code
stringlengths
1
13.8M
knitr::opts_chunk$set(echo = TRUE, fig.width = 7, fig.height = 5) library(qtl2) library(qtl2fst) iron <- read_cross2(system.file("extdata", "iron.zip", package="qtl2")) pr <- calc_genoprob(iron, error_prob=0.002) apr <- genoprob_to_alleleprob(pr) tmpdir <- file.path(tempdir(), "iron_genoprob") dir.create(tmpdir) fpr <- fst_genoprob(pr, "pr", tmpdir, quiet=TRUE) fapr <- fst_genoprob(apr, "apr", tmpdir, quiet=TRUE) list.files(tmpdir) names(fpr) apr_X <- fapr[["X"]] dim(apr_X) apr_X <- fapr$X dim(apr_X) selected_ind <- subset(fapr, ind=1:20, chr=c("2","3")) dim(fapr) fapr_sub1 <- fapr[1:20, c("2","3")][["3"]] fapr_sub2 <- fapr[,"2"] fapr_sub23 <- fapr[,c("2","3")] fapr_subX <- fapr[,"X"] dim(subset(fapr, mar=1:30)) dim(fapr[ , , dimnames(fapr)$mar$X[1:2]]) fapr_sub223 <- cbind(fapr_sub2,fapr_sub23) f23a <- fapr[1:20, c("2","3")] f23b <- fapr[40:79, c("2","3")] f23 <- rbind(f23a, f23b) markers <- dimnames(fapr$X)[[3]][1:2] dim(fapr[,,markers]$X) markers <- dimnames(fapr$X)[[3]] dim(fapr$X[,,markers[1:2]]) fapr2 <- fst_genoprob(subset(apr, chr="2"), "aprx", tmpdir, quiet=TRUE) fapr3 <- fst_genoprob(subset(apr, chr="3"), "aprx", tmpdir, quiet=TRUE) fapr32 <- cbind(fapr3,fapr2) dim(fapr32) list.files(tmpdir) names(unclass(fapr)) unclass(fapr)$fst sapply(unclass(fapr)[c("ind","chr","mar")], length) fapr23 <- subset(fapr, chr=c("2","3")) dim(fapr23) dim(fst_restore(fapr23)) fst_path(fpr) fpr_newpath <- replace_path(fpr, tempdir()) fpr <- calc_genoprob_fst(iron, "pr", tmpdir, error_prob=0.002, overwrite=TRUE) fapr <- genoprob_to_alleleprob_fst(pr, "apr", tmpdir, overwrite=TRUE) Xcovar <- get_x_covar(iron) scan_pr <- scan1(fpr, iron$pheno, Xcovar=Xcovar) find_peaks(scan_pr, iron$pmap, threshold=4) coef16 <- scan1coef(fpr[,"16"], iron$pheno[,1]) blup16 <- scan1blup(fpr[,"16"], iron$pheno[,1]) unlink(tmpdir)
knitr::opts_chunk$set(collapse = T, comment = " options(tibble.print_min = 4, tibble.print_max = 4) library(eurlex) library(dplyr) query_dir <- elx_make_query(resource_type = "directive") dirs <- elx_make_query(resource_type = "directive", include_date = TRUE, include_force = TRUE) %>% elx_run_query() %>% rename(date = `callret-3`) results <- dirs %>% select(-force,-date) query_dir %>% cat() elx_make_query(resource_type = "caselaw") %>% cat() elx_make_query(resource_type = "manual", manual_type = "SWD") %>% cat() elx_make_query(resource_type = "directive", include_date = TRUE, include_force = TRUE) %>% cat() elx_make_query(resource_type = "recommendation", include_date = TRUE, include_lbs = TRUE) %>% cat() elx_make_query(resource_type = "any", directory = "18", sector = 3) %>% cat() as_tibble(results) head(results$type,5) results %>% distinct(type) rec_eurovoc <- elx_make_query("recommendation", include_eurovoc = TRUE, limit = 10) %>% elx_run_query() rec_eurovoc %>% select(celex, eurovoc) eurovoc_lookup <- elx_label_eurovoc(uri_eurovoc = rec_eurovoc$eurovoc) print(eurovoc_lookup) rec_eurovoc %>% left_join(eurovoc_lookup) eurovoc_lookup <- elx_label_eurovoc(uri_eurovoc = rec_eurovoc$eurovoc, alt_labels = TRUE, language = "sk") rec_eurovoc %>% left_join(eurovoc_lookup) %>% select(celex, eurovoc, labels) elx_fetch_data(url = results$work[1], type = "title") library(purrr) dir_titles <- results[1:10,] %>% mutate(title = map_chr(work, elx_fetch_data, "title")) %>% as_tibble() %>% select(celex, title) print(dir_titles) library(ggplot2) dirs %>% count(force) %>% ggplot(aes(x = force, y = n)) + geom_col() dirs %>% filter(!is.na(force)) %>% mutate(date = as.Date(date)) %>% ggplot(aes(x = date, y = celex)) + geom_point(aes(color = force), alpha = 0.1) + theme(axis.text.y = element_blank(), axis.line.y = element_blank(), axis.ticks.y = element_blank()) dirs_1970_title <- dirs %>% filter(between(as.Date(date), as.Date("1970-01-01"), as.Date("1980-01-01")), force == "true") %>% mutate(title = map_chr(work,elx_fetch_data,"title")) %>% as_tibble() print(dirs_1970_title) library(tidytext) library(wordcloud) dirs_1970_title %>% select(celex,title) %>% unnest_tokens(word, title) %>% count(celex, word, sort = TRUE) %>% filter(!grepl("\\d", word)) %>% bind_tf_idf(word, celex, n) %>% with(wordcloud(word, tf_idf, max.words = 40, scale = c(1.8,0.1)))
BLE_SRS <- function(ys, N, m=NULL, v=NULL, sigma=NULL, n=NULL){ mes_1 <- "parameter 'm' (prior mean) not informed, sample mean used in estimations" mes_2 <- "parameter 'sigma' (prior variability) not informed, sample variance used in estimations" mes_3 <- "parameter 'v' (prior variance of an element) not informed, (10^100 * mean(ys)) used in estimations (non-informative prior)" mes_4 <- "sample mean informed instead of sample observations, parameters 'n' and 'sigma' will be necessary" if(length(ys)==1){ message(mes_4) if( (is.null(sigma)) | is.null(n) ){ stop("ys of length 1 requires not null parameters 'sigma' and 'n'") } ys <- rep(ys, n) } if (is.null(m)){ message(mes_1) m <- mean(ys) } if(is.null(sigma)){ message(mes_2) sigma <- sqrt(var(ys)) } if(is.null(v)){ message(mes_3) v <- 10^100 * mean(ys)} if(v < sigma^2){ stop("prior variance (parameter 'v') too small") } xs <- create1(ys) a <- m Vs <- diag(xs)*(sigma^2) c <- v - sigma^2 R <- c x_nots <- rep(1,N - length(ys)) V_nots <- diag(x_nots)*(sigma^2) return(BLE_Reg(ys,xs,a,R,Vs,x_nots,V_nots)) } BLE_SSRS <- function(ys, h, N, m=NULL, v=NULL, sigma=NULL){ mes_1 <- "parameter 'm' (prior mean) not informed, sample mean used in estimations" mes_2 <- "parameter 'sigma' (prior variability) not informed, sample variance used in estimations" mes_3 <- "parameter 'v' (prior variance of an element) not informed, (10^100 * mean(ys)) used in estimations (non-informative prior)" mes_4 <- "sample means informed instead of sample observations, parameter 'sigma' will be necessary" H <- length(h) if(H == 1){stop("only 1 strata defined, try using the BLE_SRS() function")} if(length(ys)!=sum(h)){ if(length(ys)!=length(h)){ stop("length of 'ys' incompatable with 'h'") } else{ message(mes_4) if(is.null(sigma)){ stop("not null parameter 'sigma' required") } ys <- rep(ys, h) } } marker <- c(1) for(i in 2:H){ marker <- c(marker, marker[i-1] + h[i-1]) } if (is.null(m)){ message(mes_1) m <- c(mean(ys[1:h[1]])) for(i in 2:H-1){ M <- mean(ys[marker[i]:(marker[i+1] - 1)]) m <- c(m, M) } M <- mean(ys[marker[H] : length(ys)]) m <- c(m, M) } if(is.null(sigma)){ message(mes_2) s <- c(var(ys[1:h[1]])) for(i in 2:H-1){ S <- var(ys[marker[i]:(marker[i+1] - 1)]) s <- c(s, S) } S <- var(ys[marker[H] : length(ys)]) s <- c(s, S) sigma <- sqrt(s) } if(is.null(v)){ message(mes_3) v <- c() for(i in 1:H){ V <- 10^100 * m[i] v <- c(v, V) } } for (i in 1:H) { if(v[i] < sigma[i]^2){ stop("prior variance (parameter 'v') too small") } } aux <- rep(1, h[1]) for(i in 2:H){ zero <- rep(0, sum(h)) one <- rep(1, h[i]) aux <- c(aux, zero, one) } xs <- matrix(aux,nrow = sum(h),ncol=H) out <- N-h aux_out <- rep(1, out[1]) for(i in 2:H){ zero <- rep(0, sum(out)) one <- rep(1, out[i]) aux_out <- c(aux_out, zero, one) } x_nots <- matrix(aux_out,nrow = sum(out),ncol=H) Vs <- diag(h[1])*(sigma[1])^2 for (i in 2:H) { V <- diag(h[i])*(sigma[i])^2 Vs <- bdiag(Vs,V) } Vs <- as.matrix(Vs) k <- N[1] - h[1] V_nots <- diag(k)*(sigma[1])^2 for (i in 2:H) { k <- N[i] - h[i] V <- diag(k)*(sigma[i])^2 V_nots <- bdiag(V_nots,V) } V_nots <- as.matrix(V_nots) a <- m c <- v - sigma^2 R <- c*diag(H) return(BLE_Reg(ys,xs,a,R,Vs,x_nots,V_nots)) } BLE_Ratio <- function(ys, xs, x_nots, m=NULL, v=NULL, sigma=NULL, n=NULL){ mes_1 <- "parameter 'm' (prior mean) not informed, sample mean used in estimations" mes_2 <- "parameter 'sigma' (prior variability) not informed, sample variance used in estimations" mes_3 <- "parameter 'v' (prior variance of an element) not informed, (10^100 * mean(ys)) used in estimations (non-informative prior)" mes_4 <- "sample means informed instead of sample observations, parameters 'n' and 'sigma' will be necessary" if(length(ys) != length(xs)){ stop("dimensions of ys and xs are different") } if(length(ys)==1){ message(mes_4) if( (is.null(sigma)) | is.null(n) ){ stop("ys of length 1 requires not null parameters 'sigma' and 'n'") } ys <- rep(ys, n) xs <- rep(xs, n) } z <- ys/xs if (is.null(m)){ message(mes_1) m <- mean(ys)/mean(xs) } if(is.null(sigma)){ message(mes_2) sigma <- sqrt(var(z)) } if(is.null(v)){ message(mes_3) v <- 10^100 * mean(ys)} if(v < sigma^2){ stop("prior variance (parameter 'v') too small") } Vs <- diag(xs)*(sigma^2) V_nots <- diag(x_nots)*(sigma^2) a <- m c <- v - sigma^2 R <- c return(BLE_Reg(ys,xs,a,R,Vs,x_nots,V_nots)) }
scan.zones = function(coords, pop, ubpop = 0.5, longlat = FALSE) { arg_check_scan_zones(coords, pop, ubpop, longlat) d = sp::spDists(as.matrix(coords), longlat = longlat) nn = nnpop(d, pop, ubpop) zones = nn2zones(nn) return(zones[distinct(zones)]) } arg_check_scan_zones = function(coords, pop, ubpop, longlat) { arg_check_coords(coords) N = nrow(coords) arg_check_pop(pop, N) arg_check_ubpop(ubpop) arg_check_longlat(longlat) }
context("test-againstDotC") test_that("int", { cc <- .C("TEST_times2_int", a = 2L, r = integer(1), PACKAGE = "dotCall64") dc <- .C64("TEST_times2_int", c("int", "int"), a = 2L, r = integer(1), INTENT = c("rw", "rw"), PACKAGE = "dotCall64") expect_equal(cc, dc, label = "[values]") expect_equal(lapply(cc, typeof), lapply(dc, typeof), label = "[types]") }) test_that("double", { cc <- .C("TEST_times2_double", a = 2.2, r = double(1), PACKAGE = "dotCall64") dc <- .C64("TEST_times2_double", c("double", "double"), a = 2.2, r = double(1), INTENT = c("rw", "rw"), PACKAGE = "dotCall64") expect_equal(cc, dc, label = "[values]") expect_equal(lapply(cc, typeof), lapply(dc, typeof), label = "[types]") }) test_that("referenced-integer", { input <- 2L cc <- .C("TEST_times2_int", a = input, r = input, PACKAGE = "dotCall64") dc <- .C64("TEST_times2_int", c("int", "int"), a = input, r = input, INTENT = c("rw", "rw"), PACKAGE = "dotCall64") expect_equal(cc, dc, label = "[values]") expect_equal(lapply(cc, typeof), lapply(dc, typeof), label = "[types]") expect_identical(input, 2L) }) test_that("referenced-double", { input <- 2.2 cc <- .C("TEST_times2_double", a = input, r = input, PACKAGE = "dotCall64") dc <- .C64("TEST_times2_double", c("double", "double"), a = input, r = input, INTENT = c("rw", "rw"), PACKAGE = "dotCall64") expect_equal(cc, dc, label = "[values]") expect_equal(lapply(cc, typeof), lapply(dc, typeof), label = "[types]") expect_identical(input, 2.2) })
spec_hist <- function(x, width = 200, height = 50, res = 300, breaks = "Sturges", same_lim = TRUE, lim = NULL, xaxt = 'n', yaxt = 'n', ann = FALSE, col = "lightgray", border = NULL, dir = if (is_latex()) rmd_files_dir() else tempdir(), file = NULL, file_type = if (is_latex()) "pdf" else svglite::svglite, ...) { if (is.list(x)) { if (same_lim & is.null(lim)) { lim <- base::range(unlist(x), na.rm=TRUE) } dots <- listify_args(x, width, height, res, breaks, lim, xaxt, yaxt, ann, col, border, dir, file, file_type, lengths = c(1, length(x))) return(do.call(Map, c(list(f = spec_hist), dots))) } if (is.null(x)) return(NULL) if (is.null(lim)) { lim <- base::range(x, na.rm=TRUE) } if (!dir.exists(dir)) { dir.create(dir) } file_ext <- dev_chr(file_type) if (is.null(file)) { file <- normalizePath( tempfile(pattern = "hist_", tmpdir = dir, fileext = paste0(".", file_ext)), winslash = "/", mustWork = FALSE) } graphics_dev(filename = file, dev = file_type, width = width, height = height, res = res, bg = "transparent") curdev <- grDevices::dev.cur() on.exit(grDevices::dev.off(curdev), add = TRUE) graphics::par(mar = c(0, 0, 0.2, 0), lwd=0.5) graphics::hist(x, breaks = breaks, xlim = lim, border = border, xaxt = xaxt, yaxt = yaxt, ann = ann, col = col, ...) grDevices::dev.off(curdev) out <- make_inline_plot( file, file_ext, file_type, width, height, res, del = TRUE) return(out) } spec_boxplot <- function(x, width = 200, height = 50, res = 300, add_label = FALSE, label_digits = 2, same_lim = TRUE, lim = NULL, xaxt = 'n', yaxt = 'n', ann = FALSE, col = "lightgray", border = NULL, boxlty = 0, medcol = "red", medlwd = 1, dir = if (is_latex()) rmd_files_dir() else tempdir(), file = NULL, file_type = if (is_latex()) "pdf" else svglite::svglite, ...) { if (is.list(x)) { if (same_lim & is.null(lim)) { lim <- base::range(unlist(x), na.rm=TRUE) } dots <- listify_args(x, width, height, res, add_label, label_digits, lim, xaxt, yaxt, ann, col, border, dir, file, file_type, lengths = c(1, length(x))) return(do.call(Map, c(list(f = spec_boxplot), dots))) } if (is.null(x)) return(NULL) if (is.null(lim)) { lim <- base::range(x, na.rm=TRUE) lim[1] <- lim[1] - (lim[2] - lim[1]) / 10 lim[2] <- (lim[2] - lim[1]) / 10 + lim[2] } if (!dir.exists(dir)) { dir.create(dir) } file_ext <- dev_chr(file_type) if (is.null(file)) { file <- normalizePath( tempfile(pattern = "boxplot_", tmpdir = dir, fileext = paste0(".", file_ext)), winslash = "/", mustWork = FALSE) } graphics_dev(filename = file, dev = file_type, width = width, height = height, res = res, bg = "transparent") curdev <- grDevices::dev.cur() on.exit(grDevices::dev.off(curdev), add = TRUE) graphics::par(mar = c(0, 0, 0, 0)) graphics::boxplot(x, horizontal = TRUE, ann = ann, frame = FALSE, bty = 'n', ylim = lim, col = col, border = border, boxlty = boxlty, medcol = medcol, medlwd = medlwd, axes = FALSE, outcex = 0.2, whisklty = 1, ...) if (add_label) { x_median <- round(median(x, na.rm = T), label_digits) x_min <- round(min(x, na.rm = T), label_digits) x_max <- round(max(x, na.rm = T), label_digits) graphics::text(x_median, y = 1.4, labels = x_median, cex = 0.5) graphics::text(x_min, y = 0.6, labels = x_min, cex = 0.5) graphics::text(x_max, y = 0.6, labels = x_max, cex = 0.5) } grDevices::dev.off(curdev) out <- make_inline_plot( file, file_ext, file_type, width, height, res, del = TRUE) return(out) } is_latex <- knitr::is_latex_output rmd_files_dir <- function(create = TRUE) { curr_file_name <- sub("\\.[^\\.]*$", "", knitr::current_input()) dir_name <- paste0(curr_file_name, "_files") if (!dir.exists(dir_name) & create) dir.create(dir_name) fig_dir_name <- file.path(dir_name, "figure-latex/") if (!dir.exists(fig_dir_name) & create) dir.create(fig_dir_name) return(fig_dir_name) } spec_plot <- function(x, y = NULL, width = 200, height = 50, res = 300, same_lim = TRUE, xlim = NULL, ylim = NULL, xaxt = 'n', yaxt = 'n', ann = FALSE, col = "lightgray", border = NULL, frame.plot = FALSE, lwd = 2, pch = ".", cex = 2, type = "l", polymin = NA, minmax = list(pch = ".", cex = cex, col = "red"), min = minmax, max = minmax, dir = if (is_latex()) rmd_files_dir() else tempdir(), file = NULL, file_type = if (is_latex()) "pdf" else svglite::svglite, ...) { if (is.list(x)) { lenx <- length(x) if (same_lim) { if (is.null(xlim)) { xlim <- base::range(unlist(x), na.rm = TRUE) } if (is.null(ylim) && !is.null(y)) { ylim <- base::range(c(unlist(y), polymin), na.rm = TRUE) } } if (is.null(y)) { y <- list(y) } else if (length(y) != lenx) { stop("'x' and 'y' are not the same length") } dots <- listify_args(x, y = y, width, height, res, xlim, ylim, xaxt, yaxt, ann, col, border, frame.plot, lwd, pch, cex, type, polymin, minmax, min, max, dir, file, file_type, lengths = c(1, lenx)) return(do.call(Map, c(list(f = spec_plot), dots))) } if (is.null(x)) return(NULL) if (is.null(y) || !length(y)) { y <- x x <- seq_along(y) if (!is.null(xlim) && is.null(ylim)) { ylim <- range(c(xlim, polymin), na.rm = TRUE) xlim <- range(x) } } if (is.null(xlim)) { xlim <- base::range(x, na.rm = TRUE) } if (is.null(ylim) && !is.null(y)) { ylim <- base::range(c(y, polymin), na.rm = TRUE) } if (is.null(min)) min <- minmax if (is.null(max)) max <- minmax expand <- c( if (!is.null(min) && length(min)) -0.04 else 0, if (!is.null(max) && length(max)) +0.04 else 0) xlim <- xlim + diff(xlim) * expand ylim <- ylim + diff(ylim) * expand if (!dir.exists(dir)) { dir.create(dir) } file_ext <- dev_chr(file_type) if (is.null(file)) { file <- normalizePath( tempfile(pattern = "plot_", tmpdir = dir, fileext = paste0(".", file_ext)), winslash = "/", mustWork = FALSE) } graphics_dev(filename = file, dev = file_type, width = width, height = height, res = res, bg = "transparent") curdev <- grDevices::dev.cur() on.exit(grDevices::dev.off(curdev), add = TRUE) graphics::par(mar = c(0, 0, 0, 0), lwd = lwd) dots <- list(...) if (!is.na(polymin) && "angle" %in% names(dots)) { angle <- dots$angle dots$angle <- NULL } else angle <- 45 do.call(graphics::plot, c(list(x, y, type = if (is.na(polymin)) type else "n", xlim = xlim, ylim = ylim, xaxt = xaxt, yaxt = yaxt, ann = ann, col = col, frame.plot = frame.plot, cex = cex, pch = pch), dots)) if (!is.na(polymin)) { lty <- if ("lty" %in% names(dots)) dots$lty else graphics::par("lty") graphics::polygon(c(x[1], x, x[length(x)]), c(polymin, y, polymin), border = NA, col = col, angle = angle, lty = lty, xpd = if ("xpd" %in% names(dots)) dots$xpd else NA) } if (!is.null(min) && length(min)) { if (!"xpd" %in% names(min)) min$xpd <- NA ind <- which.min(y) do.call(graphics::points, c(list(x[ind], y[ind]), min)) } if (!is.null(max) && length(max)) { if (!"xpd" %in% names(max)) max$xpd <- NA ind <- which.max(y) do.call(graphics::points, c(list(x[ind], y[ind]), max)) } grDevices::dev.off(curdev) out <- make_inline_plot( file, file_ext, file_type, width, height, res, del = TRUE) return(out) } spec_pointrange <- function( x, xmin, xmax, vline = NULL, width = 200, height = 50, res = 300, same_lim = TRUE, lim = NULL, xaxt = 'n', yaxt = 'n', ann = FALSE, col = "red", cex = 0.3, frame.plot = FALSE, dir = if (is_latex()) rmd_files_dir() else tempdir(), file = NULL, file_type = if (is_latex()) "pdf" else svglite::svglite, ...) { if (length(x) > 1) { if (same_lim & is.null(lim)) { all_range <- c(unlist(xmin), unlist(xmax)) lim <- base::range(all_range, na.rm=TRUE) lim <- lim + c(-0.04 * diff(lim), 0.04 * diff(lim)) } dots <- listify_args( x = as.list(x), xmin = as.list(xmin), xmax = as.list(xmax), vline, width, height, res, lim, xaxt, yaxt, ann, col, cex, frame.plot, dir, file, file_type, lengths = c(1, length(x)), passthru = c("x", "xmin", "xmax")) return(do.call(Map, c(list(f = spec_pointrange), dots))) } if (is.null(x)) return(NULL) if (is.null(lim)) { one_range <- unlist(c(xmin, xmax)) lim <- base::range(one_range, na.rm=TRUE) lim <- lim + c(-0.04 * diff(lim), 0.04 * diff(lim)) } if (!dir.exists(dir)) { dir.create(dir) } file_ext <- dev_chr(file_type) if (is.null(file)) { file <- normalizePath( tempfile(pattern = "pointrange_", tmpdir = dir, fileext = paste0(".", file_ext)), winslash = "/", mustWork = FALSE) } graphics_dev(filename = file, dev = file_type, width = width, height = height, res = res, bg = "transparent") curdev <- grDevices::dev.cur() on.exit(grDevices::dev.off(curdev), add = TRUE) graphics::par(mar = c(0, 0, 0.2, 0), lwd=1, ann = ann, xaxt = xaxt, yaxt = yaxt) graphics::plot(x, 0, type = "p", pch = ".", xlim = lim, frame.plot = frame.plot) graphics::arrows(xmin, 0, xmax, 0, cex / 15, angle = 90, code = 3) graphics::points(x, 0, col = col, type = "p", pch = 15, cex = cex) if (!is.null(vline)) { graphics::abline(v = vline, lty = 3) } grDevices::dev.off(curdev) out <- make_inline_plot( file, file_ext, file_type, width, height, res, del = TRUE) return(out) }
NULL qqplot.lagged <- function(x=rnorm(1000),y=rnorm(1000),z=NULL,when=1:length(x),lag=1,pch=1,...){ if (lag<=0) { stop("Error in qqplot.lagged: lag less than 1!!") } if (is.data.frame(x)) { xdata <- x x <- xdata[,1] y <- xdata[,2] if (ncol(xdata)>2) { z <- list() for (i in 1:(ncol(xdata)-2)) { z[[i]] <- xdata[,i+2] } } } xl <- array(0,length(x)-lag+1) yl <- array(0,length(y)-lag+1) if (is.list(z)) { pch <- 1:(length(z)+1) zl <- list() for (i in 1:length(z)) { zl[[i]] <- array(0,length(z[[i]])-lag+1) } } for (l in 0:(lag-1)) { xl <- xl+x[(lag-l):(length(x)-l)] yl <- yl+y[(lag-l):(length(y)-l)] if (is.list(z)) { for (i in 1:length(z)) { zl[[i]] <- zl[[i]]+z[[i]][(lag-l):(length(z[[i]])-l)] } } } whenl <- when[when>=lag]-lag+1 out <- qqplot(xl[whenl],yl[whenl],pch=pch[1],...) if (is.list(z)) { xs <- sort(xl[whenl]) for (i in 1:length(z)) { zs <- sort(zl[[i]][whenl]) points(xs,zs,pch=pch[i+1],...) } } return(0) }
sample_wtatage <- function(wta_file_in, outfile, dat_list, ctl_file_in, years, fill_fnc = fill_across, fleets, cv_wtatage = NULL){ if(is.null(cv_wtatage)) stop('specify cv_wtatage in case file') cat('cv_wtatage is', cv_wtatage, '\n') if(is.null(fleets)) return(NULL) agecomp <- dat_list$agecomp[dat_list$agecomp$Lbin_lo== -1,] cat('sample size is ', unique(agecomp$Nsamp), '\n') agebin_vector <- dat_list$agebin_vector mlacomp <- dat_list$MeanSize_at_Age_obs if(is.null(mlacomp)) stop("No mean length-at-age data found in dat_list") ss_version <- get_ss_ver_file(ctl_file_in) ctl <-SS_parlines(ctl_file_in, version = ss_version) wta_file_in <- readLines(wta_file_in) wta_file_in <- gsub(" ", replacement=" ", x=wta_file_in) xx <- grep(x=wta_file_in, " if(length(xx)!=1) stop("Failed to read in wtatage file") header <- unlist(strsplit(wta_file_in[xx], " ")) header[-(1:6)] <- paste("age",header[-(1:6)],sep="") wtatage <- wta_file_in[(xx+1):length(wta_file_in)] wtatage <- as.data.frame(matrix(as.numeric(unlist(strsplit(wtatage, split=" "))), nrow=length(wtatage), byrow=TRUE)) names(wtatage) <- gsub(" wtatage$yr <- abs(wtatage$yr) if(2 %in% unique(wtatage$fleet) == FALSE){ ones <- wtatage[wtatage$fleet == 1, ] twos <- ones twos$fleet <- 2 wtatage <- rbind(wtatage, twos) } age0 <- wtatage[!duplicated(wtatage$fleet),c("fleet","age0")] wtatage.new.list <- list(1, 2) unsampled.wtatage <- list(1, 2, 3) unsampled.wtatage[[1]] <- wtatage[which(wtatage$fleet == -2), ] unsampled.wtatage[[2]] <- wtatage[which(wtatage$fleet == -1), ] unsampled.wtatage[[3]] <- wtatage[which(wtatage$fleet == 0), ] unsampled.wtatage <- lapply(unsampled.wtatage, function(x){ x$yr <- -x$yr return(x) }) for(fl in fleets) { wtatage.new.list[[fl]] <- as.data.frame(matrix(NA,nrow=length(years[[fl]]),ncol=ncol(wtatage))) names(wtatage.new.list[[fl]]) <- names(wtatage) row.names(wtatage.new.list[[fl]]) <- as.character(years[[fl]]) if(length(years[[fl]]) == 1) { if(fl <= years[[fl]]) stop("You must designate an earlier fleet to copy from.\n") wtatage.new.list[[fl]] <- wtatage.new.list[[years[[fl]]]] wtatage.new.list[[fl]]$fleet <- fl } else { for(yr in years[[fl]]) { agecomp.temp <- agecomp[agecomp$Yr==yr & agecomp$FltSvy == fl, ] if(nrow(agecomp.temp)==0) {stop("No age comp observations for year",yr,"and fleet",fl,"\n")} age.means <- as.numeric(agecomp.temp[-(1:9)]) age.Nsamp <- as.numeric(agecomp.temp$Nsamp) age.samples <- rmultinom(n = 1, size = age.Nsamp, prob = age.means) names(mlacomp)[3] <- 'FltSvy' mla.means <- as.numeric(mlacomp[mlacomp$Yr==yr & mlacomp$FltSvy==fl, paste0("a", agebin_vector)]) CV.growth <- cv_wtatage Wtlen1 <- ctl[ctl$Label=="Wtlen_1_Fem", "INIT"] Wtlen2 <- ctl[ctl$Label=="Wtlen_2_Fem", "INIT"] sds <- mla.means*CV.growth lengths.list <- as.list(seq(seq_len(nrow(age.samples)))) weights.list <- lengths.list for(ii in seq_len(nrow(age.samples))) { lengths.list[[ii]] <- suppressWarnings(rnorm(n = age.samples[ii], mean = mla.means[ii], sd = sds[ii])) weights.list[[ii]] <- Wtlen1 * lengths.list[[ii]] ^ Wtlen2 } samp.wtatage <- sapply(weights.list, mean) prefix <- wtatage[wtatage$yr==yr & wtatage$fleet==1,1:5] tmp.fl <- fl wtatage.new.means <- c(unlist(prefix), tmp.fl, age0[age0$fleet == 1, 'age0'], samp.wtatage ) wtatage.new.list[[fl]][as.character(yr), ] <- wtatage.new.means } } } wtatage.complete <- lapply(wtatage.new.list,fill_fnc,minYear=dat_list$styr,maxYear=dat_list$endyr) Nlines <- sum(unlist(lapply(unsampled.wtatage, nrow))) Nlines <- Nlines + sum(unlist(lapply(wtatage.complete, nrow))) if(is.null(outfile)) cat(dat_list$Nages," wtatage.final <- list() if(is.null(outfile)) cat(" wtatage.final[[1]] <- unsampled.wtatage[[1]] if(!is.null(outfile)) write.table(unsampled.wtatage[[1]], file=outfile, append=TRUE, row.names=F, col.names=F) if(!is.null(outfile)) cat("\n wtatage.final[[2]] <- unsampled.wtatage[[2]] if(!is.null(outfile)) write.table(unsampled.wtatage[[2]], file=outfile, append=TRUE, row.names=F, col.names=F) if(!is.null(outfile)) cat("\n wtatage.final[[3]] <- unsampled.wtatage[[3]] if(!is.null(outfile)) write.table(unsampled.wtatage[[3]], file=outfile, append=TRUE, row.names=F, col.names=F) for(i in fleets) { if(!is.null(outfile)) cat("\n wtatage.final[[i+3]] <- wtatage.complete[[i]] wtatage.final[[i+3]]$yr <- -1 * wtatage.final[[i+3]]$yr if(!is.null(outfile)) write.table(wtatage.final[[i+3]], file=outfile, append=TRUE, row.names=F, col.names=F) } endline <- data.frame(t(c(-9999, 1, 1, 1, 1, rep(0, dat_list$Nages)))) if(!is.null(outfile)) write.table(endline, file = outfile, append = TRUE, row.names = FALSE, col.names = FALSE) return(invisible(wtatage.final)) }
summary.robmixglm <- function(object, ...) { if (!inherits(object, "robmixglm")) stop("Use only with 'robmixglm' objects.\n") out <- list() out$logLik <- logLik(object) out$AIC <- AIC(object) out$BIC <- BIC(object) coefficients <- matrix(object$fit@coef,ncol=1) coefficients[,1] <- ifelse(!(object$coef.names=="Outlier p."),coefficients[,1],1.0/(1.0+exp(-coefficients))) lastnames <- 2 if (object$family %in% c("gaussian","gamma","nbinom")) lastnames <- 3 coef.se <- sqrt(diag(object$fit@vcov)) coef.se[(length(coefficients[,1])-lastnames+1):length(coefficients[,1])] <- NA coefficients <- cbind(coefficients,coef.se) coefficients <- cbind(coefficients,coefficients[,1]/coefficients[,2]) coefficients <- cbind(coefficients,2*(1-pnorm(abs(coefficients[,3])))) dimnames(coefficients)[[1]] <- object$coef.names dimnames(coefficients)[[2]] <- c("Estimate","Std. Error","z value","Pr(>|z|)") out$coefficients <- coefficients class(out) <- "summary.robmixglm" out }
"linked_sim" "linked_sim_matrix" "linked_sim_type"
ksResidualDistributions <- function(Y, predicted, E, verbose){ uniqueE <- unique(E) numUniqueE <- length(uniqueE) residuals <- Y - predicted pvalue <- 1 for(e in 1:numUniqueE){ pvalue <- min(pvalue, ks.test( residuals[which(E == uniqueE[e])], residuals[which(E != uniqueE[e])] )$p.value) if(numUniqueE == 2) break } bonfAdjustment <- if(numUniqueE == 2) 1 else numUniqueE pvalue <- pvalue*bonfAdjustment if(verbose) cat(paste("\np-value: ", pvalue)) list(pvalue = pvalue) }
influencePlot <- function(model, ...){ UseMethod("influencePlot") } influencePlot.lm <- function(model, scale=10, xlab="Hat-Values", ylab="Studentized Residuals", id=TRUE, ...){ id <- applyDefaults(id, defaults=list(method="noteworthy", n=2, cex=1, col=carPalette()[1], location="lr"), type="id") if (isFALSE(id)){ id.n <- 0 id.method <- "none" labels <- id.cex <- id.col <- id.location <- NULL } else{ labels <- id$labels if (is.null(labels)) labels <- names(na.omit(residuals(model))) id.method <- id$method id.n <- if ("identify" %in% id.method) Inf else id$n id.cex <- id$cex id.col <- id$col id.location <- id$location } hatval <- hatvalues(model) rstud <- rstudent(model) if (missing(labels)) labels <- names(rstud) cook <- sqrt(cooks.distance(model)) scale <- scale/max(cook, na.rm=TRUE) p <- length(coef(model)) n <- sum(!is.na(rstud)) plot(hatval, rstud, xlab=xlab, ylab=ylab, type='n', ...) abline(v=c(2, 3)*p/n, lty=2) abline(h=c(-2, 0, 2), lty=2) points(hatval, rstud, cex=scale*cook, ...) if(id.method == "noteworthy"){ which.rstud <- order(abs(rstud), decreasing=TRUE)[1:id.n] which.cook <- order(cook, decreasing=TRUE)[1:id.n] which.hatval <- order(hatval, decreasing=TRUE)[1:id.n] which.all <- union(which.rstud, union(which.cook, which.hatval)) id.method <- which.all } noteworthy <- if (!isFALSE(id)) showLabels(hatval, rstud, labels=labels, method=id.method, n=id.n, cex=id.cex, col=id.col, location = id.location) else NULL if (length(noteworthy > 0)){ result <- data.frame(StudRes=rstud[noteworthy], Hat=hatval[noteworthy], CookD=cook[noteworthy]^2) if (is.numeric(noteworthy)) rownames(result) <- labels[noteworthy] return(result) } else return(invisible(NULL)) } influencePlot.lmerMod <- function(model, ...){ influencePlot.lm(model, ...) }
visEnrichment <- function (e, nodes_query=NULL, num_top_nodes=5, path.mode=c("all_shortest_paths","shortest_paths","all_paths"), data.type=c("adjp","pvalue","zscore"), height=7, width=7, margin=rep(0.1,4), colormap=c("yr","bwr","jet","gbr","wyr","br","rainbow","wb","lightyellow-orange"), ncolors=40, zlim=NULL, colorbar=T, colorbar.fraction=0.1, newpage=T, layout.orientation=c("left_right","top_bottom","bottom_top","right_left"), node.info=c("both", "none", "term_id", "term_name", "full_term_name"), graph.node.attrs=NULL, graph.edge.attrs=NULL, node.attrs=NULL) { path.mode <- match.arg(path.mode) data.type <- match.arg(data.type) layout.orientation <- match.arg(layout.orientation) node.info<- match.arg(node.info) if (class(e) != "Eoutput"){ stop("The function must apply to 'Eoutput' object.\n") } if(class(suppressWarnings(try(dcRDataLoader(paste('onto.', e@ontology, sep=''), verbose=F), T)))=="try-error"){ g <- '' eval(parse(text=paste("g <- get(load('", e@ontology,"'))", sep=""))) }else{ g <- dcRDataLoader(paste('onto.', e@ontology, sep=''), verbose=F) } if(class(g)=="Onto"){ g <- dcConverter(g, from='Onto', to='igraph', verbose=F) } num_top_nodes <- as.integer(num_top_nodes) num_all <- length(pvalue(e)) if(is.null(nodes_query)){ if(num_top_nodes<1 & num_top_nodes>num_all){ num_top_nodes <- min(5, num_all) } nodes_query <- names(sort(pvalue(e))[1:num_top_nodes]) }else{ ind <- match(nodes_query, V(g)$name) nodes_query <- nodes_query[!is.na(ind)] if(length(nodes_query)==0){ warnings("Nodes/terms in your query are not found in the ontology!\nInstead, the top 5 significant terms (in terms of p-value) will be used.\n") if(num_top_nodes<1 & num_top_nodes>num_all){ num_top_nodes <- min(5, num_all) } nodes_query <- names(sort(pvalue(e))[1:num_top_nodes]) } } subg <- dnet::dDAGinduce(g, nodes_query, path.mode=path.mode) msg <- '' if(data.type=="adjp"){ data <- -1*log10(adjp(e)) msg <- '-1*log10(adjusted p-values)' }else if(data.type=="pvalue"){ data <- -1*log10(pvalue(e)) msg <- '-1*log10(p-values)' }else{ data <- zscore(e) msg <- 'z-scores' } if(sum(is.infinite(data))>0){ data[is.infinite(data)] <- max(data[is.finite(data)]) } if(is.null(node.attrs)){ nodes.highlight <- rep("black", length(nodes_query)) names(nodes.highlight) <- nodes_query nodes.fontcolor <- rep("blue", length(nodes_query)) names(nodes.fontcolor) <- nodes_query nodes.fontsize <- rep(18, length(nodes_query)) names(nodes.fontsize) <- nodes_query node.attrs <- list(color=nodes.highlight, fontsize=nodes.fontsize) } agDAG <- dnet::visDAG(g=subg, data=data, height=height, width=width, margin=margin, colormap=colormap, ncolors=ncolors, zlim=zlim, colorbar=colorbar, colorbar.fraction=colorbar.fraction, newpage=newpage, layout.orientation=layout.orientation, node.info=node.info, graph.node.attrs=graph.node.attrs, graph.edge.attrs=graph.edge.attrs, node.attrs=node.attrs) message(sprintf("Ontology '%s' containing %d nodes/terms (including %d in query; also highlighted in frame) has been shown in your screen, with colorbar indicating %s", e@ontology, vcount(subg), length(nodes_query), msg), appendLF=T) invisible(agDAG) }
`disttransform` <- function(x, method="hellinger") { x <- as.matrix(x) METHODS <- c("hellinger", "chord", "profiles", "chi.square", "log", "square", "pa", "Braun.Blanquet", "Domin", "Hult", "Hill", "fix", "coverscale.log", "dispweight") method <- match.arg(method,METHODS) switch(method, hellinger = { x <- decostand(x,"hellinger") }, profiles = { x <- decostand(x,"total") }, chord = { x2 <- x^2 rowtot <- apply(x2,1,sum) for (i in 1:length(rowtot)) {if (rowtot[i]==0) {rowtot[i] <- 1}} rowtot <- rowtot^0.5 x <- x/rowtot }, chi.square = { x <- decostand(x, "chi.square") }, log = { x <- log(x+1) }, square = { x <- x^0.5 }, pa = { x <- decostand(x, "pa") }, Braun.Blanquet = { x <- coverscale(x, "Braun.Blanquet") }, Domin = { x <- coverscale(x, "Domin") }, Hult = { x <- coverscale(x, "Hult") }, Hill = { x <- coverscale(x, "Hill") }, fix = { x <- coverscale(x, "fix") }, coverscale.log = { x <- coverscale(x, "log") }, dispweight = { x <- dispweight(x) }) for (i in 1:ncol(x)) {x[,i] <- as.numeric(x[,i])} x <- data.frame(x) return(x) }
context("Test galah_config") test_that("galah_config sets default options", { skip_on_cran() options(galah_config = NULL) expect_equal(galah_config()$verbose, TRUE) }) vcr::use_cassette("logger_config", { test_that("galah_config checks download_id", { galah_config(verbose = TRUE) expect_error(galah_config(download_reason_id = 17)) expect_message(galah_config(download_reason_id = "testing")) expect_message(galah_config(download_reason_id = "Testing")) expect_error(galah_config(download_reason_id = "tsting")) galah_config(verbose = FALSE) }) }) test_that("galah_config checks inputs", { expect_error(galah_config(caching = "value")) expect_error(galah_config(verbose = "value")) expect_error(galah_config(email = 4)) expect_error(galah_config(cache_directory = "non/existent/dir")) expect_error(galah_config(bad_option = "value")) expect_error(galah_config(atlas = "world")) expect_silent(galah_config(verbose = FALSE, atlas = "Australia")) expect_error(galah_config(run_checks = "value")) expect_silent(galah_config(run_checks = TRUE)) })
test_that("MCMC: linear binary logit", { n_chains <- 2 link <- "logit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains) test_posterior( mcmc, doses = c(1, 3, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, true_responses = rlang::expr(ilogit(b1 + b2 * dose)) ) test_posterior( mcmc, doses = c(1, 3, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, true_responses = rlang::expr( ilogit(b1 + b2 * dose) - ilogit(b1 + b2 * reference_dose) ) ) }) test_that("MCMC: linear binary probit", { n_chains <- 2 link <- "probit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains) test_posterior( mcmc, doses = c(1, 3, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, true_responses = rlang::expr(iprobit(b1 + b2 * dose)) ) test_posterior( mcmc, doses = c(1, 3, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, true_responses = rlang::expr( iprobit(b1 + b2 * dose) - iprobit(b1 + b2 * reference_dose) ) ) }) test_that("MCMC: linear binary logit long linear", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "logit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_linear(0, 1, t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, true_responses = rlang::expr(ilogit(a + time / !!t_max * (b1 + b2 * dose))) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, true_responses = rlang::expr( ilogit(a + (time / !!t_max) * (b1 + b2 * dose)) - ilogit((a + time / !!t_max * (b1 + b2 * reference_dose))) ) ) }) test_that("MCMC: linear binary probit long linear", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "probit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_linear(0, 1, t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, true_responses = rlang::expr(iprobit(a + time / !!t_max * (b1 + b2 * dose))) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, true_responses = rlang::expr( iprobit(a + (time / !!t_max) * (b1 + b2 * dose)) - iprobit((a + time / !!t_max * (b1 + b2 * reference_dose))) ) ) }) test_that("MCMC: linear binary logit long ITP", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "logit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_itp(0, 1, t_max = t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, true_responses = rlang::expr( ilogit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * dose) ) ) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, true_responses = rlang::expr( ilogit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * dose) ) - ilogit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * reference_dose) ) ) ) }) test_that("MCMC: linear binary probit long ITP", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "probit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_itp(0, 1, t_max = t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, true_responses = rlang::expr( iprobit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * dose) ) ) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, true_responses = rlang::expr( iprobit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * dose) ) - iprobit( a + (1 - exp(- c1 * time)) / (1 - exp(- c1 * !!t_max)) * (b1 + b2 * reference_dose) ) ) ) }) test_that("MCMC: linear binary logit long IDP", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "logit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_idp(0, 1, t_max = t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, c2 = seq(-.1, -.02, length = 10) / 100, d1 = seq(3, 4, length = 10) / 100, d2 = seq(4, 5, length = 10) / 100, gam = seq(.2, .33, length = 10) / 100, true_responses = rlang::expr( ilogit( a + (b1 + b2 * dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) ) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), a = 10:1 / 100, b1 = 1:10 / 100, b2 = 2:11 / 100, c1 = seq(.1, 3, length = 10) / 100, c2 = seq(-.1, -.02, length = 10) / 100, d1 = seq(3, 4, length = 10) / 100, d2 = seq(4, 5, length = 10) / 100, gam = seq(.2, .33, length = 10) / 100, true_responses = rlang::expr( ilogit( a + (b1 + b2 * dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) - ilogit( ( a + (b1 + b2 * reference_dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) ) ) ) }) test_that("MCMC: linear binary probit long IDP", { n_chains <- 2 t_max <- 4 times <- c(0, 2, 4) link <- "probit" data <- dreamer_data_linear_binary( n_cohorts = c(10, 20, 30), dose = c(1, 3, 5), b1 = 1, b2 = 2, link = link, longitudinal = "linear", a = .5, times = times, t_max = t_max ) mcmc <- dreamer_mcmc( data, mod = model_linear_binary( mu_b1 = 0, sigma_b1 = 1, mu_b2 = 0, sigma_b2 = 1, link = link, longitudinal = model_longitudinal_idp(0, 1, t_max = t_max) ), n_iter = 5, silent = TRUE, convergence_warn = FALSE, n_chains = n_chains ) assert_mcmc_format(mcmc, n_chains, times) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), prob = c(.25, .75), b1 = 1:10 / 100, b2 = 2:11 / 100, a = 10:1 / 100, c1 = seq(.1, 3, length = 10) / 100, c2 = seq(-.1, -.02, length = 10) / 100, d1 = seq(3, 4, length = 10) / 100, d2 = seq(4, 5, length = 10) / 100, gam = seq(.2, .33, length = 10) / 100, true_responses = rlang::expr( iprobit( a + (b1 + b2 * dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) ) ) test_posterior( mcmc, doses = c(1, 3, 2), times = c(1, 5, 2), reference_dose = .5, prob = c(.25, .75), a = 10:1 / 100, b1 = 1:10 / 100, b2 = 2:11 / 100, c1 = seq(.1, 3, length = 10) / 100, c2 = seq(-.1, -.02, length = 10) / 100, d1 = seq(3, 4, length = 10) / 100, d2 = seq(4, 5, length = 10) / 100, gam = seq(.2, .33, length = 10) / 100, true_responses = rlang::expr( iprobit( a + (b1 + b2 * dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) - iprobit( ( a + (b1 + b2 * reference_dose) * ( (1 - exp(- c1 * time)) / (1 - exp(- c1 * d1)) * (time < d1) + (1 - gam * (1 - exp(- c2 * (time - d1))) / (1 - exp(- c2 * (d2 - d1)))) * (d1 <= time & time <= d2) + (1 - gam) * (time > d2) ) ) ) ) ) })
lists_users <- function(user = NULL, reverse = FALSE, token = NULL, parse = TRUE) { params <- list( reverse = reverse ) params[[user_type(user)]] <- user r <- TWIT_get(token, "/1.1/lists/list", params) if (parse) { r <- as_lists_users(r) r <- as.data.frame(r) } r }
emmacheck <- function(x, graph, fn1 = NULL, fn2 = NULL, fn3 = NULL, fn4 = NULL, nresp=1) { x$yspace <- estimateModel(x,graph,nresp=nresp) x$yspace[x$tested,] <- as.data.frame(x$ypop) d <- distance(x$xpop,x$xspace,x$yspace,x$weight,x$opt) Gb.pred <- which.min(d$fit) if(! Gb.pred %in% x$tested){ x$add <- 1 print("PERFORM THE FOLLOWING ADDITIONAL EXPERIMENT:") print(x$xspace[Gb.pred,]) x$xpop <- rbind(x$xpop,x$xspace[Gb.pred,]) x$tested <- c(x$tested,Gb.pred) x$ypop <- rbind(x$ypop,rep(0,ncol(x$ypop))) if (!is.null(fn1)) x$ypop[nrow(x$ypop),1] <- fn1(x$xspace[Gb.pred,]) if (!is.null(fn2)) x$ypop[nrow(x$ypop),2] <- fn2(x$xspace[Gb.pred,]) if (!is.null(fn3)) x$ypop[nrow(x$ypop),3] <- fn3(x$xspace[Gb.pred,]) if (!is.null(fn4)) x$ypop[nrow(x$ypop),4] <- fn4(x$xspace[Gb.pred,]) if (is.null(fn1)) { ypop <- NULL print("ADD THE MEASURED RESPONSE VALUES TO ypop") } } return(x) }
maxent <- function (constr, states, prior, tol = 1e-07, lambda = FALSE) { if (is.vector(constr)) { means.names <- names(constr) constr <- matrix(constr, 1, length(constr)) dimnames(constr) <- list("set1", means.names) } if (is.data.frame(constr)) constr <- as.matrix(constr) if (!is.numeric(constr)) stop("constr must only contain numeric values\\n") if (!is.numeric(tol)) stop("tol must be numeric\\n") if (!is.logical(lambda)) stop("lambda must be logical\\n") if (is.vector(states)) { s.names <- names(states) states <- matrix(states, nrow = 1, ncol = length(states)) dimnames(states) <- list("constraint", s.names) } if (is.data.frame(states)) states <- as.matrix(states) if (!is.numeric(states)) stop("states must only contain numeric values\\n") if (any(states <= 0)) stop("states cannot contain zero or negative values\\n") if (dim(states)[2] == 1 && dim(states)[1] > 1) states <- t(states) s.names <- dimnames(states)[[2]] c.names <- dimnames(states)[[1]] set.names <- dimnames(constr)[[1]] n.states <- dim(states)[2] n.traits <- dim(states)[1] n.sets <- dim(constr)[1] if (n.traits != dim(constr)[2]) stop("number of constraints in constr should be equal to number of constraints in states\\n") if (missing(prior)) { prior <- matrix(1/n.states, n.sets, n.states) dimnames(prior) <- list(set.names, s.names) } if (is.vector(prior)) { if (length(prior) != n.states) { stop("number of states in prior should be equal to number in states\\n") } if (n.sets == 1) { prior <- matrix(prior, 1, length(prior)) dimnames(prior) <- list("set1", s.names) } else { prior <- matrix(rep(prior, n.sets), n.sets, length(prior), byrow = T) dimnames(prior) <- list(set.names, s.names) } } if (is.data.frame(prior)) prior <- as.matrix(prior) if (!is.numeric(prior)) stop("prior must only contain numeric values\\n") if (dim(prior)[2] == 1 && dim(prior)[1] > 1) prior <- t(prior) if (dim(prior)[2] != n.states) stop("number of states in prior should be equal to number in states\\n") if (dim(prior)[1] > 1 && dim(prior)[1] != n.sets) stop("number of rows in prior should be 1 or equal to number of rows in constr\\n") if (dim(prior)[1] == 1) { prior <- matrix(rep(prior[1, ], n.sets), n.sets, ncol(prior), byrow = T) } if (any(prior < 0 | prior > 1)) { stop("prior must contain probabilities between 0 and 1\\n") } prior <- t(apply(prior, 1, function(x) x/sum(x))) dimnames(prior) <- list(set.names, s.names) if (any(is.na(constr)) || any(is.na(states)) || any(is.na(prior))) { stop("no NA's allowed\\n") } allprobs <- matrix(NA, n.sets, n.states) dimnames(allprobs) <- list(set.names, s.names) moments <- matrix(NA, n.sets, n.traits) dimnames(moments) <- list(set.names, c.names) entropy <- rep(NA, n.sets) names(entropy) <- set.names iter <- rep(NA, n.sets) names(iter) <- set.names if (lambda) { lambdas <- matrix(NA, n.sets, n.traits + 2) dimnames(lambdas) <- list(set.names, c("intercept", c.names, "prior")) } for (i in 1:n.sets) { itscale <- .Fortran("itscale5", as.double(t(states)), as.integer(n.states), as.integer(n.traits), as.double(constr[i, ]), as.double(prior[i, ]), prob = double(n.states), entropy = double(1), niter = integer(1), as.double(tol), moments = double(n.traits), PACKAGE = "rexpokit") allprobs[i, ] <- itscale$prob moments[i, ] <- itscale$moments entropy[i] <- itscale$entropy iter[i] <- itscale$niter if (lambda) { lambdas[i, ] <- coef(lm(log(itscale$prob) ~ t(states) + log(prior[i, ]))) } } res <- list() if (n.sets == 1) { res$prob <- allprobs[1, ] res$moments <- moments[1, ] names(entropy) <- NULL res$entropy <- entropy names(iter) <- NULL res$iter <- iter if (lambda) res$lambda <- lambdas[1, ] res$constr <- constr[1, ] res$states <- states res$prior <- prior[1, ] } else { res$prob <- allprobs res$moments <- moments res$entropy <- entropy res$iter <- iter if (lambda) res$lambda <- lambdas res$constr <- constr res$states <- states res$prior <- prior } return(res) }
patches_frm2amira<-function(path_folder_frm,path_amira_folder){ dir.create(path_amira_folder) for(m in 1:length(list.files(path_folder_frm))){ first<-readLines(paste(path_folder_frm,list.files(path_folder_frm)[m],sep="/")) first_pos<-which(substr(first,1,9)=="<pointset")+1 first_range<-which(first[(first_pos+1)]=="</pointset>") curves_pos<-first_pos[-first_range] for(j in 1:length(curves_pos)){ temp_num<-strsplit(first[curves_pos[j]-1],"") temp_num2<-which(is.na(as.numeric(temp_num[[1]]))==FALSE) if(length(temp_num2)==1){ pos_num<-as.numeric(temp_num[[1]][length(temp_num[[1]])-2])} if(length(temp_num2)!=1){ pos_num<-as.numeric(paste(temp_num[[1]][temp_num2],sep="")) pos_num<-pos_num[1]*10+pos_num[2] } patch_i<-as.matrix(read.table(paste(path_folder_frm,path_amira_folder,sep="/"), skip=curves_pos[j], nrows=pos_num)) lista<-list(patch_i) names(lista)<-paste("patch",j,list.files(path_folder_frm)[m]) export_amira(lista,path_amira_folder) } } }
