code
stringlengths
1
13.8M
NULL axe_call.multnet <- function(x, verbose = FALSE, ...) { old <- x x <- exchange(x, "call", call("dummy_call")) add_butcher_attributes( x, old, disabled = c("print()", "summary()"), verbose = verbose ) }
library(PopED) fg.PK.1.comp.oral.md.param.2 <- function(x,a,bpop,b,bocc){ parameters=c( V=bpop[1]*exp(b[1]), KA=bpop[2]*exp(b[2]), KE=bpop[3]*exp(b[3]), Favail=bpop[4], DOSE=a[1], TAU=a[2]) return( parameters ) } poped.db <- create.poped.database(ff_file="ff.PK.1.comp.oral.md.KE", fg_file="fg.PK.1.comp.oral.md.param.2", fError_file="feps.add.prop", groupsize=20, m=2, sigma=c(0.04,5e-6), bpop=c(V=72.8,KA=0.25,KE=3.75/72.8,Favail=0.9), d=c(V=0.09,KA=0.09,KE=0.25^2), notfixed_bpop=c(1,1,1,0), notfixed_sigma=c(0,0), xt=c( 1,2,8,240,245), minxt=c(0,0,0,240,240), maxxt=c(10,10,10,248,248), bUseGrouped_xt=1, a=list(c(DOSE=20,TAU=24),c(DOSE=40, TAU=24)), maxa=c(DOSE=200,TAU=40), mina=c(DOSE=0,TAU=2)) plot_model_prediction(poped.db) plot_model_prediction(poped.db,IPRED=T,DV=T,separate.groups=T) evaluate_design(poped.db) shrinkage(poped.db) output <- poped_optim(poped.db, opt_xt =TRUE, parallel=TRUE) summary(output) get_rse(output$FIM,output$poped.db) plot_model_prediction(output$poped.db) output_2 <- poped_optim(output$poped.db, opt_xt =TRUE, opt_a = TRUE, parallel = TRUE) summary(output_2) get_rse(output_2$FIM,output_2$poped.db) plot_model_prediction(output_2$poped.db) poped.db.discrete <- create.poped.database(poped.db,discrete_xt = list(0:248)) output_discrete <- poped_optim(poped.db.discrete, opt_xt=T, parallel = TRUE) summary(output_discrete) get_rse(output_discrete$FIM,output_discrete$poped.db) plot_model_prediction(output_discrete$poped.db) plot_efficiency_of_windows(output_discrete$poped.db, xt_windows=1)
data("colonDC") set.seed(2) colonDC <- colonDC[sample(1:nrow(colonDC), 500), ] colonDC$bhaz <- general.haz(time = "FU", age = "agedays", sex = "sex", year = "dx", data = colonDC, ratetable = survexp.dk) fit.wei <- fit.cure.model(Surv(FUyear, status) ~ 1, data = colonDC, bhazard = "bhaz", type = "mixture", dist = "weibull", link = "logit") plot(fit.wei) plot(fit.wei, time = seq(0, 40, length.out = 100)) plot(fit.wei, type = "hazard") plot(fit.wei, type = "survuncured") plot(fit.wei, type = "probcure") fit.weiwei <- fit.cure.model(Surv(FUyear, status) ~ 1, data = colonDC, bhazard = "bhaz", type = "mixture", dist = "weiwei", link = "logit") plot(fit.wei, ci = FALSE) plot(fit.weiwei, add = TRUE, col = 2, ci = FALSE) fit <- fit.cure.model(Surv(FUyear, status) ~ age, data = colonDC, bhazard = "bhaz", formula.surv = list(~ age, ~ age), type = "mixture", dist = "weibull", link = "logit") plot(fit, newdata = data.frame(age = 60), time = seq(0, 15, length.out = 100), ci = FALSE) plot(fit, newdata = data.frame(age = 50), time = seq(0, 15, length.out = 100), ci = FALSE, add = TRUE, col = 2) plot(fit, newdata = data.frame(age = 60), time = seq(0, 15, length.out = 100), ci = FALSE, type = "hazard") plot(fit, newdata = data.frame(age = 50), time = seq(0, 15, length.out = 100), ci = FALSE, type = "hazard", add = TRUE, col = 2)
weighted.geomean <- function(x, w, ...) exp(weighted.mean(log(x), w, ...)) geomean <- function(x, ...) exp(mean(log(x), ...))
g.analyse.perfile = function(ID, fname, deviceSerialNumber, BodyLocation, startt, I, LC2, LD, dcomplscore, LMp, LWp, C, lookat, AveAccAve24hr, colnames_to_lookat, QUAN, ML5AD, ML5AD_names, igfullr, igfullr_names, daysummary, ds_names, includedaycrit, strategy, hrs.del.start, hrs.del.end, maxdur, windowsizes, idloc, snloc, wdayname, doquan, qlevels_names, doiglevels, tooshort, InterdailyStability, IntradailyVariability, IVIS_windowsize_minutes, qwindow, longitudinal_axis_id) { filesummary = matrix(" ",1,100) s_names = rep(" ",ncol(filesummary)) vi = 1 filesummary[vi] = ID g_variables_lookat = lookat[grep(x = colnames_to_lookat, pattern = "BrondCounts|ZCX|ZCY", invert = TRUE)] if (snloc == 1) { filesummary[(vi+1)] = deviceSerialNumber } else if (snloc == 2) { filesummary[(vi+1)] = unlist(strsplit(fname,"_"))[2] } s_names[vi:(vi+1)] = c("ID","device_sn") vi = vi+2 filesummary[vi] = BodyLocation filesummary[(vi+1)] = fname filesummary[(vi+2)] = startt s_names[vi:(vi+2)] = c("bodylocation","filename","start_time") vi = vi+3 filesummary[vi] = wdayname filesummary[(vi+1)] = I$sf filesummary[(vi+2)] = I$monn s_names[vi:(vi+2)] = c("startday","samplefreq","device") vi = vi+3 filesummary[vi] = LC2 / ((LD/1440)*96) filesummary[(vi+1)] = LD/1440 s_names[vi:(vi+1)] = c("clipping_score", "meas_dur_dys") vi = vi+2 filesummary[vi] = dcomplscore filesummary[(vi+1)] = LMp/1440 filesummary[(vi+2)] = LWp/1440 s_names[vi:(vi+2)] = c("complete_24hcycle", "meas_dur_def_proto_day","wear_dur_def_proto_day") vi = vi+3 if (length(C$cal.error.end) == 0) C$cal.error.end = c(" ") filesummary[vi] = C$cal.error.end filesummary[vi+1] = C$QCmessage for (la in 1:length(lookat)) { AveAccAve24hr[la] = AveAccAve24hr[la] * ifelse(test = lookat[la] %in% g_variables_lookat, yes = 1000, no = 1) } q0 = length(AveAccAve24hr) + 1 filesummary[(vi+2):(vi+q0)] = AveAccAve24hr colnames_to_lookat = paste0(colnames_to_lookat,"_fullRecordingMean") s_names[vi:(vi+q0)] = c("calib_err", "calib_status",colnames_to_lookat) vi = vi+q0+2 if (doquan == TRUE) { q1 = length(QUAN) filesummary[vi:((vi-1)+q1)] = QUAN * ifelse(test = lookat[la] %in% g_variables_lookat, yes = 1000, no = 1) s_names[vi:((vi-1)+q1)] = paste0(qlevels_names,"_fullRecording") vi = vi + q1 q1 = length(ML5AD) filesummary[vi:((vi-1)+q1)] = as.numeric(ML5AD) s_names[vi:((vi-1)+q1)] = paste0(ML5AD_names,"_fullRecording") vi = vi + q1 } if (doiglevels == TRUE) { q1 = length(igfullr) filesummary[vi:((vi-1)+q1)] = igfullr s_names[vi:((vi-1)+q1)] = paste0(igfullr_names,"_fullRecording") vi = vi + q1 } if (tooshort == 0) { wkend = which(daysummary[,which(ds_names == "weekday")] == "Saturday" | daysummary[,which(ds_names == "weekday")] == "Sunday") columnWithAlwaysData = which(ds_names == "N hours" | ds_names == "N_hours") NVHcolumn = which(ds_names == "N valid hours" | ds_names == "N_valid_hours" ) v1 = which(is.na(as.numeric(daysummary[wkend,columnWithAlwaysData])) == F & as.numeric(daysummary[wkend,NVHcolumn]) >= includedaycrit) wkend = wkend[v1] wkday = which(daysummary[,which(ds_names == "weekday")] != "Saturday" & daysummary[,which(ds_names == "weekday")] != "Sunday") v2 = which(is.na(as.numeric(daysummary[wkday,columnWithAlwaysData])) == F & as.numeric(daysummary[wkday,NVHcolumn]) >= includedaycrit) wkday = wkday[v2] filesummary[vi:(vi+1)] = c(length(wkend), length(wkday)) iNA = which(is.na(filesummary[vi:(vi+1)]) == TRUE) if (length(iNA) > 0) filesummary[(vi:(vi+1))[iNA]] = 0 s_names[vi:(vi+1)] = c("N valid WEdays","N valid WKdays") vi = vi + 2 filesummary[vi:(vi+2)] = c(InterdailyStability, IntradailyVariability, IVIS_windowsize_minutes) iNA = which(is.na(filesummary[vi:(vi+3)]) == TRUE) if (length(iNA) > 0) filesummary[(vi:(vi+3))[iNA]] = " " s_names[vi:(vi+2)] = c("IS_interdailystability","IV_intradailyvariability", "IVIS_windowsize_minutes") vi = vi + 4 daytoweekvar = c(5:length(ds_names)) md = unique(which(ds_names[daytoweekvar] %in% c("measurementday", "weekday") == TRUE), grep(x = ds_names, pattern="qwindow_timestamps|qwindow_names")) if (length(md) > 0) daytoweekvar = daytoweekvar[-md] dtwtel = 0 if (length(daytoweekvar) >= 1) { sp = length(daytoweekvar) + 1 for (dtwi in daytoweekvar) { uncona = unique(daysummary[,dtwi]) storevalue = !(length(uncona) == 1 & length(qwindow) > 2 & uncona[1] == "") if (is.na(storevalue) == TRUE) storevalue = FALSE if (storevalue == TRUE) { v4 = mean(suppressWarnings(as.numeric(daysummary[,dtwi])),na.rm=TRUE) filesummary[(vi+1+(dtwtel*sp))] = v4 s_names[(vi+1+(dtwtel*sp))] = paste("AD_",ds_names[dtwi],sep="") dtw_wkend = suppressWarnings(as.numeric(daysummary[wkend,dtwi])) dtw_wkday = suppressWarnings(as.numeric(daysummary[wkday,dtwi])) filesummary[(vi+2+(dtwtel*sp))] = suppressWarnings(mean(dtw_wkend,na.rm=TRUE)) filesummary[(vi+3+(dtwtel*sp))] = suppressWarnings(mean(dtw_wkday,na.rm=TRUE)) s_names[(vi+2+(dtwtel*sp))] = paste0("WE_",ds_names[dtwi]) s_names[(vi+3+(dtwtel*sp))] = paste0("WD_",ds_names[dtwi]) if (length(dtw_wkend) > 2) { dtw_wkend = c((dtw_wkend[1]+dtw_wkend[3])/2,dtw_wkend[2]) } if (length(dtw_wkday) > 5) { dtw_wkday = c((dtw_wkday[1]+dtw_wkday[6])/2,dtw_wkday[2:5]) } filesummary[(vi+4+(dtwtel*sp))] = suppressWarnings(mean(dtw_wkend,na.rm=TRUE)) filesummary[(vi+5+(dtwtel*sp))] = suppressWarnings(mean(dtw_wkday,na.rm=TRUE)) s_names[(vi+4+(dtwtel*sp))] = paste("WWE_",ds_names[dtwi],sep="") s_names[(vi+5+(dtwtel*sp))] = paste("WWD_",ds_names[dtwi],sep="") dtwtel = dtwtel + 1 } v4 = mean(suppressWarnings(as.numeric(daysummary[,dtwi])),na.rm=TRUE) filesummary[(vi+1+(dtwtel*sp))] = v4 s_names[(vi+1+(dtwtel*sp))] = paste("AD_",ds_names[dtwi],sep="") dtw_wkend = suppressWarnings(as.numeric(daysummary[wkend,dtwi])) dtw_wkday = suppressWarnings(as.numeric(daysummary[wkday,dtwi])) if (storevalue == TRUE) { filesummary[(vi+2+(dtwtel*sp))] = mean(dtw_wkend,na.rm=TRUE) filesummary[(vi+3+(dtwtel*sp))] = mean(dtw_wkday,na.rm=TRUE) } s_names[(vi+2+(dtwtel*sp))] = paste("WE_",ds_names[dtwi],sep="") s_names[(vi+3+(dtwtel*sp))] = paste("WD_",ds_names[dtwi],sep="") if (length(dtw_wkend) > 2) { dtw_wkend = c((dtw_wkend[1]+dtw_wkend[3])/2,dtw_wkend[2]) } if (length(dtw_wkday) > 5) { dtw_wkday = c((dtw_wkday[1]+dtw_wkday[6])/2,dtw_wkday[2:5]) } if (storevalue == TRUE) { filesummary[(vi+4+(dtwtel*sp))] = mean(dtw_wkend,na.rm=TRUE) filesummary[(vi+5+(dtwtel*sp))] = mean(dtw_wkday,na.rm=TRUE) } s_names[(vi+4+(dtwtel*sp))] = paste("WWE_",ds_names[dtwi],sep="") s_names[(vi+5+(dtwtel*sp))] = paste("WWD_",ds_names[dtwi],sep="") dtwtel = dtwtel + 1 } vi = vi+6+((dtwtel*sp)-1) } filesummary[vi] = strategy filesummary[(vi+1)] = hrs.del.start filesummary[(vi+2)] = hrs.del.end filesummary[(vi+3)] = maxdur filesummary[(vi+4)] = windowsizes[1] filesummary[(vi+5)] = longitudinal_axis_id SI = sessionInfo() GGIRversion = c() try(expr = {GGIRversion = SI$loadedOnly$GGIR$Version},silent=TRUE) if (length(GGIRversion) == 0) { try(expr = {GGIRversion = SI$otherPkgs$GGIR$Version},silent=TRUE) } if (length(GGIRversion) == 0) GGIRversion = "GGIR not used" filesummary[(vi+6)] = GGIRversion s_names[vi:(vi+6)] = as.character(c(paste0("data exclusion stategy (value=1, ignore specific hours;", " value=2, ignore all data before the first midnight and", " after the last midnight)"), "n hours ignored at start of meas (if strategy=1)", "n hours ignored at end of meas (if strategy=1)", "n days of measurement after which all data is ignored (if strategy=1)", "epoch size to which acceleration was averaged (seconds)", "if_hip_long_axis_id", "GGIR version")) vi = vi + 6 } rm(LD); rm(ID) mw = which(is.na(daysummary)==T) if (length(mw) > 0) { daysummary[which(is.na(daysummary)==T)] = " " } cut = which(ds_names == " " | ds_names == "" | is.na(ds_names)==T) if (length(cut > 0)) { ds_names = ds_names[-cut] daysummary = daysummary[,-cut] } if(min(dim(as.matrix(daysummary))) == 1) { if (nrow(as.matrix(daysummary)) != 1) { daysummary = t(daysummary) } } daysummary = data.frame(value=daysummary,stringsAsFactors=FALSE) names(daysummary) = ds_names columnswith16am = grep("1-6am",x=colnames(daysummary)) if (length(columnswith16am) > 1) { daysummary = daysummary[,-columnswith16am[2:length(columnswith16am)]] } mw = which(is.na(filesummary)==T) if (length(mw) > 0) { filesummary[which(is.na(filesummary)==T)] = " " } cut = which(as.character(s_names) == " " | as.character(s_names) == "" | is.na(s_names)==T | s_names %in% c("AD_", "WE_", "WD_", "WWD_", "WWE_", "AD_N hours", "WE_N hours", "WD_N hours", "WWD_N hours", "WWE_N hours", "AD_N valid hours", "WE_N valid hours", "WD_N valid hours", "WWD_N valid hours", "WWE_N valid hours")) if (length(cut) > 0) { s_names = s_names[-cut] filesummary = filesummary[-cut] } filesummary = data.frame(value=t(filesummary),stringsAsFactors=FALSE) names(filesummary) = s_names columns2order = c() if (ncol(filesummary) > 37) { columns2order = 30:(ncol(filesummary)-6) } options(encoding = "UTF-8") if (length(columns2order) > 0) { selectcolumns = c(names(filesummary)[1:29], sort(names(filesummary[,columns2order])), names(filesummary)[(ncol(filesummary)-5):ncol(filesummary)]) } else { selectcolumns = names(filesummary) } selectcolumns = selectcolumns[which(selectcolumns %in% colnames(filesummary) == TRUE)] filesummary = filesummary[,selectcolumns] filesummary = filesummary[,!duplicated(filesummary)] invisible(list(filesummary=filesummary, daysummary=daysummary)) }
overallRunsSRPlotT20 <- function(dir=".",minMatches, dateRange,type="IPL",plot=1) { quantile=quadrant=ggplotly=NULL currDir= getwd() cat("T20batmandir=",currDir,"\n") battingDetails=batsman=runs=strikeRate=matches=meanRuns=meanSR=battingDF=val=year=NULL setwd(dir) battingDF<-NULL battingDetails <- paste(type,"-BattingDetails.RData",sep="") print(battingDetails) load(battingDetails) print(dim(battingDF)) print(dim(battingDF)) print(names(battingDF)) tryCatch({ df=battingDF %>% filter(date >= dateRange[1] & date <= dateRange[2]) }, warning=function(war) { print(paste("NULL values: ", war)) }, error=function(err) { setwd(currDir) cat("Back to root",getwd(),"\n") }) df1 <- select(df,batsman,runs,strikeRate) df1 <- distinct(df1) b=summarise(group_by(df1,batsman),matches=n(), meanRuns=mean(runs),meanSR=mean(strikeRate)) print(dim(b)) b[is.na(b)] <- 0 c <- filter(b,matches >= minMatches) setwd(currDir) x_lower <- quantile(c$meanRuns,p=0.66,na.rm = TRUE) y_lower <- quantile(c$meanSR,p=0.66,na.rm = TRUE) print("!!!!!!!!!!!!!!!!!!!!!!!!!") print(plot) print("!!!!!!!!!!!!!!!!!!!!!!!!!") plot.title <- paste("Overall Runs vs SR in ",type,sep="") if(plot == 1){ c %>% mutate(quadrant = case_when(meanRuns > x_lower & meanSR > y_lower ~ "Q1", meanRuns <= x_lower & meanSR > y_lower ~ "Q2", meanRuns <= x_lower & meanSR <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(meanRuns,meanSR,color=quadrant)) + geom_text(aes(meanRuns,meanSR,label=batsman,color=quadrant)) + geom_point() + xlab("Runs") + ylab("Strike rate") + geom_vline(xintercept = x_lower,linetype="dashed") + geom_hline(yintercept = y_lower,linetype="dashed") + ggtitle(plot.title) } else if(plot == 2){ g <- c %>% mutate(quadrant = case_when(meanRuns > x_lower & meanSR > y_lower ~ "Q1", meanRuns <= x_lower & meanSR > y_lower ~ "Q2", meanRuns <= x_lower & meanSR <= y_lower ~ "Q3", TRUE ~ "Q4")) %>% ggplot(aes(meanRuns,meanSR,color=quadrant)) + geom_text(aes(meanRuns,meanSR,label=batsman,color=quadrant)) + geom_point() + xlab("Runs") + ylab("Strike rate") + geom_vline(xintercept = x_lower,linetype="dashed") + geom_hline(yintercept = y_lower,linetype="dashed") + ggtitle(plot.title) ggplotly(g) } }
simple <- function(x) { .Call(simple_, x) } simple3 <- function(x) { .Call(simple3_, x) } simple4 <- function(x) { .Call(simple4_, x) }
context("Cutoff score calculation") test_that("upper_inner_fence calculates UIF as with sample data", { d <- c(1,2,3,4,5,6,7,8,9) expect_equal(13, upper_inner_fence(d)) }) test_that("fake data for cutoff testing is as expected", { expect_equal(mean(unlist(fake_DVR)), 1.310381, tol=0.00001) }) test_that("cutoff_aiz() produces accurate error and messages", { expect_error(cutoff_aiz(fake_DVR, c("ROI1_DVR"))) expect_message(cutoff_aiz(fake_DVR, c("ROI1_DVR", "ROI2_DVR", "ROI3_DVR")), "Iteration: 1 Removed: 10") expect_message(cutoff_aiz(fake_DVR, c("ROI1_DVR", "ROI2_DVR", "ROI3_DVR")), "Iteration: 2 Removed: 0") expect_message(cutoff_aiz(fake_DVR, c("ROI1_DVR", "ROI2_DVR", "ROI3_DVR", "ROI4_DVR")), "Iteration: 3 Removed: 0") }) test_that("cutoff_aiz() calculates ROI-based cutoffs accurately", { clean <- c(11:33, 35:50) expect_equal(cutoff_aiz(fake_DVR, c("ROI1_DVR", "ROI2_DVR", "ROI3_DVR", "ROI4_DVR"))[[1]], upper_inner_fence(fake_DVR[clean,]$ROI1_DVR)) expect_equal(cutoff_aiz(fake_DVR, c("ROI1_DVR", "ROI2_DVR", "ROI3_DVR", "ROI4_DVR"))[[2]], upper_inner_fence(fake_DVR[clean,]$ROI2_DVR)) expect_equal(cutoff_aiz(fake_DVR, c("ROI1_DVR", "ROI2_DVR", "ROI3_DVR", "ROI4_DVR"))[[3]], 1.330504, tol=0.00001) expect_equal(cutoff_aiz(fake_DVR, c("ROI1_DVR", "ROI2_DVR", "ROI3_DVR", "ROI4_DVR"))[[4]], 1.27347, tol=0.00001) }) test_that("pos_anyroi() dichotomizes participants accurately", { cutoffs <- cutoff_aiz(fake_DVR, c("ROI1_DVR", "ROI2_DVR", "ROI3_DVR", "ROI4_DVR")) pos_table <- pos_anyroi(fake_DVR, cutoffs) expect_type(pos_table, "logical") expect_equal(sum(pos_table), 11) expect_equal(sum(pos_table[c(1:10, 34)]), 11) expect_equal(sum(pos_table[!c(1:10, 34)]), 0) })
library(quantmod) getFin("LNKD") head(viewFin(LNKD.f, type= 'BS', period = 'Q' )) fin <- c('GOOGL','AAPL','AMZN','EBAY','CRM','FB','LNKD','ALBIY')
ui.createMap <- function() { tabItem( tabName = "createmap", fluidRow( box( status = "primary", width = 6, conditionalPanel("input.tabset1 == 'Range'", plotOutput("plot1", height = "auto", brush = "map_brush")), conditionalPanel("input.tabset1 != 'Range'", plotOutput("plot1b", height = "auto")) ), tabBox( title = "Map", width = 6, id = "tabset1", tabPanel( title = "Range", fluidRow( box( title = "Map range", status = "warning", solidHeader = FALSE, width = 12, collapsible = TRUE, helpText("For longitude values, please use the range -180 to 180.", "For instance, use left and right longitudes of 130 and -110, respectively,", "for a map of the northern Pacific.", tags$br(), "Click the 'Replot map' button after changing map range values,", "or if the map isn't properly sized in the window.", tags$br(), "In addition, users can automatically change the map range input values", "by clicking and holding to draw a box on map, although users still must click 'Replot map'.", "To clear the box, click within the plot outside of the box."), fluidRow( column(3, tags$h5("Left longitude")), column(3, tags$h5("Right longitude")), column(3, tags$h5("Bottom latitude")), column(3, tags$h5("Top latitude")) ), fluidRow( column(3, numericInput("lon_left", NULL, value = start.ll$X[1])), column(3, numericInput("lon_right", NULL, value = start.ll$X[2])), column(3, numericInput("lat_bot", NULL, value = start.ll$X[3])), column(3, numericInput("lat_top", NULL, value = start.ll$X[4])) ), fluidRow( column(3, selectInput("resolution", label = tags$h5("Resolution"), choices = list("Low" = 1, "High" = 2), selected = start.ll$X[5])), column(3, tags$br(), tags$br(), actionButton("map_replot", "Replot map")) ), tags$span(htmlOutput("map_range_message"), style = "color: red;"), tags$h5("Set the map range to a default study area and replot:"), actionButton("map_replot_cce", "CCE"), actionButton("map_replot_cce2", "Extended CCE"), actionButton("map_replot_etp", "ETP"), actionButton("map_replot_hawaii", "Hawaii"), actionButton("map_replot_hawaiimain", "Main Hawaiian Islands"), actionButton("map_replot_marianas", "Marianas") ), box( title = "Scale bar", status = "warning", solidHeader = FALSE, width = 12, collapsible = TRUE, checkboxInput("bar", "Plot scale bar", value = FALSE), conditionalPanel( condition = "input.bar", helpText("Provide the coordinates for the left edge of the scale bar.", "The coordinates must have the same range as the map range coordinates."), fluidRow( column(4, uiOutput("scale_lon_uiOut_numeric")), column(4, uiOutput("scale_lat_uiOut_numeric")), column(4, numericInput("scale_width", tags$h5("Width of bar"), value = 2, min = 1, max = 6, step = 1)), ), fluidRow( column(4, radioButtons("scale_units", tags$h5("Scale bar units"), choices = list("Kilometers" = 1, "Nautical miles" = 2), selected = 2)), column(4, uiOutput("out_scale_len")) ) ) ), box( title = "Coastline", status = "warning", solidHeader = FALSE, width = 12, collapsible = TRUE, checkboxInput("coast", label = "Use coastline file", value = FALSE), conditionalPanel( condition = "input.coast", helpText("Map limits will automatically be updated to the extent of the", "coastline file. Note: CruzPlot can only process coastline files", "with points are between -180 and 0"), fileInput("coast_file", label = tags$h5("Coastline file"), width = "50%") ) ) ) ), tabPanel( title = "Planned Transects", value = "planned_transects", fluidRow( box( title = "Planned transects", status = "warning", solidHeader = FALSE, width = 12, collapsible = FALSE, fluidRow( box( width = 12, tags$strong("Load planned transects"), helpText(paste("Longitudes must be in -180 to 180 range. See the manual for the required CSV file format")), fileInput("planned_transects_file", tags$h5("Load planned transects CSV file"), accept = ".csv"), fluidRow( column(3, uiOutput("planned_transects_lon_uiOut_select")), column(3, uiOutput("planned_transects_lat_uiOut_select")), column(3, uiOutput("planned_transects_num_uiOut_select")), column(3, uiOutput("planned_transects_class1_uiOut_select")) ), fluidRow( column(3, uiOutput("planned_transects_class2_uiOut_select")), column(3, offset = 1, tags$br(), tags$br(), uiOutput("planned_transects_execute_uiOut_button")), column(5, tags$br(), tags$br(), textOutput("planned_transects_text")) ), tags$span(textOutput("planned_transects_message"), style = "color: blue;") ), conditionalPanel( condition = "output.cruzMapPlannedTransects_Conditional", box( width = 12, tags$strong("Plot loaded planned transects"), checkboxInput("planned_transects_plot", "Plot planned transect lines", value = FALSE), conditionalPanel( condition = "input.planned_transects_plot", column(12, helpText("For the color(s) and (if a class 2 column is specified) the line type(s),", "select either one or the same number as transect classes or class 2s, respectively.", "When multiple colors or line types are selected,", "the order in which transect classes and class 2s are selected to be plotted", "corresponds to order of specified colors and line types, respectively.")), box( width = 12, ui.select.instructions(), fluidRow( column(6, uiOutput("planned_transects_toplot_uiOut_select")), column(6, uiOutput("planned_transects_color_uiOut_select")) ), fluidRow( column(4, uiOutput("planned_transects_toplot2_uiOut_select")), column(4, uiOutput("planned_transects_lty_uiOut_select")), column(4, numericInput("planned_transects_lwd", tags$h5("Line width"), value = 1, min = 0, step = 1)) ) ) ) ) ) ) ) ) ), tabPanel( title = "Ticks & Labels", fluidRow( box( title = NULL, status = "warning", solidHeader = FALSE, width = 12, collapsible = TRUE, checkboxInput("tick", label = "Plot tick marks and/or their labels", value = TRUE) ) ), fluidRow( conditionalPanel( condition = "input.tick", box( title = "Tick marks", status = "warning", solidHeader = FALSE, width = 6, collapsible = TRUE, height = 437, fluidRow( column( width = 6, checkboxInput("tick_left", label = "Left", value = TRUE), checkboxInput("tick_bot", label = "Bottom", value = TRUE), numericInput("tick_interval_major", label = tags$h5("Degrees between each major tick"), value = start.tick$interval, min = 0, max = 45, step = 5), selectInput("tick_style", label = tags$h5("Tick label style"), choices = list("120" = 1, "120W" = 2, "120\u00B0" = 3, "120\u00B0W" = 4), selected = 4) ), column( width = 6, checkboxInput("tick_right", label = "Right", value = TRUE), checkboxInput("tick_top", label = "Top", value = TRUE), numericInput("tick_interval_minor", label = tags$h5("Minor ticks between each major tick"), value = 4, min = 0, max = 45, step = 1), numericInput("tick_length", label = tags$h5("Tick length"), value = 1.0, min = 0, max = 2.5, step = 0.1) ) ) ), box( title = "Tick labels", status = "warning", solidHeader = FALSE, width = 6, collapsible = TRUE, height = 437, fluidRow( column( width = 6, checkboxInput("tick_left_lab", label = "Left", value = TRUE), checkboxInput("tick_bot_lab", label = "Bottom", value = TRUE), numericInput("label_lon_start", tags$h5("Start longitude tick labels at"), value = as.character(start.tick$lon)), selectInput("label_tick_font", label = tags$h5("Tick label font"), choices = font.family, selected = 1) ), column( width = 6, checkboxInput("tick_right_lab", label = "Right", value = TRUE), checkboxInput("tick_top_lab", label = "Top", value = TRUE), numericInput("label_lat_start", tags$h5("Start latitude tick labels at"), value = as.character(start.tick$lat)), numericInput("label_tick_size", label = tags$h5("Tick label size"), value = 1.0, min = 0.1, max = 3, step = 0.1) ) ) ) ) ) ), tabPanel( title = "Map Labels", fluidRow( box( title = "Title", status = "warning", solidHeader = FALSE, width = 6, collapsible = TRUE, height = 315, textInput("label_title", tags$h5("Map title"), value = ""), fluidRow( column(6, selectInput("label_title_font", label = tags$h5("Title font"), choices = font.family, selected = 1)), column(6, numericInput("label_title_size", label = tags$h5("Title size"), value = 1.5, min = 0.1, max = 3, step = 0.1)) ) ), box( title = "Axis labels", status = "warning", solidHeader = FALSE, width = 6, collapsible = TRUE, height = 402, textInput("label_axis_lon", tags$h5("Longitude axis label"), value = ""), textInput("label_axis_lat", tags$h5("Latitude axis label"), value = ""), fluidRow( column(6, selectInput("label_axis_font", label = tags$h5("Axis label font"), choices = font.family, selected = 1)), column(6, numericInput("label_axis_size", label = tags$h5("Axis label size"), value = 1.2, min = 0.1, max = 3, step = 0.1)) ) ) ) ), tabPanel( title = "Color", fluidRow( box( title = "Color style", status = "warning", solidHeader = FALSE, collapsible = TRUE, width = 6, helpText("This color style selection will affect the palette options for all color selections in CruzPlot"), tags$br(), radioButtons("color_style", label = NULL, choices = list("Color" = 1, "Gray scale" = 2), selected = 1) ), box( title = "Land", status = "warning", solidHeader = FALSE, collapsible = TRUE, width = 6, fluidRow( column(6, checkboxInput("color_land_all", label = "Color all land", value = TRUE)), column( width = 6, conditionalPanel( condition = "input.color_land_all", selectInput("color_land", label = tags$h5("Land color"), choices = cruz.palette.color, selected = "bisque1") ) ) ) ) ), fluidRow( box( title = "Water", status = "warning", solidHeader = FALSE, collapsible = TRUE, width = 6, checkboxInput("color_lakes_rivers", label = "Color lakes and rivers", value = FALSE), selectInput("color_water", label = tags$h5("Water (background) color"), choices = cruz.palette.color, selected = "white"), radioButtons("color_water_style", label = tags$h5("Ocean color style"), choices = list("Single color" = 1, "Depth (bathymetric) shading" = 2), selected = 1), conditionalPanel( condition = "input.color_water_style==2", helpText("Load a CSV file with exactly 3 columns: latitude, longitude, and depth"), fileInput("depth_file", tags$h5("Bathymetric CSV file"), accept = ".csv"), textOutput("bathy_load_text"), tags$span(textOutput("bathy_message_text"), style = "color: blue;") ) ), box( title = "Download bathymetric data", status = "warning", solidHeader = FALSE, collapsible = TRUE, width = 6, helpText("Download bathymetric data from NOAA website (see the documentation for", tags$a(href = "https://CRAN.R-project.org/package=marmap", "marmap function 'getNOAA.bathy'"), "for more details).", "The coordinates of the downloaded data will be the same as the current map range.", "After downloading, you must load the CSV file into CruzPlot in the 'Water: Ocean color style' section"), numericInput("depth_res", tags$h5("Bathymetric data resolution, in minutes (range: 0-60)"), value = 10, min = 0, max = 60, step = 5), uiOutput("depth_download_button"), uiOutput("depth_download_message") ) ) ), tabPanel( title = "Grid", fluidRow( box( title = "Grid", status = "warning", solidHeader = FALSE, width = 12, collapsible = TRUE, height = 385, checkboxInput("grid", label = "Include grid lines at major tick marks", value = FALSE), conditionalPanel( condition = "input.grid", fluidRow( column(3, selectInput("grid_line_color", label = tags$h5("Line color"), choices = cruz.palette.color, selected = "black")), column(3, numericInput("grid_line_width", label = tags$h5("Line width"), value = 1, min = 1, max = 6, step = 1)), column(3, selectInput("grid_line_type", label = tags$h5("Line type"), choices = cruz.line.type, selected = 1)) ) ) ) ) ), tabPanel( title = "Save", fluidRow( box( title = "Save map", status = "warning", solidHeader = FALSE, width = 12, fluidRow( column(3, radioButtons("download_format", label = tags$h5("File format"), choices = list("JPEG" = 1, "PDF" = 2, "PNG" = 3), selected = 3)), column( width = 8, fluidRow( column(6, radioButtons("download_dim", tags$h5("File dimensions"), choices = list("Use dimensions of plot window" = 1, "Specify dimensions" = 2), selected = 1)), column(6, numericInput("download_res", tags$h5("Resolution (ppi)"), value = 300, step = 50, min = 0)) ), conditionalPanel("input.download_dim == 1", helpText("Downloaded map should look exactly like displayed map")), conditionalPanel( condition = "input.download_dim == 2", fluidRow( column(6, numericInput("download_width", tags$h5("File width (inches)"), value = 10, step = 1, min = 0)), column(6, numericInput("download_height", tags$h5("File height (inches)"), value = 10, step = 1, min = 0)) ) ) ) ), uiOutput("downloadMap_button") ) ) ) ) ) ) }
