code
stringlengths
1
13.8M
FDist<-function(X,gen=1,Cont=TRUE,inputNA,plot=FALSE,p.val_min=.05,crit=2,DPQR=TRUE){ if(missing(inputNA)){X<-na.omit(X)} else{X<-ifelse(is.na(X),inputNA,X)} if(length(X)==0){ return(NULL) } X<-X[X!=(-Inf) & X!=Inf] if (length(unique(X))<2) { fun_g<-function(n=gen){return(rep(X[1],n))} return(list(paste0("norm(",X[1],",0)"),fun_g,rep(X[1],gen),data.frame(Dist="norm",AD_p.v=1,KS_p.v=1,estimate1=X[1],estimate2=0,estimateLL1=0,estimateLL2=1,PV_S=2),NULL)) } if (length(unique(X))==2) { X<-sort(X) p<-length(X[X==unique(X)[2]])/length(X) gene<-stats::rbinom formals(gene)[1]<-length(X) formals(gene)[2]<-1 formals(gene)[3]<-p distribu<-paste0("binom(",p,")") MA=gene(n = gen) if(plot){ DF<-rbind(data.frame(A="Fit",DT=MA), data.frame(A="Real",DT=X)) pl <- ggplot2::ggplot(DF,ggplot2::aes(x=DF$DT,fill=DF$A)) + ggplot2::geom_density(alpha=0.4) +ggplot2::ggtitle(distribu) }else{ pl<-NULL } return(list(distribu,gene,MA[1:gen],data.frame(Dist="binom",AD_p.v=1,KS_p.v=1,estimate1=1,estimate2=p,estimateLL1=0,estimateLL2=1,PV_S=2),pl)) } DIS<-list(Nombres=c("exp","pois","beta","gamma","lnorm","norm","weibull","nbinom","hyper","cauchy","binom"), p=c(stats::pexp,stats::ppois,stats::pbeta,stats::pgamma,stats::plnorm,stats::pnorm,stats::pweibull,stats::pnbinom,stats::phyper,stats::pcauchy,stats::pbinom), d=c(stats::dexp,stats::dpois,stats::dbeta,stats::dgamma,stats::dlnorm,stats::dnorm,stats::dweibull,stats::dnbinom,stats::dhyper,stats::dcauchy,stats::dbinom), q=c(stats::qexp,stats::qpois,stats::qbeta,stats::qgamma,stats::qlnorm,stats::qnorm,stats::qweibull,stats::qnbinom,stats::qhyper,stats::qcauchy,stats::qbinom), r=c(stats::rexp,stats::rpois,stats::rbeta,stats::rgamma,stats::rlnorm,stats::rnorm,stats::rweibull,stats::rnbinom,stats::rhyper,stats::rcauchy,stats::rbinom), d_c=c(1,0,1,1,1,1,1,0,0,1,0), indicadora=c("0","0","01","0","0","R","0","0","0","R","0") ) DIS<-purrr::map(DIS,~subset(.x, DIS$d_c==as.numeric(Cont))) DIS_0<-purrr::map(DIS,~subset(.x, DIS$indicadora=="0")) DIS_R<-purrr::map(DIS,~subset(.x, DIS$indicadora=="R")) DIS_01<-purrr::map(DIS,~subset(.x, DIS$indicadora=="01")) if(sum(purrr::map_dbl(DIS_0,~length(.x)))==0){DIS_0<-NULL} if(sum(purrr::map_dbl(DIS_R,~length(.x)))==0){DIS_R<-NULL} if(sum(purrr::map_dbl(DIS_01,~length(.x)))==0){DIS_01<-NULL} bt<-X despl<-0 escala<-1 eps<-1E-15 if (sum(X<0)>0){ if (sum(X<0)/length(X)<0.03){ bt<-ifelse(X<0,eps,X) b_0<-bt }else{ b_0<-bt-min(bt)+eps despl<- min(bt) } }else{ b_0<-bt } if(max(X)>1){ escala<-max(bt) b_01<-(bt-despl)/(escala-despl) }else{ b_01<-bt } fit_b<-function(bt,dist="",Cont.=Cont){ if(is.null(dist)){return(NULL)} Disc<-!Cont aju<-list() if(!dist %in% DIS_01$Nombres){ suppressWarnings(aju[[1]]<-try(fitdistrplus::fitdist(bt,dist,method = "mle",discrete = Disc),silent = TRUE)) } suppressWarnings(aju[[2]]<-try(fitdistrplus::fitdist(bt,dist,method = "mme",discrete = Disc),silent = TRUE)) suppressWarnings(aju[[3]]<-try(fitdistrplus::fitdist(bt,dist,method = c("mge"),discrete = Disc),silent = TRUE)) suppressWarnings(aju[[4]]<-try(MASS::fitdistr(bt,dist),silent = TRUE)) if(!assertthat::is.error(aju[[4]])){aju[[4]]$distname<-dist} if(assertthat::is.error(aju[[1]]) & assertthat::is.error(aju[[2]]) & assertthat::is.error(aju[[3]]) & assertthat::is.error(aju[[4]])){ return(list()) } funcionales<-!purrr::map_lgl(aju,~assertthat::is.error(.x)) names(aju)<-c("mle","mme","mge","mlg2") aju<-aju[funcionales] return(aju) } suppressWarnings(try(aju_0<-purrr::map(DIS_0$Nombres,~fit_b(b_0,.x)),silent = TRUE)) suppressWarnings(try(aju_R<-purrr::map(DIS_R$Nombres,~fit_b(bt,.x)),silent = TRUE)) suppressWarnings(try(aju_01<-purrr::map(DIS_01$Nombres,~fit_b(b_01,.x)),silent = TRUE)) AAA<-list(aju_0,aju_R,aju_01) descate<-purrr::map(AAA,~length(.x))!=0 AAA<-AAA[descate] bts<-list(b_0,bt,b_01)[descate] num<-0 Compe<-data.frame() for (aju_ls in 1:length(AAA)) { aju<-AAA[[aju_ls]] aju<-aju[purrr::map_lgl(aju,~length(.x)>0)] bs<-bts[[aju_ls]] for (comp in 1:length(aju)) { if(length(aju)==0 ||length(aju[[comp]])==0){next()} for (ress in 1:length(aju[[comp]])) { num<-num+1 if(length(aju[[comp]])!=0){evaluar<-aju[[comp]][[ress]] }else{evaluar<-NULL} if (is.null(evaluar) | length(evaluar)==0 | c(NA) %in% evaluar$estimate | c(NaN) %in% evaluar$estimate) {next()} distname<-evaluar$distname method<-names(aju[[comp]])[[ress]] dist_pfun<-try(get(paste0("p",distname)),silent = TRUE) dist_rfun<-try(get(paste0("r",distname)),silent = TRUE) if(assertthat::is.error(dist_rfun)){next()} argumentos<-formalArgs(dist_pfun) argumentos<-argumentos[argumentos %in% names(evaluar$estimate)] num_param<-length(argumentos) evaluar$estimate<-evaluar$estimate[names(evaluar$estimate) %in% argumentos] if(num_param==1){ EAD<-try(AD<-ADGofTest::ad.test(bs,dist_pfun,evaluar$estimate[1]),silent = TRUE) KS<-try(stats::ks.test(bs,dist_pfun,evaluar$estimate[1]),silent = TRUE) if(assertthat::is.error(KS)){KS<-data.frame(p.value=NA)} if(assertthat::is.error(EAD)){next()} if(is.na(KS$p.value)){next()} Chs<-data.frame(p.value=0) } if(num_param==2){ suppressWarnings( Err_pl<-try(AD<-ADGofTest::ad.test(bs,dist_pfun,evaluar$estimate[1],evaluar$estimate[2]),silent = TRUE)) if (assertthat::is.error(Err_pl)) { Err_pl<-try(AD<-ADGofTest::ad.test(bs,dist_pfun,evaluar$estimate[1],,evaluar$estimate[2]),silent = TRUE) } KS<-try(stats::ks.test(bs,dist_pfun,evaluar$estimate[1],evaluar$estimate[2]),silent = TRUE) if(assertthat::is.error(KS)){KS<-data.frame(p.value=NA)} if(assertthat::is.error(Err_pl)){next()} if(is.na(KS$p.value)){next()} suppressWarnings( EE_Chs<-try(dst_chsq<-dist_rfun(length(bs),evaluar$estimate[1],evaluar$estimate[2])) ) if(assertthat::is.error(EE_Chs) | prod(is.na(EE_Chs))==1){ dst_chsq<-dist_rfun(length(bs),evaluar$estimate[1],,evaluar$estimate[2]) } Chs<-data.frame(p.value=0) } pvvv<-p.val_min if(all(is.na(KS$p.value))){ crit<-AD$p.value>pvvv }else{ if(crit==1){ crit<-AD$p.value>pvvv | KS$p.value>pvvv }else{ crit<-AD$p.value>(pvvv) & KS$p.value>(pvvv) } } if(crit){ if(aju_ls %in% 3){ estimate3=despl estimate4=escala }else if(aju_ls==1){ estimate3=despl estimate4=1 }else{ estimate3=0 estimate4=1 } Compe<-rbind(Compe,data.frame(Dist=distname,AD_p.v=AD$p.value,KS_p.v=KS$p.value, Chs_p.v=Chs$p.value, estimate1=evaluar$estimate[1],estimate2=evaluar$estimate[2], estimateLL1=estimate3,estimateLL2=estimate4,method=method )) }else{ next() } } } } if (nrow(Compe)==0) { warning("No fit") return(NULL) } Compe$PV_S<-rowSums(Compe[,2:4]) WNR<-Compe[Compe$PV_S %in% max(Compe$PV_S),][1,] distW<-WNR$Dist paramsW<-WNR[1,names(Compe)[startsWith(names(Compe),"estim")]] paramsW<-paramsW[,!is.na(paramsW)] if(gen<=0){gen<-1} generadora_r<-function(n=gen,dist=distW,params=paramsW){ fn<-get(paste0("r",dist)) formals(fn)[1]<-n for (pr in 1:(length(params)-2)) { formals(fn)[pr+1]<-as.numeric(params[pr]) } fn()*params[,length(params)]+params[,length(params)-1] } if(DPQR){ generadoras<-function(x,tipo,dist=distW,params=paramsW){ fn<-get(paste0(tipo,dist)) formals(fn)[1]<-x for (pr in 1:(length(params)-2)) { formals(fn)[pr+1]<-as.numeric(params[pr]) } class(fn)<-"gl_fun" fn } rfit<-generadora_r class(rfit)<-"gl_fun" pfit<-generadoras(1,"p") qfit<-generadoras(1,"q") dfit<-generadoras(1,"d") } MA<-generadora_r() paramsAUX<-c() paramsW2<-data.frame() for(cl in 1:nrow(paramsW)){ paramsW2<-rbind(paramsW2,round(paramsW[1,],3)) } if(paramsW2[,length(paramsW2)]!=1 | paramsW2[,length(paramsW2)-1]!=0){ distribu<-paste0(WNR$Dist,"(",paste0(paramsW2[,1:(length(paramsW2)-2)],collapse = ", "),")*",paramsW2[,length(paramsW2)],"+",paramsW2[,length(paramsW2)-1]) }else{ distribu<-paste0(WNR$Dist,"(",paste0(paramsW2[,1:(length(paramsW2)-2)],collapse = ", "),")") } p<-c() if(plot){ DF<-rbind(data.frame(A="Fit",DT=MA), data.frame(A="Real",DT=X)) p <- ggplot2::ggplot(DF,ggplot2::aes(x=DF$DT,fill=DF$A)) + ggplot2::geom_density(alpha=0.4) +ggplot2::ggtitle(distribu) } return(list(distribu,generadora_r,MA,WNR[,-4],p,list(rfit,pfit,dfit,qfit),Compe)) }
glance.data.frame <- function(x, ...) { stop( "There is no glance method for data frames. ", "Did you mean `tibble::glimpse()`?", call. = FALSE ) } glance.tbl_df <- function(x, ...) { stop( "There is no glance method for tibbles. ", "Did you mean `tibble::glimpse()`?", call. = FALSE ) }
perIndividualQC <- function(indir, name, qcdir=indir, dont.check_sex=FALSE, do.run_check_sex=TRUE, do.evaluate_check_sex=TRUE, maleTh=0.8, femaleTh=0.2, externalSex=NULL, externalMale="M", externalSexSex="Sex", externalSexID="IID", externalFemale="F", fixMixup=FALSE, dont.check_het_and_miss=FALSE, do.run_check_het_and_miss=TRUE, do.evaluate_check_het_and_miss=TRUE, imissTh=0.03, hetTh=3, dont.check_relatedness=FALSE, do.run_check_relatedness=TRUE, do.evaluate_check_relatedness=TRUE, highIBDTh=0.1875, mafThRelatedness=0.1, filter_high_ldregion=TRUE, high_ldregion_file=NULL, genomebuild='hg19', dont.check_ancestry=FALSE, do.run_check_ancestry=TRUE, do.evaluate_check_ancestry=TRUE, prefixMergedDataset, europeanTh=1.5, defaultRefSamples = c("HapMap", "1000Genomes"), refSamples=NULL, refColors=NULL, refSamplesFile=NULL, refColorsFile=NULL, refSamplesIID="IID", refSamplesPop="Pop", refColorsColor="Color", refColorsPop="Pop", studyColor=" highlight_samples = NULL, highlight_type = c("text", "label", "color", "shape"), highlight_text_size = 3, highlight_color = " highlight_shape = 17, highlight_legend = FALSE, interactive=FALSE, verbose=TRUE, keep_individuals=NULL, remove_individuals=NULL, exclude_markers=NULL, extract_markers=NULL, legend_text_size = 5, legend_title_size = 7, axis_text_size = 5, axis_title_size = 7, subplot_label_size = 9, title_size = 9, path2plink=NULL, showPlinkOutput=TRUE) { missing_genotype <- NULL highIBD <- NULL outlying_heterozygosity <- NULL mismatched_sex <- NULL ancestry <- NULL p_sexcheck <- NULL p_het_imiss <- NULL p_relatedness <- NULL p_ancestry <- NULL out <- makepath(qcdir, name) if (!dont.check_sex) { if (do.run_check_sex) { run <- run_check_sex(indir=indir, qcdir=qcdir, name=name, path2plink=path2plink, showPlinkOutput=showPlinkOutput, keep_individuals=keep_individuals, remove_individuals=remove_individuals, exclude_markers=exclude_markers, extract_markers=extract_markers, verbose=verbose) } if (do.evaluate_check_sex) { if (verbose) { message("Identification of individuals with discordant sex ", "information") } fail_sex <- evaluate_check_sex(qcdir=qcdir, indir=indir, name=name, maleTh=maleTh, femaleTh=femaleTh, externalSex=externalSex, externalMale=externalMale, externalFemale=externalFemale, externalSexSex=externalSexSex, externalSexID=externalSexID, verbose=verbose, path2plink=path2plink, showPlinkOutput=showPlinkOutput, fixMixup=fixMixup, label_fail=label_fail, highlight_samples = highlight_samples, highlight_type = highlight_type, highlight_text_size = highlight_text_size, highlight_color = highlight_color, highlight_shape = highlight_shape, highlight_legend = highlight_legend, legend_text_size = legend_text_size, legend_title_size = legend_title_size, axis_text_size = axis_text_size, axis_title_size = axis_title_size, title_size = title_size, interactive=FALSE) write.table(fail_sex$fail_sex[,1:2], file=paste(out, ".fail-sexcheck.IDs", sep=""), quote=FALSE, row.names=FALSE, col.names=FALSE) if (!is.null(fail_sex$fail_sex) && nrow(fail_sex$fail_sex) != 0) { mismatched_sex<- select(fail_sex$fail_sex, .data$FID, .data$IID) } if (!is.null(fail_sex$mixup)) { write.table(fail_sex$mixup[,1:2], file=paste(out, ".sexcheck_mixup.IDs", sep=""), quote=FALSE, row.names=FALSE, col.names=FALSE) } p_sexcheck <- fail_sex$p_sexcheck } } if (!dont.check_het_and_miss) { if (do.run_check_het_and_miss) { run_miss <- run_check_missingness(qcdir=qcdir, indir=indir, name=name, path2plink=path2plink, showPlinkOutput=showPlinkOutput, keep_individuals=keep_individuals, remove_individuals=remove_individuals, exclude_markers=exclude_markers, extract_markers=extract_markers, verbose=verbose) run_het <- run_check_heterozygosity(qcdir=qcdir, indir=indir, name=name, path2plink=path2plink, showPlinkOutput=showPlinkOutput, keep_individuals=keep_individuals, remove_individuals=remove_individuals, exclude_markers=exclude_markers, extract_markers=extract_markers, verbose=verbose) } if (do.evaluate_check_het_and_miss) { if (verbose) { message("Identification of individuals with outlying missing ", "genotype or heterozygosity rates") } fail_het_imiss <- evaluate_check_het_and_miss(qcdir=qcdir, name=name, imissTh=imissTh, hetTh=hetTh, label_fail=label_fail, highlight_samples = highlight_samples, highlight_type = highlight_type, highlight_text_size = highlight_text_size, highlight_color = highlight_color, highlight_shape = highlight_shape, highlight_legend = highlight_legend, legend_text_size = legend_text_size, legend_title_size = legend_title_size, axis_text_size = axis_text_size, axis_title_size = axis_title_size, title_size = title_size, interactive=FALSE) write.table(fail_het_imiss$fail_imiss[,1:2], file=paste(out, ".fail-imiss.IDs", sep=""), quote=FALSE, row.names=FALSE, col.names=FALSE) if (!is.null(fail_het_imiss$fail_imiss) && nrow(fail_het_imiss$fail_imiss) != 0) { missing_genotype <- select(fail_het_imiss$fail_imiss, .data$FID, .data$IID) } write.table(fail_het_imiss$fail_het[,1:2], file=paste(out, ".fail-het.IDs", sep=""), quote=FALSE, row.names=FALSE, col.names=FALSE) if (!is.null(fail_het_imiss$fail_het) && nrow(fail_het_imiss$fail_het) != 0) { outlying_heterozygosity <- select(fail_het_imiss$fail_het, .data$FID, .data$IID) } else { outlying_heterozygosity <- NULL } p_het_imiss <- fail_het_imiss$p_het_imiss } } if (!dont.check_relatedness) { if (do.run_check_relatedness) { run <- run_check_relatedness(qcdir=qcdir, indir=indir, name=name, path2plink=path2plink, mafThRelatedness=mafThRelatedness, filter_high_ldregion= filter_high_ldregion, high_ldregion_file=high_ldregion_file, genomebuild=genomebuild, showPlinkOutput=showPlinkOutput, keep_individuals=keep_individuals, remove_individuals=remove_individuals, exclude_markers=exclude_markers, extract_markers=extract_markers, verbose=verbose) } if (do.evaluate_check_relatedness) { if (verbose) message("Identification of related individuals") fail_relatedness <- evaluate_check_relatedness(qcdir=qcdir, name=name, imissTh=imissTh, highIBDTh=highIBDTh, legend_text_size = legend_text_size, legend_title_size = legend_title_size, axis_text_size = axis_text_size, axis_title_size = axis_title_size, title_size = title_size, interactive=FALSE) write.table(fail_relatedness$failIDs, file=paste(out, ".fail-IBD.IDs", sep=""), row.names=FALSE, quote=FALSE, col.names=FALSE, sep="\t") if (!is.null(fail_relatedness$failIDs) && nrow(fail_relatedness$failIDs) != 0) { highIBD <- select(fail_relatedness$failIDs, .data$FID, .data$IID) } p_relatedness <- fail_relatedness$p_IBD } } if (!dont.check_ancestry) { if (do.run_check_ancestry) { run <- run_check_ancestry(qcdir=qcdir, indir=indir, prefixMergedDataset=prefixMergedDataset, path2plink=path2plink, showPlinkOutput=showPlinkOutput, keep_individuals=keep_individuals, remove_individuals=remove_individuals, exclude_markers=exclude_markers, extract_markers=extract_markers, verbose=verbose) } if (do.evaluate_check_ancestry) { if (verbose) { message("Identification of individuals of divergent ancestry") } fail_ancestry <- evaluate_check_ancestry(qcdir=qcdir, indir=indir, name=name, prefixMergedDataset= prefixMergedDataset, europeanTh=europeanTh, defaultRefSamples = defaultRefSamples, refSamples=refSamples, refColors=refColors, refSamplesFile= refSamplesFile, refColorsFile= refColorsFile, refSamplesIID= refSamplesIID, refSamplesPop= refSamplesPop, refColorsColor= refColorsColor, refColorsPop= refColorsPop, studyColor=studyColor, highlight_samples = highlight_samples, highlight_type = highlight_type, highlight_text_size = highlight_text_size, highlight_color = highlight_color, highlight_shape = highlight_shape, highlight_legend = highlight_legend, legend_text_size = legend_text_size, legend_title_size = legend_title_size, axis_text_size = axis_text_size, axis_title_size = axis_title_size, title_size = title_size, interactive=FALSE) write.table(fail_ancestry$fail_ancestry, file=paste(out, ".fail-ancestry.IDs", sep=""), quote=FALSE, row.names=FALSE, col.names=FALSE) if (!is.null(fail_ancestry$fail_ancestry) && nrow(fail_ancestry$fail_ancestry) != 0) { ancestry <- select(fail_ancestry$fail_ancestry, .data$FID, .data$IID) } p_ancestry <- fail_ancestry$p_ancestry } } fail_list <- list(missing_genotype=missing_genotype, highIBD=highIBD, outlying_heterozygosity=outlying_heterozygosity, mismatched_sex=mismatched_sex, ancestry=ancestry) if(verbose) message(paste("Combine fail IDs into ", out, ".fail.IDs", sep="")) uniqueFails <- do.call(rbind, fail_list) uniqueFails <- uniqueFails[!duplicated(uniqueFails$IID),] write.table(uniqueFails, file=paste(out, ".fail.IDs",sep=""), quote=FALSE, row.names=FALSE, col.names=FALSE) plots_sampleQC <- list(p_sexcheck=p_sexcheck, p_het_imiss=p_het_imiss, p_relatedness=p_relatedness, p_ancestry=p_ancestry) plots_sampleQC <- plots_sampleQC[sapply(plots_sampleQC, function(x) !is.null(x))] subplotLabels <- LETTERS[1:length(plots_sampleQC)] if (!is.null(p_ancestry)) { ancestry_legend <- cowplot::get_legend(p_ancestry) plots_sampleQC$p_ancestry <- plots_sampleQC$p_ancestry + theme(legend.position = "None") plots_sampleQC$ancestry_legend <- ancestry_legend subplotLabels <- c(subplotLabels, "") } if (!is.null(p_sexcheck) && !is.null(p_het_imiss)) { first_plots <- cowplot::plot_grid(plotlist=plots_sampleQC[1:2], nrow=2, align = "v", axis = "lr", labels=subplotLabels[1:2], label_size = subplot_label_size ) if (!is.null(p_ancestry)) { if (!is.null(p_relatedness)) { rel_heights <- c(2, 1, 1, 0.3) plots_sampleQC <- list(first_plots, plots_sampleQC[[3]], plots_sampleQC[[4]], plots_sampleQC[[5]] ) subplotLabels <- c("", subplotLabels[3:5]) } else { rel_heights <- c(2, 1, 0.3) plots_sampleQC <- list(first_plots, plots_sampleQC[[3]], plots_sampleQC[[4]] ) subplotLabels <- c("", subplotLabels[3:4]) } } else { if (!is.null(p_relatedness)) { rel_heights <- c(2, 1) plots_sampleQC <- list(first_plots, plots_sampleQC[[3]]) subplotLabels <- c("", subplotLabels[3]) } else { rel_heights <- 1 plots_sampleQC <- first_plots subplotLabels <- "" } } } else { if (!is.null(p_ancestry)) { rel_heights <- c(rep(1, length(plots_sampleQC) -1), 0.3) } else { rel_heights <- c(rep(1, length(plots_sampleQC))) } } p_sampleQC <- cowplot::plot_grid(plotlist=plots_sampleQC, nrow=length(plots_sampleQC), labels=subplotLabels, label_size = subplot_label_size, rel_heights=rel_heights) if (interactive) { print(p_sampleQC) } return(list(fail_list=fail_list, p_sampleQC=p_sampleQC)) } overviewPerIndividualQC <- function(results_perIndividualQC, interactive=FALSE) { if (length(perIndividualQC) == 2 && !all(names(results_perIndividualQC) == c("fail_list", "p_sampleQC"))) { stop("results_perIndividualQC not direct output of perIndividualQC") } fail_list <- results_perIndividualQC$fail_list samples_fail_all <- do.call(rbind, fail_list) fail_list_wo_ancestry <- fail_list[!names(fail_list) == "ancestry"] id_list_wo_ancestry <- sapply(fail_list_wo_ancestry, function(x) x$IID) unique_samples_fail_wo_ancestry <- unique(unlist(id_list_wo_ancestry)) fail_counts_wo_ancestry <- UpSetR::fromList(id_list_wo_ancestry) rownames(fail_counts_wo_ancestry) <- unique_samples_fail_wo_ancestry p <- UpSetR::upset(fail_counts_wo_ancestry, order.by = "freq", empty.intersections = "on", text.scale=1.2, mainbar.y.label="Samples failing multiple QC checks", sets.x.label="Sample fails per QC check", main.bar.color=" sets.bar.color=" p_qc <- cowplot::plot_grid(NULL, p$Main_bar, p$Sizes, p$Matrix, nrow=2, align='v', rel_heights = c(3,1), rel_widths = c(2,3)) if (interactive) { print(p_qc) } fail_counts_wo_ancestry <- merge(samples_fail_all, fail_counts_wo_ancestry, by.x=2, by.y=0) if ("ancestry" %in% names(fail_list) && !is.null(fail_list$ancestry)) { fail_all <- list(QC_fail=unique_samples_fail_wo_ancestry, Ancestry_fail=fail_list$ancestry$IID) unique_samples_fail_all <- unique(unlist(fail_all)) fail_counts_all <- UpSetR::fromList(fail_all) rownames(fail_counts_all) <- unique_samples_fail_all m <- UpSetR::upset(fail_counts_all, order.by = "freq", mainbar.y.label= "Samples failing QC and ancestry checks", sets.x.label="Sample fails per QC check", empty.intersections = "on", text.scale=1.2, main.bar.color=" sets.bar.color=" p_all <- cowplot::plot_grid(NULL, m$Main_bar, m$Sizes, m$Matrix, nrow=2, align='v', rel_heights = c(3,1), rel_widths = c(2,3)) if (interactive) { print(p_all) } fail_counts_all <- merge(samples_fail_all, fail_counts_all, by.x=2, by.y=0) p_overview <- cowplot::plot_grid(NULL, p$Main_bar, p$Sizes, p$Matrix, NULL, m$Main_bar, m$Sizes, m$Matrix, nrow=4, align='v', rel_heights = c(3,1,3,1), rel_widths = c(2,3)) } else { p_overview <- p_qc fail_counts_all <- NULL } nr_fail_samples <- length(unique(samples_fail_all$IID)) return(list(nr_fail_samples=nr_fail_samples, fail_QC=fail_counts_wo_ancestry, fail_QC_and_ancestry=fail_counts_all, p_overview=p_overview)) } check_sex <- function(indir, name, qcdir=indir, maleTh=0.8, femaleTh=0.2, run.check_sex=TRUE, externalSex=NULL, externalFemale="F", externalMale="M", externalSexSex="Sex", externalSexID="IID", fixMixup=FALSE, interactive=FALSE, verbose=FALSE, label_fail=TRUE, highlight_samples = NULL, highlight_type = c("text", "label", "color", "shape"), highlight_text_size = 3, highlight_color = " highlight_shape = 17, highlight_legend = FALSE, path2plink=NULL, keep_individuals=NULL, remove_individuals=NULL, exclude_markers=NULL, extract_markers=NULL, legend_text_size = 5, legend_title_size = 7, axis_text_size = 5, axis_title_size = 7, title_size = 9, showPlinkOutput=TRUE) { if (run.check_sex) { run_sex <- run_check_sex(indir=indir, qcdir=qcdir, name=name, verbose=verbose, path2plink=path2plink, keep_individuals=keep_individuals, remove_individuals=remove_individuals, exclude_markers=exclude_markers, extract_markers=extract_markers, showPlinkOutput=showPlinkOutput) } fail <- evaluate_check_sex(qcdir=qcdir, name=name, externalSex=externalSex, maleTh=maleTh, femaleTh=femaleTh, interactive=interactive, fixMixup=fixMixup, indir=indir, label_fail=label_fail, externalFemale=externalFemale, externalMale=externalMale, externalSexSex=externalSexSex, externalSexID=externalSexID, verbose=verbose, path2plink=path2plink, highlight_samples = highlight_samples, highlight_type = highlight_type, highlight_text_size = highlight_text_size, highlight_color = highlight_color, highlight_shape = highlight_shape, highlight_legend = highlight_legend, keep_individuals=keep_individuals, remove_individuals=remove_individuals, exclude_markers=exclude_markers, extract_markers=extract_markers, legend_text_size = legend_text_size, legend_title_size = legend_title_size, axis_text_size = axis_text_size, axis_title_size = axis_title_size, title_size = title_size, showPlinkOutput=showPlinkOutput) return(fail) } check_het_and_miss <- function(indir, name, qcdir=indir, imissTh=0.03, hetTh=3, run.check_het_and_miss=TRUE, label_fail=TRUE, highlight_samples = NULL, highlight_type = c("text", "label", "color", "shape"), highlight_text_size = 3, highlight_color = " highlight_shape = 17, highlight_legend = FALSE, interactive=FALSE, verbose=FALSE, keep_individuals=NULL, remove_individuals=NULL, exclude_markers=NULL, extract_markers=NULL, legend_text_size = 5, legend_title_size = 7, axis_text_size = 5, axis_title_size = 7, title_size = 9, path2plink=NULL, showPlinkOutput=TRUE) { if (run.check_het_and_miss) { run_het <- run_check_heterozygosity(indir=indir,qcdir=qcdir, name=name, verbose=verbose, path2plink=path2plink, keep_individuals=keep_individuals, remove_individuals=remove_individuals, exclude_markers=exclude_markers, extract_markers=extract_markers, showPlinkOutput=showPlinkOutput) run_miss <- run_check_missingness(indir=indir, qcdir=qcdir, name=name, verbose=verbose, path2plink=path2plink, keep_individuals=keep_individuals, remove_individuals=remove_individuals, exclude_markers=exclude_markers, extract_markers=extract_markers, showPlinkOutput=showPlinkOutput) } fail <- evaluate_check_het_and_miss(qcdir=qcdir, name=name, hetTh=hetTh, imissTh=imissTh, interactive=interactive, label_fail=label_fail, highlight_samples = highlight_samples, highlight_type = highlight_type, highlight_text_size = highlight_text_size, highlight_color = highlight_color, highlight_shape = highlight_shape, highlight_legend = highlight_legend, legend_text_size = legend_text_size, legend_title_size = legend_title_size, title_size = title_size, axis_text_size = axis_text_size, axis_title_size = axis_title_size) return(fail) } check_relatedness <- function(indir, name, qcdir=indir, highIBDTh=0.1875, filter_high_ldregion=TRUE, high_ldregion_file=NULL, genomebuild='hg19', imissTh=0.03, run.check_relatedness=TRUE, interactive=FALSE, verbose=FALSE, mafThRelatedness=0.1, path2plink=NULL, keep_individuals=NULL, remove_individuals=NULL, exclude_markers=NULL, extract_markers=NULL, legend_text_size = 5, legend_title_size = 7, axis_text_size = 5, axis_title_size = 7, title_size = 9, showPlinkOutput=TRUE) { if (run.check_relatedness) { run <- run_check_relatedness(indir=indir, qcdir=qcdir, name=name, verbose=verbose, mafThRelatedness=mafThRelatedness, path2plink=path2plink, highIBDTh=highIBDTh, genomebuild=genomebuild, keep_individuals=keep_individuals, remove_individuals=remove_individuals, exclude_markers=exclude_markers, extract_markers=extract_markers, showPlinkOutput=showPlinkOutput) } fail <- evaluate_check_relatedness(qcdir=qcdir, name=name, highIBDTh=highIBDTh, imissTh=imissTh, interactive=interactive, legend_text_size = legend_text_size, legend_title_size = legend_title_size, axis_text_size = axis_text_size, axis_title_size = axis_title_size, title_size = title_size, verbose=verbose) return(fail) } check_ancestry <- function(indir, name, qcdir=indir, prefixMergedDataset, europeanTh=1.5, defaultRefSamples = c("HapMap","1000Genomes"), refPopulation=c("CEU", "TSI"), refSamples=NULL, refColors=NULL, refSamplesFile=NULL, refColorsFile=NULL, refSamplesIID="IID", refSamplesPop="Pop", refColorsColor="Color", refColorsPop="Pop", studyColor=" legend_labels_per_row=6, run.check_ancestry=TRUE, interactive=FALSE, verbose=verbose, highlight_samples = NULL, highlight_type = c("text", "label", "color", "shape"), highlight_text_size = 3, highlight_color = " highlight_shape = 17, highlight_legend = FALSE, legend_text_size = 5, legend_title_size = 7, axis_text_size = 5, axis_title_size = 7, title_size = 9, keep_individuals=NULL, remove_individuals=NULL, exclude_markers=NULL, extract_markers=NULL, path2plink=NULL, showPlinkOutput=TRUE) { if (run.check_ancestry) { run <- run_check_ancestry(indir=indir, qcdir=qcdir, prefixMergedDataset=prefixMergedDataset, verbose=verbose, path2plink=path2plink, keep_individuals=keep_individuals, remove_individuals=remove_individuals, exclude_markers=exclude_markers, extract_markers=extract_markers, showPlinkOutput=showPlinkOutput) } fail <- evaluate_check_ancestry(qcdir=qcdir, indir=indir, name=name, prefixMergedDataset=prefixMergedDataset, europeanTh=europeanTh, refPopulation=refPopulation, refSamples=refSamples, refColors=refColors, refSamplesFile=refSamplesFile, refColorsFile=refColorsFile, refSamplesIID=refSamplesIID, refSamplesPop=refSamplesPop, refColorsColor=refColorsColor, refColorsPop=refColorsPop, studyColor=studyColor, legend_labels_per_row= legend_labels_per_row, highlight_samples = highlight_samples, highlight_type = highlight_type, highlight_text_size = highlight_text_size, highlight_color = highlight_color, highlight_shape = highlight_shape, highlight_legend = highlight_legend, defaultRefSamples = defaultRefSamples, legend_text_size = legend_text_size, legend_title_size = legend_title_size, title_size = title_size, axis_text_size = axis_text_size, axis_title_size = axis_title_size, interactive=interactive) return(fail) } run_check_sex <- function(indir, name, qcdir=indir, verbose=FALSE, path2plink=NULL, keep_individuals=NULL, remove_individuals=NULL, exclude_markers=NULL, extract_markers=NULL, showPlinkOutput=TRUE) { prefix <- makepath(indir, name) out <- makepath(qcdir, name) checkFormat(prefix) path2plink <- checkPlink(path2plink) args_filter <- checkFiltering(keep_individuals, remove_individuals, extract_markers, exclude_markers) if (verbose) message("Run check_sex via plink --check-sex") sys::exec_wait(path2plink, args=c("--bfile", prefix, "--check-sex", "--out", out, args_filter), std_out=showPlinkOutput, std_err=showPlinkOutput) } evaluate_check_sex <- function(qcdir, name, maleTh=0.8, femaleTh=0.2, externalSex=NULL, fixMixup=FALSE, indir=qcdir, externalFemale="F", externalMale="M", externalSexSex="Sex", externalSexID="IID", verbose=FALSE, label_fail=TRUE, highlight_samples = NULL, highlight_type = c("text", "label", "color", "shape"), highlight_text_size = 3, highlight_color = " highlight_shape = 17, highlight_legend = FALSE, legend_text_size = 5, legend_title_size = 7, axis_text_size = 5, axis_title_size = 7, title_size = 9, path2plink=NULL, keep_individuals=NULL, remove_individuals=NULL, exclude_markers=NULL, extract_markers=NULL, showPlinkOutput=TRUE, interactive=FALSE) { prefix <- makepath(indir, name) out <- makepath(qcdir, name) if (!file.exists(paste(out, ".sexcheck", sep=""))){ stop("plink --check-sex results file: ", out, ".sexcheck does not exist.") } testNumerics(numbers=c(maleTh, femaleTh), positives=c(maleTh, femaleTh), proportions=c(maleTh, femaleTh)) sexcheck <- read.table(paste(out, ".sexcheck",sep=""), header=TRUE, stringsAsFactors=FALSE) names_sexcheck <- c("FID", "IID", "PEDSEX", "SNPSEX", "STATUS", "F") if (!all(names_sexcheck == names(sexcheck))) { stop("Header of", out, ".sexcheck is not correct. Was your file generated with plink --check-sex?") } if (is.null(externalSex)) { fail_sex <- sexcheck[sexcheck$STATUS == "PROBLEM",] if (nrow(fail_sex) == 0) fail_sex <- NULL mixup_geno_pheno <- NULL } else { if (!(externalSexSex %in% names(externalSex))) { stop("Column ", externalSexSex, " not found in externalSex!") } if (!(externalSexID %in% names(externalSex))) { stop("Column ", externalSexID, " not found in externalSex!") } names(externalSex)[names(externalSex) == externalSexSex] <- "Sex" names(externalSex)[names(externalSex) == externalSexID] <- "IID" sexcheck_fuse <- merge(sexcheck, externalSex, by="IID") sex_mismatch <- apply(dplyr::select(sexcheck_fuse, .data$Sex, .data$PEDSEX, .data$SNPSEX), 1, function(ind) { if (ind[1] == externalFemale && ind[2] %in% c(0, 1)) { return(ifelse(ind[3] == 2, FALSE, TRUE)) } if (ind[1] == externalMale && ind[2] %in% c(0, 2)) { return(ifelse(ind[3] == 1, FALSE, TRUE)) } if (ind[1] == externalFemale && ind[2] == 2) { return(ifelse(ind[3] == 1, TRUE, NA)) } if (ind[1] == externalMale && ind[2] == 1) { return(ifelse(ind[3] == 2, TRUE, NA)) } }) fail_sex <- dplyr::select(sexcheck_fuse, .data$FID, .data$IID, .data$Sex, .data$PEDSEX, .data$SNPSEX, .data$F)[which(sex_mismatch),] if (nrow(fail_sex) == 0) { fail_sex <- NULL mixup_geno_pheno <- NULL } else { mixup_geno_pheno <- dplyr::select(sexcheck_fuse, .data$FID, .data$IID, .data$Sex, .data$PEDSEX, .data$SNPSEX, .data$F)[which(!sex_mismatch),] if (fixMixup) { checkFormat(prefix) path2plink <- checkPlink(path2plink) args_filter <- checkFiltering(keep_individuals, remove_individuals, extract_markers, exclude_markers) if (nrow(mixup_geno_pheno) != 0) { file_mixup <- paste(out, ".mismatched_sex_geno_pheno", sep="") write.table(dplyr::select(mixup_geno_pheno, .data$FID, .data$IID, .data$SNPSEX), file=file_mixup, row.names=FALSE, quote=FALSE, col.names=FALSE) sys::exec_wait(path2plink, args=c("--bfile", prefix, "--update-sex", file_mixup, "--make-bed", "--out", prefix, args_filter), std_out=showPlinkOutput, std_err=showPlinkOutput) } else { if (verbose) { message("All assigned genotype sexes (PEDSEX) match", " external sex assignment (Sex)") } mixup_geno_pheno <- NULL } } else { if (nrow(mixup_geno_pheno) != 0) { fail_sex <- rbind(fail_sex, mixup_geno_pheno) } else { mixup_geno_pheno <- NULL } } } } sexcheck$LABELSEX <- "Unassigned" sexcheck$LABELSEX[sexcheck$PEDSEX == 1] <- "Male" sexcheck$LABELSEX[sexcheck$PEDSEX == 2] <- "Female" colors <- c(" names(colors) <- c("Unassigned", "Male", "Female") sexcheck$shape <- "general" shape_guide <- FALSE if(!is.null(highlight_samples)) { if (!all(highlight_samples %in% sexcheck$IID)) { stop("Not all samples to be highlighted are present in the", "name.fam file") } highlight_type <- match.arg(highlight_type, several.ok = TRUE) if (all(c("text", "label") %in% highlight_type)) { stop("Only one of text or label highlighting possible; either ", "can be combined with shape and color highlighting") } if ("shape" %in% highlight_type) { sexcheck$shape[sexcheck$IID %in% highlight_samples] <- "highlight" shape_guide <- highlight_legend } if ("color" %in% highlight_type && highlight_legend) { sexcheck$LABELSEX[sexcheck$IID %in% highlight_samples] <- "highlight" colors <- c(colors, highlight_color) names(colors)[length(colors)] <- "highlight" } } sexcheck$LABELSEX <- factor(sexcheck$LABELSEX, levels=names(colors)) sexcheck$PEDSEX <- as.factor(sexcheck$PEDSEX) sexcheck$shape <- as.factor(sexcheck$shape) p_sexcheck <- ggplot() p_sexcheck <- p_sexcheck + geom_point(data=sexcheck, aes_string(x='PEDSEX', y='F', color='LABELSEX', shape='shape')) + scale_shape_manual(values=c(16, highlight_shape), guide="none") + scale_color_manual(values=colors, name="Sex") + labs(title="Check assigned sex versus SNP sex", x="Reported Sex (PEDSEX)", y="ChrX heterozygosity") + geom_segment(data=data.frame(x=0.8, xend=1.2, y=maleTh, yend=maleTh), aes_string(x='x', xend='xend', y='y', yend='yend'), lty=2, color=" geom_segment(data=data.frame(x=1.8, xend=2.2, y=femaleTh, yend=femaleTh), lty=2, aes_string(x='x', xend='xend', y='y', yend='yend'), color=" if (!is.null(fail_sex) && label_fail) { p_sexcheck <- p_sexcheck + ggrepel::geom_label_repel( data=dplyr::filter(sexcheck, .data$IID %in% fail_sex$IID), aes_string(x='PEDSEX', y='F', label='IID'), size=highlight_text_size) } if (!is.null(highlight_samples)) { highlight_data <- dplyr::filter(sexcheck, .data$IID %in% highlight_samples) if ("text" %in% highlight_type) { p_sexcheck <- p_sexcheck + ggrepel::geom_text_repel(data=highlight_data, aes_string(x='PEDSEX', y='F', label="IID"), size=highlight_text_size) } if ("label" %in% highlight_type) { p_sexcheck <- p_sexcheck + ggrepel::geom_label_repel(data=highlight_data, aes_string(x='PEDSEX', y='F', label='IID'), size=highlight_text_size) } if ("color" %in% highlight_type && !highlight_legend) { p_sexcheck <- p_sexcheck + geom_point(data=highlight_data, aes_string(x='PEDSEX', y='F', shape='shape'), color=highlight_color) } if ("shape" %in% highlight_type && highlight_legend) { p_sexcheck <- p_sexcheck + guides(shape = "legend") + labs(shape = "Individual") } } p_sexcheck <- p_sexcheck + theme_bw() + theme(legend.text = element_text(size = legend_text_size), legend.title = element_text(size = legend_title_size), title = element_text(size = title_size), axis.text = element_text(size = axis_text_size), axis.title = element_text(size = axis_title_size)) if (interactive) print(p_sexcheck) return(list(fail_sex=fail_sex, mixup=mixup_geno_pheno, p_sexcheck=p_sexcheck, plot_data=sexcheck)) } run_check_heterozygosity <- function(indir, name, qcdir=indir, verbose=FALSE, path2plink=NULL, keep_individuals=NULL, remove_individuals=NULL, exclude_markers=NULL, extract_markers=NULL, showPlinkOutput=TRUE) { prefix <- makepath(indir, name) out <- makepath(qcdir, name) checkFormat(prefix) path2plink <- checkPlink(path2plink) args_filter <- checkFiltering(keep_individuals, remove_individuals, extract_markers, exclude_markers) if (verbose) message("Run check_heterozygosity via plink --het") sys::exec_wait(path2plink, args=c("--bfile", prefix, "--het", "--out", out, args_filter), std_out=showPlinkOutput, std_err=showPlinkOutput) } run_check_missingness <- function(indir, name, qcdir=indir, verbose=FALSE, path2plink=NULL, keep_individuals=NULL, remove_individuals=NULL, exclude_markers=NULL, extract_markers=NULL, showPlinkOutput=TRUE) { prefix <- makepath(indir, name) out <- makepath(qcdir, name) checkFormat(prefix) path2plink <- checkPlink(path2plink) args_filter <- checkFiltering(keep_individuals, remove_individuals, extract_markers, exclude_markers) if (verbose) message("Run check_missingness via plink --missing") sys::exec_wait(path2plink, args=c("--bfile", prefix, "--missing", "--out", out, args_filter), std_out=showPlinkOutput, std_err=showPlinkOutput) } evaluate_check_het_and_miss <- function(qcdir, name, imissTh=0.03, hetTh=3, label_fail=TRUE, highlight_samples = NULL, highlight_type = c("text", "label", "color", "shape"), highlight_text_size = 3, highlight_color = " highlight_shape = 17, legend_text_size = 5, legend_title_size = 7, axis_text_size = 5, axis_title_size = 7, title_size = 9, highlight_legend = FALSE, interactive=FALSE) { prefix <- makepath(qcdir, name) if (!file.exists(paste(prefix, ".imiss",sep=""))){ stop("plink --missing output file: ", prefix, ".imiss does not exist.") } if (!file.exists(paste(prefix, ".het",sep=""))){ stop("plink --het output file: ", prefix, ".het does not exist.") } testNumerics(numbers=c(imissTh, hetTh), positives=c(imissTh, hetTh), proportions=imissTh) names_imiss <- c("FID", "IID", "MISS_PHENO", "N_MISS", "N_GENO", "F_MISS") imiss <- read.table(paste(prefix, ".imiss", sep=""), header=TRUE, as.is=TRUE) if (!all(names_imiss == names(imiss))) { stop("Header of ", prefix, ".imiss is not correct. Was your file generated with plink --imiss?") } fail_imiss <- imiss[imiss$F_MISS > imissTh,] names_het <- c("FID", "IID", "O.HOM.", "E.HOM.", "N.NM.", "F") het <- read.table(paste(prefix, ".het", sep=""), header=TRUE, as.is=TRUE) if (!all(names_het == names(het))) { stop("Header of ", prefix, ".het is not correct. Was your file generated with plink --het?") } fail_het <- het[het$F < (mean(het$F) - hetTh*sd(het$F)) | het$F > (mean(het$F) + hetTh*sd(het$F)),] nr_samples <- nrow(imiss) imiss$logF_MISS <- log10(imiss$F_MISS) het_imiss <- merge(imiss, het, by="IID") fail_het_imiss <- het_imiss[which(het_imiss$IID %in% union(fail_het$IID, fail_imiss$IID)),] if (nrow(fail_het_imiss) == 0) { fail_het_imiss <- NULL } het_imiss$type <- "pass" het_imiss$type[het_imiss$IID %in% fail_het$IID] <- "fail het" het_imiss$type[het_imiss$IID %in% fail_imiss$IID] <- "fail miss" het_imiss$type[het_imiss$IID %in% intersect(fail_het$IID, fail_imiss$IID)] <- "fail het + miss" minus_sd <- mean(het_imiss$F) - 1:5*(sd(het_imiss$F)) plus_sd <- mean(het_imiss$F) + 1:5*(sd(het_imiss$F)) colors <- c(" names(colors) <- c("pass", "fail het", "fail miss", "fail het + miss" ) het_imiss$shape <- "general" shape_guide <- FALSE if(!is.null(highlight_samples)) { if (!all(highlight_samples %in% het_imiss$IID)) { stop("Not all samples to be highlighted are present in the", "prefixMergedDataset") } highlight_type <- match.arg(highlight_type, several.ok = TRUE) if (all(c("text", "label") %in% highlight_type)) { stop("Only one of text or label highlighting possible; either ", "can be combined with shape and color highlighting") } if ("shape" %in% highlight_type) { het_imiss$shape[het_imiss$IID %in% highlight_samples] <- "highlight" shape_guide <- highlight_legend } if ("color" %in% highlight_type && highlight_legend) { het_imiss$type[het_imiss$IID %in% highlight_samples] <- "highlight" colors <- c(colors, highlight_color) names(colors)[length(colors)] <- "highlight" } } het_imiss$type <- factor(het_imiss$type, levels=names(colors)) het_imiss$shape <- as.factor(het_imiss$shape) p_het_imiss <- ggplot() p_het_imiss <- p_het_imiss + geom_point(data=het_imiss, aes_string(x='logF_MISS', y='F', color='type', shape="shape")) + scale_shape_manual(values=c(16, highlight_shape), guide="none") + scale_color_manual(values=colors) + labs(x = "Proportion of missing SNPs", y = "heterozygosity rate (and sd)", color = "Marker", title = "heterozygosity by Missingness across samples") + geom_hline(yintercept=c(minus_sd[1:3], plus_sd[1:3]), lty=2, col="azure4") + scale_y_continuous(labels=c("-5", "-4", "-3" ,"+3", "+4", "+5"), breaks=c(minus_sd[3:5], plus_sd[3:5])) + scale_x_continuous(labels=c(0.0001, 0.001, 0.01, 0.03, 0.05, 0.01, 1), breaks=c(-4,-3,-2, log10(0.03), log10(0.05),-1,0)) + geom_hline(yintercept=mean(het_imiss$F) - (hetTh*sd(het_imiss$F)), col=" geom_hline(yintercept=mean(het_imiss$F) + (hetTh*sd(het_imiss$F)), col=" geom_vline(xintercept=log10(imissTh), col=" if (!is.null(fail_het_imiss) && label_fail) { p_het_imiss <- p_het_imiss + ggrepel::geom_label_repel( data=data.frame(x=fail_het_imiss$logF_MISS, y=fail_het_imiss$F, label=fail_het_imiss$IID), aes_string(x='x', y='y', label='label'), size=highlight_text_size) } highlight_data <- dplyr::filter(het_imiss, .data$IID %in% highlight_samples) if (!is.null(highlight_samples)) { if ("text" %in% highlight_type) { p_het_imiss <- p_het_imiss + ggrepel::geom_text_repel(data=highlight_data, aes_string(x='logF_MISS', y='F', label="IID"), size=highlight_text_size) } if ("label" %in% highlight_type) { p_het_imiss <- p_het_imiss + ggrepel::geom_label_repel(data=highlight_data, aes_string(x='logF_MISS', y='F', label="IID"), size=highlight_text_size) } if ("color" %in% highlight_type && !highlight_legend) { p_het_imiss <- p_het_imiss + geom_point(data=highlight_data, aes_string(x='logF_MISS', y='F', shape='shape'), color=highlight_color, show.legend=highlight_legend) } if ("shape" %in% highlight_type && highlight_legend) { p_het_imiss <- p_het_imiss + guides(shape = "legend") } } p_het_imiss <- p_het_imiss + theme_bw() + theme(legend.text = element_text(size = legend_text_size), legend.title = element_text(size = legend_title_size), axis.text = element_text(size = axis_text_size), title = element_text(size = title_size), axis.title = element_text(size = axis_title_size)) if (interactive) print(p_het_imiss) return(list(fail_imiss=fail_imiss, fail_het=fail_het, p_het_imiss=p_het_imiss, plot_data = het_imiss)) } run_check_relatedness <- function(indir, name, qcdir=indir, highIBDTh=0.185, mafThRelatedness=0.1, path2plink=NULL, filter_high_ldregion=TRUE, high_ldregion_file=NULL, genomebuild='hg19', showPlinkOutput=TRUE, keep_individuals=NULL, remove_individuals=NULL, exclude_markers=NULL, extract_markers=NULL, verbose=FALSE) { prefix <- makepath(indir, name) out <- makepath(qcdir, name) checkFormat(prefix) path2plink <- checkPlink(path2plink) args_filter <- checkFiltering(keep_individuals, remove_individuals, extract_markers, exclude_markers) if (filter_high_ldregion) { if (!is.null(high_ldregion_file)) { if (!file.exists(high_ldregion_file)) { stop("high_ldregion_file (", high_ldregion_file , ") cannot be read") } highld <- data.table::fread(high_ldregion_file, sep=" ", header=FALSE, data.table=FALSE) if(ncol(highld) != 4) { stop("high_ldregion_file (", high_ldregion_file , ") is incorrectly formated: ", "contains more/less than 4 columns") } if(any(grepl("chr", highld[,1]))) { stop("high_ldregion_file (", high_ldregion_file , ") is incorrectly formated: ", "chromosome specification in first column", "cannot contain 'chr'") } if (verbose) message(paste("Using", high_ldregion_file, "coordinates for pruning of", "high-ld regions")) } else { if (tolower(genomebuild) == 'hg18' || tolower(genomebuild) == 'NCBI36') { high_ldregion_file <- system.file("extdata", 'high-LD-regions-hg18-NCBI36.txt', package="plinkQC") } else if (tolower(genomebuild) == 'hg19' || tolower(genomebuild) == 'grch37') { high_ldregion_file <- system.file("extdata", 'high-LD-regions-hg19-GRCh37.txt', package="plinkQC") } else if (tolower(genomebuild) == 'hg38' || tolower(genomebuild) == 'grch38') { high_ldregion_file <- system.file("extdata", 'high-LD-regions-hg38-GRCh38.txt', package="plinkQC") } else { stop(genomebuild, "is not a known/provided human genome build.", "Options are: hg18, hg19, and hg38") } if (verbose) message(paste("Use", genomebuild, "coordinates for pruning of", "high-ld regions")) } if (verbose) message(paste("Prune", prefix, "for relatedness estimation")) sys::exec_wait(path2plink, args=c("--bfile", prefix, "--exclude", "range", high_ldregion_file, "--indep-pairwise", 50, 5, 0.2, "--out", out, args_filter), std_out=showPlinkOutput, std_err=showPlinkOutput) } else { if (verbose) message("No pruning of high-ld regions") if (verbose) message(paste("Prune", prefix, "for relatedness estimation")) sys::exec_wait(path2plink, args=c("--bfile", prefix, "--indep-pairwise", 50, 5, 0.2, "--out", out, args_filter), std_out=showPlinkOutput, std_err=showPlinkOutput) } if (verbose) message("Run check_relatedness via plink --genome") if (!is.null(mafThRelatedness)) { maf <- c("--maf", mafThRelatedness) } else { maf <- NULL } sys::exec_wait(path2plink, args=c("--bfile", prefix, "--extract", paste(out, ".prune.in", sep=""), maf, "--genome", "--out", out, args_filter), std_out=showPlinkOutput, std_err=showPlinkOutput) if (!file.exists(paste(prefix, ".imiss", sep=""))) { sys::exec_wait(path2plink, args=c("--bfile", prefix, "--missing", "--out", out, args_filter ), std_out=showPlinkOutput, std_err=showPlinkOutput) } } evaluate_check_relatedness <- function(qcdir, name, highIBDTh=0.1875, imissTh=0.03, interactive=FALSE, legend_text_size = 5, legend_title_size = 7, axis_text_size = 5, axis_title_size = 7, title_size = 9, verbose=FALSE) { prefix <- makepath(qcdir, name) if (!file.exists(paste(prefix, ".imiss", sep=""))){ stop("plink --missing output file: ", prefix, ".imiss does not exist.") } if (!file.exists(paste(prefix, ".genome",sep=""))){ stop("plink --genome output file: ", prefix, ".genome does not exist.") } testNumerics(numbers=highIBDTh, positives=highIBDTh, proportions=highIBDTh) names_imiss <- c("FID", "IID", "MISS_PHENO", "N_MISS", "N_GENO", "F_MISS") imiss <- read.table(paste(prefix, ".imiss", sep=""), header=TRUE, as.is=TRUE, stringsAsFactors=FALSE) if (!all(names_imiss == names(imiss))) { stop("Header of ", prefix, ".imiss is not correct. Was your file generated with plink --imiss?") } names_genome <- c("FID1", "IID1", "FID2", "IID2", "RT", "EZ", "Z0", "Z1", "Z2", "PI_HAT", "PHE", "DST", "PPC", "RATIO") genome <- read.table(paste(prefix, ".genome", sep=""), header=TRUE, as.is=TRUE, stringsAsFactors=FALSE) if (!all(names_genome == names(genome))) { stop("Header of ", prefix, ".genome is not correct. Was your file generated with plink --genome?") } fail_highIBD <- relatednessFilter(relatedness=genome, otherCriterion=imiss, relatednessTh=highIBDTh, relatednessFID1="FID1", relatednessFID2="FID2", otherCriterionTh=imissTh, otherCriterionThDirection="gt", otherCriterionMeasure="F_MISS" ) genome$PI_HAT_bin <- ifelse(genome$PI_HAT > 0.05, 0, 1) p_allPI_HAT <- ggplot(genome, aes_string('PI_HAT')) p_allPI_HAT <- p_allPI_HAT + geom_histogram(binwidth = 0.005, fill=" ylab("Number of pairs") + xlab("Estimated pairwise IBD (PI_HAT)") + ggtitle("IBD for all sample pairs") + geom_vline(xintercept=highIBDTh, lty=2, col=" theme_bw() + theme(legend.text = element_text(size = legend_text_size), legend.title = element_text(size = legend_title_size), title = element_text(size = legend_text_size), axis.text = element_text(size = axis_text_size), axis.title = element_text(size = axis_title_size)) p_highPI_HAT <- ggplot(dplyr::filter(genome, .data$PI_HAT_bin == 0), aes_string('PI_HAT')) p_highPI_HAT <- p_highPI_HAT + geom_histogram(binwidth = 0.005, fill=" ylab("Number of pairs") + xlab("Estimated pairwise IBD (PI_HAT)") + ggtitle("IBD for sample pairs with PI_HAT >0.1") + geom_vline(xintercept=highIBDTh, lty=2, col=" theme_bw() + theme(legend.text = element_text(size = legend_text_size), legend.title = element_text(size = legend_title_size), title = element_text(size = legend_text_size), axis.text = element_text(size = axis_text_size), axis.title = element_text(size = axis_title_size)) p_histo <- cowplot::plot_grid(p_allPI_HAT, p_highPI_HAT) title <- cowplot::ggdraw() + cowplot::draw_label("Relatedness estimated as pairwise IBD (PI_HAT)", size=title_size) p_IBD <- cowplot::plot_grid(title, p_histo, ncol = 1, rel_heights = c(0.1, 1)) if (interactive) print(p_IBD) return(list(fail_highIBD=fail_highIBD$relatednessFails, failIDs=fail_highIBD$failIDs, p_IBD=p_IBD, plot_data = genome)) } run_check_ancestry <- function(indir, prefixMergedDataset, qcdir=indir, verbose=FALSE, path2plink=NULL, keep_individuals=NULL, remove_individuals=NULL, exclude_markers=NULL, extract_markers=NULL, showPlinkOutput=TRUE) { prefix <- makepath(indir, prefixMergedDataset) out <- makepath(qcdir, prefixMergedDataset) checkFormat(prefix) path2plink <- checkPlink(path2plink) args_filter <- checkFiltering(keep_individuals, remove_individuals, extract_markers, exclude_markers) if (verbose) message("Run check_ancestry via plink --pca") sys::exec_wait(path2plink, args=c("--bfile", prefix, "--pca", "--out", out, args_filter), std_out=showPlinkOutput, std_err=showPlinkOutput) } evaluate_check_ancestry <- function(indir, name, prefixMergedDataset, qcdir=indir, europeanTh=1.5, defaultRefSamples = c("HapMap","1000Genomes"), refSamples=NULL, refColors=NULL, refSamplesFile=NULL, refColorsFile=NULL, refSamplesIID="IID", refSamplesPop="Pop", refColorsColor="Color", refColorsPop="Pop", studyColor=" refPopulation=c("CEU", "TSI"), legend_labels_per_row=6, legend_text_size = 5, legend_title_size = 7, axis_text_size = 5, axis_title_size = 7, title_size = 9, highlight_samples = NULL, highlight_type = c("text", "label", "color", "shape"), highlight_text_size = 3, highlight_color = " highlight_shape = 17, highlight_legend = FALSE, interactive=FALSE, verbose=FALSE) { prefix <- makepath(indir, name) out <- makepath(qcdir, prefixMergedDataset) if (!file.exists(paste(prefix, ".fam", sep=""))){ stop("plink family file: ", prefix, ".fam does not exist.") } samples <- data.table::fread(paste(prefix, ".fam", sep=""), header=FALSE, stringsAsFactors=FALSE, data.table=FALSE)[,1:2] colnames(samples) <- c("FID", "IID") if (!file.exists(paste(out, ".eigenvec", sep=""))){ stop("plink --pca output file: ", out, ".eigenvec does not exist.") } testNumerics(numbers=c(europeanTh, legend_labels_per_row), positives=c(europeanTh, legend_labels_per_row)) pca_data <- data.table::fread(paste(out, ".eigenvec", sep=""), stringsAsFactors=FALSE, data.table=FALSE) colnames(pca_data) <- c("FID", "IID", paste("PC",1:(ncol(pca_data)-2), sep="")) if (!any(samples$IID %in% pca_data$IID)) { stop("There are no ", prefix, ".fam samples in the prefixMergedDataset") } if (!all(samples$IID %in% pca_data$IID)) { stop("Not all ", prefix, ".fam samples are present in the", "prefixMergedDataset") } if (is.null(refSamples) && is.null(refSamplesFile)) { if (any(!defaultRefSamples %in% c("1000Genomes", "HapMap"))){ stop("defaultRefSamples should be one of 'HapMap' or '1000Genomes'", " but ", defaultRefSamples," provided") } defaultRefSamples <- match.arg(defaultRefSamples) if (defaultRefSamples == "HapMap") { refSamplesFile <- system.file("extdata", "HapMap_ID2Pop.txt", package="plinkQC") if(is.null(refColorsFile) && is.null(refColors)) { refColorsFile <- system.file("extdata", "HapMap_PopColors.txt", package="plinkQC") } } else { refSamplesFile <- system.file("extdata", "Genomes1000_ID2Pop.txt", package="plinkQC") if(is.null(refColorsFile) && is.null(refColors)) { refColorsFile <- system.file("extdata", "Genomes1000_PopColors.txt", package="plinkQC") } } if (verbose) { message("Using ", defaultRefSamples, " as reference samples.") } } if (!is.null(refSamplesFile) && !file.exists(refSamplesFile)) { stop("refSamplesFile file", refSamplesFile, "does not exist.") } if (!is.null(refSamplesFile)) { refSamples <- read.table(refSamplesFile, header=TRUE, stringsAsFactors=FALSE) } if (!