- zoo(as.vector(fitted.zoo),index(model.data)); } signal.zoo <- ifelse(fitted.zoo < signal.threshold[1] | fitted.zoo > signal.threshold[2], ifelse(fitted.zoo > 0,1,-1), 0); tmp.index <- index(signal.zoo)[-(1+trade.offset)]; market.zoo <- model.data[-(nrow(model.data)+trade.offset),1] signal.zoo <- signal.zoo[-c(length(index(signal.zoo))-trade.offset,length(index(signal.zoo)))]; signal.zoo = merge(market.zoo,signal.zoo) index(signal.zoo) <- tmp.index; quantmodResults <- list(model=quantmod, signal=signal.zoo) model.returns <- modelReturn(quantmodResults,trade.dates=trade.dates,leverage=leverage,ret.type=ret.type); quantmodResults$return <- model.returns; quantmodResults$model <- stripModelData(quantmodResults$model); return(structure(quantmodResults, class="quantmodResults")); } print.quantmodResults <- function(x, ...) { cat("\n Model: ",[email protected],"\n") cat("\n C.A.G.R.: ",sprintf("%04.2f%%",x$return@CAGR*100),"\tH.P.R.: ", sprintf("%04.2f%%",x$return@HPR*100),"\n"); to.date.ret <- sprintf("%04.2f%%",x$return@returnsBy[NROW(x$return@returnsBy),-1]*100) to.date.ret <- as.data.frame(t(to.date.ret),row.names=" ") colnames(to.date.ret) <- colnames(x$return@returnsBy[,-1]) cat("\n Returns by period summary:\n\n") print(as.data.frame(lapply(as.data.frame(x$return@returnsBy[,-1]), function(x) sprintf("%04.2f%%",(rev(as.numeric(summary(x))[1:6]*100)))), row.names=c(' Max.',' 3rd Qu.',' Mean',' Median',' 2rd Qu.',' Min.'))) cat("\n Period to date returns:\n\n") print(to.date.ret) }
if (suppressWarnings( require("testthat") && require("ggeffects") && require("lme4") && require("sjlabelled") && require("sjmisc") )) { data(efc) efc$neg_c_7d <- dicho(efc$neg_c_7) fit <- glm(neg_c_7d ~ c12hour + e42dep + c161sex + c172code, data = efc, family = binomial(link = "logit")) m <- glm( cbind(incidence, size - incidence) ~ period, family = binomial, data = lme4::cbpp ) test_that("ggpredict, glm", { expect_s3_class(ggpredict(fit, "c12hour"), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex")), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex", "c172code")), "data.frame") }) test_that("ggeffect, glm", { expect_s3_class(ggeffect(fit, "c12hour"), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour", "c161sex")), "data.frame") expect_s3_class(ggeffect(fit, c("c12hour", "c161sex", "c172code")), "data.frame") }) test_that("ggemmeans, glm", { expect_s3_class(ggemmeans(fit, "c12hour"), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex")), "data.frame") expect_s3_class(ggemmeans(fit, c("c12hour", "c161sex", "c172code")), "data.frame") }) p1 <- ggpredict(m, "period") p2 <- ggeffect(m, "period") p3 <- ggemmeans(m, "period") test_that("ggeffects, glm", { expect_equal(p1$predicted[1], 0.2194245, tolerance = 1e-3) expect_equal(p2$predicted[1], 0.2194245, tolerance = 1e-3) expect_equal(p3$predicted[1], 0.2194245, tolerance = 1e-3) }) test_that("ggpredict, glm, robust", { expect_s3_class(ggpredict(fit, "c12hour", vcov.fun = "vcovHC", vcov.type = "HC1"), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex"), vcov.fun = "vcovHC", vcov.type = "HC1"), "data.frame") expect_s3_class(ggpredict(fit, c("c12hour", "c161sex", "c172code"), vcov.fun = "vcovHC", vcov.type = "HC1"), "data.frame") }) test_that("ggeffects, glm, robust", { expect_s3_class(ggpredict(m, "period", vcov.fun = "vcovHC", vcov.type = "HC1"), "data.frame") }) data(cbpp) cbpp$trials <- cbpp$size - cbpp$incidence m1 <- glmer(cbind(incidence, trials) ~ period + (1 | herd), data = cbpp, family = binomial) m2 <- glmer(cbind(incidence, size - incidence) ~ period + (1 | herd), data = cbpp, family = binomial) m3 <- glm(cbind(incidence, trials) ~ period, data = cbpp, family = binomial) m4 <- glm(cbind(incidence, size - incidence) ~ period, data = cbpp, family = binomial) test_that("ggeffects, glm-matrix-columns", { expect_s3_class(ggpredict(m1, "period"), "data.frame") expect_s3_class(ggpredict(m2, "period"), "data.frame") expect_s3_class(ggpredict(m3, "period"), "data.frame") expect_s3_class(ggpredict(m4, "period"), "data.frame") expect_s3_class(ggemmeans(m1, "period"), "data.frame") expect_s3_class(ggemmeans(m2, "period"), "data.frame") expect_s3_class(ggemmeans(m3, "period"), "data.frame") expect_s3_class(ggemmeans(m4, "period"), "data.frame") }) }
get_image_rtf <- function(file_path, width, height, units) { if (!units %in% c("inches", "cm")) { stop("Invalid units.") } if (units == "inches") { conv <- 1440 } else { conv <- 566.9291 } ret <- paste0("{\\pict\\pngblip\\picwgoal",round(width*conv),"\\pichgoal",round(height*conv)," \n") ret <- paste0(ret, get_image_bytes(file_path), "\n}") return(ret) } get_image_bytes <- function(file_path) { if (!file.exists(file_path)) stop(paste("Image file not found:", file_path)) max.bytes<-50000000 dat<-readBin(file_path, what="raw", size=1, signed=TRUE, endian="little", n=max.bytes); sdat <- split(dat, ceiling(seq_along(dat)/40)) lns <- sapply(sdat, paste, collapse = "") ret <- paste0(lns, "\n", collapse = "") return(ret) } get_image_html <- function(file_path, report_path, plt, units) { dr <- file.path(dirname(report_path), "images") if (!file.exists(dr)) { dir.create(dr) } fl <- paste0( gsub(".html", "", basename(report_path), fixed = TRUE), "-", stri_rand_strings(1, 4, pattern = "[A-Z0-9]"), ".jpg") pth <- file.path(dr, fl) res <- file.copy(file_path, pth) if (all(res == TRUE)) { file.remove(file_path) } u <- units if (u == "inches") u <- "in" ph <- round(plt$height * .99, 3) pw <- round(plt$width * .99, 3) ret <- paste0("<img src=\"./images/", basename(pth), "\"", " style=\"height:", ph, u, ";", " width:", pw, u, ";\">") return(ret) }
build_kraken_tree <- function(report) { if (nrow(report) == 0 || nrow(report) == 1) { return(list(report)) } sel_depth <- report[,'depth'] == report[1,'depth'] depth_partitions <- cumsum(sel_depth) res <- lapply(unique(depth_partitions), function(my_depth_partition) { sel <- depth_partitions == my_depth_partition if (sum(sel) == 1) return(report[sel,,drop=F]) first_row <- which(sel)[1] dres <- build_kraken_tree(report[which(sel)[-1],,drop=F]) attr(dres,"row") <- report[first_row,,drop=F] dres }) names(res) <- report$name[sel_depth] res } collapse.taxRanks <- function(krakenlist,keep_taxRanks=LETTERS,filter_taxon=NULL) { cols <- c("taxonReads","n_unique_kmers","n_kmers") if (length(krakenlist) == 0 || is.data.frame(krakenlist)) { return(krakenlist) } parent_row <- attr(krakenlist,"row") all.child_rows <- c() if (is.null(parent_row)) { return(do.call(rbind,lapply(krakenlist,collapse.taxRanks,keep_taxRanks=keep_taxRanks,filter_taxon=filter_taxon))) } rm.cladeReads <- 0 for (kl in krakenlist) { if (is.data.frame(kl)) { child_rows <- kl } else { child_rows <- collapse.taxRanks(kl,keep_taxRanks,filter_taxon=filter_taxon) if ('rm.cladeReads' %in% names(attributes(child_rows))) { rm.cladeReads <- rm.cladeReads + attr(child_rows,'rm.cladeReads') } } delete.taxon <- child_rows[1,'name'] %in% filter_taxon if (delete.taxon) { rm.cladeReads <- rm.cladeReads + child_rows[1,'cladeReads'] dmessage(sprintf("removed %7s cladeReads, including %s childs, for %s",child_rows[1,'"cladeReads"'],nrow(child_rows)-1,child_rows[1,'name'])) child_rows <- NULL } else { keep_last.child <- child_rows[1,'taxRank'] %in% keep_taxRanks if (!keep_last.child) { cols <- cols[cols %in% colnames(parent_row)] parent_row[,cols] <- parent_row[,cols] + child_rows[1,cols] child_rows <- child_rows[-1,,drop=FALSE] if (nrow(child_rows) > 0) child_rows[,'depth'] <- child_rows[,'depth'] - 1 } } all.child_rows <- rbind(all.child_rows,child_rows) } parent_row[,'cladeReads'] <- parent_row[,'cladeReads'] - rm.cladeReads res <- rbind(parent_row,all.child_rows) if (parent_row[,'cladeReads'] < 0) stop("mistake made in removing cladeReads") if (rm.cladeReads > 0) attr(res,'rm.cladeReads') <- rm.cladeReads return(res) } delete_taxRanks_below <- function(report,taxRank="S") { del_taxRank <- 0 do_del <- FALSE del_row <- 0 cols <- c("taxonReads","n_unique_kmers","n_kmers") sub.sums <- c(0,0,0) rows_to_delete <- c() for (i in seq_len(nrow(report))) { if (report[i,'taxRank'] %in% taxRank) { del_depth <- report[i,'depth'] do_del <- TRUE del_row <- i sub.sums <- c(0,0,0) } else { if (do_del) { if (report[i,'depth'] > del_taxRank) { rows_to_delete <- c(rows_to_delete,i) sub.sums <- sub.sums + report[i,cols] } else { report[del_row,cols] <- report[del_row,cols]+sub.sums sub.sums <- c(0,0,0) do_del <- FALSE } } } } report[-rows_to_delete,] } read_report2 <- function(myfile,collapse=TRUE,keep_taxRanks=c("D","K","P","C","O","F","G","S"),min.depth=0,filter_taxon=NULL, has_header=NULL,add_taxRank_columns=FALSE) { first.line <- readLines(myfile,n=1) isASCII <- function(txt) all(charToRaw(txt) <= as.raw(127)) if (!isASCII(first.line)) { dmessage(myfile," is no valid report - not all characters are ASCII") return(NULL) } if (is.null(has_header)) { has_header <- grepl("^[a-zA-Z]",first.line) } if (has_header) { report <- utils::read.table(myfile,sep="\t",header = T, quote = "",stringsAsFactors=FALSE, comment.char=" colnames(report)[colnames(report)=="clade_perc"] <- "percentage" colnames(report)[colnames(report)=="perc"] <- "percentage" colnames(report)[colnames(report)=="n_reads_clade"] <- "cladeReads" colnames(report)[colnames(report)=="n.clade"] <- "cladeReads" colnames(report)[colnames(report)=="n_reads_taxo"] <- "taxonReads" colnames(report)[colnames(report)=="n.stay"] <- "taxonReads" colnames(report)[colnames(report)=="rank"] <- "taxRank" colnames(report)[colnames(report)=="tax_rank"] <- "taxRank" colnames(report)[colnames(report)=="taxonid"] <- "taxID" colnames(report)[colnames(report)=="tax"] <- "taxID" } else { report <- utils::read.table(myfile,sep="\t",header = F, col.names = c("percentage","cladeReads","taxonReads","taxRank","taxID","name"), quote = "",stringsAsFactors=FALSE, comment.char=" } report$depth <- nchar(gsub("\\S.*","",report$name))/2 report$name <- gsub("^ *","",report$name) report$name <- paste(tolower(report$taxRank),report$name,sep="_") kraken.tree <- build_kraken_tree(report) report <- collapse.taxRanks(kraken.tree,keep_taxRanks=keep_taxRanks,filter_taxon=filter_taxon) if (add_taxRank_columns) { report[,keep_taxRanks] <- NA } report$taxLineage = report$name rows_to_consider <- rep(FALSE,nrow(report)) for (i in seq_len(nrow(report))) { if (i > 1 && report[i,"depth"] > min.depth) { idx <- report$depth < report[i,"depth"] & rows_to_consider if (!any(idx)) { next() } current.taxRank <- report[i,'taxRank'] my_row <- max(which(idx)) report[i,'taxLineage'] <- paste(report[my_row,'taxLineage'],report[i,'taxLineage'],sep="|") if (add_taxRank_columns) { if (report[my_row,'taxRank'] %in% keep_taxRanks) { taxRanks.cp <- keep_taxRanks[seq(from=1,to=which(keep_taxRanks == report[my_row,'taxRank']))] report[i,taxRanks.cp] <- report[my_row,taxRanks.cp] } report[i,report[i,'taxRank']] <- report[i,'name'] } } rows_to_consider[i] <- TRUE } report <- report[report$depth >= min.depth,] report$percentage <- round(report$cladeReads/sum(report$taxonReads),6) * 100 for (column in c("taxonReads", "cladeReads")) if (all(floor(report[[column]]) == report[[column]])) report[[column]] <- as.integer(report[[column]]) if ('n_unique_kmers' %in% colnames(report)) report$kmerpercentage <- round(report$n_unique_kmers/sum(report$n_unique_kmers,na.rm=T),6) * 100 rownames(report) <- NULL report } filter_taxon <- function(report, filter_taxon, rm_clade = TRUE, do_message=FALSE) { taxon_depth <- NULL taxonReads <- 0 pos.taxons <- which(sub("._","",report$name) %in% filter_taxon) if (length(pos.taxons) == 0) { return(report) } row_seq <- seq_len(nrow(report)) rows_to_delete <- rep(FALSE,nrow(report)) taxon_depths <- report[pos.taxons,"depth"] if (isTRUE(rm_clade)) { taxonReads <- report[pos.taxons,"cladeReads"] } else { taxonReads <- report[pos.taxons,"taxonReads"] report[pos.taxons,"taxonReads"] <- 0 } for (i in seq_along(pos.taxons)) { pos.taxon <- pos.taxons[i] if (pos.taxon == 1) { rows_to_delete[1] <- TRUE next } taxon_depth <- taxon_depths[i] taxonReads <- taxonReads[i] if (rm_clade) { tosum_below <- row_seq >= pos.taxon & report$depth <= taxon_depth taxons_below <- cumsum(tosum_below) == 1 rows_to_delete[taxons_below] <- TRUE } rows_to_update <- c(pos.taxon) taxons_above <- seq_len(nrow(report)) < pos.taxon & report$depth == taxon_depth any_stays <- FALSE prev_taxon_depth <- taxon_depth taxons_above <- c() for (i in seq(from=(pos.taxon-1),to=1)) { curr_taxon_depth <- report[i,"depth"] if (curr_taxon_depth < prev_taxon_depth) { if (!any_stays) { if (report[i,"cladeReads"] == taxonReads) { rows_to_delete[i] <- TRUE if (do_message) dmessage("Deleting ",report[i,"name"]) } else { any_stays <- TRUE } } if (!rows_to_delete[i]) { rows_to_update <- c(rows_to_update, i) if (do_message) dmessage("Updating ",report[i,"name"]) } prev_taxon_depth <- curr_taxon_depth } else { any_stays <- TRUE } } report[rows_to_update, "cladeReads"] <- report[rows_to_update, "cladeReads"] - taxonReads } report[!rows_to_delete,] } read_report <- function(myfile, has_header=NULL, check_file = FALSE) { first.line <- tryCatch( readLines(myfile,n=1, warn=FALSE), error = function(e) { warning("Error reading ",myfile); return() }) isASCII <- function(txt) { if (length(txt) == 0) return(FALSE) raw <- charToRaw(txt) all(raw <= as.raw(127) && (raw >= as.raw(32) | raw == as.raw(9))) } if (length(first.line) == 0) { dmessage("Could not read ", myfile, ".") return(NULL) } tryCatch({ if (nchar(first.line) == 0) { dmessage("First line of ", myfile, " is empty") return(NULL) } }, error = function(e) { dmessage(e) return(NULL) }) if (!isTRUE(isASCII(first.line))) { dmessage(myfile," is not a ASCII file") return(NULL) } if (is.null(has_header)) { has_header <- grepl("^[a-zA-Z } is_metaphlan3_fmt <- grepl("^ is_metaphlan_fmt <- grepl("Metaphlan2_Analysis$", first.line) is_krakenu_fmt <- grepl("^.?%\treads\ttaxReads\tkmers", first.line) is_kaiju_fmt <- grepl("^ *%\t *reads", first.line) ntabs <- lengths(regmatches(first.line, gregexpr("\t", first.line))) nrows <- ifelse(isTRUE(check_file), 5, -1) if (!is_krakenu_fmt && is_kaiju_fmt) { cont <- readLines(myfile) cont <- cont[!grepl("^-", cont)] cont <- sub(".*\t *","", cont) cont <- sub("; ?$","", cont) report <- utils::read.delim(textConnection(cont), stringsAsFactors = FALSE) colnames(report) <- c("taxonReads", "taxLineage") report$cladeReads <- report$taxonReads report$taxLineage <- gsub("^","-_",report$taxLineage) report$taxLineage <- gsub("; ","|-_",report$taxLineage) report$taxLineage <- gsub("-_Viruses", "d_Viruses", report$taxLineage, fixed=T) report$taxLineage <- gsub("-_cellular organisms|-_Bacteria", "-_cellular organisms|d_Bacteria", report$taxLineage, fixed=T) report$taxLineage <- gsub("-_cellular organisms|-_Eukaryota", "-_cellular organisms|d_Eukaryota", report$taxLineage, fixed=T) report$taxLineage <- gsub("-_cellular organisms|-_Archaea", "-_cellular organisms|d_Archaea", report$taxLineage, fixed=T) report$taxLineage[1:(length(report$taxLineage)-1)] <- paste0("-_root|", report$taxLineage[1:(length(report$taxLineage)-1)]) report$taxLineage[report$taxLineage=="-_unclassified"] <- "u_unclassified" new_counts <- integer(length = 0) for (j in seq_len(nrow(report))) { count <- report$cladeReads[j] tl <- report$taxLineage[j] tl2 <- sub("\\|[^|]*$","", tl) while (tl2 != tl) { if (tl2 %in% names(new_counts)) { new_counts[tl2] <- new_counts[tl2] + count } else { new_counts[tl2] <- count } tl <- tl2 tl2 <- sub("\\|[^|]*$","", tl) } } report <- rbind(report, data.frame(taxonReads=0,taxLineage=names(new_counts),cladeReads=as.integer(new_counts))) tl_order <- order(report$taxLineage) tl_order <- c(tl_order[length(tl_order)],tl_order[-length(tl_order)]) report <- report[tl_order, c("taxLineage", "taxonReads", "cladeReads")] } else if (is_metaphlan3_fmt) { report <- tryCatch({ utils::read.table(myfile,sep="\t",header = F, quote = "",stringsAsFactors=FALSE, comment.char = " col.names = c("taxLineage", "taxID", "cladeReads", "additional_species"), check.names=FALSE) }, error = function(x) NULL, warning = function(x) NULL) if (is.null(report)) { return(NULL); } report$taxID <- sub(".*\\|", "", report$taxID) } else if (has_header) { report <- tryCatch({ utils::read.table(myfile,sep="\t",header = T, quote = "",stringsAsFactors=FALSE, comment.char = ifelse(is_metaphlan_fmt, "", " check.names=FALSE) }, error = function(x) NULL, warning = function(x) NULL) if (is.null(report)) { return(NULL); } colnames(report)[colnames(report) %in% c(" colnames(report)[colnames(report) %in% c("reads","numReadsClade","n_reads_clade","n.clade","n-clade")] <- "cladeReads" colnames(report)[colnames(report) %in% c("taxReads","numReadsTaxon","n_reads_taxo","n.stay","n-stay")] <- "taxonReads" colnames(report)[colnames(report) %in% c("rank","tax_taxRank","level")] <- "taxRank" colnames(report)[colnames(report) %in% c("tax","taxonid")] <- "taxID" colnames(report)[colnames(report) %in% c("indentedName","taxName")] <- "name" colnames(report)[colnames(report) %in% c("dup")] <- "kmerDuplicity" colnames(report)[colnames(report) %in% c("cov")] <- "kmerCoverage" } else { report <- NULL if (ntabs == 5) { col_names <- c("percentage","cladeReads","taxonReads","taxRank","taxID","name") } else if (ntabs == 7) { col_names <- c("percentage","cladeReads","taxonReads", "n_unique_kmers","n_kmers", "taxRank","taxID","name") } report <- tryCatch({ utils::read.table(myfile,sep="\t",header = F, col.names = col_names, quote = "",stringsAsFactors=FALSE, nrows = nrows) }, error=function(x) NULL, warning=function(x) NULL) if (is.null(report)) { dmessage(paste("Warning: File",myfile,"does not have the required format")) return(NULL); } } if (ncol(report) < 2) { dmessage(paste("Warning: File",myfile,"does not have the required format")) return(NULL) } if (is_metaphlan_fmt || is_metaphlan3_fmt) { colnames(report)[1] <- "taxLineage" colnames(report)[colnames(report) == "Metaphlan2_Analysis"] <- "cladeReads" report <- report[order(report$taxLineage), ] report$taxLineage <- gsub("_"," ",report$taxLineage) report$taxLineage <- gsub(" ","_",report$taxLineage) report$taxLineage <- paste0("-_root|", report$taxLineage) root_lines <- data.frame(taxLineage=c("u_unclassified","-_root"),"cladeReads"=c(0,100), stringsAsFactors = F) if ("taxID" %in% colnames(report)) { root_lines <- cbind(root_lines, "taxID" = c(0, 1)) report <- report[, c("taxLineage", "cladeReads", "taxID")] } report <- rbind(root_lines, report) } if (all(c("name","taxRank") %in% colnames(report)) && !"taxLineage" %in% colnames(report)) { report$depth <- nchar(gsub("\\S.*","",report$name))/2 if (!all(report$depth == floor(report$depth))) { warning("Depth doesn't work out!") return(NULL) } report$name <- gsub("^ *","",report$name) table(report$taxRank) allowed_taxRanks <- c("U", "S", "G", "F", "C", "D", "O", "K", "P") report$taxRank[report$taxRank=="class"] <- "C" report$taxRank[report$taxRank=="family"] <- "F" report$taxRank[report$taxRank=="genus"] <- "G" report$taxRank[report$taxRank=="superkingdom"] <- "D" report$taxRank[report$taxRank=="kingdom"] <- "K" report$taxRank[report$taxRank=="order"] <- "O" report$taxRank[report$taxRank=="phylum"] <- "P" report$taxRank[report$taxRank=="species"] <- "S" report$taxRank[report$name=="unclassified"] <- "U" report$taxRank[!report$taxRank %in% allowed_taxRanks] <- "-" report$name <- paste(tolower(report$taxRank),report$name,sep="_") rownames(report) <- NULL report$taxLineage <- report$name n <- nrow(report) depths <- report$depth taxLineages <- report$name taxLineages_p <- as.list(seq_along(report$name)) depth_row_tmp <- c(1:25) for (current_row in seq(from=1, to=nrow(report))) { dcr <- depths[current_row] depth_row_tmp[dcr+1] <- current_row if (dcr >= 1) { prev_pos <- depth_row_tmp[[dcr]] taxLineages_p[[current_row]] <- c(taxLineages_p[[prev_pos]], current_row) } } report$taxLineage <- sapply(taxLineages_p, function(x) paste0(taxLineages[x], collapse="|")) } else if ("taxLineage" %in% colnames(report)) { taxLineages <- strsplit(report$taxLineage, "|", fixed=TRUE) if (!"name" %in% colnames(report)) report$name <- sapply(taxLineages, function(x) x[length(x)]) if (!"depth" %in% colnames(report)) { report$depth <- sapply(taxLineages, length) - 1 } if (!"taxRank" %in% colnames(report)) report$taxRank <- toupper(substr(report$name, 0, 1)) } if (!all(c("name","taxRank") %in% colnames(report)) || nrow(report) < 2 || !((report[1,"name"] == "u_unclassified" && report[2,"name"] == "-_root") || report[1,"name"] == "-_root")) { dmessage(paste("Warning: File",myfile,"does not have the required format")) str(report) return(NULL) } if (!"taxonReads" %in% colnames(report)) { parent <- sub("^\\(.*\\)\\|.*$", "\\1", report$taxLineage) taxLineages <- strsplit(report$taxLineage, "|", fixed=TRUE) report$taxonReads <- report$cladeReads - sapply(report$name, function(x) sum(report$cladeReads[parent == x])) report$taxonReads[report$taxonReads <= 0.00001] <- 0 } report$percentage <- signif(report$cladeReads/sum(report$taxonReads),6) * 100 if ('n_unique_kmers' %in% colnames(report)) report$kmerpercentage <- round(report$n_unique_kmers/sum(report$n_unique_kmers,na.rm=T),6) * 100 if ("taxID" %in% colnames(report)) { std_colnames <- c("percentage","cladeReads","taxonReads","taxRank", "taxID","name") } else { std_colnames <- c("percentage","cladeReads","taxonReads","taxRank","name") } stopifnot(all(std_colnames %in% colnames(report))) report[, c(std_colnames, setdiff(colnames(report), std_colnames))] }
context("canvasXpress segregation for violin plot") skip_if_offline(host = "www.canvasxpress.org") test_that("violinplot with grouping and segregation", { tryCatch({ y <- read.table("https://www.canvasxpress.org/data/cX-toothgrowth-dat.txt", header = TRUE, sep = "\t", quote = "", row.names = 1, fill = TRUE, check.names = FALSE, stringsAsFactors = FALSE) x <- read.table("https://www.canvasxpress.org/data/cX-toothgrowth-smp.txt", header = TRUE, sep = "\t", quote = "", row.names = 1, fill = TRUE, check.names = FALSE, stringsAsFactors = FALSE) z <- data.frame(Gene = c("Gene1"), stringsAsFactors = FALSE) }, error = function(e) { skip('Unable to read data files') }) rownames(z) <- rownames(y) result <- canvasXpress(data = y, smpAnnot = x, varAnnot = z, graphType = "Boxplot", graphOrientation = "vertical", colorBy = "supp", title = "Violinplot with segregation and grouping should work", showViolinBoxplot = TRUE, groupingFactors = list("supp"), segregateVariablesBy = list("Gene"), afterRender = list(list("switchNumericToString", list("supp", TRUE)))) check_ui_test(result) })
equals2 <- function(v1, v2) { same <- (v1 == v2) | (is.na(v1) & is.na(v2)) same[is.na(same)] <- FALSE return(same) }
setClass( Class = "S2.corcircle", contains = "ADEg.S2" ) setMethod( f = "initialize", signature = "S2.corcircle", definition = function(.Object, data = list(dfxy = NULL, xax = 1, yax = 2, labels = NULL, frame = 0, storeData = TRUE), ...) { .Object <- callNextMethod(.Object, data = data, ...) .Object@data$labels <- data$labels return(.Object) }) setMethod( f = "prepare", signature = "S2.corcircle", definition = function(object) { name_obj <- deparse(substitute(object)) oldparamadeg <- adegpar() on.exit(adegpar(oldparamadeg)) adegtot <- adegpar([email protected]) getgrid <- function(nbgrid = 10) { cgrid <- signif(2 / nbgrid, 2) h0 <- c(rev(seq(0, -1, by = -cgrid)), seq(0 + cgrid, 1, by = cgrid)) cgrid <- diff(h0)[1] coord <- rep(0, length(h0)) for(i in 1:length(h0)) coord[i] <- sqrt(1 - h0[i] * h0[i]) return(list(x0 = c(h0, -coord), x1 = c(h0, coord), y0 = c(-coord, h0), y1 = c(coord, h0), d = cgrid)) } if(adegtot$pgrid$draw || adegtot$paxes$draw) [email protected]$backgrid <- getgrid(adegtot$pgrid$nint) if(is.null([email protected]$ppoints$cex)) adegtot$ppoints$cex <- 0 [email protected] <- adegtot callNextMethod() [email protected]$plabels$optim <- FALSE assign(name_obj, object, envir = parent.frame()) }) setMethod( f = "panel", signature = "S2.corcircle", definition = function(object, x, y) { panel.arrows(x0 = 0, y0 = 0, y1 = y, x1 = x, angle = [email protected]$parrows$angle, length = [email protected]$parrows$length, ends = [email protected]$parrows$end, lwd = [email protected]$plines$lwd, col = [email protected]$plines$col, lty = [email protected]$plines$lty) plabels <- [email protected]$plabels pos <- .textpos(x, y, origin = c(0, 0)) if(object@data$storeData) labels <- object@data$labels else labels <- eval(object@data$labels, envir = sys.frame(object@data$frame)) test <- .textsize(labels, plabels) w <- test$w h <- test$h adeg.panel.label(x = x + pos[1, ] * w / 2, y = y + pos[2, ] * h / 2, labels = labels, plabels = plabels) }) s.corcircle <- function(dfxy, xax = 1, yax = 2, labels = row.names(as.data.frame(dfxy)), fullcircle = TRUE, facets = NULL, plot = TRUE, storeData = TRUE, add = FALSE, pos = -1, ...) { thecall <- .expand.call(match.call()) df <- try(as.data.frame(eval(thecall$dfxy, envir = sys.frame(sys.nframe() + pos))), silent = TRUE) if((class(df) == "try-error") | is.null(thecall$dfxy)) stop("non convenient selection for dfxy (can not be converted to dataframe)") sortparameters <- sortparamADEg(...) if(!is.null(facets)) { if((length(xax) == 1 & length(yax) == 1)) object <- multi.facets.S2(thecall, sortparameters$adepar) else stop("Facets are not allowed with multiple xax/yax") } else if((length(xax) > 1 | length(yax) > 1)) { object <- multi.ax.S2(thecall) } else { if(length(sortparameters$rest)) warning(c("Unused parameters: ", paste(unique(names(sortparameters$rest)), " ", sep = "")), call. = FALSE) g.args <- c(sortparameters$g.args, list(fullcircle = fullcircle)) if(storeData) tmp_data <- list(dfxy = dfxy, xax = xax, yax = yax, labels = labels, frame = sys.nframe() + pos, storeData = storeData) else tmp_data <- list(dfxy = thecall$dfxy, xax = xax, yax = yax, labels = thecall$labels, frame = sys.nframe() + pos, storeData = storeData) object <- new(Class = "S2.corcircle", data = tmp_data, adeg.par = sortparameters$adepar, trellis.par = sortparameters$trellis, g.args = g.args, Call = as.call(thecall)) prepare(object) setlatticecall(object) if(add) object <- add.ADEg(object) } if(! add & plot) print(object) invisible(object) }
robyn_plots <- function(InputCollect, OutputCollect, export = TRUE) { check_class("robyn_outputs", OutputCollect) pareto_fronts <- OutputCollect$pareto_fronts hyper_fixed <- OutputCollect$hyper_fixed temp_all <- OutputCollect$allPareto all_plots <- list() if (!hyper_fixed) { if (!is.null(InputCollect$prophet_vars) && length(InputCollect$prophet_vars) > 0 || !is.null(InputCollect$factor_vars) && length(InputCollect$factor_vars) > 0) { dt_plotProphet <- InputCollect$dt_mod[, c("ds", "dep_var", InputCollect$prophet_vars, InputCollect$factor_vars), with = FALSE] dt_plotProphet <- suppressWarnings(melt.data.table(dt_plotProphet, id.vars = "ds")) all_plots[["pProphet"]] <- pProphet <- ggplot( dt_plotProphet, aes(x = ds, y = value)) + geom_line(color = "steelblue") + facet_wrap(~variable, scales = "free", ncol = 1) + labs(title = "Prophet decomposition") + xlab(NULL) + ylab(NULL) if (export) ggsave( paste0(OutputCollect$plot_folder, "prophet_decomp.png"), plot = pProphet, dpi = 600, width = 12, height = 3 * length(levels(dt_plotProphet$variable)) ) } if (any(InputCollect$exposure_selector)) { all_plots[["pSpendExposure"]] <- pSpendExposure <- wrap_plots( InputCollect$plotNLSCollect, ncol = ifelse(length(InputCollect$plotNLSCollect) <= 3, length(InputCollect$plotNLSCollect), 3) ) + plot_annotation( title = "Spend-exposure fitting with Michaelis-Menten model", theme = theme(plot.title = element_text(hjust = 0.5)) ) if (export) ggsave( paste0(OutputCollect$plot_folder, "spend_exposure_fitting.png"), plot = pSpendExposure, dpi = 600, width = 12, height = ceiling(length(InputCollect$plotNLSCollect) / 3) * 7 ) } else { } if (length(temp_all) > 0) { resultHypParam <- copy(temp_all$resultHypParam) hpnames_updated <- c(names(OutputCollect$OutputModels$hyper_updated), "robynPareto") hpnames_updated <- str_replace(hpnames_updated, "lambda", "lambda_hp") resultHypParam.melted <- melt.data.table(resultHypParam[, hpnames_updated, with = FALSE], id.vars = c("robynPareto")) resultHypParam.melted <- resultHypParam.melted[variable == "lambda_hp", variable := "lambda"] all_plots[["pSamp"]] <- ggplot( resultHypParam.melted, aes(x = value, y = variable, color = variable, fill = variable)) + geom_violin(alpha = .5, size = 0) + geom_point(size = 0.2) + theme(legend.position = "none") + labs( title = "Hyperparameter optimisation sampling", subtitle = paste0("Sample distribution", ", iterations = ", OutputCollect$iterations, " * ", OutputCollect$trials, " trial"), x = "Hyperparameter space", y = NULL ) if (export) ggsave( paste0(OutputCollect$plot_folder, "hypersampling.png"), plot = all_plots$pSamp, dpi = 600, width = 12, height = 7 ) } if (length(temp_all) > 0) { pareto_fronts_vec <- 1:pareto_fronts resultHypParam <- copy(temp_all$resultHypParam) if (!is.null(InputCollect$calibration_input)) { resultHypParam[, iterations := ifelse(is.na(robynPareto), NA, iterations)] } calibrated <- !is.null(InputCollect$calibration_input) pParFront <- ggplot(resultHypParam, aes( x = .data$nrmse, y = .data$decomp.rssd, colour = .data$iterations)) + scale_colour_gradient(low = "skyblue", high = "navyblue") + labs( title = ifelse(!calibrated, "Multi-objective evolutionary performance", "Multi-objective evolutionary performance with calibration" ), subtitle = sprintf( "2D Pareto fronts with %s, for %s trial%s with %s iterations each", OutputCollect$nevergrad_algo, OutputCollect$trials, ifelse(pareto_fronts > 1, "s", ""), OutputCollect$iterations ), x = "NRMSE", y = "DECOMP.RSSD", colour = "Iterations", size = "MAPE", alpha = NULL ) if (calibrated) { pParFront <- pParFront + geom_point(data = resultHypParam, aes(size = .data$mape, alpha = 1 - .data$mape)) } else { pParFront <- pParFront + geom_point() } for (pfs in 1:max(pareto_fronts_vec)) { if (pfs == 2) { pf_color <- "coral3" } else if (pfs == 3) { pf_color <- "coral2" } else { pf_color <- "coral" } pParFront <- pParFront + geom_line( data = resultHypParam[robynPareto == pfs], aes(x = .data$nrmse, y = .data$decomp.rssd), colour = pf_color) } all_plots[["pParFront"]] <- pParFront if (export) ggsave( paste0(OutputCollect$plot_folder, "pareto_front.png"), plot = pParFront, dpi = 600, width = 12, height = 7 ) } if (length(temp_all) > 0) { xDecompAgg <- copy(temp_all$xDecompAgg) dt_ridges <- xDecompAgg[rn %in% InputCollect$paid_media_spends , .