ts_makeframes <- function(x_list,r_type = NULL,minq = 0.02,maxq = 0.98,samplesize = 1000,blacken_NA=FALSE,l_indices=NULL,alpha=NULL,hillshade=NULL,...){ if(is.null(r_type)){ r_type <- .ts_guess_raster_type(x_list[[1]]) } if(is.null(l_indices)){ print("No layer indices were given. Assuming and selecting layers by r_type.") if(r_type == "RGB"){ l_indices <- c(1:3) }else if (r_type == "gradient" | r_type == "discrete"){ l_indices <- 1 } } x_list <- .ts_subset_ts_util(x_list,l_indices) if(r_type=="RGB"){ r_list_out_stretched <- ts_stretch_list(x_list = x_list,minq = minq,maxq = maxq,samplesize = samplesize) }else{ r_list_out_stretched <- x_list } if(blacken_NA){ r_list_out_stretched <- .blacken_NA_util(r_list_out_stretched) } if(!is.null(hillshade)){ if(is.null(alpha)){ alpha=0.5 } if(!compareCRS(hillshade,x_list[[1]])){ print("Reprojecting Hillshade") hillshade <- projectRaster(from = hillshade,(x_list[[1]])) } hillshade <- crop(hillshade,x_list[[1]]) hillshade_layer <- RStoolbox::ggR(hillshade,ggLayer = TRUE) r_ggplots <- .ts_makeframes(x_list = r_list_out_stretched,r_type = r_type,gglayer=TRUE,alpha=alpha,hillshade_layer=hillshade_layer,...) }else{ if(is.null(alpha)){ alpha=1 } r_ggplots <- .ts_makeframes(x_list = r_list_out_stretched,r_type = r_type,gglayer=FALSE,alpha=alpha,...) } r_ggplots <- .ts_set_frametimes(r_ggplots , .ts_get_frametimes(x_list)) return(r_ggplots) }
calc_full_extent <- function(x, aggregate = TRUE) { stopifnot(inherits(x, "Raster")) stopifnot(is.logical(aggregate), length(aggregate) == 1) e_input <- raster::extent(x) if (isTRUE(aggregate)) { x <- raster::aggregate(x, fact = 3) } x[x == 0] <- NA e <- c(NA_real_, NA_real_, NA_real_, NA_real_) for (i in seq_len(raster::nlayers(x))) { e_trim <- raster::extent(raster::trim(x[[i]])) e[1] <- min(e[1], e_trim[1], na.rm = TRUE) e[2] <- max(e[2], e_trim[2], na.rm = TRUE) e[3] <- min(e[3], e_trim[3], na.rm = TRUE) e[4] <- max(e[4], e_trim[4], na.rm = TRUE) } e <- raster::extent(e) e[1] <- max(e[1], e_input[1], na.rm = TRUE) e[2] <- min(e[2], e_input[2], na.rm = TRUE) e[3] <- max(e[3], e_input[3], na.rm = TRUE) e[4] <- min(e[4], e_input[4], na.rm = TRUE) return(e) } calc_bins <- function(abundance, count) { stopifnot(inherits(abundance, "Raster")) stopifnot(inherits(count, "Raster")) if (all(is.na(suppressWarnings(raster::maxValue(abundance)))) && all(is.na(suppressWarnings(raster::minValue(abundance)))) && all(is.na(suppressWarnings(raster::maxValue(count)))) && all(is.na(suppressWarnings(raster::minValue(count))))) { stop("Input Raster* objects must have non-NA values.") } if (all(raster::maxValue(abundance) == 0) && all(raster::maxValue(count) == 0)) { stop("Raster must have at least 2 non-zero values to calculate bins") } v <- as.vector(raster::getValues(abundance)) v <- as.numeric(stats::na.omit(v)) v <- v[v > 0] if (length(v) <= 1) { stop("Raster must have at least 2 non-zero values to calculate bins") } abd_rng <- range(v, na.rm = TRUE) abd_5th <- stats::quantile(v, 0.05) rm(v) v <- as.vector(raster::getValues(count)) v <- as.numeric(stats::na.omit(v)) v <- v[v > 0] b <- stats::quantile(v, probs = seq(0, 1, by = 0.05), na.rm = TRUE) b[1] <- abd_rng[1] b <- b[b <= abd_rng[2]] b <- c(b, abd_rng[2]) if (b[2] > abd_5th) { b <- sort(c(b, abd_5th)) } b <- unname(b) attr(b, "labels") <- c(b[2], stats::median(b), b[length(b) - 1]) return(b) } abundance_palette <- function(n, season = c("weekly", "breeding", "nonbreeding", "migration", "prebreeding_migration", "postbreeding_migration", "year_round")) { stopifnot(is.numeric(n), length(n) == 1, n >= 1) season <- match.arg(season) col_zero <- " if (season == "weekly") { plsm <- rev(viridisLite::plasma(n - 1, end = 0.9)) plsm <- stringr::str_remove(plsm, "FF$") gry <- grDevices::colorRampPalette(c(col_zero, plsm[1])) return(c(gry(4)[2], plsm)) } else if (season == "breeding") { base_col <- " } else if (season == "nonbreeding") { base_col <- " } else if (season %in% c("migration", "postbreeding_migration")) { base_col <- " } else if (season == "prebreeding_migration") { base_col <- " } else if (season == "year_round") { base_col <- " } else { stop("Invalid season.") } gry <- grDevices::colorRampPalette(c(col_zero, base_col)) mid <- grDevices::colorRampPalette(c(gry(5)[2], base_col)) black <- grDevices::colorRampPalette(c(base_col, " pal <- grDevices::colorRampPalette(c(gry(5)[2], mid(9)[5], base_col, black(5)[2])) return(pal(n)) }
cd_grips <- CD(GRiPS_raw) test_that("output class and dimensions are correct", { expect_is(cd_grips, "CD") expect_named(cd_grips, c("n_factors", "eigenvalues", "RMSE_eigenvalues", "settings")) expect_is(cd_grips$RMSE_eigenvalues, "matrix") }) test_that("CD returns the correct values", { expect_equal(cd_grips$n_factors, 1) expect_equal(sum(cd_grips$eigenvalues), 8) }) test_that("errors etc. are thrown correctly", { expect_error(CD(1:10), " 'x' is neither a matrix nor a dataframe. Provide a dataframe or matrix with raw data.\n") expect_error(CD(test_models$baseline$cormat), " 'x' is a correlation matrix, but CD only works with raw data.\n") expect_warning(CD(GRiPS_raw, n_factors_max = 5), " n_factors_max was set to 5 but maximum possible factors to extract is 4 . Setting n_factors_max to 4 .\n") }) rm(cd_grips)
procD.lm <- function(f1, iter = 999, seed=NULL, RRPP = TRUE, SS.type = c("I", "II", "III"), effect.type = c("F", "cohenf", "SS", "MS", "Rsq"), int.first = FALSE, Cov = NULL, turbo = TRUE, Parallel = FALSE, data=NULL, print.progress = FALSE, ...){ if(is.null(data)) { vars <- rownames(attr(terms(f1), "factors")) if(!is.null(vars)) { data <- list() data <- data[vars] names(data) <- vars for(i in 1:length(vars)) { f <- as.formula(paste("~", vars[i])) temp <- try(eval(f[[2]]), silent = TRUE) if(inherits(temp, "try-error")) stop("Cannot find data in global environment.\n", call. = FALSE) else data[[i]] <- temp } } } if(inherits(f1, "formula")){ Y <- try(eval(f1[[2]], envir = data , enclos = parent.frame()), silent = TRUE) if(inherits(Y, "try-error")) Y <- try(eval(f1[[2]], envir = parent.frame), silent = TRUE) if(inherits(Y, "try-error")) stop("Cannot find data in data frame or global environment.\n", call. = FALSE) nms <- if(is.vector(Y)) names(Y) else if(inherits(Y, "matrix")) attr(Y, "Labels") else if(is.matrix(Y)) rownames(Y) else dimnames(Y)[[3]] dims.Y <- dim(Y) f <- update(f1, Y ~ .) if(length(dims.Y) == 3) { GM <- TRUE Y <- two.d.array(Y) rownames(Y) <- nms p <- dims.Y[[1]] k <- dims.Y[[2]] n <- dims.Y[[3]] } else { GM <- FALSE Y <- as.matrix(Y) rownames(Y) <- nms if(isSymmetric(Y)) colnames(Y) <- nms } data$Y <- Y } else { f <- f1 GM <- FALSE } out <- lm.rrpp(f, data = data, turbo = turbo, seed = seed, RRPP = RRPP, SS.type = SS.type, int.first = int.first, Cov = Cov, iter = iter, print.progress = print.progress, Parallel = Parallel, ...) n <- out$LM$n out$ANOVA$effect.type <- match.arg(effect.type) out$GM <- NULL if(!out$LM$gls) { out$fitted <- out$LM$fitted out$residuals <- out$LM$residuals out$coefficients <- out$LM$coefficients if(GM) { out$GM$p <- p out$GM$k <- k out$GM$n <- n kk <- NROW(out$LM$coefficients) out$GM$fitted <- arrayspecs(out$LM$fitted, p, k) out$GM$residuals <- arrayspecs(out$LM$residuals, p, k) if(kk > 1) out$GM$coefficients <- arrayspecs(out$LM$coefficients, p, k) else { out$GM$coefficients <- array(matrix(out$LM$coefficients, p, k, byrow = TRUE), c(p,k,1)) } } } if(out$LM$gls) { out$gls.fitted <- out$LM$gls.fitted out$gls.residuals <- out$LM$gls.residuals out$gls.coefficients <- out$LM$gls.coefficients out$gls.mean <- out$LM$gls.mean if(GM) { out$GM$p <- p out$GM$k <- k out$GM$n <- n kk <- NROW(out$LM$gls.coefficients) out$GM$gls.fitted <- arrayspecs(out$LM$gls.fitted, p, k) out$GM$gls.residuals <- arrayspecs(out$LM$gls.residuals, p, k) out$GM$gls.mean <- matrix(out$LM$gls.mean, out$GM$p, out$GM$k, byrow = TRUE) if(kk > 1) out$GM$gls.coefficients <- arrayspecs(out$LM$gls.coefficients, p, k) else { out$GM$coefficients <- array(matrix(out$LM$gls.coefficients, p, k, byrow = TRUE), c(p,k,1)) } } } o.class <- class(out) out2 <- list() out2$aov.table <- anova.lm.rrpp(out)$table out2$call <- match.call() out$call <- out2$call if(out$LM$gls) out2$gls.coefficients <- out$LM$gls.coefficients else out2$coefficients <- out$LM$coefficients out2$Y <- out$LM$Y out2$X <- out$LM$X out2$QR <- out$LM$QR if(out$LM$gls) out2$gls.fitted <- out$LM$gls.fitted else out2$fitted <- out$LM$fitted if(out$LM$gls) out2$gls.residuals <- out$LM$gls.residuals else out2$residuals <- out$LM$residuals out2$weights <- if(!is.null(out$LM$weights)) out$LM$weights else NULL out2$Terms <- out$LM$Terms out2$term.labels <- out$LM$term.labels out2$data <- out$LM$data out2$random.SS <- out2$ANOVA$SS out <- c(out2, out) class(out) <- c("procD.lm", o.class) out }
context("is_too_many") test_that("is_too_many gives reasonable info", { skip_on_cran() old_delay <- getOption("aRxiv_delay") on.exit(options(aRxiv_delay=old_delay)) options(aRxiv_delay=0.5) suppressMessages(expect_true(is_too_many("au:A", start=0, limit=NULL) > 170000)) expect_equal(is_too_many("au:A", start=0, limit=10), 0) }) test_that("arxiv_search throws error with huge result", { skip_on_cran() old_delay <- getOption("aRxiv_delay") on.exit(options(aRxiv_delay=old_delay)) options(aRxiv_delay=0.5) suppressMessages(expect_error(arxiv_search("au:A", limit=NULL))) })
exact_segments <- function( data, max_segments, likelihood, initial_position, allow_parallel) { num_variables <- ncol(data) if (num_variables < max_segments) { max_segments <- num_variables } if (num_variables == 0 || nrow(data) == 0) { return(NULL) } segment_likelihoods <- matrix(nrow = max_segments, ncol = num_variables) max_likehood_pos <- matrix(nrow = max_segments, ncol = num_variables) for (seg_start in 1:max_segments) { results <- chuncked_foreach(seg_start:num_variables, allow_parallel, function(seg_end) { if (seg_start > 1) { segment_likelihood <- function(preceding_likelihood, index) { segment <- slice_segment(data, index, seg_end) likelihood_value <- likelihood(segment) handle_nan(likelihood_value, index + initial_position - 1, seg_end + initial_position - 1) preceding_likelihood + likelihood_value } indices <- seg_start:seg_end previous_likelihoods <- segment_likelihoods[seg_start - 1, indices - 1] segment_tries <- mapply(segment_likelihood, previous_likelihoods, indices) list(max_likelihood = max(segment_tries), max_likelihood_pos = which.max(segment_tries) + seg_start - 1) } else { segment <- slice_segment(data, seg_start, seg_end) list(max_likelihood = likelihood(segment), max_likelihood_pos = 0) } }) segment_likelihoods[seg_start, seg_start:num_variables] <- sapply(results, "[[", "max_likelihood") max_likehood_pos[seg_start, seg_start:num_variables] <- sapply(results, "[[", "max_likelihood_pos") } last_break_pos <- which.max(segment_likelihoods[, num_variables]) if (last_break_pos <= 1) { return(NULL) } break_positions <- num_variables + 1 for (break_pos in last_break_pos:2) { break_positions <- c(max_likehood_pos[break_pos, break_positions[1] - 1], break_positions) } changepoints <- head(break_positions, n = -1) previous_changepoints <- c(1, head(changepoints, n = -1)) changepoints <- changepoints + initial_position - 1 foreach(changepoint = changepoints) %do% { list(changepoint = changepoint) } }
init_state <- function(raster){ if(raster::nlayers(raster) == 2){ In_storage <- raster::raster(raster[[1]]) In_ground <- raster::raster(raster[[2]]) } else{ if(raster::nlayers(raster) != 2){ warning("Strange number of initial state files\n Review files of initial states \n Creation by default from first raster") } In_storage <- raster[[1]] / 2 In_ground <- raster[[1]] / 2 } g_v <- raster::rasterToPoints(In_ground)[ ,-c(1,2)] s_v <- raster::rasterToPoints(In_storage)[ ,-c(1,2)] init <- list(In_storage = s_v, In_ground = g_v) return(init) }
plugincvc <- function(xi, obswin = NULL, setcov_boundarythresh = NULL) { if (is.im(xi)) { if (!is.null(obswin)) { winim <- as.im(obswin, xy = xi) xi <- eval.im(xi * winim) } isbinarymap(xi, requiretrue = TRUE) obswin <- as.owin(xi) xi[is.na(as.matrix(xi))] <- 0 setcovxi <- imcov(xi) setcovwindow <- setcov(obswin, eps = c(setcovxi$xstep, setcovxi$ystep)) } else if (is.owin(xi)) { stopifnot(is.owin(obswin)) xi <- intersect.owin(xi, obswin) Frame(xi) <- Frame(obswin) unitname(xi) <- unitname(obswin) setcovxi <- setcov(xi) setcovwindow <- setcov(obswin, eps = c(setcovxi$xstep, setcovxi$ystep)) } else { stop("Input xi is not an image or owin object") } if (is.null(setcov_boundarythresh)){ setcov_boundarythresh <- 0.1 * area.owin(obswin) } else if (setcov_boundarythresh < setcovwindow$xstep * setcovwindow$ystep * 1E-8){ warning("setcov_boundarythresh is smaller than A*1E-8 where A is the size of a pixel. This might be smaller than the precision of the set covariance computations. Consider setting setcov_boundarythresh higher.") } setcovwindow[setcovwindow < setcov_boundarythresh] <- NA harmims <- harmonise.im(setcovxi, setcovwindow) covar <- harmims[[1]]/harmims[[2]] return(covar) }
library(quint) data(bcrp) head(bcrp) bcrp2arm<-subset(bcrp,bcrp$cond<3) head(bcrp2arm) summary(bcrp2arm) control1 <- quint.control(crit="dm",maxl = 5,B = 10) formula1<- I(cesdt1-cesdt3) ~ cond | nationality+marital+wcht1+ age+trext+comorbid+disopt1+uncomt1+negsoct1 set.seed(2) quint1<-quint(formula1, data= bcrp2arm, control=control1 ) quint1pr <- prune(quint1) quint1pr_bootCI <- quint.bootstrapCI(quint1pr,n_boot = 5) summary(quint1pr) summary(quint1pr_bootCI$tree) plot(quint1pr) plot(quint1pr_bootCI$tree)
plot.subgroupAnalysis <- function(x,...) { if (class(x)[1]!="subgroupAnalysis") stop("Object not of class subgroupAnalysis") num <- length(names(x)) plotcols<-x[,(num-4):(num-2)] tabcols <-x[,1:2] Publish::plotConfidence(x=plotcols, labels=tabcols) }
library(hamcrest) expected <- c(0x1.fbd5cb696cc6p+9 + 0x0p+0i, -0x1.71ff938ddea3p+1 + 0x1.4ae09f2dd74aep+7i, -0x1.2f570fe0895aap+4 + -0x1.e16f6b53ea1fp+5i, 0x1.69984475fe663p+6 + -0x1.da2f4795c907cp+5i, 0x1.ba16fa21c7f2dp+7 + -0x1.272dc12699e9cp+6i, 0x1.27fe11662f3b2p+5 + 0x1.3d9c0fa6ffa0ep+6i, -0x1.7f83fcdb74ac6p+5 + -0x1.81886739a6283p+7i, 0x1.dcdfd4823604p+4 + -0x1.b0e19b9841f36p+5i, 0x1.a20efc5d1248cp+7 + 0x1.b09bd2dec195p+4i, -0x1.3a0e23a526833p+5 + -0x1.d64fb153b4bacp+6i, -0x1.4913857c20fdcp+4 + -0x1.5456c7b7a0cc6p+5i, -0x1.922df046af502p+7 + -0x1.9ee5f0b134373p+6i, 0x1.5594fb2083dfp+6 + -0x1.c12a357ab25eap+6i, -0x1.611bbcfaa0fb1p+5 + 0x1.bb6ef346f9151p+5i, -0x1.707815233206dp+6 + -0x1.c8053c772dc27p+7i, -0x1.62955da2f9f22p+6 + 0x1.250a849c50853p+5i, -0x1.ceef56d28c7a6p+5 + -0x1.2f97cc2861892p+5i, -0x1.5bbf2314c2f4ap+3 + -0x1.b3373d0cfc0aap+3i, 0x1.fb9664f6e7p+0 + -0x1.866a32487f4bap+6i, 0x1.fec44787c986ap+5 + -0x1.93297b084a94p+3i, -0x1.0bc71fcb6cea8p+6 + 0x1.c92cd3b3dfd25p+6i, -0x1.59f353a4c3b6cp+4 + 0x1.000f60cdabbbbp+7i, 0x1.d998eaa6228p+6 + 0x1.4332253c22c7bp+5i, -0x1.ddbf771d57d22p+5 + 0x1.14960d50b9118p+5i, -0x1.055e90b30c329p+4 + 0x1.7c4d8622132c1p+5i, 0x1.b1c300a76ed67p+5 + 0x1.64f1bed03ea4ep+6i, 0x1.2015cd17685a9p+4 + -0x1.d644f0b97d07p+4i, 0x1.0da89c3d09a9ap+5 + 0x1.5a71c6c7ff532p+5i, -0x1.37f5d015ca726p+2 + 0x1.a7691ff4cfab8p+0i, -0x1.53a43ed485ea8p+4 + 0x1.12261a030f86ap+6i, -0x1.102fd011d036ap+4 + 0x1.2d79a845ca2a4p+6i, 0x1.9ed28df367cbfp+5 + -0x1.1825e1d3b4b38p+4i, 0x1.dafbf99b0dc8cp+4 + -0x1.eac87238bc75cp+2i, -0x1.9564826dc979ep+6 + 0x1.0194fe4953ef8p+5i, 0x1.71e8bb36427eap+5 + -0x1.c01cbe8c24c52p+4i, 0x1.04dec220d9694p+5 + 0x1.e1ed205e9d7a8p+2i, -0x1.a5dbe0c85ebeap+4 + -0x1.62fad467550c8p+3i, -0x1.4ddbcf44f287ep+6 + 0x1.46e88fe8404ddp+4i, 0x1.5799b61ed431ep+5 + 0x1.59f5a10f013bp+2i, 0x1.216aa633312c6p+7 + 0x1.8decdb91202cep+6i, -0x1.a8b525de615f8p+1 + 0x1.f4360ba556148p+2i, -0x1.acd94dc0af898p+5 + -0x1.491b5b6f854cep+4i, 0x1.d5984fca042bcp+3 + 0x1.fd5859e74ab37p+4i, 0x1.09195c9f202c4p+6 + 0x1.5bea2618443a1p+6i, -0x1.8ea7139ccdc7p+3 + 0x1.0545d573cece6p+5i, -0x1.1ec92afc81ef8p+5 + -0x1.4eba5c27a0398p+3i, -0x1.2cc718d796b91p+5 + 0x1.1b6a616c01248p+5i, 0x1.a2a298e5c61dap+6 + 0x1.fdaf9218b6625p+5i, 0x1.7fe49a4aa059p+1 + -0x1.b297bcddd28p-3i, -0x1.e808027dbb7bp+3 + 0x1.be31877613cep+3i, -0x1.e898038744418p+3 + -0x1.22135f895e0f4p+5i, 0x1.a214eb7ae790fp+5 + 0x1.07d7711f4acb8p+5i, 0x1.5612fafaa1ce4p+2 + 0x1.7b59d94a51519p+5i, 0x1.5d16c0f546fa5p+4 + -0x1.ce43b1d1b473p+5i, -0x1.e54345d4a7d36p+5 + -0x1.784fab15862dap+4i, 0x1.30a472fd3a12p+3 + 0x1.397bf31f9a512p+5i, 0x1.80a45360df264p+2 + -0x1.97fb1aac9f3f8p+4i, 0x1.a4705bf38c29ep+3 + -0x1.829109abf9acdp+4i, 0x1.e75a6994dcap+1 + 0x1.8115abe45007p+3i, 0x1.561ee6fa6af72p+4 + 0x1.b2c863906ce84p+4i, 0x1.3e89916b3c26p+3 + -0x1.7a26344eb677p+2i, 0x1.b6d64b9a15fe8p+4 + -0x1.118da4b7f87ep+2i, -0x1.5361555bb8aa4p+3 + -0x1.58e5624cab026p+4i, -0x1.b289eca1da747p+4 + 0x1.5e4ff25a3f4p+1i, -0x1.8ab1f21de2e6cp+3 + 0x1.a756713601c92p+4i, 0x1.a247c91febe7p+1 + 0x1.ef829b913cddp+1i, 0x1.7c6d386164a78p+1 + -0x1.18635de33a7b8p+4i, -0x1.c238973f82dp-4 + 0x1.75beb10603b9p+2i, -0x1.fcd7b8c86755p+2 + 0x1.51a550e7bc1b8p+2i, -0x1.ee193b30d4046p+2 + 0x1.4f0be139890f4p+4i, -0x1.af6fa6af3c7c1p+4 + -0x1.ac494b1f0fd7p+4i, -0x1.a28a19a4d2489p+3 + 0x1.55f16cfa314a4p+3i, -0x1.6466028bbe2edp+5 + -0x1.49a11a7f6a86p+4i, 0x1.d364484d1433cp+3 + 0x1.4dfe98fa7bb6ep+5i, -0x1.0f3341949dc68p+5 + -0x1.f1aa4b6b05644p+2i, 0x1.4b7e2d2e81104p+4 + -0x1.28fd792c9d2a5p+3i, -0x1.67982b09d8454p+4 + 0x1.352b453f684dep+4i, 0x1.897d15d8919fbp+5 + 0x1.7af662e392b02p+4i, 0x1.f31fe0a112c46p+3 + 0x1.e32205a32c181p+4i, 0x1.507479d98be72p+3 + 0x1.416861ee77d16p+4i, 0x1.343393ef3b35p-1 + -0x1.3c619bd1148a8p+2i, 0x1.cfe87d6a1fe16p+4 + 0x1.7e25a229594d6p+4i, -0x1.59ac5d4242eep+1 + 0x1.011403974070ep+6i, 0x1.af74bec58c72fp+5 + 0x1.2c6de411310c7p+5i, -0x1.607104155f3c8p+3 + 0x1.1292d83bc3128p+4i, 0x1.46c4735766966p+3 + 0x1.07cb7691b1b2ep+5i, 0x1.6ccb33749764cp+4 + 0x1.5b790b22901ap+4i, 0x1.ce7996d122819p+5 + -0x1.b316344c9e369p+3i, 0x1.5c30a25f502a4p+2 + 0x1.bf8db8cbc307p+3i, -0x1.1f0f03ecd0c72p+4 + -0x1.e91e1566b0e27p+3i, 0x1.4db4276062116p+4 + -0x1.218be4dffac78p+2i, 0x1.53e668a4bc19p+5 + 0x1.751e7b14e1b88p+2i, 0x1.05e32ff07d868p+6 + -0x1.c202c92d5ee1p+4i, -0x1.18ee82f074d2ep+4 + -0x1.1089b34077b2bp+6i, -0x1.718b57f32982dp+5 + -0x1.46d2d094f5581p+4i, 0x1.7eecc1d30ffafp+4 + 0x1.e0cb9363b75e8p+3i, 0x1.137ef9bc208ep+6 + -0x1.c70ab51e7e748p+3i, 0x1.026a8095c0967p+5 + 0x1.d08f125ee471cp+3i, 0x1.0be3b2465cbbdp+5 + -0x1.8563c7c4e784ap+4i, 0x1.495048ad151d3p+4 + -0x1.40b4d745a273ap+4i, 0x1.7339501ecfe43p+5 + 0x1.21857cad0a0a2p+5i, -0x1.cab56703b95e8p+4 + -0x1.d58317d041d7ep+5i, -0x1.b0f626543e544p+4 + -0x1.1292718004728p+4i, -0x1.65b3e8f6d47aep+4 + 0x1.c8f22261a8687p+6i, -0x1.631f0d15c9a16p+4 + 0x1.245c38c686b75p+5i, 0x1.92fea3acb705fp+5 + -0x1.6eafe30aad6p-3i, 0x1.31e5a5c2cabcbp+5 + 0x1.03acf5c5f6831p+3i, -0x1.08de9a7ef2f18p+3 + 0x1.0fce8e7209494p+5i, -0x1.fef1b5179c967p+3 + 0x1.bd7dedc62087dp+4i, 0x1.b58b6a0c5af95p+5 + -0x1.a983b62e9f431p+4i, -0x1.2a9c01936874dp+5 + -0x1.2a4916ab529aep+3i, -0x1.1463c9bea61dp+4 + -0x1.306b85530071p+3i, -0x1.65dcbb0330a3ap+4 + 0x1.187194aa9ee65p+6i, -0x1.92e531bc1fa45p+6 + 0x1.08ca7328a250bp+5i, 0x1.c22d0646301a2p+3 + -0x1.0eb1d24151adp+6i, 0x1.958507d8a2a5p+2 + -0x1.2423f84ec580cp+5i, -0x1.87d2d87e70e99p+5 + 0x1.1e9d16df0a0ap+6i, 0x1.0a818882c67cp+3 + 0x1.0efc991905f35p+5i, 0x1.ef24bfc91c602p+5 + 0x1.19aaf1e900e88p+5i, 0x1.559dcbbc7a541p+4 + 0x1.b0d62fde0ba74p+6i, -0x1.f56d2ad43bbdp+5 + 0x1.5a25df63b0897p+4i, 0x1.b6cc5623ae65p+4 + 0x1.9d65b2091589cp+5i, 0x1.78feb00bb34fp+6 + 0x1.81868536ef06cp+6i, -0x1.6269a8af2ef4fp+6 + -0x1.6d67289ecd1a4p+5i, 0x1.a0ca6ac9a8346p+4 + 0x1.0fc827689769ep+4i, 0x1.0f0b83f4162b6p+6 + 0x1.89a720bac503bp+6i, 0x1.b3adb91832b32p+5 + 0x1.c8f19978828a4p+4i, -0x1.0e437447746c4p+4 + 0x1.a24105c6a2abcp+6i, -0x1.5beb873b34ec7p+3 + -0x1.5ba0ac3d9234p+6i, 0x1.d0ebf1c63ec02p+4 + 0x1.238b190b94b9cp+6i, 0x1.86424d7ebec87p+6 + 0x1.b4a4eda5a3e08p+5i, 0x1.ae502fcd85c5ep+6 + 0x1.942b22c734fedp+5i, -0x1.dbb712c1aff7bp+5 + -0x1.5cb3bf8a98536p+7i, -0x1.2b68de011cadp+4 + -0x1.3f84de3b7c2f5p+6i, 0x1.99ec38b9aa89ap+6 + 0x1.f9663a1458adfp+5i, 0x1.3a4ac025dc2ap+3 + 0x1.4d56fd0898e7p+6i, 0x1.d699455ee92d2p+5 + -0x1.27cafdae25a7bp+7i, 0x1.017bd17af3f91p+6 + 0x1.54d36906390b4p+5i, 0x1.c48cd30cd9adcp+5 + 0x1.36c386301fc1ap+6i, 0x1.4500b0d505fc2p+2 + 0x1.62969f482591bp+7i, -0x1.6d3de4eee919p+5 + -0x1.9b2702268765ap+7i, 0x1.03ebcd8e4e642p+4 + 0x1.8dab784b5a22p+3i, -0x1.8bbf1b79ae995p+7 + 0x1.17eeddf0db3a5p+7i, 0x1.497f191934418p+6 + 0x1.0d1ec776fb6ep+5i, -0x1.2af783452dc8p+1 + -0x1.19a699d39cc3ep+4i, -0x1.064c0b3f0d19ap+5 + -0x1.bcb3c34439eb8p+3i, -0x1.7253559c56b9ap+6 + 0x1.70a955f9ca1eep+6i, -0x1.06d1792ea59d6p+2 + 0x1.df363df179735p+4i, 0x1.ceea8e018441fp+4 + -0x1.0d48d144cf972p+7i, -0x1.f30f4480118fdp+5 + -0x1.1ffecbdfb58f9p+5i, 0x1.d0e3338968abp+3 + -0x1.4f84b840e5de2p+6i, -0x1.58b7e8bbe6156p+6 + 0x1.0cca2372ef592p+7i, -0x1.d204d5e0178b4p+7 + -0x1.f1c5bf0b39d9bp+6i, 0x1.526d25b45ca16p+7 + -0x1.04f1895b87929p+7i, -0x1.6c0fcb7282371p+6 + -0x1.5240753363e4cp+6i, -0x1.16981dd0df563p+7 + 0x1.690ebe2be3bfbp+5i, 0x1.bf821658be7cp+5 + -0x1.6b26c6fefc966p+2i, -0x1.d8d211bdfe4d8p+3 + -0x1.05ec78a07c9a2p+3i, -0x1.a946fb136461p+6 + 0x1.84b35dfd94247p+7i, -0x1.6cc9c77314408p+7 + 0x1.c9730739eca74p+5i, -0x1.5844d278c89a7p+7 + -0x1.3d9e7752a89ep+2i, -0x1.29b2fe4327df9p+7 + 0x1.c8d2d8840c655p+7i, -0x1.34ac883b034ap+6 + -0x1.63d586f92bd9bp+7i, -0x1.066871621de1ep+7 + 0x1.1cb153427cb17p+7i, -0x1.2d2fb1665a42p+7 + 0x1.26e5d2d93f468p+7i, 0x1.90911d8361b3bp+4 + 0x1.5c42e448f60d8p+6i, -0x1.27ff480c08121p+8 + 0x1.216e66d073fa8p+8i, -0x1.40d36ff72f687p+6 + -0x1.5d80d174d6cabp+7i, 0x1.ba505bcd7812ap+6 + 0x1.76c5da847fdc7p+7i, 0x1.d309ecda94f89p+6 + 0x1.024fa3216fcf9p+8i, -0x1.fd76d50ec4298p+5 + 0x1.4053c1efd38aap+7i, 0x1.476feb8837972p+6 + -0x1.5a68600efc808p+7i, 0x1.4139327d8a941p+8 + -0x1.2518bcd7353bap+6i, 0x1.7560d2c808b1ep+5 + 0x1.bf5a33bbe4695p+7i, -0x1.1a55cb2e9e986p+7 + 0x1.50d9c17170fe8p+3i, 0x1.bd5005bf4515ep+8 + -0x1.e2fae4649817fp+8i, 0x1.df9481d1ea563p+6 + 0x1.7d98468c19984p+7i, 0x1.be09d3abe2a4dp+7 + 0x1.f1e49dccc06c4p+7i, -0x1.2ba77db2ea156p+7 + 0x1.85cb8621d93bap+7i, 0x1.ad95eb9776745p+4 + -0x1.9d517a3f3e608p+8i, 0x1.89e303a24b0f3p+6 + 0x1.4af99c04e2176p+6i, -0x1.f2695e71d9d22p+6 + -0x1.3e2f23f36aae4p+6i, -0x1.a7b0846b7d96cp+6 + -0x1.01901079190acp+3i, 0x1.479316b8dfd1ep+5 + -0x1.17ac310914b68p+8i, 0x1.d85936e3a9622p+5 + -0x1.f55b325767765p+5i, -0x1.c070bec0c2d5ap+7 + -0x1.c569e9faa1079p+5i, -0x1.3c2c114247646p+7 + 0x1.46e9df89669ep+7i, -0x1.0ad6bbecc2db2p+7 + -0x1.39ef122d1e26p+7i, -0x1.78cb97f1e9e38p+7 + -0x1.8b3a1273a2fafp+3i, -0x1.c02c43778a9d4p+7 + -0x1.80a8cb4c30692p+6i, 0x1.36d61ff0bed8cp+3 + 0x1.2ac10ced91d1dp+6i, -0x1.7cdb6b503a3e6p+6 + -0x1.1f12f02c77b0ap+7i, 0x1.026f7585fb24cp+4 + -0x1.b6d03b39d103ap+5i, 0x1.a55922e665df2p+6 + 0x1.30faf83f61c8ap+4i, 0x1.82c43d3fd5463p+6 + 0x1.4fc124b71a2fbp+8i, 0x1.80185d7d61ea3p+3 + 0x1.04e0bd8a2c015p+6i, 0x1.84644ce4be688p+6 + 0x1.1ceafc1e236bcp+5i, 0x1.330ab725dc1f9p+5 + -0x1.9e086560c9448p+6i, 0x1.2affb776b079cp+6 + 0x1.9fc549bf515b2p+5i, 