(refSamplesIID %in% names(refSamples))) { stop(paste("Column", refSamplesIID, "not found in refSamples.")) } if (!(refSamplesPop %in% names(refSamples))) { stop(paste("Column", refSamplesPop, "not found in refSamples.")) } names(refSamples)[names(refSamples) == refSamplesIID] <- "IID" names(refSamples)[names(refSamples) == refSamplesPop] <- "Pop" refSamples <- dplyr::select(refSamples, .data$IID, .data$Pop) refSamples$IID <- as.character(refSamples$IID) refSamples$Pop <- as.character(refSamples$Pop) if (!is.null(refColorsFile) && !file.exists(refColorsFile)) { stop("refColorsFile file", refColorsFile, "does not exist.") } if (!is.null(refColorsFile)) { refColors <- read.table(refColorsFile, header=TRUE, stringsAsFactors=FALSE) } if (!is.null(refColors)) { if (!(refColorsColor %in% names(refColors))) { stop(paste("Column", refColorsColor, "not found in refColors.")) } if (!(refColorsPop %in% names(refColors))) { stop(paste("Column", refColorsPop, "not found in refColors.")) } names(refColors)[names(refColors) == refColorsColor] <- "Color" names(refColors)[names(refColors) == refColorsPop] <- "Pop" refColors <- dplyr::select(refColors, .data$Pop, .data$Color) refColors$Color <- as.character(refColors$Color) refColors$Pop <- as.character(refColors$Pop) } else { refColors <- data.frame(Pop=unique(as.character(refSamples$Pop)), stringsAsFactors=FALSE) refColors$Color <- 1:nrow(refColors) } if (!all(refSamples$Pop %in% refColors$Pop)) { missing <- refSamples$Pop[!refSamples$Pop %in% refColors$Pop] stop("Not all refSamples populations found in population code of refColors; missing population codes: ", paste(missing, collapse=",")) } if (!all(refPopulation %in% refColors$Pop)) { missing <- refPopulation[!refPopulation %in% refColors$Pop] stop("Not all refPopulation populations found in population code of refColors; missing population codes: ", paste(missing, collapse=",")) } refSamples <- merge(refSamples, refColors, by="Pop", all.X=TRUE) data_all <- merge(pca_data, refSamples, by="IID", all.x=TRUE) data_all$Pop[data_all$IID %in% samples$IID] <- name data_all$Color[data_all$IID %in% samples$IID] <- studyColor if (any(is.na(data_all))) { stop("There are samples in the prefixMergedDataset that cannot be found in refSamples or ", prefix, ".fam") } colors <- dplyr::select(data_all, .data$Pop, .data$Color) colors <- colors[!duplicated(colors$Pop),] colors <- colors[order(colors$Color),] all_european <- dplyr::filter(data_all, .data$Pop %in% refPopulation) euro_pc1_mean <- mean(all_european$PC1) euro_pc2_mean <- mean(all_european$PC2) all_european$euclid_dist <- sqrt((all_european$PC1 - euro_pc1_mean)^2 + (all_european$PC2 - euro_pc2_mean)^2) max_euclid_dist <- max(all_european$euclid_dist) data_name <- dplyr::filter(data_all, .data$Pop == name) data_name$euclid_dist <- sqrt((data_name$PC1 - euro_pc1_mean)^2 + (data_name$PC2 - euro_pc2_mean)^2) non_europeans <- dplyr::filter(data_name, .data$euclid_dist > (max_euclid_dist * europeanTh)) fail_ancestry <- dplyr::select(non_europeans, .data$FID, .data$IID) legend_rows <- round(nrow(colors)/legend_labels_per_row) data_all$shape <- "general" shape_guide <- FALSE if(!is.null(highlight_samples)) { if (!all(highlight_samples %in% pca_data$IID)) { stop("Not all samples to be highlighted are present in the", "prefixMergedDataset") } highlight_type <- match.arg(highlight_type, several.ok = TRUE) if (all(c("text", "label") %in% highlight_type)) { stop("Only one of text or label highlighting possible; either ", "can be combined with shape and color highlighting") } if ("shape" %in% highlight_type) { data_all$shape[data_all$IID %in% highlight_samples] <- "highlight" shape_guide <- highlight_legend } if ("color" %in% highlight_type && highlight_legend) { data_all$Pop[data_all$IID %in% highlight_samples] <- "highlight" colors <- rbind(colors, c("highlight", highlight_color)) } } colors$Pop <- factor(colors$Pop, levels=unique(colors$Pop)) data_all$Pop <- factor(data_all$Pop, levels=levels(colors$Pop)) p_ancestry <- ggplot() p_ancestry <- p_ancestry + geom_point(data=data_all, aes_string(x='PC1', y='PC2', color='Pop', shape="shape")) + geom_point(data=dplyr::filter(data_all, .data$Pop != name), aes_string(x='PC1', y='PC2', color='Pop', shape="shape"), size=1) + scale_color_manual(values=colors$Color, name="Population") + scale_shape_manual(values=c(16, highlight_shape), guide="none") + guides(color=guide_legend(nrow=legend_rows, byrow=TRUE)) + ggforce::geom_circle(aes(x0=euro_pc1_mean, y0=euro_pc2_mean, r=(max_euclid_dist * europeanTh))) + ggtitle("PCA on combined reference and study genotypes") + theme_bw() + theme(legend.position='bottom', legend.direction = 'vertical', legend.box = "vertical", legend.text = element_text(size = legend_text_size), legend.title = element_text(size = legend_title_size), title = element_text(size = title_size), axis.text = element_text(size = axis_text_size), axis.title = element_text(size = axis_title_size)) if (!is.null(highlight_samples)) { highlight_data <- dplyr::filter(data_all, .data$IID %in% highlight_samples) if ("text" %in% highlight_type) { p_ancestry <- p_ancestry + ggrepel::geom_text_repel(data=highlight_data, aes_string(x='PC1', y='PC2', label="IID"), size=highlight_text_size) } if ("label" %in% highlight_type) { p_ancestry <- p_ancestry + ggrepel::geom_label_repel(data=highlight_data, aes_string(x='PC1', y='PC2', label="IID"), size=highlight_text_size) } if ("color" %in% highlight_type && !highlight_legend) { p_ancestry <- p_ancestry + geom_point(data=highlight_data, aes_string(x='PC1', y='PC2', shape='shape'), color=highlight_color, show.legend=highlight_legend) } if ("shape" %in% highlight_type && highlight_legend) { p_ancestry <- p_ancestry + labs(shape = "Individual") + guides(shape = "legend") } } if (interactive) print(p_ancestry) return(list(fail_ancestry=fail_ancestry, p_ancestry=p_ancestry, plot_data=data_all)) }
test_that("known corner cases are correct", { truth <- factor("a", levels = c("a", "b")) estimate <- .9 df <- data.frame(truth, estimate) expect_equal( average_precision(df, truth, estimate)$.estimate, 1 ) expect_equal( average_precision(df, truth, estimate)$.estimate, pr_auc(df, truth, estimate)$.estimate ) truth <- factor("b", levels = c("a", "b")) estimate <- .9 df <- data.frame(truth, estimate) expect_snapshot(out <- average_precision(df, truth, estimate)$.estimate) expect_identical(out, NA_real_) expect_snapshot(out <- average_precision(df, truth, estimate)$.estimate) expect_snapshot(expect <- pr_auc(df, truth, estimate)$.estimate) expect_identical(out, expect) }) test_that("`event_level = 'second'` works", { df <- two_class_example df_rev <- df df_rev$truth <- relevel(df_rev$truth, "Class2") expect_equal( average_precision_vec(df$truth, df$Class1), average_precision_vec(df_rev$truth, df_rev$Class1, event_level = "second") ) })
context("5-parameter logistic - core functions") test_that("Constructor", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) n <- length(y) w <- rep(1, n) max_iter <- 10000 stats <- matrix( c( -6.908, -4.605, -2.303, 0, 2.303, 4.605, 6.908, 3, 2, 2, 5, 3, 4, 1, 0.932, 0.902, 0.89, 0.5542, 0.2556666667, 0.16425, 0.092, 0.0014186667, 0.002116, 0.000049, 0.00160656, 0.0000862222, 0.0014676875, 0 ), nrow = 7, ncol = 4 ) colnames(stats) <- c("x", "n", "m", "v") start <- c(0, 1, -1, 0, 1) lower_bound <- c(0, -1, -Inf, -10, 0) upper_bound <- c(3, 2, 0, 5, 2) object <- logistic5_new(x, y, w, NULL, max_iter, NULL, NULL) expect_true(inherits(object, "logistic5")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, 7) expect_equal(object$stats, stats) expect_false(object$constrained) expect_equal(object$max_iter, max_iter) expect_null(object$start) expect_null(object$lower_bound) expect_null(object$upper_bound) object <- logistic5_new(x, y, w, start, max_iter, lower_bound, upper_bound) expect_true(inherits(object, "logistic5")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, 7) expect_equal(object$stats, stats) expect_true(object$constrained) expect_equal(object$max_iter, max_iter) expect_equal(object$start, c(0, 1, -1, 0, 0)) expect_equal(object$lower_bound, c(0, 0, -Inf, -10, -Inf)) expect_equal(object$upper_bound, c(2, 2, 0, 5, log(2))) w <- c( 1.46, 1.385, 1.704, 0.96, 0, 0.055, 1.071, 0.134, 1.825, 0, 1.169, 0.628, 0.327, 1.201, 0.269, 0, 1.294, 0.038, 1.278, 0.157 ) stats <- matrix( c( -6.908, -4.605, -2.303, 0.0, 2.303, 4.605, 6.908, 4.549, 0.96, 1.126, 3.756, 1.797, 2.61, 0.157, 0.9353000659, 0.948, 0.8836838366, 0.55221459, 0.2606149137, 0.1807233716, 0.092, 0.0014467345, 0, 0.0000091061, 0.0007707846, 0.0000597738, 0.0014230308, 0 ), nrow = 7, ncol = 4 ) colnames(stats) <- c("x", "n", "m", "v") object <- logistic5_new(x, y, w, NULL, max_iter, NULL, NULL) expect_true(inherits(object, "logistic5")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, 7) expect_equal(object$stats, stats) expect_false(object$constrained) expect_equal(object$max_iter, max_iter) expect_null(object$start) expect_null(object$lower_bound) expect_null(object$upper_bound) object <- logistic5_new(x, y, w, start, max_iter, lower_bound, upper_bound) expect_true(inherits(object, "logistic5")) expect_equal(object$x, x) expect_equal(object$y, y) expect_equal(object$w, w) expect_equal(object$n, n) expect_equal(object$m, 7) expect_equal(object$stats, stats) expect_true(object$constrained) expect_equal(object$max_iter, max_iter) expect_equal(object$start, c(0, 1, -1, 0, 0)) expect_equal(object$lower_bound, c(0, 0, -Inf, -10, -Inf)) expect_equal(object$upper_bound, c(2, 2, 0, 5, log(2))) }) test_that("Constructor: errors", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) w <- c( 1.46, 1.385, 1.704, 0.96, 0, 0.055, 1.071, 0.134, 1.825, 0, 1.169, 0.628, 0.327, 1.201, 0.269, 0, 1.294, 0.038, 1.278, 0.157 ) max_iter <- 10000 expect_error( logistic5_new(x, y, w, c(0, 1, -1, 0), max_iter, NULL, NULL), "'start' must be of length 5" ) expect_error( logistic5_new(x, y, w, c(0, -1, -1, 0, 1), max_iter, NULL, NULL), "parameter 'beta' cannot be smaller than 'alpha'" ) expect_error( logistic5_new(x, y, w, c(0, 0, -1, 0, 1), max_iter, NULL, NULL), "parameter 'beta' cannot be smaller than 'alpha'" ) expect_error( logistic5_new(x, y, w, c(0, 1, 0, 0, 1), max_iter, NULL, NULL), "parameter 'eta' cannot be initialized to zero" ) expect_error( logistic5_new(x, y, w, c(0, 1, -1, 0, 0), max_iter, NULL, NULL), "parameter 'nu' cannot be negative nor zero" ) expect_error( logistic5_new(x, y, w, c(0, 1, -1, 0, -1), max_iter, NULL, NULL), "parameter 'nu' cannot be negative nor zero" ) expect_error( logistic5_new(x, y, w, NULL, max_iter, rep(-Inf, 4), rep(Inf, 4)), "'lower_bound' must be of length 5" ) expect_error( logistic5_new(x, y, w, NULL, max_iter, rep(-Inf, 4), rep(Inf, 5)), "'lower_bound' must be of length 5" ) expect_error( logistic5_new(x, y, w, NULL, max_iter, rep(-Inf, 5), rep(Inf, 4)), "'upper_bound' must be of length 5" ) expect_error( logistic5_new(x, y, w, NULL, max_iter, rep(-Inf, 5), c(1, rep(Inf, 3), 0)), "'upper_bound[5]' cannot be negative nor zero", fixed = TRUE ) expect_error( logistic5_new(x, y, w, NULL, max_iter, rep(-Inf, 5), c(1, rep(Inf, 3), -1)), "'upper_bound[5]' cannot be negative nor zero", fixed = TRUE ) }) test_that("Function value", { x <- -log(c(1000, 100, 10, 1, 0.1, 0.01)) theta <- c(4 / 100, 9 / 10, -2, -3 / 2, 1 / 2) true_value <- c( 0.89998272669845415, 0.89827524246036657, 0.75019144346736942, 0.047052490645792413, 0.040000850995162837, 0.040000000085267377 ) value <- logistic5_fn(x, theta) expect_type(value, "double") expect_length(value, 6) expect_equal(value, true_value) object <- structure( list(stats = matrix(x, nrow = 6, ncol = 1)), class = "logistic5" ) value <- fn(object, object$stats[, 1], theta) expect_type(value, "double") expect_length(value, 6) expect_equal(value, true_value) object <- structure( list(stats = matrix(x, nrow = 6, ncol = 1)), class = "logistic5_fit" ) value <- fn(object, object$stats[, 1], theta) expect_type(value, "double") expect_length(value, 6) expect_equal(value, true_value) }) test_that("Gradient and Hessian", { x <- -log(c(1000, 100, 10, 1, 0.1, 0.01)) theta <- c(4 / 100, 9 / 10, -2, -3 / 2, 1 / 2) true_gradient <- matrix( c( 0.000020085234355644039, 0.0020055320228295701, 0.17419599596817509, 0.99179942948163673, 0.99999901047074089, 0.99999999990085189, 0.99997991476564436, 0.99799446797717043, 0.82580400403182491, 0.0082005705183632714, 9.8952925911240417e-07, 9.9148112539280778e-11, -0.000093408380497224582, -0.0053476072761497761, -0.10403715378083063, 0.019241514719677547, 6.4655250500714644e-06, 1.0411333261602936e-09, 0.000034546082682501184, 0.0034443247589330582, 0.25925513615688965, 0.025655352959570063, 3.4005945386908866e-06, 3.4106611099876862e-10, 8.6734287058557399e-11, 8.6447455933317324e-7, 0.0063015237621949961, 0.021049325905316226, 0.000010065592915696157, 1.7935503452654302e-09 ), nrow = 6, ncol = 5 ) true_hessian <- array( c( rep(0, 6), rep(0, 6), 0.00010861439592700533, 0.0062181479955229955, 0.12097343462887282, -0.022373854325206450, -7.5180523838040284e-06, -1.2106201466980158e-09, -0.000040169863584303702, -0.0040050287894570444, -0.30145946064754610, -0.029831805766941934, -3.9541796961521937e-06, -3.9658850116135887e-10, -1.0085382216111325e-10, -1.0052029759688061e-06, -0.0073273532118546466, -0.024475960355018867, -0.000011704177808949019, -2.0855236572853840e-09, rep(0, 6), rep(0, 6), -0.00010861439592700533, -0.0062181479955229955, -0.12097343462887282, 0.022373854325206450, 7.5180523838040284e-06, 1.2106201466980158e-09, 0.000040169863584303702, 0.0040050287894570444, 0.30145946064754610, 0.029831805766941934, 3.9541796961521937e-06, 3.9658850116135887e-10, 1.0085382216111325e-10, 1.0052029759688061e-06, 0.0073273532118546466, 0.024475960355018867, 0.000011704177808949019, 2.0855236572853840e-09, 0.00010861439592700533, 0.0062181479955229955, 0.12097343462887282, -0.022373854325206450, -7.5180523838040284e-06, -1.2106201466980158e-09, -0.00010861439592700533, -0.0062181479955229955, -0.12097343462887282, 0.022373854325206450, 7.5180523838040284e-06, 1.2106201466980158e-09, -0.00050511444418713689, -0.016555252126485643, -0.060637799043344759, 0.049883501712141417, 0.000049098048382061985, 1.2712402410105175e-08, 0.00016953809123729721, 0.0089408616320290739, 0.021478649997785072, 0.053683659136403524, 0.000024123213411596926, 3.9939380477898473e-09, 9.3805989611171948e-10, 5.3597039009804577e-06, 0.0085715606355158565, 0.039930425361417561, 0.000070015304961175913, 2.0858519166902048e-08, -0.000040169863584303702, -0.0040050287894570444, -0.30145946064754610, -0.029831805766941934, -3.9541796961521937e-06, -3.9658850116135887e-10, 0.000040169863584303702, 0.0040050287894570444, 0.30145946064754610, 0.029831805766941934, 3.9541796961521937e-06, 3.9658850116135887e-10, 0.00016953809123729721, 0.0089408616320290739, 0.021478649997785072, 0.053683659136403524, 0.000024123213411596926, 3.9939380477898473e-09, -0.000069090083756049672, -0.0068679160064153061, -0.37654877818008748, 0.088681780821584741, 0.000013582081688859556, 1.3642440673798294e-09, -3.4693134127485286e-10, -3.4521160387059138e-06, -0.021359879993633144, 0.053240567148556747, 0.000036825108839864453, 6.8330672303858801e-09, -1.0085382216111325e-10, -1.0052029759688061e-06, -0.0073273532118546466, -0.024475960355018867, -0.000011704177808949019, -2.0855236572853840e-09, 1.0085382216111325e-10, 1.0052029759688061e-06, 0.0073273532118546466, 0.024475960355018867, 0.000011704177808949019, 2.0855236572853840e-09, 9.3805989611171948e-10, 5.3597039009804577e-06, 0.0085715606355158565, 0.039930425361417561, 0.000070015304961175913, 2.0858519166902048e-08, -3.4693134127485286e-10, -3.4521160387059138e-06, -0.021359879993633144, 0.053240567148556747, 0.000036825108839864453, 6.8330672303858801e-09, 8.6733125674846536e-11, 8.6331893228632990e-07, 0.0055845141256710526, 0.053441912635589904, 0.00011068910773858665, 3.6103283407515775e-08 ), dim = c(6, 5, 5) ) object <- structure( list(stats = matrix(x, nrow = 6, ncol = 1)), class = "logistic5" ) gradient_hessian <- gradient_hessian(object, theta) expect_type(gradient_hessian, "list") expect_type(gradient_hessian$G, "double") expect_type(gradient_hessian$H, "double") expect_length(gradient_hessian$G, 6 * 5) expect_length(gradient_hessian$H, 6 * 5 * 5) expect_equal(gradient_hessian$G, true_gradient) expect_equal(gradient_hessian$H, true_hessian) }) context("5-parameter logistic - RSS functions") test_that("Value of the RSS", { x <- -log(c(1000, 100, 10, 1, 0.1)) n <- c(3, 3, 2, 4, 3) m <- c(376 / 375, 3091 / 3750, 8989 / 10000, 1447 / 10000, 11 / 120) v <- c( 643663 / 450000000, 31087 / 112500000, 961 / 160000, 177363 / 25000000, 560629 / 112500000 ) theta <- c(4 / 100, 9 / 10, -2, -3 / 2, -log(2)) true_value <- 0.13844046588658472 object <- structure( list(stats = cbind(x, n, m, v), m = 5), class = "logistic5" ) rss_fn <- rss(object) expect_type(rss_fn, "closure") value <- rss_fn(theta) expect_type(value, "double") expect_length(value, 1) expect_equal(value, true_value) known_param <- c(4 / 100, NA, NA, -3 / 2, -log(2)) rss_fn <- rss_fixed(object, known_param) expect_type(rss_fn, "closure") value <- rss_fn(c(9 / 10, -2)) expect_type(value, "double") expect_length(value, 1) expect_equal(value, true_value) }) test_that("Gradient and Hessian of the RSS", { x <- -log(c(1000, 100, 10, 1, 0.1)) n <- c(3, 3, 2, 4, 3) m <- c(376 / 375, 3091 / 3750, 8989 / 10000, 1447 / 10000, 11 / 120) v <- c( 643663 / 450000000, 31087 / 112500000, 961 / 160000, 177363 / 25000000, 560629 / 112500000 ) theta <- c(4 / 100, 9 / 10, -2, -3 / 2, -log(2)) true_gradient <- c( -0.59375404772645021, -0.33527664229369063, 0.022267352061200450, -0.086374079772717690, -0.010097206230551137 ) true_hessian <- matrix( c( 6.9953590538168059, 0.32630453922986950, 0.014184128740313277, 0.29256817446506200, 0.097473377538659030, 0.32630453922986950, 7.3520318677234551, -0.16159602781805513, 0.33901032399546030, -0.00064023593037618698, 0.014184128740313277, -0.16159602781805513, 0.018237239090142242, -0.077452292586773564, -0.017846532854813774, 0.29256817446506200, 0.33901032399546030, -0.077452292586773564, 0.21294298805991181, -0.0090213900412146364, 0.097473377538659030, -0.00064023593037618698, -0.017846532854813774, -0.0090213900412146364, -0.020700058407993170 ), nrow = 5, ncol = 5 ) object <- structure( list(stats = cbind(x, n, m, v), m = 5), class = "logistic5" ) rss_gh <- rss_gradient_hessian(object) expect_type(rss_gh, "closure") gradient_hessian <- rss_gh(theta) expect_type(gradient_hessian$G, "double") expect_type(gradient_hessian$H, "double") expect_length(gradient_hessian$G, 5) expect_length(gradient_hessian$H, 5 * 5) expect_equal(gradient_hessian$G, true_gradient) expect_equal(gradient_hessian$H, true_hessian) known_param <- c(4 / 100, NA, NA, -3 / 2, -log(2)) rss_gh <- rss_gradient_hessian_fixed(object, known_param) expect_type(rss_gh, "closure") gradient_hessian <- rss_gh(c(9 / 10, -2)) expect_type(gradient_hessian$G, "double") expect_type(gradient_hessian$H, "double") expect_length(gradient_hessian$G, 2) expect_length(gradient_hessian$H, 2 * 2) expect_equal(gradient_hessian$G, true_gradient[2:3]) expect_equal(gradient_hessian$H, true_hessian[2:3, 2:3]) }) context("5-parameter logistic - support functions") test_that("mle_asy", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) n <- length(y) w <- rep(1, n) theta <- c( 0, 1, -1.7617462932355768, -0.47836972294568214, 1.3765334489390748 ) true_value <- c( 0.093212121358460102, 0.92029387542791528, -1.7617462932355768, -0.47836972294568214, 1.3765334489390748 ) object <- logistic5_new(x, y, w, NULL, 10000, NULL, NULL) result <- mle_asy(object, theta) expect_type(result, "double") expect_length(result, 5) expect_equal(result, true_value) }) context("5-parameter logistic - fit") test_that("fit", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) n <- length(y) w <- rep(1, n) estimated <- c(alpha = TRUE, beta = TRUE, eta = TRUE, phi = TRUE, nu = TRUE) theta <- c( alpha = 0.093212121358460102, beta = 0.92029387542791528, eta = -1.7617462932355768, phi = -0.47836972294568214, nu = 3.96114628361664067 ) rss_value <- 0.024883087882351184 fitted_values <- c( rep(0.9202839186685335, 3), rep(0.9197191693822362, 2), rep(0.8900274208207810, 2), rep(0.5533792934125556, 5), rep(0.26271803120343568, 3), rep(0.15412982230606348, 4), 0.11508521369102612 ) residuals <- c( 0.0077160813314665, -0.0322839186685335, 0.0597160813314665, 0.0282808306177638, -0.0637191693822362, 0.0069725791792190, -0.0070274208207810, -0.0653792934125556, -0.0213792934125556, 0.0326207065874444, 0.0126207065874444, 0.0456207065874444, -0.00371803120343568, 0.00228196879656432, -0.01971803120343568, -0.03712982230606348, -0.01112982230606348, 0.02387017769393652, 0.06487017769393652, -0.02308521369102612 ) object <- logistic5_new(x, y, w, NULL, 10000, NULL, NULL) result <- fit(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 5) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new(x, y, w, c(0, 1, -1, 0, 1), 10000, NULL, NULL) result <- fit(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 5) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) }) test_that("fit_constrained: inequalities", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) n <- length(y) w <- rep(1, n) estimated <- c(alpha = TRUE, beta = TRUE, eta = TRUE, phi = TRUE, nu = TRUE) theta <- c( alpha = 0.093212121358460102, beta = 0.92029387542791528, eta = -1.7617462932355768, phi = -0.47836972294568214, nu = 3.96114628361664067 ) rss_value <- 0.024883087882351184 fitted_values <- c( rep(0.9202839186685335, 3), rep(0.9197191693822362, 2), rep(0.8900274208207810, 2), rep(0.5533792934125556, 5), rep(0.26271803120343568, 3), rep(0.15412982230606348, 4), 0.11508521369102612 ) residuals <- c( 0.0077160813314665, -0.0322839186685335, 0.0597160813314665, 0.0282808306177638, -0.0637191693822362, 0.0069725791792190, -0.0070274208207810, -0.0653792934125556, -0.0213792934125556, 0.0326207065874444, 0.0126207065874444, 0.0456207065874444, -0.00371803120343568, 0.00228196879656432, -0.01971803120343568, -0.03712982230606348, -0.01112982230606348, 0.02387017769393652, 0.06487017769393652, -0.02308521369102612 ) object <- logistic5_new( x, y, w, NULL, 10000, c(-0.5, 0.9, -2, -1, 0.5), c(0.5, 1.5, 0, 1, 5) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 5) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(-0.1, 1.2, -1.3, 0.3, 2), 10000, c(-0.5, 0.9, -2, -1, 0.5), c(0.5, 1.5, 0, 1, 5) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 5) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(-1, 2, 1, -2, 0.1), 10000, c(-0.5, 0.9, -2, -1, 0.5), c(0.5, 1.5, 0, 1, 5) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 5) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) }) test_that("fit_constrained: equalities", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) n <- length(y) w <- rep(1, n) estimated <- c( alpha = FALSE, beta = FALSE, eta = TRUE, phi = TRUE, nu = TRUE ) theta <- c( alpha = 0, beta = 1, eta = -0.75885255907605610, phi = -0.30897155961772727, nu = 2.34190488025700727 ) rss_value <- 0.053861132351488352 fitted_values <- c( rep(0.993387436096706232, 3), rep(0.96390948874813840, 2), rep(0.83729075842125321, 2), rep(0.55558345438725121, 5), rep(0.29108572543250870, 3), rep(0.14085756611083843, 4), 0.06702715257129726 ) residuals <- c( -0.065387436096706232, -0.105387436096706232, -0.013387436096706232, -0.01590948874813840, -0.10790948874813840, 0.05970924157874679, 0.04570924157874679, -0.06758345438725121, -0.02358345438725121, 0.03041654561274879, 0.01041654561274879, 0.04341654561274879, -0.03208572543250870, -0.02608572543250870, -0.04808572543250870, -0.02385756611083843, 0.00214243388916157, 0.03714243388916157, 0.07814243388916157, 0.02497284742870274 ) object <- logistic5_new( x, y, w, NULL, 10000, c(0, 1, -Inf, -Inf, -Inf), c(0, 1, Inf, Inf, Inf) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(0, 1, -1, 0, 1), 10000, c(0, 1, -Inf, -Inf, -Inf), c(0, 1, Inf, Inf, Inf) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(1, 3, -1, 0, 1), 10000, c(0, 1, -Inf, -Inf, -Inf), c(0, 1, Inf, Inf, Inf) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) }) test_that("fit_constrained: equalities and inequalities", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) n <- length(y) w <- rep(1, n) estimated <- c( alpha = FALSE, beta = FALSE, eta = TRUE, phi = TRUE, nu = TRUE ) theta <- c( alpha = 0, beta = 1, eta = -0.75885255907605610, phi = -0.30897155961772727, nu = 2.34190488025700727 ) rss_value <- 0.053861132351488352 fitted_values <- c( rep(0.993387436096706232, 3), rep(0.96390948874813840, 2), rep(0.83729075842125321, 2), rep(0.55558345438725121, 5), rep(0.29108572543250870, 3), rep(0.14085756611083843, 4), 0.06702715257129726 ) residuals <- c( -0.065387436096706232, -0.105387436096706232, -0.013387436096706232, -0.01590948874813840, -0.10790948874813840, 0.05970924157874679, 0.04570924157874679, -0.06758345438725121, -0.02358345438725121, 0.03041654561274879, 0.01041654561274879, 0.04341654561274879, -0.03208572543250870, -0.02608572543250870, -0.04808572543250870, -0.02385756611083843, 0.00214243388916157, 0.03714243388916157, 0.07814243388916157, 0.02497284742870274 ) object <- logistic5_new( x, y, w, NULL, 10000, c(0, 1, -2, -2, 1), c(0, 1, 0, 2, 3) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-7) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(0, 1, -1.2, -0.3, 2), 10000, c(0, 1, -2, -2, 1), c(0, 1, 0, 2, 3) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-7) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(-1, 2, 1, 3, 5), 10000, c(0, 1, -2, -2, 1), c(0, 1, 0, 2, 3) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-7) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, object$n - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) }) context("5-parameter logistic - weighted fit") test_that("fit (weighted)", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 1, 2, 4, 3, 3, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.897, 0.883, 0.488, 0.532, 0.566, 0.599, 0.259, 0.265, 0.243, 0.143, 0.178, 0.219, 0.092 ) w <- c( 1.46, 1.385, 1.704, 0.96, 0.055, 1.071, 0.134, 1.825, 1.169, 0.628, 0.327, 1.201, 0.269, 1.294, 0.038, 1.278, 0.157 ) estimated <- c(alpha = TRUE, beta = TRUE, eta = TRUE, phi = TRUE, nu = TRUE) theta <- c( alpha = 0.14021510699415424, beta = 0.93769951379161088, eta = -1.3532016035342649, phi = -0.36746911119363776, nu = 2.43088291720838878 ) rss_value <- 0.014141550871844299 fitted_values <- c( rep(0.9375852722593340, 3), rep(0.9351351725701264, 1), rep(0.8859559720192794, 2), rep(0.5516453155354000, 4), rep(0.26479534106274689, 3), rep(0.17495286982311317, 3), 0.14985594300774278 ) residuals <- c( -0.0095852722593340, -0.0495852722593340, 0.0424147277406660, 0.0128648274298736, 0.0110440279807206, -0.0029559720192794, -0.0636453155354000, -0.0196453155354000, 0.0143546844646000, 0.0473546844646000, -0.00579534106274689, 0.00020465893725311, -0.02179534106274689, -0.03195286982311317, 0.00304713017688683, 0.04404713017688683, -0.05785594300774278 ) object <- logistic5_new(x, y, w, NULL, 10000, NULL, NULL) result <- fit(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, length(y) - 5) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new(x, y, w, c(0, 1, -1, 0, 1), 10000, NULL, NULL) result <- fit(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, length(y) - 5) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) }) test_that("fit_constrained (weighted): inequalities", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 1, 2, 4, 3, 3, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.897, 0.883, 0.488, 0.532, 0.566, 0.599, 0.259, 0.265, 0.243, 0.143, 0.178, 0.219, 0.092 ) w <- c( 1.46, 1.385, 1.704, 0.96, 0.055, 1.071, 0.134, 1.825, 1.169, 0.628, 0.327, 1.201, 0.269, 1.294, 0.038, 1.278, 0.157 ) estimated <- c(alpha = TRUE, beta = TRUE, eta = TRUE, phi = TRUE, nu = TRUE) theta <- c( alpha = 0.14021510699415424, beta = 0.93769951379161088, eta = -1.3532016035342649, phi = -0.36746911119363776, nu = 2.43088291720838878 ) rss_value <- 0.014141550871844299 fitted_values <- c( rep(0.9375852722593340, 3), rep(0.9351351725701264, 1), rep(0.8859559720192794, 2), rep(0.5516453155354000, 4), rep(0.26479534106274689, 3), rep(0.17495286982311317, 3), 0.14985594300774278 ) residuals <- c( -0.0095852722593340, -0.0495852722593340, 0.0424147277406660, 0.0128648274298736, 0.0110440279807206, -0.0029559720192794, -0.0636453155354000, -0.0196453155354000, 0.0143546844646000, 0.0473546844646000, -0.00579534106274689, 0.00020465893725311, -0.02179534106274689, -0.03195286982311317, 0.00304713017688683, 0.04404713017688683, -0.05785594300774278 ) object <- logistic5_new( x, y, w, NULL, 10000, c(-0.5, 0.9, -2, -1, 0.5), c(0.5, 1.5, 0, 1, 5) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, length(y) - 5) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(0.1, 1.2, -0.5, 0.5, 2), 10000, c(-0.5, 0.9, -2, -1, 0.5), c(0.5, 1.5, 0, 1, 5) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, length(y) - 5) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(2, 3, -3, 2, 6), 10000, c(-0.5, 0.9, -2, -1, 0.5), c(0.5, 1.5, 0, 1, 5) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, length(y) - 5) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) }) test_that("fit_constrained (weighted): equalities", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 1, 2, 4, 3, 3, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.897, 0.883, 0.488, 0.532, 0.566, 0.599, 0.259, 0.265, 0.243, 0.143, 0.178, 0.219, 0.092 ) w <- c( 1.46, 1.385, 1.704, 0.96, 0.055, 1.071, 0.134, 1.825, 1.169, 0.628, 0.327, 1.201, 0.269, 1.294, 0.038, 1.278, 0.157 ) estimated <- c( alpha = FALSE, beta = FALSE, eta = TRUE, phi = TRUE, nu = TRUE ) theta <- c( alpha = 0, beta = 1, eta = -0.72502089617011087, phi = -0.33982624766042181, nu = 2.36465699101360594 ) rss_value <- 0.036717820758155562 fitted_values <- c( rep(0.991572996129829225, 3), rep(0.95779593343449193, 1), rep(0.82640795793649317, 2), rep(0.55492427795777899, 4), rep(0.30125409492277104, 3), rep(0.15182795902080912, 3), 0.07523599271751825 ) residuals <- c( -0.063572996129829225, -0.103572996129829225, -0.011572996129829225, -0.00979593343449193, 0.07059204206350683, 0.05659204206350683, -0.06692427795777899, -0.02292427795777899, 0.01107572204222101, 0.04407572204222101, -0.04225409492277104, -0.03625409492277104, -0.05825409492277104, -0.00882795902080912, 0.02617204097919088, 0.06717204097919088, 0.01676400728248175 ) object <- logistic5_new( x, y, w, NULL, 10000, c(0, 1, rep(-Inf, 3)), c(0, 1, rep(Inf, 3)) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, length(y) - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(0, 1, -1, 0, 1), 10000, c(0, 1, rep(-Inf, 3)), c(0, 1, rep(Inf, 3)) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, length(y) - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(1, 2, -1, 0, 1), 10000, c(0, 1, rep(-Inf, 3)), c(0, 1, rep(Inf, 3)) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_false(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, length(y) - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) }) test_that("fit_constrained (weighted): equalities and inequalities", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 1, 2, 4, 3, 3, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.897, 0.883, 0.488, 0.532, 0.566, 0.599, 0.259, 0.265, 0.243, 0.143, 0.178, 0.219, 0.092 ) w <- c( 1.46, 1.385, 1.704, 0.96, 0.055, 1.071, 0.134, 1.825, 1.169, 0.628, 0.327, 1.201, 0.269, 1.294, 0.038, 1.278, 0.157 ) estimated <- c( alpha = FALSE, beta = FALSE, eta = TRUE, phi = TRUE, nu = TRUE ) theta <- c( alpha = 0, beta = 1, eta = -0.72502089617011087, phi = -0.33982624766042181, nu = 2.36465699101360594 ) rss_value <- 0.036717820758155562 fitted_values <- c( rep(0.991572996129829225, 3), rep(0.95779593343449193, 1), rep(0.82640795793649317, 2), rep(0.55492427795777899, 4), rep(0.30125409492277104, 3), rep(0.15182795902080912, 3), 0.07523599271751825 ) residuals <- c( -0.063572996129829225, -0.103572996129829225, -0.011572996129829225, -0.00979593343449193, 0.07059204206350683, 0.05659204206350683, -0.06692427795777899, -0.02292427795777899, 0.01107572204222101, 0.04407572204222101, -0.04225409492277104, -0.03625409492277104, -0.05825409492277104, -0.00882795902080912, 0.02617204097919088, 0.06717204097919088, 0.01676400728248175 ) object <- logistic5_new( x, y, w, NULL, 10000, c(0, 1, -2, -2, 1), c(0, 1, 0, 2, 3) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, length(y) - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(0, 1, -1, 0.1, 2), 10000, c(0, 1, -2, -2, 1), c(0, 1, 0, 2, 3) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, length(y) - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) object <- logistic5_new( x, y, w, c(1, 2, -5, 2, 5), 10000, c(0, 1, -2, -2, 1), c(0, 1, 0, 2, 3) ) result <- fit_constrained(object) expect_true(inherits(result, "logistic5_fit")) expect_true(result$converged) expect_true(result$constrained) expect_equal(result$estimated, estimated) expect_equal(result$coefficients, theta, tolerance = 1.0e-6) expect_equal(result$rss, rss_value) expect_equal(result$df.residual, length(y) - 3) expect_equal(result$fitted.values, fitted_values) expect_equal(result$residuals, residuals) expect_equal(result$weights, w) }) context("5-parameter logistic - general functions") test_that("fisher_info", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 1, 2, 4, 3, 3, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.897, 0.883, 0.488, 0.532, 0.566, 0.599, 0.259, 0.265, 0.243, 0.143, 0.178, 0.219, 0.092 ) w <- c( 1.46, 1.385, 1.704, 0.96, 0.055, 1.071, 0.134, 1.825, 1.169, 0.628, 0.327, 1.201, 0.269, 1.294, 0.038, 1.278, 0.157 ) theta <- c( alpha = 4 / 100, beta = 9 / 10, eta = -2, phi = -3 / 2, nu = 1 / 2 ) sigma <- 0.05 true_value <- matrix(c( 3317.1075212912263, 77.779705234498998, 30.105094962347675, 99.367820533674209, 101.76674312410457, 42879.475233843036, 77.779705234498998, 2509.3330682397757, -50.270268072025062, 57.263278623851573, -32.834177409666645, 5566.4533586419151, 30.105094962347675, -50.270268072025062, -28.431570455178267, -53.631172444195592, -61.035018201080491, 329.86733099061305, 99.367820533674209, 57.263278623851573, -53.631172444195592, -13.327710758643254, -75.171417594972841, 1404.2234763310936, 101.76674312410457, -32.834177409666645, -61.035018201080491, -75.171417594972841, -95.495915267527460, 1308.4123739466697, 42879.475233843036, 5566.4533586419151, 329.86733099061305, 1404.2234763310936, 1308.4123739466697, 540135.75988991146 ), nrow = 6, ncol = 6 ) rownames(true_value) <- colnames(true_value) <- c( "alpha", "beta", "eta", "phi", "nu", "sigma" ) object <- logistic5_new(x, y, w, NULL, 10000, NULL, NULL) fim <- fisher_info(object, theta, sigma) expect_type(fim, "double") expect_length(fim, 6 * 6) expect_equal(fim, true_value) }) context("5-parameter logistic - drda fit") test_that("drda: 'lower_bound' argument errors", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) expect_error( drda( y ~ x, mean_function = "logistic5", lower_bound = c("a", "b", "c", "d", "e") ), "'lower_bound' must be a numeric vector" ) expect_error( drda( y ~ x, mean_function = "logistic5", lower_bound = matrix(-Inf, nrow = 5, ncol = 2), upper_bound = rep(Inf, 5) ), "'lower_bound' must be a numeric vector" ) expect_error( drda( y ~ x, mean_function = "logistic5", lower_bound = rep(-Inf, 6), upper_bound = rep(Inf, 5) ), "'lower_bound' and 'upper_bound' must have the same length" ) expect_error( drda( y ~ x, mean_function = "logistic5", lower_bound = c( 0, -Inf, -Inf, -Inf, -Inf), upper_bound = c(-1, Inf, Inf, Inf, Inf) ), "'lower_bound' cannot be larger than 'upper_bound'" ) expect_error( drda( y ~ x, mean_function = "logistic5", lower_bound = c(Inf, -Inf, -Inf, -Inf, -Inf), upper_bound = c(Inf, Inf, Inf, Inf, Inf) ), "'lower_bound' cannot be equal to infinity" ) expect_error( drda( y ~ x, mean_function = "logistic5", lower_bound = rep(-Inf, 6), upper_bound = rep(Inf, 6) ), "'lower_bound' must be of length 5" ) }) test_that("drda: 'upper_bound' argument errors", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) expect_error( drda( y ~ x, mean_function = "logistic5", upper_bound = c("a", "b", "c", "d", "e") ), "'upper_bound' must be a numeric vector" ) expect_error( drda( y ~ x, mean_function = "logistic5", lower_bound = rep(-Inf, 5), upper_bound = matrix(Inf, nrow = 5, ncol = 2) ), "'upper_bound' must be a numeric vector" ) expect_error( drda( y ~ x, mean_function = "logistic5", lower_bound = c(-Inf, -Inf, -Inf, -Inf, -Inf), upper_bound = c(-Inf, Inf, Inf, Inf, Inf) ), "'upper_bound' cannot be equal to -infinity" ) expect_error( drda( y ~ x, mean_function = "logistic5", lower_bound = rep(-Inf, 6), upper_bound = rep(Inf, 6) ), "'lower_bound' must be of length 5" ) }) test_that("drda: 'start' argument errors", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) expect_error( drda( y ~ x, mean_function = "logistic5", start = c("a", "b", "c", "d", "e") ), "'start' must be a numeric vector" ) expect_error( drda( y ~ x, mean_function = "logistic5", start = c(0, Inf, -1, 0, 1) ), "'start' must be finite" ) expect_error( drda( y ~ x, mean_function = "logistic5", start = c(-Inf, 0, -1, 0, 1) ), "'start' must be finite" ) expect_error( drda( y ~ x, mean_function = "logistic5", start = c(0, 0, -1, 0, 1, 1) ), "'start' must be of length 5" ) expect_error( drda( y ~ x, mean_function = "logistic6", start = c(0, -1, -1, 0, 1, 1) ), "parameter 'beta' cannot be smaller than 'alpha'" ) expect_error( drda( y ~ x, mean_function = "logistic5", start = c(0, 1, 0, 0, 1) ), "parameter 'eta' cannot be initialized to zero" ) expect_error( drda( y ~ x, mean_function = "logistic5", start = c(0, 1, -1, 0, 0) ), "parameter 'nu' cannot be negative nor zero" ) expect_error( drda( y ~ x, mean_function = "logistic5", start = c(0, 1, -1, 0, -1) ), "parameter 'nu' cannot be negative nor zero" ) }) context("5-parameter logistic - Area under and above the curve") test_that("nauc: decreasing", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) result <- drda(y ~ x, mean_function = "logistic5") expect_equal(nauc(result), 0.53873944885547561) expect_equal(nauc(result, xlim = c(-1, 2)), 0.48525519463583185) expect_equal(nauc(result, ylim = c(0.2, 0.8)), 0.52493778668672264) expect_equal( nauc(result, xlim = c(-1, 2), ylim = c(0.2, 0.8)), 0.47542532439305309 ) }) test_that("naac: decreasing", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 ) result <- drda(y ~ x, mean_function = "logistic5") expect_equal(naac(result), 1 - 0.53873944885547561) expect_equal(naac(result, xlim = c(-1, 2)), 1 - 0.48525519463583185) expect_equal(naac(result, ylim = c(0.2, 0.8)), 1 - 0.52493778668672264) expect_equal( naac(result, xlim = c(-1, 2), ylim = c(0.2, 0.8)), 1 - 0.47542532439305309 ) }) test_that("nauc: increasing", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- rev(c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 )) result <- drda(y ~ x, mean_function = "logistic5") expect_equal(nauc(result), 0.53465218185475628) expect_equal(nauc(result, xlim = c(-1, 2)), 0.56806493427090424) expect_equal(nauc(result, ylim = c(0.2, 0.8)), 0.50308844614941488) expect_equal( nauc(result, xlim = c(-1, 2), ylim = c(0.2, 0.8)), 0.61344155711817374 ) }) test_that("naac: increasing", { x <- round( rep( -log(c(1000, 100, 10, 1, 0.1, 0.01, 0.001)), times = c(3, 2, 2, 5, 3, 4, 1) ), digits = 3 ) y <- rev(c( 0.928, 0.888, 0.98, 0.948, 0.856, 0.897, 0.883, 0.488, 0.532, 0.586, 0.566, 0.599, 0.259, 0.265, 0.243, 0.117, 0.143, 0.178, 0.219, 0.092 )) result <- drda(y ~ x, mean_function = "logistic5") expect_equal(naac(result), 1 - 0.53465218185475628) expect_equal(naac(result, xlim = c(-1, 2)), 1 - 0.56806493427090424) expect_equal(naac(result, ylim = c(0.2, 0.8)), 1 - 0.50308844614941488) expect_equal( naac(result, xlim = c(-1, 2), ylim = c(0.2, 0.8)), 1 - 0.61344155711817374 ) })
dshimko <- function(r, te, s0, k, y, a0, a1, a2) { sigma = a0 + a1*k + a2*k^2 v = sigma * sqrt(te) d1 = (log(s0/k) + (r - y + (sigma^2)/2) * te) / v d2 = d1 - v d1x = -1/(k * v) + (1 - d1/v)*(a1 + 2 * a2 * k) d2x = d1x - (a1 + 2 * a2 * k) out = -1 * dnorm(d2)*(d2x - (a1 + 2 * a2* k)*(1 - d2*d2x) - 2 * a2 * k) out }
TimeStudy<-data.frame(Exposure_Time=NULL, Prob_of_Failure=NULL) for(power in seq(0,7, by=.1)) { mission_time<-10^power arm2<-ftree.make(type="or", name="Warhead Armed", name2="Inadvertently") arm2<-addLogic(arm2, at= 1, type="and", name="Arm Circuit", name2="Relays Closed") arm2<-addExposed(arm2, at= 2, mttf=1/1.1e-6, tag="E1", name="Relay 1", name2="Fails Closed") arm2<-addExposed(arm2, at= 2, mttf=1/1.1e-6, tag="E2", name="Relay 2", name2="Fails Closed") arm2<-addLogic(arm2, at= 1, type="inhibit", name="Arm Power", name2="Is Present") arm2<-addProbability(arm2, at= 5, prob=1, tag="W1", name="Battery Power", name2="Is Available") arm2<-addLogic(arm2, at= 5, type="or", name="Arm Circuit Closed", name2="By Computer") arm2<-addExposed(arm2, at= 7, mttf=1/1.1e-6, tag="E3", name="CPU", name2="Failure") arm2<-addExposed(arm2, at= 7, mttf=1/1.1e-6, tag="E4", name="Software", name2="Failure") arm2<-ftree.calc(arm2) study_row<-data.frame(Exposure_Time=mission_time, Prob_of_Failure=arm2$PBF[1]) TimeStudy<-rbind(TimeStudy, study_row) } plot(TimeStudy, log="x", type="l") rm(mission_time)
toTernary <- function(abc){ sqrt3 <- 1.732050807568877293527446341505872366942805253810380628055806979 return(cbind( x = (abc[, 1L] + 2.0*abc[, 3L]) / sqrt3, y = abc[, 1L] )) } toTernaryVectors <- function(c1, c2, c3){ return(toTernary(cbind(c1, c2, c3))) } toQuaternary <- function(abcd){ sqrt3 <- 1.732050807568877293527446341505872366942805253810380628055806979 return(cbind( x = (abcd[, 1L] + 2.0*abcd[, 3L] + abcd[, 4L]) / sqrt3, y = abcd[, 1L] + abcd[, 4L]/3.0, z = abcd[, 4L] )) } toQuaternaryVectors <- function(c1, c2, c3, c4){ return(toQuaternary(cbind(c1, c2, c3, c4))) } toSimplex <- function(x){ if(is.null(dim(x))) stop('"x" must be a matrix-like object.') if((ncol(x) < 3L) || (ncol(x) > 4L)) stop('"x" must have 3 or 4 columns.') if(!isTRUE(all.equal(rowSums(x), rep(1.0, nrow(x)), check.attributes = FALSE))) stop('all values in "x" must be in [0, 1].') if(any((x < 0) | (x > 1))) stop('all values in "x" must be in [0, 1].') if(ncol(x) == 3L){ return(toTernary(x)) } else if(ncol(x) == 4L){ return(toQuaternary(x)) } else { stop("unexpected error") } }
source("incl/start.R") usedNodes <- function(future) { workers <- future$workers reg <- sprintf("workers-%s", attr(workers, "name")) c(used = length(future:::FutureRegistry(reg, action = "list")), total = length(workers)) } plan(multisession, workers = 2L) message("*** future() - invalid ownership ...") session_uuid <- future:::session_uuid(attributes = TRUE) cat(sprintf("Main R process: %s\n", session_uuid)) message("- Asserting ownership ...") message("Creating future f1 <- future({ future:::session_uuid(attributes = TRUE) }) stopifnot(inherits(f1, "MultisessionFuture")) cat(sprintf("Future v1 <- value(f1) cat(sprintf("Future stopifnot(v1 != session_uuid) message("Creating future f2 <- future({ future:::session_uuid(attributes = TRUE) }) stopifnot(inherits(f2, "MultisessionFuture")) cat(sprintf("Future v2 <- value(f2) cat(sprintf("Future stopifnot(v2 != session_uuid) message("Creating future f3 <- future({ f1$owner }) stopifnot(inherits(f3, "MultisessionFuture")) cat(sprintf("Future v3 <- value(f3) cat(sprintf("Future stopifnot(v3 == session_uuid) message("Creating future f4 <- future({ f1$owner }) stopifnot(inherits(f4, "MultisessionFuture")) cat(sprintf("Future v4 <- value(f4) cat(sprintf("Future stopifnot(v4 == session_uuid) message("Creating future f5 <- future({ stopifnot(f1$owner != future:::session_uuid(attributes = TRUE)); "not-owner" }) stopifnot(inherits(f5, "MultisessionFuture")) v5 <- value(f5) stopifnot(v5 == "not-owner") message("- Asserting ownership ... DONE") message("- Trying with invalid ownership ...") message("Creating future f1 <- future({ 42L }) cat(sprintf("Future stopifnot(identical(f1$owner, session_uuid)) print(usedNodes(f1)) message("Creating future f2 <- future({ value(f1) }) print(f2) cat(sprintf("Future stopifnot(identical(f2$owner, session_uuid)) print(usedNodes(f2)) message("Getting value of future res <- tryCatch(value(f2), error = identity) print(res) stopifnot(inherits(res, "error")) v1 <- value(f1) print(v1) stopifnot(v1 == 42L) message("- Trying with invalid ownership ... DONE") message("*** future() - invalid ownership ... DONE") source("incl/end.R")
library(shiny) if (interactive()) { ui <- fluidPage( orderInput("foo", "foo", items = month.abb[1:3], item_class = 'info'), verbatimTextOutput("order"), actionButton("update", "update") ) server <- function(input, output, session) { output$order <- renderPrint({input$foo}) observeEvent(input$update, { updateOrderInput(session, "foo", items = month.abb[1:6], item_class = "success") }) } shinyApp(ui, server) }
formatGhcn <- function(data, dataColumn = 7){ colSelect <- c(1,3,dataColumn) data <- data[,colSelect] Ids <- unique(data$Id) CHCN <- matrix(ncol = 14) firstStation <- Ids[1] for(stationId in Ids){ stationData <- data[which(data$Id == stationId),] keep <- which(!is.na(stationData[,2])) stationData <- stationData[keep,] years <- unique(stationData[,2]) startYear <- min(years) endYear <- max(years) cat(stationId, startYear, endYear, "\n") if (sum(diff(years)) != length(years) -1 ) { warning("gaps in years") print(stationId) } else { temps <- rep(NA,((endYear-startYear)+1)*12) temps[1:nrow(stationData)] <- stationData[,3] tempMat <- matrix(temps,ncol = 12, byrow = TRUE) thisStation <- cbind(stationId,startYear:endYear,tempMat) if (stationId == firstStation) { CHCN <- thisStation } else { CHCN <-rbind(CHCN,thisStation) } } } colnames(CHCN) <- c("Id","Year", month.abb) return(CHCN) }