(variables = rn , roi_total , iteration = (iterNG-1)*OutputCollect$cores+iterPar , trial)][order(iteration, variables)] bin_limits <- c(1,20) qt_len <- ifelse(OutputCollect$iterations <=100, 1, ifelse(OutputCollect$iterations > 2000, 20, ceiling(OutputCollect$iterations/100))) set_qt <- floor(quantile(1:OutputCollect$iterations, seq(0, 1, length.out = qt_len+1))) set_bin <- set_qt[-1] dt_ridges[, iter_bin := cut(dt_ridges$iteration, breaks = set_qt, labels = set_bin)] dt_ridges <- dt_ridges[!is.na(iter_bin)] dt_ridges[, iter_bin := factor(iter_bin, levels = sort(set_bin, decreasing = TRUE))] dt_ridges[, trial := as.factor(trial)] all_plots[["pRidges"]] <- pRidges <- ggplot( dt_ridges, aes(x = roi_total, y = iter_bin, fill = as.integer(iter_bin), linetype = trial)) + scale_fill_distiller(palette = "GnBu") + geom_density_ridges(scale = 4, col = "white", quantile_lines = TRUE, quantiles = 2, alpha = 0.7) + facet_wrap(~ variables, scales = "free") + guides(fill = "none")+ theme(panel.background = element_blank()) + labs(x = "Total ROAS", y = "Iteration Bucket" ,title = "ROAS distribution over iteration" ,fill = "iter bucket") if (export) suppressMessages(ggsave( paste0(OutputCollect$plot_folder, "roas_convergence.png"), plot = pRidges, dpi = 600, width = 12, height = ceiling(InputCollect$mediaVarCount / 3) * 6 )) } } return(invisible(all_plots)) } robyn_onepagers <- function(InputCollect, OutputCollect, selected = NULL, quiet = FALSE, export = TRUE) { check_class("robyn_outputs", OutputCollect) pareto_fronts <- OutputCollect$pareto_fronts hyper_fixed <- OutputCollect$hyper_fixed resultHypParam <- copy(OutputCollect$resultHypParam) xDecompAgg <- copy(OutputCollect$xDecompAgg) if (!is.null(selected)) { if ("clusters" %in% selected) selected <- OutputCollect$clusters$models$solID resultHypParam <- resultHypParam[solID %in% selected] xDecompAgg <- xDecompAgg[solID %in% selected] if (!quiet) message(">> Exporting only cluster results one-pagers (", nrow(resultHypParam), ")...") } if (check_parallel_plot()) registerDoParallel(OutputCollect$cores) else registerDoSEQ() if (!hyper_fixed) { pareto_fronts_vec <- 1:pareto_fronts count_mod_out <- resultHypParam[robynPareto %in% pareto_fronts_vec, .N] } else { pareto_fronts_vec <- 1 count_mod_out <- nrow(resultHypParam) } all_fronts <- unique(xDecompAgg$robynPareto) all_fronts <- sort(all_fronts[!is.na(all_fronts)]) if (!all(pareto_fronts_vec %in% all_fronts)) pareto_fronts_vec <- all_fronts if (check_parallel_plot()) { if (!quiet) message(paste(">> Plotting", count_mod_out, "selected models on", OutputCollect$cores, "cores...")) } else { if (!quiet) message(paste(">> Plotting", count_mod_out, "selected models on 1 core (MacOS fallback)...")) } if (!quiet & count_mod_out > 0) pbplot <- txtProgressBar(min = 0, max = count_mod_out, style = 3) temp <- OutputCollect$allPareto$plotDataCollect all_plots <- list() cnt <- 0 for (pf in pareto_fronts_vec) { plotMediaShare <- xDecompAgg[robynPareto == pf & rn %in% InputCollect$paid_media_spends] uniqueSol <- plotMediaShare[, unique(solID)] parallelResult <- foreach(sid = uniqueSol) %dorng% { plotMediaShareLoop <- plotMediaShare[solID == sid] rsq_train_plot <- plotMediaShareLoop[, round(unique(rsq_train), 4)] nrmse_plot <- plotMediaShareLoop[, round(unique(nrmse), 4)] decomp_rssd_plot <- plotMediaShareLoop[, round(unique(decomp.rssd), 4)] mape_lift_plot <- ifelse(!is.null(InputCollect$calibration_input), plotMediaShareLoop[, round(unique(mape), 4)], NA) plotMediaShareLoopBar <- temp[[sid]]$plot1data$plotMediaShareLoopBar plotMediaShareLoopLine <- temp[[sid]]$plot1data$plotMediaShareLoopLine ySecScale <- temp[[sid]]$plot1data$ySecScale p1 <- ggplot(plotMediaShareLoopBar, aes(x = .data$rn, y = .data$value, fill = .data$variable)) + geom_bar(stat = "identity", width = 0.5, position = "dodge") + geom_text(aes(label = paste0(round(.data$value * 100, 2), "%")), color = "darkblue", position = position_dodge(width = 0.5), fontface = "bold") + geom_line(data = plotMediaShareLoopLine, aes( x = .data$rn, y = .data$value / ySecScale, group = 1, color = .data$variable), inherit.aes = FALSE) + geom_point(data = plotMediaShareLoopLine, aes( x = .data$rn, y = .data$value / ySecScale, group = 1, color = .data$variable), inherit.aes = FALSE, size = 4) + geom_text( data = plotMediaShareLoopLine, aes( label = round(.data$value, 2), x = .data$rn, y = .data$value / ySecScale, group = 1, color = .data$variable), fontface = "bold", inherit.aes = FALSE, hjust = -1, size = 6 ) + scale_y_continuous(sec.axis = sec_axis(~ . * ySecScale)) + coord_flip() + theme(legend.title = element_blank(), legend.position = c(0.9, 0.2), axis.text.x = element_blank()) + scale_fill_brewer(palette = "Paired") + labs( title = paste0("Share of Spend VS Share of Effect with total ", ifelse(InputCollect$dep_var_type == "conversion", "CPA", "ROI")), subtitle = paste0( "rsq_train: ", rsq_train_plot, ", nrmse = ", nrmse_plot, ", decomp.rssd = ", decomp_rssd_plot, ifelse(!is.na(mape_lift_plot), paste0(", mape.lift = ", mape_lift_plot), "") ), y = NULL, x = NULL ) plotWaterfallLoop <- temp[[sid]]$plot2data$plotWaterfallLoop p2 <- suppressWarnings( ggplot(plotWaterfallLoop, aes(x = id, fill = sign)) + geom_rect(aes(x = rn, xmin = id - 0.45, xmax = id + 0.45, ymin = end, ymax = start), stat = "identity") + scale_x_discrete("", breaks = levels(plotWaterfallLoop$rn), labels = plotWaterfallLoop$rn) + theme(axis.text.x = element_text(angle = 65, vjust = 0.6), legend.position = c(0.1, 0.1)) + geom_text(mapping = aes( label = paste0(format_unit(xDecompAgg), "\n", round(xDecompPerc * 100, 2), "%"), y = rowSums(cbind(plotWaterfallLoop$end, plotWaterfallLoop$xDecompPerc / 2)) ), fontface = "bold") + coord_flip() + labs( title = "Response decomposition waterfall by predictor", subtitle = paste0( "rsq_train: ", rsq_train_plot, ", nrmse = ", nrmse_plot, ", decomp.rssd = ", decomp_rssd_plot, ifelse(!is.na(mape_lift_plot), paste0(", mape.lift = ", mape_lift_plot), "") ), x = NULL, y = NULL )) if (InputCollect$adstock == "geometric") { dt_geometric <- temp[[sid]]$plot3data$dt_geometric p3 <- ggplot(dt_geometric, aes(x = .data$channels, y = .data$thetas, fill = "coral")) + geom_bar(stat = "identity", width = 0.5) + theme(legend.position = "none") + coord_flip() + geom_text(aes(label = paste0(round(thetas * 100, 1), "%")), position = position_dodge(width = 0.5), fontface = "bold") + ylim(0, 1) + labs( title = "Geometric adstock - fixed decay rate over time", subtitle = paste0( "rsq_train: ", rsq_train_plot, ", nrmse = ", nrmse_plot, ", decomp.rssd = ", decomp_rssd_plot, ifelse(!is.na(mape_lift_plot), paste0(", mape.lift = ", mape_lift_plot), "") ), y = NULL, x = NULL ) } if (InputCollect$adstock %in% c("weibull_cdf", "weibull_pdf")) { weibullCollect <- temp[[sid]]$plot3data$weibullCollect wb_type <- temp[[sid]]$plot3data$wb_type p3 <- ggplot(weibullCollect, aes(x = .data$x, y = .data$decay_accumulated)) + geom_line(aes(color = .data$channel)) + facet_wrap(~.data$channel) + geom_hline(yintercept = 0.5, linetype = "dashed", color = "gray") + geom_text(aes(x = max(.data$x), y = 0.5, vjust = -0.5, hjust = 1, label = "Halflife"), colour = "gray") + theme(legend.position = "none") + labs(title = paste0("Weibull adstock ", wb_type," - flexible decay rate over time"), subtitle = paste0( "rsq_train: ", rsq_train_plot, ", nrmse = ", nrmse_plot, ", decomp.rssd = ", decomp_rssd_plot, ifelse(!is.na(mape_lift_plot), paste0(", mape.lift = ", mape_lift_plot), "") ), x = "Time unit", y = NULL) } dt_scurvePlot <- temp[[sid]]$plot4data$dt_scurvePlot dt_scurvePlotMean <- temp[[sid]]$plot4data$dt_scurvePlotMean if (!"channel" %in% colnames(dt_scurvePlotMean)) dt_scurvePlotMean$channel <- dt_scurvePlotMean$rn p4 <- ggplot(dt_scurvePlot[dt_scurvePlot$channel %in% InputCollect$paid_media_spends,], aes(x = .data$spend, y = .data$response, color = .data$channel)) + geom_line() + geom_point(data = dt_scurvePlotMean, aes( x = .data$mean_spend, y = .data$mean_response, color = .data$channel)) + geom_text(data = dt_scurvePlotMean, aes( x = .data$mean_spend, y = .data$mean_response, color = .data$channel, label = formatNum(.data$mean_spend, 2, abbr = TRUE)), show.legend = FALSE, hjust = -0.2) + theme(legend.position = c(0.9, 0.2)) + labs( title = "Response curve and mean spend by channel", subtitle = paste0( "rsq_train: ", rsq_train_plot, ", nrmse = ", nrmse_plot, ", decomp.rssd = ", decomp_rssd_plot, ifelse(!is.na(mape_lift_plot), paste0(", mape.lift = ", mape_lift_plot), "") ), x = "Spend", y = "Response" ) + lares::scale_x_abbr() + lares::scale_y_abbr() xDecompVecPlotMelted <- temp[[sid]]$plot5data$xDecompVecPlotMelted p5 <- ggplot(xDecompVecPlotMelted, aes(x = .data$ds, y = .data$value, color = .data$variable)) + geom_line() + theme(legend.position = c(0.9, 0.9)) + labs( title = "Actual vs. predicted response", subtitle = paste0( "rsq_train: ", rsq_train_plot, ", nrmse = ", nrmse_plot, ", decomp.rssd = ", decomp_rssd_plot, ifelse(!is.na(mape_lift_plot), paste0(", mape.lift = ", mape_lift_plot), "") ), x = "Date", y = "Response" ) xDecompVecPlot <- temp[[sid]]$plot6data$xDecompVecPlot p6 <- qplot(x = .data$predicted, y = .data$actual - .data$predicted, data = xDecompVecPlot) + geom_hline(yintercept = 0) + geom_smooth(se = TRUE, method = "loess", formula = "y ~ x") + xlab("Fitted") + ylab("Residual") + ggtitle("Fitted vs. Residual") onepagerTitle <- paste0("Model one-pager, on pareto front ", pf, ", ID: ", sid) pg <- wrap_plots(p2, p5, p1, p4, p3, p6, ncol = 2) + plot_annotation(title = onepagerTitle, theme = theme(plot.title = element_text(hjust = 0.5))) all_plots[[sid]] <- pg if (export) { ggsave( filename = paste0(OutputCollect$plot_folder, "/", sid, ".png"), plot = pg, dpi = 600, width = 18, height = 18 ) } if (check_parallel_plot() & !quiet & count_mod_out > 0) { cnt <- cnt + 1 setTxtProgressBar(pbplot, cnt) } } if (!quiet & count_mod_out > 0) { cnt <- cnt + length(uniqueSol) setTxtProgressBar(pbplot, cnt) } } if (!quiet & count_mod_out > 0) close(pbplot) if (check_parallel_plot()) stopImplicitCluster() return(invisible(all_plots)) } allocation_plots <- function(InputCollect, OutputCollect, dt_optimOut, select_model, scenario, export = TRUE, quiet = FALSE) { plotDT_resp <- dt_optimOut[, c("channels", "initResponseUnit", "optmResponseUnit")][order(rank(channels))] plotDT_resp[, channels := as.factor(channels)] chn_levels <- plotDT_resp[, as.character(channels)] plotDT_resp[, channels := factor(channels, levels = chn_levels)] setnames(plotDT_resp, names(plotDT_resp), new = c("channel", "initial response / time unit", "optimised response / time unit")) plotDT_resp <- suppressWarnings(melt.data.table(plotDT_resp, id.vars = "channel", value.name = "response")) p12 <- ggplot(plotDT_resp, aes(x = .data$channel, y = .data$response, fill = .data$variable)) + geom_bar(stat = "identity", width = 0.5, position = "dodge") + coord_flip() + scale_fill_brewer(palette = "Paired") + geom_text(aes(label = round(.data$response, 0), hjust = 1, size = 2.0), position = position_dodge(width = 0.5), fontface = "bold", show.legend = FALSE ) + theme( legend.title = element_blank(), legend.position = c(0.8, 0.2), axis.text.x = element_blank(), legend.background = element_rect( colour = "grey", fill = "transparent" ) ) + labs( title = "Initial vs. optimised mean response", subtitle = paste0( "Total spend increases ", dt_optimOut[ , round(mean(optmSpendUnitTotalDelta) * 100, 1) ], "%", "\nTotal response increases ", dt_optimOut[ , round(mean(optmResponseUnitTotalLift) * 100, 1) ], "% with optimised spend allocation" ), y = NULL, x = "Channels" ) plotDT_share <- dt_optimOut[, c("channels", "initSpendShare", "optmSpendShareUnit")][order(rank(channels))] plotDT_share[, channels := as.factor(channels)] chn_levels <- plotDT_share[, as.character(channels)] plotDT_share[, channels := factor(channels, levels = chn_levels)] setnames(plotDT_share, names(plotDT_share), new = c("channel", "initial avg.spend share", "optimised avg.spend share")) plotDT_share <- suppressWarnings(melt.data.table(plotDT_share, id.vars = "channel", value.name = "spend_share")) p13 <- ggplot(plotDT_share, aes(x = .data$channel, y = .data$spend_share, fill = .data$variable)) + geom_bar(stat = "identity", width = 0.5, position = "dodge") + coord_flip() + scale_fill_brewer(palette = "Paired") + geom_text(aes(label = paste0(round(.data$spend_share * 100, 2), "%"), hjust = 1, size = 2.0), position = position_dodge(width = 0.5), fontface = "bold", show.legend = FALSE ) + theme( legend.title = element_blank(), legend.position = c(0.8, 0.2), axis.text.x = element_blank(), legend.background = element_rect( colour = "grey", fill = "transparent" ) ) + labs( title = "Initial vs. optimised budget allocation", subtitle = paste0( "Total spend increases ", dt_optimOut[, round(mean(optmSpendUnitTotalDelta) * 100, 1)], "%", "\nTotal response increases ", dt_optimOut[, round(mean(optmResponseUnitTotalLift) * 100, 1)], "% with optimised spend allocation" ), y = NULL, x = "Channels" ) plotDT_saturation <- melt.data.table(OutputCollect$mediaVecCollect[ solID == select_model & type == "saturatedSpendReversed" ], id.vars = "ds", measure.vars = InputCollect$paid_media_spends, value.name = "spend", variable.name = "channel") plotDT_decomp <- melt.data.table(OutputCollect$mediaVecCollect[ solID == select_model & type == "decompMedia" ], id.vars = "ds", measure.vars = InputCollect$paid_media_spends, value.name = "response", variable.name = "channel") plotDT_scurve <- cbind(plotDT_saturation, plotDT_decomp[, .(response)]) plotDT_scurve <- plotDT_scurve[spend >= 0] plotDT_scurveMeanResponse <- OutputCollect$xDecompAgg[solID == select_model & rn %in% InputCollect$paid_media_spends] dt_optimOutScurve <- rbind(dt_optimOut[, .(channels, initSpendUnit, initResponseUnit)][, type := "initial"], dt_optimOut[, .(channels, optmSpendUnit, optmResponseUnit)][, type := "optimised"], use.names = FALSE) setnames(dt_optimOutScurve, c("channels", "spend", "response", "type")) p14 <- ggplot(data = plotDT_scurve, aes(x = .data$spend, y = .data$response, color = .data$channel)) + geom_line() + geom_point(data = dt_optimOutScurve, aes( x = .data$spend, y = .data$response, color = .data$channels, shape = .data$type), size = 2) + geom_text(data = dt_optimOutScurve, aes( x = .data$spend, y = .data$response, color = .data$channels, label = formatNum(.data$spend, 2, abbr = TRUE)), show.legend = FALSE, hjust = -0.2) + theme(legend.position = c(0.9, 0.4), legend.title = element_blank()) + labs( title = "Response curve and mean spend by channel", subtitle = paste0( "rsq_train: ", plotDT_scurveMeanResponse[, round(mean(rsq_train), 4)], ", nrmse = ", plotDT_scurveMeanResponse[, round(mean(nrmse), 4)], ", decomp.rssd = ", plotDT_scurveMeanResponse[, round(mean(decomp.rssd), 4)], ", mape.lift = ", plotDT_scurveMeanResponse[, round(mean(mape), 4)] ), x = "Spend", y = "Response" ) + lares::scale_x_abbr() + lares::scale_y_abbr() grobTitle <- paste0("Budget allocator optimum result for model ID ", select_model) plots <- (p13 + p12) / p14 + plot_annotation( title = grobTitle, theme = theme(plot.title = element_text(hjust = 0.5)) ) if (export) { scenario <- ifelse(scenario == "max_historical_response", "hist", "respo") filename <- paste0(OutputCollect$plot_folder, select_model, "_reallocated_", scenario, ".png") if (!quiet) message("Exporting charts into file: ", filename) ggsave( filename = filename, plot = plots, dpi = 400, width = 18, height = 14, limitsize = FALSE ) } return(list(p12 = p12, p13 = p13, p14 = p14)) }
test_that("Benvo rejects inappropriate structures", { expect_error(benvo(subject_data = data.frame(a=1,b=2), sub_bef_data =list(FFR=data.frame(c=1,d=2)),by='a'),regexp = "common") expect_error(benvo(subject_data = data.frame(a=1,b=2), sub_bef_data = list())) expect_error(benvo(subject_data = 7, sub_bef_data =list(data.frame(c=1,b=2)))) }) test_that("Benvo accepts appropriate structures",{ expect_silent(benvo(subject_data = FFR_subjects, sub_bef_data = list(FFR=FFR_distances),by='id')) expect_message(benvo(subject_data = FFR_subjects, sub_bef_data = list(FFR=FFR_distances)),regexp="id") expect_message(benvo(subject_data = FFR_subjects, sub_bef_data = list(FFR_distances),by = "id"),regexp = "generic names") expect_silent(benvo(subject_data = FFR_subjects, sub_bef_data = list(FFR=FFR_distances),by = "id")) expect_silent(benvo(subject_data = HFS_subjects, sub_bef_data = list(HFS=HFS_distances_times),by=c('id','measurement'))) expect_message(benvo(subject_data = HFS_subjects, sub_bef_data = list(HFS=HFS_distances_times)),regexp = 'measurement') expect_silent(benvo(subject_data = HFS_subjects, sub_bef_data = list(HFS=HFS_distances_times),by=c("id","measurement"))) }) test_that("Benvo correctly identifies id",{ expect_equal(c("id","measurement"),attr(benvo(subject_data = HFS_subjects, sub_bef_data = list(HFS=HFS_distances_times)),'id')) expect_equal("cid",attr(benvo(subject_data = data.frame(cid = c("a","b"), BMI = rnorm(2)), sub_bef_data = list(data.frame(cid=c("a","a","b","b"), Distance=rnorm(4)))), "id")) expect_warning(benvo(subject_data = data.frame(cid = factor(c("a","b")), BMI = rnorm(2)), sub_bef_data = list(data.frame(cid=factor(c("a","a","b","b")), Distance=rnorm(4)))),"data column") }) test_that("Benvo simple methods work",{ expect_output(print(FFbenvo),"tibble") expect_output(summary(FFbenvo),"Observations") expect_output(summary(longitudinal_HFS), regexp = "Subjects:") expect_invisible(summary(FFbenvo)) expect_invisible(summary(longitudinal_HFS)) }) test_that("benvo does not alter entered dfs",{ expect_equal(FFR_subjects,FFbenvo$subject_data) expect_equal(FFR_distances,FFbenvo$sub_bef_data[[1]]) })
mogi1 <- function(d=1, f=1, a=0.1, P=1e5, mu=4e+09, nu=0.25) { if(missing(d)) { d = 1} if(missing(f)) {f=1} if(missing(a)) {a=0.1} if(missing(P)) {P=1e5} if(missing(mu)) {mu=4e+09} if(missing(nu)) { nu = 0.25 } denom = (4*mu*(f^2 + d^2)^(1.5)) DELTAd = 3*a^3*P*d/denom DELTAh = 3*a^3*P*f/denom return(list(ur=DELTAd, uz=DELTAh)) }
library(testthat) library(googleway) test_check("googleway")
count_edges <- function(graph) { fcn_name <- get_calling_fcn() if (graph_object_valid(graph) == FALSE) { emit_error( fcn_name = fcn_name, reasons = "The graph object is not valid") } if (is_graph_empty(graph)) { return(0) } nrow(graph$edges_df) }
glrtReg <- function(data, type, groups){ regCoeffHA <- glmReg(data, type, groups) regCoeffH0 <- glmReg(data, type, 0) glrt <- 2 * (regCoeffHA$loglik - regCoeffH0$loglik) return(glrt) }
two_scatter <- function(fit,new.data=NULL, code.0='Alive', code.1='Dead', code.highrisk='High', code.lowrisk='Low', cutoff.show=TRUE, cutoff.value='median', cutoff.x, cutoff.y, cutoff.label, title.A.ylab='Risk Score', title.B.ylab='Survival Time', title.xlab='Rank', title.A.legend='Risk Group', title.B.legend='Status', size.AB=1.5, size.ylab.title=14, size.xlab.title=14, size.Atext=11, size.Btext=11, size.xtext=11, size.xyticks=0.5, size.xyline=0.5, size.points=2, size.dashline=1, size.cutoff=5, size.legendtitle=13, size.legendtext=12, color.A=c(low='blue',high='red'), color.B=c(code.0='blue',code.1='red'), vjust.A.ylab=1, vjust.B.ylab=2, family='sans', expand.x=3) { fit=to.cph(fit) if (is.null(new.data)) data=model.data(fit) else data=new.data event=model.y(fit)[2] time=model.y(fit)[1] riskscore = predict(fit,type = 'lp',newdata = data) data2 = cbind(data, riskscore) data3 = data2[order(data2$riskscore), ] if (cutoff.value == 'roc') { cutoff.point = cutoff::roc(score = data3$riskscore, class = data3[,event])$cutoff } else if (cutoff.value == 'cutoff') { rs = cutoff::cox( data = data3, time = time, y = event, x = 'riskscore', cut.numb = 1, n.per = 0.1, y.per = 0.1, round = 20 ) to.numeric(rs$p.adjust)=1 cutoff.point = (rs$cut1[rs$p.adjust == min(rs$p.adjust)]) if (length(cutoff.point)>1) cutoff.point=cutoff.point[1] } else if (cutoff.value == 'median') { cutoff.point=median(x = data3$riskscore,na.rm = TRUE) }else{ cutoff.point=cutoff.value } if (cutoff.point < min(riskscore) || cutoff.point>max(riskscore)){ stop('cutoff must between ',min(riskscore),' and ',max(riskscore)) } prob=rms::Survival(fit)(times = median(data3[,time]),lp = riskscore) correlaiton=cor(prob,riskscore,method = 'spearman') if (correlaiton<0) { `Risk Group` = ifelse(data3$riskscore > cutoff.point,code.highrisk,code.lowrisk) } else{ `Risk Group` = ifelse(data3$riskscore < cutoff.point,code.highrisk,code.lowrisk) } data4 = cbind(data3, `Risk Group`) cut.position=(1:nrow(data4))[data4$riskscore == cutoff.point] if (length(cut.position)==0){ cut.position=which.min(abs(data4$riskscore - cutoff.point)) }else if (length(cut.position)>1){ cut.position=cut.position[length(cut.position)] } data4$riskscore=round(data4$riskscore,1) data4[, time]=round(data4[, time],1) color.A=c(color.A['low'],color.A['high']) names(color.A)=c(code.lowrisk,code.highrisk) fA = ggplot(data = data4, aes_string( x = 1:nrow(data4), y = data4$riskscore, color=factor(`Risk Group`) ) ) + geom_point(size = size.points) + scale_color_manual(name=title.A.legend,values = color.A) + geom_vline( xintercept = cut.position, linetype = 'dotted', size = size.dashline ) + theme( panel.grid = element_blank(), panel.background = element_blank())+ theme( axis.ticks.x = element_blank(), axis.line.x = element_blank(), axis.text.x = element_blank(), axis.title.x = element_blank() ) + theme( axis.title.y = element_text( size = size.ylab.title,vjust = vjust.A.ylab,angle = 90,family=family), axis.text.y = element_text(size=size.Atext,family = family), axis.line.y = element_line(size=size.xyline,colour = "black"), axis.ticks.y = element_line(size = size.xyticks,colour = "black"))+ theme(legend.title = element_text(size = size.legendtitle,family = family), legend.text = element_text(size=size.legendtext,family = family))+ coord_trans()+ ylab(title.A.ylab)+ scale_x_continuous(expand = c(0,expand.x)) fA if (cutoff.show){ if (missing(cutoff.label)) cutoff.label=paste0('cutoff: ',round(cutoff.point,2)) if (missing(cutoff.x)) cutoff.x=cut.position+3 if (missing(cutoff.y)) cutoff.y=cutoff.point fA=fA+ annotate("text", x=cutoff.x, y=cutoff.y, label=cutoff.label, family=family, size=size.cutoff, fontface="plain", colour="black") } fA color.B=c(color.B['code.0'],color.B['code.1']) names(color.B)=c(code.0,code.1) fB=ggplot(data = data4, aes_string( x = 1:nrow(data4), y = data4[, time], color=factor(ifelse(data4[,event]==1,code.1,code.0))) ) + geom_point(size=size.points)+ scale_color_manual(name=title.B.legend,values = color.B) + geom_vline( xintercept = cut.position, linetype = 'dotted', size = size.dashline ) + theme( panel.grid = element_blank(), panel.background = element_blank())+ theme( axis.line.x = element_line(size=size.xyline,colour = "black"), axis.ticks.x = element_line(size=size.xyline,colour = "black"), axis.text.x = element_text(size=size.xtext,family = family), axis.title.x = element_text(size = size.xlab.title,family=family) ) + theme( axis.title.y = element_text( size = size.ylab.title,vjust = vjust.B.ylab,angle = 90,family=family), axis.text.y = element_text(size=size.Btext,family = family), axis.ticks.y = element_line(size = size.xyticks), axis.line.y = element_line(size=size.xyline,colour = "black") )+ theme(legend.title = element_text(size = size.legendtitle,family = family), legend.text = element_text(size=size.legendtext,family = family))+ ylab(title.B.ylab)+xlab(title.xlab)+ coord_trans()+ scale_x_continuous(expand = c(0,expand.x)) fB egg::ggarrange( fA, fB, ncol = 1, labels = c('A', 'B'), label.args = list(gp = grid::gpar(font = 2, cex =size.AB, family=family)) ) }
hgt <- function(x, size, active.entry = NULL, bcd.opt = list("max.iter" = 10, "eps" = 1e-3)) { stopifnot(!anyNA(x)) stopifnot(!missing(size) | !is.null(active.entry)) p <- ncol(x) if(!isSymmetric(x)) { s <- var(x) } else { s <- x } max.iter <- bcd.opt[["max.iter"]] eps <- bcd.opt[["eps"]] stopifnot(round(max.iter, 0) == max.iter) stopifnot(max.iter > 0) stopifnot(eps > 0) if(!is.null(active.entry)) { if(ncol(active.entry) != 2) { stop("Arguments active.entry is invalid!") } if(any(active.entry[, 1] == active.entry[, 2])) { stop("Digonal entries should not be included in arguments active.entry!") } active_index <- as.vector(active.entry) if(any(active_index > p) | any(active_index < 1)) { stop("Arguments active.entry is invalid since subscript out of bounds!") } double_active_entry <- rbind(active.entry, active.entry[, 2:1]) if(any(duplicated(double_active_entry))) { stop("Symmetric positions of off-diagonal entries should be considered once in arguments active.entry!") } act_set <- active.entry - 1 Omega <- bcd(s, act_set, iter_max = max.iter, eps = eps) } else { if (size > (p ^ 2 - p) / 2) { stop("Arguments size is too large!") } if (size < 0) { stop("Arguments size should be greater than zero!") } S_init <- cov2cor(s) diag(S_init) <- 0 S_vec <- as.vector(abs(S_init)) lambda <- sort(S_vec, decreasing = TRUE)[2 * size + 1] S_init[abs(S_init) <= lambda] <- 0 non_zero_index <- which(as.matrix(S_init) != 0, arr.ind = TRUE) active.entry <- non_zero_index[which(non_zero_index[,1] < non_zero_index[,2]),] act_set <- active.entry - 1 Omega <- bcd(s, act_set, iter_max = max.iter, eps = eps) } return(list(Omega = Omega, active.entry = active.entry)) } sgt <- function(x, lambda, size = NULL) { stopifnot(!missing(lambda) | !is.null(size)) stopifnot(!anyNA(x)) if(!isSymmetric(x)) { s <- cov(x) } else { s <- x } p <- ncol(x) if(!missing(lambda)) { S_init <- s diag(S_init) <- 0 } else { if (size > (p ^ 2 - p) / 2) { stop("Arguments size is too large!") } if (size < 0) { stop("Arguments size should be greater than zero!") } S_init <- s diag(S_init) <- 0 S_vec <- as.vector(abs(S_init)) lambda <- sort(S_vec, decreasing = TRUE)[2 * size + 1] } S_init[abs(S_init) <= lambda] <- 0 non_zero_index <- which(as.matrix(S_init) != 0, arr.ind = TRUE) active.entry <- non_zero_index[which(non_zero_index[,1] < non_zero_index[,2]),] act_set <- active.entry - 1 res <- soft_GT(s, lambda, act_set) Omega <- res[["Omega"]] is.acyclic <- res[["is.acyclic"]] return(list(Omega = Omega, active.entry = active.entry, is.acyclic = is.acyclic)) }
transformPhylo.ML <- function (y, phy, model = NULL, modelCIs = TRUE, nodeIDs = NULL, rateType = NULL, minCladeSize = 1, nSplits = 2, splitTime = NULL, boundaryAge = 10, testAge = 1, restrictNode = NULL, lambdaEst = FALSE, acdcScalar = FALSE, branchLabels = NULL, hiddenSpeciation = FALSE, full.phy = NULL, useMean = FALSE, profilePlot = FALSE, lowerBound = NULL, upperBound = NULL, covPIC = TRUE, n.cores = 1, tol = NULL, meserr = NULL, controlList = c(fnscale = -1, maxit = 100, factr = 1e-07, pgtol = 0, type = 2, lmm = 5), returnPhy = FALSE, print.warnings = FALSE, mode.order = NULL, rate.var = FALSE, testShiftTimes = NULL, saveAll = TRUE) { model <- tolower(model) all.models <- c("bm", "kappa", "lambda", "delta", "ou", "acdc", "psi", "multipsi", "trend", "free", "clade", "tm1", "tm2", "timeslice", "modeslice") if (any(is.na((match(model, all.models))))) stop(paste(model, "not recognised - please provide one of", paste0(all.models, collapse = ", "))) bounds <- matrix(c(1e-08, 1, 1e-08, 1, 1e-08, 5, 1e-08, 20, 0, 1, 1e-08, 1000, 1e-10, 20), 7, 2, byrow = TRUE) rownames(bounds) <- c("kappa", "lambda", "delta", "alpha", "psi", "rate", "acdcrate") lower.function.warning <- function() if (print.warnings) warning("Confidence limits fall outside parameter bounds - consider changing lowerBound") upper.function.warning <- function() if (print.warnings) warning("Confidence limits fall outside parameter bounds - consider changing upperBound") aic.fun <- function(likelihood, k) return(-2 * likelihood + 2 * k) aicc.fun <- function(likelihood, k, n) return(-2 * likelihood + 2 * k + ((2 * k * (k + 1))/(n - k - 1))) if (acdcScalar && !is.null(nodeIDs)) upperBound <- -1e-06 x <- NULL switch(model, bm = { phy <- transformPhylo(phy = phy, model = "bm", meserr = meserr, y = y) out <- likTraitPhylo(y, phy, covPIC = covPIC) out$logLikelihood <- out[[2]] out$brownianVariance <- out[[1]] out$root.state <- apply(y, 2, function(col.y) as.numeric(ace(col.y, phy, method = "pic")[[1]][1])) out$AIC <- aic.fun(out$logLikelihood, 2) out$AICc <- aicc.fun(out$logLikelihood, 2, Ntip(phy)) if (returnPhy) out$bmPhy <- phy class(out) <- "bm.ML" }, lambda = { if (is.null(lowerBound)) { lowerBound <- bounds["lambda", 1] } if (is.null(upperBound)) { upperBound <- bounds["lambda", 2] } lambda <- runif(1, lowerBound, upperBound) var.funlambda <- function(lambda) { return(transformPhylo.ll(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr, covPIC = covPIC)[[2]]) } vo <- optim(lambda, var.funlambda, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) if (modelCIs == TRUE) { lambda.fun <- function(param) { ll <- transformPhylo.ll(y, phy, model = "lambda", lambda = param, meserr = meserr, covPIC = covPIC)$logLikelihood return(ll - vo$value + 1.92) } if (lambda.fun(lowerBound) < 0) { LCI <- uniroot(lambda.fun, interval = c(lowerBound, vo$par))$root } else { LCI <- lowerBound lower.function.warning() } if (lambda.fun(upperBound) < 0) { UCI <- uniroot(lambda.fun, interval = c(vo$par, upperBound))$root } else { UCI <- upperBound upper.function.warning() } out <- list() out$MaximumLikelihood <- vo$value out$Lambda <- matrix(c(vo$par, LCI, UCI), 1, 3, byrow = TRUE) colnames(out$Lambda) <- c("MLLambda", "LowerCI", "UpperCI") } else { out <- list() out$MaximumLikelihood <- vo$value out$Lambda <- matrix(vo$par, 1, 1, byrow = TRUE) } if (profilePlot) { par(mar = c(5, 5, 5, 5), oma = c(0, 0, 0, 0)) lambdaCurve <- Vectorize(lambda.fun) curve(lambdaCurve(x), from = lowerBound[1], to = upperBound[1], xlab = expression(paste("Pagel's ", lambda)), ylab = "log-likelihood", las = 1, main = "profile plot", lwd = 2) if (modelCIs) { abline(v = c(LCI, vo$par[1], UCI), lty = c(3, 2, 3), lwd = 2, col = " } } lambdaPhy <- transformPhylo(y = y, phy = phy, model = "lambda", lambda = vo$par[1], meserr = meserr) out$brownianVariance <- likTraitPhylo(y = y, phy = lambdaPhy, covPIC = covPIC)$brownianVariance out$root.state <- apply(y, 2, function(col.y) as.numeric(ace(col.y, phy = lambdaPhy, method = "pic")[[1]][1])) out$AIC <- aic.fun(out$MaximumLikelihood, 3) out$AICc <- aicc.fun(out$MaximumLikelihood, 3, Ntip(lambdaPhy)) if (returnPhy) out$lambdaPhy <- lambdaPhy class(out) <- "lambda.ML" }, kappa = { if (is.null(nodeIDs)) { nodeIDs <- Ntip(phy) + 1 } else { nodeIDs <- nodeIDs } if (is.null(lowerBound)) { lowerBound <- bounds["kappa", 1] if (lambdaEst) lowerBound[2] <- bounds["lambda", 1] } if (is.null(upperBound)) { upperBound <- bounds["kappa", 2] if (lambdaEst) upperBound[2] <- bounds["lambda", 2] } kappa <- runif(1, lowerBound[1], upperBound[1]) if (lambdaEst) kappa[2] <- runif(1, lowerBound[2], upperBound[2]) var.funkappa <- function(param) { if (length(param) != 2) { lambda <- 1 } else { lambda <- param[2] } kappa <- param[1] lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) return(transformPhylo.ll(y = y, phy = lambdaPhy, kappa = kappa, nodeIDs = nodeIDs, model = "kappa", meserr = meserr, covPIC = covPIC)[[2]]) } vo <- optim(kappa, var.funkappa, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) if (lambdaEst) { lambda <- vo$par[2] } else { lambda <- 1 } lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) if (modelCIs == TRUE) { kappa.fun <- function(param, chiSq = TRUE) { ll <- transformPhylo.ll(y = y, phy = lambdaPhy, kappa = param, model = "kappa", meserr = meserr, covPIC = covPIC)$logLikelihood if (chiSq) return(ll - vo$value + 1.92) else return(ll) } if (kappa.fun(lowerBound[1]) < 0) { LCI <- uniroot(kappa.fun, interval = c(lowerBound[1], vo$par[1]))$root } else { LCI <- lowerBound[1] lower.function.warning() } if (kappa.fun(upperBound[1]) < 0) { UCI <- uniroot(kappa.fun, interval = c(vo$par[1], upperBound[1]))$root } else { UCI <- upperBound[1] upper.function.warning() } } if (profilePlot) { par(mar = c(5, 5, 5, 5), oma = c(0, 0, 0, 0)) kappaCurve <- Vectorize(kappa.fun) curve(kappaCurve(x, FALSE), from = lowerBound[1], to = upperBound[1], xlab = expression(kappa), ylab = "log-likelihood", las = 1, main = "profile plot", lwd = 2) if (modelCIs) { abline(v = c(LCI, vo$par[1], UCI), lty = c(3, 2, 3), lwd = 1, col = " } } out <- list() out$MaximumLikelihood <- vo$value[1] if (modelCIs) { out$Kappa <- matrix(NA, 1, 3, byrow = TRUE) out$Kappa[1, ] <- c(vo$par[1], LCI, UCI) colnames(out$Kappa) <- c("MLKappa", "LowerCI", "UpperCI") } else { out$Kappa <- matrix(NA, 1, 1, byrow = TRUE) out$Kappa[1, ] <- c(vo$par[1]) colnames(out$Kappa) <- c("MLKappa") } kappaPhy <- transformPhylo(y = y, phy = lambdaPhy, model = "kappa", kappa = vo$par[1], meserr = meserr) out$brownianVariance <- likTraitPhylo(y = y, phy = kappaPhy, covPIC = covPIC)$brownianVariance out$root.state <- apply(y, 2, function(col.y) as.numeric(ace(col.y, kappaPhy, method = "pic")[[1]][1])) param <- 3 if (lambdaEst) { out$lambda <- vo$par[2] param <- 4 } out$AIC <- aic.fun(out$MaximumLikelihood, param) out$AICc <- aicc.fun(out$MaximumLikelihood, param, Ntip(phy)) if (returnPhy) out$kappaPhy <- kappaPhy class(out) <- "kappa.ML" }, delta = { if (is.null(nodeIDs)) { nodeIDs <- Ntip(phy) + 1 } else { nodeIDs <- nodeIDs } if (is.null(lowerBound)) { lowerBound <- bounds["delta", 1] if (lambdaEst) lowerBound[2] <- bounds["lambda", 1] } if (is.null(upperBound)) { upperBound <- bounds["delta", 2] if (lambdaEst) upperBound[2] <- bounds["lambda", 2] } delta <- runif(1, lowerBound[1], upperBound[1]) if (lambdaEst) delta[2] <- runif(1, lowerBound[2], upperBound[2]) var.fundelta <- function(param) { if (length(param) != 2) { lambda <- 1 } else { lambda <- param[2] } lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) return(transformPhylo.ll(y = y, phy = lambdaPhy, delta = param[1], nodeIDs = nodeIDs, model = "delta", meserr = meserr, covPIC = covPIC)[[2]]) } vo <- optim(delta, var.fundelta, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) if (lambdaEst) { lambda <- vo$par[2] } else { lambda <- 1 } lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) if (modelCIs == TRUE) { delta.fun <- function(param, chiSq = TRUE) { ll <- transformPhylo.ll(y = y, phy = lambdaPhy, delta = param, model = "delta", nodeIDs = nodeIDs, meserr = meserr, covPIC = covPIC)$logLikelihood if (chiSq) return(ll - vo$value + 1.92) else return(ll) } if (delta.fun(lowerBound[1]) < 0) { LCI <- uniroot(delta.fun, interval = c(lowerBound[1], vo$par[1]))$root } else { LCI <- lowerBound[1] lower.function.warning() } if (delta.fun(upperBound[1]) < 0) { UCI <- uniroot(delta.fun, interval = c(vo$par[1], upperBound[1]))$root } else { UCI <- upperBound[1] upper.function.warning() } } if (profilePlot) { par(mar = c(5, 5, 5, 5), oma = c(0, 0, 0, 0)) deltaCurve <- Vectorize(delta.fun) curve(deltaCurve(x, FALSE), from = lowerBound[1], to = upperBound[1], xlab = expression(delta), ylab = "log-likelihood", las = 1, main = "profile plot", lwd = 2) if (modelCIs) { abline(v = c(LCI, vo$par[1], UCI), lty = c(3, 2, 3), lwd = 2, col = " } } out <- list() out$MaximumLikelihood <- vo$value[1] if (modelCIs) { out$Delta <- matrix(c(vo$par[1], LCI, UCI), 1, 3, byrow = TRUE) colnames(out$Delta) <- c("MLDelta", "LowerCI", "UpperCI") } else { out$Delta <- matrix(vo$par[1], 1, 1, byrow = TRUE) colnames(out$Delta) <- c("MLDelta") } deltaPhy <- transformPhylo(y = y, phy = lambdaPhy, model = "delta", delta = vo$par[1], meserr = meserr) out$brownianVariance <- likTraitPhylo(phy = deltaPhy, y = y, covPIC = covPIC)$brownianVariance out$root.state <- apply(y, 2, function(col.y) as.numeric(as.numeric(ace(col.y, phy = deltaPhy, method = "pic")[[1]][1]))) param <- 3 if (lambdaEst) { out$lambda <- vo$par[2] names(out)[4] <- "Lambda" param <- 4 } out$AIC <- aic.fun(out$MaximumLikelihood, param) out$AICc <- aicc.fun(out$MaximumLikelihood, param, Ntip(phy)) if (returnPhy) { out$deltaPhy <- deltaPhy } class(out) <- "delta.ML" }, ou = { if (is.null(nodeIDs)) nodeIDs <- Ntip(phy) + 1 else nodeIDs <- nodeIDs if (is.null(lowerBound)) { lowerBound <- bounds["alpha", 1] if (lambdaEst) lowerBound[2] <- bounds["lambda", 1] } if (is.null(upperBound)) { upperBound <- bounds["alpha", 2] if (lambdaEst) upperBound[2] <- bounds["lambda", 2] } alpha <- 0.01 if (lambdaEst) alpha[2] <- runif(1, lowerBound[2], upperBound[2]) n.par <- length(lowerBound) if (!is.ultrametric(phy)) { if (ncol(y) > 1) stop("non-ultrametric phy and OU model only applicable for single traits, sorry") print("non-ultrametric phy and OU model - using variance-covariance matrix, not tree-transformation") cophenetic.dist <- cophenetic.phylo(phy) vcv.matrix <- vcv(phy) alpha[1] <- log(alpha[1]) lowerBound[1] <- log(lowerBound[1]) upperBound[1] <- log(upperBound[1]) if (lambdaEst) stop("non-ultrametric phy and OU model not applicable with lambda model, sorry") anc.loc <- 3 bm.loc <- 2 alpha[c(bm.loc, anc.loc)] <- log(c(0.1, 0.1)) lowerBound[c(bm.loc, anc.loc)] <- log(c(1e-08, NA)) upperBound[c(bm.loc, anc.loc)] <- c(log(10), NA) } if (is.ultrametric(phy)) { var.funOU <- function(param) { if (length(param) != 2) { lambda <- 1 } else { lambda <- param[2] } alpha.int <- param[1] lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda") return(transformPhylo.ll(y = y, phy = lambdaPhy, alpha = alpha.int, nodeIDs = nodeIDs, model = "OU", meserr = meserr, covPIC = covPIC)[[2]]) } vo <- optim(as.numeric(alpha), var.funOU, method = "L-BFGS-B", lower = as.numeric(lowerBound), upper = as.numeric(upperBound), control = controlList) } else { var.funOU <- function(param) { vcv.phy <- vcv(phy) co.phy <- cophenetic(phy) return(transformPhylo.ll(y = y, phy = phy, model = "OU", alpha = exp(param[1]), meserr = meserr, mu = exp(param[anc.loc]), sigma.sq = exp(param[bm.loc]), covPIC = covPIC, vcv.matrix = vcv.phy, cophenetic.dist = co.phy)) } start <- 200 count <- 0 no.solution <- TRUE while (no.solution) { vo <- try(optim(as.numeric(alpha), var.funOU, method = "L-BFGS-B", lower = as.numeric(lowerBound), upper = as.numeric(upperBound), control = controlList), silent = TRUE) if (is(vo)[1] != "try-error") { no.solution <- FALSE } else { start <- start - count upperBound[c(bm.loc, anc.loc)] <- c(log(start), log(start)) count <- count + 10 } } } if (lambdaEst) { lambda <- vo$par[2] } else { lambda <- 1 } lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda") if (!is.ultrametric(phy)) { ou.tr <- function(alpha) { vcv.matrix <- transformPhylo(y = y, phy = phy, alpha = alpha, nodeIDs = nodeIDs, model = "OU", meserr = meserr) mu <- mu.mean(vcv.matrix, y)[1, 1] sigma.sq <- sig.sq(mu, vcv.matrix, y)[1, 1] reml.lik <- mvtnorm::dmvnorm(y[, 1], mean = rep(mu, ncol(vcv.matrix)), sigma = vcv.matrix * sigma.sq, log = TRUE) return(list(reml.lik = reml.lik, reml.sigma.sq = sigma.sq, reml.mu = mu)) } reml.out <- ou.tr(alpha = exp(vo$par[1])) vo$value[1] <- reml.out[[1]] } if (modelCIs == TRUE) { if (is.ultrametric(phy)) { ou.fun <- function(param, chiSq = TRUE) { ll <- transformPhylo.ll(y, lambdaPhy, model = "OU", alpha = param, nodeIDs = nodeIDs, meserr = meserr, covPIC = covPIC)$logLikelihood if (chiSq) { return(ll - vo$value + 1.92) } else { return(ll) } } } else { ou.fun <- function(param, chiSq = TRUE) { ll <- ou.tr(alpha = exp(param))[[1]] if (chiSq) { return(ll - reml.out[[1]] + 1.92) } else { return(ll) } } } lower.attempt <- try(uniroot(ou.fun, interval = c(lowerBound[1], vo$par[1]))$root, silent = TRUE) if (is.numeric(lower.attempt)) { LCI <- uniroot(ou.fun, interval = c(lowerBound[1], vo$par[1]))$root } else { LCI <- lowerBound[1] lower.function.warning() } upper.attempt <- try(uniroot(ou.fun, interval = c(vo$par[1], upperBound[1]))$root, silent = TRUE) if (is.numeric(upper.attempt)) { UCI <- uniroot(ou.fun, interval = c(vo$par[1], upperBound[1]))$root } else { UCI <- upperBound[1] upper.function.warning() } } if (!is.ultrametric(phy)) { vo$par[1] <- exp(vo$par[1]) if (modelCIs == TRUE) { UCI <- exp(UCI[1]) LCI <- exp(LCI[1]) } lowerBound[1] <- exp(lowerBound[1]) upperBound[1] <- exp(upperBound[1]) } if (profilePlot) { par(mar = c(5, 5, 5, 5), oma = c(0, 0, 0, 0)) if (is.ultrametric(phy)) { ouCurve <- Vectorize(ou.fun) curve(ouCurve(x, FALSE), from = lowerBound[1], to = upperBound[1], xlab = expression(alpha), ylab = "log-likelihood", las = 1, main = "profile plot", lwd = 2) if (modelCIs) abline(v = c(LCI, vo$par[1], UCI), lty = c(3, 2, 3), lwd = 2, col = " } else { ou.fun.profile <- function(param) { ll <- ou.tr(param)[[1]] return(ll) } ouCurve <- Vectorize(ou.fun.profile) curve(ouCurve(x), from = lowerBound[1], to = upperBound[1], xlab = expression(alpha), ylab = "log-likelihood", las = 1, main = "profile plot", lwd = 2) if (modelCIs) abline(v = c(LCI[1], vo$par[1], UCI[1]), lty = c(3, 2, 3), lwd = 2, col = " } } out <- list() out$MaximumLikelihood <- vo$value[1] if (modelCIs) { out$Alpha <- matrix(c(vo$par[1], LCI, UCI), 1, 3, byrow = TRUE) colnames(out$Alpha) <- c("MLAlpha", "LowerCI", "UpperCI") } else { out$Alpha <- matrix(vo$par[1], 1, 1, byrow = TRUE) colnames(out$Alpha) <- c("MLAlpha") } if (is.ultrametric(phy)) { ouPhy <- transformPhylo(y = y, phy = lambdaPhy, model = "OU", alpha = vo$par[1], meserr = meserr) out$brownianVariance <- likTraitPhylo(y = y, phy = ouPhy, covPIC = covPIC)$brownianVariance out$root.state <- apply(y, 2, function(col.y) as.numeric(as.numeric(ace(col.y, phy = ouPhy, method = "pic")[[1]][1]))) } else { out$brownianVariance <- reml.out$reml.sigma.sq out$root.state <- reml.out$reml.mu } names(out) <- c("MaximumLikelihood", "Alpha", "brownianVariance", "root.state") param <- 3 if (lambdaEst) { out$lambda <- vo$par[2] param <- 4 } out$AIC <- aic.fun(out$MaximumLikelihood, param) out$AICc <- aicc.fun(out$MaximumLikelihood, param, Ntip(phy)) if (returnPhy) out$ouPhy <- ouPhy class(out) <- "ou.ML" }, acdc = { if (is.null(nodeIDs)) { nodeIDs <- Ntip(phy) + 1 } else { nodeIDs <- nodeIDs } rootBranchingTime <- nodeTimes(phy)[1, 1] if (is.null(lowerBound)) { lowerBound <- log(bounds["acdcrate", 1])/rootBranchingTime } if (is.null(upperBound)) { upperBound <- log(bounds["acdcrate", 2])/rootBranchingTime } if (acdcScalar) { if (is.na(lowerBound[2])) { lowerBound[2] <- 1 } if (is.na(upperBound[2])) { upperBound[2] <- 5 } } if (lambdaEst) { lowerBound <- c(lowerBound, bounds["lambda", 1]) upperBound <- c(upperBound, bounds["lambda", 2]) } acdcRate <- runif(1, lowerBound[1], upperBound[1]) if (acdcScalar && lambdaEst) { acdcRate[2] <- runif(1, lowerBound[2], upperBound[2]) acdcRate[3] <- runif(1, lowerBound[3], upperBound[3]) } if (!acdcScalar && lambdaEst || acdcScalar && !lambdaEst) { acdcRate[2] <- runif(1, lowerBound[2], upperBound[2]) } if (acdcScalar) { var.funACDC <- function(param) { if (lambdaEst) lambda <- tail(param, 1) else lambda <- 1 acdc.est <- param[1] scalarRate <- param[2] lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) return(transformPhylo.ll(lambdaPhy, acdcRate = acdc.est, nodeIDs = nodeIDs, model = "ACDC", y = y, cladeRates = scalarRate, meserr = meserr, covPIC = covPIC)[[2]]) } } else { var.funACDC <- function(param) { if (lambdaEst) lambda <- param[2] else lambda <- 1 acdc.est <- param[1] lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) return(transformPhylo.ll(lambdaPhy, acdcRate = acdc.est, nodeIDs = nodeIDs, model = "ACDC", y = y, cladeRates = 1, meserr = meserr, covPIC = covPIC)[[2]]) } } vo <- optim(acdcRate, var.funACDC, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) if (lambdaEst) lambda <- tail(vo$par, 1) else lambda <- 1 lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) if (acdcScalar) cladeRateEst <- vo$par[2] else cladeRateEst <- 1 if (modelCIs) { ACDC.fun <- function(param, chiSq = TRUE) { ll <- transformPhylo.ll(y, lambdaPhy, acdcRate = param, nodeIDs = nodeIDs, model = "ACDC", cladeRates = cladeRateEst, meserr = meserr, covPIC = covPIC)$logLikelihood if (chiSq) return(ll - vo$value + 1.92) else return(ll) } if (ACDC.fun(lowerBound[1]) < 0) { LCI <- uniroot(ACDC.fun, interval = c(lowerBound[1], vo$par[1]))$root } else { LCI <- lowerBound[1] lower.function.warning() } if (ACDC.fun(upperBound[1]) < 0) { UCI <- uniroot(ACDC.fun, interval = c(vo$par[1], upperBound[1]))$root } else { UCI <- upperBound[1] upper.function.warning() } } if (profilePlot) { par(mar = c(5, 5, 5, 5), oma = c(0, 0, 0, 0)) acdcCurve <- Vectorize(ACDC.fun) curve(acdcCurve(x, FALSE), from = lowerBound[1], to = upperBound[1], xlab = "ACDC rate", ylab = "log-likelihood", las = 1, main = "profile plot", lwd = 2) if (modelCIs) { abline(v = c(LCI, vo$par[1], UCI), lty = c(3, 2, 3), lwd = 2, col = " } } out <- list() out$MaximumLikelihood <- vo$value[1] if (modelCIs) { out$ACDC <- matrix(c(vo$par[1], LCI, UCI), 1, 3, byrow = TRUE) colnames(out$ACDC) <- c("MLacdc", "LowerCI", "UpperCI") } else { out$ACDC <- matrix(vo$par[1], 1, 1, byrow = TRUE) colnames(out$ACDC) <- c("MLacdc") } if (acdcScalar) out$scalar <- scaleClade <- vo$par[2] else scaleClade <- 1 acdcPhy <- transformPhylo(y = y, phy = lambdaPhy, model = "ACDC", acdcRate = vo$par[1], nodeIDs = nodeIDs, cladeRates = scaleClade, meserr = meserr) out$brownianVariance <- likTraitPhylo(phy = acdcPhy, y = y, covPIC = covPIC)$brownianVariance out$root.state <- apply(y, 2, function(col.y) as.numeric(as.numeric(ace(col.y, phy = acdcPhy, method = "pic")[[1]][1]))) param <- length(vo$par) + 2 if (lambdaEst) { out$lambda <- tail(vo$par, 1) param <- param + 1 } n <- Ntip(phy) out$AIC <- aic.fun(out$MaximumLikelihood, param) out$AICc <- aicc.fun(out$MaximumLikelihood, param, Ntip(phy)) if (returnPhy) out$acdcPhy <- acdcPhy class(out) <- "acdc.ML" }, psi = { if (is.null(lowerBound)) { lowerBound <- bounds["psi", 1] if (lambdaEst) { lowerBound[2] <- bounds["lambda", 1] } } if (is.null(upperBound)) { upperBound <- bounds["psi", 2] if (lambdaEst) { upperBound[2] <- bounds["lambda", 2] } } psi <- runif(1, lowerBound[1], upperBound[1]) if (lambdaEst) psi[1] <- runif(1, lowerBound[2], upperBound[2]) if (hiddenSpeciation) { if (is.null(full.phy)) stop("please provide a full phylogeny") full.data.match <- match(full.phy$tip.label, rownames(y)) tips.no.data <- full.phy$tip.label[which(is.na(full.data.match))] phy <- dropTipPartial(full.phy, tips.no.data) } if (is.ultrametric(phy)) { phy.bd <- birthdeath(phy) } else { phy.bd <- birthdeath_motmot(phy) } mu_over_lambda <- phy.bd[[4]][1] lambda_minus_mu <- phy.bd[[4]][2] lambda.sp <- as.numeric(lambda_minus_mu/(1 - mu_over_lambda)) mu.ext <- as.numeric(lambda_minus_mu/(1/mu_over_lambda - 1)) if (mu.ext > 0) { phy <- sampleHiddenSp(phy, lambda.sp = lambda.sp, mu.ext = mu.ext, useMean = useMean) } else { phy$hidden.speciation <- NULL } var.funpsi <- function(param) { if (length(param) != 2) lambda <- 1 else lambda <- param[2] psi <- param[1] lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) return(transformPhylo.ll(y = y, phy = lambdaPhy, psi = psi, model = "psi", meserr = meserr, covPIC = covPIC, lambda.sp = lambda.sp)[[2]]) } vo <- optim(psi, var.funpsi, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) if (lambdaEst) lambda <- vo$par[2] else lambda <- 1 lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) if (modelCIs == TRUE) { psi.fun <- function(param, chiSq = TRUE) { ll <- transformPhylo.ll(y, lambdaPhy, model = "psi", psi = param, meserr = meserr, covPIC = covPIC, lambda.sp = lambda.sp)$logLikelihood if (chiSq) return(ll - vo$value + 1.92) else return(ll) } if (psi.fun(lowerBound[1]) < 0) { LCI <- uniroot(psi.fun, interval = c(lowerBound[1], vo$par[1]))$root } else { LCI <- lowerBound[1] lower.function.warning() } if (psi.fun(upperBound[1]) < 0) { UCI <- uniroot(psi.fun, interval = c(vo$par[1], upperBound[1]))$root } else { UCI <- upperBound[1] upper.function.warning() } } if (profilePlot) { par(mar = c(5, 5, 5, 5), oma = c(0, 0, 0, 0)) psiCurve <- Vectorize(psi.fun) curve(psiCurve(x, FALSE), from = lowerBound[1], to = upperBound[1], xlab = expression(psi), ylab = "log-likelihood", las = 1, main = "profile plot", lwd = 2) if (modelCIs) { abline(v = c(LCI, vo$par[1], UCI), lty = c(3, 2, 3), lwd = 2, col = " } } out <- list() out$MaximumLikelihood <- vo$value[1] if (modelCIs) { out$psi <- matrix(c(vo$par[1], LCI, UCI), 1, 3, byrow = TRUE) colnames(out$psi) <- c("MLpsi", "LowerCI", "UpperCI") } else { out$psi <- matrix(vo$par[1], 1, 1, byrow = TRUE) colnames(out$psi) <- c("MLpsi") } psiPhy <- transformPhylo(y = y, phy = lambdaPhy, model = "psi", psi = vo$par[1], meserr = meserr, lambda.sp = lambda.sp) out$brownianVariance <- likTraitPhylo(y = y, phy = psiPhy, covPIC = covPIC)$brownianVariance out$root.state <- apply(y, 2, function(col.y) as.numeric(as.numeric(ace(col.y, phy = psiPhy, method = "pic")[[1]][1]))) param <- 3 if (lambdaEst) { out$lambda <- vo$par[2] param <- 4 } out$AIC <- aic.fun(out$MaximumLikelihood, param) out$AICc <- aicc.fun(out$MaximumLikelihood, param, Ntip(phy)) if (returnPhy) out$psiPhy <- psiPhy class(out) <- "psi.ML" }, multipsi = { if (is.null(branchLabels)) stop("for 'multipsi' model must provide branchLabels giving state for each branch") states <- levels(factor(branchLabels)) if (is.null(lowerBound)) { lowerBound <- bounds[rep("psi", length(states)), 1] if (lambdaEst) lowerBound[length(states) + 1] <- bounds["lambda", 1] } if (is.null(upperBound)) { upperBound <- bounds[rep("psi", length(states)), 2] if (lambdaEst) upperBound[length(states) + 1] <- bounds["lambda", 2] } ran.start <- runif(1, lowerBound[1], upperBound[1]) start <- rep(ran.start, length(states)) if (lambdaEst) start <- c(start, runif(1, lowerBound[2], upperBound[2])) if (hiddenSpeciation) { if (is.null(full.phy)) stop("please provide a full phylogeny") full.data.match <- match(full.phy$tip.label, rownames(y)) tips.no.data <- full.phy$tip.label[which(is.na(full.data.match))] phy <- dropTipPartial(full.phy, tips.no.data) } if (is.ultrametric(phy)) { phy.bd <- birthdeath(phy) } else { phy.bd <- birthdeath_motmot(phy) } mu_over_lambda <- phy.bd[[4]][1] lambda_minus_mu <- phy.bd[[4]][2] lambda.sp <- as.numeric(lambda_minus_mu/(1 - mu_over_lambda)) mu.ext <- as.numeric(lambda_minus_mu/(1/mu_over_lambda - 1)) if (mu.ext > 0) { phy <- sampleHiddenSp(phy, lambda.sp = lambda.sp, mu.ext = mu.ext, useMean = useMean) } else { phy$hidden.speciation <- NULL } var.funmultipsi <- function(param) { all.param <- length(param) if (lambdaEst) { lambda <- param[all.param] psi <- param[-all.param] } else { psi <- param lambda <- 1 } lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) return(transformPhylo.ll(y = y, phy = lambdaPhy, branchLabels = branchLabels, psi = psi, model = "multipsi", meserr = meserr, covPIC = covPIC, lambda.sp = lambda.sp)[[2]]) } vo <- optim(start, var.funmultipsi, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) if (lambdaEst) lambda <- tail(vo$par, 1) else lambda <- 1 lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) out <- list() out$MaximumLikelihood <- vo$value[1] out$psi <- matrix(NA, length(states), 3, byrow = TRUE, dimnames = list(states, c("MLpsi", "LowerCI", "UpperCI"))) out$psi[, 1] <- vo$par[1:length(states)] if (modelCIs == TRUE) { psi.fun <- function(param, chiSq = TRUE) { psi <- as.numeric(vo$par) psi[i] <- param ll <- transformPhylo.ll(y, lambdaPhy, model = "multipsi", branchLabels = branchLabels, psi = psi, meserr = meserr, covPIC = covPIC, lambda.sp = lambda.sp)$logLikelihood if (chiSq) return(ll - vo$value + 1.92) else return(ll) } for (i in 1:length(states)) { if (psi.fun(lowerBound[i]) < 0) { LCI <- uniroot(psi.fun, interval = c(lowerBound[i], vo$par[i]))$root } else { LCI <- lowerBound[1] lower.function.warning() } if (psi.fun(upperBound[i]) < 0) { UCI <- uniroot(psi.fun, interval = c(vo$par[i], upperBound[i]))$root } else { UCI <- upperBound[1] upper.function.warning() } out$psi[i, 2:3] <- c(LCI, UCI) } } if (profilePlot) { par(mar = c(5, 5, 5, 5), oma = c(0, 0, 0, 0), mfrow = c(length(states), length(states))) for (i in 1:length(states)) { psiCurve <- Vectorize(psi.fun) curve(psiCurve(x, FALSE), from = lowerBound[1], to = upperBound[1], xlab = expression(psi), ylab = "log-likelihood", las = 1, main = paste0("profile plot psi ", i), lwd = 2) if (modelCIs) { abline(v = c(out$psi[i, 2], out$psi[i, 1], out$psi[i, 3]), lty = c(3, 2, 3), lwd = 2, col = " } } } multipsiPhy <- transformPhylo(y = y, phy = lambdaPhy, model = "multipsi", psi = vo$par[1:length(states)], meserr = meserr, lambda.sp = lambda.sp, branchLabels = branchLabels) out$brownianVariance <- likTraitPhylo(y = y, phy = multipsiPhy, covPIC = covPIC)$brownianVariance out$root.state <- apply(y, 2, function(col.y) as.numeric(as.numeric(ace(col.y, phy = multipsiPhy, method = "pic")[[1]][1]))) param <- length(states) + 2 if (lambdaEst) { out$lambda <- vo$par[length(states) + 1] param <- param + 1 } out$AIC <- aic.fun(out$MaximumLikelihood, param) out$AICc <- aicc.fun(out$MaximumLikelihood, param, Ntip(phy)) if (returnPhy) out$psiPhy <- multipsiPhy class(out) <- "multipsi.ML" }, trend = { if (is.ultrametric(phy)) stop("trend model only makes sense with non-ultrametric trees") if (ncol(y) > 1) stop("only when trait at a one time, please run each trait individually") bm.model.var <- transformPhylo.ML(y, phy, model = "bm", meserr = meserr)$brownianVariance[1, 1] phy <- reorder(phy) tip.age.from.root <- c(nodeTimes(phy)[1, 1] - nodeTimes(phy)[which(phy$edge[, 2] <= Ntip(phy)), 2]) yy <- data.frame(y, tip.age.from.root) if (lambdaEst == FALSE) { estimates <- pic.pgls(y ~ tip.age.from.root, phy, y = yy, lambda = 1, return.intercept.stat = TRUE, meserr = meserr) } else { estimates <- pic.pgls(y ~ tip.age.from.root, phy, y = yy, lambda = "ML", return.intercept.stat = TRUE, meserr = meserr) } slope.model <- estimates$model.summary$coef[1] intercept.model <- estimates$intercept[1] y2 <- matrix((tip.age.from.root * slope.model) + intercept.model) cont <- pic.motmot(y2, phy) contr <- c(cont[[1]][, 1], 0) rawVariances <- c(cont$contr[, 2], cont$V) brCov <- 1/(Ntip(phy) + 1) * (sum(contr^2/rawVariances)) brCov <- bm.model.var - brCov likelihood.trend <- likTraitPhylo(y, phy, brCov = brCov)[[2]] if (lambdaEst) lambda <- estimates$lambda else lambda <- 1 lambdaPhy <- transformPhylo(y = y, phy = phy, lambda = lambda, model = "lambda", meserr = meserr) output.slope <- estimates$model.summary$coef[1:2] output.intercept <- estimates$intercept[1:2] out <- list() out$MaximumLikelihood <- likelihood.trend if (modelCIs) { out$Trend <- matrix(output.slope[1:2], 1, 2, byrow = TRUE) colnames(out$Trend) <- c("MLSlope", "StdError") out$root.state <- matrix(output.intercept[1:2], 1, 2, byrow = TRUE) colnames(out$root.state) <- c("ancestral.state", "StdError") } else { out$Trend <- matrix(output.slope[1], 1, 1, byrow = TRUE) colnames(out$Trend) <- c("MLSlope") out$root.state <- matrix(output.intercept[1], 1, 1, byrow = TRUE) colnames(out$root.state) <- c("ancestral.state") } out$brownianVariance <- matrix(brCov) param <- 3 if (lambdaEst) { out$lambda <- estimates$lambda names(out)[4] <- "Lambda" param <- 4 } out$AIC <- aic.fun(out$MaximumLikelihood, param) out$AICc <- aicc.fun(out$MaximumLikelihood, param, Ntip(phy)) if (returnPhy) { out$TrendPhy <- lambdaPhy } class(out) <- "trend.ML" }, free = { if (is.null(lowerBound)) { lowerBound <- bounds["rate", 1] } if (is.null(upperBound)) { upperBound <- bounds["rate", 2] } branchRates <- rep(1, length(phy$edge.length)) var.funfree <- function(branchRates) { return(transformPhylo.ll(y, phy, branchRates = branchRates, model = "free", meserr = meserr, covPIC = covPIC)[[2]]) } vo <- optim(branchRates, var.funfree, method = "L-BFGS-B", lower = 0, control = c(fnscale = -1, maxit = 10, factr = 1e+14)) phy2 <- phy phy2$edge.length <- phy$edge.length * vo$par out <- vector(mode = "list", length = 3) output.par <- likTraitPhylo(y = y, phy = phy2, covPIC = covPIC) out$MaximumLikelihood <- output.par$logLikelihood out$brownianVariance <- output.par$brownianVariance out$Rates <- vo$par out$root.state <- apply(y, 2, function(col.y) as.numeric(as.numeric(ace(col.y, phy = phy2, method = "pic")[[1]][1]))) if (vo$convergence == 0) { out$Convergence <- "Successful" } else { out$Convergence <- "Failed" } param <- length(branchRates) + 2 if (lambdaEst) { out$lambda <- vo$par[length(branchRates) + 1] param <- param + 1 } out$AIC <- aic.fun(out$MaximumLikelihood, param) out$AICc <- aicc.fun(out$MaximumLikelihood, param, Ntip(phy)) if (returnPhy) out$freePhy <- phy2 class(out) <- "free.ML" }, clade = { if (is.null(lowerBound)) { lowerBound <- bounds["rate", 1] } if (is.null(upperBound)) { upperBound <- bounds["rate", 2] } if (is.null(rateType)) { rateType <- rep("clade", length(nodeIDs)) } else { rateType <- rateType } cladeRates <- rep(1, length(nodeIDs)) var.funclade <- function(param) { return(transformPhylo.ll(y, phy, nodeIDs = nodeIDs, cladeRates = param, model = "clade", rateType = rateType)[[2]]) } vo <- optim(cladeRates, var.funclade, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) phyCladeFull <- transformPhylo(phy, model = "clade", nodeIDs = nodeIDs, rateType = rateType, cladeRates = vo$par, y = y, meserr = meserr) out <- list() if (modelCIs == TRUE) { free.fun <- function(param) { ll <- transformPhylo.ll(y, phyClade, model = "clade", nodeIDs = SingleNode, rateType = whichRateType, cladeRates = param, meserr = meserr, covPIC = covPIC)$logLikelihood return(ll - vo$value + 1.92) } out$Rates <- matrix(vo$value, length(nodeIDs), 4, byrow = TRUE) colnames(out$Rates) <- c("node", "MLRate", "LowerCI", "UpperCI") for (i in 1:length(nodeIDs)) { SingleNode <- nodeIDs[i] whichRateType <- rateType[i] phyClade <- transformPhylo(phyCladeFull, model = "clade", nodeIDs = SingleNode, rateType = whichRateType, cladeRates = 1/vo$par[i], y = y, meserr = meserr) if (free.fun(lowerBound) < 0) { LCI <- uniroot(free.fun, interval = c(lowerBound, vo$par[i]))$root } else { LCI <- lowerBound[1] lower.function.warning() } if (free.fun(upperBound) < 0) { UCI <- uniroot(free.fun, interval = c(vo$par[i], upperBound))$root } else { UCI <- upperBound[1] upper.function.warning() } out$Rates[i, ] <- c(nodeIDs[i], vo$par[i], LCI, UCI) } } else { out$Rates <- matrix(NA, length(nodeIDs), 2, byrow = TRUE) colnames(out$Rates) <- c("node", "MLRate") out$Rates[, 1] <- nodeIDs out$Rates[, 2] <- vo$par } out$MaximumLikelihood <- vo$value out$brownianVariance <- likTraitPhylo(y = y, phy = phyCladeFull, covPIC = covPIC)$brownianVariance out$root.state <- apply(y, 2, function(col.y) as.numeric(as.numeric(ace(col.y, phy = phyCladeFull, method = "pic")[[1]][1]))) param <- 2 + length(vo$par) out$AIC <- aic.fun(out$MaximumLikelihood, param) out$AICc <- aicc.fun(out$MaximumLikelihood, param, Ntip(phy)) if (returnPhy) out$freePhy <- phyCladeFull class(out) <- "clade.ML" }, tm1 = { if (is.null(lowerBound)) { lowerBound <- bounds["rate", 1] } if (is.null(upperBound)) { upperBound <- bounds["rate", 2] } nodes <- unique(sort(phy$edge[, 2])) nodeDepth <- node.depth(phy) nodesByRichness <- cbind(richness = nodeDepth[nodes], node = nodes) searchNode <- nodesByRichness[nodesByRichness[, 1] >= minCladeSize, 2] if (is.null(restrictNode) == FALSE) { ngroups <- length(restrictNode) cm <- caper::clade.matrix(phy) colnames(cm$clade.matrix) <- cm$tip.label cmMat <- cm$clade.matrix skipNodes <- numeric() for (i in 1:ngroups) { matDrop <- cmMat[, restrictNode[[i]]] nodeDrop <- rowSums(matDrop) < length(restrictNode[[i]]) & rowSums(matDrop) >= 1 skipNodes <- c(skipNodes, as.numeric(rownames(matDrop)[nodeDrop])) } skipNodes <- unique(c(skipNodes, phy$edge[phy$edge.length < tol, 2])) searchNode <- setdiff(searchNode, skipNodes) } else { skipNodes <- unique(phy$edge[phy$edge.length < tol, 2]) searchNode <- setdiff(searchNode, skipNodes) } n <- length(y) BERateOut <- matrix(NA, nrow = nSplits + 1, ncol = (6 + nSplits)) fullModelOut <- vector(mode = "list", length = nSplits) MLsingle <- transformPhylo.ll(y = y, phy = phy, model = "bm", meserr = meserr, covPIC = covPIC)[[2]] AICsingle <- aic.fun(MLsingle, 2) AICcsingle <- aicc.fun(MLsingle, 2, n) colnames(BERateOut) <- 1:dim(BERateOut)[2] colnames(BERateOut)[1:6] <- c("node", "shiftPos", "lnL", "n.params", "AIC", "AICc") colnames(BERateOut)[-c(1:6)] <- paste0("rate.", 1:nSplits) rownames(BERateOut) <- c("BM ", paste0("shift.", 1:nSplits)) BERateOut[1, 1:6] <- c(0, 1, MLsingle, 2, AICsingle, AICcsingle) BERateOut <- data.frame(BERateOut) cat("\n", "BM model") cat("\n") print(BERateOut[1, 1:6]) for (k in 1:nSplits) { cladeMembers <- matrix(NA, ncol = k, nrow = length(phy$edge[, 1])) if (k == 1) { searchNode <- searchNode } else { searchNode <- searchNode[!