0x1.493f2288f1a53p+7 + -0x1.b9d4401dd8cc9p+4i, 0x1.978c74723b42dp+7 + -0x1.04041116a6668p+6i, -0x1.ccb7d58d77586p+4 + 0x1.0b8a1e51d27f8p+7i, 0x1.0b2d823b969e6p+7 + -0x1.81adf2c92ac21p+2i, 0x1.88f5557ff7433p+5 + 0x1.4b43d1d9d5687p+5i, -0x1.6520587503494p+5 + -0x1.4520097fa4999p+5i, 0x1.4ee40310afcddp+7 + -0x1.7878eec8c332p+7i, -0x1.4446e198219acp+7 + 0x1.24642e883f595p+5i, 0x1.024dbf1d837fp+6 + -0x1.8f86b84c53909p+7i, -0x1.398dfc2722316p+6 + -0x1.126abcfd9a007p+5i, -0x1.a40e3c8b2766ap+5 + -0x1.c95225680fb6cp+7i, -0x1.5340bec5a4871p+7 + -0x1.2f04e41c269a8p+6i, 0x1.488e065a79b42p+3 + -0x1.0fce271623103p+7i, -0x1.027aa1d01cd08p+2 + 0x1.a07fc09efdbe8p+5i, -0x1.d5edcd97ef864p+2 + -0x1.083a73cde98bcp+7i, -0x1.92c8d62726d4cp+7 + -0x1.0aa3e42112978p+3i, 0x1.6104ba1832334p+7 + -0x1.1ebae79836f6ap+6i, -0x1.60228b300acd2p+7 + 0x1.4d18cfa95b45p+4i, 0x1.3ce5b6416b93fp+4 + -0x1.2a7edd86fe7e9p+7i, -0x1.6b59b63288c4p+4 + 0x1.6a7c6ad0291b4p+6i, -0x1.f05e7e59b1a16p+5 + 0x1.b711ae4833962p+6i, 0x1.11f598e588f5bp+6 + 0x1.6dc2049367fc4p+7i, 0x1.3b7928790c099p+6 + -0x1.1c8638d894e95p+6i, 0x1.5332df353aac3p+4 + 0x1.0f5caaed86223p+7i, -0x1.eab267bae9bd7p+4 + 0x1.098ac9fa8eb6p+6i, 0x1.7d397adf453dp+6 + 0x1.d465a4885cc0ap+6i, -0x1.2f3f02c0240f1p+6 + -0x1.bd950f8f5d72bp+5i, 0x1.bcd74027e0dcdp+5 + 0x1.edcdcc0a2195cp+6i, -0x1.d69a00aec9653p+5 + -0x1.81dbb50742ba4p+6i, 0x1.d30ba09c9626ep+6 + 0x1.c901ef2bb6d0bp+6i, -0x1.956a7cf8b180dp+6 + -0x1.071c3ab07a613p+7i, 0x1.977a2b9249462p+6 + 0x1.8b7daf00f9821p+6i, -0x1.1d407386903edp+5 + -0x1.1adc0dc578f39p+3i, 0x1.c79a2e623de4fp+5 + 0x1.73c88661c093bp+5i, 0x1.00e279e2cc988p+3 + -0x1.03ba6d4e74d66p+3i, 0x1.d4c29f6b13808p+5 + 0x1p-48i, 0x1.00e279e2cc95p+3 + 0x1.03ba6d4e74d77p+3i, 0x1.c79a2e623de37p+5 + -0x1.73c88661c093p+5i, -0x1.1d407386903eep+5 + 0x1.1adc0dc578f43p+3i, 0x1.977a2b924945ap+6 + -0x1.8b7daf00f981ep+6i, -0x1.956a7cf8b180fp+6 + 0x1.071c3ab07a614p+7i, 0x1.d30ba09c9626ap+6 + -0x1.c901ef2bb6d0ep+6i, -0x1.d69a00aec9653p+5 + 0x1.81dbb50742ba8p+6i, 0x1.bcd74027e0dbcp+5 + -0x1.edcdcc0a21954p+6i, -0x1.2f3f02c0240ecp+6 + 0x1.bd950f8f5d72cp+5i, 0x1.7d397adf453cp+6 + -0x1.d465a4885cc02p+6i, -0x1.eab267bae9bd6p+4 + -0x1.098ac9fa8eb64p+6i, 0x1.5332df353aaccp+4 + -0x1.0f5caaed8621dp+7i, 0x1.3b7928790c0ap+6 + 0x1.1c8638d894e9ep+6i, 0x1.11f598e588f53p+6 + -0x1.6dc2049367fbep+7i, -0x1.f05e7e59b1a0bp+5 + -0x1.b711ae4833963p+6i, -0x1.6b59b63288c0bp+4 + -0x1.6a7c6ad0291aep+6i, 0x1.3ce5b6416b94dp+4 + 0x1.2a7edd86fe7e9p+7i, -0x1.60228b300acdp+7 + -0x1.4d18cfa95b447p+4i, 0x1.6104ba1832338p+7 + 0x1.1ebae79836f59p+6i, -0x1.92c8d62726d4bp+7 + 0x1.0aa3e421129bdp+3i, -0x1.d5edcd97ef874p+2 + 0x1.083a73cde98bdp+7i, -0x1.027aa1d01cda1p+2 + -0x1.a07fc09efdbdep+5i, 0x1.488e065a79b3ap+3 + 0x1.0fce2716230fep+7i, -0x1.5340bec5a486fp+7 + 0x1.2f04e41c269aap+6i, -0x1.a40e3c8b2765cp+5 + 0x1.c95225680fb6cp+7i, -0x1.398dfc272231ap+6 + 0x1.126abcfd9a008p+5i, 0x1.024dbf1d837f3p+6 + 0x1.8f86b84c53904p+7i, -0x1.4446e198219aap+7 + -0x1.24642e883f595p+5i, 0x1.4ee40310afcdap+7 + 0x1.7878eec8c331dp+7i, -0x1.652058750349ep+5 + 0x1.4520097fa49ap+5i, 0x1.88f5557ff7426p+5 + -0x1.4b43d1d9d5688p+5i, 0x1.0b2d823b969e6p+7 + 0x1.81adf2c92abcp+2i, -0x1.ccb7d58d77599p+4 + -0x1.0b8a1e51d27fap+7i, 0x1.978c74723b42ep+7 + 0x1.04041116a6664p+6i, 0x1.493f2288f1a51p+7 + 0x1.b9d4401dd8cc8p+4i, 0x1.2affb776b079cp+6 + -0x1.9fc549bf515b5p+5i, 0x1.330ab725dc208p+5 + 0x1.9e086560c944dp+6i, 0x1.84644ce4be687p+6 + -0x1.1ceafc1e236a8p+5i, 0x1.80185d7d61e9p+3 + -0x1.04e0bd8a2c00dp+6i, 0x1.82c43d3fd545ap+6 + -0x1.4fc124b71a2fap+8i, 0x1.a55922e665dfdp+6 + -0x1.30faf83f61c96p+4i, 0x1.026f7585fb252p+4 + 0x1.b6d03b39d103bp+5i, -0x1.7cdb6b503a3ep+6 + 0x1.1f12f02c77b0fp+7i, 0x1.36d61ff0bed76p+3 + -0x1.2ac10ced91d23p+6i, -0x1.c02c43778a9d6p+7 + 0x1.80a8cb4c30697p+6i, -0x1.78cb97f1e9e36p+7 + 0x1.8b3a1273a2f9ep+3i, -0x1.0ad6bbecc2db1p+7 + 0x1.39ef122d1e264p+7i, -0x1.3c2c114247648p+7 + -0x1.46e9df89669ep+7i, -0x1.c070bec0c2d5ep+7 + 0x1.c569e9faa108dp+5i, 0x1.d85936e3a9628p+5 + 0x1.f55b325767766p+5i, 0x1.479316b8dfd2p+5 + 0x1.17ac310914b6ap+8i, -0x1.a7b0846b7d973p+6 + 0x1.019010791908ep+3i, -0x1.f2695e71d9d1fp+6 + 0x1.3e2f23f36aae8p+6i, 0x1.89e303a24b0f2p+6 + -0x1.4af99c04e217ap+6i, 0x1.ad95eb9776762p+4 + 0x1.9d517a3f3e60ap+8i, -0x1.2ba77db2ea16p+7 + -0x1.85cb8621d93b7p+7i, 0x1.be09d3abe2a5p+7 + -0x1.f1e49dccc06c3p+7i, 0x1.df9481d1ea556p+6 + -0x1.7d98468c19988p+7i, 0x1.bd5005bf45162p+8 + 0x1.e2fae4649818p+8i, -0x1.1a55cb2e9e988p+7 + -0x1.50d9c17170fd4p+3i, 0x1.7560d2c808b14p+5 + -0x1.bf5a33bbe4699p+7i, 0x1.4139327d8a947p+8 + 0x1.2518bcd7353bap+6i, 0x1.476feb8837978p+6 + 0x1.5a68600efc80ap+7i, -0x1.fd76d50ec42a8p+5 + -0x1.4053c1efd38bp+7i, 0x1.d309ecda94f8cp+6 + -0x1.024fa3216fcfbp+8i, 0x1.ba505bcd7812cp+6 + -0x1.76c5da847fdccp+7i, -0x1.40d36ff72f685p+6 + 0x1.5d80d174d6cacp+7i, -0x1.27ff480c08124p+8 + -0x1.216e66d073faap+8i, 0x1.90911d8361b4ep+4 + -0x1.5c42e448f60d3p+6i, -0x1.2d2fb1665a427p+7 + -0x1.26e5d2d93f468p+7i, -0x1.066871621de26p+7 + -0x1.1cb153427cb2p+7i, -0x1.34ac883b0349fp+6 + 0x1.63d586f92bd9dp+7i, -0x1.29b2fe4327dfep+7 + -0x1.c8d2d8840c658p+7i, -0x1.5844d278c89aep+7 + 0x1.3d9e7752a89fp+2i, -0x1.6cc9c7731440ep+7 + -0x1.c9730739eca75p+5i, -0x1.a946fb136461ap+6 + -0x1.84b35dfd9424ep+7i, -0x1.d8d211bdfe4eap+3 + 0x1.05ec78a07c9dp+3i, 0x1.bf821658be7cp+5 + 0x1.6b26c6fefc966p+2i, -0x1.16981dd0df55ep+7 + -0x1.690ebe2be3cp+5i, -0x1.6c0fcb7282366p+6 + 0x1.5240753363e52p+6i, 0x1.526d25b45ca1p+7 + 0x1.04f1895b87925p+7i, -0x1.d204d5e0178abp+7 + 0x1.f1c5bf0b39d94p+6i, -0x1.58b7e8bbe615fp+6 + -0x1.0cca2372ef589p+7i, 0x1.d0e3338968ac8p+3 + 0x1.4f84b840e5ddap+6i, -0x1.f30f4480118fbp+5 + 0x1.1ffecbdfb5903p+5i, 0x1.ceea8e0184424p+4 + 0x1.0d48d144cf96ep+7i, -0x1.06d1792ea59d8p+2 + -0x1.df363df17972ap+4i, -0x1.7253559c56b9dp+6 + -0x1.70a955f9ca1eap+6i, -0x1.064c0b3f0d19ap+5 + 0x1.bcb3c34439eap+3i, -0x1.2af783452dc3p+1 + 0x1.19a699d39cc38p+4i, 0x1.497f19193441bp+6 + -0x1.0d1ec776fb6e2p+5i, -0x1.8bbf1b79ae99p+7 + -0x1.17eeddf0db3a2p+7i, 0x1.03ebcd8e4e642p+4 + -0x1.8dab784b5a24p+3i, -0x1.6d3de4eee9178p+5 + 0x1.9b27022687655p+7i, 0x1.4500b0d505f9cp+2 + -0x1.62969f4825911p+7i, 0x1.c48cd30cd9accp+5 + -0x1.36c386301fc19p+6i, 0x1.017bd17af3f96p+6 + -0x1.54d36906390b8p+5i, 0x1.d699455ee92cep+5 + 0x1.27cafdae25a78p+7i, 0x1.3a4ac025dc2cp+3 + -0x1.4d56fd0898e67p+6i, 0x1.99ec38b9aa89p+6 + -0x1.f9663a1458ad8p+5i, -0x1.2b68de011cab5p+4 + 0x1.3f84de3b7c2f6p+6i, -0x1.dbb712c1aff7ap+5 + 0x1.5cb3bf8a98535p+7i, 0x1.ae502fcd85c56p+6 + -0x1.942b22c734ffp+5i, 0x1.86424d7ebec8p+6 + -0x1.b4a4eda5a3e09p+5i, 0x1.d0ebf1c63ebfbp+4 + -0x1.238b190b94b9ap+6i, -0x1.5beb873b34eb8p+3 + 0x1.5ba0ac3d92341p+6i, -0x1.0e437447746bp+4 + -0x1.a24105c6a2ab8p+6i, 0x1.b3adb91832b2ap+5 + -0x1.c8f19978828a4p+4i, 0x1.0f0b83f4162bp+6 + -0x1.89a720bac5039p+6i, 0x1.a0ca6ac9a834cp+4 + -0x1.0fc8276897692p+4i, -0x1.6269a8af2ef4cp+6 + 0x1.6d67289ecd19dp+5i, 0x1.78feb00bb34fp+6 + -0x1.81868536ef067p+6i, 0x1.b6cc5623ae65p+4 + -0x1.9d65b209158ap+5i, -0x1.f56d2ad43bbccp+5 + -0x1.5a25df63b0895p+4i, 0x1.559dcbbc7a55ap+4 + -0x1.b0d62fde0ba72p+6i, 0x1.ef24bfc91c60ap+5 + -0x1.19aaf1e900e88p+5i, 0x1.0a818882c67b5p+3 + -0x1.0efc991905f3ap+5i, -0x1.87d2d87e70e8dp+5 + -0x1.1e9d16df0a0a4p+6i, 0x1.958507d8a2a58p+2 + 0x1.2423f84ec580cp+5i, 0x1.c22d0646301b2p+3 + 0x1.0eb1d24151adp+6i, -0x1.92e531bc1fa46p+6 + -0x1.08ca7328a2506p+5i, -0x1.65dcbb0330a48p+4 + -0x1.187194aa9ee66p+6i, -0x1.1463c9bea61d2p+4 + 0x1.306b855300718p+3i, -0x1.2a9c019368743p+5 + 0x1.2a4916ab529c2p+3i, 0x1.b58b6a0c5af8dp+5 + 0x1.a983b62e9f43ap+4i, -0x1.fef1b5179c98ap+3 + -0x1.bd7dedc62087ep+4i, -0x1.08de9a7ef2f4p+3 + -0x1.0fce8e72094a6p+5i, 0x1.31e5a5c2cabd2p+5 + -0x1.03acf5c5f6825p+3i, 0x1.92fea3acb7062p+5 + 0x1.6eafe30aad8p-3i, -0x1.631f0d15c9a29p+4 + -0x1.245c38c686b71p+5i, -0x1.65b3e8f6d47cdp+4 + -0x1.c8f22261a8687p+6i, -0x1.b0f626543e538p+4 + 0x1.129271800473p+4i, -0x1.cab56703b95e1p+4 + 0x1.d58317d041d8p+5i, 0x1.7339501ecfe3bp+5 + -0x1.21857cad0a0ap+5i, 0x1.495048ad151e1p+4 + 0x1.40b4d745a2736p+4i, 0x1.0be3b2465cbc4p+5 + 0x1.8563c7c4e7858p+4i, 0x1.026a8095c096ap+5 + -0x1.d08f125ee472ap+3i, 0x1.137ef9bc208dep+6 + 0x1.c70ab51e7e72bp+3i, 0x1.7eecc1d30ffa1p+4 + -0x1.e0cb9363b75fp+3i, -0x1.718b57f329824p+5 + 0x1.46d2d094f558ap+4i, -0x1.18ee82f074d25p+4 + 0x1.1089b34077b2ep+6i, 0x1.05e32ff07d86bp+6 + 0x1.c202c92d5edecp+4i, 0x1.53e668a4bc18ep+5 + -0x1.751e7b14e1bbp+2i, 0x1.4db4276062107p+4 + 0x1.218be4dffac6p+2i, -0x1.1f0f03ecd0c5dp+4 + 0x1.e91e1566b0e22p+3i, 0x1.5c30a25f502dp+2 + -0x1.bf8db8cbc3074p+3i, 0x1.ce7996d12281ep+5 + 0x1.b316344c9e34cp+3i, 0x1.6ccb33749763ep+4 + -0x1.5b790b229017ap+4i, 0x1.46c4735766954p+3 + -0x1.07cb7691b1b31p+5i, -0x1.607104155f3ap+3 + -0x1.1292d83bc313cp+4i, 0x1.af74bec58c72ep+5 + -0x1.2c6de411310c7p+5i, -0x1.59ac5d4242f1p+1 + -0x1.0114039740713p+6i, 0x1.cfe87d6a1fe12p+4 + -0x1.7e25a229594ccp+4i, 0x1.343393ef3b38p-1 + 0x1.3c619bd1148b8p+2i, 0x1.507479d98be9ap+3 + -0x1.416861ee77d05p+4i, 0x1.f31fe0a112c4ap+3 + -0x1.e32205a32c182p+4i, 0x1.897d15d8919eep+5 + -0x1.7af662e392afep+4i, -0x1.67982b09d846ap+4 + -0x1.352b453f684d4p+4i, 0x1.4b7e2d2e8110ap+4 + 0x1.28fd792c9d2b9p+3i, -0x1.0f3341949dc6fp+5 + 0x1.f1aa4b6b0562p+2i, 0x1.d364484d142fp+3 + -0x1.4dfe98fa7bb7ap+5i, -0x1.6466028bbe2e7p+5 + 0x1.49a11a7f6a85ap+4i, -0x1.a28a19a4d24a4p+3 + -0x1.55f16cfa314a4p+3i, -0x1.af6fa6af3c7b9p+4 + 0x1.ac494b1f0fd72p+4i, -0x1.ee193b30d406p+2 + -0x1.4f0be139890ecp+4i, -0x1.fcd7b8c867588p+2 + -0x1.51a550e7bc1e8p+2i, -0x1.c238973f83cp-4 + -0x1.75beb10603b94p+2i, 0x1.7c6d386164a34p+1 + 0x1.18635de33a7b2p+4i, 0x1.a247c91febf1p+1 + -0x1.ef829b913cd4p+1i, -0x1.8ab1f21de2eb2p+3 + -0x1.a756713601cb4p+4i, -0x1.b289eca1da742p+4 + -0x1.5e4ff25a3f3ep+1i, -0x1.5361555bb8a8ap+3 + 0x1.58e5624cab03ep+4i, 0x1.b6d64b9a15fe1p+4 + 0x1.118da4b7f876p+2i, 0x1.3e89916b3c258p+3 + 0x1.7a26344eb673cp+2i, 0x1.561ee6fa6af9cp+4 + -0x1.b2c863906ce81p+4i, 0x1.e75a6994dcap+1 + -0x1.8115abe450041p+3i, 0x1.a4705bf38c286p+3 + 0x1.829109abf9ad8p+4i, 0x1.80a45360df251p+2 + 0x1.97fb1aac9f3fp+4i, 0x1.30a472fd3a11ep+3 + -0x1.397bf31f9a502p+5i, -0x1.e54345d4a7d3bp+5 + 0x1.784fab15862f2p+4i, 0x1.5d16c0f546fabp+4 + 0x1.ce43b1d1b472ep+5i, 0x1.5612fafaa1d1p+2 + -0x1.7b59d94a51518p+5i, 0x1.a214eb7ae7913p+5 + -0x1.07d7711f4acbap+5i, -0x1.e898038744418p+3 + 0x1.22135f895e0f7p+5i, -0x1.e808027dbb7b8p+3 + -0x1.be31877613dp+3i, 0x1.7fe49a4aa0548p+1 + 0x1.b297bcddd24p-3i, 0x1.a2a298e5c61d9p+6 + -0x1.fdaf9218b663p+5i, -0x1.2cc718d796b92p+5 + -0x1.1b6a616c01249p+5i, -0x1.1ec92afc81efep+5 + 0x1.4eba5c27a0374p+3i, -0x1.8ea7139ccdc58p+3 + -0x1.0545d573cece3p+5i, 0x1.09195c9f202c4p+6 + -0x1.5bea2618443a2p+6i, 0x1.d5984fca042bep+3 + -0x1.fd5859e74ab36p+4i, -0x1.acd94dc0af892p+5 + 0x1.491b5b6f854ccp+4i, -0x1.a8b525de6166p+1 + -0x1.f4360ba55619cp+2i, 0x1.216aa633312c5p+7 + -0x1.8decdb91202cfp+6i, 0x1.5799b61ed4324p+5 + -0x1.59f5a10f0142p+2i, -0x1.4ddbcf44f287fp+6 + -0x1.46e88fe8404cep+4i, -0x1.a5dbe0c85ebeap+4 + 0x1.62fad467550d4p+3i, 0x1.04dec220d9685p+5 + -0x1.e1ed205e9d7cp+2i, 0x1.71e8bb36427ecp+5 + 0x1.c01cbe8c24c49p+4i, -0x1.9564826dc97a1p+6 + -0x1.0194fe4953ef2p+5i, 0x1.dafbf99b0dc94p+4 + 0x1.eac87238bc7a8p+2i, 0x1.9ed28df367cbdp+5 + 0x1.1825e1d3b4b44p+4i, -0x1.102fd011d0374p+4 + -0x1.2d79a845ca2a7p+6i, -0x1.53a43ed485ebcp+4 + -0x1.12261a030f866p+6i, -0x1.37f5d015ca72cp+2 + -0x1.a7691ff4cfacp+0i, 0x1.0da89c3d09a9ap+5 + -0x1.5a71c6c7ff532p+5i, 0x1.2015cd17685b4p+4 + 0x1.d644f0b97d071p+4i, 0x1.b1c300a76ed5ep+5 + -0x1.64f1bed03ea4ep+6i, -0x1.055e90b30c31cp+4 + -0x1.7c4d8622132c3p+5i, -0x1.ddbf771d57d29p+5 + -0x1.14960d50b9104p+5i, 0x1.d998eaa622801p+6 + -0x1.4332253c22c8cp+5i, -0x1.59f353a4c3b6p+4 + -0x1.000f60cdabbbdp+7i, -0x1.0bc71fcb6cea8p+6 + -0x1.c92cd3b3dfd2bp+6i, 0x1.fec44787c9874p+5 + 0x1.93297b084a96p+3i, 0x1.fb9664f6e6fcp+0 + 0x1.866a32487f4bap+6i, -0x1.5bbf2314c2f48p+3 + 0x1.b3373d0cfc07p+3i, -0x1.ceef56d28c7ap+5 + 0x1.2f97cc286189ep+5i, -0x1.62955da2f9f24p+6 + -0x1.250a849c50856p+5i, -0x1.7078152332068p+6 + 0x1.c8053c772dc28p+7i, -0x1.611bbcfaa0fbdp+5 + -0x1.bb6ef346f9158p+5i, 0x1.5594fb2083df4p+6 + 0x1.c12a357ab25ecp+6i, -0x1.922df046af508p+7 + 0x1.9ee5f0b134384p+6i, -0x1.4913857c21008p+4 + 0x1.5456c7b7a0cccp+5i, -0x1.3a0e23a526831p+5 + 0x1.d64fb153b4bafp+6i, 0x1.a20efc5d12491p+7 + -0x1.b09bd2dec195ap+4i, 0x1.dcdfd48236048p+4 + 0x1.b0e19b9841f3cp+5i, -0x1.7f83fcdb74acap+5 + 0x1.81886739a6289p+7i, 0x1.27fe11662f3b2p+5 + -0x1.3d9c0fa6ffa1bp+6i, 0x1.ba16fa21c7f36p+7 + 0x1.272dc12699e9fp+6i, 0x1.69984475fe664p+6 + 0x1.da2f4795c9089p+5i, -0x1.2f570fe08959ap+4 + 0x1.e16f6b53ea1f6p+5i, -0x1.71ff938ddea58p+1 + -0x1.4ae09f2dd74bp+7i ) assertThat(stats:::fft(z=c(2.5012040421033, -0.852703320982114, 2.44035192628976, -0.315539723699655, 0.451149432296798, 8.39986904159832, -3.71189679906669, 7.27036106167732, 11.8151029135936, -6.38040750224049, 16.140696299544, 17.9377191077876, -0.247416729234539, 0.509985690750293, 23.6568924680204, -14.3283522003003, 29.0960018063503, -0.515351440037323, 0.461417080193512, 24.4359854141647, -15.9259485863116, 15.4066080101472, 4.39832443156715, -1.41276362948581, 0.10961423258584, 0.0485058172165162, -0.0506172814824217, 0.0800726431664566, -0.971775810107449, -0.159327244450868, 0.176100543237969, 1.46681536662943, -0.901994696172206, 0.177783920515548, 0.0781994358807019, 0.853771169012253, 4.06682106624248, -3.92626957121147, 4.45823618847641, 3.27847565292114, -1.6003497166291, 2.42141340354962, -0.0564822721187989, 0.0450168316948576, 6.88934765948805, -4.32479649009797, 1.37222564023403, 2.75602044212694, 4.78084372056581, -1.2345938300935, 1.88994314666231, -2.54359571283588, 1.20600975255887, 0.110839547015589, -0.341579208618709, 5.61577604097341, -4.22187717519161, 7.61120688676179, 4.16373131699246, -0.637266653937873, 0.629403727561432, 5.2713292035987, 4.06379201996547, -0.831247338546666, 1.05325205496696, -1.94149165628752, 1.26186841020846, -0.310646853209618, 1.01401679421515, -1.36690229893332, 0.516399945583213, 3.01166167208335, 5.98914817193362, -3.82003096140539, 2.96219376784357, -1.30568356049955, 1.71711211450703, 1.28709171787915, -0.565617025105025, 3.06288842776523, -2.04342579408792, 1.28284608054908, 2.86231996565247, 1.43583145583119, -1.00086734440029, 1.61178008920269, 2.45550406803161, 1.77896648213551, -2.28490088064518, 2.55562665533308, -1.49665453685557, 0.00295904003007553, -0.00120431376366571, -0.400856846650015, 0.322155013391105, -0.925637418559187, -1.31332548196304, 1.42564220079983, 1.88493708230512, -1.80825312904525, -0.590217617428646, 0.460239317779972, 1.40891960238598, -1.69617688707413, 6.03011384325574, 3.05171301947801, -2.65252190174016, 16.0473152937269, 26.7700662436687, -9.05900954943811, 10.7513836108143, 10.8872606657361, -4.90047945822155, 6.24267343128678, -7.63519358224046, 9.85572197072743, -5.51538039199178, 4.92901497644546, 8.00921890911801, -0.874457006746495, 1.49985313774802, 6.57391386208709, -2.5333318482676, 2.36405268999242, -0.541006858312492, 1.18083200735623, 0.217567807144298, -0.207936708158817, 5.26230910118677, -1.92562116948667, 1.77248431442931, 3.90784011215136, 2.55054445419399, -2.42936466416995, 5.34368241959385, 1.14097032586022, -1.02908294589034, 0.825445145253103, -0.820705216020013, -1.39477643847076, 1.42758723696605, -2.60844283655719, 2.34473549675069, -0.266522317050162, 0.324694717223095, 0.00550709286075549, -0.00206891492054926, 2.3143033607981, 5.66683824991409, -6.53189934993799, 12.1696626147129, 3.03432183829145, -3.46610435603563, 14.4242308095015, -5.32838109793059, -1.14455267644162, 0.324940325593892, -0.293247282343827, 1.12484150676126, 0.902197765258794, -1.03415890744551, 0.095757225968718, -0.0743925757821109, 1.36036788896361, -2.0047266490236, 4.95794813262346, 0.116094137219661, -0.148167117267199, 11.441457227158, 5.85450776913955, -2.35413642755203, 6.81994019164135, 7.10148400969307, -5.27948321319351, 11.6044733261157, -6.04560180155941, 6.35291128087907, 9.3794478361337, -0.680976468673371, 1.1880741812413, 7.80664942847109, 1.47060031445332, -1.83478118029851, 7.45981893203329, -6.14139584761569, 6.82202878944333, -0.171544210759257, 0.197191292709193, 6.54781795657122, -1.73189339437818, 1.54147878042684, 2.69176962546982, 0.232430264608403, -0.0163441439067955, -0.0431195067204222, 0.00784356881264786, 0.0182396250627736, 2.44000434064976, -2.67313080055508, 1.59017064884522, -0.746172106486337, -0.36527366171441, -0.29788857314782, 0.359569858591856, 0.572512908874245, 0.0538651090663797, -0.19805653886491, 3.30512959166409, -4.40861521100242, 6.45936814126974, -4.59510486724164, 7.34753588160399, -5.75945837686849, 3.97799412278568, -1.0158351635041, 0.66198678652632, -2.58319413202051, 4.77632187923232, -2.37249620701901, 2.15552699300767, 5.80210548272318, -3.06105082506442, 3.78437428334951, 0.0191069700045594, -0.0177215171350846, 1.78965091920213, 1.76286983630135, -4.49684285756558, 5.46833018649636, 4.39789126723243, -5.88588433415689, 14.7971574900745, -7.13718455636349, 7.72190520995131, -2.14676414894422, 2.99038339602131, 19.4400771491541, -11.9657398318215, 26.1007809012763, 2.22625453343337, -0.356941069781394, 6.93518380362381, 11.5445525630654, -8.94635692154641, 18.9174874793086, -12.4556903609694, 17.4610180804415, -7.05045206962605, 5.40391141048492, 11.5442968616627, -1.65346204464609, 1.16935947602525, 0.167512338209973, 0.0103446359672158, -0.0471980052583276, 0.331084965400175, 0.680755577558796, 0.0555929926605876, -0.0400505517334367, 0.835908472349696, 1.53779174700996, -2.15821663662979, 5.69718268234453, -0.365948010845236, 0.431204217897756, 4.51148556117302, -4.43658496129472, 8.33688118108401, -3.89333538373651, 7.26779737018077, 6.20628119782736, -5.37850810019446, 18.0768666874588, 2.42523827817873, -2.07589614496951, 20.0132710811781, 13.7305528853174, -8.20404795933263, 16.2757489613215, 7.12231734522343, -6.62448942954927, 16.3016852659439, -7.31491549524687, 7.23756128375191, -0.86740852549099, 0.15645313718035, 1.70205867109388, 0.642937128917955, -0.288573860767142, 2.16062038403456, 0.635433272499144, -1.0087799229265, 2.70678837939585, -1.33288521576567, 2.17609644047186, 1.14908019692451, -1.98117798106868, 0.0797906418462385, -0.0251239621730992, 1.01620032422546, -1.54808665816047, 2.83053804467082, -1.09218949297695, 0.632038855434266, 1.52389812175052, -1.40539882348273, 2.23146728831447, 1.89303794221421, -2.31374797734432, 5.05231556507842, 2.14730052100349, -0.592720081850207, 1.83156688414441, 12.2410664115702, -5.26024384123263, 5.9804240533475, 1.36907282331545, -1.1380872476593, 15.7025566112197, -1.93476962390521, 1.07635371681567, 9.14668223144001, 14.6840327799302, -6.86888186492203, 6.44741530205466, 5.3451975679566, -1.85258780540552, 1.52811075716002, -0.905439511722959, 1.5868973822548, 2.95727301085742, -2.07395122965949, 7.02692258322975, -0.607550991428778, 0.66596450196185, 17.8566358948004, -9.28680123208382, 13.2356069431331, 9.53989202921055, -6.65052536826735, 15.1146585135973, -1.00237341450106, 0.882580049011146, 12.5949157095993, -7.71191295207103, 13.5919867790231, 23.9861184897859, -13.8412602161988, 21.5781516122271, 17.7604253401961, -8.23321133367405, 14.7731418413822, 0.770051912445922, -0.722732423493026, 10.614744514212, -8.31177932951141, 17.0488461456286, 1.94365739831651, -2.42791346912146, 23.9513544622624, -6.7594727193773, 4.11248373104701, 11.713231261678, -7.55353208807729, 9.42938236479106, 0.413879412796547, -0.207678880064357, 10.9269709438967, -2.06769561087957, 1.68997622955887, 8.31579915959058, 4.83978725111278, -1.40100774401766, -0.182999302645208, -0.122504690898673, 0.662831489459104, 0.887082233707843, 0.798954936814531, -0.240652153897319, 0.138724993302157, 0.340993109892967, 0.239911316386162, -0.418380193084653, 1.49593978874958, 0.220038319672763, -0.346290762334036, 3.34869119231549, -2.82425434587945, 6.3737269912336, -3.27627072207272, 4.10028449495215, 2.19024082438953, -2.12167510798474, 11.0730169215, -2.67847826095838, 3.05427674536037, 8.98939760388754, 1.611112563661, -1.53963982164349, 8.57018909477986, 2.37506451839262, -2.6502470247708, 8.64013631563968, -4.68347650171519, 4.2448040412097, 5.07061000911227, -6.188275230053, 7.44286345184308, -3.67210851942231, 2.505251766006, 2.13601539846353, -2.90120414441156, 9.86038848975323, -4.0690389277474, 4.26401675735639, 3.25992070521575, -3.08851308300356, 13.3452182214933, -7.78770117430249, 6.92490512394041, 9.03571711218963, -2.14166229520116, 2.03111955112523, 2.52099358848683, -0.515404199925128, 0.0839303100054819, 0.112472172798764, -0.858027849326813, 0.170138760087768, 0.00432855150466349, 0.00234526751704238, -0.0275204612657056, 0.331452037725083, 1.2020973912655, 0.56598461917252, -0.60379466554742, 0.208929900608138, -0.389178206676026, 3.7590232181887, -1.35179108707322, 1.97347568442672, 4.70391627742326, 1.69923024894145, -3.75412357444561, 21.7197800493308, -3.89574387168473, 4.23044664362416, 8.64750601740092, -6.2146890569807, 10.89055543874, -2.93353561240448, 4.09994083987669, -1.41288940315791, 0.878944150987665, 3.05932116921148, 0.941815299235979, -2.14210730233434, 2.57993260862339, -0.084904175750199, -0.100940226410693, -1.41528772859382, 2.9170468908322, -1.22823168645884, 1.74839533583815, 12.1470619176815, -5.81476260324132, 5.1244133525054, 11.3884019084128)) , identicalTo( expected, tol = 1e-6 ) )
tuneRandom = function(learner, task, resampling, measures, par.set, control, opt.path, show.info, resample.fun) { vals = sampleValues(n = control$extra.args$maxit, par = par.set, trafo = FALSE) evalOptimizationStatesTune(learner, task, resampling, measures, par.set, control, opt.path, show.info, vals, dobs = seq_along(vals), eols = NA_integer_, remove.nas = TRUE, resample.fun) makeTuneResultFromOptPath(learner, par.set, measures, resampling, control, opt.path) }
head(Corn, 3) require(tidyr) Corn2 <- Corn %>% gather(key = "treatment", value = "yield") Corn2 %>% group_by(treatment) %>% do(head(., 3))
genDWD = function(X,y,C,expon, tol = 1e-5, maxIter = 2000, method = 1, printDetails = 0, rmzeroFea = 1, scaleFea = 1){ tau = 1.618 dim = nrow(X) n = ncol(X) idxpos = which(y>0) idxneg = which(y<0) np = length(idxpos) nn = length(idxneg) tstart = proc.time() nnz = sum(X@ra!=0) if (nnz > 0.4*dim*n && dim <= 5000){ X = as.matrix(X) } if (rmzeroFea!=0){ normX = sqrt(rowSums(as(X*X,"dgCMatrix"))) nzrow = which(normX>0) if (length(nzrow) < length(normX)){ if (is.matrix.csr(X)){ X = rbind(X[nzrow,1:n], 0*as.matrix.csr(1,1,n)) } else{ X = rbind(X[nzrow,1:n], 0*rep(0,n)) } dim = nrow(X) } } if (scaleFea!=0){ DD = 1 if(dim > 0.5*n){ normX = sqrt(rowSums(as(X*X,"dgCMatrix"))) if (max(normX) > 2*min(normX)){ if (dim > 3*n){ DD = new("matrix.csr", ra = 1/pmax(1,sqrt(normX)), ja = 1:dim, ia = 1:(dim+1), dimension = c(dim,dim)) } else{ DD = new("matrix.csr", ra = 1/pmax(1,normX), ja = 1:dim, ia = 1:(dim+1), dimension = c(dim,dim)) } if (is.matrix.csr(X)){ X = DD %*% X } else{ X = as.matrix(DD) %*% X } } } } use_balanced = TRUE; if (use_balanced){ K = n/log(n); tmpvec = matrix(1,n,1); tmpvec[idxpos] = matrix(nn/K,np,1) tmpvec[idxneg] = matrix(np/K,nn,1) weightoptions = 2 if(weightoptions == 0){ resweight = 1 penweight = 1 } else if(weightoptions == 1){ resweight = tmpvec^(1/(2+expon)) penweight = tmpvec^(1/(2+expon)) } else if(weightoptions == 2){ resweight = tmpvec^(1/(1+expon)) penweight = 1 } else if(weightoptions == 3){ resweight = 1 penweight = tmpvec^(1/(2+expon)) } resweight = resweight/max(resweight) y = y/resweight Cvec = C*(penweight*resweight) } else{ Cvec = C*matrix(1,n,1) } maxC = max(Cvec); if(is.matrix.csr(X)){ Z = X %*% new("matrix.csr", ra = as.numeric(y), ja = 1:n, ia = 1:(n+1), dimension = c(n,n)) }else{ Z = X %*% diag(as.vector(y)) } scale_data = 1 if (scale_data==1){ Zscale = sqrt(fnorm(X)) Z = Z/Zscale sigma = min(10*C,1*n) } else { Zscale = 1 sigma = max(1,log(n/dim)*fnorm(X)) } sigma = sigma^expon sigmastart = sigma normZ = 1+sqrt(max(colSums(as(Z*Z,"dgCMatrix")))) r = matrix(1,n,1) wbeta = matrix(0,dim+1,1) u = matrix(0,dim,1) xi = matrix(0,n,1) alpha = matrix(0,n,1) p = matrix(0,dim,1) const = 1 if (dim>5000){ if (n<0.2*dim && n<=2500){ Solver = 'SMW' } else{ Solver = 'iterative' } } else{ Solver = 'direct' } ZT = t(Z) if (Solver == 'direct'){ if (is.matrix.csr(X)){ M1 = Z %*% ZT + const*new("matrix.csr", ra = rep(1,dim), ja = 1:dim, ia = 1:(dim+1), dimension = c(dim,dim)) M4 = as.matrix.csr(t(y) %*% y) } else{ M1 = Z %*% ZT + const*diag(dim) M4 = t(y) %*% y } M2 = Z %*% y M3 = t(M2) M = rbind(cbind(M1,M2),cbind(M3,M4)) if (dim > 4000){ R = chol(M,tmpmax = 1000*dim) }else{ R = chol(M) } } else if (Solver == 'SMW'){ normy = fnorm(y) yunit = y/normy H11 = new("matrix.csr", ra = rep(1,n), ja = 1:n, ia = 1:(n+1), dimension = c(n,n)) + (1/const)*(ZT %*% Z) R = chol(H11) invH11yunit = linsysolve(R,yunit) schurmat = t(yunit) %*% invH11yunit schurvec = c(invH11yunit, -1) } else if (Solver == 'iterative'){ ff = list("Z"=Z,"ZT"=ZT,"y"=y,"const"=const) diagM = rowSums(as(Z*Z,"dgCMatrix")) + const L = list() L[["invdiagM"]] = 1/c(diagM,1) L[["precond"]] = 1 } if (printDetails!=0){ cat('\n------------------------------------------------------') cat('--------------------------------------------------------') cat('\n iter time sigma primfeas dualfeas') cat(' relcomp primobj dualobj relgap'); cat(' errNewton min-r dc_meas dcmpute psqmriter trainerr') cat('\n------------------------------------------------------') cat('---------------------------------------------------------') cat(sprintf('\n sample size = %3.0f, feature dimension = %3.0f',n,dim)) cat(sprintf('\n expon = %2.1f, penalty constant C = %4.2e',expon,C)) cat(sprintf('\n initial sigma = %3.2e',sigma)) cat(sprintf('\n Zscale = %3.2e',Zscale)) cat(sprintf('\n norm(scaled Z) = %3.2e',fnorm(Z))) cat(sprintf('\n Linear system solver = %s',Solver)) cat('\n------------------------------------------------------') cat('--------------------------------------------------------') } primfeas_his = c(); dualfeas_his = c() relcomp_his = c(); trainerr_his = c() primobj_his = c(); dualobj_his = c() relgap_his = c(); psqmr_his = c() Newton_his = c(); doublecompute_his = c() breakyes = FALSE doublecompute = 0 psqmriter = 0 rhs = matrix(0,dim+1,1) rhsnew = matrix(0,dim+1,1) for (iter in 1:maxIter){ rold = r; wbetaold = wbeta; uold = u xiold = xi; alphaold = alpha; pold = p tmp = rold - xiold + alphaold/sigma rhs1 = as.matrix(Z %*% tmp) + const*uold + pold/sigma rhs = rbind(rhs1,t(y) %*% tmp) if (Solver == 'iterative'){ psqmrTol = max(min(5e-2,1/(iter^2)),1e-8)*max(1,sqrt(fnorm(rhs))) psqmrMaxiter = 100 runpsqmr = psqmr(ff,rhs,L,wbetaold,psqmrTol,psqmrMaxiter) wbeta = runpsqmr$x resnrm = runpsqmr$resnrm solve_ok = runpsqmr$solve_ok psqmriter = psqmriter + length(resnrm) - 1 if (solve_ok != 1 && printDetails!