code
stringlengths
1
13.8M
paleopop_simulator <- function(inputs) { if (is.null(inputs$time_steps) || is.null(inputs$populations) || is.null(inputs$initial_abundance) || is.null(inputs$transition_rate) || is.null(inputs$carrying_capacity)) { incomplete_inputs <- if (is.null(inputs$time_steps)) "time_steps" incomplete_inputs <- c(incomplete_inputs, if (is.null(inputs$populations)) "populations") incomplete_inputs <- c(incomplete_inputs, if (is.null(inputs$initial_abundance)) "initial_abundance") incomplete_inputs <- c(incomplete_inputs, if (is.null(inputs$transition_rate)) "transition_rate") incomplete_inputs <- c(incomplete_inputs, if (is.null(inputs$carrying_capacity)) "carrying_capacity") stop(paste("Minimal inputs required to run simulation should include:", paste(incomplete_inputs, collapse = ", ")), call. = FALSE) } time_steps <- inputs$time_steps years_per_step <- ifelse(is.null(inputs$years_per_step), 1, inputs$years_per_step) random_seed <- inputs$random_seed if (!is.null(random_seed)) { set.seed(random_seed) } transition_rate <- inputs$transition_rate standard_deviation <- ifelse(is.null(inputs$standard_deviation), 0, inputs$standard_deviation) environmental_stochasticity <- (standard_deviation*transition_rate > 0) populations <- inputs$populations population_abundances <- array(inputs$initial_abundance, c(1, populations)) density_dependence <- inputs$density_dependence if (is.null(density_dependence)) { density_dependence <- "none" } growth_rate_max <- ifelse(is.null(inputs$growth_rate_max), log(transition_rate), inputs$growth_rate_max) abundance_threshold <- inputs$abundance_threshold occupancy_threshold <- inputs$occupancy_threshold dispersal_target_k <- inputs$dispersal_target_k carrying_capacities <- matrix(inputs$carrying_capacity, nrow = populations) if (any(is.na(carrying_capacities))) { carrying_capacities[which(is.na(carrying_capacities))] <- 0 } dispersal_present <- (!is.null(inputs$dispersal_data) && nrow(inputs$dispersal_data[[1]])) if (dispersal_present) { dispersal_data <- inputs$dispersal_data[[1]] dispersal_compact_rows <- max(dispersal_data[, c("emigrant_row", "immigrant_row")]) dispersal_zero_array <- array(0, c(dispersal_compact_rows, populations)) dispersal_compact_matrix <- dispersal_zero_array dispersal_compact_matrix[as.matrix(dispersal_data[, c("emigrant_row", "source_pop")])] <- dispersal_data$dispersal_rate dispersals_change_over_time <- (length(inputs$dispersal_data) > 1) if (dispersals_change_over_time) { dispersal_data_changes <- inputs$dispersal_data dispersal_data_changes[[1]] <- dispersal_data_changes[[1]][NULL,] } dispersal_depends_on_target_pop_k <- (!is.null(dispersal_target_k) && dispersal_target_k > 0) if (dispersal_depends_on_target_pop_k) { dispersal_target_pop_map <- dispersal_zero_array dispersal_target_pop_map[as.matrix(dispersal_data[, c("emigrant_row", "source_pop")])] <- dispersal_data$target_pop } dispersal_compact_indices <- array(1:(dispersal_compact_rows*populations), c(dispersal_compact_rows, populations)) dispersal_immigrant_map <- dispersal_zero_array dispersal_immigrant_map[as.matrix(dispersal_data[, c("emigrant_row", "source_pop")])] <- dispersal_compact_indices[as.matrix(dispersal_data[, c("immigrant_row", "target_pop")])] dispersal_abundance_rep_indices <- rep(1, dispersal_compact_rows) dispersal_data <- NULL; dispersal_compact_indices <- NULL } if (environmental_stochasticity) { use_env_correlation <- FALSE if (!is.null(inputs$compact_decomposition)) { use_env_correlation <- TRUE t_decomposition_compact_matrix <- inputs$compact_decomposition$matrix t_decomposition_compact_map <- inputs$compact_decomposition$map t_decomposition_compact_rows <- nrow(t_decomposition_compact_matrix) } } harvest <- ifelse(is.null(inputs$harvest), FALSE, inputs$harvest) if (harvest) { harvest_max <- inputs$harvest_max harvest_g <- inputs$harvest_g harvest_z <- inputs$harvest_z harvest_max_n <- inputs$harvest_max_n human_densities <- inputs$human_density } results_selection <- inputs$results_selection if (is.null(results_selection)) results_selection <- "abundance" carrying_capacity_t_max <- ncol(carrying_capacities) if (carrying_capacity_t_max == 1) { carrying_capacity <- carrying_capacities[, 1] } results <- list() if ("abundance" %in% results_selection) { results$abundance <- array(0, c(populations, time_steps)) } if ("ema" %in% results_selection) { results$ema <- array(0, c(populations, time_steps)) min_abundances <- population_abundances[1,] } if ("extirpation" %in% results_selection) { results$extirpation <- array(NA, populations) results$extirpation[which(population_abundances == 0)] <- 0 } if ("harvested" %in% results_selection) { results$harvested <- array(0, c(populations, time_steps)) } if ("occupancy" %in% results_selection) { results$occupancy <- array(0, time_steps) } if ("human_density" %in% results_selection) { results$human_density <- inputs$human_density } if ("dispersal_tracking" %in% names(inputs) || ("attached" %in% names(inputs) && "dispersal_tracking" %in% names(inputs$attached))) { results$emigrants <- array(0, c(populations, time_steps)) results$immigrants <- array(0, c(populations, time_steps)) dispersal_tracking <- TRUE } else { dispersal_tracking <- FALSE } for (tm in 1:time_steps) { transitions <- array(transition_rate, populations) if (!is.null(occupancy_threshold)) { if (length(which(as.logical(population_abundances))) <= occupancy_threshold) { population_abundances[] <- 0 } } if (carrying_capacity_t_max > 1) { carrying_capacity <- carrying_capacities[, min(tm, carrying_capacity_t_max)] } occupied_indices <- which(as.logical(carrying_capacity*population_abundances[1,])) occupied_populations <- length(occupied_indices) zero_indices <- which(carrying_capacity <= 0 & as.logical(population_abundances)) if (occupied_populations && !is.null(density_dependence) && density_dependence %in% c("competition", "logistic")) { selected_carrying_capacity <- carrying_capacity[occupied_indices] selected_population_abundances <- population_abundances[occupied_indices] if (density_dependence == "competition") { growth_rate <- growth_rate_max - log(exp(growth_rate_max)*selected_population_abundances/selected_carrying_capacity - selected_population_abundances/selected_carrying_capacity + 1) } else if (density_dependence == "logistic") { growth_rate <- growth_rate_max*(1 - selected_population_abundances/selected_carrying_capacity) } density_dependence_multipliers <- exp(growth_rate)/transition_rate transitions[occupied_indices] <- transitions[occupied_indices]*density_dependence_multipliers negative_indices <- occupied_indices[which(transitions[occupied_indices] < 0)] if (length(negative_indices)) { transitions[negative_indices] <- 0 } } if (occupied_populations && environmental_stochasticity) { if (use_env_correlation) { occupied_correlated_deviates <- .colSums(t_decomposition_compact_matrix[, occupied_indices]*stats::rnorm(populations)[t_decomposition_compact_map[, occupied_indices]], m = t_decomposition_compact_rows, n = occupied_populations, na.rm = TRUE) } else { occupied_correlated_deviates <- stats::rnorm(occupied_populations) } if (length(occupied_indices)) { log_common <- log((standard_deviation/transitions[occupied_indices])^2 + 1) log_common[which(transitions[occupied_indices] == 0)] <- 0 log_common[which(is.infinite(log_common))] <- 0 transitions[occupied_indices] <- transitions[occupied_indices]*exp(sqrt(log_common)*occupied_correlated_deviates - 0.5*log_common) } negative_indices <- occupied_indices[which(transitions[occupied_indices] < 0)] if (length(negative_indices)) { transitions[negative_indices] <- 0 } } population_abundances[zero_indices] <- 0 if (occupied_populations) { population_abundances[occupied_indices] <- stats::rpois(occupied_populations, transitions[occupied_indices]*population_abundances[occupied_indices]) } if (occupied_populations && density_dependence == "ceiling") { above_capacity_indices <- occupied_indices[which(population_abundances[occupied_indices] > carrying_capacity[occupied_indices])] if (length(above_capacity_indices)) { population_abundances[above_capacity_indices] <- carrying_capacity[above_capacity_indices] } } if (harvest || "harvested" %in% results_selection) { occupied_indices <- occupied_indices[which(as.logical(population_abundances[occupied_indices]))] occupied_populations <- length(occupied_indices) harvested <- array(0, populations) } if (occupied_populations && harvest) { harvest_rate <- array(0, occupied_populations) human_presence_indices <- which(as.logical(human_densities[occupied_indices, tm])) human_presence_occupied_indices <- occupied_indices[human_presence_indices] if (length(human_presence_indices)) { prey_density <- population_abundances[human_presence_occupied_indices]/harvest_max_n prey_z <- prey_density^harvest_z max_functional_response <- (harvest_max*prey_z)/(harvest_g + prey_z) functional_response <- max_functional_response*human_densities[human_presence_occupied_indices, tm] harvest_rate[human_presence_indices] <- functional_response/prey_density } harvest_rate <- 1 - (1 - harvest_rate)^years_per_step harvested[occupied_indices] <- stats::rbinom(occupied_populations, population_abundances[occupied_indices], harvest_rate) population_abundances[occupied_indices] <- population_abundances[occupied_indices] - harvested[occupied_indices] } if (occupied_populations && dispersal_present) { if (tm == 1) { dispersal_compact_matrix_tm <- dispersal_compact_matrix } else if (dispersals_change_over_time && nrow(dispersal_data_changes[[tm]])) { dispersal_compact_matrix_tm[as.matrix(dispersal_data_changes[[tm]][,c("emigrant_row","source_pop")])] <- dispersal_data_changes[[tm]]$dispersal_rate } occupied_dispersals <- dispersal_compact_matrix_tm[, occupied_indices] occupied_dispersal_indices <- which(as.logical(occupied_dispersals)) if (dispersal_depends_on_target_pop_k) { dd_multipliers <- array(1, populations) modify_pop_indices <- which(carrying_capacity < dispersal_target_k) dd_multipliers[modify_pop_indices] <- carrying_capacity[modify_pop_indices]/dispersal_target_k selected_dd_multipliers <- dd_multipliers[dispersal_target_pop_map[, occupied_indices][occupied_dispersal_indices]] modify_indices <- which(selected_dd_multipliers < 1) if (length(modify_indices)) { modify_dipersal_indices <- occupied_dispersal_indices[modify_indices] occupied_dispersals[modify_dipersal_indices] <- occupied_dispersals[modify_dipersal_indices]*selected_dd_multipliers[modify_indices] occupied_dispersal_indices <- which(as.logical(occupied_dispersals)) } modify_pop_indices <- NULL; dd_multipliers <- NULL; selected_dd_multipliers <- NULL; modify_indices <- NULL; modify_dipersal_indices <- NULL } occupied_abundances <- population_abundances[occupied_indices] occupied_abundances_rep <- population_abundances[dispersal_abundance_rep_indices, occupied_indices] dispersers <- array(0, c(dispersal_compact_rows, occupied_populations)) dispersers[occupied_dispersal_indices] <- stats::rbinom(length(occupied_dispersal_indices), occupied_abundances_rep[occupied_dispersal_indices], occupied_dispersals[occupied_dispersal_indices]) occupied_dispersals <- NULL; occupied_abundances_rep <- NULL; occupied_dispersal_indices <- NULL emigrants <- array(0, occupied_populations) emigrants[] <- .colSums(dispersers, m = dispersal_compact_rows, n = occupied_populations) excessive_indices <- which(emigrants > occupied_abundances) if (length(excessive_indices) > 0) { for (excessive_index in excessive_indices) { excessive_rows <- which(as.logical(dispersers[, excessive_index])) excessive_dispersers <- dispersers[excessive_rows, excessive_index] disperser_reduction <- emigrants[excessive_index] - occupied_abundances[excessive_index] for (remove_row_index in rep(excessive_rows, times = excessive_dispersers)[sample(sum(excessive_dispersers), size = disperser_reduction)]) { dispersers[remove_row_index, excessive_index] <- dispersers[remove_row_index, excessive_index] - 1 } } emigrants[excessive_indices] <- occupied_abundances[excessive_indices] } population_abundances[occupied_indices] <- population_abundances[occupied_indices] - emigrants if (dispersal_tracking) { results$emigrants[occupied_indices, tm] <- emigrants } occupied_abundances <- NULL; emigrants <- NULL; excessive_indices <- NULL disperser_indices <- which(as.logical(dispersers)) immigrant_array <- dispersal_zero_array immigrant_array[dispersal_immigrant_map[, occupied_indices][disperser_indices]] <- dispersers[disperser_indices] immigrants <- .colSums(immigrant_array, m = dispersal_compact_rows, n = populations) population_abundances[1,] <- population_abundances[1,] + immigrants if (dispersal_tracking) { results$immigrants[, tm] <- immigrants } dispersers <- NULL; immigrant_array <- NULL; immigrants <- NULL } if (!is.null(abundance_threshold)) { below_threshold_indices <- which(as.logical(population_abundances) & population_abundances <= abundance_threshold) if (length(below_threshold_indices)) { population_abundances[below_threshold_indices] <- 0 } } if ("abundance" %in% results_selection) { results$abundance[, tm] <- population_abundances[1,] } if ("ema" %in% results_selection) { min_abundances <- pmin(min_abundances, population_abundances[1,]) results$ema[,tm] <- min_abundances } if ("extirpation" %in% results_selection) { results$extirpation <- pmin(results$extirpation, rep(tm, populations), na.rm = TRUE) results$extirpation[which(as.logical(population_abundances))] <- NA } if ("harvested" %in% results_selection) { results$harvested[, tm] <- harvested } if ("occupancy" %in% results_selection) { results$occupancy[tm] <- sum(as.logical(population_abundances)) } } return(results) }
pbsjkREtest<-function(formula, data, w, index=NULL, ...) { gindex <- data[,1] tindex <- data[,2] data <- data[order(tindex, gindex),] mymod <- spreml(formula=formula, data=data, w=w, index=index, lag=FALSE, errors="semsr", ...) tr<-function(x) sum(diag(x)) msq<-function(x) x%*%x if("listw" %in% class(w)) w<-listw2mat(w) X <- model.matrix(formula, data) y <- model.response(model.frame(formula,data)) beta0 <- mymod$coefficients u.hat <- as.numeric(y-X%*%beta0) nt.<- length(y) n.<- dim(w)[[1]] t.<-nt./n. sigma2e<-as.numeric(crossprod(u.hat)/nt.) rho <- mymod$errcomp["psi"] lambda <- mymod$errcomp["rho"] Jt<-matrix(1,ncol=t.,nrow=t.) V1<-matrix(ncol=t.,nrow=t.) for(i in 1:t.) V1[i,]<-rho^abs(1:t.-i) Vrho <- (1/(1-rho^2)) * V1 iVrho<-solve(Vrho) VrhoJt <- solve(Vrho,Jt) g. <- (1-rho)/sigma2e^2 * ( 2 + (t.-2)*(1-rho) ) B<-diag(1,n.)-lambda*w BB<-crossprod(B) BB.1 <- solve(BB) wBBw<-crossprod(w,B)+crossprod(B,w) blackspade <- kronecker(VrhoJt %*% iVrho, msq(BB)) Dhat <- -g./2 * tr(BB) + 1/(2*sigma2e^2) * crossprod(u.hat, blackspade) %*% u.hat d3<-tr( wBBw%*%BB.1 ) d6<-tr( msq( wBBw %*% BB.1 ) ) j11<-nt./(2*sigma2e^2) j12<-g.*tr(BB)/(2*sigma2e) j13<-(n.*rho)/(sigma2e*(1-rho^2)) j14<-t.*d3/(2*sigma2e) j22<-g.^2*tr(msq(BB))/2 j23<-tr(BB)/(sigma2e*(1+rho)) * ( (2-t.)*rho^2 + (t.-1) + rho ) j24<-g./2*tr(wBBw) j33<-n./(1-rho^2)^2 * (3*rho^2 - t.*rho^2 +t.-1) j34<-(rho*d3)/(1-rho^2) j44<-t.*d6/2 Jtheta<-matrix(ncol=4,nrow=4) Jtheta[1,]<-c(j11,j12,j13,j14) Jtheta[2,]<-c(j12,j22,j23,j24) Jtheta[3,]<-c(j13,j23,j33,j34) Jtheta[4,]<-c(j14,j24,j34,j44) J22.1<-solve(Jtheta)[2,2] LMm.rl <- (Dhat^2) * J22.1 df.<-1 pval <- pchisq(LMm.rl,df=df.,lower.tail=F) names(LMm.rl)="LM" names(df.)<-"df" dname <- paste(deparse(substitute(formula))) RVAL <- list(statistic = LMm.rl, parameter = df., method = "Baltagi, Song, Jung and Koh C.3 conditional test \n \n H_0: no random effects, sub serial corr. and spatial dependence in error terms", p.value = pval, data.name = dname) class(RVAL) <- "htest" return(RVAL) }
mice_ml_lmer_include_cluster_means <- function(y, ry, type, x, levels_id, aggregate_automatically, clus, groupcenter.slope, variables_levels ) { types_sel <- names(type)[ type==1 ] types_sel <- intersect(types_sel, colnames(x)) x_sel <- x[, types_sel, drop=FALSE ] NL <- length(levels_id) if (aggregate_automatically){ for (ll in 1:NL){ id_ll <- levels_id[ll] clus_ll <- clus[[ll]] clus_name_ll <- levels_id[ll] vars_aggr <- mice_ml_lmer_choice_aggregated_variables( x_sel=x_sel, clus=clus_ll, eps=1e-5) LV <- length(vars_aggr) if (LV > 0){ ind_aggr <- which( substring( names(vars_aggr), 1, 2 )=="M." ) if ( length(ind_aggr) > 0 ){ vars_aggr <- vars_aggr[ - ind_aggr ] } } x_sel1 <- cbind( clus_ll, x_sel ) colnames(x_sel1)[1] <- clus_name_ll type1 <- c( -2, rep( 1, ncol(x_sel) ) ) names(type1) <- c( clus_name_ll, colnames(x_sel) ) if ( LV > 0 ){ type1[ names(vars_aggr) ] <- 3 } res <- mice_multilevel_add_groupmeans( y=y, ry=ry, x=x_sel1, type=type1, groupcenter.slope=groupcenter.slope, aggr_label=paste0( "M.", clus_name_ll, "_" ) ) x <- res$x type <- res$type x_sel <- x[,-1,drop=FALSE] type1 <- type[-1] } } type_sel <- mice_imputation_create_type_vector( variables=colnames(x_sel), value=1) res <- list( x=x_sel, type=type_sel) return(res) }
Sindex <- function(x,pervar,vvar,base){ colNameCheck <- checkNames(x, c(pervar,vvar)) if (colNameCheck$result == FALSE) { stop(colNameCheck$message) } if(!all(sapply(list(pervar,vvar,base),isstring))){ stop('Arguments pervar, vvar, and base must be character strings') } base <- as.character(base) values <- x[[vvar]] if(anyDuplicated(x[[pervar]])!=0){ stop('The base variable cannot have repeated values') } names(values) <- x[[pervar]] if(!base %in% names(values)){ stop(paste(base, ' is not a value in the variable "',pervar,'"',sep='')) } return(eval(parse(text=paste('data.frame(index_',make.names(base),'=values/values[base])',sep="")))) } Deflat <- function(x,pervar,cvar,defl,base){ colNameCheck <- checkNames(x, c(pervar,cvar,defl)) if (colNameCheck$result == FALSE) { stop(colNameCheck$message) } if(!all(sapply(list(pervar,cvar, defl, base),isstring))){ stop('Arguments pervar, cvar, defl, and base must be character strings') } base <- as.character(base) current <- x[[cvar]] deflator <- x[[defl]] if(anyDuplicated(x[[pervar]])!=0){ stop('The base variable cannot have repeated values') } names(current) <- names(deflator) <-x[[pervar]] if(!base %in% names(current)){ stop(paste(base, ' is not a value in the variable "',pervar,'"',sep='')) } return(eval(parse(text=paste('data.frame(const_',make.names(base),'=current/deflator*deflator[base])',sep="")))) } priceIndexNum <- function (x, prodID, pervar, pvar, qvar, base, indexMethod = "laspeyres", output = "fixedBase", ...){ colNameCheck <- checkNames(x, c(prodID, pervar, pvar, qvar)) if (colNameCheck$result == FALSE) { stop(colNameCheck$message) } if(!all(sapply(list(prodID, pervar, pvar, qvar, base),isstring))){ stop('Arguments prodID, pervar, pvar, qvar, and base must be character strings') } x[[pervar]] <- as.factor(x[[pervar]]) isord <- FALSE if(is.ordered(x[[pervar]])) isord <- TRUE if(!base %in% levels(x[[pervar]])){ stop(paste(base, ' is not a value in the variable "',pervar,'"',sep='')) } pos<-which(levels(x[[pervar]])==base) oldlevels <- levels(x[[pervar]]) if(isord) class(x[[pervar]]) <- "factor" x[[pervar]] <- relevel(x[[pervar]],base) x[[pervar]] <- as.numeric(x[[pervar]]) meth <- function(y,...) { numInd <- IndexNumR::priceIndex(x,pvar = pvar,qvar = qvar, pervar = pervar,prodID = prodID, indexMethod = y, output = output, ...) numInd <- append(numInd[-1],numInd[1],after=(pos-1)) return(numInd) } numInd <- lapply(indexMethod, meth,...) priceind <- data.frame(oldlevels,numInd) names(priceind) <- c("period",indexMethod) if(isord) priceind[["period"]] <- as.ordered(priceind[["period"]]) return(priceind) } ComplexIN <- function (data, means = c("arithmetic", "geometric", "harmonic"), zero.rm=TRUE, na.rm=TRUE,...) { meanG <- function(x,zero.rm=FALSE,...){ if (zero.rm){ x <- x[x>0] } return(exp(mean(log(x),...))) } meanH <- function(x,zero.rm=FALSE,...){ if (zero.rm){ x <- x[x!=0] } return(1/mean(1/x,...)) } data <- as.data.frame(data) variables <- names(data) if (missing(means)) means <- c("arithmetic", "geometric", "harmonic") means <- match.arg(means, c("arithmetic", "geometric", "harmonic"), several.ok=TRUE) avge <- c("mean", "meanG", "meanH")[c("arithmetic", "geometric", "harmonic") %in% means] navge <- length(avge) nvars <- length(variables) table <- matrix(0, nvars, navge) rownames(table) <- variables colnames(table) <- means if ("mean" %in% avge) table[,"arithmetic"] <- colMeans(data, na.rm=na.rm) if ("meanG" %in% avge) table[,"geometric"] <- sapply(data,meanG,zero.rm=zero.rm,na.rm=na.rm,...) if ("meanH" %in% avge) table[, "harmonic"] <- sapply(data,meanH,zero.rm=zero.rm,na.rm=na.rm,...) NAs <- colSums(is.na(data[, variables, drop=FALSE])) n <- nrow(data) - NAs table }
boot_fit_loess <- function(bullet, groove, B=1000, alpha=0.95) { value <- NULL y <- NULL bullet_filter <- subset(bullet, !is.na(value) & y > groove$groove[1] & y < groove$groove[2]) my.loess <- loess(value ~ y, data = bullet_filter) bullet_filter$fitted <- fitted(my.loess) bullet_filter$resid <- resid(my.loess) N <- nrow(bullet_filter) resids <- plyr::rdply(B, function(n) { bf <- bullet_filter[sample(N,N, replace=TRUE),] my.loess <- loess(value ~ y, data = bf) dframe <- data.frame(y=bullet_filter$y, fitted=predict(my.loess, newdata=bullet_filter)) dframe$resid <- bullet_filter$value-dframe$fitted dframe }) quantiles <- resids %>% group_by(y) %>% summarize( nas = sum(is.na(resid)), low = quantile(resid, probs=(1-alpha)/2, na.rm=TRUE), high = quantile(resid, probs=1 - (1-alpha)/2, na.rm=TRUE) ) quantiles } fit_loess <- function(bullet, groove, span = 0.75) { value <- NULL y <- NULL chop <- NULL bullet_filter <- subset(bullet, !is.na(value) & y > groove$groove[1] & y < groove$groove[2]) my.loess <- loess(value ~ y, data = bullet_filter, span = span) bullet_filter$fitted <- fitted(my.loess) bullet_filter$resid <- resid(my.loess) bullet_filter$se <- predict(my.loess, se=TRUE)$se.fit bullet_filter$abs_resid <- abs(bullet_filter$resid) cutoff <- quantile(bullet_filter$abs_resid, probs = c(0.9975)) bullet_filter$chop <- bullet_filter$abs_resid > cutoff bullet_filter <- subset(bullet_filter, !chop) poly <- with(bullet_filter, data.frame(x=c(y, rev(y)), y=c(resid-1.96*se, rev(resid+1.96*se)))) p2 <- ggplot(aes(x=y, y=resid), data=bullet_filter) + geom_line()+ theme_bw() p1 <- qplot(data = bullet_filter, y, value) + theme_bw() + geom_smooth() return(list(data = bullet_filter, fitted = p1, resid = p2)) } predSmooth <- function(x, y) { dframe <- data.frame(x, y) if (sum(is.na(y)) > 2*length(y)/3) { dframe$smPred <- NA dframe$smResid <- NA return(dframe) } data.lo <- loess(y~x) dframe$smPred <- predict(data.lo, newdata=dframe) dframe$smResid <- with(dframe, y - smPred) dframe } smoothloess <- function(x, y, span, sub = 2) { dat <- data.frame(x, y) indx <- sub *(1: (nrow(dat) %/% sub)) subdat <- dat[indx, ] lwp <- with(subdat, loess(y~x,span=span)) predict(lwp, newdata = dat) } bulletSmooth <- function(data, span = 0.03, limits = c(-5,5)) { bullet <- NULL y <- NULL myspan <- NULL lof <- data %>% group_by(bullet) %>% mutate( myspan = ifelse(span > 1, span / diff(range(y)), span), l30 = smoothloess(y, resid, span = myspan[1]) ) %>% select(-myspan) lof$l30 <- pmin(max(limits), lof$l30) lof$l30 <- pmax(min(limits), lof$l30) lof }
.Fixed_point_method_two_constraints_K_SPOR_DynProg <- function(datX,datY,deg,sigma2,constraint,begin_point,end_point,FP_nbIter=20){ X = datX[datX<=end_point[1] & datX>begin_point[1]] Y = datY[datX<=end_point[1] & datX>begin_point[1]] for(p in 1:FP_nbIter){ M_mat <- .Jacobian_Matrix_two_constraints_K_SPOR_DynProg(X,Y,deg,sigma2,constraint,begin_point,end_point) gammaV <- .Vector_solution_two_constraints_K_SPOR_DynProg(X,Y,deg,constraint,begin_point,end_point) mat_param <- .Parameters_estimation_K_SPOR_DynProg(M_mat,gammaV,deg) sigma2 <- .Variance_estimation_K_SPOR_DynProg(X,Y,deg,mat_param) } s <- 0 for(i in 1:(deg+1)){ s <- s + mat_param[1,i] * X^(deg+1-i) } pZ = rep(1,length(X)) wp <- pZ*((1/sqrt(2*pi*sigma2)) * exp( - ((Y - s)^2)/(2*sigma2))) MLL <- -sum(log(wp)) list(mat_param,sigma2,MLL) }
setConstructorS3("RspSourceCodeFactory", function(language=NA, ...) { language <- Arguments$getCharacter(language) extend(language, "RspSourceCodeFactory") }) setMethodS3("getLanguage", "RspSourceCodeFactory", function(this, ...) { as.character(this) }) setMethodS3("makeSourceCode", "RspSourceCodeFactory", function(this, code, ...) { lang <- getLanguage(this) className <- sprintf("Rsp%sSourceCode", capitalize(lang)) ns <- getNamespace("R.rsp") clazz <- Class$forName(className, envir=ns) code <- clazz(code, ...) code <- getCompleteCode(this, code, ...) code <- c(code$header, code$body, code$footer) code <- clazz(code, ...) code }, protected=TRUE) setMethodS3("exprToCode", "RspSourceCodeFactory", abstract=TRUE) setMethodS3("getCompleteCode", "RspSourceCodeFactory", function(this, object, ...) { object <- Arguments$getInstanceOf(object, "RspSourceCode") lang <- getLanguage(this) className <- sprintf("Rsp%sSourceCode", capitalize(lang)) object <- Arguments$getInstanceOf(object, className) header <- '' footer <- '' list(header=header, body=object, footer=footer) }, protected=TRUE) setMethodS3("toSourceCode", "RspSourceCodeFactory", function(object, doc, ...) { doc <- Arguments$getInstanceOf(doc, "RspDocument") if (length(doc) == 0L) { code <- makeSourceCode(object, "", ..., type=getType(doc), metadata=getMetadata(doc, local=TRUE)) return(code) } if (any(sapply(doc, FUN=inherits, "RspDocument"))) { throw(sprintf("%s argument 'doc' contains other RspDocuments, which indicates that it has not been flattened.", class(doc)[1L])) } if (any(sapply(doc, FUN=inherits, "RspDirective"))) { throw(sprintf("%s argument 'doc' contains RSP preprocessing directives, which indicates that it has not been preprocessed.", class(doc)[1L])) } nok <- sapply(doc, FUN=function(expr) { if (inherits(expr, "RspText") || inherits(expr, "RspExpression")) { NA } else { class(expr) } }) nok <- nok[!is.na(nok)] nok <- unique(nok) if (length(nok) > 0L) { throw(sprintf("%s argument 'doc' contains RSP preprocessing directives, which indicates that it has not been preprocessed: %s", class(doc)[1L], hpaste(nok))) } isText <- sapply(doc, FUN=inherits, "RspText") doc[isText] <- lapply(doc[isText], FUN=function(expr) { RspText(getContent(expr, unescape=TRUE)) }) code <- vector("list", length=length(doc)) for (kk in seq_along(doc)) { code[[kk]] <- exprToCode(object, doc[[kk]], index=kk) } code <- unlist(code, use.names=FALSE) code <- makeSourceCode(object, code, ..., type=getType(doc), metadata=getMetadata(doc, local=TRUE)) code })
yac_cli <- function(enable_history = TRUE) { if (enable_history == TRUE) { tmphistory <- tempfile() try(utils::savehistory(tmphistory), silent = TRUE) on.exit(unlink(tmphistory)) } update_history <- function(x) { if (enable_history == TRUE) { histcon <- file(tmphistory, open = "a") writeLines(x, histcon) close(histcon) try(utils::loadhistory(tmphistory), silent = TRUE) } invisible(x) } cat("Enter Yacas commands here. Type quit to return to R\n") x <- readline("Yacas->") while (length(which(c("stop;", "stop", "end;", "end", "quit;", "quit", "exit;", "exit", "e;", "e", "q;", "q", "q()", "\n") == x)) == 0) { update_history(x) o <- yac_str(x) print(o, quote=FALSE) x <- readline("Yacas->") } }
generate_gold_standard <- function(model) { model$gold_standard <- list() if (model$verbose) cat("Generating gold standard mod changes\n") model <- .add_timing(model, "5_gold_standard", "generate mod changes") model$gold_standard$mod_changes <- .generate_gold_standard_mod_changes(model$backbone$expression_patterns) if (model$verbose) cat("Precompiling reactions for gold standard\n") model <- .add_timing(model, "5_gold_standard", "precompiling reactions for gold standard") prep_data <- .generate_gold_precompile_reactions(model) if (model$verbose) cat("Running gold simulations\n") model <- .add_timing(model, "5_gold_standard", "running gold simulations") simulations <- .generate_gold_standard_simulations(model, prep_data) model$gold_standard$meta <- simulations$meta model$gold_standard$counts <- simulations$counts model <- .add_timing(model, "5_gold_standard", "compute dimred") model <- model %>% calculate_dimred() model <- .add_timing(model, "5_gold_standard", "generate simulation network from dimred") model$gold_standard$network <- .generate_gold_standard_generate_network(model) .add_timing(model, "5_gold_standard", "end") } gold_standard_default <- function( tau = 30 / 3600, census_interval = 10 / 60, simulate_targets = FALSE ) { lst( tau, census_interval, simulate_targets ) } .generate_gold_standard_mod_changes <- function(expression_patterns) { module_progression <- mod_diff <- substate <- mod_diff2 <- `.` <- from <- to <- from_ <- NULL expression_patterns %>% mutate( mod_diff = module_progression %>% strsplit("\\|"), substate = map(mod_diff, seq_along) ) %>% select(-module_progression) %>% unnest(c(mod_diff, substate)) %>% mutate( mod_diff2 = strsplit(mod_diff, ","), mod_on = map(mod_diff2, function(x) x %>% keep(grepl("\\+", .)) %>% gsub("\\+", "", .)), mod_off = map(mod_diff2, function(x) x %>% keep(grepl("-", .)) %>% gsub("-", "", .)) ) %>% select(-mod_diff2) %>% group_by(from, to) %>% mutate( from_ = ifelse(row_number() == 1, from, c("", paste0(from, to, "p", (row_number() - 1)))), to_ = ifelse(row_number() == n(), to, from_[row_number() + 1]) ) %>% ungroup() } .generate_gold_precompile_reactions <- function(model) { is_tf <- mol_premrna <- mol_mrna <- mol_protein <- val <- NULL sim_system <- model$simulation_system tf_info <- model$feature_info if (!model$gold_standard_params$simulate_targets) { tf_info <- tf_info %>% filter(is_tf) } tf_molecules <- tf_info %>% select(mol_premrna, mol_mrna, mol_protein) %>% gather(col, val) %>% pull(val) reactions <- sim_system$reactions %>% keep(~ all(names(.$effect) %in% tf_molecules)) buffer_ids <- unique(unlist(map(reactions, "buffer_ids"))) comp_funs <- GillespieSSA2::compile_reactions( reactions = reactions, buffer_ids = buffer_ids, state_ids = tf_molecules, params = sim_system$parameters, hardcode_params = FALSE, fun_by = 1000L ) lst( tf_molecules, reactions = comp_funs ) } .generate_gold_standard_simulations <- function(model, prep_data) { is_tf <- module_id <- mol_premrna <- mol_mrna <- mol_protein <- val <- from <- to <- substate <- burn <- time_per_edge <- simulation_i <- sim_time <- NULL mod_changes <- model$gold_standard$mod_changes gold_params <- model$gold_standard_params sim_system <- model$simulation_system tf_info <- model$feature_info sim_targets <- model$gold_standard_params$simulate_targets if (!sim_targets) { tf_info <- tf_info %>% filter(is_tf) } algo <- GillespieSSA2::ode_em(tau = gold_params$tau, noise_strength = 0) tf_molecules <- prep_data$tf_molecules reactions <- prep_data$reactions gold_sim_outputs <- list() gold_sim_vectors <- list() gold_sim_modules <- list() start_state <- mod_changes$from[[1]] gold_sim_vectors[[start_state]] <- model$simulation_system$initial_state[tf_molecules] %>% as.matrix gold_sim_modules[[start_state]] <- c() if (model$verbose) { timer <- pbapply::timerProgressBar( min = 0, max = nrow(mod_changes), width = 50 ) } for (i in seq_len(nrow(mod_changes))) { from_ <- mod_changes$from_[[i]] to_ <- mod_changes$to_[[i]] time <- mod_changes$time[[i]] mods <- gold_sim_modules[[from_]] %>% union(mod_changes$mod_on[[i]]) %>% setdiff(mod_changes$mod_off[[i]]) gold_sim_modules[[to_]] <- mods tfs_on <- tf_info %>% filter((is.na(module_id) & sim_targets) | module_id %in% mods) molecules_on <- tfs_on %>% select(mol_premrna, mol_mrna, mol_protein) %>% gather(col, val) %>% pull(val) new_initial_state <- rowMeans(gold_sim_vectors[[from_]]) new_reactions <- reactions rem <- setdiff(tf_molecules, molecules_on) if (length(rem) > 0) { new_reactions$state_change[match(rem, tf_molecules), ] <- 0 } out <- GillespieSSA2::ssa( initial_state = new_initial_state, reactions = new_reactions, final_time = time, params = sim_system$parameters, method = algo, census_interval = gold_params$census_interval, stop_on_neg_state = TRUE, verbose = FALSE ) time_out <- out$time state_out <- out$state meta <- tibble(from_, to_, time = time_out) counts <- state_out %>% Matrix::Matrix(sparse = TRUE) if (model$verbose) pbapply::setTimerProgressBar(timer, value = i) gold_sim_outputs[[i]] <- lst(meta, counts) end_state <- counts[nrow(counts), ] %>% as.matrix() if (!to_ %in% gold_sim_vectors) { gold_sim_vectors[[to_]] <- end_state } else { gold_sim_vectors[[to_]] <- cbind(gold_sim_vectors[[to_]], end_state) } } cat("\n") meta <- map_df(gold_sim_outputs, "meta") counts <- do.call(rbind, map(gold_sim_outputs, "counts")) %>% Matrix::Matrix(sparse = TRUE) meta <- meta %>% left_join(mod_changes %>% select(from, to, from_, to_, substate, burn, time_per_edge = time), by = c("from_", "to_")) %>% group_by(from, to) %>% mutate( simulation_i = 0, sim_time = time, time = ((substate - 1) * time_per_edge + time) / time_per_edge / max(substate) ) %>% ungroup() %>% select(-substate, -time_per_edge) %>% select(simulation_i, sim_time, burn, from, to, from_, to_, time) lst(meta, counts) } .generate_gold_standard_generate_network <- function(model) { burn <- from <- to <- time <- NULL model$backbone$expression_patterns %>% filter(!burn) %>% transmute( from, to, length = time / sum(time) * length(time), directed = TRUE ) }
"ifa.bic" <- function(output) { k<-output$L p<-nrow(output$H) numobs<-output$numobs ni<-output$ni h<-p*k+p+(3*sum(ni)-3*k ) pen<-h*log(numobs) lik<-output$l[length(output$l)] bic<--2*lik+pen return(bic) }
txt <- citation("ordinal") stopifnot(as.logical(grep("year", txt)))
library(ic.infer) mat <- as.matrix(swiss) colnames(mat) <- NULL covmat <- cov(swiss) linmod <- lm(swiss) linmodwt <- lm(swiss,weights=abs(-23:23)) linmodfac <- lm(1/time~poison+treat+poison:treat,boot::poisons) orlm1 <- orlm(covmat,ui=diag(c(-1,1,-1,1,1)),df.error=41) summary(orlm1) ic.test(orlm1) covmat2 <- cov(mat) orlm1 <- orlm(covmat2,ui=diag(c(-1,1,-1,1,1)),df.error=41) summary(orlm1) ic.test(orlm1) orlm1 <- orlm(linmod,ui=diag(c(-1,1,-1,1,1))) summary(orlm1) ic.test(orlm1) orlm1b <- orlm(linmod,ui=diag(c(-1,1,-1,1,1)),boot=TRUE,B=100) summary(orlm1b) ic.test(orlm1b) orlm1bf <- orlm(linmod,ui=diag(c(-1,1,-1,1,1)),boot=TRUE,fixed=TRUE,B=100) summary(orlm1bf) ic.test(orlm1bf) linmod2 <- lm(as.data.frame(mat)) orlm1 <- orlm(linmod2,ui=diag(c(-1,1,-1,1,1))) summary(orlm1) ic.test(orlm1) orlm1b <- orlm(linmod2,ui=diag(c(-1,1,-1,1,1)),boot=TRUE,B=100) summary(orlm1b) ic.test(orlm1b) orlm1bf <- orlm(linmod2,ui=diag(c(-1,1,-1,1,1)),boot=TRUE,fixed=TRUE,B=100) summary(orlm1bf) ic.test(orlm1bf) orlm1 <- orlm(linmodwt,ui=diag(c(-1,1,-1,1,1))) summary(orlm1) ic.test(orlm1) orlm1b <- orlm(linmodwt,ui=diag(c(-1,1,-1,1,1)),boot=TRUE,B=100) summary(orlm1b) ic.test(orlm1b) orlm1bf <- orlm(linmodwt,ui=diag(c(-1,1,-1,1,1)),boot=TRUE,fixed=TRUE,B=100) summary(orlm1bf) ic.test(orlm1bf) orlm1 <- orlm(linmodfac,ui=diag(c(1,1,1,-1,-1)),index=2:6) orlm1 summary(orlm1) ic.test(orlm1)
library("testthat") test_check("tibble")
bujar <- function(y, cens, x, valdata = NULL, degree = 1, learner = "linear.regression", center=TRUE, mimpu = NULL, iter.bj = 20, max.cycle = 5, nu = 0.1, mstop = 50, twin = FALSE, mstop2 = 100, tuning = TRUE, cv = FALSE, nfold = 5, method = "corrected", vimpint = TRUE, gamma=3, lambda=NULL, whichlambda=NULL, lamb = 0, s = 0.5, nk = 4, wt.pow = 1, theta = NULL, rel.inf = FALSE, tol = .Machine$double.eps, n.cores=2, rng=123, trace = FALSE){ call <- match.call() if(learner == "acosso") stop("learner = 'acosso' is no longer supported, see NEWS\n") if(!learner%in%c("linear.regression","mars","pspline","tree","acosso","enet", "enet2", "mnet","snet")) stop(sQuote("weak learner"), learner, " is not implemented") if(!is.null(valdata)) if((dim(x)[2]+2) !=dim(valdata)[2]) stop("check the dimension of x and valdata\n") if(learner=="acosso" && wt.pow < 0) stop(Quote("wt.pow should be > 0")) if(learner=="acosso" && cv) stop(Quote("if wt.pow is chosen by cross-validation, then BJ estimator is not stable, thus stop")) if(cv && nfold < 1) stop(sQuote("Number of CV folds"), " are less than 1") if(!all(unique(cens)%in%c(0,1))) stop(sQuote("censoring indicator"), " are not 0 or 1") if(!all(unique(valdata[,2]%in%c(0,1)))) stop(sQuote("censoring indicator"), " are not 0 or 1") if(iter.bj < 2) stop(sQuote("iter.bj"), " should be greater than 1") if(max.cycle < 1) stop(sQuote("max.cycle"), " should be greater than 1") if(!learner %in% c("tree","mars","acosso") && degree !=1) stop("Not implemented for this degree with learner ",learner, "\n") if(learner=="tree" && degree > 1 && twin) stop(sQuote("learner"), learner, sQuote("degree"), degree, sQuote("twin"), twin, "Not implemented\n") if(learner=="pspline") l2 <- "sm" else if(learner=="linear.regression") l2 <- "ls" else if(learner=="enet2") l2 <- "enet" else l2 <- learner xbar <- colMeans(x) f <- 0 mse.bj.val <- nz.bj <- NA ynew <- y; ynew.m <- vim <- NULL; Fboost <- NA p <- ncol(x) sse <- rep(NA, p) res <- ystar <- matrix(NA, length(y), p) coef <- matrix(NA, 2, p) b <- matrix(NA,iter.bj+max.cycle,p) ybst <- matrix(NA, iter.bj+max.cycle, length(y)) ybstdiff <- rep(NA, iter.bj+max.cycle) fnorm2 <- mseun <- ybstcon <- rep(NA, iter.bj+max.cycle) mselect <- rep(NA,iter.bj+max.cycle) if(!tuning && learner%in%c("linear.regression","pspline","tree")){ if(length(mstop) > 1){ if(length(mstop) !=length(mselect)) stop(sQuote("mstop must be one number or have the length iter.bj+max.cycle for a boosting learner")) else mstopRep <- mstop } else mstopRep <- rep(mstop, iter.bj+max.cycle) } else if(tuning && learner%in%c("linear.regression","pspline","tree")){ if(length(mstop) > 1) stop(sQuote("mstop must be one number if tuning=TRUE for a boosting learner")) } tuningSwitch <- TRUE ydiff <- 100 k <- 1; kt <- 1 mse.bj <- pred.bj <- NA if(trace) cat("\nBJ with",learner,"\n") nm <- dim(x) n <- nm[1] if(trace){ cat("\nNumber of observations:",n) cat("\nNumber of covariates:",nm[2],"\n") } one <- rep(1, n) normx <- rep(1,dim(x)[2]) cycleperiod <- 0 nonconv <- FALSE mse <- rep(NA,iter.bj+max.cycle) nz.bj.iter <- rep(NA,iter.bj+max.cycle) while (ydiff > tol && k <= iter.bj+max.cycle){ oldydiff <- ydiff if(is.null(mimpu) && k==1) ynew <- y else if(mimpu==FALSE && k==1){ for (i in 1:p){ res.des <- try(bj(Surv(ynew,cens) ~ x[,i], link="identity",control=list(trace=FALSE))) ystar[,i] <- res.des$y.imputed res[,i] <- y - predict(res.des) sse[i] <- sum(res[,i][cens==1]^2) } minid <- which.min(sse) ynew <- ystar[,minid] cat("\nBJ step k=",k,"\n","\nInitial MSE for uncensored observations=", sse[minid]/sum(cens==1), "\n\n") } else{ if(mimpu==TRUE && k==1){ ynew <- bjboost.fit(cbind(y,cens),rep(0,length(y)))$y.imputed } else { ynew <- bjboost.fit(cbind(y,cens),Fboost)$y.imputed} } dat1 <- as.data.frame(cbind(ynew,x)) x <- as.matrix(x) if(learner%in%c("linear.regression","pspline","tree")){ if(!tuning) mselect.now <- mstopRep[k] else if(k==1) mselect.now <- mstop } else mselect.now <- NULL bstres <- bstfit(tuning, x, ynew, nu, mselect.now, mstop2, twin, center, interaction, degree, learner, l2, nfold, n.cores, cv, tuningSwitch, k, trace, gamma, lambda=lambda, lamb, whichlambda=whichlambda, method=method, rng) dat1.glm <- bstres$dat1.glm if(!is.null(bstres$mselect)) mselect.now <- mselect[k] <- bstres$mselect predres <- predval(learner, twin, dat1.glm, b, k, x, s, mselect[k]) Fboost <- predres$Fboost ybst[k,] <- Fboost beta0bj = predres$beta0bj betabj = predres$betabj b <- predres$b bdiff=predres$bdiff if(k>1){ ydiff <- ybstdiff[k] <- max(abs(Fboost - ybst[k-1,])) ybstcon[k] <- sum((ybst[k,]-ybst[k-1,])^2)/sum(ybst[k-1,]^2) } mseun[k] <- mean((Fboost-ynew)^2) if(k >1 && trace) cat(" k=",k," ybstdiff", ybstdiff[k]," ybstcon", ybstcon[k],"\n") if(!nonconv){ if(k > 1) if((learner=="linear.regression" && bdiff <= tol) || (ybstcon[k] <= tol)){ contype <- 0 break } else if(k >= iter.bj) { cycleydiff <- NULL if(learner=="linear.regression") { cycle.coef.bj <- NULL firstb <- betabj } nonconv <- TRUE firstydiff <- ydiff first.ybstcon <- ybstcon[k] first.dat1.glm <- dat1.glm cycleb <- NULL tuningSwitch <- FALSE; if(learner=="mars") ynew <- dat1.glm$ynew } } else { if(learner=="linear.regression"){ if(twin) coef.bj <- coef(dat1.glm) else coef.bj <- coef(dat1.glm, which = 1:length(variable.names(dat1.glm)), off2int=TRUE) cycle.coef.bj <- rbind(cycle.coef.bj,coef.bj) } cycleydiff <- c(cycleydiff,ydiff) cycleperiod <- cycleperiod + 1 if(learner=="linear.regression"){ if(twin) tmp <- (sum((firstb - coef.bj)^2) < tol || ydiff <= tol) else tmp <- (sum((firstb - coef.bj[-1])^2) < tol || ydiff <= tol) if(tmp){ contype <- 1 break } else if(cycleperiod >= max.cycle){ contype <- 2 break } } else { if(abs(ybstcon[k]-first.ybstcon) < tol){ contype <- 1 break } else if(cycleperiod >= max.cycle){ contype <- 2 break } } } k <- k + 1 } if(trace) cat("\ncycle period is",cycleperiod,"\n") if(contype==2) dat1.glm <- first.dat1.glm if(all(!is.na(Fboost))){ tmpy <- y[cens==1]- Fboost[cens==1] tmpx <- (y[cens==1] + Fboost[cens==1])/2 mse.bj <- mean(tmpy^2) if(learner=="linear.regression"){ if(twin){ beta0bj <- attr(coef(dat1.glm), "offset2int") names(beta0bj) <- "(Intercept)" betabj <- coef(dat1.glm) } else{ beta0bj <- coef(dat1.glm)[1] + dat1.glm$offset betabj <- coef(dat1.glm, which = 1:length(variable.names(dat1.glm)))[-1] } } if(!is.null(valdata)){ if(learner=="linear.regression"){ pred.bj <- as.vector(beta0bj) + as.matrix(valdata)[,-(1:2)] %*% as.vector(betabj/normx) mse.bj.val <- mean((valdata[,1][valdata[,2]==1] - pred.bj[valdata[,2]==1])^2) } else if(learner %in% c("pspline", "mars")) pred.bj <- predict(dat1.glm, newdata=valdata[,-(1:2)]) else if(learner=="tree"){ if(!twin) pred.bj <- predict(dat1.glm, newdata=as.data.frame(valdata[,-(1:2)]),n.trees=dat1.glm$n.trees) else pred.bj <- predict(dat1.glm, newdata=valdata[,-(1:2)]) } else if(learner=="enet") pred.bj <- predict(dat1.glm, newx=valdata[,-(1:2)], s=s, type="fit", mode="fraction")$fit else if(learner %in%c("enet2", "mnet", "snet")) pred.bj <- predict(dat1.glm, newx=as.matrix(valdata[,-(1:2)]), type="response", which=mselect[k]) mse.bj.val <- mean((valdata[,1][valdata[,2]==1] - pred.bj[valdata[,2]==1])^2) } if(learner=="enet"){ tmp <- predict(dat1.glm, type="coef", s=s, mode="fraction")$coef beta0.enet <- mean(ynew) - apply(x[,dat1.glm$allset], 2, mean) %*% tmp beta.enet <- rep(0, p) beta.enet[dat1.glm$allset] <- tmp } else if(learner %in% c("enet2", "mnet", "snet")) coef.ncv <- predict(dat1.glm, newx=x, type="coefficients", which=mselect[k]) if(trace) { cat("mse.bj=",mse.bj,"\n","correlation of predicted and observed times in noncensoring training data is",cor(y[cens==1],Fboost[cens==1]),"\n\n") cat("mse of predicted times of validate data is\n") cat("mse.bj.val",mse.bj.val,"\n") } coef.bj <- NA if(learner=="linear.regression"){ coef.bj <- c(beta0bj, betabj) coef.bj <- coef.bj/c(1,normx) if(twin) nz.bj <- sum(abs(coef(dat1.glm))>0) else nz.bj <- sum(abs(coef(dat1.glm)[-1])>0) if(trace) {cat("Number of Non-zero coefficients with BJ boosting excluding but listing intercept is",nz.bj,"\n") print(coef.bj[abs(coef.bj)>0]) } } } cycle.coef.diff <- NA if(exists("cycle.coef.bj") && !twin) cycle.coef.diff <- max(abs(scale(cycle.coef.bj, coef.bj, FALSE))) interactions=NULL d <- ncol(x) ind <- matrix(NA,ncol=2,nrow=d+d*(d-1)/2) kk <- 1 for(i in 1:d) for(j in i:d){ ind[kk,1] <- i; ind[kk,2] <- j kk <- kk + 1 } if(rel.inf && learner=="tree" && degree > 1){ vim <- summary(dat1.glm,plotit=FALSE,order=FALSE)[,2] interactions <- vim.interactions(dat1.glm,pred.data=x,x.pair=subset(ind,ind[,1]!=ind[,2]),learner="tree",verbose=FALSE) } if(learner=="tree"){ if(!twin){ xselect <- summary(dat1.glm,order=FALSE,plotit=FALSE)[,2] xselect <- ifelse(xselect > 0, 1, 0) } else{ xselect <- rep(0,dim(x)[2]) xselect[dat1.glm$xselect] <- 1 } } else if(learner=="mars"){ vim <- evimp(update(dat1.glm),sqrt.=TRUE,trim=FALSE)[,c(1,4)] vim <- vim[order(vim[,1]),] vim <- vim[,2] xselect <- ifelse(vim > 0, 1, 0) } else if(learner=="linear.regression") xselect <- ifelse(abs(coef.bj[-1]) > 0, 1, 0) else if(learner=="enet"){ tmp <- predict(dat1.glm, type="coef", s=s, mode="fraction")$coef xselect <- ifelse(abs(tmp) > 0, 1, 0) } else if(learner %in% c("enet2", "mnet", "snet")) xselect <- ifelse(abs(coef.ncv[-1]) > 0, 1, 0) else if(learner=="pspline"){ if(!twin){ xselect <- rep(0,dim(x)[2]) tmp <- unique(dat1.glm$xselect())-1 xselect[tmp] <- 1 } else{ xselect <- rep(0,dim(x)[2]) xselect[dat1.glm$xselect] <- 1 } } else if(learner=="acosso"){ if(dat1.glm$order==1) xselect <- ifelse(dat1.glm$theta > 0, 1, 0) else{ ind <- gen.ind(p,learner="acosso") xselect <- rep(0,dim(x)[2]) tmp <- unique(as.vector(ind[dat1.glm$theta > 0,])) xselect[tmp] <- 1 }} if(learner=="mars" && degree > 1 && vimpint){ ind <- gen.ind(p) interactions <- vim.interactions(dat1.glm,pred.data=x,x.pair=subset(ind,ind[,1]!=ind[,2]),learner="mars",verbose=FALSE) } if(learner=="tree" && !twin) vim <- summary(dat1.glm,plotit=FALSE,order=FALSE)[,2] mse.tr <- NULL if(learner=="enet" && tuning){ mse.tr <- sum((ynew - predict(dat1.glm, x, s=s, mode="frac", type="fit")$fit)^2) b <- predict(dat1.glm, type="coef", s=s, mode="frac")$coef if(any(abs(b) > 0)){ b <- which(abs(b) > 0) x0 <- as.matrix(x[,b]) if(lamb==0) q <- dim(x0)[2] else {q <- sum(diag(x0 %*% solve(t(x0) %*% x0 + diag(lamb, nrow=dim(x0)[2])) %*% t(x0))) } } else q <- 0 mse.tr <- mse.tr/(length(ynew) - q)^2 } else if(learner=="enet") coef.bj <- c(beta0.enet, beta.enet) else if(learner %in%c("enet2", "mnet", "snet")) coef.bj <- coef.ncv if(!is.null(vim)) vim <- 100*vim/sum(vim) RET <- list(x=x,y=y,cens=cens,ynew=ynew,res.fit=dat1.glm,learner=learner,degree=degree,mse=mse,nz.bj.iter=nz.bj.iter,mse.bj=mse.bj,mse.bj.val=mse.bj.val,nz.bj=nz.bj,mse.all=mseun[1:(k-1)],yhat=Fboost,ybstdiff=c(NA,ybstdiff[1:(k-1)]),ybstcon = ybstcon,coef.bj=coef.bj,pred.bj=pred.bj,cycleperiod=cycleperiod,cycle.coef.diff = cycle.coef.diff,nonconv=nonconv,fnorm2=fnorm2,vim=vim,interactions=interactions,mselect=mselect,contype=contype,xselect=xselect,lamb=lamb, s=s, mse.tr=mse.tr,valdata=valdata, twin=twin) RET$call <- match.call() class(RET) <- "bujar" return(RET) } gen.ind <- function(d,learner="tree"){ ind <- matrix(NA,ncol=2,nrow=d+d*(d-1)/2) if(learner=="mars"){ kk <- 1 for(i in 1:d) for(j in i:d){ ind[kk,1] <- i; ind[kk,2] <- j kk <- kk + 1 } } else if(learner=="tree" || learner=="acosso"){ ind[1:d,] <- cbind(1:d,1:d) next.ind <- d+1 for(i in 1:(d-1)) for(j in ((i+1): d)){ ind[next.ind,] <- cbind(i,j) next.ind <- next.ind + 1 } } ind } convbujar <- function(x){ ybstdiff <- x$ybstdiff ybstcon <- x$ybstcon mseun <- x$mse.all mse <- x$mse fnorm2 <- x$fnorm2 plot(ybstcon, type="b",xlab="Buckley-James estimator iteration",ylab="Convergence criterion",ylim=c(0,0.01)) } nxselect <- function(obj, varpos) sum(obj$xselect[varpos] == 1) print.bujar <- function(x, ...) { cat("\n") cat("\t Models Fitted with Buckley-James Regression\n") cat("\n") if (!is.null(x$call)) cat("Call:\n", deparse(x$call), "\n\n", sep = "") cat("\n") if(x$learner%in%c("linear.regression","mars","pspline","tree")) cat("Base learner: ", x$learner, "\n") else cat("Regression methods: ", x$learner, "\n") cat("\n") if(x$learner=="linear.regression"){ cat("Coefficients: \n") cf <- x$coef.bj print(cf) cat("\n") } invisible(x) } coef.bujar <- function(object, ...) { if(!object$learner %in% c("linear.regression","pspline","enet", "enet2", "mnet", "snet")) stop("Coefficients Not implemented for learner ",object$learner,"\n") object$coef.bj } plot.bujar <- function(x, ...){ if(!x$learner %in% c("mars", "pspline", "acosso")) plot(x$res.fit) else stop("Not implemented for learner ",x$learner,"\n") } predict.bujar <- function(object, newx=NULL, ...){ if(is.null(newx)) return(object$yhat) if(dim(newx)[2]!=dim(object$x)[2]) stop("newx should have the same number of predictors as x\n") learner <- object$learner dat1.glm <- object$res.fit if(learner=="linear.regression") object$coef.bj[1] + as.matrix(newx) %*% as.vector(object$coef.bj[-1]) else if(learner %in% c("pspline", "mars")) pred.bj <- predict(dat1.glm, newdata=newx) else if(learner=="tree"){ twin <- object$twin if(!twin) pred.bj <- predict(dat1.glm, newdata=as.data.frame(newx),n.trees=dat1.glm$n.trees) else pred.bj <- predict(dat1.glm, newdata=newx) } else if(learner=="enet") pred.bj <- predict(dat1.glm, newx=newx, s=object$s, type="fit", mode="fraction")$fit else if(learner %in%c("enet2", "mnet", "snet")){ mselect <- object$mselect k <- length(mselect) pred.bj <- predict(dat1.glm, newx=as.matrix(newx), type="response", which=mselect[k]) } } summary.bujar <- function(object, ...) summary(object$res.fit, ...)