(searchNode %in% bestNodes)] } for (i in searchNode) { if (k == 1) { currentNodeIDs <- i } else { currentNodeIDs <- c(bestNodes, i) } cladeRates <- rep(1, length(currentNodeIDs)) var.funclade.tm1 <- function(cladeRates) { return(transformPhylo.ll(y, phy, nodeIDs = currentNodeIDs, rateType = rep("clade", length(currentNodeIDs)), cladeRates = cladeRates, model = "clade", meserr = meserr, covPIC = covPIC)[[2]]) } currentCladeModel <- optim(cladeRates, var.funclade.tm1, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) fullModelOut[[k]] <- rbind(fullModelOut[[k]], c(node = as.integer(i), shiftPos = 1, ML = currentCladeModel$value, currentCladeModel$par)) currentModel <- currentCladeModel shiftPos <- 1 param <- (k * 2) + 1 currentModel <- list(currentModel, i, cladeMembers) currentML <- currentModel[[1]]$value AIC <- aic.fun(currentModel[[1]]$value, param) AICc <- aicc.fun(currentModel[[1]]$value, param, n) if (i == min(searchNode)) { BERateOut[k + 1, 1:(6 + k)] <- c(currentModel[[2]], shiftPos, currentModel[[1]]$value, param, AIC, AICc, rev(currentModel[[1]]$par)) } else { if (currentML > BERateOut[k + 1, 3]) { BERateOut[k + 1, 1:(6 + k)] <- c(currentModel[[2]], shiftPos, currentModel[[1]]$value, param, AIC, AICc, rev(currentModel[[1]]$par)) } } } if (k == 1) bestNodes <- BERateOut[k + 1, 1] else bestNodes <- c(bestNodes, BERateOut[k + 1, 1]) if (sum(BERateOut[, "shiftPos"] == 1, na.rm = T) > 0) BERateOut[which(BERateOut[, "shiftPos"] == 1), "shiftPos"] <- "clade" cat("\n", "Shift", k) cat("\n") print(BERateOut[k + 1, c(1:(6 + k))]) } out <- list(as.data.frame(BERateOut), fullModelOut, y, phy) class(out) <- "traitMedusa" }, tm2 = { if (is.null(lowerBound)) lowerBound <- bounds["rate", 1] if (is.null(upperBound)) upperBound <- bounds["rate", 2] nodes <- unique(sort(phy$edge[, 2])) nodeDepth <- node.depth(phy) nodesByRichness <- cbind(richness = nodeDepth[nodes], node = nodes) searchNode <- nodesByRichness[nodesByRichness[, 1] >= minCladeSize, 2] searchNodeType <- c(searchNode, searchNode[searchNode > Ntip(phy)]) searchType <- c(rep("clade", length(searchNode)), rep("branch", sum(searchNode > Ntip(phy)))) searchNodeTypeAll <- data.frame(searchType, searchNodeType, stringsAsFactors = FALSE) if (is.null(restrictNode) == FALSE) { ngroups <- length(restrictNode) cm <- caper::clade.matrix(phy) colnames(cm$clade.matrix) <- cm$tip.label cmMat <- cm$clade.matrix skipNodes <- numeric() for (i in 1:ngroups) { matDrop <- cmMat[, restrictNode[[i]]] nodeDrop <- rowSums(matDrop) < length(restrictNode[[i]]) & rowSums(matDrop) >= 1 skipNodes <- c(skipNodes, as.numeric(rownames(matDrop)[nodeDrop])) } skipNodes <- unique(c(skipNodes, phy$edge[phy$edge.length < tol, 2])) searchNode <- setdiff(searchNode, skipNodes) } else { skipNodes <- unique(phy$edge[phy$edge.length < tol, 2]) searchNode <- setdiff(searchNode, skipNodes) } tm2.fun <- function(whichSearchNode) which(searchNodeTypeAll[, 2] == whichSearchNode) searchNodeTypeAll <- searchNodeTypeAll[sort(unlist(sapply(searchNode, tm2.fun))), ] n <- length(y) BERateOut <- matrix(NA, nrow = nSplits + 1, ncol = (6 + (nSplits))) fullModelOut <- vector(mode = "list", length = nSplits) bestModel <- matrix(NA, ncol = 2, nrow = nSplits) fullModelOut <- vector(mode = "list", length = nSplits) MLsingle <- transformPhylo.ll(y = y, phy = phy, model = "bm", meserr = meserr, covPIC = covPIC)[[2]] AICsingle <- aic.fun(MLsingle, 2) AICcsingle <- aicc.fun(MLsingle, 2, Ntip(phy)) BERateOut[1, 1:6] <- c(0, 1, MLsingle, 2, AICsingle, AICcsingle) colnames(BERateOut) <- 1:dim(BERateOut)[2] colnames(BERateOut)[1:6] <- c("node", "shiftPos", "lnL", "n.params", "AIC", "AICc") colnames(BERateOut)[-c(1:6)] <- paste0("rate.", 1:nSplits) rownames(BERateOut) <- c("BM ", paste0("shift.", 1:nSplits)) BERateOut[1, 1:6] <- c(0, 1, MLsingle, 2, AICsingle, AICcsingle) BERateOut <- data.frame(BERateOut) cat("\n", "BM model") cat("\n") print(BERateOut[1, 1:6]) for (k in 1:nSplits) { cladeMembers <- matrix(NA, ncol = k, nrow = length(phy$edge[, 1])) bestModel[bestModel[, 2] == "1", 2] <- "clade" bestModel[bestModel[, 2] == "2", 2] <- "branch" if (k == 1) { searchNodeTypeAll <- searchNodeTypeAll } else { dropNodeRow <- which(searchNodeTypeAll[, 1] == bestModel[k - 1, 2] & searchNodeTypeAll[, 2] == as.numeric(bestModel[k - 1, 1])) rowDropLogical <- row(searchNodeTypeAll)[, 1] != dropNodeRow searchNodeTypeAll <- searchNodeTypeAll[rowDropLogical, ] } if (k == 1) currentNodeIDs <- NULL else currentNodeIDs <- na.omit(as.numeric(bestModel[, 1])) if (k == 1) currentRateType <- NULL else currentRateType <- na.omit(bestModel[, 2]) foo2 <- function(x_foo, k, currentNodeIDs = currentNodeIDs, currentRateType = currentRateType) { currentNodeIDs <- c(currentNodeIDs, x_foo[, 2]) currentRateType <- c(currentRateType, x_foo[, 1]) cladeRates <- rep(1, length(currentNodeIDs)) var.funclade.tm2 <- function(cladeRates) return(transformPhylo.ll(y, phy, nodeIDs = currentNodeIDs, rateType = currentRateType, cladeRates = cladeRates, model = "clade", meserr = meserr, covPIC = covPIC)[[2]]) currentCladeModel <- optim(cladeRates, var.funclade.tm2, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) if (x_foo[, 1] == "clade") shiftPos <- 1 if (x_foo[, 1] == "branch") shiftPos <- 2 currentModel <- currentCladeModel param <- k * 2 + 1 currentModel <- list(currentModel, x_foo[2], cladeMembers) currentML <- currentModel[[1]]$value AIC <- aic.fun(currentModel[[1]]$value, param) AICc <- aicc.fun(currentModel[[1]]$value, param, n) out <- c(currentModel[[2]][, 1], shiftPos, currentModel[[1]]$value, param, AIC, AICc, currentModel[[1]]$par) return(out) } searchNodeList <- vector(mode = "list", length = length(searchNodeTypeAll[, 1])) for (i in 1:length(searchNodeTypeAll[, 1])) searchNodeList[[i]] <- searchNodeTypeAll[i, ] all.output <- parallel::mclapply(searchNodeList, FUN = foo2, k = k, currentNodeIDs = currentNodeIDs, currentRateType = currentRateType, mc.cores = n.cores) all.output <- matrix(unlist(all.output), nrow = length(searchNodeList), byrow = TRUE) best.out <- all.output[which.max(all.output[, 3]), ] fullModelOut[[k]] <- all.output BERateOut[k + 1, 1:(6 + k)] <- best.out bestModel[k, ] <- unlist(BERateOut[k + 1, 1:2]) if (sum(BERateOut[, "shiftPos"] == 1, na.rm = T) > 0) BERateOut[which(BERateOut[, "shiftPos"] == 1), "shiftPos"] <- "clade" if (sum(BERateOut[, "shiftPos"] == 2, na.rm = T) > 0) BERateOut[which(BERateOut[, "shiftPos"] == 2), "shiftPos"] <- "branch" cat("\n", "Shift", k) cat("\n") print(BERateOut[k + 1, c(1:(6 + k))]) } out <- list(as.data.frame(BERateOut), fullModelOut, y, phy) class(out) <- "traitMedusa" }, modeslice = { maxTime <- nodeTimes(phy)[1, 1] input <- lowerBound <- upperBound <- c() mode.order <- tolower(mode.order) count <- 1 if (methods::is(splitTime)[1] == "NULL") stop("please provide a shift time(s)") if (lambdaEst) stop("sorry Lambda estimation not applicable with modeslice model, sorry") if ((length(splitTime) + 1) != length(mode.order)) stop("mismatch between number of nodes and shift times") transformation <- c() if (any(is.na(match(mode.order, c("bm", "ou", "kappa", "acdc"))))) stop("mode.order must be a combination of 'bm', 'ou', 'kappa', and/or 'acdc'") for (x in 1:length(mode.order)) { if (mode.order[x] == "bm") { if (rate.var) { input[count] <- log(1) lowerBound[count] <- log(bounds["rate", 1]) upperBound[count] <- log(bounds["rate", 2]) count <- count + 1 transformation <- c(transformation, "log") } } if (mode.order[x] == "ou") { input[count] <- log(0.1) lowerBound[count] <- log(bounds["alpha", 1]) upperBound[count] <- log(bounds["alpha", 2]) count <- count + 1 transformation <- c(transformation, "log") } if (mode.order[x] == "kappa") { input[count] <- 0.1 lowerBound[count] <- log(bounds["kappa", 1]) upperBound[count] <- log(bounds["kappa", 2]) count <- count + 1 transformation <- c(transformation, "log") } if (mode.order[x] == "acdc") { if (acdcScalar) { input[count] <- log(1) lowerBound[count] <- log(1) upperBound[count] <- log(bounds["rate", 2]) count <- count + 1 transformation <- c(transformation, "log") } lowerBound[count] <- -10/nodeTimes(phy)[1, 1] upperBound[count] <- -1e-06 input[count] <- runif(1, lowerBound[count], upperBound[count]) count <- count + 1 transformation <- c(transformation, "none") } } n <- Ntip(phy) anc.loc <- length(lowerBound) + 1 lowerBound[anc.loc] <- upperBound[anc.loc] <- NA input[anc.loc] <- log(0.1) transformation <- c(transformation, "log") bm.loc <- length(lowerBound) + 1 lowerBound[bm.loc] <- log(1e-08) upperBound[bm.loc] <- NA input[bm.loc] <- log(0.1) transformation <- c(transformation, "log") var.fun.modeslice <- function(param) { input.in <- param[-c(anc.loc, bm.loc)] transform <- transformation[-c(anc.loc, bm.loc)] for (u in 1:length(transform)) if (transform[u] == "log") input.in[u] <- exp(input.in[u]) return(transformPhylo.ll(y = y, phy = phy, mode.order = mode.order, mode.param = input.in, model = "modeslice", mu = exp(param[anc.loc]), sigma.sq = exp(param[bm.loc]), splitTime = splitTime, covPIC = covPIC, rate.var = rate.var, cladeRates = acdcScalar, meserr = meserr)) } vo <- optim(input, var.fun.modeslice, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) res.par <- vo$par for (u in 1:length(transformation)) if (transformation[u] == "log") res.par[u] <- exp(res.par[u]) rm.param <- c(bm.loc, anc.loc) tre.tr <- function(mode.param.input) { transform <- transformation[-rm.param] for (u in 1:length(transform)) if (transform[u] == "log") mode.param.input[u] <- exp(mode.param.input[u]) vcv.matrix <- transformPhylo(y = y, phy = phy, mode.order = mode.order, mode.param = mode.param.input, model = "modeslice", splitTime = splitTime, rate.var = rate.var, cladeRates = acdcScalar, meserr = meserr) mu <- mu.mean(vcv.matrix, y)[1, 1] sigma.sq <- sig.sq(mu, vcv.matrix, y)[1, 1] reml.lik <- mvtnorm::dmvnorm(y[, 1], mean = rep(mu, ncol(vcv.matrix)), sigma = vcv.matrix * sigma.sq, log = TRUE) return(list(reml.lik = reml.lik, reml.sigma.sq = sigma.sq, reml.mu = mu)) } reml.out <- tre.tr(mode.param.input = vo$par[-rm.param]) vo$value[1] <- reml.out[[1]] if (modelCIs == TRUE) { ci.fun <- function(param.in, chiSq = TRUE) { param2 <- vo$par[-rm.param] param2[k] <- param.in ll <- tre.tr(param2)[[1]] if (chiSq) { return(ll - vo$value + 1.92) } else { return(ll) } } param <- vo$par[-rm.param] UCI <- LCI <- c() for (k in 1:length(param)) { lower.attempt <- try(uniroot(ci.fun, interval = c(lowerBound[k], param[k]))$root, silent = TRUE) if (is.numeric(lower.attempt)) { LCI[k] <- suppressWarnings(uniroot(ci.fun, interval = c(lowerBound[k], param[k]))$root) } else { LCI[k] <- lowerBound[k] lower.function.warning() } upper.attempt <- try(uniroot(ci.fun, interval = c(param[k], upperBound[k]))$root, silent = TRUE) if (is.numeric(upper.attempt)) { UCI[k] <- suppressWarnings(uniroot(ci.fun, interval = c(param[k], upperBound[k]))$root) } else { UCI[k] <- upperBound[k] upper.function.warning() } } } for (u in 1:length(param)) if (transformation[u] == "log") param[u] <- exp(param[u]) for (u in 1:length(param)) if (transformation[u] == "log") LCI[u] <- exp(LCI[u]) for (u in 1:length(param)) if (transformation[u] == "log") UCI[u] <- exp(UCI[u]) out <- list() out$MaximumLikelihood <- vo$value out$brownianVariance <- reml.out$reml.sigma.sq out$root.state <- reml.out$reml.mu count <- 1 for (x in 1:length(mode.order)) { if (mode.order[x] == "ou") x.name <- "alpha" if (mode.order[x] == "kappa") x.name <- "kappa" if (mode.order[x] == "acdc") x.name <- "acdc.rate" if (mode.order[x] == "bm") { if (rate.var) { if (!modelCIs) { x.temp <- matrix(param[count]) colnames(x.temp) <- "BM.rate" out[[length(out) + 1]] <- x.temp names(out)[length(out)] <- paste0("mode.", x, ".", mode.order[x]) count <- count + 1 } else { x.temp <- matrix(c(param[count], LCI[count], UCI[count]), nrow = 1) colnames(x.temp) <- c("BM.rate", "LCI", "UCI") out[[length(out) + 1]] <- x.temp names(out)[length(out)] <- paste0("mode.", x, ".", mode.order[x]) count <- count + 1 } } } else { if (!modelCIs) { if (x.name == "acdc.rate" && acdcScalar) { acdc <- param[count + 1] acdc.scale <- param[count] x.temp <- matrix(c(acdc, acdc.scale)) colnames(x.temp) <- c("acdc.rate", "acdc scalar") out[[length(out) + 1]] <- x.temp names(out)[length(out)] <- paste0("mode.", x, ".", mode.order[x]) count <- count + 2 } else { x.temp <- matrix(param[count]) colnames(x.temp) <- x.name out[[length(out) + 1]] <- x.temp names(out)[length(out)] <- paste0("mode.", x, ".", mode.order[x]) count <- count + 1 } } else { if (x.name == "acdc.rate" && acdcScalar) { acdc <- param[count + 1] acdc.lci <- LCI[count + 1] acdc.uci <- UCI[count + 1] scalar <- param[count] scalar.lci <- LCI[count] scalar.uci <- UCI[count] x.temp <- matrix(c(acdc, acdc.lci, acdc.uci, scalar, scalar.lci, scalar.uci), nrow = 1) colnames(x.temp) <- c("acdc.rate", "acdc.LCI", "acdc.UCI", "scalar", "scalar.LCI", "scalar.UCI") out[[length(out) + 1]] <- x.temp names(out)[length(out)] <- paste0("mode.", x, ".", mode.order[x]) count <- count + 2 } else { x.temp <- matrix(c(param[count], LCI[count], UCI[count]), nrow = 1) colnames(x.temp) <- c(x.name, "LCI", "UCI") out[[length(out) + 1]] <- x.temp names(out)[length(out)] <- paste0("mode.", x, ".", mode.order[x]) count <- count + 1 } } } } k <- 2 + length(param) out[length(out) + 1] <- aic.fun(vo$value, k) names(out)[length(out)] <- "AIC" out[length(out) + 1] <- aicc.fun(vo$value, k, n) names(out)[length(out)] <- "AICc" class(out) <- "modeSlice.ML" }, timeslice = { if (!is.null(splitTime) && !is.null(testShiftTimes)) print("Both splitTime and testShiftTimes provided so testShiftTimes will be ignored. Please set splitTime to NULL for testShiftTimes to be modelled.") maxTime <- nodeTimes(phy)[1, 1] n <- Ntip(phy) if (is.null(controlList["pgtol"])) controlList["pgtol"] <- 0.1 if (is.null(lowerBound)) { lowerBound <- bounds["rate", 1] } if (is.null(upperBound)) { upperBound <- bounds["rate", 2] } output.all <- FALSE if (is.null(splitTime)) { if (is.null(testShiftTimes)) { boundaryAge <- sort(boundaryAge, decreasing = TRUE) if ((maxTime - boundaryAge[1]) < 0) stop("Boundary age bigger than the tree age.") if (length(boundaryAge) == 2) { if ((maxTime - boundaryAge[2]) < 0) stop("Boundary age bigger than the tree age.") boundaryAge2 <- boundaryAge[2] boundaryAge <- boundaryAge[1] } else { boundaryAge2 <- boundaryAge } splitTime <- seq(maxTime - boundaryAge, boundaryAge2, -testAge) if (min(splitTime) > boundaryAge2) splitTime <- c(splitTime, boundaryAge2) splitTime.orig <- splitTime } else { splitTime <- unique(sort(testShiftTimes, decreasing = TRUE)) nSplits <- length(testShiftTimes) splitTime.orig <- splitTime } output.mat <- matrix(NA, nrow = (nSplits + 1), ncol = (3 + nSplits + (nSplits + 1)) + (2 * ncol(y))) bm.phy <- transformPhylo(phy = phy, model = "bm", meserr = meserr, y = y) bm.model <- likTraitPhylo(y, bm.phy, covPIC = covPIC) log.lik <- as.numeric(bm.model[[2]]) aic <- aic.fun(log.lik, 2) aicc <- aicc.fun(log.lik, 2, Ntip(phy)) anc.state <- apply(y, 2, function(col.y) as.numeric(as.numeric(ace(col.y, bm.phy, method = "pic")[[1]][1]))) colnames(output.mat) <- 1:ncol(output.mat) colnames(output.mat)[1:3] <- c("lnL", "AIC", "AICc") c.y <- ncol(y) colnames(output.mat)[4:(4 + c.y - 1)] <- paste0("sigma.sq.", 1:ncol(y)) n.c.ct <- (4 + c.y) colnames(output.mat)[n.c.ct:(n.c.ct + c.y - 1)] <- paste0("anc.state.", 1:ncol(y)) n.c.ct <- (n.c.ct + c.y):(n.c.ct + c.y + nSplits) colnames(output.mat)[n.c.ct] <- paste0("rates", 1:(nSplits + 1)) n.c.ct <- (max(n.c.ct) + 1):(max(n.c.ct) + nSplits) colnames(output.mat)[n.c.ct] <- paste0("time.split", 1:nSplits) to.here <- which(regexpr("rates", colnames(output.mat)) == 1)[1] - 1 output.mat[1, 1:to.here] <- c(log.lik, aic, aicc, as.numeric(diag(bm.model[[1]])), anc.state) print("BM model", quote = FALSE) print(output.mat[1, 1:to.here]) fixed.time <- NULL vo.out <- list() full.model.out <- list() if (saveAll) output.all <- TRUE for (q in 1:nSplits) { all.models <- parallel::mclapply(splitTime, mc.cores = n.cores, function(x_times) { splitTimeInt <- sort(c(x_times, fixed.time)) nSplitInt.n <- length(splitTimeInt) + 1 rateVec <- rep(1, nSplitInt.n) var.timeslice <- function(rate.vec) transformPhylo.ll(y, phy, timeRates = rate.vec, splitTime = splitTimeInt, model = "timeSlice", meserr = meserr, covPIC = covPIC)[[2]] vo <- optim(rateVec, var.timeslice, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) c(vo$par, vo$value) }) all.models <- sapply(all.models, cbind) colnames(all.models) <- splitTime rownames(all.models) <- c(paste0("rate ", 1:(q + 1)), "loglikelihood") full.model.out[[q]] <- all.models best.model.n <- which.max(all.models[nrow(all.models), ]) shift.time <- splitTime[best.model.n] fixed.time <- c(fixed.time, shift.time) splitTime <- splitTime[-which(splitTime == shift.time)] log.lik <- tail(all.models[, best.model.n], 1) rates <- all.models[, best.model.n][-dim(all.models)[1]] phy.temp <- transformPhylo(y = y, phy = phy, timeRates = rates, splitTime = fixed.time, model = "timeSlice", meserr = meserr) anc.state <- apply(y, 2, function(col.y) as.numeric(as.numeric(ace(col.y, phy = phy.temp, method = "pic")[[1]][1]))) bVar <- as.numeric(likTraitPhylo(y, phy.temp, covPIC = covPIC)[[1]]) param <- length(rates) + 2 aic <- aic.fun(log.lik, param) aicc <- aicc.fun(log.lik, param, Ntip(phy)) output.mat[q + 1, 1:to.here] <- c(log.lik, aic, aicc, bVar, anc.state) output.mat[q + 1, (to.here + 1):(to.here + length(rates))] <- rates start.time <- tail(1:dim(output.mat)[2], nSplits)[1:q] output.mat[q + 1, start.time] <- sort(fixed.time) na.test <- which(is.na(output.mat[q + 1, ])) print(paste("shift", q), quote = F) na.test <- which(is.na(output.mat[q + 1, ])) if (length(na.test) > 0) { print(output.mat[q + 1, -which(is.na(output.mat[q + 1, ]))]) } else { print(output.mat[q + 1, ]) } rateVec <- rep(1, length(rates)) var.timeslice <- function(rate.vec) transformPhylo.ll(y, phy, timeRates = rate.vec, splitTime = fixed.time, model = "timeSlice", meserr = meserr, covPIC = covPIC)[[2]] vo.out[[q]] <- optim(rateVec, var.timeslice, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) } } else { nSplits <- length(splitTime) rateVec <- rep(1, (nSplits + 1)) output.mat <- matrix(NA, nrow = 2, ncol = (3 + nSplits + length(rateVec)) + (2 * ncol(y))) bm.phy <- transformPhylo(phy = phy, model = "bm", meserr = meserr, y = y) bm.model <- likTraitPhylo(y, bm.phy, covPIC = covPIC) log.lik <- as.numeric(bm.model[[2]]) aic <- aic.fun(log.lik, 2) aicc <- aicc.fun(log.lik, 2, Ntip(phy)) anc.state <- apply(y, 2, function(col.y) as.numeric(as.numeric(ace(col.y, bm.phy, method = "pic")[[1]][1]))) colnames(output.mat) <- 1:ncol(output.mat) colnames(output.mat)[1:3] <- c("lnL", "AIC", "AICc") c.y <- ncol(y) colnames(output.mat)[4:(4 + c.y - 1)] <- paste0("sigma.sq.", 1:ncol(y)) n.c.ct <- (4 + c.y) colnames(output.mat)[n.c.ct:(n.c.ct + c.y - 1)] <- paste0("anc.state.", 1:ncol(y)) n.c.ct <- (n.c.ct + c.y):(n.c.ct + c.y + nSplits) colnames(output.mat)[n.c.ct] <- paste0("rates", 1:(nSplits + 1)) n.c.ct <- (max(n.c.ct) + 1):(max(n.c.ct) + nSplits) colnames(output.mat)[n.c.ct] <- paste0("time.split", 1:(nSplits)) to.here <- which(regexpr("rates", colnames(output.mat)) == 1)[1] - 1 output.mat[1, 1:to.here] <- c(log.lik, aic, aicc, as.numeric(diag(bm.model[[1]])), anc.state) print("BM model") print(output.mat[1, 1:to.here]) var.timeslice <- function(rate.vec) transformPhylo.ll(y, phy, timeRates = rate.vec, splitTime = splitTime, model = "timeSlice", meserr = meserr, covPIC = covPIC)[[2]] vo.out <- optim(rateVec, var.timeslice, method = "L-BFGS-B", lower = lowerBound, upper = upperBound, control = controlList) log.lik <- vo.out$value rates <- vo.out$par param <- length(rates) + 2 aic <- aic.fun(log.lik, param) aicc <- aicc.fun(log.lik, param, Ntip(phy)) phyTemp <- transformPhylo(y = y, phy = phy, timeRates = rates, splitTime = splitTime, model = "timeSlice", meserr = meserr) bVar <- as.numeric(likTraitPhylo(y, phyTemp, covPIC = covPIC)[[1]]) anc.state <- apply(y, 2, function(col.y) as.numeric(ace(col.y, phyTemp, method = "pic")[[1]][1])) output.mat[2, 1:to.here] <- c(log.lik, aic, aicc, bVar, anc.state) output.mat[2, (to.here + 1):(to.here + length(rates))] <- rates rt <- max(which(regexpr("rates", colnames(output.mat)) == 1)) + 1 full.rt <- ncol(output.mat) output.mat[2, rt:full.rt] <- splitTime print("shiftModel") print(output.mat[2, ]) } out <- list() out$timeSlice <- output.mat out$optim.output <- vo.out out$phy <- phy out$y <- y out$meserr <- meserr out$covPIC <- covPIC if (output.all) out$all.models <- full.model.out out$testShiftTimes <- testShiftTimes class(out) <- "timeSlice.ML" }) return(out) }
"mouse"
polylo <- function (x, degree = 1, monomial = FALSE) { if (degree >= 4) warning("This is not a smart polynomial routine. You may get numerical problems with a degree of 4 or more") x <- as.matrix(x) dn <- dimnames(x) dd <- dim(x) np <- dd[2] ad <- rep(1, ncol(x)) if (np == 1) monomial <- TRUE if (degree > 1) { if (monomial) { ad <- seq(degree) px <- x cc <- sapply(split(paste(diag(np)), rep(seq(np), rep(np, np))), paste, collapse = "") tx <- x for (i in 2:degree) { px <- px * tx x <- cbind(x, px) cc <- c(cc, sapply(split(paste(diag(np) * i), rep(seq(np), rep(np, np))), paste, collapse = "")) } } else { matarray <- array(x, c(dd, degree)) for (i in 2:degree) matarray[, , i] <- x^i matarray <- aperm(matarray, c(1, 3, 2)) x <- matarray[, , np, drop=TRUE] ad0 <- seq(degree) ad <- ad0 ncol.mat0 <- degree ncol.x <- degree d0 <- paste(ad0) cc <- d0 for (ii in seq(np - 1, 1)) { index0 <- rep(seq(ncol.mat0), ncol.x) index <- rep(seq(ncol.x), rep(ncol.mat0, ncol.x)) newad <- ad0[index0] + ad[index] retain <- newad <= degree mat0 <- matarray[, , ii, drop = TRUE] if (any(retain)) newmat <- mat0[, index0[retain]] * x[, index[retain]] else newmat <- NULL ddn <- paste(d0[index0[retain]], cc[index[retain]], sep = "") zeros <- paste(rep(0, nchar(cc[1])), collapse = "") cc <- paste(0, cc, sep = "") d00 <- paste(d0, zeros, sep = "") x <- cbind(mat0, x, newmat) cc <- c(d00, cc, ddn) ad <- c(ad0, ad, newad[retain]) ncol.x <- length(ad) } } if (!is.null(dn)) dn[[2]] <- cc else dn <- list(NULL, cc) dimnames(x) <- dn } attr(x, "degree") <- ad x }
add.fragment.coordinates <- function(id.data) { if( !is.data.frame(id.data) ) { stop('id.data must be a data frame'); } expanded.data <- id.data; if( 'target.id' %in% names(id.data) ) { target.coordinates <- get.id.components(id.data$target.id); target.coordinates <- as.data.table( do.call(rbind, target.coordinates) ); names(target.coordinates) <- paste0('target.', c('chr', 'start', 'end')); expanded.data <- cbind(expanded.data, target.coordinates); } if( 'bait.id' %in% names(id.data) ) { bait.coordinates <- get.id.components(id.data$bait.id); bait.coordinates <- as.data.table( do.call(rbind, bait.coordinates) ); names(bait.coordinates) <- paste0('bait.', c('chr', 'start', 'end')); expanded.data <- cbind(expanded.data, bait.coordinates); } for(column in names(expanded.data)[ grepl('\\.(start|end)$', names(expanded.data) ) ] ) { set(expanded.data, j = column, value = as.numeric( expanded.data[[ column ]] ) ); } return(expanded.data); }
summary.tam.linking <- function( object, file=NULL, ...) { tam_osink( file=file) cat("------------------------------------------------------------\n") tam_print_package_rsession(pack="TAM") cat( paste0("Linking of ", object$NS, " Studies\n") ) tam_print_call(object$CALL) tam_print_computation_time(object=object) type <- object$type cat("method","=", object$method, "\n") cat("type","=", type, " | ") if (type=="Hae"){ cat("Haebara Linking Method\n")} if (type=="RobHae"){ cat("Robust Haebara Linking Method:") cat(" pow","=", object$pow_rob_hae, "|") cat(" eps","=", object$eps_rob_hae, "") } if (type=="SL"){ cat("Stocking Lord Linking Method\n")} cat("\n------------------------------------------------------------\n") cat( "Number of Linking Items\n" ) obji <- object$N_common print(obji) cat("------------------------------------------------------------\n") cat( "Transformation Constants for Item Parameters\n" ) obji <- object$trafo_items obji <- round(obji,3) print(obji) cat("------------------------------------------------------------\n") cat( "Transformation Constants for Person Parameters\n" ) obji <- object$trafo_persons obji <- round(obji,3) print(obji) cat("------------------------------------------------------------\n") cat( "Means and Standard Deviations of Studies \n" ) obji <- object$M_SD obji <- round(obji,3) print(obji) tam_csink(file=file) }
rpartCVSingle <- function(data, covars, cvNum, cpTable, dropGrps, numCPLvls, minsplit, minbucket){ dropLoc <- which(dropGrps == cvNum) subData <- data[-dropLoc,, drop=FALSE] dropData <- data[dropLoc,, drop=FALSE] subCovs <- covars[-dropLoc,, drop=FALSE] dropCovs <- covars[dropLoc,, drop=FALSE] subRpartRes <- DM.Rpart.Base(subData, subCovs, FALSE, minsplit, minbucket)$fullTree subData <- subData/(rowSums(subData)) dropData <- dropData/(rowSums(dropData)) MSEn <- rep(NA, numCPLvls) subTree <- vector("list", numCPLvls) for(i in 1:numCPLvls){ subTree[[i]] <- rpart::prune(subRpartRes, cp=cpTable[i, 1]) pruneSubTree <- subTree[[i]] subPre <- predict(pruneSubTree, newdata=subCovs, type="vector") dropPre <- predict(pruneSubTree, newdata=dropCovs, type="vector") tempDist <- 0 for(j in 1:length(dropPre)) tempDist <- tempDist + (dist(rbind(dropData[j,], colMeans(subData[subPre == dropPre[j],]))))^2 MSEn[i] <- tempDist/length(dropPre) } names(MSEn) <- cpTable[,2] + 1 return(list(errorRate=MSEn, subTree=subTree)) }
divergent <- function (coordinates, currentES, proposedES){ dEdges <- which(currentES != proposedES) dNodes <- unique(as.vector(coordinates[, dEdges])) return (list(dEdges = dEdges, dNodes = dNodes)) }
unname <- function (obj, force = FALSE) { if (!is.null(names(obj))) names(obj) <- NULL if (!is.null(dimnames(obj)) && (force || !is.data.frame(obj))) dimnames(obj) <- NULL obj }
contToDisc <- function(dataSet, timeColumn, intervalLimits, equi=FALSE) { if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")} if(!(is.character(timeColumn))) {stop("Argument *timeColumn* is not in the correct format! Please specify as character.")} if(length(timeColumn)!=1) {stop("Argument *timeColumn* is not in the correct format! Please specify as scalar with length one.")} if(equi==FALSE) { if(!(is.vector(intervalLimits))) {stop("Argument *intervalLimits* is not in the correct format! Please specify as numeric vector.")} if(!(is.numeric(intervalLimits))) {stop("Argument *intervalLimits* is not in the correct format! Please specify as numeric vector.")} } if(equi==TRUE & length(intervalLimits) != 1) {stop("Argument *intervalLimits* is not in the correct format! Please specify an scalar integer value.")} if(equi==TRUE & any(floor(intervalLimits) != intervalLimits)) {stop("Argument *intervalLimits* is not in the correct format! Please specify an scalar integer value.")} if(any(class(tryCatch(dataSet [, timeColumn], error=function (e) e)) == "error")) {stop("*timeColumn* is not available in *dataSet*! Please specify the correct column of observed times.")} obsTime <- dataSet [, timeColumn] if(equi==FALSE) { intervalLimits <- c(0, intervalLimits) Check <- tryCatch(cut(obsTime, intervalLimits, right = FALSE), error=function (e) "Bug!") if(identical(Check, "Bug!")) { intervalLimits [-1] <- jitter(intervalLimits [-1], factor=0.01) } } timeDisc <- as.ordered(as.numeric(cut(obsTime, intervalLimits, right = FALSE))) dataSet <- cbind(timeDisc=timeDisc, dataSet) return(dataSet) } dataLong <- function (dataSet, timeColumn, censColumn, timeAsFactor=TRUE, remLastInt=FALSE, aggTimeFormat=FALSE, lastTheoInt=NULL) { if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")} if(!(is.character(timeColumn))) {stop("Argument *timeColumn* is not in the correct format! Please specify as character.")} if(length(timeColumn)!=1) {stop("Argument *timeColumn* is not in the correct format! Please specify as scalar with length one.")} if(!(is.character(censColumn))) {stop("Argument *censColumn* is not in the correct format! Please specify as character.")} if(length(censColumn)!=1) {stop("Argument *censColumn* is not in the correct format! Please specify as scalar with length one.")} if(any(class(tryCatch(dataSet [, timeColumn], error=function (e) e)) == "error")) { stop("*timeColumn* is not available in *dataSet*! Please specify the correct column of observed times.") } if(any(class(tryCatch(dataSet [, censColumn], error=function (e) e)) == "error")) { stop("*censColumn* is not available in *dataSet*! Please specify the correct column of the event indicator.") } if(!all(dataSet [, timeColumn]==floor(as.numeric(as.character(dataSet [, timeColumn]))))) { stop("*timeColumn* has not only integer values! Please convert the observed time in discrete intervals.") } if(!all(as.numeric(as.character(dataSet [, censColumn]))==0 | as.numeric(as.character(dataSet [, censColumn]))==1)) { stop("*censColumn* is not a binary vector! Please check, that events equals 1 and 0 otherwise.") } c1 <- which(eval(timeColumn)==colnames(dataSet)) c2 <- which(eval(censColumn)==colnames(dataSet)) if(aggTimeFormat){ obj <- rep(1:nrow(dataSet), each=lastTheoInt) } else{ obj <- rep(1:nrow(dataSet), as.vector(dataSet[, c1])) } dataSetLong <- dataSet[obj, ] if(aggTimeFormat){ if(timeAsFactor) { timeInt <- factor( rep(1:lastTheoInt, nrow(dataSet)) ) } else{ timeInt <- rep(1:lastTheoInt, nrow(dataSet)) } y <- c(unlist(apply(dataSet, 1, FUN = function(k) c(rep(0, as.numeric(k[c1])-1), as.numeric(k[c2]), rep(0, lastTheoInt - as.numeric(k[c1]) ) ) ))) } else{ if(timeAsFactor) { timeInt <- factor(unlist(apply(dataSet, 1, FUN = function(k) 1:k[c1]))) } else{ timeInt <- unlist(apply(dataSet, 1, FUN = function(k) 1:k[c1])) } y <- c(unlist(apply(dataSet, 1, FUN = function(k) c(rep(0, as.numeric(k[c1])-1), as.numeric(k[c2])) ))) } dataSetLong <- cbind(obj, timeInt, y, dataSetLong) if(remLastInt) { remInd <- which(dataSetLong$y==1 & dataSetLong$timeInt==max(as.numeric(as.character( dataSetLong$timeInt))) ) if(length(remInd)!=0) { dataSetLong <- dataSetLong[-remInd, ] } } return(dataSetLong) } dataLongTimeDep <- function (dataSet, timeColumn, censColumn, idColumn, timeAsFactor=TRUE) { if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")} if(!(is.character(timeColumn))) {stop("Argument *timeColumn* is not in the correct format! Please specify as character.")} if(length(timeColumn)!=1) {stop("Argument *timeColumn* is not in the correct format! Please specify as scalar with length one.")} if(!(is.character(censColumn))) {stop("Argument *censColumn* is not in the correct format! Please specify as character.")} if(length(censColumn)!=1) {stop("Argument *censColumn* is not in the correct format! Please specify as scalar with length one.")} if(any(class(tryCatch(dataSet [, timeColumn], error=function (e) e)) == "error")) { stop("*timeColumn* is not available in *dataSet*! Please specify the correct column of observed times.") } if(any(class(tryCatch(dataSet [, censColumn], error=function (e) e)) == "error")) { stop("*censColumn* is not available in *dataSet*! Please specify the correct column of the event indicator.") } if(any(class(tryCatch(dataSet [, idColumn], error=function (e) e)) == "error")) { stop("*idColumn* is not available in *dataSet*! Please specify the correct column of the identification number.") } if(!all(dataSet [, timeColumn]==floor(as.numeric(as.character(dataSet [, timeColumn]))))) { stop("*timeColumn* has not only integer values! Please convert the observed time in discrete intervals.") } if(!all(as.numeric(as.character(dataSet [, censColumn]))==0 | as.numeric(as.character(dataSet [, censColumn]))==1)) { stop("*censColumn* is not a binary vector! Please check, that events equals 1 and 0 otherwise.") } dataSet <- dataSet[order(dataSet [, idColumn]), ] splitDataSet <- split(x=dataSet, f=dataSet [, idColumn]) lengthSplitDataSet <- 1:length(splitDataSet) Counts <- lapply(splitDataSet, function (x) c(diff(x [, timeColumn]), 1)) SumCounts <- as.numeric(sapply(Counts, function (x) sum(x))) Indizes <- lapply(lengthSplitDataSet, function (x) rep(x=1:dim(splitDataSet [[x]])[1], times=Counts [[x]])) dataList <- lapply(lengthSplitDataSet, function (x) splitDataSet [[x]] [Indizes [[x]], ]) dataList <- do.call(rbind, dataList) dataListID <- lapply(lengthSplitDataSet, function (x) rep(x, SumCounts [x])) dataListID <- do.call(c, dataListID) dataListTimeInt <- lapply(lengthSplitDataSet, function (x) 1:SumCounts [x]) if(timeAsFactor) { dataListTimeInt <- factor(do.call(c, dataListTimeInt)) } else{ dataListTimeInt <- do.call(c, dataListTimeInt) } dataListResponse <- lapply(lengthSplitDataSet, function (x) c(rep(0, SumCounts [x]-1), as.numeric(as.character(tail(splitDataSet [[x]] [, censColumn], 1))))) dataListResponse <- do.call(c, dataListResponse) dataComplete <- cbind(obj=dataListID, timeInt=dataListTimeInt, y=dataListResponse, dataList) return(dataComplete) } dataLongCompRisks <- function (dataSet, timeColumn, eventColumns, eventColumnsAsFactor=FALSE, timeAsFactor=TRUE) { if(!is.data.frame(dataSet)) {stop("Argument *dataSet* is not in the correct format! Please specify as data.frame object.")} if(!(is.character(timeColumn))) {stop("Argument *timeColumn* is not in the correct format! Please specify as character.")} if(length(timeColumn)!=1) {stop("Argument *timeColumn* is not in the correct format! Please specify as scalar with length one.")} if(!all(is.character(eventColumns))) {stop("Argument *eventColumns* is not in the correct format! Please specify as character.")} if(any(class(tryCatch(dataSet [, timeColumn], error=function (e) e)) == "error")) { stop("*timeColumn* is not available in *dataSet*! Please specify the correct column of observed times.") } if(any(class(tryCatch(dataSet [, eventColumns], error=function (e) e)) == "error")) { stop("*eventColumns* is not available in *dataSet*! Please specify the correct column of the event indicator.") } if(!all(dataSet [, timeColumn]==floor(as.numeric(as.character(dataSet [, timeColumn]))))) { stop("*timeColumn* has not only integer values! Please convert the observed time in discrete intervals.") } if(eventColumnsAsFactor) { respFact <- dataSet[, eventColumns] respMat <- model.matrix(~., data.frame(respFact))[, -1] eventColumns <- levels(respFact)[-1] dimnames(respMat) [[2]] <- eventColumns dataSet <- cbind(respMat, dataSet) } checkVec <- vector("logical", length(eventColumns)) for(i in 1:length(eventColumns)) { checkVec [i] <- all(as.numeric(as.character(dataSet [, eventColumns [i] ]))==0 | as.numeric(as.character(dataSet [, eventColumns [i] ]))==1) } if(!all(checkVec)) { stop("*eventColumns* is not a binary vector! Please check, that events equals 1 and 0 otherwise.") } indextimeColumn <- which(eval(timeColumn)==colnames(dataSet)) indizeseventColumns <- sapply(1:length(eventColumns), function (x) which(eval(eventColumns [x])==colnames(dataSet))) dataSet_timeColumn <- as.numeric(as.character(dataSet[, indextimeColumn])) obj <- rep(1:nrow(dataSet), dataSet_timeColumn) dataSetLong <- dataSet[obj,] timeInt <- unlist(apply(dataSet, 1, FUN = function(k) 1:k[indextimeColumn])) if(timeAsFactor){timeInt <- factor(timeInt)} dataSet_eventColumns <- dataSet [, indizeseventColumns] eventColumnsorShort <- 1 - rowSums(dataSet_eventColumns) responsesShort <- as.matrix(cbind(eventColumnsorShort, dataSet_eventColumns)) dimnames(responsesShort) [[2]] <- 1:length(dimnames(responsesShort) [[2]]) NoeventColumns <- length(indizeseventColumns) responses <- matrix(0, nrow=0, ncol=NoeventColumns + 1) for(i in 1:dim(dataSet) [1]) { row_rep <- as.numeric(as.character(dataSet [i, indextimeColumn])) - 1 mat_temp <- matrix(rep(c(1, rep(0, NoeventColumns)), row_rep), nrow=row_rep, ncol=NoeventColumns + 1, byrow=TRUE) mat_temp <- rbind(mat_temp, responsesShort [i, ]) responses <- rbind(responses, mat_temp) } dimnames(responses) [[2]] <- paste("e", 0:NoeventColumns, sep="") if(eventColumnsAsFactor) { dataSetLong <- dataSetLong[, -which(names(dataSetLong) %in% eventColumns)] } dataSetLong <- cbind(obj, timeInt, responses, dataSetLong) return(dataSetLong) } dataLongCompRisksTimeDep <- function (dataSet, timeColumn, eventColumns, eventColumnsAsFactor=FALSE, idColumn, timeAsFactor=TRUE) { if(eventColumnsAsFactor) { respFact <- dataSet[, eventColumns] respMat <- model.matrix(~., data.frame(respFact))[, -1] eventColumns <- levels(respFact)[-1] dimnames(respMat) [[2]] <- eventColumns dataSet <- cbind(respMat, dataSet) } indizeseventColumns <- sapply(1:length(eventColumns), function (x) which(eval(eventColumns [x])==colnames(dataSet))) NoeventColumns <- length(indizeseventColumns) responsesShort <- cbind(1, matrix(0, nrow=nrow(dataSet), ncol=NoeventColumns)) namesEventColumnsNew <- paste("e", 0:NoeventColumns, sep="") dimnames(responsesShort) [[2]] <- namesEventColumnsNew dataSet <- cbind(responsesShort, dataSet) dataSet <- dataSet[order(dataSet [, idColumn]), ] splitDataSet <- split(x=dataSet, f=dataSet [, idColumn]) lengthSplitDataSet <- 1:length(splitDataSet) Counts <- lapply(splitDataSet, function (x) c(diff(x [, timeColumn]), 1)) SumCounts <- as.numeric(sapply(Counts, function (x) sum(x))) Indizes <- lapply(lengthSplitDataSet, function (x) rep(x=1:dim(splitDataSet [[x]])[1], times=Counts [[x]])) dataList <- lapply(lengthSplitDataSet, function (x) splitDataSet [[x]] [Indizes [[x]], ]) dataList <- do.call(rbind, dataList) dataListID <- lapply(lengthSplitDataSet, function (x) rep(x, SumCounts [x])) dataListID <- do.call(c, dataListID) dataListTimeInt <- lapply(lengthSplitDataSet, function (x) 1:SumCounts [x]) if(timeAsFactor) { dataListTimeInt <- factor(do.call(c, dataListTimeInt)) } else{ dataListTimeInt <- do.call(c, dataListTimeInt) } cumSumSumCounts <- cumsum(SumCounts) rowSumsPre <- rowSums(dataList [, eventColumns]) for(i in 1:length(cumSumSumCounts)) { if(rowSumsPre[ cumSumSumCounts[i] ]==1) { dataList[cumSumSumCounts[i], namesEventColumnsNew[1] ] <- 0 relCol <- which(dataList [cumSumSumCounts[i], eventColumns]==1) + 1 dataList[cumSumSumCounts[i], namesEventColumnsNew[relCol] ] <- 1 } } if(eventColumnsAsFactor) { dataList <- dataList[, -which(names(dataList) %in% eventColumns)] } dataComplete <- cbind(obj=dataListID, timeInt=dataListTimeInt, dataList) return(dataComplete) } dataCensoring <- function(dataSetLong, respColumn, timeColumn){ lastTimeInd <- c((which(dataSetLong[, timeColumn]==1)-1)[-1], dim(dataSetLong)[1]) ResultVec <- dataSetLong[, respColumn] ResultVec[lastTimeInd] <- ifelse(dataSetLong[lastTimeInd, "y"]==0, 1, NA) NewDataSet <- cbind(yCens = ResultVec, dataSetLong) return(NewDataSet) } dataCensoringShort <- function(dataSet, eventColumns, timeColumn){ ResultVec <- ifelse(rowSums(dataSet[, eventColumns, drop=FALSE])==0, 1, 0) deleteIndices <- ResultVec==0 & dataSet[, timeColumn]==1 dataSet <- dataSet[!deleteIndices, ] ResultVec <- ResultVec[!deleteIndices] timeCens <- as.numeric(as.character(dataSet[, timeColumn])) timeCens[ResultVec==0] <- timeCens[ResultVec==0]-1 NewDataSet <- cbind(yCens = ResultVec, timeCens=timeCens, dataSet) return(NewDataSet) } dataLongSubDist <- function(dataSet, timeColumn, eventColumns, eventFocus, timeAsFactor=TRUE) { eventColumns <- c(eventColumns[eventColumns==eventFocus], eventColumns[eventColumns!