=0){ cat(sprintf('\n iter=%2.0f: PSQMR not successful,num iter=%3.0f,residual=%3.2e',iter,length(resnrm)-1,resnrm[length(resnrm)]/fnorm(rhs))) } } else if (Solver == 'direct'){ wbeta = linsysolve(R,rhs) } else if (Solver == 'SMW'){ wbeta = smw(R,Z,ZT,yunit,schurmat,schurvec,normy,const,rhs) } w = wbeta[1:dim] beta = wbeta[dim+1] ZTwpbetay = as.matrix(ZT %*% w) + beta*y cc = ZTwpbetay + xiold - alphaold/sigma; runNewton = polyRootsNewton(cc,expon,sigma,rold) r = runNewton[1:n] errNewton = runNewton[n+1] iterNewton = runNewton[n+2] r = pmax(r,0) if(method==1){ doublecompute_measure = normZ*fnorm(r-rold)*iter^1.5 if ((doublecompute_measure > 10) || (iter < 50)){ doublecompute = doublecompute + 1 tmpnew = r - xiold + alphaold/sigma rhsnew1 = as.matrix(Z %*% tmpnew) + const*uold + pold/sigma rhsnew = rbind(rhsnew1,t(y) %*% tmpnew) if (Solver == 'iterative'){ runpsqmr = psqmr(ff,rhsnew,L,wbeta,psqmrTol,psqmrMaxiter) wbeta = runpsqmr$x resnrm = runpsqmr$resnrm solve_ok = runpsqmr$solve_ok psqmriter = psqmriter + length(resnrm) - 1 if (solve_ok != 1 && printDetails!=0){ cat(sprintf('\n iter=%2.0f: PSQMR not successful,num iter=%3.0f,residual=%3.2e',iter,length(resnrm)-1,resnrm[length(resnrm)]/fnorm(rhs))) } } else if (Solver == 'direct'){ wbeta = linsysolve(R,rhsnew) } else if (Solver == 'SMW'){ wbeta = smw(R,Z,ZT,yunit,schurmat,schurvec,normy,const,rhsnew) } w = wbeta[1:dim] beta = wbeta[dim+1] ZTwpbetay = as.matrix(ZT %*% w) + beta*y } } else{ doublecompute_measure = 0; doublecompute = 0; } uinput = w -pold/(const*sigma); u = Zscale*uinput/max(Zscale,fnorm(uinput)); xiinput = r - ZTwpbetay + (alphaold-Cvec)/sigma; xi = pmax(as.vector(xiinput),0); Rp = ZTwpbetay +xi-r; alpha = alphaold -tau*sigma*Rp; p = pold -(tau*sigma*const)*(w-u); rexpon1 = r^(expon+1); comp1 = abs(t(y) %*% alpha) comp2 = abs(t(xi) %*% (Cvec-alpha)); comp3 = min(fnorm(alpha*rexpon1-expon),fnorm(alpha-expon/rexpon1)^2); relcomp = max(comp1,comp2,comp3)/(1+maxC); primfeas = max(fnorm(Rp),fnorm(w-u),max(fnorm(w)-Zscale,0))/(1+maxC); dualfeas = max(fnorm(pmin(0,alpha)),fnorm(pmax(alpha-Cvec,0)))/(1+maxC); trainerr = length(which(ZTwpbetay<=0))/n*100; if (((max(primfeas,dualfeas) < tol) && (iter%%20==1)) || (iter%%100==1)){ primobj1 = sum(r/rexpon1) primobj2 = sum(Cvec*xi)+1e-8 primobj = primobj1 + primobj2 kappa = ((expon+1)/expon)*expon^(1/(expon+1)); dualobj = kappa*sum(pmax(0,alpha)^(expon/(expon+1)))-Zscale*fnorm(as.matrix(Z %*% alpha)) relgap = abs(primobj-dualobj)/(1+abs(primobj)+abs(dualobj)) } tol2 = 0.1/2 if ((iter > 50) && (max(primfeas,dualfeas) < tol) && (min(relcomp,relgap) < sqrt(tol)) && (((relcomp < tol2) && (relgap < sqrt(tol))) || (((relcomp < sqrt(tol)) && (relgap < tol2))))){ KKTerr = max(max(primfeas,dualfeas),min(relcomp,relgap)) breakyes = 1 cat(sprintf('\n Algorithm stopped with error %3.2e',KKTerr)) } if ((iter > 50) && (max(primfeas,dualfeas) < 5*tol) && (min(relcomp,relgap) < 10*tol) && (((relcomp < tol2) && (relgap < sqrt(tol))) || (((relcomp < sqrt(tol)) && (relgap < tol2))))){ KKTerr = max(max(primfeas,dualfeas),min(relcomp,relgap)) breakyes = 2 cat(sprintf('\n Algorithm stopped with error %3.2e',KKTerr)) } if ((iter > 50) && (max(primfeas,dualfeas) < tol) && (fnorm(alpha)/(1+maxC) < 1e-3)){ KKTerr = max(max(primfeas,dualfeas),min(relcomp,relgap)) breakyes = 3 cat(sprintf('\n Algorithm stopped with error %3.2e',KKTerr)) } if (iter <= 100){ print_iter = 20 }else{ print_iter = 100 } if ((iter%%print_iter==1) || (breakyes>0)){ ttime = as.numeric((proc.time()-tstart)[3]) if (printDetails!=0){ cat(sprintf('\n%4.0f| %6.2f| %3.2e| %3.2e %3.2e %3.2e| %5.4e %5.4e %3.2e| %3.2e %3.2e| %3.2e %3.0f| %5.0f %4.2f|',iter,ttime,sigma,primfeas,dualfeas,relcomp,primobj,dualobj,relgap,errNewton,min(r),doublecompute_measure,doublecompute,psqmriter,trainerr)); cat(sprintf(' %3.2e',fnorm(alpha)/(1+maxC))) } } primfeas_his = c(primfeas_his,primfeas) dualfeas_his = c(dualfeas_his,dualfeas) relcomp_his = c(relcomp_his,relcomp) trainerr_his = c(trainerr_his,trainerr) primobj_his = c(primobj_his,primobj) dualobj_his = c(dualobj_his,dualobj) relgap_his = c(relgap_his,relgap) psqmr_his = c(psqmr_his,psqmr) Newton_his = c(Newton_his,iterNewton) doublecompute_his = c(doublecompute_his,doublecompute) sigma_update_iter = sigma_update(iter); if (iter%%sigma_update_iter==0){ primfeas2 = max(primfeas,0.2*tol); dualfeas2 = max(dualfeas,0.2*tol); ratio = primfeas2/dualfeas2; const2 = 1.1; if (max(ratio,1/ratio) > 500){ const2 = const2*2; } else if (max(ratio,1/ratio) > 50){ const2 = const2*1.5; } if (ratio > 5){ sigma = min(sigma*const2,1e6); } else if (1/ratio > 5){ sigma = max(sigma/const2,1e-3); } } if (breakyes){ cat('\n') break; } } Zalpha = as.matrix(Z %*% alpha) w = w/Zscale; res = t(X) %*% w + beta*as.matrix.csr(1,n,1) error = length(which(y*sign(res@ra)<=0))/n*100 cat(sprintf('\n sample size = %3.0f, feature dimension = %3.0f',n,dim)); cat(sprintf('\n positve sample = %3.0f, negative sample = %3.0f',np,nn)); cat(sprintf('\n number of iterations = %3.0f',iter)); cat(sprintf('\n time taken = %3.2f',ttime)); cat(sprintf('\n error of classification (training) = %3.2f (%%)',error)) cat(sprintf('\n primfeas = %3.2e',primfeas)); cat(sprintf('\n dualfeas = %3.2e',dualfeas)); cat(sprintf('\n relative gap = %3.2e\n',relgap)); runhist = list("primfeas"=primfeas_his, "dualfeas"=dualfeas_his, "relcomp" = relcomp_his, "trainerr"=trainerr_his, "primobj"=primobj_his, "dualobj"=dualobj_his, "relgap"=relgap_his, "Newton"=Newton_his, "doublecompute"=doublecompute_his) info = list("iter"=iter,"time"=ttime,"penaltyParameter"=C,"sampsize"=n,"np" = np, "nn"=nn, "dimension"=dim, "sigmastart"=sigmastart, "primfeas"=primfeas, "dualfeas"=dualfeas, "relcomp"=relcomp, "relgap"=relgap, "primobj"=primobj, "dualobj"=dualobj, "trainerr"=trainerr, "psqmr"=psqmriter,"doublecompute"=doublecompute); return(list("w"=w,"beta"=beta,"xi"=xi,"r"=r,"alpha"=alpha,"info"=info,"runhist"=runhist)) } sigma_update = function(iter){ const = 0.5 if (iter <= 25){ sigma_update_iter = 10*const } else if (iter <= 50){ sigma_update_iter = 20*const } else if (iter <= 100){ sigma_update_iter = 40*const } else if (iter <= 500){ sigma_update_iter = 60*const } else if (iter <= 1000){ sigma_update_iter = 80*const } else{ sigma_update_iter = 100 } return(sigma_update_iter) } linsysolve = function(R,r){ if(is.matrix(R)){ x = backsolve(R,forwardsolve(t(R),r)) }else{ x = backsolve(R,r) } return(x) } smw = function(R,Z,ZT,yunit,schurmat,schurvec,normy,const,r){ n = length(yunit) dim = length(r) - 1 b1 = (1/const)*as.matrix(ZT %*% r[1:dim]) + (r[dim+1]/normy)*yunit b2 = r[dim+1]/normy b = rbind(b1,b2) tmpvec = (t(schurvec) %*% b/schurmat) %*% schurvec a1 = backsolve(R,b1) - tmpvec[1:n] a2 = -b2 - tmpvec[n+1] q = matrix(0,dim+1,1) q[1:dim] = (1/const)*(as.matrix(Z %*% (-a1)) + r[1:dim]) q[dim+1] = (1/normy)*(r[dim+1]/normy - t(yunit)%*%a1 - a2) return (q) } fnorm = function(x){ if (typeof(x) == "S4"){ xentry = x@ra return (sqrt(sum(xentry * xentry))) }else{ return (sqrt(sum(x*x))) } } polyRootsNewton = function(c,q,sigma,x0){ tol = 1e-12 x = x0 d = q/sigma; cq1 = c*(q+1); q2 = q+2; maxiter = 50 if (q == 1){ for (iter in 1:maxiter){ idx = which(x<=0); if (length(idx)!=0){ x[idx]=max(0,0.5+c[idx]) } xq1 = x*x xq = x grad = xq1*(x-c)-d hess = xq*(q2*x - cq1) x = x-grad/hess err = max(abs(grad)) if (err<tol){ break } } } else if (q == 2){ for (iter in 1:maxiter){ idx = which(x<=0); if (length(idx)!=0){ x[idx]=max(0,0.5+c[idx]) } xq = x*x xq1 = xq*x grad = xq1*(x-c)-d hess = xq*(q2*x-cq1) x = x - grad/hess err = max(abs(grad)) if (err<tol){ break } } } else if (q == 3){ for (iter in 1:maxiter){ idx = which(x<=0); if (length(idx)!=0){ x[idx]=max(0,0.5+c[idx]) } x2 = x*x xq = x2*x xq1 = x2*x2 grad = xq1*(x-c)-d hess = xq*(q2*x-cq1) x = x - grad/hess err = max(abs(grad)) if (err<tol){ break } } } else if (q == 4){ for (iter in 1:maxiter){ idx = which(x<=0); if (length(idx)!=0){ x[idx]=max(0,0.5+c[idx]) } x2 = x*x xq = x2*x2 xq1 = xq*x grad = xq1*(x-c)-d hess = xq*(q2*x-cq1) x = x - grad/hess err = max(abs(grad)) if (err<tol){ break } } } return(rbind(x,err,iter)) } psqmr = function(ff,b,L,x0,tol,maxit){ N = length(b) if (!exists('maxit')) maxit = max(1000,sqrt(length(b))) if (!exists('tol')) tol = 1e-8*fnorm(b) if (!exists('L')) L[["precond"]] = 0 if (!exists('x0')) x0 = matrix(0,N,1) solve_ok = 1 stagnate_check = 20*1 miniter = 0 printlevel = FALSE x = x0 if (fnorm(x) > 0){ Aq = vecMultiply(ff,x) }else{ Aq = matrix(0,N,1) } r = b - Aq err = fnorm(r) resnrm = err minres = err q = precondfun(L,r) tau_old = fnorm(q) rho_old = as.numeric(t(r) %*% q) theta_old = 0 d = matrix(0,N,1) res = r Ad = matrix(0,N,1) tiny = 1e-30 for (iter in 1:maxit){ Aq = vecMultiply(ff,q) sigma = as.numeric(t(q) %*% Aq) if (abs(sigma) < tiny){ solve_ok = 2 if (printlevel) cat('s1') break }else{ alpha = rho_old/sigma r = r - alpha*Aq } u = precondfun(L,r) theta = fnorm(u)/tau_old c = 1/sqrt(1+theta^2) tau = tau_old*theta*c gam = (c^2*theta_old^2) eta = c^2*alpha d = gam*d + eta*q x = x + d Ad = gam*Ad + eta*Aq res = res - Ad err = fnorm(res) resnrm = c(resnrm,err) if (err < minres) minres = err if ((err < tol) && (iter > miniter) && (t(b) %*% x > 0)) break if ((iter > stagnate_check) && (iter > 10)){ ratio = resnrm[(iter-9):(iter+1)]/resnrm[(iter-10):iter] if ((min(ratio) > 0.997) && (max(ratio) < 1.003)){ if (printlevel) cat('s') solve_ok = -1 break } } if (abs(rho_old) < tiny){ solve_ok = 2 cat('s2') break }else{ rho = as.numeric(t(r) %*% u) beta = rho/rho_old q = u + beta*q } rho_old = rho tau_old = tau theta_old = theta } if (iter == maxit) solve_ok = -2 if (solve_ok != -1){ if (printlevel) cat(' ') } return (list("x"=x,"resnrm"=resnrm,"solve_ok"=solve_ok)) } precondfun = function(L,r){ precond = L$precond if (precond == 0){ q = r } else if (precond == 1){ q = L$invdiagM * r } else if (precond == 2){ q = backsolve(L$R,r) } return(q) } vecMultiply = function(ff,x){ Z = ff$Z ZT = ff$ZT y = ff$y const = ff$const d = length(x) - 1 w = x[1:d]; beta = x[d+1] tmp = as.matrix(ZT %*% w) + beta*y Aq = matrix(0,d+1,1) Aq[1:d] = as.matrix(Z %*% tmp) + const*w Aq[d+1] = t(y) %*% tmp return (Aq) }
nb.theta<-function (par, a, w, x, y, offset, beta) { b<- par if (!is.null(offset)) { Xb <- cbind(offset, w, x) %*% c(1, b, beta) } else { Xb <- cbind(w, x) %*% c(b, beta) } contri.LL<- y*log((a*exp(Xb))/(1+ (a*exp(Xb)))) -(1/a)*log(1+ (a*exp(Xb))) + lgamma(y+ (1/a)) - lgamma(y+1) - lgamma(1/a) loglik <- sum(contri.LL) -loglik }
library(tidymodels) library(lubridate) get_date <- function(x) { x <- basename(x) x <- strsplit(x, "_") x <- map(x, ~ .x[3:8]) x <- map(x, ~ gsub("\\.RData", "", .x)) x <- map_chr(x, paste0, collapse = "-") ymd_hms(x) } get_times <- function(x) { load(x) res <- times %>% mutate(date = get_date(x)) res } rdata <- list.files(path = "extras/parallel_times/", pattern = "\\.RData", full.names = TRUE) rdata <- rdata[!grepl("xgb_times", rdata)] rdata <- rdata[!grepl("logging_data", rdata)] all_times <- map_dfr(rdata, get_times) seq <- all_times %>% filter(num_cores == 1) %>% dplyr::rename(seq_time = elapsed) %>% select(-num_cores, -date) times <- full_join(all_times, seq, by = c("num_resamples", "num_grid", "preproc", "par_method")) %>% mutate( time_per_fit = elapsed/(num_grid * num_resamples), speed_up = seq_time/elapsed, preprocessing = gsub(" preprocessing", "", preproc), preprocessing = ifelse(preprocessing == "no", "none", preprocessing), preprocessing = factor(preprocessing, levels = c("none", "light", "expensive")), parallel_over = par_method ) if (interactive()) { ggplot(times, aes(x = num_cores, y = elapsed, col = parallel_over, shape = parallel_over)) + geom_point() + geom_line() + facet_wrap(~ preprocessing) + labs(x = "Number of Workers", y = "Execution Time (s)") + scale_y_log10() + theme_bw() + theme(legend.position = "top") times %>% filter(preprocessing == "none") %>% ggplot(aes(x = num_cores, y = speed_up, col = preprocessing, shape = preprocessing)) + geom_abline(lty = 1) + geom_point() + geom_line() + facet_wrap(~ par_method) + coord_obs_pred() + labs(x = "Number of Workers", y = "Speed-up", title = "5 resamples, 10 grid points") + theme_bw() + theme(legend.position = "top") times %>% filter(preprocessing != "expensive") %>% ggplot(aes(x = num_cores, y = speed_up, col = preprocessing, shape = preprocessing)) + geom_abline(lty = 1) + geom_point() + geom_line() + facet_wrap(~ par_method) + coord_obs_pred() + labs(x = "Number of Workers", y = "Speed-up", title = "5 resamples, 10 grid points") + theme_bw() + theme(legend.position = "top") ggplot(times, aes(x = num_cores, y = speed_up, col = parallel_over, shape = parallel_over)) + geom_abline(lty = 1) + geom_point() + geom_line() + facet_wrap(~ preprocessing) + coord_obs_pred() + labs(x = "Number of Workers", y = "Speed-up", title = "5 resamples, 10 grid points") + theme_bw() + theme(legend.position = "top") } save(times, file = "extras/parallel_times/xgb_times.RData") q("no")
confint.expectreg <- function(object, parm=NULL, level=0.95,...) { if(is.null(object$covmat)) stop("No covariance matrix calculated.") res = list() if(any(object$design[,1] != 1)) center = FALSE else center = TRUE if(is.null(parm)) for(i in 1:length(object$asymmetries)) { res[[i]] = matrix(NA,nrow=nrow(object$design),ncol=2) colnames(res[[i]]) = c(paste(eval((1-level)/2),"%"),paste(eval((1+level)/2),"%")) for(j in 1:nrow(object$design)) { deviation = qnorm((1+level)/2) * sqrt(t(object$design[j,]) %*% object$covmat[[i]] %*% object$design[j,]) res[[i]][j,] = c(fitted(object)[j,i] - deviation, fitted(object)[j,i] + deviation) } } else { nb = NULL for(i in 1:length(object$coefficients)) nb = c(nb,nrow(object$coefficients[[i]])) PB = NULL Koff = NULL for(k in 1:length(parm)) { co = which(names(object$covariates) == parm[k]) partbasis = (sum(nb[0:(co-1)])+1):(sum(nb[0:co])) if(center) partbasis = partbasis+1 PB = c(PB,partbasis) Koff = rbind(Koff,object$coefficients[[co]]) } if(center) { PB = c(1,PB) Koff = rbind(object$intercept,Koff) } B = object$design[,PB,drop=FALSE] fitti = B %*% Koff for(i in 1:length(object$asymmetries)) { res[[i]] = matrix(NA,nrow=nrow(B),ncol=2) colnames(res[[i]]) = c(paste(eval((1-level)/2),"%"),paste(eval((1+level)/2),"%")) for(j in 1:nrow(B)) { deviation = qnorm((1+level)/2) * sqrt(t(B[j,]) %*% object$covmat[[i]][PB,PB] %*% B[j,]) res[[i]][j,] = c(fitti[j,i] - deviation, fitti[j,i] + deviation) } } } res }
test_that("bq_perform_upload creates job that succeeds", { ds <- bq_test_dataset() bq_mtcars <- bq_table(ds, "mtcars") job <- bq_perform_upload(bq_mtcars, mtcars) expect_s3_class(job, "bq_job") expect_message(bq_job_wait(job, quiet = FALSE), "Input") expect_message(bq_job_wait(job, quiet = FALSE), "Output") expect_true(bq_table_exists(bq_mtcars)) }) test_that("bq_perform_copy creates job that succeeds", { ds <- bq_test_dataset() src <- as_bq_table("bigquery-public-data.moon_phases.moon_phases") dst <- bq_table(ds, "my_moon") job <- bq_perform_copy(src, dst) expect_s3_class(job, "bq_job") expect_message(bq_job_wait(job, quiet = FALSE), "Complete") expect_true(bq_table_exists(dst)) }) test_that("can round trip extract + load", { ds_public <- bq_dataset("bigquery-public-data", "moon_phases") ds_mine <- bq_test_dataset() tb <- bq_dataset_query(ds_public, query = "SELECT COUNT(*) as count FROM moon_phases", billing = bq_test_project() ) tmp <- gs_test_object() job <- bq_perform_extract(tb, tmp) bq_job_wait(job) tb_ks <- bq_table(ds_mine, "natality_ks") job <- bq_perform_load(tb_ks, tmp) bq_job_wait(job) df <- bq_table_download(tb_ks) expect_equal(nrow(df), 1) expect_named(df, "count") }) test_that("bq_perform_query creates job that succeeds", { ds <- as_bq_dataset("bigquery-public-data.moon_phases") job <- bq_perform_query( "SELECT count(*) FROM moon_phases", billing = bq_test_project(), default_dataset = ds ) expect_s3_class(job, "bq_job") expect_message(bq_job_wait(job, quiet = FALSE), "Billed") job_tb <- bq_job_table(job) expect_true(bq_table_exists(job_tb)) }) test_that("can supply scalar parameters", { job <- bq_project_query( bq_test_project(), "SELECT 1 + @x", parameters = list(x = bq_param_scalar(1)) ) df <- bq_table_download(job) expect_setequal(df[[1]], 2) }) test_that("can supply array parameters", { job <- bq_project_query( bq_test_project(), "SELECT values FROM UNNEST(@x) values", parameters = list(x = bq_param_array(c("a", "b"))) ) df <- bq_table_download(job) expect_setequal(df$values, c("a", "b")) }) test_that("can estimate cost", { cost <- bq_perform_query_dry_run( "SELECT count(*) FROM bigquery-public-data.moon_phases.moon_phases", billing = bq_test_project() ) expect_equal(cost, structure(0, class = "bq_bytes")) })
summary.tegarch <- function(object, verbose=FALSE, ...) { if(verbose){ out <- object[-1] }else{ if(is.null(object$hessian)){ out <- object[-c(1,3:7)] }else{ out <- object[-c(1,3:8)] } } return(out) }
install.packages("devtools");install.packages("RJSONIO") library(devtools);library(RJSONIO) install_github(repo = "CTSgetR", username = "dgrapov") library(CTSgetR) install_github(repo = "CIRgetR", username = "dgrapov") library(CIRgetR) id<-c("ZKHQWZAMYRWXGA-KQYNXXCUSA-N", "BAWFJGJZGIEFAR-NNYOXOHSSA-O","QNAYBMKLOCPYGJ-REOHCLBHSA-N") write.csv(data.frame(InchiKey=id),file="InchIKeys.csv",row.names=FALSE) id<-read.csv(file="InchIKeys.csv",header=TRUE) results<-CIRgetR(id,to= "chemspider_id",return.all=FALSE) results2<-CTSgetR(id,from="InChIKey",to="ChemSpider",parallel=FALSE) miss.match<-!as.matrix(results2)%in%as.matrix(results)|!as.matrix(results)%in%as.matrix(results2) paste(sum(miss.match),"difference(s) between results",sep=" ") data.frame(CIR= results[,1], CTS = results2[,1])[miss.match,] CSid<-results[miss.match,] results3<-CTSgetR(CSid,from="ChemSpider",to="InChIKey",parallel=FALSE) <<<<<<< HEAD if(as.matrix(results3)==as.matrix(id[miss.match,,drop=FALSE]))cat("codes match!","\n") else cat("codes DO NOT match!","\n") ======= if(results3==id[miss.match])cat("codes match!","\n") else cat("codes DO NOT match!","\n") >>>>>>> 527fe4c248ad2040b68cecee54e55a80e05bade5 CIR.options<-c("smiles", "names", "iupac_name", "cas", "inchi", "stdinchi", "inchikey", "stdinchikey", "ficts", "ficus", "uuuuu", "image", "file", "mw", "monoisotopic_mass","chemspider_id", "pubchem_sid", "chemnavigator_sid", "formula", "chemnavigator_sid") all.results.CIR<-sapply(1:length(CIR.options), function(i) { cat(CIR.options[i],"\n") CIRgetR(id=id,to=CIR.options[i],return.all=FALSE) }) names(all.results.CIR)<-CIR.options all.results.CIR<-data.frame(all.results.CIR ) CTS.options<-CTS.options() CTS.options id<-results2 all.results.CTS<-sapply(1:length(CTS.options), function(i) { cat(CTS.options[i],"\n") CTSgetR(id=id,to=CTS.options[i],from="ChemSpider") }) names(all.results.CTS)<-CTS.options all.results.CTS<-data.frame(all.results.CTS) CIR.error<-round(((sum(unlist(all.results.CIR)=="<h1>Page not found (404)</h1>")/length(unlist(id))))/length(CIR.options)*100,0) CTS.error<-round((sum(unlist(all.results.CTS)=="error")/length(unlist(id)))/length(CTS.options)*100,0) data.frame(CIR.error=CIR.error,CTS.error=CTS.error) <<<<<<< HEAD best<-c("all.results.CIR","all.results.CTS")[which.min(c(CIR.error,CTS.error))[1]] cat("Best results: ",best, "\n") ======= best<-c("all.results.CIR","all.results.CTS")[which.min(c(CIR.error,CST.error))[1]] >>>>>>> 527fe4c248ad2040b68cecee54e55a80e05bade5 write.csv(get(best),file="best translation.csv") <<<<<<< HEAD id<-"ZKHQWZAMYRWXGA-KQYNXXCUSA-N" image.url<-as.character(unlist(CIRgetR(id,to= "image",return.all=FALSE) )) download.file(image.url,"image.gif") install.packages("caTools") library(caTools) gif <- read.gif(image.url, verbose = TRUE, flip = TRUE) par(pin=c(2,2)) ======= download.file("http://cactus.nci.nih.gov/chemical/structure/ZKHQWZAMYRWXGA-KQYNXXCUSA-N/image","image.gif") install.packages("caTools") library(caTools) gif <- read.gif(image.url, verbose = TRUE, flip = TRUE) par(pin=c(2,2)) >>>>>>> 527fe4c248ad2040b68cecee54e55a80e05bade5 image(gif$image, col = gif$col, main = gif$comment, frame.plot=FALSE,xaxt="n", yaxt="n")
"beta"
msl.fileplot <- function(x, resol = 1800, wdir = " ", file_name = " ", type = 1, ci = 1, header = TRUE) { object <- x summ <- object$Summary graphics.off() if (class(object) == "msl.trend" | class(object) == "custom.trend") { class(object) <- class(object) } else { stop("object is not an msl.trend or custom.trend object: plotting terminated") } if (wdir == " ") { stop("User must input a directory to send plot file: plotting terminated") } else { wdir <- wdir } if (header == TRUE | header == FALSE) { header <- header } else { print("default header setting applied") header <- TRUE } if (any(is.na(summ$MSL)) == TRUE) { p <- 0 } else { p <- 1 } n <- length(summ[, 1]) n2 <- n - 3 summ2 <- summ[4:n2, ] if (type == 1 | type == 2 | type == 3 | type == 4 | type == 5) { type <- type } else { print("default type (3 Panel) setting applied") type <- 1 } if (ci == 1 | ci == 2) { ci <- ci } else { print("default 95% CONFIDENCE INTERVAL setting applied") ci <- 1 } if (ci == 2) { ci = 2.575 lab1 <- paste("99% Confidence Interval") } else { ci = 1.96 lab1 <- paste("95% Confidence Interval") } if (resol >= 300 && resol <= 1800) { resol <- resol } else { print("default resolution setting (1800 dpi) applied") resol <- 1800 } if (file_name == " ") { file_name <- "Plot1.jpeg" print("output can be found in defined directory as Plot1.jpeg") } else { file_name <- paste0(file_name,".jpeg") } if (object$Vertical.Land.Motion$mm.yr == "NA") { p2 <- 0 } else { p2 <- 1 labe <- paste0("Vertical Land Motion = ", object$Vertical.Land.Motion$mm.yr, " mm/year") } if (summ$Trend[n] - summ$Trend[1] < 0) { laba = paste("topright") labb = paste("bottomleft") } else { laba = paste("topleft") labb = paste("bottomright") } if (requireNamespace("plyr", quietly = TRUE)) { plyr::round_any } if (n < 100) { xtic = 10 xlo <- plyr::round_any(min(summ[, 1]), 10, floor) xhi <- plyr::round_any(max(summ[, 1]), 10, ceiling) } else { xtic = 20 xlo <- plyr::round_any(min(summ[, 1]), 20, floor) xhi <- plyr::round_any(max(summ[, 1]), 20, ceiling) } xlim = c(xlo, xhi) if (type == 1) { if (header == TRUE) { out <- c(4.1, 5.5, 2.1, 0.2) } else { out <- c(4.1, 5.5, 0.2, 0.2) } grDevices::jpeg(file.path(wdir, file_name), width = 160, height = 210, units = "mm", res = resol) opar <- par(no.readonly = TRUE) on.exit(par(opar)) par(mfrow = c(3, 1), las = 1) par(oma = out) par(mar = c(0,0,0,0), las = 1) ylen <- max(summ[, 2], na.rm = TRUE) - min(summ[, 2], na.rm = TRUE) if (ylen < 200) { ytic = 20 ylo <- plyr::round_any(min(summ[, 2], na.rm = TRUE), 20, floor) yhi <- plyr::round_any(max(summ[, 2], na.rm = TRUE), 20, ceiling) } else { ytic = 50 ylo <- plyr::round_any(min(summ[, 2], na.rm = TRUE), 50, floor) yhi <- plyr::round_any(max(summ[, 2], na.rm = TRUE), 50, ceiling) } ylim = c(ylo, yhi) plot(summ[, 1], summ[, 2], type = "n", axes = F, lty = 0, xlim = xlim, ylim = ylim, xlab = NA, ylab = NA) rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = "lightcyan1") graphics::box() polygon(c(summ[, 1], rev(summ[, 1])), c((summ[, 3] + ci * summ[, 4]), rev((summ[, 3] - ci * summ[, 4]))), col = "azure3", border = NA) title(ylab = "Millimetres", outer = TRUE, font.lab = 2, cex.lab = 1.3, line = 3.9, adj = 0.87) axis(side = 2, tck = -0.025, at = seq(ylo, yhi, by = ytic), outer = TRUE, labels = NA) axis(side = 2, at = seq(ylo, yhi, by = ytic), cex.axis = 1.1) if (p == 0) { lines(summ[, 1], summ[, 10], col = "red") lines(summ[, 1], summ[, 2]) lines(summ[, 1], summ[, 3], lwd = 2) legend(laba, legend = "Relative Mean Sea Level (MSL)", inset = c(-0.02, -0.01), bty = "n", text.font = 2, cex = 1.4) legend(labb, bg = "white", legend = c("KEY", "Annual Average Data", "Gap Filling", "MSL Trend", lab1, "Peak Rate"), text.font = c(2, 1, 1, 1, 1, 1), lty = c(0, 1, 1, 1, 1, 3), lwd = c(1, 1, 1, 3, 8, 2), col = c("black", "black", "red", "black", "azure3", "blue"), cex = c(0.9, 0.9, 0.9, 0.9, 0.9, 0.9)) } if (p == 1) { lines(summ[, 1], summ[, 2]) lines(summ[, 1], summ[, 3], lwd = 2) legend(laba, legend = "Relative Mean Sea Level (MSL)", inset = c(-0.02, -0.01), bty = "n", text.font = 2, cex = 1.4) legend(labb, bg = "white", legend = c("KEY", "Annual Average Data", "MSL Trend", lab1, "Peak Rate"), text.font = c(2, 1, 1, 1, 1), lty = c(0, 1, 1, 1, 3), lwd = c(1, 1, 3, 8, 3), col = c("black", "black", "black", "azure3", "blue"), cex = c(0.9, 0.9, 0.9, 0.9, 0.9)) } par(mar = c(0, 0, 0, 0), las = 1) minV <- min((summ[, 5] - ci * summ[, 6]), summ$VelGeo, na.rm = TRUE) maxV <- max((summ[, 5] + ci * summ[, 6]), summ$VelGeo, na.rm = TRUE) ylen <- maxV - minV if (ylen <= 1) { ytic = 0.1 ylo <- plyr::round_any(minV - ylen * 0.15, 0.1, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 0.1, ceiling) } if (ylen > 1 & ylen <= 2) { ytic = 0.2 ylo <- plyr::round_any(minV - ylen * 0.15, 0.2, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 0.2, ceiling) } if (ylen > 2 & ylen <= 5) { ytic = 0.5 ylo <- plyr::round_any(minV - ylen * 0.15, 0.5, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 0.5, ceiling) } if (ylen > 5 & ylen <= 10) { ytic = 1 ylo <- plyr::round_any(minV - ylen * 0.15, 1, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 1, ceiling) } if (ylen > 10) { ytic = 2 ylo <- plyr::round_any(minV - ylen * 0.15, 2, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 2, ceiling) } ylim = c(ylo, yhi) plot(summ[, 1], summ[, 5], type = "n", axes = F, lty = 0, xlim = xlim, ylim = ylim, xlab = NA, ylab = NA) rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = "lightcyan1") graphics::box() polygon(c(summ[, 1], rev(summ[, 1])), c((summ[, 5] + ci * summ[, 6]), rev((summ[, 5] - ci * summ[, 6]))), col = "azure3", border = NA) lines(summ[, 1], summ[, 5], lwd = 2) abline(h = 0, lty = 2) abline(h = max(summ[, 5]), lty = 3, col = "blue", lwd = 2) if (p2 == 0) { legend("topleft", legend = "Relative Velocity (MSL)", inset = c(-0.02, -0.01), bty = "n", text.font = 2, cex = 1.4) } else { legend("topleft", legend = "Velocity (MSL)", inset = c(-0.02, -0.01), bty = "n", text.font = 2, cex = 1.4) legend("bottomleft", legend = labe, inset = c(-0.005, -0.005), bty = "n", text.font = 1, cex = 1.0) legend("bottomright", bg = "white", legend = c("KEY", "Relative Velocity", "Geocentric Velocity"), text.font = c(2, 1, 1), lty = c(0, 1, 1), lwd = c(1, 3, 3), col = c("black", "black", "red"), cex = c(0.9, 0.9, 0.9)) lines(summ[, 1], summ$VelGeo, lwd = 2, col = "red") } title(ylab = "Millimetres/yr", outer = TRUE, font.lab = 2, cex.lab = 1.3, line = 3.9, adj = 0.5) axis(side = 2, tck = -0.025, at = seq(ylo, yhi, by = ytic), outer = TRUE, labels = NA) axis(side = 2, at = seq(ylo, yhi, by = ytic), cex.axis = 1.1) par(mar = c(0, 0, 0, 0), las = 1) ylen <- max(summ2[, 7] + ci * summ2[, 8]) - min(summ2[, 7] - ci * summ2[, 8]) if (ylen <= 0.1) { ytic = 0.01 ylo <- plyr::round_any(min(summ2[, 7] - ci * summ2[, 8]) - ylen * 0.15, 0.01, floor) yhi <- plyr::round_any(max(summ2[, 7] + ci * summ2[, 8]) + ylen * 0.15, 0.01, ceiling) } if (ylen > 0.1 & ylen <= 0.2) { ytic = 0.02 ylo <- plyr::round_any(min(summ2[, 7] - ci * summ2[, 8]) - ylen * 0.15, 0.02, floor) yhi <- plyr::round_any(max(summ2[, 7] + ci * summ2[, 8]) + ylen * 0.15, 0.02, ceiling) } if (ylen > 0.2 & ylen <= 0.5) { ytic = 0.05 ylo <- plyr::round_any(min(summ2[, 7] - ci * summ2[, 8]) - ylen * 0.15, 0.05, floor) yhi <- plyr::round_any(max(summ2[, 7] + ci * summ2[, 8]) + ylen * 0.15, 0.05, ceiling) } if (ylen > 0.5 & ylen <= 1) { ytic = 0.1 ylo <- plyr::round_any(min(summ2[, 7] - ci * summ2[, 8]) - ylen * 0.15, 0.1, floor) yhi <- plyr::round_any(max(summ2[, 7] + ci * summ2[, 8]) + ylen * 0.15, 0.1, ceiling) } if (ylen > 1) { ytic = 0.2 ylo <- plyr::round_any(min(summ2[, 7] - ci * summ2[, 8]) - ylen * 0.15, 0.2, floor) yhi <- plyr::round_any(max(summ2[, 7] + ci * summ2[, 8]) + ylen * 0.15, 0.2, ceiling) } ylim = c(ylo, yhi) plot(summ2[, 1], summ2[, 7], type = "n", axes = F, lty = 0, xlim = xlim, ylim = ylim, xlab = NA, ylab = NA) rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = "lightcyan1") graphics::box() polygon(c(summ2[, 1], rev(summ2[, 1])), c((summ2[, 7] + ci * summ2[, 8]), rev((summ2[, 7] - ci * summ2[, 8]))), col = "azure3", border = NA) lines(summ2[, 1], summ2[, 7], lwd = 2) abline(h = 0, lty = 2) abline(h = max(summ2[, 7]), lty = 3, col = "blue", lwd = 2) legend("topleft", legend = "Acceleration (MSL)", inset = c(-0.02, -0.01), bty = "n", text.font = 2, cex = 1.4) title(ylab = expression(paste(bold("Millimetres/yr" ^ "2"))), outer = TRUE, font.lab = 2, cex.lab = 1.3, line = 3.9, adj = 0.12) title(xlab = "Year", outer = TRUE, font.lab = 2, cex.lab = 1.3, line = 2.6) axis(side = 1, tck = -0.030, at = seq(xlo, xhi, by = xtic), outer = TRUE, labels = NA) axis(side = 1, at = seq(xlo, xhi, by = xtic), outer = TRUE, lwd = 0, line = 0.1, cex.axis = 1.1) axis(side = 2, tck = -0.025, at = seq(ylo, yhi, by = ytic), outer = TRUE, labels = NA) axis(side = 2, at = seq(ylo, yhi, by = ytic), cex.axis = 1.1) graphics::mtext(object$Station.Name, side = 3, outer = TRUE, font = 2, line = 0.35, cex = 1.2, adj = 0.5) graphics::par(opar) grDevices::dev.off() } if (type == 2) { if (header == TRUE) { out <- c(2.6, 4.0, 1.5, 0.2) } else { out <- c(2.6, 4.0, 0.2, 0.2) } grDevices::jpeg(file.path(wdir, file_name), width = 160, height = 80, units = "mm", res = resol) opar <- par(no.readonly = TRUE) on.exit(par(opar)) par(oma = out) par(mar = c(0,0,0,0), las = 1) ylen <- max(summ[, 2], na.rm = TRUE) - min(summ[, 2], na.rm = TRUE) if (ylen < 200) { ytic = 20 ylo <- plyr::round_any(min(summ[, 2], na.rm = TRUE), 20, floor) yhi <- plyr::round_any(max(summ[, 2], na.rm = TRUE), 20, ceiling) } else { ytic = 50 ylo <- plyr::round_any(min(summ[, 2], na.rm = TRUE), 50, floor) yhi <- plyr::round_any(max(summ[, 2], na.rm = TRUE), 50, ceiling) } ylim = c(ylo, yhi) plot(summ[, 1], summ[, 2], type = "n", axes = F, lty = 0, xlim = xlim, ylim = ylim, xlab = NA, ylab = NA) rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = "lightcyan1") graphics::box() polygon(c(summ[, 1], rev(summ[, 1])), c((summ[, 3] + ci * summ[, 4]), rev((summ[, 3] - ci * summ[, 4]))), col = "azure3", border = NA) title(ylab = "Millimetres", outer = TRUE, font.lab = 2, cex.lab = 0.9, line = 2.8) title(xlab = "Year", outer = TRUE, font.lab = 2, cex.lab = 0.9, line = 1.5) axis(side = 1, tck = -0.030, at = seq(xlo, xhi, by = xtic), outer = TRUE, labels = NA) axis(side = 1, at = seq(xlo, xhi, by = xtic), outer = TRUE, lwd = 0, line = -0.5, cex.axis = 0.75) axis(side = 2, tck = -0.025, at = seq(ylo, yhi, by = ytic), outer = TRUE, labels = NA) axis(side = 2, at = seq(ylo, yhi, by = ytic), cex.axis = 0.75) graphics::mtext(object$Station.Name, side = 3, outer = TRUE, font = 2, line = 0.20, cex = 1.1, adj = 0.5) if (p == 0) { lines(summ[, 1], summ[, 10], col = "red") lines(summ[, 1], summ[, 2]) lines(summ[, 1], summ[, 3], lwd = 2) legend(laba, legend = "Relative Mean Sea Level (MSL)", inset = c(-0.03, -0.01), bty = "n", text.font = 2, cex = 0.85) legend(labb, bg = "white", legend = c("KEY", "Annual Average Data", "Gap Filling", "MSL Trend", lab1), text.font = c(2, 1, 1, 1, 1), lty = c(0, 1, 1, 1, 1), lwd = c(1, 1, 1, 3, 8), col = c("black", "black", "red", "black", "azure3"), cex = c(0.5, 0.5, 0.5, 0.5, 0.5)) } if (p == 1) { lines(summ[, 1], summ[, 2]) lines(summ[, 1], summ[, 3], lwd = 2) legend(laba, legend = "Relative Mean Sea Level (MSL)", inset = c(-0.03, -0.01), bty = "n", text.font = 2, cex = 0.85) legend(labb, bg = "white", legend = c("KEY", "Annual Average Data", "MSL Trend", lab1), text.font = c(2, 1, 1, 1), lty = c(0, 1, 1, 1), lwd = c(1, 1, 3, 8), col = c("black", "black", "black", "azure3"), cex = c(0.5, 0.5, 0.5, 0.5)) } par(opar) grDevices::dev.off() } if (type == 3) { if (header == TRUE) { out <- c(2.6, 4.0, 1.5, 0.2) } else { out <- c(2.6, 4.0, 0.2, 0.2) } grDevices::jpeg(file.path(wdir, file_name), width = 160, height = 80, units = "mm", res = resol) opar <- par(no.readonly = TRUE) on.exit(par(opar)) par(oma = out) par(mar = c(0,0,0,0), las = 1) minV <- min((summ[, 5] - ci * summ[, 6]), summ$VelGeo, na.rm = TRUE) maxV <- max((summ[, 5] + ci * summ[, 6]), summ$VelGeo, na.rm = TRUE) ylen <- maxV - minV if (ylen <= 1) { ytic = 0.1 ylo <- plyr::round_any(minV - ylen * 0.15, 0.1, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 0.1, ceiling) } if (ylen > 1 & ylen <= 2) { ytic = 0.2 ylo <- plyr::round_any(minV - ylen * 0.15, 0.2, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 0.2, ceiling) } if (ylen > 2 & ylen <= 5) { ytic = 0.5 ylo <- plyr::round_any(minV - ylen * 0.15, 0.5, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 0.5, ceiling) } if (ylen > 5 & ylen <= 10) { ytic = 1 ylo <- plyr::round_any(minV - ylen * 0.15, 1, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 1, ceiling) } if (ylen > 10) { ytic = 2 ylo <- plyr::round_any(minV - ylen * 0.15, 2, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 2, ceiling) } ylim = c(ylo, yhi) plot(summ[, 1], summ[, 5], type = "n", axes = F, lty = 0, xlim = xlim, ylim = ylim, xlab = NA, ylab = NA) rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = "lightcyan1") graphics::box() polygon(c(summ[, 1], rev(summ[, 1])), c((summ[, 5] + ci * summ[, 6]), rev((summ[, 5] - ci * summ[, 6]))), col = "azure3", border = NA) lines(summ[, 1], summ[, 5], lwd = 2) abline(h = 0, lty = 2) abline(h = max(summ[, 5]), lty = 3, col = "blue", lwd = 2) if (p2 == 0) { legend("topleft", legend = "Relative Velocity (MSL)", inset = c(-0.03, -0.01), bty = "n", text.font = 2, cex = 0.85) legend("bottomright", bg = "white", legend = c("KEY", "MSL Velocity", "Peak Rate", lab1), text.font = c(2, 1, 1, 1), lty = c(0, 1, 3, 1), lwd = c(1, 2, 2, 8), col = c("black", "black", "blue", "azure3"), cex = c(0.5, 0.5, 0.5, 0.5)) } else { legend("topleft", legend = "Velocity (MSL)", inset = c(-0.03, -0.01), bty = "n", text.font = 2, cex = 0.85) legend("bottomleft", legend = labe, inset = c(-0.005, -0.005), bty = "n", text.font = 1, cex = 0.6) legend("bottomright", bg = "white", legend = c("KEY", "Relative Velocity", "Peak Rate", lab1, "Geocentric Velocity"), text.font = c(2, 1, 1, 1, 1), lty = c(0, 1, 3, 1, 1), lwd = c(1, 2, 2, 8, 2), col = c("black", "black", "blue", "azure3", "red"), cex = c(0.5, 0.5, 0.5, 0.5, 0.5)) lines(summ[, 1], summ$VelGeo, lwd = 2, col = "red") } title(ylab = "Millimetres/yr", outer = TRUE, font.lab = 2, cex.lab = 0.9, line = 2.8) title(xlab = "Year", outer = TRUE, font.lab = 2, cex.lab = 0.9, line = 1.5) axis(side = 1, tck = -0.030, at = seq(xlo, xhi, by = xtic), outer = TRUE, labels = NA) axis(side = 1, at = seq(xlo, xhi, by = xtic), outer = TRUE, lwd = 0, line = -0.5, cex.axis = 0.75) axis(side = 2, tck = -0.025, at = seq(ylo, yhi, by = ytic), outer = TRUE, labels = NA) axis(side = 2, at = seq(ylo, yhi, by = ytic), cex.axis = 0.75) graphics::mtext(object$Station.Name, side = 3, outer = TRUE, font = 2, line = 0.20, cex = 1.1, adj = 0.5) par(opar) grDevices::dev.off() } if (type == 4) { if (header == TRUE) { out <- c(2.6, 4.0, 1.5, 0.2) } else { out <- c(2.6, 4.0, 0.2, 0.2) } grDevices::jpeg(file.path(wdir, file_name), width = 160, height = 80, units = "mm", res = resol) opar <- par(no.readonly = TRUE) on.exit(par(opar)) par(oma = out) par(mar = c(0,0,0,0), las = 1) ylen <- max(summ2[, 7] + ci * summ2[, 8]) - min(summ2[, 7] - ci * summ2[, 8]) if (ylen <= 0.1) { ytic = 0.01 ylo <- plyr::round_any(min(summ2[, 7] - ci * summ2[, 8]) - ylen * 0.15, 0.01, floor) yhi <- plyr::round_any(max(summ2[, 7] + ci * summ2[, 8]) + ylen * 0.15, 0.01, ceiling) } if (ylen > 0.1 & ylen <= 0.2) { ytic = 0.02 ylo <- plyr::round_any(min(summ2[, 7] - ci * summ2[, 8]) - ylen * 0.15, 0.02, floor) yhi <- plyr::round_any(max(summ2[, 7] + ci * summ2[, 8]) + ylen * 0.15, 0.02, ceiling) } if (ylen > 0.2 & ylen <= 0.5) { ytic = 0.05 ylo <- plyr::round_any(min(summ2[, 7] - ci * summ2[, 8]) - ylen * 0.15, 0.05, floor) yhi <- plyr::round_any(max(summ2[, 7] + ci * summ2[, 8]) + ylen * 0.15, 0.05, ceiling) } if (ylen > 0.5 & ylen <= 1) { ytic = 0.1 ylo <- plyr::round_any(min(summ2[, 7] - ci * summ2[, 8]) - ylen * 0.15, 0.1, floor) yhi <- plyr::round_any(max(summ2[, 7] + ci * summ2[, 8]) + ylen * 0.15, 0.1, ceiling) } if (ylen > 1) { ytic = 0.2 ylo <- plyr::round_any(min(summ2[, 7] - ci * summ2[, 8]) - ylen * 0.15, 0.2, floor) yhi <- plyr::round_any(max(summ2[, 7] + ci * summ2[, 8]) + ylen * 0.15, 0.2, ceiling) } ylim = c(ylo, yhi) plot(summ2[, 1], summ2[, 7], type = "n", axes = F, lty = 0, xlim = xlim, ylim = ylim, xlab = NA, ylab = NA) rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = "lightcyan1") graphics::box() polygon(c(summ2[, 1], rev(summ2[, 1])), c((summ2[, 7] + ci * summ2[, 8]), rev((summ2[, 7] - ci * summ2[, 8]))), col = "azure3", border = NA) lines(summ2[, 1], summ2[, 7], lwd = 2) abline(h = 0, lty = 2) abline(h = max(summ2[, 7]), lty = 3, col = "blue", lwd = 2) legend("topleft", legend = "Acceleration (MSL)", inset = c(-0.03, -0.01), bty = "n", text.font = 2, cex = 0.85) legend("bottomright", bg = "white", legend = c("KEY", "MSL Acceleration", "Peak Acceleration", lab1), text.font = c(2, 1, 1, 1), lty = c(0, 1, 3, 1), lwd = c(1, 2, 2, 8), col = c("black", "black", "blue", "azure3"), cex = c(0.5, 0.5, 0.5, 0.5)) title(ylab = expression(paste(bold("Millimetres/yr" ^ "2"))), outer = TRUE, font.lab = 2, cex.lab = 0.9, line = 2.8) title(xlab = "Year", outer = TRUE, font.lab = 2, cex.lab = 0.9, line = 1.5) axis(side = 1, tck = -0.030, at = seq(xlo, xhi, by = xtic), outer = TRUE, labels = NA) axis(side = 1, at = seq(xlo, xhi, by = xtic), outer = TRUE, lwd = 0, line = -0.5, cex.axis = 0.75) axis(side = 2, tck = -0.025, at = seq(ylo, yhi, by = ytic), outer = TRUE, labels = NA) axis(side = 2, at = seq(ylo, yhi, by = ytic), cex.axis = 0.75) graphics::mtext(object$Station.Name, side = 3, outer = TRUE, font = 2, line = 0.20, cex = 1.1, adj = 0.5) par(opar) grDevices::dev.off() } if (type == 5) { if (header == TRUE) { out <- c(2.6, 4.0, 1.5, 0.2) } else { out <- c(2.6, 4.0, 0.2, 0.2) } grDevices::jpeg(file.path(wdir, file_name), width = 160, height = 150, units = "mm", res = resol) opar <- par(no.readonly = TRUE) on.exit(par(opar)) par(mfrow = c(2, 1), las = 1) par(oma = out) par(mar = c(0,0,0,0), las = 1) ylen <- max(summ[, 2], na.rm = TRUE) - min(summ[, 2], na.rm = TRUE) if (ylen < 200) { ytic = 20 ylo <- plyr::round_any(min(summ[, 2], na.rm = TRUE), 20, floor) yhi <- plyr::round_any(max(summ[, 2], na.rm = TRUE), 20, ceiling) } else { ytic = 50 ylo <- plyr::round_any(min(summ[, 2], na.rm = TRUE), 50, floor) yhi <- plyr::round_any(max(summ[, 2], na.rm = TRUE), 50, ceiling) } ylim = c(ylo, yhi) plot(summ[, 1], summ[, 2], type = "n", axes = F, lty = 0, xlim = xlim, ylim = ylim, xlab = NA, ylab = NA) rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = "lightcyan1") graphics::box() polygon(c(summ[, 1], rev(summ[, 1])), c((summ[, 3] + ci * summ[, 4]), rev((summ[, 3] - ci * summ[, 4]))), col = "azure3", border = NA) title(ylab = "Millimetres", outer = TRUE, font.lab = 2, cex.lab = 0.9, line = 3.0, adj = 0.8) axis(side = 2, tck = -0.025, at = seq(ylo, yhi, by = ytic), outer = TRUE, labels = NA) axis(side = 2, at = seq(ylo, yhi, by = ytic), cex.axis = 0.75) if (p == 0) { lines(summ[, 1], summ[, 10], col = "red") lines(summ[, 1], summ[, 2]) lines(summ[, 1], summ[, 3], lwd = 2) legend(laba, legend = "Relative Mean Sea Level (MSL)", inset = c(-0.02, -0.01), bty = "n", text.font = 2, cex = 0.85) legend(labb, bg = "white", legend = c("KEY", "Annual Average Data", "Gap Filling", "MSL Trend", lab1, "Peak Rate"), text.font = c(2, 1, 1, 1, 1, 1), lty = c(0, 1, 1, 1, 1, 3), lwd = c(1, 1, 1, 2, 8, 2), col = c("black", "black", "red", "black", "azure3", "blue"), cex = c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5)) } if (p == 1) { lines(summ[, 1], summ[, 2]) lines(summ[, 1], summ[, 3], lwd = 2) legend(laba, legend = "Relative Mean Sea Level (MSL)", inset = c(-0.02, -0.01), bty = "n", text.font = 2, cex = 0.85) legend(labb, bg = "white", legend = c("KEY", "Annual Average Data", "MSL Trend", lab1, "Peak Rate"), text.font = c(2, 1, 1, 1, 1), lty = c(0, 1, 1, 1, 3), lwd = c(1, 1, 2, 8, 2), col = c("black", "black", "black", "azure3", "blue"), cex = c(0.5, 0.5, 0.5, 0.5, 0.5, 0.5)) } par(mar = c(0,0,0,0), las = 1) minV <- min((summ[, 5] - ci * summ[, 6]), summ$VelGeo, na.rm = TRUE) maxV <- max((summ[, 5] + ci * summ[, 6]), summ$VelGeo, na.rm = TRUE) ylen <- maxV - minV if (ylen <= 1) { ytic = 0.1 ylo <- plyr::round_any(minV - ylen * 0.15, 0.1, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 0.1, ceiling) } if (ylen > 1 & ylen <= 2) { ytic = 0.2 ylo <- plyr::round_any(minV - ylen * 0.15, 0.2, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 0.2, ceiling) } if (ylen > 2 & ylen <= 5) { ytic = 0.5 ylo <- plyr::round_any(minV - ylen * 0.15, 0.5, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 0.5, ceiling) } if (ylen > 5 & ylen <= 10) { ytic = 1 ylo <- plyr::round_any(minV - ylen * 0.15, 1, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 1, ceiling) } if (ylen > 10) { ytic = 2 ylo <- plyr::round_any(minV - ylen * 0.15, 2, floor) yhi <- plyr::round_any(maxV + ylen * 0.15, 2, ceiling) } ylim = c(ylo, yhi) plot(summ[, 1], summ[, 5], type = "n", axes = F, lty = 0, xlim = xlim, ylim = ylim, xlab = NA, ylab = NA) rect(par("usr")[1], par("usr")[3], par("usr")[2], par("usr")[4], col = "lightcyan1") graphics::box() polygon(c(summ[, 1], rev(summ[, 1])), c((summ[, 5] + ci * summ[, 6]), rev((summ[, 5] - ci * summ[, 6]))), col = "azure3", border = NA) lines(summ[, 1], summ[, 5], lwd = 2) abline(h = 0, lty = 2) abline(h = max(summ[, 5]), lty = 3, col = "blue", lwd = 2) if (p2 == 0) { legend("topleft", legend = "Relative Velocity (MSL)", inset = c(-0.02, -0.01), bty = "n", text.font = 2, cex = 0.9) } if (p2 == 1) { legend("topleft", legend = "Velocity (MSL)", inset = c(-0.02, -0.01), bty = "n", text.font = 2, cex = 0.85) legend("topright", legend = labe, inset = c(0.03, 0.01), bty = "n", text.font = 1, cex = 0.6) legend("bottomright", bg = "white", legend = c("KEY", "Relative Velocity", "Geocentric Velocity"), text.font = c(2, 1, 1), lty = c(0, 1, 1), lwd = c(1, 3, 3), col = c("black", "black", "red"), cex = c(0.5, 0.5, 0.5)) lines(summ[, 1], summ$VelGeo, lwd = 2, col = "red") } title(ylab = "Millimetres/yr", outer = TRUE, font.lab = 2, cex.lab = 0.9, line = 3.0, adj = 0.2) title(xlab = "Year", outer = TRUE, font.lab = 2, cex.lab = 0.9, line = 1.5) axis(side = 1, tck = -0.030, at = seq(xlo, xhi, by = xtic), outer = TRUE, labels = NA) axis(side = 1, at = seq(xlo, xhi, by = xtic), outer = TRUE, lwd = 0, line = -0.5, cex.axis = 0.75) axis(side = 2, tck = -0.025, at = seq(ylo, yhi, by = ytic), outer = TRUE, labels = NA) axis(side = 2, at = seq(ylo, yhi, by = ytic), cex.axis = 0.75) graphics::mtext(object$Station.Name, side = 3, outer = TRUE, font = 2, line = 0.20, cex = 1.1, adj = 0.5) graphics::par(opar) grDevices::dev.off() } }
det_range<-function(data, model, times=50, ...){ nsize<-dim(data)[1] lam=rep(NA,times) for(i in 1:times){ ids = sample(1:nsize,nsize,replace=T) datasub.boot <- data[ids,] est_model_boot <- sem(model, data = datasub.boot) try(cv.out.boot <- cv_regsem(est_model_boot,...)) try(lam[i]<-cv.out.boot$fit[which.min(cv.out.boot$fits[cv.out.boot$fit[,2]==0,4])]) } if (sum(lam!=0,na.rm=T)==0){ warning("0 penalty is selected by all runs.") lb=0;ub=0; }else{ lb<-min(lam[lam!=0],na.rm=T) ub<-max(lam[lam!=0],na.rm=T) } Lam<-c(lb,ub) result<-list() result$lambdas<-lam result$lb<-lb result$ub<-ub result$zero_removed<-min(lam,na.rm=T)==0 return(result) }
geom_text_z <- function(mapping = NULL, data = NULL, stat = "identity", position = "identity", ..., parse = FALSE, nudge_x = 0, nudge_y = 0, check_overlap = FALSE, na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, material = list(), keep2d = FALSE) { if (!missing(nudge_x) || !missing(nudge_y)) { if (!missing(position)) { abort("You must specify either `position` or `nudge_x`/`nudge_y`.") } position <- position_nudge(nudge_x, nudge_y) } layer( data = data, mapping = mapping, stat = stat, geom = GeomTextZ, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( parse = parse, check_overlap = check_overlap, na.rm = na.rm, material = material, keep2d = keep2d, ... ) ) } GeomTextZ <- ggproto( "GeomTextZ", Geom, required_aes = c("x", "y", "z", "label"), default_aes = aes( colour = "black", size = 3.88, angle = 0, hjust = 0.5, vjust = 0.5, alpha = NA, family = "", fontface = 1, lineheight = 1.2 ), draw_panel = function(data, panel_params, coord, parse = FALSE, na.rm = FALSE, check_overlap = FALSE, orientation = 'xy', material = list(), keep2d = FALSE) { if (isTRUE(keep2d)) { grob2d <- GeomText$draw_panel(data, panel_params, coord, parse = parse, na.rm = na.rm, check_overlap = check_overlap) } else { grob2d <- ggplot2::zeroGrob() } lab <- data$label if (parse) { lab <- parse_safe(as.character(lab)) } data <- coord$transform(data, panel_params) if (is.character(data$vjust)) { data$vjust <- compute_just(data$vjust, data$y) } if (is.character(data$hjust)) { data$hjust <- compute_just(data$hjust, data$x) } rgl_call <- cryogenic::capture_call( spheres3d( x = data$x, y = data$y, z = 10, color = 'red', radius = 5, alpha = 0.3 )) spheres_grob <- snowcrash::encode_robj_to_rasterGrob(rgl_call) text3d_rgl_calls <- lapply(seq(nrow(data)), function(i) { cryogenic::capture_call( rgl_text_helper( str = lab[i], x = data$x[i], y = data$y[i], z = data$z[i], rot = 0, state = NULL, manual = TRUE, colour = data$colour[i], orientation = orientation ), defaults = material ) }) text3d_grob <- snowcrash::encode_robj_to_rasterGrob(text3d_rgl_calls) grid::grobTree( grob2d, text3d_grob ) }, draw_key = draw_key_text ) compute_just <- function(just, x) { inward <- just == "inward" just[inward] <- c("left", "middle", "right")[just_dir(x[inward])] outward <- just == "outward" just[outward] <- c("right", "middle", "left")[just_dir(x[outward])] unname(c(left = 0, center = 0.5, right = 1, bottom = 0, middle = 0.5, top = 1)[just]) } just_dir <- function(x, tol = 0.001) { out <- rep(2L, length(x)) out[x < 0.5 - tol] <- 1L out[x > 0.5 + tol] <- 3L out }
create_beast2_continue_cmd_from_options <- function(beast2_options) { beastier::check_beast2_options(beast2_options) testit::assert(file.exists(beast2_options$beast2_path)) testit::assert(file.exists(beastier::get_default_java_path())) cmds <- NULL if (beastier::is_jar_path(beast2_options$beast2_path)) { cmds <- c( beastier::get_default_java_path(), "-cp", beastier::add_quotes_if_has_spaces(beast2_options$beast2_path), beastier::get_beast2_main_class_name() ) testit::assert(file.exists(cmds[1])) } else { testit::assert(beastier::is_bin_path(beast2_options$beast2_path)) testit::assert(file.exists(beast2_options$beast2_path)) cmds <- beastier::add_quotes_if_has_spaces(beast2_options$beast2_path) } if (!beautier::is_one_na(beast2_options$rng_seed)) { cmds <- c(cmds, "-seed") cmds <- c(cmds, beast2_options$rng_seed) } if (!beautier::is_one_na(beast2_options$n_threads)) { cmds <- c(cmds, "-threads") cmds <- c(cmds, beast2_options$n_threads) } if (beast2_options$use_beagle == TRUE) { cmds <- c(cmds, "-beagle") } cmds <- c(cmds, "-statefile") cmds <- c( cmds, beastier::add_quotes_if_has_spaces(beast2_options$output_state_filename) ) cmds <- c(cmds, "-resume") if (beast2_options$overwrite == TRUE) { cmds <- c(cmds, "-overwrite") } cmds <- c( cmds, beastier::add_quotes_if_has_spaces(beast2_options$input_filename) ) cmds }
showMatrix3D <- function(Matrix = NULL, BestMatches=NULL, Cls=NULL,Imx=NULL, Toroid=TRUE, HeightScale=NULL, BmSize=0.5, RemoveOcean=T, ColorStyle = "Umatrix", ShowAxis=F, SmoothSlope=F, ClsColors = NULL, FileName = NULL){ if(is.null(ClsColors)) ClsColors = DefaultColorSequence() if(!requireNamespace("rgl", quietly = T)) stop("Package Rgl could not be loaded.") if(is.null(Matrix)) stop("Matrix needs to be given") quants=quantile(as.vector(Matrix),c(0.01,0.5,0.99)) minU=quants[1] maxU=quants[3] Matrix=(Matrix-minU)/(maxU-minU) quants2=quantile(as.vector(Matrix),c(0.01,0.5,0.99)) minU2=quants2[1] maxU2=quants2[3] if(is.null(HeightScale)){ HeightScale=round(maxU2/(2*max(minU2,0.05)),0) stretchFactor = sqrt(nrow(Matrix)^2 + ncol(Matrix)^2) / sqrt(50^2 + 80^2) } stretchFactor = sqrt(nrow(Matrix)^2 + ncol(Matrix)^2) / sqrt(50^2 + 80^2) indMax=which(Matrix>1,arr.ind=T) indMin=which(Matrix<0,arr.ind=T) if(length(indMax)>0) Matrix[indMax]=1 if(length(indMin)>0) Matrix[indMin]=0 if(!is.null(BestMatches)) if(is.null(Cls)) Cls = rep(1, nrow(BestMatches)) BestMatches = CheckBestMatches(BestMatches, Cls, shiny=F) CheckUmatrix(Matrix, shiny=F) CheckImx(Imx, shiny=F) if(Toroid){ tU <- ToroidUmatrix(Matrix,BestMatches,Cls) Matrix <- tU$Umatrix BestMatches <- tU$BestMatches Cls <- tU$Cls } bigImx = Imx if(SmoothSlope){ for(i in 1:10){ if(!is.null(Imx)){ tmpImx = bigImx for(x in 2:(nrow(Matrix)-1)){ for(y in 2:(ncol(Matrix)-1)){ if((Matrix[x-1,y] >= 0.3)&(tmpImx[x-1,y]==0)) bigImx[x,y] = 0 if((Matrix[x+1,y] >= 0.3)&(tmpImx[x+1,y]==0)) bigImx[x,y] = 0 if((Matrix[x,y-1] >= 0.3)&(tmpImx[x,y-1]==0)) bigImx[x,y] = 0 if((Matrix[x,y+1] >= 0.3)&(tmpImx[x,y+1]==0)) bigImx[x,y] = 0 } } } } } zcol = cut(Matrix,128) lines = seq(1, nrow(Matrix), len = nrow(Matrix)) columns = seq(1, ncol(Matrix), len = ncol(Matrix)) if(ColorStyle == "Umatrix") Colormap = c(" else if(ColorStyle == "Pmatrix") Colormap = c(" else stop("ColorStyle not found.") Nrlevels2 = 2*HeightScale*stretchFactor levelBreaks <- seq(0,1.000001,length.out=(Nrlevels2+1)) if(!is.null(Imx)){ Matrix[which(bigImx == 1)] = 0 if(!is.null(BestMatches)){ BestMatchesFilter = rep(T,nrow(BestMatches)) for(i in 1:nrow(Imx)){ for(j in 1:ncol(Imx)){ if(Imx[i,j] == 1){ if(!is.null(BestMatches)) BestMatchesFilter[(BestMatches[,2] == i) & (BestMatches[,3] == j)] = F } } } BestMatches = BestMatches[BestMatchesFilter,] if(!is.null(Cls)) Cls = Cls[BestMatchesFilter] } if(RemoveOcean){ oceanLine = apply(Matrix, 1, function(x) all(x==0)) startLine = min(which(!oceanLine),na.rm=T) endLine = length(oceanLine) - min(which(rev(!oceanLine)),na.rm=T) + 1 oceanCol = apply(Matrix, 2, function(x) all(x==0)) startCol = min(which(!oceanCol),na.rm=T) endCol = length(oceanCol) - min(which(rev(!oceanCol)),na.rm=T) + 1 if(!is.null(BestMatches)){ BestMatches <- BestMatches - cbind(rep(0,nrow(BestMatches)),startLine-1,startCol-1) } Matrix <- Matrix[startLine:endLine,startCol:endCol] Imx <- Imx[startLine:endLine,startCol:endCol] bigImx <- bigImx[startLine:endLine,startCol:endCol] } } splittedMatrix = Matrix for(i in 1:Nrlevels2){ splittedMatrix[ (Matrix >= levelBreaks[i]) & (Matrix <= levelBreaks[i+1]) ] = levelBreaks[i] } splittedMatrix=(floor(splittedMatrix * length(Colormap)))+1 color = Colormap[splittedMatrix] if(!is.null(Imx)) color[which(bigImx == 1)] = NA z<-Matrix*HeightScale*stretchFactor lines = seq(1, nrow(z), len = nrow(z)) columns = seq(1, ncol(z), len = ncol(z)) rgl::open3d() if(ShowAxis){ rgl::material3d(col = "black") rgl::persp3d(x=lines, y=columns, z=z, color=color, aspect=FALSE, lit=F,box=F, texmagfilter="nearest", texminfilter="nearest", texenvmap=TRUE) } else{ rgl::surface3d(x=lines, y=columns, z=z, color=color, aspect=FALSE, lit=F) } if(!is.null(FileName)){ rgl::writeSTL(FileName) } if(!is.null(BestMatches)){ if(length(ClsColors) < length(DefaultColorSequence())) ClsColors = c(ClsColors, DefaultColorSequence()[(length(ClsColors)+1):(length(DefaultColorSequence()))]) ColorClass = c() for(i in 1:length(unique(Cls))) ColorClass[Cls == sort(unique(Cls))[i]] = i BestMatchesHeights <- sapply(1:nrow(BestMatches), function(x) z[BestMatches[x,2],BestMatches[x,3]]) if(is.list(BestMatchesHeights)) BestMatchesHeights = unlist(BestMatchesHeights) bmuIds = rgl::spheres3d(x=BestMatches[,2],BestMatches[,3], BestMatchesHeights, col = ClsColors[ColorClass], radius = BmSize) } lines = contourLines(lines,columns,z, nlevels = 35) for (i in seq_along(lines)) { x <- lines[[i]]$x y <- lines[[i]]$y z <- rep(lines[[i]]$level, length(x)) rgl::lines3d(x, y, z) } }