context('Equilibrium computation') library(GPareto) library(copula) library(DiceDesign) test_that("KS equilibrium computation is correct", { xgrid <- seq(0,1,length.out = 101) Xgrid <- as.matrix(expand.grid(xgrid, xgrid)) Z <- P2(Xgrid) PF <- nonDom(Z) Shadow <- apply(PF, 2, min) Nadir <- apply(PF, 2, max) KSeq <- GPGame:::getKS(Z = Z, Nadir = Nadir, Shadow = Shadow) KSeq2 <- GPGame:::getKS_cpp(Z, Nadir, Shadow) expect_equal(KSeq$id, KSeq2) ratios <- (matrix(Nadir, nrow = nrow(PF), ncol = ncol(PF), byrow = TRUE) - PF) %*% diag(1/(Nadir - Shadow)) KS_ref <- PF[which.max(apply(ratios, 1, min)),, drop = FALSE] expect_equal(KSeq$KS, KS_ref) set.seed(1) nvar <- 5 n <- 2e6 Z <- matrix(rnorm(n * nvar), n) Z <- t(apply(Z, 1, function(x) return(-abs(x)/sqrt(sum(x^2))))) Shadow <- rep(-1, nvar) Nadir <- rep(0, nvar) KS_ref <- matrix(rep(- 1/sqrt(nvar), nvar), nrow = 1) KSeq <- GPGame:::getKS(Z = Z, Nadir = Nadir, Shadow = Shadow) KSeq2 <- GPGame:::getKS_cpp(Z = Z, Nadir = Nadir, Shadow = Shadow) expect_equal(KSeq$id, KSeq2) expect_equal(KSeq$KS, KS_ref, tol = 1e-2) }) test_that("CKS equilibrium computation is correct", { nvar <- 2 n <- 1e4 Xgrid <- matrix(runif(n * nvar), n) Z <- P2(Xgrid) Shadow <- rep(0, nvar) Nadir <- rep(1, nvar) library(copula) U <- pobs(Z) KS_U <- GPGame:::getKS(U, Nadir = Nadir, Shadow = Shadow) PF <- nonDom(U) CKSeq <- GPGame:::getCKS(Z = Z, Nadir = Nadir, Shadow = Shadow) expect_equal(Z[KS_U$id,,drop = FALSE], CKSeq$CKS) set.seed(3) nvar <- 3 n <- 1e3 U <- matrix(rnorm(n * nvar), n) U <- t(apply(U, 1, function(x) return(if(sum(x^2) < 1) return(-abs(x)) else return(-abs(x)/sqrt(sum(x^2)))))) + 1 PF_u <- nonDom(U) Shadow <- rep(0, nvar) Nadir <- rep(1, nvar) Z <- U Z[,1] <- qbeta(U[,1], 2.3 , 0.5) Z[,2] <- qbeta(U[,2], 2 , 1.5) Z[,3] <- qbeta(U[,3], 0.75, 1.2) PF <- nonDom(Z) CKS_ref <- GPGame:::getKS(Z = U, Nadir = Nadir, Shadow = Shadow) CKSeq <- GPGame:::getCKS(Z = Z, Nadir = Nadir, Shadow = Shadow) expect_equal(CKSeq$id, CKS_ref$id) U2 <- matrix(rnorm(n * nvar), n) U2 <- t(apply(U2, 1, function(x) return(if(sum(x^2) < 1) return(-abs(x)) else return(-abs(x)/sqrt(sum(x^2)))))) + 1 Z2 <- U2 Z2[,1] <- qbeta(U2[,1], 2.3 , 0.5) Z2[,2] <- qbeta(U2[,2], 2 , 1.5) Z2[,3] <- qbeta(U2[,3], 0.75, 1.2) CKS_U2 <- GPGame:::getCKS(Z2, Nadir = Nadir, Shadow = Shadow) CKS_U2_kweights <- GPGame:::getCKS(Z, Nadir = Nadir, Shadow = Shadow, Zred = Z2) expect_equal(CKS_U2$CKS, CKS_U2_kweights$CKS) }) test_that("getEquilibrium works as intended", { set.seed(1) nvar <- 3 n <- 60 design <- lhsDesign(n = n, dimension = nvar, seed = 42)$design response <- DTLZ2(design) KS_ref <- matrix(rep(1/sqrt(nvar), nvar), nrow = 1) CKS_ref_cop <- matrix(c(0.533, 0.533, 0.533), nrow = 1) CKS_ref <- matrix(c(0.423, 0.42, 0.80), nrow = 1) models <- list(km(~1, design = design, response = response[,1]), km(~1, design = design, response = response[,2]), km(~1, design = design, response = response[,3])) nsamp <- 1e4 Xsamp <- matrix(runif(nsamp * nvar), nsamp) preds <- t(predict_kms(models, newdata = Xsamp, type = "UK")$mean) KSp <- getEquilibrium(Z = preds, nobj = 3, equilibrium = "KSE", return.design = TRUE) CKSp <- getEquilibrium(Z = preds, nobj = 3, equilibrium = "CKSE", return.design = TRUE) expect_equal(KSp$NEPoff, KS_ref, tol = 5e-2) expect_equal(CKSp$NEPoff, CKS_ref, tol = 1e-2) kweights <- list() for(u in 1:3){ kn <- covMat1Mat2(models[[u]]@covariance, Xsamp, design) Knn <- try(chol2inv(chol(covMat1Mat2(models[[u]]@covariance, design, design) + diag(1e-6, nrow(design))))) kweights <- c(kweights, list(kn %*% Knn)) } CKSp2 <- getEquilibrium(Z = response, nobj = 3, equilibrium = "CKSE", return.design = TRUE, kweights = kweights) CKS_emp_ref <- response[which.min(rowSums(sweep(response, 2, CKS_ref, "-")^2)),, drop = FALSE] expect_equal(CKSp2$NEPoff, CKS_emp_ref) nsim <- 7 Simus <- NULL for(u in 1:3){ Simus <- rbind(Simus, simulate(models[[u]], newdata = Xsamp[1:1000,], nsim = nsim, cond = TRUE, checkNames = FALSE)) } Simus <- t(Simus) KS_sim <- getEquilibrium(Simus, nobj = 3, equilibrium = "KSE", return.design = TRUE) CKS_sim <- getEquilibrium(Simus, nobj = 3, equilibrium = "CKSE", return.design = TRUE) for(u in 1:nsim){ expect_equal(KS_sim$NEPoff[u,, drop = FALSE], getEquilibrium(Simus[,seq(u, nsim*3, by = nsim)], nobj = 3, equilibrium = "KSE", return.design = FALSE)) expect_equal(CKS_sim$NEPoff[u,, drop = FALSE], getEquilibrium(Simus[,seq(u, nsim*3, by = nsim)], nobj = 3, equilibrium = "CKSE", return.design = FALSE)) } kweights2 <- list() for(u in 1:3){ kn <- covMat1Mat2(models[[u]]@covariance, Xsamp, Xsamp[1:1000,]) Knn <- try(chol2inv(chol(covMat1Mat2(models[[u]]@covariance, Xsamp[1:1000,], Xsamp[1:1000,]) + diag(1e-6, 1000)))) kweights2 <- c(kweights2, list(kn %*% Knn)) } CKS_sim2 <- getEquilibrium(Simus, nobj = 3, equilibrium = "CKSE", return.design = TRUE, kweights = kweights2) expect_equal(KS_sim$NEPoff, matrix(KS_ref, nrow = nsim, ncol = nvar, byrow = TRUE), tol = 5e-2) expect_equal(CKS_sim$NEPoff, matrix(CKS_ref, nrow = nsim, ncol = nvar, byrow = TRUE), tol = 5e-2) expect_equal(CKS_sim2$NEPoff, matrix(CKS_ref, nrow = nsim, ncol = nvar, byrow = TRUE), tol = 5e-2) })
gdm_calc_loglikelihood <- function(irtmodel, skillspace, b, a, centerintercepts, centerslopes, TD, Qmatrix, Ngroup, pi.k, delta.designmatrix, delta, G, theta.k, D, mean.constraint, Sigma.constraint, standardized.latent, p.aj.xi, group, ind.group, weights, thetaDes, I, K, gwt0, dat, resp.ind.list, use.freqpatt, p.xi.aj, TP ) { b <- gdm_est_b_centerintercepts( b=b, centerintercepts=centerintercepts, TD=TD, Qmatrix=Qmatrix ) if (irtmodel=="2PL"){ a <- gdm_est_a_centerslopes( a=a, centerslopes=centerslopes, Qmatrix=Qmatrix, TD=TD ) } if ( skillspace=="loglinear" ){ res <- gdm_est_skillspace( Ngroup=Ngroup, pi.k=pi.k, Z=delta.designmatrix, G=G, delta=delta, estimate=FALSE ) pi.k <- res$pi.k delta <- res$delta } if ( skillspace=="normal" ){ res <- gdm_est_normalskills( pi.k=pi.k, theta.k=theta.k, irtmodel=irtmodel, G=G, D=D, mean.constraint=mean.constraint, Sigma.constraint=Sigma.constraint, standardized.latent=standardized.latent, p.aj.xi=p.aj.xi, group=group, ind.group=ind.group, weights=weights, b=b, a=a ) pi.k <- res$pi.k b <- res$b a <- res$a } if ( skillspace=="est" ){ thetaDes <- theta.k } probs <- gdm_calc_prob( a=a, b=b, thetaDes=thetaDes, Qmatrix=Qmatrix, I=I, K=K, TP=TP, TD=TD ) res.hwt <- gdm_calc_posterior( probs=probs, gwt0=gwt0, dat=dat, I=I, resp.ind.list=resp.ind.list ) p.xi.aj <- res.hwt$hwt res <- gdm_calc_deviance( G=G, use.freqpatt=use.freqpatt, ind.group=ind.group, p.xi.aj=p.xi.aj, pi.k=pi.k, weights=weights ) ll <- res$ll res <- list(ll=ll, pi.k=pi.k, theta.k=theta.k, thetaDes=thetaDes, a=a, b=b, delta=delta) return(res) }
convert_hundreds <- function(x) { if (!length(x)) return(character(0)) hundreds_place <- tens_place <- ones_place <- dash <- rep("", length(x)) class(x) <- "numeric" x[is.na(x)] <- 0 hundreds_place[x >= 100] <- paste0(digits[x[x >= 100] %/% 100], " hundred ") x <- x %% 100 tens_place[x >= 20] <- tens[x[x >= 20] %/% 10] x[x >= 20] <- x[x >= 20] %% 10 ones_place[x > 0] <- digits[x[x > 0]] dash[tens_place != "" & ones_place != ""] <- "-" x[] <- trimws(paste0(hundreds_place, tens_place, dash, ones_place)) x }
NULL paste8 <- function(..., sep = " ", collapse = NULL) { args <- c( lapply(list(...), enc2utf8), list( sep = if (is.null(sep)) sep else enc2utf8(sep), collapse = if (is.null(collapse)) collapse else enc2utf8(collapse) ) ) do.call(paste, args) } concat8 <- function(...) { enc2utf8(paste0(...)) } registerMethods <- function(methods) { lapply(methods, function(method) { pkg <- method[[1]] generic <- method[[2]] class <- method[[3]] func <- get(paste(generic, class, sep=".")) if (pkg %in% loadedNamespaces()) { registerS3method(generic, class, func, envir = asNamespace(pkg)) } setHook( packageEvent(pkg, "onLoad"), function(...) { registerS3method(generic, class, func, envir = asNamespace(pkg)) } ) }) } .onLoad <- function(...) { registerMethods(list( c("knitr", "knit_print", "html"), c("knitr", "knit_print", "shiny.tag"), c("knitr", "knit_print", "shiny.tag.list") )) assign("obj_address", getFromNamespace("sexp_address", "rlang"), environment(.onLoad)) } depListToNamedDepList <- function(dependencies) { if (inherits(dependencies, "html_dependency")) dependencies <- list(dependencies) if (is.null(names(dependencies))) { names(dependencies) <- sapply(dependencies, `[[`, "name") } return(dependencies) } resolveDependencies <- function(dependencies, resolvePackageDir = TRUE) { deps <- resolveFunctionalDependencies(dependencies) depnames <- vapply(deps, function(x) x$name, character(1)) depvers <- numeric_version(vapply(deps, function(x) x$version, character(1))) return(lapply(unique(depnames), function(depname) { sorted <- order(ifelse(depnames == depname, TRUE, NA), depvers, na.last = NA, decreasing = TRUE) dep <- deps[[sorted[[1]]]] if (resolvePackageDir && !is.null(dep$package)) { dir <- dep$src$file if (!is.null(dir)) dep$src$file <- system_file(dir, package = dep$package) dep$package <- NULL } dep })) } subtractDependencies <- function(dependencies, remove, warnOnConflict = TRUE) { dependencies <- resolveFunctionalDependencies(dependencies) depnames <- vapply(dependencies, function(x) x$name, character(1)) if (is.character(remove)) { rmnames <- remove } else { remove <- resolveFunctionalDependencies(remove) rmnames <- vapply(remove, function(x) x$name, character(1)) } matches <- depnames %in% rmnames if (warnOnConflict && !is.character(remove)) { for (loser in dependencies[matches]) { winner <- remove[[head(rmnames == loser$name, 1)]] if (compareVersion(loser$version, winner$version) > 0) { warning(sprintf(paste("The dependency %s %s conflicts with", "version %s"), loser$name, loser$version, winner$version )) } } } return(dependencies[!matches]) } dropNulls <- function(x) { x[!vapply(x, is.null, FUN.VALUE=logical(1))] } nullOrEmpty <- function(x) { length(x) == 0 } dropNullsOrEmpty <- function(x) { x[!vapply(x, nullOrEmpty, FUN.VALUE=logical(1))] } isResolvedTag <- function(x) { inherits(x, "shiny.tag") && length(x$.renderHooks) == 0 } isTag <- function(x) { inherits(x, "shiny.tag") } print.shiny.tag <- function(x, browse = is.browsable(x), ...) { if (browse) html_print(x) else print(HTML(as.character(x)), ...) invisible(x) } format.shiny.tag <- function(x, ..., singletons = character(0), indent = 0) { as.character(renderTags(x, singletons = singletons, indent = indent)$html) } as.character.shiny.tag <- function(x, ...) { as.character(renderTags(x)$html) } as.character.html <- function(x, ...) { as.vector(enc2utf8(x)) } print.shiny.tag.list <- function(x, ...) { if (isTRUE(attr(x, "print.as.list", exact = TRUE))) { attr(x, "print.as.list") <- NULL class(x) <- setdiff(class(x), "shiny.tag.list") return(print(x)) } print.shiny.tag(x, ...) } format.shiny.tag.list <- format.shiny.tag as.character.shiny.tag.list <- as.character.shiny.tag print.html <- function(x, ..., browse = is.browsable(x)) { if (browse) html_print(x) else cat(x, "\n", sep = "") invisible(x) } format.html <- function(x, ...) { as.character(x) } normalizeText <- function(text) { if (!is.null(attr(text, "html", TRUE))) text else htmlEscape(text, attribute=FALSE) } tagList <- function(...) { lst <- dots_list(...) class(lst) <- c("shiny.tag.list", "list") return(lst) } tagFunction <- function(func) { if (!is.function(func) || length(formals(func)) != 0) { stop("`func` must be a function with no arguments") } structure(func, class = "shiny.tag.function") } tagAddRenderHook <- function(tag, func, replace = FALSE) { if (!is.function(func) || length(formals(func)) == 0) { stop("`func` must be a function that accepts at least 1 argument") } tag$.renderHooks <- if (isTRUE(replace)) { list(func) } else { append(tag$.renderHooks, list(func)) } tag } tagAppendAttributes <- function(tag, ..., .cssSelector = NULL) { throw_if_tag_function(tag) if (!is.null(.cssSelector)) { return( tagQuery(tag)$ find(.cssSelector)$ addAttrs(...)$ allTags() ) } newAttribs <- dropNullsOrEmpty(dots_list(...)) if (any(!nzchar(names2(newAttribs)))) { stop( "At least one of the new attribute values did not have a name.\n", "Did you forget to include an attribute name?" ) } tag$attribs <- c(tag$attribs, newAttribs) tag } tagHasAttribute <- function(tag, attr) { throw_if_tag_function(tag) result <- attr %in% names(tag$attribs) result } tagGetAttribute <- function(tag, attr) { throw_if_tag_function(tag) attribs <- tag$attribs attrIdx <- which(attr == names(attribs)) if (length(attrIdx) == 0) { return (NULL) } result <- attribs[attrIdx] if (anyNA(result)) { na_idx <- is.na(result) if (all(na_idx)) { return(NA) } result <- result[!na_idx] } if (all(vapply(result, is.atomic, logical(1)))) { vals <- vapply(result, function(val) { val <- as.character(val) if (length(val) > 1) { val <- paste0(val, collapse = " ") } val }, character(1)) result <- paste0(vals, collapse = " ") } else { names(result) <- NULL } result } tagAppendChild <- function(tag, child, .cssSelector = NULL) { throw_if_tag_function(tag) if (!is.null(.cssSelector)) { return( tagAppendChildren(tag, child, .cssSelector = .cssSelector) ) } tag$children[[length(tag$children)+1]] <- child tag } tagAppendChildren <- function(tag, ..., .cssSelector = NULL, list = NULL) { throw_if_tag_function(tag) children <- unname(c(dots_list(...), list)) if (!is.null(.cssSelector)) { return( tagQuery(tag)$ find(.cssSelector)$ append(!!!children)$ allTags() ) } tag$children <- unname(c(tag$children, children)) tag } tagSetChildren <- function(tag, ..., .cssSelector = NULL, list = NULL) { throw_if_tag_function(tag) children <- unname(c(dots_list(...), list)) if (!is.null(.cssSelector)) { return( tagQuery(tag)$ find(.cssSelector)$ empty()$ append(!!!children)$ allTags() ) } tag$children <- children tag } tagInsertChildren <- function(tag, after, ..., .cssSelector = NULL, list = NULL) { throw_if_tag_function(tag) children <- unname(c(dots_list(...), list)) if (!is.null(.cssSelector)) { return( tagQuery(tag)$ find(.cssSelector)$ each(function(x, i) { tagInsertChildren(x, after = after, !!!children) })$ allTags() ) } tag$children <- unname(append(tag$children, children, after)) tag } throw_if_tag_function <- function(tag) { if (is_tag_function(tag)) stop("`tag` can not be a `tagFunction()`") } names(known_tags) <- known_tags NULL tags <- lapply(known_tags, function(tagname) { new_function( args = exprs(... = , .noWS = NULL, .renderHook = NULL), expr({ validateNoWS(.noWS) contents <- dots_list(...) tag(!!tagname, contents, .noWS = .noWS, .renderHook = .renderHook) }), env = asNamespace("htmltools") ) }) rm(known_tags) p <- tags$p h1 <- tags$h1 h2 <- tags$h2 h3 <- tags$h3 h4 <- tags$h4 h5 <- tags$h5 h6 <- tags$h6 a <- tags$a br <- tags$br div <- tags$div span <- tags$span pre <- tags$pre code <- tags$code img <- tags$img strong <- tags$strong em <- tags$em hr <- tags$hr tag <- function(`_tag_name`, varArgs, .noWS = NULL, .renderHook = NULL) { validateNoWS(.noWS) varArgsNames <- names2(varArgs) named_idx <- nzchar(varArgsNames) attribs <- dropNullsOrEmpty(varArgs[named_idx]) children <- unname(varArgs[!named_idx]) st <- list(name = `_tag_name`, attribs = attribs, children = children) if (!is.null(.noWS)) { st$.noWS <- .noWS } if (!is.null(.renderHook)) { if (!is.list(.renderHook)) { .renderHook <- list(.renderHook) } st$.renderHooks <- .renderHook } structure(st, class = "shiny.tag") } isTagList <- function(x) { is.list(x) && (inherits(x, "shiny.tag.list") || identical(class(x), "list")) } noWSOptions <- c("before", "after", "after-begin", "before-end", "outside", "inside") validateNoWS <- function(.noWS) { if (!all(.noWS %in% noWSOptions)) { stop("Invalid .noWS option(s) '", paste(.noWS, collapse="', '") ,"' specified.") } } tagWrite <- function(tag, textWriter, indent=0, eol = "\n") { if (length(tag) == 0) return (NULL) if (!isTag(tag) && isTagList(tag)) { tag <- dropNullsOrEmpty(flattenTags(tag)) lapply(tag, tagWrite, textWriter, indent) return (NULL) } nextIndent <- if (is.numeric(indent)) indent + 1 else indent indent <- if (is.numeric(indent)) indent else 0 indentText <- paste(rep(" ", indent*2), collapse="") textWriter$writeWS(indentText) if (is.character(tag)) { .noWS <- attr(tag, "noWS", exact = TRUE) if ("before" %in% .noWS || "outside" %in% .noWS) { textWriter$eatWS() } textWriter$write(normalizeText(tag)) if ("after" %in% .noWS || "outside" %in% .noWS) { textWriter$eatWS() } textWriter$writeWS(eol) return (NULL) } .noWS <- tag$.noWS if ("before" %in% .noWS || "outside" %in% .noWS) { textWriter$eatWS() } textWriter$write(concat8("<", tag$name)) attribs <- flattenTagAttribs(lapply(tag$attribs, as.character)) attribNames <- names2(attribs) if (any(!nzchar(attribNames))) { stop( "A tag's attribute value did not have a name.\n", "Did you forget to name all of your attribute values?" ) } for (attrib in attribNames) { attribValue <- attribs[[attrib]] if (length(attribValue) > 1) { attribValue <- concat8(attribValue, collapse = " ") } if (!is.na(attribValue)) { if (is.logical(attribValue)) { attribValue <- tolower(attribValue) } text <- htmlEscape(attribValue, attribute=TRUE) textWriter$write(concat8(" ", attrib,"=\"", text, "\"")) } else { textWriter$write(concat8(" ", attrib)) } } children <- dropNullsOrEmpty(flattenTags(tag$children)) if (length(children) > 0) { textWriter$write(">") if ((length(children) == 1) && is.character(children[[1]]) ) { textWriter$write(concat8(normalizeText(children[[1]]), "</", tag$name, ">")) } else { if ("after-begin" %in% .noWS || "inside" %in% .noWS) { textWriter$eatWS() } textWriter$writeWS("\n") for (child in children) tagWrite(child, textWriter, nextIndent) textWriter$writeWS(indentText) if ("before-end" %in% .noWS || "inside" %in% .noWS) { textWriter$eatWS() } textWriter$write(concat8("</", tag$name, ">")) } } else { if (tag$name %in% c("area", "base", "br", "col", "command", "embed", "hr", "img", "input", "keygen", "link", "meta", "param", "source", "track", "wbr")) { textWriter$write("/>") } else { textWriter$write(concat8("></", tag$name, ">")) } } if ("after" %in% .noWS || "outside" %in% .noWS) { textWriter$eatWS() } textWriter$writeWS(eol) } renderTags <- function(x, singletons = character(0), indent = 0) { x <- tagify(x) singletonInfo <- takeSingletons(x, singletons) headInfo <- takeHeads(singletonInfo$ui) deps <- resolveDependencies(findDependencies(singletonInfo$ui, tagify = FALSE)) headIndent <- if (is.numeric(indent)) indent + 1 else indent headHtml <- doRenderTags(headInfo$head, indent = headIndent) bodyHtml <- doRenderTags(headInfo$ui, indent = indent) return(list(head = headHtml, singletons = singletonInfo$singletons, dependencies = deps, html = bodyHtml)) } doRenderTags <- function(x, indent = 0) { assertNotTagEnvLike(x, "doRenderTags") textWriter <- WSTextWriter() tagWrite(x, textWriter, indent) textWriter$eatWS() HTML(textWriter$readAll()) } rewriteTags <- function(ui, func, preorder) { assertNotTagEnvLike(ui, "rewriteTags") if (preorder) ui <- func(ui) if (isTag(ui)) { ui$children[] <- lapply(ui$children, rewriteTags, func, preorder) } else if (isTagList(ui)) { ui[] <- lapply(ui, rewriteTags, func, preorder) } if (!preorder) ui <- func(ui) return(ui) } NULL surroundSingletons <- local({ surroundSingleton <- function(uiObj) { if (is.singleton(uiObj)) { sig <- digest(uiObj, "sha1") uiObj <- singleton(uiObj, FALSE) return(tagList( HTML(sprintf("<!--SHINY.SINGLETON[%s]-->", sig)), uiObj, HTML(sprintf("<!--/SHINY.SINGLETON[%s]-->", sig)) )) } else { uiObj } } function(ui) { rewriteTags(ui, surroundSingleton, TRUE) } }) takeSingletons <- function(ui, singletons=character(0), desingleton=TRUE) { result <- rewriteTags(ui, function(uiObj) { if (is.singleton(uiObj)) { sig <- digest(uiObj, "sha1") if (sig %in% singletons) return(NULL) singletons <<- append(singletons, sig) if (desingleton) uiObj <- singleton(uiObj, FALSE) return(uiObj) } else { return(uiObj) } }, TRUE) return(list(ui=result, singletons=singletons)) } takeHeads <- function(ui) { headItems <- list() result <- rewriteTags(ui, function(uiObj) { if (isTag(uiObj) && tolower(uiObj$name) == "head") { headItems <<- append(headItems, uiObj$children) return(NULL) } return(uiObj) }, FALSE) return(list(ui=result, head=headItems)) } findDependencies <- function(tags, tagify = TRUE) { if (isTRUE(tagify)) { tags <- tagify(tags) } deps <- resolveFunctionalDependencies(htmlDependencies(tags)) children <- if (is.list(tags)) { if (isTag(tags)) { tags$children } else { tags } } childDeps <- unlist(lapply(children, findDependencies, tagify = FALSE), recursive = FALSE, use.names = FALSE) c(childDeps, deps) } resolveFunctionalDependencies <- function(dependencies) { if (!length(dependencies)) { return(dependencies) } dependencies <- asDependencies(dependencies) dependencies <- lapply(dependencies, function(dep) { if (is_tag_function(dep)) { dep <- dep() } if (isTag(dep) || inherits(dep, "shiny.tag.list")) { warning( "It appears attachDependencies() has been used to attach a tagFunction()", "that returns a shiny.tag/shiny.tag.list, which is considered poor practice", "since those tags will never actually get rendered", call. = FALSE ) return(findDependencies(dep)) } asDependencies(dep) }) unlist(dependencies, recursive = FALSE, use.names = FALSE) } HTML <- function(text, ..., .noWS = NULL) { htmlText <- c(text, as.character(dots_list(...))) htmlText <- paste8(htmlText, collapse=" ") attr(htmlText, "html") <- TRUE attr(htmlText, "noWS") <- .noWS class(htmlText) <- c("html", "character") htmlText } withTags <- function(code, .noWS = NULL) { if (!is.null(.noWS)) { .noWSWithTags <- .noWS tags <- lapply(tags, function(tag) { function(..., .noWS = .noWSWithTags) { tag(..., .noWS = .noWS) } }) } eval(substitute(code), envir = as.list(tags), enclos = parent.frame()) } tagify <- function(x) { rewriteTags(x, function(uiObj) { if (isResolvedTag(uiObj) || isTagList(uiObj) || is.character(uiObj)) return(uiObj) else tagify(as.tags(uiObj)) }, FALSE) } flattenTags <- function(x) { assertNotTagEnvLike(x, "flattenTags") if (isTag(x)) { list(x) } else if (isTagList(x)) { if (length(x) == 0) { x } else { ret <- unlist(lapply(x, flattenTags), recursive = FALSE) mostattributes(ret) <- attributes(x) ret } } else if (is.character(x)){ list(x) } else { flattenTags(as.tags(x)) } } flattenTagsRaw <- function(x) { relocateHtmlDeps <- function(z, type) { zDeps <- htmlDependencies(z) zDepsLen <- length(zDeps) if (zDepsLen == 0) return(z) switch(type, "tag" = { children <- z[["children"]] childrenLen <- length(children) if (is.null(children)) { z[["children"]] <- zDeps } else { z[["children"]][(childrenLen + 1):(childrenLen + zDepsLen)] <- zDeps } }, "tagList" = { zLen <- length(z) z[(zLen + 1):(zLen + zDepsLen)] <- zDeps }, stop("unknown type: ", type) ) htmlDependencies(z) <- NULL z } if (isTagEnv(x)) { list(x) } else if (isTag(x)) { x <- relocateHtmlDeps(x, type = "tag") list(x) } else if (isTagList(x)) { ret <- unlist(lapply(x, flattenTagsRaw), recursive = FALSE) mostattributes(ret) <- attributes(x) ret <- relocateHtmlDeps(ret, type = "tagList") ret } else { list(x) } } combineKeys <- function(x) { if (anyNA(x)) { na_idx <- is.na(x) if (all(na_idx)) { return(NA) } x <- x[!na_idx] } unlist(x, recursive = FALSE, use.names = FALSE) } flattenTagAttribs <- function(attribs) { attribs <- dropNullsOrEmpty(attribs) attribNames <- names(attribs) if (anyDuplicated(attribNames)) { uniqueAttribNames <- sort(unique(attribNames)) attribs <- lapply(uniqueAttribNames, function(name) { obj <- attribs[attribNames == name] combineKeys(obj) }) names(attribs) <- uniqueAttribNames } attribs } as.tags <- function(x, ...) { UseMethod("as.tags") } as.tags.default <- function(x, ...) { if (is.list(x)) { tagList(!!!unclass(x)) } else { tagList(as.character(x)) } } as.tags.html <- function(x, ...) { x } as.tags.shiny.tag <- function(x, ...) { if (isResolvedTag(x)) { return(x) } hook <- x$.renderHooks[[1]] x$.renderHooks[[1]] <- NULL y <- hook(x) as.tags(y) } as.tags.shiny.tag.list <- function(x, ...) { x } as.tags.shiny.tag.function <- function(x, ...) { x() } as.tags.list <- function(x, ...) { tagList(!!!x) } as.tags.character <- function(x, ...) { tagList(x) } as.tags.html_dependency <- function(x, ...) { attachDependencies(tagList(), x) } htmlPreserve <- function(x) { html_preserve(x, inline = "auto") } html_preserve <- function(x, inline = "auto") { x <- paste(x, collapse = "\n") if (!nzchar(x)) { return(x) } if (!getOption("htmltools.preserve.raw", FALSE)) { return(sprintf("<!--html_preserve-->%s<!--/html_preserve-->", x)) } if (identical(inline, "auto")) { inline <- grepl(x, "\n", fixed = TRUE) } if (inline) { sprintf("`%s`{=html}", x) } else { sprintf("\n```{=html}\n%s\n```\n", x) } } withTemporary <- function(env, x, value, expr, unset = FALSE) { if (exists(x, envir = env, inherits = FALSE)) { oldValue <- get(x, envir = env, inherits = FALSE) on.exit( assign(x, oldValue, envir = env, inherits = FALSE), add = TRUE) } else { on.exit( rm(list = x, envir = env, inherits = FALSE), add = TRUE ) } if (!missing(value) && !isTRUE(unset)) assign(x, value, envir = env, inherits = FALSE) else { if (exists(x, envir = env, inherits = FALSE)) rm(list = x, envir = env, inherits = FALSE) } force(expr) } withPrivateSeed <- local({ ownSeed <- NULL function(expr) { withTemporary(.GlobalEnv, ".Random.seed", ownSeed, unset=is.null(ownSeed), { tryCatch({ expr }, finally = {ownSeed <<- .Random.seed}) } ) } }) extractPreserveChunks <- function(strval) { startmarker <- "<!--html_preserve-->" endmarker <- "<!--/html_preserve-->" startmarker_len <- nchar(startmarker) endmarker_len <- nchar(endmarker) pattern <- "<!--/?html_preserve-->" if (length(strval) != 1) strval <- paste(strval, collapse = "\n") startmatches <- gregexpr(startmarker, strval, fixed = TRUE)[[1]] endmatches <- gregexpr(endmarker, strval, fixed = TRUE)[[1]] matches <- c(startmatches, endmatches) o <- order(matches) matches <- matches[o] lengths <- c( attr(startmatches, "match.length", TRUE), attr(endmatches, "match.length", TRUE) )[o] if (unique(matches)[[1]] == -1) return(list(value = strval, chunks = character(0))) boundary_type <- lengths == startmarker_len preserve_level <- cumsum(ifelse(boundary_type, 1, -1)) if (any(preserve_level < 0) || tail(preserve_level, 1) != 0) { stop("Invalid nesting of html_preserve directives") } is_top_level <- 1 == (preserve_level + c(0, preserve_level[-length(preserve_level)])) preserved <- character(0) top_level_matches <- matches[is_top_level] for (i in seq.int(length(top_level_matches) - 1, 1, by = -2)) { start_outer <- top_level_matches[[i]] start_inner <- start_outer + startmarker_len end_inner <- top_level_matches[[i+1]] end_outer <- end_inner + endmarker_len id <- withPrivateSeed( paste("preserve", paste( format(as.hexmode(sample(256, 8, replace = TRUE)-1), width=2), collapse = ""), sep = "") ) preserved[id] <- gsub(pattern, "", substr(strval, start_inner, end_inner-1)) strval <- paste( substr(strval, 1, start_outer - 1), id, substr(strval, end_outer, nchar(strval)), sep="") substr(strval, start_outer, end_outer-1) <- id } list(value = strval, chunks = preserved) } restorePreserveChunks <- function(strval, chunks) { strval <- enc2utf8(strval) chunks <- enc2utf8(chunks) for (id in names(chunks)) strval <- gsub(id, chunks[[id]], strval, fixed = TRUE, useBytes = TRUE) Encoding(strval) <- 'UTF-8' strval } NULL knit_print.shiny.tag <- function(x, ..., inline = FALSE) { x <- tagify(x) output <- surroundSingletons(x) deps <- resolveDependencies(findDependencies(x, tagify = FALSE), resolvePackageDir = FALSE) content <- takeHeads(output) head_content <- doRenderTags(tagList(content$head)) meta <- if (length(head_content) > 1 || head_content != "") { list(structure(head_content, class = "shiny_head")) } meta <- c(meta, deps) knitr::asis_output( html_preserve(format(content$ui, indent=FALSE), inline), meta = meta) } knit_print.html <- function(x, ..., inline = FALSE) { deps <- resolveDependencies(findDependencies(x, tagify = FALSE)) knitr::asis_output(html_preserve(as.character(x), inline), meta = if (length(deps)) list(deps)) } knit_print.shiny.tag.list <- knit_print.shiny.tag includeHTML <- function(path) { lines <- readLines(path, warn=FALSE, encoding='UTF-8') return(HTML(paste8(lines, collapse='\n'))) } includeText <- function(path) { lines <- readLines(path, warn=FALSE, encoding='UTF-8') return(paste8(lines, collapse='\n')) } includeMarkdown <- function(path) { html <- markdown::markdownToHTML(path, fragment.only=TRUE) Encoding(html) <- 'UTF-8' return(HTML(html)) } includeCSS <- function(path, ...) { lines <- readLines(path, warn=FALSE, encoding='UTF-8') args <- dots_list(...) if (is.null(args$type)) args$type <- 'text/css' return(do.call(tags$style, c(list(HTML(paste8(lines, collapse='\n'))), args))) } includeScript <- function(path, ...) { lines <- readLines(path, warn=FALSE, encoding='UTF-8') return(tags$script(HTML(paste8(lines, collapse='\n')), ...)) } singleton <- function(x, value = TRUE) { attr(x, "htmltools.singleton") <- if (isTRUE(value)) TRUE else NULL return(x) } is.singleton <- function(x) { isTRUE(attr(x, "htmltools.singleton")) } validateCssUnit <- function(x) { if (is.null(x) || is.na(x)) return(x) if (length(x) > 1 || (!is.character(x) && !is.numeric(x))) stop('CSS units must be a single-element numeric or character vector') if (is.character(x) && nchar(x) > 0 && gsub("\\d*", "", x) == "") x <- as.numeric(x) pattern <- "^(auto|inherit|fit-content|calc\\(.*\\)|((\\.\\d+)|(\\d+(\\.\\d+)?))(%|in|cm|mm|ch|em|ex|rem|pt|pc|px|vh|vw|vmin|vmax))$" if (is.character(x) && !grepl(pattern, x)) { stop('"', x, '" is not a valid CSS unit (e.g., "100%", "400px", "auto")') } else if (is.numeric(x)) { x <- paste(x, "px", sep = "") } x } css <- function(..., collapse_ = "") { props <- dots_list(...) if (length(props) == 0) { return(NULL) } if (is.null(names(props)) || any(names(props) == "")) { stop("cssList expects all arguments to be named") } props[] <- lapply(props, paste, collapse = " ") props <- props[!sapply(props, empty)] if (length(props) == 0) { return(NULL) } names(props) <- gsub("[._]", "-", tolower(gsub("([A-Z])", "-\\1", names(props)))) important <- ifelse(grepl("!$", names(props), perl = TRUE), " !important", "") names(props) <- sub("!$", "", names(props), perl = TRUE) paste0(names(props), ":", props, important, ";", collapse = collapse_) } empty <- function(x) { length(x) == 0 || (is.character(x) && !any(nzchar(x))) }
validity.amigaDisk <- function(object) { NUMBER_OF_SECTORS <- NUMBER_OF_SECTORS_DD if (object@type == "HD") NUMBER_OF_SECTORS <- NUMBER_OF_SECTORS_HD if (typeof(object@data) != "raw") return (F) if (typeof(object@type) != "character") return (F) if (length(object@type) != 1) return (F) if (typeof([email protected]) != "integer") return (F) if (length([email protected]) != 1) return (F) if ([email protected] < 0 || [email protected] > NUMBER_OF_SECTORS*NUMBER_OF_SIDES*NUMBER_OF_CYLINDERS) return (F) if (!(object@type %in% c("DD", "HD"))) return (F) if (length(object@data) != BLOCK_SIZE*NUMBER_OF_SECTORS*NUMBER_OF_SIDES*NUMBER_OF_CYLINDERS) return (F) return(T) } setClass("amigaDisk", representation(data = "raw", type = "character", current.dir = "integer"), prototype(data = raw(NUMBER_OF_CYLINDERS*NUMBER_OF_SECTORS_DD*NUMBER_OF_SIDES*BLOCK_SIZE), type = "DD", current.dir = 880L), validity = validity.amigaDisk) setGeneric("calculate.checksum", function(x, block, chcksm.pos = 21, as.raw = T) standardGeneric("calculate.checksum")) setMethod("calculate.checksum", c("amigaDisk", "numeric"), function(x, block, chcksm.pos = 21, as.raw = T) { x <- amigaBlock(x, block) calculate.checksum(x@data, NULL, chcksm.pos, as.raw) }) setMethod("calculate.checksum", c("raw", "ANY"), function(x, block, chcksm.pos = 21, as.raw = T) { checksum <- 0 for(i in seq(1, BLOCK_SIZE, by = 4)) { if (i != chcksm.pos) { checksum <- checksum + rawToAmigaInt(x[i:(i + 3)], 32, F) if (checksum >= 0x100000000) checksum <- checksum %% 0x100000000 } } checksum <- 0x100000000 - checksum checksum <- checksum %% 0x100000000 if (as.raw) return(amigaIntToRaw(checksum, 32, F)) else return (checksum) }) setGeneric("read.adf", function(file) standardGeneric("read.adf")) setMethod("read.adf", "character", function(file){ file <- file[[1]] con <- file(file, "rb") adf <- read.adf(con) close(con) return(adf) }) setMethod("read.adf", "ANY", function(file){ con <- file if (!("connection" %in% class(con))) stop ("argument con is not a file connection!") con_info <- summary(con) if (!(con_info$text == "binary" && con_info$`can read` == "yes")) stop("Unsuitable connection provided. read.adf() requires a binary connection from which can be read.") dat <- readBin(con, "raw", NUMBER_OF_SECTORS_HD*NUMBER_OF_CYLINDERS*NUMBER_OF_SIDES*BLOCK_SIZE, endian = "big") tp <- NULL if (length(dat) == NUMBER_OF_SECTORS_DD*NUMBER_OF_CYLINDERS*NUMBER_OF_SIDES*BLOCK_SIZE) tp <- "DD" if (length(dat) == NUMBER_OF_SECTORS_HD*NUMBER_OF_CYLINDERS*NUMBER_OF_SIDES*BLOCK_SIZE) tp <- "HD" if (is.null(tp)) stop ("Unexpected file size.") adf <- methods::new("amigaDisk", data = dat, type = tp) test_byte <- readBin(con, "raw", 1, endian = "big") if (length(test_byte) > 0) stop ("Unexpected file size.") return(adf) }) setGeneric("read.adz", function(file) standardGeneric("read.adz")) setMethod("read.adz", "character", function(file){ file <- file[[1]] con <- gzfile(file, "rb") adf <- read.adf(con) close(con) return(adf) }) setGeneric("write.adf", def = function(x, file){ standardGeneric("write.adf") }) setMethod("write.adf", c("amigaDisk", "ANY"), function(x, file) { con <- file if (!("connection" %in% class(con))) stop ("argument con is not a file connection!") con_info <- summary(con) if (!(con_info$text == "binary" && con_info$`can write` == "yes")) stop("Unsuitable connection provided. write.module() requires a connection to which binary data can be written.") writeBin(x@data, con, endian = "big") invisible() }) setMethod("write.adf", c("amigaDisk", "character"), function(x, file) { con <- file(file, "wb") write.adf(x, con) close(con) invisible() }) setGeneric("write.adz", def = function(x, file) standardGeneric("write.adz")) setMethod("write.adz", c("amigaDisk", "character"), function(x, file) { con <- gzfile(file, "wb") write.adf(x, con) close(con) invisible() }) setMethod("show", "amigaDisk", function(object) { print(object) }) setMethod("print", "amigaDisk", function(x, ...){ cat(paste("\nAmiga (", x@type ,") Disk File:\n", sep = "")) is.dos <- is.amigaDOS(x) cat(paste("\tType:\t\t\t" , c("Non-", "")[1 + is.bootable(x)], "bootable ", c("Non-DOS", "DOS")[1 + is.dos], "\n", sep = "")) if (is.dos) { ri <- root.info(x) bi <- boot.info(x) NUMBER_OF_SECTORS <- NUMBER_OF_SECTORS_DD if (x@type == "HD") NUMBER_OF_SECTORS <- NUMBER_OF_SECTORS_HD disk.full <- 100*(length(bitmap.info(x)) + 2)/(NUMBER_OF_SIDES*NUMBER_OF_CYLINDERS*NUMBER_OF_SECTORS) dir.cache <- bi$flag$dir.cache.mode intl <- bi$flag$intl.mode if (dir.cache) intl <- TRUE cat(paste("\tVolume name:\t\t" , ri$diskname, "\n", sep = "")) cat(sprintf("\tpercentage full:\t%0.1f%%\n", disk.full)) cat(paste("\tFast File System:\t" , bi$flag$fast.file.system, "\n", sep = "")) cat(paste("\tInternational mode:\t" , intl, "\n", sep = "")) cat(paste("\tDirect cache mode:\t" , dir.cache, "\n", sep = "")) } return(invisible(NULL)) }) setGeneric("is.amigaDOS", function(x) standardGeneric("is.amigaDOS")) setMethod("is.amigaDOS", "amigaDisk", function(x) { root.id <- get.root.id(x) bb <- boot.info(x) ri <- NULL try(ri <- root.info(x), T) result <- T why <- NULL notes <- NULL if (bb$disk.type != "DOS") { result <- F why <- c(why, "Disk type is not labeled as 'DOS'") } if (x@data[[4]] > as.raw(0x05)) { result <- F why <- c(why, "Unknown or unsupported file system flags") } if (bb$rootblock != root.id) notes <- c(notes, "Uncommon pointer to rootblock") if (is.null(ri)) { result <- F why <- c(why, "Invalid root block") } else { if (length(ri$type) == 0 || ri$type != "T_HEADER") { result <- F why <- c(why, "Root block is not of type 'T_HEADER'") } if (ri$checksum != calculate.checksum(x, root.id, as.raw = F)) { result <- F why <- c(why, "Root block checksum failed") } if (length(ri$sec_type) == 0 || ri$sec_type != "ST_ROOT") { result <- F why <- c(why, "Root block not found") } } attributes(result)$why <- why attributes(result)$notes <- notes return (result) }) setGeneric("is.bootable", function(x) standardGeneric("is.bootable")) setMethod("is.bootable", "amigaDisk", function(x) { bb <- boot.info(x) result <- T why <- NULL notes <- NULL if (bb$disk.type != "DOS") { result <- F why <- c(why, "disk type is not labeled as 'DOS'") } if (bb$checksum != calculate.boot.checksum(x, as.raw = F)) { result <- F why <- c(why, "Boot block checksum failed") } attributes(result)$why <- why attributes(result)$notes <- notes return (result) }) root.info <- function(x) { root.id <- get.root.id(x) root <- amigaBlock(x, root.id) ht_length <- BLOCK_SIZE/4 - 56 r_datetime <- rawToAmigaDate(root@data[ht_length*4 + 133:144]) v_datetime <- rawToAmigaDate(root@data[ht_length*4 + 185:196]) c_datetime <- rawToAmigaDate(root@data[ht_length*4 + 197:208]) name_len <- rawToAmigaInt(root@data[ht_length*4 + 145], 8, F) name_len[name_len > 30] <- 30 name_len[name_len < 1] <- 1 result <- list( type = TYPES$type[TYPES$value == rawToAmigaInt(root@data[1:4], 32, F)], headerkey = rawToAmigaInt(root@data[5:8], 32, F), highseq = rawToAmigaInt(root@data[9:12], 32, F), htsize = rawToAmigaInt(root@data[13:16], 32, F), first_data = rawToAmigaInt(root@data[17:20], 32, F), checksum = rawToAmigaInt(root@data[21:24], 32, F), ht = unlist(lapply(1:ht_length, function(y) rawToAmigaInt(root@data[(y*4 + 21):(y*4 + 24)], 32, F))), bm_flag = all(root@data[ht_length*4 + 25:28] == as.raw(c(0xff, 0xff, 0xff, 0xff))), bm_pages = unlist(lapply(1:25, function(y) rawToAmigaInt(root@data[(ht_length*4 + y*4 + 25):(ht_length*4 + y*4 + 28)], 32, F))), bm_ext = rawToAmigaInt(root@data[ht_length*4 + 129:132], 32, F), r_datetime = r_datetime, name_len = name_len, diskname = rawToChar(root@data[ht_length*4 + 146:(name_len + 145)]), unused1 = root@data[ht_length*4 + 176], unused2 = root@data[ht_length*4 + 177:184], v_datetime = v_datetime, c_datetime = c_datetime, next_hash = rawToAmigaInt(root@data[ht_length*4 + 209:212], 32, F), parent_dir = rawToAmigaInt(root@data[ht_length*4 + 213:216], 32, F), extension = rawToAmigaInt(root@data[ht_length*4 + 217:220], 32, F), sec_type = SEC_TYPES$type[SEC_TYPES$value == rawToAmigaInt(root@data[ht_length*4 + 221:224], 32, F)] ) result$diskname <- substr(result$diskname, 1, result$name_len) return(result) } header.info <- function(x, hash.table) { result <- lapply(hash.table, function(ht) { hblock <- amigaBlock(x, ht) ht_length <- BLOCK_SIZE/4 - 56 days <- rawToAmigaInt(hblock@data[ht_length*4 + 133:136], 32, F) mins <- rawToAmigaInt(hblock@data[ht_length*4 + 137:140], 32, F) ticks <- rawToAmigaInt(hblock@data[ht_length*4 + 141:144], 32, F) datetime <- days*24*60*60 + mins*60 + ticks/50 datetime <- as.POSIXct(datetime, tz = "UTC", origin = "1978-01-01 00:00:00") name_len <- rawToAmigaInt(hblock@data[ht_length*4 + 145], 8, F) name_len[name_len > 30] <- 30 name_len[name_len < 1] <- 1 header <- list( type = TYPES$type[TYPES$value == rawToAmigaInt(hblock@data[1:4], 32, F)], header_key = rawToAmigaInt(hblock@data[5:8], 32, F), high_seq = rawToAmigaInt(hblock@data[9:12], 32, F), data_size = rawToAmigaInt(hblock@data[13:16], 32, F), first_data = rawToAmigaInt(hblock@data[17:20], 32, F), checksum = rawToAmigaInt(hblock@data[21:24], 32, F), datablocks = unlist(lapply(1:ht_length, function(y) rawToAmigaInt(hblock@data[(y*4 + 21):(y*4 + 24)], 32, F))), unused1 = rawToAmigaInt(hblock@data[ht_length*4 + 25:28], 32, F), UID = rawToAmigaInt(hblock@data[ht_length*4 + 29:32], 32, F), GID = rawToAmigaInt(hblock@data[ht_length*4 + 33:36], 32, F), protect = as.logical(rawToBits(hblock@data[ht_length*4 + 33:36])), bytesize = rawToAmigaInt(hblock@data[ht_length*4 + 37:40], 32, F), comm_len = rawToAmigaInt(hblock@data[ht_length*4 + 41], 8, F), comment = rawToCharDot(hblock@data[ht_length*4 + 42:120]), unused2 = hblock@data[ht_length*4 + 121:132], datetime = datetime, name_len = name_len, file_name = rawToChar(hblock@data[ht_length*4 + 146:(145 + name_len)]), unused3 = hblock@data[ht_length*4 + 176], unused4 = hblock@data[ht_length*4 + 177:180], real_entry = rawToAmigaInt(hblock@data[ht_length*4 + 181:184], 32, F), next_link = rawToAmigaInt(hblock@data[ht_length*4 + 185:188], 32, F), unused5 = hblock@data[ht_length*4 + 189:208], hash_chain = rawToAmigaInt(hblock@data[ht_length*4 + 209:212], 32, F), parent = rawToAmigaInt(hblock@data[ht_length*4 + 213:216], 32, F), extension = rawToAmigaInt(hblock@data[ht_length*4 + 217:220], 32, F), sec_type = SEC_TYPES$type[SEC_TYPES$value == rawToAmigaInt(hblock@data[ht_length*4 + 221:224], 32, F)] ) header$file_name <- substr(header$file_name, 1, header$name_len) return(header) }) return(result) } setGeneric("current.adf.dir<-", function(x, value) standardGeneric("current.adf.dir<-")) setGeneric("current.adf.dir", function(x) standardGeneric("current.adf.dir")) setMethod("current.adf.dir", "amigaDisk", function(x){ root.id <- get.root.id(x) ri <- root.info(x) dir <- paste0(ri$diskname, ":") dir2 <- "" if ([email protected] != root.id) { dir3 <- [email protected] safeguard <- 0 while (T) { hi <- header.info(x, dir3)[[1]] dir3 <- hi$parent dir2 <- paste0(hi$file_name, "/", dir2) if (dir3 %in% c(0, root.id)) break safeguard <- safeguard + 1 if (safeguard > NUMBER_OF_SECTORS_HD*NUMBER_OF_CYLINDERS*NUMBER_OF_SIDES) stop("Seems like I'm stuck in an infinite loop.") } } return(paste0(dir, dir2)) }) setReplaceMethod("current.adf.dir", c("amigaDisk", "character"), function(x, value){ value <- value[[1]] header.id <- find.file.header(x, value) hi <- header.info(x, header.id)[[1]] if (!(hi$sec_type %in% c("ST_USERDIR", "ST_ROOT"))) stop ("value doesn't specify a directory") [email protected] <- as.integer(header.id) methods::validObject(x) return(x) }) setGeneric("list.adf.files", function(x, path) standardGeneric("list.adf.files")) setMethod("list.adf.files", c("amigaDisk", "missing"), function(x, path){ fi <- file.info(x, [email protected]) result <- unlist(lapply(fi, function(x) x$file_name)) if (is.null(result)) result <- character(0) return(result) }) setMethod("list.adf.files", c("amigaDisk", "character"), function(x, path){ header.id <- find.file.header(x, path) fi <- file.info(x, header.id) unlist(lapply(fi, function(x) x$file_name)) }) setGeneric("get.adf.file", function(x, source, destination) standardGeneric("get.adf.file")) setMethod("get.adf.file", c("amigaDisk", "character", "missing"), function(x, source, destination) { .get.adf.file(x, source) }) setMethod("get.adf.file", c("amigaDisk", "character", "character"), function(x, source, destination) { .get.adf.file(x, source, destination) }) setMethod("get.adf.file", c("amigaDisk", "character", "ANY"), function(x, source, destination) { .get.adf.file(x, source, destination) }) .get.adf.file <- function(x, source, destination) { if (!is.amigaDOS(x)) stop("Not a DOS disk!") bi <- boot.info(x) ffs <- bi$flag$fast.file.system hi <- header.info(x, find.file.header(x, source))[[1]] if (hi$sec_type != "ST_FILE") stop( "Provided path does not refer to a file.") filesize <- hi$bytesize db <- rev(hi$datablocks[hi$datablocks != 0]) while (hi$extension != 0) { hi <- header.info(x, hi$extension)[[1]] db <- c(db, rev(hi$datablocks[hi$datablocks != 0])) } dat <- lapply(db, function(db.i) { if (ffs) { amigaBlock(x, db.i)@data } else { amigaBlock(x, db.i)@data[25:512] } }) dat <- do.call(c, dat)[0:filesize] if (missing(destination)) { return(dat) } else { if (class(destination)[[1]] == "character") { destination <- destination[[1]] con <- file(destination, "wb") writeBin(dat, con) close(con) } else { if (!("connection" %in% class(destination))) stop ("argument destination is not a file connection!") con_info <- summary(destination) if (!