code
stringlengths 1
13.8M
|
---|
cen1way <- function(y1,y2, grp,mcomp.method = "BH",printstat=TRUE) {
yname <- deparse(substitute(y1))
gname <- deparse(substitute(grp))
rho=1
fconst <- max(y1) + 1
flip <- fconst - y1
detect <- as.logical(1 - as.integer(y2))
Factor <- as.factor(grp)
df <- length(levels(Factor))-1
CensData <- data.frame (flip, detect, Factor)
Cen.stats <- matrix(0, nrow=df+1, ncol = 5)
y.surv <- Surv(CensData$flip, CensData$detect, type="right")
y.out<- survdiff(y.surv ~ CensData$Factor, rho=rho)
pval = pchisq(y.out$chisq, df, lower.tail = FALSE)
groupnames <- as.character(levels(Factor))
for (i in 1:nlevels(Factor)) {
y1gp <- y1[Factor==groupnames[i]]
y2gp <- y2[Factor==groupnames[i]]
Cstats <- suppressWarnings(cfit(y1gp, as.logical(y2gp), printstat=FALSE, Cdf = FALSE))
Cstats <- Cstats[c(1:6)]
Cstats <- Cstats[-3]
Cstats <- data.frame(Cstats)
Cstats$grp <- groupnames[i]
rownames(Cstats) <-NULL
if (i ==1) {Cen.stats <- Cstats
cnames <- colnames(Cstats)}else {Cen.stats <- suppressWarnings(rbind(Cen.stats, Cstats))}
if(sum(as.logical(y2gp))==0){warning("One or more group(s) do not have censored data.",call.=F)}
}
Cen.stats <- Cen.stats[,c(6,1:5)]
colnames(Cen.stats) <- cnames[c(6,1:5)]
if(printstat==TRUE){
print.data.frame(Cen.stats, print.gap = 3)
cat('\n'," Oneway Peto-Peto test of CensData:", yname, " by Factor:", gname, '\n', " Chisq =", signif(y.out$chisq, 4), " on", df, "degrees of freedom", " p =", signif(pval,3), '\n')
if (df >1) {mcomp <- pairwise_survdiff(Surv(flip, detect) ~ Factor, data=CensData, p.adjust.method = mcomp.method, rho=rho)
print(mcomp)}
}
PetoPeto<-list(data.name=paste(yname, " by Factor:", gname,"\n"),
ChiSq=signif(y.out$chisq, 4),df=df,p.value=signif(pval,3))
if(df>1){mcomp=mcomp}else{mcomp=NA}
x<-list(SummaryStats=Cen.stats,
PetoPeto=PetoPeto,
mcomp=mcomp)
invisible(x)
}
|
has_component_in_attribute <- function(dend, component, the_attrib = "edgePar", ...) {
if (!is.dendrogram(dend)) {
return(FALSE)
}
list_of_names <- dend %>%
get_nodes_attr(the_attrib, simplify = FALSE) %>%
lapply(names)
has_component_fun <- function(node_names) any(node_names %in% component)
has_component <- list_of_names %>%
lapply(has_component_fun) %>%
unlist() %>%
any()
has_component
}
has_edgePar <- function(dend, component, the_attrib = "edgePar", ...) {
has_component_in_attribute(dend, component, the_attrib, ...)
}
has_nodePar <- function(dend, component, the_attrib = "nodePar", ...) {
has_component_in_attribute(dend, component, the_attrib, ...)
}
|
getnumbs <-
function(tree){
tipdepth <- age.tips(tree)
branching <- branching.times.complete(tree)
numbs <- numbspecies(tipdepth,branching)
event <- c(0, 0, 0)
numbs <- rbind(numbs,event)
numbs
}
|
baumwelchcont <-
function(hmm)
{
NR<-nrow(hmm$Parameters)
no<-length(hmm$Observations)
hmm$B[,1]<-dnorm((hmm$Observations), mean=(hmm$Parameters[NR,7]), sd=sqrt(hmm$Parameters[NR,9]))
hmm$B[,2]<-dnorm((hmm$Observations), mean=(hmm$Parameters[NR,8]), sd=sqrt(hmm$Parameters[NR,10]))
Alphas<-matrix(NA, nrow=no, ncol=2)
Alphas[1,1]<-(hmm$Parameters[NR,1])*hmm$B[1,1]
Alphas[1,2]<-(hmm$Parameters[NR,2])*hmm$B[1,2]
for(i in 2: (no))
{
Alphas[i,1]<-(Alphas[(i-1),1]*(hmm$Parameters[NR,3])+Alphas[(i-1),2]*(hmm$Parameters[NR,5]))*hmm$B[i,1]
Alphas[i,2]<-(Alphas[(i-1),1]*(hmm$Parameters[NR,4])+Alphas[(i-1),2]*(hmm$Parameters[NR,6]))*hmm$B[i,2]
}
Betas<-matrix(NA, nrow=no, ncol=2)
Betas[(no),1]<-1
Betas[(no),2]<-1
for(j in ((no)-1):1)
{
Betas[j,1]<-(Betas[(j+1),1]*hmm$B[(j+1),1]*(hmm$Parameters[NR,3])+Betas[(j+1),2]*hmm$B[(j+1),2]*(hmm$Parameters[NR,4]))
Betas[j,2]<-(Betas[(j+1),1]*hmm$B[(j+1),1]*(hmm$Parameters[NR,5])+Betas[(j+1),2]*hmm$B[(j+1),2]*(hmm$Parameters[NR,6]))
}
Preeps<-matrix(NA, nrow=((no)-1), ncol=5)
for(i in 1:((no)-1))
{
Preeps[i,1]<-Alphas[i,1]*(hmm$Parameters[NR,3])*hmm$B[i+1,1]*Betas[i+1,1]
}
for(i in 1:((no)-1))
{
Preeps[i,2]<-Alphas[i,1]*(hmm$Parameters[NR,4])*hmm$B[i+1,2]*Betas[i+1,2]
}
for(i in 1:((no)-1))
{
Preeps[i,3]<-Alphas[i,2]*(hmm$Parameters[NR,5])*hmm$B[i+1,1]*Betas[i+1,1]
}
for(i in 1:((no)-1))
{
Preeps[i,4]<-Alphas[i,2]*(hmm$Parameters[NR,6])*hmm$B[i+1,2]*Betas[i+1,2]
}
Preeps[,5]<-Preeps[,1]+Preeps[,2]+Preeps[,3]+Preeps[,4]
Xis<-matrix(NA, nrow=((no)-1), ncol=4)
Xis<-Preeps[,1:4]/Preeps[,5]
Gammas<-matrix(NA, nrow=((no)-1), ncol=2)
Gammas[,1]<-Xis[,1]+Xis[,2]
Gammas[,2]<-Xis[,3]+Xis[,4]
hmm$Results[NR,1]<-Alphas[(no),1]+Alphas[(no),2]
hmm$Results[NR,2]<-(Betas[1,1]*(hmm$Parameters[NR,1])*hmm$B[1,1])+(Betas[1,2]*(hmm$Parameters[NR,2])*hmm$B[1,2])
hmm$Results[NR,3]<-Preeps[1,5]
hmm$Results[NR,4]<- -2*log(hmm$Results[NR,1])+20
hmm$Results[NR,5]<- -2*log(hmm$Results[NR,1])+20*log(no)
hmm$Results[NR,6]<- -2*log(hmm$Results[NR,1])+20*log(log(no))
newrowres<-matrix(NA, ncol=6, nrow=1)
hmm$Results<-rbind(hmm$Results, newrowres)
newrowpar<-matrix(NA, ncol=10, nrow=1)
newrowpar[1]<-Gammas[1,1]
newrowpar[2]<-Gammas[1,2]
newrowpar[3]<-(sum(Xis[,1]))/sum(Gammas[,1])
newrowpar[4]<-(sum(Xis[,2]))/sum(Gammas[,1])
newrowpar[5]<-(sum(Xis[,3]))/sum(Gammas[,2])
newrowpar[6]<-(sum(Xis[,4]))/sum(Gammas[,2])
newrowpar[7]<-sum(Gammas[,1]*hmm$Observations[-(no)]) / sum(Gammas[,1])
newrowpar[8]<-sum(Gammas[,2]*hmm$Observations[-(no)]) / sum(Gammas[,2])
newrowpar[9]<-sum(Gammas[,1] * (hmm$Observations[-(no)] - newrowpar[7]) * (hmm$Observations[-(no)] - newrowpar[7]) ) / sum(Gammas[,1])
newrowpar[10]<-sum(Gammas[,2] * (hmm$Observations[-(no)] - newrowpar[8]) * (hmm$Observations[-(no)] - newrowpar[8]) ) / sum(Gammas[,2])
hmm$Parameters<-rbind(hmm$Parameters, newrowpar)
return(hmm)
}
|
DA_PF <- function(Obs, Qsim, States,
Param, StateNames,
NbMbr,
StatePert = NULL, VarThr) {
NbState <- length(StateNames)
MbrNames <- sprintf("Mbr_%s", seq_len(NbMbr))
Weights <- rep(0, times = NbMbr)
names(Weights) <- MbrNames
Indices <- rep(NA, times = NbMbr)
CurrentState <- list()
CurrentStatePert <- list()
VarObs <- max(VarThr^2, (0.1*Obs)^2)
Innov <- Obs - Qsim
names(Innov) <- MbrNames
Weights <- dnorm(Innov, mean = 0, sd = sqrt(VarObs))
Weights <- Weights/sum(Weights)
if (!all(is.finite(Weights))) {
Weights <- rep(1/NbMbr, times = NbMbr)
}
CdfW <- cumsum(Weights)
A <- CdfW[1]
B <- min(1, A + (1/(NbMbr+1)))
Urand0 <- A + ((B - A)*(runif(1)))
StepUrand <- (1-Urand0)/NbMbr
Urand <- seq(from = Urand0, length.out = NbMbr, by = StepUrand)
Indices <- findInterval(Urand, vec = CdfW, rightmost.closed = TRUE) + 1
if (!all(is.finite(Indices))) {
Weights <- rep(1/NbMbr, times = NbMbr)
CdfW <- cumsum(Weights)
A <- CdfW[1]
B <- min(1, A + (1/(NbMbr+1)))
Urand0 <- A + ((B - A)*(runif(1)))
StepUrand <- (1-Urand0)/NbMbr
Urand <- seq(from = Urand0, length.out = NbMbr, by = StepUrand)
Indices <- findInterval(Urand, vec = CdfW, rightmost.closed = TRUE) + 1
}
Repeats <- as.data.frame(table(Indices))
if (!is.null(StatePert)) {
EnsState <- matrix(data = NA, nrow = NbState, ncol = NbMbr,
dimnames = list(StateNames,
MbrNames))
EnsState["Prod", ] <- sapply(seq_along(States), function(x) States[[x]]$Store$Prod)
EnsState["Rout", ] <- sapply(seq_along(States), function(x) States[[x]]$Store$Rout)
EnsState["UH2" , ] <- sapply(seq_along(States), function(x) States[[x]]$UH$UH2[1L])
if ("UH1" %in% StateNames) {
EnsState["UH1" , ] <- sapply(seq_along(States), function(x) States[[x]]$UH$UH1[1L])
}
MuState <- rep(0, times = NbState)
names(MuState) <- StateNames
SdState <- pmin(3,
pmax(1.2,
apply(EnsState[, as.numeric(as.character(Repeats$Indices)), drop = FALSE], MARGIN = 1, sd, na.rm = TRUE),
na.rm = TRUE))
names(SdState) <- StateNames
}
for (iPart in seq_len(nrow(Repeats))) {
IndexParticle <- as.numeric(as.character(Repeats$Indices[iPart]))
RepParticle <- as.numeric(as.character(Repeats$Freq[iPart]))
TempState <- rep(States[IndexParticle], times = RepParticle)
names(TempState) <- sprintf("Rep%s_Part%s", seq_len(RepParticle), IndexParticle)
if (!is.null(StatePert)) {
IndPert <- as.numeric(StateNames %in% StatePert)
TempStatePert <- TempState
if (RepParticle > 1) {
StateRep <- matrix(data = NA, nrow = NbState, ncol = RepParticle,
dimnames = list(StateNames,
sprintf("Rep_%s", seq_len(RepParticle))))
StateRep["Prod", ] <- rep(States[[IndexParticle]]$Store$Prod, RepParticle)
StateRep["Rout", ] <- rep(States[[IndexParticle]]$Store$Rout, RepParticle)
StateRep["UH2" , ] <- rep(States[[IndexParticle]]$UH$UH2[1L], RepParticle)
if ("UH1" %in% StateNames) {
StateRep["UH1", ] <- rep(States[[IndexParticle]]$UH$UH1[1L], RepParticle)
}
NoiseState <- matrix(data = rnorm(RepParticle*NbState, mean = MuState, sd = SdState),
nrow = NbState, ncol = RepParticle, byrow = FALSE,
dimnames = list(StateNames,
sprintf("Rep_%s", seq_len(RepParticle))))
NoiseState[IndPert == 0, ] <- 0
StateRepPert <- StateRep + NoiseState
StateRepPert["Prod", StateRepPert["Prod", ] > Param[1]] <- Param[1]
StateRepPert["Rout", StateRepPert["Rout", ] > Param[3]] <- Param[3]
for (iRep in seq_len(RepParticle)) {
TempStatePert[[iRep]]$Store$Prod <- StateRepPert["Prod", iRep]
TempStatePert[[iRep]]$Store$Rout <- StateRepPert["Rout", iRep]
TempStatePert[[iRep]]$UH$UH2[1L] <- StateRepPert["UH2" , iRep]
if ("UH1" %in% StateNames) {
TempStatePert[[iRep]]$UH$UH1[1L] <- StateRepPert["UH1", iRep]
}
}
}
CurrentStatePert <- c(CurrentStatePert, TempStatePert)
}
CurrentState <- c(CurrentState, TempState)
rm(TempState)
if (exists("TempStatePert")) {
rm(TempStatePert)
}
}
EnsStatePf <- CurrentState
if (!is.null(StatePert)) {
EnsStatePert <- CurrentStatePert
}
ans <- list(EnsStatePf = EnsStatePf)
if (!is.null(StatePert)) {
ans$EnsStatePert <- EnsStatePert
}
return(ans)
}
|
plot.snowboot <- function(x, k = NULL, plotmu = TRUE,
plotlegend = TRUE,
col0 = "gray50", lwd0 = 1,
colpt = "royalblue3", lwdpt = 2, pchpt = 4,
coli = "palegreen3", colibg = "palegreen",
length = 0.1,
boxwex = 0.4,
legendargs = list(x = "topright", cex = 0.9, bty = "n"),
las = 1,
...){
if (is.null(k)) {
k <- 0:(length(x$fk) - 1)
}
k <- sort(k)
k <- k[k <= (length(x$fk) - 1)]
if (length(k) == 0) {stop(paste("Specify k within the range from 0 to", (length(x$fk) - 1)))}
ind <- is.element(0:(length(x$fk) - 1), k)
YLIM <- c(0, max(x$fk[ind]))
if (plotmu) YLIM[1] = -YLIM[2]/4
plotbp <- plotci <- FALSE
inputlist <- names(x)
legtext <- c("Point estimate")
legcol <- c(colpt)
legpch <- c(pchpt)
leglwd <- c(lwdpt)
if (is.element("fkb", inputlist)) {
plotbp <- TRUE
legtext <- c("Point estimate", "Bootstrapped estimates")
legcol <- c(colpt, coli)
legpch <- c(pchpt, 15)
leglwd <- c(lwdpt, NA)
YLIM[2] <- max(x$fkb[ind,])
}
if (is.element("fk_ci", inputlist)) {
plotci <- TRUE
legtext <- c("Point estimate", paste(100*x$prob, "% confidence interval", sep = ""))
legcol <- c(colpt, coli)
legpch <- c(pchpt, NA)
YLIM[2] <- max(x$fk_ci[,ind])
}
plot(k, x$fk[ind], ylim = YLIM, las = las, type = "n", yaxt = "n",
xlab = "k", ylab = "f(k)", ...)
tmp <- axTicks(2)
axis(2, at = tmp[tmp >= 0], las = las)
abline(h = 0, col = col0, lwd = lwd0)
if (plotbp) {
if (sum(ind) == 1) {
tmp <- x$fkb[ind,]
} else {
tmp <- t(x$fkb[ind,])
}
boxplot(tmp, at = k, add = TRUE, xaxt = "n", yaxt = "n", boxwex = boxwex,
col = colibg, border = coli)
if (plotmu) {
boxplot(x$mub, at = YLIM[1]/1.5, add = TRUE, xaxt = "n", yaxt = "n", boxwex = boxwex/4,
col = colibg, border = coli, horizontal = TRUE)
}
}
if (plotci) {
suppressWarnings(
arrows(x0 = k, y0 = x$fk_ci[1, ind], y1 = x$fk_ci[2, ind], length = length,
code = 3, col = coli, angle = 90, lwd = lwdpt)
)
if (plotmu) {
arrows(x0 = x$mu_ci[1], y0 = YLIM[1]/1.5, x1 = x$mu_ci[2], length = length,
code = 3, col = coli, angle = 90, lwd = lwdpt)
}
}
lines(k, x$fk[ind], type = "o", pch = pchpt, lwd = lwdpt, col = colpt)
if (plotmu) {
axis(2, at = YLIM[1]/1.5, labels = expression(mu), las = las, cex.axis = 1.5)
points(x$mu, YLIM[1]/1.5, pch = pchpt, lwd = lwdpt, col = colpt)
}
if (plotlegend) {
do.call(legend, append(list(legend = legtext, col = legcol, pch = legpch, lwd = leglwd),
legendargs))
}
}
|
`MyReportEnd` <- function
(file = "report.html"
) {
cat("\n<hr size=1></body></html>",
file = file, append = TRUE)
}
|
"Woodsdat"
|
VP.CP.ZP.un <-
function (Z_mat, fixed_effects, control)
{
persistence <- control$persistence
gr.eta <- function(eta, X, Y, Z, ybetas, R_inv, G.inv) {
gr.y <- crossprod(Z, R_inv) %*% (Y - X %*% ybetas - Z %*%
eta)
gr.p.eta <- -G.inv %*% eta
- as.vector(gr.y + gr.p.eta)
}
H.eta <- function(G.inv, Z, R_inv) {
h.eta <- G.inv
h.y <- crossprod(Z, R_inv) %*% Z
forceSymmetric(h.eta + h.y)
}
ltriangle <- function(x) {
if (!is.null(dim(x)[2])) {
resA <- as.vector(x[lower.tri(x, diag = TRUE)])
resA
} else {
nx <- length(x)
d <- 0.5 * (-1 + sqrt(1 + 8 * nx))
resB <- .symDiagonal(d)
resB[lower.tri(resB, diag = TRUE)] <- x
if (nx > 1) {
resB <- resB + t(resB) - diag(diag(resB))
}
as(resB, "sparseMatrix")
}
}
reduce.G <- function(G, nyear, nteacher) {
if (!is.null(dim(G)[2])) {
temp_mat <- G
index1 <- 0
resA <- c(NULL)
for (j in 1:nyear) {
temp_mat_j <-
as.numeric(temp_mat[(index1 + 1):(index1 + 1), (index1 + 1):(index1 + 1)])
resA <- c(resA, temp_mat_j)
index1 <- index1 + nteacher[j]
}
resA
}
else {
resB <- Matrix(0, 0, 0,doDiag=FALSE)
for (j in 1:nyear) {
resB <- bdiag(resB, suppressMessages(G[j] * Diagonal(nteacher[j])))
}
rm(j)
resB
}
}
update.eta <- function(X,
Y,
Z,
R_inv,
ybetas,
G,
nyear,
cons.logLik,
Ny,
nstudent,
n_eta) {
G.chol <- chol(G)
G.inv <- chol2inv(G.chol)
H <- symmpart(H.eta(G.inv, Z, R_inv))
chol.H <- chol(H)
H.inv <- chol2inv(chol.H)
c.temp <- crossprod(X, R_inv) %*% Z
c.1 <- rbind(crossprod(X, R_inv) %*% X, t(c.temp))
c.2 <- rbind(c.temp, H)
C_inv <- cbind(c.1, c.2)
chol.C_inv <- chol(forceSymmetric(symmpart(C_inv)))
cs <- chol2inv(chol.C_inv)
C12 <- as.matrix(cs[1:n_ybeta, (n_ybeta + 1):ncol(cs)])
C.mat <- cs[-c(1:n_ybeta), -c(1:n_ybeta)]
betacov <- as.matrix(cs[c(1:n_ybeta), c(1:n_ybeta)])
if (control$REML) {
var.eta <- C.mat
}
else {
var.eta <- H.inv
}
sign.mult <- function(det) {
det$modulus * det$sign
}
eta <- H.inv %*% as.vector(crossprod(Z, R_inv) %*%
(Y - X %*% ybetas))
log.p.eta <- -(n_eta/2) * log(2 * pi) - sign.mult(determinant(G.chol)) -
0.5 * crossprod(eta, G.inv) %*% eta
log.p.y <- -(Ny/2) * log(2 * pi) + sign.mult(determinant(chol(R_inv))) -
0.5 * crossprod(Y - X %*% ybetas - Z %*% eta, R_inv) %*%
(Y - X %*% ybetas - Z %*% eta)
res <- var.eta
if (control$REML) {
attr(res, "likelihood") <- as.vector(cons.logLik +
log.p.eta + log.p.y - sign.mult(determinant(chol.C_inv)))
}
else {
attr(res, "likelihood") <- as.vector(cons.logLik +
log.p.eta + log.p.y - sign.mult(determinant(chol.H)))
}
attr(res, "eta") <- eta
attr(res, "betacov") <- betacov
attr(res, "C12") <- C12
attr(res, "h.inv") <- H.inv
res
}
Score <- function(thetas,
eta = eta.hat,
ybetas,
X,
Y,
Z,
year.count,
n_ybeta,
nyear,
n_eta,
nstudent,
nteacher,
Kg,
cons.logLik,
con = control,
mis.list,
pattern.parmlist2,
pattern.count,
pattern.length,
pattern.Rtemplate,
pattern.diag,
pattern.key,
Ny,
pattern.sum = pattern.sum,
persistence,
P,
alpha.diag,
nalpha,
alpha) {
n_Rparm <- nyear * (nyear + 1) / 2
G <- thetas[(n_Rparm + 1):(n_Rparm + nyear)]
G <- reduce.G(G = G,
nyear = nyear,
nteacher = nteacher)
if (persistence == "VP") {
alpha.parm <- thetas[(n_Rparm + nyear + 1):length(thetas)]
alpha[!((1:nalpha) %in% alpha.diag)] <- alpha.parm
Z <- Matrix(0, nrow(Z_mat), nteach_effects,doDiag=FALSE)
for (i in 1:nalpha) {
comp <- which(tril(ltriangle(1:nalpha)) == i, arr.ind = TRUE)
Z <- Z + alpha[i] * P[[comp[1]]][[comp[2]]]
}
if (!huge.flag) {
Z.dense <- as.matrix(Z)
}
for (p in unique(Z_mat$pat)) {
if (!huge.flag) {
Z.p[[p]] <- Z.dense[pat[[p]], , drop = FALSE]
} else{
Z.p[[p]] <- Z[pat[[p]], , drop = FALSE]
}
}
}
R_i <- ltriangle(as.vector(thetas[1:n_Rparm]))
R_i.parm <- as.vector(thetas[1:n_Rparm])
if (length(mis.list) > 0) {
R <-
symmpart(suppressMessages(kronecker(suppressMessages(
Diagonal(nstudent)
),
R_i)[-mis.list,-mis.list]))
R_inv <- solve(R)
} else {
R <-
symmpart(suppressMessages(kronecker(suppressMessages(
Diagonal(nstudent)
),
R_i)))
R_inv <-
symmpart(suppressMessages(kronecker(
suppressMessages(Diagonal(nstudent)),
chol2inv(chol(R_i))
)))
}
new.eta <- update.eta(
X = X,
Y = Y,
Z = Z,
R_inv = R_inv,
ybetas = ybetas,
G = G,
nyear = nyear,
cons.logLik = cons.logLik,
Ny = Ny,
nstudent = nstudent,
n_eta = n_eta
)
eta.hat <- attr(new.eta, "eta")
var.eta.hat <- new.eta
temp_mat <- var.eta.hat + tcrossprod(eta.hat, eta.hat)
pattern.sum <- list()
for (p in unique(Z_mat$pat)) {
pattern.sum[[p]] <-
R_mstep2(
invsqrtW_ = as.matrix(rep(1, Ny)),
JYp_ = as.matrix(Y.p[[p]]),
loopsize_ = pattern.count[[p]] / pattern.length[[p]],
patternlength_ = pattern.length[[p]],
rownumber_ = as.matrix(Y.p.rownumber[[p]]),
ybetas_ = as.matrix(ybetas),
etahat_ = as.matrix(eta.hat),
tempmatR_ = as.matrix(temp_mat),
JXpi_ = as.matrix(X.p[[p]]@i),
JXpp_ = as.matrix(X.p[[p]]@p),
JXpx_ = as.matrix(X.p[[p]]@x),
JXpdim_ = as.matrix(X.p[[p]]@Dim),
JZpi_ = as.matrix(Z.p[[p]]@i),
JZpp_ = as.matrix(Z.p[[p]]@p),
JZpx_ = as.matrix(Z.p[[p]]@x),
JZpdim_ = as.matrix(Z.p[[p]]@Dim)
)
}
score.R <-
-pattern.f.score(
R_i.parm,
nyear,
pattern.parmlist2,
pattern.count,
pattern.length,
pattern.Rtemplate,
pattern.diag,
pattern.key,
pattern.sum
)
temp_mat <- G
gam_t <- list()
sv_gam_t <- list()
index1 <- 0
for (j in 1:nyear) {
gam_t[[j]] <- matrix(0, Kg[j], Kg[j])
temp_mat_j <-
temp_mat[(index1 + 1):(index1 + nteacher[j] *
Kg[j]), (index1 + 1):(index1 + nteacher[j] *
Kg[j])]
gam_t[[j]] <- temp_mat_j[1:Kg[j], 1:Kg[j]]
sv_gam_t[[j]] <- chol2inv(chol(gam_t[[j]]))
index1 <- index1 + nteacher[j] * Kg[j]
}
rm(j)
score_mat <- var.eta.hat + tcrossprod(eta.hat, eta.hat)
gam_t_sc <- list()
index1 <- 0
score.G <- Matrix(0, 0, 0,doDiag=FALSE)
for (j in 1:nyear) {
gam_t_sc[[j]] <- matrix(0, Kg[j], Kg[j])
score_mat_j <-
score_mat[(index1 + 1):(index1 + nteacher[j] *
Kg[j]), (index1 + 1):(index1 + nteacher[j] *
Kg[j])]
index2 <- c(1)
for (k in 1:nteacher[j]) {
gam_t_sc[[j]] <- gam_t_sc[[j]] + score_mat_j[(index2):(index2 +
Kg[j] - 1), (index2):(index2 + Kg[j] - 1)]
index2 <- index2 + Kg[j]
}
index1 <- index1 + nteacher[j] * Kg[j]
der <-
-0.5 * (nteacher[j] * sv_gam_t[[j]] - sv_gam_t[[j]] %*%
gam_t_sc[[j]] %*% sv_gam_t[[j]])
if (is.numeric(drop(sv_gam_t[[j]]))) {
score.eta.t <- der
}
else {
score.eta.t <- 2 * der - diag(diag(der))
}
for (k in 1:nteacher[j]) {
score.G <- bdiag(score.G, score.eta.t)
}
}
alpha.parm <- alpha[!((1:nalpha) %in% alpha.diag)]
score.a <-
alpha.score(alpha.parm,
alpha,
temp_mat = score_mat,
nalpha,
alpha.diag,
P,
R_inv,
eta.hat,
ybetas,
X)
rm(j, k)
if (persistence == "CP" | persistence == "ZP") {
-c(score.R,
reduce.G(
G = score.G,
nyear = nyear,
nteacher = nteacher
))
} else if (persistence == "VP") {
-c(score.R,
reduce.G(
G = score.G,
nyear = nyear,
nteacher = nteacher
),
score.a)
}
}
update.ybeta <- function(X, Y, Z, R_inv, eta.hat) {
A.ybeta <- crossprod(X, R_inv) %*% X
B.ybeta <- crossprod(X, R_inv) %*% (Y - Z %*% eta.hat)
as.vector(solve(A.ybeta, B.ybeta))
}
bin2dec <- function(s)
sum(s * 2 ^ (rev(seq_along(s)) - 1))
dec2bin <- function(s) {
L <- length(s)
maxs <- max(s)
digits <- floor(logb(maxs, base = 2)) + 1
res <- array(NA, dim = c(L, digits))
for (i in 1:digits) {
res[, digits - i + 1] <- (s %% 2)
s <- (s %/% 2)
}
if (L == 1)
res[1,]
else
res
}
alpha.score <-
function(alpha.parm,
alpha,
temp_mat,
nalpha,
alpha.diag,
P,
R_inv,
eta.hat,
ybetas,
X) {
score.a <- c(NULL)
alpha.s <- alpha
alpha.s[!((1:nalpha) %in% alpha.diag)] <- alpha.parm
alpha.set <- (1:nalpha)[!((1:nalpha) %in% alpha.diag)]
Z.a <- Matrix(0, nrow(Z_mat), nteach_effects,doDiag=FALSE)
for (i in 1:nalpha) {
comp <- which(tril(ltriangle(1:nalpha)) == i, arr.ind = TRUE)
Z.a <- Z.a + alpha.s[i] * P[[comp[1]]][[comp[2]]]
}
for (i in alpha.set) {
comp <- which(tril(ltriangle(1:nalpha)) == i, arr.ind = TRUE)
score.a <-
c(score.a, as.numeric((t(Y) - t(ybetas) %*% t(X)) %*% R_inv %*% P[[comp[1]]][[comp[2]]] %*%
eta.hat - sum(diag(
crossprod(Z.a, R_inv %*% P[[comp[1]]][[comp[2]]] %*% temp_mat)
))))
}
score.a
}
pattern.f.score <-
function(R_i.parm,
nyear,
pattern.parmlist2,
pattern.count,
pattern.length,
pattern.Rtemplate,
pattern.diag,
pattern.key,
pattern.sum) {
R_i <- as.matrix(ltriangle(as.vector(R_i.parm)))
pattern.score <- numeric(nyear / 2 * (nyear + 1))
for (p in nonempty.patterns) {
pattern.y <- solve(pattern.f.R(R_i, p, nyear, pattern.key))
YSY <- pattern.y %*% pattern.sum[[p]] %*% pattern.y
PCL <- pattern.countoverlength[[p]]
for (r.parm in 1:(nyear / 2 * (nyear + 1))) {
if (is.null(pat.coord <- pat.coord.guide[[r.parm]][[p]]))
next
pattern.yc <- pattern.y[pat.coord]
pattern.score[r.parm] <-
pattern.score[r.parm] - (PCL * pattern.yc - YSY[pat.coord])
}
}
pattern.score[1:(nyear / 2 * (nyear + 1)) %in% pattern.diag] <-
0.5 * pattern.score[1:(nyear / 2 * (nyear + 1)) %in% pattern.diag]
- pattern.score
}
pattern.f.R <- function(R, p, nyear, pattern.key) {
R[pattern.key[p,] * (1:nyear), pattern.key[p,] * (1:nyear),
drop = FALSE]
}
Z_mat$year <- as.numeric(Z_mat$year)
nyear <- length(unique(Z_mat$year))
Z_mat$mis <- rep(0, dim(Z_mat)[1])
student_list <- unique(Z_mat$student)
Z_mat[is.na(Z_mat$y),]$mis <- rep(1, dim(Z_mat[is.na(Z_mat$y),])[1])
for (g in 1:nyear) {
mis_stu <-
student_list[!(student_list %in% unique(Z_mat[Z_mat$year ==
g,]$student))]
le <- length(mis_stu)
if (le > 0) {
temp.exp <- Z_mat[1:le,]
temp.exp$year <- rep(g, le)
temp.exp$mis <- rep(1, le)
temp.exp$student <- mis_stu
temp.exp$teacher <- rep(NA, le)
temp.exp$y <- rep(NA, le)
Z_mat <- rbind(Z_mat, temp.exp)
}
}
rm(g, le)
Z_mat.full <- Z_mat
Z_mat <- Z_mat[!is.na(Z_mat$y),]
Z_mat.full <-
Z_mat.full[which((Z_mat.full$student %in% Z_mat$student)),]
Ny <- sum(Z_mat$mis == 0)
nstudent <- length(unique(Z_mat$student))
year.count <- numeric(nyear)
for (j in 1:nyear) {
year.count[j] <- sum(Z_mat[Z_mat$year == j,]$mis ==
0)
}
rm(j)
RE_s_start_pos <- 1
Kg <- rep(1, nyear)
Z_mat <- Z_mat[order(Z_mat$year, Z_mat$teacher),]
Z_mat.full <-
Z_mat.full[order(Z_mat.full$year, Z_mat.full$teacher),]
na_list <- grep("^NA", Z_mat$teacher)
if (length(na_list) > 0) {
teachyearcomb <-
unique(cbind(Z_mat[-na_list,]$year, Z_mat[-na_list,]$teacher))
} else {
teachyearcomb <- unique(cbind(Z_mat$year, Z_mat$teacher))
}
Z_mat <- Z_mat[order(Z_mat$student, Z_mat$year, Z_mat$teacher),
, drop = FALSE]
Z_mat.full <-
Z_mat.full[order(Z_mat.full$student, Z_mat.full$year,
Z_mat.full$teacher),]
nteach_effects <- dim(teachyearcomb)[1]
teacheffZ_mat <-
Matrix(0, nrow = nrow(Z_mat), ncol = nteach_effects,doDiag=FALSE)
t_effects <- rep(NA, nteach_effects)
indx <- 1
eblup.tracker <- matrix(0, 0, 3)
dP <- list()
for (i in 1:nyear) {
dP[[i]] <- list()
for (j in 1:i)
dP[[i]][[j]] <- matrix(0, 0, 2)
}
nalpha <- nyear / 2 * (nyear + 1)
if (persistence == "ZP" | persistence == "VP") {
alpha <- ltriangle(diag(nyear))
} else if (persistence == "CP") {
alpha <- rep(1, nalpha)
}
alpha_key <- tril(ltriangle(1:nalpha))
alpha.diag <- diag(alpha_key)
alpha.parm <- alpha[!((1:nalpha) %in% alpha.diag)]
for (k in 1:nrow(teachyearcomb)) {
student_subset <- Z_mat.full$student[Z_mat.full$year ==
teachyearcomb[k, 1] &
Z_mat.full$teacher == teachyearcomb[k,
2]]
t_effects[k] <-
paste(teachyearcomb[k, 1], "_",
teachyearcomb[k, 2], sep = "")
eblup.tracker <-
rbind(eblup.tracker, c(teachyearcomb[k,], teachyearcomb[k, 1]))
for (yr in as.numeric(teachyearcomb[k, 1]):nyear) {
if (sum(is.element(Z_mat$student, student_subset) &
Z_mat$year == yr) != 0) {
q1 <-
(1:nrow(Z_mat))[is.element(Z_mat$student, student_subset) &
Z_mat$year == yr & !is.na(Z_mat$y)]
q2 <- rep(k, length(q1))
dP[[yr]][[as.numeric(teachyearcomb[k, 1])]] <-
rbind(dP[[yr]][[as.numeric(teachyearcomb[k, 1])]], cbind(q1, q2))
}
}
}
P <- list()
for (i in 1:nyear) {
P[[i]] <- list()
for (j in 1:i)
P[[i]][[j]] <-
as(sparseMatrix(
i = dP[[i]][[j]][, 1],
j = dP[[i]][[j]][, 2],
dims = c(nrow(Z_mat), nteach_effects)
), "dgCMatrix")
}
Z <- Matrix(0, nrow(Z_mat), nteach_effects,doDiag=FALSE)
for (i in 1:nalpha) {
comp <- which(tril(ltriangle(1:nalpha)) == i, arr.ind = TRUE)
Z <- Z + alpha[i] * P[[comp[1]]][[comp[2]]]
}
mis.list <- which(Z_mat.full$mis == 1)
nteacher <-
as.vector(tapply(teachyearcomb[, 2], teachyearcomb[,
1], length))
colnames(Z) <- t_effects
X_mat <-
sparse.model.matrix(fixed_effects, Z_mat, drop.unused.levels = TRUE)
X_mat <- X_mat[,!(colSums(abs(X_mat)) == 0), drop = FALSE]
if (rankMatrix(X_mat, method = 'qrLINPACK')[1] != dim(X_mat)[2]) {
stop("WARNING: Fixed-effects design matrix not full-rank")
}
n_eta <- nteach_effects
n_ybeta <- dim(X_mat)[2]
Y <- as.vector(Z_mat$y)
X <- Matrix(X_mat,doDiag=FALSE)
huge.flag <- TRUE
if (!huge.flag) {
Z.dense <- as.matrix(Z)
X.dense <- as.matrix(X)
}
Z_mat.full$r <- 1 - Z_mat.full$mis
pattern.student <- matrix(Z_mat.full$r, nstudent, nyear,
byrow = TRUE)
Z_mat.full$pat <- rep(apply(pattern.student, 1, bin2dec),
each = nyear)
Z_mat$pat <- Z_mat.full[Z_mat.full$r == 1,]$pat
pat <- list()
pattern.count <- list()
pattern.length <- list()
X.p <- list()
Y.p <- list()
Z.p <- list()
Y.p.rownumber <- list()
pattern.countoverlength <- list()
rownumber <- 1:Ny
pattern.key <- dec2bin(1:(2 ^ nyear - 1))
X <- as(X, "sparseMatrix")
for (p in unique(Z_mat$pat)) {
pat[[p]] <- which(Z_mat$pat == p)
if (!huge.flag) {
X.p[[p]] <- X.dense[pat[[p]], , drop = FALSE]
Z.p[[p]] <- Z.dense[pat[[p]], , drop = FALSE]
} else{
X.p[[p]] <- X[pat[[p]], , drop = FALSE]
Z.p[[p]] <- Z[pat[[p]], , drop = FALSE]
}
Y.p.rownumber[[p]] <- rownumber[pat[[p]]]
Y.p[[p]] <- Y[pat[[p]]]
pattern.count[[p]] <- length(Y.p[[p]])
pattern.length[[p]] <- sum(pattern.key[p,])
pattern.countoverlength[[p]] <-
pattern.count[[p]] / pattern.length[[p]]
}
pattern.yguide <- list()
for (g in 1:nyear) {
pattern.yguide[[g]] <- which(pattern.key[, g] == 1)
}
pattern.Rtemplate <- ltriangle(1:(nyear / 2 * (nyear + 1)))
pattern.diag <- diag(pattern.Rtemplate)
pattern.Rtemplate <- ltriangle(1:(nyear / 2 * (nyear + 1)))
pattern.parmlist1 <- list()
pattern.parmlist2 <- list()
for (p in unique(Z_mat$pat)) {
pattern.parmlist1[[p]] <-
sort(unique(as.vector(
pattern.f.R(pattern.Rtemplate,
p, nyear, pattern.key)
)))
}
for (r.parm in 1:(nyear / 2 * (nyear + 1))) {
pattern.parmlist2[[r.parm]] <- which(sapply(pattern.parmlist1,
f <- function(x)
r.parm %in% x))
}
eta.hat <- numeric(n_eta)
var.eta.hat <- Matrix(0, n_eta, n_eta,doDiag=FALSE)
R.temp.comp <- numeric(nyear)
for (g in 1:nyear) {
R.temp.comp[g] <- var(Z_mat[Z_mat$year == g,]$y) / 4
}
R_i <- diag(R.temp.comp)
if (length(mis.list) > 0) {
R <-
symmpart(suppressMessages(kronecker(suppressMessages(
Diagonal(nstudent)
),
R_i)[-mis.list,-mis.list]))
R_inv <- solve(R)
} else {
R <-
symmpart(suppressMessages(kronecker(suppressMessages(
Diagonal(nstudent)
),
R_i)))
R_inv <-
symmpart(suppressMessages(kronecker(
suppressMessages(Diagonal(nstudent)),
chol2inv(chol(R_i))
)))
}
pat.coord.guide <- list()
for (r.parm in 1:(nyear / 2 * (nyear + 1))) {
pat.coord.guide[[r.parm]] <- list()
for (p in pattern.parmlist2[[r.parm]]) {
pat.coord.guide[[r.parm]][[p]] <-
which(tril(pattern.f.R(
pattern.Rtemplate, p, nyear, pattern.key
)) == r.parm)
}
}
nonempty.patterns <- NULL
for (p in 1:length(pat.coord.guide[[1]])) {
if (is.null(retrieve.parm <- pattern.parmlist1[[p]]))
next
nonempty.patterns <- c(nonempty.patterns, p)
}
ybetas <- update.ybeta(X, Y, Z, R_inv, eta.hat)
names(ybetas) <- colnames(X_mat)
G <- 100 * .symDiagonal(n_eta)
if (control$REML) {
cons.logLik <- 0.5 * (n_eta + n_ybeta) * log(2 * pi)
}
else {
cons.logLik <- 0.5 * (n_eta) * log(2 * pi)
}
iter <- control$max.iter.EM
Y.mat <- Matrix(0, iter, n_ybeta)
G.mat <-
Matrix(0, iter, length(reduce.G(
G = G,
nyear = nyear,
nteacher = nteacher
)),doDiag=FALSE)
R.mat <- Matrix(0, iter, nyear * (nyear + 1) / 2,,doDiag=FALSE)
lgLik <- numeric(iter)
conv <- FALSE
if (control$verbose)
cat("Beginning EM algorithm\n")
flush.console()
for (it in 1:iter) {
ptm <- proc.time()[3]
suppressWarnings(rm(var.eta.hat, temp_mat))
mresid <- as.numeric(Y - X %*% ybetas)
cresid <- as.numeric(mresid - Z %*% eta.hat)
yhat <- as.numeric(X %*% ybetas + Z %*% eta.hat)
yhat.m <- as.numeric(X %*% ybetas)
new.eta <- update.eta(
X = X,
Y = Y,
Z = Z,
R_inv = R_inv,
ybetas = ybetas,
G = G,
nyear = nyear,
cons.logLik = cons.logLik,
Ny = Ny,
nstudent = nstudent,
n_eta = n_eta
)
eta.hat <- attr(new.eta, "eta")
C12 <- attr(new.eta, "C12")
betacov <- matrix(attr(new.eta, "betacov"), nrow = length(ybetas))
var.eta.hat <- new.eta
temp_mat <- var.eta.hat + tcrossprod(eta.hat, eta.hat)
temp_mat_R <- attr(new.eta, "h.inv") + tcrossprod(eta.hat,
eta.hat)
lgLik[it] <- attr(new.eta, "likelihood")
rm(new.eta)
thets1 <- c(Y.mat[it - 1,], R.mat[it - 1,], G.mat[it -
1,])
thets2 <- c(Y.mat[it,], R.mat[it,], G.mat[it,])
if (it > 5) {
check.lik <- abs(lgLik[it] - lgLik[it - 1]) / abs(lgLik[it] +
control$tol1) < control$tol1
if (check.lik) {
conv <- TRUE
if (control$verbose) {
cat("\n\n Algorithm converged.\n")
cat("\n\niter:", it, "\n")
cat("log-likelihood:", sprintf("%.7f", lgLik[it]),
"\n")
cat("change in loglik:",
sprintf("%.7f", lgLik[it] -
lgLik[it - 1]),
"\n")
cat("fixed effects:", round(ybetas, 4), "\n")
cat("R_i:\n")
print(round(as.matrix(R_i), 4))
cat("\n")
print(round(cov2cor(as.matrix(R_i)), 4))
cat("\n")
for (j in 1:nyear) {
cat("\ngamma_teach_year", j, "\n")
print(round(reduce.G(G, nyear, nteacher)[j], 4))
cat("\n")
flush.console()
}
rm(j)
}
break
}
if (it == iter) {
conv <- TRUE
if (control$verbose) {
cat("\n\n Algorithm converged.\n")
cat("\n\niter:", it, "\n")
cat("log-likelihood:", sprintf("%.7f", lgLik[it]),
"\n")
cat("change in loglik:",
sprintf("%.7f", lgLik[it] -
lgLik[it - 1]),
"\n")
cat("fixed effects:", round(ybetas, 4), "\n")
cat("R_i:\n")
print(round(as.matrix(R_i), 4))
cat("\n")
print(round(cov2cor(as.matrix(R_i)), 4))
cat("\n")
cat("G:\n")
print(round(reduce.G(G, nyear, nteacher), 4))
cat("\n")
cat("alphas:\n")
print(round(alpha, 4))
rm(j)
}
break
}
}
if ((control$verbose) & (it > 1)) {
cat("\n\niter:", it, "\n")
cat("log-likelihood:", sprintf("%.7f", lgLik[it]),
"\n")
cat("change in loglik:", sprintf("%.7f", lgLik[it] -
lgLik[it - 1]), "\n")
cat("fixed effects:", round(ybetas, 4), "\n")
cat("R_i:\n")
print(round(as.matrix(R_i), 4))
cat("\n")
print(round(cov2cor(as.matrix(R_i)), 4))
cat("\n")
cat("G:\n")
print(round(reduce.G(G, nyear, nteacher), 4))
cat("\n")
cat("alphas:\n")
print(round(alpha, 4))
rm(j)
}
if (persistence == "VP") {
alpha.parm <- alpha[!((1:nalpha) %in% alpha.diag)]
alpha.cc <- 1
hes.count <- 1
alpha.parm.old <- alpha.parm
s.prev <- numeric(length(alpha.parm))
s <-
alpha.score(
alpha.parm,
alpha = alpha,
temp_mat = temp_mat,
nalpha = nalpha,
alpha.diag = alpha.diag,
P = P,
R_inv = R_inv,
eta.hat = eta.hat,
ybetas = ybetas,
X = X
)
j <-
jacobian(
alpha.score,
alpha.parm,
method = "simple",
alpha = alpha,
temp_mat = temp_mat,
nalpha = nalpha,
alpha.diag = alpha.diag,
P = P,
R_inv = R_inv,
eta.hat = eta.hat,
ybetas = ybetas,
X = X
)
hesprod <- solve(j, s)
alpha.cc <- s %*% s
alpha.parm <- alpha.parm - hesprod
hes.count <- hes.count + 1
s.prev <- s
alphan <- alpha
alphan[!((1:nalpha) %in% alpha.diag)] <- alpha.parm
}
d.temp <- diag(temp_mat)
indx <- 0
Gn <- c(NULL)
for (i in 1:nyear) {
Gn <- c(Gn, mean(d.temp[(indx + 1):(indx + nteacher[i])]))
indx <- indx + nteacher[i]
}
rm(indx, i, d.temp)
ybetasn <- numeric(n_ybeta)
ybetasn <- update.ybeta(X, Y, Z, R_inv, eta.hat)
pattern.sum <- list()
for (p in unique(Z_mat$pat)) {
if (control$REML) {
pattern.sum[[p]] <- Matrix(REML_Rm(invsqrtW_ =as.matrix(rep(1, Ny)),
betacov_ = betacov, C12_ = C12, JYp_ = as.matrix(Y.p[[p]]),
loopsize_ = pattern.count[[p]]/pattern.length[[p]],
patternlength_ = pattern.length[[p]], rownumber_ = as.matrix(Y.p.rownumber[[p]]),
ybetas_ = as.matrix(ybetas), etahat_ = as.matrix(eta.hat),
tempmatR_ = as.matrix(temp_mat), JXpi_ = as.matrix(X.p[[p]]@i),
JXpp_ = as.matrix(X.p[[p]]@p), JXpx_ = as.matrix(X.p[[p]]@x),
JXpdim_ = as.matrix(X.p[[p]]@Dim), JZpi_ = as.matrix(Z.p[[p]]@i),
JZpp_ = as.matrix(Z.p[[p]]@p), JZpx_ = as.matrix(Z.p[[p]]@x),
JZpdim_ = as.matrix(Z.p[[p]]@Dim)),doDiag=FALSE)
}
else {
pattern.sum[[p]] <-
R_mstep2(
invsqrtW_ = as.matrix(rep(1, Ny)),
JYp_ = as.matrix(Y.p[[p]]),
loopsize_ = pattern.count[[p]] / pattern.length[[p]],
patternlength_ = pattern.length[[p]],
rownumber_ = as.matrix(Y.p.rownumber[[p]]),
ybetas_ = as.matrix(ybetas),
etahat_ = as.matrix(eta.hat),
tempmatR_ = as.matrix(temp_mat),
JXpi_ = as.matrix(X.p[[p]]@i),
JXpp_ = as.matrix(X.p[[p]]@p),
JXpx_ = as.matrix(X.p[[p]]@x),
JXpdim_ = as.matrix(X.p[[p]]@Dim),
JZpi_ = as.matrix(Z.p[[p]]@i),
JZpp_ = as.matrix(Z.p[[p]]@p),
JZpx_ = as.matrix(Z.p[[p]]@x),
JZpdim_ = as.matrix(Z.p[[p]]@Dim)
)
}
}
R_i.parm <- ltriangle(as.matrix(R_i))
R.cc <- 1
hes.count <- 1
R_i.parm.old <- R_i.parm
s.prev <- numeric(length(R_i.parm))
while (R.cc > 1e-04) {
s <- pattern.f.score(
R_i.parm = R_i.parm,
nyear = nyear,
pattern.parmlist2 = pattern.parmlist2,
pattern.count = pattern.count,
pattern.length = pattern.length,
pattern.Rtemplate = pattern.Rtemplate,
pattern.diag = pattern.diag,
pattern.key = pattern.key,
pattern.sum = pattern.sum
)
j <-
jacobian(
pattern.f.score,
c(R_i.parm),
method = "simple",
nyear = nyear,
pattern.parmlist2 = pattern.parmlist2,
pattern.count = pattern.count,
pattern.length = pattern.length,
pattern.Rtemplate = pattern.Rtemplate,
pattern.diag = pattern.diag,
pattern.key = pattern.key,
pattern.sum = pattern.sum
)
if (it == 1 & (hes.count < 10)) {
hesprod <- solve(j + max(c(diag(j), 5)) * diag(length(R_i.parm)),
s)
R.cc <- s %*% s
if (hes.count == 9)
R.cc <- 0
} else if ((it <= 4) & (hes.count < 30)) {
hesprod <-
solve(j + max(c(diag(j), 5) * ((
1 - hes.count / 31
) ^ 2)) * diag(length(R_i.parm)),
s)
R.cc <- s %*% s
if (hes.count == 29)
R.cc <- 0
} else {
hesprod <- solve(j, s)
R.cc <- s %*% s
}
R_i.parm <- R_i.parm - hesprod
hes.count <- hes.count + 1
s.prev <- s
}
R_i <- ltriangle(R_i.parm)
rm(R_i.parm)
dimnames(R_i) <- list(NULL, NULL)
if (length(mis.list) > 0) {
R <- symmpart(suppressMessages(kronecker(Diagonal(nstudent),
R_i))[-mis.list,-mis.list])
R_inv <- suppressMessages(solve(R))
} else {
R <- symmpart(suppressMessages(kronecker(Diagonal(nstudent),
R_i)))
R_inv <-
symmpart(suppressMessages(kronecker(Diagonal(nstudent),
solve(R_i))))
}
G <- reduce.G(Gn, nyear, nteacher)
if (persistence == "VP") {
alpha <- alphan
Z <- Matrix(0, nrow(Z_mat), nteach_effects,doDiag=FALSE)
for (i in 1:nalpha) {
comp <- which(tril(ltriangle(1:nalpha)) == i, arr.ind = TRUE)
Z <- Z + alpha[i] * P[[comp[1]]][[comp[2]]]
}
if (!huge.flag) {
Z.dense <- as.matrix(Z)
}
for (p in unique(Z_mat$pat)) {
if (!huge.flag) {
Z.p[[p]] <- Z.dense[pat[[p]], , drop = FALSE]
} else{
Z.p[[p]] <- Z[pat[[p]], , drop = FALSE]
}
}
}
if(it<=4){
ybetas <- ybetasn
}else{
G.chol <- chol(G)
G.inv <- chol2inv(G.chol)
R.inv.Z <- R_inv %*% Z
V.1 <- chol2inv(chol(G.inv + t(Z) %*% R.inv.Z))
tX.Rinv.Z <- t(X) %*% R.inv.Z
tX.Rinv.X <- t(X) %*% R_inv %*% X
ybetas <- as.vector(chol2inv(chol(forceSymmetric(symmpart(tX.Rinv.X -
tX.Rinv.Z %*% V.1 %*% t(tX.Rinv.Z))))) %*%
(t(X) %*% R_inv - tX.Rinv.Z %*% V.1 %*%
t(R.inv.Z)) %*% Y)
}
if (control$verbose)
cat("Iteration Time: ", proc.time()[3] - ptm, " seconds\n")
flush.console()
}
names(ybetas) <- colnames(X_mat)
if (persistence == "CP" | persistence == "ZP") {
thetas <-
c(ltriangle(as.matrix(R_i)),
reduce.G(
G = G,
nyear = nyear,
nteacher = nteacher
))
} else if (persistence == "VP") {
thetas <-
c(ltriangle(as.matrix(R_i)),
reduce.G(
G = G,
nyear = nyear,
nteacher = nteacher
),
alpha[!((1:nalpha) %in% alpha.diag)])
}
lgLik.hist <- lgLik
lgLik <- lgLik[it]
Hessian <- NA
std_errors <- c(rep(NA, length(thetas)))
if (control$hessian == TRUE) {
if (control$verbose)
cat("Calculating Hessian of the variance components...")