=eventFocus]) dataSet_timeColumn <- as.numeric(as.character(dataSet[, timeColumn])) tmax <- max(dataSet_timeColumn) delta_i <- rowSums(dataSet[, eventColumns])==1 epsilon_i <- sapply(1:dim(dataSet)[1], function(x) ifelse(delta_i[x], which(dataSet[x, eventColumns]==1), 0)) dataSet_timeColumn <- ifelse(delta_i & dataSet[, eventFocus] == 0, tmax, dataSet_timeColumn) obj <- rep(1:nrow(dataSet), each=tmax) timeInt <- c(sapply(1:length(dataSet_timeColumn), function(k) 1:tmax)) eventFocus <- dataSet[, eventFocus] y <- c(sapply(1:length(dataSet_timeColumn), function(k) c(rep(0, dataSet_timeColumn[k]-1), eventFocus[k], rep(0, tmax-dataSet_timeColumn[k]) ) )) estG <- estSurvCens(dataSet=dataSet, timeColumn=timeColumn, eventColumns=eventColumns) weights <- estG[timeInt] / estG[pmin(dataSet[obj, timeColumn], timeInt)] * (ifelse(timeInt <= dataSet[obj, timeColumn], 1, 0) + ifelse(dataSet[obj, timeColumn] <= (timeInt-1) & delta_i[obj] * epsilon_i[obj] > 1, 1, 0) ) if(timeAsFactor){timeInt <- factor(timeInt)} dataSetLong <- cbind(obj=obj, timeInt=timeInt, y=y, dataSet[obj, ]) Output <- cbind(dataSetLong, subDistWeights=weights) return(Output) } dataLongMultiSpell <- function(dataSet, timeColumn, censColumn, idColumn, timeAsFactor=FALSE){ if(!is.factor(dataSet[, censColumn])){ dataSet[, censColumn] <- factor(dataSet[, censColumn]) } eventExpand <- model.matrix(~.-1, dataSet[, censColumn, drop=FALSE]) dimnames(eventExpand)[[2]] <- paste("e", 0:(dim(eventExpand)[2]-1), sep="") dataSet <- cbind(obj=NA, timeInt=NA, eventExpand, dataSet) splitDat <- split(dataSet, dataSet[, idColumn]) lenSplitDat <- length(splitDat) for( j in 1:lenSplitDat ){ actualTime <- splitDat[[j]][, timeColumn] diffTime <- diff( actualTime ) defIndices <- 1:length(actualTime) if(actualTime[1] > 1){ defIndices <- c( defIndices, rep(1, actualTime[1]-1) ) } for( i in 1:length(diffTime) ){ if(length(diffTime) > 0){ if(diffTime[i] > 1){ defIndices <- c( defIndices, rep(i+1, diffTime[i]-1) ) } } } defIndices <- sort(defIndices) splitDat[[j]] <- splitDat[[j]][defIndices, ] splitDat[[j]][, "obj"] <- j splitDat[[j]][, "timeInt"] <- 1:dim(splitDat[[j]])[1] for( k in 1:length(actualTime) ){ if(length(splitDat[[j]][defIndices==k, "e0"]) > 1){ relInd <- which(defIndices==k) relInd <- relInd[-length(relInd)] splitDat[[j]][relInd, "e0"] <- 1 splitDat[[j]][relInd, paste("e", 1:(dim(eventExpand)[2]-1), sep="")] <- 0 } } } allDat <- as.data.frame(rbindlist(splitDat)) if(timeAsFactor){ allDat$timeInt <- factor(allDat$timeInt) } return(allDat) }
gfunction.alp.bet.cc <- function(para, map, ref, Delta, delta, ncase, nctrl, xi, pr){ nmodel <- length(map$bet) g.alp.bet <- list() n <- nrow(ref) const <- list() for(i in 1:nmodel){ id <- c(alp.index.cc(map, i), map$bet[[i]]) gam <- para[id] rx <- as.matrix(ref[, names(gam), drop = FALSE]) rho.i <- ncase[i, i] / nctrl[i, i] const[[i]] <- -rx * (delta[, i] * (1 - rho.i * delta[, i]) * (1 + rho.i * Delta) / (1 + rho.i * delta[, i])^3) } nlam <- max(map$lam) offset <- max(map$the) foo <- function(j, l){ paste0(j,'-',l) } for(i in 1:nmodel){ id.a <- alp.index.cc(map, i) if(is.null(id.a)){ next } id.b <- map$bet[[i]] id <- c(id.a, id.b) for(j in id.a){ fxj <- ref[, names(para)[j]] tmp <- const[[i]] * fxj for(l in id.b){ fxl <- ref[, names(para)[l]] gt <- matrix(0, nrow = n, ncol = nlam - 1) gt[, id - offset] <- tmp * fxl g.alp.bet[[foo(j,l)]] <- t(gt %*% xi) %*% pr } } } if(length(g.alp.bet) == 0){ g.alp.bet <- NULL } g.alp.bet }
bridge <- function() { left <- c(0, 1, 2.1, 3.2) right <- c(4.5, 2, 3.1, 4.2) data.frame(left = left, right = right) } clique <- function() { left <- 0:9 / 10 right <- left + 1 data.frame(left = left, right = right) } integers <- function() { left <- c(0, 0, 0, 1, 2) right <- c(0, 1, 2, 2, 2) data.frame(left = left, right = right) } parts <- function() { left <- sort(c(1:3, 1:3 + 0.1)) right <- left + 0.7 data.frame(left = left, right = right) } simple <- function() { left <- 0:2 * 0.5 + 1 right <- left + 0.75 data.frame(left = left, right = right) }
dmixing=function (x, sevdist, log = FALSE){ cmu=sevdist$par[[3]][[5]][1] ctau=sevdist$par[[3]][[5]][2] rx <- function(x, cmu, ctau) { (sevdist$par[[1]][[1]](x) - sevdist$par[[2]][[1]](x)) * atan((x - cmu)/ctau) } d = x r = try(pracma::quadinf(function(x){rx(x, cmu=cmu, ctau = ctau)}, xa = 0, xb=Inf)$Q) pweights = pcauchy(x, cmu, ctau) d = ((1 - pweights) * sevdist$par[[2]][[1]](x) + pweights * sevdist$par[[1]][[1]](x))/(1+r/pi) if (log) d = log(d) return(d) } pmixing=function (q, sevdist, lower.tail = TRUE){ sapply(q, function(q){ cmu=sevdist$par[[3]][[5]][1] ctau=sevdist$par[[3]][[5]][2] rx <- function(x, cmu, ctau) { (sevdist$par[[1]][[1]](x) - sevdist$par[[2]][[1]](x)) * atan((x - cmu)/ctau) } r = try(pracma::quadinf(function(x){rx(x, cmu = cmu, ctau = ctau)}, xa = 0,xb = Inf)$Q) p=NULL rx_body <- function(x, cmu, ctau) { (1 - pcauchy(x, cmu, ctau)) * sevdist$par[[2]][[1]](x) } rx_tail <- function(x, cmu, ctau) { pcauchy(x, cmu, ctau) * sevdist$par[[1]][[1]](x) } r1 = try(pracma::integral(function(x){rx_body(x,cmu = cmu, ctau = ctau)}, xmin = 0, xmax = q)) r2 = try(pracma::integral(function(x){rx_tail(x, cmu = cmu, ctau = ctau)}, xmin = 0, xmax = q)) p=c(p,(r1+r2)/(1+r/pi)) if (!lower.tail) p = 1 - p return(p) }) } qmixing<-function (p, sevdist, lower.tail = TRUE) { sapply(p, function(p){ if (!lower.tail) p = 1 - p q =uniroot(f = function(x) {pmixing(x,sevdist)-p}, interval= c(sevdist$par[[2]][[3]](p),sevdist$par[[1]][[3]](p)), extendInt = "yes")$root return(as.numeric(q)) }) } rmixing = function(n,sevdist){ rslt=NULL while(length(rslt)<n){ u=rbinom(1,1,.5) x=u*sevdist$par[[2]][[4]](1)+(1-u)*sevdist$par[[1]][[4]](1) p=sevdist$par[[3]][[2]](x) if(runif(1)<u*p+(1-u)*p) rslt=c(rslt,x) } return(rslt) }
initialize_ctv_env <- function(cran = FALSE) { .ctv_env <- new.env() .ctv_env$pkg_url <- if(cran) "../packages/%s/index.html" else "https://CRAN.R-project.org/package=%s" .ctv_env$view_url <- if(cran) "%s.html" else "https://CRAN.R-project.org/view=%s" .ctv_env$packagelist <- data.frame( name = character(0), core = logical(0), stringsAsFactors = FALSE ) .ctv_env$viewlist <- character(0) .ctv_env$otherlist <- data.frame( name = character(0), source = character(0), stringsAsFactors = FALSE ) return(.ctv_env) } .ctv_env <- initialize_ctv_env() pkg <- function(name, priority = "normal", register = TRUE) { if(register) { if(name %in% .ctv_env$packagelist$name) { if(identical(priority, "core")) .ctv_env$packagelist$core <- TRUE } else { .ctv_env$packagelist <- rbind(.ctv_env$packagelist, data.frame(name = name, core = identical(priority, "core"), stringsAsFactors = FALSE)) } } sprintf("[%s](%s)", name, sprintf(.ctv_env$pkg_url, name)) } view <- function(name, register = TRUE) { if(register) .ctv_env$viewlist <- unique(c(.ctv_env$viewlist, name)) sprintf("[%s](%s)", name, sprintf(.ctv_env$view_url, name)) } bioc <- function(name, register = TRUE) { if(register && !(name %in% .ctv_env$otherlist$name)) { .ctv_env$otherlist <- rbind(.ctv_env$otherlist, data.frame(name = name, source = "bioc", stringsAsFactors = FALSE)) } sprintf("[%s](https://www.Bioconductor.org/packages/release/bioc/html/%s)", name, name) } rforge <- function(name, register = TRUE) { if(register && !(name %in% .ctv_env$otherlist$name)) { .ctv_env$otherlist <- rbind(.ctv_env$otherlist, data.frame(name = name, source = "rforge", stringsAsFactors = FALSE)) } sprintf("[%s](https://R-Forge.R-project.org/projects/%s)", name, tolower(name)) } gcode <- function(name, register = TRUE) { if(register && !(name %in% .ctv_env$otherlist$name)) { .ctv_env$otherlist <- rbind(.ctv_env$otherlist, data.frame(name = name, source = "gcode", stringsAsFactors = FALSE)) } sprintf("[%s](https://code.google.com/archive/p/%s)", name, name) } ohat <- function(name, register = TRUE) { if(register && !(name %in% .ctv_env$otherlist$name)) { .ctv_env$otherlist <- rbind(.ctv_env$otherlist, data.frame(name = name, source = "ohat", stringsAsFactors = FALSE)) } sprintf("[%s](http://www.Omegahat.net/%s)", name, name) } github <- function(name, register = TRUE) { if(register && !(name %in% .ctv_env$otherlist$name)) { .ctv_env$otherlist <- rbind(.ctv_env$otherlist, data.frame(name = name, source = "github", stringsAsFactors = FALSE)) } sprintf("[%s](https://github.com/%s)", sapply(strsplit(name, "/", fixed = TRUE), "[", 2L), name) } doi <- function(name) { sprintf("[doi:%s](https://doi.org/%s)", name, name) } read_ctv_rmd <- function(file, cran = FALSE, format = "html") { assignInNamespace(".ctv_env", initialize_ctv_env(cran = cran), ns = "ctv") rmd <- readLines(file) file_rmd <- gsub("\\.([[:alnum:]]+)$", ".Rmd", basename(file)) file_md <- gsub("\\.Rmd$", ".md", file_rmd) format <- match.arg(format, c("html", "markdown")) x <- which(substr(rmd, 1L, 3L) == "---") if(length(x) < 2L) stop("YAML header missing or malformatted") x <- strsplit(rmd[(x[1L] + 1L):(x[2L] - 1L)], ": ") names(x) <- sapply(x, "[", 1L) x <- lapply(x, "[", 2L) if(!("url" %in% names(x))) x$url <- NULL if(!("source" %in% names(x))) x$source <- NULL odir <- getwd() tdir <- tempfile() if(!file.exists(tdir)) dir.create(tdir) setwd(tdir) on.exit(setwd(odir)) writeLines(rmd[-(1L:(which(substr(rmd, 1L, 3L) == "---")[2L]))], file_rmd) knitr::knit(file_rmd, quiet = TRUE) md <- readLines(file_md) li <- which(substr(md, 1L, 9L) == " if(length(li) < 1L) { links <- NULL } else { links <- md[(li + 1L):length(md)] md <- md[1L:(li - 1L)] links <- gsub("^\\* ", "\\\\item ", links) links <- gsub("^- ", "\\\\item ", links) links <- paste(links, collapse = " ") links <- gsub("^ *\\\\item *", "", links) links <- paste0(links, " ") links <- strsplit(links, " *\\\\item")[[1L]] links <- gsub("^ +", "", links) links <- gsub(" +$", "", links) links <- gsub(" +", " ", links) } otherlinks <- NULL if(length(.ctv_env$viewlist) > 0L) otherlinks <- c(otherlinks, paste("CRAN Task View:", view(sort(.ctv_env$viewlist)))) if(NROW(.ctv_env$otherlist) > 0L) { olinks <- .ctv_env$otherlist olinks <- olinks[order(tolower(sapply(strsplit(olinks$name, "/", fixed = TRUE), function(x) x[length(x)]))), , drop = FALSE] olinks$source <- factor(olinks$source, levels = c("bioc", "rforge", "github", "ohat", "gcode")) olinks <- olinks[order(olinks$source), , drop = FALSE] for(i in levels(olinks$source)) { ii <- which(olinks$source == i) if(length(ii) > 0L) otherlinks <- c(otherlinks, paste0( switch(i, "bioc" = "Bioconductor Package", "rforge" = "R-Forge Project", "github" = "GitHub Project", "ohat" = "Omegahat Package", "gcode" = "Google Code Project"), ": ", do.call(i, list(name = olinks$name[ii], register = FALSE)) )) } } x$info <- if(format == "html") pandoc(md) else md x$packagelist <- .ctv_env$packagelist[order(.ctv_env$packagelist$name), ] x$links <- links if(!is.null(x$links) && format == "html") { x$links <- as.character(pandoc(as.list(x$links))) x$links <- gsub("(^<p>)(.*)(</p>$)", "\\2", x$links) } x$otherlinks <- otherlinks if(!is.null(x$otherlinks) && format == "html") { x$otherlinks <- as.character(pandoc(as.list(x$otherlinks))) x$otherlinks <- gsub("(^<p>)(.*)(</p>$)", "\\2", x$otherlinks) } class(x) <- "ctv" return(x) } ctv_xml_to_rmd <- function(x) { file <- gsub("\\.ctv$", ".md", x) x0 <- xml2::read_xml(x) x <- read.ctv(x) reg <- x$packagelist reg$core <- c("pkg", "corepkg")[1L + reg$core] names(reg)[2L] <- "type" pkg <- sort(unique(xml2::xml_text(xml2::xml_find_all(x0, "//info//pkg")))) if(length(setdiff(pkg, reg$name)) > 0L) { warning("not all <pkg> listed in <packagelist>") reg <- rbind(reg, data.frame(name = setdiff(pkg, reg$name), type = "pkg", stringsAsFactors = FALSE)) } add_reg <- function(name) { rval <- sort(unique(xml2::xml_text(xml2::xml_find_all(x0, sprintf("//info//%s", name))))) rval <- if(length(rval) < 1L) { NULL } else { data.frame(name = rval, type = name, stringsAsFactors = FALSE) } return(rval) } reg <- rbind(reg, add_reg("view"), add_reg("rforge"), add_reg("gcode"), add_reg("bioc"), add_reg("ohat"), add_reg("github")) for(i in which(reg$type == "corepkg")) { nami <- reg$name[i] urli <- sprintf('<a href="../packages/%s/index.html">%s</a>', nami, nami) rmdi <- sprintf('`r_chunk_pkg("%s",priority="core")`', nami) x$info <- sub(urli, rmdi, x$info, fixed = TRUE) } make_url <- function(type, name) { switch(type, "pkg" = sprintf('<a href="../packages/%s/index.html">%s</a>', name, name), "view" = sprintf('<a href="%s.html">%s</a>', name, name), "rforge" = sprintf('<a href="https://R-Forge.R-project.org/projects/%s/"><span class="Rforge">%s</span></a>', tolower(name), name), "gcode" = sprintf('<a href="https://code.google.com/archive/p/%s/"><span class="Gcode">%s</span></a>', name, name), "bioc" = sprintf('<a href="https://www.Bioconductor.org/packages/release/bioc/html/%s.html"><span class="BioC">%s</span></a>', name, name), "ohat" = sprintf('<a href="http://www.Omegahat.net/%s/"><span class="Ohat">%s</span></a>', name, name), "github" = sprintf('<a href="https://github.com/%s/"><span class="GitHub">%s</span></a>', name, strsplit(name, "/", fixed = TRUE)[[1L]][2L]) ) } for(j in c("corepkg", "pkg", "view", "rforge", "gcode", "bioc", "ohat", "github")) { for(i in which(reg$type == j)) { typj <- if(j == "corepkg") "pkg" else j nami <- reg$name[i] urli <- make_url(typj, nami) rmdi <- sprintf('`r_chunk_%s("%s")`', typj, nami) x$info <- gsub(urli, rmdi, x$info, fixed = TRUE) } } x$info <- gsub("<tt>", "<code>", x$info, fixed = TRUE) x$info <- gsub("</tt>", "</code>", x$info, fixed = TRUE) x$info <- pandoc(x$info, from = "html", to = "markdown") x$info <- gsub("(<div>|</div>)", "", x$info) xi <- which(substr(x$info, 1L, 2L) == "**") x$info[xi] <- gsub("(\\*\\*)(.*)(\\*\\*)", " x$links <- pandoc(c("<ul>", paste0("<li>", x$links[substr(x$links, 1L, 3L) == "<a "], "</li>"), "</ul>"), from = "html", to = "markdown") x$header <- c("---", paste0(names(x)[1L:5L], ": ", unlist(x[1L:5L])), "---") writeLines(c( x$header, "", x$info, "", " x$links ), file) invisible(x) } pandoc <- function(x, ..., from = "markdown", to = "html", fixup = (from == "html" && to == "markdown")) { infile <- tempfile() outfile <- tempfile() on.exit(unlink(c(infile, outfile))) xlist <- is.list(x) if(xlist) { sep <- "\007\007\007\007\007" x <- unlist(lapply(x, c, c("", sep, ""))) } writeLines(x, infile) rmarkdown::pandoc_convert(input = infile, output = outfile, from = from, to = to, ...) rval <- readLines(outfile) if(fixup) { rval <- gsub("\\_chunk\\_", " ", rval, fixed = TRUE) rval <- gsub("_chunk_", " ", rval, fixed = TRUE) rval <- gsub("\\`", "`", rval, fixed = TRUE) rval <- gsub("\\\"", "\"", rval, fixed = TRUE) rval <- gsub("\\'", "'", rval, fixed = TRUE) rval <- gsub(',priority="core"', ', priority = "core"', rval, fixed = TRUE) } if(xlist) { ix <- grepl(sep, rval, fixed = TRUE) rval <- split(rval, c(0, head(cumsum(ix), -1L))) cleansep <- function(x) { n <- length(x) if(n < 1L) return(x) del <- c( if(x[1L] == "") 1L else NULL, if(n > 1L && grepl(sep, x[n], fixed = TRUE) && x[n - 1L] == "") n - 1L else NULL, if(x[n] %in% c(sep, paste0("<p>", sep, "</p>"))) n else NULL ) x[n] <- gsub(sep, "", x[n], fixed = TRUE) if(length(del) > 0L) return(x[-del]) else return(x) } rval <- lapply(rval, cleansep) } return(rval) }
chib_location <- function(s.l,X,y, verb){ beta <- do.call(rbind,s.l$beta) Sig <- s.l$Sig x.unit <- X Bprior <- s.l$priors$beta Sprior <- s.l$priors$Sig$S nu0 <- s.l$priors$Sig$nu0 M <- length(y) N <- nrow(y[[1]]) K <- ncol(y[[1]]) T <- ncol(beta) P <- nrow(beta) p.M <- P/M X.unit <- bdiag(replicate(M,x.unit,simplify = FALSE)) X.unit <- as.matrix(X.unit) X.shuffle <- matrix(1:(N*M), ncol = N, nrow = M, byrow = TRUE) X.shuffle <- as.vector(X.shuffle) X.unit <- X.unit[X.shuffle,] X <- do.call("rbind", replicate(K, X.unit, simplify=FALSE)) y.reorg <- list() X.N <- list() for(i in 1:N){ y.reorg[[i]] <- matrix(NA,ncol = K, nrow = M) X.N[[i]] <- X.unit[((i-1)*M+1):(i*M),] for(j in 1:M){ y.reorg[[i]][j,] <- y[[j]][i,] } } ybar <- lapply(y.reorg,rowMeans) ybar <- do.call(rbind, ybar) ybar <- as.vector(t(ybar)) Y <- do.call(rbind,y.reorg) Y <- as.vector(Y) S0 <- Bprior$V0 B0 <- Bprior$mu0 S0i <- solve(S0) S0iB0 <- S0i %*% B0 B.bar <- apply(beta,1,mean) Sig.bar <- list() for(j in 1:N){ Sig.bar[[j]] <- apply(Sig[[j]],1,mean) } Sig.barfull <- list() Si.full <- Bcov.full <- list() S <- matrix(NA, M,M) postB <- rep(NA, times = T) lpost.Sig <- rep(NA, times = M) lprior.Sig <- rep(NA, times = M) Si <- list() if(verb != 0){ message("Approximating integral for log-marignal likelihood") pb <- txtProgressBar(min = 0, max = T/100, initial = 0, style = 3) step <- 0 } for(t in 1:T){ if(verb != 0 & (t/100) %% 1 == 0){ step <- step + 1 setTxtProgressBar(pb,value = step) } for(i in 1:N){ s <- Sig[[i]][,t] S[upper.tri(S, diag = TRUE)] <- s S[lower.tri(S)] <- t(S)[lower.tri(S)] Si[[i]] <- solve(S) } Wi <- as.matrix(bdiag(Si)) XtWiX <- t(X.unit) %*% Wi %*% X.unit * K cov.use <- solve(XtWiX + S0i) bhat <- cov.use %*% (S0iB0 + t(X.unit)%*%Wi %*% ybar * K) postB[t] <- dtmvnorm(B.bar, mean = bhat[,1], sigma = cov.use, lower = rep(0, times= P)) } if(verb != 0){close(pb)} lpostB <- log(mean(postB)) for(i in 1:N){ s <- Sig.bar[[i]] S[upper.tri(S, diag = TRUE)] <- s S[lower.tri(S)] <- t(S)[lower.tri(S)] Sig.barfull[[i]] <- S B.use <- B.bar[(((i-1)*p.M)+1):(i*p.M)] xB <- X.N[[i]] %*% B.bar xB <- xB[,1] psi <- matrix(0, ncol = M, nrow = M) for(j in 1:K){ psi <- (y.reorg[[i]][,j] - xB) %*% t(y.reorg[[i]][,j] - xB) + psi } psi <- psi + Sprior[[i]]*(nu0) lpost.Sig[i] <- dinvwishart(S,nu0+K,psi, log= TRUE) lprior.Sig[i] <- dinvwishart(S,nu0,Sprior[[i]]*nu0, log = TRUE) } lpriorB <- dtmvnorm(B.bar, mean = B0, sigma = S0, lower =rep(0, times = P), log = TRUE) lpost <- sum(lpost.Sig) + lpostB lprior <- sum(lprior.Sig) + lpriorB Omega <- bdiag(rep(Sig.barfull, times = K)) llik <- dtmvnorm(Y,mean = as.numeric(X%*%B.bar), sigma = Omega, lower =rep(0, times = length(Y)), log = TRUE) lml <- llik + lprior - lpost return(list(lpost = lpost, llik = llik, lprior =lprior, lml= lml)) }
mask_img <- function(img, mask, allow.NA = TRUE ){ UseMethod("mask_img") } mask_img.default = function(img, mask, allow.NA = TRUE){ img = check_nifti(img) stopifnot(inherits(img, "nifti")) mask = ensure_array(mask) check_mask_fail(mask = mask, allow.NA = allow.NA, allow.array = TRUE) niftiarr(img, img * mask) } mask_img.nifti = function(img, mask, allow.NA = TRUE){ mask = ensure_array(mask) mask_img.default(img = img, mask = mask, allow.NA = allow.NA) } mask_img.anlz = function(img, mask, allow.NA = TRUE){ img = as.nifti(img) mask_img.nifti(img = img, mask = mask, allow.NA = allow.NA) } mask_img.array = function(img, mask, allow.NA = TRUE){ mask = ensure_array(mask) check_mask_fail(mask = mask, allow.NA = allow.NA, allow.array = TRUE) img * mask } mask_img.niftiImage = function(img, mask, allow.NA = TRUE){ mask = ensure_array(mask) check_mask_fail(mask = mask, allow.NA = allow.NA, allow.array = TRUE) img * mask }
"scaleConList" <- function (conList, specList) { maxDim <- max(unlist(lapply(conList, ncol))) listProd <- vector("list", maxDim) for(i in 1:length(conList)) { for(j in 1:maxDim) { if(j <= ncol(conList[[i]])) { dtemp <- abs(conList[[i]][,j] %*% t(specList[[i]][,j])) listProd[[j]] <- append(listProd[[j]], dtemp) } } } compMax <- unlist(lapply(listProd, max)) maxall <- max(compMax) factScale <- sqrt(compMax / maxall) for(i in 1:length(conList)) { conListMax <- apply(conList[[i]], 2, max) conList[[i]] <- t(t(conList[[i]]) * (factScale / conListMax)) } conList }
NULL validateProbUnDes <- function(object) { errors <- character() if(length(errors) == 0) TRUE else errors } setClass("probUnDesirable", slots = c(D = "data.frame", design = "character", N = "numeric", K = "numeric", desFuncs = "character", weights = "numeric"), validity = validateProbUnDes) setMethod("$", "probUnDesirable", function(x, name) slot(x, name)) setMethod("show", "probUnDesirable", function(object) { cat("\nObject of class \"", class(object)[1],"\"\n\n", sep="") names <- slotNames(object) names <- names[!(names == "D")] for(name in names) { if(is.numeric(slot(object, name))){ cat(name, "=", round(slot(object, name), digits = 3), "\n") } else{ cat(name, "=", slot(object, name), "\n") } } cat("\n") object@D <- round(object@D, digits = 3) print(object@D) cat("\n") } ) NULL setGeneric("probUnDes", function(desScore) standardGeneric("probUnDes")) setMethod("probUnDes", signature(desScore = "desScores"), function(desScore) { stopifnot(is(desScore, "desScores")) D <- desScore$D[, -c(1,2), drop = FALSE] W <- apply(D, 2, function(x) which(x==0)) if(is.matrix(W)){ dColnames <- colnames(W) } else{ dColnames <- names(W) max.length <- max(sapply(W, length)) W <- data.frame(lapply(W, function(v) { c(v, rep(0, max.length-length(v)))})) } P <- desScore$D[2] Z <- data.frame(t(apply(W, 2 , function(x) sum(P[x,])))) rownames(Z) <- "1" colnames(Z) <- unlist(lapply(dColnames, function(x) paste("P(", x, "=0)", sep = ""))) new("probUnDesirable", D = Z, design = desScore$design, N = desScore$N, K = desScore$K, desFuncs = desScore$desFuncs, weights = desScore$weights) } )
netphenogeno = function(data, method = "gibbs", rho = NULL, n.rho = NULL, rho.ratio = NULL, ncores = 1, em.iter = 5, em.tol = .001, verbose = TRUE) { gcinfo(FALSE) if(!is.matrix(data)) data <- as.matrix(data) if(ncores == "all") ncores <- detectCores() - 1 if(is.null(em.iter)) em.iter = 5 if(is.null(em.tol)) em.tol = 0.001 data <-cleaning.dat(data) n = nrow(data) p = ncol(data) result = list() if( method == "gibbs" || method== "approx" ) { if( method == "gibbs") { if((is.null(rho)) && (is.null(n.rho)) ) n.rho = 6 if(! is.null(rho)) n.rho = length(rho) if(is.null(rho.ratio)) { if( p <= 50) rho.ratio = 0.3 else rho.ratio = 0.35 } est = vector("list", n.rho) for(chain in 1 : n.rho ) { if(verbose) { m <- paste(c("Reconstructing genotype-phenotypes networks is in progress ... :", floor(100 * chain/n.rho), "%"), collapse="") cat(m, "\r") flush.console() } if( chain == 1) { est[[chain]] = vector("list", n.rho) Theta = sparseMatrix(i = 1:ncol(data), j = 1:ncol(data), x = 1) est[[chain]] = Gibbs_method(data, rho=rho, n_rho=n.rho, rho_ratio=rho.ratio, Theta = Theta, ncores = ncores, chain = chain, max.elongation = em.iter, em.tol=em.tol) }else{ est[[chain]] = vector("list", n.rho) Theta = est[[(chain - 1)]]$Theta Theta = as(Theta, "dgTMatrix") Theta = as(Theta, "sparseMatrix") est[[chain]] = Gibbs_method(data, rho=rho, n_rho=n.rho, rho_ratio=rho.ratio, Theta= Theta, ncores = ncores, chain = chain, max.elongation = em.iter, em.tol=em.tol) } } rm(Theta) gc() } if(method == "approx") { if( !is.null(rho) ) n.rho = length(rho) if( is.null(n.rho) ) n.rho = 6 if(is.null(rho.ratio)) rho.ratio = 0.4 ini = initialize(data, rho = rho, n_rho = n.rho, rho_ratio = rho.ratio, ncores=ncores ) rho = ini$rho Z = ini$Z ES = ini$ES lower_upper = ini$lower_upper rm(ini) gc() est <- vector("list", n.rho) for(chain in 1 : n.rho) { if(verbose) { m <- paste(c("Reconstructing genotype-phenotypes networks is in progress ... :", floor(100 * chain/n.rho), "%"), collapse="") cat(m, "\r") flush.console() } est[[chain]] <- vector("list", n.rho) est[[(chain)]] <- approx_method(data, Z, ES=ES, rho=rho, lower_upper=lower_upper, chain = chain, ncores = ncores, em_tol=em.tol, em_iter=em.iter) } rm(lower_upper) gc() } result$Theta = vector("list", n.rho) result$path = vector("list", n.rho) result$ES = vector("list", n.rho) result$Z = vector("list", n.rho) result$rho = vector() result$loglik = vector() result$data = data rm(data) for(chain in 1:n.rho) { result$Theta[[chain]] = est[[chain]]$Theta if(!is.null(colnames(result$data))) colnames(result$Theta[[chain]]) = colnames(result$data) result$path[[chain]] = abs(sign(result$Theta[[chain]])) - Diagonal(p) result$ES[[chain]] = est[[chain]]$ES result$Z[[chain]] = est[[chain]]$Z result$rho[chain] = est[[chain]]$rho result$loglik[chain] = est[[chain]]$loglik } rm(est) if(verbose) cat("Reconstructing genotype-phenotypes networks done. \n") }else{ if( method == "npn" ){ if(verbose) { m <- paste("Reconstructing genotype-phenotypes networks is in progress ... \n") cat(m, "\r") flush.console() } if((is.null(rho)) && (is.null(n.rho)) ) n.rho = 6 if(! is.null(rho)) n.rho = length(rho) if(is.null(rho.ratio)) { if( p <= 50) rho.ratio = 0.25 else rho.ratio = 0.3 } if( any(is.na(data)) ) npn.func = "shrinkage" else npn.func = "skeptic" tdata <- npn(data, npn.func= npn.func) est <- huge(tdata, lambda= rho, nlambda=n.rho, lambda.min.ratio=rho.ratio, method="glasso", verbose=FALSE) result$Theta = est$icov result$path = est$path result$rho = est$lambda result$loglik = n/2 * (est$loglik) result$data = data rm(est) if(verbose) { m <- paste("Reconstructing genotype-phenotype networks done. \n") cat(m, "\r") flush.console() } } } class(result) = "netgwas" return(result) } plot.netgwas = function( x, n.markers=NULL , ...) { if(length(x$rho) == 1 ) par(mfrow = c(1, 2), pty = "s", omi=c(0.3,0.3,0.3,0.3), mai = c(0.3,0.3,0.3,0.3)) if(length(x$rho) == 2 ) par(mfrow = c(2, 2), pty = "s", omi=c(0.3,0.3,0.3,0.3), mai = c(0.3,0.3,0.3,0.3)) if(length(x$rho) >= 3 ) par(mfrow = c(2, ceiling(length(x$rho)/2)), pty = "s", omi=c(0.3,0.3,0.3,0.3), mai = c(0.3,0.3,0.3,0.3)) for(chain in 1:length(x$rho)) { if(length(x$rho) == 1 ) image(as.matrix(x$path[[chain]]), col = gray.colors(256), xlab= "", ylab="" ,main=paste( "rho ", x$rho[chain], sep="")) if(length(x$rho) == 2 ) image(as.matrix(x$path[[chain]]), col = gray.colors(256), xlab= "", ylab="" ,main=paste( "rho ", x$rho[chain], sep="")) adj = graph.adjacency(as.matrix(x$path[[chain]]), mode="undirected", diag=FALSE) if(is.null(n.markers)) { memberships = 1 vertex.color = "red" }else{ LG = length(n.markers) memberships = NULL i = 1 while( i <= LG){ grp <- rep(i, n.markers[i]) memberships = c(memberships, grp) i = i + 1 } if(chain == 1){ color = sample(terrain.colors(max(memberships) + 10), max(memberships)) cl = color[memberships] } vertex.color = cl } adj$layout = layout.fruchterman.reingold plot(adj, vertex.color = vertex.color, edge.color='gray40', vertex.size = 7, vertex.label = NA , vertex.label.dist = NULL) } if(length(memberships) > 1) legend("bottomright", paste("group", 1:length(n.markers)), cex=0.7, col= color, pch=rep(20,10)) } print.netgwas = function(x, ...){ cat("Estimated a graph path for", length(x$rho), "penalty term(s)" , "\n") cat("Number of variables: p =", ncol(x$data), "\n") cat("Number of sample size: n =", nrow(x$data), "\n") sparsLevel <- sapply(1:length(x$rho), function(i) sum(x$Theta[[i]])/ncol(x$data)/(ncol(x$data)-1)) cat("Sparsity level for each graph in the path:", sparsLevel,"\n") cat("To visualize the graph path consider plot() function \n") cat("To SELECT an optimal graph consider selectnet() function \n") }
sad <- function(object, n, show_original = FALSE, show_contour = FALSE, nrow = NULL, ncol = NULL, ...){ patt <- object$parms$pattern h <- object$parms$img_healthy s <- object$parms$img_symptoms b <- object$parms$img_background dir <- object$parms$dir_original dir_proc <- object$parms$dir_processed save_image <- object$parms$save_image nsamples <- n measures <- transform(object$severity, rank = rank(symptomatic)) n <- nrow(measures) seq <- trunc(seq(1, n, length.out = nsamples)) seq[c(1, length(seq))] <- c(1, n) leaves <- measures[which(measures$rank %in% seq),] leaves <- leaves[order(leaves$rank),] leaves_name <- paste0("proc_", leaves$img, ".jpg") if(isFALSE(save_image)){ if(is.null(patt) | is.null(h) | is.null(s)){ stop("'pattern', 'img_healthy', and 'img_symptoms' are mandatory arguments.") } td <- tempdir() temp <- measure_disease(pattern = patt, img_healthy = h, img_symptoms = s, img_background = b, dir_original = dir, dir_processed = td, show_original = show_original, show_contour = FALSE, save_image = TRUE, parallel = TRUE, verbose = FALSE, ...) sads <- image_import(leaves_name, path = td) image_combine(sads, labels = paste0(round(leaves$symptomatic, 1), "%"), ncol = ncol, nrow = nrow) } else{ sads <- image_import(leaves_name, path = dir_proc) image_combine(sads, labels = paste0(round(leaves$symptomatic, 1), "%"), ncol = ncol, nrow = nrow) } return(leaves) }
utils::globalVariables(c("objFAMDshiny","myListOfThingsFAMDshiny")) FAMDshiny <- function(X){ G <- .GlobalEnv assign("objFAMDshiny",ls(all.names=TRUE, envir=G),envir=G) assign("x",X, envir=G) assign("nomData",sys.calls()[[1]][2], envir=G) if (!(inherits(X, "FAMDshiny") | inherits(X, "data.frame") | inherits(X, "matrix") | inherits(X, "FAMD"))){ stop(gettext('X is not a dataframe, a matrix, the results of the FAMDshiny function or a FAMD result',domain="R-Factoshiny")) } if (is.matrix(X)==TRUE) X <- as.data.frame(X) if(is.data.frame(X)==TRUE){ quanti=names(which(sapply(X,is.numeric))) quali=names(which(!(sapply(X,is.numeric)))) if(length(quanti)==0 || length(quali)==0) stop(gettext('Your dataset is not mixed',domain="R-Factoshiny")) } outShiny <-shiny::runApp(system.file("FactoFAMDapp2", package="Factoshiny"),launch.browser = TRUE) assign("myListOfThingsFAMDshiny",setdiff(ls(all.names=TRUE,envir=G),c("outShiny",objFAMDshiny)),envir=G) rm(list=myListOfThingsFAMDshiny, envir=G) rm(list=c("myListOfThingsFAMDshiny"),envir=G) if (outShiny$hcpcparam==TRUE) resHCPC <- HCPCshiny(outShiny) return(invisible(outShiny)) }