lda_thomaz <- function(x, ...) { UseMethod("lda_thomaz") } lda_thomaz.default <- function(x, y, prior = NULL, ...) { x <- pred_to_matrix(x) y <- outcome_to_factor(y) complete <- complete.cases(x) & complete.cases(y) x <- x[complete,,drop = FALSE] y <- y[complete] obj <- regdiscrim_estimates(x = x, y = y, prior = prior, cov = TRUE) cov_eigen <- eigen(obj$cov_pool, symmetric = TRUE) evals <- cov_eigen$values mean_eval <- mean(evals) evals[evals < mean_eval] <- mean_eval if (obj$p > 1) { obj$cov_pool <- with(cov_eigen, tcrossprod(vectors %*% diag(evals), vectors)) obj$cov_inv <- with(cov_eigen, tcrossprod(vectors %*% diag(1 / evals), vectors)) } else { obj$cov_pool <- with(cov_eigen, tcrossprod(vectors %*% as.matrix(evals), vectors)) obj$cov_inv <- with(cov_eigen, tcrossprod(vectors %*% as.matrix(1 / evals), vectors)) } obj$col_names <- colnames(x) obj <- new_discrim_object(obj, "lda_thomaz") obj } lda_thomaz.formula <- function(formula, data, prior = NULL, ...) { formula <- no_intercept(formula, data) mf <- model.frame(formula = formula, data = data) .terms <- attr(mf, "terms") x <- model.matrix(.terms, data = mf) y <- model.response(mf) est <- lda_thomaz.default(x = x, y = y, prior = prior) est$.terms <- .terms est <- new_discrim_object(est, class(est)) est } print.lda_thomaz <- function(x, ...) { cat("LDA using the Thomaz-Kitani-Gillies Covariance Matrix Estimator\n\n") print_basics(x, ...) invisible(x) } predict.lda_thomaz <- function(object, newdata, type = c("class", "prob", "score"), ...) { type <- rlang::arg_match0(type, c("class", "prob", "score"), arg_nm = "type") newdata <- process_newdata(object, newdata) scores <- apply(newdata, 1, function(obs) { sapply(object$est, function(class_est) { with(class_est, quadform(object$cov_inv, obs - xbar) + log(prior)) }) }) if (type == "prob") { means <- lapply(object$est, "[[", "xbar") covs <- replicate(n=object$num_groups, object$cov_pool, simplify=FALSE) priors <- lapply(object$est, "[[", "prior") res <- posterior_probs(x = newdata, means = means, covs = covs, priors = priors) res <- as.data.frame(res) } else if (type == "class") { res <- score_to_class(scores, object) } else { res <- t(scores) res <- as.data.frame(res) } res }
.multi.rtt <- function (t, tip.dates, topx=1, ncpu = 1, objective = "correlation", opt.tol = .Machine$double.eps^0.25) { topx <- max( 1, topx) if (objective == "correlation") objective <- function(x, y) cor.test(y, x)$estimate else if (objective == "rsquared") objective <- function(x, y) summary(lm(y ~ x))$r.squared else if (objective == "rms") objective <- function(x, y) -summary(lm(y ~ x))$sigma^2 else stop("objective must be one of \"correlation\", \"rsquared\", or \"rms\"") ut <- unroot(t) dist <- dist.nodes(ut)[, 1:(ut$Nnode + 2)] f <- function(x, parent, child) { edge.dist <- x * dist[parent, ] + (1 - x) * dist[child, ] objective(tip.dates, edge.dist) } obj.edge <- if (ncpu > 1) unlist(parallel::mclapply(1:nrow(ut$edge), function(e) { opt.fun <- function(x) f(x, ut$edge[e, 1], ut$edge[e, 2]) optimize(opt.fun, c(0, 1), maximum = TRUE, tol = opt.tol)$objective }, mc.cores = ncpu)) else apply(ut$edge, 1, function(e) { opt.fun <- function(x) f(x, e[1], e[2]) optimize(opt.fun, c(0, 1), maximum = TRUE, tol = opt.tol)$objective }) best.edges <- order( obj.edge, decreasing=TRUE)[1:topx] lapply(best.edges , function(best.edge){ best.edge.parent <- ut$edge[best.edge, 1] best.edge.child <- ut$edge[best.edge, 2] best.edge.length <- ut$edge.length[best.edge] opt.fun <- function(x) f(x, best.edge.parent, best.edge.child) best.pos <- optimize(opt.fun, c(0, 1), maximum = TRUE, tol = opt.tol)$maximum new.root <- list(edge = matrix(c(2L, 1L), 1, 2), tip.label = "new.root", edge.length = 1, Nnode = 1L, root.edge = 1) class(new.root) <- "phylo" ut <- bind.tree(ut, new.root, where = best.edge.child, position = best.pos * best.edge.length) ut <- collapse.singles(ut) ut <- root(ut, "new.root") x <- drop.tip(ut, "new.root") if (!is.rooted(x)) return(NULL) x })-> tres tres[ !sapply( tres, is.null) ] }
psymbolic <- function(pdata, vertices){ if(class(pdata) != 'paggregated'){ stop('Insert an object of the class paggregated') } if(vertices <= 2){ stop("Insert the number of vertices greater than 2!") } if(is.matrix(pdata$center) | is.data.frame(pdata$center)){ m <- nrow(pdata$center) p <- ncol(pdata$center) initial <- vector('list', m) psdata <- new.env() variables <- paste('X', 1 : p, sep = '') for(j in 1 : p){ for(i in 1 : m){ initial[[i]] <- spolygon(pdata$center[i, j], pdata$radius[i, j], vertices) } psdata[[variables[j]]] <- initial } variables_names <- names(pdata$center) objs = mget(ls(psdata), psdata) rm(list = ls(psdata), envir = psdata) list2env(setNames(objs, variables_names), psdata) } else if(is.vector(pdata$center)){ m <- length(pdata$center) initial <- vector('list', m) psdata <- new.env() for(i in 1 : m){ initial[[i]] <- spolygon(pdata$center[i], pdata$radius[i], vertices) } names(initial) <- names(pdata$center) psdata[['X1']] <- initial } else{ stop('Insert a matrix, data.frame or vector for center and radius!') } class(psdata) <- 'polygonal-variables' psdata }
if(isTRUE(getOption("covr"))) { context("custom tables") suppressWarnings(RNGversion("3.5.0")) data(mtcars) mtcars = apply_labels(mtcars, mpg = "Miles/(US) gallon", cyl = "Number of cylinders", disp = "Displacement (cu.in.)", carb = NULL, qsec = "1/4 mile time", hp = "Gross horsepower", vs = "Engine", vs = num_lab(" 0 V-engine 1 Straight engine "), am = "Transmission", am = num_lab(" 0 Automatic 1 Manual ") ) res = mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_fun(w_mean) %>% tab_pivot() expect_known_value(res, "rds/ctable0.rds", update = FALSE) expect_error(mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_fun(w_mean) %>% tab_caption("my table") %>% tab_pivot() ) expect_identical( mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_fun(w_mean) %>% tab_pivot() %>% tab_caption("my ", "table"), mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_fun(w_mean) %>% tab_pivot() %>% set_caption("my table") ) res = mtcars %>% tab_cols(vs) %>% tab_cells(mpg, disp) %>% tab_rows(am) %>% tab_stat_fun(w_mean) %>% tab_pivot expect_known_value(res, "rds/ctable0.rds", update = FALSE) res = mtcars %>% tab_rows(am) %>% tab_cols(vs) %>% tab_cells(mpg, disp) %>% tab_stat_fun(w_mean) %>% tab_pivot expect_known_value(res, "rds/ctable0.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_fun(w_mean = w_mean) %>% tab_pivot expect_known_value(res, "rds/ctable1.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_fun("|" = w_mean) %>% tab_pivot expect_known_value(res, "rds/ctable2.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_fun("|" = w_mean, label = "Mean value") %>% tab_pivot expect_known_value(res, "rds/ctable3.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_fun("|" = w_mean, label = "Mean value") %>% tab_pivot(stat_position = "inside_rows") expect_known_value(res, "rds/ctable3.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_fun("|" = w_mean, label = "Mean value") %>% tab_pivot(stat_position = "inside_columns") expect_known_value(res, "rds/ctable4.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_mean(label = "Mean value") %>% tab_pivot() expect_known_value(res, "rds/ctable3.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_mean(label = "Mean value") %>% tab_pivot(stat_position = "inside_columns") expect_known_value(res, "rds/ctable4.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_mean() %>% tab_stat_sd() %>% tab_stat_valid_n() %>% tab_pivot(stat_position = "inside_rows") expect_known_value(res, "rds/ctable5.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, disp) %>% tab_cols(vs) %>% tab_rows(am) %>% tab_stat_mean() %>% tab_stat_sd() %>% tab_stat_valid_n() %>% tab_pivot(stat_position = "inside_columns") expect_known_value(res, "rds/ctable6.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, disp) %>% tab_cols(total(), vs) %>% tab_rows(am) %>% tab_stat_fun(summary) %>% tab_pivot() if(as.numeric(version$major) ==3 && as.numeric(version$minor)<4){ expect_known_value(res, "rds/ctable7.rds", update = FALSE) } else { expect_known_value(res, "rds/ctable7_R3.4.rds", update = FALSE) } res = mtcars %>% tab_cells(vs) %>% tab_cols(total(), am) %>% tab_stat_cpct(total_row_position = "none", label = "col %") %>% tab_stat_rpct(total_row_position = "none", label = "row %") %>% tab_stat_tpct(total_row_position = "none", label = "table %") %>% tab_cells(total(vs, label = " tab_stat_cases(total_row_position = "none") %>% tab_pivot(stat_position = "inside_rows") expect_known_value(res, "rds/ctable8.rds", update = FALSE) res = mtcars %>% tab_total_row_position("none") %>% tab_cells(vs) %>% tab_cols(total(), am) %>% tab_stat_cpct(label = "col %") %>% tab_stat_rpct(label = "row %") %>% tab_stat_tpct(label = "table %") %>% tab_cells(total(vs, label = " tab_stat_cases() %>% tab_pivot(stat_position = "inside_rows") expect_known_value(res, "rds/ctable8.rds", update = FALSE) res = mtcars %>% tab_subgroup(vs == 0) %>% tab_cells(vs) %>% tab_cols(total(), am) %>% tab_subgroup() %>% tab_stat_cpct(total_row_position = "none", label = "col %") %>% tab_stat_rpct(total_row_position = "none", label = "row %") %>% tab_stat_tpct(total_row_position = "none", label = "table %") %>% tab_cells(total(vs, label = " tab_stat_cases(total_row_position = "none") %>% tab_pivot(stat_position = "inside_rows") expect_known_value(res, "rds/ctable8.rds", update = FALSE) res = mtcars %>% tab_subgroup(vs == 0) %>% tab_cells(vs) %>% tab_cols(total(), am) %>% tab_stat_cpct(total_row_position = "none", label = "col %") %>% tab_stat_rpct(total_row_position = "none", label = "row %") %>% tab_stat_tpct(total_row_position = "none", label = "table %") %>% tab_cells(total(vs, label = " tab_stat_cases(total_row_position = "none") %>% tab_pivot(stat_position = "inside_rows") expect_known_value(res, "rds/ctable9.rds", update = FALSE) res = mtcars %>% tab_cells(cyl) %>% tab_cols(total(), am) %>% tab_stat_rpct(total_row_position = "none") %>% tab_pivot() %>% tab_transpose() %>% tab_sort_desc() expect_known_value(res, "rds/ctable10.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, disp, hp) %>% tab_cols(total(label = " tab_stat_fun(Mean = w_mean, "Std. dev" = w_sd, "Valid N" = w_n, method = list) %>% tab_sort_asc() %>% tab_transpose() %>% tab_pivot() %>% split_columns() expect_known_value(res, "rds/ctable11.rds", update = FALSE) set.seed(1) df = data.frame(area=rep(c('Area 1','Area 2'), each=6), var_orange=sample(0:1, 12, T), var_banana=sample(0:1, 12, T), var_melon=sample(0:1, 12, T), var_mango=sample(0:1, 12, T)) res = df %>% tab_cells(mdset(var_orange, var_banana, var_melon, var_mango)) %>% tab_cols(total(), list(area)) %>% tab_stat_cpct_responses(total_row_position = "below", total_statistic = "u_responses") %>% tab_pivot() expect_known_value(res, "rds/ctable12.rds", update = FALSE) res = mtcars %>% tab_cells(cyl, carb) %>% tab_cols(total(), am %nest% vs) %>% tab_stat_fun(Mean = w_mean, "Std. dev" = w_sd, "Valid N" = w_n) %>% tab_stat_cpct() %>% tab_pivot() expect_known_value(res, "rds/ctable13.rds", update = FALSE) res = mtcars %>% tab_cols(total(), am %nest% vs) %>% tab_cells(cyl) %>% tab_stat_fun(Mean = w_mean, "Std. dev" = w_sd, "Valid N" = w_n) %>% tab_stat_cpct() %>% tab_cells(carb) %>% tab_stat_fun(Mean = w_mean, "Std. dev" = w_sd, "Valid N" = w_n) %>% tab_stat_cpct() %>% tab_pivot() expect_known_value(res, "rds/ctable14.rds", update = FALSE) res = mtcars %>% tab_cols(total(), am %nest% vs) for(each in qc(cyl, carb, hp)){ res = res %>% tab_cells(vars(each)) %>% tab_stat_fun(Mean = w_mean, "Std. dev" = w_sd, "Valid N" = w_n) %>% tab_stat_cpct() } res = res %>% tab_pivot() expect_known_value(res, "rds/ctable15.rds", update = FALSE) res = mtcars %>% tab_cells(cyl, carb) %>% tab_cols(total(), am %nest% vs) %>% tab_stat_fun(w_mean, w_sd, w_n, method = list) %>% tab_pivot() expect_known_value(res, "rds/ctable16.rds", update = FALSE) res = mtcars %>% tab_cells(cyl) %>% tab_cols(total(), am) %>% tab_stat_cpct(total_row_position = "none", label = "col %") %>% tab_stat_rpct(total_row_position = "none", label = "row %") %>% tab_stat_tpct(total_row_position = "none", label = "table %") %>% tab_pivot(stat_position = "inside_columns") expect_known_value(res, "rds/ctable17.rds", update = FALSE) res = mtcars %>% tab_cells(cyl) %>% tab_cols(total(), am) %>% tab_total_row_position("none") %>% tab_stat_cpct(label = "col %") %>% tab_stat_rpct(label = "row %") %>% tab_stat_tpct(label = "table %") %>% tab_pivot(stat_position = "inside_columns") expect_known_value(res, "rds/ctable17.rds", update = FALSE) res = mtcars %>% tab_cells(cyl) %>% tab_cols(total(), am) %>% tab_rows(vs) %>% tab_stat_cpct(total_row_position = "none", label = "col %") %>% tab_stat_rpct(total_row_position = "none", label = "row %") %>% tab_stat_tpct(total_row_position = "none", label = "table %") %>% tab_pivot(stat_position = "inside_rows") expect_known_value(res, "rds/ctable18.rds", update = FALSE) context("custom tables summary stats") mtcars$mpg[1:2] = NA mtcars$wt[4:5] = NA mtcars$wt[6] = -1 mtcars$wt[15] = -1 mtcars$wt[16] = 0 mtcars$wt[20] = NA res = mtcars %>% tab_cells(mpg, qsec, hp, disp) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "inside_columns") expect_known_value(res, "rds/ctable19.rds", update = FALSE) res = mtcars %>% tab_weight(wt) %>% tab_cells(mpg, qsec, hp, disp) %>% tab_weight() %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "inside_columns") expect_known_value(res, "rds/ctable19.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, qsec, hp, disp) %>% tab_weight(wt) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "inside_columns") expect_known_value(res, "rds/ctable20.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, qsec, hp, disp) %>% tab_subgroup(!is.na(wt) & wt>0) %>% tab_weight(wt) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "inside_columns") expect_known_value(res, "rds/ctable20.rds", update = FALSE) res = mtcars %>% tab_subgroup(!is.na(wt) & wt>0) %>% tab_cells(mpg, qsec, hp, disp) %>% tab_weight(wt) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "inside_columns") expect_known_value(res, "rds/ctable20.rds", update = FALSE) res1 = sheet(a = c(1, 2, 3, 4, 5), b = c(5, 5, 1, 2, NA)) %>% tab_cells(a, b) %>% tab_mis_val(3:5) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "inside_columns") res2 = sheet(a = c(1, 2, 3, 4, 5), b = c(5, 5, 1, 2, NA)) %>% tab_cells(a, b) %>% tab_mis_val(gt(2)) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "inside_columns") res4 = sheet(a = c(1, 2, 3, 4, 5), b = c(5, 5, 1, 2, NA)) %>% tab_cells(a, b) %>% tab_mis_val(3 | gt(3)) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "inside_columns") res3 = sheet(a = c(1, 2, NA, NA, NA), b = c(NA, NA, 1, 2, NA)) %>% tab_mis_val(1:2) %>% tab_cells(a, b) %>% tab_mis_val() %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "inside_columns") expect_identical(res1, res2) expect_identical(res1, res3) expect_identical(res1, res4) data("product_test") codeframe_likes = num_lab(" 1 Liked everything 2 Disliked everything 3 Chocolate 4 Appearance 5 Taste 6 Stuffing 7 Nuts 8 Consistency 98 Other 99 Hard to answer ") set.seed(1) pr_t = product_test %>% let( age_cat = if_val(s2a, lo %thru% 25 ~ 1, lo %thru% hi ~ 2), wgt = runif(.N, 0.25, 4) ) %>% apply_labels( c1 = "Preferences", c1 = num_lab(" 1 VSX123 2 SDF456 3 Hard to say "), age_cat = "Age", age_cat = c("18 - 25" = 1, "26 - 35" = 2), a1_1 = "Likes. VSX123", b1_1 = "Likes. SDF456", a1_1 = codeframe_likes, b1_1 = codeframe_likes, a22 = "Overall quality. VSX123", b22 = "Overall quality. SDF456", a22 = num_lab(" 1 Extremely poor 2 Very poor 3 Quite poor 4 Neither good, nor poor 5 Quite good 6 Very good 7 Excellent "), b22 = val_lab(a22) ) expect_error( pr_t %>% tab_cells(mrset(a1_1 %to% a1_6), a22) %>% tab_cols(mrset(b1_1 %to% b1_6), b22) %>% tab_stat_cases( total_statistic = c("u_cases", "u_repsonses", "u_cpct", "u_cpct_repsonses", "u_rpct", "u_tpct", "w_cases", "w_repsonses", "w_cpct", "w_cpct_repsonses", "w_rpct", "w_tpct" )) %>% tab_pivot() ) res = pr_t %>% tab_cells(mrset(a1_1 %to% a1_6), a22) %>% tab_cols(mrset(b1_1 %to% b1_6), b22) %>% tab_stat_cases( total_statistic = c("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct" )) %>% tab_pivot() expect_known_value( res, "rds/ctable20_1.rds", update = FALSE ) res = pr_t %>% cross_cases(list(mrset(a1_1 %to% a1_6), a22), list(mrset(b1_1 %to% b1_6), b22), total_statistic = c("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct") ) expect_known_value( res, "rds/ctable20_1.rds", update = FALSE ) res = pr_t %>% cross_cases(list(mrset(a1_1 %to% a1_6), a22), list(mrset(b1_1 %to% b1_6), b22), weight = 1, total_statistic = c("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct") ) expect_known_value( res, "rds/ctable20_1a.rds", update = FALSE ) res = pr_t %>% tab_total_statistic("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct") %>% tab_cells(mrset(a1_1 %to% a1_6), a22) %>% tab_cols(mrset(b1_1 %to% b1_6), b22) %>% tab_stat_cases() %>% tab_pivot() expect_known_value( res, "rds/ctable20_1.rds", update = FALSE ) res = pr_t %>% tab_weight(wgt) %>% tab_cells(mrset(a1_1 %to% a1_6), a22) %>% tab_cols(mrset(b1_1 %to% b1_6), b22) %>% tab_stat_cases( total_statistic = c("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct" )) %>% tab_pivot() expect_known_value( res, "rds/ctable21.rds", update = FALSE ) res = pr_t %>% tab_weight(wgt) %>% tab_cells(mrset(a1_1 %to% a1_6), a22) %>% tab_cols(mrset(b1_1 %to% b1_6), b22) %>% tab_stat_cpct( total_statistic = c("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct" )) %>% tab_pivot() expect_known_value( res, "rds/ctable22.rds", update = FALSE ) res = pr_t %>% tab_weight(wgt) %>% tab_cells(mrset(a1_1 %to% a1_6), a22) %>% tab_cols(mrset(b1_1 %to% b1_6), b22) %>% tab_stat_rpct( total_statistic = c("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct" )) %>% tab_pivot() expect_known_value( res, "rds/ctable23.rds", update = FALSE ) res = pr_t %>% tab_weight(wgt) %>% tab_cells(mrset(a1_1 %to% a1_6), a22) %>% tab_cols(mrset(b1_1 %to% b1_6), b22) %>% tab_stat_tpct( total_statistic = c("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct" )) %>% tab_pivot() expect_known_value( res, "rds/ctable24.rds", update = FALSE ) res = pr_t %>% tab_weight(wgt) %>% tab_cells(mrset(a1_1 %to% a1_6), a22) %>% tab_cols(mrset(b1_1 %to% b1_6), b22) %>% tab_stat_cpct_responses( total_statistic = c("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct" )) %>% tab_pivot() expect_known_value( res, "rds/ctable25.rds", update = FALSE ) res = pr_t %>% tab_weight(wgt) %>% tab_cols(drop_unused_labels(a22), drop_unused_labels(b22)) %>% tab_cells(mrset(a1_1 %to% a1_6)) %>% tab_stat_cpct_responses( total_statistic = c("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct" )) %>% tab_sort_desc() %>% tab_cells(mrset(b1_1 %to% b1_6)) %>% tab_stat_cpct_responses( total_statistic = c("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct" )) %>% tab_sort_asc() %>% tab_pivot() expect_known_value( res, "rds/ctable25_sorting.rds", update = FALSE ) res = pr_t %>% tab_weight(wgt) %>% tab_cols(drop_unused_labels(a22), drop_unused_labels(b22)) %>% tab_cells(mrset(a1_1 %to% a1_6)) %>% tab_total_statistic("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct") %>% tab_stat_cpct_responses() %>% tab_sort_desc() %>% tab_cells(mrset(b1_1 %to% b1_6)) %>% tab_stat_cpct_responses() %>% tab_sort_asc() %>% tab_pivot() expect_known_value( res, "rds/ctable25_sorting.rds", update = FALSE ) res = pr_t %>% tab_weight(wgt) %>% tab_cols(drop_unused_labels(a22), drop_unused_labels(b22)) %>% tab_cells(mrset(a1_1 %to% a1_6)) %>% tab_total_statistic("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct") %>% tab_stat_cpct_responses() %>% tab_sort_desc() %>% tab_cells(mrset(b1_1 %to% b1_6)) %>% tab_total_label("Wow! responses") %>% tab_stat_cpct_responses(total_statistic = "u_cases") %>% tab_sort_asc() %>% tab_pivot() expect_known_value( res, "rds/ctable25_different_total.rds", update = FALSE ) res = pr_t %>% tab_weight(wgt) %>% tab_cols(drop_unused_labels(a22), drop_unused_labels(b22)) %>% tab_cells(mrset(a1_1 %to% a1_6)) %>% tab_total_statistic("u_cases", "u_responses", "u_cpct", "u_rpct", "u_tpct", "w_cases", "w_responses", "w_cpct", "w_rpct", "w_tpct") %>% tab_stat_cpct_responses() %>% tab_sort_desc() %>% tab_cells(mrset(b1_1 %to% b1_6)) %>% tab_total_label(paste0("Wow! responses ", var_lab(a22))) %>% tab_stat_cpct_responses(total_statistic = "u_cases") %>% tab_sort_asc() %>% tab_pivot() expect_known_value( res, "rds/ctable25_different_total2.rds", update = FALSE ) res = mtcars %>% tab_cells(qsec, mpg) %>% tab_stat_fun(my_fun = w_mean, w_median) %>% tab_pivot() expect_known_value( res, "rds/ctable26.rds", update = FALSE ) res = mtcars %>% tab_cells(vars(qc(mpg, qsec, hp, disp))) %>% tab_rows(am) %>% tab_cols(vs) %>% tab_stat_fun_df(w_cor) %>% tab_pivot() expect_known_value( res, "rds/ctable27.rds", update = FALSE ) res = mtcars %>% tab_cells(vars(qc(mpg, qsec, hp, disp))) %>% tab_rows(am %nest% vs) %>% tab_stat_fun_df(w_cor) %>% tab_pivot() expect_known_value( res, "rds/ctable28.rds", update = FALSE ) res = mtcars %>% tab_cells() %>% tab_rows() %>% tab_cols() %>% tab_stat_cases() %>% tab_pivot() expect_known_value( res, "rds/ctable29.rds", update = FALSE ) res = mtcars %>% tab_cells(vars(qc(mpg, qsec, hp, disp))) %>% tab_rows(am %nest% vs) %>% tab_stat_fun_df(sum = colSums, mean = colMeans, method = list) %>% tab_pivot() expect_known_value( res, "rds/ctable30.rds", update = FALSE ) res = mtcars %>% tab_cells(mpg, qsec, hp, disp) %>% tab_weight(wt) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "inside_columns", stat_label = "outside") expect_known_value(res, "rds/ctable31.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, qsec, hp, disp) %>% tab_weight(wt) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "inside_rows", stat_label = "outside") expect_known_value(res, "rds/ctable32.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, qsec, hp, disp) %>% tab_weight(wt) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "outside_rows", stat_label = "outside") expect_known_value(res, "rds/ctable33.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, qsec, hp, disp) %>% tab_cols(total(), am, vs) %>% tab_weight(wt) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "outside_columns", stat_label = "outside") expect_known_value(res, "rds/ctable34.rds", update = FALSE) mtcars2 = mtcars mtcars2$am = unvr(mtcars2$am) res = mtcars2 %>% tab_cells(mpg, qsec, hp, disp) %>% tab_cols(total(), "My am" = am) %>% tab_weight(wt) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() %>% tab_pivot(stat_position = "outside_columns", stat_label = "outside") expect_known_value(res, "rds/ctable35.rds", update = FALSE) mtcars2$vs = unvr(mtcars2$vs) res = mtcars2 %>% tab_cells("My vs" = vs) %>% tab_cols(total(), "My am" = am) %>% tab_stat_cpct() %>% tab_pivot() expect_known_value(res, "rds/ctable36.rds", update = FALSE) res = mtcars %>% tab_cells(mpg, qsec, hp, disp) %>% tab_weight(wt) %>% tab_stat_mean() %>% tab_stat_median() %>% tab_stat_sd() %>% tab_stat_sum() %>% tab_stat_se() %>% tab_stat_unweighted_valid_n() %>% tab_stat_valid_n() %>% tab_stat_min() %>% tab_stat_max() expect_output_file(print(res), "rds/print_intermediate_table.txt") context("custom tables error") expect_error( mtcars %>% tab_stat_cases() ) expect_error( mtcars %>% tab_stat_cpct() ) expect_error( mtcars %>% tab_stat_cpct_responses() ) expect_error( mtcars %>% tab_stat_rpct() ) expect_error( mtcars %>% tab_stat_tpct() ) expect_error( mtcars %>% tab_stat_fun() ) expect_error( mtcars %>% tab_stat_fun_df() ) expect_error( mtcars %>% tab_cells(am) %>% tab_pivot() ) expect_error( mtcars %>% tab_pivot() ) expect_error( 1:5 %>% tab_cells(42) ) context("custom table long expression as argument") res = mtcars %>% tab_cells(list(am, am, am, am, am, am, am, am, am, am, am, am, am, am, am, am)) %>% tab_stat_mean() %>% tab_pivot() expect_known_value(res, "rds/ctable37.rds", update = FALSE) res = mtcars %>% tab_total_row_position("above") %>% tab_total_statistic("u_cases", "u_rpct") %>% tab_total_label(paste(var_lab(mpg), c("unw. cases", "unw. row pct."))) %>% tab_cells(am) %>% tab_cols(vs) %>% tab_stat_cases() %>% tab_pivot() res2 = mtcars %>% tab_cells(am) %>% tab_cols(vs) %>% tab_stat_cases(total_row_position = "above", total_statistic = c("u_cases", "u_rpct"), total_label = paste(var_lab(mtcars$mpg), c("unw. cases", "unw. row pct."))) %>% tab_pivot() expect_identical(res, res2) res = mtcars %>% tab_total_statistic("u_cases", "u_rpct") %>% tab_total_row_position("above") %>% tab_total_label(paste(var_lab(mpg), c("unw. cases", "unw. row pct."))) %>% tab_cells(am) %>% tab_cols(vs) %>% tab_stat_cpct() %>% tab_pivot() res2 = mtcars %>% tab_cells(am) %>% tab_cols(vs) %>% tab_stat_cpct(total_row_position = "above", total_statistic = c("u_cases", "u_rpct"), total_label = paste(var_lab(mtcars$mpg), c("unw. cases", "unw. row pct."))) %>% tab_pivot() expect_identical(res, res2) res = mtcars %>% tab_total_label(paste(var_lab(mpg), c("unw. cases", "unw. row pct."))) %>% tab_total_statistic("u_cases", "u_rpct") %>% tab_total_row_position("above") %>% tab_cells(am) %>% tab_cols(vs) %>% tab_stat_tpct() %>% tab_pivot() res2 = mtcars %>% tab_cells(am) %>% tab_cols(vs) %>% tab_stat_tpct(total_row_position = "above", total_statistic = c("u_cases", "u_rpct"), total_label = paste(var_lab(mtcars$mpg), c("unw. cases", "unw. row pct."))) %>% tab_pivot() expect_identical(res, res2) res = mtcars %>% tab_total_label(paste(var_lab(mpg), c("unw. cases", "unw. row pct."))) %>% tab_total_statistic("u_cases", "u_rpct") %>% tab_total_row_position("above") %>% tab_cells(am) %>% tab_cols(vs) %>% tab_stat_rpct() %>% tab_pivot() res2 = mtcars %>% tab_cells(am) %>% tab_cols(vs) %>% tab_stat_rpct(total_row_position = "above", total_statistic = c("u_cases", "u_rpct"), total_label = paste(var_lab(mtcars$mpg), c("unw. cases", "unw. row pct."))) %>% tab_pivot() expect_identical(res, res2) res = mtcars %>% tab_total_label(paste(var_lab(mpg), c("unw. cases", "unw. row pct."))) %>% tab_total_statistic("u_cases", "u_rpct") %>% tab_total_row_position("above") %>% tab_cells(am) %>% tab_cols(vs) %>% tab_stat_cpct_responses() %>% tab_pivot() res2 = mtcars %>% tab_cells(am) %>% tab_cols(vs) %>% tab_stat_cpct_responses(total_row_position = "above", total_statistic = c("u_cases", "u_rpct"), total_label = paste(var_lab(mtcars$mpg), c("unw. cases", "unw. row pct."))) %>% tab_pivot() expect_identical(res, res2) for(each_stat in c(tab_stat_cases, tab_stat_cpct, tab_stat_cpct_responses, tab_stat_rpct, tab_stat_tpct)){ res = mtcars %>% tab_total_label(paste(var_lab(mpg), c("unw. cases", "unw. row pct."))) %>% tab_total_statistic("u_cases", "u_rpct") %>% tab_total_row_position("above") %>% tab_cells(am) %>% tab_cols(vs) %>% tab_total_label() %>% tab_total_statistic() %>% tab_total_row_position() %>% each_stat() %>% tab_pivot() res2 = mtcars %>% tab_cells(am) %>% tab_cols(vs) %>% each_stat() %>% tab_pivot() expect_identical(res, res2) } res = mtcars %>% tab_row_label("Table!", "Start!") %>% tab_cells(vs) %>% tab_cols(total(), am) %>% tab_stat_mean() %>% tab_row_label("Wow! Percent! %%%", label = var_lab(vs)) %>% tab_stat_cpct(total_row_position = "none") %>% tab_row_label(var_lab(am), var_lab(mpg)) %>% tab_row_label(" tab_pivot() expect_known_value(res, "rds/ctable38.rds", update = FALSE) res = mtcars %>% tab_cells(vs) %>% tab_cols(total(), am) %>% tab_stat_mean() %>% tab_row_label("Wow! Percent! %%%") %>% tab_stat_cpct() %>% tab_pivot() context("tab_last_vstack/tab_last_hstack") res = pr_t %>% tab_cols(total(), age_cat) %>% tab_cells("Mean" = unlab(a22)) %>% tab_stat_mean(label = var_lab(a22)) %>% tab_cells("Mean" = unlab(b22)) %>% tab_stat_mean(label = var_lab(b22)) %>% tab_last_hstack(stat_position = "inside_columns") %>% tab_cells("Column %" = unlab(a22)) %>% tab_stat_cpct(label = var_lab(a22)) %>% tab_cells("Column %" = unlab(b22)) %>% tab_stat_cpct(label = var_lab(b22)) %>% tab_last_hstack(stat_position = "inside_columns") %>% tab_pivot() %>% make_subheadings() expect_known_value( res, "rds/ctable40.rds", update = FALSE ) res = pr_t %>% tab_cols(total(), age_cat) %>% tab_cells("Mean" = unlab(a22)) %>% tab_stat_mean(label = var_lab(a22)) %>% tab_cells("Mean" = unlab(b22)) %>% tab_stat_mean(label = var_lab(b22)) %>% tab_last_hstack(stat_position = "outside_columns", stat_label = "outside") %>% tab_cells("Column %" = unlab(a22)) %>% tab_stat_cpct(label = var_lab(a22)) %>% tab_cells("Column %" = unlab(b22)) %>% tab_stat_cpct(label = var_lab(b22)) %>% tab_last_hstack(stat_position = "outside_columns", stat_label = "outside") %>% tab_pivot() %>% make_subheadings() expect_known_value( res, "rds/ctable41.rds", update = FALSE ) }