qlnormMixAlt <- function (p, mean1 = exp(1/2), cv1 = sqrt(exp(1) - 1), mean2 = exp(1/2), cv2 = sqrt(exp(1) - 1), p.mix = 0.5) { names.p <- names(p) arg.mat <- cbind.no.warn(p = as.vector(p), mean1 = as.vector(mean1), cv1 = as.vector(cv1), mean2 = as.vector(mean2), cv2 = as.vector(cv2), p.mix = as.vector(p.mix)) na.index <- is.na.matrix(arg.mat) if (all(na.index)) q <- rep(NA, nrow(arg.mat)) else { q <- numeric(nrow(arg.mat)) q[na.index] <- NA q.no.na <- q[!na.index] for (i in c("p", "mean1", "cv1", "mean2", "cv2", "p.mix")) assign(i, arg.mat[!na.index, i]) if (any(p < 0 | p > 1)) stop("All non-missing values of 'p' must be between 0 and 1.") if (any(c(mean1, mean2, cv1, cv2) < .Machine$double.eps)) stop("All non-missing values of 'mean1', 'mean2', 'cv1', and 'cv2' must be positive.") if (any(p.mix < 0 | p.mix > 1)) stop("All non-missing values of 'p.mix' must be between 0 and 1.") q.no.na[p == 0] <- 0 q.no.na[p == 1] <- Inf index <- (1:length(q.no.na))[0 < p & p < 1] if (any(index)) { o.fcn <- function(q, mean1, cv1, mean2, cv2, p.mix, p) { (plnormMixAlt(q, mean1, cv1, mean2, cv2, p.mix) - p)^2 } for (i in index) { q.no.na[i] <- nlminb(start = (1 - p.mix[i]) * qlnormAlt(p[i], mean1[i], cv1[i]) + p.mix[i] * qlnormAlt(p[i], mean2[i], cv2[i]), o.fcn, lower = 0, mean1 = mean1[i], cv1 = cv1[i], mean2 = mean2[i], cv2 = cv2[i], p.mix = p.mix[i], p = p[i])$par } } q[!na.index] <- q.no.na } if (!is.null(names.p)) names(q) <- rep(names.p, length = length(q)) q }
par.fda.usc<-list() par.fda.usc$verbose <- FALSE par.fda.usc$trace <- FALSE par.fda.usc$warning <- FALSE par.fda.usc$ncores <- 1 par.fda.usc$int.method <- "TRAPZ" par.fda.usc$eps <- as.double(.Machine[[1]]*10) ops.fda.usc = function(verbose = FALSE,trace = FALSE,warning = FALSE, ncores = NULL, int.method = "TRAPZ", eps = as.double(.Machine[[1]]*10)){ if (is.null(ncores)) ncores = max(parallel::detectCores() -1,1) .par.fda.usc = list() .par.fda.usc$verbose = verbose .par.fda.usc$trace = trace .par.fda.usc$warning = warning .par.fda.usc$ncores = ncores .par.fda.usc$int.method = int.method .par.fda.usc$eps = eps if (ncores==1) { foreach::registerDoSEQ() } else{ if (foreach::getDoParWorkers()!=ncores){ cl <- suppressWarnings(parallel::makePSOCKcluster(ncores )) doParallel::registerDoParallel(cl) } } e<-environment(ops.fda.usc) par.unlock<-list("sym"="par.fda.usc","env"=e) do.call("unlockBinding",par.unlock) assign("par.fda.usc", .par.fda.usc, envir = e) get("par.fda.usc", envir = e) return(.par.fda.usc) }
NULL robomaker_batch_delete_worlds <- function(worlds) { op <- new_operation( name = "BatchDeleteWorlds", http_method = "POST", http_path = "/batchDeleteWorlds", paginator = list() ) input <- .robomaker$batch_delete_worlds_input(worlds = worlds) output <- .robomaker$batch_delete_worlds_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$batch_delete_worlds <- robomaker_batch_delete_worlds robomaker_batch_describe_simulation_job <- function(jobs) { op <- new_operation( name = "BatchDescribeSimulationJob", http_method = "POST", http_path = "/batchDescribeSimulationJob", paginator = list() ) input <- .robomaker$batch_describe_simulation_job_input(jobs = jobs) output <- .robomaker$batch_describe_simulation_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$batch_describe_simulation_job <- robomaker_batch_describe_simulation_job robomaker_cancel_deployment_job <- function(job) { op <- new_operation( name = "CancelDeploymentJob", http_method = "POST", http_path = "/cancelDeploymentJob", paginator = list() ) input <- .robomaker$cancel_deployment_job_input(job = job) output <- .robomaker$cancel_deployment_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$cancel_deployment_job <- robomaker_cancel_deployment_job robomaker_cancel_simulation_job <- function(job) { op <- new_operation( name = "CancelSimulationJob", http_method = "POST", http_path = "/cancelSimulationJob", paginator = list() ) input <- .robomaker$cancel_simulation_job_input(job = job) output <- .robomaker$cancel_simulation_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$cancel_simulation_job <- robomaker_cancel_simulation_job robomaker_cancel_simulation_job_batch <- function(batch) { op <- new_operation( name = "CancelSimulationJobBatch", http_method = "POST", http_path = "/cancelSimulationJobBatch", paginator = list() ) input <- .robomaker$cancel_simulation_job_batch_input(batch = batch) output <- .robomaker$cancel_simulation_job_batch_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$cancel_simulation_job_batch <- robomaker_cancel_simulation_job_batch robomaker_cancel_world_export_job <- function(job) { op <- new_operation( name = "CancelWorldExportJob", http_method = "POST", http_path = "/cancelWorldExportJob", paginator = list() ) input <- .robomaker$cancel_world_export_job_input(job = job) output <- .robomaker$cancel_world_export_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$cancel_world_export_job <- robomaker_cancel_world_export_job robomaker_cancel_world_generation_job <- function(job) { op <- new_operation( name = "CancelWorldGenerationJob", http_method = "POST", http_path = "/cancelWorldGenerationJob", paginator = list() ) input <- .robomaker$cancel_world_generation_job_input(job = job) output <- .robomaker$cancel_world_generation_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$cancel_world_generation_job <- robomaker_cancel_world_generation_job robomaker_create_deployment_job <- function(deploymentConfig = NULL, clientRequestToken, fleet, deploymentApplicationConfigs, tags = NULL) { op <- new_operation( name = "CreateDeploymentJob", http_method = "POST", http_path = "/createDeploymentJob", paginator = list() ) input <- .robomaker$create_deployment_job_input(deploymentConfig = deploymentConfig, clientRequestToken = clientRequestToken, fleet = fleet, deploymentApplicationConfigs = deploymentApplicationConfigs, tags = tags) output <- .robomaker$create_deployment_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$create_deployment_job <- robomaker_create_deployment_job robomaker_create_fleet <- function(name, tags = NULL) { op <- new_operation( name = "CreateFleet", http_method = "POST", http_path = "/createFleet", paginator = list() ) input <- .robomaker$create_fleet_input(name = name, tags = tags) output <- .robomaker$create_fleet_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$create_fleet <- robomaker_create_fleet robomaker_create_robot <- function(name, architecture, greengrassGroupId, tags = NULL) { op <- new_operation( name = "CreateRobot", http_method = "POST", http_path = "/createRobot", paginator = list() ) input <- .robomaker$create_robot_input(name = name, architecture = architecture, greengrassGroupId = greengrassGroupId, tags = tags) output <- .robomaker$create_robot_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$create_robot <- robomaker_create_robot robomaker_create_robot_application <- function(name, sources, robotSoftwareSuite, tags = NULL) { op <- new_operation( name = "CreateRobotApplication", http_method = "POST", http_path = "/createRobotApplication", paginator = list() ) input <- .robomaker$create_robot_application_input(name = name, sources = sources, robotSoftwareSuite = robotSoftwareSuite, tags = tags) output <- .robomaker$create_robot_application_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$create_robot_application <- robomaker_create_robot_application robomaker_create_robot_application_version <- function(application, currentRevisionId = NULL) { op <- new_operation( name = "CreateRobotApplicationVersion", http_method = "POST", http_path = "/createRobotApplicationVersion", paginator = list() ) input <- .robomaker$create_robot_application_version_input(application = application, currentRevisionId = currentRevisionId) output <- .robomaker$create_robot_application_version_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$create_robot_application_version <- robomaker_create_robot_application_version robomaker_create_simulation_application <- function(name, sources, simulationSoftwareSuite, robotSoftwareSuite, renderingEngine = NULL, tags = NULL) { op <- new_operation( name = "CreateSimulationApplication", http_method = "POST", http_path = "/createSimulationApplication", paginator = list() ) input <- .robomaker$create_simulation_application_input(name = name, sources = sources, simulationSoftwareSuite = simulationSoftwareSuite, robotSoftwareSuite = robotSoftwareSuite, renderingEngine = renderingEngine, tags = tags) output <- .robomaker$create_simulation_application_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$create_simulation_application <- robomaker_create_simulation_application robomaker_create_simulation_application_version <- function(application, currentRevisionId = NULL) { op <- new_operation( name = "CreateSimulationApplicationVersion", http_method = "POST", http_path = "/createSimulationApplicationVersion", paginator = list() ) input <- .robomaker$create_simulation_application_version_input(application = application, currentRevisionId = currentRevisionId) output <- .robomaker$create_simulation_application_version_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$create_simulation_application_version <- robomaker_create_simulation_application_version robomaker_create_simulation_job <- function(clientRequestToken = NULL, outputLocation = NULL, loggingConfig = NULL, maxJobDurationInSeconds, iamRole, failureBehavior = NULL, robotApplications = NULL, simulationApplications = NULL, dataSources = NULL, tags = NULL, vpcConfig = NULL, compute = NULL) { op <- new_operation( name = "CreateSimulationJob", http_method = "POST", http_path = "/createSimulationJob", paginator = list() ) input <- .robomaker$create_simulation_job_input(clientRequestToken = clientRequestToken, outputLocation = outputLocation, loggingConfig = loggingConfig, maxJobDurationInSeconds = maxJobDurationInSeconds, iamRole = iamRole, failureBehavior = failureBehavior, robotApplications = robotApplications, simulationApplications = simulationApplications, dataSources = dataSources, tags = tags, vpcConfig = vpcConfig, compute = compute) output <- .robomaker$create_simulation_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$create_simulation_job <- robomaker_create_simulation_job robomaker_create_world_export_job <- function(clientRequestToken = NULL, worlds, outputLocation, iamRole, tags = NULL) { op <- new_operation( name = "CreateWorldExportJob", http_method = "POST", http_path = "/createWorldExportJob", paginator = list() ) input <- .robomaker$create_world_export_job_input(clientRequestToken = clientRequestToken, worlds = worlds, outputLocation = outputLocation, iamRole = iamRole, tags = tags) output <- .robomaker$create_world_export_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$create_world_export_job <- robomaker_create_world_export_job robomaker_create_world_generation_job <- function(clientRequestToken = NULL, template, worldCount, tags = NULL, worldTags = NULL) { op <- new_operation( name = "CreateWorldGenerationJob", http_method = "POST", http_path = "/createWorldGenerationJob", paginator = list() ) input <- .robomaker$create_world_generation_job_input(clientRequestToken = clientRequestToken, template = template, worldCount = worldCount, tags = tags, worldTags = worldTags) output <- .robomaker$create_world_generation_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$create_world_generation_job <- robomaker_create_world_generation_job robomaker_create_world_template <- function(clientRequestToken = NULL, name = NULL, templateBody = NULL, templateLocation = NULL, tags = NULL) { op <- new_operation( name = "CreateWorldTemplate", http_method = "POST", http_path = "/createWorldTemplate", paginator = list() ) input <- .robomaker$create_world_template_input(clientRequestToken = clientRequestToken, name = name, templateBody = templateBody, templateLocation = templateLocation, tags = tags) output <- .robomaker$create_world_template_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$create_world_template <- robomaker_create_world_template robomaker_delete_fleet <- function(fleet) { op <- new_operation( name = "DeleteFleet", http_method = "POST", http_path = "/deleteFleet", paginator = list() ) input <- .robomaker$delete_fleet_input(fleet = fleet) output <- .robomaker$delete_fleet_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$delete_fleet <- robomaker_delete_fleet robomaker_delete_robot <- function(robot) { op <- new_operation( name = "DeleteRobot", http_method = "POST", http_path = "/deleteRobot", paginator = list() ) input <- .robomaker$delete_robot_input(robot = robot) output <- .robomaker$delete_robot_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$delete_robot <- robomaker_delete_robot robomaker_delete_robot_application <- function(application, applicationVersion = NULL) { op <- new_operation( name = "DeleteRobotApplication", http_method = "POST", http_path = "/deleteRobotApplication", paginator = list() ) input <- .robomaker$delete_robot_application_input(application = application, applicationVersion = applicationVersion) output <- .robomaker$delete_robot_application_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$delete_robot_application <- robomaker_delete_robot_application robomaker_delete_simulation_application <- function(application, applicationVersion = NULL) { op <- new_operation( name = "DeleteSimulationApplication", http_method = "POST", http_path = "/deleteSimulationApplication", paginator = list() ) input <- .robomaker$delete_simulation_application_input(application = application, applicationVersion = applicationVersion) output <- .robomaker$delete_simulation_application_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$delete_simulation_application <- robomaker_delete_simulation_application robomaker_delete_world_template <- function(template) { op <- new_operation( name = "DeleteWorldTemplate", http_method = "POST", http_path = "/deleteWorldTemplate", paginator = list() ) input <- .robomaker$delete_world_template_input(template = template) output <- .robomaker$delete_world_template_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$delete_world_template <- robomaker_delete_world_template robomaker_deregister_robot <- function(fleet, robot) { op <- new_operation( name = "DeregisterRobot", http_method = "POST", http_path = "/deregisterRobot", paginator = list() ) input <- .robomaker$deregister_robot_input(fleet = fleet, robot = robot) output <- .robomaker$deregister_robot_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$deregister_robot <- robomaker_deregister_robot robomaker_describe_deployment_job <- function(job) { op <- new_operation( name = "DescribeDeploymentJob", http_method = "POST", http_path = "/describeDeploymentJob", paginator = list() ) input <- .robomaker$describe_deployment_job_input(job = job) output <- .robomaker$describe_deployment_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$describe_deployment_job <- robomaker_describe_deployment_job robomaker_describe_fleet <- function(fleet) { op <- new_operation( name = "DescribeFleet", http_method = "POST", http_path = "/describeFleet", paginator = list() ) input <- .robomaker$describe_fleet_input(fleet = fleet) output <- .robomaker$describe_fleet_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$describe_fleet <- robomaker_describe_fleet robomaker_describe_robot <- function(robot) { op <- new_operation( name = "DescribeRobot", http_method = "POST", http_path = "/describeRobot", paginator = list() ) input <- .robomaker$describe_robot_input(robot = robot) output <- .robomaker$describe_robot_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$describe_robot <- robomaker_describe_robot robomaker_describe_robot_application <- function(application, applicationVersion = NULL) { op <- new_operation( name = "DescribeRobotApplication", http_method = "POST", http_path = "/describeRobotApplication", paginator = list() ) input <- .robomaker$describe_robot_application_input(application = application, applicationVersion = applicationVersion) output <- .robomaker$describe_robot_application_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$describe_robot_application <- robomaker_describe_robot_application robomaker_describe_simulation_application <- function(application, applicationVersion = NULL) { op <- new_operation( name = "DescribeSimulationApplication", http_method = "POST", http_path = "/describeSimulationApplication", paginator = list() ) input <- .robomaker$describe_simulation_application_input(application = application, applicationVersion = applicationVersion) output <- .robomaker$describe_simulation_application_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$describe_simulation_application <- robomaker_describe_simulation_application robomaker_describe_simulation_job <- function(job) { op <- new_operation( name = "DescribeSimulationJob", http_method = "POST", http_path = "/describeSimulationJob", paginator = list() ) input <- .robomaker$describe_simulation_job_input(job = job) output <- .robomaker$describe_simulation_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$describe_simulation_job <- robomaker_describe_simulation_job robomaker_describe_simulation_job_batch <- function(batch) { op <- new_operation( name = "DescribeSimulationJobBatch", http_method = "POST", http_path = "/describeSimulationJobBatch", paginator = list() ) input <- .robomaker$describe_simulation_job_batch_input(batch = batch) output <- .robomaker$describe_simulation_job_batch_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$describe_simulation_job_batch <- robomaker_describe_simulation_job_batch robomaker_describe_world <- function(world) { op <- new_operation( name = "DescribeWorld", http_method = "POST", http_path = "/describeWorld", paginator = list() ) input <- .robomaker$describe_world_input(world = world) output <- .robomaker$describe_world_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$describe_world <- robomaker_describe_world robomaker_describe_world_export_job <- function(job) { op <- new_operation( name = "DescribeWorldExportJob", http_method = "POST", http_path = "/describeWorldExportJob", paginator = list() ) input <- .robomaker$describe_world_export_job_input(job = job) output <- .robomaker$describe_world_export_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$describe_world_export_job <- robomaker_describe_world_export_job robomaker_describe_world_generation_job <- function(job) { op <- new_operation( name = "DescribeWorldGenerationJob", http_method = "POST", http_path = "/describeWorldGenerationJob", paginator = list() ) input <- .robomaker$describe_world_generation_job_input(job = job) output <- .robomaker$describe_world_generation_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$describe_world_generation_job <- robomaker_describe_world_generation_job robomaker_describe_world_template <- function(template) { op <- new_operation( name = "DescribeWorldTemplate", http_method = "POST", http_path = "/describeWorldTemplate", paginator = list() ) input <- .robomaker$describe_world_template_input(template = template) output <- .robomaker$describe_world_template_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$describe_world_template <- robomaker_describe_world_template robomaker_get_world_template_body <- function(template = NULL, generationJob = NULL) { op <- new_operation( name = "GetWorldTemplateBody", http_method = "POST", http_path = "/getWorldTemplateBody", paginator = list() ) input <- .robomaker$get_world_template_body_input(template = template, generationJob = generationJob) output <- .robomaker$get_world_template_body_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$get_world_template_body <- robomaker_get_world_template_body robomaker_list_deployment_jobs <- function(filters = NULL, nextToken = NULL, maxResults = NULL) { op <- new_operation( name = "ListDeploymentJobs", http_method = "POST", http_path = "/listDeploymentJobs", paginator = list() ) input <- .robomaker$list_deployment_jobs_input(filters = filters, nextToken = nextToken, maxResults = maxResults) output <- .robomaker$list_deployment_jobs_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_deployment_jobs <- robomaker_list_deployment_jobs robomaker_list_fleets <- function(nextToken = NULL, maxResults = NULL, filters = NULL) { op <- new_operation( name = "ListFleets", http_method = "POST", http_path = "/listFleets", paginator = list() ) input <- .robomaker$list_fleets_input(nextToken = nextToken, maxResults = maxResults, filters = filters) output <- .robomaker$list_fleets_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_fleets <- robomaker_list_fleets robomaker_list_robot_applications <- function(versionQualifier = NULL, nextToken = NULL, maxResults = NULL, filters = NULL) { op <- new_operation( name = "ListRobotApplications", http_method = "POST", http_path = "/listRobotApplications", paginator = list() ) input <- .robomaker$list_robot_applications_input(versionQualifier = versionQualifier, nextToken = nextToken, maxResults = maxResults, filters = filters) output <- .robomaker$list_robot_applications_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_robot_applications <- robomaker_list_robot_applications robomaker_list_robots <- function(nextToken = NULL, maxResults = NULL, filters = NULL) { op <- new_operation( name = "ListRobots", http_method = "POST", http_path = "/listRobots", paginator = list() ) input <- .robomaker$list_robots_input(nextToken = nextToken, maxResults = maxResults, filters = filters) output <- .robomaker$list_robots_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_robots <- robomaker_list_robots robomaker_list_simulation_applications <- function(versionQualifier = NULL, nextToken = NULL, maxResults = NULL, filters = NULL) { op <- new_operation( name = "ListSimulationApplications", http_method = "POST", http_path = "/listSimulationApplications", paginator = list() ) input <- .robomaker$list_simulation_applications_input(versionQualifier = versionQualifier, nextToken = nextToken, maxResults = maxResults, filters = filters) output <- .robomaker$list_simulation_applications_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_simulation_applications <- robomaker_list_simulation_applications robomaker_list_simulation_job_batches <- function(nextToken = NULL, maxResults = NULL, filters = NULL) { op <- new_operation( name = "ListSimulationJobBatches", http_method = "POST", http_path = "/listSimulationJobBatches", paginator = list() ) input <- .robomaker$list_simulation_job_batches_input(nextToken = nextToken, maxResults = maxResults, filters = filters) output <- .robomaker$list_simulation_job_batches_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_simulation_job_batches <- robomaker_list_simulation_job_batches robomaker_list_simulation_jobs <- function(nextToken = NULL, maxResults = NULL, filters = NULL) { op <- new_operation( name = "ListSimulationJobs", http_method = "POST", http_path = "/listSimulationJobs", paginator = list() ) input <- .robomaker$list_simulation_jobs_input(nextToken = nextToken, maxResults = maxResults, filters = filters) output <- .robomaker$list_simulation_jobs_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_simulation_jobs <- robomaker_list_simulation_jobs robomaker_list_tags_for_resource <- function(resourceArn) { op <- new_operation( name = "ListTagsForResource", http_method = "GET", http_path = "/tags/{resourceArn}", paginator = list() ) input <- .robomaker$list_tags_for_resource_input(resourceArn = resourceArn) output <- .robomaker$list_tags_for_resource_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_tags_for_resource <- robomaker_list_tags_for_resource robomaker_list_world_export_jobs <- function(nextToken = NULL, maxResults = NULL, filters = NULL) { op <- new_operation( name = "ListWorldExportJobs", http_method = "POST", http_path = "/listWorldExportJobs", paginator = list() ) input <- .robomaker$list_world_export_jobs_input(nextToken = nextToken, maxResults = maxResults, filters = filters) output <- .robomaker$list_world_export_jobs_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_world_export_jobs <- robomaker_list_world_export_jobs robomaker_list_world_generation_jobs <- function(nextToken = NULL, maxResults = NULL, filters = NULL) { op <- new_operation( name = "ListWorldGenerationJobs", http_method = "POST", http_path = "/listWorldGenerationJobs", paginator = list() ) input <- .robomaker$list_world_generation_jobs_input(nextToken = nextToken, maxResults = maxResults, filters = filters) output <- .robomaker$list_world_generation_jobs_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_world_generation_jobs <- robomaker_list_world_generation_jobs robomaker_list_world_templates <- function(nextToken = NULL, maxResults = NULL) { op <- new_operation( name = "ListWorldTemplates", http_method = "POST", http_path = "/listWorldTemplates", paginator = list() ) input <- .robomaker$list_world_templates_input(nextToken = nextToken, maxResults = maxResults) output <- .robomaker$list_world_templates_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_world_templates <- robomaker_list_world_templates robomaker_list_worlds <- function(nextToken = NULL, maxResults = NULL, filters = NULL) { op <- new_operation( name = "ListWorlds", http_method = "POST", http_path = "/listWorlds", paginator = list() ) input <- .robomaker$list_worlds_input(nextToken = nextToken, maxResults = maxResults, filters = filters) output <- .robomaker$list_worlds_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$list_worlds <- robomaker_list_worlds robomaker_register_robot <- function(fleet, robot) { op <- new_operation( name = "RegisterRobot", http_method = "POST", http_path = "/registerRobot", paginator = list() ) input <- .robomaker$register_robot_input(fleet = fleet, robot = robot) output <- .robomaker$register_robot_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$register_robot <- robomaker_register_robot robomaker_restart_simulation_job <- function(job) { op <- new_operation( name = "RestartSimulationJob", http_method = "POST", http_path = "/restartSimulationJob", paginator = list() ) input <- .robomaker$restart_simulation_job_input(job = job) output <- .robomaker$restart_simulation_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$restart_simulation_job <- robomaker_restart_simulation_job robomaker_start_simulation_job_batch <- function(clientRequestToken = NULL, batchPolicy = NULL, createSimulationJobRequests, tags = NULL) { op <- new_operation( name = "StartSimulationJobBatch", http_method = "POST", http_path = "/startSimulationJobBatch", paginator = list() ) input <- .robomaker$start_simulation_job_batch_input(clientRequestToken = clientRequestToken, batchPolicy = batchPolicy, createSimulationJobRequests = createSimulationJobRequests, tags = tags) output <- .robomaker$start_simulation_job_batch_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$start_simulation_job_batch <- robomaker_start_simulation_job_batch robomaker_sync_deployment_job <- function(clientRequestToken, fleet) { op <- new_operation( name = "SyncDeploymentJob", http_method = "POST", http_path = "/syncDeploymentJob", paginator = list() ) input <- .robomaker$sync_deployment_job_input(clientRequestToken = clientRequestToken, fleet = fleet) output <- .robomaker$sync_deployment_job_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$sync_deployment_job <- robomaker_sync_deployment_job robomaker_tag_resource <- function(resourceArn, tags) { op <- new_operation( name = "TagResource", http_method = "POST", http_path = "/tags/{resourceArn}", paginator = list() ) input <- .robomaker$tag_resource_input(resourceArn = resourceArn, tags = tags) output <- .robomaker$tag_resource_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$tag_resource <- robomaker_tag_resource robomaker_untag_resource <- function(resourceArn, tagKeys) { op <- new_operation( name = "UntagResource", http_method = "DELETE", http_path = "/tags/{resourceArn}", paginator = list() ) input <- .robomaker$untag_resource_input(resourceArn = resourceArn, tagKeys = tagKeys) output <- .robomaker$untag_resource_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$untag_resource <- robomaker_untag_resource robomaker_update_robot_application <- function(application, sources, robotSoftwareSuite, currentRevisionId = NULL) { op <- new_operation( name = "UpdateRobotApplication", http_method = "POST", http_path = "/updateRobotApplication", paginator = list() ) input <- .robomaker$update_robot_application_input(application = application, sources = sources, robotSoftwareSuite = robotSoftwareSuite, currentRevisionId = currentRevisionId) output <- .robomaker$update_robot_application_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$update_robot_application <- robomaker_update_robot_application robomaker_update_simulation_application <- function(application, sources, simulationSoftwareSuite, robotSoftwareSuite, renderingEngine = NULL, currentRevisionId = NULL) { op <- new_operation( name = "UpdateSimulationApplication", http_method = "POST", http_path = "/updateSimulationApplication", paginator = list() ) input <- .robomaker$update_simulation_application_input(application = application, sources = sources, simulationSoftwareSuite = simulationSoftwareSuite, robotSoftwareSuite = robotSoftwareSuite, renderingEngine = renderingEngine, currentRevisionId = currentRevisionId) output <- .robomaker$update_simulation_application_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$update_simulation_application <- robomaker_update_simulation_application robomaker_update_world_template <- function(template, name = NULL, templateBody = NULL, templateLocation = NULL) { op <- new_operation( name = "UpdateWorldTemplate", http_method = "POST", http_path = "/updateWorldTemplate", paginator = list() ) input <- .robomaker$update_world_template_input(template = template, name = name, templateBody = templateBody, templateLocation = templateLocation) output <- .robomaker$update_world_template_output() config <- get_config() svc <- .robomaker$service(config) request <- new_request(svc, op, input, output) response <- send_request(request) return(response) } .robomaker$operations$update_world_template <- robomaker_update_world_template
set.seed(6998768) context("compute_posterior_interval() classes") fit_bm <- compute_mallows(potato_visual) fit_bm$burnin <- 1000 fit_bm_post_alpha <- compute_posterior_intervals(fit_bm, parameter = "alpha") fit_bm_post_rho <- compute_posterior_intervals(fit_bm, parameter = "rho") n_items <- ncol(sushi_rankings) metric <- "footrule" alpha_vector <- seq(from = 0, to = 15, by = 0.1) iter <- 1e3 degree <- 10 logz_estimate <- estimate_partition_function( method = "importance_sampling", alpha_vector = alpha_vector, n_items = n_items, metric = metric, nmc = iter, degree = degree ) data <- sushi_rankings[1:100, ] leap_size <- floor(n_items / 5) nmc <- N <- 1000 Time <- 20 fit_smc <- smc_mallows_new_users_complete( R_obs = data, n_items = n_items, metric = metric, leap_size = leap_size, N = N, Time = Time, logz_estimate = logz_estimate, mcmc_kernel_app = 5, num_new_obs = 5, alpha_prop_sd = 0.5, lambda = 0.15, alpha_max = 1e6 ) fit_smc_alpha <- fit_smc$alpha_samples[, Time + 1] fit_smc_post_alpha <- compute_posterior_intervals_alpha( output = fit_smc_alpha, nmc = nmc, burnin = 0, verbose = FALSE ) fit_smc_rho <- fit_smc$rho_samples[, , Time + 1] fit_smc_post_rho <- compute_posterior_intervals_rho( output = fit_smc_rho, nmc = nmc, burnin = 0, verbose = FALSE ) fit_bm_alpha <- fit_bm$alpha fit_bm_alpha <- dplyr::group_by(fit_bm_alpha, .data$cluster) class(fit_bm_alpha) <- c( "posterior_BayesMallows", "grouped_df", "tbl_df", "tbl", "data.frame" ) fit_bm_post_internal_alpha <- .compute_posterior_intervals( fit_bm_alpha, "alpha", .95, 3L ) fit_bm_rho <- fit_bm$rho fit_bm_rho <- dplyr::group_by(fit_bm_rho, .data$cluster) class(fit_bm_rho) <- c( "posterior_BayesMallows", "grouped_df", "tbl_df", "tbl", "data.frame" ) fit_bm_post_internal_rho <- .compute_posterior_intervals( fit_bm_rho, "rho", .95, 3L ) fit_smc_alpha <- data.frame(iteration = seq_len(nmc), value = fit_smc_alpha) fit_smc_alpha$n_clusters <- 1 fit_smc_alpha$cluster <- "Cluster 1" fit_smc_alpha <- dplyr::group_by(fit_smc_alpha, .data$cluster) class(fit_smc_alpha) <- c( "posterior_SMCMallows", "grouped_df", "tbl_df", "tbl", "data.frame" ) fit_smc_post_internal_alpha <- .compute_posterior_intervals( fit_smc_alpha, "alpha", .95, 3L ) fit_smc_rho <- smc_processing(fit_smc_rho) fit_smc_rho$n_clusters <- 1 fit_smc_rho$cluster <- "Cluster 1" fit_smc_rho <- dplyr::group_by(fit_smc_rho, .data$cluster) class(fit_smc_rho) <- c( "posterior_SMCMallows", "grouped_df", "tbl_df", "tbl", "data.frame" ) fit_smc_post_internal_rho <- .compute_posterior_intervals( fit_smc_alpha, "rho", .95, 3L, discrete = TRUE ) test_that("Classes are correctly attributed", { expect_s3_class(fit_bm, "BayesMallows") expect_s3_class(fit_smc, "SMCMallows") expect_s3_class(fit_bm_post_alpha, "data.frame") expect_s3_class(fit_bm_post_rho, "data.frame") expect_s3_class(fit_smc_post_alpha, "data.frame") expect_s3_class(fit_smc_post_rho, "data.frame") expect_error(.compute_posterior_intervals(fit_bm_post_alpha)) expect_error(.compute_posterior_intervals(fit_bm_post_rho)) expect_error(.compute_posterior_intervals(fit_smc_post_alpha)) expect_error(.compute_posterior_intervals(fit_smc_post_rho)) expect_s3_class(fit_bm_post_internal_alpha, "data.frame") expect_s3_class(fit_bm_post_internal_rho, "data.frame") expect_s3_class(fit_smc_post_internal_alpha, "data.frame") expect_s3_class(fit_smc_post_internal_rho, "data.frame") }) context("compute_consensus() classes") fit_bm_consensus_cp <- compute_consensus(fit_bm, type = "CP") fit_bm_consensus_map <- compute_consensus(fit_bm, type = "MAP") fit_smc_rho <- fit_smc$rho_samples[, , Time + 1] fit_smc_consensus_cp <- compute_rho_consensus( output = fit_smc_rho, nmc = nmc, burnin = 0, C = 1, type = "CP" ) fit_smc_consensus_map <- compute_rho_consensus( output = fit_smc_rho, nmc = nmc, burnin = 0, C = 1, type = "MAP" ) test_that("Classes are correctly attributed", { expect_s3_class(fit_bm_consensus_cp, "data.frame") expect_s3_class(fit_bm_consensus_map, "data.frame") expect_s3_class(fit_smc_consensus_cp, "data.frame") expect_s3_class(fit_smc_consensus_map, "data.frame") })
NULL sw_tidy_decomp.decomposed.ts <- function(x, timetk_idx = FALSE, rename_index = "index", ...) { if (timetk_idx) { if (!has_timetk_idx(x$x)) { warning("Object has no timetk index. Using default index.") timetk_idx = FALSE } } ret <- cbind(observed = x$x, season = x$seasonal, trend = x$trend, random = x$random, seasadj = forecast::seasadj(x)) ret <- tk_tbl(ret, preserve_index = TRUE, rename_index, silent = TRUE) if (timetk_idx) { idx <- tk_index(x$x, timetk_idx = TRUE) if (nrow(ret) != length(idx)) ret <- ret[(nrow(ret) - length(idx) + 1):nrow(ret),] ret[, rename_index] <- idx } ret <- sw_augment_columns(ret, data = NULL, rename_index = rename_index, timetk_idx = timetk_idx) return(ret) }
tribe <- function(obj, keep_obj = FALSE) { at <- attributes(obj) if (is.null(at)) { at <- nlist() } if (keep_obj) { attr(at, ".obj_tribe") <- obj } at } "tribe<-" <- function(obj, value) { attributes(obj) <- if (is_empty(value)) NULL else value obj } untribe <- function(x) { obj <- attr(x, ".obj_tribe") attr(x, ".obj_tribe") <- NULL attributes(obj) <- x obj }
yth_filter <- function(x, h = 8, p = 4, output = c("x", "trend", "cycle", "random"), ...) { output_args <- c("x","trend", "cycle", "random") if(length(output) != sum(grepl(paste(output_args, collapse = "|"), output))) { stop(paste0("Incorrect argument '", output[!grepl(paste(output_args, collapse = "|"), output)], "' present in 'output' argument. Must be a character vector containing `x`, 'trend', 'cycle', or 'random'.")) } else if( is.null(colnames(x)) ) { warning("Your xts object doesn't have a dimnames attribute, aka names(your_xts) is NULL, which would've produced an error. Thus it has been given the name 'y' within the scope, and for the output, of this function.") colnames(x) <- ifelse( is.null(colnames(x)), "y", colnames(x) ) } neverHP <- yth_glm(x = x , h = h, p = p, ...) trend <- xts::as.xts(unname(neverHP$fitted.values), order.by = get(paste0("as.",class(index(x))))(names(neverHP$fitted.values))) names(trend) <- paste0(names(x),".trend") if (any(length(output) == 1 & output == "trend")) {return(trend)} cycle <- xts::as.xts(unname(neverHP$residuals), order.by = get(paste0("as.",class(index(x))))(names(neverHP$residuals))) names(cycle) <- paste0(names(x),".cycle") if (any(length(output) == 1 & output == "cycle")) {return(cycle)} random <- x-lag(x, k = h, na.pad = TRUE) names(random) <- paste0(names(x),".random") if (any(length(output) == 1 & output == "random")) {return(random)} all <- merge(x, trend, cycle, random) names(all) <- c(names(x), paste0(names(x),".", c("trend", "cycle", "random")) ) if (any(output == "x")) { index <- grep(paste(output, collapse = "|"), names(all)) return(all[,c(1, index)]) } else { index <- grep(paste(output, collapse = "|"), names(all)) return(all[,c(index)]) } }
library(FSA) df <- data.frame(y=c(10,-10,runif(28)),x=c(runif(30)), f=sample(c("A","B","C"),30,replace=TRUE)) slrout <- lm(y~x,data=df) ivrout <- lm(y~x*f,data=df) aov1 <- lm(y~f,data=df) dunnTest(y~f,data=df) lrt(slrout,com=ivrout) data(WhitefishLC) ab1 <- ageBias(scaleC~otolithC,data=WhitefishLC, ref.lab="Otolith Age",nref.lab="Scale Age") plot(ab1) plotAB(ab1) data(WR79) WR.age <- subset(WR79, !is.na(age)) WR.age$LCat <- lencat(WR.age$len,w=5) WR.key <- prop.table(xtabs(~LCat+age,data=WR.age), margin=1) alkPlot(WR.key,"area") data(ChinookArg) lm1 <- lm(w~tl*loc,data=ChinookArg) lwCompPreds(lm1,xlab="Location") library(plyr) library(dplyr) library(car) library(dunn.test) library(lmtest) library(plotrix) library(sciplot)
localMaxima <- function(x) { y <- diff(c(-.Machine$integer.max, x)) > 0L rle(y)$lengths y <- cumsum(rle(y)$lengths) y <- y[seq.int(1L, length(y), 2L)] if (x[[1]] == x[[2]]) { y <- y[-1] } y } LMDC.select <- function(y, covar, data, tol = .06, pvalue = .05, plot = FALSE, local.dc = TRUE, smo = FALSE, verbose = FALSE){ yy <- data[,y] if (missing(covar)) covar=names(data) covar <- setdiff(covar,y) xx<-data[,covar,drop=F] nn<-ncol(xx) dc<-numeric(nn) for (i in 1:nn){ a<-dcor.xy(xx[,i,drop=F],yy) dc[i]<-a$estimate if (verbose) cat(i,a$estimate,a$p.value,a$p.value<pvalue & a$estimate>tol,"\n") } if (smo) { nbase<-ifelse(nn<50,floor(nn/2),floor(nn^(4/5))) dc1<-fdata2fd(fdata(dc),nbasis=nbase) dc2<-fdata(dc1,1:nn)$data[1,] } else dc2<-dc regre<-TRUE if (is.factor(yy)) regre<-FALSE maxLocal<-max.pc1<-max.pc2<-max.pc3<-NULL if (local.dc) maxLocal<-localMaxima(dc2) maxLocal<-unique(c(maxLocal,max.pc1,max.pc3)) maxLocal2<-intersect(which(dc2>tol),maxLocal) xorder<-order(dc2[maxLocal2],decreasing =TRUE) dc2<-dc2[maxLocal2][xorder] maxLocal2<-maxLocal2[xorder] if (plot){ par(mfrow=c(1,1)) plot(dc2) lines(dc,col=4) abline(v=maxLocal,col=2) abline(v=maxLocal2,col=3,lwd=2) } nvar<-length(maxLocal2) names(dc)<-covar return(list(dcor=dc,maxLocal=maxLocal2)) } LMDC.regre <- function(y,covar,data,newdata,pvalue=.05, method="lm", par.method = NULL, plot=FALSE,verbose=FALSE){ edf<-Inf nvar <- length(covar) if (missing(newdata)) pred <- FALSE else pred <- TRUE if (is.null(covar)){ return(list(model=lm(data[,y]~ 1,data=data), xvar=xvar, pred=rep(mean(data[,y]),len=nrow(newdata))) ) } pred0 <- NULL nvar <- length(covar) xnames <- covar xvar<-NULL ff<-paste(y,"~1") if (method == "lm"){ par.method$formula <- formula(ff) par.method$data <- data model0<-do.call(method,par.method) for (i in 1:nvar) { if (verbose) print(i) xentra<-xnames[i] xvar2<- c(xvar,xentra) ff<-paste(y,"~",paste(xvar2,collapse="+"),collapse="") if (verbose) {print("lm"); print(1);print(ff)} par.method$formula <- formula(ff) model <- do.call(method,par.method) if (rev(summary(model)$coefficients[,"Pr(>|t|)"])[1]<pvalue){ if (verbose) { print("entra");print(xentra);print(summary(model))} model0 <- model xvar <- xvar2 } } edf <- summary(model0)$df[1] nvar<-edf-1 } if (method == "gam"){ if (!is.null(par.method$k)) { ik<-which(names(par.method)=="k") print(par.method) k<-par.method$k par.method<-par.method[-ik] } else k <- 4 ff<-as.formula(ff) model0 <- gam(ff,data=data) par.method2 <- list("formula"=ff,"data"= data) par.method<-c(par.method2,par.method) for (i in 1:nvar) { if (verbose) print(i) xentra<-xnames[i] xvar2<- c(xvar,xentra) ff<-as.formula(paste(y,"~",paste("s(",xvar2,",k=",k,")",collapse="+"),collapse="")) par.method$formula<-ff if (verbose) {print("gam"); print(1);print(ff)} model <- do.call(method,par.method) if (rev(summary(model)$s.table[,"p-value"])[1]<pvalue){ if (verbose) { print("entra");print(xentra);print(summary(model))} model0 <- model xvar <- xvar2 } } edf<- sum(model0$edf) nvar <- ncol(model0$model)-1 } if (method == "svm"){ if (is.null(par.method)) par.method=list("cost"=100,"gamma"=1,"kernel"="linear") par.method$x <- data[,covar,drop=F] par.method$y <- data[,"y"] model0 <- do.call(method,par.method) } if (method == "rpart"){ ff<-as.formula(paste(y,"~",paste(covar,collapse="+"),collapse="")) par.method$formula <- ff par.method$data <- data model0 <- do.call(method,par.method) } if (method == "knn"){ par.method$train <- data[,covar,drop=F] par.method$test <- newdata[,covar,drop=F] par.method$y <- data[,"y"] model0 <- do.call("knn.reg",par.method) pred0<-model0$pred } if ( method =="lars") { if (is.null(par.method)) par.method= list(type="lasso",normalize=FALSE,intercept = TRUE,use.Gram=FALSE) x0<-as.matrix(data[,covar]) par.method$x <- x0 par.method$y <- data[,"y"] model0 <- do.call(method, par.method) templam <- range(model0$lambda) lambda<-seq(templam[1], templam[2], length=200) cv <- do.call("cvlars", list(x=x0, y=data[,"y"],K=10,lambda=lambda, trace = FALSE, intercept = TRUE,normalize=FALSE, type="lasso",use.Gram=F)) minl<-lambda[which.min(cv)] pred0 <- do.call("predict.lars", list("object" = model0, "newx" = as.matrix(newdata[,covar]), "s" = minl,"type"= "fit", "mode"= "lambda"))$fit cv <- do.call("lars::cv.lars",list("x" = x0, "y" = data[,"y"],"K" = 10)) ideal_l1_ratio <- cv$index[which.max(cv$cv - cv$cv.error <= min(cv$cv))] obj <- do.call("lars::lars",list("x"=x0, "y"=data[,"y"])) scaled_coefs <- scale(obj$beta, FALSE, 1 / obj$normx) l1 <- apply(X = scaled_coefs, MARGIN = 1, FUN = function(x) sum(abs(x))) coef(obj)[which.max(l1 / do.call("tail",list("x"=l1, "n"=1)) > ideal_l1_ratio),] pred0 <- do.call("predict.lars",list("object"= model0, "newx"=as.matrix(newdata[,covar]), "s"=minl,"type"="fit","mode"="lambda"))$fit nvar <- sum( coef(obj)[which.max(l1 / do.call("tail",list("x"=l1, "n"=1)) > ideal_l1_ratio),]>0) } if ( method =="glmnet") { x0 <- as.matrix(data[,covar,drop=F]) newx0 <- as.matrix(newdata[,covar,drop=F]) if (ncol(x0)==1){ x0<-cbind(x0,1:nrow(x0)) newx0<-cbind(newx0,1:nrow(newx0)) } if (is.null(par.method)) par.method= list(family="gaussian", standardize=TRUE, nfolds=10) par.method$x <- x0 par.method$y <- data[,"y"] model0 <- do.call("cv.glmnet",par.method) pred0<-predict(model0,newx=newx0, s=model0$lambda.min) c<-coef(model0 ,s='lambda.min',exact=TRUE) inds<-which(c!=0) variables<-row.names(c)[inds] variables<-setdiff(variables,'(Intercept)') nvar<- length(variables) edf <-nvar +1 } if ( method =="nnet") { if (is.null(par.method)) par.method<-list( size = 5, rang = .1,decay = 5e-6, maxit =1000,linout=T) par.method$x <- data[,covar,drop=F] par.method$y <- data[,"y"] model0 <- do.call("nnet",par.method) } if ( method =="mars") { par.method$x <- data[,covar,drop=F] par.method$y <- data[,"y"] model0 <- do.call("mars",par.method) } if (method == "npreg"){ par.method$txdat<-data[,covar,drop=F] par.method$tydat<-data[,"y"] model0 <- do.call(method,par.method) } if (method == "flam"){ par.method$x <- data[,covar,drop=F] par.method$y <- data[,"y"] model0 <- do.call("flamCV",par.method) alpha <- model0$alpha lambda <- model0$lambda.cv pred0<- predict(model0$flam.out, new.x =newdata[,covar,drop=F], lambda = lambda, alpha = alpha) } if (method == "novas"){ par.method$COVARIATES<- data[,covar,drop=F] par.method$Responses <- data[,"y"] model0 <- do.call("novas",par.method) pred0<- predict(model0, newdata[,covar,drop=F]) nvar <- edf <- length(model0$model) } if ( method =="cosso") { x0 <- as.matrix(data[,covar,drop=F]) newx0 <- as.matrix(newdata[,covar,drop=F]) if (ncol(x0)==1){ x0<-cbind(x0,1:nrow(x0)) newx0<-cbind(newx0,1:nrow(newx0)) } model0<-do.call("cosso",list("x"=x0,"y"=data[,y],"family"="Gaussian")) xvar<-do.call("predict.cosso", list("object"=model0,"M"=2,"type"="nonzero")) pred0<-do.call("predict.cosso",list("object"=model0,"xnew"=newx0, "M"=2,"type"="fit")) nvar <- length(xvar) edf <-nvar+1 } if (method != "knn" & method != "cosso" & method != "lars" & method != "novas" & method != "glmnet" & method != "flam"){ if (pred) pred0 <- predict(model0, newdata=newdata[,covar,drop=F]) else pred0 <- NULL } return(list(model=model0, xvar=xvar, pred=pred0,edf=edf,nvar=nvar)) }
