code
stringlengths
1
13.8M
library(testthat) library(parsnip) library(rlang) context("multinom regression") source("helpers.R") source(test_path("helper-objects.R")) hpc <- hpc_data[1:150, c(2:5, 8)] test_that('primary arguments', { basic <- multinom_reg() expect_error( basic_glmnet <- translate(basic %>% set_engine("glmnet")), "For the glmnet engine, `penalty` must be a single" ) mixture <- multinom_reg(penalty = 0.1, mixture = 0.128) mixture_glmnet <- translate(mixture %>% set_engine("glmnet")) expect_equal(mixture_glmnet$method$fit$args, list( x = expr(missing_arg()), y = expr(missing_arg()), weights = expr(missing_arg()), alpha = new_empty_quosure(0.128), family = "multinomial" ) ) penalty <- multinom_reg(penalty = 1) penalty_glmnet <- translate(penalty %>% set_engine("glmnet")) expect_equal(penalty_glmnet$method$fit$args, list( x = expr(missing_arg()), y = expr(missing_arg()), weights = expr(missing_arg()), family = "multinomial" ) ) mixture_v <- multinom_reg(penalty = 0.01, mixture = tune()) mixture_v_glmnet <- translate(mixture_v %>% set_engine("glmnet")) expect_equal(mixture_v_glmnet$method$fit$args, list( x = expr(missing_arg()), y = expr(missing_arg()), weights = expr(missing_arg()), alpha = new_empty_quosure(tune()), family = "multinomial" ) ) }) test_that('engine arguments', { glmnet_nlam <- multinom_reg(penalty = 0.01) expect_equal( translate(glmnet_nlam %>% set_engine("glmnet", nlambda = 10))$method$fit$args, list( x = expr(missing_arg()), y = expr(missing_arg()), weights = expr(missing_arg()), nlambda = new_empty_quosure(10), family = "multinomial" ) ) with_path <- multinom_reg(penalty = 1) %>% set_engine("glmnet", path_values = 4:2) %>% translate() expect_equal( names(with_path$method$fit$args), c("x", "y", "weights", "lambda", "family") ) expect_equal( rlang::eval_tidy(with_path$method$fit$args$lambda), 4:2 ) }) test_that('updating', { expr1 <- multinom_reg() %>% set_engine("glmnet", intercept = TRUE) expr1_exp <- multinom_reg(mixture = 0) %>% set_engine("glmnet", intercept = TRUE) expr2 <- multinom_reg(mixture = tune()) %>% set_engine("glmnet", nlambda = tune()) expr2_exp <- multinom_reg(mixture = tune()) %>% set_engine("glmnet", nlambda = 10) expr3 <- multinom_reg(mixture = 0, penalty = tune()) %>% set_engine("glmnet") expr3_exp <- multinom_reg(mixture = 1) %>% set_engine("glmnet") expr4 <- multinom_reg(mixture = 0) %>% set_engine("glmnet", nlambda = 10) expr4_exp <- multinom_reg(mixture = 0) %>% set_engine("glmnet", nlambda = 10, pmax = 2) expr5 <- multinom_reg(mixture = 1) %>% set_engine("glmnet", nlambda = 10) expr5_exp <- multinom_reg(mixture = 1) %>% set_engine("glmnet", nlambda = 10, pmax = 2) expect_equal(update(expr1, mixture = 0), expr1_exp) expect_equal(update(expr2, nlambda = 10), expr2_exp) expect_equal(update(expr3, mixture = 1, fresh = TRUE) %>% set_engine("glmnet"), expr3_exp) expect_equal(update(expr5) %>% set_engine("glmnet", nlambda = 10, pmax = 2), expr5_exp) param_tibb <- tibble::tibble(mixture = 1/3, penalty = 1) param_list <- as.list(param_tibb) expr4_updated <- update(expr4, param_tibb) expect_equal(expr4_updated$args$mixture, 1/3) expect_equal(expr4_updated$args$penalty, 1) expect_equal(expr4_updated$eng_args$nlambda, rlang::quo(10)) expr4_updated_lst <- update(expr4, param_list) expect_equal(expr4_updated_lst$args$mixture, 1/3) expect_equal(expr4_updated_lst$args$penalty, 1) expect_equal(expr4_updated_lst$eng_args$nlambda, rlang::quo(10)) }) test_that('bad input', { expect_error(multinom_reg(mode = "regression")) expect_error(translate(multinom_reg(penalty = 0.1) %>% set_engine("wat?"))) expect_error(multinom_reg(penalty = 0.1) %>% set_engine()) expect_warning(translate(multinom_reg(penalty = 0.1) %>% set_engine("glmnet", x = hpc[,1:3], y = hpc$class))) })
context("excel") test_that("excel_clasic_pal works", { pal <- excel_pal() n <- 5L values <- pal(n) expect_is(values, "character") expect_eqNe(length(values), n) }) test_that("excel_clasic_pal with line = TRUE works", { pal <- excel_pal(line = TRUE) n <- 5L values <- pal(n) expect_is(values, "character") expect_eqNe(length(values), n) }) test_that("calc_shape_pal raises warning for large n", { expect_warning(excel_pal()(8)) }) test_that("excel_new_pal works", { pal <- excel_new_pal() n <- 5L vals <- pal(n) expect_is(vals, "character") expect_eqNe(length(vals), n) }) test_that("excel_new_pal raises error for bad n", { expect_warning(excel_new_pal()(7)) }) test_that("theme_excel works", { expect_is(theme_excel(), "theme") }) test_that("excel_new_pal raises error with bad theme name", { expect_error(excel_new_pal("adfaasdfa"), regexp = "`theme` must be one of") }) test_that("scale_fill_excel works", { expect_is(scale_fill_excel(), "ScaleDiscrete") }) test_that("scale_colour_excel works", { expect_is(scale_colour_excel(), "ScaleDiscrete") }) test_that("scale_colour_excel works", { expect_is(scale_fill_excel_new(), "ScaleDiscrete") }) test_that("scale_fill_excel works", { expect_is(scale_colour_excel_new(), "ScaleDiscrete") }) test_that("theme_excel with horizontal = FALSE works", { thm <- theme_excel(horizontal = FALSE) expect_eqNe(thm$panel.grid.major.y, element_blank()) })
qc.stats <- function (x = NULL, which.data = "raw.data", mito.genes = NULL, s.phase.genes = s.phase, g2m.phase.genes = g2m.phase) { if ("iCellR" != class(x)[1]) { stop("x should be an object of class iCellR") } if (which.data == "raw.data") { DATA <- [email protected] } if (which.data == "main.data") { DATA <- [email protected] } if (which.data == "imputed.data") { DATA <- [email protected] } UMIs <- colSums(DATA) nGenes <- sapply(DATA, function(DATA) length(as.numeric(subset(DATA, DATA != 0)))) if (is.null(mito.genes)) { mito.genes <- grep(pattern = "^mt\\-", x = rownames(DATA), value = TRUE, ignore.case = TRUE) if ( length(mito.genes) == 0 ) { mito.genes <- grep(pattern = "^mt\\.", x = rownames(DATA), value = TRUE, ignore.case = TRUE) } } if (!is.null(mito.genes)) { mito.genes = mito.genes } mito <- subset(DATA,rownames(DATA) %in% mito.genes) if(dim(mito)[1] == 0){ mitoSiz <- rep(0,dim(mito)[2]) mito.percent <- mitoSiz } mitoSiz <- colSums(mito) mito.percent <- (mitoSiz/UMIs) data <- row.names(DATA) s.phase.genes <- paste("^",s.phase.genes,"$", sep="") s.phase.genes <- paste(s.phase.genes,collapse="|") s.phase.genes <- grep(s.phase.genes, x = data, value = T, ignore.case = TRUE) s.phase.genes1 <- subset(DATA,rownames(DATA) %in% s.phase.genes) if(dim(s.phase.genes1)[1] != 0){ s.phase.genes <- colSums(s.phase.genes1) s.phase.genes <- (s.phase.genes/UMIs) } if(dim(s.phase.genes1)[1] == 0){ s.phase.genes <- rep(0,dim(s.phase.genes1)[2]) } g2m.phase.genes <- paste("^",g2m.phase.genes,"$", sep="") g2m.phase.genes <- paste(g2m.phase.genes,collapse="|") g2m.phase.genes <- grep(g2m.phase.genes, x = data, value = T, ignore.case = TRUE) g2m.phase.genes1 <- subset(DATA,rownames(DATA) %in% g2m.phase.genes) if(dim(s.phase.genes1)[1] != 0){ g2m.phase.genes <- colSums(g2m.phase.genes1) g2m.phase.genes <- (s.phase.genes/UMIs) } if(dim(g2m.phase.genes1)[1] == 0){ g2m.phase.genes <- rep(0,dim(g2m.phase.genes1)[2]) } QC <- list(colnames(DATA), as.numeric(nGenes), as.numeric(UMIs), as.numeric(mito.percent), as.numeric(s.phase.genes), as.numeric(g2m.phase.genes)) names(QC) <- c("CellIds", "nGenes", "UMIs", "mito.percent", "S.phase.probability", "g2m.phase.probability") STATS <- as.data.frame(QC) attributes(x)$stats <- STATS return(x) }
plot_xy_NumGroup <- function(data, xcol, ycol, NumGroup, symsize = 2.5, symthick = 1, s_alpha = 1, TextXAngle = 0, fontsize = 20){ ggplot2::ggplot(data, aes(x = {{ xcol }}, y = {{ ycol }}))+ geom_point(size = {{ symsize }}, alpha = {{ s_alpha }}, aes(fill = {{ NumGroup }}), shape = 21, stroke = {{ symthick }})+ theme_classic(base_size = {{ fontsize }})+ theme(strip.background = element_blank())+ guides(x = guide_axis(angle = {{ TextXAngle }}))+ scale_fill_grafify_c() }
.datatable.aware <- TRUE met2model.BIOCRO <- function(in.path, in.prefix, outfolder, overwrite = FALSE, lat, lon, start_date, end_date, ...) { start_date <- lubridate::parse_date_time(start_date, tz = "UTC", orders = c("ymdHMSz", "ymdHMS", "ymdH", "ymd")) end_date <- lubridate::parse_date_time(end_date, tz = "UTC", orders = c("ymdHMSz", "ymdHMS", "ymdH", "ymd")) dir.create(file.path(outfolder), recursive = TRUE, showWarnings = FALSE) years_wanted <- lubridate::year(start_date):lubridate::year(end_date) res <- list() for (year in years_wanted) { yrstart = max(lubridate::date(start_date), lubridate::ymd(paste0(year, "-01-01"))) yrend = min(lubridate::date(end_date), lubridate::ymd(paste0(year, "-12-31"))) ncfile <- file.path(in.path, paste(in.prefix, year, "nc", sep = ".")) csvfile <- file.path(outfolder, paste(in.prefix, year, "csv", sep = ".")) if (file.exists(csvfile) && as.logical(overwrite) != TRUE){ PEcAn.logger::logger.warn(paste("Output file", csvfile, "already exists! Moving to next year.")) next } met.nc <- ncdf4::nc_open(ncfile) on.exit(close_nc_if_open(met.nc), add = FALSE) dt <- mean(diff(udunits2::ud.convert( met.nc$dim$time$vals, met.nc$dim$time$units, "hours since 1700-01-01 00:00:00"))) if (dt < 1) { ncdf4::nc_close(met.nc) upscale_result <- PEcAn.data.atmosphere::upscale_met( outfolder = outfolder, input_met = ncfile, site.id = in.prefix, resolution = 1/24, overwrite = overwrite) met.nc <- ncdf4::nc_open(upscale_result$file) } tmp.met <- PEcAn.data.atmosphere::load.cfmet( met.nc, lat = lat, lon = lon, start.date = yrstart, end.date = yrend) ncdf4::nc_close(met.nc) if (dt > 1) { tmp.met <- PEcAn.data.atmosphere::cfmet.downscale.time(cfmet = tmp.met, output.dt = 1) } met <- cf2biocro(tmp.met) utils::write.csv(met, file = csvfile, row.names = FALSE) res[[as.character(year)]] <- data.frame( file = csvfile, host = PEcAn.remote::fqdn(), mimetype = "text/csv", formatname = "biocromet", startdate = yrstart, enddate = yrend, dbfile.name = in.prefix, stringsAsFactors = FALSE) } result <- do.call("rbind", res) return(result) } cf2biocro <- function(met, longitude = NULL, zulu2solarnoon = FALSE) { if ((!is.null(longitude)) & zulu2solarnoon) { solarnoon_offset <- udunits2::ud.convert(longitude/360, "day", "minute") met[, `:=`(solardate = met$date + lubridate::minutes(solarnoon_offset))] } if (!"relative_humidity" %in% colnames(met)) { if (all(c("air_temperature", "air_pressure", "specific_humidity") %in% colnames(met))) { rh <- PEcAn.data.atmosphere::qair2rh( qair = met$specific_humidity, temp = udunits2::ud.convert(met$air_temperature, "Kelvin", "Celsius"), press = udunits2::ud.convert(met$air_pressure, "Pa", "hPa")) met[, `:=`(relative_humidity = rh)] } else { PEcAn.logger::logger.error("neither relative_humidity nor [air_temperature, air_pressure, and specific_humidity]", "are in met data") } } if (!"ppfd" %in% colnames(met)) { if ("surface_downwelling_photosynthetic_photon_flux_in_air" %in% colnames(met)) { ppfd <- udunits2::ud.convert(met$surface_downwelling_photosynthetic_photon_flux_in_air, "mol", "umol") } else if ("surface_downwelling_shortwave_flux_in_air" %in% colnames(met)) { par <- PEcAn.data.atmosphere::sw2par(met$surface_downwelling_shortwave_flux_in_air) ppfd <- PEcAn.data.atmosphere::par2ppfd(par) } else { PEcAn.logger::logger.error("Need either ppfd or surface_downwelling_shortwave_flux_in_air in met dataset") } } if (!"wind_speed" %in% colnames(met)) { if (all(c("northward_wind", "eastward_wind") %in% colnames(met))) { wind_speed <- sqrt(met$northward_wind^2 + met$eastward_wind^2) } else { PEcAn.logger::logger.error("neither wind_speed nor both eastward_wind and northward_wind are present in met data") } } if (max(met$relative_humidity) > 1) { met[, `:=`(relative_humidity = met$relative_humidity/100)] } newmet <- met[, list(year = lubridate::year(met$date), doy = lubridate::yday(met$date), hour = round(lubridate::hour(met$date) + lubridate::minute(met$date) / 60, 0), solar = ppfd, Temp = udunits2::ud.convert(met$air_temperature, "Kelvin", "Celsius"), RH = met$relative_humidity, windspeed = wind_speed, precip = udunits2::ud.convert(met$precipitation_flux, "s-1", "h-1"))] newmet <- newmet[newmet$hour <= 23,] return(as.data.frame(newmet)) }
summary.bayesQR <- function(object, burnin=0, credint=c(.025,.975), quantile=NULL, ...){ pandterm <- function(message) { stop(message, call. = FALSE) } if (is.null(quantile)){ out <- lapply(object, FUN="summary.bayesQR.single", burnin=burnin, credint=credint) } else { if (!all(quantile %in% sapply(object, "[[", "quantile"))){ pandterm("One or more specified quantiles were not estimated") } else { object <- object[(sapply(object, "[[", "quantile") %in% quantile)] out <- lapply(object, FUN="summary.bayesQR.single", burnin=burnin, credint=credint) } } class(out) <- "bayesQR.summary" return(out) }
Kmmhat <- function(X, r = NULL, ReferenceType = "", CheckArguments = TRUE) { if (CheckArguments) CheckdbmssArguments() KmmBymarkcorrint <- function (X, r) { X.marked <- X X.marked$marks <- X$marks$PointWeight/mean(X$marks$PointWeight) Kmm <- spatstat.core::Kmark(X.marked, correction="best") attr(Kmm, "ylab") <- attr(Kmm, "yexp") <- quote(K[mm](r)) attr(Kmm, "fname") <- "K[mm]" return (Kmm) } if (ReferenceType == "") { return (KmmBymarkcorrint(X, r)) } else { X.reduced <- X[X$marks$PointType == ReferenceType] return (KmmBymarkcorrint(X.reduced, r)) } }
"Dbf4myc"
StatsCovariate <- function(y = NULL, y.names = NULL, x = NULL, x.names = NULL, DF, params = NULL, job.group = NULL, initial.list = list(), jags.model, ... ) { y <- TrimSplit(y) x <- TrimSplit(x) y.names <- if (!is.null(y.names)) TrimSplit(y.names) else CapWords(y) x.names <- if (!is.null(x.names)) TrimSplit(x.names) else CapWords(x) job.names <- c(y.names,x.names) if ( length(y.names) != length(y) ) { warning("y.names and y have unequal length. Using variable names.") y.names <- CapWords(y) } if ( length(x.names) != length(x) ) { warning("x.names and x have unequal length. Using variable names.") x.names <- CapWords(x) } y.data <- DF[, c(y,x)] q <- ncol(y.data) if (length(x)) { m1 <- as.matrix(do.call(rbind,lapply(y, function (z) { m <- expand.grid(z,x) matrix(unlist(lapply(unlist(m), function (m) { which(m == colnames(y.data)) } )), ncol = 2 ) }))) } else { m1 <- t(combn(1:q, 2)) } m2 <- matrix(1:length(m1), length(m1) / 2, 2, byrow = TRUE) y.data <- lapply(1:nrow(m1), function (i) { m <- cbind( y.data[ , m1[i,1] ] , y.data[ , m1[i,2] ] ) m[stats::complete.cases(m) , ] } ) n <- unlist(lapply(y.data,nrow)) n.max <- max(n) y.data <- do.call(cbind,lapply(y.data, function(x) { rbind(x, matrix(NA, nrow=n.max-nrow(x), ncol=2) ) })) if (length(x)) { n.data <- data.frame(do.call(rbind,lapply(y.names, function (z) { m <- expand.grid(z,x.names) data.frame(m,n, stringsAsFactors = FALSE) }))) } else { n.data <- data.frame(t(combn(job.names, 2)),n, stringsAsFactors = FALSE) } params <- if(length(params)) TrimSplit(params) else c("cor") data.list <- list( n = n, q = q, y = y.data, m1 = m1, m2 = m2 ) if (is.null(job.group)) job.group <- list ( c("cov","cor") , c("Alpha") ) if ("Alpha" %in% params) { alpha <- "Alpha <- q / (q - 1) * (1 - sum(diag[]) / (sum(cov)))" jags.model <- gsub("\\ job.names <- list(list(job.names) , list("Tau-equivalent reliability")) alpha.n <- c( rep("Tau-equivalent reliability" , ncol(n.data)-1) , mean(n.data[ , ncol(n.data)]) ) n.data <- rbind(n.data , alpha.n) } n.data$n <- as.numeric(n.data$n) name.list <- list( job.group = job.group, job.names = job.names ) return (list( data.list = data.list, name.list = name.list, params = params, jags.model = jags.model, n.data = n.data )) }
usagehistory <- function (x) return(x@usagehistory) "usagehistory<-" <- function(x, value) { xx <- x if (is.null(value)) { xx@usagehistory <- character() } else { xx@usagehistory <- if (is.null(xx@usagehistory)) value else c(xx@usagehistory, value) } x <- xx }
has_duplicates <- function(x, .xname = get_name_in_parent(x)) { if(!anyDuplicated(x)) { return(false(gettext("%s has no duplicates."), .xname)) } TRUE } has_no_duplicates <- function(x, .xname = get_name_in_parent(x)) { if(anyDuplicated(x)) { dupe_indicies <- which(duplicated(x)) return( false( ngettext( length(dupe_indicies), "%s has a duplicate at position %s.", "%s has duplicates at positions %s." ), .xname, toString(dupe_indicies, width = 100) ) ) } TRUE }
rvmf <- function(n, mu, k) { Rfast::rvmf(n, mu, k) }
circleCub.Gauss <- function (center, r, mean, sd) { stopifnot(isScalar(sd), length(center) == 2, length(mean) == 2) pchisq((r/sd)^2, df=2, ncp=sum(((center-mean)/sd)^2)) }
speciesTree <- function(x, FUN = min) { test.ultra <- which(!unlist(lapply(x, is.ultrametric))) if (length(test.ultra)) stop(paste("the following trees were not ultrametric:\n", paste(test.ultra, collapse = " "))) Ntree <- length(x) D <- lapply(x, cophenetic.phylo) nms <- rownames(D[[1]]) n <- length(nms) M <- matrix(0, n*(n - 1)/2, Ntree) for (i in 1:Ntree) M[, i] <- as.dist(D[[i]][nms, nms]) Y <- apply(M, 1, FUN) attributes(Y) <- list(Size = n, Labels = nms, Diag = FALSE, Upper = FALSE, class = "dist") as.phylo(hclust(Y, "single")) }
met2cf.nc <- function(in.path, in.prefix, outfolder, ...) { script <- paste0("inst/scripts/CF.", in.prefix, "sh") cmdArgs <- paste(c(in.path, in.prefix, outfolder), collapse = " ") fcn <- system.file(script, package = "PEcAn.data.atmosphere") system(paste(fcn, cmdArgs)) }
write_ed2in <- function(ed2in, filename, custom_header = character(), barebones = FALSE) { UseMethod("write_ed2in", ed2in) } write_ed2in.ed2in <- function(ed2in, filename, custom_header = character(), barebones = FALSE) { tags_values_vec <- tags2char(ed2in) if (isTRUE(barebones)) { write_ed2in.default(ed2in, filename, custom_header, barebones) return(NULL) } nvalues <- length(tags_values_vec) ncomments <- length(attr(ed2in, "comment_values")) file_body <- character(nvalues + ncomments) file_body[attr(ed2in, "comment_linenos")] <- attr(ed2in, "comment_values") file_body[attr(ed2in, "value_linenos")] <- tags_values_vec header <- c( "!=======================================", "!=======================================", "! ED2 namelist file", "! Generated by `PEcAn.ED2::write_ed2in.ed2in`", "! Additional user comments below: ", paste0("! ", custom_header), "!---------------------------------------" ) output_lines <- c(header, file_body) writeLines(output_lines, filename) } write_ed2in.default <- function(ed2in, filename, custom_header = character(), barebones = FALSE) { tags_values_vec <- tags2char(ed2in) header <- c( "!=======================================", "!=======================================", "! ED2 namelist file", "! Generated by `PEcAn.ED2::write_ed2in.default`", "! Additional user comments below: ", paste0("! ", custom_header), "!---------------------------------------" ) output_lines <- c(header, "$ED_NL", tags_values_vec, "$END") writeLines(output_lines, filename) } tags2char <- function(ed2in) { char_values <- vapply(ed2in, is.character, logical(1)) na_values <- vapply(ed2in, function(x) all(is.na(x)), logical(1)) quoted_vals <- ed2in quoted_vals[char_values] <- lapply(quoted_vals[char_values], shQuote) quoted_vals[na_values] <- lapply(quoted_vals[na_values], function(x) "") values_vec <- vapply(quoted_vals, paste, character(1), collapse = ",") tags_values_vec <- sprintf(" NL%%%s = %s", names(values_vec), values_vec) tags_values_vec }
texmexMethod <- function(method){ method <- casefold(method) if (method %in% c("o", "opt", "optim", "optimize", "optimise")){ method <- "o" } else if (method %in% c("s", "sim", "simulate")){ method <- "s" } else if (method %in% c("b", "bs", "boot", "bootstrap")){ method <- "b" } else { stop("method should be either 'optimize', 'simulate' or 'bootstrap'") } method } texmexPrior <- function(prior, penalty, method, pp){ prior <- casefold(prior) penalty <- casefold(penalty) if (length(penalty) == 0 & is.null(pp) & method != 's'){ prior <- "none" } else if (length(penalty) > 0){ if (penalty != prior){ prior <- penalty } } if (method == 's' & !is.element(prior, c('gaussian', 'cauchy'))){ stop('Only gaussian or cauchy prior can be used when simulating from posterior.') } prior } texmexTrace <- function(trace, method){ if (method == "o"){ if (!is.null(trace)){ otrace <- trace } else { otrace <- 0 } } else{ otrace <- 0 if (is.null(trace)){ trace <- 10000 } } c(otrace, trace) } texmexPrepareData <- function(y, data, params){ D <- vector('list', length=length(params)) if (!is.null(data)){ y <- formula(paste(y, "~ 1")) y <- model.response(model.frame(y, data=data)) for (i in 1:length(params)){ D[[i]] <- model.matrix(params[[i]], data) } } else { for (i in 1:length(params)){ if (length(as.character(params[[i]])) == 2 & as.character(params[[i]])[2] == "1"){ D[[i]] <- matrix(ncol = 1, rep(1, length(y))) } else { D[[i]] <- model.matrix(params[[i]]) } } } names(D) <- names(params) n <- length(y) if (length(na.omit(y)) < n){ stop("missing values in response: missing values are not supported") } for (i in 1:length(D)){ if (nrow(na.omit(D[[i]])) < n){ stop("missing values in predictors: missing values are not supported") } } list(y=y, D=D) } texmexThresholdData <- function(threshold, data){ for (i in 1:length(data$D)){ data$D[[i]] <- data$D[[i]][data$y > threshold, , drop=FALSE] } data$y <- data$y[data$y > threshold] if (length(data$y) == 0){ stop("No observations above the threshold.") } data } texmexPriorParameters <- function(prior, priorParameters, data){ nc <- sum(sapply(data$D, ncol)) if (prior %in% c("quadratic", "gaussian")) { if (is.null(priorParameters)) { priorParameters <- list(rep(0, nc), diag(rep(10^4, nc))) } if (length(priorParameters) != 2 | !is.list(priorParameters)) { stop("For Gaussian prior or quadratic penalty, priorParameters should be a list of length 2, the second element of which should be a symmetric (covariance) matrix") } } else if (prior %in% c("lasso", "l1", "laplace")) { if (is.null(priorParameters)) { priorParameters <- list(rep(0, nc), diag(rep(10^(-4), nc))) } if (length(priorParameters) != 2 | !is.list(priorParameters)) { stop("For Laplace prior or L1 or Lasso penalty, priorParameters should be a list of length 2, the second element of which should be a diagonal (precision) matrix") } if (!is.matrix(priorParameters[[2]])) { priorParameters[[2]] <- diag(rep(priorParameters[[2]], nc)) } if (!all(priorParameters[[2]] == diag(diag(priorParameters[[2]])))) { warning("some off-diagonal elements of the covariance are non-zero. Only the diagonal is used in penalization") } } if (!is.null(priorParameters)) { if (length(priorParameters[[1]]) != nc) { stop("wrong number of parameters in prior (doesn't match parameter formulae)") } else if (length(diag(priorParameters[[2]])) != nc) { stop("wrong dimension of prior covariance (doesn't match parameter formulae)") } } priorParameters } findFormulae <- function(call,...){ wh <- sapply(call, function(x){ try(class(eval(x)), silent=TRUE) }) wh <- names(wh)[wh == 'formula'] if (length(wh) > 0){ res <- as.list(call[wh]) for(i in 1:length(res)) res[[i]] <- eval(res[[i]]) } else { res <- NULL } res } texmexParameters <- function(call, fam, ...){ mp <- lapply(names(fam$param), function(x) ~1) names(mp) <- names(fam$param) p <- findFormulae(call, ...) mp[names(p)] <- p mp } texmexGetParam <- function(data, co){ if (is.vector(co)){ co <- matrix(co, nrow=1) } mend <- cumsum(unlist(lapply(data, ncol))) mstart <- c(1, mend+1)[-(length(mend) + 1)] param <- lapply(1:length(mend), function(i, m, start, end){ m[,start[i]:end[i],drop=FALSE] }, m=co, start=mstart, end=mend) param } texmexPst <- function(msg="",Family){ paste(msg,", Family = ", Family$name) } texmexGetXlevels <- function(fo, data){ getVars <- function(fo) { all.vars(update(fo, 0~.)) } allVars <- unique(unlist(lapply(fo, getVars))) data <- data[, allVars, drop=FALSE] classes <- sapply(data, class) wh <- classes %in% c("factor", "ordered", "character") data <- data[, wh, drop=FALSE] classes <- classes[wh] data[classes == "character"] <- lapply(data[classes == "character"], as.factor) xlevels <- lapply(data, levels) res <- lapply(fo, getVars) lapply(res, function(X, wh) wh[names(wh) %in% X], wh=xlevels) } texmexStandardForm <- function(object){ if (sum(sapply(object$data$D, ncol)) > length(object$family$param)){ object$data$y <- resid(object) object$threshold <- 0 object$coefficients <- object$family$param } object }