flush.console()
pattern.sum <- list()
for (p in unique(Z_mat$pat)) {
pattern.sum[[p]] <-
R_mstep2(
invsqrtW_ = as.matrix(rep(1, Ny)),
JYp_ = as.matrix(Y.p[[p]]),
loopsize_ = pattern.count[[p]] / pattern.length[[p]],
patternlength_ = pattern.length[[p]],
rownumber_ = as.matrix(Y.p.rownumber[[p]]),
ybetas_ = as.matrix(ybetas),
etahat_ = as.matrix(eta.hat),
tempmatR_ = as.matrix(temp_mat),
JXpi_ = as.matrix(X.p[[p]]@i),
JXpp_ = as.matrix(X.p[[p]]@p),
JXpx_ = as.matrix(X.p[[p]]@x),
JXpdim_ = as.matrix(X.p[[p]]@Dim),
JZpi_ = as.matrix(Z.p[[p]]@i),
JZpp_ = as.matrix(Z.p[[p]]@p),
JZpx_ = as.matrix(Z.p[[p]]@x),
JZpdim_ = as.matrix(Z.p[[p]]@Dim)
)
}
if (control$hes.method == "richardson") {
Hessian <- ltriangle(ltriangle(
jacobian(
Score,
thetas,
eta = eta.hat,
ybetas = ybetas,
X = X,
Y = Y,
Z = Z,
pattern.sum = pattern.sum,
con = control,
year.count = year.count,
n_ybeta = n_ybeta,
nyear = nyear,
n_eta = n_eta,
nstudent = nstudent,
nteacher = nteacher,
Kg = Kg,
cons.logLik = cons.logLik,
mis.list = mis.list,
pattern.parmlist2 = pattern.parmlist2,
pattern.count = pattern.count,
pattern.length = pattern.length,
pattern.Rtemplate = pattern.Rtemplate,
pattern.diag = pattern.diag,
pattern.key = pattern.key,
Ny = Ny,
persistence = persistence,
P = P,
alpha.diag = alpha.diag,
nalpha = nalpha,
alpha = alpha
)
))
}
else {
Hessian <- ltriangle(ltriangle(
jacobian(
Score,
thetas,
method = "simple",
eta = eta.hat,
ybetas = ybetas,
X = X,
Y = Y,
Z = Z,
pattern.sum = pattern.sum,
con = control,
year.count = year.count,
n_ybeta = n_ybeta,
nyear = nyear,
n_eta = n_eta,
nstudent = nstudent,
nteacher = nteacher,
Kg = Kg,
cons.logLik = cons.logLik,
mis.list = mis.list,
pattern.parmlist2 = pattern.parmlist2,
pattern.count = pattern.count,
pattern.length = pattern.length,
pattern.Rtemplate = pattern.Rtemplate,
pattern.diag = pattern.diag,
pattern.key = pattern.key,
Ny = Ny,
persistence = persistence,
P = P,
alpha.diag = alpha.diag,
nalpha = nalpha,
alpha = alpha
)
))
}
std_errors <-
try(c(sqrt(diag(solve(Hessian)))), silent = TRUE)
hes.warn <- FALSE
Hessian <- round(Hessian, 4)
if (any(eigen(Hessian)$values <= 0)) {
if (control$verbose)
cat("Warning: Hessian not PD", "\n")
std_errors <- c(rep(NA, length(thetas)))
hes.warn <- TRUE
}
}
c.temp <- crossprod(X, R_inv) %*% Z
c.1 <- rbind(crossprod(X, R_inv) %*% X, t(c.temp))
G.inv <- chol2inv(chol(G))
c.2 <- rbind(c.temp, H.eta(G.inv, Z, R_inv))
C_inv <- cbind(c.1, c.2)
C <- solve(C_inv)
eblup_stderror <- sqrt(diag(C)[-c(1:n_ybeta)])
ybetas_stderror <- sqrt(diag(C)[1:n_ybeta])
rm(C, C_inv, c.2, c.1, c.temp)
eblup <- as.matrix(cbind(eta.hat, eblup_stderror))
eblup <- as.data.frame(eblup)
eblup.tracker <- as.data.frame(eblup.tracker)
eblup <- as.data.frame(cbind(eblup.tracker, eblup))
colnames(eblup) <- c("teacher_year",
"teacher",
"effect_year",
"EBLUP",
"std_error")
eblup$teacher <- as.character(eblup$teacher)
t_lab <- as.vector(NULL)
r_lab <- as.vector(NULL)
for (j in 1:nyear) {
ne <- (Kg[j] * (Kg[j] + 1)) / 2
y <- c(NULL)
x <- c(NULL)
for (k in 1:Kg[j]) {
x <- c(x, k:Kg[j])
y <- c(y, rep(k, (Kg[j] - k + 1)))
}
t_lab <- c(t_lab, paste("teacher effect from year", rep(j,
ne), sep = ""))
}
ne <- nyear * (nyear + 1) / 2
y <- c(NULL)
x <- c(NULL)
for (k in 1:nyear) {
x <- c(x, k:nyear)
y <- c(y, rep(k, (nyear - k + 1)))
}
r_lab <- paste("error covariance", ":[", x, ",", y, "]",
sep = "")
rm(j, ne)
alpha.label <- c(NULL)
for (i in 1:(nyear - 1)) {
for (j in (i + 1):(nyear)) {
alpha.label <- c(alpha.label, paste("alpha_", j, i, sep = ""))
}
}
if (persistence == "CP" | persistence == "ZP") {
effect_la <-
c(names(ybetas), r_lab, t_lab)
} else if (persistence == "VP") {
effect_la <- c(names(ybetas), r_lab, t_lab, alpha.label)
}
if (control$hessian == TRUE) {
parameters <- round(cbind(c(ybetas, thetas), c(ybetas_stderror,
std_errors)), 4)
colnames(parameters) <- c("Estimate", "Standard Error")
rownames(parameters) <- as.character(effect_la)
}
if (control$hessian == FALSE) {
parameters <- round(cbind(c(ybetas, thetas), c(ybetas_stderror,
rep(
NA, length(thetas)
))), 4)
colnames(parameters) <- c("Estimate", "Standard Error")
rownames(parameters) <- as.character(effect_la)
}
R_i <- round(R_i, 4)
if (control$verbose)
cat("done.\n")
mresid <- as.numeric(Y - X %*% ybetas)
cresid <- as.numeric(mresid - Z %*% eta.hat)
yhat <- as.numeric(X %*% ybetas + Z %*% eta.hat)
yhat.m <- as.numeric(X %*% ybetas)
Hessian <- round(Hessian, 5)
R_i <- round(R_i, 4)
gam_t <- list()
for (i in 1:nyear) {
gam_t[[i]] <-
round(as.matrix(reduce.G(
G, nyear = nyear, nteacher = nteacher
)[i]), 4)
colnames(gam_t[[i]]) <- paste("year", i, sep = "")
rownames(gam_t[[i]]) <- colnames(gam_t[[i]])
}
rchol <- try(chol(R_inv))
yhat.s <- try(as.vector(rchol %*% (yhat)))
sresid <- try(as.vector(rchol %*% Y - yhat.s))
teach.cov <- lapply(gam_t, function(x)
round(x, 4))
L <-
list(
loglik = lgLik,
teach.effects = eblup,
parameters = parameters,
Hessian = Hessian,
R_i = as.matrix(R_i),
teach.cov = gam_t,
mresid = mresid,
cresid = cresid,
y = Y,
yhat = yhat,
stu.cov = NA,
num.obs = Ny,
num.student = nstudent,
num.year = nyear,
num.teach = nteacher,
yhat.m = yhat.m,
sresid = sresid,
yhat.s = yhat.s,
iter = it,
persistence = control$persistence,
betacov=betacov
)
}
|
create_output_table <- function(comparison_output, output_type = 'html', file_name = NULL, limit = 100,
color_scheme = c("addition" = "
"unchanged_cell" = "
headers = NULL, change_col_name = "chng_type", group_col_name = "grp"){
headers_all = get_headers_for_table(headers, change_col_name, group_col_name, comparison_output$comparison_table_diff)
comparison_output$comparison_table_ts2char$chng_type = comparison_output$comparison_table_ts2char$chng_type %>%
replace_numbers_with_change_markers(comparison_output$change_markers)
if (limit == 0 || nrow(comparison_output$comparison_table_diff) == 0 || nrow(comparison_output$comparison_df) == 0)
return(NULL)
output = switch(output_type,
'html' = create_html_table(comparison_output, file_name, limit, color_scheme, headers_all),
'xlsx' = create_xlsx_document(comparison_output, file_name, limit, color_scheme, headers_all)
)
output
}
message_compareDF <- function(msg){
if ("futile.logger" %in% rownames(utils::installed.packages())) {
futile.logger::flog.trace(stringr::str_interp(msg, env = parent.frame()))
} else {
message(msg)
}
}
create_html_table <- function(comparison_output, file_name, limit_html, color_scheme, headers_all){
comparison_table_diff = comparison_output$comparison_table_diff_numbers
comparison_table_ts2char = comparison_output$comparison_table_ts2char
group_col = comparison_output$group_col
if (limit_html > 1000 & comparison_table_diff %>% nrow > 1000)
warning("Creating HTML diff for a large dataset (>1000 rows) could take a long time!")
if (limit_html < nrow(comparison_table_diff))
message_compareDF("Truncating HTML diff table to ${limit_html} rows...")
requireNamespace("htmlTable")
comparison_table_color_code = comparison_table_diff %>% do(.colour_coding_df(., color_scheme)) %>% as.data.frame
shading = ifelse(sequence_order_vector(comparison_table_ts2char[[group_col]]) %% 2, "
table_css = lapply(comparison_table_color_code, function(x)
paste0("padding: .2em; color: ", x, ";")) %>% data.frame %>% head(limit_html) %>% as.matrix()
colnames(comparison_table_ts2char) <- headers_all
message_compareDF("Creating HTML table for first ${limit_html} rows")
html_table = htmlTable::htmlTable(comparison_table_ts2char %>% head(limit_html),
col.rgroup = shading,
rnames = F, css.cell = table_css,
padding.rgroup = rep("5em", length(shading))
)
if (!is.null(file_name)){
cat(html_table, file = file_name)
return(file_name)
}
return(html_table)
}
.colour_coding_df <- function(df, color_scheme){
if(nrow(df) == 0) return(df)
df[df == 2] = color_scheme[['addition']]
df[df == 1] = color_scheme[['removal']]
df[df == 0] = color_scheme[['unchanged_cell']]
df[df == -1] = color_scheme[['unchanged_row']]
df
}
.convert_to_row_column_format <- function(x, n){
list(
rows = ((x - 1) %% n) + 1,
cols = ((x - 1) %/% n) + 1
)
}
.get_color_coding_indices <- function(df){
output = list(
'addition' = which(df == 2),
'removal' = which(df == 1),
'unchanged_cell' = which(df == 0),
'unchanged_row' = which(df == -1)
) %>% Filter(function(x) length(x) > 0, .) %>%
lapply(.convert_to_row_column_format, nrow(df))
}
.adjust_colors_for_excel <- function(types){
for(type in names(types)){
types[[type]][['rows']] = types[[type]][['rows']] + 1
}
types
}
create_xlsx_document <- function(comparison_output, file_name, limit, color_scheme, headers_all){
if(is.null(file_name)) stop("file_name cannot be null if output format is xlsx")
comparison_table_diff = comparison_output$comparison_table_diff_numbers
comparison_table_ts2char = comparison_output$comparison_table_ts2char
group_col = comparison_output$group_col
requireNamespace("openxlsx")
comparison_table_color_code = comparison_table_diff %>% .get_color_coding_indices() %>%
.adjust_colors_for_excel()
wb <- openxlsx::createWorkbook("Compare DF Output")
openxlsx::addWorksheet(wb, "Sheet1", gridLines = FALSE)
openxlsx::writeData(wb, sheet = 1, comparison_table_ts2char, rowNames = FALSE)
for(i in seq_along(comparison_table_color_code)){
openxlsx::addStyle(wb, sheet = 1,
openxlsx::createStyle(fontColour = color_scheme[[names(comparison_table_color_code)[i]]]),
rows = comparison_table_color_code[[i]]$rows, cols = comparison_table_color_code[[i]]$cols,
gridExpand = FALSE)
}
even_rows = which(sequence_order_vector(comparison_table_ts2char[[group_col]]) %% 2 == 0) + 1
openxlsx::addStyle(wb, sheet = 1, openxlsx::createStyle(fgFill = 'lightgray'), rows = even_rows,
cols = 1:ncol(comparison_table_ts2char), gridExpand = T, stack = TRUE)
openxlsx::saveWorkbook(wb, file_name, overwrite = T)
}
create_wide_output <- function(comparison_output, suffix = c("_new", "_old")){
dplyr::full_join(
comparison_output$comparison_df %>% filter(chng_type == comparison_output$change_markers[1]),
comparison_output$comparison_df %>% filter(chng_type == comparison_output$change_markers[2]),
by = comparison_output$group_col,
suffix = suffix,
) %>%
select(-starts_with("chng_type")) %>%
select(comparison_output$group_col, one_of(sort(names(.), decreasing = TRUE)))
}
view_html <- function(comparison_output){
temp_dir = tempdir()
temp_file <- paste0(temp_dir, "/temp.html")
cat(create_output_table(comparison_output), file = temp_file)
getOption("viewer")(temp_file)
unlink("temp.html")
}
|
KFadvanceAR2 <- function(obs,oldmean,oldermean,oldvar,oldervar,A,A1,B,C,D,E,F,W,V,marglik=FALSE,log=TRUE,na.rm=FALSE){
if(na.rm){
if(any(is.na(obs))){
if(all(is.na(obs))){
if(log){
return(list(mean=A%*%oldmean + A1%*%oldermean + B,var=A%*%oldvar%*%t(A) + A1%*%oldervar%*%t(A1) + C%*%W%*%t(C),mlik=0))
}
else{
return(list(mean=A%*%oldmean + A1%*%oldermean + B,var=A%*%oldvar%*%t(A) + A1%*%oldervar%*%t(A1) + C%*%W%*%t(C),mlik=1))
}
}
else{
M <- diag(length(obs))
M <- M[-which(is.na(obs)),]
obs <- obs[which(!is.na(obs))]
D <- M%*%D
E <- M%*%E
F <- M%*%F
}
}
}
T <- A%*%oldmean + A1%*%oldermean + B
S <- A%*%oldvar%*%t(A) + A1%*%oldervar%*%t(A1) + C%*%W%*%t(C)
K <- D%*%S%*%t(D) + F%*%V%*%t(F)
if (marglik==TRUE){
margmean <- D %*% T + E
if (all(dim(K)==1)){
newmean <- T + as.numeric(1/K)*S%*%t(D)%*%(obs-margmean)
newvar <- S - as.numeric(1/K)*S%*%t(D)%*%D%*%S
marginal <- dnorm(obs,as.numeric(margmean),sqrt(as.numeric(K)),log=log)
}
else{
Kinv <- solve(K)
newmean <- T + S%*%t(D)%*%Kinv%*%(obs-margmean)
newvar <- S - S%*%t(D)%*%Kinv%*%D%*%S
marginal <- dmvnorm(as.vector(obs),as.vector(margmean),K,log=log)
}
return(list(mean=newmean,var=newvar,mlik=marginal))
}
else{
if (all(dim(K)==1)){
newmean <- T + as.numeric(1/K)*S%*%t(D)%*%(obs-D%*%T-E)
newvar <- S - as.numeric(1/K)*S%*%t(D)%*%D%*%S
}
else{
Kinv <- solve(K)
newmean <- T + S%*%t(D)%*%Kinv%*%(obs-D%*%T-E)
newvar <- S - S%*%t(D)%*%Kinv%*%D%*%S
}
return(list(mean=newmean,var=newvar))
}
}
|
`PsiTildeCalc` <-
function(u,H,test,omega,vm,vminv,p,K){
PsiHatSum<-array(0,c(p,p))
r<-dim(test)[[1]]
w<-matrix(NA,K,r)
PsiTilde<-array(NA,c(r,K,p,p))
HU<-H*u
for (i in 1:K){
PsiHatSum<-PsiHatSum + matrix(HU[i,],ncol=1) %*% matrix(HU[i,],nrow=1)
w[i,]<- diag( test %*% ( solve( vminv - omega[i,,]) -vm ) %*% t(test) )
}
wstandardized<-t( t(w)/apply(w,2,sum))
for (i in 1:K){
for (j in 1:r){
PsiTilde[j,i,,]<-w[i,j]*PsiHatSum
}
}
PsiTilde
}
|
context(" Included distances")
ols <- ls()
functions <- c("lb_keogh", "lb_improved", "SBD", "dtw_basic", "GAK", "sdtw")
needs_window <- c("lb_keogh", "lb_improved")
enlist <- function(...) {
dots <- list(...)
if (get("foo", parent.frame()) %in% needs_window) {
dots <- c(dots, list(window.size = 1L))
}
dots
}
supports_mv <- c("dtw_basic", "GAK", "sdtw")
supports_diff_lengths <- c("SBD", "dtw_basic", "GAK", "sdtw")
args <- list(
lb_keogh = list(
list(window.size = 15L, norm = "L1", force.symmetry = FALSE),
list(window.size = 15L, norm = "L1", force.symmetry = TRUE),
list(window.size = 15L, norm = "L2", force.symmetry = FALSE),
list(window.size = 15L, norm = "L2", force.symmetry = TRUE)
),
lb_improved = list(
list(window.size = 15L, norm = "L1", force.symmetry = FALSE),
list(window.size = 15L, norm = "L1", force.symmetry = TRUE),
list(window.size = 15L, norm = "L2", force.symmetry = FALSE),
list(window.size = 15L, norm = "L2", force.symmetry = TRUE)
),
SBD = list(
list(znorm = FALSE),
list(znorm = TRUE)
),
dtw_basic = list(
list(window.size = 15L, norm = "L1", step.pattern = dtw::symmetric1),
list(window.size = 15L, norm = "L1", step.pattern = dtw::symmetric2),
list(window.size = 15L, norm = "L2", step.pattern = dtw::symmetric1),
list(window.size = 15L, norm = "L2", step.pattern = dtw::symmetric2),
list(window.size = 15L, norm = "L1", step.pattern = dtw::symmetric2, normalize = TRUE),
list(window.size = 15L, norm = "L2", step.pattern = dtw::symmetric2, normalize = TRUE)
),
GAK = list(
list(sigma = 100, window.size = 15L),
list(sigma = 100, window.size = NULL),
list(sigma = 100, normalize = FALSE)
),
sdtw = list(
list()
)
)
x_uv <- data[[1L]]
y_uv_same_length <- data[[2L]]
y_uv_diff_length <- data[[100L]]
x_mv <- data_multivariate[[1L]]
y_mv_same_length <- data_multivariate[[2L]]
y_mv_diff_length <- data_multivariate[[20L]]
invalid_inputs <- list(
"NA" = NA,
"NULL" = NULL,
"char" = "1",
"bool" = TRUE,
"empty" = numeric(),
"miss" = c(1, NA)
)
test_that("Invalid inputs are detected correctly in the distance functions.", {
for (foo in functions) {
for (input in names(invalid_inputs)) {
expect_error(do.call(foo, enlist(x = invalid_inputs[[input]], y = x_uv)),
info = paste("function", foo, "with", input, "input in x"))
expect_error(do.call(foo, enlist(x = x_uv, y = invalid_inputs[[input]])),
info = paste("function", foo, "with", input, "input in y"))
}
if (!(foo %in% supports_mv)) {
expect_error(do.call(foo, enlist(x = x_mv, y = x_mv)),
"multivariate",
info = paste("function", foo, "with multivariate input"))
expect_error(do.call(foo, enlist(x = x_uv, y = x_mv)),
info = paste("function", foo, "with multivariate y"))
expect_error(do.call(foo, enlist(x = x_mv, y = x_uv)),
info = paste("function", foo, "with multivariate x"))
}
else {
expect_error(do.call(foo, enlist(x = x_mv, y = x_uv)),
info = paste("function", foo, "with mismatched multivariate input"))
}
if (!(foo %in% supports_diff_lengths)) {
expect_error(do.call(foo, enlist(x = x_uv, y = y_uv_diff_length)),
"length",
info = paste("function", foo, "with different-length input"))
}
}
})
test_that("Valid inputs provide a result different than zero", {
for (foo in functions) {
for (arg in args[[foo]]) {
distance_value <- do.call(foo,
c(list(x = x_uv,
y = y_uv_same_length),
arg))
if (foo %in% c("lb_keogh", "SBD")) distance_value <- distance_value$d
expect_true(distance_value != 0, label = paste0("distance with ", foo))
if (mv <- foo %in% supports_mv) {
distance_value <- do.call(foo,
c(list(x = x_mv,
y = y_mv_same_length),
arg))
expect_true(distance_value != 0, label = paste0("multivariate distance with ", foo))
}
if (dl <- foo %in% supports_diff_lengths) {
distance_value <- do.call(foo,
c(list(x = x_uv,
y = y_uv_diff_length),
arg))
if (foo %in% c("SBD")) distance_value <- distance_value$d
expect_true(distance_value != 0, label = paste0("distance with different lengths with ", foo))
}
if (mv && dl) {
distance_value <- do.call(foo,
c(list(x = x_mv,
y = y_mv_diff_length),
arg))
expect_true(distance_value != 0, label = paste0("multivariate distance with different lengths with ", foo))
}
}
}
})
test_that("Passing pre-computed envelopes to the lower bounds works correctly.", {
envelopes <- compute_envelope(y_uv_diff_length, window.size = 15L)
wrong_lower_envelope <- envelopes$lower
wrong_upper_envelope <- envelopes$upper
envelopes <- compute_envelope(y_uv_same_length, window.size = 15L)
correct_lower_envelope <- envelopes$lower
correct_upper_envelope <- envelopes$upper
expect_error(lb_keogh(x_uv,
lower.env = wrong_lower_envelope,
upper.env = correct_upper_envelope),
regexp = "mismatch.*envelope")
expect_error(lb_keogh(x_uv,
lower.env = correct_lower_envelope,
upper.env = wrong_upper_envelope),
regexp = "mismatch.*envelope")
expect_gt(lb_keogh(x_uv,
lower.env = correct_lower_envelope,
upper.env = correct_upper_envelope)$d,
0)
expect_error(lb_improved(x_uv, y_uv_same_length, window.size = 15L,
lower.env = wrong_lower_envelope,
upper.env = correct_upper_envelope),
regexp = "mismatch.*envelope")
expect_error(lb_improved(x_uv, y_uv_same_length, window.size = 15L,
lower.env = correct_lower_envelope,
upper.env = wrong_upper_envelope),
regexp = "mismatch.*envelope")
expect_gt(lb_improved(x_uv, y_uv_same_length, window.size = 15L,
lower.env = correct_lower_envelope,
upper.env = correct_upper_envelope),
0)
})
test_that("dtw_lb gives the same result regardless of dtw.func.", {
distmat_with_dtwbasic <- dtw_lb(data_reinterpolated[1L:50L], data_reinterpolated[51L:100L],
window.size = 15L, step.pattern = dtw::symmetric1)
distmat_with_dtw <- dtw_lb(data_reinterpolated[1L:50L], data_reinterpolated[51L:100L],
window.size = 15L, step.pattern = dtw::symmetric1, dtw.func = "dtw")
expect_equal(distmat_with_dtwbasic, distmat_with_dtw, check.attributes = FALSE)
})
test_that("dtw_lb gives the same result for different nn.margin and corresponding inputs.", {
d <- dtw_lb(data_reinterpolated[1:5], data_reinterpolated[6:50],
window.size = 20L)
NN1 <- apply(d, 1L, which.min)
d2 <- dtw_lb(data_reinterpolated[6:50], data_reinterpolated[1:5],
window.size = 20L, nn.margin = 2L)
NN2 <- apply(d2, 2L, which.min)
expect_identical(NN1, NN2, info = "Indices of nearest neighbors")
})
test_that("Backtracking in dtw_basic() works.", {
univariate_result <- dtw_basic(x_uv, x_uv, backtrack = TRUE)
expect_identical(univariate_result$index1, univariate_result$index2)
multivariate_result <- dtw_basic(x_mv, x_mv, backtrack = TRUE)
expect_identical(multivariate_result$index1, multivariate_result$index2)
})
test_that("Inconsistencies in parameters for dtw_basic() are detected.", {
expect_error(dtw_basic(x_uv, x_uv, step.pattern = dtw::asymmetric), "step.pattern")
expect_error(dtw_basic(x_uv, x_uv, step.pattern = dtw::symmetric1, normalize = TRUE),
"normalize")
})
test_that("dtw_basic can behave like dtw::dtw for multivariate series and squared L2 norm.", {
a <- data_multivariate[[1L]]
b <- data_multivariate[[2L]]
dm <- proxy::dist(a, b, method = "L2") ^ 2
dtw_dist <- dtw::dtw(dm)
dtw_basic_dist <- dtw_basic(a, b, norm = "L2", sqrt.dist = FALSE)
expect_equal(dtw_basic_dist, dtw_dist$distance)
normalized_dtw_basic_dist <- dtw_basic(a, b, norm = "L2", sqrt.dist = FALSE, normalize = TRUE)
expect_equal(normalized_dtw_basic_dist, dtw_dist$normalizedDistance)
})
test_that("GAK can estimate sigma.", {
expect_error(GAK(1, 2, sigma = -1))
gak_distance <- GAK(data[[1L]], data[[100L]])
expect_gt(attr(gak_distance, "sigma"), 0)
})
test_that("Inconsistencies in parameters for sdtw() are detected.", {
expect_error(sdtw(x_uv, x_uv, gamma = -0.01), "gamma.*positive")
})
rm(list = setdiff(ls(), ols))
|
id <- function(x, ...) {
deprecate_soft("1.0.0", "gmailr::id()", "gm_id()")
gm_id(x, ...)
}
to <- function(x, ...) {
deprecate_soft("1.0.0", "gmailr::to()", "gm_to()")
gm_to(x, ...)
}
from <- function(x, ...) {
deprecate_soft("1.0.0", "gmailr::from()", "gm_from()")
gm_from(x, ...)
}
cc <- function(x, ...) {
deprecate_soft("1.0.0", "gmailr::cc()", "gm_cc()")
gm_cc(x, ...)
}
bcc <- function(x, ...) {
deprecate_soft("1.0.0", "gmailr::bcc()", "gm_bcc()")
gm_bcc(x, ...)
}
date <- function(x, ...) {
deprecate_soft("1.0.0", "gmailr::date()", "gm_date()")
gm_date(x, ...)
}
subject <- function(x, ...) {
deprecate_soft("1.0.0", "gmailr::subject()", "gm_subject()")
gm_subject(x, ...)
}
body <- function(x, ...) {
deprecate_soft("1.0.0", "gmailr::body()", "gm_body()")
gm_body(x, ...)
}
last_response <- function() {
deprecate_soft("1.0.0", "gmailr::last_response()", "gm_last_response()")
gm_last_response()
}
message <- function(...) {
deprecate_soft("1.0.0", "gmailr::message()", "gm_message()")
gm_message(...)
}
messages <- function(...) {
deprecate_soft("1.0.0", "gmailr::messages()", "gm_messages()")
gm_messages(...)
}
trash_message <- function(...) {
deprecate_soft("1.0.0", "gmailr::trash_message()", "gm_trash_message()")
gm_trash_message(...)
}
untrash_message <- function(...) {
deprecate_soft("1.0.0", "gmailr::trash_message()", "gm_trash_message()")
gm_untrash_message(...)
}
delete_message <- function(...) {
deprecate_soft("1.0.0", "gmailr::delete_message()", "gm_delete_message()")
gm_delete_message(...)
}
modify_message <- function(...) {
deprecate_soft("1.0.0", "gmailr::modify_message()", "gm_modify_message()")
gm_modify_message(...)
}
attachment <- function(...) {
deprecate_soft("1.0.0", "gmailr::attachment()", "gm_attachment()")
gm_attachment(...)
}
save_attachment <- function(...) {
deprecate_soft("1.0.0", "gmailr::save_attachment()", "gm_save_attachment()")
gm_save_attachment(...)
}
save_attachments <- function(...) {
deprecate_soft("1.0.0", "gmailr::save_attachments()", "gm_save_attachments()")
gm_save_attachments(...)
}
insert_message <- function(...) {
deprecate_soft("1.0.0", "gmailr::insert_message()", "gm_insert_message()")
gm_insert_message(...)
}
import_message <- function(...) {
deprecate_soft("1.0.0", "gmailr::import_message()", "gm_import_message()")
gm_import_message(...)
}
send_message <- function(...) {
deprecate_soft("1.0.0", "gmailr::send_message()", "gm_send_message()")
gm_send_message(...)
}
threads <- function(...) {
deprecate_soft("1.0.0", "gmailr::threads()", "gm_threads()")
gm_threads(...)
}
thread <- function(...) {
deprecate_soft("1.0.0", "gmailr::thread()", "gm_thread()")
gm_thread(...)
}
trash_thread <- function(...) {
deprecate_soft("1.0.0", "gmailr::trash_thread()", "gm_trash_thread()")
gm_trash_thread(...)
}
untrash_thread <- function(...) {
deprecate_soft("1.0.0", "gmailr::untrash_thread()", "gm_untrash_thread()")
gm_untrash_thread(...)
}
delete_thread <- function(...) {
deprecate_soft("1.0.0", "gmailr::delete_thread()", "gm_delete_thread()")
gm_delete_thread(...)
}
modify_thread <- function(...) {
deprecate_soft("1.0.0", "gmailr::modify_thread()", "gm_modify_thread()")
gm_modify_thread(...)
}
draft <- function(...) {
deprecate_soft("1.0.0", "gmailr::draft()", "gm_draft()")
gm_draft(...)
}
drafts <- function(...) {
deprecate_soft("1.0.0", "gmailr::drafts()", "gm_drafts()")
gm_drafts(...)
}
create_draft <- function(...) {
deprecate_soft("1.0.0", "gmailr::create_draft()", "gm_create_draft()")
gm_create_draft(...)
}
send_draft <- function(...) {
deprecate_soft("1.0.0", "gmailr::send_draft()", "gm_send_draft()")
gm_send_draft(...)
}
labels <- function(...) {
deprecate_soft("1.0.0", "gmailr::labels()", "gm_labels()")
gm_labels(...)
}
label <- function(...) {
deprecate_soft("1.0.0", "gmailr::label()", "gm_label()")
gm_label(...)
}
update_label <- function(...) {
deprecate_soft("1.0.0", "gmailr::update_label()", "gm_update_label()")
gm_update_label(...)
}
update_label_patch <- function(...) {
deprecate_soft("1.0.0", "gmailr::update_label_patch()", "gm_update_label_patch()")
gm_update_label_patch(...)
}
delete_label <- function(...) {
deprecate_soft("1.0.0", "gmailr::delete_label()", "gm_delete_label()")
gm_delete_label(...)
}
create_label <- function(...) {
deprecate_soft("1.0.0", "gmailr::create_label()", "gm_create_label()")
gm_create_label(...)
}
history <- function(...) {
deprecate_soft("1.0.0", "gmailr::history()", "gm_history()")
gm_history(...)
}
mime <- function(...) {
deprecate_soft("1.0.0", "gmailr::mime()", "gm_mime()")
gm_mime(...)
}
text_body <- function(...) {
deprecate_soft("1.0.0", "gmailr::text_body()", "gm_text_body()")
gm_text_body(...)
}
html_body <- function(...) {
deprecate_soft("1.0.0", "gmailr::html_body()", "gm_html_body()")
gm_html_body(...)
}
attach_part <- function(...) {
deprecate_soft("1.0.0", "gmailr::attach_part()", "gm_attach_part()")
gm_attach_part(...)
}
attach_file <- function(...) {
deprecate_soft("1.0.0", "gmailr::attach_file()", "gm_attach_file()")
gm_attach_file(...)
}
gm_convert_file <- function(file) {
gm_funs <- get_deprecated_funs()
lines <- readLines(file)
for (i in seq_len(NROW(gm_funs))) {
find <- paste0("(?<![[:alnum:]_:])", gm_funs$old[[i]], "[(]")
replace <- gm_funs$new[[i]]
lines <- gsub(find, replace, lines, perl = TRUE)
}
writeLines(lines, file)
}
get_deprecated_funs <- function() {
file <- system.file(package = "gmailr", "R", "deprecated.R")
lines <- readLines(file)
res <- rematch2::re_match(lines, 'deprecate_.*gmailr::(?<old>[^(]+).*(?<new>gm_[^(]+)')
stats::na.omit(res)[c("old", "new")]
}
|
`%nin%` <- function (x, table) is.na(match(x, table))
log.q1pm <- function(r) log1p(2*r/(1-r))
indTri <- function(n, upper = TRUE, diag = FALSE) {
stopifnot(length(n) == 1, n == (n. <- as.integer(n)), (n <- n.) >= 0)
if(n <= 2) {
if(n == 0) return(integer(0))
if(n == 1) return(if(diag) 1L else integer(0))
v <- if(upper) 3L else 2L
return(if(diag) c(1L, v, 4L) else v)
}
n. <- if(diag) n else n - 1L
n1 <- n. - 1L
r <- rep.int(1L, choose(n.+1, 2) - 1)
tt <- if(diag) 2L else 3L
r[cumsum(if(upper) 1:n1 else n.:2)] <- if(upper) n:tt else tt:n
cumsum(c(if(diag) 1L else if(upper) n+1L else 2L, r))
}
numGedges <- function(amat) {
dimnames(amat) <- NULL
A <- (amat + t(amat)) != 0
n <- nrow(A)
if(n <= 40)
sum(A[lower.tri(A)])
else
sum(A[indTri(n)])
}
check.Rgraphviz <- function() {
if(!requireNamespace("Rgraphviz"))
stop("Package 'Rgraphviz' (from Bioconductor) must be installed for plotting graphs!")
}
|
staple = function(
x,
...,
set_orient = FALSE) {
UseMethod("staple")
}
staple.default = function(
x,
...,
set_orient = FALSE){
res = staple_multi_mat(x, ...)
return(res)
}
staple.list = function(
x,
...,
set_orient = FALSE){
res = staple_multi_img(x, set_orient = set_orient, ...)
if (length(res$probability) == 2) {
res$probability = res$probability[[2]]
res$prior = res$prior[[2]]
res$sensitivity = res$sensitivity[, 2]
res$specificity = res$specificity[, 2]
}
return(res)
}
staple.character = function(
x,
...,
set_orient = FALSE){
res = staple_multi_img(x, set_orient = set_orient, ...)
if (length(res$probability) == 2) {
res$probability = res$probability[[2]]
res$prior = res$prior[[2]]
res$sensitivity = res$sensitivity[, 2]
res$specificity = res$specificity[, 2]
}
return(res)
}
staple.array = function(
x,
...,
set_orient = FALSE){
ndim = length(dim(x))
if (ndim > 2) {
stop(paste0("Array of more than 2 dimensions given. ",
"If 4D array (such as images), convert to list of ",
"3D images"))
}
res = staple_multi_mat(x, ...)
if (ncol(res$probability) == 2) {
res$probability = res$probability[,2]
res$prior = res$prior[,2]
res$sensitivity = res$sensitivity[, 2]
res$specificity = res$specificity[, 2]
}
return(res)
}
|
simLNIRT <-
function(N,
K,
rho,
td = FALSE,
WL = FALSE,
kpa,
kpt,
kia,
kit) {
if (missing(kpa)) {
kpa <- 0
XPA <- NULL
Ba <- NULL
}
else if (kpa == 0) {
XPA <- NULL
Ba <- NULL
}
else {
XPA <-
matrix(rnorm(kpa * N, sd = .5), ncol = kpa, nrow = N)
XPA <-
matrix(XPA, ncol = ncol(XPA), nrow = N) - matrix(
apply(XPA, 2, mean),
ncol = ncol(XPA),
nrow = N,
byrow = T
)
Ba <- matrix(rnorm(kpa), ncol = 1, nrow = kpa)
}
if (missing(kpt)) {
kpt <- 0
XPT <- NULL
Bt <- NULL
}
else if (kpt == 0) {
XPT <- NULL
Bt <- NULL
}
else {
XPT <- matrix(rnorm(kpt * N, sd = .5), ncol = kpt, nrow = N)
XPT <-
matrix(XPT, ncol = ncol(XPT), nrow = N) - matrix(
apply(XPT, 2, mean),
ncol = ncol(XPT),
nrow = N,
byrow = T
)
Bt <- matrix(rnorm(kpt), ncol = 1, nrow = kpt)
}
if (kpa != 0) {
XBa <- XPA %*% Ba
} else{
XBa <- rep(0, N)
}
if (kpt != 0) {
XBt <- XPT %*% Bt
} else{
XBt <- rep(0, N)
}
mutheta <- rep(0, 2)
covtheta <- diag(2)
covtheta[1, 2] <- covtheta[2, 1] <- rho
theta <- MASS::mvrnorm(N, mutheta, covtheta, empirical = TRUE)
theta[, 1] <- theta[, 1] + XBa
theta[, 2] <- theta[, 2] + XBt
if (missing(kia)) {
kia <- 0
XIA <- NULL
Bia <- NULL
}
else if (kia == 0) {
XIA <- NULL
Bia <- NULL
}
else {
XIA <-
matrix(rnorm(kia * K, sd = .25), ncol = kia, nrow = N)
XIA <-
matrix(XIA, ncol = ncol(XIA), nrow = K) - matrix(
apply(XIA, 2, mean),
ncol = ncol(XIA),
nrow = K,
byrow = T
)
Bia <- matrix(rnorm(kia, sd = .75), ncol = 1, nrow = kia)
}
if (missing(kit)) {
kit <- 0
XIT <- NULL
Bit <- NULL
}
else if (kit == 0) {
XIT <- NULL
Bit <- NULL
}
else {
XIT <- matrix(rnorm(kit * K, sd = .25), ncol = kit, nrow = K)
XIT <-
matrix(XIT, ncol = ncol(XIT), nrow = K) - matrix(
apply(XIT, 2, mean),
ncol = ncol(XIT),
nrow = K,
byrow = T
)
Bit <- matrix(rnorm(kit, sd = .75), ncol = 1, nrow = kit)
}
if (kia != 0) {
XBIa <- XIA %*% Bia
} else{
XBIa <- rep(0, K)
}
if (kit != 0) {
XBIt <- XIT %*% Bit
} else{
XBIt <- rep(0, K)
}
if (kia != 0 & kit != 0) {
covitem <- diag(c(.05, .3, .05, .3))
}
if (kia != 0 & kit == 0) {
covitem <- diag(c(.05, .3, .05, 1))
}
if (kia == 0 & kit != 0) {
covitem <- diag(c(.05, 1, .05, .3))
}
if (kia == 0 & kit == 0) {
covitem <- diag(c(.05, 1, .05, 1))
}
muitem <- rep(c(1, 0), 2)
sigma2 <- rlnorm(K, meanlog = 0, sdlog = 0.3)
if (td && !WL) {
ab <- MASS::mvrnorm(K, muitem, covitem)
ab[, 3] <- rep(1, K)
abn <- MASS::mvrnorm(K, muitem[-3], covitem[-3,-3])
ab[, c(2, 4)] <-
abn[, c(2, 3)] - t(matrix(colMeans(abn[, c(2, 3)]), 2, K))
ab[, 1] <- abs(ab[, 1])
ab[, 1] <- ab[, 1] / (prod(ab[, 1]) ^ (1 / K))
}
if (WL) {
muitem <- c(1, 0, 1, 0)
ab <- MASS::mvrnorm(K, muitem, covitem)
sigma2 <- 1 / ab[, 3] ^ 2
ab[, 1] <- abs(ab[, 1])
ab[, 1] <- ab[, 1] / (prod(ab[, 1]) ^ (1 / K))
}
if (!td && !WL) {
ab <- MASS::mvrnorm(K, muitem, covitem)
ab[, c(2, 4)] <-
ab[, c(2, 4)] - t(matrix(colMeans(ab[, c(2, 4)]), 2, K))
ab[, 1] <- abs(ab[, 1])
ab[, 1] <- ab[, 1] / (prod(ab[, 1]) ^ (1 / K))
ab[, 3] <- abs(ab[, 3])
ab[, 3] <- ab[, 3] / (prod(ab[, 3]) ^ (1 / K))
}
ab[, 2] <- ab[, 2] + XBIa
ab[, 4] <- ab[, 4] + XBIt
par <-
theta[, 1] %*% matrix(ab[, 1], nrow = 1, ncol = K) - t(matrix(ab[, 2], nrow = K, ncol = N))
probs <- matrix(pnorm(par), ncol = K, nrow = N)
Y <- matrix(runif(N * K), nrow = N, ncol = K)
Y <- ifelse(Y < probs, 1, 0)
quess <- rep(0.1, K)
S <- matrix(0, ncol = K, nrow = N)
Y1g <- Yg <- matrix(0, ncol = K, nrow = N)
for (kk in 1:K) {
S[, kk] <- rbinom(N, 1, quess[kk])
}
Yg[S == 1] <- 1
Yg[S == 0 & Y == 1] <- 1
par <-
matrix(ab[, 1],
ncol = K,
nrow = N,
byrow = T) * (matrix(theta[, 1], ncol = K, nrow = N) - matrix(
ab[, 2],
ncol = K,
nrow = N,
byrow = T
))
probs <- matrix(pnorm(par), ncol = K, nrow = N)
Y1 <- matrix(runif(N * K), nrow = N, ncol = K)
Y1 <- ifelse(Y1 < probs, 1, 0)
Y1g[S == 1] <- 1
Y1g[S == 0 & Y1 == 1] <- 1
RT <- RT1 <- matrix(0, ncol = K, nrow = N)
for (kk in 1:K) {
time <- matrix(rnorm(N, sd = sqrt(sigma2[kk])), nrow = N, ncol = 1)
RT1[1:N, kk] <- (ab[kk, 4] - theta[, 2]) + time[1:N]
RT[1:N, kk] <- ab[kk, 4] - ab[kk, 3] * theta[, 2] + time[1:N]
}
out <-
list(
Y = Y,
Yg = Yg,
Y1 = Y1,
Y1g = Y1g,
RT = RT,
RT1 = RT1,
theta = theta,
ab = ab,
sigma2 = sigma2,
quess = quess,
XPA = XPA,
XPT = XPT,
Ba = Ba,
Bt = Bt,
XIA = XIA,
XIT = XIT,
Bia = Bia,
Bit = Bit
)
class(out) <- c("simLNIRT", "list")
return(out)
}
|
context("get_recently_candidates")
test_that("expected errors", {
expect_warning(expect_error(get_recently_candidates(16), "Incorrect cycle"), "Cycle should be four-digit year")
expect_error(get_recently_candidates(1996), "Cycle should be four-digit even-numbered year between 2010 and 2018")
expect_error(get_recently_candidates(2008), "Cycle should be four-digit even-numbered year between 2010 and 2018")
expect_warning(expect_error(get_recently_candidates(1995), "Incorrect cycle"), "Cycle should be four-digit year larger than 1996")
expect_warning(expect_error(get_recently_candidates(2007), "Incorrect cycle"), "Cycle should be even-numbered year larger than 1996")
})
test_that("expected lengths", {
expect_length(get_recently_candidates(2016), 5)
})
|
probitInverse <- function(mu, sigma, fittedModel=NULL){
probitInverseVec <- Vectorize(
function(mu, sigma){
mp <- vp <- NA
try({
mp <- integrate(function(x)
pnorm(x)*dnorm(x, mu, sigma),
mu-5*sigma, mu+5*sigma)$value
vp <- integrate(function(x)
(pnorm(x)-mp)^2*dnorm(x, mu, sigma),
mu-5*sigma, mu+5*sigma)$value
})
if(!is.na(vp) && vp<0){
vp <- NA
}else if(is.na(vp)){
mp <- NA
}
return(c(mean=mp, sd = sqrt(vp)))
}, c("mu","sigma"))
if(missing(fittedModel) || is.null(fittedModel)){
res <- t(probitInverseVec(mu, sigma))
if(any(is.na(res))) {
cat("Transformation resulted in NAs for:\n")
print(cbind(mu=mu, sigma=sigma, res)[apply(is.na(res),1,any),])
}
return(res)
}else{
if(!inherits(fittedModel, "traitMPT"))
stop("'fittedModel' must be a latent-trait MPT model.")