[ { "title": "Prices of houses in the Netherlands", "href": "http://wiekvoet.blogspot.com/2013/10/prices-of-houses-in-netherlands.html" }, { "title": "Using the booktabs package with Sweave and xtable", "href": "http://cameron.bracken.bz/sweave-xtable-booktabs" }, { "title": "Modern Portfolio Optimization Theory: The idea", "href": "http://programming-r-pro-bro.blogspot.com/2011/11/modern-portfolio-optimization-theory.html" }, { "title": "Tips and Tricks for HTML and R", "href": "http://jaredknowles.com/journal/2012/8/1/tips-and-tricks-for-html-and-r.html" }, { "title": "An Intro to Ensemble Learning in R", "href": "http://viksalgorithms.blogspot.com/2012/01/intro-to-ensemble-learning-in-r.html" }, { "title": "Sensitivity of risk parity to variance differences", "href": "https://feedproxy.google.com/~r/PortfolioProbeRLanguage/~3/aJvAvQ5fwrI/" }, { "title": "Joining R-bloggers", "href": "https://xianblog.wordpress.com/2010/02/19/joining-r-bloggers/" }, { "title": "Raccoon | Ch. 1 – Introduction to Linear Models with R", "href": "http://www.quantide.com/raccoon-ch-1-introduction-to-linear-models-with-r/" }, { "title": "Predicting Titanic deaths on Kaggle V: Ranger", "href": "http://wiekvoet.blogspot.com/2015/09/predicting-titanic-deaths-on-kaggle-v.html" }, { "title": "Build your own Twitter Archive and Analyzing Infrastructure with MongoDB, Java and R [Part 2] [Update]", "href": "http://thinktostart.com/build-your-own-twitter-archive-and-analyzing-infrastructure-with-mongodb-java-and-r-part-2/" }, { "title": "A new Oce coastline", "href": "http://dankelley.github.io//r/2013/12/22/coastline.html" }, { "title": "BioC 2016 Conference Overview and Few Ways of Downloading TCGA Data", "href": "http://r-addict.com/2016/07/22/BioC2016-RTCGA.html" }, { "title": "Project Euler — problem 2", "href": "https://web.archive.org/web/http://ec2-184-73-106-109.compute-1.amazonaws.com/wordpress/?p=37" }, { "title": "Canonical Correlation Analysis for finding patterns in coupled fields", "href": "http://menugget.blogspot.com/2012/03/canonical-correlation-analysis-for.html" }, { "title": "Day "href": "https://web.archive.org/web/http://flyordie.sin.khk.be/2011/04/20/day-27-a-lot-of-graphics-in-one-place/" }, { "title": "Win Your Fantasy Football Snake Draft with this Shiny App in R", "href": "http://fantasyfootballanalyticsr.blogspot.com/2013/08/win-your-fantasy-football-snake-draft.html" }, { "title": "Online course on forecasting using R", "href": "http://robjhyndman.com/hyndsight/revolutionr2013/" }, { "title": "Big Business Backs Hillary: Small Bernie", "href": "http://www.econometricsbysimulation.com/2016/02/big-business-backs-hillary-small-bernie.html" }, { "title": "Cubism Horizon Charts in R", "href": "http://timelyportfolio.blogspot.com/2012/06/cubism-horizon-charts-in-r.html" }, { "title": "Development of a R code to solve a large system of equations with linear constrains", "href": "https://www.r-users.com/jobs/development-of-a-r-code-to-solve-a-large-system-of-equations-with-linear-constrains/" }, { "title": "Rgdal Package: R crash during \"writeGDAL\" solved", "href": "http://ssrebelious.blogspot.com/2012/08/rgdal-crash-solved.html" }, { "title": "Speeding up model bootstrapping in GNU R", "href": "http://rsnippets.blogspot.com/2013/12/speeding-up-model-bootstrapping-in-gnu-r.html" }, { "title": "SPARQL with R in less than 5 minutes", "href": "https://feedproxy.google.com/~r/ProgrammingR/~3/CDuxujjMT3U/" }, { "title": "The Art of R Programming – my two cents", "href": "https://feedproxy.google.com/~r/OneRTipADay/~3/7v5JE8d8QBw/art-of-r-programming-my-two-cents.html" }, { "title": "Case Study: Network visualization with data from a 360° feedback – often wasted potential!", "href": "http://holtmeier.de/network-360/" }, { "title": "Bandit Formulations for A/B Tests: Some Intuition", "href": "http://www.win-vector.com/blog/2014/04/bandit-formulations-for-ab-tests-some-intuition/?utm_source=rss&utm_medium=rss&utm_campaign=bandit-formulations-for-ab-tests-some-intuition" }, { "title": "Modeling Permanent and Gradual Process Changes with CDFs", "href": "http://anythingbutrbitrary.blogspot.com/2012/07/modeling-permanent-and-gradual-process.html" }, { "title": "Draw nicer Classification and Regression Trees with the rpart.plot package", "href": "http://blog.revolutionanalytics.com/2013/06/plotting-classification-and-regression-trees-with-plotrpart.html" }, { "title": "Reading Arduino data directly into R", "href": "http://www.magesblog.com/2015/02/reading-arduino-data-directly-into-r.html" }, { "title": "Data Science Live Book (open source)", "href": "http://blog.datascienceheroes.com/data-science-live-book-open-source/" }, { "title": "R bracket is a bit irregular", "href": "http://www.win-vector.com/blog/2015/01/r-bracket-is-a-bit-irregular/" }, { "title": "Project TIER", "href": "http://citizen-statistician.org/2016/06/25/project-tier/" }, { "title": "New chapters for 50 shades of grey….", "href": "https://longhowlam.wordpress.com/2016/07/27/new-chapters-for-50-shades-of-grey/" }, { "title": "Meielisalp, Mar 2012 – Abstract Submission", "href": "https://www.rmetrics.org/PaperSubmission2012" }, { "title": "2016-10 A transformable markup document format", "href": "http://stattech.wordpress.fos.auckland.ac.nz/2016-10-a-transformable-markup-document-format/" }, { "title": "How to make 3-D graphics from SAS data", "href": "http://blog.revolutionanalytics.com/2011/04/how-to-make-3-d-graphics-from-sas-data.html" }, { "title": "Part 1 of 3: Building/Loading/Scoring Against Predictive Models in R", "href": "http://scottmutchler.blogspot.com/2011/08/part-1-of-3-buildingloadingscoring.html" }, { "title": "The Fourier Transform, explained in one sentence", "href": "http://blog.revolutionanalytics.com/2014/01/the-fourier-transform-explained-in-one-sentence.html" }, { "title": "Have you ever heard about the ‘animation package’?", "href": "http://using-r-project.blogspot.com/2009/08/have-you-ever-heard-about-animation.html" }, { "title": "Benchmarking distance calculation in R", "href": "http://things-about-r.tumblr.com/post/33851672597/benchmarking-distance-calculation-in-r" }, { "title": "R 3.3.0 now available", "href": "http://blog.revolutionanalytics.com/2016/05/r-330-now-available.html" }, { "title": "R Tops Data Mining Software Poll", "href": "http://blog.revolutionanalytics.com/2012/05/r-tops-data-mining-poll.html" }, { "title": "Lomb-Scargle periodogram for unevenly sampled time series", "href": "http://menugget.blogspot.com/2013/01/lomb-scargle-periodogram-for-unevenly.html" }, { "title": "Bio7 Overview Video", "href": "http://bio7.org/?p=2478" }, { "title": "Another crosshairs", "href": "http://adistantobserver.blogspot.com/2012/11/another-crosshairs.html" }, { "title": "Suicide statistics and the Christchurch earthquake", "href": "http://www.quantumforest.com/2012/09/suicide-statistics/" }, { "title": "R Coding Style Guide", "href": "http://www.compbiome.com/2009/08/r-coding-style-guide.html" }, { "title": "The tenure of Doctor Who incarnations", "href": "https://4dpiecharts.com/2013/08/03/the-tenure-of-doctor-who-incarnations/" }, { "title": "Why you should learn R first for data science", "href": "http://sharpsightlabs.com/blog/2015/01/27/learn-r-data-science/" }, { "title": "How to plot three categorical variables and one continuous variable using ggplot2", "href": "http://jeromyanglim.blogspot.com/2012/05/how-to-plot-three-categorical-variables.html" } ]
library('TreeTools') test_that("SplitwiseInfo() / ClusteringInfo() handle probabilities", { Tree <- function (txt) ape::read.tree(text = txt) tree <- Tree('((a, b)60, (c, d)60);') treeP <- Tree('((a, b)0.60, (c, d)0.60);') treeProfile <- list(Tree('((a, b), (c, d));'), Tree('(a, b, c, d);'), Tree('((a, d), (c, b));'))[c(1, 1, 1, 2, 3)] Test <- function (Expect, tree, p = NULL, ...) { Expect(..., SplitwiseInfo(tree, p)) Expect(..., ClusteringInfo(tree, p)) Expect(..., ClusteringEntropy(tree, p)) } Clust <- function (tree, ...) { expect_equal(ClusteringInfo(tree, ..., sum = TRUE), sum(ClusteringInfo(tree, ..., sum = FALSE))) expect_equal(ClusteringEntropy(tree, ..., sum = TRUE), sum(ClusteringEntropy(tree, ..., sum = FALSE))) expect_equal(ClusteringInfo(tree, ...) / NTip(tree), ClusteringEntropy(tree, ...)) } Test(expect_error, tree, TRUE) Test(expect_null, tree = NULL) expect_gt(SplitwiseInfo(tree), SplitwiseInfo(tree, 100)) expect_gt(ClusteringInfo(tree), ClusteringInfo(tree, 100)) expect_gt(ClusteringEntropy(tree), ClusteringEntropy(tree, 100)) expect_equal(SplitwiseInfo(tree), SplitwiseInfo(tree, p = FALSE)) expect_equal(ClusteringInfo(tree), ClusteringInfo(tree, p = FALSE)) expect_equal(ClusteringEntropy(tree), ClusteringEntropy(tree, p = FALSE)) expect_equal(0, SplitwiseInfo(tree, 60 * 3), tolerance = sqrt(.Machine$double.eps)) expect_equal(1 / 3, Clust(tree, 60 * 3)) p <- 1.0 * c(1, 0, 0) + 0.0 * c(0, 1/2, 1/2) expect_equal(log2(3), SplitwiseInfo(tree)) expect_equal(1, Clust(tree)) p <- 0.6 * c(1, 0, 0) + 0.4 * c(0, 1/2, 1/2) expect_equal(sum(p), 1) expectation <- log2(3) + sum(p * log2(p)) expect_equal(expectation, SplitwiseInfo(tree, 100)) expect_equal(0.6, Clust(tree, 100)) expect_equal(SplitwiseInfo(tree, 100), SplitwiseInfo(treeP, TRUE)) expect_equal(Clust(tree, 100), Clust(treeP, TRUE)) expect_equal(SplitwiseInfo(tree, 100), ConsensusInfo(treeProfile, 'p')) expect_equal(ClusteringInfo(tree, 100), ConsensusInfo(treeProfile, 'c')) expect_equal(SplitwiseInfo(Tree('(a, b, (c, (d, e)0.8)0.75);'), TRUE), SplitwiseInfo(Tree('(a, b, (c, d, e)0.75);'), TRUE) + SplitwiseInfo(Tree('(a, b, c, (d, e)0.8);'), TRUE)) expect_equal(Clust(Tree('(a, b, (c, (d, e)0.8)0.75);'), TRUE), Clust(Tree('(a, b, (c, d, e)0.75);'), TRUE) + Clust(Tree('(a, b, c, (d, e)0.8);'), TRUE)) expect_equal(SplitwiseInfo(Tree('(a, b, (c, (d, e)0.8)0.75);'), TRUE), SplitwiseInfo(Tree('(a, b, (c, (d, e)));'), c(0.75, 0.8))) expect_equal(Clust(Tree('(a, b, (c, (d, e)0.8)0.75);'), TRUE), Clust(Tree('(a, b, (c, (d, e)));'), c(0.75, 0.8))) expect_equal(SplitwiseInfo(Tree('(a, b, (c, (d, e)0.8));'), TRUE), SplitwiseInfo(Tree('(a, b, (c, (d, e)));'), c(1, 0.8))) expect_equal(Clust(Tree('(a, b, (c, (d, e)0.8));'), TRUE), Clust(Tree('(a, b, (c, (d, e)));'), c(1, 0.8))) expect_equal(SplitwiseInfo(Tree('(a, b, (c, (d, e)));')), SplitwiseInfo(Tree('(a, b, (c, (d, e)));'), TRUE)) expect_equal(Clust(Tree('(a, b, (c, (d, e)));')), Clust(Tree('(a, b, (c, (d, e)));'), TRUE)) expect_equal(SplitwiseInfo(Tree('(a, b, (c, (d, e)));'), TRUE), SplitwiseInfo(Tree('(a, b, (c, (d, e)));'), c(1, 1))) expect_equal(Clust(Tree('(a, b, (c, (d, e)));'), TRUE), Clust(Tree('(a, b, (c, (d, e)));'), c(1, 1))) }) test_that("SplitwiseInfo() / ClusteringInfo(sum = FALSE)", { splits <- as.Splits(BalancedTree(8)) Test <- function (x) { expect_equal(length(x), length(splits)) expect_equal(names(x), names(splits)) } p <- c(1, 1, 0.5, 0.6, 0.7) Test(SplitwiseInfo(BalancedTree(8), sum = FALSE)) Test(SplitwiseInfo(BalancedTree(8), p = p, sum = FALSE)) Test(ClusteringInfo(BalancedTree(8), sum = FALSE)) Test(ClusteringInfo(BalancedTree(8), p = p, sum = FALSE)) }) test_that("SplitwiseInfo() can't be improved by dropping resolved tip", { b8With <- as.Splits(c(T, T, T, T, F, F, F, F)) b8Without <- as.Splits(c(T, T, T, F, F, F, F)) i8With <- as.Splits(c(T, T, T, T, T, T, F, F)) i8Without <- as.Splits(c(T, T, T, T, T, F, F)) expect_lt(SplitwiseInfo(b8With, p = 0.5), SplitwiseInfo(b8Without)) expect_lt(SplitwiseInfo(i8With, p = 0.5), SplitwiseInfo(i8Without)) balancedWithout <- BalancedTree(32) balancedWith <- AddTip(balancedWithout, 32) p <- double(30) + 1 p[c(58, 62, 64, 65) - 35] <- 0.5 expect_lt(SplitwiseInfo(balancedWith, p = p), SplitwiseInfo(balancedWithout)) }) test_that('ClusteringInfo() method works', { trees <- list(BalancedTree(8), PectinateTree(8)) expect_equal(vapply(trees, ClusteringInfo, 0), ClusteringInfo(structure(trees, class = 'multiPhylo'))) expect_equal(vapply(trees, ClusteringInfo, 0), ClusteringInfo(trees)) trees <- list(RandomTree(8), BalancedTree(8), PectinateTree(8)) cons <- consensus(lapply(trees, RootTree, 1), p = 0.5) p <- SplitFrequency(cons, trees) / length(trees) expect_equal(SplitwiseInfo(cons, p), ConsensusInfo(trees, 'spic')) expect_equal(ClusteringInfo(cons, p), ConsensusInfo(trees, 'scic')) }) test_that("ConsensusInfo() is robust", { trees <- list(ape::read.tree(text = '(a, (b, (c, (d, (e, X)))));'), ape::read.tree(text = '((a, X), (b, (c, (d, e))));')) expect_equal(0, ConsensusInfo(trees, 'cl')) expect_error(ConsensusInfo(trees, 'ERROR')) expect_equal(ConsensusInfo(trees[1]), ConsensusInfo(trees[[1]])) }) test_that("ConsensusInfo() generates correct value", { trees <- list(ape::read.tree(text = "((a, b), (c, d));"), ape::read.tree(text = "((a, c), (b, d));"), ape::read.tree(text = "((a, d), (c, b));")) expect_equal(0, ConsensusInfo(trees)) expect_equal(0, ConsensusInfo(trees, 'cl')) expect_equal(log2(3), ConsensusInfo(trees[1])) expect_equal(4, ConsensusInfo(trees[1], 'cl')) expect_equal(log2(3), ConsensusInfo(trees[c(1, 1)])) expect_equal(4, ConsensusInfo(trees[c(1, 1)], 'cl')) expect_equal(Entropy(c(1, 1, 1) / 3) - Entropy(c(1/2, 1/2, 9)/10), ConsensusInfo(trees[c(rep(1, 9), 2)])) })
context("get planes") test_that("standard get_planes", { skip_on_cran() skip_if_offline() skip_on_os("windows") planes_ <- get_planes(2018) }) test_that("get_planes joined to nycflights13", { skip_on_cran() skip_if_offline() skip_on_os("windows") planes_ <- get_planes(2013, flights_data = nycflights13::flights) planes_orig <- nycflights13::planes expect_equal(ncol(planes_), ncol(planes_orig)) expect_equal(colnames(planes_), colnames(planes_orig)) expect_equal(purrr::map(planes_, class) %>% unlist(), purrr::map(planes_orig, class) %>% unlist()) })
add_igos <- function(data) { if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type == "dyad_year") { if (!all(i <- c("ccode1", "ccode2") %in% colnames(data))) { stop("add_igos() merges on two Correlates of War codes (ccode1, ccode2), which your data don't have right now. Make sure to run create_dyadyears() at the top of the pipe. You'll want the default option, which returns Correlates of War codes.") } else { cow_igo_ndy %>% rename(ccode1 = .data$ccode2, ccode2 = .data$ccode1) %>% bind_rows(cow_igo_ndy, .) %>% left_join(data, .) -> data return(data) } } else if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type == "state_year") { if (!all(i <- c("ccode") %in% colnames(data))) { stop("add_igos() merges on the Correlates of War code, which your data don't have right now. Make sure to run create_stateyears() at the top of the pipe. You'll want the default option, which returns Correlates of War codes.") } else { cow_igo_sy %>% left_join(data, .) -> data return(data) } } else { stop("add_igos() requires a data/tibble with attributes$ps_data_type of state_year or dyad_year. Try running create_dyadyears() or create_stateyears() at the start of the pipe.") } return(data) }
.mult.test <- function(y1, y2, perm.num) { y1.num <- nrow(y1) y <- rbind(y1, y2) y.num <- nrow(y) t.obs <- .hote(y1, y2, FALSE)$t.obs stat.perm <- vector("numeric", perm.num) for (i in 1:perm.num) { ind <- sample(y.num) y1.perm <- y[ind[1:y1.num],] y2.perm <- y[ind[(y1.num+1):y.num],] stat.perm[i] <- .hote(y1.perm, y2.perm, FALSE)$t.obs } alpha.obs <- sum(stat.perm >= t.obs) / perm.num list(alpha.obs=alpha.obs, t.obs=t.obs) }
streamParserClose <- function(stream) stream$streamParserClose(stream)
XML4R2list <- function(file){ if(!file.exists(file)) stop(paste0("'", file, "' does not exist.")) read_lines <- readLines(file) if(sum(grepl('(>)', read_lines)) == 0) return(read_lines) read_lines <- paste(read_lines, collapse="\n") read_lines <- gsub('(>)([[:print:]])', '\\1\n\\2', read_lines) read_lines <- gsub('([[:print:]])(</)', '\\1\n\\2', read_lines) lines <- strsplit(x=read_lines, split="\n")[[1]] lines <- gsub("^[\t]*", "", lines) lines <- lines[lines != ""] object_type <- 'vector' enclosing_tag_added <- FALSE if(sum(grepl('(<)', lines[1:2])) < 2){ lines <- c('<enclose_all type=list >', lines) lines <- c(lines, '</enclose_all>') enclosing_tag_added <- TRUE } read_xml_lines <- XML4R2listLines(lines) if(enclosing_tag_added){ rlist <- read_xml_lines$rlist }else{ rlist <- list(read_xml_lines$rlist) names(rlist)[1] = read_xml_lines$obj.name } rlist }
core_advanced_search <- function(..., page = 1, limit = 10, key = NULL, parse = TRUE, .list = list()) { assert(page, c('numeric', 'integer')) assert(limit, c('numeric', 'integer')) must_be(limit) qrs <- list(...) if (length(qrs) == 0) qrs <- NULL qrs <- c(qrs, .list) queries <- create_batch_query_list(qrs, page, limit) res <- core_POST(path = "search", key, NULL, queries) core_parse(res, parse) } acceptable_advanced_filters <- c( "title", "description", "fullText", "authors", "publisher", "repositories.id", "repositories.name", "doi", "oai", "identifiers", "language.name", "year", "repositoryDocument.metadataUpdated" ) core_query <- function(..., op = "AND") { x <- list(...) if (length(x) == 0) stop("no queries passed") x <- x[which(names(x) %in% acceptable_advanced_filters)] out <- c() for (i in seq_along(x)) { out[i] <- paste0(names(x)[i], ":", x[[i]]) } paste(out, collapse = sprintf(" %s ", op)) }
context("is.keyvalue") test_that("is.keyvalue11", { expect_false(is.keyvalue11(snomed)) expect_true(is.keyvalue11(kon)) })
`plot.corres` <- function(x, main="", addcol=TRUE, extreme=0, rcex=1, rcol=1, rlabels="", stretch=1.4, ccex = 1, ccol = 2, clabels="", ...) { if (!is(x, "corres")) stop("argument should be a correspondence object") dat = x@data$origOut xlimit = range(dat$rproj[,1])*stretch ylimit = range(dat$rproj[,2])*stretch graphics::plot(dat$rproj[,1], dat$rproj[,2], type="n", xlim=xlimit, ylim=ylimit, xlab=paste("Factor 1 (", round(x@data$eigenrates[1]/10, 1), " %)", sep=""), ylab=paste("Factor 2 (", round(x@data$eigenrates[2]/10, 1), " %)", sep="")) graphics::lines(c(max(dat$rproj[,1]), min(dat$rproj[,1])), c(0,0)) graphics::lines(c(0,0), c(max(dat$rpro[,2]), min(dat$rproj[,2]))) if (!(main == "")) graphics::mtext(main, 3, 1) if (length(rcol) == 1 ) rcol = rep(1, nrow(dat$rproj)) if (length(rlabels)==1) rlabels = rownames(x@data$input) graphics::text(dat$rproj[,1], dat$rproj[,2], rlabels, cex=rcex, col=rcol) if (addcol) { if (length(clabels)==1) clabels = colnames(x@data$input) if (extreme > 0) { x = data.frame(dat$cproj[,1:2]) extremes = apply(x, 2, stats::quantile, c(extreme, 1-extreme)) Accept = as.factor((x[,2] < extremes[1,2] | x[,2] > extremes[2,2])| (x[,1] < extremes[1,1] | x[,1] > extremes[2,1])) graphics::text(x[Accept==TRUE,1], x[Accept==TRUE,2], clabels[Accept==TRUE], font=2, cex=ccex, col=ccol) } else { graphics::text(dat$cproj[,1], dat$cproj[,2], clabels, font=2, cex=ccex, col=ccol) } } }
"data"
remove.spaces<-function (charvec) { charvec <- gsub("^([[:blank:]]*)([[:space:]]*)", "", charvec) charvec <- gsub("([[:blank:]]*)([[:space:]]*)$", "", charvec) return(charvec) } my.read.genepop<-function (file, ncode = 2L, quiet = FALSE) { if (!quiet) cat("\nParsing Genepop file...\n\n") prevcall <- match.call() txt <- scan(file, sep = "\n", what = "character", quiet = TRUE) if (!quiet) cat("\nFile description: ", txt[1], "\n") txt <- txt[-1] txt <- gsub("\t", " ", txt) locinfo.idx <- 1:(min(grep("POP", toupper(txt))) - 1) locinfo <- txt[locinfo.idx] locinfo <- paste(locinfo, collapse = ",") loc.names <- unlist(strsplit(locinfo, "([,]|[\n])+")) loc.names <- remove.spaces(loc.names) nloc <- length(loc.names) txt <- txt[-locinfo.idx] pop.idx <- grep("POP", toupper(txt)) npop <- length(pop.idx) nocomma <- which(!(1:length(txt)) %in% grep(",", txt)) splited <- nocomma[which(!nocomma %in% pop.idx)] if (length(splited) > 0) { for (i in sort(splited, decreasing = TRUE)) { txt[i - 1] <- paste(txt[i - 1], txt[i], sep = " ") } txt <- txt[-splited] } pop.idx <- grep("POP", toupper(txt)) txt[length(txt) + 1] <- "POP" pops<-txt[pop.idx] nind<-diff(c(pop.idx,length(txt)))-1 if(pops[1] == "POP"){ for(i in 1:length(pops)){ pops[i]<-paste("POP ",i,sep="") } } popinfo<-as.vector(unlist(apply(cbind( as.character(pops),as.numeric(nind)), 1,function(x){ rep(x[1],x[2])}))) txt <- txt[-c(pop.idx, length(txt))] temp <- sapply(1:length(txt), function(i) strsplit(txt[i], ",")) ind.names <- sapply(temp, function(e) e[1]) ind.names <- remove.spaces(ind.names) vec.genot <- sapply(temp, function(e) e[2]) vec.genot <- remove.spaces(vec.genot) X <- matrix(unlist(strsplit(vec.genot, "[[:space:]]+")), ncol = nloc, byrow = TRUE) rownames(X) <- 1:nrow(X) colnames(X) <- loc.names res<-data.frame(popinfo,ind.names,X) if (!quiet) cat("\n...done.\n\n") return(res) } allele.counts<-function(genotypes){ obs.gen<-summary(as.factor(genotypes)) obs.gen<-obs.gen[names(obs.gen) != "000000" & names(obs.gen) != "0000" & names(obs.gen) != "0"] if(nchar(names(obs.gen[1])) %% 2 == 0){ splitnum<-nchar(names(obs.gen[1]))/2 allele.names<-levels(as.factor(c(substr(names(obs.gen),1,splitnum), substr(names(obs.gen),splitnum+1,nchar(names(obs.gen[1])))))) alleles<-cbind(substr(genotypes,1,splitnum), substr(genotypes,splitnum+1,nchar(names(obs.gen[1])))) alleles<-alleles[alleles != "0" & alleles != "00" & alleles != "000" & alleles!= "0000" & alleles != "00000" & alleles != "000000"] } else { allele.names<-levels(as.factor(names(obs.gen))) alleles<-cbind(genotypes,genotypes) alleles<-alleles[alleles != "0" & alleles != "00" & alleles != "000" & alleles!= "0000" & alleles != "00000" & alleles != "000000"] } obs<-summary(as.factor(alleles)) if(length(obs) < length(allele.names)){ num.missing<-length(allele.names[!(allele.names%in% names(obs))]) AlleleCounts<-c(obs,rep(0,num.missing)) names(AlleleCounts)<-c(names(obs)[names(obs) %in% allele.names], allele.names[!(allele.names%in% names(obs))]) }else{ AlleleCounts<-obs } AlleleCounts<-AlleleCounts[order(names(AlleleCounts))] return(AlleleCounts) } calc.allele.freq<-function(genotypes){ counts<-allele.counts(genotypes) obs.af<-counts/sum(counts) return(obs.af) } calc.exp.het<-function(af){ ht<-2*af[1]*(1-af[1]) return(ht) } calc.fst<-function(df,i){ df.split<-split(df[,i],df[,1]) af<-do.call("rbind",lapply(df.split,calc.allele.freq)) hexp<-apply(af,1,calc.exp.het) hs<-mean(hexp) pbar<-mean(af[,1]) ht<-2*pbar*(1-pbar) fst<-1-(hs/ht) return(c(ht,fst)) } var.fst<-function(df,i){ df.split<-split(df[,i],df[,1]) N<-length(df.split) af<-do.call("rbind",lapply(df.split,calc.allele.freq)) pbar<-mean(af[,1]) vp<-(af[,1]-pbar)^2 varp<-(1/N)*sum(vp) fst<-(varp/(pbar*(1-pbar)))-(1/(2*N)) ht<-2*pbar*(1-pbar) return(c(ht,fst)) } calc.theta<-function(df,i){ df.split<-split(df[,i],df[,1]) N<-length(df.split) af<-do.call("rbind",lapply(df.split,calc.allele.freq)) pbar<-mean(af[,1]) vp<-(af[,1]-pbar)^2 ns<-unlist(lapply(df.split,length)) nbar<-mean(unlist(lapply(df.split,length))) s2a<-(1/((N-1)*nbar))*sum(vp) nc<-(1/(N-1))*(sum(ns)-(sum(ns^2)*(1/sum(ns)))) T1<-s2a-((1/(nbar-1))*((pbar*(1-pbar))-((N-1)/N)*s2a)) T2<-((nc-1)/(nbar-1))*(pbar*(1-pbar))+(s2a/N)*(1+(((N-1)*(nbar-nc))/(nbar-1))) theta<-T1/T2 return(c(T2,theta)) } calc.betahat<-function(df,i){ df.split<-split(df[,i],df[,1]) r<-length(df.split) M<-mean(unlist(lapply(df.split,length))) af<-do.call("rbind",lapply(df.split,calc.allele.freq)) Y<-sum(af[,1])*sum(af[,1])+sum(1-af[,1])*sum(1-af[,1]) X<-sum(af[,1]^2)+sum((1-af[,1])^2) F0<-((2*M*X)-r)/(((2*M)-1)*r) F1<-((Y-X)/(r*(r-1))) HB<-1-F1 betahat<-(F0-F1)/HB return(c(HB,betahat)) } calc.weighted.fst<-function(df,i){ df.split<-split(df[,i],df[,1]) af<-do.call("rbind",lapply(df.split,calc.allele.freq)) hexp<-apply(af,1,calc.exp.het) ns<-unlist(lapply(df.split,length)) hs<-sum(hexp*ns)/sum(ns) ht<-calc.exp.het(calc.allele.freq(df[,i])) fst<-(ht-hs)/ht return(c(ht,fst)) } fst.boot.onecol<-function(df,fst.choice){ fst.options<-c("FST","Fst","fst","var","VAR","Var","theta","Theta","THETA", "Betahat","BETAHAT","betahat") if(!(fst.choice %in% fst.options)) { stop("Fst choice not an option. Use fst.options.print() to see options.")} col<-sample(3:ncol(df),1) if(fst.choice %in% c("Fst","FST","fst")){ ht.fst<-calc.fst(df,col) } if(fst.choice %in% c("VAR","var","Var")){ ht.fst<-var.fst(df,col) } if(fst.choice %in% c("Theta","theta","THETA")){ ht.fst<-calc.theta(df,col) } if(fst.choice %in% c("betahat","BETAHAT","Betahat")){ ht.fst<-calc.betahat(df,col) } return(ht.fst) } fst.options.print<-function(){ print("For Wright's Fst: fst, FST, Fst",quote=F) print("For a variance-based Fst (beta): var, VAR, Var",quote=F) print("For Cockerham and Weir's Theta: theta, Theta, THETA", quote=F) print("For Beta-hat (LOSITAN): Betahat, betahat, BETAHAT",quote=F) } make.bins<-function(fsts,num.breaks=25, Ht.name="Ht", Fst.name="Fst",min.per.bin=20) { breaks<-hist(fsts[,Ht.name],breaks=(num.breaks/2),plot=F)$breaks low.breaks<-breaks[1:(length(breaks)-1)] upp.breaks<-breaks[2:length(breaks)] br.rate<-breaks[2]-breaks[1] newbreaks<-breaks-(br.rate/2) low.breaks<-c(low.breaks,newbreaks[1:(length(breaks)-1)]) upp.breaks<-c(upp.breaks,newbreaks[2:length(breaks)]) bins<-data.frame(low.breaks=sort(low.breaks),upp.breaks=sort(upp.breaks)) bins<-bins[bins[,1]>=0 & bins[,2]>=0,] mids<-apply(bins,1,mean) bin.fst<-apply(bins, 1, function(x){ out<-fsts[fsts[,Ht.name] > x[1] & fsts[,Ht.name] < x[2],Fst.name] }) names(bin.fst)<-bins$upp.breaks rmvec<-NULL for(i in 1:(length(bin.fst)-1)){ if(length(bin.fst[[i]]) < min.per.bin){ bin.fst[[(i+1)]]<-c(bin.fst[[i]],bin.fst[[(i+1)]]) rmvec<-c(rmvec,i) } if((i+1)==length(bin.fst)){ if(length(bin.fst[[i+1]]) < min.per.bin){ bin.fst[[i]]<-c(bin.fst[[i]],bin.fst[[(i+1)]]) rmvec<-c(rmvec,(i+1)) } } } if(!is.null(rmvec)){ bin.fst<-bin.fst[-rmvec] } bin.fst<-lapply(bin.fst,sort) for(i in 1:length(rmvec)){ bins[(rmvec[i]+1),1]<-bins[rmvec[i],1] } if(!is.null(rmvec)){ bins<-bins[-rmvec,] } return(list(bins=bins,bin.fst=bin.fst)) } find.quantiles<-function(bins, bin.fst, ci=0.05) { fst.CI<-list() for(j in 1:length(ci)){ ci.min<-(ci[j]/2) ci.max<-1-(ci[j]/2) fstCI<-lapply(bin.fst, function(x){ keep.fst<-x[round(length(x)*ci.min):round(length(x)*ci.max)] if(length(keep.fst)>0){ fst.thresh<-c(min(keep.fst),max(keep.fst)) names(fst.thresh)<-c("Low","Upp") } else{ fst.thresh<-c("","") names(fst.thresh)<-c("Low","Upp") } return(fst.thresh) }) ci.name<-paste("CI",(1-ci[j]),sep="") cis<-data.frame(do.call(rbind,fstCI)) cis$UppHet<-as.numeric(rownames(cis)) cis<-apply(cis,c(1,2),round,3) bins<-apply(bins,c(1,2),round,3) cis<-merge(cis,bins,by.x="UppHet",by.y="upp.breaks",keep=T) fst.CI[[j]]<-data.frame(Low=cis$Low,Upp=cis$Upp,LowHet=cis$low.breaks,UppHet=cis$UppHet) names(fst.CI)[j]<-ci.name } return(fst.CI) } fst.boot<-function(df, fst.choice="fst", ci=0.05,num.breaks=25,bootstrap=TRUE,min.per.bin=20){ fst.options<-c("FST","Fst","fst","var","VAR","Var","theta","Theta","THETA", "Betahat","BETAHAT","betahat") if(!(fst.choice %in% fst.options)) { stop("Fst choice not an option. Use fst.options.print() to see options.")} nloci<-(ncol(df)-2) if(bootstrap == TRUE) { boot.out<-as.data.frame(t(replicate(nloci, fst.boot.onecol(df,fst.choice)))) colnames(boot.out)<-c("Ht","Fst") boot.out$Fst[boot.out$Fst=="NaN"]<-0 print("Bootstrapping done. Now Calculating CIs") } else{ boot.out<-calc.actual.fst(df,fst.choice) rownames(boot.out)<-boot.out$Locus boot.out<-data.frame(cbind(as.numeric(boot.out$Ht),as.numeric(boot.out$Fst))) colnames(boot.out)<-c("Ht","Fst") boot.out$Fst[boot.out$Fst=="NaN"]<-0 print("Fsts calculated. Now Calculating CIs") } boot.out<-as.data.frame(boot.out[order(boot.out$Ht),]) bins<-make.bins(boot.out,num.breaks,min.per.bin=min.per.bin) fst.CI<-find.quantiles(bins$bins,bins$bin.fst,ci) return(list(Fsts=boot.out,Bins=bins$bins,fst.CI)) } fst.boot.means<-function(boot.out){ all.boot<-data.frame( Ht=unlist(lapply(boot.out$Fsts, function(x) { out<-x$Ht; return(out) })), Fst=unlist(lapply(boot.out$Fsts, function(x) { out<-x$Fst; return(out) }))) breaks<-boot.out$Bins[[1]] bmu<-t(apply(breaks,1,function(x){ x.ht<-all.boot[all.boot$Ht >= x[1] & all.boot$Ht <= x[2],"Ht"] x.fst<-all.boot[all.boot$Ht >= x[1] & all.boot$Ht <= x[2],"Fst"] x.fh<-c(mean(x.ht),mean(x.fst),length(x.ht)) return(x.fh) })) bmu<-data.frame(bmu[,1],bmu[,2],bmu[,3],breaks[,1],breaks[,2]) colnames(bmu)<-c("Ht","Fst","Num","LowBin","UppBin") return(bmu) } p.boot<-function(actual.fsts, boot.out=NULL,boot.means=NULL){ if(is.null(boot.out) & is.null(boot.means)) { stop("You must provide either bootstrapping output or bootstrap means") } if(class(boot.out[[2]])=="data.frame"){ stop("Can only calculate p-values if bootstrapping was run more than once.") } if(is.null(boot.means)){ boot.means<-fst.boot.means(boot.out) } boot.means$real.means<-apply(boot.means,1,function(x){ rmu<-mean(as.numeric(actual.fsts[ as.numeric(actual.fsts$Ht) >= as.numeric(x[4]) & as.numeric(actual.fsts$Ht) <= as.numeric(x[5]),"Fst"]),na.rm=T) return(rmu) }) boot.means$unitsaway<-abs(boot.means$real.means - boot.means$Fst) boot.means$low<-boot.means$Fst-boot.means$unitsaway boot.means$upp<-boot.means$Fst+boot.means$unitsaway pvals<-unlist(apply(actual.fsts,1, function(x){ bin<-boot.means[ as.numeric(boot.means$LowBin) <= as.numeric(x["Ht"]) & as.numeric(boot.means$UppBin) >= as.numeric(x["Ht"]),] fsts.in.bin<-apply(bin,1,function(y){ actual.fsts[actual.fsts$Ht >= as.numeric(y["LowBin"] ) & actual.fsts$Ht <= as.numeric(y["UppBin"]),] }) unitsaway<-apply(bin,1,function(y){ abs(as.numeric(x["Fst"]) - as.numeric(y["Fst"])) }) low<-apply(bin,1,function(y){ as.numeric(y["Fst"]) - as.numeric(unitsaway) }) upp<-apply(bin,1,function(y){ as.numeric(y["Fst"]) + as.numeric(unitsaway) }) n<-lapply(fsts.in.bin, nrow) p<-NULL if(length(fsts.in.bin)>0){ for(i in 1:length(fsts.in.bin)){ p[i]<-(nrow(fsts.in.bin[[i]][as.numeric(fsts.in.bin[[i]]$Fst) < as.numeric(low[i]),]) + nrow(fsts.in.bin[[i]][as.numeric(fsts.in.bin[[i]]$Fst) > as.numeric(upp[i]),]))/as.numeric(n[i]) } p<-max(p) }else{ p<-NA print("No bins found. Were actual.fsts and boot.out/boot.means calculated with the same Fst method?") } return(p) })) names(pvals)<-actual.fsts$Locus return(pvals) } ci.means<-function(boot.out.list){ if(class(boot.out.list)=="list" & length(boot.out.list) > 1) { boot.ci<-as.data.frame(do.call(rbind, lapply(boot.out.list,function(x){ y<-as.data.frame(x[[1]]) return(y) }))) } else { boot.ci<-as.data.frame(boot.out.list[[1]]) } colnames(boot.ci)<-c("Low","Upp","LowHet","UppHet") avg.cil<-tapply(boot.ci[,1],boot.ci$UppHet,mean) avg.ciu<-tapply(boot.ci[,2],boot.ci$UppHet,mean) low.het<-tapply(boot.ci$LowHet,boot.ci$UppHet,mean) return(data.frame(low=avg.cil,upp=avg.ciu, LowHet=low.het, UppHet=as.numeric(levels(as.factor(boot.ci$UppHet))))) } plotting.cis<-function(df,boot.out=NULL,ci.df=NULL,sig.list=NULL,Ht.name="Ht",Fst.name="Fst", ci.col="red", pt.pch=1,file.name=NULL,sig.col=ci.col,make.file=TRUE) { if(is.null(boot.out) & is.null(ci.df)){ stop("Must provide bootstrap output or a list of CI values") } else if(is.null(ci.df)){ avg.ci<-ci.means(boot.out[[3]]) } else { avg.ci<-ci.df } if(make.file==TRUE){ if(!is.null(file.name)) { png(file.name,height=8,width=9,units="in",res=300) } else { png("OutlierLoci.png",height=8,width=9,units="in",res=300) } } x.max<-round(as.numeric(max(df[,Ht.name]))+0.1,1) plot(df[,Ht.name],df[,Fst.name],xlab="",ylab="",las=1,pch=pt.pch,axes=F, xlim=c(0,x.max)) axis(1,pos=0,at=seq(0,x.max,0.1)) axis(2,pos=0,las=1) mtext(expression(italic(F)["ST"]),2,line=2.5) mtext(expression(italic(H)["T"]),1,line=2.5) if(!is.null(sig.list)){ points(df[df[,1] %in% sig.list,Ht.name],df[df[,1] %in% sig.list,Fst.name],col=sig.col,pch=pt.pch) } points(avg.ci$LowHet,avg.ci$low,type="l",col=ci.col) points(avg.ci$UppHet,avg.ci$upp,type="l",col=ci.col) if(make.file==TRUE) dev.off() } find.outliers<-function(df,boot.out,ci.df=NULL,file.name=NULL){ if(is.null(boot.out) & is.null(ci.df)){ stop("Must provide bootstrap output or a list of CI values") } else if(is.null(ci.df)){ ci.df<-ci.means(boot.out[[3]]) } if(class(boot.out[[2]])=="list"){ bin<-boot.out[[2]][[1]] } if(class(boot.out[[2]])=="data.frame"){ bin<-boot.out[[2]] } actual.bin<-apply(ci.df, 1, function(x){ out<-df[df$Ht >= x["LowHet"] & df$Ht < x["UppHet"],] }) out<-NULL for(i in 1:nrow(ci.df)){ out<-rbind(out,actual.bin[[i]][ as.numeric(actual.bin[[i]]$Fst) < as.numeric(ci.df[i,"low"]) | as.numeric(actual.bin[[i]]$Fst)> as.numeric(ci.df[i,"upp"]),]) } out<-out[!duplicated(out$Locus),] if(!is.null(file.name)){ write.csv(out,paste(file.name,".csv",sep="")) } return(out) } calc.actual.fst<-function(df, fst.choice="fst"){ fst.options<-c("FST","Fst","fst","var","VAR","Var","theta","Theta","THETA", "Betahat","BETAHAT","betahat") if(!(fst.choice %in% fst.options)) { stop("Fst choice not an option. Use fst.options.print() to see options.")} fsts<-data.frame(Locus=character(),Ht=numeric(),Fst=numeric(), stringsAsFactors=F) if(fst.choice %in% c("Fst","FST","fst")){ for(i in 3:ncol(df)){ fsts[i-2,]<-c(colnames(df)[i],calc.fst(df,i)) } } if(fst.choice %in% c("VAR","var","Var")){ for(i in 3:ncol(df)){ fsts[i-2,]<-c(colnames(df)[i],var.fst(df,i)) } } if(fst.choice %in% c("Theta","theta","THETA")){ for(i in 3:ncol(df)){ fsts[i-2,]<-c(colnames(df)[i],calc.theta(df,i)) } } if(fst.choice %in% c("betahat","BETAHAT","Betahat")){ for(i in 3:ncol(df)){ fsts[i-2,]<-c(colnames(df)[i],calc.betahat(df,i)) } } fsts<-data.frame(Locus=as.character(fsts$Locus),Ht=as.numeric(fsts$Ht),Fst=as.numeric(fsts$Fst), stringsAsFactors=F) return(fsts) } fhetboot<-function(gpop, fst.choice="fst",alpha=0.05,nreps=10){ fsts<-calc.actual.fst(gpop,fst.choice) boot.out<-as.data.frame(t(replicate(nreps, fst.boot(gpop,fst.choice)))) boot.pvals<-p.boot(fsts,boot.out=boot.out) boot.cor.pvals<-p.adjust(boot.pvals,method="BH") boot.sig<-boot.cor.pvals[boot.cor.pvals <= alpha] plotting.cis(fsts,boot.out,make.file=F,sig.list=names(boot.sig),pt.pch = 19) outliers<-find.outliers(fsts,boot.out) fsts$P.value<-boot.pvals fsts$Corr.P.value<-boot.cor.pvals fsts$Outlier<-FALSE fsts[fsts$Locus %in% outliers$Locus,"Outlier"]<-TRUE return(fsts) } fsthet<-function(gpop, fst.choice="fst",alpha=0.05){ fsts<-calc.actual.fst(gpop,fst.choice) quant.out<-as.data.frame(t(replicate(1, fst.boot(gpop,fst.choice=fst.choice,ci=alpha,bootstrap=FALSE)))) plotting.cis(fsts,quant.out,make.file=F,pt.pch = 19) outliers<-find.outliers(fsts,quant.out) fsts$Outlier<-FALSE fsts[fsts$Locus %in% outliers$Locus,"Outlier"]<-TRUE return(fsts) }
RRglmGOF <- function(RRglmOutput, doPearson = TRUE, doDeviance = TRUE, doHlemeshow = TRUE, hlemeshowGroups = 10, rm.na = TRUE) { pearson <- list(do = doPearson, obs = NULL, exp = NULL, res = NULL, stat = NA, pvalue = NA, df = NA, nGroup = NA) deviance <- list(do = doDeviance, obs = NULL, exp = NULL, res = NULL, stat = NA, pvalue = NA, df = NA, nGroup = NA) hlemeshow <- list(do = doHlemeshow, stat = NA, pvalue = NA, df = NA, overview = NULL, nGroup = hlemeshowGroups) vars <- all.vars(RRglmOutput$formula) df.work <- data.frame(y.obs = RRglmOutput$model[, vars[1]], RRglmOutput$model[, vars[2:length(vars)]]) y.fitted.tmp <- RRglmOutput$fitted.values if (rm.na) { df.work <- na.omit(df.work) y.fitted.tmp <- na.omit(y.fitted.tmp) } df.work <- data.frame(y.fitted = y.fitted.tmp, df.work) if (doPearson || doDeviance) { df.x <- data.frame(df.work[, 3:ncol(df.work)]) factor.groups <- getUniqueGroups(df.x) nGroup <- length(levels(factor.groups)) pearson$nGroup <- nGroup deviance$nGroup <- nGroup nParam <- length(RRglmOutput$coeff) if(nGroup <= nParam) { cat("The Pearson Fit statistic is defined for an unsaturated model","\n") cat("The number of unique groups should be higher than the number of estimated parameters","\n") } else { vec.pihat <- getCellMeans(y = df.work$y.fitted, factor.groups = factor.groups) vec.prophat <- getCellMeans(y = df.work$y.obs, factor.groups = factor.groups) vec.groupN <- getCellSizes(n = length(df.work$y.obs), factor.groups = factor.groups) if (doPearson) { pearson$obs <- vec.prophat pearson$exp <- vec.pihat pearson$res <- (vec.prophat - vec.pihat) / sqrt(vec.pihat * (1 - vec.pihat) / vec.groupN) pearson$stat <- sum(vec.groupN * (((vec.prophat - vec.pihat)^2) / (vec.pihat * (1 - vec.pihat)))) pearson$df <- nGroup - nParam pearson$pvalue = 1 - pchisq(pearson$stat, df = pearson$df) } if (doDeviance) { vec.prophat[which(vec.prophat == 0)] <- 1e-15 vec.prophat[which(vec.prophat == 1)] <- 1-1e-15 deviance$obs <- vec.prophat deviance$exp <- vec.pihat sign <- rep(1, length(vec.prophat)) sign[which(vec.prophat < vec.pihat)] <- -1 deviance$res <- sign * sqrt(2 * vec.groupN * (vec.prophat * log(vec.prophat / vec.pihat) + (1 - vec.prophat) * log((1 - vec.prophat) / (1 - vec.pihat)))) deviance$stat <- 2 * sum(vec.groupN * (vec.prophat * log(vec.prophat / vec.pihat) + (1 - vec.prophat) * log((1 - vec.prophat) / (1 - vec.pihat)))) deviance$df <- nGroup - nParam deviance$pvalue = 1 - pchisq(deviance$stat, df = deviance$df) } } } if(doHlemeshow) { probmatrix = matrix(nrow = nrow(df.work), ncol = 2) probmatrix[, 1] = df.work$y.fitted probmatrix[, 2] = df.work$y.obs probmatrix <- probmatrix[order(probmatrix[, 1], decreasing=FALSE), ] probmatrix <- cbind(probmatrix, seq(1, nrow(df.work))) breaks <- quantile(probmatrix[, 3], probs = seq(0, 1, by = 1 / hlemeshowGroups)) probmatrix[, 3] <- cut(probmatrix[, 3], breaks = breaks, include.lowest = TRUE) problistSplitted <- split(as.data.frame(probmatrix), probmatrix[, 3]) hlmatrix = matrix(nrow = hlemeshowGroups, ncol = 10) for(ii in 1:hlemeshowGroups) { predictedProbs <- problistSplitted[[ii]][[1]] observedProbs <- problistSplitted[[ii]][[2]] nObservations <- length(problistSplitted[[ii]][[2]]) nObservedSuccesses <- sum(problistSplitted[[ii]][[2]]) hlmatrix[ii, 1] <- mean(predictedProbs) hlmatrix[ii, 3] <- mean(observedProbs) hlmatrix[ii, 2] <- mean(1 - predictedProbs) hlmatrix[ii, 4] <- mean(1 - observedProbs) hlmatrix[ii, 5] <- hlmatrix[ii,1] * nObservations hlmatrix[ii, 6] <- nObservations - hlmatrix[ii, 5] hlmatrix[ii, 7] <- nObservedSuccesses hlmatrix[ii, 8] <- nObservations - hlmatrix[ii, 7] nObservationsInGroup <- nObservations avgPredictedSuccesses <- hlmatrix[ii, 1] avgObservedSuccesses <- hlmatrix[ii, 3] hlmatrix[ii, 9] <- nObservationsInGroup * (((avgObservedSuccesses - avgPredictedSuccesses)^2) / (avgPredictedSuccesses * (1 - avgPredictedSuccesses))) hlmatrix[ii, 10] <- (avgObservedSuccesses - avgPredictedSuccesses)/sqrt(avgPredictedSuccesses * (1 - avgPredictedSuccesses) / nObservationsInGroup) } df.hlemeshow <- data.frame(obs = hlmatrix[, 7] + hlmatrix[, 8], exp.suc = hlmatrix[, 5], obs.suc = hlmatrix[, 7], stat = hlmatrix[, 9], res = hlmatrix[, 10]) colnames(df.hlemeshow) <- c("Observations", "Expected successes", "Observed successes", "H-L Statistic", "Pearson Residuals") rownames(df.hlemeshow) <- paste("Group", seq(1, hlemeshowGroups)) hlemeshow$stat <- sum(hlmatrix[, 9]) hlemeshow$df <- hlemeshowGroups - 2 hlemeshow$pvalue <- 1 - pchisq(hlemeshow$stat, df = hlemeshow$df) hlemeshow$overview <- df.hlemeshow } ls.return <- list(pearson = pearson, deviance = deviance, hlemeshow = hlemeshow, vars = vars, n = nrow(df.work), family = RRglmOutput$family) class(ls.return) <- "RRglmGOF" return(ls.return) }
pgListGeom <- function(conn, geog = TRUE) { dbConnCheck(conn) if (!suppressMessages(pgPostGIS(conn))) { stop("PostGIS is not enabled on this database.") } if (!geog) end <- ";" else end <- paste("UNION"," SELECT", " f_table_schema AS schema_name,", " f_table_name AS table_name,", " f_geography_column AS geom_column,", " type AS geometry_type,", " 'GEOGRAPHY'::character(9) AS type", "FROM geography_columns", " ORDER BY type desc;", sep = "\n") tmp.query <- paste("SELECT", " f_table_schema AS schema_name,", " f_table_name AS table_name,", " f_geometry_column AS geom_column,", " type AS geometry_type,", " 'GEOMETRY'::character(8) AS type", "FROM geometry_columns ", end , sep = "\n") tab <- dbGetQuery(conn, tmp.query) return(tab) } pgListRast <- function(conn) { dbConnCheck(conn) if (!suppressMessages(pgPostGIS(conn))) { stop("PostGIS is not enabled on this database.") } tmp.query <- paste("SELECT", " r_table_schema AS schema_name,", " r_table_name AS table_name,", " r_raster_column AS raster_column", "FROM raster_columns;", sep = "\n") tab <- dbGetQuery(conn, tmp.query) return(tab) }
rkay <- function(n, df, ncp=0) { chincp <- df * ncp^2 sqrt(rchisq(n, df, chincp) / df)}
