code
stringlengths
1
13.8M
poisson.blaker.acc <- function(x,p,type=c("orig","unimod"),acc.tol=1e-10,...) { if (x < 0) stop("Parameter x = ",x, " wrong!") if (acc.tol <= 0) stop("Numerical tolerance ",acc.tol," nonpositive!") type <- match.arg(type) if (type != "orig" && type != "unimod") stop("Unknown type ",type,"!") m <- length(p) if (m < 1) stop("Empty vector p!") if (m < 2) { acc <- poisson.blaker.acc.single.p(x,p,type=type,acc.tol=acc.tol,...) return(acc) } else { if (max(p[2:m]-p[1:(m-1)]) <= 0) stop("Vector p not increasing!") aq <- sapply(p,poisson.blaker.acc.single.p,x=x,acc.tol=acc.tol,output="both",...=...) acc <- aq[1,] if (type == "orig") { return(acc) } if (type == "unimod") { q1 <- aq[2,] p.hat <- x ind1 <- p <= p.hat ind <- (ind1 & (q1 > c(-Inf,q1[1:(m-1)]))) | (!ind1 & (q1 < c(q1[2:m],Inf))) acc[ind] <- sapply(p[ind],poisson.blaker.acc.single.p,x=x,type=type,acc.tol=acc.tol,...=...) m1 <- length(which(ind1)) if (m1 > 1) { acc[1:m1] <- cummax(acc[1:m1]) } if (m1 < m - 1) { acc[m:(m1+1)] <- cummax(acc[m:(m1+1)]) } return(acc) } } }
pairs_power <- function(data, decimals = 2){ pairs.panels(var.numericas(data), digits = decimals, bg='black', ellipses=FALSE, smooth=FALSE, lm=TRUE, cex.cor = 0.5, cex.main=0.1, pch=20, main='', hist.col = gg_color_hue(3)[3], oma=c(1,1,1,1)) }
' Authors Torsten Pook, [email protected] Copyright (C) 2017 -- 2020 Torsten Pook This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. ' compute.costs <- function(population, phenotyping.costs = 10, genotyping.costs = 100, fix.costs= 0, fix.costs.annual = 0, profit.per.bv = 1, database=NULL, gen=NULL, cohorts=NULL, interest.rate = 1, base.gen=1){ database <- get.database(population, gen=gen, database=database, cohorts=cohorts) generation <- max(database[,1]) t <- length(phenotyping.costs) if(t != (2*generation)){ if(t == 1){ phenotyping.costs <- matrix(phenotyping.costs, nrow=generation, ncol=2) } if(t==generation){ phenotyping.costs <- matrix(phenotyping.costs, nrow=generation, ncol=2, byrow=FALSE) } if(t==2){ phenotyping.costs <- matrix(phenotyping.costs, nrow=generation, ncol=2, byrow=TRUE) if(generation==2){ warning("Specify if phenotyping.costs are per generation or per sex. Default use: Gender") } } } t <- length(genotyping.costs) if(t != (2*generation)){ if(t == 1){ genotyping.costs <- matrix(genotyping.costs, nrow=generation, ncol=2) } if(t==generation){ genotyping.costs <- matrix(genotyping.costs, nrow=generation, ncol=2, byrow=FALSE) } if(t==2){ genotyping.costs <- matrix(genotyping.costs, nrow=generation, ncol=2, byrow=TRUE) if(generation==2){ warning("Specify if genotyping.costs are per generation or per sex. Default use: Gender") } } } t <- length(profit.per.bv) if(t != (2*generation)){ if(t == 1){ profit.per.bv <- matrix(profit.per.bv, nrow=generation, ncol=2) } if(t==generation){ profit.per.bv <- matrix(profit.per.bv, nrow=generation, ncol=2, byrow=FALSE) } if(t==2){ profit.per.bv <- matrix(profit.per.bv, nrow=generation, ncol=2, byrow=TRUE) if(generation==2){ warning("Specify if profit.per.bv are per generation or per sex. Default use: Gender") } } } if(length(fix.costs.annual)!=generation){ fix.costs.annual <- rep(fix.costs.annual, length.out=generation) } if(interest.rate!=1){ phenotyping.costs <- phenotyping.costs * (interest.rate ^ (1:generation-base.gen)) genotyping.costs <- genotyping.costs * (interest.rate ^ (1:generation-base.gen)) profit.per.bv <- profit.per.bv * (interest.rate ^ (1:generation-base.gen)) fix.costs.annual <- fix.costs.annual * (interest.rate ^ (1:generation-base.gen)) } costs_pheno <- costs_geno <- profit_bv <-numeric(nrow(database)) for(index in 1:nrow(database)){ activ <- database[index,] for(index2 in activ[3]:activ[4]){ costs_pheno[index] <- costs_pheno[index] + population$breeding[[activ[1]]][[activ[2]]][[index]][[15]] * phenotyping.costs[activ[1], activ[2]] costs_geno[index] <- costs_geno[index] + population$breeding[[activ[1]]][[activ[2]]][[index]][[16]] * genotyping.costs[activ[1], activ[2]] profit_bv[index] <- profit_bv[index] + population$breeding[[activ[1]]][[activ[2]+6]][1,index] * profit.per.bv[activ[1], activ[2]] } } costs_pergroup <- costs_pheno + costs_geno gains_group <- (profit_bv) - (costs_pheno) - (costs_geno) timest <- unique(database[,1]) gains_year <- numeric(length(timest)) t <- 1 for(index in timest){ gains_year[t] <- sum(gains_group[which(database[,1]==index)]) + fix.costs.annual[index] t <- t + 1 } oldpar <- graphics::par(no.readonly=TRUE) on.exit(graphics::par(oldpar)) graphics::par(mfrow=(c(1,2))) graphics::plot(timest, gains_year, main="Gains per Year", xlab="generation", ylab="gains") graphics::abline(h=0) graphics::plot(gains_group, main="Gains per Cohort", xlab="cohort", ylab="gains", xaxt="n") graphics::axis(1, at=1:length(gains_group), labels=cohorts) graphics::abline(h=0) total <- sum(gains_year) - fix.costs return(total) }
test_that("Not interactive", { expect_error(go_insane()) })
NULL Comp <- function(map = lapply, fun=NULL){ structure( function(loop, ...){ mapfun <- attr(sys.function(), "mapfun") fun <- attr(sys.function(), "fun") ret <- eval(parse(text=.parse_for(substitute(loop), mapfun=mapfun, ...))) if (is.null(fun)) return(ret) fun(ret) }, mapfun=map, fun=fun, class=c("Comprehension", "function") ) } List <- structure(function(loop, clust=NULL, fun=NULL){ if (is.null(clust)){mapfun <- lapply } else { mapfun <- function(X, FUN) parallel::parLapply(clust, X, FUN)} CURR_ENV <- environment() pt <- parse(text=.parse_for(substitute(loop), mapfun=mapfun)) parent.env(CURR_ENV) <- sys.frame() ret <- eval(pt, CURR_ENV) if (is.null(fun)) return(ret) fun(ret) }, mapfun = lapply, class = c("Comprehension", "function")) Env <- structure(function(loop, clust=NULL){ if (is.null(clust)){mapfun <- lapply } else {mapfun <- function(X, FUN) parallel::parLapply(clust, X, FUN)} CURR_ENV <- environment() pt <- parse(text=.parse_for(substitute(loop), mapfun=mapfun)) parent.env(CURR_ENV) <- sys.frame() as.environment(eval(pt, CURR_ENV)) }, mapfun = lapply, fun = as.environment, class = c("Comprehension", "function")) Vec <- structure(function(loop, clust=NULL, drop.names = FALSE){ mapfun <- sapply if (!is.null(clust)) mapfun <- function(X, FUN, ...) parallel::parSapply(clust, X, FUN, ...) CURR_ENV <- environment() pt <- parse(text=.parse_for(substitute(loop), mapfun=mapfun)) parent.env(CURR_ENV) <- sys.frame() ret <- eval(pt, CURR_ENV) if (drop.names) return(as.vector(flatten(ret))) .save_names(ret, function(i){as.vector(flatten(i))}) }, mapfun = sapply, fun = function(i){as.vector(flatten(i))}, class = c("Comprehension", "function")) Num <- structure(function(loop, clust=NULL, drop.names = FALSE){ if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parallel::parSapply(clust, X, FUN, ...)} CURR_ENV <- environment() pt <- parse(text=.parse_for(substitute(loop), mapfun=mapfun)) parent.env(CURR_ENV) <- sys.frame() ret <- eval(pt, CURR_ENV) if (drop.names) return(as.numeric(flatten(ret))) .save_names(ret, function(i){as.numeric(flatten(i))}) }, mapfun = sapply, fun = function(i){as.numeric(flatten(i))}, class = c("Comprehension", "function")) Chr <- structure(function(loop, clust=NULL, drop.names = FALSE){ if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parallel::parSapply(clust, X, FUN, ...)} CURR_ENV <- environment() pt <- parse(text=.parse_for(substitute(loop), mapfun=mapfun)) parent.env(CURR_ENV) <- sys.frame() ret <- eval(pt, CURR_ENV) if (drop.names) return(as.character(flatten(ret))) .save_names(ret, function(i){as.character(flatten(i))}) }, mapfun = sapply, fun = function(i){as.character(flatten(i))}, class = c("Comprehension", "function")) Logical <- structure(function(loop, clust=NULL, drop.names = FALSE){ if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parallel::parSapply(clust, X, FUN, ...)} CURR_ENV <- environment() pt <- parse(text=.parse_for(substitute(loop), mapfun=mapfun)) parent.env(CURR_ENV) <- sys.frame() ret <- eval(pt, CURR_ENV) if (drop.names) return(as.logical(flatten(ret))) .save_names(ret, function(i){as.logical(flatten(i))}) }, mapfun = sapply, fun = function(i){as.logical(flatten(i))}, class = c("Comprehension", "function")) Mat <- structure(function(loop, clust=NULL, by.col=TRUE){ if (is.null(clust)){ if (by.col){mapfun <- function(x, f, ...) sapply(cols(x), f, ...) } else {mapfun <- function(x, f, ...) sapply(rows(x), f, ...)} mapfun <- sapply } else { if (by.col){mapfun <- function(x, f, ...) parallel::parSapply(clust, cols(x), f, ...) } else {mapfun <- function(x, f, ...) parallel::parSapply(clust, rows(x), f, ...)} } CURR_ENV <- environment() pt <- parse(text=.parse_for(substitute(loop), mapfun=mapfun)) parent.env(CURR_ENV) <- sys.frame() as.matrix(eval(pt, CURR_ENV)) }, mapfun = function(x, f, ...) sapply(cols(x), f, ...), fun = as.matrix, class = c("Comprehension", "function")) DF <- structure(function(loop, clust=NULL){ if (is.null(clust)){mapfun <- lapply } else {mapfun <- function(X, FUN) parallel::parLapply(clust, X, FUN)} CURR_ENV <- environment() pt <- parse(text=.parse_for(substitute(loop), mapfun=mapfun)) parent.env(CURR_ENV) <- sys.frame() as.data.frame(eval(pt, CURR_ENV)) }, mapfun = lapply, fun = as.data.frame, class = c("Comprehension", "function")) .. <- structure( function(..., clust=NULL, type=Vec, simplify=TRUE){ dots <- eval(substitute(alist(...))) fun <- attr(type, "fun") if (is.null(clust)){mapfun <- attr(type, "mapfun") } else { mfun <- attr(type, "mapfun") if (identical(mfun, sapply)){ mapfun <- function(X, FUN) parSapply(clust, X, FUN) } else {function(X, FUN) parLapply(clust, X, FUN)} } l <- lapply(dots, function(i){ e <- eval(parse(text=.parse_for(i, mapfun=mapfun))) if (is.null(fun)) return(e) fun(e) }) if (length(dots) == 1){l <- l[[1]] } else if (simplify){l <- Reduce(c, l)} l }, class = c("VecGen", "function") ) NULL All <- structure(function(..., clust=NULL, na.rm=FALSE){ dots <- eval(substitute(alist(...))) if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parSapply(clust, X, FUN, ...)} all(sapply(dots, function(i) all(eval(parse(text=.parse_for(i, mapfun=mapfun))), na.rm=na.rm)), na.rm=na.rm) }, class = c("Comprehension", "function")) Any <- structure(function(..., clust=NULL, na.rm=FALSE){ dots <- eval(substitute(alist(...))) if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parSapply(clust, X, FUN, ...)} any(sapply(dots, function(i) any(eval(parse(text=.parse_for(i, mapfun=mapfun))), na.rm=na.rm)), na.rm=na.rm) }, class = c("Comprehension", "function")) None <- structure(function(..., clust=NULL, na.rm=FALSE){ dots <- eval(substitute(alist(...))) if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parSapply(clust, X, FUN, ...)} !any(sapply(dots, function(i) any(eval(parse(text=.parse_for(i, mapfun=mapfun))), na.rm=na.rm)), na.rm=na.rm) }, class = c("Comprehension", "function")) Sum <- structure(function(..., clust=NULL, na.rm=FALSE){ dots <- eval(substitute(alist(...))) if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parSapply(clust, X, FUN, ...)} sum(sapply(dots, function(i) sum(eval(parse(text=.parse_for(i, mapfun=mapfun))), na.rm=na.rm)), na.rm=na.rm) }, class = c("Comprehension", "function")) Prod <- structure(function(..., clust=NULL, na.rm=FALSE){ dots <- eval(substitute(alist(...))) if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parSapply(clust, X, FUN, ...)} prod(sapply(dots, function(i) prod(eval(parse(text=.parse_for(i, mapfun=mapfun))), na.rm=na.rm)), na.rm=na.rm) }, class = c("Comprehension", "function")) Min <- structure(function(..., clust=NULL, na.rm=FALSE){ dots <- eval(substitute(alist(...))) if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parSapply(clust, X, FUN, ...)} min(sapply(dots, function(i) min(eval(parse(text=.parse_for(i, mapfun=mapfun))), na.rm=na.rm)), na.rm=na.rm) }, class = c("Comprehension", "function")) Max <- structure(function(..., clust=NULL, na.rm=FALSE){ dots <- eval(substitute(alist(...))) if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parSapply(clust, X, FUN, ...)} max(sapply(dots, function(i) max(eval(parse(text=.parse_for(i, mapfun=mapfun))), na.rm=na.rm)), na.rm=na.rm) }, class = c("Comprehension", "function")) Mean <- structure(function(..., clust=NULL, na.rm=FALSE, trim=0){ dots <- eval(substitute(alist(...))) if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parSapply(clust, X, FUN, ...)} mean(sapply(dots, function(i) mean(eval(parse(text=.parse_for(i, mapfun=mapfun))), na.rm=na.rm, trim=trim)), na.rm=na.rm, trim=trim) }, class = c("Comprehension", "function")) Stats <- structure(function(..., clust=NULL, na.rm=FALSE, trim=0){ dots <- eval(substitute(alist(...))) if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parSapply(clust, X, FUN, ...)} x <- Reduce(c, sapply(dots, function(i) eval(parse(text=.parse_for(i, mapfun=mapfun))))) q <- quantile(x, probs=seq(0,1,0.25), na.rm=na.rm, names=FALSE) list( min = q[1], q1 = q[2], med = q[3], q3 = q[4], max = q[5], mean = mean(x, na.rm=na.rm, trim=trim), sd = sd(x, na.rm=na.rm) ) }, class = c("Comprehension", "function")) Paste <- structure(function(..., clust=NULL, collapse=""){ dots <- eval(substitute(alist(...))) if (is.null(clust)){mapfun <- sapply } else {mapfun <- function(X, FUN, ...) parSapply(clust, X, FUN, ...)} paste(sapply(dots, function(i) paste(eval(parse(text=.parse_for(i, mapfun=mapfun))), collapse=collapse)), collapse=collapse) }, class = c("Comprehension", "function"))
umxEFA <- function(x = NULL, factors = NULL, data = NULL, scores = c("none", 'ML', 'WeightedML', 'Regression'), minManifests = NA, rotation = c("varimax", "promax", "none"), return = c("model", "loadings"), report = c("markdown", "html"), summary = FALSE, name = "efa", digits = 2, n.obs = NULL, covmat = NULL){ rotation = xmu_match.arg(rotation, c("varimax", "promax", "none"), check = FALSE) scores = match.arg(scores) return = match.arg(return) if (!is.null(data)){ if(!is.null(covmat) || !is.null(n.obs)){ stop("umxEFA: covmat and n.obs must be empty when using 'data =' ...") } if(!is.null(x)){ if (inherits(x,"formula")){ if(is.null(data)){ stop(paste("If you provide a formula in x to select variable, data must contain a dataframe")) } else { x = all.vars(x) data = data[, x] name = "EFA" } } else if(length(x) > 1) { umx_check_names(x, data) data = data[,x] name = "EFA" }else{ name = x } }else{ name = "EFA" } } else if(!is.null(covmat) || !is.null(n.obs)){ stop("With cov data, you may as well be using factanal()...") if(!is.null(data)){ stop("You can't offer up both a data.frame and a covmat.") } } else { if(!is.null(x)){ if(is.data.frame(x)){ data = x }else if (is.matrix(x)){ data = as.data.frame(x) } } else if(is.null(data)){ stop("You need to provide a data.frame to analyze: This can be in x, or data, or covmat") } name = "EFA" } data = umx_scale(data) if(is.null(factors)){ stop("You need to request at least 1 latent factor, e.g.: factors = 4") } else if( length(factors) == 1 && class(factors) == "numeric"){ factors = paste0("F", c(1:factors)) }else{ } manifests = names(data) m1 = umxRAM(model = name, data = data, autoRun = FALSE, umxPath(factors, to = manifests, connect = "unique.bivariate"), umxPath(v.m. = manifests), umxPath(v1m0 = factors) ) nFac = length(factors) nManifests = length(manifests) if(nFac > 1){ for(i in 2:nFac){ m1$A$free[1:(i-1) , factors[i]] = FALSE m1$A$values[1:(i-1), factors[i]] = 0 } } for(i in seq_along(manifests)) { thisManifest = manifests[i] m1$S$lbound[thisManifest, thisManifest] = 0 } m1 = mxRun(m1) if(rotation != "none" && nFac > 1){ oldLoadings = loadings.MxModel(m1) newLoadings = eval(parse(text = paste0(rotation, "(oldLoadings)"))) if(!umx_set_silent(silent=TRUE)){ print("Rotation results") print(newLoadings) rm = newLoadings$rotmat print("Factor Correlation Matrix") print(solve(t(rm) %*% rm)) } m1$A$values[manifests, factors] = newLoadings$loadings[1:nManifests, 1:nFac] } else if(!umx_set_silent(silent=TRUE)){ print("Results") print(loadings(m1)) newLoadings = loadings.MxModel(m1) } if(summary){ umxSummary(m1, digits = digits, report = report); } if(scores != "none"){ factorScores = umxFactorScores(m1, type = scores, minManifests = minManifests) return(factorScores) } if(return == "loadings"){ invisible(newLoadings) }else if(return == "model"){ invisible(m1) }else{ stop("polite error: Not sure what ", omxQuotes(return), " is to return it" ) } } umxFactanal <- umxEFA umxFactorScores <- function(model, type = c('ML', 'WeightedML', 'Regression'), minManifests = NA, return = c("Scores", "StandardErrors")) { type = match.arg(type) return = match.arg(return) suppressMessages({ scores = mxFactorScores(model, type = type, minManifests = minManifests) }) out = scores[ , , return, drop = FALSE] out = data.frame(out) names(out) <- dimnames(scores)[[2]] return(out) } umxTwoStage <- function(formula= Y ~ X, instruments = ~qtl, data, subset, weights, contrasts= NULL, name = "tsls", ...) { umx_check(is.null(contrasts), "stop", "Contrasts not supported yet in umxTwoStage: email maintainer('umx') to prioritize") if(!class(formula) == "formula"){ stop("formula must be a formula") } allForm = all.vars(terms(formula)) if(length(allForm) != 2){ stop("I'm currently limited to 1 DV, 1 IV, and 1 instrument: 'formula' had ", length(allForm), " items") } DV = allForm[1] Xvars = all.vars(delete.response(terms(formula))) inst = all.vars(terms(instruments)) if(length(inst) != 1){ stop("I'm currently limited to 1 DV, 1 IV, and 1 instrument: 'instruments' had ", length(allForm), " items") } manifests <- c(allForm, inst) latentErr <- paste0("e", allForm) umx_check_names(manifests, data = data, die = TRUE) IVModel = umxRAM("IV Model", data = data, umxPath(inst , to = Xvars), umxPath(Xvars, to = DV), umxPath(v.m. = inst), umxPath(var = latentErr), umxPath(latentErr, to = allForm, fixedAt = 1), umxPath(unique.bivariate = latentErr, values = 0.2, labels = paste0("phi", length(latentErr)) ), umxPath(means = c(Xvars, DV)) ) return(IVModel) } umxMR <- umxTwoStage
context("HierarchicalModel") test_that("Tau_square_Est", { New_result <- robu(effectsize ~ followup, data = hierdat, studynum = studyid, var.eff.size = var, modelweights ="HIER",small = T) expect_equivalent(New_result$mod_info$tau.sq[1,1], 0.06541402) }) test_that("Omega_square_Est", { New_result <- robu(effectsize ~ followup, data = hierdat, studynum = studyid, var.eff.size = var, modelweights ="HIER",small = T) expect_equivalent(New_result$mod_info$omega.sq[1,1], 0.16360794) }) test_that("Coef_Est", { New_result <- robu(effectsize ~ followup, data = hierdat, studynum = studyid, var.eff.size = var, modelweights ="HIER",small = T) expect_equivalent(as.vector(New_result$b.r), c(0.2610277292, -0.0001810645)) }) test_that("df_Est", { New_result <- robu(effectsize ~ followup, data = hierdat, studynum = studyid, var.eff.size = var, modelweights ="HIER",small = F) expect_equivalent(as.vector(New_result$dfs), 13) New_result <- robu(effectsize ~ followup, data = hierdat, studynum = studyid, var.eff.size = var, modelweights ="HIER",small = T) expect_equivalent(as.vector(New_result$dfs), c(3.1683243, 1.5765336)) })
context('Prepare CFBI solver') load(file = quickLookup("test_CFBI_starting.Rdata")) suppressWarnings(RNGversion("3.5.0")) set.seed(101010) starting_dfm <- getStartingCFBI( new_param_list = new_param_list, glmer_fit = glmer_fit, alphas = alphas, CFBI_numstart = CFBI_numstart ) testthat::test_that( desc = "Test that starting CFBI dataframes are identical", testthat::expect_equal( object = starting_dfm, expected = starting_dfm_orig, tolerance = helper_tol, check.attributes = TRUE ) )
make.table2 = function(table.of = NULL, split = NULL, plot = TRUE, xlab = table.of, ylab = "counts", title = table.of, barcolor = "grey", barfill = "darkgrey"){ data("books", package = "litRiddle", envir = environment()) books <- get("books", envir = environment()) data("respondents", package = "litRiddle", envir = environment()) respondents <- get("respondents", envir = environment()) data("reviews", package = "litRiddle", envir = environment()) reviews <- get("reviews", envir = environment()) dat = combine.all() dat = as.data.frame(dat) if (length(unique(dat[,split])) > 31) { message("The 'split-by' variable has many unique values, which will ", "make the output \nvery hard to process. Please provide", "a 'split-by' variable that contains \nless unique values.") } else { col1 = dat[, table.of] col2 = dat[, split] dat = data.frame(col1, col2) table2 = table(dat[, 2], dat[, 1]) if(exists("table2") & plot == TRUE){ g = ggplot(dat, aes(x = dat[,1])) g = g + facet_wrap(~dat[,2], scales = "free_x") g = g + geom_bar(colour = barcolor, fill = barfill) g = g + xlab(xlab) + ylab(ylab) + ggtitle(title) plot(g) return(table2) } else if(exists("table2")){ return(table2) } } }
conditionalranking = function(I,bsrkr){ rank_RE=bsrkr[I!=0] rank_BE=bsrkr[I==0] tau01=sapply(seq_len(length(rank_BE)), function(i) (sum(rank_BE[i]>rank_RE))) tau01=length(rank_RE)-tau01 return(tau01) }
context("test-scenarios") test_that("uptake_pct_govtarget(1,1) should be 0.04768831", { expect_equal(uptake_pct_govtarget(1,1), 0.04768831) expect_error(uptake_pct_govtarget(LETTERS, letters)) expect_message(uptake_pct_govtarget(1001, 2, verbose = TRUE)) }) test_that("uptake_pct_godutch(1,1) should be round(0.341359, digits = 5)", { expect_equal(round(uptake_pct_godutch(1,1), digits = 2), 0.37) expect_error(uptake_pct_godutch(LETTERS, letters)) expect_message(uptake_pct_godutch(1001, 2, verbose = TRUE)) })
dbind <- function(a,b){ out1<-cbind(a,matrix(0,nrow(a),ncol(b))) out2<-cbind(matrix(0,nrow(b),ncol(a)),b) out<-rbind(out1,out2) out }
cv.MLGL <- function(X, y, nfolds = 5, lambda = NULL, hc = NULL, weightLevel = NULL, weightSizeGroup = NULL, loss = c("ls", "logit"), intercept = TRUE, sizeMaxGroup = NULL, verbose = FALSE, ...) { loss <- match.arg(loss) .checkParameters(X, y, hc, lambda, weightLevel, weightSizeGroup, intercept, verbose, loss, sizeMaxGroup) if (!is.numeric(nfolds) | (length(nfolds) != 1)) { stop("nfolds must be an integer greater than 3.") } if (!.is.wholenumber(nfolds) | nfolds <= 2 | nfolds > nrow(X)) { stop("nfolds must be an integer greater than 3.") } n <- nrow(X) p <- ncol(X) tcah <- rep(NA, 3) if (is.null(hc)) { if (verbose) { cat("Computing hierarchical clustering...") } t1 <- proc.time() d <- dist(t(X)) hc <- hclust(d, method = "ward.D2") t2 <- proc.time() tcah <- t2 - t1 if (verbose) { cat("DONE in ", tcah[3], "s\n") } } if (verbose) { cat("Preliminary step...") } t1 <- proc.time() prelim <- preliminaryStep(hc, weightLevel, weightSizeGroup, sizeMaxGroup) Xb <- X[, prelim$var] t2 <- proc.time() if (verbose) { cat("DONE in ", (t2 - t1)[3], "s\n") } if (verbose) { cat("Computing group-lasso...") } t1 <- proc.time() res <- cv.gglasso(Xb, y, prelim$group, pf = prelim$weight, nfolds = nfolds, lambda = lambda, intercept = intercept, loss = loss, ...) t2 <- proc.time() tgglasso <- t2 - t1 if (verbose) { cat("DONE in ", tgglasso[3], "s\n") } res$name <- NULL res$gglasso.fit <- NULL res$cvlower <- res$cvlo res$cvlo <- NULL res$time <- c(tcah[3], tgglasso[3]) names(res$time) <- c("hclust", "glasso") class(res) <- "cv.MLGL" return(res) }
env_returnMeanBiofilmThickness <- function(xmlResultFile) { return(xmlResultFile[[1]][[1]][[1]][[1]]) }
rnd_init_maps<-function(){ Lx <- 113 Ly <- 114 p <- 0.5 A <- 0.7 plt <- TRUE dirs <- 4 n<- Lx*Ly layer <- raster::raster(nrows = Lx, ncols = Ly, xmn = 688075, xmx = 690925, ymn = 4173950, ymx = 4176775) raster::values(layer) <- rep(0, Lx*Ly) raster::values(layer)[sample.int(Lx*Ly, round(Lx*Ly*p))] <- 1 clumped <- raster::clump(layer, directions=dirs, gaps = FALSE) ncluster <- max(raster::values(clumped), na.rm = TRUE) types <- factor(c(0,1)) numTypes <- as.numeric(types) clustertype <- sample(numTypes, ncluster, replace = TRUE, prob = c(1-A,A)) raster::values(clumped) <- clustertype[raster::values(clumped)] cellsUnassigned <- (1:n)[is.na(raster::values(clumped))] cellsAssigned <- (1:n)[!is.na(raster::values(clumped))] tempadj <- raster::adjacent(clumped, cellsUnassigned, cellsAssigned, directions = 8) tempadj <- split(tempadj[,2], tempadj[,1]) fillinType <- function (adjcells) { type <- raster::values(clumped)[adjcells] type <- factor(type) freq <- tabulate(type) result <- as.numeric(levels(type)[freq == max(freq)]) if (length(result)>1) result <- sample (result, 1) result } filled <- sapply(tempadj, fillinType) filledCells <- as.numeric(names(filled)) raster::values(clumped)[filledCells] <- filled notfilledCells <- cellsUnassigned[!(cellsUnassigned %in% filledCells)] randomType <- sample(numTypes, length(notfilledCells), replace = TRUE, prob = c(1-A,A)) raster::values(clumped)[notfilledCells] <- randomType layer <- raster::raster(nrows = Lx, ncols = Ly, xmn = 688075, xmx = 690925, ymn = 4173950, ymx = 4176775) raster::values(layer) <- rep(0, Lx*Ly) raster::values(layer)[sample.int(Lx*Ly, round(Lx*Ly*p))] <- 1 clumped2 <- raster::clump(layer, directions=dirs, gaps = FALSE) ncluster <- max(raster::values(clumped2), na.rm = TRUE) types <- factor(c(0,1)) numTypes <- as.numeric(types) clustertype <- sample(numTypes, ncluster, replace = TRUE, prob = c(1-A,A)) raster::values(clumped2) <- clustertype[raster::values(clumped2)] cellsUnassigned <- (1:n)[is.na(raster::values(clumped2))] cellsAssigned <- (1:n)[!is.na(raster::values(clumped2))] tempadj <- raster::adjacent(clumped2, cellsUnassigned, cellsAssigned, directions = 8) tempadj <- split(tempadj[,2], tempadj[,1]) fillinType <- function (adjcells) { type <- raster::values(clumped2)[adjcells] type <- factor(type) freq <- tabulate(type) result <- as.numeric(levels(type)[freq == max(freq)]) if (length(result)>1) result <- sample (result, 1) result } filled <- sapply(tempadj, fillinType) filledCells <- as.numeric(names(filled)) raster::values(clumped2)[filledCells] <- filled notfilledCells <- cellsUnassigned[!(cellsUnassigned %in% filledCells)] randomType <- sample(numTypes, length(notfilledCells), replace = TRUE, prob = c(1-A,A)) raster::values(clumped2)[notfilledCells] <- randomType c3<<-NULL c3<<-clumped + clumped2 c3<-get('c3') }
CSDCD.random=function(num.var,num.sample,x.mat,y.vec,d.Star){ p=num.var n=num.sample design.Mat=x.mat y.sim=y.vec lambda=d.Star thru.data=75 tot.it=thru.data*n alpha=matrix(NA,tot.it,n) nu.mat=matrix(NA,tot.it,p) alpha[1,]=rep(0,n) nu.mat[1,]=(alpha[1,]%*%design.Mat*(1/lambda))/n for(r in 1:thru.data){ random.seq=sample(1:n, n,replace = FALSE) for(k in 1:n){ t=(r-1)*n+k if(r==1){ t=(r-1)*n+k+1 } delta.alpha=-(alpha[t-1,random.seq[k]]+t(nu.mat[t-1,])%*%design.Mat[random.seq[k],]-y.sim[random.seq[k]])/(1+(sum(design.Mat[random.seq[k],]**2*(1/lambda))/(2*n))) alpha[t,]=alpha[t-1,]+delta.alpha nu.mat[t,]=nu.mat[t-1,]+(delta.alpha/n)*design.Mat[random.seq[k],]*(1/lambda) } } colMeans(nu.mat[(tot.it/2):tot.it,]) }
setMethod("initModelClass", signature(model="mass"), function (model) { model@clpdep <- (model@weight || model@lclp0 || model@lclpequ) model@ncomp <- length(model@peakpar) + if(model@extracomp) 1 else 0 model@ncolc <- model@ncomp model })
source("ESEUR_config.r") library("ape") pal_col=rainbow(3) ft=read.csv(paste0(ESEUR_dir, "sourcecode/journal-pone-0078871.csv.xz"), as.is=TRUE) ct=sapply(1:nrow(ft), function(X) unlist(strsplit(ft$Character.trait[X], split=""))) ct=data.frame(ct, stringsAsFactors=FALSE) names(ct)=ft$Source ct=data.frame(sapply(ct, function(X) as.numeric(X))) ct_phy=njs(dist(t(ct), method="binary")) tip_col=mapvalues(ft$ATU, unique(ft$ATU), pal_col) plot(ct_phy, type="unrooted", cex=1.0, edge.color=point_col, tip.color=tip_col)
library(hamcrest) test.data.assign <- function() { value <- new("MethodDefinition") [email protected] <- function(x) length(x) assertThat(typeof(value), identicalTo("closure")) assertThat(attr(value, 'class')[1], identicalTo("MethodDefinition")) } test.data.assign.attribs.preserved <- function() { data <- c(x='vector') attr(data, 'foo') <- 'bar' object <- new("signature") [email protected] <- data assertThat(names(object), identicalTo("x")) assertThat(attr(object, 'foo'), identicalTo("bar")) } test.data.matrix <- function() { setClass( "Interval", representation( type = "character" ), prototype(matrix( 0, 0, 2 )), contains = "matrix") i <- new("Interval") [email protected] <- matrix(1:4, nrow=2) assertThat([email protected], identicalTo(matrix(1:4, nrow=2))) }