samp <- fittedModel$runjags$mcmc[,c()]
thetaNames <- fittedModel$mptInfo$thetaUnique
sel.mu <- grep("mu", varnames(fittedModel$runjags$mcmc))
sel.sig <- grep("sigma", varnames(fittedModel$runjags$mcmc))
s.mu <- fittedModel$runjags$mcmc[,sel.mu]
s.sig <- fittedModel$runjags$mcmc[,sel.sig]
for(cc in 1:length(s.mu)){
for(s in 1:ncol(s.mu[[cc]])){
res <- probitInverseVec(mu = s.mu[[cc]][,s], sigma=s.sig[[cc]][,s])
rownames(res) <- paste0(c("mean_","sd_"), thetaNames[s])
samp[[cc]] <- cbind(samp[[cc]], t(res))
}
samp[[cc]] <- mcmc(samp[[cc]])
attr(samp[[cc]], "mcpar") <- attr(fittedModel$runjags$mcmc[[cc]], "mcpar")
}
return(as.mcmc.list(samp))
}
}
|
compute_sel1_trapez <- function(gam, knots, t.alpha, nodes,
weights, s.spl, wvec, psinu.zvec,
h1, cons, exp.w){
ISEL1.zvec <- rep(0, length(wvec))
for(i in 1:length(wvec)){
w <- wvec[i]
ISEL1.zvec[i] <- ISEL_legendre(gam, w, knots, t.alpha,
nodes, weights, s.spl)
}
out.int <- h1 * PreciseSums::kahanSum(ISEL1.zvec * psinu.zvec)
sel1 <- 1 + (cons * out.int) / (t.alpha * exp.w)
}
|
model.importance.plot<-function( model.obj.1=NULL,
model.obj.2=NULL,
model.name.1="Model 1",
model.name.2="Model 2",
imp.type.1=NULL,
imp.type.2=NULL,
type.label=TRUE,
class.1=NULL,
class.2=NULL,
quantile.1=NULL,
quantile.2=NULL,
col.1="grey",
col.2="black",
scale.by="sum",
sort.by="model.obj.1",
cf.mincriterion.1 = 0,
cf.conditional.1 = FALSE,
cf.threshold.1 = 0.2,
cf.nperm.1 = 1,
cf.mincriterion.2 = 0,
cf.conditional.2 = FALSE,
cf.threshold.2 = 0.2,
cf.nperm.2 = 1,
predList=NULL,
folder=NULL,
PLOTfn=NULL,
device.type=NULL,
res=NULL,
jpeg.res=72,
device.width=7,
device.height=7,
units="in",
pointsize=12,
cex=par()$cex,
...){
if(.Platform$OS.type=="windows"){
Filters<-rbind(Filters,img=c("Imagine files (*.img)", "*.img"))
Filters<-rbind(Filters,csv=c("Comma-delimited files (*.csv)", "*.csv"))}
device.type<-check.device.type(device.type)
if(is.null(res)){res<-jpeg.res}
if(is.null(folder)){
if(any(device.type%in%c("jpeg","pdf","postscript"))){
if(.Platform$OS.type=="windows"){
folder<-choose.dir(default=getwd(), caption="Select directory")
}else{
folder<-getwd()}
}
}
if(is.null(PLOTfn)){PLOTfn<- paste(model.name.1,"_",model.name.2,sep="")}
if(identical(basename(PLOTfn),PLOTfn)){
PLOTfn<-file.path(folder,PLOTfn)}
if(is.null(model.obj.1)){
if(is.null(MODELfn)){
if(.Platform$OS.type=="windows"){
MODELfn <- choose.files(caption="Select first model", filters = Filters["All",], multi = FALSE)
if(is.null(MODELfn)){stop("must provide a model object")}
}else{stop("must provide a model object")}
}
modelname<-load(MODELfn)
if(length(modelname)!= 1){
stop("file must contain single model object")}
assign("model.obj.1",get(modelname))
}
if(is.null(model.obj.2)){
if(is.null(MODELfn)){
if(.Platform$OS.type=="windows"){
MODELfn <- choose.files(caption="Select second model", filters = Filters["All",], multi = FALSE)
if(is.null(MODELfn)){stop("must provide a model object")}
}else{stop("must provide a model object")}
}
modelname<-load(MODELfn)
if(length(modelname)!= 1){
stop("file must contain single model object")}
assign("model.obj.2",get(modelname))
}
model.type.1<-check.model.type(model.obj.1)
model.type.2<-check.model.type(model.obj.2)
if(model.type.1=="QRF"){
stop("Importance not currently available for QRF models")
if("QRF"%in%names(model.obj.1)){model.obj.1<-model.obj.1$QRF}}
if(model.type.2=="QRF"){
stop("Importance not currently available for QRF models")
if("QRF"%in%names(model.obj.2)){model.obj.2<-model.obj.2$QRF}}
if(model.type.1=="CF" || model.type.2=="CF"){REQUIRE.party()}
if(model.type.1=="QRF" || model.type.2=="QRF"){REQUIRE.quantregForest()}
if(model.type.1=="CF" || model.type.2=="CF"){
WARN.IM<-TRUE
}else{
WARN.IM<-FALSE
}
predList.1<-check.predList(model.obj=model.obj.1,model.type=model.type.1)
predList.2<-check.predList(model.obj=model.obj.2,model.type=model.type.2)
if(!identical(sort(predList.1),sort(predList.2))){
stop("'model.obj.1' contains different predictors than 'model.obj.2'")
}
if(!is.null(predList)){
if(!identical(sort(predList),sort(predList.1))){
stop("predList contains different predictors than models")
}
}
response.type.1<-check.response.type(model.obj=model.obj.1,model.type=model.type.1,ONEorTWO="model.obj.1")
response.type.2<-check.response.type(model.obj=model.obj.2,model.type=model.type.2,ONEorTWO="model.obj.2")
if(model.type.1=="RF"){
if(is.null(imp.type.1)){imp.type.1<-1}
if(!is.null(class.1) && imp.type.1==2){
warning("no class specific measure for 'imp.type.1=2' therefore importance type changed to 'imp.type.1=1'",immediate.=WARN.IM)
imp.type.1<-1}
IMP.1<-imp.extract.rf(model.obj.1,imp.type=imp.type.1,class=class.1)
}
if(model.type.1=="QRF"){
if(is.null(imp.type.1)){imp.type.1<-1}
if(!is.null(class.1)){
warning("no class specific measure for QRF therefore 'class.1' ignored",immediate.=WARN.IM)
class.1<-NULL}
if(!"quantiles"%in%names(model.obj.1)){stop("QRF 'model.obj.1' was built with 'importance=FALSE' therefore no importances available")}
quantile.names.1<-paste("quantile=",model.obj.1$quantiles)
if(is.numeric(quantile.1)){quantile.1<-paste("quantile=",quantile.1)}
if(!quantile.1%in%quantile.names.1){
warning("quantile.1 (", quantile.1, ") not found in model.obj.1",immediate.=TRUE)
quantile.1<-NULL}
if(is.null(quantile.1)){quantile.1 <- select.list(quantile.names.1, title="Model 1", multiple = FALSE)}
if(length(quantile.1)==0 || is.null(quantile.1) || !quantile.1%in%quantile.names.1){
stop("must provide valid quantile for model.obj.1")}
IMP.1<-imp.extract.qrf(model.obj.1,imp.type=imp.type.1,ONEorTWO="model.obj.1")
IMP.1<-IMP.1[,c("pred",quantile.1)]
names(IMP.1)<-c("pred","imp")
IMP.1<-IMP.1[order(IMP.1$imp),]
}
if(model.type.1=="CF"){
if(is.null(imp.type.1)){imp.type.1<-1}
if(!is.null(class.1)){
warning("no class specific measure for CF models therefore 'class.1' ignored",immediate.=WARN.IM)
class.1<-NULL}
if(imp.type.1==2 && response.type.1!="binary"){
warning("AUC-based variables importances only available for binary response models therefor importance type changed to 'imp.type.1=1'",immediate.=WARN.IM)
imp.type.1<-1}
IMP.1<-imp.extract.cf( model.obj.1,imp.type=imp.type.1,mincriterion=cf.mincriterion.1,
conditional=cf.conditional.1,threshold=cf.threshold.1,nperm=cf.nperm.1)
}
if(model.type.2=="RF"){
if(is.null(imp.type.2)){imp.type.2<-1}
if(!is.null(class.2) && imp.type.2==2){
warning("no class specific measure for 'imp.type.2=2' therefore importance type changed to 'imp.type.2=1'",immediate.=WARN.IM)
imp.type.2<-1}
IMP.2<-imp.extract.rf(model.obj.2,imp.type=imp.type.2,class=class.2)
}
if(model.type.2=="QRF"){
if(is.null(imp.type.2)){imp.type.2<-1}
if(!is.null(class.2)){
warning("no class specific measure for QRF therefore 'class.2' ignored",immediate.=WARN.IM)
class.2<-NULL}
if(!"quantiles"%in%names(model.obj.2)){stop("QRF 'model.obj.2' was built with 'importance=FALSE' therefore no importances available")}
quantile.names.2<-paste("quantile=",model.obj.2$quantiles)
if(is.numeric(quantile.2)){quantile.2<-paste("quantile=",quantile.2)}
if(!quantile.2%in%quantile.names.2){
warning("quantile.2 (", quantile.2, ") not found in model.obj.2",immediate.=TRUE)
quantile.2<-NULL}
if(is.null(quantile.2)){quantile.2 <- select.list(quantile.names.2, title="Model 2", multiple = FALSE)}
if(length(quantile.2)==0 || is.null(quantile.2) || !quantile.2%in%quantile.names.2){
stop("must provide valid quantile for model.obj.2")}
IMP.2<-imp.extract.qrf(model.obj.2,imp.type=imp.type.2,ONEorTWO="model.obj.2")
IMP.2<-IMP.2[,c("pred",quantile.2)]
names(IMP.2)<-c("pred","imp")
IMP.2<-IMP.2[order(IMP.2$imp),]
}
if(model.type.2=="CF"){
if(is.null(imp.type.2)){imp.type.2<-1}
if(!is.null(class.2)){
warning("no class specific measure for CF models therefore 'class.2' ignored",immediate.=WARN.IM)
class.2<-NULL}
if(imp.type.2==2 && response.type.2!="binary"){
warning("AUC-based variables importances only available for binary response models therefor importance type changed to 'imp.type.2=1'",immediate.=WARN.IM)
imp.type.2<-1}
IMP.2<-imp.extract.cf( model.obj.2,imp.type=imp.type.2,mincriterion=cf.mincriterion.2,
conditional=cf.conditional.2,threshold=cf.threshold.2,nperm=cf.nperm.2)
}
IMP<-list(IMP1=IMP.1,IMP2=IMP.2)
if(is.null(class.1)){
CLASS.1<-"Overall"
}else{
CLASS.1<-paste("Class",class.1)
}
if(is.null(class.2)){
CLASS.2<-"Overall"
}else{
CLASS.2<-paste("Class",class.2)
}
if(model.type.1=="RF"){
if(response.type.1%in%c("continuous")){
if(imp.type.1==1){
print(paste("model.obj.1 is a continuous RF model with", CLASS.1, "Importance measured by %IncMSE"))
IMP.MEASURE.1<-"%IncMSE"}
if(imp.type.1==2){
print(paste("model.obj.1 is a continuous RF model with", CLASS.1, "Importance measured by IncNodePurity"))
IMP.MEASURE.1<-"IncNodePurity"}
}
if(response.type.1%in%c("binary","categorical")){
if(imp.type.1==1){
print(paste("model.obj.1 is a", response.type.1, "RF model with", CLASS.1, "Importance measured by MeanDecreaseAccuracy"))
IMP.MEASURE.1<-"MeanDecAccuracy"}
if(imp.type.1==2){
print(paste("model.obj.1 is a", response.type.1, "RF model with", CLASS.1, "Importance measured by MeanDecreaseGini"))
IMP.MEASURE.1<-"MeanDecGini"}
}
}
if(model.type.1=="QRF"){
IMP.MEASURE.1<-paste(quantile.1)
print(paste("model.obj.1 is continuous response QRF model with",IMP.MEASURE.1))}
if(model.type.1=="CF"){
if(imp.type.1==1){
if(cf.conditional.1 == FALSE){
print(paste("model.obj.1 is a", response.type.1, "CF model with unconditional importance measured by MeanDecreaseAccuracy"))}
if(cf.conditional.1 == TRUE){
print(paste("model.obj.1 is a", response.type.1, "CF model with conditional importance measured by MeanDecreaseAccuracy"))}
IMP.MEASURE.1<-"MeanDecAccuracy"
}
if(imp.type.1==2){
if(cf.conditional.1 == FALSE){
print(paste("model.obj.1 is a", response.type.1, "CF model with unconditional importance measured by mean decrease in AUC"))}
if(cf.conditional.1 == TRUE){
print(paste("model.obj.1 is a", response.type.1, "CF model with conditional importance measured by mean decrease in AUC"))}
IMP.MEASURE.1<-"MeanDecAUC"
}
}
if(model.type.2=="RF"){
if(response.type.2%in%c("continuous")){
if(imp.type.2==1){
print(paste("model.obj.2 is a continuous RF model with", CLASS.2, "Importance measured by %IncMSE"))
IMP.MEASURE.2<-"%IncMSE"}
if(imp.type.2==2){
print(paste("model.obj.2 is a continuous RF model with", CLASS.2, "Importance measured by IncNodePurity"))
IMP.MEASURE.2<-"IncNodePurity"}
}
if(response.type.2%in%c("binary","categorical")){
if(imp.type.2==1){
print(paste("model.obj.2 is a", response.type.2, "RF model with", CLASS.2, "Importance measured by MeanDecreaseAccuracy"))
IMP.MEASURE.2<-"MeanDecAccuracy"}
if(imp.type.2==2){
print(paste("model.obj.2 is a", response.type.2, "RF model with", CLASS.2, "Importance measured by MeanDecreaseGini"))
IMP.MEASURE.2<-"MeanDecGini"}
}
}
if(model.type.2=="QRF"){
IMP.MEASURE.2<-paste(quantile.2)
print(paste("model.obj.2 is continuous response QRF model with",IMP.MEASURE.2))}
if(model.type.2=="CF"){
if(imp.type.2==1){
if(cf.conditional.2 == FALSE){
print(paste("model.obj.2 is a", response.type.2, "CF model with unconditional importance measured by MeanDecreaseAccuracy"))}
if(cf.conditional.2 == TRUE){
print(paste("model.obj.2 is a", response.type.2, "CF model with conditional importance measured by MeanDecreaseAccuracy"))}
IMP.MEASURE.2<-"MeanDecAccuracy"
}
if(imp.type.2==2){
if(cf.conditional.2 == FALSE){
print(paste("model.obj.1 is a", response.type.2, "CF model with unconditional importance measured by mean decrease in AUC"))}
if(cf.conditional.2 == TRUE){
print(paste("model.obj.1 is a", response.type.2, "CF model with conditional importance measured by mean decrease in AUC"))}
IMP.MEASURE.2<-"MeanDecAUC"
}
}
if(!scale.by %in% c("max","sum")){
stop("scale.by must be either max or sum")}
IMP.1<-imp.scale(IMP.1,scale.by=scale.by)
IMP.2<-imp.scale(IMP.2,scale.by=scale.by)
if(scale.by=="sum"){
MAX.IMP<-max(IMP.1$imp,IMP.2$imp)
IMP.1$imp<-IMP.1$imp/MAX.IMP
IMP.2$imp<-IMP.2$imp/MAX.IMP
}
if(!identical(sort(as.character(IMP.1$pred)),sort(as.character(IMP.2$pred)))){
stop("models contain different predictors")
}
if(!sort.by %in% c("predList","model.obj.1","model.obj.2")){
stop("sort.by must be 'model.obj.1' or 'model.obj.2' or 'predList'")}
if(sort.by=="model.obj.1"){
sort.by=IMP.1$pred
}else{
if(sort.by=="model.obj.2"){
sort.by=IMP.2$pred
}else{
if(sort.by=="predList"){
sort.by=rev(predList)
}
}
}
IMP.1<-IMP.1[match(sort.by,IMP.1$pred),]
IMP.2<-IMP.2[match(sort.by,IMP.2$pred),]
names.arg=IMP.1$pred
NCHAR<-max(nchar(as.character(names.arg)))
for(i in 1:length(device.type)){
initialize.device( PLOTfn=PLOTfn,DEVICE.TYPE=device.type[i],
res=res,device.width=device.width,device.height=device.height,
units=units,pointsize=pointsize,cex=cex)
op<-par(mar=par()$mar+c(0,(2*NCHAR/3)-2,0,0),cex=cex)
barplot(-IMP.1$imp,horiz=TRUE,xlim=c(-1,1),las=1,col=col.1,axes=F,names.arg=names.arg,...)
barplot(IMP.2$imp,horiz=TRUE,xlim=c(-1,1),las=1,col=col.2,add=TRUE,axes=F,...)
IMP.TEXT<-paste(IMP.MEASURE.1," ",IMP.MEASURE.2)
if(type.label){
mtext(IMP.MEASURE.1,side=1, line=0, adj=0, cex=1*cex)
mtext(IMP.MEASURE.2,side=1, line=0, adj=1, cex=1*cex)}
mtext(model.name.1,side=1, line=1.5, adj=0, cex=1.3*cex)
mtext(model.name.2,side=1, line=1.5, adj=1, cex=1.3*cex)
par(op)
if(!device.type[i]%in%c("default","none")){dev.off()}
}
return(IMP)
}
|
NonlinearityTests <-function(HRVData, indexNonLinearAnalysis =length(HRVData$NonLinearAnalysis)){
CheckAnalysisIndex(indexNonLinearAnalysis, length(HRVData$NonLinearAnalysis),"nonlinear")
CheckNIHR(HRVData)
VerboseMessage(HRVData$Verbose, "Performing nonlinearity tests")
tseries = HRVData$Beat$RR
HRVData$NonLinearAnalysis[[indexNonLinearAnalysis]]$NonlinearityTests =
nonlinearityTest(time.series = tseries, verbose = HRVData$Verbose)
return(HRVData)
}
SurrogateTest <- function(HRVData,
indexNonLinearAnalysis = length(HRVData$NonLinearAnalysis),
significance = 0.05, oneSided=FALSE,
alternative = c("smaller","larger"), K=1,
useFunction,
xlab="Values of the statistic", ylab="",
main="Surrogate data testing on the RR intervals",
doPlot = TRUE, ...){
CheckAnalysisIndex(indexNonLinearAnalysis, length(HRVData$NonLinearAnalysis),"nonlinear")
CheckNIHR(HRVData)
tseries = HRVData$Beat$RR
HRVData$NonLinearAnalysis[[indexNonLinearAnalysis]]$SurrogateTest =
surrogateTest(time.series = tseries, significance = significance,
one.sided = oneSided,alternative = alternative,
K = K, xlab = xlab, ylab = ylab, main = main,
verbose = HRVData$Verbose,
do.plot = doPlot, FUN = useFunction, ...)
return(HRVData)
}
|
.scagnostics.names <- c("Outlying", "Skewed", "Clumpy", "Sparse", "Striated", "Convex", "Skinny", "Stringy", "Monotonic")
scagnostics <- function(x, ...) UseMethod("scagnostics", x)
.scagnostics.for.data <- function(data, bins, maxBins, names=NULL) {
results <- .jcall("scagnostics/Main","[[D","computeScagnostics",data,as.integer(bins)[1],as.integer(maxBins)[1])
r <- lapply(results, .jevalArray)
n <- length(r)
s <- length(r[[1]])
if (n == 1) {
r <- r[[1]]
names(r) <- .scagnostics.names
} else {
r <- matrix(unlist(r), s)
rownames(r) <- .scagnostics.names
if (!is.null(names)) {
dn <- length(names)
l <- data.frame(x=rep(1:dn,dn),y=rep(1:dn,each=dn))
l <- l[l$x < l$y,]
colnames(r) <- paste(names[l$x], "*", names[l$y])
}
}
class(r) <- "scagnostics"
r
}
scagnostics.default <- function(x, y, bins=50, maxBins=1000, ...) {
if (length(x) != length(y)) stop("x and y must have the same length")
complete <- !is.na(x) & !is.na(y)
x <- as.double(x[complete])
y <- as.double(y[complete])
data <- .jarray(list(.jarray(x),.jarray(y)),"[D")
.scagnostics.for.data(data, bins, maxBins)
}
scagnostics.data.frame <- function(x, bins=50, maxBins=1000, ...) {
if (dim(x)[2] < 1) stop("need at least two variables")
data <- .jarray(lapply(x, function(x) .jarray(as.double(x))), "[D")
.scagnostics.for.data(data, bins, maxBins, names(x))
}
scagnostics.list <- function(x, bins=50, maxBins=1000, ...) {
if (length(x) < 2) stop("need at least two variables")
n <- unlist(lapply(x, length))
if (!all(n == n[1])) stop("all variables must have the same length")
data <- .jarray(lapply(x, function(x) .jarray(as.double(x))), "[D")
nam <- names(x)
if (is.null(nam)) nam <- as.character(1:length(x))
.scagnostics.for.data(data, bins, maxBins, nam)
}
scagnostics.matrix <- function(x, bins=50, maxBins=1000, ...) {
if (dim(x)[2] < 1) stop("need at least two variables")
data <- .jarray(lapply(1:(dim(x)[2]), function(i) .jarray(as.double(x[,i]))), "[D")
nam <- colnames(x)
if (is.null(nam)) nam <- as.character(1:length(x))
.scagnostics.for.data(data, bins, maxBins, nam)
}
scagnosticsOutliers <- function(scagnostics) {
if (!inherits(scagnostics, "scagnostics")) stop("scagnostics must be of the class `scagnostics'")
js <- if (!is.matrix(scagnostics)) .jarray(.jarray(scagnostics), "[D")
else .jarray(lapply(1:(dim(scagnostics)[2]), function(i) .jarray(as.double(scagnostics[,i]))), "[D")
result <- .jcall("scagnostics.Scagnostics", "[Z", "computeScagnosticsOutliers", js)
if (!is.null(colnames(scagnostics)))
names(result) <- colnames(scagnostics)
result
}
scagnosticsExemplars <- function(scagnostics) {
if (!inherits(scagnostics, "scagnostics")) stop("scagnostics must be of the class `scagnostics'")
js <- if (!is.matrix(scagnostics)) .jarray(.jarray(scagnostics), "[D")
else .jarray(lapply(1:(dim(scagnostics)[2]), function(i) .jarray(as.double(scagnostics[,i]))), "[D")
result <- .jcall("scagnostics.Scagnostics", "[Z", "computeScagnosticsExemplars", js)
if (!is.null(colnames(scagnostics)))
names(result) <- colnames(scagnostics)
result
}
scagnosticsGrid <- function(scagnostics) {
if (!inherits(scagnostics, "scagnostics")) stop("scagnostics must be of the class `scagnostics'")
n <- as.integer(sqrt(2 * dim(scagnostics)[2] + 0.25) + 1)
l <- data.frame(x=rep(1:n,n), y=rep(1:n, each=n))
l[l$x < l$y,]
}
.onLoad <- function(libname, pkgname)
.jpackage("scagnostics", "scagnostics.jar")
|
nmm <- function(data, eq_type = c("joint", "cont", "disc"), eq_d = NULL, eq_c = NULL,
par_c = NULL, par_d = NULL, start_v = NULL,
check_hess = TRUE, corrl = TRUE, weight_paths = TRUE,
weight_paths_cont = FALSE, data_weight = NULL, estimate = TRUE,
fixed_term = FALSE, best_method = FALSE, DEoptim_run = FALSE,
hessian = "joint_hess", print_out = FALSE, diff_hessian = FALSE,
bayesian_random = FALSE, DEoptim_run_main = FALSE, deconst = 2,
numerical_deriv = FALSE, best_method4start = FALSE, eqsys = "sur",
miterlim = 10000, opt_method = "BFGS", try_last_DEoptim = TRUE,
transform=NULL, MNtypef = "logit", nmm_object = NULL)
{
. <- NULL
PeID <- NULL
mutate <- NULL
WeID <- NULL
objm <- NULL
mnp <- NULL
if(MNtypef=="dogit"&eq_type!="cont"){
pardogit <- paste0("capt", 1:length(eq_d))
}else{
pardogit <- NULL
}
if(eq_type=="cont"){
pardogit <- NULL
}
if(eq_type!="joint"){
corrl <- FALSE
}
data %<>% data.frame(.)
data %<>% replace(., is.na(.), 0)
if(any(unlist(data)%in%c(NA, Inf, -Inf, NaN))){
indx <- apply(data, 1, function(x) any(x%in%c(NA, Inf, -Inf, NaN)) ) %>% which
nindx <- length(indx)
indx <- sample(indx, min(6, nindx))
print(paste0("Rows (sampled, in total ", nindx," rows): ", paste0(indx, collapse = ", "), " have non-normal values! Stopping."))
stop()
}
if(!is.null(eq_c)){
par_c %<>% sort
para_cont <- get_par(par_c, eq_c)
cheqs0 <- para_cont$cheqs0
}else{
cheqs0 <- NULL
}
if(!is.null(eq_d)){
par_d %<>% sort
ffor <- get_par(par_d, eq_d)$cheqs0
}else{
ffor <- NULL
}
if(is.null(transform)){
transform <- if(eq_type == "joint") TRUE else FALSE
}
indp <- eq_type!="cont"
indc <- eq_type!="disc"
data <- prepare_data(data, avl = indp, chc = indp, wd = indp, nc = length(cheqs0), wc = indc,
weights = data_weight, weight_paths = weight_paths,
weight_paths_cont = weight_paths_cont)
if(!is.null(start_v)){
start_v <- check_names_start(start_v)
start_v <- start_v[c(par_c,par_d[-1])]
}
if(is.null(start_v)&estimate&MNtypef=="dogit"){
mc <- match.call()
mc[["MNtypef"]] <- "logit"
start_v <- eval(mc)$estimate
stp <- rep(1/length(pardogit), length(pardogit))
names(stp) <- pardogit
start_v <- c(start_v,stp)
}else{
if(is.null(start_v)&estimate){
start_v <- get_start(eq_c = eq_c, par_c = par_c, par_d = par_d, eq_d = eq_d,
data = data, datan="data", part = eq_type, DEoptim_run = DEoptim_run,
hessian = NULL, best_method = best_method4start, transform=transform,
MNtypef=MNtypef, pardogit=pardogit,
opt_method = opt_method, numerical_deriv=numerical_deriv)
}
}
methodopt <- opt_method
data_name <- "data"
separatenmm <- FALSE
if(diff_hessian==TRUE){
datan <- copy(data)
wnames <- c(paste0('wd_', 1:length(ffor)), paste0('wc_', 1:length(cheqs0)))
data_weightn <- data.frame(matrix(1, ncol=length(wnames), nrow=nrow(datan)),
stringsAsFactors = FALSE)
names(data_weightn) <- wnames
datan <- add_variable(data = datan, dname = "weights", weights = data_weightn)
datan <- ddply(datan, .(PeID), mutate, npaths = length(WeID))
datan$npaths_cont <- 1
data_name <- "datan"
}
if(is.null(nmm_object)){
if(is.null(start_v)){
start_v <- rep(0, length(c(par_c, par_d)))
}
cdmr <- get_nmm_functions(corrl, eq_type, cheqs0, ffor, objm, print_out,
bayesian_random, fixed_term, mnp, start_v, data_name, check_hess,
hessian, eqsys, diff_hessian, MNtypef=MNtypef)
}else{
cdmr <- attributes(nmm_object)$functions
nn_cdmr <- c(paste0(rep(c("joint_", "cont_","text_"), rep(3, 3)), c("func", "grad", "hess")),paste0("text_", c("bd", "gd", "edd")))
names(cdmr) <- nn_cdmr[1:length(names(cdmr))]
}
joint_func <- cdmr$joint_func
joint_grad <- cdmr$joint_grad
joint_hess <- cdmr$joint_hess
separatenmm <- cdmr$separatenmm
if(corrl==TRUE&any(eq_type=="joint")){
cont_func <- cdmr$cont_func
cont_grad <- cdmr$cont_grad
cont_hess <- cdmr$cont_hess
text_func <- cdmr$text_func
text_grad <- cdmr$text_grad
text_hess <- cdmr$text_hess
text_bd <- cdmr$text_bd
text_gd <- cdmr$text_gd
text_edd <- cdmr$text_edd
environment(cont_func) <- environment(cont_grad) <- environment(cont_hess) <- environment()
}
if(corrl==FALSE){
separatenmm <- FALSE
}
environment(joint_func) <- environment(joint_grad) <- environment(joint_hess) <- environment()
functionsl <- if(corrl == TRUE&any(eq_type == "joint")){
list(jfunc = joint_func, jgrad = joint_grad, jhess = joint_hess,
cfunc = cont_func, cgrad = cont_grad, chess = cont_hess,
text_func = text_func, text_grad = text_grad, text_hess=text_hess,
text_bd=text_bd, text_gd=text_gd, text_edd=text_edd)
} else{
list(jfunc = joint_func, jgrad = joint_grad, jhess = joint_hess)
}
if(estimate == TRUE){
if(numerical_deriv){
joint_grad <- NULL
joint_hess <- NULL
check_hess <- FALSE
}
possible_m <- c("BFGS", "NR", "CG", "NM", "SANN", "BHHH")
if(best_method == TRUE){
res <- nmm_best(joint_func, joint_grad, joint_hess, start_v, "NA", miterlim, possible_m,
eq_type, corrl)
resif <- try_if(res)
}else{
if(DEoptim_run_main){
res <- nmm_DEoptim(joint_func, joint_grad, joint_hess, start_v, "NA", miterlim,
possible_m, deconst, eq_type, corrl)
resif <- try_if(res)
MLerror <- resif
}else{
MLerror <- FALSE
}
if(DEoptim_run_main == FALSE|MLerror){
res <- nmm_1good(joint_func, joint_grad, joint_hess, start_v, "NA", miterlim,
possible_m, methodopt, eq_type, corrl)
}
resif <- try_if(res)
}
resif <- try_if(res)
if(resif&try_last_DEoptim){
stde <- if(is.null(res$estimate)) start_v
stde <- if (is.na(sum(joint_func(start_v)))) stde else start_v
if(!is.na(sum(joint_func(start_v)))&!is.na(sum(joint_func(res$estimate)))){
stde <- if(joint_func(start_v)>joint_func(res$estimate)) start_v else res$estimate
}
res <- nmm_lastDEoptim(joint_func, joint_grad, joint_hess, stde, "NA", miterlim,
possible_m, deconst, eq_type, corrl)
resif <- try_if(res)
}
estj <- joint_func(res$estimate)
estja <- attributes(estj)[[1]]
if(length(estja)>0){
names(estja) <- paste0('eq_', 1:length(estja))
}else{
estja <- estj
}
res$gradient <- gradient.nmm(res)
res$hessian <- hessian.nmm(res)
}else{
res <- "object"
estja <- NA
}
a <- c(attributes(res), list(functions = functionsl, data = data, LL = estja,
type = eq_type, cont_e = cheqs0, disc_e = ffor,
eq_c = eq_c, eq_d = eq_d, par_c = par_c,
par_d = par_d, corr_joint=corrl))
if(any(class(res)%in%"maxLik")){
res <- res
}else{
res <- list(res)
}
attributes(res) <- a
class(res) <- c("nmm", class(res))
res$call$data <- "data"
if(data %>% dplyr::select(dplyr::starts_with("chc")) %>% ncol>0){
res$freq <- try(data %>% dplyr::select(dplyr::starts_with("chc")) %>% colSums, silent = TRUE)
}else{
res$freq <- NULL
}
res
}
check_names_start <- function(start_v){
nstv <- names(start_v)
if(is.null(nstv)){
print("Provide names for `start_v`!")
stop()
}else{
start_v[order(names(start_v))]
}
}
nmm_best <- function(joint_func, joint_grad, joint_hess, start_v, method = NULL, miterlim,
possible_m, eq_type, corrl)
{
. <- NULL
print('optimization searches for the best result.')
if(is.null(joint_hess)){
reslist <- lapply(possible_m, function(x) try(maxLik(joint_func, start = start_v,
method = x, iterlim = miterlim),
silent=TRUE))
}else{
reslist <- lapply(possible_m, function(x) try(maxLik(joint_func, grad = joint_grad,
hess = joint_hess, start = start_v,
method = x, iterlim = miterlim),
silent=TRUE))
}
res <- reslist[[1]]
indr <- sapply(reslist, try_if)
reslist <- reslist[!indr]
if(length(reslist)>0){
indr <- sapply(reslist, function(x)x$maximum)
res <- reslist[[which.max(indr)[1]]]
}
return(res)
}
nmm_1good <- function(joint_func, joint_grad, joint_hess, start_v, method = NULL, miterlim,
possible_m, methodopt = "BFGS", eq_type, corrl)
{
. <- NULL
res <- try(try_alg(joint_func, joint_grad, joint_hess, methodim = methodopt, miterlim, start_v,
ki = 1, k = 2, eq_type=eq_type, corrl=corrl), silent = TRUE)
im <- 1
resif <- try_if(res)
possible_m <- possible_m[!possible_m%in%methodopt]
while(resif&im <= length(possible_m)){
print(paste0("Algorithm ", ifelse(im == 1, methodopt, possible_m[im-1]),
" produced an error. Trying out next algorithm."))
res <- try(try_alg(joint_func, joint_grad, joint_hess, methodim=possible_m[im], miterlim,
start_val = start_v, ki = 1, k = 2, eq_type=eq_type, corrl=corrl),
silent=TRUE)
resif <- try_if(res)
if(resif){
res <- try(try_alg(joint_func, joint_grad, joint_hess, methodim=possible_m[im], miterlim,
start_v, ki = 1, k = 1, eq_type=eq_type, corrl=corrl), silent=TRUE)
resif <- try_if(res)
}
im <- im+1
}
return(res)
}
nmm_DEoptim <- function(joint_func, joint_grad, joint_hess, start_v = NULL, method = NULL,
miterlim, possible_m, deconst = 2, eq_type, corrl)
{
. <- NULL
print('DEoptim is used for optimization. This may take a while.')
res <- nmm_1good(joint_func = joint_func, joint_grad=joint_grad, joint_hess=joint_hess, start_v=start_v, method="NA", miterlim=miterlim, possible_m=possible_m,
eq_type=eq_type, corrl=corrl, methodopt=method)
res1 <- nmm_1good(joint_func = joint_func, joint_grad=joint_grad, joint_hess=joint_hess, start_v=res$estimate, method="NA", miterlim=1000000, possible_m=possible_m,
eq_type=eq_type, corrl=corrl, methodopt="NM")
resif <- try_if(res)
initialpop <- matrix(c(res1$estimate ) %>% rep(.,length(start_v)), ncol = length(start_v), byrow = TRUE)
initialpop <- rbind(initialpop - rep(-0.0001, length(start_v)) %>% diag, initialpop + rep(-0.0001, length(start_v)) %>% diag)
initialpop <- rbind(res$estimate,res1$estimate,initialpop)
jj_f <- function(par){
res <- joint_func(par)
-res
}
environment(jj_f) <- environment()
deconst <- max(ceiling(max(abs(res$estimate))), deconst)
reso <- DEoptim(jj_f, lower = rep(-deconst, length(start_v)),
upper = rep(deconst, length(start_v)),
control = list(trace = TRUE, initialpop = initialpop, itermax=1000))
st_new <- reso$optim$bestmem
names(st_new) <- names(start_v)
if(is.null(joint_hess)){
res <- try(maxLik(joint_func, start = st_new, iterlim = miterlim, method = "BFGS"), silent = TRUE)
resnm <- try(maxLik(joint_func, start = res$estimate, iterlim = 1000000, method = "NM"), silent = TRUE)
}else{
res <- try(maxLik(joint_func, grad = joint_grad, hess = joint_hess,
start = st_new, iterlim = miterlim, method = "BFGS"), silent = TRUE)
resnm <- try(maxLik(joint_func, grad = joint_grad, hess = joint_hess,
start = res$estimate, iterlim = 1000000, method = "NM"), silent = TRUE)
}
if(res$maximum<resnm$maximum){
res <- resnm
}
resif <- try_if(res)
if(resif){
reso <- DEoptim(jj_f, lower = res$estimate-0.5, upper = res$estimate + 0.5,
control = list(trace = FALSE))
st_new <- reso$optim$bestmem
names(st_new) <- names(start_v)
res$estimate <- st_new
res$gradient <- joint_grad(st_new)
res$hessian <- joint_hess(st_new)
res$type <- "DEoptim"
res$maximum <- joint_func(st_new)
}
return(res)
}
nmm_lastDEoptim <- function(joint_func, joint_grad, joint_hess, start_v = NULL, method = NULL,
miterlim, possible_m, deconst = 2, eq_type, corrl)
{
. <- NULL
paste0("All maxLik algorithms produced errors. Trying out DEoptim. This may take a while.")
jj_f <- function(par){
res <- joint_func(par)
-res
}
environment(jj_f) <- environment()
if(!is.null(start_v)){
if(any(is.na(start_v))){
start_v[is.na(start_v)] <- 0
}
initialpop <- matrix(c(start_v + rnorm(length(start_v) * 1000, sd = 0.01)),
ncol = length(start_v), byrow = TRUE)
deconst <- start_v %>% abs %>% max + 1
reso <- try(DEoptim(jj_f, lower = rep(-deconst, length(start_v)),
upper = rep(deconst, length(start_v)),
control = list(trace = FALSE, itermax = 1000, VTR = 10000000,
initialpop = initialpop)), silent = TRUE)
if(any(class(reso)%in%"try-error")){
vals_pop <- apply(initialpop, 1, jj_f)
initialpop <- initialpop[!is.nan(vals_pop),]
if(nrow(initialpop)==0){
stop("No initial population values for DEoptim found!")
}else{
reso <- DEoptim(jj_f, lower = rep(-deconst, length(start_v)),
upper = rep(deconst, length(start_v)),
control = list(trace = FALSE, itermax = 1000, VTR = 10000000,
initialpop = initialpop))
}
}
st_new <- reso$optim$bestmem
names(st_new) <- names(start_v)
if(is.null(joint_hess)){
res <- try(maxLik(joint_func, start = st_new, iterlim = miterlim, method = "BFGS"), silent = TRUE)
resnm <- try(maxLik(joint_func, start = res$estimate, iterlim = 1000000, method = "NM"), silent = TRUE)
}else{
res <- try(maxLik(joint_func, grad = joint_grad, hess = joint_hess,
start = st_new, iterlim = miterlim, method = "BFGS"), silent = TRUE)
resnm <- try(maxLik(joint_func, grad = joint_grad, hess = joint_hess,
start = res$estimate, iterlim = 1000000, method = "NM"), silent = TRUE)
}
if(res$maximum<resnm$maximum){
res <- resnm
}
resif <- try_if(res)
if(resif){
reso <- try(DEoptim(jj_f, lower = rep(-deconst, length(start_v)),
upper = rep(deconst, length(start_v)),
control = list(trace = FALSE, VTR = 10000000)), silent = TRUE)
}
}else{
reso <- try(DEoptim(jj_f, lower = rep(-deconst, length(start_v)),
upper = rep(deconst, length(start_v)),
control = list(trace = FALSE, VTR = 10000000)), silent = TRUE)
}
if(!any(class(reso)%in%"try-error")){
st_new <- reso$optim$bestmem
names(st_new) <- names(start_v)
}
if(is.null(joint_hess)){
res <- try(maxLik(joint_func, start = st_new, iterlim = miterlim, method = "BFGS"), silent = TRUE)
resnm <- try(maxLik(joint_func, start = res$estimate, iterlim = 1000000, method = "NM"), silent = TRUE)
}else{
res <- try(maxLik(joint_func, grad = joint_grad, hess = joint_hess,
start = st_new, iterlim = miterlim, method = "BFGS"), silent = TRUE)
resnm <- try(maxLik(joint_func, grad = joint_grad, hess = joint_hess,
start = res$estimate, iterlim = 1000000, method = "NM"), silent = TRUE)
}
if(res$maximum<resnm$maximum){
res <- resnm
}
resif <- try_if(res)
if(resif){
res$estimate <- st_new
if(!is.null(joint_grad)) res$gradient <- joint_grad(st_new)
if(!is.null(joint_hess)) res$hessian <- joint_hess(st_new)
res$type <- "DEoptim"
res$maximum <- joint_func(st_new)
}
return(res)
}
try_if <- function(res)
{
. <- NULL
sumstat <- try(res%>%summary_check, silent = TRUE)
tester <- ifelse(any(class(res)%in%"try-error"), TRUE, ifelse(res$code == 100, TRUE, FALSE))
ststats <- if(any(sumstat%>%class%in%"try-error")|tester) TRUE else
all(summary_check(res)$estimate[, 4]%>%na.omit %>% round(., 4)>0.999)|any(is.nan(summary_check(res)$estimate[, 4]))
return(tester|any(sumstat%>%class%in%"try-error")|ststats)
}
try_alg <- function(joint_func, joint_grad, joint_hess, methodim, miterlim, start_val,
ki = 1, k = 1, eq_type, corrl = FALSE)
{
. <- NULL
env_org <- environment(joint_func)
method_org <- env_org$methodopt
env_org$methodopt <- methodim
if(is.null(joint_hess)){
res <- try(maxLik(joint_func, start = start_val,
method = methodim, iterlim = miterlim), silent = TRUE)
}else{
res <- try(maxLik(joint_func, grad = joint_grad, hess = joint_hess, start = start_val,
method = methodim, iterlim = miterlim), silent = TRUE)
}
env_org$methodopt <- method_org
if(eq_type=="joint"&corrl==FALSE&!is.null(joint_hess)){
h <- joint_hess(res$estimate)
if(methodim=="BHHH"){
h %<>% apply(., 3, function(x) colSums(x, na.rm = FALSE))
}
res$hessian <- h
}
resif <- try_if(res)
if(resif&ki<k){
ki <- ki+1
res <- try_alg(joint_func, joint_grad, joint_hess, methodim, miterlim,
start_val = res$estimate, ki, k, eq_type=eq_type, corrl=corrl)
return(res)
}
return(res)
}
get_nmm_functions <- function(corrl, eq_type, cheqs0, ffor, objm, print_out,
bayesian_random, fixed_term, mnp, start_v, data_name, check_hess,
hessian, eqsys, diff_hessian, MNtypef = NULL)
{
. <- NULL
separatenmm <- FALSE
if(corrl == TRUE&any(eq_type == "joint")){
objm <- cond_mean_cov_expr(neqt = length(cheqs0), kk = length(ffor))
joint_obj <- LL_joint(ffor, cheqs0, objm, check_hess = TRUE , cfunc='cont_func',
chess = "cont_hess", cgrad = "cont_grad",
gfunc = 'joint_grad', hfunc = 'joint_hess', print_out = print_out,
bayesian_random = bayesian_random, MNtypef=MNtypef)
text_func <- joint_obj$text_func
text_grad <- joint_obj$text_grad
text_hess <- joint_obj$text_hess
text_bd <- joint_obj$text_bd
text_gd <- joint_obj$text_gd
text_edd <- joint_obj$text_edd
joint_func <- joint_obj$func
joint_grad <- joint_obj$grad
joint_hess <- joint_obj$hessian
npar <- get_npar(cheqs0)+1
add_pars <- paste0("par[", npar:(length( start_v)+1), "]")
cont_obj <- LL_joint_no_corr(cheqs0=cheqs0, datan="data", eq_type = "cont",
fixed_term = fixed_term,
bayesian_random = bayesian_random,
eqsys = eqsys, add_pars = add_pars)
mod_act <- .%>% deparse %>% gsub("npaths_cont", "1", ., fixed = TRUE) %>%
gsub("npaths", "1", ., fixed = TRUE)
cf <- cont_obj$func %>% mod_act
intr <- cf %>% grep("separatenmm", .)-1
if(length(intr)>0){
cf <- cf[-c(intr:(length(cf)-2))]
}
cont_func <- function(par){}
body(cont_func)<- parse(text=cf[-c(1)] )
cf <- cont_obj$grad %>% mod_act
cont_grad <- function(par){}
body(cont_grad)<- parse(text=cf[-c(1)] )
cf <- cont_obj$hess %>% mod_act
cont_hess<- function(par){}
body(cont_hess)<- parse(text=cf[-c(1)] )
if(bayesian_random == TRUE){
actbr <- .%>%gsub("par\\[\\[(\\d{1,10})\\]\\]", "par[,\\1]", .)%>%gsub("par\\[(\\d{1,10})", "par[,\\1",.)%>%
gsub("par\\[\\((\\d{1,10})", "par[,(\\1",.)%>%
gsub("par <- c(", "par <- cbind(", ., fixed = TRUE)%>%
gsub("length(par)", "ncol(par)", ., fixed = TRUE)
dpactbr <- . %>% deparse %>% actbr
ffj <- cont_func %>% dpactbr
ffj <- ffj[-c(1)] %>% parse(text = .)
cont_func <- function(par) {}
body(cont_func) <- ffj
gf1 <- cont_grad %>% dpactbr
gf1 <- gf1[-c(1)] %>% parse(text = .)
cont_grad <- function(par){}
body(cont_grad) <- gf1
hf1 <- cont_hess %>% dpactbr
hf1 <- hf1[-c(1)] %>% parse(text = .)
cont_hess <- function(par){}
body(cont_hess) <- hf1
}
if(diff_hessian == TRUE){
joint_obj <- LL_joint(ffor, cheqs0, objm, check_hess = TRUE, cfunc='cont_func',
chess = "cont_hess", cgrad = "cont_grad",
gfunc = 'joint_grad', hfunc = 'joint_hess', datan = data_name,
print_out = print_out,
bayesian_random = bayesian_random,
MNtypef=MNtypef)
joint_grad <- joint_obj$grad
joint_hess <- joint_obj$hessian
}
}else{
joint_obj <- LL_joint_no_corr(ffor, cheqs0, datan="data", eq_type = eq_type,
fixed_term = fixed_term, hessian = hessian,
bayesian_random = bayesian_random,
eqsys = eqsys, MNtypef=MNtypef)
joint_func <- joint_obj$func
joint_grad <- joint_obj$grad
joint_hess <- joint_obj$hessian
}
if(bayesian_random == TRUE){
tjf <- joint_func %>% deparse
istart <- grep("methodopt", tjf)[1]
if(corrl == TRUE){
iend <- grep("joint_hess", tjf)[1]+1
tjf <- tjf[-c(istart:iend)]
istart <- grep(" res <- if ", tjf)
iend <- grep("attributes\\(res\\)", tjf)
tjf <- tjf[-c(istart:iend)]
tjf <- gsub("contpart <- cbind\\(contpart", "res <- cbind(contpart", tjf)
body(joint_func) <- parse(text = tjf[-1])
cjf <- cont_func %>% deparse
istart <- grep("methodopt", cjf)[1]
iend <- grep("res <- cbind", cjf)-1
cjf <- cjf[-c(istart:iend)]
body(cont_func) <- parse(text = cjf[-1])
}else{
iend <- grep("attributes\\(res\\)", tjf)
ires <- grep("res <- cbind", tjf, value = TRUE)
tjf <- tjf[-c(istart:iend)]
body(joint_func) <- parse(text = c(tjf[2:(length(tjf)-2)], ires, tjf[(length(tjf)-1):length(tjf)]))
}
}
if(corrl==TRUE&any(eq_type=="joint")){
res <-
list(
joint_func = joint_func,
joint_grad = joint_grad,
joint_hess = joint_hess,
separatenmm = separatenmm,
cont_func = cont_func,
cont_grad = cont_grad,
cont_hess = cont_hess,
text_func = text_func,
text_grad = text_grad,
text_hess = text_hess,
text_bd = text_bd,
text_gd = text_gd,
text_edd = text_edd
)
}else{
res <-
list(
joint_func = joint_func,
joint_grad = joint_grad,
joint_hess = joint_hess,
separatenmm = separatenmm
)
}
res
}
summary.nmm <- function(object, type = "normal", new_coef = NULL, ...)
{
. <- NULL
new_coef <- new_coef[names(new_coef) %>% sort]
estimate <- if(!is.null(new_coef)) new_coef else object$estimate
breadd <- bread.nmm(object, type = type, new_coef = new_coef)
sde <- breadd %>% diag %>% sqrt
t <- estimate / sde
p <- 2 * pnorm(-abs(t))
results <- cbind(Estimate = estimate, `Std. error` = sde, `t value` = t, `Pr(> t)` = p)
results <- apply(results, 2, function(x)round(x, 7))
ll <- logLik.nmm(object, new_coef = new_coef)
summary <- list(maximType = object$type, iterations = object$iterations,
returnCode = object$code, returnMessage = object$message,
loglik = ll, estimate = results,
constraints = object$constraints, vcov = breadd)
if(!is.null(new_coef)){
summary[["maximType"]] <- "New"
summary[["iterations"]] <- "NA"
summary[["returnCode"]] <- "NA"
summary[["returnMessage"]] <- "New coefficients"
}
class(summary) <- "summary.maxLik"
return(summary)
}
stats_function <- function(eq_c = NULL, eq_d = NULL, par_c = NULL, par_d = NULL, fixed = 0)
{
. <- NULL
if(!is.null(eq_c)){
para_cont <- get_par(par_c, eq_c)
npar <- length(par_c)
cheqs0 <- para_cont$cheqs0
cheqs0n <- cheqs0%>%sub('^[^-]*-', '', .)
endog <- cheqs0 %>% sub('-.*', '', .) %>% trimws
fixed <- if(!is.null(eq_d)) npar + 1 else 0
cont_func <- f_create(cheqs0n, data = 'data', fixed = fixed, transform = FALSE,
cheqs0 = cheqs0n)
}else{
cont_func <- NULL
endog <- NULL
npar <- 0
fixed <- if(!is.null(eq_d)) npar+1 else 1
}
if(!is.null(eq_d)){
disc_par <- get_par(par_d, eq_d)
ffor <- disc_par$cheqs0
fforn <- gsubfn('(par\\[)(\\d{1,10})(\\])', function(x, y, z) paste0(x, as.numeric(y) + npar, z),
ffor)
mnf1 <- MNlogitf(fforn, transform = TRUE, separatenmm = TRUE, weight_disc = TRUE)
probexpr <- mnf1$probte %>% gsub('qnorm\\(|\\)$', '', .)
prob_func <- f_create(probexpr, data = 'data', fixed = fixed, transform = FALSE)
}else{
prob_func <- NULL
}
list(prob = prob_func, cont = cont_func, endog = endog)
}
|
fbed.g2 <- function(y, x, alpha = 0.05, univ = NULL, K = 0, backward = TRUE) {
p <- dim(x)[2]
ind <- 1:p
sig <- log(alpha)
sela <- NULL
card <- 0
sa <- NULL
pva <- NULL
runtime <- proc.time()
x <- as.matrix(x)
y <- as.numeric(y)
z <- cbind(x, y)
all.dc <- Rfast::colrange(z, cont = FALSE)
if ( is.null(univ) ) {
a <- Rfast::g2tests(data = z, x = 1:p, y = p + 1, dc = all.dc)
stat <- a$statistic
pval <- pchisq(stat, a$df, lower.tail = FALSE, log.p = TRUE)
univ$stat <- stat
univ$pvalue <- pval
n.tests <- p
} else {
stat <- univ$stat
pval <- univ$pvalue
n.tests <- 0
}
s <- which(pval < sig)
if ( length(s) > 0 ) {
sel <- which.min(pval)
sela <- sel
s <- s[ - which(s == sel) ]
sa <- stat[sel]
pva <- pval[sel]
stat <- numeric(p)
pval <- numeric(p)
while ( sum(s>0) > 0 ) {
for ( i in ind[s] ) {
zz <- cbind(y, x[, c(i, sela)] )
k <- length(sela)
dc <- all.dc[c(p + 1, i, sela)]
mod <- Rfast::g2Test(zz, x = 1, y = 2, cs = 3:(2 + k), dc = dc)
stat[i] <- mod$statistic
pval[i] <- pchisq(mod$statistic, mod$df, lower.tail = FALSE, log.p = TRUE)
}
n.tests <- n.tests + length( ind[s] )
s <- which(pval < sig)
sel <- which.min(pval) * ( length(s)>0 )
sa <- c(sa, stat[sel])
pva <- c(pva, pval[sel])
sela <- c(sela, sel[sel > 0] )
s <- s[ - which(s == sel) ]
if (sel > 0) {
stat <- numeric(p)
pval <- numeric(p)
}
}
card <- sum(sela > 0)
if (K == 1) {
stat <- numeric(p)
pval <- numeric(p)
for ( i in ind[-sela] ) {
zz <- cbind(y, x[, c(i, sela)] )
k <- length(sela)
dc <- all.dc[c(p + 1, i, sela)]
mod <- Rfast::g2Test(zz, x = 1, y = 2, cs = 3:(2 + k), dc = dc)
stat[i] <- mod$statistic
pval[i] <- pchisq(mod$statistic, mod$df, lower.tail = FALSE, log.p = TRUE)
}
n.tests[2] <- length( ind[-sela] )
s <- which(pval < sig)
sel <- which.min(pval) * ( length(s)>0 )
sa <- c(sa, stat[sel])
pva <- c(pva, pval[sel])
sela <- c(sela, sel[sel > 0] )
s <- s[ - which(s == sel) ]
if (sel > 0) {
stat <- numeric(p)
pval <- numeric(p)
}
while ( sum(s>0) > 0 ) {
for ( i in ind[s] ) {
zz <- cbind(y, x[, c(i, sela)] )
k <- length(sela)
dc <- all.dc[c(p + 1, i, sela)]
mod <- Rfast::g2Test(zz, x = 1, y = 2, cs = 3:(2 + k), dc = dc)
stat[i] <- mod$statistic
pval[i] <- pchisq(mod$statistic, mod$df, lower.tail = FALSE, log.p = TRUE)
}
n.tests[2] <- n.tests[2] + length( ind[s] )
s <- which(pval < sig)
sel <- which.min(pval) * ( length(s)>0 )
sa <- c(sa, stat[sel])
pva <- c(pva, pval[sel])
sela <- c(sela, sel[sel > 0] )
s <- s[ - which(s == sel) ]
if (sel > 0) {
stat <- numeric(p)
pval <- numeric(p)
}
}
card <- c(card, sum(sela>0) )
}
if ( K > 1) {
for ( i in ind[-sela] ) {
zz <- cbind(y, x[, c(i, sela)] )
k <- length(sela)
dc <- all.dc[c(p + 1, i, sela)]
mod <- Rfast::g2Test(zz, x = 1, y = 2, cs = 3:(2 + k), dc = dc)
stat[i] <- mod$statistic
pval[i] <- pchisq(mod$statistic, mod$df, lower.tail = FALSE, log.p = TRUE)
}
n.tests[2] <- length( ind[-sela] )
s <- which(pval < sig)
sel <- which.min(pval) * ( length(s)>0 )
sa <- c(sa, stat[sel])
pva <- c(pva, pval[sel])
sela <- c(sela, sel[sel > 0] )
s <- s[ - which(s == sel) ]
if (sel > 0) {
stat <- numeric(p)
pval <- numeric(p)
}
while ( sum(s > 0) > 0 ) {
for ( i in ind[s] ) {
zz <- cbind(y, x[, c(i, sela)] )
k <- length(sela)
dc <- all.dc[c(p + 1, i, sela)]
mod <- Rfast::g2Test(zz, x = 1, y = 2, cs = 3:(2 + k), dc = dc)
stat[i] <- mod$statistic
pval[i] <- pchisq(mod$statistic, mod$df, lower.tail = FALSE, log.p = TRUE)
}
n.tests[2] <- n.tests[2] + length( ind[s] )
s <- which(pval < sig)
sel <- which.min(pval) * ( length(s)>0 )
sa <- c(sa, stat[sel])
pva <- c(pva, pval[sel])
sela <- c(sela, sel[sel > 0] )
s <- s[ - which(s == sel) ]
if (sel > 0) {
stat <- numeric(p)
pval <- numeric(p)
}
}
card <- c(card, sum(sela > 0) )
vim <- 1
while ( vim < K & card[vim + 1] - card[vim] > 0 ) {
vim <- vim + 1
for ( i in ind[-sela] ) {
zz <- cbind(y, x[, c(i, sela)] )
k <- length(sela)
dc <- all.dc[c(p + 1, i, sela)]
mod <- Rfast::g2Test(zz, x = 1, y = 2, cs = 3:(2 + k), dc = dc)
stat[i] <- mod$statistic
pval[i] <- pchisq(mod$statistic, mod$df, lower.tail = FALSE, log.p = TRUE)
}
n.tests[vim + 1] <- length( ind[-sela] )
s <- which(pval < sig)
sel <- which.min(pval) * ( length(s)>0 )
sa <- c(sa, stat[sel])
pva <- c(pva, pval[sel])
sela <- c(sela, sel[sel > 0] )
s <- s[ - which(s == sel) ]
if (sel > 0) {
stat <- numeric(p)
pval <- numeric(p)
}
while ( sum(s > 0) > 0 ) {
for ( i in ind[s] ) {
zz <- cbind(y, x[, c(i, sela)] )
k <- length(sela)
dc <- all.dc[c(p + 1, i, sela)]
mod <- Rfast::g2Test(zz, x = 1, y = 2, cs = 3:(2 + k), dc = dc)
stat[i] <- mod$statistic
pval[i] <- pchisq(mod$statistic, mod$df, lower.tail = FALSE, log.p = TRUE)
}
n.tests[vim + 1] <- n.tests[vim + 1] + length( ind[s] )
s <- which(pval < sig)
sel <- which.min(pval) * ( length(s)>0 )
sa <- c(sa, stat[sel])
pva <- c(pva, pval[sel])
sela <- c(sela, sel[sel > 0] )
s <- s[ - which(s == sel) ]
if (sel > 0) {
stat <- numeric(p)
pval <- numeric(p)
}
}
card <- c(card, sum(sela>0) )
}
}
}
runtime <- proc.time() - runtime
len <- sum( sela > 0 )
if (len > 0) {
res <- cbind(sela[1:len], sa[1:len], pva[1:len] )
info <- matrix(nrow = length(card), ncol = 2)
info[, 1] <- card
info[, 2] <- n.tests
} else {
res <- matrix(c(0, 0, 0), ncol = 3)
info <- matrix(c(0, p), ncol = 2)
}
colnames(res) <- c("Vars", "stat", "log p-value")
rownames(info) <- paste("K=", 1:length(card)- 1, sep = "")
colnames(info) <- c("Number of vars", "Number of tests")
result <- list(univ = univ, res = res, info = info, runtime = runtime)
result$back.rem <- 0
result$back.n.tests <- 0
if ( backward ) {
if (result$info[1, 1] > 0) {
a <- bs.g2(y, x[, result$res[, 1], drop = FALSE], threshold = alpha)
if ( typeof(a) == "list" ) {
result$back.rem <- result$res[a$info[, 1], 1]
back.n.tests <- sum( dim(result$res)[1] : (dim(a$mat)[1] - 1) )
sel <- result$res[a$mat[, 1], 1]
stat <- a$mat[, 3]
pval <- a$mat[, 2]
result$res <- cbind(sel, stat, pval)
result$back.n.tests <- back.n.tests
result$runtime <- result$runtime + a$runtime
} else {
back.rem <- 0
back.n.tests <- 0
result$back.rem <- back.rem
result$back.n.tests <- back.n.tests
result$runtime <- result$runtime
}
}
}
result
}
|
select_n_to_m.cluster_pairs <- function(pairs, variable, score, threshold, preselect = NULL,
id_x = NULL, id_y = NULL, ...) {
stop("select_n_to_m is not implemented for cluster_pairs. First use select_threshold to ",
"select a subset of the records. Then call cluster_collect with the selection to ",
"get the relevant pairs locally. Then call select_n_to_m on those pairs.")