npcdistbw <- function(...){ args = list(...) if (is(args[[1]],"formula")) UseMethod("npcdistbw",args[[1]]) else if (!is.null(args$formula)) UseMethod("npcdistbw",args$formula) else UseMethod("npcdistbw",args[[which(names(args)=="bws")[1]]]) } npcdistbw.formula <- function(formula, data, subset, na.action, call, gdata = NULL, ...){ orig.class <- if (missing(data)) sapply(eval(attr(terms(formula), "variables"), environment(formula)),class) else sapply(eval(attr(terms(formula), "variables"), data, environment(formula)),class) has.gval <- !is.null(gdata) gmf <- mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data", "subset", "na.action"), names(mf), nomatch = 0) gm <- match(c("formula", "gdata"), names(gmf), nomatch = 0) mf <- mf[c(1,m)] gmf <- gmf[c(1,gm)] if(!missing(call) && is.call(call)){ for(i in 1:length(call)){ if(tryCatch(class(eval(call[[i]])) == "formula", error = function(e) FALSE)) break; } mf[[2]] <- call[[i]] gmf[[2]] <- call[[i]] } mf[[1]] <- as.name("model.frame") gmf[[1]] <- as.name("model.frame") if (m[2] > 0) { mf[["formula"]] = eval(mf[[m[1]]], environment(mf[[m[2]]])) } else { mf[["formula"]] = eval(mf[[m[1]]], parent.frame()) } variableNames <- explodeFormula(mf[["formula"]]) varsPlus <- lapply(variableNames, paste, collapse=" + ") mf[["formula"]] <- as.formula(paste(" ~ ", varsPlus[[1]]," + ", varsPlus[[2]]), env = environment(formula)) gmf[["formula"]] <- mf[["formula"]] mf[["formula"]] <- terms(mf[["formula"]]) if(all(orig.class == "ts")){ args <- (as.list(attr(mf[["formula"]], "variables"))[-1]) attr(mf[["formula"]], "predvars") <- as.call(c(quote(as.data.frame),as.call(c(quote(ts.intersect), args)))) }else if(any(orig.class == "ts")){ arguments <- (as.list(attr(mf[["formula"]], "variables"))[-1]) arguments.normal <- arguments[which(orig.class != "ts")] arguments.timeseries <- arguments[which(orig.class == "ts")] ix <- sort(c(which(orig.class == "ts"),which(orig.class != "ts")),index.return = TRUE)$ix attr(mf[["formula"]], "predvars") <- bquote(.(as.call(c(quote(cbind),as.call(c(quote(as.data.frame),as.call(c(quote(ts.intersect), arguments.timeseries)))),arguments.normal,check.rows = TRUE)))[,.(ix)]) } mf <- eval(mf, parent.frame()) ydat <- mf[, variableNames[[1]], drop = FALSE] xdat <- mf[, variableNames[[2]], drop = FALSE] if (has.gval) { names(gmf)[3] <- "data" gmf <- eval(gmf, parent.frame()) gydat <- gmf[, variableNames[[1]], drop = FALSE] } tbw = eval(parse(text=paste("npcdistbw(xdat = xdat, ydat = ydat,", ifelse(has.gval, "gydat = gydat",""), "...)"))) tbw$call <- match.call(expand.dots = FALSE) environment(tbw$call) <- parent.frame() tbw$formula <- formula tbw$rows.omit <- as.vector(attr(mf,"na.action")) tbw$nobs.omit <- length(tbw$rows.omit) tbw$terms <- attr(mf,"terms") tbw$variableNames <- variableNames tbw } npcdistbw.condbandwidth <- function(xdat = stop("data 'xdat' missing"), ydat = stop("data 'ydat' missing"), gydat = NULL, bws, bandwidth.compute = TRUE, nmulti, remin = TRUE, itmax = 10000, do.full.integral = FALSE, ngrid = 100, ftol = 1.490116e-07, tol = 1.490116e-04, small = 1.490116e-05, memfac = 500.0, lbc.dir = 0.5, dfc.dir = 3, cfac.dir = 2.5*(3.0-sqrt(5)),initc.dir = 1.0, lbd.dir = 0.1, hbd.dir = 1, dfac.dir = 0.25*(3.0-sqrt(5)), initd.dir = 1.0, lbc.init = 0.1, hbc.init = 2.0, cfac.init = 0.5, lbd.init = 0.1, hbd.init = 0.9, dfac.init = 0.375, scale.init.categorical.sample=FALSE, ...){ ydat = toFrame(ydat) xdat = toFrame(xdat) if (missing(nmulti)){ nmulti <- min(5,(dim(ydat)[2]+dim(xdat)[2])) } if (length(bws$ybw) != dim(ydat)[2]) stop(paste("length of bandwidth vector does not match number of columns of", "'ydat'")) if (length(bws$xbw) != dim(xdat)[2]) stop(paste("length of bandwidth vector does not match number of columns of", "'xdat'")) if (dim(ydat)[1] != dim(xdat)[1]) stop(paste("number of rows of", "'ydat'", "does not match", "'xdat'")) yccon = unlist(lapply(as.data.frame(ydat[,bws$iycon]),class)) if ((any(bws$iycon) && !all((yccon == class(integer(0))) | (yccon == class(numeric(0))))) || (any(bws$iyord) && !all(unlist(lapply(as.data.frame(ydat[,bws$iyord]),class)) == class(ordered(0)))) || (any(bws$iyuno) && !all(unlist(lapply(as.data.frame(ydat[,bws$iyuno]),class)) == class(factor(0))))) stop(paste("supplied bandwidths do not match", "'ydat'", "in type")) xccon = unlist(lapply(as.data.frame(xdat[,bws$ixcon]),class)) if ((any(bws$ixcon) && !all((xccon == class(integer(0))) | (xccon == class(numeric(0))))) || (any(bws$ixord) && !all(unlist(lapply(as.data.frame(xdat[,bws$ixord]),class)) == class(ordered(0)))) || (any(bws$ixuno) && !all(unlist(lapply(as.data.frame(xdat[,bws$ixuno]),class)) == class(factor(0))))) stop(paste("supplied bandwidths do not match", "'xdat'", "in type")) goodrows <- 1:dim(xdat)[1] rows.omit <- unclass(na.action(na.omit(data.frame(xdat,ydat)))) goodrows[rows.omit] <- 0 if (all(goodrows==0)) stop("Data has no rows without NAs") xdat = xdat[goodrows,,drop = FALSE] ydat = ydat[goodrows,,drop = FALSE] nrow = nrow(ydat) yncol = ncol(ydat) xncol = ncol(xdat) oydat <- ydat ydat = toMatrix(ydat) yuno = ydat[, bws$iyuno, drop = FALSE] ycon = ydat[, bws$iycon, drop = FALSE] yord = ydat[, bws$iyord, drop = FALSE] xdat = toMatrix(xdat) xuno = xdat[, bws$ixuno, drop = FALSE] xcon = xdat[, bws$ixcon, drop = FALSE] xord = xdat[, bws$ixord, drop = FALSE] tbw <- bws if(!is.null(gydat)){ gydat <- toFrame(gydat) if(any(is.na(gydat))) stop("na's not allowed to be present in cdf gdata") gydat <- toMatrix(gydat) gyuno = gydat[, bws$iyuno, drop = FALSE] gyord = gydat[, bws$iyord, drop = FALSE] gycon = gydat[, bws$iycon, drop = FALSE] cdf_on_train = FALSE nog = nrow(gydat) } else { if(do.full.integral) { cdf_on_train = TRUE nog = 0 gyuno = data.frame() gyord = data.frame() gycon = data.frame() } else { cdf_on_train = FALSE nog = ngrid probs <- seq(0,1,length.out = nog) evy <- oydat[1:nog,,drop = FALSE] for(i in 1:ncol(evy)){ evy[,i] <- uocquantile(oydat[,i], probs) } evy <- toMatrix(evy) gyuno = evy[, bws$iyuno, drop = FALSE] gyord = evy[, bws$iyord, drop = FALSE] gycon = evy[, bws$iycon, drop = FALSE] } } mysd <- EssDee(data.frame(xcon,ycon)) nconfac <- nrow^(-1.0/(2.0*bws$cxkerorder+bws$ncon)) ncatfac <- nrow^(-2.0/(2.0*bws$cxkerorder+bws$ncon)) if (bandwidth.compute){ myopti = list(num_obs_train = nrow, num_obs_grid = nog, iMultistart = ifelse(nmulti==0,IMULTI_FALSE,IMULTI_TRUE), iNum_Multistart = nmulti, int_use_starting_values = ifelse(all(bws$ybw==0) && all(bws$xbw==0), USE_START_NO, USE_START_YES), int_LARGE_SF = ifelse(bws$scaling, SF_NORMAL, SF_ARB), BANDWIDTH_den_extern = switch(bws$type, fixed = BW_FIXED, generalized_nn = BW_GEN_NN, adaptive_nn = BW_ADAP_NN), itmax=itmax, int_RESTART_FROM_MIN=ifelse(remin,RE_MIN_TRUE,RE_MIN_FALSE), int_MINIMIZE_IO=ifelse(options('np.messages'), IO_MIN_FALSE, IO_MIN_TRUE), bwmethod = switch(bws$method, cv.ls = CDBWM_CVLS), xkerneval = switch(bws$cxkertype, gaussian = CKER_GAUSS + bws$cxkerorder/2 - 1, epanechnikov = CKER_EPAN + bws$cxkerorder/2 - 1, uniform = CKER_UNI, "truncated gaussian" = CKER_TGAUSS), ykerneval = switch(bws$cykertype, gaussian = CKER_GAUSS + bws$cykerorder/2 - 1, epanechnikov = CKER_EPAN + bws$cykerorder/2 - 1, uniform = CKER_UNI, "truncated gaussian" = CKER_TGAUSS), uxkerneval = switch(bws$uxkertype, aitchisonaitken = UKER_AIT, liracine = UKER_LR), uykerneval = switch(bws$uykertype, aitchisonaitken = UKER_AIT, liracine = UKER_LR), oxkerneval = switch(bws$oxkertype, wangvanryzin = OKER_WANG, liracine = OKER_LR), oykerneval = switch(bws$oykertype, wangvanryzin = OKER_WANG, liracine = OKER_NLR), ynuno = dim(yuno)[2], ynord = dim(yord)[2], yncon = dim(ycon)[2], xnuno = dim(xuno)[2], xnord = dim(xord)[2], xncon = dim(xcon)[2], cdf_on_train = cdf_on_train, int_do_tree = ifelse(options('np.tree'), DO_TREE_YES, DO_TREE_NO), scale.init.categorical.sample=scale.init.categorical.sample, dfc.dir = dfc.dir) myoptd = list(ftol=ftol, tol=tol, small=small, memfac = memfac, lbc.dir = lbc.dir, cfac.dir = cfac.dir, initc.dir = initc.dir, lbd.dir = lbd.dir, hbd.dir = hbd.dir, dfac.dir = dfac.dir, initd.dir = initd.dir, lbc.init = lbc.init, hbc.init = hbc.init, cfac.init = cfac.init, lbd.init = lbd.init, hbd.init = hbd.init, dfac.init = dfac.init, nconfac = nconfac, ncatfac = ncatfac) if (bws$method != "normal-reference"){ total.time <- system.time(myout <- .C("np_distribution_conditional_bw", as.double(yuno), as.double(yord), as.double(ycon), as.double(xuno), as.double(xord), as.double(xcon), as.double(gyuno), as.double(gyord), as.double(gycon), as.double(mysd), as.integer(myopti), as.double(myoptd), bw = c(bws$xbw[bws$ixcon],bws$ybw[bws$iycon], bws$ybw[bws$iyuno],bws$ybw[bws$iyord], bws$xbw[bws$ixuno],bws$xbw[bws$ixord]), fval = double(2),fval.history = double(max(1,nmulti)), timing = double(1), PACKAGE="np" )[c("bw","fval","fval.history","timing")])[1] } else { nbw = double(yncol+xncol) gbw = bws$yncon+bws$xncon if (gbw > 0){ nbw[1:bws$xncon] <- 1.06 nbw[(bws$xncon+1):gbw] <- 1.587 if(!bws$scaling) nbw[1:gbw]=nbw[1:gbw]*mysd*nconfac } myout= list( bw = nbw, fval = c(NA,NA) ) total.time <- NA } yr = 1:yncol xr = 1:xncol rorder = numeric(yncol + xncol) rxcon = xr[bws$ixcon] rxuno = xr[bws$ixuno] rxord = xr[bws$ixord] rycon = yr[bws$iycon] ryuno = yr[bws$iyuno] ryord = yr[bws$iyord] tbw <- bws tbw$ybw[c(rycon,ryuno,ryord)] <- myout$bw[yr+bws$xncon] tbw$xbw[c(rxcon,rxuno,rxord)] <- myout$bw[setdiff(1:(yncol+xncol),yr+bws$xncon)] tbw$fval = myout$fval[1] tbw$ifval = myout$fval[2] tbw$fval.history <- myout$fval.history tbw$timing <- myout$timing tbw$total.time <- total.time } tbw$sfactor <- tbw$bandwidth <- list(x = tbw$xbw, y = tbw$ybw) bwf <- function(i){ tbw$bandwidth[[i]][tl[[i]]] <<- (tbw$bandwidth[[i]])[tl[[i]]]*dfactor[[i]] } sff <- function(i){ tbw$sfactor[[i]][tl[[i]]] <<- (tbw$sfactor[[i]])[tl[[i]]]/dfactor[[i]] } myf <- if(tbw$scaling) bwf else sff if ((tbw$xnuno+tbw$ynuno) > 0){ dfactor <- ncatfac dfactor <- list(x = dfactor, y = dfactor) tl <- list(x = tbw$xdati$iuno, y = tbw$ydati$iuno) lapply(1:length(tl), myf) } if ((tbw$xnord+tbw$ynord) > 0){ dfactor <- ncatfac dfactor <- list(x = dfactor, y = dfactor) tl <- list(x = tbw$xdati$iord, y = tbw$ydati$iord) lapply(1:length(tl), myf) } if (tbw$ncon > 0){ dfactor <- nconfac dfactor <- list(x = EssDee(xcon)*dfactor, y = EssDee(ycon)*dfactor) tl <- list(x = tbw$xdati$icon, y = tbw$ydati$icon) lapply(1:length(tl), myf) } tbw <- condbandwidth(xbw = tbw$xbw, ybw = tbw$ybw, bwmethod = tbw$method, bwscaling = tbw$scaling, bwtype = tbw$type, cxkertype = tbw$cxkertype, cxkerorder = tbw$cxkerorder, uxkertype = tbw$uxkertype, oxkertype = tbw$oxkertype, cykertype = tbw$cykertype, cykerorder = tbw$cykerorder, uykertype = tbw$uykertype, oykertype = tbw$oykertype, fval = tbw$fval, ifval = tbw$ifval, fval.history = tbw$fval.history, nobs = tbw$nobs, xdati = tbw$xdati, ydati = tbw$ydati, xnames = tbw$xnames, ynames = tbw$ynames, sfactor = tbw$sfactor, bandwidth = tbw$bandwidth, rows.omit = rows.omit, nconfac = nconfac, ncatfac = ncatfac, sdev = mysd, bandwidth.compute = bandwidth.compute, timing = tbw$timing, total.time = tbw$total.time) tbw } npcdistbw.NULL <- function(xdat = stop("data 'xdat' missing"), ydat = stop("data 'ydat' missing"), bws, ...){ xdat <- toFrame(xdat) ydat <- toFrame(ydat) bws = double(ncol(ydat)+ncol(xdat)) tbw <- npcdistbw.default(xdat = xdat, ydat = ydat, bws = bws, ...) mc <- match.call(expand.dots = FALSE) environment(mc) <- parent.frame() tbw$call <- mc tbw } npcdistbw.default <- function(xdat = stop("data 'xdat' missing"), ydat = stop("data 'ydat' missing"), gydat, bws, bandwidth.compute = TRUE, nmulti, remin, itmax, do.full.integral, ngrid, ftol, tol, small, memfac, lbc.dir, dfc.dir, cfac.dir,initc.dir, lbd.dir, hbd.dir, dfac.dir, initd.dir, lbc.init, hbc.init, cfac.init, lbd.init, hbd.init, dfac.init, scale.init.categorical.sample, bwmethod, bwscaling, bwtype, cxkertype, cxkerorder, cykertype, cykerorder, uxkertype, oxkertype, oykertype, ...){ xdat <- toFrame(xdat) ydat <- toFrame(ydat) mc.names <- names(match.call(expand.dots = FALSE)) margs <- c("bwmethod", "bwscaling", "bwtype", "cxkertype", "cxkerorder", "cykertype", "cykerorder", "uxkertype", "oxkertype", "oykertype") m <- match(margs, mc.names, nomatch = 0) any.m <- any(m != 0) tbw <- eval(parse(text=paste("condbandwidth(", "xbw = bws[length(ydat)+1:length(xdat)],", "ybw = bws[1:length(ydat)],", paste(mc.names[m], ifelse(any.m,"=",""), mc.names[m], collapse=", "), ifelse(any.m, ",",""), "uykertype = 'aitchisonaitken',", "nobs = nrow(xdat),", "xdati = untangle(xdat),", "ydati = untangle(ydat),", "xnames = names(xdat),", "ynames = names(ydat),", "bandwidth.compute = bandwidth.compute)"))) mc.names <- names(match.call(expand.dots = FALSE)) margs <- c("gydat", "bandwidth.compute", "nmulti", "remin", "itmax", "do.full.integral", "ngrid", "ftol", "tol", "small", "memfac", "lbc.dir", "dfc.dir", "cfac.dir","initc.dir", "lbd.dir", "hbd.dir", "dfac.dir", "initd.dir", "lbc.init", "hbc.init", "cfac.init", "lbd.init", "hbd.init", "dfac.init", "scale.init.categorical.sample") m <- match(margs, mc.names, nomatch = 0) any.m <- any(m != 0) tbw <- eval(parse(text=paste("npcdistbw.condbandwidth(xdat=xdat, ydat=ydat, bws=tbw", ifelse(any.m, ",",""), paste(mc.names[m], ifelse(any.m,"=",""), mc.names[m], collapse=", "), ")"))) mc <- match.call(expand.dots = FALSE) environment(mc) <- parent.frame() tbw$call <- mc return(tbw) }
bb_mods <- function(micro_set, table, ..., CI_method = c("wald", "profile"), SS_type = c(2, 3, "II", "III"), trace = FALSE){ if(table %nin% unique(micro_set$Table)) stop("Specified table is not in supplied micro_set") micro_set %<>% dplyr::filter(.data$Table == table) %>% dplyr::mutate(Taxa = factor(.data$Taxa, levels = unique(.data$Taxa))) f <- suppressWarnings(formula_fun_bb(...)) if(missing(CI_method)) CI_method <- "wald" if(grepl("[profi]", CI_method)) warning("Profile likelihood confidence intervals greatly increase computation time.\n") if(missing(SS_type)) SS_type <- 2 if(SS_type %nin% c(2,3,"II","III")) stop("SS_type must be either 2, 3, 'II', or 'III' \n") Convergent_Models <- micro_set %>% plyr::ddply(~ .data$Taxa, FE_bb, f. = f, trace = trace, method. = CI_method, SS_type. = SS_type, ...) if(nrow(Convergent_Models) == 0) stop("No taxa models converged.\n") Cov <- micro_set %>% dplyr::select(cov_str(...)) Convergent_Models %<>% dplyr::mutate(FDR_Pval = stats::p.adjust(.data$P_val, method = "BH") %>% round(4)) RA_Summary <- micro_set %>% N.con(.data$ra,...) %>% dplyr::left_join(Convergent_Models %>% dplyr::select(.data$Taxa, .data$FE_Converged), by = "Taxa") %>% dplyr::arrange(.data$FE_Converged, .data$Taxa) %>% unique con_mod <- RA_Summary %>% dplyr::ungroup() %>% dplyr::distinct(.data$Taxa, .keep_all = T) %>% dplyr::pull(.data$FE_Converged) message("\n", sum(con_mod), " taxa converged.") message(sum(!con_mod), " taxa did not converge.") result <- list(Convergent_Summary=Convergent_Models %>% dplyr::filter(.data$FE_Converged) %>% dplyr::select(.data$Taxa, .data$Coef, .data$Beta, .data$CI, .data$LRT, .data$P_val, .data$FDR_Pval), Estimate_Summary=Convergent_Models %>% dplyr::filter(.data$FE_Converged) %>% dplyr::select(.data$Taxa, .data$Coef, .data$OR, .data$CI_95, .data$LRT, .data$FDR_Pval) %>% dplyr::filter(!grepl("(Intercept)", .data$Coef)), RA_Summary=RA_Summary, formula=f, Model_Coef = Convergent_Models %>% dplyr::filter(.data$FE_Converged) %>% dplyr::select(.data$Taxa, .data$Coef, .data$Intercept, Estimate = .data$Beta, .data$Cov_Type), Model_Covs = Cov, Model_Type = "bb_mod" ) result }
context("function mHMM and S3 print and summary methods") n_t <- 100 n <- 10 m <- 3 J = 11 burn_in = 5 n_dep2 <- 2 q_emiss2 <- c(4,2) gamma <- matrix(c(0.8, 0.1, 0.1, 0.2, 0.6, 0.2, 0.1, 0.2, 0.7), ncol = m, byrow = TRUE) emiss_distr1 <- matrix(c(0.5, 0.5, 0.0, 0.0, 0.1, 0.1, 0.8, 0.0, 0.1, 0.1, 0.2, 0.6), nrow = m, ncol = q_emiss2[1], byrow = TRUE) emiss_distr2 <- matrix(c(0.7, 0.3, 0.9, 0.1, 0.8, 0.2), nrow = m, ncol = q_emiss2[2], byrow = TRUE) set.seed(4231) data1 <- sim_mHMM(n_t = n_t, n = n, m = m, q_emiss = q_emiss2[1], gamma = gamma, emiss_distr = emiss_distr1, var_gamma = .5, var_emiss = .5) set.seed(4231) data2 <- sim_mHMM(n_t = n_t, n = n, m = m, q_emiss = q_emiss2[2], gamma = gamma, emiss_distr = emiss_distr2, var_gamma = .5, var_emiss = .5) data3 <- list(states = data1$states, obs = cbind(data1$obs, data2$obs[,2])) colnames(data3$obs) <- c("subj", "output_1", "output_2") set.seed(3523) out_2st_simb <- mHMM(s_data = data3$obs, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)) xx <- rep(list(matrix(1, ncol = 1, nrow = n)), (n_dep2 + 1)) for(i in 2:(n_dep2 + 1)){ xx[[i]] <- cbind(xx[[i]], nonverbal_cov$std_CDI_change) } set.seed(3523) out_2st_sim_cov1 <- mHMM(s_data = data3$obs, xx = xx, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)) xx_gamma_only <- rep(list(matrix(1, ncol = 1, nrow = n)), (n_dep2 + 1)) xx_gamma_only[[1]] <- cbind(xx_gamma_only[[i]], nonverbal_cov$std_CDI_change) set.seed(3523) out_2st_sim_cov2 <- mHMM(s_data = data3$obs, xx = xx_gamma_only, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)) xx_gamma_only_V2 <- rep(list(NULL), (n_dep2 + 1)) xx_gamma_only_V2[[1]] <- cbind(rep(1,n), nonverbal_cov$std_CDI_change) set.seed(3523) out_2st_sim_cov3 <- mHMM(s_data = data3$obs, xx = xx_gamma_only_V2, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)) xx_dep1_only <- rep(list(matrix(1, ncol = 1, nrow = n)), (n_dep2 + 1)) xx_dep1_only[[2]] <- cbind(xx_dep1_only[[i]], nonverbal_cov$std_CDI_change) set.seed(3523) out_2st_sim_cov4 <- mHMM(s_data = data3$obs, xx = xx_dep1_only, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)) xx_wrong1 <- rep(list(NULL), (n_dep2 + 1)) for(i in 2:(n_dep2 + 1)){ xx_wrong1[[i]] <- matrix(nonverbal_cov$std_CDI_change, ncol = 1) } xx_wrong2 <- rep(list(NULL), (n_dep2 + 1)) xx_wrong2[[1]] <- matrix(nonverbal_cov$std_CDI_change, ncol = 1) xx_wrong3 <- list(cbind(rep(1,n), nonverbal_cov$std_CDI_change)) xx_wrong4 <- cbind(rep(1,n), nonverbal_cov$std_CDI_change) xx_wrong5 <- rep(list(NULL), (n_dep2 + 1)) xx_wrong5[[1]] <- cbind(rep(1,n), c(rep(2,n/2), rep(1, n/2))) xx_wrong6 <- rep(list(NULL), (n_dep2 + 1)) xx_wrong6[[1]] <- data.frame(rep(1,n), as.factor(c(rep(2,n/2), rep(1, n/2)))) test_that("errors mHMM input", { expect_error(mHMM(s_data = data3$obs, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, list(emiss_distr1, emiss_distr2)), mcmc = list(J = J, burn_in = burn_in)), "number of elements in the list start_val") expect_error(mHMM(s_data = data.frame(data3$obs[,1], as.factor(data3$obs[,2]), data3$obs[,3]), gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)), "factorial variables") expect_error(mHMM(s_data = data3$obs, xx = xx_wrong1, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)), "first column in each element of xx has to represent the intercept") expect_error(mHMM(s_data = data3$obs, xx = xx_wrong2, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)), "first column in each element of xx has to represent the intercept") expect_error(mHMM(s_data = data3$obs, xx = xx_wrong3, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)), "xx should be a list, with the number of elements") expect_error(mHMM(s_data = data3$obs, xx = xx_wrong4, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)), "xx should be a list, with the number of elements") expect_error(mHMM(s_data = data3$obs, xx = xx_wrong5, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)), "Dichotomous covariates") expect_error(mHMM(s_data = data3$obs, xx = xx_wrong6, gen = list(m = m, n_dep = n_dep2, q_emiss = q_emiss2), start_val = list(gamma, emiss_distr1, emiss_distr2), mcmc = list(J = J, burn_in = burn_in)), "Factors currently cannot be used as covariates") }) test_that("class inherit", { expect_s3_class(out_2st_simb, "mHMM") expect_s3_class(out_2st_sim_cov2, "mHMM") }) test_that("print mHMM", { expect_output(print(out_2st_simb), paste("Number of subjects:", n)) expect_output(print(out_2st_simb), paste(J, "iterations")) expect_output(print(out_2st_simb), paste("likelihood over all subjects:", -174)) expect_output(print(out_2st_simb), paste("AIC over all subjects:", 384)) expect_output(print(out_2st_simb), paste("states used:", m)) expect_output(print(out_2st_simb), paste("dependent variables used:", n_dep2)) }) test_that("summary mHMM", { expect_output(summary(out_2st_simb), "From state 1 0.714 0.152 0.124") expect_output(summary(out_2st_simb), "From state 3 0.214 0.224 0.553") expect_output(summary(out_2st_simb), "output_1") expect_output(summary(out_2st_simb), "output_2") }) test_that("output PD_subj", { expect_equal(length(out_2st_simb$PD_subj), n) expect_equal(dim(out_2st_simb$PD_subj[[1]]), c(J, m*q_emiss2[1] + m*q_emiss2[2] + m * m + 1)) expect_equal(dim(out_2st_simb$PD_subj[[1]]), dim(out_2st_simb$PD_subj[[n]])) expect_equal(as.vector(out_2st_simb$PD_subj[[2]][1,]), c(as.vector(t(emiss_distr1)), as.vector(t(emiss_distr2)),as.vector(t(gamma)), NA)) expect_equal(as.numeric(out_2st_simb$PD_subj[[2]][10,(m*q_emiss2[1] + 2)]), 0.1865, tolerance=1e-4) expect_equal(as.numeric(out_2st_simb$PD_subj[[2]][10,( m*q_emiss2[1] + m*q_emiss2[2] + m * m + 1)]), -159.1328, tolerance=1e-4) }) test_that("output emis_cov_bar", { expect_match(out_2st_simb$emiss_cov_bar, "predict the emission probabilities") expect_equal(dim(out_2st_sim_cov1$emiss_cov_bar[[1]]), c(J, m * (q_emiss2[1] - 1))) expect_equal(dim(out_2st_sim_cov1$emiss_cov_bar[[2]]), c(J, m * (q_emiss2[2] - 1))) expect_match(out_2st_sim_cov2$emiss_cov_bar, "predict the emission probabilities") expect_match(out_2st_sim_cov3$emiss_cov_bar, "predict the emission probabilities") expect_match(out_2st_sim_cov3$emiss_cov_bar, "predict the emission probabilities") expect_equal(dim(out_2st_sim_cov4$emiss_cov_bar[[1]]), c(J, m * (q_emiss2[1] - 1))) expect_match(out_2st_sim_cov4$emiss_cov_bar[[2]], "predict the emission probabilities") expect_equal(as.numeric(out_2st_sim_cov1$emiss_cov_bar[[1]][11, m * (q_emiss2[1] - 1)]), 0.50680380, tolerance=1e-4) expect_equal(as.numeric(out_2st_sim_cov1$emiss_cov_bar[[2]][11, m * (q_emiss2[2] - 1)]), -0.1283152, tolerance=1e-4) }) test_that("output emiss_int_bar", { expect_equal(dim(out_2st_simb$emiss_int_bar[[1]]), c(J, m * (q_emiss2[1] - 1))) expect_equal(dim(out_2st_simb$emiss_int_bar[[2]]), c(J, m * (q_emiss2[2] - 1))) expect_equal(dim(out_2st_sim_cov1$emiss_int_bar[[1]]), c(J, m * (q_emiss2[1] - 1))) expect_equal(as.numeric(out_2st_simb$emiss_int_bar[[1]][10,m * (q_emiss2[1] - 1)]), 0.82748937, tolerance=1e-4) expect_equal(as.numeric(out_2st_simb$emiss_int_bar[[2]][11,m * (q_emiss2[2] - 1) - 1]), -1.31348525, tolerance=1e-4) }) test_that("output emiss_int_subj", { expect_equal(length(out_2st_simb$emiss_int_subj), n) expect_equal(dim(out_2st_simb$emiss_int_subj[[1]][[1]]), dim(out_2st_simb$emiss_int_subj[[n]][[1]])) expect_equal(dim(out_2st_simb$emiss_int_subj[[1]][[2]]), c(J, m * (q_emiss2[2] - 1))) expect_equal(as.numeric(out_2st_simb$emiss_int_subj[[1]][[1]][2,1]), -1.131407, tolerance = 1e-4) }) test_that("output emiss_naccept", { expect_equal(length(out_2st_simb$emiss_naccept), n_dep2) expect_equal(dim(out_2st_simb$emiss_naccept[[1]]), c(J-1, m)) expect_equal(dim(out_2st_simb$emiss_naccept[[2]]), c(J-1, m)) expect_equal(out_2st_simb$emiss_naccept[[1]][9,2], 3) expect_equal(out_2st_simb$emiss_naccept[[2]][10,3], 2) }) test_that("output emiss_prob_bar", { expect_equal(dim(out_2st_simb$emiss_prob_bar[[1]]),c(J, m * q_emiss2[1])) expect_equal(dim(out_2st_simb$emiss_prob_bar[[2]]),c(J, m * q_emiss2[2])) expect_equal(as.vector(out_2st_simb$emiss_prob_bar[[1]][1,]), as.vector(t(emiss_distr1))) expect_equal(as.vector(out_2st_simb$emiss_prob_bar[[2]][1,]), as.vector(t(emiss_distr2))) expect_equal(as.numeric(out_2st_simb$emiss_prob_bar[[1]][11, q_emiss2[1]]), 0.05639170, tolerance = 1e-4) expect_equal(as.numeric(out_2st_sim_cov1$emiss_prob_bar[[2]][10, q_emiss2[2]]),0.2541740, tolerance = 1e-4) }) test_that("output gamma_cov_bar", { expect_match(out_2st_simb$gamma_cov_bar, "predict the transition probability") expect_match(out_2st_sim_cov1$gamma_cov_bar, "predict the transition probability") expect_equal(dim(out_2st_sim_cov2$gamma_cov_bar), c(J, m * (m-1))) expect_equal(dim(out_2st_sim_cov3$gamma_cov_bar), c(J, m * (m-1))) expect_match(out_2st_sim_cov4$gamma_cov_bar, "predict the transition probability") expect_equal(as.numeric(out_2st_sim_cov2$gamma_cov_bar[10, m * (m-1) - 1]), 0.53588195, tolerance = 1e-4) }) test_that("output gamma_int_bar", { expect_equal(dim(out_2st_simb$gamma_int_bar), c(J, m * (m - 1))) expect_equal(dim(out_2st_sim_cov2$gamma_int_bar), c(J, m * (m - 1))) expect_equal(as.numeric(out_2st_sim_cov2$gamma_int_bar[11, m - 1]), -1.422921, tolerance = 1e-4) }) test_that("output gamma_int_subj", { expect_equal(length(out_2st_simb$gamma_int_subj), n) expect_equal(dim(out_2st_simb$gamma_int_subj[[1]]), dim(out_2st_simb$gamma_int_subj[[n]])) expect_equal(dim(out_2st_simb$gamma_int_subj[[1]]), c(J, m * (m - 1))) expect_equal(as.numeric(out_2st_simb$gamma_int_subj[[1]][11, 2 * (m-1)]), 0.03240422, tolerance = 1e-4) }) test_that("output gamma_naccept", { expect_equal(dim(out_2st_simb$gamma_naccept), c((J-1), m)) expect_equal(out_2st_simb$gamma_naccept[8,3], 1) }) test_that("output gamma_prob_bar", { expect_equal(dim(out_2st_simb$gamma_prob_bar),c(J, m * m)) expect_equal(as.vector(out_2st_simb$gamma_prob_bar[1,]), as.vector(t(gamma))) expect_equal(as.numeric(out_2st_simb$gamma_prob_bar[11,1]),0.729715, tolerance = 1e-4) expect_equal(as.numeric(out_2st_simb$gamma_prob_bar[10,8]), 0.2629192, tolerance = 1e-4) }) test_that("output input", { expect_equal(length(out_2st_simb$input), 8) expect_equal(out_2st_simb$input[[1]], m) expect_equal(out_2st_simb$input[[2]], n_dep2) expect_equal(out_2st_simb$input[[3]], q_emiss2) expect_equal(out_2st_simb$input[[4]], J) expect_equal(out_2st_simb$input[[5]], burn_in) expect_equal(out_2st_simb$input[[6]], n) expect_equal(out_2st_simb$input[[7]], rep(n_t, n)) expect_equal(out_2st_simb$input[[8]], c("output_1", "output_2")) })
OPF_7bit_T1<-function(seqs,label=c(),outFormat="mat",outputFileDist=""){ if(length(seqs)==1&&file.exists(seqs)){ seqs<-fa.read(seqs,alphabet="aa") seqs_Lab<-alphabetCheck(seqs,alphabet = "aa",label) seqs<-seqs_Lab[[1]] label<-seqs_Lab[[2]] } else if(is.vector(seqs)){ seqs<-sapply(seqs,toupper) seqs_Lab<-alphabetCheck(seqs,alphabet = "aa",label) seqs<-seqs_Lab[[1]] label<-seqs_Lab[[2]] }else { stop("ERROR: Input sequence is not in the correct format. It should be a FASTA file or a string vector.") } numSeqs<-length(seqs) lenSeqs<-sapply(seqs, nchar) group<-list("Hydrophobicity"= c('A','C','F','G','H','I','L','M','N','P','Q','S','T','V','W','Y'), "Normalized Vander Waals volume"= c('C','F', 'I','L','M','V','W'), "Polarity"= c('A','C','D','G','P','S','T'), "Polarizibility"= c('C','F','I','L','M','V','W','Y'), "Charge"= c('A','D','G','S','T'), "Secondary structures"= c('D','G','N','P','S'), "Solvent accessibility"= c('A','C','F','G','I','L','V','W')) properties<-c("Hydrophobicity", "Normalized Vander Waals volume", "Polarity", "Polarizibility", "Charge", "Secondary structures", "Solvent accessibility") if(outFormat=="mat"){ if(length(unique(lenSeqs))>1){ stop("ERROR: All sequences should have the same length in 'mat' mode. For sequences with different lengths, please use 'txt' for outFormat parameter") } featureMatrix<-matrix(0, nrow = numSeqs, ncol = (lenSeqs[1]*7)) tempN1<-rep(properties,lenSeqs[1]) tempN2<-rep(1:lenSeqs[1],each=7) colnames(featureMatrix)<-paste0("pos",tempN2,"_",tempN1) for(n in 1:numSeqs){ seq=seqs[n] aa=unlist(strsplit(seq,split = "")) vect<-c() for(a in aa) { g1 <- lapply(group, function(g) which(a %in% g)) b=lapply(g1, function(x) length(x)>0) vect<-c(vect,as.numeric(b)) } featureMatrix[n,]<-vect } row.names(featureMatrix)<-names(seqs) return(featureMatrix) } else{ nameSeq<-names(seqs) for(n in 1:numSeqs){ seq<-seqs[n] chars<-unlist(strsplit(seq,split = "")) vect<-c() for(a in aa) { g1 <- lapply(group, function(g) which(a %in% g)) b=lapply(g1, function(x) length(x)>0) vect<-c(vect,as.numeric(b)) } temp<-c(nameSeq[n],vect) temp<-paste(temp,collapse = "\t") write(temp,outputFileDist,append = TRUE) } } }
getMimeType <- function(filename) { assertthat::assert_that(is.character(filename)) allowedFiles <- c(".png", ".tif", ".jpeg", ".jpg", ".pdf", ".kml") assertthat::assert_that(!all(!endsWith(filename, allowedFiles))) if (endsWith(filename, ".png")) { return("image/png") } else if (endsWith(filename, ".tif")) { return("image/tiff") } else if (endsWith(filename, ".jpeg") || endsWith(filename, ".jpg")) { return("image/jpeg") } else if (endsWith(filename, ".pdf")) { return("application/pdf") } else if (endsWith(filename, ".kml")) { return("application/vnd.google-earth.kml+xml") } }
require(rgdal) library(proj4) library(raster) library(sp) library(spatstat) library(maptools) scn_metadata <- read.table(file="/home/bhardima/pecan/modules/data.remote/output/metadata/output_metadata.csv", header=T, sep="\t") setwd("/home/bhardima/pecan/modules/data.remote/palsar_scenes/UNDERC/") filelist <- as.vector(list.dirs(path=getwd() ,recursive=F)) for (i in 1:length(filelist)){ inpath <-filelist[i] scnHH <- Sys.glob(file.path(inpath,"*_HH.tif")) scnHV <- Sys.glob(file.path(inpath,"*_HV.tif")) rasterHH <- raster(scnHH) rasterHV <- raster(scnHV) par(mfrow=(c(1,1))) image(rasterHV) decdeg_coords <-rbind(c(46.25113458880, -89.55009302960), c(46.25338996770, -89.55042213000),c(46.25345157750, -89.54913190390), c(46.25120674830, -89.54882422370), c(46.25113458880, -89.55009302960)) swN <-decdeg_coords[1,1] nwN <-decdeg_coords[2,1] neN <-decdeg_coords[3,1] seN <-decdeg_coords[4,1] swE <-decdeg_coords[1,2] nwE <-decdeg_coords[2,2] neE <-decdeg_coords[3,2] seE <-decdeg_coords[4,2] a0 <- scn_metadata$scn_coord2pix_a0[scn_metadata$scnid==scn_metadata$scnid[i]] a1 <- scn_metadata$scn_coord2pix_a1[scn_metadata$scnid==scn_metadata$scnid[i]] a2 <- scn_metadata$scn_coord2pix_a2[scn_metadata$scnid==scn_metadata$scnid[i]] a3 <- scn_metadata$scn_coord2pix_a3[scn_metadata$scnid==scn_metadata$scnid[i]] a4 <- scn_metadata$scn_coord2pix_a4[scn_metadata$scnid==scn_metadata$scnid[i]] a5 <- scn_metadata$scn_coord2pix_a5[scn_metadata$scnid==scn_metadata$scnid[i]] a6 <- scn_metadata$scn_coord2pix_a6[scn_metadata$scnid==scn_metadata$scnid[i]] a7 <- scn_metadata$scn_coord2pix_a7[scn_metadata$scnid==scn_metadata$scnid[i]] a8 <- scn_metadata$scn_coord2pix_a8[scn_metadata$scnid==scn_metadata$scnid[i]] a9 <- scn_metadata$scn_coord2pix_a9[scn_metadata$scnid==scn_metadata$scnid[i]] b0 <- scn_metadata$scn_coord2pix_b0[scn_metadata$scnid==scn_metadata$scnid[i]] b1 <- scn_metadata$scn_coord2pix_b1[scn_metadata$scnid==scn_metadata$scnid[i]] b2 <- scn_metadata$scn_coord2pix_b2[scn_metadata$scnid==scn_metadata$scnid[i]] b3 <- scn_metadata$scn_coord2pix_b3[scn_metadata$scnid==scn_metadata$scnid[i]] b4 <- scn_metadata$scn_coord2pix_b4[scn_metadata$scnid==scn_metadata$scnid[i]] b5 <- scn_metadata$scn_coord2pix_b5[scn_metadata$scnid==scn_metadata$scnid[i]] b6 <- scn_metadata$scn_coord2pix_b6[scn_metadata$scnid==scn_metadata$scnid[i]] b7 <- scn_metadata$scn_coord2pix_b7[scn_metadata$scnid==scn_metadata$scnid[i]] b8 <- scn_metadata$scn_coord2pix_b8[scn_metadata$scnid==scn_metadata$scnid[i]] b9 <- scn_metadata$scn_coord2pix_b9[scn_metadata$scnid==scn_metadata$scnid[i]] sw_p <- a0 + a1*swN + a2*swE + a3*swN*swE + a4*swN^2 + a5*swE^2 + a6*swN^2*swE + a7*swN*swE^2 + a8*swN^3 + a9*swE^3 nw_p <- a0 + a1*nwN + a2*nwE + a3*nwN*nwE + a4*nwN^2 + a5*nwE^2 + a6*nwN^2*nwE + a7*nwN*nwE^2 + a8*nwN^3 + a9*nwE^3 ne_p <- a0 + a1*neN + a2*neE + a3*neN*neE + a4*neN^2 + a5*neE^2 + a6*neN^2*neE + a7*neN*neE^2 + a8*neN^3 + a9*neE^3 se_p <- a0 + a1*seN + a2*seE + a3*seN*seE + a4*seN^2 + a5*seE^2 + a6*seN^2*seE + a7*seN*seE^2 + a8*seN^3 + a9*seE^3 sw_l <- b0 + b1*swN + b2*swE + b3*swN*swE + b4*swN^2 + b5*swE^2 + b6*swN^2*swE + b7*swN*swE^2 + b8*swN^3 + b9*swE^3 nw_l <- b0 + b1*nwN + b2*nwE + b3*nwN*nwE + b4*nwN^2 + b5*nwE^2 + b6*nwN^2*nwE + b7*nwN*nwE^2 + b8*nwN^3 + b9*nwE^3 ne_l <- b0 + b1*neN + b2*neE + b3*neN*neE + b4*neN^2 + b5*neE^2 + b6*neN^2*neE + b7*neN*neE^2 + b8*neN^3 + b9*neE^3 se_l <- b0 + b1*seN + b2*seE + b3*seN*seE + b4*seN^2 + b5*seE^2 + b6*seN^2*seE + b7*seN*seE^2 + b8*seN^3 + b9*seE^3 lpcoords <-rbind(c(sw_l, sw_p), c(nw_l, nw_p),c(ne_l, ne_p), c(se_l, se_p), c(sw_l, sw_p)) Sr1<- Polygon(lpcoords) Srs1<- Polygons(list(Sr1),"sr1") SpP<-SpatialPolygons(list(Srs1)) plotarea<-SpP@polygons[[1]]@area HHcells<-as.data.frame(extract(rasterHH, SpP, method='simple',cellnumbers=T)[[1]]) HVcells<-as.data.frame(extract(rasterHV, SpP, method='simple',cellnumbers=T)[[1]]) HHcells$cell==HVcells$cell cells <- HHcells$cell rows<-unique(rowFromCell(rasterHH,cells)) cols<-unique(colFromCell(rasterHH,cells)) HH<-matrix(NA,length(rows),length(cols)) HV<-matrix(NA,length(rows),length(cols)) for(j in 1:length(rows)){ for(k in 1:length(cols)){ HH[j,k]<-rasterHH[rows[j],cols[k]] HV[j,k]<-rasterHV[rows[j],cols[k]] } print(c("j=",100-(100*(j/length(cols))))) } image(HH, col=gray(1:255/255)) dates<-as.date(as.character(substr(output[2:nrow(output),2],1,8)),order='ymd') par(mfrow=c(1,3)) image(HH, col=gray(1:255/255)) title(main=c(as.character(dates[i]),'HH')) image(HV, col=gray(1:255/255)) title(main=c(as.character(dates[i]),'HV')) image(HH-HV, col=gray(1:255/255)) title(main=c(as.character(dates[i]),'HH-HV')) scn_metadata$scnid[i] }
tar_test("tar_load_globals", { tar_script({ tar_option_set(packages = "callr") analyze_data <- function(data) { summary(data) } list( tar_target(x, 1 + 1), tar_target(y, 1 + 1) ) }, ask = FALSE) envir <- new.env(parent = globalenv()) tar_load_globals(envir = envir) expect_true(is.function(envir$analyze_data)) expect_true("callr" %in% (.packages())) })
loo_moment_match <- function(x, ...) { UseMethod("loo_moment_match") } loo_moment_match.default <- function(x, loo, post_draws, log_lik_i, unconstrain_pars, log_prob_upars, log_lik_i_upars, max_iters = 30L, k_threshold = 0.7, split = TRUE, cov = TRUE, cores = getOption("mc.cores", 1), ...) { checkmate::assertClass(loo,classes = "loo") checkmate::assertFunction(post_draws) checkmate::assertFunction(log_lik_i) checkmate::assertFunction(unconstrain_pars) checkmate::assertFunction(log_prob_upars) checkmate::assertFunction(log_lik_i_upars) checkmate::assertNumber(max_iters) checkmate::assertNumber(k_threshold) checkmate::assertLogical(split) checkmate::assertLogical(cov) checkmate::assertNumber(cores) if ("psis_loo" %in% class(loo)) { is_method <- "psis" } else { stop("loo_moment_match currently supports only the \"psis\" importance sampling class.") } S <- dim(loo)[1] N <- dim(loo)[2] pars <- post_draws(x, ...) upars <- unconstrain_pars(x, pars = pars, ...) npars <- dim(upars)[2] cov <- cov && S >= 10 * npars orig_log_prob <- log_prob_upars(x, upars = upars, ...) ks <- loo$diagnostics$pareto_k kfs <- rep(0,N) I <- which(ks > k_threshold) loo_moment_match_i_fun <- function(i) { loo_moment_match_i(i = i, x = x, log_lik_i = log_lik_i, unconstrain_pars = unconstrain_pars, log_prob_upars = log_prob_upars, log_lik_i_upars = log_lik_i_upars, max_iters = max_iters, k_threshold = k_threshold, split = split, cov = cov, N = N, S = S, upars = upars, orig_log_prob = orig_log_prob, k = ks[i], is_method = is_method, npars = npars, ...) } if (cores == 1) { mm_list <- lapply(X = I, FUN = function(i) loo_moment_match_i_fun(i)) } else { if (!os_is_windows()) { mm_list <- parallel::mclapply(X = I, mc.cores = cores, FUN = function(i) loo_moment_match_i_fun(i)) } else { cl <- parallel::makePSOCKcluster(cores) on.exit(parallel::stopCluster(cl)) mm_list <- parallel::parLapply(cl = cl, X = I, fun = function(i) loo_moment_match_i_fun(i)) } } for (ii in seq_along(I)) { i <- mm_list[[ii]]$i loo$pointwise[i, "elpd_loo"] <- mm_list[[ii]]$elpd_loo_i loo$pointwise[i, "p_loo"] <- mm_list[[ii]]$p_loo loo$pointwise[i, "mcse_elpd_loo"] <- mm_list[[ii]]$mcse_elpd_loo loo$pointwise[i, "looic"] <- mm_list[[ii]]$looic loo$diagnostics$pareto_k[i] <- mm_list[[ii]]$k loo$diagnostics$n_eff[i] <- mm_list[[ii]]$n_eff kfs[i] <- mm_list[[ii]]$kf if (!is.null(loo$psis_object)) { loo$psis_object$log_weights[, i] <- mm_list[[ii]]$lwi } } if (!is.null(loo$psis_object)) { loo$psis_object$diagnostics <- loo$diagnostics } cols_to_summarize <- !(colnames(loo$pointwise) %in% c("mcse_elpd_loo", "influence_pareto_k")) loo$estimates <- table_of_estimates(loo$pointwise[, cols_to_summarize, drop = FALSE]) loo$elpd_loo <- loo$estimates["elpd_loo","Estimate"] loo$p_loo <- loo$estimates["p_loo","Estimate"] loo$looic <- loo$estimates["looic","Estimate"] loo$se_elpd_loo <- loo$estimates["elpd_loo","SE"] loo$se_p_loo <- loo$estimates["p_loo","SE"] loo$se_looic <- loo$estimates["looic","SE"] psislw_warnings(loo$diagnostics$pareto_k) if (!split) { throw_large_kf_warning(kfs) } loo } loo_moment_match_i <- function(i, x, log_lik_i, unconstrain_pars, log_prob_upars, log_lik_i_upars, max_iters, k_threshold, split, cov, N, S, upars, orig_log_prob, k, is_method, npars, ...) { uparsi <- upars ki <- k kfi <- 0 log_liki <- log_lik_i(x, i, ...) S_per_chain <- NROW(log_liki) N_chains <- NCOL(log_liki) dim(log_liki) <- c(S_per_chain, N_chains, 1) r_eff_i <- loo::relative_eff(exp(log_liki), cores = 1) dim(log_liki) <- NULL is_obj <- suppressWarnings(importance_sampling.default(-log_liki, method = is_method, r_eff = r_eff_i, cores = 1)) lwi <- as.vector(weights(is_obj)) lwfi <- rep(-matrixStats::logSumExp(rep(0, S)),S) total_shift <- rep(0, npars) total_scaling <- rep(1, npars) total_mapping <- diag(npars) iterind <- 1 while (iterind <= max_iters && ki > k_threshold) { if (iterind == max_iters) { throw_moment_match_max_iters_warning() } trans <- shift(x, uparsi, lwi) quantities_i <- update_quantities_i(x, trans$upars, i = i, orig_log_prob = orig_log_prob, log_prob_upars = log_prob_upars, log_lik_i_upars = log_lik_i_upars, r_eff_i = r_eff_i, cores = 1, is_method = is_method, ...) if (quantities_i$ki < ki) { uparsi <- trans$upars total_shift <- total_shift + trans$shift lwi <- quantities_i$lwi lwfi <- quantities_i$lwfi ki <- quantities_i$ki kfi <- quantities_i$kfi log_liki <- quantities_i$log_liki iterind <- iterind + 1 next } trans <- shift_and_scale(x, uparsi, lwi) quantities_i <- update_quantities_i(x, trans$upars, i = i, orig_log_prob = orig_log_prob, log_prob_upars = log_prob_upars, log_lik_i_upars = log_lik_i_upars, r_eff_i = r_eff_i, cores = 1, is_method = is_method, ...) if (quantities_i$ki < ki) { uparsi <- trans$upars total_shift <- total_shift + trans$shift total_scaling <- total_scaling * trans$scaling lwi <- quantities_i$lwi lwfi <- quantities_i$lwfi ki <- quantities_i$ki kfi <- quantities_i$kfi log_liki <- quantities_i$log_liki iterind <- iterind + 1 next } if (cov) { trans <- shift_and_cov(x, uparsi, lwi) quantities_i <- update_quantities_i(x, trans$upars, i = i, orig_log_prob = orig_log_prob, log_prob_upars = log_prob_upars, log_lik_i_upars = log_lik_i_upars, r_eff_i = r_eff_i, cores = 1, is_method = is_method, ...) if (quantities_i$ki < ki) { uparsi <- trans$upars total_shift <- total_shift + trans$shift total_mapping <- trans$mapping %*% total_mapping lwi <- quantities_i$lwi lwfi <- quantities_i$lwfi ki <- quantities_i$ki kfi <- quantities_i$kfi log_liki <- quantities_i$log_liki iterind <- iterind + 1 next } } break } if (split && (iterind > 1)) { split_obj <- loo_moment_match_split( x, upars, cov, total_shift, total_scaling, total_mapping, i, log_prob_upars = log_prob_upars, log_lik_i_upars = log_lik_i_upars, cores = 1, r_eff_i = r_eff_i, is_method = is_method, ... ) log_liki <- split_obj$log_liki lwi <- split_obj$lwi lwfi <- split_obj$lwfi r_eff_i <- split_obj$r_eff_i } else { dim(log_liki) <- c(S_per_chain, N_chains, 1) r_eff_i <- loo::relative_eff(exp(log_liki), cores = 1) dim(log_liki) <- NULL } elpd_loo_i <- matrixStats::logSumExp(log_liki + lwi) lpd <- matrixStats::logSumExp(log_liki) - log(length(log_liki)) mcse_elpd_loo <- mcse_elpd( ll = as.matrix(log_liki), lw = as.matrix(lwi), E_elpd = exp(elpd_loo_i), r_eff = r_eff_i ) list(elpd_loo_i = elpd_loo_i, p_loo = lpd - elpd_loo_i, mcse_elpd_loo = mcse_elpd_loo, looic = -2 * elpd_loo_i, k = ki, kf = kfi, n_eff = min(1.0 / sum(exp(2 * lwi)), 1.0 / sum(exp(2 * lwfi))) * r_eff_i, lwi = lwi, i = i) } update_quantities_i <- function(x, upars, i, orig_log_prob, log_prob_upars, log_lik_i_upars, r_eff_i, is_method, ...) { log_prob_new <- log_prob_upars(x, upars = upars, ...) log_liki_new <- log_lik_i_upars(x, upars = upars, i = i, ...) is_obj_new <- suppressWarnings(importance_sampling.default(-log_liki_new + log_prob_new - orig_log_prob, method = is_method, r_eff = r_eff_i, cores = 1)) lwi_new <- as.vector(weights(is_obj_new)) ki_new <- is_obj_new$diagnostics$pareto_k is_obj_f_new <- suppressWarnings(importance_sampling.default(log_prob_new - orig_log_prob, method = is_method, r_eff = r_eff_i, cores = 1)) lwfi_new <- as.vector(weights(is_obj_f_new)) kfi_new <- is_obj_f_new$diagnostics$pareto_k list( lwi = lwi_new, lwfi = lwfi_new, ki = ki_new, kfi = kfi_new, log_liki = log_liki_new ) } shift <- function(x, upars, lwi) { mean_original <- colMeans(upars) mean_weighted <- colSums(exp(lwi) * upars) shift <- mean_weighted - mean_original upars_new <- sweep(upars, 2, shift, "+") list( upars = upars_new, shift = shift ) } shift_and_scale <- function(x, upars, lwi) { S <- dim(upars)[1] mean_original <- colMeans(upars) mean_weighted <- colSums(exp(lwi) * upars) shift <- mean_weighted - mean_original mii <- exp(lwi)* upars^2 mii <- colSums(mii) - mean_weighted^2 mii <- mii*S/(S-1) scaling <- sqrt(mii / matrixStats::colVars(upars)) upars_new <- sweep(upars, 2, mean_original, "-") upars_new <- sweep(upars_new, 2, scaling, "*") upars_new <- sweep(upars_new, 2, mean_weighted, "+") list( upars = upars_new, shift = shift, scaling = scaling ) } shift_and_cov <- function(x, upars, lwi, ...) { mean_original <- colMeans(upars) mean_weighted <- colSums(exp(lwi) * upars) shift <- mean_weighted - mean_original covv <- stats::cov(upars) wcovv <- stats::cov.wt(upars, wt = exp(lwi))$cov chol1 <- tryCatch( { chol(wcovv) }, error = function(cond) { return(NULL) } ) if (is.null(chol1)) { mapping <- diag(length(mean_original)) } else { chol2 <- chol(covv) mapping <- t(chol1) %*% solve(t(chol2)) } upars_new <- sweep(upars, 2, mean_original, "-") upars_new <- tcrossprod(upars_new, mapping) upars_new <- sweep(upars_new, 2, mean_weighted, "+") colnames(upars_new) <- colnames(upars) list( upars = upars_new, shift = shift, mapping = mapping ) } throw_moment_match_max_iters_warning <- function() { warning( "The maximum number of moment matching iterations ('max_iters' argument) was reached.\n", "Increasing the value may improve accuracy.", call. = FALSE ) } throw_large_kf_warning <- function(kf, k_threshold = 0.5) { if (any(kf > k_threshold)) { warning( "The accuracy of self-normalized importance sampling may be bad.\n", "Setting the argument 'split' to 'TRUE' will likely improve accuracy.", call. = FALSE ) } } psislw_warnings <- function(k) { if (any(k > 0.7)) { .warn( "Some Pareto k diagnostic values are too high. ", .k_help() ) } else if (any(k > 0.5)) { .warn( "Some Pareto k diagnostic values are slightly high. ", .k_help() ) } }
setClass("hash_big.matrix", slots = c(md5 = "character"), contains = "big.matrix" ) as.hash_big.matrix <- function(x, backingpath = "bp", silence = TRUE, ...) { if (!dir.exists(backingpath)) dir.create(backingpath) temp <- methods::new("hash_big.matrix") temp@md5 <- digest::digest(x) if (file.exists(file.path(backingpath, paste0(temp@md5, ".desc")))) { temp@address <- bigmemory::attach.big.matrix(paste0(temp@md5, ".desc"), path = backingpath)@address if (!silence) message("Old backing file attached.") } else { temp@address <- bigmemory::as.big.matrix(x, backingpath = backingpath, backingfile = paste0(temp@md5, ".bin"), descriptorfile = paste0(temp@md5, ".desc") )@address } methods::validObject(temp) return(temp) } attach.hash_big.matrix <- function(x, backingpath = "bp") { if (!methods::is(x, "hash_big.matrix")) stop("Wrong input class. x should be a `hash_big.matrix`.") if (!bigmemory::is.nil(x@address)) { return(x) } x@address <- bigmemory::attach.big.matrix(paste0(x@md5, ".desc"), path = backingpath)@address return(x) }
PARETO2 <- function (mu.link = "log", sigma.link = "log") { mstats <- checklink("mu.link", "Pareto Type 2", substitute(mu.link), c("inverse", "log", "identity", "own")) dstats <- checklink("sigma.link", "Pareto Type 2", substitute(sigma.link), c("inverse", "log", "identity", "own")) structure( list(family = c("PARETO2", "Pareto Type 2"), parameters = list(mu = TRUE, sigma = TRUE), nopar = 2, type = "Continuous", mu.link = as.character(substitute(mu.link)), sigma.link = as.character(substitute(sigma.link)), mu.linkfun = mstats$linkfun, sigma.linkfun = dstats$linkfun, mu.linkinv = mstats$linkinv, sigma.linkinv = dstats$linkinv, mu.dr = mstats$mu.eta, sigma.dr = dstats$mu.eta, dldm = function(y, mu, sigma) { dldm <- (1/(mu*sigma))-(1+(1/sigma))*(1/(y+mu)) dldm }, d2ldm2 = function(y, mu, sigma) { d2ldm2 <- -(1/(mu^2*(1+2*sigma))) d2ldm2 }, dldd = function(y, mu, sigma) { dldd2 <- -(1/sigma)+(log(y+mu)/(sigma^2))-(log(mu)/sigma^2) dldd2 }, d2ldd2 = function(y, mu, sigma) { d2ldd22 <- -(1/sigma^2) d2ldd22 }, d2ldmdd = function(y, mu, sigma) { d2ldmdd <- -(1/(mu*sigma+mu*sigma^2)) d2ldmdd }, G.dev.incr = function(y, mu, sigma, ...) -2 * dPARETO2(y, mu, sigma, log = TRUE), rqres = expression(rqres(pfun = "pPARETO2", type = "Continuous", y = y, mu = mu, sigma = sigma)), mu.initial = expression({mu <- (y + mean(y))/2}), sigma.initial = expression({sigma <- rep(1, length(y))}), mu.valid = function(mu) all(mu > 0), sigma.valid = function(sigma) all(sigma > 0), y.valid = function(y) TRUE, mean = function(mu, sigma) ifelse(sigma < 1, (mu*sigma) / (1-sigma), Inf), variance = function(mu, sigma) ifelse(sigma < 0.5, (sigma^2 * mu^2) / ((1-sigma)^2 * (1-2*sigma)), Inf) ), class = c("gamlss.family", "family")) } dPARETO2 <- function(x, mu = 1, sigma = 0.5, log = FALSE) { if (any(mu < 0)) stop(paste("mu must be positive", "\n", "")) if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", "")) if (any(x < 0)) stop(paste("x must be greater than 0", "\n", "")) lfy <- -log(sigma) + (1/sigma)*log(mu) - ((1/sigma)+1)*log(x+mu) if (log == FALSE) fy <- exp(lfy) else fy <- lfy fy } pPARETO2 <- function(q, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) { if (any(mu <= 0)) stop(paste("mu must be positive", "\n", "")) if (any(sigma <= 0)) stop(paste("tau must be positive", "\n", "")) if (any(q < 0)) stop(paste("q must be be greater than 0", "\n", "")) cdf <- 1 - ((mu/(mu+q))^(1/sigma)) if (lower.tail == TRUE) cdf <- cdf else cdf <- 1 - cdf if (log.p == FALSE) cdf <- cdf else cdf < - log(cdf) cdf } qPARETO2 <- function(p, mu = 1, sigma = 0.5, lower.tail = TRUE, log.p = FALSE) { if (any(mu < 0)) stop(paste("mu must be positive", "\n", "")) if (any(sigma < 0)) stop(paste("sigma must be positive", "\n", "")) if (log.p==TRUE) p <- exp(p) else p <- p if (any(p <= 0)|any(p >= 1)) stop(paste("p must be between 0 and 1", "\n", "")) if (lower.tail==TRUE) p <- p else p <- 1-p q <- mu*((1-p)^(-sigma)-1) q } rPARETO2 <- function(n, mu = 1, sigma = 0.5) { if (any(mu <= 0)) stop(paste("mu must be positive", "\n", "")) if (any(sigma <= 0)) stop(paste("sigma must be positive", "\n", "")) if (any(n <= 0)) stop(paste("n must be a positive integer", "\n", "")) n <- ceiling(n) p <- runif(n) r <- qPARETO2(p, mu = mu, sigma = sigma) r }
geom_blurry <- function(mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., na.rm = FALSE, show.legend = NA, inherit.aes = TRUE) { layer( data = data, mapping = mapping, stat = stat, geom = GeomBlurry, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( na.rm = na.rm, ... ) ) } GeomBlurry <- ggproto( "GeomBlurry", Geom, required_aes = c("x", "y"), non_missing_aes = c("size", "shape", "colour"), default_aes = aes( shape = 19, colour = "black", size = 1.5, fill = NA, alpha = NA, stroke = 0.5 ), draw_panel = function(data, panel_params, coord, na.rm = FALSE) { if (is.character(data$shape)) { data$shape <- translate_shape_string(data$shape) } coords <- coord$transform(data, panel_params) my_alpha <- coords$alpha my_alpha[is.na(my_alpha)] <- 1.0 ggplot2:::ggname( "geom_blurry", grid::grobTree( grid::pointsGrob( coords$x, coords$y, pch = coords$shape, gp = grid::gpar( col = alpha(coords$colour, my_alpha * 0.1), fill = alpha(coords$fill , my_alpha * 0.1), fontsize = (coords$size + 3) * .pt + coords$stroke * .stroke / 2, lwd = coords$stroke * .stroke / 2 ) ), grid::pointsGrob( coords$x, coords$y, pch = coords$shape, gp = grid::gpar( col = alpha(coords$colour, my_alpha * 0.3), fill = alpha(coords$fill , my_alpha * 0.3), fontsize = (coords$size + 2) * .pt + coords$stroke * .stroke / 2, lwd = coords$stroke * .stroke / 2 ) ), grid::pointsGrob( coords$x, coords$y, pch = coords$shape, gp = grid::gpar( col = alpha(coords$colour, my_alpha * 0.5), fill = alpha(coords$fill , my_alpha * 0.5), fontsize = (coords$size + 1) * .pt + coords$stroke * .stroke / 2, lwd = coords$stroke * .stroke / 2 ) ), grid::pointsGrob( coords$x, coords$y, pch = coords$shape, gp = grid::gpar( col = alpha(coords$colour, coords$alpha), fill = alpha(coords$fill , coords$alpha), fontsize = coords$size * .pt + coords$stroke * .stroke / 2, lwd = coords$stroke * .stroke / 2 ) ) ) ) }, draw_key = draw_key_point ) translate_shape_string <- function(shape_string) { if (nchar(shape_string[1]) <= 1) { return(shape_string) } pch_table <- c( "square open" = 0, "circle open" = 1, "triangle open" = 2, "plus" = 3, "cross" = 4, "diamond open" = 5, "triangle down open" = 6, "square cross" = 7, "asterisk" = 8, "diamond plus" = 9, "circle plus" = 10, "star" = 11, "square plus" = 12, "circle cross" = 13, "square triangle" = 14, "triangle square" = 14, "square" = 15, "circle small" = 16, "triangle" = 17, "diamond" = 18, "circle" = 19, "bullet" = 20, "circle filled" = 21, "square filled" = 22, "diamond filled" = 23, "triangle filled" = 24, "triangle down filled" = 25 ) shape_match <- charmatch(shape_string, names(pch_table)) invalid_strings <- is.na(shape_match) nonunique_strings <- shape_match == 0 if (any(invalid_strings)) { bad_string <- unique(shape_string[invalid_strings]) n_bad <- length(bad_string) collapsed_names <- sprintf("\n* '%s'", bad_string[1:min(5, n_bad)]) more_problems <- if (n_bad > 5) { sprintf("\n* ... and %d more problem%s", n_bad - 5, ifelse(n_bad > 6, "s", "")) } stop( "Can't find shape name:", collapsed_names, more_problems, call. = FALSE ) } if (any(nonunique_strings)) { bad_string <- unique(shape_string[nonunique_strings]) n_bad <- length(bad_string) n_matches <- vapply( bad_string[1:min(5, n_bad)], function(shape_string) sum(grepl(paste0("^", shape_string), names(pch_table))), integer(1) ) collapsed_names <- sprintf( "\n* '%s' partially matches %d shape names", bad_string[1:min(5, n_bad)], n_matches ) more_problems <- if (n_bad > 5) { sprintf("\n* ... and %d more problem%s", n_bad - 5, ifelse(n_bad > 6, "s", "")) } stop( "Shape names must be unambiguous:", collapsed_names, more_problems, call. = FALSE ) } unname(pch_table[shape_match]) }
"mslp"
collect_highlight_terms_1 <- function() { terms <- c( shiny::isolate(input$search_text), shiny::isolate(input$area_2), shiny::isolate(input$area_3), shiny::isolate(input$area_4), shiny::isolate(input$area_5), shiny::isolate(input$area_6) )[seq_len(shiny::isolate(input$antall_linjer))] %>% (function(x) x <- x[x != ""]) %>% unique if(length(terms) == 0){ terms <- "" } if (search_arguments$case_sensitive == FALSE) { terms <- stringr::str_to_lower(terms) } return(terms) } collect_highlight_terms <- function() { if (is.null(isolate(input$more_terms_button))) { terms_highlight <- collect_highlight_terms_1() } else if (isolate(input$more_terms_button == 'Yes')) { terms_highlight <- isolate(input$area) %>% stringr::str_split("\n") %>% unlist %>% .[length(.) > 0] %>% unique terms_highlight <- c(collect_highlight_terms_1(), terms_highlight[terms_highlight != ""]) } terms_highlight <- terms_highlight[terms_highlight != ""] return(terms_highlight) } collect_threshold_values <- function() { thresholds <- stringr::str_extract(search_arguments$search_terms, "--\\d*$") %>% stringr::str_replace("--", "") %>% as.numeric() return(thresholds) } clean_terms <- function(terms) { if (search_arguments$case_sensitive == FALSE) { terms <- stringr::str_to_lower(terms) } return(stringr::str_replace(terms, "--.*$", "")) } contains_argument <- function(chr_vector) { return(any(stringr::str_detect(chr_vector, "--"))) } contains_only_valid_thresholds <- function(chr_vector) { chr_vector <- stringr::str_extract(chr_vector, "--\\d.*($|--)") chr_vector <- chr_vector[!is.na(chr_vector)] return(all(stringr::str_detect(chr_vector, "[^\\d-]") == FALSE)) } check_valid_column_names <- function(chr_vector, df) { chr_vector <- chr_vector %>% .[!is.na(.)] return(all(chr_vector %in% colnames(df))) } check_regexes <- function(patterns) { patterns[is.null(patterns)] <- "OK" tryCatch( is.integer(stringr::str_count("esel", patterns)), error = function(e) FALSE ) } collect_subset_terms <- function() { terms_subset <- input$filter_text %>% stringr::str_split("\n") %>% unlist %>% .[length(.) > 0] %>% (function(x) x <- x[x != ""]) %>% unique if (search_arguments$case_sensitive == FALSE) { terms_subset <- stringr::str_to_lower(terms_subset) } return(terms_subset) } highlight_terms_exist <- function() { if (length(search_arguments$highlight_terms) > 0) { if (!is.na(search_arguments$highlight_terms)) { return(TRUE) } } return(FALSE) }