(con_info$text == "binary" && con_info$`can write` == "yes")) stop("Unsuitable connection provided. get.adf.file() requires a binary connection to which data can be written.") writeBin(dat, destination) } return (invisible(NULL)) } } setGeneric("adf.disk.name", function(x) standardGeneric("adf.disk.name")) setGeneric("adf.disk.name<-", function(x, value) standardGeneric("adf.disk.name<-")) setMethod("adf.disk.name", "amigaDisk", function(x) { if (!is.amigaDOS(x)) stop("x is not a DOS formatted disk!") ri <- root.info(x) return(ri$diskname) }) setReplaceMethod("adf.disk.name", c("amigaDisk", "character"), function(x, value){ value <- value[[1]] if (nchar(value) == 0) stop("Name should be at least 1 character long.") if (nchar(value) > 30) { warning("Provided name is too long. It will be truncated.") value <- substr(value, 1, 30) } if (grepl("[:]|[/]", value)) stop("Disk name is not allowed to contain characters ':' or '/'.") value <- charToRaw(value) ht_length <- BLOCK_SIZE/4 - 56 root.id <- get.root.id(x) rblock <- amigaBlock(x, root.id) rblock@data[ht_length*4 + 145] <- amigaIntToRaw(length(value), 8, F) rblock@data[ht_length*4 + 146:(length(value) + 145)] <- value amigaBlock(x, root.id) <- rblock rblock@data[21:24] <- calculate.checksum(x, root.id, as.raw = T) amigaBlock(x, root.id) <- rblock return(x) }) find.file.header <- function(x, filename) { if (filename == "") return([email protected]) root.id <- get.root.id(x) boot <- boot.info(x) intl <- boot$flag$intl.mode if (boot$flag$dir.cache.mode) intl <- T cur.dir <- [email protected] fun <- function(x, b = intl) intl_toupper(x, b) diskname <- fun(adf.disk.name(x)) if (is.null(filename)) return (root.id) filename <- fun(as.character(filename)) result <- lapply(filename, function(f) { hasdevname <- grepl(":", f, fixed = T) f <- unlist(strsplit(f, ":", fixed = T)) if (length(f) > 2) stop("Multiple colons in file name.") if (length(f) == 1) { if (hasdevname && f != "DF0" && f != diskname) stop("Unknown devicename") if (hasdevname && (f == "DF0" || f == diskname)) return(root.id) path <- unlist(strsplit(f, "/", fixed=T)) if (any(diff(which(path != "")) > 1)) stop("unexpected double slashes in path") count.up <- sum(path == "") j <- 0 while (j != count.up) { if (cur.dir == root.id) stop("Can't go further down the directory tree than the disk's root.") info <- header.info(x, cur.dir) cur.dir <- info[[1]]$parent j <- j + 1 } path <- path[path != ""] } else { if (f[[1]] != "DF0" && f[[1]] != diskname) stop("Unknown devicename") f <- f[[2]] cur.dir <- root.id path <- unlist(strsplit(f, "/", fixed = T)) if (any(path == "")) stop ("unexpected double slashes in path") } lapply(path, function(pt) { header <- header.info(x, cur.dir)[[1]] if (header$sec_type == "ST_ROOT" || header$sec_type == "ST_USERDIR") { block <- header$datablocks[hash.name(pt, intl) + 1] } else { block <- header$header_key } safeguard <- 0 while (T) { hi <- header.info(x, block)[[1]] if (fun(hi$file_name) == fun(pt)) break if (hi$hash_chain == 0) break block <- hi$hash_chain safeguard <- safeguard + 1 if (safeguard > NUMBER_OF_SECTORS_HD*NUMBER_OF_CYLINDERS*NUMBER_OF_SIDES) stop("Seems like I'm stuck in an infinite loop.") } if (fun(hi$file_name) == fun(pt)) { cur.dir <<- hi$header_key } else { stop("File/Path not found...") } }) return(cur.dir) }) return (unlist(result)) } setGeneric("blank.amigaDOSDisk", function(diskname, disktype = c("DD", "HD"), filesystem = c("OFS", "FFS"), international = F, dir.cache = F, bootable = T, creation.date = Sys.time()) standardGeneric("blank.amigaDOSDisk")) setMethod("blank.amigaDOSDisk", "character", function(diskname, disktype, filesystem, international, dir.cache, bootable, creation.date) { disktype <- match.arg(disktype, c("DD", "HD")) filesystem <- match.arg(filesystem, c("OFS", "FFS")) filesystem <- filesystem == "FFS" international <- as.logical(international[[1]]) dir.cache <- as.logical(dir.cache[[1]]) root.id <- get.root.id(disktype) if (dir.cache && !international) stop ("International mode should be explicitly set to TRUE when directory cache mode is set to TRUE.") if (dir.cache) international <- FALSE boot <- charToRaw("DOS") boot <- c(boot, packBits(rev(c(rep(F, 5), dir.cache, international, filesystem))), raw(4), amigaIntToRaw(root.id, 32)) if (bootable) boot <- c(boot, unlist(adfExplorer::boot.block.code$assembled)) boot <- c(boot, raw(BLOCK_SIZE - length(boot))) checksum <- calculate.boot.checksum.dat(boot) boot[5:8] <- checksum boot <- methods::new("amigaBlock", data = boot) disk <- methods::new("amigaDisk") amigaBlock(disk, 0) <- boot create <- amigaDateToRaw(creation.date) ht_length <- BLOCK_SIZE/4 - 56 rblock <- c(TYPES$value[TYPES$type == "T_HEADER"], rep(0, 2), ht_length, 0, 0, rep(0, ht_length), 0x100000000 - 1, root.id + 1, rep(0, 25), rep(0,3), 16777216, rep(0, 9), rep(0, 8), ifelse(dir.cache, root.id + 2, 0), SEC_TYPES$value[SEC_TYPES$type == "ST_ROOT"]) rblock <- amigaIntToRaw(rblock, 32) rblock[ht_length*4 + 133:144] <- create rblock[ht_length*4 + 185:196] <- create rblock[ht_length*4 + 197:208] <- create rblock[21:24] <- calculate.checksum(rblock) rblock <- methods::new("amigaBlock", data = c(rblock, raw(BLOCK_SIZE - length(rblock)))) amigaBlock(disk, root.id) <- rblock adf.disk.name(disk) <- diskname NUMBER_OF_SECTORS <- ifelse(disktype == "DD", NUMBER_OF_SECTORS_DD, NUMBER_OF_SECTORS_HD) bitmap <- rep(T, NUMBER_OF_CYLINDERS*NUMBER_OF_SIDES*NUMBER_OF_SECTORS) bitmap[root.id + 0:1 - 1] <- F if (dir.cache) bitmap[root.id + 1] <- F bitmap <- bitmapToRaw(bitmap) bitmap <- c(raw(4), bitmap, raw(BLOCK_SIZE - length(bitmap) - 4)) bitmap[1:4] <- calculate.checksum(bitmap, chcksm.pos = 1) bmblock <- methods::new("amigaBlock", data = bitmap) amigaBlock(disk, root.id + 1) <- bmblock if (dir.cache) { dc <- .make.dir.cache.block(data.frame(), root.id, root.id + 2)[[1]] dcblock <- methods::new("amigaBlock", data = dc) amigaBlock(disk, root.id + 2) <- dcblock } return (disk) }) setGeneric("allocate.amigaBlock", function(x, number) standardGeneric("allocate.amigaBlock")) setMethod("allocate.amigaBlock", c("amigaDisk", "missing"), function(x, number) { allocate.amigaBlock(x, 1) }) setMethod("allocate.amigaBlock", c("amigaDisk", "numeric"), function(x, number) { NUMBER_OF_SECTORS <- NUMBER_OF_SECTORS_DD if (x@type == "HD") NUMBER_OF_SECTORS <- NUMBER_OF_SECTORS_HD maxblock <- NUMBER_OF_SECTORS*NUMBER_OF_CYLINDERS*NUMBER_OF_SIDES number <- round(number[[1]]) if (number < 1) stop("Number of blocks to be allocated should be at least 1.") root.id <- get.root.id(x@type) bm <- bitmap.info(x) idx <- c(root.id:(maxblock - 1), 2:(root.id -1)) idx <- idx[!(idx %in% bm)] if (number > length(idx)) stop("Cannot allocate sufficient blocks.") return(idx[1:number]) }) setGeneric("reserve.amigaBlock", function(x, blocks) standardGeneric("reserve.amigaBlock")) setMethod("reserve.amigaBlock", c("amigaDisk", "numeric"), function(x, blocks) { NUMBER_OF_SECTORS <- ifelse(x@type == "DD", NUMBER_OF_SECTORS_DD, NUMBER_OF_SECTORS_HD) ri <- root.info(x) bitmap <- rep(T, NUMBER_OF_CYLINDERS*NUMBER_OF_SIDES*NUMBER_OF_SECTORS) bitmap[c(bitmap.info(x), blocks) - 1] <- F bitmap <- bitmapToRaw(bitmap) bitmap <- c(raw(4), bitmap, raw(BLOCK_SIZE - length(bitmap) - 4)) bitmap[1:4] <- calculate.checksum(bitmap, chcksm.pos = 1) bm <- ri$bm_pages[ri$bm_pages != 0] if (length(bm) > 1) stop("unexpected multiple bitmap blocks found on disk, only the first will be updated.") bm <- bm[[1]] x@data[bm*BLOCK_SIZE + 1:BLOCK_SIZE] <- bitmap return(x) }) setGeneric("clear.amigaBlock", function(x, blocks) standardGeneric("clear.amigaBlock")) setMethod("clear.amigaBlock", c("amigaDisk", "numeric"), function(x, blocks) { NUMBER_OF_SECTORS <- ifelse(x@type == "DD", NUMBER_OF_SECTORS_DD, NUMBER_OF_SECTORS_HD) ri <- root.info(x) bitmap <- rep(T, NUMBER_OF_CYLINDERS*NUMBER_OF_SIDES*NUMBER_OF_SECTORS) bitmap[bitmap.info(x) - 1] <- F bitmap[blocks - 1] <- T bitmap <- bitmapToRaw(bitmap) bitmap <- c(raw(4), bitmap, raw(BLOCK_SIZE - length(bitmap) - 4)) bitmap[1:4] <- calculate.checksum(bitmap, chcksm.pos = 1) bm <- ri$bm_pages[ri$bm_pages != 0] if (length(bm) > 1) stop("unexpected multiple bitmap blocks found on disk, only the first will be updated.") bm <- bm[[1]] x@data[bm*BLOCK_SIZE + 1:BLOCK_SIZE] <- bitmap return(x) })
`itemFitPlot` <- function(raschResult, itemSet, useItemNames = TRUE, fitStat = "infit", plotTitle="Item Fit Plot", xlab, ylab, xlim, ylim, refLines, col = c("black","white"), colTheme, gDevice, file){ if(! missing(colTheme)){ if(colTheme=="dukes"){ col <- c(" } else if(colTheme=="spartans"){ col <- c(" } else if(colTheme=="cavaliers"){ col <- c(" } else if(colTheme=="greys"){ col <- c("black","lightgrey") } else { col <- c("black","white") } } if(missing(ylab)) ylab <- "Difficulty" if(missing(itemSet)){ itemSet <- 1:raschResult$i.stat$n.i } else{ nameSet <- colnames(raschResult$item.par$delta) %in% itemSet if(any(nameSet)) itemSet <- nameSet } fitV <- raschResult$item.par$in.out[itemSet,fitStat] if(fitStat=="infit"){ refBump <- .1 if(missing(xlab)) xlab <- "Infit" if(missing(refLines)) refLines <- c(.7,1.3) } else if(fitStat=="outfit"){ refBump <- .1 if(missing(xlab)) xlab <- "Outfit" if(missing(refLines)) refLines <- c(.7,1.3) } else if(fitStat=="in.Z"){ refBump <- .2 if(missing(xlab)) xlab <- "Standardized Infit" if(missing(refLines)) refLines <- c(-2,2) } else{ refBump <- .2 fitStat <- "out.Z" if(missing(xlab)) xlab <- "Standardized Outfit" if(missing(refLines)) refLines <- c(-2,2) } if(missing(xlim)){ xlim <- range(fitV) xlim[1] <- xlim[1] - .1 xlim[2] <- xlim[2] + .1 if(xlim[1] > refLines[1]) xlim[1] <- refLines[1] - refBump if(xlim[2] < refLines[2]) xlim[2] <- refLines[2] + refBump } if(useItemNames){ itemNames <- colnames(raschResult$item.par$delta)[itemSet] } else{ itemNames <- paste(itemSet) } myWidth <- 4 if(missing(gDevice)) gDevice <- "screen" if(gDevice == "screen"){ dev.new(width=myWidth) } else if(gDevice=="jpg" | gDevice=="jpeg"){ if(missing(file)) file <- "itemFitPlot.jpg" jpeg(width=480*myWidth/5, filename=file) } else if(gDevice=="png"){ if(missing(file)) file <- "itemFitPlot.png" png(width=480*myWidth/5, filename=file) } plot(fitV, raschResult$item.par$delta.i[itemSet], xlim=xlim, type="n", xlab=xlab, ylab=ylab, main=plotTitle) polygon(c(refLines[2],refLines[2],500,500),c(-500,500,500,-500),col=col[2]) polygon(c(refLines[1],refLines[1],-500,-500),c(-500,500,500,-500),col=col[2]) text(fitV, raschResult$item.par$delta.i[itemSet], col=col[1], labels=itemNames) abline(v=refLines) if(gDevice != "screen") dev.off() }
library(forecastML) library(dplyr) library(lubridate) test_that("create_windows with dates is correct", { dates <- seq(as.Date("2015-01-01"), as.Date("2020-12-01"), by = "1 month") data <- data.frame( "outcome" = 1:length(dates), "feature" = 1:length(dates) * 2 ) data_test <- data lookback <- 1:12 data_test <- forecastML::create_lagged_df(data_test, horizons = 3, lookback = lookback, dates = dates, frequency = "1 month") window_length <- 1 windows <- forecastML::create_windows(data_test, window_length = window_length) testthat::expect_identical(windows$start, windows$stop) }) test_that("create_windows with the same start and stop date for 1 unit of time is correct", { dates <- seq(as.Date("2015-01-01"), as.Date("2020-12-01"), by = "1 month") data <- data.frame( "outcome" = 1:length(dates), "feature" = 1:length(dates) * 2 ) data_test <- data lookback <- 1:12 data_test <- forecastML::create_lagged_df(data_test, horizons = 3, lookback = lookback, dates = dates, frequency = "1 month") window_length <- 1 windows <- forecastML::create_windows(data_test, window_length = window_length) testthat::expect_identical(windows$start, windows$stop) }) test_that("create_windows length and skip with dates is correct", { dates <- seq(as.Date("2015-01-01"), as.Date("2020-12-01"), by = "1 month") data <- data.frame( "outcome" = 1:length(dates), "feature" = 1:length(dates) * 2 ) data_test <- data lookback <- 1:12 data_test <- forecastML::create_lagged_df(data_test, horizons = 3, lookback = lookback, dates = dates, frequency = "1 month") window_start_true <- as.Date(c("2017-01-01", '2019-05-01')) window_stop_true <- as.Date(c("2018-03-01", '2019-07-01')) windows <- forecastML::create_windows(data_test, window_start = window_start_true, window_stop = window_stop_true) testthat::expect_true(all(windows$start == window_start_true)) testthat::expect_true(all(windows$stop == window_stop_true)) })
context("core functions return expected objects") api_root <- "https://echodata.epa.gov/echo/" set_redactor(function (response) { response %>% gsub_response(api_root, "api/", fixed = TRUE) }) set_requester(function (request) { request %>% gsub_request(api_root, "api/", fixed = TRUE) }) with_mock_api({ test_that("core functions return tbl_df", { expect_is( echoAirGetFacilityInfo( p_pid = "NC0000003706500036", output = "df", qcolumns = "3,4,5" ), "tbl_df" ) expect_is(echoSDWGetMeta(verbose = FALSE), "tbl_df") expect_is(echoGetCAAPR(p_id = '110000350174'), "tbl_df") expect_is(echoGetEffluent(p_id = "tx0124362", parameter_code = "50050"), "tbl_df") expect_is(echoGetReports( program = "caa", p_id = '110000350174', verbose = FALSE ), "tbl_df") expect_is( echoGetReports( program = "cwa", p_id = "tx0124362", parameter_code = "50050", verbose = FALSE ), "tbl_df" ) expect_is(echoSDWGetSystems( p_co = "Brazos", p_st = "tx", verbose = FALSE ), "tbl_df") expect_is( echoWaterGetFacilityInfo( p_pid = "ALR040033", output = "df", qcolumns = "3,4,5" ), "tbl_df" ) expect_is(echoWaterGetParams(term = "Oxygen, dissolved"), "tbl_df") expect_is(echoWaterGetParams(code = "00300"), "tbl_df") expect_is( echoGetFacilities( program = "cwa", p_pid = "ALR040033", output = "df", qcolumns = "1,2,3" ), "tbl_df" ) }) }) with_mock_api({ test_that("core functions return sf", { expect_is( echoAirGetFacilityInfo( p_pid = "NC0000003706500036", output = "sf", verbose = FALSE ), "sf" ) expect_is(echoWaterGetFacilityInfo(p_pid = "ALR040033", output = "sf"), "sf") }) })
pairwiseModelAnova = function (fits, ...) { fits = list(fits, ...) n = length(fits) N = n*(n-1)/2 Y = data.frame(Model=rep("A",n), Call=rep("A",n), stringsAsFactors=FALSE) for(i in 1:n) { Y[i,]= deparse(formula(fits[[i]])) } Z = data.frame(Comparison = rep("A", N), Df.diff = rep(NA, N), RSS.diff = rep(NA, N), F = rep(NA, N), p.value = rep(NA, N), stringsAsFactors=FALSE) k=0 for(i in 1:(n-1)){ for(j in (i+1):n){ k=k+1 Namea = as.character(i) Nameb = as.character(j) av = anova(fits[[i]], fits[[j]]) Z[k,] =c(paste0(Namea, " - ", Nameb, " = 0"), as.numeric(av$Df[2]), signif(as.numeric(av$"Sum of Sq"[2], digits=4)), signif(as.numeric(av$F[2], digits=4)), signif(as.numeric(av$"Pr(>F)"[2], digits=4)) ) } } X = data.frame(Comparison = rep("A", N), Df.diff = rep(NA, N), LogLik.diff= rep(NA, N), Chi.sq = rep(NA, N), p.value = rep(NA, N), stringsAsFactors=FALSE) k=0 for(i in 1:(n-1)){ for(j in (i+1):n){ k=k+1 Namea = as.character(i) Nameb = as.character(j) lr = lrtest(fits[[i]], fits[[j]]) X[k,] =c(paste0(Namea, " - ", Nameb, " = 0"), as.numeric(lr$Df[2]), signif(as.numeric(lr$LogLik[2])-as.numeric(lr$LogLik[1]), digits=4), signif(as.numeric(lr$Chisq[2]), digits=4), signif(as.numeric(lr$"Pr(>Chisq)"[2]), digits=4) ) } } W = list(Y, Z, X) names(W) = c("Models", "Anova.test.table", "Likelihood.ratio.test.table") return(W) }
is_corpus_df <- function(corpus) { stopifnot(inherits(corpus, "data.frame"), ncol(corpus) >= 2, all(names(corpus)[1L:2L] == c("doc_id", "text")), is.character(corpus$doc_id), is.character(corpus$doc_id), nrow(corpus) > 0) TRUE } corpus_df_as_corpus_vector <- function(corpus) { if (is_corpus_df(corpus)) { out <- corpus$text names(out) <- corpus$doc_id } else { stop("Not a corpus data.frame") } out }
svc <- paws::cloudhsm()
contract_phenocam = function(data, internal = TRUE, no_padding = FALSE, out_dir = tempdir()) { if(class(data) != "phenocamr"){ if(file.exists(data)){ data = read_phenocam(data) on_disk = TRUE } else { stop("not a valid PhenoCam data frame or file") } } else { on_disk = FALSE } df = data$data if (!no_padding){ loc = seq(2, 366, 3) df = df[which(as.numeric(df$doy) %in% loc), ] } else { df = df[which(!is.na(df$image_count)),] } data$data = df if(on_disk | !internal ){ write_phenocam(data, out_dir = out_dir) } else { class(data) = "phenocamr" return(data) } }
library(ggplot2) library(dplyr) library(ggthemes) tread_PME_local<- format_results(teste_PME) %>% mutate( local = "Local", dataset = "PME") %>% mutate_each('as.character', period) %>% mutate_each(funs(rm_mb),size) %>% mutate_each("as.numeric", time) tread_POF_local <- mutate(teste_read_POF, local = "Local", dataset = "POF") %>% rename(ft = file)%>% mutate_each("as.character", period) %>% mutate_each(funs(rm_mb), size) %>% mutate_each("as.numeric", time) %>% mutate_each("as.logical", error) tread_PNADContinua_local<- teste_PNADContinua %>% format_results() %>% mutate( local = "Local", dataset = "PNADContinua")%>% mutate_each('as.character', period) %>% mutate_each(funs(rm_mb),size) %>% mutate_each("as.numeric", time) tread_CensoEducacaoSuperior_local<- teste_read_CensoEducacaoSuperior %>% format_results %>% mutate( local = "Local", dataset = "CensoEducacaoSuperior")%>% mutate_each('as.character', period) %>% mutate_each(funs(rm_mb),size) %>% mutate_each("as.numeric", time) tread_PNAD_local<- teste_read_PNAD %>% format_results %>% mutate( local = "Local", dataset = "PNAD")%>% mutate_each('as.character', period) %>% mutate_each(funs(rm_mb),size) %>% mutate_each("as.numeric", time) tread_CENSO_servidor <- teste_CensoIBGE_sstata2local_read %>% rename(period = year) %>% format_results %>% mutate_each('as.character', period) %>% mutate(dataset= "CENSO", local = "Servidor") all_tests<- lapply(ls()[grepl(ls(), pattern = "tread")],get) %>% bind_rows lapply(ls()[grepl(ls(), pattern = "teste_read")],get) %>% lapply(str)->x gdata<- filter(all_tests, !is.na(error) | error != TRUE) %>% mutate(key = paste0(dataset,"-",ft)) gdata<- filter(gdata,!(time < 60 & period == 2000)) plot3<- ggplot(gdata %>% filter(time<60 & !error & dataset != "CENSO") , aes(x = size, y = time, color = key)) + geom_point() + labs(title = "Desempenho das bases de dados com tempo de carregamento menor que 1 minuto", x = "Tamanho(em Mb)", y = "Tempo de carregamento( em s)") + facet_grid(~dataset) + scale_color_hue(guide = FALSE) + theme(plot.title = element_text(size = 15, hjust = 0, vjust = 1, margin = margin(10,10,25,10))) plot4<- ggplot(gdata %>% filter(time>60 & !error & dataset != "CENSO") , aes(x = size, y = time, color = key)) + geom_point() + labs(title = "Desempenho das bases de dados com tempo de carregamento menor que 1 minuto", x = "Tamanho(em Mb)", y = "Tempo de carregamento( em s)") + facet_grid(~dataset) + scale_color_hue(guide = FALSE) + theme(plot.title = element_text(size = 15, hjust = 0, vjust = 1, margin = margin(10,10,25,10)))
lasso_deltas <- function(X, y, lambda = NULL, verbose = FALSE, alpha = 1, rank_fn = order_plain, k = ncol(X)) { if (k < ncol(X)) { fsel <- rank_fn(X, y)[1:k] X <- X[, fsel, drop = FALSE] } if (is.null(lambda)) { lasso.fit <- cv.glmnet(x = X, y = y, alpha = alpha, nlambda = 500, family = "multinomial") } else { lasso.fit <- cv.glmnet(x = X, y = y, alpha = alpha, lambda = lambda, family = "multinomial", nfolds = 5) } if (verbose) message("The best lambda chosen by CV: ", lasso.fit$lambda.min ,"\n") betas <- coef(lasso.fit, s = "lambda.min") mbetas <- as.matrix(Reduce(cbind, betas)) deltas <- mbetas[, -1, drop = FALSE] - mbetas[, 1] return (deltas) }
rvec2 <- function(x, y, n, j, k, e1, e2) { R <- array(0, 5) jp1 <- j + 1 kp1 <- k + 1 y1j <- sum(y[1:j]) yjk <- sum(y[jp1:k]) ykn <- sum(y[kp1:n]) xy1j <- sum(x[1:j] * y[1:j]) xyjk <- sum(x[jp1:k] * y[jp1:k]) x2yjk <- sum(x[jp1:k]^2 * y[jp1:k]) xykn <- sum(x[kp1:n] * y[kp1:n]) R[1] <- e1 * (y1j + ykn) + e2 * yjk R[2] <- e1 * (xy1j + x[j] * ykn) + e2 * x[j] * yjk R[3] <- e1 * (x[k] - x[j]) * ykn + e2 * (xyjk - x[j] * yjk) R[4] <- e1 * (x[k]^2 - x[j]^2) * ykn + e2 * (x2yjk - x[j]^2 * yjk) R[5] <- e1 * (xykn - x[k] * ykn) list(r = R) }
db_compute.AthenaConnection <- function(con, table, sql, ...) { in_schema <- pkg_method("in_schema", "dbplyr") if(athena_unload()){ stop( "Unable to create table when `noctua_options(unload = TRUE)`. Please run `noctua_options(unload = FALSE)` and try again.", call. = FALSE ) } table <- athena_query_save(con, sql, table, ...) ll <- db_detect(con, table) in_schema(ll[["dbms.name"]], ll[["table"]]) } athena_query_save <- function(con, sql, name , file_type = c("NULL","csv", "tsv", "parquet", "json", "orc"), s3_location = NULL, partition = NULL, compress = TRUE, ...){ stopifnot(is.null(s3_location) || is.s3_uri(s3_location)) file_type = match.arg(file_type) tt_sql <- SQL(paste0("CREATE TABLE ", paste0('"',unlist(strsplit(name,"\\.")),'"', collapse = '.'), " ", ctas_sql_with(partition, s3_location, file_type, compress), "AS ", sql, ";")) res <- dbExecute(con, tt_sql, unload = FALSE) dbClearResult(res) return(name) } db_copy_to.AthenaConnection <- function(con, table, values, overwrite = FALSE, append = FALSE, types = NULL, partition = NULL, s3_location = NULL, file_type = c("csv", "tsv", "parquet"), compress = FALSE, max_batch = Inf, ...){ types <- types %||% dbDataType(con, values) names(types) <- names(values) file_type = match.arg(file_type) dbWriteTable(conn = con, name = table, value = values, overwrite = overwrite, append = append, field.types = types, partition = partition, s3.location = s3_location, file.type = file_type, compress = compress, max.batch = max_batch) return(table) } dbplyr_edition.AthenaConnection <- function(con) 2L NULL athena_conn_desc <- function(con){ info <- dbGetInfo(con) profile <- if(!is.null(info$profile_name)) paste0(info$profile_name, "@") paste0("Athena ",info$paws," [",profile,info$region_name,"/", info$dbms.name,"]") } db_connection_describe.AthenaConnection <- function(con) { athena_conn_desc(con) } NULL athena_explain <- function(con, sql, format = "text", type=NULL, ...){ if(athena_unload()){ stop( "Unable to explain query plan when `noctua_options(unload = TRUE)`. Please run `noctua_options(unload = FALSE)` and try again.", call. = FALSE ) } format <- match.arg(format, c("text", "json")) if(!is.null(type)) { type <- match.arg(type, c("LOGICAL", "DISTRIBUTED", "VALIDATE", "IO")) format <- NULL } build_sql <- pkg_method("build_sql", "dbplyr") dplyr_sql <- pkg_method("sql", "dbplyr") build_sql( "EXPLAIN ", if (!is.null(format)) dplyr_sql(paste0("(FORMAT ", format, ") ")), if (!is.null(type)) dplyr_sql(paste0("(TYPE ", type, ") ")), dplyr_sql(sql), con = con ) } sql_query_explain.AthenaConnection <- athena_explain sql_query_fields.AthenaConnection <- function(con, sql, ...) { if(inherits(sql, "ident")) { return(sql) } else { dbplyr_query_select <- pkg_method("dbplyr_query_select", "dbplyr") sql_subquery <- pkg_method("sql_subquery", "dplyr") dplyr_sql <- pkg_method("sql", "dplyr") return(dbplyr_query_select(con, dplyr_sql("*"), sql_subquery(con, sql), where = dplyr_sql("0 = 1"))) } } sql_escape_date.AthenaConnection <- function(con, x) { dbQuoteString(con, x) } sql_escape_datetime.AthenaConnection <- function(con, x) { str = dbQuoteString(con, x) return(gsub("^date ", "timestamp ", str)) } db_desc.AthenaConnection <- function(x) { return(athena_conn_desc(x)) } db_explain.AthenaConnection <- function(con, sql, ...){ sql <- athena_explain(con, sql, ...) expl <- dbGetQuery(con, sql, unload = FALSE) out <- utils::capture.output(print(expl)) paste(out, collapse = "\n") } athena_query_fields_ident <- function(con, sql){ if (grepl("\\.", sql)) { schema_parts <- gsub('"', "", strsplit(sql, "\\.")[[1]]) } else { schema_parts <- c(con@info$dbms.name, gsub('"', "", sql)) } tryCatch( output <- con@ptr$glue$get_table( DatabaseName = schema_parts[1], Name = schema_parts[2])$Table ) col_names = vapply(output$StorageDescriptor$Columns, function(y) y$Name, FUN.VALUE = character(1)) partitions = vapply(output$PartitionKeys,function(y) y$Name, FUN.VALUE = character(1)) return(c(col_names, partitions)) } db_query_fields.AthenaConnection <- function(con, sql, ...) { if(inherits(sql, "ident")) { return(athena_query_fields_ident(con, sql)) } else { sql_select <- pkg_method("sql_select", "dplyr") sql_subquery <- pkg_method("sql_subquery", "dplyr") dplyr_sql <- pkg_method("sql", "dplyr") sql <- sql_select(con, dplyr_sql("*"), sql_subquery(con, sql), where = dplyr_sql("0 = 1")) qry <- dbSendQuery(con, sql) on.exit(dbClearResult(qry)) res <- dbFetch(qry, 0) return(names(res)) } }
"print.humpfit" <- function(x, ...) { cat("\nHump-backed Null model of richness vs. productivity\n\n") cat("Family:", family(x)$family,"\n") cat("Link function: Fisher diversity\n\n") cat("Coefficients:\n\n") print(coef(x)) cat("\nDeviance", deviance(x), "with", df.residual(x)) cat(" residual degrees of freedom\n") invisible(x) }
setGeneric("compare", function(e1, e2, comparison, target) { standardGeneric("compare") }) NULL setGeneric("%i>%", function(e1, e2) { standardGeneric("%i>%") }) setGeneric("%i<%", function(e1, e2) { standardGeneric("%i<%") }) setGeneric("%i>=%", function(e1, e2) { standardGeneric("%i>=%") }) setGeneric("%i<=%", function(e1, e2) { standardGeneric("%i<=%") }) setGeneric("%i==%", function(e1, e2) { standardGeneric("%i==%") }) setGeneric("%i!=%", function(e1, e2) { standardGeneric("%i!=%") }) matchTemplate <- function(image, template, method, mask = NULL, target = "new") { if (!isImage(image)) stop("This is not an Image object.") if (template$nrow() > image$nrow() | template$ncol() > image$ncol()) stop("The dimensions of 'template' must be not greater than that of 'image'.") if (template$nchan() != image$nchan() | template$depth() != image$depth()) stop("'template' must have the same number of channels and bit depth as 'image'.") meth <- switch(method, "SQDIFF" = 0, "SQDIFF_NORMED" = 1, "CCORR" = 2, "CCORR_NORMED" = 3, "CCOEFF" = 4, "CCOEFF_NORMED" = 5, stop("Unsupported method.") ) if (!is.null(mask) & meth == 5) { mask <- NULL warning("This method does not support masks. The mask is ignored.") } if (isImage(target)) { if (target$nchan() != 1 | target$depth() != "32F") stop("'target' must be a single channel, 32F Image object.") if (target$nrow() != (image$nrow() - template$nrow() + 1) | target$ncol() != (image$ncol() - template$ncol() + 1)) stop("Incorrect 'target' dimensions.") if (is.null(mask)) { `_matchTemplateNoMask`(image, template, meth, target) } else { if (!all(template$dim() == mask$dim())) stop("'mask' and 'template' must have the same dimensions.") if (mask$nchan() != template$nchan() & mask$nchan() != 1) stop("'mask' must either have one channel or the same number of channels as 'template'.") if (mask$depth() != "8U" & mask$depth() != "32F") stop("'mask' must either be a 8U or 32F Image object.") `_matchTemplate`(image, template, meth, mask, target) } } else if (target == "new") { out <- zeros(image$nrow() - template$nrow() + 1, image$ncol() - template$ncol() + 1, 1, "32F") if (is.null(mask)) { `_matchTemplateNoMask`(image, template, meth, out) } else { if (!all(template$dim() == mask$dim())) stop("'mask' and 'template' must have the same dimensions.") if (mask$nchan() != template$nchan() & mask$nchan() != 1) stop("'mask' must either have one channel or the same number of channels as 'template'.") if (mask$depth() != "8U" & mask$depth() != "32F") stop("'mask' must either be a 8U or 32F Image object.") `_matchTemplate`(image, template, meth, mask, out) } out } else { stop("Invalid target.") } } inRange <- function(image, low = 0, up = 255, target = "new") { if (!isImage(image)) stop("'image' is not an Image object.") low <- rep(low, length.out = image$nchan()) up <- rep(up, length.out = image$nchan()) if (isImage(target)) { `_inRange`(image, low, up, target) } else if (target == "new") { out <- zeros(nrow(image), ncol(image), 1, "8U") `_inRange`(image, low, up, out) out } else { stop("Invalid target.") } }
context("EQ-5D-Y") test_that("EQ-5D-Y Slovenia gives correct answer", { expect_equal(eq5dy(c(MO=1,SC=1,UA=1,PD=1,AD=1), "Slovenia"), 1) expect_equal(eq5dy(c(MO=1,SC=1,UA=1,PD=1,AD=2), "Slovenia"), 0.883) expect_equal(eq5dy(c(MO=1,SC=2,UA=3,PD=2,AD=1), "Slovenia"), 0.469, tolerance = .0011) expect_equal(eq5dy(c(MO=2,SC=1,UA=2,PD=1,AD=2), "Slovenia"), 0.694) expect_equal(eq5dy(c(MO=2,SC=2,UA=2,PD=2,AD=2), "Slovenia"), 0.485, tolerance = .0011) expect_equal(eq5dy(c(MO=2,SC=3,UA=2,PD=3,AD=2), "Slovenia"), 0.010) expect_equal(eq5dy(c(MO=3,SC=1,UA=1,PD=3,AD=3), "Slovenia"), -0.148) expect_equal(eq5dy(c(MO=3,SC=3,UA=3,PD=2,AD=2), "Slovenia"), -0.128, tolerance = .0011) expect_equal(eq5dy(c(MO=3,SC=3,UA=3,PD=3,AD=3), "Slovenia"), -0.691) }) test_that("EQ-5D-Y Japan gives correct answer", { expect_equal(eq5dy(c(MO=1,SC=1,UA=1,PD=1,AD=1), "Japan"), 1) expect_equal(eq5dy(c(MO=1,SC=2,UA=1,PD=1,AD=1), "Japan"), 0.957) expect_equal(eq5dy(c(MO=2,SC=2,UA=2,PD=2,AD=2), "Japan"), 0.753) expect_equal(eq5dy(c(MO=3,SC=3,UA=3,PD=3,AD=3), "Japan"), 0.288, tolerance = .0011) }) context("EQ-5D-Y Incorrect params") test_that("EQ-5D-Y throws error for incorrect parameters", { expect_error(eq5dy(c(MO=1,SC=2,UA=5,PD=2,AD=1), "Slovenia")) expect_error(eq5dy(c(M0=1,SC=2,UA=5,PD=2,AD=1), "Slovenia")) expect_error(eq5dy(c(MO=1,SC=2,UA=3,PD=2,AD=1), "Liechtenstein")) })
add_minimum_distance <- function(data) { if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type %in% c("dyad_year", "leader_dyad_year")) { if (length(attributes(data)$ps_system) > 0 && attributes(data)$ps_system == "cow") { cow_mindist %>% rename(ccode1 = .data$ccode2, ccode2 = .data$ccode1) %>% bind_rows(cow_mindist, .) -> hold_cow data %>% left_join(., hold_cow) -> data return(data) } else if (length(attributes(data)$ps_system) > 0 && attributes(data)$ps_system == "gw") { gw_mindist %>% rename(gwcode1 = .data$gwcode2, gwcode2 = .data$gwcode1) %>% bind_rows(gw_mindist, .) -> hold_gw data %>% left_join(., hold_gw) -> data return(data) } else { stop("add_minimum_distance() requires either Correlates of War ('cow') or Gleditsch-Ward ('gw') as system type.") } } else if (length(attributes(data)$ps_data_type) > 0 && attributes(data)$ps_data_type %in% c("state_year", "leader_year")) { if (length(attributes(data)$ps_system) > 0 && attributes(data)$ps_system == "cow") { cow_mindist %>% group_by(.data$ccode1, .data$year) %>% summarize(minmindist = min(.data$mindist, na.rm = TRUE)) %>% ungroup() %>% rename(ccode = .data$ccode1) %>% left_join(data, .) -> data return(data) } else if (length(attributes(data)$ps_system) > 0 && attributes(data)$ps_system == "gw") { gw_mindist %>% group_by(.data$gwcode1, .data$year) %>% summarize(minmindist = min(.data$mindist, na.rm = TRUE)) %>% ungroup() %>% rename(gwcode = .data$gwcode1) %>% left_join(data, .) -> data return(data) } else { stop("add_minimum_distance() requires either Correlates of War ('cow') or Gleditsch-Ward ('gw') as system type.") } } else { stop("add_minimum_distance() requires a data/tibble with attributes$ps_data_type of state_year or dyad_year. Try running create_dyadyears() or create_stateyears() at the start of the pipe.") } }
transform_puni <- function(res.fe, res.es, side) { if(side == "left") { est <- res.es$est * -1 tmp <- res.es$ci.ub ci.ub <- res.es$ci.lb * -1 ci.lb <- tmp * -1 est.fe <- res.fe$est.fe * -1 tmp <- res.fe$ci.ub.fe ci.ub.fe <- res.fe$ci.lb.fe * -1 ci.lb.fe <- tmp * -1 se.fe <- res.fe$se.fe zval.fe <- res.fe$zval.fe * -1 } else { est <- res.es$est ci.lb <- res.es$ci.lb ci.ub <- res.es$ci.ub est.fe <- res.fe$est.fe ci.lb.fe <- res.fe$ci.lb.fe ci.ub.fe <- res.fe$ci.ub.fe se.fe <- res.fe$se.fe zval.fe <- res.fe$zval.fe } return(data.frame(est = est, ci.lb = ci.lb, ci.ub = ci.ub, est.fe = est.fe, zval.fe = zval.fe, ci.lb.fe = ci.lb.fe, ci.ub.fe = ci.ub.fe, se.fe = se.fe)) }
VDJ_Vgene_usage_stacked_barplot <- function(VDJ, HC.gene.number, Fraction.HC, LC.Vgene, LC.gene.number, Fraction.LC, platypus.version){ Vgene <- NULL Percentage <- NULL Nr_of_VDJ_chains <- NULL Nr_of_VJ_chains <- NULL sample_id <- NULL Sample <- NULL Frequency <- NULL if (missing(Fraction.HC)) Fraction.HC <- 0 if (missing(HC.gene.number)) HC.gene.number <- 10 if (missing(LC.Vgene)) LC.Vgene <- FALSE if (missing(Fraction.LC)) Fraction.LC <- 0 if (missing(LC.gene.number)) LC.gene.number <- 10 VDJ.matrix <- VDJ VDJ <- NULL Vgene_usage_plot <- list() HC_Vgene_usage <- list() HC_Vgene_usage_top <- list() HC_Vgene_usage_fraction <- list() if(missing(platypus.version)) platypus.version <- "v3" if(platypus.version == "v2"){ clonotype.list <- VDJ.matrix for (i in 1:length(clonotype.list)){ HC_Vgene_usage[[i]] <- as.data.frame(table(clonotype.list[[i]]$HC_vgene)) colnames(HC_Vgene_usage[[i]]) <- c("Vgene", "Frequency") for (j in 1:nrow(HC_Vgene_usage[[i]])){ HC_Vgene_usage[[i]]$Percentage[j] <- HC_Vgene_usage[[i]]$Frequency[j]/sum(HC_Vgene_usage[[i]]$Frequency)*100 } ranks <- order(-HC_Vgene_usage[[i]]$Frequency) HC_Vgene_usage[[i]] <- HC_Vgene_usage[[i]][ranks,] HC_Vgene_usage_fraction[[i]] <- HC_Vgene_usage[[i]][which(HC_Vgene_usage[[i]]$Percentage > Fraction.HC),] } HC_Vgene_names <- do.call("rbind",HC_Vgene_usage_fraction) HC_Vgene_names <- as.vector(unique(HC_Vgene_names$Vgene)) for(i in 1:length(clonotype.list)){ HC_Vgene_usage[[i]] <- HC_Vgene_usage[[i]][HC_Vgene_usage[[i]]$Vgene %in% HC_Vgene_names,] } HC_Vgene_usage_all <- do.call("rbind", HC_Vgene_usage) unique_Vgene <- unique(HC_Vgene_usage_all$Vgene) HC_Vgene_usage_all_unique <- data.frame("Vgene"= rep("", length(unique_Vgene)), "Frequency"= rep(0, length(unique_Vgene))) HC_Vgene_usage_all_unique$Vgene <- unique_Vgene for (i in 1:length(unique_Vgene)){ HC_Vgene_usage_all_unique[i,"Percentage"] <- mean(HC_Vgene_usage_all[which(HC_Vgene_usage_all$Vgene == HC_Vgene_usage_all_unique$Vgene[i]),]$Percentage) } ranks <- order(-HC_Vgene_usage_all_unique$Frequency) HC_Vgene_usage_all_unique <- HC_Vgene_usage_all_unique[ranks,] top_Vgenes <- HC_Vgene_usage_all_unique$Vgene[1:HC.gene.number] for(i in 1:length(clonotype.list)){ HC_Vgene_usage_top[[i]] <- data.frame("Vgene"=rep("", length(top_Vgenes)), "Frequency"=rep(0, length(top_Vgenes))) HC_Vgene_usage_top[[i]]$Vgene <- top_Vgenes for (j in 1:nrow(HC_Vgene_usage_top[[i]])){ if (HC_Vgene_usage_top[[i]]$Vgene[j] %in% HC_Vgene_usage[[i]]$Vgene == TRUE){ HC_Vgene_usage_top[[i]]$Frequency[j] <- HC_Vgene_usage[[i]][which(HC_Vgene_usage[[i]]$Vgene == paste0(HC_Vgene_usage_top[[i]]$Vgene[j])),]$Frequency } } for (j in 1:nrow(HC_Vgene_usage_top[[i]])){ HC_Vgene_usage_top[[i]]$Percentage[j] <- HC_Vgene_usage_top[[i]]$Frequency[j]/sum(HC_Vgene_usage_top[[i]]$Frequency)*100 } } for (i in 1:length(HC_Vgene_usage_top)){ HC_Vgene_usage_top[[i]]$Sample <- as.character(i) } plotting_df <- do.call("rbind",HC_Vgene_usage_top) plotting_df <- plotting_df[!is.na(plotting_df$Vgene), ] Vgene_usage_plot[[1]] <- ggplot2::ggplot(plotting_df, ggplot2::aes(fill = Vgene, y=Frequency, x=Sample)) + ggplot2::geom_bar(position="fill", stat="identity", color="black", width = 0.7) + ggplot2::theme_bw() + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust=1)) + ggplot2::ylab("% of unique clones") + ggplot2::scale_y_continuous(expand = c(0,0)) if(LC.Vgene ==TRUE){ LC_Vgene_usage <- list() LC_Vgene_usage_top <- list() LC_Vgene_usage_fraction <- list() for (i in 1:length(clonotype.list)){ LC_Vgene_usage[[i]] <- as.data.frame(table(clonotype.list[[i]]$LC_vgene)) colnames(LC_Vgene_usage[[i]]) <- c("Vgene", "Frequency") for (j in 1:nrow(LC_Vgene_usage[[i]])){ LC_Vgene_usage[[i]]$Percentage[j] <- LC_Vgene_usage[[i]]$Frequency[j]/sum(LC_Vgene_usage[[i]]$Frequency)*100 } ranks <- order(-LC_Vgene_usage[[i]]$Frequency) LC_Vgene_usage[[i]] <- LC_Vgene_usage[[i]][ranks,] LC_Vgene_usage_fraction[[i]] <- LC_Vgene_usage[[i]][which(LC_Vgene_usage[[i]]$Percentage > Fraction.LC),] } LC_Vgene_names <- do.call("rbind",LC_Vgene_usage_fraction) LC_Vgene_names <- as.vector(unique(LC_Vgene_names$Vgene)) for(i in 1:length(clonotype.list)){ LC_Vgene_usage[[i]] <- LC_Vgene_usage[[i]][LC_Vgene_usage[[i]]$Vgene %in% LC_Vgene_names,] } LC_Vgene_usage_all <- do.call("rbind", LC_Vgene_usage) unique_Vgene <- unique(LC_Vgene_usage_all$Vgene) LC_Vgene_usage_all_unique <- data.frame("Vgene"= rep("", length(unique_Vgene)), "Frequency"= rep(0, length(unique_Vgene))) LC_Vgene_usage_all_unique$Vgene <- unique_Vgene for (i in 1:length(unique_Vgene)){ LC_Vgene_usage_all_unique[i,"Percentage"] <- mean(LC_Vgene_usage_all[which(LC_Vgene_usage_all$Vgene == LC_Vgene_usage_all_unique$Vgene[i]),]$Percentage) } ranks <- order(-LC_Vgene_usage_all_unique$Frequency) LC_Vgene_usage_all_unique <- LC_Vgene_usage_all_unique[ranks,] top_Vgenes <- LC_Vgene_usage_all_unique$Vgene[1:LC.gene.number] for(i in 1:length(clonotype.list)){ LC_Vgene_usage_top[[i]] <- data.frame("Vgene"=rep("", length(top_Vgenes)), "Frequency"=rep(0, length(top_Vgenes))) LC_Vgene_usage_top[[i]]$Vgene <- top_Vgenes for (j in 1:nrow(LC_Vgene_usage_top[[i]])){ if (LC_Vgene_usage_top[[i]]$Vgene[j] %in% LC_Vgene_usage[[i]]$Vgene == TRUE){ LC_Vgene_usage_top[[i]]$Frequency[j] <- LC_Vgene_usage[[i]][which(LC_Vgene_usage[[i]]$Vgene == paste0(LC_Vgene_usage_top[[i]]$Vgene[j])),]$Frequency } } for (j in 1:nrow(LC_Vgene_usage_top[[i]])){ LC_Vgene_usage_top[[i]]$Percentage[j] <- LC_Vgene_usage_top[[i]]$Frequency[j]/sum(LC_Vgene_usage_top[[i]]$Frequency)*100 } } for (i in 1:length(LC_Vgene_usage_top)){ LC_Vgene_usage_top[[i]]$Sample <- as.character(i) } plotting_df <- do.call("rbind",LC_Vgene_usage_top) plotting_df <- plotting_df[!is.na(plotting_df$Vgene), ] Vgene_usage_plot[[1]] <- ggplot2::ggplot(plotting_df, ggplot2::aes(fill = Vgene, y=Frequency, x=Sample)) + ggplot2::geom_bar(position="fill", stat="identity", color="black", width = 0.7) + ggplot2::theme_bw() + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust=1)) + ggplot2::ylab("% of unique clones") + ggplot2::scale_y_continuous(expand = c(0,0)) } return(Vgene_usage_plot) } else if(platypus.version == "v3"){ VDJ.matrix <- subset(VDJ.matrix, Nr_of_VDJ_chains == 1 & Nr_of_VJ_chains == 1) clonotype.list <- list() for(i in 1:length(unique(VDJ.matrix$sample_id))){ clonotype.list[[i]] <- subset(VDJ.matrix, sample_id == unique(VDJ.matrix$sample_id)[i]) clonotype.list[[i]] <- clonotype.list[[i]][duplicated(clonotype.list[[i]]$clonotype_id_10x) == F,] } names(clonotype.list) <- unique(VDJ.matrix$sample_id) message(paste0("Sample order: ", paste0(unique(VDJ.matrix$sample_id), collapse = " ; "))) if(LC.Vgene == F){ Vgene_usage_plot <- list() HC_Vgene_usage <- list() HC_Vgene_usage_top <- list() HC_Vgene_usage_fraction <- list() for (i in 1:length(clonotype.list)){ HC_Vgene_usage[[i]] <- as.data.frame(table(clonotype.list[[i]]$VDJ_vgene)) colnames(HC_Vgene_usage[[i]]) <- c("Vgene", "Frequency") for (j in 1:nrow(HC_Vgene_usage[[i]])){ HC_Vgene_usage[[i]]$Percentage[j] <- HC_Vgene_usage[[i]]$Frequency[j]/sum(HC_Vgene_usage[[i]]$Frequency)*100 } ranks <- order(-HC_Vgene_usage[[i]]$Frequency) HC_Vgene_usage[[i]] <- HC_Vgene_usage[[i]][ranks,] HC_Vgene_usage_fraction[[i]] <- HC_Vgene_usage[[i]][which(HC_Vgene_usage[[i]]$Percentage > Fraction.HC),] } HC_Vgene_names <- do.call("rbind",HC_Vgene_usage_fraction) HC_Vgene_names <- as.vector(unique(HC_Vgene_names$Vgene)) for(i in 1:length(clonotype.list)){ HC_Vgene_usage[[i]] <- HC_Vgene_usage[[i]][HC_Vgene_usage[[i]]$Vgene %in% HC_Vgene_names,] } HC_Vgene_usage_all <- do.call("rbind", HC_Vgene_usage) unique_Vgene <- unique(HC_Vgene_usage_all$Vgene) HC_Vgene_usage_all_unique <- data.frame("Vgene"= rep("", length(unique_Vgene)), "Frequency"= rep(0, length(unique_Vgene))) HC_Vgene_usage_all_unique$Vgene <- unique_Vgene for (i in 1:length(unique_Vgene)){ HC_Vgene_usage_all_unique[i,"Percentage"] <- mean(HC_Vgene_usage_all[which(HC_Vgene_usage_all$Vgene == HC_Vgene_usage_all_unique$Vgene[i]),]$Percentage) } ranks <- order(-HC_Vgene_usage_all_unique$Frequency) HC_Vgene_usage_all_unique <- HC_Vgene_usage_all_unique[ranks,] top_Vgenes <- HC_Vgene_usage_all_unique$Vgene[1:HC.gene.number] for(i in 1:length(clonotype.list)){ HC_Vgene_usage_top[[i]] <- data.frame("Vgene"=rep("", length(top_Vgenes)), "Frequency"=rep(0, length(top_Vgenes))) HC_Vgene_usage_top[[i]]$Vgene <- top_Vgenes for (j in 1:nrow(HC_Vgene_usage_top[[i]])){ if (HC_Vgene_usage_top[[i]]$Vgene[j] %in% HC_Vgene_usage[[i]]$Vgene == TRUE){ HC_Vgene_usage_top[[i]]$Frequency[j] <- HC_Vgene_usage[[i]][which(HC_Vgene_usage[[i]]$Vgene == paste0(HC_Vgene_usage_top[[i]]$Vgene[j])),]$Frequency } } for (j in 1:nrow(HC_Vgene_usage_top[[i]])){ HC_Vgene_usage_top[[i]]$Percentage[j] <- HC_Vgene_usage_top[[i]]$Frequency[j]/sum(HC_Vgene_usage_top[[i]]$Frequency)*100 } } for (i in 1:length(HC_Vgene_usage_top)){ HC_Vgene_usage_top[[i]]$Sample <- as.character(i) } plotting_df <- do.call("rbind",HC_Vgene_usage_top) plotting_df <- plotting_df[!is.na(plotting_df$Vgene), ] Vgene_usage_plot[[1]] <- ggplot2::ggplot(plotting_df, ggplot2::aes(fill = Vgene, y=Frequency, x=Sample)) + ggplot2::geom_bar(position="fill", stat="identity", color="black", width = 0.7) + ggplot2::theme_bw() + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust=1)) + ggplot2::ylab("% of unique clones") + ggplot2::scale_y_continuous(expand = c(0,0)) + ggplot2::ggtitle(paste0("IgH V gene stacked")) }else if(LC.Vgene ==TRUE){ LC_Vgene_usage <- list() LC_Vgene_usage_top <- list() LC_Vgene_usage_fraction <- list() for (i in 1:length(clonotype.list)){ LC_Vgene_usage[[i]] <- as.data.frame(table(clonotype.list[[i]]$VJ_vgene)) colnames(LC_Vgene_usage[[i]]) <- c("Vgene", "Frequency") for (j in 1:nrow(LC_Vgene_usage[[i]])){ LC_Vgene_usage[[i]]$Percentage[j] <- LC_Vgene_usage[[i]]$Frequency[j]/sum(LC_Vgene_usage[[i]]$Frequency)*100 } ranks <- order(-LC_Vgene_usage[[i]]$Frequency) LC_Vgene_usage[[i]] <- LC_Vgene_usage[[i]][ranks,] LC_Vgene_usage_fraction[[i]] <- LC_Vgene_usage[[i]][which(LC_Vgene_usage[[i]]$Percentage > Fraction.LC),] } LC_Vgene_names <- do.call("rbind",LC_Vgene_usage_fraction) LC_Vgene_names <- as.vector(unique(LC_Vgene_names$Vgene)) for(i in 1:length(clonotype.list)){ LC_Vgene_usage[[i]] <- LC_Vgene_usage[[i]][LC_Vgene_usage[[i]]$Vgene %in% LC_Vgene_names,] } LC_Vgene_usage_all <- do.call("rbind", LC_Vgene_usage) unique_Vgene <- unique(LC_Vgene_usage_all$Vgene) LC_Vgene_usage_all_unique <- data.frame("Vgene"= rep("", length(unique_Vgene)), "Frequency"= rep(0, length(unique_Vgene))) LC_Vgene_usage_all_unique$Vgene <- unique_Vgene for (i in 1:length(unique_Vgene)){ LC_Vgene_usage_all_unique[i,"Percentage"] <- mean(LC_Vgene_usage_all[which(LC_Vgene_usage_all$Vgene == LC_Vgene_usage_all_unique$Vgene[i]),]$Percentage) } ranks <- order(-LC_Vgene_usage_all_unique$Frequency) LC_Vgene_usage_all_unique <- LC_Vgene_usage_all_unique[ranks,] top_Vgenes <- LC_Vgene_usage_all_unique$Vgene[1:LC.gene.number] for(i in 1:length(clonotype.list)){ LC_Vgene_usage_top[[i]] <- data.frame("Vgene"=rep("", length(top_Vgenes)), "Frequency"=rep(0, length(top_Vgenes))) LC_Vgene_usage_top[[i]]$Vgene <- top_Vgenes for (j in 1:nrow(LC_Vgene_usage_top[[i]])){ if (LC_Vgene_usage_top[[i]]$Vgene[j] %in% LC_Vgene_usage[[i]]$Vgene == TRUE){ LC_Vgene_usage_top[[i]]$Frequency[j] <- LC_Vgene_usage[[i]][which(LC_Vgene_usage[[i]]$Vgene == paste0(LC_Vgene_usage_top[[i]]$Vgene[j])),]$Frequency } } for (j in 1:nrow(LC_Vgene_usage_top[[i]])){ LC_Vgene_usage_top[[i]]$Percentage[j] <- LC_Vgene_usage_top[[i]]$Frequency[j]/sum(LC_Vgene_usage_top[[i]]$Frequency)*100 } } for (i in 1:length(LC_Vgene_usage_top)){ LC_Vgene_usage_top[[i]]$Sample <- as.character(i) } plotting_df <- do.call("rbind",LC_Vgene_usage_top) plotting_df <- plotting_df[!is.na(plotting_df$Vgene), ] Vgene_usage_plot[[1]] <- ggplot2::ggplot(plotting_df, ggplot2::aes(fill = Vgene, y=Frequency, x=Sample)) + ggplot2::geom_bar(position="fill", stat="identity", color="black", width = 0.7) + ggplot2::theme_bw() + ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust=1)) + ggplot2::ylab("% of unique clones") + ggplot2::scale_y_continuous(expand = c(0,0)) + ggplot2::ggtitle(paste0("IgK/L V gene stacked")) } } }
library(ape) library(nLTT) library(testit) newick <- "((A:1,B:1):1,C:2);" phylogeny <- ape::read.tree(text = newick) plot(phylogeny) add.scale.bar() nltt_plot(phylogeny) nltt <- nLTT::get_phylogeny_nltt_matrix(phylogeny) print(nltt) nltt_plot(phylogeny) points(nltt, pch = 19, col = "red") nltt <- nLTT::get_phylogeny_nltt_matrix(phylogeny) stretch_matrix <- nLTT::stretch_nltt_matrix( nltt, dt = 0.25, step_type = "upper" ) print(stretch_matrix) nltt_plot(phylogeny) points(nltt, pch = 19, col = "red") points(stretch_matrix, pch = 19, col = "blue") newick <- "((A:1,B:1):1,(C:1,D:1):1);" phylogeny <- ape::read.tree(text = newick) plot(phylogeny) add.scale.bar() nltt_plot(phylogeny) nltt <- nLTT::get_phylogeny_nltt_matrix(phylogeny) print(nltt) nltt_plot(phylogeny) points(nltt, pch = 19, col = "red") nltt <- nLTT::get_phylogeny_nltt_matrix(phylogeny) stretch_matrix <- nLTT::stretch_nltt_matrix( nltt, dt = 0.25, step_type = "upper" ) print(stretch_matrix) nltt_plot(phylogeny) points(nltt, pch = 19, col = "red") points(stretch_matrix, pch = 19, col = "blue") newick <- paste0("((((XD:1,ZD:1):1,CE:2):1,(FE:2,EE:2):1):4,((AE:1,BE:1):1,", "(WD:1,YD:1):1):5);" ) phylogeny <- ape::read.tree(text = newick) plot(phylogeny) add.scale.bar() nltt_plot(phylogeny) nltt <- nLTT::get_phylogeny_nltt_matrix(phylogeny) print(nltt) nltt_plot(phylogeny) points(nltt, pch = 19, col = "red") nltt <- nLTT::get_phylogeny_nltt_matrix(phylogeny) nltt_plot(phylogeny) stretch_matrix <- nLTT::stretch_nltt_matrix( nltt, dt = 0.05, step_type = "upper" ) points(nltt, pch = 19, col = "red") points(stretch_matrix, pch = 19, col = "blue")