(M = matrix( 1:12, ncol=3)) prop.table(M) round(prop.table(M),2) round(prop.table(M,1),2) round(prop.table(M,2),2) addmargins(prop.table(M)) addmargins(round(prop.table(M),2)) addmargins(round(prop.table(M),2),1) addmargins(round(prop.table(M),2),2) addmargins(round(prop.table(M),2),3) margin.table(round(prop.table(M),2)) margin.table(round(prop.table(M),2),1) margin.table(round(prop.table(M),2),2)
predictor <- function(prep, ...) { UseMethod("predictor") } predictor.bprepl <- function(prep, i = NULL, fprep = NULL, ...) { nobs <- ifelse(!is.null(i), length(i), prep$nobs) eta <- matrix(0, nrow = prep$ndraws, ncol = nobs) + predictor_fe(prep, i) + predictor_re(prep, i) + predictor_sp(prep, i) + predictor_sm(prep, i) + predictor_gp(prep, i) + predictor_offset(prep, i, nobs) eta <- predictor_ac(eta, prep, i, fprep = fprep) eta <- predictor_cs(eta, prep, i) unname(eta) } predictor.bprepnl <- function(prep, i = NULL, fprep = NULL, ...) { stopifnot(!is.null(fprep)) nlpars <- prep$used_nlpars covars <- names(prep$C) args <- named_list(c(nlpars, covars)) for (nlp in nlpars) { args[[nlp]] <- get_nlpar(fprep, nlpar = nlp, i = i, ...) } for (cov in covars) { args[[cov]] <- p(prep$C[[cov]], i, row = FALSE) } dim_eta <- dim(rmNULL(args)[[1]]) if (!prep$loop) { for (i in seq_along(args)) { args[[i]] <- split(args[[i]], row(args[[i]])) } .fun <- function(...) eval(prep$nlform, list(...)) eta <- try( t(do_call(mapply, c(list(FUN = .fun, SIMPLIFY = "array"), args))), silent = TRUE ) } else { eta <- try(eval(prep$nlform, args), silent = TRUE) } if (is(eta, "try-error")) { if (grepl("could not find function", eta)) { eta <- rename(eta, "Error in eval(expr, envir, enclos) : ", "") vectorize <- str_if(prep$loop, ", vectorize = TRUE") message( eta, " Most likely this is because you used a Stan ", "function in the non-linear model formula that ", "is not defined in R. If this is a user-defined function, ", "please run 'expose_functions(.", vectorize, ")' ", "on your fitted model and try again." ) } else { eta <- rename(eta, "^Error :", "", fixed = FALSE) stop2(eta) } } dim(eta) <- dim_eta unname(eta) } predictor_fe <- function(prep, i) { fe <- prep[["fe"]] if (!isTRUE(ncol(fe[["X"]]) > 0)) { return(0) } eta <- try(.predictor_fe(X = p(fe[["X"]], i), b = fe[["b"]])) if (is(eta, "try-error")) { stop2( "Something went wrong (see the error message above). ", "Perhaps you transformed numeric variables ", "to factors or vice versa within the model formula? ", "If yes, please convert your variables beforehand. ", "Or did you set a predictor variable to NA?" ) } eta } .predictor_fe <- function(X, b) { stopifnot(is.matrix(X)) stopifnot(is.matrix(b)) tcrossprod(b, X) } predictor_re <- function(prep, i) { eta <- 0 re <- prep[["re"]] group <- names(re[["r"]]) for (g in group) { eta_g <- try(.predictor_re(Z = p(re[["Z"]][[g]], i), r = re[["r"]][[g]])) if (is(eta_g, "try-error")) { stop2( "Something went wrong (see the error message above). ", "Perhaps you transformed numeric variables ", "to factors or vice versa within the model formula? ", "If yes, please convert your variables beforehand. ", "Or did you use a grouping factor also for a different purpose? ", "If yes, please make sure that its factor levels are correct ", "also in the new data you may have provided." ) } eta <- eta + eta_g } eta } .predictor_re <- function(Z, r) { Matrix::as.matrix(Matrix::tcrossprod(r, Z)) } predictor_sp <- function(prep, i) { eta <- 0 sp <- prep[["sp"]] if (!length(sp)) { return(eta) } eval_list <- list() for (j in seq_along(sp[["simo"]])) { eval_list[[paste0("Xmo_", j)]] <- p(sp[["Xmo"]][[j]], i) eval_list[[paste0("simo_", j)]] <- sp[["simo"]][[j]] } for (j in seq_along(sp[["Xme"]])) { eval_list[[paste0("Xme_", j)]] <- p(sp[["Xme"]][[j]], i, row = FALSE) } for (j in seq_along(sp[["Yl"]])) { eval_list[[names(sp[["Yl"]])[j]]] <- p(sp[["Yl"]][[j]], i, row = FALSE) } for (j in seq_along(sp[["idxl"]])) { eval_list[[names(sp[["idxl"]])[j]]] <- p(sp[["idxl"]][[j]], i, row = FALSE) } for (j in seq_along(sp[["Csp"]])) { eval_list[[paste0("Csp_", j)]] <- p(sp[["Csp"]][[j]], i, row = FALSE) } re <- prep[["re"]] coef <- colnames(sp[["bsp"]]) for (j in seq_along(coef)) { rsp <- named_list(names(re[["rsp"]][[coef[j]]])) for (g in names(rsp)) { rsp[[g]] <- .predictor_re( Z = p(re[["Zsp"]][[g]], i), r = re[["rsp"]][[coef[j]]][[g]] ) } eta <- eta + .predictor_sp( eval_list, call = sp[["calls"]][[j]], b = sp[["bsp"]][, j], r = Reduce("+", rsp) ) } eta } .predictor_sp <- function(eval_list, call, b, r = NULL) { b <- as.vector(b) if (is.null(r)) r <- 0 (b + r) * eval(call, eval_list) } .mo <- function(simplex, X) { stopifnot(is.matrix(simplex), is.atomic(X)) D <- NCOL(simplex) simplex <- cbind(0, simplex) for (i in seq_cols(simplex)[-1]) { simplex[, i] <- simplex[, i] + simplex[, i - 1] } D * simplex[, X + 1] } predictor_sm <- function(prep, i) { eta <- 0 if (!length(prep[["sm"]])) { return(eta) } fe <- prep[["sm"]]$fe if (length(fe)) { eta <- eta + .predictor_fe(X = p(fe$Xs, i), b = fe$bs) } re <- prep[["sm"]]$re for (k in seq_along(re)) { for (j in seq_along(re[[k]]$s)) { Zs <- p(re[[k]]$Zs[[j]], i) s <- re[[k]]$s[[j]] eta <- eta + .predictor_fe(X = Zs, b = s) } } eta } predictor_gp <- function(prep, i) { if (!length(prep[["gp"]])) { return(0) } if (!is.null(i)) { stop2("Pointwise evaluation is not supported for Gaussian processes.") } eta <- matrix(0, nrow = prep$ndraws, ncol = prep$nobs) for (k in seq_along(prep[["gp"]])) { gp <- prep[["gp"]][[k]] if (isTRUE(attr(gp, "byfac"))) { for (j in seq_along(gp)) { if (length(gp[[j]][["Igp"]])) { eta[, gp[[j]][["Igp"]]] <- .predictor_gp(gp[[j]]) } } } else { eta <- eta + .predictor_gp(gp) } } eta } .predictor_gp <- function(gp) { if (is.null(gp[["slambda"]])) { ndraws <- length(gp[["sdgp"]]) eta <- as.list(rep(NA, ndraws)) if (!is.null(gp[["x_new"]])) { for (i in seq_along(eta)) { eta[[i]] <- with(gp, .predictor_gp_new( x_new = x_new, yL = yL[i, ], x = x, sdgp = sdgp[i], lscale = lscale[i, ], nug = nug )) } } else { for (i in seq_along(eta)) { eta[[i]] <- with(gp, .predictor_gp_old( x = x, sdgp = sdgp[i], lscale = lscale[i, ], zgp = zgp[i, ], nug = nug )) } } eta <- do_call(rbind, eta) } else { eta <- with(gp, .predictor_gpa( x = x, sdgp = sdgp, lscale = lscale, zgp = zgp, slambda = slambda )) } if (!is.null(gp[["Jgp"]])) { eta <- eta[, gp[["Jgp"]], drop = FALSE] } if (!is.null(gp[["Cgp"]])) { eta <- eta * data2draws(gp[["Cgp"]], dim = dim(eta)) } eta } .predictor_gp_old <- function(x, sdgp, lscale, zgp, nug) { Sigma <- cov_exp_quad(x, sdgp = sdgp, lscale = lscale) lx <- nrow(x) Sigma <- Sigma + diag(rep(nug, lx), lx, lx) L_Sigma <- try_nug(t(chol(Sigma)), nug = nug) as.numeric(L_Sigma %*% zgp) } .predictor_gp_new <- function(x_new, yL, x, sdgp, lscale, nug) { Sigma <- cov_exp_quad(x, sdgp = sdgp, lscale = lscale) lx <- nrow(x) lx_new <- nrow(x_new) Sigma <- Sigma + diag(rep(nug, lx), lx, lx) L_Sigma <- try_nug(t(chol(Sigma)), nug = nug) L_Sigma_inverse <- solve(L_Sigma) K_div_yL <- L_Sigma_inverse %*% yL K_div_yL <- t(t(K_div_yL) %*% L_Sigma_inverse) k_x_x_new <- cov_exp_quad(x, x_new, sdgp = sdgp, lscale = lscale) mu_yL_new <- as.numeric(t(k_x_x_new) %*% K_div_yL) v_new <- L_Sigma_inverse %*% k_x_x_new cov_yL_new <- cov_exp_quad(x_new, sdgp = sdgp, lscale = lscale) - t(v_new) %*% v_new + diag(rep(nug, lx_new), lx_new, lx_new) yL_new <- try_nug( rmulti_normal(1, mu = mu_yL_new, Sigma = cov_yL_new), nug = nug ) return(yL_new) } .predictor_gpa <- function(x, sdgp, lscale, zgp, slambda) { spd <- sqrt(spd_cov_exp_quad(slambda, sdgp, lscale)) (spd * zgp) %*% t(x) } predictor_cs <- function(eta, prep, i) { cs <- prep[["cs"]] re <- prep[["re"]] if (!length(cs[["bcs"]]) && !length(re[["rcs"]])) { return(eta) } nthres <- cs[["nthres"]] rcs <- NULL if (!is.null(re[["rcs"]])) { groups <- names(re[["rcs"]]) rcs <- vector("list", nthres) for (k in seq_along(rcs)) { rcs[[k]] <- named_list(groups) for (g in groups) { rcs[[k]][[g]] <- .predictor_re( Z = p(re[["Zcs"]][[g]], i), r = re[["rcs"]][[g]][[k]] ) } rcs[[k]] <- Reduce("+", rcs[[k]]) } } .predictor_cs( eta, X = p(cs[["Xcs"]], i), b = cs[["bcs"]], nthres = nthres, r = rcs ) } .predictor_cs <- function(eta, X, b, nthres, r = NULL) { stopifnot(is.null(X) && is.null(b) || is.matrix(X) && is.matrix(b)) nthres <- max(nthres) eta <- predictor_expand(eta, nthres) if (!is.null(X)) { I <- seq(1, (nthres) * ncol(X), nthres) - 1 X <- t(X) } for (k in seq_len(nthres)) { if (!is.null(X)) { eta[, , k] <- eta[, , k] + b[, I + k, drop = FALSE] %*% X } if (!is.null(r[[k]])) { eta[, , k] <- eta[, , k] + r[[k]] } } eta } predictor_expand <- function(eta, nthres) { if (length(dim(eta)) == 2L) { eta <- array(eta, dim = c(dim(eta), nthres)) } eta } predictor_offset <- function(prep, i, nobs) { if (is.null(prep$offset)) { return(0) } eta <- rep(p(prep$offset, i), prep$ndraws) matrix(eta, ncol = nobs, byrow = TRUE) } predictor_ac <- function(eta, prep, i, fprep = NULL) { if (has_ac_class(prep$ac$acef, "arma")) { if (!is.null(prep$ac$err)) { eta <- eta + p(prep$ac$err, i, row = FALSE) } else { if (!is.null(i)) { stop2("Pointwise evaluation is not possible for ARMA models.") } eta <- .predictor_arma( eta, ar = prep$ac$ar, ma = prep$ac$ma, Y = prep$ac$Y, J_lag = prep$ac$J_lag, fprep = fprep ) } } if (has_ac_class(prep$ac$acef, "car")) { eta <- eta + .predictor_re(Z = p(prep$ac$Zcar, i), r = prep$ac$rcar) } eta } .predictor_arma <- function(eta, ar = NULL, ma = NULL, Y = NULL, J_lag = NULL, fprep = NULL) { if (is.null(ar) && is.null(ma)) { return(eta) } if (anyNA(Y)) { stopifnot(is.brmsprep(fprep) || is.mvbrmsprep(fprep)) pp_fun <- paste0("posterior_predict_", fprep$family$fun) pp_fun <- get(pp_fun, asNamespace("brms")) } S <- nrow(eta) N <- length(Y) max_lag <- max(J_lag, 1) Kar <- ifelse(is.null(ar), 0, ncol(ar)) Kma <- ifelse(is.null(ma), 0, ncol(ma)) take_ar <- seq_len(min(Kar, max_lag)) take_ma <- seq_len(min(Kma, max_lag)) ar <- ar[, take_ar, drop = FALSE] ma <- ma[, take_ma, drop = FALSE] Err <- array(0, dim = c(S, max_lag, max_lag + 1)) err <- zero_mat <- matrix(0, nrow = S, ncol = max_lag) zero_vec <- rep(0, S) for (n in seq_len(N)) { if (Kma) { eta[, n] <- eta[, n] + rowSums(ma * Err[, take_ma, max_lag]) } eta_before_ar <- eta[, n] if (Kar) { eta[, n] <- eta[, n] + rowSums(ar * Err[, take_ar, max_lag]) } y <- Y[n] if (is.na(y)) { fprep$dpars$mu <- eta y <- pp_fun(n, fprep) } err[, max_lag] <- y - eta_before_ar if (J_lag[n] > 0) { I <- seq_len(J_lag[n]) Err[, I, max_lag + 1] <- err[, max_lag + 1 - I] } Err <- abind(Err[, , -1, drop = FALSE], zero_mat) err <- cbind(err[, -1, drop = FALSE], zero_vec) } eta }
mtabulate <- function(m, code=FALSE){ data.frame( code = get_code(m) %>% vapply(FUN.VALUE=character(1), paste0, collapse="\n"), id = get_id(m) %>% as.numeric, OK = get_OK(m), cached = has_value(m), time = get_time(m) %>% vapply(FUN.VALUE=numeric(1), function(x) { signif(.[1], 2) }), space = get_mem(m), is_nested = get_nest(m) %>% vapply(FUN.VALUE=integer(1), length), ndependents = get_dependents(m) %>% vapply(FUN.VALUE=integer(1), length), nnotes = get_notes(m) %>% vapply(FUN.VALUE=integer(1), length), nwarnings = get_warnings(m) %>% vapply(FUN.VALUE=integer(1), length), error = get_error(m) %>% vapply(FUN.VALUE=integer(1), length), doc = get_doc(m) %>% vapply(FUN.VALUE=integer(1), length) ) %>% { if(!code) .$code <- NULL . } } missues <- function(m){ error_len <- get_error(m) %>% vapply(FUN.VALUE=integer(1), length) warning_len <- get_warnings(m) %>% vapply(FUN.VALUE=integer(1), length) note_len <- get_notes(m) %>% vapply(FUN.VALUE=integer(1), length) ids <- get_id(m) %>% {c( rep(., times=error_len), rep(., times=warning_len), rep(., times=note_len) )} error <- get_error(m) %>% unlist %>% as.character warnings <- get_warnings(m) %>% unlist %>% as.character notes <- get_notes(m) %>% unlist %>% as.character data.frame( id = ids, type = c( rep("error", length(error)), rep("warning", length(warnings)), rep("note", length(notes)) ), issue = c(error, warnings, notes) ) } esc <- function(m, quiet=FALSE){ .quiet_warning <- function(code, msg) warning(msg, call.=FALSE) .quiet_note <- function(code, msg) message(msg) .quiet_error <- function(code, msg) stop(msg, call.=FALSE) .unquiet_warning <- function(code, msg) { warning("in '", code, "': ", msg, call.=FALSE) } .unquiet_note <- function(code, msg) { message(msg) } .unquiet_error <- function(code, msg) { stop(paste0('in "', code, '":\n ', msg), call.=FALSE) } mtab <- mtabulate(m, code=TRUE) issues <- missues(m) %>% { merge(mtab, .)[, c("code", "type", "issue")] } if(quiet){ fw <- .quiet_warning fn <- .quiet_note fe <- .quiet_error } else { fw <- .unquiet_warning fn <- .unquiet_note fe <- .unquiet_error } for(i in seq_len(nrow(issues))){ if(issues[i, "type"] == "warning"){ fw(issues[i, "code"], issues[i, "issue"]) } if(issues[i, "type"] == "note"){ fn(issues[i, "code"], issues[i, "issue"]) } } if(! .single_OK(m)){ fe(.single_code(m), .single_error(m)) } .single_value(m) } report <- function( m, prefix='report' ){ dir <- tempdir() m_path <- file.path(dir, 'rmonad.Rd') r_path <- file.path(dir, 'report.Rmd') md_path <- file.path(dir, paste0(prefix, ".md")) saveRDS(m, m_path) tostr <- function(x, prefix){ if(.is_not_empty_string(x)){ paste0(prefix, x, "\n", collapse="\n") } else { "" } } strsummary <- function(m, i){ summaries <- .single_summary(m, index=i) headers <- if(!is.null(names(summaries))){ names(summaries) } else { paste('summary', letters[seq_along(summaries)]) } vapply(FUN.VALUE=character(1), seq_along(summaries), function(j) glue::glue(.open='{{', .close='}}', " ```{r, echo=FALSE} get_summary(m)[[{{i}}]][[{{j}}]] ``` " ) ) %>% paste(collapse="\n") } entries <- get_id(m) %>% vapply(FUN.VALUE=character(1), function(i) glue::glue(.open='{{', .close='}}', " OK={{ok}} | parents={{parents}} | cached={{cached}} | time={{time}} | memory={{mem}} {{doc}} ```{r, eval=FALSE} {{code}} ``` {{error}} {{warnings}} {{notes}} {{summary}} ", id = i, ok = .single_OK(m, index=i), parents = paste0("[", paste(.single_parents(m, index=i), collapse=", "), "]"), cached = has_value(m, index=i), time = .single_time(m, index=i), mem = .single_mem(m, index=i), doc = tostr(.single_doc(m, index=i)), code = paste0(.single_code(m, index=i), collapse="\n"), error = tostr(.single_error(m, index=i), "ERROR: "), warnings = tostr(.single_warnings(m, index=i), "WARNING: "), notes = tostr(.single_notes(m, index=i), "NOTE: "), summary = strsummary(m, i) )) %>% paste0(collapse="\n") rmd_str <- glue::glue(.open='{{', .close='}}', " ```{r, echo=FALSE} m <- readRDS('rmonad.Rd') ``` ```{r, echo=FALSE} library(rmonad) library(knitr) ``` ```{r, echo=FALSE} plot(m) ``` ```{r, results='asis', echo=FALSE} kable(mtabulate(m)) ``` ```{r, results='asis', echo=FALSE} kable(missues(m)) ``` ```{r, echo=FALSE} print(m) ``` {{entries}} ", entries=entries ) write(rmd_str, file=r_path) knitr::knit(input=r_path, output=md_path) out_path <- knitr::pandoc(input=md_path, format='latex', ext='pdf') file.copy(out_path, getwd(), overwrite=TRUE) }
weightTSA <- function(Y, c, upper = TRUE, type="indicTh", param=1) { if(is.data.frame(Y) == TRUE){ Y <- as.matrix(Y) } if (upper){ if (type == "indicTh") wY <- as.numeric(Y>c) if (type == "zeroTh") wY <- Y * (Y>c) if (type == "logistic") wY <- 1 / (1 + exp(-param * (Y-c) / abs(c)) ) if (type == "exp1side") wY <- exp( - (c-Y)*((c-Y)>0) / (param * sd(Y)/5) ) } else{ if (type == "indicTh") wY <- as.numeric(Y<c) if (type == "zeroTh") wY <- Y * (Y<c) if (type == "logistic") wY <- 1 / (1 + exp(-param * (c-Y) / abs(c)) ) if (type == "exp1side") wY <- exp( - (Y-c)*((Y-c)>0) / (param * sd(Y)/5) ) } return(as.vector(wY)) }
Bird <- function(massTotal,wingSpan,wingArea,...) UseMethod('Bird') Bird.data.frame <- function(massTotal,wingSpan,wingArea,...) { df <- massTotal massTotal <- .setDefault(df,'massTotal',NULL) wingSpan <- df$wingSpan wingArea <- .setDefault(df,'wingArea',NULL) bird <- Bird.default(massTotal,wingSpan,wingArea,df) } Bird.default <- function(massTotal,wingSpan,wingArea=NULL,...) { opts <- list(...) if (length(opts)>0) if (class(opts[[1]])=='data.frame') opts <- opts[[1]]; bird <- data.frame( wingSpan = wingSpan ) if(!is.null(wingArea)) { bird$wingArea <- wingArea } else if (.hasField(opts,'wingAspect')) { bird$wingArea <- .aspect2area(wingSpan,opts$wingAspect) } else { stop("I can't figure out the wing area... please provide wingArea or wingAspect") } bird$name <- .setDefault(opts,'name',NA) bird$name.scientific <- .setDefault(opts,'name.scientific',NA) bird$source <- .setDefault(opts,'source',NA) if (!missing(massTotal)) { bird$massTotal <- massTotal } bird <- .massComposition(bird,opts) bird$muscleFraction <- .setDefault(opts,'muscleFraction',0.17) bird$type <- .setDefault(opts,'type','other') bird$bodyFrontalArea <- .setDefault( opts,'bodyFrontalArea', computeBodyFrontalArea( bird$massEmpty, bird$type ) ) bird$wingbeatFrequency <- .setDefault(opts,'wingbeatFrequency', .estimateFrequency(bird) ) bird$coef.profileDragLiftFactor <- .setDefault(opts,'coef.profileDragLiftFactor',0.03) bird$coef.bodyDragCoefficient <- .setDefault(opts,'coef.bodyDragCoefficient',0.2) bird$coef.conversionEfficiency <- .setDefault(opts,'coef.conversionEfficiency',0.23) bird$coef.respirationFactor <- .setDefault(opts,'coef.respirationFactor',1.1) bird$coef.activeStrain <- .setDefault(opts,'coef.activeStrain',0.26) bird$coef.isometricStress <- .setDefault(opts,'coef.isometricStress',400E3) bird$basalMetabolicRate <- .setDefault(opts,'basalMetabolicRate',.estimateBasalMetabolicRate(bird)) class(bird) <- append(class(bird),'bird') return(bird) } .estimateFrequency <- function (bird,...) { opts <- list(...) rho <- .setDefault(opts,'density',1.225) g <- .setDefault(opts,'gravity',9.81) b <- bird$wingSpan m <- bird$massEmpty S <- bird$wingArea m^(3/8)*sqrt(g)*b^(-23/24)*S^(-1/3)*rho^(-3/8) } .estimateBasalMetabolicRate <- function(bird,...) { opts <- list(...) type <- .setDefault(bird,'type','other') massEmpty <- bird$massEmpty isPasserine <- type == 'passerine' isSeaBird <- type == 'seabird' isBat <- type == 'bat' isOther <- !(isPasserine | isSeaBird | isBat) bmr <- 6.25*massEmpty^0.724 * isPasserine + 5.43*massEmpty^0.72 * isSeaBird + 3.14*massEmpty^0.744 * isBat + 3.79*massEmpty^0.723 * isOther return(bmr) } .aspect2area <- function(wingSpan,wingAspect) wingSpan^2/wingAspect .massComposition <- function(bird,opts) { has.massTotal <- .hasField(bird,'massTotal') has.massEmpty <- .hasField(opts,'massEmpty') has.massFat <- .hasField(opts,'massFat') has.massLoad <- .hasField(opts,'massLoad') has.mass.count <- has.massTotal + has.massEmpty + has.massFat + has.massLoad if ( has.mass.count == 4) { bird$massEmpty <- opts$massEmpty bird$massFat <- opts$massFat bird$massLoad <- opts$massLoad massSum = with(bird, massEmpty + massFat + massLoad ) if (bird$massTotal != massSum) { bird$massTotal <- massSum warning('Mismatch in mass composition. Recomputed total mass.') } } else if (has.mass.count == 3) { if (!has.massTotal) { bird$massEmpty <- opts$massEmpty bird$massFat <- opts$massFat bird$massLoad <- opts$massLoad bird$massTotal <- with(bird, massEmpty + massFat + massLoad ) } else if (!has.massEmpty) { bird$massFat <- opts$massFat bird$massLoad <- opts$massLoad bird$massEmpty <- with(bird, massTotal - massFat - massLoad ) } else if (!has.massLoad) { bird$massFat <- opts$massFat bird$massEmpty <- opts$massEmpty bird$massLoad <- with(bird, massTotal - massFat - massEmpty ) } else if (!has.massFat) { bird$massLoad <- opts$massLoad bird$massEmpty <- opts$massEmpty bird$massFat <- with(bird, massTotal - massEmpty - massLoad ) } } else if (has.mass.count <= 2) { has.massTotal has.massEmpty if (has.massTotal & has.massEmpty) { bird$massLoad <- 0 bird$massEmpty <- opts$massEmpty bird$massFat <- bird$massTotal - bird$massEmpty } else if (has.massTotal | has.massEmpty) { bird$massLoad <- .setDefault(opts,'massLoad',0) bird$massFat <- .setDefault(opts,'massFat',0) bird$massEmpty <- .setDefault(opts,'massEmpty',bird$massTotal) bird$massTotal <- with(bird,massEmpty+massFat+massLoad) } else { stop("Can't resolve mass composition. Define at least massTotal or massEmpty.") } } return(bird) }
context("environment") test_that("setting environment variables", { set.sylly.env(lang="xy", hyph.cache.file="test", hyph.max.token.length=30) expect_match( get.sylly.env(lang=TRUE), "xy" ) expect_match( get.sylly.env(hyph.cache.file=TRUE), "test" ) expect_identical( get.sylly.env(hyph.max.token.length=TRUE), 30 ) }) context("pattern import") test_that("import pattern file", { samplePatternFile <- normalizePath("hyph-xy.pat.txt") samplePatternStandard <- dget("hyph_xy_dput.txt") hyph.xy <- read.hyph.pat(file=samplePatternFile, lang="xy") expect_identical( hyph.xy, samplePatternStandard ) }) context("pattern object handling") test_that("debugging hyphenation", { samplePatternStandard <- dget("hyph_xy_dput.txt") sampleSplitStandard <- dget("mhp_split_dput.txt") mhp_split <- manage.hyph.pat(hyph.pattern=samplePatternStandard, word="incomprehensibilities") expect_identical( mhp_split, sampleSplitStandard ) }) test_that("debugging hyphenation patterns", { samplePatternStandard <- dget("hyph_xy_dput.txt") sampleGetSetStandard <- dget("mhp_get_set_dput.txt") mhp_get_old <- manage.hyph.pat(hyph.pattern=samplePatternStandard, get="xyz") expect_is( mhp_get_old, "matrix" ) expect_equal( colnames(mhp_get_old), c("orig", "char", "nums") ) expect_equal( nrow(mhp_get_old), 0 ) mhp_set <- manage.hyph.pat(hyph.pattern=samplePatternStandard, set="x3yz2") mhp_get_new <- manage.hyph.pat(hyph.pattern=mhp_set, get="xyz") expect_identical( mhp_get_new, sampleGetSetStandard ) mhp_rm <- manage.hyph.pat(hyph.pattern=mhp_set, rm="xyz") expect_identical( mhp_rm, samplePatternStandard ) }) context("hyphenation") test_that("hyphenation", { samplePatternStandard <- dget("hyph_xy_dput.txt") sampleHyphenStandard <- dget("hyphen_dput.txt") sampleHyphenStandard_df <- hyphenText(sampleHyphenStandard) sampleHyphenStandard_c <- sampleHyphenStandard[["syll"]] hyph_result <- hyphen( "incomprehensibilities", hyph.pattern=samplePatternStandard, cache=FALSE, quiet=TRUE ) hyph_result_df <- hyphen_df( "incomprehensibilities", hyph.pattern=samplePatternStandard, cache=FALSE, quiet=TRUE ) hyph_result_c <- hyphen_c( "incomprehensibilities", hyph.pattern=samplePatternStandard, cache=FALSE, quiet=TRUE ) expect_identical( hyph_result, sampleHyphenStandard ) expect_identical( hyph_result_df, sampleHyphenStandard_df ) expect_identical( hyph_result_c, sampleHyphenStandard_c ) }) test_that("helper methods", { sampleHyphenStandard <- dget("hyphen_dput.txt") expect_identical( language(sampleHyphenStandard), "xy" ) expect_identical( describe(sampleHyphenStandard)[["num.syll"]], 8 ) }) test_that("fixing wrong hyphenation", { sampleHyphenStandard <- dget("hyphen_dput.txt") hyph_fixed <- correct.hyph(sampleHyphenStandard, "in-com-pre-hens-ib-il-it-ies", "in-co-mp-re-he-ns-ib-il-it-ie-s", cache=FALSE) expect_equal( hyphenText(hyph_fixed)[["syll"]], 11 ) })