multicut.default <- function(Y, X, strata, dist="gaussian", sset=NULL, cl=NULL, ...) { if (missing(strata)) stop("It looks like that strata is missing") Y <- data.matrix(Y) if (is.null(colnames(Y))) colnames(Y) <- paste("Sp", seq_len(ncol(Y))) if (any(duplicated(colnames(Y)))) { warning("Duplicate column names found and renamed in LHS") colnames(Y) <- make.names(colnames(Y), unique = TRUE) } if (!all(colSums(abs(Y)) > 0)) { warning("Empty columns in Y were dropped") Y <- Y[,colSums(abs(Y)) > 0,drop=FALSE] } if (missing(X)) { X <- matrix(1, nrow(Y), 1L) rownames(X) <- rownames(Y) colnames(X) <- "(Intercept)" } if (any(is.na(Y))) stop("Y contains NA") if (any(is.na(X))) stop("X contains NA") if (any(is.na(strata))) stop("strata argument contains NA") if (is.ordered(strata)) { warning("ordering in strata ignored") class(strata) <- "factor" } if (!is.factor(strata)) strata <- as.factor(strata) strata <- droplevels(strata) Z <- strata if (!is.function(dist)) { dist <- .opticut_dist(dist, make_dist=TRUE) Dist <- strsplit(as.character(dist), ":", fixed=TRUE)[[1L]][1L] if (Dist %in% c("rsf", "rspf") && ncol(Y) > 1L) stop("'", Dist, "' is only available for single species in RHS") } if (ncol(Y) < 2L) { pbo <- pbapply::pboptions(type = "none") on.exit(pbapply::pboptions(pbo), add=TRUE) } if (inherits(cl, "cluster")) { parallel::clusterEvalQ(cl, library(opticut)) e <- new.env() assign("dist", dist, envir=e) assign("X", X, envir=e) assign("Z", X, envir=e) assign("Y", Y, envir=e) assign("sset", sset, envir=e) parallel::clusterExport(cl, c("Y", "X","Z","dist"), envir=e) on.exit(parallel::clusterEvalQ(cl, rm(list=c("Y", "X","Z","dist"))), add=TRUE) on.exit(parallel::clusterEvalQ(cl, detach(package:opticut)), add=TRUE) } if (getOption("ocoptions")$try_error) { res <- pbapply::pblapply(seq_len(ncol(Y)), function(i, ...) try(multicut1(Y=Y[,i], X=X, Z=Z, dist=dist, sset=sset, ...)), cl=cl, ...) names(res) <- colnames(Y) Failed <- sapply(res, inherits, "try-error") failed <- names(res)[Failed] if (any(Failed)) { if (length(failed) == length(res)) stop("Bad news: opticut failed for all species.") warning("Bad news: opticut failed for ", length(failed), " out of ", length(res), " species.") } } else { res <- pbapply::pblapply(seq_len(ncol(Y)), function(i, ...) multicut1(Y=Y[,i], X=X, Z=Z, dist=dist, sset=sset, ...), cl=cl, ...) names(res) <- colnames(Y) Failed <- logical(length(res)) failed <- character(0) } NOBS <- if (is.null(sset)) NROW(Y) else NROW(data.matrix(Y)[sset,,drop=FALSE]) out <- list(call=match.call(), species=res[!Failed], X=X, Y=Y[,!Failed,drop=FALSE], strata=Z, nobs=NOBS, sset=sset, dist=dist, scale=getOption("ocoptions")$scale, failed=failed) if (is.function(dist)) { attr(out$dist, "dist") <- deparse(substitute(dist)) for (i in seq_len(length(out$species))) attr(out$species[[i]], "dist") <- deparse(substitute(dist)) } class(out) <- "multicut" mu <- sapply(out$species, "[[", "mu") if (any(mu < 0)) warning("Negative fitted values found for ", sum(colSums(mu < 0) > 0), " species.") out }
longletters<-function() { LONGLETTERS = rep("0",27*26) LONGLETTERS[1:26] = LETTERS for (i in 1:26) { for (j in 1:26) { LONGLETTERS[26*i + j] = paste0(LETTERS[i],LETTERS[j]) } } return(LONGLETTERS) } UniformDesignMatrix = function( n, p, c ) { emptymatrix = matrix(0, n, p) cholmat = chol(diag(p)) for ( i in 1:n ) { emptymatrix[ i, ] = fastrmvnorm(cholmat, cholesky = T) } emptymatrix = pnorm(emptymatrix) emptymatrix = ceiling(c * emptymatrix) finalmatrix = matrix(0, n, p) for ( i in 1:n ) { for ( j in 1:p ) { finalmatrix[ i, j ] = paste0(longletters()[ emptymatrix[ i, j ] ], j) } } finalmatrix = as.data.frame(finalmatrix, stringsAsFactors = TRUE) return(finalmatrix) } CorrelatedDesignMatrix = function( n, cov_mat, c ) { if (( dim(cov_mat)[ 1 ] != dim(cov_mat)[ 2 ] )){ stop("Incorrect input arguments") } cov_mat = 2 * sin( cov_mat * pi / 6 ) cholmat = chol(cov_mat) p = dim(cov_mat)[ 1 ] emptymatrix = matrix(0, n, p) for ( i in 1:n ) { emptymatrix[ i, ] = fastrmvnorm(cholmat, cholesky = T) } emptymatrix = pnorm(emptymatrix) emptymatrix = ceiling(c * emptymatrix) finalmatrix = matrix(0, n, p) for ( i in 1:n ) { for ( j in 1:p ) { finalmatrix[ i, j ] = paste0(longletters()[ emptymatrix[ i, j ] ], j) } } finalmatrix = as.data.frame(finalmatrix, stringsAsFactors = TRUE) return(finalmatrix) }
AMGE.AMMI <- function(model, n, alpha = 0.05, ssi.method = c("farshadfar", "rao"), a = 1) { if (!is(model, "AMMI")) { stop('"model" is not of class "AMMI"') } if (!(0 < alpha && alpha < 1)) { stop('"alpha" should be between 0 and 1 (0 < alpha < 1)') } if (missing(n) || is.null(n)) { n <- sum(model$analysis$Pr.F <= alpha, na.rm = TRUE) } if (n %% 1 != 0 && length(n) != 1) { stop('"n" is not an integer vector of unit length') } if (n > nrow(model$analysis)) { stop('"n" is greater than the number of IPCs in "model"') } ssi.method <- match.arg(ssi.method) yresp <- setdiff(colnames(model$means), c("ENV", "GEN", "RESIDUAL")) ge <- array(model$genXenv, dim(model$genXenv), dimnames(model$genXenv)) svdge <- svd(ge) lambda.n <- svdge$d[1:n] gamma.n <- svdge$u[, 1:n] delta.n <- svdge$v[, 1:n] ge.n <- gamma.n %*% diag(lambda.n) %*% t(delta.n) AMGE <- rowSums(ge.n) B <- model$means W <- aggregate(B[, yresp], by = list(model$means$GEN), FUN = mean, na.rm = TRUE) SSI_AMGE <- SSI(y = W$x, sp = AMGE, gen = W$Group.1, method = ssi.method, a = a) ranking <- SSI_AMGE colnames(ranking) <- c("AMGE", "SSI", "rAMGE", "rY", "means") return(ranking) }
inst_reactlog_file <- function(file) { system.file(file.path("reactlog", file), package = "reactlog") } inst_reactlog_assets <- function() { inst_reactlog_file("reactlogAsset") } reactlog_render <- function(log, session_token = NULL, time = TRUE) { log <- reactlog_upgrade(log) template_file <- inst_reactlog_file("reactlog.html") html <- paste(readLines(template_file, warn = FALSE), collapse = "\n") json_blob <- as.character( reactlog_write(log, file = NULL, session_token = session_token) ) fixed_sub <- function(...) { sub(..., fixed = TRUE) } html <- fixed_sub( "__DATA__", paste(json_blob, collapse = "\n"), fixed_sub( "__TIME__", paste0("\"", time, "\""), fixed_sub( "<script src=\"defaultLog.js\"></script>", "", html ) ) ) if (requireNamespace("shiny")) { shiny::addResourcePath( "reactlogAsset", inst_reactlog_assets() ) } file <- tempfile(fileext = ".html") write_utf8(html, file = file) file.copy( inst_reactlog_assets(), dirname(file), recursive = TRUE ) return(file) }
roots2pars <- function(roots) { out <- list(roots = roots, periods = 2*pi / Arg(roots), frequencies = Arg(roots) / (2*pi), moduli = Mod(roots), rates = log(Mod(roots))) out$periods[abs(Arg(roots)) < .Machine$double.eps^.5] <- Inf class(out) <- "fdimpars.1d" out } print.fdimpars.1d <- function(x, ...) { cat(" period rate | Mod Arg | Re Im\n") for (i in seq_along(x$roots)) { cat(sprintf("% 9.3f % 8.6f | % 7.5f % 3.2f | % 7.5f % 7.5f\n", x$periods[i], x$rates[i], x$moduli[i], x$frequencies[i] * 2*pi, Re(x$roots[i]), Im(x$roots[i]))) } } parestimate.pairs <- function(U, normalize = FALSE) { stopifnot(ncol(U) == 2) U1 <- apply(U[-1, ], 2, diff) U2 <- apply(U[-nrow(U), ], 2, diff) scos <- rowSums(U1*U2) / sqrt(rowSums(U1*U1)) / sqrt(rowSums(U2*U2)) mres <- mad(2*pi/acos(scos)) / median(2*pi/acos(scos)) if (mres > 0.3) warning("too big deviation of estimates, period estimates might be unreliable") r <- exp(1i * acos(median(scos))) if (normalize) r <- r / abs(r) roots2pars(r) } tls.solve <- function(A, B) { stopifnot(ncol(A) == ncol(B)) r <- ncol(A) V <- svd(cbind(A, B))$v[, 1:r, drop = FALSE] Conj(qr.solve(t(V[1:r,, drop = FALSE]), t(V[-(1:r),, drop = FALSE]))) } .cycle.permutation <- function(v, k = 0) { n <- length(v) k <- k %% n if (k) { v <- c(v[(k + 1):n], v[1:k]) } v } .mdim.cycle.permutation <- function(v, ndim, k = 0) { v <- as.array(v) d <- dim(v) idx <- lapply(d, seq_len) idx[[ndim]] <- .cycle.permutation(idx[[ndim]], k = k) do.call("[", c(list(v), idx, list(drop = FALSE))) } .annulate.row <- function(v, ndim, i = 1, value = 0) { v <- as.array(v) d <- dim(v) idx <- lapply(d, seq_len) idx[[ndim]] <- i do.call("[<-", c(list(v), idx, list(value = value))) } .shifted.matrix.masks <- function(wmask, ndim, circular = FALSE) { wmask <- as.array(wmask) d <- dim(wmask) mask <- wmask & .mdim.cycle.permutation(wmask, ndim, 1) if (!circular) { mask <- .annulate.row(mask, ndim, i = d[ndim], FALSE) } lind <- array(NA_integer_, dim = d) lind[wmask] <- seq_len(sum(wmask)) rind <- .mdim.cycle.permutation(lind, ndim, 1) list(left.mask = lind[mask], right.mask = rind[mask]) } .shift.matrix <- function(U, wmask, ndim, circular = FALSE, solve.method = c("ls", "tls")) { solve.method <- match.arg(solve.method) solver <- switch(solve.method, ls = qr.solve, tls = tls.solve) smxs <- .shifted.matrix.masks(wmask, ndim, circular = circular) lm.left <- U[smxs$left.mask,, drop = FALSE] lm.right <- U[smxs$right.mask,, drop = FALSE] solver(lm.left, lm.right) } .pairs <- function(x, groups, subspace = c("column", "row"), normalize.roots = NULL, ..., drop) { if (missing(groups)) groups <- 1:min(nsigma(x), nu(x)) subspace <- match.arg(subspace) if (is.null(normalize.roots)) normalize.roots <- x$circular || inherits(x, "toeplitz.ssa") if (is.shaped(x)) { stop("`pairs' parameter estimation method is not implemented for shaped SSA case yet") } if (inherits(x, "cssa")) { stop("`pairs' parameter estimation method is not implemented for Complex SSA case yet") } if (identical(subspace, "column")) { span <- .colspan } else if (identical(subspace, "row")) { if (inherits(x, "mssa")) { stop("row space `pairs' parameter estimation method is not implemented for MSSA yet") } span <- .rowspan } .maybe.continue(x, groups = groups, ...) out <- list() for (i in seq_along(groups)) { group <- groups[[i]] if (length(group) != 2) stop("can estimate for pair of eigenvectors only using `pairs' method") out[[i]] <- parestimate.pairs(span(x, group), normalize = normalize.roots) } names(out) <- .group.names(groups) if (length(out) == 1 && drop) out <- out[[1]] out } parestimate.1d.ssa <- function(x, groups, method = c("esprit", "pairs"), subspace = c("column", "row"), normalize.roots = NULL, dimensions = NULL, solve.method = c("ls", "tls"), ..., drop = TRUE) { method <- match.arg(method) solve.method <- match.arg(solve.method) if (missing(groups)) groups <- 1:min(nsigma(x), nu(x)) subspace <- match.arg(subspace) if (is.null(normalize.roots)) normalize.roots <- x$circular || inherits(x, "toeplitz.ssa") if (identical(method, "pairs")) { .pairs(x, groups = groups, subspace = subspace, normalize.roots = normalize.roots, ..., drop = drop) } else if (identical(method, "esprit")) { parestimate.nd.ssa(x, groups = groups, subspace = subspace, normalize.roots = normalize.roots, dimensions = c(x = 1), ..., solve.method = solve.method, drop = drop) } } parestimate.toeplitz.ssa <- parestimate.1d.ssa parestimate.mssa <- parestimate.1d.ssa parestimate.cssa <- parestimate.1d.ssa .matrix.linear.combination <- function(Zs, beta = 8) { if (length(beta) == 1) { beta <- beta ^ seq_len(length(Zs) - 1) } if (length(beta) == length(Zs) - 1) { beta <- c(1 - sum(beta), beta) } Z <- matrix(0., ncol = ncol(Zs[[1]]), nrow = nrow(Zs[[1]])) for (i in seq_along(Zs)) { Z <- Z + beta[i] * Zs[[i]] } Z } .est.exp.2desprit <- function(Zs, beta = 8) { Z <- .matrix.linear.combination(Zs, beta) Ze <- eigen(Z, symmetric = FALSE) Tinv <- Ze$vectors lapply(seq_along(Zs), function(i) diag(qr.solve(Tinv, Zs[[i]] %*% Tinv))) } .simple.assignment <- function(mx) { mx <- as.matrix(mx) stopifnot(ncol(mx) == nrow(mx)) d <- nrow(mx) stopifnot(all(mx > -Inf)) res <- rep(0, d) for (k in seq_len(d)) { maxij <- which(mx == max(mx), arr.ind = TRUE)[1, ] res[maxij[1]] <- maxij[2] mx[maxij[1], ] <- -Inf mx[, maxij[2]] <- -Inf } stopifnot(isTRUE(all.equal(sort(res), seq_len(ncol(mx))))) res } .est.exp.memp.new <- function(Zs, beta = 8) { Z <- .matrix.linear.combination(Zs, beta) Ze <- eigen(Z, symmetric = FALSE) Zse <- lapply(Zs, eigen, symmetric = FALSE) Ps <- lapply(seq_along(Zs), function(i) .simple.assignment(t(abs(qr.solve(Ze$vectors, Zse[[i]]$vectors))))) for (P in Ps) { stopifnot(length(P) == length(unique(P))) } lapply(seq_along(Zs), function(i) Zse[[i]]$values[Ps[[i]]]) } .esprit <- function(U, wmask, circular, normalize, dimensions = NULL, solve.method = c("ls", "tls"), pairing.method = c("diag", "memp"), beta = 8) { wmask <- as.array(wmask) d <- dim(wmask) solve.method <- match.arg(solve.method) pairing.method <- match.arg(pairing.method) if (is.null(dimensions)) { dimensions <- seq_along(d) } if (max(dimensions) > length(d)) { stop(sprintf("some of input dimension indices exceed the actual number of object dimensions (%d)", length(d))) } Zs <- lapply(dimensions, function(ndim) { .shift.matrix(U, wmask = wmask, ndim = ndim, circular = circular[ndim], solve.method = solve.method) }) pairer <- switch(pairing.method, diag = .est.exp.2desprit, memp = .est.exp.memp.new) r <- pairer(Zs, beta = beta) for (k in seq_along(d)) if (normalize[k]) r[[k]] <- r[[k]] / abs(r[[k]]) out <- lapply(r, roots2pars) names(out) <- names(dimensions) if (length(names(out)) == 0 || any(names(out) == "")) { default.names <- c("x", "y", "z", "t", "u", "s", paste("x", seq_len(max(dimensions)), sep = "_")) names(out) <- default.names[dimensions] } if (length(out) == 1) { out <- out[[1]] } else { class(out) <- "fdimpars.nd" } out } parestimate.nd.ssa <- function(x, groups, method = c("esprit"), subspace = c("column", "row"), normalize.roots = NULL, dimensions = NULL, solve.method = c("ls", "tls"), pairing.method = c("diag", "memp"), beta = 8, ..., drop = TRUE) { method <- match.arg(method) stopifnot(identical(method, "esprit")) solve.method <- match.arg(solve.method) pairing.method <- match.arg(pairing.method) if (missing(groups)) groups <- seq_len(min(nsigma(x), nu(x))) .maybe.continue(x, groups = groups, ...) subspace <- match.arg(subspace) if (identical(subspace, "column")) { span <- .colspan wmask <- .wmask(x) } else if (identical(subspace, "row")) { span <- function(...) Conj(.rowspan(...)) wmask <- .fmask(x) } if (is.null(dimensions)) { dimensions <- seq_len(.dim(x)) } if (is.null(normalize.roots)) normalize.roots <- x$circular | inherits(x, "toeplitz.ssa") if (length(normalize.roots) > .dim(x)) warning("incorrect argument length: length(normalize.roots) > .dim(x), only leading values will be used") normalize.roots <- rep(normalize.roots, .dim(x))[seq_len(.dim(x))] out <- list() for (i in seq_along(groups)) { group <- groups[[i]] out[[i]] <- .esprit(span(x, group), wmask = wmask, circular = x$circular, normalize = normalize.roots, solve.method = solve.method, pairing.method = pairing.method, beta = beta, dimensions = dimensions) } names(out) <- .group.names(groups) if (length(out) == 1 && drop) out <- out[[1]] out } print.fdimpars.nd <- function(x, ...) { if (length(names(x)) == 0 || any(names(x) == "")) { names(x) <- paste("x", seq_along(x), sep = "_") } header <- paste(sapply(names(x), function(name) sprintf("%8s: period rate", name)), sep = "", collapse = " | ") cat(header) cat("\n") for (i in seq_along(x[[1]]$roots)) { row <- paste(sapply(seq_along(x), function(k) sprintf("% 16.3f % 8.6f", x[[k]]$periods[i], x[[k]]$rate[i])), sep = "", collapse = " | ") cat(row) cat("\n") } } parestimate <- function(x, ...) UseMethod("parestimate")
gce_auth <- function(new_user = FALSE, no_auto = FALSE){ .Defunct("gar_attach_auto_auth", package = "googleAuthR", msg = "gce_auth() is defunct. Authenticate instead by downloading your JSON key and placing in a GCE_AUTH_FILE environment argument. See https://cloudyr.github.io/googleComputeEngineR/articles/installation-and-authentication.html or vignette('installation-and-authentication', package = 'googleComputeEngineR')") }
xdata <- function(e=NULL) { tryCatch( { conf = fromJSON(paste(.libPaths()[1], "x.ent/www/config/ini.json", sep='/')) path = conf$result$file; lst_f <- xfile(sep=":") lst_tag <- xentity(); lst_tag <-add_unique(lst_tag,xrelation()) dta <- data.frame() reg_ent = ":\\$:" reg_rel = ":\\$\\$:" dta <- data.frame(file=lst_f) text <- readLines(path) if(is.null(e)) { for(i in 1:length(lst_tag)) { dta[,lst_tag[i]] <- "N/A" } for(i in 1:length(text)) { f <- unlist(strsplit(text[i],":"))[1] if(grepl(pattern=reg_ent,x=text[i])) { data_ele <- "" eles <- unlist(strsplit(text[i],":")) if(length(eles) == 4) { data_ele <- eles[4] } else if(length(eles) >= 5) { data_ele <- eles[4] for(j in 5:length(eles)) { data_ele <- paste(data_ele,eles[j],sep="; ") } } dta[dta$file == f,eles[2]] <- data_ele } if(grepl(pattern=reg_rel,x=text[i])) { eles <- unlist(strsplit(text[i],reg_rel)) col = sub(pattern = paste(f,":",sep=""), replacement = "",x = eles[1]) col = gsub(":$", "",col, perl=TRUE) if(col %in% names(dta)) { if(dta[dta$file == f,col] == "N/A") { dta[dta$file == f,col] <- eles[2] } else { dta[dta$file == f,col] <- paste(dta[dta$file == f,col],eles[2],sep =";") } } } } } else { for(i in 1:length(e)) { dta[,e[i]] <- "N/A" } for(i in 1:length(text)) { f <- unlist(strsplit(text[i],":"))[1] for(j in 1:length(e)) { reg = paste(f,":",e[j],reg_ent,sep="") if(grepl(pattern=reg,x=text[i])) { data_ele <- "" eles <- unlist(strsplit(text[i],":")) if(length(eles) == 4) { data_ele <- eles[4] } else if(length(eles) >= 5) { data_ele <- eles[4] for(j in 5:length(eles)) { data_ele <- paste(data_ele,eles[j],sep="; ") } } dta[dta$file == f,eles[2]] <- data_ele } reg = paste(f,":",e[j],reg_rel,sep="") if(grepl(pattern=reg,x=text[i])) { result = gsub(reg, "",text[i], perl=TRUE) if(e[j] %in% names(dta)) { if(dta[dta$file == f,e[j]] == "N/A") { dta[dta$file == f,e[j]] <- result } else { dta[dta$file == f,e[j]] <- paste(dta[dta$file == f,e[j]],result,sep =";") } } } } } } return(dta) }, error=function(cond) { message("Parameters are incorrect or there are problems in paths, please check your parameters!") }, warning=function(cond) { message("Parameters are incorrect or there are problems in paths, please check your parameters!") }, finally={ rm(list=ls()) }) }
'cepstrum' <- function(listOfFiles = NULL, optLogFilePath = NULL, beginTime = 0.0, centerTime = FALSE, endTime = 0.0, resolution = 40.0, fftLength = 0, windowShift = 5.0, window = 'BLACKMAN', toFile = TRUE, explicitExt = NULL, outputDirectory = NULL, forceToLog = useWrasspLogger, verbose = TRUE){ if (is.null(listOfFiles)) { stop(paste("listOfFiles is NULL! It has to be a string or vector of file", "paths (min length = 1) pointing to valid file(s) to perform", "the given analysis function.")) } if (is.null(optLogFilePath) && forceToLog){ stop("optLogFilePath is NULL! -> not logging!") }else{ if(forceToLog){ optLogFilePath = path.expand(optLogFilePath) } } if(!isAsspWindowType(window)){ stop("WindowFunction of type '", window,"' is not supported!") } if (!is.null(outputDirectory)) { outputDirectory = normalizePath(path.expand(outputDirectory)) finfo <- file.info(outputDirectory) if (is.na(finfo$isdir)) if (!dir.create(outputDirectory, recursive=TRUE)) stop('Unable to create output directory.') else if (!finfo$isdir) stop(paste(outputDirectory, 'exists but is not a directory.')) } listOfFiles <- prepareFiles(listOfFiles) if(length(listOfFiles)==1 | !verbose){ pb <- NULL }else{ if(toFile==FALSE){ stop("length(listOfFiles) is > 1 and toFile=FALSE! toFile=FALSE only permitted for single files.") } cat('\n INFO: applying cepstrum to', length(listOfFiles), 'files\n') pb <- utils::txtProgressBar(min = 0, max = length(listOfFiles), style = 3) } externalRes = invisible(.External("performAssp", listOfFiles, fname = "spectrum", beginTime = beginTime, centerTime = centerTime, endTime = endTime, spectrumType = 'CEP', resolution = resolution, fftLength = as.integer(fftLength), windowShift = windowShift, window = window, toFile = toFile, explicitExt = explicitExt, progressBar = pb, outputDirectory = outputDirectory, PACKAGE = "wrassp")) if (forceToLog){ optionsGivenAsArgs = as.list(match.call(expand.dots = TRUE)) wrassp.logger(optionsGivenAsArgs[[1]], optionsGivenAsArgs[-1], optLogFilePath, listOfFiles) } if(!is.null(pb)){ close(pb) }else{ return(externalRes) } }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(ATbounds) nsw_treated <- read.table("http://users.nber.org/~rdehejia/data/nsw_treated.txt") colnames(nsw_treated) <- c("treat","age","edu","black","hispanic", "married","nodegree","RE75","RE78") nsw_control <- read.table("http://users.nber.org/~rdehejia/data/nsw_control.txt") colnames(nsw_control) <- c("treat","age","edu","black","hispanic", "married","nodegree","RE75","RE78") nsw <- rbind(nsw_treated,nsw_control) attach(nsw) D <- treat Y <- (RE78 > 0) rps <- rep(mean(D),length(D)) ate_nsw <- mean(D*Y)/mean(D)-mean((1-D)*Y)/mean(1-D) print(ate_nsw) model <- lm(Y ~ D) summary(model) confint(model) detach(nsw) nswre_treated <- read.table("http://users.nber.org/~rdehejia/data/nswre74_treated.txt") colnames(nswre_treated) <- c("treat","age","edu","black","hispanic", "married","nodegree","RE74","RE75","RE78") nswre_control <- read.table("http://users.nber.org/~rdehejia/data/nswre74_control.txt") colnames(nswre_control) <- c("treat","age","edu","black","hispanic", "married","nodegree","RE74","RE75","RE78") nswre <- rbind(nswre_treated,nswre_control) attach(nswre) D <- treat Y <- (RE78 > 0) X <- cbind(age,edu,black,hispanic,married,nodegree,RE74/1000,RE75/1000) rps <- rep(mean(D),length(D)) ate_nswre <- mean(D*Y)/mean(D)-mean((1-D)*Y)/mean(1-D) print(ate_nswre) model <- lm(Y ~ D) summary(model) confint(model) bns_nsw <- atebounds(Y, D, X, rps) summary(bns_nsw) summary(atebounds(Y, D, X, rps, Q = 2)) summary(atebounds(Y, D, X, rps, Q = 4)) print(ate_nswre) summary(atebounds(Y, D, X, rps)) summary(atebounds(Y, D, X, rps, n_hc = ceiling(length(Y)/5))) summary(atebounds(Y, D, X, rps, n_hc = ceiling(length(Y)/20))) print(bns_nsw) bns_nsw_att <- attbounds(Y, D, X, rps) summary(bns_nsw_att) summary(attbounds(Y, D, X, rps, Q = 2)) summary(attbounds(Y, D, X, rps, Q = 4)) summary(attbounds(Y, D, X, rps)) summary(attbounds(Y, D, X, rps, n_hc = ceiling(length(Y)/5))) summary(attbounds(Y, D, X, rps, n_hc = ceiling(length(Y)/20))) psid2_control <- read.table("http://users.nber.org/~rdehejia/data/psid2_controls.txt") colnames(psid2_control) <- c("treat","age","edu","black","hispanic", "married","nodegree","RE74","RE75","RE78") psid <- rbind(nswre_treated,psid2_control) detach(nswre) attach(psid) D <- treat Y <- (RE78 > 0) X <- cbind(age,edu,black,hispanic,married,nodegree,RE74/1000,RE75/1000) rps_sp <- rep(mean(D),length(D)) bns_psid <- atebounds(Y, D, X, rps_sp) summary(bns_psid) summary(atebounds(Y, D, X, rps_sp, Q=1)) summary(attbounds(Y, D, X, rps_sp)) detach(psid) Y <- RHC[,"survival"] D <- RHC[,"RHC"] X <- as.matrix(RHC[,-c(1,2)]) glm_ps <- stats::glm(D~X,family=binomial("logit")) ps <- glm_ps$fitted.values ps_treated <- ps[D==1] ps_control <- ps[D==0] df <- data.frame(cbind(D,ps)) colnames(df)<-c("RHC","PS") df$RHC <- as.factor(df$RHC) levels(df$RHC) <- c("No RHC (Control)", "RHC (Treated)") ggplot2::ggplot(df, ggplot2::aes(x=PS, color=RHC, fill=RHC)) + ggplot2::geom_histogram(breaks=seq(0,1,0.1),alpha=0.5,position="identity") y1_att <- mean(D*Y)/mean(D) att_wgt <- ps/(1-ps) y0_att_num <- mean((1-D)*att_wgt*Y) y0_att_den <- mean((1-D)*att_wgt) y0_att <- y0_att_num/y0_att_den att_ps <- y1_att - y0_att print(att_ps) rps <- rep(mean(D),length(D)) att_rps <- mean(D*Y)/mean(D) - mean((1-D)*Y)/mean(1-D) print(att_rps) Xunique <- mgcv::uniquecombs(X) print(c("no. of unique rows:", nrow(Xunique))) print(c("sample size :", nrow(X))) summary(attbounds(Y, D, X, rps)) summary(atebounds(Y, D, X, rps, Q = 1)) summary(atebounds(Y, D, X, rps, Q = 2)) summary(atebounds(Y, D, X, rps, Q = 3)) summary(atebounds(Y, D, X, rps, Q = 4)) Y <- EFM[,"cesarean"] D <- EFM[,"monitor"] X <- as.matrix(EFM[,c("arrest", "breech", "nullipar", "year")]) year <- EFM[,"year"] ate_rps <- mean(D*Y)/mean(D) - mean((1-D)*Y)/mean(1-D) print(ate_rps) rps <- rep(mean(D),length(D)) print(rps[1]) summary(atebounds(Y, D, X, rps, Q = 1, x_discrete = TRUE)) summary(atebounds(Y, D, X, rps, Q = 2, x_discrete = TRUE)) summary(atebounds(Y, D, X, rps, Q = 3, x_discrete = TRUE)) summary(atebounds(Y, D, X, rps, Q = 5, x_discrete = TRUE)) summary(atebounds(Y, D, X, rps, Q = 10, x_discrete = TRUE)) summary(atebounds(Y, D, X, rps, Q = 20, x_discrete = TRUE)) summary(atebounds(Y, D, X, rps, Q = 50, x_discrete = TRUE)) summary(atebounds(Y, D, X, rps, Q = 100, x_discrete = TRUE))
reml <- function(nu, skel, thetaG, sLc, modMats, W, Bpinv, nminffx, nminfrfx, rfxlvls, rfxIncContrib2loglik, thetaR = NULL, tWW = NULL, RHS = NULL){ lambda <- is.null(thetaR) Rinv <- as(solve(nu[[length(thetaG)+1]]), "symmetricMatrix") Ginv <- lapply(thetaG, FUN = function(x){as(solve(nu[[x]]), "symmetricMatrix")}) if(lambda){ tWKRinvW <- tWW tyRinvy <- crossprod(modMats$y) } else{ KRinv <- kronecker(Rinv, Diagonal(x = 1, n = modMats$Zr@Dim[[2L]])) tyRinvy <- as(crossprod(modMats$y, KRinv) %*% modMats$y, "sparseMatrix") tWKRinv <- crossprod(W, KRinv) tWKRinvW <- tWKRinv %*% W RHS <- Matrix(tWKRinv %*% modMats$y, sparse = TRUE) } if(modMats$nG > 0){ C <- as(tWKRinvW + bdiag(c(Bpinv, sapply(1:modMats$nG, FUN = function(u){kronecker(modMats$listGeninv[[u]], Ginv[[u]])}))), "symmetricMatrix") } else C <- as(tWKRinvW + Bpinv, "symmetricMatrix") if(is.null(sLc)){ sLc <- Cholesky(C, perm = TRUE, LDL = FALSE, super = FALSE) } else sLc <- update(sLc, C) sln <- solve(a = sLc, b = RHS, system = "A") tyPy <- tyRinvy - crossprod(sln, RHS) logDetC <- 2 * sum(log(sLc@x[sLc@p+1][1:sLc@Dim[[1L]]])) sigma2e <- if(lambda) tyPy / nminffx else NA if(lambda){ loglik <- nminfrfx * log(sigma2e) } else{ loglik <- modMats$ny * log(nu[[thetaR]]) } if(lambda){ logDetGfun <- function(x){rfxlvls[x] * log(as.vector(nu[[x]]*sigma2e))} } else{ logDetGfun <- function(x){rfxlvls[x] * log(as.vector(nu[[x]]))} } if(modMats$nG != 0){ loglik <- loglik + sum(sapply(seq(modMats$nG), FUN = logDetGfun)) + rfxIncContrib2loglik } loglik <- -0.5 * (loglik + logDetC + if(lambda) nminffx else tyPy) r <- modMats$y - W %*% sln return(list(loglik = loglik@x, sigma2e = if(lambda) sigma2e@x else NA, tyPy = tyPy@x, logDetC = logDetC, sln = sln, r = r, sLc = sLc)) } em <- function(nuvin, thetaG, thetaR, conv, modMats, nminffx, sLc, ndgeninv, sln, r){ Cinv_ii <- matrix(0, nrow = nrow(sln), ncol = 1) if(length(thetaG) > 0){ ei <- modMats$nb + sum(sapply(modMats$Zg, FUN = ncol)) Ig <- Diagonal(n = sLc@Dim[1L], x = 1) for(g in rev(thetaG)){ if(conv[g] == "F") next qi <- ncol(modMats$Zg[[g]]) si <- ei - qi + 1 trace <- 0 if(ndgeninv[g]){ o <- (crossprod(sln[si:ei, , drop = FALSE], modMats$listGeninv[[g]]) %*% sln[si:ei, , drop = FALSE])@x for(k in si:ei){ Cinv_siei_k <- solve(sLc, b = Ig[, k], system = "A")[si:ei, , drop = TRUE] Cinv_ii[k] <- Cinv_siei_k[k-si+1] trace <- trace + sum(modMats$listGeninv[[g]][(k-si+1), , drop = TRUE] * Cinv_siei_k) } } else{ o <- crossprod(sln[si:ei, , drop = FALSE]) for(k in si:ei){ Cinv_ii[k] <- solve(sLc, b = Ig[, k], system = "A")[k,] trace <- trace + Cinv_ii[k] } } nuvin[g] <- as(as(matrix((o + trace) / qi), "symmetricMatrix"), "dsCMatrix") ei <- si-1 } } if(conv[thetaR] != "F") nuvin[thetaR] <- crossprod(modMats$y, r) / nminffx return(list(nuv = nuvin, Cinv_ii = Cinv_ii)) } ai <- function(nuvin, skel, thetaG, modMats, W, sLc, sln, r, thetaR = NULL, sigma2e = NULL){ lambda <- is.null(thetaR) p <- length(nuvin) nuin <- vech2matlist(nuvin, skel) if(lambda){ Rinv <- as(solve(matrix(sigma2e)), "symmetricMatrix") } else{ Rinv <- as(solve(nuin[[thetaR]]), "symmetricMatrix") } B <- matrix(0, nrow = modMats$ny, ncol = p) if(length(thetaG) > 0){ Ginv <- lapply(thetaG, FUN = function(x){as(solve(nuin[[x]]), "symmetricMatrix")}) si <- modMats$nb+1 for(g in thetaG){ qi <- ncol(modMats$Zg[[g]]) ei <- si - 1 + qi Bg <- modMats$Zg[[g]] %*% sln[si:ei, , drop = FALSE] %*% Ginv[[g]] B[cbind(Bg@i+1, g)] <- Bg@x si <- ei+1 } } else g <- p-1 if(g < p){ if(lambda){ B[, p] <- (modMats$y %*% Rinv)@x } else{ B[, p] <- (r %*% Rinv)@x } } if(lambda){ BRHS <- Matrix(crossprod(W, B), sparse = TRUE) tBRinvB <- crossprod(B) } else{ KRinv <- kronecker(Rinv, Diagonal(x = 1, n = modMats$Zr@Dim[[2L]])) tWKRinv <- crossprod(W, KRinv) BRHS <- Matrix(tWKRinv %*% B, sparse = TRUE) tBRinvB <- crossprod(B, KRinv) %*% B } tBPB <- tBRinvB - crossprod(solve(sLc, BRHS, system = "A"), BRHS) AI <- 0.5 * tBPB if(lambda) AI <- AI / sigma2e as(AI, "matrix") } gradFun <- function(nuvin, thetaG, modMats, Cinv, sln, sigma2e = NULL, r = NULL, nminfrfx = NULL){ lambda <- is.null(r) p <- length(nuvin) dLdnu <- matrix(0, nrow = p, ncol = 1, dimnames = list(names(nuvin), NULL)) if(!lambda) tee <- crossprod(r) if(length(thetaG) > 0){ trCinvGeninv_gg <- tugug <- as.list(rep(0, length(thetaG))) si <- modMats$nb+1 for(g in thetaG){ qi <- ncol(modMats$Zg[[g]]) ei <- si - 1 + qi if(class(modMats$listGeninv[[g]]) == "ddiMatrix"){ tugug[[g]] <- crossprod(sln[si:ei, , drop = FALSE]) trCinvGeninv_gg[[g]] <- tr(Cinv[si:ei, si:ei]) } else{ tugug[[g]] <- crossprod(sln[si:ei, , drop = FALSE], modMats$listGeninv[[g]]) %*% sln[si:ei, , drop = FALSE] trCinvGeninv_gg[[g]] <- tr(modMats$listGeninv[[g]] %*% Cinv[si:ei, si:ei]) } si <- ei+1 } if(lambda){ for(g in thetaG){ dLdnu[g] <- (ncol(modMats$Zg[[g]]) / nuvin[g]) - (1 / nuvin[g]^2) * (trCinvGeninv_gg[[g]] + tugug[[g]] / sigma2e) } } else{ dLdnu[p] <- (nminfrfx / tail(nuvin, 1)) - (tee / tail(nuvin, 1)^2) for(g in thetaG){ dLdnu[p] <- dLdnu[p] + (1 / tail(nuvin, 1)) * (trCinvGeninv_gg[[g]] /nuvin[g]) dLdnu[g] <- (ncol(modMats$Zg[[g]]) / nuvin[g]) - (1 / nuvin[g]^2) * (trCinvGeninv_gg[[g]] + tugug[[g]]) } } } else{ if(!lambda) dLdnu[p] <- (nminfrfx / tail(nuvin, 1)) - (tee / tail(nuvin, 1)^2) } -0.5 * dLdnu }
context("tpmatrix unit tests") test_that("tpmatrix() works correctly" , { p <- c(.7, .6) tpmat <- tpmatrix( C, p, 0, 1 ) n <- length(p) expect_true(inherits(tpmat, "data.table")) expect_equal(tpmat$s1_s1, 1 - p) expect_equal(tpmat$s1_s2, p) expect_equal(tpmat$s2_s1,rep(0, n)) expect_equal(tpmat$s2_s2,rep(1, n)) }) test_that("tpmatrix() works with complement argument" , { pmat <- data.frame(s1_s1 = 0, s1_s2 = .5, s2_s1 = .3, s2_s2 = 0) tpmat1 <- tpmatrix(pmat, complement = c("s1_s1", "s2_s2")) expect_equal(tpmat1$s1_s1, .5) expect_equal(tpmat1$s2_s2, .7) tpmat2 <- tpmatrix(pmat, complement = c(1, 4)) tpmat3 <- tpmatrix(pmat, complement = c(1L, 4L)) expect_equal(tpmat1, tpmat2) expect_equal(tpmat1, tpmat3) }) test_that("tpmatrix() works with states argument" , { p <- tpmatrix( .5, .5, .5, .5, states = c("s1", "s2"), sep = "." ) expect_equal( colnames(p), c("s1.s1", "s1.s2", "s2.s1", "s2.s2") ) }) test_that("tpmatrix() throws error if complement argument is incorrectly specified" , { expect_error( tpmatrix(2, complement = data.frame(2)), "'complement' must either be a vector of integers or a character vector." ) }) test_that("tpmatrix() throws error if it is not a square msatrix" , { expect_error( tpmatrix(1, 2, 3), "tpmatrix() must be a square matrix.", fixed = TRUE ) }) test_that("tpmatrix() throws error if states has wrong length" , { expect_error( tpmatrix(1, 2, 3, 4, states = "s1"), paste0("The length of 'states' must equal the square root of the number of ", "elements in the transition probability matrix."), fixed = TRUE ) }) h <- hesim_data(strategies = data.table(strategy_id = 1:2), patients = data.table(patient_id = 1:3)) input_data <- expand(h, by = c("strategies", "patients")) tpmat_id <- tpmatrix_id(input_data, n_samples = 2) p_12 <- ifelse(tpmat_id$strategy_id == 1, .6, .7) p <- tpmatrix( C, p_12, 0, 1 ) test_that("summarize.tpmatrix() works without unflattening" , { ps <- summary(p) expect_equal(colnames(ps), c("from", "to", "mean", "sd")) expect_equal(nrow(ps), 4) expect_equal(colnames(p), paste0(ps$from, "_", ps$to)) expect_equivalent(ps$mean, apply(p, 2, mean)) }) test_that("summarize.tpmatrix() works with variables probs arguments" , { ps <- summary(p, prob =.5) expect_equal(colnames(ps), c("from", "to", "mean", "sd", "50%")) ps <- summary(p, prob = c(.25, .75, .9)) expect_equal(colnames(ps), c("from", "to", "mean", "sd", "25%", "75%", "90%")) }) test_that("summarize.tpmatrix() works with unflattening" , { ps <- summary(p, unflatten = TRUE) expect_equal(colnames(ps), c("mean", "sd")) expect_true(is.matrix(ps$mean[[1]])) states <- attr(p, "states") expect_equal( ps$mean[[1]], matrix(apply(p, 2, mean), nrow = 2, byrow = TRUE, dimnames = list(states, states)) ) }) test_that("summarize.tpmatrix() works with ID argument" , { ps <- summary(p, id = tpmat_id) expect_equal(nrow(input_data) * 4, nrow(ps)) expect_equal(colnames(ps), c("strategy_id", "patient_id", "from", "to", "mean", "sd")) expect_true(all(ps$sd == 0)) expect_true(all(ps[strategy_id == 1 & from == "s1" & to == "s2"]$mean == .6)) expect_true(all(ps[strategy_id == 2 & from == "s1" & to == "s2"]$mean == .7)) ps <- summary(p, id = tpmat_id, unflatten = TRUE) expect_equal(nrow(ps), nrow(input_data)) expect_equal( unlist(ps[strategy_id == 1]$mean), rep(c(0.4, 0.0, 0.6, 1.0), times = 3) ) expect_equal( unlist(ps[strategy_id == 2]$mean), rep(c(0.3, 0.0, 0.7, 1.0), times = 3) ) }) test_that("summarize.tpmatrix() works with ID argument and time intervals" , { x <- expand(h, by = c("strategies", "patients"), times = c(0, 2)) tpid <- tpmatrix_id(x, n_samples = 2) p2 <- tpmatrix( C, ifelse(tpid$strategy_id == 1, .6, .7), 0, 1 ) ps <- summary(p2, id = tpid, probs = .9) expect_equal(colnames(ps), c("strategy_id", "patient_id", "time_id", "time_start", "time_stop", "from", "to", "mean", "sd", "90%")) expect_equal(nrow(ps), nrow(x) * 4) ps <- summary(p2, id = tpid, unflatten = TRUE) expect_equal(nrow(ps), nrow(x)) expect_true(all(unlist(ps$sd) == 0)) expect_equal( unlist(ps[strategy_id == 2]$mean), rep(c(0.3, 0.0, 0.7, 1.0), times = 6) ) }) strategies <- data.frame(strategy_id = c(1, 2)) patients <- data.frame(patient_id = seq(1, 3), patient_wt = c(1/2, 1/4, 1/4), gender = c("Female", "Female", "Male")) hesim_dat <- hesim_data(strategies = strategies, patients = patients) test_that("tpmatrix_id() returns errror if 'object' is not right class." , { expect_error(tpmatrix_id(2, 1)) }) test_that("tpmatrix_id() returns errror if 'object' is not expanded correctly." , { object <- expand(hesim_dat, by = c("strategies")) expect_error( tpmatrix_id(object, 1), paste0("'object' must be expanded by 'strategy_id', 'patient_id',", " and optionally 'time_id'.") ) }) test_that("tpmatrix_id() returns correct numnber or rows and is the right class." , { input_data <- expand(hesim_dat, by = c("strategies", "patients")) tpmat_id <- tpmatrix_id(input_data, n_samples = 2) expect_equal(nrow(tpmat_id), nrow(input_data) * 2) expect_true(inherits(tpmat_id, "tpmatrix_id")) }) test_that("tpmatrix_id() returns correct columns." , { input_data <- expand(hesim_dat, by = c("strategies", "patients"), times = c(0, 2)) tpmat_id <- tpmatrix_id(input_data, n_samples = 1) expect_equal( colnames(tpmat_id), c("sample", "strategy_id", "patient_id", "patient_wt", "time_id", "time_start", "time_stop") ) }) tmat <- rbind(c(NA, 1, 2), c(3, NA, 4), c(NA, NA, NA)) q12 <- c(.8, .7) q13 <- c(.2, .3) q21 <- c(.9, .8) q23 <- c(1.1, 1.2) q <- data.frame(q12, q13, q21, q23) qmat <- qmatrix(q, trans_mat = tmat) test_that("qmatrix() returns a 3D array" , { expect_true(inherits(qmat, "array")) expect_equal(length(dim(qmat)), 3) }) test_that("qmatrix() returns the correct diagonals" , { expect_equal(mean(apply(qmat, 3, rowSums)), 0, tol = .00001) }) set.seed(101) library("msm") qinit <- rbind( c(0, 0.28163, 0.01239), c(0, 0, 0.10204), c(0, 0, 0) ) ptid <- sample(onc3p$patient_id, 200) fit <- msm(state_id ~ time, subject = patient_id, data = onc3p[patient_id %in% ptid], covariates = ~ age + strategy_name, qmatrix = qinit) test_that("qmatrix.msm() works with factor covariates and 'newdata' is one row" , { newdata <- data.frame(strategy_name = "New 1", age = 50) expect_equal( msm::qmatrix.msm(fit, newdata[1, , drop = FALSE], ci = "none"), qmatrix(fit, newdata, uncertainty = "none")[, , 1], check.attributes = FALSE ) }) test_that("qmatrix.msm() works with factor covariates and 'newdata' is multiple rows" , { newdata <- data.frame(strategy_name = c("New 1", "New 2"), age = c(50, 55)) expect_equal( msm::qmatrix.msm(fit, newdata[2, , drop = FALSE], ci = "none"), qmatrix(fit, newdata, uncertainty = "none")[, , 2], check.attributes = FALSE ) }) test_that("qmatrix.msm() works with covariates that vary by transition" , { fit <- update(fit, covariates = list("1-2" = ~ strategy_name + age)) newdata <- data.frame(strategy_name = c("New 1", "New 2"), age = c(50, 55)) expect_equal( msm::qmatrix.msm(fit, newdata[2, , drop = FALSE], ci = "none"), qmatrix(fit, newdata, uncertainty = "none")[, , 2], check.attributes = FALSE ) }) test_that("qmatrix.msm() works with a hidden Markov model" , { qinith <- rbind( c(0, exp(-6), exp(-9)), c(0, 0, exp(-6)), c(0, 0, 0) ) hmod <- list( hmmNorm(mean = 100, sd = 16), hmmNorm(mean = 54, sd = 18), hmmIdent(999) ) fith <- msm(fev ~ days, subject = ptnum, data = fev[fev$ptnum %in% 1:20, ], qmatrix = qinith, covariates = ~acute, hmodel = hmod, hcovariates = list(~ acute, ~ acute, NULL), hconstraint = list(acute = c(1, 1)), death = 3, method = "BFGS") expect_equal( msm::qmatrix.msm(fith, covariates = list(acute = 0), ci = "none"), qmatrix(fith, data.frame(acute = 0), uncertainty = "none")[,,1], check.attributes = FALSE ) }) test_that("qmatrix.msm() returns correct number of matrices with uncertainy = 'normal'" , { newdata <- data.frame(strategy_name = c("New 1"), age = c(55)) sim <- qmatrix(fit, newdata, uncertainty = "normal", n = 5) expect_true(dim(sim)[3] == 5) }) test_that("qmatrix.msm() requires 'newdata' if covariates are included in the model." , { expect_error( qmatrix(fit), "'newdata' cannot be NULL if covariates are included in 'x'." ) }) test_that("qmatrix.msm() does not require 'newdata' if no covariates are included in the model." , { fit <- update(fit, covariates =~ 1) expect_equal( msm::qmatrix.msm(fit, ci = "none"), qmatrix(fit, uncertainty = "none")[,,1], check.attributes = FALSE ) }) test_that("expmat() returns an array where rows sum to 1." , { p <- expmat(qmat) expect_true(inherits(p, "array")) row_sums <- c(apply(p, 3, rowSums)) expect_equal(mean(row_sums), 1, tolerance = .001,scale = 1) }) test_that("expmat() works with matrix input." , { expect_true(inherits(expmat(qmat[,,1]), "array")) }) test_that("expmat() works with t as vector" , { p <- expmat(qmat, t = c(1, 1)) expect_equal(dim(p)[3], dim(qmat)[3] * 2) expect_equal(p[,, 1], p[,, 2]) expect_equal(p[,, 3], p[,, 4]) }) test_that("expmat() is consisten with matrix multiplication " , { z <- diag(1, 3) p <- expmat(qmat, t = c(1, 2)) expect_equal( z %*% p[,, 1] %*% p[, ,1], p[,, 2] ) }) test_that("expmat() returns error if x is not an array" , { expect_error( expmat("Test error"), "'x' must be an array." ) }) test_that("as_array3() returns a 3D array if 'x' is a square matrix", { expect_equal( dim(as_array3(matrix(1:16, 4, 4))), c(2, 2, 4) ) }) test_that("as_array3() throws error if 'x' is not a square matrix", { expect_error( as_array3(matrix(1:4, 2, 2)), "'x' must contain square matrices." ) }) p_12 <- c(.7, .5) p_23 <- c(.1, .2) pmat <- as_array3(tpmatrix( C, p_12, .1, 0, C, p_23, 0, 0, 1 )) rr_12 <- runif(4, .8, 1) rr_13 <- runif(4, .9, 1) rr <- cbind(rr_12, rr_13) pmat2 <- apply_rr(pmat, rr, index = list(c(1, 2), c(1, 3)), complement = list(c(1, 1), c(2, 2))) test_that("apply_rr() correctly multiplies relative risks" , { expect_equal(pmat2[1, 2, ], rr_12 * pmat[1, 2, ]) expect_equal(pmat2[1, 3, ], rr_13 * pmat[1, 3, ]) }) test_that("Row sums are correct with apply_rr()" , { row_sums <- c(apply(pmat2, 3, rowSums)) expect_equal(mean(row_sums), 1, tolerance = .001,scale = 1) }) test_that("'index' argument in apply_rr() has correct dimensions" , { expect_error( apply_rr(pmat, rr, index = list(c(1, 2), c(1, 3), c(2, 1)), complement = list(c(1, 1), c(2, 2))), paste0("'index' must contain the same number of matrix elements as the ", "number of columns in 'rr'.") ) }) test_that("'complement' argument in apply_rr() must have correct number of matrix elements" , { expect_error( apply_rr(pmat, rr, index = list(c(1, 2), c(1, 3)), complement = list(c(1, 1), c(2, 2), c(3, 3), c(4, 4))), paste0("The number of matrix elements in 'complement' cannot be larger than the ", "number of rows in 'x'.") ) }) test_that("apply_rr() can only have one complementary column for each row in matrix" , { expect_error( apply_rr(pmat, rr, index = list(c(1, 2), c(1, 3)), complement = list(c(1, 1), c(1,2))), "There can only be one complementary column in each row." ) })
library(act) rpraat.tg <- act::export_rpraat(t=examplecorpus@transcripts[[1]]) \dontrun{ rPraat::tg.plot(rpraat.tg) }
print.naive_bayes <- function (x, ...) { model <- "Naive Bayes" n_char <- getOption("width") str_left_right <- paste0(rep("=", floor((n_char - nchar(model)) / 2)), collapse = "") str_full <- paste0(str_left_right, " ", model, " ", ifelse(n_char %% 2 != 0, "=", ""), str_left_right) len <- nchar(str_full) l <- paste0(rep("-", len), collapse = "") cat("\n") cat(str_full, "\n", "\n", "Call:", "\n") print(x$call) cat("\n") cat(l, "\n", "\n") cat( "Laplace smoothing:", x$laplace) cat("\n") cat("\n") cat(l, "\n", "\n") cat(" A priori probabilities:", "\n") print(x$prior) cat("\n") cat(l, "\n", "\n") cat(" Tables:", "\n") tabs <- x$tables n <- length(x$tables) indices <- seq_len(min(5,n)) tabs <- tabs[indices] print(tabs) if (n > 5) { cat("\n\n") cat(" cat(l) } cat("\n\n") }
carbfull<- function(flag, var1, var2, S=35, T=25, Patm=1, P=0, Pt=0, Sit=0, k1k2='x', kf='x', ks="d", pHscale="T", b="u74", gas="potential", NH4t = 0, HSt = 0){ RES <- calculate_carb(flag, var1, var2, S, T, Patm, P, Pt, Sit, NH4t, HSt, k1k2, kf, ks, pHscale, b, gas, badd=0, fullresult=TRUE) return(RES) }
library(HRW) ; library(mgcv) data(WarsawApts) cex.axisVal <- 1.8 ; cex.labVal <- 1.8 cex.legendVal <- 1.3 ; lwdVal <- 2 fitSimpSemi <- gam(areaPerMzloty ~ factor(district) + s(construction.date,bs = "cr",k = 27), data = WarsawApts) print(summary(fitSimpSemi)) construcDate <- WarsawApts$construction.date areaPerMzloty <- WarsawApts$areaPerMzloty districtChar <- as.character(WarsawApts$district) par(mai = c(1.02,0.9,0.82,0.42)) plot(construcDate,areaPerMzloty,type="n",bty="l", xlab="construction date (year)", ylab="area (square meters) per million zloty", cex.axis = cex.axisVal,cex.lab = cex.labVal) myPtCols <- c("deepskyblue","salmon","green3","gold") myLnCols <- c("blue","red","darkgreen","darkorange") points(construcDate[districtChar == "Mokotow"], areaPerMzloty[districtChar == "Mokotow"], lwd = lwdVal,col = myPtCols[1]) points(construcDate[districtChar == "Srodmiescie"], areaPerMzloty[districtChar == "Srodmiescie"], lwd = lwdVal,col = myPtCols[2]) points(construcDate[districtChar == "Wola"], areaPerMzloty[districtChar == "Wola"], lwd = lwdVal,col = myPtCols[3]) points(construcDate[districtChar == "Zoliborz"], areaPerMzloty[districtChar == "Zoliborz"], lwd = lwdVal,col = myPtCols[4]) ng <- 1001 construcDateg <- seq(min(construcDate),max(construcDate),length = ng) fHatgMokotow <- predict(fitSimpSemi, newdata = data.frame( construction.date = construcDateg, district = rep("Mokotow",ng))) lines(construcDateg,fHatgMokotow,col = myLnCols[1]) fHatgSrodmiescie <- predict(fitSimpSemi, newdata = data.frame( construction.date = construcDateg, district = rep("Srodmiescie",ng))) lines(construcDateg,fHatgSrodmiescie,col = myLnCols[2]) fHatgWola <- predict(fitSimpSemi, newdata = data.frame( construction.date = construcDateg, district = rep("Wola",ng))) lines(construcDateg,fHatgWola,col = myLnCols[3]) fHatgZoliborz <- predict(fitSimpSemi, newdata = data.frame( construction.date = construcDateg, district = rep("Zoliborz",ng))) lines(construcDateg,fHatgZoliborz,col = myLnCols[4]) legend(1971,80,legend = c("Mokotow","Srodmiescie","Wola","Zoliborz"), col = myPtCols,pch = rep(1,4),cex = cex.legendVal, pt.cex = rep(1,4),pt.lwd = rep(lwdVal,4)) library(lattice) tmp <- trellis.par.get("add.text") tmp$cex <- 1.5 trellis.par.set("add.text",tmp) pobj <- xyplot(areaPerMzloty ~ construction.date|district, data = WarsawApts,as.table=TRUE, par.settings = list(layout.heights =list(strip=1.4)), scales = list(cex = 1.25), xlab= list("construction date (year)",cex=cex.labVal), ylab= list("area (square meters) per million zloty",cex=cex.labVal), panel=function(x,y) { panel.grid() panel.xyplot(x,y) if (panel.number() == 1) panel.xyplot(construcDateg,fHatgMokotow, col = "darkgreen",lwd = 2,type = "l") if (panel.number() == 2) panel.xyplot(construcDateg,fHatgSrodmiescie, col = "darkgreen",lwd = 2,type = "l") if (panel.number() == 3) panel.xyplot(construcDateg,fHatgWola, col = "darkgreen",lwd = 2,type = "l") if (panel.number() == 4) panel.xyplot(construcDateg,fHatgZoliborz, col = "darkgreen",lwd = 2,type = "l") } ) print(pobj)