DME <- function(juv_proxy, adu_proxy, adu_mass, scale_fac = 3) { j.scale <- juv_proxy^scale_fac a.scale <- adu_proxy^scale_fac j.prop <- j.scale/a.scale j.mass <- adu_mass*j.prop return(j.mass) }
mouseOverHtmlFile <- function(myCoor, pngFileNa, HtmFileNa=NULL, mouseOverTxt=NULL, displSi=c(800,600), colNa=NULL, tit="", myHtmTit="", myComment=NULL, textAtStart=NULL, textAtEnd=NULL, pxDiam=5, addLinks=NULL, linkExt=NULL, htmlExt="htm", callFrom=NULL, silent=FALSE){ myCoorTy <- NULL fxNa <- wrMisc::.composeCallName(callFrom, newNa="mouseOverHtmlFile") if(length(dim(myCoor)) !=2) stop(" Expecting matrix or data.frame") if(nrow(myCoor) <1) stop(" 'myCoor' seems to be empty !") if(!is.data.frame(myCoor)) myCoor <- as.data.frame(myCoor, stringsAsFactors=FALSE) if(is.null(myComment)) myComment <- c(" Produced by R using createHtmlWithPointsIdentif()", " from package WRmisc, ",Sys.Date()) .corPath <- function(x,asHtml=TRUE) { if(length(grep("ming.32",R.Version()$platform)) >0) { x <- gsub("\\\\", "/", x) if(asHtml & length(grep("[[:upper:]]:", substr(x,1,2))) >0) { x <- paste("file:///",x,sep="") } } else if(asHtml & length(grep("^/",x)) >0) x <- paste("file:///",x,sep="") x } colN2 <- rep(NA,5) names(colN2) <- c("ID","x","y","mouseOver","link") potIDname <- wrMisc::.plusLowerCaps(c("ID","Id","Ident","Identifier","UniqID","uniqID","UniqueID")) potXname <- wrMisc::.plusLowerCaps(c("xPix","xPred","coorX","htmlX","xCoor","dataX","X")) potYname <- wrMisc::.plusLowerCaps(c("yPix","yPred","coorY","htmlY","yCoor","dataY","Y")) potMouseOvname <- wrMisc::.plusLowerCaps(c("mouseOver","mouseInfo","Mouse","Mou","Hint","Name","fullName","FullName","Combined","CustName","custName","Info")) potLinkname <- wrMisc::.plusLowerCaps(c("LINK","Link","Li","Http","WWW","AddLink","addLink")) if(length(colNa) ==2) colN2[2:3] <- colNa else if(length(colNa) >2) colN2[1:length(colNa)] <- colNa if(length(colNa) <1) { if(ncol(myCoor)==2) colN2[2:3] <- colnames(myCoor) else { remColNa <- colnames(myCoor) if(any(potIDname %in% remColNa)) {aa <- .serachColName(remColNa,potIDname,plusLowerCaps=FALSE,returnList=TRUE) remColNa <- aa$remainNa; colN2[1] <- aa$foundNa} if(any(potXname %in% remColNa)) {aa <- .serachColName(remColNa,potXname,plusLowerCaps=FALSE,returnList=TRUE) remColNa <- aa$remainNa; colN2[2] <- aa$foundNa} if(any(potYname %in% remColNa)) {aa <- .serachColName(remColNa,potYname,plusLowerCaps=FALSE,returnList=TRUE) remColNa <- aa$remainNa; colN2[3] <- aa$foundNa} if(any(potMouseOvname %in% remColNa)) {aa <- .serachColName(remColNa,potMouseOvname,plusLowerCaps=FALSE,returnList=TRUE) remColNa <- aa$remainNa; colN2[4] <- aa$foundNa} if(any(potLinkname %in% remColNa)) {aa <- .serachColName(remColNa,potLinkname,plusLowerCaps=FALSE,returnList=TRUE) remColNa <- aa$remainNa; colN2[5] <- aa$foundNa}}} myCoor <- data.frame(myCoor[,colN2[which(!is.na(colN2))]], stringsAsFactors=FALSE) if(is.na(colN2[1])) { myCoor$ID <- if(is.null(rownames(myCoor))) 1:nrow(myCoor) else rownames(myCoor) colN2[1] <- "ID" if(!silent) message(fxNa," using column '",colnames(myCoor[colN2[1]]),"' for mouse-over") } if(!identical(mouseOverTxt,FALSE)) if(is.null(mouseOverTxt)) { if(is.na(colN2[4])) { myCoor$mouseOver <- myCoor[,colN2[1]] if(!silent) message(fxNa," using column '",colnames(myCoor[colN2[1]]),"' for mouse-over") colN2[4] <- "mouseOver" } } else { if(length(mouseOverTxt) ==nrow(myCoor) & length(unique(mouseOverTxt)) > 1) { myCoor$mouseOver <- mouseOverTxt } else { if(!silent) message(fxNa,"Ignoring invalid entry for 'mouseOverTxt' (expecting length ",nrow(myCoor)," but found ",length(mouseOverTxt),")") myCoor$mouseOver <- myCoor[,"ID"] } } if(identical(addLinks,TRUE)) { myCoor$link <- myCoor[,if(is.na(colN2[5])) colN2[1] else colN2[5]] colN2[5] <- "addLinks" } else { if(length(addLinks) >0) {if(length(addLinks) ==nrow(myCoor) & length(unique(addLinks)) > 1 & max(nchar(addLinks),na.rm=TRUE) >0) { myCoor$link <- addLinks colN2[5] <- "addLinks" } else { if(!silent) message(fxNa," invalid entry for 'addLinks' (expecting length ",nrow(myCoor)," but found ",length(addLinks),")")}}} if(length(linkExt) >0) if(nchar(linkExt) >0) { chExt <- grep(paste(linkExt,"$",sep=""), myCoor$link) if(length(chExt) < nrow(myCoor) & length(chExt) >0) myCoor$link[chExt] <- paste(myCoor$link[chExt],linkExt,sep="") } if(!file.exists(pngFileNa)) stop("Cannot find file which should be used for embedding image into html !") msg <- " 'displSi' : Expecting numeric vector of lengt 2 (for display size in px in html) !" if(!is.numeric(displSi) | length(displSi) <2) stop(msg) if(length(HtmFileNa) !=1) HtmFileNa <- pngFileNa baseFiNa <- sub(".PNG$","",sub(".png$","",sub(".htm$","",sub(".html$","",HtmFileNa)))) if(nchar(HtmFileNa)== nchar(baseFiNa)) { htmlExt <- if(length(htmlExt) <0) "" else htmlExt[1] if(!silent) message(fxNa," setting file-name + extension to : ",baseFiNa,".",htmlExt) } else { htmlExt <- substr(HtmFileNa, unlist(regexec("\\.htm",HtmFileNa)), nchar(HtmFileNa))} HtmFileNa <- wrMisc::.checkFileNameExtensions(baseFiNa, htmlExt) .convTxtToHtmPar <- function(txt){ txt <- as.character(txt) nLi <- length(txt) apply(matrix(c(rep("<p>",nLi), txt,rep("</p>",nLi)), nrow=nLi), 1, paste, collapse="") } htmVec <- c('<!DOCTYPE html>','<html lang="en">','<head>','<meta charset="utf-8">') htmTit <- paste(c('<title>',myHtmTit,'</title>'),collapse="") htmVec <- c(htmVec,htmTit,"</head>","<body>") htmCom <- paste(c("<!-- ",myComment,"-->"),collapse="") htmGraTit <- if(is.null(tit)) NULL else paste(c("<h2>",tit,"</h2>"),collapse="") htmVec <- c(htmVec,htmCom,htmGraTit) if(!is.null(textAtStart)) htmVec <- c(htmVec,.convTxtToHtmPar(textAtStart)) htmImg <- paste(c('<img src="',.corPath(pngFileNa),'" alt="wrGraph_imageForMouseOver" usemap=" displSi[1],'px;height:',displSi[2],'px">'),collapse="") htmVec <- c(htmVec,htmImg,'<map name="colormap">') ar1 <- '<area title="' ar3 <- 'shape="circle" coords="' ar5 <- ' alt="' ar7 <- '"' htmCor <- data.frame(ar1,na1=myCoor[,colN2[4]],'" ',ar3,corX=myCoor[,colN2[2]], ',',corY=myCoor[,colN2[3]],',',diam=pxDiam,naZ='"',stringsAsFactors=FALSE) if(!is.na(colN2[5])) htmCor <- data.frame(htmCor[,-1*ncol(htmCor)],na2='" href="',na3=.corPath(myCoor$link),'"',stringsAsFactors=FALSE) htmCor <- cbind(htmCor,last=" >") htmCor <- as.character(apply(htmCor,1,paste,collapse="")) htmVec <- c(htmVec,htmCor,"</map>") if(!is.null(textAtEnd)) htmVec <- c(htmVec,.convTxtToHtmPar(textAtEnd)) htmVec <- c(htmVec,"</body>","</html>") if(is.null(HtmFileNa)) HtmFileNa <- paste(sub(".png$","",pngFileNa),".html",sep="") if(file.exists(HtmFileNa) & !silent) message(fxNa," BEWARE, file '",HtmFileNa,"' will be overwritten !") tryWrite <- try(cat(paste(htmVec,collpse="\n"),file=HtmFileNa)) if(class(tryWrite) =="try-error") warning(fxNa," PROBLEM : couldn't write Html file '", HtmFileNa,"' ! (file open ? check path,rights etc)") } .serachColName <- function(x,searchColNa, plusLowerCaps=TRUE,returnList=TRUE,callFrom=NULL) { fxNa <- wrMisc::.composeCallName(callFrom, newNa=".serachColName") x <- if(length(dim(x)) >1) colnames(x) else as.character(x) if(length(x) <1) return(NULL) else { errMsg <- "argument 'searchColNa' is emty or all NA !" if(length(searchColNa) <1) stop(errMsg) chNa <- is.na(searchColNa) if(any(chNa)) {if(all(chNa)) stop(errMsg) else searchColNa <- searchColNa[which(!chNa)]} if(plusLowerCaps) searchColNa <- wrMisc::.plusLowerCaps(searchColNa) out <- wrMisc::naOmit(match(searchColNa,x)) if(length(out) <1) stop("none of the terms found") if(returnList) list(foundNa=x[out[1]],remainNa=x[-out]) else out[1] }}
plot.see_check_model <- function(x, style = theme_lucid, colors = c(" ...) { p <- list() panel <- attr(x, "panel") check <- attr(x, "check") size_point <- attr(x, "dot_size") size_line <- attr(x, "line_size") show_labels <- attr(x, "show_labels") %||% TRUE size_text <- attr(x, "text_size") alpha_level <- attr(x, "alpha") dot_alpha_level <- attr(x, "dot_alpha") detrend <- attr(x, "detrend") if (missing(style) && !is.null(attr(x, "theme"))) { theme_style <- unlist(strsplit(attr(x, "theme"), "::", fixed = TRUE)) style <- get(theme_style[2], asNamespace(theme_style[1])) } if (missing(colors)) { colors <- attr(x, "colors") } if (is.null(colors)) { colors <- c(" } colors <- unname(colors) if (is.null(alpha_level)) { alpha_level <- .2 } if (is.null(dot_alpha_level)) { dot_alpha_level <- .8 } if (is.null(check)) check <- "all" if ("NCV" %in% names(x) && !is.null(x$NCV) && any(c("ncv", "linearity", "all") %in% check)) { p$NCV <- .plot_diag_linearity( x$NCV, size_point, size_line, alpha_level, theme_style = style, colors = colors, dot_alpha_level = dot_alpha_level ) } if ("HOMOGENEITY" %in% names(x) && !is.null(x$HOMOGENEITY) && any(c("homogeneity", "all") %in% check)) { p$HOMOGENEITY <- .plot_diag_homogeneity( x$HOMOGENEITY, size_point, size_line, alpha_level, theme_style = style, colors = colors, dot_alpha_level = dot_alpha_level ) } if ("VIF" %in% names(x) && !is.null(x$VIF) && any(c("vif", "all") %in% check)) { p$VIF <- .plot_diag_vif( x$VIF, theme_style = style, colors = colors ) } if ("INFLUENTIAL" %in% names(x) && !is.null(x$INFLUENTIAL) && any(c("outliers", "influential", "all") %in% check)) { p$OUTLIERS <- .plot_diag_outliers_new( x$INFLUENTIAL, show_labels = show_labels, size_text = size_text, size_line = size_line, theme_style = style, colors = colors, dot_alpha_level = dot_alpha_level ) } if ("QQ" %in% names(x) && !is.null(x$QQ) && any(c("qq", "all") %in% check)) { p$QQ <- .plot_diag_qq( x$QQ, size_point, size_line, alpha_level = alpha_level, detrend = detrend, theme_style = style, colors = colors, dot_alpha_level = dot_alpha_level ) } if ("NORM" %in% names(x) && !is.null(x$NORM) && any(c("normality", "all") %in% check)) { p$NORM <- .plot_diag_norm( x$NORM, size_line, alpha_level = alpha_level, theme_style = style, colors = colors ) } if ("REQQ" %in% names(x) && !is.null(x$REQQ) && any(c("reqq", "all") %in% check)) { ps <- .plot_diag_reqq( x$REQQ, size_point, size_line, alpha_level = alpha_level, theme_style = style, colors = colors, dot_alpha_level = dot_alpha_level ) for (i in 1:length(ps)) { p[[length(p) + 1]] <- ps[[i]] } } if (panel) { plots(p, n_columns = 2) } else { return(p) } } .plot_diag_vif <- function(x, theme_style = theme_lucid, colors = unname(social_colors(c("green", "blue", "red")))) { ylim <- max(x$y, na.rm = TRUE) if (ylim < 10) ylim <- 10 x$group <- factor(x$group, levels = c("low", "moderate", "high")) levels(x$group) <- c("low (< 5)", "moderate (< 10)", "high (>= 10)") names(colors) <- c("low (< 5)", "moderate (< 10)", "high (>= 10)") p <- ggplot2::ggplot(x, ggplot2::aes(x = .data$x, y = .data$y, fill = .data$group)) if (ylim > 5) { p <- p + ggplot2::geom_rect( xmin = -Inf, xmax = Inf, ymin = 0, ymax = 5, fill = colors[1], color = NA, alpha = .025 ) p <- p + ggplot2::geom_rect( xmin = -Inf, xmax = Inf, ymin = 5, ymax = ifelse(ylim > 10, 10, ylim), fill = colors[2], color = NA, alpha = .025 ) } if (ylim > 10) { p <- p + ggplot2::geom_rect( xmin = -Inf, xmax = Inf, ymin = 10, ymax = ylim, fill = colors[3], color = NA, alpha = .025 ) } p <- p + ggplot2::geom_col(width = 0.7) + ggplot2::labs( title = "Collinearity", subtitle = "Higher bars (>5) indicate potential collinearity issues", x = NULL, y = "Variance Inflation Factor (VIF)", fill = NULL ) + ggplot2::scale_fill_manual(values = colors) + theme_style( base_size = 10, plot.title.space = 3, axis.title.space = 5 ) + ggplot2::ylim(c(0, ylim)) + ggplot2::theme( legend.position = "bottom", legend.margin = ggplot2::margin(0, 0, 0, 0), legend.box.margin = ggplot2::margin(-5, -5, -5, -5) ) if ("facet" %in% colnames(x)) { p <- p + ggplot2::facet_wrap(~facet, nrow = 1, scales = "free") } p } .plot_diag_norm <- function(x, size_line, alpha_level = .2, theme_style = theme_lucid, colors = unname(social_colors(c("green", "blue", "red")))) { ggplot2::ggplot(x, ggplot2::aes(x = .data$x)) + ggplot2::geom_ribbon( mapping = ggplot2::aes(ymin = 0, ymax = .data$y), colour = NA, fill = colors[2], alpha = alpha_level ) + ggplot2::geom_line( mapping = ggplot2::aes(y = .data$curve), colour = colors[1], size = size_line ) + ggplot2::labs( x = "Residuals", y = "Density", title = "Normality of Residuals", subtitle = "Distribution should be close to the normal curve" ) + theme_style( base_size = 10, plot.title.space = 3, axis.title.space = 5 ) + ggplot2::scale_y_continuous(labels = NULL) } .plot_diag_qq <- function(x, size_point, size_line, alpha_level = .2, detrend = FALSE, theme_style = theme_lucid, colors = unname(social_colors(c("green", "blue", "red"))), dot_alpha_level = .8) { if (requireNamespace("qqplotr", quietly = TRUE)) { qq_stuff <- list( qqplotr::stat_qq_band(alpha = alpha_level, detrend = detrend), qqplotr::stat_qq_line( size = size_line, colour = colors[1], detrend = detrend ), qqplotr::stat_qq_point( shape = 16, stroke = 0, size = size_point, colour = colors[2], alpha = dot_alpha_level, detrend = detrend ) ) y_lab <- "Sample Quantiles" } else { message( "For confidence bands", if (isTRUE(detrend)) " and detrending", ", please install `qqplotr`." ) qq_stuff <- list( ggplot2::geom_qq( shape = 16, stroke = 0, size = size_point, colour = colors[2] ), ggplot2::geom_qq_line( size = size_line, colour = colors[1] ) ) y_lab <- "Sample Quantiles" } ggplot2::ggplot(x, ggplot2::aes(sample = .data$y)) + qq_stuff + ggplot2::labs( title = "Normality of Residuals", subtitle = "Dots should fall along the line", y = y_lab, x = "Standard Normal Distribution Quantiles" ) + theme_style( base_size = 10, plot.title.space = 3, axis.title.space = 5 ) } .plot_diag_pp <- function(x, size_point, size_line, alpha_level = .2, detrend = FALSE, theme_style = theme_lucid, colors = unname(social_colors(c("green", "blue", "red"))), dot_alpha_level = .8) { if (requireNamespace("qqplotr", quietly = TRUE)) { p_plot <- ggplot2::ggplot(x, ggplot2::aes(sample = .data$res)) + qqplotr::stat_pp_band(alpha = alpha_level, detrend = detrend) + qqplotr::stat_pp_line( size = size_line, colour = colors[1], detrend = detrend ) + qqplotr::stat_pp_point( shape = 16, stroke = 0, size = size_point, colour = colors[2], alpha = dot_alpha_level, detrend = detrend ) } else if (requireNamespace("MASS", quietly = TRUE)) { message( "For confidence bands", if (isTRUE(detrend)) " and detrending", ", please install `qqplotr`." ) x$probs <- stats::ppoints(x$res) dparms <- MASS::fitdistr(x$res, densfun = "normal") x$y <- do.call(stats::pnorm, c(list(q = x$res), dparms$estimate)) p_plot <- ggplot2::ggplot(x, ggplot2::aes(x = .data$probs, y = .data$y)) + ggplot2::geom_abline( slope = 1, size = size_line, colour = colors[1] ) + geom_point2( colour = colors[2], size = size_point, alpha = dot_alpha_level ) } else { stop("Package 'qqplotr' OR 'MASS' required for PP-plots. Please install one of them.", call. = FALSE) } p_plot + ggplot2::labs( title = "Normality of Residuals (PP plot)", subtitle = "Dots should fall along the line", y = "Cummulative Probability", x = "Probability Points" ) + theme_style( base_size = 10, plot.title.space = 3, axis.title.space = 5 ) } .plot_diag_homogeneity <- function(x, size_point, size_line, alpha_level = .2, theme_style = theme_lucid, colors = unname(social_colors(c("green", "blue", "red"))), dot_alpha_level = .8) { ggplot2::ggplot(x, ggplot2::aes(x = .data$x, .data$y)) + geom_point2( colour = colors[2], size = size_point, alpha = dot_alpha_level ) + ggplot2::stat_smooth( method = "loess", se = TRUE, alpha = alpha_level, formula = y ~ x, size = size_line, colour = colors[1] ) + ggplot2::labs( title = "Homogeneity of Variance", subtitle = "Reference line should be flat and horizontal", y = expression(sqrt("|Std. residuals|")), x = "Fitted values" ) + theme_style( base_size = 10, plot.title.space = 3, axis.title.space = 5 ) } .plot_diag_linearity <- function(x, size_point, size_line, alpha_level = .2, theme_style = theme_lucid, colors = unname(social_colors(c("green", "blue", "red"))), dot_alpha_level = .8) { ggplot2::ggplot(x, ggplot2::aes(x = .data$x, y = .data$y)) + geom_point2( colour = colors[2], size = size_point, alpha = dot_alpha_level ) + ggplot2::geom_smooth( method = "loess", se = TRUE, formula = y ~ x, alpha = alpha_level, size = size_line, colour = colors[1] ) + ggplot2::geom_hline(yintercept = 0, linetype = "dashed") + ggplot2::labs( x = "Fitted values", y = "Residuals", title = "Linearity", subtitle = "Reference line should be flat and horizontal" ) + theme_style( base_size = 10, plot.title.space = 3, axis.title.space = 5 ) } .plot_diag_reqq <- function(x, size_point, size_line, panel = TRUE, alpha_level = .2, theme_style = theme_lucid, colors = unname(social_colors(c("green", "blue", "red"))), dot_alpha_level = .8) { lapply(names(x), function(i) { dat <- x[[i]] p <- ggplot2::ggplot(dat, ggplot2::aes(x = .data$x, y = .data$y)) + ggplot2::labs( x = "Theoretical Quantiles", y = "RE Quantiles", title = sprintf("Normality of Random Effects (%s)", i), subtitle = "Dots should be plotted along the line" ) + ggplot2::stat_smooth( method = "lm", alpha = alpha_level, size = size_line, formula = y ~ x, colour = colors[1] ) + ggplot2::geom_errorbar( ggplot2::aes(ymin = .data$conf.low, ymax = .data$conf.high), width = 0, colour = colors[2], alpha = dot_alpha_level ) + geom_point2( colour = colors[2], size = size_point, alpha = dot_alpha_level ) + theme_style( base_size = 10, plot.title.space = 3, axis.title.space = 5 ) if (nlevels(dat$facet) > 1 && isTRUE(panel)) { p <- p + ggplot2::facet_wrap(~facet, scales = "free") } p }) }
lrpage <- tabItem(tabName = "lr", h2("Likelihood ratios"), "The method available here (formula 10 from Simel et al) allows for many scenarios. The appropriate proportions should be entered.", tags$br(), "Groups here refer to e.g. the disease status.", tags$br(), "To compute for the positive likelihood ratio, enter the sensitivity in the proportion for group 1 and 1 - specificity in the proportion for group 2.", tags$br(), "To compute for the negative likelihood ratio, enter 1-sensitivity in the proportion for group 1 and specificity in the proportion for group 2.", tags$br(), "The method can also be used for conditional likelihoods by using the appropriate proportions (e.g. the proportion of positive or negative tests against inconclusive ones, i.e. yields), analogous to the simple case described above.", h4("Please enter the following"), sliderInput("lr_prev", "Prevalence", min = 0, max = 1, value = .5), sliderInput("lr_p1", "Proportion of events in group 1", min = 0, max = 1, value = .5), sliderInput("lr_p2", "Proportion of events in group 2", min = 0, max = 1, value = .4), h4("Please enter one of the following"), numericInput("lr_n", "Total sample size", value = NULL), "The number in each group (e.g. diseased and healthy) is calculated from this as sample size * prevalence (group 1, which might be diseased people) and sample size * 1-prevalence.", numericInput("lr_ciwidth", "Confidence interval width", value = NULL, min = 0, max = 1), h4("Results"), verbatimTextOutput("lr_out"), tableOutput("lr_tab"), "Code to replicate in R:", verbatimTextOutput("lr_code"), h4("References"), "Simel, DL, Samsa, GP and Matchar, DB (1991) Likelihood ratios with confidence: Sample size estimation for diagnostic test studies. ", tags$i("J Clin Epidemiol"), "44(8), 763-770, DOI 10.1016/0895-4356(91)90128-v" ) lr_fn <- function(input, code = FALSE){ if(is.na(input$lr_n) & is.na(input$lr_ciwidth)) { cat("Awaiting 'number of observations' or 'confidence interval width'") } else { z <- ifelse(is.na(input$lr_n), paste0("conf.width = ", input$lr_ciwidth), paste0("n = ", input$lr_n)) x <- paste0("prec_lr(prev = ", input$lr_prev, ", p1 = ", input$lr_p1, ", p2 = ", input$lr_p2, ", ", z, ", conf.level = ", input$conflevel, ")") if(code){ cat(x) } else { eval(parse(text = x)) } } }
context("Checking misc: model diagnostic functions for rma.mv()") source("settings.r") dat1 <- dat.konstantopoulos2011 dat1 <- dat1[dat1$district %in% c(11, 12, 18, 71, 108, 644),] rownames(dat1) <- 1:nrow(dat1) dat1$yi[dat1$district %in% 12] <- NA dat1$yi[dat1$district %in% 18 & dat1$school == 2] <- NA dat1$yi[dat1$district %in% 108] <- dat1$yi[dat1$district %in% 108] + 1 dat1$district11 <- ifelse(dat1$district == 11, 1, 0) dat1$study53 <- ifelse(dat1$study == 53, 1, 0) dat1$study54 <- ifelse(dat1$study == 54, 1, 0) dat1$study55 <- ifelse(dat1$study == 55, 1, 0) dat1$study56 <- ifelse(dat1$study == 56, 1, 0) dat2 <- dat1[c(23, 2, 6, 3, 19, 14, 20, 12, 21, 9, 13, 7, 11, 8, 10, 22, 18, 1, 5, 4, 17, 15, 16),] res1 <- suppressWarnings(rma.mv(yi, vi, mods = ~ district11 + study53 + study54 + study55 + study56, random = ~ 1 | district/school, data=dat1, slab=study, sparse=sparse)) res2 <- suppressWarnings(rma.mv(yi, vi, mods = ~ district11 + study53 + study54 + study55 + study56, random = ~ 1 | district/school, data=dat2, slab=study, sparse=sparse)) test_that("model diagnostic functions work with 'na.omit'.", { skip_on_cran() options(na.action="na.omit") sav1 <- rstandard(res1) sav2 <- rstandard(res2) sav2 <- sav2[match(sav1$slab, sav2$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$resid), rep(FALSE,18)) sav1 <- rstandard(res1, cluster=dat1$district) sav2 <- rstandard(res2, cluster=dat2$district) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), rep(FALSE,18)) expect_equivalent(is.na(sav1$cluster$X2), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- rstudent(res1) sav2 <- rstudent(res2) sav2 <- sav2[match(sav1$slab, sav2$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$resid), c(rep(FALSE,14), rep(TRUE,4))) sav1 <- rstudent(res1, cluster=dat1$district) sav2 <- rstudent(res2, cluster=dat2$district) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,4), rep(FALSE,10), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, parallel="snow") sav2 <- rstudent(res2, cluster=dat2$district, parallel="snow") sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,4), rep(FALSE,10), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- rstudent(res2, cluster=dat2$district, reestimate=FALSE) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,4), rep(FALSE,10), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- rstudent(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,4), rep(FALSE,10), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1) sav2 <- cooks.distance(res2) sav2 <- sav2[match(names(sav1), names(sav2))] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(FALSE,14), rep(TRUE,4))) sav1 <- cooks.distance(res1, cluster=dat1$district) sav2 <- cooks.distance(res2, cluster=dat2$district) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, parallel="snow") sav2 <- cooks.distance(res2, cluster=dat2$district, parallel="snow") expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- cooks.distance(res2, cluster=dat2$district, reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- cooks.distance(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1) sav2 <- dfbetas(res2) sav2 <- sav2[match(rownames(sav1), rownames(sav2)),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(FALSE,14), rep(TRUE,4))) sav1 <- dfbetas(res1, cluster=dat1$district) sav2 <- dfbetas(res2, cluster=dat2$district) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, parallel="snow") sav2 <- dfbetas(res2, cluster=dat2$district, parallel="snow") expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- dfbetas(res2, cluster=dat2$district, reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- dfbetas(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(TRUE, rep(FALSE,3), TRUE)) sav1 <- ranef(res1) sav2 <- ranef(res2) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$district$intrcpt), rep(FALSE,5)) expect_equivalent(is.na(sav1$`district/school`$intrcpt), rep(FALSE,18)) }) test_that("model diagnostic functions work with 'na.pass'.", { skip_on_cran() options(na.action="na.pass") sav1 <- rstandard(res1) sav2 <- rstandard(res2) sav2 <- sav2[match(sav1$slab, sav2$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$resid), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,13))) sav1 <- rstandard(res1, cluster=dat1$district) sav2 <- rstandard(res2, cluster=dat2$district) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,13))) expect_equivalent(is.na(sav1$cluster$X2), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- rstudent(res1) sav2 <- rstudent(res2) sav2 <- sav2[match(sav1$slab, sav2$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$resid), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) sav1 <- rstudent(res1, cluster=dat1$district) sav2 <- rstudent(res2, cluster=dat2$district) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,8), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, parallel="snow") sav2 <- rstudent(res2, cluster=dat2$district, parallel="snow") sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,8), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- rstudent(res2, cluster=dat2$district, reestimate=FALSE) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,8), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- rstudent(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- rstudent(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) sav2$obs <- sav2$obs[match(sav1$obs$slab, sav2$obs$slab),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$obs$resid), c(rep(TRUE,8), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) expect_equivalent(is.na(sav1$cluster$X2), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1) sav2 <- cooks.distance(res2) sav2 <- sav2[match(names(sav1), names(sav2))] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) sav1 <- cooks.distance(res1, cluster=dat1$district) sav2 <- cooks.distance(res2, cluster=dat2$district) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, parallel="snow") sav2 <- cooks.distance(res2, cluster=dat2$district, parallel="snow") expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- cooks.distance(res2, cluster=dat2$district, reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- cooks.distance(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- cooks.distance(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1) sav2 <- dfbetas(res2) sav2 <- sav2[match(rownames(sav1), rownames(sav2)),] expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,9), rep(TRUE,4))) sav1 <- dfbetas(res1, cluster=dat1$district) sav2 <- dfbetas(res2, cluster=dat2$district) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, parallel="snow") sav2 <- dfbetas(res2, cluster=dat2$district, parallel="snow") expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, reestimate=FALSE) sav2 <- dfbetas(res2, cluster=dat2$district, reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- dfbetas(res1, cluster=dat1$district, parallel="snow", reestimate=FALSE) sav2 <- dfbetas(res2, cluster=dat2$district, parallel="snow", reestimate=FALSE) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$intrcpt), c(rep(TRUE,2), rep(FALSE,3), TRUE)) sav1 <- ranef(res1) sav2 <- ranef(res2) expect_equivalent(sav1, sav2) expect_equivalent(is.na(sav1$district$intrcpt), c(FALSE, TRUE, rep(FALSE,4))) expect_equivalent(is.na(sav1$`district/school`$intrcpt), c(rep(FALSE,4), rep(TRUE,4), FALSE, TRUE, rep(FALSE,13))) options(na.action="na.omit") }) rm(list=ls())
R.Version()$version.string set.seed(1) n<- 258 y<- rexp(2*n,rate=1/60.5932) cured<- rbinom(2*n,1,0.60) y[cured==1]<- 100 status<-rep(1,2*n) status[cured==1]<-0 z<-rep(c(1,2),each=n) IsaSimData<-data.frame(y=y,z=z,status=status)
ts_shiny_types <- function(){ engine <- engine_get() if(engine == "npm"){ cli::cli_alert_warning( "Installing types with npm may fail, try with yarn. See {.code engine_set}" ) } engine <- engine_get() cmd <- engine_install_cmd() cli::cli_alert( "Run the following from your terminal" ) cli::cli_text( "{.code {engine} {cmd} rstudio/shiny}" ) } ts_get_types <- function(..., versions = NULL){ types <- c(...) if(length(types) == 0) stop("No types specified", call. = FALSE) if(is.null(versions)){ engine_install(types, scope = "dev") return() } if(length(types) != length(versions)) stop("Number of types does not match the number of versions") types <- paste0(types, "@", versions) engine_install(types, scope = "dev") } ts_get_type <- function(type, version = NULL){ if(missing(type)) stop("Missing type", call. = FALSE) if(!is.null(version)) type <- sprintf("%s@%s", type, version) arg <- sprintf("@types/%s", type) engine_install(arg) }
library(Pareto) context("test functions PiecewisePareto") test_that("PiecewisePareto_Layer_Mean", { expect_equal(PiecewisePareto_Layer_Mean(8000, 2000, t = 1000, alpha = 2), 400) expect_equal(PiecewisePareto_Layer_Mean(8000, 2000, t = 5000, alpha = 2, truncation = 10000), 4666.66666666667) expect_equal(PiecewisePareto_Layer_Mean(c(8000, 2000), c(2000, 1000), t = 5000, alpha = 2, truncation = 10000), c(4666.66666666667, 2000)) expect_equal(PiecewisePareto_Layer_Mean(c(8000, 2000), c(2000, 1000), t = c(1000, 3000, 5000), alpha = c(1, 2, 3), truncation = 10000), c(976.89367953673514, 1098.61228866810916)) }) test_that("PiecewisePareto_Layer_SM", { expect_equal(PiecewisePareto_Layer_SM(8000, 2000, t = 1000, alpha = 2), 1618875.8248682) expect_equal(PiecewisePareto_Layer_SM(8000, 2000, t = 5000, alpha = 2, truncation = 10000), 23543145.370663) expect_equal(PiecewisePareto_Layer_SM(c(1000, 8000), c(1000, 2000), t = c(1000, 3000, 5000), alpha = c(1, 2, 3), truncation = 10000), c(613705.63888010941, 3300236.16730614332)) }) test_that("PiecewisePareto_Layer_Var", { expect_equal(PiecewisePareto_Layer_Var(8000, 2000, 2, t = 1000), 1458875.8248682) expect_equal(PiecewisePareto_Layer_Var(8000, 2000, 2, t = 5000, truncation = 10000), 1765367.59288524) expect_equal(PiecewisePareto_Layer_Var(c(1000, 8000), c(1000, 2000), t = c(1000, 3000, 5000), alpha = c(1, 2, 3), truncation = 10000), c(133252.62496190792, 2345914.90618732199)) }) test_that("qPiecewisePareto", { expect_equal(qPiecewisePareto((1:9) * 0.1, c(1000,2000), c(1,2)), c(1111.1111111111111, 1250.0000000000000, 1428.5714285714287, 1666.6666666666667, 2000.0000000000000, 2236.0679774997902, 2581.9888974716114, 3162.2776601683800, 4472.1359549995805)) }) test_that("pPiecewisePareto", { expect_equal(pPiecewisePareto(c(1:4) * 1000, t = (1:3) * 1000, alpha = 1:3, truncation = 4000), c(0, 0.5, 0.77777777777777779, 1)) }) test_that("dPiecewisePareto", { expect_equal(dPiecewisePareto(c(1:4) * 1000, t = (1:3) * 1000, alpha = 1:3, truncation = 4000), c(0.001, 0.0005, 0.00022222222222222221, 0)) }) test_that("dPiecewisePareto", { expect_equal(qPiecewisePareto(c(1:4) * 0.2, t = (1:3) * 1000, alpha = 1:3, truncation = 4000), c(1250.0000000000000, 1666.6666666666667, 2236.0679774997902, 3060.1459631738917)) }) test_that("rPiecewisePareto with truncation wd", { set.seed(1972) NumberOfSimulations <- 1000000 t <- c(1000,3000,5000) Cover <- 8000 AttPoint <- 2000 truncation <- 6000 alpha <- c(0.7,1.5,2) truncation_type ="wd" expect_equal(PiecewisePareto_Layer_Mean(Cover, AttPoint, t, alpha, truncation = truncation, truncation_type = truncation_type), 868.729076663466) losses <- rPiecewisePareto(NumberOfSimulations, t, alpha, truncation = truncation, truncation_type = truncation_type) xs_losses <- pmin(Cover, pmax(0, losses - AttPoint)) mean(xs_losses) ratio <- round(mean(xs_losses) / PiecewisePareto_Layer_Mean(Cover, AttPoint, t, alpha, truncation = truncation, truncation_type = truncation_type), 2) expect_equal(ratio, 1) }) test_that("rPiecewisePareto with truncation lp", { set.seed(1972) NumberOfSimulations <- 1000000 t <- c(1000,3000,5000) Cover <- 8000 AttPoint <- 2000 truncation <- 6000 alpha <- c(0.7,1.5,2) truncation_type ="lp" expect_equal(PiecewisePareto_Layer_Mean(Cover, AttPoint, t, alpha, truncation = truncation, truncation_type = truncation_type), 1255.52081303827) losses <- rPiecewisePareto(NumberOfSimulations, t, alpha, truncation = truncation, truncation_type = truncation_type) xs_losses <- pmin(Cover, pmax(0, losses - AttPoint)) mean(xs_losses) ratio <- round(mean(xs_losses) / PiecewisePareto_Layer_Mean(Cover, AttPoint, t, alpha, truncation = truncation, truncation_type = truncation_type), 2) expect_equal(ratio, 1) }) test_that("rPiecewisePareto without truncation", { set.seed(1972) NumberOfSimulations <- 1000000 t <- c(1000,3000,5000) Cover <- 8000 AttPoint <- 2000 alpha <- c(0.7,1.5,2) expect_equal(PiecewisePareto_Layer_Mean(Cover, AttPoint, t, alpha), 1696.1079667876) losses <- rPiecewisePareto(NumberOfSimulations, t, alpha) xs_losses <- pmin(Cover, pmax(0, losses - AttPoint)) mean(xs_losses) ratio <- round(mean(xs_losses) / PiecewisePareto_Layer_Mean(Cover, AttPoint, t, alpha), 2) expect_equal(ratio, 1) }) test_that("Pareto_ML_Estimator_alpha", { losses <- c(2021.37427270114, 1144.4154953111, 1263.31435215882, 2159.17623012884, 1597.37248664761, 1272.28453257, 2914.10585100956, 1304.18266162408, 1120.50113120055, 2127.70698437685, 2060.81683374026, 2039.7843971136, 1888.54098901941, 2124.60113577822, 1861.90023645773, 1061.42587835879, 1096.87195504782, 2741.00486150546, 3599.51085744179, 1944.00791988792, 4801.21672397748, 2011.17712322692, 1614.38016727125, 1366.00934974079, 2740.17455761229, 3696.80509791037, 1519.32575139179, 2673.72771069715, 1377.97530890359, 2747.57267315656, 2962.51959921929, 2970.06262726659, 3849.91766409146, 1011.07955688529, 2142.35280378138, 2363.88639730512, 1585.05201649176, 1519.87964078085, 4152.85247579578, 1145.85174532018, 1045.70673772088, 2035.21218839728, 2265.69458584306, 1259.17343777875, 1276.43540240796, 1156.59174646013, 2213.19952527109, 2090.8925597549, 1599.32662288134, 1748.10607173994, 1110.83766088527, 4216.9888129572, 1987.10180900716, 2848.75495497778, 2459.33207487438, 1057.30210620244, 2613.23427141216, 4267.61547888255, 2110.3988745262, 1608.79852597768, 3299.23731214781, 1598.18841764305, 1867.71915473237, 1025.8298666397, 1714.23234124254, 2344.71364141762, 1415.68319510445, 1529.97435270215, 1236.57055448752, 2466.0269323041, 1091.02769697244, 2408.02293167307, 3106.53753930817, 2461.21276690245, 3262.03972168424, 4127.01858195009, 1181.45647693256, 2915.05440240728, 2819.40842718265, 1079.96118940952, 3652.61964913811, 3731.17802733447, 4689.68469988139, 3430.45722285605, 1700.45433736218, 2269.02625009652, 3545.91823730921, 3112.72960104325, 2757.85209289505, 1073.92628882837, 3697.84111140716, 2567.88718258095, 2624.17812649749, 2430.48340413282, 2399.39130252127, 1194.87342560877, 1733.25071770226, 2177.58393770677, 2313.84456911248, 2561.30080556934) expect_equal(round(PiecewisePareto_ML_Estimator_Alpha(losses, c(1000, 2000, 3000)), 5), c(0.81259, 2.65715, 4.42204)) expect_equal(round(PiecewisePareto_ML_Estimator_Alpha(losses, c(1000, 2000, 3000), truncation = 5000, truncation_type = "lp"), 5), c(0.81259, 2.65715, 1.35691)) expect_equal(round(PiecewisePareto_ML_Estimator_Alpha(losses, c(1000, 2000, 3000), truncation = 5000, truncation_type = "wd"), 5), c(0.59649, 1.50625, 0.98904)) reporting_thresholds <- rep(1000, length(losses)) reporting_thresholds[1] <- 1500 reporting_thresholds[4] <- 1500 expect_equal(round(PiecewisePareto_ML_Estimator_Alpha(losses, c(1000, 2000, 3000), reporting_thresholds = reporting_thresholds), 5), c(0.82524, 2.65715, 4.42204)) censored <- rep(FALSE, length(losses)) censored [1:3] <- TRUE expect_equal(round(PiecewisePareto_ML_Estimator_Alpha(losses, c(1000, 2000, 3000), reporting_thresholds = reporting_thresholds, is.censored = censored), 5), c(0.78686, 2.58902, 4.42204)) expect_equal(round(PiecewisePareto_ML_Estimator_Alpha(losses, c(1000, 2000, 3000), reporting_thresholds = reporting_thresholds, is.censored = censored, truncation = 5000, truncation_type = "lp"), 5), c(0.78686, 2.58902, 1.35691)) expect_equal(round(PiecewisePareto_ML_Estimator_Alpha(losses, c(1000, 2000, 3000), reporting_thresholds = reporting_thresholds, is.censored = censored, truncation = 5000, truncation_type = "wd"), 5), c(0.51603, 1.24380, 0.74810)) w <- rep(1, length(losses)) w[1:2] <- 2 w[3] <- 5 losses2 <- c(losses, losses[1:2], rep(losses[3], 4)) expect_equal(PiecewisePareto_ML_Estimator_Alpha(losses, c(1000, 2000, 3000), weights = w), PiecewisePareto_ML_Estimator_Alpha(losses2, c(1000, 2000, 3000))) expect_equal(PiecewisePareto_ML_Estimator_Alpha(losses, c(1000, 2000, 3000), weights = w, truncation = 5000, truncation_type = "lp"), PiecewisePareto_ML_Estimator_Alpha(losses2, c(1000, 2000, 3000), truncation = 5000, truncation_type = "lp")) expect_equal(PiecewisePareto_ML_Estimator_Alpha(losses, c(1000, 2000, 3000), weights = w, truncation = 5000, truncation_type = "wd"), PiecewisePareto_ML_Estimator_Alpha(losses2, c(1000, 2000, 3000), truncation = 5000, truncation_type = "wd")) })
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(ROCaggregator) library(ROCR) library(pracma) library(stats) set.seed(13) create_dataset <- function(n){ positive_labels <- n %/% 2 negative_labels <- n - positive_labels y = c(rep(0, negative_labels), rep(1, positive_labels)) x1 = rnorm(n, 10, sd = 1) x2 = c(rnorm(positive_labels, 2.5, sd = 2), rnorm(negative_labels, 2, sd = 2)) x3 = y * 0.3 + rnorm(n, 0.2, sd = 0.3) data.frame(x1, x2, x3, y)[sample(n, n), ] } node_1 <- create_dataset(sample(300:400, 1)) node_2 <- create_dataset(sample(300:400, 1)) node_3 <- create_dataset(sample(300:400, 1)) glm.fit <- glm( y ~ x1 + x2 + x3, data = rbind(node_1, node_2), family = binomial, ) get_roc <- function(dataset){ glm.probs <- predict(glm.fit, newdata = dataset, type = "response") pred <- prediction(glm.probs, c(dataset$y)) perf <- performance(pred, "tpr", "fpr") perf_p_r <- performance(pred, "prec", "rec") list( "fpr" = [email protected][[1]], "tpr" = [email protected][[1]], "prec" = [email protected][[1]], "thresholds" = [email protected][[1]], "negative_count"= sum(dataset$y == 0), "total_count" = nrow(dataset), "auc" = performance(pred, measure = "auc") ) } roc_node_1 <- get_roc(node_1) roc_node_2 <- get_roc(node_2) roc_node_3 <- get_roc(node_3) fpr <- list(roc_node_1$fpr, roc_node_2$fpr, roc_node_3$fpr) tpr <- list(roc_node_1$tpr, roc_node_2$tpr, roc_node_3$tpr) thresholds <- list( roc_node_1$thresholds, roc_node_2$thresholds, roc_node_3$thresholds) negative_count <- c( roc_node_1$negative_count, roc_node_2$negative_count, roc_node_3$negative_count) total_count <- c( roc_node_1$total_count, roc_node_2$total_count, roc_node_3$total_count) roc_aggregated <- roc_curve(fpr, tpr, thresholds, negative_count, total_count) roc_auc <- trapz(roc_aggregated$fpr, roc_aggregated$tpr) sprintf("ROC AUC aggregated from each node's results: %f", roc_auc) precision_recall_aggregated <- precision_recall_curve( fpr, tpr, thresholds, negative_count, total_count) precision_recall_auc <- -trapz( precision_recall_aggregated$recall, precision_recall_aggregated$pre) sprintf( "Precision-Recall AUC aggregated from each node's results: %f", precision_recall_auc ) roc_central_case <- get_roc(rbind(node_1, node_2, node_3)) sprintf( "ROC AUC using ROCR with all the data centrally available: %f", [email protected][[1]] ) precision_recall_auc <- trapz( roc_central_case$tpr, ifelse(is.nan(roc_central_case$prec), 1, roc_central_case$prec) ) sprintf( "Precision-Recall AUC using ROCR with all the data centrally available: %f", precision_recall_auc ) plot(roc_aggregated$fpr, roc_aggregated$tpr, main="ROC curve", xlab = "False Positive Rate", ylab = "True Positive Rate", cex=0.3, col="blue", ) library(pROC, warn.conflicts = FALSE) get_proc <- function(dataset){ glm.probs <- predict(glm.fit, newdata = dataset, type = "response") roc_obj <- roc(c(dataset$y), c(glm.probs)) list( "fpr" = 1 - roc_obj$specificities, "tpr" = roc_obj$sensitivities, "thresholds" = roc_obj$thresholds, "negative_count"= sum(dataset$y == 0), "total_count" = nrow(dataset), "auc" = roc_obj$auc ) } roc_obj_node_1 <- get_proc(node_1) roc_obj_node_2 <- get_proc(node_2) roc_obj_node_3 <- get_proc(node_3) fpr <- list(roc_obj_node_1$fpr, roc_obj_node_2$fpr, roc_obj_node_3$fpr) tpr <- list(roc_obj_node_1$tpr, roc_obj_node_2$tpr, roc_obj_node_3$tpr) thresholds <- list( roc_obj_node_1$thresholds, roc_obj_node_2$thresholds, roc_obj_node_3$thresholds) negative_count <- c( roc_obj_node_1$negative_count, roc_obj_node_2$negative_count, roc_obj_node_3$negative_count) total_count <- c( roc_obj_node_1$total_count, roc_obj_node_2$total_count, roc_obj_node_3$total_count) roc_aggregated <- roc_curve(fpr, tpr, thresholds, negative_count, total_count) roc_auc <- trapz(roc_aggregated$fpr, roc_aggregated$tpr) sprintf("ROC AUC aggregated from each node's results: %f", roc_auc) roc_central_case <- get_proc(rbind(node_1, node_2, node_3)) sprintf( "ROC AUC using pROC with all the data centrally available: %f", roc_central_case$auc )
dist_ll <- function(y, hurd = Inf, lam = NULL, size = 1, mu = NULL, xi = NULL, sigma = NULL, dist = c("poisson", "nb", "lognormal", "gpd"), g.x = F, log = T){ trunc1 <- ifelse(g.x, hurd - 1, 0) trunc2 <- ifelse(g.x, Inf, hurd - 1) f <- match.arg(dist) ll <- switch(f, poisson = dpois(y, lam, log = T) - log(ppois(trunc2, lam) - ppois(trunc1, lam)), nb = dnbinom(y, size = size, mu = mu, log = T) - log(pnbinom(trunc2, size = size, mu = mu) - pnbinom(trunc1, size = size, mu = mu)), lognormal = mlnorm(y, meanlog = mu, sdlog = sqrt(mu+mu^2/size), log = T) - log(plnorm(trunc2 + 0.5, meanlog = mu, sdlog = sqrt(mu+mu^2/size)) - plnorm(trunc1 + 0.5, meanlog = mu, sdlog = sqrt(mu+mu^2/size))), gpd = mgpd(y, trunc1 + 1, sigma, xi, log = T) - log(pgpd(trunc2 + 0.5, trunc1 + 1, sigma, xi))) if(log){return(ll)} else{return(exp(ll))} }
context("Analytic results") no_w <- 100 no_sp <- 2 p <- newTraitParams(no_sp = no_sp, perfect_scaling = TRUE, no_w = no_w) p@species_params$pred_kernel_type <- "truncated_lognormal" n0 <- p@initial_n n0[] <- 0 n_pp <- p@initial_n_pp n_pp[] <- p@resource_params$kappa * p@w_full^(-p@resource_params$lambda) sp <- 1 sigma <- p@species_params$sigma[sp] beta <- p@species_params$beta[sp] gamma <- p@species_params$gamma[sp] q <- p@species_params$q[sp] n <- p@species_params$n[sp] lm2 <- p@resource_params$lambda - 2 test_that("getEncounter approximates analytic result when feeding on resource only", { e <- getEncounter(p, n0, n_pp)[sp, ] * p@w^(lm2 - q) expect_equivalent(e, rep(e[1], length(e))) Dx <- p@w[2] / p@w[1] - 1 dx <- log(p@w[2] / p@w[1]) encounter_analytic <- p@resource_params$kappa * exp(lm2^2 * sigma^2 / 2) * beta^lm2 * sqrt(2 * pi) * sigma * gamma * Dx / dx expect_equivalent(e[1], encounter_analytic, tolerance = 1e-3) Beta <- log(beta) x_full <- log(p@w_full) dx <- x_full[2] - x_full[1] i <- 100 ear <- 0 for (j in 1:(i - 1)) { ear <- ear + p@w_full[j]^(2 - p@resource_params$lambda) * exp(-(x_full[i] - x_full[j] - Beta)^2 / (2 * sigma^2)) } ear <- ear * p@resource_params$kappa * p@w_full[i]^(p@resource_params$lambda - 2) * dx * gamma expect_equivalent(e[1], ear * Dx / dx) }) test_that("getDiet approximates analytic result when feeding on resource only", { n <- p@initial_n n[] <- rep(p@resource_params$kappa * p@w^(-p@resource_params$lambda), each = 2) n_pp <- p@initial_n_pp n_pp[] <- p@resource_params$kappa * p@w_full^(-p@resource_params$lambda) p0 <- setInteraction(p, interaction = matrix(0, nrow = no_sp, ncol = no_sp)) diet <- getDiet(p0, n, n_pp, proportion = FALSE)[sp, , ] expect_true(all(diet[, 1:2] == 0)) diet_coeff <- diet[, 3] * p@w^(lm2 - q) expect_equivalent(diet_coeff, rep(diet_coeff[1], no_w)) feeding_level <- getFeedingLevel(p0, n0, n_pp)[sp, ] encounter <- getEncounter(p0, n0, n_pp)[sp, ] expect_equivalent(diet[, 3], encounter * (1 - feeding_level)) }) test_that("getFeedingLevel approximates analytic result", { f <- getFeedingLevel(p)[sp, ] expect_equivalent(f, rep(f[1], length(f)), tolerance = 1e-12, check.names = FALSE) expect_equivalent(f[1], 0.6, tolerance = 2e-2, check.names = FALSE) })
library(mapview) expect_equal(mapview:::col2Hex("black"), " expect_equal(mapview:::col2Hex("black", alpha = TRUE), " expect_equal(mapview:::standardColor(breweries), " expect_equal(mapview:::standardColor(trails), " expect_equal(mapview:::luminence("black"), 0) expect_equal(mapview:::luminence("white"), 1)