context("plotD3") source("objects_for_tests.R") test_that("plotD3_residual", { expect_is(plotD3(mr_rf, type = "residual", variable = "x2"), "r2d3") expect_is(plotD3_residual(mr_glm, smooth = TRUE, point_count = 5, variable = "x2"), "r2d3") expect_is(plotD3_residual(mr_glm, std_residuals = TRUE), "r2d3") expect_is(plotD3_residual(mr_rf, variable = "x2"), "r2d3") expect_is(plotD3_residual(mr_rf, mr_glm, single_plot = FALSE, scale_plot = TRUE), "r2d3") expect_error(plotD3_residual(mr_lm, points = FALSE, smooth = FALSE)) expect_error(plotD3_residual(list(1,2,3))) }) test_that("plotD3_autocorrelation", { expect_is(plotD3(mr_glm, type = "autocorrelation"), "r2d3") expect_is(plotD3_autocorrelation(mr_rf, mr_glm, smooth = TRUE, point_count = 5), "r2d3") expect_is(plotD3_autocorrelation(mr_glm), "r2d3") expect_is(plotD3_autocorrelation(mr_rf, mr_glm, single_plot = FALSE, scale_plot = TRUE), "r2d3") expect_is(plotD3_autocorrelation(mr_rf, mr_glm, smooth = TRUE, point_count = 5), "r2d3") expect_error(plotD3_autocorrelation(mr_glm, points = FALSE, smooth = FALSE)) expect_error(plotD3_autocorrelation(list(1,2,3))) }) test_that("plotD3_prediction", { expect_is(plotD3(mr_glm, type = "prediction"), "r2d3") expect_is(plotD3_prediction(mr_glm, smooth = TRUE, point_count = 5, variable = "x2"), "r2d3") expect_is(plotD3_prediction(mr_rf), "r2d3") expect_is(plotD3_prediction(mr_rf, mr_glm, single_plot = FALSE, scale_plot = TRUE), "r2d3") expect_error(plotD3_prediction(au_lm, points = FALSE, smooth = FALSE)) expect_error(plotD3_prediction(glm_mr, rf_mr)) expect_error(plotD3_prediction(list(1,2,3))) }) test_that("plotD3_scalelocation", { expect_is(plotD3(mr_rf, type = "scalelocation"), "r2d3") expect_is(plotD3_scalelocation(mr_glm, smooth = TRUE, point_count = 5), "r2d3") expect_is(plotD3_scalelocation(mr_glm, peaks = TRUE), "r2d3") expect_is(plotD3_scalelocation(mr_rf), "r2d3") expect_is(plotD3_scalelocation(mr_rf, mr_glm, single_plot = FALSE, scale_plot = TRUE), "r2d3") expect_error(plotD3_scalelocation(mr_glm, points = FALSE, smooth = FALSE)) expect_error(plotD3_scalelocation(list(1,2,3))) }) test_that("plotD3_cooksdistance", { expect_is(plotD3(cd_lm, type = "cooksdistance"), "r2d3") expect_is(plotD3_cooksdistance(cd_lm, cd_rf), "r2d3") expect_is(plotD3_cooksdistance(cd_rf, cd_lm, single_plot = FALSE), "r2d3") expect_is(plotD3_cooksdistance(cd_rf, cd_lm, single_plot = TRUE, scale_plot = TRUE), "r2d3") expect_error(plotD3_cooksdistance(list(1,2,3))) }) test_that("plotD3_lift", { expect_is(plotD3(ev_glm, type = "lift"), "r2d3") expect_is(plotD3_lift(ev_glm), "r2d3") expect_is(plotD3_lift(ev_glm, ev_rf, scale_plot = TRUE), "r2d3") }) test_that("plotD3_rec", { expect_is(plotD3(mr_glm, type = "rec"), "r2d3") expect_is(plotD3_rec(mr_glm), "r2d3") expect_is(plotD3_rec(mr_glm, mr_rf, scale_plot = TRUE), "r2d3") }) test_that("plotD3_acf", { expect_is(plotD3(mr_glm, type = "acf"), "r2d3") expect_is(plotD3_acf(mr_glm), "r2d3") expect_is(plotD3_acf(mr_glm, mr_rf, scale_plot = TRUE), "r2d3") expect_is(plotD3_acf(mr_glm, mr_rf, scale_plot = TRUE, alpha = 0.1), "r2d3") }) test_that("plotD3_halfnormal", { expect_is(plotD3(hn_glm, type = "halfnormal"), "r2d3") expect_is(plotD3_halfnormal(hn_glm), "r2d3") expect_is(plotD3_halfnormal(hn_glm, hn_rf, scale_plot = TRUE), "r2d3") }) test_that("plotD3_roc", { expect_is(plotD3(ev_glm, type = "roc"), "r2d3") expect_is(plotD3_roc(ev_glm), "r2d3") expect_is(plotD3_roc(ev_glm, ev_rf, scale_plot = TRUE), "r2d3") }) test_that("plotD3_rroc", { expect_is(plotD3(mr_glm, type = "rroc"), "r2d3") expect_is(plotD3_rroc(mr_glm), "r2d3") expect_is(plotD3_rroc(mr_glm, mr_rf, scale_plot = TRUE), "r2d3") })
`write.Data` <- function(x,FileNameExtension="Data"){ if (length(x)==3){ fillmat <- matrix("",nrow=nrow(x[[2]]),ncol=ncol(x[[3]])) upperpart <- cbind(fillmat,as.matrix(x[[2]])) upperpart[1:nrow(upperpart),ncol(x[[3]])] <- rownames(x[[2]]) lowerpart <- cbind(as.matrix(x[[3]]),x[[1]]) lowerpart <- rbind(colnames(lowerpart),lowerpart) alldat <- rbind(upperpart,lowerpart) colnames(alldat) <- colnames(lowerpart) write.table(alldat,file=paste(labels(x)[1],".txt",sep="") ,sep="\t",,row.names=F,col.names=F) } if (length(x)==4){ fillmat <- matrix("",nrow=nrow(x[[3]]),ncol=ncol(x[[4]])) upperpart <- cbind(fillmat,as.matrix(x[[3]])) upperpart[1:nrow(upperpart),ncol(x[[4]])] <- rownames(x[[3]]) lowerpart <- cbind(as.matrix(x[[4]]),x[[1]]) lowerpart <- rbind(colnames(lowerpart),lowerpart) lowerpartII <- cbind(as.matrix(x[[4]]),x[[2]]) lowerpartII <- rbind(colnames(lowerpart),lowerpartII) alldat <- rbind(upperpart,lowerpart) alldat[1:nrow(x[[3]]),ncol(x[[4]])] <- rownames(x[[3]]) alldatII <- rbind(upperpart,lowerpartII) alldatII[1:nrow(x[[3]]),ncol(x[[4]])] <- rownames(x[[3]]) colnames(alldat) <- colnames(lowerpart) colnames(alldatII) <- colnames(lowerpart) write.table(alldat,file=paste(FileNameExtension,labels(x)[1],".txt",sep="") ,sep="\t",row.names=F,col.names=F) write.table(alldatII,file=paste(FileNameExtension,labels(x)[2],".txt",sep="") ,sep="\t",row.names=F,col.names=F) } }
plot.SimulInactivation <- function(x, y=NULL, ..., make_gg = TRUE, plot_temp = FALSE, label_y1 = "logN", label_y2 = "Temperature", ylims = NULL) { if (make_gg) { if (plot_temp) { min_time <- min(x$simulation$time) max_time <- max(x$simulation$time) max_count <- max(x$simulation$logN, na.rm = TRUE) tt <- seq(min_time, max_time, length = 100) min_temp <- min(x$temp_approximations$temp(tt)) max_temp <- max(x$temp_approximations$temp(tt)) if (max_temp == min_temp) { max_temp <- max_temp + 1 min_temp <- min_temp - 1 } slope <- (max_count)/(max_temp - min_temp) intercept <- (min_temp * (max_count-0)/(max_temp - min_temp) - 0) p <- x$simulation %>% mutate(temperature = x$temp_approximations$temp(.data$time), fake_temp = .data$temperature * slope - intercept) %>% ggplot() + geom_line(aes_string(x = "time", y = "logN"), linetype = 2) + geom_line(aes_string(x = "time", y = "fake_temp")) if (is.null(ylims)) { ylims <- c(0, max_count) } p + scale_y_continuous(limits = ylims, name = label_y1, sec.axis = sec_axis(~(. + intercept)/slope, name = label_y2)) } else { p <- ggplot(x$simulation) + geom_line(aes_string(x = "time", y = "logN")) + ylab(label_y1) if (!is.null(ylims)) { p <- p + ylim(ylims) } p } } else { plot(logN ~ time, data = x$simulation, type = "l", ...) } } plot.IsoFitInactivation <- function(x, y=NULL, ..., make_gg = FALSE) { if (!make_gg) { death_data <- x$data model_data <- get_isothermal_model_data(x$model) for (each_temp in unique(death_data$temp)) { temp_indexes <- death_data$temp == each_temp my_data <- death_data[temp_indexes, ] plot(log_diff ~ time, data = my_data, ...) max_time <- max(my_data$time) times <- seq(0, max_time, length= 100) arguments_call <- c(list(time = times, temp = each_temp), x$parameters) prediction <- do.call(model_data$prediction, arguments_call) lines(times, prediction) title(paste("Temperature:", each_temp)) } } else { x$data %>% mutate(prediction = predict(x$nls, newdata = x$data)) %>% ggplot(aes_string(x = "time")) + geom_point(aes_string(y = "log_diff")) + geom_line(aes_string(y = "prediction"), linetype = 2) + facet_wrap("temp", scales = "free") } } plot.FitInactivation <- function(x, y=NULL, ..., make_gg = TRUE, plot_temp = FALSE, label_y1 = "logN", label_y2 = "Temperature", ylims = NULL) { death_data <- x$data if (!("logN" %in% names(death_data))) { death_data$logN <- log10(death_data$N) } if (make_gg) { maxlogN0 <- max(c(x$data$logN, log10(x$best_prediction$model_parameters$N0))) if (is.null(ylims)) { ylims <- c(0, ceiling(maxlogN0)) } pred_plot <- plot(x$best_prediction, plot_temp = plot_temp, label_y1 = label_y1, label_y2 = label_y2, ylims = ylims) p <- pred_plot + geom_point(data = death_data, aes_string(x = "time", y = "logN")) return(p) } else { min_logN_data <- min(death_data$logN, na.rm = TRUE) min_logN_pred <- min(x$best_prediction$simulation$logN, na.rm = TRUE) min_logN <- min(c(min_logN_data, min_logN_pred)) max_logN_data <- max(death_data$logN, na.rm = TRUE) max_logN_pred <- max(x$best_prediction$simulation$logN, na.rm = TRUE) max_logN <- max(c(max_logN_data, max_logN_pred)) ylim <- c(floor(min_logN), ceiling(max_logN)) plot(x$best_prediction, ylim = ylim, make_gg = FALSE, ...) points(logN ~ time, data = death_data) } } plot.FitInactivationMCMC <- function(x, y=NULL, ..., make_gg = TRUE, plot_temp = FALSE, label_y1 = "logN", label_y2 = "Temperature", ylims = NULL) { plot.FitInactivation(x, make_gg = make_gg, plot_temp = plot_temp, label_y1 = label_y1, label_y2 = label_y2, ylims = ylims, ...) } plot.PredInactivationMCMC <- function(x, y=NULL, ..., make_gg = TRUE) { if (make_gg) { if (!names(x)[2] == "mean"){ stop("ggplot plots not available for PredInactivationMCMC objects without quantiles calculated. Generate base plot instead.") } x$mean <- log10(x[ , 2]) x$median <- log10(x[ , 3]) x$lower <- log10(x[ , 4]) x$upper <- log10(x[ , 5]) p <- ggplot(x, aes_string(x = "times")) + geom_ribbon(aes_string(ymax = "upper", ymin = "lower"), alpha = 0.6, fill = " geom_line(aes_string(y = "mean"), linetype = 2, colour = "darkblue") + geom_line(aes_string(y = "median"), linetype = 3, colour = "darkblue") + ylab("logN") + xlab("time") return(p) } else { max_N <- max(x[1, 2:ncol(x)]) min_N <- min(x[nrow(x), 2:ncol(x)]) y_lim <- c(floor(log10(min_N)), ceiling(log10(max_N))) if ("mean" %in% names(x)) { plot(log10(mean) ~ times, data = x, type = 'l', ylab = "logN", ylim = y_lim, ...) } else { plot(x$times, log10(x[ , 2]), type = "l", ...) } for (i in 3:ncol(x)) { lines(x$times, log10(x[ , i]), type = 'l', lty = i-1, col = i-1) } if ("mean" %in% names(x)) { legend("topright", names(x[-1]), lty = 1:(ncol(x)-1), col = 1:(ncol(x)-1)) } } }
context("tp_refs") test_that("tp_refs returns the correct class", { skip_on_cran() vcr::use_cassette("tp_refs", { ttt <- suppressMessages(tp_refs(id = 25509881)) }, preserve_exact_body_bytes = TRUE) expect_that(ttt, is_a("data.frame")) })
context("MfTrapezoidalSup") test_that("MfTrapezoidalSup constructor error", { expect_error(NewMfTrapezoidalSup()) expect_error(NewMfTrapezoidalSup(1, 0)) expect_error(NewMfTrapezoidalSup(0, 0)) }) test_that("MfTrapezoidalSup degrees", { mf <- NewMfTrapezoidalSup(0, 1) expect_equal(mf$degree(0), 0) expect_equal(mf$degree(0.5), 0.5) expect_equal(mf$degree(1), 1) }) test_that("MfTrapezoidalSup equality", { mf1 <- NewMfTrapezoidalSup(0, 1) mf2 <- NewMfTrapezoidalSup(0, 1) mf3 <- NewMfTrapezoidalSup(0, 2) expect_equal(mf1, mf2) expect_not_equal(mf1, mf3) }) test_that("MfTrapezoidalSup to_string", { mf <- NewMfTrapezoidalSup(0, 1) mf$label <- "foo" expect_equal(mf$to_string(), "mf_trapezoidal_sup(\"foo\", 0, 1)") })
"genRetFct" <- function(fct, parmVec, notFixed) { }
.inRStudio = function() { requireNamespace("rstudioapi", quietly = TRUE) && !is(tryCatch(rstudioapi::versionInfo(), error = function(x) x), "error") } .analysisFileOrNA = function() { if(.inRStudio()) tryCatch(rstudioapi::getSourceEditorContext()[["path"]], error = function(x) NA_character_) else NA_character_ } .rstudioProjOrNA = function() { proj = NA_character_ if(.inRStudio()) { proj = rstudioapi::getActiveProject() if(is.null(proj)) proj = NA_character_ } proj }
context("Test MQE_proc") library(testthat) library(mppR) Ref_res <- c(0.000000, -1.732895, -1.732895, -3.064966, -3.064966, -6.127131) data(mppData) res <- MQE_proc(pop.name = "USNAM", trait.name = "ULA", mppData = mppData, Q.eff = c('cr', 'par', 'anc', 'biall'), output.loc = tempdir(), verbose = FALSE) test_that('MQE_test', { expect_equal(object = res$QTL.effects$Q1$Effect, expected = Ref_res, tolerance = .0001) })
test_that("distance works", { expect_equivalent(round(track_distance(c(0, 0, 1, 0), c(0, 1, 1, 0)), digits = 2L), c(NA, 110574.39, 111302.65, 156899.57)) })
sf_submit_query_bulk <- function(job_id, soql, api_type = c("Bulk 1.0"), verbose = FALSE){ api_type <- match.arg(api_type) bulk_query_url <- make_bulk_query_url(job_id, api_type = api_type) f <- tempfile() cat(soql, file=f) httr_response <- rPOST(url = bulk_query_url, headers = c("Content-Type"="text/csv; charset=UTF-8"), body = upload_file(path=f, type='text/txt')) if(verbose){ make_verbose_httr_message(httr_response$request$method, httr_response$request$url, httr_response$request$headers, sprintf("Uploaded TXT file: %s", f)) } catch_errors(httr_response) response_parsed <- content(httr_response, encoding="UTF-8") resultset <- response_parsed %>% xml_ns_strip() %>% xml_find_all('//batchInfo') %>% map_df(xml_nodeset_to_df) %>% type_convert(col_types = cols()) return(resultset) } sf_query_result_bulk <- function(job_id, batch_id = NULL, result_id = NULL, guess_types = TRUE, bind_using_character_cols = deprecated(), batch_size = 50000, api_type = c("Bulk 1.0", "Bulk 2.0"), verbose = FALSE){ api_type <- match.arg(api_type) if(is_present(bind_using_character_cols)) { deprecate_warn("1.0.0", "salesforcer::sf_query_result_bulk(bind_using_character_cols)", details = paste0("The `bind_using_character_cols` functionality ", "will always be `TRUE` going forward. Per the ", "{readr} package, we have to read as character ", "and then invoke `type_convert()` in order to ", "use all values in a column to guess its type.")) } if(api_type == "Bulk 2.0"){ resultset <- sf_query_result_bulk_v2(job_id = job_id, guess_types = guess_types, batch_size = batch_size, locator = NULL, api_type = api_type, verbose = verbose) } else { resultset <- sf_query_result_bulk_v1(job_id = job_id, batch_id = batch_id, result_id = result_id, guess_types = guess_types, api_type = api_type, verbose = verbose) } return(resultset) } sf_query_result_bulk_v1 <- function(job_id, batch_id = NULL, result_id = NULL, guess_types = TRUE, bind_using_character_cols = deprecated(), api_type = c("Bulk 1.0"), verbose = FALSE){ api_type <- match.arg(api_type) if(is_present(bind_using_character_cols)) { deprecate_warn("1.0.0", "salesforcer::sf_query_result_bulk_v1(bind_using_character_cols)", details = paste0("The `bind_using_character_cols` functionality ", "will always be `TRUE` going forward. Per the ", "{readr} package, we have to read as character ", "and then invoke `type_convert()` in order to ", "use all values in a column to guess its type.")) } bulk_query_result_url <- make_bulk_query_result_url(job_id, batch_id, result_id, api_type) httr_response <- rGET(url = bulk_query_result_url) if(verbose){ make_verbose_httr_message(httr_response$request$method, httr_response$request$url, httr_response$request$headers) } catch_errors(httr_response) content_type <- httr_response$headers$`content-type` if (grepl('xml', content_type)) { response_text <- content(httr_response, type="text/plain", encoding="UTF-8") resultset <- as_tibble(xmlToList(response_text)) } else if(grepl('text/csv', content_type)) { response_text <- content(httr_response, type="text", encoding="UTF-8") if(response_text == "Records not found for this query"){ resultset <- tibble() } else { resultset <- read_csv(response_text, col_types = cols(.default = col_character())) } } else { message(sprintf("Unhandled content-type: %s", content_type)) resultset <- content(httr_response, as="parsed", encoding="UTF-8") } if(is.tbl(resultset)){ resultset <- resultset %>% sf_reorder_cols() %>% sf_guess_cols(guess_types) } return(resultset) } sf_query_result_bulk_v2 <- function(job_id, guess_types = TRUE, bind_using_character_cols = deprecated(), batch_size = 50000, locator = NULL, api_type = c("Bulk 2.0"), verbose = FALSE){ api_type <- match.arg(api_type) if(is_present(bind_using_character_cols)) { deprecate_warn("1.0.0", "salesforcer::sf_query_result_bulk_v2(bind_using_character_cols)", details = paste0("The `bind_using_character_cols` functionality ", "will always be `TRUE` going forward. Per the ", "{readr} package, we have to read as character ", "and then invoke `type_convert()` in order to ", "use all values in a column to guess its type.")) } bulk_query_result_url <- make_bulk_query_result_url(job_id, api_type=api_type) query_params <- list(locator=locator, maxRecords=batch_size) bulk_query_result_url <- parse_url(bulk_query_result_url) bulk_query_result_url$query <- query_params bulk_query_result_url <- build_url(bulk_query_result_url) httr_response <- rGET(url = bulk_query_result_url, headers = c("Accept"="text/csv")) if(verbose){ make_verbose_httr_message(httr_response$request$method, httr_response$request$url, httr_response$request$headers) } catch_errors(httr_response) content_type <- httr_response$headers$`content-type` if(grepl('text/csv', content_type)) { response_text <- content(httr_response, as="text", encoding="UTF-8") resultset <- read_csv(response_text, col_types = cols(.default = col_character())) } else { message(sprintf("Unexpected content-type: %s", content_type)) resultset <- content(httr_response, as="parsed", encoding="UTF-8") } locator <- httr_response$headers$`sforce-locator` if(!is.null(locator) && locator != "null"){ next_records <- sf_query_result_bulk_v2(job_id = job_id, guess_types = guess_types, batch_size = batch_size, locator = locator, api_type = api_type, verbose = verbose) resultset <- safe_bind_rows(list(resultset, next_records)) } if(is.tbl(resultset)){ resultset <- resultset %>% sf_reorder_cols() %>% sf_guess_cols(guess_types) } return(resultset) } sf_query_bulk_v1 <- function(soql, object_name = NULL, queryall = FALSE, guess_types = TRUE, bind_using_character_cols = deprecated(), interval_seconds = 3, max_attempts = 200, control = list(...), ..., api_type = "Bulk 1.0", verbose = FALSE){ if(is.null(object_name)){ object_name <- guess_object_name_from_soql(soql) } listed_objects <- sf_list_objects() valid_object_names <- sapply(listed_objects$sobjects, FUN=function(x){x$name}) if(!object_name %in% valid_object_names){ stop(sprintf(paste0("The supplied object name (%s) does not exist or ", "the user does not have permission to view"), object_name), call.=FALSE) } api_type <- match.arg(api_type) control_args <- return_matching_controls(control) control_args$api_type <- api_type this_operation <- if(queryall) "queryall" else "query" control_args$operation <- this_operation if(is_present(bind_using_character_cols)) { deprecate_warn("1.0.0", "salesforcer::sf_query_bulk_v1(bind_using_character_cols)", details = paste0("The `bind_using_character_cols` functionality ", "will always be `TRUE` going forward. Per the ", "{readr} package, we have to read as character ", "and then invoke `type_convert()` in order to ", "use all values in a column to guess its type.")) } job_info <- sf_create_job_bulk(operation = this_operation, object_name = object_name, api_type = api_type, control = control_args, verbose = verbose, ...) batch_query_info <- sf_submit_query_bulk(job_id = job_info$id, soql = soql, api_type = api_type, verbose = verbose) status_complete <- FALSE z <- 1 Sys.sleep(interval_seconds) while (z < max_attempts & !status_complete){ if (verbose){ message(paste0("Attempt } Sys.sleep(interval_seconds) batch_query_status <- sf_batch_status_bulk(job_id = batch_query_info$jobId, batch_id = batch_query_info$id, api_type = api_type, verbose = verbose) if(batch_query_status$state == 'Failed'){ stop(batch_query_status$stateMessage) } else if(batch_query_status$state == "Completed"){ status_complete <- TRUE } else if(batch_query_status$state == "NotProcessed") { job_batches <- sf_job_batches_bulk(batch_query_status$jobId, api_type = api_type, verbose = verbose) batch_query_info <- job_batches %>% filter(across(any_of("state"), ~(.x != 'NotProcessed'))) if(all(batch_query_info$state == "Completed")){ status_complete <- TRUE } } else { z <- z + 1 } } if (!status_complete) { message("The query took too long to complete. Aborting job now.") message("Consider increasing the `max_attempts` and/or `interval_seconds` arguments.") resultset <- sf_abort_job_bulk(job_info$id, api_type=api_type, verbose=verbose) } else { resultset <- list() for(i in 1:nrow(batch_query_info)){ batch_query_details <- sf_batch_details_bulk(job_id = batch_query_info$jobId[i], batch_id = batch_query_info$id[i], api_type = api_type, verbose = verbose) resultset[[i]] <- sf_query_result_bulk(job_id = batch_query_info$jobId[i], batch_id = batch_query_info$id[i], result_id = batch_query_details$result, guess_types = guess_types, api_type = api_type, verbose = verbose) } resultset <- safe_bind_rows(resultset) close_job_info <- sf_close_job_bulk(job_info$id, api_type = api_type, verbose = verbose) } if(is.tbl(resultset)){ resultset <- resultset %>% sf_reorder_cols() %>% sf_guess_cols(guess_types) } return(resultset) } sf_query_bulk_v2 <- function(soql, object_name = NULL, queryall = FALSE, guess_types = TRUE, bind_using_character_cols = deprecated(), interval_seconds = 3, max_attempts = 200, control = list(...), ..., api_type = "Bulk 2.0", verbose = FALSE){ if(!is.null(object_name)){ listed_objects <- sf_list_objects() valid_object_names <- sapply(listed_objects$sobjects, FUN=function(x){x$name}) if(!object_name %in% valid_object_names){ stop(sprintf(paste0("The supplied object name (%s) does not exist or ", "the user does not have permission to view"), object_name), call.=FALSE) } } api_type <- match.arg(api_type) control_args <- return_matching_controls(control) control_args$api_type <- api_type this_operation <- if(queryall) "queryall" else "query" control_args$operation <- this_operation if(is_present(bind_using_character_cols)) { deprecate_warn("1.0.0", "salesforcer::sf_query_bulk_v2(bind_using_character_cols)", details = paste0("The `bind_using_character_cols` functionality ", "will always be `TRUE` going forward. Per the ", "{readr} package, we have to read as character ", "and then invoke `type_convert()` in order to ", "use all values in a column to guess its type.")) } if(!is.null(control_args$QueryOptions$batchSize)){ batch_size <- control_args$QueryOptions$batchSize control_args$QueryOptions <- NULL } else { batch_size <- 50000 } job_info <- sf_create_job_bulk(operation = this_operation, soql = soql, object_name = object_name, api_type = api_type, control = control_args, verbose = verbose, ...) status_complete <- FALSE z <- 1 Sys.sleep(interval_seconds) while (z < max_attempts & !status_complete){ if (verbose){ message(paste0("Attempt } Sys.sleep(interval_seconds) query_status <- sf_get_job_bulk(job_info$id, api_type=api_type, query_operation=TRUE) if(query_status$state == 'Failed'){ stop(query_status$errorMessage) } else if(query_status$state == "JobComplete"){ status_complete <- TRUE } else { z <- z + 1 } } if (!status_complete) { message("The query took too long to complete. Aborting job now.") message("Consider increasing the `max_attempts` and/or `interval_seconds` arguments.") res <- sf_abort_job_bulk(job_info$id, api_type=api_type, verbose=verbose) } else { res <- sf_query_result_bulk(job_id = job_info$id, guess_types = guess_types, batch_size = batch_size, api_type = api_type, verbose = verbose) } return(res) } sf_run_bulk_query <- function(soql, object_name = NULL, queryall = FALSE, guess_types = TRUE, bind_using_character_cols = deprecated(), interval_seconds = 3, max_attempts = 200, control = list(...), ..., api_type = c("Bulk 2.0", "Bulk 1.0"), verbose = FALSE){ api_type <- match.arg(api_type) control_args <- return_matching_controls(control) control_args$api_type <- api_type control_args$operation <- if(queryall) "queryall" else "query" if(is_present(bind_using_character_cols)) { deprecate_warn("1.0.0", "salesforcer::sf_run_bulk_query(bind_using_character_cols)", details = paste0("The `bind_using_character_cols` functionality ", "will always be `TRUE` going forward. Per the ", "{readr} package, we have to read as character ", "and then invoke `type_convert()` in order to ", "use all values in a column to guess its type.")) } if(api_type == "Bulk 2.0"){ resultset <- sf_query_bulk_v2(soql = soql, object_name = object_name, queryall = queryall, guess_types = guess_types, interval_seconds = interval_seconds, max_attempts = max_attempts, control = control_args, ..., api_type = api_type, verbose = verbose) } else { resultset <- sf_query_bulk_v1(soql = soql, object_name = object_name, queryall = queryall, guess_types = guess_types, interval_seconds = interval_seconds, max_attempts = max_attempts, control = control_args, ..., api_type = api_type, verbose = verbose) } return(resultset) } sf_query_bulk <- sf_run_bulk_query
bttree <- function(formula, data, na.action, cluster, type = "loglin", ref = NULL, undecided = NULL, position = NULL, ...) { cl <- match.call(expand.dots = TRUE) control <- mob_control(...) btcontrol <- list(type = type, ref = ref, undecided = undecided, position = position) m <- match.call(expand.dots = FALSE) m$fit <- btfit m$control <- control for(n in names(btcontrol)) if(!is.null(btcontrol[[n]])) m[[n]] <- btcontrol[[n]] if("..." %in% names(m)) m[["..."]] <- NULL m[[1L]] <- as.name("mob") rval <- eval(m, parent.frame()) rval$info$call <- cl class(rval) <- c("bttree", class(rval)) return(rval) } btfit <- function(y, x = NULL, start = NULL, weights = NULL, offset = NULL, cluster = NULL, ..., estfun = FALSE, object = FALSE) { if(!(is.null(x) || NCOL(x) == 0L)) warning("x not used") if(!is.null(offset)) warning("offset not used") rval <- btmodel(y, weights = weights, ..., vcov = object) rval <- list( coefficients = rval$coefficients, objfun = -rval$loglik, estfun = if(estfun) estfun.btmodel(rval) else NULL, object = if(object) rval else NULL ) return(rval) } print.bttree <- function(x, title = "Bradley-Terry tree", objfun = "negative log-likelihood", ...) { partykit::print.modelparty(x, title = title, objfun = objfun, ...) } predict.bttree <- function(object, newdata = NULL, type = c("worth", "rank", "best", "node"), ...) { type <- match.arg(type) if(type == "node") return(partykit::predict.modelparty(object, newdata = newdata, type = "node", ...)) if(is.null(newdata)) newdata <- model.frame(object) pred <- switch(type, "worth" = function(obj, ...) rbind(itempar(obj)), "rank" = function(obj, ...) rbind(rank(-itempar(obj))), "best" = function(obj, ...) { wrth <- itempar(obj) factor(names(wrth)[which.max(wrth)], levels = names(wrth)) } ) partykit::predict.modelparty(object, newdata = newdata, type = pred, ...) } plot.bttree <- function(x, terminal_panel = node_btplot, tp_args = list(...), tnex = NULL, drop_terminal = NULL, ...) { if(is.null(tnex)) tnex <- if(is.null(terminal_panel)) 1L else 2L if(is.null(drop_terminal)) drop_terminal <- !is.null(terminal_panel) partykit::plot.modelparty(x, terminal_panel = terminal_panel, tp_args = tp_args, tnex = tnex, drop_terminal = drop_terminal, ...) }
print_progress <- function(iter.times, showpars){ if(!any("show.iters" == names(showpars))) showpars$show.iters <- "numbers" if(!any("showevery" == names(showpars))) showpars$showevery <- 10 iter <- sum(iter.times != 0) assertthat::assert_that( assertthat::is.count(showpars$showevery), length(showpars$show.iters) == 1, showpars$show.iters %in% c("dots", "numbers", "none"), length(showpars$showevery) == 1) if (showpars$show.iters != "none"){ if (iter == 1) cat("\nMOEA/D running: ") if (iter %% showpars$showevery == 0){ if (showpars$show.iters == "dots") cat(".") if (showpars$show.iters == "numbers") cat("\nIteration:", iter, " | Elapsed time:", iter.times[iter], "seconds") } } }
edge_nn <- function(DT = NULL, id = NULL, coords = NULL, timegroup, splitBy = NULL, threshold = NULL, returnDist = FALSE) { N <- NULL if (is.null(DT)) { stop('input DT required') } if (!is.null(threshold)) { if (!is.numeric(threshold)) { stop('threshold must be numeric') } if (threshold <= 0) { stop('threshold must be greater than 0') } } if (is.null(id)) { stop('ID field required') } if (length(coords) != 2) { stop('coords requires a vector of column names for coordinates X and Y') } if (missing(timegroup)) { stop('timegroup required') } if (any(!( c(timegroup, id, coords, splitBy) %in% colnames(DT) ))) { stop(paste0( as.character(paste(setdiff( c(timegroup, id, coords, splitBy), colnames(DT) ), collapse = ', ')), ' field(s) provided are not present in input DT' )) } if (any(!(DT[, vapply(.SD, is.numeric, TRUE), .SDcols = coords]))) { stop('coords must be numeric') } if (!is.null(timegroup)) { if (any(unlist(lapply(DT[, .SD, .SDcols = timegroup], class)) %in% c('POSIXct', 'POSIXlt', 'Date', 'IDate', 'ITime', 'character'))) { warning( strwrap( prefix = " ", initial = "", x = 'timegroup provided is a date/time or character type, did you use group_times?' ) ) } } if (is.null(timegroup) && is.null(splitBy)) { splitBy <- NULL } else { splitBy <- c(splitBy, timegroup) if (DT[, .N, by = c(id, splitBy, timegroup)][N > 1, sum(N)] != 0) { warning( strwrap( prefix = " ", initial = "", x = 'found duplicate id in a timegroup and/or splitBy - does your group_times threshold match the fix rate?' ) ) } } DT[, { distMatrix <- as.matrix(stats::dist(.SD[, 2:3], method = 'euclidean')) diag(distMatrix) <- NA if (is.null(threshold)) { wm <- apply(distMatrix, MARGIN = 2, which.min) } else { distMatrix[distMatrix > threshold] <- NA wm <- apply(distMatrix, MARGIN = 2, function(x) ifelse(sum(!is.na(x)) > 0, which.min(x), NA)) } if (returnDist) { w <- wm + (length(wm) * (as.numeric(names(wm)) - 1)) l <- list(ID = .SD[[1]][as.numeric(names(wm))], NN = .SD[[1]][wm], distance = distMatrix[w]) } else { l <- list(ID = .SD[[1]][as.numeric(names(wm))], NN = .SD[[1]][wm]) } l }, by = splitBy, .SDcols = c(id, coords)] }