require("GPArotation") f3 <- structure(c(0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0,0), .Dim = c(6L, 3L), .Dimnames = list(NULL, c("PC1", "PC2", "PC3"))) f3 GPForth(f3) Varimax(f3)
renv_cli_install <- function(target = NULL) { exe <- if (renv_platform_windows()) "bin/renv.bat" else "bin/renv" path <- system.file(exe, package = "renv") target <- target %||% path.expand("~/bin/renv") ensure_parent_directory(target) file.copy(path, target) writef("* renv binary copied to %s.", renv_path_pretty(target)) invisible(target) } renv_cli_exec <- function(clargs = commandArgs(trailingOnly = TRUE)) { invisible(renv_cli_exec_impl(clargs)) } renv_cli_exec_impl <- function(clargs) { usage <- length(clargs) == 0 || clargs[1L] %in% c("help", "--help") if (usage) return(renv_cli_usage()) method <- clargs[1L] help <- clargs[2L] %in% c("help", "--help") if (help) return(renv_cli_help(method)) exports <- getNamespaceExports("renv") if (!method %in% exports) return(renv_cli_unknown(method, exports)) args <- list(call("::", as.name("renv"), as.name(method))) for (clarg in clargs[-1L]) { if (grepl("^--no-", clarg)) { key <- substring(clarg, 6L) args[[key]] <- FALSE } else if (grepl("^--[^=]+=", clarg)) { index <- regexpr("=", clarg, fixed = TRUE) key <- substring(clarg, 3L, index - 1L) val <- substring(clarg, index + 1L) args[[key]] <- renv_cli_parse(val) } else if (grepl("^--", clarg)) { key <- substring(clarg, 3L) args[[key]] <- TRUE } else if (grepl("=", clarg, fixed = TRUE)) { index <- regexpr("=", clarg, fixed = TRUE) key <- substring(clarg, 1L, index - 1L) val <- substring(clarg, index + 1L) args[[key]] <- renv_cli_parse(val) } else { args[[length(args) + 1L]] <- renv_cli_parse(clarg) } } expr <- as.call(args) eval(expr = expr, envir = globalenv()) } renv_cli_usage <- function() { usage <- " Usage: renv [method] [args...] [method] should be the name of a function exported from renv. [args...] should be arguments accepted by that function. Use renv [method] --help for more information about the associated function. Examples: renv init renv snapshot renv restore renv status renv install dplyr renv run path/to/script.R " writeLines(usage, con = stderr()) } renv_cli_help <- function(method) { print(help(method, package = "renv")) } renv_cli_unknown <- function(method, exports) { fmt <- "renv: '%s' is not a known command." writef(fmt, method, con = stderr()) distance <- c(adist(method, exports)) names(distance) <- exports n <- min(distance) if (n > 2) return(1L) candidates <- names(distance)[distance == n] fmt <- "did you mean %s?" vwritef(fmt, paste(shQuote(candidates), collapse = " or ")) return(1L) } renv_cli_parse <- function(text) { if (text %in% c("true", "True", "TRUE")) return(TRUE) else if (text %in% c("false", "False", "FALSE")) return(FALSE) value <- parse(text = text)[[1L]] if (is.language(value)) text else value }
plotregression <- function(dat){ regdf <- NULL regdf$X <- dat$X regdf$Y <- dat$Y regdf$Yhat <- dat$Yhat regdf$time <- dat$res$time regdf <- as.data.frame(regdf) meltdf <- melt(regdf, id.vars = "time") p1 <- ggplot(meltdf, aes_string("time", "value", col = "variable")) + geom_line(size = 2) + theme_bw() print(p1) } plotrho <- function(dat){ rhodf <- NULL rhodf$time <- dat$time rhodf$rho <- 1/dat$rho rhodf <- as.data.frame(rhodf) p2 <- ggplot(rhodf, aes_string("time", "rho")) + geom_line(size = 2) + theme_bw() + ggtitle(bquote(bar(rho) == .(signif(mean(1/dat$rho), 2)))) + ylab(bquote(1/rho)) print(p2) } plotsbar <- function(dat){ loglikdf <- NULL loglikdf$sbar <- dat$Smean loglikdf$loglik <- dat$loglik loglikdf <- as.data.frame(loglikdf) p9 <- ggplot(loglikdf, aes_string("sbar", "loglik")) + geom_line() + geom_point() + theme_bw() + geom_vline(xintercept = dat$sbar, linetype = "longdash") + ggtitle(bquote(bar(S) == .(signif(dat$sbar, 2)) ~ "," ~ .(signif(dat$sbar/mean(dat$pop) * 100, 2)) ~ "%")) + xlab(bquote(bar(S))) print(p9) } plotbeta <- function(dat){ betadf <- dat$contact betadf <- as.data.frame(betadf) p4 <- ggplot(betadf, aes_string("time", "beta")) + geom_line(size = 2) + theme_bw() + ggtitle(bquote(bar(beta) == .(signif(mean(dat$beta), 2)) ~ "," ~ alpha == .(signif(dat$alpha, 3)))) + ylab(bquote(beta)) if ("contact" %in% names(dat)) { p4 <- ggplot(betadf, aes_string("time", "beta")) + geom_line(size = 2) + geom_ribbon(aes_(ymin = ~betalow, ymax = ~betahigh), alpha = 0.5, col = "dodgerblue", fill = "dodgerblue") + ylim(c(min(dat$contact$betalow), max(dat$contact$betahigh))) + theme_bw() + ggtitle(bquote(bar(beta) == .(signif(mean(dat$beta), 2)) ~ "," ~ alpha == .(signif(dat$alpha, 3)))) + ylab(bquote(beta)) if (sum(sum(is.na(dat$contact))) > 0) { p4 <- ggplot(betadf, aes_string("time", "beta")) + geom_line(size = 2) + theme_bw() + ggtitle(bquote(bar(beta) == .(signif(mean(dat$beta), 2)) ~ "," ~ alpha == .(signif(dat$alpha, 3)))) + ylab(bquote(beta)) } } p4 <- p4 + xlab(sprintf("time mod %g", nrow(dat$contact))) print(p4) } plotforward <- function(dat,inverse = F){ drops <- c("mean", "sd", "error", "cases", "time") sim.only <- dat$res[, !(names(dat$res) %in% drops)] n <- ncol(sim.only) error <- qt(0.975, df = n - 1) * dat$res$sd/sqrt(n) dat$res$error <- error eb <- aes(ymax = mean + error, ymin = mean - error) p6 <- ggplot(data = dat$res, aes_string("time")) + theme(legend.position = "none") + geom_line(aes_string(y = "cases"), colour = "dodgerblue", size = 1) + xlab("year") + ylab("cases") + geom_line(aes_string(y = "mean"), colour = "orangered4", size = 1) + geom_ribbon(eb, alpha = 0.3) + theme_bw() inversecases <- dat$res inversecases$cases <- -dat$res$cases p7 <- ggplot(data = inversecases, aes_string("time")) + theme(legend.position = "none") + geom_line(aes_string(y = "cases"), colour = "dodgerblue", size = 1) + xlab("time") + ylab("cases") + geom_line(aes_string(y = "mean"), colour = "orangered4", size = 1) + geom_ribbon(eb, alpha = 0.3) + theme_bw() if(inverse){ print(p7) }else{ print(p6) } }
context("tidy_table()") test_that("tidy_table works with or without row and column names", { expect_equal(nrow(tidy_table(Formaldehyde)), 12) expect_equal(nrow(tidy_table(Formaldehyde, col_names = TRUE)), 14) expect_equal(nrow(tidy_table(Formaldehyde, row_names = TRUE)), 18) expect_equal(nrow(tidy_table(Formaldehyde, row_names = TRUE, col_names = TRUE)), 20) }) test_that("tidy_table works with html tables", { rowspan <- system.file("extdata", "rowspan.html", package = "unpivotr") colspan <- system.file("extdata", "colspan.html", package = "unpivotr") rowandcolspan <- system.file("extdata", "row-and-colspan.html", package = "unpivotr") nested <- system.file("extdata", "nested.html", package = "unpivotr") rowspan_correct <- list(tibble::tribble( ~ row, ~ col, ~ data_type, ~ html, 1L, 1L, "html", "<th rowspan=\"2\">Header (1:2, 1)</th>", 2L, 1L, "html", NA, 1L, 2L, "html", "<th>Header (1, 2)</th>", 2L, 2L, "html", "<td>cell (2, 2)</td>")) colspan_correct <- list(tibble::tribble( ~ row, ~ col, ~ data_type, ~ html, 1L, 1L, "html", "<th colspan=\"2\">Header (1, 1:2)</th>", 2L, 1L, "html", "<td>cell (2, 1)</td>", 1L, 2L, "html", NA, 2L, 2L, "html", "<td>cell (2, 2)</td>") ) rowandcolspan_correct <- list(tibble::tribble( ~ row, ~ col, ~ data_type, ~ html, 1L, 1L, "html", "<th colspan=\"2\" rowspan=\"2\">Header (1:2, 1:2)</th>", 2L, 1L, "html", NA, 1L, 2L, "html", NA, 2L, 2L, "html", NA, 1L, 3L, "html", "<th>Header (2, 3)</th>", 2L, 3L, "html", "<td>cell (3, 1)</td>", 1L, 4L, "html", NA, 2L, 4L, "html", "<td>cell (3, 2)</td>", 1L, 5L, "html", NA, 2L, 5L, "html", "<td>cell (3, 3)</td>") ) nested_correct <- list(tibble::tribble( ~ row, ~ col, ~ data_type, ~ html, 1L, 1L, "html", "<th>Header (2, 2)(1, 1)</th>", 2L, 1L, "html", "<td>cell (2, 2)(2, 1)</td>", 1L, 2L, "html", "<th>Header (2, 2)(1, 2)</th>", 2L, 2L, "html", "<td>cell (2, 2)(2, 1)</td>") ) rowspan_parsed <- rowspan %>% xml2::read_html() %>% tidy_table() colspan_parsed <- colspan %>% xml2::read_html() %>% tidy_table() rowandcolspan_parsed <- rowandcolspan %>% xml2::read_html() %>% tidy_table() nested_parsed <- nested %>% xml2::read_html() %>% tidy_table() %>% .[[1]] %>% .$html %>% .[4] %>% xml2::read_html() %>% tidy_table() expect_identical(rowspan_parsed, rowspan_correct) expect_identical(colspan_parsed, colspan_correct) expect_identical(rowandcolspan_parsed, rowandcolspan_correct) expect_identical(nested_parsed, nested_correct) }) test_that("tidy_table works with all common datatypes", { x <- tibble::tibble( lgl = c(TRUE, FALSE), int = c(1L, 2L), dbl = c(1, 2), cpl = c(1i, 2i), date = c(as.Date("2001-01-01"), as.Date("2001-01-02")), dttm = c( as.POSIXct("2001-01-01 01:01:01"), as.POSIXct("2001-01-01 01:01:02") ), chr = c("a", "b"), list = list(1:2, letters[1:2]) ) y <- tidy_table(x, col_names = TRUE) expect_equal(colnames(y), c("row", "col", "data_type", sort(colnames(x)))) x_class <- purrr::map(x, class) y_class <- purrr::map(y, class) expect_equal(y_class[names(x_class)], x_class) x <- tibble::tibble( fct = factor(c("a", "b")), ord = factor(c("c", "d"), ordered = TRUE), list = list(1:2, list("a", "b")) ) y <- tidy_table(x) expect_equal(colnames(y), c("row", "col", "data_type", sort(colnames(x)))) expect_equal(class(y$fct), "list") expect_equal(class(y$ord), "list") expect_equal(class(y$list), "list") expect_equal(y$fct[[1]], factor("a", levels = c("a", "b"))) expect_equal(y$fct[[3]], NULL) expect_equal(y$ord[[2]], NULL) expect_equal(y$ord[[4]], factor("d", levels = c("c", "d"), ordered = TRUE)) expect_equal(y$list[[4]], NULL) expect_equal(y$list[[5]], 1:2) expect_equal(y$list[[6]], list("a", "b")) })
"negex"
suppress_warnings <- function(.expr, .f) { eval.parent(substitute( withCallingHandlers( .expr, warning = function(w) { cm <- conditionMessage(w) cond <- grepl(.f, cm) if (cond) { invokeRestart("muffleWarning") } }) )) }
readMetlin = function(url = "http://metlin.scripps.edu/download/MSMS_test.XML", what = c("molid" = "integer", name = "character", formula = "character", mass = "numeric", mz = "numeric")) { doc = xmlTreeParse(url, useInternal = TRUE) z = xmlChildren(xmlRoot(doc)) nodes = z[ sapply(z, inherits, "XMLInternalElementNode") ] if(length(nodes) > 1) { } nodes = nodes[[1]] n = xmlSize(nodes) ans = as.data.frame(lapply(what, function(x) get(x)(n))) for(i in 1:n) { node = nodes[[i]] sapply(names(what), function(id) { ans[i, id] <<- as(xmlValue(node[[id]]), what[id]) }) } ans }
print.gresponse.dmm <- function(x, ...) { cat("Call:\n") print(x$call) cat("\nPredicted response to selection using component(s) ",x$effects,"\n") cat("\nGenetic selection differentials achieved by given psd:\n\n") cat("Overall:\n") print(x$overall,digits=x$digits) cat("\n") }
cma.delta.ts.arp.error.lm.ts.logLik <- function(dat,delta=0,p=p,error.indep=FALSE,error.var.equal=FALSE) { re<-cma.delta.ts.arp.error.lm.ts(dat,delta=delta,p=p,error.indep=error.indep,error.var.equal=error.var.equal) return(re$logLik.lm) }
bibentries = c( breiman_2001 = bibentry("article", title = "Random Forests", author = "Breiman, Leo", year = "2001", journal = "Machine Learning", volume = "45", number = "1", pages = "5--32", doi = "10.1023/A:1010933404324", issn = "1573-0565" ), chen_2016 = bibentry("inproceedings", title = "Xgboost: A scalable tree boosting system", author = "Chen, Tianqi and Guestrin, Carlos", year = "2016", booktitle = "Proceedings of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data Mining", pages = "785--794", doi = "10.1145/2939672.2939785", organization = "ACM" ), cortes_1995 = bibentry("article", title = "Support-vector networks", author = "Cortes, Corinna and Vapnik, Vladimir", year = "1995", month = "sep", day = "1", journal = "Machine Learning", volume = "20", number = "3", pages = "273--297", doi = "10.1007/BF00994018" ), cover_1967 = bibentry("article", title = "Nearest neighbor pattern classification", author = "Cover, Thomas and Hart, Peter", year = "1967", journal = "IEEE transactions on information theory", publisher = "IEEE", volume = "13", number = "1", pages = "21--27", doi = "10.1109/TIT.1967.1053964" ), friedman_2010 = bibentry("article", title = "Regularization Paths for Generalized Linear Models via Coordinate Descent", author = "Jerome Friedman and Trevor Hastie and Robert Tibshirani", year = "2010", journal = "Journal of Statistical Software", volume = "33", number = "1", pages = "1--22", doi = "10.18637/jss.v033.i01" ), hechenbichler_2004 = bibentry("techreport", title = "Weighted k-nearest-neighbor techniques and ordinal classification", author = "Hechenbichler, Klaus and Schliep, Klaus", year = "2004", number = "Discussion Paper 399, SFB 386", doi = "10.5282/ubm/epub.1769", institution = "Ludwig-Maximilians University Munich" ), ripley_1996 = bibentry("book", doi = "10.1017/cbo9780511812651", year = "1996", month = "jan", publisher = "Cambridge University Press", author = "Brian D. Ripley", title = "Pattern Recognition and Neural Networks" ), roustant_2012 = bibentry("article", title = "{DiceKriging}, {DiceOptim}: Two {R} Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization", author = "Olivier Roustant and David Ginsbourger and Yves Deville", year = "2012", journal = "Journal of Statistical Software", volume = "51", number = "1", pages = "1--55", doi = "10.18637/jss.v051.i01" ), samworth_2012 = bibentry("article", title = "Optimal weighted nearest neighbour classifiers", author = "Samworth, Richard J", year = "2012", journal = "The Annals of Statistics", volume = "40", number = "5", pages = "2733--2763", doi = "10.1214/12-AOS1049" ), venables_2002 = bibentry("book", title = "Modern Applied Statistics with S", author = "W. N. Venables and B. D. Ripley", year = "2002", publisher = "Springer", address = "New York", url = "http://www.stats.ox.ac.uk/pub/MASS4/", note = "ISBN 0-387-95457-0", edition = "Fourth" ), wright_2017 = bibentry("article", title = "{ranger}: A Fast Implementation of Random Forests for High Dimensional Data in {C++} and {R}", author = "Wright, Marvin N. and Ziegler, Andreas", year = "2017", journal = "Journal of Statistical Software", volume = "77", number = "1", pages = "1--17", doi = "10.18637/jss.v077.i01" ) )
context("test_numerics_manipulations.R") requireNamespace("data.table") verbose <- TRUE test_that("find_and_transform_numerics: find and transform to numeric columns that are hidden in string wheter they have decimal separator ',' or '.'", { data_set <- data.table(col1 = c("1.2", "1.3", "1.2", "1", "6"), col2 = c("1,2", "1,3", "1,2", "1", "6")) data_transformed <- find_and_transform_numerics(data_set, n_test = 5, verbose = verbose) expect_true(is.numeric(data_transformed[["col1"]])) expect_true(is.numeric(data_transformed[["col2"]])) }) test_that("find_and_transform_numerics: doesn't transform to numeric character cols", { data_set <- data.table(character_col = c("A", "B")) data_transformed <- find_and_transform_numerics(data_set, n_test = 2, verbose = verbose) expect_true(is.character(data_transformed[["character_col"]])) }) test_that("private function identify_numerics: find numerics wheter they have decimal separator ',' or '.'", { data_set <- data.table(col1 = c("1.2", "1.3", "1.2", "1", "6"), col2 = c("1,2", "1,3", "1,2", "1", "6")) numeric_cols <- identify_numerics(data_set, n_test = 5, verbose = verbose) expect_equal(2, length(numeric_cols)) expect_equal("col1", numeric_cols$dont_strip) expect_equal("col2", numeric_cols$strip) expect_identical(identify_numerics(data_set, cols = list(), n_test = 5, verbose = verbose), list(dont_strip = NULL, strip = NULL)) }) test_that("private function identify_numerics: if told to do nothing, do nothing.", { data_set <- data.table(col1 = c("1.2", "1.3", "1.2", "1", "6")) numeric_cols <- identify_numerics(data_set, cols = list(), n_test = 5, verbose = verbose) expect_identical(numeric_cols, list(dont_strip = NULL, strip = NULL)) }) test_that("private function: identify_numerics_formats: give notstrip when numeric col hiden in character with '.' decimal separator is thrown", { data_set <- data.table(col = c("1.2", "1.3", "1.2", "1", "6")) result <- identify_numerics_formats(data_set$col) expect_equal(NUMERIC_COL_NOT_TO_STRIP, result) }) test_that("private function: identify_numerics_formats: give strip when numeric col hiden in character with ',' decimal separator is thrown", { data_set <- data.table(col = c("1,2", "1,3", "1,2", "1", "6")) result <- identify_numerics_formats(data_set$col) expect_equal(NUMERIC_COL_TO_STRIP, result) }) test_that("private function: identify_numerics_formats: give 'Not a numeric' when col doesn't contain hidden numeric", { data_set <- data.table(col = LETTERS) result <- identify_numerics_formats(data_set$col) expect_equal("Not a numeric", result) }) test_that("private function: identify_numerics_formats: should throw error when called on not character col", { data_set <- data.table(col = factor(c(1, 2, 3))) expect_error(identify_numerics_formats(data_set$col), "identify_numerics_formats: data_set should be some characters") }) test_that("private function as.numeric_strip: should convert character containing a numeric with ',' decimal seprator into correct numeric", { char_num <- "1,2" expected_result <- 1.2 result <- as.numeric_strip(char_num) expect_equal(expected_result, result) })
tar_test("tar_exist_objects()", { dir_create(dirname(path_objects(path_store_default(), "x"))) file.create(path_objects(path_store_default(), "x")) expect_equal(tar_exist_objects(c("y", "x")), c(FALSE, TRUE)) }) tar_test("custom script and store args", { skip_on_cran() expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) tar_script(tar_target(x, 1), script = "example/script.R") expect_false(tar_exist_objects("x", store = "example/store")) expect_false(file.exists("example/store")) tar_make( callr_function = NULL, script = "example/script.R", store = "example/store" ) expect_true(tar_exist_objects("x", store = "example/store")) expect_true(file.exists("example/store")) expect_false(file.exists("_targets.yaml")) expect_equal(tar_config_get("script"), path_script_default()) expect_equal(tar_config_get("store"), path_store_default()) expect_false(file.exists(path_script_default())) expect_false(file.exists(path_store_default())) expect_true(file.exists("example/script.R")) tar_config_set(script = "x") expect_equal(tar_config_get("script"), "x") expect_true(file.exists("_targets.yaml")) })
link_compar <- function(proj_name, linkset1, linkset2, buffer_width = 200, min_length = NULL, proj_path = NULL){ if(!is.null(proj_path)){ chg <- 1 wd1 <- getwd() setwd(dir = proj_path) } else { chg <- 0 proj_path <- getwd() } if(!inherits(proj_name, "character")){ if(chg == 1){setwd(dir = wd1)} stop("'proj_name' must be a character string") } else if (!(paste0(proj_name, ".xml") %in% list.files(path = paste0("./", proj_name)))){ if(chg == 1){setwd(dir = wd1)} stop("The project you refer to does not exist. Please use graphab_project() before.") } proj_end_path <- paste0(proj_name, "/", proj_name, ".xml") if(!inherits(linkset1, "character")){ if(chg == 1){setwd(dir = wd1)} stop("'linkset1' must be a character string specifying the name of the first link set involved in the comparison.") } else if (!(paste0(linkset1, "-links.csv") %in% list.files(path = paste0("./", proj_name)))){ if(chg == 1){setwd(dir = wd1)} stop("The linkset you refer to does not exist. Please use graphab_link() before.") } if(!inherits(linkset2, "character")){ if(chg == 1){setwd(dir = wd1)} stop("'linkset2' must be a character string specifying the name of the second link set involved in the comparison.") } else if (!(paste0(linkset2, "-links.csv") %in% list.files(path = paste0("./", proj_name)))){ if(chg == 1){setwd(dir = wd1)} stop("The linkset you refer to does not exist. Please use graphab_link() before.") } if(!inherits(buffer_width, c("numeric", "integer"))){ if(chg == 1){setwd(dir = wd1)} stop("'buffer_width' must be a numeric or integer value") } if(!is.null(min_length)){ if(!inherits(min_length, c("numeric", "integer"))){ if(chg == 1){setwd(dir = wd1)} stop("'min_length' must be a numeric or an integer threshold value.") } } ls1 <- suppressWarnings(sf::as_Spatial(sf::st_read(dsn = paste0(getwd(), "/", proj_name), layer = paste0(linkset1, "-links")))) ls2 <- suppressWarnings(sf::as_Spatial(sf::st_read(dsn = paste0(getwd(), "/", proj_name), layer = paste0(linkset2, "-links")))) if(!is.null(min_length)){ ls1 <- ls1[which(ls1$DistM >= min_length), ] ls2 <- ls2[which(ls2$DistM >= min_length), ] } if(nrow(ls1) != nrow(ls2)){ if(chg == 1){setwd(dir = wd1)} stop("'linkset1' and 'linkset2' must have the same number of links.") } else if(!(all(ls1$Id %in% ls2$Id))){ if(chg == 1){setwd(dir = wd1)} stop("'linkset1' and 'linkset2' must have the same link IDs.") } print(paste0("The buffer width on each side of the links has been set to ", buffer_width, " m.")) ls1_b <- raster::buffer(ls1, width = buffer_width, dissolve = FALSE) ls2_b <- raster::buffer(ls2, width = buffer_width, dissolve = FALSE) data1 <- ls1_b@data data2 <- ls2_b@data df_res <- data.frame(id_link = NA, area_1 = NA, area_2 = NA, cost_dist_1 = NA, cost_dist_2 = NA, euc_dist_1 = NA, euc_dist_2 = NA, area_overlap = NA) df_res <- df_res[-1, ] for(i in 1:nrow(ls1_b)){ id <- data1[i, 'Id'] ls1_bi <- ls1_b[which(data1$Id == id), ] ls2_bi <- ls2_b[which(data2$Id == id), ] inter_ls <- suppressWarnings(sf::st_intersection(sf::st_as_sf(ls1_bi), sf::st_as_sf(ls2_bi))) inter_area <- sf::st_area(inter_ls) ls1_area <- sf::st_area(sf::st_as_sf(ls1_bi)) ls2_area <- sf::st_area(sf::st_as_sf(ls2_bi)) df_res <- rbind(df_res, data.frame(id_link = id, area_1 = as.numeric(ls1_area), area_2 = as.numeric(ls2_area), cost_dist_1 = ls1_bi$Dist, cost_dist_2 = ls2_bi$Dist, euc_dist_1 = ls1_bi$DistM, euc_dist_2 = ls2_bi$DistM, area_overlap = as.numeric(inter_area))) } correl <- stats::cor(df_res$cost_dist_1, df_res$cost_dist_2) res <- list(df_res, correl) names(res) <- c("Spatial overlap table", "Correlation coefficient between cost distances") if(chg == 1){ setwd(dir = wd1) } return(res) }
expected <- eval(parse(text="structure(c(\"[\", \"shingle\", NA, \"as.data.frame\", \"shingle\", NA, \"plot\", \"shingle\", NA, \"print\", \"shingle\", NA, \"summary\", \"shingle\", NA, \"as.character\", \"shingleLevel\", NA, \"print\", \"shingleLevel\", NA, \"print\", \"trellis\", NA, \"plot\", \"trellis\", NA, \"update\", \"trellis\", NA, \"dim\", \"trellis\", NA, \"dimnames\", \"trellis\", NA, \"dimnames<-\", \"trellis\", NA, \"[\", \"trellis\", NA, \"t\", \"trellis\", NA, \"summary\", \"trellis\", NA, \"print\", \"summary.trellis\", NA, \"barchart\", \"formula\", NA, \"barchart\", \"array\", NA, \"barchart\", \"default\", NA, \"barchart\", \"matrix\", NA, \"barchart\", \"numeric\", NA, \"barchart\", \"table\", NA, \"bwplot\", \"formula\", NA, \"bwplot\", \"numeric\", NA, \"densityplot\", \"formula\", NA, \"densityplot\", \"numeric\", NA, \"dotplot\", \"formula\", NA, \"dotplot\", \"array\", NA, \"dotplot\", \"default\", NA, \"dotplot\", \"matrix\", NA, \"dotplot\", \"numeric\", NA, \"dotplot\", \"table\", NA, \"histogram\", \"formula\", NA, \"histogram\", \"factor\", NA, \"histogram\", \"numeric\", NA, \"qqmath\", \"formula\", NA, \"qqmath\", \"numeric\", NA, \"stripplot\", \"formula\", NA, \"stripplot\", \"numeric\", NA, \"qq\", \"formula\", NA, \"xyplot\", \"formula\", NA, \"xyplot\", \"ts\", NA, \"levelplot\", \"formula\", NA, \"levelplot\", \"table\", NA, \"levelplot\", \"array\", NA, \"levelplot\", \"matrix\", NA, \"contourplot\", \"formula\", NA, \"contourplot\", \"table\", NA, \"contourplot\", \"array\", NA, \"contourplot\", \"matrix\", NA, \"cloud\", \"formula\", NA, \"cloud\", \"matrix\", NA, \"cloud\", \"table\", NA, \"wireframe\", \"formula\", NA, \"wireframe\", \"matrix\", NA, \"splom\", \"formula\", NA, \"splom\", \"matrix\", NA, \"splom\", \"data.frame\", NA, \"parallelplot\", \"formula\", NA, \"parallelplot\", \"matrix\", NA, \"parallelplot\", \"data.frame\", NA, \"parallel\", \"formula\", NA, \"parallel\", \"matrix\", NA, \"parallel\", \"data.frame\", NA, \"tmd\", \"formula\", NA, \"tmd\", \"trellis\", NA, \"llines\", \"default\", NA, \"ltext\", \"default\", NA, \"lpoints\", \"default\", NA), .Dim = c(3L, 70L))")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(\"[\", \"as.data.frame\", \"plot\", \"print\", \"summary\", \"as.character\", \"print\", \"print\", \"plot\", \"update\", \"dim\", \"dimnames\", \"dimnames<-\", \"[\", \"t\", \"summary\", \"print\", \"barchart\", \"barchart\", \"barchart\", \"barchart\", \"barchart\", \"barchart\", \"bwplot\", \"bwplot\", \"densityplot\", \"densityplot\", \"dotplot\", \"dotplot\", \"dotplot\", \"dotplot\", \"dotplot\", \"dotplot\", \"histogram\", \"histogram\", \"histogram\", \"qqmath\", \"qqmath\", \"stripplot\", \"stripplot\", \"qq\", \"xyplot\", \"xyplot\", \"levelplot\", \"levelplot\", \"levelplot\", \"levelplot\", \"contourplot\", \"contourplot\", \"contourplot\", \"contourplot\", \"cloud\", \"cloud\", \"cloud\", \"wireframe\", \"wireframe\", \"splom\", \"splom\", \"splom\", \"parallelplot\", \"parallelplot\", \"parallelplot\", \"parallel\", \"parallel\", \"parallel\", \"tmd\", \"tmd\", \"llines\", \"ltext\", \"lpoints\", \"shingle\", \"shingle\", \"shingle\", \"shingle\", \"shingle\", \"shingleLevel\", \"shingleLevel\", \"trellis\", \"trellis\", \"trellis\", \"trellis\", \"trellis\", \"trellis\", \"trellis\", \"trellis\", \"trellis\", \"summary.trellis\", \"formula\", \"array\", \"default\", \"matrix\", \"numeric\", \"table\", \"formula\", \"numeric\", \"formula\", \"numeric\", \"formula\", \"array\", \"default\", \"matrix\", \"numeric\", \"table\", \"formula\", \"factor\", \"numeric\", \"formula\", \"numeric\", \"formula\", \"numeric\", \"formula\", \"formula\", \"ts\", \"formula\", \"table\", \"array\", \"matrix\", \"formula\", \"table\", \"array\", \"matrix\", \"formula\", \"matrix\", \"table\", \"formula\", \"matrix\", \"formula\", \"matrix\", \"data.frame\", \"formula\", \"matrix\", \"data.frame\", \"formula\", \"matrix\", \"data.frame\", \"formula\", \"trellis\", \"default\", \"default\", \"default\", NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA), .Dim = c(70L, 3L)), c(2L, 1L), TRUE)")); .Internal(`aperm`(argv[[1]], argv[[2]], argv[[3]])); }, o=expected);
library(tinytest) library(ggiraph) classname_re <- "\\._CLASSNAME_\\s*" girafe_css_re <- "\\/\\*GIRAFE CSS\\*\\/\\s*" css_code <- "stroke: black;" css_re <- function(x) { paste0("\\s*\\{\\s*", x, "\\s*\\}\\s*") } { css <- ggiraph:::validate_css(css_code, "text") re <- paste0("^", classname_re, css_re(css_code), "$") expect_true(grepl(re, css), info = "should return css prefixed with ._CLASSNAME_") css <- ggiraph:::validate_css(css_code, "text", "text") re <- paste0("^text", classname_re, css_re(css_code), "$") expect_true(grepl(re, css), info = "tag name should be used") css <- ggiraph:::validate_css(css_code, "text", c("text", "line")) re <- paste0("^text", classname_re, ",\\s*line", classname_re, css_re(css_code), "$") expect_true(grepl(re, css), info = "multiple tag names should be used") expect_equal( ggiraph:::validate_css(NULL, "text"), "", info = "should return empty css" ) expect_equal( ggiraph:::validate_css("", "text"), "", info = "should return empty css" ) expect_error( ggiraph:::validate_css(c("one", "two"), ""), info = "css must be scalar character" ) } { expect_equal( ggiraph::girafe_css(""), "/*GIRAFE CSS*/", info = "should return just placeholder /*GIRAFE CSS*/" ) css <- ggiraph::girafe_css(css_code) re <- paste0("^", girafe_css_re, classname_re, css_re(css_code), "$") expect_true( grepl(re, css), info = "should return the css code with placeholder" ) css_tag_code <- "stroke: none;" css <- ggiraph::girafe_css(css_code, text = css_tag_code) re <- paste0("^", girafe_css_re, classname_re, css_re(css_code)) re2 <- paste0("\\s*text", classname_re, css_re(css_tag_code), "$") expect_true( grepl(re, css) && grepl(re2, css), info = "should use the tag for text" ) css <- ggiraph::girafe_css(css_code, point = css_tag_code) re <- paste0("^", girafe_css_re, classname_re, css_re(css_code)) re2 <- paste0("\\s*circle", classname_re, css_re(css_tag_code), "$") expect_true( grepl(re, css) && grepl(re2, css), info = "should use the tag for point" ) css <- ggiraph::girafe_css(css_code, image = css_tag_code) re <- paste0("^", girafe_css_re, classname_re, css_re(css_code)) re2 <- paste0("\\s*image", classname_re, css_re(css_tag_code), "$") expect_true( grepl(re, css) && grepl(re2, css), info = "should use the tag for image" ) css <- ggiraph::girafe_css(css_code, line = css_tag_code) re <- paste0("^", girafe_css_re, classname_re, css_re(css_code)) re2 <- paste0( "\\s*line", classname_re, ",\\s*polyline", classname_re, css_re(css_tag_code), "$" ) expect_true( grepl(re, css) && grepl(re2, css), info = "should use the tags for line" ) css <- ggiraph::girafe_css(css_code, area = css_tag_code) re <- paste0("^", girafe_css_re, classname_re, css_re(css_code)) re2 <- paste0( "\\s*rect", classname_re, ",\\s*polygon", classname_re, ",\\s*path", classname_re, css_re(css_tag_code), "$" ) expect_true( grepl(re, css) && grepl(re2, css), info = "should use the tags for area" ) } { default <- "fill:orange;stroke:gray;" pattern <- "\\/\\*GIRAFE CSS\\*\\/" cls_prefix <- "hover_" name <- "opts_hover" canvas_id <- "SVGID_" expect_error(ggiraph:::check_css( c("a", "b"), default = default, cls_prefix = cls_prefix, name = name, canvas_id = canvas_id )) expect_identical(ggiraph:::check_css( NULL, default = default, cls_prefix = cls_prefix, name = name, canvas_id = canvas_id ), paste0(".", cls_prefix, canvas_id, " { ", default, " }")) }
dbListFields_PqConnection_Id <- function(conn, name, ...) { list_fields(conn, name@name) } setMethod("dbListFields", c("PqConnection", "Id"), dbListFields_PqConnection_Id)
op_sum <- opwf(sum, c('...', 'removeNA_b_1')) op_kronecker <- opwf(kronecker, c('arrayA_a_1', 'arrayB_a_1', 'function_f_1', 'computeDimensionNames_b_1', '...')) op_formatdf <- opwf(format.data.frame, c('x_o_1', '...', 'justificationScheme_s_1')) cac_sum <- computeArgumentsCombination(op_sum) cac_kronecker <- computeArgumentsCombination(op_kronecker) cac_formatdf <- computeArgumentsCombination(op_formatdf)
"rg.mva" <- function(x, main = deparse(substitute(x))) { if(!is.matrix(x)) stop("Not a Matrix") n <- length(x[, 1]) p <- length(x[1, ]) matnames <- dimnames(x) wts <- numeric(n) wts[1:n] <- 1 nc <- n cat(" n =", n, "\tnc =", n, "\tp =", p, "\t\tnc/p =", round(nc/p, 2), "\n") if(nc <= 5 * p) cat(" *** Proceed with Care, n is < 5p ***\n") if(nc <= 3 * p) cat(" *** Proceed With Great Care, n = ", n, ", which is < 3p ***\n") save <- cov.wt(x, wt = wts, cor = TRUE) xmean <- save$center xsd <- sqrt(diag(save$cov)) temp <- sweep(x, 2, xmean, "-") snd <- sweep(temp, 2, xsd, "/") xsd2 <- sqrt(n) * xsd w <- sweep(temp, 2, xsd2, "/") wt <- t(as.matrix(w)) a <- wt %*% as.matrix(w) b <- svd(a) cat(" Eigenvalues:", signif(b$d, 4), "\n") sumc <- sum(b$d) econtrib <- 100 * (b$d/sumc) rqscore <- w %*% b$v vcontrib <- apply(rqscore,2,var) sumv <- sum(vcontrib) pvcontrib <- (100 * vcontrib)/sumv cpvcontrib <- cumsum(pvcontrib) b1 <- b$v * 0 diag(b1) <- sqrt(b$d) rload <- b$v %*% b1 rcr <- rload[, ] * 0 rcr1 <- apply(rload^2, 1, sum) rcr <- 100 * sweep(rload^2, 1, rcr1, "/") if(b$d[p] > 0.001) { md <- mahalanobis(x, save$center, save$cov) temp <- (nc - p)/(p * (nc + 1)) ppm <- 1 - pf(temp * md, p, nc - p) epm <- 1 - pchisq(md, p) } else { cat(" Lowest eigenvalue < 10^-4, Mahalanobis distances not computed\n") md <- NULL ppm <- NULL epm <- NULL } invisible(list(main = main, input = deparse(substitute(x)), proc = "cov", n = n, nc = nc, p = p, matnames = matnames, wts = wts, mean = xmean, cov = save$cov, sd = xsd, snd = snd, r = save$cor, eigenvalues = b$d, econtrib = econtrib, eigenvectors = b$v, rload = rload, rcr = rcr, rqscore = rqscore, vcontrib = vcontrib, pvcontrib = pvcontrib, cpvcontrib = cpvcontrib, md = md, ppm = ppm, epm = epm, nr = NULL) ) }
plot.FEmrt <- function(x, ...){ if (length(x$n) < 2) { warning("No tree was detected") } else{ frame <- x$tree$frame frame0 <- frame rownames(frame0) <- rank(as.numeric(rownames(frame))) trans.labels <- rownames(frame) names(trans.labels) <- rownames(frame0) term.nodes <- rownames(frame0)[x$tree$where] inx.pleaves <- which(frame0$var != "<leaf>") pleaves <- rownames(frame0)[inx.pleaves] pleaves <- pleaves[order(as.numeric(rownames(frame0)[inx.pleaves+1]))] splits.all <- labels(x$tree, minlength = 0L) splits <- splits.all[inx.pleaves+1][order(as.numeric(rownames(frame0)[inx.pleaves+1]))] ntree <- data.frame(split = as.character(splits), pleaf = as.numeric(pleaves)) object <- list() object$data <- x$data object$data$term.node <- term.nodes object$tree <- ntree object$n <- table(term.nodes) object$tree$split <- as.character(object$tree$split) if (length(object$n) < 2) {stop("no tree was detected")} else { transparent_theme <- ggplot2::theme( axis.line = element_blank(), axis.text.x = element_blank(), axis.text.y = element_blank(), axis.ticks = element_blank(), axis.title.x = element_blank(), axis.title.y = element_blank(), panel.background = element_blank(), panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.background = element_blank() ) transparent_theme2 <- ggplot2::theme( axis.text.x = element_blank(), axis.ticks = element_blank(), axis.title.x = element_blank(), axis.title.y = element_blank(), panel.background = element_blank(), panel.border = element_blank(), panel.grid.major = element_blank(), panel.grid.minor = element_blank(), plot.background = element_blank() ) y <- NULL term.node <- NULL yi <- NULL leaf.no <- NULL tree <- object$tree tree <- tree[!is.na(tree$pleaf), ] count <- 1 nodes <- data.frame(leaf=1, pleaf=0, x=0, y=0, w=1) for(pleaf in tree$pleaf) { pleaf_row <- nodes[nodes$leaf == pleaf, ] count <- count + 1 nodes <- updateNodes( nodes, data.frame( leaf = count, pleaf = pleaf, x = pleaf_row$x - pleaf_row$w / 2, y = pleaf_row$y - 1, w = pleaf_row$w / 2 ) ) count <- count + 1 nodes <- updateNodes( nodes, data.frame( leaf = count, pleaf = pleaf, x = pleaf_row$x + pleaf_row$w / 2, y = pleaf_row$y - 1, w = pleaf_row$w / 2 ) ) } nodes$split = NA nodes$split[tree$pleaf] = tree$split nodes$x.new <- rep(NA, nrow(nodes)) inx.term <- !(nodes$leaf %in% nodes$pleaf) nodes.term <- nodes[inx.term,] nodes$x.new[inx.term] <- rank(nodes$x[inx.term]) nodes$leaf.no[inx.term] <- object$n[as.character(nodes$leaf[inx.term])] for (i in min(nodes$y):-1){ inx.pleaf <- which(nodes$y == i) coords <- sapply(split(nodes$x.new[inx.pleaf], nodes$pleaf[inx.pleaf]), mean) leaf.no <- sapply(split(nodes$leaf.no[inx.pleaf], nodes$pleaf[inx.pleaf]), sum) inx.replace <- names(coords[!is.na(coords)]) nodes$x.new[as.numeric(inx.replace)] <- coords[inx.replace] nodes$leaf.no[as.numeric(inx.replace)] <- leaf.no[inx.replace] } nodes$x <- nodes$x.new config.leaf_width_scale <- 0.9 x.scale <- config.leaf_width_scale / 2 * min(sapply(split(nodes[-1, ]$x,f =nodes[-1, ]$y), function(x) min(diff(sort(x))))) y.scale <- x.scale*diff(range(nodes$y))/diff(range(nodes$x)) vis <- ggplot() for(i in 1:nrow(nodes)){ node <- nodes[i, ] if(node$pleaf == 0){ next } parent = nodes[nodes$leaf == node$pleaf, ] data_line = data.frame(x = c(node$x, parent$x), y = c(node$y, parent$y)) vis <- vis + geom_line(data = data_line, aes(x, y), color = "black") } config.branch_text_left_dx = -0.2 config.branch_text_right_dx = 0.2 config.branch_text_left = "Yes" config.branch_text_right = "No" config.branch_text_size = 3 config.leaf_oval_ratio = 1.3 config.leaf_text_size = 5 config.split_text_dy = -0.33 config.split_text_size = 3 config.split_label = T for (i in 1:nrow(nodes)) { node <- nodes[i, ] parent = nodes[nodes$leaf == node$pleaf,] vis <- oval_draw(vis, node$x, node$y, config.leaf_oval_ratio, x.scale, y.scale) + geom_text( data = data.frame(x = node$x, y = node$y), aes(x, y), label = paste("K =",node$leaf.no), size = config.leaf_text_size ) h = 1 if(!is.na(node$split)){ dy <- h * config.split_text_dy data_text = data.frame(x = node$x, y = node$y + dy) show_text = ifelse(config.split_label, geom_label, geom_text) vis <- vis + show_text( data = data_text, aes(x, y), label = encodeHtml(node$split), size = config.split_text_size ) } dx = h * ifelse(node$leaf %% 2 == 0, config.branch_text_left_dx, config.branch_text_right_dx) data_text = data.frame(x = (node$x + parent$x) / 2 + dx, y = (node$y + parent$y) / 2) vis <- vis + geom_text( data = data_text, aes(x, y), label = ifelse( node$leaf %% 2 == 0, config.branch_text_left, config.branch_text_right ), size = config.branch_text_size ) } vis <- vis + transparent_theme term <- nodes[is.na(nodes$split),] term <- term[ordered(term$x.new),] yi <- model.response(x$data) p <- ggplot() p <- p + geom_hline( yintercept = c(min(yi), max(yi)), linetype = "solid" ) p <- p + geom_hline( yintercept = 0, linetype = "dashed" ) p <- p + scale_x_discrete(limits = as.factor(term$leaf)) CI.ratio = 2 for (i in unique(term.nodes)) { y.coord2 = frame0[i, ]$yval x.coord2 = nodes[i, ]$x p <- CI_draw(p, x = x.coord2, y = y.coord2, b = 1.96* x$se[trans.labels[i]], a = 1.96* x$se[trans.labels[i]]/CI.ratio) } p <- p + transparent_theme2 grid.arrange(vis, p, nrow = 2, as.table=T, heights = c(3,1)) } } }
create_map <- function() { insertUI(immediate = TRUE, selector = ".content", where = "beforeEnd", ui = conditionalPanel( condition = "output.cond == true", div(class = "main_plots", fluidRow( box( id = "box1", width = 12, collapsible = TRUE, collapsed = FALSE, title = tagList(icon("map"), "Map"), mapdeck::mapdeckOutput(outputId = "map")))))) } create_summary_boxes <- function() { insertUI(immediate = TRUE, selector = ".content", where = "beforeEnd", ui = conditionalPanel( condition = "output.cond == true", div(class = "main_plots", fluidRow( valueBoxOutput("nsessions_running_box", width = 4), valueBoxOutput("nsessions_cycling_box", width = 4), valueBoxOutput("nsessions_swimming_box", width = 4)), fluidRow( valueBoxOutput("avgDistance_box", width = 4), valueBoxOutput("avgDuration_box", width = 4), valueBoxOutput("avgPace_box", width = 4)), fluidRow( valueBoxOutput("avgHeartRate_box", width = 4), valueBoxOutput("avgTemperature_box", width = 4), valueBoxOutput("total_elevation_gain_box", width = 4)) ))) } create_workout_plots <- function(feature) { fname <- switch(as.character(feature), "distance" = "Distance", "duration" = "Duration", "avgSpeed" = "Average Speed", "avgPace" = "Average Pace", "avgCadenceRunning" = "Average Cadence Running", "avgCadenceCycling" = "Average Cadence Cycling", "avgPower" = "Average Power", "avgHeartRate" = "Average Heart Rate", "avgTemperature" = "Average Temperature", "avgAltitude" = "Average Altitude", "total_elevation_gain" = "Total elevation gain", "wrRatio" = "Work-to-rest Ratio") insertUI(selector = ".content", where = "beforeEnd", ui = conditionalPanel( condition = paste0("output.", feature, " == false"), div(class = "main_plots", id = paste0("box", feature), fluidRow( box(width = 12, collapsible = TRUE, title = tagList(icon(create_icon(feature)), fname), plotlyOutput(paste0(feature, "_plot"), width = "auto", height = "auto")))))) } create_selected_workout_plot <- function(id, workout_features, collapsed = FALSE) { insertUI( selector = ".content", where = "beforeEnd", ui = conditionalPanel( condition = paste0("output.", id, " == false"), div(class = "plots", id = id, fluidRow( box( width = 12, collapsible = TRUE, collapsed = collapsed, title = tagList(icon("gear"), switch(id, "pace" = "Pace", "heart_rate" = "Heart Rate", "altitude" = "Altitude", "power" = "Power", "speed" = "Speed", "cadence_running" = "Cadence Running", "cadence_cycling" = "Cadence Cycling", "altitude" = "Altitude", "temperature" = "Temperature", "cumulative_elevation_gain" = "Cumulative elevation gain")), fluidRow( column(3, selectInput( inputId = paste0("what2", id), label = "Shaded feature", multiple = FALSE, choices = workout_features, selected = "altitude")), column(1, selectizeInput( inputId = paste0("n_changepoints", id), label = "Changepoints", multiple = FALSE, choices = c( "no" = 0, "1" = 1, "2" = 2, "3" = 3, "4" = 4, "5" = 5, "6" = 6, "7" = 7, "8" = 8, "9" = 9, "10" = 10, "11" = 11, "12" = 12), selected = "no"))), div(id = "workout_view_plot", uiOutput(paste0(id, "_plot")))))))) } create_profiles_box <- function(inputId, plotId, choices, collapsed = FALSE) { insertUI( selector = ".content", where = "beforeEnd", ui = conditionalPanel( condition = "output.cond == false", div(class = "plots", fluidRow( box( width = 12, collapsible = TRUE, collapsed = collapsed, title = tagList(icon("gear"), "Workout concentration"), fluidRow( column(2, pickerInput(inputId = inputId, label = "Features", choices = choices, options = list(`actions-box` = TRUE), multiple = TRUE, selected = c("speed")))), uiOutput(plotId)))))) } create_zones_box <- function(inputId, plotId, choices) { insertUI( selector = ".content", where = "beforeEnd", ui = conditionalPanel( condition = "output.cond == false", div(class = "plots", fluidRow( box( width = 12, collapsible = TRUE, collapsed = FALSE, title = tagList(icon("gear"), "Time in zones"), fluidRow( column(2, pickerInput(inputId = inputId, label ="Features", choices = choices, options = list(`actions-box` = TRUE), multiple = TRUE, selected = c("speed"))), column(2, pickerInput(inputId = "n_zones", label = "Number of zones:", multiple = FALSE, choices = c("2" = 2, "3" = 3, "4" = 4, "5" = 5, "6" = 6, "7" = 7, "8" = 8, "9" = 9), options = list(`actions-box` = TRUE), selected = "6"))), uiOutput(plotId)))))) } create_option_box <- function(sport_options, summary_features_available, workout_features_available) { insertUI( immediate = TRUE, selector = ".content", where = "afterBegin", ui = div(class = "option_boxes", fluidRow( box( width = 12, collapsible = TRUE, title = "Toolbar", fluidRow( column(3, actionButton(inputId = "no_sports", label = "Clear selection", icon = icon("times-circle"))), column(3, actionButton(inputId = "all_sports", label = "Select all", icon = icon("times-circle"))), column(2, actionButton( inputId = "sport_is_running", label = "Running", icon = icon("walking"))), column(2, actionButton( inputId = "sport_is_cycling", label = "Cycling", icon = icon("bicycle"))), column(2, actionButton( inputId = "sport_is_swimming", label = "Swimming", icon = icon("swimmer")))), br(), fluidRow( column(3, conditionalPanel( condition = "output.cond == false", actionButton( inputId = "return_to_main_page", label = "Summary view", icon = icon("search-minus"))), conditionalPanel( condition = "output.cond == true", actionButton(inputId = "plotSelectedWorkouts", label = "Workout view", icon = icon("search-plus")))), column(3, actionButton(inputId = "showModalUnits", label = "Change units", icon = icon("balance-scale"))), column(6, conditionalPanel( condition = "output.cond == true", pickerInput(inputId = "metricsSelected", choices = summary_features_available, options = list(`actions-box` = TRUE), multiple = TRUE, selected = trops()$default_summary_plots)), conditionalPanel( condition = "output.cond == false", pickerInput(inputId = "workout_features_selected", choices = workout_features_available, options = list(`actions-box` = TRUE), multiple = TRUE, selected = trops()$default_workout_plots)) )))))) } create_summary_timeline_boxes <- function() { insertUI( immediate = TRUE, selector = ".content", where = "beforeEnd", ui = div(class = "main_plots", fluidRow( box( id = "summary_box", width = 6, collapsible = TRUE, title = tagList(icon("reorder"), "Workout summary"), DTOutput("summary", height = "365px")), box( id = "workout_timeline_box", width = 6, collapsible = TRUE, collapsed = FALSE, title = tagList(icon("calendar"), "Workout timeline"), plotlyOutput("timeline_plot", height = "365px"))))) } show_change_unit_window <- function(data) { showModal(modalDialog( title = "Change units", awesomeRadio("altitudeUnits", "Altitude:", c("m" = "m", "km" = "km", "mi" = "mi", "ft" = "ft"), inline = TRUE, selected = get_selected_units("altitude", data)), awesomeRadio("distanceUnits", "Distance:", c("m" = "m", "km" = "km", "mi" = "mi", "ft" = "ft"), inline = TRUE, selected = get_selected_units("distance", data)), awesomeRadio("speedUnits", "Speed:", c("m/s" = "m_per_s", "km/h" = "km_per_h", "ft/min" = "ft_per_min", "ft/s" = "ft_per_s", "mi/h" = "mi_per_h"), inline = TRUE, selected = get_selected_units("speed", data)), awesomeRadio("paceUnits", "Pace:", c("min/km" = "min_per_km", "min/mi" = "min_per_mi", "s/min" = "s_per_m"), inline = TRUE, selected = get_selected_units("pace", data)), awesomeRadio("durationUnits", "Duration:", c("seconds" = "s", "minutes" = "min", "hours" = "h"), inline = TRUE, selected = get_selected_units("duration", data)), awesomeRadio("powerUnits", "Power:", c("W" = "W", "kW" = "kW"), inline = TRUE, selected = get_selected_units("power", data)), footer = tagList(modalButton("Cancel"), actionButton("updateUnits", "Apply")))) }