RL4 <- function(nsubj, seqs=c("TR","RT"), blocksize, seed=runif(1,max=1E7), randctrl=TRUE, pmethod=c("normal","exact","cc"), alpha=0.025) { pmethod <- match.arg(pmethod) if (length(nsubj)>1) { subj <- nsubj nsubj <- length(subj) } else { subj <- 1:nsubj } seed <- as.integer(seed) if(is.na(seed)) seed <- 0 set.seed(seed) nseq <- length(seqs) if(missing(blocksize)) blocksize <- 2*nseq if(blocksize[1]>nsubj) { blocksize <- 0 warning("Blocksize > " Blocksize adapted to ", nsubj,".", call. = FALSE ) } if (any(blocksize==0)) { blocksize <- nsubj } else { blocksize[blocksize<nseq] <- nseq if (any(nseq*(blocksize%/%nseq) != blocksize)) { blocksize <- nseq*(blocksize%/%nseq) blocksize[blocksize<nseq] <- nseq warning("Blocksize is not a multiple of sequences!", " Blocksize adapted to ", blocksize,".", call. = FALSE ) blocksize <- unique(blocksize) } } rlv <- rlv(nsubj, nseq, blocksize) rl <- rlv$rl runs.p <- runs.pvalue(rl, pmethod=pmethod) maxrlen <- max(rle(rl)$lengths) xm <- matrix(rl[1:(nseq*(nsubj%/%nseq))], nrow=nseq) allblocksequal <- ncol(unique(xm,MARGIN=2)) if (randctrl){ iter <- 0 while(runs.p < alpha | allblocksequal==1){ msg <- paste("runs.p= ", format(runs.p, digits=4), ". Recreating randomlist.", sep="") if (allblocksequal==1) msg <- "All nseq blocks equal. Recreating randomlist." message(msg) seed <- seed + as.integer(runif(1,max=100)) set.seed(seed) iter <- iter + 1 rlv <- rlv(nsubj, nseq, blocksize) rl <- rlv$rl runs.p <- runs.pvalue(rl, pmethod=pmethod) maxrlen <- max(rle(rl)$lengths) if (iter>=2) break } } else { if (allblocksequal==1){ warning("Recurrent pattern of sequences detected.") } } bsv <- rlv$bsv rlc <- seqs[rl] ns <- table(rlc) nsequal <- (ns - ns[1]) == 0 if (!all(nsequal)){ msg <- paste(" ", names(ns)) msg2 <- paste(" ", ns) warning("Unbalanced design!", " msg, ":", msg2, call. = FALSE) } rl <- data.frame(subject=subj, seqno=rl, sequence=rlc, stringsAsFactors=FALSE) ns <- t(as.matrix(ns)) nsv <- as.vector(ns) names(nsv) <- colnames(ns) if (length(unique(bsv))==1) bsv <- bsv[1] rlret <- list(rl=rl, seed=seed, blocksize=bsv, ninseqs=nsv, runs.pvalue=runs.p, date=Sys.time()) class(rlret) <- "rl4" return(rlret) } rlv <- function(nsubj, nseq, blocksize) { seqsn <- 1:nseq n <- 0 rl <- vector(mode="numeric") bsv <- vector(mode="numeric") while (n<nsubj){ bs <- ifelse(length(blocksize)>1, sample(blocksize,1), blocksize[1]) bs <- ifelse((nsubj-n) < bs, nsubj-n, bs) rpp <- ifelse(nseq*bs%/%nseq != bs, bs%/%nseq+1, bs%/%nseq) rlb <- sample(rep(seqsn, rpp), bs) rl <- c(rl, rlb) bsv <- c(bsv, bs) n <- n + bs } rl <- rl[1:nsubj] return(list(rl=rl, bsv=bsv)) }
.keep_phases <- function(data, phases = c(1, 2), set.phases = TRUE, pvar = "phase") { source_attributes <- attributes(data) warning <- character(0) if (class(phases) %in% c("character", "numeric", "integer")) { if (!length(phases) == 2) { stop("Phases argument not set correctly.") } phases_A <- phases[1] phases_B <- phases[2] } if (class(phases) == "list") { phases_A <- phases[[1]] phases_B <- phases[[2]] } phases_total <- c(phases_A, phases_B) N <- length(data) design_list <- list() dropped_cases <- numeric(0) for(case in 1:N) { design <- rle(as.character(data[[case]][, pvar])) if (class(phases_total) == "character") { select_A <- which(design$values %in% phases_A) select_B <- which(design$values %in% phases_B) } else { select_A <- phases_A select_B <- phases_B } if (class(phases_total) != "character") { if (any(phases_total > length(design$values))) { warning <- c(warning, paste0("Phase(s) not found. Case ", case, " dropped.\n")) dropped_cases <- c(dropped_cases, case) next } } if (class(phases_total) == "character") { tmp <- sapply(phases_total, function(x) sum(x == design$values) > 1) if (any(tmp)) { stop( paste0( "Selected phase ", paste(names(tmp[tmp])), " occure several times. Please give number of phases instead of characters." ) ) } tmp <- sapply(phases_total, function(x) any(x == design$values)) if (!all(tmp)) { warning <- c( warning, paste0("Phase(s) ", names(tmp[!tmp]), " not found. Case ", case, " dropped.\n") ) dropped_cases <- c(dropped_cases, case) next } } design$start <- c(1, cumsum(design$lengths) + 1)[1:length(design$lengths)] design$stop <- cumsum(design$lengths) class(design) <- "list" A <- unlist(lapply(select_A, function(x) design$start[x]:design$stop[x])) B <- unlist(lapply(select_B, function(x) design$start[x]:design$stop[x])) data[[case]][,pvar] <- as.character(data[[case]][, pvar]) if (set.phases) { data[[case]][A ,pvar] <- "A" data[[case]][B ,pvar] <- "B" } data[[case]] <- data[[case]][c(A, B),] design_list[[case]] <- design } if (length(warning) > 0) warning(paste0(warning, collapse = " ")) if (length(dropped_cases > 0)) { data <- data[-dropped_cases] design_list <- design_list[-dropped_cases] source_attributes$names <- source_attributes$names[-dropped_cases] if (length(data) == 0) stop("No case remained.") } attributes(data) <- source_attributes out <- list( data = data, designs = design_list, N = N, phases_A = phases_A, phases_B = phases_B ) class(out) <- c("sc_keepphases") out }
context("High-level-UI") test_that("Names and [[", { test_file <- tempfile(fileext=".h5") file.h5 <- H5File$new(test_file, mode="w") test1 <- file.h5$create_group("test1") test2 <- test1$create_group("test2") test3 <- file.h5$create_group("test3") expect_equal(names(file.h5), c("test1", "test3")) expect_equal(file.h5$names, c("test1", "test3")) expect_equal(names(test1), "test2") expect_equal(names(test2), character(0)) test4 <- file.h5[["test1", dataset_access_pl=h5const$H5P_DEFAULT]] expect_equal(test1$get_obj_name(), test4$get_obj_name()) test.error <- try(file.h5[["asdf"]], silent=TRUE) expect_true(inherits(test.error, "try-error")) expect_true(inherits(try(file.h5[["test1"]] <- test2, silent=TRUE), "try-error")) file.h5[["test_hard_link"]] <- test1 test_hard_link <- file.h5[["test_hard_link"]] expect_equal(test_hard_link$obj_info(), test1$obj_info()) robj <- matrix(as.integer(1:20), ncol=4) test_dataset <- test1$create_dataset("test_dataset", robj) file.h5[["dataset_hard_link"]] <- test_dataset test_dataset_hl <- file.h5[["dataset_hard_link"]] expect_equal(test_dataset_hl$obj_info(), test_dataset$obj_info()) file.h5[["test_type"]] <- h5types$H5T_NATIVE_INT64 expect_true(h5types$H5T_NATIVE_INT64$equal(file.h5[["test_type"]])) file.h5[["test_dataset2"]] <- robj expect_equal(file.h5[["test_dataset2"]]$read(), robj) file.h5$close_all() file.remove(test_file) }) index_logical <- c(TRUE, FALSE, TRUE, TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE) index_regular <- c(3, 4, 5, 6) index_regular2 <- c(3, 5, 7, 9) index_positive <- c(1, 5, 6, 10, 15) index_ident <- c(1, 3, 3, 6) index_ident2 <- c(1, 3, 5, 1) index_decreasing <- c(5, 4, 2, 1) index_negative_all <- -index_regular index_negative_some <- c(1, 3, -2, 5, 6) index_large <- c(1, 20) index_empty <- list(quote(expr=)) example_indices <- list(index_logical, index_regular, index_regular2, index_positive, index_ident, index_ident2, index_decreasing, index_negative_all, index_large, quote(expr=), NULL) test_that("args_regularity_evaluation to selection", { a <- 4 example_calls <- list(call(":", a, 8), call("seq_len", 6), call("seq", from=4, to=9, by=2), call("seq", from=4, length.out=4, by=1), call(":", -2, 2), expression(1:5 / 10 * 2)) check_for_func_res <- lapply(example_calls, hdf5r:::check_arg_for_hyperslab_func, envir=sys.frame()) expect_equal(check_for_func_res, list(c(4, 1, 1, 5), c(1, 1, 1, 6), c(4, 3, 2, 1), c(4, 1, 1, 4), c(NA, NA, NA, NA), c(NA, NA, NA, NA))) ds_dims <- rep(10, length(example_indices)) example_indices_regularity <- hdf5r:::args_regularity_evaluation(example_indices, ds_dims, envir=sys.frame()) NA_hyperslab_row <- c(NA, NA, NA, NA) example_indices_intended_output <- list( args_in=example_indices, args_point=list(c(1, 3, 4, 6, 10), NULL, NULL, index_positive, unique(index_ident), NULL, sort(index_decreasing), seq_len(10)[index_negative_all], NULL, NULL, numeric(0)), is_hyperslab=c(FALSE, TRUE, TRUE, FALSE, FALSE, TRUE, FALSE, FALSE, TRUE, TRUE, FALSE), hyperslab=matrix(c(NA_hyperslab_row, c(3, 1, 1, 4), c(3, 4, 2, 1), NA_hyperslab_row, NA_hyperslab_row, c(1, 3, 2, 1), NA_hyperslab_row, NA_hyperslab_row, c(1, 2, 19, 1), c(1, 1, 1, 10), NA_hyperslab_row), byrow=TRUE, ncol=4, dimnames=list(NULL, c("start", "count", "stride", "block"))), result_dims_pre_shuffle=c(5, 4, 4, 5, 3, 3, 4, 6, 2, 10, 0), result_dims_post_shuffle=c(5, 4, 4, 5, 4, 4, 4, 6, 2, 10, 0), max_dims=c(10, 6, 9, 15, 6, 5, 5, 10, 20, 10, -Inf), needs_reshuffle=c(FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE), reshuffle=list(NULL, NULL, NULL, NULL, c(1, 2, 2, 3), c(1, 2, 3, 1), c(4, 3, 2, 1), NULL, NULL, NULL, NULL) ) expect_equal(example_indices_regularity, example_indices_intended_output) expect_error(hdf5r:::args_regularity_evaluation(list(index_negative_some), ds_dims=10, envir=sys.frame())) only_points_regularity <- hdf5r:::args_regularity_evaluation(list(index_positive, index_positive), ds_dims=c(10, 10), envir=sys.frame()) mixed_regularity <- hdf5r:::args_regularity_evaluation(list(index_regular, index_positive), ds_dims=c(10, 10), envir=sys.frame()) only_hyperslab_regularity <- hdf5r:::args_regularity_evaluation(list(index_regular, index_regular2, quote(expr=)), ds_dims=c(10, 10, 10), envir=sys.frame()) only_points_selection <- hdf5r:::regularity_eval_to_selection(only_points_regularity) mixed_selection <- hdf5r:::regularity_eval_to_selection(mixed_regularity) only_hyperslab_selection <- hdf5r:::regularity_eval_to_selection(only_hyperslab_regularity) expect_equal(only_points_selection, structure(matrix(c(rep(index_positive, times=5), rep(index_positive, each=5)), ncol=2), class="point_selection")) mixed_selection_array <- array(0, dim=c(2, 5, 4)) mixed_selection_array[1,,] <- rep(c(3, 1, 1, 4), each=5) mixed_selection_array[2,,] <- 1 mixed_selection_array[2,,1] <- index_positive expect_equal(mixed_selection, structure(mixed_selection_array, class="hyperslab_selection")) only_hyperslab_array <- array(0, dim=c(3, 1, 4)) only_hyperslab_array[1,,] <- c(3, 1, 1, 4) only_hyperslab_array[2,,] <- c(3, 4, 2, 1) only_hyperslab_array[3,,] <- c(1, 1, 1, 10) expect_equal(only_hyperslab_selection, structure(only_hyperslab_array, class="hyperslab_selection")) }) test_that("subset_h5.H5S", { h5s_obj <- H5S$new(type="simple", dims=c(15, 15, 20), maxdims=c(15, 15, 20)) subset_h5.H5S(h5s_obj, seq_len(3), seq(2,4,by=3), 5:9) expect_equal(h5s_obj$get_select_type(), h5const$H5S_SEL_HYPERSLABS) expect_equal(h5s_obj$get_select_hyper_blocklist(), matrix(c(1,3,2,2,5,9), nrow=2, dimnames=list(c("block_1_start", "block_1_end"), NULL))) subset_h5.H5S(h5s_obj, seq_len(3), seq(2,4,by=3), c(1,2,4)) expect_equal(h5s_obj$get_select_type(), h5const$H5S_SEL_POINTS) expect_error(h5s_obj[16, 1, 1], "The following coordinates are outside the dataset dimensions: 1") foo <- h5s_obj[1:3, NULL, c(1,2,4)] expect_equal(h5s_obj$get_select_type(), h5const$H5S_SEL_NONE) foo <- h5s_obj[,,] subset_h5.H5S(h5s_obj, seq_len(3), NULL, c(1,2,4)) expect_equal(h5s_obj$get_select_type(), h5const$H5S_SEL_NONE) h5s_logical <- subset_h5.H5S(h5s_obj, index_logical, , ) expect_equal(h5s_logical$get_select_type(), h5const$H5S_SEL_HYPERSLABS) h5s_regular <- subset_h5.H5S(h5s_obj, index_regular, ,) expect_equal(h5s_regular$get_select_type(), h5const$H5S_SEL_HYPERSLABS) h5s_positive <- subset_h5.H5S(h5s_obj, index_positive, ,) expect_equal(h5s_positive$get_select_type(), h5const$H5S_SEL_HYPERSLABS) h5s_ident <- subset_h5.H5S(h5s_obj, index_ident, ,) expect_equal(h5s_ident$get_select_type(), h5const$H5S_SEL_HYPERSLABS) h5s_ident2 <- subset_h5.H5S(h5s_obj, index_ident2, ,) expect_equal(h5s_ident$get_select_type(), h5const$H5S_SEL_HYPERSLABS) h5s_decreasing <- subset_h5.H5S(h5s_obj, index_decreasing, ,) expect_equal(h5s_decreasing$get_select_type(), h5const$H5S_SEL_HYPERSLABS) h5s_negative_all <- subset_h5.H5S(h5s_obj, index_negative_all, ,) expect_equal(h5s_negative_all$get_select_type(), h5const$H5S_SEL_HYPERSLABS) expect_error(subset_h5.H5S(h5s_obj, index_negative_some, ,), regexp=".*not all subscripts are either positive or negative") expect_error(subset_h5.H5S(h5s_obj, index_large, ,), "The following coordinates are outside the dataset dimensions:.*") h5s_logical_double <- subset_h5.H5S(h5s_obj, index_logical, index_logical, ) expect_equal(h5s_logical_double$get_select_type(), h5const$H5S_SEL_HYPERSLABS) h5s_logical_triple <- subset_h5.H5S(h5s_obj, index_logical, index_logical, index_logical) expect_equal(h5s_logical_double$get_select_type(), h5const$H5S_SEL_POINTS) h5s_logical_regular <- subset_h5.H5S(h5s_obj, index_logical, , index_regular) expect_equal(h5s_logical_regular$get_select_type(), h5const$H5S_SEL_HYPERSLABS) subset_h5.H5S(h5s_obj, seq_len(3), NULL, c(1,2,4)) expect_equal(h5s_obj$get_select_type(), h5const$H5S_SEL_NONE) }) test_that("subset_h5.H5D", { test_file <- tempfile(fileext=".h5") file.h5 <- H5File$new(test_file, mode="w") robj <- matrix(as.integer(1:100), ncol=10) file.h5[["test"]] <- robj test <- file.h5[["test"]] indices_test <- list( 1:10, 10:1, c(1,2,3,4), c(4, 3, 2, 1), c(1, 3, 5, 7), c(7, 5, 3, 1), c(1, 2, 5, 9), c(9, 5, 2, 1), c(1:10, 1:10), c(1, 2, 2, 2, 3, 4, 5), c(-1, -2, -3), c(-1, -3, -4)) for(ind1 in indices_test) { for(ind2 in indices_test) { expect_equal(test[ind1, ind2], robj[ind1, ind2]) } } expect_equal(test[1:3, 2:4], robj[1:3, 2:4]) expect_equal(test[c(1,3,4),], robj[c(1,3,4),]) test[1:3, 2:4] <- 1:9 expect_equal(test[1:3, 2:4], matrix(1:9, ncol=3)) test[11:15, ] <- 1:50 expect_equal(as.vector(test[11:15,]), 1:50) get_1 <- function(i, ds) { return(ds[i,]) } expect_equal(get_1(11, test), c(1, 6, 11, 16, 21, 26, 31, 36, 41, 46)) test2 <- file.h5$create_dataset("test_array", dtype=h5types$H5T_NATIVE_INT, space=H5S$new("simple", dims=c(10,10,100)), chunk_dims=c(10,10,1)) pos_list <- list(1) test2[,,pos_list[[1]]] <- 1:100 expect_equal(test2[,,1], matrix(1:100, ncol=10)) expect_error(test2[11, ,], "The following coordinates are outside the dataset dimensions: 1") expect_equal(test[, NULL], matrix(numeric(0), ncol=0, nrow=15)) robj_onedim = 1:10 file.h5[["onedim"]] <- robj_onedim test_onedim <- file.h5[["onedim"]] expect_equal(test_onedim[1:5], robj_onedim[1:5]) expect_equal(test_onedim[c(1, 3)], robj_onedim[c(1, 3)]) expect_equal(test_onedim[c(2, 4)], robj_onedim[c(2, 4)]) for(ind1 in indices_test) { expect_equal(test_onedim[ind1], robj_onedim[ind1]) } file.h5$close_all() file.remove(test_file) }) test_that("hyperslab_to_points", { expect_equal(hdf5r:::hyperslab_to_points(c(2,2,2,1)), c(2,4)) }) test_that("attributes", { test_file <- tempfile(fileext=".h5") file.h5 <- H5File$new(test_file, mode="w") robj1 <- matrix(as.integer(1:10), ncol=2) robj2 <- paste("Test", 1:10) h5attr(file.h5, "integer") <- robj1 h5attr(file.h5, "character") <- robj2 expect_equal(sort(h5attr_names(file.h5)), sort(c("integer", "character"))) all_attr <- h5attributes(file.h5) expect_equal(all_attr$integer, robj1) expect_equal(all_attr$character, robj2) expect_equal(h5attr(file.h5, "integer"), robj1) expect_equal(h5attr(file.h5, "character"), robj2) h5attr(file.h5, "integer") <- robj2 expect_equal(h5attr(file.h5, "integer"), robj2) file.h5$close_all() file.remove(test_file) }) test_that("Subsetting dimensions, drop and write", { test_file <- tempfile(fileext=".h5") file.h5 <- H5File$new(test_file, mode="w") ex_array <- array(1:60, dim=c(3,4,5)) file.h5[["ex_array"]] <- ex_array ex_arr_ds <- file.h5[["ex_array"]] expect_equal(ex_arr_ds[2,,], ex_array[2,,]) expect_equal(ex_arr_ds[,2,], ex_array[,2,]) expect_equal(ex_arr_ds[,,2], ex_array[,,2]) expect_equal(ex_arr_ds[2,,, drop=FALSE], ex_array[2,,, drop=FALSE]) expect_equal(ex_arr_ds[,2,, drop=FALSE], ex_array[,2,, drop=FALSE]) expect_equal(ex_arr_ds[,,2, drop=FALSE], ex_array[,,2, drop=FALSE]) ex_arr_ds[,,] <- 1 ex_array[,,] <- 1 expect_equal(ex_array[,,], ex_arr_ds[,,]) ex_arr_ds[,,] <- c(1,2,3) ex_array[,,] <- c(1,2,3) expect_equal(ex_array[,,], ex_arr_ds[,,]) ex_array2 <- array(as.numeric(seq_len(15 * 15* 20)), dim=c(15, 15, 20)) file.h5[["ex_array2"]] <- ex_array2 ex_array2_ds <- file.h5[["ex_array2"]] copy_change_test_reset_array <- function(hdf5_ds, r_ds, index) { expect_equal(hdf5_ds[index,,], r_ds[index,,]) r_ds_changed <- r_ds replace_vals <- runif(length(r_ds[index,,])) r_ds_changed[index, ,] <- replace_vals hdf5_ds[index, ,] <- replace_vals hdf5_ds_read <- hdf5_ds[index, ,] hdf5_ds[, ,] <- r_ds expect_equal(hdf5_ds_read, r_ds_changed[index, ,]) return(invisible(NULL)) } copy_change_test_reset_array(ex_array2_ds, ex_array2, index_logical) copy_change_test_reset_array(ex_array2_ds, ex_array2, index_regular) copy_change_test_reset_array(ex_array2_ds, ex_array2, index_regular2) copy_change_test_reset_array(ex_array2_ds, ex_array2, index_positive) copy_change_test_reset_array(ex_array2_ds, ex_array2, index_ident) copy_change_test_reset_array(ex_array2_ds, ex_array2, index_ident2) copy_change_test_reset_array(ex_array2_ds, ex_array2, index_decreasing) copy_change_test_reset_array(ex_array2_ds, ex_array2, index_negative_all) expect_equal(ex_array2_ds[,,], ex_array2[,,]) expect_error(ex_array2_ds[index_large, ], "Number of arguments not equal to number of dimensions: 2 vs. 3") expect_error(ex_array2_ds[index_negative_some, ,], "In index 1 not all subscripts are either positive or negative") expect_error(ex_array2_ds[index_large,, ], "The following coordinates are outside the dataset dimensions:.*") expect_equal(ex_array2_ds[index_logical, index_logical,], ex_array2[index_logical, index_logical,]) expect_equal(ex_array2_ds[index_logical, index_logical, index_logical], ex_array2[index_logical, index_logical, index_logical]) expect_equal(ex_array2_ds[index_logical, , index_regular], ex_array2[index_logical, , index_regular]) ex_cpd <- data.frame(a=LETTERS[1:15], b=1:15, stringsAsFactors = FALSE) file.h5[["ex_cpd"]] <- ex_cpd ex_cpd_ds <- file.h5[["ex_cpd"]] copy_change_test_reset_cpd <- function(hdf5_cpd, r_cpd, index) { hdf5_cpd[] <- r_cpd hdf5_cpd_read <- hdf5_cpd[index] rownames(hdf5_cpd_read) <- NULL r_cpd_read <- r_cpd[index,] rownames(r_cpd_read) <- NULL expect_equal(hdf5_cpd_read, r_cpd_read) r_cpd_changed <- r_cpd replace_length <- nrow(r_cpd[index,]) replace_vals <- data.frame(a=sample(LETTERS, size=replace_length), b=sample(1:50, size=replace_length), stringsAsFactors = FALSE) r_cpd_changed[index,] <- replace_vals hdf5_cpd[index] <- replace_vals hdf5_cpd_read <- hdf5_cpd[] hdf5_cpd[] <- r_cpd expect_equal(hdf5_cpd_read, r_cpd_changed[,]) return(invisible(NULL)) } copy_change_test_reset_cpd(ex_cpd_ds, ex_cpd, index_logical) copy_change_test_reset_cpd(ex_cpd_ds, ex_cpd, index_regular) copy_change_test_reset_cpd(ex_cpd_ds, ex_cpd, index_regular2) copy_change_test_reset_cpd(ex_cpd_ds, ex_cpd, index_positive) copy_change_test_reset_cpd(ex_cpd_ds, ex_cpd, index_ident) copy_change_test_reset_cpd(ex_cpd_ds, ex_cpd, index_decreasing) copy_change_test_reset_cpd(ex_cpd_ds, ex_cpd, index_negative_all) expect_error(ex_cpd_ds[index_large, ], "Number of arguments not equal to number of dimensions: 2 vs. 1") expect_error(ex_cpd_ds[index_negative_some], "In index 1 not all subscripts are either positive or negative") expect_error(ex_cpd_ds[index_large], "The following coordinates are outside the dataset dimensions:.*") h5s_finite_maxdims <- H5S$new(type="simple", dims=c(5, 10, 15), maxdims=c(10, 15, 20)) h5d_finite_maxdims <- file.h5$create_dataset(name="ds_finite_maxdims", dtype=h5types$H5T_NATIVE_DOUBLE, space=h5s_finite_maxdims) h5d_finite_maxdims[10, ,1:10 ] <- 1:100 expect_equal(h5d_finite_maxdims$dims, c(10, 10, 15)) expect_error({h5d_finite_maxdims[11, , ] <- 151:300}, regexp="The following coordinates are larger than the largest possible dataset dimensions \\(maxdims\\): 1") file.h5$close_all() file.remove(test_file) }) test_that("Check if index is ok before expand", { test_file <- tempfile(fileext=".h5") file.h5 <- H5File$new(test_file, mode="w") ex_dset <- array(81, dim=c(9,9)) file.h5[["dset"]] <- ex_dset dset <- file.h5[["dset"]] expect_error({dset[10:11, 9] <- matrix(rep(0, 2*9), nrow = 2)}) expect_equal(dset$dims, c(9,9)) file.h5$close_all() file.remove(test_file) })
print_anova <- function( x , intercept = FALSE , observed = NULL , es = "ges" , mse = getOption("papaja.mse") , in_paren = FALSE ) { validate(x, check_class = "data.frame", check_NA = FALSE) validate(x, check_class = "apa_variance_table", check_NA = FALSE) validate(intercept, check_class = "logical", check_length = 1) if(!is.null(observed)) validate(observed, check_class = "character") if(!is.null(es)) { validate(es, check_class = "character") es <- sort(es, decreasing = TRUE) } validate(in_paren, check_class = "logical", check_length = 1) rownames(x) <- sanitize_terms(x$term) x <- add_effect_sizes( x = x , es = es , observed = observed , mse = mse , intercept = intercept ) if(!intercept) x <- x[x$term != "(Intercept)", ] x$statistic <- printnum(x$statistic, digits = 2) x$p.value <- printp(x$p.value) x$df <- print_df(x$df) x$df_res <- print_df(x$df_res) for(i in es) {x[[i]] <- printnum(x[[i]], digits = 3, gt1 = FALSE)} if(mse) x$mse <- printnum(x$mse, digits = 2) cols <- intersect( c("term", "statistic","df", "df_res", "mse", "p.value", es) , colnames(x) ) anova_table <- data.frame(x[, cols], row.names = NULL) anova_table[["term"]] <- prettify_terms(anova_table[["term"]]) correction_type <- attr(x, "correction") statistic <- attr(x, "statistic") if(is.null(statistic)) statistic <- "F" if(is.null(anova_table$df_res)) statistic <- "chisq" names(es) <- es renamers <- c( term = "Effect" , statistic = statistic , df = if(is.null(anova_table$df_res)){ "df" } else { "df1" } , df_res = "df2" , mse = "MSE" , p.value = "p" , es ) colnames(anova_table) <- renamers[colnames(anova_table)] class(anova_table) <- "data.frame" if(!is.null(correction_type) && correction_type != "none") { variable_label(anova_table) <- c( "Effect" = "Effect" , "F" = "$F$" , "chisq" = "$\\Chi^2$" , "df" = "$\\mathit{df}" , "df1" = paste0("$\\mathit{df}_1^{", correction_type, "}$") , "df2" = paste0("$\\mathit{df}_2^{", correction_type, "}$") , "p" = "$p$" , "pes" = "$\\hat{\\eta}^2_p$" , "ges" = "$\\hat{\\eta}^2_G$" , "es" = "$\\hat{\\eta}^2$" , "MSE" = "$\\mathit{MSE}$" )[colnames(anova_table)] } else { variable_label(anova_table) <- c( "Effect" = "Effect" , "F" = "$F$" , "chisq" = "$\\Chi^2$" , "df" = "$\\mathit{df}" , "df1" = "$\\mathit{df}_1$" , "df2" = "$\\mathit{df}_2$" , "p" = "$p$" , "pes" = "$\\hat{\\eta}^2_p$" , "ges" = "$\\hat{\\eta}^2_G$" , "es" = "$\\hat{\\eta}^2$" , "MSE" = "$\\mathit{MSE}$" )[colnames(anova_table)] } apa_res <- apa_print_container() apa_res$statistic <- paste0( c("F" = "$F", "chisq" = "$\\Chi^2")[statistic] , if(!is.null(x$df)) { "(" } else { NULL } , x$df , if(!is.null(x$df_res)) { ", " } else { NULL } , x$df_res , if(!is.null(x$df)) { ")" } else { NULL } , " = " , x$statistic , if(mse) { "$, $\\mathit{MSE} = " } else { NULL } , if(mse) { x$mse } else { NULL } , "$, $p " , add_equals(x$p.value) , "$" ) if(in_paren) apa_res$statistic <- in_paren(apa_res$statistic) names(apa_res$statistic) <- rownames(x) apa_res$statistic <- as.vector(apa_res$statistic, mode = "list") if(!is.null(es)) { apa_res$estimate <- apply(x, 1, function(y) { apa_est <- c() if("pes" %in% es) { apa_est <- c(apa_est, paste0("$\\hat{\\eta}^2_p = ", y["pes"], "$")) } if("ges" %in% es) { apa_est <- c(apa_est, paste0("$\\hat{\\eta}^2_G = ", y["ges"], "$")) } if("es" %in% es) { apa_est <- c(apa_est, paste0("$\\hat{\\eta}^2 = ", y["es"], "$")) } apa_est <- paste(apa_est, collapse = ", ") }) apa_res$full_result <- paste(apa_res$statistic, apa_res$estimate, sep = ", ") names(apa_res$full_result) <- names(apa_res$estimate) apa_res[] <- lapply(apa_res, as.list) } apa_res$table <- sort_terms(as.data.frame(anova_table), "Effect") class(apa_res$table) <- c("apa_results_table", "data.frame") apa_res }
expected <- eval(parse(text="structure(c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE), .Dim = c(5L, 2L), .Dimnames = list(NULL, c(\"VAR1\", \"VAR3\")))")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE), .Dim = c(5L, 2L), .Dimnames = list(NULL, c(\"VAR1\", \"VAR3\"))))")); do.call(`!`, argv); }, o=expected);
simple_table <- function(data, colnames = TRUE, rownames = FALSE) { if (!is.data.frame(data)) { stop("simple_table: `data` must be a data.frame", call. = FALSE) } if (ncol(data) == 0) { return(NULL) } header <- NULL if (isTRUE(colnames) && !is.null(colnames(data))) { header <- lapply(colnames(data), html$th) if (isTRUE(rownames)) { header <- c(list(html$th("")), header) } header <- html$tr(header) } rows <- lapply(seq(nrow(data)), function(rownum) { row <- lapply(as.character(data[rownum, ]), html$td) if (isTRUE(rownames)) { row <- c(list(html$td(rownames(data[rownum, ]))), row) } html$tr(row) }) html$table(c(list(header), rows)) }
setClass(Class = "MxFitFunctionRow", representation = representation( rowAlgebra = "MxCharOrNumber", rowResults = "MxCharOrNumber", units = "character", filteredDataRow = "MxCharOrNumber", existenceVector = "MxCharOrNumber", reduceAlgebra = "MxCharOrNumber", data = "MxCharOrNumber", dims = "character", dataColumns = "numeric", dataRowDeps = "integer"), contains = "MxBaseFitFunction") setMethod("initialize", signature("MxFitFunctionRow"), function(.Object, ...) { .Object <- callNextMethod() .Object@rowAlgebra <- ..1 .Object@rowResults <- ..2 .Object@units <- ..3 .Object@filteredDataRow <- ..4 .Object@existenceVector <- ..5 .Object@reduceAlgebra <- ..6 .Object@dims <- ..7 .Object@data <- as.integer(NA) .Object@expectation <- as.integer(NA) .Object }) setMethod("genericFitNewEntities", signature("MxFitFunctionRow"), function(.Object) { if (is.na(.Object@rowResults) && is.na(.Object@filteredDataRow) && is.na(.Object@existenceVector)) { return(NULL) } else { a <- .Object@rowResults b <- .Object@filteredDataRow c <- .Object@existenceVector retval <- c(a, b, c) retval <- as.character(na.omit(retval)) return(retval) } } ) setMethod("genericFitDependencies", signature("MxFitFunctionRow"), function(.Object, flatModel, dependencies) { dependencies <- callNextMethod() reduceAlgebra <- .Object@reduceAlgebra rowAlgebra <- .Object@rowAlgebra rowResults <- .Object@rowResults dependencies <- imxAddDependency(reduceAlgebra, .Object@name, dependencies) dependencies <- imxAddDependency(rowAlgebra, rowResults, dependencies) return(dependencies) }) setMethod("qualifyNames", signature("MxFitFunctionRow"), function(.Object, modelname, namespace) { .Object <- callNextMethod() .Object@rowAlgebra <- imxConvertIdentifier(.Object@rowAlgebra, modelname, namespace) .Object@rowResults <- imxConvertIdentifier(.Object@rowResults, modelname, namespace) .Object@filteredDataRow <- imxConvertIdentifier(.Object@filteredDataRow, modelname, namespace) .Object@existenceVector <- imxConvertIdentifier(.Object@existenceVector, modelname, namespace) .Object@reduceAlgebra <- imxConvertIdentifier(.Object@reduceAlgebra, modelname, namespace) .Object@data <- imxConvertIdentifier(.Object@data, modelname, namespace) return(.Object) }) setMethod("genericFitRename", signature("MxFitFunctionRow"), function(.Object, oldname, newname) { .Object@rowAlgebra <- renameReference(.Object@rowAlgebra, oldname, newname) .Object@reduceAlgebra <- renameReference(.Object@reduceAlgebra, oldname, newname) .Object@data <- renameReference(.Object@data, oldname, newname) return(.Object) }) setMethod("genericFitFunConvert", signature("MxFitFunctionRow"), function(.Object, flatModel, model, labelsData, dependencies) { .Object <- callNextMethod() modelname <- imxReverseIdentifier(model, .Object@name)[[1]] name <- .Object@name dataName <- .Object@data if(is.na(dataName)) { msg <- paste("The MxFitFunctionRow fit function", "does not have a dataset associated with it in model", omxQuotes(modelname)) stop(msg, call. = FALSE) } mxDataObject <- flatModel@datasets[[dataName]] if (mxDataObject@type != 'raw') { msg <- paste("The dataset associated with the MxFitFunctionRow fit function", "in model", omxQuotes(modelname), "is not raw data.") stop(msg, call. = FALSE) } dataRowDeps <- union(dependencies[[.Object@filteredDataRow]], dependencies[[.Object@existenceVector]]) dataRowDeps <- sapply(dataRowDeps, doLocateIndex, flatModel, flatModel@name, USE.NAMES=FALSE) dataRowDeps <- as.integer(dataRowDeps) .Object@rowAlgebra <- imxLocateIndex(flatModel, .Object@rowAlgebra, name) .Object@rowResults <- imxLocateIndex(flatModel, .Object@rowResults, name) .Object@filteredDataRow <- imxLocateIndex(flatModel, .Object@filteredDataRow, name) .Object@existenceVector <- imxLocateIndex(flatModel, .Object@existenceVector, name) .Object@reduceAlgebra <- imxLocateIndex(flatModel, .Object@reduceAlgebra, name) .Object@data <- imxLocateIndex(flatModel, dataName, name) .Object@dataColumns <- generateRowDataColumns(flatModel, .Object@dims, dataName) .Object@dataRowDeps <- dataRowDeps if (length(mxDataObject@observed) == 0) { .Object@data <- as.integer(NA) } return(.Object) }) generateRowDataColumns <- function(flatModel, expectedNames, dataName) { retval <- numeric(length(expectedNames)) dataColumnNames <- dimnames(flatModel@datasets[[dataName]]@observed)[[2]] for(i in 1:length(expectedNames)) { targetName <- expectedNames[i] index <- match(targetName, dataColumnNames) if(is.na(index)) { msg <- paste("The column name", omxQuotes(targetName), "in the expected covariance matrix", "of the MxFitFunctionRow fit function in model", omxQuotes(flatModel@name), "cannot be found in the column names of the data.") stop(msg, call. = FALSE) } retval[i] <- index - 1L } return(retval) } setMethod("genericFitAddEntities", "MxFitFunctionRow", function(.Object, job, flatJob, labelsData) { name <- .Object@name modelname <- job@name rowAlgebraName <- .Object@rowAlgebra rowResultsName <- .Object@rowResults filteredDataRowName <- .Object@filteredDataRow existenceVectorName <- .Object@existenceVector reduceAlgebraName <- .Object@reduceAlgebra dimnames <- .Object@dims [email protected] <- TRUE filteredDataRow <- flatJob[[filteredDataRowName]] if (!is.null(filteredDataRow)) { msg <- paste("The filteredDataRow cannot have name", omxQuotes(filteredDataRowName), "because this entity already exists in the model") stop(msg, call. = FALSE) } filteredDataRow <- mxMatrix('Full', nrow = 1, ncol = length(dimnames)) [email protected] <- FALSE job[[filteredDataRowName]] <- filteredDataRow flatJob[[filteredDataRowName]] <- filteredDataRow if (!is.na(existenceVectorName)) { existenceVector <- job[[existenceVectorName]] if (!is.null(existenceVector)) { msg <- paste("The existenceVector cannot have name", omxQuotes(existenceVectorName), "because this entity already exists in the model") stop(msg, call. = FALSE) } existenceVector <- mxMatrix('Full', nrow = 1, ncol = length(dimnames), values = 1) [email protected] <- FALSE job[[existenceVectorName]] <- existenceVector flatJob[[existenceVectorName]] <- existenceVector } rowAlgebra <- job[[rowAlgebraName]] if (is.null(rowAlgebra)) { msg <- paste("The rowAlgebra with name", omxQuotes(rowAlgebraName), "is not defined in the model") stop(msg, call. = FALSE) } tuple <- evaluateMxObject(rowAlgebraName, flatJob, labelsData, new.env(parent = emptyenv())) result <- tuple[[1]] if (nrow(result) != 1) { msg <- paste("The rowAlgebra with name", omxQuotes(rowAlgebraName), "does not evaluate to a row vector") stop(msg, call. = FALSE) } if (is.na(.Object@data)) { msg <- paste("The MxFitFunctionRow fit function", "does not have a dataset associated with it in model", omxQuotes(modelname)) stop(msg, call.=FALSE) } mxDataObject <- flatJob@datasets[[.Object@data]] rows <- nrow(mxDataObject@observed) cols <- ncol(result) rowResults <- job[[rowResultsName]] if (!is.null(rowResults)) { msg <- paste("The rowResults cannot have name", omxQuotes(rowResultsName), "because this entity already exists in the model") stop(msg, call. = FALSE) } rowResults <- mxMatrix('Full', nrow = rows, ncol = cols) [email protected] <- FALSE job[[rowResultsName]] <- rowResults reduceAlgebra <- job[[reduceAlgebraName]] if (is.null(reduceAlgebra)) { msg <- paste("The reduceAlgebra with name", omxQuotes(reduceAlgebraName), "is not defined in the model") stop(msg, call. = FALSE) } return(job) } ) setMethod("genericFitInitialMatrix", "MxFitFunctionRow", function(.Object, flatModel) { reduceAlgebraName <- .Object@reduceAlgebra labelsData <- imxGenerateLabels(flatModel) tuple <- evaluateMxObject(reduceAlgebraName, flatModel, labelsData, new.env(parent = emptyenv())) result <- tuple[[1]] return(result) } ) checkStringArgument <- function(arg, name) { if (single.na(arg)) { arg <- as.character(NA) } else if (length(unlist(strsplit(arg, imxSeparatorChar, fixed = TRUE))) > 1) { stop(paste("the", omxQuotes(name), "argument cannot contain the", omxQuotes(imxSeparatorChar), "character")) } if (!(is.vector(arg) && (typeof(arg) == 'character') && (length(arg) == 1))) { stop("the", omxQuotes(name), "argument is not a string") } return(arg) } mxFitFunctionRow <- function(rowAlgebra, reduceAlgebra, dimnames, rowResults = "rowResults", filteredDataRow = "filteredDataRow", existenceVector = "existenceVector", units="-2lnL") { if (missing(rowAlgebra) || typeof(rowAlgebra) != "character") { stop("the 'rowAlgebra' argument is not a string (the name of the row-by-row algebra)") } if (missing(reduceAlgebra) || typeof(reduceAlgebra) != "character") { stop("the 'reduceAlgebra' argument is not a string (the name of the reduction algebra)") } if (missing(dimnames) || typeof(dimnames) != "character") { stop("the 'dimnames' argument is not a string (the column names from the data set)") } if (any(is.na(dimnames))) { stop("NA values are not allowed for 'dimnames' vector") } rowResults <- checkStringArgument(rowResults, "rowResults") filteredDataRow <- checkStringArgument(filteredDataRow, "filteredDataRow") existenceVector <- checkStringArgument(existenceVector, "existenceVector") return(new("MxFitFunctionRow", rowAlgebra, rowResults, units, filteredDataRow, existenceVector, reduceAlgebra, dimnames)) } printSlot <- function(object, slotName) { val <- slot(object, slotName) if (single.na(val)) { msg <- paste('$', slotName, ' : NA \n', sep = '') } else { msg <- paste('$', slotName, ' : ',omxQuotes(val), '\n', sep = '') } cat(msg) } displayRowFitFunction <- function(fitfunction) { cat("MxFitFunctionRow", omxQuotes(fitfunction@name), '\n') cat("$rowAlgebra :", omxQuotes(fitfunction@rowAlgebra), '\n') cat("$units: ", omxQuotes(fitfunction@units), '\n') printSlot(fitfunction, "rowResults") printSlot(fitfunction, "filteredDataRow") printSlot(fitfunction, "existenceVector") printSlot(fitfunction, "reduceAlgebra") if (length(fitfunction@result) == 0) { cat("$result: (not yet computed) ") } else { cat("$result:\n") } print(fitfunction@result) invisible(fitfunction) } setMethod("print", "MxFitFunctionRow", function(x,...) { displayRowFitFunction(x) }) setMethod("show", "MxFitFunctionRow", function(object) { displayRowFitFunction(object) })
context("Parallelization works") test_that("predict.caretEnsemble works in parallel", { skip_on_cran() X_reg <- model.matrix(~ ., iris[, -1]) X_reg_big <- do.call(rbind, lapply(1:100, function(x) X_reg)) Y_reg <- iris[, 1] expect_warning(ens_reg <- caretEnsemble(caretList(X_reg, Y_reg, methodList=c("lm", "glm")))) expect_warning(pred_reg <- predict(ens_reg, newdata = X_reg)) expect_warning(pred_reg2 <- predict(ens_reg, newdata = X_reg_big)) expect_equal(pred_reg, pred_reg2[1:length(pred_reg)]) expect_warning(pred_reg <- predict(ens_reg, newdata = X_reg, se = TRUE)) expect_warning(pred_reg2 <- predict(ens_reg, newdata = X_reg_big, se = TRUE)) row.names(pred_reg) <- NULL row.names(pred_reg2) <- NULL expect_equal(pred_reg, pred_reg2[1:nrow(pred_reg), ]) expect_warning(pred_reg <- predict(ens_reg, newdata = X_reg, se = TRUE, return_weights = TRUE)) expect_warning( pred_reg2 <- predict( ens_reg, newdata = X_reg_big, se = TRUE, return_weights = TRUE ) ) row.names(pred_reg) <- NULL row.names(pred_reg2) <- NULL expect_equal(pred_reg$fit, pred_reg2$fit[1:length(pred_reg$fit)]) })
tpairs <- function(dat, vars, contr, dep, wid, p.adjust.methods="none", paired=FALSE, ...){ dat$newfactor=apply(data.frame(dat[,vars]), 1, function(x){paste(x, collapse="_")}) dat$newfactor=factor(dat$newfactor) dat=aggregate(dat[,dep], list(dat$newfactor, dat[,wid]), mean) names(dat)=c("newfactor", "wid", dep) contrast.names=NULL p.values=NULL t.values=NULL df=NULL mean.1=NULL mean.2=NULL if (contr[[1]][[1]]=="all"){ combs=combn(levels(dat$newfactor),2) contr=list(NULL) length(contr)=dim(combs)[2] for (k in 1:dim(combs)[2]){ contr[[k]]=combs[,k] } } for (i in 1:length(contr)){ res=t.test(dat[dat$newfactor%in%contr[[i]][[1]],dep],dat[dat$newfactor%in%contr[[i]][[2]],dep], paired=paired,...) contrast.names=c(contrast.names, paste(contr[[i]][[1]], "vs", contr[[i]][[2]], sep=" ")) p.values=c(p.values, res$p.value) t.values=c(t.values, res$statistic) df=c(df, res$parameter) mean.1=c(mean.1, mean(dat[dat$newfactor%in%contr[[i]][[1]],dep])) mean.2=c(mean.2, mean(dat[dat$newfactor%in%contr[[i]][[2]],dep])) } p.values.corr=round(p.adjust(p.values, p.adjust.methods),3) results=data.frame(contr=contrast.names, p.value=p.values.corr, t.value=t.values, df=df, mean.1=mean.1, mean.2) attr(results, "p.corr")=p.adjust.methods cat("p values adjustment = ", p.adjust.methods, "\n") return(results) }
library(vortexR) library(vortexRdata) context("test Ne_Nadults") test_that("test Ne", { pac.dir <- system.file("extdata", "pacioni", package="vortexRdata") data(pac.clas.Ne, pac.clas) suppressMessages(NeAll <- Ne(data=pac.clas, scenarios="all", gen=2.54, yr0=50, yrt=120, save2disk=FALSE)) expect_equal(pac.clas.Ne , NeAll) }) test_that("test Nadults", { pac.dir <- system.file("extdata", "pacioni", package="vortexRdata") data(pac.clas.Nadults, pac.yr) suppressMessages(NadultAll <- Nadults(data=pac.yr[[2]], scenarios="all", gen=2.54, yr0=50, yrt=120, save2disk=FALSE)) expect_equal(pac.clas.Nadults, NadultAll) })
atsmeans<-function(data,family=c("gaussian","binomial")[1], method=c("Gest","IPW")[1], digits=NULL,common=FALSE,conf=TRUE, alpha=0.05,plot=FALSE, title="Strategy values with confidence interval",color="forestgreen", ylab="Strategy value", xlab=NULL,xtext=NULL,pch=15,cex=2,lwd=3, ylim=NULL,mar=NULL,cex.axis=1,line=NULL){ D<-as.data.frame(data) FA<-family Ma<-method Com<-common Al<-alpha if (is.null(D$O1)) {Base<-0} else {Base<-1} Nstage<-nstage(data=D) Umat<-em(data=D,method=Ma) Val<-Umat$value Vmat<-evcmat(data=D,family=FA, method=Ma,common=Com) se<-sqrt(diag(Vmat)) CIs<-atsci(eumat=Umat,evmat=Vmat,alpha=Al) if (conf==FALSE) {Umat<-data.frame(Umat,se)} else if (conf==TRUE) {Umat<-data.frame(Umat,se,CIs)} message(paste("$value: estimated strategy values (with confidence intervals)", "$vmat: variance-covariance matrix of estimated strategy values \n", sep="\n")) if (Nstage==1 && Base==0) { message("A strategy is defined as a single-stage decision making (d0) for A1 at baseline") opar<-par(mar=c(4,4,4,3)) on.exit(par(opar))} else if (Nstage==1 && Base==1) { message(paste("A strategy is defined as a vector of single-stage decision makings (d0,d1),", "each of which corresponds to a possible outcome of baseline evulation (O1). \n", "d0 is the stage-1 decision making for A1, conditioning on O1=0", "d1 is the stage-1 decision making for A1, conditioning on O1=1", sep="\n")) opar<-par(mar=c(5,4,4,3)) on.exit(par(opar)) } else if (Nstage==2 && Base==0) { message(paste("A strategy is defined as a vector of decision makings (d0;d00,d01) for 2 stages \n", "d0 is the stage-1 decision making for A1", "d00 is the stage-2 decision making for A2, conditioning on A1=d0 and O2=0", "d01 is the stage-2 decision making for A2, conditioning on A1=d0 and O2=0", sep="\n")) opar<-par(mar=c(6,4,4,3)) on.exit(par(opar)) } else if (Nstage==2 && Base==1) { message(paste("A strategy is defined as a vector of decision makings (d0,d1;d00,d01,d10,d11) \n", "d0 is the stage-1 decision making conditioning on O1=0", "d1 is the stage-1 decision making conditioning on O1=1", "d00 is the stage-2 decision making conditioning on A1=d0 and O2=0", "d01 is the stage-2 decision making conditioning on A1=d0 and O2=0", "d00 is the stage-2 decision making conditioning on A1=d1 and O2=0", "d01 is the stage-2 decision making conditioning on A1=d1 and O2=0", sep="\n")) opar<-par(mar=c(7,4,4,3)) on.exit(par(opar)) } else if (Nstage==3 && Base==0) { message(paste("A strategy is defined as a vector of decision makings (d0;d00,d01;d000,d001,d010,d111) \n", "d0 is the stage-1 decision making", "d00 is the stage-2 decision making conditioning on A1=d0 and O2=0", "d01 is the stage-2 decision making conditioning on A1=d0 and O2=0", "d000 is the stage-3 decision making conditioning on A1=d0, O2=0, A3=d00 and O3=0", "d001 is the stage-3 decision making conditioning on A1=d0, O2=0, A3=d00 and O3=1", "d010 is the stage-3 decision making conditioning on A1=d0, O2=1, A3=d01 and O3=0", "d011 is the stage-3 decision making conditioning on A1=d0, O2=1, A3=d01 and O3=1", sep="\n")) opar<-par(mar=c(8,4,4,3)) on.exit(par(opar)) } if (plot==TRUE) {atsciplot(uimat=Umat, nstage=Nstage,baseline=Base,title=title, col=color,ylab=ylab,xlab=xlab, pch=pch,cex=cex,lwd=lwd,xtext=xtext, lim=ylim,mar=mar,cex.axis=cex.axis, line=line)} if (is.null(digits)) { outcome<-list(value=Umat,vmat=Vmat) attr(outcome,'class') <- c('myclass','list') return(outcome)} else { outcome<-list(value=round(Umat,digits), vmat=round(Vmat,digits)) attr(outcome,'class') <- c('myclass','list') return(outcome)} }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(MicroMoB) library(ggplot2) library(data.table) library(parallel) patches <- 1 tmax <- 1e2 M <- 120 p <- 0.9 lambda <- M*(1-p) nu <- 25 f <- 0.3 eggs <- nu * f * M molt <- 0.1 surv <- 0.9 L <- lambda * ((1/molt) - 1) + eggs K <- - (lambda * L) / (lambda - L*molt*surv) mod <- make_MicroMoB(tmax = tmax, p = patches) setup_aqua_BH(model = mod, stochastic = FALSE, molt = molt, surv = surv, K = K, L = L) setup_mosquito_RM(model = mod, stochastic = FALSE, f = f, q = 0.9, eip = 10, p = p, psi = diag(1), nu = nu, M = M, Y = 0, Z = 0) out_det <- matrix(data = NaN, nrow = tmax + 1, ncol = 3) out_det[1L, ] <- c(mod$aqua$L, mod$aqua$A, mod$mosquito$M) while (mod$global$tnow <= tmax) { step_aqua(model = mod) step_mosquitoes(model = mod) out_det[mod$global$tnow + 1L, ] <- c(mod$aqua$L, mod$aqua$A, mod$mosquito$M) mod$global$tnow <- mod$global$tnow + 1L } out_sto <- mclapply(X = 1:10, FUN = function(runid) { mod <- make_MicroMoB(tmax = tmax, p = patches) setup_aqua_BH(model = mod, stochastic = TRUE, molt = molt, surv = surv, K = K, L = L) setup_mosquito_RM(model = mod, stochastic = TRUE, f = f, q = 0.9, eip = 10, p = p, psi = diag(1), nu = nu, M = M, Y = 0, Z = 0) out_run <- matrix(data = NaN, nrow = tmax + 1, ncol = 3) out_run[1L, ] <- c(mod$aqua$L, mod$aqua$A, mod$mosquito$M) while (mod$global$tnow <= tmax) { step_aqua(model = mod) step_mosquitoes(model = mod) out_run[mod$global$tnow + 1L, ] <- c(mod$aqua$L, mod$aqua$A, mod$mosquito$M) mod$global$tnow <- mod$global$tnow + 1L } out_run <- as.data.frame(out_run) out_run$run <- as.integer(runid) return(out_run) }) out_det <- as.data.table(out_det) out_det[, "Day" := 0:tmax] out_det <- melt(out_det, id.vars = "Day", variable.name = "Stage", value.name = "Count") levels(out_det$Stage) <- c("L", "A", "M") out_sto <- do.call(rbind, out_sto) out_sto <- as.data.table(out_sto) out_sto <- melt(out_sto, id.vars = "run", variable.name = "Stage", value.name = "Count") out_sto[, "Day" := 0:tmax, by = c("run", "Stage")] levels(out_sto$Stage) <- c("L", "A", "M") ggplot(data = out_sto) + geom_line(aes(x = Day, y = Count, color = Stage, group = run), alpha = 0.35) + geom_line(data = out_det, mapping = aes(x = Day, y = Count, color = Stage)) + facet_wrap(. ~ Stage, scales = "free")
par(mar = c(0, 0, 0, 0), mfrow = c(1, 2)) plot.new() rect(0, 0, 1, 1, col = "lightgray", border = NA) rect(.1, .1, .9, .9, col = "white") rect(.1 + .08, .1 + .1, .9 - .04, .9 - .08, col = "lightgray", lty = 2) text(.5, .95, "外边界") text(.5, .86, "图形区域") text(.5, .5, "作图区域") par(cex = .7) text(.05, .55, "oma[2]") text(.95, .5, "oma[4]") text(.5, .05, "oma[1]") text(.14, .45, "mar[2]") text(.5, .15, "mar[1]") par(cex = 1) plot.new() rect(0, 0, 1, 1, col = "lightgray", border = NA) rect(.1, .1, .5, .9, col = "white") rect(.5, .1, .9, .9, col = "white") rect(.1 + .08, .1 + .1, .5 - .04, .9 - .08, col = "lightgray", lty = 2) text(.5, .95, "外边界") text(.31, .7, "图 1") text(.31, .5, "当前作图区域", cex = .7) text(.72, .75, "图 2") text(.5, .05, "oma[1]", cex = .7)