"as.membership"<-function(member){ ifelse(is.membership(member), return(member), return(membership(member, K=ncol(member), n=nrow(member)))) }
fun1() fun2() fun3() fun4(1) fun4(1L)
"perform" <- function(data) { k <- 0 for(j in 1:nrow(data)) { k <- k + data[j, j] } total <- sum(data) wrong <- total - k correct <- (k/total) * 100 wrong <- wrong/total * 100 labcol <- c("correct %", "incorrect %") m <- cbind(correct, wrong) dimnames(m) <- list(NULL, labcol) m }
context("lsat_scene_files") ub <- "https://s3-us-west-2.amazonaws.com/landsat-pds/L8" url1 <- paste0(ub, "/010/117/LC80101172015002LGN00/index.html") url2 <- paste0(ub, "/026/039/LC80260392015002LGN00/index.html") test_that("lsat_scene_files, n_max parameter usage", { skip_on_cran() a <- lsat_scene_files(url1) expect_is(a, "data.frame") expect_named(a, c('file', 'size')) expect_is(a$file, "character") expect_is(a$size, "character") b <- lsat_scene_files(url2) expect_is(b, "data.frame") expect_named(b, c('file', 'size')) expect_is(b$file, "character") expect_is(b$size, "character") }) test_that("lsat_scene_files, fails well", { expect_error(lsat_scene_files("asdfadf"), "input needs to be a URL") }) test_that("lsat_scene_files, curl options work", { expect_error(lsat_scene_files(url1, timeout_ms = 10), "Timeout was reached") })
partUtil <- function(obs,query,ncl,th,xcoord='x',ycoord='y',tcoord='t',fac=1.0) { batchTime <- function(range,th,cutoff=0.3){ max <- floor(range/(2*th)) nbin<-seq(2,max) overlap <- 2*th+pmax(nbin-2,0)*2*th pct <- overlap/range if (min(pct)>=0.3){ index <- 1 } else{ index <- max(which(pct<0.3)) } nbin[index] } timeRange <- (range(query[,tcoord],obs[,tcoord],na.rm=T))+c(-1e-10,.001) lonr <- range(query[,xcoord],obs[,xcoord])+c(-1e-10,.001) latr <- range(query[,ycoord],obs[,ycoord])+c(-1e-10,.001) batch.Time <- batchTime(diff(timeRange),th[2]) batch.Space <- ceiling(ncl*fac/batch.Time) batch.X <- ceiling(sqrt(batch.Space)) batch.Y <- ceiling(sqrt(batch.Space)) tstampb <- seq(timeRange[1],timeRange[2],len=batch.Time+1) tsid <- findInterval(query[,tcoord],tstampb) lonb <- seq(lonr[1],lonr[2],len=batch.X+1) latb <- seq(latr[1],latr[2],len=batch.Y+1) lonid <- findInterval(query[,xcoord],lonb) latid <- findInterval(query[,ycoord],latb) query.id <- expand.grid(x=unique(lonid),y=unique(latid),t=unique(tsid)) obsInt <- function(bins,th) { nbatch <- length(bins)-1 tstampo <- cbind(bins[-(nbatch+1)],bins[-1]) tstampo[-1,1]<- tstampo[-1,1]-th tstampo[-(nbatch),2]<- tstampo[-(nbatch),2]+th tstampo } tstampo<- obsInt(tstampb,th[2]) latbo <- obsInt(latb,th[1]) lonbo <- obsInt(lonb,th[1]) findInt <- function(x) { id1 <- which(obs[,tcoord]<tstampo[x[3],2] & obs[,tcoord]>tstampo[x[3],1]) if(length(id1)>0){ tmp <- obs[id1,] id2 <- which(tmp[,xcoord]<lonbo[x[1],2] & tmp[,xcoord]>lonbo[x[1],1]) if(length(id2)>0){ tmp2 <- tmp[id2,] id3 <- which(tmp2[,ycoord]<latbo[x[2],2] & tmp2[,ycoord]>latbo[x[2],1]) if(length(id3)>0){r <- id1[id2[id3]]} else{r <- NULL} } else{ r <- NULL } } else{ r <- NULL } r } tolist <- function(x) { if(class(x)=="list"){ r <- x } else if(is.null(dim(x))){ r <- split(x,seq(along=x)) } else if(length(dim(x))==2){ r <- split(x, rep(1:ncol(x), each = nrow(x))) } else{ stop(x," is not a matrix or vector") } r } query.list <- apply(query.id,1,function(x) which(lonid==x[1]&latid==x[2]&tsid==x[3])) query.list <- tolist(query.list) obs.list <- apply(query.id,1,findInt) obs.list <- tolist(obs.list) nQuery <- sapply(query.list,length) list(query=query.list[nQuery>0],obs=obs.list[nQuery>0]) } partSpUtil <- function(obs,query,ncl,th,xcoord='x',ycoord='y',fac=1.2){ batch.Space <- ceiling(ncl*fac) batch.X <- ceiling(sqrt(batch.Space)) batch.Y <- ceiling(sqrt(batch.Space)) lonr <- range(query[,xcoord])+c(-1e-10,.001) latr <- range(query[,ycoord])+c(-1e-10,.001) lonb <- seq(lonr[1],lonr[2],len=batch.X+1) latb <- seq(latr[1],latr[2],len=batch.Y+1) lonid <- findInterval(query[,xcoord],lonb) latid <- findInterval(query[,ycoord],latb) query.id <- expand.grid(x=unique(lonid),y=unique(latid)) obsInt <- function(bins,th) { nbatch <- length(bins)-1 tstampo <- cbind(bins[-(nbatch+1)],bins[-1]) tstampo[-1,1]<- tstampo[-1,1]-th tstampo[-(nbatch),2]<- tstampo[-(nbatch),2]+th tstampo } latbo <- obsInt(latb,th) lonbo <- obsInt(lonb,th) findInt <- function(x) { id1 <- rep(1:nrow(obs)) if(length(id1)>0){ tmp <- obs[id1,] id2 <- which(tmp[,xcoord]<lonbo[x[1],2] & tmp[,xcoord]>lonbo[x[1],1]) if(length(id2)>0){ tmp2 <- tmp[id2,] id3 <- which(tmp2[,ycoord]<latbo[x[2],2] & tmp2[,ycoord]>latbo[x[2],1]) if(length(id3)>0){r <- id1[id2[id3]]} else{r <- NULL} } else{ r <- NULL } } else{ r <- NULL } r } tolist <- function(x) { if(class(x)=="list"){ r <- x } else if(is.null(dim(x))){ r <- split(x,seq(along=x)) } else if(length(dim(x))==2){ r <- split(x, rep(1:ncol(x), each = nrow(x))) } else{ stop(x," is not a matrix or vector") } r } query.list <- apply(query.id,1,function(x) which(lonid==x[1]&latid==x[2])) query.list <- tolist(query.list) obs.list <- apply(query.id,1,findInt) obs.list <- tolist(obs.list) nQuery <- sapply(query.list,length) list(query=query.list[nQuery>0],obs=obs.list[nQuery>0]) }
NULL setMethod("dbGetInfo", signature("DBIMockConnection"), function(dbObj, ...) { path <- make_path(dbObj@path, "conInfo", "") return(read_file(find_file(path))) }) setMethod( "dbWriteTable", signature("DBIMockConnection", "character", "data.frame"), function(conn, name, value, ...) return(TRUE) ) setMethod( "dbRemoveTable", signature("DBIMockConnection", "character"), function(conn, name, ...) return(TRUE) ) setMethod("dbColumnInfo", signature("DBIMockResult"), function(res, ...) { path <- make_path(res@path, "columnInfo", res@hash) return(read_file(find_file(path))) }) setMethod("dbGetInfo", signature("DBIMockResult"), function(dbObj, ...) { path <- make_path(dbObj@path, "resultInfo", dbObj@hash) return(read_file(find_file(path))) })
create_test_treelog <- function( filename = create_temp_treelog_filename(), log_every = 1000, mode = "tree", sanitise_headers = FALSE, sort = "none" ) { beautier::create_treelog( filename = filename, log_every = log_every, mode = mode, sanitise_headers = sanitise_headers, sort = sort ) }
expected <- eval(parse(text="c(11354, 11382, 11413)")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(11354, 11382, 11413), class = \"Date\"))")); do.call(`xtfrm`, argv); }, o=expected);
output$doc_info <- shiny::renderText({ display_document_info(session_variables$data_day, min_rad) })
knitr::opts_chunk$set( collapse = TRUE, comment = " message=FALSE, warning=FALSE ) library(igraph) library(signnet) el <- matrix(c(1,"a",1,"b",1,"c",2,"a",2,"b"),ncol = 2,byrow = TRUE) g <- graph_from_edgelist(el,directed = FALSE) E(g)$sign <- c(1,1,-1,1,-1) V(g)$type <- c(FALSE,TRUE,TRUE,TRUE,FALSE) knitr::include_graphics("small_signed2mode.png") A <- as_incidence_signed(g) R <- A%*%t(A) C <- t(A)%*%A R C gu <- as_unsigned_2mode(g,primary = TRUE) gu pu <- bipartite_projection(gu,which = "true") pu <- delete_edge_attr(pu,"weight") pu ps <- as_signed_proj(pu) as_data_frame(ps,"edges")
table2x2 <- function(x,digits=1,stats=c("table","rd","rr","or","chisq","fisher")){ if (class(x)[1]=="data.frame"){ table2x2 <- as.matrix(x) } else{ if ("matrix"%in%class(x)||"table" %in% class(x)){ if ("table"%in%class(x)){table2x2 <- as.matrix(x)} else table2x2 <- x } else{ stop("first argument `x' must be a matrix or a data.frame") } } if (NROW(x)!=2) stop("Matrix must have exactly 2 rows") if (NCOL(x)!=2) stop("Matrix must have exactly 2 columns") a <- table2x2[1,1] b <- table2x2[1,2] c <- table2x2[2,1] d <- table2x2[2,2] p1 <- a/(a+b) p2 <- c/(c+d) out <- list(table2x2=table2x2,stats=stats) if ("rd" %in% stats){ rd <- (p1-p2) se.rd <- sqrt(p1*(1-p1)/(a+b)+p2*(1-p2)/(c+d)) rd.lower <- rd - qnorm(1-0.05/2)*se.rd rd.upper <- rd + qnorm(1-0.05/2)*se.rd out <- c(out,list(rd=rd,se.rd=se.rd,rd.lower=rd.lower,rd.upper=rd.upper)) } if ("rr" %in% stats){ rr <- p1/p2 se.rr <- sqrt((1-p1)/a+(1-p2)/c) rr.lower <- rr * exp(- qnorm(1-0.05/2) * se.rr) rr.upper <- rr * exp( qnorm(1-0.05/2) * se.rr) out <- c(out,list(rr=rr,se.rr=rr,rr.lower=rr.lower,rr.upper=rr.upper)) } if ("or" %in% stats){ or <- (a*d)/(b*c) se.or <- sqrt(1/a+1/b+1/c+1/d) or.lower <- exp(log(or) - qnorm(1-0.05/2)*se.or) or.upper <- exp(log(or) + qnorm(1-0.05/2)*se.or) out <- c(out,list(or=or,se.or=se.or,or.lower=or.lower,or.upper=or.upper)) } class(out) <- "table2x2" out }
dlc <- function(X, maxk) { n <- dim(X)[1] D <- matrix(0, n, n) rownames(D) <- 1:n colnames(D) <- 1:n result <- sapply(1:(n - 1), function(x) dia(X, x, n)) result <- do.call("c", result) D[lower.tri(D)] <- result D <- t(D) D[lower.tri(D)] <- result L <- matrix(0, n - 1, maxk - 1) rownames(L) <- 2:n colnames(L) <- 2:maxk C <- matrix(0, n - 1, maxk - 1) rownames(C) <- 2:n colnames(C) <- 2:maxk diag(C) <- 2:maxk lc <- sapply( 3:n, function(x) { c( min(D[1, 1:(x - 1)] + D[2:x, x]), which.min(D[1, 1:(x - 1)] + D[2:x, x])[1] + 1 ) } ) L[as.character(3:n), "2"] <- lc[1, ] C[as.character(3:n), "2"] <- lc[2, ] for (j in 3:maxk) { lc <- sapply( (j + 1):n, function(x) { c( min(L[(j:x) - 2, j - 2] + D[j:x, x]), which.min(L[(j:x) - 2, j - 2] + D[j:x, x])[1] + j - 1 ) } ) L[as.character((j + 1):n), as.character(j)] <- lc[1, ] C[as.character((j + 1):n), as.character(j)] <- lc[2, ] } list("D" = D, "L" = L, "C" = C) }
null_permute <- function(var) { function(df) { df[[var]] <- sample(df[[var]]) df } }
context("Test integral scores") test_that("Expected sample size is computed correctly",{ null <- PointMassPrior(.0, 1) alternative <- PointMassPrior(.4, 1) dist <- Normal() design_rp2 <- rpact::getDesignInverseNormal( kMax = 2, alpha = 0.05, beta = 0.2, futilityBounds = 0, typeOfDesign = "P") res <- rpact::getSampleSizeMeans( design_rp2, normalApproximation = TRUE, alternative = .4) char <- rpact::getDesignCharacteristics(design_rp2) n1 <- res$numberOfSubjects1[1, 1] n2 <- res$numberOfSubjects1[2, 1] - n1 c1f <- qnorm(char$futilityProbabilities) + sqrt(res$numberOfSubjects1[1]) * .4 / sqrt(2) c1e <- design_rp2$criticalValues[1] f <- function(z){ w1 <- 1 / sqrt(2) w2 <- sqrt(1 - w1^2) out <- (design_rp2$criticalValues[2] - w1 * z) / w2 return(out) } x <- adoptr:::GaussLegendreRule(5)$nodes h <- (c1e - c1f) / 2 x <- h * x + (h + c1f) design_gs <<- TwoStageDesign( n1, c1f, c1e, rep(n2, 5), sapply(x, f)) sim_alt <<- simulate( design_gs, nsim = 1e4, dist = Normal(), theta = .4, seed = 59) sim_null <<- simulate( design_gs, nsim = 1e4, dist = Normal(), theta = .0, seed = 59) expect_equal( res$expectedNumberOfSubjectsH1/2, evaluate(ExpectedSampleSize(dist, alternative), design_gs, optimization = TRUE), tolerance = .1, scale = 1) expect_equal( res$expectedNumberOfSubjectsH1/2, evaluate(ExpectedSampleSize(dist, alternative), design_gs, specific = FALSE, optimization = TRUE), tolerance = .1, scale = 1) expect_equal( res$expectedNumberOfSubjectsH1/2, evaluate(expected(ConditionalSampleSize(), dist, null), design_gs, optimization = TRUE), tolerance = .1, scale = 1) expect_equal( res$expectedNumberOfSubjectsH0/2, evaluate(expected(ConditionalSampleSize(), dist, null), design_gs, specific = FALSE, optimization = TRUE), tolerance = .1, scale = 1) }) test_that("Power is computed correctly for example design", { pow <- Power(Normal(), PointMassPrior(.4, 1)) expect_equal( evaluate(pow, design_gs), .8, tolerance = 1e-2, scale = 1) expect_equal( evaluate(pow, design_gs, specific = FALSE), .8, tolerance = 1e-2, scale = 1) expect_equal( mean(sim_alt[, "reject"]), .8, tolerance = 1e-2, scale = 1) }) test_that("Type one error is computed correctly for example design", { toer <- Power(Normal(), PointMassPrior(.0, 1)) expect_equal( evaluate(toer, design_gs), .05, tolerance = 1e-3, scale = 1) expect_equal( evaluate(toer, design_gs, specific = FALSE), .05, tolerance = 1e-3, scale = 1) expect_equal( mean(sim_null[, "reject"]), .05, tolerance = 1e-3, scale = 1) })
cv.npmr <- function(X, Y, lambda = exp(seq(7, -2)), s = 0.1/max(X), eps = 1e-6, group = NULL, accelerated = TRUE, B.init = NULL, b.init = NULL, foldid = NULL, nfolds = 10) { if (is.null(dim(Y))) { colnames = sort(unique(Y)) Y = model.matrix(~ as.factor(Y) - 1) colnames(Y) = colnames } if (is.null(foldid)) foldid = sample(rep(1:nfolds, length = nrow(X))) nfolds = length(unique(foldid)) if (nrow(X) != nrow(Y)) { stop('X and Y do not have matching numbers of observations') } else if (nrow(X) != length(foldid)) { stop('X and foldid do not have matching numbers of observations') } error = matrix(NA, nfolds, length(lambda)) for (fold in unique(foldid)) { fit = npmr(X[foldid != fold, ], Y[foldid != fold, ], lambda, s = s, eps = eps, group = group, accelerated = accelerated, B.init = B.init, b.init = b.init) for (l in 1:length(lambda)) { error[sort(unique(foldid)) == fold, l] = sum(-log(rowSums(predict(fit, X[foldid == fold, ])[, , l]* Y[foldid == fold, ]))) } } lambda.min = lambda[which.min(colSums(error))] if (lambda.min == min(lambda)) { warning('lambda chosen through CV is smallest lambda') } else if (lambda.min == max(lambda)) { warning('lambda chosen through CV is largest lambda') } fit = list(call = match.call(), error = colSums(error), fit = npmr(X, Y, lambda.min, s = s, eps = eps, group = group, accelerated = accelerated, B.init = B.init, b.init = b.init), lambda.min = lambda.min, lambda = lambda, n = nrow(X)) class(fit) = "cv.npmr" return(fit) }
Tarone.test <- function(N, M) { if(!(all(N == as.integer(N)))) { stop("Error: Number of trials should be integers"); } if(min(N) < 1) { stop("Error: Number of trials should be positive"); } if(!(all(M == as.integer(M)))) { stop("Error: Count values should be integers"); } if(min(M) < 0) { stop("Error: Count values cannot be negative"); } if(any(M > N)) { stop("Error: Observed count value exceeds number of trials"); } method <- "Tarone's Z test"; data.name <- paste0(deparse(substitute(M)), " successes from ", deparse(substitute(N)), " trials"); null.value <- 0; attr(null.value, "names") <- "dispersion parameter"; alternative <- "greater"; estimate <- sum(M)/sum(N); attr(estimate, "names") <- "proportion parameter"; S <- ifelse(estimate == 1, sum(N), sum((M - N*estimate)^2/(estimate*(1 - estimate)))); statistic <- (S - sum(N))/sqrt(2*sum(N*(N-1))); attr(statistic, "names") <- "z"; p.value <- 2*pnorm(-abs(statistic), 0, 1); attr(p.value, "names") <- NULL; TEST <- list(method = method, data.name = data.name, null.value = null.value, alternative = alternative, estimate = estimate, statistic = statistic, p.value = p.value); class(TEST) <- "htest"; TEST; }
NULL latin_square <- function(n, randomise = TRUE) { out <- matrix(nrow = n, ncol = n) out[1,] <- if(randomise) sample(1:n) else 1:n for(i in 2:n) { out[i,] <- lag_vector(out[i - 1, ]) } if(randomise) { out <- out[, sample(1:n)] out <- out[sample(1:n), ] } out } latin_rectangle <- function(nr, nc, nt, randomise = TRUE) { r1 <- ceiling(nr/nt) r2 <- ceiling(nc/nt) out <- do.call("rbind", lapply(1:r1, function(i) { do.call("cbind", lapply(1:r2, function(j) { latin_square(nt, randomise = randomise) } )) })) out <- out[1:nr, 1:nc] res1 <- apply(out, 1, function(x) table(factor(x, 1:nt))) res2 <- apply(out, 2, function(x) table(factor(x, 1:nt))) diff1 <- apply(res1, 2, function(x) max(x) - min(x)) diff2 <- apply(res2, 2, function(x) max(x) - min(x)) if(randomise && (any(diff1 > 1) | any(diff2 > 1))) return(latin_rectangle(nr, nc, nt, randomise)) out } latin_array <- function(dim, nt, randomise = TRUE) { ndim <- length(dim) if(ndim == 2) return(latin_rectangle(dim[1], dim[2], nt, randomise)) r <- ceiling(dim[ndim]/nt) dim_ext <- c(dim[-ndim], r * nt) out <- array(dim = dim_ext) out <- assign_array(out, 1, 1, latin_array(dim_ext[-1], nt, randomise)) for(i in 2:dim[1]) { out <- assign_array(out, 1, i, lag_array(index_array(out, 1, i - 1), 1)) } if(randomise) { for(i in seq_along(dim[-ndim])) { out <- sample_array(out, i) } } out } lag_vector <- function(x) { x[c(2:length(x), 1L)] } lag_array <- function(array, i) { da <- dim(array) index <- lapply(seq(length(da)), function(x) bquote()) index[[i]] <- c(2:da[i], 1L) do.call("[", c(list(array), index)) } assign_array <- function(array, m, i, value) { da <- dim(array) index <- lapply(seq(length(da)), function(x) ifelse(x %in% m, i, bquote())) do.call("[<-", c(list(array), index, list(value))) } sample_array <- function(array, i) { da <- dim(array) index <- lapply(seq(length(da)), function(x) if(x==i) sample(1:da[i]) else bquote()) do.call("[", c(list(array), index)) } index_array <- function(array, m, i) { da <- dim(array) index <- lapply(seq(length(da)), function(x) if(x %in% m) i else bquote()) do.call("[", c(list(array), index)) }
test_that("exb_to_df", { file_name <- system.file("extdata", "test.exb", package = "phonfieldwork") df1 <- exb_to_df(file_name) expect_true(nrow(df1) == 8) })
initialize.icm <- function(param, init, control) { dat <- list() dat$param <- param dat$init <- init dat$control <- control dat$attr <- list() numeric.init <- init[which(sapply(init, class) == "numeric")] n <- do.call("sum", numeric.init) dat$attr$active <- rep(1, n) if (dat$param$groups == 1) { dat$attr$group <- rep(1, n) } else { g2inits <- grep(".g2", names(numeric.init)) g1inits <- setdiff(1:length(numeric.init), g2inits) nG1 <- sum(sapply(g1inits, function(x) init[[x]])) nG2 <- sum(sapply(g2inits, function(x) init[[x]])) dat$attr$group <- c(rep(1, nG1), rep(2, max(0, nG2))) } dat <- init_status.icm(dat) dat <- do.call(control[["prevalence.FUN"]], list(dat, at = 1)) return(dat) } init_status.icm <- function(dat) { type <- dat$control$type group <- dat$attr$group nGroups <- dat$param$groups nG1 <- sum(group == 1) nG2 <- sum(group == 2) i.num <- dat$init$i.num r.num <- dat$init$r.num i.num.g2 <- dat$init$i.num.g2 r.num.g2 <- dat$init$r.num.g2 status <- rep("s", nG1 + nG2) status[sample(which(group == 1), size = i.num)] <- "i" if (nGroups == 2) { status[sample(which(group == 2), size = i.num.g2)] <- "i" } if (type == "SIR") { status[sample(which(group == 1 & status == "s"), size = r.num)] <- "r" if (nGroups == 2) { status[sample(which(group == 2 & status == "s"), size = r.num.g2)] <- "r" } } dat$attr$status <- status idsInf <- which(status == "i") infTime <- rep(NA, length(status)) if (dat$param$vital == TRUE && dat$param$di.rate > 0) { infTime[idsInf] <- -rgeom(n = length(idsInf), prob = dat$param$di.rate) + 2 } else { if (dat$control$type == "SI" || dat$param$rec.rate == 0) { infTime[idsInf] <- ssample(1:(-dat$control$nsteps + 2), length(idsInf), replace = TRUE) } else { if (nGroups == 1) { infTime[idsInf] <- ssample(1:(-round(1 / dat$param$rec.rate) + 2), length(idsInf), replace = TRUE) } if (nGroups == 2) { infG1 <- which(status == "i" & group == 1) infTime[infG1] <- ssample(1:(-round(1 / dat$param$rec.rate) + 2), length(infG1), replace = TRUE) infG2 <- which(status == "i" & group == 2) infTime[infG2] <- ssample(1:(-round(1 / dat$param$rec.rate.g2) + 2), length(infG2), replace = TRUE) } } } dat$attr$infTime <- infTime return(dat) }
lognormal_error_checks <- function(effect_vals, hist_control_data, rand_control_diff, censor_value, alpha) { hist_chk <- class(hist_control_data) rcp_chk <- is.null(rand_control_diff) for (eff_val in effect_vals) { if (!is.numeric(eff_val)) stop("historic_sim() requires effect_vals to be numeric.") if (eff_val <= 0) stop("For Lognormal, historic_sim() requires effect_vals to represent Mean Ratios which must be positive numbers") } if (hist_chk == "data.frame") { colnamevals <- colnames(hist_control_data) colnamechk <- (colnamevals == c("id", "treatment", "event_time", "status")) if (sum(colnamechk) != 4) { stop("historic_sim() requires hist_control_data to have columns: id, treatment, event_time, and status.") } if (sum(colnamechk) == 4) { if (!is.numeric(hist_control_data$event_time)) { stop("historic_sim() requires hist_control_data$event_time to be positive numeric data.") } if (is.numeric(hist_control_data$event_time)) { if (min(hist_control_data$event_time) <= 0) { stop("historic_sim() requires hist_control_data$event_time to be positive numeric data.") } } if (!is.numeric(hist_control_data$treatment)) { stop("historic_sim() requires hist_control_data$treatment to be numeric 0/1 data.") } if (is.numeric(hist_control_data$treatment)) { trt_levels <- names(table(hist_control_data$treatment)) if (length(trt_levels) > 2 | (trt_levels[1] != "0" & trt_levels[2] != "1")) { stop("historic_sim() requires hist_control_data$treatment to be numeric 0/1 data.") } } if (!is.numeric(hist_control_data$status)) { stop("historic_sim() requires hist_control_data$status to be numeric 0/1 data.") } if (is.numeric(hist_control_data$status)) { trt_levels <- names(table(hist_control_data$status)) if (length(trt_levels) > 2 | (trt_levels[1] != "0" & trt_levels[2] != "1")) { stop("historic_sim() requires hist_control_data$status to be numeric 0/1 data.") } } } } if (rcp_chk == FALSE) { for (rand_cp in rand_control_diff) { if (!is.numeric(rand_cp)) stop("historic_sim() requires rand_control_diff to be numeric.") if (rand_cp <= 0) stop("historic_sim() requires rand_control_diff to be Mean Ratios, so they must be positive.") } } if (!is.null(censor_value) == TRUE) { if (!is.numeric(censor_value)) stop("historic_sim() requires censor_value to be numeric.") if (censor_value <= 0) stop("historic_sim() requires censor_value to be positive.") } if (!is.null(alpha) == TRUE) { if (!is.numeric(alpha)) stop("historic_sim() requires alpha to be numeric.") if (alpha <= 0 | alpha >= 1) stop("historic_sim() requires alpha to be between 0 and 1 but not equal to 0 or 1.") } } lognormal_error_checks_simple <- function(effect_vals, control_parms, censor_value, alpha) { chk_parm_lgth <- length(control_parms) for (eff_val in effect_vals) { if (!is.numeric(eff_val)) stop("simple_sim() requires effect_vals to be numeric.") if (eff_val <= 0) stop("For Lognormal, simple_sim() requires effect_vals to represent Mean Ratios which must be positive numbers") } if (chk_parm_lgth != 2) { stop("simple_sim() requires two elements in control_parms, first=Lognormal mu parameter for rlnorm(), second= Lognormal sd parameter for rlnorm()") } if (chk_parm_lgth == 2) { if (!is.numeric(control_parms[1])) stop("simple_sim() requires Lognormal mu parameter for controls to be numeric.") if (!is.numeric(control_parms[2])) stop("simple_sim() requires Lognormal sd parameter for controls to be numeric.") if (control_parms[2] <= 0) stop("simple_sim() requires Lognormal sd parameter for controls to be positive.") } if (!is.null(censor_value) == TRUE) { if (!is.numeric(censor_value)) stop("simple_sim() requires censor_value to be numeric.") if (censor_value <= 0) stop("simple_sim() requires censor_value to be positive.") } if (!is.null(alpha) == TRUE) { if (!is.numeric(alpha)) stop("simple_sim() requires alpha to be numeric.") if (alpha <= 0 | alpha >= 1) stop("simple_sim() requires alpha to be between 0 and 1 but not equal to 0 or 1.") } }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(textrecipes) library(tokenizers) abc <- c("The Bank is a place where you put your money;", "The Bee is an insect that gathers honey.") tokenize_words(abc) tokenize_ngrams(abc, n = 2) tokenize_ngrams(abc, n = 3) tokenize_ngrams(abc, n = 1) tokenize_ngrams(abc, n = 3, ngram_delim = "_") abc_tibble <- tibble(text = abc) rec <- recipe(~ text, data = abc_tibble) %>% step_tokenize(text, token = "ngrams") %>% step_tokenfilter(text) %>% step_tf(text) abc_ngram <- rec %>% prep() %>% juice() abc_ngram names(abc_ngram) abc_tibble <- tibble(text = abc) rec <- recipe(~ text, data = abc_tibble) %>% step_tokenize(text, token = "ngrams", options = list(n = 2, ngram_delim = "_")) %>% step_tokenfilter(text) %>% step_tf(text) abc_ngram <- rec %>% prep() %>% juice() abc_ngram names(abc_ngram) abc_tibble <- tibble(text = abc) bigram <- function(x) { tokenizers::tokenize_ngrams(x, lowercase = FALSE, n = 2, ngram_delim = ".") } rec <- recipe(~ text, data = abc_tibble) %>% step_tokenize(text, custom_token = bigram) %>% step_tokenfilter(text) %>% step_tf(text) abc_ngram <- rec %>% prep() %>% juice() abc_ngram names(abc_ngram) abc_tibble <- tibble(text = abc) rec <- recipe(~ text, data = abc_tibble) %>% step_tokenize(text) %>% step_ngram(text, num_tokens = 3) %>% step_tokenfilter(text) %>% step_tf(text) abc_ngram <- rec %>% prep() %>% juice() abc_ngram names(abc_ngram) abc_tibble <- tibble(text = abc) rec <- recipe(~ text, data = abc_tibble) %>% step_tokenize(text) %>% step_stem(text) %>% step_ngram(text, num_tokens = 3) %>% step_tokenfilter(text) %>% step_tf(text) abc_ngram <- rec %>% prep() %>% juice() abc_ngram names(abc_ngram)
contextmenuDependency <- function() { list( htmltools::htmlDependency( "lfx-contextmenu", version = "1.0.0", src = system.file("htmlwidgets/lfx-contextmenu", package = "leaflet.extras2"), script = c("leaflet.contextmenu.js", "leaflet.contextmenu-bindings.js"), stylesheet = "leaflet.contextmenu.css" ) ) } addContextmenu <- function(map) { map$dependencies <- c(map$dependencies, contextmenuDependency()) leaflet::invokeMethod(map, NULL, "addContextmenu") } showContextmenu <- function(map, lat=NULL, lng=NULL, data=leaflet::getMapData(map)) { pts <- leaflet::derivePoints(data, lng, lat, missing(lng), missing(lat), "showContextmenu") leaflet::invokeMethod(map, NULL, "showContextmenu", pts) } hideContextmenu <- function(map) { leaflet::invokeMethod(map, NULL, "hideContextmenu") } addItemContextmenu <- function(map, option) { if (utils::packageVersion("leaflet") < "2.0.4") { warning("The `addItemContextmenu` function requires leaflet `2.0.4` to correctly register callbacks.") } leaflet::invokeMethod(map, NULL, "addItemContextmenu", option) } insertItemContextmenu <- function(map, option, index) { if (utils::packageVersion("leaflet") < "2.0.4") { warning("The `insertItemContextmenu` function requires leaflet `2.0.4` to correctly register callbacks.") } leaflet::invokeMethod(map, NULL, "insertItemContextmenu", option, index) } removeItemContextmenu <- function(map, index) { leaflet::invokeMethod(map, NULL, "removeItemContextmenu", index) } setDisabledContextmenu <- function(map, index, disabled=TRUE) { leaflet::invokeMethod(map, NULL, "setDisabledContextmenu", index, disabled) } removeallItemsContextmenu <- function(map) { leaflet::invokeMethod(map, NULL, "removeallItemsContextmenu") } menuItem <- function(text, callback=NULL, ...) { list(text=text, callback=leaflet::JS(callback), ...) } mapmenuItems <- function(...) { list(...) } markermenuItems <- function(...) { list(list(...)) }