context("multi-objective: parego") test_that("mbo parego works", { learner = makeLearner("regr.km", predict.type = "se", nugget.estim = TRUE) ctrl = makeMBOControl(n.objectives = 2L) ctrl = setMBOControlTermination(ctrl, iters = 5L) ctrl = setMBOControlInfill(ctrl, opt.focussearch.points = 10) ctrl = setMBOControlMultiObj(ctrl, method = "parego", parego.s = 100) or = mbo(testfmco1, testdesmco1, learner = learner, control = ctrl) expect_output(print(or), "Optimization path") expect_matrix(or$pareto.front, mode = "numeric", any.missing = FALSE) ctrl = makeMBOControl(n.objectives = 2, propose.points = 2L) ctrl = setMBOControlTermination(ctrl, iters = 5L) ctrl = setMBOControlInfill(ctrl, opt.focussearch.points = 5) ctrl = setMBOControlMultiObj(ctrl, method = "parego", parego.s = 100, parego.use.margin.points = c(TRUE, TRUE)) or = mbo(testfmco1, testdesmco1, learner = learner, control = ctrl) w = as.data.frame(or$opt.path)[-(1:10), c("parego.weight.1", "parego.weight.2")] expect_true(all(w == 0 | w == 1)) expect_equal(1 - w[, 1], w[, 2]) ctrl = makeMBOControl(n.objectives = 2, propose.points = 2L) ctrl = setMBOControlTermination(ctrl, iters = 5L) ctrl = setMBOControlInfill(ctrl, opt.focussearch.points = 5) ctrl = setMBOControlMultiObj(ctrl, method = "parego", parego.s = 100, parego.use.margin.points = c(TRUE, TRUE)) or = mbo(testfmco1, testdesmco1, learner = learner, control = ctrl) w = as.data.frame(or$opt.path)[-(1:10), c("parego.weight.1", "parego.weight.2")] expect_true(all(w == 0 | w == 1)) expect_equal(1 - w[, 1], w[, 2]) ctrl = makeMBOControl(n.objectives = 3) ctrl = setMBOControlTermination(ctrl, iters = 5L) ctrl = setMBOControlInfill(ctrl, opt.focussearch.points = 10L) ctrl = setMBOControlMultiObj(ctrl, method = "parego", parego.s = 100) expect_error(mbo(testfmco1, testdesmco1, learner = learner, control = ctrl), "Objective function has") ctrl = makeMBOControl(n.objectives = 2, propose.points = 5L) ctrl = setMBOControlTermination(ctrl, iters = 1L) ctrl = setMBOControlInfill(ctrl, opt.focussearch.points = 10L) ctrl = setMBOControlMultiObj(ctrl, method = "parego", parego.s = 100) or = mbo(testfmco1, testdesmco1, learner = learner, control = ctrl) w = as.data.frame(or$opt.path)[, c("parego.weight.1", "parego.weight.2")] expect_true(all(rowSums(w[-(1:10),]) == 1)) expect_numeric(w[-(1:10), 1], any.missing = FALSE, unique = TRUE) expect_numeric(w[-(1:10), 2], any.missing = FALSE, unique = TRUE) ctrl = makeMBOControl(n.objectives = 2, propose.points = 5L) ctrl = setMBOControlTermination(ctrl, iters = 5L) ctrl = setMBOControlInfill(ctrl, opt.focussearch.points = 10L) ctrl = setMBOControlMultiObj(ctrl, method = "parego", parego.s = 100) or = mbo(testfmco2, testdesmco2, learner = learner, control = ctrl) expect_matrix(or$pareto.front, mode = "numeric", any.missing = FALSE) })
all_na <- function(x) { UseMethod("all_na") } all_na.default <- function(x) { sum(!is.na(x)) == 0 } all_na.data.frame <- function(x) { as.data.frame(lapply(x, function(v) sum(!is.na(v)) == 0)) } all_na.list <- function(x) { lapply(x, function(v) sum(!is.na(v)) == 0) }
`smootherstep.uni` <- function(m,C,Gmatx,Wtx,mx,Cx) { Rx <- Gmatx * C * Gmatx + Wtx B <- C * Gmatx / Rx ms <- m + B*(mx - Gmatx *m) Cs <- C + B*(Cx-Rx)*B list(ms=ms,Cs=Cs) }
"fextreme"<- function(x, start, densfun, distnfun, ..., distn, mlen = 1, largest = TRUE, std.err = TRUE, corr = FALSE, method = "Nelder-Mead") { if (missing(x) || length(x) == 0 || !is.numeric(x)) stop("`x' must be a non-empty numeric object") if(any(is.na(x))) stop("`x' must not contain missing values") if (!is.list(start)) stop("`start' must be a named list") call <- match.call() if(missing(densfun)) densfun <- get(paste("d", distn, sep=""), mode="function") if(missing(distnfun)) distnfun <- get(paste("p", distn, sep=""), mode="function") nllh <- function(p, ...) { dvec <- dens(p, ..., log = TRUE) if(any(is.infinite(dvec))) return(1e6) else return(-sum(dvec)) } nm <- names(start) l <- length(nm) f1 <- formals(densfun) f2 <- formals(distnfun) args <- names(f1) mtch <- match(nm, args) if (any(is.na(mtch))) stop("`start' specifies unknown arguments") formals(densfun) <- c(f1[c(1, mtch)], f1[-c(1, mtch)]) formals(distnfun) <- c(f2[c(1, mtch)], f2[-c(1, mtch)]) dens <- function(p, x, densfun, distnfun, ...) dextreme(x, densfun, distnfun, p, ...) if(l > 1) body(dens) <- parse(text = paste("dextreme(x, densfun, distnfun,", paste("p[",1:l,"]", collapse = ", "), ", ...)")) opt <- optim(start, nllh, x = x, hessian = TRUE, ..., densfun = densfun, distnfun = distnfun, mlen = mlen, largest = largest, method = method) if(is.null(names(opt$par))) names(opt$par) <- nm if (opt$convergence != 0) { warning("optimization may not have succeeded") if(opt$convergence == 1) opt$convergence <- "iteration limit reached" } else opt$convergence <- "successful" if(std.err) { tol <- .Machine$double.eps^0.5 var.cov <- qr(opt$hessian, tol = tol) if (var.cov$rank != ncol(var.cov$qr)) stop("observed information matrix is singular; use std.err = FALSE") var.cov <- solve(var.cov, tol = tol) std.err <- diag(var.cov) if(any(std.err <= 0)) stop("observed information matrix is singular; use std.err = FALSE") std.err <- sqrt(std.err) names(std.err) <- nm if(corr) { .mat <- diag(1/std.err, nrow = length(std.err)) corr <- structure(.mat %*% var.cov %*% .mat, dimnames = list(nm,nm)) diag(corr) <- rep(1, length(std.err)) } else corr <- NULL } else std.err <- var.cov <- corr <- NULL structure(list(estimate = opt$par, std.err = std.err, deviance = 2*opt$value, corr = corr, var.cov = var.cov, convergence = opt$convergence, counts = opt$counts, message = opt$message, call = call, data = x, n = length(x)), class = c("extreme", "evd")) } "forder"<- function(x, start, densfun, distnfun, ..., distn, mlen = 1, j = 1, largest = TRUE, std.err = TRUE, corr = FALSE, method = "Nelder-Mead") { if (missing(x) || length(x) == 0 || !is.numeric(x)) stop("`x' must be a non-empty numeric object") if(any(is.na(x))) stop("`x' must not contain missing values") if (!is.list(start)) stop("`start' must be a named list") call <- match.call() if(missing(densfun)) densfun <- get(paste("d", distn, sep=""), mode="function") if(missing(distnfun)) distnfun <- get(paste("p", distn, sep=""), mode="function") nllh <- function(p, ...) { dvec <- dens(p, ..., log = TRUE) if(any(is.infinite(dvec))) return(1e6) else return(-sum(dvec)) } nm <- names(start) l <- length(nm) f1 <- formals(densfun) f2 <- formals(distnfun) args <- names(f1) mtch <- match(nm, args) if (any(is.na(mtch))) stop("`start' specifies unknown arguments") formals(densfun) <- c(f1[c(1, mtch)], f1[-c(1, mtch)]) formals(distnfun) <- c(f2[c(1, mtch)], f2[-c(1, mtch)]) dens <- function(p, x, densfun, distnfun, ...) dorder(x, densfun, distnfun, p, ...) if(l > 1) body(dens) <- parse(text = paste("dorder(x, densfun, distnfun,", paste("p[",1:l,"]", collapse = ", "), ", ...)")) opt <- optim(start, nllh, x = x, hessian = TRUE, ..., densfun = densfun, distnfun = distnfun, mlen = mlen, j = j, largest = largest, method = method) if(is.null(names(opt$par))) names(opt$par) <- nm if (opt$convergence != 0) { warning("optimization may not have succeeded") if(opt$convergence == 1) opt$convergence <- "iteration limit reached" } else opt$convergence <- "successful" if(std.err) { tol <- .Machine$double.eps^0.5 var.cov <- qr(opt$hessian, tol = tol) if (var.cov$rank != ncol(var.cov$qr)) stop("observed information matrix is singular; use std.err = FALSE") var.cov <- solve(var.cov, tol = tol) std.err <- diag(var.cov) if(any(std.err <= 0)) stop("observed information matrix is singular; use std.err = FALSE") std.err <- sqrt(std.err) names(std.err) <- nm if(corr) { .mat <- diag(1/std.err, nrow = length(std.err)) corr <- structure(.mat %*% var.cov %*% .mat, dimnames = list(nm,nm)) diag(corr) <- rep(1, length(std.err)) } else corr <- NULL } else std.err <- var.cov <- corr <- NULL names(std.err) <- nm structure(list(estimate = opt$par, std.err = std.err, deviance = 2*opt$value, corr = corr, var.cov = var.cov, convergence = opt$convergence, counts = opt$counts, message = opt$message, call = call, data = x, n = length(x)), class = c("extreme", "evd")) } "fgev"<- function(x, start, ..., nsloc = NULL, prob = NULL, std.err = TRUE, corr = FALSE, method = "BFGS", warn.inf = TRUE) { call <- match.call() if(missing(x) || length(x) == 0 || !is.numeric(x)) stop("`x' must be a non-empty numeric vector") if(is.null(prob)) { ft <- fgev.norm(x = x, start = start, ..., nsloc = nsloc, std.err = std.err, corr = corr, method = method, warn.inf = warn.inf) } else { if(length(prob) != 1 || !is.numeric(prob) || prob < 0 || prob > 1) stop("`prob' should be a probability in [0,1]") ft <- fgev.quantile(x = x, start = start, ..., nsloc = nsloc, prob = prob, std.err = std.err, corr = corr, method = method, warn.inf = warn.inf) } structure(c(ft, call = call), class = c("gev", "uvevd", "evd")) } "fgev.norm"<- function(x, start, ..., nsloc = NULL, std.err = TRUE, corr = FALSE, method = "BFGS", warn.inf = TRUE) { nlgev <- function(loc, scale, shape) { if(scale <= 0) return(1e6) if(!is.null(nsloc)) { ns <- numeric(length(loc.param)) for(i in 1:length(ns)) ns[i] <- get(loc.param[i]) loc <- drop(nslocmat %*% ns) } else loc <- rep(loc, length.out = length(x)) .C(C_nlgev, x, n, loc, scale, shape, dns = double(1))$dns } if(!is.null(nsloc)) { if(is.vector(nsloc)) nsloc <- data.frame(trend = nsloc) if(nrow(nsloc) != length(x)) stop("`nsloc' and data are not compatible") nsloc <- nsloc[!is.na(x), ,drop = FALSE] nslocmat <- cbind(1,as.matrix(nsloc)) } x <- as.double(x[!is.na(x)]) n <- as.integer(length(x)) loc.param <- paste("loc", c("",names(nsloc)), sep="") param <- c(loc.param, "scale", "shape") if(missing(start)) { start <- as.list(numeric(length(param))) names(start) <- param start$scale <- sqrt(6 * var(x))/pi start$loc <- mean(x) - 0.58 * start$scale start <- start[!(param %in% names(list(...)))] } if(!is.list(start)) stop("`start' must be a named list") if(!length(start)) stop("there are no parameters left to maximize over") nm <- names(start) l <- length(nm) f <- c(as.list(numeric(length(loc.param))), formals(nlgev)[2:3]) names(f) <- param m <- match(nm, param) if(any(is.na(m))) stop("`start' specifies unknown arguments") formals(nlgev) <- c(f[m], f[-m]) nllh <- function(p, ...) nlgev(p, ...) if(l > 1) body(nllh) <- parse(text = paste("nlgev(", paste("p[",1:l, "]", collapse = ", "), ", ...)")) fixed.param <- list(...)[names(list(...)) %in% param] if(any(!(param %in% c(nm,names(fixed.param))))) stop("unspecified parameters") start.arg <- c(list(p = unlist(start)), fixed.param) if(warn.inf && do.call("nllh", start.arg) == 1e6) warning("negative log-likelihood is infinite at starting values") opt <- optim(start, nllh, hessian = TRUE, ..., method = method) if(is.null(names(opt$par))) names(opt$par) <- nm if (opt$convergence != 0) { warning("optimization may not have succeeded") if(opt$convergence == 1) opt$convergence <- "iteration limit reached" } else opt$convergence <- "successful" if(std.err) { tol <- .Machine$double.eps^0.5 var.cov <- qr(opt$hessian, tol = tol) if(var.cov$rank != ncol(var.cov$qr)) stop("observed information matrix is singular; use std.err = FALSE") var.cov <- solve(var.cov, tol = tol) std.err <- diag(var.cov) if(any(std.err <= 0)) stop("observed information matrix is singular; use std.err = FALSE") std.err <- sqrt(std.err) names(std.err) <- nm if(corr) { .mat <- diag(1/std.err, nrow = length(std.err)) corr <- structure(.mat %*% var.cov %*% .mat, dimnames = list(nm,nm)) diag(corr) <- rep(1, length(std.err)) } else corr <- NULL } else std.err <- var.cov <- corr <- NULL param <- c(opt$par, unlist(fixed.param)) if(!is.null(nsloc)) { trend <- param[paste("loc", names(nsloc), sep="")] trend <- drop(as.matrix(nsloc) %*% trend) x2 <- x - trend } else x2 <- x list(estimate = opt$par, std.err = std.err, fixed = unlist(fixed.param), param = param, deviance = 2*opt$value, corr = corr, var.cov = var.cov, convergence = opt$convergence, counts = opt$counts, message = opt$message, data = x, tdata = x2, nsloc = nsloc, n = length(x), prob = NULL, loc = param["loc"]) } "fgev.quantile"<- function(x, start, ..., nsloc = NULL, prob, std.err = TRUE, corr = FALSE, method = "BFGS", warn.inf = TRUE) { nlgev <- function(quantile, scale, shape) { if(scale <= 0) return(1e6) quantile <- rep(quantile, length.out = length(x)) if(prob == 0 && shape >= 0) return(1e6) if(prob == 1 && shape <= 0) return(1e6) if(shape == 0) loc <- quantile + scale * log(-log(1-prob)) else loc <- quantile + scale/shape * (1 - (-log(1-prob))^(-shape)) if(!is.null(nsloc)) { ns <- numeric(length(loc.param) - 1) for(i in 1:length(ns)) ns[i] <- get(loc.param[i+1]) loc <- drop(nslocmat %*% ns) + loc } if(any(is.infinite(loc))) return(1e6) .C(C_nlgev, x, n, loc, scale, shape, dns = double(1))$dns } if(is.null(nsloc)) loc.param <- "quantile" else loc.param <- c("quantile", paste("loc", names(nsloc), sep="")) param <- c(loc.param, "scale", "shape") if(missing(start)) { start <- as.list(numeric(length(param))) names(start) <- param start$scale <- sqrt(6 * var(x, na.rm = TRUE))/pi start.loc <- mean(x, na.rm = TRUE) - 0.58 * start$scale start$quantile <- start.loc - start$scale * log(-log(1-prob)) if(prob == 0) { fpft <- fgev(x = x, ..., nsloc = nsloc, prob = 0.001, std.err = std.err, corr = corr, method = method, warn.inf = warn.inf) start <- as.list(fitted(fpft)) } if(prob == 1) { fpft <- fgev(x = x, ..., nsloc = nsloc, prob = 0.999, std.err = std.err, corr = corr, method = method, warn.inf = warn.inf) start <- as.list(fitted(fpft)) } start <- start[!(param %in% names(list(...)))] } if(!is.list(start)) stop("`start' must be a named list") if(!length(start)) stop("there are no parameters left to maximize over") if(!is.null(nsloc)) { if(is.vector(nsloc)) nsloc <- data.frame(trend = nsloc) if(nrow(nsloc) != length(x)) stop("`nsloc' and data are not compatible") nsloc <- nsloc[!is.na(x), ,drop = FALSE] nslocmat <- as.matrix(nsloc) } x <- as.double(x[!is.na(x)]) n <- as.integer(length(x)) nm <- names(start) l <- length(nm) f <- c(as.list(numeric(length(loc.param))), formals(nlgev)[2:3]) names(f) <- param m <- match(nm, param) if(any(is.na(m))) stop("`start' specifies unknown arguments") formals(nlgev) <- c(f[m], f[-m]) nllh <- function(p, ...) nlgev(p, ...) if(l > 1) body(nllh) <- parse(text = paste("nlgev(", paste("p[",1:l, "]", collapse = ", "), ", ...)")) fixed.param <- list(...)[names(list(...)) %in% param] if(any(!(param %in% c(nm,names(fixed.param))))) stop("unspecified parameters") start.arg <- c(list(p = unlist(start)), fixed.param) if(warn.inf && do.call("nllh", start.arg) == 1e6) warning("negative log-likelihood is infinite at starting values") opt <- optim(start, nllh, hessian = TRUE, ..., method = method) if(is.null(names(opt$par))) names(opt$par) <- nm if (opt$convergence != 0) { warning("optimization may not have succeeded") if(opt$convergence == 1) opt$convergence <- "iteration limit reached" } else opt$convergence <- "successful" if(std.err) { tol <- .Machine$double.eps^0.5 var.cov <- qr(opt$hessian, tol = tol) if(var.cov$rank != ncol(var.cov$qr)) stop("observed information matrix is singular; use std.err = FALSE") var.cov <- solve(var.cov, tol = tol) std.err <- diag(var.cov) if(any(std.err <= 0)) stop("observed information matrix is singular; use std.err = FALSE") std.err <- sqrt(std.err) names(std.err) <- nm .mat <- diag(1/std.err, nrow = length(std.err)) if(corr) { corr <- structure(.mat %*% var.cov %*% .mat, dimnames = list(nm,nm)) diag(corr) <- rep(1, length(std.err)) } else corr <- NULL } else { std.err <- var.cov <- corr <- NULL } param <- c(opt$par, unlist(fixed.param)) if(!is.null(nsloc)) { trend <- param[paste("loc", names(nsloc), sep="")] trend <- drop(as.matrix(nsloc) %*% trend) x2 <- x - trend } else x2 <- x if(param["shape"] == 0) loc <- param["quantile"] + param["scale"] * log(-log(1-prob)) else loc <- param["quantile"] + param["scale"]/param["shape"] * (1 - (-log(1-prob))^(-param["shape"])) list(estimate = opt$par, std.err = std.err, fixed = unlist(fixed.param), param = param, deviance = 2*opt$value, corr = corr, var.cov = var.cov, convergence = opt$convergence, counts = opt$counts, message = opt$message, data = x, tdata = x2, nsloc = nsloc, n = length(x), prob = prob, loc = loc) } "fpot"<- function(x, threshold, model = c("gpd", "pp"), start, npp = length(x), cmax = FALSE, r = 1, ulow = -Inf, rlow = 1, mper = NULL, ..., std.err = TRUE, corr = FALSE, method = "BFGS", warn.inf = TRUE) { call <- match.call() model <- match.arg(model) if(missing(x) || length(x) == 0 || mode(x) != "numeric") stop("`x' must be a non-empty numeric vector") if(missing(threshold) || length(threshold) != 1 || mode(threshold) != "numeric") stop("`threshold' must be a numeric value") threshold <- as.double(threshold) if(is.null(mper)) { ft <- fpot.norm(x = x, threshold = threshold, model = model, start = start, npp = npp, cmax = cmax, r = r, ulow = ulow, rlow = rlow, ..., std.err = std.err, corr = corr, method = method, warn.inf = warn.inf) } else { if(model == "pp") stop("`mper' cannot be specified in point process models") ft <- fpot.quantile(x = x, threshold = threshold, start = start, npp = npp, cmax = cmax, r = r, ulow = ulow, rlow = rlow, ..., mper = mper, std.err = std.err, corr = corr, method = method, warn.inf = warn.inf) } structure(c(ft, call = call), class = c("pot", "uvevd", "evd")) } "fpot.norm"<- function(x, threshold, model, start, npp = length(x), cmax = FALSE, r = 1, ulow = -Inf, rlow = 1, ..., std.err = TRUE, corr = FALSE, method = "BFGS", warn.inf = TRUE) { if(model == "gpd") { nlpot <- function(loc, scale, shape) { .C(C_nlgpd, exceed, nhigh, threshold, scale, shape, dns = double(1))$dns } formals(nlpot) <- formals(nlpot)[2:3] } if(model == "pp") { nlpot <- function(loc, scale, shape) { .C(C_nlpp, exceed, nhigh, loc, scale, shape, threshold, nop, dns = double(1))$dns } } nn <- length(x) nop <- as.double(nn/npp) if(cmax) { exceed <- clusters(x, u = threshold, r = r, ulow = ulow, rlow = rlow, cmax = TRUE, keep.names = FALSE) extind <- attributes(exceed)$acs exceed <- as.double(exceed) nhigh <- length(exceed) ; nat <- as.integer(nhigh * extind) extind <- 1/extind } else { extind <- r <- NULL high <- (x > threshold) & !is.na(x) exceed <- as.double(x[high]) nhigh <- nat <- length(exceed) } if(!nhigh) stop("no data above threshold") pat <- nat/nn param <- c("scale", "shape") if(model == "pp") param <- c("loc", param) if(missing(start)) { if(model == "gpd") { start <- list(scale = 0, shape = 0) start$scale <- mean(exceed) - threshold } if(model == "pp") { start <- list(loc = 0, scale = 0, shape = 0) start$scale <- sqrt(6 * var(x))/pi start$loc <- mean(x) + (log(nop) - 0.58) * start$scale } start <- start[!(param %in% names(list(...)))] } if(!is.list(start)) stop("`start' must be a named list") if(!length(start)) stop("there are no parameters left to maximize over") nm <- names(start) l <- length(nm) f <- formals(nlpot) names(f) <- param m <- match(nm, param) if(any(is.na(m))) stop("`start' specifies unknown arguments") formals(nlpot) <- c(f[m], f[-m]) nllh <- function(p, ...) nlpot(p, ...) if(l > 1) body(nllh) <- parse(text = paste("nlpot(", paste("p[",1:l, "]", collapse = ", "), ", ...)")) fixed.param <- list(...)[names(list(...)) %in% param] if(any(!(param %in% c(nm,names(fixed.param))))) stop("unspecified parameters") start.arg <- c(list(p = unlist(start)), fixed.param) if(warn.inf && do.call("nllh", start.arg) == 1e6) warning("negative log-likelihood is infinite at starting values") opt <- optim(start, nllh, hessian = TRUE, ..., method = method) if(is.null(names(opt$par))) names(opt$par) <- nm if (opt$convergence != 0) { warning("optimization may not have succeeded") if(opt$convergence == 1) opt$convergence <- "iteration limit reached" } else opt$convergence <- "successful" if(std.err) { tol <- .Machine$double.eps^0.5 var.cov <- qr(opt$hessian, tol = tol) if(var.cov$rank != ncol(var.cov$qr)) stop("observed information matrix is singular; use std.err = FALSE") var.cov <- solve(var.cov, tol = tol) std.err <- diag(var.cov) if(any(std.err <= 0)) stop("observed information matrix is singular; use std.err = FALSE") std.err <- sqrt(std.err) names(std.err) <- nm if(corr) { .mat <- diag(1/std.err, nrow = length(std.err)) corr <- structure(.mat %*% var.cov %*% .mat, dimnames = list(nm,nm)) diag(corr) <- rep(1, length(std.err)) } else corr <- NULL } else std.err <- var.cov <- corr <- NULL param <- c(opt$par, unlist(fixed.param)) if(model == "gpd") scale <- param["scale"] if(model == "pp") scale <- param["scale"] + param["shape"] * (threshold - param["loc"]) list(estimate = opt$par, std.err = std.err, fixed = unlist(fixed.param), param = param, deviance = 2*opt$value, corr = corr, var.cov = var.cov, convergence = opt$convergence, counts = opt$counts, message = opt$message, threshold = threshold, cmax = cmax, r = r, ulow = ulow, rlow = rlow, npp = npp, nhigh = nhigh, nat = nat, pat = pat, extind = extind, data = x, exceedances = exceed, mper = NULL, scale = scale) } "fpot.quantile"<- function(x, threshold, start, npp = length(x), cmax = FALSE, r = 1, ulow = -Inf, rlow = 1, mper, ..., std.err = TRUE, corr = FALSE, method = "BFGS", warn.inf = TRUE) { nlpot <- function(rlevel, shape) { if(is.infinite(mper) && shape >= 0) return(1e6) rlevel <- rlevel - threshold if(shape == 0) scale <- rlevel / log(adjmper) else scale <- shape * rlevel / (adjmper^shape - 1) .C(C_nlgpd, exceed, nhigh, threshold, scale, shape, dns = double(1))$dns } nn <- length(x) if(cmax) { exceed <- clusters(x, u = threshold, r = r, ulow = ulow, rlow = rlow, cmax = TRUE, keep.names = FALSE) extind <- attributes(exceed)$acs exceed <- as.double(exceed) nhigh <- length(exceed) ; nat <- as.integer(nhigh * extind) extind <- 1/extind } else { extind <- r <- NULL high <- (x > threshold) & !is.na(x) exceed <- as.double(x[high]) nhigh <- nat <- length(exceed) } if(!nhigh) stop("no data above threshold") pat <- nat/nn adjmper <- mper * npp * nhigh/nn if(adjmper <= 1) stop("`mper' is too small") param <- c("rlevel", "shape") if(missing(start)) { start <- list(rlevel = 0, shape = 0) stscale <- mean(exceed) - threshold start$rlevel <- threshold + stscale*log(adjmper) if(is.infinite(mper)) { stmp <- 100/(npp * nhigh/nn) fpft <- fpot(x = x, threshold = threshold, npp = npp, cmax = cmax, r = r, ulow = ulow, rlow = rlow, mper = stmp, ..., std.err = std.err, corr = corr, method = method, warn.inf = warn.inf) start <- as.list(fitted(fpft)) } start <- start[!(param %in% names(list(...)))] } if(!is.list(start)) stop("`start' must be a named list") if(!length(start)) stop("there are no parameters left to maximize over") nm <- names(start) l <- length(nm) f <- formals(nlpot) names(f) <- param m <- match(nm, param) if(any(is.na(m))) stop("`start' specifies unknown arguments") formals(nlpot) <- c(f[m], f[-m]) nllh <- function(p, ...) nlpot(p, ...) if(l > 1) body(nllh) <- parse(text = paste("nlpot(", paste("p[",1:l, "]", collapse = ", "), ", ...)")) fixed.param <- list(...)[names(list(...)) %in% param] if(any(!(param %in% c(nm,names(fixed.param))))) stop("unspecified parameters") start.arg <- c(list(p = unlist(start)), fixed.param) if(warn.inf && do.call("nllh", start.arg) == 1e6) warning("negative log-likelihood is infinite at starting values") opt <- optim(start, nllh, hessian = TRUE, ..., method = method) if(is.null(names(opt$par))) names(opt$par) <- nm if (opt$convergence != 0) { warning("optimization may not have succeeded") if(opt$convergence == 1) opt$convergence <- "iteration limit reached" } else opt$convergence <- "successful" if(std.err) { tol <- .Machine$double.eps^0.5 var.cov <- qr(opt$hessian, tol = tol) if(var.cov$rank != ncol(var.cov$qr)) stop("observed information matrix is singular; use std.err = FALSE") var.cov <- solve(var.cov, tol = tol) std.err <- diag(var.cov) if(any(std.err <= 0)) stop("observed information matrix is singular; use std.err = FALSE") std.err <- sqrt(std.err) names(std.err) <- nm if(corr) { .mat <- diag(1/std.err, nrow = length(std.err)) corr <- structure(.mat %*% var.cov %*% .mat, dimnames = list(nm,nm)) diag(corr) <- rep(1, length(std.err)) } else corr <- NULL } else std.err <- var.cov <- corr <- NULL param <- c(opt$par, unlist(fixed.param)) rlevel <- param["rlevel"] - threshold if(param["shape"] == 0) scale <- rlevel / log(adjmper) else scale <- param["shape"] * rlevel / (adjmper^param["shape"] - 1) list(estimate = opt$par, std.err = std.err, fixed = unlist(fixed.param), param = param, deviance = 2*opt$value, corr = corr, var.cov = var.cov, convergence = opt$convergence, counts = opt$counts, message = opt$message, threshold = threshold, cmax = cmax, r = r, ulow = ulow, rlow = rlow, npp = npp, nhigh = nhigh, nat = nat, pat = pat, extind = extind, data = x, exceedances = exceed, mper = mper, scale = scale) } "print.evd" <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:", deparse(x$call), "\n") cat("Deviance:", x$deviance, "\n") cat("\nEstimates\n") print.default(format(x$estimate, digits = digits), print.gap = 2, quote = FALSE) if(!is.null(x$std.err)) { cat("\nStandard Errors\n") print.default(format(x$std.err, digits = digits), print.gap = 2, quote = FALSE) } if(!is.null(x$corr)) { cat("\nCorrelations\n") print.default(format(x$corr, digits = digits), print.gap = 2, quote = FALSE) } cat("\nOptimization Information\n") cat(" Convergence:", x$convergence, "\n") cat(" Function Evaluations:", x$counts["function"], "\n") if(!is.na(x$counts["gradient"])) cat(" Gradient Evaluations:", x$counts["gradient"], "\n") if(!is.null(x$message)) cat(" Message:", x$message, "\n") cat("\n") invisible(x) } "confint.evd" <- function (object, parm, level = 0.95, ...) { cf <- fitted(object) pnames <- names(cf) if (missing(parm)) parm <- seq(along = pnames) else if (is.character(parm)) parm <- match(parm, pnames, nomatch = 0) if(any(!parm)) stop("`parm' contains unknown parameters") a <- (1 - level)/2 a <- c(a, 1 - a) pct <- paste(round(100 * a, 1), "%") ci <- array(NA, dim = c(length(parm), 2), dimnames = list(pnames[parm], pct)) ses <- std.errors(object)[parm] ci[] <- cf[parm] + ses %o% qnorm(a) ci } "anova.evd" <- function (object, object2, ..., half = FALSE) { if(missing(object)) stop("model one must be specified") if(missing(object2)) stop("model two must be specified") dots <- as.list(substitute(list(...)))[-1] dots <- sapply(dots,function(x) deparse(x)) if(!length(dots)) dots <- NULL model1 <- deparse(substitute(object)) model2 <- deparse(substitute(object2)) models <- c(model1, model2, dots) narg <- length(models) for(i in 1:narg) { if(!inherits(get(models[i], envir = parent.frame()), "evd")) stop("Use only with 'evd' objects") } for(i in 1:(narg-1)) { a <- get(models[i], envir = parent.frame()) b <- get(models[i+1], envir = parent.frame()) if((!all(names(fitted(b)) %in% names(fitted(a)))) && (!identical(c("bilog","log"), c(a$model, b$model))) && (!identical(c("negbilog","neglog"), c(a$model, b$model)))) { warning("models may not be nested") } } dv <- npar <- numeric(narg) for(i in 1:narg) { evmod <- get(models[i], envir = parent.frame()) dv[i] <- evmod$deviance npar[i] <- length(evmod$estimate) } df <- -diff(npar) if(any(df <= 0)) stop("models are not nested") dvdiff <- diff(dv) if(any(dvdiff < 0)) stop("negative deviance difference") if(half) dvdiff <- 2*dvdiff pval <- pchisq(dvdiff, df = df, lower.tail = FALSE) table <- data.frame(npar, dv, c(NA,df), c(NA,dvdiff), c(NA,pval)) dimnames(table) <- list(models, c("M.Df", "Deviance", "Df", "Chisq", "Pr(>chisq)")) structure(table, heading = c("Analysis of Deviance Table\n"), class = c("anova", "data.frame")) } "fitted.evd" <- function (object, ...) object$estimate "std.errors" <- function (object, ...) UseMethod("std.errors") "std.errors.evd" <- function (object, ...) object$std.err "vcov.evd" <- function (object, ...) object$var.cov "logLik.evd" <- function(object, ...) { val <- -deviance(object)/2 attr(val, "df") <- length(fitted(object)) class(val) <- "logLik" val } "print.pot" <- function(x, digits = max(3, getOption("digits") - 3), ...) { cat("\nCall:", deparse(x$call), "\n") cat("Deviance:", x$deviance, "\n") cat("\nThreshold:", round(x$threshold, digits), "\n") cat("Number Above:", x$nat, "\n") cat("Proportion Above:", round(x$pat, digits), "\n") if(!is.null(x$extind)) { cat("\nClustering Interval:", x$r, "\n") if(is.finite(x$ulow)) { cat("Lower Threshold:", round(x$ulow, digits), "\n") cat("Lower Clustering Interval:", x$rlow, "\n") } cat("Number of Clusters:", x$nhigh, "\n") cat("Extremal Index:", round(x$extind, digits), "\n") } cat("\nEstimates\n") print.default(format(x$estimate, digits = digits), print.gap = 2, quote = FALSE) if(!is.null(x$std.err)) { cat("\nStandard Errors\n") print.default(format(x$std.err, digits = digits), print.gap = 2, quote = FALSE) } if(!is.null(x$corr)) { cat("\nCorrelations\n") print.default(format(x$corr, digits = digits), print.gap = 2, quote = FALSE) } cat("\nOptimization Information\n") cat(" Convergence:", x$convergence, "\n") cat(" Function Evaluations:", x$counts["function"], "\n") if(!is.na(x$counts["gradient"])) cat(" Gradient Evaluations:", x$counts["gradient"], "\n") if(!is.null(x$message)) cat(" Message:", x$message, "\n") cat("\n") invisible(x) }
boxplot_monthly_compare_observations_with_ci <- function(model, use.example=FALSE) { start_par = par()$mfrow on.exit(par(mfrow = start_par)) resultsdir <- elt(model, "setup", "resultsdir") model.path <- elt(model, "setup", "model.path") model.ident <- elt(model, "setup", "model.ident") model.name <- elt(model, "setup", "model.name") model.variant <- elt(model, "setup", "model.variant") obstargetdataset <- get.model.file(model.path, TARGET_DATA_DIR, file.pattern=MONTHLY_TARGET_DATA) corefilename<-"CredInt_processed_monthly_mass" if(use.example==TRUE){ credintervaldata <- get.example.results(model.name, model.variant, corefilename, CREDINT_DIR) } if(use.example==FALSE){ credpath <- makepath(resultsdir, CREDINT_DIR) credfile <- csvname(credpath, corefilename, model.ident) message("Reading credible interval processed data from '", credfile, "'") if (! file.exists(credfile)) { message("Error: cannot find credible interval output file: ", credfile) stop("Please run the Monte-Carlo function!\n") } credintervaldata <- readcsv(credfile, row.names=1) } ntargobs<-100 monthtarget<-array(0,dim=c(ntargobs,12,10)) monlab<-c("Jan","Feb","Mar","Apr","May","Jun","Jul","Aug","Sep","Oct","Nov","Dec") installtargdata<-function(qr,obspar,monthtarget){ data<-data.frame("Month"=monlab,"median"=rep(NA,12),"17centile"=rep(NA,12),"83centile"=rep(NA,12)) for(mmm in 1:12){ data[mmm,2:4]<-seldata[(which(seldata$Month==data$Month[mmm])),3:5] } for(mmm in 1:12){ sdpos<-(data[mmm,4]-data[mmm,2])/(qr/2) sdneg<-(data[mmm,2]-data[mmm,3])/(qr/2) for(kkk in 1:ntargobs){ rand<-rnorm(1,0,1) if(rand<0) dev<-rand*sdneg if(rand>=0) dev<-rand*sdpos monthtarget[kkk,mmm,obspar]<-data[mmm,2]+dev } } return(monthtarget) } seldata<-subset(obstargetdataset,obstargetdataset$Variable=="surface_nitrate") obspar<-1 qr<-3.5 if(seldata[1,7]==17 & seldata[1,8]==83) qr<-3.5 if(seldata[1,7]==5 & seldata[1,8]==95) qr<-7 monthtarget<-installtargdata(qr,obspar,monthtarget) seldata<-subset(obstargetdataset,obstargetdataset$Variable=="deep_nitrate") obspar<-2 qr<-3.5 if(seldata[1,7]==17 & seldata[1,8]==83) qr<-3.5 if(seldata[1,7]==5 & seldata[1,8]==95) qr<-7 monthtarget<-installtargdata(qr,obspar,monthtarget) seldata<-subset(obstargetdataset,obstargetdataset$Variable=="surface_ammonia") obspar<-3 qr<-3.5 if(seldata[1,7]==17 & seldata[1,8]==83) qr<-3.5 if(seldata[1,7]==5 & seldata[1,8]==95) qr<-7 monthtarget<-installtargdata(qr,obspar,monthtarget) seldata<-subset(obstargetdataset,obstargetdataset$Variable=="deep_ammonia") obspar<-4 qr<-3.5 if(seldata[1,7]==17 & seldata[1,8]==83) qr<-3.5 if(seldata[1,7]==5 & seldata[1,8]==95) qr<-7 monthtarget<-installtargdata(qr,obspar,monthtarget) seldata<-subset(obstargetdataset,obstargetdataset$Variable=="surface_chlorophyll") obspar<-5 qr<-3.5 if(seldata[1,7]==17 & seldata[1,8]==83) qr<-3.5 if(seldata[1,7]==5 & seldata[1,8]==95) qr<-7 monthtarget<-installtargdata(qr,obspar,monthtarget) seldata<-subset(obstargetdataset,obstargetdataset$Variable=="omniv_zooplankton") obspar<-6 qr<-3.5 if(seldata[1,7]==17 & seldata[1,8]==83) qr<-3.5 if(seldata[1,7]==5 & seldata[1,8]==95) qr<-7 monthtarget<-installtargdata(qr,obspar,monthtarget) seldata<-subset(obstargetdataset,obstargetdataset$Variable=="carniv_zooplankton") obspar<-7 qr<-3.5 if(seldata[1,7]==17 & seldata[1,8]==83) qr<-3.5 if(seldata[1,7]==5 & seldata[1,8]==95) qr<-7 monthtarget<-installtargdata(qr,obspar,monthtarget) seldata<-subset(obstargetdataset,obstargetdataset$Variable=="larvae_susp_dep_benthos") obspar<-8 qr<-3.5 if(seldata[1,7]==17 & seldata[1,8]==83) qr<-3.5 if(seldata[1,7]==5 & seldata[1,8]==95) qr<-7 monthtarget<-installtargdata(qr,obspar,monthtarget) seldata<-subset(obstargetdataset,obstargetdataset$Variable=="larvae_carn_scav_benthos") obspar<-9 qr<-3.5 if(seldata[1,7]==17 & seldata[1,8]==83) qr<-3.5 if(seldata[1,7]==5 & seldata[1,8]==95) qr<-7 monthtarget<-installtargdata(qr,obspar,monthtarget) seldata<-subset(obstargetdataset,obstargetdataset$Variable=="larvae_susp_dep_benthos") seldata2<-subset(obstargetdataset,obstargetdataset$Variable=="larvae_carn_scav_benthos") seldata[,3]<-seldata[,3]+seldata2[,3] seldata[,4]<-seldata[,4]+seldata2[,4] seldata[,5]<-seldata[,5]+seldata2[,5] obspar<-10 qr<-3.5 if(seldata[1,7]==17 & seldata[1,8]==83) qr<-3.5 if(seldata[1,7]==5 & seldata[1,8]==95) qr<-7 monthtarget<-installtargdata(qr,obspar,monthtarget) for(iii in 1:9){ credrows<- seq( ((iii-1)*(5+1))+2,((iii-1)*(5+1))+(5+1) ) modeldata2plot<-(credintervaldata[credrows,1]) for(jj in 2:12) { modeldata2plot<-c(modeldata2plot,(credintervaldata[credrows,jj]))} array2plot<- array(dim=c(5,12),modeldata2plot) bxpdata<-list(stats=array2plot,n=rep(100,12),conf=NULL,out=numeric(length=0)) if(iii==1) bxpdata1<-bxpdata if(iii==2) bxpdata2<-bxpdata if(iii==3) bxpdata3<-bxpdata if(iii==4) bxpdata4<-bxpdata if(iii==5) bxpdata5<-bxpdata if(iii==6) bxpdata6<-bxpdata if(iii==7) bxpdata7<-bxpdata if(iii==8) bxpdata8<-bxpdata if(iii==9) bxpdata9<-bxpdata } bxpdata10<-list(stats=(bxpdata9$stats+bxpdata8$stats),n=rep(100,12),conf=NULL,out=numeric(length=0)) bxpdata.all<-list(bxpdata1=bxpdata1, bxpdata2=bxpdata2, bxpdata3=bxpdata3, bxpdata4=bxpdata4, bxpdata5=bxpdata5, bxpdata6=bxpdata6, bxpdata7=bxpdata7, bxpdata8=bxpdata8, bxpdata9=bxpdata9, bxpdata10=bxpdata10) plotdata_mo<-function(monthtarget, bxpdata.all, obspar, monlab){ obsplot<-as.data.frame(monthtarget[,,obspar]) names(obsplot)<-monlab if(obspar==1) bxpdata<-bxpdata.all$bxpdata1 if(obspar==2) bxpdata<-bxpdata.all$bxpdata2 if(obspar==3) bxpdata<-bxpdata.all$bxpdata3 if(obspar==4) bxpdata<-bxpdata.all$bxpdata4 if(obspar==5) bxpdata<-bxpdata.all$bxpdata5 if(obspar==6) bxpdata<-bxpdata.all$bxpdata6 if(obspar==7) bxpdata<-bxpdata.all$bxpdata7 if(obspar==8) bxpdata<-bxpdata.all$bxpdata8 if(obspar==9) bxpdata<-bxpdata.all$bxpdata9 if(obspar==10) bxpdata<-bxpdata.all$bxpdata10 modplot<-bxpdata$stats obschecksum_0<-sum(obsplot,na.rm=TRUE) obschecksum1_0<-sum(monthtarget[,,1],na.rm=TRUE) obschecksum2_0<-sum(monthtarget[,,2],na.rm=TRUE) obschecksum3_0<-sum(monthtarget[,,3],na.rm=TRUE) obschecksum4_0<-sum(monthtarget[,,4],na.rm=TRUE) obschecksum_1<-sum(obsplot) obschecksum1_1<-sum(monthtarget[,,1]) obschecksum2_1<-sum(monthtarget[,,2]) obschecksum3_1<-sum(monthtarget[,,3]) obschecksum4_1<-sum(monthtarget[,,4]) MIXFLAG<-0 MIXFLAG1<-0 MIXFLAG2<-0 MIXFLAG3<-0 MIXFLAG4<-0 if(obschecksum_0>0 & is.na(obschecksum_1)==TRUE) MIXFLAG<-1 if(obschecksum1_0>0 & is.na(obschecksum1_1)==TRUE) MIXFLAG1<-1 if(obschecksum2_0>0 & is.na(obschecksum2_1)==TRUE) MIXFLAG2<-1 if(obschecksum3_0>0 & is.na(obschecksum3_1)==TRUE) MIXFLAG3<-1 if(obschecksum4_0>0 & is.na(obschecksum4_1)==TRUE) MIXFLAG4<-1 if(obspar==1 | obspar==2){ if(MIXFLAG1==1 & MIXFLAG2==1){ ymax<- max(0, max(as.data.frame(monthtarget[,,1]),na.rm=TRUE), max(as.data.frame(monthtarget[,,2]),na.rm=TRUE), max(as.data.frame(bxpdata.all$bxpdata1$stats)), max(as.data.frame(bxpdata.all$bxpdata2$stats)),na.rm=TRUE ) } else if(MIXFLAG1==1 & MIXFLAG2==0){ ymax<- max(0, max(as.data.frame(monthtarget[,,1]),na.rm=TRUE), max(as.data.frame(monthtarget[,,2])), max(as.data.frame(bxpdata.all$bxpdata1$stats)), max(as.data.frame(bxpdata.all$bxpdata2$stats)),na.rm=TRUE ) } else if(MIXFLAG1==0 & MIXFLAG2==1){ ymax<- max(0, max(as.data.frame(monthtarget[,,1])), max(as.data.frame(monthtarget[,,2]),na.rm=TRUE), max(as.data.frame(bxpdata.all$bxpdata1$stats)), max(as.data.frame(bxpdata.all$bxpdata2$stats)),na.rm=TRUE ) } else if(MIXFLAG1==0 & MIXFLAG2==0){ ymax<- max(0, max(as.data.frame(monthtarget[,,1])), max(as.data.frame(monthtarget[,,2])), max(as.data.frame(bxpdata.all$bxpdata1$stats)), max(as.data.frame(bxpdata.all$bxpdata2$stats)),na.rm=TRUE ) } } if(obspar==3 | obspar==4){ if(MIXFLAG3==1 & MIXFLAG4==1){ ymax<- max(0, max(as.data.frame(monthtarget[,,3]),na.rm=TRUE), max(as.data.frame(monthtarget[,,4]),na.rm=TRUE), max(as.data.frame(bxpdata.all$bxpdata3$stats)), max(as.data.frame(bxpdata.all$bxpdata4$stats)),na.rm=TRUE ) } else if(MIXFLAG3==1 & MIXFLAG4==0){ ymax<- max(0, max(as.data.frame(monthtarget[,,3]),na.rm=TRUE), max(as.data.frame(monthtarget[,,4])), max(as.data.frame(bxpdata.all$bxpdata3$stats)), max(as.data.frame(bxpdata.all$bxpdata4$stats)),na.rm=TRUE ) } else if(MIXFLAG3==0 & MIXFLAG4==1){ ymax<- max(0, max(as.data.frame(monthtarget[,,3])), max(as.data.frame(monthtarget[,,4]),na.rm=TRUE), max(as.data.frame(bxpdata.all$bxpdata3$stats)), max(as.data.frame(bxpdata.all$bxpdata4$stats)),na.rm=TRUE ) } else if(MIXFLAG3==0 & MIXFLAG4==0){ ymax<- max(0, max(as.data.frame(monthtarget[,,3])), max(as.data.frame(monthtarget[,,4])), max(as.data.frame(bxpdata.all$bxpdata3$stats)), max(as.data.frame(bxpdata.all$bxpdata4$stats)),na.rm=TRUE ) } } if(obspar>4){ if(MIXFLAG==1){ ymax<- max(0, max(obsplot,na.rm=TRUE),max(as.data.frame(modplot)),na.rm=TRUE ) } else if(MIXFLAG==0){ ymax<- max(0, max(obsplot),max(as.data.frame(modplot)),na.rm=TRUE ) } } if(ymax==0 | is.na(ymax)==TRUE) ymax<-0.1 boxplot(obsplot,range=0,boxwex=0.25,ylim=c(0,ymax*1.1),las=1,cex.axis=1.1,yaxt="n",xaxt="n") axis(labels=monlab, at=seq(1,12),side=1,las=1,cex.axis=1.1,padj=-0.55) if(obspar==1){ axis(side=2,cex.lab=1.0,las=1) mtext("Surf.nitrate",cex=0.8,side=2,line=4) mtext(bquote(mMN.m^-3),cex=0.6,side=2,line=2.7) } if(obspar==2){ axis(side=2,cex.lab=1.0,las=1) mtext("Deep nitrate",cex=0.8,side=2,line=4) mtext(bquote(mMN.m^-3),cex=0.6,side=2,line=2.7) } if(obspar==3){ axis(side=2,cex.lab=1.0,las=1) mtext("Surf.ammonia",cex=0.8,side=2,line=4) mtext(bquote(mMN.m^-3),cex=0.6,side=2,line=2.7) } if(obspar==4){ axis(side=2,cex.lab=1.0,las=1) mtext("Deep ammonia",cex=0.8,side=2,line=4) mtext(bquote(mMN.m^-3),cex=0.6,side=2,line=2.7) } if(obspar==5){ axis(side=2,cex.lab=1.0,las=1) mtext("Chlorophyll",cex=0.8,side=2,line=4) mtext(bquote(mg.m^-3),cex=0.6,side=2,line=2.7) } if(obspar==6){ axis(side=2,cex.lab=1.0,las=1) mtext("Omniv.zoo",cex=0.8,side=2,line=4) mtext(bquote(mMN.m^-3),cex=0.6,side=2,line=2.7) } if(obspar==7){ axis(side=2,cex.lab=1.0,las=1) mtext("Carniv.zoo",cex=0.8,side=2,line=4) mtext(bquote(mMN.m^-3),cex=0.6,side=2,line=2.7) } if(obspar==8){ axis(side=2,cex.lab=1.0,las=1) mtext("Larv.s/d.benth.",cex=0.8,side=2,line=4) mtext(bquote(mMN.m^-3),cex=0.6,side=2,line=2.7) } if(obspar==9){ axis(side=2,cex.lab=1.0,las=1) mtext("Larv.c/s.benth.",cex=0.8,side=2,line=4) mtext(bquote(mMN.m^-3),cex=0.6,side=2,line=2.7) } if(obspar==10){ axis(side=2,cex.lab=1.0,las=1) mtext("Benthos larvae (all)",cex=0.8,side=2,line=4) mtext(bquote(mMN.m^-3),cex=0.6,side=2,line=2.7) } bxp(bxpdata,add=TRUE,boxwex=0.25,at=1:12+0.35,yaxt="n",xaxt="n", boxcol="red",whiskcol="red",whisklty="solid",medcol="red",staplecol="red") } par(mfrow=c(4,2)) par(mar=c(3,6,0.6,0.5)) plotdata_mo(monthtarget, bxpdata.all, 1, monlab) plotdata_mo(monthtarget, bxpdata.all, 2, monlab) plotdata_mo(monthtarget, bxpdata.all, 3, monlab) plotdata_mo(monthtarget, bxpdata.all, 4, monlab) plotdata_mo(monthtarget, bxpdata.all, 5, monlab) plotdata_mo(monthtarget, bxpdata.all, 6, monlab) plotdata_mo(monthtarget, bxpdata.all, 7, monlab) plotdata_mo(monthtarget, bxpdata.all, 10, monlab) legend(grconvertX(0.425, "ndc", "user"), grconvertY(0.045, "ndc", "user"), c("observations","model"), fill = c("black","red"), ncol=2, bty="n", xpd = NA) }
poTest <- function(model, ...){ UseMethod("poTest") } poTest.polr <- function(model, ...){ if (model$method != "logistic") stop("test for proportional odds is only for the logistic model") X <- model.matrix(model) y <- model.frame(model)[, 1] levels <- levels(y) k <- length(levels) p <- ncol(X) - 1 y <- as.numeric(y) models <- vector(k - 1, mode="list") for (j in 1:(k - 1)){ models[[j]] <- glm(y > j ~ X - 1, family=binomial) } vcov <- matrix(0, (k - 1)*p, (k - 1)*p) for (el in 1:(k - 1)){ for (j in 1:el){ W.j.el <- fitted(models[[el]]) - fitted(models[[j]])*fitted(models[[el]]) W.el.el <- fitted(models[[el]]) - fitted(models[[el]])^2 W.j.j <- fitted(models[[j]]) - fitted(models[[j]])^2 V <- solve(t(X * W.j.j) %*% X) %*% (t(X * W.j.el) %*% X) %*% solve(t(X * W.el.el) %*% X) subs.j <- (j - 1)*p + 1:p subs.el <- (el - 1)*p + 1:p vcov[subs.j, subs.el] <- vcov[subs.el, subs.j] <- V[-1, -1] } } beta <- unlist(lapply(models, function(m) coef(m)[-1])) D <- matrix(0, (k - 2)*p, (k - 1)*p) I <- diag(p) for (j in 1:(k - 2)){ subs.j <- (j - 1)*p + 1:p subs.el <- j*p + 1:p D[subs.j, 1:p] <- I D[subs.j, subs.el] <- -I } chisq <- t(D %*% beta) %*% solve(D %*% vcov %*% t(D)) %*% (D %*% beta) df <- (k - 2)*p chisq.p <- numeric(p) zeros <- matrix(0, k - 2, (k - 1)*p) D.p <- vector(p, mode="list") for (i in 1:p){ DD <- zeros j <- 1:(k - 2) DD[j, i] <- 1 DD[cbind(j, j*p + i)] <- -1 chisq.p[i] <- t(DD %*% beta) %*% solve(DD %*% vcov %*% t(DD)) %*% (DD %*% beta) D.p[[i]] <- DD } b <- coef(model) coef.names <- names(b) b <- cbind(b, matrix(beta, ncol = k - 1)) colnames(b) <- c("b[polr]", paste0("b[>", levels[1:(k - 1)], "]")) result <- list(call=model$call, coef.names=coef.names, b=b, vcov=vcov, D=D, chisq=as.vector(chisq), df=df, D.p=D.p, chisq.p=chisq.p, df.p = k - 2) class(result) <- "poTest" result } print.poTest <- function(x, digits=3, ...){ cat("\nTests for Proportional Odds\n") print(x$call) cat("\n") names <- c("Overall", x$coef.names) chisq <- c(x$chisq, x$chisq.p) df <- c(x$df, rep(x$df.p, length(x$chisq.p))) pval <- pchisq(chisq, df, lower.tail=FALSE) table <- cbind(chisq, df, pval) colnames(table) <- c("Chisquare", "df", "Pr(>Chisq)") b <- x$b b <- rbind(rep(NA, ncol(b)), b) table <- cbind(b, table) rownames(table) <- names printCoefmat(table, P.values=TRUE, has.Pvalue=TRUE, tst.ind = ncol(b) + 1, na.print="", digits=digits) invisible(x) }