}
|
GeneticAlg.int <- function(genomeLen, codonMin, codonMax,
genomeMin=rep.int(codonMin, genomeLen), genomeMax=rep.int(codonMax, genomeLen),
suggestions=NULL,
popSize=50,
iterations=100, terminationCost=NA,
mutationChance=1/(genomeLen+1),
elitism=floor(popSize/10),
geneCrossoverPoints=NULL,
monitorFunc=NULL,
evalFunc,
allowrepeat = TRUE,
showSettings=FALSE, verbose=FALSE,
plapply = lapply) {
is.verbose = verbose
verbose = function(...) { if (is.verbose) cat(...)}
if (is.null(evalFunc)) {
stop("A evaluation function must be provided. See the evalFunc parameter.");
}
stopifnot(genomeLen > 1)
verbose("Testing the sanity of parameters...\n");
if (length(genomeMin) != length(genomeMax)) {
stop("The vectors genomeMin and genomeMax must be of equal length.");
}
if (popSize < 5) {
stop("The population size must be at least 5.");
}
if (iterations < 1) {
stop("The number of iterations must be at least 1.");
}
if (!(elitism < popSize)) {
stop("The population size must be greater than the elitism.");
}
if (elitism < 0) {
stop("elitism must be at least 0.");
}
if ((mutationChance < 0) | (mutationChance > 1)) {
stop("mutationChance must be between 0 and 1.");
}
if (!is.null(geneCrossoverPoints)) {
if (!is.numeric(geneCrossoverPoints) | length(geneCrossoverPoints) != genomeLen) {
stop("Invalid geneCrossoverPoints.");
}
}
if (showSettings) {
verbose("The start conditions:\n");
result = list(genomeMin=genomeMin, genomeMax=genomeMax, suggestions=suggestions,
popSize=popSize, iterations=iterations,
elitism=elitism, mutationChance=mutationChance);
class(result) = "rbga";
cat(summary(result));
} else {
verbose("Not showing GA settings...\n");
}
population = matrix(nrow=popSize, ncol=genomeLen);
if (!is.null(suggestions)) {
verbose("Adding suggestions to first population...\n");
if ("list" %in% class(suggestions)) {
verbose("Suggestions given as a list.\n");
suggestions = do.call(rbind, suggestions)
}
if (ncol(suggestions) != genomeLen) {
stop("suggestions must be a list of chromosomes or a matrix of 'nrow=numSuggestions X ncol=genomeLen'")
}
suggestionCount = nrow(suggestions)
population[1:suggestionCount, ] <- suggestions
verbose("Filling others with random values in the given domains...\n");
} else {
verbose("Starting with random values in the given domains...\n");
suggestionCount = 0
}
for (i in (suggestionCount+1):popSize) {
population[i,] = ga.new.chromosome(genomeLen, genomeMin, genomeMax, allowrepeat)
}
bestEvals = rep(NA, iterations);
meanEvals = rep(NA, iterations);
evalVals = rep(NA, popSize);
for (iter in 1:iterations) {
verbose(paste("Starting iteration", iter, "\n"));
verbose("Calucating evaluation values... ");
to.eval.Ids = which(is.na(evalVals))
evalVals[to.eval.Ids] = unlist(plapply(to.eval.Ids,
function(i, population, evalFunc) evalFunc(population[i, ]),
population, evalFunc))
if ((!all(is.numeric(evalVals))) |
any(is.na(evalVals)) |
any(is.nan(evalVals))) {
stop("Invalid cost function return value (NA or NaN).")
}
bestEvals[iter] = min(evalVals);
meanEvals[iter] = mean(evalVals);
bestInd = which.min(evalVals)
verbose(" done.\n");
collect.results <- function() {
settings = list(genomeMin=genomeMin, genomeMax=genomeMax,
popSize=popSize, elitism=elitism, geneCrossoverPoints = geneCrossoverPoints,
iterations=iterations, suggestions=suggestions,
mutationChance=mutationChance)
pop.info = list(population=population, evaluations=evalVals, best=bestEvals, mean=meanEvals, currentIteration=iter)
best = list(genome=population[bestInd,], cost = evalVals[bestInd]);
ret = list(settings = settings, population = pop.info, best = best)
class(ret) = "GeneticAlg.int";
return (ret)
}
if (!is.null(monitorFunc)) {
verbose("Sending current state to rgba.monitor()...\n");
monitorFunc(collect.results());
}
if (iter == iterations) {
verbose("End of generations iteration reached.\n");
break
}
if (!is.na(terminationCost)) {
if (bestEvals[iter] <= terminationCost) {
verbose("Cost better than termination cost reached.\n");
break
}
}
verbose("Creating next generation...\n");
newPopulation = matrix(nrow=popSize, ncol=genomeLen);
newEvalVals = rep(NA, popSize);
verbose(" sorting results...\n");
sortedEvaluations = sort(evalVals, index=TRUE);
sortedPopulation = matrix(population[sortedEvaluations$ix,], ncol=genomeLen);
if (elitism > 0) {
verbose(" applying elitism...\n");
newPopulation[1:elitism,] = sortedPopulation[1:elitism,];
newEvalVals[1:elitism] = sortedEvaluations$x[1:elitism]
}
verbose(" applying crossover...\n");
for (child in (elitism+1):popSize) {
parentProb = dnorm(1:popSize, mean=0, sd=(popSize/3))
parentIDs = sample(1:popSize, 2, prob=parentProb)
parents = sortedPopulation[parentIDs,]
if (is.null(geneCrossoverPoints)) {
crossOverPoint = sample(0:genomeLen,1)
if (crossOverPoint == 0) {
newPopulation[child, ] = parents[2,]
newEvalVals[child] = sortedEvaluations$x[parentIDs[2]]
} else if (crossOverPoint == genomeLen) {
newPopulation[child, ] = parents[1,]
newEvalVals[child] = sortedEvaluations$x[parentIDs[1]]
} else {
newPopulation[child, ] =
c(parents[1, 1:crossOverPoint],
parents[2, (crossOverPoint+1):genomeLen])
}
} else {
p2.indices = which(geneCrossoverPoints %% 2 != 0)
newPopulation[child, ] = parents[1,]
newPopulation[child, p2.indices] = parents[2, p2.indices]
}
}
if (!allowrepeat) {
for (i in (elitism+1):popSize) {
population[i,] = ga.unique.maker(population[i,], genomeMin, genomeMax)
}
}
population = newPopulation;
evalVals = newEvalVals;
if (mutationChance > 0) {
verbose(" applying mutations... ");
mutationCount = 0;
for (object in (elitism+1):popSize) {
dampeningFactor = (iterations-iter)/iterations
mutResult <- ga.mutation(population[object,], mutationChance, genomeLen,
genomeMin, genomeMax, allowrepeat,
dampeningFactor)
population[object, ] = mutResult$newGenome;
evalVals[object] = NA;
mutationCount = mutationCount + 1;
}
verbose(paste(mutationCount, "mutations applied\n"));
}
}
result = collect.results()
return(result);
}
|
context("Testing telemetry functions")
remove_logfiles <- function() {
txt_files <- list.files(pattern = "txt$", full.names = TRUE, recursive = FALSE)
file.remove(txt_files)
}
remove_logfiles()
if (file.exists("telemetry_test_prediction_log.txt"))
file.remove("telemetry_test_prediction_log.txt")
if (file.exists("telemetry_test.RDS"))
file.remove("telemetry_test.RDS")
m <- machine_learn(pima_diabetes[1:50, 6:10], outcome = diabetes, models = "rf",
model_name = "telemetry_test")
p <- predict(object = m, newdata = pima_diabetes[1:50, 6:10],
write_log = TRUE)
save_models(m, "telemetry_test.RDS")
m_reloaded <- load_models("telemetry_test.RDS")
p_reloaded <- predict(object = m_reloaded, newdata = pima_diabetes[1:50, 6:10],
write_log = TRUE)
test_that("log_predictions writes info to file correctly", {
d <- readLines("telemetry_test_prediction_log.txt")
expect_true(any(grepl("name: telemetry_test", d)))
expect_true(any(grepl("predicted: diabetes", d)))
expect_true(any(grepl("missingness in new data", d)))
})
test_that("log_predictions returns data correctly", {
d_pred <- attr(p_reloaded, "prediction_log")
expect_equal(dim(d_pred), c(1, 23))
expect_equal(d_pred$loaded_from, "telemetry_test.RDS")
expect_equal(d_pred$model_name, "telemetry_test")
expect_equal(d_pred$n_predictions, 50)
expect_equal(d_pred$outcome_variable, "diabetes")
expect_equal(class(d_pred$run_time), "numeric")
})
test_that("log_predictions works without loading from file", {
d_pred <- attr(p, "prediction_log")
expect_equal(dim(d_pred), c(1, 23))
expect_equal(d_pred$loaded_from, "trained_in_memory")
expect_equal(d_pred$model_name, "telemetry_test")
expect_equal(d_pred$n_predictions, 50)
expect_equal(d_pred$outcome_variable, "diabetes")
expect_equal(class(d_pred$run_time), "numeric")
remove_logfiles()
})
test_that("Errors are put in log file properly", {
expect_error(
expect_warning(
predict(object = m, newdata = pima_diabetes[1:50, 7:10],
write_log = FALSE)
)
)
expect_error(
expect_warning(
predict(object = m_reloaded, newdata = pima_diabetes[1:50, 7:10],
write_log = FALSE)
)
)
expect_warning(p <- predict(object = m,
newdata = pima_diabetes[1:50, 7:10],
write_log = TRUE),
"insulin")
e <- readLines("telemetry_test_prediction_log.txt")
expect_true(any(grepl("insulin", e)))
})
test_that("Warnings are parsed correctly", {
nd <- pima_diabetes[1:50, 6:10]
nd$weight_class[1] <- "jabba"
expect_warning(p <- predict(object = m, newdata = nd,
write_log = TRUE),
"jabba")
expect_true(any(grepl("jabba",
attr(p, "prediction_log")$warnings)))
})
test_that("Failure returns warning, blank df, and error info", {
expect_warning(pe <- predict(object = m_reloaded,
newdata = pima_diabetes[1:50, 7:10],
write_log = TRUE, prepdata = TRUE),
"insulin")
d_log <- attr(pe, "prediction_log")
expect_equal(dim(pe), c(0, 6))
expect_true(attr(pe, "failed"))
expect_equal(d_log$outcome_variable, "diabetes")
expect_false(d_log$predictions_made)
expect_equal(d_log$n_predictions, 0)
expect_equal(names(pe), names(p))
expect_equal(class(d_log$run_time), "numeric")
})
test_that("Set and update telemetry functions work", {
d <- set_inital_telemetry(extract_model_info(m))
expect_equal(dim(d), c(1, 23))
expect_equal(d$outcome_variable, "diabetes")
expect_false(d$predictions_made)
expect_equal(d$n_predictions, 0)
d_up <- update_telemetry(d, p)
expect_equal(dim(d_up), c(1, 23))
expect_equal(d_up$error_message, NA)
expect_true(is.numeric(d_up$prediction_mean))
expect_true(is.numeric(d_up$missingness_mean))
})
test_that("parse safe and quiet works", {
mi <- extract_model_info(m)
x <- list(result = p, error = NULL, warnings = NULL)
expect_equal(class(parse_safe_n_quiet(x, mi, m))[1], "predicted_df")
expect_equal(dim(parse_safe_n_quiet(x, mi, m)), c(50, 6))
x <- list(result = p, error = NULL, warnings = "grrrr")
expect_warning(res <- parse_safe_n_quiet(x, mi, m), "grrr")
expect_equal(class(res)[1], "predicted_df")
expect_equal(dim(res), c(50, 6))
x <- list(result = NULL, error = list(message = "ARHT!", call = "this spot"),
warnings = NULL)
expect_warning(res <- parse_safe_n_quiet(x, mi, m), "ARHT")
expect_equal(class(res)[1], "tbl_df")
expect_equal(dim(res), c(0,
6))
})
file.remove("telemetry_test_prediction_log.txt")
file.remove("telemetry_test.RDS")
|
dateTimeFormats2 <- function() {
dateTimeFormat <- c("ymd_HMS", "mdy_HMS", "dmy_HMS", "ymd_HM", "mdy_HM", "dmy_HM")
return(dateTimeFormat)
}
|
DataModel.default = function(...) {
args = list(...)
if (length(args) > 0) {
stop("Data Model doesn't know how to deal with the parameters")
}
else {
datamodel = structure(list(general = list(outcome.dist = NULL,
outcome.type = NULL,
sample.size = NULL,
event = NULL,
rando.ratio = NULL,
design = NULL),
samples = NULL),
class = "DataModel")
}
return(datamodel)
}
|
segmentCN <- function(strwords, analyzer = c("default", "hmm", "jiebaR", "fmm", "coreNLP"),
nature = FALSE, nosymbol = TRUE, returnType = c("vector", "tm"), ...)
{
if (!is.character(strwords)) stop("Please input character!")
analyzer <- match.arg(analyzer)
returnType <- match.arg(returnType)
if (analyzer == "default") {
analyzer <- getOption("RwordsegAnalyzer")
}
if (nosymbol) strwords <- gsub("[^\u4e00-\u9fa5a-zA-Z0-9]", " ", strwords)
strwords <- gsub("^\\s+|\\s+$", "", gsub("\\s+", " ", strwords))
OUT <- do.call(paste0(".seg", analyzer), list(strwords = strwords, nature = nature))
if (returnType == "tm") OUT <- sapply(OUT, paste, collapse = " ")
if (length(OUT) == 1 && analyzer != "fmm") OUT <- OUT[[1]]
return(OUT)
}
.segjiebaR <- function(strwords, nature = FALSE) {
if (!suppressWarnings(requireNamespace("jiebaR", quietly = TRUE))) {
stop("Package \"jiebaR\" is required!")
}
.loadModels("jiebaR")
.RwordsegEnv <- .verifyRwordsegEnv()
jiebaAnalyzer <- get("jiebaAnalyzer", envir = .RwordsegEnv)
OUT <- jiebaR::segment(strwords, jiebaAnalyzer)
OUT <- lapply(OUT, paste0, "")
if (nature) OUT <- lapply(OUT, jiebaR::vector_tag, jiebaAnalyzer)
return(OUT)
}
.segfmm <- function(strwords, nature = FALSE) {
if (length(strwords) > 1) return(lapply(strwords,.segfmm, nature))
.loadModels("fmm")
.RwordsegEnv <- .verifyRwordsegEnv()
nmax <- min(nchar(strwords), 8)
if (nmax <= 1) {
n1 <- try(get(strwords, envir = get("fmmAnalyzer", envir = .RwordsegEnv)), silent = TRUE)
if (nature) {
if (inherits(n1, "try-error")) n1 <- "x"
names(strwords) <- n1
}
return(strwords)
} else {
for (i in nmax:1) {
s1 <- substr(strwords, 1, i)
n1 <- try(get(s1, envir = get("fmmAnalyzer", envir = .RwordsegEnv)), silent = TRUE)
if (nchar(s1) == 1 || inherits(n1, "character")) {
s2 <- substr(strwords, i + 1, nchar(strwords))
if (nchar(s2) == 0) {
if (nature) {
if (inherits(n1, "try-error")) n1 <- "x"
names(s1) <- n1
}
return(s1)
}
if (s1 == " ") {
return(.segfmm(s2, nature))
} else {
if (nature) {
if (inherits(n1, "try-error")) n1 <- "x"
names(s1) <- n1
}
return(c(s1, .segfmm(s2, nature)))
}
}
}
}
}
.seghmm <- function(strwords, nature = FALSE) {
.loadModels("hmm")
.RwordsegEnv <- .verifyRwordsegEnv()
hmmAnalyzer <- get("hmmAnalyzer", envir = .RwordsegEnv)
s1 <- strsplit(strwords, split = "")
sr <- lapply(s1, FUN = function(X) gsub("\\s+", " ", gsub("[^\u4e00-\u9fa5a-zA-Z0-9]", " ", X)))
s2 <- lapply(sr, FUN = function(X) if (length(X) > 1) viterbi(hmm = hmmAnalyzer, X) else X)
OUT <- lapply(1:length(s1), FUN = function(X) .decodechar(s1[[X]], s2[[X]]))
if (nature) {
.loadModels("fmm")
OUT <- lapply(OUT, FUN = function(X) {names(X) <- .getNature(X);X})
}
return(OUT)
}
.segcoreNLP <- function(strwords, nature = FALSE) {
.loadModels("coreNLP")
outlist <- lapply(strwords, FUN = function(X) if (nzchar(strstrip(X))) coreNLP::annotateString(X) else "")
OUT <- lapply(outlist, FUN = function(X) if (nzchar(strstrip(X))) toUTF8(X$token$token) else "")
if (nature) {
POS <- lapply(outlist, FUN = function(X) if (nzchar(strstrip(X))) X$token$POS else "JJ")
OUT <- lapply(1:length(OUT), FUN = function(X) {Y <- OUT[[X]]; names(Y) <- POS[[X]]; Y})
}
return(OUT)
}
|
library(dplyr)
test_that("vanilla stat_slabinterval works", {
skip_if_no_vdiffr()
set.seed(1234)
p = tribble(
~dist, ~x,
"norm", rnorm(100),
"t", rt(100, 3)
) %>%
unnest(x) %>%
ggplot() +
scale_slab_alpha_continuous(range = c(0,1))
vdiffr::expect_doppelganger("vanilla stat_slabinterval",
p + stat_slabinterval(aes(x = dist, y = x), n = 10, slab_function = sample_slab_function)
)
})
test_that("gradientinterval works", {
skip_if_no_vdiffr()
set.seed(1234)
p = tribble(
~dist, ~x,
"norm", rnorm(100),
"t", rt(100, 3)
) %>%
unnest(x) %>%
ggplot() +
scale_slab_alpha_continuous(range = c(0,1))
vdiffr::expect_doppelganger("gradientinterval with two groups",
p + stat_gradientinterval(aes(x = dist, y = x), n = 15, fill_type = "segments")
)
vdiffr::expect_doppelganger("gradientintervalh with two groups",
p + stat_gradientinterval(aes(y = dist, x = x), n = 15, fill_type = "segments")
)
skip("linearGradient not supported in vdiffr yet")
vdiffr::expect_doppelganger("fill_type = gradient with two groups",
p + stat_gradientinterval(aes(x = dist, y = x), n = 15, fill_type = "gradient")
)
vdiffr::expect_doppelganger("fill_type = gradient with two groups, h",
p + stat_gradientinterval(aes(y = dist, x = x), n = 15, fill_type = "gradient")
)
})
test_that("histinterval and slab work", {
skip_if_no_vdiffr()
set.seed(1234)
p = tribble(
~dist, ~x,
"norm", rnorm(100),
"t", rt(100, 3)
) %>%
unnest(x) %>%
ggplot()
vdiffr::expect_doppelganger("histinterval with outline",
p + stat_histinterval(aes(x = dist, y = x), slab_color = "black")
)
vdiffr::expect_doppelganger("histintervalh with outline",
p + stat_histinterval(aes(y = dist, x = x), slab_color = "black")
)
vdiffr::expect_doppelganger("histinterval with outlines bw bars",
p + stat_histinterval(aes(x = dist, y = x), slab_color = "black", outline_bars = TRUE)
)
vdiffr::expect_doppelganger("slab with outline",
p + stat_slab(aes(x = dist, y = x), n = 20, slab_color = "black")
)
})
test_that("scale transformation works", {
skip_if_no_vdiffr()
p_log = data.frame(x = qlnorm(ppoints(200), log(10), 2 * log(10))) %>%
ggplot(aes(y = "a", x = x)) +
scale_x_log10(breaks = 10^seq(-5,7, by = 2))
vdiffr::expect_doppelganger("halfeyeh log scale transform",
p_log + stat_halfeye(point_interval = mode_hdci, n = 20)
)
vdiffr::expect_doppelganger("ccdfintervalh log scale transform",
p_log + stat_ccdfinterval(point_interval = mean_hdi, n = 20)
)
vdiffr::expect_doppelganger("cdfintervalh log scale transform",
p_log + stat_cdfinterval(point_interval = mean_hdi, n = 20)
)
vdiffr::expect_doppelganger("histintervalh log scale transform",
p_log + stat_histinterval(point_interval = median_qi, n = 20)
)
})
test_that("pdf and cdf aesthetics work", {
skip_if_no_vdiffr()
p = data.frame(
x = c("a", "b"),
y = qnorm(ppoints(100), c(1, 2), 2)
) %>%
ggplot(aes(x = x, y = y))
vdiffr::expect_doppelganger("pdf and cdf on a sample slabinterval",
p + stat_sample_slabinterval(aes(fill = x, thickness = stat(pdf), slab_alpha = stat(cdf)), n = 15)
)
expect_error(weighted_ecdf(NULL), "Need at least 1 or more values")
})
test_that("constant distributions work", {
skip_if_no_vdiffr()
p = data.frame(
x = c("constant = 1", "normal(2,1)"),
y = qnorm(ppoints(100), mean = c(1, 2), sd = c(0, 1))
) %>%
ggplot(aes(x = x, y = y))
vdiffr::expect_doppelganger("constant dist on halfeye",
p + stat_sample_slabinterval(n = 15)
)
vdiffr::expect_doppelganger("constant dist on ccdf",
p + stat_ccdfinterval()
)
p = data.frame(
x = c("constant = 1", rep("normal(2,1)", 50)),
y = qnorm(c(0.5, ppoints(50)), mean = c(1, rep(2, 50)), sd = c(0, rep(1, 50)))
) %>%
ggplot(aes(x = x, y = y))
vdiffr::expect_doppelganger("constant dist on halfeye with n = 1",
p + stat_sample_slabinterval(n = 15)
)
vdiffr::expect_doppelganger("constant dist on ccdf with n = 1",
p + stat_ccdfinterval()
)
})
test_that("side and justification can vary", {
skip_if_no_vdiffr()
vdiffr::expect_doppelganger("varying side and just",
mtcars %>%
ggplot(aes(x = mpg, y = cyl,
side = case_when(cyl == 4 ~ "top", cyl == 6 ~ "both", cyl == 8 ~ "bottom"),
justification = case_when(cyl == 4 ~ 0, cyl == 6 ~ 0.5, cyl == 8 ~ 1),
scale = case_when(cyl == 4 ~ 0.5, cyl == 6 ~ 1, cyl == 8 ~ 0.5)
)) +
stat_sample_slabinterval(orientation = "horizontal", normalize = "groups", n = 15)
)
})
test_that("n is calculated correctly", {
skip_if_no_vdiffr()
set.seed(1234)
df = data.frame(
g = c("a","a","a","b","c"),
x = rnorm(120, c(1,1,1,2,3))
)
vdiffr::expect_doppelganger("pdf*n for different-sized groups",
df %>%
ggplot(aes(x = x, y = g, thickness = stat(pdf*n), fill = stat(n))) +
stat_sample_slabinterval(n = 15)
)
})
test_that("NAs are handled correctly", {
skip_if_no_vdiffr()
p = data.frame(x = c(1:10, NA)) %>%
ggplot(aes(x = x, y = "a"))
expect_warning(
vdiffr::expect_doppelganger("NAs with na.rm = FALSE",
p + stat_halfeye(na.rm = FALSE, n = 15)
),
"Removed 1 rows"
)
vdiffr::expect_doppelganger("NAs with na.rm = TRUE",
p + stat_halfeye(na.rm = TRUE, n = 15)
)
})
|
getPDEscreen<-function(pde = '/home/lees/Site/Santiaguito/pdq.eqs')
{
spde = scan(file=pde, what="", sep="\n")
kpde = list()
for(i in 1:length(spde))
{
kpde[[i]] = parse.pde(spde[i])
}
invisible(kpde)
}
|
initial.TAG <- function(y, X, Candi.lambda= seq(from=-2, to=2,by=0.5),
Adj.omega = TRUE, nug=0.001,
nbasis=10, rannum=20, big=FALSE, nsub=31, method.1d = "DiceKriging"){
d <- ncol(X)
n <- nrow(X)
parini <- matrix(0, ncol=2, nrow=ncol(X))
dat <- data.frame(y,X)
colnames(dat) <- c("Y.t", paste0("x",1:d))
nbasis.v <- as.vector(apply(X, 2, function(vec){
length(unique(vec))
}))
if(sum(nbasis.v == 2) >= 1 || sum(nbasis.v == 1) >= 1){
print("Warning: The number of levels for some factors is less than 3, which cannot be used for fitting a nonlinear additive model")
}
index.discrete <- (nbasis.v <= nbasis)
nbasis.v[!index.discrete] <- nbasis
df.for.continuous <- n - sum(nbasis.v[index.discrete])
if(sum(nbasis.v[!index.discrete]) > df.for.continuous){
if(round(df.for.continuous/sum(!index.discrete)) >= 3){
nbasis.v[!index.discrete] <- round(df.for.continuous/sum(!index.discrete))
}else{
print("Warning: No Enough degrees of freedom.")
}
}
ntemp=nsub
score.v <- rep(0, length=length(Candi.lambda))
if(sum(y <= 0) != 0){
Candi.lambda = c(1)
score.v <- rep(0, length=length(Candi.lambda))
}
for(ind in 1:length( Candi.lambda)){
lam = Candi.lambda[ind]
if(lam == 0){
Y.t <- log(y)
J <- sum(log(1/y))
}else{
Y.t <- (y^(lam) - 1)/lam
J <- sum(log(y^(lam - 1)))
}
dat[,1] <- Y.t
if(big == TRUE){
b <- bam(as.formula(paste("Y.t ~ ",paste0("s(x",1:d,", k=",nbasis.v,")", collapse="+"))), data=dat)
}else{
b <- gam(as.formula(paste("Y.t ~ ",paste0("s(x",1:d,", k=",nbasis.v,")", collapse="+"))), data=dat)
}
score.v[ind] <- b$gcv.ubre
sigma.v <- sqrt(mean((b$residuals)^2))
score.v[ind] <- -J + n*log(sigma.v)
}
lam <- Candi.lambda[which.min(score.v)]
if(lam == 0){
Y.t <- log(y)
}else{
Y.t <- (y^(lam) - 1)/lam
}
ntemp <- ntemp - 1
dat[,1] <- Y.t
b <- bam(as.formula(paste("Y.t ~ ",paste0("s(x",1:d,", k=",nbasis.v,")", collapse="+"))),data=dat)
Mat <- predict.gam(b, type = "terms")
parini[, 1] <- apply(Mat,2,var)
newd <- matrix(rep(c(0:ntemp)/ntemp,d), byrow=FALSE, ncol=d,nrow=(ntemp+1))
newd <- as.data.frame(newd)
colnames(newd) <- paste0("x",1:d)
pred <- predict.gam(b, newd, type="terms")
omega.new <- parini[,1]/sum(parini[,1])
if(Adj.omega == TRUE){
eta <- 1-(1/n)
for(ind in 1:d){
omega.new[ind] <- eta*omega.new[ind] + (1-eta)*(1/d)
}
}
if(method.1d == "DiceKriging"){
for(ind in 1:d){
temp.m <- km(formula=~1, design=as.matrix(newd[,ind]), response=pred[,ind],
covtype="gauss", nugget = nug, multistart = rannum,
control = list(trace = FALSE, verbose = FALSE))
parini[ind,2] <- sqrt(2*(coef(temp.m)$range^2))
}
}else if(method.1d == "mlegp"){
for(ind in 1:d){
parini[ind,2] <- 1/sqrt(mlegp(newd[,ind], pred[,ind], nugget=nug,
nugget.known = 0)$beta)
}
}else{
stop("Please Specify method.1d = 'DiceKriging' or 'mlegp'")
}
if(summary(b)$r.sq < 0){
rsq <- 1 - sum(b$residuals^2)/(sum((log(y)-mean(log(y)))^2))
}else{
rsq <- summary(b)$r.sq
}
obj <- list(omega = omega.new, s = parini[,2], lambda=lam,
delta = log(((1/rsq) - 1), base=10), y = y, X = X, nbases = nbasis.v)
class(obj) <- "initial.TAG"
if(sum(y <= 0) != 0){print("Warning: Part of the response is negative, so no transformation is used.")}
return(obj)
}
|
simpleNetwork <- function(Data,
Source = 1,
Target = 2,
height = NULL,
width = NULL,
linkDistance = 50,
charge = -30,
fontSize = 7,
fontFamily = "serif",
linkColour = "
nodeColour = "
opacity = 0.6,
zoom = F)
{
if (!is.data.frame(Data))
stop("data must be a data frame class object.")
sources <- Data[[Source]]
targets <- Data[[Target]]
check_zero(sources, targets)
node_names <- factor(sort(unique(c(as.character(sources), as.character(targets)))))
nodes <- data.frame(name = node_names, group = 1, size = 8)
links <- data.frame(source = match(sources, node_names) - 1,
target = match(targets, node_names) - 1,
value = 1)
options = list(
Links = links,
Nodes = nodes,
Source = 'source',
Target = 'target',
Value = 'value',
NodeID = 'name',
Group = 'group',
linkDistance = linkDistance,
charge = charge,
fontSize = fontSize,
fontFamily = fontFamily,
linkColour = linkColour,
colourScale = JS(paste0("d3.scaleOrdinal(['", nodeColour, "'])")),
opacity = opacity,
zoom = zoom,
radiusCalculation = JS("d.nodesize"),
Nodesize = 'size',
linkWidth = "'1.5px'.toString()",
opacityNoHover = 1
)
do.call(forceNetwork, options)
}
simpleNetworkOutput <- function(outputId, width = "100%", height = "500px") {
shinyWidgetOutput(outputId, "forceNetwork", width, height,
package = "networkD3")
}
renderSimpleNetwork <- function(expr, env = parent.frame(), quoted = FALSE) {
if (!quoted) { expr <- substitute(expr) }
shinyRenderWidget(expr, simpleNetworkOutput, env, quoted = TRUE)
}
|
gfunction.the.lo <- function(para, map, data){
nmodel <- length(map$bet)
the <- para[map$the]
fx <- as.matrix(data[, names(the), drop = FALSE])
g.the <- list()
nthe <- length(the)
n <- nrow(data)
nlam <- max(map$lam)
offset <- max(map$the)
for(j in 1:nthe){
gt <- matrix(0, nrow = n, ncol = nlam)
fx0 <- fx[, names(the)[j]]
for(i in 1:nmodel){
id.a <- alp.index.lo(map, i)
alp.exist <- !is.null(id.a)
if(alp.exist){
alp <- para[id.a]
}else{
alp <- NULL
}
id.b <- map$bet[[i]]
bet <- para[id.b]
gam <- c(alp, bet)
rx <- as.matrix(data[, names(gam), drop = FALSE])
tmp <- as.vector(exp(fx %*% the))
yh <- tmp/(1+tmp)
id <- c(id.a, id.b)
gt[, id - offset] <- rx[, names(para)[id], drop = FALSE] * (fx0 * yh * (1-yh))
rm(id.a, id.b, alp.exist)
}
g.the[[j]] <- gt
rm(gt)
}
g.the
}
|
comp_cluster_pval <- function(x, y, clvar, test.func, arg.all, arg.all.fix,
colnames.cluster, minimal.pval, agg.method,
hier.adj, mt.adj, MD.factor = NULL, mod.large,
mod.small = NULL, stouffer.weights) {
pvals.data <- mapply(test.func, x = x, y = y, clvar = clvar,
arg.all = arg.all, mod.large = mod.large,
mod.small = mod.small,
MoreArgs = list(colnames.cluster = colnames.cluster,
arg.all.fix = arg.all.fix))
pvals.only <- do.call(c, pvals.data["pval", ])
if (any(is.na(pvals.only)) | any(is.null(pvals.only)) | length(pvals.only) == 0) {
stop("The group test function returned an invalid p-value (NA, NULL, or an object of length 0 like integer(0)). The problem occured for the cluster / group of size ", length(colnames.cluster), " containing the following variables: ", paste(colnames.cluster, collapse = ", "))
}
pvals.adj <- if (mt.adj == "none") {
pvals.only
} else if (mt.adj == "SBH") {
pmin(pvals.only / MD.factor, 1)
} else if (mt.adj == "dpBF") {
p.x <- vapply(X = x, FUN = ncol, FUN.VALUE = 1L)
pmin(pvals.only * p.x / length(colnames.cluster), 1)
}
pval <-
if (length(pvals.adj) == 1) {
pvals.adj
} else if (agg.method == "Tippett") {
max(1 - (1 - min(pvals.adj))^(length(x)), .Machine$double.neg.eps)
} else if (agg.method == "Stouffer") {
stats::pnorm(sum(stouffer.weights * stats::qnorm(pvals.adj)))
}
if (hier.adj) {
pval <- max(pval, minimal.pval)
}
return(list("cluster" = list(colnames.cluster = colnames.cluster,
pval = pval),
"mod.small" = pvals.data["mod.small", ],
"MD.factor" = MD.factor))
}
|
termlist <- function(x) {
is.plus <- function(x) is.call(x) && x[[1L]] == "+"
intr <- function(x) {
is.intr <- function(x) is.call(x) && x[[1L]] == ":"
if(is.intr(x)) {
res <- list()
repeat {
res <- c(x[[3L]], res)
x <- x[[2L]]
if(!is.intr(x)) break
}
list(c(x, res))
} else x
}
if(x[[1L]] == "~") x <- x[[length(x)]]
res <- list()
while(is.plus(x)) {
res <- c(intr(x[[3L]]), res)
x <- x[[2L]]
}
res <- c(intr(x), res)
res
}
expandintr <- function(x) {
asstr <- function(x) asChar(x, backtick = TRUE)
if(!is.language(x)) {
a <- sapply(x, asstr)
k <- length(a)
vapply(seq.int(2L^k - 1L), function(y) paste0(a[as.logical(intToBits(y)[1L:k])],
collapse = ":"), "")
} else asstr(x)
}
termdepmat <- function(f) {
trm <- terms(f, simplify = TRUE)
tl <- termlist(trm)
v <- attr(trm, "term.labels")
n <- length(v)
mat <- matrix(FALSE, n, n, dimnames = list(v, v))
for(i in seq.int(n)) mat[match(expandintr(tl[[i]]), v), i] <- TRUE
mat
}
termdepmat2 <- function(f) {
filist <- formula2idx(f, asCall = FALSE)
n <- length(filist)
v <- vapply(filist, paste0, "", collapse = ":")
mat <- matrix(FALSE, n, n, dimnames = list(v, v))
for(i in seq.int(n)) mat[match(expandintr(filist[[i]]), v), i] <- TRUE
mat
}
termdepmat_combine <- function(x) {
dm <- sum(vapply(x, nrow, 1L))
mat <- matrix(FALSE, dm, dm)
j <- 1L
for(i in seq_along(x)) {
n <- nrow(x[[i]])
k <- seq.int(j, length.out = n)
mat[k, k] <- x[[i]]
j <- j + n
}
dn <- unlist(lapply(x, rownames))
dimnames(mat) <- list(dn, dn)
mat
}
formula2idx <- function(x, asCall = TRUE) {
if(!is.call(x) || !inherits(x, "formula")) stop("'x' is not a formula")
fac <- attr(delete.response(terms(x)), "factors")
dimnames(fac) <- NULL
ret <- apply(fac > 0L, 2L, which)
if(asCall) as.call(c(as.name("list"), ret)) else ret
}
formula_margin_check <- function(j, m) {
stopifnot(is.logical(j))
!any(m[!j, j], na.rm = TRUE)
}
|
dprint_simp <-
function(tbl.obj,
init = c(0, 6.9),
style,
char.dim.obj,
size.simp.obj
)
{
y.loc <- y.rem <- init[2]
main.nrw <- ifelse(is.na(tbl.obj$main.nrw), 0, tbl.obj$main.nrw)
if (!is.na(tbl.obj$main.nrw))
{
if (!is.null(tbl.obj$cond.txt)) {tbl.obj$main[tbl.obj$main.nrw] <- paste(tbl.obj$main[tbl.obj$main.nrw], tbl.obj$cond.txt, sep="")}
for (main.dx in 1:tbl.obj$main.nrw)
{
y.loc <- y.rem - char.dim.obj$linespace.main*(main.dx-.5) + .25*char.dim.obj$linespace.col
grid.text(tbl.obj$main[main.dx],
just = "left",
gp = gpar(fontfamily = style$frmt.main$fontfamily, fontface = style$frmt.main$fontface, fontsize = style$frmt.main$fontsize, cex = style$cex, col = style$frmt.main$col),
x = unit(init[1], "inches"), y = unit(y.loc, "inches"))
}
y.rem <- y.rem - char.dim.obj$linespace.main*(main.dx-.5)
}
else {y.rem <- y.rem + .5*char.dim.obj$linespace.col}
for (y.dx in 1:tbl.obj$nrw)
{
y.loc <- y.rem - char.dim.obj$linespace.col*(tbl.obj$nrw.colhead + .25) - char.dim.obj$linespace.bdy*y.dx
if (!is.null(row.hl))
{ if (y.dx %in% tbl.obj$row.hl$dx)
{ grid.rect(x = unit(init[1],"inches"), y = unit(y.loc, "inches"),
height = unit(char.dim.obj$linespace.bdy, "inches"), width = unit(size.simp.obj$tbl.width, "inches"),
just = "left", gp = gpar(col = tbl.obj$row.hl$col, fill = tbl.obj$row.hl$col, fontsize = style$frmt.bdy$fontsize, cex = style$cex))
}
}
}
grid.rect(x = unit(init[1],"inches"), y = unit(init[2]-(main.nrw)*char.dim.obj$linespace.main-.5*char.dim.obj$linespace.col*(tbl.obj$nrw.colhead-.25), "inches"),
height = unit(char.dim.obj$linespace.col*(tbl.obj$nrw.colhead+.125), "inches"), width = unit(size.simp.obj$tbl.width, "inches"),
just = "left", gp = gpar(col = style$frmt.col$bg, fill = style$frmt.col$bg, fontsize = style$frmt.col$fontsize, cex = style$cex))
for (col.dx in 1:nrow(tbl.obj$colhead))
{
col.y.loc <- y.rem - char.dim.obj$linespace.col*tbl.obj$colhead[col.dx, "row"]
if (tbl.obj$colhead[col.dx, "col.logical.row"]==1)
{
col.x.loc <- init[1] + char.dim.obj$cw.row.u +
char.dim.obj$bdy.xloc[tbl.obj$colhead[col.dx, "span.beg"]] +
.5*(char.dim.obj$bdy.xloc[tbl.obj$colhead[col.dx, "span.end"]]-char.dim.obj$bdy.xloc[tbl.obj$colhead[col.dx, "span.beg"]])
j <- style$justify
}
else
{
col.x.loc <- init[1] + char.dim.obj$cw.row.u +
char.dim.obj$colhead.xloc[tbl.obj$colhead[col.dx, "span.beg"]] +
.5*(char.dim.obj$colhead.xloc[tbl.obj$colhead[col.dx, "span.end"]]-char.dim.obj$colhead.xloc[tbl.obj$colhead[col.dx, "span.beg"]])
j <- "center"
if (style$frmt.colh$bty%in%c("o"))
{
dborder(c(init[1]+char.dim.obj$cw.row.u+char.dim.obj$colhead.xloc[tbl.obj$colhead[col.dx, "span.beg"]]-.5*char.dim.obj$cw.bdy.u[tbl.obj$colhead[col.dx, "span.beg"]],
col.y.loc+.625*char.dim.obj$linespace.col),
c(init[1]+char.dim.obj$cw.row.u+char.dim.obj$colhead.xloc[tbl.obj$colhead[col.dx, "span.end"]]+.5*char.dim.obj$cw.bdy.u[tbl.obj$colhead[col.dx, "span.end"]],
init[2]-size.simp.obj$tbl.height.m-.25*char.dim.obj$linespace.col), frmt=style$frmt.colh)
}
if (style$frmt.colh$bty=="_")
{
dborder(c(init[1]+char.dim.obj$cw.row.u+char.dim.obj$colhead.xloc[tbl.obj$colhead[col.dx, "span.beg"]],
col.y.loc+.5*char.dim.obj$linespace.col),
c(init[1]+char.dim.obj$cw.row.u+char.dim.obj$colhead.xloc[tbl.obj$colhead[col.dx, "span.end"]],
col.y.loc-.5*char.dim.obj$linespace.col), frmt=style$frmt.colh)
}
}
grid.text(tbl.obj$colhead[col.dx, "cname"],
just = j,
gp = gpar(fontfamily = style$frmt.col$fontfamily, fontface = style$frmt.col$fontface, fontsize = style$frmt.col$fontsize, cex = style$cex, col = style$frmt.col$col),
x = unit(col.x.loc, "inches"), y = unit(col.y.loc, "inches"))
}
y.rem <- y.rem - char.dim.obj$linespace.col*(tbl.obj$nrw.colhead + .25)
dborder(c(init[1], init[2]-main.nrw*char.dim.obj$linespace.main + .25*char.dim.obj$linespace.col),
c(init[1]+size.simp.obj$tbl.width, y.rem-.375*char.dim.obj$linespace.col), frmt=style$frmt.col)
for (y.dx in 1:tbl.obj$nrw)
{
y.loc <- y.rem - char.dim.obj$linespace.bdy*y.dx
if (y.dx != tbl.obj$nrw)
{ dborder(c(init[1], y.loc-.5*char.dim.obj$linespace.bdy),
c(init[1]+size.simp.obj$tbl.width, y.loc-.5*char.dim.obj$linespace.bdy), frmt=style$frmt.bdy)}
if (!is.null(tbl.obj$group[1]))
{
if (!is.na(tbl.obj$group[y.dx]))
{
grid.text(tbl.obj$group[y.dx],
just = "left",
gp = gpar(fontfamily = style$frmt.grp$fontfamily, fontface = style$frmt.grp$fontface, fontsize = style$frmt.grp$fontsize, cex = style$cex, col = style$frmt.grp$col),
x = unit(init[1], "inches"), y = unit(y.loc, "inches"))
}
if (tbl.obj$lastofgroup[y.dx] & (y.dx != tbl.obj$nrw))
{
dborder(c(init[1], y.loc-.5*char.dim.obj$linespace.bdy),
c(init[1]+size.simp.obj$tbl.width, y.loc-.5*char.dim.obj$linespace.bdy), frmt=style$frmt.grp)
}
}
if (!is.null(tbl.obj$label[1]))
{
if (!is.na(tbl.obj$label[y.dx]))
{
grid.text(tbl.obj$label[y.dx],
just = "left",
gp = gpar(fontfamily = style$frmt.bdy$fontfamily, fontface = style$frmt.bdy$fontface, fontsize = style$frmt.bdy$fontsize, cex = style$cex, col = style$frmt.bdy$col),
x = unit(init[1]+char.dim.obj$lbl.indent, "inches"), y = unit(y.loc, "inches"))
}
}
for (x.dx in 1:tbl.obj$ncl)
{
x.loc <- init[1] + char.dim.obj$cw.row.u + char.dim.obj$bdy.xloc[x.dx]
if (!is.na(tbl.obj$bdy[y.dx , x.dx]))
{
grid.text(tbl.obj$bdy[y.dx , x.dx],
just = style$justify,
gp = gpar(fontfamily = style$frmt.bdy$fontfamily, fontface = style$frmt.bdy$fontface, fontsize = style$frmt.bdy$fontsize, cex = style$cex, col = style$frmt.bdy$col),
x = unit(x.loc, "inches"), y = unit(y.loc, "inches"))
}
}
}
y.rem <- y.loc
dborder(c(init[1], init[2]-main.nrw*char.dim.obj$linespace.main+.25*char.dim.obj$linespace.col), c(init[1]+size.simp.obj$tbl.width, init[2]-size.simp.obj$tbl.height.m-.25*char.dim.obj$linespace.col), frmt=style$frmt.tbl)
if (!is.na(tbl.obj$footnote.nrw))
{
for (footnote.dx in 1:tbl.obj$footnote.nrw)
{
y.loc <- y.rem - char.dim.obj$linespace.ftn*.25 - char.dim.obj$linespace.ftn*footnote.dx
grid.text(tbl.obj$footnote[footnote.dx],
just = "left",
gp = gpar(fontfamily = style$frmt.ftn$fontfamily, fontface = style$frmt.ftn$fontface, fontsize = style$frmt.ftn$fontsize, cex = style$cex, col = style$frmt.ftn$col),
x = unit(init[1], "inches"), y = unit(y.loc, "inches"))
}
y.rem <- y.loc
}
y.rem <- y.loc
return(
list(cord1=c(init[1], init[2]),
cord2=c(init[1] + char.dim.obj$cw.row.u + char.dim.obj$bdy.xloc[length(char.dim.obj$bdy.xloc)], y.rem-.5*char.dim.obj$linespace.bdy)
))
}
|
require(RSelenium)
remDr <- remoteDriver()
remDr$open()
remDr$setImplicitWaitTimeout(3000)
remDr$navigate("http://www.spp.org/LIP.asp")
remDr$switchToFrame("content_frame")
dateElem <- remDr$findElement(using = "id", "txtLIPDate")
dateRequired <- "01/14/2014"
dateElem$clearElement()
dateElem$sendKeysToElement(list("01/14/2014", key = "enter"))
hourElem <- remDr$findElement(using = "css selector", '
hourElem$clickElement()
buttonElem <- remDr$findElement(using = "id", "cmdView")
buttonElem$clickElement()
tableElem <- remDr$findElement(using = "id", "dgLIP")
readHTMLTable(htmlParse(tableElem$getElementAttribute("outerHTML")[[1]]))
|
lc_qol <- function(x){
d <- as.matrix(select(x,'LC_Q31':'LC_Q42'))
for(j in 1:ncol(d)){
for(i in 1:nrow(d)){
if(is.na(d[i,j])==TRUE || d[i,j]==9 || d[i,j]==99){
d[i,j] <- min(d[,j],na.rm = TRUE)
}
}
}
RS <- function(a){
nr <- nrow(a)
rs <- rep(0, nr)
for(i in 1:nr){
rs[i] <- mean(a[i,])
}
return(rs)
}
SS <- function(a,b){
nr <- length(a)
ss <- rep(0, nr)
for(i in 1:nr){
ss[i] <- ((a[i]-1)/diff(range(b)))*100
}
return(ss)
}
RS_data <- data.frame(RS_LCDY = RS(d[,3:5]),
RS_LCCO = d[,1],
RS_LCHA = d[,2],
RS_LCSM = d[,6],
RS_LCDS = d[,7],
RS_LCPN = d[,8],
RS_LCHR = d[,9],
RS_LCPC = d[,10],
RS_LCPA = d[,11],
RS_LCPO = d[,12])
score_data <- data.frame(LCDY = SS(RS_data$RS_LCDY,d[,3:5]),
LCCO = SS(RS_data$RS_LCCO,d[,1]),
LCHA = SS(RS_data$RS_LCHA,d[,2]),
LCSM = SS(RS_data$RS_LCSM,d[,6]),
LCDS = SS(RS_data$RS_LCDS,d[,7]),
LCPN = SS(RS_data$RS_LCPN,d[,8]),
LCHR = SS(RS_data$RS_LCHR,d[,9]),
LCPC = SS(RS_data$RS_LCPC,d[,10]),
LCPA = SS(RS_data$RS_LCPA,d[,11]),
LCPO = SS(RS_data$RS_LCPO,d[,12]))
new_data <- select(x,-('LC_Q31':'LC_Q42'))
final_data <- data.frame(new_data,score_data)
return(final_data)
}
|
treatment.effect <- function(ipd = NULL, samples = NULL, newpatient = NULL,
reference = NULL, quantiles = c(0.025, 0.5, 0.975)){
if(class(ipd) == "ipdma.onestage"){
newpatient <- (newpatient - ipd$scale_mean)/ipd$scale_sd
index0 <- which(colnames(samples[[1]]) == "delta[2]")
index1 <- grep("gamma", colnames(samples[[1]]))
index <- c(index0, index1)
samples2 <- samples[,index]
merged <- samples2[[1]]
for(i in 2:length(samples2)){
merged <- rbind(merged, samples2[[i]])
}
pred <- merged %*% c(1, newpatient)
if(ipd$response == "normal"){
CI <- quantile(pred, probs = quantiles)
} else if(ipd$response == "binomial"){
CI <- exp(quantile(pred, probs = quantiles))
}
names(CI) <- quantiles
} else if (class(ipd) == "ipdma.onestage.deft"){
if(is.null(reference)){
stop("Need to specify reference group for deft approach")
}
newpatient <- newpatient - reference
index0 <- which(colnames(samples[[1]]) == "delta[2]")
index1 <- grep("gamma.within", colnames(samples[[1]]))
index <- c(index0, index1)
samples2 <- samples[,index]
merged <- samples2[[1]]
for(i in 2:length(samples2)){
merged <- rbind(merged, samples2[[i]])
}
pred <- merged %*% c(1, newpatient)
if(ipd$response == "normal"){
CI <- quantile(pred, probs = quantiles)
} else if(ipd$response == "binomial"){
CI <- exp(quantile(pred, probs = quantiles))
}
names(CI) <- quantiles
} else{
stop("Calculating patient specific treatment effect is not yet implemented for this method")
}
return(CI)
}
|
context("Quantile Lambda4")
test_that('Quantile Lambda4 and population covariance matrices',{
par.1f<-as.numeric(round(quant.lambda4(par1f)[[1]][[1]],6))
expect_that(par.1f, equals(.888889))
tau.1f<-as.numeric(round(quant.lambda4(tau1f)[[1]][[1]],6))
expect_that(tau.1f, equals(.833575))
par.3f<-as.numeric(round(quant.lambda4(par3f)[[1]][[1]],6))
expect_that(par.3f, equals(.864865))
tau.3f<-as.numeric(round(quant.lambda4(tau3f)[[1]][[1]],6))
expect_that(tau.3f, equals(.800278))
par.5f<-as.numeric(round(quant.lambda4(par5f)[[1]][[1]],6))
expect_that(par.5f, equals(.897959))
tau.5f<-as.numeric(round(quant.lambda4(tau5f)[[1]][[1]],6))
expect_that(tau.5f, equals(.846380))
})
|
setMethod("getInfRobIC", signature(L2deriv = "UnivariateDistribution",
risk = "asGRisk",
neighbor = "UncondNeighborhood"),
function(L2deriv, risk, neighbor, symm, Finfo, trafo,
upper, maxiter, tol, warn){
radius <- neighbor@radius
if(identical(all.equal(radius, 0), TRUE)){
if(warn) cat("'radius == 0' => (classical) optimal IC\n",
"in sense of Cramer-Rao bound is returned\n")
res <- getInfRobIC(L2deriv = L2deriv, risk = asCov(),
neighbor = neighbor, Finfo = Finfo, trafo = trafo)
Risk <- getAsRisk(risk = risk, L2deriv = L2deriv, neighbor = neighbor,
clip = res$b, cent = res$a, stand = res$A, trafo = trafo)
res$risk <- c(Risk, res$risk)
return(res)
}
z <- 0
c0 <- 0
iter <- 0
if(is(symm, "SphericalSymmetry"))
S <- symm@SymmCenter == 0
else
S <- FALSE
repeat{
iter <- iter + 1
z.old <- z
c0.old <- c0
c0 <- try(uniroot(getInfClip, lower = .Machine$double.eps^0.75,
upper = upper, tol = tol, L2deriv = L2deriv, risk = risk,
neighbor = neighbor, cent = z, symm = S,
trafo = trafo)$root, silent = TRUE)
if(!is.numeric(c0)){
if(warn) cat("The IC algorithm did not converge!\n",
"'radius >= maximum radius' for the given risk?\n",
"=> the minimum asymptotic bias (lower case) solution is returned\n")
res <- getInfRobIC(L2deriv = L2deriv, risk = asBias(),
neighbor = neighbor, Finfo = Finfo,
symm = symm, trafo = trafo, upper = upper,
maxiter = maxiter, tol = tol, warn = warn)
Risk <- getAsRisk(risk = risk, L2deriv = L2deriv, neighbor = neighbor,
clip = res$b, cent = res$a, stand = res$A, trafo = trafo)
res$risk <- c(Risk, res$risk)
return(res)
}
z <- getInfCent(L2deriv = L2deriv, neighbor = neighbor, clip = c0,
cent = z, symm = S, trafo = trafo, tol.z = tol)
if(S) break
if(max(abs(z - z.old), abs(c0-c0.old)) < tol) break
if(iter > maxiter){
cat("maximum iterations reached!\n", "achieved precision:\t", abs(c0 - c0.old), "\n")
break
}
}
info <- paste("optimally robust IC for", sQuote(class(risk)[1]))
A <- getInfStand(L2deriv = L2deriv, neighbor = neighbor,
clip = c0, cent = z, trafo = trafo)
a <- as.vector(A)*z
b <- abs(as.vector(A))*c0
Risk <- getAsRisk(risk = risk, L2deriv = L2deriv, neighbor = neighbor,
clip = b, cent = a, stand = A, trafo = trafo)
Risk <- c(Risk, list(asBias = b))
return(list(A = A, a = a, b = b, d = NULL, risk = Risk, info = info))
})
setMethod("getInfRobIC", signature(L2deriv = "RealRandVariable",
risk = "asGRisk",
neighbor = "ContNeighborhood"),
function(L2deriv, risk, neighbor, Distr, DistrSymm, L2derivSymm,
L2derivDistrSymm, Finfo, trafo, z.start, A.start, upper,
maxiter, tol, warn){
if(is.null(z.start)) z.start <- numeric(ncol(trafo))
if(is.null(A.start)) A.start <- trafo
radius <- neighbor@radius
if(identical(all.equal(radius, 0), TRUE)){
if(warn) cat("'radius == 0' => (classical) optimal IC\n",
"in sense of Cramer-Rao bound is returned\n")
res <- getInfRobIC(L2deriv = L2deriv, risk = asCov(), neighbor = neighbor,
Distr = Distr, Finfo = Finfo, trafo = trafo)
Risk <- getAsRisk(risk = risk, L2deriv = L2deriv, neighbor = neighbor,
clip = res$b, cent = res$a, stand = res$A, trafo = trafo)
res$risk <- c(Risk, res$risk)
return(res)
}
nrvalues <- length(L2deriv)
z.comp <- rep(TRUE, nrvalues)
A.comp <- matrix(TRUE, ncol = nrvalues, nrow = nrvalues)
for(i in 1:nrvalues){
if(is(L2derivDistrSymm[[i]], "SphericalSymmetry"))
if(L2derivDistrSymm[[i]]@SymmCenter == 0)
z.comp[i] <- FALSE
}
for(i in 1:(nrvalues-1))
for(j in (i+1):nrvalues){
if(is(DistrSymm, "SphericalSymmetry")){
if((is(L2derivSymm[[i]], "OddSymmetric") & is(L2derivSymm[[j]], "EvenSymmetric"))
| (is(L2derivSymm[[j]], "OddSymmetric") & is(L2derivSymm[[i]], "EvenSymmetric")))
if((L2derivSymm[[i]]@SymmCenter == L2derivSymm[[j]]@SymmCenter)
& (L2derivSymm[[i]]@SymmCenter == DistrSymm@SymmCenter))
A.comp[i,j] <- FALSE
}
}
A.comp[col(A.comp) < row(A.comp)] <- A.comp[col(A.comp) > row(A.comp)]
z <- z.start
A <- A.start
b <- 0
iter <- 0
repeat{
iter <- iter + 1
z.old <- z
b.old <- b
A.old <- A
b <- try(uniroot(getInfClip, lower = .Machine$double.eps^0.75,
upper = upper, tol = tol, L2deriv = L2deriv, risk = risk,
Distr = Distr, neighbor = neighbor, stand = A, cent = z,
trafo = trafo)$root, silent = TRUE)
if(!is.numeric(b)){
if(warn) cat("Could not determine optimal clipping bound!\n",
"'radius >= maximum radius' for the given risk?\n",
"=> the minimum asymptotic bias (lower case) solution is returned\n",
"If 'no' => Try again with modified starting values ",
"'z.start' and 'A.start'\n")
res <- getInfRobIC(L2deriv = L2deriv, risk = asBias(),
neighbor = neighbor, Distr = Distr, DistrSymm = DistrSymm,
L2derivSymm = L2derivSymm, L2derivDistrSymm = L2derivDistrSymm,
z.start = z.start, A.start = A.start, trafo = trafo,
upper = upper, maxiter = maxiter, tol = tol, warn = warn)
Risk <- getAsRisk(risk = risk, L2deriv = L2deriv, neighbor = neighbor,
clip = res$b, cent = res$a, stand = res$A, trafo = trafo)
res$risk <- c(Risk, res$risk)
return(res)
}
z <- getInfCent(L2deriv = L2deriv, neighbor = neighbor, Distr = Distr,
z.comp = z.comp, stand = A, cent = z, clip = b)
A <- getInfStand(L2deriv = L2deriv, neighbor = neighbor,
Distr = Distr, A.comp = A.comp, stand = A, clip = b, cent = z,
trafo = trafo)
prec <- max(abs(b-b.old), max(abs(A-A.old)), max(abs(z-z.old)))
cat("current precision in IC algo:\t", prec, "\n")
if(prec < tol) break
if(iter > maxiter){
cat("maximum iterations reached!\n", "achieved precision:\t", prec, "\n")
break
}
}
a <- as.vector(A %*% z)
info <- paste("optimally robust IC for", sQuote(class(risk)[1]))
Risk <- getAsRisk(risk = risk, L2deriv = L2deriv, neighbor = neighbor,
clip = b, cent = a, stand = A, trafo = trafo)
Risk <- c(Risk, list(asBias = b))
return(list(A = A, a = a, b = b, d = NULL, risk = Risk, info = info))
})
|
expand.grid <- function(..., KEEP.OUT.ATTRS = TRUE, stringsAsFactors = TRUE)
{
nargs <- length(args <- list(...))