result.extract.sub <- function(mask.grid, values, gk4.x, gk4.y, outliers, silent=FALSE, withOutliers=FALSE){ if (!silent){ msg <- "" } extracted.values <- rep(NA, times=length(mask.grid$alt)) for (i in 1:length(values)){ gridcellnumber <- data.coordinates2gridcellnumber(grid=mask.grid, x=gk4.x[i], y=gk4.y[i]) if ((withOutliers)||(outliers[i]==0)){ extracted.values[gridcellnumber] <- values[i] } if (!silent){ cat(rep("\b", nchar(msg)),sep="") msg <- paste(i," of ", length(values), " Datasets done!",sep="") cat(msg,sep="") } } if (!silent){ cat("\n") } result.values <- data.frame(values=extracted.values, x=mask.grid$x, y=mask.grid$y) return(result.values) }
{} .Samples <- setClass(Class="Samples", representation(data="list", options="McmcOptions"), prototype(data= list(alpha=matrix(0, nrow=1, ncol=1), beta=matrix(0, nrow=1, ncol=1)), options= McmcOptions(burnin=1, step=1, samples=1)), validity= function(object){ o <- Validate() o$check(all(sapply(object@data, NROW) == sampleSize(object@options)), "all data elements must have as many rows as the sample size was") o$result() }) validObject(.Samples()) Samples <- function(data, options) { .Samples(data=data, options=options) }
NULL optimum_batches <- function(size_data, size_subset) { check_number(size_data, "size_data") check_number(size_subset, "size_subset") ceiling(size_data/size_subset) } optimum_subset <- function(size_data, batches) { check_number(size_data, "size_data") check_number(batches, "batches") ceiling(size_data/batches) } sizes_batches <- function(size_data, size_subset, batches) { check_number(size_data, "size_data") check_number(size_subset, "size_subset") check_number(batches, "batches") if (batches == 1) { stop("There should be more than one batch.", call. = FALSE) } if (size_subset*batches < size_data) { stop("batches or size_subset is too small to fit all the samples.", call. = FALSE) } if (sum(size_subset*seq_len(batches) > size_data) > 1) { stop("batches or size_subset could be reduced.", call. = FALSE) } if (!valid_sizes(size_data, size_subset, batches)) { stop("Please provide a higher number of batches or more samples per batch.", call. = FALSE) } out <- internal_batches(size_data, size_subset, batches) out <- unname(out) stopifnot(sum(out) == size_data) stopifnot(length(out) == batches) stopifnot(all(out <= size_subset)) out } internal_batches <- function(size_data, size_subset, batches) { if (size_subset*batches == size_data) { return(rep(size_subset, times = batches)) } if (batches == 1) { return(size_subset) } if (size_subset*batches == size_data) { return(rep(size_subset, times = batches)) } max_batch_size <- optimum_subset(size_data, batches) if (max_batch_size > size_subset) { return(rep(size_subset, times = batches)) } remaining <- size_data - max_batch_size*batches out <- rep(max_batch_size, batches) if (remaining == 0) { return(out) } samples_to_remove_per_batch <- ceiling(abs(remaining)/batches) batches_to_remove_samples <- abs(remaining)/samples_to_remove_per_batch out[1:batches_to_remove_samples] <- out[1:batches_to_remove_samples] - samples_to_remove_per_batch sort(out, decreasing = TRUE) } check_number <- function(x, name) { if (length(x) != 1 || !is.numeric(x)) { stop(name, " must be a single number.", call. = FALSE) } }
source(system.file(file.path('tests', 'testthat', 'test_utils.R'), package = 'nimble')) context("Testing of old vs. new generated C++ during refactoring steps") RwarnLevel <- options('warn')$warn options(warn = -1) nimbleVerboseSetting <- nimbleOptions('verbose') nimbleOptions(verbose = FALSE) compareOldAndNewCompilationRC <- function(input) { name <- paste0('math: ', input$name, ': compiles') test_that(name, { wrap_if_matches(input$knownFailure, name, expect_error, { run <- input$run name <- input$name foo <- nimbleFunction(run = run, name = 'foo') nimbleOptions(useRefactoredSizeProcessing = FALSE) nimble:::resetLabelFunctionCreators() testProject <- nimble:::nimbleProjectClass(name = 'for_comparison') compileNimble(foo, project = testProject, control = list(writeFiles = TRUE, compileCpp = FALSE, loadSO = FALSE)) filename <- testProject$RCfunInfos[['foo']][['cppClass']]$filename newfilename <- paste0(filename,'_original') pathedfilename <- file.path(tempdir(), 'nimble_generatedCode', filename) original_pathedfilename <- file.path(tempdir(), 'nimble_generatedCode', newfilename) for(ext in c('.h', '.cpp')) { file.copy(paste0(pathedfilename, ext), paste0(original_pathedfilename, ext), overwrite = TRUE) } nimbleOptions(useRefactoredSizeProcessing = TRUE) nimble:::resetLabelFunctionCreators() testProject <- nimble:::nimbleProjectClass(name = 'for_comparison') compileNimble(foo, project = testProject, control = list(writeFiles = TRUE, compileCpp = FALSE, loadSO = FALSE)) filename <- testProject$RCfunInfos[['foo']][['cppClass']]$filename refactored_pathedfilename <- file.path(tempdir(), 'nimble_generatedCode', filename) for(ext in c('.h','.cpp')) { compareFilesUsingDiff(paste0(refactored_pathedfilename, ext), paste0(original_pathedfilename, ext), main = paste0(ext, ' files do not match for: ', name)) } }) }) } testCases <- list( list(name = 'Y <- x', run = function(x = double(1)) { Y <- x })) ans <- lapply(testCases, compareOldAndNewCompilationRC) compareOldAndNewMathTest <- function(input) { runFun <- gen_runFun(input, logicalArgs = input$logicalArgs, returnType = ifelse(is.null(input$returnType), "double", input$returnType)) input$run <- runFun if('knownFailureReport' %in% names(input) && input$knownFailureReport) cat("\nBegin expected error message:\n") compareOldAndNewCompilationRC(input) if('knownFailureReport' %in% names(input) && input$knownFailureReport) cat("End expected error message.\n") } source(system.file(file.path('tests', 'testthat', 'mathTestLists.R'), package = 'nimble')) testsBasicMathModified <- lapply(testsBasicMath, function(x) { if(x$name %in% c('modulo of vectors', 'modulo of vector and scalar')) x$knownFailure <- NULL x }) ans2 <- lapply(testsBasicMathModified, compareOldAndNewMathTest) options(warn = RwarnLevel) nimbleOptions(verbose = nimbleVerboseSetting)
library(XML) tt = xmlTree(namespaces = c(w = "http://schemas.microsoft.com/office/word/2003/wordml")) tt$addPI("mso-application", "progid='Word.Document'") tt$addTag("wordDocument", namespace = "w", close = FALSE) v = tt$addTag("w:body", tt$addTag("w:p", tt$addTag("w:r", tt$addTag("w:t", "Hello World!")))) tt$closeTag() cat(saveXML(tt))
multmixOpen <- function(lambdaformula, gammaformula, omegaformula, pformula, data, mixture=c("P", "NB", "ZIP"), K, dynamics=c("constant", "autoreg", "notrend", "trend", "ricker", "gompertz"), fix=c("none", "gamma", "omega"), immigration=FALSE, iotaformula = ~1, starts, method="BFGS", se=TRUE, ...) { if(!is(data, "unmarkedFrameMMO")) stop("Data is not of class unmarkedFrameMMO.") piFun <- data@piFun mixture <- match.arg(mixture) dynamics <- match.arg(dynamics) if((identical(dynamics, "constant") || identical(dynamics, "notrend")) & immigration) stop("You can not include immigration in the constant or notrend models") if(identical(dynamics, "notrend") & !identical(lambdaformula, omegaformula)) stop("lambdaformula and omegaformula must be identical for notrend model") fix <- match.arg(fix) formlist <- mget(c("lambdaformula", "gammaformula", "omegaformula", "pformula", "iotaformula")) check_no_support(formlist) formula <- as.formula(paste(unlist(formlist), collapse=" ")) D <- getDesign(data, formula) y <- D$y M <- nrow(y) T <- data@numPrimary J <- ncol(getY(data)) / T y <- array(y, c(M, J, T)) yt <- apply(y, c(1,3), function(x) { if(all(is.na(x))) return(NA) else return(sum(x, na.rm=TRUE)) }) ytna <- apply(is.na(y), c(1,3), all) ytna <- matrix(ytna, nrow=M) ytna[] <- as.integer(ytna) first <- apply(!ytna, 1, function(x) min(which(x))) last <- apply(!ytna, 1, function(x) max(which(x))) first1 <- which(first==1)[1] Xlam.offset <- D$Xlam.offset Xgam.offset <- D$Xgam.offset Xom.offset <- D$Xom.offset Xp.offset <- D$Xp.offset Xiota.offset <- D$Xiota.offset if(is.null(Xlam.offset)) Xlam.offset <- rep(0, M) if(is.null(Xgam.offset)) Xgam.offset <- rep(0, M*(T-1)) if(is.null(Xom.offset)) Xom.offset <- rep(0, M*(T-1)) if(is.null(Xp.offset)) Xp.offset <- rep(0, M*T*J) if(is.null(Xiota.offset)) Xiota.offset <- rep(0, M*(T-1)) if(missing(K)) { K <- max(y, na.rm=T) + 20 warning("K was not specified and was set to ", K, ".") } if(K <= max(y, na.rm = TRUE)) stop("specified K is too small. Try a value larger than any observation") k <- 0:K lk <- length(k) lfac.k <- lgamma(k+1) kmyt <- array(0, c(lk, T, M)) lfac.kmyt <- array(0, c(M, T, lk)) fin <- array(NA, c(M, T, lk)) for(i in 1:M) { for(t in 1:T) { fin[i,t,] <- k - yt[i,t] >= 0 if(sum(ytna[i,t])==0) { kmyt[,t,i] <- k - yt[i,t] lfac.kmyt[i,t, ] <- lgamma(kmyt[,t,i] + 1) } } } lamParms <- colnames(D$Xlam) gamParms <- colnames(D$Xgam) omParms <- colnames(D$Xom) detParms <- colnames(D$Xp) nAP <- ncol(D$Xlam) nGP <- ncol(D$Xgam) nOP <- ncol(D$Xom) nDP <- ncol(D$Xp) nIP <- ifelse(immigration, ncol(D$Xiota), 0) iotaParms <- character(0) if(immigration) iotaParms <- colnames(D$Xiota) if(identical(fix, "gamma")) { if(!identical(dynamics, "constant")) stop("dynamics must be constant when fixing gamma or omega") if(nGP > 1){ stop("gamma covariates not allowed when fix==gamma") }else { nGP <- 0 gamParms <- character(0) } } else if(identical(dynamics, "notrend")) { if(nGP > 1){ stop("gamma covariates not allowed when dyamics==notrend") } else { nGP <- 0 gamParms <- character(0) } } if(identical(fix, "omega")) { if(!identical(dynamics, "constant")) stop("dynamics must be constant when fixing gamma or omega") if(nOP > 1) stop("omega covariates not allowed when fix==omega") else { nOP <- 0 omParms <- character(0) } } else if(identical(dynamics, "trend")) { if(nOP > 1) stop("omega covariates not allowed when dynamics='trend'") else { nOP <- 0 omParms <- character(0) } } nP <- nAP + nGP + nOP + nDP + nIP + (mixture!="P") if(!missing(starts) && length(starts) != nP) stop(paste("The number of starting values should be", nP)) nbParm <- character(0) if(identical(mixture,"NB")) nbParm <- "alpha" else if(identical(mixture, "ZIP")) nbParm <- "psi" paramNames <- c(lamParms, gamParms, omParms, detParms, iotaParms, nbParm) I <- cbind(rep(k, times=lk), rep(k, each=lk)) I1 <- I[I[,1] <= I[,2],] lik_trans <- .Call("get_lik_trans", I, I1, PACKAGE="unmarked") beta_ind <- matrix(NA, 6, 2) beta_ind[1,] <- c(1, nAP) beta_ind[2,] <- c(1, nGP) + nAP beta_ind[3,] <- c(1, nOP) + nAP + nGP beta_ind[4,] <- c(1, nDP) + nAP + nGP + nOP beta_ind[5,] <- c(1, nIP) + nAP + nGP + nOP + nDP beta_ind[6,] <- c(1, 1) + nAP + nGP + nOP + nDP + nIP fin <- fin*1 yperm <- aperm(y, c(1,3,2)) yna <- is.na(yperm)*1 yna <- aperm(yna, c(3,2,1)) yperm <- aperm(yperm, c(3,2,1)) nll <- function(parms) { .Call("nll_multmixOpen", yperm, yt, D$Xlam, D$Xgam, D$Xom, D$Xp, D$Xiota, parms, beta_ind - 1, Xlam.offset, Xgam.offset, Xom.offset, Xp.offset, Xiota.offset, ytna, yna, lk, mixture, first - 1, last - 1, first1 - 1, M, T, J, D$delta, dynamics, fix, D$go.dims, immigration, I, I1, lik_trans$Ib, lik_trans$Ip, piFun, lfac.k, kmyt, lfac.kmyt, fin, PACKAGE = "unmarked") } if(missing(starts)){ starts <- rep(0, nP) } fm <- optim(starts, nll, method=method, hessian=se, ...) ests <- fm$par names(ests) <- paramNames covMat <- invertHessian(fm, nP, se) fmAIC <- 2*fm$value + 2*nP lamEstimates <- unmarkedEstimate(name = "Abundance", short.name = "lam", estimates = ests[1:nAP], covMat = as.matrix(covMat[1:nAP,1:nAP]), invlink = "exp", invlinkGrad = "exp") estimateList <- unmarkedEstimateList(list(lambda=lamEstimates)) gamName <- switch(dynamics, constant = "gamConst", autoreg = "gamAR", notrend = "", trend = "gamTrend", ricker="gamRicker", gompertz = "gamGomp") if(!(identical(fix, "gamma") | identical(dynamics, "notrend"))){ estimateList@estimates$gamma <- unmarkedEstimate(name = ifelse(identical(dynamics, "constant") | identical(dynamics, "autoreg"), "Recruitment", "Growth Rate"), short.name = gamName, estimates = ests[(nAP+1) : (nAP+nGP)], covMat = as.matrix(covMat[(nAP+1) : (nAP+nGP), (nAP+1) : (nAP+nGP)]), invlink = "exp", invlinkGrad = "exp") } if(!(identical(fix, "omega") | identical(dynamics, "trend"))) { if(identical(dynamics, "constant") | identical(dynamics, "autoreg") | identical(dynamics, "notrend")){ estimateList@estimates$omega <- unmarkedEstimate( name="Apparent Survival", short.name = "omega", estimates = ests[(nAP+nGP+1) :(nAP+nGP+nOP)], covMat = as.matrix(covMat[(nAP+nGP+1) : (nAP+nGP+nOP), (nAP+nGP+1) : (nAP+nGP+nOP)]), invlink = "logistic", invlinkGrad = "logistic.grad") } else if(identical(dynamics, "ricker")){ estimateList@estimates$omega <- unmarkedEstimate(name="Carrying Capacity", short.name = "omCarCap", estimates = ests[(nAP+nGP+1) :(nAP+nGP+nOP)], covMat = as.matrix(covMat[(nAP+nGP+1) : (nAP+nGP+nOP), (nAP+nGP+1) : (nAP+nGP+nOP)]), invlink = "exp", invlinkGrad = "exp") } else{ estimateList@estimates$omega <- unmarkedEstimate(name="Carrying Capacity", short.name = "omCarCap", estimates = ests[(nAP+nGP+1) :(nAP+nGP+nOP)], covMat = as.matrix(covMat[(nAP+nGP+1) : (nAP+nGP+nOP), (nAP+nGP+1) : (nAP+nGP+nOP)]), invlink = "exp", invlinkGrad = "exp") } } estimateList@estimates$det <- unmarkedEstimate( name = "Detection", short.name = "p", estimates = ests[(nAP+nGP+nOP+1) : (nAP+nGP+nOP+nDP)], covMat = as.matrix(covMat[(nAP+nGP+nOP+1) : (nAP+nGP+nOP+nDP), (nAP+nGP+nOP+1) : (nAP+nGP+nOP+nDP)]), invlink = "logistic", invlinkGrad = "logistic.grad") if(immigration) { estimateList@estimates$iota <- unmarkedEstimate( name="Immigration", short.name = "iota", estimates = ests[(nAP+nGP+nOP+nDP+1) :(nAP+nGP+nOP+nDP+nIP)], covMat = as.matrix(covMat[(nAP+nGP+nOP+nDP+1) : (nAP+nGP+nOP+nDP+nIP), (nAP+nGP+nOP+nDP+1) : (nAP+nGP+nOP+nDP+nIP)]), invlink = "exp", invlinkGrad = "exp") } if(identical(mixture, "NB")) { estimateList@estimates$alpha <- unmarkedEstimate(name = "Dispersion", short.name = "alpha", estimates = ests[nP], covMat = as.matrix(covMat[nP, nP]), invlink = "exp", invlinkGrad = "exp") } if(identical(mixture, "ZIP")) { estimateList@estimates$psi <- unmarkedEstimate(name = "Zero-inflation", short.name = "psi", estimates = ests[nP], covMat = as.matrix(covMat[nP, nP]), invlink = "logistic", invlinkGrad = "logistic.grad") } umfit <- new("unmarkedFitMMO", fitType = "multmixOpen", call = match.call(), formula = formula, formlist = formlist, data = data, sitesRemoved=D$removed.sites, estimates = estimateList, AIC = fmAIC, opt = fm, negLogLike = fm$value, nllFun = nll, K = K, mixture = mixture, dynamics = dynamics, fix = fix, immigration=immigration) return(umfit) }
expected <- eval(parse(text="c(2.06019871693154-0.97236279736125i, 1.38966747567603-0.89308479200721i, 1.74477849158514-0.89217080785487i, 1.81523768768554-0.90287292275869i, 2.20913948714243-1.04459069848176i, 1.60263304392934-0.88173204641486i, 2.10776763442223-0.99258373995851i, 2.5380296111574-1.33177066138762i, 1.83792574762849-0.90713748654542i, 0.95167219314953-1.03372343363615i, 1.97115981017201-0.940809478923i, 1.14864149179823-0.9478159925318i, 2.52084254505265-1.31054487269306i, 1.61007950812446-0.88191942508125i, 1.20816857163099-0.92971161728178i, 1.35868857560486-0.8974910350038i, 1.49610693236178-0.88334910031388i, 2.01465147478476-0.95524421064323i, 2.14806988970708-1.01173036858466i, 2.25066651078344-1.06983602959499i, 1.48765591796887-0.88382239981613i, 2.20671601896538-1.04319273288422i, 1.91380178921757-0.92444247548778i, 1.75137033621791-0.89301246696347i, 0.54901015708049-1.40555758406813i, 2.02206077002631-0.95788602315598i, 1.40474744046887-0.89120080287719i, 1.51568368331281-0.88244842343019i, 2.21510417542065-1.04806593419354i, 1.6212080486594-0.88227275342459i, 0.68659437082566-1.23700772602298i, 1.2545077861783-0.91780201569415i, 1.54164231516619-0.88167416649732i, 1.8671364540176-0.9132355492085i, 2.64716760753218-1.49064594698513i, 0.83275223108544-1.1096090644475i, 2.46154314736853-1.24380506401514i, 1.06238393475755-0.98014668087382i, 0.53089285385325-1.43244403873718i, 2.45472879430902-1.23673011585732i, 1.08697693875905-0.97014975400808i, 1.75564923963954-0.89357620129453i, 2.50444377143645-1.29111486671099i, 2.48285928286931-1.26669863184365i, 2.51505930226871-1.30360310302078i, 1.94121615992608-0.93189805963656i, 2.46199354083604-1.24427675964869i, 1.09598785117287-0.96664660265816i, 0.48353317246709-1.50917513375676i, 2.38599272957818-1.17141281294956i, 1.03204027934864-0.99339141904072i, 1.04384831135097-0.98811495960226i, 1.33703098122139-0.90100631664327i, 2.24178949069067-1.06422955325057i, 1.65521150816549-0.8838982271986i, 1.76839163576082-0.8953365000496i, 1.17873102109643-0.93825792450717i, 1.83252734835527-0.90608576667087i, 0.91774134184438-1.05325217158387i, 1.83401272112857-0.90637283063358i, 0.87502981371111-1.08017250683592i, 2.26461206945042-1.07888319465557i, 2.37331090399735-1.16047433677904i, 0.31221417819914-1.89630688813059i, 1.86324878916868-0.91238391489524i, 1.36073251658084-0.89717788657767i, 1.12967250507139-0.95428402228972i, 1.90917797809015-0.92324959236406i, 1.20989551220349-0.92923433018444i, 1.31147517885395-0.90562376711956i, 1.72279235941004-0.88959702916893i, 1.52463539820123-0.88212741812883i, 1.59488434738021-0.88157876499314i, 0.47715740224864-1.52028317388427i, 2.08009766680446-0.9805202035075i, 2.2901049191676-1.09620500808125i, 1.54407748442208-0.88162604012553i, 1.35217597933995-0.89851014050068i, 1.26479953626603-0.91540482044197i, 1.89179085389467-0.91892771491411i, 2.27239579346697-1.08406296973435i, 0.76683865083424-1.1617027515241i, 1.81670329981108-0.90313612992273i, 2.15773593551216-1.01661316076046i, 1.73747207096121-0.89127574734901i, 1.70999062255743-0.88826260835802i, 0.84405334773776-1.1014538505892i, 1.51089600213742-0.88264348268232i, 1.05337324593324-0.98397287363741i, 1.91975338258785-0.9260051285683i, 1.41945761915969-0.88952557986273i, 1.79932440652189-0.90012306157287i, 1.50394071111703-0.88295591770301i, 2.17579962867022-1.02605215090402i, 2.39698753635608-1.18116280419683i, 0.50804991930984-1.46823049931261i, 1.15347435427867-0.94622340979008i, 2.36906014015905-1.15687993185943i, 1.99508101918656-0.94852492497881i, 2.33667576456328-1.13063614489832i)")); test(id=0, code={ argv <- eval(parse(text="list(c(-0.7104065636993+1i, 0.25688370915653+1i, -0.24669187846237+1i, -0.34754259939773+1i, -0.95161856726502+1i, -0.04502772480892+1i, -0.78490446945708+1i, -1.66794193658814+1i, -0.38022652028776+1i, 0.91899660906077+1i, -0.57534696260839+1i, 0.60796432222503+1i, -1.61788270828916+1i, -0.05556196552454+1i, 0.51940720394346+1i, 0.30115336216671+1i, 0.10567619414894+1i, -0.64070600830538+1i, -0.84970434603358+1i, -1.02412879060491+1i, 0.11764659710013+1i, -0.9474746141848+1i, -0.49055744370067+1i, -0.25609219219825+1i, 1.84386200523221+1i, -0.65194990169546+1i, 0.23538657228486+1i, 0.07796084956371+1i, -0.96185663413013+1i, -0.0713080861236+1i, 1.44455085842335+1i, 0.45150405307921+1i, 0.04123292199294+1i, -0.42249683233962+1i, -2.05324722154052+1i, 1.13133721341418+1i, -1.46064007092482+1i, 0.73994751087733+1i, 1.90910356921748+1i, -1.4438931609718+1i, 0.70178433537471+1i, -0.26219748940247+1i, -1.57214415914549+1i, -1.51466765378175+1i, -1.60153617357459+1i, -0.5309065221703+1i, -1.4617555849959+1i, 0.68791677297583+1i, 2.10010894052567+1i, -1.28703047603518+1i, 0.78773884747518+1i, 0.76904224100091+1i, 0.33220257895012+1i, -1.00837660827701+1i, -0.11945260663066+1i, -0.28039533517025+1i, 0.56298953322048+1i, -0.37243875610383+1i, 0.97697338668562+1i, -0.37458085776701+1i, 1.05271146557933+1i, -1.04917700666607+1i, -1.26015524475811+1i, 3.2410399349424+1i, -0.41685758816043+1i, 0.29822759154072+1i, 0.63656967403385+1i, -0.48378062570874+1i, 0.51686204431361+1i, 0.36896452738509+1i, -0.21538050764169+1i, 0.06529303352532+1i, -0.03406725373846+1i, 2.12845189901618+1i, -0.74133609627283+1i, -1.09599626707466+1i, 0.03778839917108+1i, 0.31048074944314+1i, 0.43652347891018+1i, -0.45836533271111+1i, -1.06332613397119+1i, 1.26318517608949+1i, -0.34965038795355+1i, -0.86551286265337+1i, -0.2362795689411+1i, -0.19717589434855+1i, 1.10992028971364+1i, 0.0847372921972+1i, 0.75405378518452+1i, -0.49929201717226+1i, 0.2144453095816+1i, -0.32468591149083+1i, 0.09458352817357+1i, -0.89536335797754+1i, -1.31080153332797+1i, 1.99721338474797+1i, 0.60070882367242+1i, -1.25127136162494+1i, -0.61116591668042+1i, -1.18548008459731+1i))")); do.call(`acos`, argv); }, o=expected);
pcaBootPlot <- function(data=NULL, groups=NULL, min.value=1, all.min.value=FALSE, num.boot.samples=100, log2.transform=TRUE, pdf.filename=NULL, pdf.width=6, pdf.height=6, draw.legend=FALSE, legend.names=NULL, legend.x=NULL, legend.y=NULL, transparency=77, min.x=NULL, max.x=NULL, min.y=NULL, max.y=NULL, correct.inversions=TRUE, confidence.regions=FALSE, confidence.size=0.95, step.size=0.1, trim.proportion=0, return.samples=FALSE, use.prcomp=FALSE) { if(is.null(data)) { return("You must provide a data.frame for the data parameter") } num.samples <- (ncol(data)-1) cat("Performing PCA on", num.samples, "samples\n") use.facto <- TRUE if (use.prcomp == TRUE) { use.facto <- FALSE } else if (num.samples < 50) { cat("\nUsing FactoMineR for analysis. However you may be able to speed up\n") cat(" computation by setting use.prcomp to TRUE\n\n") } dup.indices <- duplicated(data$ID) dup.IDs <- data[dup.indices,]$ID avg.fpkms <- data.frame() cat(paste("There are ", length(dup.IDs), " duplicated entries", sep=""), "\n") if (length(dup.IDs) > 0) { cat("Averaging duplicated entries...\n") for (ID in levels(as.ordered(dup.IDs))) { avg.ID <- data.frame(ID=ID, t(data.frame(colMeans(data[data$ID == ID,2:ncol(data)])))) row.names(avg.ID) <- 1 avg.fpkms <- rbind(avg.fpkms, avg.ID) data <- data[data$ID != ID,] } data <- rbind(data, avg.fpkms) } IDs <- data[,1] data <- as.matrix(data[,2:ncol(data)]) row.names(data) <- IDs cat("Filtering entries based on min.val and groups...\n") if (!is.null(groups)) { data.factors <- as.data.frame(table(factor(groups))) } if (is.null(groups) || all.min.value) { if (all.min.value) { keep <- (apply(data, 1, min) > min.value) } else { keep <- (rowSums(data[,1:ncol(data)]) > min.value) } } else { all.keeps <- list() list.index <- 1 for(group.id in data.factors[,1]) { group.keep <- which(rowSums(data[,which(groups==group.id)]) > min.value) all.keeps[[list.index]] <- group.keep list.index = list.index+1 } keep <- Reduce(intersect, all.keeps) } data <- data[keep,] num.genes <- nrow(data) if (is.null(groups)) { if (all.min.value) { cat(" ", paste(num.genes, "entries had all samples with values >", min.value), "\n") } else { cat(" ", paste(num.genes, "entries had at least one sample with value >", min.value), "\n") } } else { cat(" ", paste(num.genes, "entries had at least one sample per group with values >", min.value), "\n") } if(log2.transform) { cat("Adding pseudo-counts and log2 transforming the data...", "\n") cat(" You can turn this off by setting log2.transform to FALSE.", "\n") data <- log2(data+1) } pca.data <- data.frame() pc1 <- vector() pc2 <- vector() pc1.names <- vector() pc2.names <- vector() pca.var.per <- vector() if (use.facto) { cat("Using FactoMineR for analysis\n") pca <- FactoMineR::PCA(t(data), ncp=5, graph=FALSE, scale.unit=TRUE) pca.data <- list(x=pca$ind$coord[,c(1,2)]) pc1 <- pca$var$coord[,1]/sqrt(pca$eig[1,1]) pc2 <- pca$var$coord[,2]/sqrt(pca$eig[2,1]) pc1.names <- names(pc1) pc2.names <- names(pc2) pca.var.per <- round(pca$eig[,2], digits=1) } else { cat("Using prcomp for analysis\n") pca <- prcomp(t(data), center=TRUE, scale. = TRUE, retx=TRUE) pca.data <- list(x=pca$x[,c(1,2)]) pc1 <- pca$rotation[,1] pc1.names <- names(pc1) pc2 <- pca$rotation[,2] pc2.names <- names(pc2) pca.var <- pca$sdev^2 pca.var.per <- round(pca.var/sum(pca.var)*100, 1) pca.var.cum <- cumsum(pca.var.per) } boot.points <- data.frame() if (num.boot.samples > 0) { cat("Bootstrapping the PCA at the entry level...\n") gene.names <- rownames(data) for (i in 1:num.boot.samples) { cat("Bootstrap iteration:", i, "\n") boot.indices <- sample(x=c(1:num.genes), size=num.genes, replace=TRUE) boot.data <- data[boot.indices,] boot.pc1 <- vector() boot.pc2 <- vector() if (use.facto) { rownames(boot.data) <- c(1:nrow(boot.data)) pca.boot <- FactoMineR::PCA(t(boot.data), ncp=5, graph=FALSE, scale.unit=TRUE) rownames(pca.boot$var$coord) <- gene.names[boot.indices] pca.boot.data <- list(x=pca.boot$ind$coord[,c(1,2)]) boot.pc1 <- pca.boot$var$coord[,1]/sqrt(pca.boot$eig[1,1]) boot.pc2 <- pca.boot$var$coord[,2]/sqrt(pca.boot$eig[2,1]) } else { pca.boot <- prcomp(t(boot.data), center=TRUE, scale. = TRUE, retx=TRUE) pca.boot.data <- list(x=pca.boot$x[,c(1,2)]) boot.pc1 <- pca.boot$rotation[,1] boot.pc2 <- pca.boot$rotation[,2] } if (correct.inversions) { boot.pc1.names <- levels(factor(names(boot.pc1))) pc1.cor <- cor(pc1[boot.pc1.names], boot.pc1[boot.pc1.names]) if (pc1.cor < 0) { pca.boot.data$x[,1] <- pca.boot.data$x[,1] * -1 } boot.pc2.names <- levels(factor(names(boot.pc2))) pc2.cor <- cor(pc2[boot.pc1.names], boot.pc2[boot.pc1.names]) if (pc2.cor < 0) { pca.boot.data$x[,2] <- pca.boot.data$x[,2] * -1 } } boot.points <- rbind(boot.points, pca.boot.data$x[,c(1,2)]) } } if (exists("data.factors")) { if (length(data.factors[,1]) == 2) { hex.colors <- RColorBrewer::brewer.pal(n=3, name="Set1")[1:2] plot.col <- paste(rep(hex.colors, data.factors[,2]), transparency, sep="") } else { hex.colors <- RColorBrewer::brewer.pal(n=length(data.factors[,1]), name="Set1") plot.col <- paste(rep(hex.colors, data.factors[,2]), transparency, sep="") } } else { hex.colors <- RColorBrewer::brewer.pal(n=3, name="Set1")[1] plot.col <- paste(hex.colors, transparency, sep="") } plot.pch <- 1 if (!is.null(groups)) { plot.pch <- (groups)[1:ncol(data)] } radii <- NULL return.samples.vector <- NULL num.cells <- nrow(pca.data$x) if (num.boot.samples > 0) { if (confidence.regions | (trim.proportion > 0)) { cat("Calculating ", round(confidence.size * 100, digits=2), "% confidence regions\n", sep="") boot.points.by.cell <- cbind(boot.points, cell=c(1:num.cells)) min.points <- round(num.boot.samples * confidence.size) radii <- vector(length=num.cells) for (i in 1:num.cells) { circle.center.x <- pca.data$x[i,1] circle.center.y <- pca.data$x[i,2] radius <- step.size cell.points <- boot.points.by.cell[boot.points.by.cell$cell == i,c(1,2)] done <- FALSE while(!done) { contained.points <- sum(((cell.points[,1] - circle.center.x)^2 + (cell.points[,2] - circle.center.y)^2) <= (radius^2)) if (contained.points >= min.points) { done <- TRUE } else { radius <- radius + step.size } } radii[i] <- radius } if (trim.proportion > 0) { cat("Trimming samples with the most variation\n") cat("\tThe top ", round(trim.proportion * 100, digits=2), "% will be removed\n", sep="") radius.cutoff <- quantile(radii, (1-trim.proportion)) cutoff.indices <- which(radii >= radius.cutoff) cat("\t", length(cutoff.indices), " samples were removed\n", sep="") return.samples.vector <- c(1:num.samples) return.samples.vector <- return.samples.vector[-cutoff.indices] pca.data$x <- pca.data$x[-cutoff.indices,] rownames(boot.points) <- c(1:nrow(boot.points)) for (i in 0:(num.boot.samples-1)) { offset <- i * num.samples boot.points[cutoff.indices + offset,] <- NA } na.indices <- which(is.na(boot.points[,1])) boot.points <- boot.points[-na.indices,] } } } if (!confidence.regions) { radii <- NULL } if (nrow(pca.data$x) > 0) { draw.pcaBootPlot(pca=pca.data, boot.points=boot.points, pca.var.per=pca.var.per, num.boot.samples=num.boot.samples, plot.col=plot.col, plot.pch=plot.pch, data.factors=data.factors, draw.legend=draw.legend, legend.names=legend.names, legend.x=legend.x, legend.y=legend.y, hex.colors=hex.colors, transparency=transparency, min.x=min.x, max.x=max.x, min.y=min.y, max.y=max.y, radii=radii) if (!is.null(pdf.filename)) { pdf(file=pdf.filename, width=pdf.width, height=pdf.height) draw.pcaBootPlot(pca=pca.data, boot.points=boot.points, pca.var.per=pca.var.per, num.boot.samples=num.boot.samples, plot.col=plot.col, plot.pch=plot.pch, data.factors=data.factors, draw.legend=draw.legend, legend.names=legend.names, legend.x=legend.x, legend.y=legend.y, hex.colors=hex.colors, transparency=transparency, min.x=min.x, max.x=max.x, min.y=min.y, max.y=max.y, radii=radii) dev.off() } } else { cat("\nThere were no points to plot! Bummer\n") return() } cat("\nDone! Hooray!") if (return.samples) { return(return.samples.vector) } } draw.pcaBootPlot <- function(pca=NULL, boot.points=NULL, pca.var.per=NULL, num.boot.samples=100, plot.col=NULL, plot.pch=NULL, data.factors=NULL, draw.legend=FALSE, legend.names=NULL, legend.x=NULL, legend.y=NULL, hex.colors=NULL, transparency=77, min.x=NULL, max.x=NULL, min.y=NULL, max.y=NULL, radii=NULL) { if (num.boot.samples > 0 && (nrow(boot.points) > 0)) { if (is.null(max.x)) { max.x <- max(boot.points[,1], pca$x[,1], na.rm=TRUE) } if (is.null(min.x)) { min.x <- min(boot.points[,1], pca$x[,1], na.rm=TRUE) } if (is.null(max.y)) { max.y <- max(boot.points[,2], pca$x[,2], na.rm=TRUE) } if (is.null(min.y)) { min.y <- min(boot.points[,2], pca$x[,2], na.rm=TRUE) } plot(boot.points, type="n", xlim=c(min.x, max.x), ylim=c(min.y, max.y), xlab=paste("PC1 (", pca.var.per[1], "%)", sep=""), ylab=paste("PC2 (", pca.var.per[2], "%)", sep="")) grid() points(boot.points, pch=plot.pch, col=plot.col) } else { if (is.null(legend.x)) { legend.x <- 0 } if (is.null(legend.y)) { legend.y <- 0 } if ((!is.null(min.x)) & (!is.null(max.x))) { x.lims <- c(min.x, max.x) } if ((!is.null(min.y)) & (!is.null(max.y))) { y.lims <- c(min.y, max.y) } if (exists("x.lims") & exists("y.lims")) { plot(pca$x[,c(1,2)], type="n", xlab=paste("PC1 (", pca.var.per[1], "%)", sep=""), ylab=paste("PC2 (", pca.var.per[2], "%)", sep=""), xlim=x.lims, ylim=y.lims) } else { plot(pca$x[,c(1,2)], type="n", xlab=paste("PC1 (", pca.var.per[1], "%)", sep=""), ylab=paste("PC2 (", pca.var.per[2], "%)", sep="")) } grid() } if(!is.null(radii)) { symbols(pca$x[,c(1,2)], circles=radii, add=TRUE, inches=FALSE, lty=2, col=" } points(pca$x[,c(1,2)], pch=plot.pch) if (draw.legend) { if (is.null(legend.names)) { legend.names <- c(1:length(data.factors[,1])) } legend(legend.x, legend.y, legend.names, pch=1:length(data.factors[,1]), pt.cex=1, cex=0.8, col=hex.colors[1:nrow(data.factors)]) } }
lpridge <- function(x,y,bandwidth, deriv = 0, n.out = 200,x.out = NULL, order = NULL, ridge = NULL, weight = "epa", mnew = 100, var = FALSE) { n <- length(x) if (length(y) != n) stop("Input grid and data must have the same length.") sorvec <- sort.list(x) x <- x[sorvec] y <- y[sorvec] if (is.null(x.out)) { n.out <- as.integer(n.out) x.out <- seq(min(x),max(x),length = n.out) } else { n.out <- length(x.out) } if (length(bandwidth) == 1) bandwidth <- rep(bandwidth,n.out) else if (length(bandwidth) != n.out) stop("Length of bandwith is not equal to length of output grid.") sorvec <- sort.list(x.out) x.out <- x.out[sorvec] bandwidth <- bandwidth[sorvec] if (is.null(order)) order <- deriv+1 if (order < 0) stop("Polynomial order is negative.") if (deriv < 0) stop("Order of derivative is negative.") if (deriv > order) stop("Order of derivative is larger than polynomial order.") if (is.null(ridge)) { ridge <- 5*sqrt(length(x)*mean(bandwidth)/diff(range(x)))* mean(bandwidth)^(2*deriv)/((2*deriv+3)*(2*deriv+5)) if (order == deriv) ridge <- 0 } if (order == deriv & ridge > 0) stop("ridging is impossible for order==deriv.") if (weight == "epa") { kord <- 2 wk <- c(1,0,-1) } else if (weight == "bi") { kord <- 4 wk <- c(1,0,-2,0,1) } else if (weight == "tri") { kord <- 6 wk <- c(1,0,-3,0,3,0,-1) } else if (is.numeric(weight)) { kord <- length(weight)-1 wk <- weight } else stop("Error in weight.") var <- as.logical(var) leng <- 10 nmoms <- as.integer(length(x)/leng+1) imoms <- integer(nmoms) moms <- double(nmoms*4*(order+max(2,kord)+as.integer(var))) if (order > 10) stop("polynomial order exceeds 10.") if ((kord+order) > 12) stop("Order of kernel weights + polynomial order exceeds 12.") res <- .Fortran(lpridge_s, x = as.double(x), y = as.double(y), as.integer(n), bandwidth = as.double(bandwidth), deriv = as.integer(deriv), order = as.integer(order), kord = as.integer(kord), wk = as.double(wk), x.out = as.double(x.out), as.integer(n.out), mnew = as.integer(mnew), as.integer(imoms), as.double(moms), est = double(n.out), as.integer(leng), as.integer(nmoms), var = as.integer(var), est.var = double(n.out), ridge = as.double(ridge), nsins = integer(1))[c("bandwidth", "est","est.var", "nsins")] if (res$nsins > 0) warning(res$nsins, " singularity exceptions. Corresponding estimators set zero.") list(x = x, y = y, bandwidth = res$bandwidth, deriv = deriv, x.out = x.out, order = order, ridge = ridge, weight = wk, mnew = mnew, var = var, est = res$est, est.var = res$est.var) }
util_is_integer <- function(x, tol = .Machine$double.eps^0.5) { if (is.numeric(x)) { r <- abs(x - round(x)) < tol } else { r <- rep(FALSE, length(x)) } r[is.na(r)] <- TRUE r }
frair_compare <- function(frfit1, frfit2, start=NULL){ if(!inherits(frfit1, 'frfit') | !inherits(frfit2, 'frfit')){ stop('Both inputs must be of class frfit') } if(frfit1$response!=frfit2$response){ stop('Both inputs must be fitted using the same response.') } fr_nll_difffunc <- get(paste0(frfit1$response,'_nll_diff'), pos = "package:frair") if(any(frfit1$optimvars!=frfit2$optimvars)){ stop('Both inputs must have the same optimised variables.') } if(is.null(start)){ start <- list() for(a in 1:length(frfit1$optimvars)){ cname <- frfit1$optimvars[a] start[cname] <- mean(frfit1$coefficients[cname], frfit2$coefficients[cname]) } } else { fr_checkstart(start, deparse(substitute(start))) } varnames <- unlist(frair_responses(show=FALSE)[[frfit1$response]][4]) deltavarnames <- NULL for(a in 1:length(varnames)){ deltavarname <- paste0('D',varnames[a]) start[deltavarname] <- 0 deltavarnames <- c(deltavarnames,deltavarname) } if(any(frfit1$fixedvars!=frfit2$fixedvars)){ stop('Both inputs must have the same fixed variables.') } fixed=list() for(a in 1:length(frfit1$fixedvars)){ fname <- frfit1$fixedvars[a] if(frfit1$coefficients[fname]!=frfit2$coefficients[fname]){ stop('Fixed variables must have the same numerical value') } fixed[fname] <- frfit1$coefficients[fname] } Xin <- c(frfit1$x,frfit2$x) Yin <- c(frfit1$y,frfit2$y) grp <- c(rep(0,times=length(frfit1$x)), rep(1,times=length(frfit2$x))) if(length(unlist(start))>1){ try_test <- try(bbmle::mle2(minuslogl=fr_nll_difffunc, start=start, fixed=fixed, data=list('X'=Xin, 'Y'=Yin, grp=grp), optimizer='optim', method='Nelder-Mead', control=list(maxit=5000)), silent=TRUE) } else { try_test <- try(bbmle::mle2(minuslogl=fr_nll_difffunc, start=start, fixed=fixed, data=list('X'=Xin, 'Y'=Yin, grp=grp), optimizer='optim', control=list(maxit=5000)), silent=TRUE) } if(inherits(try_test, 'try-error')){ stop(paste0('Refitting the model for the test failed with the error: \n', try_test[1], '\nNo fallback exists, please contact the package author.')) } cmatall <- cbind(Estimate = try_test@coef, 'Std. Error' = sqrt(diag(try_test@vcov))) zval <- cmatall[,'Estimate']/cmatall[,'Std. Error'] pval <- 2*pnorm(-abs(zval)) cmatall <- cbind(cmatall,'z value'=zval,'Pr(z)'=pval) coefmatDeltas <- cmatall[deltavarnames,] if(is.null(dim(coefmatDeltas))){ dim(coefmatDeltas) <- c(1,length(coefmatDeltas)) dimnames(coefmatDeltas) <- list(deltavarnames, c('Estimate', 'Std. Error', 'z value', 'Pr(z)')) } origcoef <- rbind(coef(frfit1)[frfit1$optimvars],coef(frfit2)[frfit1$optimvars]) row.names(origcoef) <- c(deparse(substitute(frfit1)), deparse(substitute(frfit2))) cat('FUNCTIONAL RESPONSE COEFFICIENT TEST\n\n') cat('Response: ', frfit1$response, '\n', sep='') cat('Optimised variables: ', paste(frfit1$optimvars, collapse=','), '\n', sep='') cat('Fixed variables: ', paste(frfit1$fixedvars, collapse=','), '\n\n', sep='') cat('Original coefficients: \n') print(round(origcoef,5)) cat('\n') cat('Test: ', deparse(substitute(frfit1)), ' - ', deparse(substitute(frfit2)), '\n\n', sep='') printCoefmat(round(coefmatDeltas,5)) output <- list(frfit1=frfit1, frfit2=frfit2, test_fit=try_test, result=coefmatDeltas) class(output) <- c('frcompare', class(output)) invisible(output) }
catconttable <- function(data, vars, byVar, vars.cat=NULL, fisher=NULL, fisher.arg=NULL, cmh=NULL, row.score=NULL, col.score=NULL, normal = NULL, var.equal = NULL, median=NULL, odds=NULL, odds.scale=NULL, odds.unit=NULL, none=NULL, row.p=TRUE, alpha=0.05, B=1000, seed=NULL){ if (missing(byVar)){ byVar <- "PlAcE_hOlDeR_fOr_CaTcOnTtAbLe" data[, byVar] <- factor("") } if (!all(vars %in% names(data))){ bad.vars <- vars[!vars %in% names(data)] bad.vars.msg <- paste("The following variables are not found in 'data':", paste(bad.vars, collapse=", ")) stop(bad.vars.msg) } all.missing <- sapply(data[, c(vars, byVar)], function(x) all(is.na(x))) if (any(all.missing)){ miss.vars <- c(vars, byVar)[all.missing] miss.vars.msg <- paste("The following variables contain only missing values:", paste(miss.vars, collapse=", ")) stop(miss.vars.msg) } if ("tbl_df" %in% class(data)) data <- as.data.frame(data) var.info <- function(v, ...){ if (!is.numeric(data[, v]) | v %in% vars.cat) cattable(data=data, vars=v, byVar=byVar, fisher=fisher, fisher.arg=fisher.arg, cmh=cmh, row.score=row.score, col.score=col.score, odds=odds, none=none, row.p=row.p, alpha=0.05) else conttable(data=data, vars=v, byVar=byVar, normal = normal, var.equal = var.equal, median=median, odds = odds, odds.scale=odds.scale, odds.unit=odds.unit, alpha = alpha, B=B, seed=seed) } ctable <- do.call("rbind", lapply(vars, var.info)) ctable$type <- factor(ctable$type) data[[byVar]] <- labelVector::set_label(data[[byVar]], labelVector::get_label(data, byVar)) attributes(ctable)$byVar <- data[, byVar] attributes(ctable)$vars <- vars return(ctable) }
test_that("output are length one characters for some inputs", { inputs <- list( 1, 1:10, list("a", TRUE, 3i), list(list(list())) ) for (input in inputs) { output <- default_hash_fn(input) expect_vector(output, ptype = character(), size = 1L) } }) test_that("is equivalent to as.character() for atomic length-one input", { inputs <- list(1L, 1, "1", 1i, TRUE, raw(1L)) for (input in inputs) expect_identical(default_hash_fn(input), as.character(input)) }) test_that("Utility for collision handling works as expected", { env <- new.env(); env[["1"]] <- "1" key <- 1 hash <- as.character compare <- identical expect_identical(get_env_key(env, key, hash, compare), "10") })
source("settings.r") context("Checking plots example: forest plot with subgroups") test_that("plot can be drawn.", { expect_equivalent(TRUE, TRUE) skip_on_cran() opar <- par(no.readonly=TRUE) par(mar=c(4,4,1,2)) res <- rma(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, measure="RR", slab=paste(author, year, sep=", "), method="REML") forest(res, xlim=c(-16, 6), at=log(c(.05, .25, 1, 4)), atransf=exp, ilab=cbind(dat.bcg$tpos, dat.bcg$tneg, dat.bcg$cpos, dat.bcg$cneg), ilab.xpos=c(-9.5,-8,-6,-4.5), cex=.75, ylim=c(-1, 27), order=dat.bcg$alloc, rows=c(3:4,9:15,20:23), xlab="Risk Ratio", mlab="", psize=1, header="Author(s) and Year") text(-16, -1, pos=4, cex=0.75, bquote(paste("RE Model for All Studies (Q = ", .(formatC(res$QE, digits=2, format="f")), ", df = ", .(res$k - res$p), ", p = ", .(formatC(res$QEp, digits=2, format="f")), "; ", I^2, " = ", .(formatC(res$I2, digits=1, format="f")), "%)"))) op <- par(cex=.75, font=4) text(-16, c(24,16,5), pos=4, c("Systematic Allocation", "Random Allocation", "Alternate Allocation")) par(font=2) text(c(-9.5,-8,-6,-4.5), 26, c("TB+", "TB-", "TB+", "TB-")) text(c(-8.75,-5.25), 27, c("Vaccinated", "Control")) par(op) res.s <- rma(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, measure="RR", subset=(alloc=="systematic"), method="REML") res.r <- rma(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, measure="RR", subset=(alloc=="random"), method="REML") res.a <- rma(ai=tpos, bi=tneg, ci=cpos, di=cneg, data=dat.bcg, measure="RR", subset=(alloc=="alternate"), method="REML") addpoly(res.s, row=18.5, mlab="") addpoly(res.r, row= 7.5, mlab="") addpoly(res.a, row= 1.5, mlab="") text(-16, 18.5, pos=4, cex=0.75, bquote(paste("RE Model for Subgroup (Q = ", .(formatC(res.s$QE, digits=2, format="f")), ", df = ", .(res.s$k - res.s$p), ", p = ", .(formatC(res.s$QEp, digits=2, format="f")), "; ", I^2, " = ", .(formatC(res.s$I2, digits=1, format="f")), "%)"))) text(-16, 7.5, pos=4, cex=0.75, bquote(paste("RE Model for Subgroup (Q = ", .(formatC(res.r$QE, digits=2, format="f")), ", df = ", .(res.r$k - res.r$p), ", p = ", .(formatC(res.r$QEp, digits=2, format="f")), "; ", I^2, " = ", .(formatC(res.r$I2, digits=1, format="f")), "%)"))) text(-16, 1.5, pos=4, cex=0.75, bquote(paste("RE Model for Subgroup (Q = ", .(formatC(res.a$QE, digits=2, format="f")), ", df = ", .(res.a$k - res.a$p), ", p = ", .(formatC(res.a$QEp, digits=2, format="f")), "; ", I^2, " = ", .(formatC(res.a$I2, digits=1, format="f")), "%)"))) par(opar) }) rm(list=ls())
py_set_seed <- function(seed, disable_hash_randomization = TRUE) { seed <- as.integer(seed) if (disable_hash_randomization) { os <- import("os") Sys.setenv(PYTHONHASHSEED = "0") os$environ[["PYTHONHASHSEED"]] <- "0" } random <- import("random") random$seed(seed) if (py_numpy_available()) { np <- import("numpy") np$random$seed(seed) } invisible(NULL) }
m <- mean(life01); m n <- length(life01); n v <- var(life01) * (n-1) / n; v m^2 / v m / v
rrfNews <- function() { newsfile <- file.path(system.file(package="RRF"), "NEWS") file.show(newsfile) }
cste_bin <- function(x, y, z, beta_ini = NULL, lam = 0, nknots = 1, max.iter = 200, eps = 1e-3) { x <- as.matrix(x) n <- dim(x)[1] p <- dim(x)[2] if(p==1) { B1 <- B2 <- bs(x, df = nknots+4, intercept = TRUE) B <- cbind(z * B1, B2) fit <- glm.fit(B, y, family=binomial(link = 'logit')) delta1 <- coef(fit)[1:(nknots+4)] delta2 <- coef(fit)[(nknots+5):(2*nknots+8)] geta <- z * B1 %*% delta1 + B2 %*% delta2 g1 <- B1 %*% delta1 g2 <- B2 %*% delta2 loss <- -sum(log(1 + exp(geta))) + sum(y * geta) bic <- -2 * loss + (nknots+4) * log(n) aic <- -2 * loss + 2 * (nknots+4) out <- list(beta1 = 1, beta2 = 1, B1 = B1, B2 = B2, delta2 = delta2, delta1 = delta1, g = geta, x = x, y = y, z = z, nknots = nknots, p=p, g1=g1, g2=g2, bic=bic, aic=aic) class(out) <- "cste" return(out) } else { flag <- FALSE truth <- rep(p,2) if(is.null(beta_ini)) beta_ini <- c(normalize(rep(1, truth[1])), normalize(rep(1, truth[2]))) else beta_ini <- c(beta_ini[1:truth[1]], beta_ini[(truth[1]+1):sum(truth)]) beta_curr <- beta_ini conv <- FALSE iter <- 0 knots <- seq(0, 1, length = nknots + 2) len.delta <- length(knots) + 2 while(conv == FALSE & iter < max.iter) { iter <- iter + 1 beta1 <- beta_curr[1:truth[1]] beta2 <- beta_curr[(truth[1]+1):length(beta_curr)] u1 <- pu(x[,1:truth[1]], beta1) u2 <- pu(x[,1:truth[2]], beta2) eta1 <- u1$u eta2 <- u2$u B1 <- bsplineS(eta1, breaks = quantile(eta1, knots)) B2 <- bsplineS(eta2, breaks = quantile(eta2, knots)) B <- cbind(z*B1, B2) fit.delta <- glm.fit(B, y, family=binomial(link = 'logit')) delta <- drop(coef(fit.delta)) delta[is.na(delta)] <- 0 delta1 <- delta[1 : len.delta] delta2 <- delta[(len.delta + 1) : (2*len.delta)] B_deriv_1 <- bsplineS(eta1, breaks = quantile(eta1, knots), nderiv = 1) B_deriv_2 <- bsplineS(eta2, breaks = quantile(eta2, knots), nderiv = 1) newx_1 <- z * drop((B_deriv_1*(u1$deriv))%*%delta1)*x[,1:truth[1]] newx_2 <- drop((B_deriv_2*(u2$deriv))%*%delta2)*x[,1:truth[2]] newx <- cbind(newx_1, newx_2) off_1 <- z * B1%*%delta1 - newx_1 %*% beta1 off_2 <- B2%*%delta2 - newx_2 %*% beta2 off <- off_1 + off_2 beta <- my_logit(newx, y, off, lam = lam) if(sum(is.na(beta)) > 1){ break stop("only 1 variable in betas; decrease lambda") } beta1 <- beta[1:truth[1]] beta2 <- beta[(truth[1]+1):length(beta_curr)] check <- c(sum(beta1!=0),sum(beta2!=0)) if(min(check) <= 1) { stop("0 beta occurs; decrease lambda") flag <- TRUE if(check[1] != 0) beta[1:truth[1]] <- normalize(beta1) if(check[2] !=0) beta[(truth[1]+1):length(beta_curr)] <- normalize(beta2) break } beta <- c(normalize(beta1), normalize(beta2)) conv <- (max(abs(beta - beta_curr)) < eps) beta_curr <- beta } geta <- z * B1 %*% delta1 + B2 %*% delta2 g1 <- B1 %*% delta1 g2 <- B2 %*% delta2 loss <- -sum(log(1 + exp(geta))) + sum(y * geta) df1 <- sum(beta1!=0) df2 <- sum(beta2!=0) df <- df1 + df2 + 2*length(delta1) bic <- -2 * loss + df * log(n) * log(p) aic <- -2 * loss + 2 * df out <- list(beta1 = beta[1:truth[1]], beta2 = beta[(truth[1]+1):length(beta_curr)], B1 = B1, B2 = B2, delta1 = delta1, delta2 = delta2, iter = iter, g = geta, g1 = g1, g2 = g2, loss = loss, df = df, df1 = df1, df2 = df2, bic = bic, aic = aic, x = x, y = y, z = z, knots = knots, flag = flag, p=p, conv=conv, final.x = newx, final.off = off) class(out) <- "cste" return(out) } }