NULL fit_hrg <- function(graph, hrg=NULL, start=FALSE, steps=0) { if (!is_igraph(graph)) { stop("Not a graph object") } if (is.null(hrg)) { hrg <- list(left=c(), right=c(), prob=c(), edges=c(), vertices=c()) } hrg <- lapply(hrg[c("left","right","prob","edges","vertices")], as.numeric) start <- as.logical(start) steps <- as.integer(steps) on.exit( .Call(C_R_igraph_finalizer) ) res <- .Call(C_R_igraph_hrg_fit, graph, hrg, start, steps) if (igraph_opt("add.vertex.names") && is_named(graph)) { res$names <- V(graph)$name } class(res) <- "igraphHRG" res } consensus_tree <- consensus_tree hrg <- hrg hrg_tree <- hrg_tree sample_hrg <- sample_hrg predict_edges <- function(graph, hrg=NULL, start=FALSE, num.samples=10000, num.bins=25) { if (!is_igraph(graph)) { stop("Not a graph object") } if (is.null(hrg)) { hrg <- list(left=c(), right=c(), prob=c(), edges=c(), vertices=c()) } hrg <- lapply(hrg[c("left","right","prob","edges","vertices")], as.numeric) start <- as.logical(start) num.samples <- as.integer(num.samples) num.bins <- as.integer(num.bins) on.exit( .Call(C_R_igraph_finalizer) ) res <- .Call(C_R_igraph_hrg_predict, graph, hrg, start, num.samples, num.bins) res$edges <- matrix(res$edges, ncol=2, byrow=TRUE) class(res$hrg) <- "igraphHRG" res } as.igraph <- function(x, ...) UseMethod("as.igraph") as.igraph.igraphHRG <- function(x, ...) { ovc <- length(x$left)+1L ivc <- ovc-1L ll <- ifelse(x$left < 0, -x$left + ovc, x$left + 1) rr <- ifelse(x$right < 0, -x$right + ovc, x$right + 1) edges <- c(rbind(seq_len(ivc)+ovc, ll), rbind(seq_len(ivc)+ovc, rr)) res <- graph(edges) V(res)$name <- c(if (!is.null(x$names)) x$names else as.character(1:ovc), paste0("g", 1:ivc)) V(res)$prob <- c(rep(NA, ovc), x$prob) res$name <- "Fitted HRG" res } buildMerges <- function(object) { S <- numeric() vcount <- length(object$left)+1 nMerge <- vcount-1 merges <- matrix(0, nrow=vcount-1, ncol=3) mptr <- 1 S[length(S)+1] <- -1 prev <- NULL while (length(S) != 0) { curr <- S[length(S)] if (is.null(prev) || (prev < 0 && object$left[-prev] == curr) || (prev < 0 && object$right[-prev] == curr)) { if (curr < 0) { S <- c(S, object$left[-curr]) } } else if (curr < 0 && object$left[-curr] == prev) { S <- c(S, object$right[-curr]) } else { if (curr < 0) { merges[mptr,] <- c(object$left[-curr], object$right[-curr], curr) mptr <- mptr + 1 } S <- S[-length(S)] } prev <- curr } merges } as.dendrogram.igraphHRG <- function(object, hang=0.01, ...) { nMerge <- length(object$left) merges <- buildMerges(object) .memberDend <- function(x) { r <- attr(x,"x.member") if(is.null(r)) { r <- attr(x,"members") if(is.null(r)) r <- 1:1 } r } oHgt <- 1:nrow(merges) hMax <- oHgt[length(oHgt)] mynames <- if (is.null(object$names)) 1:(nMerge+1) else object$names z <- list() for (k in 1:nMerge) { x <- merges[k,1:2] if (any(neg <- x >= 0)) { h0 <- if (hang < 0) 0 else max(0, oHgt[k] - hang * hMax) } if (all(neg)) { zk <- as.list(x+1) attr(zk, "members") <- 2L attr(zk, "midpoint") <- 1/2 objlabels <- mynames[x+1] attr(zk[[1]], "label") <- objlabels[1] attr(zk[[2]], "label") <- objlabels[2] attr(zk[[1]], "members") <- attr(zk[[2]], "members") <- 1L attr(zk[[1]], "height") <- attr(zk[[2]], "height") <- h0 attr(zk[[1]], "leaf") <- attr(zk[[2]], "leaf") <- TRUE } else if (any(neg)) { X <- paste0("g", -x) isL <- x[1] >= 0 zk <- if (isL) list(x[1]+1, z[[X[2]]]) else list(z[[X[1]]], x[2]+1) attr(zk, "members") <- attr(z[[X[1+isL]]], "members") + 1L attr(zk, "midpoint") <- (.memberDend(zk[[1]]) + attr(z[[X[1+isL]]], "midpoint"))/2 attr(zk[[2 - isL]], "members") <- 1L attr(zk[[2 - isL]], "height") <- h0 attr(zk[[2 - isL]], "label") <- mynames[x[2 - isL]+1] attr(zk[[2 - isL]], "leaf") <- TRUE } else { X <- paste0("g", -x) zk <- list(z[[X[1]]], z[[X[2]]]) attr(zk, "members") <- attr(z[[X[1]]], "members") + attr(z[[X[2]]], "members") attr(zk, "midpoint") <- (attr(z[[X[1]]], "members") + attr(z[[X[1]]], "midpoint") + attr(z[[X[2]]], "midpoint"))/2 } attr(zk, "height") <- oHgt[k] z[[k <- paste0("g", -merges[k,3])]] <- zk } z <- z[[k]] class(z) <- "dendrogram" z } as.hclust.igraphHRG <- function(x, ...) { merge3 <- buildMerges(x) map <- order(-merge3[,3]) merge <- merge3[,1:2] gs <- which(merge < 0) merge[ gs] <- map[ -merge[gs] ] merge[-gs] <- -merge[-gs]-1 map2 <- numeric(nrow(merge)) mergeInto <- merge for (i in 1:nrow(merge)) { mr <- mergeInto[i,] mr[mr > 0] <- -map2[mr[mr>0]] mergeInto[i,] <- -mr map2[i] <- -mr[1] } n <- nrow(merge)+1 hcass <- .C("igraphhcass2", n=as.integer(n), ia=as.integer(mergeInto[,1]), ib=as.integer(mergeInto[,2]), order=integer(n), iia=integer(n), iib=integer(n)) mynames <- if (is.null(x$names)) 1:n else x$names res <- list(merge=merge, height=1:nrow(merge), order=hcass$order, labels=mynames, method=NA_character_, dist.method=NA_character_) class(res) <- "hclust" res } as_phylo.igraphHRG <- function(x, ...) { ovc <- length(x$left)+1L ivc <- ovc-1L ll <- ifelse(x$left < 0, -x$left + ovc, x$left + 1) rr <- ifelse(x$right < 0, -x$right + ovc, x$right + 1) edge <- matrix(rbind(seq_len(ivc)+ovc, ll, seq_len(ivc)+ovc, rr), ncol=2, byrow=TRUE) edge.length <- rep(0.5, nrow(edge)) labels <- if (is.null(x$names)) 1:ovc else x$names obj <- list(edge=edge, edge.length=edge.length/2, tip.label=labels, Nnode=ivc) class(obj) <- "phylo" reorder(obj) } plot_dendrogram.igraphHRG <- function(x, mode=igraph_opt("dend.plot.type"), ...) { if (mode=="auto") { have_ape <- requireNamespace("ape", quietly = TRUE) mode <- if (have_ape) "phylo" else "hclust" } if (mode=="hclust") { hrgPlotHclust(x, ...) } else if (mode=="dendrogram") { hrgPlotDendrogram(x, ...) } else if (mode=="phylo") { hrgPlotPhylo(x, ...) } } hrgPlotHclust <- function(x, rect=0, colbar=rainbow(rect), hang=.01, ann=FALSE, main="", sub="", xlab="", ylab="", ...) { hc <- as.hclust(x) ret <- plot(hc, hang=hang, ann=ann, main=main, sub=sub, xlab=xlab, ylab=ylab, ...) if (rect > 0) { rect.hclust(hc, k=rect, border=colbar) } invisible(ret) } hrgPlotDendrogram <- function(x, ...) { plot(as.dendrogram(x), ...) } hrgPlotPhylo <- function(x, colbar=rainbow(11, start=.7, end=.1), edge.color=NULL, use.edge.length=FALSE, ...) { vc <- length(x$left)+1 phy <- as_phylo(x) br <- seq(0,1,length=length(colbar)) ; br[1] <- -1 cc <- as.integer(cut(x$prob[phy$edge[,1] - vc], breaks=br)) if (is.null(edge.color)) { edge.color <- colbar[cc] } plot(phy, edge.color=edge.color, use.edge.length=use.edge.length, ...) } print.igraphHRG <- function(x, type=c("auto", "tree", "plain"), level=3, ...) { type <- igraph.match.arg(type) if (type=="auto") { type <- if (length(x$left <= 100)) "tree" else "plain" } if (type=="tree") { return(print1.igraphHRG(x, level=level, ...)) } else { return(print2.igraphHRG(x, ...)) } } print1.igraphHRG <- function(x, level=3, ...) { cat(sep="", "Hierarchical random graph, at level ", level, ":\n") .depth <- function(b, l) { l[2] <- max(l[2], nchar(format(x$prob[b], digits=2))) if (l[1]==level) { return(l) } if (x$left[b] < 0 && x$right[b] < 0) { l1 <- .depth(-x$left[b], c(l[1]+1, l[2])) l2 <- .depth(-x$right[b], c(l[1]+1, l[2])) return(pmax(l1,l2)) } if (x$left[b] < 0) { return(.depth(-x$left[b], c(l[1]+1, l[2]))) } if (x$right[b] < 0) { return(.depth(-x$right[b], c(l[1]+1, l[2]))) } return(l) } cs <- .depth(1, c(1, 0)) pw <- cs[2] cs <- cs[1] * 3 vw <- nchar(as.character(length(x$left)+1)) sp <- paste(collapse="", rep(" ", cs+pw+2+2)) nn <- if (is.null(x$names)) seq_len(length(x$left)+1) else x$names .children <- function(b) { res <- c() if (x$left[b] < 0) { res <- c(res, .children(-x$left[b])) } else { res <- c(x$left[b]+1, res) } if (x$right[b] < 0) { res <- c(res, .children(-x$right[b])) } else { res <- c(x$right[b]+1, res) } return(res) } .plot <- function(b, l, ind = "") { if (b != 1) { he <- format(paste(sep="", ind, "'- g", b), width=cs) ind <- paste(" ", ind) } else { he <- format(paste(sep="", ind, "g", b), width=cs) } gol <- x$left[b] < 0 && l < level gor <- x$right[b] < 0 && l < level ch1 <- character() if (!gol && x$left[b] < 0) { ch1 <- c(ch1, paste(sep="", "g", -x$left[b])) } if (!gor && x$right[b] < 0) { ch1 <- c(ch1, paste(sep="", "g", -x$right[b])) } ch2 <- numeric() if (!gol) { if (x$left[b] < 0) { ch2 <- c(ch2, .children(-x$left[b])) } if (x$left[b] >= 0) { ch2 <- c(ch2, x$left[b] + 1) } } if (!gor) { if (x$right[b] < 0) { ch2 <- c(ch2, .children(-x$right[b])) } if (x$right[b] >= 0) { ch2 <- c(ch2, x$right[b] + 1) } } ch2 <- as.character(nn[ch2]) lf <- gsub(" ", "x", format(ch2, width=vw), fixed=TRUE) lf <- paste(collapse=" ", lf) lf <- strwrap(lf, width=getOption("width") - cs - pw - 3 - 2) lf <- gsub("x", " ", lf, fixed=TRUE) if (length(lf) > 1) { lf <- c(lf[1], paste(sp, lf[-1])) lf <- paste(collapse="\n", lf) } op <- paste(sep="", format(he, width=cs), " p=", format(x$prob[b], digits=2, width=pw, justify="left"), " ", paste(collapse=" ", lf)) cat(op, fill=TRUE) if (x$left[b] < 0 && l < level) .plot(-x$left[b], l+1, ind) if (x$right[b] < 0 && l < level) .plot(-x$right[b], l+1, ind) } if (length(x$left) > 0) .plot(b=1, l=1) invisible(x) } print2.igraphHRG <- function(x, ...) { cat("Hierarchical random graph:\n") bw <- ceiling(log10(length(x$left)+1))+1 p <- format(x$prob, digits=1) pw <- 4 + max(nchar(p)) nn <- if (is.null(x$names)) seq_len(length(x$left)+1) else x$names op <- sapply(seq_along(x$left), function(i) { lc <- if (x$left[i] < 0) { paste(sep="", "g", -x$left[i]) } else { nn[x$left[i]+1] } rc <- if (x$right[i] < 0) { paste(sep="", "g", -x$right[i]) } else { nn[x$right[i]+1] } paste(sep="", format(paste(sep="", "g", i), width=bw), format(paste(sep="", " p=", p[i]), width=pw), "-> ", lc, " ", rc) }) op <- format(op, justify="left") cat(op, sep=" ", fill=TRUE) invisible(x) } print.igraphHRGConsensus <- function(x, ...) { cat("HRG consensus tree:\n") n <- length(x$parents) - length(x$weights) mn <- if (is.null(x$names)) seq_len(n) else x$names id <- c(mn, paste(sep="", "g", seq_along(x$weights))) ch <- tapply(id, x$parents, c)[-1] bw <- nchar(as.character(length(x$weights))) vw <- max(nchar(id)) op <- sapply(seq_along(x$weights), function(i) { mych <- format(ch[[i]], width=vw) if (length(ch[[i]])*(vw+1) + bw + 4 > getOption("width")) { mych <- gsub(" ", "x", mych, fixed=TRUE) mych <- paste(collapse=" ", mych) pref <- paste(collapse="", rep(" ", bw+5)) mych <- strwrap(mych, width=getOption("width") - bw - 4, initial="", prefix=pref) mych <- gsub("x", " ", mych, fixed=TRUE) mych <- paste(collapse="\n", mych) } else { mych <- paste(collapse=" ", mych) } paste(sep="", "g", format(i, width=bw), " -> ", mych) }) if (max(nchar(op)) < (getOption("width")-4)/2) { op <- format(op, justify="left") cat(op, sep=" ", fill=TRUE) } else { cat(op, sep="\n") } invisible(x) } " B-1 p=0 '- B-3 p=1 6 '- B-7 p=1 2 '- B-5 p=1 1 5 '- B-6 p=1 7 '- B-2 p=1 4 '- B-4 p=1 3 8 B-1 p=0 B-3 B-6 6 2 1 5 7 4 3 8 B-1 p=0 '+ B-3 p=1 B-7 6 2 1 5 '+ B-6 p=1 B-2 7 4 3 8 B-1 p=0 '- B-3 p=1 6 '+ B-7 p=1 B-5 2 1 5 '- B-6 p=1 7 '+ B-2 p=1 B-4 4 3 8 B-1 p=0 B-3 B-6 B-2 p=1 B-4 4 B-3 p=1 B-7 6 B-4 p=1 3 8 B-5 p=1 1 5 B-6 p=1 B-2 7 B-7 p=1 B-5 2 "
source("ESEUR_config.r") library(igraph) library(jsonlite) library(plyr) plot_wide() get_transition=function(df) { t=ldply(df$neighbours, function(n) data.frame(stateName=n["stateName"], button=n["button"])) res=data.frame(from=df$stateName, to=t$stateName, button=t$button) return(res) } alaris=fromJSON(paste0(ESEUR_dir, "probability/Patrick_Oladimeji-alaris.json")) t_fsm=adply(alaris$"device spec", 1, get_transition) fsm=data.frame(from=t_fsm$from, to=t_fsm$to, button=t_fsm$button) fsm_graph=graph.data.frame(fsm, directed=TRUE) V(fsm_graph)$frame.color=NA V(fsm_graph)$color="yellow" V(fsm_graph)$size=3 V(fsm_graph)$label.cex=0.9 E(fsm_graph)$color="red" E(fsm_graph)$arrow.size=0.2 par(cex=0.9) plot(fsm_graph, edge.width=0.3, edge.curved=TRUE)
TPES_purity <- function(ID, SEGfile, SNVsReadCountsFile, ploidy, RMB = 0.47, maxAF = 0.55, minCov = 10, minAltReads = 5, minSNVs = 10) { colnames(SEGfile) <- c('ID','chrom','loc.start','loc.end','num.mark','seg.mean') if(ID %in% SEGfile$ID){ SEGfile <- SEGfile[which(SEGfile$ID == ID),] } else {stop(paste0(ID, ' is not in the SEGfile\n'))} if(ID %in% SNVsReadCountsFile$sample){ SNVsReadCountsFile <- SNVsReadCountsFile[which(SNVsReadCountsFile$sample == ID),] } else {stop(paste0(ID, ' is not in the SNVsReadCountsFile\n'))} if(ID %in% ploidy$sample){ ploidy <- ploidy[which(ploidy$sample == ID),]$ploidy } else {stop(paste0(ID, ' is not in the ploidy file\n'))} log2shift <- round(-log2(ploidy/2),3) SEGfile$log2.plCorr <- SEGfile$seg.mean - log2shift purityTable <- data.frame(row.names = ID, stringsAsFactors = F) purityTable$sample <- ID purityTable$purity <- NA purityTable$purity.min <- NA purityTable$purity.max <- NA purityTable$n.segs <- NA purityTable$n.SNVs <- NA purityTable$RMB <- NA purityTable$BandWidth <- NA purityTable$log <- NA SEGfile <- SEGfile[which(gsub('chr', '', SEGfile$chr) %in% seq(1,22,1)), ] SEGfile <- SEGfile[which(SEGfile$log2.plCorr >= -0.1 & SEGfile$log2.plCorr <= 0.1), ] if (nrow(SEGfile) == 0){ purityTable$log <- 'no available segments' warning(paste0(ID, ' no CN neutral segments are available'), call. = F) return(purityTable)} SNVsReadCountsFile$cov <- SNVsReadCountsFile$ref.count + SNVsReadCountsFile$alt.count SNVsReadCountsFile$AF <- SNVsReadCountsFile$alt.count / SNVsReadCountsFile$cov SNVsReadCountsFile <- SNVsReadCountsFile[which(SNVsReadCountsFile$cov >= minCov & SNVsReadCountsFile$alt.count >= minAltReads), ] SNVsReadCountsFile <- SNVsReadCountsFile[which(gsub('chr', '', SNVsReadCountsFile$chr) %in% seq(1,22,1)), ] if (nrow(SNVsReadCountsFile) == 0){ purityTable$n.SNVs <- 0 purityTable$log <- 'no SNVs available' warning(paste0(ID, ': no SNVs available\n'), call. = F) return(purityTable)} SNVsReadCountsFile <- do.call(rbind,lapply(seq(1,nrow(SNVsReadCountsFile),1), function(j){ segPos <- getSegmentsPos(SNVsReadCountsFile$chr[j], SNVsReadCountsFile$start[j], SNVsReadCountsFile$end[j], SEGfile[,c('chrom', 'loc.start', 'loc.end')]) if (length(segPos) == 1){ return(SNVsReadCountsFile[j,,drop=F])}})) if (is.null(SNVsReadCountsFile)){ purityTable$n.SNVs <- 0 purityTable$log <- 'no SNVs available in CN neutral segments' warning(paste0(ID, ': no SNVs available in CN neutral segments\n'), call. = F) return(purityTable)} SNVsReadCountsFile <- SNVsReadCountsFile[which(SNVsReadCountsFile$AF <= maxAF),] if (nrow(SNVsReadCountsFile) == 0){ purityTable$n.SNVs <- 0 purityTable$log <- paste0('no SNVs available with maxAF = ', maxAF) warning(paste0(ID, ': no SNVs available with maxAF = ', maxAF, '\n'), call. = F) return(purityTable)} bwRange <- seq(0.010, 0.080, 0.001) nModes <- sapply(bwRange, function(bw){ return(nr.modes(stats::density(SNVsReadCountsFile$AF, bw=bw, na.rm=T)$y))}) if (length(which(nModes == 2)) >= 2 ){ bwOptim <- bwRange[min(which(nModes == 2))] }else if (1 %in% nModes){ bwOptim <- bwRange[min(which(nModes == 1))] }else{ purityTable$log <- 'no suitable bandwidth' warning(paste0(ID, ': no suitable bandwidth was found\n'), call. = F) return(purityTable)} if (length(SNVsReadCountsFile$AF) > minSNVs){ purityTable$n.SNVs <- length(SNVsReadCountsFile$AF) } else { purityTable$log <- 'no SNVs available' warning(paste0(ID, ': no SNVs available; required ', minSNVs, "\n"), call. = F) return(purityTable)} Peaks <- findPeaks(AF = SNVsReadCountsFile$AF, bw = bwOptim) if (nrow(Peaks) == 0){ purityTable$log <- 'no peaks found' warning(paste0(ID, ': no peaks found'), call. = F) return(purityTable) } else { clonalPeak <- unlist(Peaks[nrow(Peaks),])[1] } if (clonalPeak < RMB){ min <- findMin(AF = SNVsReadCountsFile$AF, bw = bwOptim) } else { SNVsReadCountsFile <- SNVsReadCountsFile[which(SNVsReadCountsFile$AF <= RMB),] if (nrow(SNVsReadCountsFile) == 0){ purityTable$n.SNVs <- 0 purityTable$log <- 'no SNVs available below RMB value' warning(paste0(ID, ': no SNVs available below RMB value\n'), call. = F) return(purityTable)} nModes <- sapply(bwRange, function(bw){ return(nr.modes(stats::density(SNVsReadCountsFile$AF, bw = bw, na.rm = T)$y))}) if (length(which(nModes == 2)) >= 2){ bwOptim <- bwRange[min(which(nModes == 2))] } else if (1 %in% nModes){ bwOptim <- bwRange[min(which(nModes == 1))] } else{ purityTable$log <- 'no suitable bandwidth' warning(paste0(ID, 'no suitable bandwidth\n'), call. = F) return(purityTable)} if (length(SNVsReadCountsFile$AF) > minSNVs){ purityTable$n.SNVs <- length(SNVsReadCountsFile$AF) } else { purityTable$log <- 'no SNVs available' warning(paste0(ID, ': no SNVs available; required ', minSNVs, '\n'), call. = F) return(purityTable)} Peaks <- findPeaks(AF = SNVsReadCountsFile$AF, bw = bwOptim) if (nrow(Peaks) == 0){ warning(paste0(ID, ' no peaks found'), call. = F) return(purityTable) } else { clonalPeak <- unlist(Peaks[nrow(Peaks),])[1] } if (clonalPeak < RMB){ min <- findMin(AF = SNVsReadCountsFile$AF, bw = bwOptim) } else { purityTable$purity <- 1 purityTable$purity.min <- 1 purityTable$purity.max <- 1 purityTable$n.segs <- nrow(SEGfile) purityTable$n.SNVs <- nrow(SNVsReadCountsFile) purityTable$RMB <- RMB purityTable$BandWidth <- bwOptim purityTable$log <- 'computation ok' return(purityTable) } } if (length(colnames(min)) == 0){ clonalAF <- SNVsReadCountsFile$AF } else{ clonalAF <- SNVsReadCountsFile$AF[which(SNVsReadCountsFile$AF > min[1,])] if (length(clonalAF) < minSNVs){ purityTable$n.SNVs <- length(clonalAF) purityTable$log <- 'no putative clonal SNVs available' warning(paste0(ID, ': ', length(clonalAF), ' putative clonal SNVs available; required ', minSNVs, '\n'), call. = F) return(purityTable) } } purityTable$purity <- round((clonalPeak/RMB),2) purityTable$purity.min <- round(((stats::quantile(stats::ecdf(clonalAF))[2])/RMB),2) purity.max <- round(((stats::quantile(stats::ecdf(clonalAF))[4])/RMB),2) if(purity.max > 1){ purityTable$purity.max <- 1 } else { purityTable$purity.max <- purity.max } purityTable$n.segs <- nrow(SEGfile) purityTable$n.SNVs <- length(clonalAF) purityTable$RMB <- RMB purityTable$BandWidth <- bwOptim purityTable$log <- 'computation ok' return(purityTable) }
create.dendrogram <- function( x, clustering.method = 'diana', cluster.dimension = 'col', distance.method = 'correlation', cor.method = 'pearson', force.clustering = FALSE, same.as.matrix = FALSE ) { if (same.as.matrix) { x <- t(apply(x, 2, rev)); } if (length(cluster.dimension) > 1) { stop('Only handles one cluster dimension at a time.'); } dd <- 0; distance.matrix <- 0; if (cluster.dimension %in% c('col', 'column', 'cols', 'columns')) { if (dim(x)[2] > 6000 && !force.clustering) { stop('Unclusterable matrix: dim(data.cluster)[2] = ', dim(x)[2]); } if ('correlation' == distance.method) { distance.matrix <- as.dist(1 - cor(x, use = 'pairwise', method = cor.method)); } else if (distance.method %in% c('euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski', 'jaccard')) { distance.matrix <- dist(t(x), method = distance.method); } else { stop('Unknown distance.method: ', distance.method); } } else if (cluster.dimension %in% c('row', 'rows')) { if (dim(x)[1] > 6000 && !force.clustering) { stop('Unclusterable matrix: dim(data.cluster)[1] = ', dim(x)[1]); } if ('correlation' == distance.method) { distance.matrix <- as.dist(1 - cor(t(x), use = 'pairwise', method = cor.method)); } else if (distance.method %in% c('euclidean', 'maximum', 'manhattan', 'canberra', 'binary', 'minkowski', 'jaccard')) { distance.matrix <- dist(x, method = distance.method); } else { stop('Unknown distance.method: ', distance.method); } } else { stop('Unknown cluster.dimension for create.dendrogram: ', cluster.dimension); } if (any(is.na(distance.matrix))) { stop('Unclusterable matrix: some distances are NULL or NA.'); } if ('diana' == clustering.method) { dd <- as.dendrogram(as.hclust(diana(x = distance.matrix))); } else if (clustering.method %in% c('ward', 'ward.D', 'ward.D2', 'single', 'complete', 'average', 'mcquitty', 'median', 'centroid')) { dd <- as.dendrogram(hclust(d = distance.matrix, method = clustering.method)); } else { stop('Unknown clustering method: ', clustering.method); } return(dd); }
simapply <- function(x, FUN, ...) { L <- .sims.as.list(x) Args <- .Primitive("c")(list(FUN=FUN, SIMPLIFY=FALSE, USE.NAMES=FALSE), list(L)) Args$MoreArgs <- list(...) S <- do.call(mapply, Args) r <- rvsims(S) if (isTRUE(all.equal(dim(r), dim(x)))) { dimnames(r) <- dimnames(x) } return(r) }
plot.ivregDecision <- function(x, xaxes = TRUE, yaxes = TRUE, xaxes.label = TRUE, yaxes.label = TRUE, legend = TRUE, ...){ delta1 = as.numeric(colnames(x)) delta2 = as.numeric(rownames(x)) z1 = matrix(NA, nrow(x), ncol(x)) z1[x == '-'] = 0 z1[x == '+'] = 1 z1[x == '*'] = 2 z1[x == '**'] = 3 colslist = gray(c(30, 20, 15, 5)/32) cols = colslist[1+as.numeric(names(table(z1)))] image(delta1, delta2, t(z1), col = cols, xlab = '', ylab = '', axes = F, ...) xaxs = pretty(delta1) yaxs = pretty(delta2) if(xaxes) axis(1, at = xaxs , labels = xaxs, ...) if(yaxes) axis(2, at = yaxs , labels = yaxs, ...) if(xaxes.label) mtext(expression(delta[1]), side=1, line=2.2, ...) if(yaxes.label) mtext(expression(delta[2]), side=2, line=2.2, ...) range = max(delta1) - min(delta1) if(legend) mtext(text = c("\u25A0", "no evidence", "\u25A0", "only OLS rejects", "\u25A0", "one piece of evidence", "\u25A0", "two pieces of evidence"), col = as.vector(rbind(colslist, gray(0))), at = min(delta1) + range*(-.07 + cumsum(c(-.01, .1, .11, .12, .13, .165, .17, .165))), line = 1, cex = c(1.5, .99)[rep(1:2, 4)] ) }
test_that("tx_pvls_den works", { expect_identical( tx_pvls_den( ndr_example, status = "default", ref = lubridate::ymd("2021-03-31") ), ndr_example %>% subset(current_status_28_days == "Active" & !patient_has_died %in% TRUE & !patient_transferred_out %in% TRUE & lubridate::as_date("2021-03-31") - art_start_date >= lubridate::period(6, "months") & dplyr::if_else( current_age < 20, lubridate::as_date("2021-03-31") - date_of_current_viral_load <= lubridate::period(6, "months"), lubridate::as_date("2021-03-31") - date_of_current_viral_load <= lubridate::period(1, "year") )) ) })
dicp <- function(y, X, res, term = NULL) { n <- length(y) beta <- res$Beta sigma2 <- res$Sigma2 niter <- length(sigma2) if(is.null(term)) { term <- inf_criteria(y, X, res) } logterm <- log(term) logtermsum <- apply(logterm, 1, sum) deviance <- -2*mean(logtermsum) betahat <- apply(beta,2,mean) sigma2hat <- mean(sigma2) d <- -2*sum(dnorm(y, X%*%betahat, sqrt(sigma2hat), log = TRUE)) pd <- deviance - d DIC <- deviance + pd res <- list() res$pD <- pd res$DIC <- DIC res }
remove <- function(packages, remotes=c()) { sandbox({ desc <- getDesc() for (package in packages) { if (!desc$has_dep(package)) { stop(paste0("Cannot find package '", package, "' in DESCRIPTION file")) } desc$del_dep(package) } if (length(remotes) > 0) { for (remote in remotes) { desc$del_remotes(remote) } } installHelper(desc=desc) for (package in packages) { success(paste0("Removed ", package, "!")) } }) }
list.order <- function(.data, ..., keep.names = FALSE, na.last = TRUE) { result <- list.order.internal(.data, dots(...), parent.frame(), na.last = na.last) if (keep.names) setnames(result, names(.data)) else result } list.sort <- function(.data, ..., na.last = NA) { .data[list.order.internal(.data, dots(...), parent.frame(), na.last = na.last)] }
context ("sp-osm") test_that ("multipolygon", { x_sf <- sf::st_read ("../osm-multi.osm", layer = "multipolygons", quiet = TRUE) x_sp <- as (x_sf, "Spatial") q0 <- opq (bbox = c(1, 1, 5, 5)) x <- osmdata_sp (q0, "../osm-multi.osm")$osm_multipolygons x <- x [, which (names (x) %in% names (x_sp))] x_sp <- x_sp [, which (names (x_sp) %in% names (x))] rownames (slot (x, "data")) <- rownames (slot (x_sp, "data")) slot (x, "proj4string") <- slot (x_sp, "proj4string") names (slot (x, "polygons")) <- NULL names (slot (slot (x, "polygons")[[1]], "Polygons")) <- NULL np <- length (slot (slot (x, "polygons")[[1]], "Polygons")) for (i in seq (np)) { rownames (slot (slot (slot (x, "polygons")[[1]], "Polygons")[[i]], "coords")) <- NULL colnames (slot (slot (slot (x, "polygons")[[1]], "Polygons")[[i]], "coords")) <- NULL dimnames (slot (slot (slot (x, "polygons")[[1]], "Polygons")[[i]], "coords")) <- NULL } for (i in seq (np)) { pi <- slot (slot (x, "polygons")[[1]], "Polygons") [[i]] pi_sp <- slot (slot (x_sp, "polygons")[[1]], "Polygons") [[i]] xyi <- slot (pi, "coords") xyi_sp <- slot (pi_sp, "coords") expect_identical (attributes (xyi), attributes (xyi_sp)) } }) test_that ("multilinestring", { x_sf <- sf::st_read ("../osm-multi.osm", layer = "multilinestrings", quiet = TRUE) x_sp <- as (x_sf, "Spatial") q0 <- opq (bbox = c(1, 1, 5, 5)) x <- osmdata_sp (q0, "../osm-multi.osm")$osm_multilines x <- x [, which (names (x) %in% names (x_sp))] x_sp <- x_sp [, which (names (x_sp) %in% names (x))] rownames (slot (x, "data")) <- rownames (slot (x_sp, "data")) slot (x, "proj4string") <- slot (x_sp, "proj4string") names (slot (x, "lines")) <- NULL names (slot (slot (x, "lines")[[1]], "Lines")) <- NULL np <- length (slot (slot (x, "lines")[[1]], "Lines")) for (i in seq (np)) { rownames (slot (slot (slot (x, "lines")[[1]], "Lines")[[i]], "coords")) <- NULL colnames (slot (slot (slot (x, "lines")[[1]], "Lines")[[i]], "coords")) <- NULL dimnames (slot (slot (slot (x, "lines")[[1]], "Lines")[[i]], "coords")) <- NULL } for (i in seq (np)) { pi <- slot (slot (x, "lines")[[1]], "Lines") [[i]] pi_sp <- slot (slot (x_sp, "lines")[[1]], "Lines") [[i]] xyi <- slot (pi, "coords") xyi_sp <- slot (pi_sp, "coords") expect_identical (attributes (xyi), attributes (xyi_sp)) } }) test_that ("ways", { x_sf <- sf::st_read ("../osm-ways.osm", layer = "lines", quiet = TRUE) x_sp <- as (x_sf, "Spatial") q0 <- opq (bbox = c(1, 1, 5, 5)) x <- osmdata_sp (q0, "../osm-ways.osm")$osm_lines x <- x [, which (names (x) %in% names (x_sp))] x_sp <- x_sp [, which (names (x_sp) %in% names (x))] np <- length (slot (slot (x, "lines")[[1]], "Lines")) for (i in seq (np)) { rownames (slot (slot (slot (x, "lines")[[1]], "Lines")[[i]], "coords")) <- NULL colnames (slot (slot (slot (x, "lines")[[1]], "Lines")[[i]], "coords")) <- NULL dimnames (slot (slot (slot (x, "lines")[[1]], "Lines")[[i]], "coords")) <- NULL } for (i in seq (np)) { pi <- slot (slot (x, "lines")[[1]], "Lines") [[i]] pi_sp <- slot (slot (x_sp, "lines")[[1]], "Lines") [[i]] xyi <- slot (pi, "coords") xyi_sp <- slot (pi_sp, "coords") expect_identical (attributes (xyi), attributes (xyi_sp)) } })