if(!nargs) return(as.data.frame(list()))
if(nargs == 1L && is.list(a1 <- args[[1L]]))
nargs <- length(args <- a1)
if(nargs == 0L) return(as.data.frame(list()))
cargs <- vector("list", nargs)
iArgs <- seq_len(nargs)
nmc <- paste0("Var", iArgs)
nm <- names(args)
if(is.null(nm))
nm <- nmc
else if(any(ng0 <- nzchar(nm)))
nmc[ng0] <- nm[ng0]
names(cargs) <- nmc
rep.fac <- 1L
d <- lengths(args)
if(KEEP.OUT.ATTRS) {
dn <- vector("list", nargs)
names(dn) <- nmc
}
orep <- prod(d)
if(orep == 0L) {
for(i in iArgs) cargs[[i]] <- args[[i]][FALSE]
} else {
for(i in iArgs) {
x <- args[[i]]
if(KEEP.OUT.ATTRS)
dn[[i]] <-
paste0(nmc[i], "=", if(is.numeric(x)) format(x) else x)
nx <- length(x)
orep <- orep/nx
if(stringsAsFactors && is.character(x))
x <- factor(x, levels = unique(x))
x <- x[rep.int(rep.int(seq_len(nx),
rep.int(rep.fac, nx)), orep)]
cargs[[i]] <- x
rep.fac <- rep.fac * nx
}
}
if(KEEP.OUT.ATTRS)
attr(cargs, "out.attrs") <- list(dim=d, dimnames=dn)
rn <- .set_row_names( as.integer(prod(d)) )
structure(cargs, class = "data.frame", row.names = rn)
}
|
dggamma <-
function(x,shape1,rate1,shape2){
shape2 <- as.integer(shape2)
if(sum(c(x,shape1,rate1,shape2)<=0)>0){
stop("All parameters and values of x must be positive.")
}
out <- ((rate1^shape1)/gamma(shape1))*(gamma(shape1+shape2)/gamma(shape2))*
((x^(shape2-1))/((rate1+x)^(shape1+shape2)))
return(out)
}
|
NULL
setClass('NMFns'
, representation(
theta = 'numeric'
)
, contains = 'NMFstd'
, prototype = prototype(
theta = 0.5
)
, validity = function(object){
if( object@theta < 0 || object@theta > 1 )
return(paste("Invalid value for theta (",object@theta,"): must be between 0 and 1", sep=''))
TRUE
}
)
setMethod('show', 'NMFns',
function(object)
{
callNextMethod()
cat("theta:", object@theta, "\n")
}
)
setMethod('fitted', signature(object='NMFns'),
function(object, W, H, S, ...){
if( missing(W) ) W <- object@W
if( missing(H) ) H <- object@H
if( missing(S) ) S <- smoothing(object, ...)
W %*% (S %*% H)
}
)
smoothing <- function(x, theta=x@theta, ...){
if( theta < 0 || theta > 1 )
stop("Invalid smoothing parameter theta [",theta,"]: theta must be susch that 0 <= theta <=1")
diag(1-theta, nbasis(x)) + theta / nbasis(x)
}
|
MFM_optimal_n <- function(cvec, pivec, Rvec, thres_CR){
n <- sum(cvec) + 1
CR <- MFM_consumerrisk(n, cvec, pivec, Rvec)
while (CR > thres_CR){
n <- n + 1
CR <- MFM_consumerrisk(n, cvec, pivec, Rvec)
}
return(n)
}
|
ols_test_breusch_pagan <- function(model, fitted.values = TRUE, rhs = FALSE, multiple = FALSE,
p.adj = c("none", "bonferroni", "sidak", "holm"), vars = NA) UseMethod("ols_test_breusch_pagan")
ols_test_breusch_pagan.default <- function(model, fitted.values = TRUE, rhs = FALSE, multiple = FALSE,
p.adj = c("none", "bonferroni", "sidak", "holm"), vars = NA) {
check_model(model)
check_logic(fitted.values)
check_logic(rhs)
check_logic(multiple)
suppressWarnings(
if (!is.na(vars[1])) {
check_modelvars(model, vars)
fitted.values <- FALSE
}
)
method <- match.arg(p.adj)
p.adj <- match.arg(p.adj)
check_options(p.adj)
l <- ols_prep_avplot_data(model)
n <- nrow(l)
response <- names(l)[1]
predictors <- names(l)[-1]
if (fitted.values) {
vars <- NA
if (rhs) {
if (multiple) {
start <- bp_case_one(l, model)
loops <- bp_case_loop(start$np, start$nam, start$l)
inter <- bp_case_inter(start$l, start$np, loops$tstat)
bp <- inter$bp
p <- bp_case_adj(method, loops$pvals, start$np, inter$ps)
} else {
result <- bp_case_2(l, model)
bp <- result$bp
p <- pchisq(bp, df = result$df, lower.tail = FALSE)
}
} else {
bp <- bp_case_3(model)
p <- pchisq(bp, df = 1, lower.tail = FALSE)
}
} else {
if (multiple) {
if (rhs) {
start <- bp_case_one(l, model)
loops <- bp_case_loop(start$np, start$nam, start$l)
inter <- bp_case_inter(start$l, start$np, loops$tstat)
bp <- inter$bp
p <- bp_case_adj(method, loops$pvals, start$np, inter$ps)
} else {
len_vars <- length(vars)
if (len_vars > 1) {
start <- bp_case_one(l, model)
len_var <- length(vars)
loops <- bp_case_loop(len_var, vars, start$l)
inter <- bp_case_5_inter(l, model, vars, loops$tstat)
bp <- inter$bp
p <- bp_case_adj(method, loops$pvals, inter$np, inter$ps)
} else {
result <- bp_case_7(l, model, vars)
bp <- result$bp
p <- pchisq(bp, df = result$df, lower.tail = FALSE)
}
}
} else {
if (rhs) {
result <- bp_case_6(l, model)
bp <- result$bp
p <- pchisq(bp, df = result$df, lower.tail = FALSE)
} else {
result <- bp_case_7(l, model, vars)
bp <- result$bp
p <- pchisq(bp, df = result$df, lower.tail = FALSE)
}
}
}
out <- list(
bp = bp,
p = p,
fv = fitted.values,
rhs = rhs,
multiple = multiple,
padj = method,
vars = vars,
resp = response,
preds = predictors
)
class(out) <- "ols_test_breusch_pagan"
return(out)
}
ols_bp_test <- function(model, fitted.values = TRUE, rhs = FALSE, multiple = FALSE,
p.adj = c("none", "bonferroni", "sidak", "holm"), vars = NA) {
.Deprecated("ols_test_breusch_pagan()")
}
print.ols_test_breusch_pagan <- function(x, ...) {
print_bp_test(x)
}
bp_case_2 <- function(l, model) {
n <- model_rows(model)
var_resid <- residual_var(model, n)
ind <- ind_bp(model, var_resid)
df <- ncol(l[, -1])
l <- cbind(l[, -1], ind)
bp <- bp_model(l)
list(bp = bp, df = df)
}
bp_case_3 <- function(model) {
`Sum Sq` <- NULL
pred <- fitted(model)
scaled_resid <- resid_scaled(model, pred)
(anova(lm(scaled_resid ~ pred))$`Sum Sq`[1]) / 2
}
bp_case_6 <- function(l, model) {
n <- nrow(l)
var_resid <- residual_var(model, n)
ind <- ind_bp(model, var_resid)
np <- length(names(l)[-1])
bp <- bp_model(cbind(l, ind)[, -1])
list(bp = bp, df = np)
}
bp_case_7 <- function(l, model, vars) {
n <- nrow(l)
var_resid <- residual_var(model, n)
ind <- ind_bp(model, var_resid)
l <- cbind(l[, vars], ind)
bp <- bp_model(l)
nd <- ncol(l) - 1
list(bp = bp, df = nd)
}
bp_model <- function(l) {
bp_fit(lm(ind ~ ., data = l))
}
bp_fit <- function(l) {
(sum(fitted(l) ^ 2)) / 2
}
ind_bp <- function(model, var_resid) {
data.frame(ind = ((residuals(model) ^ 2) / var_resid) - 1)
}
bp_case_one <- function(l, model) {
nam <- names(l)[-1]
np <- length(nam)
n <- nrow(l)
var_resid <- residual_var(model, n)
ind <- ind_bp(model, var_resid)
l <- cbind(l, ind)
list(np = np, nam = nam, l = l)
}
bp_case_loop <- function(np, nam, l) {
tstat <- c()
pvals <- c()
for (i in seq_len(np)) {
form <- as.formula(paste("ind ~", nam[i]))
tstat[i] <- bp_fit(lm(form, data = l))
pvals[i] <- pchisq(tstat[i], df = 1, lower.tail = FALSE)
}
list(tstat = tstat, pvals = pvals)
}
bp_case_inter <- function(l, np, tstat) {
comp <- bp_fit(lm(ind ~ ., data = l[, -1]))
ps <- pchisq(comp, df = np, lower.tail = FALSE)
bp <- c(tstat, comp)
list(bp = bp, ps = ps)
}
bp_case_adj <- function(method, pvals, np, ps) {
if (method == "bonferroni") {
bpvals <- pmin(1, pvals * np)
p <- c(bpvals, ps)
} else if (method == "sidak") {
spvals <- pmin(1, 1 - (1 - pvals) ^ np)
p <- c(spvals, ps)
} else if (method == "holm") {
j <- rev(seq_len(length(pvals)))
h <- order(order(pvals))
pvals_sort <- sort(pvals) * j
pholms <- pmin(1, pvals_sort)[h]
p <- c(pholms, ps)
} else {
p <- c(pvals, ps)
}
return(p)
}
bp_case_5_inter <- function(l, model, vars, tstat) {
n <- nrow(l)
var_resid <- residual_var(model, n)
ind <- ind_bp(model, var_resid)
l <- cbind(l[, -1][, vars], ind)
np <- ncol(l) - 1
ps <- pchisq(q = bp_model(l), df = np, lower.tail = FALSE)
bp <- c(tstat, bp_model(l))
list(bp = bp, ps = ps, np = np)
}
|
ploteach <- function(pred_levels, plotdat, cov_name, args, col) {
dfs = args_new = list()
for (p in 1:length(pred_levels)) {
parameters <- plotdat[which(plotdat[ ,6] == pred_levels[p]), 1:5]
new_main = paste(cov_name, " = ", pred_levels[p], sep="")
unik_ids <- unique(parameters$id)
nsubject2 <- length(unik_ids)
parameters$id2 <- rep(NA, nrow(parameters))
for (i in 1:nsubject2){
index <- which(parameters$id == unik_ids[i])
parameters$id2[index]=rep(i, length(index))
}
parameters2 <- cbind(parameters[,6], parameters[,2:5])
colnames(parameters2) <- c("id", "episode", "xij", "yij", "ci")
dfs[[p]] <- data.frame(parameters2)
args2 = args
args2[1] = new_main
args_new[[p]] <- args2
}
rdim <- ceiling(length(pred_levels)/2) + 1
layoutvect <- c(seq(1, length(pred_levels)),
rep(length(pred_levels)+1, 2))
layout(matrix(layoutvect, nrow=rdim, byrow=TRUE),
heights = (c(rep(4,rdim-1), 1)))
par(mar=c(5,4,4,2)+0.1)
for (p_iter in 1:length(pred_levels)) {
basicplot(parameters = dfs[[p_iter]], ctimes = unique(dfs[[p_iter]]$ci),
nsubject=max(unique(dfs[[p_iter]]$id)), temp=NULL,
args = args_new[[p_iter]], col=col, c=0.75, cm=0.9, byp=TRUE)
}
legendtext = c(args[4], args[5])
par(mar=c(1,1,1,1)+0.1)
plot(0:1, 0:1, xaxt='n',yaxt='n',bty='n',ylab='',xlab='',
col="white")
legend("center", legend=legendtext, col = col,
lty = 1, bg = "white", bty='n', horiz=TRUE)
}
plotBy <- function(df, args, col) {
num_levs <- apply(df[, 6:ncol(df)], 2, function(x) length(unique(x)))
to_delete <- which(num_levs > 6) + 5
if(length(to_delete)>0){
message1 <- paste(colnames(df)[to_delete], " not used - either continuous or had more than 6 levels.", sep="")
print(message1)
df <- df[, -to_delete]
}
if (ncol(df)==5) {stop("Cannot break by covariate. All covariates are continuous or have more than 6 levels.")}
cov_names <- colnames(df)[6:ncol(df)]
nsubject <-length(unique(df$id))
message <- paste("Subjects for plots: ", nsubject, ".", sep="")
print(message)
if (length(cov_names)==1) {
pred_levels = unique(df[,6])
plotdat = na.omit(df[ , 1:6])
ploteach(pred_levels, plotdat, cov_name = cov_names, args, col = col)
} else {
for (k in 1:length(cov_names)) {
pred_levels = unique(df[ ,5+k])
plotdat = na.omit(df[, c(1:5, 5+k)])
ploteach(pred_levels, plotdat, cov_name = cov_names[k], args, col=col)
}
}
par(mfrow=c(1, 1))
}
|
"subPed"<-function(Pedig, keep, prevGen=3, succGen=0){
PedigAsDataTable <- "data.table" %in% class(Pedig)
Pedig <- as.data.frame(Pedig)
if(PedigAsDataTable){setDF(Pedig)}
colnames(Pedig)[1:3]<-c("Indiv", "Sire", "Dam")
if(is.logical(keep)){keep<-Pedig$Indiv[keep]}
Pedig<-prePed(Pedig, lastNative=1234567)
selected <- Pedig$Indiv %in% keep
inPrevGen <- selected
if(prevGen>0){
for(i in 1:prevGen){
inPrevGen <- inPrevGen | Pedig$Indiv %in% Pedig$Sire[inPrevGen] | Pedig$Indiv %in% Pedig$Dam[inPrevGen]
}
}
inSuccGen <- selected
if(succGen>0){
for(i in 1:succGen){
inSuccGen <- inSuccGen | Pedig$Sire %in% Pedig$Indiv[inSuccGen] | Pedig$Dam %in% Pedig$Indiv[inSuccGen]
}
Sires <- Pedig$Sire[inSuccGen & !selected]
Dams <- Pedig$Dam[inSuccGen & !selected]
inSuccGen <- inSuccGen | Pedig$Indiv %in% Sires | Pedig$Indiv %in% Dams
}
Pedig <- Pedig[selected | inPrevGen | inSuccGen, ]
Pedig[!(Pedig$Sire %in% Pedig$Indiv), "Sire"] <- NA
Pedig[!(Pedig$Dam %in% Pedig$Indiv), "Dam"] <- NA
Pedig<-prePed(Pedig, lastNative=1234567)
Pedig$keep<-Pedig$Indiv %in% keep
if(PedigAsDataTable){setDT(Pedig)}
Pedig
}
|
fix.names<-function(nam, upper=FALSE, lower=FALSE)
{
if(missing(upper)) upper=FALSE
if(missing(lower)) lower=FALSE
gnam = nam
gnam= gsub(" ", "_", gnam)
gnam=gsub("\'", "_", gnam)
gnam= gsub("\"", "_", gnam)
if(lower)gnam = tolower(gnam)
if(upper) gnam = toupper(gnam)
return(gnam)
}
|
variance_draws <- function(model, value = ".sigma_sq", ...) {
UseMethod("variance_draws")
}
variance_draws.wbart <- function(model, value = ".sigma_sq", ...) {
sigma_draws <- model$sigma
dplyr::tibble(
.chain = NA_integer_,
.iteration = NA_integer_,
.draw = 1:length(sigma_draws),
!!value := sigma_draws^2
)
}
variance_draws.bartMachine <- function(model, value = ".sigma_sq", ...) {
sigma2_draws <- bartMachine::get_sigsqs(model)
dplyr::tibble(
.chain = NA_integer_,
.iteration = NA_integer_,
.draw = 1:length(sigma2_draws),
!!value := sigma2_draws
)
}
|
testthat::context("CRAN_watchdog - T1. Our codebase doesn't violate CRAN style-guidelines.")
testthat::test_that("T1.1 TRUE/FALSE are used instead of T/F.", {
test_files <- .get_visR_files(functions = TRUE,
tests = TRUE,
documentation = TRUE,
vignettes = TRUE)
patterns <- list("=T,", "=T ", "=T)",
"=F,", "=F ", "=F)",
"= T,", "= T ", "= T)",
"= F,", "= F ", "= F)")
CRAN_incompabilities <- data.frame()
for (test_file in test_files) {
for (pattern in patterns) {
hits <- base::grep(pattern, base::readLines(test_file, warn = FALSE))
if (base::length(hits) > 0) {
tmp <- data.frame("line" = hits)
tmp[["file"]] <- test_file
tmp[["issue"]] <- pattern
CRAN_incompabilities <- base::rbind(CRAN_incompabilities, tmp)
}
}
}
if (base::nrow(CRAN_incompabilities) > 0) {
cat(paste0(CRAN_incompabilities, collapse = ";"))
}
testthat::expect_true(base::nrow(CRAN_incompabilities) == 0)
})
testthat::test_that("T1.2 Each function documentation contains a \\value{} tag.", {
test_files <- .get_visR_files(documentation = TRUE)
exceptions <- list("adtte.Rd",
"brca_cohort.Rd",
"visR-Global.Rd",
"visR-package.Rd",
"reexports.Rd")
exceptions_collapsed <- paste(exceptions, collapse = "|")
CRAN_incompabilities <- data.frame()
for (test_file in test_files) {
if (sum(grepl(exceptions_collapsed, test_file)) == 0) {
name_hits <- base::grep("\\\\name\\{", base::readLines(test_file, warn = FALSE))
value_hits <- base::grep("\\\\value\\{", base::readLines(test_file, warn = FALSE))
if (length(name_hits) != length(value_hits)) {
name_hits <- base::ifelse(length(name_hits) == 0, NA, name_hits)
value_hits <- base::ifelse(length(name_hits) == 0, NA, value_hits)
tmp <- data.frame("name_line" = name_hits)
tmp[["value_line"]] <- value_hits
tmp[["file"]] <- test_file
CRAN_incompabilities <- base::rbind(CRAN_incompabilities, tmp)
}
}
}
if (base::nrow(CRAN_incompabilities) > 0) { print(CRAN_incompabilities) }
testthat::expect_true(base::nrow(CRAN_incompabilities) == 0)
})
testthat::test_that("T1.3 The existence of packages is not checked through 'installed.packages()'.", {
test_files <- .get_visR_files(functions = TRUE,
tests = TRUE,
documentation = TRUE,
vignettes = TRUE)
CRAN_incompabilities <- data.frame()
for (test_file in test_files) {
hits <- base::grep("\\\\installed.packages",
base::readLines(test_file, warn = FALSE))
if (length(hits) > 0) {
tmp <- data.frame("line" = hits)
tmp[["file"]] <- test_file
CRAN_incompabilities <- base::rbind(CRAN_incompabilities, tmp)
}
}
if (base::nrow(CRAN_incompabilities) > 0) { print(CRAN_incompabilities) }
testthat::expect_true(base::nrow(CRAN_incompabilities) == 0)
})
testthat::test_that("T1.4 No \\dontrun{} tags unless the code actually takes a long time.", {
test_files <- .get_visR_files(documentation = TRUE)
exceptions <- list("adtte.Rd",
"brca_cohort.Rd",
"visR-Global.Rd")
exceptions_collapsed <- paste(exceptions, collapse = "|")
CRAN_incompabilities <- data.frame()
for (test_file in test_files) {
if (sum(grepl(exceptions_collapsed, test_file)) == 0) {
hits <- base::grep("\\\\dontrun\\{",
base::readLines(test_file, warn = FALSE))
if (length(hits) > 0) {
tmp <- data.frame("line" = hits)
tmp[["file"]] <- test_file
CRAN_incompabilities <- base::rbind(CRAN_incompabilities, tmp)
}
}
}
if (base::nrow(CRAN_incompabilities) > 0) { print(CRAN_incompabilities) }
testthat::expect_true(base::nrow(CRAN_incompabilities) == 0)
})
testthat::test_that("T1.5 The use of 'options()' is immediately preemptively reverted.", {
test_files <- .get_visR_files(functions = TRUE,
tests = TRUE,
documentation = TRUE,
vignettes = TRUE)
exceptions <- list("Time_to_event_analysis.Rmd", "CDISC_ADaM.Rmd")
exceptions_collapsed <- paste(exceptions, collapse = "|")
CRAN_incompabilities <- data.frame()
for (test_file in test_files) {
if (sum(grepl(exceptions_collapsed, test_file)) == 0) {
hits <- base::grep("^options\\(", base::readLines(test_file, warn = FALSE))
if (length(hits) > 0) {
tmp <- data.frame("line" = hits)
tmp[["file"]] <- test_file
CRAN_incompabilities <- base::rbind(CRAN_incompabilities, tmp)
}
}
}
if (base::nrow(CRAN_incompabilities) > 0) { print(CRAN_incompabilities) }
testthat::expect_true(base::nrow(CRAN_incompabilities) == 0)
})
|
context("test_precomputed.R")
muffled_chol = function(x, ...)
withCallingHandlers(chol(x, ...),
warning = function(w) {
if (grepl("the matrix is either rank-deficient or indefinite", w$message))
invokeRestart("muffleWarning")
} )
test_that("Precomputed precision matrix agrees with regular computations for logliklihood", {
skip("Cannot test it due to numerical differences between chol in armadillo and R ...")
set.seed(1)
simdata = simple_sims(500,5,1)
data = mash_set_data(simdata$Bhat, simdata$Shat, alpha = 0)
U.c = cov_canonical(data)
grid = autoselect_grid(data,sqrt(2))
Ulist = normalize_Ulist(U.c)
xUlist = expand_cov(Ulist,grid,TRUE)
loglik1 = calc_lik_rcpp(t(data$Bhat),t(data$Shat),data$V,
matrix(0,0,0), simplify2array(xUlist),F,T)$data
svs = data$Shat[1,] * t(data$V * data$Shat[1,])
sigma_rooti = list()
for (i in 1:length(xUlist)) sigma_rooti[[i]] = backsolve(muffled_chol(svs + xUlist[[i]], pivot=T), diag(nrow(svs)))
loglik2 = calc_lik_common_rcpp(t(data$Bhat),
simplify2array(sigma_rooti),
F)$data
expect_equal(loglik1, loglik2, tolerance = 1e-4)
})
|
library(janitor)
context("remove empty rows or columns")
dat <- data.frame(
a = c(NA, NA, 1),
b = c(NA, 1, NA),
c = c(NA, NA, NA)
)
test_that("empty rows are removed", {
expect_equal(remove_empty(dat, "rows"), dat[2:3, ])
})
test_that("empty cols are removed", {
expect_equal(remove_empty(dat, "cols"), dat[, 1:2])
})
test_that("bad argument to which throws error", {
expect_error(mtcars %>%
remove_empty("blargh"),
paste0('"which" must be one of "rows", "cols", or c("rows", "cols")'),
fixed = TRUE
)
})
test_that("missing argument to which defaults to both, printing a message", {
expect_message(dat %>%
remove_empty(),
"value for \"which\" not specified, defaulting to c(\"rows\", \"cols\")",
fixed = TRUE
)
expect_equal(dat %>% remove_empty,
dat %>% remove_empty(c("rows", "cols")))
})
test_that("missing data.frame input throws its error before messages about 'which' arg", {
expect_error(remove_empty(),
"argument \"dat\" is missing, with no default",
fixed = TRUE)
})
test_that("remove_empty leaves matrices as matrices", {
mat <- matrix(c(NA, NA, NA, rep(0, 3)), ncol = 2, byrow = TRUE)
expect_equal(remove_empty(mat), matrix(c(NA, rep(0, 3)), ncol=2),
info="remove_empty with a matrix returns a matrix")
})
test_that("remove_empty leaves single-column results as the original class", {
mat <- matrix(c(NA, NA, NA, 0), ncol = 2, byrow = FALSE)
expect_equal(remove_empty(mat),
matrix(0, ncol=1),
info="remove_empty with a matrix that should return a single row and column still returns a matrix")
df <- data.frame(A=NA, B=c(NA, 0))
expect_equal(remove_empty(df),
data.frame(B=0, row.names=2L),
info="remove_empty with a data.frame that should return a single row and column still returns a data.frame")
})
test_that("remove_empty single-column input results as the original class", {
mat <- matrix(c(NA, NA, NA, 0), ncol = 1, byrow = FALSE)
expect_equal(remove_empty(mat),
matrix(0, ncol=1),
info="remove_empty with a matrix that should return a single row and column still returns a matrix")
df <- data.frame(B=c(NA, 0))
expect_equal(remove_empty(df),
data.frame(B=0, row.names=2L),
info="remove_empty with a data.frame that should return a single row and column still returns a data.frame")
})
test_that("remove_constant", {
expect_equal(
remove_constant(data.frame(A=1:2, B=1:2)),
data.frame(A=1:2, B=1:2),
info="Everything kept."
)
expect_equal(
remove_constant(data.frame(A=c(1, 1), B=c(2, 2))),
data.frame(A=1:2)[,-1],
info="All rows are kept, all columns are removed."
)
expect_equal(
remove_constant(data.frame(A=c(1, 1), B=c(2, 3))),
data.frame(B=2:3),
info="One column kept (not accidentally turned into a vector)"
)
expect_equal(
remove_constant(data.frame(A=NA, B=1:2)),
data.frame(B=1:2),
info="NA is dropped"
)
expect_equal(
remove_constant(data.frame(A=NA, B=c(NA, 1), C=c(1, NA), D=c(1, 1))),
data.frame(B=c(NA, 1), C=c(1, NA)),
info="NA with other values is kept"
)
expect_equal(
remove_constant(data.frame(A=NA, B=c(NA, 1, 2), C=c(1, 2, NA), D=c(1, 1, 1), E=c(1, NA, NA), F=c(NA, 1, 1), G=c(1, NA, 1)), na.rm=FALSE),
data.frame(B=c(NA, 1, 2), C=c(1, 2, NA), E=c(1, NA, NA), F=c(NA, 1, 1), G=c(1, NA, 1)),
info="NA with other values is kept without na.rm"
)
expect_equal(
remove_constant(data.frame(A=NA, B=c(NA, 1, 2), C=c(1, 2, NA), D=c(1, 1, 1), E=c(1, NA, NA), F=c(NA, 1, 1), G=c(1, NA, 1)), na.rm=TRUE),
data.frame(B=c(NA, 1, 2), C=c(1, 2, NA)),
info="NA with other values is kept with na.rm"
)
expect_equal(
remove_constant(tibble(A=NA, B=c(NA, 1, 2), C=1)),
tibble(B=c(NA, 1, 2)),
info="tibbles are correctly handled"
)
})
test_that("Messages are accurate with remove_empty and remove_constant", {
expect_message(
remove_empty(data.frame(A=NA, B=1), which="cols", quiet=FALSE),
regexp="Removing 1 empty columns of 2 columns total (Removed: A).",
fixed=TRUE
)
expect_message(
remove_empty(data.frame(A=NA, B=1, C=NA), which="cols", quiet=FALSE),
regexp="Removing 2 empty columns of 3 columns total (Removed: A, C).",
fixed=TRUE
)
expect_message(
remove_empty(data.frame(A=NA, B=c(1, NA)), which="rows", quiet=FALSE),
regexp="Removing 1 empty rows of 2 rows total (50%).",
fixed=TRUE
)
expect_message(
remove_empty(matrix(c(NA, NA, 1, NA), nrow=2), which="cols", quiet=FALSE),
regexp="Removing 1 empty columns of 2 columns total (50%).",
fixed=TRUE
)
expect_message(
remove_constant(matrix(c(NA, NA, 1, NA), nrow=2), quiet=FALSE),
regexp="Removing 1 constant columns of 2 columns total (50%).",
fixed=TRUE,
info="Unnamed, constant columns"
)
expect_silent(
remove_empty(data.frame(A=NA, B=1), which="cols", quiet=TRUE)
)
expect_silent(
remove_empty(data.frame(A=NA, B=c(1, NA)), which="rows", quiet=TRUE)
)
expect_message(
remove_constant(mtcars, quiet = FALSE),
regexp="No constant columns to remove.",
fixed=TRUE,
info="No constant columns to remove"
)
expect_message(
remove_empty(mtcars, quiet = FALSE),
regexp="No empty columns to remove.",
fixed=TRUE,
info="No empty columns to remove"
)
})
|
NULL
sw_tidy.nnetar <- function(x, ...) {
terms <- c("m", "p", "P", "size")
estimates <- c(x$m, x$p, x$P, x$size)
ret <- tibble::tibble(term = terms,
estimate = estimates)
return(ret)
}
sw_glance.nnetar <- function(x, ...) {
ret_1 <- tibble::tibble(model.desc = x$method)
ret_2 <- tibble::tibble(sigma = sqrt(mean((x$residuals)^2, na.rm = TRUE)),
logLik = NA,
AIC = NA,
BIC = NA)
ret_3 <- tibble::as_tibble(forecast::accuracy(x))
ret <- dplyr::bind_cols(ret_1, ret_2, ret_3)
return(ret)
}
sw_augment.nnetar <- function(x, data = NULL, timetk_idx = FALSE, rename_index = "index", ...) {
if (timetk_idx) {
if (!has_timetk_idx(x)) {
warning("Object has no timetk index. Using default index.")
timetk_idx = FALSE
}
}
ret <- tk_tbl(cbind(.actual = x$x, .fitted = x$fitted, .resid = x$residuals),
rename_index = rename_index, silent = TRUE)
if (timetk_idx) {
idx <- tk_index(x, timetk_idx = TRUE)
ret[, rename_index] <- idx
}
ret <- sw_augment_columns(ret, data, rename_index, timetk_idx)
return(ret)
}
|
msk.fish.2004.create <- function(language="English",dictionaries=NA,col="black")
{
dict <- ecoval.dict(language,dictionaries)
pnt2val <- function(p,s=4)
{
return(approx(x = c(0.0,1.5,5.5,9.5,13.5,16)/(16/s),
y = c(1.0,0.8,0.6,0.4,0.2,0.0),
xout = p)$y)
}
comb <- data.frame(spec_div=c(ecoval.translate("L_fish_species_class_natural",dict),
ecoval.translate("L_fish_species_class_modified",dict),
ecoval.translate("L_fish_species_class_atypical",dict)))
colnames(comb) <- ecoval.translate("A_fish_species_class",dict)
species <-
utility.endnode.discrete.create(
name.node = ecoval.translate("N_fish_species",dict),
attrib.levels = comb,
u = c(pnt2val(0,2),
pnt2val(1,2),
pnt2val(2,2)),
required = FALSE,
utility = FALSE,
col = col)
comb <- data.frame(dom_spe=c(ecoval.translate("L_fish_dominance_class_typical",dict),
ecoval.translate("L_fish_dominance_class_tolerant",dict),
ecoval.translate("L_fish_dominance_class_atypical",dict)))
colnames(comb) <- ecoval.translate("A_fish_dominance_class",dict)
dominance <-
utility.endnode.discrete.create(
name.node = ecoval.translate("N_fish_dominance",dict),
attrib.levels = comb,
u = c(pnt2val(0,2),
pnt2val(1,2),
pnt2val(2,2)),
required = FALSE,
utility = FALSE,
col = col)
popstrucind_popstrucbt_agecoh <-
utility.endnode.intpol1d.create(
name.node = ecoval.translate("N_fish_popstruct_trout_agestructure",dict),
name.attrib = ecoval.translate("A_fish_popstruct_trout_ratiozeroplustoolder",dict),
range = c(0,10),
x = c(0,0.4,0.8,1.2,1.59,2.5,10),
u = c(pnt2val(4),
pnt2val(3.5),
pnt2val(2.5),
pnt2val(1.5),
pnt2val(0.5),
pnt2val(0),
pnt2val(0)),
required = FALSE,
utility = FALSE,
col = col)
popstrucind_popstrucbt_0plusdens_pla <-
utility.endnode.intpol1d.create(
name.node = ecoval.translate("N_fish_popstruct_trout_zeroplusdensity_plateau",dict),
name.attrib = ecoval.translate("A_fish_popstruct_trout_zeroplusdensity_perha",dict),
range = c(0,3500),
x = c(0,250,1000,1500,2500,3500),
u = c(pnt2val(4),
pnt2val(3.5),
pnt2val(2.5),
pnt2val(1.5),
pnt2val(0.5),
pnt2val(0)),
required = FALSE,
utility = FALSE,
col = col)
popstrucind_popstrucbt_0plusdens_ju <-
utility.endnode.intpol1d.create(
name.node = ecoval.translate("N_fish_popstruct_trout_zeroplusdensity_jura",dict),
name.attrib = ecoval.translate("A_fish_popstruct_trout_zeroplusdensity_perha",dict),
range = c(0,3500),
x = c(0,250,1000,1500,2500,3500),
u = c(pnt2val(4),
pnt2val(3.5),
pnt2val(2.5),
pnt2val(1.5),
pnt2val(0.5),
pnt2val(0)),
required = FALSE,
utility = FALSE,
col = col)
popstrucind_popstrucbt_0plusdens_preal <-
utility.endnode.intpol1d.create(
name.node = ecoval.translate("N_fish_popstruct_trout_zeroplusdensity_prealps",dict),
name.attrib = ecoval.translate("A_fish_popstruct_trout_zeroplusdensity_perha",dict),
range = c(0,3000),
x = c(0,250,500,1000,2000,3000),
u = c(pnt2val(4),
pnt2val(3.5),
pnt2val(2.5),
pnt2val(1.5),
pnt2val(0.5),
pnt2val(0)),
required = FALSE,
utility = FALSE,
col = col)
popstrucind_popstrucbt_0plusdens_al <-
utility.endnode.intpol1d.create(
name.node = ecoval.translate("N_fish_popstruct_trout_zeroplusdensity_alps",dict),
name.attrib = ecoval.translate("A_fish_popstruct_trout_zeroplusdensity_perha",dict),
range = c(0,500),
x = c(0,100,200,300,400,500),
u = c(pnt2val(4),
pnt2val(3.5),
pnt2val(2.5),
pnt2val(1.5),
pnt2val(0.5),
pnt2val(0)),
required = FALSE,
utility = FALSE,
col = col)
comb <- data.frame(c(ecoval.translate("L_region_class_swissplateau",dict),
ecoval.translate("L_region_class_swissjura",dict),
ecoval.translate("L_region_class_swissprealps",dict),
ecoval.translate("L_region_class_swissalps",dict)))
colnames(comb) <- ecoval.translate("A_region_class",dict)
popstrucind_popstrucbt_0plusdens <-
utility.endnode.cond.create(
name.node = ecoval.translate("N_fish_popstruct_trout_zeroplusdensity",dict),
attrib.levels = comb,
nodes = list(popstrucind_popstrucbt_0plusdens_pla,
popstrucind_popstrucbt_0plusdens_ju,
popstrucind_popstrucbt_0plusdens_preal,
popstrucind_popstrucbt_0plusdens_al),
required = FALSE,
utility = FALSE,
col = col)
comb <- data.frame(c(ecoval.translate("L_fish_popstruct_keyspecies2_class_present",dict),
ecoval.translate("L_fish_popstruct_keyspecies2_class_notpresent",dict)))
colnames(comb) <- ecoval.translate("A_fish_popstruct_keyspecies2_class",dict)
popstrucind_popstrucind2 <-
utility.endnode.discrete.create(
name.node = ecoval.translate("N_fish_popstruct_keyspecies2",dict),
attrib.levels = comb,
u = c(1,0),
required = FALSE,
utility = FALSE,
col = col)
comb <- data.frame(c(ecoval.translate("L_fish_popstruct_keyspecies3_class_present",dict),
ecoval.translate("L_fish_popstruct_keyspecies3_class_notpresent",dict)))
colnames(comb) <- ecoval.translate("A_fish_popstruct_keyspecies3_class",dict)
popstrucind_popstrucind3 <-
utility.endnode.discrete.create(
name.node = ecoval.translate("N_fish_popstruct_keyspecies3",dict),
attrib.levels = comb,
u = c(1,0),
required = FALSE,
utility = FALSE,
col = col)
comb <- data.frame(c(ecoval.translate("L_fish_popstruct_keyspecies4_class_present",dict),
ecoval.translate("L_fish_popstruct_keyspecies4_class_notpresent",dict)))
colnames(comb) <- ecoval.translate("A_fish_popstruct_keyspecies4_class",dict)
popstrucind_popstrucind4 <-
utility.endnode.discrete.create(
name.node = ecoval.translate("N_fish_popstruct_keyspecies4",dict),
attrib.levels = comb,
u = c(1,0),
required = FALSE,
utility = FALSE,
col = col)
comb <- data.frame(c(ecoval.translate("L_fish_popstruct_keyspecies5_class_present",dict),
ecoval.translate("L_fish_popstruct_keyspecies5_class_notpresent",dict)))
colnames(comb) <- ecoval.translate("A_fish_popstruct_keyspecies5_class",dict)
popstrucind_popstrucind5 <-
utility.endnode.discrete.create(
name.node = ecoval.translate("N_fish_popstruct_keyspecies5",dict),
attrib.levels = comb,
u = c(1,0),
required = FALSE,
utility = FALSE,
col = col)
denskeysp_densbt_pla <-
utility.endnode.intpol1d.create(
name.node = ecoval.translate("N_fish_trout_density_plateau",dict),
name.attrib = ecoval.translate("A_fish_trout_density_perha",dict),
range = c(0,3750),
x = c(0,1000,2500,3750),
u = c(pnt2val(4),
pnt2val(3),
pnt2val(1),
pnt2val(0)),
required = FALSE,
utility = FALSE,
col = col)
denskeysp_densbt_ju <-
utility.endnode.intpol1d.create(
name.node = ecoval.translate("N_fish_trout_density_jura",dict),
name.attrib = ecoval.translate("A_fish_trout_density_perha",dict),
range = c(0,5250),
x = c(0,1000,3500,5250),
u = c(pnt2val(4),
pnt2val(3),
pnt2val(1),
pnt2val(0)),
required = FALSE,
utility = FALSE,
col = col)
denskeysp_densbt_preal <-
utility.endnode.intpol1d.create(
name.node = ecoval.translate("N_fish_trout_density_prealps",dict),
name.attrib = ecoval.translate("A_fish_trout_density_perha",dict),
range = c(0,3000),
x = c(0,500,2000,3000),
u = c(pnt2val(4),
pnt2val(3),
pnt2val(1),
pnt2val(0)),
required = FALSE,
utility = FALSE,
col = col)
denskeysp_densbt_al <-
utility.endnode.intpol1d.create(
name.node = ecoval.translate("N_fish_trout_density_alps",dict),
name.attrib = ecoval.translate("A_fish_trout_density_perha",dict),
range = c(0,750),
x = c(0,200,500,750),
u = c(pnt2val(4),
pnt2val(3),
pnt2val(1),
pnt2val(0)),
required = FALSE,
utility = FALSE,
col = col)
comb <- data.frame(c(ecoval.translate("L_region_class_swissplateau",dict),
ecoval.translate("L_region_class_swissjura",dict),
ecoval.translate("L_region_class_swissprealps",dict),
ecoval.translate("L_region_class_swissalps",dict)))
colnames(comb) <- ecoval.translate("A_region_class",dict)
denskeysp_densbt <-
utility.endnode.cond.create(
name.node = ecoval.translate("N_fish_trout_density",dict),
attrib.levels = comb,
nodes = list(denskeysp_densbt_pla,
denskeysp_densbt_ju,
denskeysp_densbt_preal,
denskeysp_densbt_al),
required = FALSE,
utility = FALSE,
col = col)
comb <- data.frame(c(ecoval.translate("L_fish_density_keyspecies2_class_high",dict),
ecoval.translate("L_fish_density_keyspecies2_class_moderate",dict),
ecoval.translate("L_fish_density_keyspecies2_class_low",dict)))
colnames(comb) <- ecoval.translate("A_fish_density_keyspecies2_class",dict)
denskeysp_denskeysp2 <-
utility.endnode.discrete.create(
name.node = ecoval.translate("N_fish_density_keyspecies2",dict),
attrib.levels = comb,
u = c(pnt2val(0),
pnt2val(2),
pnt2val(4)),
required = FALSE,
utility = FALSE,
col = col)
comb <- data.frame(c(ecoval.translate("L_fish_density_keyspecies3_class_high",dict),
ecoval.translate("L_fish_density_keyspecies3_class_moderate",dict),
ecoval.translate("L_fish_density_keyspecies3_class_low",dict)))
colnames(comb) <- ecoval.translate("A_fish_density_keyspecies3_class",dict)
denskeysp_denskeysp3 <-
utility.endnode.discrete.create(
name.node = ecoval.translate("N_fish_density_keyspecies3",dict),
attrib.levels = comb,
u = c(pnt2val(0),
pnt2val(2),
pnt2val(4)),
required = FALSE,
utility = FALSE,
col = col)
comb <- data.frame(c(ecoval.translate("L_fish_density_keyspecies4_class_high",dict),
ecoval.translate("L_fish_density_keyspecies4_class_moderate",dict),
ecoval.translate("L_fish_density_keyspecies4_class_low",dict)))
colnames(comb) <- ecoval.translate("A_fish_density_keyspecies4_class",dict)
denskeysp_denskeysp4 <-
utility.endnode.discrete.create(
name.node = ecoval.translate("N_fish_density_keyspecies4",dict),
attrib.levels = comb,
u = c(pnt2val(0),
pnt2val(2),
pnt2val(4)),
required = FALSE,
utility = FALSE,
col = col)
comb <- data.frame(c(ecoval.translate("L_fish_density_keyspecies5_class_high",dict),
ecoval.translate("L_fish_density_keyspecies5_class_moderate",dict),
ecoval.translate("L_fish_density_keyspecies5_class_low",dict)))
colnames(comb) <- ecoval.translate("A_fish_density_keyspecies5_class",dict)
denskeysp_denskeysp5 <-
utility.endnode.discrete.create(
name.node = ecoval.translate("N_fish_density_keyspecies5",dict),
attrib.levels = comb,
u = c(pnt2val(0),
pnt2val(2),
pnt2val(4)),
required = FALSE,
utility = FALSE,
col = col)
deform_anom <-
utility.endnode.intpol1d.create(
name.node = ecoval.translate("N_fish_anomalies",dict),
name.attrib = ecoval.translate("A_fish_anomalies_fraction",dict),
range = c(0,50),
x = c(0,1,5,50),
u = c(pnt2val(0),
pnt2val(1),
pnt2val(3),
pnt2val(4)),
required = FALSE,
utility = FALSE,
col = col)
specdom <-
utility.aggregation.create(
name.node = ecoval.translate("N_fish_communitystructure",dict),
nodes = list(species,
dominance),
name.fun = "utility.aggregate.add",
par = c(1,1),
required = FALSE,
col = col)
popstrucind_popstrucbt <-
utility.aggregation.create(
name.node = ecoval.translate("N_fish_popstruct_trout",dict),
nodes = list(popstrucind_popstrucbt_agecoh,
popstrucind_popstrucbt_0plusdens),
name.fun = "utility.aggregate.min",
par = c(1,1),
required = FALSE,
col = col)
populationstructure <-
utility.aggregation.create(
name.node = ecoval.translate("N_fish_popstruct",dict),
nodes = list(popstrucind_popstrucbt,
popstrucind_popstrucind2,
popstrucind_popstrucind3,
popstrucind_popstrucind4,
popstrucind_popstrucind5),
name.fun = "utility.aggregate.add",
par = c(1,1,1,1,1),
required = FALSE,
col = col)
denskeysp <-
utility.aggregation.create(
name.node = ecoval.translate("N_fish_density",dict),
nodes = list(denskeysp_densbt,
denskeysp_denskeysp2,
denskeysp_denskeysp3,
denskeysp_denskeysp4,
denskeysp_denskeysp5),
name.fun = "utility.aggregate.add",
par = c(1,1,1,1,1),
required = FALSE,
col = col)
fish <-
utility.aggregation.create(
name.node = ecoval.translate("N_fish",dict),
nodes = list(specdom,populationstructure,denskeysp,deform_anom),
name.fun = "utility.aggregate.add",
par = c(1,1,1,1),
required = FALSE,
col = col)
return(fish)
}
|
tritomat <-
function(dmat,n)
{
out <- matrix(0,n,n)
out[lower.tri(out)] <- dmat
out <- t(out)
out[lower.tri(out)] <- dmat
t(out)
}
|
calc.loglik.a <- function(a, y, mu, sf) {
n <- length(y)
if (length(mu) == 1) {
mu <- rep(mu, n)
}
if (length(sf) == 1) {
sf <- rep(sf, n)
}
func1 <- n/a*log(1/a)
func2 <- -sum(1/a*log(mu))
func3 <- -n*lgamma(1/a)
func4 <- sum(lgamma(y+1/a))
func5 <- -sum((y+1/a)*log(sf+1/(a*mu)))
return(-sum(func1, func2, func3, func4, func5))
}
calc.loglik.b <- function(b, y, mu, sf) {
n <- length(y)
if (length(mu) == 1) {
mu <- rep(mu, n)
}
if (length(sf) == 1) {
sf <- rep(sf, n)
}
func1 <- sum(mu/b*log(1/b))
func2 <- -sum(lgamma(mu/b))
func3 <- sum(lgamma(y+mu/b))
func4 <- -sum((y+mu/b)*log(sf+1/b))
return(-sum(func1, func2, func3, func4))
}
calc.loglik.k <- function(k, y, mu, sf) {
n <- length(y)
if (length(mu) == 1) {
mu <- rep(mu, n)
}
if (length(sf) == 1) {
sf <- rep(sf, n)
}
func3 <- sum(mu^2*log(mu)/k)
func4 <- -sum(mu^2*log(k)/k)
func5 <- -sum(lgamma(mu^2/k))
func6 <- sum(lgamma(y+mu^2/k))
func7 <- -sum((y+mu^2/k)*log(sf+mu/k))
return(-sum(func3, func4, func5, func6, func7))
}
|
useShinydashboard <- function() {
if (!requireNamespace(package = "shinydashboard"))
message("Package 'shinydashboard' is required to run this function")
deps <- findDependencies(shinydashboard::dashboardPage(
header = shinydashboard::dashboardHeader(),
sidebar = shinydashboard::dashboardSidebar(),
body = shinydashboard::dashboardBody()
))
attachDependencies(tags$div(class = "main-sidebar", style = "display: none;"), value = deps)
}
|
imputeIPT <- function(data, pool=TRUE) {
time <- data[,1]
status <- data[,2]
g1 <- data[,3] == 0
g2 <- !g1
tmax <- max(time)
data1 <- data[g1,]
data2 <- data[g2,]
time1 <- data1[,1]
status1 <- data1[,2]
time2 <- data2[,1]
status2 <- data2[,2]
if(pool) {
fitS1 <- survfit(Surv(time, status) ~ 1)
fitS2 <- fitS1
} else {
fitS1 <- survfit(Surv(time1, status1) ~ 1)
fitS2 <- survfit(Surv(time2, status2) ~ 1)
}
fit1 <- survfit(Surv(time1, 1-status1) ~ 1)
fit2 <- survfit(Surv(time2, 1-status2) ~ 1)
T <- time
C <- time
delta <- as.logical(status)
Tdelta <- delta
vS1 <- !delta & g1
vS2 <- !delta & g2
if(any(vS1)) {
tmp <- sampleFromCondKM(T[vS1], fitS1, tmax, 1)
T[vS1] <- tmp[1,]
Tdelta[vS1] <- tmp[2,]
}
if(any(vS2)) {
tmp <- sampleFromCondKM(T[vS2], fitS2, tmax, 1)
T[vS2] <- tmp[1,]
Tdelta[vS2] <- tmp[2,]
}
v1 <- delta & g1
v2 <- delta & g2
if(any(v1)) C[v1] <- sampleFromCondKM(C[v1], fit1, tmax, 0)[1,]
if(any(v2)) C[v2] <- sampleFromCondKM(C[v2], fit2, tmax, 0)[1,]
matrix(c(T, C, data[,3], Tdelta), nrow=nrow(data), ncol=4)
}
permuteIPT <- function(data, pp, index=TRUE) {
pT <- data[pp, 1]
tmp <- matrix(c(pmin(pT, data[,2]), (pT <= data[,2]), data[,3]), nrow=nrow(data), ncol=3)
tmp[,2] <- (pT <= data[,2]) * data[pp, 4]
tmp
}
|
Xt_siginv_X = function(tx, siginv, y = NULL){
D = dim(siginv)[1]
I = dim(tx)[2] / D
if(is.null(y)){
ret.mat = matrix(0, nrow = dim(tx)[1], ncol = dim(tx)[1])
for(i in 1:I){
ind.cur = (D * (i - 1) + 1) : (D*i)
prod.cur = tx[,ind.cur] %*% siginv %*% t(tx[,ind.cur])
ret.mat = ret.mat + prod.cur
}
} else if(!is.null(y)){
ret.mat = matrix(0, nrow = dim(tx)[1], ncol = 1)
for(i in 1:I){
ind.cur = (D * (i - 1) + 1) : (D*i)
prod.cur = tx[,ind.cur] %*% siginv %*% y[ind.cur]
ret.mat = ret.mat + prod.cur
}
}
return(ret.mat)
}
|
robspca <- function(X, k=NULL, alpha=1e-4, beta=1e-4, gamma=100, center=TRUE, scale=FALSE, max_iter=1000, tol=1e-5, verbose=TRUE) UseMethod("robspca")
robspca.default <- function(X, k=NULL, alpha=1e-4, beta=1e-4, gamma=100, center=TRUE, scale=FALSE, max_iter=1000, tol=1e-5, verbose=TRUE) {
X <- as.matrix(X)
if (any(is.na(X))) {
warning("Missing values are omitted: na.omit(X).")