brainGraph_mediate <- function(g.list, covars, mediator, treat, outcome, covar.names, level=c('graph', 'vertex'), control.value=0, treat.value=1, int=FALSE, boot=TRUE, boot.ci.type=c('perc', 'bca'), N=1e3, conf.level=0.95, long=FALSE, ...) { region <- NULL if (!is.brainGraphList(g.list)) try(g.list <- as_brainGraphList(g.list)) g.list <- g.list[] stopifnot(all(hasName(covars, c(treat, outcome, covar.names)))) sID <- getOption('bg.subject_id') if (!hasName(covars, sID)) covars[, eval(sID) := seq_len(dim(covars)[1L])] covars[, eval(sID) := check_sID(get(sID))] covars <- droplevels(covars[, c(sID, treat, covar.names, outcome), with=FALSE]) incomp <- covars[!complete.cases(covars), which=TRUE] names(incomp) <- covars[incomp, get(sID)] level <- match.arg(level) dt.graph <- glm_data_table(g.list, level, mediator) DT <- covars[dt.graph, on=sID] if (length(incomp) > 0L) DT <- DT[-incomp] DT[, eval(treat) := as.factor(get(treat))] t.levels <- DT[, levels(get(treat))] if (all(c(treat.value, control.value) %in% t.levels)) { cat.0 <- control.value cat.1 <- treat.value } else { stopifnot(is.numeric(c(control.value, treat.value))) cat.0 <- t.levels[control.value + 1L] cat.1 <- t.levels[treat.value + 1L] } cols <- c(sID, treat, covar.names) X.m <- brainGraph_GLM_design(DT[, cols, with=FALSE], ...) y.y <- DT[, get(outcome)] treatstr <- paste0(treat, cat.1) DT.m <- melt(DT, id.vars=names(covars), variable.name='region', value.name=mediator) regions <- names(dt.graph)[-1L] y.m <- as.matrix(DT[, c(sID, regions), with=FALSE], rownames=sID) des_args <- list(...) if (isTRUE(int)) des_args <- c(des_args, list(int=c(treat, mediator))) cols <- append(cols, mediator, after=1L) X.y <- lapply(regions, function(r) do.call(brainGraph_GLM_design, c(list(covars=DT.m[region == r, cols, with=FALSE]), des_args))) names(X.y) <- regions attrs <- attributes(X.y[[1L]])[-c(1L, 2L)] X.y <- abind::abind(X.y, along=3L) attributes(X.y) <- c(attributes(X.y), attrs) if (!getDoParRegistered()) { cl <- makeCluster(getOption('bg.ncpus')) registerDoParallel(cl) } res_boot <- boot_mediate(X.m, y.m, X.y, y.y, mediator, treat, treatstr, int, N) res_p <- as.data.table(pvalArray(res_boot, N, dim(y.m)[2L]), keep.rownames='region') res_boot <- rbindlist(apply(res_boot, 3L, as.data.table), idcol='region') res_obs <- res_boot[, .SD[.N], by=region] res_boot <- res_boot[, .SD[-.N], by=region] conf.limits <- (1 + c(-1, 1) * conf.level) / 2 if (isTRUE(boot)) { boot.ci.type <- match.arg(boot.ci.type) bootFun <- switch(boot.ci.type, perc=fastquant, bca=BC.CI2) if (boot.ci.type == 'bca') conf.limits <- qnorm(conf.limits) res_ci <- res_boot[, lapply(.SD, bootFun, conf.limits, N), by=region] } if (isFALSE(long)) res_boot <- NULL out <- list(level=level, removed.subs=incomp, X.m=X.m, X.y=X.y, y.m=y.m, y.y=y.y, res.obs=res_obs, res.ci=res_ci, res.p=res_p, boot=boot, boot.ci.type=boot.ci.type, res.boot=res_boot, treat=treat, mediator=mediator, outcome=outcome, covariates=NULL, INT=int, conf.level=conf.level, control.value=cat.0, treat.value=cat.1, nobs=dim(X.m)[1L], sims=N, covar.names=covar.names) out$atlas <- guess_atlas(g.list[[1L]]) class(out) <- c('bg_mediate', class(out)) return(out) } boot_mediate <- function(X.m, y.m, X.y, y.y, mediator, treat, treatstr, int, N) { b <- NULL regions <- dimnames(y.m)[[2L]] dimXm <- dim(X.m) n <- dimXm[1L] pm <- dimXm[2L] dfRm <- n - pm py <- dim(X.y)[2L] ny <- dim(y.m)[2L] index <- t(replicate(N, sample.int(n, replace=TRUE))) index <- rbind(index, seq_len(n)) if (ny == 1L) { Xyperm <- function(X, porder) X[porder, , , drop=FALSE] Xyfun <- f_beta_3d_g } else { Xyperm <- function(X, porder) X[porder, , ] Xyfun <- f_beta_3d } diagIndsY <- diag(1, n, py) diagIndsM <- diag(1, n, pm) ttMat <- matrix(c(1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 1), nrow=6L) effects.tmp <- array(NA, dim=c(n, 4L, ny)) vnames <- dimnames(X.y)[[2L]] treatstrOther <- setdiff(grep(treat, dimnames(X.m)[[2L]], value=TRUE), treatstr) Xcols <- c(mediator, treatstr) if (isTRUE(int)) { treatintstr <- paste0(treatstr, ':', mediator) Xcols <- c(Xcols, treatintstr) ecols <- 1L:4L } else { ecols <- c(1L, 3L) } bcols <- which(vnames %in% Xcols) fun_effects <- function(Xy.diff, beta.y, Xcols, bcols, regions) { X <- Xy.diff[, Xcols, ] b <- beta.y[bcols, ] vapply(regions, function(r) X[, , r] %*% b[, r], numeric(n)) } res <- foreach(b=seq_len(N + 1L), .combine=rbind) %dopar% { neworder <- index[b, ] fits.m <- f_beta_m(X.m[neworder, ], y.m[neworder, ], diagIndsM, n, pm, ny, dfRm) error <- vapply(fits.m$sigma, function(r) rnorm(n, mean=0, sd=r), numeric(n)) X.m.t <- X.m.c <- X.m X.m.t[, treatstr] <- 1 X.m.c[, treatstr] <- 0 X.m.t[, treatstrOther] <- X.m.c[, treatstrOther] <- 0 PredictM1 <- X.m.t %*% fits.m$coefficients + error PredictM0 <- X.m.c %*% fits.m$coefficients + error beta.y <- Xyfun(Xyperm(X.y, neworder), y.y[neworder], regions, diagIndsY, n, py, ny) for (e in ecols) { X.y.t <- X.y.c <- X.y X.y.t[, treatstr, ] <- ttMat[1L, e] X.y.c[, treatstr, ] <- ttMat[2L, e] X.y.t[, mediator, ] <- PredictM1 * ttMat[3L, e] + PredictM0 * ttMat[5L, e] X.y.c[, mediator, ] <- PredictM1 * ttMat[4L, e] + PredictM0 * ttMat[6L, e] if (isTRUE(int)) { X.y.t[, treatintstr, ] <- X.y.t[, treatstr, ] * X.y.t[, mediator, ] X.y.c[, treatintstr, ] <- X.y.c[, treatstr, ] * X.y.c[, mediator, ] } Xy.diff <- X.y.t - X.y.c effects.tmp[, e, ] <- fun_effects(Xy.diff, beta.y, Xcols, bcols, regions) } return(colMeans(effects.tmp)) } res <- array(res, dim=c(4L, N + 1L, ny)) if (isFALSE(int)) res[c(2L, 4L), , ] <- res[ecols, , ] res2 <- array(dim=c(10L, N + 1L, ny)) res2[1L:4L, , ] <- res res2 <- aperm(res2, c(2L, 1L, 3L)) dimnames(res2)[2L:3L] <- list(c('d1', 'd0', 'z1', 'z0', 'tau', 'n0', 'n1', 'd.avg', 'z.avg', 'n.avg'), regions) res2[, 'd.avg', ] <- (res2[, 'd1', ] + res2[, 'd0', ]) / 2 res2[, 'z.avg', ] <- (res2[, 'z1', ] + res2[, 'z0', ]) / 2 res2[, 'tau', ] <- res2[, 'd.avg', ] + res2[, 'z.avg', ] res2[, 'n0', ] <- res2[, 'd0', ] / res2[, 'tau', ] res2[, 'n1', ] <- res2[, 'd1', ] / res2[, 'tau', ] res2[, 'n.avg', ] <- (res2[, 'n1', ] + res2[, 'n0', ]) / 2 return(res2) } f_beta_m <- function(X, Y, diagMat, n, p, ny, dfR) { QR <- qr.default(X, LAPACK=TRUE) Q <- qr_Q2(QR, diagMat, n, p) R <- qr_R2(QR, p) beta <- backsolve(R, crossprod(Q, Y), p) beta[QR$pivot, ] <- beta ehat <- Y - X %*% beta s <- if (ny == 1L) sum(ehat^2) else .colSums(ehat^2, n, ny) list(coefficients=beta, sigma=sqrt(s / dfR)) } f_beta_3d <- function(X, Y, regions, diagMat, n, p, ny) { QR <- qr(X, LAPACK=TRUE) Q <- lapply(QR, qr_Q2, diagMat, n, p) R <- lapply(QR, qr_R2, p) beta <- matrix(NaN, p, ny, dimnames=list(NULL, regions)) for (r in regions) { beta[QR[[r]]$pivot, r] <- backsolve(R[[r]], crossprod(Q[[r]], Y), p) } beta } f_beta_3d_g <- function(X, Y, regions, diagMat, n, p, ny=1L) { QR <- qr.default(X[, , 1L], LAPACK=TRUE) Q <- qr_Q2(QR, diagMat, n, p) R <- qr_R2(QR, p) beta <- backsolve(R, crossprod(Q, Y), p) beta[QR$pivot, ] <- beta dimnames(beta) <- list(NULL, 'graph') beta } pvalArray <- function(res_boot, N=dim(res_boot)[1L] - 1L, ny=dim(res_boot)[3L]) { seqN <- seq_len(N) gt0 <- colSums(res_boot[seqN, , ] > 0) lt0 <- N - gt0 pMat <- 2 * pmin.int(gt0, lt0) / N zeros <- which(res_boot[N + 1L, , ] == 0) if (length(zeros) > 0L) pMat[zeros] <- 1 dim(pMat) <- c(10L, ny) dimnames(pMat) <- dimnames(res_boot)[2L:3L] t(pMat) } BC.CI2 <- function(theta, quants, N) { avg <- sum(theta) / N z.inv <- sum(theta < avg) / N z <- qnorm(z.inv) U <- (N - 1L) * (avg - theta) U2 <- U^2 top <- sum(U * U2) under <- 6 * (sum(U2))^1.5 a <- top / under lower.upper <- pnorm(z + (z + quants) / (1 - a * (z + quants))) fastquant(theta, lower.upper, N) } fastquant <- function(x, probs, N) { index <- 1 + (N - 1) * probs lo <- floor(index) hi <- ceiling(index) x <- sort(x, partial=unique(c(lo, hi))) qs <- x[lo] i <- which(index > lo & x[hi] != qs) h <- (index - lo)[i] qs[i] <- (1 - h) * qs[i] + h * x[hi[i]] qs } summary.bg_mediate <- function(object, mediate=FALSE, region=NULL, digits=max(3L, getOption('digits') - 2L), ...) { stopifnot(inherits(object, 'bg_mediate')) Mediator <- treat <- Outcome <- NULL DT.obs <- copy(object$res.obs) DT.ci <- copy(object$res.ci) DT.p <- copy(object$res.p) setnames(DT.ci, c('region', paste0(names(DT.ci)[-1L], '.ci'))) setnames(DT.p, c('region', paste0(names(DT.p)[-1L], '.p'))) DT.all <- merge(merge(DT.obs, DT.p, by='region'), DT.ci, by='region') DT.all[, c('Mediator', 'treat', 'Outcome') := with(object, mediator, treat, outcome)] change <- matrix(c('d0', 'd0.p', 'z0', 'z0.p', 'tau', 'tau.p', 'n0', 'n0.p', 'b0.acme', 'p0.acme', 'b0.ade', 'p0.ade', 'b.tot', 'p.tot', 'b0.prop', 'p0.prop'), ncol=2L) setnames(DT.all, change[, 1L], change[, 2L]) change_ci <- change[seq.int(1L, 7L, 2L), ] change_ci <- cbind(paste0(change_ci[, 1L], '.ci'), sub('[bdnz]([01]?)\\.', 'ci.low\\1.', change_ci[, 2L])) change_ci <- cbind(change_ci, sub('low', 'high', change_ci[, 2L])) DT.all[, eval(change_ci[, 2L]) := lapply(.SD, function(x) x[1L]), by=region, .SDcols=change_ci[, 1L]] DT.all[, eval(change_ci[, 3L]) := lapply(.SD, function(x) x[2L]), by=region, .SDcols=change_ci[, 1L]] mainnames <- c('Mediator', 'treat', 'Outcome', 'region') acme <- c('b0.acme', 'ci.low0.acme', 'ci.high0.acme', 'p0.acme') total <- sub('0.acme', '.tot', acme) if (isTRUE(object$INT)) { change1 <- sub('0', '1', change)[-c(5L, 6L), ] change1 <- rbind(change1, sub('1', '.avg', change1)) setnames(DT.all, change1[, 1L], change1[, 2L]) change_ci1 <- sub('0', '1', change_ci)[-3L, ] change_ci1 <- rbind(change_ci1, sub('1', '.avg', change_ci1)) DT.all[, eval(change_ci1[, 2L]) := lapply(.SD, function(x) x[1L]), by=region, .SDcols=change_ci1[, 1L]] DT.all[, eval(change_ci1[, 3L]) := lapply(.SD, function(x) x[2L]), by=region, .SDcols=change_ci1[, 1L]] acme <- c(acme, sub('0', '1', acme), sub('0', '.avg', acme)) } else { DT.all[, grep('1|avg', names(DT.all)) := NULL] } DT.all[, grep('.*.ci', names(DT.all)) := NULL] setcolorder(DT.all, c(mainnames, acme, sub('acme', 'ade', acme), total, sub('acme', 'prop', acme))) DT.all <- DT.all[, .SD[1L], keyby=region] DT.all[, region := as.factor(region)] object <- c(object, list(DT.sum=DT.all, region=region, digits=digits, mediate=mediate)) class(object) <- c('summary.bg_mediate', class(object)) return(object) } print.summary.bg_mediate <- function(x, ...) { region <- NULL width <- getOption('width') / 4 dashes <- rep.int('-', width) print_title_summary(simpleCap(x$level), '-level mediation results') cat(' message('\n', 'Variables', '\n', dashes) df <- data.frame(A=c(' Mediator:', ' Treatment:', ' Control condition:', ' Treatment condition:', ' Outcome:'), B=c(x$mediator, x$treat, x$control.value, x$treat.value, x$outcome)) cov.df <- data.frame(A=c('', 'Covariates:', rep.int('', length(x$covar.names) - 1L)), B=c('', x$covar.names)) df <- rbind(df, cov.df) dimnames(df)[[2L]] <- rep.int('', 2L) print(df, right=FALSE, row.names=FALSE) cat('\nTreatment-mediator interaction? ', x$INT, '\n\n') print_subs_summary(x) if (isTRUE(x$boot)) { low <- (1 - x$conf.level) / 2 high <- 1 - low message('\n', 'Bootstrapping', '\n', dashes) ci <- switch(x$boot.ci.type, perc='Percentile bootstrap', bca='Bias-corrected accelerated') cat('Bootstrap CI type: ', ci, '\n') cat(' cat('Bootstrap CI level: ', sprintf('[%s]', paste(paste0(100 * c(low, high), '%'), collapse=' ')), '\n\n') } if (isTRUE(x$mediate)) { if (!requireNamespace('mediation', quietly=TRUE)) stop('Must install the "mediation" package.') region <- if (is.null(x$region)) x$DT.sum[, levels(region)[1L]] else x$region message('Mediation summary for: ', region, '\n', dashes) print(summary(bg_to_mediate(x, region))) } else { if (is.null(x$region)) { regions <- x$DT.sum[, levels(region)] } else { regions <- x$region } message('Mediation statistics', '\n', dashes) print(x$DT.sum[region %in% regions]) } invisible(x) } bg_to_mediate <- function(x, region=NULL) { if (!inherits(x, c('bg_mediate', 'summary.bg_mediate'))) { stop('Use only with \'bg_mediate\' objects!') } if (x$level == 'graph') { res.obs <- x$res.obs res.ci <- x$res.ci res.p <- x$res.p } else { regions <- x$res.obs[, unique(region)] if (is.null(region)) { i <- 1L } else { i <- which(region == regions) } res.obs <- x$res.obs[region == regions[i]] res.ci <- x$res.ci[region == regions[i]] res.p <- x$res.p[region == regions[i]] } out <- list(d0=res.obs$d0, d1=res.obs$d1, d0.ci=res.ci$d0, d1.ci=res.ci$d1, d0.p=res.p$d0, d1.p=res.p$d1, z0=res.obs$z0, z1=res.obs$z1, z0.ci=res.ci$z0, z1.ci=res.ci$z1, z0.p=res.p$z0, z1.p=res.p$z1, n0=res.obs$n0, n1=res.obs$n1, n0.ci=res.ci$n0, n1.ci=res.ci$n1, n0.p=res.p$n0, n1.p=res.p$n1, tau.coef=res.obs$tau, tau.ci=res.ci$tau, tau.p=res.p$tau, d.avg=res.obs$d.avg, d.avg.ci=res.ci$d.avg, d.avg.p=res.p$d.avg, z.avg=res.obs$z.avg, z.avg.ci=res.ci$z.avg, z.avg.p=res.p$z.avg, n.avg=res.obs$n.avg, n.avg.ci=res.ci$n.avg, n.avg.p=res.p$n.avg, boot=x$boot, boot.ci.type=x$boot.ci.type, treat=x$treat, mediator=x$mediator, covariates=x$covariates, INT=x$INT, control.value=x$control.value, treat.value=x$treat.value, nobs=x$nobs, sims=x$sims, robustSE=FALSE, cluster=NULL) class(out) <- 'mediate' return(out) }
inferTTree = function(ptree, w.shape=2, w.scale=1, ws.shape=NA, ws.scale=NA, w.mean=NA,w.std=NA,ws.mean=NA,ws.std=NA,mcmcIterations=1000, thinning=1, startNeg=100/365, startOff.r=1, startOff.p=0.5, startPi=0.5, updateNeg=TRUE, updateOff.r=TRUE, updateOff.p=FALSE, updatePi=TRUE, startCTree=NA, updateTTree=TRUE, optiStart=2, dateT=Inf,verbose=F) { ptree$ptree[,1]=ptree$ptree[,1]+runif(nrow(ptree$ptree))*1e-10 if (dateT<dateLastSample(ptree)) stop('The parameter dateT cannot be smaller than the date of last sample') for (i in (ceiling(nrow(ptree$ptree)/2)+1):nrow(ptree$ptree)) for (j in 2:3) if (ptree$ptree[ptree$ptree[i,j],1]-ptree$ptree[i,1]<0) stop("The phylogenetic tree contains negative branch lengths!") if (!is.na( w.mean)&&!is.na( w.std)) { w.shape= w.mean^2/ w.std^2; w.scale= w.std^2/ w.mean} if (!is.na(ws.mean)&&!is.na(ws.std)) {ws.shape=ws.mean^2/ws.std^2;ws.scale=ws.std^2/ws.mean} if (is.na(ws.shape)) ws.shape=w.shape if (is.na(ws.scale)) ws.scale=w.scale neg <- startNeg off.r <- startOff.r off.p <- startOff.p pi <- startPi if (is.na(sum(startCTree))) ctree <- makeCTreeFromPTree(ptree,off.r,off.p,neg,pi,w.shape,w.scale,ws.shape,ws.scale,dateT,optiStart) else ctree<-startCTree ttree <- extractTTree(ctree) record <- vector('list',mcmcIterations/thinning) pTTree <- probTTree(ttree$ttree,off.r,off.p,pi,w.shape,w.scale,ws.shape,ws.scale,dateT) pPTree <- probPTreeGivenTTree(ctree$ctree,neg) if (verbose==F) pb <- utils::txtProgressBar(min=0,max=mcmcIterations,style = 3) for (i in 1:mcmcIterations) { if (i%%thinning == 0) { if (verbose==F) utils::setTxtProgressBar(pb, i) if (verbose==T) message(sprintf('it=%d,neg=%f,off.r=%f,off.p=%f,pi=%f,Prior=%e,Likelihood=%e,nind=%d',i,neg,off.r,off.p,pi,pTTree,pPTree,nrow(ttree$ttree))) record[[i/thinning]]$ctree <- ctree record[[i/thinning]]$pTTree <- pTTree record[[i/thinning]]$pPTree <- pPTree record[[i/thinning]]$neg <- neg record[[i/thinning]]$off.r <- off.r record[[i/thinning]]$off.p <- off.p record[[i/thinning]]$pi <- pi record[[i/thinning]]$w.shape <- w.shape record[[i/thinning]]$w.scale <- w.scale record[[i/thinning]]$ws.shape <- ws.shape record[[i/thinning]]$ws.scale <- ws.scale record[[i/thinning]]$source <- ctree$ctree[ctree$ctree[which(ctree$ctree[,4]==0),2],4] if (record[[i/thinning]]$source<=length(ctree$nam)) record[[i/thinning]]$source=ctree$nam[record[[i/thinning]]$source] else record[[i/thinning]]$source='Unsampled' } if (updateTTree) { if (verbose) message("Proposing ttree update") prop <- proposal(ctree$ctree) ctree2 <- list(ctree=prop$tree,nam=ctree$nam) class(ctree2)<-'ctree' ttree2 <- extractTTree(ctree2) pTTree2 <- probTTree(ttree2$ttree,off.r,off.p,pi,w.shape,w.scale,ws.shape,ws.scale,dateT) pPTreeDiff <- probPTreeGivenTTree(ctree2$ctree,neg,prop$new)-probPTreeGivenTTree(ctree$ctree,neg,prop$old) if (log(runif(1)) < log(prop$qr)+pTTree2+pPTreeDiff-pTTree) { ctree <- ctree2 ttree <- ttree2 pTTree <- pTTree2 pPTree <- pPTree+pPTreeDiff } } if (updateNeg) { neg2 <- abs(neg + (runif(1)-0.5)*0.5) if (verbose) message(sprintf("Proposing Ne*g update %f->%f",neg,neg2)) pPTree2 <- probPTreeGivenTTree(ctree$ctree,neg2) if (log(runif(1)) < pPTree2-pPTree-neg2+neg) {neg <- neg2;pPTree <- pPTree2} } if (updateOff.r) { off.r2 <- abs(off.r + (runif(1)-0.5)*0.5) if (verbose) message(sprintf("Proposing off.r update %f->%f",off.r,off.r2)) pTTree2 <- probTTree(ttree$ttree,off.r2,off.p,pi,w.shape,w.scale,ws.shape,ws.scale,dateT) if (log(runif(1)) < pTTree2-pTTree-off.r2+off.r) {off.r <- off.r2;pTTree <- pTTree2} } if (updateOff.p) { off.p2 <- abs(off.p + (runif(1)-0.5)*0.1) if (off.p2>1) off.p2=2-off.p2 if (verbose) message(sprintf("Proposing off.p update %f->%f",off.p,off.p2)) pTTree2 <- probTTree(ttree$ttree,off.r,off.p2,pi,w.shape,w.scale,ws.shape,ws.scale,dateT) if (log(runif(1)) < pTTree2-pTTree) {off.p <- off.p2;pTTree <- pTTree2} } if (updatePi) { pi2 <- pi + (runif(1)-0.5)*0.1 if (pi2<0.01) pi2=0.02-pi2 if (pi2>1) pi2=2-pi2 if (verbose) message(sprintf("Proposing pi update %f->%f",pi,pi2)) pTTree2 <- probTTree(ttree$ttree,off.r,off.p,pi2,w.shape,w.scale,ws.shape,ws.scale,dateT) if (log(runif(1)) < pTTree2-pTTree) {pi <- pi2;pTTree <- pTTree2} } } class(record)<-'resTransPhylo' return(record) }
context("db") test_that("invalid db type", { expect_error(orderly_db("xxx", "example"), "Invalid db type 'xxx'") }) test_that("custom fields", { path <- tempfile() orderly_init(path) file_copy("example_config.yml", file.path(path, "orderly_config.yml"), overwrite = TRUE) con <- orderly_db("destination", path) on.exit(DBI::dbDisconnect(con)) expect_true(DBI::dbExistsTable(con, "orderly_schema")) config <- orderly_config(path) expect_error(report_db_init(con, config, TRUE), "Table 'orderly_schema' already exists") DBI::dbExecute(con, "DELETE FROM custom_fields WHERE id = 'author'") expect_error(report_db_init(con, config, FALSE), "custom fields 'author' not present in existing database") unlockBinding(quote(fields), config) config$fields <- NULL expect_error(report_db_init(con, config, FALSE), "custom fields 'requester', 'comments' in database") }) test_that("rebuild empty database", { skip_on_cran_windows() path <- tempfile() orderly_init(path) file_copy("example_config.yml", file.path(path, "orderly_config.yml"), overwrite = TRUE) orderly_rebuild(path) con <- orderly_db("destination", path) on.exit(DBI::dbDisconnect(con)) expect_true(DBI::dbExistsTable(con, "orderly_schema")) }) test_that("rebuild nonempty database", { skip_on_cran_windows() path <- test_prepare_orderly_example("minimal") id <- orderly_run("example", root = path, echo = FALSE) orderly_commit(id, root = path) file.remove(file.path(path, "orderly.sqlite")) orderly_rebuild(path) orderly_rebuild(path) con <- orderly_db("destination", path) on.exit(DBI::dbDisconnect(con)) expect_equal(nrow(DBI::dbReadTable(con, "report_version")), 1) }) test_that("no transient db", { config <- list(destination = list( driver = c("RSQLite", "SQLite"), args = list(dbname = ":memory:")), root = tempdir()) expect_error(orderly_db_args(config$destination, config = config), "Cannot use a transient SQLite database with orderly") }) test_that("db includes parameters", { skip_on_cran_windows() path <- test_prepare_orderly_example("demo") id <- orderly_run("other", parameters = list(nmin = 0.1), root = path, echo = FALSE) orderly_commit(id, root = path) con <- orderly_db("destination", root = path) d <- DBI::dbReadTable(con, "parameters") DBI::dbDisconnect(con) expect_equal(d, data_frame(id = 1, report_version = id, name = "nmin", type = "number", value = "0.1")) }) test_that("different parameter types are stored correctly", { skip_on_cran_windows() path <- test_prepare_orderly_example("parameters", testing = TRUE) id <- orderly_run("example", parameters = list(a = 1, b = TRUE, c = "one"), root = path, echo = FALSE) orderly_commit(id, root = path) con <- orderly_db("destination", root = path) d <- DBI::dbReadTable(con, "parameters") DBI::dbDisconnect(con) expect_equal(d, data_frame(id = 1:3, report_version = id, name = c("a", "b", "c"), type = c("number", "boolean", "text"), value = c("1", "true", "one"))) }) test_that("avoid unserialisable parameters", { t <- Sys.Date() expect_error(report_db_parameter_type(t), "Unsupported parameter type") expect_error(report_db_parameter_serialise(t), "Unsupported parameter type") }) test_that("dialects", { skip_on_cran() s <- report_db_schema_read(NULL, "sqlite") p <- report_db_schema_read(NULL, "postgres") expect_false(isTRUE(all.equal(s, p))) path <- test_prepare_orderly_example("minimal") config <- orderly_config_$new(path) con <- DBI::dbConnect(RSQLite::SQLite(), ":memory:") on.exit(DBI::dbDisconnect(con)) expect_error(report_db_init_create(con, config, "postgres"), "syntax error") expect_silent(report_db_init_create(con, config, "sqlite")) expect_equal(report_db_dialect(con), "sqlite") expect_equal(report_db_dialect(structure(TRUE, class = "PqConnection")), "postgres") expect_error(report_db_dialect(structure(TRUE, class = "other")), "Can't determine SQL dialect") }) test_that("sources are listed in db", { skip_on_cran_windows() path <- test_prepare_orderly_example("demo") id <- orderly_run("other", root = path, parameters = list(nmin = 0), echo = FALSE) orderly_commit(id, root = path) con <- orderly_db("destination", root = path) on.exit(DBI::dbDisconnect(con)) p <- path_orderly_run_rds(file.path(path, "archive", "other", id)) info <- readRDS(p)$meta$file_info_inputs h <- hash_files(file.path(path, "archive", "other", id, "functions.R"), FALSE) expect_equal(info$filename[info$file_purpose == "source"], "functions.R") expect_equal(info$file_hash[info$file_purpose == "source"], h) d <- DBI::dbGetQuery( con, "SELECT * from file_input WHERE report_version = $1", id) expect_false("resource" %in% d$file_purpose) expect_true("source" %in% d$file_purpose) }) test_that("backup", { skip_on_cran_windows() path <- create_orderly_demo() expect_message( orderly_backup(path), "orderly.sqlite => backup/db/orderly.sqlite", fixed = TRUE) dest <- path_db_backup(path, "orderly.sqlite") expect_true(file.exists(dest)) dat_orig <- with_sqlite(file.path(path, "orderly.sqlite"), function(con) DBI::dbReadTable(con, "report_version")) dat_backup <- with_sqlite(dest, function(con) DBI::dbReadTable(con, "report_version")) expect_equal(dat_orig, dat_backup) }) test_that("db includes custom fields", { skip_on_cran_windows() path <- test_prepare_orderly_example("demo") id <- orderly_run("minimal", root = path, echo = FALSE) orderly_commit(id, root = path) con <- orderly_db("destination", root = path) on.exit(DBI::dbDisconnect(con)) d <- DBI::dbReadTable(con, "report_version_custom_fields") expect_equal(d$report_version, rep(id, 3)) v <- c("requester", "author", "comment") expect_setequal(d$key, v) expect_equal(d$value[match(v, d$key)], c("Funder McFunderface", "Researcher McResearcherface", "This is a comment")) }) test_that("db includes file information", { skip_on_cran_windows() path <- test_prepare_orderly_example("demo") id <- orderly_run("multifile-artefact", root = path, echo = FALSE) p <- orderly_commit(id, root = path) h1 <- hash_files( file.path(path, "src", "multifile-artefact", "orderly.yml"), FALSE) h2 <- hash_files( file.path(path, "src", "multifile-artefact", "script.R"), FALSE) con <- orderly_db("destination", root = path) on.exit(DBI::dbDisconnect(con)) file_input <- DBI::dbReadTable(con, "file_input") expect_equal( file_input, data_frame(id = 1:2, report_version = id, file_hash = c(h1, h2), filename = c("orderly.yml", "script.R"), file_purpose = c("orderly_yml", "script"))) info <- readRDS(path_orderly_run_rds(p))$meta$file_info_artefacts artefact_hash <- info$file_hash file_artefact <- DBI::dbReadTable(con, "file_artefact") expect_equal( file_artefact, data_frame(id = 1:2, artefact = 1, file_hash = artefact_hash, filename = c("mygraph.png", "mygraph.pdf"))) report_version_artefact <- DBI::dbReadTable(con, "report_version_artefact") expect_equal( report_version_artefact, data_frame(id = 1, report_version = id, format = "staticgraph", description = "A graph of things", order = 1)) filenames <- c("orderly.yml", "script.R", "mygraph.png", "mygraph.pdf") file <- DBI::dbReadTable(con, "file") expect_equal(file, data_frame(hash = c(h1, h2, artefact_hash), size = file_size(file.path(p, filenames)))) }) test_that("connect to database instances", { path <- test_prepare_orderly_example("minimal") p <- file.path(path, "orderly_config.yml") writeLines(c( "database:", " source:", " driver: RSQLite::SQLite", " args:", " dbname: source.sqlite", " instances:", " staging:", " dbname: staging.sqlite", " production:", " dbname: production.sqlite"), p) f <- function(x) { basename(x$source@dbname) } expect_equal( f(orderly_db("source", root = path)), "staging.sqlite") expect_equal( f(orderly_db("source", root = path, instance = "staging")), "staging.sqlite") expect_equal( f(orderly_db("source", root = path, instance = "production")), "production.sqlite") }) test_that("db instance select", { config_db <- list( x = list( driver = c("RSQLite", "SQLite"), args = list(name = "a"), instances = list( a = list(name = "a"), b = list(name = "b"))), y = list( driver = c("RSQLite", "SQLite"), args = list(name = "y"))) config_db_a <- modifyList(config_db, list(x = list(instance = "a"))) config_db_b <- modifyList(config_db, list(x = list(args = list(name = "b"), instance = "b"))) expect_identical(db_instance_select(NULL, config_db), config_db_a) expect_equal(db_instance_select("a", config_db), config_db_a) expect_equal(db_instance_select("b", config_db), config_db_b) expect_equal(db_instance_select(c(x = "a"), config_db), config_db_a) expect_equal(db_instance_select(c(x = "b"), config_db), config_db_b) expect_error(db_instance_select("c", config_db), "Invalid instance 'c' for database 'x'") expect_error(db_instance_select(c(x = "c"), config_db), "Invalid instance: 'c' for 'x'") expect_error(db_instance_select(c(z = "a"), config_db), "Invalid database name 'z' in provided instance") }) test_that("db instance select with two instanced databases", { config_db <- list( x = list( driver = c("RSQLite", "SQLite"), args = list(name = "b"), instances = list( b = list(name = "b"), a = list(name = "a"))), y = list( driver = c("RSQLite", "SQLite"), args = list(name = "c"), instances = list( c = list(name = "c"), a = list(name = "a")))) config_db_aa <- modifyList(config_db, list(x = list(args = list(name = "a"), instance = "a"), y = list(args = list(name = "a"), instance = "a"))) config_db_bc <- modifyList(config_db, list(x = list(instance = "b"), y = list(instance = "c"))) config_db_ac <- modifyList(config_db, list(x = list(args = list(name = "a"), instance = "a"), y = list(args = list(name = "c"), instance = "c"))) expect_identical(db_instance_select(NULL, config_db), config_db_bc) expect_equal(db_instance_select("a", config_db), config_db_aa) expect_equal(db_instance_select(c(x = "a", y = "a"), config_db), config_db_aa) expect_equal(db_instance_select(c(x = "b", y = "c"), config_db), config_db_bc) expect_equal(db_instance_select(c(x = "a"), config_db), config_db_ac) expect_error(db_instance_select("f", config_db), "Invalid instance 'f' for databases 'x', 'y'") expect_error(db_instance_select(c(x = "f", y = "g"), config_db), "Invalid instances: 'f' for 'x', 'g' for 'y'") expect_error(db_instance_select(c(z = "a"), config_db), "Invalid database name 'z' in provided instance") }) test_that("db instance select rejects instance when no dbs support it", { config_db <- list( x = list( driver = c("RSQLite", "SQLite"), args = list(name = "a")), y = list( driver = c("RSQLite", "SQLite"), args = list(name = "b"))) expect_identical(db_instance_select(NULL, config_db), config_db) expect_error(db_instance_select("a", config_db), "Can't specify 'instance' with no databases supporting it") }) test_that("Create and verify tags on startup", { root <- test_prepare_orderly_example("minimal") append_lines(c("tags:", " - tag1", " - tag2"), file.path(root, "orderly_config.yml")) con <- orderly_db("destination", root = root) expect_equal(DBI::dbReadTable(con, "tag"), data_frame(id = c("tag1", "tag2"))) DBI::dbDisconnect(con) append_lines(" - tag3", file.path(root, "orderly_config.yml")) expect_error( orderly_db("destination", root = root), "tags have changed: rebuild with orderly::orderly_rebuild()", fixed = TRUE) orderly_rebuild(root) con <- orderly_db("destination", root = root) expect_equal(DBI::dbReadTable(con, "tag"), data_frame(id = c("tag1", "tag2", "tag3"))) DBI::dbDisconnect(con) }) test_that("Add tags to db", { root <- test_prepare_orderly_example("minimal") append_lines(c("tags:", " - tag1", " - tag2"), file.path(root, "orderly_config.yml")) append_lines(c("tags:", " - tag1"), file.path(root, "src", "example", "orderly.yml")) id <- orderly_run("example", root = root, echo = FALSE) p <- orderly_commit(id, root = root) con <- orderly_db("destination", root) on.exit(DBI::dbDisconnect(con)) expect_equal( DBI::dbReadTable(con, "report_version_tag"), data_frame(id = 1, report_version = id, tag = "tag1")) }) test_that("add batch info to db", { path <- test_prepare_orderly_example("parameters", testing = TRUE) params <- data_frame( a = c("one", "two", "three"), b = c(1, 2, 3) ) batch_id <- ids::random_id() mockery::stub(orderly_batch, "ids::random_id", batch_id) ids <- orderly_batch("example", parameters = params, root = path, echo = FALSE) p <- lapply(ids, function(id) { orderly_commit(id, root = path) }) con <- orderly_db("destination", path) on.exit(DBI::dbDisconnect(con)) expect_equal( DBI::dbReadTable(con, "report_batch"), data_frame(id = batch_id)) expect_equal( DBI::dbReadTable(con, "report_version_batch"), data_frame(report_version = ids, report_batch = rep(batch_id, 3))) }) test_that("trailing slash in report name is tolerated", { path <- test_prepare_orderly_example("minimal") id <- orderly_run("src/example/", root = path, echo = FALSE) expect_error(orderly_commit(id, root = path), NA) }) test_that("db includes elapsed time", { skip_on_cran_windows() path <- test_prepare_orderly_example("minimal") id <- orderly_run("example", root = path, echo = FALSE) p <- orderly_commit(id, root = path) con <- orderly_db("destination", root = path) on.exit(DBI::dbDisconnect(con)) d <- DBI::dbReadTable(con, "report_version") expect_true(d$elapsed > 0) expect_equal(d$elapsed, readRDS(path_orderly_run_rds(p))$meta$elapsed) }) test_that("rebuild nonempty database with backup", { skip_on_cran_windows() path <- test_prepare_orderly_example("minimal") id <- orderly_run("example", root = path, echo = FALSE) orderly_commit(id, root = path) con <- orderly_db("destination", path) DBI::dbExecute(con, "UPDATE report_version SET published = 1") DBI::dbDisconnect(con) orderly_rebuild(path) files <- dir(file.path(path, "backup/db")) expect_equal(length(files), 1) expect_match(files, "^orderly\\.sqlite\\.[0-9]{8}-[0-9]{6}$") con1 <- orderly_db("destination", path) con2 <- DBI::dbConnect(RSQLite::SQLite(), dbname = file.path(path, "backup/db", files)) expect_equal( DBI::dbReadTable(con1, "report_version")$published, 0) expect_equal( DBI::dbReadTable(con2, "report_version")$published, 1) DBI::dbDisconnect(con1) DBI::dbDisconnect(con2) }) test_that("db write collision", { skip_on_cran() path <- test_prepare_orderly_example("minimal") id1 <- orderly_run("example", root = path, echo = FALSE) id2 <- orderly_run("example", root = path, echo = FALSE) orderly_commit(id1, root = path) con <- orderly_db("destination", root = path) on.exit(DBI::dbDisconnect(con)) DBI::dbExecute(con, "BEGIN IMMEDIATE") DBI::dbExecute(con, "DELETE FROM file_artefact") elapsed <- system.time( testthat::expect_error( orderly_commit(id2, root = path, timeout = 5), "database is locked")) expect_true(elapsed["elapsed"] > 5) DBI::dbRollback(con) p <- orderly_commit(id2, root = path) ids <- DBI::dbGetQuery(con, "SELECT id from report_version")$id expect_equal(length(ids), 2) expect_setequal(ids, c(id1, id2)) }) test_that("db includes instance", { skip_on_cran_windows() path <- test_prepare_orderly_example("minimal") p <- file.path(path, "orderly_config.yml") writeLines(c( "database:", " source:", " driver: RSQLite::SQLite", " instances:", " default:", " dbname: source.sqlite", " alternative:", " dbname: alternative.sqlite"), p) file.copy(file.path(path, "source.sqlite"), file.path(path, "alternative.sqlite")) id1 <- orderly_run("example", root = path, echo = FALSE) id2 <- orderly_run("example", root = path, echo = FALSE, instance = "default") id3 <- orderly_run("example", root = path, echo = FALSE, instance = "alternative") orderly_commit(id1, root = path) orderly_commit(id2, root = path) orderly_commit(id3, root = path) con <- orderly_db("destination", root = path) d <- DBI::dbReadTable(con, "report_version_instance") DBI::dbDisconnect(con) expect_equal(d, data_frame(id = c(1, 2, 3), report_version = c(id1, id2, id3), type = rep("source", 3), instance = c("default", "default", "alternative"))) }) test_that("Can cope when all fields are optional", { path <- test_prepare_orderly_example("minimal") append_lines( c("fields:", " requester:", " required: false", " author:", " required: false"), file.path(path, "orderly_config.yml")) id <- orderly_run("example", root = path, echo = FALSE) orderly_commit(id, root = path) db <- orderly_db("destination", root = path) expect_equal(nrow(DBI::dbReadTable(db, "report_version_custom_fields")), 0) })
ceRNA.enrich <- function(data,GOterms,background,threshold=2,correction="BH"){ goname<-names(GOterms) index<-numeric() for(i in 1:length(goname)){ comm<-intersect(GOterms[[goname[i]]],background) if(length(comm)!=0){ assign(goname[i],comm) index<-c(index,i) } } goname<-goname[index] goterm_num<-as.data.frame(matrix(nrow=length(goname),ncol=2)) colnames(goterm_num)<-c("goterm","go_num") goterm_num[,1]<-goname for(j in 1:length(goname)){goterm_num[j,2]<-length(get(goname[j]))} tar<-sort(as.character(unique(data[,1]))) tar_num<-as.data.frame(matrix(ncol=2,nrow=length(tar))) tar_num[,1]<-tar colnames(tar_num)<-c("tar","tarnum") inter<-list() for(j in 1:length(tar)){ tmptar<-unique(data[data[,1]==tar[j],2]) tmptar_num<-length(tmptar) tmpinter<-numeric() for(k in goname){ tmpinter<-append(tmpinter,length(intersect(tmptar,get(k)))) } inter[[j]]<-tmpinter tar_num[j,2]<-length(tmptar) } interd<-unlist(inter) tard<-sort(rep(tar,length(goname))) gotermd<-rep(goname,length(tar)) result<-as.data.frame(cbind(tard,gotermd)) result<-cbind(result,interd) colnames(result)<-c("tar","goterm","internum") result<-result[result[,"internum"]>=threshold,] result<-merge(result,goterm_num) result<-merge(result,tar_num) backnum<-length(background) pvalue<-apply(result[,c("tarnum","go_num","internum")],1,function(x){return(1-phyper(x[3],x[1],backnum-x[1],x[2]))}) result<-result[,c("tar","goterm","tarnum","go_num","internum")] result<-cbind(result,pvalue) fdr<-p.adjust(result[,"pvalue"],method=correction) result<-cbind(result,fdr) colnames(result)<-c("target","GOterm","target_num","GOtermnum","term_tar","P_value","fdr") return(result) }
use_circle_yml <- function(type = "linux-matrix-deploy", write = TRUE, quiet = FALSE) { if (type == "linux") { template <- readLines(system.file("templates/circle.yml", package = "tic")) } else if (type == "linux-matrix") { template <- readLines(system.file("templates/circle-matrix.yml", package = "tic" )) } else if (type == "linux-deploy") { template <- readLines(system.file("templates/circle-deploy.yml", package = "tic" )) } else if (type == "linux-deploy-matrix" || type == "linux-matrix-deploy") { template <- readLines(system.file("templates/circle-deploy-matrix.yml", package = "tic" )) } dir.create(".circleci", showWarnings = FALSE) if (!write) { return(template) } else { writeLines(template, ".circleci/config.yml") } if (!quiet) { cat_bullet( "Below is the file structure of the new/changed files:", bullet = "arrow_down", bullet_col = "blue" ) data <- data.frame( stringsAsFactors = FALSE, package = c( basename(getwd()), ".circleci", "config.yml" ), dependencies = I(list( ".circleci", "config.yml", character(0) )) ) print(tree(data, root = basename(getwd()))) } } use_ghactions_yml <- function(type = "linux-macos-windows-deploy", write = TRUE, quiet = FALSE) { usethis::use_build_ignore(c(".ccache", ".github")) if (type == "linux-matrix" || type == "linux") { meta <- readLines(system.file("templates/ghactions-meta-linux.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) template <- c(meta, env, core) } else if (type == "linux-matrix-deploy" || type == "linux-deploy-matrix" || type == "linux-deploy") { meta <- readLines(system.file("templates/ghactions-meta-linux-deploy.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) deploy <- readLines(system.file("templates/ghactions-deploy.yml", package = "tic")) template <- c(meta, env, core, deploy) } else if (type == "macos-matrix" || type == "macos") { meta <- readLines(system.file("templates/ghactions-meta-macos.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) template <- c(meta, env, core) } else if (type == "macos-matrix-deploy" || type == "macos-deploy-matrix" || type == "macos-deploy") { meta <- readLines(system.file("templates/ghactions-meta-macos-deploy.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) deploy <- readLines(system.file("templates/ghactions-deploy.yml", package = "tic")) template <- c(meta, env, core, deploy) } else if (type == "windows-matrix" || type == "windows") { meta <- readLines(system.file("templates/ghactions-meta-windows.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) template <- c(meta, env, core) } else if (type == "windows-matrix-deploy" || type == "windows-deploy-matrix" || type == "windows-deploy") { meta <- readLines(system.file("templates/ghactions-meta-windows-deploy.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) deploy <- readLines(system.file("templates/ghactions-deploy.yml", package = "tic")) template <- c(meta, env, core, deploy) } else if (type == "linux-macos" || type == "linux-macos-matrix") { meta <- readLines(system.file("templates/ghactions-meta-linux-macos.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) template <- c(meta, env, core) } else if (type == "linux-macos-deploy" || type == "linux-macos-deploy-matrix") { meta <- readLines(system.file("templates/ghactions-meta-linux-macos.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) deploy <- readLines(system.file("templates/ghactions-deploy.yml", package = "tic")) template <- c(meta, env, core, deploy) } else if (type == "linux-windows" || type == "linux-windows-matrix") { meta <- readLines(system.file("templates/ghactions-meta-linux-windows.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) template <- c(meta, env, core) } else if (type == "linux-windows-deploy" || type == "linux-windows-deploy-matrix") { meta <- readLines(system.file("templates/ghactions-meta-linux-windows.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) deploy <- readLines(system.file("templates/ghactions-deploy.yml", package = "tic")) template <- c(meta, env, core, deploy) } else if (type == "macos-windows" || type == "macos-windows-matrix") { meta <- readLines(system.file("templates/ghactions-meta-macos-windows.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) template <- c(meta, env, core) } else if (type == "macos-windows-deploy" || type == "macos-windows-deploy-matrix") { meta <- readLines(system.file("templates/ghactions-meta-macos-windows.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) deploy <- readLines(system.file("templates/ghactions-deploy.yml", package = "tic")) template <- c(meta, env, core, deploy) } else if (type == "linux-macos-windows") { meta <- readLines(system.file("templates/ghactions-meta.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) template <- c(meta, env, core) } else if (type == "linux-macos-windows-deploy" || type == "all") { meta <- readLines(system.file("templates/ghactions-meta.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) deploy <- readLines(system.file("templates/ghactions-deploy.yml", package = "tic")) template <- c(meta, env, core, deploy) } else if (type == "custom") { meta <- readLines(system.file("templates/ghactions-meta-custom.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) template <- c(meta, env, core) } else if (type == "custom-deploy") { meta <- readLines(system.file("templates/ghactions-meta-custom-deploy.yml", package = "tic")) env <- readLines(system.file("templates/ghactions-env.yml", package = "tic")) core <- readLines(system.file("templates/ghactions-core.yml", package = "tic")) deploy <- readLines(system.file("templates/ghactions-deploy.yml", package = "tic")) template <- c(meta, env, core, deploy) } dir.create(".github/workflows", showWarnings = FALSE, recursive = TRUE) if (!quiet) { cli::cli_alert_info("Please comment in/out the platforms you want to use in {.file .github/workflows/tic.yml}.", wrap = TRUE) cli::cli_text("Call {.code usethis::edit_file('.github/workflows/tic.yml')} to open the YAML file.") } if (!write) { return(template) } cli::cli_alert_info("Writing {.file .github/workflows/tic.yml}.") writeLines(template, con = ".github/workflows/tic.yml") if (!quiet) { cat_bullet( "Below is the file structure of the new/changed files:", bullet = "arrow_down", bullet_col = "blue" ) data <- data.frame( stringsAsFactors = FALSE, package = c( basename(getwd()), ".github", "workflows", "tic.yml" ), dependencies = I(list( ".github", "workflows", "tic.yml", character(0) )) ) print(tree(data, root = basename(getwd()))) } } use_tic_template <- function(template, save_as = template, open = FALSE, ignore = TRUE, data = NULL) { usethis::use_template( template, save_as, package = "tic", open = open, ignore = ignore, data = data ) }
legend <- function(x, y = NULL, legend, fill = NULL, col = par("col"), border="black", lty, lwd, pch, angle = 45, density = NULL, bty = "o", bg = par("bg"), box.lwd = par("lwd"), box.lty = par("lty"), box.col = par("fg"), pt.bg = NA, cex = 1, pt.cex = cex, pt.lwd = lwd, xjust = 0, yjust = 1, x.intersp = 1, y.intersp = 1, adj = c(0, 0.5), text.width = NULL, text.col = par("col"), text.font = NULL, merge = do.lines && has.pch, trace = FALSE, plot = TRUE, ncol = 1, horiz = FALSE, title = NULL, inset = 0, xpd, title.col = text.col, title.adj = 0.5, seg.len = 2) { if(missing(legend) && !missing(y) && (is.character(y) || is.expression(y))) { legend <- y y <- NULL } mfill <- !missing(fill) || !missing(density) if(!missing(xpd)) { op <- par("xpd") on.exit(par(xpd=op)) par(xpd=xpd) } title <- as.graphicsAnnot(title) if(length(title) > 1) stop("invalid 'title'") legend <- as.graphicsAnnot(legend) n.leg <- if(is.call(legend)) 1 else length(legend) if(n.leg == 0) stop("'legend' is of length 0") auto <- if (is.character(x)) match.arg(x, c("bottomright", "bottom", "bottomleft", "left", "topleft", "top", "topright", "right", "center")) else NA if (is.na(auto)) { xy <- xy.coords(x, y, setLab = FALSE); x <- xy$x; y <- xy$y nx <- length(x) if (nx < 1 || nx > 2) stop("invalid coordinate lengths") } else nx <- 0 xlog <- par("xlog") ylog <- par("ylog") rect2 <- function(left, top, dx, dy, density = NULL, angle, ...) { r <- left + dx; if(xlog) { left <- 10^left; r <- 10^r } b <- top - dy; if(ylog) { top <- 10^top; b <- 10^b } rect(left, top, r, b, angle = angle, density = density, ...) } segments2 <- function(x1, y1, dx, dy, ...) { x2 <- x1 + dx; if(xlog) { x1 <- 10^x1; x2 <- 10^x2 } y2 <- y1 + dy; if(ylog) { y1 <- 10^y1; y2 <- 10^y2 } segments(x1, y1, x2, y2, ...) } points2 <- function(x, y, ...) { if(xlog) x <- 10^x if(ylog) y <- 10^y points(x, y, ...) } text2 <- function(x, y, ...) { if(xlog) x <- 10^x if(ylog) y <- 10^y text(x, y, ...) } if(trace) catn <- function(...) do.call("cat", c(lapply(list(...),formatC), list("\n"))) cin <- par("cin") Cex <- cex * par("cex") if(is.null(text.width)) text.width <- max(abs(strwidth(legend, units="user", cex=cex, font = text.font))) else if(!is.numeric(text.width) || text.width < 0) stop("'text.width' must be numeric, >= 0") xc <- Cex * xinch(cin[1L], warn.log=FALSE) yc <- Cex * yinch(cin[2L], warn.log=FALSE) if(xc < 0) text.width <- -text.width xchar <- xc xextra <- 0 yextra <- yc * (y.intersp - 1) ymax <- yc * max(1, strheight(legend, units="user", cex=cex)/yc) ychar <- yextra + ymax if(trace) catn(" xchar=", xchar, "; (yextra,ychar)=", c(yextra,ychar)) if(mfill) { xbox <- xc * 0.8 ybox <- yc * 0.5 dx.fill <- xbox } do.lines <- (!missing(lty) && (is.character(lty) || any(lty > 0)) ) || !missing(lwd) n.legpercol <- if(horiz) { if(ncol != 1) warning(gettextf("horizontal specification overrides: Number of columns := %d", n.leg), domain = NA) ncol <- n.leg 1 } else ceiling(n.leg / ncol) has.pch <- !missing(pch) && length(pch) > 0 if(do.lines) { x.off <- if(merge) -0.7 else 0 } else if(merge) warning("'merge = TRUE' has no effect when no line segments are drawn") if(has.pch) { if(is.character(pch) && !is.na(pch[1L]) && nchar(pch[1L], type = "c") > 1) { if(length(pch) > 1) warning("not using pch[2..] since pch[1L] has multiple chars") np <- nchar(pch[1L], type = "c") pch <- substr(rep.int(pch[1L], np), 1L:np, 1L:np) } if(!is.character(pch)) pch <- as.integer(pch) } if (is.na(auto)) { if (xlog) x <- log10(x) if (ylog) y <- log10(y) } if(nx == 2) { x <- sort(x) y <- sort(y) left <- x[1L] top <- y[2L] w <- diff(x) h <- diff(y) w0 <- w/ncol x <- mean(x) y <- mean(y) if(missing(xjust)) xjust <- 0.5 if(missing(yjust)) yjust <- 0.5 } else { h <- (n.legpercol + !is.null(title)) * ychar + yc w0 <- text.width + (x.intersp + 1) * xchar if(mfill) w0 <- w0 + dx.fill if(do.lines) w0 <- w0 + (seg.len + x.off)*xchar w <- ncol*w0 + .5* xchar if (!is.null(title) && (abs(tw <- strwidth(title, units="user", cex=cex) + 0.5*xchar)) > abs(w)) { xextra <- (tw - w)/2 w <- tw } if (is.na(auto)) { left <- x - xjust * w top <- y + (1 - yjust) * h } else { usr <- par("usr") inset <- rep_len(inset, 2) insetx <- inset[1L]*(usr[2L] - usr[1L]) left <- switch(auto, "bottomright" =, "topright" =, "right" = usr[2L] - w - insetx, "bottomleft" =, "left" =, "topleft" = usr[1L] + insetx, "bottom" =, "top" =, "center" = (usr[1L] + usr[2L] - w)/2) insety <- inset[2L]*(usr[4L] - usr[3L]) top <- switch(auto, "bottomright" =, "bottom" =, "bottomleft" = usr[3L] + h + insety, "topleft" =, "top" =, "topright" = usr[4L] - insety, "left" =, "right" =, "center" = (usr[3L] + usr[4L] + h)/2) } } if (plot && bty != "n") { if(trace) catn(" rect2(", left, ",", top,", w=", w, ", h=", h, ", ...)", sep = "") rect2(left, top, dx = w, dy = h, col = bg, density = NULL, lwd = box.lwd, lty = box.lty, border = box.col) } xt <- left + xchar + xextra + (w0 * rep.int(0:(ncol-1), rep.int(n.legpercol,ncol)))[1L:n.leg] yt <- top - 0.5 * yextra - ymax - (rep.int(1L:n.legpercol,ncol)[1L:n.leg] - 1 + !is.null(title)) * ychar if (mfill) { if(plot) { if(!is.null(fill)) fill <- rep_len(fill, n.leg) rect2(left = xt, top=yt+ybox/2, dx = xbox, dy = ybox, col = fill, density = density, angle = angle, border = border) } xt <- xt + dx.fill } if(plot && (has.pch || do.lines)) col <- rep_len(col, n.leg) if(missing(lwd) || is.null(lwd)) lwd <- par("lwd") if (do.lines) { if(missing(lty) || is.null(lty)) lty <- 1 lty <- rep_len(lty, n.leg) lwd <- rep_len(lwd, n.leg) ok.l <- !is.na(lty) & (is.character(lty) | lty > 0) & !is.na(lwd) if(trace) catn(" segments2(",xt[ok.l] + x.off*xchar, ",", yt[ok.l], ", dx=", seg.len*xchar, ", dy=0, ...)") if(plot) segments2(xt[ok.l] + x.off*xchar, yt[ok.l], dx = seg.len*xchar, dy = 0, lty = lty[ok.l], lwd = lwd[ok.l], col = col[ok.l]) xt <- xt + (seg.len+x.off) * xchar } if (has.pch) { pch <- rep_len(pch, n.leg) pt.bg <- rep_len(pt.bg, n.leg) pt.cex <- rep_len(pt.cex, n.leg) pt.lwd <- rep_len(pt.lwd, n.leg) ok <- !is.na(pch) if (!is.character(pch)) { ok <- ok & (pch >= 0 | pch <= -32) } else { ok <- ok & nzchar(pch) } x1 <- (if(merge && do.lines) xt-(seg.len/2)*xchar else xt)[ok] y1 <- yt[ok] if(trace) catn(" points2(", x1,",", y1,", pch=", pch[ok],", ...)") if(plot) points2(x1, y1, pch = pch[ok], col = col[ok], cex = pt.cex[ok], bg = pt.bg[ok], lwd = pt.lwd[ok]) } xt <- xt + x.intersp * xchar if(plot) { if (!is.null(title)) text2(left + w*title.adj, top - ymax, labels = title, adj = c(title.adj, 0), cex = cex, col = title.col) text2(xt, yt, labels = legend, adj = adj, cex = cex, col = text.col, font = text.font) } invisible(list(rect = list(w = w, h = h, left = left, top = top), text = list(x = xt, y = yt))) }
kegg_enrichment <- function(...) { lifecycle::deprecate_warn("0.2.0", "kegg_enrichment()", "calculate_kegg_enrichment()", details = "This function has been renamed." ) calculate_kegg_enrichment(...) } calculate_kegg_enrichment <- function(data, protein_id, is_significant, pathway_id = pathway_id, pathway_name = pathway_name, plot = TRUE, plot_cutoff = "adj_pval top10") { . <- NULL n_sig <- NULL kegg_term <- NULL data <- data %>% dplyr::ungroup() %>% dplyr::distinct({{ protein_id }}, {{ is_significant }}, {{ pathway_id }}, {{ pathway_name }}) %>% tidyr::drop_na() %>% dplyr::mutate({{ pathway_name }} := stringr::str_extract({{ pathway_name }}, ".*(?=\\s\\-\\s)")) %>% tidyr::unite(col = "kegg_term", {{ pathway_id }}, {{ pathway_name }}, sep = ";") %>% dplyr::group_by({{ protein_id }}) %>% tidyr::nest(kegg_term = .data$kegg_term) %>% dplyr::distinct({{ protein_id }}, {{ is_significant }}, .data$kegg_term) %>% dplyr::group_by({{ protein_id }}) %>% dplyr::mutate({{ is_significant }} := ifelse(sum({{ is_significant }}, na.rm = TRUE) > 0, TRUE, FALSE )) %>% dplyr::distinct() if (sum(dplyr::pull(data, {{ is_significant }})) == 0) { stop(strwrap("None of the significant proteins has any associated pathway in the KEGG database. No pathway enrichment could be computed.", prefix = "\n", initial = "" )) } if (length(unique(pull(data, {{ protein_id }}))) != nrow(data)) { stop(strwrap("The data frame contains more rows than unique proteins. Make sure that there are no double annotations.\nThere could be for example proteins annotated as significant and not significant.", prefix = "\n", initial = "")) } cont_table <- data %>% dplyr::group_by({{ is_significant }}) %>% dplyr::mutate(n_sig = dplyr::n()) %>% tidyr::unnest(.data$kegg_term) %>% dplyr::mutate(kegg_term = stringr::str_trim(.data$kegg_term)) %>% dplyr::group_by(.data$kegg_term, {{ is_significant }}) %>% dplyr::mutate(n_has_pathway = dplyr::n()) %>% dplyr::distinct(.data$kegg_term, {{ is_significant }}, .data$n_sig, .data$n_has_pathway) %>% dplyr::ungroup() %>% tidyr::complete(kegg_term, tidyr::nesting(!!rlang::ensym(is_significant), n_sig), fill = list(n_has_pathway = 0)) fisher_test <- cont_table %>% split(dplyr::pull(., kegg_term)) %>% purrr::map(.f = ~ dplyr::select(.x, -kegg_term) %>% tibble::column_to_rownames(var = rlang::as_name(enquo(is_significant))) %>% as.matrix() %>% fisher.test()) %>% purrr::map2_df( .y = names(.), .f = ~ tibble::tibble( pval = .x$p.value, kegg_term = .y ) ) result_table <- cont_table %>% dplyr::left_join(fisher_test, by = "kegg_term") %>% dplyr::mutate(adj_pval = stats::p.adjust(.data$pval, method = "BH")) %>% dplyr::group_by(.data$kegg_term) %>% dplyr::mutate( n_detected_proteins = sum(.data$n_sig), n_detected_proteins_in_pathway = sum(.data$n_has_pathway), n_significant_proteins = ifelse({{ is_significant }} == TRUE, .data$n_sig, NA), n_significant_proteins_in_pathway = ifelse({{ is_significant }} == TRUE, .data$n_has_pathway, NA) ) %>% tidyr::drop_na() %>% dplyr::select(-c({{ is_significant }}, .data$n_sig, .data$n_has_pathway)) %>% dplyr::mutate(n_proteins_expected = round( .data$n_significant_proteins / .data$n_detected_proteins * .data$n_detected_proteins_in_pathway, digits = 2 )) %>% dplyr::mutate(direction = ifelse(.data$n_proteins_expected < .data$n_significant_proteins_in_pathway, "Up", "Down")) %>% tidyr::separate(.data$kegg_term, c("pathway_id", "pathway_name"), ";") %>% dplyr::arrange(.data$pval) if (plot == FALSE) { return(result_table) } if (stringr::str_detect(plot_cutoff, pattern = "top10")) { split_cutoff <- stringr::str_split(plot_cutoff, pattern = " ", simplify = TRUE) type <- split_cutoff[1] plot_input <- result_table %>% dplyr::ungroup() %>% dplyr::mutate(neg_log_sig = -log10(!!rlang::ensym(type))) %>% dplyr::slice(1:10) } else { split_cutoff <- stringr::str_split(plot_cutoff, pattern = " ", simplify = TRUE) type <- split_cutoff[1] threshold <- as.numeric(split_cutoff[2]) plot_input <- result_table %>% dplyr::ungroup() %>% dplyr::mutate(neg_log_sig = -log10(!!rlang::ensym(type))) %>% dplyr::filter(!!rlang::ensym(type) <= threshold) } enrichment_plot <- plot_input %>% ggplot2::ggplot(ggplot2::aes(stats::reorder(.data$pathway_name, .data$neg_log_sig), .data$neg_log_sig, fill = .data$direction)) + ggplot2::geom_col(col = "black", size = 1.5) + ggplot2::scale_fill_manual(values = c(Down = " ggplot2::scale_y_continuous(breaks = seq(0, 100, 2)) + ggplot2::coord_flip() + ggplot2::labs(title = "KEGG pathway enrichment of significant proteins", y = "-log10 adjusted p-value") + ggplot2::theme_bw() + ggplot2::theme( plot.title = ggplot2::element_text( size = 20 ), axis.text.x = ggplot2::element_text( size = 15 ), axis.text.y = ggplot2::element_text( size = 15 ), axis.title.x = ggplot2::element_text( size = 15 ), axis.title.y = ggplot2::element_blank() ) return(enrichment_plot) }