outline <- function(from, md_list = FALSE, md_eq = FALSE, md_braces = FALSE, md_bookdown = FALSE, md_maxlevel = '') { mdlength <- length(from) yaml_loc <- grep('^[-+]{3,} *$', from) if (length(yaml_loc) > 1) from <- from[-(yaml_loc[1]:yaml_loc[2])] codeloc4backsticks <- grep('^````', from) if (length(codeloc4backsticks) > 0){ from <- from[!sapply(1:mdlength, function(x) rmvcode(index = x, loc = codeloc4backsticks))] } codeloc3backsticks <- grep('^```', from) if (length(codeloc3backsticks) > 0){ from <- from[!sapply(1:mdlength, function(x) rmvcode(index = x, loc = codeloc3backsticks))] } if (md_list){ from <- list2heading(from) } headingloc <- grep(paste0('^ if (!md_braces){ from[headingloc] <- gsub(pattern = '\\{.*\\}', '', from[headingloc]) } from[headingloc] <- gsub(pattern = '[- eq_loc <- NA if (md_eq && any(grepl('^\\$\\$', from))) { eq_begin <- grep('^\\$\\$', from) eq_end <- grep('\\$\\$$', from) eq_loc <- get_eqloc(eq_begin, eq_end) } heading <- from[headingloc] if (md_bookdown) { part_loc <- c(grep('^ grep('^ grep('^ ) if (length(part_loc) > 0) { heading[part_loc] <- gsub(' \\(PART\\)', '', heading[part_loc]) heading[part_loc] <- gsub(' \\(APPENDIX\\)', '', heading[part_loc]) lower_loc <- (part_loc[1] + 1):length(heading) lower_loc <- lower_loc[!lower_loc %in% part_loc] heading[lower_loc] <- paste0(' } } if (!is.na(eq_loc[1])){ heading <- c(heading, from[eq_loc])[order(c(headingloc, eq_loc))] } return(heading) } md2mm <- function(from = NA, root = 'mindr', md_list = FALSE, md_braces = FALSE, md_bookdown = FALSE, md_eq = FALSE, md_maxlevel = '') { md <- outline(from = from, md_list = md_list, md_eq = md_eq, md_braces = md_braces, md_bookdown = md_bookdown, md_maxlevel = md_maxlevel) mm <- mdtxt2mmtxt(from = md, root = root, md_eq = md_eq) return(mm) } mm2md <- function(from = NA) { mm <- gsub('/>', '</node>', from) loc_link <- grep('LINK="([^\"]*)"', mm) links <- gsub('LINK="([^\"]*)"', '\\1', regmatches(mm, gregexpr('LINK="[^\"]*"', mm))) for (i in loc_link) mm[i] <- gsub('TEXT="([^"]*)"', paste0('TEXT=\"[\\1](', links[i], ')\"'), mm[i]) mm <- paste0(mm, collapse = '') node_begin <- unlist(gregexpr('<node', mm)) node_end <- unlist(gregexpr('</node', mm)) node_sign <- c(rep(1, length(node_begin)), rep(-1, length(node_end))) node_loc <- c(node_begin, node_end) node_loc <- node_loc[-c(1, length(node_loc))] node_sign <- node_sign[-c(1, length(node_sign))] node_sign <- node_sign[order(node_loc)] node_level <- cumsum(node_sign)[node_sign == 1] headers <- gsub('TEXT="([^"]*)"', '\\1', regmatches(mm, gregexpr('TEXT="[^"]*"', mm))[[1]]) md <- paste(sapply(node_level, function(x) paste0(rep(' md <- c(paste('Title:', headers[1]), md) md <- gsub('&amp;', '&', md) md <- gsub('&quot;', '"', md) return(md) } r2md <- function(from = NA) { headerloc <- grep('^ from[headerloc] <- gsub(pattern = '[ from[headerloc] <- gsub('^ rfile_temp <- tempfile(pattern = "file", tmpdir = tempdir(), fileext = ".R") writeLines(text = from, rfile_temp, useBytes = TRUE) knitr::spin(hair = rfile_temp, knit = FALSE) file.remove(rfile_temp) md <- readLines(paste0(rfile_temp, 'md'), encoding = 'UTF-8') return(md) } md2r <- function(from = NA, r_seclabel = ' --------', r_chunkheading = FALSE) { rmdfile_temp <- tempfile(pattern = "file", tmpdir = tempdir(), fileext = ".Rmd") writeLines(from, rmdfile_temp, useBytes = TRUE) rfile_temp <- gsub('.Rmd$', '.R', rmdfile_temp) knitr::purl(rmdfile_temp, output = rfile_temp, documentation = 2, quiet = TRUE) rtext <- readLines(rfile_temp, encoding = 'UTF-8') file.remove(c(rfile_temp, rmdfile_temp)) rtext <- gsub(pattern = "^ rtext <- gsub("^( rtext <- gsub("^ rtext <- gsub(pattern = "^ rtext <- rtext[rtext != ''] rtext[rtext == " return(rtext) } dir2md <- function(from = '.', dir_files = TRUE, dir_all = TRUE, dir_excluded = NA) { tree <- if (dir_files) { list.files(from, all.files = dir_all, recursive = TRUE, include.dirs = TRUE) } else { list.dirs(from, full.names = FALSE)[-1] } if (!is.na(dir_excluded[1])) tree <- tree[!grepl(paste(paste0('^', dir_excluded), collapse = '|'), tree)] tree_node <- basename(tree) tree_level <- sapply(tree, function(x) length(gregexpr('/', x)[[1]])) + 1 tree_level[!grepl('/', tree)] <- 1 tree_pre <- strrep(' md <- paste(tree_pre, tree_node) return(md) } md2dir <- function(from = NA, dir_to = 'mindr', md_list = FALSE, md_bookdown = TRUE, dir_quiet = FALSE){ if (is.na(dir_to)) dir_to <- 'mindr' if (dir.exists(dir_to)) return(warning(dir_to, ' already exists! Please use another folder name for "dir_to =" and try again.')) md <- outline(from = from, md_list = md_list, md_eq = FALSE, md_braces = FALSE, md_bookdown = md_bookdown) md <- gsub('\\[(.+)\\]\\(.+\\)', '\\1', md) titles <- gsub('^ oldheadings <- gsub('^( oldheadings[!grepl('^( heading_level <- nchar(oldheadings) level_change <- diff(heading_level) n <- length(md) dirs <- character(length = n) dirs[1] <- titles[1] for (i in 2:n) { if (level_change[i - 1] == 0) dirs[i] <- file.path(dirname(dirs[i-1]), titles[i]) if (level_change[i - 1] == 1) dirs[i] <- file.path(dirs[i-1], titles[i]) if (level_change[i - 1] < 0) { dirs[i] <- dirname(dirs[i-1]) for (j in 1:abs(level_change[i - 1])) dirs[i] <- dirname(dirs[i]) dirs[i] <- ifelse(dirs[i] == '.', titles[i], file.path(dirs[i], titles[i])) } } dirs <- c(dir_to, file.path(dir_to, dirs)) for (i in dirs) { dir.create(i) if (!dir_quiet) message('Generated directory: ', i) } } markmap <- function(from = '.', root = NA, input_type = c('auto', 'markdown', 'mindmap', 'R', 'dir'), md_list = FALSE, md_eq = FALSE, md_braces = FALSE, md_bookdown = FALSE, md_maxlevel = '', dir_files = TRUE, dir_all = TRUE, dir_excluded = NA, widget_name = NA, widget_width = NULL, widget_height = NULL, widget_elementId = NULL, widget_options = markmapOption(preset = 'colorful') ) { input_type <- match.arg(input_type, c('auto', 'markdown', 'mindmap', 'R', 'dir')) if (input_type == 'auto') input_type <- guess_type(from) if (input_type == 'mindmap') { md <- mm2md(from = from) } else{ if (input_type == 'markdown') md <- outline(from = from, md_list = md_list, md_eq = md_eq, md_braces = md_braces, md_bookdown = md_bookdown, md_maxlevel = md_maxlevel) if (input_type == 'R') md <- outline(r2md(from = from), md_list = md_list, md_eq = md_eq, md_braces = md_braces, md_bookdown = md_bookdown, md_maxlevel = md_maxlevel) if (input_type == 'dir') { md <- outline(dir2md(from = from, dir_files = dir_files, dir_all = dir_all, dir_excluded = dir_excluded), md_maxlevel = md_maxlevel) if (is.na(root)) root <- basename(from) } } md <- c(paste(' data <- paste(md, collapse = '\n') x <- list(data = data, options = widget_options) htmlwidgets::createWidget( name = 'markmap', x, width = widget_width, height = widget_height, sizingPolicy = htmlwidgets::sizingPolicy( defaultWidth = '100%', defaultHeight = 400, padding = 0, browser.fill = TRUE ), package = 'mindr', elementId = widget_elementId ) } markmapOption <- function(preset = NULL, nodeHeight = 20, nodeWidth = 180, spacingVertical = 10, spacingHorizontal = 120, duration = 750, layout = 'tree', color = 'gray', linkShape = 'diagonal', renderer = 'boxed', ...) { if (!is.null(preset) && (preset == 'default' | preset == 'colorful')) { filterNULL(list(preset = preset, autoFit = TRUE)) } else{ if (is.null(layout) || (layout != 'tree')) { warning('Currenly, only tree layout is supported. Changing to tree layout...') layout = 'tree' } filterNULL( list( nodeHeight = nodeHeight, nodeWidth = nodeWidth, spacingVertical = spacingVertical, spacingHorizontal = spacingHorizontal, duration = duration, layout = 'tree', color = color, linkShape = linkShape, renderer = renderer, autoFit = TRUE, ... ) ) } }
simulate.hhh4 <- function (object, nsim=1, seed=NULL, y.start=NULL, subset=1:nrow(object$stsObj), coefs=coef(object), components=c("ar","ne","end"), simplify=nsim>1, ...) { if(!exists(".Random.seed", envir = .GlobalEnv, inherits = FALSE)) runif(1) if(is.null(seed)) RNGstate <- get(".Random.seed", envir = .GlobalEnv) else { R.seed <- get(".Random.seed", envir = .GlobalEnv) set.seed(seed) RNGstate <- structure(seed, kind = as.list(RNGkind())) on.exit(assign(".Random.seed", R.seed, envir = .GlobalEnv)) } cl <- match.call() theta <- if (missing(coefs)) coefs else checkCoefs(object, coefs) stopifnot(subset >= 1, subset <= nrow(object$stsObj)) lag.ar <- object$control$ar$lag lag.ne <- object$control$ne$lag maxlag <- max(lag.ar, lag.ne) nUnits <- object$nUnit if (is.null(y.start)) { y.means <- ceiling(colMeans(observed(object$stsObj)[subset,,drop=FALSE])) y.start <- matrix(y.means, maxlag, nUnits, byrow=TRUE) } else { if (is.vector(y.start)) y.start <- t(y.start) if (ncol(y.start) != nUnits) stop(sQuote("y.start"), " must have nUnits=", nUnits, " columns") if (nrow(y.start) < maxlag) stop("need 'y.start' values for lag=", maxlag, " initial time points") } if (is.null(object$terms)) object$terms <- terms.hhh4(object) exppreds <- get_exppreds_with_offsets(object, subset = subset, theta = theta) model <- terms.hhh4(object) psi <- splitParams(theta,model)$overdisp if (length(psi) > 1) psi <- psi[model$indexPsi] neweights <- getNEweights(object, coefW(theta)) stopifnot(length(components) > 0, components %in% c("ar", "ne", "end")) getComp <- function (comp) { exppred <- exppreds[[comp]] if (comp %in% components) exppred else "[<-"(exppred, value = 0) } ar <- getComp("ar") ne <- getComp("ne") end <- getComp("end") simcall <- quote( simHHH4(ar, ne, end, psi, neweights, y.start, lag.ar, lag.ne) ) if (!simplify) { res0 <- object$stsObj[subset,] setObserved <- function (observed) { res0@observed[] <- observed res0 } simcall <- call("setObserved", simcall) } res <- if (nsim==1) eval(simcall) else replicate(nsim, eval(simcall), simplify=if (simplify) "array" else FALSE) if (simplify) { dimnames(res)[1:2] <- list(subset, colnames(model$response)) attr(res, "initial") <- y.start attr(res, "stsObserved") <- object$stsObj[subset,] class(res) <- "hhh4sims" } attr(res, "call") <- cl attr(res, "seed") <- RNGstate res } simHHH4 <- function(ar, ne, end, psi, neW, start, lag.ar = 1, lag.ne = lag.ar ) { nTime <- nrow(end) nUnits <- ncol(end) size <- if (length(psi) == 0 || isTRUE(all.equal(psi, 0, check.attributes=FALSE))) { NULL } else { if (!length(psi) %in% c(1, nUnits)) stop("'length(psi)' must be ", paste(unique(c(1, nUnits)), collapse = " or "), " (number of units)") 1/psi } rdistr <- if (is.null(size)) { rpois } else { function(n, mean) rnbinom(n, mu = mean, size = size) } if (all(ar + ne == 0)) { if (!is.null(size)) size <- matrix(size, nTime, nUnits, byrow = TRUE) return(matrix(rdistr(length(end), end), nTime, nUnits)) } wSumNE <- if (is.null(neW) || all(neW == 0)) { function (y, W) numeric(nUnits) } else function (y, W) .colSums(W * y, nUnits, nUnits) mu <- y <- matrix(0, nTime, nUnits) y <- rbind(start, y) nStart <- nrow(y) - nrow(mu) timeDependentWeights <- length(dim(neW)) == 3 if (!timeDependentWeights) neWt <- neW for(t in seq_len(nTime)){ if (timeDependentWeights) neWt <- neW[,,t] mu[t,] <- ar[t,] * y[nStart+t-lag.ar,] + ne[t,] * wSumNE(y[nStart+t-lag.ne,], neWt) + end[t,] y[nStart+t,] <- rdistr(nUnits, mu[t,]) } y[-seq_len(nStart),,drop=FALSE] } checkCoefs <- function (object, coefs, reparamPsi=TRUE) { theta <- coef(object, reparamPsi=reparamPsi) if (length(coefs) != length(theta)) stop(sQuote("coefs"), " must be of length ", length(theta)) names(coefs) <- names(theta) coefs } "[.hhh4sims" <- function (x, i, j, ..., drop = FALSE) { xx <- NextMethod("[", drop = drop) if (nargs() == 2L) return(xx) attr(xx, "initial") <- attr(x, "initial") attr(xx, "stsObserved") <- attr(x, "stsObserved") subset_hhh4sims_attributes(xx, i, j) } subset_hhh4sims_attributes <- function (x, i, j) { if (!missing(i)) attr(x, "stsObserved") <- attr(x, "stsObserved")[i,] if (!missing(j)) { attr(x, "stsObserved") <- suppressMessages(attr(x, "stsObserved")[, j]) is.na(attr(x, "stsObserved")@neighbourhood) <- TRUE attr(x, "initial") <- attr(x, "initial")[, j, drop = FALSE] } x } aggregate.hhh4sims <- function (x, units = TRUE, time = FALSE, ..., drop = FALSE) { ax <- attributes(x) if (time) { res <- colSums(x) if (isTRUE(units)) { res <- colSums(res) } else if (!identical(FALSE, units)) { stopifnot(length(units) == dim(x)[2]) res <- t(rowSumsBy.matrix(t(res), units)) } } else { if (isTRUE(units)) { res <- apply(X = x, MARGIN = c(1L, 3L), FUN = sum) if (!drop) { dim(res) <- c(ax$dim[1L], 1L, ax$dim[3L]) dnres <- ax$dimnames dnres[2L] <- list(NULL) dimnames(res) <- dnres attr(res, "initial") <- as.matrix(rowSums(ax$initial)) attr(res, "stsObserved") <- aggregate(ax$stsObserved, by = "unit") class(res) <- "hhh4sims" } } else if (!identical(FALSE, units)) { stopifnot(length(units) == dim(x)[2]) groupnames <- names(split.default(seq_along(units), units)) res <- apply(X = x, MARGIN = 3L, FUN = rowSumsBy.matrix, by = units) dim(res) <- c(ax$dim[1L], length(groupnames), ax$dim[3L]) dnres <- ax$dimnames dnres[2L] <- list(groupnames) dimnames(res) <- dnres if (!drop) { attr(res, "initial") <- rowSumsBy.matrix(ax$initial, units) attr(res, "stsObserved") <- rowSumsBy.sts(ax$stsObserved, units) class(res) <- "hhh4sims" } } else { return(x) } } res } rowSumsBy.matrix <- function (x, by, na.rm = FALSE) { dn <- dim(x) res <- vapply(X = split.default(x = seq_len(dn[2L]), f = by), FUN = function (idxg) .rowSums(x[, idxg, drop = FALSE], dn[1L], length(idxg), na.rm = na.rm), FUN.VALUE = numeric(dn[1L]), USE.NAMES = TRUE) if (dn[1L] == 1L) t(res) else res } rowSumsBy.sts <- function (x, by, na.rm = FALSE) { .sts(epoch = x@epoch, freq = x@freq, start = x@start, observed = rowSumsBy.matrix(x@observed, by, na.rm), state = rowSumsBy.matrix(x@state, by, na.rm) > 0, alarm = rowSumsBy.matrix(x@alarm, by, na.rm) > 0, populationFrac = rowSumsBy.matrix(x@populationFrac, by, na.rm), epochAsDate = x@epochAsDate, multinomialTS = x@multinomialTS) }
test_BO <- function() { suppressWarnings({ synthFrame <- function(n,censorD) { stringReps = c(rep('a',100),rep('b',100),'c',rep('d',20)) d <- data.frame(xN1=runif(n), xN2=runif(n), xN3=0.0, xL1=sample(c(TRUE,FALSE),size=n,replace=TRUE), xL2=sample(c(TRUE,FALSE,NA),size=n,replace=TRUE), xL3=FALSE, xS1=sample(stringReps,size=n,replace=TRUE), xS2=sample(c(stringReps,NA),size=n,replace=TRUE), xS3='a', xF1=sample(as.factor(c(100:200)),size=n,replace=TRUE), xF2=sample(as.factor(c('a','b','c','d',NA)),size=n,replace=TRUE), xF3=as.factor(c('a')), xI1=sample(as.integer(c(1,2,3)),size=n,replace=TRUE), xI2=sample(as.integer(c(1,2,3,NA)),size=n,replace=TRUE), xI3=as.integer(c(1)), xU1=NA, stringsAsFactors=FALSE) now <- Sys.time() d$t1 <- as.POSIXct(now+ceiling(as.numeric(now)*runif(n)/10)) d$t2 <- as.POSIXlt(now+ceiling(as.numeric(now)*runif(n)/10)) d[sample(1:n,5,replace=T),'xN2'] <- NA d[sample(1:n,5,replace=T),'xN2'] <- NaN d[sample(1:n,5,replace=T),'t1'] <- NA d[sample(1:n,5,replace=T),'t2'] <- NA if(censorD) { dFree <- rowSums(as.matrix(sapply(d,function(c) {ifelse(is.na(c),0,ifelse(as.character(c)=='d',1.0,0.0))})))<=0 d <- d[dFree,] n <- dim(d)[[1]] } toNum <- function(v) { if(class(v)[[1]]=='character') { v <- as.factor(v) } v <- as.numeric(v) meanY <- mean(v,na.rm=TRUE) if(is.na(meanY)) { meanY <- 0.0 } v[is.na(v)] <- meanY v <- v - meanY range <- max(1,max(v)-min(v)) v <- v/range v } dN <- as.matrix(sapply(d,toNum)) d$yN <- rowSums(dN) + runif(n) d$yC <- d$yN >= median(d$yN) d } set.seed(26236) dTrain <- synthFrame(200,TRUE) dTest <- synthFrame(20,FALSE) vars <- setdiff(colnames(dTrain),c('yN','yC')) verbose=FALSE for(smFactor in c(0.0,0.5)) { for(scale in c(FALSE,TRUE)) { if(verbose) { print(paste('**********************',smFactor,scale)) print(' } treatmentsN <- designTreatmentsN(dTrain,vars,'yN',smFactor=smFactor, rareCount=2,rareSig=0.5, verbose=verbose) dTrainNTreated <- prepare(treatmentsN,dTrain,pruneSig=0.99, scale=scale, check_for_duplicate_frames=FALSE) nvars <- setdiff(colnames(dTrainNTreated),'yN') if(scale) { expect_true(max(abs(vapply(dTrainNTreated[,nvars],mean,numeric(1))))<1.0e-5) expect_true(max(abs(1- vapply(nvars, function(c) { lm(paste('yN',c,sep='~'), data=dTrainNTreated)$coefficients[[2]]}, numeric(1))))<1.0e-5) } modelN <- lm(paste('yN',paste(nvars,collapse=' + '),sep=' ~ '), data=dTrainNTreated) dTestNTreated <- prepare(treatmentsN,dTest,pruneSig=0.99,scale=scale, check_for_duplicate_frames=FALSE) dTestNTreated$pred <- predict(modelN,newdata=dTestNTreated) if(verbose) { print(summary(modelN)) } if(verbose) { print(' } treatmentsC <- designTreatmentsC(dTrain,vars,'yC',TRUE,smFactor=smFactor, catScaling=TRUE, verbose=verbose) dTrainCTreated <- prepare(treatmentsC,dTrain,pruneSig=0.99,scale=scale, check_for_duplicate_frames=FALSE) cvars <- setdiff(colnames(dTrainCTreated),'yC') if(scale) { expect_true(max(abs(vapply(dTrainCTreated[,cvars],mean,numeric(1))))<1.0e-5) expect_true(max(abs(1- vapply(cvars, function(c) { glm(paste('yC',c,sep='~'),family=binomial, data=dTrainCTreated)$coefficients[[2]]}, numeric(1))))<1.0e-5) } modelC <- glm(paste('yC',paste(cvars,collapse=' + '),sep=' ~ '), data=dTrainCTreated,family=binomial(link='logit')) dTestCTreated <- prepare(treatmentsC,dTest,pruneSig=0.99,scale=scale, check_for_duplicate_frames=FALSE) dTestCTreated$pred <- predict(modelC,newdata=dTestCTreated,type='response') if(verbose) { print(summary(modelC)) } } } }) invisible(NULL) } test_BO()
knitr::opts_chunk$set(collapse = TRUE, comment = " library(openEBGM) data(caers_raw) head(caers_raw, 4) dat <- tidyr::separate_rows(caers_raw, SYM_One.Row.Coded.Symptoms, sep = ", ") dat[1:4, c("RA_Report..", "PRI_Reported.Brand.Product.Name", "SYM_One.Row.Coded.Symptoms")] dat$id <- dat$RA_Report.. dat$var1 <- dat$PRI_Reported.Brand.Product.Name dat$var2 <- dat$SYM_One.Row.Coded.Symptoms dat$strat_gender <- dat$CI_Gender table(dat$strat_gender, useNA = "always") dat$age_yrs <- ifelse(dat$CI_Age.Unit == "Day(s)", dat$CI_Age.at.Adverse.Event / 365, ifelse(dat$CI_Age.Unit == "Decade(s)", dat$CI_Age.at.Adverse.Event * 10, ifelse(dat$CI_Age.Unit == "Month(s)", dat$CI_Age.at.Adverse.Event / 12, ifelse(dat$CI_Age.Unit == "Week(s)", dat$CI_Age.at.Adverse.Event / 52, ifelse(dat$CI_Age.Unit == "Year(s)", dat$CI_Age.at.Adverse.Event, NA))))) dat$strat_age <- ifelse(is.na(dat$age_yrs), "unknown", ifelse(dat$age_yrs < 18, "under_18", "18_plus")) table(dat$strat_age, useNA = "always") vars <- c("id", "var1", "var2", "strat_gender", "strat_age") dat[1:5, vars]
.html_entities <- list( symbol = c("&", "<", ">"), name = c("&amp;", "&lt;", "&gt;") ) html_decode <- function(x) { for (i in seq_along(.html_entities$symbol)) { x <- gsub(.html_entities$name[i], .html_entities$symbol[i], x, fixed = TRUE) } x } html_encode <- function(x) { for (i in seq_along(.html_entities$symbol)) { x <- gsub(.html_entities$symbol[i], .html_entities$name[i], x, fixed = TRUE) } x }
setMetabolicRate <- function(params, metab = NULL, p = NULL, reset = FALSE, ...) { assert_that(is(params, "MizerParams"), is.flag(reset)) if (!is.null(p)) { assert_that(is.numeric(p)) params <- set_species_param_default(params, "p", p) } species_params <- params@species_params if (reset) { if (!is.null(metab)) { warning("Because you set `reset = TRUE`, the value you provided ", "for `metab` will be ignored and a value will be ", "calculated from the species parameters.") metab <- NULL } comment(params@metab) <- NULL } if (!is.null(metab)) { if (is.null(comment(metab))) { if (is.null(comment(params@metab))) { comment(metab) <- "set manually" } else { comment(metab) <- comment(params@metab) } } assert_that(is.array(metab), identical(dim(metab), dim(params@metab))) if (!is.null(dimnames(metab)) && !all(dimnames(metab)[[1]] == species_params$species)) { stop("You need to use the same ordering of species as in the ", "params object: ", toString(species_params$species)) } assert_that(all(metab >= 0)) params@metab[] <- metab comment(params@metab) <- comment(metab) params@time_modified <- lubridate::now() return(params) } params <- set_species_param_default(params, "k", 0) params@species_params$ks <- get_ks_default(params) metab <- sweep(outer(params@species_params$p, params@w, function(x, y) y ^ x), 1, params@species_params$ks, "*") + outer(params@species_params$k, params@w) if (!is.null(comment(params@metab))) { if (different(metab, params@metab)) { message("The metabolic rate has been commented and therefore will ", "not be recalculated from the species parameters.") } return(params) } params@metab[] <- metab params@time_modified <- lubridate::now() return(params) } getMetabolicRate <- function(params) { params@metab } metab <- function(params) { params@metab } `metab<-` <- function(params, value) { setMetabolicRate(params, metab = value) }
context("check various minor things") test_that("print as log", { ft <- flextable(iris) expect_output(print(ft, preview = "log"), "a flextable object") expect_output(print(ft, preview = "log"), "header has 1 row") expect_output(print(ft, preview = "log"), "body has 150 row") })
knitr::opts_chunk$set(echo = TRUE) library(dplyr) library(matsbyname) U <- matrix(1:4, ncol = 2, dimnames = list(c("p1", "p2"), c("i1", "i2"))) %>% setrowtype("Products") %>% setcoltype("Industries") U difference_byname(0, U) unaryapply_byname(`-`, U) divide <- function(x, divisor){ x/divisor } m <- matrix(c(1:4), nrow = 2, ncol = 2, dimnames = list(c("r1", "r2"), c("c1", "c2"))) %>% setrowtype("row") %>% setcoltype("col") m elementapply_byname(divide, a = m, row = 1, col = 1, .FUNdots = list(divisor = 2)) U <- matrix(1:4, ncol = 2, dimnames = list(c("p1", "p2"), c("i1", "i2"))) %>% setrowtype("Products") %>% setcoltype("Industries") U Y <- matrix(1:4, ncol = 2, dimnames = list(c("p2", "p1"), c("i2", "i1"))) %>% setrowtype("Products") %>% setcoltype("Industries") Y sum_byname(U, Y) binaryapply_byname(`+`, U, Y) cumapply_byname(sum_byname, list(1, 2, 3, 4)) cumapply_byname(hadamardproduct_byname, list(1, 2, 3, 4))
SpecAbunChao1 <- function(data, k, conf){ data <- as.numeric(data) f <- function(i, data){length(data[which(data == i)])} basicAbun <- function(data, k){ x <- data[which(data != 0)] n <- sum(x) D <- length(x) n_rare <- sum(x[which(x <= k)]) D_rare <- length(x[which(x <= k)]) if (n_rare != 0){ C_rare <- 1 - f(1, x)/n_rare } else { C_rare = 1 } n_abun <- n - n_rare D_abun <- length(x[which(x > k)]) j <- c(1:k) a1 <- sum(sapply(j, function(j)j*(j - 1)*f(j, x))) a2 <- sum(sapply(j, function(j)j*f(j, x))) if (C_rare != 0){ gamma_rare_hat_square <- max(D_rare/C_rare*a1/a2/(a2 - 1) - 1, 0) gamma_rare_1_square <- max(gamma_rare_hat_square*(1 + (1 - C_rare)/C_rare*a1/(a2 - 1)), 0) }else{ gamma_rare_hat_square <- 0 gamma_rare_1_square <- 0 } CV_rare <- sqrt(gamma_rare_hat_square) CV1_rare <- sqrt(gamma_rare_1_square) BASIC.DATA <- matrix(paste(c("n", "D", "k", "n_rare", "D_rare", "C_rare", "CV_rare", "CV1_rare", "n_abun", "D_abun"), round(c(n, D, k, n_rare, D_rare, C_rare, CV_rare, CV1_rare, n_abun, D_abun), 1), sep = "="), ncol = 1) colnames(BASIC.DATA) <- c("Value") rownames(BASIC.DATA) <- c("Number of observed individuals", "Number of observed species","Cut-off point", "Number of observed in dividuals for rare species", "Number of observed species for rare species", "Estimation of the sample converage for rare species", "Estimation of CV for rare species in ACE", "Estimation of CV1 for rare species in ACE-1", "Number of observed species for abundant species", "Number of observed species for abundant species") return(list(BASIC.DATA, n, D, n_rare, D_rare, C_rare, CV_rare, CV1_rare, n_abun, D_abun)) } z <- -qnorm((1 - conf)/2) n <- basicAbun(data, k)[[2]] D <- basicAbun(data, k)[[3]] n_rare <- basicAbun(data, k)[[4]] D_rare <- basicAbun(data, k)[[5]] C_rare <- basicAbun(data, k)[[6]] CV_rare <- basicAbun(data, k)[[7]] CV1_rare <- basicAbun(data, k)[[8]] n_abun <- basicAbun(data, k)[[9]] D_abun <- basicAbun(data, k)[[10]] x <- data[which(data != 0)] if (f(1, x) > 0 & f(2, x) > 0){ S_Chao1 <- D + (n - 1)/n*f(1, x)^2/(2*f(2, x)) var_Chao1 <- f(2, x)*((n - 1)/n*(f(1, x)/f(2, x))^2/2 + ((n - 1)/n)^2*(f(1, x)/f(2, x))^3 + ((n - 1 )/n)^2*(f(1, x)/f(2, x))^4/4) t <- S_Chao1 - D K <- exp(z*sqrt(log(1 + var_Chao1/t^2))) CI_Chao1 <- c(D + t/K, D + t*K) } else if (f(1, x) > 1 & f(2, x) == 0){ S_Chao1 <- D + (n - 1)/n*f(1, x)*(f(1, x) - 1)/(2*(f(2, x) + 1)) var_Chao1 <- (n - 1)/n*f(1, x)*(f(1, x) - 1)/2 + ((n - 1)/n)^2*f(1, x)*(2*f(1, x) - 1)^2/4 - ((n - 1)/n)^2*f(1, x)^4/4/S_Chao1 t <- S_Chao1 - D K <- exp(z*sqrt(log(1 + var_Chao1/t^2))) CI_Chao1 <- c(D + t/K, D + t*K) } else { S_Chao1 <- D i <- c(1:max(x)) i <- i[unique(x)] var_obs <- sum(sapply(i, function(i)f(i, x)*(exp(-i) - exp(-2*i)))) - (sum(sapply(i, function(i)i*exp(-i)*f(i, x))))^2/n var_Chao1 <- var_obs P <- sum(sapply(i, function(i)f(i, x)*exp(-i)/D)) CI_Chao1 <- c(max(D, D/(1 - P) - z*sqrt(var_obs)/(1 - P)), D/(1 - P) + z*sqrt(var_obs)/(1 - P)) } table <- matrix(c(S_Chao1, sqrt(var_Chao1), CI_Chao1), ncol = 4) colnames(table) <- c("Estimate", "Est_s.e.", paste(conf*100,"% Lower Bound"), paste(conf*100,"% Upper Bound")) rownames(table) <- "Chao1 (Chao, 1984)" return(table) }
getObsRelationshipsDF <- function(ssn, pid, junk, ind, ob, ob_by_locID, bin) { ob.j.r <- data.frame(ob_by_locID[ind, c("pid", "locID")], junk, stringsAsFactors = FALSE) ob.j.r$fc <- as.logical(ob.j.r$fc) rownames(ob.j.r)<- ob.j.r$pid ob.j.r$junc.rid <- bin$rid[match(ob.j.r$binaryID, bin$binaryID)] reps <- as.numeric(ob_by_locID$locID) ob.j <- ob.j.r[reps,] rownames(ob.j) <- paste(rownames(ob), ".fc", sep = "") ob.j$pid <- ob_by_locID$pid ob.j$juncDist <- [email protected]$DistanceUpstream[match(ob.j$junc.rid, [email protected]$SegmentID)] ob.j$upDist.j <- ssn@obspoints@SSNPoints[[1]]@network.point.coords$DistanceUpstream[ match(ob.j$pid, as.numeric(rownames(ssn@obspoints@SSNPoints[[1]]@network.point.coords)))] ob.j }
`rclust` <- function(dist, clusters = 2, runs = 10, counter = FALSE) { if (runs == 1) return(relational.clustering(dist, clusters)) else { rc2return <- NULL rc2 <- sum(dist) for (i in 1:runs) { npart <- relational.clustering(dist, clusters) if (i%%10==0 && counter==TRUE) print(paste('Calculating run number ',i,sep='')) if (length(npart) == 1) { next(i) } nd <- as.matrix(dist) n<-dim(nd)[1] nd[upper.tri(nd, diag = TRUE)] <- 0 inout <- matrix(0,n,n) inout <- outer(1:n, 1:n, function(i, j) npart[i]!=npart[j]) inout<-as.matrix(as.dist(inout)) sumin <- sum(nd[which(inout==1)]) sumn<-sum(1:(n-1)) np <- sumin/(sumn-sum(inout)) if (np < rc2) { rc2return <- npart rc2 <- np } } } return(rc2return) }
test_that("Check Project Found", { create_temp_compendium() expect_equal(get_package_name(), "pkgtest") })
find.subset <- function(subsets.matrix, subset) { subset = as.vector(subset) len = length(subset) if(len == 0) stop("Empty atrributes subset.") if(dim(subsets.matrix)[2] != len) stop("Incorrect dimensions.") if(dim(subsets.matrix)[1] == 0) return(as.integer(NULL)) cond = rep(TRUE, dim(subsets.matrix)[1]) for(i in 1:len) cond = cond & (subsets.matrix[,i] == subset[i]) return(which(cond)) } create.children <- function(parent, direction = c("forward", "backward", "both"), omit.func = NULL ) { direction = match.arg(direction) if(!is.null(omit.func)) { omit.func = match.fun(omit.func) } cols = length(parent) if(cols <= 0) stop("Parent attribute set cannot be empty.") m1 = NULL m2 = NULL if(direction == "forward" || direction == "both") { rows = cols - sum(parent) if(rows > 0) { m1 = matrix(parent, ncol = cols, nrow = rows, byrow = TRUE) current_row = 1 current_col = 1 repeat { if(current_col > cols || current_row > rows) break() if(m1[current_row, current_col] == 0) { m1[current_row, current_col] = 1 current_row = current_row + 1 } current_col = current_col + 1 } } } if(direction == "backward" || direction == "both") { rows = sum(parent) if(rows > 1) { m2 = matrix(parent, ncol = cols, nrow = rows, byrow = TRUE) current_row = 1 current_col = 1 repeat { if(current_col > cols || current_row > rows) break() if(m2[current_row, current_col] == 1) { m2[current_row, current_col] = 0 current_row = current_row + 1 } current_col = current_col + 1 } } } m = rbind(m1, m2) if(is.null(m)) return(m) if(!is.null(omit.func)) { rows_to_omit = apply(m, 1, omit.func) return(m[!rows_to_omit,, drop = FALSE]) } else { return(m) } } find.best <- function(results, subset = rep(TRUE, length(results))) { best = list( result = NULL, idx = NULL ) w = which(subset) if(length(w) > 0) { children_results = results[w] max_idx = which.max(children_results) best$result = children_results[max_idx] best$idx = w[max_idx] } return(best) }
ResScanOutput <- function(sites_clusters, pval_clusters, centres_clusters, radius_clusters, areas_clusters, system, sites_coord, data, method){ res <- list(sites_clusters = sites_clusters, pval_clusters = pval_clusters, centres_clusters = centres_clusters, radius_clusters = radius_clusters, areas_clusters = areas_clusters, system = system, sites_coord = sites_coord, data = data, method = method) oldClass(res) <- "ResScanOutput" return(res) } ResScanOutputUni <- function(sites_clusters, pval_clusters, centres_clusters, radius_clusters, areas_clusters, system, sites_coord, data, method){ res <- ResScanOutput(sites_clusters, pval_clusters, centres_clusters, radius_clusters, areas_clusters, system, sites_coord, data, method) oldClass(res) <- append(oldClass(res), "ResScanOutputUni") return(res) } ResScanOutputMulti <- function(sites_clusters, pval_clusters, centres_clusters, radius_clusters, areas_clusters, system, variable_names = NULL, sites_coord, data, method){ res <- ResScanOutput(sites_clusters, pval_clusters, centres_clusters, radius_clusters, areas_clusters, system, sites_coord, data, method) if(is.null(variable_names)){ res["variable_names"] <- list(NULL) }else{ res[["variable_names"]] <- variable_names } oldClass(res) <- append(oldClass(res), "ResScanOutputMulti") return(res) } ResScanOutputUniFunct <- function(sites_clusters, pval_clusters, centres_clusters, radius_clusters, areas_clusters, system, times = NULL, sites_coord, data, method){ res <- ResScanOutput(sites_clusters, pval_clusters, centres_clusters, radius_clusters, areas_clusters, system, sites_coord, data, method) if(is.null(times)){ res["times"] <- list(NULL) }else{ res[["times"]] <- times } oldClass(res) <- append(oldClass(res), "ResScanOutputUniFunct") return(res) } ResScanOutputMultiFunct <- function(sites_clusters, pval_clusters, centres_clusters, radius_clusters, areas_clusters, system, times = NULL, variable_names = NULL, sites_coord, data, method){ res <- ResScanOutput(sites_clusters, pval_clusters, centres_clusters, radius_clusters, areas_clusters, system, sites_coord, data, method) if(is.null(times)){ res["times"] <- list(NULL) }else{ res[["times"]] <- times } if(is.null(variable_names)){ res["variable_names"] <- list(NULL) }else{ res[["variable_names"]] <- variable_names } oldClass(res) <- append(oldClass(res), "ResScanOutputMultiFunct") return(res) }
time_group("Kamada-Kawai layout") time_that("KK layout is fast, connected", replications=10, init = { library(igraph); set.seed(42) }, reinit = { g <- sample_pa(400) }, { layout_with_kk(g, maxiter=500) }) time_that("KK layout is fast, unconnected", replications=10, init = { library(igraph); set.seed(42) }, reinit = { g <- sample_gnm(400, 400) }, { layout_with_kk(g, maxiter=500) }) time_that("KK layout is fast for large graphs", replications=10, init = { library(igraph); set.seed(42) }, reinit = { g <- sample_pa(3000) }, { layout_with_kk(g, maxiter=500) })
gemSecurityPricingExample <- function(...) sdm2(...)