X <- stats::na.omit(X)
}
robspcaObj = list(loadings = NULL,
transform = NULL,
scores = NULL,
eigenvalues = NULL,
center = center,
scale = scale)
n <- nrow(X)
p <- ncol(X)
if(is.null(k)) k <- min(n,p)
if(k > min(n,p)) k <- min(n,p)
if(k<1) stop("Target rank is not valid!")
if(center == TRUE) {
robspcaObj$center <- colMeans(X)
X <- sweep(X, MARGIN = 2, STATS = robspcaObj$center, FUN = "-", check.margin = TRUE)
} else { robspcaObj$center <- FALSE }
if(scale == TRUE) {
robspcaObj$scale <- sqrt(colSums(X**2) / (n-1))
if(is.complex(robspcaObj$scale)) { robspcaObj$scale[Re(robspcaObj$scale) < 1e-8 ] <- 1+0i
} else {robspcaObj$scale[robspcaObj$scale < 1e-8] <- 1}
X <- sweep(X, MARGIN = 2, STATS = robspcaObj$scale, FUN = "/", check.margin = TRUE)
} else { robspcaObj$scale <- FALSE }
svd_init <- svd(X, nu = k, nv = k)
Dmax <- svd_init$d[1]
A <- svd_init$v[,1:k]
B <- svd_init$v[,1:k]
S = matrix(0, nrow = nrow(X), ncol = ncol(X))
alpha <- alpha * Dmax**2
beta <- beta * Dmax**2
nu <- 1.0 / (Dmax**2 + beta)
kappa <- nu * alpha
obj <- c()
improvement <- Inf
noi <- 1
while (noi <= max_iter && improvement > tol) {
XS <- X - S
XB <- X %*% B
Z <- t(X - S) %*% (X %*% B)
svd_update <- svd(Z)
A <- svd_update$u %*% t(svd_update$v)
R = XS - XB %*% t(A)
grad <- t(X) %*% (R %*% A ) - beta * B
B_temp <- B + nu * grad
idxH <- which(B_temp > kappa)
idxL <- which(B_temp <= -kappa)
B = matrix(0, nrow = nrow(B_temp), ncol = ncol(B_temp))
B[idxH] <- B_temp[idxH] - kappa
B[idxL] <- B_temp[idxL] + kappa
R <- X - (X %*% B) %*% t(A)
idxH <- which(R > gamma)
idxL <- which(R <= -gamma)
S = matrix(0, nrow = nrow(X), ncol = ncol(X))
S[idxH] <- R[idxH] - gamma
S[idxL] <- R[idxL] + gamma
obj <- c(obj, 0.5 * sum(R**2) + alpha * sum(abs(B)) + 0.5 * beta * sum(B**2) +
gamma * sum(abs(S)) )
if(noi > 1){
improvement <- (obj[noi-1] - obj[noi]) / obj[noi]
}
if(verbose > 0 && noi > 1) {
print(sprintf("Iteration: %4d, Objective: %1.5e, Relative improvement %1.5e", noi, obj[noi], improvement))
}
noi <- noi + 1
}
robspcaObj$loadings <- B
robspcaObj$transform <- A
robspcaObj$scores <- X %*% B
robspcaObj$eigenvalues <- svd_update$d / (n - 1)
robspcaObj$sparse <- S
robspcaObj$objective <- obj
robspcaObj$sdev <- sqrt( robspcaObj$eigenvalues )
robspcaObj$var <- sum( apply( Re(X) , 2, stats::var ) )
if(is.complex(X)) robspcaObj$var <- Re(robspcaObj$var + sum( apply( Im(X) , 2, stats::var ) ))
class(robspcaObj) <- "robspca"
return( robspcaObj )
}
print.robspca <- function(x , ...) {
cat("Standard deviations:\n")
print(round(x$sdev, 3))
cat("\nEigenvalues:\n")
print(round(x$eigenvalues, 3))
cat("\nSparse loadings:\n")
print(round(x$loadings, 3))
}
summary.robspca <- function( object , ... )
{
variance = object$sdev**2
explained_variance_ratio = variance / object$var
cum_explained_variance_ratio = cumsum( explained_variance_ratio )
x <- t(data.frame( var = round(variance, 3),
sdev = round(object$sdev, 3),
prob = round(explained_variance_ratio, 3),
cum = round(cum_explained_variance_ratio, 3)))
rownames( x ) <- c( 'Explained variance',
'Standard deviations',
'Proportion of variance',
'Cumulative proportion')
colnames( x ) <- paste(rep('PC', length(object$sdev)), 1:length(object$sdev), sep = "")
x <- as.matrix(x)
return( x )
}
|
rm(list=ls())
sources <- c("costFunction.R","sigmoid.R","plotData.R",
"plotDecisionBoundary.R","mapFeature.R",
"predict.R")
for (i in 1:length(sources)) {
cat(paste("Loading ",sources[i],"\n"))
source(sources[i])
}
data <- read.table('ex2data1.txt',sep = ',')
X <- data[,c(1,2)]; y <- data[,3]
X <- as.matrix(X)
cat(sprintf('Plotting data with + indicating (y = 1) examples and o indicating (y = 0) examples.\n'))
plotData(X, y)
cat(sprintf('\nProgram paused. Press enter to continue.\n'))
m <- dim(X)[1]
n <- dim(X)[2]
X <- cbind(rep(1,m),X)
initial_theta <- rep(0,n+1)
cF <- costFunction(X, y)(initial_theta)
cost <- costFunction(X, y)(initial_theta)
grd <- grad(X,y)(initial_theta)
cat(sprintf('Cost at initial theta (zeros): %f\n', cost))
cat(sprintf('Gradient at initial theta (zeros): \n'))
cat(sprintf(' %f \n', grd))
cat(sprintf('\nProgram paused. Press enter to continue.\n'))
line <- readLines(con = stdin(),1)
optimRes <- optim(par = initial_theta, fn = costFunction(X,y), gr = grad(X,y),
method="BFGS", control = list(maxit = 400))
theta <- optimRes$par
cost <- optimRes$value
cat(sprintf('Cost at theta found by optim: %f\n', cost))
cat(sprintf('theta: \n'))
cat(sprintf(' %f \n', theta))
plotDecisionBoundary(theta, X, y)
cat(sprintf('\nProgram paused. Press enter to continue.\n'))
line <- readLines(con = stdin(),1)
prob <- sigmoid(t(c(1,45,85)) %*% theta)
cat(sprintf('For a student with scores 45 and 85, we predict an admission probability of\n %f\n', prob))
p <- predict(theta, X)
cat(sprintf('Train Accuracy: %f\n', mean(p == y) * 100))
|
GRL <- function(level){
x <- NULL
if(level==1){
x1 <- github.cssegisanddata.covid19(state = "Greenland", level = 2)
x2 <- ourworldindata.org(id = "GRL")
x <- full_join(x1, x2, by = "date")
}
return(x)
}
|
setMethodS3("toFileListTree", "character", function(x, depth=-1, dirsFirst=TRUE, ...) {
if (length(x) == 0 || depth == 0)
return()
pattern <- "^([^/\\]*[/\\])(.*)"
heads <- gsub(pattern, "\\1", x)
tails <- gsub(pattern, "\\2", x)
isLeave <- (tails == x)
if (sum(isLeave) > 0) {
leaves <- heads[isLeave]
class(leaves) <- "FileListTree"
leaves <- list(leaves)
names(leaves) <- "."
heads <- heads[!isLeave]
tails <- tails[!isLeave]
} else {
leaves <- NULL
}
uheads <- sort(unique(heads))
tailOutput <- vector("list", length(uheads))
names(tailOutput) <- uheads
for (head in uheads) {
idxs <- which(heads == head)
tree <- toFileListTree(tails[idxs], depth=depth-1, dirsFirst=dirsFirst, ...)
tailOutput[[head]] <- tree
}
if (dirsFirst) {
output <- c(tailOutput, leaves)
} else {
output <- c(leaves, tailOutput)
}
class(output) <- "FileListTree"
output
}, private=TRUE)
setMethodS3("pasteTree", "FileListTree", function(x, indent=" ", nodeStr=" ", childStr="+-", collapse=NULL, .totalIndent="", ...) {
if (length(x) == 0)
return()
s <- c()
if (!is.list(x)) {
x <- paste(.totalIndent, childStr, x, sep="")
s <- c(s, x)
if (!is.null(collapse))
s <- paste(s, collapse=collapse)
return(s)
}
.nextTotalIndent <- paste(indent, .totalIndent, sep="")
names <- names(x)
for (kk in seq_along(x)) {
values <- x[[kk]]
name <- names[kk]
if (name != ".")
s <- c(s, paste(.totalIndent, nodeStr, name, sep=""))
s <- c(s, pasteTree(values, indent=indent, .totalIndent=.nextTotalIndent, ...))
}
if (!is.null(collapse))
s <- paste(s, collapse=collapse)
s
}, private=TRUE)
setMethodS3("cat", "FileListTree", function(x, collapse="\n", ...) {
s <- pasteTree(x, ..., collapse=collapse)
cat(s, collapse=collapse)
invisible(s)
}, private=TRUE)
|
context("Handling phases with a single observation.")
set.seed(20210323)
A1 <- rbinom(1, 15, 0.3) * 100 / 15
B1 <- rbinom(1, 15, 0.2) * 100 / 15
while (A1 == B1) B1 <- rbinom(1, 15, 0.2) * 100 / 15
A3 <- rbinom(3, 14:16, 0.3) * 100 / (14:16)
while (B1 %in% A3) A3 <- rbinom(3, 14:16, 0.3) * 100 / (14:16)
B3 <- rbinom(3, 14:16, 0.2) * 100 / (14:16)
while (A1 %in% B3) B3 <- rbinom(3, 14:16, 0.2) * 100 / (14:16)
test_that("calc_ES() works with single observation in baseline.", {
expect_warning(calc_ES(A_data = A1, B_data = B3,
improvement = "decrease", scale = "percentage",
ES = c("LOR","LRRd","LRRi")))
expect_error(calc_ES(A_data = A1, B_data = B3,
improvement = "decrease", scale = "percentage",
ES = "SMD", warn = FALSE))
expect_warning(calc_ES(A_data = A1, B_data = B3,
improvement = "decrease", scale = "percentage",
ES = "SMD", std_dev = "pool"))
NAP_Tau <- calc_ES(A_data = A1, B_data = B3,
improvement = "decrease", ES = c("NAP","Tau"),
confidence = NULL)
expect_true(all(is.infinite(NAP_Tau$SE)))
NOMs <- calc_ES(A_data = A1, B_data = B3,
improvement = "decrease", ES = c("NAP","Tau","PND","PAND","PEM","IRD","Tau-U"),
confidence = NULL, format = "wide")
expect_equal(NOMs$NAP_Est, NOMs$PEM_Est)
expect_equal(NOMs$NAP_Est, NOMs$PND_Est)
expect_equal(NOMs$Tau_Est, NOMs$`Tau-U_Est`)
})
test_that("calc_ES() works with single observation in treatment", {
expect_warning(calc_ES(A_data = A3, B_data = B1,
improvement = "decrease", scale = "percentage",
ES = c("LOR","LRRd","LRRi")))
expect_warning(calc_ES(A_data = A3, B_data = B1,
improvement = "decrease", scale = "percentage",
ES = "SMD"))
expect_warning(calc_ES(A_data = A3, B_data = B1,
improvement = "decrease", scale = "percentage",
ES = "SMD", std_dev = "pool"))
NAP_Tau <- calc_ES(A_data = A3, B_data = B1,
improvement = "decrease", ES = c("NAP","Tau"),
confidence = NULL)
expect_true(all(is.infinite(NAP_Tau$SE)))
NOMs <- calc_ES(A_data = A1, B_data = B3,
improvement = "decrease", ES = c("NAP","Tau","PND","PAND","PEM","IRD","Tau-U"),
confidence = NULL, format = "wide")
expect_equal(NOMs$NAP_Est, NOMs$PEM_Est)
expect_equal(NOMs$NAP_Est, NOMs$PND_Est)
expect_equal(NOMs$Tau_Est, NOMs$`Tau-U_Est`)
})
test_that("calc_ES() works with single observation in each phase", {
expect_warning(calc_ES(A_data = A1, B_data = B1,
improvement = "decrease", scale = "percentage",
ES = c("LOR","LRRd","LRRi")))
ratio_measures <- calc_ES(A_data = A1, B_data = B1,
improvement = "decrease", scale = "percentage",
ES = c("LOR","LRRd","LRRi"), warn = FALSE)
expect_true(all(is.na(ratio_measures$Est)))
expect_true(all(is.na(ratio_measures$SE)))
expect_error(calc_ES(A_data = A1, B_data = B1,
improvement = "decrease", scale = "percentage",
ES = "SMD", warn = FALSE))
expect_error(calc_ES(A_data = A1, B_data = B1,
improvement = "decrease", scale = "percentage",
ES = "SMD", std_dev = "pool", warn = FALSE))
NAP_Tau <- calc_ES(A_data = A1, B_data = B1,
improvement = "decrease", ES = c("NAP","Tau"),
confidence = NULL)
expect_true(all(is.infinite(NAP_Tau$SE)))
NOMs <- calc_ES(A_data = A1, B_data = B1,
improvement = "decrease", ES = c("NAP","Tau","PND","PAND","PEM","IRD","Tau-U"),
confidence = NULL, format = "wide")
expect_identical(NOMs$NAP_Est, NOMs$PEM_Est)
expect_identical(NOMs$NAP_Est, NOMs$PND_Est)
expect_equal(NOMs$Tau_Est, NOMs$`Tau-U_Est`)
})
test_that("calc_ES() works with three observations in each phase.", {
ES_SE <- calc_ES(A_data = A3, B_data = B3, improvement = "decrease", scale = "percentage", ES = c("LOR","LRRd","LRRi","SMD","NAP","Tau"))
expect_identical(names(ES_SE), c("ES","Est","SE","CI_lower","CI_upper"))
NOMs <- calc_ES(A_data = A3, B_data = B3, improvement = "decrease", ES = c("PND","PAND","PEM","IRD","Tau-U"))
expect_identical(names(NOMs), c("ES","Est"))
})
|
betadisperF <-
function (d, group, type = c("median", "centroid"), bias.adjust = FALSE)
{
ordimedian<-function (ord, groups, display = "sites", label = FALSE, ...)
{
medfun <- function(x, ord) sum(sqrt(rowSums(sweep(ord, 2,
x)^2)), na.rm = TRUE)
dmedfun <- function(x, ord) {
up <- -sweep(ord, 2, x)
dn <- sqrt(rowSums(sweep(ord, 2, x)^2))
colSums(sweep(up, 1, dn, "/"))
}
pts <- scores(ord, display = display, ...)
inds <- names(table(groups))
medians <- matrix(NA, nrow = length(inds), ncol = ncol(pts))
rownames(medians) <- inds
colnames(medians) <- colnames(pts)
for (i in inds) {
X <- pts[groups == i, , drop = FALSE]
if (NROW(X) > 0)
medians[i, ] <- optim(apply(X, 2, median, na.rm = TRUE),
fn = medfun, gr = dmedfun, ord = X, method = "BFGS")$par
if (label)
ordiArgAbsorber(medians[i, 1], medians[i, 2], label = i,
FUN = text, ...)
}
invisible(medians)
}
ordiArgAbsorber<-function(..., shrink, origin, scaling, triangular, display,
choices, const, FUN)
match.fun(FUN)(...)
"scores" <-function(x, ...) UseMethod("scores")
"scores.default" <-
function (x, choices, display = c("sites", "species"), ...)
{
display <- match.arg(display)
att <- names(x)
if (is.data.frame(x) && all(sapply(x, is.numeric)))
x <- as.matrix(x)
if (is.list(x) && display == "sites") {
if ("points" %in% att)
X <- x$points
else if ("rproj" %in% att)
X <- x$rproj
else if ("x" %in% att)
X <- x$x
else if ("scores" %in% att)
X <- x$scores
else if ("sites" %in% att)
X <- x$sites
else if("li" %in% att)
X <- x$li
else if("l1" %in% att)
X <- x$l1
else stop("Can't find scores")
}
else if (is.list(x) && display == "species") {
if ("species" %in% att)
X <- x$species
else if ("cproj" %in% att)
X <- x$cproj
else if ("rotation" %in% att)
X <- x$rotation
else if ("loadings" %in% att)
X <- x$loadings
else if ("co" %in% att)
X <- x$co
else if ("c1" %in% att)
X <- x$c1
else stop("Can't find scores")
}
else if (is.numeric(x)) {
X <- as.matrix(x)
}
if (is.null(rownames(X))) {
root <- substr(display, 1, 4)
rownames(X) <- paste(root, 1:nrow(X), sep = "")
}
if (is.null(colnames(X)))
colnames(X) <- paste("Dim", 1:ncol(X), sep = "")
if (!missing(choices)) {
choices <- choices[choices <= ncol(X)]
X <- X[, choices, drop = FALSE]
}
X <- as.matrix(X)
X
}
dblcen <- function(x, na.rm = TRUE) {
cnt <- colMeans(x, na.rm = na.rm)
x <- sweep(x, 2L, cnt, check.margin = FALSE)
cnt <- rowMeans(x, na.rm = na.rm)
sweep(x, 1L, cnt, check.margin = FALSE)
}
spatialMed <- function(vectors, group, pos) {
axes <- seq_len(NCOL(vectors))
spMedPos <- ordimedian(vectors, group, choices = axes[pos])
spMedNeg <- ordimedian(vectors, group, choices = axes[!pos])
cbind(spMedPos, spMedNeg)
}
Resids <- function(x, c) {
if (is.matrix(c))
d <- x - c
else d <- sweep(x, 2, c)
rowSums(d^2)
}
TOL <- 1e-07
if (!inherits(d, "dist"))
stop("distances 'd' must be a 'dist' object")
if (any(d < -TOL, na.rm = TRUE))
stop("dissimilarities 'd' must be non-negative")
if (missing(type))
type <- "median"
type <- match.arg(type)
if (!is.factor(group)) {
group <- as.factor(group)
}
else {
group <- droplevels(group)
}
n <- attr(d, "Size")
x <- matrix(0, ncol = n, nrow = n)
x[row(x) > col(x)] <- d^2
labs <- attr(d, "Labels")
if (any(gr.na <- is.na(group))) {
group <- group[!gr.na]
x <- x[!gr.na, !gr.na]
n <- n - sum(gr.na)
labs <- labs[!gr.na]
warning("Missing observations due to 'group' removed.")
}
if (any(x.na <- apply(x, 1, function(x) any(is.na(x))))) {
x <- x[!x.na, !x.na]
group <- group[!x.na]
n <- n - sum(x.na)
labs <- labs[!x.na]
warning("Missing observations due to 'd' removed.")
}
x <- x + t(x)
x<- dblcen(x)
e <- eigen(-x/2, symmetric = TRUE)
vectors <- e$vectors
eig <- e$values
eig <- eig[(want <- abs(eig/eig[1]) > TOL)]
vectors <- vectors[, want, drop = FALSE] %*% diag(sqrt(abs(eig)),
nrow = length(eig))
pos <- eig > 0
centroids <- switch(type, centroid = apply(vectors, 2, function(x) tapply(x,group, mean)), median = spatialMed(vectors, group, pos))
if(is.matrix(centroids)==FALSE){
centroids<-t(as.matrix(centroids))
rownames(centroids)<-"YES"}
dist.pos <- Resids(vectors[, pos, drop = FALSE], centroids[group,
pos, drop = FALSE])
dist.neg <- 0
if (any(!pos))
dist.neg <- Resids(vectors[, !pos, drop = FALSE], centroids[group,
!pos, drop = FALSE])
zij <- sqrt(abs(dist.pos - dist.neg))
if (bias.adjust) {
n.group <- table(group)
zij <- zij * sqrt(n.group[group]/(n.group[group] - 1))
}
colnames(vectors) <- names(eig) <- paste("PCoA", seq_along(eig),
sep = "")
if (is.matrix(centroids))
colnames(centroids) <- names(eig)
else names(centroids) <- names(eig)
rownames(vectors) <- names(zij) <- labs
retval <- list(eig = eig, vectors = vectors, distances = zij,
group = group, centroids = centroids, call = match.call())
class(retval) <- "betadisper"
attr(retval, "method") <- attr(d, "method")
attr(retval, "type") <- type
attr(retval, "bias.adjust") <- bias.adjust
retval
}
|
biascorrection <- function(experimental,
calibration,
samplelocusname,
minmax = FALSE,
correct_method = "best",
selection_method = "SSE",
type = 1,
csvdir = paste0(tempdir(), "/csvdir/"),
plotdir = paste0(tempdir(), "/plotdir/"),
logfilename = paste0(tempdir(), "/log.txt"),
plot_height = 5,
plot_width = 7.5,
plot_textsize = 16,
seed = 1234,
parallel = TRUE) {
stopifnot(
is.character(experimental),
is.character(calibration),
is.character(samplelocusname),
is.logical(minmax),
is.numeric(type),
type == 1 || type == 2,
is.character(correct_method),
correct_method %in% c("best", "hyperbolic", "cubic", "b", "h", "c"),
is.character(selection_method),
selection_method %in% c("SSE", "RelError"),
is.character(csvdir),
is.character(plotdir),
is.character(logfilename),
is.numeric(plot_height),
is.numeric(plot_width),
is.numeric(plot_textsize),
is.numeric(seed),
is.logical(parallel)
)
plotdir <- gsub("([[:alnum:]])$", "\\1/", plotdir)
csvdir <- gsub("([[:alnum:]])$", "\\1/", csvdir)
on_start(plotdir, csvdir, logfilename, parallel)
rv <- list()
rv$minmax <- minmax
rv$selection_method <- selection_method
rv$sample_locus_name <- handle_text_input(samplelocusname)
if (type == 1) {
rv$fileimport_experimental <- clean_dt(
data.table::fread(experimental, header = T),
"experimental",
type = 1,
logfilename = logfilename
)[["dat"]]
write_csv(table = rv$fileimport_experimental,
filename = paste0(csvdir, "raw_experimental_data.csv"))
cal_type_1 <- clean_dt(data.table::fread(calibration, header = T),
"calibration", type = 1,
logfilename = logfilename)
rv$fileimport_calibration <- cal_type_1[["dat"]]
write_csv(table = rv$fileimport_calibration,
filename = paste0(csvdir, "raw_calibration_data.csv"))
rv$vec_cal <- cal_type_1[["vec_cal"]]
rv$aggregated_experimental <- aggregated_input(
datatable = rv$fileimport_experimental,
description = "experimental",
vec_cal = rv$vec_cal,
type = 1
)
write_csv(table = rv$aggregated_experimental,
filename = paste0(csvdir, "aggregated_experimental_data.csv"))
rv$aggregated_calibration <- aggregated_input(
datatable = rv$fileimport_calibration,
description = "calibration",
vec_cal = rv$vec_cal
)
write_csv(table = rv$aggregated_calibration,
filename = paste0(csvdir, "aggregated_calibration_data.csv"))
} else if (type == 2) {
return(paste0("The correction of PCR measurement ",
"biases of this type of data is not implemented yet."))
} else {
return("ERROR. Please specify a valid type of data to correct (1 or 2).")
}
if (type == 1) {
regression_results <- regression_utility(
data = rv$fileimport_calibration,
samplelocusname = rv$sample_locus_name,
locus_id = NULL,
rv = rv,
mode = NULL,
logfilename = logfilename,
minmax = rv$minmax,
seed = seed
)
plotlist_reg <- regression_results[["plot_list"]]
rv$result_list <- regression_results[["result_list"]]
plotting_utility(
data = rv$fileimport_calibration,
plotlist_reg = plotlist_reg,
type = 1,
samplelocusname = rv$sample_locus_name,
locus_id = NULL,
rv = rv,
mode = NULL,
plotdir = plotdir,
logfilename = logfilename,
minmax = rv$minmax,
plot_height = plot_height,
plot_width = plot_width,
plot_textsize = plot_textsize
)
rv$reg_stats <- statistics_list(rv$result_list, minmax = rv$minmax)
write_csv(table = rv$reg_stats,
filename = paste0(csvdir,
rv$sample_locus_name,
"_regression_stats_",
gsub("\\-", "", substr(Sys.time(), 1, 10)),
"_",
gsub("\\:", "", substr(Sys.time(), 12, 16)),
".csv")
)
rv$choices_list <- rv$reg_stats[, c("Name"), with = F
][
, ("better_model") := 0
]
solved_eq_h <- solving_equations(datatable = rv$fileimport_calibration,
regmethod = rv$choices_list,
type = 1,
rv = rv,
mode = "corrected",
logfilename = logfilename,
minmax = rv$minmax)
rv$fileimport_cal_corrected_h <- solved_eq_h[["results"]]
colnames(rv$fileimport_cal_corrected_h) <- colnames(
rv$fileimport_calibration
)
write_csv(table = rv$fileimport_cal_corrected_h,
filename = paste0(csvdir,
rv$sample_locus_name,
"_corrected_calibrations_h_",
get_timestamp(),
".csv"))
rv$substitutions_corrected_h <- solved_eq_h[["substitutions"]]
if (nrow(rv$substitutions_corrected_h) > 0) {
write_csv(table = rv$substitutions_corrected_h,
filename = paste0(csvdir,
rv$sample_locus_name,
"_substituted_corrected_h_",
get_timestamp(),
".csv"))
}
regression_results <- regression_utility(
data = rv$fileimport_cal_corrected_h,
samplelocusname = rv$sample_locus_name,
rv = rv,
mode = "corrected",
logfilename = logfilename,
minmax = rv$minmax,
seed = seed
)
plotlist_reg <- regression_results[["plot_list"]]
rv$result_list_hyperbolic <- regression_results[["result_list"]]
plotting_utility(
data = rv$fileimport_cal_corrected_h,
plotlist_reg = plotlist_reg,
type = 1,
samplelocusname = rv$sample_locus_name,
locus_id = NULL,
rv = rv,
mode = "corrected_h",
plotdir = plotdir,
logfilename = logfilename,
minmax = rv$minmax,
plot_height = plot_height,
plot_width = plot_width,
plot_textsize = plot_textsize
)
rv$reg_stats_corrected_h <- statistics_list(
resultlist = rv$result_list_hyperbolic,
minmax = rv$minmax
)
write_csv(table = rv$reg_stats_corrected_h,
filename = paste0(csvdir,
rv$sample_locus_name,
"_corrected_regression_stats_h_",
gsub("\\-", "", substr(Sys.time(), 1, 10)),
"_",
gsub("\\:", "", substr(Sys.time(), 12, 16)),
".csv")
)
createbarerrorplots(
statstable_pre = rv$reg_stats,
statstable_post = rv$reg_stats_corrected_h,
rv = rv,
type = 1,
locus_id = NULL,
plotdir = plotdir,
logfilename = logfilename,
mode = "corrected_h",
plot_height = plot_height,
plot_width = plot_width,
plot_textsize = plot_textsize
)
rv$choices_list <- rv$reg_stats[, c("Name"), with = F
][
, ("better_model") := 1
]
solved_eq_c <- solving_equations(datatable = rv$fileimport_calibration,
regmethod = rv$choices_list,
type = 1,
rv = rv,
mode = "corrected",
logfilename = logfilename,
minmax = rv$minmax)
rv$fileimport_cal_corrected_c <- solved_eq_c[["results"]]
colnames(rv$fileimport_cal_corrected_c) <- colnames(
rv$fileimport_calibration
)
write_csv(table = rv$fileimport_cal_corrected_c,
filename = paste0(csvdir,
rv$sample_locus_name,
"_corrected_calibrations_c_",
get_timestamp(),
".csv"))
rv$substitutions_corrected_c <- solved_eq_c[["substitutions"]]
if (nrow(rv$substitutions_corrected_c) > 0) {
write_csv(table = rv$substitutions_corrected_c,
filename = paste0(csvdir,
rv$sample_locus_name,
"_substituted_corrected_c_",
get_timestamp(),
".csv")
)
}
regression_results <- regression_utility(
data = rv$fileimport_cal_corrected_c,
samplelocusname = rv$sample_locus_name,
rv = rv,
mode = "corrected",
logfilename = logfilename,
minmax = rv$minmax,
seed = seed
)
plotlist_reg <- regression_results[["plot_list"]]
rv$result_list_cubic <- regression_results[["result_list"]]
plotting_utility(
data = rv$fileimport_experimental_corrected_c,
plotlist_reg = plotlist_reg,
type = 1,
samplelocusname = rv$sample_locus_name,
locus_id = NULL,
rv = rv,
mode = "corrected_c",
plotdir = plotdir,
logfilename = logfilename,
minmax = rv$minmax,
plot_height = plot_height,
plot_width = plot_width,
plot_textsize = plot_textsize
)
rv$reg_stats_corrected_c <- statistics_list(
resultlist = rv$result_list_cubic,
minmax = rv$minmax
)
write_csv(table = rv$reg_stats_corrected_c,
filename = paste0(csvdir,
rv$sample_locus_name,
"_corrected_regression_stats_c_",
gsub("\\-", "", substr(Sys.time(), 1, 10)),
"_",
gsub("\\:", "", substr(Sys.time(), 12, 16)),
".csv")
)
createbarerrorplots(
statstable_pre = rv$reg_stats,
statstable_post = rv$reg_stats_corrected_c,
rv = rv,
locus_id = NULL,
type = 1,
plotdir = plotdir,
logfilename = logfilename,
mode = "corrected_c",
plot_height = plot_height,
plot_width = plot_width,
plot_textsize = plot_textsize
)
if (correct_method %in% c("best", "b")) {
rv$choices_list <- better_model(
statstable_pre = rv$reg_stats,
statstable_post_hyperbolic = rv$reg_stats_corrected_h,
statstable_post_cubic = rv$reg_stats_corrected_c,
selection_method = rv$selection_method
)
} else if (correct_method %in% c("hyperbolic", "h")) {
rv$choices_list <- rv$reg_stats[, c("Name"), with = F
][
, ("better_model") := 0
]
} else if (correct_method %in% c("cubic", "c")) {
rv$choices_list <- rv$reg_stats[, c("Name"), with = F
][
, ("better_model") := 1
]
}
solved_eq <- solving_equations(
datatable = rv$fileimport_experimental,
regmethod = rv$choices_list,
mode = NULL,
type = 1,
rv = rv,
logfilename = logfilename,
minmax = rv$minmax
)
rv$final_results <- solved_eq[["results"]]
write_csv(table = rv$final_results,
filename = paste0(csvdir,
rv$sample_locus_name,
"_corrected_values_",
get_timestamp(),
".csv"))
rv$substitutions <- solved_eq[["substitutions"]]
if (nrow(rv$substitutions) > 0) {
write_csv(table = rv$substitutions,
filename = paste0(csvdir,
rv$sample_locus_name,
"_substituted_values_",
get_timestamp(),
".csv"))
}
}
return(rv)
}
NULL
NULL
NULL
NULL
NULL
|
"safety"
|
plot.growth_day<-function(x, type="PlantTranspiration", bySpecies = FALSE,
xlim = NULL, ylim=NULL, xlab = NULL, ylab = NULL, ...) {
GROWTH_TYPES = .getSubdailyGROWTHPlotTypes()
PWB_TYPES = .getSubdailySPWBPlotTypes()
type = match.arg(type,GROWTH_TYPES)
if(type %in% PWB_TYPES) {
plot.pwb_day(x, type, bySpecies, xlim, ylim, xlab, ylab,...)
}
CBInst = x$PlantCBInst
if(type=="SugarLeaf") {
OM = CBInst$SugarLeaf
if(is.null(ylab)) ylab = .getYLab(type)
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
}
plot.spwb_day<-function(x, type="PlantTranspiration", bySpecies = FALSE,
xlim = NULL, ylim=NULL, xlab = NULL, ylab = NULL, ...) {
plot.pwb_day(x, type, bySpecies, xlim, ylim, xlab, ylab,...)
}
plot.pwb_day<-function(x, type="PlantTranspiration", bySpecies = FALSE,
xlim = NULL, ylim=NULL, xlab = NULL, ylab = NULL, ...) {
if(!("EnergyBalance" %in% names(x))) stop("Plotting function available for transpirationMode = 'Sperry' only.")
EB = x$EnergyBalance
Plants = x$Plants
PlantsInst = x$PlantsInst
SunlitLeavesInst = x$SunlitLeavesInst
ShadeLeavesInst = x$ShadeLeavesInst
type = match.arg(type,.getSubdailySPWBPlotTypes())
cohortnames = row.names(x$cohorts)
timesteps = as.numeric(colnames(x$PlantsInst$LeafPsi))
if(is.null(xlab)) xlab = "Time step"
if(type=="LeafPsiAverage") {
OM = PlantsInst$LeafPsi
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab = "Leaf water potential (MPa)"
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="StemPsi") {
OM = PlantsInst$StemPsi
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab = "Stem water potential (MPa)"
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="LeafSympPsi") {
OM = PlantsInst$LeafSympPsi
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab = "Leaf symplastic water potential (MPa)"
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="StemSympPsi") {
OM = PlantsInst$StemSympPsi
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab = "Stem symplastic water potential (MPa)"
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="RootPsi") {
OM = PlantsInst$RootPsi
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab = "Root crown water potential (MPa)"
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="StemPLC") {
OM = PlantsInst$StemPLC*100
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab = "Stem percent of conductance loss (%)"
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="StemRWC") {
OM = PlantsInst$StemRWC*100
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab = "Stem relative water content (%)"
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="StemSympRWC") {
OM = PlantsInst$StemSympRWC*100
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab = "Stem symplasm relative water content (%)"
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="LeafRWC") {
OM = PlantsInst$LeafRWC*100
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab = "Leaf relative water content (%)"
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="LeafSympRWC") {
OM = PlantsInst$LeafSympRWC*100
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab = "Leaf symplasm relative water content (%)"
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="SoilPlantConductance") {
OM = PlantsInst$dEdP
if(bySpecies) {
OM = apply(OM,2, tapply, x$cohorts$Name, sum, na.rm=T)
}
if(is.null(ylab)) ylab = expression(paste("Soil-plant conductance ",(mmol%.%m^{-2}%.%MPa^{-1}%.%s^{-1})))
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="PlantWaterBalance") {
OM = PlantsInst$PWB
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab = expression(paste("Extraction - transpiration (",L%.%m^{-2},")"))
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="WaterBalancePerLeaf") {
OM = PlantsInst$PWB
if(bySpecies) {
m1 = apply(OM,2, tapply, x$cohorts$Name, sum, na.rm=T)
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
} else {
OM = sweep(OM,1,Plants$LAI,"/")
}
if(is.null(ylab)) ylab = expression(paste("Extraction - transpiration per leaf area (",L%.%m^{-2},")"))
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="PlantExtraction") {
OM = x$ExtractionInst
nlayers = nrow(OM)
if(is.null(ylab)) ylab = expression(paste("Extraction from soil layers ",(L%.%m^{-2})))
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="PlantTranspiration") {
OM = PlantsInst$E
if(bySpecies) {
OM = apply(OM,2, tapply, x$cohorts$Name, sum, na.rm=T)
}
if(is.null(ylab)) ylab = expression(paste("Plant transpiration ",(L%.%m^{-2})))
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="TranspirationPerLeaf") {
OM = PlantsInst$E
if(bySpecies) {
m1 = apply(OM,2, tapply, x$cohorts$Name, sum, na.rm=T)
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
} else {
OM = sweep(OM,1,Plants$LAI,"/")
}
if(is.null(ylab)) ylab = expression(paste("Transpiration per leaf area ",(L%.%m^{-2})))
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="PlantGrossPhotosynthesis") {
OM = PlantsInst$Ag
if(bySpecies) {
OM = apply(OM,2, tapply, x$cohorts$Name, sum, na.rm=T)
}
if(is.null(ylab)) ylab = expression(paste("Plant gross photosynthesis ",(gC%.%m^{-2})))
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="PlantNetPhotosynthesis") {
OM = PlantsInst$An
if(bySpecies) {
OM = apply(OM,2, tapply, x$cohorts$Name, sum, na.rm=T)
}
if(is.null(ylab)) ylab = expression(paste("Plant net photosynthesis ",(gC%.%m^{-2})))
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="GrossPhotosynthesisPerLeaf") {
OM = PlantsInst$Ag
if(bySpecies) {
m1 = apply(OM,2, tapply, x$cohorts$Name, sum, na.rm=T)
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
} else {
OM = sweep(OM,1,Plants$LAI,"/")
}
if(is.null(ylab)) ylab = expression(paste("Gross photosynthesis per leaf area ",(gC%.%m^{-2})))
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="NetPhotosynthesisPerLeaf") {
OM = PlantsInst$An
if(bySpecies) {
m1 = apply(OM,2, tapply, x$cohorts$Name, sum, na.rm=T)
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OM = sweep(m1,1,lai1,"/")
} else {
OM = sweep(OM,1,Plants$LAI,"/")
}
if(is.null(ylab)) ylab = expression(paste("Net photosynthesis per leaf area ",(gC%.%m^{-2})))
return(.multiple_subday_dynamics(t(OM), ylab = ylab, ylim = ylim))
}
else if(type=="LeafTranspiration") {
OM_SL = SunlitLeavesInst$E
OM_SH = ShadeLeavesInst$E
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM_SL, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = sweep(m1,1,lai1,"/")
OMlai = sweep(OM_SH, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab=expression(paste("Leaf transpiration ",(mmol%.%m^{-2}%.%s^{-1})))
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="LeafNetPhotosynthesis") {
OM_SL = SunlitLeavesInst$An
OM_SH = ShadeLeavesInst$An
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM_SL, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = sweep(m1,1,lai1,"/")
OMlai = sweep(OM_SH, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab=expression(paste("Leaf net photosynthesis ",(mu%.%mol%.%m^{-2}%.%s^{-1})))
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="LeafGrossPhotosynthesis") {
OM_SL = SunlitLeavesInst$Ag
OM_SH = ShadeLeavesInst$Ag
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM_SL, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = sweep(m1,1,lai1,"/")
OMlai = sweep(OM_SH, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab=expression(paste("Leaf gross photosynthesis ",(mu%.%mol%.%m^{-2}%.%s^{-1})))
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="PlantAbsorbedSWR") {
OM_SL = SunlitLeavesInst$Abs_SWR
OM_SH = ShadeLeavesInst$Abs_SWR
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM_SL, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = sweep(m1,1,lai1,"/")
OMlai = sweep(OM_SH, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab=expression(paste("Plant absorbed SWR ",(W%.%m^{-2})))
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="LeafAbsorbedSWR") {
OM_SL = SunlitLeavesInst$Abs_SWR
OM_SH = ShadeLeavesInst$Abs_SWR
if(bySpecies) {
m1 = apply(OM_SL,2, tapply, x$cohorts$Name, sum, na.rm=T)
lai1 = apply(x$SunlitLeaves$LAI,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = m1/lai1
m1 = apply(OM_SH,2, tapply, x$cohorts$Name, sum, na.rm=T)
lai1 = apply(x$ShadeLeaves$LAI,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = m1/lai1
} else {
OM_SL = OM_SL/x$SunlitLeaves$LAI
OM_SH = OM_SH/x$ShadeLeaves$LAI
}
if(is.null(ylab)) ylab=expression(paste("Absorbed SWR per leaf area ",(W%.%m^{-2})))
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="LeafNetLWR") {
OM_SL = SunlitLeavesInst$Net_LWR
OM_SH = ShadeLeavesInst$Net_LWR
if(bySpecies) {
m1 = apply(OM_SL,2, tapply, x$cohorts$Name, sum, na.rm=T)
lai1 = apply(x$SunlitLeaves$LAI,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = m1/lai1
m1 = apply(OM_SH,2, tapply, x$cohorts$Name, sum, na.rm=T)
lai1 = apply(x$ShadeLeaves$LAI,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = m1/lai1
} else {
OM_SL = OM_SL/x$SunlitLeaves$LAI
OM_SH = OM_SH/x$ShadeLeaves$LAI
}
if(is.null(ylab)) ylab=expression(paste("Net LWR per leaf area ",(W%.%m^{-2})))
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="LeafPsi") {
OM_SL = SunlitLeavesInst$Psi
OM_SH = ShadeLeavesInst$Psi
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM_SL, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = sweep(m1,1,lai1,"/")
OMlai = sweep(OM_SH, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab="Leaf water potential (-MPa)"
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="LeafTemperature") {
OM_SL = SunlitLeavesInst$Temp
OM_SH = ShadeLeavesInst$Temp
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM_SL, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = sweep(m1,1,lai1,"/")
OMlai = sweep(OM_SH, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab="Leaf temperature (degrees C)"
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="LeafVPD") {
OM_SL = SunlitLeavesInst$VPD
OM_SH = ShadeLeavesInst$VPD
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM_SL, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = sweep(m1,1,lai1,"/")
OMlai = sweep(OM_SH, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab="Leaf vapour pressure deficit (kPa)"
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="LeafStomatalConductance") {
OM_SL = SunlitLeavesInst$Gsw
OM_SH = ShadeLeavesInst$Gsw
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM_SL, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = sweep(m1,1,lai1,"/")
OMlai = sweep(OM_SH, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab=expression(paste("Stomatal conductance ", (mol%.%m^{-2}%.%s^{-1})))
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="LeafIntrinsicWUE") {
OM_SL = SunlitLeavesInst$An/SunlitLeavesInst$Gsw
OM_SH = ShadeLeavesInst$An/ShadeLeavesInst$Gsw
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM_SL, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = sweep(m1,1,lai1,"/")
OMlai = sweep(OM_SH, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab=expression(paste("iWUE ", (mu%.%mol%.%mol^{-1})))
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="LeafCi") {
OM_SL = SunlitLeavesInst$Ci
OM_SH = ShadeLeavesInst$Ci
if(bySpecies) {
lai1 = tapply(Plants$LAI, x$cohorts$Name, sum, na.rm=T)
OMlai = sweep(OM_SL, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SL = sweep(m1,1,lai1,"/")
OMlai = sweep(OM_SH, 1, Plants$LAI, "*")
m1 = apply(OMlai,2, tapply, x$cohorts$Name, sum, na.rm=T)
OM_SH = sweep(m1,1,lai1,"/")
}
if(is.null(ylab)) ylab=expression(paste("Intercellular CO2 concentration ", (ppm)))
return(.multiple_subday_dynamics_sunlit_shade(t(OM_SL), t(OM_SH), ylab = ylab, ylim = ylim))
}
else if(type=="Temperature") {
if(is.null(ylab)) ylab = "Temperature (degrees C)"
df = data.frame(row.names=timesteps)
df[["Above-canopy"]] = EB$Temperature$Tatm
df[["Inside-canopy"]] = EB$Temperature$Tcan
df[["Soil"]] = EB$Temperature$Tsoil.1
g<-.multiple_subday_dynamics(as.matrix(df), ylab=ylab, ylim = ylim)
return(g)
}
else if(type=="CanopyEnergyBalance") {
if(is.null(ylab)) ylab = expression(W%.%m^{-2})
df = data.frame(row.names=timesteps)
df[["Balance"]] = EB$CanopyEnergyBalance$Ebalcan
df[["SWR abs."]] = EB$CanopyEnergyBalance$SWRcan
df[["LWR net"]] = EB$CanopyEnergyBalance$LWRcan
df[["Latent heat"]] = -EB$CanopyEnergyBalance$LEcan
df[["Convection can./atm."]] = -EB$CanopyEnergyBalance$Hcan
df[["Convection soil/can."]] = -EB$SoilEnergyBalance$Hcansoil
g<-.multiple_subday_dynamics(as.matrix(df), ylab=ylab, ylim = ylim)
return(g)
}
else if(type=="SoilEnergyBalance") {
if(is.null(ylab)) ylab = expression(W%.%m^{-2})
df = data.frame(row.names=timesteps)
df[["Balance"]] = EB$SoilEnergyBalance$Ebalsoil
df[["SWR abs."]] = EB$SoilEnergyBalance$SWRsoil
df[["LWR net"]] = EB$SoilEnergyBalance$LWRsoil
df[["Convection soil/can."]] = EB$SoilEnergyBalance$Hcansoil
df[["Latent heat"]] = -EB$SoilEnergyBalance$LEsoil
g<-.multiple_subday_dynamics(as.matrix(df), ylab=ylab, ylim = ylim)
return(g)
}
}
|
sens.analysis.aberrant.rank <-
function(cases.exposed,referents.exposed,case.rank,no.referents,Gamma){
mi=cases.exposed+referents.exposed;
Ji=no.referents+1;
pi.bar=mi/(mi+Gamma*(Ji-mi));
pi.double.bar=Gamma*mi/(Gamma*mi+(Ji-mi));
di=case.rank;
teststat=sum(di*cases.exposed);
lower.bound.pval=1-pnorm((teststat-sum(di*pi.bar))/sqrt(sum(di^2*pi.bar*(1-pi.bar))));
upper.bound.pval=1-pnorm((teststat-sum(di*pi.double.bar))/(sqrt(sum(di^2*pi.double.bar*(1-pi.double.bar)))));
list(lower.bound.pval=lower.bound.pval,upper.bound.pval=upper.bound.pval);
}
|
StubRegistry <- R6::R6Class(
"StubRegistry",
public = list(
request_stubs = list(),
global_stubs = list(),
print = function(x, ...) {
cat("<webmockr stub registry> ", sep = "\n")
cat(" Registered Stubs", sep = "\n")
for (i in seq_along(self$request_stubs)) {
cat(" ", self$request_stubs[[i]]$to_s(), "\n")
}
invisible(self$request_stubs)
},
register_stub = function(stub) {
self$request_stubs <- Filter(length, c(self$request_stubs, stub))
},
find_stubbed_request = function(req) {
stubs <- c(self$global_stubs, self$request_stubs)
stubs[self$request_stub_for(req)]
},
request_stub_for = function(request_signature) {
stubs <- c(self$global_stubs, self$request_stubs)
vapply(stubs, function(z) {
tmp <- RequestPattern$new(method = z$method, uri = z$uri,
uri_regex = z$uri_regex, query = z$query,
body = z$body, headers = z$request_headers)
tmp$matches(request_signature)
}, logical(1))
},
remove_request_stub = function(stub) {
xx <- vapply(self$request_stubs, function(x) x$to_s(), "")
if (stub$to_s() %in% xx) {
self$request_stubs <- self$request_stubs[-which(stub$to_s() %in% xx)]
} else {
stop(
"Request stub \n\n ",
stub$to_s(),
"\n\n is not registered.",
call. = FALSE
)
}
},
remove_all_request_stubs = function() {
self$request_stubs <- list()
},
is_registered = function(x) any(self$request_stub_for(x))
)
)
json_validate <- function(x) {
res <- tryCatch(jsonlite::validate(x), error = function(e) e)
if (inherits(res, "error")) return(FALSE)
res
}
make_body <- function(x) {
if (is.null(x)) return("")
if (inherits(x, "mock_file")) x <- x$payload
if (inherits(x, "form_file")) x <- unclass(x)
clzzes <- vapply(x, function(z) inherits(z, "form_file"), logical(1))
if (any(clzzes)) for(i in seq_along(x)) x[[i]] <- unclass(x[[i]])
if (json_validate(x))
body <- x
else
body <- jsonlite::toJSON(x, auto_unbox = TRUE)
paste0(" with body ", body)
}
make_headers <- function(x) {
if (is.null(x)) return("")
paste0(" with headers ", jsonlite::toJSON(x, auto_unbox = TRUE))
}
make_status <- function(x) {
if (is.null(x)) return("")
paste0(" with status ", as.character(x))
}
|
`clustering_w` <-
function (net, measure = "am") {
if (is.null(attributes(net)$tnet))
net <- as.tnet(net, type = "weighted one-mode tnet")
if (attributes(net)$tnet != "weighted one-mode tnet")
stop("Network not loaded properly")
if (length(measure) < 1)
stop("You must specify a measure")
for (i in 1:length(measure))
if(!(measure[i] %in% c("bi", "am", "gm", "ma", "mi")))
stop("You must specify a correct measure")
net <- net[order(net[, "i"], net[, "j"]), ]
dimnames(net)[[2]] <- c("i", "j", "wij")
tmp <- net
dimnames(tmp)[[2]] <- c("j", "k", "wjk")
tmp <- merge(net, tmp)
index <- tmp[, "i"] != tmp[, "k"]
tmp <- tmp[index, ]
tmp <- tmp[, c("i", "k", "wij", "wjk")]
dimnames(net)[[2]] <- c("i", "k", "wik")
net[, "wik"] <- TRUE
tmp <- merge(tmp, net, all.x = TRUE)
tmp[is.na(tmp[, "wik"]), "wik"] <- FALSE
index <- as.logical(tmp[, "wik"])
tmp <- tmp[, c("wij", "wjk")]
output <- rep(0, length(measure))
for (i in 1:length(measure)) {
if (measure[i] == "am") {
tvalues <- rowSums(tmp)
} else if (measure[i] == "gm") {
tvalues <- sqrt(tmp[, "wij"] * tmp[, "wjk"])
} else if (measure[i] == "ma") {
tvalues <- pmax.int(tmp[, "wij"], tmp[, "wjk"])
} else if (measure[i] == "mi") {
tvalues <- pmin.int(tmp[, "wij"], tmp[, "wjk"])
} else if (measure[i] == "bi") {
tvalues <- rep(1, nrow(tmp))
} else {
stop("measure incorrectly specified")
}
output[i] <- sum(tvalues[index])
output[i] <- output[i]/sum(tvalues)
}
names(output) <- measure
return(output)
}
|
context("compare results with outputs from StatXact")
dat <- read.csv("TESTDATA.csv")
n_test <- nrow(dat)
sas <- matrix(NA, n_test,2)
v1 <- matrix(NA, n_test,2)
sas_lst <- readLines("bscCI_test.lst")
offset_bscline <- 20
counter <- 1
ii <- 1
while (counter < length(sas_lst)) {
txt <- sas_lst[counter]
if (grepl("I=",txt)) {
txt_bsc <- sas_lst[counter+offset_bscline]
txt_bsc <- sub("\\(Blyth-Still-Casella\\) = \\(", "", txt_bsc)
txt_bsc <- sub("\\)", "", txt_bsc)
txt_bsc <- strsplit(txt_bsc, ",")[[1]]
txt_bsc <- trimws(txt_bsc)
sas[ii,] <- as.numeric(txt_bsc)
ii <- ii+1
counter <- counter+offset_bscline
}
else {
counter <- counter+1
}
}
system.time(
for (ii in 1:n_test) {
v1[ii,] <- bscCI(dat$n[ii], dat$x[ii], 0.95, digits = )
}
)
expect_equal(sas[,1], v1[,1], tolerance = 1e-4)
expect_equal(sas[,2], v1[,2], tolerance = 1e-4)
|
ggplot2loon.ggmatrix <- function(ggObj, ..., activeGeomLayers = integer(0),
layerId = NULL, scaleToFun = NULL,
ggGuides = FALSE, parent = NULL, pack = TRUE,
exteriorLabelProportion = 1/5,
canvasHeight = 700, canvasWidth = 850) {
args <- c(
list(activeGeomLayers = activeGeomLayers,
parent = parent,
ggGuides = ggGuides,
pack = pack,
exteriorLabelProportion = exteriorLabelProportion,
canvasHeight = canvasHeight,
canvasWidth = canvasWidth),
...