wals.feature <- function(features, na.rm = TRUE) { features_set <- c( "1A", "2A", "3A", "4A", "5A", "6A", "7A", "8A", "9A", "10A", "10B", "11A", "12A", "13A", "14A", "15A", "16A", "17A", "18A", "19A", "20A", "21A", "21B", "22A", "23A", "24A", "25A", "25B", "26A", "27A", "28A", "29A", "30A", "31A", "32A", "33A", "34A", "35A", "36A", "37A", "38A", "39A", "39B", "40A", "41A", "42A", "43A", "44A", "45A", "46A", "47A", "48A", "49A", "50A", "51A", "52A", "53A", "54A", "55A", "56A", "57A", "58A", "58B", "59A", "60A", "61A", "62A", "63A", "64A", "65A", "66A", "67A", "68A", "69A", "70A", "71A", "72A", "73A", "74A", "75A", "76A", "77A", "78A", "79A", "79B", "80A", "81A", "81B", "82A", "83A", "84A", "85A", "86A", "87A", "88A", "89A", "90A", "90B", "90C", "90D", "90E", "90F", "90G", "91A", "92A", "93A", "94A", "95A", "96A", "97A", "98A", "99A", "100A", "101A", "102A", "103A", "104A", "105A", "106A", "107A", "108A", "108B", "109A", "109B", "110A", "111A", "112A", "113A", "114A", "115A", "116A", "117A", "118A", "119A", "120A", "121A", "122A", "123A", "124A", "125A", "126A", "127A", "128A", "129A", "130A", "130B", "131A", "132A", "133A", "134A", "135A", "136A", "136B", "137A", "137B", "138A", "139A", "140A", "141A", "142A", "143A", "143B", "143C", "143D", "143E", "143F", "143G", "144A", "144B", "144C", "144D", "144E", "144F", "144G", "144H", "144I", "144J", "144K", "144L", "144M", "144N", "144O", "144P", "144Q", "144R", "144S", "144T", "144U", "144V", "144W", "144X", "144Y" ) message(paste0("Don't forget to cite a source (modify in case of using individual chapters): Dryer, Matthew S. & Haspelmath, Martin (eds.) 2013. The World Atlas of Language Structures Online. Leipzig: Max Planck Institute for Evolutionary Anthropology. (Available online at https://wals.info/, Accessed on ", Sys.Date(), ".) @book{wals, address = {Leipzig}, editor = {Matthew S. Dryer and Martin Haspelmath}, publisher = {Max Planck Institute for Evolutionary Anthropology}, title = {WALS Online}, url = {https://wals.info/}, year = {2013} }")) if (sum(!toupper(features) %in% features_set) < 1){ links <- paste0("https://wals.info/feature/", toupper(features), ".tab") datalist <- lapply(links, function(x) { utils::read.csv(x, sep = "\t", skip = 7, stringsAsFactors = FALSE) }) final_df <- Reduce(function(x, y) { merge( x, y, all = TRUE, by = c( "wals.code", "name", "latitude", "longitude", "genus", "family" ) ) }, datalist) final_df <- final_df[, grep("description|wals.code|name|latitude|longitude", colnames(final_df))] colnames(final_df)[grep("description", colnames(final_df))] <- features final_df <- merge(final_df, lingtypology::wals, by = "wals.code") final_df$language <- lingtypology::lang.gltc(final_df$glottocode) na_rm <- is.na(final_df$language) ifelse(na.rm == TRUE, final_df <- final_df[!na_rm, ], final_df[is.na(final_df$language), "language"] <- final_df[is.na(final_df$language), "name"]) final_df <- final_df[,-2] } else { not_features <- features[which(!features %in% features_set)] stop(paste( "There is no features", paste0("'", not_features, "'", collapse = ", "), "in WALS database." )) } return(final_df) }
DataAltiExtrapolation_Valery <- function(DatesR, Precip, PrecipScale = TRUE, TempMean, TempMin = NULL, TempMax = NULL, ZInputs, HypsoData, NLayers, verbose = TRUE) { GradP_Valery2010 <- 0.00041 HypsoData <- as.double(HypsoData) ZInputs <- as.double(ZInputs) ZLayers <- as.double(rep(NA, NLayers)) if (!identical(HypsoData, as.double(rep(NA, 101)))) { nmoy <- 100 %/% NLayers nreste <- 100 %% NLayers ncont <- 0 for (iLayer in 1:NLayers) { if (nreste > 0) { nn <- nmoy + 1 nreste <- nreste - 1 } else { nn <- nmoy } if (nn == 1) { ZLayers[iLayer] <- HypsoData[ncont + 1] } if (nn == 2) { ZLayers[iLayer] <- 0.5 * (HypsoData[ncont + 1] + HypsoData[ncont + 2]) } if (nn > 2) { ZLayers[iLayer] <- HypsoData[ncont + nn / 2] } ncont <- ncont + nn } } if (identical(ZInputs, HypsoData[51]) & NLayers == 1) { LayerPrecip <- list(as.double(Precip)) } else { GradP <- GradP_Valery2010 TabGradP <- rep(GradP, length(Precip)) Zthreshold <- 4000 LayerPrecip_mat <- sapply(1:NLayers, function(iLayer) { if (ZLayers[iLayer] <= Zthreshold) { prcp <- as.double(Precip * exp(TabGradP * (ZLayers[iLayer] - ZInputs))) } else { if (ZInputs <= Zthreshold) { prcp <- as.double(Precip * exp(TabGradP * (Zthreshold - ZInputs))) } else { prcp <- as.double(Precip) } } return(prcp) }) if (PrecipScale) { LayerPrecip_mat <- LayerPrecip_mat / rowMeans(LayerPrecip_mat) * Precip LayerPrecip_mat[is.nan(LayerPrecip_mat)] <- 0 } LayerPrecip <- as.list(as.data.frame(LayerPrecip_mat)) } LayerTempMean <- list() LayerTempMin <- list() LayerTempMax <- list() if (identical(ZInputs, HypsoData[51]) & NLayers == 1) { LayerTempMean[[1]] <- as.double(TempMean) if (!is.null(TempMin) & !is.null(TempMax)) { LayerTempMin[[1]] <- as.double(TempMin) LayerTempMax[[1]] <- as.double(TempMax) } } else { GradT <- .GradT_Valery2010 iday <- match(format(DatesR, format = "%d%m"), sprintf("%02i%02i", GradT[, "day"], GradT[, "month"])) TabGradT <- GradT[iday, c("grad_Tmean", "grad_Tmin", "grad_Tmax")] for (iLayer in 1:NLayers) { LayerTempMean[[iLayer]] <- as.double(TempMean + (ZInputs - ZLayers[iLayer]) * abs(TabGradT[, "grad_Tmean"]) / 100) if (!is.null(TempMin) & !is.null(TempMax)) { LayerTempMin[[iLayer]] <- as.double(TempMin + (ZInputs - ZLayers[iLayer]) * abs(TabGradT[, "grad_Tmin"]) / 100) LayerTempMax[[iLayer]] <- as.double(TempMax + (ZInputs - ZLayers[iLayer]) * abs(TabGradT[, "grad_Tmax"]) / 100) } } } LayerFracSolidPrecip <- list() Zthreshold <- 1500 Option <- "USACE" if (!is.na(ZInputs)) { if (ZInputs < Zthreshold & !is.null(TempMin) & !is.null(TempMax)) { Option <- "Hydrotel" } } for (iLayer in 1:NLayers) { if (Option == "Hydrotel") { TempMin <- LayerTempMin[[iLayer]] TempMax <- LayerTempMax[[iLayer]] SolidFraction <- 1 - TempMax / (TempMax - TempMin) SolidFraction[TempMin >= 0] <- 0 SolidFraction[TempMax <= 0] <- 1 } if (Option == "USACE") { USACE_Tmin <- -1.0 USACE_Tmax <- 3.0 TempMean <- LayerTempMean[[iLayer]] SolidFraction <- 1 - (TempMean - USACE_Tmin) / (USACE_Tmax - USACE_Tmin) SolidFraction[TempMean > USACE_Tmax] <- 0 SolidFraction[TempMean < USACE_Tmin] <- 1 } LayerFracSolidPrecip[[iLayer]] <- as.double(SolidFraction) } namesLayer <- sprintf("L%i", seq_along(LayerPrecip)) names(LayerPrecip) <- namesLayer names(LayerTempMean) <- namesLayer if (!is.null(TempMin) & !is.null(TempMax)) { names(LayerTempMin) <- namesLayer names(LayerTempMax) <- namesLayer } names(LayerFracSolidPrecip) <- namesLayer return(list(LayerPrecip = LayerPrecip, LayerTempMean = LayerTempMean, LayerTempMin = LayerTempMin, LayerTempMax = LayerTempMax, LayerFracSolidPrecip = LayerFracSolidPrecip, ZLayers = ZLayers)) }
sp.classification <- function (tree.sp, species.spruce, species.pine, species.harw) { if (is.null(species.spruce)) stop("species.spruce is NULL") if (is.null(species.pine)) stop("species.pine is NULL") if (is.null(species.harw)) stop("species.harw is NULL") sp.clas <- factor(rep("other", length(tree.sp)), levels = c("spruce", "pine", "birch", "other")) sp.clas[tree.sp %in% species.spruce] <- "spruce" sp.clas[tree.sp %in% species.pine] <- "pine" sp.clas[tree.sp %in% species.harw] <- "birch" return(sp.clas) }
est.mfa <- function (init_para, Y, itmax, tol, conv_measure, eta , ...) { p <- ncol(Y) n <- nrow(Y) fit <- init_para loglikeNtau <- try(do.call("logL_tau.mfa", c(list(Y = Y), fit)), silent = TRUE) if ((any(class(loglikeNtau) %in% "try-error")) || (any(class(loglikeNtau) %in% "character"))) { FIT <- paste("in computing the log-likelihood before EM-steps") class(FIT) <- "error" return(FIT) } fit <- append(fit, loglikeNtau) for (niter in 1:itmax) { FIT <- do.call("MStep.amfa", c(list(Y = Y, eta = eta), fit)) if (any(class(FIT) %in% "error")) { FIT <- paste("in ", niter, "iteration of the M-step", FIT) class(FIT) <- "error" return(FIT) } loglikeNtau <- try(do.call("logL_tau.mfa", c(list(Y = Y), FIT)), silent = TRUE) if ((any(class(loglikeNtau) %in% "try-error")) || (any(class(loglikeNtau) %in% "character"))) { FIT <- paste("in computing the log-likelihood after the ", niter, "th the M-step", FIT$logL, sep = "") class(FIT) <- "error" return(FIT) } FIT <- append(FIT, loglikeNtau) if ((any(class(FIT$logL) == "NULL")) || (any(class(FIT$logL) == "character"))) { FIT <- paste("in computing the log-likelihood after the ", niter, "th the M-step", FIT$logL, sep = "") class(FIT) <- "error" return(FIT) } else { if ((FIT$logL == -Inf) | is.na(FIT$logL)) { FIT <- paste("the log-likelihood computed after the ", niter, "th iteration of the M-step is not finite", sep = "") class(FIT) <- "error" return(FIT) } } if ((conv_measure == "diff") && (abs(FIT$logL - fit$logL) < tol)) break if ((conv_measure == "ratio") && (abs((FIT$logL - fit$logL)/FIT$logL) < tol)) break fit <- FIT } class(FIT) <- "mfa" return(FIT) }
library(testthat) library(rly) context("Bad literal specification") Lexer <- R6::R6Class("Lexer", public = list( tokens = c('NUMBER'), literals = c("+","-","**"), t_NUMBER = function(re='\\d+', t) { return(t) }, t_error = function(t) {} ) ) test_that("literal not single", { expect_output(expect_error(rly::lex(Lexer), "Can't build lexer"), "ERROR .* Invalid literal. Must be a single character") })
gvcmcatfit <- function ( x, y, weights, family, control, acoefs, lambda, phis, weight, which.a, start = NULL, offset = rep(0, nobs), ... ) { x <- as.matrix(x) xnames <- dimnames(x)[[2L]] ynames <- if (is.matrix(y)) rownames(y) else names(y) conv <- FALSE nobs <- nrow(x) nlik <- if (control$scaled.lik) nobs else 1 nvars <- ncol(x) EMPTY <- nvars == 0 if (is.null(weights)) weights <- rep.int(1, nobs) if (is.null(offset)) offset <- rep.int(0, nobs) if (length(offset)==1) offset <- rep.int(offset, nobs) variance <- family$variance linkinv <- family$linkinv if (!is.function(variance) || !is.function(linkinv)) stop("'family' argument seems not to be a valid family object", call. = FALSE) dev.resids <- family$dev.resids aic <- family$aic mu.eta <- family$mu.eta unless.null <- function(x, if.null) if (is.null(x)) if.null else x valideta <- unless.null(family$valideta, function(eta) TRUE) validmu <- unless.null(family$validmu, function(mu) TRUE) coefold <- if (nvars >= nobs || control$start.ml==TRUE) control$oml else rep(1, nvars) if (any(is.na(coefold))) coefold[which(is.na(coefold))] <- 0 mustart <- etastart <- NULL if (is.null(start)) { suppressWarnings(eval(family$initialize)) etastart <- family$linkfun(mustart) start <- coefold } else { start <- if (length(start) != nvars) {stop(gettextf("length of 'start' should equal %d and correspond to initial coefs for %s", nvars, paste(deparse(xnames), collapse = ", ")), domain = NA)} else { isnogood <- is.na(start) if (any(isnogood)) { start[isnogood] <- 0 } start } eval(family$initialize) coefold <- start etastart <- offset + as.vector(if (NCOL(x) == 1) {x * start} else {x %*% start}) mustart <- linkinv(etastart) } if (EMPTY) { eta <- rep.int(0, nobs) + offset if (!valideta(eta)) stop("invalid linear predictor values in empty model", call. = FALSE) mu <- linkinv(eta) if (!validmu(mu)) stop("invalid fitted means in empty model", call. = FALSE) dev <- sum(dev.resids(y, mu, weights)) w <- ((weights * mu.eta(eta)^2)/variance(mu))^0.5 residuals <- (y - mu)/mu.eta(eta) good <- rep(TRUE, length(residuals)) boundary <- conv <- TRUE coef <- numeric() iter <- 0L } if (!EMPTY) { eta <- etastart mu <- mustart if (!(validmu(mu) && valideta(eta))) stop("cannot find valid starting values: please specify some", call. = FALSE) devold <- sum(dev.resids(y, mu, weights)) boundary <- conv <- FALSE L1 <- function(xi, control=control) sqrt((xi^2 + control$c) )^(-1) L0 <- if (control$L0.log==TRUE) { function(xi, control=control){p <- 1+exp(-control$gama*abs(xi)) 2*control$gama*(sqrt(xi^2 + control$c))^(-1)*p^(-1)*(1 - 1/p)} } else { function(xi, control=control){2*(xi+control$c)^(-2)} } L2 <- function(xi, control=control){2} elastic <- function(xi, control=control) {control$elastic * L1(xi, control=control) + (1-control$elastic) * L1(xi, control=control)} SCAD <- function(xi, control=control){ a <- 3.7 lambda <- control$lambda zweiteklammer <- a*lambda-abs(xi) (as.numeric(abs(xi)<=lambda) + zweiteklammer*as.numeric(zweiteklammer>0) * as.numeric(abs(xi)>lambda) / (a-1) / lambda) /sqrt(abs(xi)^2 + control$c) } sp <- function(xi, control=control) { 2 } alle.L <- c("L1", "L0", "L2", "elastic", "SCAD", "sp", "L0.normal", "L0.root", "L0.ridge") all.L <- alle.L[which(alle.L %in% which.a)] vec.L <- function(x, which.a, all.L=all.L, control=control){ output <- rep(0,length(x)) for (i in all.L){ good <- which(which.a==i) if (!is.null(good)) output[good] <- eval(parse(text=i))(x[good], control) } return(output) } grouped <- function(beta, Aj, control=control) { dfj <- sum(Aj==1) AjtAj <- Aj%*%t(Aj) rep(sqrt(dfj) / sqrt(t(beta)%*%AjtAj%*%beta + control$c), ncol(Aj) ) } vec.special <- function(beta, acoefs, which.a) { output <- rep(0,ncol(acoefs)) info <- rle(which.a) i <- "grouped" for (j in grep(i, info[[2]])) { good <- which(which.a==info[[2]][j]) adpt <- sqrt(sum((t(acoefs)%*%control$oml)[good]^2)) * control$adapted.weights + abs(control$adapted.weights - 1) output[good] <- eval(parse(text=i))(beta, acoefs[,good], control)/adpt } return(output) } A <- function(beta, acoefs=acoefs, x=x, which.a=which.a, all.L=all.L, lambda=lambda, phis=phis, weight=weight, control=control) { nbs <- t(acoefs)%*%beta fd <- as.integer(drop(nbs)!=0) appro <- fd * lambda * phis * weight * (vec.L(nbs, which.a, all.L, control) + vec.special(beta, acoefs, which.a)) crossprod(t(acoefs)*sqrt(appro)) } method<-"lqa" if(method=="lqa"){ for (i in 1L:control$maxi) { good <- weights > 0 varmu <- variance(mu)[good] if (any(is.na(varmu))) stop("NAs in V(mu)") if (any(varmu == 0)) stop("0s in V(mu)") mu.eta.val <- mu.eta(eta) if (any(is.na(mu.eta.val[good]))) stop("NAs in d(mu)/d(eta)") good <- (weights > 0) & (mu.eta.val != 0) if (all(!good)) { conv <- FALSE warning("no observations informative at iteration ", i) break } z <- (eta - offset)[good] + (y - mu)[good]/mu.eta.val[good] w <- sqrt((weights[good] * mu.eta.val[good]^2)/variance(mu)[good]) A.lambda <- nlik * A(start, acoefs=acoefs, x=x, which.a=which.a, all.L=all.L, lambda=lambda, phis=phis, weight=weight, control) x.star <- w*x y.schlange <- as.vector(w*z) p.imat.new <- crossprod(x.star) + A.lambda chol.pimat.new <- chol(p.imat.new) inv.pimat.new <- chol2inv(chol.pimat.new) start.new <- control$g * drop(inv.pimat.new %*% t(x.star) %*% y.schlange) + (1 - control$g) * start start <- start.new if (any(!is.finite(start))) { conv <- FALSE warning(gettextf("non-finite coefficients at iteration %d", i), domain = NA) break } eta <- drop(x %*% start) mu <- linkinv(eta <- eta + offset) dev <- sum(dev.resids(y, mu, weights)) boundary <- FALSE if (!is.finite(dev)) { if (any(coefold==NaN) || any(coefold==Inf) || any(is.na(coefold))) stop("no valid set of coefficients has been found: please supply starting values", call. = FALSE) warning("step size truncated due to divergence", call. = FALSE) ii <- 1 while (!is.finite(dev)) { if (ii > control$maxi) stop("inner loop 1; cannot correct step size", call. = FALSE) ii <- ii + 1 start <- (start + coefold)/2 eta <- drop(x %*% start) mu <- linkinv(eta <- eta + offset) dev <- sum(dev.resids(y, mu, weights)) } boundary <- TRUE } if (!(valideta(eta) && validmu(mu))) { if (any(coefold==NaN) || any(coefold==Inf) || any(is.na(coefold))) stop("no valid set of coefficients has been found: please supply starting values", call. = FALSE) warning("step size truncated: out of bounds", call. = FALSE) ii <- 1 while (!(valideta(eta) && validmu(mu))) { if (ii > control$maxi) stop("inner loop 2; cannot correct step size", call. = FALSE) ii <- ii + 1 start <- (start + coefold)/2 eta <- drop(x %*% start) mu <- linkinv(eta <- eta + offset) } boundary <- TRUE dev <- sum(dev.resids(y, mu, weights)) } if (sum(abs(start - coefold))/sum(abs(coefold)) <= control$epsilon) { conv <- TRUE coef <- start break } else { devold <- dev coef <- coefold <- start } } } start <- coef <- round(start, control$accuracy) eta <- drop(x %*% start) mu <- linkinv(eta <- eta + offset) dev <- sum(dev.resids(y, mu, weights)) if (!conv) warning("Convergence warning for lambda = ", lambda[1], "\n", call. = FALSE) if (boundary) warning("Algorithm stopped at boundary value", call. = FALSE) if (family$family == "binomial") { if (any(mu > 1 - control$epsilon) || any(mu < control$epsilon)) warning("Fitted probabilities numerically 0 or 1 occurred", call. = FALSE) } if (family$family == "poisson") { if (any(mu < control$epsilon)) warning("Fitted rates numerically 0 occurred", call. = FALSE) } residuals <- (y - mu)/mu.eta(eta) names(coef) <- xnames H.i.1 <- Matrix(x.star) suppressWarnings(try(H.i.2 <- H.i.1 %*% inv.pimat.new)) rank <- if (exists("H.i.2")) sum(H.i.2 * H.i.1) else NA } names(residuals) <- ynames names(mu) <- ynames names(eta) <- ynames wt <- rep.int(0, nobs) wt[good] <- w^2 names(wt) <- ynames names(weights) <- ynames names(y) <- ynames wtdmu <- sum(weights * y)/sum(weights) nulldev <- sum(dev.resids(y, wtdmu, weights)) n.ok <- nobs - sum(weights == 0) nulldf <- n.ok - 1 resdf <- n.ok - rank aic.model <- aic(y, nobs, mu, weights, dev) + 2 * rank Rmat <- QR <- NULL list(coefficients = coef, residuals = residuals, fitted.values = mu, effects = if (!EMPTY) effects, R = if (!EMPTY) Rmat, rank = round(rank, 2), qr = if (!EMPTY) QR, family = family, linear.predictors = eta, deviance = dev, aic = aic.model, null.deviance = nulldev, iter = i, weights = wt, prior.weights = weights, df.residual = resdf, df.null = nulldf, y = y, converged = conv, boundary = boundary) }
create_project_rstudio <- function(path, template, dump, merge) { .stopifproject(c("Cannot create a new project inside an existing one", "Please change to another directory and re-run create.project()"), path = normalizePath(dirname(path))) .stopifproject(c("Cannot create a new project inside an existing one", "Please change to another directory and re-run create.project()"), path = dirname(normalizePath(dirname(path)))) dir.create(path, recursive = TRUE, showWarnings = FALSE) ProjectTemplate::create.project( project.name = path, template = template, dump = dump, merge.strategy = ifelse(merge, "allow.non.conflict", "require.empty"), rstudio.project = TRUE ) }
mare<-function(o, p){ a<-abs(o-p) b<-o stats::median(a/b) }
jxCalendarTime <- function(tc0, tc1) { jx <- rep(0, times=length(tc1)) for (k in 1:length(tc1)) { idx <- which(tc0 <= tc1[k]) if (length(idx) == 0) { jx[k] <- 0 } else { jx[k] <- idx[length(idx)] } } return(jx) } jyCalendarTime <- function(jx) { jx0 <- c(0, jx[1:(length(jx)-1)]) jx <- which(jx > jx0) return(jx) }
Replicator <- function(time, state, parameters) { a <- parameters states <- sqrt(length(a)) A <- matrix(a, states, byrow = TRUE) A <- t(A) dX <- c() for(i in 1:states) { dX[i] <- sum(state * A[i, ]) } avgFitness <- sum(dX * state) for(i in 1:states) { dX[i] <- state[i] * (dX[i] - avgFitness) } return(list(dX)) }
split_tree_at_height = function(tree, height = 0, by_edge_count = FALSE){ Ntips = length(tree$tip.label); Nnodes = tree$Nnode; Nedges = nrow(tree$edge); clade_labels = c(tree$tip.label, tree$node.label) results = split_tree_at_height_CPP( Ntips, Nnodes, Nedges, tree_edge = as.vector(t(tree$edge)) - 1, edge_length = (if(by_edge_count || is.null(tree$edge.length)) numeric() else tree$edge.length), root_edge = (if(is.null(tree$root.edge)) 0 else tree$root.edge), split_height = height) if(!results$success){ return(list(success=FALSE, error=results$error)); }else if(results$Nsubtrees==0){ return(list(Nsubtrees = 0, subtrees = list(), clade2subtree = rep(0,Ntips+Nnodes))); }else{ Nsubtrees = results$Nsubtrees NStips = results$NStips NSnodes = results$NSnodes NSclades = NStips+NSnodes NSedges = results$NSedges new2old_clade = results$new2old_clade + 1; new2old_edge = results$new2old_edge + 1; clade2subtree = results$clade2subtree + 1; subtrees = vector(mode="list", Nsubtrees) clade_offset = 0; edge_offset = 0; for(i in 1:Nsubtrees){ subtree = list( Nnode = NSnodes[i], tip.label = (if(NStips[i]==0) vector("character") else clade_labels[new2old_clade[(1+clade_offset):(clade_offset+NStips[i])]]), node.label = (if(is.null(tree$node.label) || (NSnodes[i]==0)) NULL else clade_labels[new2old_clade[(clade_offset+NStips[i]+1):(clade_offset+NSclades[i])]]), edge = (if(NSedges[i]==0) matrix(nrow=0,ncol=2) else matrix(results$subtree_edges[(1+2*edge_offset):(2*edge_offset+2*NSedges[i])],ncol=2,byrow=TRUE) + 1), edge.length = (if(is.null(tree$edge.length)) NULL else (if(NSedges[i]==0) vector("double") else tree$edge.length[new2old_edge[(1+edge_offset):(edge_offset+NSedges[i])]])), root = results$new_roots[i]+1, root.edge = results$root_edges[i]) class(subtree) = "phylo"; attr(subtree,"order") = NULL subtrees[[i]] = list( tree = subtree, new2old_clade = (if(NSclades[i]==0) vector("integer") else new2old_clade[(1+clade_offset):(clade_offset+NSclades[i])]), new2old_edge = (if(NSedges[i]==0) vector("integer") else new2old_edge[(1+edge_offset):(edge_offset+NSedges[i])])); clade_offset = clade_offset + NSclades[i]; edge_offset = edge_offset + NSedges[i]; } return(list(Nsubtrees = Nsubtrees, subtrees = subtrees, clade2subtree = clade2subtree)); } }