tuning.gPLS.X <- function(X,Y,folds=10,validation=c("Mfold","loo"),ncomp,keepX=NULL,grid.X,setseed,progressBar=FALSE,ind.block.x=ind.block.x){ choicesetseed <- setseed if(length(keepX)>(ncomp-1)) stop("The length of keepX should be less then ncomp") k <- 0 res <- rep(0,length(grid.X)) for (i in grid.X){ if(is.null(keepX)) keepX1 <- rep(i,ncomp) else keepX1 <- c(keepX,rep(i,ncomp-length(keepX))) k <- k+1 cond <- TRUE while (cond) { model.gpls <- gPLS(X,Y,ncomp=ncomp,mode="regression",keepX=keepX1,ind.block.x=ind.block.x) res.perf.gpls <- try(perf(model.gpls,criterion="MSEP",validation=validation,folds = folds,setseed=choicesetseed,progressBar=progressBar),silent=FALSE) if (class(res.perf.gpls)[1]=="try-error"){ cond <- TRUE;choicesetseed=choicesetseed+1 } else {cond <- FALSE} } res[k] <- sum(res.perf.gpls$MSEP[,ncomp]) } ind <- which.min(res) keepX <- grid.X[ind] return(list(MSEP=res,keepX=keepX)) }
tt_load_gh <- function(x, week, auth = github_pat()) { if (!get_connectivity()) { check_connectivity(rerun = TRUE) if (!get_connectivity()) { message("Warning - No Internet Connectivity") return(NULL) } } if (rate_limit_check() == 0) { return(NULL) } if (missing(x)) { on.exit({ tt_available(auth = auth) }) stop("Enter either the year or date of the TidyTuesday Data to extract!") } tt_date <- tt_check_date(x, week) message("--- Compiling tt_compilation <- tt_compile(tt_date) n_files <- as.character(nrow(tt_compilation$files)) are_is <- switch( n_files, "0" = "are", "1" = "is", "are") file_s <- switch( n_files, "0" = "files", "1" = "file", "files") n_files <- ifelse( n_files == 0, "no", n_files) message("--- There ",are_is," ", n_files, " ", file_s," available ---") structure( tt_compilation$files$data_files, ".files" = tt_compilation$files, ".readme" = tt_compilation$readme, ".date" = tt_date, class = "tt" ) }
form_resupport <- function(f, support, method = "reflect") { assert_pdqr_fun(f) assert_missing(support, "vector for support") assert_support(support, allow_na = TRUE) assert_method(method, methods_resupport) disable_asserting_locally() if (all(is.na(support))) { return(f) } supp <- coalesce_pair(support, meta_support(f)) if (supp[1] > supp[2]) { stop_collapse( "After imputing `NA`s `support` equals (", supp[1], ", ", supp[2], ") which is not proper." ) } switch( method, reflect = resupport_reflect(f, supp), trim = resupport_trim(f, supp), winsor = resupport_winsor(f, supp), linear = resupport_linear(f, supp) ) } methods_resupport <- c("reflect", "trim", "winsor", "linear") resupport_reflect <- function(f, support) { f_supp <- meta_support(f) f_x_tbl <- meta_x_tbl(f) x_tbl_list <- list(f_x_tbl) if (support[1] > f_supp[1]) { x_tbl_list <- c(x_tbl_list, list(reflect_x_tbl(f_x_tbl, support[1]))) } if (support[2] < f_supp[2]) { x_tbl_list <- c(x_tbl_list, list(reflect_x_tbl(f_x_tbl, support[2]))) } x_tbl <- stack_x_tbl(x_tbl_list) res <- new_pdqr_by_ref(f)(x_tbl, meta_type(f)) form_resupport(res, support, "trim") } resupport_trim <- function(f, support) { switch( meta_type(f), discrete = resupport_trim_dis(f, support), continuous = resupport_trim_con(f, support) ) } resupport_trim_dis <- function(f, support) { res_x_tbl <- filter_x_tbl(meta_x_tbl(f), support) res_x_tbl <- res_x_tbl[, c("x", "prob")] if (sum(res_x_tbl[["prob"]]) <= 0) { stop_resupport_zero_tot_prob() } new_pdqr_by_ref(f)(res_x_tbl, "discrete") } resupport_trim_con <- function(f, support) { d_f <- as_d(f) edge_y <- d_f(support) x_tbl_plus <- union_inside_x_tbl( x_tbl_orig = meta_x_tbl(f), x_tbl_new = data.frame(x = support, y = edge_y) ) res_x_tbl <- filter_x_tbl(x_tbl_plus, support) if (trapez_integral(res_x_tbl[["x"]], res_x_tbl[["y"]]) <= 0) { stop_resupport_zero_tot_prob() } new_pdqr_by_ref(f)(res_x_tbl, "continuous") } resupport_winsor <- function(f, support) { if (support[1] == support[2]) { return(new_pdqr_by_ref(f)(support[1], meta_type(f))) } switch( meta_type(f), discrete = resupport_winsor_dis(f, support), continuous = resupport_winsor_con(f, support) ) } resupport_winsor_dis <- function(f, support) { f_x_tbl <- meta_x_tbl(f) x <- f_x_tbl[["x"]] x[x <= support[1]] <- support[1] x[x >= support[2]] <- support[2] f_x_tbl[["x"]] <- x new_pdqr_by_ref(f)(f_x_tbl, "discrete") } resupport_winsor_con <- function(f, support, h = 1e-8) { p_f <- as_p.pdqr(f) f_x_tbl <- meta_x_tbl(f) f_supp <- meta_support(f) if (support[1] >= f_supp[2]) { return(new_pdqr_by_ref(f)(support[1], meta_type(f))) } if (support[2] <= f_supp[1]) { return(new_pdqr_by_ref(f)(support[2], meta_type(f))) } x_tbl <- f_x_tbl if (support[1] > f_supp[1]) { x_tbl <- add_x_tbl_knots(x_tbl, support[1] + c(0, h)) x_tbl <- filter_x_tbl(x_tbl, c(support[1], f_supp[2])) tail_prob <- p_f(support[1]) x_tbl <- increase_tail_weight(x_tbl, tail_prob, "left") } if (support[2] < f_supp[2]) { x_tbl <- add_x_tbl_knots(x_tbl, support[2] - c(h, 0)) x_tbl <- filter_x_tbl(x_tbl, c(f_supp[1], support[2])) tail_prob <- 1 - p_f(support[2]) x_tbl <- increase_tail_weight(x_tbl, tail_prob, "right") } new_pdqr_by_ref(f)(x_tbl, "continuous") } increase_tail_weight <- function(x_tbl, by_prob, edge) { n <- nrow(x_tbl) x <- x_tbl[["x"]] y <- x_tbl[["y"]] if (edge == "left") { present_prob <- (y[1] + y[2]) * (x[2] - x[1]) / 2 to_prob <- present_prob + by_prob y[1] <- 2 * to_prob / (x[2] - x[1]) - y[2] } else if (edge == "right") { present_prob <- (y[n - 1] + y[n]) * (x[n] - x[n - 1]) / 2 to_prob <- present_prob + by_prob y[n] <- 2 * to_prob / (x[n] - x[n - 1]) - y[n - 1] } data.frame(x = x, y = y) } resupport_linear <- function(f, support) { if (support[1] == support[2]) { return(new_pdqr_by_ref(f)(support[1], meta_type(f))) } f_supp <- meta_support(f) if (f_supp[1] == f_supp[2]) { stop_collapse( "Can't resupport from single point support to interval one." ) } res_x_tbl <- meta_x_tbl(f) res_x_tbl[["x"]] <- extrap_lin( x_1 = f_supp[1], x_2 = f_supp[2], y_1 = support[1], y_2 = support[2], x_target = res_x_tbl[["x"]] ) new_pdqr_by_ref(f)(res_x_tbl, meta_type(f)) } stop_resupport_zero_tot_prob <- function() { stop_collapse( "Output of `form_resupport()` will not have positive total probability." ) }
locally.weighted.polynomial <- function(x, y, h=NA, x.grid=NA, degree=1, kernel.type='Normal'){ x.grid <- x.grid.create(x.grid, x,y); if(is.na(h)){ h <- stats::bw.SJ(x); } out <- NULL; out$data <- NULL; out$data$x <- x; out$data$y <- y; out$data$n <- length(x); out$h <- h; out$x.grid <- x.grid; out$effective.sample.sizes <- rep(NA, length(x.grid)); out$Beta <- matrix(nrow=degree+1, ncol=length(x.grid)); unscaled.var <- out$Beta; out$Beta.var <- out$Beta; var.y.given.x <- rep(0, length(x.grid) ); count <- 1; for(x.star in x.grid){ X <- NULL; for( i in 0:degree ){ X <- cbind(X, (x-x.star)^i ); } w <- kernel.h(x-x.star, h, type=kernel.type); w2 <- w^2; XtW <- t( apply(X,2,function(x){x*w}) ); XtW2 <- t( apply(X,2,function(x){x*w2}) ); XtWXinv <- tryCatch(solve( XtW %*% X ), error=function(e){NULL}) if( is.null(XtWXinv) ){ out$Beta[, count] <- rep(NA, degree+1); unscaled.var[, count] <- rep(NA, degree+1); }else{ beta <- XtWXinv %*% XtW %*% y; out$Beta[,count] <- beta; unscaled.var[,count] <- diag(XtWXinv %*% XtW2%*%X %*% t(XtWXinv)); } count <- count+1; } index <- which(!is.na(out$Beta[1,])) if(length(index) > 2 ){ x.grid.small <- x.grid[index] interp <- splines::interpSpline(x.grid.small, out$Beta[1,index]) out$residuals <- y - stats::predict(interp, x)$y for(i in 1:length(x.grid.small) ){ divisor <- 0 for(j in 1:length(x)){ kernel <- kernel.h(x.grid.small[i]-x[j], h, type=kernel.type) var.y.given.x[i] <- var.y.given.x[i] + (out$residuals[j])^2 * kernel divisor <- divisor + kernel } var.y.given.x[i] <- var.y.given.x[i] / divisor; } } index <- which(var.y.given.x == 0) var.y.given.x[index] <- NA for( i in 1:length(x.grid) ){ sum <- 0; for( j in 1:length(x) ){ sum <- sum + kernel.h(x.grid[i] - x[j], h, type=kernel.type); } out$effective.sample.sizes[i] <- sum / kernel.h(0, h, type=kernel.type); } for( i in 1:length(x.grid) ){ out$Beta.var[, i] <- unscaled.var[,i] * var.y.given.x[i]; } class(out) <- 'LocallyWeightedPolynomial'; return(out); } plot.LocallyWeightedPolynomial <- function(x, derv=0, CI.method=2, alpha=.05, use.ess=TRUE, draw.points=TRUE, ...){ index <- derv+1; intervals <- calc.CI.LocallyWeightedPolynomial(x, derv=derv, CI.method, alpha=alpha, use.ess); if( any( is.na(intervals$lower.CI) ) ){ stop('Too few data points to perform a valid local regression. Set use.ess=F to ignore the issue or select a larger bandwidth.'); } y.M <- max( intervals$upper.CI ); y.m <- min( intervals$lower.CI ); if(derv==0 & draw.points==TRUE){ y.M <- max( c(y.M, x$data$y) ); y.m <- min( c(y.m, x$data$y) ); } temp <- range(x$x.grid); x.m <- temp[1]; x.M <- temp[2]; graphics::plot( c(x.m, x.M), c(y.m, y.M), type='n', ...); graphics::lines(x$x.grid, intervals$upper.CI ); graphics::lines(x$x.grid, intervals$lower.CI ); graphics::polygon(c(x$x.grid, rev(x$x.grid)), c(intervals$upper.CI, rev(intervals$lower.CI)), col='light grey'); graphics::lines(x$x.grid, intervals$estimated, type='l', lwd=2); if(derv >= 1){ graphics::lines( range(x$x.grid), c(0,0) ); } if( derv==0 & draw.points == TRUE ){ graphics::points(x$data$x, x$data$y, ...); } } calc.CI.LocallyWeightedPolynomial <- function(model, derv=0, CI.method=2, alpha=.05, use.ess=TRUE){ out <- NULL; out$lower.CI <- rep(NA, length(model$x)); out$estimated <- out$lower.CI; out$upper.CI <- out$lower.CI; index <- derv+1; if( CI.method == 1 ){ t.star <- stats::qt(1-alpha/2, df=model$degrees.freedom); out$estimated <- model$Beta[index,]; out$lower.CI <- out$estimated - t.star*sqrt( model$Beta.var[index,] ); out$upper.CI <- out$estimated + t.star*sqrt( model$Beta.var[index,] ); } if( CI.method == 2 ){ g <- length(model$x.grid); h <- model$h; delta <- model$x.grid[2] - model$x.grid[1]; theta <- 2* stats::pnorm( sqrt((1+2*derv)*log(g)) * delta/(2*h) ) -1; temp.star <- stats::qnorm( (1-alpha/2)^(1/(theta*g)) ); out$estimated <- model$Beta[index,] * factorial(derv); out$lower.CI <- out$estimated - temp.star*sqrt(model$Beta.var[index,]) * factorial(derv); out$upper.CI <- out$estimated + temp.star*sqrt(model$Beta.var[index,]) * factorial(derv); } if( use.ess == TRUE){ index <- which( model$effective.sample.sizes < 5 ); out$lower.CI[index] <- NA; out$upper.CI[index] <- NA; } return(out); } kernel.h <- function(x, h, type='Normal'){ if(type == 'Normal'){ out <- stats::dnorm(x/h) / h; }else if(type == 'Epanechnikov'){ out <- (1/beta(.5,2)) * ( positive.part( (1-(x/h)^2) ) ); }else if( type == 'biweight' ){ out <- (1/beta(.5,3)) * ( positive.part( (1-(x/h)^2) ) )^2; }else if( type == 'triweight' ){ out <- (1/beta(.5,4)) * ( positive.part( (1-(x/h)^2) ) )^3; }else{ out <- rep(1, length(x)); out[ abs(x) > h ] <- 0; } return(out); } x.grid.create <- function(x.grid, x, y, grid.length=41){ if(all(is.na(x.grid))){ out <- seq(min(x), max(x), length=grid.length); }else if( length(x.grid) == 1 ){ out <- seq(min(x), max(x), length=x.grid); }else{ out <- x.grid; } return(out); } find.states <- function(intervals){ n <- length(intervals$lower.CI); out <- rep(NA, n); for( i in 1:n ){ out[i] <- find.state( intervals$lower.CI[i], intervals$upper.CI[i] ); } return(out); } find.state.changes <- function(intervals){ out <- NULL; out$indices <- NULL; out$state <- NULL; lower.CI <- intervals$lower.CI; upper.CI <- intervals$upper.CI; count <- 1; out$state[count] <- find.state(lower.CI[1], upper.CI[1]); out$indices[count] <- 1; continue <- TRUE; while(continue == TRUE){ if(out$state[count] == 1){ compare <- lower.CI < 0; }else if(out$state[count] == -1){ compare <- upper.CI > 0; } else{ compare <- upper.CI < 0 | lower.CI > 0 } index <- match( TRUE, compare ); if( is.na(index) ){ continue <- FALSE; }else{ count <- count + 1; lower.CI <- lower.CI[ -1*1:(index-1) ]; upper.CI <- upper.CI[ -1*1:(index-1) ]; out$state[count] <- find.state(lower.CI[1], upper.CI[1]); out$indices[count] <- out$indices[count-1] + index - 1; } } return(out); } find.state <- function(lower.CI, upper.CI){ if( is.na(lower.CI) ){ state <- 2; }else if( lower.CI > 0 ){ state <- 1; }else if( upper.CI < 0 ){ state <- -1; }else{ state <- 0; } return(state); } positive.part <- function(x){ out <- x; out[ out<0 ] <- 0; return(out); }
convertNWSFireZones <- function( nameOnly = FALSE, simplify = TRUE ) { dataDir <- getSpatialDataDir() datasetName <- 'NWSFireZones' if (nameOnly) return(datasetName) url <- "https://www.weather.gov/source/gis/Shapefiles/WSOM/fz03mr20.zip" filePath <- file.path(dataDir, basename(url)) utils::download.file(url, filePath) utils::unzip(filePath, exdir = file.path(dataDir, 'NWSFireZones')) dsnPath <- file.path(dataDir, 'NWSFireZones') shpName <- 'fz03mr20' SPDF <- convertLayer( dsn = dsnPath, layerName = shpName, encoding = 'UTF-8' ) SPDF@data <- dplyr::select( .data = SPDF@data, stateCode = .data$STATE, weatherForecastOffice = .data$CWA, zoneNumber = .data$ZONE, name = .data$NAME, zoneID = .data$STATE_ZONE, longitude = .data$LON, latitude = .data$LAT ) SPDF <- organizePolygons( SPDF, uniqueID = 'zoneID', sumColumns = c('longitude', 'latitude') ) if ( !cleangeo::clgeo_IsValid(SPDF) ) { SPDF <- cleangeo::clgeo_Clean(SPDF, verbose = TRUE) } message("Saving full resolution version...\n") assign(datasetName, SPDF) save(list = c(datasetName), file = paste0(dataDir, '/', datasetName, '.rda')) rm(list = datasetName) if ( simplify ) { message("Simplifying to 5%...\n") SPDF_05 <- rmapshaper::ms_simplify(SPDF, 0.05) SPDF_05@data$rmapshaperid <- NULL if ( !cleangeo::clgeo_IsValid(SPDF_05) ) { SPDF_05 <- cleangeo::clgeo_Clean(SPDF_05) } datasetName_05 <- paste0(datasetName, "_05") message("Saving 5% version...\n") assign(datasetName_05, SPDF_05) save(list = datasetName_05, file = paste0(dataDir,"/", datasetName_05, '.rda')) rm(list = c("SPDF_05",datasetName_05)) message("Simplifying to 2%...\n") SPDF_02 <- rmapshaper::ms_simplify(SPDF, 0.02) SPDF_02@data$rmapshaperid <- NULL if ( !cleangeo::clgeo_IsValid(SPDF_02) ) { SPDF_02 <- cleangeo::clgeo_Clean(SPDF_02) } datasetName_02 <- paste0(datasetName, "_02") message("Saving 2% version...\n") assign(datasetName_02, SPDF_02) save(list = datasetName_02, file = paste0(dataDir,"/", datasetName_02, '.rda')) rm(list = c("SPDF_02",datasetName_02)) message("Simplifying to 1%...\n") SPDF_01 <- rmapshaper::ms_simplify(SPDF, 0.01) SPDF_01@data$rmapshaperid <- NULL if ( !cleangeo::clgeo_IsValid(SPDF_01) ) { SPDF_01 <- cleangeo::clgeo_Clean(SPDF_01) } datasetName_01 <- paste0(datasetName, "_01") message("Saving 1% version...\n") assign(datasetName_01, SPDF_01) save(list = datasetName_01, file = paste0(dataDir,"/", datasetName_01, '.rda')) rm(list = c("SPDF_01",datasetName_01)) } unlink(filePath, force = TRUE) unlink(dsnPath, recursive = TRUE, force = TRUE) return(invisible(datasetName)) }
library(sp) library(gstat) x <- c(215, 330, 410, 470, 545) y <- c(230, 310, 330, 340, 365) fc <- c(0.211, 0.251, 0.281, 0.262, 0.242) por <- c(0.438, 0.457, 0.419, 0.430, 0.468) Allier <- data.frame(x, y, fc, por) coordinates(Allier) = ~x+y g <- gstat(id=c("fc"), formula=fc~1, data=Allier, model=vgm(0.00247, "Sph", 480, 0.00166)) g <- gstat(g, id="por", formula=por~1, data=Allier, model=vgm(0.00239, "Sph", 480, 0.00118)) g <- gstat(g, id=c("fc", "por"), model=vgm(0.00151, "Sph", 480, -0.00124)) g$set = list(choleski = 0) A <- predict(g, SpatialPoints(data.frame(x=450, y=350)), debug = 32) g$set = list(choleski = 1) B <- predict(g, SpatialPoints(data.frame(x=450, y=350)), debug = 32) all.equal(A,B)
"berry_2019" "bays2009_full" "bays2009_sample" "oberauer_2017"
test_that("new token computes expires_at", { time <- Sys.time() token <- oauth_token("xyz", expires_in = 10, .date = time) expect_s3_class(token, "httr2_token") expect_equal(token$expires_at, as.numeric(time + 10)) }) test_that("printing token redacts access and refresh token", { expect_snapshot({ oauth_token(access_token = "secret", refresh_token = "secret") }) }) test_that("can compute token expiry", { token <- oauth_token("xyz") expect_equal(token_has_expired(token), FALSE) token <- oauth_token("xyz", expires_in = 8, .date = Sys.time() - 10) expect_equal(token_has_expired(token), TRUE) token <- oauth_token("xyz", expires_in = 10, .date = Sys.time()) expect_equal(token_has_expired(token), FALSE) })
check_input_data <- function(arg_types, geoData = NULL, rtData = NULL){ if(!is.null(geoData)){ if (!'sf' %in% unlist(arg_types['geoData'])){stop('geoData must be an sf object')} } if(!is.null(rtData)){ if (!'list' %in% unlist(arg_types['rtData'])){stop('rtData must be a list object')} } rt_expected_names <- c("summaryData", "rtData", "casesInfectionData", "casesReportData", "obsCasesData") if(!check_rtData_structure(rtData, rt_expected_names)){stop("Each level of rtData must include ", paste(rt_expected_names, collapse = ' '), ". Missing items should be NULL.")} expected_columns <- list(geoData = c('sovereignt', 'geometry'), rtData = c('region','date','type','median','lower_90','upper_90','lower_50','upper_50'), obsCasesData = c('region','date','confirm') ) if (!is.null(geoData)){ if (!check_geoData_columns(geoData, expected_columns[['geoData']])){stop("geoData missing required columns. geoData must contain: ", paste(expected_columns[['geoData']], collapse = ' '))} } if (!check_obsCasesData_columns(rtData, expected_columns[['obsCasesData']])){stop("obsCasesData missing required columns. obsCasesData must contain: ", paste(expected_columns[['obsCasesData']], collapse = ' '))} if (!check_rtData_columns(rtData, expected_columns[['rtData']])){stop("rtData missing required columns. rtData, casesInfectionData, casesReportData must contain: ", paste(expected_columns[['rtData']], collapse = ' '))} return(TRUE) } check_rtData_structure <- function(rtData, expected_names){ agreement <- c() for (source in names(rtData)){ agreement <- append(agreement, identical(names(rtData[[source]]), expected_names)) } return(sum(agreement) == length(agreement)) } check_geoData_columns <- function(geoData, expected_columns){ return(length(setdiff(expected_columns, colnames(geoData))) == 0) } check_obsCasesData_columns <- function(rtData, expected_columns){ agreement <- c() for (source in names(rtData)){ if (!is.null(rtData[[source]][['obsCasesData']])){ agreement <- append(agreement, length(setdiff(expected_columns, colnames(rtData[[source]][['obsCasesData']]))) == 0) } } return(sum(agreement) == length(agreement)) } check_rtData_columns <- function(rtData, expected_columns){ agreement <- c() for (source in names(rtData)){ if (!is.null(rtData[[source]][['rtData']])){ agreement <- append(agreement, length(setdiff(expected_columns, colnames(rtData[[source]][['rtData']]))) == 0) } if (!is.null(rtData[[source]][['casesInfectionData']])){ agreement <- append(agreement, length(setdiff(expected_columns, colnames(rtData[[source]][['casesInfectionData']]))) == 0) } if (!is.null(rtData[[source]][['casesReportData']])){ agreement <- append(agreement, length(setdiff(expected_columns, colnames(rtData[[source]][['casesReportData']]))) == 0) } } return(sum(agreement) == length(agreement)) } check_geoData_names <- function(geoData, rtData){ rtSample <- rtData[[1]][[which(unlist(sapply(rtData[[1]], function(x){return(!is.null(x))})[2:4]))[1] + 1]] name_diff <- setdiff(rtSample$region, geoData$sovereignt) name_warning_geoData(name_diff) } name_warning_geoData <- function(name_diff){ if (length(name_diff) > 0 & length(name_diff) <= 5){ warning('The following names are present in the estimates but not in the GeoData: ', paste(name_diff, collapse = ', '), '.') } else if (length(name_diff) > 5) { warning('The following names are present in the estimates but not in the GeoData: ', paste(name_diff[1:5], collapse = ', '), ' ... and ', length(name_diff) - 5, ' more.') } }
cdf.fitMOSgev0 <- function(fit, ensembleData, values, dates = NULL, randomizeATzero = FALSE, ...) { gini.md <- function(x,na.rm=FALSE) { if(na.rm & any(is.na(x))) x <- x[!is.na(x)] n <-length(x) return(4*sum((1:n)*sort(x,na.last=TRUE))/(n^2)-2*mean(x)*(n+1)/n) } M <- matchEnsembleMembers(fit,ensembleData) nForecasts <- ensembleSize(ensembleData) if (!all(M == 1:nForecasts)) ensembleData <- ensembleData[,M] M <- apply(ensembleForecasts(ensembleData), 1, function(z) all(is.na(z))) ensembleData <- ensembleData[!M,] nObs <- nrow(ensembleData) if (!is.null(dates)) warning("dates ignored") CDF <- matrix(NA, nObs, length(values)) dimnames(CDF) <- list(ensembleObsLabels(ensembleData),as.character(values)) ensembleData <- ensembleForecasts(ensembleData) x <- c(fit$a,fit$B) A <- cbind(rep(1,nObs),ensembleData) SHAPE <- fit$q S <- fit$s S.sq <- apply(ensembleData,1,gini.md, na.rm = TRUE) MEAN <- A%*%x + S*rowMeans(ensembleData==0, na.rm = TRUE) SCALE <- rep(fit$c,nObs) + rep(fit$d,nObs)*S.sq LOC <- MEAN - SCALE*(gamma(1-SHAPE)-1)/SHAPE for (i in 1:length(values)){ if (randomizeATzero & (values[i]==0)){ cdfval <- pgev(0, loc=LOC, scale=SCALE, shape=SHAPE) CDF[,i] <- runif(nObs,0,cdfval) } else { CDF[,i] <- pgev(values[i], loc=LOC, scale=SCALE, shape=SHAPE) } } CDF }
bridgeHand <- function(handNumber = "auto", seat = FALSE, createGraphic = TRUE, LTC = "original", ...) { if (handNumber != "auto" & !is.numeric(handNumber)) { stop("Only numeric seeds allowed for handNumbers") } if (length(handNumber) > 1) { lapply(handNumber, bridgeHand, seat = seat, createGraphic = createGraphic, LTC = LTC, ...) } args <- as.list(list(...)) if ("HCValues" %in% names(args)) { HCValues <- args$HCValues stopifnot(length(HCValues) == 5, all(is.numeric(HCValues))) } else { HCValues <- c(4, 3, 2, 1, 0) } if ("shapeValues" %in% names(args)) { shapeValues <- args$HCValues stopifnot(length(shapeValues) == 8, all(is.numeric(shapeValues))) } else { shapeValues <- c(3, 2, 1, 0, 0, 1, 2, 3) } if ("LTC" != FALSE) { LTCSchema <- LTC } else { LTCSchema <- FALSE } if ("wackyFrom" %in% names(args)) { wackyFrom <- args$wackyFrom stopifnot(length(wackyFrom) == 1, all(is.numeric(wackyFrom))) } else { wackyFrom <- 1 } if ("wackyTo" %in% names(args)) { wackyTo <- args$wackyTo stopifnot(length(wackyTo) == 1, all(is.numeric(wackyTo))) } else { wackyTo <- 1 } suits <- c("S", "H", "D", "C") compassPoints <- c("N", "E", "S", "W") if (handNumber != "auto") { handNo <- handNumber } else { handNo <- round(runif(1) * 10000000, 0) } set.seed(handNo) vuln <- c("None", "NS", "EW", "Both")[sample(1:4, 1)] if (seat != FALSE) { dealer <- "S" } else { dealer <- compassPoints[handNo %% 4 + 1] } pack <- expand.grid(rank = c("A", 2:9, "T", "J", "Q", "K"), suit = suits) %>% as_tibble(.name_repair = "minimal") %>% mutate(card = paste(suit, rank, sep = "-")) for (i in 1:4) { temp <- sample(pack$card, 13, replace = FALSE, prob = rep(seq(from = wackyFrom, to = wackyTo, length.out = 13), 5 - i) ) %>% as_tibble(.name_repair = "minimal") %>% separate(value, sep = "-", into = c("suit", "rank")) %>% mutate( suit = factor(suit, levels = c("S", "H", "D", "C")), rank = factor(rank, levels = c("A", "K", "Q", "J", "T", 9:2, " ")) ) %>% arrange(suit, rank) %>% unite("card", sep = "-") colnames(temp) <- compassPoints[i] assign(glue::glue("hand{i}"), temp) pack <- pack %>% filter(!card %in% unname(unlist(temp))) } pack <- hand1 %>% cbind(hand2) %>% cbind(hand3) %>% cbind(hand4) for (j in compassPoints) { temp_hand <- pack[j] %>% bind_cols(order = 1:13, .) %>% separate(!!j, sep = "-", into = c("suit", "rank")) %>% mutate(suit = factor(suit, levels = c("S", "H", "D", "C")), rank = factor(rank, levels = c("A", "K", "Q", "J", "T", 9:2, " ", "10"))) %>% arrange(suit, rank) %>% pivot_wider(names_from = "suit", values_from = "rank") %>% select(-order) if (all(!colnames(temp_hand) %in% "S")) { temp_hand <- cbind(temp_hand, S = c("Void", rep(NA, 12))) } if (all(!colnames(temp_hand) %in% "H")) { temp_hand <- cbind(temp_hand, H = c("Void", rep(NA, 12))) } if (all(!colnames(temp_hand) %in% "D")) { temp_hand <- cbind(temp_hand, D = c("Void", rep(NA, 12))) } if (all(!colnames(temp_hand) %in% "C")) { temp_hand <- cbind(temp_hand, C = c("Void", rep(NA, 12))) } temp_hand <- temp_hand %>% select(S, H, D, C) for (i in suits) { temp_suit <- na.omit(temp_hand[i]) while (nrow(temp_suit) < 13) { temp_suit <- rbind(temp_suit, NA) } temp_hand[i] <- temp_suit } temp_hand <- temp_hand %>% filter_all(any_vars(!is.na(.))) temp_hand <- temp_hand %>% replace(is.na(.), " ") assign(glue::glue("hand{j}"), temp_hand) } if (seat != FALSE) { otherHands <- setdiff(compassPoints, seat) hand_temp_S <- get(glue::glue("hand{seat}")) hand_temp_W <- get(glue::glue("hand{otherHands[1]}")) hand_temp_N <- get(glue::glue("hand{otherHands[2]}")) hand_temp_E <- get(glue::glue("hand{otherHands[3]}")) handS <- hand_temp_S handW <- hand_temp_W handN <- hand_temp_N handE <- hand_temp_E } names(HCValues) <- c("A", "K", "Q", "J", "10") points <- tibble(Hand = compassPoints, HC = 0L, Shape = 0L, LTC = 0L) for (i in compassPoints) { temp <- get(glue::glue("hand{i}")) %>% rowid_to_column() %>% pivot_longer(-rowid) %>% filter(value != " ") %>% select(value) %>% table() %>% as_tibble(.name_repair = "minimal") points[points$Hand == i, "HC"] <- round(sum( unname(unlist(temp[temp$. == "A", "n"])) * HCValues[["A"]], unname(unlist(temp[temp$. == "K", "n"])) * HCValues[["K"]], unname(unlist(temp[temp$. == "Q", "n"])) * HCValues[["Q"]], unname(unlist(temp[temp$. == "J", "n"])) * HCValues[["J"]], unname(unlist(temp[temp$. == "T", "n"])) * HCValues[["10"]] ), 0) } for (i in compassPoints) { hand_shape <- get(glue::glue("hand{i}")) %>% rowid_to_column() %>% pivot_longer(-rowid) %>% filter(value != " ") %>% group_by(name) %>% summarise(shape = max(rowid), .groups = "drop") %>% ungroup() %>% select(shape) %>% unname() %>% unlist() temp_points <- sum(shapeValues[2] * (hand_shape == 1)) + sum(shapeValues[3] * (hand_shape == 2)) + sum(shapeValues[4] * (hand_shape == 3)) + sum(shapeValues[5] * (hand_shape == 4)) + sum(shapeValues[6] * (hand_shape == 5)) + sum(shapeValues[7] * (hand_shape == 6)) + sum(shapeValues[8] * (hand_shape == 7)) temp_points <- temp_points + sum(get(glue::glue("hand{i}"))[1, ] == "Void") * shapeValues[1] points[points$Hand == i, "Shape"] <- temp_points } points <- points %>% rowwise() %>% mutate(Total = sum(HC + Shape)) %>% relocate(LTC, .after = Total) if (LTCSchema != FALSE) { for (i in compassPoints) { current_hand <- get(glue::glue("hand{i}")) %>% slice(1:3) %>% mutate(across(.cols = everything(), as.character)) %>% mutate(across(.cols = everything(), ~ ifelse(.x %in% c("A", "K", "Q", " ", "Void"), .x, "x"))) ltc <- ifelse(any(stringr::str_detect(unname(unlist(current_hand)), "A")), 0, 1) for (j in suits) { suit_shape <- select(current_hand, all_of(j)) %>% unname() %>% unlist() %>% glue::glue_collapse() if (LTCSchema == "original") { temp_ltc <- 0 + stringr::str_count(suit_shape, "Void|A |AK |AKQ") * 0 + stringr::str_count(suit_shape, "AQ |Ax |AKx|AQx|K |KQ |Kx |KQx|Q |x ") * 1 + stringr::str_count(suit_shape, "Axx|Kxx|Qx |Qxx|xx ") * 2 + stringr::str_count(suit_shape, "xxx") * 3 } else if (LTCSchema == "new") { temp_ltc <- 0 + stringr::str_count(suit_shape, "Void|A |AK |AKQ") * 0 + stringr::str_count(suit_shape, "AKx") * 0.5 + stringr::str_count(suit_shape, "AQx|Ax |AQ ") * 1 + stringr::str_count(suit_shape, "K |Q |x |Axx|KQx|KQ |Kx ") * 1.5 + stringr::str_count(suit_shape, "Kxx") * 2 + stringr::str_count(suit_shape, "Qx |Qxx|xx ") * 2.5 + stringr::str_count(suit_shape, "xxx") * 3 } ltc <- ltc + ceiling(temp_ltc) } points[points$Hand == i, "LTC"] <- ltc } } else { points[points$Hand == i, "LTC"] <- NA } points <- points %>% rename_with(~ glue::glue("LTC ({stringr::str_to_title(LTCSchema)})"), LTC) if (createGraphic) { hand_graphic <- createGraphic(handNo, handN, handE, handS, handW, dealer, vuln, points) } else { hand_graphic <- "Not requested" } handShapes <- tibble( N = colSums(handN != " "), E = colSums(handE != " "), S = colSums(handS != " "), W = colSums(handW != " ") ) invisible(list( id = handNo, dealer = dealer, graphic = hand_graphic, handPoints = points[, c("Hand", "HC")], handShapes = handShapes, vuln = vuln )) }
schernoff <- function(data, xvar=character(0), ...) { main <- paste(deparse(substitute(data), 500), collapse = "\n") if (is.data.frame(data)) data <- as.matrix(data[,sapply(data, is.numeric)]) stopifnot("matrix" %in% class(data)) if (is.null(colnames(data))) colnames(data) <- sprintf("%s[,%.0f]", main, 1:ncol(data)) dvar <- dimnames(data)[[2]] if (length(xvar)) { xvar <- xvar[xvar %in% dvar] dvar <- setdiff(dvar, xvar) } else { xvar <- order_andrews(data) dvar <- NULL } choices <- as.list(1:10) names(choices) <- sprintf("%.0fx%.0f", 1:10, 1:10) maxmin <- rbind(apply(data, 2, max), apply(data, 2, min)) hc <- hclust(dist(data), method="ward.D2") oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) shinyApp( ui = dashboardPage( dashboardHeader(title="Chernoff faces"), dashboardSidebar( tags$style( HTML(".black-text .rank-list-item { color: bucket_list( header = NULL, group_name = "bucket_var_group", orientation = "vertical", class = c("default-sortable", "black-text"), add_rank_list( text = "Variable(s)", labels = dvar, input_id = "dvar" ), add_rank_list( text = "Selected variable(s)", labels = xvar, input_id = "xvar" ) ) ), dashboardBody( fluidRow( box(plotOutput("plot")), box(selectInput("size", "Size", choices=choices, selected=3), sliderInput("page", "Page", value=1, min=1, max=ceiling(nrow(data)/9), step=1) ), box(verbatimTextOutput("command"), title="Basic R code") )) ), server = function(input, output, session) { rv <- reactiveValues(size=c(3,3), n=1) observeEvent (input$size, { page <- as.numeric(isolate(input$page)) size <- as.numeric(input$size) n <- 1 max <- ceiling(nrow(data)/(n*size*size)) if (page>max) page <- max updateSliderInput(session, "page", value = page, max = max) rv$size <- c(size, size) }) observeEvent (input$n, { page <- as.numeric(isolate(input$page)) size <- as.numeric(isolate(input$size)) n <- 1 max <- ceiling(nrow(data)/(n*size*size)) if (page>max) page <- max updateSliderInput(session, "page", value = page, max = max) rv$n <- n }) output$plot <- renderPlot({ if ((length(input$xvar)>1)) { par(mfrow=rv$size, mar=c(0,0,1,0)) first <- (as.numeric(input$page)-1)*prod(rv$size)+1 last <- min(first+prod(rv$size)-1, nrow(data)) args <- list(...) args$xy <- data[hc$order[first:last],input$xvar] args$scale <- TRUE args$labels <- as.character(hc$order[first:last]) args$nr <- rv$size[1] args$nc <- rv$size[2] if (is.null(args$main)) args$main <- main do.call("PlotFaces", args) } }) output$command <- renderText({ txt <- "At least two variables are required for a plot!" if (length(input$xvar)>2) { txt <- c(" " " " " " paste0("x <- c(", paste0('"', input$xvar, '"', collapse=", "), ")\n"), sprintf("PlotFaces(%s[,x])\n", main)) } txt }) } ) }
context("Creation RDML object from different file types or user input") PATH <- path.package("RDML") test_that("RDML can be created from BioRad .rdml", { filename <- paste0(PATH, "/extdata/", "BioRad_qPCR_melt.rdml") rdml <- RDML$new(filename) expect_class(rdml, "RDML") }) test_that("RDML can be created from StepOne .rdml", { filename <- paste0(PATH, "/extdata/", "stepone_std.rdml") rdml <- RDML$new(filename) expect_class(rdml, "RDML") }) test_that("RDML can be created from LightCycler .rdml", { filename <- paste0(PATH, "/extdata/", "lc96_bACTXY.rdml") rdml <- RDML$new(filename) expect_class(rdml, "RDML") })
hnlmix <- function(y=NULL, distribution="normal", mixture="normal", random=NULL, nest=NULL, mu=NULL, shape=NULL, linear=NULL, pmu=NULL, pshape=NULL, pmix=NULL, prandom=NULL, delta=1, common=FALSE, envir=parent.frame(), print.level=0, typsize=abs(p), ndigit=10, gradtol=0.00001, stepmax=10*sqrt(p%*%p), steptol=0.00001, iterlim=100, fscale=1, eps=1.0e-4, points=5){ call <- sys.call() distribution <- match.arg(distribution,c("binomial","beta binomial", "double binomial","mult binomial","Poisson","negative binomial", "double Poisson","mult Poisson","gamma count","Consul","logarithmic", "geometric","normal","inverse Gauss","logistic","exponential","gamma", "Weibull","extreme value","Pareto","Cauchy","Laplace","Levy","beta", "simplex","two-sided power")) shp <- distribution!="binomial"&&distribution!="Poisson"&& distribution!="exponential"&&distribution!="geometric"&& distribution!="logarithmic" bindata <- distribution=="binomial"||distribution=="double binomial"|| distribution=="beta binomial"||distribution=="mult binomial" mixture <- match.arg(mixture,c("normal","logistic","gamma","inverse gamma", "inverse Gauss","Weibull","beta")) mean0 <- if(mixture=="normal"||mixture=="logistic"||mixture=="Cauchy"|| mixture=="Laplace")0 else if(mixture=="beta")2 else 1 fixed <- !is.null(pmix) if(fixed&&pmix<0)stop("pmix must be positive") if(is.null(random))stop("name of random parameter must be supplied") if(!is.character(random))stop("random must be the name of a parameter") if(length(random)>1)stop("only one random parameter allowed") if(common&&!is.null(linear)) stop("linear cannot be used with common parameters") npl <- length(pmu) nps <- length(pshape) np1 <- npl+nps respenv <- exists(deparse(substitute(y)),envir=parent.frame())&& inherits(y,"repeated")&&!inherits(envir,"repeated") if(respenv){ if(dim(y$response$y)[2]>1) stop("hnlmix only handles univariate responses") if(!is.null(y$NAs)&&any(y$NAs)) stop("hnlmix does not handle data with NAs")} envname <- if(respenv)deparse(substitute(y)) else if(!is.null(class(envir)))deparse(substitute(envir)) else NULL if(!inherits(mu,"formula"))stop("mu must be a formula") if(shp&&!is.null(shape)&&!inherits(shape,"formula")) stop("shape must be a formula") lin1 <- lin2 <- NULL if(is.list(linear)){ lin1 <- linear[[1]] lin2 <- linear[[2]]} else lin1 <- linear if(inherits(lin1,"formula")&&is.null(mu)){ mu <- lin1 lin1 <- NULL} if(inherits(lin2,"formula")&&is.null(shape)){ shape <- lin2 lin2 <- NULL} if(inherits(lin1,"formula")){ lin1model <- if(respenv){ if(!is.null(attr(finterp(lin1,.envir=y,.name=envname),"parameters"))) attr(finterp(lin1,.envir=y,.name=envname),"model")} else {if(!is.null(attr(finterp(lin1,.envir=envir,.name=envname),"parameters"))) attr(finterp(lin1,.envir=envir,.name=envname),"model")}} else lin1model <- NULL if(inherits(lin2,"formula")){ lin2model <- if(respenv){ if(!is.null(attr(finterp(lin2,.envir=y,.name=envname),"parameters"))) attr(finterp(lin2,.envir=y,.name=envname),"model")} else {if(!is.null(attr(finterp(lin2,.envir=envir,.name=envname),"parameters"))) attr(finterp(lin2,.envir=envir,.name=envname),"model")}} else lin2model <- NULL lin1a <- lin2a <- mu2 <- sh2 <- NULL if(respenv||inherits(envir,"repeated")||inherits(envir,"tccov")||inherits(envir,"tvcov")){ if(is.null(envname))envname <- deparse(substitute(envir)) if(inherits(mu,"formula")){ mu2 <- if(respenv)finterp(mu,.envir=y,.name=envname,.args=random) else finterp(mu,.envir=envir,.name=envname,.args=random)} if(inherits(shape,"formula")){ sh2 <- if(respenv)finterp(shape,.envir=y,.name=envname) else finterp(shape,.envir=envir,.name=envname)} if(inherits(lin1,"formula")){ lin1a <- if(respenv)finterp(lin1,.envir=y,.name=envname) else finterp(lin1,.envir=envir,.name=envname)} if(inherits(lin2,"formula")){ lin2a <- if(respenv)finterp(lin2,.envir=y,.name=envname) else finterp(lin2,.envir=envir,.name=envname)} if(is.function(mu)){ if(is.null(attr(mu,"model"))){ tmp <- parse(text=deparse(mu)[-1]) mu <- if(respenv)fnenvir(mu,.envir=y,.name=envname) else fnenvir(mu,.envir=envir,.name=envname) mu2 <- mu attr(mu2,"model") <- tmp} else mu2 <- mu} if(is.function(shape)){ if(is.null(attr(shape,"model"))){ tmp <- parse(text=deparse(shape)[-1]) shape <- if(respenv)fnenvir(shape,.envir=y,.name=envname) else fnenvir(shape,.envir=envir,.name=envname) sh2 <- shape attr(sh2,"model") <- tmp} else sh2 <- shape}} else { if(is.function(mu)&&is.null(attr(mu,"model")))mu <- fnenvir(mu) if(is.function(shape)&&is.null(attr(shape,"model"))) shape <- fnenvir(shape)} if(inherits(lin1,"formula")){ tmp <- attributes(if(respenv)finterp(lin1,.envir=y,.name=envname) else finterp(lin1,.envir=envir,.name=envname)) lf1 <- length(tmp$parameters) if(!is.character(tmp$model))stop("linear must be a W&R formula") else if(length(tmp$model)==1)stop("linear must contain covariates") rm(tmp)} else lf1 <- 0 if(inherits(lin2,"formula")){ tmp <- attributes(if(respenv)finterp(lin2,.envir=y,.name=envname) else finterp(lin2,.envir=envir,.name=envname)) lf2 <- length(tmp$parameters) if(!is.character(tmp$model))stop("linear must be a W&R formula") else if(length(tmp$model)==1)stop("linear must contain covariates") rm(tmp)} else lf2 <- 0 if(lf1>0)random <- c(random,"linear") mu3 <- if(respenv)finterp(mu,.envir=y,.name=envname,.args=random) else finterp(mu,.envir=envir,.name=envname,.args=random) npt1 <- length(attr(mu3,"parameters")) if(is.character(attr(mu3,"model")))stop("mu cannot be a W&R formula") if(npl!=npt1&&!common&&lf1==0){ cat("\nParameters are ") cat(attr(mu3,"parameters"),"\n") stop(paste("pmu should have",npt1,"estimates"))} if(is.list(pmu)){ if(!is.null(names(pmu))){ o <- match(attr(mu3,"parameters"),names(pmu)) pmu <- unlist(pmu)[o] if(sum(!is.na(o))!=length(pmu))stop("invalid estimates for mu - probably wrong names")} else pmu <- unlist(pmu)} if(lf1>0){ dm1 <- if(respenv)wr(lin1,data=y)$design else wr(lin1,data=envir)$design if(is.null(mu2))mu2 <- mu3 mu1 <- function(p,random)mu3(p,random,dm1%*%p[(npt1+1):(npt1+lf1)])} else { mu1 <- mu3 rm(mu3)} nlp <- npt1+lf1 if(!common&&nlp!=npl)stop(paste("pmu should have",nlp,"initial estimates")) npl1 <- if(common&&!inherits(shape,"formula")) 1 else nlp+1 sh3 <- NULL if(inherits(shape,"formula")){ old <- if(common)mu1 else NULL mufn <- if(lf2>0) "linear" else NULL sh3 <- if(respenv)finterp(shape,.envir=y,.start=npl1,.name=envname,.old=old,.args=mufn) else finterp(shape,.envir=envir,.start=npl1,.name=envname,.old=old,.args=mufn) npt2 <- length(attr(sh3,"parameters")) if(is.character(attr(sh3,"model")))stop("shape cannot be a W&R formula") if(nps!=npt2&&!common&&lf2==0){ cat("\nParameters are ") cat(attr(sh3,"parameters"),"\n") stop(paste("pshape should have",npt2,"estimates"))} if(is.list(pshape)){ if(!is.null(names(pshape))){ o <- match(attr(sh3,"parameters"),names(pshape)) pshape <- unlist(pshape)[o] if(sum(!is.na(o))!=length(pshape))stop("invalid estimates for shape - probably wrong names")} else pshape <- unlist(pshape)}} else if(is.null(shape)&&shp){ sh3 <- function(p) p[npl1]*rep(1,n) sh2 <- fnenvir(function(p) p[1]*rep(1,n)) npt2 <- 1} if(lf2>0){ dm2 <- if(respenv)wr(lin2,data=y)$design else wr(lin2,data=envir)$design if(is.null(sh2))sh2 <- sh3 sh1 <- sh3(p,dm2%*%p[(npl1+lf2-1):np])} else { sh1 <- sh3 rm(sh3)} if(shp){ nlp <- npt2+lf2 if(!common&&nlp!=nps)stop(paste("pshape should have",nlp,"initial estimates"))} if(common){ nlp <- length(unique(c(attr(mu1,"parameters"),attr(sh1,"parameters")))) if(nlp!=npl)stop(paste("with a common parameter model, pmu should contain",nlp,"estimates"))} type <- "unknown" if(respenv){ if(inherits(envir,"repeated")&&(length(nobs(y))!=length(nobs(envir))||any(nobs(y)!=nobs(envir)))) stop("y and envir objects are incompatible") if(!is.null(y$response$delta)) delta <- as.vector(y$response$delta) nest <- covind(y) type <- y$response$type envir <- y$response y <- response(y)} else if(inherits(envir,"repeated")){ if(!is.null(envir$NAs)&&any(envir$NAs)) stop("hnlmix does not handle data with NAs") cn <- deparse(substitute(y)) if(length(grep("\"",cn))>0)cn <- y if(length(cn)>1)stop("only one y variable allowed") col <- match(cn,colnames(envir$response$y)) if(is.na(col))stop(paste("response variable",cn,"not found")) nest <- covind(envir) type <- envir$response$type[col] y <- envir$response$y[,col] if(!is.null(envir$response$n)&&!all(is.na(envir$response$n[,col]))) y <- cbind(y,envir$response$n[,col]-y) else if(!is.null(envir$response$censor)&&!all(is.na(envir$response$censor[,col]))) y <- cbind(y,envir$response$censor[,col]) if(!is.null(envir$response$delta)) delta <- as.vector(envir$response$delta[,col]) envir <- envir$response envir$y <- envir$y[,col,drop=FALSE] if(!is.null(envir$n))envir$n <- envir$n[,col,drop=FALSE] else if(!is.null(envir$censor))envir$censor <- envir$censor[,col,drop=FALSE] if(!is.null(envir$delta))envir$delta <- envir$delta[,col,drop=FALSE]} else if(inherits(y,"response")){ if(dim(y$y)[2]>1)stop("hnlmix only handles univariate responses") if(!is.null(y$delta))delta <- as.vector(y$delta) nest <- covind(y) type <- y$type envir <- y y <- response(y)} unest <- unique(nest) nnest <- length(unest) unest <- unest[-nnest] if(is.null(nest)||nnest==1)stop("appropriate nest indicator required") if(is.null(prandom)) stop(paste("one or",nnest,"values must be supplied for prandom")) if(length(prandom)==1)prandom <- rep(prandom,nnest) else if(length(prandom)!=nnest) stop(paste(nnest,"values must be supplied for prandom")) if(mean0==1){ if(any(prandom<=0))stop("prandom must all be positive") prandom <- log(prandom)} else if(mean0==2){ if(any(prandom<=0|prandom>=1))stop("prandom must all be in (0,1)") prandom <- log(prandom/(1-prandom))} p <- c(pmu,pshape,prandom[-nnest]) np <- length(p) if(any(is.na(y)))stop("NAs in y - use rmna") if(bindata){ if(type!="unknown"&&type!="nominal")stop("nominal data required") if((is.vector(y)||(length(dim(y))==2&&dim(y)[2]==1))&&all(y==0|y==1)) y <- cbind(y,1-y) if(length(dim(y))!=2||dim(y)[2]!=2) stop(paste("Two column matrix required for response: successes and failures")) if(any(y<0))stop("All response values must be positive") n <- dim(y)[1] nn <- y[,1]+y[,2] censor <- FALSE} else { censor <- length(dim(y))==2&&dim(y)[2]==2 if(censor&&all(y[,2]==1)){ y <- y[,1] censor <- FALSE} if(!censor)if(!is.vector(y,mode="numeric"))stop("y must be a vector") if(censor&&(distribution=="beta"||distribution=="simplex"|| distribution=="two-sided power"||distribution=="gamma count"|| distribution=="gamma count"||distribution=="logarithmic")) stop("Censoring not allowed for this distribution") if(distribution=="double Poisson"||distribution=="mult Poisson") my <- if(censor)3*max(y[,1]) else 3*max(y) n <- if(length(dim(y))==2)dim(y)[1] else length(y)} if(distribution=="inverse Gauss"||distribution=="exponential"|| distribution=="gamma"||distribution=="Weibull"|| distribution=="extreme value"){ if(type!="unknown"&&type!="duration"&&type!="continuous") stop("duration data required") if((censor&&any(y[,1]<=0))||(!censor&&any(y<=0))) stop("All response values must be > 0")} else if(distribution=="Poisson"||distribution=="negative binomial"|| distribution=="gamma count"||distribution=="double Poisson"|| distribution=="mult Poisson"){ if(type!="unknown"&&type!