)
if(is.null(parent)) {
parent <- l_toplevel()
subwin <- loon::l_subwin(parent, 'ggplot')
tktitle(parent) <- paste("loon.ggplot", "--path:", subwin)
parent <- as.character(tcltk::tcl('frame', subwin))
}
nrow <- ggObj$nrow
ncol <- ggObj$ncol
byrow <- ggObj$byrow
ggplots <- ggObj$plots
nplots <- length(ggplots)
ggplots <- lapply(ggplots,
function(plot){
if(ggplot2::is.ggplot(plot)) {
plot
} else if(is.ggmatrix_plot_obj(plot)) {
plot$fn(ggObj$data, plot$mapping)
} else {
stop("not implemented so far", call. = FALSE)
}
}
)
title <- ggObj$title
xlab <- ggObj$xlab
ylab <- ggObj$ylab
xAxisLabels <- ggObj$xAxisLabels
yAxisLabels <- ggObj$yAxisLabels
showXAxisPlotLabels <- ggObj$showXAxisPlotLabels & !is.null(xAxisLabels)
showYAxisPlotLabels <- ggObj$showYAxisPlotLabels & !is.null(yAxisLabels)
start.xpos <- if(!is.null(ylab)) 1 else 0
start.ypos <- if(!is.null(title)){
ifelse(showXAxisPlotLabels, 2, 1)
} else {
ifelse(showXAxisPlotLabels, 1, 0)
}
ggLayout <- lapply(ggplots,
function(plot){
build <- ggplot_build(plot)
build$layout
})
span <- round(1/exteriorLabelProportion)
rowspan <- span
columnspan <- span
lapply(seq(nplots),
function(i){
plot <- ggplots[[i]]
layout <- ggLayout[[i]]$layout
rowspan <<- max(rowspan, span*layout$ROW)
columnspan <<- max(columnspan, span*layout$COL)
}
)
if(byrow) {
outside <- nrow
inside <- ncol
} else {
outside <- ncol
inside <- nrow
}
loonplots <- list()
names <- c()
for(i in 1:outside) {
for(j in 1:inside){
plotId <- (i - 1) * inside + j
if(plotId > nplots) {
break
} else {
args$parent <- parent
args$showLabels <- FALSE
args$pack <- FALSE
args$layerId <- layerId
args$scaleToFun <- scaleToFun
lp <- do.call(
ggplot2loon.ggplot,
c(list(ggObj = ggplots[[plotId]]), args)
)
loonplots[[plotId]] <- lp
names[plotId] <- if(byrow) paste0("x", i, "y", j) else paste0("x", j, "y", i)
if(dim(ggLayout[[plotId]]$layout)[1] == 1) {
tcltk::tkconfigure(paste(lp,'.canvas',sep=''),
width = canvasWidth/ncol,
height = canvasHeight/nrow)
row.start <- if(byrow) (i - 1) * rowspan + start.ypos else (j - 1) * rowspan + start.ypos
col.start <- if(byrow) (j - 1) * columnspan + start.xpos else (i - 1) * columnspan + start.xpos
tcltk::tkgrid(lp,
row = row.start,
column= col.start,
rowspan = rowspan,
columnspan = columnspan,
sticky = "nesw")
for (ii in col.start:(col.start + columnspan - 1)) {
tcltk::tkgrid.columnconfigure(parent, ii, weight=1)
}
for (ii in row.start:(row.start + rowspan - 1)) {
tcltk::tkgrid.rowconfigure(parent, ii, weight=1)
}
} else {
lplots <- lp$plots
layout <- ggLayout[[plotId]]$layout
numofROW <- max(layout$ROW)
numofCOL <- max(layout$COL)
lapply(lplots,
function(lplot){
tcltk::tkconfigure(paste(lplot,'.canvas',sep=''),
width = canvasWidth/ncol/numofCOL,
height = canvasHeight/nrow/numofROW)
}
)
showStrips <- ggObj$showStrips
layout <- ggLayout[[plotId]]$layout
FacetWrap <- is.FacetWrap(ggObj$facet)
FacetGrid <- is.FacetGrid(ggObj$facet)
fun <- if(FacetGrid) {
facet_grid_tkpack
} else if(FacetWrap) {
facet_wrap_tkpack
} else
stop("Not implemented yet. So far, only `facet_wrap()` and `facet_grid()` are allowed to split panels",
call. = FALSE)
do.call(
fun,
list(
plotId = plotId,
ggLayout = ggLayout,
showStrips = showStrips,
lplots = lplots,
numofROW = numofROW,
numofCOL = numofCOL,
byrow = byrow,
start.ypos = start.ypos,
start.xpos = start.xpos,
rowspan = rowspan,
columnspan = columnspan,
span = span,
rownames = rownames,
colnames = colnames,
i = i,
j = j,
ncol = ncol,
nrow = nrow,
parent = parent,
layout = layout
)
)
}
}
}
}
modify_loon_tk_labes(parent = parent,
title = title,
xlab = xlab,
ylab = ylab,
xAxisLabels = xAxisLabels,
yAxisLabels = yAxisLabels,
start.xpos = start.xpos,
start.ypos = start.ypos,
columnspan = columnspan,
rowspan = rowspan,
ncol = ncol,
nrow = nrow,
showXAxisPlotLabels = showXAxisPlotLabels,
showYAxisPlotLabels = showYAxisPlotLabels)
names(loonplots) <- names
structure(
loonplots,
class = c("l_ggmatrix", "l_compound", "loon")
)
}
modify_loon_tk_labes <- function(parent = tcltk::tktoplevel(),
title = NULL,
xlab = NULL,
ylab = NULL,
xAxisLabels = NULL,
yAxisLabels = NULL,
start.xpos = 1,
start.ypos = 1,
columnspan = 1,
rowspan = 1,
ncol = 1,
nrow = 1,
showXAxisPlotLabels = FALSE,
showYAxisPlotLabels = FALSE) {
if(!is.null(title)) {
tit <- as.character(
tcltk::tcl('label',
as.character(loon::l_subwin(parent,'title')),
text= title,
bg = set_tkLabel()$titleBackground,
fg = set_tkLabel()$titleForeground,
borderwidth = set_tkLabel()$titleBorderwidth,
relief = set_tkLabel()$titleRelief)
)
tcltk::tkconfigure(tit,
font = tcltk::tkfont.create(size = 16, weight="bold"))
tcltk::tkgrid(tit, row = 0, column = start.xpos,
rowspan = 1, columnspan = columnspan * ncol,
sticky="w")
}
if(showXAxisPlotLabels) {
for(i in 1:length(xAxisLabels)){
xAxisLabel <- as.character(
tcltk::tcl('label',
as.character(loon::l_subwin(parent,
paste0('xAxisLabel-', i))),
text= xAxisLabels[i],
bg = set_tkLabel()$xlabelBackground,
fg = set_tkLabel()$xlabelForeground,
borderwidth = set_tkLabel()$xlabelBorderwidth,
relief = set_tkLabel()$xlabelRelief)
)
tcltk::tkgrid(xAxisLabel,
row = start.ypos - 1,
column = start.xpos + (i - 1) * columnspan,
rowspan = 1,
columnspan = columnspan,
sticky="nesw")
}
}
if(showYAxisPlotLabels) {
for(i in 1:length(yAxisLabels)){
yAxisLabel <- as.character(
tcltk::tcl('label',
as.character(loon::l_subwin(parent,
paste0('yAxisLabel-', i))),
text= paste(paste0(" ", strsplit(yAxisLabels[i], "")[[1L]], " "),
collapse = "\n"),
bg = set_tkLabel()$ylabelBackground,
fg = set_tkLabel()$ylabelForeground,
borderwidth = set_tkLabel()$ylabelBorderwidth,
relief = set_tkLabel()$ylabelRelief)
)
tcltk::tkgrid(yAxisLabel,
row = start.ypos + (i - 1)* rowspan,
column = start.xpos + columnspan * ncol,
rowspan = rowspan,
columnspan = 1,
sticky="nesw")
}
}
if(!is.null(xlab)){
xlabel <- as.character(
tcltk::tcl('label',
as.character(loon::l_subwin(parent,'xlabel')),
text= xlab,
bg = set_tkLabel()$xlabelBackground,
fg = set_tkLabel()$xlabelForeground,
borderwidth = set_tkLabel()$xlabelBorderwidth,
relief = set_tkLabel()$xlabelRelief)
)
tcltk::tkgrid(xlabel,
row = rowspan * nrow + start.ypos,
column = start.xpos,
rowspan = 1,
columnspan = columnspan * ncol,
sticky="nesw")
}
if(!is.null(ylab)){
ylabel <- as.character(
tcltk::tcl('label',
as.character(loon::l_subwin(parent,'ylabel')),
text= paste(paste0(" ", strsplit(ylab, "")[[1]], " "), collapse = "\n"),
bg = set_tkLabel()$ylabelBackground,
fg = set_tkLabel()$ylabelForeground,
borderwidth = set_tkLabel()$ylabelBorderwidth,
relief = set_tkLabel()$ylabelRelief)
)
tcltk::tkgrid(ylabel,
row = start.ypos,
column = 0,
rowspan = rowspan * nrow,
columnspan = 1,
sticky="nesw")
}
tkpack(parent, fill="both", expand=TRUE)
}
|
prunemodes<-function(lst,modenum=1,num=NULL,exmalim=NULL,maxnum=NULL)
{
if (is.null(num)){
curmodenum<-moodilkm(lst$parent)$lkm
num<-curmodenum-modenum
}
go.on<-TRUE
nn<-1
while (go.on){
len<-length(lst$parent)
child.frekve<-matrix(0,len,1)
for (i in 1:len){
if (lst$parent[i]>0)
child.frekve[lst$parent[i]]<-child.frekve[lst$parent[i]]+1
}
ml<-moodilkm(lst$parent)
mode.list<-ml$modloc
roots.of.modes<-matrix(0,length(mode.list),1)
for (aa in 1:length(mode.list)){
node<-mode.list[aa]
while ((lst$parent[node]>0) && (child.frekve[lst$parent[node]]==1)){
node<-lst$parent[node]
}
roots.of.modes[aa]<-node
}
em<-excmas(lst)
or<-order(em[roots.of.modes])
smallest<-ml$modloc[or[1]]
if (nn==1) exma.of.modes<-em[roots.of.modes]
node<-smallest
emsmallest<-em[node]
if ((is.null(exmalim)) || ((!is.null(exmalim)) && (emsmallest<=exmalim))){
rem.list<-c(node)
while ((lst$parent[node]>0) && (child.frekve[lst$parent[node]]==1)){
node<-lst$parent[node]
rem.list<-c(rem.list,node)
}
for (kk in 1:length(rem.list)){
remo<-rem.list[kk]
for (ll in 1:length(lst$parent)){
if (lst$parent[ll]>remo) lst$parent[ll]<-lst$parent[ll]-1
}
lst$parent<-lst$parent[-remo]
}
lst$level<-lst$level[-rem.list]
lst$volume<-lst$volume[-rem.list]
lst$center<-lst$center[,-rem.list]
lst$distcenter<-lst$distcenter[,-rem.list]
lst$proba<-lst$proba[-rem.list]
lst$infopointer<-lst$infopointer[-rem.list]
}
else if ((!is.null(exmalim)) && (emsmallest>exmalim)) go.on<-FALSE
nn<-nn+1
if ((nn>num) && (is.null(exmalim))) go.on<-FALSE
if ((!is.null(maxnum)) && (nn>maxnum)) go.on<-FALSE
}
lst$exma.of.modes<-exma.of.modes
return(lst=lst)
}
|
summary_starts_uni_print_model_fit <- function(object, digits_fit=3)
{
if ( ! object$some_missings ){
cat("-----------------------------------------------------------------\n")
cat("Model Fit \n\n")
cat( paste0("Chi square test of model fit: \nChi2(df=", object$model_fit$df_sem,
")", " ", "=", " ", round( object$model_fit$chisq, digits_fit ),
", p", " ", "=", " ", round( object$model_fit$p_chisq, digits_fit ), "\n\n") )
cat( "SRMR", "=", round( object$model_fit$SRMR, digits_fit ), "\n" )
cat( "RMSEA", "=", round( object$model_fit$RMSEA, digits_fit ), "\n" )
}
}
|
library(rethinking)
library(animation)
library(ellipse)
curve( inv_logit(x) , from=-6 , to=6 , lwd=4 , col=2 , xlab="logit(p)" , ylab="p" , yaxt="n" )
axis(2,at=c(0,0.5,1),labels=c(0,0.5,1))
abline(h=0.5,lty=3)
dens( rnorm(1e4,0,1) , lwd=4 , col=4 , xlab="alpha" , xlim=c(-30,30) )
dens( inv_logit( rnorm(1e4,0,10) ) , lwd=4 , col=2 , xlab="probability of event" )
a <- rnorm(1e4,0,1.5)
b <- rnorm(1e4,0,0.5)
xseq <- seq(from=-3,to=3,len=100)
p <- sapply( xseq , function(x) inv_logit(a+b*x) )
plot( NULL , xlim=c(-2.5,2.5) , ylim=c(0,1) , xlab="x value" , ylab="probability" )
for ( i in 1:10 ) lines( xseq , p[i,] , lwd=3 , col=2 )
n_points <- 20
a_true <- (-1)
b_true <- 1
x <- runif(n_points,-2,2)
y <- rbern(n_points, inv_logit(a_true + b_true*x) )
xlims <- c(-2,2)
ylims <- c(0,1)
ellipse_hist <- list()
ani.record(reset=TRUE)
NSTEPS <- 10
for ( i in 0:n_points ) {
xmean <- mean( x[1:i] )
al <- alist(
y ~ dbern(p),
logit(p) <- a + b*x ,
a ~ dnorm(0,1),
b ~ dnorm(0,1)
)
if ( i > 0 ) {
dati <- list( x=x[1:i] , y=y[1:i] )
q <- quap( al , data=dati , dofit=TRUE )
pp <- extract.samples(q)
} else {
q <- quap( al , data=list(y=1,x=1) , dofit=FALSE )
pp <- as.data.frame(extract.prior(q))
}
a_link <- function(x) inv_logit( a + b*x )
the_text <- concat("n = ",i)
xseq <- seq(from=-2.2,to=2.2,length=50)
ahat <- mean(pp$a)
bhat <- mean(pp$b)
if ( i > 0 ) {
mu <- link( q , data=list(x=xseq) )
ci <- apply(mu,2,PI)
}
use_cols <- c(2, 4, 5, 6, 3)
the_pf <- function(samp,step) {
par(mfrow=c(1,2))
plot(NULL,xlim=c(-2.5,2.5),ylim=c(-2.5,2.5),bty="n",xlab="alpha",ylab="beta")
points( a_true , b_true , pch=3 , col=2 , lwd=3 )
pm <- colMeans(pp)
the_contour <- list()
for ( l in c(0.5,0.8,0.95) )
the_contour[[ concat(l) ]] <- ellipse(cov(pp),centre=pm,level=l)
if ( length(ellipse_hist) > 0 & samp==1 ) {
mixf <- (NSTEPS-step)/NSTEPS
for ( l in c(0.5,0.8,0.95) ) {
the_contour[[ concat(l) ]] <- (1-mixf)*the_contour[[concat(l)]] + mixf*ellipse_hist[[concat(l)]]
}
}
thelwd <- 2
if ( samp==1 ) thelwd <- thelwd + 4*(NSTEPS-step)/NSTEPS
for ( l in c(0.5,0.8,0.95) )
lines(the_contour[[concat(l)]],col=1,lwd=thelwd )
pb <- get("prior_blend",envir=parent.frame(n = 1))
points( pb[[1]][,step] , pb[[2]][,step] , lwd=2 , col=use_cols[1:3] , pch=16 , cex=1.6 )
plot(NULL,xlim=xlims,ylim=ylims,xlab="x value",ylab="probability of event",bty="n" ,yaxt="n")
axis(2,at=c(0,0.5,1),labels=c(0,0.5,1))
abline(h=0.5,lty=3)
if ( i > 0 ) {
points( x[1:i] , y[1:i] , pch=1 , lwd=3 , cex=1.2 )
}
mtext(the_text)
}
if ( i==0 ) r <- NULL
n_prior_samples <- 5
if ( i==0 | i==n_points ) n_prior_samples <- 20
r <- anim_prior_predictive( prior=pp , linkf=a_link , n=n_prior_samples , n_to_show=3 , n_steps=NSTEPS , ylim=ylims , ylab="probability of event" , xlim=xlims , pf=the_pf , do_reset=FALSE , start_from=r , accel=-0.5 , vel0=1 )
for ( l in c(0.5,0.8,0.95) )
ellipse_hist[[ concat(l) ]] <- ellipse(cov(pp),centre=colMeans(pp),level=l)
}
oopts = ani.options(interval = 0.02)
ani.replay()
a <- rnorm(1e4,0,1.5)
delta <- rnorm(1e4,0,1.5)
xseq <- seq(from=-3,to=3,len=100)
p <- sapply( xseq , function(x) inv_logit(a) )
plot( NULL , xlim=c(-2.5,2.5) , ylim=c(0,1) , xlab="x value" , ylab="probability" )
for ( i in 1:10 ) lines( xseq , p[i,] , lwd=3 , col=2 )
N <- 1000
G <- sample( 1:2 , size=N , replace=TRUE )
D <- rbern( N , ifelse( G==1 , 0.3 , 0.8 ) ) + 1
accept_rate <- matrix( c(0.1,0.3,0.1,0.3) , nrow=2 )
accept_rate <- matrix( c(0.05,0.2,0.1,0.3) , nrow=2 )
p <- sapply( 1:N , function(i) accept_rate[D[i],G[i]] )
A <- rbern( N , p )
table(G,D)
table(G,A)
table( G , A , D )
dat_sim <- list( A=A , D=D , G=G )
m1 <- ulam(
alist(
A ~ bernoulli(p),
logit(p) <- a[G],
a[G] ~ normal(0,1)
), data=dat_sim , chains=4 , cores=4 )
precis(m1,depth=2)
m2 <- ulam(
alist(
A ~ bernoulli(p),
logit(p) <- a[G,D],
matrix[G,D]:a ~ normal(0,1)
), data=dat_sim , chains=4 , cores=4 )
precis(m2,depth=3)
post1 <- extract.samples(m1)
G_contrast <- post1$a[,1] - post1$a[,2]
dens(G_contrast,lwd=4,col=2,xlab="Gender contrast")
post2 <- extract.samples(m2)
G_contrast_D1 <- post2$a[,1,1] - post2$a[,2,1]
G_contrast_D2 <- post2$a[,1,2] - post2$a[,2,2]
dens(G_contrast_D1,lwd=4,col=2,xlab="Gender contrast",ylim=c(0,2))
dens(G_contrast_D2,lwd=4,col=4,add=TRUE)
diff_prob <- inv_logit( post1$a[,1] ) - inv_logit( post1$a[,2] )
dens(diff_prob,lwd=4,col=2,xlab="Gender contrast (probability)")
diff_prob_D1 <- inv_logit(post2$a[,1,1]) - inv_logit(post2$a[,2,1])
diff_prob_D2 <- inv_logit(post2$a[,1,2]) - inv_logit(post2$a[,2,2])
dens(diff_prob_D1,lwd=4,col=2,xlab="Gender contrast (probability)",xlim=c(-0.15,0.15))
dens(diff_prob_D2,lwd=4,col=4,add=TRUE)
x <- as.data.frame(cbind( A=dat_sim$A , G=dat_sim$G , D=dat_sim$D ))
head(x,20)
dat_sim2 <- aggregate( A ~ G + D , dat_sim , sum )
dat_sim2$N <- aggregate( A ~ G + D , dat_sim , length )$A
m2_bin <- ulam(
alist(
A ~ binomial(N,p),
logit(p) <- a[G,D],
matrix[G,D]:a ~ normal(0,1)
), data=dat_sim2 , chains=4 , cores=4 )
precis(m2_bin,3)
data(UCBadmit)
d <- UCBadmit
dat <- list(
A = d$admit,
N = d$applications,
G = ifelse(d$applicant.gender=="female",1,2),
D = as.integer(d$dept)
)
mG <- ulam(
alist(
A ~ binomial(N,p),
logit(p) <- a[G],
a[G] ~ normal(0,1)
), data=dat , chains=4 , cores=4 )
precis(mG,2)
mGD <- ulam(
alist(
A ~ binomial(N,p),
logit(p) <- a[G,D],
matrix[G,D]:a ~ normal(0,1)
), data=dat , chains=4 , cores=4 )
precis(mGD,3)
traceplot(mGD)
trankplot(mGD)
post1 <- extract.samples(mG)
PrA_G1 <- inv_logit( post1$a[,1] )
PrA_G2 <- inv_logit( post1$a[,2] )
diff_prob <- PrA_G1 - PrA_G2
dens(diff_prob,lwd=4,col=2,xlab="Gender contrast (probability)")
post2 <- extract.samples(mGD)
PrA <- inv_logit( post2$a )
diff_prob_D_ <- sapply( 1:6 , function(i) PrA[,1,i] - PrA[,2,i] )
plot(NULL,xlim=c(-0.2,0.3),ylim=c(0,25),xlab="Gender contrast (probability)",ylab="Density")
for ( i in 1:6 ) dens( diff_prob_D_[,i] , lwd=4 , col=1+i , add=TRUE )
abline(v=0,lty=3)
total_apps <- sum(dat$N)
apps_per_dept <- sapply( 1:6 , function(i) sum(dat$N[dat$D==i]) )
p_G1 <- link(mGD,data=list(
D=rep(1:6,times=apps_per_dept),
N=rep(1,total_apps),
G=rep(1,total_apps)))
p_G2 <- link(mGD,data=list(
D=rep(1:6,times=apps_per_dept),
N=rep(1,total_apps),
G=rep(2,total_apps)))
dens( p_G1 - p_G2 , lwd=4 , col=2 , xlab="effect of gender perception" )
abline(v=0,lty=3)
w <- xtabs( dat$N ~ dat$D ) / sum(dat$N)
w <- w/max(w)
plot(NULL,xlim=c(-0.2,0.3),ylim=c(0,25),xlab="Gender contrast (probability)",ylab="Density")
for ( i in 1:6 ) dens( diff_prob_D_[,i] , lwd=2+8*w[i]^3 , col=1+i , add=TRUE )
abline(v=0,lty=3)
|
summary.incaix <- function(object, ...){
cat("\n INCA index :", format(object$Total, digits=4), "\n")
}
|
learnIQ1var.formula <-
function (formula, data=list(), treatName,
intNames, method="homo", cmObject, ...){
if (method=="homo"){
stop ("method must be hetero to use formula specification");
}
mf <- model.frame (formula=formula, data=data);
x <- model.matrix (attr (mf, "terms"), data=mf);
xNames = colnames (x);
findTxt = xNames %in% treatName;
txtCol = which (findTxt*1==1);
findFirst = xNames %in% paste (treatName, xNames, sep=":");
findLast = xNames %in% paste (xNames, treatName, sep=":");
if (length (findFirst) > 0){
txtFirst = which (findFirst*1==1);
}
else{
txtFirst = NULL;
}
if (length (findLast) > 0){
txtLast = which (findLast*1==1);
}
else{
txtLast = NULL;
}
intOrder = c (txtCol, txtFirst, txtLast);
numInt = length (intOrder);
H1CVar = cbind (x[,-c (1,intOrder)]);
A1 = x[,txtCol];
mainNames = colnames (H1CVar);
if (length (intNames) > 0){
ints = which (mainNames %in% intNames);
}
else{
ints = NULL;
}
est <- learnIQ1var.default (cmObject, H1CVar, ints, method, ...);
est$call <- match.call ();
est$formula <- formula;
est
}
|
find_formula <- function(x, verbose = TRUE, ...) {
UseMethod("find_formula")
}
formula_ok <- function(x, verbose = TRUE, ...) {
f <- find_formula(x, verbose = FALSE)
check_1 <- .check_formula_for_dollar(f, verbose = verbose)
check_2 <- .check_formula_for_T(f, verbose = verbose)
all(check_1 && check_2)
}
find_formula.default <- function(x, verbose = TRUE, ...) {
f <- tryCatch(list(conditional = stats::formula(x)), error = function(x) NULL)
.find_formula_return(f, verbose = verbose)
}
find_formula.list <- function(x, verbose = TRUE, ...) {
if (.obj_has_name(x, "gam")) {
if ("mer" %in% names(x)) {
f.random <- .fix_gamm4_random_effect(find_formula(x$mer)$random)
if (length(f.random) == 1) {
f.random <- f.random[[1]]
} else if (length(f.random) == 0) {
f.random <- NULL
}
}
x <- x$gam
class(x) <- c(class(x), c("glm", "lm"))
f <- .compact_list(list(conditional = stats::formula(x), random = f.random))
} else {
f <- find_formula.default(x, ...)
}
.find_formula_return(f, verbose = verbose)
}
find_formula.data.frame <- function(x, verbose = TRUE, ...) {
stop("A data frame is not a valid object for this function.")
}
find_formula.aovlist <- function(x, verbose = TRUE, ...) {
f <- attr(x, "terms", exact = TRUE)
attributes(f) <- NULL
.find_formula_return(list(conditional = f))
}
find_formula.anova <- function(x, verbose = TRUE, ...) {
stop("Formulas cannot be retrieved from anova() objects.")
}
find_formula.SemiParBIV <- function(x, verbose = TRUE, ...) {
f <- stats::formula(x, ...)
names(f) <- c("Equation 1", "Equation 2", "Equation 3")[1:length(f)]
f <- list(conditional = f)
.find_formula_return(f, verbose = verbose)
}
find_formula.gam <- function(x, verbose = TRUE, ...) {
f <- tryCatch(stats::formula(x), error = function(x) NULL)
if (!is.null(f)) {
if (is.list(f)) {
mi <- .gam_family(x)
if (!is.null(mi) && mi$family == "ziplss") {
f <- list(conditional = f[[1]], zero_inflated = f[[2]])
} else if (mi$family == "Multivariate normal") {
r <- lapply(f, function(.i) deparse(.i[[2]]))
f <- lapply(f, function(.i) list(conditional = .i))
names(f) <- r
attr(f, "is_mv") <- "1"
}
} else {
f <- list(conditional = f)
}
}
.find_formula_return(f, verbose = verbose)
}
find_formula.gamlss <- function(x, verbose = TRUE, ...) {
f <- tryCatch(
{
f.cond <- stats::as.formula(.get_fixed_effects(x$mu.formula))
f.random <- lapply(.findbars(x$mu.formula), function(.x) {
f <- .safe_deparse(.x)
stats::as.formula(paste0("~", f))
})
if (length(f.random) == 1) {
f.random <- f.random[[1]]
} else if (grepl("random\\((.*)\\)", .safe_deparse(f.cond))) {
re <- gsub("(.*)random\\((.*)\\)", "\\2", .safe_deparse(f.cond))
f.random <- stats::as.formula(paste0("~1|", re))
f.cond <- stats::update.formula(f.cond, stats::as.formula(paste0(". ~ . - random(", re, ")")))
}
.compact_list(list(
conditional = f.cond,
random = f.random,
sigma = x$sigma.formula,
nu = x$nu.formula,
tau = x$tau.formula
))
},
error = function(x) {
NULL
}
)
.find_formula_return(f, verbose = verbose)
}
find_formula.bamlss <- function(x, verbose = TRUE, ...) {
f <- stats::formula(x)
if (!is.null(f$mu)) {
f.cond <- f$mu$formula
} else if (!is.null(f$pi)) {
f.cond <- f$pi$formula
}
if (!is.null(f$sigma)) {
f.sigma <- stats::as.formula(paste0("~", as.character(f$sigma$formula)[3]))
} else if (!is.null(f$pi)) {
f.sigma <- NULL
}
f <- .compact_list(list(
conditional = stats::as.formula(.safe_deparse(f.cond)),
sigma = f.sigma
))
.find_formula_return(f, verbose = verbose)
}
find_formula.gamm <- function(x, verbose = TRUE, ...) {
f <- .compact_list(find_formula(x$gam))
random <- .fix_gamm_random_effect(names(x$lme$groups))
if (length(random) == 0) {
f.random <- NULL
} else if (length(random) > 1) {
f.random <- lapply(random, function(r) stats::as.formula(paste0("~1|", r)))
} else {
f.random <- stats::as.formula(paste0("~1|", random))
}
.find_formula_return(.compact_list(c(f, list(random = f.random))))
}
find_formula.rma <- function(x, verbose = TRUE, ...) {
NULL
}
find_formula.metaplus <- find_formula.rma
find_formula.meta_random <- find_formula.rma
find_formula.meta_fixed <- find_formula.rma
find_formula.meta_bma <- find_formula.rma
find_formula.censReg <- find_formula.default
find_formula.maxLik <- find_formula.default
find_formula.maxim <- find_formula.default
find_formula.systemfit <- function(x, verbose = TRUE, ...) {
f <- stats::formula(x)
l <- lapply(f, function(i) {
list(conditional = i)
})
f <- .compact_list(l)
if (length(f) > 1) {
attr(f, "is_mv") <- "1"
}
.find_formula_return(f)
}
find_formula.selection <- function(x, verbose = TRUE, ...) {
model_call <- parse(text = deparse(get_call(x)))[[1]]
f <- list(conditional = list(
selection = stats::as.formula(model_call$selection),
outcome = stats::as.formula(model_call$outcome)
))
attr(f, "two_stage") <- TRUE
.find_formula_return(f, verbose = verbose)
}
find_formula.svy_vglm <- function(x, verbose = TRUE, ...) {
find_formula(x$fit)
}
find_formula.mjoint <- function(x, verbose = TRUE, ...) {
s <- summary(x)
f.cond <- s$formLongFixed
if (length(s$formLongFixed) == 1) {
names(f.cond) <- "conditional"
} else {
names(f.cond) <- paste0("conditional", 1:length(f.cond))
}
f.rand <- s$formLongRandom
if (length(s$formLongRandom) == 1) {
names(f.rand) <- "random"
} else {
names(f.rand) <- paste0("random", 1:length(f.rand))
}
f <- c(f.cond, f.rand, list(survival = s$formSurv))
.find_formula_return(f, verbose = verbose)
}
find_formula.mvord <- function(x, verbose = TRUE, ...) {
f <- list(conditional = x$rho$formula)
.find_formula_return(f, verbose = verbose)
}
find_formula.btergm <- function(x, verbose = TRUE, ...) {
f <- list(conditional = x@formula)
.find_formula_return(f, verbose = verbose)
}
find_formula.mediate <- function(x, verbose = TRUE, ...) {
f <- list(
mediator = find_formula(x$model.m),
outcome = find_formula(x$model.y)
)
.find_formula_return(f, verbose = verbose)
}
find_formula.averaging <- function(x, verbose = TRUE, ...) {
f_random <- tryCatch(
{
models <- attributes(x)$modelList
find_formula(models[[1]])
},
error = function(e) {
NULL
}
)
f <- find_formula.default(x)
if (!.obj_has_name(f, "random") && .obj_has_name(f_random, "random")) {
f$random <- f_random$random
}
.find_formula_return(f, verbose = verbose)
}
find_formula.glht <- function(x, verbose = TRUE, ...) {
.find_formula_return(list(conditional = stats::formula(x$model)))
}
find_formula.joint <- function(x, verbose = TRUE, ...) {
f <- stats::formula(x)
.find_formula_return(list(conditional = f$lformula, survival = f$sformula))
}
find_formula.betareg <- function(x, verbose = TRUE, ...) {
f <- stats::formula(x)
fs <- .safe_deparse(f)
if (grepl("|", fs, fixed = TRUE)) {
fs <- trimws(unlist(strsplit(fs, "|", fixed = TRUE)))
f <- list(
conditional = stats::as.formula(fs[1]),
precision = stats::as.formula(paste0("~", fs[2]))
)
} else {
f <- list(conditional = f)
}
.find_formula_return(f, verbose = verbose)
}
find_formula.afex_aov <- function(x, verbose = TRUE, ...) {
if (length(attr(x, "within")) == 0L) {
fff <- find_formula(x$lm, verbose = verbose, ...)
fff$conditional[2] <- call(attr(x, "dv"))
fff
} else {
d <- get_data(x, shape = "long")
dv <- attr(x, "dv")
id <- attr(x, "id")
within <- names(attr(x, "within"))
within <- paste0(within, collapse = "*")
within <- paste0("(", within, ")")
e <- paste0("Error(", id, "/", within, ")")
between <- names(attr(x, "between"))
if (length(between) > 0L) {
tempf <- find_formula(x$lm)[[1]]
between <- as.character(tempf)[3]
between <- paste0("(", between, ")")
within <- paste0(c(within, between), collapse = "*")
}
out <- list(conditional = stats::formula(paste0(dv, "~", within, "+", e)))
class(out) <- c("insight_formula", "list")
out
}
}
find_formula.mira <- function(x, verbose = TRUE, ...) {
.find_formula_return(find_formula(x$analyses[[1]]))
}
find_formula.gee <- function(x, verbose = TRUE, ...) {
f <- tryCatch(
{
id <- parse(text = .safe_deparse(x$call))[[1]]$id
list(
conditional = stats::formula(x),
random = stats::as.formula(paste0("~", id))
)
},
error = function(x) {
NULL
}
)
.find_formula_return(f, verbose = verbose)
}
find_formula.MANOVA <- function(x, verbose = TRUE, ...) {
f <- .compact_list(list(
conditional = x$input$formula,
random = stats::as.formula(paste0("~", x$input$subject))
))
.find_formula_return(f, verbose = verbose)
}
find_formula.RM <- find_formula.MANOVA
find_formula.gls <- function(x, verbose = TRUE, ...) {
fcorr <- x$call$correlation
if (!is.null(fcorr)) {
f_corr <- parse(text = .safe_deparse(x$call$correlation))[[1]]
} else {
f_corr <- NULL
}
if (is.symbol(f_corr)) {
f_corr <- paste("~", .safe_deparse(f_corr))
} else {
f_corr <- f_corr$form
}
l <- tryCatch(
{
list(
conditional = stats::formula(x),
correlation = stats::as.formula(f_corr)
)
},
error = function(x) {
NULL
}
)
.find_formula_return(.compact_list(l))
}
find_formula.LORgee <- function(x, verbose = TRUE, ...) {
f <- tryCatch(
{
id <- parse(text = .safe_deparse(x$call))[[1]]$id
list(
conditional = stats::formula(x),
random = stats::as.formula(paste0("~", id))
)
},
error = function(x) {
NULL
}
)
.find_formula_return(f, verbose = verbose)
}
find_formula.cglm <- function(x, verbose = TRUE, ...) {
f <- tryCatch(
{
id <- parse(text = .safe_deparse(x$call))[[1]]$id
list(
conditional = stats::formula(x),
random = stats::as.formula(paste0("~", id))
)
},
error = function(x) {
NULL
}
)
.find_formula_return(f, verbose = verbose)
}
find_formula.betamfx <- find_formula.betareg
find_formula.betaor <- find_formula.betareg
find_formula.logitmfx <- function(x, verbose = TRUE, ...) {
find_formula.default(x$fit, ...)
}
find_formula.poissonmfx <- find_formula.logitmfx
find_formula.negbinmfx <- find_formula.logitmfx
find_formula.logitor <- find_formula.logitmfx
find_formula.negbinirr <- find_formula.logitmfx
find_formula.poissonirr <- find_formula.logitmfx
find_formula.probitmfx <- find_formula.logitmfx
find_formula.ivreg <- function(x, verbose = TRUE, ...) {
f <- tryCatch(
{
f <- .safe_deparse(stats::formula(x))
cond <- .trim(substr(f, start = 0, stop = regexpr(pattern = "\\|", f) - 1))
instr <- .trim(substr(f, regexpr(pattern = "\\|", f) + 1, stop = 10000L))
list(
conditional = stats::as.formula(cond),
instruments = stats::as.formula(paste0("~", instr))
)
},
error = function(x) {
NULL
}
)
.find_formula_return(f, verbose = verbose)
}
find_formula.iv_robust <- find_formula.ivreg
find_formula.ivFixed <- find_formula.ivreg
find_formula.plm <- function(x, verbose = TRUE, ...) {
f <- tryCatch(
{
f <- .safe_deparse(stats::formula(x))
bar_pos <- regexpr(pattern = "\\|", f)
if (bar_pos == -1) {
stop_pos <- nchar(f) + 1
} else {
stop_pos <- bar_pos
}
cond <- .trim(substr(f, start = 0, stop = stop_pos - 1))
instr <- .trim(substr(f, stop_pos + 1, stop = 10000L))
if (.is_empty_string(instr)) {
list(conditional = stats::as.formula(cond))
} else {
instr <- gsub("(^\\.\\s*)(.*)", "\\2", instr)
list(
conditional = stats::as.formula(cond),
instruments = stats::as.formula(paste0("~", instr))
)
}
},
error = function(x) {
NULL
}
)
.find_formula_return(f, verbose = verbose)
}
find_formula.pgmm <- find_formula.plm
find_formula.felm <- function(x, verbose = TRUE, ...) {
f <- .safe_deparse(stats::formula(x))
f_parts <- .trim(unlist(strsplit(f, "(?<!\\()\\|(?![\\w\\s\\+\\(~]*[\\)])", perl = TRUE)))
f.cond <- f_parts[1]
if (length(f_parts) > 1) {
f.rand <- paste0("~", f_parts[2])
} else {
f.rand <- NULL
}
if (length(f_parts) > 2) {
f.instr <- paste0("~", f_parts[3])
} else {
f.instr <- NULL
}
if (length(f_parts) > 3) {
f.clus <- paste0("~", f_parts[4])
} else {
f.clus <- NULL
}
f <- .compact_list(list(
conditional = stats::as.formula(f.cond),
random = stats::as.formula(f.rand),
instruments = stats::as.formula(f.instr),
cluster = stats::as.formula(f.clus)
))
.find_formula_return(f, verbose = verbose)
}
find_formula.mhurdle <- function(x, verbose = TRUE, ...) {
f <- .safe_deparse(stats::formula(x)[[3]])
f_parts <- .trim(unlist(strsplit(f, "(?<!\\()\\|(?![\\w\\s\\+\\(~]*[\\)])", perl = TRUE)))
f.zi <- paste0("~", f_parts[1])
if (length(f_parts) > 1) {
f.cond <- paste0(.safe_deparse(stats::formula(x)[[2]]), "~", f_parts[2])
} else {
f.cond <- NULL
}
if (length(f_parts) > 2) {
f.ip <- paste0("~", f_parts[3])
} else {
f.ip <- NULL
}
if (f.zi == "~0") {
f.zi <- NULL
}
if (f.ip == "~0") {
f.ip <- NULL
}
f <- .compact_list(list(
conditional = stats::as.formula(f.cond),
zero_inflated = stats::as.formula(f.zi),
infrequent_purchase = stats::as.formula(f.ip)
))
.find_formula_return(f, verbose = verbose)
}
find_formula.feglm <- function(x, verbose = TRUE, ...) {
f <- .safe_deparse(stats::formula(x))
f_parts <- unlist(strsplit(f, "(?<!\\()\\|(?![\\w\\s\\+\\(~]*[\\)])", perl = TRUE))
f.cond <- .trim(f_parts[1])
if (length(f_parts) > 1) {
f.instr <- paste0("~", .trim(f_parts[2]))
} else {
f.instr <- NULL
}
if (length(f_parts) > 2) {
f.clus <- paste0("~", .trim(f_parts[3]))
} else {
f.clus <- NULL
}
f <- .compact_list(list(
conditional = stats::as.formula(f.cond),
instruments = stats::as.formula(f.instr),
cluster = stats::as.formula(f.clus)
))
.find_formula_return(f, verbose = verbose)
}
find_formula.fixest <- function(x, verbose = TRUE, ...) {
f <- .safe_deparse(stats::formula(x))
f_parts <- unlist(strsplit(f, "(?<!\\()\\|(?![\\w\\s\\+\\(~]*[\\)])", perl = TRUE))
f.cond <- .trim(f_parts[1])
if (length(f_parts) > 1) {
f.clus <- paste0("~", .trim(f_parts[2]))
} else {
f.clus <- parse(text = deparse(x$call))[[1]]$fixef
if (!is.null(f.clus)) {
f.clus <- paste("~", paste(eval(f.clus), collapse = " + "))
}
}
f <- .compact_list(list(
conditional = stats::as.formula(f.cond),
cluster = stats::as.formula(f.clus)
))
.find_formula_return(f, verbose = verbose)
}
find_formula.feis <- function(x, verbose = TRUE, ...) {
f <- .safe_deparse(stats::formula(x))
f_parts <- unlist(strsplit(f, "(?<!\\()\\|(?![\\w\\s\\+\\(~]*[\\)])", perl = TRUE))
f.cond <- .trim(f_parts[1])
id <- parse(text = .safe_deparse(x$call))[[1]]$id
if (length(f_parts) > 1) {
f.slopes <- paste0("~", .trim(f_parts[2]))
} else {
f.slopes <- NULL
}
f <- .compact_list(list(
conditional = stats::as.formula(f.cond),
slopes = stats::as.formula(f.slopes),
random = stats::as.formula(paste0("~", id))
))
.find_formula_return(f, verbose = verbose)
}
find_formula.bife <- function(x, verbose = TRUE, ...) {
f <- .safe_deparse(stats::formula(x))
f_parts <- unlist(strsplit(f, "|", fixed = TRUE))
f.cond <- .trim(f_parts[1])
if (length(f_parts) > 1) {
f.rand <- paste0("~", .trim(f_parts[2]))
} else {
f.rand <- NULL
}
f <- .compact_list(list(
conditional = stats::as.formula(f.cond),
random = stats::as.formula(f.rand)
))
.find_formula_return(f, verbose = verbose)
}
find_formula.ivprobit <- function(x, verbose = TRUE, ...) {
NULL
}
find_formula.wbm <- function(x, verbose = TRUE, ...) {
f <- .safe_deparse(stats::formula(x))
f_parts <- unlist(strsplit(f, "(?<!\\()\\|(?![\\w\\s\\+\\(~]*[\\)])", perl = TRUE))
f.cond <- .trim(f_parts[1])
if (length(f_parts) > 1) {
f.instr <- paste0("~", .trim(f_parts[2]))
} else {
f.instr <- NULL
}
if (length(f_parts) > 2) {
f_parts[3] <- .trim(f_parts[3])
if (grepl("\\((.+)\\|(.+)\\)", f_parts[3])) {
if (length(gregexpr("\\|", f_parts[3])[[1]]) > 1) {
f.rand <- .findbars(stats::as.formula(paste("~", f_parts[3])))
} else {
f.rand <- gsub("(\\(|\\))", "", f_parts[3])
f.rand <- stats::as.formula(paste0("~", .trim(f.rand)))
}
f.clint <- NULL
} else {
f.clint <- f_parts[3]
f.clint <- paste0("~", .trim(f.clint))
f.rand <- NULL
}
} else {
f.rand <- NULL
f.clint <- NULL
}
f <- .compact_list(list(
conditional = stats::as.formula(f.cond),
instruments = stats::as.formula(f.instr),
interactions = stats::as.formula(f.clint),
random = f.rand
))
.find_formula_return(f, verbose = verbose)
}
find_formula.wbgee <- find_formula.wbm
find_formula.glimML <- function(x, verbose = TRUE, ...) {
f <- .compact_list(list(
conditional = x@formula,
random = x@random
))
.find_formula_return(f, verbose = verbose)
}
find_formula.tobit <- function(x, verbose = TRUE, ...) {
f <- tryCatch(
list(conditional = parse(text = .safe_deparse(x$call))[[1]]$formula),
error = function(x) NULL
)
.find_formula_return(f, verbose = verbose)
}
find_formula.hurdle <- function(x, verbose = TRUE, ...) {
.zeroinf_formula(x, verbose = verbose)
}
find_formula.zeroinfl <- find_formula.hurdle
find_formula.zerotrunc <- find_formula.hurdle
find_formula.zcpglm <- function(x, verbose = TRUE, ...) {
.zeroinf_formula(x, separator = "\\|\\|", verbose = verbose)
}
find_formula.clmm2 <- function(x, verbose = TRUE, ...) {
f <- .compact_list(list(
conditional = stats::as.formula(.safe_deparse(attr(x$location, "terms", exact = TRUE))),
scale = stats::as.formula(.safe_deparse(attr(x$scale, "terms", exact = TRUE))),
random = stats::as.formula(paste0("~", parse(text = .safe_deparse(x$call))[[1]]$random))
))
.find_formula_return(f, verbose = verbose)
}
find_formula.clm2 <- function(x, verbose = TRUE, ...) {
f <- .compact_list(list(
conditional = stats::formula(attr(x$location, "terms", exact = TRUE)),
scale = stats::formula(attr(x$scale, "terms", exact = TRUE))
))
.find_formula_return(f, verbose = verbose)
}
find_formula.DirichletRegModel <- function(x, verbose = TRUE, ...) {
f <- .safe_deparse(stats::formula(x))
f_parts <- unlist(strsplit(f, "(?<!\\()\\|(?![\\w\\s\\+\\(~]*[\\)])", perl = TRUE))
f.cond <- .trim(f_parts[1])
if (length(f_parts) > 1) {
f.cond2 <- paste0("~", .trim(f_parts[2]))
} else {
f.cond2 <- NULL
}
if (length(f_parts) > 2) {
f.cond3 <- paste0("~", .trim(f_parts[3]))
} else {
f.cond3 <- NULL
}
out <- .compact_list(list(
conditional = stats::as.formula(f.cond),
conditional2 = stats::as.formula(f.cond2),
conditional3 = stats::as.formula(f.cond3)
))
if (x$parametrization == "alternative") {
if (length(out) == 2) names(out)[2] <- "precision"
}
.find_formula_return(out)
}
find_formula.glmmTMB <- function(x, verbose = TRUE, ...) {
f.cond <- stats::formula(x)
f.zi <- stats::formula(x, component = "zi")
f.disp <- stats::formula(x, component = "disp")
if (identical(.safe_deparse(f.zi), "~0") ||
identical(.safe_deparse(f.zi), "~1")) {
f.zi <- NULL
}
if (identical(.safe_deparse(f.disp), "~0") ||
identical(.safe_deparse(f.disp), "~1")) {
f.disp <- NULL
}
f.random <- lapply(.findbars(f.cond), function(.x) {
f <- .safe_deparse(.x)
stats::as.formula(paste0("~", f))
})
if (length(f.random) == 1) {
f.random <- f.random[[1]]
}
f.zirandom <- lapply(.findbars(f.zi), function(.x) {
f <- .safe_deparse(.x)
if (f == "NULL") {
return(NULL)
}
stats::as.formula(paste0("~", f))
})
if (length(f.zirandom) == 1) {
f.zirandom <- f.zirandom[[1]]
}
f.cond <- stats::as.formula(.get_fixed_effects(f.cond))
if (!is.null(f.zi)) f.zi <- stats::as.formula(.get_fixed_effects(f.zi))
f <- .compact_list(list(
conditional = f.cond,
random = f.random,
zero_inflated = f.zi,
zero_inflated_random = f.zirandom,
dispersion = f.disp
))
.find_formula_return(f, verbose = verbose)
}
find_formula.nlmerMod <- function(x, verbose = TRUE, ...) {
f.random <- lapply(.findbars(stats::formula(x)), function(.x) {
f <- .safe_deparse(.x)
stats::as.formula(paste0("~", f))
})
if (length(f.random) == 1) {
f.random <- f.random[[1]]
}
f.cond <- .nobars(stats::as.formula(gsub("(.*)(~)(.*)~(.*)", "\\1\\2\\4", .safe_deparse(stats::formula(x)))))
f.nonlin <- stats::as.formula(paste0("~", .trim(gsub("(.*)~(.*)~(.*)", "\\2", .safe_deparse(stats::formula(x))))))
f <- .compact_list(list(
conditional = f.cond,
nonlinear = f.nonlin,
random = f.random
))
.find_formula_return(f, verbose = verbose)
}
find_formula.merMod <- function(x, verbose = TRUE, ...) {
f.cond <- stats::formula(x)
f.random <- lapply(.findbars(f.cond), function(.x) {
f <- .safe_deparse(.x)
stats::as.formula(paste0("~", f))
})
if (length(f.random) == 1) {
f.random <- f.random[[1]]
}
f.cond <- stats::as.formula(.get_fixed_effects(f.cond))
f <- .compact_list(list(conditional = f.cond, random = f.random))
.find_formula_return(f, verbose = verbose)
}
find_formula.rlmerMod <- find_formula.merMod
find_formula.cpglmm <- find_formula.merMod
find_formula.glmmadmb <- find_formula.merMod
find_formula.mixed <- find_formula.merMod
find_formula.clmm <- find_formula.merMod
find_formula.cgamm <- find_formula.merMod
find_formula.coxme <- find_formula.merMod
find_formula.HLfit <- find_formula.merMod
find_formula.merModList <- function(x, verbose = TRUE, ...) {
find_formula(x[[1]], ...)