loonGrob.l_ts <- function(target, name = NULL, gp = NULL, vp = NULL){ loonGrob.l_compound(target, name = if (!is.null(name)) name else "time series decomposition", gp = gp, vp = vp) }
seqici <- function(seqdata, with.missing=FALSE, silent=TRUE) { if (!inherits(seqdata,"stslist")) stop("data is NOT a sequence object, see seqdef function to create one") if(!silent) message(" [>] computing complexity index for ",nrow(seqdata)," sequences ...") trans <- seqtransn(seqdata, with.missing=with.missing, norm=TRUE) ient <- suppressMessages( seqient(seqdata, with.missing=with.missing, norm=TRUE) ) comp.index <- sqrt(trans * ient) colnames(comp.index) <- "C" return(comp.index) }
funcc_show_bicluster_hscore <- function(fun_mat,res_input){ biclust_n <- NULL col_palette = c(RColorBrewer::brewer.pal(9, 'Set1'), RColorBrewer::brewer.pal(12, 'Set3'), RColorBrewer::brewer.pal(8, 'Set2'), RColorBrewer::brewer.pal(8, 'Accent'), RColorBrewer::brewer.pal(8, 'Dark2'), RColorBrewer::brewer.pal(9, 'PiYG'), RColorBrewer::brewer.pal(9, 'PuOr'), RColorBrewer::brewer.pal(9, 'RdBu'), RColorBrewer::brewer.pal(9, 'PRGn'), RColorBrewer::brewer.pal(9, 'Pastel1'), RColorBrewer::brewer.pal(8, 'Pastel2'), RColorBrewer::brewer.pal(9, 'BrBG'), RColorBrewer::brewer.pal(11, 'Spectral'), RColorBrewer::brewer.pal(8,'RdGy'), RColorBrewer::brewer.pal(8,'RdBu'), RColorBrewer::brewer.pal(8,'PRGn'), RColorBrewer::brewer.pal(8,'PiYG'), RColorBrewer::brewer.pal(8,'Oranges'), RColorBrewer::brewer.pal(8,'Blues'), RColorBrewer::brewer.pal(8,'RdGy'), RColorBrewer::brewer.pal(8,'Greens'), RColorBrewer::brewer.pal(6,'BuPu'), RColorBrewer::brewer.pal(6,'BuGn'), RColorBrewer::brewer.pal(9,'Paired'), RColorBrewer::brewer.pal(9,'Paired'), RColorBrewer::brewer.pal(9,'Paired'), RColorBrewer::brewer.pal(9,'Paired'), RColorBrewer::brewer.pal(9,'Paired')) res <- res_input[[1]] param <- res_input[[2]] biclust <- data.frame(biclust_n=numeric(),h_score=numeric(),dim=numeric()) for(i in 1:res@Number){ logr <- res@RowxNumber[,i] logc <- res@NumberxCol[i,] fun_mat_prova <- array(fun_mat[logr,logc,],dim = c(sum(logr),sum(logc),dim(fun_mat)[3])) dist_mat <- evaluate_mat_dist(fun_mat_prova,param$template.type, param$alpha, param$beta, param$const_alpha, param$const_beta, param$shift.alignement, param$shift.max, param$max.iter) h_score <- ccscore_fun(dist_mat) dim <- sum(res@RowxNumber[,i])*sum(res@NumberxCol[i,]) biclust_i <- data.frame(biclust_n=i,h_score=h_score,dim=dim) biclust <- rbind(biclust,biclust_i) } grDevices::dev.new() g <- ggplot2::ggplot(biclust,ggplot2::aes(x=dim,y=h_score,color=factor(biclust_n)))+ ggplot2::geom_point(size=3) + ggplot2::scale_color_manual(values=col_palette) + ggplot2::xlab('Dimension') + ggplot2::ylab('H score') + ggplot2::labs(color='Bi-Cluster') print(g) }
expected <- eval(parse(text="81L")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(-Inf, -Inf, 0, 0, 1, 2, Inf, Inf, Inf, -Inf, -Inf, 0, 0.5, 1, 2, Inf, Inf, Inf, -Inf, -Inf, -Inf, 0, 1, 2, 2, Inf, Inf, -Inf, -Inf, -Inf, 0, 0.8, 1.6, Inf, Inf, Inf, -Inf, -Inf, -Inf, 0.5, 1.3, Inf, Inf, Inf, Inf, -Inf, -Inf, -Inf, 0.5, 1.4, Inf, Inf, Inf, Inf, -Inf, -Inf, -Inf, 0.5, 1.2, 1.9, Inf, Inf, Inf, -Inf, -Inf, -Inf, 0.499999999999999, 1.33333333333333, Inf, Inf, Inf, Inf, -Inf, -Inf, -Inf, 0.5, 1.325, Inf, Inf, Inf, Inf), .Dim = c(9L, 9L), .Dimnames = list(c(\"20%\", \"30%\", \"40%\", \"50%\", \"60%\", \"70%\", \"80%\", \"90%\", \"100%\"), NULL)))")); do.call(`length`, argv); }, o=expected);
context("parse: delay") test_that("missing variables in delay", { expect_error(odin_parse({ ylag <- delay(x, 10) initial(y) <- 0.5 deriv(y) <- y + ylag }), "Missing variable in delay expression", class = "odin_error") expect_error(odin_parse({ ylag <- delay(x + y, 10) initial(y) <- 0.5 deriv(y) <- y + ylag }), "Missing variable in delay expression", class = "odin_error") expect_error(odin_parse({ ylag <- delay(x + z, 10) initial(y) <- 0.5 deriv(y) <- y + ylag }), "Missing variables in delay expression", class = "odin_error") }) test_that("delay call validation", { expect_error(odin_parse_(quote(a <- 1 + delay(1))), "delay() must be the only call on the rhs", fixed = TRUE, class = "odin_error") expect_error(odin_parse_(quote(a <- delay(1))), "delay() requires two or three arguments", fixed = TRUE, class = "odin_error") expect_error(odin_parse_(quote(a <- delay(1, 2, 3, 4))), "delay() requires two or three arguments", fixed = TRUE, class = "odin_error") expect_error(odin_parse_(quote(a <- delay(delay(1, 2), 2))), "delay() may not be nested", fixed = TRUE, class = "odin_error") expect_error(odin_parse_(quote(a <- delay(2, delay(1, 2)))), "delay() may not be nested", fixed = TRUE, class = "odin_error") expect_error(odin_parse_(quote(a <- delay(y + t, 2))), "delay() may not refer to time", fixed = TRUE, class = "odin_error") }) test_that("delay check", { expect_error(ir_parse_expr(quote(deriv(x) <- delay(y, 1)), NULL, NULL), "delay() only valid for non-special variables", fixed = TRUE, class = "odin_error") expect_error(ir_parse_expr(quote(initial(x) <- delay(y, 1)), NULL, NULL), "delay() only valid for non-special variables", fixed = TRUE, class = "odin_error") expect_error(ir_parse_expr(quote(dim(x) <- delay(y, 1)), NULL, NULL), "delay() only valid for non-special variables", fixed = TRUE, class = "odin_error") }) test_that("more parse errors", { expect_error(odin_parse({ x <- y + b ylag <- delay(x, 10) initial(y) <- 0.5 deriv(y) <- y + ylag }), "Missing variable in delay expression: b (for delay ylag)", fixed = TRUE, class = "odin_error") }) test_that("prevent multiline delay", { expect_error( odin_parse({ deriv(a[]) <- i initial(a[]) <- (i - 1) / 10 dim(a) <- 5 alt[] <- user() dim(alt) <- length(a) tmp[1] <- delay(a[1], 2, alt[1]) tmp[2:5] <- delay(a[i], 2, alt[i]) dim(tmp) <- length(a) output(tmp[]) <- TRUE }), "delay() may only be used on a single-line array", fixed = TRUE, class = "odin_error") })
logD0Func=function(genoVec, alpha, beta) { n0=sum(genoVec==0, na.rm=TRUE) n1=sum(genoVec==1, na.rm=TRUE) n2=sum(genoVec==2, na.rm=TRUE) alpha0=2*n2+n1+alpha beta0=2*n0+n1+beta tt1=lbeta(a=alpha0, b=beta0) tt2=lbeta(a=alpha, b=beta) logD0=n1*log(2)+tt1-tt2 res=list(logD0=logD0, alpha0=alpha0, beta0=beta0) return(res) } QFunc=function(par, genoMat, wMat, piVec, memSubjs, bVec=rep(3,3)) { alpha=par[1] beta=par[2] logpi=log(piVec) const1=lgamma(sum(bVec, na.rm=TRUE))-lgamma(bVec[1])-lgamma(bVec[2])- lgamma(bVec[3]) const2=sum((bVec-1)*logpi, na.rm=TRUE) tt1=sum(wMat%*%logpi, na.rm=TRUE) ttp=apply(genoMat, 1, function(x) { ttres=logD.pFunc(x,memSubjs=memSubjs, alpha=alpha, beta=beta)$logD.p}) tt0=apply(genoMat, 1, function(x) { ttres=logD0Func(x,alpha=alpha, beta=beta)$logD0 return(ttres)}) ttn=apply(genoMat, 1, function(x) { ttres=logD.nFunc(x, memSubjs=memSubjs, alpha=alpha, beta=beta)$logD.n return(ttres)}) tt2=sum(wMat[,1]*ttn, na.rm=TRUE)+ sum(wMat[,2]*tt0, na.rm=TRUE) + sum(wMat[,3]*ttp, na.rm=TRUE) myQ = tt1+tt2+const1+const2 return(myQ) } dQFunc=function(par, genoMat, wMat, piVec, memSubjs, bVec=rep(3,3)) { alpha=par[1] beta=par[2] tt=apply(genoMat, 1, dlogD0Func, alpha=alpha, beta=beta) res1=sum(tt[1,]*wMat[,2], na.rm=TRUE) res2=sum(tt[2,]*wMat[,2], na.rm=TRUE) res=c(res1, res2) return(res) } dlogD0Func=function(genoVec, alpha, beta) { n0=sum(genoVec==0, na.rm=TRUE) n1=sum(genoVec==1, na.rm=TRUE) n2=sum(genoVec==2, na.rm=TRUE) alpha0=2*n2+n1+alpha beta0=2*n0+n1+beta tt0=digamma(alpha0+beta0) tt=digamma(alpha+beta) d.alpha=digamma(alpha0)-tt0- digamma(alpha)+tt d.beta=digamma(beta0)-tt0- digamma(beta)+tt res=c(d.alpha, d.beta) return(res) } logD.pFunc=function(genoVec, memSubjs, alpha, beta) { genoVec.ca=genoVec[which(memSubjs==1)] genoVec.co=genoVec[which(memSubjs==0)] res.x=logD0Func(genoVec.ca, alpha, beta) lcx=res.x$logD0 alpha.x=res.x$alpha0 beta.x=res.x$beta0 res.y=logD0Func(genoVec.co, alpha, beta) lcy=res.y$logD0 alpha.y=res.y$alpha0 beta.y=res.y$beta0 tmpFunc=function(vy, alpha.x, beta.x, alpha.y, beta.y) { tt1=pbeta(vy, shape1=alpha.x, shape2=beta.x) tt2=dbeta(x=vy, shape1=alpha.y, shape2=beta.y) return(tt1*tt2) } res.int=integrate(f=tmpFunc, lower=0, upper=1, alpha.x=alpha.x, beta.x=beta.x, alpha.y=alpha.y, beta.y=beta.y) prVxVy=1-res.int$value if(prVxVy<0) { prVxVy = abs(prVxVy) } if(prVxVy<1.0e-300) { prVxVy=1.0e-300 } logD.p=log(2)+lcx+lcy+log(prVxVy) res=list(logD.p=logD.p, alpha.x=alpha.x, beta.x=beta.x, alpha.y=alpha.y, beta.y=beta.y) return(res) } logD.nFunc=function(genoVec, memSubjs, alpha, beta) { genoVec.ca=genoVec[which(memSubjs==1)] genoVec.co=genoVec[which(memSubjs==0)] res.x=logD0Func(genoVec.ca, alpha, beta) lcx=res.x$logD0 alpha.x=res.x$alpha0 beta.x=res.x$beta0 res.y=logD0Func(genoVec.co, alpha, beta) lcy=res.y$logD0 alpha.y=res.y$alpha0 beta.y=res.y$beta0 tmpFunc=function(vy, alpha.x, beta.x, alpha.y, beta.y) { tt1=pbeta(vy, shape1=alpha.x, shape2=beta.x) tt2=dbeta(x=vy, shape1=alpha.y, shape2=beta.y) return(tt1*tt2) } res.int=integrate(f=tmpFunc, lower=0, upper=1, alpha.x=alpha.x, beta.x=beta.x, alpha.y=alpha.y, beta.y=beta.y) prVxVy=res.int$value if(prVxVy<0) { prVxVy= abs(prVxVy) } if(prVxVy<1.0e-300) { prVxVy=1.0e-300 } logD.n=log(2)+lcx+lcy+log(prVxVy) res=list(logD.n=logD.n, alpha.x=alpha.x, beta.x=beta.x, alpha.y=alpha.y, beta.y=beta.y) return(res) } estMemSNPs.default=function(genoMat, memSubjs, alpha.p=2, beta.p=5, pi.p=0.1, alpha0=2, beta0=5, pi0=0.8, alpha.n=2, beta.n=5, pi.n=0.1, method = "FDR", fdr = 0.05, verbose=FALSE) { nSNPs=nrow(genoMat) wMat=matrix(NA, nrow=nSNPs, ncol=3) colnames(wMat)=c("w-", "wEE", "w+") memSNPs=rep(NA, nSNPs) for(g in 1:nSNPs) { geno.g=genoMat[g,] logD.p=logD.pFunc(genoVec=geno.g, memSubjs=memSubjs, alpha=alpha.p, beta=beta.p)$logD.p logD0=logD0Func(genoVec=geno.g, alpha=alpha0, beta=beta0)$logD0 logD.n=logD.nFunc(genoVec=geno.g, memSubjs=memSubjs, alpha=alpha.p, beta=beta.p)$logD.n logVec=c(logD.n, logD0, logD.p) max.log=max(logVec, na.rm=TRUE) logdiff=logVec-max.log diff=exp(logdiff) piVec=c(pi.n, pi0, pi.p) pidiff=piVec*diff denom=sum(pidiff, na.rm=TRUE) wMat[g,]=pidiff/denom memSNPs[g]=which.max(wMat[g,])-2 } if(method=="FDR") { memSNPs=callSNP(wmat=wMat, fdr=fdr) } memSNPs2=as.numeric(memSNPs != 0) res=list(wMat=wMat, memSNPs=memSNPs, memSNPs2=memSNPs2) invisible(res) } estMemSNPs.oneSetHyperPara=function( es, var.memSubjs="memSubjs", eps=1.0e-3, MaxIter=50, bVec=rep(3,3), pvalAdjMethod="none", method = "FDR", fdr = 0.05, verbose=FALSE) { pDat=pData(es) memSubjs=pDat[, c(var.memSubjs)] tt=table(memSubjs) nm=names(tt) tt=sort(nm) if(!identical(tt, c("0","1"))) { stop("memSubjs should be binary taking only values 0 or 1!") } fDat=fData(es) pDat=pData(es) genoMat=exprs(es) fmla=as.formula(paste("~", var.memSubjs, sep="")) design=model.matrix(fmla, data=pDat) fit = lmFit(genoMat, design) ebFit = eBayes(fit) pval = ebFit$p.value[, 2] p.adj = p.adjust(pval, method=pvalAdjMethod) stats = ebFit$t[, 2] nSNPs=length(stats) memGenes.ini=rep("EE", nSNPs) memGenes.ini[which(stats>0 & p.adj < 0.05)] = "+" memGenes.ini[which(stats<0 & p.adj < 0.05)] = "-" memGenes2=rep(1, nSNPs) memGenes2[which(memGenes.ini == "EE")]=0 frame.unsorted=data.frame(stats=stats, pval=pval, p.adj=p.adj) res.limma=list(ebFit=ebFit, frame.unsorted=frame.unsorted, memGenes.ini=memGenes.ini, memGenes2=memGenes2) nSNPs2=nrow(genoMat) theta.hat=rep(NA, nSNPs2) nTotal=ncol(genoMat) for(g2 in 1:nSNPs2) { x=genoMat[g2,] theta.hat[g2]=(2*sum(x==2, na.rm=TRUE)+sum(x==1, na.rm=TRUE))/(2*nTotal) } n.p=sum(memGenes.ini=="+", na.rm=TRUE) n.n=sum(memGenes.ini=="-", na.rm=TRUE) n.0=sum(memGenes.ini=="EE", na.rm=TRUE) nSNPs2=length(memGenes.ini) piVec = c(n.n, n.0, n.p)/nSNPs2 names(piVec)= c("-", "EE", "+") piVec.ini=piVec if(verbose) { cat("\ninitial pi>>\n") print(piVec) cat("\n") cat("\nnSNPs*pi.ini>>\n") print(nSNPs2*piVec) cat("\n") cat("\ntable(memGenes.ini>>\n") print(table(memGenes.ini, useNA="ifany")) cat("\n") } est.MLE02=est.alpha.beta.MLE(x=theta.hat) alpha02=est.MLE02$res.moment[1] beta02=est.MLE02$res.moment[2] loop=0 diff = 10000 while(loop < MaxIter) { loop = loop + 1 res.est2=estMemSNPs.default(genoMat=genoMat, memSubjs=memSubjs, alpha.p=alpha02, beta.p=beta02, pi.p=piVec[3], alpha0=alpha02, beta0=beta02, pi0=piVec[2], alpha.n=alpha02, beta.n=beta02, pi.n=piVec[1], method = method, fdr=fdr, verbose=FALSE) wMat=res.est2$wMat piVec.new=apply(wMat, 2, function(x) { tt=sum(x,na.rm=TRUE) numer=tt+bVec[1]-1 denom=nSNPs2+sum(bVec, na.rm=TRUE)-3 return(numer/denom) }) diff=sum((piVec-piVec.new)^2, na.rm=TRUE) if(diff<eps) { break } piVec=piVec.new } wMat=res.est2$wMat memSNPs=res.est2$memSNPs memSNPs2=res.est2$memSNPs2 if(verbose) { cat("\ndiff=", diff, "\n") cat("\nloop=", loop, ", MaxIter=", MaxIter, "\n") cat("\nfinal pi>>\n") print(piVec.new) cat("\n") cat("\nnSNPs*pi.final>>\n") print(nSNPs2*piVec.new) cat("\n") cat("table(memSNPs)>>\n") print(table(memSNPs, useNA="ifany")) cat("\n") } res=list( wMat=wMat, memSNPs=memSNPs, memSNPs2=memSNPs2, piVec.ini=piVec.ini, piVec=piVec.new, alpha=alpha02, beta=beta02, loop=loop, diff=diff, res.limma=res.limma) invisible(res) } estMemSNPs=function( es, var.memSubjs="memSubjs", eps=1.0e-3, MaxIter=50, bVec=rep(3,3), pvalAdjMethod="fdr", method = "FDR", fdr = 0.05, verbose=FALSE) { pDat=pData(es) memSubjs=pDat[, c(var.memSubjs)] tt=table(memSubjs) nm=names(tt) tt=sort(nm) if(!identical(tt, c("0","1"))) { stop("memSubjs should be binary taking only values 0 or 1!") } fDat=fData(es) pDat=pData(es) genoMat=exprs(es) fmla=as.formula(paste("~", var.memSubjs, sep="")) design=model.matrix(fmla, data=pDat) fit = lmFit(genoMat, design) ebFit = eBayes(fit) pval = ebFit$p.value[, 2] p.adj = p.adjust(pval, method=pvalAdjMethod) stats = ebFit$t[, 2] nSNPs=length(stats) memGenes.ini=rep("EE", nSNPs) memGenes.ini[which(stats>0 & p.adj < 0.05)] = "+" memGenes.ini[which(stats<0 & p.adj < 0.05)] = "-" memGenes2=rep(1, nSNPs) memGenes2[which(memGenes.ini == "EE")]=0 frame.unsorted=data.frame(stats=stats, pval=pval, p.adj=p.adj) res.limma=list(ebFit=ebFit, frame.unsorted=frame.unsorted, memGenes.ini=memGenes.ini, memGenes2=memGenes2) memSNPs2.snpTest=res.limma$memGenes2 genoMat=exprs(es) nSNPs2=nrow(genoMat) genoMat.ca=genoMat[, which(memSubjs==1)] genoMat.co=genoMat[, which(memSubjs==0)] theta.ca.hat=rep(NA, nSNPs2) theta.co.hat=rep(NA, nSNPs2) theta.hat=rep(NA, nSNPs2) nTotal=ncol(genoMat) for(g2 in 1:nSNPs2) { x.ca=genoMat.ca[g2,] x.co=genoMat.co[g2,] x=genoMat[g2,] theta.hat[g2]=(2*sum(x==2)+sum(x==1))/(2*nTotal) theta.ca.hat[g2]=(2*sum(x.ca==2)+sum(x.ca==1))/(2*nTotal) theta.co.hat[g2]=(2*sum(x.co==2)+sum(x.co==1))/(2*nTotal) } pos.p=which(memSNPs2.snpTest==1 & theta.ca.hat>theta.co.hat) est.MLE.p=est.alpha.beta.MLE(x=theta.hat[pos.p]) alpha.p=est.MLE.p$res.moment[1] beta.p=est.MLE.p$res.moment[2] pos0=which(memSNPs2.snpTest==0) est.MLE0=est.alpha.beta.MLE(x=theta.hat[pos0]) alpha0=est.MLE0$res.moment[1] beta0=est.MLE0$res.moment[2] pos.n=which(memSNPs2.snpTest==1 & theta.ca.hat<theta.co.hat) est.MLE.n=est.alpha.beta.MLE(x=theta.hat[pos.n]) alpha.n=est.MLE.n$res.moment[1] beta.n=est.MLE.n$res.moment[2] piVec = c(length(pos.n), length(pos0), length(pos.p))/nSNPs2 loop=0 diff = 10000 while(loop < MaxIter) { loop = loop + 1 res.est2=estMemSNPs.default(genoMat=genoMat, memSubjs=memSubjs, alpha.p=alpha.p, beta.p=beta.p, pi.p=piVec[3], alpha0=alpha0, beta0=beta0, pi0=piVec[2], alpha.n=alpha.n, beta.n=beta.n, pi.n=piVec[1], method = method, fdr=fdr, verbose=FALSE) wMat=res.est2$wMat piVec.new=apply(wMat, 2, function(x) { tt=sum(x,na.rm=TRUE) numer=tt+bVec[1]-1 denom=nSNPs2+sum(bVec)-3 return(numer/denom) }) diff=sum((piVec-piVec.new)^2) if(diff<eps) { break } piVec=piVec.new } res=list( wMat=res.est2$wMat, memSNPs=res.est2$memSNPs, memSNPs2=res.est2$memSNPs2, piVec=piVec, alpha.p=alpha.p, beta.p=beta.p, alpha0=alpha0, beta0=beta0, alpha.n=alpha.n, beta.n=beta.n, loop=loop, diff=diff, res.limma=res.limma) invisible(res) }
las <- lidR:::generate_las(2000) f1 <- ~list(Zmean = mean(Z)) f2 <- ~list(meanZ = mean(Z), maxZ = max(Z)) expected_bbox <- sf::st_bbox(c(xmin = 0, xmax = 100, ymin = 0, ymax = 100), crs = st_crs(las)) expected_bbox2 <- sf::st_bbox(c(xmin = -10, xmax = 110, ymin = -10, ymax = 110), crs = st_crs(las)) slr = lidR:::raster_class() mlr = lidR:::raster_multilayer_class() test_that("pixel_metrics returns a named raster", { x <- pixel_metrics(las, f1) expect_true(is(x, slr)) expect_equal(lidR:::raster_res(x), c(20,20)) expect_equivalent(lidR:::raster_size(x), c(5,5,1)) expect_equivalent(sf::st_bbox(x), expected_bbox) expect_equal(lidR:::raster_names(x), "Zmean") }) test_that("pixel_metrics returns a named multilayers raster", { x <- pixel_metrics(las, f2) y <- pixel_metrics(las, f1) expect_true(is(x, mlr)) expect_equal(lidR:::raster_res(x), c(20,20)) expect_equivalent(lidR:::raster_size(x), c(5,5,2)) expect_equivalent(sf::st_bbox(x), expected_bbox) expect_equal(lidR:::raster_names(x), c("meanZ", "maxZ")) }) test_that("pixel_metrics return raster terra or stars", { x <- pixel_metrics(las, f2, pkg = "raster") expect_true(is(x, "RasterBrick")) x <- pixel_metrics(las, f2, pkg = "terra") expect_true(is(x, "SpatRaster")) x <- pixel_metrics(las, f2, pkg = "stars") expect_true(is(x, "stars")) }) test_that("pixel_metrics returns a raster aligned with the start option", { x <- pixel_metrics(las, f1, start = c(10,10)) expect_true(is(x, slr)) expect_equal(lidR:::raster_res(x), c(20,20)) expect_equivalent(lidR:::raster_size(x), c(6,6, 1)) expect_equivalent(sf::st_bbox(x), expected_bbox2) expect_equal(lidR:::raster_names(x), "Zmean") }) test_that("pixel_metrics returns a named multilayers raster", { x <- pixel_metrics(las, f2) expect_true(is(x, mlr)) expect_equal(lidR:::raster_res(x), c(20,20)) expect_equivalent(lidR:::raster_size(x), c(5,5,2)) expect_equivalent(sf::st_bbox(x), expected_bbox) expect_equal(lidR:::raster_names(x), c("meanZ", "maxZ")) }) test_that("pixel_metrics returns a named multilayers raster aligned with the start option", { x <- pixel_metrics(las, f2, start = c(10,10)) expect_true(is(x, mlr)) expect_equal(lidR:::raster_res(x), c(20,20)) expect_equivalent(lidR:::raster_size(x), c(6,6,2)) expect_equivalent(sf::st_bbox(x), expected_bbox2) expect_equal(lidR:::raster_names(x), c("meanZ", "maxZ")) }) test_that("pixel_metrics returns a raster -- tricky case", { las2 <- filter_poi(las, X < 20 | X > 70) out <- pixel_metrics(las2, f1) expect_equivalent(lidR:::raster_size(out), c(5,5,1)) expect_equal(lidR:::raster_res(out), c(20, 20)) las2 <- filter_poi(las, (X < 20 | X > 70) & (Y < 20 | Y > 70)) out <- pixel_metrics(las2, f1, 10) expect_equivalent(lidR:::raster_size(out), c(10,10,1)) expect_equal(lidR:::raster_res(out), c(10, 10)) }) test_that("pixel_metrics return a raster -- tricky case", { las2 <- filter_poi(las, (X < 20 | X > 80) & (Y < 20 | Y > 80)) out <- pixel_metrics(las2, f2, 10) expect_equivalent(lidR:::raster_size(out), c(10,10,2)) expect_equal(lidR:::raster_res(out), c(10, 10)) }) test_that("pixel_metrics accepts both an expression or a formula", { x <- pixel_metrics(las, list(mean(Z), max(Z)), 20) y <- pixel_metrics(las, ~list(mean(Z), max(Z)), 20) expect_equal(x, y) }) test_that("pixel_metrics splits by echo type", { x <- pixel_metrics(las, f1, by_echo = c("first")) expect_equal(lidR:::raster_res(x), c(20,20)) expect_equivalent(lidR:::raster_size(x), c(5,5,1)) expect_equivalent(sf::st_bbox(x), expected_bbox) expect_equal(lidR:::raster_names(x), "Zmean.first") x <- pixel_metrics(las, f1, by_echo = c("first", "lastofmany")) expect_equal(lidR:::raster_res(x), c(20,20)) expect_equivalent(lidR:::raster_size(x), c(5,5,2)) expect_equivalent(sf::st_bbox(x), expected_bbox) expect_equal(lidR:::raster_names(x), c("Zmean.first", "Zmean.lastofmany")) x <- pixel_metrics(las, f2, by_echo = c("all", "first", "lastofmany")) expect_equal(lidR:::raster_res(x), c(20,20)) expect_equivalent(lidR:::raster_size(x), c(5,5,6)) expect_equivalent(sf::st_bbox(x), expected_bbox) expect_equal(lidR:::raster_names(x), c("meanZ", "maxZ", "meanZ.first", "maxZ.first", "meanZ.lastofmany", "maxZ.lastofmany")) }) test_that("3 way to compute with first returns are giving the same", { x1 <- pixel_metrics(filter_last(megaplot), f1, 20) x2 <- pixel_metrics(megaplot, f1, 20, filter = ~ReturnNumber == NumberOfReturns) expect_equal(x1, x2) }) las <- filter_first(megaplot) las@data$Intensity <- NULL ctg <- megaplot_ctg opt_chunk_size(ctg) <- 260 opt_chunk_alignment(ctg) <- c(160, 160) opt_chunk_buffer(ctg) <- 0 opt_progress(ctg) <- FALSE opt_select(ctg) <- "xyz" opt_filter(ctg) <- "-keep_first" bb <- as.list(round(st_bbox(las))) bb$xmin <- bb$xmin - 160 bb$xmax <- bb$xmax - 160 bb <- sf::st_bbox(unlist(bb), crs <- st_crs(las)) stars1 <- stars::st_as_stars(bb, dx = 15, inside = TRUE) raster1 <- as(stars1, "Raster") bb <- as.list(st_bbox(las)) bb$xmin <- bb$xmin - 360 bb$xmax <- bb$xmax - 360 bb <- sf::st_bbox(unlist(bb), crs <- st_crs(las)) stars2 <- stars::st_as_stars(bb, dx = 15, inside = TRUE) raster2 <- as(stars2, "Raster") test_that("pixel_metric returns the same both with LAScatalog and LAS", { m1 <- pixel_metrics(ctg, f1, 20) m2 <- pixel_metrics(las, f1, 20) expect_equivalent(m1, m2, tolerance = 3e-8) m1 <- pixel_metrics(ctg, f2, 20) m2 <- pixel_metrics(las, f2, 20) expect_equivalent(m1, m2, tolerance = 3e-8) m1 <- pixel_metrics(ctg, f1, 20, start = c(10,10)) m2 <- pixel_metrics(las, f1, 20, start = c(10,10)) expect_equivalent(m1, m2, tolerance = 3e-8) }) test_that("pixel_metric works with a RasterLayer as input instead of a resolution", { m <- pixel_metrics(las, f1, raster1) expect_true(is(m, "RasterLayer")) expect_equivalent(sf::st_bbox(m), sf::st_bbox(raster1)) expect_equal(sum(!is.na(m[])), 75L) expect_equal(sum(is.na(m[])), 150L) expect_warning(m <- pixel_metrics(las, f1, raster2), "Bounding boxes are not intersecting") expect_true(is(m, "RasterLayer")) expect_equivalent(sf::st_bbox(m), sf::st_bbox(raster2)) expect_equal(sum(is.na(m[])), 225) }) test_that("pixel_metric works with a stars as input instead of a resolution", { m <- pixel_metrics(las, f1, stars1) expect_true(is(m, "stars")) expect_equal(sf::st_bbox(m), sf::st_bbox(raster1)) expect_equal(sum(!is.na(m[[1]])), 75L) expect_equal(sum(is.na(m[[1]])), 150L) expect_warning(m <- pixel_metrics(las, f1, stars2), "Bounding boxes are not intersecting") expect_equal(sf::st_bbox(m), sf::st_bbox(raster2)) expect_equal(sum(is.na(m[[1]])), 225) }) test_that("predefined metric set work both with a LAS and LAScatalog", { las <- random_500_points expect_error(pixel_metrics(las, .stdmetrics_z), NA) expect_error(pixel_metrics(las, .stdmetrics_i), NA) expect_error(pixel_metrics(las, .stdmetrics_rn), NA) expect_error(pixel_metrics(las, .stdmetrics_ctrl), NA) expect_error(pixel_metrics(las, .stdshapemetrics), NA) expect_error(pixel_metrics(ctg, .stdmetrics_z), NA) }) test_that("Using a non empty layout return correct output ( ldr <- filter_poi(megaplot, ScanAngleRank >= -3, ScanAngleRank <= 3 ) ref <- lidR:::raster_layout(ldr, 20, format = "stars") ref[[1]][] <- 10 m <- pixel_metrics(ldr, mean(Z), ref) expect_equal(sum(is.na(m[[1]])), 52L) }) test_that("grid_metrics is backward compatible", { x <- grid_metrics(las, f1) expect_true(is(x, "RasterLayer")) expect_equal(lidR:::raster_res(x), c(20,20)) expect_equal(dim(x), c(13,12,1)) expect_true(sf::st_crs(x) == st_crs(las)) expect_equal(names(x), "Zmean") expect_equal(mean(x[], na.rm = T), 13.459, tolerance = 0.001) x <- grid_metrics(las, f2) expect_true(is(x, "RasterBrick")) expect_equal(lidR:::raster_res(x), c(20,20)) expect_equal(dim(x), c(13,12,2)) expect_true(sf::st_crs(x) == st_crs(las)) expect_equal(names(x), c("meanZ", "maxZ")) expect_equal(mean(x$meanZ[], na.rm = T), 13.459, tolerance = 0.001) x <- grid_metrics(las, f1, by_echo = c("first", "lastofmany")) expect_true(is(x, "RasterBrick")) expect_equal(lidR:::raster_res(x), c(20,20)) expect_equal(dim(x), c(13,12,2)) expect_true(sf::st_crs(x) == st_crs(las)) expect_equal(names(x), c("Zmean.first", "Zmean.lastofmany")) expect_equal(mean(x$Zmean.first[], na.rm = T), 13.459, tolerance = 0.001) expect_true(all(is.na(x$Zmean.lastofmany[]))) m1 <- grid_metrics(ctg, f1, 20) m2 <- grid_metrics(las, f1, 20) expect_equivalent(m1, m2) expect_equal(names(m2), "Zmean") m1 <- grid_metrics(ctg, f2, 20) m2 <- grid_metrics(las, f2, 20) expect_equivalent(m1, m2) expect_equal(names(m2), c("meanZ", "maxZ")) })
"get.direction.unitv" <- function(alpha, beta) { cb = cos(beta) c(cb * sin(alpha), cb * cos(alpha), sin(beta)) } "vgm.panel.xyplot" <- function (x, y, subscripts, type = "p", pch = plot.symbol$pch, col, col.line = plot.line$col, col.symbol = plot.symbol$col, lty = plot.line$lty, cex = plot.symbol$cex, ids, lwd = plot.line$lwd, model = model, direction = direction, labels, shift = shift, mode = mode, ...) { x <- as.numeric(x) y <- as.numeric(y) if (length(x) > 0) { if (!missing(col)) { if (missing(col.line)) col.line <- col if (missing(col.symbol)) col.symbol <- col } plot.symbol <- trellis.par.get("plot.symbol") plot.line <- trellis.par.get("plot.line") lpoints(x = x, y = y, cex = cex, col = col.symbol, pch = pch, type = type, ...) if (!is.null(labels)) ltext(x = x + shift * max(x), y = y, labels = labels[subscripts]) if (mode == "direct") { if (!missing(model) && !is.null(model)) { ang.hor <- pi * (direction[1]/180) ang.ver <- pi * (direction[2]/180) dir <- get.direction.unitv(ang.hor, ang.ver) ret <- variogramLine(model, max(x), dir = dir) llines(x = ret$dist, y = ret$gamma, lty = lty, col = col.line, lwd = lwd) } } else if (mode == "cross") { id <- as.character(ids[subscripts][1]) if (!missing(model) && !is.null(model)) { if (inherits(model, "gstat")) m = model$model else m = model if (!is.list(m)) stop("model argument not of class gstat or list") if (is.list(m) && !is.null(m[[id]])) { ang.hor <- pi * (direction[1]/180) ang.ver <- pi * (direction[2]/180) dir <- get.direction.unitv(ang.hor, ang.ver) ret <- variogramLine(m[[id]], max(x), dir = dir) llines(x = ret$dist, y = ret$gamma, lty = lty, col = col.line, lwd = lwd) } } } else if (mode == "directional") { if (!missing(model) && !is.null(model)) { dir <- c(1, 0, 0) if (!missing(direction)) { ang.hor <- pi * (direction[subscripts][1]/180.0) dir <- get.direction.unitv(ang.hor, 0) } ret <- variogramLine(model, max(x), dir = dir) llines(x = ret$dist, y = ret$gamma, lty = lty, col = col.line, lwd = lwd) } } } }