stackFromStore <- function(filepaths, dpID, site="all", startdate=NA, enddate=NA, pubdate=NA, timeIndex="all", level="dp04", var=NA, zipped=FALSE, package="basic", load=TRUE, nCores=1) { if(any(!file.exists(filepaths))) { stop("Files not found in specified file paths.") } if(regexpr("DP[1-4]{1}[.][0-9]{5}[.]00[0-9]{1}",dpID)[1]!=1) { stop(paste(dpID, "is not a properly formatted data product ID. The correct format is DP } if(substr(dpID, 5, 5) == "3" & dpID!="DP1.30012.001"){ stop("This is an AOP data product, files are not tabular and cannot be stacked.") } if(dpID == "DP1.10017.001" & package != 'basic'){ saveUnzippedFiles = TRUE writeLines("Note: Digital hemispheric photos (in NEF format) cannot be stacked; only the CSV metadata files will be stacked.\n") } if(!is.na(startdate)) { if(regexpr("[0-9]{4}-[0-9]{2}", startdate)!=1) { stop("startdate and enddate must be either NA or valid dates in the form YYYY-MM") } } if(!is.na(enddate)) { if(regexpr("[0-9]{4}-[0-9]{2}", enddate)!=1) { stop("startdate and enddate must be either NA or valid dates in the form YYYY-MM") } } if(!is.na(pubdate)) { if(regexpr("[0-9]{4}-[0-9]{2}-[0-9]{2}", pubdate)!=1) { stop("pubdate must be either NA or a valid date in the form YYYY-MM-DD") } } if(!package %in% c("basic","expanded")) { stop("package must be either basic or expanded.") } if(length(filepaths)>1) { if(dpID=="DP4.00200.001") { if(load==FALSE) { stop("Writing to local directory is not available for DP4.00200.001. Use load=TRUE and assign to a variable name.") } else { if(timeIndex=="all") { avg <- NA } else { avg <- timeIndex } return(stackEddy(filepath=filepaths, level=level, avg=avg, var=var)) } } else { if(load==TRUE) { savepath <- "envt" } else { savepath <- NA } return(stackByTable(filepaths, savepath=savepath, dpID=dpID, package=package)) } } if(length(filepaths)==1) { files <- list.files(filepaths, full.names=T, recursive=T) files <- files[grep(dpID, files)] varFiles <- files[grep("[.]variables[.]", files)] if(length(varFiles)==0 & dpID!="DP4.00200.001") { stop("Variables file not found; required for stacking. Re-download data, or download additional data, to get variables file.") } if(zipped==T) { files <- files[grep(".zip$", files)] stop("Files must be unzipped to use this function. Zip file handling may be added in a future version.") } else { files <- files[grep(".zip$", files, invert=T)] } if(length(files)==0) { stop("No files found meeting all input criteria.") } if(dpID=="DP4.00200.001") { if(!identical(site, "all")) { files <- files[grep(paste(site, collapse="|"), files)] } files <- files[grep(package, files)] tabs1 <- "DP4.00200.001.nsae" } else { varDates <- regmatches(basename(varFiles), regexpr("[0-9]{8}T[0-9]{6}Z", basename(varFiles))) if(is.na(pubdate)) { varFile <- varFiles[grep(max(varDates, na.rm=T), varFiles)][1] } else { pubdateP <- as.POSIXct(pubdate, format="%Y-%m-%d", tz="GMT") varDatesP <- as.POSIXct(varDates, format="%Y%m%dT%H%M%SZ", tz="GMT") if(length(which(varDatesP <= pubdateP))==0) { stop(paste("No files published before pubdate ", pubdate, sep="")) } varInd <- which(varDatesP==max(varDatesP[which(varDatesP <= pubdateP)], na.rm=T))[1] varFile <- varFiles[varInd] } v <- utils::read.csv(varFile, header=T, stringsAsFactors=F) vTabs <- unique(v$table) vTypes <- unlist(lapply(vTabs, function(x) { vx <- v$downloadPkg[which(v$table==x)] if(all(vx=="none")) {"none"} else { vx <- vx[which(vx!="none")] } if(all(vx=="basic")) {"basic"} else { if(all(vx=="expanded")) {"expanded"} else {"both"} } })) if(package=="expanded") { tabs1 <- vTabs } else { if(package=="basic") { tabs1 <- vTabs[which(vTypes %in% c("basic","both"))] } else { stop("Package must be basic or expanded.") } } tabs <- c(tabs1, "validation", "variables", "readme", "categoricalCodes", "sensor_positions") files <- files[grep(paste(paste("[.]", tabs, "[.]", sep=""), collapse="|"), files)] if(any(vTypes=="both")) { bothTabs <- vTabs[which(vTypes=="both")] bothFiles <- files[grep(paste(paste("[.]", bothTabs, "[.]", sep=""), collapse="|"), files)] if(package=="expanded") { remFiles <- bothFiles[grep("basic", bothFiles)] } else { remFiles <- bothFiles[grep("expanded", bothFiles)] } files <- files[which(!files %in% remFiles)] } tabCheck <- unlist(lapply(tabs1, function(x) { if(length(grep(paste("[.]", x, "[.]", sep=""), files))>0) { TRUE } else { FALSE } })) if(any(!tabCheck)) { warning(paste("Some expected data tables are not present in the files to be stacked. Stacking will proceed with available tables, but check for mismatched input criteria, e.g. attempting to stack expanded package from an archive containing only the basic package. The missing tables are", paste(tabs1[!tabCheck], collapse=" "))) } } pubmat <- regexpr("[0-9]{8}T[0-9]{6}Z", basename(files)) pubdates <- sapply(regmatches(basename(files), pubmat, invert=NA), "[", 2) pubdates <- as.POSIXct(pubdates, format="%Y%m%dT%H%M%SZ", tz="GMT") if(!is.na(pubdate)) { pubdate <- as.POSIXct(pubdate, format="%Y-%m-%d", tz="GMT") files <- files[union(which(pubdates <= pubdate), which(is.na(pubdates)))] } else { pubdate <- max(pubdates, na.rm=T) } for(i in tabs1) { filesub <- files[grep(paste("[.]", i, "[.]", sep=""), files)] filesuborig <- filesub sitemat <- regexpr("[.][A-Z]{4}[.]", basename(filesub)) sitesactual <- regmatches(basename(filesub), sitemat) sitesactual <- gsub(".", "", sitesactual, fixed=T) if(length(sitesactual)==0) { files <- files } else { datemat <- regexpr("[0-9]{4}-[0-9]{2}", basename(filesub)) datadates <- regmatches(basename(filesub), datemat) if(length(datadates)==0) { files <- files } else { if(!is.na(startdate) & !is.na(enddate)) { filesub <- filesub[which(datadates >= startdate & datadates <= enddate)] } else if(!is.na(startdate)) { filesub <- filesub[which(datadates >= startdate)] } else if(!is.na(enddate)) { filesub <- filesub[which(datadates <= enddate)] } datemat <- regexpr("[0-9]{4}-[0-9]{2}", basename(filesub)) monthsactual <- regmatches(basename(filesub), datemat) pubmatsub <- regexpr("[0-9]{8}T[0-9]{6}Z", basename(filesub)) pubdatesub <- sapply(regmatches(basename(filesub), pubmatsub, invert=NA), "[", 2) pubdatesub <- as.POSIXct(pubdatesub, format="%Y%m%dT%H%M%SZ", tz="GMT") sitemat <- regexpr("[.][A-Z]{4}[.]", basename(filesub)) sitesactual <- regmatches(basename(filesub), sitemat) sitesactual <- gsub(".", "", sitesactual, fixed=T) sitedates <- numeric() for(j in unique(sitesactual)) { if(!identical(site, "all") & !j %in% site) { next } else { sitemonths <- monthsactual[which(sitesactual==j)] for(k in unique(sitemonths)) { sitemonthfiles <- filesub[intersect(grep(j, filesub), grep(k, filesub))] sitemonthpubs <- pubdatesub[intersect(grep(j, filesub), grep(k, filesub))] maxdate <- max(sitemonthpubs[which(sitemonthpubs <= pubdate)]) if(length(maxdate)==0) { sitedates <- sitedates } else { maxdateindex <- which(pubdatesub==maxdate) sitedates <- c(sitedates, maxdateindex) } } } } filesubsub <- filesub[sitedates] files <- files[union(which(files %in% filesubsub), which(!files %in% filesuborig))] } } } if(timeIndex!="all" & dpID!="DP4.00200.001") { if(all(table_types$tableTMI[which(table_types$productID==dpID)]==0)) { stop(paste("timeIndex is only a valid input for sensor data. ", dpID, " is not a time-aggregated product.", sep="")) } if(!timeIndex %in% table_types$tableTMI[which(table_types$productID==dpID)]) { stop(paste(timeIndex, " is not a valid time interval for ", dpID, ". Use function getTimeIndex() to find valid time intervals.", sep="")) } tabInd <- grep("min", files, fixed=T) timeInd <- union(grep(paste(timeIndex, "min", sep=""), files, fixed=T), grep(paste(timeIndex, "_min", sep=""), files, fixed=T)) dropInd <- setdiff(tabInd, timeInd) files <- files[-dropInd] } if(length(files)==0) { stop("No files found meeting all input criteria.") } if(dpID=="DP4.00200.001") { if(load==FALSE) { stop("Writing to local directory is not available for DP4.00200.001. Use load=TRUE and assign to a variable name.") } else { if(timeIndex=="all") { avg <- NA } else { avg <- timeIndex } return(stackEddy(filepath=files, level=level, avg=avg, var=var)) } } else { if(load==TRUE) { savepath <- "envt" } else { savepath <- NA } return(stackByTable(files, savepath=savepath, saveUnzippedFiles=T, nCores=nCores, dpID=dpID, package=package)) } } }
ProbBasedMethodology <- R6::R6Class( classname = "ProbBasedMethodology", portable = TRUE, inherit = Methodology, public = list( initialize = function(required.metrics = c("MCC", "PPV")) { if (any(is.null(required.metrics), !is.character(required.metrics), length(required.metrics) < 2)) { stop("[", class(self)[1], "][FATAL] Invalid values of required.metrics. Aborting...") } super$initialize(required.metrics = required.metrics) }, compute = function(raw.pred, prob.pred, positive.class, negative.class) { if (is.null(raw.pred) || !is.list(raw.pred)) { stop("[", class(self)[1], "][FATAL] Raw.pred parameter must be defined ", "as 'list' type. Aborting...") } if (!all(self$getRequiredMetrics() %in% names(raw.pred))) { stop("[", class(self)[1], "][FATAL] Raw.pred parameter must have required metrics. ", paste(self$getRequiredMetrics(), collapse = " "), ". Aborting...") } if (is.null(prob.pred) || !is.list(prob.pred)) { stop("[", class(self)[1], "][FATAL] Prob.pred parameter must be defined ", "as 'list' type. Aborting...") } if (!all(self$getRequiredMetrics() %in% names(prob.pred))) { stop("[", class(self)[1], "][FATAL] Prob.pred parameter must have required metrics. ", paste(self$getRequiredMetrics(), collapse = " "), ". Aborting...") } if (is.null(positive.class) || (!is.character(positive.class) && !is.numeric(positive.class))) { stop("[", class(self)[1], "][FATAL] Positive class parameter must be defined. Aborting...") } if (is.null(negative.class) || (!is.character(negative.class) && !is.numeric(negative.class))) { stop("[", class(self)[1], "][FATAL] Negative class parameter must be defined. Aborting...") } Reduce(prod, prob.pred[which(names(prob.pred) %in% self$getRequiredMetrics())]) } ) )
context("API endpoints") test_that("format catches and all_results tests", { testthat::skip_on_cran() old_config <- if(file.exists("rdhs.json")) "rdhs.json" else NULL cli <- new_rand_client() dat <- api_timeout_safe_test( dhs_data_updates( client = cli, lastUpdate = "20150901", all_results = FALSE ), cli ) dat2 <- api_timeout_safe_test( dhs_data_updates( client = cli, lastUpdate = "20150901", all_results = FALSE ), cli ) expect_identical(dat, dat2) dat <- api_timeout_safe_test( dhs_datasets(f = "xml", all_results = FALSE), cli ) expect_error(api_timeout_safe_test( dhs_data( indicatorIds = "ML_FEVT_C_AMasfafasfL", surveyYearStart = 202231231306, breakdown = "subParTyping" ), cli ) ) dat <- api_timeout_safe_test( dhs_datasets( surveyIds = "laksjdoash,dasjd", f = "xml", all_results = FALSE ), cli ) expect_error(api_timeout_safe_test(dhs_countries(countryIds = "SE"), cli)) dat <- api_timeout_safe_test( dhs_indicators(), cli ) datasets <- api_timeout_safe_test( dhs_datasets(), cli ) set_rdhs_config(data_frame = "data.table::as.data.table", prompt = FALSE) library(data.table) dat <- api_timeout_safe_test( dhs_countries( countryIds = "TZ", surveyYearStart = "2010", all_results = FALSE ), cli ) expect_true(inherits(dat, "data.table")) Sys.setenv("rdhs_DATA_TABLE" = FALSE) if(is.null(old_config)){ file.remove("rdhs.json") } }) test_that("geojson works", { testthat::skip("geojson test too heavy an API test") testthat::skip_on_cran() testthat::skip_on_travis() skip_if_slow_API() d <- api_timeout_safe_test( dhs_data(countryIds = "SN", surveyYearStart = 2014, breakdown = "subnational", returnGeometry = TRUE, f = "geojson"), cli ) expect_true(inherits(d, "list")) expect_equal(names(d), c("crs", "type", "features")) expect_true(d$features %>% length > 100) d <- api_timeout_safe_test( dhs_data(countryIds = "SN", indicatorIds = "FE_FRTR_W_A15", surveyYearStart = 2014, breakdown = "subnational", returnGeometry = TRUE, f = "geojson"), cli ) expect_true(inherits(d, "list")) expect_equal(names(d), c("crs", "type", "features")) expect_true(d$features %>% length < 100) }) test_that("dhs_countries works", { testthat::skip_on_cran() skip_if_slow_API() dat <- api_timeout_safe_test( dhs_countries( countryIds = "SN", surveyYearStart = "2010", all_results = FALSE ), cli ) expect_identical(dat$UNAIDS_CountryCode[1], "SEN") dat <- api_timeout_safe_test( dhs_countries( countryIds = c("EG", "SN"), surveyYearStart = "1991", surveyYearEnd = "2006", surveyType = "DHS", surveyCharacteristicIds = "32" ), cli ) expect_identical(dat$ISO3_CountryCode[1:2], c("EGY", "SEN")) dat <- api_timeout_safe_test( dhs_countries(tagIds = "1", all_results = FALSE), cli ) expect_true(any(dat$SubregionName %in% "South Asia")) }) test_that("dhs_data works", { testthat::skip_on_cran() skip_if_slow_API() dat <- api_timeout_safe_test( dhs_data( countryIds = "EG", indicatorIds = "FE_FRTR_W_TFR", selectSurveys = "latest", all_results = FALSE ), cli ) expect_true(is.numeric(dat$DataId[1])) dat <- api_timeout_safe_test( dhs_data(surveyIds = "SN2010DHS", all_results = FALSE), cli ) expect_true(any(dat$DataId > 30000)) dat <- api_timeout_safe_test( dhs_data( selectSurveys = "byIndicator", indicatorIds = "FE_CEBA_W_CH0", surveyCharacteristicIds = "32", all_results = FALSE ), cli ) expect_true(is.numeric(dat$DataId[1])) dat <- api_timeout_safe_test( dhs_data(surveyYear = "2010", surveyType = "DHS", all_results = FALSE), cli ) expect_true(is.numeric(dat$DataId[1])) dat <- api_timeout_safe_test( dhs_data(surveyCharacteristicIds = "32", all_results = FALSE), cli ) expect_true(is.numeric(dat$DataId[1])) dat <- api_timeout_safe_test( dhs_data( breakdown = "subnational", countryIds = "AZ", all_results = FALSE ), cli ) expect_true(any(dat$CharacteristicLabel %in% "Baku")) }) test_that("dhs_dataUpdates works", { testthat::skip_on_cran() skip_if_slow_API() dat <- api_timeout_safe_test( dhs_data_updates(lastUpdate = "20150901", all_results = FALSE), cli ) expect_true(any(dat$SurveyId %in% "TL2016DHS")) dat <- api_timeout_safe_test( dhs_data_updates(f = "html", all_results = FALSE), cli ) expect_true(class(dat) == "response") }) test_that("dhs_datasets works", { testthat::skip_on_cran() skip_if_slow_API() dat <- api_timeout_safe_test( dhs_datasets( countryIds = "EG", selectSurveys = "latest", surveyYearStart = 2000, surveyYearEnd = 2016, surveyType = "DHS", all_results = FALSE ), cli ) expect_true(any(dat$FileName %in% "EGGE42FL.zip")) dat <- api_timeout_safe_test( dhs_datasets(fileType = "KR", all_results = FALSE), cli ) expect_true(any(dat$FileType %in% "Children's Recode")) }) test_that("dhs_indicators works", { testthat::skip_on_cran() skip_if_slow_API() dat <- api_timeout_safe_test( dhs_indicators( countryIds = "EG", all_results = FALSE, indicatorIds = "FE_FRTR_W_TFR" ), cli ) expect_identical(dat$ShortName[1], "TFR 15-49") dat <- api_timeout_safe_test( dhs_indicators( surveyIds = "SN2010DHS", surveyYearStart = "2006", all_results = FALSE, surveyYearEnd = "2015" ), cli ) expect_true(any(dat$MeasurementType %in% "Rate")) dat <- api_timeout_safe_test( dhs_indicators( surveyType = "DHS", surveyCharacteristicIds = "32", tagIds = "1", all_results = FALSE ), cli ) expect_true(any(dat$DenominatorWeightedId %in% "FP_CUSM_W_NUM")) }) test_that("dhs_info works", { testthat::skip_on_cran() skip_if_slow_API() dat <- api_timeout_safe_test( dhs_info(infoType = "version", all_results = FALSE), cli ) expect_identical(dat$InfoType, "Version") dat <- api_timeout_safe_test( dhs_info(infoType = "citation", all_results = FALSE), cli ) expect_identical(dat$InfoType, "Citation") }) test_that("dhs_publications works", { testthat::skip_on_cran() skip_if_slow_API() dat <- api_timeout_safe_test( dhs_publications( countryIds = "EG", all_results = FALSE, selectSurveys = "latest" ), cli ) expect_true(any(dat$SurveyYear %in% 2015)) dat <- api_timeout_safe_test( dhs_publications( surveyYearStart = "2006", surveyYearEnd = "2016", all_results = FALSE ), cli ) expect_true(any(dat$PublicationSize %in% 926663)) dat <- api_timeout_safe_test( dhs_publications( surveyType = "DHS", surveyCharacteristicIds = "32", all_results = FALSE, tagIds = 1 ), cli ) expect_true(any(dat$PublicationTitle %in% "Final Report")) }) test_that("dhs_survey_characteristics works", { testthat::skip_on_cran() skip_if_slow_API() dat <- api_timeout_safe_test( dhs_survey_characteristics( countryIds = "EG", surveyYearStart = 2000, surveyYearEnd = 2016, surveyType = "DHS", all_results = FALSE ), cli ) alc <- which(dat$SurveyCharacteristicID == 16) expect_equal(dat$SurveyCharacteristicID[alc], 16) expect_equal(dat$SurveyCharacteristicName[alc], "Abortion") dat <- api_timeout_safe_test( dhs_survey_characteristics(surveyYearStart = "1991", surveyType = "DHS") ) expect_true(any(dat$SurveyCharacteristicName %in% "Abortion")) }) test_that("dhs_surveys works", { testthat::skip_on_cran() skip_if_slow_API() dat <- api_timeout_safe_test( dhs_surveys( countryIds = "EG", surveyYearStart = 2000, surveyYearEnd = 2016, surveyType = "DHS", all_results = FALSE ), cli ) expect_true(any(dat$NumberofHouseholds %in% 16957)) dat <- api_timeout_safe_test( dhs_surveys(surveyType = "DHS", all_results = FALSE), cli ) dat <- api_timeout_safe_test( dhs_surveys(surveyStatus = "Ongoing", all_results = FALSE), cli ) expect_identical(dat$SurveyStatus[1], "Ongoing") }) test_that("dhs_tags works", { testthat::skip_on_cran() skip_if_slow_API() dat <- api_timeout_safe_test( dhs_tags(indicatorIds = "FE_FRTR_W_TFR", all_results = FALSE), cli ) expect_equal(dim(dat)[2], 4) dat <- api_timeout_safe_test( dhs_tags(countryIds = "SN", all_results = FALSE), cli ) expect_true(any(dat$TagName %in% "DHS Mobile")) }) test_that("dhs_uiUpdates works", { testthat::skip_on_cran() skip_if_slow_API() dat <- api_timeout_safe_test( dhs_ui_updates(lastUpdate = "20150901", all_results = FALSE), cli ) expect_true(any(dat$Interface %in% "Surveys")) }) test_that("post api tidy", { if (file.exists("rdhs.json")) { conf <- read_rdhs_config_file("rdhs.json") if (is.null(conf$email)){ expect_true(file.remove("rdhs.json")) } } else { expect_true(TRUE) } })
plot.phylo4d <- function (x, trait = names(tdata(p4d)), center = TRUE, scale = TRUE, plot.type = "barplot", tree.ladderize = FALSE, tree.type = "phylogram", tree.ratio = NULL, tree.xlim = NULL, tree.open.angle = 0, tree.open.crown = TRUE, show.tip = TRUE, tip.labels = NULL, tip.col = "black", tip.cex = 1, tip.font = 3, tip.adj = 0, data.xlim = NULL, bar.lwd = 10, bar.col = "grey35", show.data.axis = TRUE, dot.col = "black", dot.pch = 20, dot.cex = 2, cell.col = topo.colors(100), show.color.scale = TRUE, show.trait = TRUE, trait.labels = NULL, trait.col = "black", trait.cex = 1, trait.font = 1, trait.bg.col = "grey90", error.bar.sup = NULL, error.bar.inf = NULL, error.bar.col = 1, show.box = FALSE, grid.vertical = TRUE, grid.horizontal = FALSE, grid.col = "grey25", grid.lty = "dashed", ...) { p4d <- x orderGrArg <- function (x, n.tips, n.traits, new.order, tips, default) { x.dep <- deparse(substitute(x)) if (is.vector(x)) { if (is.null(names(x))) { x <- rep(x, length.out = n.tips) x <- x[new.order] } else { if (any(tips %in% names(x))) { y <- rep(default, n.tips) names(y) <- tips y[names(x)] <- x[names(x)] x <- y[tips] } else { stop(paste("Phylogenetic tips do not match with names of", x.dep)) } } } if (is.matrix(x)) { if (is.null(rownames(x))) { x <- x[new.order, ] } else { if (any(tips %in% rownames(x))) { y <- matrix(default, nrow = nrow(x), ncol = ncol(x)) rownames(y) <- tips y[rownames(x), ] <- x[rownames(x), ] x <- y[tips, ] } else { stop(paste("Phylogenetic tips do not match with row names of", x.dep)) } } } x <- matrix(x, nrow = n.tips, ncol = n.traits) return(x) } layouterize <- function (n.traits, show.tip) { if (show.tip) { res <- matrix(c(n.traits + 2, 1:(n.traits + 1)), nrow = 1) } else { res <- matrix(c(n.traits + 1, 1:(n.traits)), nrow = 1) } return(res) } layouterizeRatio <- function (tree.ratio, n.traits, show.tip) { if (!is.null(tree.ratio)) { if (show.tip) { res <- c(tree.ratio, rep((1 - tree.ratio)/(n.traits + 1), n.traits + 1)) } else { res <- c(tree.ratio, rep((1 - tree.ratio)/n.traits, n.traits)) } } else { if (show.tip) { res <- rep(1, n.traits + 1) } else { res <- rep(1, n.traits) } } return(res) } matchTipsAndTraits <- function (x, p4d = NULL, p4d.tips = NULL, p4d.traits = NULL, subset = TRUE) { if (!is.null(p4d) & is(p4d, "phylo4d")) { p4d.tips <- tipLabels(p4d) p4d.traits <- colnames(tdata(p4d)) } if (!all(p4d.tips %in% rownames(x))) { stop("Rows names of !!! do not match with tips names") } if (!all(p4d.traits %in% colnames(x))) { stop("Columns names of !!! do not match with traits names") } if (subset) { x <- x[p4d.tips, p4d.traits] } return(x) } plotPhyloDisabled <- function (x, type = "phylogram", use.edge.length = TRUE, node.pos = NULL, show.tip.label = TRUE, show.node.label = FALSE, edge.color = "black", edge.width = 1, edge.lty = 1, font = 3, cex = par("cex"), adj = NULL, srt = 0, no.margin = FALSE, root.edge = FALSE, label.offset = 0, underscore = FALSE, x.lim = NULL, y.lim = NULL, direction = "rightwards", lab4ut = NULL, tip.color = "black", plot = TRUE, rotate.tree = 0, open.angle = 0, node.depth = 1, ...) { Ntip <- length(x$tip.label) if (Ntip < 2) { warning("found less than 2 tips in the tree") return(NULL) } if (any(tabulate(x$edge[, 1]) == 1)) stop("there are single (non-splitting) nodes in your tree; you may need to use collapse.singles()") Nedge <- dim(x$edge)[1] Nnode <- x$Nnode if (any(x$edge < 1) || any(x$edge > Ntip + Nnode)) stop("tree badly conformed; cannot plot. Check the edge matrix.") ROOT <- Ntip + 1 type <- match.arg(type, c("phylogram", "cladogram", "fan", "unrooted", "radial")) direction <- match.arg(direction, c("rightwards", "leftwards", "upwards", "downwards")) if (is.null(x$edge.length)) use.edge.length <- FALSE if (type %in% c("unrooted", "radial") || !use.edge.length || is.null(x$root.edge) || !x$root.edge) root.edge <- FALSE if (type == "fan" && root.edge) { warning("drawing root edge with type = 'fan' is not yet supported") root.edge <- FALSE } phyloORclado <- type %in% c("phylogram", "cladogram") horizontal <- direction %in% c("rightwards", "leftwards") xe <- x$edge if (phyloORclado) { phyOrder <- attr(x, "order") if (is.null(phyOrder) || phyOrder != "cladewise") { x <- reorder(x) if (!identical(x$edge, xe)) { ereorder <- match(x$edge[, 2], xe[, 2]) if (length(edge.color) > 1) { edge.color <- rep(edge.color, length.out = Nedge) edge.color <- edge.color[ereorder] } if (length(edge.width) > 1) { edge.width <- rep(edge.width, length.out = Nedge) edge.width <- edge.width[ereorder] } if (length(edge.lty) > 1) { edge.lty <- rep(edge.lty, length.out = Nedge) edge.lty <- edge.lty[ereorder] } } } yy <- numeric(Ntip + Nnode) TIPS <- x$edge[x$edge[, 2] <= Ntip, 2] yy[TIPS] <- 1:Ntip } z <- reorder(x, order = "postorder") if (phyloORclado) { if (is.null(node.pos)) node.pos <- if (type == "cladogram" && !use.edge.length) 2 else 1 if (node.pos == 1) yy <- node.height(x, clado.style = FALSE) else { xx <- node.depth(x) - 1 yy <- node.height(x, clado.style = TRUE) } if (!use.edge.length) { if (node.pos != 2) xx <- node.depth(x) - 1 xx <- max(xx) - xx } else { xx <- node.depth.edgelength(x) } } else { twopi <- 2 * pi rotate.tree <- twopi * rotate.tree/360 if (type != "unrooted") { TIPS <- x$edge[which(x$edge[, 2] <= Ntip), 2] xx <- seq(0, twopi * (1 - 1/Ntip) - twopi * open.angle/360, length.out = Ntip) theta <- double(Ntip) theta[TIPS] <- xx theta <- c(theta, numeric(Nnode)) } switch(type, fan = { theta <- node.height(x) if (use.edge.length) { r <- node.depth.edgelength(x) } else { r <- node.depth(x) r <- 1/r } theta <- theta + rotate.tree xx <- r * cos(theta) yy <- r * sin(theta) }, unrooted = { nb.sp <- node.depth(x) XY <- if (use.edge.length) ape::unrooted.xy(Ntip, Nnode, z$edge, z$edge.length, nb.sp, rotate.tree) else ape::unrooted.xy(Ntip, Nnode, z$edge, rep(1, Nedge), nb.sp, rotate.tree) xx <- XY$M[, 1] - min(XY$M[, 1]) yy <- XY$M[, 2] - min(XY$M[, 2]) }, radial = { r <- node.depth(x) r[r == 1] <- 0 r <- 1 - r/Ntip theta <- node.height(x) + rotate.tree xx <- r * cos(theta) yy <- r * sin(theta) }) } if (phyloORclado) { if (!horizontal) { tmp <- yy yy <- xx xx <- tmp - min(tmp) + 1 } if (root.edge) { if (direction == "rightwards") xx <- xx + x$root.edge if (direction == "upwards") yy <- yy + x$root.edge } } if (no.margin) par(mai = rep(0, 4)) if (show.tip.label) nchar.tip.label <- nchar(x$tip.label) max.yy <- max(yy) if (is.null(x.lim)) { if (phyloORclado) { if (horizontal) { x.lim <- c(0, NA) pin1 <- par("pin")[1] strWi <- strwidth(x$tip.label, "inches", cex = cex) xx.tips <- xx[1:Ntip] * 1.04 alp <- try(uniroot(function(a) max(a * xx.tips + strWi) - pin1, c(0, 1e+06))$root, silent = TRUE) if (is.character(alp)) tmp <- max(xx.tips) * 1.5 else { tmp <- if (show.tip.label) max(xx.tips + strWi/alp) else max(xx.tips) } if (show.tip.label) tmp <- tmp + label.offset x.lim[2] <- tmp } else x.lim <- c(1, Ntip) } else switch(type, fan = { if (show.tip.label) { offset <- max(nchar.tip.label * 0.018 * max.yy * cex) x.lim <- range(xx) + c(-offset, offset) } else x.lim <- range(xx) }, unrooted = { if (show.tip.label) { offset <- max(nchar.tip.label * 0.018 * max.yy * cex) x.lim <- c(0 - offset, max(xx) + offset) } else x.lim <- c(0, max(xx)) }, radial = { if (show.tip.label) { offset <- max(nchar.tip.label * 0.03 * cex) x.lim <- c(-1 - offset, 1 + offset) } else x.lim <- c(-1, 1) }) } else if (length(x.lim) == 1) { x.lim <- c(0, x.lim) if (phyloORclado && !horizontal) x.lim[1] <- 1 if (type %in% c("fan", "unrooted") && show.tip.label) x.lim[1] <- -max(nchar.tip.label * 0.018 * max.yy * cex) if (type == "radial") x.lim[1] <- if (show.tip.label) -1 - max(nchar.tip.label * 0.03 * cex) else -1 } if (phyloORclado && direction == "leftwards") xx <- x.lim[2] - xx if (is.null(y.lim)) { if (phyloORclado) { if (horizontal) y.lim <- c(1, Ntip) else { y.lim <- c(0, NA) pin2 <- par("pin")[2] strWi <- strwidth(x$tip.label, "inches", cex = cex) yy.tips <- yy[1:Ntip] * 1.04 alp <- try(uniroot(function(a) max(a * yy.tips + strWi) - pin2, c(0, 1e+06))$root, silent = TRUE) if (is.character(alp)) tmp <- max(yy.tips) * 1.5 else { tmp <- if (show.tip.label) max(yy.tips + strWi/alp) else max(yy.tips) } if (show.tip.label) tmp <- tmp + label.offset y.lim[2] <- tmp } } else switch(type, fan = { if (show.tip.label) { offset <- max(nchar.tip.label * 0.018 * max.yy * cex) y.lim <- c(min(yy) - offset, max.yy + offset) } else y.lim <- c(min(yy), max.yy) }, unrooted = { if (show.tip.label) { offset <- max(nchar.tip.label * 0.018 * max.yy * cex) y.lim <- c(0 - offset, max.yy + offset) } else y.lim <- c(0, max.yy) }, radial = { if (show.tip.label) { offset <- max(nchar.tip.label * 0.03 * cex) y.lim <- c(-1 - offset, 1 + offset) } else y.lim <- c(-1, 1) }) } else if (length(y.lim) == 1) { y.lim <- c(0, y.lim) if (phyloORclado && horizontal) y.lim[1] <- 1 if (type %in% c("fan", "unrooted") && show.tip.label) y.lim[1] <- -max(nchar.tip.label * 0.018 * max.yy * cex) if (type == "radial") y.lim[1] <- if (show.tip.label) -1 - max(nchar.tip.label * 0.018 * max.yy * cex) else -1 } if (phyloORclado && direction == "downwards") yy <- y.lim[2] - yy if (phyloORclado && root.edge) { if (direction == "leftwards") x.lim[2] <- x.lim[2] + x$root.edge if (direction == "downwards") y.lim[2] <- y.lim[2] + x$root.edge } asp <- if (type %in% c("fan", "radial", "unrooted")) 1 else NA L <- list(type = type, use.edge.length = use.edge.length, node.pos = node.pos, node.depth = node.depth, show.tip.label = show.tip.label, show.node.label = show.node.label, font = font, cex = cex, adj = adj, srt = srt, no.margin = no.margin, label.offset = label.offset, x.lim = x.lim, y.lim = y.lim, direction = direction, tip.color = tip.color, Ntip = Ntip, Nnode = Nnode) assign("last_plot.phylo", c(L, list(edge = xe, xx = xx, yy = yy)), envir = ape::.PlotPhyloEnv) return(L) } p4 <- phylobase::extractTree(p4d) phy <- as(p4, "phylo") if (tree.ladderize) { phy <- ladderize(phy) } new.order <- phy$edge[, 2][!phy$edge[, 2] %in% phy$edge[, 1]] tips <- phy$tip.label[new.order] n.tips <- length(tips) X <- tdata(p4d, type = "tip") X <- X[new.order, trait] X <- scale(X, center = center, scale = scale) X <- as.data.frame(X) colnames(X) <- trait n.traits <- ncol(X) if (is.numeric(trait)) { trait <- names(tdata(p4d))[trait] } tree.type <- match.arg(tree.type, c("phylogram", "cladogram", "fan")) plot.type <- match.arg(plot.type, c("barplot", "dotplot", "gridplot")) if (!is.null(error.bar.inf)) { error.bar.inf <- as.matrix(error.bar.inf) error.bar.inf[is.na(error.bar.inf)] <- 0 error.bar.inf <- matchTipsAndTraits(error.bar.inf, p4d.tips = tips, p4d.traits = trait) } if (!is.null(error.bar.sup)) { error.bar.sup <- as.matrix(error.bar.sup) error.bar.sup[is.na(error.bar.sup)] <- 0 error.bar.sup <- matchTipsAndTraits(error.bar.sup, p4d.tips = tips, p4d.traits = trait) } if (!is.null(error.bar.inf)) { arrow.inf <- X arrow.inf[X > 0] <- X[X > 0] - error.bar.inf[X > 0] arrow.inf[X < 0] <- X[X < 0] + error.bar.inf[X < 0] } if (!is.null(error.bar.sup)) { arrow.sup <- X arrow.sup[X > 0] <- X[X > 0] + error.bar.sup[X > 0] arrow.sup[X < 0] <- X[X < 0] - error.bar.sup[X < 0] } if (is.null(data.xlim)) { if (center & scale) { data.xlim <- matrix(rep(NA, n.traits * 2), nrow = 2, dimnames = list(c("xlim.min", "xlim.max"), trait)) if (!is.null(error.bar.inf) & !is.null(error.bar.sup)) { data.xlim[1, ] <- floor(min(arrow.inf, arrow.sup, na.rm = TRUE)) data.xlim[2, ] <- ceiling(max(arrow.inf, arrow.sup, na.rm = TRUE)) } else if (!is.null(error.bar.inf)) { data.xlim[1, ] <- floor(min(arrow.inf, na.rm = TRUE)) data.xlim[2, ] <- ceiling(max(arrow.inf, na.rm = TRUE)) } else if (!is.null(error.bar.sup)) { data.xlim[1, ] <- floor(min(arrow.sup, na.rm = TRUE)) data.xlim[2, ] <- ceiling(max(arrow.sup, na.rm = TRUE)) } else { data.xlim[1, ] <- floor(min(X, na.rm = TRUE)) data.xlim[2, ] <- ceiling(max(X, na.rm = TRUE)) } } else { data.xlim <- matrix(NA, nrow = 2, ncol = n.traits, dimnames = list(c("xlim.min", "xlim.max"), trait)) data.xlim[1, ] <- apply(X, 2, min, na.rm = TRUE) data.xlim[1, apply(X, 2, min, na.rm = TRUE) * apply(X, 2, max, na.rm = TRUE) > 0 & apply(X, 2, min, na.rm = TRUE) > 0] <- 0 data.xlim[2, ] <- apply(X, 2, max, na.rm = TRUE) data.xlim[2, apply(X, 2, min, na.rm = TRUE) * apply(X, 2, max, na.rm = TRUE) > 0 & apply(X, 2, max, na.rm = TRUE) < 0] <- 0 if (!is.null(error.bar.inf) & !is.null(error.bar.sup)) { data.xlim[1, ] <- apply(cbind(apply(arrow.inf, 2, min, na.rm = TRUE), apply(arrow.sup, 2, min)), 1, min, na.rm = TRUE) data.xlim[2, ] <- apply(cbind(apply(arrow.inf, 2, max, na.rm = TRUE), apply(arrow.sup, 2, max)), 1, max, na.rm = TRUE) } else { if (!is.null(error.bar.inf)) { data.xlim[1, ] <- apply(cbind(apply(arrow.inf, 2, min, na.rm = TRUE), data.xlim[1, ]), 1, min, na.rm = TRUE) data.xlim[2, ] <- apply(cbind(apply(arrow.inf, 2, max, na.rm = TRUE), data.xlim[2, ]), 1, max, na.rm = TRUE) } if (!is.null(error.bar.sup)) { data.xlim[1, ] <- apply(cbind(apply(arrow.sup, 2, min, na.rm = TRUE), data.xlim[1, ]), 1, min, na.rm = TRUE) data.xlim[2, ] <- apply(cbind(apply(arrow.sup, 2, max, na.rm = TRUE), data.xlim[2, ]), 1, max, na.rm = TRUE) } } } } else if (is.vector(data.xlim) & length(data.xlim) == 2) { data.xlim <- matrix(rep(data.xlim, n.traits), nrow = 2, dimnames = list(c("xlim.min", "xlim.max"), trait)) } else if (is.matrix(data.xlim)) { if (isTRUE(all.equal(dim(data.xlim), c(2, n.traits)))) { rownames(data.xlim) <- c("xlim.min", "xlim.max") colnames(data.xlim) <- trait } else { stop("Invalid 'data.xlim' argument: wrong matrix dimensions") } } else { stop("Invalid 'data.xlim' argument") } ylim <- c(1, n.tips) if (plot.type == "barplot") { bar.col <- orderGrArg(bar.col, n.tips = n.tips, n.traits = n.traits, new.order = new.order, tips = tips, default = "grey35") } if (plot.type == "dotplot") { dot.col <- orderGrArg(dot.col, n.tips = n.tips, n.traits = n.traits, new.order = new.order, tips = tips, default = 1) dot.pch <- orderGrArg(dot.pch, n.tips = n.tips, n.traits = n.traits, new.order = new.order, tips = tips, default = 1) dot.cex <- orderGrArg(dot.cex, n.tips = n.tips, n.traits = n.traits, new.order = new.order, tips = tips, default = 1) } if (!is.null(error.bar.inf) | !is.null(error.bar.sup)) { error.bar.col <- orderGrArg(error.bar.col, n.tips = n.tips, n.traits = n.traits, new.order = new.order, tips = tips, default = 1) } if (is.null(tip.labels)) { tip.labels <- tips } else { tip.labels <- orderGrArg(tip.labels, n.tips = n.tips, n.traits = n.traits, new.order = new.order, tips = tips, default = "") } tip.col <- orderGrArg(tip.col, n.tips = n.tips, n.traits = n.traits, new.order = new.order, tips = tips, default = 1) tip.cex <- orderGrArg(tip.cex, n.tips = n.tips, n.traits = n.traits, new.order = new.order, tips = tips, default = 1) tip.font <- orderGrArg(tip.font, n.tips = n.tips, n.traits = n.traits, new.order = new.order, tips = tips, default = 3) if (is.null(trait.labels)) { trait.labels <- trait } trait.labels <- rep(trait.labels, length.out = n.traits) trait.col <- rep(trait.col, length.out = n.traits) trait.cex <- rep(trait.cex, length.out = n.traits) trait.font <- rep(trait.font, length.out = n.traits) trait.bg.col <- rep(trait.bg.col, length.out = n.traits) if (is.null(tree.xlim)) { tree.xlim <- plotPhyloDisabled(phy, type = tree.type, show.tip.label = FALSE, x.lim = NULL, y.lim = NULL, no.margin = FALSE, direction = "rightwards", plot = FALSE, ...)$x.lim } par.mar0 <- par("mar") par.lend0 <- par("lend") par.xpd0 <- par("xpd") if (tree.type == "phylogram" | tree.type == "cladogram") { if (plot.type %in% c("barplot", "dotplot")) { lay <- layouterize(n.traits = n.traits, show.tip = show.tip) lay.w <- layouterizeRatio(tree.ratio = tree.ratio, n.traits = n.traits, show.tip = show.tip) } if (plot.type == "gridplot") { lay <- layouterize(n.traits = 1, show.tip = show.tip) lay.w <- layouterizeRatio(tree.ratio = tree.ratio, n.traits = 1, show.tip = show.tip) } layout(lay, widths = lay.w) par(xpd = FALSE, mar = c(5, 1, 4, 0), lend = 1) fig.traits <- vector("list", n.traits) names(fig.traits) <- trait if (plot.type %in% c("barplot", "dotplot")) { for (i in 1:n.traits) { plot.new() plot.window(xlim = data.xlim[, i], ylim = ylim) fig.traits[[i]] <- par("fig") rect(par("usr")[1], par("usr")[3] - (3 * par("cxy")[2]), par("usr")[2], par("usr")[4], col = trait.bg.col[i], border = NA, xpd = TRUE) if (show.box) { box() } if (grid.vertical) { grid(NULL, NA, col = grid.col, lty = grid.lty) abline(v = 0, lty = "solid", col = grid.col) } else { abline(v = 0, lty = "solid", col = grid.col) } if (grid.horizontal) { abline(h = 1:n.tips, col = grid.col, lty = grid.lty) } if (plot.type == "barplot") { segments(x0 = 0, x1 = X[, i], y0 = 1:n.tips, lwd = bar.lwd, col = bar.col[, i]) } if (plot.type == "dotplot") { points(x = X[, i], y = 1:n.tips, col = dot.col[, i], pch = dot.pch[, i], cex = dot.cex[, i]) } options(warn = -1) if (!is.null(error.bar.inf)) { arrows(x0 = X[, i], x1 = arrow.inf[, i], y0 = 1:n.tips, lwd = 1, col = error.bar.col, angle = 90, length = 0.04) } if (!is.null(error.bar.sup)) { arrows(x0 = X[, i], x1 = arrow.sup[, i], y0 = 1:n.tips, lwd = 1, col = error.bar.col, angle = 90, length = 0.04) } options(warn = 1) if (show.data.axis) { axis(1) } if (show.trait) { mtext(trait.labels[i], side = 1, line = 3, las = par("las"), col = trait.col[i], cex = trait.cex[i], font = trait.font[i]) } } } if (plot.type == "gridplot") { plot.new() rect(par("usr")[1], par("usr")[3] - (3 * par("cxy")[2]), par("usr")[2], par("usr")[4], col = trait.bg.col[1], border = NA, xpd = TRUE) data.xlim[1, ] <- 0 data.xlim[2, ] <- n.traits plot.window(xlim = data.xlim[, 1], ylim = ylim) fig.traits[[1]] <- par("fig") image(x = 0:n.traits, y = 1:n.tips, z = t(X), col = cell.col, add = TRUE, xlab = "", ylab = "", yaxs = FALSE, xaxs = FALSE) if (show.box) { box() } if (grid.horizontal) { abline(h = seq(1.5, n.tips - 0.5), col = grid.col, lty = grid.lty) } if (grid.vertical) { abline(v = seq(1, n.traits - 1), col = grid.col, lty = grid.lty) } if (show.trait) { mtext(trait.labels, at = seq(0.5, (n.traits - 0.5)), side = 1, line = 1, las = par("las"), col = trait.col, cex = trait.cex, font = trait.font) } } if (show.tip) { plot.new() tip.xlim <- c(-1, 1) if (tip.adj < 0.5) tip.xlim[1] <- -tip.adj/0.5 if (tip.adj > 0.5) tip.xlim[2] <- -2 * tip.adj + 2 plot.window(xlim = tip.xlim, ylim = ylim) text(x = 0, y = 1:n.tips, labels = tip.labels, adj = tip.adj, col = tip.col, cex = tip.cex, font = tip.font) fig.tip <- par("fig") } else { fig.tip <- NULL tip.xlim <- NULL } plot.phylo(phy, type = tree.type, show.tip.label = FALSE, x.lim = tree.xlim, y.lim = NULL, no.margin = FALSE, direction = "rightwards", ...) fig.tree <- par("fig") if (plot.type == "gridplot" & show.color.scale) { par(new = TRUE) plt.init <- par("plt") par(plt = c(par("plt")[1] + 0.05, par("plt")[2] - 0.2, 0.07, 0.1)) plot.new() breaks <- seq(min(X), max(X), length.out = (length(cell.col) + 1)) scale.xlim <- range(breaks) scale.ylim <- c(0, 1) plot.window(xlim = scale.xlim, ylim = scale.ylim) for (i in 1:length(cell.col)) { polygon(c(breaks[i], breaks[i + 1], breaks[i + 1], breaks[i]), c(0, 0, 1, 1), col = cell.col[i], border = NA) } axis(1) par(plt = plt.init) } assign("last_barplotp4d", list(plot.type = plot.type, show.tip = show.tip, layout = lay, fig.tree = fig.tree, fig.traits = fig.traits, fig.tip = fig.tip, tree.xlim = tree.xlim, data.xlim = data.xlim, tip.xlim = tip.xlim, ylim = ylim, par.mar0 = par.mar0), envir = ape::.PlotPhyloEnv) layout(1) } if (tree.type == "fan") { par(lend = 1) if (is.null(tree.ratio)) { if (show.tip) { tree.ratio <- 1/(n.traits + 2) } else { tree.ratio <- 1/(n.traits + 1) } } plot.phylo(phy, type = tree.type, show.tip.label = FALSE, x.lim = tree.xlim * (1/tree.ratio), y.lim = NULL, no.margin = TRUE, open.angle = tree.open.angle, rotate.tree = 0, ...) lp <- get("last_plot.phylo", envir = ape::.PlotPhyloEnv) length.phylo <- max(sqrt(lp$xx^2 + lp$yy^2)) if (show.tip) { length.gr0 <- (min(par("usr")[2] - par("usr")[1], par("usr")[4] - par("usr")[3])/2 - length.phylo)/(n.traits + 1) } else { length.gr0 <- (min(par("usr")[2] - par("usr")[1], par("usr")[4] - par("usr")[3])/2 - length.phylo)/n.traits } length.intergr <- 0.2 * length.gr0 length.gr <- length.gr0 - length.intergr theta <- atan2(lp$xx[1:n.tips], lp$yy[1:n.tips])[new.order] theta[theta > (pi/2)] <- -pi - (pi - theta[theta > (pi/2)]) cos.t <- cos(pi/2 - theta) sin.t <- sin(pi/2 - theta) theta.real.open <- diff(c(min(theta), max(theta))) real.open <- theta.real.open * 180/pi if (tree.open.crown) { theta.soft <- pi/2 - seq(-5, real.open + 5, length.out = 300) * pi/180 } else { theta.soft <- pi/2 - seq(0, 360) * pi/180 + 10 * pi/180 } cos.tsoft <- cos(pi/2 - theta.soft) sin.tsoft <- sin(pi/2 - theta.soft) for (i in 1:n.traits) { length.ring1 <- length.phylo + length.intergr * i + length.gr * (i - 1) - 0.3 * length.intergr length.ring2 <- length.phylo + length.intergr * i + length.gr * i + 0.3 * length.intergr xx1 <- length.ring1 * cos.tsoft xx2 <- length.ring2 * cos.tsoft yy1 <- length.ring1 * sin.tsoft yy2 <- length.ring2 * sin.tsoft polygon(c(xx1, rev(xx2)), c(yy1, rev(yy2)), col = trait.bg.col[i], border = NA) if (abs(sign(min(data.xlim[, i])) + sign(max(data.xlim[, i]))) == 2) { scaling.factor <- length.gr/max(abs(min(data.xlim[, i])), abs(max(data.xlim[, i]))) } else { scaling.factor <- length.gr/diff(c(min(data.xlim[, i]), max(data.xlim[, i]))) } X.scale <- X[, i] * scaling.factor data.xlim.scale <- data.xlim[, i] * scaling.factor if (!is.null(error.bar.inf)) { arrow.inf.scale <- arrow.inf[, i] * scaling.factor } if (!is.null(error.bar.sup)) { arrow.sup.scale <- arrow.sup[, i] * scaling.factor } if (plot.type == "barplot" | plot.type == "dotplot") { length.baseline <- (length.phylo + length.intergr * i + length.gr * (i - 1) + ifelse(min(data.xlim.scale) < 0, abs(min(data.xlim.scale)), 0)) length.baseline <- rep(length.baseline, n.tips) length.values <- length.baseline + X.scale if (!is.null(error.bar.inf)) { length.arrow.inf <- length.baseline + arrow.inf.scale } if (!is.null(error.bar.sup)) { length.arrow.sup <- length.baseline + arrow.sup.scale } length.baseline <- rep(length.baseline, length.out = length(cos.tsoft)) lines(length.baseline * cos.tsoft, length.baseline * sin.tsoft, lwd = 1) if (grid.horizontal) { segments(x0 = length.ring1 * cos.t, x1 = length.ring2 * cos.t, y0 = length.ring1 * sin.t, y1 = length.ring2 * sin.t, col = grid.col, lty = grid.lty) } if ((show.data.axis | grid.vertical)) { if (tree.open.crown) { theta.ax <- theta.soft[1] } else { if (show.trait) { theta.ax <- theta[1] + (360 - real.open) * (1/3) * pi/180 } else { theta.ax <- theta[1] + (360 - real.open) * (1/2) * pi/180 } } cos.tax <- cos(pi/2 - theta.ax) sin.tax <- sin(pi/2 - theta.ax) nint.ticks <- round((length.gr/min(par("usr")[2] - par("usr")[1], par("usr")[4] - par("usr")[3]))/3 * 100) - 1 if (min(data.xlim.scale) <= 0 & max(data.xlim.scale) >= 0) { ticks <- axisTicks(c(min(data.xlim.scale)/scaling.factor, max(data.xlim.scale)/scaling.factor), log = FALSE, nint = nint.ticks) } else { if (abs(min(data.xlim.scale)) > max(data.xlim.scale)) { ticks <- axisTicks(c(0, min(data.xlim.scale)/scaling.factor), log = FALSE, nint = nint.ticks) } else { ticks <- axisTicks(c(0, max(data.xlim.scale)/scaling.factor), log = FALSE, nint = nint.ticks) } } ticks <- ifelse(ticks > max(data.xlim.scale)/scaling.factor, NA, ticks) length.ticks <- length.baseline[1] + ticks * scaling.factor if (grid.vertical) { for (j in 1:length(length.ticks)) { lines(length.ticks[j] * cos.tsoft, length.ticks[j] * sin.tsoft, col = grid.col, lty = grid.lty) } } if (show.data.axis) { segments(x0 = length.ring1 * cos.tax, x1 = length.ring2 * cos.tax, y0 = length.ring1 * sin.tax, y1 = length.ring2 * sin.tax, lwd = 20, col = trait.bg.col[i]) text(x = length.ticks * cos.tax, y = length.ticks * sin.tax, labels = ticks, cex = tip.cex) } } } if (plot.type == "barplot") { length.baseline <- rep(length.baseline, length.out = length(cos.t)) segments(x0 = length.baseline * cos.t, x1 = length.values * cos.t, y0 = length.baseline * sin.t, y1 = length.values * sin.t, lwd = bar.lwd, col = bar.col[, i]) } if (plot.type == "dotplot") { length.baseline <- rep(length.baseline, length.out = length(cos.t)) points(x = length.values * cos.t, y = length.values * sin.t, col = dot.col[, i], pch = dot.pch[, i], cex = dot.cex[, i]) } if (plot.type == "gridplot") { nc <- length(cell.col) X.cut <- as.numeric(cut(as.matrix(X), nc)) grid.colors <- cell.col[X.cut] grid.colors <- matrix(grid.colors, ncol = n.traits) theta.grid1 <- theta + pi/2 - (theta[1] + theta[2])/2 theta.grid2 <- theta - pi/2 + (theta[1] + theta[2])/2 for (k in 1:length(theta)) { tile.x1 <- length.ring1 * cos(pi/2 - seq(theta.grid1[k], theta.grid2[k], length.out = 25)) tile.x2 <- length.ring2 * cos(pi/2 - seq(theta.grid1[k], theta.grid2[k], length.out = 25)) tile.y1 <- length.ring1 * sin(pi/2 - seq(theta.grid1[k], theta.grid2[k], length.out = 25)) tile.y2 <- length.ring2 * sin(pi/2 - seq(theta.grid1[k], theta.grid2[k], length.out = 25)) polygon(c(tile.x1, rev(tile.x2)), c(tile.y1, rev(tile.y2)), col = grid.colors[k, i], border = NA) } if (grid.horizontal) { segments(x0 = length.ring1 * cos(pi/2 - theta.grid1), y0 = length.ring1 * sin(pi/2 - theta.grid1), x1 = length.ring2 * cos(pi/2 - theta.grid1), y1 = length.ring2 * sin(pi/2 - theta.grid1), col = grid.col, lty = grid.lty) segments(x0 = length.ring1 * cos(pi/2 - theta.grid2[length(theta.grid2)]), y0 = length.ring1 * sin(pi/2 - theta.grid2[length(theta.grid2)]), x1 = length.ring2 * cos(pi/2 - theta.grid2[length(theta.grid2)]), y1 = length.ring2 * sin(pi/2 - theta.grid2[length(theta.grid2)]), col = grid.col, lty = grid.lty) } if (grid.vertical) { if (i > 1) { lines((length.ring1 - length.intergr/2 + 0.3 * length.intergr) * cos.tsoft, (length.ring1 - length.intergr/2 + 0.3 * length.intergr) * sin.tsoft, col = grid.col, lty = grid.lty) } } } if (plot.type == "barplot" | plot.type == "dotplot") { options(warn = -1) if (!is.null(error.bar.inf)) { arrows(x0 = length.values * cos.t, x1 = length.arrow.inf * cos.t, y0 = length.values * sin.t, y1 = length.arrow.inf * sin.t, lwd = 1, col = error.bar.col, angle = 90, length = 0.04) } if (!is.null(error.bar.sup)) { arrows(x0 = length.values * cos.t, x1 = length.arrow.sup * cos.t, y0 = length.values * sin.t, y1 = length.arrow.sup * sin.t, lwd = 1, col = error.bar.col, angle = 90, length = 0.04) } options(warn = 1) } if (show.box) { if (tree.open.crown) { lines(c(xx1, rev(xx2)), c(yy1, rev(yy2)), col = 1) } else { lines(xx1, yy1, col = 1) lines(xx2, yy2, col = 1) } } if (show.trait) { if (tree.open.crown) { theta.trait <- theta.soft[length(theta.soft)] } else { if (show.data.axis & (plot.type == "barplot" | plot.type == "dotplot")) { theta.trait <- theta[length(theta)] - (360 - real.open) * (1/3) * pi/180 } else { theta.trait <- theta[length(theta)] - (360 - real.open) * (1/2) * pi/180 } } cos.ttrait <- cos(pi/2 - theta.trait) sin.ttrait <- sin(pi/2 - theta.trait) segments(x0 = length.ring1 * cos.ttrait, x1 = length.ring2 * cos.ttrait, y0 = length.ring1 * sin.ttrait, y1 = length.ring2 * sin.ttrait, lwd = 20, col = trait.bg.col[i]) text(x = (length.ring1 + length.ring2)/2 * cos.ttrait, y = (length.ring1 + length.ring2)/2 * sin.ttrait, labels = trait.labels[i], col = trait.col[i], cex = trait.cex[i], font = trait.font[i], srt = ifelse(theta.trait > 0 | theta.trait < -pi, (pi/2 - theta.trait) * 180/pi, (-pi/2 - theta.trait) * 180/pi)) } } if (show.tip) { length.tipsline <- (length.phylo + length.intergr * (n.traits + 1) + length.gr * (n.traits)) tip.xlim <- c(-1, 1) if (tip.adj < 0.5) tip.xlim[1] <- -tip.adj/0.5 if (tip.adj > 0.5) tip.xlim[2] <- -2 * tip.adj + 2 for (i in 1:n.tips) { text(x = length.tipsline * cos.t[i], y = length.tipsline * sin.t[i], labels = tip.labels[i], adj = ifelse(theta[i] > 0 | theta[i] < -pi, 0, 1), col = tip.col[i], cex = tip.cex[i], font = tip.font[i], srt = ifelse(theta[i] > 0 | theta[i] < -pi, (pi/2 - theta[i]) * 180/pi, (-pi/2 - theta[i]) * 180/pi)) } } } par(mar = par.mar0, xpd = par.xpd0, lend = par.lend0) invisible() }