source_url <- function(url, ..., sha1 = NULL) { stopifnot(is.character(url), length(url) == 1) rlang::check_installed("digest") temp_file <- file_temp() on.exit(file_delete(temp_file)) request <- httr::GET(url) httr::stop_for_status(request) writeBin(httr::content(request, type = "raw"), temp_file) file_sha1 <- digest::digest(file = temp_file, algo = "sha1") if (is.null(sha1)) { cli::cli_alert_info("SHA-1 hash of file is {file_sha1}") } else { if (nchar(sha1) < 6) { stop("Supplied SHA-1 hash is too short (must be at least 6 characters)") } file_sha1 <- substr(file_sha1, 1, nchar(sha1)) if (!identical(file_sha1, sha1)) { stop("SHA-1 hash of downloaded file (", file_sha1, ")\n does not match expected value (", sha1, ")", call. = FALSE ) } } check_dots_used(action = getOption("devtools.ellipsis_action", rlang::warn)) source(temp_file, ...) } source_gist <- function(id, ..., filename = NULL, sha1 = NULL, quiet = FALSE) { rlang::check_installed("gh") stopifnot(length(id) == 1) url_match <- "((^https://)|^)gist.github.com/([^/]+/)?([0-9a-f]+)$" if (grepl(url_match, id)) { id <- regmatches(id, regexec(url_match, id))[[1]][5] url <- find_gist(id, filename) } else if (is.numeric(id) || grepl("^[0-9a-f]+$", id)) { url <- find_gist(id, filename) } else { stop("Unknown id: ", id) } if (!quiet) cli::cli_alert_info("Sourcing {url}") check_dots_used(action = getOption("devtools.ellipsis_action", rlang::warn)) source_url(url, ..., sha1 = sha1) } find_gist <- function(id, filename) { files <- gh::gh("GET /gists/:id", id = id)$files r_files <- files[grepl("\\.[rR]$", names(files))] if (length(r_files) == 0) { stop("No R files found in gist", call. = FALSE) } if (!is.null(filename)) { if (!is.character(filename) || length(filename) > 1 || !grepl("\\.[rR]$", filename)) { stop("'filename' must be NULL, or a single filename ending in .R/.r", call. = FALSE) } which <- match(tolower(filename), tolower(names(r_files))) if (is.na(which)) { stop("'", filename, "' not found in this gist", call. = FALSE) } } else { if (length(r_files) > 1) { warning("Multiple R files in gist, using first", call. = FALSE) } which <- 1 } r_files[[which]]$raw_url }
place_order_options <- function(RH, option_id, direction, side, quantity, stop_price = NULL, type = "limit", time_in_force) { check_rh(RH) if (type != "limit") stop("Only limit orders are supported") if (type == "limit" & is.null(stop_price)) stop("Limit orders must contain a price") if (!direction %in% c("debit", "credit")) stop("direction must be 'debit' or 'credit'") orders <- api_orders_options(RH = RH, option_id = option_id, direction = direction, side = side, quantity = quantity, stop_price = stop_price, type = type, time_in_force = time_in_force, action = "order") return(orders) }
toBibtex.BibEntry <- function(object, note.replace.field = c('urldate', "pubsate", "addendum"), extra.fields = NULL, ...){ object <- .BibEntry_expand_crossrefs(unclass(object), to.bibtex = TRUE) if (length(object)) { object$.index <- NULL rval <- head(unlist(lapply(object, ConvertToBibtex, note.replace.field, extra.fields)), -1L) } else rval <- character() class(rval) <- "Bibtex" rval } ConvertToBibtex <- function(object, note.replace.field, extra.fields){ object <- unclass(object)[[1L]] bibtype <- tolower(attr(object, "bibtype")) obj.names <- names(object) if ("author" %in% obj.names) object$author <- encoded_text_to_latex(format_author(object$author), "UTF-8") if ("editor" %in% obj.names) object$editor <- encoded_text_to_latex(format_author(object$editor), "UTF-8") if (bibtype == "article" && 'journaltitle' %in% obj.names && is.null(object$journal)) object$journal <- object$journaltitle if ("location" %in% obj.names && is.null(object$address)) object$address <- object$location object <- ConvertDate(object) if ("institution" %in% obj.names && bibtype == 'thesis' && is.null(object$school)){ object$school <- object$institution object$institution <- NULL } if ("eprinttype" %in% obj.names && is.null(object$archiveprefix)) object$archiveprefix <- object$eprinttype if ("eprintclass" %in% obj.names && is.null(object$primaryclass)) object$primaryclass <- object$eprintclass if ("sortkey" %in% obj.names && !"key" %in% obj.names) object$key <- object$sortkey if ("maintitle" %in% obj.names && !"series" %in% obj.names) object$series <- object$maintitle if ("issuetitle" %in% obj.names && !"booktitle" %in% obj.names) object$booktitle <- object$issuetitle if ("eventtitle" %in% obj.names && !"booktitle" %in% obj.names) object$booktitle <- object$eventtitle if (!"note" %in% obj.names && length(note.replace.field)){ object <- FillNote(object, obj.names, note.replace.field) } if (bibtype == "thesis" && length(object$type)){ bibtype <- switch(object$type, mathesis = { object$type <- NULL "mastersthesis" }, phdthesis = { object$type <- NULL "phdthesis" }, "phdthesis") } bibtype <- ConvertBibtype(bibtype) rval <- paste0("@", bibtype, "{", attr(object, "key"), ",") rval <- c(rval, vapply(names(object)[names(object) %in% c(.Bibtex_fields, extra.fields)], function(n) paste0(" ", n, " = {", object[[n]], "},"), ""), "}", "") return(rval) } ConvertDate <- function(obj){ dat <- attr(obj, 'dateobj') if (!is.null(dat) && is.null(obj$year)){ if (is.interval(dat)){ obj$year <- tolower(year(int_start(dat))) }else{ obj$year <- tolower(year(dat)) } } if (!is.null(dat) && attr(dat, "day.mon") > 0 && is.null(obj$month)){ if (is.interval(dat)){ obj$month <- tolower(month(int_start(dat), TRUE, TRUE)) }else{ obj$month <- tolower(month(dat, TRUE, TRUE)) } } obj } FillNote <- function(obj, onames, nrf){ for (i in seq_along(nrf)){ if (nrf[i] %in% onames){ if (nrf[i] == 'urldate'){ fDate <- try(ProcessDate(obj$urldate, NULL), TRUE) if (!is.null(fDate) && !inherits(fDate, 'try-error')){ obj$note <- paste0('Last visited on ', MakeBibLaTeX()$DateFormatter(fDate, TRUE)) }else{ obj$note <- paste0('Last visited on ', obj$urldate) } }else{ obj$note <- obj[[nrf[i]]] } break } } obj } ConvertBibtype <- function(bibtype){ types <- tolower(names(BibTeX_entry_field_db)) if (length(pos <- which(types %in% bibtype))) types[pos] else switch(bibtype, "mvbook" = "Book", "bookinbook" = "InBook", "suppbook" = "InBook", "collection" = "Book", "mvcollection" = "Book", "suppcollection" = "InCollection", "reference" = "Book", "mvreference" = "Book", "inreference" = "InBook", "report" = "TechReport", "proceedings" = "Book", "mvproceedings" = "Book", "periodical" = "Book", "suppperiodical" = "InBook", "patent" = "TechReport", "Misc") } .Bibtex_fields <- c("address", "author", "annote", "booktitle", "chapter", "crossref", "edition", "editor", "eprint", "year", "howpublished", "institution", "journal", "month", "key", "note", "primaryclass", "archiveprefix", "doi", "number", "organization", "pages", "publisher", "school", "series", "title", "type", "url", "volume")
cov2dist <- function(V,void=FALSE) { if((sum(dim(V))/2)^2 != length(V)) stop("Object 'V' must be a squared matrix") if(!float::storage.mode(V) %in% c("double","float32")) storage.mode(V) <- "double" p <- ncol(V) isFloat <- float::storage.mode(V)=="float32" if(void) { if(isFloat){ out <- .Call('cov2distance',as.integer(p),V@Data,isFloat) }else{ out <- .Call('cov2distance',as.integer(p),V,isFloat) } }else{ if(isFloat){ out <- V@Data[] }else out <- V[] tmp <- .Call('cov2distance',as.integer(p),out,isFloat) if(isFloat) out <- float::float32(out) } out } cov2cor2 <- function(V,a=1,void=FALSE) { if((sum(dim(V))/2)^2 != length(V)) stop("Object 'V' must be a squared matrix") if(!float::storage.mode(V) %in% c("double","float32")) storage.mode(V) <- "double" p <- ncol(V) isFloat <- float::storage.mode(V)=="float32" if(void) { if(isFloat){ nOK <- .Call('cov2correlation',as.integer(p),V@Data,isFloat,as.numeric(a))[[1]] }else{ nOK <- .Call('cov2correlation',as.integer(p),V,isFloat,as.numeric(a))[[1]] } out <- NULL }else{ if(isFloat){ out <- V@Data[] }else out <- V[] nOK <- .Call('cov2correlation',as.integer(p),out,isFloat,as.numeric(a))[[1]] if(isFloat) out <- float::float32(out) } if(nOK != p) warning("Some diagonal values of 'V' are 0 or NA. Results are dobubtful",immediate.=TRUE) out } add2diag <- function(V,a,void=FALSE) { if((sum(dim(V))/2)^2 != length(V)) stop("Object 'V' must be a squared matrix") if(!float::storage.mode(V) %in% c("float32","double")) storage.mode(V) <- "double" p <- ncol(V) isFloat <- float::storage.mode(V)=="float32" if(void) { if(isFloat){ out <- .Call('addvalue2diag',as.integer(p),V@Data,as.numeric(a),isFloat) }else{ out <- .Call('addvalue2diag',as.integer(p),V,as.numeric(a),isFloat) } }else{ if(isFloat){ out <- V@Data[] }else out <- V[] tmp <- .Call('addvalue2diag',as.integer(p),out,as.numeric(a),isFloat) if(isFloat) out <- float::float32(out) } out } getIndexCorrelated <- function(X,maxCor=0.8) { COV <- stats::cov(X) p <- ncol(COV) index <- .Call("getCorrelated",as.integer(p),COV,as.numeric(maxCor)) out <- NULL if(index[[2]]>0) out <- index[[1]][1:index[[2]]] out } collect <- function(prefix="") { filenames <- Sys.glob(paste0(prefix,"_*_of_*.RData")) out <- NULL if(length(filenames)>0){ nFiles <- as.numeric(unlist(lapply(strsplit(filenames,"_"),function(x) gsub(".RData","",x[length(x)])))) if(length(unique(nFiles))>1) stop(" Different subset output files were found for the given prefix='",prefix, "'. Remove old files. No output was collected") filenames <- paste0(prefix,"_",1:nFiles[1],"_of_",nFiles[1],".RData") if(!all(file.exists(filenames))) stop("Some files are missing for the given prefix='",prefix,"'\n") for(i in seq_along(filenames)) { load(filenames[i]) if(i==1){ fm <- out }else{ fm$file_beta <- c(fm$file_beta,out$file_beta) fm$tst <- c(fm$tst,out$tst) fm$df <- rbind(fm$df,out$df) fm$lambda <- rbind(fm$lambda,out$lambda) } cat(" Loaded file: '",filenames[i],"'\n",sep="") } fm$subset[1] <- NA }else stop(" No output files were found for the given prefix='",prefix,"'") fm } backsolvet <- function(r, x, k=ncol(r)) { float::backsolve(r,x,k,transpose=TRUE) } upDateR <- function(xtx, R = NULL, Xtx, eps = .Machine$double.eps) { norm.xnew <- sqrt(xtx) if(is.null(R)) { R <- float::t(norm.xnew) attr(R, "rank") <- 1 R }else{ r <- backsolvet(R, Xtx) rpp <- norm.xnew^2 - sum(r^2) rank <- attr(R, "rank") if(rpp <= eps){ rpp <- eps }else{ rpp <- sqrt(rpp) rank <- rank + 1 } if(float::storage.mode(R)=="float32") rpp <- float::fl(rpp) R <- cbind(rbind(R, float::fl(0)), c(r, rpp)) attr(R, "rank") <- rank R } } downDateR <- function(R, k = p) { p <- dim(R)[1] if(p == 1){ return(NULL) }else{ R <- deleteCol(R, rep(1, p), k)[[1]][ - p, , drop = FALSE] attr(R, "rank") <- p - 1 return(R) } } deleteCol <- function(R, z, k = p) { p <- dim(R)[1] R <- R[, -k, drop = FALSE] z <- as.matrix(z) pz <- dim(z)[2] if(!float::storage.mode(R) %in% c("double","float32")) storage.mode(R) <- "double" isFloat <- float::storage.mode(R) == "float32" if(isFloat){ z <- float::fl(z) }else storage.mode(z) <- "double" if(isFloat){ tmp = .Call("delete_col",R@Data,as.integer(p),as.integer(k),z@Data,as.integer(pz),isFloat) return(lapply(tmp,function(x)float::float32(x))) }else{ return(.Call("delete_col",R,as.integer(p),as.integer(k),z,as.integer(pz),isFloat)) } } saveBinary <- function(X,file = paste0(tempdir(),"/file.bin"), type = c("float","double"), verbose = TRUE) { type <- match.arg(type) if(length(dim(X)) != 2L) stop("Object 'X' must be a matrix") if(!float::storage.mode(X) %in% c("double","float32")) storage.mode(X) <- "double" unlink(file) if(float::storage.mode(X)=="float32" & type!='float'){ type <- 'float' warning("Object can be only saved as type='float' when class(X)='float'\n", " Variable type was changed to type='float'",immediate.=TRUE) } isFloat <- float::storage.mode(X)=="float32" size <- ifelse(type=="float",4,8) if(isFloat){ out <- .Call('writeBinFileFloat',file,nrow(X),ncol(X), as.integer(size),X@Data,isFloat) }else{ out <- .Call('writeBinFileFloat',file,nrow(X),ncol(X), as.integer(size),X,isFloat) } if(verbose){ tmp <- c(Gb=1E9,Mb=1E6,Kb=1E3,b=1E0) sz <- file.size(file)/tmp[min(which(file.size(file)/tmp>1))] cat("Saved file '",file,"'\n") cat(" nrow=",nrow(X),", ncol=",ncol(X),", type=",type,", size=",size,"bytes, file.size=",round(sz,2),names(sz),"\n") } } readBinary <- function(file = paste0(tempdir(),"/file.bin"), indexRow = NULL, indexCol = NULL, verbose = TRUE) { if(!file.exists(file)){ stop("File '",file,"' does not exist") } nsetRow <- as.integer(length(indexRow)) nsetCol <- as.integer(length(indexCol)) X <- .Call("readBinFileFloat",file,nsetRow,nsetCol, as.integer(indexRow),as.integer(indexCol)) n <- X[[1]]; p <- X[[2]]; size <- X[[3]] isFloat <- X[[4]] nError <- X[[5]] if(nError==0){ if(isFloat | size==4){ X <- float::float32(X[[6]]) type <- "float" }else{ X <- X[[6]] type <- "double" } if(verbose){ tmp <- c(Gb=1E9,Mb=1E6,Kb=1E3,b=1E0) sz <- object.size(X)/tmp[min(which(object.size(X)/tmp>1))] cat("Loaded file '",file,"'\n") cat(" nrow=",n,", ncol=",p,", type=",type,", size=",size,"bytes, object.size=",round(sz,2),names(sz),"\n") } }else{ X <- NULL } return(X) } atPib <- function(i,Uta,Utb,UtX=UtX,dbar=dbar){ if(i==1) { aPw <- sum(Uta*UtX[,i]*dbar) bPw <- sum(Utb*UtX[,i]*dbar) wPw <- sum(UtX[,i]^2*dbar) sum(Uta*Utb*dbar)-aPw*bPw/wPw }else{ atPib(i-1,Uta,Utb,UtX,dbar) - atPib(i-1,Uta,UtX[,i],UtX,dbar)*atPib(i-1,Utb,UtX[,i],UtX,dbar)/atPib(i-1,UtX[,i],UtX[,i],UtX,dbar) } } atPia <- function(i,Uta,UtX=UtX,dbar=dbar){ if(i==1) { aPw <- sum(Uta*UtX[,i]*dbar) wPw <- sum(UtX[,i]^2*dbar) sum(Uta^2*dbar)-(aPw^2)/wPw }else{ atPia(i-1,Uta,UtX,dbar) - atPib(i-1,Uta,UtX[,i],UtX,dbar)^2/atPia(i-1,UtX[,i],UtX,dbar) } } atPiPib <- function(i,Uta,Utb,UtX,dbar){ if(i==1) { aPw <- sum(Uta*UtX[,i]*dbar) aPPw <- sum(Uta*UtX[,i]*dbar^2) bPw <- sum(Utb*UtX[,i]*dbar) bPPw <- sum(Utb*UtX[,i]*dbar^2) wPw <- sum(UtX[,i]^2*dbar) wPPw <- sum(UtX[,i]^2*dbar^2) sum(Uta*Utb*dbar^2)+aPw*bPw*wPPw/(wPw^2) - aPw*bPPw/wPw - bPw*aPPw/wPw }else{ atPiPib(i-1,Uta,Utb,UtX,dbar) + atPib(i-1,Uta,UtX[,i],UtX,dbar)*atPib(i-1,Utb,UtX[,i],UtX,dbar)*atPiPib(i-1,UtX[,i],UtX[,i],UtX,dbar)/atPib(i-1,UtX[,i],UtX[,i],UtX,dbar)^2 - atPib(i-1,Uta,UtX[,i],UtX,dbar)*atPiPib(i-1,Utb,UtX[,i],UtX,dbar)/atPib(i-1,UtX[,i],UtX[,i],UtX,dbar) - atPib(i-1,Utb,UtX[,i],UtX,dbar)*atPiPib(i-1,Uta,UtX[,i],UtX,dbar)/atPib(i-1,UtX[,i],UtX[,i],UtX,dbar) } } atPiPia <- function(i,Uta,UtX,dbar){ if(i==1) { aPw <- sum(Uta*UtX[,i]*dbar) aPPw <- sum(Uta*UtX[,i]*dbar^2) wPw <- sum(UtX[,i]^2*dbar) wPPw <- sum(UtX[,i]^2*dbar^2) sum(Uta^2*dbar^2)+aPw^2*wPPw/(wPw^2) - 2*aPw*aPPw/wPw }else{ atPiPia(i-1,Uta,UtX,dbar) + atPib(i-1,Uta,UtX[,i],UtX,dbar)^2*atPiPia(i-1,UtX[,i],UtX,dbar)/atPia(i-1,UtX[,i],UtX,dbar)^2 - 2*atPib(i-1,Uta,UtX[,i],UtX,dbar)*atPiPib(i-1,Uta,UtX[,i],UtX,dbar)/atPia(i-1,UtX[,i],UtX,dbar) } } tr_Pi <- function(i,UtX,dbar){ if(i==1) { wPw <- sum(UtX[,i]^2*dbar) wPPw <- sum(UtX[,i]^2*dbar^2) sum(dbar) - wPPw/wPw }else{ tr_Pi(i-1,UtX,dbar) - atPiPia(i-1,UtX[,i],UtX,dbar)/atPia(i-1,UtX[,i],UtX,dbar) } } dlogLik <- function(ratio,n,c0,Uty,UtX,d) { dbar <- 1/(ratio*d+1) Tr_Hinv_G <- (n-sum(dbar))/ratio ytPy <- atPia(c0+1,Uty,UtX=UtX,dbar=dbar) ytPPy <- atPiPia(c0+1,Uty,UtX=UtX,dbar=dbar) ytPGPy <- (ytPy-ytPPy)/ratio dd <- -0.5*Tr_Hinv_G + 0.5*n * ytPGPy/ytPy return(dd) } dlogResLik <- function(ratio,n,c0,Uty,UtX,d) { dbar <- 1/(ratio*d+1) Tr_Px <- tr_Pi(c0+1,UtX=UtX,dbar=dbar) Tr_Px_G <- (n-c0-1-Tr_Px)/ratio ytPy <- atPia(c0+1,Uty,UtX=UtX,dbar=dbar) ytPPy <- atPiPia(c0+1,Uty,UtX=UtX,dbar=dbar) ytPGPy <- (ytPy-ytPPy)/ratio dd <- -0.5*Tr_Px_G + 0.5*(n-c0-1)* ytPGPy/ytPy return(dd) } searchInt <- function(method,interval,n,c0,Uty,UtX,d,maxIter,tol,lower,upper,varP) { flag <- TRUE; i <- 1 convergence <- ratio <- dbar <- varU <- varE <- bHat <- msg <- NA while(flag) { i <- i + 1 if(method=="REML"){ tmp <- try(uniroot(f=dlogResLik,interval=c(interval[i-1],interval[i]),n=n,c0=c0,Uty=Uty, UtX=UtX,d=d,tol=tol,maxiter=maxIter,trace=2), silent = TRUE) }else{ tmp <- try(uniroot(f=dlogLik,interval=c(interval[i-1],interval[i]),n=n,c0=c0,Uty=Uty, UtX=UtX,d=d,tol=tol,maxiter=maxIter,trace=2), silent = TRUE) } if(class(tmp) == "list") { ratio0 <- tmp$root if(ratio0 <= lower){ ratio0 <- lower msg <- paste0("Root varU/varE is the lower bound ",lower) }else{ if(ratio0 >= upper){ ratio0 <- upper msg <- paste0("Root varU/varE is the upper bound ",upper) } } dbar <- 1/(ratio0*d + 1) qq1 <- t(Uty*dbar)%*%UtX qq2 <- solve(sweep(t(UtX),2L,dbar,FUN="*")%*%UtX) ytPy <- drop(sum(dbar*Uty^2)-qq1%*%qq2%*%t(qq1)) bHat <- drop(qq2%*%t(qq1)) varE <- ifelse(method=="REML",ytPy/(n-c0-1),ytPy/n) varU <- ratio0*varE if(varU <= (2)*varP){ convergence <- tmp$iter <= maxIter ratio <- ratio0 } } if(i == length(interval) | !is.na(convergence)) flag <- FALSE } list(ratio=ratio,varU=varU,varE=varE,convergence=convergence, dbar=dbar,bHat=bHat,msg=msg) } getSecondAxis <- function(lambda,df,maxLength=6) { loglambda <- -log(lambda) labels0 <- sort(unique(round(df))) if(min(labels0)<1) labels0[which.min(labels0)] <- 1 if(stats::IQR(df)>0) { breaks0 <- stats::predict(stats::smooth.spline(df, loglambda),labels0)$y }else breaks0 <- NULL index <- 1 while(any((breaks0-breaks0[max(index)])>1)){ dd <- breaks0-breaks0[max(index)] index <- c(index,which(dd > 1)[1]) } breaks0 <- breaks0[index] labels0 <- labels0[index] if(length(breaks0)>maxLength){ index <- unique(round(seq(1,length(breaks0),length=maxLength))) breaks0 <- breaks0[index] labels0 <- labels0[index] } return(list(breaks=breaks0,labels=labels0)) } plotNet <- function(fm, B, Z = NULL, K, subsetG = NULL, tst = NULL, U = NULL, d = NULL, group = NULL, group.shape = NULL, set.color = NULL, set.size = NULL, df = NULL, title, axis.labels = TRUE, curve = FALSE, bg.color = "gray20", unified = TRUE, ntst = 36, line.color = "gray90", line.tick = 0.3, legend.pos="right", point.color = "gray20", sets = c("Testing","Supporting","Non-active")) { set <- PC1 <- PC2 <- PC1_TRN <- PC1_TST <- PC2_TRN <- PC2_TST <- NULL legend.pos <- match.arg(legend.pos, choices=c("right","bottomright","bottomleft","topleft","topright","none")) if(!inherits(fm, "SSI")) stop("Object 'fm' is not of the class 'SSI'") if(is.null(U) & is.null(d)) { if(is.character(K)){ K <- readBinary(K) } if(is.null(K)) stop("Matrix 'K' must be a positive semi definite matrix\n") if(!is.null(Z)) { if(length(dim(Z))!=2) stop("Object 'Z' must be a matrix with ncol(Z)=nrow(K)\n") K <- float::tcrossprod(Z,float::tcrossprod(Z,K)) } tmp <- float::svd(K,nu=2,nv=0) d <- tmp$d U <- tmp$u expvarPC <- 100*d/sum(d) }else{ if(is.null(U)){ stop("You are providing the eigevalues, but not the eigenvectors") }else{ if(is.null(d)){ message("You are providing the eigenvectors, but not the eigenvalues\n", "No variance explained can be calculated") expvarPC <- NULL }else{ if(nrow(U) == length(d)){ expvarPC <- 100*d/sum(d) }else expvarPC <- NULL } } } tmp <- paste0(" (",sprintf('%.1f',expvarPC),"%)") if(length(tmp)<2) tmp <- NULL labelsPC <- paste0("PC ",1:2,tmp[1:2]) if(!is.null(tst)){ if(any(!tst %in% fm$tst)) stop("Some elements in 'tst' vector are not contained in set 'fm$tst'") }else tst <- fm$tst if(!unified & length(tst) >= ntst){ cat("Large number of testing individuals. Only the first",ntst,"are shown\n") tst <- tst[1:ntst] } justx <- ifelse(length(grep("left",legend.pos))>0,0,1) justy <- ifelse(length(grep("bottom",legend.pos))>0,0,1) if(!legend.pos %in% c("none","right")) legend.pos <- c(abs(justx-0.01),abs(justy-0.01)) theme0 <- ggplot2::theme( panel.grid.minor = ggplot2::element_blank(), panel.grid.major = ggplot2::element_blank(), legend.box.spacing = ggplot2::unit(0.4, "lines"), legend.background = ggplot2::element_rect(fill = "gray95"), panel.background = ggplot2::element_rect(fill = bg.color), legend.justification = c(justx,justy), legend.position=legend.pos, legend.key.height = ggplot2::unit(0.9,"line"), legend.key.width = ggplot2::unit(0.9, "lines"), legend.title = ggplot2::element_blank(), legend.margin = ggplot2::margin(t=0,b=0.25,l=0.25,r=0.25,unit='line'), strip.text = ggplot2::element_blank(), panel.spacing = ggplot2::unit(0.1,"lines") ) if(missing(B)){ if(is.null(df)) df <- summary.SSI(fm)$optCOR$df if(0 > df | df > range(fm$df)[2]) stop("Parameter 'df' must be greater than zero and no greater than nTRN") B <- as.matrix(coef.SSI(fm,df=df)) }else{ stopifnot(length(dim(B))==2L) df <- mean(do.call(c, lapply(1:nrow(B), function(i) sum(abs(B[i,]) > 0)))) } flagGp <- !is.null(group) if(is.null(group)) group <- data.frame(group=rep(1,nrow(U))) gpName <- colnames(group) if(is.null(subsetG)) subsetG <- 1:nrow(U) if(!(class(sets) == "character" & length(sets) == 3)) stop("Parameter 'sets' must be a triplet of 'character' type") dat <- data.frame(id=1:nrow(U),set=sets[3],group=group,float::dbl(U[,1:2])) dat$set <- as.character(dat$set) dat$set[subsetG[tst]] <- sets[1] index <- do.call(c, lapply(1:ncol(B), function(j) any(abs(B[fm$tst %in% tst,,drop=FALSE][,j]) > 0))) dat$set[subsetG[fm$trn[index]]] <- sets[2] dat$set[subsetG[fm$trn[!index]]] <- sets[3] colnames(dat) <- c("id","set","group","PC1","PC2") dat$group <- factor(as.character(dat$group)) dat$set <- factor(dat$set,levels=c(sets)) if(!flagGp) dat$group <- dat$set levelsGp <- levels(dat$group) if(length(levelsGp) > 5) stop("Number of levels of 'group' must be at most 5") if(is.null(group.shape)){ if(flagGp){ group.shape <- c(21,22,23,24,25) }else group.shape <- c(21,21,21) } group.shape <- group.shape[1:length(levelsGp)] if(is.null(set.color)){ set.color <- c(" } set.color <- set.color[1:length(sets)] if(is.null(set.size)){ set.size <- c(2.5,1.5,1) } set.size <- set.size[1:length(sets)] if(any(is.na(group.shape))) stop("The number of elements in 'group.shape' must be of length ",length(levelsGp)) if(any(is.na(set.size)) | any(is.na(set.color))) stop("The number of elements in 'set.size' and 'set.color' must be of length ",length(sets)) if(missing(title)){ title0 <- bquote(.(fm$name)*". Support set size="*.