calcRelativeCoords <- function(coords, minLat, minLon) { if (max(coords@exact$lat) < 180) { relativeCoords <- data.frame( lat = (coords@exact$lat - minLat) * 111000, lon = (coords@exact$lon - minLon) * 72000 ) } else { relativeCoords <- data.frame( lat = (coords@exact$lat - minLat), lon = (coords@exact$lon - minLon) ) } return(relativeCoords) }
ROCs.tcf <- function(method = "full", T, Dvec, V = NULL, rhoEst = NULL, piEst = NULL, cps){ methodtemp <- substitute(me, list(me = method)) okMethod <- c("full", "fi", "msi", "ipw", "spe", "knn") if(length(methodtemp) > 1) stop(gettextf("Please, choose one method from %s", paste(sQuote(okMethod), collapse = ", ")), domain = NA) if (!is.character(methodtemp)) methodtemp <- deparse(methodtemp) if (!is.element(methodtemp, okMethod)){ stop(gettextf("the required method \"%s\" is not available; it should be one of %s", methodtemp, paste(sQuote(okMethod), collapse = ", ")), domain = NA) } if(missing(T)) stop("argument \"T\" is missing \n") if(!inherits(T, "numeric") | any(is.na(T))) stop("variable \"T\" must be a numeric vector and not include NA values") method_name <- toupper(methodtemp) if(missing(Dvec)) stop("argument \"Dvec\" is missing \n") if(!inherits(Dvec, "matrix") | ncol(Dvec) != 3 | !all(is.element(na.omit(Dvec), c(0,1)))) stop("variable \"Dvec\" must be a binary matrix with 3 columns") if(length(T) != nrow(Dvec)) stop(gettextf("arguments imply differing number of observation: %d", length(T)), gettextf(", %d", nrow(Dvec)), domain = NA) if(!is.null(rhoEst)){ if(!is.element(class(rhoEst), c("prob_dise", "prob_dise_knn"))) stop("\"rhoEst\" not a result of rhoMlogit or rhoKNN \n") if(is.element(class(rhoEst), c("prob_dise_knn"))){ if(is.null(rhoEst$K)) stop("The \"rhoEst\" is a list and contains results of rho corresponding to many K! \n Please, choose one result of them \n") } } if(!is.null(piEst)){ if(!is.element(class(piEst), c("prob_veri"))) stop("\"piEst\" not a result of psglm \n") } tcfCal <- function(tt, dd, cp, weight, methodd){ thet.hat <- colSums(dd)/weight names(thet.hat) <- c() beta.func <- function(tt, dd, ctp, weight){ bet <- numeric(4) bet[1] <- sum((tt >= ctp[1])*dd[,1])/weight bet[2] <- sum((tt >= ctp[1])*dd[,2])/weight bet[3] <- sum((tt >= ctp[2])*dd[,2])/weight bet[4] <- sum((tt >= ctp[2])*dd[,3])/weight return(bet) } if(!is.matrix(cp)){ bet.hat <- beta.func(tt = tt, dd = dd, ctp = cp, weight = weight) res <- numeric(3) res[1] <- 1 - bet.hat[1]/thet.hat[1] res[2] <- (bet.hat[2] - bet.hat[3])/thet.hat[2] res[3] <- bet.hat[4]/thet.hat[3] attr(res, "beta") <- bet.hat attr(res, "theta") <- thet.hat attr(res, "cp") <- cp attr(res, "name") <- methodd names(res) <- c("TCF1", "TCF2", "TCF3") class(res) <- "tcfs" } else{ res <- list() bet.hat <- t(apply(cp, 1, beta.func, tt = tt, dd = dd, weight = weight)) temp <- matrix(0, nrow = nrow(cp), ncol = 3) temp[,1] <- 1 - bet.hat[,1]/thet.hat[1] temp[,2] <- (bet.hat[,2] - bet.hat[,3])/thet.hat[2] temp[,3] <- bet.hat[,4]/thet.hat[3] colnames(temp) <- c("TCF1", "TCF2", "TCF3") for(i in 1:nrow(cp)){ temp1 <- temp[i,] attr(temp1, "beta") <- bet.hat[i,] attr(temp1, "theta") <- thet.hat attr(temp1, "cp") <- cp[i,] attr(temp1, "name") <- methodd res[[i]] <- temp1 class(res[[i]]) <- "tcfs" } } return(res) } nsize <- length(T) if(method == "full"){ if(any(is.na(Dvec))){ stop("The", method_name, "method can not access the NA values of disease status") } else{ ans <- tcfCal(T, Dvec, cps, weight = nsize, methodd = method_name) } } if(method == "fi"){ if(is.null(rhoEst)) stop("argument \"rhoEst\" is needed for ", method_name, "estimator") else{ ans <- tcfCal(T, rhoEst$values, cps, weight = nsize, methodd = method_name) } } if(method %in% c("msi", "knn")){ if(is.null(rhoEst) | is.null(V)) stop("argument \"rhoEst\" is needed for ", method_name, "estimator") else{ Dvectemp <- Dvec if(any(is.na(Dvec))) Dvectemp[is.na(Dvec)] <- 99 Dmsi <- Dvectemp*V + (1 - V)*rhoEst$values ans <- tcfCal(T, Dmsi, cps, weight = nsize, methodd = method_name) } } if(method == "ipw"){ if(is.null(piEst) | is.null(V)) stop("argument \"piEst\" is needed for ", method_name, "estimator") else{ Dvectemp <- Dvec if(any(is.na(Dvec))) Dvectemp[is.na(Dvec)] <- 99 Dipw <- Dvectemp*V/piEst$values ans <- tcfCal(T, Dipw, cps, weight = sum(V/piEst$values), methodd = method_name) } } if(method == "spe"){ if(is.null(rhoEst) | is.null(V) | is.null(piEst)) stop("arguments \"rhoEst\" and \"piEst\" are needed for ", method_name, " estimator") else{ Dvectemp <- Dvec if(any(is.na(Dvec))) Dvectemp[is.na(Dvec)] <- 99 Dspe <- Dvectemp*V/piEst$values - (V/piEst$values - 1)*rhoEst$values ans <- tcfCal(T, Dspe, cps, weight = nsize, methodd = method_name) } } ans } ROCs <- function(method = "full", T, Dvec, V, A = NULL, rhoEst = NULL, piEst = NULL, ncp = 100, plot = TRUE, ellipsoid = FALSE, cpst = NULL, level = 0.95, sur.col = c("gray40", "green"), BOOT = FALSE, nR = 250, parallel = FALSE, ncpus = ifelse(parallel, detectCores()/2, NULL), ...){ methodtemp <- substitute(me, list(me = method)) okMethod <- c("full", "fi", "msi", "ipw", "spe", "knn") if(length(methodtemp) > 1) stop(gettextf("Please, choose one method from %s", paste(sQuote(okMethod), collapse = ", ")), domain = NA) if (!is.character(methodtemp)) methodtemp <- deparse(methodtemp) if (!is.element(methodtemp, okMethod)){ stop(gettextf("the required method \"%s\" is not available; it should be one of %s", methodtemp, paste(sQuote(okMethod), collapse = ", ")), domain = NA) } if(missing(T)) stop("argument \"T\" is missing \n") if(class(T) != "numeric" | any(is.na(T))) stop("variable \"T\" must be a numeric vector and not include NA values") name_diagnostic <- substitute(T) if (!is.character(name_diagnostic)) { name_diagnostic <- deparse(name_diagnostic) } name_diagnostic <- unlist(strsplit(name_diagnostic, NULL)) if(any(name_diagnostic %in% c("$"))){ id.name <- which(name_diagnostic %in% c("$")) name_diagnostic <- paste(name_diagnostic[(id.name[1] + 1) : length(name_diagnostic)], collapse = "") } else name_diagnostic <- paste(name_diagnostic, collapse = "") method_name <- toupper(methodtemp) if(missing(Dvec)) stop("argument \"Dvec\" is missing \n") if(isFALSE("matrix" %in% class(Dvec)) | ncol(Dvec) != 3 | !all(is.element(na.omit(Dvec), c(0,1)))) stop("variable \"Dvec\" must be a binary matrix with 3 columns") if(length(T) != nrow(Dvec)) stop(gettextf("arguments imply differing number of observation: %d", length(T)), gettextf(", %d", nrow(Dvec)), domain = NA) Dvec.flag <- any(is.na(Dvec)) if(ellipsoid & is.null(cpst)) stop("argument \"cpst\" is required to construct the ellipsoidal confidence region of TCFs") if(!is.null(rhoEst)){ if(!is.element(class(rhoEst), c("prob_dise", "prob_dise_knn"))) stop("\"rhoEst\" not a result of rhoMlogit or rhoKNN \n") if(is.element(class(rhoEst), c("prob_dise_knn"))){ if(is.null(rhoEst$K)) stop("The \"rhoEst\" is a list and contains results of rhoKNN corresponding to many K! \n Please, choose one result of them \n") } } if(!is.null(piEst)){ if(!is.element(class(piEst), c("prob_veri"))) stop("\"piEst\" not a result of psglm \n") } if(missing(V)){ if(methodtemp != "full" | Dvec.flag) stop("argument \"V\" is missing, in addition, the method is not \"full\" or argument \"Dvec\" includes NA") cat("Hmm, look likes the full data\n") cat("Number of observation:", length(T), "\n") cat("The verification status is not available\n") cat("You are working on FULL or Complete Case approach\n") cat("The diagnostic test:", name_diagnostic, "\n") cat("Processing .... \n") flush.console() V <- NULL } else{ if(all(V == 0) | !all(is.element(V, c(0,1))) ) stop("There are mistakes in \"V\". Please, check your input and see whether it is correct or not") if(nrow(Dvec) != length(V) | length(T) != length(V)) stop(gettextf("arguments imply differing number of observation: %d", length(T)), gettextf(", %d", nrow(Dvec)), domain = NA) if(all(V == 1)){ if(methodtemp != "full" | Dvec.flag) stop("Please, check your inputs and see whether they are correct or not.\n If you want to estimate Complete Case approach, please, remove the missing values in the \n data set and try again with the option of \"full\" method.") cat("Hmm, look likes the full data\n") cat("Number of observation:", length(T), "\n") cat("All subjects underwent the verification process\n") cat("You are working on FULL or Complete Case approach\n") cat("The diagnostic test:", name_diagnostic, "\n") cat("Processing .... \n") flush.console() } else{ rv <- mean(V) if(!Dvec.flag){ cat("Warning: There are no NA values in variable Dvec, while", paste(round(rv*100), "%", sep = ""), "of the subjects receive disease verification. \n") cat("BE CAREFULL OF YOUR INPUT AND RESULTS \n") cat("Number of observation:", length(T), "\n") cat("You required estimate ROC surface using", method_name, "approach \n") cat("The diagnostic test:", name_diagnostic, "\n") cat("Processing .... \n") flush.console() } else{ cat("Hmm, look likes the incomplete data\n") cat("Number of observation:", length(T), "\n") cat(paste(round(rv*100), "%", sep = ""), "of the subjects receive disease verification. \n") cat("You required estimate ROC surface using", method_name, "approach \n") cat("The diagnostic test:", name_diagnostic, "\n") if(ellipsoid){ cat("The ellipsoidal confidence region(s) of TCFs are also constructed \n") if(!is.matrix(cpst) & !is.vector(cpst)) stop("The cut points should be a vector, which has two elements, or matrix, which has two columns.") if(is.vector(cpst)){ if(length(cpst) != 2 | cpst[1] > cpst[2]) stop("The first cut point must be less than the second one.") } if(is.matrix(cpst)){ if(ncol(cpst) != 2 | any(cpst[,1] > cpst[,2])) stop("the first column must be less than or equal to the second column.") } } cat("Processing .... \n") flush.console() } } } cp <- c(-Inf, seq(min(T), max(T), length.out = ncp - 2), Inf) cp1 <- rep(cp, seq(ncp - 1, 0, by = -1)) cp2 <- c() for(i in 1:(ncp - 1)){ cp2 <- c(cp2, cp[-c(1:i)]) } cpoint <- cbind(cp1, cp2) ROCpoint <- ROCs.tcf(method = methodtemp, T = T, Dvec = Dvec, V = V, rhoEst = rhoEst, piEst = piEst, cps = cpoint) ROCpoint <- matrix(unlist(ROCpoint), ncol = 3, byrow = TRUE) colnames(ROCpoint) <- c("TCF1", "TCF2", "TCF3") rownames(ROCpoint) <- paste("(",round(cp1, 3)," , " ,round(cp2, 3), ")", sep = "") ct1 <- numeric(ncp - 1) for(i in 1:(ncp - 1)){ ct1[i] <- i*ncp - i*(i + 1)/2 } tcf1 <- matrix(ROCpoint[ct1, 1], ncp - 1, ncp - 1, byrow = FALSE) tcf3 <- matrix(ROCpoint[1:(ncp - 1), 3], ncp - 1, ncp - 1, byrow = TRUE) tcf2 <- matrix(0, nrow = ncp - 1, ncol = ncp - 1) tcf2[lower.tri(tcf2, diag = TRUE)] <- ROCpoint[, 2] tcf2 <- t(tcf2) res <- list() res$vals <- ROCpoint res$cpoint <- cpoint res$ncp <- ncp if(plot){ open3d() par3d(windowRect = 50 + c(0, 0, 640, 640)) plot3d(0, 0, 0, type = "n", box = FALSE, xlab = " ", ylab = " ", zlab = " ", xlim = c(0,1), ylim = c(0,1), zlim = c(0,1), ...) surface3d(tcf1, tcf3, tcf2, col = sur.col[1], alpha = 0.5, ...) if(any(c("full","fi", "msi", "ipw", "spe") %in% methodtemp)){ title_plot <- paste(toupper(methodtemp), "estimator") } if("knn" %in% methodtemp){ title_plot <- paste(rhoEst$K, "NN-", switch(rhoEst$type, "eucli" = "Euclidean", "manha" = "Manhattan", "canber" = "Canberra", "lagran" = "Lagrange", "mahala" = "Mahalanobis"), sep = "") } title3d(main = title_plot, xlab = "TCF1", ylab = "TCF3", zlab = "TCF2", line = 3) play3d(spin3d(axis = c(0, 0, 1), rpm = 12.25), duration = 2) play3d(spin3d(axis = c(0, 1, 0), rpm = 0.3), duration = 2) } if(ellipsoid){ shade.ellips <- function(orgi, sig, lev){ t1 <- sig[2, 2] sig[2, 2] <- sig[3, 3] sig[3, 3] <- t1 t1 <- sig[1, 2] sig[1, 2] <- sig[1, 3] sig[1, 3] <- t1 sig[lower.tri(sig)] <- sig[upper.tri(sig)] ellips <- ellipse3d(sig, centre = orgi[c(1,3,2)], t = sqrt(qchisq(lev, 3))) return(ellips) } res$cpst <- cpst if(is.vector(cpst)){ tcf.orgi <- ROCs.tcf(method = methodtemp, T = T, Dvec = Dvec, V = V, rhoEst = rhoEst, piEst = piEst, cps = cpst) tcf.sig <- asyCovTCF(tcf.orgi, T = T, Dvec = Dvec, V = V, rhoEst = rhoEst, piEst = piEst, BOOT = BOOT, nR = nR, parallel = parallel, ncpus = ncpus) sig.test <- rcond(tcf.sig) res$tcf <- tcf.orgi if(sig.test < .Machine$double.eps){ cat("The asymptotic variance-covariance matrix of TCFs at the cut point", paste("(",cpst[1],", ",cpst[2],")", sep = ""), "is not singular!\n") cat("The ellipsoidal confidence region is not available!\n") if(!BOOT & methodtemp != "full") cat("Try again with bootstrap process!\n") plot3d(tcf.orgi[1], tcf.orgi[3], tcf.orgi[2], type = "s", col = "red", radius = 0.01, add = TRUE, ...) res$message <- 0 } else{ res$message <- 1 ellip.tcf <- shade.ellips(tcf.orgi, tcf.sig, level) plot3d(ellip.tcf, box = FALSE, col = sur.col[2], alpha = 0.5, xlim = c(0,1), ylim = c(0, 1), zlim = c(0, 1), xlab = " ", ylab = " ", zlab = " ", add = TRUE, ...) plot3d(tcf.orgi[1], tcf.orgi[3], tcf.orgi[2], type = "s", col = "red", radius = 0.01, add = TRUE, ...) } } if(is.matrix(cpst)){ res$tcf <- matrix(0, nrow = nrow(cpst), ncol = 3, dimnames = list(paste("(", round(cpst[,1], 3), " , " , round(cpst[,2], 3), ")", sep = ""), c("TCF1", "TCF2", "TCF3"))) res$message <- numeric(nrow(cpst)) for(i in 1:nrow(cpst)){ tcf.orgi <- ROCs.tcf(method = methodtemp, T = T, Dvec = Dvec, V = V, rhoEst = rhoEst, piEst = piEst, cps = cpst[i,]) tcf.sig <- asyCovTCF(tcf.orgi, T = T, Dvec = Dvec, V = V, rhoEst = rhoEst, piEst = piEst, BOOT = BOOT, nR = nR, parallel = parallel, ncpus = ncpus) sig.test <- rcond(tcf.sig) res$tcf[i,] <- tcf.orgi if(sig.test < .Machine$double.eps){ cat("The asymptotic variance-covariance matrix of TCFs at the cut points", paste("(",cpst[i,1],", ",cpst[i,2],")", sep = ""), "is not singular!\n") cat("The ellipsoidal confidence region is not available!\n") if(!BOOT & methodtemp != "full") cat("Try again with bootstrap process!\n") plot3d(tcf.orgi[1], tcf.orgi[3], tcf.orgi[2], type = "s", col = "red", radius = 0.01, add = TRUE, ...) res$message[i] <- 0 } else{ res$message[i] <- 1 ellip.tcf <- shade.ellips(tcf.orgi, tcf.sig, level) plot3d(ellip.tcf, box = FALSE, col = sur.col[2], alpha = 0.5, xlim = c(0, 1), ylim = c(0, 1), zlim = c(0, 1), xlab = " ", ylab = " ", zlab = " ", add = TRUE, ...) plot3d(tcf.orgi[1], tcf.orgi[3], tcf.orgi[2], type = "s", col = "red", radius = 0.01, add = TRUE, ...) } } } } cat("DONE\n") cat("===============================================================\n") selec.ord <- order(rowSums(ROCpoint) - 1, decreasing = TRUE) cat("Some values of TCFs:\n") print(ROCpoint[selec.ord[1:6],], 3) cat("\n") if(ellipsoid){ cat("Some information for Ellipsoidal Confidence Region(s):\n") cat("Confidence level:", level,"\n") if(is.vector(cpst)){ cat("TCFs at", paste("(", cpst[1], ", ", cpst[2], ")", sep = ""),"are:\n") temp <- tcf.orgi attributes(temp) <- NULL names(temp) <- c("TCF1", "TCF2", "TCF3") print(temp, 3) } if(is.matrix(cpst)){ colnames(res$tcf) <- c("TCF1", "TCF2", "TCF3") rownames(res$tcf) <- paste("(",round(cpst[,1], 3)," , ",round(cpst[,2], 3),")", sep = "") cat("TCFs at", rownames(res$tcf), "are:\n") print(res$tcf, 3) } } cat("===============================================================\n") invisible(res) }
mr_ivw_stan <- function(data, prior = 1, n.chains = 3, n.burn = 1000, n.iter = 5000, seed = 12345, ...) { rstan_check() if ("MRInput" %in% class(data)) { data <- mrinput_mr_format(data) } if (!("mr_format" %in% class(data))) { stop( 'The class of the data object must be "mr_format", please resave the object with the output of e.g. object <- mr_format(object).' ) } datam <- list( n = nrow(data), xbeta = data[, 2] / data[, 5], ybeta = data[, 3] / data[, 5], prior = prior ) ivwfit <- rstan::sampling( object = stanmodels$mrivw, data = datam, pars = c("estimate"), chains = n.chains, warmup = n.burn, iter = n.iter, seed = seed, control = list(adapt_delta = 0.999, max_treedepth = 15), ... ) return(ivwfit) }
source(system.file(file.path('tests', 'testthat', 'test_utils.R'), package = 'nimble')) context("Testing of CAR distributions") RwarnLevel <- options('warn')$warn options(warn = 1) nimbleVerboseSetting <- nimbleOptions('verbose') nimbleOptions(verbose = FALSE) nimbleProgressBarSetting <- nimbleOptions('MCMCprogressBar') nimbleOptions(MCMCprogressBar = FALSE) test_that('dcar_normal sampling', { cat('===== Starting MCMC test dcar_normal sampling. =====') code <- nimbleCode({ alpha0 ~ dflat() S[1:N] ~ car.normal(adj[1:L], weights[1:L], num[1:N], 3) for(i in 1:N) mu[i] <- alpha0 + S[i] for(i in 1:2) { log(lambda[i]) <- mu[i] Y[i] ~ dpois(lambda[i]) } Y[3] ~ dnorm(mu[3], 3) ymean4 <- 5*mu[4] Y[4] ~ dnorm(ymean4, 7) ymean5 <- 2*mu[5] Y[5] ~ dnorm(ymean5, 1) }) constants <- list(N = 6, num = c(3,4,4,3,2,2), adj = c(2,3,4, 1,3,5,6, 1,2,4,5, 1,3,6, 2,3, 2,4), weights = rep(1, 18), L = 18) data <- list(Y = c(10,12,15,20,24)) inits <- list(alpha0 = 0, S = c(0,0,0,0,0,0)) Rmodel <- nimbleModel(code, constants, data, inits) conf <- configureMCMC(Rmodel) Rmcmc <- buildMCMC(conf) Cmodel <- compileNimble(Rmodel) Cmcmc <- compileNimble(Rmcmc, project = Rmodel) niter <- 20 set.seed(0); Rmcmc$run(niter) set.seed(0); Cmcmc$run(niter) Rsamples <- as.matrix(Rmcmc$mvSamples) Csamples <- as.matrix(Cmcmc$mvSamples) sampleNames <- colnames(Rsamples) expect_true(all(Rsamples[, sampleNames] - Csamples[, sampleNames] == 0), info = 'agreement between R and C sampling of dcar_normal') expect_lt(max(abs(as.numeric(Csamples[20, sampleNames]) - c(1.639127, 1.815422, 1.676655, 5.099797, 2.345276, 7.018026, 2.696936))), 1e-6, label = 'exact sample values for dcar_normal') }) test_that('dcar_proper density evaluation', { cat('===== Starting test dcar_proper density evaluations. =====') x <- c(1, 3, 3, 4) mu <- rep(3, 4) adj <- c(2, 1,3, 2,4, 3) num <- c(1, 2, 2, 1) lp <- 0.004158475 expect_equal(dcar_proper(x, mu, adj=adj, num=num, tau=1, gamma=0), lp, info = 'C density evaluation for dcar_proper() omitting C and M') weights <- rep(1, 6) CM <- as.carCM(adj, weights, num) C <- CM$C M <- CM$M expect_equal(dcar_proper(x, mu, C, adj, num, M, tau=1, gamma=0), lp, info = 'C density evaluation for dcar_proper() weights all one') weights <- c(2, 2, 3, 3, 4, 4) CM2 <- as.carCM(adj, weights, num) C2 <- CM2$C M2 <- CM2$M lp2 <- 0.001050636 expect_equal(dcar_proper(x, mu, C2, adj, num, M2, tau=1, gamma=0), lp2, info = 'C density evaluation for dcar_proper() weights different') }) test_that('dcar_proper sampling', { cat('===== Starting MCMC test dcar_proper sampling. =====') code <- nimbleCode({ tau ~ dgamma(0.001, 0.001) gamma ~ dunif(-1, 1) x[1:N] ~ dcar_proper(mu[1:N], adj=adj[1:L], num=num[1:N], tau=tau, gamma=gamma) y[1] ~ dnorm(x[1], 1) y[2] ~ dnorm(3*x[2] + 5, 10) y[3] ~ dnorm(x[3]^2, 1) y[4] ~ dnorm(x[4]^2, 10) }) mu <- 1:4 adj <- c(2, 1, 3, 2, 4, 3) num <- c(1, 2, 2, 1) tau <- 1 gamma <- 0 y <- c(3, 6, 8, 10) x <- rep(0, 4) constants <- list(mu = mu, adj = adj, num = num, N = 4, L = 6) data <- list(y = y) inits <- list(tau = tau, gamma = gamma, x = x) Rmodel <- nimbleModel(code, constants, data, inits) Cmodel <- compileNimble(Rmodel) lp <- -574.964 expect_lt(abs(calculate(Rmodel) - lp), 1E-5, label = 'calculate for dcar_proper()') expect_lt(abs(calculate(Cmodel) - lp), 1E-5, label = 'calculate for dcar_proper(), compiled') weights <- rep(1, 6) CM <- as.carCM(adj, weights, num) C <- CM$C M <- CM$M Q <- tau * diag(1/M) %*% (diag(4) - gamma*CAR_calcCmatrix(C, adj, num)) lp <- dmnorm_chol(x, mu, chol = chol(Q), prec_param = TRUE, log = TRUE) expect_equal(calculate(Rmodel, 'x[1:4]'), lp, info = 'R density evaluation for dcar_proper()') expect_equal(calculate(Cmodel, 'x[1:4]'), lp, info = 'C density evaluation for dcar_proper()') set.seed(0); xnew <- rmnorm_chol(n = 1, mu, chol = chol(Q), prec_param = TRUE) set.seed(0); simulate(Rmodel, 'x[1:4]') set.seed(0); simulate(Cmodel, 'x[1:4]') expect_equal(xnew, Rmodel$x, info = 'R dcar_proper() simulate function') expect_equal(xnew, Cmodel$x, info = 'R dcar_proper() simulate function') Rmodel$x <- x Cmodel$x <- x conf <- configureMCMC(Rmodel) conf$addMonitors('x') Rmcmc <- buildMCMC(conf) Cmcmc <- compileNimble(Rmcmc, project = Rmodel) niter <- 20 set.seed(0); Rmcmc$run(niter) set.seed(0); Cmcmc$run(niter) Rsamples <- as.matrix(Rmcmc$mvSamples) Csamples <- as.matrix(Cmcmc$mvSamples) sampleNames <- colnames(Rsamples) expect_true(all(Rsamples[, sampleNames] - Csamples[, sampleNames] == 0), info = 'agreement between R and C sampling of dcar_proper') expect_lt(max(abs(as.numeric(Csamples[20, sampleNames]) - c(-0.86201288, 0.07689823, 2.04074467, 0.24380342, 3.00405982, -3.25336913))), 1e-6, label = 'exact sample values for dcar_proper') }) test_that('dcar_proper gives correct likelihood with singular Cmatrix', { nHabRows <- nHabCols <- 5 adj <- NULL numadj <- NULL numHabWindows <- nHabRows * nHabCols for(i in 1:numHabWindows){ { lenadj <- length(adj) if(i == 1) adj <- c(adj, c(2, nHabCols + 1)) else if((2 <= i) & (i <= nHabCols - 1)) adj <- c(adj, c(i-1, i+1, i+nHabCols)) else if(i == nHabCols) adj <- c(adj, c(i-1, i+nHabCols)) else if(i %in% c(1:(nHabRows-2)*nHabCols+1)) adj <- c(adj, c(i-nHabCols, i+1, i+nHabCols)) else if(i %in% c(2:(nHabRows-1)*nHabCols)) adj <- c(adj, c(i-nHabCols, i-1, i+nHabCols)) else if(i == (nHabRows-1)*nHabCols+1) adj <- c(adj, c(i-nHabCols, i+1)) else if(((nHabRows-1)*nHabCols+2 <= i) & (i <= nHabCols*nHabRows-1)) adj <- c(adj, c(i-nHabCols, i-1, i+1)) else if(i == nHabCols*nHabRows) adj <- c(adj, c(i-nHabCols, i-1)) else adj <- c(adj, c(i-nHabCols, i-1, i+1, i+nHabCols)) numadj[i] <- length(adj) - lenadj } } num <- numadj tau <- 1 gamma <- 0.5 mu <- rep(0, numHabWindows) x <- rep(0, numHabWindows) C <- CAR_calcC(adj, num) M <- CAR_calcM(num) Cmatrix <- CAR_calcCmatrix(C, adj, num) CovMatrix <- solve(diag(numHabWindows) - gamma*Cmatrix) %*% diag(M) / tau lp_true <- (2*pi)^(-numHabWindows/2) * det(CovMatrix)^(-1/2) lp_dcar <- dcar_proper(x, mu = mu, adj = adj, num = num, tau = tau, gamma = gamma) expect_equal(lp_true, lp_dcar) set.seed(0) xnew <- rcar_proper(n = 1, mu = mu, adj = adj, num = num, tau = tau, gamma = gamma) expect_true(all(round(xnew, 8) == c(0.60896921, -0.18071413, 0.86723430, 0.87426463, 0.66326831, -0.95558320, -0.56113360, -0.22185377, 0.14990019, 1.37682998, 0.32056427, -0.48639310, -0.65728773, -0.16961897, -0.30264915, -0.23875949, 0.10629314, -0.40382663, 0.18898157, -0.72969397, -0.09361655, 0.25556273, 0.16314071, 0.46935282, -0.04233136))) }) test_that('CAR conjugacy checking new skipExpansionsNode system', { code <- nimbleCode({ S[1:N] ~ dcar_normal(adj[1:L], weights[1:L], numneighbours[1:N], 1) for(i in 1:K) { beta[i] ~ dnorm(0, 1) } for(i in 1:N){ eta[i] <- inprod(beta[1:K], x[1:K]) mu[i] <- S[i] + eta[i] y[i] ~ dnorm(mu[i], 1) } }) N <- 3 L <- 4 K <- 7 constants <- list(N=N, L=L, K=K, adj=c(2,1,3,2), weights=rep(1,L), numneighbours=c(1,2,1)) data <- list(y = rep(0,N)) inits <- list(S = rep(0,N), beta = rep(0,K), x=1:K) Rmodel <- nimbleModel(code, constants, data, inits) conf <- configureMCMC(Rmodel) Rmcmc <- buildMCMC(conf) expect_true(class(Rmcmc) == 'MCMC') expect_true(conf$samplerConfs[[8]]$name == 'CAR_normal') expect_true(class(Rmcmc$samplerFunctions$contentsList[[8]]$componentSamplerFunctions$contentsList[[1]]) == 'CAR_scalar_conjugate') expect_true(class(Rmcmc$samplerFunctions$contentsList[[8]]$componentSamplerFunctions$contentsList[[2]]) == 'CAR_scalar_conjugate') expect_true(class(Rmcmc$samplerFunctions$contentsList[[8]]$componentSamplerFunctions$contentsList[[3]]) == 'CAR_scalar_conjugate') compiledList <- compileNimble(list(model=Rmodel, mcmc=Rmcmc)) Cmodel <- compiledList$model; Cmcmc <- compiledList$mcmc set.seed(0); Rsamples <- runMCMC(Rmcmc, 10) set.seed(0); Csamples <- runMCMC(Cmcmc, 10) expectedSamples <- c(0.97357331, 0.07601302, 0.10439196, -0.37719856, 0.15912985, 0.03509085, -0.01162275, 0.17958068, -0.34811805, 0.10319592) Rcolnames <- colnames(Rsamples) expect_true(all(round(as.numeric(Rsamples[10,Rcolnames]),8) == expectedSamples)) expect_true(all(round(as.numeric(Csamples[10,Rcolnames]),8) == expectedSamples)) }) options(warn = RwarnLevel) nimbleOptions(verbose = nimbleVerboseSetting) nimbleOptions(MCMCprogressBar = nimbleProgressBarSetting)
PremiumFrac<-function(px1,x,m,k,i=0.04,data,prop=1,effect="yes",assumption){ dig<-getOption("digits") on.exit(options(digits = dig)) options(digits = 15) if(k==1){ premium<-px1/a(x,0,m,k,i,data,prop,assumption,1) return(premium) }else{ if(effect=="yes"){ Annualpremium<-px1/a(x,0,m,k,i,data,prop,assumption,1) return(Annualpremium) }else{ if(effect=="no" && k>1 && k<=12){ Annualpremiumnofrac<-px1/a(x,0,m,1,i,data,prop,assumption,1) v<-1/(1+i) d<-Rate_converter(i,"i",1,"d",1,"frac") fk<-Rate_converter(i,"i",1,"f",k,"frac") Annualpremium<-Annualpremiumnofrac*(fk/d) return(Annualpremium) }else{ stop("Check effect or value of k") } } } }