="discrete")stop("discrete data required") if(any(y<0))stop("All response values must be >= 0")} else if(distribution=="logarithmic"){ if(type!="unknown"&&type!="discrete")stop("discrete data required") if(any(y<1))stop("All response values must be integers > 0")} else if(distribution=="beta"||distribution=="simplex"|| distribution=="two-sided power"){ if(type!="unknown"&&type!="continuous")stop("continuous data required") if(any(y<=0)||any(y>=1)) stop("All response values must lie between 0 and 1")} else if(!bindata&&type!="unknown"&&type!="continuous"&&type!="duration") stop("continuous data required") if(censor){ y[,2] <- as.integer(y[,2]) if(any(y[,2]!=-1&y[,2]!=0&y[,2]!=1)) stop("Censor indicator must be -1s, 0s, and 1s") cc <- ifelse(y[,2]==1,1,0) rc <- ifelse(y[,2]==0,1,ifelse(y[,2]==-1,-1,0)) lc <- ifelse(y[,2]==-1,0,1)} else cc <- 1 wt <- rep(1,n) if(length(delta)==1)delta <- rep(delta,n) else if(length(delta)!=n) stop("delta must be the same length as the other variables") delta2 <- mean(delta) if(any(is.na(mu1(pmu,0))))stop("The location model returns NAs: probably invalid initial values") if(distribution=="Levy"&&any(y<=mu1(p))) stop("location parameter must be strictly less than corresponding observation") if(shp&&any(is.na(sh1(p)))) stop("The shape model returns NAs: probably invalid initial values") if(distribution=="Pareto"&&exp(sh1(p))<=1)stop("shape parameters must be > 0") if(!censor)fcn <- switch(distribution, binomial=function(m,p) dbinom(y[,1],nn,m,TRUE), "beta binomial"=function(m,p){ s <- exp(sh1(p)) t <- s*m u <- s*(1-m) lbeta(y[,1]+t,y[,2]+u)-lbeta(t,u)+lchoose(nn,y[,1])}, "double binomial"=function(m,p) .C("ddb_c",as.integer(y[,1]),as.integer(nn), as.double(m),as.double(exp(sh1(p))), as.integer(n),as.double(wt),res=double(n), PACKAGE="repeated")$res, "mult binomial"=function(m,p) .C("dmb_c",as.integer(y[,1]),as.integer(nn), as.double(m),as.double(exp(sh1(p))), as.integer(n),as.double(wt),res=double(n), PACKAGE="repeated")$res, Poisson=function(m,p)dpois(y,m,TRUE), "negative binomial"=function(m,p)dnbinom(y,exp(sh1(p)),mu=m,log=TRUE), "double Poisson"=function(m,p) .C("ddp_c",as.integer(y),as.integer(my),as.double(m), as.double(exp(sh1(p))),as.integer(n),as.double(wt), res=double(n), PACKAGE="repeated")$res, "mult Poisson"=function(m,p) .C("dmp_c",as.integer(y),as.integer(my), as.double(m),as.double(exp(sh1(p))), as.integer(n),as.double(wt),res=double(n), PACKAGE="repeated")$res, "gamma count"=function(m,p){ s <- exp(sh1(p)) u <- m*s ifelse(y==0,pgamma(u,(y+1)*s,1,lower.tail=FALSE,log.p=TRUE), log(pgamma(u,y*s+(y==0),1)-pgamma(u,(y+1)*s,1)))}, Consul=function(m,p){ s <- exp(sh1(p)) log(m)-(m+y*(s-1))/s+(y-1)*log(m+y*(s-1))-y*log(s)- lgamma(y+1)}, logarithmic=function(m,p){ m <- 1/(1+exp(-m)) y*log(m)-log(y)-log(-log(1-m))}, geometric=function(m,p)y*log(m)-(y+1)*log(1+m), normal=function(m,p)dnorm(y,m,exp(sh1(p)/2),TRUE), "inverse Gauss"=function(m,p){ t <- sh1(p) s <- exp(t) -(t+(y-m)^2/(y*s*m^2)+log(2*pi*y^3))/2}, logistic=function(m,p)dlogis(y,m,exp(sh1(p))*sqrt(3)/pi,TRUE), Cauchy=function(m,p)dcauchy(y,m,exp(sh1(p)/2),TRUE), Laplace=function(m,p){ t <- sh1(p) s <- exp(t) -abs(y-m)/s-t-log(2)}, Pareto=function(m,p){ s <- exp(sh1(p)) t <- 1/(m*(s-1)) log(s*t)-(s+1)*log(1+y*t)}, exponential=function(m,p)dexp(y,1/m,TRUE), gamma=function(m,p){ s <- exp(sh1(p)) dgamma(y,s,scale=m/s,log=TRUE)}, Weibull=function(m,p)dweibull(y,exp(sh1(p)),m,TRUE), "extreme value"=function(m,p)y+dweibull(exp(y),exp(sh1(p)),m,TRUE), beta=function(m,p){ s <- exp(sh1(p)) m <- m*s s <- s-m dbeta(y,m,s,log=TRUE)}, simplex=function(m,p){ t <- sh1(p) s <- exp(t) -(((y-m)/(m*(1-m)))^2/(y*(1-y)*s)+t+3*log(y*(1-y))+ log(2*pi))/2}, "two-sided power"=function(m,p){ t <- sh1(p) s <- exp(t) t+(s-1)*ifelse(y<m,log(y/m),log((1-y)/(1-m)))}) else fcn <- switch(distribution, Poisson=function(m,p)cc*dpois(y[,1],m,TRUE)+log(lc-rc*ppois(y[,1],m)), "negative binomial"=function(m,p){ s <- exp(sh1(p)) cc*dnbinom(y[,1],s,mu=m,log=TRUE)+log(lc-rc*pnbinom(y[,1],s,m))}, geometric=function(m,p) cc*(y[,1]*log(m)-(y[,1]+1)*log(1+m))+ log(lc-rc*pgeom(y[,1],1/(1+m))), normal=function(m,p){ s <- exp(sh1(p)/2) cc*dnorm(y[,1],m,s,TRUE)+log(lc-rc*pnorm(y[,1],m,s))}, "inverse Gauss"=function(m,p){ s <- exp(sh1(p)) v <- sqrt(s*y[,1]/2) -cc*(log(s)+(y[,1]-m)^2/(y[,1]*s*m^2)+log(2*pi*y[,1]^3))/2+ log(lc-rc*(pnorm((y[,1]/m-1)/v)+ exp(2/(m*s))*pnorm(-(y[,1]/m+1)/v)))}, logistic=function(m,p){ s <- exp(sh1(p)) cc*dlogis(y[,1],m,s*sqrt(3)/pi,TRUE)+ log(lc-rc*plogis(y[,1],m,s*sqrt(3)/pi))}, Cauchy=function(m,p){ s <- exp(sh1(p)/2) cc*dcauchy(y[,1],m,s,TRUE)+log(lc-rc*pcauchy(y[,1],m,s))}, Laplace=function(m,p){ v <- sh1(p) s <- exp(v) u <- abs(y[,1]-m)/s t <- exp(-u)/2 -cc*(u+v+log(2))+log(lc-rc*(ifelse(u<0,t,1-t)))}, Pareto=function(m,p){ s <- exp(sh1(p)) t <- 1/(m*(s-1)) cc*(log(s*t)-(s+1)*log(1+y[,1]*t))+ log(lc-rc*((1+y[,1]/(m*(s-1)))^(-s)))}, exponential=function(m,p) cc*dexp(y[,1],1/m,TRUE)+log(lc-rc*pexp(y[,1],1/m)), gamma=function(m,p){ s <- exp(sh1(p)) t <- m/s cc*dgamma(y[,1],s,scale=t,log=TRUE)+ log(lc-rc*pgamma(y[,1],s,scale=t))}, Weibull=function(m,p){ s <- exp(sh1(p)) cc*dweibull(y[,1],s,m,TRUE)+log(lc-rc*pweibull(y[,1],s,m))}, "extreme value"=function(m,p){ s <- exp(sh1(p)) yy <- exp(y[,1]) cc*(y[,1]+dweibull(yy,s,m,TRUE))+log(lc-rc*pweibull(yy,s,m))}) mix <- switch(mixture, normal=function(r,ss)dnorm(r,0,sqrt(ss),log=TRUE), logistic=function(r,ss)dlogis(r,0,sqrt(3*ss)/pi,log=TRUE), Cauchy=function(r,ss){ dcauchy(r,0,ss,log=TRUE)}, Laplace=function(r,ss){ -abs(r)/ss-log(ss)-log(2)}, gamma=function(r,ss)dgamma(r,1/ss,scale=ss,log=TRUE), "inverse gamma"=function(r,ss)dgamma(1/r,1/ss,scale=ss,log=TRUE)/r^2, "inverse Gauss"=function(r,ss) -(log(ss)+(r-1)^2/(r*ss)+log(2*pi*r^3))/2, Weibull=function(r,ss){ fn <- function(z)gamma(1+2/z)-gamma(1+1/z)^2-ss s <- uniroot(fn,c(0.02,20))$root dweibull(r,s,1,log=TRUE)}, beta=function(r,ss){ s <- 0.5/ss dbeta(r,s,s,log=TRUE)}) like <- if(mean0==0)function(p){ r <- c(p[np1+unest],-sum(p[np1+unest])) ss <- if(!fixed)sum(r^2)/nnest else pmix m <- mu1(p,r[nest]) var0 <- if(censor)sum((y[,1]-m)^2)/n else if(bindata)sum((y[,1]-m*nn)^2)/n else sum((y-m)^2)/n -sum(fcn(m,p))-sum(mix(r,var0+ss))} else if(mean0==1) function(p){ r <- exp(p[np1+unest]) r <- c(r,nnest-sum(r)) ss <- if(!fixed)sum((r-1)^2)/nnest else pmix m <- mu1(p,r[nest]) var0 <- if(censor)sum((y[,1]-m)^2)/n else if(bindata)sum((y[,1]-m*nn)^2)/n else sum((y-m)^2)/n -sum(fcn(m,p))-sum(mix(r,var0+ss))} else function(p){ r <- 1/(1+exp(-p[np1+unest])) r <- c(r,0.5*nnest-sum(r)) ss <- if(!fixed)sum((r-0.5)^2)/nnest else pmix m <- mu1(p,r[nest]) var0 <- if(censor)sum((y[,1]-m)^2)/n else if(bindata)sum((y[,1]-m*nn)^2)/n else sum((y-m)^2)/n -sum(fcn(m,p))-sum(mix(r,var0+ss))} tlike <- function(p){ if(mean0==0)r <- c(p[np1+unest],-sum(p[np1+unest])) else if(mean0==1){ r <- exp(p[np1+unest]) r <- c(r,nnest-sum(r))} else if(mean0==2){ r <- 1/(1+exp(-p[np1+unest])) r <- c(r,0.5*nnest-sum(r))} m <- mu1(p,r[nest]) -sum(fcn(m,p)+cc*log(delta))} tmp <- like(p) if(is.na(tmp)||abs(tmp)==Inf) stop("Likelihood returns Inf or NA: invalid initial values, wrong model, or probabilities too small to calculate") if(fscale==1)fscale <- tmp z0 <- nlm(like,p=p,hessian=TRUE,print.level=print.level,typsize=typsize, ndigit=ndigit,gradtol=gradtol,stepmax=stepmax,steptol=steptol, iterlim=iterlim,fscale=fscale) z0$minimum <- z0$minimum-sum(log(delta)) if(np==0)cov <- NULL else if(np==1)cov <- 1/z0$hessian else { a <- if(any(is.na(z0$hessian))||any(abs(z0$hessian)==Inf))0 else qr(z0$hessian)$rank if(a==np)cov <- solve(z0$hessian) else cov <- matrix(NA,ncol=np,nrow=np)} se <- sqrt(diag(cov)) maxlike <- sum(tlike(z0$estimate)) if(mean0==0){ r <- c(z0$estimate[np1+unest],-sum(z0$estimate[np1+unest])) var <- sum(r^2)/nnest} else if(mean0==1){ r <- exp(z0$estimate[np1+unest]) r <- c(r,nnest-sum(r)) if(mean0==1)var <- sum((r-1)^2)/nnest} else if(mean0==2){ r <- 1/(1+exp(-z0$estimate[np1+unest])) r <- c(r,0.5*nnest-sum(r)) var <- sum((r-0.5)^2)/nnest} pred <- mu1(z0$estimate,if(mean0==0)0 else if(mean0==1)1 else 0.5) if(bindata)pred <- nn*pred rpred <- mu1(z0$estimate,r[nest]) if(bindata)rpred <- nn*rpred var0 <- if(censor||bindata)sum((y[,1]-rpred)^2)/n else sum((y-rpred)^2)/n if(!fixed)pmix <- switch(mixture, normal=var, logistic=sqrt(3*var)/pi, gamma=1/var, "inverse gamma"=1/var, "inverse Gauss"=var, Weibull={ fn <- function(z)gamma(1+2/z)-gamma(1+1/z)^2-var uniroot(fn,c(0.02,20))$root}, beta=0.125/var-0.5) if(!is.null(mu2))mu1 <- mu2 if(!is.null(sh2))sh1 <- sh2 if(!is.null(lin1a))lin1 <- lin1a if(!is.null(lin2a))lin2 <- lin2a z1 <- list( call=call, response=envir, delta=delta, distribution=distribution, mixture=mixture, mixvar=c(var0,var), mu=mu1, shape=sh1, linear=list(lin1,lin2), linmodel=list(lin1model,lin2model), common=common, maxlike=maxlike, penalty=z0$minimum-maxlike, pred=pred, rpred=rpred, aic=maxlike+np-1, df=n-np+1, coefficients=z0$estimate, npl=npl, npr=nnest-1, nps=nps, pmix=pmix, fixed=fixed, se=se, cov=cov, corr=cov/(se%o%se), gradient=z0$gradient, iterations=z0$iterations, code=z0$code) class(z1) <- c("hnlm","recursive") return(z1)} deviance.hnlm <- function(object, ...) 2*object$maxlike fitted.hnlm <- function(object, recursive=TRUE, ...) if(recursive) object$rpred else object$pred residuals.hnlm <- function(object, recursive=TRUE, ...) if(recursive) object$response$y-object$rpred else object$response$y-object$pred print.hnlm <- function(x, correlation=TRUE, ...) { z<-x sht <- z$nps>0||!is.null(z$shape) npl <- z$npl np1 <- z$npl+1 np1a <- z$npl+1 np2 <- z$npl+z$nps np3 <- np2 np4 <- np3+1 np <- z$npl+z$nps+z$npr mean0 <- if(z$mixture=="normal"||z$mixture=="logistic"||z$mixture=="Cauchy"|| z$mixture=="Laplace")0 else if(z$mixture=="beta")2 else 1 cat("\nCall:",deparse(z$call),sep="\n") cat("\n") if(z$code>2)cat("Warning: no convergence - error",z$code,"\n\n") if(!is.null(z$dist))cat(z$dist,"distribution\n\n") cat(z$mixture,"mixing distribution\n\n") if(z$npl>0||!is.null(z$mu)){ cat("Location function:\n") if(!is.null(attr(z$mu,"formula"))) cat(deparse(attr(z$mu,"formula")),sep="\n") else if(!is.null(attr(z$mu,"model"))){ t <- deparse(attr(z$mu,"model")) t[1] <- sub("expression\\(","",t[1]) t[length(t)] <- sub("\\)$","",t[length(t)]) cat(t,sep="\n")} if(!is.null(z$linear[[1]])){ cat("Linear part:\n") print(z$linear[[1]])}} if(sht){ cat("\nLog shape function:\n") if(!is.null(attr(z$shape,"formula"))) cat(deparse(attr(z$shape,"formula")),sep="\n") else if(!is.null(attr(z$shape,"model"))){ t <- deparse(attr(z$shape,"model")) t[1] <- sub("expression\\(","",t[1]) t[length(t)] <- sub("\\)$","",t[length(t)]) cat(t,sep="\n")} if(!is.null(z$linear[[2]])){ cat("Linear part:\n") print(z$linear[[2]])} if(!is.null(z$family)){ cat("\n(Log) family function:\n") if(!is.null(attr(z$family,"formula"))) cat(deparse(attr(z$family,"formula")),sep="\n") else if(!is.null(attr(z$family,"model"))){ t <- deparse(attr(z$family,"model")) t[1] <- sub("expression\\(","",t[1]) t[length(t)] <- sub("\\)$","",t[length(t)]) cat(t,sep="\n")} if(!is.null(z$linear[[3]])){ cat("Linear part:\n") print(z$linear[[3]])}}} cat("\n-Log likelihood ",z$maxlike,"\n") cat("Penalty ",z$penalty,"\n") cat("Degrees of freedom",z$df,"\n") cat("AIC ",z$aic,"\n") cat("Iterations ",z$iterations,"\n\n") if(npl>0){ if(z$common)cat("Common parameters:\n") else cat("Location parameters:\n") cname <- if(is.character(attr(z$mu,"model")))attr(z$mu,"model") else if(length(grep("linear",attr(z$mu,"parameters")))>0) attr(z$mu,"parameters")[grep("\\[",attr(z$mu,"parameters"))] else attr(z$mu,"parameters") if(!is.null(z$linmodel[[1]]))cname <- c(cname,z$linmodel[[1]]) coef.table <- cbind(z$coefficients[1:npl],z$se[1:npl]) if(!z$common){ dimnames(coef.table) <- list(cname, c("estimate", "se")) print.default(coef.table,digits=4,print.gap=2) cname <- coef.table <- NULL}} if(z$common||z$nps>0){ if(!is.null(z$shape))cname <- c(cname, if(is.character(attr(z$shape,"model"))) attr(z$shape,"model") else if(length(grep("linear",attr(z$shape,"parameters")))>0|| length(grep("mu",attr(z$shape,"parameters")))>0) attr(z$shape,"parameters")[grep("\\[",attr(z$shape,"parameters"))] else attr(z$shape,"parameters")) if(!is.null(z$linmodel[[2]]))cname <- c(cname,z$linmodel[[2]]) if(!z$common)coef.table <- cbind(z$coefficients[np1a:np2], z$se[np1a:np2]) if(z$common&&is.null(z$family)){ dimnames(coef.table) <- list(unique(cname),c("estimate","se")) print.default(coef.table,digits=4,print.gap=2)} if(is.null(z$shape)&&z$nps==1){ coef.table <- cbind(z$coefficients[np2],z$se[np2]) cname <- " "}} if(z$nps>0&&!z$common){ cat("\nShape parameters:\n") dimnames(coef.table) <- list(cname,c("estimate","se")) print.default(coef.table,digits=4,print.gap=2) cname <- coef.table <- NULL} if(!is.null(z$family)){ if(!z$common)cat("\nFamily parameters:\n") cname <- c(cname,if(is.character(attr(z$family,"model"))) attr(z$family,"model") else if(length(grep("linear",attr(z$family,"parameters")))>0) attr(z$family,"parameters")[grep("\\[",attr(z$family,"parameters"))] else attr(z$family,"parameters")) if(!is.null(z$linmodel[[3]]))cname <- c(cname,z$linmodel[[3]]) if(z$common){ dimnames(coef.table) <- list(unique(cname),c("estimate","se")) print.default(coef.table,digits=4,print.gap=2)} else { coef.table <- cbind(z$coefficients[np3:np],z$se[np3:np]) dimnames(coef.table) <- list(cname,c("estimate","se")) print.default(coef.table,digits=4,print.gap=2)}} if(z$fixed) cat("\nFixed mixing shape parameter:",z$pmix,"\n") else cat("\nMixing shape parameter:",z$pmix,"\n") cat("\nVariances: conditional = ",z$mixvar[1],", mixing = ",z$mixvar[2],"\n", sep="") cat("\nRandom effect parameters:\n") r <- c(z$coefficients[np4:np],-sum(z$coefficients[np4:np])) if(mean0==1){ rr <- exp(z$coefficients[np4:np]) rr <- c(rr,z$npr+1-sum(rr)) r[z$npr+1] <- log(rr[z$npr+1])} else if(mean0==2){ rr <- 1/(1+exp(-z$coefficients[np4:np])) rr <- c(rr,0.5*z$npr+0.5-sum(rr)) r[z$npr+1] <- log(rr[z$npr+1]/(1-rr[z$npr+1]))} coef.table <- cbind(r,c(z$se[np4:np],NA)) if(mean0)coef.table <- cbind(coef.table,rr) dimnames(coef.table) <- list(1:(z$npr+1), c(if(mean0)"estimate"else"effect","se",if(mean0)"effect")) print.default(coef.table,digits=4,print.gap=2) if(correlation){ cat("\nCorrelations:\n") dimnames(z$corr) <- list(seq(1,np),seq(1,np)) print.default(z$corr,digits=4)} invisible(z)}
structure(list(username = c("unittestphifree", "wbeasleya"), email = c("[email protected]", "[email protected]" ), firstname = c("Unit Test", "Will"), lastname = c("PHI Free", "Beasley_A"), expiration = structure(c(NA_real_, NA_real_ ), class = "Date"), data_access_group = c(NA_character_, NA_character_), data_access_group_id = c(NA_character_, NA_character_ ), design = c(FALSE, TRUE), user_rights = c(FALSE, TRUE), data_access_groups = c(FALSE, TRUE), data_export = c("1", "1"), reports = c(TRUE, TRUE), stats_and_charts = c(TRUE, TRUE), manage_survey_participants = c(TRUE, TRUE), calendar = c(TRUE, TRUE), data_import_tool = c(FALSE, TRUE), data_comparison_tool = c(FALSE, TRUE), logging = c(FALSE, TRUE), file_repository = c(TRUE, TRUE), data_quality_create = c(FALSE, TRUE), data_quality_execute = c(FALSE, TRUE), api_export = c(TRUE, FALSE), api_import = c(FALSE, FALSE), mobile_app = c(FALSE, FALSE), mobile_app_download_data = c(FALSE, FALSE), record_create = c(TRUE, TRUE), record_rename = c(FALSE, FALSE), record_delete = c(FALSE, FALSE), lock_records_all_forms = c(FALSE, FALSE), lock_records = c(FALSE, FALSE), lock_records_customization = c(FALSE, FALSE)), row.names = c(NA, -2L), class = c("tbl_df", "tbl", "data.frame"))
aSECF <- function(integrands,samples,derivatives, polyorder = NULL, steinOrder = NULL, kernel_function = NULL, sigma = NULL, K0 = NULL,nystrom_inds = NULL, est_inds = NULL, apriori = NULL, conjugate_gradient = TRUE, reltol = 1e-02, diagnostics = FALSE){ N <- NROW(samples) N_expectations <- NCOL(integrands) if (is.null(ncol(integrands))){ integrands <- matrix(integrands,nrow=N,ncol=1) } if (is.null(ncol(samples))){ samples <- matrix(samples,nrow=N,ncol=1) derivatives <- matrix(derivatives,nrow=N,ncol=1) } if (is.null(est_inds)){ inds_unique <- !duplicated(samples) samples <- samples[inds_unique,,drop=FALSE] derivatives <- derivatives[inds_unique,,drop=FALSE] integrands <- integrands[inds_unique,,drop=FALSE] N <- sum(inds_unique) } else{ inds_all <- 1:N to_remove <- est_inds[duplicated(samples[est_inds,,drop=FALSE])] num_to_remove <- length(to_remove) if (num_to_remove!=0){ N_new <- N - num_to_remove samples <- samples[-to_remove,,drop=FALSE] derivatives <- derivatives[-to_remove,,drop=FALSE] integrands <- integrands[-to_remove,,drop=FALSE] inds_all <- inds_all[-to_remove] inds_all[!to_remove] <- 1:N_new est_inds <- inds_all[est_inds] N <- N_new } } d <- NCOL(samples) if (!is.null(est_inds)){ N <- length(est_inds) } if (!is.null(polyorder)){ if (choose(d+polyorder,d) >= N){ stop("The polyorder is too high for this sample size.") } } else if ((d >= N) && is.null(apriori)){ stop("The dimension is too large for this sample size. Consider increasing the sample size or using the apriori argument.") } else if (length(apriori) >= N){ stop("The dimension is too large for this sample size. Consider reducing the number of terms in the apriori argument.") } if (is.null(est_inds)){ temp <- aSECF_cpp_prep(integrands, samples, derivatives, getX = getX, polyorder, steinOrder, kernel_function, sigma, K0, apriori, nystrom_inds, conjugate_gradient) A <- temp$A b <- temp$b B2 <- temp$B2 cond_no <- temp$cond_no m0 <- temp$m0 Q <- NCOL(temp$phi) if (diagnostics){ B1 <- temp$B1 ny_inds <- temp$ny_inds a <- matrix(NaN,nrow=m0,ncol=N_expectations) beta <- matrix(NaN,nrow=Q,ncol=N_expectations) } expectation <- rep(NaN, nrow=N_expectations) iter <- rep(NaN,N_expectations) for (i in 1:N_expectations){ if (conjugate_gradient){ B2_inv <- solve(B2) xinit <- c(rep(0,m0),B2_inv[,1]*mean(integrands[,i])) ab_tilde <- lsolve.cg(A, b[,i], xinit = xinit, reltol = reltol, preconditioner = diag(ncol(A)), adjsym = TRUE, verbose = FALSE) expectation[i] <- matrix(B2[1,],nrow=1)%*%ab_tilde$x[(m0+1):(m0+Q)] iter[i] <- ab_tilde$iter } else{ ab_tilde <- solve(nearPD(A),b[,i]) expectation[i] <- ab_tilde[m0+1] iter[i] <- NaN } if (diagnostics){ a[,i] <- B1%*%ab_tilde$x[1:m0] beta[,i] <- B2%*%ab_tilde$x[(m0+1):(m0+Q)] } } if (conjugate_gradient){ if (diagnostics){ res <- list(expectation = expectation, cond_no=cond_no, iter = iter, a = a, b = beta, ny_inds = ny_inds) } else{ res <- list(expectation = expectation, cond_no=cond_no, iter = iter) } } else{ if (diagnostics){ res <- list(expectation = expectation, a = a, b = beta, ny_inds = ny_inds) } else{ res <- list(expectation = expectation) } } } else{ res <- aSECF_unbiased_cpp_prep(integrands, samples, derivatives, est_inds, getX = getX, aSECF_mse_linsolve = aSECF_mse_linsolve, polyorder, steinOrder, kernel_function, sigma, K0, apriori, nystrom_inds, conjugate_gradient, reltol, diagnostics) } return(res) } CF <- function(integrands, samples, derivatives, steinOrder = NULL, kernel_function = NULL, sigma = NULL, K0 = NULL, est_inds = NULL, one_in_denom = FALSE, diagnostics = FALSE){ N <- NROW(samples) d <- NCOL(samples) if (is.null(ncol(integrands))){ integrands <- matrix(integrands,nrow=N,ncol=1) } if (is.null(ncol(samples))){ samples <- matrix(samples,nrow=N,ncol=1) derivatives <- matrix(derivatives,nrow=N,ncol=1) } if (is.null(est_inds)){ inds_unique <- !duplicated(samples) samples <- samples[inds_unique,,drop=FALSE] derivatives <- derivatives[inds_unique,,drop=FALSE] integrands <- integrands[inds_unique,,drop=FALSE] N <- sum(inds_unique) } else{ inds_all <- 1:N to_remove <- est_inds[duplicated(samples[est_inds,,drop=FALSE])] num_to_remove <- length(to_remove) if (num_to_remove!=0){ N_new <- N - num_to_remove samples <- samples[-to_remove,,drop=FALSE] derivatives <- derivatives[-to_remove,,drop=FALSE] integrands <- integrands[-to_remove,,drop=FALSE] inds_all <- inds_all[-to_remove] inds_all[!to_remove] <- 1:N_new est_inds <- inds_all[est_inds] N <- N_new } } if (is.null(est_inds)){ temp <- CF_cpp(integrands, samples, derivatives, steinOrder, kernel_function, sigma, K0, one_in_denom, diagnostics) } else{ temp <- CF_unbiased_cpp(integrands, samples, derivatives, est_inds, steinOrder, kernel_function, sigma, K0, one_in_denom, diagnostics) } return (temp) } CF_crossval <- function(integrands, samples, derivatives, steinOrder = NULL, kernel_function = NULL, sigma_list = NULL, K0_list = NULL, est_inds = NULL, log_weights = NULL, one_in_denom = FALSE, folds = NULL, diagnostics = FALSE){ N <- NROW(samples) d <- NCOL(samples) if (is.null(ncol(integrands))){ integrands <- matrix(integrands,nrow=N,ncol=1) } if (is.null(ncol(samples))){ samples <- matrix(samples,nrow=N,ncol=1) derivatives <- matrix(derivatives,nrow=N,ncol=1) } if (is.null(est_inds)){ inds_unique <- !duplicated(samples) if (sum(inds_unique)!=N){ inds <- order(samples[inds_unique,1]) num_dups <- data.frame(temp_for_dups=samples[,1]) %>% group_by(temp_for_dups) %>% group_size() if (!is.null(log_weights)){ log_weights <- log_weights[inds_unique] log_weights <- log_weights + log(num_dups[order(inds)]) } samples <- samples[inds_unique,,drop=FALSE] derivatives <- derivatives[inds_unique,,drop=FALSE] integrands <- integrands[inds_unique,,drop=FALSE] N <- sum(inds_unique) if (!is.null(K0_list)){ for (jj in 1:length(K0_list)){ K0_list[[jj]] <- K0_list[[jj]][inds_unique,inds_unique] } } } } else{ inds_all <- 1:N to_remove <- est_inds[duplicated(samples[est_inds,,drop=FALSE])] num_to_remove <- length(to_remove) if (num_to_remove!=0){ N_new <- N - num_to_remove samples <- samples[-to_remove,,drop=FALSE] derivatives <- derivatives[-to_remove,,drop=FALSE] integrands <- integrands[-to_remove,,drop=FALSE] inds_all <- inds_all[-to_remove] inds_all[!to_remove] <- 1:N_new est_inds <- inds_all[est_inds] N <- N_new if (!is.null(K0_list)){ for (jj in 1:length(K0_list)){ K0_list[[jj]] <- K0_list[[jj]][-to_remove,-to_remove] } } } } if (is.null(log_weights)){ temp <- CF_crossval_cpp(integrands, samples, derivatives, steinOrder, kernel_function, sigma_list, K0_list, folds, est_inds, NULL, one_in_denom, diagnostics) } else { temp <- CF_crossval_cpp(integrands, samples, derivatives, steinOrder, kernel_function, sigma_list, K0_list, folds, est_inds, exp(log_weights), one_in_denom, diagnostics) } return (temp) } SECF <- function(integrands,samples,derivatives, polyorder = NULL, steinOrder = NULL, kernel_function = NULL, sigma = NULL, K0 = NULL, est_inds = NULL,apriori = NULL, diagnostics = FALSE){ N <- NROW(samples) N_expectations <- NCOL(integrands) if (is.null(ncol(integrands))){ integrands <- matrix(integrands,nrow=N,ncol=1) } if (is.null(ncol(samples))){ samples <- matrix(samples,nrow=N,ncol=1) derivatives <- matrix(derivatives,nrow=N,ncol=1) } if (is.null(est_inds)){ inds_unique <- !duplicated(samples) samples <- samples[inds_unique,,drop=FALSE] derivatives <- derivatives[inds_unique,,drop=FALSE] integrands <- integrands[inds_unique,,drop=FALSE] N <- sum(inds_unique) } else{ inds_all <- 1:N to_remove <- est_inds[duplicated(samples[est_inds,,drop=FALSE])] num_to_remove <- length(to_remove) if (num_to_remove!=0){ N_new <- N - num_to_remove samples <- samples[-to_remove,,drop=FALSE] derivatives <- derivatives[-to_remove,,drop=FALSE] integrands <- integrands[-to_remove,,drop=FALSE] inds_all <- inds_all[-to_remove] inds_all[!to_remove] <- 1:N_new est_inds <- inds_all[est_inds] N <- N_new } } d <- NCOL(samples) if (!is.null(est_inds)){ N <- length(est_inds) } if (!is.null(polyorder)){ if (choose(d+polyorder,d) >= N){ stop("The polyorder is too high for this sample size.") } } else if ((d >= N) && is.null(apriori)){ stop("The dimension is too large for this sample size. Consider increasing the sample size or using the apriori argument.") } else if (length(apriori) >= N){ stop("The dimension is too large for this sample size. Consider reducing the number of terms in the apriori argument.") } if (is.null(est_inds)){ temp <- SECF_cpp(integrands, samples, derivatives, getX = getX, polyorder, steinOrder, kernel_function, sigma, K0, apriori, diagnostics) } else{ temp <- SECF_unbiased_cpp(integrands, samples, derivatives, est_inds, getX = getX, polyorder, steinOrder, kernel_function, sigma, K0, apriori, diagnostics) } return(temp) } SECF_crossval <- function(integrands,samples,derivatives, polyorder = NULL, steinOrder = NULL, kernel_function = NULL, sigma_list = NULL, K0_list = NULL, est_inds = NULL, apriori = NULL, folds = NULL, diagnostics = FALSE){ N <- NROW(samples) N_expectations <- NCOL(integrands) if (is.null(ncol(integrands))){ integrands <- matrix(integrands,nrow=N,ncol=1) } if (is.null(ncol(samples))){ samples <- matrix(samples,nrow=N,ncol=1) derivatives <- matrix(derivatives,nrow=N,ncol=1) } if (is.null(est_inds)){ inds_unique <- !duplicated(samples) samples <- samples[inds_unique,,drop=FALSE] derivatives <- derivatives[inds_unique,,drop=FALSE] integrands <- integrands[inds_unique,,drop=FALSE] N <- sum(inds_unique) } else{ inds_all <- 1:N to_remove <- est_inds[duplicated(samples[est_inds,,drop=FALSE])] num_to_remove <- length(to_remove) if (num_to_remove!=0){ N_new <- N - num_to_remove samples <- samples[-to_remove,,drop=FALSE] derivatives <- derivatives[-to_remove,,drop=FALSE] integrands <- integrands[-to_remove,,drop=FALSE] inds_all <- inds_all[-to_remove] inds_all[!to_remove] <- 1:N_new est_inds <- inds_all[est_inds] N <- N_new } } d <- NCOL(samples) if (!is.null(est_inds)){ N <- length(est_inds) } if (is.null(folds)){ N_perfit <- floor(0.8*N) } else{ N_perfit <- floor((folds-1)/folds*N) } if (!is.null(polyorder)){ if (choose(d+polyorder,d) >= N_perfit){ stop("The polyorder is too high for this sample size and number of folds.") } } else if ((d >= N_perfit) && is.null(apriori)){ stop("The dimension is too large for this sample size and number of folds. Consider increasing the sample size, reducing the number of cross-validation folds or using the apriori argument.") } else if (length(apriori) >= N_perfit){ stop("The dimension is too large for this sample size and number of folds. Consider reducing the number of cross-validation folds or reducing the number of terms in the apriori argument.") } temp <- SECF_crossval_cpp(integrands, samples, derivatives, getX = getX, polyorder, steinOrder, kernel_function, sigma_list, K0_list, apriori, folds, est_inds, diagnostics) return(temp) } aSECF_mse_linsolve <- function(integrands,samples,derivatives, polyorder = NULL, steinOrder = NULL, kernel_function = NULL, sigma = NULL, K0 = NULL, apriori = NULL, nystrom_inds = NULL, conjugate_gradient = TRUE, reltol = 1e-02){ N <- NROW(samples) N_expectations <- NCOL(integrands) if (is.null(ncol(integrands))){ integrands <- matrix(integrands,nrow=N,ncol=1) } if (is.null(ncol(samples))){ samples <- matrix(samples,nrow=N,ncol=1) derivatives <- matrix(derivatives,nrow=N,ncol=1) } temp <- aSECF_cpp_prep(integrands, samples, derivatives, getX = getX, polyorder, steinOrder, kernel_function, sigma, K0, apriori, nystrom_inds, conjugate_gradient) A <- temp$A b <- temp$b B1 <- temp$B1 B2 <- temp$B2 cond_no <- temp$cond_no m0 <- temp$m0 Q <- NCOL(temp$phi) expectation <- rep(NaN, nrow=N_expectations) ab_tilde <- list() for (i in 1:N_expectations){ ab_tilde[[i]] <- list() if (conjugate_gradient){ B2_inv <- solve(B2) xinit <- c(rep(0,m0),B2_inv[,1]*mean(integrands[,i])) temp <- lsolve.cg(A, b[,i], xinit = xinit, reltol = reltol, preconditioner = diag(ncol(A)), adjsym = TRUE, verbose = FALSE) temp$x[1:m0] <- B1%*%temp$x[1:m0] temp$x[(m0+1):(m0+Q)] <- B2%*%temp$x[(m0+1):(m0+Q)] ab_tilde[[i]]$sol <- temp$x ab_tilde[[i]]$iter <- temp$iter ab_tilde[[i]]$cond_no <- cond_no } else{ ab_tilde[[i]]$sol <- solve(nearPD(A),b) } } return(ab_tilde) } aSECF_crossval <- function(integrands,samples,derivatives, polyorder = NULL, steinOrder = NULL, kernel_function = NULL, sigma_list = NULL, est_inds = NULL, apriori = NULL, num_nystrom = NULL, conjugate_gradient = TRUE, reltol = 1e-02, folds = NULL, diagnostics = FALSE){ N <- NROW(samples) N_expectations <- NCOL(integrands) if (is.null(ncol(integrands))){ integrands <- matrix(integrands,nrow=N,ncol=1) } if (is.null(ncol(samples))){ samples <- matrix(samples,nrow=N,ncol=1) derivatives <- matrix(derivatives,nrow=N,ncol=1) } if (is.null(est_inds)){ inds_unique <- !duplicated(samples) samples <- samples[inds_unique,,drop=FALSE] derivatives <- derivatives[inds_unique,,drop=FALSE] integrands <- integrands[inds_unique,,drop=FALSE] N <- sum(inds_unique) } else{ inds_all <- 1:N to_remove <- est_inds[duplicated(samples[est_inds,,drop=FALSE])] num_to_remove <- length(to_remove) if (num_to_remove!=0){ N_new <- N - num_to_remove samples <- samples[-to_remove,,drop=FALSE] derivatives <- derivatives[-to_remove,,drop=FALSE] integrands <- integrands[-to_remove,,drop=FALSE] inds_all <- inds_all[-to_remove] inds_all[!to_remove] <- 1:N_new est_inds <- inds_all[est_inds] N <- N_new } } d <- NCOL(samples) if (!is.null(est_inds)){ N <- length(est_inds) } if (is.null(folds)){ N_perfit <- floor(0.8*N) } else{ N_perfit <- floor((folds-1)/folds*N) } if (!is.null(polyorder)){ if (choose(d+polyorder,d) >= N_perfit){ stop("The polyorder is too high for this sample size and number of folds.") } } else if ((d >= N_perfit) && is.null(apriori)){ stop("The dimension is too large for this sample size and number of folds. Consider increasing the sample ize, reducing the number of cross-validation folds or using the apriori argument.") } else if (length(apriori) >= N_perfit){ stop("The dimension is too large for this sample size and number of folds. Consider reducing the number of cross-validation folds or reducing the number of terms in the apriori argument.") } if (is.null(num_nystrom)){ num_nystrom <- ceiling(sqrt(N)) } mse <- aSECF_crossval_cpp(integrands, samples, derivatives, getX = getX, aSECF_mse_linsolve = aSECF_mse_linsolve, num_nystrom = num_nystrom, polyorder, steinOrder, kernel_function, sigma_list, apriori, folds, conjugate_gradient, reltol = reltol, est_inds = est_inds) opt_indices <- apply(mse,1,which.min) expectation <- rep(NaN,N_expectations) if (conjugate_gradient){ cond_no <- iter <- rep(NaN,N_expectations) } if (!is.null(est_inds)){ f_true <- f_hat <- matrix(NaN,nrow=N-length(est_inds),ncol=N_expectations) } if (diagnostics){ a <- matrix(NaN,nrow=ceiling(sqrt(N)),ncol=N_expectations) ny_inds <- matrix(NaN,nrow=num_nystrom,ncol=N_expectations) } for (j in unique(opt_indices)){ inds <- which(opt_indices==j) nystrom_inds <- sample(1:N,num_nystrom) temp <- aSECF(matrix(integrands[,inds],ncol=length(inds)), samples, derivatives, polyorder, steinOrder, kernel_function, sigma_list[[j]], NULL, nystrom_inds, est_inds, apriori, conjugate_gradient, reltol, diagnostics) if(diagnostics & (j==(unique(opt_indices))[1])){ b <- matrix(NaN,nrow=length(temp$b),ncol=N_expectations) } expectation[inds] <- temp$expectation if (!is.null(est_inds)){ f_true[,inds] <- temp$f_true f_hat[,inds] <- temp$f_hat } if (conjugate_gradient){ cond_no[inds] <- temp$cond_no iter[inds] <- temp$iter } if (diagnostics){ a[,inds] <- temp$a b[,inds] <- temp$b if (length(inds)==1){ ny_inds[,inds] <- nystrom_inds } else{ for (zz in 1:length(inds)){ ny_inds[,inds[zz]] <- nystrom_inds } } } } if (!diagnostics){ if (conjugate_gradient & !is.null(est_inds)){ return(list(expectation=expectation,f_true=f_true,f_hat=f_hat,iter=iter,cond_no=cond_no,mse=mse,optinds=opt_indices)) } else if (conjugate_gradient){ return(list(expectation=expectation,iter=iter,cond_no=cond_no,mse=mse,optinds=opt_indices)) } else{ return(list(expectation=expectation,mse=mse,optinds=opt_indices)) } } else { if (conjugate_gradient & !is.null(est_inds)){ return(list(expectation=expectation,f_true=f_true,f_hat=f_hat,iter=iter,cond_no=cond_no,mse=mse,optinds=opt_indices, a=a,b=b,ny_inds=ny_inds)) } else if (conjugate_gradient){ return(list(expectation=expectation,iter=iter,cond_no=cond_no,mse=mse,optinds=opt_indices, a=a,b=b,ny_inds=ny_inds)) } else{ return(list(expectation=expectation,mse=mse,optinds=opt_indices, a=a,b=b,ny_inds=ny_inds)) } } } Phi_fn <- function(samples,derivatives,polyorder=NULL,apriori=NULL){ return(Phi_fn_cpp(samples,derivatives, getX = getX, polyorder,apriori)) }
areapart=function(data, G, cell.size=1){ if(!is.matrix(data) & !spatstat.geom::is.ppp(data)) stop("For grid data, please provide the dataset as a matrix; for point pattern data, please provide the dataset as a ppp object") if(is.matrix(data)) { ncl=ncol(data); nrw=nrow(data) W=spatstat.geom::owin(xrange=c(0, ncl*cell.size), yrange=c(0,nrw*cell.size)) xx.c=seq(cell.size/2, (ncl*cell.size-cell.size/2), l=ncl) yy.c=rev(seq(cell.size/2, (nrw*cell.size-cell.size/2), l=nrw)) coords=expand.grid(yy.c, xx.c) data.pp=spatstat.geom::ppp(x=coords[,2], y=coords[,1], window=W) spatstat.geom::marks(data.pp)=c(data) } if (spatstat.geom::is.ppp(data)) { W=data$window data.pp=data if(is.null(spatstat.geom::marks(data))) spatstat.geom::marks(data.pp)=rep(1, spatstat.geom::npoints(data)) } if(length(G)==1){ part.pp=spatstat.core::runifpoint(G, W) part.coord=cbind(x=part.pp$x, y=part.pp$y, id=1:G) } else { if(min(G[,1])<W$xrange[1]|max(G[,1])>W$xrange[2]| min(G[,2])<W$yrange[1]|max(G[,2])>W$yrange[2]) stop("The given coordinates for the area partition are outside the boundaries of the data observation window") part.pp=spatstat.geom::ppp(G[,1], G[,2], W) part.coord=cbind(x=part.pp$x, y=part.pp$y, id=1:nrow(G)) } near.neigh=spatstat.geom::nncross(data.pp, part.pp) data.coord.area=data.frame(data.pp$x, data.pp$y, data.pp$marks, near.neigh$which) colnames(data.coord.area)=c("x", "y", "cat", "area") return(list(G.pp=part.pp, data.assign=data.coord.area)) } batty=function(data, category=1, cell.size=1, partition=10){ if(!is.matrix(data) & !spatstat.geom::is.ppp(data)) stop("For grid data, please provide the dataset as a matrix; for point pattern data, please provide the dataset as a ppp object") if(spatstat.geom::is.ppp(data) & !spatstat.geom::is.marked(data) & category!=1) stop("Since data do not have different categories, please set category to the default 1") if(is.matrix(data)) datavec=c(data) else if(spatstat.geom::is.marked(data)) datavec=spatstat.geom::marks(data) else datavec=rep(1, spatstat.geom::npoints(data)) if(is.factor(datavec)) datavec=as.character(datavec) if(length(which(unique(datavec)==category))==0) stop("Please choose a category that is present in the dataset. If the point pattern is unmarked, category must be set to 1") datavec=as.numeric(datavec==category) datavec[is.na(datavec)]=0 if(is.matrix(data)) { ncl=ncol(data); nrw=nrow(data) W=spatstat.geom::owin(xrange=c(0, ncl*cell.size), yrange=c(0,nrw*cell.size)) xx.c=seq(cell.size/2, (ncl*cell.size-cell.size/2), l=ncl) yy.c=rev(seq(cell.size/2, (nrw*cell.size-cell.size/2), l=nrw)) coords=expand.grid(yy.c, xx.c) data.pp=spatstat.geom::ppp(x=coords[,2], y=coords[,1], window=W) spatstat.geom::marks(data.pp)=datavec } if (spatstat.geom::is.ppp(data)) { W=data$window data.pp=data spatstat.geom::marks(data.pp)=datavec } if(is.numeric(partition) | is.matrix(partition)) areap=spatstat.geom::dirichlet(areapart(data, G=partition, cell.size=cell.size)$G.pp) else if(is.list(partition)) { if(names(partition)[1]=="G.pp" & names(partition)[2]=="data.assign") areap=spatstat.geom::dirichlet(partition$G.pp) if(names(partition)[1]=="tiles" & names(partition)[2]=="n") areap=partition } else if(spatstat.geom::is.tess(partition)) { if(partition$window$xrange[1]!=W$xrange[1] | partition$window$xrange[2]!=W$xrange[2] | partition$window$yrange[1]!=W$yrange[1] | partition$window$yrange[2]!=W$yrange[2]) stop("The given partition is not on the same observation window as the data") if(is.null(partition$tiles)) stop("If a tessellation is provided, it should contain tiles") areap=partition } else stop("please provide the area partition object in an accepted format. If a tessellation is provided, it should contain tiles") n.G=areap$n tot.pG=sum(datavec) pg=Tg=numeric(n.G) for(gg in 1:n.G) { subd=data.pp[areap$tiles[[gg]]] datatab=table(spatstat.geom::marks(subd)) if(length(datatab[which(names(datatab)==1)])==1) pg[gg]=datatab[which(names(datatab)==1)]/tot.pG Tg[gg]=spatstat.geom::area.owin(areap$tiles[[gg]]) if(is.na(Tg[gg])) Tg[gg]=table(areap$tiles[[gg]]$m)[which(names(table(areap$tiles[[gg]]$m))==T)]* spatstat.geom::area.owin(data.pp$window)/(nrow(areap$tiles[[gg]]$m)*ncol(areap$tiles[[gg]]$m)) } G.count=data.frame(1:n.G, pg*tot.pG, pg, Tg) colnames(G.count)=c("area.id", "abs.freq", "rel.freq", "area.size") if(sum(Tg)==1) { Tg=Tg*100 warning("The total observation area is 1, which returns problems in the computation of Batty's entropy, since the maximum is log(1)=0. For this reason, during the computation all areas are multiplied by 100." ) } batty.terms=ifelse(G.count[,2]>0,G.count[,3]*log(Tg/G.count[,3]),0) batty.ent=sum(batty.terms) return(list(areas.tess=areap, areas.freq=G.count, batty=batty.ent, rel.batty=batty.ent/log(sum(Tg)))) } karlstrom=function(data, category=1, cell.size=1, partition=10, neigh=4, method="number"){ if(!is.matrix(data) & !spatstat.geom::is.ppp(data)) stop("For grid data, please provide the dataset as a matrix; for point pattern data, please provide the dataset as a ppp object") if(spatstat.geom::is.ppp(data) & !spatstat.geom::is.marked(data) & category!=1) stop("Since data do not have different categories, please set category to the default 1") if(is.matrix(data)) datavec=c(data) else if(spatstat.geom::is.marked(data)) datavec=spatstat.geom::marks(data) else datavec=rep(1, spatstat.geom::npoints(data)) if(is.factor(datavec)) datavec=as.character(datavec) if(length(which(unique(datavec)==category))==0) stop("Please choose a category that is present in the dataset. If the point pattern is unmarked, category must be set to 1") datavec=as.numeric(datavec==category) datavec[is.na(datavec)]=0 if(is.matrix(data)) { ncl=ncol(data); nrw=nrow(data) W=spatstat.geom::owin(xrange=c(0, ncl*cell.size), yrange=c(0,nrw*cell.size)) xx.c=seq(cell.size/2, (ncl*cell.size-cell.size/2), l=ncl) yy.c=rev(seq(cell.size/2, (nrw*cell.size-cell.size/2), l=nrw)) coords=expand.grid(yy.c, xx.c) data.pp=spatstat.geom::ppp(x=coords[,2], y=coords[,1], window=W) spatstat.geom::marks(data.pp)=datavec } if (spatstat.geom::is.ppp(data)) { W=data$window data.pp=data spatstat.geom::marks(data.pp)=datavec } if(is.numeric(partition) | is.matrix(partition)) areap=spatstat.geom::dirichlet(areapart(data, G=partition, cell.size=cell.size)$G.pp) else if(is.list(partition)) { if(names(partition)[1]=="G.pp" & names(partition)[2]=="data.assign") areap=spatstat.geom::dirichlet(partition$G.pp) if(names(partition)[1]=="tiles" & names(partition)[2]=="n") areap=partition } else if(spatstat.geom::is.tess(partition)) { if(partition$window$xrange[1]!=W$xrange[1] | partition$window$xrange[2]!=W$xrange[2] | partition$window$yrange[1]!=W$yrange[1] | partition$window$yrange[2]!=W$yrange[2]) stop("The given partition is not on the same observation window as the data") areap=partition } else stop("please provide the area partition object in an accepted format") n.G=areap$n centroids=matrix(unlist(lapply(areap$tiles, spatstat.geom::centroid.owin)), byrow=T, ncol=2) end=spatstat.geom::ppp(centroids[,1], centroids[,2], window=W) maxdist=sqrt(diff(data.pp$window$xrange)^2+diff(data.pp$window$yrange)^2) mindist=min(spatstat.geom::nndist(end)) if (method=="number" & neigh%%1!=0) stop("If method=number, neigh must be an integer") if (method=="number" & neigh>n.G) stop("The number of neighbours cannot exceed the number of sub-areas") if (method=="distance" & neigh>=maxdist) warning("The chosen neighbourhood distance is larger than the observation area. All areas will be neighbours of all other areas, i.e. all ptilde will be equal") if (method=="distance" & neigh<mindist) warning("The chosen neighbourhood distance is smaller than the minimum distance between areas. All areas will have 0 neighbours, i.e. all ptildeg will be equal to pg") neigh.indlist=vector("list", n.G) for(gg in 1:n.G) { start=spatstat.geom::ppp(centroids[gg,1], centroids[gg,2], window=W) cdist=spatstat.geom::crossdist(start,end) if (method=="number") neigh.indlist[[gg]]=which(cdist<=sort(cdist)[neigh]) else if (method=="distance") neigh.indlist[[gg]]=which(cdist<=neigh) else stop("Method should be set to either number or distance. If method=number, neigh must be integer.") } tot.pG=sum(datavec) pg=Tg=ptildeg=numeric(n.G) for(gg in 1:n.G) { subd=data.pp[areap$tiles[[gg]]] datatab=table(spatstat.geom::marks(subd)) if(length(datatab[which(names(datatab)==1)])==1) pg[gg]=datatab[which(names(datatab)==1)]/tot.pG Tg[gg]=spatstat.geom::area.owin(areap$tiles[[gg]]) } for(gg in 1:n.G) ptildeg[gg]=mean(pg[neigh.indlist[[gg]]]) G.count=data.frame(1:n.G, pg*tot.pG, pg, ptildeg, Tg) colnames(G.count)=c("area.id", "abs.freq", "rel.freq", "neigh.mean","area.size") karl.terms=ifelse(G.count[,3]>0&G.count[,4]>0,G.count[,3]*log(1/G.count[,4]),0) karl.ent=sum(karl.terms) if(karl.ent>log(n.G)) karl.ent=log(n.G)-1e-05 return(list(areas.tess=areap, areas.freq=G.count, karlstrom=karl.ent, rel.karl=karl.ent/log(n.G))) }
expected <- eval(parse(text="c(NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_, NA_integer_)")); test(id=0, code={ argv <- eval(parse(text="list(c(\"0\", \"1\", \"2\", \"3\", \"4\", \"5\", \"6\", \"7\", \"8\", \"9\", \"10\", \"11\", \"12\", \"13\", \"14\", \"15\"), NA_real_, NA_integer_, NULL)")); .Internal(match(argv[[1]], argv[[2]], argv[[3]], argv[[4]])); }, o=expected);
setGeneric("residuals") setMethod("residuals", "movG", function(object,...) { object <- object@adjModel callGeneric(object) })
Rho1 <- function(R,S) { if (checking(R)==1 & checking(S)==1) { if (all(R[,1,1]==S[,1,1])==FALSE) { print("the fuzzy numbers of the two arrays must have the same alpha-levels") } else { r=dim(R)[3] s=dim(S)[3] rho1=matrix(nrow=r,ncol=s) rho1dist<-function(x){ k<-length(x)-1 delta<-1/k y<-x[1:k]+x[2:(k+1)] values<-abs(x[1:k])+abs(x[2:(k+1)])+2*abs(y) integral<-sum(values)*delta/6 invisible(integral) } for (i in 1:r) { for (j in 1:s) { inf=R[,2,i]-S[,2,j] sup=R[,3,i]-S[,3,j] rho1[i,j]=(rho1dist(inf)+rho1dist(sup))*0.5 } } return(rho1) } } }
expectreg_loclin_trivariate<-function(Z,X1,X2,Y,omega,h,kernel=gaussK) { GRIDZ=Z GRID_X1=X1 GRID_X2=X2 TAU<-array(0,dim=c(length(GRIDZ))) LAMBDA1<-array(0,dim=c(length(GRIDZ))) LAMBDA2<-array(0,dim=c(length(GRIDZ))) LAMBDA3<-array(0,dim=c(length(GRIDZ))) Grid=cbind(GRIDZ,GRID_X1,GRID_X2) a_first=lm(Y~Z+X1+X2)$coefficient[1] b_first=lm(Y~Z+X1+X2)$coefficient[2] c_first=lm(Y~Z+X1+X2)$coefficient[3] d_first=lm(Y~Z+X1+X2)$coefficient[4] for(i in 1:length(GRIDZ)) { a=0 b=0 c=0 d=0 z=Grid[i,1] x1=Grid[i,2] x2=Grid[i,3] a=a_first b=b_first c=c_first d=d_first closea = FALSE while(closea == FALSE) { weight<-NULL for(l in 1:length(Z)) { if(Y[l]<=a+(b*(Z[l]-z))+(c*(X1[l]-x1))+(d*(X2[l]-x2))) { weight[l]=(1-omega)*(1/h^3)*kernel(((Z[l]-z)/h))*kernel(((X1[l]-x1)/h))*kernel(((X2[l]-x2)/h)) } else { weight[l]=omega*(1/h^3)*kernel(((Z[l]-z)/h))*kernel(((X1[l]-x1)/h))*kernel(((X2[l]-x2)/h)) } } W=diag(weight) D=cbind(1,Z-z,X1-x1,X2-x2) tau1<-((matrix.inverse(t(D)%*%W%*%D))%*%t(D)%*%W%*%Y)[1,] lambda1<-((matrix.inverse(t(D)%*%W%*%D))%*%t(D)%*%W%*%Y)[2,] lambda2<-((matrix.inverse(t(D)%*%W%*%D))%*%t(D)%*%W%*%Y)[3,] lambda3<-((matrix.inverse(t(D)%*%W%*%D))%*%t(D)%*%W%*%Y)[4,] closea<-abs(tau1-a)<1*10^-6 a=tau1 b=lambda1 c=lambda2 d=lambda3 } TAU[i]=a LAMBDA1[i]=b LAMBDA2[i]=c LAMBDA3[i]=d } return(TAU) }