(round(df))) theme0 <- theme0 + ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5)) }else{ title0 <- title if(is.null(title)){ theme0 <- theme0 + ggplot2::theme(plot.title = ggplot2::element_blank()) }else{ theme0 <- theme0 + ggplot2::theme(plot.title = ggplot2::element_text(hjust = 0.5)) } } if(!axis.labels){ theme0 <- theme0 + ggplot2::theme(axis.text=ggplot2::element_blank(), axis.ticks=ggplot2::element_blank()) } names(group.shape) <- levelsGp names(set.color) <- names(set.size) <- sets if(unified) { pt <- ggplot2::ggplot(dat,ggplot2::aes(x=PC1,y=PC2)) + ggplot2::geom_point(data=dat[dat$set==sets[3],],ggplot2::aes(shape=group,fill=set), color=point.color,size=set.size[3]) for(i in 1:length(tst)) { indexTRN <- which(abs(B[which(fm$tst == tst[i]), ]) > 0) if(length(indexTRN)>0) { dat1 <- dat[subsetG[fm$trn],c("PC1","PC2")][indexTRN,] dat2 <- dat[subsetG[tst],c("PC1","PC2")][i,] colnames(dat1) <- paste0(colnames(dat1),"_TRN") colnames(dat2) <- paste0(colnames(dat2),"_TST") dat1 <- data.frame(dat2[rep(1,nrow(dat1)),],dat1) if(curve){ pt <- pt + ggplot2::geom_curve(ggplot2::aes(x=PC1_TST,y=PC2_TST,xend=PC1_TRN,yend=PC2_TRN), data=dat1,alpha=0.4,size=line.tick,color=line.color,curvature=0.4) }else{ pt <- pt + ggplot2::geom_segment(ggplot2::aes(x=PC1_TST,y=PC2_TST,xend=PC1_TRN,yend=PC2_TRN), data=dat1,alpha=0.4,size=line.tick,color=line.color) } } } pt <- pt + ggplot2::geom_point(data=dat[dat$set==sets[1],],ggplot2::aes(shape=group,fill=set),color=point.color,size=set.size[1]) + ggplot2::geom_point(data=dat[dat$set==sets[2],],ggplot2::aes(shape=group,fill=set),color=point.color,size=set.size[2]) + ggplot2::theme_bw() + theme0 }else{ dat2 <- c() for(i in 1:length(tst)) { indexTRN <- which(abs(B[which(fm$tst == tst[i]), ]) > 0) if(length(indexTRN) > 0) { tmp <- dat[subsetG[fm$trn], ][-indexTRN,] tmp$set <- sets[3] tmp <- rbind(dat[subsetG[fm$trn], ][indexTRN,], tmp, dat[subsetG[tst], ][i,]) dat2 <- rbind(dat2,data.frame(tmp, ind = i)) } } pt <- ggplot2::ggplot(dat2,ggplot2::aes(x=PC1,y=PC2)) + ggplot2::facet_wrap(~ind) + ggplot2::geom_point(data=dat2[dat2$set==sets[3],],ggplot2::aes(fill=set,shape=group),color=point.color,size=set.size[3]) + ggplot2::geom_point(data=dat2[dat2$set==sets[2],],ggplot2::aes(fill=set,shape=group),color=point.color,size=set.size[2]) + ggplot2::geom_point(data=dat2[dat2$set==sets[1],],ggplot2::aes(fill=set,shape=group),color=point.color,size=set.size[1]) + ggplot2::theme_bw() + theme0 } pt <- pt + ggplot2::labs(title=title0, x=labelsPC[1],y=labelsPC[2]) + ggplot2::scale_shape_manual(values = group.shape, guide=ggplot2::guide_legend(override.aes=list(size=2,fill="white"))) + ggplot2::scale_fill_manual(values = set.color, guide=ggplot2::guide_legend(override.aes=list(shape=21,size=2))) if(!flagGp) pt <- pt + ggplot2::guides(shape="none") pt } plotPath <- function(fm, Z=NULL, K=NULL, tst=NULL, title=NULL, maxCor=0.85) { k <- NULL flagKinship <- FALSE if(!inherits(fm,c("LASSO","SSI"))) stop("Object 'fm' is not of the class 'LASSO' or 'SSI'") theme0 <- ggplot2::theme( panel.grid.minor = ggplot2::element_blank(), panel.grid.major = ggplot2::element_blank(), plot.title = ggplot2::element_text(hjust = 0.5), legend.background = ggplot2::element_rect(fill = "gray95"), legend.box.spacing = ggplot2::unit(0.4, "lines"), legend.key.height= ggplot2::unit(3,"line"), legend.key.width = ggplot2::unit(0.8, "lines") ) if(inherits(fm,"SSI")) { if(!is.null(K)){ flagKinship <- TRUE if(is.character(K)){ K <- readBinary(K) } if(!is.null(Z)) { if(length(dim(Z)) != 2) stop("Object 'Z' must be a matrix") K <- float::tcrossprod(Z,float::tcrossprod(Z,K)) } if(length(dim(K))!=2 | (length(K) != length(fm$y)^2)) stop("Product Z %*% K %*% t(Z) must be a squared matrix with number of rows (and columns) equal to the number of elements in 'y'") } beta <- coef.SSI(fm) if(!is.null(tst)){ if(any(!tst %in% fm$tst)) stop("Some elements in 'tst' vector are not contained in 'fm$tst'") indexTST <- which(fm$tst %in% tst) }else indexTST <- seq_along(fm$tst) beta <- beta[indexTST] lambda <- apply(fm$lambda,2,mean) df <- apply(fm$df,2,mean) }else{ beta <- fm$beta lambda <- fm$lambda df <- fm$df } nDF <- length(df) if(min(lambda) < .Machine$double.eps*1000) lambda[which.min(lambda)] <- min(lambda[lambda>0])/2 if(nDF==1) stop("Coefficients path plot can not be generated for 'nLambda=1'") if(inherits(fm,"SSI")) { dat <- c() trim <- length(fm$trn)*length(beta) > 20000 for(i in seq_along(beta)) { b0 <- as.matrix(beta[[i]]) if(trim){ indexOK <- getIndexCorrelated(t(b0),maxCor) }else indexOK <- seq_along(fm$trn) tmp <- matrix(NA,nrow=1,ncol=length(indexOK)) if(!is.null(K)){ tmp <- K[fm$tst[indexTST[i]],fm$trn[indexOK],drop=FALSE] if(float::storage.mode(tmp)=='float32') tmp <- float::dbl(tmp) } dimnames(tmp) <- list(fm$tst[indexTST[i]],fm$trn[indexOK]) tmp <- reshape2::melt(tmp) colnames(tmp) <- c("tst_i","trn_i","value") tmp <- tmp[rep(1:nrow(tmp),nDF),] df0 <- rep(df,each=length(indexOK)) lambda0 <- rep(lambda,each=length(indexOK)) b0 <- as.vector(b0[indexOK,]) id <- factor(tmp$tst_i):factor(tmp$trn_i) dat <- rbind(dat,data.frame(df=df0,lambda=lambda0,beta=float::dbl(b0),k=tmp$value,id=id)) } }else{ id <- factor(rep(seq(nrow(beta)),ncol(beta))) dat <- data.frame(df=rep(df,each=nrow(beta)),lambda=rep(lambda,each=nrow(beta)),beta=as.vector(beta),id=id) } ax2 <- getSecondAxis(lambda,df) brks0 <- ax2$breaks labs0 <- ax2$labels title0 <- bquote("Coefficients path. "*.(fm$name)) if(!is.null(title)) title0 <- title if(flagKinship) { pt <- ggplot2::ggplot(dat,ggplot2::aes(-log(lambda),beta,color=k,group=id)) + viridis::scale_color_viridis() + ggplot2::geom_line() + ggplot2::theme_bw() + theme0 + ggplot2::labs(title=title0,y=expression(beta),x=expression("-log("*lambda*")")) }else{ pt <- ggplot2::ggplot(dat,ggplot2::aes(-log(lambda),beta,color=id,group=id))+ ggplot2::geom_line() + ggplot2::theme_bw() + theme0 + ggplot2::theme(legend.position = "none") + ggplot2::labs(title=title0,y=expression(beta),x=expression("-log("*lambda*")")) } if(length(brks0)>3){ pt <- pt + ggplot2::scale_x_continuous(sec.axis=ggplot2::sec_axis(~.+0,"Number of predictors",breaks=brks0,labels=labs0)) } pt } .onAttach <- function(libname, pkgname) { packageStartupMessage(" |=======================================================================| | ._______. ._______. ._______. ._______. | | | ._____| | ._____| | ._____| |__. .__| | | | |_____. | |___. | |_____. | | | | |_____. | | .___| |_____. | | | Authors: | | ._____| | | | ._____| | .__| |__. Marco Lopez-Cruz | | |_______| |_| |_______| |_______| Gustavo de los Campos | | | | Sparse Family and Selection Index. Version 1.0.1 (Jan 26, 2022) | | Type 'citation('SFSI')' to know how to cite SFSI | | Type 'help(package='SFSI',help_type='html')' to see help | | Type 'browseVignettes('SFSI')' to see documentation | | Type 'demo(package='SFSI')' to see demos | | | |=======================================================================| ") }
normM <- function(X){ if (is.data.frame(X) == TRUE) { X = as.matrix(X) } normX = sqrt(sum(diag(t(X) %*% X))) Y = X / normX return(Y) }
qread.annotated.matrix <- function( file, type, annot.cols=1, header=TRUE, sep="\t", comment.char="", quote="", check.names=FALSE, stringsAsFactors=FALSE, ... ) { x <- read.table(file, header=header, sep=sep, comment.char=comment.char, quote=quote, check.names=check.names, stringsAsFactors=stringsAsFactors, ...); if (length(annot.cols) == 1) { annot.cols <- 1:annot.cols; } meta <- data.frame(x[, annot.cols], check.names=check.names); colnames(meta) <- colnames(x)[annot.cols]; data <- as.matrix(x[, -annot.cols]); rownames(data) <- meta[, 1]; structure(list(meta=meta, data=data), class="annotated.matrix") } qwrite.annotated.matrix <- function( x, file, type, quote=FALSE, sep="\t", row.names=FALSE, col.names=TRUE, ... ) { d <- data.frame(x$meta, x$data, check.names=FALSE); write.table(d, file, quote=quote, sep=sep, row.names=row.names, col.names=col.names, ...) } qread.amtx <- function(file, type, annot.cols=1, ...) { qread.annotated.matrix(file, annot.cols=annot.cols) } qwrite.amtx <- function(x, file, type, ...) { qwrite.annotated.matrix(x, file) }
c3mtc <- function(dataset,null=NULL,mtc=TRUE,adj="bonferroni",alpha=0.05,nullit=NA, estimator="pearson", disc="none",adjacency=FALSE, igraph=TRUE){ mat.mim=mimwrap(dataset, estimator=estimator, disc=disc) net=c3(mat.mim) net[upper.tri(net)]=0 edges<-which(net>0,arr.ind=TRUE) pval <- matrix(0,nrow=nrow(edges),ncol=1) if(mtc==TRUE){ if(is.null(null)){ null=makenull(dataset, nullit=nullit, estimator=estimator, disc=disc) } maxn=max(null) lnull=length(null) for(e in 1:nrow(edges)){ G1 <- edges[e,1] G2 <- edges[e,2] if(mat.mim[G1,G2]>maxn){ pval[e]=1/lnull }else{ pval[e]=.getpval(mat.mim[G1,G2],null) } } padj=p.adjust(pval,method=adj) for(e in which(padj>alpha)){ G1 <- edges[e,1] G2 <- edges[e,2] net[G1,G2]=0 net[G2,G1]=0 } }else{ net=c3(mat.mim) } if(igraph==TRUE){ if(adjacency==TRUE){ net=.mat2igraph(net, weighted=FALSE) }else{ net=.mat2igraph(net) } }else{ net=as.matrix(forceSymmetric(net,uplo="L")) if(adjacency==TRUE){ net=(net>0)*1 } } return(net) }
library(arules) datar2 <- read.csv("dar3b.csv", header = TRUE, row.names=1) str(datar2) datar2 <- as.matrix(datar2) str(datar2) head(datar2) datar2.trans <- as(datar2, "transactions") str(datar2.trans) summary(datar2.trans) inspect(datar2.trans) itemFrequencyPlot(datar2.trans, ylim=c(0,1)) options(digits=2) datar2.rule <- apriori(datar2.trans, parameter = list(maxlen=3, support=0.04, confidence=0.8, ext=TRUE)) datar2.rule = sort(datar2.rule, by='lift', decreasing=T) summary(datar2.rule) inspect(sort(subset(datar2.rule, subset= (support >0.5)))) inspect(datar2.rule[1:5]) rule1 <- subset(datar2.rule, subset=(rhs %in% "elective6") & (lift>1.0)) rule1 inspect(rule1) rule2 <- subset(datar2.rule, subset=(rhs %in% c('elective3','elective4')) & (lift>1.5)) rule2 = sort(rule2, by='confidence', decreasing=T) inspect(rule2) rule3 <- subset(datar2.rule, subset=(rhs %in% "elective1") & (support >0.5)) rule3 = sort(rule3, by='support', decreasing=T) inspect(rule3)
"psSignal" <- function(y, x_signal, x_index = c(1: ncol(x_signal)), nseg = 10, bdeg = 3, pord = 3, lambda = 1, wts = 1+ 0*y, family = "gaussian", link = "default", m_binomial = 1 + 0*y, r_gamma = wts, y_predicted = NULL, x_predicted = x_signal, ridge_adj = 0, int = TRUE) { x <- x_index n <- length(y) parms <- pspline_checker( family, link, bdeg, pord, nseg, lambda, ridge_adj, wts ) family <- parms$family link <- parms$link q <- parms$bdeg d <- parms$pord ridge_adj <- parms$ridge_adj lambda <- parms$lambda nseg <- parms$nseg wts <- parms$wts xl <- min(x) xr <- max(x) xmax <- xr + 0.01 * (xr - xl) xmin <- xl - 0.01 * (xr - xl) dx <- (xmax - xmin) / nseg knots <- seq(xmin - q * dx, xmax + q * dx, by = dx) b <- bbase(x, xl, xr, nseg, q) n_col <- ncol(b) p_ridge <- NULL if (ridge_adj > 0) { nix_ridge <- rep(0, n_col) p_ridge <- sqrt(ridge_adj) * diag(rep(1, n_col)) } p <- diag(n_col) p <- diff(p, diff = d) p <- sqrt(lambda) * p nix <- rep(0, n_col - d) x_signal <- as.matrix(x_signal) xb <- x_signal %*% as.matrix(b) if (int) { xb <- cbind(rep(1, n), xb) p <- cbind(rep(0, nrow(p)), p) if (ridge_adj > 0) { p_ridge <- cbind(rep(0, nrow(p_ridge)), p_ridge) } } ps_fit <- pspline_fitter(y, B = xb, family, link, P = p, P_ridge = p_ridge, wts, m_binomial, r_gamma ) mu <- ps_fit$mu coef <- ps_fit$coef eta <- ps_fit$eta bin_percent_correct <- NULL if (family == "binomial") { pcount <- 0 p_hat <- mu / m_binomial for (ii in 1:n) { if (p_hat[ii] > 0.5) { count <- y[ii] } if (p_hat[ii] <= 0.5) { count <- m_binomial[ii] - y[ii] } count <- pcount + count pcount <- count } bin_percent_correct <- count / sum(m_binomial) } w <- ps_fit$w w_aug <- c(w, (nix + 1)) qr = ps_fit$f$qr h <- hat(qr, intercept = FALSE)[1:n] trace <- sum(h) R <- qr.R(qr) bread = chol2inv(R) dev_ = dev_calc(family, y, mu, m_binomial, r_gamma) dev = dev_$dev dispersion_parm = dev_$dispersion_parm cv <- press_mu <- press_e <- NULL if (family == "gaussian") { dev <- sum(ps_fit$f$residuals[1:n]^2) dispersion_parm <- dev / (n - trace) press_e <- ps_fit$f$residuals[1:n] / (1 - h) cv <- sqrt(sum((press_e)^2) / (n)) press_mu <- y - press_e } aic <- dev + 2 * trace if (int) { yint <- ps_fit$coef[1] beta <- b %*% (as.vector(ps_fit$f$coef)[2:(n_col + 1)]) } if (!int) { yint <- NULL beta <- b %*% as.vector(ps_fit$f$coef) } ii = c((1+int):(n_col+int)) var_beta = b%*% bread[ii, ii]%*%t(b) stdev_beta = as.vector(sqrt(dispersion_parm*diag(var_beta))) summary_predicted <- NULL cv_predicted <- eta_predicted <- NULL if (!missing(x_predicted)) { x_predicted <- as.matrix(x_predicted) if (!int) { if (ncol(x_predicted) > 1) { eta_predicted <- x_predicted %*% beta var_pred <- x_predicted %*% b %*% bread %*% t( x_predicted %*% b ) } if (ncol(x_predicted) == 1) { eta_predicted <- t(x_predicted) %*% beta var_pred <- t(x_predicted) %*% b %*% bread %*% t(b) %*% x_predicted } } if (int) { dim_xp <- nrow(x_predicted) if (ncol(x_predicted) > 1) { one_xpred_b <- cbind(rep(1, dim_xp), (x_predicted %*% b)) eta_predicted <- x_predicted %*% beta + yint var_pred <- one_xpred_b %*% bread %*% t(one_xpred_b) } if (ncol(x_predicted) == 1) { one_xpred_b <- cbind(1, t(x_predicted) %*% b) eta_predicted <- t(x_predicted) %*% beta + yint var_pred <- (one_xpred_b) %*% bread %*% t( one_xpred_b ) } } stdev_pred <- as.vector(sqrt(diag(var_pred))) stdev_pred <- sqrt(dispersion_parm) * stdev_pred pivot <- as.vector(2 * stdev_pred) upper <- eta_predicted + pivot lower <- eta_predicted - pivot summary_predicted <- cbind(lower, eta_predicted, upper) if (!missing(y_predicted)) { if (family == "gaussian") { cv_predicted <- sqrt(sum((y_predicted - eta_predicted)^2) / (length(y_predicted))) } } bin_percent_correct <- NULL if (link == "logit") { summary_predicted <- 1 / (1 + exp(-summary_predicted)) pcount <- 0 p_hat <- exp(eta_predicted) / (1 + exp(eta_predicted)) if (!missing(y_predicted)) { for (ii in 1:length(eta_predicted)) { if (p_hat[ii] > 0.5) { count <- y_predicted[ii] } if (p_hat[ii] <= 0.5) { count <- 1 - y_predicted[ii] } count <- pcount + count pcount <- count } bin_percent_correct <- count / length(y_predicted) } } summary_predicted <- inverse_link(summary_predicted, link) if (link == "reciprocal") { summary_predicted <- summary_predicted[, 3:1] } summary_predicted <- as.matrix(summary_predicted) dimnames(summary_predicted) <- list(NULL, c( "-2std_Lower", "Predicted", "+2std_Upper" )) } llist <- list( b= b, B = b, coef = coef, y_intercept = yint, int = int, x_index = x_index, x_signal = x_signal, y = y, press_mu = press_mu, bin_percent_correct = bin_percent_correct, family = family, link = link, nseg = nseg, pord = d, bdeg = q, lambda = lambda, aic = aic, deviance = dev, eff_df = trace - 1, df_resid = n - trace + 1, bin_percent_correct = bin_percent_correct, dispersion_param = dispersion_parm, summary_predicted = summary_predicted, eta_predicted = eta_predicted, cv_predicted = cv_predicted, cv = cv, mu = mu, eta = eta, beta = beta, stdev_beta = stdev_beta ) class(llist) <- "pssignal" return(llist) }
LimDist <- function(X,rate,epsilon=0.01,iter){ if (missingArg(X)) { stop("The X argument is missing.") } if (missingArg(rate)){ stop("The 'rate' argument is missing.") } if (missingArg(iter)) iter <- 1000 if(rate==TRUE){ rs <- rowSums(X) r <- max(rs) P_hat <- X/r n <- dim(X)[1] for(j in 1:n){ P_hat[j,j]<- 1 - (rs[j]/r) } P <- methods::new("markovchain", transitionMatrix= P_hat) output <- P[1:dim(X)[1]] if(markovchain::is.irreducible(P) & markovchain::period(P)==1){ j <- 2 condition <- 1 while(j < iter & condition > epsilon){ Pmas <- output output <- Pmas%*%output condition <- max(abs(output - Pmas)) j <- j+1 } output <- list(indicator=rate,message="This is an irreducible Continuous Markov Chain.", Lim_dist = output[1,],error = condition,n_iter=j,P_hat = P[1:dim(X)[1]]) class(output) <- "modesto" return(output) } else{ return(c(indicator=!rate,message="This is not an irreducible Continuous Markov Chain.")) } } if(rate==FALSE){ P <- new("markovchain", transitionMatrix= X) output <- P[1:dim(X)[1]] if(markovchain::is.irreducible(P) & markovchain::period(P)==1){ j <- 2 condition <- 1 while(j < iter & condition > epsilon){ Pmas <- output output <- Pmas%*%output condition <- max(abs(output - Pmas)) j <- j+1 } output <- list(indicator=!rate,message="This is an irreducible Continuous Markov Chain.", Lim_dist = output[1,],error = condition, n_iter=j,P_hat = P[1:dim(X)[1]]) class(output) <- "modesto" return(output) } else{ output <- list(indicator=rate,message="This is not an irreducible Continuous Markov Chain.") class(output) <- "modesto" return(output) } } }
demo("mouse_move", package="MSG")
model_evaluation <- function(object) { check_object(object, type = "exp") df <- data.frame(y_hat = object$y_hat, y = object$y) df <- df[order(df$y_hat, decreasing = TRUE), ] roc_y <- factor(df$y) positive_label <- levels(roc_y)[2] negative_label <- levels(roc_y)[1] tp_duplicates <- cumsum(df$y == positive_label) fp_duplicates <- cumsum(df$y == negative_label) duplicates <- rev(duplicated(rev(df$y_hat))) tp <- c(0, tp_duplicates[!duplicates]) fp <- c(0, fp_duplicates[!duplicates]) n_pos <- sum(df$y == positive_label) n_neg <- sum(df$y == negative_label) fn <- n_pos - tp tn <- n_neg - fp n_pos_pred <- tp + fp n_neg_pred <- fn + tn tpr <- tp / n_pos fpr <- fp / n_neg rpp <- (tp + fp) / (tp + fp + tn + fn) precision <- tp / (tp + fp) recall <- tp / n_pos result <- data.frame(y_hat = c(0, object$y_hat[!duplicates]), y = c(0, factor(object$y)[!duplicates]), cutoffs = c(0, df$y_hat[!duplicates]), tpr = tpr, fpr = fpr, rpp = rpp, tp = tp, precision = precision, recall = recall, label = factor(object$label), stringsAsFactors = TRUE) colnames(result) <- paste0("_", colnames(result), "_") class(result) <- c("auditor_model_evaluation", "data.frame") result } modelEvaluation <- function(object) { warning("Please note that 'modelEvaluation()' is now deprecated, it is better to use 'model_evaluation()' instead.") model_evaluation(object) }
"summaryNAltraj" <- function(x) { if (!inherits(x,"ltraj")) stop("x should be of class 'ltraj'") nna <- unlist(lapply(x, function(i) length(i$x[is.na(i$x)]))) n <- unlist(lapply(x, function(i) length(i$x))) ani <- unlist(lapply(x, function(i) attr(i, "id"))) burst <- unlist(lapply(x, function(i) attr(i, "burst"))) so <- data.frame(id=ani, burst=burst, missing.values=nna, N.reloc=n, percent = 100*nna/n) return(so) }
model_parameters.bracl <- function(model, ci = .95, bootstrap = FALSE, iterations = 1000, standardize = NULL, exponentiate = FALSE, p_adjust = NULL, verbose = TRUE, ...) { nl <- tryCatch( { nlevels(factor(insight::get_response(model))) }, error = function(e) { 0 } ) if (nl > 2) { merge_by <- c("Parameter", "Response") } else { merge_by <- "Parameter" } out <- .model_parameters_generic( model = model, ci = ci, bootstrap = bootstrap, iterations = iterations, merge_by = merge_by, standardize = standardize, exponentiate = exponentiate, robust = FALSE, p_adjust = p_adjust, ... ) attr(out, "object_name") <- deparse(substitute(model), width.cutoff = 500) out } ci.bracl <- function(x, ci = .95, method = NULL, robust = FALSE, ...) { params <- insight::get_parameters(x) out <- .ci_generic(model = x, ci = ci, method = method, robust = robust, ...) if ("Response" %in% colnames(params)) { out$Response <- params$Response } out } standard_error.bracl <- function(model, ...) { smry <- suppressMessages(as.data.frame(stats::coef(summary(model)))) se <- smry[[2]] names(se) <- rownames(smry) params <- insight::get_parameters(model) .data_frame( Parameter = params$Parameter, SE = as.vector(se), Response = params$Response ) } p_value.bracl <- function(model, ...) { smry <- suppressMessages(as.data.frame(stats::coef(summary(model)))) p <- smry[[4]] names(p) <- rownames(smry) params <- insight::get_parameters(model) .data_frame( Parameter = params$Parameter, p = as.vector(p), Response = params$Response ) } model_parameters.multinom <- model_parameters.bracl ci.multinom <- ci.bracl degrees_of_freedom.multinom <- function(model, method = NULL, ...) { if (identical(method, "normal")) { Inf } else { insight::n_obs(model) - model$edf } } degrees_of_freedom.nnet <- degrees_of_freedom.multinom standard_error.multinom <- function(model, ...) { se <- tryCatch( { stderr <- summary(model)$standard.errors if (is.null(stderr)) { vc <- insight::get_varcov(model) stderr <- as.vector(sqrt(diag(vc))) } else { if (is.matrix(stderr)) { tmp <- c() for (i in 1:nrow(stderr)) { tmp <- c(tmp, as.vector(stderr[i, ])) } } else { tmp <- as.vector(stderr) } stderr <- tmp } stderr }, error = function(e) { vc <- insight::get_varcov(model) as.vector(sqrt(diag(vc))) } ) params <- insight::get_parameters(model) if ("Response" %in% colnames(params)) { .data_frame( Parameter = params$Parameter, SE = se, Response = params$Response ) } else { .data_frame( Parameter = params$Parameter, SE = se ) } } p_value.multinom <- function(model, method = "residual", ...) { stat <- insight::get_statistic(model) out <- p_value.default(model, method = method, ...) if (!is.null(stat$Response)) { out$Response <- stat$Response } out } simulate_parameters.multinom <- function(model, iterations = 1000, centrality = "median", ci = .95, ci_method = "quantile", test = "p-value", ...) { data <- simulate_model(model, iterations = iterations, ...) out <- .summary_bootstrap( data = data, test = test, centrality = centrality, ci = ci, ci_method = ci_method, ... ) params <- insight::get_parameters(model) out$Parameter <- params$Parameter if ("Response" %in% colnames(params)) { out$Response <- params$Response } class(out) <- c("parameters_simulate", "see_parameters_simulate", class(out)) attr(out, "object_name") <- deparse(substitute(model), width.cutoff = 500) attr(out, "iterations") <- iterations attr(out, "ci") <- ci attr(out, "ci_method") <- ci_method attr(out, "centrality") <- centrality out } model_parameters.brmultinom <- model_parameters.bracl ci.brmultinom <- ci.bracl standard_error.brmultinom <- standard_error.multinom p_value.brmultinom <- p_value.multinom