setMethod("print", "sysModel", function(x, ...) { cat("System of Equations Model\n") cat("*************************\n") type <- gsub("s", "", is(x)[1]) cat("Moment type: ", strsplit(type, "G")[[1]][1], "\n", sep = "") cat("Covariance matrix: ", x@vcov, sep = "") if (x@vcov == "HAC") { option <- x@vcovOptions cat(" with ", option$kernel, " kernel and ") if (is.numeric(option$bw)) cat("Fixed bandwidth (", round(option$bw, 3), ")", sep = "") else cat(option$bw, " bandwidth", sep = "") } cat("\n") d <- modelDims(x) for (i in 1:length(d$eqnNames)) cat(d$eqnNames[i], ": coefs=", d$k[i], ", moments=", d$q[i], ", number of Endogenous: ", sum(d$isEndo[[i]]), "\n", sep="") cat("Sample size: ", d$n, "\n") }) setMethod("show", "sysModel", function(object) print(object)) setMethod("modelDims", "slinearModel", function(object) { list(q=object@q, k=object@k, n=object@n, parNames=object@parNames, momNames=object@momNames, eqnNames=object@eqnNames, isEndo=object@isEndo) }) setMethod("modelDims", "snonlinearModel", function(object) { list(k=object@k, q=object@q, n=object@n, parNames=object@parNames, momNames=object@momNames, theta0=object@theta0, fRHS=object@fRHS, fLHS=object@fLHS, eqnNames=object@eqnNames, isEndo=object@isEndo) }) setMethod("setCoef", signature("sysModel"), function(model, theta) { spec <- modelDims(model) k <- sum(spec$k) if (!is.list(theta)) { if (length(theta) != k) stop(paste("Wrong number of coefficients (should be ", k, ")", sep="")) if (!is.null(names(theta))) { parNames <- do.call("c", spec$parNames) if (any(duplicated(names(theta)))) stop("Cannot have more than one coefficient with the same name") chk <- !(names(theta) %in% parNames) if (any(chk)) { mes <- "The following coefficients have invalid name: " mes <- paste(mes, paste(names(theta)[chk], collapse=", ", sep=""), sep="") stop(mes) } theta <- theta[match(parNames, names(theta))] } theta <- .tetReshape(theta, spec$eqnNames, spec$parNames) } else { if (length(theta) != length(spec$eqnNames)) stop("Wrong number of equations") if (is.null(names(theta))) { names(theta) <- spec$eqnNames } else { if(!all(names(theta) %in% spec$eqnNames)) stop("Wrong equation names") theta <- theta[match(spec$eqnNames,names(theta))] } chk <- sapply(1:length(theta), function(i) length(theta[[i]]) == length(spec$parNames[[i]])) if (!all(chk)) { mes <- "Wrong number of coefficients in the following equation: " mes <- paste(mes, paste(names(theta)[!chk], collapse=", ", sep=""), sep="") stop(mes) } theta <- lapply(1:length(theta), function(i) { ti <- theta[[i]] if (is.null(names(ti))) { names(ti) <- spec$parNames[[i]] } else { if (!all(names(ti) %in% spec$parNames[[i]])) stop(paste("Wrong coefficient names in equation ", names(theta)[i], sep="")) ti <- ti[match(spec$parNames[[i]], names(ti))] } ti}) names(theta) <- spec$eqnNames } theta }) setMethod("[", c("sysModel", "missing", "list"), function(x, i, j){ if (length(j) != length(x@q)) stop("j must be a list with a length equals to the number of equations") spec <- modelDims(x) x@SUR <- FALSE if (x@sameMom) { chk <- sapply(j[-1], function(ji) identical(ji, j[[1]])) if (!all(chk)) x@sameMom <- FALSE } for (s in 1:length(j)) { if (length(j[[s]]) > 0) { q <- spec$q[s] if (!all(abs(j[[s]]) %in% (1:q))) stop("SubMoment must be between 1 and q") momNames <- spec$momNames[[s]][j[[s]]] if (length(momNames)<spec$k[s]) { error <- paste("Equation", s, "is under-identified") stop(error) } if (momNames[1] == "(Intercept)") { f <- reformulate(momNames[-1], NULL, TRUE) } else { f <- reformulate(momNames, NULL, FALSE) } attr(f, ".Environment")<- .GlobalEnv x@q[s] <- length(momNames) x@instT[[s]] <- terms(f) x@momNames[[s]] <- momNames } } x }) setMethod("[", c("snonlinearModel", "numeric", "missing"), function(x, i, j){ i <- unique(as.integer(i)) spec <- modelDims(x) neqn <- length(spec$k) if (!all(abs(i) %in% (1:neqn))) stop("Selected equations out of range") x@fLHS <- x@fLHS[i] x@fRHS <- x@fRHS[i] if (length(x@fLHS) == 0) stop("Removed too many equations; the model is empty") x@instT <- x@instT[i] x@k=x@k[i] x@q <- x@q[i] x@parNames <- x@parNames[i] x@momNames <- x@momNames[i] x@eqnNames <- x@eqnNames[i] x@theta0 <- x@theta0[i] x@varNames <- x@varNames[i] x@isEndo <- x@isEndo[i] x@SUR <- FALSE if (length(x@q) > 1) return(x) instF <- model.frame(x@instT[[1]], x@data) varN <- c(all.vars(x@fLHS[[1]]), all.vars(x@fRHS[[1]])) varN <- varN[!(varN%in%names(x@theta0[[1]]))] modelF <- x@data[,varN, drop=FALSE] new("nonlinearModel", instF=instF, modelF=modelF, q=x@q[[1]], fLHS=x@fLHS[[1]], fRHS=x@fRHS[[1]], theta0=x@theta0[[1]], k=x@k[[1]], parNames=x@parNames[[1]], momNames=x@momNames[[1]], vcov=x@vcov, n=spec$n,vcovOptions=x@vcovOptions, centeredVcov=x@centeredVcov, varNames=x@varNames[[1]], isEndo=x@isEndo[[1]], survOptions=x@survOptions, smooth=FALSE) }) setMethod("[", c("slinearModel", "numeric", "missing"), function(x, i, j){ i <- unique(as.integer(i)) spec <- modelDims(x) neqn <- length(spec$k) if (!all(abs(i) %in% (1:neqn))) stop("Selected equations out of range") x@modelT <- x@modelT[i] if (length(x@modelT) == 0) stop("Removed too many equations; the model is empty") x@instT <- x@instT[i] x@k=x@k[i] x@q <- x@q[i] x@parNames <- x@parNames[i] x@momNames <- x@momNames[i] x@eqnNames <- x@eqnNames[i] x@varNames <- x@varNames[i] x@isEndo <- x@isEndo[i] x@SUR <- FALSE if (length(x@q) > 1) return(x) instF <- model.frame(x@instT[[1]], x@data) modelF <- model.frame(x@modelT[[1]], x@data) new("linearModel", instF=instF, modelF=modelF, q=x@q[[1]], k=x@k[[1]], parNames=x@parNames[[1]], momNames=x@momNames[[1]], vcov=x@vcov, n=spec$n, vcovOptions=x@vcovOptions, centeredVcov=x@centeredVcov, varNames=x@varNames[[1]], isEndo=x@isEndo[[1]],survOptions=x@survOptions, sSpec=new("sSpec"), smooth=FALSE) }) setMethod("[", c("sysModel", "numeric", "list"), function(x, i, j){ x <- x[i] if (!inherits(x, "sysModel")) { if (length(j)>1) warning("length(j)>1, only the first element used") x[,j[[1]]] } else { x[,j] } }) setMethod("[", c("sysModel", "missing", "missing"), function(x, i, j) x) setMethod("subset", "sysModel", function(x, i) { x@data <- x@data[i,,drop=FALSE] if (!is.null(x@vcovOptions$cluster)) { if (!is.null(dim(x@vcovOptions$cluster))) x@vcovOptions$cluster <- x@vcovOptions$cluster[i] else x@vcovOptions$cluster <- x@vcovOptions$cluster[i,,drop=FALSE] } x@n <- nrow(x@data) x}) setGeneric("merge") setMethod("merge", c("linearModel", "linearModel"), function(x, y, ...) { all <- c(list(x), y, list(...)) cl <- sapply(all, class) if (any(cl != "linearModel")) stop("Can only merge linearModel with other linearModel models") n <- sapply(all, function(s) modelDims(s)$n) if (any(n[-1L] != n[1L])) stop("You can only merge models with the same number of observations") k <- sapply(all, function(s) modelDims(s)$k) q <- sapply(all, function(s) modelDims(s)$q) parNames <- lapply(all, function(s) modelDims(s)$parNames) momNames <- lapply(all, function(s) modelDims(s)$momNames) varNames <- lapply(all, function(s) s@varNames) isEndo <- lapply(all, function(s) s@isEndo) instT <- lapply(all, function(s) terms(s@instF)) modelT <- lapply(all, function(s) terms(s@modelF)) dat <- do.call(cbind, lapply(all, function(s) cbind(s@modelF, s@instF))) dat <- dat[,!duplicated(colnames(dat))] eqnNames <- paste("Eqn", 1:length(all), sep="") new("slinearModel", data=dat, instT=instT, modelT=modelT, eqnNames=eqnNames, vcov=x@vcov, vcovOptions=x@vcovOptions, centeredVcov = x@centeredVcov, k=k, q=q, n=n[1], parNames=parNames, momNames=momNames, sameMom=FALSE, isEndo=isEndo, varNames=varNames, SUR=FALSE,survOptions=x@survOptions, sSpec=new("sSpec"), smooth=FALSE) }) setMethod("merge", c("nonlinearModel", "nonlinearModel"), function(x, y, ...) { all <- c(list(x), y, list(...)) cl <- sapply(all, class) if (any(cl != "nonlinearModel")) stop("Can only merge nonlinearModel with oter nonlinearModel models") n <- sapply(all, function(s) modelDims(s)$n) if (any(n[-1L] != n[1L])) stop("You can only merge models with the same number of observations") fRHS <- lapply(all, function(s) s@fRHS) fLHS <- lapply(all, function(s) s@fLHS) k <- sapply(all, function(s) modelDims(s)$k) q <- sapply(all, function(s) modelDims(s)$q) parNames <- lapply(all, function(s) modelDims(s)$parNames) momNames <- lapply(all, function(s) modelDims(s)$momNames) varNames <- lapply(all, function(s) s@varNames) isEndo <- lapply(all, function(s) s@isEndo) instT <- lapply(all, function(s) terms(s@instF)) theta0 <- lapply(all, function(s) s@theta0) eqnNames <- paste("Eqn", 1:length(all), sep="") dat <- do.call(cbind, lapply(all, function(s) cbind(s@modelF, s@instF))) dat <- dat[,!duplicated(colnames(dat))] new("snonlinearModel", data=dat, instT=instT, theta0=theta0,fRHS=fRHS,eqnNames=eqnNames, fLHS=fLHS, vcov=x@vcov, vcovOptions=x@vcovOptions, centeredVcov = x@centeredVcov, k=k, q=q, n=n[1], parNames=parNames, isEndo=isEndo, varNames=varNames, momNames=momNames, sameMom=FALSE, SUR=FALSE, survOptions=x@survOptions, sSpec=new("sSpec"), smooth=FALSE) }) setMethod("merge", c("snonlinearModel", "nonlinearModel"), function(x, y, ...) { all <- c(list(y), list(...)) cl <- sapply(all, class) if (any(cl != "nonlinearModel")) stop("Can only merge nonlinearModel with oter nonlinearModel models") n <- sapply(all, function(s) modelDims(s)$n) spec <- modelDims(x) if (any(n != spec$n)) stop("You can only merge models with the same number of observations") fRHS <- c(spec$fRHS, lapply(all, function(s) modelDims(s)$fRHS)) fLHS <- c(spec$fLHS, lapply(all, function(s) modelDims(s)$fLHS)) k <- c(spec$k, sapply(all, function(s) modelDims(s)$k)) q <- c(spec$q, sapply(all, function(s) modelDims(s)$q)) parNames <- c(spec$parNames, lapply(all, function(s) modelDims(s)$parNames)) momNames <- c(spec$momNames, lapply(all, function(s) modelDims(s)$momNames)) varNames <- c(x@varNames, lapply(all, function(s) s@varNames)) isEndo <- c(x@isEndo, lapply(all, function(s) s@isEndo)) instT <- c(x@instT, lapply(all, function(s) terms(s@instF))) theta0 <- c(spec$theta0, lapply(all, function(s) modelDims(s)$theta0)) eqNames <- x@eqnNames eqnNames <- c(eqNames, paste("Eqn", (length(eqNames)+1):length(fRHS), sep="")) dat <- do.call(cbind, lapply(all, function(s) cbind(s@modelF, s@instF))) dat <- dat[,!duplicated(colnames(dat))] new("snonlinearModel", data=dat, instT=instT, theta0=theta0,fRHS=fRHS,eqnNames=eqnNames, fLHS=fLHS, vcov=x@vcov,vcovOptions=x@vcovOptions, centeredVcov = x@centeredVcov, k=k, q=q, n=n[1], parNames=parNames, isEndo=isEndo, varNames=varNames, momNames=momNames, sameMom=FALSE, SUR=FALSE, survOptions=x@survOptions, sSpec=new("sSpec"), smooth=FALSE) }) setMethod("merge", c("slinearModel", "linearModel"), function(x, y, ...) { all <- c(list(y), list(...)) cl <- sapply(all, class) if (any(cl != "linearModel")) stop("Can only merge linearModel with other linearModel models") n <- sapply(all, function(s) modelDims(s)$n) spec <- modelDims(x) if (any(n != spec$n)) stop("You can only merge models with the same number of observations") k <- c(spec$k, sapply(all, function(s) modelDims(s)$k)) q <- c(spec$q, sapply(all, function(s) modelDims(s)$q)) parNames <- c(spec$parNames, lapply(all, function(s) modelDims(s)$parNames)) momNames <- c(spec$momNames, lapply(all, function(s) modelDims(s)$momNames)) varNames <- c(x@varNames, lapply(all, function(s) s@varNames)) isEndo <- c(x@isEndo, lapply(all, function(s) s@isEndo)) instT <- c(x@instT, lapply(all, function(s) terms(s@instF))) modelT <- c(x@modelT, lapply(all, function(s) terms(s@modelF))) dat <- do.call(cbind, lapply(all, function(s) cbind(s@modelF, s@instF))) dat <- dat[,!duplicated(colnames(dat))] eqNames <- x@eqnNames eqnNames <- c(eqNames, paste("Eqn", (length(eqNames)+1):length(instT), sep="")) new("slinearModel", data=dat, instT=instT, modelT=modelT, eqnNames=eqnNames, vcov=x@vcov, vcovOptions=x@vcovOptions, centeredVcov = x@centeredVcov, k=k, q=q, n=n[1], parNames=parNames, momNames=momNames, sameMom=FALSE, isEndo=isEndo, varNames=varNames, SUR=FALSE, survOptions=x@survOptions, sSpec=new("sSpec"), smooth=FALSE) }) setMethod("residuals", "sysModel", function(object, theta) { neqn <- length(object@eqnNames) r <- sapply(1:neqn, function(i) residuals(object[i], theta[[i]])) colnames(r) <- object@eqnNames r }) setMethod("Dresiduals", "sysModel", function(object, theta) { neqn <- length(object@eqnNames) if (missing(theta)) r <- sapply(1:neqn, function(i) Dresiduals(object[i])) else r <- sapply(1:neqn, function(i) Dresiduals(object[i], theta[[i]])) names(r) <- object@eqnNames r }) setMethod("evalMoment", "sysModel", function(object, theta) { neqn <- length(object@eqnNames) gt <- lapply(1:neqn, function(i) evalMoment(object[i], theta[[i]])) names(gt) <- object@eqnNames gt }) setMethod("evalDMoment", "sysModel", function(object, theta) { neqn <- length(object@eqnNames) if (missing(theta)) dgt <- lapply(1:neqn, function(i) evalDMoment(object[i])) else dgt <- lapply(1:neqn, function(i) evalDMoment(object[i], theta[[i]])) names(dgt) <- object@eqnNames dgt }) setMethod("model.matrix", "slinearModel", function(object, type = c("regressors", "instruments")) { type <- match.arg(type) mm <- lapply(1:length(object@eqnNames), function(i) model.matrix(object[i], type)) names(mm) <- object@eqnNames mm }) setMethod("model.matrix", "snonlinearModel", function(object, type = c("regressors", "instruments")) { type <- match.arg(type) if (type == "regressors") stop("no model.matrix of type regressors for nonlinear Model. set type to 'instruments' to get the matrix of instruments") mm <- lapply(1:length(object@eqnNames), function(i) model.matrix(object[i], type)) names(mm) <- object@eqnNames mm }) .SigmaZZ <- function(ZZ, Sigma, dimr, dimc=NULL, lowerTri=FALSE, isSym=TRUE) { r1 <- 1 c1 <- 1 if (is.null(dimc)) dimc <- dimr for (i in 1:length(dimr)) { r2 <- sum(dimr[1:i]) start <- ifelse(isSym, i, 1) for (j in start:length(dimc)) { c2 <- sum(dimc[1:j]) ZZ[r1:r2, c1:c2] <- ZZ[r1:r2, c1:c2]*Sigma[i,j] c1 <- c1+dimc[j] } r1 <- r1+dimr[i] c1 <- ifelse(isSym, sum(dimc[1:i])+1, 1) } if (lowerTri && isSym) ZZ[lower.tri(ZZ)] <- t(ZZ)[lower.tri(ZZ)] ZZ } setMethod("evalWeights", "sysModel", function(object, theta = NULL, w="optimal", wObj=NULL) { spec <- modelDims(object) sameMom <- object@sameMom n <- object@n neqn <- length(spec$eqnNames) if (is.matrix(w)) { if (!all(dim(w) == sum(spec$q))) stop("The weights matrix has the wrong dimension") } if (is.matrix(w) || (w == "ident")) { return(new("sysMomentWeights", type="weights",momNames=object@momNames, wSpec=list(), w=w, Sigma=NULL, sameMom=sameMom, eqnNames=object@eqnNames)) } if (w != "optimal") stop("w is either 'ident', 'optimal' or a matrix") if (object@vcov == "iid") { e <- residuals(object, theta) type <- "iid" Sigma <- chol(crossprod(e)/n) if (!is.null(wObj)) { if (wObj@type != "iid") stop("wObj must come from a model with iid errors") if (ncol(wObj@w$qr) != spec$q[1]) stop("The qr decomposition has the wrong dimension") w <- wObj@w } else { Z <- model.matrix(object, type="instruments") if (sameMom) { w <- qr(Z[[1]]/sqrt(n)) } else { w <- crossprod(do.call(cbind,Z))/n } } } else if (object@vcov == "MDS") { type <- "MDS" gt <- evalMoment(object, theta) w <- qr(do.call(cbind, gt)/sqrt(n)) Sigma <- NULL } else { stop("Only identity, iid and MDS if allowed for now") } return(new("sysMomentWeights", type=type,momNames=object@momNames, wSpec=list(), w=w, Sigma=Sigma, sameMom=sameMom, eqnNames=object@eqnNames)) }) setMethod("evalGmmObj", signature("sysModel", "list", "sysMomentWeights"), function(object, theta, wObj, ...) { gt <- evalMoment(object, theta) gt <- lapply(gt, function(g) colMeans(g)) gt <- do.call("c", gt) n <- object@n obj <- quadra(wObj, gt) n*obj }) setMethod("evalGmm", signature("sysModel"), function(model, theta, wObj=NULL, ...) { Call <- try(match.call(call=sys.call(sys.parent())), silent=TRUE) if (inherits(Call,"try-error")) Call <- NULL theta <- setCoef(model, theta) if (is.null(wObj)) wObj <- evalWeights(model, theta) new("sgmmfit", theta=theta, convergence=NULL, convIter=NULL, call=Call, type="eval", wObj=wObj, niter=0L, efficientGmm=FALSE, model=model) }) setMethod("modelResponse", signature("slinearModel"), function(object) { neqn <- length(object@eqnNames) Y <- lapply(1:neqn, function(i) modelResponse(object[i])) Y }) .GListToMat <- function(G, full=FALSE) { if (full) return(do.call(rbind, G)) dimG <- sapply(G, dim) Gmat <- matrix(0, sum(dimG[1,]), sum(dimG[2,])) r1 <- 1 c1 <- 1 for (i in 1:length(G)) { r2 <- sum(dimG[1,1:i]) c2 <- sum(dimG[2,1:i]) Gmat[r1:r2, c1:c2] <- as.matrix(G[[i]]) r1 <- r1 + dimG[1,i] c1 <- sum(dimG[2,1:i]) + 1 } Gmat } .tetReshape <- function(theta, eqnNames, parNames) { if (is.list(theta)) { theta2 <- do.call("c", theta) k <- sapply(parNames, length) tn <- paste(rep(eqnNames, k), ".", do.call("c", parNames), sep = "") names(theta2) <- tn } else { k <- cumsum(sapply(parNames, length)) names(theta) <- do.call("c", parNames) theta2 <- list(theta[1:k[1]]) if (length(k)>1) theta2[2:length(k)] <- lapply(2:length(k), function(i) theta[(k[i-1]+1):k[i]]) names(theta2) <- eqnNames } theta2 } setMethod("solveGmm", c("slinearModel", "sysMomentWeights"), function(object, wObj, theta0 = NULL) { if (wObj@type=="iid" && object@sameMom) return(ThreeSLS(object, Sigma=wObj@Sigma, qrZ=wObj@w, coefOnly=TRUE)) spec <- modelDims(object) Y <- modelResponse(object) Z <- model.matrix(object, type="instruments") Syz <- lapply(1:length(Y), function(i) colMeans(Y[[i]]*Z[[i]])) Syz <- do.call("c", Syz) G <- evalDMoment(object) G <- .GListToMat(G) T1 <- quadra(wObj, G) T2 <- quadra(wObj, G, Syz) theta <- -solve(T1, T2) theta <- .tetReshape(theta, object@eqnNames, object@parNames) list(theta=theta, convergence=NULL) }) setMethod("solveGmm", signature("snonlinearModel", "sysMomentWeights"), function (object, wObj, theta0 = NULL, ...) { if (is.null(theta0)) theta0 <- modelDims(object)$theta0 else theta0 <- setCoef(object, theta0) g <- function(theta, wObj, object){ spec <- modelDims(object) theta <- .tetReshape(theta, object@eqnNames, spec$parNames) evalGmmObj(object, theta, wObj) } dg <- function(theta, wObj, object) { spec <- modelDims(object) theta <- .tetReshape(theta, object@eqnNames, spec$parNames) gt <- evalMoment(object, theta) gt <- do.call(cbind, gt) n <- nrow(gt) gt <- colMeans(gt) G <- evalDMoment(object, theta) full <- all(sapply(1:length(G), function(i) ncol(G[[i]])==sum(spec$k))) G <- .GListToMat(G, full) obj <- 2 * n * quadra(wObj, G, gt) obj } spec <- modelDims(object) theta0 <- .tetReshape(theta0, object@eqnNames, spec$parNames) res <- optim(par = theta0, fn = g, gr = dg, method = "BFGS", object = object, wObj = wObj, ...) theta <- .tetReshape(res$par, spec$eqnNames, spec$parNames) list(theta = theta, convergence = res$convergence) }) setMethod("vcov", signature("sysModel"), function(object, theta){ spec <- modelDims(object) q <- spec$q if (object@vcov == "MDS") { gt <- evalMoment(object, theta) gt <- do.call(cbind, gt) if (object@centeredVcov) gt <- scale(gt, scale=FALSE) w <- crossprod(gt)/nrow(gt) } else if (object@vcov == "iid") { e <- residuals(object, theta) Sigma <- crossprod(e)/nrow(e) Z <- model.matrix(object, "instrument") if (object@sameMom) { w <- kronecker(Sigma, crossprod(Z[[1]])/nrow(e)) } else { Z <- crossprod(do.call(cbind,Z))/nrow(e) w <- .SigmaZZ(Z, Sigma, q) } } else { stop("not yet implemented for HAC") } wn <- paste(rep(spec$eqnNames, q), ".", do.call("c", spec$momNames), sep = "") dimnames(w) <- list(wn,wn) w }) setMethod("tsls", "slinearModel", function(model) { Call <- try(match.call(call=sys.call(sys.parent())), silent=TRUE) if (inherits(Call,"try-error")) Call <- NULL neqn <- length(model@eqnNames) res <- lapply(1:neqn, function(i) tsls(model[i])) w <- lapply(1:neqn, function(i) quadra(res[[i]]@wObj)) w <- .GListToMat(w) wObj <- evalWeights(model, w=w) theta <- lapply(res, coef) names(theta) <- model@eqnNames new("stsls", theta=theta, convergence=NULL, convIter=NULL, call=Call, type="tsls", wObj=wObj, niter=1L, efficientGmm=FALSE, model=model) }) setGeneric("ThreeSLS", function(model, ...) standardGeneric("ThreeSLS")) setMethod("ThreeSLS", "slinearModel", function(model, coefOnly=FALSE, qrZ=NULL, Sigma=NULL) { Call <- try(match.call(call=sys.call(sys.parent())), silent=TRUE) if (inherits(Call,"try-error")) Call <- NULL if (!inherits(model, "slinearModel")) stop("3SLS is for slinearModel classes") if (!model@sameMom) stop("For 3SLS, the instruments must be the same in each equation") efficientGmm <- model@vcov == "iid" spec <- modelDims(model) n <- spec$n neqn <- length(model@eqnNames) x <- model.matrix(model) y <- modelResponse(model) if (is.null(qrZ)) { z <- model.matrix(model[1], "instruments") qrZ <- qr(z/sqrt(n)) } else { if (!inherits(qrZ,"qr")) stop("qrZ must be the qr decomposition of Z") if (ncol(qrZ$qr) != length(spec$momNames[[1]])) stop("The qr decomposition has the wrong dimension") } if (is.null(Sigma)) { theta <- lapply(1:neqn, function(i) lm.fit(qr.fitted(qrZ, x[[i]]), y[[i]])$coefficients) e <- residuals(model, theta) Sigma <- chol(crossprod(e)/n) } else { if (!all(Sigma[lower.tri(Sigma)] == 0)) stop("Sigma must be a cholesky and therefore upper tiangular") } if (model@SUR) { xhat <- do.call(cbind, x) type <- "SUR" } else { xhat <- qr.fitted(qrZ, do.call(cbind, x)) type <- "3SLS" } iSigma <- chol2inv(Sigma) y <- do.call(cbind,y) A <- crossprod(xhat) A <- .SigmaZZ(A, iSigma, spec$k, spec$k, TRUE) C <- crossprod(xhat, y) C <- .SigmaZZ(C, iSigma, spec$k, rep(1, neqn), FALSE, FALSE) C <- rowSums(C) theta <- .tetReshape(solve(A, C), model@eqnNames, spec$parNames) if (coefOnly) return(list(theta=theta, convergence=NULL)) wObj <- new("sysMomentWeights", w=qrZ, Sigma=Sigma, type="iid", momNames=spec$momNames, wSpec=list(), sameMom=TRUE, eqnNames=model@eqnNames) new("sgmmfit", theta=theta, convergence=NULL, convIter=rep(NULL, neqn), call=Call, type=type, wObj=wObj, niter=2L, efficientGmm=efficientGmm, model=model) }) setMethod("gmmFit", signature("sysModel"), valueClass="sgmmfit", function(model, type=c("twostep", "iter","cue", "onestep"), itertol=1e-7, initW=c("ident", "tsls", "EbyE"), weights="optimal", itermaxit=100, efficientWeights=FALSE, theta0=NULL, EbyE=FALSE, ...) { Call <- try(match.call(call=sys.call(sys.parent())), silent=TRUE) if (inherits(Call,"try-error")) Call <- NULL chk <- validObject(model) type <- match.arg(type) initW <- match.arg(initW) i <- 1L chk <- validObject(model, TRUE) if (!chk) stop("model is not a valid moment Model object") if (is.character(weights) && !(weights%in%c("optimal","ident"))) stop("weights is a matrix or one of 'optimal' or 'ident'") spec <- modelDims(model) if (all(spec$q==spec$k)) { weights <- "ident" type <- "onestep" EbyE <- TRUE } else if (type == "onestep" && !is.matrix(weights)) { weights <- "ident" EbyE <- TRUE } else if (is.matrix(weights) || inherits(weights,"sysMomentWeights")) { type <- "onestep" EbyE <- FALSE } else if (weights == "ident") { type <- "onestep" EbyE <- TRUE } if (EbyE) { neqn <- length(model@eqnNames) res <- lapply(1:neqn, function(i) gmmFit(model[i], type=type, weights=weights,itertol=itertol, initW=initW, itermaxit=itermaxit, efficientWeights=efficientWeights, theta0=theta0, ...)) theta <- lapply(res, coef) convergence <- sapply(res, function(r) r@convergence) if (is.list(convergence)) convergence <- do.call("c", convergence) convIter <- sapply(res, function(r) r@convIter) niter <- sapply(res, function(r) r@niter) if (is.list(convIter)) convIter <- do.call("c", convIter) type <- paste("EBE", type, sep="") efficientGmm <- FALSE if (is.character(weights) && weights=="ident") { wObj <- evalWeights(model, NULL, "ident") } else { wObj <- lapply(res, function(r) quadra(r@wObj)) wObj <- .GListToMat(wObj) wObj <- evalWeights(model, w=wObj) } ans <- new("sgmmfit", theta=theta, convergence=convergence, convIter=convIter, call=Call, type=type, wObj=wObj, niter=niter, efficientGmm=efficientGmm, model=model) return(ans) } if (type == "onestep") { if (inherits(weights,"sysMomentWeights")) wObj <- weights else wObj <- evalWeights(model, w=weights) res <- solveGmm(model, wObj, theta0, ...) convergence <- res$convergence efficientGmm <- efficientWeights ans <- new("sgmmfit", theta=res$theta, convergence=convergence, convIter=NULL, type=type, wObj=wObj, model=model, call=Call, niter=i, efficientGmm=efficientGmm) return(ans) } if (type == "twostep") { itermaxit <- 1 if (inherits(model, "slinearModel")) { if (model@vcov=="iid" && !model@sameMom && !model@SUR) type <- "FIVE" if (initW=="tsls" && model@vcov=="iid" && model@sameMom) { obj <- ThreeSLS(model) obj@call <- Call } } } if (initW=="tsls") { theta0 <- try(coef(tsls(model)), silent=TRUE) if (inherits(theta0,"try-error")) stop("Cannot get the initial weights using 2SLS") } else if (initW == "EbyE") { neqn <- length(model@eqnNames) res <- lapply(1:neqn, function(i) gmmFit(model[i], type=type, weights=weights,itertol=itertol, itermaxit=itermaxit, efficientWeights=efficientWeights, theta0=theta0, ...)) theta0 <- lapply(res, coef) } else { wObj <- evalWeights(model, NULL, "ident") theta0 <- solveGmm(model, wObj, theta0, ...)$theta } bw <- model@vcovOptions$bw if (type != "cue") { while(TRUE) { if (i>1 && model@vcov=="iid") wObj0 <- wObj else wObj0 <- NULL wObj <- evalWeights(model, theta0, "optimal", wObj0) if (model@vcov=="HAC" && is.character(model@bw)) model@vcovOptions$bw <- wObj@wSpec$bw res <- solveGmm(model, wObj, theta0, ...) theta1 <- res$theta convergence <- res$convergence tet0 <- do.call("c", theta0) dif1 <- do.call("c", theta1)-tet0 crit <- sqrt(sum(dif1^2))/(1+sqrt(sum(tet0^2))) if (crit < itertol & type=="iter") { convIter <- 0 break } i <- i + 1L theta0 <- theta1 if (i>itermaxit) { if (type %in% c("twostep", "FIVE")) convIter <- NULL else convIter <- 1 break } } } else { convIter <- NULL if (model@vcov=="HAC" && is.character(bw)) { w <- vcov(model, theta0) model@vcovOptions$bw <- attr(w, "Spec")$bw } if (model@vcov == "iid") wObj0 <- evalWeights(model, theta0) else wObj0 <- NULL obj <- function(theta, model, wObj0, spec) { theta <- .tetReshape(theta, model@eqnNames, spec$parNames) wObj <- evalWeights(model, theta, "optimal", wObj0) evalGmmObj(model, theta, wObj) } res <- optim(do.call("c",theta0), obj, model=model, wObj0=wObj0, spec=spec, ...) theta1 <- .tetReshape(res$par, model@eqnNames,spec$parNames) convergence <- res$convergence wObj <- evalWeights(model, theta1, "optimal", wObj0) } model@vcovOptions$bw <- bw new("sgmmfit", theta=theta1, convergence=convergence, convIter=convIter, call=Call, type=type, wObj=wObj, niter=i, efficientGmm=TRUE, model=model) })
asRules <- function(model, compact=FALSE, ...) UseMethod("asRules") asRules.rpart <- function(model, compact=FALSE, classes=NULL, ...) { if (!inherits(model, "rpart")) stop(Rtxt("Not a legitimate rpart tree")) rtree <- length(attr(model, "ylevels")) == 0 target <- as.character(attr(model$terms, "variables")[2]) frm <- model$frame names <- row.names(frm) ylevels <- attr(model, "ylevels") ds.size <- model$frame[1,]$n if (rtree) ordered <- rev(sort(frm$n, index=TRUE)$ix) else ordered <- rev(sort(frm$yval2[,5], index=TRUE)$ix) for (i in ordered) { if (frm[i,1] == "<leaf>") { if (rtree) yval <- frm[i,]$yval else yval <- ylevels[frm[i,]$yval] if (is.null(classes) || yval %in% classes) { cover <- frm[i,]$n pcover <- round(100*cover/ds.size) if (! rtree) prob <- frm[i,]$yval2[,5] cat("\n") pth <- rpart::path.rpart(model, nodes=as.numeric(names[i]), print.it=FALSE) pth <- unlist(pth)[-1] if (! length(pth)) pth <- "True" if (compact) { cat(sprintf("R%03s ", names[i])) if (rtree) cat(sprintf("[%2.0f%%,%0.2f]", pcover, prob)) else cat(sprintf("[%2.0f%%,%0.2f]", pcover, prob)) cat(sprintf(" %s", pth), sep="") } else { cat(sprintf(Rtxt(" Rule number: %s "), names[i])) if (rtree) cat(sprintf("[%s=%s cover=%d (%.0f%%)]\n", target, yval, cover, pcover)) else cat(sprintf("[%s=%s cover=%d (%.0f%%) prob=%0.2f]\n", target, yval, cover, pcover, prob)) cat(sprintf(" %s\n", pth), sep="") } } } } cat("\n") invisible(ordered) }
costing_model <- function(type, ...) { costing <- jsonlite::unbox(type) costing_options <- list(...) costing_options <- Filter(function(df) nrow(df) > 0L, costing_options) if (length(costing_options) == 0L) return(list(costing = costing)) costing_options <- lapply( costing_options, jsonlite::unbox ) structure( list( costing = costing, costing_options = costing_options), class = "mz_costing_model" ) } mz_costing <- list( pedestrian = function(...) { costing_model("pedestrian", pedestrian = data.frame(...))}, auto = function(...) { costing_model("auto", auto = data.frame(...))}, bicycle = function(...) { costing_model("bicycle", bicycle = data.frame(...))}, multimodal = function(transit = NULL, pedestrian = NULL) { transit <- data.frame(transit) pedestrian <- data.frame(pedestrian) costing_model("multimodal", transit = transit, pedestrian = pedestrian) } ) costopt <- function(x, validate = assertthat::is.number) { assertthat::assert_that(validate(x)) jsonlite::unbox(x) } mz_costing_options <- list( pedestrian = list( walking_speed = function(speed) list(walking_speed = costopt(speed)), walkway_factor = function(factor) list(walkway_factor = costopt(factor)), alley_factor = function(factor) list(alley_factor = costopt(factor)), driveway_factor = function(factor) list(driveway_factor = costopt(factor)), step_penalty = function(seconds) list(step_penalty = costopt(seconds)) ), auto = list( maneuver_penalty = function(penalty) list(maneuver_penalty = costopt(penalty)), gate_cost = function(cost) list(gate_cost = costopt(cost)), toll_booth_cost = function(cost) list(toll_booth_cost = costopt(cost)), toll_booth_penalty = function(penalty) list(toll_booth_penalty = costopt(penalty)), ferry_cost = function(cost) list(ferry_cost = costopt(cost)), use_ferry = function(value) list(use_ferry = costopt(value)), country_crossing_cost = function(cost) list(country_crossing_cost = costopt(cost)), country_crossing_penalty = function(penalty) list(country_crossing_penalty = costopt(penalty)) ), bicycle = list( maneuver_penalty = function(penalty) list(maneuver_penalty = costopt(penalty)), gate_cost = function(cost) list(gate_cost = costopt(cost)), country_crossing_cost = function(cost) list(country_crossing_cost = costopt(cost)), country_crossing_penalty = function(penalty) list(country_crossing_penalty = costopt(penalty)), bicycle_type = function(type) list(bicycle_type = costopt(bicycle_type, assertthat::is.string)), cycling_speed = function(speed) list(cycling_speed = costopt(speed)), use_roads = function(propensity) list(use_roads = costopt(propensity)), use_hills = function(propensity) list(use_hills = costopt(propensity)) ), transit = list( use_bus = function(value) list(use_bus = costopt(value)), use_rail = function(value) list(use_rail = costopt(value)), use_transfers = function(value) list(use_transfers = costopt(value)), transit_start_end_max_distance = function(distance) list(transit_start_end_max_distance = costopt(distance)), transit_transfer_max_distance = function(distance) list(transit_transfer_max_distance = costopt(distance)) ) )
build_site_github_pages <- function(pkg = ".", ..., dest_dir = "docs", clean = TRUE, install = FALSE, new_process = FALSE) { pkg <- as_pkgdown(pkg, override = list(destination = dest_dir)) if (clean) { rule("Cleaning files from old site", line = 1) clean_site(pkg) } build_site(pkg, preview = FALSE, install = install, new_process = new_process, ...) build_github_pages(pkg) invisible() } build_github_pages <- function(pkg = ".") { rule("Extra files for GitHub pages") pkg <- as_pkgdown(pkg) write_if_different(pkg, "", ".nojekyll", check = FALSE) cname <- cname_url(pkg$meta$url) if (is.null(cname)) { return(invisible()) } write_if_different(pkg, cname, "CNAME", check = FALSE) invisible() } cname_url <- function(url) { if (is.null(url)) return(NULL) pieces <- xml2::url_parse(url) if (!pieces$path %in% c("", "/")) return(NULL) pieces$server }
tok_lst = list(c('the', 'the', 'tokens', 'of', 'first', 'document'), c('the', 'tokens', 'of', 'of', 'second', 'document'), c('the', 'tokens', 'of', 'third', 'third', 'document')) vec_clust = rep(1:6, 3) context('cluster-frequency function') while(T) { testthat::test_that("in case that the verbose parameter is not a boolean, it returns an error", { cat("test-cluster_frequency.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_error( cluster_frequency(tok_lst, vec_clust, verbose = 'TRUE') ) }) testthat::test_that("it returns the correct output", { res = cluster_frequency(tok_lst, vec_clust) cat("test-cluster_frequency.R : test id", cnt_tsts, "\n") cnt_tsts <<- cnt_tsts + 1 testthat::expect_true( inherits(res, 'list') && inherits(res[[1]], "data.table") && length(res) == length(tok_lst) ) }) break }
library(fredr) knitr::opts_chunk$set( fig.width = 7, fig.height = 5, eval = fredr_has_key(), collapse = TRUE, comment = " ) library(fredr) fredr_category(category_id = 0L) fredr_category(category_id = 97L) fredr_category_children(category_id = 0L) fredr_category_children(category_id = 1L) fredr_category_related(category_id = 0L) fredr_category_related(category_id = 4L) fredr_category_series( category_id = 97L, limit = 100L, order_by = "last_updated", filter_variable = "frequency", filter_value = "Quarterly" ) fredr_category_series( category_id = 32992L, order_by = "frequency", sort_order = "desc", tag_names = "usa", exclude_tag_names = "gnp" ) fredr_category_tags( category_id = 6L, tag_group_id = "src" ) fredr_category_tags( category_id = 1L, search_text = "usa", order_by = "popularity", sort_order = "desc" ) fredr_category_related_tags( category_id = 1L, tag_names = "business;monthly", exclude_tag_names = "rate", order_by = "name" )
Frank.Pareto = function(n,Theta,Alpha1,Alpha2,Gamma1,Gamma2) { if (n < 1 | n != round(n)) {stop("sample size n must be greater than or equal to 1 (integer)")} if (Theta == 0) {stop("Theta cannot be zero")} if (Alpha1 <= 0) {stop("Alpha1 must be positive")} if (Alpha2 <= 0) {stop("Alpha2 must be positive")} if (Gamma1 <= 0) {stop("Gamma1 must be positive")} if (Gamma2 <= 0) {stop("Gamma2 must be positive")} U = runif(n) a = runif(n) V = (-1/Theta)*log(1+a*(exp(-Theta)-1)/(exp(-Theta*U)-a*(exp(-Theta*U)-1))) X = (1/Alpha1)*(U^(-1/Gamma1)-1) Y = (1/Alpha2)*(V^(-1/Gamma2)-1) return(cbind(X,Y)) }
getpxqx <- function(Lx) { px <- Lx[-1] / Lx[-length(Lx)] cbind(x=0:(length(Lx)-2), px=px, qx=1-px) } frac <- function(x) x-floor(x) gettpx <- function(Lx, x, k, fractional=c("linear", "balducci", "constant")) { fractional <- match.arg(fractional, c("linear", "balducci", "constant")) Flinear <- function(k) { pxleft <- Lx[floor(x)+floor(k)+1] / Lx[floor(x)+1] pxright <- Lx[floor(x)+ceiling(k)+1] / Lx[floor(x)+1] pxleft *(1-frac(k)) + frac(k)*pxright } Fbalducci <- function(k) { kpx <- Lx[floor(x)+floor(k)+1] / Lx[floor(x)+1] pxk <- Lx[floor(x)+ceiling(k)+1] / Lx[floor(x)+floor(k)+1] qxk <- 1-pxk kpx* pxk/(1-(1-frac(k))*qxk) } Fconstant <- function(k) { kpx <- Lx[floor(x)+floor(k)+1] / Lx[floor(x)+1] pxk <- Lx[floor(x)+ceiling(k)+1] / Lx[floor(x)+floor(k)+1] kpx * pxk^frac(k) } if(fractional == "linear") res <- sapply(k, Flinear) else if(fractional == "balducci") res <- sapply(k, Fbalducci) else res <- sapply(k, Fconstant) res[k < 0] <- NaN res } gettqx <- function(Lx, x, k, fractional=c("linear", "balducci", "constant")) { 1-gettpx(Lx, x, k, fractional=c("linear", "balducci", "constant")) } getkpxqxk <- function(Lx, x) { matx <- getpxqx(Lx) pxplus <- matx[,"px"][(x+1):length(matx[,"px"])] cbind(k=0:length(pxplus), kpx=c(1, cumprod(pxplus)), qxplusk=c(1-pxplus, 1)) }
download_ionicons <- function(version = "dev"){ if(version == "dev"){ url <- "https://github.com/ionic-team/ionicons/archive/master.zip" } else{ url <- glue("https://github.com/ionic-team/ionicons/archive/{version}.zip") } meta <- jsonlite::read_json("https://raw.githubusercontent.com/ionic-team/ionicons/master/package.json") install_icon_zip( "ionicons", url, c("src", "svg"), meta = list(name = "Ionicons", version = meta$version, licence = meta$license) ) invisible(ionicons) } ionicons <- new_icon_set( "ionicons", function(name){ icon_fn$get(name) } )
test_that("dropFeatures", { fns = getTaskFeatureNames(multiclass.task) task2 = dropFeatures(multiclass.task, fns[1]) expect_equal(length(getTaskFeatureNames(task2)), 3L) })
check_gaps <- function(x){ if (any(has_gaps(x)$.gaps)) { abort(sprintf("%s contains implicit gaps in time. You should check your data and convert implicit gaps into explicit missing values using `tsibble::fill_gaps()` if required.", deparse(substitute(x)))) } } check_regular <- function(x){ if (!is_regular(x)) { abort(sprintf("%s is an irregular time series, which this decomposition does not support. You should consider if your data can be made regular, and use `tsibble::update_tsibble(%s, regular = TRUE)` if appropriate.", deparse(substitute(x)), deparse(substitute(x)))) } } check_ordered <- function(x){ if (!is_ordered(x)) { abort(sprintf("%s is an unordered time series. To use this decomposition, you first must sort the data in time order using `dplyr::arrange(%s, %s)`", deparse(substitute(x)), paste(c(deparse(substitute(x)), key_vars(x)), collapse = ", "), as_string(index(x)))) } } all_tsbl_checks <- function(.data){ check_gaps(.data) check_regular(.data) check_ordered(.data) if(NROW(.data) == 0){ abort("There is no data to decompose. Please provide a dataset with at least one observation.") } }
micombine.cor <- function( mi.res, variables=NULL, conf.level=.95, method="pearson", nested=FALSE, partial=NULL ) { if (class(mi.res)=="data.frame"){ mi.res <- list( mi.res ) } if ( class(mi.res)=="nested.datlist" ){ nested <- TRUE } if (! nested ){ mi.list <- datlist_create(mi.res) } if (nested ){ mi.list <- nested.datlist_create(mi.res) } Nimp <- attr( mi.list, "Nimp") N <- attr( mi.list, "nobs_datasets") vars <- attr(mi.list, "variables") if (is.null(variables)){ variables <- vars } VV <- length(variables) N_partial <- 0 if (!is.null(partial)){ if (! class(partial)=="formula"){ partial <- as.formula( paste0(" ~ ", paste0( partial, collapse="+"))) } } if (is.character(variables)){ if ( ! nested ){ variables <- which( vars %in% variables ) } if ( nested ){ variables <- which( vars %in% variables ) } } dfr <- NULL for ( i in 1:(VV-1) ){ for (j in (i+1):VV){ if (i !=j ){ ii <- variables[i] jj <- variables[j] if ( i !=j){ if ( ! nested ){ cor.ii.jj <- unlist( lapply( mi.list, FUN=function(dat){ dat_ii <- dat[,ii] dat_jj <- dat[,jj] if ( ! is.null(partial) ){ fm <- paste0( "dat_ii ", paste( partial, collapse=" ") ) mod_ii <- stats::lm( as.formula(fm), data=dat ) rii <- resid(mod_ii) mii <- as.numeric(names( mod_ii$residuals)) dat_ii <- NA*dat_ii dat_ii[ mii ] <- rii fm <- paste0( "dat_jj ", paste( partial, collapse=" ") ) mod_jj <- stats::lm( as.formula(fm), data=dat ) rjj <- resid(mod_jj) mjj <- as.numeric(names( mod_jj$residuals)) dat_jj <- NA*dat_jj dat_jj[ mjj ] <- rjj N_partial <- length( coef(mod_jj) ) - 1 } stats::cor( dat_ii, dat_jj, method=method, use="pairwise.complete.obs" ) } ) ) } if ( nested){ cor.ii.jj <- lapply( mi.list, FUN=function(mm){ lapply( mm, FUN=function(dat){ if ( ! is.null(partial) ){ fm <- paste0( "dat_ii ", paste( partial, collapse=" ") ) mod_ii <- stats::lm( as.formula(fm), data=dat ) rii <- resid(mod_ii) mii <- as.numeric(names( mod_ii$residuals)) dat_ii <- NA*dat_ii dat_ii[ mii ] <- rii fm <- paste0( "dat_jj ", paste( partial, collapse=" ") ) mod_jj <- stats::lm( as.formula(fm), data=dat ) rjj <- resid(mod_jj) mjj <- as.numeric(names( mod_jj$residuals)) dat_jj <- NA*dat_jj dat_jj[ mjj ] <- rjj N_partial <- length( coef(mod_jj) ) - 1 } dat_ii <- dat[,ii] dat_jj <- dat[,jj] stats::cor( dat_ii, dat_jj, method=method, use="pairwise.complete.obs") } ) } ) } res.ii.jj <- micombine_cor_compute( cor.list=cor.ii.jj, N=N, conf.level=conf.level, nested=nested, Nimp=Nimp, N_partial=N_partial) dfr <- rbind( dfr, c( ii, jj, res.ii.jj ) ) } } } } dfr1 <- dfr dfr <- rbind( dfr, dfr1[, c(2,1,seq(3,ncol(dfr) )) ] ) dfr <- data.frame( "variable1"=vars[ dfr[,1] ], "variable2"=vars[ dfr[,2] ], dfr[, -c(1:2) ] ) class(dfr) <- "data.frame" m1 <- vector2matrix( index1=dfr$variable1, index2=dfr$variable2, val=dfr$r, empty_val=1 ) attr(dfr,"r_matrix") <- m1 m1 <- vector2matrix( index1=dfr$variable1, index2=dfr$variable2, val=dfr$rse, empty_val=NA ) attr(dfr,"rse_matrix") <- m1 return(dfr) }
library("testthat") library("mgcv") library("gratia") library("gamm4") test_that("difference_smooths() works for a gam model", { expect_silent(ds <- difference_smooths(su_m_factor_by, smooth = "s(x2)")) expect_s3_class(ds, c("difference_smooth", "tbl_df", "tbl", "data.frame")) plt <- draw(ds) expect_doppelganger("draw difference_smooths gam", plt) }) test_that("difference_smooths() works for a gam model fixed scales", { expect_silent(ds <- difference_smooths(su_m_factor_by, smooth = "s(x2)")) expect_s3_class(ds, c("difference_smooth", "tbl_df", "tbl", "data.frame")) plt <- draw(ds, scales = "fixed") expect_doppelganger("draw difference_smooths gam fixed scales", plt) }) test_that("difference_smooths() works for a gam model fixed scales", { expect_silent(ds <- difference_smooths(su_m_factor_by, smooth = "s(x2)")) expect_s3_class(ds, c("difference_smooth", "tbl_df", "tbl", "data.frame")) plt <- draw(ds, ref_line = TRUE) expect_doppelganger("draw difference_smooths gam ref line", plt) }) test_that("difference_smooths() works for a bam model", { skip_on_cran() expect_silent(ds <- difference_smooths(su_m_factor_by_bam, smooth = "s(x2)")) expect_s3_class(ds, c("difference_smooth", "tbl_df", "tbl", "data.frame")) plt <- draw(ds) expect_doppelganger("draw difference_smooths bam", plt) }) test_that("difference_smooths() works for a gamm model", { skip_on_cran() skip_on_os(c("windows", "mac")) expect_silent(ds <- difference_smooths(su_m_factor_by_gamm, smooth = "s(x2)")) expect_s3_class(ds, c("difference_smooth", "tbl_df", "tbl", "data.frame")) plt <- draw(ds) expect_doppelganger("draw difference_smooths gamm", plt) }) test_that("difference_smooths() works for a gamm4 model", { skip_on_cran() skip_on_os(c("windows", "mac")) expect_silent(ds <- difference_smooths(su_m_factor_by_gamm4, smooth = "s(x2)")) expect_s3_class(ds, c("difference_smooth", "tbl_df", "tbl", "data.frame")) plt <- draw(ds) expect_doppelganger("draw difference_smooths gamm4", plt) })