library(hamcrest) he <- as.environment("package:hamcrest") print(he) assertFalse(is.null(attr(he, "path"))) library(utils) print(.Library) print(file.path(.Library, "base")) print(packageDescription("base")) si <- sessionInfo() hamcrest <- si$otherPkgs$hamcrest str(hamcrest) assertFalse(is.null(hamcrest)) hv <- hamcrest$Version assertTrue(compareVersion('0.0.0',hv) < 0)
angoff<-function(x, split.method="even.odd", missing="complete", standardize=FALSE){ n <- dim(x)[1] p <- dim(x)[2] sigma <- impute.cov(x, missing) if(standardize==TRUE){ sigma <- cov2cor(sigma) } if(split.method[1]=="even.odd") t1t.split<-rep(c(1,0),ceiling(p/2))[1:p] if(split.method[1]=="random") t1t.split<-round(runif(p)) if(split.method[1]=="evenly.random") t1t.split<-sample(rep(c(1,0),ceiling(p/2))[1:p]) if(split.method[1]==1 | split.method[1]==0) t1t.split<-split.method if(length(t1t.split)!=p) warning("The length of split is not the same as the number of items") Split<-t1t.split t1<-matrix(Split, ncol=1) t1t<-t(t1) t2<-(t1-1)*-1 t2t<-t(t2) angoff<-4*(t1t%*%sigma%*%t2)/(sum(sigma)-((t1t%*%sigma%*%t1-t2t%*%sigma%*%t2)/sqrt(sum(sigma)))^2) result<-list(angoff=angoff, Split=Split) class(result)<-c("angoff") return(result) }
test_me <- function(x, y) { if (TRUE) { x + y } else { 0 } }
test.log_ss_ratio <- function() { dataPath <- file.path(path.package(package="clusterCrit"),"unitTests","data","testsInternal_400_4.Rdata") load(file=dataPath, envir=.GlobalEnv) idx <- intCriteria(traj_400_4, part_400_4[[4]], c("Log_SS_Ratio")) cat(paste("\nFound idx =",idx)) val <- 3.40114842491597 cat(paste("\nShould be =",val,"\n")) checkEqualsNumeric(idx[[1]],val) }
img.file <- file.path( R.home("doc"), "html", "logo.jpg" ) fpt_blue_bold <- fp_text(color = " fpt_red_italic <- fp_text(color = " value <- block_list( fpar(ftext("hello world", fpt_blue_bold)), fpar(ftext("hello", fpt_blue_bold), " ", ftext("world", fpt_red_italic)), fpar( ftext("hello world", fpt_red_italic), external_img( src = img.file, height = 1.06, width = 1.39))) value doc <- read_docx() doc <- body_add(doc, value) print(doc, target = tempfile(fileext = ".docx")) value <- block_list( fpar(ftext("hello world", fpt_blue_bold)), fpar(ftext("hello", fpt_blue_bold), " ", ftext("world", fpt_red_italic)), fpar( ftext("blah blah blah", fpt_red_italic))) value doc <- read_pptx() doc <- add_slide(doc) doc <- ph_with(doc, value, location = ph_location_type(type = "body")) print(doc, target = tempfile(fileext = ".pptx"))
`.form.data` <- function (ordered.info, m, n, Xmat, XmatNames = NULL) { data <- data.frame(cbind(sort(rep(seq(1, n), m)), rep(0, m * n), rep(ordered.info$obs.t, each = m), rep(seq(0, (m-1)), n), rep(seq(0, (m-1)), n) + 1, Xmat)) if (is.null(XmatNames) == TRUE) { XmatNames <- paste("X", seq(1, dim(Xmat)[2]), sep = "") } colnames(data) <- c("Id", "Event", "Fup", "Start", "Stop", XmatNames) data$Event[data$Stop == data$Fup & rep(ordered.info$d, each = m) == 1] <- 1 data <- subset(data, data$Stop <= data$Fup) } `.partialHazards` <- function (t, v, covArray, betas) { if (length(betas) > 1) {return(exp(covArray[v, t, ] %*% betas))} else {return(exp(covArray[v, t, ] * betas))} } `.PermuteCovariateVectors` <- function (t, d, count, I, covArray, betas) { n = sum(count[I]) p <- integer(n) v <- seq(n) ip = 1 for (k in I) { if (d[k]) { J = sample(length(v), size = count[k], replace = FALSE, prob = .partialHazards(t[k], v, covArray, betas)) } else { J = sample(length(v), size = count[k], replace = FALSE, prob = NULL) } p[seq(from = ip, along.with = J)] <- v[J] ip <- ip + count[k] v = v[-J] } return(p) }
icc <- function(fit, obj.name) { if (!requireNamespace("lme4", quietly = TRUE)) { stop("Package `lme4` needed for this function to work. Please install it.", call. = FALSE) } fitfam <- stats::family(fit)$family is_negbin <- grepl(ignore.case = TRUE, pattern = "Negative Binomial", x = fitfam) reva <- lme4::VarCorr(fit) vars <- lapply(reva, function(x) x[[1]]) tau.00 <- sapply(vars, function(x) x[1]) tau.11 <- unlist(lapply(reva, function(x) diag(x)[-1])) if (inherits(fit, "glmerMod") && fitfam == "binomial") { resid_var <- (pi ^ 2) / 3 } else if (inherits(fit, "glmerMod") && is_negbin) { resid_var <- 0 } else { resid_var <- attr(reva, "sc") ^ 2 } total_var <- sum(sapply(vars, sum), resid_var) if (is_negbin) { beta <- as.numeric(lme4::fixef(fit)["(Intercept)"]) r <- lme4::getME(fit, "glmer.nb.theta") ri.icc <- (exp(tau.00) - 1) / ((exp(total_var) - 1) + (exp(total_var) / r) + exp(-beta - (total_var / 2))) } else { ri.icc <- tau.00 / total_var } has_rnd_slope <- unlist(lapply(reva, function(x) dim(attr(x, "correlation"))[1] > 1)) tau.01 <- rho.01 <- NULL if (any(has_rnd_slope)) { rnd_slope <- reva[has_rnd_slope] cor_ <- lapply(rnd_slope, function(x) attr(x, "correlation")[1, 2]) std_ <- lapply(rnd_slope, function(x) prod(attr(x, "stddev"))) tau.01 <- apply(as.matrix(cbind(unlist(cor_), unlist(std_))), MARGIN = 1, FUN = prod) rho.01 <- unlist(cor_) } names(ri.icc) <- names(reva) class(ri.icc) <- c("icc.lme4", class(ri.icc)) attr(ri.icc, "family") <- stats::family(fit)$family attr(ri.icc, "link") <- stats::family(fit)$link attr(ri.icc, "formula") <- stats::formula(fit) attr(ri.icc, "model") <- ifelse(inherits(fit, "glmerMod"), "Generalized linear mixed model", "Linear mixed model") attr(ri.icc, "tau.00") <- tau.00 attr(ri.icc, "tau.01") <- tau.01 attr(ri.icc, "rho.01") <- rho.01 attr(ri.icc, "tau.11") <- tau.11 attr(ri.icc, "sigma_2") <- resid_var return(ri.icc) } get_re_tables_mer <- function(model, re.variance, groups, ngroups, iccs) { gvmat <- matrix(ncol = 3, nrow = length(ngroups)) colnames(gvmat) <- c("Group"," for (i in seq_len(length(ngroups))) { gvmat[i,1] <- groups[i] gvmat[i,2] <- ngroups[i] gvmat[i,3] <- iccs[i] } rcmat <- as.data.frame(lme4::VarCorr(model)) rcmat <- rcmat[is.na(rcmat$var2),] re_variance <- switch(re.variance, sd = "sdcor", var = "vcov") re_var_lab <- switch(re.variance, sd = "Std. Dev.", var = "Var.") rcmat <- rcmat[, names(rcmat) %in% c("grp", "var1", re_variance)] rcmat <- as.matrix(rcmat) colnames(rcmat) <- c("Group", "Parameter", re_var_lab) attr(rcmat, "variance") <- re_var_lab return(list(gvmat = gvmat, rcmat = rcmat)) } pR2_merMod <- function(model) { ret <- list() if (any(class(model) %in% c("lmerMod", "lmerModLmerTest"))) { varF <- var(as.vector(lme4::fixef(model) %*% t(model@pp$X))) random.slopes <- if ("list" %in% class(lme4::ranef(model))) { unique(as.vector(sapply(lme4::ranef(model), colnames))) } else { colnames(lme4::ranef(model)) } n.obs <- names( unlist( lapply( lme4::ranef(model), nrow))[!unlist(lapply(lme4::ranef(model), nrow)) == nrow(model@pp$X)] ) varRand <- sum( sapply(lme4::VarCorr(model)[n.obs], function(Sigma) { X <- model.matrix(model) Z <- X[, rownames(Sigma), drop = FALSE] Z.m <- Z %*% Sigma sum(diag(crossprod(Z.m, Z))) / nrow(X) } ) ) varResid <- attr(lme4::VarCorr(model), "sc")^2 ret$Marginal <- varF / (varF + varRand + varResid) ret$Conditional <- (varF + varRand) / (varF + varRand + varResid) } if (any(class(model) %in% c("glmerMod"))) { ret$Family <- summary(model)$family ret$Link <- summary(model)$link varF <- var(as.vector(lme4::fixef(model) %*% t(model@pp$X))) random.slopes <- if ("list" %in% class(lme4::ranef(model))) { unique(as.vector(sapply(lme4::ranef(model), colnames))) } else { colnames(lme4::ranef(model)) } n.obs <- names( unlist( lapply( lme4::ranef(model), nrow) )[!unlist(lapply(lme4::ranef(model), nrow)) == nrow(model@pp$X)] ) varRand <- sum( sapply(lme4::VarCorr(model)[n.obs], function(Sigma) { X <- model.matrix(model) Z <- X[, rownames(Sigma), drop = FALSE] Z.m <- Z %*% Sigma sum(diag(crossprod(Z.m, Z))) / nrow(X) } ) ) obs <- names( unlist( lapply( lme4::ranef(model), nrow))[unlist( lapply(lme4::ranef(model), nrow)) == nrow(model@pp$X)] ) if (length(obs) == 0) { varDisp <- 0 } else { varDisp <- sum( sapply(lme4::VarCorr(model)[obs], function(Sigma) { X <- model.matrix(model) Z <- X[, rownames(Sigma)] Z.m <- Z %*% Sigma sum(diag(crossprod(Z.m, Z))) / nrow(X) } ) ) } if (ret$Family == "binomial") { if (ret$Link == "logit") { varDist <- (pi^2)/3 } else if (ret$Link == "probit") { varDist <- 1 } else { warning(paste("Model link '", summary(model)$link, "' is not yet supported for the ", summary(model)$family, "distribution")) varDist <- NA } } else if (ret$Family == "poisson" | grepl("Negative Binomial", ret$Family)) { null.model <- update(model, formula = paste(". ~ ", get.random.formula(model, "~1"))) null.fixef <- as.numeric(lme4::fixef(null.model)) if (ret$Link == "log") {varDist <- log(1 + 1/exp(null.fixef))} } else if (ret$Link == "sqrt") { varDist <- 0.25 } else { warning(paste("Model link '", summary(model)$link, "' is not yet supported for the ", summary(model)$family, "distribution")) varDist <- NA } ret$Marginal <- varF / (varF + varRand + varDisp + varDist) ret$Conditional <- (varF + varRand) / (varF + varRand + varDisp + varDist) } return(ret) } get.random.formula <- function(model, rhs) { if (class(rhs) == "formula") {rhs <- Reduce(paste, deparse(rhs))} random.formula <- if (any(class(model) %in% c("lmerMod", "lmerModLmerTest", "glmerMod", "glmmTMB"))) { paste("(", lme4::findbars(formula(model)), ")", collapse = " + ") } random.structure <- if (any(class(model) %in% c("lmerMod", "lmerModLmerTest", "glmerMod", "glmmTMB"))) { ran.ef.splt <- strsplit(random.formula, "\\+.")[[1]] sapply(ran.ef.splt[sapply(ran.ef.splt, function(x) grepl("\\|", x))], function(x) gsub(" ", "", gsub(".*\\|(.*)\\)", "\\1", x)) ) } random.structure <- unname(random.structure[!duplicated(random.structure)]) random.slopes <- if (any(class(model) %in% c("glmerMod", "lmerModLmerTest", "glmmTMB"))) { ran.ef <- ifelse(any(class(lme4::ranef(model)) != "list"), list(lme4::ranef(model)), lme4::ranef(model)) as.vector(sapply(ran.ef, function(x) colnames(x))) } random.slopes <- unname(random.slopes[!duplicated(random.slopes) & random.slopes != "(Intercept)"]) new.random.slopes <- random.slopes[which(random.slopes %in% unlist(strsplit(rhs, ".\\+.")))] if (length(new.random.slopes) == 0) { new.random.slopes <- 1 } else { new.random.slopes <- paste0(new.random.slopes, collapse = " + ") } if (length(random.slopes) != 0) { if (any(class(model) %in% c("glmerMod", "lmerModLmerTest", "glmmTMB"))) { paste( sapply(random.structure, function(x) paste("(", new.random.slopes, " | ", x, ")") ), collapse = " + ") } } else if (length(random.slopes) == 0) { if (is.list(random.structure)) { eval(parse(text = gsub("*\\~(.*)", paste0("~ ", new.random.slopes, "))"), random.formula))) } else { random.formula } } } get_df_kr <- function(model) { L <- diag(rep(1, length(lme4::fixef(model)))) L <- as.data.frame(L) dfs <- sapply(L, pbkrtest::get_Lb_ddf, object = model) names(dfs) <- names(lme4::fixef(model)) return(dfs) } get_se_kr <- function(model) { vcov_adj <- pbkrtest::vcovAdj(model) fes <- lme4::fixef(model) len <- length(fes) Lmat <- diag(len) qform <- function(x, A) sum(x * (A %*% x)) ses <- sapply(1:len, function(.x) { sqrt(qform(Lmat[.x, ], as.matrix(vcov_adj))) }) names(ses) <- names(fes) return(ses) } get_all_sat <- function(model) { if ("lmerModLmerTest" %nin% class(model)) { new_mod <- lmerTest::as_lmerModLmerTest(model) } else {new_mod <- model} coefs <- summary(new_mod)$coefficients return(coefs) } predict_merMod <- function(object, newdata = NULL, se.fit = FALSE, use.re.var = FALSE, allow.new.levels = FALSE, type = c("link", "response", "terms"), na.action = na.pass, re.form = NULL, boot = FALSE, sims = 100, prog.arg = "none", ...) { type <- match.arg(type, c("link", "response", "terms")) if (is.null(newdata) & is.null(re.form)) { if (lme4::isLMM(object) || lme4::isNLMM(object)) { fit <- na.omit(fitted(object)) } else { fit <- switch(type, response = object@resp$mu, link = object@resp$eta) if (is.null(nm <- rownames(model.frame(object)))) { nm <- seq_along(fit) } names(fit) <- nm } fit.na.action <- NULL X <- lme4::getME(object, "X") X.col.dropped <- attr(X, "col.dropped") } else { fit.na.action <- attr(object@frame, "na.action") nobs <- if (is.null(newdata)) nrow(object@frame) else nrow(newdata) fit <- rep(0,nobs) X <- lme4::getME(object, "X") X.col.dropped <- attr(X, "col.dropped") if (is.null(newdata)) { offset <- model.offset(model.frame(object)) if (is.null(offset)) offset <- 0 } else { RHS <- formula(substitute(~R, list(R = RHSForm(formula(object, fixed.only = TRUE))))) Terms <- terms(object, fixed.only = TRUE) mf <- model.frame(object, fixed.only = TRUE) isFac <- vapply(mf, is.factor, FUN.VALUE = TRUE) isFac[attr(Terms,"response")] <- FALSE orig_levs <- if (length(isFac) == 0) NULL else lapply(mf[isFac], levels) mfnew <- suppressWarnings( model.frame(delete.response(Terms), newdata, na.action = na.action, xlev = orig_levs)) X <- model.matrix(RHS, data = mfnew, contrasts.arg = attr(X,"contrasts")) offset <- 0 tt <- terms(object) if (!is.null(off.num <- attr(tt, "offset"))) { for (i in off.num) offset <- offset + eval(attr(tt,"variables")[[i + 1]], newdata) } fit.na.action <- attr(mfnew, "na.action") if (is.numeric(X.col.dropped) && length(X.col.dropped) > 0) { X <- X[, -X.col.dropped, drop = FALSE] } fit <- drop(X %*% lme4::fixef(object)) fit <- fit + offset } } if (se.fit == TRUE & boot == FALSE) { .vcov <- as.matrix(vcov(object)) fit.ses <- sqrt(diag(X %*% .vcov %*% t(X))) if (lme4::isGLMM(object)) { switch(type, response = { fit.ses <- fit.ses * abs(family(object)$mu.eta(fit)) fit <- object@resp$family$linkinv(fit) }, link = , terms = ) } else { fit.ses <- fit.ses * abs(family(object)$mu.eta(fit)) } re_vcov <- lme4::VarCorr(object) re_variances <- sum(sapply(re_vcov, function(x) {x[1]})) if (use.re.var == TRUE) { fit.ses <- fit.ses + re_variances } } else if (se.fit == TRUE & boot == TRUE) { bootfun <- function(object) { drop( X %*% lme4::fixef(object) ) } bo <- lme4::bootMer(object, FUN = bootfun, nsim = sims, .progress = prog.arg, ...) fit <- bo$t if (lme4::isGLMM(object)) { switch(type, response = { fit <- object@resp$family$linkinv(fit) }, link = , terms = ) } } if (!noReForm(re.form)) { if (is.null(re.form)) re.form <- reOnly(formula(object)) rfd <- if (is.null(newdata)) {object@frame} else {newdata} newRE <- mkNewReTrms(object, rfd, re.form, na.action = na.action, allow.new.levels = allow.new.levels) REvals <- base::drop(methods::as(newRE$b %*% newRE$Zt, "matrix")) fit <- fit + REvals } if (se.fit == FALSE & lme4::isGLMM(object)) { switch(type, response = { fit <- object@resp$family$linkinv(fit) }, link = , terms = ) } if (se.fit == TRUE & boot == FALSE) { return(list(fit = fit, se.fit = fit.ses)) } else if (se.fit == TRUE & boot == TRUE) { return(list(fit = fit)) } else { return(fit) } } predict_mer <- function(object, use_re_var = FALSE, prog_arg = "none", ...) { predict_merMod(object, use.re.var = use_re_var, prog.arg = prog_arg, ...) } noReForm <- function(re.form) { (!is.null(re.form) && !methods::is(re.form, "formula") && is.na(re.form)) || (methods::is(re.form, "formula") && length(re.form) == 2 && identical(re.form[[2]], 0)) } reOnly <- function(f, response = FALSE) { response <- if (response && length(f) == 3) { f[[2]] } else { NULL } reformulate(paste0("(", vapply(lme4::findbars(f), safeDeparse, ""), ")"), response = response) } safeDeparse <- function (x, collapse = " ") { paste(deparse(x, 500L), collapse = collapse) } mkNewReTrms <- function(object, newdata, re.form = NULL, na.action = na.pass, allow.new.levels = FALSE) { Lind <- NULL if (is.null(newdata)) { rfd <- mfnew <- model.frame(object) } else { mfnew <- model.frame(delete.response(terms(object, fixed.only = TRUE)), newdata, na.action = na.action) old <- FALSE if (old) { rfd <- na.action(newdata) if (is.null(attr(rfd, "na.action"))) attr(rfd, "na.action") <- na.action } else { newdata.NA <- newdata if (!is.null(fixed.na.action <- attr(mfnew, "na.action"))) { newdata.NA <- newdata.NA[-fixed.na.action, ] } tt <- delete.response(terms(object, random.only = TRUE)) rfd <- model.frame(tt, newdata.NA, na.action = na.pass) if (!is.null(fixed.na.action)) attr(rfd, "na.action") <- fixed.na.action } } if (inherits(re.form, "formula")) { if (length(fit.na.action <- attr(mfnew, "na.action")) > 0) { newdata <- newdata[-fit.na.action, ] } ReTrms <- lme4::mkReTrms(lme4::findbars(re.form[[2]]), rfd) ReTrms <- within(ReTrms, Lambdat@x <- unname(lme4::getME(object, "theta")[Lind])) if (!allow.new.levels && any(vapply(ReTrms$flist, anyNA, NA))) stop("NAs are not allowed in prediction data", " for grouping variables unless allow.new.levels is TRUE") ns.re <- names(re <- lme4::ranef(object)) nRnms <- names(Rcnms <- ReTrms$cnms) if (!all(nRnms %in% ns.re)) stop("grouping factors specified in re.form that were not present in original model") new_levels <- lapply(ReTrms$flist, function(x) levels(factor(x))) re_x <- Map(function(r, n) levelfun(r, n, allow.new.levels = allow.new.levels), re[names(new_levels)], new_levels) re_new <- lapply(seq_along(nRnms), function(i) { rname <- nRnms[i] if (!all(Rcnms[[i]] %in% names(re[[rname]]))) stop("random effects specified in re.form that were not present in original model") re_x[[rname]][, Rcnms[[i]]] }) re_new <- unlist(lapply(re_new, t)) } Zt <- ReTrms$Zt attr(Zt, "na.action") <- attr(re_new, "na.action") <- attr(mfnew, "na.action") list(Zt = Zt, b = re_new, Lambdat = ReTrms$Lambdat) } levelfun <- function(x, nl.n, allow.new.levels = FALSE) { if (!all(nl.n %in% rownames(x))) { if (!allow.new.levels) stop("new levels detected in newdata") newx <- as.data.frame( matrix(0, nrow = length(nl.n), ncol = ncol(x), dimnames = list(nl.n, names(x))) ) newx[rownames(x), ] <- x x <- newx } if (!all(r.inn <- rownames(x) %in% nl.n)) { x <- x[r.inn, , drop = FALSE] } return(x) } RHSForm <- function (form, as.form = FALSE) { rhsf <- form[[length(form)]] if (as.form) reformulate(deparse(rhsf)) else rhsf }
testthat::test_that("Kappa: initialize function works", { lvs <- c("normal", "abnormal") truth <- factor(rep(lvs, times = c(86, 258)), levels = rev(lvs)) pred <- factor( c( rep(lvs, times = c(54, 32)), rep(lvs, times = c(27, 231))), levels = rev(lvs)) xtab <- table(pred, truth) confMatrix <- ConfMatrix$new(confMatrix = caret::confusionMatrix(xtab)) testthat::expect_is(Kappa$new(performance = confMatrix), "Kappa") }) testthat::test_that("Kappa: compute function works", { lvs <- c("normal", "abnormal") truth <- factor(rep(lvs, times = c(86, 258)), levels = rev(lvs)) pred <- factor( c( rep(lvs, times = c(54, 32)), rep(lvs, times = c(27, 231))), levels = rev(lvs)) xtab <- table(pred, truth) confMatrix <- ConfMatrix$new(confMatrix = caret::confusionMatrix(xtab)) testthat::expect_is(Kappa$new(performance = confMatrix)$compute(performance.output = NULL), "numeric") testthat::expect_is(Kappa$new(performance = NULL)$compute(performance.output = confMatrix), "numeric") }) testthat::test_that("Kappa: compute function checks parameter type", { testthat::expect_error(Kappa$new(performance = NULL)$compute(performance.output = NULL), "[Kappa][FATAL] Performance output parameter must be defined as 'MinResult' or 'ConfMatrix' type. Aborting...", fixed = TRUE) })
PayoffMatrix_QHawkDove <- function(moves, v, j, D){ Alice <- matrix(0, 2, 2) Bob <- matrix(0, 2, 2) for(i in 1:2){ for (j in 1:2){ X <- QHawkDove(i-1, j-1, moves, v, j, D) Alice[i, j] <- X[[1]] Bob[i, j] <- X[[2]] } } return(list(Alice, Bob)) }
erase <- function(pattern = NULL, envir = parent.frame(), verbose = FALSE){ .abstract_erase(pattern = pattern, filtering.function = NULL, list.function = ls, envir = envir, verbose = verbose) } erase_if <- function(condition, pattern = NULL, envir = parent.frame(), verbose = FALSE){ condition <- as_function(condition) filtering_function <- function(x){ condition(get(x, envir = envir)) } .abstract_erase(filtering.function = filtering_function, list.function = ls, envir = envir, verbose = verbose) }
findfrequency <- function(x) { n <- length(x) x <- as.ts(x) x <- residuals(tslm(x ~ trend)) n.freq <- 500 spec <- spec.ar(c(na.contiguous(x)), plot = FALSE, n.freq = n.freq) if (max(spec$spec) > 10) { period <- floor(1 / spec$freq[which.max(spec$spec)] + 0.5) if (period == Inf) { j <- which(diff(spec$spec) > 0) if (length(j) > 0) { nextmax <- j[1] + which.max(spec$spec[(j[1] + 1):n.freq]) if (nextmax < length(spec$freq)) { period <- floor(1 / spec$freq[nextmax] + 0.5) } else { period <- 1L } } else { period <- 1L } } } else { period <- 1L } return(as.integer(period)) }
dieharderGenerators <- function() { val <- .Call("dieharderGenerators", PACKAGE="RDieHarder") return(data.frame(names=val[[1]], id=val[[2]])) } dieharderTests <- function() { val <- .Call("dieharderTests", PACKAGE="RDieHarder") return(data.frame(names=val[[1]], id=val[[2]])) } dieharder <- function(rng="mt19937", test=1, psamples=100, seed=0, verbose=FALSE, inputfile="", ntuple=5) { UseMethod("dieharder") } dieharder.default <- function(rng="mt19937", test="diehard_runs", psamples=100, seed=0, verbose=FALSE, inputfile="", ntuple=5) { if (length(rng) > 1) { warning("Only one rng argument supported in dieharder") return(NULL) } if (is.character(rng)) { genpos <- charmatch(rng, as.character(.dieharder.generators$names)) } else { genpos = which(.dieharder.generators[,"id"] == rng) } if (length(genpos)==0 || is.na(genpos)) { warning("rng argument ", rng, " unknown") return(NULL) } if (genpos == 0 && rng != 1) { warning("rng argument ", rng, " ambiguous") return(NULL) } gen <- .dieharder.generators$id[genpos] if (length(test) > 1) { warning("Only one test argument supported in dieharder") return(NULL) } if (is.character(test)) { runtestpos <- charmatch(test, as.character(.dieharder.tests$names)) if (is.na(runtestpos)) { warning("test argumement ", test, " unknown") return(NULL) } if (runtestpos == 0) { warning("test argumment ", test, " ambiguous") return(NULL) } runtest <- .dieharder.tests$id[runtestpos] } else { runtest <- test } val <- .Call("dieharder", as.integer(gen), as.integer(runtest), as.integer(seed), as.integer(psamples), as.integer(verbose), as.character(inputfile), as.integer(ntuple), PACKAGE="RDieHarder") obj <- list(p.value=val[[1]][1], data=val[[2]], method=val[[3]], data.name=paste("Created by RNG `", .dieharder.generators[genpos,"names"], "' with seed=", as.integer(seed), ", sample of size ", as.integer(psamples), sep=""), generator=as.character(.dieharder.generators[genpos,"names"]), nvalues=val[[4]], p.values=val[[1]] ) class(obj) <- c("dieharder", "htest") return(obj) } plot.dieharder <- function(x, ...) { local.par <- par(mfrow=c(2,1), mar=c(2,4,3,1), oma=c(0,0,3.5,0)) vec <- x$data hist(vec, probability=TRUE, main="Histogram and Density estimate", xlab="", ylab="density") lines(density(x$data, from=0, to=1), col='darkgray') plot(ecdf(x$data), main="ECDF", ylab="", xlab="", verticals= TRUE, do.p = FALSE) segments(0,0,1,1, col='darkgray', lty="dotted") mtext(text = x$method, outer = TRUE, cex = 1.2, font = 2, line = 2) mtext(text = x$data.name, outer = TRUE, cex = 1.0, font = 1, line = 1) pksk <- round(x$p.value, 4) pks <- round(ks.test(x$data, "punif", 0, 1, exact=TRUE)$p.value, 4) pw <- round(wilcox.test(x$data, mu=0.5)$p.value, 4) mtext(text = paste("Test p-values: ", pksk, " (Kuiper-K-S), ", pks, " (K-S), ", pw, " (Wilcoxon)"), outer = TRUE, cex = 1.0, font = 1, line = 0) par(local.par) invisible(x) } print.dieharder <- function(x, ...) { z <- x class(z) <- "htest" print(z) invisible(x) } summary.dieharder <- function(object, ...) { print(object, ...) cat("\nSummary for test data\n") print(summary(object$data)) if (any(!is.na(object$data))) { cat("\n\nStem and leaf plot for test data\n") print(stem(object$data)) print(ks.test(object$data, "punif", 0, 1, exact=TRUE)) print(wilcox.test(object$data, mu=0.5)) } invisible(object) }
cluster.im.glm<-function(mod, dat, cluster, ci.level = 0.95, report = TRUE, drop = FALSE, truncate = FALSE, return.vcv = FALSE){ form <- mod$formula variables <- all.vars(form) clust.name <- all.vars(cluster) used.idx <- which(rownames(dat) %in% rownames(mod$model)) dat <- dat[used.idx,] clust <- as.vector(unlist(dat[[clust.name]])) G<-length(unique(clust)) ind.variables.full <- names(coefficients(mod)) ind.variables <- rownames(summary(mod)$coefficients) b.clust <- matrix(data = NA, nrow = G, ncol = length(ind.variables)) n.clust <- c() G.o <- G for(i in 1:G){ clust.ind <- which(clust == unique(clust)[i]) clust.dat <- dat[clust.ind,] clust.mod <- suppressWarnings(tryCatch(glm(form, data = clust.dat, family = mod$family), error = function(e){return(NULL)})) if(is.null(clust.mod) == FALSE ){ if(clust.mod$converged == 0){clust.mod <- NULL} } fail <- is.null(clust.mod) if(drop==FALSE){ if(fail == T){stop("cluster-specific model returned error (try drop = TRUE)", call.=FALSE)} if(length(rownames(summary(clust.mod)$coefficients)) != length(ind.variables)){ stop("cluster-specific model(s) dropped variables; ensure that all variables vary within clusters", call.=FALSE) } b.clust[i,] <- coefficients(clust.mod)[ind.variables] }else{ if(fail == F){ if(length(rownames(summary(clust.mod)$coefficients)) != length(ind.variables)){ stop("cluster-specific model(s) dropped variables; ensure that all variables vary within clusters", call.=FALSE) } b.clust[i,] <- coefficients(clust.mod)[ind.variables] }else{ b.clust[i,] <- NA } } } if(drop==TRUE){ dropped.nc <- 0 b.clust <- na.omit(b.clust) dropped.nc <- length(attr(b.clust, "na.action")) G.t <- dim(b.clust)[1] if(G.t == 0){stop("all clusters were dropped (see help file).")} } dropped <- 0 if(truncate==TRUE){ IQR <- apply(FUN=quantile, MARGIN=2, X=b.clust, probs=c(0.25, 0.75)) b.clust.save <- b.clust for(i in 1:dim(b.clust)[2]){ b.clust.save[,i] <- ifelse( abs(b.clust[,i]) > (abs(mean(b.clust[,i])) + 6*abs(IQR[2,i] - IQR[1,i])), 0, 1) } save.clust <- apply(X=b.clust.save, MARGIN=1, FUN=min) dropped <- dim(b.clust)[1] - sum(save.clust) b.clust.adj <- cbind(b.clust, save.clust) b.clust <- subset(b.clust, subset=(save.clust==1), select=1:dim(b.clust)[2]) } G <- dim(b.clust)[1] if(G == 0){stop("all clusters were dropped (see help file).")} b.hat <- colMeans(b.clust) b.dev <- sweep(b.clust, MARGIN = 2, STATS = b.hat) vcv.hat <- cov(b.dev) rownames(vcv.hat) <- ind.variables colnames(vcv.hat) <- ind.variables s.hat <- sqrt(diag(vcv.hat)) t.hat <- sqrt(G) * (b.hat / s.hat) names(b.hat) <- ind.variables p.out <- 2*pmin( pt(t.hat, df = G-1, lower.tail = TRUE), pt(t.hat, df = G-1, lower.tail = FALSE) ) ci.lo <- b.hat - qt((1-ci.level)/2, df=(G-1), lower.tail=FALSE)*(s.hat/sqrt(G)) ci.hi <- b.hat + qt((1-ci.level)/2, df=(G-1), lower.tail=FALSE)*(s.hat/sqrt(G)) out <- matrix(p.out, ncol=1) rownames(out) <- ind.variables out.p <- cbind( ind.variables, round(out, 3)) out.p <- rbind(c("variable name", "cluster-adjusted p-value"), out.p) out.ci <- cbind(ci.lo, ci.hi) rownames(out.ci) <- ind.variables colnames(out.ci) <- c("CI lower", "CI higher") print.ci <- cbind(ind.variables, ci.lo, ci.hi) print.ci <- rbind(c("variable name", "CI lower", "CI higher"), print.ci) printmat <- function(m){ write.table(format(m, justify="right"), row.names=F, col.names=F, quote=F, sep = " ") } if(report==T){ cat("\n", "Cluster-Adjusted p-values: ", "\n", "\n") printmat(out.p) cat("\n", "Confidence Intervals (centered on cluster-averaged results):", "\n", "\n") printmat(print.ci) if(G.o > G){ cat("\n", "Note:", G.o - G, "clusters were dropped (see help file).", "\n", "\n") } if(length(ind.variables) < length(ind.variables.full)){ cat("\n", "\n", "****", "Note: ", length(ind.variables.full) - length(ind.variables), " variables were unidentified in the model and are not reported.", "****", "\n", sep="") cat("Variables not reported:", "\n", sep="") cat(ind.variables.full[!ind.variables.full %in% ind.variables], sep=", ") cat("\n", "\n") } } out.list<-list() out.list[["p.values"]] <- out out.list[["ci"]] <- out.ci if(return.vcv == TRUE){out.list[["vcv.hat"]] <- vcv.hat} if(return.vcv == TRUE){out.list[["beta.bar"]] <- b.hat} return(invisible(out.list)) }
calculate_EM_approx = function(chain, y, Z, rho, Sigma, Theta, lower_upper, em_tol, em_iter, ncores=4, verbose=FALSE ) { c_em_iter = 1 dif <- 100 p <- ncol(y) n <- nrow(y) s <- proc.time() while((c_em_iter < em_iter) && (dif >= em_tol )) { S_obj <- calculate.R.approx.internal(y=y, Z=Z, lower_upper=lower_upper, Sigma= Sigma, ncores=ncores) Z <- S_obj$Z S_gl <- glasso(s=S_obj$ES, rho=rho, maxit=1000, penalize.diagonal=FALSE) Theta <- (t(S_gl$wi) + S_gl$wi) / 2 Sigma_new <- (t(S_gl$w) + S_gl$w) / 2 sd_marginal <- sqrt(diag(Sigma_new)) sd_marginal[abs(sd_marginal) < 1e-10] <- 1e-10 Sigma_new <- diag(1/sd_marginal) %*% Sigma_new %*% diag(1/sd_marginal) Theta <- Matrix(diag(sd_marginal) %*% Theta %*% diag(sd_marginal)) dif <- sum(abs(Sigma_new - Sigma)/p^2) Sigma <- Sigma_new c_em_iter <- c_em_iter + 1 rm(Sigma_new, sd_marginal, S_gl) gc() } results <- list() results$Theta <- Theta results$Sigma <- Sigma results$ES <- S_obj$ES results$Z <- Z results$rho <- rho results$loglik <- n/2 *(determinant(results$Theta, logarithm = TRUE)$modulus - sum(diag(results$ES %*%results$Theta))) return(results) }
load(file = "helper_data.rda") dfSAV <- import_spss(file = "helper_spss_missings.sav") test_that("errors", { expect_error(compareGADS(df1, df1, varNames = "other"), "The following 'vars' are not variables in the GADSdat: other") }) test_that("standard functionality", { df1_b <- df1 df1_b$dat[, 2] <- c(9, 9) out <- compareGADS(df1, df1_b, varNames = namesGADS(df1)) expect_equal(out[[1]], "all equal") expect_equal(out[[2]], data.frame(value = c("3", "5"), frequency = c(1, 1), valLabel = c(NA, NA), missings = c(NA, NA), stringsAsFactors = FALSE)) dfSAV_b <- dfSAV dfSAV_b$dat[, 1] <- c(9, 9, 9, 9) dfSAV_b$dat[, 3] <- c(9, 9, 9, 9) out2 <- compareGADS(dfSAV, dfSAV_b, varNames = namesGADS(dfSAV)) expect_equal(out2[["VAR1"]], data.frame(value = c("-99", "-96", "1", "2"), frequency = rep(1, 4), valLabel = c("By design", "Omission", "One", NA), missings = c("miss", "miss", "valid", NA), stringsAsFactors = FALSE)) expect_equal(out2[["VAR2"]], "all equal") expect_equal(out2[[3]], data.frame(value = c("-98", "1"), frequency = c(1, 3), valLabel = NA_character_, missings = c("miss", NA), stringsAsFactors = FALSE)) }) test_that("with character variable", { iris_char <- iris iris_char$Species <- as.character(iris_char$Species) suppressMessages(iris2 <- iris1 <- import_DF(iris_char)) iris2$dat[c(1, 51, 52), 5] <- c(9, "test", "x") expect_silent(out <- compareGADS(iris1, iris2, varNames = namesGADS(iris1))) expect_equal(out[[1]], "all equal") expect_equal(out[[4]], "all equal") expect_equal(out[[5]], data.frame(value = c("setosa", "versicolor"), frequency = c(1, 2), valLabel = c(NA, NA), missings = c(NA, NA), stringsAsFactors = FALSE)) }) test_that("recodes in NA", { df1_c <- df1_b <- df1 df1_b$dat[, 2] <- c(NA, NA) df1_c$dat[, 2] <- c(9, 9) out <- compareGADS(df1_b, df1_c, varNames = namesGADS(df1)) expect_equal(out[[1]], "all equal") expect_equal(out[[2]], data.frame(value = c(NA_character_), frequency = c(2), valLabel = c(NA_character_), missings = c(NA_character_), stringsAsFactors = FALSE)) df1_c <- df1_b <- df1 df1_c$dat[, 2] <- c(NA, NA) df1_b$dat[, 2] <- c(9, 9) out2 <- compareGADS(df1_b, df1_c, varNames = namesGADS(df1)) expect_equal(out2[[1]], "all equal") expect_equal(out2[[2]], data.frame(value = c("9"), frequency = c(2), valLabel = c(NA), missings = c(NA), stringsAsFactors = FALSE)) }) test_that("recodes in NA with labeled NAs", { dfSAV2 <- dfSAV dfSAV2$labels[c(1, 4:5), "value"] <- NA dfSAV3 <- dfSAV2 dfSAV2$dat[1:2, 1] <- NA dfSAV2$dat[4, 1] <- 1 expect_silent(out3 <- compareGADS(dfSAV2, dfSAV3, varNames = namesGADS(dfSAV3))) expect_equal(out3[[2]], "all equal") expect_equal(out3[["VAR1"]]$value, c("1", NA)) expect_equal(out3[["VAR1"]]$frequency, c(1, 2)) expect_equal(out3[["VAR1"]]$missings, c("valid", "miss")) dfSAV4 <- dfSAV dfSAV4$dat[1:2, 1] <- NA dfSAV4$labels[c(1:2, 4:5), "value"] <- NA dfSAV5 <- dfSAV4 dfSAV5$dat[1:2, 1] <- -99 expect_error(out4 <- compareGADS(dfSAV4, dfSAV5, varNames = namesGADS(dfSAV5)), "Meta information on value level is not unique for variable: VAR1 and value: NA") dfSAV4 <- dfSAV dfSAV4$dat[1:2, 1] <- -99 dfSAV4$labels[c(1:2, 4:5), "value"] <- NA dfSAV5 <- dfSAV4 dfSAV5$dat[1:2, 1] <- NA expect_silent(out5 <- compareGADS(dfSAV4, dfSAV5, varNames = namesGADS(dfSAV5))) expect_equal(out5[[2]], "all equal") expect_equal(out5[["VAR1"]], data.frame(value = "-99", frequency = 2, valLabel = NA, missings = NA, stringsAsFactors = FALSE)) }) test_that("Compare GADS data.frame and aggregate output", { dfSAV2 <- dfSAV dfSAV2$dat[1, 2:3] <- -96 dfSAV2$labels[4, "missings"] <- "miss" dfSAV2$labels[c(4, 6), "value"] <- -96 dfSAV_b <- dfSAV2 dfSAV_b$dat[, 2] <- c(9, 9, 9, 9) dfSAV_b$dat[, 3] <- c(9, 9, 9, 9) out2 <- compareGADS(dfSAV2, dfSAV_b, varNames = namesGADS(dfSAV), output = "data.frame") expect_equal(out2, data.frame(variable = c(rep("VAR2", 2), rep("VAR3", 3)), value = c("-96", "1", "-98", "-96", "1"), frequency = c(1, 3, 1, 1, 2), valLabel = c("missing", NA, NA, "missing", NA), missings = c("miss", NA, "miss", "miss", NA), stringsAsFactors = FALSE)) out3 <- compareGADS(dfSAV2, dfSAV_b, varNames = namesGADS(dfSAV), output = "aggregated") expect_equal(out3, data.frame(value = c("-96", "1", "-98"), valLabel = c("missing", NA, NA), missings = c("miss", NA, "miss"), stringsAsFactors = FALSE)) }) test_that("data.frame and aggregate output with all equals", { dfSAV2 <- dfSAV out2 <- compareGADS(dfSAV2, dfSAV, varNames = namesGADS(dfSAV), output = "data.frame") expect_equal(out2, "all equal") out3 <- compareGADS(dfSAV2, dfSAV, varNames = namesGADS(dfSAV), output = "aggregated") expect_equal(out3, "all equal") })