tb1simpleUI <- function(id) { ns <- NS(id) tagList( uiOutput(ns("base")), uiOutput(ns("sub2")) ) } tb1simple <- function(input, output, session, data, matdata, data_label, data_varStruct = NULL, group_var, showAllLevels = T){ variable <- NULL if (is.null(data_varStruct)){ data_varStruct = list(variable = names(data)) } if (!("data.table" %in% class(data))) {data = data.table(data)} if (!("data.table" %in% class(data_label))) {data_label = data.table(data_label)} factor_vars <- names(data)[data[, lapply(.SD, class) %in% c("factor", "character")]] factor_list <- mklist(data_varStruct, factor_vars) conti_vars <- setdiff(names(data), c(factor_vars, "pscore", "iptw")) conti_list <- mklist(data_varStruct, conti_vars) nclass_factor <- unlist(data[, lapply(.SD, function(x){length(unique(x)[!is.na(unique(x))])}), .SDcols = factor_vars]) group_vars <- factor_vars[nclass_factor >=2 & nclass_factor <=10 & nclass_factor < nrow(data)] group_list <- mklist(data_varStruct, group_vars) except_vars <- factor_vars[nclass_factor > 10 | nclass_factor == 1 | nclass_factor == nrow(data)] f <- function(x) { if (diff(range(x, na.rm = T)) == 0) return(F) else return(shapiro.test(x)$p.value <= 0.05) } non_normal <- ifelse(nrow(data) <=3 | nrow(data) >= 5000, rep(F, length(conti_vars)), sapply(conti_vars, function(x){f(data[[x]])}) ) output$base <- renderUI({ tagList( selectInput(session$ns("nonnormal_vars"), "Non-normal variable (continuous)", choices = conti_list, multiple = T, selected = conti_vars[non_normal] ), sliderInput(session$ns("decimal_tb1_con"), "Digits (continuous)", min = 1, max = 3, value = 1 ), sliderInput(session$ns("decimal_tb1_cat"), "Digits (categorical, %)", min = 1, max = 3, value = 1 ), sliderInput(session$ns("decimal_tb1_p"), "Digits (p)", min = 3, max = 5, value = 3 ), checkboxInput(session$ns("smd"), "Show SMD", T), selectInput(session$ns("group2_vars"), "Stratified by (optional)", choices = c("None", mksetdiff(group_list, group_var)), multiple = F, selected = "None") ) }) output$sub2 <- renderUI({ req(!is.null(input$group2_vars)) if (input$group2_vars == 'None') return(NULL) tagList( checkboxInput(session$ns("psub"), "Subgroup p-values", T) ) }) labelled::var_label(data) = sapply(names(data), function(v){data_label[variable == v, var_label][1]}, simplify = F) out <- reactive({ vars <- setdiff(setdiff(names(data),except_vars), group_var) Svydesign <- survey::svydesign(ids = ~ 1, data = data, weights = ~ iptw) if (input$group2_vars == "None"){ vars.tb1 = setdiff(vars, c(group_var, "pscore", "iptw")) res = jstable::CreateTableOneJS(data = data, vars = vars.tb1, strata = group_var, includeNA = F, test = T, testApprox = chisq.test, argsApprox = list(correct = TRUE), testExact = fisher.test, argsExact = list(workspace = 2 * 10^7), testNormal = oneway.test, argsNormal = list(var.equal = F), testNonNormal = kruskal.test, argsNonNormal = list(NULL), showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, exact = NULL, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label) res.ps = jstable::CreateTableOneJS(data = matdata, vars = vars.tb1, strata = group_var, includeNA = F, test = T, testApprox = chisq.test, argsApprox = list(correct = TRUE), testExact = fisher.test, argsExact = list(workspace = 2 * 10^7), testNormal = oneway.test, argsNormal = list(var.equal = F), testNonNormal = kruskal.test, argsNonNormal = list(NULL), showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, exact = NULL, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label) res.iptw <- jstable::svyCreateTableOneJS(data = Svydesign, vars = vars.tb1, strata = group_var, includeNA = F, test = T, showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label) } else{ vars.tb1 = setdiff(vars, c(group_var, input$group2_vars, "pscore", "iptw")) res = jstable::CreateTableOneJS(data = data, vars = vars.tb1, strata = input$group2_vars, strata2 = group_var, includeNA = F, test = T, testApprox = chisq.test, argsApprox = list(correct = TRUE), testExact = fisher.test, argsExact = list(workspace = 2 * 10^7), testNormal = oneway.test, argsNormal = list(var.equal = F), testNonNormal = kruskal.test, argsNonNormal = list(NULL), showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, exact = NULL, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label, psub = input$psub) res.ps = jstable::CreateTableOneJS(data = matdata, vars = vars.tb1, strata = input$group2_vars, strata2 = group_var, includeNA = F, test = T, testApprox = chisq.test, argsApprox = list(correct = TRUE), testExact = fisher.test, argsExact = list(workspace = 2 * 10^7), testNormal = oneway.test, argsNormal = list(var.equal = F), testNonNormal = kruskal.test, argsNonNormal = list(NULL), showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, exact = NULL, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label, psub = input$psub) res.iptw <- jstable::svyCreateTableOneJS(data = Svydesign, vars = vars.tb1, strata = input$group2_vars, strata2 = group_var, includeNA = F, test = T, showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label, psub = input$psub) } return(list(original = res, ps = res.ps, iptw = res.iptw)) }) return(out) } tb1simple2 <- function(input, output, session, data, matdata, data_label, data_varStruct = NULL, vlist, group_var, showAllLevels = T){ if (is.null(data_varStruct)){ data_varStruct = reactive(list(variable = names(data()))) } output$base <- renderUI({ tagList( selectInput(session$ns("nonnormal_vars"), "Non-normal variable (continuous)", choices = vlist()$conti_list, multiple = T, selected = vlist()$conti_vars[vlist()$non_normal] ), sliderInput(session$ns("decimal_tb1_con"), "Digits (continuous)", min = 1, max = 3, value = 1 ), sliderInput(session$ns("decimal_tb1_cat"), "Digits (categorical, %)", min = 1, max = 3, value = 1 ), sliderInput(session$ns("decimal_tb1_p"), "Digits (p)", min = 3, max = 5, value = 3 ), checkboxInput(session$ns("smd"), "Show SMD", T) , selectInput(session$ns("group2_vars"), "Stratified by (optional)", choices = c("None", mksetdiff(vlist()$group_list, group_var())), multiple = F, selected = "None") ) }) output$sub2 <- renderUI({ req(!is.null(input$group2_vars)) if (input$group2_vars == 'None') return(NULL) tagList( checkboxInput(session$ns("psub"), "Subgroup p-values", T) ) }) out <- reactive({ req(!is.null(group_var())) vars = setdiff(setdiff(names(data()),vlist()$except_vars), group_var()) Svydesign <- survey::svydesign(ids = ~ 1, data = data(), weights = ~ iptw) if (input$group2_vars == "None"){ vars.tb1 = setdiff(vars, c(group_var(), "pscore", "iptw")) res = jstable::CreateTableOneJS(data = data(), vars = vars.tb1, strata = group_var(), includeNA = F, test = T, testApprox = chisq.test, argsApprox = list(correct = TRUE), testExact = fisher.test, argsExact = list(workspace = 2 * 10^7), testNormal = oneway.test, argsNormal = list(var.equal = F), testNonNormal = kruskal.test, argsNonNormal = list(NULL), showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, exact = NULL, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label()) res.ps = jstable::CreateTableOneJS(data = matdata(), vars = vars.tb1, strata = group_var(), includeNA = F, test = T, testApprox = chisq.test, argsApprox = list(correct = TRUE), testExact = fisher.test, argsExact = list(workspace = 2 * 10^7), testNormal = oneway.test, argsNormal = list(var.equal = F), testNonNormal = kruskal.test, argsNonNormal = list(NULL), showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, exact = NULL, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label()) res.iptw <- jstable::svyCreateTableOneJS(data = Svydesign, vars = vars.tb1, strata = group_var(), includeNA = F, test = T, showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label()) } else{ vars.tb1 = setdiff(vars, c(group_var(), input$group2_vars, "pscore", "iptw")) res = jstable::CreateTableOneJS(data = data(), vars = vars.tb1, strata = input$group2_vars, strata2 = group_var(), includeNA = F, test = T, testApprox = chisq.test, argsApprox = list(correct = TRUE), testExact = fisher.test, argsExact = list(workspace = 2 * 10^7), testNormal = oneway.test, argsNormal = list(var.equal = F), testNonNormal = kruskal.test, argsNonNormal = list(NULL), showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, exact = NULL, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label(), psub = input$psub) res.ps = jstable::CreateTableOneJS(data = matdata(), vars = vars.tb1, strata = input$group2_vars, strata2 = group_var(), includeNA = F, test = T, testApprox = chisq.test, argsApprox = list(correct = TRUE), testExact = fisher.test, argsExact = list(workspace = 2 * 10^7), testNormal = oneway.test, argsNormal = list(var.equal = F), testNonNormal = kruskal.test, argsNonNormal = list(NULL), showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, exact = NULL, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label(), psub = input$psub) res.iptw <- jstable::svyCreateTableOneJS(data = Svydesign, vars = vars.tb1, strata = input$group2_vars, strata2 = group_var(), includeNA = F, test = T, showAllLevels = showAllLevels, printToggle = F, quote = F, smd = input$smd, Labels = T, nonnormal = input$nonnormal_vars, catDigits = input$decimal_tb1_cat, contDigits = input$decimal_tb1_con, pDigits = input$decimal_tb1_p, labeldata = data_label(), psub = input$psub) } return(list(original = res, ps = res.ps, iptw = res.iptw)) }) return(out) }
context("test-get_n") test_that("Checking that get_n works for T-test", { data("ToothGrowth") stat.test <- ToothGrowth %>% t_test(len ~ dose) expect_equal(get_n(stat.test), c(40, 40, 40)) }) test_that("Checking that get_n works for grouped T-test", { data("ToothGrowth") stat.test <- ToothGrowth %>% group_by(dose) %>% t_test(len ~ supp) expect_equal(get_n(stat.test), c(20, 20, 20)) }) test_that("Checking that get_n works for grouped ANOVA", { data("ToothGrowth") res.aov <- ToothGrowth %>% group_by(supp) %>% anova_test(len ~ dose) expect_equal(get_n(res.aov), c(30, 30)) })
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(chronochrt) library(ggplot2) library(knitr) chrons <- add_chron( region = c("region = A", "region = A", "region = A", "region = A", "region = A", "region = A", "region = A", "region = A", "region = A", "region = A", "region = A", "region = A", "region = B", "region = B", "region = B"), name = c("level = 1\nadd =\nFALSE", "level = 2\nadd =\nFALSE", "level = 3\nadd =\nFALSE", "level = 4\nadd =\nFALSE", "level = 5\nadd =\nFALSE","level = 1\nadd =\nTRUE","level = 2\nadd =\nTRUE","level = 2\nadd =\nTRUE", "add =\nTRUE", "level = 3", "add = TRUE", "level = 4", "level = 1\nadd = FALSE", "level = 2\nadd = FALSE", "level = 3\nadd = FALSE"), start = c(-500, -500, -500, -500, -500, -400, -400, 0, 0, "200/200", "200/200", "275_325", -500, -500, -500), end = c(500, 500, 500, 500, 500, 400, -50, 400, "200/200", 400, "275_325", 400, 500, 500, 500), level = c(1, 2, 3, 4, 5, 1, 2, 2, 3, 3, 4, 4, 1, 2, 3), add = c(FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE), new_table = TRUE) print(chrons) plot_chronochrt(chrons, size_text = 4, line_break = 20) + ggplot2::scale_x_continuous(name = NULL, breaks = seq(0, 2, 0.1), minor_breaks = NULL, expand = c(0,0)) + ggplot2::theme(axis.text.x = ggplot2::element_text(), axis.ticks.x = ggplot2::element_line()) data <- add_chron(region = "earlier/later", name = c("1", "2", "1a", "1b"), start = c(-100, "50/100", -100, "-25_25"), end = c("50/100", 200, "-25_25", "50/100"), level = c(1, 1, 2, 2), add = FALSE, new_table = TRUE) %>% add_chron(region = "later/earlier", name = c("1", "2", "1a", "1b"), start = c(-100, "100/50", -100, "25_-25"), end = c("100/50", 200, "25_-25", "100/50"), level = c(1, 1, 2, 2), add = FALSE, new_table = FALSE) %>% add_chron(region = "mixed", name = c("1", "2", "1a", "1b"), start = c(-100, "50/100", -100, "-25_25"), end = c("50/100", 200, "25_-25", "100/50"), level = c(1, 1, 2, 2), add = FALSE, new_table = FALSE) %>% add_chron(region = "same", name = c("1", "2", "1a", "1b"), start = c(-100, "100/100", -100, "25_25"), end = c("100/100", 200, "25_25", "100/100"), level = c(1, 1, 2, 2), add = FALSE, new_table = FALSE) %>% arrange_regions(order = c("earlier/later", "later/earlier", "same", "mixed")) plot_chronochrt(data) text <- add_label_text(region = "earlier/later", year = 50, position = 0.95, label = "This date in front of the /.", new = TRUE) text <- add_label_text(data = text, region = "later/earlier", year = 100, position = 0.9, label = "This date in\nfront of the /.", new = FALSE) %>% add_label_text(region = "mixed", year = 75, position = 0.75, label = "Both dates are\nin front of the /.", new = FALSE) text <- add_label_text(data = text, region = "same", year = 100, position = c(0.4, 0.9), label = "same", new = FALSE) plot_chronochrt(data, labels_text = text) image <- add_label_image(region = "earlier/later", year = 50, position = 0.5, image_path = "https://www.r-project.org/logo/Rlogo.png", new = TRUE) %>% add_label_image(region = "same", year = 0, position = 0.5, image_path = "https://www.r-project.org/logo/Rlogo.svg", new = FALSE) plot_chronochrt(data, labels_image = image) plot <- ggplot() + geom_chronochRt(data = data, mapping = aes(region = region, name = name, start = start, end = end, level = level, add = add)) + geom_text(data = text, aes(x = position, y = year, label = label)) + geom_chronochRtImage(data = image, aes(x = position, y = year, image_path = image_path)) + facet_grid(cols = vars(region)) plot plot + theme_chronochrt() ggplot() + geom_chronochRt(data = chrons, mapping = aes(region = region, name = name, start = start, end = end, level = level, add = add)) + facet_grid(cols = vars(region)) + theme_chronochrt() ggplot() + geom_chronochRt(data = chrons, mapping = aes(region = region, name = name, start = start, end = end, level = level, add = add)) + scale_x_continuous(expand = c(0,0)) + scale_y_continuous(name = "Year", expand = c(0,0)) + facet_grid(cols = vars(region), scales = "free_x", space = "free_x") + theme_chronochrt() ggplot() + geom_chronochRt(data = data, mapping = aes(region = region, name = name, start = start, end = end, level = level, add = add)) + geom_text(data = text, aes(x = position, y = year, label = label)) + geom_chronochRtImage(data = image, aes(x = position, y = year, image_path = image_path)) + scale_x_continuous(expand = c(0,0)) + scale_y_continuous(name = "Year", expand = c(0,0)) + facet_grid(cols = vars(region), scales = "free_x", space = "free_x") + theme_chronochrt() points <- data.frame(x = seq(0, 2, 0.5), y = seq(-500,-100, 100)) ggplot() + geom_chronochRt(data = chrons, aes(region = region, name = NULL, start = start, end = end, level = level, add = add)) + geom_point(data = points, aes(x = x, y = y), size = 5, colour = "red") + facet_grid(cols = vars(region), scales = "free_x", space = "free_x") + theme_void()
context("Base assertions") test_that("any message is useful", { expect_equal(validate_that(any(TRUE, FALSE)), TRUE) x <- c(FALSE, FALSE) expect_equal(validate_that(any(x)), "No elements of x are true") }) test_that("all message is useful", { expect_equal(validate_that(all(TRUE, TRUE)), TRUE) x <- c(FALSE, TRUE) expect_match(validate_that(all(x)), "Elements .* of x are not true") }) test_that("custom message is printed", { expect_equal(validate_that(FALSE, msg = "Custom message"), "Custom message") })
data <- c(18.0, 6.3, 7.5, 8.1, 3.1, 0.8, 2.4, 3.5, 9.5, 39.7, 3.4, 14.6, 5.1, 6.8, 2.6, 8.0, 8.5, 3.7, 21.2, 3.1, 10.2, 8.3, 6.4, 3.0, 5.7, 5.6, 7.4, 3.9, 9.1, 4.0) weiblik <- function(theta, x) { sum(dweibull(x, theta[1], theta[2], log = TRUE)) } pweib <- function(x, theta){ pweibull(x, theta[1], theta[2]) } GOF(data, weiblik, pweib, start = c(1, 1), cutpts = c(0, 3, 6, 12, Inf))$table GOF(data, weiblik, pweib, start = c(1, 1), cutpts = c(0, 3, 6, 12, Inf)) GOF(data, weiblik, pweib, start = c(1, 1), cutpts = c(0, 3, 6, 12, Inf), pearson = TRUE)
temperature_curve <- function(T_par, years = 1, t_int = 1 ){ T_amp <- T_par[1] T_per <- T_par[2] T_pha <- T_par[3] T_av <- T_par[4] t <- seq(0, years * T_per, t_int) SST <- T_av + T_amp/2 * sin((2 * pi * (t - T_pha + T_per/4)) / T_per) res <- cbind(t, SST) return(res) }
stat.tpm <- function(p,tau1){ return(stat.tfisher(p,tau1,1)) }
source("ESEUR_config.r") library("diagram") plot_layout(1, 1, default_width=ESEUR_default_width+2, default_height=ESEUR_default_height+2) pal_col=rainbow(3) names=c("A2-0", "1", "2", "13", "12", "14", "123", "124", "125", "134", "1235", "1234", "12345") M=matrix(data=0, nrow=length(names), ncol=length(names)) colnames(M)=names rownames(M)=names M["A2-0", "1"]=37 M["A2-0", "2"]=2 M["A2-0", "12"]=10 M["A2-0", "14"]=1 M["1", "13"]=1 M["1", "124"]=1 M["1", "12"]=34 M["1", "14"]=1 M["2", "12"]=2 M["13", "123"]=1 M["12", "123"]=17 M["12", "124"]=28 M["12", "125"]=1 M["12", "124"]=28 M["12", "134"]=1 M["14", "124"]=1 M["14", "134"]=1 M["123", "1235"]=1 M["123", "1234"]=17 M["124", "1234"]=30 M["134", "1234"]=1 M["1234", "12345"]=22 par(col=pal_col[3]) plotmat(t(M), pos=c(1, 2, 3, 4, 2, 1), lwd=1, lcol="grey", txt.col=pal_col[1], arr.col=pal_col[3], arr.lcol=pal_col[2], arr.pos=0.4, arr.width=0.1, box.prop=0.5, box.size=0.05, box.cex=1.2, box.lcol="white", cex=1.2, shadow.size=0)
create.dotmap <- function(x, bg.data = NULL, filename = NULL, main = NULL, main.just = 'center', main.x = 0.5, main.y = 0.5, pch = 19, pch.border.col = 'black', add.grid = TRUE, xaxis.lab = colnames(x), yaxis.lab = rownames(x), xaxis.rot = 0, yaxis.rot = 0, main.cex = 3, xlab.cex = 2, ylab.cex = 2, xlab.label = NULL, ylab.label = NULL, xlab.col = 'black', ylab.col = 'black', xlab.top.label = NULL, xlab.top.cex = 2, xlab.top.col = 'black', xlab.top.just = 'center', xlab.top.x = 0.5, xlab.top.y = 0, xaxis.cex = 1.5, yaxis.cex = 1.5, xaxis.col = 'black', yaxis.col = 'black', xaxis.tck = 1, yaxis.tck = 1, axis.top = 1, axis.bottom = 1, axis.left = 1, axis.right = 1, top.padding = 0.1, bottom.padding = 0.7, right.padding = 0.1, left.padding = 0.5, key.ylab.padding = 0.1, key = list(text = list(lab = c(''))), legend = NULL, col.lwd = 1.5, row.lwd = 1.5, spot.size.function = 'default', spot.colour.function = 'default', na.spot.size = 7, na.pch = 4, na.spot.size.colour = 'black', grid.colour = NULL, colour.scheme = 'white', total.colours = 99, at = NULL, colour.centering.value = 0, colourkey = FALSE, colourkey.labels.at = NULL, colourkey.labels = NULL, colourkey.cex = 1, colour.alpha = 1, bg.alpha = 0.5, fill.colour = 'white', key.top = 0.1, height = 6, width = 6, size.units = 'in', resolution = 1600, enable.warnings = FALSE, col.colour = 'black', row.colour = 'black', description = 'Created with BoutrosLab.plotting.general', add.rectangle = FALSE, xleft.rectangle = NULL, ybottom.rectangle = NULL, xright.rectangle = NULL, ytop.rectangle = NULL, col.rectangle = 'transparent', border.rectangle=NULL, lwd.rectangle = NULL, alpha.rectangle = 1, xaxis.fontface = 'bold', yaxis.fontface = 'bold', dot.colour.scheme = NULL, style = 'BoutrosLab', preload.default = 'custom', use.legacy.settings = FALSE, remove.symmetric = FALSE, lwd = 2) { tryCatch({ dir.name <- '/.mounts/labs/boutroslab/private/BPGRecords/Objects'; if( !dir.exists(dir.name) ) { dir.create(dir.name); } funcname <- 'create.dotmap'; print.to.file(dir.name, funcname, x, filename); }, warning = function(w) { }, error = function(e) { }); rectangle.info <- list( xright = xright.rectangle, xleft = xleft.rectangle, ytop = ytop.rectangle, ybottom = ybottom.rectangle ); if (preload.default == 'paper') { } else if (preload.default == 'web') { } data.subset <- TRUE; if (remove.symmetric == TRUE) { if (ncol(x) != nrow(x)) { stop('can only use remove.symmetric with matrices of same length and width'); } data.subset <- c(); for (i in c(1:nrow(x))) { for (j in c(1:nrow(x))) { if(j > i) { data.subset <- c(data.subset, T); } else { data.subset <- c(data.subset, F); } } } } x <- as.data.frame(x); temp <- x; if (class(spot.size.function) == 'character' && spot.size.function == 'default') { spot.size.function <- function(x) { 0.1 + (2 * abs(x)); } } else if (class(spot.size.function) == 'numeric') { returnval <- spot.size.function; spot.size.function <- function(x) { returnval; } } if (class(spot.colour.function) == 'character' && spot.colour.function == 'default') { spot.colour.function <- function(x) { colours <- rep('white', length(x)); colours[sign(x) == -1] <- BoutrosLab.plotting.general::default.colours(2, palette.type = 'dotmap')[1]; colours[sign(x) == 1] <- BoutrosLab.plotting.general::default.colours(2, palette.type = 'dotmap')[2]; return(colours); } } else if (class(spot.colour.function) == 'character' && spot.colour.function == 'discrete') { if (length(unique(unlist(x))) > length(dot.colour.scheme)) { stop(paste('Not enough colours specified to use discrete function: need at least', length(unique(unlist(x))), 'colours')); } spot.colour.function <- function(x) { unique.values <- unique(x); colours <- rep('white', length(x)); for (i in c(1:length(unique.values))) { colours[x == unique.values[i]] <- dot.colour.scheme[i]; } return(colours); } } else if (class(spot.colour.function) == 'character' && spot.colour.function == 'columns') { spot.colour.function <- function(x) { no.unique.columns <- length(unique(colnames(temp))); no.rows <- length(rownames(temp)); if (no.unique.columns != length(colnames(temp))) { stop(paste('Remove repeated column names')); } new.colnames <- seq(1, no.unique.columns, 1); colnames(temp) <- new.colnames; temp <- stack(temp); temp$values <- temp$ind; temp$ind <- NULL; index <- 1; colours <- rep('white', no.unique.columns * no.rows); for (i in c(1:no.unique.columns)) { for (j in c(1:no.rows)) { colours[index] <- default.colours(12)[(i %% 12) + 1]; index <- index + 1; } } return(colours); } } else if (class(spot.colour.function) == 'character' && spot.colour.function == 'rows') { spot.colour.function <- function(x) { no.columns <- length(colnames(temp)); no.unique.rows <- length(unique(rownames(temp))); if (no.unique.rows != length(rownames(temp))) { stop(paste('Remove repeated row names')); } colour.per.column <- c(1:no.unique.rows); for (i in 0:no.unique.rows) { colour.per.column[i + 1] <- default.colours(12)[(i %% 12) + 1]; } temp <- stack(temp); temp$ind <- NULL; index <- 1; for (i in c(1:no.columns)) { for (j in c(1:no.unique.rows)) { temp$values[index] <- colour.per.column[j]; index <- index + 1; } } return(temp); } } spot.sizes <- spot.size.function(stack(x)$values); spot.colours <- spot.colour.function(stack(x)$values); spot.border <- pch.border.col; if (!is.null(bg.data)) { if (length(colour.scheme) == 1 && colour.scheme == 'white') { warning("bg.data is set, but colour.scheme is set to default 'white'. No background colours will be displayed. Changing bg.data to NULL"); bg.data <- NULL; } } if (is.null(bg.data)) { bg.data <- x; if (colourkey) { warning('No bg.data set, but colourkey is set to TRUE. Changing colourkey to FALSE'); colourkey <- FALSE; } if (length(colour.scheme) != 1 || colour.scheme != 'white') { warning("No bg.data set, but colour.scheme is set to non-default value. Changing colour.scheme to 'white'."); colour.scheme <- 'white'; } } if (is.null(at)) { min.value <- min(bg.data - colour.centering.value, na.rm = TRUE); max.value <- max(bg.data - colour.centering.value, na.rm = TRUE); at <- seq(from = min.value, to = max.value, length.out = total.colours); } else { min.value <- min(at - colour.centering.value, na.rm = TRUE); max.value <- max(at - colour.centering.value, na.rm = TRUE); min.at <- min(at); max.at <- max(at); if (min(bg.data, na.rm = TRUE) < min.at) { warning( paste( 'min(bg.data) = ', min(bg.data, na.rm = TRUE), 'is smaller than min(at) = ', min.at, 'Clipped data will be plotted' ) ); bg.data[bg.data < min.at] <- min(at); } if (max(bg.data, na.rm = TRUE) > max.at) { warning( paste( 'max(bg.data) = ', max(bg.data, na.rm = TRUE), 'is greater than max(at) = ', max.at, 'Clipped data will be plotted' ) ); bg.data[bg.data > max.at] <- max(at); } total.colours <- max(length(at), total.colours); } if (bg.alpha <= 1 && bg.alpha >= 0) { bg.alpha <- bg.alpha * 255; } if (1 == length(colour.scheme)) { if (colour.scheme == 'RedWhiteBlue') { colour.scheme <- c('red', 'white', 'blue'); } else if (colour.scheme == 'WhiteBlack') { colour.scheme <- c('white', 'black'); } else if (colour.scheme == 'BlueWhiteYellow') { colour.scheme <- c('blue', 'white', 'yellow'); } else if (colour.scheme == 'white') { colour.scheme <- c('white', 'white'); } else { warning(paste('Unknown colour scheme:', colour.scheme)); return(0); } } if (2 == length(colour.scheme)) { colour.function <- colorRamp(colour.scheme, space = 'Lab'); my.palette <- rgb(colour.function(seq(0, 1, 1 / total.colours) ^ colour.alpha), alpha = bg.alpha, maxColorValue = 255); } else if (3 == length(colour.scheme)) { is.twosided <- sign(min.value) != sign(max.value); if (!is.twosided) { warning('Using a three-colour scheme with one-sided data is not advised!'); } colour.function.low <- colorRamp(colour.scheme[1:2], space = 'Lab'); colour.function.high <- colorRamp(colour.scheme[2:3], space = 'Lab'); neg.colours <- min.value / (max.value - min.value) * (total.colours - 1); neg.colours <- ceiling(abs(neg.colours)); pos.colours <- total.colours - neg.colours - 1; if (neg.colours < 1 | pos.colours < 1) { warning('Colour allocation scheme failed, moving to a default method'); neg.colours <- round(total.colours / 2); pos.colours <- round(total.colours / 2); } my.palette <- c( rgb(colour.function.low(seq(0, 1, 1 / neg.colours) ^ colour.alpha), alpha = bg.alpha, maxColorValue = 255), colour.scheme[2], rgb(colour.function.high(seq(0, 1, 1 / pos.colours) ^ (1 / colour.alpha)), alpha = bg.alpha, maxColorValue = 255) ); } else { my.palette <- c(); for (n in 1:length(colour.scheme)) { colour.function <- colorRamp(c('white', colour.scheme[n]), space = 'Lab'); my.palette <- c(my.palette, rgb(colour.function(1 ^ colour.alpha), alpha = bg.alpha, maxColorValue = 255)); } } bg.data <- as.data.frame(bg.data); y.coords <- rep(nrow(x):1, ncol(x)); x.coords <- c(); for (i in 1:ncol(x)) { x.coords <- c(x.coords, rep(i, nrow(x))); } bg.data <- data.frame( x = x.coords, y = y.coords, freq = stack(bg.data)$values ); if (colourkey) { colourkey <- list( size = 1, space = 'bottom', width = 1.25, height = 1.0, labels = list( cex = colourkey.cex, at = colourkey.labels.at, labels = colourkey.labels ), tick.number = 3 ); } if (!is.null(grid.colour)) { row.colour <- grid.colour; col.colour <- grid.colour; cat(paste0('CAUTION: grid.colour is DEPRECATED! Use row.colour/col.colour. Using: ', grid.colour, '\n')); } if (any(is.na(x))) { tmp.pch <- pch; pch[is.na(x)] <- na.pch; pch[!is.na(x)] <- tmp.pch; spot.colours[is.na(x)] <- na.spot.size.colour; spot.sizes[is.na(x)] <- na.spot.size; rm(tmp.pch); } if (is.null(lwd.rectangle) & !is.null(border.rectangle)) { lwd.rectangle <- 1; } trellis.object <- lattice::levelplot( freq ~ x * y, bg.data, subset = data.subset, panel = function(...) { panel.fill(col = fill.colour); panel.levelplot(...); if (add.grid) { if(remove.symmetric == TRUE) { for(i in c(1:max(bg.data$y))) { panel.lines(x = c(0,max(bg.data$x) - (i)) + 0.5, y = i + 0.5, col=col.colour, lwd = col.lwd); } for(i in c(1:max(bg.data$x))) { panel.lines(x = i + 0.5, y = c(0,max(bg.data$y) - (i)) + 0.5, col=row.colour, lwd = row.lwd); } } else { panel.abline( h = min(bg.data$y):max(bg.data$y) - 0.5, v = 0, col.line = row.colour, lwd = row.lwd ); panel.abline( v = min(bg.data$x):max(bg.data$x) - 0.5, h = 0, col.line = col.colour, lwd = col.lwd ); } } if (add.rectangle) { panel.rect( xleft = rectangle.info$xleft, ybottom = rectangle.info$ybottom, xright = rectangle.info$xright, ytop = rectangle.info$ytop, col = col.rectangle, alpha = alpha.rectangle, border = ifelse(is.null(border.rectangle), NA, border.rectangle), lwd = lwd.rectangle ); } panel.xyplot( type = 'p', cex = spot.sizes, pch = pch, col = mapply( function(pch, spot.colours, spot.border) { if (pch %in% 0:20) { return(spot.colours); } else if (pch %in% 21:25) { return(spot.border); } }, pch, spot.colours = spot.colours, spot.border = spot.border ), fill = mapply( function(pch, spot.colours) { if (pch %in% 0:20) { NA; } else if (pch %in% 21:25) { return(spot.colours); } }, pch, spot.colours = spot.colours ), key = key, legend = legend, ... ); }, at = at, key = key, legend = legend, col.regions = my.palette, colorkey = colourkey, main = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( label = main, fontface = if ('Nature' == style) {'plain'} else ('bold'), cex = main.cex, just = main.just, x = main.x, y = main.y ) ), xlab = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( label = xlab.label, fontface = if ('Nature' == style) {'plain'} else ('bold'), cex = xlab.cex, col = xlab.col ) ), xlab.top = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( label = xlab.top.label, cex = xlab.top.cex, col = xlab.top.col, fontface = if ('Nature' == style) {'plain'} else {'bold'}, just = xlab.top.just, x = xlab.top.x, y = xlab.top.y ) ), ylab = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( label = ylab.label, fontface = if ('Nature' == style) {'plain'} else ('bold'), cex = ylab.cex, col = ylab.col ) ), scales = list( x = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( labels = xaxis.lab, cex = xaxis.cex, rot = xaxis.rot, col = xaxis.col, tck = xaxis.tck, limits = c( min(bg.data$x, na.rm = TRUE) - 0.5, max(bg.data$x, na.rm = TRUE) + 0.5 ), at = min(bg.data$x, na.rm = TRUE):max(bg.data$x, na.rm = TRUE), fontface = if ('Nature' == style) {'plain'} else (xaxis.fontface) ) ), y = BoutrosLab.plotting.general::get.defaults( property = 'fontfamily', use.legacy.settings = use.legacy.settings || ('Nature' == style), add.to.list = list( labels = rev(yaxis.lab), cex = yaxis.cex, rot = yaxis.rot, col = yaxis.col, tck = yaxis.tck, limits = c( min(bg.data$y, na.rm = TRUE) - 0.5, max(bg.data$y, na.rm = TRUE) + 0.5 ), at = min(bg.data$y, na.rm = TRUE):max(bg.data$y, na.rm = TRUE), fontface = if ('Nature' == style) {'plain'} else (yaxis.fontface) ) ) ), par.settings = list( axis.line = list( lwd = lwd, col = if(remove.symmetric == TRUE) { 'transparent'; } else { 'black'; } ), layout.heights = list( top.padding = top.padding, main = if (is.null(main)) { 0.3} else { 1 }, main.key.padding = 0.1, key.top = key.top, key.axis.padding = 0.1, axis.top = axis.top, axis.bottom = axis.bottom, axis.xlab.padding = 1, xlab = if (is.null(xaxis.lab)) {0.1} else {1}, xlab.key.padding = 0.5, key.bottom = 1, key.sub.padding = 0.1, sub = 0.1, bottom.padding = bottom.padding ), layout.widths = list( left.padding = left.padding, key.left = 1, key.ylab.padding = key.ylab.padding, ylab = if (is.null(yaxis.lab)) {0.1} else {1}, ylab.axis.padding = 1, axis.left = axis.left, axis.right = axis.right, axis.key.padding = 0.1, key.right = 1, right.padding = right.padding ) ) ); if (remove.symmetric == TRUE) { trellis.object$axis <- function(side, line.col = 'black', ...) { if (side %in% c('bottom', 'left')) { axis.default(side = side, line.col = 'black', ...); lims <- current.panel.limits(); panel.abline(h = lims$ylim[1], v = lims$xlim[1], lwd = lwd); } } } if ('Nature' == style) { if (resolution < 1200) { resolution <- 1200; warning('Setting resolution to 1200 dpi.'); } warning('Nature also requires italicized single-letter variables and en-dashes for ranges and negatives. See example in documentation for how to do this.'); warning('Avoid red-green colour schemes, create TIFF files, do not outline the figure or legend'); } else if ('BoutrosLab' == style) { } else { warning("The style parameter only accepts 'Nature' or 'BoutrosLab'."); } return( BoutrosLab.plotting.general::write.plot( trellis.object = trellis.object, filename = filename, height = height, width = width, size.units = size.units, resolution = resolution, enable.warnings = enable.warnings, description = description ) ); }
publish.htest <- function(object, title, ...){ pynt <- getPyntDefaults(list(...),names=list("digits"=c(2,3),"handler"="sprintf",nsmall=NULL)) digits <- pynt$digits if (length(digits)==1) digits <- rep(digits,2) handler <- pynt$handler if (length(pynt$nsmall)>0) nsmall <- pynt$nsmall else nsmall <- pynt$digits Lower <- object$conf.int[[1]] Upper <- object$conf.int[[2]] ci.defaults <- list(format="[l;u]", digits=digits[[1]], nsmall=digits[[1]], degenerated="asis") pvalue.defaults <- list(digits=digits[[2]], eps=10^{-digits[[2]]}, stars=FALSE) smartF <- prodlim::SmartControl(call=list(...), keys=c("ci","pvalue"), ignore=c("x","print","handler","digits","nsmall"), defaults=list("ci"=ci.defaults,"pvalue"=pvalue.defaults), forced=list("ci"=list(lower=Lower,upper=Upper,handler=handler,digits=digits[[1]],nsmall=nsmall[[1]]), "pvalue"=list(object$p.value)), verbose=FALSE) printmethod=object$method printmethod[grep("Wilcoxon rank sum test",printmethod)]="Wilcoxon rank sum test" printmethod[grep("Wilcoxon signed rank test",printmethod)]="Wilcoxon signed rank test" printmethod[grep("Two Sample t-test",printmethod)]="Two Sample t-test" if (!is.null(object$conf.int)){ if (printmethod=="Exact binomial test"){ cistring=paste(" (CI-", 100*attr(object$conf.int,"conf.level"), "% = ", do.call("formatCI",smartF$ci), ").",sep="") }else{ cistring=paste(" (CI-", 100*attr(object$conf.int,"conf.level"), "% = ", do.call("formatCI",smartF$ci), "; ", "p-value = ", do.call("format.pval",smartF$pvalue), ").",sep="") } } else{ cistring="" } switch(printmethod, "Exact binomial test"={ outstring <- paste("The ", object$method, " to estimate the ", names(object$null.value), " based on ", object$statistic, " events ", " in ", object$parameter, " trials yields a probability estimate of ", pubformat(object$estimate,handler=handler, digits=digits[[1]], nsmall=nsmall[[1]]), cistring, sep="") }, "Two Sample t-test"={ outstring <- paste("The ", object$method, " to compare the ", names(object$null.value), " for ", object$data.name, " yields a mean difference of ", pubformat(diff(object$estimate),handler=handler, digits=digits[[1]], nsmall=nsmall[[1]]), cistring, sep="") }, "Wilcoxon rank sum test"={ if (is.null(object$conf.int)) outstring <- paste("The ", object$method, " to compare the ", names(object$null.value), " for ", object$data.name, " yields a p-value of ", do.call("format.pval",smartF$pvalue), ".", sep="") else outstring <- paste("The ", object$method, " to compare the ", names(object$null.value), " for ", object$data.name, " yields a ", names(object$estimate), " of ", pubformat(object$estimate,handler=handler, digits=digits[[1]], nsmall=nsmall[[1]]), cistring, sep="") }, "Paired t-test"={ outstring <- paste("The ", object$method, " to compare the ", names(object$null.value), " for ", object$data.name, " yields a mean of the differences of ", pubformat(object$estimate,handler=handler, digits=digits[[1]], nsmall=nsmall[[1]]), cistring, sep="") }, "Wilcoxon signed rank test"={ if (is.null(object$conf.int)) outstring <- paste("The ", object$method, " to compare the ", names(object$null.value), " for ", object$data.name, " yields a p-value of ", do.call("format.pval",smartF$pvalue), ".", sep="") else outstring <- paste("The ", object$method, " to compare the ", names(object$null.value), " for ", object$data.name, " yields a ", names(object$estimate), " of ", pubformat(object$estimate,handler=handler, digits=digits[[1]], nsmall=nsmall[[1]]), cistring, sep="") }) outstring=gsub('[[:space:]]+',' ',gsub('[[:space:]]$','',outstring)) if (missing(title)) cat("\n",outstring,"\n") else{ names(outstring) <- title print(outstring,quote=F) } }
readland.shapes <- function(Shapes, nCurvePts = NULL, continuous.curve = NULL, scaled = TRUE){ if(is.null(nCurvePts)) out <- GMfromShapes0(Shapes) else{ nCurvePts[nCurvePts < 3] = 0 if(!is.null(continuous.curve)) { continuous.curve <- unlist(continuous.curve) check <- which(nCurvePts[continuous.curve] < 4) nCurvePts[check] = 0 } out <- GMfromShapes1(Shapes, nCurvePts = nCurvePts, continuous.curve = continuous.curve) } out }
setMethod("get_neighbors", signature(x = "Quadtree", y = "numeric"), function(x, y) { return(x@ptr$getNeighbors(y)) } )
context("valuate of one portfolio of guaratee contracts") library(vamc) fundScen <- genFundScen(fundMap, indexScen)[1:5, , ] test_that("test for the correctness of valuation", { skip_on_cran() tmp <- tempfile() expect_equal_to_reference(valuatePortfolio(VAPort, mortTable, fundScen, 1 / 12, cForwardCurve), tmp) })
pkg_env = environment() restriction_names = list( 's' = 'sym', 'l' = 'logspd', 'c' = 'spd', 'd' = 'diag', 'e' = 'logdiag', 'k' = '+++PLACEHOLDER+++', '0' = 'zero', 'f' = 'fixed' ) avail_restrict_cmds = list( M=c('s','l','c','d','e','k','0','f'), V=c('0','k','f'), L=c('k','d','f') ) special_cases = list(brn=list(M='0',V='0')) npar2k = function(y,a,b,c,d) { if (2L*a+c!=0) -(2L*b+c-as.integer(sqrt(16L*a*(y-d)+4L*b*(b+c)+c*c+8L*c*(y-d))))%/%(2L*(2L*a+c)) else -(2L*(d-y))%/%(2L*b+c) } get_name_stub = function (pat) { if ((pat[['M']] == '0' && pat[['V']] != '0')||(pat[['M']] != '0' && pat[['V']] == '0')) { return(NULL) } if (pat[['M']] == 'f' && pat[['V']] == 'f' && pat[['L']] == 'f') { return(NULL) } match = NULL for (i in seq_along(special_cases)) { matched = T names_matched = list() for (n in c('M','V','L')) if (n %in% names(special_cases[[i]])) { if (special_cases[[i]][[n]] != pat[[n]]) { matched = F } else { names_matched = c(names_matched, list(n)) } } if (matched) { match = i for (n in names_matched) pat[[n]] = NULL break; } } done_part = if (!is.null(match)) names(special_cases)[match] else done_part = 'ou' pat[which(pat=='k')] = NULL for (i in seq_along(pat)) { if (names(pat)[i] == 'M') { done_part = paste0(done_part, '_', restriction_names[[pat[[i]]]], 'H') } else if (names(pat)[i] == 'V') { done_part = paste0(done_part, '_', restriction_names[[pat[[i]]]], 'theta') } else if (names(pat)[i] == 'L') { done_part = paste0(done_part, '_', restriction_names[[pat[[i]]]], 'Sig') } else { stop('Error compiling the names of restriction functions') } } if (done_part == 'ou') return(NULL) else return(list(par = done_part, jac = paste0('d', done_part), hess = paste0('h', done_part), nparams= paste0('nparams_',done_part))) } mkcmd = function (pat) { s = '' for (i in seq_along(pat)) s = paste0(s, names(pat)[i], pat[[i]]) return(s) } cmd2abcd = function (cmd) { cmd_s = strsplit(cmd, '')[[1]] curstate = 1L i = 1L res = list(a=0L,b=0L,c=0L,d=0L) repeat{ if (curstate == 1L) { switch(cmd_s[[i]], M={curstate = 2L}, V={curstate = 3L}, L={curstate = 4L}) } else if (curstate == 2L) { switch(cmd_s[[i]], s= {res[['c']]=res[['c']]+1L}, l= {res[['c']]=res[['c']]+1L}, c= {res[['c']]=res[['c']]+1L}, d= {res[['b']]=res[['b']]+1L}, e= {res[['b']]=res[['b']]+1L}, k= {res[['a']]=res[['a']]+1L}, '0'= {NULL;}, f= {NULL;}) curstate = 1L } else if (curstate == 3L) { switch(cmd_s[[i]], k= {res[['b']]=res[['b']]+1L}, '0'= {NULL;}, f= {NULL;}) curstate = 1L } else if (curstate == 4L) { switch(cmd_s[[i]], d= {res[['b']]=res[['b']]+1L}, k= {res[['c']]=res[['c']]+1L}, '0'= {NULL;}, f= {NULL;}) curstate = 1L } else stop("Error pasing command line in cmd2abcd") i=i+1 if (i > length(cmd_s)) break; } res } build_par = function (pat) { cmd = mkcmd(pat) body = quote({ parfn BUILD_FIXED__; f=function (par, ...) { mode(par) = 'double' parfn(.Call(Rparamrestrict, s, par, npar2k(length(par),a,b,c,d), FIXEDPART__), ...) } attr(f,'srcref') = NULL f }) outerargs = alist(parfn=) tosub = c(list('s'=cmd), cmd2abcd(cmd), list('FIXEDPART__' =quote(NULL), 'BUILD_FIXED__'=quote(NULL))) outerargs = c(outerargs, fixed_arg <- mk_fixed_arg(pat)) if (0L != length(fixed_arg)) { tosub_f = alist(SUB_H__ =NULL, SUB_THETA__=NULL, SUB_SIG__ =NULL) cnt = 1L for (i in seq_along(names(fixed_arg))) { if (names(fixed_arg)[i] == 'H') tosub_f[['SUB_H__']] = substitute({ fixedpart[[j]] = { if (!is.numeric(H)) stop('The argument `H` must be numeric') mode(H)='double'; H } }, list(j=cnt)) else if (names(fixed_arg)[i] == 'theta') tosub_f[['SUB_THETA__']] = substitute({ fixedpart[[j]] = { if (!is.numeric(theta)) stop('The argument `theta` must be numeric') mode(theta)='double'; theta } }, list(j=cnt)) else if (names(fixed_arg)[i] == 'Sig') tosub_f[['SUB_SIG__']] = substitute({ fixedpart[[j]] = { if (!is.numeric(Sig)) stop('The argument `Sig` must be numeric') mode(Sig)='double'; Sig } }, list(j=cnt)) else stop('Error building fixed-parameter restriction functions') cnt = cnt+1L } tosub[['BUILD_FIXED__']] = substitute({ fixedpart = list() SUB_H__ SUB_THETA__ SUB_SIG__ }, tosub_f) tosub[['FIXEDPART__']] = quote(fixedpart) } body = substituteDirect(body, tosub) substitute( `function`(A, B), list(A=as.pairlist(outerargs), B=body)) } build_jac = function (pat) { cmd = mkcmd(pat) body = quote({ jacfn BUILD_FIXED__; f=function (par, ...) { mode(par) = 'double' k = npar2k(length(par),a,b,c,d) .Call(Rpostjacrestrict, s, par, jacfn(.Call(Rparamrestrict, s, par, k, FIXEDPART__), ...), k) } attr(f,'srcref') = NULL f }) outerargs = alist(jacfn=) tosub = c(list('s'=cmd), cmd2abcd(cmd), list('FIXEDPART__' =quote(NULL), 'BUILD_FIXED__'=quote(NULL))) outerargs = c(outerargs, fixed_arg <- mk_fixed_arg(pat)) if (0L != length(fixed_arg)) { tosub_f = alist(SUB_H__ =NULL, SUB_THETA__=NULL, SUB_SIG__ =NULL) cnt = 1L for (i in seq_along(names(fixed_arg))) { if (names(fixed_arg)[i] == 'H') tosub_f[['SUB_H__']] = substitute({ fixedpart[[j]] = { if (!is.numeric(H)) stop('The argument `H` must be numeric') mode(H)='double'; H } }, list(j=cnt)) else if (names(fixed_arg)[i] == 'theta') tosub_f[['SUB_THETA__']] = substitute({ fixedpart[[j]] = { if (!is.numeric(theta)) stop('The argument `theta` must be numeric') mode(theta)='double'; theta } }, list(j=cnt)) else if (names(fixed_arg)[i] == 'Sig') tosub_f[['SUB_SIG__']] = substitute({ fixedpart[[j]] = { if (!is.numeric(Sig)) stop('The argument `Sig` must be numeric') mode(Sig)='double'; Sig } }, list(j=cnt)) else stop('Error building fixed-parameter restriction functions') cnt = cnt+1L } tosub[['BUILD_FIXED__']] = substitute({ fixedpart = list() SUB_H__ SUB_THETA__ SUB_SIG__ }, tosub_f) tosub[['FIXEDPART__']] = quote(fixedpart) } body = substituteDirect(body, tosub) substitute( `function`(A, B), list(A=as.pairlist(outerargs), B=body)) } mk_fixed_arg = function (pat) { stopifnot(names(pat)[1] == 'M') stopifnot(names(pat)[2] == 'V') stopifnot(names(pat)[3] == 'L') A = alist() if (pat[[1]]=='f') A = c(A, alist(H=)) if (pat[[2]]=='f') A = c(A, alist(theta=)) if (pat[[3]]=='f') A = c(A, alist(Sig=)) return(A) } build_hess = function (pat) { outerargs = alist(hessfn=) body = quote({ hessfn; JAC_GUARD_EVAL__; BUILD_FIXED__; f= function (par, ...) { mode(par) = 'double'; k = npar2k(length(par), A__, B__, C__, D__) par_orig = .Call(Rparamrestrict, CMD__, par, k, FIXEDPART__); Hes = hessfn(par_orig, ...); MAKE_JACTHIS__; MAKE_JACLOWER__; list(V = .Call(Rposthessrestrict, CMD__, par, Hes[['V']], k, RJACLOWER__, RJLOWEROFFSET_V__, RJACTHIS__, RJTHISOFFSET_R_V__, RJTHISOFFSET_C__), w = .Call(Rposthessrestrict, CMD__, par, Hes[['w']], k, RJACLOWER__, RJLOWEROFFSET_W__, RJACTHIS__, RJTHISOFFSET_R_W__, RJTHISOFFSET_C__), Phi = .Call(Rposthessrestrict, CMD__, par, Hes[['Phi']], k, RJACLOWER__, RJLOWEROFFSET_PHI__, RJACTHIS__, RJTHISOFFSET_R_PHI__, RJTHISOFFSET_C__)) } attr(f, 'srcref') = NULL f }) cmd = mkcmd(pat) to_sub = list( BUILD_FIXED__ = quote(NULL), FIXEDPART__ = quote(NULL), JAC_GUARD_EVAL__ = quote(NULL), MAKE_JACTHIS__ = quote(NULL), MAKE_JACLOWER__ = quote(NULL), CMD__ = cmd, RJACLOWER__ = quote(NULL), RJLOWEROFFSET_V__ = quote(NULL), RJLOWEROFFSET_W__ = quote(NULL), RJLOWEROFFSET_PHI__ = quote(NULL), RJACTHIS__ = quote(NULL), RJTHISOFFSET_R_V__ = quote(NULL), RJTHISOFFSET_R_W__ = quote(NULL), RJTHISOFFSET_R_PHI__ = quote(NULL), RJTHISOFFSET_C__ = quote(NULL) ) if (grepl('Ml', cmd, fixed = TRUE) || grepl('Mc', cmd, fixed = TRUE)) { outerargs = c(outerargs, alist(jacfn=)) to_sub[['JAC_GUARD_EVAL__']] = quote(jacfn) to_sub[['MAKE_JACLOWER__']] = quote( { J = jacfn(par_orig, ...); ku = INFO__$mod$rawmod$dimtab[INFO__$node_id]; kv = INFO__$mod$rawmod$dimtab[INFO__$parent_id]; }) to_sub[['RJACLOWER__']] = quote(J) to_sub[['RJLOWEROFFSET_V__']] = quote(ku*kv+ku) to_sub[['RJLOWEROFFSET_W__']] = quote(ku*kv) to_sub[['RJLOWEROFFSET_PHI__']] = quote(0L) } if (grepl('Me', cmd, fixed = TRUE)) { to_sub[['MAKE_JACTHIS__']] = quote( { Jthis = INFO__[['reparametrisation_jacobian']]; gstart = INFO__$mod$gausssegments[INFO__$node_id,'start']; gend = INFO__$mod$gausssegments[INFO__$node_id,'end']; pstart = INFO__$mod$parsegments[INFO__$parfn_id,'start']; phid = dim(Hes[['Phi']])[1]; wd = dim(Hes[['w']])[1]; }) to_sub[['RJACTHIS__']] = quote(Jthis) to_sub[['RJTHISOFFSET_R_V__']] = quote(gstart+phid+wd-1L) to_sub[['RJTHISOFFSET_R_W__']] = quote(gstart+phid-1L) to_sub[['RJTHISOFFSET_R_PHI__']] = quote(gstart-1L) to_sub[['RJTHISOFFSET_C__']] = quote(pstart-1L) } outerargs = c(outerargs, fixed_arg <- mk_fixed_arg(pat)) if (0L != length(fixed_arg)) { tosub_f = alist(SUB_H__ =NULL, SUB_THETA__=NULL, SUB_SIG__ =NULL) cnt = 1L for (i in seq_along(names(fixed_arg))) { if (names(fixed_arg)[i] == 'H') tosub_f[['SUB_H__']] = substitute({ fixedpart[[j]] = { if (!is.numeric(H)) stop('The argument `H` must be numeric') mode(H)='double'; H } }, list(j=cnt)) else if (names(fixed_arg)[i] == 'theta') tosub_f[['SUB_THETA__']] = substitute({ fixedpart[[j]] = { if (!is.numeric(theta)) stop('The argument `theta` must be numeric') mode(theta)='double'; theta } }, list(j=cnt)) else if (names(fixed_arg)[i] == 'Sig') tosub_f[['SUB_SIG__']] = substitute({ fixedpart[[j]] = { if (!is.numeric(Sig)) stop('The argument `Sig` must be numeric') mode(Sig)='double'; Sig } }, list(j=cnt)) else stop('Error building fixed-parameter restriction functions') cnt = cnt+1L } to_sub[['BUILD_FIXED__']] = substitute({ fixedpart = list() SUB_H__ SUB_THETA__ SUB_SIG__ }, tosub_f) to_sub[['FIXEDPART__']] = quote(fixedpart) } abcd = cmd2abcd(cmd) to_sub[['A__']] = abcd$a to_sub[['B__']] = abcd$b to_sub[['C__']] = abcd$c to_sub[['D__']] = abcd$d body = substituteDirect(body, to_sub) substitute(`function`(args, body), list(args=as.pairlist(outerargs), body=body)) } build_nparams = function (pat) { cmd = mkcmd(pat) abcd = cmd2abcd(cmd) substitute(function (k) { a*k*k+b*k+c*(k*(k+1L))%/%2L+d }, abcd) } avail_restrictions = list(nparams=character(0), par =character(0), jac =character(0), hess =character(0)) for (m in avail_restrict_cmds[['M']]) { for (v in avail_restrict_cmds[['V']]) { for (l in avail_restrict_cmds[['L']]) { pat = list('M'=m,'V'=v,'L'=l) name_stub = get_name_stub(pat) if (is.null(name_stub)) next assign(name_stub[['nparams']], eval(build_nparams(pat))) assign(name_stub[['par']], eval(build_par(pat))) assign(name_stub[['jac']], eval(build_jac(pat))) assign(name_stub[['hess']], eval(build_hess(pat))) eval(substitute({environment(f) = pkg_env}, list(f = as.name(name_stub[['nparams']])))) eval(substitute({environment(f) = pkg_env}, list(f = as.name(name_stub[['par']])))) eval(substitute({environment(f) = pkg_env}, list(f = as.name(name_stub[['jac']])))) eval(substitute({environment(f) = pkg_env}, list(f = as.name(name_stub[['hess']])))) eval(substitute({attr(f, "srcref") = NULL}), list(f= as.name(name_stub[['nparams']]))) eval(substitute({attr(f, "srcref") = NULL}), list(f= as.name(name_stub[['par']]))) eval(substitute({attr(f, "srcref") = NULL}), list(f= as.name(name_stub[['jac']]))) eval(substitute({attr(f, "srcref") = NULL}), list(f= as.name(name_stub[['hess']]))) avail_restrictions$nparams = c(avail_restrictions$nparams, name_stub[['nparams']]) avail_restrictions$par = c(avail_restrictions$par, name_stub[['par']]) avail_restrictions$jac = c(avail_restrictions$jac, name_stub[['jac']]) avail_restrictions$hess = c(avail_restrictions$hess, name_stub[['hess']]) } } } human_name_to_cmdchr = list( 'symmetric' = 's', 'logspd' = 'l', 'spd' = 'c', 'diag' = 'd', 'logdiag' = 'e', 'zero' = '0' ) get_restricted_ou = function (H=NULL, theta=NULL, Sig=NULL, lossmiss = 'halt') { pat = list(M='k', V='k', L='k') fixed_args = list() if (!is.null(H)) { if (is.character(H)) { s = human_name_to_cmdchr[[H]] if (is.null(s) || !(s %in% avail_restrict_cmds[[1]])) stop(sprintf('`%s` restriction for H is not supported', H)) pat[[1]] = s } else if (is.numeric(H)) { fixed_args[['H']] = as.double(H) pat[[1]] = 'f' } else { stop('`H` must be either a string or a numeric vector to be fixed.') } } else { pat[[1]] = 'k' } if (!is.null(theta)) { if (is.character(theta)) { s = human_name_to_cmdchr[[theta]] if (is.null(s) || !(s %in% avail_restrict_cmds[[2]])) stop(sprintf('`%s` restriction for theta is not supported', theta)) pat[[2]] = s } else if (is.numeric(theta)) { fixed_args[['theta']] = as.double(theta) pat[[2]] = 'f' } else { stop('`theta` must be either a string or a numeric vector to be fixed.') } } else { pat[[2]] = 'k' } if (!is.null(Sig)) { if (is.character(Sig)) { s = human_name_to_cmdchr[[Sig]] if (is.null(s) || !(s %in% avail_restrict_cmds[[3]])) stop(sprintf('`%s` restriction for Sig is not supported', Sig)) pat[[3]] = s } else if (is.numeric(Sig)) { fixed_args[['Sig']] = as.double(Sig) pat[[3]] = 'f' } else { stop('`Sig` must be either a string or a numeric vector to be fixed.') } } else { pat[[3]] = 'k' } if ((pat[[1]] == '0' && pat[[2]] != '0') || (pat[[1]] != '0' && pat[[2]] == '0')) stop('zero H but non-zero theta, or non-zero H but zero theta is not supported. The former does not make statistical sense and the latter can be done by using fixed theta instead of zero theta.') if (is.null(lossmiss)) { ouparfn = oupar oujacfn = oujac ouhessfn = ouhess } else if (lossmiss == 'halt') { ouparfn = ou_haltlost(oupar) oujacfn = dou_haltlost(oujac) ouhessfn = hou_haltlost(ouhess) } else if (lossmiss == 'zap') { ouparfn = ou_zaplost(oupar) oujacfn = dou_zaplost(oujac) ouhessfn = hou_zaplost(ouhess) } else { stop('`lossmiss` is invalid') } if (pat[[1]] == 'k' && pat[[2]] == 'k' && pat[[3]] == 'k') return(list(par=oupar, jac=oujac, hess=ouhess, nparams=nparams_ou)) cmd = mkcmd(pat) namestub = get_name_stub(pat) par_re = get(namestub[['par']]) jac_re = get(namestub[['jac']]) hess_re = get(namestub[['hess']]) nparams = get(namestub[['nparams']]) if (all(sapply(fixed_args, is.null))) fixed_args = list() if (grepl('Ml', cmd, fixed = TRUE) || grepl('Mc', cmd, fixed = TRUE)) { ouparfn = do.call(par_re, c(list(parfn=ouparfn), fixed_args)) ouhessfn = do.call(hess_re, c(list(hessfn=ouhessfn, jacfn=oujacfn), fixed_args)) oujacfn = do.call(jac_re, c(list(jacfn=oujacfn), fixed_args)) } else { ouparfn = do.call(par_re, c(list(parfn=ouparfn), fixed_args)) ouhessfn = do.call(hess_re, c(list(hessfn=ouhessfn), fixed_args)) oujacfn = do.call(jac_re, c(list(jacfn=oujacfn), fixed_args)) } list(par=ouparfn, jac=oujacfn, hess=ouhessfn, nparams=nparams) } rm('mk_fixed_arg') rm('m') rm('v') rm('l') rm('pat') rm('name_stub') rm('pkg_env') rm('cmd2abcd') rm('build_par') rm('build_jac') rm('build_hess') rm('build_nparams') NULL NULL