readWKB <- function(wkb, id = NULL, proj4string = CRS(as.character(NA))) { if(inherits(wkb, "raw") && (is.null(id) || length(id) == 1)) { wkb <- list(wkb) } if(!is.list(wkb)) { stop("wkb must be a list") } if(isTRUE(length(wkb) < 1)) { stop("wkb must have length 1 or greater") } if(!all(vapply(X = wkb, FUN = inherits, FUN.VALUE = logical(1), "raw"))) { stop("Each element of wkb must be a raw vector") } namesSpecified <- TRUE if(is.null(id)) { if(is.null(names(wkb))) { namesSpecified <- FALSE id <- as.character(seq_along(wkb)) } else { id <- names(wkb) } } if(!identical(length(wkb), length(id))) { stop("wkb and id must have same length") } if(is.character(proj4string)) { proj4string = CRS(proj4string) } if(length(proj4string) != 1) { stop("proj4string must have length 1") } obj <- mapply(wkb, id, FUN = function(WkbGeom, Id) { rc <- rawConnection(WkbGeom, "r") on.exit(close(rc)) seek(rc, 0L) byteOrder <- readByteOrder(rc) if(byteOrder == as.raw(1L)) { endian <- "little" } else { endian <- "big" } wkbType <- readWkbType(rc, endian) if(wkbType == 1L) { readWkbPoint(rc, endian) } else if(wkbType == 2L) { readWkbLineString(rc, Id, endian) } else if(wkbType == 3L) { readWkbPolygon(rc, Id, endian) } else if(wkbType == 4L) { readWkbMultiPoint(rc, endian) } else if(wkbType == 5L) { readWkbMultiLineString(rc, Id, endian) } else if(wkbType == 6L) { readWkbMultiPolygon(rc, Id, endian) } else if(wkbType == 7L) { stop("GeometryCollection is not a supported geometry type") } else { stop("Supported geometry types are Point, LineString, Polygon, MultiPoint, MultiLineString, and MultiPolygon") } }, SIMPLIFY = FALSE, USE.NAMES = FALSE) objClass <- unique(vapply(obj, function(x) class(x)[1], character(1))) if(isTRUE(length(objClass) > 1)) { stop("Elements of wkb cannot have different geometry types") } if(objClass == "numeric") { if(namesSpecified) { names(obj) <- id } SpatialPoints(do.call("rbind", obj), proj4string = proj4string) } else if(objClass == "matrix" || objClass == "data.frame") { if(namesSpecified) { names(obj) <- id } lapply(X = obj, FUN = SpatialPoints, proj4string = proj4string) } else if(objClass == "Lines") { SpatialLines(obj, proj4string = proj4string) } else if(objClass == "Polygons") { SpatialPolygons(obj, proj4string = proj4string) } else { stop("Unexpected object") } } readWkbMultiPoint <- function(rc, endian) { numPoints <- readInteger(rc, endian) t(vapply(seq_len(numPoints), function(...) { byteOrder <- readByteOrder(rc) if(byteOrder == as.raw(1L)) { endian <- "little" } else { endian <- "big" } wkbType <- readWkbType(rc, endian) if(wkbType != 1L) { stop("MultiPoints may contain only Points") } readPoint(rc, endian) }, numeric(2))) } readWkbMultiLineString <- function(rc, multiLineStringId, endian) { numLineStrings <- readInteger(rc, endian) Lines(unlist(lapply(seq_len(numLineStrings), function(...) { byteOrder <- readByteOrder(rc) if(byteOrder == as.raw(1L)) { endian <- "little" } else { endian <- "big" } wkbType <- readWkbType(rc, endian) if(wkbType != 2L) { stop("MultiLineStrings may contain only LineStrings") } numPoints <- readInteger(rc, endian) Line(readPoints(rc, numPoints, endian)) })), multiLineStringId) } readWkbMultiPolygon <- function(rc, multiPolygonId, endian) { numPolygons <- readInteger(rc, endian) Polygons(unlist(lapply(seq_len(numPolygons), function(...) { byteOrder <- readByteOrder(rc) if(byteOrder == as.raw(1L)) { endian <- "little" } else { endian <- "big" } wkbType <- readWkbType(rc, endian) if(wkbType != 3L) { stop("MultiPolygons may contain only Polygons") } numRings <- readInteger(rc, endian) readLinearRings(rc, numRings, endian) })), multiPolygonId) } readWkbPoint <- function(rc, endian) { readPoint(rc, endian) } readWkbLineString <- function(rc, lineStringId, endian) { numPoints <- readInteger(rc, endian) Lines(list(Line(readPoints(rc, numPoints, endian))), lineStringId) } readWkbPolygon <- function(rc, polygonId, endian) { numRings <- readInteger(rc, endian) Polygons(readLinearRings(rc, numRings, endian), polygonId) } readLinearRings <- function(rc, numRings, endian) { lapply(seq_len(numRings), function(ringId) { readLinearRing(rc, endian) }) } readLinearRing <- function(rc, endian) { numPoints <- readInteger(rc, endian) Polygon(readPoints(rc, numPoints, endian)) } readPoints <- function(rc, numPoints, endian) { t(vapply(seq_len(numPoints), function(pointId) { readPoint(rc, endian) }, numeric(2))) } readPoint <- function(rc, endian) { c(x = readDouble(rc, endian), y = readDouble(rc, endian)) } readByteOrder <- function(rc) { readByte(rc) } readWkbType <- function(rc, endian) { readInteger(rc, endian) } readByte <- function(rc) { readBin(rc, what = "raw", size = 1L) } readInteger <- function(rc, endian) { readBin(rc, what = "integer", size = 4L, endian = endian) } readDouble <- function(rc, endian) { readBin(rc, what = "double", size = 8L, endian = endian) }
rasch_mml2_calcprob_missing1 <- function( theta.k, b, beta, delta.miss, pjk, fixed.a=NULL, return_nonresponse_probs=FALSE, irtmodel="missing1") { I <- length(b) if (is.null(fixed.a)){ fixed.a <- rep(1,I) } TP <- nrow(theta.k) thetaM1 <- sirt_matrix2(theta.k[,1], nrow=I) thetaM2 <- sirt_matrix2(theta.k[,2], nrow=I) ab <- fixed.a*b M1 <- stats::plogis(fixed.a*thetaM1-ab) if (irtmodel=="missing1"){ M2a <- stats::plogis(thetaM2-beta) M2b <- stats::plogis(thetaM2-beta-delta.miss) } else { M2a <- stats::plogis(thetaM2-beta+delta.miss) M2b <- stats::plogis(thetaM2-beta) } pjk[,1,] <- 1 - M1 pjk[,2,] <- M1 pjk[,1,] <- M2a*pjk[,1,] pjk[,2,] <- M2b*pjk[,2,] m3 <- pjk[,3,] <- (1-M2a)*(1-M1) + (1-M2b)*M1 if (return_nonresponse_probs){ pjk[,1,] <- (1-M2a)*(1-M1) / m3 pjk[,2,] <- (1-M2b)*M1 / m3 pjk <- pjk[,1:2,] } return(pjk) } .calcprob.missing1 <- rasch_mml2_calcprob_missing1
get_cnp_checksum <- function(cnp) { dec_cnp <- stringr::str_extract_all(as.character(cnp), "[0-9]") %>% unlist() mult_cnp <- as.integer(dec_cnp[1:12]) * c(2, 7, 9, 1, 4, 6, 3, 5, 8, 2, 7, 9) remainder <- sum(mult_cnp) %% 11 if (remainder == 10) { 11 - remainder } else { remainder } }
context("na_mean") test_that("All NA vector gives warning", { expect_warning(na_mean(c(NA, NA, NA, NA, NA))) }) test_that("Correct results for all options with a modifed tsAirgap dataset (additionalNAs at end)", { skip_on_cran() x <- tsAirgap x[135:144] <- NA expect_equal(round(mean(na_mean(x, option = "median")), digits = 1), 260.0) expect_equal(round(mean(na_mean(x, option = "mean")), digits = 1), 264.1) expect_equal(round(mean(na_mean(x, option = "mode")), digits = 1), 258.8) }) test_that("Correct results for all options with a modifed tsAirgap dataset (additionalNAs at start)", { skip_on_cran() x <- tsAirgap x[1:5] <- NA expect_equal(round(mean(na_mean(x, option = "median")), digits = 1), 282.7) expect_equal(round(mean(na_mean(x, option = "mean")), digits = 1), 284.8) expect_equal(round(mean(na_mean(x, option = "mode")), digits = 1), 278.2) }) test_that("Correct results for all options with the tsAirgap dataset", { skip_on_cran() x <- tsAirgap expect_equal(round(mean(na_mean(x, option = "median")), digits = 1), 277.9) expect_equal(round(mean(na_mean(x, option = "mean")), digits = 1), 279.8) expect_equal(round(mean(na_mean(x, option = "mode")), digits = 1), 275.2) }) test_that("Imputation works for data.frame", { x <- data.frame(tsAirgap, tsAirgap, tsAirgapComplete) expect_false(anyNA(na_mean(x, option = "mean"))) expect_false(anyNA(na_mean(x, option = "mode"))) expect_false(anyNA(na_mean(x, option = "median"))) }) test_that("Warning for wrong input for option parameter", { expect_error(na_mean(tsAirgap, option = "Wrong")) }) test_that("Test NA at beginning", { x <- tsAirgap x[1:4] <- NA expect_false(anyNA(na_mean(x, option = "mean"))) expect_false(anyNA(na_mean(x, option = "mode"))) expect_false(anyNA(na_mean(x, option = "median"))) expect_false(anyNA(na_mean(x))) }) test_that("Test NA at end", { x <- tsAirgap x[140:144] <- NA expect_false(anyNA(na_mean(x, option = "mean"))) expect_false(anyNA(na_mean(x, option = "mode"))) expect_false(anyNA(na_mean(x, option = "median"))) expect_false(anyNA(na_mean(x))) }) test_that("Multiple NAs in a row", { x <- tsAirgap x[40:80] <- NA expect_false(anyNA(na_mean(x, option = "mean"))) expect_false(anyNA(na_mean(x, option = "mode"))) expect_false(anyNA(na_mean(x, option = "median"))) expect_false(anyNA(na_mean(x))) }) test_that("Over 90% NAs", { x <- tsAirgap x[10:140] <- NA expect_false(anyNA(na_mean(x, option = "mean"))) expect_false(anyNA(na_mean(x, option = "mode"))) expect_false(anyNA(na_mean(x, option = "median"))) expect_false(anyNA(na_mean(x))) })
missDiag <- function( original, imputed, formula=NULL, skip_n=25, scale=FALSE, adjust='ebal', use_imputed_cov = TRUE, convert = c("numeric"), categories = 3, verbose=0, output_diag=FALSE, ebal_param=param_ebal(), sbw_param=param_sbw(), cobalt_param=param_cobalt()){ call_ <- sys.call() if(!adjust %in% c("none", "sbw", "ebal")) { stop("Parameter 'adjust' must be one of these: none, sbw or ebal") } original <- as.data.frame(original) if("mids" %in% class(imputed)){ imputed <- mice::complete(imputed,action='all') M <- length(imputed) } else if("list" %in% class(imputed)) { M <- length(imputed) } else { imputed <- list(as.data.frame(imputed)) M <- 1 } if(!is.null(formula)){ formulas <- construct_formulas(formula, vars=colnames(original)) } else { vars <- colnames(original) vars_na <- apply(is.na(original), 2, sum)>0 vars <- vars[vars_na] dv <- paste(vars, collapse = "|") iv <- paste(colnames(original), collapse="+") formula <- as.formula(paste0(dv, "~", iv)) formulas <- construct_formulas(formula, vars=vars) } out <- list() for(m in 1:M){ if(verbose>0 & M>1) cat("Dataset Nummer:",m,"\n") imp <- as.data.frame(imputed[[m]]) for(f in formulas){ if( use_imputed_cov == FALSE){ imp_prep <- make_categorical_cov( original_df = original, imputed_df = imp, formula = as.formula(f), categories = categories, convert = convert) } else { imp_prep <- imp } if(adjust=='sbw'){ w <- do.call(run_sbw, c( list(original= original, imputed = imp_prep, formula = as.formula(f), skip_n = skip_n, scale = scale, verbose = verbose), sbw_param)) } if(adjust=='ebal'){ w <- do.call(run_ebal, c( list(original= original, imputed = imp_prep, formula = as.formula(f), skip_n = skip_n, scale = scale, verbose = verbose), ebal_param)) } if(adjust=='none'){ if(verbose>0){ message("No weights constructed." ) } w <- rep(1,nrow(imp_prep)) } if(!is.null(w)){ yname <- all.vars(f)[1] xname <- all.vars(f) res <- do.call(bal.tab, c( list(x=imp_prep[,xname,drop=FALSE], treat = is.na(original[[yname]]), weights = w), cobalt_param))$Balance res$m <- m res$vname_lhs <- yname res$vname <- rownames(res) out[[length(out)+1]] <- res } } } out <- do.call(rbind,out) rownames(out) <- NULL out <- tolower_remove_dot_vars(out) out <- out[,!grepl("_un|_threshold", colnames(out))] out$diag <- ifelse(mapply(grepl, out$vname_lhs, out$vname), FALSE, TRUE) attr(out, 'call') <- call_ if(output_diag==FALSE){ out <- subset(out, diag==FALSE) } return(out) }
stop_nice <- function(...) { stop(paste(strwrap(paste(...), exdent = 7), collapse = "\n"), call. = FALSE) }
chain <- function(.data, ...) { UseMethod("chain") } chain.ExprBuilder <- function(.data, ..., .parent_env = rlang::caller_env()) { start_expr(end_expr.ExprBuilder(.data, ..., .parent_env = .parent_env), ...) }
context("LearningCars") test_that("Cars weights", { data(fusion_cars) a <- NewFusionInput("µA", NewMfTrapezoidalInf(4, 20), "A") v <- NewFusionInput("µV", NewMfTrapezoidalSup(100, 500), "V") s <- NewFusionInput("µS", NewMfTrapezoidalSup(120, 220), "S") c <- NewFusionInput("µC", NewMfTrapezoidalInf(6, 16), "C") degrees <- .aggregate_node(fusion_cars, list(a, v, s, c)) target <- c(1, 0, 0, 0) wam_weights <- LearnWamWeights(degrees, target) expect_equal(wam_weights, c(0.5, 0, 0.5, 0)) owa_weights <- LearnOwaWeights(degrees, target) expect_equal(owa_weights, c(1, 0, 0, 0)) })
context("adjacency spectral embedding") std <- function(x) { x <- zapsmall(x) apply(x, 2, function(col) { if (any(col < 0) && col[which(col != 0)[1]] < 0) { -col } else { col } }) } mag_order <- function(x) { order(abs(x), sign(x), decreasing=TRUE) } mag_sort <- function(x) { x[mag_order(x)] } test_that("Undirected, unweighted case works", { library(igraph) set.seed(42) g <- random.graph.game(10, 15, type="gnm", directed=FALSE) no <- 7 A <- g[] A <- A + 1/2 * diag(degree(g)) ss <- eigen(A) U <- std(ss$vectors) X <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) au_la <- embed_adjacency_matrix(g, no=no, which="la", cvec=degree(g)/2, scaled=TRUE) as_la <- embed_adjacency_matrix(g, no=no, which="la", cvec=degree(g)/2, scaled=FALSE) expect_that(as_la$D, equals(ss$values[1:no])) expect_that(au_la$D, equals(ss$values[1:no])) expect_that(std(as_la$X), equals(std(U[,1:no]))) expect_that(std(au_la$X), equals(X[,1:no])) au_lm <- embed_adjacency_matrix(g, no=no, which="lm", cvec=degree(g)/2, scaled=TRUE) as_lm <- embed_adjacency_matrix(g, no=no, which="lm", cvec=degree(g)/2, scaled=FALSE) expect_that(as_lm$D, equals(mag_sort(ss$values)[1:no])) expect_that(au_lm$D, equals(mag_sort(ss$values)[1:no])) expect_that(std(as_lm$X), equals(std(U[,mag_order(ss$values)][,1:no]))) expect_that(std(au_lm$X), equals(X[,mag_order(ss$values)][,1:no])) au_sa <- embed_adjacency_matrix(g, no=no, which="sa", cvec=degree(g)/2, scaled=TRUE) as_sa <- embed_adjacency_matrix(g, no=no, which="sa", cvec=degree(g)/2, scaled=FALSE) expect_that(as_sa$D, equals(ss$values[vcount(g)-1:no+1])) expect_that(au_sa$D, equals(ss$values[vcount(g)-1:no+1])) expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1]))) expect_that(std(au_sa$X), equals(X[,vcount(g)-1:no+1])) }) test_that("Undirected, weighted case works", { library(igraph) set.seed(42) g <- random.graph.game(10, 20, type="gnm", directed=FALSE) E(g)$weight <- sample(1:5, ecount(g), replace=TRUE) no <- 3 A <- g[] A <- A + 1/2 * diag(degree(g)) ss <- eigen(A) U <- std(ss$vectors) X <- std(ss$vectors %*% sqrt(diag(abs(ss$values)))) au_la <- embed_adjacency_matrix(g, no=no, which="la", cvec=degree(g)/2, scaled=TRUE) as_la <- embed_adjacency_matrix(g, no=no, which="la", cvec=degree(g)/2, scaled=FALSE) expect_that(as_la$D, equals(ss$values[1:no])) expect_that(std(as_la$X), equals(std(U[,1:no]))) expect_that(au_la$D, equals(ss$values[1:no])) expect_that(std(au_la$X), equals(X[,1:no])) au_lm <- embed_adjacency_matrix(g, no=no, which="lm", cvec=degree(g)/2, scaled=TRUE) as_lm <- embed_adjacency_matrix(g, no=no, which="lm", cvec=degree(g)/2, scaled=FALSE) expect_that(as_lm$D, equals(mag_sort(ss$values)[1:no])) expect_that(au_lm$D, equals(mag_sort(ss$values)[1:no])) expect_that(std(as_lm$X), equals(std(U[,mag_order(ss$values)][,1:no]))) expect_that(std(au_lm$X), equals(X[,mag_order(ss$values)][,1:no])) au_sa <- embed_adjacency_matrix(g, no=no, which="sa", cvec=degree(g)/2, scaled=TRUE) as_sa <- embed_adjacency_matrix(g, no=no, which="sa", cvec=degree(g)/2, scaled=FALSE) expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1]))) expect_that(std(au_sa$X), equals(X[,vcount(g)-1:no+1])) }) test_that("Directed, unweighted case works", { library(igraph) set.seed(42) g <- random.graph.game(10, 20, type="gnm", directed=TRUE) no <- 3 A <- g[] A <- A + 1/2 * diag(degree(g)) ss <- svd(A) U <- std(ss$u) V <- std(ss$v) X <- std(ss$u %*% sqrt(diag(ss$d))) Y <- std(ss$v %*% sqrt(diag(ss$d))) au_la <- embed_adjacency_matrix(g, no=no, which="la", cvec=degree(g)/2, scaled=TRUE) as_la <- embed_adjacency_matrix(g, no=no, which="la", cvec=degree(g)/2, scaled=FALSE) expect_that(as_la$D, equals(ss$d[1:no])) expect_that(au_la$D, equals(ss$d[1:no])) expect_that(std(as_la$X), equals(std(U[,1:no]))) expect_that(std(as_la$Y), equals(std(V[,1:no]))) expect_that(std(au_la$X), equals(X[,1:no])) expect_that(std(au_la$Y), equals(Y[,1:no])) au_lm <- embed_adjacency_matrix(g, no=no, which="lm", cvec=degree(g)/2, scaled=TRUE) as_lm <- embed_adjacency_matrix(g, no=no, which="lm", cvec=degree(g)/2, scaled=FALSE) expect_that(as_lm$D, equals(ss$d[1:no])) expect_that(au_lm$D, equals(ss$d[1:no])) expect_that(std(as_lm$X), equals(std(U[,1:no]))) expect_that(std(as_lm$Y), equals(std(V[,1:no]))) expect_that(std(au_lm$X), equals(X[,1:no])) expect_that(std(au_lm$Y), equals(Y[,1:no])) au_sa <- embed_adjacency_matrix(g, no=no, which="sa", cvec=degree(g)/2, scaled=TRUE) as_sa <- embed_adjacency_matrix(g, no=no, which="sa", cvec=degree(g)/2, scaled=FALSE) expect_that(as_sa$D, equals(ss$d[vcount(g)-1:no+1])) expect_that(au_sa$D, equals(ss$d[vcount(g)-1:no+1])) expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1]))) expect_that(std(as_sa$Y), equals(std(V[,vcount(g)-1:no+1]))) expect_that(std(au_sa$X), equals(X[,vcount(g)-1:no+1])) expect_that(std(au_sa$Y), equals(Y[,vcount(g)-1:no+1])) }) test_that("Directed, weighted case works", { library(igraph) set.seed(42) g <- random.graph.game(10, 20, type="gnm", directed=TRUE) E(g)$weight <- sample(1:5, ecount(g), replace=TRUE) no <- 3 A <- g[] A <- A + 1/2 * diag(degree(g)) ss <- svd(A) U <- std(ss$u) V <- std(ss$v) X <- std(ss$u %*% sqrt(diag(ss$d))) Y <- std(ss$v %*% sqrt(diag(ss$d))) au_la <- embed_adjacency_matrix(g, no=no, which="la", cvec=degree(g)/2, scaled=TRUE) as_la <- embed_adjacency_matrix(g, no=no, which="la", cvec=degree(g)/2, scaled=FALSE) expect_that(std(as_la$X), equals(std(U[,1:no]))) expect_that(std(as_la$Y), equals(std(V[,1:no]))) expect_that(std(au_la$X), equals(X[,1:no])) expect_that(std(au_la$Y), equals(Y[,1:no])) au_lm <- embed_adjacency_matrix(g, no=no, which="lm", cvec=degree(g)/2, scaled=TRUE) as_lm <- embed_adjacency_matrix(g, no=no, which="lm", cvec=degree(g)/2, scaled=FALSE) expect_that(std(as_lm$X), equals(std(U[,1:no]))) expect_that(std(as_lm$Y), equals(std(V[,1:no]))) expect_that(std(au_lm$X), equals(X[,1:no])) expect_that(std(au_lm$Y), equals(Y[,1:no])) au_sa <- embed_adjacency_matrix(g, no=no, which="sa", cvec=degree(g)/2, scaled=TRUE) as_sa <- embed_adjacency_matrix(g, no=no, which="sa", cvec=degree(g)/2, scaled=FALSE) expect_that(std(as_sa$X), equals(std(U[,vcount(g)-1:no+1]))) expect_that(std(as_sa$Y), equals(std(V[,vcount(g)-1:no+1]))) expect_that(std(au_sa$X), equals(X[,vcount(g)-1:no+1])) expect_that(std(au_sa$Y), equals(Y[,vcount(g)-1:no+1])) }) test_that("Issue library(igraph) set.seed(12345) g <- erdos.renyi.game(15, .4) w <- -log(runif(ecount(g))) X1 <- embed_adjacency_matrix(g, 2, weights= w) E(g)$weight <- w X2 <- embed_adjacency_matrix(g, 2) expect_that(X1$D, equals(X2$D)) }) test_that("Issue library(igraph) set.seed(12345) pref.matrix <- diag(0.2, 2) + 0.2 block.sizes <- c(800, 800) n <- sum(block.sizes) g <- sbm.game(n, pref.matrix, block.sizes, directed=TRUE) for (i in 1:25) { ase <- embed_adjacency_matrix(g, 2) expect_that(mean(ase$X %*% t(ase$Y)), equals(0.299981018354173)) } })
context("subset kinship matrices") test_that("subset.kinship works", { iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2")) iron <- iron[c("2","3","4","5","6","7"), 2:6] pr <- calc_genoprob(iron) k <- calc_kinship(pr) k_loco <- calc_kinship(pr, "loco") expect_equal(subset_kinship(k, ind=c(2,4)), k[c(2,4), c(2,4)]) expect_equal(subset_kinship(k, ind=c("2","4")), k[c("2","4"), c("2","4")]) expect_equal(subset_kinship(k_loco, ind=c(2,4)), lapply(k_loco, function(a) a[c(2,4), c(2,4)])) expect_equal(subset_kinship(k_loco, ind=c("2","4")), lapply(k_loco, function(a) a[c("2","4"), c("2","4")])) expect_equal(subset_kinship(k, ind=c(2,4), chr=5), k[c(2,4), c(2,4)]) expect_equal(subset_kinship(k, ind=c("2","4"), chr=5), k[c("2","4"), c("2","4")]) expect_equal(subset_kinship(k_loco, ind=c(2,4), chr=5), k_loco[["5"]][c(2,4), c(2,4)]) expect_equal(subset_kinship(k_loco, ind=c("2","4"), chr=5), k_loco[["5"]][c("2","4"), c("2","4")]) expect_equal(subset_kinship(k_loco, ind=c(2,4), chr=c(2,5)), lapply(k_loco[c("2","5")], function(a) a[c(2,4), c(2,4)])) expect_equal(subset_kinship(k_loco, ind=c("2","4"), chr=c(2,5)), lapply(k_loco[c("2", "5")], function(a) a[c("2","4"), c("2","4")])) expect_equal(subset_kinship(k_loco, ind=c(2,4), chr=-c(2,4)), lapply(k_loco[c("3","5","6")], function(a) a[c(2,4), c(2,4)])) expect_equal(subset_kinship(k_loco, ind=c("2","4"), chr=c("-2","-4")), lapply(k_loco[c("3","5","6")], function(a) a[c("2","4"), c("2","4")])) })
visitSequence.determine <- function( impMethod, vis, data, maxit=10) { is_char <- FALSE if ( ! is.numeric(vis) ){ is_char <- TRUE vis0 <- vis vis <- match( colnames(data), vis ) names(vis) <- vis0 } dat <- data ind <- grep( "~ I", impMethod ) I1 <- length(ind) vis1 <- vis0 <- vis pass_vars <- names(impMethod)[ind] iter <- 0 while (iter < maxit ){ vis <- vis1 for (var.ii in pass_vars){ vis1 <- visitSequence_determine_handle_variable( var.ii=var.ii, impMethod=impMethod, vis1=vis1, dat=dat ) } visit_constant <- visitSequence_determine_equal_vecs( v1=vis, v2=vis1 ) if ( visit_constant ){ iter <- maxit + 1 } iter <- iter + 1 } if (is_char){ vis1 <- names(vis1) } return(vis1) }
survHIMA <- function(X, Z, M, OT, status, FDRcut = 0.05, verbose = FALSE){ MZ <- cbind(M,Z,X) n <- length(X) p <- dim(M)[2] if(is.null(Z)) q <- 0 else q <- dim(Z)[2] message("Step 1: Mediators screening ...", " (", Sys.time(), ")") d_0 <- 1*round(n/log(n)) beta_SIS <- matrix(0,1,p) for (i in 1:p){ ID_S <- c(i, (p+1):(p+q+1)) MZ_SIS <- MZ[,ID_S] fit <- survival::coxph(survival::Surv(OT, status) ~ MZ_SIS) beta_SIS[i] <- fit$coefficients[1] } alpha_SIS <- matrix(0,1,p) XZ <- cbind(X,Z) for (i in 1:p){ fit_a <- lsfit(XZ,M[,i],intercept = TRUE) est_a <- matrix(coef(fit_a))[2] alpha_SIS[i] <- est_a } ab_SIS <- alpha_SIS*beta_SIS ID_SIS <- which(-abs(ab_SIS) <= sort(-abs(ab_SIS))[min(p, d_0)]) d <- length(ID_SIS) if(verbose) message(" ", d, " mediators selected from the screening.") message("Step 2: De-biased Lasso estimates ...", " (", Sys.time(), ")") P_beta_SIS <- matrix(0,1,d) beta_DLASSO_SIS_est <- matrix(0,1,d) beta_DLASSO_SIS_SE <- matrix(0,1,d) MZ_SIS <- MZ[,c(ID_SIS, (p+1):(p+q+1))] MZ_SIS_1 <- t(t(MZ_SIS[,1])) for (i in 1:d){ V <- MZ_SIS V[,1] <- V[,i] V[,i] <- MZ_SIS_1 LDPE_res <- LDPE_func(ID = 1, X = V, OT = OT, status = status) beta_LDPE_est <- LDPE_res[1] beta_LDPE_SE <- LDPE_res[2] V1_P <- abs(beta_LDPE_est)/beta_LDPE_SE P_beta_SIS[i] <- 2*(1-pnorm(V1_P,0,1)) beta_DLASSO_SIS_est[i] <- beta_LDPE_est beta_DLASSO_SIS_SE[i] <- beta_LDPE_SE } alpha_SIS_est <- matrix(0,1,d) alpha_SIS_SE <- matrix(0,1,d) P_alpha_SIS <- matrix(0,1,d) XZ <- cbind(X,Z) for (i in 1:d){ fit_a <- lsfit(XZ,M[,ID_SIS[i]],intercept = TRUE) est_a <- matrix(coef(fit_a))[2] se_a <- ls.diag(fit_a)$std.err[2] sd_1 <- abs(est_a)/se_a P_alpha_SIS[i] <- 2*(1-pnorm(sd_1,0,1)) alpha_SIS_est[i] <- est_a alpha_SIS_SE[i] <- se_a } message("Step 3: Multiple-testing procedure ...", " (", Sys.time(), ")") PA <- cbind(t(P_alpha_SIS), t(P_beta_SIS)) P_value <- apply(PA,1,max) N0 <- dim(PA)[1]*dim(PA)[2] input_pvalues <- PA + matrix(runif(N0,0,10^{-10}),dim(PA)[1],2) nullprop <- HDMT::null_estimation(input_pvalues,lambda=0.5) fdrcut <- HDMT::fdr_est(nullprop$alpha00,nullprop$alpha01,nullprop$alpha10, nullprop$alpha1,nullprop$alpha2,input_pvalues,exact=0) ID_fdr <- which(fdrcut <= FDRcut) if (length(ID_fdr) > 0){ alpha_hat <- alpha_SIS_est[ID_fdr] alpha_est <- alpha_SIS_SE[ID_fdr] beta_hat <- beta_DLASSO_SIS_est[ID_fdr] beta_est <- beta_DLASSO_SIS_SE[ID_fdr] ID <- ID_SIS[ID_fdr] P_max <- P_value[ID_fdr] } out_result <- data.frame(ID = ID, alpha = alpha_hat, alpha_se = alpha_est, beta = beta_hat, beta_set = beta_est, pvalue = P_max) return(out_result) }