}
find_formula.sem <- function(x, verbose = TRUE, ...) {
if (!.is_semLme(x)) {
return(NULL)
}
f.cond <- x$formula
f.random <- lapply(.findbars(f.cond), function(.x) {
f <- .safe_deparse(.x)
stats::as.formula(paste0("~", f))
})
if (length(f.random) == 1) {
f.random <- f.random[[1]]
}
f.cond <- stats::as.formula(.get_fixed_effects(f.cond))
f <- .compact_list(list(conditional = f.cond, random = f.random))
.find_formula_return(f, verbose = verbose)
}
find_formula.lme <- function(x, verbose = TRUE, ...) {
fm <- eval(x$call$fixed)
fmr <- eval(x$call$random)
fcorr <- x$call$correlation
if (!is.null(fcorr)) {
fc <- parse(text = .safe_deparse(x$call$correlation))[[1]]$form
} else {
fc <- NULL
}
f <- .compact_list(list(
conditional = fm,
random = fmr,
correlation = stats::as.formula(fc)
))
.find_formula_return(f, verbose = verbose)
}
find_formula.lqmm <- function(x, verbose = TRUE, ...) {
fm <- eval(x$call$fixed)
fmr <- .safe_deparse(x$call$random)
fmg <- .safe_deparse(x$call$group)
f <- .compact_list(list(
conditional = fm,
random = stats::as.formula(paste0(fmr, "|", fmg))
))
.find_formula_return(f, verbose = verbose)
}
find_formula.mixor <- function(x, verbose = TRUE, ...) {
fm <- x$call$formula
f_id <- deparse(x$call$id)
f_rs <- x$call$which.random.slope
if (!is.null(f_rs)) {
f_rs <- trimws(unlist(strsplit(.safe_deparse(x$call$formula[[3]]), "\\+")))[f_rs]
fmr <- paste(f_rs, "|", f_id)
} else {
fmr <- f_id
}
fmr <- stats::as.formula(paste("~", fmr))
f <- .compact_list(list(
conditional = fm,
random = fmr
))
.find_formula_return(f, verbose = verbose)
}
find_formula.MixMod <- function(x, verbose = TRUE, ...) {
f.cond <- stats::formula(x)
f.zi <- stats::formula(x, type = "zi_fixed")
f.random <- stats::formula(x, type = "random")
f.zirandom <- stats::formula(x, type = "zi_random")
f <- .compact_list(list(
conditional = f.cond,
random = f.random,
zero_inflated = f.zi,
zero_inflated_random = f.zirandom
))
.find_formula_return(f, verbose = verbose)
}
find_formula.BBmm <- function(x, verbose = TRUE, ...) {
f.cond <- parse(text = .safe_deparse(x$call))[[1]]$fixed.formula
f.rand <- parse(text = .safe_deparse(x$call))[[1]]$random.formula
f <- .compact_list(list(
conditional = stats::as.formula(f.cond),
random = stats::as.formula(f.rand)
))
.find_formula_return(f, verbose = verbose)
}
find_formula.mmclogit <- function(x, verbose = TRUE, ...) {
f <- tryCatch(
{
list(
conditional = stats::formula(x),
random = stats::as.formula(parse(text = .safe_deparse(x$call))[[1]]$random)
)
},
error = function(x) {
NULL
}
)
.find_formula_return(f, verbose = verbose)
}
find_formula.glmm <- function(x, verbose = TRUE, ...) {
f.cond <- stats::as.formula(x$fixedcall)
f.random <- lapply(x$randcall, function(.x) {
av <- all.vars(.x)
stats::as.formula(paste0("~1|", av[length(av)]))
})
if (length(f.random) == 1) {
f.random <- f.random[[1]]
}
f <- .compact_list(list(conditional = f.cond, random = f.random))
.find_formula_return(f, verbose = verbose)
}
find_formula.BGGM <- function(x, verbose = TRUE, ...) {
list(conditional = x$formula)
}
find_formula.mcmc.list <- function(x, verbose = TRUE, ...) {
NULL
}
find_formula.stanreg <- function(x, verbose = TRUE, ...) {
if (inherits(x, "nlmerMod")) {
find_formula.nlmerMod(x, ...)
} else {
f.cond <- stats::formula(x)
if (inherits(x, "gamm4")) {
f.random <- tryCatch(
{
lapply(.findbars(stats::formula(x$glmod)), function(.x) {
f <- .safe_deparse(.x)
stats::as.formula(paste0("~", f))
})
},
error = function(e) {
NULL
}
)
} else {
f.random <- lapply(.findbars(f.cond), function(.x) {
f <- .safe_deparse(.x)
stats::as.formula(paste0("~", f))
})
}
if (length(f.random) == 1) {
f.random <- f.random[[1]]
}
f.cond <- stats::as.formula(.get_fixed_effects(f.cond))
f <- .compact_list(list(conditional = f.cond, random = f.random))
.find_formula_return(f, verbose = verbose)
}
}
find_formula.brmsfit <- function(x, verbose = TRUE, ...) {
f <- stats::formula(x)
if (.obj_has_name(f, "forms")) {
mv_formula <- lapply(f$forms, .get_brms_formula)
attr(mv_formula, "is_mv") <- "1"
f <- mv_formula
} else {
f <- .get_brms_formula(f)
}
.find_formula_return(f, verbose = verbose)
}
find_formula.stanmvreg <- function(x, verbose = TRUE, ...) {
f <- stats::formula(x)
mv_formula <- lapply(f, .get_stanmv_formula)
attr(mv_formula, "is_mv") <- "1"
.find_formula_return(mv_formula)
}
find_formula.MCMCglmm <- function(x, verbose = TRUE, ...) {
fm <- x$Fixed$formula
fmr <- x$Random$formula
f <- .compact_list(list(conditional = fm, random = fmr))
.find_formula_return(f, verbose = verbose)
}
find_formula.BFBayesFactor <- function(x, verbose = TRUE, ...) {
if (.classify_BFBayesFactor(x) == "linear") {
fcond <- utils::tail(x@numerator, 1)[[1]]@identifier$formula
dt <- utils::tail(x@numerator, 1)[[1]]@dataTypes
frand <- names(dt)[which(dt == "random")]
if (!.is_empty_object(frand)) {
f.random <- stats::as.formula(paste0("~", paste(frand, collapse = " + ")))
for (i in frand) {
fcond <- sub(i, "", fcond, fixed = TRUE)
}
while (grepl("\\+$", .trim(fcond))) {
fcond <- gsub("(.*)\\+$", "\\1", .trim(fcond))
}
if (grepl("~$", .trim(fcond))) {
fcond <- paste(fcond, "1")
}
f.cond <- stats::as.formula(.trim(fcond))
} else {
f.random <- NULL
f.cond <- stats::as.formula(fcond)
}
} else if (.classify_BFBayesFactor(x) %in% c("ttest1", "ttest2")) {
f.cond <- tryCatch(stats::as.formula(x@numerator[[1]]@identifier$formula),
error = function(e) NULL)
f.random <- NULL
} else {
return(NULL)
}
f <- .compact_list(list(
conditional = f.cond,
random = f.random
))
.find_formula_return(f, verbose = verbose)
}
find_formula.model_fit <- function(x, verbose = TRUE, ...) {
find_formula(x$fit, ...)
}
.get_brms_formula <- function(f) {
f_cond <- f$formula
f_random <- lapply(.findbars(f_cond), function(.x) {
fm <- .safe_deparse(.x)
stats::as.formula(paste0("~", fm))
})
if (length(f_random) == 1) {
f_random <- f_random[[1]]
}
f_cond <- stats::as.formula(.get_fixed_effects(f_cond))
f_zi <- f$pforms$zi
f_zirandom <- NULL
f_sigma <- f$pforms$sigma
f_mu <- f$pforms$mu
f_nu <- f$pforms$nu
f_shape <- f$pforms$shape
f_beta <- f$pforms$beta
f_phi <- f$pforms$phi
f_hu <- f$pforms$hu
f_ndt <- f$pforms$ndt
f_zoi <- f$pforms$zoi
f_coi <- f$pforms$coi
f_kappa <- f$pforms$kappa
f_bias <- f$pforms$bias
f_bs <- f$pforms$bs
f_sigmarandom <- NULL
f_betarandom <- NULL
if (!.is_empty_object(f_zi)) {
f_zirandom <- lapply(.findbars(f_zi), function(.x) {
f <- .safe_deparse(.x)
stats::as.formula(paste0("~", f))
})
if (length(f_zirandom) == 1) {
f_zirandom <- f_zirandom[[1]]
}
f_zi <- stats::as.formula(paste0("~", .safe_deparse(f_zi[[3L]])))
f_zi <- stats::as.formula(.get_fixed_effects(f_zi))
}
if (!.is_empty_object(f_sigma)) {
f_sigmarandom <- lapply(.findbars(f_sigma), function(.x) {
f <- .safe_deparse(.x)
stats::as.formula(paste0("~", f))
})
if (length(f_sigmarandom) == 1) {
f_sigmarandom <- f_sigmarandom[[1]]
}
f_sigma <- stats::as.formula(paste0("~", .safe_deparse(f_sigma[[3L]])))
f_sigma <- stats::as.formula(.get_fixed_effects(f_sigma))
}
if (!.is_empty_object(f_beta)) {
f_betarandom <- lapply(.findbars(f_beta), function(.x) {
f <- .safe_deparse(.x)
stats::as.formula(paste0("~", f))
})
if (length(f_betarandom) == 1) {
f_betarandom <- f_betarandom[[1]]
}
f_beta <- stats::as.formula(paste0("~", .safe_deparse(f_beta[[3L]])))
f_beta <- stats::as.formula(.get_fixed_effects(f_beta))
}
.compact_list(list(
conditional = f_cond,
random = f_random,
zero_inflated = f_zi,
zero_inflated_random = f_zirandom,
sigma = f_sigma,
sigma_random = f_sigmarandom,
beta = f_beta,
beta_random = f_betarandom,
shape = f_shape,
phi = f_phi,
hurdle = f_hu,
mu = f_mu,
nu = f_nu,
ndt = f_ndt,
bs = f_bs,
bias = f_bias,
zero_one_inflated = f_zoi,
conditional_one_inflated = f_coi,
kappa = f_kappa
))
}
.get_stanmv_formula <- function(f) {
f_cond <- f
f_random <- lapply(.findbars(f_cond), function(.x) {
fm <- .safe_deparse(.x)
stats::as.formula(paste0("~", fm))
})
if (length(f_random) == 1) {
f_random <- f_random[[1]]
}
f_cond <- stats::as.formula(.get_fixed_effects(f_cond))
.compact_list(list(
conditional = f_cond,
random = f_random
))
}
.zeroinf_formula <- function(x, separator = "\\|", verbose = TRUE) {
f <- tryCatch(stats::formula(x), error = function(x) NULL)
if (is.null(f)) {
return(NULL)
}
f <- .trim(unlist(strsplit(.safe_deparse(f), separator)))
c.form <- stats::as.formula(f[1])
if (length(f) == 2) {
zi.form <- stats::as.formula(paste0("~", f[2]))
} else {
zi.form <- NULL
}
c.form <- .dot_formula(f = c.form, model = x)
zi.form <- tryCatch(
{
if (as.character(zi.form[2]) == ".") {
resp <- .safe_deparse(c.form[2])
pred <- setdiff(colnames(.recover_data_from_environment(x)), resp)
zi.form <- stats::as.formula(paste(resp, "~", paste0(pred, collapse = " + ")))
}
zi.form
},
error = function(e) {
zi.form
}
)
f <- .compact_list(list(conditional = c.form, zero_inflated = zi.form))
.find_formula_return(f, verbose = verbose)
}
.dot_formula <- function(f, model) {
tryCatch(
{
if (as.character(f[[3]])[1] == ".") {
resp <- .safe_deparse(f[[2]])
pred <- setdiff(colnames(.recover_data_from_environment(model)), resp)
f <- stats::as.formula(paste(resp, "~", paste0(pred, collapse = " + ")))
}
f
},
error = function(e) {
f
}
)
}
.fix_gamm_random_effect <- function(x) {
g_in_terms <- length(x) > 1 && x[length(x)] == "g"
xr_in_terms <- length(x) > 1 && x[length(x)] == "Xr"
x <- x[!(grepl("(Xr\\.\\d|g\\.\\d)", x) | x %in% c("Xr", "g"))]
if (!length(x) && isTRUE(g_in_terms)) {
x <- "g"
}
if (!length(x) && isTRUE(xr_in_terms)) {
x <- "Xr"
}
x
}
.fix_gamm4_random_effect <- function(f) {
if (inherits(f, "formula")) {
f <- list(f)
}
len <- length(f)
keep <- sapply(f, function(i) {
i <- gsub("(~1| | \\|)", "", deparse(i))
!any(grepl("(Xr\\.\\d|g\\.\\d)", i) | i %in% c("Xr", "g"))
})
f <- .compact_list(f[keep])
if (!length(f) && len > 1) {
f <- list(stats::as.formula("~1 | Xr"))
}
f
}
.find_formula_return <- function(f, verbose = TRUE) {
if (is.null(f)) {
return(NULL)
}
.check_formula_for_dollar(f, verbose = verbose)
.check_formula_for_T(f, verbose = verbose)
class(f) <- c("insight_formula", class(f))
f
}
.check_formula_for_T <- function(f, verbose = TRUE) {
f <- .safe_deparse(f[[1]])
if (.is_empty_object(f)) {
return(TRUE)
}
if (grepl("(.*)poly\\((.*),\\s*raw\\s*=\\s*T\\)", f)) {
if (verbose) {
warning(format_message(
"Looks like you are using 'poly()' with 'raw = T'. This results in unexpected behaviour, because 'all.vars()' considers 'T' as variable.",
"Please use 'raw = TRUE'."
),
call. = FALSE
)
}
return(FALSE)
}
return(TRUE)
}
.check_formula_for_dollar <- function(f, verbose = TRUE) {
if (.is_empty_object(f)) {
return(TRUE)
}
if (any(grepl("\\$", .safe_deparse(f[[1]])))) {
fc <- try(.formula_clean(f[[1]]), silent = TRUE)
if (inherits(fc, "try-error")) {
stop(attributes(fc)$condition$message, call. = FALSE)
} else {
if (verbose) {
warning(
format_message(paste0(
"Using `$` in model formulas can produce unexpected results. Specify your model using the `data` argument instead.",
"\n Try: ", fc$formula, ", data = ", fc$data
)),
call. = FALSE
)
}
return(FALSE)
}
}
return(TRUE)
}
.formula_clean <- function(f) {
fc <- as.character(f)
LHS <- fc[2]
RHS <- fc[3]
pattern <- "[\\s*+:()|^,\\-\\/]"
parts <- trimws(unlist(strsplit(split = pattern, x = LHS, perl = TRUE)))
d_LHS <- unique(gsub("(.*)\\$(.*)", "\\1", parts[grepl("(.*)\\$(.*)", parts)]))
parts <- trimws(unlist(strsplit(split = pattern, x = RHS, perl = TRUE)))
d_RHS <- unique(gsub("(.*)\\$(.*)", "\\1", parts[grepl("(.*)\\$(.*)", parts)]))
if (.n_unique(c(d_LHS, d_RHS)) > 1) {
stop("Multiple data objects present in formula. Specify your model using the `data` argument instead.", call. = FALSE)
} else {
d <- unique(d_RHS)
}
LHS_clean <- gsub(paste0(d_LHS, "\\$"), "", LHS)
RHS_clean <- gsub(paste0(d_RHS, "\\$"), "", RHS)
list(data = d, formula = paste(LHS_clean, fc[1], RHS_clean))
}
format.insight_formula <- function(x, what = c("conditional", "random"), ...) {
ft <- format(x[[1]])
if ("random" %in% names(x)) {
x[["random"]] <- paste0("(", format(x[["random"]]), ")")
}
for (part in what[-1]) {
if (part %in% names(x)) {
ft <- paste0(ft, " + ", format(x[[part]]))
}
}
ft
}
|
xgboard.init <- function(what, watchnames, maximizer, log) {
envir <- new.env()
envir[["persist"]] <- matrix(rep(c(0, 0, 0, rep(0, 2 * length(what))), length(watchnames)), nrow = length(watchnames), byrow = TRUE)
envir[["params"]] <- list(length(watchnames), maximizer)
envir[["timer"]] <- unname(Laurae::timer())
envir[["log"]] <- log
envir[["watch"]] <- watchnames
envir[["what"]] <- what
envir[["loop"]] <- 1
cat(paste(c("Iteration", "Watchlist", "CurrentTime", "Time", what, paste0(what, "Improve")), collapse = ","), "\n", sep = "", file = log, append = FALSE)
return(envir)
}
|
expected <- eval(parse(text="c(1.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60)"));
test(id=0, code={
argv <- eval(parse(text="list(c(1.5, 1.5, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60), FALSE, FALSE, NA)"));
.Internal(`unique`(argv[[1]], argv[[2]], argv[[3]], argv[[4]]));
}, o=expected);
|
test_that("namespace operators always evaluated locally", {
expect_equal(partial_eval(quote(base::sum(1, 2))), 3)
expect_equal(partial_eval(quote(base:::sum(1, 2))), 3)
})
test_that("namespaced calls to dplyr functions are stripped", {
expect_equal(partial_eval(quote(dplyr::n())), expr(n()))
})
test_that("use quosure environment for unevaluted formulas", {
x <- 1
expect_equal(partial_eval(expr(~x)), quote(~1))
})
test_that("can look up inlined function", {
expect_equal(
partial_eval(expr((!!mean)(x)), vars = "x"),
expr(mean(x))
)
})
test_that("respects tidy evaluation pronouns", {
x <- "X"
X <- "XX"
expect_equal(partial_eval(expr(.data$x)), expr(x))
expect_equal(partial_eval(expr(.data[["x"]])), expr(x))
expect_equal(partial_eval(expr(.data[[x]])), expr(X))
expect_equal(partial_eval(expr(.env$x)), "X")
expect_equal(partial_eval(expr(.env[["x"]])), "X")
expect_equal(partial_eval(expr(.env[[x]])), "XX")
})
test_that("fails with multi-classes", {
x <- structure(list(), class = c('a', 'b'))
expect_error(partial_eval(x), "Unknown input type", fixed = TRUE)
})
test_that("across() translates character vectors", {
lf <- lazy_frame(a = 1, b = 2)
expect_snapshot(lf %>% summarise(across(a:b, "log")))
expect_snapshot(lf %>% summarise(across(a:b, "log", base = 2)))
expect_snapshot(lf %>% summarise(across(a, c("log", "exp"))))
out <- lf %>% summarise(across(a:b, c(x = "log", y = "exp")))
expect_equal(colnames(out), c("a_x", "a_y", "b_x", "b_y"))
})
test_that("across() translates functions", {
lf <- lazy_frame(a = 1, b = 2)
expect_snapshot(lf %>% summarise(across(a:b, log)))
expect_snapshot(lf %>% summarise(across(a:b, log, base = 2)))
expect_snapshot(lf %>% summarise(across(a:b, list(log, exp))))
out <- lf %>% summarise(across(a:b, list(x = log, y = exp)))
expect_equal(colnames(out), c("a_x", "a_y", "b_x", "b_y"))
})
test_that("untranslatable functions are preserved", {
lf <- lazy_frame(a = 1, b = 2)
expect_snapshot(lf %>% summarise(across(a:b, SQL_LOG)))
})
test_that("across() translates formulas", {
lf <- lazy_frame(a = 1, b = 2)
expect_snapshot(lf %>% summarise(across(a:b, ~ log(.x, 2))))
expect_snapshot(lf %>% summarise(across(a:b, list(~ log(.x, 2)))))
})
test_that("across() translates NULL", {
lf <- lazy_frame(a = 1, b = 2)
expect_snapshot(lf %>% mutate(across(a:b)))
})
test_that("can control names", {
lf <- lazy_frame(a = 1, b = 2)
out <- lf %>% summarise(across(a:b, c("log", "exp"), .names = "{.fn}_{.col}"))
expect_equal(colnames(out), c("log_a", "exp_a", "log_b", "exp_b"))
})
test_that("old _at functions continue to work", {
withr::local_options(lifecycle_verbosity = "quiet")
lf <- lazy_frame(a = 1, b = 2)
expect_snapshot(lf %>% dplyr::summarise_at(dplyr::vars(a:b), "sum"))
expect_snapshot(lf %>% dplyr::summarise_at(dplyr::vars(a:b), sum))
expect_snapshot(lf %>% dplyr::summarise_at(dplyr::vars(a:b), ~ sum(.)))
})
test_that("if_all translations names, strings, and formulas", {
lf <- lazy_frame(a = 1, b = 2)
expect_equal(capture_if_all(lf, if_all(a, is.na)), expr(is.na(a)))
expect_equal(capture_if_all(lf, if_all(a, "is.na")), expr(is.na(a)))
expect_equal(capture_if_all(lf, if_all(a, ~ is.na(.))), expr(is.na(a)))
})
test_that("if_all collapses multiple expresions", {
lf <- lazy_frame(data.frame(a = 1, b = 2))
expect_equal(
capture_if_all(lf, if_all(everything(), is.na)),
expr(is.na(a) & is.na(b))
)
})
test_that("if_all/any works in filter()", {
lf <- lazy_frame(a = 1, b = 2)
expect_snapshot(lf %>% filter(if_all(a:b, ~ . > 0)))
expect_snapshot(lf %>% filter(if_any(a:b, ~ . > 0)))
})
test_that("if_all/any works in mutate()", {
lf <- lazy_frame(a = 1, b = 2)
expect_snapshot(lf %>% mutate(c = if_all(a:b, ~ . > 0)))
expect_snapshot(lf %>% mutate(c = if_any(a:b, ~ . > 0)))
})
|
cat("\014")
rm(list = ls())
setwd("~/git/of_dollars_and_data")
source(file.path(paste0(getwd(),"/header.R")))
library(scales)
library(readxl)
library(lubridate)
library(zoo)
library(ggrepel)
library(tidyverse)
folder_name <- "0210_max_401k"
out_path <- paste0(exportdir, folder_name)
dir.create(file.path(paste0(out_path)), showWarnings = FALSE)
annual_savings <- 10000
cap_gains <- 0.15
annual_dividend <- 0.02
annual_growth <- 0.05
inc_tax <- 0.24
plan_fee <- 0.00
final_results <- data.frame()
tax_rates <- seq(0, 0.34, 0.01)
counter <- 1
for(tax_rate_retire in tax_rates){
n_years <- 30
df <- data.frame()
for(i in 1:n_years){
df[i, "year"] <- i
if(i == 1){
df[i, "value_roth401k"] <- annual_savings
df[i, "value_trad401k"] <- annual_savings/(1-inc_tax)
df[i, "post_tax_dividend"] <- 0
df[i, "unrealized_gains"] <- 0
df[i, "cum_unrealized_gains"] <- 0
df[i, "value_taxable"] <- annual_savings
df[i, "liquid_taxable"] <- annual_savings
} else{
df[i, "post_tax_dividend"] <- (df[(i-1), "value_taxable"] * annual_dividend) * (1 - cap_gains)
df[i, "unrealized_gains"] <- df[(i-1), "value_taxable"] * annual_growth
df[i, "cum_unrealized_gains"] <- df[(i-1), "cum_unrealized_gains"] + df[i, "unrealized_gains"]
df[i, "value_taxable"] <- df[(i-1), "value_taxable"] + df[i, "unrealized_gains"] + df[i, "post_tax_dividend"] + annual_savings
df[i, "liquid_taxable"] <- df[i, "value_taxable"] - (cap_gains*df[i, "cum_unrealized_gains"])
df[i, "value_roth401k"] <- (df[(i-1), "value_roth401k"] * (1+annual_growth+annual_dividend-plan_fee)) + annual_savings
df[i, "value_trad401k"] <- (df[(i-1), "value_trad401k"] * (1+annual_growth+annual_dividend)) + (annual_savings/(1-inc_tax))
}
df[i, "liquid_trad401k"] <- df[i, "value_trad401k"] * (1-tax_rate_retire)
df[i, "roth401k_tot_premium"] <- df[i, "value_roth401k"]/df[i, "liquid_taxable"]
df[i, "trad401k_tot_premium"] <- df[i, "liquid_trad401k"]/df[i, "liquid_taxable"]
df[i, "roth401k_ann_premium"] <- df[i, "roth401k_tot_premium"]^(1/i) - 1
df[i, "trad401k_ann_premium"] <- df[i, "trad401k_tot_premium"]^(1/i) - 1
}
final_results[counter, "tax_rate"] <- tax_rate_retire
final_results[counter, "trad401k_ann_premium"] <- df[nrow(df), "trad401k_ann_premium"]
final_results[counter, "trad401k_tot_premium"] <- df[nrow(df), "trad401k_tot_premium"]
final_results[counter, "trad401k_value_premium"] <- df[nrow(df), "liquid_trad401k"] - df[nrow(df), "liquid_taxable"]
counter <- counter + 1
}
file_path <- paste0(out_path, "/roth_vs_taxable_balance_40yr_redux.jpeg")
source_string <- paste0("Source: Simulated data (OfDollarsAndData.com)")
note_string <- str_wrap(paste0("Note: Assumes a ", 100*(annual_growth+annual_dividend),
"% annual growth rate, a ", 100*cap_gains, "% tax rate on capital gains, ",
format_as_dollar(annual_savings, 0), " in annual savings, and a ", n_years,
"-year investment period."),
width = 85)
to_plot <- df %>%
select(year, value_roth401k, liquid_taxable) %>%
rename(`Roth 401k` = value_roth401k,
`Taxable Account` = liquid_taxable) %>%
gather(-year, key=key, value=value)
text_labels <- to_plot %>%
filter(year == max(to_plot$year)) %>%
mutate(label = paste0(format_as_dollar(value/1000000, 1), "M"))
plot <- ggplot(to_plot, aes(x = year, y = value, col = key)) +
geom_line() +
geom_text(data=text_labels, aes(x=year, y=value, col = key, label = label), hjust=-0.1,
show.legend = FALSE) +
scale_color_manual(values = c("blue", "black")) +
scale_y_continuous(label = dollar) +
scale_x_continuous(limits = c(0, 35)) +
of_dollars_and_data_theme +
theme(legend.title = element_blank(),
legend.position = "bottom") +
ggtitle(paste0("Roth 401(k) vs. Taxable Account Value")) +
labs(x = "Year" , y = paste0("Value After Taxes"),
caption = paste0("\n", source_string, "\n", note_string))
ggsave(file_path, plot, width = 15, height = 12, units = "cm")
|
context("convertDiscrete")
test_that("discrete param NameToValue", {
f = function(x) 2 * x
p = makeDiscreteParam(id = "x", values = list(a = "char", b = 2L, c = 2.2, d = f, "e"))
expect_equal(discreteNameToValue(p, "b"), 2L)
expect_equal(discreteNameToValue(p, "c"), 2.2)
expect_equal(discreteNameToValue(p, "e"), "e")
expect_error(discreteNameToValue(p, ""), "Names not used")
p = makeIntegerParam(id = "y")
expect_error(discreteNameToValue(p, "a"))
p = makeDiscreteParam("x", values = c(a = 1e-8, b = 1e-9))
expect_equal(discreteNameToValue(p, "a"), 1e-8)
expect_equal(discreteNameToValue(p, "b"), 1e-9)
})
test_that("discrete param ValueToName", {
f = function(x) 2 * x
p = makeDiscreteParam(id = "x", values = list(a = "char", b = 2L, c = 2.2, d = f, "e"))
expect_equal(discreteValueToName(p, 2L), "b")
expect_equal(discreteValueToName(p, 2.2), "c")
expect_equal(discreteValueToName(p, "e"), "e")
expect_equal(discreteValueToName(p, f), "d")
expect_error(discreteValueToName(p, 3), "Value not found")
expect_error(discreteNameToValue(p, 2))
p = makeIntegerParam(id = "y")
expect_error(discreteNameToValue(p, "a"))
p = makeDiscreteParam("x", values = c(a = 1e-8, b = 1e-9))
expect_equal(discreteValueToName(p, 1e-8), "a")
expect_equal(discreteValueToName(p, 1e-9), "b")
})
test_that("discrete vec param NameToValue", {
f = function(x) 2 * x
p = makeDiscreteVectorParam(id = "x", len = 2, values = list(a = "char", b = 2L, c = c(2.2, 3.3), d = f, "e"))
expect_equal(discreteNameToValue(p, c("a", "b")), list(a = "char", b = 2L))
expect_equal(discreteNameToValue(p, c("e", "b")), list(e = "e", b = 2L))
expect_equal(discreteNameToValue(p, c("c", "d")), list(c = c(2.2, 3.3), d = f))
})
test_that("discrete vec param ValueToName", {
f = function(x) 2 * x
p = makeDiscreteVectorParam(id = "x", len = 2, values = list(a = "char", b = 2L, c = 2.2, d = f, "e"))
expect_equal(discreteValueToName(p, list(2L, "char")), c("b", "a"))
expect_equal(discreteValueToName(p, list(2.2, f)), c("c", "d"))
})
|
`dominant.WGassociation` <-
function(o)
{
attr(o,"pvalues")[,"dominant"]
}
|
checkVec <- function(val){
if (length(val) == 0){
return("no inputted value")
}else if (length(val)>1){
return("Multiple values inputted (see table below)")
}else {
return(val)
}
}
|
kmeans_clustersRProg<-function(codebook,k=5,times=5,seed=NULL) {
if (is.null(seed)) {times<-times
} else {times<-1}
codebook<-as.matrix(codebook)
n_max<-k
c_max<-times
Machprest<-.Machine
CENTROIDS<-vector(mode = "list", length = n_max)
CLUSNum<-rep(0,nrow(codebook))
ERR<-NULL
IND<-NULL
SEED<-NULL
withProgress(message = paste0('Total training times = ',times), value = 0, {
for (j in c(2:n_max)) {
best<-Machprest$double.xmax
for (i in c(1:c_max)) {KM<-som_kmeansRProg(codebook,j,100,seed=seed);
if (KM$err<best) {k_best<-KM$clusters; c_best<-KM$centroids; best<-KM$err; Seed<-KM$seed}
incProgress(1/times, detail = paste("Time:", i))
}
CENTROIDS[[j]]<-c_best
CLUSNum<-cbind(CLUSNum,k_best)
ERR<-c(ERR,best)
ind<-db_indexR(codebook,k_best,c_best)
IND<-c(IND,ind)
SEED<-c(SEED,Seed)
}
})
result<-list("centroids" = CENTROIDS, "clusNum" = CLUSNum, "err" = ERR, "ind"=IND, "seed"=SEED)
return(result)
}
|
esr_pars <- function(x, ...) {
UseMethod("esr_pars")
}
|
h2o.extendedIsolationForest <- function(training_frame,
x,
model_id = NULL,
ignore_const_cols = TRUE,
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),
ntrees = 100,
sample_size = 256,
extension_level = 0,
seed = -1)
{
training_frame <- .validate.H2OFrame(training_frame, required=TRUE)
parms <- list()
parms$training_frame <- training_frame
if(!missing(x))
parms$ignored_columns <- .verify_datacols(training_frame, x)$cols_ignore
if (!missing(model_id))
parms$model_id <- model_id
if (!missing(ignore_const_cols))
parms$ignore_const_cols <- ignore_const_cols
if (!missing(categorical_encoding))
parms$categorical_encoding <- categorical_encoding
if (!missing(ntrees))
parms$ntrees <- ntrees
if (!missing(sample_size))
parms$sample_size <- sample_size
if (!missing(extension_level))
parms$extension_level <- extension_level
if (!missing(seed))
parms$seed <- seed
model <- .h2o.modelJob('extendedisolationforest', parms, h2oRestApiVersion=3, verbose=FALSE)
return(model)
}
.h2o.train_segments_extendedIsolationForest <- function(training_frame,
x,
ignore_const_cols = TRUE,
categorical_encoding = c("AUTO", "Enum", "OneHotInternal", "OneHotExplicit", "Binary", "Eigen", "LabelEncoder", "SortByResponse", "EnumLimited"),
ntrees = 100,
sample_size = 256,
extension_level = 0,
seed = -1,
segment_columns = NULL,
segment_models_id = NULL,
parallelism = 1)
{
model_id <- NULL
verbose <- NULL
destination_key <- NULL
training_frame <- .validate.H2OFrame(training_frame, required=TRUE)
parms <- list()
parms$training_frame <- training_frame
if(!missing(x))
parms$ignored_columns <- .verify_datacols(training_frame, x)$cols_ignore
if (!missing(ignore_const_cols))
parms$ignore_const_cols <- ignore_const_cols
if (!missing(categorical_encoding))
parms$categorical_encoding <- categorical_encoding
if (!missing(ntrees))
parms$ntrees <- ntrees
if (!missing(sample_size))
parms$sample_size <- sample_size
if (!missing(extension_level))
parms$extension_level <- extension_level
if (!missing(seed))
parms$seed <- seed
segment_parms <- list()
if (!missing(segment_columns))
segment_parms$segment_columns <- segment_columns
if (!missing(segment_models_id))
segment_parms$segment_models_id <- segment_models_id
segment_parms$parallelism <- parallelism
segment_models <- .h2o.segmentModelsJob('extendedisolationforest', segment_parms, parms, h2oRestApiVersion=3)
return(segment_models)
}
|
columns <- function(z){
x <- as.matrix(z)
n <- ncol(x)
xlist <- vector("list", n)
for(i in 1:n)
xlist[[i]] <- x[,i]
if(length(cn <- colnames(x)) == n)
names(xlist) <- cn
xlist
}
rows <- function(z){
x <- as.matrix(z)
n <- nrow(x)
xlist <- vector("list", n)
for(i in 1:n)
xlist[[i]] <- x[i,]
if(length(rn <- rownames(x)) == n)
names(xlist) <- rn
xlist
}
|
interpolate_spline <- function(observations, targets, value, lon_obs = lon, lat_obs = lat, lon_targets = lon, lat_targets = lat, k = 50) {
if (!requireNamespace("mgcv", quietly = TRUE)) {
stop("mgcv is needed for this function to work. Install it via install.packages(\"mgcv\")", call. = FALSE)
}
lon_targets <- deparse(substitute(lon_targets))
lat_targets <- deparse(substitute(lat_targets))
lon_obs <- deparse(substitute(lon_obs))
lat_obs <- deparse(substitute(lat_obs))
value <- deparse(substitute(value))
sos <- deparse(substitute("sos"))
names(observations)[names(observations) == lon_obs] <- "lon"
names(observations)[names(observations) == lat_obs] <- "lat"
names(targets)[names(targets) == lon_targets] <- "lon"
names(targets)[names(targets) == lon_targets] <- "lon"
f <- as.formula(paste0(value, "~ s(lat, lon,", "bs = ", sos, ", m = -1, k = ", k, ")"))
pred_gam <- tryCatch(
{
mgcv::gam(f, data = observations)
},
error = function(e) {
stop("Error: dimension k is chosen too large (default k = 50). Reduce dimension k manually as argument in function call.", call. = FALSE)
})
response <- as.numeric(mgcv::predict.gam(pred_gam, targets, type = "response"))
targets[,paste0(value, "_pred")] <- response
return(targets)
}
|
require(FrF2)
colpick(6, 2)
colpick(6, 3, estimable=compromise(6, 4)$requirement)
colpick(6, 3, estimable=rbind(4, c(1:3,5:6)))
colpick("6-1.1", 3, estimable=compromise(6, 4)$requirement)
colpick(catlg["6-1.1"], 3, estimable=compromise(6, 4)$requirement)
colpick(catlg["8-2.1"], 1)
colpick("9-3.2", 2)
tail(colpick(55, 2)$clear2fis)
phimax(8, 2)
phimax(8, 2, c(4,3,1))
phimax(9, 4)
X <- rbind(c(1,1,1,0,0,0,1),
c(1,1,0,1,1,1,0))
blockgencreate(X, 2)
Xcalc(rbind(c(1,1,0,0),c(0,1,1,1)),
gen=c("AB","BCD"))
Xcalc(rbind(c(1,1,0,0),c(0,1,1,1)),
gen=list(c(1,2),2:4))
Xcalc(rbind(c(1,1,0,0),c(0,1,1,1)),
gen=c(3,14))
Xcalc(rbind(c(1,1,0,0),c(0,1,1,1)),
gen=catlg[nruns(catlg)==16 &
res(catlg)==4])
plangodolphin <- FF_from_X(colpick(4, 2)$X, randomize=FALSE)
cbind(run.order(plangodolphin), plangodolphin)
|
context("miceFast-impute_N")
test_that("impute_N", {
set.seed(1234)
data <- cbind(as.matrix(airquality[, -5]), intercept = 1, index = 1:nrow(airquality))
weights <- rgamma(nrow(data), 3, 3)
groups <- as.numeric(airquality[, 5])
model <- new(miceFast)
model$set_data(data)
model$set_w(weights)
model$set_g(groups)
imp_miceFast <- model$impute_N("lm_bayes", 1, c(3, 4, 5, 6), 10000)$imputations
imp_miceFast_noise <- model$impute_N("lm_noise", 1, c(3, 4, 5, 6), 10000)$imputations
imp_miceFast_pred <- model$impute("lm_pred", 1, c(3, 4, 5, 6))$imputations
imp_miceFast_pmm <- model$impute_N("pmm", 1, c(3, 4, 5, 6), 1)$imputations
expect_true(mean((imp_miceFast - imp_miceFast_pred)**2) < 1)
expect_true(mean((imp_miceFast_noise - imp_miceFast_pred)**2) < 1)
expect_true(mean((imp_miceFast_pmm - imp_miceFast_pred)**2) < 1000)
mse_pmm_kbig <- mean(replicate(100, mean((model$impute_N("pmm", 1, c(3, 4, 5, 6), 100)$imputations - imp_miceFast_pred)**2)))
mse_pmm_ksmall <- mean(replicate(100, mean((model$impute_N("pmm", 1, c(3, 4, 5, 6), 1)$imputations - imp_miceFast_pred)**2)))
expect_true(mse_pmm_ksmall < mse_pmm_kbig)
rm(model)
})
|
makeRLearner.regr.bcart = function() {
makeRLearnerRegr(
cl = "regr.bcart",
package = "tgp",
par.set = makeParamSet(
makeDiscreteLearnerParam(id = "bprior", default = "bflat",
values = c("b0", "b0not", "bflat", "bmle", "bmznot", "bmzt")),
makeNumericVectorLearnerParam(id = "tree", len = 2, default = c(0.5, 2),
lower = c(0, 0), upper = c(1, Inf)),
makeIntegerVectorLearnerParam(id = "BTE", len = 3,
default = c(2000, 7000, 2), lower = 0),
makeIntegerLearnerParam(id = "R", default = 1, lower = 1),
makeLogicalLearnerParam(id = "m0r1", default = TRUE),
makeUntypedLearnerParam(id = "itemps", default = NULL),
makeLogicalLearnerParam(id = "krige", default = TRUE),
makeLogicalLearnerParam(id = "zcov", default = FALSE),
makeLogicalLearnerParam(id = "Ds2x", default = FALSE),
makeLogicalLearnerParam(id = "improv", default = FALSE),
makeLogicalLearnerParam(id = "trace", default = FALSE, tunable = FALSE),
makeIntegerLearnerParam(id = "verb", default = 1L, lower = 0L, upper = 4L, tunable = FALSE)
),
properties = c("numerics", "se", "factors"),
name = "Bayesian CART",
short.name = "bcart",
callees = "bcart"
)
}
trainLearner.regr.bcart = function(.learner, .task, .subset, .weights = NULL, ...) {
d = getTaskData(.task, .subset, target.extra = TRUE)
col.types = vcapply(d$data, function(x) class(x))
factor.ind = (col.types == "factor")
if (any(factor.ind)) {
d.num = d$data[, !factor.ind, drop = FALSE]
n.num = ncol(d.num)
d.factor = d$data[, factor.ind, drop = FALSE]
d.factor = createDummyFeatures(d.factor, method = "reference")
d$data = cbind(d.num, d.factor)
return(tgp::bcart(X = d$data, Z = d$target, basemax = n.num, pred.n = FALSE, ...))
} else {
return(tgp::bcart(X = d$data, Z = d$target, pred.n = FALSE, ...))
}
}
predictLearner.regr.bcart = function(.learner, .model, .newdata, ...) {
col.types = vcapply(.newdata, function(x) class(x))
factor.ind = (col.types == "factor")
if (any(factor.ind)) {
newdata.num = .newdata[, !factor.ind, drop = FALSE]
newdata.factor = .newdata[, factor.ind, drop = FALSE]
newdata.factor = createDummyFeatures(newdata.factor, method = "reference")
newdata = cbind(newdata.num, newdata.factor)
p = predict(.model$learner.model, XX = newdata, pred.n = FALSE, ...)
} else {
p = predict(.model$learner.model, XX = .newdata, pred.n = FALSE, ...)
}
if (.learner$predict.type == "response") {
return(p$ZZ.km)
} else {
return(cbind(p$ZZ.km, sqrt(p$ZZ.ks2)))
}
}
|
context("Test colouring of dendrograms")
test_that("Can find leaf colours", {
hc <- hclust(dist(USArrests), "ave")
dend <- as.dendrogram(hc)
colours5=c("red",'green','blue','cyan','magenta')
cdendk5 <- colour_clusters(dend,k=5,col=colours5)
leafcolours <- unlist(dendrapply(cdendk5,function(n)
if(is.leaf(n)) structure(attr(n,'edgePar')$col,
.Names=attr(n,'label')) else NULL))
expect_that(leaf_colours(cdendk5), equals(leafcolours))
no_colours <- structure(rep(NA_character_,length(leafcolours)),
.Names=names(leafcolours))
expect_that(leaf_colours(dend),equals(no_colours),
'no edge colours in dendrogram')
expect_that(leaf_colours(cdendk5,'label'),equals(no_colours),
'no label colours in dendrogram')
expect_that(leaf_colours(cdendk5,'node'),equals(no_colours),
'no node colours ')
})
test_that("Colour a dendrogram by cluster identity", {
hc <- hclust(dist(USArrests), "ave")
dend <- as.dendrogram(hc)
cdend2 <- colour_clusters(dend,k=2,col=c("red",'green'))
leafcolours <- leaf_colours(cdend2)
expect_that(labels(hc), equals(names(leafcolours)))
expect_equivalent(rep(c("red",'green'),c(16,34)),leafcolours)
colours5=c("red",'green','blue','cyan','magenta')
cdend5 <- colour_clusters(dend,k=5,col=colours5)
leafcolours <- leaf_colours(cdend5)
expect_that(labels(hc), equals(names(leafcolours)))
expect_equivalent(rep(colours5,c(2L,14L,14L,10L,10L)),leafcolours)
})
test_that("Colouring a dendrogram by cutting on height or number of groups", {
hc <- hclust(dist(USArrests), "ave")
dend <- as.dendrogram(hc)
colours5=c("red",'green','blue','cyan','magenta')
cdendk5 <- colour_clusters(dend,k=5,col=colours5)
cdendh50 <- colour_clusters(dend,h=50,col=colours5)
expect_that(cdendk5, equals(cdendh50))
})
test_that("Can cut/colour an hclust object returning a dendrogram", {
hc <- hclust(dist(USArrests), "ave")
dend <- as.dendrogram(hc)
colours5=c("red",'green','blue','cyan','magenta')
cdendk5 <- colour_clusters(dend,k=5,col=colours5)
chck5 <- colour_clusters(hc,k=5,col=colours5)
expect_that(cdendk5, equals(chck5))
})
test_that("Can colour a dendrogram and add group labels", {
hc <- hclust(dist(USArrests), "ave")
dend <- as.dendrogram(hc)
colours5=c("red",'green','blue','cyan','magenta')
cdendk51 <- colour_clusters(dend,k=5,col=colours5,groupLabels=TRUE)
cdendk52 <- colour_clusters(dend,k=5,col=colours5,groupLabels=1:5)
cdendk53 <- colour_clusters(dend,k=5,col=colours5,groupLabels=LETTERS[1:5])
cdendk54 <- colour_clusters(dend,k=5,col=colours5,groupLabels=as.roman)
})
test_that("Can colour a dendrogram with non-unique labels",{
dmat=structure(c(4.66, 2.72, 2.75, 2.71, 4.21, 2.83, 3.45, 2.26, 3.4,
2.68, 0.74, 3, 2.32, 5.09, 2.96),
Labels = c("A", "B", "C", "D", "E", "F"), Size = 6L,
class = "dist", Diag = FALSE, Upper = FALSE)
dmat2=structure(c(4.66, 2.72, 2.75, 2.71, 4.21, 2.83, 3.45, 2.26, 3.4,
2.68, 0.74, 3, 2.32, 5.09, 2.96),
Labels = c("A", "A", "B", "A", "B", "A"), Size = 6L,
class = "dist", Diag = FALSE, Upper = FALSE)
hc=hclust(dmat)
hc2=hclust(dmat2)
pdf(file = tf <- tempfile(fileext = '.pdf'))
plot(hc)
unlink(tf)
expect_is(hcd<-colour_clusters(hc, k=2), 'dendrogram')
expect_is(hcd2<-colour_clusters(hc2, k=2), 'dendrogram')
expect_equal(unname(leaf_colors(hcd)),unname(leaf_colors(hcd2)))
})
|
setMethod("dim", "timeSeries", function(x) attr(x, "dim"))
setReplaceMethod("dim", "timeSeries",
function(x, value)
{
if (is.null(value))
return(as.vector(x))
else
x
}
)
setMethod("colnames", "timeSeries",
function(x, do.NULL = TRUE, prefix = "col") x@units
)
setMethod("rownames", "timeSeries",
function (x, do.NULL = TRUE, prefix = "row")
{
if (length(x@positions) > 0)
as.character(time(x))
else
NULL
}
)
setMethod("dimnames", "timeSeries",
function(x)
{
list(rownames(x),colnames(x))
}
)
setMethod("colnames<-", "timeSeries",
function(x, value)
{
units <- as.character(value)
if(!length(units))
if (x@format == "counts")
units <- paste("SS", seq(NCOL(x)), sep = ".")
else
units <- paste("TS", seq(NCOL(x)), sep = ".")
if (length(units) != NCOL(x))
stop("length of 'colnames' not equal to array extent",call.=FALSE)
x@units <- units
colnames([email protected]) <- units
x
}
)
setMethod("rownames<-", c("timeSeries", "timeDate"),
function (x, value)
{
.timeSeries(
data = getDataPart(x),
charvec = as.numeric(value, "sec"),
units = colnames(x),
format = value@format,
FinCenter = value@FinCenter,
recordIDs = x@recordIDs,
title = x@title,
documentation = x@documentation)
}
)
setMethod("rownames<-", "timeSeries",
function (x, value)
{
if (is.null(value))
return(.signalSeries(data = getDataPart(x),
units = colnames(x),
recordIDs = x@recordIDs,
title = x@title,
documentation = x@documentation))
charvec <- timeDate(charvec = value)
if (any(is.na(charvec)))
.signalSeries(data = getDataPart(x),
units = colnames(x),
recordIDs = x@recordIDs,
title = x@title,
documentation = x@documentation)
else
.timeSeries(data = getDataPart(x),
charvec = as.numeric(charvec, "sec"),
units = colnames(x),
format = charvec@format,
FinCenter = charvec@FinCenter,
recordIDs = x@recordIDs,
title = x@title,
documentation = x@documentation)
}
)
setMethod("dimnames<-", c("timeSeries", "list"),
function(x, value)
{
rownames(x) <- value[[1]]
colnames(x) <- value[[2]]
x
}
)
setMethod("names", "timeSeries",
function(x) c(colnames(x), names(x@recordIDs)))
setReplaceMethod("names", "timeSeries",
function(x, value) {
nc <- ncol(x)
nv <- length(value)
nr <- length(x@recordIDs)
colnames(x) <- value[seq.int(nv)][seq.int(nc)]
if (nv > nc)
names(x@recordIDs) <- value[-seq.int(nc)][seq.int(nr)]
x
})
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.