metadata2SLD.Spatial <- function(obj, ...){ if(xmlValue(obj@xml[["//formcont"]]) == "SpatialPixelsDataFrame"){ metadata2SLD.SpatialPixels(obj, ...) } else { stop("Format_Information_Content field in 'obj@xml' must specify an applicable sp class.") } } metadata2SLD.SpatialPixels <- function( obj, Format_Information_Content = xmlValue(obj@xml[["//formcont"]]), obj.name = normalizeFilename(deparse(substitute(obj))), sld.file = .set.file.extension(obj.name, ".sld"), Citation_title = xmlValue(obj@xml[["//title"]]), ColorMap_type = "intervals", opacity = 1, brw.trg = 'Greys', target.var, ... ){ l1 = newXMLNode("StyledLayerDescriptor", attrs=c("xsi:schemaLocation" = "http://www.opengis.net/sld StyledLayerDescriptor.xsd", version="1.0.0"), namespaceDefinitions=c("http://www.opengis.net/sld", "xsi" = "http://www.w3.org/2001/XMLSchema-instance", "ogc" = "http://www.opengis.net/ogc", "gml" = "http://www.opengis.net/gml")) l2 <- newXMLNode("NamedLayer", parent = l1) l3 <- newXMLNode("Name", paste(Citation_title, "(", Format_Information_Content, ")"), parent = l2) l3b <- newXMLNode("UserStyle", parent = l2) l4 <- newXMLNode("Title", paste(obj.name, "style", sep="_"), parent = l3b) l4b <- newXMLNode("FeatureTypeStyle", parent = l3b) l5 <- newXMLNode("Rule", parent = l4b) l6 <- newXMLNode("RasterSymbolizer", parent = l5) l7 <- newXMLNode("ColorMap", attrs=c(type=ColorMap_type), parent = l6) if(missing(target.var)) { txt <- sprintf('<ColorMapEntry color="%s" quantity="%.2f" label="%s" opacity="%.1f"/>', obj@palette@color, obj@palette@bounds[-1], obj@palette@names, rep(opacity, length(obj@palette@color))) } else { mm <- classIntervals(target.var, ...) brew.p <- RColorBrewer::brewer.pal(n = length(mm$brks) - 1, name = brw.trg) op <- findColours(mm, pal = brew.p, under = 'under', over = 'over', between = '-', cutlabels = F) txt <- sprintf('<ColorMapEntry color="%s" quantity="%.2f" label="%s" opacity="%.1f"/>', attr(op, 'palette'), mm$brks[-1], attr(attr(op, 'table'), 'dimnames')[[1]], rep(opacity, length(mm$brks[-1]))) } parseXMLAndAdd(txt, l7) saveXML(l1, sld.file) } setMethod("metadata2SLD", "SpatialMetadata", metadata2SLD.Spatial)
df <- data.frame(a = 0:9, b = as.numeric(9:0)) test_that("scoped na_if_* errors when dplyr not installed", { withr::local_options(list(lifecycle_verbosity = "quiet")) with_mock( requireNamespace = function(...) FALSE, expect_error(na_if_all(df, 0), "Package `dplyr`"), expect_error(na_if_at(df, "a", 0), "Package `dplyr`"), expect_error(na_if_if(df, is.integer, 0), "Package `dplyr`"), expect_error(na_if_not_all(df, 0), "Package `dplyr`"), expect_error(na_if_not_at(df, "a", 0), "Package `dplyr`"), expect_error(na_if_not_if(df, is.integer, 0), "Package `dplyr`") ) }) test_that("scalar argument replaces all matching x", { withr::local_options(list(lifecycle_verbosity = "quiet")) expect_equal( na_if_all(df, 0), data.frame(a = c(NA, 1:9), b = c(9:1, NA)) ) expect_equal( na_if_at(df, "a", 0), data.frame(a = c(NA, 1:9), b = 9:0) ) expect_equal( na_if_if(df, is.integer, 0), data.frame(a = c(NA, 1:9), b = 9:0) ) expect_equal( na_if_not_all(df, 0), data.frame(a = c(0, rep(NA, 9)), b = c(rep(NA, 9), 0)) ) expect_equal( na_if_not_at(df, "a", 0), data.frame(a = c(0, rep(NA, 9)), b = 9:0) ) expect_equal( na_if_not_if(df, is.integer, 0), data.frame(a = c(0, rep(NA, 9)), b = 9:0) ) }) test_that("multiple scalar arguments replaces all matching x", { withr::local_options(list(lifecycle_verbosity = "quiet")) df <- data.frame(a = 0:9, b = as.numeric(0:9)) target <- c(NA, NA, 2:9) expect_equal(na_if_all(df, 0, 1), data.frame(a = target, b = target)) expect_equal(na_if_at(df, "a", 0, 1), data.frame(a = target, b = 0:9)) expect_equal(na_if_if(df, is.integer, 0, 1), data.frame(a = target, b = 0:9)) target <- c(NA, 1:8, NA) expect_equal(na_if_all(df, 0, 9), data.frame(a = target, b = target)) expect_equal(na_if_at(df, "a", 0, 9), data.frame(a = target, b = 0:9)) expect_equal(na_if_if(df, is.integer, 0, 9), data.frame(a = target, b = 0:9)) target <- c(0, 1, rep(NA, 8)) expect_equal(na_if_not_all(df, 0, 1), data.frame(a = target, b = target)) expect_equal(na_if_not_at(df, "a", 0, 1), data.frame(a = target, b = 0:9)) expect_equal( na_if_not_if(df, is.integer, 0, 1), data.frame(a = target, b = 0:9) ) target <- c(0, rep(NA, 8), 9) expect_equal(na_if_not_all(df, 0, 9), data.frame(a = target, b = target)) expect_equal(na_if_not_at(df, "a", 0, 9), data.frame(a = target, b = 0:9)) expect_equal( na_if_not_if(df, is.integer, 0, 9), data.frame(a = target, b = 0:9) ) }) test_that("two-sided formula produces warning", { withr::local_options(list(lifecycle_verbosity = "quiet")) expect_warning(na_if_all(df, x ~ . < 1), "must be one-sided") expect_warning(na_if_at(df, "a", x ~ . < 1), "must be one-sided") expect_warning(na_if_if(df, is.integer, x ~ . < 1), "must be one-sided") expect_warning(na_if_not_all(df, x ~ . < 1), "must be one-sided") expect_warning(na_if_not_at(df, "a", x ~ . < 1), "must be one-sided") expect_warning(na_if_not_if(df, is.integer, x ~ . < 1), "must be one-sided") }) test_that("non-coercible argument produces warning", { withr::local_options(list(lifecycle_verbosity = "quiet")) expect_warning(na_if_all(df, lm(1 ~ 1)), "Argument.*lm") expect_warning(na_if_at(df, "a", lm(1 ~ 1)), "Argument.*lm") expect_warning(na_if_if(df, is.integer, lm(1 ~ 1)), "Argument.*lm") expect_warning(na_if_not_all(df, lm(1 ~ 1)), "Argument.*lm") expect_warning(na_if_not_at(df, "a", lm(1 ~ 1)), "Argument.*lm") expect_warning(na_if_not_if(df, is.integer, lm(1 ~ 1)), "Argument.*lm") }) test_that("multiple non-coercible arguments produce multiple warnings", { withr::local_options(list(lifecycle_verbosity = "quiet")) expect_warning(na_if_all(df, NULL, lm(1 ~ 1)), "NULL.*lm") expect_warning(na_if_at(df, "a", NULL, lm(1 ~ 1)), "NULL.*lm") expect_warning(na_if_if(df, is.integer, NULL, lm(1 ~ 1)), "NULL.*lm") expect_warning(na_if_not_all(df, NULL, lm(1 ~ 1)), "NULL.*lm") expect_warning(na_if_not_at(df, "a", NULL, lm(1 ~ 1)), "NULL.*lm") expect_warning(na_if_not_if(df, is.integer, NULL, lm(1 ~ 1)), "NULL.*lm") }) test_that("no ... produces warning", { withr::local_options(list(lifecycle_verbosity = "quiet")) expect_warning(na_if_all(df), "No values") expect_warning(na_if_at(df, "a"), "No values") expect_warning(na_if_if(df, is.integer), "No values") expect_warning(na_if_not_all(df), "No values") expect_warning(na_if_not_at(df, "a"), "No values") expect_warning(na_if_not_if(df, is.integer), "No values") }) test_that("deprecated scoped na_if_*()", { lifecycle::expect_deprecated(na_if_all(df, 0)) lifecycle::expect_deprecated(na_if_at(df, "a", 0)) lifecycle::expect_deprecated(na_if_if(df, is.integer, 0)) lifecycle::expect_deprecated(na_if_not_all(df, 0)) lifecycle::expect_deprecated(na_if_not_at(df, "a", 0)) lifecycle::expect_deprecated(na_if_not_if(df, is.integer, 0)) })
test_that("layout IDs must be unique", { app <- Dash$new() expect_error( app$layout(html$div(list(html$a(id = "a"), html$a(id = "a"), html$p(id="b"), html$p(id="c"), html$a(id="c")))), "layout ids must be unique -- please check the following list of duplicated ids: 'a, c'" ) }) test_that("app$layout() only accepts components, or functions that return components", { app <- Dash$new() expect_error( app$layout(html$a(id = "a"), html$a(id = "a")), 'unused argument (html$a(id = "a"))', fixed = TRUE) }) test_app <- dash_app() set_get_layout_new <- function(..., app = test_app) set_layout(app, ...)$layout_get() set_get_layout_old <- function(..., app = test_app) { app$layout(...); app$layout_get() } test_that("Can set empty layout, couldn't before", { expect_error(set_get_layout_new(), NA) expect_error(set_get_layout_old()) }) test_that("Layout errors", { expect_error(set_get_layout_new("test", app = "not a dash app")) expect_error(set_get_layout_new(foo = "test")) expect_error(set_get_layout_new(div("one"), h2("two"), id = "test")) }) test_that("Layout basics", { expect_identical( set_get_layout_new(div("one"), h2("two")), set_get_layout_old(html$div(list( html$div("one"), html$h2("two") ))) ) expect_identical(set_get_layout_new("one", "two"), set_get_layout_new(list("one", "two"))) expect_identical( set_get_layout_new(function() div("one", "two")), set_get_layout_old(function() html$div(list("one", "two"))) ) }) test_that("set_layout replaces previous layout", { expect_identical( (dash_app() %>% set_layout("foo") %>% set_layout("bar"))$layout_get(), (dash_app() %>% set_layout("bar"))$layout_get() ) }) test_that("NULL layout elements", { expect_identical( set_get_layout_new("one", if (TRUE) "two", "three"), set_get_layout_new("one", "two", "three") ) expect_identical( set_get_layout_new("one", if (FALSE) "two", "three"), set_get_layout_new("one", "three") ) }) test_that("No need to place everything in containers and lists", { expect_error(set_get_layout_new("test"), NA) expect_error(set_get_layout_old("test")) expect_identical( set_get_layout_new(div("one", "two")), set_get_layout_old(html$div(list("one", "two"))) ) expect_identical(set_get_layout_new("test"), set_get_layout_old(html$span("test"))) expect_identical( set_get_layout_new("one", 5, TRUE), set_get_layout_old(html$div(list( html$span("one"), html$span(5), html$span(TRUE) ))) ) }) test_that("Function as layout works", { app1 <- Dash$new() set.seed(1000) runif(1) set_layout(app1, div(runif(1))) app1_layout1 <- app1$layout_get() app1_layout2 <- app1$layout_get() expect_identical(app1_layout1, app1_layout2) app2 <- Dash$new() set.seed(1000) runif(1) app2$layout(html$div(runif(1))) app2_layout <- app2$layout_get() expect_identical(app1_layout1, app2_layout) app1_fx <- Dash$new() set.seed(1000) set_layout(app1_fx, function() div(runif(1))) app1_fx_layout1 <- app1_fx$layout_get() app1_fx_layout2 <- app1_fx$layout_get() expect_identical(app1_layout1, app1_fx_layout1) expect_false(identical(app1_fx_layout1, app1_fx_layout2)) app2_fx <- Dash$new() set.seed(1000) app2_fx$layout(function() html$div(runif(1))) app2_fx_layout1 <- app2_fx$layout_get() app2_fx_layout2 <- app2_fx$layout_get() expect_identical(app1_fx_layout1, app2_fx_layout1) expect_identical(app1_fx_layout2, app2_fx_layout2) }) test_that("Sample apps layout are identical with the compact syntax", { expect_identical( set_get_layout_old( html$div(list( html$div('Dash To-Do List'), dccInput(id = 'new-item'), html$button("Add", id = "add"), html$button("Clear Done", id = "clear-done"), html$div(id = "list-container"), html$div(id = "totals") )) ), set_get_layout_new( div('Dash To-Do List'), dccInput(id = 'new-item'), button("Add", id = "add"), button("Clear Done", id = "clear-done"), div(id = "list-container"), div(id = "totals") ) ) expect_identical( set_get_layout_old( dash:::htmlDiv( list( dash:::htmlH1('Hello Dash'), dash:::htmlDiv(children = "Dash: A web application framework for R."), dccGraph( figure=list( data=list( list( x=list(1, 2, 3), y=list(4, 1, 2), type='bar', name='SF' ), list( x=list(1, 2, 3), y=list(2, 4, 5), type='bar', name='Montreal' ) ), layout = list(title='Dash Data Visualization') ) ) ) ) ), set_get_layout_new( h1('Hello Dash'), div("Dash: A web application framework for R."), dccGraph( figure=list( data=list( list( x=list(1, 2, 3), y=list(4, 1, 2), type='bar', name='SF' ), list( x=list(1, 2, 3), y=list(2, 4, 5), type='bar', name='Montreal' ) ), layout = list(title='Dash Data Visualization') ) ) ) ) })
library(EcoNetGen) set.seed(2222) replicate(1000, netgen(net_size = 50, ave_module_size = 10, min_module_size = 4, min_submod_size = 2, net_type = "bi-partite nested", ave_degree = 10, rewire_prob_global = 0.3, rewire_prob_local = 0.1, mixing_probs = c(0.2, 0.2, 0.2, 0.2, 0.2, 0.2 ,0.2), verbose = FALSE) ) set.seed(1234) netgen(net_size = 30, ave_module_size = 10, min_module_size = 1, min_submod_size = 1, net_type = "bn", ave_degree = 10, rewire_prob_global = 0.2, rewire_prob_local = 0.0, mixing_probs = c(0.2, 0.2, 0.2, 0.2, 0.2, 0.0 ,0.0), verbose = FALSE) set.seed(2222) replicate(1000, netgen(net_size = 50, ave_module_size = 25, min_module_size = 10, min_submod_size = 1, net_type = "mixed", ave_degree = 9, rewire_prob_global = 0.0, rewire_prob_local = 0.0, mixing_probs = c(1,1,1,0.1,0.1,0.1,0.1), verbose = FALSE) )
NAME <- "diffPrint" source(file.path('_helper', 'init.R')) mx.2 <- matrix(1:100, ncol=2) mx.4 <- mx.3 <- mx.2 mx.3[31, 2] <- 111L mx.3a <- mx.3[-31, ] set.seed(2) mx.4[cbind(sample(1:50, 6), sample(1:2, 6, replace=TRUE))] <- sample(-(1:50), 6) mx.5 <- matrix(1:9, 3) mx.6 <- matrix(12:1, 4) mx.6[4,] <- c(3L, 6L, 9L) all.equal(as.character(diffPrint(mx.2, mx.3)), rdsf(100)) all.equal(as.character(diffPrint(mx.2, mx.3, mode="unified")), rdsf(150)) all.equal(as.character(diffPrint(mx.2, mx.3, mode="context")), rdsf(175)) all.equal(as.character(diffPrint(mx.2, mx.3a)), rdsf(200)) all.equal(as.character(diffPrint(mx.2, mx.3a, mode="unified")), rdsf(300)) all.equal(as.character(diffPrint(mx.2, mx.4)), rdsf(400)) all.equal(as.character(diffPrint(mx.2, mx.4, mode="unified")), rdsf(500)) all.equal(as.character(diffPrint(mx.5, mx.6)), rdsf(600)) all.equal(as.character(diffPrint(mx.5, mx.6, mode="unified")), rdsf(700)) all.equal(as.character(diffPrint(mx.5, mx.6, mode="context")), rdsf(800)) set.seed(2) A <- B <- matrix(sample(1:80), nrow=16) B[cbind(sample(5:16, 4), sample(1:5, 4))] <- sample(30:80, 4) all.equal(as.character(diffPrint(A, B)), rdsf(900)) all.equal(as.character(diffPrint(A, B, mode="unified")), rdsf(1000)) all.equal(as.character(diffPrint(A, B, mode="context")), rdsf(1100)) all.equal(as.character(diffPrint(diffobj:::.mx1, diffobj:::.mx2)), rdsf(1200)) all.equal(as.character(diffPrint(lst.1, lst.3)), rdsf(1300)) all.equal(as.character(diffPrint(lst.1, lst.3, mode="unified")), rdsf(1400)) all.equal(as.character(diffPrint(lst.4, lst.5)), rdsf(1500)) all.equal(as.character(diffPrint(lst.4, lst.5, mode="context")), rdsf(1600)) all.equal( as.character(diffPrint(list(1, list(2, list(1:3))), list(list(list(1:3))))), rdsf(1650) ) all.equal(as.character(diffPrint(iris.s, iris.2)), rdsf(1700)) all.equal( as.character(diffPrint(iris.s, iris.2, mode="sidebyside")), rdsf(1800) ) all.equal(as.character(diffPrint(iris.s, iris.c)), rdsf(1900)) all.equal(as.character(diffPrint(iris.s, iris.3)), rdsf(2000)) all.equal( as.character(diffPrint(iris.s, iris.3, mode="sidebyside")), rdsf(2100) ) all.equal(as.character(diffPrint(iris.s, iris.4, mode="unified")), rdsf(2150)) all.equal( as.character(diffPrint(iris.s, iris.4, mode="sidebyside")), rdsf(2200) ) all.equal( as.character(diffPrint(iris.5, iris.4, mode="sidebyside")), rdsf(2250) ) all.equal(as.character(diffPrint(iris.3a, iris.4a)), rdsf(2300)) all.equal( as.character(diffPrint(iris.s, iris.3, mode="sidebyside")), rdsf(2350) ) all.equal(as.character(diffPrint(iris.s, iris.s[-2])), rdsf(2370)) all.equal( as.character(diffPrint(iris.s, iris.s[-2], mode="sidebyside")), rdsf(2383) ) all.equal( as.character(diffPrint(cars[1:5,], mtcars[1:5,], mode="sidebyside")), rdsf(2380) ) all.equal( as.character( diffPrint( iris.s, iris.4, mode="sidebyside", guides=function(x, y) integer() ) ), rdsf(2400) ) all.equal( as.character(diffPrint(iris.s, iris.4, mode="sidebyside", guides=FALSE)), rdsf(2500) ) arr.1 <- arr.2 <- array(1:24, c(4, 2, 3)) arr.2[c(3, 20)] <- 99L all.equal(as.character(diffPrint(arr.1, arr.2)), rdsf(2600)) all.equal( as.character(diffPrint(list(1, 2, 3), matrix(1:9, 3))), rdsf(2700) ) all.equal( as.character(diffPrint(list(25, 2, 3), matrix(1:9, 3))), rdsf(2800) ) all.equal( as.character( diffPrint(list(c(1, 4, 7), c(2, 5, 8), c(3, 6, 9)), matrix(1:9, 3)) ), rdsf(2900) ) res1 <- structure( c(-1717, 101, 0.938678984853783), .Names = c("intercept", "slope", "rsq"), class = "fastlm" ) res2 <- structure( c(-3.541306e+13, 701248600000, 0.938679), .Names = c("intercept", "slope", "rsq"), class = "fastlm" ) all.equal(as.character(diffPrint(res1, res2)), rdsf(3000)) all.equal( as.character(diffPrint(unname(res1), unname(res2))), rdsf(3100) ) all.equal( as.character(diffPrint(factor(1:100), factor(c(1:99, 101)))), rdsf(3200) ) f1 <- factor(1:100) f2 <- factor(c(1:20, 22:99, 101)) all.equal(capture.output(diffPrint(f1, f2)), txtf(100)) f3 <- factor(letters[1:10]) f4 <- factor(letters[1:10], levels=letters[1:11]) all.equal(capture.output(diffPrint(f3, f4)), txtf(150)) nhtemp2 <- nhtemp nhtemp2[c(5, 30)] <- -999 all.equal(capture.output(diffPrint(nhtemp, nhtemp2)), txtf(175)) print.diffobj_test_c1 <- function(x, ...) { writeLines(c("Header row 1", "header row 2")) print(c(x)) writeLines(c("", "Footer row 1", "", "footer row2")) } m1 <- structure(1:30, class='diffobj_test_c1') m2 <- structure(2:51, class='diffobj_test_c1') all.equal(capture.output(diffPrint(m1, m2)), txtf(200), print=TRUE) all.equal( as.character(diffPrint(letters, LETTERS, format="raw", pager="off")), rdsf(3300) ) all.equal( as.character(diffPrint(letters, LETTERS, format="raw", disp.width=40)), rdsf(3400) ) try(diffPrint(letters, LETTERS, disp.width=5)) invisible(diffobj:::make_diff_fun()) a <- "G\xc3\xa1bor Cs\xc3\xa1rdi" b <- sprintf("%s wow", a) Encoding(a) <- 'UTF-8' Encoding(b) <- 'UTF-8' new <- (as.character(diffPrint(list(hell=a, b=NULL), list(hell=b, b=list())))) ref <- structure( c("\033[33m<\033[39m \033[33mlist(hell = a, b = N..\033[39m \033[34m>\033[39m \033[34mlist(hell = b, b = l..\033[39m", "\033[36m@@ 1,6 @@ \033[39m \033[36m@@ 1,6 @@ \033[39m", " \033[90m\033[39m$hell\033[90m\033[39m \033[90m\033[39m$hell\033[90m\033[39m ", "\033[33m<\033[39m \033[90m[1] \033[39m\033[33m\"G\xc3\xa1bor Cs\xc3\xa1rdi\"\033[39m\033[90m\033[39m \033[34m>\033[39m \033[90m[1] \033[39m\033[34m\"G\xc3\xa1bor Cs\xc3\xa1rdi wow\"\033[39m\033[90m\033[39m", " ", " \033[90m\033[39m$b\033[90m\033[39m \033[90m\033[39m$b\033[90m\033[39m ", "\033[33m<\033[39m \033[90m\033[39m\033[33mNULL\033[39m\033[90m\033[39m \033[34m>\033[39m \033[90m\033[39m\033[34mlist\033[39m\033[34m()\033[39m\033[90m\033[39m ", " " ), len = 8L ) Encoding(ref) <- 'UTF-8' all.equal(new, ref) bytes <- "\x81" Encoding(bytes) <- "bytes" isTRUE(!any(diffPrint(bytes, bytes))) all.equal( as.character(diffPrint(quote(zz + 1), quote(zz + 3))), structure( c("\033[33m<\033[39m \033[33mquote(..\033[39m \033[34m>\033[39m \033[34mquote(..\033[39m", "\033[36m@@ 1 @@ \033[39m \033[36m@@ 1 @@ \033[39m", "\033[33m<\033[39m \033[90m\033[39mzz + \033[33m1\033[39m\033[90m\033[39m \033[34m>\033[39m \033[90m\033[39mzz + \033[34m3\033[39m\033[90m\033[39m " ), len = 3L ) ) all.equal( as.character(diffPrint(quote(x), quote(y))), structure( c("\033[33m<\033[39m \033[33mquote(x)\033[39m \033[34m>\033[39m \033[34mquote(y)\033[39m", "\033[36m@@ 1 @@ \033[39m \033[36m@@ 1 @@ \033[39m", "\033[33m<\033[39m \033[90m\033[39m\033[33mx\033[39m\033[90m\033[39m \033[34m>\033[39m \033[90m\033[39m\033[34my\033[39m\033[90m\033[39m "), len = 3L ) ) env <- new.env() env$print <- function(x, ...) stop('boom') try(evalq(diffPrint(1:3, 1:4), env)) f <- function(a, b, ...) { print <- function(x, ...) stop('boom2') diffPrint(a, b, ...) } try(f(1:3, 1:4, format='raw'))
od_AQUA <- function(Fx, b1=NULL, A1=NULL, b2=NULL, A2=NULL, b3=NULL, A3=NULL, w0=NULL, bin=FALSE, crit="D", h=NULL, M.anchor=NULL, ver.qa="+", conic=TRUE, t.max=120, echo=TRUE) { cl <- match.call() verify(cl, Fx = Fx, b1 = b1, A1 = A1, b2 = b2, A2 = A2, b3 = b3, A3 = A3, w0 = w0, bin = bin, crit = crit, h = h, M.anchor = M.anchor, ver.qa = ver.qa, conic = conic, t.max = t.max, echo = echo) n <- nrow(Fx); m <- ncol(Fx) if (!is.null(b1) && is.null(A1)) A1 <- matrix(1, nrow = length(b1), ncol = n) if (!is.null(b2) && is.null(A2)) A2 <- matrix(1, nrow = length(b2), ncol = n) if (!is.null(b3) && is.null(A3)) A3 <- matrix(1, nrow = length(b3), ncol = n) if (is.null(w0)) w0 <- rep(0, n) if (crit == "C" && is.null(h)) h <- c(rep(0, m - 1), 1) if (crit == "c") stop("The pure c-optimality is not implemented for AQUA. Try its regularized version: the C-optimality.") if (!is.null(w0) && sum(w0) > 0) { A2 <- rbind(A2, diag(n)[w0 > 0, ]) b2 <- c(b2, w0[w0 > 0]) } info <- paste("Running od_AQUA for cca", t.max, "seconds") info <- paste(info, " starting at ", Sys.time(), ".", sep = "") print(info, quote = FALSE) info <- paste("The problem size is n=", n, sep = "") info <- paste(info, ", m=", m, sep = "") info <- paste(info, ", k=", length(c(b1, b2, b3)), ".", sep = "") print(info, quote = FALSE) start <- as.numeric(proc.time()[3]) if (crit == "D") res <- od_D_AQUA(Fx, b1, A1, b2, A2, b3, A3, bin, M.anchor = M.anchor, ver.qa, conic, t.max) if (crit == "A") res <- od_A_AQUA(Fx, b1, A1, b2, A2, b3, A3, bin, M.anchor = M.anchor, ver.qa, conic, t.max) if (crit == "I") { M.anchor.A <- NULL if (!is.null(M.anchor)) { L <- m*infmat(Fx, rep(1, n), echo = FALSE)/sum(Fx^2) M.anchor.A <- t(solve(chol(L))) %*% M.anchor %*% solve(chol(L)) } res <- od_A_AQUA(Fx_ItoA(Fx, echo = FALSE), b1, A1, b2, A2, b3, A3, bin, M.anchor = M.anchor.A, ver.qa, conic, t.max) } if (crit == "C") { M.anchor.A <- NULL if (!is.null(M.anchor)) { alpha <- 0.05 L <- alpha*diag(m) + (1 - alpha)*m*h %*% t(h)/sum(h^2) M.anchor.A <- t(solve(chol(L))) %*% M.anchor %*% solve(chol(L)) } res <- od_A_AQUA(Fx_CtoA(Fx, h, echo = FALSE), b1, A1, b2, A2, b3, A3, bin, M.anchor = M.anchor.A, ver.qa, conic, t.max) } w <- res$w.best if (!is.null(w)) { supp <- (1:n)[w > 0.5]; w.supp <- w[supp] M.best <- infmat(Fx, w, echo = FALSE) Phi.best <- optcrit(Fx, w, crit = crit, h = h, echo = FALSE) } else { supp <- NULL; w.supp <- NULL M.best <- NULL; Phi.best <- 0 } w <- res$w.best if (!is.null(w)) { supp <- (1:n)[w > 0.5]; w.supp <- w[supp] M.best <- infmat(Fx, w, echo = FALSE) Phi.best <- optcrit(Fx, w, crit = crit, h = h, echo = FALSE) err <- c() if (!is.null(b1)) err <- c(err, pmin(A1 %*% w - b1, 0)) if (!is.null(b2)) err <- c(err, pmin(b2 - A2 %*% w, 0)) if (!is.null(b3)) err <- c(err, abs(A3 %*% w - b3)) if (max(err) > 1e-05) warning(cat("Some constraints are significantly violated:", round(err, 6))) } else { supp <- NULL; w.supp <- NULL M.best <- NULL; Phi.best <- 0 warning("AQUA was not able to find any meaningful solution within the alloted time.") } t.act <- round(as.numeric(proc.time()[3]) - start, 2) return(list(call = cl, w.best = w, supp = supp, w.supp = w.supp, M.best = M.best, Phi.best = Phi.best, status = res$status, t.act = t.act)) }
test_that("as_vegaspec translates", { spec_ref <- spec_mtcars %>% vw_as_json() %>% as_vegaspec() spec_json <- vw_as_json(spec_ref) expect_identical(as_vegaspec(spec_ref), spec_ref) expect_identical(as_vegaspec(spec_json), spec_ref) }) test_that("class is correct", { expect_type(as_vegaspec(unclass(spec_mtcars)), "list") expect_s3_class(as_vegaspec(unclass(spec_mtcars)), "vegaspec") expect_s3_class(as_vegaspec(unclass(spec_mtcars)), "vegaspec_vega_lite") spec_mtcars_vega <- vw_to_vega(spec_mtcars) expect_type(spec_mtcars_vega, "list") expect_s3_class(spec_mtcars_vega, "vegaspec") expect_s3_class(spec_mtcars_vega, "vegaspec_vega") }) test_that("vw_as_json handles NULLS", { spec_test <- list( `$schema` = "https://vega.github.io/schema/vega-lite/v2.json", width = NULL, height = NULL ) spec_test_json <- vw_as_json(spec_test) expect_match(spec_test_json, '"width": null') expect_match(spec_test_json, '"height": null') }) test_that("vegaspec without $schema warns and adds element", { spec_test <- list() expect_warning( spec_ref <- as_vegaspec(spec_test) ) expect_identical( spec_ref, as_vegaspec(list(`$schema` = vega_schema())) ) }) test_that("as_vegaspec reads UTF-8 correctly", { filename <- "test_encoding_utf8.vl4.json" description <- "ceci une version allégée d'une spécification vega-lite" withr::local_file(filename) fileConn <- file(filename, encoding = "UTF-8") writeLines( glue_js( "{", " \"$schema\": \"https://vega.github.io/schema/vega-lite/v4.json\",", " \"description\": \"${description}\"", "}" ), fileConn ) close(fileConn) myspec <- vegawidget::as_vegaspec(filename) expect_identical(myspec$description, description) }) test_that("as_vegaspec reads urls correctly", { skip_on_cran() myspec <- as_vegaspec("https://raw.githubusercontent.com/vega/vega-lite/master/examples/specs/bar.vl.json") expect_s3_class(myspec, "vegaspec_vega_lite") })
SummaryMarginals <- function(marginals) { margs <- marginals$marginals nms0 <- names(margs) types <- marginals$types nms <- mu <- sd <- n <-c() for (i in 1:length(types)) { if(!types[i]) { msd <- MeanSD(margs[[i]]) nms <- c(nms, nms0[i]) mu <- c(mu, msd[1]) sd <- c(sd, msd[2]) n <- c(n, nrow(margs[[i]])) } } df <- data.frame(Mean=mu, SD=sd, n=n) rownames(df) <- nms return(df) }
LS.kalman <- function(series, start, order = c(p = 0, q = 0), ar.order = NULL, ma.order = NULL, sd.order = NULL, d.order = NULL, include.d = FALSE, m = NULL) { x <- start T. <- length(series) if (is.null(ar.order)) { ar.order <- rep(0, order[1]) } if (is.null(ma.order)) { ma.order <- rep(0, order[2]) } if (is.null(sd.order)) { sd.order <- 0 } if (is.null(d.order)) { d.order <- 0 } if (is.null(m)) { m <- trunc(0.25 * T.^0.8) } M <- m + 1 u <- (1:T.) / T. p <- na.omit(c(ar.order, ma.order, sd.order)) if (include.d == TRUE) { p <- na.omit(c(ar.order, ma.order, d.order, sd.order)) } phi. <- numeric() theta. <- numeric() sigma. <- numeric() d. <- numeric() for (j in 1:length(u)) { X <- numeric() k <- 1 for (i in 1:length(p)) { X[i] <- sum(x[k:(k + p[i])] * u[j]^(0:p[i])) k <- k + p[i] + 1 } phi <- numeric() k <- 1 if (order[1] > 0) { phi[is.na(ar.order) == 1] <- 0 phi[is.na(ar.order) == 0] <- X[k:(length(na.omit(ar.order)))] k <- length(na.omit(ar.order)) + 1 phi. <- rbind(phi., phi) } theta <- numeric() if (order[2] > 0) { theta[is.na(ma.order) == 1] <- 0 theta[is.na(ma.order) == 0] <- X[k:(length(na.omit(ma.order)) + k - 1)] k <- length(na.omit(ma.order)) + k theta. <- rbind(theta., theta) } d <- 0 if (include.d == TRUE) { d <- X[k] k <- k + 1 d. <- c(d., d) } sigma <- X[k] sigma. <- c(sigma., sigma) } sigma <- sigma. Omega <- matrix(0, nrow = M, ncol = M) diag(Omega) <- 1 X <- rep(0, M) delta <- vector("numeric") hat.y <- vector("numeric") for (i in 1:T.) { if (is.null(dim(phi.)) == 1 & is.null(dim(theta.)) == 1) { psi <- c(1, ARMAtoMA(ar = numeric(), ma = numeric(), lag.max = m)) } if (is.null(dim(phi.)) == 1 & is.null(dim(theta.)) == 0) { psi <- c(1, ARMAtoMA(ar = numeric(), ma = theta.[i, ], lag.max = m)) } if (is.null(dim(phi.)) == 0 & is.null(dim(theta.)) == 1) { psi <- c(1, ARMAtoMA(ar = phi.[i, ], ma = numeric(), lag.max = m)) } if (is.null(dim(phi.)) == 0 & is.null(dim(theta.)) == 0) { psi <- c(1, ARMAtoMA(ar = phi.[i, ], ma = theta.[i, ], lag.max = m)) } psi. <- numeric() if (include.d == TRUE) { eta <- gamma(0:m + d.[i]) / (gamma(0:m + 1) * gamma(d.[i])) for (k in 0:m) { psi.[k + 1] <- sum(psi[1:(k + 1)] * rev(eta[1:(k + 1)])) } psi <- psi. } g <- sigma[i] * rev(psi) aux <- Omega %*% g delta[i] <- g %*% aux F. <- matrix(0, M - 1, M - 1) diag(F.) <- 1 F. <- cbind(0, F.) F. <- rbind(F., 0) Theta <- c(F. %*% aux) Q <- matrix(0, M, M) Q[M, M] <- 1 if (is.na(series[i])) { Omega <- F. %*% Omega %*% t(F.) + Q hat.y[i] <- t(g) %*% X X <- F. %*% X } else { Omega <- F. %*% Omega %*% t(F.) + Q - Theta %*% solve(delta[i]) %*% Theta hat.y[i] <- t(g) %*% X X <- F. %*% X + Theta %*% solve(delta[i]) %*% (series[i] - hat.y[i]) } } residuals <- (series - hat.y) / sqrt(delta[1:T.]) fitted.values <- hat.y return(list(residuals = residuals, fitted.values = fitted.values, delta = delta)) }
getDist <- function(n, dist, mu, sigma, par.location = 0, par.scale = 1, par.shape = 1, dist.par = NULL, rounding.factor = NULL) { if(rounding.factor == 0 || is.null(rounding.factor)){rounding.factor = NULL} switch(dist, Uniform = { a <- 0 b <- 1 EX <- (a+b)/2 VarX <- (b-a)^2/12 xtemp <- runif(n, min = a, max = b) }, Normal = { a <- par.location b <- par.scale if(!is.null(dist.par)){ a <- dist.par[1] b <- dist.par[2] } EX <- a VarX <- b^2 xtemp <- rnorm(n, mean = a, sd = b) }, Normal2 = { a <- par.location b <- par.scale if(!is.null(dist.par)){ a <- dist.par[1] b <- dist.par[2] } EX <- a^2 + b^2 VarX <- 4 * a^2 * b^2 + 2 * b^4 xtemp <- (rnorm(n, mean = a, sd = b))^2 }, DoubleExp = { a <- par.location b <- par.scale if(!is.null(dist.par)){ a <- dist.par[1] b <- dist.par[2] } EX <- a VarX <- 2 * b^2 xtemp <- log(runif(n) / runif(n)) / 2^(0.5) }, DoubleExp2 = { a <- par.location b <- par.scale if(!is.null(dist.par)){ a <- dist.par[1] b <- dist.par[2] } EX <- 2 * b^2 + a^2 EY3 <- 6 * b^3 + 6 * a * b^2 + 5 * a^3 EY4 <- 24 * b^4 + 4 * a * EY3 - 6 * a^2 * (2 * b^2 + a^2) + 5 * a^4 VarX <- EY4 - EX^2 xtemp <- (log(runif(n) / runif(n)))^2 }, LogNormal = { a <- par.location b <- par.scale if(!is.null(dist.par)){ a <- dist.par[1] b <- dist.par[2] } EX <- exp(a + b^2 / 2) VarX <- exp(2 * (a + b^2)) - exp(2 * a + b^2) xtemp <- rlnorm(n, meanlog = a, sdlog = b) }, Gamma = { k <- par.scale o <- par.shape if(!is.null(dist.par)){ k <- dist.par[1] o <- dist.par[2] } EX <- k * o VarX <- o * k^2 xtemp <- rgamma(n, shape = o, scale = k) }, Weibull = { k <- par.shape l <- par.scale if(!is.null(dist.par)){ k <- dist.par[1] l <- dist.par[2] } EX <- l * gamma(1 + 1 / k) VarX <- l^2 * (gamma(1 + 2 / k) - (gamma(1 + 1 / k))^2) xtemp <- rweibull(n, shape = k, scale = l) }, t = { v <- par.shape if(!is.null(dist.par)){ v <- dist.par[1] } EX <- 0 VarX <- v/(v-2) xtemp <- rt(n, v) }, { a <- par.location b <- par.scale if(!is.null(dist.par)){ a <- dist.par[1] b <- dist.par[2] } EX <- a VarX <- b^2 xtemp <- rnorm(n, mean = a, sd = b) } ) z <- (xtemp - EX) / VarX^(0.5) x <- mu + sigma * z if(!is.null(rounding.factor)){ x <- round(x/rounding.factor) * rounding.factor } return(x) }
library(RNeo4j) context("Properties") skip_on_cran() neo4j = startTestGraph() test_that("string properties are added correctly", { n = createNode(neo4j, "Person", name="Alice") expect_equal(n$name, "Alice") }) test_that("string properties are retrieved with correct encoding", { n = createNode(neo4j, "Bar", location="México") expect_equal(n$location, "México") }) test_that("numeric properties are added correctly", { n = createNode(neo4j, "Person", age=23) expect_equal(n$age, 23) }) test_that("boolean properties are added correctly", { n = createNode(neo4j, "Person", awesome=TRUE) expect_true(n$awesome) }) test_that("arrays of strings are added correctly", { n = createNode(neo4j, "Person", names=c("Alice", "Bob")) expect_equal(n$names, c("Alice", "Bob")) }) test_that("arrays of numerics are added correctly", { n = createNode(neo4j, "Person", ages=c(1, 2, 3)) expect_equal(n$ages, c(1, 2, 3)) }) test_that("arrays of booleans are added correctly", { n = createNode(neo4j, "Person", awesome=c(TRUE, FALSE)) expect_equal(n$awesome, c(TRUE, FALSE)) }) test_that("updateProp works with strings", { n = createNode(neo4j, "Person") n = updateProp(n, name="Nicole") expect_equal(n$name, "Nicole") nicole = getSingleNode(neo4j, "MATCH (n) WHERE n.name = 'Nicole' RETURN n") expect_true(!is.null(nicole)) }) test_that("updateProp works with numerics", { n = createNode(neo4j, "Person") n = updateProp(n, age=24) expect_equal(n$age, 24) twentyfour = getSingleNode(neo4j, "MATCH (n) WHERE n.age = 24 RETURN n") expect_true(!is.null(twentyfour)) }) test_that("updateProp works with booleans", { n = createNode(neo4j, "Person") n = updateProp(n, awesome=TRUE) expect_true(n$awesome) awesome = getSingleNode(neo4j, "MATCH (n) WHERE n.awesome = true RETURN n") expect_true(!is.null(awesome)) }) test_that("updateProp both replaces and creates new properties", { n = createNode(neo4j, "Person", name="Nicole") n = updateProp(n, name="Julian", age=100) expect_equal(n$name, "Julian") expect_equal(n$age, 100) }) test_that("updateProp works with array properties", { n = createNode(neo4j, "Person", name="Nicole") n = updateProp(n, ages=c(1, 2, 3)) expect_equal(n$name, "Nicole") expect_equal(n$ages, c(1, 2, 3)) }) test_that("deleteProp works with given property", { n = createNode(neo4j, "Person", name="Nicole", age=24) n = deleteProp(n, "age", "name") expect_null(n$age) expect_null(n$name) }) test_that("deleteProp works with all=TRUE", { n = createNode(neo4j, "Person", name="Nicole", age=24) n = deleteProp(n, all=TRUE) expect_null(n$age) expect_null(n$name) }) test_that("deleteProp works with a list of properties", { n = createNode(neo4j, "Person", name="Nicole", age=24) n = deleteProp(n, list("age")) expect_null(n$age) expect_equal(n$name, "Nicole") }) test_that("updateProp works with a list of properties", { n = createNode(neo4j, "Person", name="Nicole") n = updateProp(n, list(name="Julian", age=100)) expect_equal(n$name, "Julian") expect_equal(n$age, 100) })
ICA.Sample.ContCont <- function(T0S0, T1S1, T0T0=1, T1T1=1, S0S0=1, S1S1=1, T0T1=seq(-1, 1, by=.001), T0S1=seq(-1, 1, by=.001), T1S0=seq(-1, 1, by=.001), S0S1=seq(-1, 1, by=.001), M=50000) { T0S0_val <- T0S0 T1S1_val <- T1S1 T0T1_val <- T0T1 T0S1_val <- T0S1 T1S0_val <- T1S0 S0S1_val <- S0S1 Results <- na.exclude(matrix(NA, 1, 9)) colnames(Results) <- c("T0T1", "T0S0", "T0S1", "T1S0", "T1S1", "S0S1", "ICA", "Sigma.Delta.T", "delta") for (i in 1: M) { T0T1 <- runif(n = 1, min = min(T0T1_val), max = max(T0T1_val)) T0S0 <- runif(n = 1, min = min(T0S0_val), max = max(T0S0_val)) T0S1 <- runif(n = 1, min = min(T0S1_val), max = max(T0S1_val)) T1S0 <- runif(n = 1, min = min(T1S0_val), max = max(T1S0_val)) T1S1 <- runif(n = 1, min = min(T1S1_val), max = max(T1S1_val)) S0S1 <- runif(n = 1, min = min(S0S1_val), max = max(S0S1_val)) Sigma_c <- diag(4) Sigma_c[2,1] <- Sigma_c[1,2] <- T0T1 * (sqrt(T0T0)*sqrt(T1T1)) Sigma_c[3,1] <- Sigma_c[1,3] <- T0S0 * (sqrt(T0T0)*sqrt(S0S0)) Sigma_c[4,1] <- Sigma_c[1,4] <- T0S1 * (sqrt(T0T0)*sqrt(S1S1)) Sigma_c[3,2] <- Sigma_c[2,3] <- T1S0 * (sqrt(T1T1)*sqrt(S0S0)) Sigma_c[4,2] <- Sigma_c[2,4] <- T1S1 * (sqrt(T1T1)*sqrt(S1S1)) Sigma_c[4,3] <- Sigma_c[3,4] <- S0S1 * (sqrt(S0S0)*sqrt(S1S1)) Sigma_c[1,1] <- T0T0 Sigma_c[2,2] <- T1T1 Sigma_c[3,3] <- S0S0 Sigma_c[4,4] <- S1S1 Cor_c <- cov2cor(Sigma_c) Min.Eigen.Cor <- try(min(eigen(Cor_c)$values), TRUE) if (Min.Eigen.Cor > 0) { ICA <- ((sqrt(S0S0*T0T0)*Cor_c[3,1])+(sqrt(S1S1*T1T1)*Cor_c[4,2])-(sqrt(S0S0*T1T1)*Cor_c[3,2])-(sqrt(S1S1*T0T0)*Cor_c[4,1]))/(sqrt((T0T0+T1T1-(2*sqrt(T0T0*T1T1)*Cor_c[2,1]))*(S0S0+S1S1-(2*sqrt(S0S0*S1S1)*Cor_c[4,3])))) if ((is.finite(ICA))==TRUE){ sigma.delta.T <- T0T0 + T1T1 - (2 * sqrt(T0T0*T1T1) * Cor_c[2,1]) delta <- sigma.delta.T * (1-(ICA**2)) results.part <- as.vector(cbind(T0T1, T0S0, T0S1, T1S0, T1S1, S0S1, ICA, sigma.delta.T, delta)) Results <- rbind(Results, results.part) rownames(Results) <- NULL} } } Results <- data.frame(Results, stringsAsFactors = TRUE) rownames(Results) <- NULL Total.Num.Matrices <- dim(Results)[1] fit <- list(Total.Num.Matrices=Total.Num.Matrices, Pos.Def=Results[,1:6], ICA=Results$ICA, GoodSurr=Results[,7:9], Call=match.call()) class(fit) <- "ICA.ContCont" fit } plot.ICA.ContCont <- function(x, Xlab.ICA, Main.ICA, Type="Percent", Labels=FALSE, ICA=TRUE, Good.Surr=FALSE, Main.Good.Surr, Par=par(oma=c(0, 0, 0, 0), mar=c(5.1, 4.1, 4.1, 2.1)), col, ...){ Object <- x if (missing(Xlab.ICA)) {Xlab.ICA <- expression(rho[Delta])} if (missing(Main.ICA)) {Main.ICA="ICA"} if (missing(col)) {col <- c(8)} if (ICA==TRUE){ dev.new() par=Par if (Type=="Freq"){ h <- hist(Object$ICA, ...) h$density <- h$counts/sum(h$counts) cumulMidPoint <- ecdf(x=Object$ICA)(h$mids) labs <- paste(round((1-cumulMidPoint), digits=4)*100, "%", sep="") if (Labels==FALSE){ plot(h,freq=T, xlab=Xlab.ICA, ylab="Frequency", col=col, main=Main.ICA) } if (Labels==TRUE){ plot(h,freq=T, xlab=Xlab.ICA, ylab="Frequency", col=col, main=Main.ICA, labels=labs) } } if (Type=="Percent"){ h <- hist(Object$ICA, ...) h$density <- h$counts/sum(h$counts) cumulMidPoint <- ecdf(x=Object$ICA)(h$mids) labs <- paste(round((1-cumulMidPoint), digits=4)*100, "%", sep="") if (Labels==FALSE){ plot(h,freq=F, xlab=Xlab.ICA, ylab="Percentage", col=col, main=Main.ICA) } if (Labels==TRUE){ plot(h,freq=F, xlab=Xlab.ICA, ylab="Percentage", col=col, main=Main.ICA, labels=labs) } } if (Type=="CumPerc"){ h <- hist(Object$ICA, breaks=length(Object$ICA), ...) h$density <- h$counts/sum(h$counts) cumulative <- cumsum(h$density) plot(x=h$mids, y=cumulative, xlab=Xlab.ICA, ylab="Cumulative percentage", col=0, main=Main.ICA) lines(x=h$mids, y=cumulative) } } if (Good.Surr==TRUE){ if (missing(Main.Good.Surr)) {Main.Good.Surr = " "} par=Par if (Type=="Freq"){ h <- hist(Object$GoodSurr$delta, ...) h$density <- h$counts/sum(h$counts) cumulMidPoint <- ecdf(x=Object$GoodSurr$delta)(h$mids) labs <- paste(round((1-cumulMidPoint), digits=4)*100, "%", sep="") if (Labels==FALSE){ plot(h,freq=T, xlab=expression(delta), ylab="Frequency", main=Main.Good.Surr, col=col) } if (Labels==TRUE){ plot(h,freq=T, xlab=expression(delta), ylab="Frequency", col=col, labels=labs, main=Main.Good.Surr) } } if (Type=="Percent"){ h <- hist(Object$GoodSurr$delta, ...) h$density <- h$counts/sum(h$counts) cumulMidPoint <- ecdf(x=Object$GoodSurr$delta)(h$mids) labs <- paste(round((1-cumulMidPoint), digits=4)*100, "%", sep="") if (Labels==FALSE){ plot(h,freq=F, xlab=expression(delta), ylab="Percentage", col=col, main=Main.Good.Surr) } if (Labels==TRUE){ plot(h,freq=F, xlab=expression(delta), ylab="Percentage", col=col, labels=labs, main=Main.Good.Surr) } } if (Type=="CumPerc"){ h <- hist(Object$GoodSurr$delta, breaks=length(Object$GoodSurr$delta), ...) h$density <- h$counts/sum(h$counts) cumulative <- cumsum(h$density) plot(x=h$mids, y=cumulative, xlab=expression(delta), ylab="Cumulative percentage", col=0, main=Main.Good.Surr) lines(x=h$mids, y=cumulative) } } } summary.ICA.ContCont <- function(object, ..., Object){ if (missing(Object)){Object <- object} mode <- function(data) { x <- data z <- density(x) mode_val <- z$x[which.max(z$y)] fit <- list(mode_val= mode_val) } cat("\nFunction call:\n\n") print(Object$Call) cat("\n\n cat("\n cat("\n cat(Object$Total.Num.Matrices) cat("\n\n cat("\n cat(nrow(Object$Pos.Def)) cat("\n\n\n cat("\n cat("Mean (SD) ICA: ", format(round(mean(Object$ICA), 4), nsmall = 4), " (", format(round(sd(Object$ICA), 4), nsmall = 4), ")", " [min: ", format(round(min(Object$ICA), 4), nsmall = 4), "; max: ", format(round(max(Object$ICA), 4), nsmall = 4), "]", sep="") cat("\nMode ICA: ", format(round(mode(Object$ICA)$mode_val, 4), nsmall = 4)) cat("\n\nQuantiles of the ICA distribution: \n\n") quant <- quantile(Object$ICA, probs = c(.05, .10, .20, .50, .80, .90, .95)) print(quant) }
Rd2list <- function(Rd) { names(Rd) <- substring(sapply(Rd, attr, "Rd_tag"), 2) temp_args <- Rd$arguments Rd$arguments <- NULL myrd <- lapply(Rd, unlist) myrd <- lapply(myrd, paste, collapse = "") temp_args <- temp_args[sapply(temp_args , attr, "Rd_tag") == "\\item"] temp_args <- lapply(temp_args, lapply, paste, collapse = "") temp_args <- lapply(temp_args, "names<-", c("arg", "description")) myrd$arguments <- temp_args myrd } getHelpList <- function(...) { thefile <- help(...) myrd <- utils:::.getHelpFile(thefile) Rd2list(myrd) } makeExamplePage <- function(name, ui) { help <- getHelpList(name) makePage(name, "Fluent UI component", div( makeCard("Description", Text(nowrap = FALSE, help$description)), makeCard("Usage", pre(help$usage)), makeCard("Live example", div(style = "padding: 20px", ui)), makeCard("Live example code", pre(help$example)) )) }
plot.pec <- function(x, what, models, xlim=c(x$start,x$minmaxtime), ylim=c(0,0.3), xlab="Time", ylab, axes=TRUE, col, lty, lwd, type, smooth=FALSE, add.refline=FALSE, add=FALSE, legend=ifelse(add,FALSE,TRUE), special=FALSE, ...){ allArgs <- match.call() allArgs if (missing(what)){ if (match("what",names(allArgs),nomatch=0)){ what <- eval(allArgs$what) } else{ if (match("PredErr",names(x),nomatch=0)) what <- "PredErr" else{ what <- switch(x$splitMethod$internal.name, "noPlan"="AppErr", paste(x$splitMethod$internal.name,"Err",sep="")) } } } if (0==(match(what,names(x),nomatch=0))) stop("Estimate \"",what,"\" not found in object") if (missing(models)) if (match("who",names(allArgs),nomatch=0)) models <- eval(allArgs$who) else models <- 1:length(x$models) if(!is.numeric(models)) models <- names(x$model)[match(models,names(x$models))] a <- x$time >= xlim[1] b <- x$time <= xlim[2] at <- (a & b) X <- x$time[at] y <- do.call("cbind",x[[what]][models])[at,,drop=FALSE] if (length(y)==0) stop("No plotting values: check if x[[what]][models] is a list of numeric vectors.") uyps <- unlist(y) uyps <- uyps[!is.infinite(uyps)] max.y <- max(uyps,na.rm=T) ymax <- max(max.y,ylim[2]) if (max.y>ylim[2]) ylim <- if (what=="PredErr") c(0,ceiling(ymax*10)/10) else c(0,ceiling(max(unlist(y),na.rm=T)*10))/10 nfit <- ncol(y) if (missing(ylab)) ylab <- "Prediction error" if (missing(xlab)) xlab <- "Time" if (missing(col)) col <- 1:nfit if (missing(lty)) lty <- rep(1, nfit) if (missing(lwd)) lwd <- rep(2, nfit) if (length(col)< nfit) col <- rep(col, nfit) if (length(lty) < nfit) lty <- rep(lty, nfit) if (length(lwd) < nfit) lwd <- rep(lwd, nfit) if (missing(type)) if (!x$exact || smooth) type <- "l" else type <- "s" axis1.DefaultArgs <- list() axis2.DefaultArgs <- list() plot.DefaultArgs <- list(x=0, y=0, type = "n", ylim = ylim, xlim = xlim, xlab = xlab, ylab = ylab) special.DefaultArgs <- list(x=x, y=x[[what]], addprederr=NULL, models=models, bench=FALSE, benchcol=1, times=X, maxboot=NULL, bootcol="gray77", col=rep(1,4), lty=1:4, lwd=rep(2,4)) if (special) legend.DefaultArgs <- list(legend=NULL,lwd=NULL,col=NULL,lty=NULL,cex=1.5,bty="n",y.intersp=1,x=xlim[1],xjust=0,y=(ylim+.1*ylim)[2],yjust=1) else legend.DefaultArgs <- list(legend=if(is.numeric(models)) names(x$models)[models] else models, lwd=lwd, col=col, lty=lty, cex=1.5, bty="n", y.intersp=1, x=xlim[1], xjust=0, y=(ylim+.1*ylim)[2], yjust=1) if (match("legend.args",names(args),nomatch=FALSE)){ legend.DefaultArgs <- c(args[[match("legend.args",names(args),nomatch=FALSE)]],legend.DefaultArgs) legend.DefaultArgs <- legend.DefaultArgs[!duplicated(names(legend.DefaultArgs))] } if (match("special.args",names(args),nomatch=FALSE)){ special.DefaultArgs <- c(args[[match("special.args",names(args),nomatch=FALSE)]],special.DefaultArgs) special.DefaultArgs <- special.DefaultArgs[!duplicated(names(special.DefaultArgs))] } smartA <- prodlim::SmartControl(call=list(...), keys=c("plot","special","legend","axis1","axis2"), defaults=list("plot"=plot.DefaultArgs, "special"=special.DefaultArgs, "legend"= legend.DefaultArgs, "axis1"=axis1.DefaultArgs, "axis2"=axis2.DefaultArgs), forced=list("plot"=list(axes=FALSE), "axis1"=list(side=1), "axis2"=list(side=2)), ignore.case=TRUE, ignore=c("what","who"), verbose=TRUE) if (!add) { do.call("plot",smartA$plot) if (axes){ do.call("axis",smartA$axis1) do.call("axis",smartA$axis2) } } if (special==TRUE){ if (!(x$splitMethod$internal.name=="Boot632plus"||x$splitMethod$internal.name=="Boot632")) stop("Plotting method 'special' requires prediction error method 'Boot632plus' or 'Boot632'") if (is.null(x$call$keep.matrix)) stop("Need keep.matrix") do.call("Special", smartA$special) } else{ nlines <- ncol(y) nix <- lapply(1:nlines, function(s) { lines(x = X, y = y[,s], type = type, col = col[s], lty = lty[s], lwd = lwd[s]) }) } if (add.refline) abline(h=.25,lty=3,lwd=2,col=1) if(legend==TRUE && !add && !is.null(names(x$models)[models])){ save.xpd <- par()$xpd par(xpd=TRUE) if (special==TRUE){ if(is.numeric(models)) nameModels <- names(x$models)[smartA$special$models] else nameModels <- smartA$special$models if (is.null(smartA$legend$legend)) if (smartA$special$bench == FALSE) smartA$legend$legend <- c(paste(x$method$internal.name,"-",nameModels), paste(smartA$special$addprederr, "-", nameModels)) else{ if (is.numeric(smartA$special$bench)) benchName <- names(x$models)[smartA$special$bench] else benchName <- smartA$special$bench if (is.null(smartA$special$addprederr)) smartA$legend$legend <- c(paste(x$splitMethod$internal.name,"-",c(benchName, nameModels))) else smartA$legend$legend <- c(paste(x$splitMethod$internal.name,"-",c(benchName, nameModels)), paste(smartA$special$addprederr, "-", nameModels)) } if (is.null(smartA$legend$col)) if (smartA$special$bench == FALSE) smartA$legend$col <- smartA$special$col else smartA$legend$col <- c(smartA$special$benchcol,smartA$special$col) if (is.null(smartA$legend$lty)) if (smartA$special$bench == FALSE) smartA$legend$lty <- smartA$special$lty else smartA$legend$lty <- c(1,smartA$special$lty) if (is.null(smartA$legend$lwd)) if (smartA$special$bench == FALSE) smartA$legend$lwd <- smartA$special$lwd else smartA$legend$lwd <- c(smartA$special$lwd[1],smartA$special$lwd) do.call("legend",smartA$legend) } else do.call("legend",smartA$legend) par(xpd=save.xpd) } invisible(x) }
EventRenaming <- function(EventVec, Censored_Annot){ CensoredInd <- which(EventVec == Censored_Annot) EventVec_Renamed <- EventVec EventVec_Renamed[CensoredInd] <- 0 EventVec_Renamed[-CensoredInd] <- 1 return(EventVec_Renamed) }
itsframe <- function(dates, a, b) UseMethod("itsframe") itsframe.default <- function(dates, a, b) { n <- length(a) if (length(a) != length(b)) stop('a and b must be of the same length') if(inherits(dates, "Date")==T){dates = as.Date(dates)} else {dates = dates} outputs <- list(dates = dates, a = a, b = b, n=n, D=1, call = match.call()) class(outputs) <- "itsframe" return(outputs) } plot.itsframe <- function(x, time.format="%m-%y", col = NULL, lty = NULL, main = NULL, type = NULL, pch = NULL, lwd = NULL, tick = TRUE, ylab = NULL,xlab = NULL, ylim = NULL, xlim = NULL,cex.lab=NULL, cex.axis=NULL,cex.main=NULL, ...) { plot(x$dates, x$a, main = if(is.null(main)){''} else {main}, col = if(is.null(col)){'black'} else {col}, lty = if(is.null(lty)){1} else {lty}, pch = if(is.null(pch)){1} else {pch}, type = if(is.null(type)){'l'} else {type}, xlab = if(is.null(xlab)){'Time'} else {xlab}, lwd = if(is.null(lwd)){1} else {lwd}, ylab = if(is.null(ylab)){''} else {ylab}, ylim = if(is.null(ylim)){c(min(x$a, x$b),max(x$a, x$b))} else {ylim}, xlim = if(is.null(xlim)){c(min(x$dates),max(x$dates))} else {xlim}, cex.lab = if(is.null(cex.lab)){1} else {cex.lab}, cex.axis = if(is.null(cex.axis)){1} else {cex.axis}, cex.main = if(is.null(cex.main)){1} else {cex.main}, xaxt="n") if(inherits(x$dates, "Date")==T){ timelabels<-format(x$dates,time.format) ; axis(1,at=x$dates, tick =tick, labels=timelabels,cex.axis = if(is.null(cex.axis)){1} else {cex.axis})} else { axis(1,at=x$dates, tick =tick, cex.axis = if(is.null(cex.axis)){1} else {cex.axis}) } lines(x$dates, x$b, col = if(is.null(col)){'black'} else {col}, lty = if(is.null(lty)){1} else {lty}, pch = if(is.null(pch)){1} else {pch}, type = if(is.null(type)){'l'} else {type}, lwd = if(is.null(lwd)){1} else {lwd}) polygon(c(rev(x$dates), x$dates), c(rev(x$a), x$b), border = NA, col = if(is.null(col)){'lightgray'} else {col}) }
SnnsR__resetRSNNS <- function(snnsObject) { res <- list() res$err <- 0 while (res$err == 0) { res <- snnsObject$deletePatSet(0) }; snnsObject$deleteNet() } SnnsR__deserialize <- function(snnsObject, str) { filename <- tempfile(pattern = "rsnns") file <- file(filename, "w") writeLines(str, con=file) close(file) snnsObject$loadNet(filename) unlink(filename) }
cyclocomp_linter <- function(complexity_limit = 25) { function(source_file) { if (!is.null(source_file[["file_lines"]])) { return(NULL) } complexity <- try_silently( cyclocomp::cyclocomp(parse(text = source_file$content)) ) if (inherits(complexity, "try-error")) return(NULL) if (complexity <= complexity_limit) return(NULL) Lint( filename = source_file[["filename"]], line_number = source_file[["line"]][1], column_number = source_file[["column"]][1], type = "style", message = paste0( "functions should have cyclomatic complexity of less than ", complexity_limit, ", this has ", complexity,"." ), ranges = list(c(source_file[["column"]][1], source_file[["column"]][1])), line = source_file$lines[1], linter = "cyclocomp_linter" ) } }
dbRunScript <- function(conn, script, echo = FALSE, ...) { if (file.exists(script)) { message(paste0("Initializing DB using SQL script ", basename(script))) sql <- readChar(script, file.info(script)$size, useBytes = TRUE) } else { sql <- script } sql_lines <- unlist(strsplit(sql, "\n")) sql_lines <- sql_lines[grepl("[A-Za-z0-9);]+", sql_lines)] sql_lines <- sql_lines[!grepl("^--", sql_lines)] sql_lines <- sql_lines[!grepl("^/\\*", sql_lines)] sql_rebuild <- paste(sql_lines, collapse = " ") sql_cmds <- unlist(strsplit(sql_rebuild, ";")) good <- DBI::SQL(sql_cmds) if (echo) { print(good) } lapply(good, DBI::dbExecute, conn = conn, ... = ...) }