print.ggmnonreg <- function(x,...){ if(is(x, "ggm_search")){ colnames(x$wadj) <- 1:ncol(x$wadj) print(as.data.frame(x$wadj), ...) } else if(is(x, "ggm_inference")){ colnames(x$wadj) <- 1:ncol(x$wadj) print(as.data.frame(x$wadj),...) } else if(is(x, "enr")){ print_enr(x,...) } else if(is(x, "predictability")){ print_r2(round(x$r2, 2),...) } else if(is(x, "eip")){ print_eip(x, 2) } else if(is(x, "ising_search")){ colnames(x$wadj) <- 1:ncol(x$wadj) print(as.data.frame(x$wadj), ...) } else if(is(x, "mixed_search")){ colnames(x$wadj) <- 1:ncol(x$wadj) print(as.data.frame(x$wadj), ...) } else if(is(x, "ggm_compare")){ colnames(x$wadj) <- 1:ncol(x$wadj) print(as.data.frame(x$wadj), ...) } }
message("\n---- Test ignorelist ----") testthat::skip_on_cran() testthat::skip_on_ci() testthat::skip_if_not(is_gcloud_configured(), "Google account is not set") testthat::skip_if_not(check_gcloud_connection(), "Google Cloud server is not reachable") s2_l2a_list <- c( "S2B_MSIL2A_20200801T100559_N0214_R022_T32TNR_20200801T135302.SAFE", "S2B_MSIL2A_20200801T100559_N0214_R022_T32TNS_20200801T135302.SAFE" ) testthat::test_that( "Tests on safelist read/write", { testthat::skip_if_not(file.exists(file.path( safe_dir, s2_l2a_list[1], "GRANULE/L2A_T32TNR_A017780_20200801T101400/IMG_DATA/R10m", "T32TNR_20200801T100559_B08_10m.jp2" ))) testthat::skip_if_not(file.exists(file.path( safe_dir, s2_l2a_list[2], "GRANULE/L2A_T32TNS_A017780_20200801T101400/IMG_DATA/R10m", "T32TNS_20200801T100559_B08_10m.jp2" ))) outdir_17 <- tempfile(pattern = "out_test17_") dir.create(dirname(outdir_17), showWarnings = FALSE) out_17 <- sen2r( gui = FALSE, online = FALSE, step_atmcorr = "l2a", extent = system.file("extdata/vector/barbellino.geojson", package = "sen2r"), extent_name = "Barbellino", timewindow = as.Date("2020-08-01"), list_indices = c("NDVI","MSAVI2"), list_rgb = c("RGB432B"), mask_type = "land", max_mask = 10, path_l2a = safe_dir, path_out = outdir_17, thumbnails = FALSE ) ignorelist_path <- file.path(outdir_17, ".ignorelist.txt") expect_true(file.exists(ignorelist_path)) ignorelist <- RcppTOML::parseTOML(ignorelist_path) expect_length(ignorelist, 4) expect_equal( sort(names(ignorelist)), c("dates_cloudcovered", "mask_type", "max_mask", "names_missing") ) expect_equal(ignorelist$max_mask, 10) expect_equal(ignorelist$mask_type, "land") expect_equal(ignorelist$dates_cloudcovered, as.Date("2020-08-01")) out_17_2 <- sen2r(attr(out_17, "procpath")) expect_equal(length(out_17_2), 0) } )
"print.svecest" <- function(x, digits = max(3, getOption("digits") - 3), ...){ text1 <- "SVEC Estimation Results:" cat(paste("\n", text1, "\n", sep = "")) row <- paste(rep("=", nchar(text1)), collapse = "") cat(row, "\n") cat("\n") cat("\nEstimated contemporaneous impact matrix:\n") print(x$SR, digits = digits, ...) cat("\nEstimated long run impact matrix:\n") print(x$LR, digits = digits, ...) invisible(x) }
vol_splx <- function(S) { d <- dim(S)[2] A <- S[2:dim(S)[1], ] - matrix(1, nrow = d, ncol = 1) %*% S[1, ] V <- (1 / factorial(d)) * abs(det(A)) return(V) }
jDivKernelFitPdf <- function(s,h,x){ f <- 1/h * jNormPdf((x-s)/h) * ((s-x)/h) return(mean(f)) }
setGraph<- function(obj, ...) { UseMethod("setGraph") } setGraph.default<- function(obj,...) { warning("Default method is called on unrecognized object") return(obj) } setGraph.Network<- function(obj, x, ...) { obj$graph<- x return(obj) } setRootDepSet<- function(obj, subset, root, ...) { UseMethod("setRootDepSet", obj) } setRootDepSet.default<- function(obj, subset, root, ...) { return("Default method called on unrecognized object") } setRootDepSet.RootDepSet<- function(obj, subset, root, ...) { if (is.atomic(subset)&& is.null(dim(subset))) { if (!is.character(subset)) stop(" 'subset' must be a character vector") if(!is.character(root)) stop(" 'root' must be a character") if (! (root %in% subset)) stop("the root must be part of the subset") } else if (is.list(subset)) { vld<- sapply(subset, function(x) is.character(x)) if(sum(!vld)!=0) stop(" 'subset' must be a list of character vectors, with characters corresponding to the names of the nodes ") if(!is.character(root)) stop(" 'root' must be a character") for (i in 1:length(subset)) { if (! (root[i] %in% subset[[i]])) stop("the root must be part of the subset") } } else stop("'subset' must be either one dimensional array or a list") obj$value<- subset names(obj$value)<- root obj$root<- root message("From setRootDepSet.RootDepSet: The order of the subset must correspond to the order of its corresponding root") return(obj) } setParams<- function(obj, value, ...) { UseMethod("setParams") } setParams.default<- function(obj, value, ...) { return("Default method called on unrecognized object") } setParams.HRMnetwork<- function(obj, value,...) { g<- obj$graph ne<- get.edge.attribute(g, "name", E(g)) if (length(value)<length(E(g))) stop("The number of parameters is smaller than the number of edges") if (is.null(names(value))) { names(value) <- get.edge.attribute(g, "name", E(g)) message("From setParams.HRMtree: Names have been attributed to the vector 'value' in the order corresponding to the order of the edges: The fist element has the name of the first edge, the second element the name of the second edge, etc.") } obj$depParams[ne]<- value[ne] message("From setParams.HRMtree: The parameters have been attached to the edges according to their names") return(obj) } setParams.HRMtree<- function(obj, value,...) { g<- obj$graph ne<- get.edge.attribute(g, "name", E(g)) if (length(value)<length(E(g))) stop("The number of parameters is smaller than the number of edges") if (is.null(names(value))) { names(value) <- get.edge.attribute(g, "name", E(g)) message("From setParams.HRMtree: Names have been attributed to the vector 'value' in the order corresponding to the order of the edges: The fist element has the name of the first edge, the second element the name of the second edge, etc.") } obj$depParams[ne]<- value[ne] message("From setParams.HRMtree: The parameters have been attached to the edges according to their names") return(obj) } resetParams<- function(obj, ...) { UseMethod("resetParams") } resetParams.MLE1params<- function(obj, cnames) { x<- rep(1,length(cnames)) names(x)<- cnames class(x)<- class(obj) return(x) }
context("Tests for sensitivity and sensquery") library(bnmonitor) data("travel") data("fire_alarm")
library(googleAuthR) library(googleCloudStorageR) something <- tryCatch({ gcs_get_object("schedule/test.csv", bucket = "mark-edmondson-public-files") }, error = function(ex) { NULL }) something_else <- data.frame(X1 = 1, time = Sys.time(), blah = paste(sample(letters, 10, replace = TRUE), collapse = "")) something <- rbind(something, something_else) googleAuthR::gar_gce_auth() tmp <- tempfile(fileext = ".csv") on.exit(unlink(tmp)) write.csv(something, file = tmp, row.names = FALSE) gcs_upload(tmp, bucket = "mark-edmondson-public-files", name = "schedule/test.csv")
library(Bessel) xs <- 100*(1:7) nus <- 450 + 10*(0:9) d.xn <- expand.grid(nu = nus, x = xs) M <- with(d.xn, cbind(K = besselK(x,nu), K_exp = besselK(x,nu, expon.scaled = TRUE), K_nA.2 = besselK.nuAsym(x, nu, log = TRUE, k.max=2), K_nA.3 = besselK.nuAsym(x, nu, log = TRUE, k.max=3), K_nA.4 = besselK.nuAsym(x, nu, log = TRUE, k.max=4)) ) A <- M datt <- attr(d.xn, "out.attrs") dim(A) <- c(datt$dim, ncol(M)) dimnames(A) <- c(datt$dimnames, list(colnames(M))) A stopifnot( all.equal(M[,3], M[,4], tol=1e-12) , all.equal(M[,4], M[,5], tol=2e-15) , all.equal(M[,"K"], exp(M[,5]), tol= 1e-12) ) cat('Time elapsed: ', proc.time(),'\n')
octileDistanceW <- function(cluster1,cluster2,weight){ D <- 1 D2 <- sqrt(D + D) value <- 0 minimal <- c() if(is.null(weight)){ for (index in c(1:ncol(cluster1))) { aux <- abs(cluster1[index] - cluster2[index]) value <- value + aux minimal <- c(minimal, aux) } } else { for (index in c(1:ncol(cluster1))) { aux <- weight[index] * abs(cluster1[index] - cluster2[index]) value <- value + aux minimal <- c(minimal, aux) } } dist <- D * value + (D2 - 2 * D) * min(minimal) dist }
ebic.fbed.glmm.ordinal.reps <- function(y, x, id, reps = NULL, univ = NULL, gam = NULL, wei = NULL, K = 0) { dm <- dim(x) n <- dm[1] p <- dm[2] ind <- 1:p lik2 <- numeric(p) sela <- NULL card <- 0 zevar <- Rfast::check_data(x) if ( sum( zevar > 0 ) > 0 ) x[, zevar] <- rnorm( n * length(zevar) ) if ( is.null(gam) ) { con <- 2 - log(p) / log(n) } else con <- 2 * gam if ( (con) < 0 ) con <- 0 lik1 <- BIC( ordinal::clmm(y ~ 1 + reps + (1|id), weights = wei) ) runtime <- proc.time() if ( is.null(univ) ) { for ( i in ind ) { fit2 <- ordinal::clmm( y ~ x[, i] + reps + (1|id), weights = wei ) lik2[i] <- BIC(fit2) + con * log(p) } lik2[zevar] <- Inf n.tests <- p stat <- lik1 - lik2 univ <- list() univ$ebic <- lik2 } else { n.tests <- 0 lik2 <- univ$ebic lik2[zevar] <- Inf stat <- lik1 - lik2 } s <- which(stat > 0) if ( length(s) > 0 ) { sel <- which.max(stat) sela <- sel s <- s[ - which(s == sel) ] lik1 <- lik2[sel] sa <- stat[sel] lik2 <- rep( lik1, p ) while ( sum(s > 0) > 0 ) { M <- length(sela) + 1 for ( i in ind[s] ) { fit2 <- ordinal::clmm( y ~ x[, c(sela, i)] + reps + (1|id), weights = wei ) lik2[i] <- BIC(fit2) + con * lchoose(p, M) } n.tests <- n.tests + length(ind[s]) stat <- lik1 - lik2 s <- which(stat > 0) sel <- which.max(stat) * ( length(s)>0 ) sa <- c(sa, stat[sel]) sela <- c(sela, sel[sel>0]) s <- s[ - which(s == sel) ] if (sel > 0) { lik1 <- lik2[sel] lik2 <- rep(lik1, p) } } card <- length(sela) if (K == 1) { M <- length(sela) + 1 for ( i in ind[-c(sela, zevar)] ) { fit2 <- ordinal::clmm( y ~ x[, c(sela, i)] + reps + (1|id), weights = wei ) lik2[i] <- BIC(fit2) + con * lchoose(p, M) } n.tests[2] <- length( ind[-c(sela, zevar)] ) stat <- lik1 - lik2 s <- which(stat > 0) sel <- which.max(stat) * ( length(s)>0 ) sa <- c(sa, stat[sel]) sela <- c(sela, sel[sel>0]) s <- s[ - which(s == sel) ] if (sel > 0) { lik1 <- lik2[sel] lik2 <- rep(lik1, p) } while ( sum(s > 0) > 0 ) { M <- length(sela) + 1 for ( i in ind[s] ) { fit2 <- ordinal::clmm( y ~ x[, c(sela, i)] + reps + (1|id), weights = wei ) lik2[i] <- BIC(fit2) + con * lchoose(p, M) } n.tests[2] <- n.tests[2] + length( ind[s] ) stat <- lik1 - lik2 s <- which(stat > 0) sel <- which.max(stat) * ( length(s)>0 ) sa <- c(sa, stat[sel]) sela <- c(sela, sel[sel>0]) s <- s[ - which(s == sel) ] if (sel > 0) { lik1 <- lik2[sel] lik2 <- rep(lik1, p) } } card <- c(card, sum(sela > 0) ) } if ( K > 1) { M <- length(sela) + 1 for ( i in ind[-c(sela, zevar)] ) { fit2 <- ordinal::clmm( y ~ x[, c(sela, i)] + reps + (1|id), weights = wei ) lik2[i] <- BIC(fit2) + con * lchoose(p, M) } n.tests[2] <- length(ind[-c(sela, zevar)]) stat <- lik1 - lik2 s <- which(stat > 0) sel <- which.max(stat) * ( length(s)>0 ) sa <- c(sa, stat[sel]) sela <- c(sela, sel[sel>0]) s <- s[ - which(s == sel) ] if (sel > 0) { lik1 <- lik2[sel] lik2 <- rep(lik1, p) } while ( sum(s > 0) > 0 ) { M <- length(sela) + 1 for ( i in ind[s] ) { fit2 <- ordinal::clmm( y ~ x[, c(sela, i)] + reps + (1|id), weights = wei ) lik2[i] <- BIC(fit2) + con * lchoose(p, M) } n.tests[2] <- n.tests[2] + length(ind[s]) stat <- lik1 - lik2 s <- which(stat > 0) sel <- which.max(stat) * ( length(s)>0 ) sa <- c(sa, stat[sel]) sela <- c(sela, sel[sel>0]) s <- s[ - which(s == sel) ] if (sel > 0) { lik1 <- lik2[sel] lik2 <- rep(lik1, p) } } vim <- 1 card <- c(card, sum(sela > 0) ) while ( vim < K & card[vim + 1] - card[vim] > 0 ) { vim <- vim + 1 M <- length(sela) + 1 for ( i in ind[-c(sela, zevar)] ) { fit2 <- ordinal::clmm( y ~ x[, c(sela, i)] + reps + (1|id), weights = wei ) lik2[i] <- BIC(fit2) + con * lchoose(p, M) } n.tests[vim + 1] <- length(ind[-c(sela, zevar)]) stat <- lik1 - lik2 s <- which(stat > 0) sel <- which.max(stat) * ( length(s)>0 ) sa <- c(sa, stat[sel]) sela <- c(sela, sel[sel>0]) s <- s[ - which(s == sel) ] if (sel > 0) { lik1 <- lik2[sel] lik2 <- rep(lik1, p) } while ( sum(s > 0) > 0 ) { M <- length(sela) + 1 for ( i in ind[s] ) { fit2 <- ordinal::clmm( y ~ x[, c(sela, i)] + reps + (1|id), weights = wei ) lik2[i] <- BIC(fit2) + con * lchoose(p, M) } n.tests[vim + 1] <- n.tests[vim + 1] + length(ind[s]) stat <- lik1 - lik2 s <- which(stat > 0) sel <- which.max(stat) * ( length(s)>0 ) sa <- c(sa, stat[sel]) sela <- c(sela, sel[sel>0]) s <- s[ - which(s == sel) ] if (sel > 0) { lik1 <- lik2[sel] lik2 <- rep(lik1, p) } } card <- c(card, sum(sela > 0) ) } } } runtime <- proc.time() - runtime len <- sum( sela > 0 ) if (len > 0) { res <- cbind(sela[1:len], sa[1:len] ) info <- matrix(nrow = length(card), ncol = 2) info[, 1] <- card info[, 2] <- n.tests } else { res <- matrix(c(0, 0), ncol = 2) info <- matrix(c(0, p), ncol = 2) } colnames(res) <- c("Vars", "eBIC difference") rownames(info) <- paste("K=", 1:length(card)- 1, sep = "") colnames(info) <- c("Number of vars", "Number of tests") list(univ = univ, res = res, info = info, runtime = runtime) }
setMethod('predict', signature(object='CirclesRange'), function(object, x, ext=NULL, mask=FALSE, filename='', ...) { if ( extends(class(x)[1], 'Raster')) { if (! mask) { x <- raster(x) } if (! is.null(ext)) { x <- crop(x, ext) } if (mask) { xx <- rasterize(object@polygons, raster(x), field=1, fun='sum', mask=FALSE, update=FALSE, updateValue="NA", getCover=FALSE, silent=TRUE, ...) xx <- mask(xx, x, filename=filename, ...) } else { xx <- rasterize(object@polygons, raster(x), field=1, fun='sum', mask=FALSE, update=FALSE, updateValue="NA", getCover=FALSE, silent=TRUE, filename=filename, ...) } return(xx) } else { if (! inherits(x, 'SpatialPoints') ) { x <- data.frame(x[,1:2]) colnames(x) <- c('x', 'y') coordinates(x) <- ~ x + y } return( .pointsInPolygons(x, object@polygons, sum) ) } } )
visregLatticePlot <- function(v, partial, band, rug, whitespace, strip.names, top, line.par, fill.par, points.par, ...) { x <- v$res[, v$meta$x] y <- v$res$visregRes b <- v$res[, v$meta$by] xx <- v$fit[, v$meta$x] yy <- v$fit$visregFit bb <- v$fit[, v$meta$by] lwr <- v$fit$visregLwr upr <- v$fit$visregUpr if (is.factor(bb)) { b <- droplevels(b) bb <- droplevels(bb) } xlim <- if (is.factor(xx)) c(0, 1) else range(xx) if (partial) { ylim <- range(c(y, lwr, upr), na.rm=TRUE) } else { ylim <- range(c(yy, lwr, upr), na.rm=TRUE) } pad <- 0.05*diff(ylim) ylim[1] <- ylim[1]-pad ylim[2] <- ylim[2]+pad pad <- 0.04*diff(xlim) xlim[1] <- xlim[1]-pad xlim[2] <- xlim[2]+pad ylab <- if (is.null(v$meta$yName)) paste("f(", v$meta$x, ")", sep="") else v$meta$yName new.args <- list(...) if (identical(strip.names, FALSE)) { strip <- lattice::strip.custom(strip.names=FALSE, factor.levels=levels(as.factor(bb)), strip.levels=c(TRUE, TRUE), fg=lattice::trellis.par.get("strip.background")$col) } else if (identical(strip.names, TRUE)) { if (is.factor(v$fit[, v$meta$by])) { strip <- lattice::strip.custom(strip.names=TRUE, strip.levels=c(TRUE, TRUE), var.name=v$meta$by) } else { strip <- lattice::strip.custom(strip.names=FALSE, factor.levels=paste(v$meta$by, abbrNum(bb), sep=": "), strip.levels=c(TRUE, TRUE), fg=lattice::trellis.par.get("strip.background")$col) } } else { strip <- lattice::strip.custom(strip.names=FALSE, factor.levels=strip.names, strip.levels=c(TRUE, TRUE), fg=lattice::trellis.par.get("strip.background")$col) } lframe <- data.frame(fit=yy, lwr=lwr, upr=upr, xx=xx, by=bb) lresids <- data.frame(r=y, x=x, by=b, pos=v$res$visregPos) plot.args <- list(x=formula(lframe$fit~lframe$xx | lframe$by), type="l", ylim=ylim, xlab=v$meta$x, ylab=ylab, lframe=lframe, lresids=lresids, partial=partial, band=band, rug=rug, xlim=xlim, strip=strip, top=top, fill.par=fill.par) if (length(new.args)) plot.args[names(new.args)] <- new.args if (is.null(dev.list())) trellis.device() opar <- lattice::trellis.par.get() line.args <- list(lwd=3, col=" if (length(line.par)) line.args[names(line.par)] <- line.par lattice::trellis.par.set(plot.line=line.args) points.args <- list(cex=0.4, pch=19, col="gray50") if (length(points.par)) points.args[names(points.par)] <- points.par lattice::trellis.par.set(plot.symbol=points.args) FUN <- getFromNamespace('xyplot', 'lattice') if (is.factor(x)) { K <- length(levels(x)) len <- K*(1-whitespace)+(K-1)*whitespace scales <- list(x=list(at=((0:(K-1))/len+(1-whitespace)/(2*len)), labels=levels(x))) if (is.null(plot.args$scales)) { plot.args$scales <- scales } else if (is.null(plot.args$scales$x)) { plot.args$scales$x <- scales$x } else { plot.args$scales$x <- c(plot.args$scales$x, scales) } plot.args$panel <- visregFactorPanel plot.args$w <- whitespace tp <- do.call(FUN, plot.args) plot(tp) } else { plot.args$panel <- visregPanel tp <- do.call(FUN, plot.args) plot(tp) } lattice::trellis.par.set(opar) return(tp) }
sort.by.cols<-function(x, cols=NULL, na.last = FALSE, decreasing = FALSE) { if(length(dim(x))<2) { stop("must provide a dataframe or matrix with more than one column") } if(length(cols)==0) { cols<-seq(1:dim(x)[2]) } col_arg<-NULL for(col in cols) { col_arg<-paste0(col_arg, paste0("x[,",col,"],")) } sort_string<-paste0("x[order(", col_arg, "na.last=",na.last,",decreasing=",decreasing,"),]" ) x.sorted<-eval(parse(text=sort_string)) x.sorted }
get_expected_data_for_get_regional_data_tests_only_level_1_regions <- function() { dates <- c("2020-01-31", "2020-02-01", "2020-02-02", "2020-02-03", "2020-02-04", "2020-02-05") provinces <- c("Northland", "Eastland", "Southland", "Westland", "Virginia") region_codes <- tibble::tibble(iso_3166_2 = c("NO", "EA", "SO", "WE", "VA"), region = provinces) expected_data_for_provinces <- list() for (i in 1:length(provinces)) { province <- provinces[i] dates_and_province <- data.frame(expand.grid(dates, province)) set.seed(417 + i) count_data <- sort(sample(1:50, 30, replace = T)) set.seed(Sys.time()) count_data_frame <- data.frame(matrix(count_data, ncol = 5, byrow = TRUE)) set.seed(940 + i) row_for_NA <- sample(1:6, 1, replace = FALSE) set.seed(Sys.time()) count_data_frame[row_for_NA, ] <- 0 cumulative_counts_data_frame <- cumsum(count_data_frame) expected_data_for_province <- cbind(dates_and_province, count_data_frame, cumulative_counts_data_frame) colnames(expected_data_for_province) <- c( "date", "province", "cases_new", "deaths_new", "recovered_new", "hosp_new", "tested_new", "cases_total", "deaths_total", "recovered_total", "hosp_total", "tested_total" ) expected_data_for_province <- expected_data_for_province %>% dplyr::select( date, province, cases_new, cases_total, deaths_new, deaths_total, recovered_new, recovered_total, hosp_new, hosp_total, tested_new, tested_total ) expected_data_for_province$tested_new <- as.numeric(NA_integer_) expected_data_for_province$tested_total <- as.numeric(NA_integer_) expected_data_for_province[row_for_NA, 3:12] <- as.numeric(NA_integer_) expected_data_for_province <- expected_data_for_province %>% tidyr::fill( cases_total, deaths_total, recovered_total, hosp_total ) expected_data_for_provinces[[i]] <- expected_data_for_province } expected_data <- suppressWarnings(dplyr::bind_rows(expected_data_for_provinces)) %>% dplyr::mutate( date = as.Date(date), cases_new = as.numeric(cases_new), cases_total = as.numeric(cases_total), deaths_new = as.numeric(deaths_new), deaths_total = as.numeric(deaths_total), recovered_new = as.numeric(recovered_new), recovered_total = as.numeric(recovered_total), hosp_new = as.numeric(hosp_new), hosp_total = as.numeric(hosp_total) ) %>% dplyr::left_join(region_codes, by = c("province" = "region")) %>% dplyr::select( date, province, iso_3166_2, cases_new, cases_total, deaths_new, deaths_total, recovered_new, recovered_total, hosp_new, hosp_total, tested_new, tested_total ) %>% dplyr::arrange(date, province) return(tibble::tibble(expected_data)) } get_input_data_for_get_regional_data_tests_only_level_1_regions <- function() { expected_data <- get_expected_data_for_get_regional_data_tests_only_level_1_regions() input_data <- expected_data[, -c(3, 12, 13)] input_data <- input_data[-which(rowSums(is.na(input_data)) > 0), ] colnames(input_data)[2] <- "level_1_region" return(input_data) } get_expected_totals_data_for_get_regional_data_tests_only_level_1_regions <- function() { expected_data <- get_expected_data_for_get_regional_data_tests_only_level_1_regions() totals_data <- expected_data[c(26:30), c(2, 3, 5, 7, 9, 11, 13)] totals_data[, 7] <- rep(0, 5) colnames(totals_data) <- c("province", "iso_3166_2", "cases_total", "deaths_total", "recovered_total", "hosp_total", "tested_total") totals_data <- totals_data %>% dplyr::arrange(-cases_total) return(tibble::tibble(totals_data)) } get_input_data_for_get_regional_data_tests_with_level_2_regions <- function() { data <- get_input_data_for_get_regional_data_tests_only_level_1_regions() colnames(data)[2] <- "level_2_region" regions_table <- tibble::tibble( level_2_region = c("Northland", "Eastland", "Southland", "Westland", "Virginia"), level_1_region = c("Oneland", "Oneland", "Twoland", "Twoland", "USA") ) data <- data %>% dplyr::left_join(regions_table, by = "level_2_region") %>% dplyr::select( date, level_2_region, level_1_region, cases_new, cases_total, deaths_new, deaths_total, recovered_new, recovered_total, hosp_new, hosp_total ) return(data) } get_expected_data_for_get_regional_data_tests_with_level_2_regions <- function() { data <- get_expected_data_for_get_regional_data_tests_only_level_1_regions() data <- data[, -3] data$region <- rep(c("Oneland", "Oneland", "Twoland", "USA", "Twoland"), 6) region_codes <- tibble::tibble( iso_3166_2 = c("ON", "TW", "US"), region = c("Oneland", "Twoland", "USA") ) level_2_region_codes <- tibble::tibble( iso_3166_2_province = c("NO", "EA", "SO", "WE", "VA"), region = c( "Northland", "Eastland", "Southland", "Westland", "Virginia" ) ) data <- data %>% dplyr::left_join(region_codes, by = "region") %>% dplyr::left_join(level_2_region_codes, by = c("province" = "region")) %>% dplyr::select( date, province, iso_3166_2_province, region, iso_3166_2, cases_new, cases_total, deaths_new, deaths_total, recovered_new, recovered_total, hosp_new, hosp_total, tested_new, tested_total ) %>% dplyr::arrange(date, region, province) return(data) } get_expected_totals_data_for_get_regional_data_tests_with_level_2_regions <- function() { data <- get_expected_totals_data_for_get_regional_data_tests_only_level_1_regions() data <- data[, -2] data$region <- c("Oneland", "USA", "Twoland", "Twoland", "Oneland") region_codes <- tibble::tibble( iso_3166_2 = c("ON", "TW", "US"), region = c("Oneland", "Twoland", "USA") ) level_2_region_codes <- tibble::tibble( iso_3166_2_province = c("NO", "EA", "SO", "WE", "VA"), region = c( "Northland", "Eastland", "Southland", "Westland", "Virginia" ) ) data <- data %>% dplyr::left_join(region_codes, by = "region") %>% dplyr::left_join(level_2_region_codes, by = c("province" = "region")) %>% dplyr::select( province, iso_3166_2_province, region, iso_3166_2, cases_total, deaths_total, recovered_total, hosp_total, tested_total ) return(tibble::tibble(data)) } get_expected_data_for_fill_empty_dates_with_na_test <- function() { dates <- c("2020-01-31", "2020-02-01", "2020-02-02", "2020-02-03") regions <- c("Northland", "Eastland", "Wisconsin") region_codes <- tibble::tibble( region = regions, level_1_region_code = c("NO", "EA", "WI") ) expected_data <- data.frame(expand.grid(dates, regions)) colnames(expected_data) <- c("date", "level_1_region") expected_data$date <- as.Date(expected_data$date) expected_data$level_1_region <- as.character(expected_data$level_1_region) expected_data <- expected_data %>% dplyr::arrange(date, level_1_region) %>% dplyr::left_join(region_codes, by = c("level_1_region" = "region")) expected_data$cases <- c(1:5, rep(NA, 4), 10:12) return(tibble::tibble(expected_data)) } get_input_data_for_complete_cumulative_columns_test <- function() { expected_data <- get_expected_data_for_fill_empty_dates_with_na_test() partial_data <- expected_data[-c(6:9), ] partial_data_with_cum_cases_na <- partial_data %>% dplyr::group_by(level_1_region) %>% dplyr::mutate(cases_total = cumsum(cases)) full_data_with_cum_cases_na <- covidregionaldata:::fill_empty_dates_with_na(partial_data_with_cum_cases_na) return(full_data_with_cum_cases_na) } get_expected_data_for_complete_cumulative_columns_test <- function() { expected_data <- get_expected_data_for_fill_empty_dates_with_na_test() partial_data <- expected_data[-c(6:9), ] full_data_with_cum_cases_filled <- covidregionaldata:::fill_empty_dates_with_na(partial_data) full_data_with_cum_cases_filled <- dplyr::arrange(full_data_with_cum_cases_filled, level_1_region, date) full_data_with_cum_cases_filled <- cbind(full_data_with_cum_cases_filled, as.integer(c(1, 5, 5, 15, 2, 7, 7, 18, 3, 3, 3, 15))) colnames(full_data_with_cum_cases_filled)[5] <- "cases_total" return(tibble::tibble(full_data_with_cum_cases_filled)) }