style <- function(string, as = NULL, bg = NULL) { as <- use_or_make_style(as) bg <- use_or_make_style(bg, bg = TRUE) if (!is(as, "crayon")) stop("Cannot make style from 'as'") if (!is(bg, "crayon")) stop("Cannot make style from 'bg'") as(bg(string)) } use_or_make_style <- function(style, bg = FALSE) { if (is.null(style)) { structure(base::identity, class = "crayon") } else if (is(style, "crayon")) { style } else if (style %in% names(styles())) { make_crayon(styles()[style]) } else { make_style(style, bg = bg) } }
print.aov.ltm <- function (x, digits = 3, ...) { if (!inherits(x, "aov.ltm")) stop("Use only with 'aov.ltm' objects.\n") p.val <- round(x$p.value, 3) p.val <- if (p.val < 0.001) "<0.001" else p.val dat <- data.frame(AIC = round(c(x$aic0, x$aic1), 2), BIC = round(c(x$bic0, x$bic1), 2), log.Lik = round(c(x$L0, x$L1), 2), LRT = c(" ", round(x$LRT, 2)), df = c("", x$df), p.value = c("", p.val), row.names = c(x$nam0, x$nam1)) cat("\n Likelihood Ratio Table\n") print(dat) cat("\n") invisible(x) }
expected <- eval(parse(text="\"Inf\"")); test(id=0, code={ argv <- eval(parse(text="list(Inf)")); do.call(`as.character`, argv); }, o=expected);
context("pitch") test_that("pitch_seq returns as expected", { expect_equal(pitch_seq("a,", 13), as_noteworthy("a, b_, b, c d_ d e_ e f g_ g a_ a")) expect_equal(pitch_seq("c5", -2), as_noteworthy("c5 b4")) expect_equal(pitch_seq("c", "b"), as_noteworthy("c d_ d e_ e f g_ g a_ a b_ b")) x <- pitch_seq("c", 8, key = "c") expect_equal(x, as_noteworthy("c d e f g a b c'")) expect_equal(pitch_seq("c", 8, "am"), x) expect_equal( pitch_seq("c as_noteworthy("d, e, f, g, a, b, c d e f g a b c' d' e' f' g' a'") ) expect_equal(pitch_seq("a", 8, "am", "harmonic minor"), as_noteworthy("a b c' d' e' f' g expect_equal(pitch_seq("a'", -2), as_noteworthy("a' a_'")) expect_equal(pitch_seq("a'", -8, key = "a"), as_noteworthy("a' g expect_error(pitch_seq(c("a", "b")), "`x` must be a single pitch.") expect_error(pitch_seq("a", 0), "Cannot have zero timesteps.") expect_error(pitch_seq("a", 1:2), "`y` must be a single pitch or single number.") expect_error(pitch_seq("b,,,,,", 1), "Pitch semitones must range from 0 to 131.") expect_error(pitch_seq("a'", -71), "Semitones must range from 0 to 131.") expect_error(pitch_seq("a'", "b,,,,,"), "Pitch semitones must range from 0 to 131.") })
library("aroma.affymetrix") log <- verbose <- Arguments$getVerbose(-8, timestamp=TRUE) dataSetName <- "Affymetrix_2006-TumorNormal" tags <- "ACC,-XY,BPN,-XY,RMA,FLN,-XY" chipType <- "Mapping250K_Nsp" pairs <- matrix(c( "CRL-2325D", "CRL-2324D", "CRL-5957D", "CRL-5868D", "CCL-256.1D", "CCL-256D", "CRL-2319D", "CRL-2320D", "CRL-2362D", "CRL-2321D", "CRL-2337D", "CRL-2336D", "CRL-2339D", "CRL-2338D", "CRL-2341D", "CRL-2340D", "CRL-2346D", "CRL-2314D" ), ncol=2, byrow=TRUE) colnames(pairs) <- c("normal", "tumor") if (!exists("cesN")) { cdf <- AffymetrixCdfFile$byName(chipType) gi <- getGenomeInformation(cdf) cdfM <- getMonocellCdf(cdf) cesN <- SnpChipEffectSet$byName(dataSetName, tags=tags, cdf=cdfM) print(cesN) cesN <- cesN[indexOf(cesN, pairs)] names <- getNames(cesN) dim(names) <- dim(pairs) print(names) Blim <- c(0,1) Clim <- c(0,4) Clab <- expression(C[T]/C[N]) BTlab <- expression(beta[T]) BNlab <- expression(beta[N]) Flab <- expression(beta[T]-beta[N]) Flim <- c(-1/2,1/2) } chromosome <- 9 units <- getUnitsOnChromosome(gi, chromosome) pos <- getPositions(gi, units=units)/1e6 o <- order(pos) units <- units[o] pos <- pos[o] str(units) isSNP <- (getUnitTypes(cdf, units=units) == 2) units <- units[isSNP] pos <- pos[isSNP] data <- extractTotalAndFreqB(cesN, units=units) dim(data) <- c(dim(data)[1:2], dim(names)) dimnames(data) <- list(NULL, c("total", "freqB"), NULL, colnames(pairs)) C <- data[,"total",,"tumor"] / data[,"total",,"normal"] B <- data[,"freqB",,] F <- B[,,"tumor"] - B[,,"normal"] F2 <- 2*(1/2-abs(B[,,"normal"]-1/2)) dAA <- sqrt((B[,,"normal"]-0)^2) dBB <- sqrt((B[,,"normal"]-1)^2) devSet(2) subplots(3, ncol=1) par(mar=c(2,4,1,1)+0.1) par(ask=TRUE) for (kk in seq_len(ncol(C))) { plot(pos, C[,kk], ylim=Clim, ylab=Clab) abline(h=1, lty=3, col="red") stext(side=3, pos=0, paste(pairs[kk,], collapse="/")) stext(side=3, pos=1, sprintf("Chr %d", chromosome)) plot(pos, B[,kk,"tumor"], ylim=Blim, ylab=BTlab) plot(pos, F[,kk], cex=F2, ylim=Flim, ylab=Flab) abline(h=0, lty=3, col="red") } devSet(3) BNlab <- expression(beta[N]) BTlab <- expression(beta[T]) unitNames <- getUnitNames(cdf, units=units) col <- seq_len(ncol(C)) par(ask=TRUE) for (kk in seq_len(nrow(C))) { plot(NA, xlim=Blim, ylim=Blim, xlab=BNlab, ylab=BTlab) stext(side=3, pos=0, unitNames[kk]) points(B[kk,,], col=col, pch=19) }
validate_data <- function( dataset = NULL, path = NULL) { validate_arguments(fun.name = "validate_data", fun.args = as.list(environment())) criteria <- read_criteria() if (!is.null(path)) { d <- read_data(from = path) } else { d <- dataset } id <- d$id d <- d$tables if (is.null(id)) { id <- "unknown data ID" } message("Validating ", id, ":") issues_table_presence <- validate_table_presence(d) issues_column_names <- validate_column_names(d) issues_column_presence <- validate_column_presence(d) issues_column_classes <- validate_column_classes(d) issues_datetime <- validate_datetime(d) issues_primary_keys <- validate_primary_keys(d) issues_composite_keys <- validate_composite_keys(d) issues_referential_integrity <- validate_referential_integrity(d) issues_validate_latitude_longitude_format <- validate_latitude_longitude_format(d) issues_validate_latitude_longitude_range <- validate_latitude_longitude_range(d) issues_validate_elevation <- validate_elevation(d) issues_validate_variable_mapping <- validate_variable_mapping(d) issues_validate_mapped_id <- validate_mapped_id(d) validation_issues <- as.list( c( issues_table_presence, issues_column_names, issues_column_presence, issues_column_classes, issues_datetime, issues_primary_keys, issues_composite_keys, issues_referential_integrity, issues_validate_latitude_longitude_format, issues_validate_latitude_longitude_range, issues_validate_elevation, issues_validate_variable_mapping, issues_validate_mapped_id)) if (length(validation_issues) != 0) { warning(" Validation issues found for ", id, call. = FALSE) } validation_issues } validate_table_presence <- function(data.list) { message(" Required tables") criteria <- read_criteria() expected <- criteria$table[ (is.na(criteria$class)) & (criteria$required == TRUE)] required_missing <- expected[!(expected %in% names(data.list))] if (length(required_missing) != 0) { paste0("Required table. Missing required table: ", paste(required_missing, collapse = ", ")) } } validate_column_names <- function(data.list) { message(' Column names') criteria <- read_criteria() r <- lapply( names(data.list), function(x) { expected <- criteria$column[ (criteria$table %in% x) & !is.na(criteria$column)] invalid_columns <- !(colnames(data.list[[x]]) %in% expected) if (any(invalid_columns)) { paste0( "Column names. The ", x, " table has these invalid column ", "names: ", paste(colnames(data.list[[x]])[invalid_columns], collapse = ", ")) } }) unlist(r) } validate_column_presence <- function(data.list){ message(' Required columns') criteria <- read_criteria() r <- lapply( names(data.list), function(x) { expected <- criteria$column[ (criteria$table %in% x) & !is.na(criteria$column) & (criteria$required == TRUE)] if ((x == "observation") & ("observation_ancillary" %in% names(data.list))) { expected <- c(expected, "event_id") } missing_columns <- !(expected %in% colnames(data.list[[x]])) if (any(missing_columns)) { paste0( "Required columns. The ", x, " table is missing these ", "required columns: ", paste(expected[missing_columns], collapse = ", ")) } }) unlist(r) } validate_datetime <- function(data.list) { message(' Datetime formats') criteria <- read_criteria() r <- lapply( names(data.list), function(x) { datetime_column <- criteria$column[ (criteria$table %in% x) & (criteria$class == "Date") & !is.na(criteria$column)] if (length(datetime_column) > 0) { v <- data.list[[x]][[datetime_column]] na_count_raw <- sum(is.na(v)) v <- as.character(v) v <- stringr::str_remove_all(v, "(Z|z).+$") v <- stringr::str_replace(v, "T", " ") use_i <- suppressWarnings( list( lubridate::parse_date_time(v, "ymd HMS"), lubridate::parse_date_time(v, "ymd HM"), lubridate::parse_date_time(v, "ymd H"), lubridate::parse_date_time(v, "ymd"))) na_count_parsed <- unlist( lapply( use_i, function(k) { sum(is.na(k)) })) if (min(na_count_parsed) > na_count_raw) { use_i <- seq( length(v))[ is.na( use_i[[ (which(na_count_parsed %in% min(na_count_parsed)))[1]]])] paste0( "Datetime format. The ", x, " table has unsupported ", "datetime formats in rows: ", paste(use_i, collapse = ' ')) } } }) return(unlist(r)) } validate_column_classes <- function(data.list) { message(" Column classes") criteria <- read_criteria() r <- invisible( lapply( names(data.list), function(x) { lapply( colnames(data.list[[x]]), function(k) { if (k %in% criteria$column) { expected <- criteria$class[ (criteria$table %in% x) & !is.na(criteria$column) & (criteria$column %in% k)] detected <- class(data.list[[x]][[k]]) if (expected == "numeric") { if ((detected != "integer") & (detected != "integer64") & (detected != "double") & (detected != "numeric")) { issues <- list( column = k, expected = expected, detected = detected) } } else if (expected == "character") { if (detected != "character") { issues <- list( column = k, expected = expected, detected = detected) } } if (exists("issues", inherits = FALSE)) { paste0( "Column classes. The column ", k, " in the table ", x, " has a class of ", detected, " but a class of ", expected, " is expected.") } } }) })) unlist(r) } validate_primary_keys <- function(data.list) { message(" Primary keys") criteria <- read_criteria() r <- invisible( lapply( names(data.list), function(x) { primary_key <- criteria$column[ (criteria$table == x) & !is.na(criteria$primary_key) & (criteria$primary_key == TRUE)] v <- data.list[[x]][[primary_key]] use_i <- seq(length(v))[duplicated(v)] if (length(use_i) > 0) { paste0("Primary keys. The ", x, " table contains non-unique ", "primary keys in the column ", primary_key, " at rows: ", paste(use_i, collapse = " ")) } })) unlist(r) } validate_composite_keys <- function(data.list) { message(" Composite keys") criteria <- read_criteria() r <- invisible( lapply( names(data.list), function(x) { composite_columns <- criteria$column[ (criteria$table == x) & !is.na(criteria$column) & (criteria$composite_key == TRUE)] composite_columns <- composite_columns[ composite_columns %in% colnames(data.list[[x]])] if (length(composite_columns) > 0) { d <- dplyr::select(data.list[[x]], composite_columns) duplicates <- seq(nrow(d))[duplicated.data.frame(d)] if (length(duplicates) > 0) { paste0( "Composite keys. The composite keys composed of the columns ", paste(composite_columns, collapse = ", "), ", in the table ", x, " contain non-unique values in rows: ", paste(duplicates, collapse = " ")) } } })) unlist(r) } validate_referential_integrity <- function(data.list) { message(" Referential integrity") criteria <- read_criteria() r <- invisible( lapply( names(data.list), function(x) { primary_key <- criteria$column[ (criteria$table == x) & !is.na(criteria$column) & (criteria$primary_key == TRUE)] primary_key_data <- stats::na.omit(data.list[[x]][[primary_key]]) foreign_key_table <- criteria$table[ !is.na(criteria$column) & (criteria$column == primary_key)] output <- lapply( foreign_key_table, function(k) { if (k == "location") { foreign_key_data <- stats::na.omit(data.list[[k]][["parent_location_id"]]) use_i <- foreign_key_data %in% primary_key_data if (length(use_i) == 0) { use_i <- TRUE } } else { foreign_key_data <- stats::na.omit(data.list[[k]][[primary_key]]) use_i <- foreign_key_data %in% primary_key_data } if (!all(use_i)) { paste0( "Referential integrity. The ", k, " table has these foreign ", "keys without a primary key reference in the ", x, " table: ", paste(unique(foreign_key_data[!use_i]), collapse = ", ")) } }) unlist(output) })) unlist(r) } validate_latitude_longitude_format <- function(data.list) { message(" Latitude and longitude format") r <- invisible( lapply( c("latitude", "longitude"), function(colname) { na_before <- sum(is.na(data.list$location[[colname]])) na_after <- suppressWarnings( sum(is.na(as.numeric(data.list$location[[colname]])))) if (na_before < na_after) { paste0( "The ", colname, " column of the location table contains values ", "that are not in decimal degree format.") } })) unlist(r) } validate_latitude_longitude_range <- function(data.list) { message(" Latitude and longitude range") r <- invisible( lapply( c("latitude", "longitude"), function(colname) { values <- suppressWarnings( as.numeric(data.list$location[[colname]])) if (colname == "latitude") { use_i <- (values >= -90) & (values <= 90) use_i <- stats::na.omit(seq(length(use_i))[!use_i]) if (length(use_i) > 0) { return( paste0( "The ", colname, " column of the location table contains ", "values outside the bounds -90 to 90 in rows: ", paste(use_i, collapse = ", "))) } } else if (colname == "longitude") { use_i <- (values >= -180) & (values <= 180) use_i <- stats::na.omit(seq(length(use_i))[!use_i]) if (length(use_i) > 0) { return( paste0( "The ", colname, " column of the location table contains ", "values outside the bounds -180 to 180 in rows: ", paste(use_i, collapse = ", "))) } } })) unlist(r) } validate_elevation <- function(data.list) { message(" Elevation") r <- invisible( lapply( c("elevation"), function(colname) { values <- suppressWarnings( as.numeric(data.list$location[[colname]])) use_i <- (values <= 8848) & (values >= -10984) use_i <- stats::na.omit(seq(length(use_i))[!use_i]) if (length(use_i) > 0) { return( paste0( "The ", colname, " column of the location table contains ", "values that may not be in the unit of meters. Questionable ", "values exist in rows: ", paste(use_i, collapse = ", "))) } })) unlist(r) } validate_variable_mapping <- function(data.list) { if ("variable_mapping" %in% names(data.list)) { message(" variable_mapping") output <- lapply( unique(data.list$variable_mapping$table_name), function(tbl) { foreign_keys <- unique(data.list[[tbl]]$variable_name) i <- data.list$variable_mapping$table_name %in% tbl primary_keys <- data.list$variable_mapping$variable_name[i] use_i <- primary_keys %in% foreign_keys if (!all(use_i)) { paste0( "Variable mapping. The variable_mapping table has these variable_name values ", "without a match in the ", tbl, " table: ", paste(primary_keys[!use_i], collapse = ", ")) } }) return(unlist(output)) } } validate_mapped_id <- function(data.list) { callstack <- as.character(sys.calls()) continue <- any(stringr::str_detect(callstack, "validate_data\\(path")) | any(stringr::str_detect(callstack, "test_that\\(")) if (continue) { if ("variable_mapping" %in% names(data.list)) { message(" mapped_id") output <- lapply( unique(data.list$variable_mapping$mapped_id), function(m_id) { m_id <- trimws(m_id) i <- try(httr::GET(m_id)$status, silent = T) if (i != 200 & !is.na(m_id)) { paste(m_id) } }) output <- unlist(output) if (!is.null(output)) { output <- paste0("Variable mapping. The variable_mapping table has ", "these mapped_id values that don't resolve: ", paste(unlist(output), collapse = ", ")) } return(output) } } }
library(ggplot2) this_base <- "fig02-01_structured-data-set" my_data <- data.frame( variable = paste("Item", 10:1), value = c(11.5, 6.5, 13.5, 8.5, 12.5, 7.5, 13.0, 8.0, 12.0, 7.0)) p <- ggplot(my_data, aes(x = factor(1), y = value)) + geom_bar(width = 1, colour = "black", fill = "white", stat = "identity") + geom_text(aes(x = 1.75, y = cumsum(value) - value/2, label = variable)) + coord_polar(theta = "y", start = pi/2) + ggtitle("Fig 2.1 Structured Data Set") + theme_bw() + theme(panel.grid.major = element_blank(), panel.border = element_blank(), plot.title = element_text(size = rel(1.2), face = "bold", vjust = 1.5), axis.title = element_blank(), axis.text = element_blank(), axis.ticks = element_blank()) p ggsave(paste0(this_base, ".png"), p, width = 6, height = 5)
setMethod("extent", "LAScatalog", function(x, ...) { return(raster::extent(min(x@data$Min.X), max(x@data$Max.X), min(x@data$Min.Y), max(x@data$Max.Y))) } ) setMethod("[", "LAScatalog", function(x, i, j, ..., drop = TRUE) { ctgname <- deparse(substitute(x)) iname <- deparse(substitute(i)) nargs <- nargs() if (!missing(i) & !missing(j)) stop(glue::glue("This action is not allowed for a {class(x)}. j must be missing. Maybe you meant: {ctgname}[{iname}, ]."), call. = FALSE) if (missing(i) & !missing(j)) stop(glue::glue("This action is not allowed for a {class(x)}. i cannot be missing."), call. = FALSE) if (!missing(i) & missing(j) & nargs == 2L) stop(glue::glue("This action is not allowed for a {class(x)}. Maybe you meant: {ctgname}[{iname}, ]."), call. = FALSE) y <- callNextMethod() new_ctg <- new("LAScatalog") new_ctg@chunk_options <- x@chunk_options new_ctg@processing_options <- x@processing_options new_ctg@output_options <- x@output_options new_ctg@input_options <- x@input_options new_ctg@data <- y@data new_ctg@polygons <- y@polygons new_ctg@plotOrder <- y@plotOrder new_ctg@bbox <- y@bbox new_ctg@proj4string <- y@proj4string return(new_ctg) }) setMethod("[[<-", "LAScatalog", function(x, i, j, value) { if (i %in% LASCATALOGATTRIBUTES) stop("LAScatalog data read from standard files cannot be modified", call. = FALSE) x@data[[i]] = value return(x) }) setMethod("$<-", "LAScatalog", function(x, name, value) { if (name %in% LASCATALOGATTRIBUTES) stop("LAScatalog data read from standard files cannot be modified", call. = FALSE) x@data[[name]] = value return(x) })
DS.prior.bbu <- function(yn.df, max.m = 8, start.par, iter.c = 200, B = 1000, smooth.crit = "BIC", LP.type = c("L2","MaxEnt")){ LP.type <- match.arg(LP.type) fam <- "Binomial" out <- list() if(dbeta(0, start.par[1], start.par[2]) != Inf){ theta.vals <- seq(0,1, length.out = B) }else{ theta.vals <- seq(1/B,1-(1/B), length.out = B) } PEB.g <- dbeta(theta.vals, start.par[1], start.par[2]) u.grid <- pbeta(theta.vals, start.par[1], start.par[2]) if(max.m == 0){ out$g.par <- start.par out$LP.par <- 0 out$prior.fit <- data.frame(theta.vals = theta.vals, parm.prior = PEB.g) out$UF.data <- data.frame(UF.x = u.grid, UF.y = rep(1,length(u.grid))) out$obs.data <- data.frame(y = yn.df[,1], n = yn.df[,2]) out$dev.df <- data.frame(m = 0, dev = 0) out$fam <- fam out$LP.type <- "L2" class(out) <- "DS_GF" return(out) } c.vec <- NULL dev.m <- NULL B.loop <- 150 u.loop <- seq(1/B.loop,1-(1/B.loop), length.out = B.loop) post.alpha.i <- start.par[1] + yn.df[,1] post.beta.i <- yn.df[,2] - yn.df[,1] + start.par[2] post.mat <- data.frame(al = post.alpha.i, be = post.beta.i) wght.loop <- apply(post.mat, 1, function(x) weight.fun.univ(u.loop, start.par[1], start.par[2], x[1], x[2], family = fam)) if(smooth.crit == "BIC"){ out$sm.crit <- "BIC" for(j in 1:max.m){ c.vec[j]<-0 cutoff.c <- 0 leg.mat.j <- gLP.basis(u.loop, c(1,1), length(c.vec), con.prior = "Beta") for(i in 1:iter.c){ c.L.new <- Reduce.LP.coef.univ(wght.mat=wght.loop, c.vec, leg.mat.j, freq.vec = NULL, k.tot = NULL) cutoff.c[i+1] <- sqrt(sum((c.L.new - c.vec)^2)) c.vec[j] <- c.L.new[j] if (cutoff.c[i+1] < 0.006 | abs(cutoff.c[i+1] - cutoff.c[(i)]) < 0.000006 ) {break} } dev.m[j] <- max(0,sum(c.vec^2)-(log(dim(yn.df)[1]))*(j/dim(yn.df)[1])) } } else { out$sm.crit <- "AIC" for(j in 1:max.m){ c.vec[j]<-0 cutoff.c <- 0 leg.mat.j <- gLP.basis(u.loop, c(1,1), length(c.vec), con.prior = "Beta") for(i in 1:iter.c){ c.L.new <- Reduce.LP.coef.univ(wght.mat=wght.loop, c.vec, leg.mat.j, freq.vec = NULL, k.tot = NULL) cutoff.c[i+1] <- sqrt(sum((c.L.new - c.vec)^2)) c.vec[j] <- c.L.new[j] if (cutoff.c[i+1] < 0.006 | abs(cutoff.c[i+1] - cutoff.c[(i)]) < 0.000006 ) {break} } dev.m[j] <- max(0,sum(c.vec^2) - (2 * (j/dim(yn.df)[1]))) } } m.vec <- c(1:max.m) if(sum(dev.m)==0){ out$m.val <- 0 out$g.par <- start.par names(out$g.par) <- c("alpha","beta") out$LP.par <- 0 out$LP.max.uns <- c.vec out$LP.max.smt <- LP.smooth(c.vec,dim(yn.df)[1], method = smooth.crit) out$prior.fit <- data.frame(theta.vals = theta.vals, parm.prior = PEB.g) out$UF.data <- data.frame(UF.x = u.grid, UF.y = rep(1,length(u.grid))) out$obs.data <- data.frame(y = yn.df[,1], n = yn.df[,2]) out$dev.df <- data.frame( m = m.vec, dev = dev.m) out$LP.type <- "L2" out$fam <- fam class(out) <- "DS_GF" return(out) }else{ out$m.val <- m.vec[which.max(dev.m)] out$LP.max.smt <- LP.smooth(c.vec,dim(yn.df)[1], method = smooth.crit) out$LP.par <- out$LP.max.smt[1:out$m.val] out$LP.max.uns <- c.vec out$dev.df <- data.frame( m = m.vec, dev = dev.m) out$g.par <- c(start.par[1], start.par[2]) names(out$g.par) <- c("alpha","beta") names(out$LP.par) <- paste("LP",1:length(out$LP.par),sep = "") d.u <- 1 + gLP.basis(u.grid,c(1,1),out$m.val, con.prior = "Beta")%*%out$LP.par Leg.mat <- gLP.basis(theta.vals, start.par, out$m.val, con.prior = "Beta") d.G <- 1+Leg.mat%*%out$LP.par DS.sm <- PEB.g*d.G DS.sm[DS.sm<0]<-0.0000000001 d.u[d.u<0] <- 0.0000000001 area <- sintegral(u.grid, d.u)$int out$prior.fit <- data.frame(theta.vals = theta.vals, parm.prior = PEB.g, ds.prior = DS.sm/area) out$UF.data <- data.frame(UF.x = u.grid, UF.y = d.u/area) out$obs.data <- data.frame(y = yn.df[,1], n = yn.df[,2]) out$fam <- fam if(LP.type == "L2"){ out$LP.type <- "L2" } else { out <- maxent.obj.convert(out) out$LP.type <- "MaxEnt" } class(out) <- "DS_GF" return(out) } }
spectralslice = function (sound, padding = length(sound) * 2, fs = 1, show = TRUE, add = FALSE, window = "kaiser", windowparameter = 3, zeromax = TRUE, preemphasisf = 0, type, line = FALSE, removeDC = TRUE, ...){ if (class(sound) == "ts") fs = frequency (sound) if (class(sound) == "sound") { fs = sound$fs sound = sound$sound } if (preemphasisf > 0) sound = preemphasis(sound, preemphasisf, fs) n = length(sound) if (removeDC) sound = sound - mean(sound) sound = sound * windowfunc(n, window, windowparameter) N = n + padding if (fs > 1) hz = seq(0, fs, length.out = N + 1) if (fs == 1) hz = seq(0, 1, length.out = N + 1) hz = hz[hz <= fs/2] sound = c(sound, rep(0, padding)) power = abs(fft(sound)) power = power[1:length(hz)]/(n/2) power = log(power, 10) * 20 power[which(power == min(power))] = sort(power)[2] if (zeromax == TRUE) power = power - max(power) if (missing(type)) type = "l" if (fs > 1) xlab = "Frequency (Hz)" if (fs == 1) xlab = "Frequency / Sampling Freq." if (add == FALSE & show == TRUE & line == FALSE) plot(hz, power, ylab = "Power (dB)", xlab = xlab, type = type, xaxs = "i", ...) if (add == TRUE & show == TRUE & line == FALSE) lines(hz, power, type = type, ...) if (line == TRUE) { plot(hz, power, ylab = "Power (dB)", xlab = xlab, type = "p", pch = 16, xaxs = "i", ...) segments(hz, rep(-5000, length(hz)), hz, power) } dB = power invisible(cbind(hz, dB)) } slice = function (sound, padding = length(sound) * 2, fs = 1, show = TRUE, add = FALSE, window = "kaiser", windowparameter = 3, zeromax = TRUE, preemphasisf = 0, type, line = FALSE, removeDC = TRUE, ...){ cl = match.call() args = sapply (2:length(cl), function(x) cl[[x]]) names(args) = names(cl)[-1] do.call (spectralslice, args) }
mod_search_ui <- function(id) { ns <- NS(id) tabPanel( title = "Search", column( width = 12, fluidRow(column(width = 12, h2(textOutput( ns("heading") )))), fluidRow(column( width = 12, textInput(inputId = ns("search_string"), label = "Search:") )), fluidRow(column( width = 12, tags$div( align = "left", class = "multicol", checkboxGroupInput( inputId = ns("search_columns"), label = "Select columns to search in:", choices = NULL ) ) )), fluidRow(column( width = 12, tags$div( align = "left", class = "multicol", checkboxGroupInput( inputId = ns("display_columns"), label = "Select columns to display:", choices = NULL ) ) )), fluidRow( column(width = 3, radioButtons( inputId = ns("search_type"), label = NULL, choices = c( "Use SQLite Style Wildcard Characters", "Use UNIX Style Wildcard Characters", "Use Regex" ) )), column( width = 9, conditionalPanel( condition = paste0( "input['", ns("search_type"), "'] == 'Use SQLite Style Wildcard Characters'" ), checkboxInput(inputId = ns("escape_characters"), label = "Escape % and _ characters.") ) ) ), fluidRow(column( width = 12, actionButton(inputId = ns("search_button"), label = "Search") )), fluidRow(column(width = 12, uiOutput( ns("search_results_ui") ))), br(), br() ) ) } mod_search_server <- function(input, output, session, conn) { ns <- session$ns info <- reactiveValues(data = NULL) output$heading <- renderText({ paste0("Search - ", conn$active_table) }) output$search_results_ui <- renderUI({ column( width = 12, id = "search_results", conditionalPanel(condition = !is.null(info$data), fluidRow(DT::DTOutput( ns("search_results") ))) ) }) output$search_results <- DT::renderDT(expr = { DT::datatable(data = info$data) }) observeEvent(conn$active_table, { if (conn$active_table != "") { updateCheckboxGroupInput( session = session, inputId = "display_columns", choices = RSQLite::dbGetQuery( conn$active_db, table_structure_query(conn$active_table) )$name, selected = RSQLite::dbGetQuery( conn$active_db, table_structure_query(conn$active_table) )$name ) updateCheckboxGroupInput( session = session, inputId = "search_columns", choices = RSQLite::dbGetQuery( conn$active_db, table_structure_query(conn$active_table) )$name, selected = RSQLite::dbGetQuery( conn$active_db, table_structure_query(conn$active_table) )$name ) } }) observeEvent(input$search_button, { if (input$search_string == "") { showNotification(ui = "Please enter a search query.", duration = 3, type = "error") } else if (is.null(input$display_columns)) showNotification(ui = "Please select columns to display.", duration = 3, type = "error") else if (input$search_type == "Use SQLite Style Wildcard Characters") { info$data <- RSQLite::dbGetQuery( conn$active_db, search_query_sqlite( input$display_columns, input$search_columns, conn$active_table, input$search_string, input$escape_characters ) ) } else if (input$search_type == "Use UNIX Style Wildcard Characters") { info$data <- RSQLite::dbGetQuery( conn$active_db, search_query_unix( input$display_columns, input$search_columns, conn$active_table, input$search_string ) ) } else if (input$search_type == "Use Regex") { RSQLite::initRegExp(conn$active_db) info$data <- RSQLite::dbGetQuery( conn$active_db, search_query_regex( input$display_columns, input$search_columns, conn$active_table, input$search_string ) ) } }) }
lambdak_pos <- function(times, subj, X, y, d, tau, kn, degree, lambda, gam){ dim = length(y) X = matrix(X, nrow=dim) px = ncol(X) lambdasic = Lamb_pos(times, subj, X, y, d, tau, kn, degree, lambda)$lambdasic qvc2=qrvcp_pos(times, subj, y, X, tau=tau, kn=kn, degree=degree, lambda=rep(0,px), d)$hat_bt lambdasicr = NULL for(k in 1:px){ lambdasicr[k] = lambdasic*(max(qvc2[seq((k-1)*dim+1,k*dim)])-min(qvc2[seq((k-1)*dim+1,k*dim)]))^(-(gam)) } out = list(lambdasic = lambdasic, lambdasicr=lambdasicr) return(out) }
PMCP <- "polyMatrixCharPolynomial" .check.polyMatrixCharClass <- function (object) { if (nrow(object@coef) != 1) { return("Char polynomial matrix should contain only one row") } return(TRUE) } polyMatrixCharClass <- setClass( PMCP, slots = c(coef=PM), validity = .check.polyMatrixCharClass )
normalizeNames <- function(x, pattern=list(" "), replacement=list("_"), alnum = FALSE, ...) { if (!is.factor(x)) x <- as.character(x) l0 <- if (is.factor(x)) levels(x) else unique(x) l <- l0 if (length(pattern) != length(replacement)) stop("pattern and replacement lengths must be equal") pattern <- as.list(pattern) replacement <- as.list(replacement) for (i in seq_len(length(pattern))) { l <- gsub(as.character(pattern[[i]]), as.character(replacement[[i]]), l, fixed=TRUE) } if (alnum) l <- nameAlnum(l, ...) if (is.factor(x)) { levels(x) <- l } else { x <- l[match(x, l0)] } x }
getBandWidth <- function(A, kmax = 3) { estkappa <- numeric(kmax) for (k in 1:kmax) { trigmom <- TrigMomRad(A, k) if (Afun(0.0001, trigmom, k) * Afun(345, trigmom, k) <= 0) estkappa[k] <- uniroot(Afun, c(0.0001,345), trigmom, k)$root } kappahat <- max(estkappa[1:kmax]) if(kappahat > 0) { return( ( 3 * length(A) * kappahat^2 * besselI(2 * kappahat, 2) / (4 * sqrt(pi) * besselI(kappahat, 0)^2) )^(2/5) ) } else { return(NA) } } TrigMomRad <- function(x, p) { sinr <- sum(sin(x)) cosr <- sum(cos(x)) circmean <- atan2(sinr, cosr) sin.p <- mean(sin(p * (x - circmean))) cos.p <- mean(cos(p * (x - circmean))) sqrt(sin.p^2 + cos.p^2) } Afun <- function(kappa, trigmom, k) { besselI(kappa, k) / besselI(kappa, 0) - trigmom }
cstar<-function(regobject, r){ s<-sign(regobject$coefficients) b<-abs(regobject$coefficients) v<-sqrt(diag(vcov(regobject))) degfr<-regobject$df utility<-function(t,a,x,m,sigma,degfr){ k<-as.numeric((x-t)>0)*2-1 xx<-(x-m)/sigma; tt<-(t-m)/sigma; out<-a^(-k)*dt(xx, df=degfr)*(x-t); return(out) } maximand<-function(t,a,m,sigma,degfr){as.numeric(integrate(utility, m-8*sigma, m+8*sigma, rel.tol=.Machine$double.eps^0.5, t=t, a=a, m=m, sigma=sigma, degfr=degfr)[1])} out<-c() for(i in 1:length(b)){ if(floor(i/10)==(i/10)){print(c("Iteration ",i))} if(b[i]!=0){out[i]<- sign(s[i])*uniroot(maximand, interval=c(-v[i]-b[i],v[i]+b[i]), tol=.Machine$double.eps^0.5, a=r, m=b[i], sigma=v[i], degfr=degfr)$root} else{out[i]<- 0} } for(i in 1:length(b)){ if(sign(out[i])!=s[i]){out[i]<-0} } return(out) } cstari<-function(b,v,degfr,r){ s<-sign(b) b<-abs(b) utility<-function(t,a,x,m,sigma,degfr){ k<-as.numeric((x-t)>0)*2-1 xx<-(x-m)/sigma; tt<-(t-m)/sigma; out<-a^(-k)*dt(xx, df=degfr)*(x-t); return(out) } maximand<-function(t,a,m,sigma,degfr){as.numeric(integrate(utility, b-8*sigma, b+8*sigma, rel.tol=.Machine$double.eps^0.5, t=t, a=a, m=m, sigma=sigma, degfr=degfr)[1])} out<-c() for(i in 1:length(b)){ if(floor(i/10)==(i/10)){print(c("Iteration ",i))} if(b[i]!=0){out[i]<- sign(s[i])*uniroot(maximand, interval=c(-v[i]-b[i],v[i]+b[i]), tol=.Machine$double.eps^0.5, a=r, m=b[i], sigma=v[i], degfr=degfr)$root} else{out[i]<- 0} } for(i in 1:length(b)){ if(sign(out[i])!=s[i]){out[i]<-0} } return(out) }