context("selenium") normalizePath <- function(...) base::normalizePath(...) list.files <- function(...) base::list.files(...) Sys.info <- function(...) base::Sys.info(...) Sys.which <- function(...) base::Sys.which(...) test_that("canCallSelenium", { with_mock( `binman::process_yaml` = function(...){}, `binman::list_versions` = mock_binman_list_versions_selenium, `binman::app_dir` = mock_binman_app_dir, normalizePath = mock_base_normalizePath, list.files = mock_base_list.files, `subprocess::spawn_process` = mock_subprocess_spawn_process, `subprocess::process_return_code` = mock_subprocess_process_return_code, `subprocess::process_read` = mock_subprocess_process_read_selenium, `subprocess::process_kill` = mock_subprocess_process_kill, `wdman:::generic_start_log` = mock_generic_start_log, `wdman:::infun_read` = function(...){"infun"}, Sys.info = function(...){ structure("Windows", .Names = "sysname") }, `wdman:::chrome_check` = function(...){ list(platform = "some.plat") }, `wdman:::chrome_ver` = function(...){ list(path = "some.path") }, `wdman:::gecko_check` = function(...){ list(platform = "some.plat") }, `wdman:::gecko_ver` = function(...){ list(path = "some.path") }, `wdman:::phantom_check` = function(...){ list(platform = "some.plat") }, `wdman:::phantom_ver` = function(...){ list(path = "some.path") }, `wdman:::ie_check` = function(...){ list(platform = "some.plat") }, `wdman:::ie_ver` = function(...){ list(path = "some.path") }, { selServ <- selenium(iedrver = "latest") retCommand <- selenium(iedrver = "latest", retcommand = TRUE) expect_identical(selServ$output(), "infun") expect_identical(selServ$error(), "infun") logOut <- selServ$log()[["stdout"]] logErr <- selServ$log()[["stderr"]] expect_identical(logOut, "super duper") expect_identical(logErr, "no error here") expect_identical(selServ$stop(), "stopped") } ) expect_identical(selServ$process, "hello") exRet <- "-Dwebdriver.chrome.driver='some.path' " %+% "-Dwebdriver.gecko.driver='some.path' " %+% "-Dphantomjs.binary.path='some.path' " %+% "-Dwebdriver.ie.driver='some.path' " %+% "-jar 'some.path' -port 4567" if(identical(.Platform[["OS.type"]], "unix")){ expect_true(grepl(exRet, retCommand)) }else{ expect_true(grepl(gsub("'", "\"", exRet), retCommand)) } }) test_that("errorIfJavaNotFound", { with_mock( Sys.which= function(...){""}, expect_error(selenium(), "PATH to JAVA not found") ) }) test_that("errorIfVersionNotFound", { with_mock( Sys.which= function(...){"im here"}, `binman::process_yaml` = function(...){}, `binman::list_versions` = mock_binman_list_versions_selenium, expect_error(selenium(version = "nothere"), "version requested doesnt match versions available") ) }) test_that("pickUpErrorFromReturnCode", { with_mock( `binman::process_yaml` = function(...){}, `binman::list_versions` = mock_binman_list_versions_selenium, `binman::app_dir` = mock_binman_app_dir, normalizePath = mock_base_normalizePath, list.files = mock_base_list.files, `subprocess::spawn_process` = mock_subprocess_spawn_process, `subprocess::process_return_code` = function(...){"some error"}, `subprocess::process_read` = mock_subprocess_process_read_selenium, `wdman:::generic_start_log` = mock_generic_start_log, Sys.info = function(...){ structure("Windows", .Names = "sysname") }, `wdman:::chrome_check` = function(...){ list(platform = "some.plat") }, `wdman:::chrome_ver` = function(...){ list(path = "some.path") }, `wdman:::gecko_check` = function(...){ list(platform = "some.plat") }, `wdman:::gecko_ver` = function(...){ list(path = "some.path") }, `wdman:::phantom_check` = function(...){ list(platform = "some.plat") }, `wdman:::phantom_ver` = function(...){ list(path = "some.path") }, `wdman:::ie_check` = function(...){ list(platform = "some.plat") }, `wdman:::ie_ver` = function(...){ list(path = "some.path") }, expect_error(selenium(version = "3.0.1", iedrver = "latest"), "Selenium server couldn't be started") ) }) test_that("pickUpErrorFromPortInUse", { with_mock( `binman::process_yaml` = function(...){}, `binman::list_versions` = mock_binman_list_versions_selenium, `binman::app_dir` = mock_binman_app_dir, normalizePath = mock_base_normalizePath, list.files = mock_base_list.files, `subprocess::spawn_process` = mock_subprocess_spawn_process, `subprocess::process_return_code` = mock_subprocess_process_return_code, `subprocess::process_read` = mock_subprocess_process_read_selenium, `subprocess::process_kill` = mock_subprocess_process_kill, `wdman:::generic_start_log` = function(...){ list(stderr = "Address already in use") }, Sys.info = function(...){ structure("Windows", .Names = "sysname") }, `wdman:::chrome_check` = function(...){ list(platform = "some.plat") }, `wdman:::chrome_ver` = function(...){ list(path = "some.path") }, `wdman:::gecko_check` = function(...){ list(platform = "some.plat") }, `wdman:::gecko_ver` = function(...){ list(path = "some.path") }, `wdman:::phantom_check` = function(...){ list(platform = "some.plat") }, `wdman:::phantom_ver` = function(...){ list(path = "some.path") }, `wdman:::ie_check` = function(...){ list(platform = "some.plat") }, `wdman:::ie_ver` = function(...){ list(path = "some.path") }, expect_error(selenium(), "Selenium server signals port") ) }) test_that("pickUpWarningOnNoStderr", { with_mock( `binman::process_yaml` = function(...){}, `binman::list_versions` = mock_binman_list_versions_selenium, `binman::app_dir` = mock_binman_app_dir, normalizePath = mock_base_normalizePath, list.files = mock_base_list.files, `subprocess::spawn_process` = mock_subprocess_spawn_process, `subprocess::process_return_code` = mock_subprocess_process_return_code, `subprocess::process_read` = mock_subprocess_process_read_selenium, `wdman:::generic_start_log` = function(...){list(stdout = character(), stderr = character())}, Sys.info = function(...){ structure("Windows", .Names = "sysname") }, `wdman:::chrome_check` = function(...){ list(platform = "some.plat") }, `wdman:::chrome_ver` = function(...){ list(path = "some.path") }, `wdman:::gecko_check` = function(...){ list(platform = "some.plat") }, `wdman:::gecko_ver` = function(...){ list(path = "some.path") }, `wdman:::phantom_check` = function(...){ list(platform = "some.plat") }, `wdman:::phantom_ver` = function(...){ list(path = "some.path") }, `wdman:::ie_check` = function(...){ list(platform = "some.plat") }, `wdman:::ie_ver` = function(...){ list(path = "some.path") }, expect_warning(selenium(), "No output to stderr yet detected") ) })
get_object <- function(object, bucket, headers = list(), parse_response = FALSE, as = "raw", ...) { if (missing(bucket)) { bucket <- get_bucketname(object) } object <- get_objectkey(object) r <- s3HTTP(verb = "GET", bucket = bucket, path = paste0("/", object), headers = headers, parse_response = parse_response, ...) cont <- httr::content(r, as = as) return(cont) } save_object <- function(object, bucket, file = basename(object), headers = list(), overwrite = TRUE, ...) { if (missing(bucket)) { bucket <- get_bucketname(object) } object <- get_objectkey(object) d <- dirname(file) if (!file.exists(d)) { dir.create(d, recursive = TRUE) } r <- s3HTTP(verb = "GET", bucket = bucket, path = paste0("/", object), headers = headers, write_disk = httr::write_disk(path = file, overwrite = overwrite), ...) return(file) } select_object <- function( object, bucket, request_body, headers = list(), parse_response = FALSE, ... ) { if (missing(bucket)) { bucket <- get_bucketname(object) } object <- get_objectkey(object) r <- s3HTTP(verb = "POST", bucket = bucket, path = paste0("/", object), headers = headers, query = list(select = "", "select-type" = "2"), request_body = request_body, parse_response = parse_response, ...) cont <- httr::content(r, as = "raw") return(cont) } get_torrent <- function(object, bucket, ...) { if (missing(bucket)) { bucket <- get_bucketname(object) } object <- get_objectkey(object) r <- s3HTTP(verb = "GET", bucket = bucket, path = paste0("/", object), query = list(torrent =""), ...) return(content(r, "raw")) } s3connection <- function(object, bucket, headers = list(), ...) { if (missing(bucket)) { bucket <- get_bucketname(object) } object <- get_objectkey(object) r <- s3HTTP(verb = "connection", bucket = bucket, path = paste0("/", object), headers = headers, ...) return(r) }
print.designMatrices <- function( X, ... ){ x <- X BB <- x$flatB colnames(BB) <- paste("B_", colnames(BB), sep="") out <- cbind( x$flatA, BB ) NAs <- apply( x$flatA, 1, function(fA) all(is.na(fA)) ) out <- out[!NAs, ] print(out) invisible( out ) } rownames.design <- function(X){ Y <- apply(X, 2, as.numeric ) Y <- sapply(1:ncol(Y), function(vv) paste( colnames(Y)[vv], add.lead(Y[,vv], ceiling(log( max(as.numeric(Y[,vv])), 10)) ), sep="" ) ) rownames(X) <- apply(Y, 1, paste, collapse="-") return(X) } rownames.design2 <- function(X){ Y <- apply(X, 2, as.numeric ) Y <- sapply(1:ncol(Y), function(vv) paste( colnames(Y)[vv], add.lead(Y[,vv], 1), sep="" ) ) rownames(X) <- apply(Y, 1, paste, collapse="-") return(X) } .A.matrix <- function( resp, formulaA=~ item + item*step, facets=NULL, constraint=c("cases", "items"), progress=FALSE, maxKi=NULL ) { z0 <- Sys.time() facets0 <- facets NF <- length(facets) facet.list <- as.list( 1:NF ) names(facet.list) <- colnames(facets) if (NF==0){ facet.list <- NULL } if (NF>0){ for (ff in 1:NF){ uff <- sort( unique( facets[,ff] ) ) facets[,ff] <- match( facets[,ff], uff ) facet.list[[ff]] <- data.frame( "facet.label"=paste0( colnames(facets)[ff], uff ), "facet.index"=paste0( colnames(facets)[ff], seq(1,length(uff) ) ) ) } } constraint <- match.arg(constraint) if ( is.null(maxKi) ){ maxKi <- apply( resp, 2, max, na.rm=TRUE ) } maxK <- max( maxKi ) nI <- ncol( resp ) i11 <- names(maxKi)[ maxKi==0 ] if ( length(i11) > 0 ){ stop( cat( "Items with maximum score of 0:", paste(i11, collapse=" " ) ) ) } tf <- terms( formulaA ) fvars <- as.vector( attr(tf,"variables"), mode="character" )[-1] otherFacets <- setdiff( fvars, c("item", "step") ) contr.list <- as.list( rep( "contr.sum", length(fvars) ) ) names( contr.list ) <- fvars nitems <- ncol(resp) expand.list <- vector(mode="list", length=0) if( "item" %in% fvars ) expand.list <- c(expand.list, if("item" %in% names(facet.list)) list(as.factor(sort(unique(facets[,"item"])))) else list(factor(1:nI)) ) if( "step" %in% fvars ) expand.list <- c(expand.list, if("step" %in% names(facet.list)) list(as.factor(sort(unique(facets[,"step"])))) else list(factor(1:maxK)) ) if( length( otherFacets )==1) expand.list <- c(expand.list, list(factor(1:max(facets[, otherFacets]))) ) if( length( otherFacets ) > 1 ) expand.list <- c(expand.list, sapply( otherFacets, FUN=function(ff) as.factor(1:max(facets[, ff])), simplify=FALSE )) names( expand.list ) <- fvars for (vv in seq(1, length(expand.list) ) ){ expand.list[[vv]] <- paste( expand.list[[vv]] ) } X <- rownames.design2( expand.grid(expand.list) ) if( constraint=="cases" ) formulaA <- update.formula(formulaA, ~0+.) NX <- ncol(X) for (ff in 1:NX){ uff <- length( unique(X[,ff] ) ) if (uff==1){ cat(paste0(" - facet ", colnames(X)[ff], " does only have one level!" ), "\n") } } mm <- - stats::model.matrix(formulaA, X, contrasts=contr.list) if( constraint=="items" ) mm <- mm[,-1] xsi.constr <- .generate.interactions(X, facets, formulaA, mm ) if( "step" %in% fvars ){ if( ncol( attr(tf, "factors") )==1 ){ return( warning("Can't proceed the estimation: Factor of order 1 other than step must be specified.") ) } if( all( attr(tf, "factors")["step",] !=1 ) ){ return( warning("Can't proceed the estimation: Lower-order term is missing.") ) } A <- NULL stepgroups <- unique( gsub( "(^|-)+step([[:digit:]])*", "\\1step([[:digit:]])*", rownames(X) ) ) X.out <- data.frame(as.matrix(X), stringsAsFactors=FALSE) if (progress){ cat(" o Create design matrix A\n") ip <- length(stepgroups) VP <- min( ip, 10 ) cat(paste0(" |",paste0( rep("*", VP), collapse=""), "|\n")) cat(" |") ; flush.console() if (VP<10){ disp_progress <- 1:ip } else { disp_progress <- 100* ( 1:ip ) / (ip+1) disp_progress <- sapply( seq(5,95,10), FUN=function(pp){ which.min( abs( disp_progress - pp ) )[1] } ) } } ii <- 0 ; vv <- 1 NRX <- length( rownames(X) ) rownames_X_matr <- strsplit( rownames(X), split="-") rownames_X_matr <- matrix( unlist( rownames_X_matr ), nrow=NRX, byrow=TRUE ) step_col <- 0 for (ff in 1:( ncol( rownames_X_matr ) ) ){ if ( length( grep( "step1", rownames_X_matr[,ff] ) ) > 0 ){ step_col <- ff } } rownames_X_matr2 <- rownames_X_matr[, - step_col, drop=FALSE ] N2 <- ncol( rownames_X_matr2 ) rownames_X_matr2_collapse <- rownames_X_matr2[,1] if (N2>1){ for (nn in 2:N2){ rownames_X_matr2_collapse <- paste0( rownames_X_matr2_collapse, "-", rownames_X_matr2[,nn] ) } } stepgroups2 <- unique(rownames_X_matr2_collapse) match_stepgroups <- match( rownames_X_matr2_collapse, stepgroups2 ) index_matr <- cbind( match_stepgroups, 1:NRX) index_matr <- index_matr[ order( index_matr[, 1] ), ] SG <- length(stepgroups2) res <- tam_rcpp_mml_mfr_a_matrix_cumsum( index_matr=as.matrix(index_matr)-1, mm=as.matrix(mm), SG=SG ) mm.sg.temp <- res$cumsum_mm rownames(mm.sg.temp) <- paste0("I", seq(1,nrow(mm.sg.temp) ) ) ind2 <- seq( 1, NRX+SG, maxK+1 ) rownames(mm.sg.temp)[ind2] <- gsub("step([[:digit:]])*", "step0", stepgroups, fixed=T) rownames(mm.sg.temp)[setdiff( seq(1,NRX+SG), ind2) ] <- rownames(mm)[ index_matr[,2] ] colnames(mm.sg.temp) <- colnames(mm) A1 <- rbind(A, mm.sg.temp) index_matr2 <- index_matr index_matr2 <- index_matr2[ index_matr2[,1] !=c(0, index_matr2[ -NRX, 1] ), ] x.sg.temp <- X.out[ index_matr2[,2], ] x.sg.temp[,"step"] <- 0 rownames(x.sg.temp) <- gsub("step([[:digit:]])*", "step0", stepgroups, fixed=T) X.out1 <- rbind( X.out, x.sg.temp ) if (TRUE){ X.out <- X.out1 A <- A1 } if (FALSE){ for( sg in stepgroups ){ ind.mm <- grep(sg, rownames(mm)) mm.sg.temp <- rbind( 0, apply( mm[ ind.mm,], 2, cumsum ) ) rownames(mm.sg.temp)[1] <- gsub("step([[:digit:]])*", "step0", sg, fixed=T) A <- rbind(A, mm.sg.temp) isg <- grep(sg, rownames(X.out))[1] x.sg.temp <- X.out[ isg, ] x.sg.temp[,"step"] <- 0 rownames(x.sg.temp) <- gsub("step([[:digit:]])*", "step0", sg, fixed=TRUE) X.out <- rbind(X.out, x.sg.temp) if ( progress ){ ii <- ii+1 if (( ii==disp_progress[vv] ) & (vv<=10) ){ cat("-") ; flush.console() vv <- vv+1 } } } } if ( progress ){ cat("|\n") ; flush.console() } } else { rownames(mm) <- paste( rownames(X), "-step1", sep="") A <- mm for( kk in setdiff(0:maxK, 1) ){ mm.k.temp <- mm*kk rownames(mm.k.temp) <- paste( rownames(X), "-step", kk, sep="") A <- rbind(A, mm.k.temp) } X.out <- expand.grid( c( expand.list, list("step"=factor(0:maxK)) ) ) X.out <- rownames.design2( data.frame(as.matrix(X.out), stringsAsFactors=FALSE) ) } facet.design <- list( "facets"=facets, "facets.orig"=facets0, "facet.list"=facet.list[otherFacets]) A <- A[ ! duplicated( rownames(A) ), ] A <- A[order(rownames(A)),,drop=FALSE] X.out <- X.out[order(rownames(X.out)),,drop=FALSE] xsi1 <- xsi.constr$xsi.constraints xsi.constr$intercept_included <- FALSE ind <- grep("(Intercept", rownames(xsi1), fixed=TRUE) if ( length(ind) > 0 ){ xsi1 <- xsi1[ - ind, ] xsi.constr$xsi.constraints <- xsi1 xsi.constr$intercept_included <- TRUE } xsi1 <- xsi.constr$xsi.table ind <- grep("(Intercept", paste(xsi1$parameter), fixed=TRUE) if ( length(ind) > 0 ){ xsi1 <- xsi1[ - ind, ] xsi.constr$xsi.table <- xsi1 } return(list( "A"=A, "X"=X.out, "otherFacets"=otherFacets, "xsi.constr"=xsi.constr, "facet.design"=facet.design ) ) } .A.PCM2 <- function( resp, Kitem=NULL, constraint="cases", Q=NULL ){ if ( is.null(Kitem) ){ Kitem <- apply( resp, 2, max, na.rm=T ) + 1 } maxK <- max(Kitem) I <- ncol(resp) Nxsi <- sum(Kitem) - I A <- array( 0, dim=c( I, maxK, Nxsi ) ) vv <- 1 for (ii in 1:I){ A[ ii, 2:Kitem[ii], vv ] <- - ( 2:Kitem[ii] - 1 ) if ( Kitem[ii] < maxK ){ A[ ii, ( Kitem[ii] + 1 ):maxK, ] <- NA } vv <- vv+1 } for (ii in 1:I){ if ( Kitem[ii] > 2 ){ for (kk in 2:(Kitem[ii] - 1) ){ A[ ii, kk:(Kitem[ii]-1), vv ] <- - 1 vv <- vv + 1 } } } dimnames(A)[[1]] <- colnames(resp) vars <- colnames(resp) unidim <- TRUE if ( ! is.null(Q) ){ unidim <- ncol(Q)==1 } if ( constraint=="items" ){ if ( unidim ){ I <- ncol(resp) x1 <- matrix( - A[I,,I], nrow=dim(A)[2], ncol=I-1, byrow=FALSE ) A[ I,, seq(1,I-1) ] <- x1 A <- A[,,-I] vars <- vars[ - I ] } if (!unidim){ rem.pars <- NULL D <- ncol(Q) for (dd in 1:D){ ind.dd <- which( Q[,dd] !=0 ) I <- ind.dd[ length(ind.dd) ] x1 <- matrix( - A[I,,I], nrow=dim(A)[2], ncol=length(ind.dd)-1, byrow=FALSE ) A[ I,, ind.dd[ - length(ind.dd) ] ] <- x1 rem.pars <- c(rem.pars, I ) } vars <- vars[ - rem.pars ] A <- A[,, - rem.pars ] } } vars <- c(vars, unlist( sapply( (1:I)[Kitem>2], FUN=function(ii){ paste0( colnames(resp)[ii], "_step", 1:(Kitem[ii] - 2) ) } ) ) ) dimnames(A)[[3]] <- vars return(A) } .A.PCM3 <- function( resp, Kitem=NULL ){ if ( is.null(Kitem) ){ Kitem <- apply( resp, 2, max, na.rm=T ) + 1 } maxK <- max(Kitem) I <- ncol(resp) Nxsi <- I + sum( Kitem > 2 ) A <- array( 0, dim=c( I, maxK, Nxsi ) ) vv <- 1 for (ii in 1:I){ A[ ii, 2:Kitem[ii], vv ] <- - ( 2:Kitem[ii] - 1 ) if ( Kitem[ii] < maxK ){ A[ ii, ( Kitem[ii] + 1 ):maxK, ] <- NA } vv <- vv+1 } for (ii in 1:I){ if ( Kitem[ii] > 2 ){ Kii <- Kitem[ii]-1 A[ ii, 1:(Kii+1), vv ] <- ( 0:Kii ) * ( Kii - ( 0:Kii) ) vv <- vv + 1 } } dimnames(A)[[1]] <- colnames(resp) vars <- colnames(resp) vars1 <- paste0( vars[ Kitem > 2 ], "_disp" ) vars <- c( vars, vars1 ) dimnames(A)[[3]] <- vars return(A) }
buildFreqdist<- function(freq.distr, freq.param){ freqdist = list() freqdist[[1]] = freq.distr freqdist[[2]] = freq.param class(freqdist)="freqdist" return(freqdist) }
expected <- eval(parse(text="structure(list(size = NA_real_, isdir = NA, mode = structure(NA_integer_, class = \"octmode\"), mtime = NA_real_, ctime = NA_real_, atime = NA_real_, uid = NA_integer_, gid = NA_integer_, uname = NA_character_, grname = NA_character_), .Names = c(\"size\", \"isdir\", \"mode\", \"mtime\", \"ctime\", \"atime\", \"uid\", \"gid\", \"uname\", \"grname\"))")); test(id=0, code={ argv <- eval(parse(text="list(\"/home/lzhao/hg/r-instrumented/library/codetools/data\")")); .Internal(file.info(argv[[1]])); }, o=expected);
gbm_call <- function(gbm_data_obj, gbm_dist_obj, train_params, var_container, par_details, is_verbose) { check_if_gbm_data(gbm_data_obj) check_if_gbm_dist(gbm_dist_obj) check_if_gbm_train_params(train_params) check_if_gbm_var_container(var_container) y_levels <- nlevels(gbm_data_obj$y) if(y_levels > 0) { y_input <- as.integer(gbm_data_obj$y) } else { y_input <- gbm_data_obj$y } if(!is.null(dim(gbm_data_obj$y))) { y_levels <- nlevels(gbm_data_obj$y[,1]) if(y_levels > 0) y_input <- as.integer(gbm_data_obj$y[,1]) } fit <- .Call("gbm", Y=as.matrix(as.data.frame(y_input)), intResponse = as.matrix(cbind(gbm_dist_obj$strata, gbm_dist_obj$sorted)), Offset=as.double(gbm_data_obj$offset), X=as.matrix(as.data.frame(gbm_data_obj$x)), X.order=as.integer(gbm_data_obj$x_order), weights=as.double(gbm_data_obj$weights), Misc=get_misc(gbm_dist_obj), prior.node.coeff.var = ifelse(is.null(gbm_dist_obj$prior_node_coeff_var), as.double(0), as.double(gbm_dist_obj$prior_node_coeff_var)), id = as.integer(train_params$id), var.type=as.integer(var_container$var_type), var.monotone=as.integer(var_container$var_monotone), distribution=gbm_call_dist_name(gbm_dist_obj), n.trees=as.integer(train_params$num_trees), interaction.depth=as.integer(train_params$interaction_depth), n.minobsinnode=as.integer(train_params$min_num_obs_in_node), shrinkage=as.double(train_params$shrinkage), bag.fraction=as.double(train_params$bag_fraction), nTrainRows=as.integer(train_params$num_train_rows), nTrainObs = as.integer(train_params$num_train), mFeatures=as.integer(train_params$num_features), fit.old=as.double(NA), n.cat.splits.old=as.integer(0), n.trees.old=as.integer(0), par_details, verbose=as.integer(is_verbose), PACKAGE = "gbm3") fit$distribution <- gbm_dist_obj fit$params <- train_params fit$variables <- var_container class(fit) <- "GBMFit" return(fit) } gbm_call_dist_name <- function(obj) { UseMethod("gbm_call_dist_name") } gbm_call_dist_name.default <- function(obj) { tolower(distribution_name(obj)) } gbm_call_dist_name.PairwiseGBMDist <- function(obj) { paste(tolower(distribution_name(obj)), tolower(obj$metric), sep="_") }
library(ggplot2) this_base <- "fig03-01_angle-judgments" my_data <- data.frame( variable = c("A", "B","C","D","E"), value = c(25, 55, 55, 90, 135) / 360) p <- ggplot(my_data, aes(x = factor(1), y = value)) + geom_bar(width = 1, colour = "black", fill = "white", stat = "identity") + coord_polar(theta = "y", start = (1/2)*pi) + ggtitle("Fig 3.1 Angle Judgments") + theme_bw() + theme(panel.grid.major = element_blank(), plot.title = element_text(size = rel(1.5), face = "bold"), panel.border = element_blank(), axis.title = element_blank(), axis.text = element_blank(), axis.ticks = element_blank()) p ggsave(paste0(this_base, ".png"), p, width = 6, height = 5)
Qstat.sb.opt = function(DATA, vecA, Psize, Bsize, sigLev) { Tsize = nrow(DATA) vecQ.BP = matrix(0,Psize,1) vecQ.LB = matrix(0,Psize,1) vecCRQ = crossq.max(DATA, vecA, Psize) for (k in 1:Psize){ RES = Qstat(vecCRQ[1:k], Tsize) vecQ.BP[k] = RES$Q.BP vecQ.LB[k] = RES$Q.LB } Nsize = Tsize - Psize matD = matrix(0,Nsize,Psize+1) bigA = matrix(0,(Psize+1), 1) matD[,1] = as.matrix(DATA[(Psize+1):Tsize,1,drop=F]) bigA[,1] = vecA[1] for (k in 1:Psize){ matD[,(k+1)] = as.matrix(DATA[(Psize-k+1):(Tsize-k),2, drop=F]) bigA[ (k+1)] = vecA[2] } matB = b.star(matD) gamma = mean( (1/matB[,1, drop=FALSE]) ) matQ.BP = matrix(0,Bsize,Psize) matQ.LB = matrix(0,Bsize,Psize) for (b in 1:Bsize){ vecI = sb.index(Nsize, gamma) matD.SB = matD[vecI,] vecCRQ.B = matrix(0,Psize, 1) matQhit.SB = q.hit(matD.SB, bigA) vecD1 = matD.SB[,1, drop=FALSE] for (k in 1:Psize){ matH.SB = cbind(matQhit.SB[,1], matQhit.SB[,(1+k)]) matHH.SB = t(matH.SB) %*% matH.SB vecCRQ.B[k] = matHH.SB[1,2] / sqrt( matHH.SB[1,1] * matHH.SB[2,2] ) } vecTest = vecCRQ.B - vecCRQ for (k in 1:Psize){ Res1 = Qstat(vecTest[1:k], Tsize) matQ.BP[b,k] = Res1$Q.BP matQ.LB[b,k] = Res1$Q.LB } } vecCV.BP = matrix(0, Psize, 1) vecCV.LB = matrix(0, Psize, 1) for (k in 1:Psize){ vecCV.BP[k] = quantile(matQ.BP[,k], probs = (1 - sigLev) ) vecCV.LB[k] = quantile(matQ.LB[,k], probs = (1 - sigLev) ) } list(vecQ.BP = vecQ.BP, vecCV.BP=vecCV.BP, vecQ.LB=vecQ.LB, vecCV.LB=vecCV.LB) }
library(systemicrisk) l <- c(714,745,246, 51,847) a <- c(872, 412, 65, 46,1208) mod <- Model.additivelink.exponential.fitness(n=5,alpha=-2.5,beta=0.3,gamma=1.0, lambdaprior=Model.fitness.genlambdaparprior(ratescale=500)) thin <- choosethin(l=l,a=a,model=mod,silent=TRUE) thin res <- sample_HierarchicalModel(l=l,a=a,model=mod,nsamples=1e3,thin=thin,silent=TRUE) res$L[[1]] res$L[[2]] plot(ecdf(sapply(res$L,function(x)x[1,2]))) diagnose(res) plot(sapply(res$L,function(x)x[1,2]),type="b") plot(res$theta[1,],type="b") acf(sapply(res$L,function(x)x[1,2]))
xxyy.to.array <- function (M, p, k = 2) { if (!is.matrix(M) && !is.data.frame(M)) stop("M must be a data frame or matrix") if (k < 2) stop("One-dimensional data cannot be used") if (ncol(M) != p * k) stop("Matrix dimensions do not match input") n <- nrow(M) A <- array(NA, dim = c(p, k, n)) for (i in 1:k) { A[, i, ] <- t(M[, p*(i-1) + 1:p]) } dimnames(A)[[3]] <- dimnames(M)[[1]] return(A) }
library(testthat) library(visR) library(vdiffr) library(survival) test_check("visR")
"incr_matrix1"
context("read_sistec") test_that("read_sistec works", { skip_on_cran() sistec <- read_sistec(system.file("extdata/examples/sistec", package = "sistec")) check_sistec_table(sistec, expect_nrow = 200) expect_true(inherits(sistec, "sistec_data_frame")) }) test_that("encoding and sep work", { skip_on_cran() sistec <- read_sistec(system.file("extdata/test_datasets/sistec_encoding/latin1", package = "sistec")) expect_true(any(stringr::str_detect(sistec$S_NO_CURSO, "\xc9|\xc7|\xd5|\xca|\xda|\xc2|\xc1|\xcd"))) sistec <- read_sistec(system.file("extdata/test_datasets/sistec_encoding/utf8", package = "sistec")) expect_true(any(stringi::stri_enc_isutf8(sistec$S_NO_CURSO))) })
CADFtest.default <- function(model, X=NULL, type=c("trend", "drift", "none"), data=list(), max.lag.y=1, min.lag.X=0, max.lag.X=0, dname=NULL, criterion=c("none", "BIC", "AIC", "HQC", "MAIC"), ...) { if (is.null(dname)){dname <- deparse(substitute(model))} method <- "CADF test" y <- model if (is.null(X)) method <- "ADF test" type <- match.arg(type) switch(type, "trend" = urtype <- "ct", "drift" = urtype <- "c", "none" = urtype <- "nc") criterion <- match.arg(criterion) rho2 <- NULL nX <- 0 if (is.ts(y)==FALSE) y <- ts(y) trnd <- ts(1:length(y), start=start(y), frequency=frequency(y)) if (criterion=="none") { test.results <- estmodel(y=y, X=X, trnd=trnd, type=type, max.lag.y=max.lag.y, min.lag.X=min.lag.X, max.lag.X=max.lag.X, dname=dname, criterion=criterion, obs.1=NULL, obs.T=NULL, ...) } if (criterion!="none") { all.models <- expand.grid(max.lag.y:0, min.lag.X:0, max.lag.X:0) models.num <- dim(all.models)[1] ICmatrix <- matrix(NA, models.num, 7) max.lag.y <- all.models[1, 1] min.lag.X <- all.models[1, 2] max.lag.X <- all.models[1, 3] interm.res <- estmodel(y=y, X=X, trnd=trnd, type=type, max.lag.y=max.lag.y, min.lag.X=min.lag.X, max.lag.X=max.lag.X, dname=dname, criterion=criterion, obs.1=NULL, obs.T=NULL, ...) ICmatrix[1, ] <- c(max.lag.y, min.lag.X, max.lag.X, interm.res$AIC, interm.res$BIC, interm.res$HQC, interm.res$MAIC) t.1 <- interm.res$est.model$index[1] t.T <- interm.res$est.model$index[length(interm.res$est.model$index)] for (modeln in 2:models.num) { max.lag.y <- all.models[modeln, 1] min.lag.X <- all.models[modeln, 2] max.lag.X <- all.models[modeln, 3] interm.res <- estmodel(y=y, X=X, trnd=trnd, type=type, max.lag.y=max.lag.y, min.lag.X=min.lag.X, max.lag.X=max.lag.X, dname=dname, criterion=criterion, obs.1=t.1, obs.T=t.T, ...) ICmatrix[modeln, ] <- c(max.lag.y, min.lag.X, max.lag.X, interm.res$AIC, interm.res$BIC, interm.res$HQC, interm.res$MAIC) } if (criterion=="AIC") selected.model <- which(ICmatrix[,4]==min(ICmatrix[,4])) if (criterion=="BIC") selected.model <- which(ICmatrix[,5]==min(ICmatrix[,5])) if (criterion=="HQC") selected.model <- which(ICmatrix[,6]==min(ICmatrix[,6])) if (criterion=="MAIC") selected.model <- which(ICmatrix[,7]==min(ICmatrix[,7])) if (length(selected.model) > 1) selected.model <- selected.model[length(selected.model)] max.lag.y <- ICmatrix[selected.model, 1] min.lag.X <- ICmatrix[selected.model, 2] max.lag.X <- ICmatrix[selected.model, 3] test.results <- estmodel(y=y, X=X, trnd=trnd, type=type, max.lag.y=max.lag.y, min.lag.X=min.lag.X, max.lag.X=max.lag.X, dname=dname, criterion=criterion, obs.1=t.1, obs.T=t.T, ...) } class(test.results) <- c("CADFtest", "htest") if (is.null(X)){names(test.results$statistic) <- paste("ADF(",max.lag.y,")",sep="")} else{names(test.results$statistic) <- paste("CADF(",max.lag.y,",",max.lag.X,",",min.lag.X,")",sep="")} test.results$estimate <- c("delta" = as.vector(test.results$est.model$coefficients[(2 - as.numeric(type=="none") + as.numeric(type=="trend"))])) test.results$null.value <- c("delta" = 0) test.results$alternative <- "less" test.results$type <- type return(test.results) } estmodel <- function(y, X, trnd, type, max.lag.y, min.lag.X, max.lag.X, dname, criterion, obs.1, obs.T, ...) { method <- "CADF test" if (is.null(X)) method <- "ADF test" rho2 <- NULL model <- "d(y) ~ " if (type=="trend") model <- paste(model, "trnd +", sep="") model <- paste(model, " L(y, 1)", sep="") if (max.lag.y > 0) { for (i in 1:max.lag.y) model <- paste(model, " + L(d(y), ",i,")", sep="") } if (is.null(X)==FALSE) { if (is.ts(X)==FALSE) X <- ts(X, start=start(y), frequency=frequency(y)) nX <- 1; if (is.null(dim(X))==FALSE) nX <- dim(X)[2] nX <- (max.lag.X - min.lag.X + 1)*nX if ((min.lag.X==0) & (max.lag.X==0)) model <- paste(model, " + L(X, 0)", sep="") if ((min.lag.X!=0) | (max.lag.X!=0)) { for (i in min.lag.X:max.lag.X) model <- paste(model, " + L(X, ",i,")", sep="") } } if (type=="none") model <- paste(model, " -1", sep="") est.model <- dynlm(formula=formula(model), start=obs.1, end=obs.T) summ.est.model <- summary(est.model) q <- summ.est.model$df[1] TT <- q + summ.est.model$df[2] sig2 <- sum(est.model$residuals^2)/TT lsig2 <- log(sig2) model.AIC <- lsig2 + 2*q/TT model.BIC <- lsig2 + q*log(TT)/TT model.HQC <- lsig2 + 2*q*log(log(TT))/TT ytm1 <- est.model$model[, (2 + as.numeric(type=="trend"))] if (type=="drift") ytm1 <- ytm1 - mean(ytm1) if (type=="trend") { dtrmod <- lsfit((1:TT), ytm1) ytm1 <- dtrmod$residuals } b0 <- est.model$coefficient[1 + as.numeric(type=="drift") + as.numeric(type=="trend")*2] sy2 <- sum(ytm1^2) tau <- b0^2 * sy2 / sig2 model.MAIC <- lsig2 + 2*(tau + q)/TT t.value <- summ.est.model$coefficients[(2 - as.numeric(type=="none") + as.numeric(type=="trend")),3] if (is.null(X)) { switch(type, "trend" = urtype <- "ct", "drift" = urtype <- "c", "none" = urtype <- "nc") p.value <- punitroot(t.value, N=TT, trend=urtype, statistic = "t") } if (is.null(X)==FALSE) { k <- length(est.model$coefficients) series <- as.matrix(est.model$model) nseries <- dim(series)[2] Xseries <- series[,(nseries-nX+1):nseries] if (nX==1) Xseries <- Xseries - mean(Xseries) if (nX>1) Xseries <- Xseries - apply(Xseries,2,mean) e <- as.matrix(est.model$residuals) if (nX==1) v <- Xseries * est.model$coefficients[k] + e if (nX>1) v <- Xseries%*%est.model$coefficients[(k-nX+1):k] + e V <- cbind(e,v) mod <- lm(V~1) LRCM <- (kernHAC(mod, ...))*nrow(V) rho2 <- LRCM[1,2]^2/(LRCM[1,1]*LRCM[2,2]) p.value <- CADFpvalues(t.value, rho2, type) } return(list(statistic=t.value, parameter=c("rho2" = rho2), method=method, p.value=as.vector(p.value), data.name=dname, max.lag.y=max.lag.y, min.lag.X=min.lag.X, max.lag.X=max.lag.X, AIC=model.AIC, BIC=model.BIC, HQC=model.HQC, MAIC=model.MAIC, est.model=est.model, call=match.call(CADFtest))) }
bayesx_prgfile <- function(x, model = 1L) { x <- get.model(x, model) bayesx.prg <- NULL if(inherits(x, "bayesx")) { bayesx.prg <- x[[model]]$bayesx.prg$prg if(!is.null(bayesx.prg)) cat(bayesx.prg) } if(is.null(bayesx.prg)) warning("program file is not available!") return(invisible(bayesx.prg)) }
Jeffreys_CI_1x2 <- function(X, n, alpha=0.05, printresults=TRUE) { estimate <- X / n L <- qbeta(alpha / 2, X + 0.5, n - X + 0.5) U <- qbeta(1 - alpha / 2, X + 0.5, n - X + 0.5) if (printresults) { print( sprintf( 'The Jeffreys CI: estimate = %6.4f (%g%% CI %6.4f to %6.4f)', estimate, 100 * (1 - alpha), L, U ) ) } res <- c(L, U, estimate) names(res) <- c("lower", "upper", "estimate") invisible(res) }
.Tcl <- function(...) structure(.External(.C_dotTcl, ...), class = "tclObj") .Tcl.objv <- function(objv) structure(.External(.C_dotTclObjv, objv), class = "tclObj") .Tcl.callback <- function(...) .External(.C_dotTclcallback, ...) .Tcl.args <- function(...) { pframe <- parent.frame(3) name2opt <- function(x) if ( x != "") paste0("-", x) else "" isCallback <- function(x) is.function(x) || is.call(x) || is.expression(x) makeAtomicCallback <- function(x, e) { if (is.name(x)) x <- eval(x, e) if (is.call(x)){ if(identical(x[[1L]], as.name("break"))) return("break") if(identical(x[[1L]], as.name("function"))) x <- eval(x, e) } .Tcl.callback(x, e) } makeCallback <- function(x, e) { if (is.expression(x)) paste(lapply(x, makeAtomicCallback, e), collapse = ";") else makeAtomicCallback(x, e) } val2string <- function(x) { if (is.null(x)) return("") if (is.tkwin(x)){ current.win <<- x ; return (.Tk.ID(x)) } if (inherits(x,"tclVar")) return(names(unclass(x)$env)) if (isCallback(x)){ ref <- local({value <- x; envir <- pframe; environment()}) callback <- makeCallback(get("value", envir = ref), get("envir", envir = ref)) callback <- paste("{", callback, "}") assign(callback, ref, envir = current.win$env) return(callback) } x <- gsub("\\\\", "\\\\\\\\", as.character(x)) x <- gsub("\"","\\\\\"", as.character(x)) x <- gsub("\\[","\\\\[", as.character(x)) x <- gsub("\\$","\\\\$", as.character(x)) paste0("\"", x, "\"", collapse = " ") } val <- list(...) nm <- names(val) if (!length(val)) return("") nm <- if (is.null(nm)) rep("", length(val)) else sapply(nm, name2opt) current.win <- if (exists("win", envir = parent.frame())) get("win", envir = parent.frame()) else .TkRoot val <- sapply(val, val2string) paste(as.vector(rbind(nm, val)), collapse = " ") } .Tcl.args.objv <- function(...) { pframe <- parent.frame(3) isCallback <- function(x) is.function(x) || is.call(x) || is.expression(x) makeAtomicCallback <- function(x, e) { if (is.name(x)) x <- eval(x, e) if (is.call(x)){ if(identical(x[[1L]], as.name("break"))) return("break") if(identical(x[[1L]], as.name("function"))) x <- eval(x, e) } .Tcl.callback(x, e) } makeCallback <- function(x, e) { if (is.expression(x)) paste(lapply(x, makeAtomicCallback, e), collapse = ";") else makeAtomicCallback(x, e) } val2obj <- function(x) { if (is.null(x)) return(NULL) if (is.tkwin(x)){current.win <<- x ; return(as.tclObj(.Tk.ID(x)))} if (inherits(x,"tclVar")) return(as.tclObj(names(unclass(x)$env))) if (isCallback(x)){ ref <- local({value <- x; envir <- pframe; environment()}) callback <- makeCallback(get("value", envir = ref), get("envir", envir = ref)) assign(callback, ref, envir = current.win$env) return(as.tclObj(callback, drop = TRUE)) } as.tclObj(x, drop = TRUE) } val <- list(...) current.win <- .TkRoot lapply(val, val2obj) } .Tk.ID <- function(win) win$ID .Tk.newwin <- function(ID) { win <- list(ID = ID, env = new.env(parent = emptyenv())) win$env$num.subwin <- 0 class(win) <- "tkwin" win } .Tk.subwin <- function(parent) { ID <- paste(parent$ID, parent$env$num.subwin <- parent$env$num.subwin + 1, sep = ".") win <- .Tk.newwin(ID) assign(ID, win, envir = parent$env) assign("parent", parent, envir = win$env) win } tkdestroy <- function(win) { tcl("destroy", win) ID <- .Tk.ID(win) env <- get("parent", envir = win$env)$env if (exists(ID, envir = env, inherits = FALSE)) rm(list = ID, envir = env) } is.tkwin <- function(x) inherits(x, "tkwin") tclVar <- function(init = "") { n <- .TkRoot$env$TclVarCount <- .TkRoot$env$TclVarCount + 1L name <- paste0("::RTcl", n) l <- list(env = new.env()) assign(name, NULL, envir = l$env) reg.finalizer(l$env, function(env) tcl("unset", names(env))) class(l) <- "tclVar" tclvalue(l) <- init l } tclObj <- function(x) UseMethod("tclObj") "tclObj<-" <- function(x, value) UseMethod("tclObj<-") tclObj.tclVar <- function(x){ z <- .External(.C_RTcl_ObjFromVar, names(x$env)) class(z) <- "tclObj" z } "tclObj<-.tclVar" <- function(x, value){ value <- as.tclObj(value) .External(.C_RTcl_AssignObjToVar, names(x$env), value) x } tclvalue <- function(x) UseMethod("tclvalue") "tclvalue<-" <- function(x, value) UseMethod("tclvalue<-") tclvalue.tclVar <- function(x) tclvalue(tclObj(x)) tclvalue.tclObj <- function(x) .External(.C_RTcl_StringFromObj, x) print.tclObj <- function(x,...) { z <- tclvalue(x) if (length(z)) cat("<Tcl>", z, "\n") invisible(x) } "tclvalue<-.tclVar" <- function(x, value) { name <- names(unclass(x)$env) tcl("set", name, value) x } tclvalue.default <- function(x) tclvalue(tcl("set", as.character(x))) "tclvalue<-.default" <- function(x, value) { name <- as.character(x) tcl("set", name, value) x } as.character.tclVar <- function(x, ...) names(unclass(x)$env) as.character.tclObj <- function(x, ...) .External(.C_RTcl_ObjAsCharVector, x) as.double.tclObj <- function(x, ...) .External(.C_RTcl_ObjAsDoubleVector, x) as.integer.tclObj <- function(x, ...) .External(.C_RTcl_ObjAsIntVector, x) as.logical.tclObj <- function(x, ...) as.logical(.External(.C_RTcl_ObjAsIntVector, x)) as.raw.tclObj <- function(x, ...) .External(.C_RTcl_ObjAsRawVector, x) is.tclObj <- function(x) inherits(x, "tclObj") as.tclObj <- function(x, drop = FALSE) { if (is.tclObj(x)) return(x) z <- switch(storage.mode(x), character = .External(.C_RTcl_ObjFromCharVector, x, drop), double = .External(.C_RTcl_ObjFromDoubleVector, x,drop), integer = .External(.C_RTcl_ObjFromIntVector, x, drop), logical = .External(.C_RTcl_ObjFromIntVector, as.integer(x), drop), raw = .External(.C_RTcl_ObjFromRawVector, x), stop(gettextf("cannot handle object of mode '%s'", storage.mode(x)), domain = NA) ) class(z) <- "tclObj" z } tclServiceMode <- function(on = NULL) .External(.C_RTcl_ServiceMode, as.logical(on)) .TkRoot <- .Tk.newwin("") tclvar <- structure(NULL, class = "tclvar") .TkRoot$env$TclVarCount <- 0 tkwidget <- function (parent, type, ...) { win <- .Tk.subwin(parent) tcl(type, win, ...) win } tkbutton <- function(parent, ...) tkwidget(parent, "button", ...) tkcanvas <- function(parent, ...) tkwidget(parent, "canvas", ...) tkcheckbutton <- function(parent, ...) tkwidget(parent, "checkbutton", ...) tkentry <- function(parent, ...) tkwidget(parent, "entry", ...) tkframe <- function(parent, ...) tkwidget(parent, "frame", ...) tklabel <- function(parent, ...) tkwidget(parent, "label", ...) tklistbox <- function(parent, ...) tkwidget(parent, "listbox", ...) tkmenu <- function(parent, ...) tkwidget(parent, "menu", ...) tkmenubutton <- function(parent, ...) tkwidget(parent, "menubutton", ...) tkmessage <- function(parent, ...) tkwidget(parent, "message", ...) tkradiobutton <- function(parent, ...) tkwidget(parent, "radiobutton", ...) tkscale <- function(parent, ...) tkwidget(parent, "scale", ...) tkscrollbar <- function(parent, ...) tkwidget(parent, "scrollbar", ...) tktext <- function(parent, ...) tkwidget(parent, "text", ...) ttkbutton <- function(parent, ...) tkwidget(parent, "ttk::button", ...) ttkcheckbutton <- function(parent, ...) tkwidget(parent, "ttk::checkbutton", ...) ttkcombobox <- function(parent, ...) tkwidget(parent, "ttk::combobox", ...) ttkentry <- function(parent, ...) tkwidget(parent, "ttk::entry", ...) ttkframe <- function(parent, ...) tkwidget(parent, "ttk::frame", ...) ttklabel <- function(parent, ...) tkwidget(parent, "ttk::label", ...) ttklabelframe <- function(parent, ...) tkwidget(parent, "ttk::labelframe", ...) ttkmenubutton <- function(parent, ...) tkwidget(parent, "ttk::menubutton", ...) ttknotebook <- function(parent, ...) tkwidget(parent, "ttk::notebook", ...) ttkpanedwindow <- function(parent, ...) tkwidget(parent, "ttk::panedwindow", ...) ttkprogressbar <- function(parent, ...) tkwidget(parent, "ttk::progressbar", ...) ttkradiobutton <- function(parent, ...) tkwidget(parent, "ttk::radiobutton", ...) ttkscale <- function(parent, ...) tkwidget(parent, "ttk::scale", ...) ttkscrollbar <- function(parent, ...) tkwidget(parent, "ttk::scrollbar", ...) ttkseparator <- function(parent, ...) tkwidget(parent, "ttk::separator", ...) ttksizegrip <- function(parent, ...) tkwidget(parent, "ttk::sizegrip", ...) ttkspinbox <- function(parent, ...) tkwidget(parent, "ttk::spinbox", ...) ttktreeview <- function(parent, ...) tkwidget(parent, "ttk::treeview", ...) tktoplevel <- function(parent = .TkRoot,...) { w <- tkwidget(parent,"toplevel",...) ID <- .Tk.ID(w) tkbind(w, "<Destroy>", function() { if (exists(ID, envir = parent$env, inherits = FALSE)) rm(list = ID, envir = parent$env) tkbind(w, "<Destroy>","") }) utils::process.events() w } tcl <- function(...) .Tcl.objv(.Tcl.args.objv(...)) tktitle <- function(x) tcl("wm", "title", x) "tktitle<-" <- function(x, value) { tcl("wm", "title", x, value) x } tkbell <- function(...) tcl("bell", ...) tkbind <- function(...) tcl("bind", ...) tkbindtags <- function(...) tcl("bindtags", ...) tkfocus <- function(...) tcl("focus", ...) tklower <- function(...) tcl("lower", ...) tkraise <- function(...) tcl("raise", ...) tkclipboard.append <- function(...) tcl("clipboard", "append", ...) tkclipboard.clear <- function(...) tcl("clipboard", "clear", ...) tkevent.add <- function(...) tcl("event", "add", ...) tkevent.delete <- function(...) tcl("event", "delete", ...) tkevent.generate <- function(...) tcl("event", "generate", ...) tkevent.info <- function(...) tcl("event", "info", ...) tkfont.actual <- function(...) tcl("font", "actual", ...) tkfont.configure <- function(...) tcl("font", "configure", ...) tkfont.create <- function(...) tcl("font", "create", ...) tkfont.delete <- function(...) tcl("font", "delete", ...) tkfont.families <- function(...) tcl("font", "families", ...) tkfont.measure <- function(...) tcl("font", "measure", ...) tkfont.metrics <- function(...) tcl("font", "metrics", ...) tkfont.names <- function(...) tcl("font", "names", ...) tkgrab <- function(...) tcl("grab", ...) tkgrab.current <- function(...) tcl("grab", "current", ...) tkgrab.release <- function(...) tcl("grab", "release", ...) tkgrab.set <- function(...) tcl("grab", "set", ...) tkgrab.status <- function(...) tcl("grab", "status", ...) tkimage.create <- function(...) tcl("image", "create", ...) tkimage.delete <- function(...) tcl("image", "delete", ...) tkimage.height <- function(...) tcl("image", "height", ...) tkimage.inuse <- function(...) tcl("image", "inuse", ...) tkimage.names <- function(...) tcl("image", "names", ...) tkimage.type <- function(...) tcl("image", "type", ...) tkimage.types <- function(...) tcl("image", "types", ...) tkimage.width <- function(...) tcl("image", "width", ...) tkXselection.clear <- function(...) tcl("selection", "clear", ...) tkXselection.get <- function(...) tcl("selection", "get", ...) tkXselection.handle <- function(...) tcl("selection", "handle", ...) tkXselection.own <- function(...) tcl("selection", "own", ...) tkwait.variable <- function(...) tcl("tkwait", "variable", ...) tkwait.visibility <- function(...) tcl("tkwait", "visibility", ...) tkwait.window <- function(...) tcl("tkwait", "window", ...) tkgetOpenFile <- function(...) tcl("tk_getOpenFile", ...) tkgetSaveFile <- function(...) tcl("tk_getSaveFile", ...) tkchooseDirectory <- function(...) tcl("tk_chooseDirectory", ...) tkmessageBox <- function(...) tcl("tk_messageBox", ...) tkdialog <- function(...) tcl("tk_dialog", ...) tkpopup <- function(...) tcl("tk_popup", ...) tclfile.tail <- function(...) tcl("file", "tail", ...) tclfile.dir <- function(...) tcl("file", "dir", ...) tclopen <- function(...) tcl("open", ...) tclclose <- function(...) tcl("close", ...) tclputs <- function(...) tcl("puts", ...) tclread <- function(...) tcl("read", ...) tkwinfo <- function(...) tcl("winfo", ...) tkwm.aspect <- function(...) tcl("wm", "aspect", ...) tkwm.client <- function(...) tcl("wm", "client", ...) tkwm.colormapwindows <- function(...) tcl("wm", "colormapwindows", ...) tkwm.command <- function(...) tcl("wm", "command", ...) tkwm.deiconify <- function(...) tcl("wm", "deiconify", ...) tkwm.focusmodel <- function(...) tcl("wm", "focusmodel", ...) tkwm.frame <- function(...) tcl("wm", "frame", ...) tkwm.geometry <- function(...) tcl("wm", "geometry", ...) tkwm.grid <- function(...) tcl("wm", "grid", ...) tkwm.group <- function(...) tcl("wm", "group", ...) tkwm.iconbitmap <- function(...) tcl("wm", "iconbitmap", ...) tkwm.iconify <- function(...) tcl("wm", "iconify", ...) tkwm.iconmask <- function(...) tcl("wm", "iconmask", ...) tkwm.iconname <- function(...) tcl("wm", "iconname ", ...) tkwm.iconposition <- function(...) tcl("wm", "iconposition", ...) tkwm.iconwindow <- function(...) tcl("wm", "iconwindow ", ...) tkwm.maxsize <- function(...) tcl("wm", "maxsize", ...) tkwm.minsize <- function(...) tcl("wm", "minsize", ...) tkwm.overrideredirect <- function(...) tcl("wm", "overrideredirect", ...) tkwm.positionfrom <- function(...) tcl("wm", "positionfrom", ...) tkwm.protocol <- function(...) tcl("wm", "protocol", ...) tkwm.resizable <- function(...) tcl("wm", "resizable", ...) tkwm.sizefrom <- function(...) tcl("wm", "sizefrom", ...) tkwm.state <- function(...) tcl("wm", "state", ...) tkwm.title <- function(...) tcl("wm", "title", ...) tkwm.transient <- function(...) tcl("wm", "transient", ...) tkwm.withdraw <- function(...) tcl("wm", "withdraw", ...) tkgrid <- function(...) tcl("grid", ...) tkgrid.bbox <- function(...) tcl("grid", "bbox", ...) tkgrid.columnconfigure <- function(...) tcl("grid", "columnconfigure", ...) tkgrid.configure <- function(...) tcl("grid", "configure", ...) tkgrid.forget <- function(...) tcl("grid", "forget", ...) tkgrid.info <- function(...) tcl("grid", "info", ...) tkgrid.location <- function(...) tcl("grid", "location", ...) tkgrid.propagate <- function(...) tcl("grid", "propagate", ...) tkgrid.rowconfigure <- function(...) tcl("grid", "rowconfigure", ...) tkgrid.remove <- function(...) tcl("grid", "remove", ...) tkgrid.size <- function(...) tcl("grid", "size", ...) tkgrid.slaves <- function(...) tcl("grid", "slaves", ...) tkpack <- function(...) tcl("pack", ...) tkpack.configure <- function(...) tcl("pack", "configure", ...) tkpack.forget <- function(...) tcl("pack", "forget", ...) tkpack.info <- function(...) tcl("pack", "info", ...) tkpack.propagate <- function(...) tcl("pack", "propagate", ...) tkpack.slaves <- function(...) tcl("pack", "slaves", ...) tkplace <- function(...) tcl("place", ...) tkplace.configure <- function(...) tcl("place", "configure", ...) tkplace.forget <- function(...) tcl("place", "forget", ...) tkplace.info <- function(...) tcl("place", "info", ...) tkplace.slaves <- function(...) tcl("place", "slaves", ...) tkactivate <- function(widget, ...) tcl(widget, "activate", ...) tkadd <- function(widget, ...) tcl(widget, "add", ...) tkaddtag <- function(widget, ...) tcl(widget, "addtag", ...) tkbbox <- function(widget, ...) tcl(widget, "bbox", ...) tkcanvasx <- function(widget, ...) tcl(widget, "canvasx", ...) tkcanvasy <- function(widget, ...) tcl(widget, "canvasy", ...) tkcget <- function(widget, ...) tcl(widget, "cget", ...) tkcompare <- function(widget, ...) tcl(widget, "compare", ...) tkconfigure <- function(widget, ...) tcl(widget, "configure", ...) tkcoords <- function(widget, ...) tcl(widget, "coords", ...) tkcreate <- function(widget, ...) tcl(widget, "create", ...) tkcurselection <- function(widget, ...) tcl(widget, "curselection", ...) tkdchars <- function(widget, ...) tcl(widget, "dchars", ...) tkdebug <- function(widget, ...) tcl(widget, "debug", ...) tkdelete <- function(widget, ...) tcl(widget, "delete", ...) tkdelta <- function(widget, ...) tcl(widget, "delta", ...) tkdeselect <- function(widget, ...) tcl(widget, "deselect", ...) tkdlineinfo <- function(widget, ...) tcl(widget, "dlineinfo", ...) tkdtag <- function(widget, ...) tcl(widget, "dtag", ...) tkdump <- function(widget, ...) tcl(widget, "dump", ...) tkentrycget <- function(widget, ...) tcl(widget, "entrycget", ...) tkentryconfigure <- function(widget, ...) tcl(widget, "entryconfigure", ...) tkfind <- function(widget, ...) tcl(widget, "find", ...) tkflash <- function(widget, ...) tcl(widget, "flash", ...) tkfraction <- function(widget, ...) tcl(widget, "fraction", ...) tkget <- function(widget, ...) tcl(widget, "get", ...) tkgettags <- function(widget, ...) tcl(widget, "gettags", ...) tkicursor <- function(widget, ...) tcl(widget, "icursor", ...) tkidentify <- function(widget, ...) tcl(widget, "identify", ...) tkindex <- function(widget, ...) tcl(widget, "index", ...) tkinsert <- function(widget, ...) tcl(widget, "insert", ...) tkinvoke <- function(widget, ...) tcl(widget, "invoke", ...) tkitembind <- function(widget, ...) tcl(widget, "bind", ...) tkitemcget <- function(widget, ...) tcl(widget, "itemcget", ...) tkitemconfigure <- function(widget, ...) tcl(widget, "itemconfigure", ...) tkitemfocus <- function(widget, ...) tcl(widget, "focus", ...) tkitemlower <- function(widget, ...) tcl(widget, "lower", ...) tkitemraise <- function(widget, ...) tcl(widget, "raise", ...) tkitemscale <- function(widget, ...) tcl(widget, "scale", ...) tkmark.gravity <- function(widget, ...) tcl(widget, "mark", "gravity", ...) tkmark.names <- function(widget, ...) tcl(widget, "mark", "names", ...) tkmark.next <- function(widget, ...) tcl(widget, "mark", "next", ...) tkmark.previous <- function(widget, ...) tcl(widget, "mark", "previous", ...) tkmark.set <- function(widget, ...) tcl(widget, "mark", "set", ...) tkmark.unset <- function(widget, ...) tcl(widget, "mark", "unset", ...) tkmove <- function(widget, ...) tcl(widget, "move", ...) tknearest <- function(widget, ...) tcl(widget, "nearest", ...) tkpost <- function(widget, ...) tcl(widget, "post", ...) tkpostcascade <- function(widget, ...) tcl(widget, "postcascade", ...) tkpostscript <- function(widget, ...) tcl(widget, "postscript", ...) tkscan.dragto <- function(widget, ...) tcl(widget, "scan", "dragto", ...) tkscan.mark <- function(widget, ...) tcl(widget, "scan", "mark", ...) tksearch <- function(widget, ...) tcl(widget, "search", ...) tksee <- function(widget, ...) tcl(widget, "see", ...) tkselect <- function(widget, ...) tcl(widget, "select", ...) tkselection.adjust <- function(widget, ...) tcl(widget, "selection", "adjust", ...) tkselection.anchor <- function(widget, ...) tcl(widget, "selection", "anchor", ...) tkselection.clear <- function(widget, ...) tcl(widget, "selection", "clear", ...) tkselection.from <- function(widget, ...) tcl(widget, "selection", "from", ...) tkselection.includes <- function(widget, ...) tcl(widget, "selection", "includes", ...) tkselection.present <- function(widget, ...) tcl(widget, "selection", "present", ...) tkselection.range <- function(widget, ...) tcl(widget, "selection", "range", ...) tkselection.set <- function(widget, ...) tcl(widget, "selection", "set", ...) tkselection.to <- function(widget,...) tcl(widget, "selection", "to", ...) tkset <- function(widget, ...) tcl(widget, "set", ...) tksize <- function(widget, ...) tcl(widget, "size", ...) tktoggle <- function(widget, ...) tcl(widget, "toggle", ...) tktag.add <- function(widget, ...) tcl(widget, "tag", "add", ...) tktag.bind <- function(widget, ...) tcl(widget, "tag", "bind", ...) tktag.cget <- function(widget, ...) tcl(widget, "tag", "cget", ...) tktag.configure <- function(widget, ...) tcl(widget, "tag", "configure", ...) tktag.delete <- function(widget, ...) tcl(widget, "tag", "delete", ...) tktag.lower <- function(widget, ...) tcl(widget, "tag", "lower", ...) tktag.names <- function(widget, ...) tcl(widget, "tag", "names", ...) tktag.nextrange <- function(widget, ...) tcl(widget, "tag", "nextrange", ...) tktag.prevrange <- function(widget, ...) tcl(widget, "tag", "prevrange", ...) tktag.raise <- function(widget, ...) tcl(widget, "tag", "raise", ...) tktag.ranges <- function(widget, ...) tcl(widget, "tag", "ranges", ...) tktag.remove <- function(widget, ...) tcl(widget, "tag", "remove", ...) tktype <- function(widget, ...) tcl(widget, "type", ...) tkunpost <- function(widget, ...) tcl(widget, "unpost", ...) tkwindow.cget <- function(widget, ...) tcl(widget, "window", "cget", ...) tkwindow.configure <- function(widget, ...) tcl(widget,"window","configure",...) tkwindow.create <- function(widget, ...) tcl(widget, "window", "create", ...) tkwindow.names <- function(widget, ...) tcl(widget, "window", "names", ...) tkxview <- function(widget, ...) tcl(widget, "xview", ...) tkxview.moveto <- function(widget, ...) tcl(widget, "xview", "moveto", ...) tkxview.scroll <- function(widget, ...) tcl(widget, "xview", "scroll", ...) tkyposition <- function(widget, ...) tcl(widget, "ypositions", ...) tkyview <- function(widget, ...) tcl(widget, "yview", ...) tkyview.moveto <- function(widget, ...) tcl(widget, "yview", "moveto", ...) tkyview.scroll <- function(widget, ...) tcl(widget, "yview", "scroll", ...) tkpager <- function(file, header, title, delete.file) { title <- paste(title, header) for ( i in seq_along(file) ) { zfile <- file[[i]] tt <- tktoplevel() tkwm.title(tt, if (length(title)) title[(i-1L) %% length(title)+1L] else "") txt <- tktext(tt, bg = "grey90") scr <- tkscrollbar(tt, repeatinterval = 5, command = function(...) tkyview(txt,...)) tkconfigure(txt, yscrollcommand = function(...) tkset(scr,...)) tkpack(txt, side = "left", fill = "both", expand = TRUE) tkpack(scr, side = "right", fill = "y") chn <- tcl("open", zfile) tkinsert(txt, "end", gsub("_\b","",tclvalue(tcl("read", chn)))) tcl("close", chn) tkconfigure(txt, state = "disabled") tkmark.set(txt, "insert", "0.0") tkfocus(txt) if (delete.file) tcl("file", "delete", zfile) } }
plotautocor <- function(data, ask = TRUE, lag.max = 100, ...) { if (!is.data.frame(data)) data <- read.table(data, header = TRUE) data <- data[, -1] data.mcmc <- coda::as.mcmc(data) coda::autocorr.plot(data.mcmc, ask = ask, lag.max = lag.max, ...) return(invisible()) }