boxGrob <- function(label, y = unit(.5, "npc"), x = unit(.5, "npc"), width, height, just = "center", bjust = "center", txt_gp = getOption("boxGrobTxt", default = gpar(color = "black", cex = 1)), box_gp = getOption("boxGrob", default = gpar(fill = "white")) , box_fn = roundrectGrob, name = NULL) { assert( checkString(label), checkNumeric(label), is.language(label) ) assert_unit(y) assert_unit(x) assert_unit(width) assert_unit(height) assert_just(just) assert_just(bjust) assert_class(txt_gp, "gpar") assert_class(box_gp, "gpar") x <- prAsUnit(x) y <- prAsUnit(y) txt_padding <- unit(4 * ifelse(is.null(txt_gp$cex), 1, txt_gp$cex), "mm") txt <- textGrob( label = label, x = prGetX4Txt(just, txt_padding), y = .5, just = just, gp = txt_gp, name = "label" ) if (missing(height)) { height <- grobHeight(txt) + txt_padding + txt_padding } else { height <- prAsUnit(height) } if (missing(width)) { width <- grobWidth(txt) + txt_padding + txt_padding } else { width <- prAsUnit(width) } vp_args <- list( x = x, y = y, width = width, height = height, just = bjust ) rect <- do.call(box_fn, list(x = .5, y = .5, gp = box_gp)) gl <- grobTree( gList( rect, txt ), vp = do.call(viewport, vp_args), name = name, cl = "box" ) structure(gl, coords = prCreateBoxCoordinates(viewport_data = vp_args), viewport_data = vp_args ) }
plotWriteFilenameToLaTexFile <-function (graphicFileName) { cat(paste0("\\includegraphics[width=0.95\\textwidth,height=0.63\\textwidth]{", graphicFileName, "}\n")) }
addin_clearCache <- function() { ui <- miniPage( gadgetTitleBar("Clear recent cache entries"), miniContentPanel( textInput("cachePath", "Cache path:", value = normalizePath(getOption("spades.cachePath", "."), winslash = "/", mustWork = FALSE), width = "100%"), textInput("after", "After (default: Sys.time() - 60):", value = Sys.time() - 60, width = "100%") ) ) server <- function(input, output, session) { observeEvent(input$done, { reproducible::clearCache(input$cachePath, after = input$after) stopApp() }) } runGadget(ui, server, viewer = dialogViewer("Clear recent cache entries.")) }
meta.RiskD <- function(data.mi, BB.grdnum=1000, B.sim=20000, cov.prob=0.95, midp=T, MH.imputation=F, print=T, studyCI=T) { n=length(data.mi[,1]) n1=data.mi[,3]; n2=data.mi[,4] p1=data.mi[,1]/data.mi[,3]; p2=data.mi[,2]/data.mi[,4] if(MH.imputation==T) {id=(1:n)[p1*p2==0] p1[id]=(data.mi[id,1]+0.5)/(data.mi[id,3]+1); p2[id]=(data.mi[id,2]+0.5)/(data.mi[id,4]+1) n1[id]=data.mi[id,3]+1; n2[id]=data.mi[id,4]+1 } deltap=p2-p1 varp=p1*(1-p1)/n1+p2*(1-p2)/n2 weight=(n1*n2/(n1+n2))/sum(n1*n2/(n1+n2)) mu.MH=sum(deltap*weight); sd.MH=sqrt(sum(weight^2*varp)) ci.MH=c(mu.MH-qnorm((1+cov.prob)/2)*sd.MH, mu.MH+qnorm((1+cov.prob)/2)*sd.MH) p.MH=1-pchisq(mu.MH^2/sd.MH^2,1) d0=max(abs(ci.MH)) delta.grd=seq(-min(1, 5*d0), min(1, d0*5),length=BB.grdnum-1); delta.grd=sort(c(0,delta.grd)) pv1.pool=pv2.pool=numeric(0) for(kk in 1:n) { x1=data.mi[kk,1] x2=data.mi[kk,2] n1=data.mi[kk,3] n2=data.mi[kk,4] fit=priskD.exact(x1,x2,n1,n2, delta.grd, midp=midp) pv1.pool=rbind(pv1.pool, fit$pv1); pv2.pool=rbind(pv2.pool, fit$pv2) if(print==T) cat("study=", kk, "\n") } for(i in 1:n) { for(j in 1:BB.grdnum) { pv1.pool[i,(BB.grdnum-j+1)]=max(pv1.pool[i,1:(BB.grdnum-j+1)]);pv2.pool[i,j]=max(pv2.pool[i,j:BB.grdnum]) } } sigma0=1/data.mi[,3]+1/data.mi[,4] set.seed(100) tnull=matrix(0,B.sim,3) y=matrix(runif(B.sim*n), n, B.sim) y=y/(1+1e-2) tnull[,1]=apply(-log(1-y)/sigma0, 2, sum) tnull[,2]=apply(y/sigma0, 2, sum) tnull[,3]=apply(asin(y)/sigma0, 2, sum) alpha0=(1+cov.prob)/2; cut=rep(0,3) for(b in 1:3) cut[b]=quantile(tnull[,b], 1-alpha0) t1=t2=matrix(0,BB.grdnum,3) pv1.pool=pv1.pool/(1+1e-2) pv2.pool=pv2.pool/(1+1e-2) t1[,1]=apply(-log(1-pv1.pool)/sigma0, 2, sum); t2[,1]=apply(-log(1-pv2.pool)/sigma0, 2, sum) t1[,2]=apply(pv1.pool/sigma0, 2, sum); t2[,2]=apply(pv2.pool/sigma0, 2, sum) t1[,3]=apply(asin(pv1.pool)/sigma0, 2, sum); t2[,3]=apply(asin(pv2.pool)/sigma0, 2, sum) ci.fisher= c(min(delta.grd[t1[,1]>=cut[1]]),max(delta.grd[t2[,1]>=cut[1]])) ci.cons= c(min(delta.grd[t1[,2]>=cut[2]]),max(delta.grd[t2[,2]>=cut[2]])) ci.iv=c(min(delta.grd[t1[,3]>=cut[3]]),max(delta.grd[t2[,3]>=cut[3]])) ci.MH=ci.MH ci.range=c(min(delta.grd), max(delta.grd)) est.fisher=delta.grd[abs(t2[,1]-t1[,1])==min(abs(t2[,1]-t1[,1]))][1] est.cons=delta.grd[abs(t2[,2]-t1[,2])==min(abs(t2[,2]-t1[,2]))][1] est.iv=delta.grd[abs(t2[,3]-t1[,3])==min(abs(t2[,3]-t1[,3]))][1] est.MH=mu.MH est.range=NA n0=(BB.grdnum+1)/2 c1=t1[n0,]; c2=t2[n0,] p.fisher= min(1, 2*min(c(1-mean(tnull[,1]>=c1[1]), 1-mean(tnull[,1]>=c2[1])))) p.cons= min(1, 2*min(c(1-mean(tnull[,2]>=c1[2]), 1-mean(tnull[,2]>=c2[2])))) p.iv=min(1, 2*min(c(1-mean(tnull[,3]>=c1[3]), 1-mean(tnull[,3]>=c2[3])))) pvalue=c(p.cons, p.iv, p.fisher, p.MH, NA) ci=cbind(ci.cons, ci.iv, ci.fisher,ci.MH, ci.range) ci=rbind(c(est.cons, est.iv, est.fisher, est.MH, est.range), ci, pvalue) rownames(ci)=c("est", "lower CI", "upper CI", "p") colnames(ci)=c("constant", "inverse-variance", "fisher", "asymptotical-MH", " range") study.ci=NULL if(studyCI==T) {n=length(data.mi[,1]) study.ci=matrix(0, n, 5) colnames(study.ci)=c("est", "lower CI", "upper CI", "p", "limit") rownames(study.ci)=1:n for(kk in 1:n) {xx1=data.mi[kk,1] xx2=data.mi[kk,2] nn1=data.mi[kk,3] nn2=data.mi[kk,4] fit=ci.RiskD(xx1, xx2, nn1, nn2, cov.prob=cov.prob, BB.grdnum=BB.grdnum, midp=midp) study.ci[kk,2]=fit$lower study.ci[kk,3]=fit$upper study.ci[kk,1]=fit$est study.ci[kk,4]=fit$p study.ci[kk,5]=fit$status rownames(study.ci)[kk]=paste("study ", kk) } } return(list(ci.fixed=ci, study.ci=study.ci, precision=paste("+/-", (max(delta.grd)-min(delta.grd))/BB.grdnum))) }
library(purrr) library(readr) urls <- list( example = "http://example.org", asdf = "http://asdfasdasdkfjlda" ) map(urls, read_lines) safe_readlines <- safely(readLines) safe_readlines html <- map(urls, safe_readlines) str(html) html[["example"]][["result"]] html[["asdf"]][["error"]] str(transpose(html)) res <- transpose(html)[["result"]] errs <- transpose(html)[["error"]]
library(knitr) opts_chunk$set( comment = "", fig.width = 12, message = FALSE, warning = FALSE, tidy.opts = list( keep.blank.line = TRUE, width.cutoff = 150 ), options(width = 150), eval = TRUE ) library("survminer") library("survival") fit<- survfit(Surv(time, status) ~ sex, data = lung) ggsurvplot(fit, data = lung) ggsurvplot(fit, data = lung, title = "Survival curves", subtitle = "Based on Kaplan-Meier estimates", caption = "created with survminer", font.title = c(16, "bold", "darkblue"), font.subtitle = c(15, "bold.italic", "purple"), font.caption = c(14, "plain", "orange"), font.x = c(14, "bold.italic", "red"), font.y = c(14, "bold.italic", "darkred"), font.tickslab = c(12, "plain", "darkgreen")) ggsurvplot(fit, data = lung, risk.table = TRUE) ggsurvplot(fit, data = lung, title = "Survival curves", subtitle = "Based on Kaplan-Meier estimates", caption = "created with survminer", font.title = c(16, "bold", "darkblue"), font.subtitle = c(15, "bold.italic", "purple"), font.caption = c(14, "plain", "orange"), font.x = c(14, "bold.italic", "red"), font.y = c(14, "bold.italic", "darkred"), font.tickslab = c(12, "plain", "darkgreen"), risk.table = TRUE, risk.table.title = "Note the risk set sizes", risk.table.subtitle = "and remember about censoring.", risk.table.caption = "source code: website.com", risk.table.height = 0.45) ggsurvplot(fit, data = lung, risk.table = TRUE, ncensor.plot = TRUE) ggsurvplot(fit, data = lung, title = "Survival curves", subtitle = "Based on Kaplan-Meier estimates", caption = "created with survminer", font.title = c(16, "bold", "darkblue"), font.subtitle = c(15, "bold.italic", "purple"), font.caption = c(14, "plain", "orange"), font.x = c(14, "bold.italic", "red"), font.y = c(14, "bold.italic", "darkred"), font.tickslab = c(12, "plain", "darkgreen"), risk.table = TRUE, risk.table.title = "Note the risk set sizes", risk.table.subtitle = "and remember about censoring.", risk.table.caption = "source code: website.com", risk.table.height = 0.35, ncensor.plot = TRUE, ncensor.plot.title = "Number of censorings", ncensor.plot.subtitle = "over the time.", ncensor.plot.caption = "data available at data.com", ncensor.plot.height = 0.35)
is.fdiscd.misclass <- function(x) { return(is(x, "fdiscd.misclass")) }
fixDuplicates <- function(data, idVar="id", infusionDoseTimeVar=NULL, infusionDoseVar=NULL, moveBolus=FALSE, bolusDoseTimeVar=NULL, bolusDoseVar=NULL) { colnames <- names(data) if(!is.null(idVar) && !(idVar %in% colnames)) stop(sprintf("column %s does not exist", idVar)) if(!is.null(infusionDoseTimeVar) && !(infusionDoseTimeVar %in% colnames)) stop(sprintf("column %s does not exist", infusionDoseTimeVar)) if(!is.null(infusionDoseVar) && !(infusionDoseVar %in% colnames)) stop(sprintf("column %s does not exist", infusionDoseVar)) idcol <- match(idVar, colnames) idtv <- match(infusionDoseTimeVar, colnames) idv <- match(infusionDoseVar, colnames) rtcol <- match(sprintf("%s.real", infusionDoseTimeVar), colnames) if(is.na(rtcol)) stop("real time column is not present") bdtv <- which(bolusDoseTimeVar == colnames) bdv <- which(bolusDoseVar == colnames) if(moveBolus && (!length(bdtv) || !length(bdv))) moveBolus <- FALSE data[is.na(data[,idtv]) & !is.na(data[,idv]), idv] <- NA real.time <- parse_dates(data[,rtcol]) inf.format <- guessDateFormat(data[,idtv]) infuse.time <- parse_dates(data[,idtv]) bolus.time <- NULL if(length(bdtv)) bolus.time <- parse_dates(data[,bdtv]) data$tobolus <- 0 data$change <- 0 if(!all.equal(seq(nrow(data)), order(data[,idcol]))) stop(sprintf("data set should be ordered by %s", idVar)) duprows <- which(unlist(tapply(infuse.time, data[,idcol], FUN=function(i) c(FALSE, diff(i)==0)))) duprows <- duprows[!is.na(data[duprows, idtv])] for(i in duprows) { pair <- i-1 while(is.na(data[pair,idtv]) || as.character(data[i,idtv]) != as.character(data[pair,idtv])) { pair <- pair-1 } solved <- FALSE if(lubridate::minute(real.time[pair]) != 0) { index <- pair-1 while(index > 1 && is.na(data[index,idtv]) && data[index,idcol] == data[pair,idcol]) { index <- index-1 } tmp <- infuse.time[pair] - lubridate::dhours(1) if(index == 0 || data[index,idcol] != data[pair,idcol] || tmp > infuse.time[index]) { data[pair, idtv] <- format(tmp, inf.format) solved <- TRUE } } if(!solved && lubridate::minute(real.time[i]) != 0) { index <- i+1 while(is.na(data[index,idtv]) && data[index,idcol] == data[i,idcol]) { index <- index+1 } tmp <- infuse.time[i] + lubridate::dhours(1) if(data[index,idcol] != data[i,idcol] || infuse.time[index] > tmp) { data[i, idtv] <- format(tmp, inf.format) solved <- TRUE } } if(!solved && !is.null(bolus.time)) { if(lubridate::minute(real.time[pair]) != 0 && data$tobolus[pair] == 0) { j <- pair } else { j <- i } if(all(is.na(data[j,c(bdtv,bdv)]))) { if(moveBolus) { data[j,bdtv] <- data[j,rtcol] data[j,bdv] <- data[j,idv] data[j,rtcol] <- NA data[j,idtv] <- NA data[j,idv] <- NA } data$tobolus[j] <- 1 } } } if(!is.null(bolus.time)) { duprows <- which(unlist(tapply(bolus.time, data[,idcol], FUN=function(i) c(FALSE, diff(i)==0)))) duprows <- duprows[!is.na(data[duprows, bdtv])] if(length(duprows)) { vals <- apply(data[, c(idcol, bdtv)], MARGIN=1, paste, collapse='|') for(i in duprows) { init.ix <- match(vals[i], vals) data[init.ix, bdv] <- data[init.ix, bdv] + data[i, bdv] } data[duprows, c(bdtv, bdv)] <- c(NA, NA) data[duprows, 'tobolus'] <- NA } } if(any(is.na(data$tobolus))) data <- data[!is.na(data$tobolus),] data }
rrse = function(truth, response, na_value = NaN, ...) { assert_regr(truth, response = response, na_value = na_value) v = var(truth) if (v < TOL) { return(na_value) } sqrt(sum(se(truth, response)) / (v * (length(truth) - 1L))) } add_measure(rrse, "Root Relative Squared Error", "regr", 0, Inf, TRUE)
fit.nls <- function (lambda, p.names, estimates) { extrapolation <- list() lambda0 <- c(0, max(lambda) / 2, max(lambda)) for (d in p.names) { quad <- lm(estimates[, d] ~ lambda + I(lambda^2)) a.nls <- predict(quad, newdata = data.frame(lambda = lambda0)) gamma.est.3 <- ((a.nls[2] - a.nls[3]) * lambda0[3] * (lambda0[2] - lambda0[1]) - lambda0[1] * (a.nls[1] - a.nls[2]) * (lambda0[3] - lambda0[2])) / ((a.nls[1] - a.nls[2]) * (lambda0[3] - lambda0[2]) - (a.nls[2] - a.nls[3]) * (lambda0[2] - lambda0[1])) gamma.est.2 <- ((a.nls[2] - a.nls[3]) * (gamma.est.3 + lambda0[2]) * (gamma.est.3 + lambda0[3])) / (lambda0[3] - lambda0[2]) gamma.est.1 <- a.nls[1] - (gamma.est.2 / (gamma.est.3 + lambda0[1])) extrapolation[[d]] <- nls(estimates[, d] ~ gamma.1 + gamma.2 / (gamma.3 + lambda), start = list(gamma.1 = gamma.est.1, gamma.2 = gamma.est.2, gamma.3 = gamma.est.3)) } return(extrapolation) }
.tableAggregateload <- function(opts){ Mode <- NULL linkTable <- try(data.table::fread(system.file("/format_output/tableOutput.csv", package = "antaresEditObject")), silent = TRUE) linkTable$progNam <- linkTable$Stats linkTable$progNam[which(linkTable$progNam == "values")] <- "EXP" if(opts$mode == "Economy") { linkTable <- linkTable[Mode == "economy"] }else{ linkTable <- linkTable[Mode != "economy"] } } .updateData <- function(opts, dta, linkTable){ .N <- Name <- progNam <- NULL idC <- antaresRead::getIdCols(dta) calcC <- names(dta)[!names(dta)%in%idC] idC <- idC[idC != "mcYear"] dtamean <- dta[, lapply(.SD, function(X){(mean(X))}), .SDcols = calcC, by = idC] dtamin <- dta[, lapply(.SD, function(X){(min(X))}), .SDcols = calcC, by = idC] dtamax <- dta[, lapply(.SD, function(X){(max(X))}), .SDcols = calcC, by = idC] dtastd <- dta[, lapply(.SD, function(X){(sd(X)/(.N*2+1)*(.N*2))}), .SDcols = calcC, by = idC] outputData <- unique(dta[, .SD, .SDcols = idC]) for(i in calcC){ keep <- linkTable[Name == i] if("EXP" %in% keep$progNam){ outputData[[i]] <- round(dtamean[[i]],keep[progNam == "EXP"]$digits) } if("std" %in% keep$progNam){ outputData[[paste0(i, "_std")]] <- round(dtastd[[i]],keep[progNam == "std"]$digits) } if("min" %in% keep$progNam){ outputData[[paste0(i, "_min")]] <- round(dtamin[[i]],keep[progNam == "min"]$digits) } if("max" %in% keep$progNam){ outputData[[paste0(i, "_max")]] <- round(dtamax[[i]],keep[progNam == "max"]$digits) } } attributes(outputData)$synthesis <- TRUE outputData }
plot.surv_variable_response_explainer <- function(x, ..., split = "model"){ y <- color <- NULL df <- data.frame(x) dfl <- list(...) if (length(dfl) > 0) { for (resp in dfl) { class(resp) <- "data.frame" df <- rbind(df, resp) } } if (is.numeric(df$value) & length(unique(df$value))>=4) { df$value <- cut(df$value, quantile(df$value, prob = seq(0, 1, length.out = 6)), include.lowest = TRUE) df <- aggregate(y~., data = df, mean) } if (split == "variable") { add_facet <- facet_wrap(~value, ncol = 1) df$color <- factor(df$label) legend <- "model" } else { add_facet <- facet_wrap(~label, ncol = 1) df$color <- factor(df$value) legend <- x$var[1] } ggplot(df, aes(x, y, color = color)) + geom_step() + labs(title = paste0("Partial Dependency Plot of variable ", df$var[1]), x = "time", y = "mean survival probability", col = legend) + add_facet + theme_mi2()+ scale_y_continuous(breaks = seq(0,1,0.1), limits = c(0,1), labels = paste(seq(0,100,10),"%"), name = "survival probability") }
setMethod( f="OutFlux_by_PoolName", signature=c( func='function' ,sourceName='character' ) ,def=function(func,sourceName){ new( 'OutFlux_by_PoolName' ,sourceName=PoolName(sourceName) ,func=func ) } ) setMethod( f="by_PoolIndex" ,signature=signature( obj='OutFlux_by_PoolName' ,poolNames='character' ,timeSymbol='character' ) ,definition=function(obj,poolNames,timeSymbol){ fl_by_index<-new( "OutFlux_by_PoolIndex" ,sourceIndex=PoolIndex( obj@sourceName ,poolNames=poolNames ) ,func=by_PoolIndex( obj@func ,poolNames=poolNames ,timeSymbol=timeSymbol ) ) fl_by_index } )
context("aging of one portfolio of guaratee contracts") library(vamc) histFundScen <- genFundScen(fundMap, histIdxScen) test_that("test for correctness of aging a portfolio of guarantee contracts", { skip_on_cran() tmp <- tempfile() expect_equal_to_reference(agePortfolio(VAPort, mortTable, histFundScen, histDates, dT = 1 / 12, "2014-01-01", cForwardCurve), tmp) })
filterEvaluator <- function(filter, params=list()){ if(!is.list(params)){ stop('The filter method parameters are not in a list.') } algorithms <- list('binaryConsistency', 'chiSquared', 'cramed', 'determinationCoefficient', 'fscore', 'gainRatio', 'giniIndex', 'IEConsistency', 'IEPConsistency', 'Jd', 'MDLC', 'mutualInformation', 'roughsetConsistency', 'relief', 'ReliefFeatureSetMeasure', 'symmetricalUncertain') switch(filter, 'binaryConsistency'={ do.call(binaryConsistency,params) }, 'chiSquared'={ do.call(chiSquared,params) }, 'cramer'={ do.call(cramer,params) }, 'determinationCoefficient'={ do.call(determinationCoefficient,params) }, 'gainRatio'={ do.call(gainRatio,params) }, 'giniIndex'={ do.call(giniIndex,params) }, 'IEConsistency'={ do.call(IEConsistency,params) }, 'IEPConsistency'={ do.call(IEPConsistency,params) }, 'Jd'={ do.call(Jd,params) }, 'MDLC'={ do.call(MDLC,params) }, 'mutualInformation'={ do.call(mutualInformation,params) }, 'roughsetConsistency'={ do.call(roughsetConsistency,params) }, 'relief'={ do.call(relief,params) }, 'ReliefFeatureSetMeasure'={ do.call(ReliefFeatureSetMeasure,params) }, 'symmetricalUncertain'={ do.call(symmetricalUncertain,params) }, { stop('The filter method passed as a parameter is not supported by the package.') } ) } attr(filterEvaluator,'shortName') <- "filterGenerator" attr(filterEvaluator,'name') <- "Filter Measure Generator" attr(filterEvaluator,'methods') <- c('binaryConsistency', 'chiSquared', 'cramer', 'determinationCoefficient', 'fscore', 'gainRatio', 'giniIndex', 'IEConsistency', 'IEPConsistency', 'Jd', 'MDLC', 'mutualInformation', 'roughsetConsistency', 'relief', 'RFSM', 'symmetricalUncertain')
library(crs) set.seed(24) n <- 10000 x <- runif(n,-1,1) x.seq <- seq(min(x),max(x),length=100) sd.x <- .1+abs(x) sd.x.seq <- .1+abs(x.seq) y <- rnorm(n,mean=x,sd=sd.x) taus <- c(0.05,0.1,.25,0.5,.75,.9,0.95) j.opt <- numeric() s.opt <- numeric() plot(x,y,cex=.25,col="lightgrey") for(t in seq(along=taus)) { model.rq <- crs(y~x,tau=taus[t],cv.threshold=0,nmulti=2) lines(x.seq,predict(model.rq,newdata=data.frame(x=x.seq)),col=t,lty=t,lwd=2) lines(x.seq,qnorm(taus[t],mean=x.seq,sd=sd.x.seq),lty=2) j.opt[t] <- model.rq$degree s.opt[t] <- model.rq$segments } legend(min(x),max(y),paste("tau=",taus,", d=",j.opt,", s=",s.opt,sep=""), lty=1:length(taus), col=1:length(taus), lwd=rep(2,length(taus)), bty="n")
createFormula <- function(x,right=TRUE){ f<-'.~.' if (length(x)==1){ if (right) f<-paste('.',x,sep='~') else f<-paste(x,'.',sep='~') } else if (length(x)>1){ half_length<-length(x)%/%2 if (right) f<-paste( paste(tail(x,half_length),collapse='+'), paste(head(x,length(x)-half_length), collapse='+') ,sep='~' ) else f<-paste( paste(head(x,length(x)-half_length),collapse='+'), paste(tail(x,half_length), collapse='+') ,sep='~' ) } as.formula(f) }
generate.jackknife.blocks<-function(x,nsnp.per.bjack.block,verbose=TRUE){ [email protected][,2] det.idx.per.chr=matrix(unlist(by(1:x@nsnp,[email protected][,1],range)),ncol=2,byrow=T) if(nrow(det.idx.per.chr)==0){ stop("Exit function: No chr/contigs available (information on SNP contig name might not have been provided)") } tmp.diff.pos=by(tmp.pos,[email protected][,1],diff,na.rm=T) det.idx.per.chr=cbind(det.idx.per.chr, det.idx.per.chr[,2]-det.idx.per.chr[,1]+1, tmp.pos[det.idx.per.chr[,2]]-tmp.pos[det.idx.per.chr[,1]], matrix(unlist(lapply(tmp.diff.pos,f<-function(x){if(length(x)>0){return(range(x))}else{return(rep(NA,2))}})),ncol=2,byrow=T)) colnames(det.idx.per.chr)=c("snp_idx1","snp_idx2","nsnps","size","min_intersnp_dist","max_intersnp_dist") tmp=sum(det.idx.per.chr[,5]<0,na.rm=T) if(tmp>0){ warning(paste(tmp,"contigs with unordered SNPs positions (these will be discarded)\n")) } ctg.sel=det.idx.per.chr[,3]>nsnp.per.bjack.block & det.idx.per.chr[,5]>=0 if(sum(ctg.sel)==0){ stop("Exit function: No contig available after applying filtering steps (e.g., try lowering nsnp.per.bjack.block)\n") } det.idx.per.chr=det.idx.per.chr[ctg.sel,] if(sum(ctg.sel)==1){ block.start=seq(det.idx.per.chr[1],det.idx.per.chr[2]-nsnp.per.bjack.block+1,nsnp.per.bjack.block) }else{ block.start=as.vector(unlist(apply(det.idx.per.chr[,1:2],1,f<-function(x){return(seq(x[1],x[2]-nsnp.per.bjack.block+1,nsnp.per.bjack.block))}))) } nblocks=length(block.start) if(nblocks<=1){ stop("Exit function: <=1 block available\n") } blocks.det=cbind(block.start,block.start+nsnp.per.bjack.block-1) blocks.det=cbind(blocks.det,tmp.pos[blocks.det[,2]]-tmp.pos[blocks.det[,1]]) colnames(blocks.det)=c("idx.start","idx.end","size") snp.block.id=rep(NA,x@nsnp) for(i in 1:nblocks){snp.block.id[blocks.det[i,1]:blocks.det[i,2]]=i} if(verbose){ cat(nblocks,"Jackknife blocks identified with",sum(!is.na(snp.block.id)),"SNPs (out of",x@nsnp,").\n SNPs map to",nrow(det.idx.per.chr),"different chrom/scaffolds\n") cat("Average (min-max) Block Sizes:",round(mean(blocks.det[,3]*1e-6),3),"(",round(min(blocks.det[,3]*1e-6),3),"-",round(max(blocks.det[,3]*1e-6),3),") Mb\n") } return(list(blocks.det=blocks.det,snp.block.id=snp.block.id,nblocks=nblocks,nsnps=sum(!is.na(snp.block.id)))) }