TS_on_LDA <- function(LDA_models, document_covariate_table, formulas = ~ 1, nchangepoints = 0, timename = "time", weights = NULL, control = list()){ check_TS_on_LDA_inputs(LDA_models, document_covariate_table, formulas, nchangepoints, timename, weights, control) control <- do.call("TS_control", control) mods <- expand_TS(LDA_models, formulas, nchangepoints) nmods <- nrow(mods) TSmods <- vector("list", nmods) for(i in 1:nmods){ print_model_run_message(mods, i, LDA_models, control) formula_i <- mods$formula[[i]] nchangepoints_i <- mods$nchangepoints[i] data_i <- prep_TS_data(document_covariate_table, LDA_models, mods, i) TSmods[[i]] <- TS(data_i, formula_i, nchangepoints_i, timename, weights, control) } package_TS_on_LDA(TSmods, LDA_models, mods) } prep_TS_data <- function(document_covariate_table, LDA_models, mods, i = 1){ check_document_covariate_table(document_covariate_table, LDA_models) check_LDA_models(LDA_models) if(is(LDA_models, "LDA")){ LDA_models <- c(LDA_models) class(LDA_models) <- c("LDA_set", "list") } data_i <- document_covariate_table data_i$gamma <- LDA_models[[mods$LDA[i]]]@gamma data_i } select_TS <- function(TS_models, control = list()){ if (!("TS_on_LDA" %in% class(TS_models))){ stop("TS_models must be of class TS_on_LDA") } check_control(control) control <- do.call("TS_control", control) measurer <- control$measurer selector <- control$selector TS_measured <- vapply(TS_models, measurer, 0) %>% matrix(ncol = 1) TS_selected <- apply(TS_measured, 2, selector) which_selected <- which(TS_measured %in% TS_selected) if (length(which_selected) > 1){ warning("Selection results in multiple models, returning first") which_selected <- which_selected[1] } out <- TS_models[[which_selected]] class(out) <- c("TS_fit", "list") out } package_TS_on_LDA <- function(TSmods, LDA_models, models){ check_LDA_models(LDA_models) if(is(LDA_models, "LDA")){ LDA_models <- c(LDA_models) class(LDA_models) <- c("LDA_set", "list") } nmodels <- nrow(models) nms <- rep(NA, nmodels) for (i in 1:nmodels){ nms[i] <- paste0(names(LDA_models)[models$LDA[i]], ", ", deparse(models$formula[[i]]), ", ", models$nchangepoints[i], " changepoints") } names(TSmods) <- nms class(TSmods) <- list("TS_on_LDA", "list") TSmods } print.TS_on_LDA <- function(x, ...){ print(names(x)) } print_model_run_message <- function(models, i, LDA_models, control){ control <- do.call("TS_control", control) equation <- deparse(models$formula[[i]]) chngpt_msg <- paste0("with ", models$nchangepoints[i], " changepoints ") reg_msg <- paste0("and equation ", equation) ts_msg <- paste0(chngpt_msg, reg_msg) lda_msg <- names(LDA_models)[models$LDA[i]] msg <- paste0("Running TS model ", ts_msg, " on LDA model ", lda_msg, "\n") messageq(msg, control$quiet) } expand_TS <- function(LDA_models, formulas, nchangepoints){ check_LDA_models(LDA_models) check_nchangepoints(nchangepoints) if (is(LDA_models, "LDA")) { LDA_models <- c(LDA_models) class(LDA_models) <- c("LDA_set", "list") } if (!is(formulas, "list")) { if (is(formulas, "formula")) { formulas <- c(formulas) } else{ stop("formulas does not contain formula(s)") } } else if (!all(vapply(formulas, is, TRUE, "formula"))) { stop("formulas does not contain all formula(s)") } formulas out <- formulas for (i in seq_along(formulas)) { tformula <- paste(as.character(formulas[[i]]), collapse = "") out[[i]] <- as.formula(paste("gamma", tformula)) } formulas <- out nmods <- length(LDA_models) mods <- 1:nmods out <- expand.grid(mods, formulas, nchangepoints, stringsAsFactors = FALSE) colnames(out) <- c("LDA", "formula", "nchangepoints") out } check_nchangepoints <- function(nchangepoints){ if (!is.numeric(nchangepoints) || any(nchangepoints %% 1 != 0)){ stop("nchangepoints must be integer-valued") } if (any(nchangepoints < 0)){ stop("nchangepoints must be non-negative") } return() } check_weights <- function(weights){ if(is.logical(weights)){ if(weights){ return() } else{ stop("if logical, weights need to be TRUE") } } if(!is.null(weights)){ if (!is.numeric(weights)){ stop("weights vector must be numeric") } if (any(weights <= 0)){ stop("weights must be positive") } if (round(mean(weights)) != 1){ warning("weights should have a mean of 1, fit may be unstable") } } return() } check_LDA_models <- function(LDA_models){ if(("LDA_set" %in% class(LDA_models)) == FALSE){ if(is(LDA_models, "LDA") == FALSE){ stop("LDA_models is not an LDA object or LDA_set object") } } return() } check_document_covariate_table <- function(document_covariate_table, LDA_models = NULL, document_term_table = NULL){ dct_df <- tryCatch(data.frame(document_covariate_table), warning = function(x){NA}, error = function(x){NA}) if(is(LDA_models, "LDA")){ LDA_models <- c(LDA_models) class(LDA_models) <- c("LDA_set", "list") } if (length(dct_df) == 1 && is.na(dct_df)){ stop("document_covariate_table is not conformable to a data frame") } if (!is.null(LDA_models)){ if (nrow(data.frame(document_covariate_table)) != nrow(LDA_models[[1]]@gamma)){ stop("number of documents in covariate table is not equal to number of documents observed") } } else if (!is.null(document_term_table)){ if (nrow(data.frame(document_covariate_table)) != nrow(data.frame(document_term_table))){ stop("number of documents in covariate table is not equal to number of documents observed") } } return() } check_timename <- function(document_covariate_table, timename){ if (!("character" %in% class(timename))){ stop("timename is not a character value") } if (length(timename) > 1){ stop("timename can only be one value") } covariate_names <- colnames(document_covariate_table) if ((timename %in% covariate_names) == FALSE){ stop("timename not present in document covariate table") } time_covariate <- document_covariate_table[ , timename] if (!(is.Date(time_covariate)) & (!is.numeric(time_covariate) || !all(time_covariate %% 1 == 0))){ stop("covariate indicated by timename is not an integer or a date") } return() } check_formulas <- function(formulas, document_covariate_table, control = list()){ check_document_covariate_table(document_covariate_table) check_control(control) control <- do.call("TS_control", control) dct <- document_covariate_table if (!is(formulas, "list")) { if (is(formulas, "formula")) { formulas <- c(formulas) } else{ stop("formulas does not contain formula(s)") } } else if (!all(vapply(formulas, is, TRUE, "formula"))) { stop("formulas does not contain all formula(s)") } resp <- unlist(lapply(lapply(formulas, terms), attr, "response")) pred <- unlist(lapply(lapply(formulas, terms), attr, "term.labels")) if (any(resp != 0)) { stop("formula inputs should not include response variable") } if (!all(pred %in% colnames(dct))) { misses <- pred[which(pred %in% colnames(dct) == FALSE)] mis <- paste(misses, collapse = ", ") stop(paste0("formulas include predictors not present in data: ", mis)) } return() } check_TS_on_LDA_inputs <- function(LDA_models, document_covariate_table, formulas = ~ 1, nchangepoints = 0, timename = "time", weights = NULL, control = list()){ check_LDA_models(LDA_models) check_document_covariate_table(document_covariate_table, LDA_models) check_timename(document_covariate_table, timename) check_formulas(formulas, document_covariate_table, control) check_nchangepoints(nchangepoints) check_weights(weights) check_control(control) }
add_line_layer <- function(deckgl, id = "line-layer", data = NULL, properties = list(), ...) { add_layer(deckgl, "LineLayer", id, data, properties, ...) }
shinydashboard::tabItem( tabName = "amgauge", fluidRow( column( width = 12, br(), tabBox(width=12,height=550, tabPanel( title = "Graphic", fluidRow( h2("Simple example", align="center"), column( width = 12, rAmCharts::amChartsOutput("amangular")) )), tabPanel( title = "Code", fluidRow( h2("Simple example", align="center"), column( width = 12, verbatimTextOutput("code_amangular")) ) ) ), br(), tabBox(width=12,height=550, tabPanel( title = "Graphic", fluidRow( h2("Bands", align="center"), column( width = 12, rAmCharts::amChartsOutput("amangular2")) )), tabPanel( title = "Code", fluidRow( h2("Bands", align="center"), column( width = 12, verbatimTextOutput("code_amangular2")) ) ) ), br(), tabBox(width=12,height=550, tabPanel( title = "Graphic", fluidRow( h2("Multi bands", align="center"), column( width = 12, rAmCharts::amChartsOutput("amangular3")) )), tabPanel( title = "Code", fluidRow( h2("Multi bands", align="center"), column( width = 12, verbatimTextOutput("code_amangular3")) ) ) ), br(), tabBox(width=12,height=550, tabPanel( title = "Graphic", fluidRow( h2("Solid", align="center"), column( width = 12, rAmCharts::amChartsOutput("amangular4")) )), tabPanel( title = "Code", fluidRow( h2("Solid", align="center"), column( width = 12, verbatimTextOutput("code_amangular4")) ) ) ) ) ) )
cec2013 <- function (i, x) { if (missing(i)) stop("Missing argument; 'i' has to be provided !") if (missing(x)) stop("Missing argument; 'x' has to be provided !") if (is.numeric(i) && i >= 1 && i <= 28) { if (is.vector(x)) { row <- 1; col <- length(x) } else if (is.matrix(x)) { row <- nrow(x); col <- ncol(x) } else { stop("x should be a vector or a matrix") } if (!(col %in% c(2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100))) { stop("Invalid argument: Only 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 dimensions/variables are allowed !") } extdatadir <- system.file("extdata", package = "cec2013") f <- .C("cec2013", extdatadir = as.character(extdatadir), i = as.integer(i), x = as.double(x), row = as.integer(row), col = as.integer(col), f = double(row), PACKAGE = "cec2013")$f } else stop("Invalid argument: 'i' should be an integer between 1 and 28 !") return(f) }
context("Property getters") tenant <- Sys.getenv("AZ_TEST_TENANT_ID") app <- Sys.getenv("AZ_TEST_APP_ID") password <- Sys.getenv("AZ_TEST_PASSWORD") subscription <- Sys.getenv("AZ_TEST_SUBSCRIPTION") if(tenant == "" || app == "" || password == "" || subscription == "") skip("ARM credentials not set") rgname <- Sys.getenv("AZ_TEST_STORAGE_RG") stornamenohns <- Sys.getenv("AZ_TEST_STORAGE_NOHNS") stornamehns <- Sys.getenv("AZ_TEST_STORAGE_HNS") if(rgname == "" || stornamenohns == "" || stornamehns == "") skip("Property getter tests skipped: resource names not set") sub <- AzureRMR::az_rm$new(tenant=tenant, app=app, password=password)$get_subscription(subscription) stornohns <- sub$get_resource_group(rgname)$get_storage_account(stornamenohns) storhns <- sub$get_resource_group(rgname)$get_storage_account(stornamehns) options(azure_storage_progress_bar=FALSE) bl <- stornohns$get_blob_endpoint() cont <- create_storage_container(bl, paste0(sample(letters, 10, TRUE), collapse="")) storage_upload(cont, "../resources/iris.csv", "iris.csv") fl <- stornohns$get_file_endpoint() share <- create_storage_container(fl, paste0(sample(letters, 10, TRUE), collapse="")) create_storage_dir(share, "dir") storage_upload(share, "../resources/iris.csv", "iris.csv") ad <- storhns$get_adls_endpoint() fs <- create_storage_container(ad, paste0(sample(letters, 10, TRUE), collapse="")) create_storage_dir(fs, "dir") storage_upload(fs, "../resources/iris.csv", "iris.csv") test_that("Blob property getters work", { expect_is(cont, "blob_container") prop1 <- get_storage_properties(cont) expect_true(is.list(prop1) && !is_empty(prop1)) prop2 <- get_storage_properties(cont, "iris.csv") expect_true(is.list(prop2) && !is_empty(prop2)) expect_identical(prop2$`content-type`, "text/csv") }) test_that("File property getters work", { expect_is(share, "file_share") prop1 <- get_storage_properties(share) expect_true(is.list(prop1) && !is_empty(prop1)) prop2 <- get_storage_properties(share, "iris.csv") expect_true(is.list(prop2) && !is_empty(prop2)) expect_identical(prop2$`content-type`, "text/csv") prop3 <- get_storage_properties(share, "dir") expect_true(is.list(prop3) && !is_empty(prop3)) }) test_that("ADLS property getters work", { expect_is(fs, "adls_filesystem") prop1 <- get_storage_properties(fs) expect_true(is.list(prop1) && !is_empty(prop1)) prop2 <- get_storage_properties(fs, "iris.csv") expect_true(is.list(prop2) && !is_empty(prop2)) expect_identical(prop2$`content-type`, "text/csv") prop3 <- get_storage_properties(fs, "dir") expect_true(is.list(prop3) && !is_empty(prop3)) expect_type(get_adls_file_acl(fs, "iris.csv"), "character") stat <- get_adls_file_status(fs, "iris.csv") expect_true(is.list(stat) && !is_empty(stat)) }) teardown( { blconts <- list_storage_containers(bl) lapply(blconts, delete_storage_container, confirm=FALSE) flconts <- list_storage_containers(fl) lapply(flconts, delete_storage_container, confirm=FALSE) adconts <- list_storage_containers(ad) lapply(adconts, delete_storage_container, confirm=FALSE) })
baggedModel <- function(y, bootstrapped_series=bld.mbb.bootstrap(y, 100), fn=ets, ...) { if(!is.function(fn)){ warning(paste0("Using character specification for `fn` is deprecated. Please use `fn = ", match.arg(fn,c("ets", "auto.arima")), "`.")) fn <- utils::getFromNamespace(match.arg(fn,c("ets", "auto.arima")), "forecast") } mod_boot <- lapply(bootstrapped_series, function(x) { mod <- fn(x, ...) }) out <- list() out$y <- as.ts(y) out$bootstrapped_series <- bootstrapped_series out$models <- mod_boot out$modelargs <- list(...) fitted_boot <- lapply(out$models, fitted) fitted_boot <- as.matrix(as.data.frame(fitted_boot)) out$fitted <- ts(apply(fitted_boot, 1, mean)) tsp(out$fitted) <- tsp(out$y) out$residuals <- out$y - out$fitted out$series <- deparse(substitute(y)) out$method <- "baggedModel" out$call <- match.call() return(structure(out, class = c("baggedModel"))) } baggedETS <- function(y, bootstrapped_series=bld.mbb.bootstrap(y, 100), ...) { out <- baggedModel(y, bootstrapped_series, fn = ets, ...) class(out) <- c("baggedETS", class(out)) out } forecast.baggedModel <- function(object, h=ifelse(frequency(object$y) > 1, 2 * frequency(object$y), 10), ...) { out <- list( model = object, series = object$series, x = object$y, method = object$method, fitted = object$fitted, residuals = object$residuals ) tspx <- tsp(out$x) forecasts_boot <- lapply(out$model$models, function(mod) { if (inherits(mod, "ets")) { forecast(mod, PI = FALSE, h = h, ...)$mean } else { forecast(mod, h = h, ...)$mean } }) forecasts_boot <- as.matrix(as.data.frame(forecasts_boot)) colnames(forecasts_boot) <- NULL if (!is.null(tspx)) { start.f <- tspx[2] + 1 / frequency(out$x) } else { start.f <- length(out$x) + 1 } out$forecasts_boot <- forecasts_boot out$mean <- ts(apply(forecasts_boot, 1, mean), frequency = frequency(out$x), start = start.f) out$median <- ts(apply(forecasts_boot, 1, median)) out$lower <- ts(apply(forecasts_boot, 1, min)) out$upper <- ts(apply(forecasts_boot, 1, max)) out$level <- 100 tsp(out$median) <- tsp(out$lower) <- tsp(out$upper) <- tsp(out$mean) class(out) <- "forecast" out } print.baggedModel <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("Series:", x$series, "\n") cat("Model: ", x$method, "\n") cat("Call: ") print(x$call) invisible(x) } is.baggedModel <- function(x) { inherits(x, "baggedModel") }
library(gplots) options(max.print=1000000) dd <- read.delim("C:\\Users\\junior\\Downloads\\rpkm-50.txt",sep="\t",header=TRUE,dec=".",stringsAsFactors = FALSE,strip.white = TRUE) x <- as.matrix(dd) rc <- rainbow(nrow(x), start=0, end=.3) cc <- rainbow(ncol(x), start=0, end=.3) hr <- hclust(as.dist(1-cor(t(x), method="spearman")), method="complete") hc <- hclust(as.dist(1-cor(x, method="spearman")), method="complete") heatmap.2(x, col=bluered(75), Colv=as.dendrogram(hc), Rowv=as.dendrogram(hr), scale="row", key=T, keysize=1.5,density.info="none", trace="none",cexCol=0.9, cexRow=0.9,labRow=NA, dendrogram="both") library(heatmaply) heatmaply(x, color=bluered(75), Colv=as.dendrogram(hc), Rowv=as.dendrogram(hr), k_col = 2, k_row = 2, scale="row", row_dend_left = TRUE, dendrogram="both")
isStringVectorOrNull <- function(argument, default = NULL, stopIfNot = FALSE, n = NA, message = NULL, argumentName = NULL) { checkarg(argument, "S", default = default, stopIfNot = stopIfNot, nullAllowed = TRUE, n = NA, naAllowed = FALSE, emptyStringAllowed = TRUE, message = message, argumentName = argumentName) }
par.eCAR.Leroux <- function(y,x,W,E=NULL,C=NULL,model="Gaussian", joint_prior_lamx_lamz = FALSE, lamx.fix.val = NULL, sig2x.fix.val = NULL, m=0,s2=10,alamx=1,blamx=1,alamz=1,blamz=1, asig=1,bsig=1,atau=1,btau=1,asigx=1,bsigx=1, mb0=0,s2b0=100,me=0,s2e=100,mx=0, s2x=100, tau_cand_sd=1, sig2_cand_sd=1, draws=10000,burn=5000,thin=5, verbose=TRUE){ emp.hpd <- function(x, conf=0.95){ conf <- min(conf, 1-conf) n <- length(x) nn <- round( n*conf ) x <- sort(x) xx <- x[ (n-nn+1):n ] - x[1:nn] m <- min(xx) nnn <- which(xx==m)[1] return( c( x[ nnn ], x[ n-nn+nnn ] ) ) } cat("A", model, "model is being fit \n") out <- NULL nout <- (draws-burn)/thin nobs <- length(y) M <- diag(apply(W,1,sum)) R <- M-W eigendec.R <- eigen(R) evals <- eigendec.R$values evecs <- eigendec.R$vectors ystar <- t(evecs) %*% y xstar <- t(evecs) %*% x ncov <- ncol(C) if(is.null(C)){ ncov <- 0 C <- 0 Cstar <- 0 } else { Cstar <- t(evecs) %*% as.matrix(C) } updateXparms <- FALSE if(is.null(lamx.fix.val) | is.null(sig2x.fix.val)){ updateXparms <- TRUE sig2x.fix.val <- 1 lamx.fix.val <- 0.5 } modelPriors = c(m, s2, alamx, blamx, alamz, blamz, asig, bsig, atau, btau, asigx, bsigx, mb0, s2b0, me, s2e, mx, s2x) MHsd <- c(tau_cand_sd, sig2_cand_sd) beta0 <- beta <- alpha <- tau <- sig2 <- rep(1, nout) sig2x <- rep(sig2x.fix.val,nout) lamx <- lamz <- rep(lamx.fix.val, nout) theta <- nb_r <- matrix(0, nrow=nout, ncol=nobs) eta <- matrix(0, nrow=nout, ncol=ncov) if(model=="Gaussian"){ ystar <- ystar - mean(ystar) xstar <- xstar - mean(xstar) C.out <- .C("mcmcloop_leroux_gauss", as.integer(draws), as.integer(burn), as.integer(thin), as.integer(nobs), as.double(ystar), as.double(xstar), as.double(evals), as.double(t(Cstar)), as.integer(ncov), as.double(modelPriors), as.double(MHsd), as.integer(verbose), as.integer(joint_prior_lamx_lamz), as.integer(updateXparms), beta.out=as.double(beta), alpha.out=as.double(alpha), tau.out=as.double(tau), sig2x.out=as.double(sig2x), lamx.out=as.double(lamx), lamz.out=as.double(lamz), sig2.out=as.double(sig2), eta.out=as.double(eta)) } if(model!="Gaussian"){ if(model == "Poisson") modelnum = 1 if(model == "Binomial") modelnum = 2 if(model == "Negative Binomial") modelnum = 3 C.out <- .C("mcmcloop_leroux_GLM", as.integer(draws), as.integer(burn), as.integer(thin), as.integer(nobs), as.double(y), as.double(x), as.double(E), as.double(evals), as.double(t(evecs)), as.double(t(W)), as.double(t(C)), as.integer(ncov), as.integer(modelnum), as.double(modelPriors), as.double(MHsd), as.integer(verbose), as.integer(joint_prior_lamx_lamz), as.integer(updateXparms), beta.out=as.double(beta), alpha.out=as.double(alpha), tau.out=as.double(tau), sig2x.out=as.double(sig2x), lamx.out=as.double(lamx), lamz.out=as.double(lamz), theta.out=as.double(theta), beta0.out=as.double(beta0), eta.out=as.double(eta), r.out=as.double(nb_r)) } out$beta <- matrix(C.out$beta.out, nrow=nout, byrow=TRUE) out$gamma <- matrix(C.out$alpha.out, nrow=nout, byrow=TRUE) out$tau <- matrix(C.out$tau.out, nrow=nout, byrow=TRUE) out$sig2x <- matrix(C.out$sig2x.out, nrow=nout, byrow=TRUE) out$lamx <- matrix(C.out$lamx.out, nrow=nout, byrow=TRUE) out$lamz <- matrix(C.out$lamz.out, nrow=nout, byrow=TRUE) if(model=="Gaussian") out$sig2 <- matrix(C.out$sig2.out, nrow=nout, byrow=TRUE) out$rho <- matrix((out$gamma*sqrt(out$sig2x))/sqrt(out$tau + out$gamma^2*out$sig2x), nrow=nout, byrow=TRUE) out$sig2z <- matrix(out$tau + out$gamma^2*out$sig2x, nrow=nout, byrow=TRUE) if(model!="Gaussian"){ out$theta <- matrix(C.out$theta.out, nrow=nout, byrow=TRUE) out$beta0 <- matrix(C.out$beta0.out, nrow=nout, byrow=TRUE) } if(ncov>0) out$eta <- matrix(C.out$eta.out, nrow=nout, byrow=TRUE) if(model=="Negative Binomial") out$nb_r = matrix(C.out$r.out, nrow=nout, byrow=TRUE) Dseq <- seq(min(evals), max(evals), length=1000) c.beta <- matrix(NA, nrow=nout, ncol=length(Dseq)) for(t in 1:nout){ c.beta[t,] <- out$beta[t] + out$gamma[t]*sqrt((1-out$lamx[t]+out$lamx[t]*Dseq)/(1-out$lamz[t]+out$lamz[t]*Dseq)) } if(model=="Gaussian"){ beta.mn <- matrix(apply(c.beta,2,function(x) mean(x)),nrow=1000,byrow=TRUE) beta.q025 <- matrix(apply(c.beta,2,function(x) emp.hpd(x))[1,],nrow=1000,byrow=TRUE) beta.q975 <- matrix(apply(c.beta,2,function(x) emp.hpd(x))[2,],nrow=1000,byrow=TRUE) } if(model!="Gaussian"){ beta.mn <- matrix(apply(exp(c.beta),2,function(x) mean(x)),nrow=1000,byrow=TRUE) beta.q025 <- matrix(apply(exp(c.beta),2,function(x) emp.hpd(x))[1,],nrow=1000,byrow=TRUE) beta.q975 <- matrix(apply(exp(c.beta),2,function(x) emp.hpd(x))[2,],nrow=1000,byrow=TRUE) } omega <- Dseq result <- eCAR.out(data_model = model, beta_omega = cbind(beta.mn, beta.q025, beta.q975, omega), posterior_draws = out, DIC=NULL, regrcoef = NULL) return(result) }
library(magick) library(dplyr) library(ggplot2) library(camcorder) gg_record(dir = "genuary/2022/genuary-temp", device = "png", width = 6.5, height = 10, units = "in", dpi = 320) path <- here::here("mitosis", "original", "georgios.jpg") img <- image_read(path) h = image_info(img)$height w = image_info(img)$width r = 300 nx = round(w / r) ny = round(h / r) blocks <- expand.grid( x = seq(0, w - 2 * r, length.out = nx), y = seq(0, h - 2 * r, length.out = ny) ) %>% rowwise() %>% mutate( xy = paste0(x, "+", y), img = list(image_crop(img, geometry_area(r * 2, r * 2, x, y))) ) %>% ungroup() img_list <- image_join(blocks$img) final <- image_montage(img_list, paste0("x", r, "+0+0"), tile = paste0(nx, "x", ny)) img <- final %>% image_convert(colorspace = "gray") img_w <- image_info(img)$width img_h <- image_info(img)$height img_ratio <- img_w / img_h if (img_w >= img_h) { img <- image_resize(img, "300") } else { img <- image_resize(img, ("x300")) } img_array <- drop(as.integer(img[[1]])) rownames(img_array) <- 1:nrow(img_array) colnames(img_array) <- 1:ncol(img_array) threshold <- 0.5 img_df <- as.data.frame.table(img_array) %>% `colnames<-`(c("y", "x", "b")) %>% mutate( across(everything(), as.numeric), bf = 1 - b / 255 ) %>% arrange(y, x) %>% filter(bf > threshold) ggplot(img_df) + geom_point(aes(x, -y, color = bf), size = 0.5) + scale_color_gradient2() + coord_cartesian(expand = FALSE) + theme_void() + theme( legend.position = "none", plot.background = element_rect(fill = "grey97", color = NA) )
library(knotR) filename <- "k12a_0614.svg" a <- reader(filename) xver <- c(10,23) ouk12 <- matrix(c( 15,1, 2,14, 21,3, 4,10, 19,5, 6,18, 10,7, 8,22, 23,9, 11,20, 17,12, 13,16 ),byrow=TRUE,ncol=2) symk11 <- symmetry_object(a, Mver=NULL, xver=xver) a <- symmetrize(as.minobj(a),symk11) knotplot(a,ouk12) stop() jj <- knotoptim(filename, symobj = symk11, ou = ouk11, prob = 0, iterlim=1000, print.level=2 ) write_svg(jj,filename,safe=FALSE) dput(jj,file=sub('.svg','.S',filename))
pvisual <- function(x, K, m=20, N=10000, type="scenario3", xp=1, target=1, upper.tail=TRUE) { freq <- get(type)(N=N, K=K, m=m, xp=xp, target=target) if (upper.tail) { sim <- vapply(x, function(y) sum(freq[as.numeric(names(freq)) >= y]), numeric(1)) return(cbind(x=x, "simulated"=sim, "binom"=1-pbinom(x-1, size=K, prob=1/m))) } else { sim <- vapply(x, function(y) sum(freq[as.numeric(names(freq)) < y]), numeric(1)) return(cbind(x=x, "simulated"=sim, "binom"= pbinom(x-1, size=K, prob=1/m))) } } pickData <- function(m, xp=1, dataprob=NULL, nulls=NULL) { probs <- runif(m) n.targets = length(dataprob) if (!is.null(dataprob)) { probs[seq_len(n.targets)] <- dataprob } if (!is.null(nulls)) probs[(n.targets+1):m] <- nulls ps <- (1-probs)^xp if (all (ps==0)) ps <- rep(1, length(probs)) rbinom(1, size=1, prob=sum(ps[seq_len(n.targets)])/sum(ps)) } scenario1 <- function(N, K, m = 20, xp=1, target=1) { table(replicate(N, { individual <- sum(replicate(K, pickData(m, dataprob=NULL, xp=xp)) %in% target) individual }))/N } scenario2 <- function(N, K, m = 20, xp=1, target=1) { table(replicate(N, { n.targets = length(target) dataprob <- runif(n.targets) individual <- sum(replicate(K, pickData(m, dataprob=dataprob, xp=xp) %in% target)) individual }))/N } scenario3 <- function(N, K, m=20, xp=1, target=1) { table(replicate(N/100, replicate(100, { n.targets = length(target) dataprob <- runif(n.targets) nulls <- runif(m-n.targets) individual <- sum(replicate(K, pickData(m, dataprob=dataprob, nulls=nulls, xp=xp)) %in% target) individual })))/N } scenario4 <- function(N, K, m=20, xp=1, target=1) { res <- replicate(N, { n.targets = length(target) dataprob <- runif(n.targets) individual <- vapply(seq_along(K), function(i) sum(replicate(K[i], pickData(m, dataprob=dataprob, nulls=runif(m-n.targets), xp=xp)) %in% target), numeric(1)) sum(individual) }) table(res)/N }
"simndecay_gen" <- function (kinpar, tmax, deltat, specpar=vector(), lmin, lmax, deltal, sigma, irf = FALSE, irfpar = vector(), seqmod = FALSE, dispmu = FALSE, nocolsums=FALSE, disptau = FALSE, parmu = list(), partau = vector(), lambdac = 0, fullk = FALSE, kmat = matrix(), jvec = vector(), specfun = "gaus", nupow = 1, irffun = "gaus", kinscal = vector(), lightregimespec = list(), specdisp = FALSE, specdisppar=list(), parmufunc = "exp", specdispindex = list(), amplitudes = vector(),specref=0, fixedkmat=FALSE) { x <- seq(0, tmax, deltat) nt <- length(x) ncomp <- length(kinpar) x2 <- seq(lmin, lmax, deltal) nl <- length(x2) if(specdisp){ EList <- list() for (i in 1:nt) { sp <- specparF(specpar = specpar, xi = x[i], i = i, specref = specref, specdispindex = specdispindex, specdisppar = specdisppar, parmufunc = parmufunc) EList[[i]] <- calcEhiergaus(sp, x2, nupow) } } else E2 <- calcEhiergaus(specpar, x2, nupow) if (!(dispmu || disptau)) { C2 <- compModel(k = kinpar, x = x, irfpar = irfpar, irf = irf, seqmod = seqmod, fullk = fullk, kmat = kmat, jvec = jvec,amplitudes = amplitudes, lightregimespec = lightregimespec, nocolsums= nocolsums, kinscal = kinscal, fixedkmat=fixedkmat) if(specdisp){ psisim <- matrix(nrow = nt, ncol = nl) E2 <- EList[[1]] for (i in 1:nt) { psisim[i,] <- t(as.matrix(C2[i, ])) %*% t(EList[[i]]) } } else psisim <- C2 %*% t(E2) } else { psisim <- matrix(nrow = nt, ncol = nl) for (i in 1:nl) { irfvec <- irfparF(irfpar, lambdac, x2[i], i, dispmu, parmu, disptau, partau, "", "", "gaus") C2 <- compModel(k = kinpar, x = x, irfpar = irfpar, irf = irf, seqmod = seqmod, fullk = fullk, kmat = kmat, jvec = jvec,amplitudes = amplitudes, lightregimespec = lightregimespec, nocolsums= nocolsums, kinscal = kinscal, fixedkmat=fixedkmat) psisim[, i] <- C2 %*% cbind(E2[i, ]) } } dim(psisim) <- c(nt * nl, 1) psi.df <- psisim + sigma * rnorm(nt * nl) dim(psi.df) <- c(nt, nl) kin(psi.df = psi.df, x = x, nt = nt, x2 = x2, nl = nl, C2 = C2, E2 = E2, kinpar = kinpar, specpar = specpar, seqmod = seqmod, irf = irf, irfpar = irfpar, dispmu = dispmu, disptau = disptau, parmu = parmu, partau = partau, lambdac = lambdac, simdata = TRUE, fullk = fullk, kmat = kmat, jvec = jvec, fixedkmat=fixedkmat) }
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(3.14159265358979, class = structure(\"3.14159265358979\", class = \"testit\")))")); do.call(`is.logical`, argv); }, o=expected);
afc.mm = function(obsv,fcst,mv=3,mf=3){ if (mf == 0) mf=mv n.matrix = array(0,dim=c(mv,mf)) for (nn in 1:mv) for (mm in 1:mf){ n.matrix[nn,mm] = sum((obsv == nn) & (fcst == mm)) } numer = 0 denom = 0 for (k in 1:(mv-1)) for (l in (k+1):mv){ term1 = 0 term2 = 0 for (i in 1:(mf-1)) for (j in (i+1):mf){ term1 = term1 + n.matrix[k,i]*n.matrix[l,j] } for (i in 1:mf){ term2 = term2 + n.matrix[k,i]*n.matrix[l,i] } numer = numer + term1 + 0.5*term2 denom = denom + sum(n.matrix[k,])*sum(n.matrix[l,]) } p.afc = numer/denom type.flag = 1 return(p.afc) }
BiCopSelect <- function(u1, u2, familyset = NA, selectioncrit = "AIC", indeptest = FALSE, level = 0.05, weights = NA, rotations = TRUE, se = FALSE, presel = TRUE, method = "mle") { if (!(selectioncrit %in% c("AIC", "BIC", "logLik"))) stop("Selection criterion not implemented.") if (presel) todo_fams <- todo_fams_presel args <- preproc(c(as.list(environment()), call = match.call()), check_u, remove_nas, check_nobs, check_if_01, prep_familyset, check_twoparams, check_est_pars, check_fam_tau, todo_fams, na.txt = " Only complete observations are used.") list2env(args, environment()) p.value.indeptest <- BiCopIndTest(u1, u2)$p.value if (indeptest & (p.value.indeptest >= level)) { obj <- BiCop(0) } else { optiout <- list() lls <- rep(Inf, length(familyset)) AICs <- rep(Inf, length(familyset)) BICs <- rep(Inf, length(familyset)) for (i in seq_along(familyset)) { optiout[[i]] <- BiCopEst.intern(u1, u2, family = familyset[i], method = method, se = se, weights = weights, as.BiCop = FALSE) if (any(is.na(weights))) { lls[i] <- sum(log(BiCopPDF(u1, u2, familyset[i], optiout[[i]]$par, optiout[[i]]$par2, check.pars = FALSE))) } else { lls[i] <- sum(log(BiCopPDF(u1, u2, familyset[i], optiout[[i]]$par, optiout[[i]]$par2, check.pars = FALSE)) %*% weights) } npars <- ifelse(familyset[i] %in% allfams[onepar], 1, 2) if (familyset[i] == 0) npars <- 0 AICs[i] <- -2 * lls[i] + 2 * npars BICs[i] <- -2 * lls[i] + log(length(u1)) * npars } sel <- switch(selectioncrit, "logLik" = which.max(lls), "AIC" = which.min(AICs), "BIC" = which.min(BICs)) obj <- BiCop(optiout[[sel]]$family, optiout[[sel]]$par, optiout[[sel]]$par2, check.pars = FALSE) } if (obj$family == 0) { if (se) obj$se <- NA obj$nobs <- length(u1) obj$logLik <- 0 obj$AIC <- 0 obj$BIC <- 0 } else { if (se) { obj$se <- optiout[[sel]]$se if (obj$family %in% allfams[twopar]) obj$se2 <- optiout[[sel]]$se2 } obj$nobs <- length(u1) obj$logLik <- lls[sel] obj$AIC <- AICs[sel] obj$BIC <- BICs[sel] } obj$emptau <- args$emp_tau obj$p.value.indeptest <- p.value.indeptest obj$call <- match.call() obj } with_rotations <- function(nums) { unique(unlist(lapply(nums, get_rotations))) } get_rotations <- function(fam) { sgn <- sign(fam) fam <- sgn * fam if (fam %in% c(0, 1, 2, 5)) { out <- fam } else if (fam %in% c(3, 13, 23, 33)) { out <- c(3, 13, 23, 33) } else if(fam %in% c(4, 14, 24, 34)) { out <- c(4, 14, 24, 34) } else if(fam %in% c(6, 16, 26, 36)) { out <- c(6, 16, 26, 36) } else if(fam %in% c(7, 17, 27, 37)) { out <- c(7, 17, 27, 37) } else if(fam %in% c(8, 18, 28, 38)) { out <- c(8, 18, 28, 38) } else if(fam %in% c(9, 19, 29, 39)) { out <- c(9, 19, 29, 39) } else if(fam %in% c(10, 20, 30, 40)) { out <- c(10, 20, 30, 40) } else if(fam %in% c(104, 114, 124, 134)) { out <- c(104, 114, 124, 134) } else if(fam %in% c(204, 214, 224, 234)) { out <- c(204, 214, 224, 234) } sgn * out }
hedCreateTrans <- function(trans_df, prop_id, trans_id, price, date=NULL, periodicity=NULL, ...){ if (!'hpidata' %in% class(trans_df)){ if (is.null(date)){ message('You must provide the name of a field with date of transaction (date=)') stop() } if (is.null(periodicity)){ message('No periodicity (periodicity=) provided, defaulting to annual') periodicity <- 'yearly' } trans_df <- dateToPeriod(trans_df=trans_df, date=date, periodicity=periodicity, ...) } if (!prop_id %in% names(trans_df)){ message('"prop_id" field not found') stop() } if (!trans_id %in% names(trans_df)){ message('"trans_id" field not found') stop() } if (!price %in% names(trans_df)){ message('"price" field not found') stop() } hed_df <- trans_df %>% dplyr::rename('prop_id' = prop_id, 'trans_id' = trans_id, 'price' = price) %>% dplyr::arrange(prop_id, .data$trans_period, dplyr::desc(price)) %>% dplyr::filter(!duplicated(paste0(prop_id, '_', .data$trans_period))) attr(hed_df, 'period_table') <- attr(trans_df, 'period_table') if (is.null(hed_df) | nrow(hed_df) == 0){ message('No Hedonic Sales Created\n') return(NULL) } else { class(hed_df) <- c('heddata', 'hpidata', class(hed_df)) } hed_df }