creategrid <- function(dnpoint){ require(tcltk) require(tkrplot) if (is.null(class(dnpoint)) | class(dnpoint) != "dnpoint") { cat("Argument is not of class 'dnpoint' \n") return(invisible()) } nsp <- length(dnpoint$Label) long <- dnpoint$Points[,2] lat <- dnpoint$Points[,3] xlims <- range(long) xlims <- xlims + c(-0.1*diff(xlims), 0.1*diff(xlims)) ylims <- range(lat) ylims <- ylims + c(-0.1*diff(ylims), 0.1*diff(ylims)) origin <- NULL xorvar <- tclVar(round(xlims[1], 3)) yorvar <- tclVar(round(ylims[2], 3)) latres <- longres <- 0 ncols <- tclVar("10") nlins <- tclVar("10") longgr <- tclVar(round(diff(xlims)/10, 3)) latgr <- tclVar(round(diff(ylims)/10, 3)) currentx <- tclVar() currenty <- tclVar() maxrich <- tclVar() gridx <- gridy <- c() modpar <- function(ruta) { options(warn = -1) if(ruta > 0) { n <- as.integer(tclvalue(ncols)) if(is.na(n)) {tclvalue(ncols) <- 1; tkrreplot(img); return()} if(ruta == 1) tclvalue(ncols) <- as.character(aux <- n + 1) if(ruta == 2) tclvalue(ncols) <- as.character(aux <- n - 1) if(ruta == 3) tclvalue(ncols) <- as.character(aux <- n) if(aux < 1) tclvalue(ncols) <- "1" if(aux > 9999) tclvalue(ncols) <- "9999" tkrreplot(img) } if(ruta < 0) { n <- as.integer(tclvalue(nlins)) if(is.na(n)) {tclvalue(nlins) <- 1; tkrreplot(img); return()} if(ruta == -1) tclvalue(nlins) <- as.character(aux <- n + 1) if(ruta == -2) tclvalue(nlins) <- as.character(aux <- n - 1) if(ruta == -3) tclvalue(nlins) <- as.character(aux <- n) if(aux < 1) tclvalue(nlins) <- "1" if(aux > 9999) tclvalue(nlins) <- "9999" tkrreplot(img) } } curpos <- function (x, y) { x <- as.numeric(x) y <- as.numeric(y) width <- as.numeric(tclvalue(tkwinfo("reqwidth",img))) height <- as.numeric(tclvalue(tkwinfo("reqheight",img))) if(any(c(x < 0, x > width, y < 0, y > height))) {return()} rangeX <- diff(range(gridx)) rangeY <- diff(range(gridy)) auxx <- x/width nx <- gridx[1] + auxx*rangeX auxy <- y/height ny <- gridy[1] - auxy*rangeY return(c(nx, ny)) } drawgrid <- function() { gridx <<- seq(xlims[1], xlims[2], length.out = as.integer(tclvalue(ncols)) + 1) gridy <<- seq(ylims[2], ylims[1], length.out = as.integer(tclvalue(nlins)) + 1) tclvalue(latgr) <<- as.character(round(diff(ylims)/as.integer(tclvalue(nlins)), 3)) tclvalue(longgr) <<- as.character(round(diff(xlims)/as.integer(tclvalue(ncols)), 3)) par(bg = "cyan") plot.new() par(plt = c(0,1,0,1)) par(usr = c(xlims, ylims)) points(long, lat, pch = 19, xlab = "", ylab = "", col = "red") abline(v = gridx, h = gridy) if(!is.null(origin)) abline(v = origin[1], h = origin[2], col = 3, lwd = 2) } movegrid <- function(x, y) { origin <<- c(x, y) tclvalue(xorvar) <<- as.character(round(x, 3)) tclvalue(yorvar) <<- as.character(round(y, 3)) tkrreplot(img) } fixnewor <- function() { if(is.na(as.numeric(tclvalue(xorvar)))) { tkmessageBox(message= "Your NW_corner (x) is ambiguous. Previous value recovered", icon="warning") tclvalue(xorvar) <<- as.character(round(xlims[1], 3)) } if(is.na(as.numeric(tclvalue(yorvar)))) { tkmessageBox(message= "Your NW_corner (y) is ambiguous. Previous value recovered", icon="warning") tclvalue(yorvar) <<- as.character(round(ylims[2], 3)) } auxx <- as.numeric(tclvalue(xorvar)) auxy <- as.numeric(tclvalue(yorvar)) if(auxx > max(long)) { tkmessageBox(message= "Your NW_corner is beyond the right limit of data. Previous value recovered", icon="warning") tclvalue(xorvar) <<- as.character(round(xlims[1], 3)) } if(auxy < min(lat)) { tkmessageBox(message= "Your NW_corner is below the bottom of data. Previous value recovered", icon="warning") tclvalue(yorvar) <<- as.character(round(ylims[2], 3)) } xlims[1] <<- round(as.numeric(tclvalue(xorvar)), 3) ylims[2] <<- round(as.numeric(tclvalue(yorvar)), 3) origin <<- NULL tkrreplot(img) } changecell <- function(ruta) { options(warn = -1) if(ruta == 1) { celh <- as.numeric(tclvalue(longgr)) if(is.na(celh)) {modpar(3); return()} if(celh < (aux <- max(long) - xlims[1])) { p <- ceiling(aux/celh) xlims[2] <<- xlims[1] + p*celh tclvalue(ncols) <<- as.character(p) longres <<- celh } modpar(3) } if(ruta == 2) { celv <- as.numeric(tclvalue(latgr)) if(is.na(celv)) {modpar(-3); return()} if(celv < (aux <- ylims[2] - min(lat))) { p <- ceiling(aux/celv) ylims[1] <<- ylims[2] - p*celv tclvalue(nlins) <<- as.character(p) latres <<- celv } modpar(-3) } } modalDialog <- function(title, question, entryInit, entryWidth = 20, returnValOnCancel = "ID_CANCEL") { dlg <- tktoplevel() tkwm.deiconify(dlg) tkgrab.set(dlg) tkfocus(dlg) tkwm.title(dlg, title) textEntryVarTcl <- tclVar(paste(entryInit)) textEntryWidget <- tkentry(dlg, width = paste(entryWidth), textvariable = textEntryVarTcl) tkgrid(tklabel(dlg, text = " ")) tkgrid(tklabel(dlg, text = question), textEntryWidget) tkgrid(tklabel(dlg, text = " ")) ReturnVal <- returnValOnCancel onOK <- function() { ReturnVal <<- tclvalue(textEntryVarTcl) tkgrab.release(dlg) tkdestroy(dlg) tkfocus(tt) } onCancel <- function() { ReturnVal <<- returnValOnCancel tkgrab.release(dlg) tkdestroy(dlg) tkfocus(tt) } OK.but <- tkbutton(dlg, text = " OK ", command = onOK) Cancel.but <- tkbutton(dlg, text = " Cancel ", command = onCancel) tkgrid(OK.but, Cancel.but) tkgrid(tklabel(dlg, text = " ")) tkfocus(dlg) tkbind(dlg, "<Destroy>", function() {tkgrab.release(dlg); tkfocus(tt)}) tkbind(textEntryWidget, "<Return>", onOK) tkwait.window(dlg) return(ReturnVal) } outtable <- function() { ngrx <- as.integer(tclvalue(ncols)) ngry <- as.integer(tclvalue(nlins)) if(diff(xlims) > 0) gridx <- seq(xlims[1], xlims[2], length.out = ngrx + 1) else gridx <- xlims + c(-1, 1) if(diff(ylims) > 0) gridy <- seq(ylims[2], ylims[1], length.out = ngry + 1) else gridy <- ylims + c(1, -1) difx <- diff(gridx) dify <- diff(gridy) cornersi <- expand.grid(1:ngrx, 1:ngry) dntable <- matrix(0, nrow = nsp, ncol = nrow(cornersi)) rownames(dntable) <- dnpoint$Label for(pts in 1:length(long)) { auxx <- long[pts] - gridx auxy <- lat[pts] - gridy celx <- which(diff((auxx > 0) + 2*(auxx < 0))!=0) cely <- which(diff((auxy > 0) + 2*(auxy < 0))!=0) celocc <- celx[1] + (cely - 1)*ngrx if(length(celx) == 2) celocc <- c(celocc, celx[2] + (cely - 1)*ngrx) dntable[dnpoint$Points[pts, 1],celocc] <- 1 } sel <- which(apply(dntable, 2, sum)>0) cornersi[sel,1]-> xleft cornersi[sel,2] + 1 -> ybottom cornersi[sel, 1] + 1 -> xright cornersi[sel,2] -> ytop outobj <- list(dntable = dntable[, sel, drop = FALSE], xleft = xleft, ybottom = ybottom, xright = xright, ytop = ytop, ncells = c(ngrx, ngry)) return(outobj) } launchout <- function() { ReturnVal <- modalDialog("Save data into an object", "Enter the variable name", "outgr") if (ReturnVal == "ID_CANCEL") return() out <- outtable() outobj <- data.frame(rbind(colid = out$xleft, rowid = out$ytop, out$dntable)) assign(ReturnVal, outobj, envir = .GlobalEnv) tkmessageBox(title = "Out", message = paste("The object ", ReturnVal, "holds your grid data")) } drawrich <- function(occmap){ gridx <- seq(xlims[1], xlims[2], length.out = as.integer(tclvalue(ncols)) + 1) gridy <- seq(ylims[2], ylims[1], length.out = as.integer(tclvalue(nlins)) + 1) par(bg = "white") plot.new() par(plt = c(0,1,0,1)) par(usr = c(xlims, ylims)) totrich <- apply(occmap$dntable, 2, sum) rel <- totrich/max(totrich) tclvalue(maxrich) <<- max(totrich) rect(gridx[occmap$xleft], gridy[occmap$ybottom], gridx[occmap$xright], gridy[occmap$ytop], col = gray(1- rel)) abline(v = gridx, h = gridy, col = 2) } constructpdf <- function(){ filename <- tclvalue(tkgetSaveFile(initialfile = "Rplots.pdf", defaultextension = ".pdf", title = "Save graph...", filetypes = "{PDF {.pdf}} {{All Files} {*.*}}")) if (filename != "") pdf(file = filename) else { tkrreplot(richplot); return()} outdn <- outtable() plot(rep(1, 4), 1:4, type = "n", xlab = "", ylab = "", axes = FALSE, main = "MAP OF OCCUPIED CELLS") text(1, 1, paste("Grid of ", tclvalue(ncols), "cols and ", tclvalue(nlins), "rows")) text(1, 2, paste("Northwest corner at: (", tclvalue(xorvar), ", ", tclvalue(yorvar), ")")) text(1, 3, paste("Cell Width = ", tclvalue(longgr), "units and Cell Height = ", tclvalue(latgr), "units")) text(1, 4, paste("Gray tones proportional to richness by cell\nHighest richness (black cell[s]) = ", tclvalue(maxrich))) drawrich(outdn) dev.off() } tt<-tktoplevel() tkwm.title(tt, "Grid creator") leftframe <- tkframe(tt, relief = "groove", borderwidth = 2) rightframe <- tkframe(tt, relief = "groove", borderwidth = 2) gridframe <- tkframe(leftframe, relief = "groove", borderwidth = 2) outputframe <- tkframe(leftframe, relief = "groove", borderwidth = 2) plotframe <- tkframe(leftframe) cols <- tkentry(gridframe, width="6", textvariable = ncols) lins <- tkentry(gridframe, width="6", textvariable = nlins) xorigen <- tkentry(gridframe, width = "6", textvariable = xorvar) yorigen <- tkentry(gridframe, width = "6", textvariable = yorvar) xsize <- tkentry(gridframe, width="6", textvariable = longgr) ysize <- tkentry(gridframe, width="6", textvariable = latgr) addcol <- tkbutton(gridframe, text = "+", command = function(...) modpar(1)) subtractcol <- tkbutton(gridframe, text = "-", command = function(...) modpar(2)) addlin <- tkbutton(gridframe, text = "+", command = function(...) modpar(-1)) subtractlin <- tkbutton(gridframe, text = "-", command = function(...) modpar(-2)) img <- tkrplot(plotframe, fun = drawgrid, hscale=1.5,vscale=1.5) richplot <- tkrplot(rightframe, function() drawrich(outtable()), hscale=1.2,vscale=1.2) outButton <- tkbutton(outputframe, text = "Create object", command = launchout) refreshButton <- tkbutton(outputframe, text = "Full extent", command = function(){xlims <<- range(long) xlims <<- xlims + c(-0.1*diff(xlims), 0.1*diff(xlims)) ylims <<- range(lat) ylims <<- ylims + c(-0.1*diff(ylims), 0.1*diff(ylims)) tclvalue(xorvar) <<- as.character(round(xlims[1],3)) tclvalue(yorvar) <<- as.character(round(ylims[2], 3)) tkrreplot(img) }) richButton <- tkbutton(rightframe, text = "Refresh richness map", command = function() tkrreplot(richplot)) pdfButton <- tkbutton(rightframe, text = " Save pdf report ", command = function() {tkrreplot(richplot); constructpdf()}) clipButton <- tkbutton(outputframe, text = "Copy to clipboard", command = function() tkrreplot(img)) xpos <- tklabel(outputframe, textvariable = currentx) ypos <- tklabel(outputframe, textvariable = currenty) mrich <- tklabel(rightframe, textvariable = maxrich, font = 13) tkgrid(tklabel(gridframe, text = "GRID PARAMETERS", font = "Times 14", foreground = "blue"), columnspan = 4) tkgrid(tklabel(gridframe, text = " tkgrid(tklabel(gridframe, text = " tkgrid.configure(subtractlin,sticky="e", ipadx = 4) tkgrid.configure(addlin,sticky="w", ipadx = 2) tkgrid.configure(subtractcol,sticky="e", ipadx = 4) tkgrid.configure(addcol,sticky="w", ipadx = 2) tkgrid(tklabel(gridframe, text = "Cell Size"), columnspan = 4) tkgrid(tklabel(gridframe, text = "width ="), xsize, tklabel(gridframe, text = "height ="), ysize) tkgrid(tklabel(gridframe, text = "NW Corner"), columnspan = 4) tkgrid(tklabel(gridframe, text = " x ="), xorigen, tklabel(gridframe, text = " y ="), yorigen) tkgrid(tklabel(outputframe, text = "GENERAL ACTIONS", font = "Times 14", foreground = "blue"), columnspan = 2) tkgrid(outButton, columnspan = 2) tkgrid(refreshButton, columnspan = 2) tkgrid(clipButton, columnspan = 2) tkgrid(tklabel(outputframe, text = "Current Position (x, y)", font = "Times 12"), columnspan = 2) tkgrid(xpos, ypos) tkgrid(gridframe,outputframe) tkgrid(img) tkgrid(plotframe, columnspan = 2) tkgrid(tklabel(rightframe, text = "OUTPUT DETAILS", font = "Times 14", foreground = "blue")) tkgrid(richButton) tkgrid(pdfButton) tkgrid(tklabel(rightframe, text = "")) tkgrid(richplot) tkgrid(tklabel(rightframe, text = "Maximum recorded richness (black cells)", font = 13)) tkgrid(mrich) tkgrid(leftframe, rightframe) tkbind(img, "<B1-Motion>", function(x, y) { aa <- curpos(x, y) if(!is.null(aa)) movegrid(aa[1], aa[2])}) tkbind(img, "<ButtonRelease-1>", fixnewor) tkbind(img, "<Motion>", function(x, y) { aa <- curpos(x, y) tclvalue(currentx) <<- round(aa[1], 3) tclvalue(currenty) <<- round(aa[2], 3)}) tkbind(img, "<Leave>", function() {tclvalue(currentx) <<- ""; tclvalue(currenty) <<- ""}) tkbind(cols, "<KeyPress-Return>", function() {modpar(3); tkfocus(lins)}) tkbind(lins, "<KeyPress-Return>", function() {modpar(-3); tkfocus(cols)}) tkbind(cols, "<FocusOut>", function() modpar(3)) tkbind(lins, "<FocusOut>", function() modpar(-3)) tkbind(xsize, "<KeyPress-Return>", function() {changecell(1); tkfocus(ysize)}) tkbind(ysize, "<KeyPress-Return>", function() {changecell(2); tkfocus(xsize)}) tkbind(xsize, "<FocusOut>", function() changecell(1)) tkbind(ysize, "<FocusOut>", function() changecell(2)) tkbind(xorigen, "<KeyPress-Return>", function() {fixnewor(); tkfocus(yorigen)}) tkbind(yorigen, "<KeyPress-Return>", function() {fixnewor(); tkfocus(xorigen)}) tkbind(xorigen, "<FocusOut>", fixnewor) tkbind(yorigen, "<FocusOut>", fixnewor) }
library(plotmo) library(earth) data(ozone1) library(randomForest) oz <- ozone1[, c("O3", "humidity", "temp")] set.seed(2018) rf.mod <- randomForest(O3 ~ ., data=oz)
safely_select_variables <- function(safe_extractor, data, y = NULL, which_y = NULL, class_pred = NULL, verbose = TRUE) { if (class(safe_extractor) != "safe_extractor") { stop(paste0("No applicable method for 'safely_select_variables' applied to an object of class '", class(safe_extractor), "'.")) } if (is.null(data)) { stop("No data provided!") } if (is.null(y) & is.null(which_y)) { stop("Specify either y or which_y argument!") } if (! is.null(which_y)) { y <- tryCatch( { data[,which_y] }, error = function(cond) { stop("The 'y' variable is not in the dataset!") message(cond) } ) if (is.character(which_y)) { data <- data[, colnames(data) != which_y] data <- data[, colnames(data) != paste0(which_y, "_new")] } else { data <- data[, -which_y] } } if (is.factor(y)) { if (! is.null(class_pred)) { if (is.character(class_pred)) { if (! class_pred %in% levels(y)) { cat("There is no such a level in response vector! Using first level instead.\n") class_pred <- levels(y)[1] } } else { if (! class_pred %in% 1:length(levels(y))) { cat("There is no such a level in response vector! Using first level instead.\n") class_pred <- levels(y)[1] } } } else { class_pred <- levels(y)[1] } } term_names <- names(safe_extractor$variables_info) term_names <- term_names[term_names != which_y] term_names_new <- sapply(term_names, function(x) paste0(x, "_new")) term_names_new_present <- intersect(colnames(data), term_names_new) if (length(term_names_new_present) == 0) { data <- safely_transform_data(safe_extractor, data, verbose = FALSE) term_names_new_present <- intersect(colnames(data), term_names_new) } var_best <- term_names if (verbose == TRUE) { pb <- txtProgressBar(min = 0, max = length(term_names), style = 3) } if (is.factor(y)) { for (var_temp in term_names) { if (paste0(var_temp, "_new") %in% colnames(data)) { var_checked <- c(setdiff(var_best, var_temp), paste0(var_temp, "_new")) model_best <- glm((y == class_pred) ~ ., data = as.data.frame(data[, var_best]), family = binomial(link = 'logit')) model_checked <- glm((y == class_pred) ~ ., data = as.data.frame(data[, var_checked]), family = binomial(link = 'logit')) if (AIC(model_checked) < AIC(model_best)) { var_best <- var_checked } } if (verbose == TRUE) { setTxtProgressBar(pb, which(term_names == var_temp)) } } } else { for (var_temp in term_names) { if (paste0(var_temp, "_new") %in% colnames(data)) { var_checked <- c(setdiff(var_best, var_temp), paste0(var_temp, "_new")) model_best <- lm(y ~ ., data = as.data.frame(data[, var_best])) model_checked <- lm(y ~ ., data = as.data.frame(data[, var_checked])) if (AIC(model_checked) < AIC(model_best)) { var_best <- var_checked } } if (verbose == TRUE) { setTxtProgressBar(pb, which(term_names == var_temp)) } } } if (verbose == TRUE) { close(pb) } return(var_best) }
shrinkDSM <- function(formula, data, mod_type = "double", delta, S, group, subset, niter = 10000, nburn = round(niter/2), nthin = 1, learn_a_xi = TRUE, learn_a_tau = TRUE, a_xi = 0.1, a_tau = 0.1, learn_c_xi = TRUE, learn_c_tau = TRUE, c_xi = 0.1, c_tau = 0.1, a_eq_c_xi = FALSE, a_eq_c_tau = FALSE, learn_kappa2_B = TRUE, learn_lambda2_B = TRUE, kappa2_B = 20, lambda2_B = 20, hyperprior_param, sv_param, MH_tuning, display_progress = TRUE){ assert(missing(group) || length(group) == nrow(data), "Grouping indicator, group, has to be omitted or the same length as data") assert(length(delta) == nrow(data), "Status indicator, delta, has to be the same length as data") mf <- match.call(expand.dots = FALSE) m <- match(x = c("formula", "data", "subset"), table = names(mf), nomatch = 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- quote(stats::model.frame) mf <- eval(expr = mf, envir = parent.frame()) for(name in names(mf)){ assert(!any(class(mf[[name]]) %in% c("POSIXct", "POSIXt","Date")), "No date variables allowed as predictors") } y <- model.response(mf, "numeric") mt <- attr(x = mf, which = "terms") z <- model.matrix(object = mt, data = mf) colnames(z)[colnames(z) == "(Intercept)"] <- "Intercept" assert(!any(is.na(y)), "No NA values are allowed in survival time") assert(all(y>0), "Survival times must be positive. Zeros are not allowed.") assert(!any(is.na(z)), "No NA values are allowed in covariates") assert(mod_type %in% c("double", "triple", "ridge"), "Allowed model types are: ridge, double, and triple") default_hyper <- list(c0 = 2.5, g0 = 5, G0 = 5 / (2.5 - 1), e1 = 0.001, e2 = 0.001, d1 = 0.001, d2 = 0.001, beta_a_xi = 10, beta_a_tau = 10, alpha_a_xi = 5, alpha_a_tau = 5, beta_c_xi = 2, beta_c_tau = 2, alpha_c_xi = 5, alpha_c_tau = 5) if (!missing(group)) { group <- checkvalues(group) default_hyper$sigma2_phi <- rep(1, length(unique(group$values))) } else { group_sort <- c(0) default_hyper$sigma2_phi <- c(0) } default_hyper_sv <- list(Bsigma_sv = 1, a0_sv = 5, b0_sv = 1.5) default_tuning_par <- list(a_xi_adaptive = TRUE, a_xi_tuning_par = 1, a_xi_target_rate = 0.44, a_xi_max_adapt = 0.01, a_xi_batch_size = 50, a_tau_adaptive = TRUE, a_tau_tuning_par = 1, a_tau_target_rate = 0.44, a_tau_max_adapt = 0.01, a_tau_batch_size = 50, c_xi_adaptive = TRUE, c_xi_tuning_par = 1, c_xi_target_rate = 0.44, c_xi_max_adapt = 0.01, c_xi_batch_size = 50, c_tau_adaptive = TRUE, c_tau_tuning_par = 1, c_tau_target_rate = 0.44, c_tau_max_adapt = 0.01, c_tau_batch_size = 50) if (missing(hyperprior_param)) { hyperprior_param <- default_hyper } else { hyperprior_param <- list_merger(default_hyper, hyperprior_param) } if (missing(sv_param)) { sv_param <- default_hyper_sv } else { sv_param <- list_merger(default_hyper_sv, sv_param) } if (missing(MH_tuning)) { MH_tuning <- default_tuning_par } else { MH_tuning <- list_merger(default_tuning_par, MH_tuning) } to_test_num <- list(lambda2_B = lambda2_B, kappa2_B = kappa2_B, a_xi = a_xi, a_tau = a_tau, c_xi = c_xi, c_tau = c_tau) if(!missing(group)) { cond = length(hyperprior_param$sigma2_phi) == length(unique(group$values)) && all(!sapply(hyperprior_param$sigma2_phi, numeric_input_bad)) assert(cond, "all elements of sigma2_phi have to be positive real numbers")} if (missing(hyperprior_param) == FALSE){ to_test_num <- c(to_test_num, hyperprior_param[names(hyperprior_param) != "sigma2_phi"]) } if (missing(sv_param) == FALSE){ to_test_num <- c(to_test_num, sv_param) } if (missing(MH_tuning) == FALSE){ to_test_num <- c(to_test_num, MH_tuning[!grepl("(batch|adaptive)", names(MH_tuning))]) } bad_inp <- sapply(to_test_num, numeric_input_bad) if (any(bad_inp)){ stand_names <- c(names(default_hyper), names(default_hyper_sv), "lambda2_B", "kappa2_B", "a_xi", "a_tau", "c_xi", "c_tau") bad_inp_names <- names(to_test_num)[bad_inp] bad_inp_names <- bad_inp_names[bad_inp_names %in% stand_names] stop(paste0(paste(bad_inp_names, collapse = ", "), ifelse(length(bad_inp_names) == 1, " has", " have"), " to be a real, positive number")) } if (any(0 > MH_tuning[grepl("rate", names(MH_tuning))] | MH_tuning[grepl("rate", names(MH_tuning))] > 1)) { stop("all target_rate parameters in MH_tuning have to be > 0 and < 1") } to_test_int <- c(niter = niter, nburn = nburn, nthin = nthin, MH_tuning[grepl("batch", names(MH_tuning))]) bad_int_inp <- sapply(to_test_int, int_input_bad) if (any(bad_int_inp)){ bad_inp_names <- names(to_test_int)[bad_int_inp] stop(paste0(paste(bad_inp_names, collapse = ", "), ifelse(length(bad_inp_names) == 1, " has", " have"), " to be a single, positive integer")) } if ((niter - nburn) < 2){ stop("niter has to be larger than or equal to nburn + 2") } if (nthin == 0){ stop("nthin can not be 0") } if ((niter - nburn)/2 < nthin){ stop("nthin can not be larger than (niter - nburn)/2") } to_test_bool <- c(learn_lambda2_B = learn_lambda2_B, learn_kappa2_B = learn_kappa2_B, learn_a_xi = learn_a_xi, learn_a_tau = learn_a_tau, display_progress = display_progress, MH_tuning[grepl("adaptive", names(MH_tuning))]) bad_bool_inp <- sapply(to_test_bool, bool_input_bad) if (any(bad_bool_inp)){ bad_inp_names <- names(to_test_bool)[bad_bool_inp] stop(paste0(paste(bad_inp_names, collapse = ", "), ifelse(length(bad_inp_names) == 1, " has", " have"), " to be a single logical value")) } if (inherits(formula, "formula") == FALSE){ stop("formula is not of class formula") } d <- ncol(z) if (!is.null(colnames(z))){ col_names <- colnames(z) } else { col_names <- as.character(1:d) } order <- order(y, decreasing = TRUE) y_sort <- y[order] z_sort <- z[order, ] if(!missing(group)){ group_sort <- group$values[order] } if(2 %in% delta){delta <- delta - 1} assert(all(delta %in% c(0,1)), "delta must contain only 0/1, 1/2, or TRUE/FALSE") z_sort <- as.matrix(z_sort) delta_sort <- as.matrix(as.integer(delta[order])) runtime <- system.time({ res <- do_shrinkDSM(y_sort, z_sort, mod_type, delta_sort, S, group_sort, niter, nburn, nthin, hyperprior_param$d1, hyperprior_param$d2, hyperprior_param$e1, hyperprior_param$e2, hyperprior_param$sigma2_phi, learn_lambda2_B, learn_kappa2_B, lambda2_B, kappa2_B, learn_a_xi, learn_a_tau, a_xi, a_tau, learn_c_xi, learn_c_tau, c_xi, c_tau, a_eq_c_xi, a_eq_c_tau, MH_tuning$a_xi_tuning_par, MH_tuning$a_tau_tuning_par, MH_tuning$c_xi_tuning_par, MH_tuning$c_tau_tuning_par, hyperprior_param$beta_a_xi, hyperprior_param$beta_a_tau, hyperprior_param$alpha_a_xi, hyperprior_param$alpha_a_tau, hyperprior_param$beta_c_xi, hyperprior_param$beta_c_tau, hyperprior_param$alpha_c_xi, hyperprior_param$alpha_c_tau, sv_param$Bsigma_sv, sv_param$a0_sv, sv_param$b0_sv, display_progress, unlist(MH_tuning[grep("adaptive", names(MH_tuning))]), unlist(MH_tuning[grep("target", names(MH_tuning))]), unlist(MH_tuning[grep("max", names(MH_tuning))]), unlist(MH_tuning[grep("size", names(MH_tuning))])) }) if(display_progress == TRUE){ cat("Timing (elapsed): ", file=stderr()) cat(runtime["elapsed"], file=stderr()) cat(" seconds.\n", file=stderr()) cat(round((niter + nburn)/runtime[3]), "iterations per second.\n\n", file=stderr()) cat("Converting results to coda objects and summarizing draws... ", file=stderr()) } res[sapply(res, function(x) 0 %in% dim(x))] <- NULL res$MH_diag[sapply(res$MH_diag, function(x) 0 %in% dim(x))] <- NULL res$priorvals <- c(hyperprior_param, sv_param, a_xi = a_xi, a_tau = a_tau, lambda2_B = lambda2_B, kappa2_B = kappa2_B) res[["model"]] <- list() res$model$z <- z res$model$y <- y res$model$formula <- formula res$model$xlevels <- .getXlevels(mt, mf) res$model$terms <- mt res$model$model <- mf nsave <- floor((niter - nburn)/nthin) for (i in names(res)){ attr(res[[i]], "type") <- ifelse(nsave %in% dim(res[[i]]), "sample", "stat") if (attr(res[[i]], "type") == "sample"){ if (i == "phi"){ colnames(res[[i]]) <- paste0(i, unique(group_sort)) } else if (dim(res[[i]])[2] == d){ colnames(res[[i]]) <- paste0(i, "_", col_names) } else if (dim(res[[i]])[2] == 2 * d) { colnames(res[[i]]) <- paste0(i, "_", rep(col_names, 2)) } else { colnames(res[[i]]) <- i } } if (attr(res[[i]], "type") == "sample"){ if (is.na(dim(res[[i]])[3]) == FALSE){ dat <- res[[i]] res[[i]] <- list() for (j in 1:dim(dat)[2]){ res[[i]][[j]] <- as.mcmc(t(dat[, j, ]), start = niter - nburn, end = niter, thin = nthin) colnames(res[[i]][[j]]) <- paste0(i, "_", j, "_", 1:ncol(res[[i]][[j]])) class(res[[i]][[j]]) <- c("mcmc.dsm.tvp", "mcmc") attr(res[[i]][[j]], "S") <- S attr(res[[i]][[j]], "lastsurvtime") <- max(res$model$y) attr(res[[i]][[j]], "type") <- "sample" } if (length(res[[i]]) == 1){ res[[i]] <- res[[i]][[j]] } attr(res[[i]], "type") <- "sample" if (dim(dat)[2] > 1){ names(res[[i]]) <- colnames(dat) } } else { res[[i]] <- as.mcmc(res[[i]], start = niter - nburn, end = niter, thin = nthin) } } if (is.list(res[[i]]) == FALSE & attr(res[[i]], "type") == "sample") { if (i != "theta_sr" & i != "beta") { res$summaries[[i]] <- t(apply(res[[i]], 2, function(x){ obj <- as.mcmc(x, start = niter - nburn, end = niter, thin = nthin) ESS <- tryCatch(coda::effectiveSize(obj), error = function(err) { warning("Calculation of effective sample size failed for one or more variable(s). This can happen if the prior placed on the model induces extreme shrinkage.") return(NA) }, silent = TRUE) return(c("mean" = mean(obj), "sd" = sd(obj), "median" = median(obj), "HPD" = HPDinterval(obj)[c(1, 2)], "ESS" = round(ESS))) })) } else if (i == "theta_sr") { res$summaries[[i]] <- t(apply(res[[i]], 2, function(x){ obj <- as.mcmc(abs(x), start = niter - nburn, end = niter, thin = nthin) ESS <- tryCatch(coda::effectiveSize(obj), error = function(err) { warning("Calculation of effective sample size failed for one or more variable(s). This can happen if the prior placed on the model induces extreme shrinkage.") return(NA) }, silent = TRUE) return(c("mean" = mean(obj), "sd" = sd(obj), "median" = median(obj), "HPD" = HPDinterval(obj)[c(1, 2)], "ESS" = round(ESS))) })) } } } if (display_progress == TRUE) { cat("Done!\n", file = stderr()) } attr(res, "class") <- "shrinkDSM" attr(res, "S") <- S attr(res, "lastsurvtime") <- max(res$model$y) if (!missing(group)) { attr(res, "group") <- group } attr(res, "learn_a_xi") <- learn_a_xi attr(res, "learn_a_tau") <- learn_a_tau attr(res, "learn_kappa2_B") <- learn_kappa2_B attr(res, "learn_lambda2_B") <- learn_lambda2_B attr(res, "niter") <- niter attr(res, "nburn") <- nburn attr(res, "nthin") <- nthin attr(res, "colnames") <- col_names return(res) }
tam_dtnorm <- function(x, mean=0, sd=1, lower=-Inf, upper=Inf, log=FALSE) { ret <- numeric(length(x)) ret[x < lower | x > upper] <- if (log) { -Inf } else { 0 } ret[upper < lower] <- NaN ind <- x >=lower & x <=upper if (any(ind)) { denom <- stats::pnorm(q=upper, mean=mean, sd=sd) - stats::pnorm(q=lower, mean=mean, sd=sd) xtmp <- stats::dnorm(x=x, mean=mean, sd=sd, log=log) if (log) xtmp <- xtmp - log(denom) else xtmp <- xtmp/denom ret[x >=lower & x <=upper] <- xtmp[ind] } return(ret) }
set_linkingInfo.l_serialaxes <- function(loon.grob, output.grob, linkedInfo, linkedStates, tabPanelName, order, loonWidgetsInfo, ...) { if(length(linkedStates) > 0) { loon.grob_showArea <- get_showArea(loon.grob) output.grob_showArea <- get_showArea(output.grob) color <- if("color" %in% linkedStates) { linkedColor <- linkedInfo$color[order] NAid <- is.na(linkedColor) if(any(NAid)) { linkedColor[NAid] <- loonWidgetsInfo$color[NAid] linkedColor } else linkedColor } else loonWidgetsInfo$color selected <- if("selected" %in% linkedStates) { linkedselected <- linkedInfo$selected[order] NAid <- is.na(linkedselected) if(any(NAid)) { linkedselected[NAid] <- loonWidgetsInfo$selected[NAid] linkedselected } else linkedselected } else loonWidgetsInfo$selected active <- if("active" %in% linkedStates) { linkedactive <- linkedInfo$active[order] NAid <- is.na(linkedactive) if(any(NAid)) { linkedactive[NAid] <- loonWidgetsInfo$active[NAid] linkedactive } else linkedactive } else loonWidgetsInfo$active size <- if("size" %in% linkedStates) { linkedsize <- linkedInfo$size[order] NAid <- is.na(linkedsize) if(any(NAid)) { linkedsize[NAid] <- loonWidgetsInfo$size[NAid] linkedsize } else linkedsize } else loonWidgetsInfo$size loon.grob_axesGpath <- if(get_axesLayout(loon.grob) == "parallel") "parallelAxes" else "radialAxes" output.grob_axesGpath <- if(get_axesLayout(output.grob) == "parallel") "parallelAxes" else "radialAxes" new.loon.grob <- grid::getGrob(loon.grob, loon.grob_axesGpath) new.output.grob <- grid::getGrob(output.grob, output.grob_axesGpath) lapply(seq(loonWidgetsInfo$N), function(i) { loon.grobi <- new.loon.grob$children[[i]] output.grobi <- new.output.grob$children[[i]] if("color" %in% linkedStates & !is.null(color)) { grobi_color <- color[i] } else { grobi_color <- if(loon.grob_showArea) { loon.grobi$gp$fill } else loon.grobi$gp$col } grobi_size <- if("size" %in% linkedStates & !is.null(size)) { size[i] } else { loon.grobi$gp$lwd } loon.grobi <- grid::editGrob( grob = loon.grobi, gp = if(loon.grob_showArea) { gpar(fill = grobi_color, col = NA) } else { gpar(col = grobi_color, lwd = grobi_size) } ) output.grobi <- grid::editGrob( grob = output.grobi, gp = if(output.grob_showArea) { gpar(fill = grobi_color, col = NA) } else { gpar(col = grobi_color, lwd = grobi_size) } ) if("active" %in% linkedStates) { loon.grobi <- if(!active[i]) { do.call(grob, getGrobArgs(loon.grobi)) } else { if(loon.grob_showArea) { do.call(grid::polygonGrob, getGrobArgs(loon.grobi)) } else { do.call(grid::linesGrob, getGrobArgs(loon.grobi)) } } output.grobi <- if(!active[i]) { do.call(grob, getGrobArgs(output.grobi)) } else { if(output.grob_showArea) { do.call(grid::polygonGrob, getGrobArgs(output.grobi)) } else { do.call(grid::linesGrob, getGrobArgs(output.grobi)) } } } new.loon.grob$children[[i]] <<- loon.grobi new.output.grob$children[[i]] <<- if("selected" %in% linkedStates & selected[i]) { grid::editGrob( grob = output.grobi, gp = if(output.grob_showArea) { gpar(fill = select_color(), col = NA) } else { gpar(col = select_color(), lwd = grobi_size) } ) } else output.grobi } ) loon.grob <- grid::setGrob( gTree = loon.grob, gPath = loon.grob_axesGpath, newGrob = new.loon.grob ) output.grob <- grid::setGrob( gTree = output.grob, gPath = output.grob_axesGpath, newGrob = new.output.grob ) output.grob <- reorder_grob(output.grob, index = which(selected), axesGpath = output.grob_axesGpath) loonWidgetsInfo$color <- color loonWidgetsInfo$size <- size loonWidgetsInfo$selected <- selected loonWidgetsInfo$active <- active } list( output.grob = output.grob, loon.grob = loon.grob, loonWidgetsInfo = loonWidgetsInfo ) }
huff.attrac <- function (huffdataset, origins, locations, attrac, dist, lambda = -2, dtype= "pow", lambda2 = NULL, localmarket_dataset, origin_id, localmarket, location_dataset, location_id, location_total, tolerance = 5, output = "matrix", show_proc = FALSE, check_df = TRUE) { if (check_df == TRUE) { if (exists(as.character(substitute(huffdataset)))) { checkdf(huffdataset, origins, locations, attrac, dist) } else { stop(paste("Dataset", as.character(substitute(huffdataset))), " not found", call. = FALSE) } if (exists(as.character(substitute(localmarket_dataset)))) { checkdf(localmarket_dataset, origin_id, localmarket) } else { stop(paste("Dataset", as.character(substitute(localmarket_dataset))), " not found", call. = FALSE) } if (exists(as.character(substitute(location_dataset)))) { checkdf(location_dataset, location_id, location_total) } else { stop(paste("Dataset", as.character(substitute(location_dataset))), " not found", call. = FALSE) } } sort_i_j <- order(huffdataset[[origins]], huffdataset[[locations]]) huffworkfile <- huffdataset[sort_i_j,] origins_single <- levels(as.factor(as.character(huffdataset[[origins]]))) origins_count <- nlevels(as.factor(as.character(huffdataset[[origins]]))) locations_single <- levels(as.factor(as.character(huffdataset[[locations]]))) locations_count <- nlevels(as.factor(as.character(huffdataset[[locations]]))) huffworkfile <- merge (huffdataset, localmarket_dataset, by.x = origins, by.y = origin_id) huff_shares <- huff.shares(huffworkfile, origins, locations, attrac, dist, lambda = lambda, dtype = dtype, lambda2 = lambda2, check_df = FALSE) huff_total <- shares.total(huff_shares, origins, locations, "p_ij", localmarket, check_df = FALSE) huff_total_suppdata <- merge (huff_total, location_dataset, by.x="suppliers_single", by.y=location_id) locations_attrac <- paste0(huffdataset[[locations]], ":", huffdataset[[attrac]]) locations_attrac_fac <- levels(as.factor(locations_attrac)) locations_attrac_split <- strsplit(locations_attrac_fac, ":") locations_attrac_df <- data.frame(do.call(rbind, locations_attrac_split)) colnames(locations_attrac_df) <- c("suppliers_single", names(huffworkfile[attrac])) huff_total_suppdata_complete <- merge (huff_total_suppdata, locations_attrac_df) k <- 0 total_obs <- vector() total_exp1 <- vector() total_exp2 <- vector() attrac_new <- vector() attrac_old <- vector() attrac_new_opt <- vector() diff_rel_old <- vector() diff_rel_new <- vector() a <- vector() b <- vector() for (k in 1:locations_count) { attrac_old[k] <- as.numeric(as.character(huff_total_suppdata_complete[[attrac]][k])) total_obs[k] <- huff_total_suppdata_complete[[location_total]][k] if (show_proc == TRUE) cat("Processing location", locations_single[k], "...", "\n") total_exp1[k] <- huff_total_suppdata_complete$sum_E_j[k] diff_rel_old[k] <- (total_exp1[k]-total_obs[k])/total_obs[k]*100 if (abs(diff_rel_old[k]) > tolerance) { attrac_new[k] <- 0 huffworkfile[huffworkfile[[locations]] == locations_single[k],][[attrac]] <- attrac_new[k] huff_shares_new <- huff.shares(huffworkfile, origins, locations, attrac, dist, lambda = lambda, dtype = dtype, lambda2 = lambda2, check_df = FALSE) huff_total_new <- shares.total(huff_shares_new, origins, locations, "p_ij", localmarket, check_df = FALSE) total_exp2[k] <- huff_total_new$sum_E_j[k] diff_rel_new[k] <- (total_exp2[k]-total_obs[k])/total_obs[k]*100 b[k] <- (attrac_new[k]-attrac_old[k])/(total_exp2[k]-total_exp1[k]) a[k] <- b[k] * total_exp2[k] - attrac_new[k] attrac_new_opt[k] <- a[k] + b[k] * total_obs[k] } else { attrac_new_opt[k] <- as.numeric(as.character(huff_total_suppdata_complete[[attrac]][k])) } huffworkfile[huffworkfile[[locations]] == locations_single[k],][[attrac]] <- attrac_new_opt[k] huff_shares_new <- huff.shares(huffworkfile, origins, locations, attrac, dist, check_df = FALSE) } huff_attrac <- data.frame(huff_total_suppdata_complete$suppliers_single, attrac_new_opt) colnames(huff_attrac) <- c("suppliers_single", "attrac_new_opt") cat("\n") if (output == "matrix") { return(huff_shares_new) } if (output == "attrac") { return(huff_attrac) } if (output == "total") { huff_total_new <- shares.total(huff_shares_new, origins, locations, "p_ij", localmarket, check_df = FALSE) huff_total_new$total_obs <- total_obs huff_total_new$diff <- huff_total_new$total_obs-huff_total_new$sum_E_j huff_total_new_output <- merge (huff_total_new, huff_attrac) return(huff_total_new_output) } }
power_prop_test <- function (n = NULL, p1 = NULL, p2 = NULL, sig.level = 0.05, power = NULL, ratio=1, alternative = c("two.sided", "one.sided"), tol = .Machine$double.eps^0.25) { if (sum(sapply(list(n, p1, p2, power, sig.level, ratio), is.null)) != 1) stop("exactly one of 'n', 'p1', 'p2', 'power', 'sig.level', and 'ratio' must be NULL") if (!is.null(sig.level) && !is.numeric(sig.level) || any(0 > sig.level | sig.level > 1)) stop("'sig.level' must be numeric in [0, 1]") if (!is.null(ratio) && ratio <= 0) stop("ratio between group sizes must be positive") alternative <- match.arg(alternative) tside <- switch(alternative, one.sided = 1, two.sided = 2) p.body <- quote({ qu <- qnorm(sig.level/tside, lower.tail = FALSE) d <- abs(p1 - p2) q1 <- 1 - p1 q2 <- 1 - p2 pbar <- (p1 + ratio*p2)/(1+ratio) qbar <- 1 - pbar ( qnorm(sig.level/tside)* sqrt(pbar*qbar*(1+ratio)) + qnorm(1-power)* sqrt(ratio*p1*q1 + p2*q2) )^2 / (ratio*d^2) }) if (is.null(n)) n <- eval(p.body) else if (is.null(power)) power <- uniroot(function(power) eval(p.body) - n, c(0.00001, .99999), tol = tol, extendInt = "upX")$root else if (is.null(p1)) p1 <- uniroot(function(p1) eval(p.body) - n, c(0, p2), tol = tol, extendInt = "yes")$root else if (is.null(p2)) p2 <- uniroot(function(p2) eval(p.body) - n, c(p1, 1), tol = tol, extendInt = "yes")$root else if (is.null(ratio)) ratio <- uniroot(function(ratio) eval(p.body) - n, c(2/n, 1e+07))$root else if (is.null(sig.level)) sig.level <- uniroot(function(sig.level) eval(p.body) - n, c(1e-10, 1 - 1e-10), tol = tol, extendInt = "upX")$root else stop("internal error", domain = NA) if (ratio!=1) { n <- c(n, n*ratio) } NOTE <- ifelse(ratio==1, "n is number in *each* group", "n is vector of number in each group") METHOD <- ifelse(ratio==1, "Two-sample comparison of proportions power calculation", "Two-sample comparison of proportions power calculation with unequal sample sizes") structure(list(n = n, p1 = p1, p2 = p2, sig.level = sig.level, power = power, alternative = alternative, note = NOTE, method = METHOD), class = "power.htest") }
AutoBestBW <- function (x, filter.number = 1, family = "DaubExPhase", smooth.dev = var, AutoReflect = TRUE, tol = 0.01, maxits = 200, plot.it = FALSE, verbose = 0, ReturnAll=FALSE) { EWS <- ewspec3(x = x, filter.number = filter.number, family = family, smooth.dev = smooth.dev, AutoReflect = AutoReflect, WPsmooth.type = "wavelet")$S J <- EWS$nlevels Jmax <- J - 1 Jmin <- round(J/2) specerr <- function(S1, S2, levs) { ans <- 0 for (i in 1:length(levs)) { d1 <- accessD(S1, lev = levs[i]) d2 <- accessD(S2, lev = levs[i]) ans <- ans + sum((d1 - d2)^2) } return(ans) } its <- 0 R <- 0.61803399 C <- 1 - R ax <- 10 cx <- round(0.6 * length(x)) bx <- round(cx/2) x0 <- ax x3 <- cx if (abs(cx - bx) > abs(bx - ax)) { x1 <- bx x2 <- round(bx + C * (cx - bx)) } else { x2 <- bx x1 <- round(bx - C * (bx - ax)) } fa.ews <- ewspec3(x = x, filter.number = filter.number, family = family, smooth.dev = smooth.dev, AutoReflect = AutoReflect, WPsmooth.type = "RM", binwidth = ax)$S fb.ews <- ewspec3(x = x, filter.number = filter.number, family = family, smooth.dev = smooth.dev, AutoReflect = AutoReflect, WPsmooth.type = "RM", binwidth = bx)$S fc.ews <- ewspec3(x = x, filter.number = filter.number, family = family, smooth.dev = smooth.dev, AutoReflect = AutoReflect, WPsmooth.type = "RM", binwidth = cx)$S f1.ews <- ewspec3(x = x, filter.number = filter.number, family = family, smooth.dev = smooth.dev, AutoReflect = AutoReflect, WPsmooth.type = "RM", binwidth = x1)$S f2.ews <- ewspec3(x = x, filter.number = filter.number, family = family, smooth.dev = smooth.dev, AutoReflect = AutoReflect, WPsmooth.type = "RM", binwidth = x2)$S fa <- specerr(fa.ews, EWS, Jmin:Jmax) fb <- specerr(fb.ews, EWS, Jmin:Jmax) fc <- specerr(fc.ews, EWS, Jmin:Jmax) f1 <- specerr(f1.ews, EWS, Jmin:Jmax) f2 <- specerr(f2.ews, EWS, Jmin:Jmax) xkeep <- c(ax, cx, x1, x2) fkeep <- c(fa, fc, f1, f2) if (plot.it == TRUE) { plot(c(ax, bx, cx), c(fa, fb, fc)) text(c(x1, x2), c(f1, f2), lab = c("1", "2")) } cnt <- 3 while ((abs(x3 - x0) > tol * (abs(x1) + abs(x2))) && its <= maxits) { if (verbose > 0) { cat("x0=", x0, "x1=", x1, "x2=", x2, "x3=", x3, "\n") cat("f1=", f1, "f2=", f2, "\n") } if (f2 < f1) { x0 <- x1 x1 <- x2 x2 <- round(R * x1 + C * x3) f1 <- f2 f2.ews <- ewspec3(x = x, filter.number = filter.number, family = family, smooth.dev = smooth.dev, AutoReflect = AutoReflect, WPsmooth.type = "RM", binwidth = x2)$S f2 <- specerr(f2.ews, EWS, Jmin:Jmax) if (verbose == 2) { cat("SSQ: ", signif(f2, 3), "\n") } else if (verbose == 1) cat(".") xkeep <- c(xkeep, x2) fkeep <- c(fkeep, f2) if (plot.it == TRUE) text(x2, f2, lab = as.character(cnt)) cnt <- cnt + 1 } else { x3 <- x2 x2 <- x1 x1 <- round(R * x2 + C * x0) f2 <- f1 f1.ews <- ewspec3(x = x, filter.number = filter.number, family = family, smooth.dev = smooth.dev, AutoReflect = AutoReflect, WPsmooth.type = "RM", binwidth = x1)$S f1 <- specerr(f1.ews, EWS, Jmin:Jmax) if (verbose == 2) cat("SSQ: ", signif(f1, 3), "\n") else if (verbose == 1) cat(".") xkeep <- c(xkeep, x1) fkeep <- c(fkeep, f1) if (plot.it == TRUE) text(x1, f1, lab = as.character(cnt)) cnt <- cnt + 1 } its <- its + 1 } if (its > maxits) warning(paste("AutoBestBW: exceeded maximum number of iterations: ", maxits)) if (f1 < f2) ans <- x1 else ans <- x2 if (ReturnAll == FALSE) return(ans) else { l <- list(ans=ans, EWS.wavelet=EWS, EWS.linear=f1.ews) return(l) } }
library(rgdal); library(ggmap) dsn <- system.file('extdata', package = 'ggsn') map <- readOGR(dsn, 'sp') map@data$id <- 1:nrow(map@data) map.ff <- fortify(map, region = 'id') map.df <- merge(map.ff, map@data, by = 'id') sp <- get_map(bbox(map) * matrix(rep(c(1.001, 0.999), e = 2), ncol = 2), source = 'osm') sp2 <- get_map('são paulo state', source = 'google') ggmap(sp, extent = 'device') + geom_polygon(data = map.df, aes(long, lat, group = group, fill = nots), alpha = .7) + coord_equal()+ geom_path(data = map.df, aes(long, lat, group = group)) + scalebar(map.df, dist = 5, dd2km = T, model = 'WGS84') + north(map.df) + scale_fill_brewer(name = 'Animal abuse\nnotifications', palette = 8) + theme(legend.position = c(0.9, 0.35)) ggmap(sp2, extent = 'device') + geom_polygon(data = map.df, aes(long, lat, group = group, fill = nots), alpha = .7) + coord_equal()+ geom_path(data = map.df, aes(long, lat, group = group)) + scalebar(map.df, dist = 5, dd2km = T, model = 'WGS84') + north(map.df) + scale_fill_brewer(name = 'Animal abuse\nnotifications', palette = 8) + theme(legend.position = c(0.9, 0.35)) ggmap(sp, extent = 'device') + geom_polygon(data = map.df, aes(long, lat, group = group, fill = nots), colour = 'black', alpha = .5) + coord_equal()+ scalebar(x.min = bbox(map)[1, 1], x.max = bbox(map)[1, 2], y.min = bbox(map)[2, 1], y.max = bbox(map)[2, 2], dist = 5, dd2km = T, model = 'WGS84') + north(x.min = bbox(map)[1, 1], x.max = bbox(map)[1, 2], y.min = bbox(map)[2, 1], y.max = bbox(map)[2, 2]) ggmap(sp) + geom_polygon(data = map.df, aes(long, lat, group = group, fill = nots), alpha = .7) + coord_equal() sp <- get_map(matrix(c(-46.652, -23.551, -46.645, -23.545), ncol = 2), source = 'osm') ggmap(sp)
"jdbcTimeDate" <- function(data) { format <- "%Y-%m-%d %H:%M:%OS3" as.character(data, format=format) }
airnow_loadDaily <- function(parameter = 'PM2.5', baseUrl = 'https://haze.airfire.org/monitoring/latest/RData', dataDir = NULL) { validParams <- c("PM2.5") if ( !parameter %in% validParams ) { paramsString <- paste(validParams, collapse=", ") stop(paste0("'", parameter, "' is not a supported parameter. Use 'parameter = ", paramsString, "'"), call.=FALSE) } filename <- paste0("airnow_", parameter, "_latest45.RData") ws_monitor <- MazamaCoreUtils::loadDataFile(filename, baseUrl, dataDir) return(ws_monitor) }
covid_deflator <- function(data_covid, deflator.file) { if (sum(class(data_covid) == "tbl_df") > 0) { if (!(FALSE %in% (c("Ano", "V1013", "UF") %in% names(data_covid)))) { data_covid <- data_covid[, !names(data_covid) %in% c("Habitual", "Efetivo", "CO3"), drop=FALSE] deflator <- suppressMessages(readxl::read_excel(deflator.file)) colnames(deflator)[c(1:3)] <- c("Ano", "V1013", "UF") if (class(data_covid$Ano) == "integer") { deflator$Ano <- as.integer(deflator$Ano) } else { deflator$Ano <- as.character(as.integer(deflator$Ano)) } if (class(data_covid$V1013) == "integer") { deflator$V1013 <- as.integer(deflator$V1013) } else { deflator$V1013 <- as.character(as.integer(deflator$V1013)) } if (class(data_covid$UF) == "integer") { deflator$UF <- as.integer(deflator$UF) } else { deflator$UF <- as.factor(deflator$UF) if (identical(intersect(levels(deflator$UF), levels(as.factor(data_covid$UF))), character(0)) & length(levels(deflator$UF)) == length(levels(as.factor(data_covid$UF)))) { levels(deflator$UF) <- levels(as.factor(data_covid$UF)) } } data_covid <- merge(x=data_covid, y=deflator, by.x=c("Ano", "V1013", "UF"), by.y=c("Ano", "V1013", "UF"), all.x=TRUE, all.y=FALSE) if (!(FALSE %in% (c("ID_DOMICILIO") %in% names(data_covid)))) { data_covid <- data_covid[order(data_covid$Estrato, data_covid$ID_DOMICILIO, data_covid$A001),] } else { data_covid <- data_covid[order(data_covid$Estrato, data_covid$UPA, data_covid$V1008, data_covid$A001),] } data_covid <- tibble::as_tibble(data_covid) } else { message("Merge variables required for adding deflator variables are missing.") } } else { message("The microdata object is not of the tibble class or sample design was already defined for microdata, so adding deflator variables is not possible.") } return(data_covid) }
fread.OTU <- function(file, sep="auto") { input <- data.table::fread(file, na.strings=c("",".","NA")) df <- as.data.frame(input) rownames(df) <- df[,1] df <- df[, -1] valid.OTU(df) df$taxonomy <- as.character(df$taxonomy) return(df) } read.OTU <- function(file, sep=",") { df <- read.table(file, sep=sep, header=T, row.names=1, na.strings=c("",".","NA")) valid.OTU(df) df$taxonomy <- as.character(df$taxonomy) return(df) } fread.meta <- function(file, sep="auto") { input <- data.table::fread(file, na.strings=c("",".","NA")) df <- as.data.frame(input) rownames(df) <- df[,1] df <- df[, -1] return(df) } read.meta <- function(file, sep=",") { input <- read.table(file, header=TRUE, row.names=1, sep=sep, na.strings=c("",".","NA")) return(input) } write.data <- function(data, file) { file <- .ensure.filepath(file, "csv") write.csv(data, file=file, quote=FALSE) }
setMethod(Ops, signature(e1 = "magpie", e2 = "magpie"), function(e1, e2) { e2 <- magpie_expand(e2, e1) e1 <- magpie_expand(e1, e2) if (length(e1) == 0) return(e1) if (length(e2) == 0) return(e2) if (any(unlist(dimnames(e1)) != unlist(dimnames(e2)))) { stop("MAgPIE objects after MAgPIE object expansion do not agree in dimnames! magpie_expand seems to be bugged!") } return(new("magpie", callGeneric([email protected], [email protected]))) } ) setMethod(Ops, signature(e1 = "magpie", e2 = "numeric"), function(e1, e2) { return(new("magpie", callGeneric([email protected], e2))) } ) setMethod(Ops, signature(e1 = "numeric", e2 = "magpie"), function(e1, e2) { return(new("magpie", callGeneric(e1, [email protected]))) } )