source("ESEUR_config.r") library("boot") mean_diff=function() { s_ind=rnorm(len_est_2) expert=c(est_2$expert[s_ind < 0], est_2$planning.poker[s_ind >= 0]) s_ind=rnorm(len_est_2) poker=c(est_2$expert[s_ind < 0], est_2$planning.poker[s_ind >= 0]) return(mean(expert)-mean(poker)) } est_1=read.csv(paste0(ESEUR_dir, "group-compare/16_1.csv.xz"), as.is=TRUE) est_2=read.csv(paste0(ESEUR_dir, "group-compare/16_2.csv.xz"), as.is=TRUE) est_mean_diff=abs(mean(est_2$expert)-mean(est_2$planning.poker)) len_est_2=nrow(est_2) t=replicate(4999, mean_diff()) plot(density(t)) mean(t) sd(t) 100*length(which(abs(t) >= est_mean_diff))/(1+length(t))
check_ssn <- function(path, predictions = NULL) { out <- TRUE message("Checking necessary files...") if(file.exists(file.path(path, "edges.shp"))) { message("\tedges.shp...OK") } else { out <- out & FALSE message("\tedges.shp...FAIL!") } if(file.exists(file.path(path, "sites.shp"))) { message("\tsites.shp...OK") } else { out <- out & FALSE message("\tsites.shp...FAIL!") } if(!is.null(predictions)){ for(i in 1:length(predictions)){ if(file.exists(file.path(path, predictions[i], ".shp"))) { message(paste0("\t", predictions[i], ".shp...OK")) } else { out <- out & FALSE message(paste0("\t", predictions[i], ".shp...FAIL!")) } } } edges <- readOGR(path, "edges", verbose = FALSE) netIDs <- unique(edges$netID) bin_files <- list.files(path, pattern = "*.dat") if (all(bin_files %in% paste0("netID", netIDs, ".dat"))) { message("\tbinary files...OK") } else { out <- out & FALSE message("\tbinary files...FAIL!") } message("Checking edges.shp...") obl_cols <- c("rid", "netID", "OBJECTID", "upDist", "Length", "H2OArea", "rcaArea") if (all(obl_cols %in% names(edges@data))) { message("\tColumns...OK") } else { out <- out & FALSE message("\tColumns...FAIL! \tMissing columns: ", obl_cols[!obl_cols %in% names(edges@data)]) } if (length(unique(edges$rid)) == nrow(edges)) { message("\tUnique rids...OK") } else { out <- out & FALSE message("\tUnique rids...FAIL!") } if (max(edges$rid) >= nrow(edges) - 1) { message("\tMax rid...OK") } else { out <- out & FALSE message("\tMax rid...FAIL!") } if (!any(is.na(edges$netID))) { message("\tnetID...OK") } else { out <- out & FALSE message("\tnetID > 0...FAIL!") } ssn <- importSSN(path) ssn <- additive.function(ssn, "H2OArea", "afv_computed") r_afv <- range(ssn@data$afv_computed) if (all(r_afv >= 0 & r_afv <= 1)) { message("\tadditive function value range...OK") } else { out <- out & FALSE message("\tadditive function value range...FAIL!") } message("Checking sites.shp...") sites <- readOGR(path, "sites", verbose = FALSE) obl_cols <- c("rid", "pid", "locID", "netID", "upDist") obl_cols2 <- "H2OArea" if (all(obl_cols %in% names(sites@data)) & any(grepl(obl_cols2, names(sites@data)))) { message("\tColumns...OK") } else { out <- out & FALSE message("\tColumns...FAIL! \tMissing columns: ", obl_cols[!obl_cols %in% names(sites@data)]) } if(any(sites$ratio > 1) | any(sites$ratio < 0)) { out <- out & FALSE message("\tratio > 0 and < 1 ...FAIL!") } else { message("\tratio...OK") } if (!any(is.na(sites$netID))) { message("\tnetID...OK") } else { out <- out & FALSE message("\tnetID > 0...FAIL!") } if (!any(is.na(sites$rid))) { message("\trid...OK") } else { out <- out & FALSE message("\trid > 0...FAIL!") } if(!is.null(predictions)){ message("Checking Prediction sites...") for(i in 1:length(predictions)){ preds <- readOGR(path, predictions[i], verbose = FALSE) obl_cols <- c("rid", "pid", "locID", "netID", "upDist", "H2OArea") if (all(obl_cols %in% names(preds@data))) { message("\tColumns...OK") } else { out <- out & FALSE message("\tColumns...FAIL! \tMissing columns: ", obl_cols[!obl_cols %in% names(preds@data)]) } if (any(preds$ratio > 1) | any (preds$ratio < 0)) { message("\tratio...OK") } else { out <- out & FALSE message("\tratio > 0 and < 1 ...FAIL!") } if (!any(is.na(preds$netID))) { message("\tnetID...OK") } else { out <- out & FALSE message("\tnetID > 0...FAIL!") } if (!any(is.na(preds$rid))) { message("\trid...OK") } else { out <- out & FALSE message("\trid > 0...FAIL!") } } } message("Checking Binary files...") if (all(as.numeric(gsub("netID(.*)\\.dat", "\\1", bin_files)) %in% unique(edges@data$netID)) & all(unique(edges@data$netID) %in% as.numeric(gsub("netID(.*)\\.dat", "\\1", bin_files)))) { message("\tBinary files...OK") } else { out <- out & FALSE message("\tBinary files...FAIL!") } netids <- as.numeric(gsub("netID(.*)\\.dat", "\\1", bin_files)) rid_ok <- TRUE for(i in netids){ rids_bin <- utils::read.table(file.path(path, paste0("netID", i, ".dat")), header = T, sep = ",")[,1] rids_edge <- edges$rid[edges$netID == i] if(! all(rids_bin %in% rids_bin) & all(rids_edge %in% rids_bin)){ rid_ok <- rid_ok & FALSE } } if(rid_ok){ message("\trids in binary files...OK") } else { out <- out & FALSE message("\trids in binary files...FAIL!") } return(out) }
NULL distr_impl <- function(pdqr_class, impl_funs, x, type, ...) { assert_missing(x, "numeric vector or appropriate data frame") assert_missing(type, 'pdqr type ("discrete" or "continuous")') assert_pdqr_type(type) x_tbl <- impute_x_tbl(x, type, ...) rm(list = "x", envir = environment()) res <- switch( type, discrete = impl_funs[["discrete"]](x_tbl), continuous = impl_funs[["continuous"]](x_tbl) ) add_pdqr_class(res, pdqr_class) } add_pdqr_class <- function(f, pdqr_class) { add_class(f, c(pdqr_class, "pdqr")) } unpdqr <- function(f) { class(f) <- setdiff(class(f), c("p", "d", "q", "r", "pdqr")) f } filter_numbers <- function(x) { x_is_nan <- is.nan(x) if (any(x_is_nan)) { warning_collapse("`x` has `NaN`s, which are removed.") } x <- x[!x_is_nan] x_is_na <- is.na(x) if (any(x_is_na)) { warning_collapse("`x` has `NA`s, which are removed.") } x <- x[!x_is_na] x_is_inf <- is.infinite(x) if (any(x_is_inf)) { warning_collapse("`x` has infinite values, which are removed.") } x[!x_is_inf] } is_pdqr_fun <- function(f) { enable_asserting_locally() tryCatch(assert_pdqr_fun(f), error = function(e) { FALSE }) } is_pdqr_type <- function(type) { enable_asserting_locally() tryCatch(assert_pdqr_type(type), error = function(e) { FALSE }) } is_support <- function(supp, allow_na = FALSE) { enable_asserting_locally() tryCatch(assert_support(supp, allow_na), error = function(e) { FALSE }) } is_x_tbl <- function(x, type) { enable_asserting_locally() tryCatch(assert_x_tbl(x, type), error = function(e) { FALSE }) } is_x_tbl_meta <- function(x, type) { tryCatch(assert_x_tbl_meta(x, type), error = function(e) { FALSE }) } is_pdqr_class <- function(chr) { chr %in% c("p", "d", "q", "r") } is_boolean_pdqr_fun <- function(f) { (meta_type(f) == "discrete") && identical(meta_x_tbl(f)[["x"]], c(0, 1)) } has_meta_type <- function(f) { has_meta(f, "type") && is_pdqr_type(meta_type(f)) } has_meta_support <- function(f) { has_meta(f, "support") && is_support(meta_support(f)) } has_meta_x_tbl <- function(f, type) { has_meta(f, "x_tbl") && is_x_tbl(meta_x_tbl(f), type) && is_x_tbl_meta(meta_x_tbl(f), type) } density_piecelin <- function(x, ...) { dens <- stats::density(x, ...) x_dens <- dens[["x"]] y_dens <- dens[["y"]] tot_integral <- trapez_integral(x_dens, y_dens) data.frame(x = x_dens, y = y_dens / tot_integral) } trapez_integral <- function(x, y) { sum(trapez_piece_integral(x, y)) } trapez_piece_integral <- function(x, y) { n <- length(y) (x[-1] - x[-n]) * (y[-1] + y[-n]) / 2 } trapez_part_integral <- function(x, y) { n <- length(y) c(0, cumsum((x[-1] - x[-n]) * (y[-1] + y[-n])) / 2) } compute_piecelin_density_coeffs <- function(x_tbl, ind_vec) { n <- length(ind_vec) slope <- numeric(n) intercept <- numeric(n) x <- x_tbl[["x"]] y <- x_tbl[["y"]] ind_is_in <- (ind_vec >= 1) & (ind_vec < length(x)) inds_in <- ind_vec[ind_is_in] slope[ind_is_in] <- (y[inds_in + 1] - y[inds_in]) / (x[inds_in + 1] - x[inds_in]) intercept[ind_is_in] <- y[inds_in] - slope[ind_is_in] * x[inds_in] list(slope = slope, intercept = intercept) }
NULL plot.tbl_regression <- function(x, remove_header_rows = TRUE, remove_reference_rows = FALSE, ...) { assert_package("GGally", fn = "plot.tbl_regression()") df_coefs <- x$table_body if (isTRUE(remove_header_rows)) { df_coefs <- df_coefs %>% filter(!.data$header_row %in% TRUE) } if (isTRUE(remove_reference_rows)) { df_coefs <- df_coefs %>% filter(!.data$reference_row %in% TRUE) } df_coefs %>% GGally::ggcoef_plot(exponentiate = x$inputs$exponentiate, ...) } plot.tbl_uvregression <- plot.tbl_regression
context("getGenotypes") test_that("getGenotypes recognizes no file and wrong file arguments", { expect_error(getGenotypes(), "\"fileName\" is missing, with no default") }) test_that("getGenotypes recognizes and opens Excel files.", { pedExcel <- suppressWarnings(getGenotypes( fileName = system.file("testdata", "qcPed.xlsx", package = "nprcgenekeepr") )) expect_equal(nrow(pedExcel), 280) }) test_that( paste0( "getGenotypes recognizes and opens CSV files with default ", "comma separator." ), { pedCsv <- getGenotypes(fileName = system.file("testdata", "qcPed.csv", package = "nprcgenekeepr")) expect_equal(nrow(pedCsv), 280) } ) test_that( paste0( "getGenotypes recognizes and opens CSV files with specified ", "comma separator." ), { pedCsv2 <- getGenotypes( fileName = system.file("testdata", "qcPed.csv", package = "nprcgenekeepr"), sep = "," ) expect_equal(nrow(pedCsv2), 280) } ) test_that( paste0( "getGenotypes recognizes and opens .txt files with specified ", "tab separator." ), { pedTxt <- getGenotypes( fileName = system.file("testdata", "qcPed.txt", package = "nprcgenekeepr"), sep = "\t" ) expect_equal(nrow(pedTxt), 280) } )
IsoGenem <- function(x, y){ y <- as.matrix(y) if(dim(y)[[1]]==1){ IsoGene1(x = x, y = y) } else { ordx <- order(x) x <- x[ordx] y <- y[, ordx] unx <- unique(x) ydf <- as.data.frame(t(y)) y.m <- do.call("cbind", unclass(by(ydf, x, colMeans))) y.m.tot <- matrix(rep(rowMeans(y), length(x)), ncol = length(x)) n.p <- table(x) n.g <- length(n.p) y.is.u <- t(apply(y.m, 1, function(x) pava(x, w = n.p)) ) y.is.d <- t(apply(y.m, 1, function(x) pava(x, w = n.p, decreasing=TRUE))) rep.iso.d <- y.is.d[, rep(1:length(n.p),n.p)] rep.iso.u <- y.is.u[, rep(1:length(n.p),n.p)] y.m.all <- y.m[, rep(1:length(n.p), n.p)] SST0 <- rowSums((y - rowMeans(y))^2) SSIS.u1 <- rowSums((rep.iso.u - y)^2) SSIS.d1 <- rowSums((rep.iso.d - y)^2) SST <- rowSums((y - y.m.all)^2) direction=NULL direction <- ifelse(SSIS.u1 <= SSIS.d1, "u", "d") lambda1.up <- SSIS.u1 / SST0 Esquare.up <- 1 - lambda1.up iso.u <- y.is.u w.up <- (y.is.u[,n.g]-y.m[,1])/sqrt(rowSums((y-y.m.all)^2)/(sum(n.p)-n.g)*(1/n.p[1]+1/n.p[n.g])) w.c.up <- (y.is.u[,n.g]-y.is.u[,1])/sqrt(rowSums((y-y.m.all)^2)/(sum(n.p)-n.g)*(1/n.p[1]+1/n.p[n.g])) m.up <- (y.is.u[,n.g] - y.is.u[,1]) / sqrt(SSIS.u1/(sum(n.p)-n.g)) i.up <- (y.is.u[,n.g] - y.is.u[,1]) / sqrt(SSIS.u1/(sum(n.p) - apply(y.is.u, 1, function(x) length(unique(x))))) lambda1.dn <- SSIS.d1 / SST0 Esquare.dn <- 1 - lambda1.dn iso.u <- y.is.d n.pSum <- sum(n.p) w.dn <- (y.is.d[,n.g]-y.m[,1])/sqrt(rowSums((y-y.m.all)^2)/(sum(n.p)-n.g)*(1/n.p[1]+1/n.p[n.g])) w.c.dn <- (y.is.d[,n.g]-y.is.d[,1])/sqrt(rowSums((y-y.m.all)^2)/(sum(n.p)-n.g)*(1/n.p[1]+1/n.p[n.g])) m.dn <- (y.is.d[,n.g]-y.is.d[,1]) / sqrt(SSIS.d1/(n.pSum-n.g)) i.dn <- (y.is.d[,n.g]-y.is.d[,1]) / sqrt(SSIS.d1/(sum(n.p) - apply(y.is.d, 1, function(x) length(unique(x))))) res <- list(E2.up = Esquare.up, Williams.up = as.numeric(w.up), Marcus.up = as.numeric(w.c.up), M.up = as.numeric(m.up), ModM.up = as.numeric(i.up), E2.dn = Esquare.dn, Williams.dn = as.numeric(w.dn), Marcus.dn = as.numeric(w.c.dn), M.dn = as.numeric(m.dn), ModM.dn = as.numeric(i.dn), direction = direction) return(res) } }
.onLoad <- function(libname, pkgname) { if (ps::ps_is_supported()) { ps::ps_handle() bt <- ps::ps_boot_time() .Call(c_processx__set_boot_time, bt) } supervisor_reset() if (Sys.getenv("DEBUGME", "") != "" && requireNamespace("debugme", quietly = TRUE)) { debugme::debugme() } err$onload_hook() } .onUnload <- function(libpath) { rethrow_call(c_processx__unload_cleanup) supervisor_reset() }
bootSummary2=function(out, per100=TRUE) { out2=as.matrix(out) if(per100) {out2=as.matrix(out)*(100/3)} summ=apply(out2,2,summary) return(summ) }
library("testthat") library("arules") context("associations") set.seed(20070611) m <- matrix(as.integer(runif(100000) > 0.8), ncol = 20) dimnames(m) <- list(NULL, paste("item", c(1:20), sep = "")) t <- as(m, "transactions") expect_identical(dim(t), dim(m)) r <- apriori(t, parameter = list(supp = 0.01, conf = 0.1), control = list(verb = FALSE)) ss <- subset(r, subset = lift > 1.4 & lhs %in% "item3") expect_identical(labels(lhs(ss)), "{item2,item3}") expect_true(quality(ss)$lift > 1.4) f <- eclat(t, parameter = list(supp = 0.01), control = list(verb = FALSE)) ss <- subset(f, subset = items %in% "item7") expect_identical(labels(ss), grep("item7", labels(ss), value = TRUE)) lmat <- matrix(rbind(c(1, 1, 0), c(0, 0, 1)), ncol = 3) rmat <- matrix(rbind(c(1, 0, 0), c(0, 1, 0)), ncol = 3) colnames(lmat) <- c("a", "b", "c") colnames(rmat) <- c("c", "a", "b") lhs <- as(lmat, "itemMatrix") rhs <- as(rmat, "itemMatrix") is <- new("itemsets", items = lhs, quality = data.frame(support = c(.1, .1))) expect_equal(labels(is), c("{a,b}", "{c}")) qual <- data.frame( support = c(.5, .5), confidence = c(.5, .5), lift = c(2, 1) ) expect_warning(r <- rules(lhs, rhs, quality = qual)) context("subsetting") take_r <- sample(nrow(t), 10) take_c <- sample(ncol(t), 10) expect_equal(dim(sub_n <- t[take_r, take_c]), c(10L, 10L)) expect_equal(dim(t[take_r]), c(10L, ncol(t))) expect_equal(dim(t[take_r, ]), c(10L, ncol(t))) expect_equal(dim(t[, take_c]), c(nrow(t), 10L)) take_rb <- rep(FALSE, nrow(t)) take_rb[take_r] <- TRUE take_cb <- rep(FALSE, ncol(t)) take_cb[take_c] <- TRUE expect_equal(dim(sub_b <- t[take_rb, take_cb]), c(10L, 10L)) expect_equal(dim(t[take_rb, ]), c(10L, ncol(t))) expect_equal(dim(t[take_rb]), c(10L, ncol(t))) expect_equal(dim(t[, take_cb]), c(nrow(t), 10L)) expect_true(setequal(sub_b, recode(sub_n, sub_b))) take_cc <- itemLabels(t)[take_c] expect_equal(dim(t[, take_cc]), c(nrow(t), 10L)) expect_warning(expect_equal(dim(t[NA, NA]), c(0L, 0L))) expect_warning(expect_equal(dim(t[NA]), c(0L, ncol(t)))) expect_warning(expect_equal(dim(t[, NA]), c(nrow(t), 0L))) take_rn <- take_r take_rn[3:4] <- NA take_cn <- take_c take_cn[3:4] <- NA expect_warning(expect_equal(dim(t[take_rn, take_cn]), c(8L, 8L))) take_rbn <- take_rb take_rbn[which(take_rbn)[3:4]] <- NA take_cbn <- take_cb take_cbn[which(take_cbn)[3:4]] <- NA expect_warning(expect_equal(dim(t[take_rbn, take_cbn]), c(8L, 8L))) take_ccn <- take_cc take_ccn[3:4] <- NA expect_warning(expect_equal(dim(t[, take_cbn]), c(nrow(t), 8L))) r <- apriori(t, parameter = list(supp = 0.01, conf = 0.1), control = list(verb = FALSE)) expect_warning(expect_equal(length(r[NA]), 0L)) expect_warning(expect_equal(length(r[c(1L, NA_integer_)]), 1L)) expect_warning(expect_equal(length(r[c(TRUE, NA, FALSE)]), sum(rep( c(TRUE, NA, FALSE), length.out = length(r) ), na.rm = TRUE))) f <- eclat(t, parameter = list(supp = 0.01), control = list(verb = FALSE)) expect_warning(expect_equal(length(f[NA]), 0L)) expect_warning(expect_equal(length(f[c(1L, NA_integer_)]), 1L)) expect_warning(expect_equal(length(f[c(TRUE, NA, FALSE)]), sum(rep( c(TRUE, NA, FALSE), length.out = length(f) ), na.rm = TRUE))) expect_identical(r[1:5], head(r, n = 5)) expect_identical(r[1:6], head(r)) expect_identical(r[1:2], head(r[1:2])) expect_identical(r[0], head(r, n = 0)) expect_identical(r[1:(length(r) - 10)], head(r, n = -10)) expect_identical(r[1:length(r)], head(r, n = length(r))) expect_identical(r[1:length(r)], head(r, n = length(r) + 100L)) expect_identical(sort(r, by = "lift")[1:5], head(r, n = 5, by = "lift")) expect_identical(sort(r, by = "lift", decreasing = FALSE)[1:5], head( r, n = 5, by = "lift", decreasing = FALSE )) expect_identical(head(r[0]), r[0]) expect_identical(r[tail(1:length(r), n = 5)], tail(r, n = 5)) expect_identical(r[1:2], tail(r[1:2])) expect_identical(r[0], tail(r, n = 0)) expect_identical(sort(r, by = "lift")[tail(1:length(r), n = 5)], tail(r, n = 5, by = "lift")) expect_identical(tail(r[0]), r[0]) expect_identical(match(r[2:10], r), 2:10) expect_identical(r[2:10] %in% r, 2:10) expect_identical(match(f[2:10], f), 2:10) expect_identical(f[2:10] %in% f, 2:10) expect_identical(rhs(r[1:10]) %pin% "item1", c(FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)) expect_error(rhs(r[1:10]) %pin% "") expect_warning(rhs(r[1:10]) %pin% c("1", "2"))
context("pin_test_file") load(file = "test_pin.Rdata") test_that(desc="class in df",{ test_pins$pin <- as.pin(test_pins$pin_raw) expect_is(test_pins$pin, "pin") }) test_that(desc="Frequencies in test file: pin_sex",{ expect_equal(as.numeric(table(pin_sex(test_pins$pin))), c(9299,9328)) }) test_that(desc="Frequencies in test file: pin_age",{ expect_equal(as.numeric(table(pin_age(test_pins$pin, "2015-01-01")))[c(1,2,10,50,99)], c(363,374,364,26,365)) }) test_that(desc="Frequencies in test file: pin_ctrl",{ expect_equal(as.numeric(table(pin_ctrl(test_pins$pin))), 18627) }) test_that(desc="Frequencies in test file: pin_coordn",{ expect_equal(as.numeric(table(pin_coordn(test_pins$pin))), 18627) }) test_that(desc="Frequencies in test file: pin_birthplace",{ expect_equal(as.numeric(table(pin_birthplace(test_pins$pin)))[c(1,2,10,27:28)], c(5,3,46,7724,9105)) }) test_that(desc="Frequencies in test file: pin_to_date",{ expect_equal(as.character(min(unique(pin_to_date(test_pins$pin)))), "1890-01-01") expect_equal(as.character(max(unique(pin_to_date(test_pins$pin)))), "2014-12-31") })
star_schema_as_tibble_list <- function(st, include_role_playing = FALSE) { UseMethod("star_schema_as_tibble_list") } star_schema_as_tibble_list.star_schema <- function(st, include_role_playing = FALSE) { star_schema_as_tl(st, include_role_playing = include_role_playing) } star_schema_as_tl <- function(st, tl_prev = NULL, commondim = NULL, include_role_playing) { UseMethod("star_schema_as_tl") } star_schema_as_tl.star_schema <- function(st, tl_prev = NULL, commondim = NULL, include_role_playing) { names_prev <- names(tl_prev) tl <- c(tl_prev, list(tibble::as_tibble(st$fact[[1]]))) names <- c(names_prev, attr(st$fact[[1]], "name")) dim <- get_all_dimensions(st) for (d in seq_along(dim)) { name_dim <- attr(dim[[d]], "name") if (!(name_dim %in% commondim)) { tl <- c(tl, list(tibble::as_tibble(dim[[d]]))) names <- c(names, name_dim) } } if (include_role_playing) { rp_names <- get_name_of_role_playing_dimensions(st) for (d in rp_names) { if (!(d %in% names)) { tl <- c(tl, list(tibble::as_tibble(st$dimension[[d]]))) names <- c(names, d) } } } names(tl) <- names tl } get_name_of_role_playing_dimensions <- function(st) { res <- c() names <- names(st$dimension) for (n in names) { if (is_role_playing_dimension(st$dimension[[n]])) { res <- c(res, n) } } res }
gof.trial <- function(model, breaks=NULL, nc=NULL){ width <- model$meta.data$width left <- model$meta.data$left xmat <- model$mr$mr$data data <- eval(model$data) data <- data[data$observer==1&data$object %in% as.numeric(names(model$fitted)),] n <- dim(xmat)[1] xmat$omega <- rep(1,dim(xmat)[1]) xmat$omega[xmat$timesdetected==2] <- 2 if(is.null(nc)){ nc <- round(sqrt(min(length(xmat$distance[xmat$observer==1 & xmat$detected==1]), length(xmat$distance[xmat$observer==1 & xmat$timesdetected==2]))), 0) } if(is.null(breaks)){ breaks <- left + ((width-left)/nc)*(0:nc) }else{ nc <- length(breaks)-1 } xmat$detected <- 1 p1 <- predict(model$mr, xmat, compute=TRUE, integrate=FALSE)$fitted p.omega <- data.frame(object = rep(1:n, 2), omega = c(rep(1, n), rep(2, n)), distance = rep(xmat$distance, 2), prob = rep(0, 2*n)) p.omega$prob[p.omega$omega==1] <- (1-p1) p.omega$prob[p.omega$omega==2] <- p1 expected.2 <- by(p.omega$prob, list(as.factor(p.omega$omega), cut(p.omega$distance, breaks, include.lowest=TRUE)), sum, na.rm=TRUE) expected.1 <- rep(0,nc) for(j in 1:nc){ expected.1[j] <- sum(predict(model, compute=TRUE, int.range=matrix(c(breaks[j],breaks[j+1]), nrow=1))$fitted/ model$fitted, na.rm=TRUE) } observed.count.1 <- table(cut(data$distance, breaks, include.lowest=TRUE)) observed.count.2 <- table(as.factor(xmat$omega), cut(xmat$distance,breaks, include.lowest=TRUE)) chisq.1 <- sum((observed.count.1-expected.1)^2/expected.1, na.rm=TRUE) chisq.2 <- sum((observed.count.2-expected.2)^2/expected.2, na.rm=TRUE) df.1 <- nc-1-length(model$ds$ds$par) if(df.1<=0){ df.1 <- NA p.1 <- NA }else{ p.1 <- 1-pchisq(chisq.1,df.1) } df.2 <- nc-length(model$mr$par) if(df.2<=0){ df.2 <- NA p.2 <- NA }else{ p.2 <- 1-pchisq(chisq.2,df.2) } return(list(chi1=list(observed=observed.count.1, expected=expected.1, chisq=chisq.1, p=p.1, df=df.1), chi2=list(observed=observed.count.2, expected=expected.2[1:2,], chisq=chisq.2, p=p.2, df=df.2), pooled.chi=list(chisq=chisq.1+chisq.2, df=2*nc-length(model$par)-1, p=1-pchisq(chisq.1+chisq.2, 2*nc-length(model$par)-1)))) }
knitr::opts_chunk$set( collapse = TRUE, comment = " warning = FALSE, message = FALSE, fig.align = "center", fig.path = "../man/figures/", cache.path = "../inst/cache/") knitr::include_graphics("../man/figures/hier.png") knitr::include_graphics("../man/figures/mts.png") knitr::include_graphics("../man/figures/mts2.png") knitr::include_graphics("../man/figures/mts3.png") knitr::include_graphics("../man/figures/mts4.png") knitr::include_graphics("../man/figures/mts6.png") knitr::include_graphics("../man/figures/mts12.png") knitr::include_graphics("../man/figures/mts_base.png") knitr::include_graphics("../man/figures/mts2_base.png") knitr::include_graphics("../man/figures/mts3_base.png") knitr::include_graphics("../man/figures/mts4_base.png") knitr::include_graphics("../man/figures/mts6_base.png") knitr::include_graphics("../man/figures/mts12_base.png") knitr::include_graphics("../man/figures/ite.png") knitr::include_graphics("../man/figures/mts_base_rec.png")