FitGev <- function(data, method='Nelder-Mead', start, varest=FALSE) { param <- NULL varcov <- NULL stderr <- NULL numdata <- length(data) if(missing(data) || numdata == 0 || !is.numeric(data)) stop('insert a numeric vector of data') momest <- MomEst(data, numdata) location <- momest$location scale <- momest$scale shape <- momest$shape if(shape >= 0) shape <- .1 else shape <- -.1 param <- list(location=location, scale=scale, shape=shape) parnames <- c('location', 'scale', 'shape') if(!missing(start)) { if(!is.list(start)) stop('start need to be named list of starting values') for(i in 1 : length(start)) { namestart <- names(start[i]) if(!any(namestart == parnames)) stop('insert location, scale and shape as a named list') param[namestart] <- start[namestart] } if(param$scale < 0) param$scale <- scale } param <- unlist(param) fitted <- optim(param, GevLogLik, data=data, method=method, numdata=numdata, control=list(fnscale=-1, reltol=1e-14, maxit=1e8), hessian=varest) if(varest) { varcov <- - try(solve(fitted$hessian), silent = TRUE) if(!is.matrix(varcov)) { varcov <- 'none' stderr <- 'none' } else { stderr <- diag(varcov) if(any(stderr < 0)) stderr <- 'none' else stderr <- sqrt(stderr) } } return(list(param=fitted$par, varcov=varcov, stderr=stderr)) } Dist2Dist <- function(data, from='Gev', to='sFrechet', loc=NULL, scale=NULL, shape=NULL) { Dist2Dist <- NULL if(missing(data) || !is.numeric(data)) stop('insert a numeric vector of data') dimdata <- dim(data) if(is.null(dimdata)) { numdata <- length(data) if(numdata==0) stop('insert a numeric vector of data') numcoord <- 1 dimdata <- c(numdata, numcoord) dim(data) <- dimdata numparam <- numdata } else { if(length(dimdata)==2) { numdata <- dimdata[1] numcoord <- dimdata[2] } if(length(dimdata)==3) { numdata <- dimdata[3] numcoord <- prod(dimdata[1:2]) } numparam <- numcoord } if(is.null(loc)) loc <- double(numcoord) else if(!is.numeric(loc) || !length(loc)==numparam) stop('insert a numeric vector of locations\n') if(is.null(scale)) scale <- double(numcoord) + 1 else if(!is.numeric(scale) || !length(scale)==numparam) stop('insert a numeric vector of scales\n') if(is.null(shape)) shape <- double(numcoord) else if(!is.numeric(shape) || !length(shape)==numparam) stop('insert a numeric vector of shapes\n') Mle <- function(x) return(as.double(FitGev(x)$param)) if(from=='Gev') { type <- switch(to, Uniform=0, sFrechet=1, sGumbel=2, sWeibull=3, Gev=4) if(is.null(type)) stop('insert a valid distribution name\n') param <- apply(data, 2, Mle) Dist2Dist <- .C('Dist2Dist', as.double(data), as.double(param[1,]), as.double(param[2,]), as.double(param[3,]), as.integer(numdata), as.integer(numcoord), as.double(loc), as.double(scale), as.double(shape), as.integer(type), res=double(numdata * numcoord), DUP=TRUE, NAOK=TRUE)$res } if(from=='sFrechet') { type <- switch(to, Gev=5) if(is.null(type)) stop('insert a valid distribution name\n') param <- rep(1, 3) Dist2Dist <- .C('Dist2Dist', as.double(data), as.double(param[1]), as.double(param[2]), as.double(param[3]), as.integer(numdata), as.integer(numcoord), as.double(loc), as.double(scale), as.double(shape), as.integer(type), res=double(numdata * numcoord), DUP=TRUE, NAOK=TRUE)$res } if(from=='sGumbel') { type <- switch(to, Gev=6) if(is.null(type)) stop('insert a valid distribution name\n') param <- rep(1, 3) Dist2Dist <- .C('Dist2Dist', as.double(data), as.double(param[1]), as.double(param[2]), as.double(param[3]), as.integer(numdata), as.integer(numcoord), as.double(loc), as.double(scale), as.double(shape), as.integer(type), res=double(numdata * numcoord), DUP=TRUE, NAOK=TRUE)$res } if(from=='sWeibull') { type <- switch(to, Gev=7) if(is.null(type)) stop('insert a valid distribution name\n') param <- rep(1, 3) Dist2Dist <- .C('Dist2Dist', as.double(data), as.double(param[1]), as.double(param[2]), as.double(param[3]), as.integer(numdata), as.integer(numcoord), as.double(loc), as.double(scale), as.double(shape), as.integer(type), res=double(numdata * numcoord), DUP=TRUE, NAOK=TRUE)$res } dim(Dist2Dist) <- dimdata return(Dist2Dist) } GevLogLik <- function(data, numdata, param) { result <- .C('GevLogLik', as.double(data), as.integer(numdata), as.double(param), res=double(1), DUP=TRUE, NAOK=TRUE)$res return(result) } MomEst <- function(data, n) { scale <- sqrt(6 * var(data)) / pi location <- mean(data) - 0.58 * scale k <- round(.5 * n) mind <- min(data) if(mind < 0) data <- data - mind data <- sort(data) delta <- log(data[n-0:(k-1)] / data[n-k]) M1 <- sum(delta) / k M2 <- sum(delta^2) / k shape <- M1 + 1 - .5 * (M2 / (M2 - M1^2)) return(list(location=location, scale=scale, shape=shape)) }
test_that("If user selects no, database not updated", { skip_on_cran() f <- file() options(GSODR_connection = f) ans <- "no" write(ans, f) expect_error(update_station_list()) options(GSODR_connection = stdin()) close(f) }) test_that("update_station_list() downloads and imports proper file", { skip_on_cran() f <- file() options(GSODR_connection = f) ans <- "yes" write(ans, f) expect_message(update_station_list()) load(system.file("extdata", "isd_history.rda", package = "GSODR")) expect_equal(ncol(isd_history), 11) expect_named( isd_history, c( "STNID", "NAME", "LAT", "LON", "CTRY", "STATE", "BEGIN", "END", "COUNTRY_NAME", "ISO2C", "ISO3C" ) ) expect_equal(options("timeout")[[1]], 60) options(GSODR_connection = stdin()) close(f) })
analyseBINdata <- function(obj_pickBIN, nfchn, nlchn, bg="late", me=2.0, distp="p", kph=NULL, kdc=NULL, dcr=NULL, FR.fchn=NULL, FR.mchn=NULL, FR.lchn=NULL, signal.type="LxTx", outfile=NULL) { UseMethod("analyseBINdata") } analyseBINdata.default <- function(obj_pickBIN, nfchn, nlchn, bg="late", me=2.0, distp="p", kph=NULL, kdc=NULL, dcr=NULL, FR.fchn=NULL, FR.mchn=NULL, FR.lchn=NULL, signal.type="LxTx", outfile=NULL) { stopifnot(class(obj_pickBIN)=="pickBIN", names(obj_pickBIN)==c("BINdata","agID"), length(nfchn)==1L, is.numeric(nfchn), length(nlchn)==1L, is.numeric(nlchn), length(bg)==1L, bg %in% c("early", "late"), length(me)==1L, is.numeric(me), length(distp)==1L, distp %in% c("p","op"), is.null(kph) || (length(kph)==1L && is.numeric(kph)), is.null(kdc) || (length(kdc)==1L && is.numeric(kdc)), is.null(dcr) || (length(dcr)==1L && is.numeric(dcr)), is.null(FR.fchn) || is.numeric(FR.fchn), is.null(FR.mchn) || is.numeric(FR.mchn), is.null(FR.lchn) || is.numeric(FR.lchn), length(signal.type)==1L, signal.type %in% c("LxTx", "Lx", "Tx"), is.null(outfile) || (length(outfile)==1L && is.character(outfile))) if (is.null(obj_pickBIN$agID)) { stop("Error: set force.matrix=FALSE in function pickBINdata()!") } if (distp=="op") { if (is.null(kph) || is.null(kdc) || is.null(dcr)) { stop("Error: parameter [kph,kdc,dcr] should be provided!") } } recordList <- obj_pickBIN$BINdata nList <- length(recordList) analyseSig <- function(sigData, n_fchn, n_lchn) { NPoints <- attr(sigData, "NPoints") Delay <- attr(sigData, "Delay") Off <- attr(sigData, "Off") On <- NPoints - Delay - Off if (On<=1L) return(rep(NA,7L)) Low <- attr(sigData, "Low") High <- attr(sigData, "High") vstep <- (High-Low)/NPoints IRRTime <- attr(sigData, "IRRTime") if (!is.null(FR.fchn) && !is.null(FR.mchn) && !is.null(FR.lchn)) { range_FR.fchn <- range(FR.fchn) if (range_FR.fchn[1L]<1L) range_FR.fchn[1L] <- 1L if (range_FR.fchn[2L]>On) range_FR.fchn[2L] <- On range_FR.mchn <- range(FR.mchn) if (range_FR.mchn[1L]<1L) range_FR.mchn[1L] <- 1L if (range_FR.mchn[2L]>On) range_FR.mchn[2L] <- On range_FR.lchn <- range(FR.lchn) if (range_FR.lchn[1L]<1L) range_FR.lchn[1L] <- 1L if (range_FR.lchn[2L]>On) range_FR.lchn[2L] <- On n_FR.fchn <- range_FR.fchn[2L] - range_FR.fchn[1L] + 1L n_FR.mchn <- range_FR.mchn[2L] - range_FR.mchn[1L] + 1L n_FR.lchn <- range_FR.lchn[2L] - range_FR.lchn[1L] + 1L kf <- n_FR.lchn/n_FR.fchn km <- n_FR.lchn/n_FR.mchn all_On_channels <- (Delay+1L):(Delay+On) photon_FR.fchn <- sum((sigData[all_On_channels])[range_FR.fchn[1L]:range_FR.fchn[2L]]) photon_FR.mchn <- sum((sigData[all_On_channels])[range_FR.mchn[1L]:range_FR.mchn[2L]]) photon_FR.lchn <- sum((sigData[all_On_channels])[range_FR.lchn[1L]:range_FR.lchn[2L]]) photon_FR.lchn_f <- n_FR.fchn*mean((sigData[all_On_channels])[range_FR.lchn[1L]:range_FR.lchn[2L]]) photon_FR.lchn_m <- n_FR.mchn*mean((sigData[all_On_channels])[range_FR.lchn[1L]:range_FR.lchn[2L]]) net_photon_FR.fchn <- photon_FR.fchn - photon_FR.lchn_f net_photon_FR.mchn <- photon_FR.mchn - photon_FR.lchn_m if (abs(net_photon_FR.fchn)<=.Machine$double.eps^0.5) net_photon_FR.fchn <- 1.0e-5 if (abs(net_photon_FR.mchn)<=.Machine$double.eps^0.5) net_photon_FR.mchn <- 1.0e-5 FR <- net_photon_FR.fchn / net_photon_FR.mchn if (distp=="p") { rse_net_photon_FR.fchn <- sqrt(photon_FR.fchn+photon_FR.lchn_f/kf)/abs(net_photon_FR.fchn) rse_net_photon_FR.mchn <- sqrt(photon_FR.mchn+photon_FR.lchn_m/km)/abs(net_photon_FR.mchn) } else if (distp=="op") { vdif <- kdc^2L-kph^2L rse_net_photon_FR.fchn <- sqrt(kph^2L*photon_FR.fchn+vdif*dcr*n_FR.fchn*vstep+ (kph^2L*photon_FR.lchn+vdif*dcr*n_FR.lchn*vstep)/kf^2L)/net_photon_FR.fchn rse_net_photon_FR.mchn <- sqrt(kph^2L*photon_FR.mchn+vdif*dcr*n_FR.mchn*vstep+ (kph^2L*photon_FR.lchn+vdif*dcr*n_FR.lchn*vstep)/km^2L)/net_photon_FR.mchn } rse_net_photon_FR.fchn <- sqrt(rse_net_photon_FR.fchn^2L+(me/100.0)^2L) rse_net_photon_FR.mchn <- sqrt(rse_net_photon_FR.mchn^2L+(me/100.0)^2L) seFR <- abs(FR)*sqrt(rse_net_photon_FR.fchn^2L+rse_net_photon_FR.mchn^2L) } else { FR <- seFR <- NA } if (n_fchn<On) { Lx <- sum(sigData[(Delay+1L):(Delay+n_fchn)]) n_fchn <- n_fchn } else { Lx <- sum(sigData[(Delay+1L):(Delay+On-1L)]) n_fchn <- On-1L } if (bg=="early" && n_lchn<=(On-n_fchn)) { bLx <- n_fchn*mean(sigData[(Delay+n_fchn+1L):(Delay+n_fchn+n_lchn)]) sum_bLx <- sum(sigData[(Delay+n_fchn+1L):(Delay+n_fchn+n_lchn)]) n_lchn <- n_lchn } else if (bg=="late" && n_lchn<=(On-n_fchn)) { bLx <- n_fchn*mean(sigData[(Delay+On-n_lchn+1L):(Delay+On)]) sum_bLx <- sum(sigData[(Delay+On-n_lchn+1L):(Delay+On)]) n_lchn <- n_lchn } else { bLx <- n_fchn*mean(sigData[(Delay+n_fchn+1L):(Delay+On)]) sum_bLx <- sum(sigData[(Delay+n_fchn+1L):(Delay+On)]) n_lchn <- On-n_fchn } k <- n_lchn/n_fchn netLx <- Lx-bLx if (abs(netLx)<=.Machine$double.eps^0.5) netLx <- 1.0e-5 if (distp=="p") { var_Lx <- Lx var_bLx <- bLx/k } else if (distp=="op") { vdif <- kdc^2L-kph^2L var_Lx <- kph^2L*Lx+vdif*dcr*n_fchn*vstep var_bLx <- (kph^2L*sum_bLx+vdif*dcr*n_lchn*vstep)/k^2L } rse_netLx <- sqrt(var_Lx+var_bLx)/abs(netLx) rse_netLx <- sqrt(rse_netLx^2L+(me/100.0)^2L) values <- c(IRRTime, Lx, sqrt(var_Lx), bLx, sqrt(var_bLx), netLx, rse_netLx, FR, seFR) return(values) } NO <- obj_pickBIN$agID[,"NO",drop=TRUE] LxTx_list <- vector(length=length(NO), mode="list") LnTn.curve <- list() for (i in seq(NO)) { iRecord <- recordList[[i]] length_iRecord <- length(iRecord) Ln_NPoints <- attr(iRecord[[1L]], "NPoints") if (Ln_NPoints>0L) { Ln_Low <- attr(iRecord[[1L]], "Low") Ln_High <- attr(iRecord[[1L]], "High") Ln_vstep <- (Ln_High-Ln_Low)/Ln_NPoints iLn_curve_x <- seq(from=Ln_vstep, to=Ln_High, by=Ln_vstep) iLn_curve_y <- as.numeric(iRecord[[1L]]) } else { iLn_curve_x <- iLn_curve_y <- NA } if (length_iRecord>=2L) { Tn_NPoints <- attr(iRecord[[2L]], "NPoints") if (Tn_NPoints>0L) { Tn_Low <- attr(iRecord[[2L]], "Low") Tn_High <- attr(iRecord[[2L]], "High") Tn_vstep <- (Tn_High-Tn_Low)/Tn_NPoints iTn_curve_x <- seq(from=Tn_vstep, to=Tn_High, by=Tn_vstep) iTn_curve_y <- as.numeric(iRecord[[2L]]) } else { iTn_curve_x <- iTn_curve_y <- NA } } else { iTn_curve_x <- iTn_curve_y <- NA } characterNO <- paste("NO", i, sep="") LnTn.curve[[characterNO]] <- list("Ln.x"=iLn_curve_x, "Ln.y"=iLn_curve_y, "Tn.x"=iTn_curve_x, "Tn.y"=iTn_curve_y) i_matrix <- c() for (j in seq(length_iRecord)) { i_matrix <- rbind(i_matrix, analyseSig(iRecord[[j]], nfchn, nlchn)) } colnames(i_matrix) <- c("IRRTime","OSL","seOSL","BG","seBG","netOSL","rse.netOSL","FR","seFR") LxTx_list[[i]] <- i_matrix } Position <- obj_pickBIN$agID[,"Position",drop=TRUE] Grain <- obj_pickBIN$agID[,"Grain",drop=TRUE] SARdata <- ALLdata <- data.frame(stringsAsFactors=FALSE) Tn3BG_vec <- rseTn_vec <- TnBG.ratio_vec <- seTnBG.ratio_vec <- FR_vec <- seFR_vec <- c() Tn_vec <- seTn_vec <- c() TxTn <- list() agID <- c() accept_characterNO <- c() for (i in seq(NO)) { iLxTx <- LxTx_list[[i]] selectedIndex <- which(is.finite(iLxTx[,"IRRTime",drop=TRUE]) & is.finite(iLxTx[,"netOSL",drop=TRUE]) & is.finite(iLxTx[,"rse.netOSL",drop=TRUE])) iLxTx <- iLxTx[selectedIndex,,drop=FALSE] nr <- nrow(iLxTx) nc <- ncol(iLxTx) if (nr==0L) { cat(paste("[NO=",NO[i],",Position=",Position[i],",Grain=",Grain[i], "]: analysis failed!\n",sep="")) } else if (nr==1L) { cat(paste("[NO=",NO[i],",Position=",Position[i],",Grain=",Grain[i], "]: only one Lx[Tx] (omitted)!\n",sep="")) } else if (!(selectedIndex[1L]==1L && selectedIndex[2L]==2L)) { cat(paste("[NO=",NO[i],",Position=",Position[i],",Grain=",Grain[i], "]: analysis failed!\n",sep="")) } else { accept_characterNO <- c(accept_characterNO, paste("NO", i, sep="")) if (nr%%2L!=0L) { cat(paste("[NO=",NO[i],",Position=",Position[i],",Grain=",Grain[i], "]: unpaired Lx-Tx (omit the last Lx[Tx])!\n",sep="")) iLxTx <- iLxTx[-nr,,drop=FALSE] } nPairedLxTx <- nrow(iLxTx)/2L iNO <- rep(NO[i], nPairedLxTx) iPosition <- rep(Position[i], nPairedLxTx) iGrain <- rep(Grain[i], nPairedLxTx) if (nPairedLxTx==1L) { iSAR.Cycle <- "N" } else { iSAR.Cycle <- c("N", paste("R",seq(nPairedLxTx-1L),sep="")) } Dose <- Init <- seInit <- BG <- seBG <- netLx <- rse_netLx <- TInit <- seTInit <- TBG <- seTBG <- netTx <- rse_netTx <- TFR <- seTFR <- LxTx <- seLxTx <- vector(length=nPairedLxTx) for (j in seq(nPairedLxTx)) { Dose[j] <- iLxTx[2L*j-1L,"IRRTime"] Init[j] <- iLxTx[2L*j-1L,"OSL"] seInit[j] <- iLxTx[2L*j-1L,"seOSL"] BG[j] <- iLxTx[2L*j-1L,"BG"] seBG[j] <- iLxTx[2L*j-1L,"seBG"] netLx[j] <- iLxTx[2L*j-1L,"netOSL"] rse_netLx[j] <- iLxTx[2L*j-1L,"rse.netOSL"] TInit[j] <- iLxTx[2L*j,"OSL"] seTInit[j] <- iLxTx[2L*j,"seOSL"] TBG[j] <- iLxTx[2L*j,"BG"] seTBG[j] <- iLxTx[2L*j,"seBG"] netTx[j] <- iLxTx[2L*j,"netOSL"] rse_netTx[j] <- iLxTx[2L*j,"rse.netOSL"] TFR[j] <- iLxTx[2L*j,"FR"] seTFR[j] <- iLxTx[2L*j,"seFR"] LxTx[j] <- netLx[j]/netTx[j] seLxTx[j] <- abs(LxTx[j])*sqrt((rse_netLx[j])^2L+(rse_netTx[j])^2L) } Tn3BG_vec <- c(Tn3BG_vec, netTx[1L]>0.0 && netTx[1L]>3.0*seTBG[1L]) rseTn_vec <- c(rseTn_vec, rse_netTx[1L]*100.0) TnBG.ratio_vec <- c(TnBG.ratio_vec, TInit[1L]/TBG[1L]) useitpass <- abs(TInit[1L]/TBG[1L])*sqrt((seTInit[1L]/TInit[1L])^2L+(seTBG[1L]/TBG[1L])^2L) seTnBG.ratio_vec <- c(seTnBG.ratio_vec, useitpass) FR_vec <- c(FR_vec, TFR[1L]) seFR_vec <- c(seFR_vec, seTFR[1L]) Tn_vec <- c(Tn_vec, netTx[1L]) seTn_vec <- c(seTn_vec, abs(netTx[1L])*rse_netTx[1L]) characterNO <- paste("NO", i, sep="") TxTn[[characterNO]] <- netTx/netTx[1L] agID <- rbind(agID, c(NO[i], Position[i], Grain[i])) if (signal.type=="LxTx") { DataFrame1 <- data.frame(iNO, iSAR.Cycle, Dose, LxTx, seLxTx, stringsAsFactors=FALSE) } else if (signal.type=="Lx") { DataFrame1 <- data.frame(iNO, iSAR.Cycle, Dose, netLx, abs(netLx)*rse_netLx, stringsAsFactors=FALSE) } else if (signal.type=="Tx") { DataFrame1 <- data.frame(iNO, iSAR.Cycle, Dose, netTx, abs(netTx)*rse_netTx, stringsAsFactors=FALSE) } SARdata <- rbind(SARdata, DataFrame1) if (!is.null(outfile)) { DataFrame2 <- data.frame(iNO, iPosition, iGrain, iSAR.Cycle, Dose, Init, seInit, BG, seBG, netLx, abs(netLx)*rse_netLx, TInit, seTInit, TBG, seTBG, netTx, abs(netTx)*rse_netTx, LxTx, seLxTx, stringsAsFactors=FALSE) ALLdata <- rbind(ALLdata, DataFrame2) } } } if (nrow(SARdata)==0L) stop("Error: no SAR data can be returned!") LnTn.curve <- LnTn.curve[accept_characterNO] if (!is.null(outfile)) { rownames(ALLdata) <- NULL colnames(ALLdata) <- c("NO","Position","Grain", "SAR.Cycle","Dose", "Init","seInit","BG","seBG","Lx","seLx", "TInit","seTInit","TBG","seTBG","Tx","seTx", "LxTx","seLxTx") write.csv(ALLdata, file=paste(outfile, ".csv", sep="")) } rownames(SARdata) <- NULL if (signal.type=="LxTx") { colnames(SARdata) <- c("NO","SAR.Cycle","Dose","LxTx","seLxTx") } else if (signal.type=="Lx") { colnames(SARdata) <- c("NO","SAR.Cycle","Dose","Lx","seLx") } else if (signal.type=="Tx") { colnames(SARdata) <- c("NO","SAR.Cycle","Dose","Tx","seTx") } criteria <- cbind(Tn3BG_vec, TnBG.ratio_vec, seTnBG.ratio_vec, rseTn_vec, FR_vec, seFR_vec) rownames(criteria) <- NULL colnames(criteria) <- c("Tn3BG", "TnBG.ratio", "seTnBG.ratio", "rseTn", "FR", "seFR") Tn <- cbind(Tn_vec, seTn_vec) rownames(Tn) <- NULL colnames(Tn) <- c("Tn", "seTn") rownames(agID) <- NULL colnames(agID) <- c("NO","Position","Grain") output <- list("SARdata"=SARdata, "criteria"=criteria, "Tn"=Tn, "LnTn.curve"=LnTn.curve, "TxTn"=TxTn, "agID"=agID) class(output) <- "analyseBIN" invisible(output) }
meta.niceplot<-function(metadat,sumtype="taxa",level="main",p,p.adjust,phyla.col="rainbow", phyla.select=c("actinobacteria","bacteroidetes","cyanobacteria","firmicutes","fusobacteria","proteobacteria","verrucomicrobia",".thermi."), col.select=c(" est.break=c(-Inf, -1,-0.5,-0.1,0,0.1,0.5,1, Inf), est.break.label=c("<-1", "[-1,-0.5)","[-0.5,-0.1)","[-0.1,0)", "[0,0.1)", "[0.1,0.5)", "[0.5,1)", ">=1"), neg.palette="PuBu", pos.palette="YlOrRd", p.sig.heat="no",p.break=c(0,0.0001,0.05,1),p.break.label=c("**","*",""), p.pool.break=c(0,0.05,1), p.pool.break.label=c("[0,0.05)","[0.05,1]"), padjust.pool.break=c(0,0.1,1), padjust.pool.break.label=c("[0,0.1)","[0.1,1]"), forest.est.shape=c("17","16"), forest.est.col=c("red", "black"),forest.col="by.pvalue", leg.key.size=1,leg.text.size=8,heat.text.x.size=8,heat.text.x.angle=0,forest.axis.text.y=8,forest.axis.text.x=8, heat.forest.width.ratio = c(1,1),point.ratio=c(3,1),line.ratio=c(2,1)){ test<-metadat$taxsig.all test$taxa<-test$id test$taxa<-gsub("k__bacteria.p__","",test$taxa) test$esticat<-cut(test$estimate, breaks=est.break, labels=est.break.label) test$esticol<-plyr::mapvalues(test$esticat,from=est.break.label, to=c(rev(RColorBrewer::brewer.pal(((length(est.break)-1)/2)+1, neg.palette)[-1]),RColorBrewer::brewer.pal(((length(est.break)-1)/2)+1, pos.palette)[-1])) test$esticat<-gdata::drop.levels(test$esticat, reorder=FALSE) test$esticol<-gdata::drop.levels(test$esticol, reorder=FALSE) poplev<-levels(factor(test$pop)) test$pop[is.na(test$pop)]<-"Pooled" test$pop<-factor(test$pop,levels=c(poplev[poplev!="Pooled"],"Pooled")) if (sumtype=="taxa"){ if (level=="main"){ test<-test[order(test$taxa,decreasing = FALSE),] test$taxas<-factor(test$taxa,levels=unique(test$taxa)) test$plotvar<-test$taxas } if (level=="sub"){ test$taxas<-sub(".c__.*f__", " ",as.character(test$taxa)) test<-test[order(test$taxa,decreasing = FALSE),] test$taxas<-factor(test$taxas,levels=unique(test$taxas)) test$taxa<-factor(test$taxa,levels=unique(test$taxa)) test$plotvar<-test$taxas } } if (sumtype=="path"){ test<-test[order(test$taxa,decreasing = FALSE),] test$taxas<-factor(test$taxa,levels=unique(test$taxa)) test$plotvar<-test$taxas } test$study[is.na(test$study)]<-"Meta_analysis" if (p.sig.heat=="yes"){ test$pdot<-cut(test$p, breaks=p.break,labels=p.break.label,include.lowest = TRUE) } if (p.sig.heat=="no"){ test$pdot<-"" } nstudy<-length(unique(test$study[!is.na(test$study)])) my.lines<-data.frame(x=(nstudy-0.5), y=0.5, xend=(nstudy-0.5), yend=(length(unique(test$taxa))+0.5)) h<-ggplot2::ggplot(test, ggplot2::aes(pop, plotvar)) + ggplot2::geom_tile(ggplot2::aes(fill=esticat)) + ggplot2::geom_text(ggplot2::aes(label = pdot)) + ggplot2::scale_fill_manual(breaks=levels(test$esticat), values = levels(test$esticol), labels = levels(test$esticat), name = "log(OR)")+ ggplot2::geom_segment(data=my.lines, ggplot2::aes(x,y,xend=xend, yend=yend), size=2, inherit.aes=F)+ ggplot2::ylab("") +ggplot2::xlab("")+ ggplot2::theme(legend.title = ggplot2::element_text(size = 12,face="bold"), legend.text = ggplot2::element_text(size = leg.text.size,face="bold"), plot.title = ggplot2::element_text(size=16), axis.title=ggplot2::element_text(size=14,face="bold"), legend.position="left", plot.background = ggplot2::element_blank(), panel.grid.minor = ggplot2::element_blank(), panel.grid.major = ggplot2::element_blank(), panel.background = ggplot2::element_blank(), panel.border = ggplot2::element_blank(), axis.ticks.y = ggplot2::element_blank(), axis.text.y = ggplot2::element_blank(), axis.title.x = ggplot2::element_blank(), axis.title.y = ggplot2::element_blank(), axis.text.x =ggplot2::element_text(size=heat.text.x.size, angle=heat.text.x.angle, hjust = 1,colour="black",face="bold"), legend.key.size = ggplot2::unit(leg.key.size, "cm"))+ ggplot2::guides(fill=ggplot2::guide_legend(ncol=1)) testf<-metadat$taxsig testf$taxa<-testf$id testf$taxa<-gsub("k__bacteria.p__","",testf$taxa) testf<-testf[testf$taxa %in% unique(test$taxa),] testf$taxa<-gdata::drop.levels(testf$taxa, reorder=FALSE) if (sumtype=="taxa"){ if (level=="main"){ testf$taxa2<-paste0(toupper(substr(as.character(testf$taxa), 1, 1)), substr(as.character(testf$taxa), 2, nchar(as.character(testf$taxa)))) testf<-testf[order(testf$taxa,decreasing = FALSE),] testf$taxa2<-factor(testf$taxa2,unique(testf$taxa2)) testf$taxa<-factor(testf$taxa,unique(testf$taxa)) if (phyla.col=="select"){ testf$colp<-plyr::mapvalues(testf$taxa,from=phyla.select, to=col.select) testf$colp<-as.character(testf$colp) } if (phyla.col=="rainbow"){ testf$colp<-plyr::mapvalues(testf$taxa,from=levels(testf$taxa),to=grDevices::rainbow(nlevels(testf$taxa))) testf$colp<-as.character(testf$colp) } testf$plotvar<-testf$taxa2 } if (level=="sub"){ testf$taxas1<-sub(".c__.*f__", " ",as.character(testf$taxa)) testf$taxas2<-sub(".*f__", "",as.character(testf$taxa)) testf$taxas2<-paste0(toupper(substr(as.character(testf$taxas2), 1, 1)), substr(as.character(testf$taxas2), 2, nchar(as.character(testf$taxas2)))) oname<-as.character(testf$taxa[testf$taxas2 %in% c("",".g__")]) testf$taxas2[testf$taxas2 %in% c("",".g__")]<-paste0(toupper(substr(as.character(oname), 1, 1)), substr(as.character(oname), 2, nchar(as.character(oname)))) testf<-testf[order(testf$taxa,decreasing = FALSE),] testf$taxas<-factor(testf$taxas2,levels=testf$taxas2) testf$phylum<-sub(".c__.*", "",as.character(testf$taxa)) testf$phylum<-as.factor(testf$phylum) if (phyla.col=="select"){ testf$colp<-plyr::mapvalues(testf$phylum,from=phyla.select, to=col.select) testf$colp<-as.character(testf$colp) } if (phyla.col=="rainbow"){ testf$colp<-plyr::mapvalues(testf$phylum,from=levels(testf$phylum),to=grDevices::rainbow(nlevels(testf$phylum))) testf$colp<-as.character(testf$colp) } testf$plotvar<-testf$taxas } } if (sumtype=="path"){ testf<-testf[order(testf$taxa,decreasing = FALSE),] testf$taxas<-factor(testf$taxa,levels=testf$taxa) testf$colp=1 testf$plotvar<-testf$taxas } testf$pcut<-testf[,p] testf$p.adjustcut<-testf[,p.adjust] testf$psig<-cut(testf$pcut, breaks=p.pool.break,labels=p.pool.break.label ,include.lowest = TRUE, right = FALSE) testf$psigsize<-plyr::mapvalues(testf$psig,from=p.pool.break.label, to=point.ratio) testf$psigsize2<-plyr::mapvalues(testf$psig,from=p.pool.break.label, to=line.ratio) testf$psigcol<-plyr::mapvalues(testf$psig,from=p.pool.break.label,to=forest.est.col) testf$psigcol<-gdata::drop.levels(testf$psigcol,reorder=FALSE) testf$padjustsig<-cut(testf$p.adjustcut, breaks=padjust.pool.break,labels=padjust.pool.break.label,include.lowest = TRUE, right = FALSE) testf$estimate<-as.numeric(as.character(testf$estimate)) testf$padjustsign<-plyr::mapvalues(testf$padjustsig,from=padjust.pool.break.label,to=forest.est.shape) testf$padjustsize<-plyr::mapvalues(testf$padjustsig,from=padjust.pool.break.label,to=point.ratio) testf$esticat<-cut(testf$estimate, breaks=est.break, labels=est.break.label) testf$esticol<-plyr::mapvalues(testf$esticat,from=est.break.label, to=c(rev(RColorBrewer::brewer.pal(((length(est.break)-1)/2)+1, neg.palette)[-1]),RColorBrewer::brewer.pal(((length(est.break)-1)/2)+1, pos.palette)[-1])) testf$esticat<-gdata::drop.levels(testf$esticat, reorder=FALSE) testf$esticol<-gdata::drop.levels(testf$esticol, reorder=FALSE) testf[,c("estimate","ll","ul")]<-apply(testf[,c("estimate","ll","ul")],2,function(x){x[x>=5]=5;x[x<=-5]=-5;x}) if (forest.col=="by.pvalue"){ f<-ggplot2::ggplot(data=testf,ggplot2::aes(x=estimate,y=plotvar,colour=psigcol))+ ggplot2::geom_point(shape=as.numeric(as.character(testf$padjustsign)),size=as.numeric(as.character(testf$padjustsize)))+ ggplot2::scale_y_discrete(position = "right")+ ggplot2::geom_errorbarh(ggplot2::aes(xmin=ll,xmax=ul,colour=psigcol),height=0.0,size=1)+ ggplot2::geom_vline(xintercept=0,linetype="dashed")+ ggplot2::scale_colour_manual(breaks=testf$psigcol,values = levels(testf$psigcol))+ ggplot2::theme(legend.position="none", plot.background = ggplot2::element_blank(), panel.background = ggplot2::element_blank(), axis.ticks.y= ggplot2::element_blank(), axis.title = ggplot2::element_blank(), axis.text.y =ggplot2::element_text(size=forest.axis.text.y, colour = testf$colp,face="bold"), axis.text.x =ggplot2::element_text(size=forest.axis.text.x,colour="black",face="bold")) } if (forest.col=="by.estimate"){ f<-ggplot2::ggplot(data=testf,ggplot2::aes(x=estimate,y=plotvar,colour=esticol))+ ggplot2::geom_point(shape=as.numeric(as.character(testf$padjustsign)),size=as.numeric(as.character(testf$psigsize)))+ ggplot2::scale_y_discrete(position = "right")+ ggplot2::geom_errorbarh(ggplot2::aes(xmin=ll,xmax=ul,colour=esticol),height=0.0, size=as.numeric(as.character(testf$psigsize2)))+ ggplot2::geom_vline(xintercept=0,linetype="dashed")+ ggplot2::scale_colour_manual(breaks=testf$esticol,values = levels(testf$esticol))+ ggplot2::theme(legend.position="none", plot.background = ggplot2::element_blank(), panel.background = ggplot2::element_blank(), axis.ticks.y= ggplot2::element_blank(), axis.title = ggplot2::element_blank(), axis.text.y =ggplot2::element_text(size=forest.axis.text.y, colour = testf$colp,face="bold"), axis.text.x =ggplot2::element_text(size=forest.axis.text.x,colour="black",face="bold")) } return(gridExtra::grid.arrange(h,f,nrow=1,widths = heat.forest.width.ratio)) }
NULL forecastservice <- function(config = list()) { svc <- .forecastservice$operations svc <- set_config(svc, config) return(svc) } .forecastservice <- list() .forecastservice$operations <- list() .forecastservice$metadata <- list( service_name = "forecastservice", endpoints = list("*" = list(endpoint = "forecast.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "forecast.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "forecast.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "forecast.{region}.sc2s.sgov.gov", global = FALSE)), service_id = "forecast", api_version = "2018-06-26", signing_name = "forecast", json_version = "1.1", target_prefix = "AmazonForecast" ) .forecastservice$service <- function(config = list()) { handlers <- new_handlers("jsonrpc", "v4") new_service(.forecastservice$metadata, handlers, config) }
context("checking that the length of AB-PSSM feature vectorS is equal to 400") test_that("whether the AB-PSSM gives us the expected output",{ ss<-AB_PSSM(system.file("extdata","C7GRQ3.txt.pssm",package="PSSMCOOL")) expect_equal(length(ss),400) })