date_stamp <- function(n, random = FALSE, x = NULL, start = Sys.Date(), k = 12, by = "-1 months", prob = NULL, name = "Date"){ if (is.null(x)){ x <- seq(start, length = k, by = by) } if (!inherits(x, c("Date", "POSIXct", "POSIXt"))) warning("`x`may not a date vector") out <- sample(x = x, size = n, replace = TRUE, prob = prob) if (!random) out <- sort(out) varname(out, name) }
sim.snp.expsurv.power <- function(GHR,B,n,raf,erate,pilm,lm,model,test,alpha,exactvar=FALSE,interval=c(0,10),rootint=c(0.1,200)) { if(model=="additive") { zmod=c(0,1,2) } else if(model=="recessive") { zmod=c(0,0,1) } else if (model=="dominant") { zmod=c(0,1,1) } else { stop("Model not defined") } if(test=="additive") { ztest=c(0,1,2) } else if(test=="recessive") { ztest=c(0,0,1) } else if (test=="dominant") { ztest=c(0,1,1) } else { stop("Test not defined") } if(model!="additive") message('Note: For asymptotic calculations, only the "additive" model should be used.') gtprev=hwe(raf) lam=surv.exp.gt.model(pilm,lm,gtprev,GHR,zmod,interval) b=censbnd(lam,gtprev,1-erate,rootint)$root asypval=asypow(n,log(GHR),a=0,b,lam[1],raf,gtprev,alpha,zmod,exactvar) if(B>0) { pvals=replicate(B,sim.snp.expsurv.sctest(n,gtprev,lam,0,b,ztest)) powB=mean(pvals[2,]<alpha) erateB=mean(pvals[1,]) } else { powB=NA erateB=NA } if( all(zmod==ztest) ) { data.frame(B=B,raf,q0=gtprev[1],q1=gtprev[2],q2=gtprev[3],lam0=lam[1],lam1=lam[2],lam2=lam[3], GHR,pilm=gtprev[1]*exp(-lm*lam[1])+gtprev[2]*exp(-lm*lam[2])+gtprev[3]*exp(-lm*lam[3]), lm,alpha,a=0,b,erate,erateB=erateB,n,powB=powB,pow=asypval[1],pow0=asypval[2], v1=asypval[3],v2=asypval[4],v12=asypval[5]) } else { data.frame(B=B,raf,q0=gtprev[1],q1=gtprev[2],q2=gtprev[3],lam0=lam[1],lam1=lam[2],lam2=lam[3], GHR,pilm=gtprev[1]*exp(-lm*lam[1])+gtprev[2]*exp(-lm*lam[2])+gtprev[3]*exp(-lm*lam[3]), lm,alpha,a=0,b,erate,erateB=erateB,n,powB=powB, v1=asypval[3],v2=asypval[4],v12=asypval[5]) } }
create.prepared_list = function(assembled, x, Ytilde, sum_ysq, n) { structure(list( Ytilde = Ytilde, sum_ysq = sum_ysq, n = n, s = lapply(assembled, getElement, name = "s"), B = lapply(assembled, getElement, name = "B"), Q = lapply(assembled, getElement, name = "Q"), A = lapply(assembled, getElement, name = "A"), U = lapply(assembled, getElement, name = "U"), loglambda = rep(0, length(n)), x = x ), class = "prepared_list") }
spConsistency <- function(object, nblistw = NULL, window = NULL, nrep = 999, adj = FALSE) { if(class(object)[[1]] == "FCMres"){ belongmat <- as.matrix(object$Belongings) if(object$isRaster & is.null(window)){ window <- object$window if(is.null(window)){ stop("impossible to find a window in the given object, please specify one by hand.") } } if(object$isRaster == FALSE & is.null(nblistw)){ nblistw <- object$nblistw } }else{ belongmat <- as.matrix(object) } if(is.null(window)){ if(is.null(nblistw)){ stop("The nblistw must be provided if spatial vector data is used") } weights <- nblistw$weights neighbours <- nblistw$neighbours obsdev <- sapply(1:nrow(belongmat), function(i) { row <- belongmat[i, ] idneighbour <- neighbours[[i]] neighbour <- belongmat[idneighbour, ] if (length(idneighbour) == 1){ neighbour <- t(as.matrix(neighbour)) } W <- weights[[i]] diff <- (neighbour-row[col(neighbour)])**2 tot <- sum(rowSums(diff) * W) return(tot) }) totalcons <- sum(obsdev) belongmat <- t(belongmat) n <- ncol(belongmat) simulated <- vapply(1:nrep, function(d) { belong2 <- belongmat[,sample(n)] simvalues <- vapply(1:ncol(belong2), function(i) { row <- belong2[,i] idneighbour <- neighbours[[i]] neighbour <- belong2[,neighbours[[i]]] if (length(idneighbour) == 1){ neighbour <- t(as.matrix(neighbour)) } W <- weights[[i]] diff <- (neighbour-row) tot <- sum(diff^2 * W) return(tot) }, FUN.VALUE = 1) return(sum(simvalues)) },FUN.VALUE = 1) ratio <- totalcons / simulated }else{ rastnames <- names(object$rasters) ok_names <- rastnames[grepl("group",rastnames, fixed = TRUE)] rasters <- object$rasters[ok_names] matrices <- lapply(rasters, raster::as.matrix) mat_dim <- dim(matrices[[1]]) if(adj){ dataset <- lapply(1:ncol(object$Data), function(ic){ vec1 <- object$Data[,ic] vec2 <- rep(NA,length(object$missing)) vec2[object$missing] <- vec1 rast <- object$rasters[[1]] raster::values(rast) <- vec2 mat <- as.matrix(rast) return(mat) }) totalcons <- calc_raster_spinconsistency(matrices, window, adj, dataset) }else{ totalcons <- calc_raster_spinconsistency(matrices,window) } warning("Calculating the permutation for the spatial inconsistency when using raster can be long, depending on the raster size. Note that the high number of cell in a raster reduces the need of a great number of replications.") all_ids <- 1:raster::ncell(rasters[[1]]) mem_vecs <- lapply(rasters, function(rast){ mat <- raster::as.matrix(rast) dim(mat) <- NULL return(mat) }) if(adj){ data_vecs <- lapply(dataset, function(mat){ vec <- mat dim(vec) <- NULL return(vec) }) } simulated <- sapply(1:nrep, function(i){ Ids <- sample(all_ids) new_matrices <- lapply(mem_vecs, function(vec){ new_vec <- vec[Ids] val_na <- new_vec[!object$missing] loc_na <- is.na(new_vec) new_vec[!object$missing] <- NA new_vec[loc_na] <- val_na dim(new_vec) <- mat_dim return(new_vec) }) if(adj){ new_dataset <- lapply(data_vecs, function(vec){ new_vec <- vec[Ids]; val_na <- new_vec[!object$missing] loc_na <- is.na(new_vec) new_vec[!object$missing] <- NA new_vec[loc_na] <- val_na dim(new_vec) <- mat_dim return(new_vec) }) inconsist <- calc_raster_spinconsistency(new_matrices, window, adj, new_dataset) }else{ inconsist <- calc_raster_spinconsistency(new_matrices, window) } return(inconsist) }) ratio <- totalcons / simulated } return(list(Mean = mean(ratio), Median = quantile(ratio, probs = c(0.5)), prt05 = quantile(ratio, probs = c(0.05)), prt95 = quantile(ratio, probs = c(0.95)), samples = ratio)) } calc_raster_spinconsistency <- function(matrices, window, adj = FALSE, dataset = NULL){ if(adj & is.null(dataset)){ stop("When the adjusted version of spinconsistency is required, dataset must be given") } arr <- array(do.call(c,matrices), c(nrow(matrices[[1]]), ncol(matrices[[1]]), length(matrices))) if(adj){ arr2 <- array(do.call(c,dataset), c(nrow(dataset[[1]]), ncol(dataset[[1]]), length(dataset))) totalcons <- adj_spconsist_arr_window_globstd(arr2, arr, window) }else{ totalcons <- sum(focal_euclidean_arr_window(arr,window), na.rm = TRUE) } return(totalcons) } check_matdist <- function(matdist){ if(!isSymmetric(matdist)){ stop("matdist must be a symetric matrix") } if(sum(diag(matdist)) != 0){ stop("matdist must have a diagonal filled with zeros") } } calcELSA <- function(object, nblistw = NULL, window = NULL, matdist = NULL){ if(class(object)[[1]] != "FCMres"){ if(class(object) != "numeric"){ stop("if object is not a FCMres object, it must be a numeric vector") } vec <- object[object != -1] if(min(vec) != 1){ stop("if object is a numeric vector, its lower value must be 1") } if(length(unique(vec)) != length(1:max(vec))){ stop("if object is a numeric vector, its values must be like 1,2,3,4,...m, -1 can be used to indicate missing values") } if(is.null(matdist)){ stop("if object is not a FCMres object, matdist must be provided") }else{ check_matdist(matdist) } if(nrow(matdist) != length(unique(vec))){ stop("the dimension of matdist must equal the number of categories in object.") } if(is.null(nblistw)){ stop("if object is not a FCMres object, nblistw must be provided.") } }else{ if(object$isRaster){ if(is.null(object$window) & is.null(window)){ stop("impossible to extract window from object, window must be given.") } }else{ if(is.null(object$nblistw) & is.null(nblistw)){ stop("impossible to extract nblistw from object, nblistw must be given.") } } } if(class(object)[[1]] != "FCMres"){ vals <- elsa_vector(object, nblistw, matdist) }else{ if(is.null(matdist)){ matdist <- as.matrix(stats::dist(object$Centers)) } if(object$isRaster){ if(is.null(window)){ window <- object$window } vals <- elsa_raster(object$rasters$Groups, window, matdist) }else{ vec <- as.numeric(gsub("V","",object$Groups,fixed = TRUE)) if(is.null(nblistw)){ vals <- elsa_vector(vec, object$nblistw, matdist) }else{ vals <- elsa_vector(vec, nblistw, matdist) } } } return(vals) } elsa_vector <- function(categories, nblistw, dist){ d <- max(dist) m <- length(unique(categories)) values <- sapply(1:length(categories), function(i){ xi <- categories[[i]] if(xi == -1){ return(-1) }else{ neighbours <- nblistw$neighbours[[i]] w <- nblistw$weights[[i]] xjs <- categories[neighbours] Eai <- sum(dist[xi,xjs] * w) / (d * sum(w)) nn <- length(w) if(nn > m){ mi <- m }else{ mi <- nn } probs <- table(c(xjs,xi)) / (length(xjs)+1) probs <- probs[probs > 0] if(mi == 1){ return(0) }else{ Eci <- -1 * (sum(probs * log2(probs)) / log2(mi)) return(Eai * Eci) } } }) return(values) } elsa_raster <- function(rast, window, matdist){ if(class(window)[[1]] == "matrix"){ u <- unique(window) if(length(union(c(0,1),u)) > 2){ stop("The provided matrix to calculate ELSA is not a binary matrix (0,1)") } fun <- Elsa_categorical_matrix_window }else{ stop("for calculating ELSA on raster, window must be a binary matrix") } isRaster <- class(rast)[[1]] == "RasterLayer" if(isRaster){ mat <- raster::as.matrix(rast) }else{ mat <- rast } mat <- ifelse(is.na(mat),-1,mat) vec <- c(mat) m <- min(vec[vec!=-1]) if(m > 0){ mat<- ifelse(mat > 0, mat-1,mat) } cats <- unique(c(mat)) refcats <- 0:max(cats) cats <- cats[cats != -1] cats <- cats[order(cats)] if(sum(refcats - cats)!=0){ stop(paste("the values of the raster used for ELSA calculation must be integers starting from 0 (or 1). There must be no jumps between categories. The categories in the actual raster are : ", paste(cats,collapse = ","),sep="")) } mat2 <- fun(mat, window, matdist) mat2 <- ifelse(mat2 == -1, NA, mat2) if(isRaster){ raster::values(rast) <- mat2 return(rast) }else{ return(mat2) } } calcFuzzyELSA <- function(object, nblistw = NULL, window = NULL, matdist = NULL){ cls <- class(object)[[1]] if(cls %in% c("FCMres","matrix","list") == FALSE){ stop("object must be a FCMres object, a matrix or a list of rasters") } if(cls == "matrix"){ sums <- sum(rowSums(object)) != 1 if(any(sums)){ stop("if object is a matrix, the sum of each row must be 1") } } if(cls != "FCMres" & is.null(matdist)){ stop("if object is not a FCMre, matdist must be specified") } if(cls == "matrix" & is.null(nblistw)){ stop("if object is a matrix, nblistw must be specified") } if(cls == "list" & is.null(window)){ stop("if object is a list, window must be specified") } if(is.null(matdist)==FALSE){ if(!isSymmetric(matdist)){ stop("matdist must be a symetric matrix") } } if(cls == "matrix"){ if(nrow(matdist) != ncol(object)){ stop("the number of columns in object (matrix) must match the number of rows in matdist") } if(is.null(nblistw)){ stop("if object is a matrix, nblistw must be provided") } } if(cls == "list"){ if(nrow(matdist) != length(object)){ stop("the number of rasters in object (list) must match the number of rows in matdist") } if(is.null(window)){ stop("if object is a list of rasters, window must be provided") } } if(cls == "FCMres"){ if(object$isRaster){ if(is.null(object$window) & is.null(window)){ stop("impossible to extract window from object, window must be provided") } }else{ if(is.null(object$nblistw) & is.null(nblistw)){ stop("impossible to extract nblistw from object, nblistw must be provided") } } } if(cls == "FCMres"){ if(object$isRaster==FALSE){ mat <- object$Belongings if(is.null(matdist)){ matdist <- as.matrix(stats::dist(object$Centers)) } if(is.null(nblistw)){ nblistw <- object$nblistw } return(elsa_fuzzy_vector(mat, nblistw, matdist)) }else{ if(is.null(matdist)){ matdist <- as.matrix(stats::dist(object$Centers)) } if(is.null(window)){ window <- object$window } mats <- lapply(object$rasters[1:object$k], raster::as.matrix) arr <- do.call(c,mats) arr <- array(arr, dim = c(nrow(mats[[1]]), ncol(mats[[1]]),object$k)) values <- Elsa_fuzzy_matrix_window(arr, window, matdist) rast <- object$rasters[[1]] raster::values(rast) <- values return(rast) } }else if (cls == "matrix"){ values <- elsa_fuzzy_vector(object, nblistw, matdist) return(values) }else if (cls == "list"){ mats <- lapply(object, raster::as.matrix) arr <- do.call(c,mats) arr <- array(arr, dim = c(nrow(mats[[1]]), ncol(mats[[1]]),object$k)) values <- Elsa_fuzzy_matrix_window(arr, window, matdist) rast <- object[[1]] raster::values(rast) <- values return(rast) }else{ stop("invalid arguments passed to calcFuzzyELSA") } return(values) } elsa_fuzzy_vector <- function(memberships, nblistw, matdist){ d <- max(matdist) m <- ncol(memberships) values <- sapply(1:nrow(memberships), function(i){ xi <- memberships[i,] neighbours <- nblistw$neighbours[[i]] xj <- memberships[neighbours,] diffs <- abs(xi - t(xj)) sis <- apply(diffs, 2, function(x){ out <- outer(x,x) return(sum(out * matdist)) }) s1 <- sum(sis)/2.0 nn <- length(neighbours) eai <- s1 / (d*nn) pks <- (colSums2(xj) + xi) / (nn+1) pks <- pks[pks>0] if(nn > m){ mi <- m }else{ mi <- nn } eci <- -1 * (sum(pks * log2(pks)) / log2(mi)) return(eai * eci) }) return(values) } calcFuzzyElsa_raster <- function(rasters,window,matdist){ if(class(rasters[[1]]) == "matrix"){ mats <- rasters isRaster <- FALSE vals <- do.call(c,mats) arr <- array(vals, c(nrow(mats[[1]]),ncol(mats[[1]]),length(rasters))) }else if (class(rasters[[1]]) == "RasterLayer"){ mats <- lapply(rasters, raster::as.matrix) isRaster <- TRUE vals <- do.call(c,mats) arr <- array(vals, c(nrow(mats[[1]]),ncol(mats[[1]]),length(rasters))) }else if (class(rasters)[[1]]=="array"){ arr <- rasters isRaster <- FALSE }else{ stop("rasters must be a list of matrix or a list of RasterLayer or an array") } elsa <- Elsa_fuzzy_matrix_window(arr, window, matdist) if(isRaster){ rast <- rasters[[1]] raster::values(rast) <- elsa }else{ dims <- dim(arr) rast <- matrix(elsa, nrow = dims[[1]], ncol = dims[[2]]) } return(rast) } calc_moran_raster <- function(rast, window){ if(class(rast)[[1]] == "RasterLayer"){ mat <- raster::as.matrix(rast) }else if (class(rast)[[1]] == "matrix"){ mat <- rast }else{ stop("rast parameter must be on of matrix or RasterLayer") } if(class(window)[[1]] == "matrix"){ fun <- moranI_matrix_window }else if (class(window)[[1]] == "numeric"){ fun <- moranI_matrix }else{ stop("window parameter must be an integer or a matrix") } val <- fun(mat, window) return(val) } calc_local_moran_raster <- function(rast, window){ if(class(rast)[[1]] == "RasterLayer"){ mat <- raster::as.matrix(rast) }else if (class(rast)[[1]] == "matrix"){ mat <- rast }else{ stop("rast parameter must be on of matrix or RasterLayer") } if(class(window)[[1]] == "matrix"){ window <- window }else if (class(window)[[1]] == "numeric"){ w <- 1+2*window window <- matrix(1, nrow = w, ncol = w) window[ceiling(w/2),ceiling(w/2)] <- 0 }else{ stop("window parameter must be an integer or a matrix") } vals <- local_moranI_matrix_window(mat, window) if(class(rast)[[1]] == "RasterLayer"){ raster::values(rast) <- vals return(rast) }else{ return(matrix(vals, ncol = ncol(mat), nrow = nrow(mat))) } }
print.summary_wsyn<-function(x,...) { for (counter in 1:length(x)) { cat(names(x)[counter],": ",x[[counter]],"\n",sep="") } }
context("Ensuring that conditional formatting works as expected") data_tbl <- data.frame( char_1 = c("saturday", "sunday", "monday", "tuesday", "wednesday", "thursday", "friday"), char_2 = c("june", "july", "august", "september", "october", "november", "december"), num_1 = c(1836.23, 2763.39, 937.29, 643.00, 212.232, 0, -23.24), num_2 = c(34, 74, 23, NA, 35, NA, NA), stringsAsFactors = FALSE) tab <- gt(data_tbl) time_tbl <- data.frame( date = c("2017-10-15", "2013-02-22", "2014-09-22", "2018-01-10"), time = c("16:45", "19:23", "01:30", "08:00"), datetime = c("2010-03-25 19:45", "2015-06-12 09:25", "2016-01-15 14:38", "2012-08-07 12:31"), stringsAsFactors = FALSE) tab_time <- gt(time_tbl) test_that("the `fmt_number()` function works with conditional `rows`", { expect_equal( (tab %>% fmt_number( columns = num_1, decimals = 4, rows = num_1 < 1000) %>% render_formats_test(context = "html"))[["num_1"]], c("1836.23", "2763.39", "937.2900", "643.0000", "212.2320", "0.0000", "&minus;23.2400")) expect_equal( (tab %>% fmt_number( columns = c(num_1, num_2), decimals = 4, rows = char_2 %in% c("june", "july") & grepl("sa.*", char_1)) %>% render_formats_test(context = "html"))[["num_2"]], c("34.0000", "74", "23", "NA", "35", "NA", "NA")) }) test_that("the `fmt_scientific()` function works with conditional `rows`", { expect_equal( (tab %>% fmt_scientific( columns = num_1, decimals = 4, rows = num_1 < 1000) %>% render_formats_test(context = "html"))[["num_1"]], c("1836.23", "2763.39", "9.3729 &times; 10<sup class='gt_super'>2</sup>", "6.4300 &times; 10<sup class='gt_super'>2</sup>", "2.1223 &times; 10<sup class='gt_super'>2</sup>", "0.0000", "&minus;2.3240 &times; 10<sup class='gt_super'>1</sup>") ) expect_equal( (tab %>% fmt_scientific( columns = c(num_1, num_2), decimals = 4, rows = char_2 %in% c("june", "july") & grepl("sa.*", char_1)) %>% render_formats_test(context = "html"))[["num_2"]], c("3.4000 &times; 10<sup class='gt_super'>1</sup>", "74", "23", "NA", "35", "NA", "NA") ) }) test_that("the `fmt_percent()` function works with conditional `rows`", { expect_equal( (tab %>% fmt_percent( columns = num_1, decimals = 2, rows = num_1 < 1000) %>% render_formats_test(context = "html"))[["num_1"]], c("1836.23", "2763.39", "93,729.00%", "64,300.00%", "21,223.20%", "0.00%", "&minus;2,324.00%") ) expect_equal( (tab %>% fmt_percent( columns = c(num_1, num_2), decimals = 2, rows = char_2 %in% c("june", "july") & grepl("sa.*", char_1)) %>% render_formats_test(context = "html"))[["num_2"]], c("3,400.00%", "74", "23", "NA", "35", "NA", "NA") ) }) test_that("the `fmt_currency()` function works with conditional `rows`", { expect_equal( (tab %>% fmt_currency( columns = num_1, currency = "USD", rows = num_1 < 1000) %>% render_formats_test(context = "html"))[["num_1"]], c("1836.23", "2763.39", "$937.29", "$643.00", "$212.23", "$0.00", "&minus;$23.24") ) expect_equal( (tab %>% fmt_currency( columns = c(num_1, num_2), currency = "USD", rows = char_2 %in% c("june", "july") & grepl("sa.*", char_1)) %>% render_formats_test(context = "html"))[["num_2"]], c("$34.00", "74", "23", "NA", "35", "NA", "NA") ) }) test_that("the `fmt_date()` function works with conditional `rows`", { expect_equal( (tab_time %>% fmt_date( columns = date, date_style = 2, rows = time == "16:45") %>% render_formats_test(context = "html"))[["date"]], c("Sunday, October 15, 2017", "2013-02-22", "2014-09-22", "2018-01-10") ) expect_equal( (tab_time %>% fmt_date( columns = date, date_style = 2, rows = date %in% c("2017-10-15", "2014-09-22") & grepl("^1", time)) %>% render_formats_test(context = "html"))[["date"]], c("Sunday, October 15, 2017", "2013-02-22", "2014-09-22", "2018-01-10") ) }) test_that("the `fmt_time()` function works with conditional `rows`", { expect_equal( (tab_time %>% fmt_time( columns = time, time_style = 2, rows = time == "16:45") %>% render_formats_test(context = "html"))[["time"]], c("16:45", "19:23", "01:30", "08:00") ) expect_equal( (tab_time %>% fmt_time( columns = time, time_style = 2, rows = date %in% c("2017-10-15", "2014-09-22") & grepl("^1", time)) %>% render_formats_test(context = "html"))[["time"]], c("16:45", "19:23", "01:30", "08:00") ) }) test_that("the `fmt_datetime()` function works with conditional `rows`", { expect_equal( (tab_time %>% fmt_datetime( columns = datetime, date_style = 2, time_style = 2, rows = time == "16:45") %>% render_formats_test(context = "html"))[["datetime"]], c("Thursday, March 25, 2010 19:45", "2015-06-12 09:25", "2016-01-15 14:38", "2012-08-07 12:31") ) expect_equal( (tab_time %>% fmt_datetime( columns = datetime, date_style = 2, time_style = 2, rows = date %in% c("2017-10-15", "2014-09-22") & grepl("^1", time)) %>% render_formats_test(context = "html"))[["datetime"]], c("Thursday, March 25, 2010 19:45", "2015-06-12 09:25", "2016-01-15 14:38", "2012-08-07 12:31") ) }) test_that("the `fmt_passthrough()` function works with conditional `rows`", { expect_equal( (tab_time %>% fmt_passthrough( columns = datetime, rows = time == "16:45") %>% render_formats_test(context = "html"))[["datetime"]], c("2010-03-25 19:45", "2015-06-12 09:25", "2016-01-15 14:38", "2012-08-07 12:31") ) expect_equal( (tab_time %>% fmt_passthrough( columns = datetime, rows = date %in% c("2017-10-15", "2014-09-22") & grepl("^1", time)) %>% render_formats_test(context = "html"))[["datetime"]], c("2010-03-25 19:45", "2015-06-12 09:25", "2016-01-15 14:38", "2012-08-07 12:31") ) }) test_that("the `fmt_missing()` function works with conditional `rows`", { expect_equal( (tab %>% fmt_missing( columns = num_2, rows = num_1 <= 0) %>% render_formats_test(context = "html"))[["num_2"]], c("34", "74", "23", "NA", "35", rep("&mdash;", 2)) ) }) test_that("the `fmt()` function works with conditional `rows`", { expect_equal( (tab %>% fmt( columns = num_1, rows = num_1 > 1000, fns = function(x){ x * 1000 }) %>% render_formats_test(context = "html"))[["num_1"]], c("1836230", "2763390", "937.290", "643.000", "212.232", "0.000", "-23.240") ) })
notExp <- function(x) { f <- x ind <- x > 1 f[ind] <- exp(1)*(x[ind]^2+1)/2 ind <- (x <= 1)&(x > -1) f[ind] <- exp(x[ind]) ind <- (x <= -1) x[ind] <- -x[ind] ;f[ind] <- exp(1)*(x[ind]^2+1)/2; f[ind]<-1/f[ind] f } notLog <- function(x) { f <- x ind <- x> exp(1) f[ind] <- sqrt(2*x[ind]/exp(1)-1) ind <- !ind & x > exp(-1) f[ind] <- log(x[ind]) ind <- x <= exp(-1) x[ind]<- 1/x[ind]; f[ind] <- sqrt(2*x[ind]/exp(1)-1);f[ind] <- -f[ind] f } notExp2 <- function (x,d=.Options$mgcv.vc.logrange,b=1/d) { exp(d*sin(x*b)) } notLog2 <- function(x,d=.Options$mgcv.vc.logrange,b=1/d) { x <- log(x)/d x <- pmin(1,x) x <- pmax(-1,x) asin(x)/b } pdTens <- function(value = numeric(0), form = NULL, nam = NULL, data = sys.frame(sys.parent())) { object <- numeric(0) class(object) <- c("pdTens", "pdMat") nlme::pdConstruct(object, value, form, nam, data) } pdConstruct.pdTens <- function(object, value = numeric(0), form = formula(object), nam = nlme::Names(object), data = sys.frame(sys.parent()), ...) { val <- NextMethod() if (length(val) == 0) { class(val) <- c("pdTens","pdMat") return(val) } if (is.matrix(val)) { S <- attr(form,"S") m <- length(S) y <- as.numeric((crossprod(val))) lform <- "y ~ as.numeric(S[[1]])" if (m>1) for (i in 2:m) lform <- paste(lform," + as.numeric(S[[",i,"]])",sep="") lform <- formula(paste(lform,"-1")) mod1 <- lm(lform) mod1.r2 <- 1-sum(residuals(mod1)^2)/sum((y-mean(y))^2) y <- as.numeric(solve(crossprod(val))) mod2 <- lm(lform) mod2.r2 <- 1-sum(residuals(mod2)^2)/sum((y-mean(y))^2) if (mod2.r2 > mod1.r2) mod1 <- mod2 value <- coef(mod1) value[value <=0] <- .Machine$double.eps * mean(as.numeric(lapply(S,function(x) max(abs(x))))) value <- notLog2(value) attributes(value) <- attributes(val)[names(attributes(val)) != "dim"] class(value) <- c("pdTens", "pdMat") return(value) } m <- length(attr(form,"S")) if ((aux <- length(val)) > 0) { if (aux && (aux != m)) { stop(gettextf("An object of length %d does not match the required parameter size",aux)) } } class(val) <- c("pdTens","pdMat") val } pdFactor.pdTens <- function(object) { sp <- as.vector(object) m <- length(sp) S <- attr(formula(object),"S") value <- S[[1]]*notExp2(sp[1]) if (m>1) for (i in 2:m) value <- value + notExp2(sp[i])*S[[i]] if (sum(is.na(value))>0) warning("NA's in pdTens factor") value <- (value+t(value))/2 c(t(mroot(value,rank=nrow(value)))) } pdMatrix.pdTens <- function(object, factor = FALSE) { if (!nlme::isInitialized(object)) { stop("Cannot extract the matrix from an uninitialized object") } sp <- as.vector(object) m <- length(sp) S <- attr(formula(object),"S") value <- S[[1]]*notExp2(sp[1]) if (m>1) for (i in 2:m) value <- value + notExp2(sp[i])*S[[i]] value <- (value + t(value))/2 if (sum(is.na(value))>0) warning("NA's in pdTens matrix") if (factor) { value <- t(mroot(value,rank=nrow(value))) } dimnames(value) <- attr(object, "Dimnames") value } coef.pdTens <- function(object, unconstrained = TRUE, ...) { if (unconstrained) NextMethod() else { val <- notExp2(as.vector(object)) names(val) <- paste("sp.",1:length(val), sep ="") val } } summary.pdTens <- function(object, structName = "Tensor product smooth term", ...) { NextMethod(object, structName, noCorrelation=TRUE) } pdIdnot <- function(value = numeric(0), form = NULL, nam = NULL, data = sys.frame(sys.parent())) { object <- numeric(0) class(object) <- c("pdIdnot", "pdMat") nlme::pdConstruct(object, value, form, nam, data) } corMatrix.pdIdnot <- function(object, ...) { if (!nlme::isInitialized(object)) { stop("Cannot extract the matrix from an uninitialized pdMat object") } if (is.null(Ncol <- attr(object, "ncol"))) { stop(paste("Cannot extract the matrix with uninitialized dimensions")) } val <- diag(Ncol) attr(val, "stdDev") <- rep(sqrt(notExp2(as.vector(object))), Ncol) if (length(nm <- nlme::Names(object)) == 0) { len <- length(as.vector(object)) nm <- paste("V", 1:len, sep = "") dimnames(val) <- list(nm, nm) } names(attr(val, "stdDev")) <- nm val } pdConstruct.pdIdnot <- function(object, value = numeric(0), form = formula(object), nam = nlme::Names(object), data = sys.frame(sys.parent()), ...) { val <- NextMethod() if (length(val) == 0) { if ((ncol <- length(nlme::Names(val))) > 0) { attr(val, "ncol") <- ncol } return(val) } if (is.matrix(val)) { value <- notLog2(mean(diag(crossprod(val)))) attributes(value) <- attributes(val)[names(attributes(val)) != "dim"] attr(value, "ncol") <- dim(val)[2] class(value) <- c("pdIdnot", "pdMat") return(value) } if (length(val) > 1) { stop(paste("An object of length", length(val), "does not match the required parameter size")) } if (((aux <- length(nlme::Names(val))) == 0) && is.null(formula(val))) { stop(paste("Must give names when initializing pdIdnot from parameter.", "without a formula")) } else { attr(val, "ncol") <- aux } val } pdFactor.pdIdnot <- function(object) { sqrt(notExp2(as.vector(object))) * diag(attr(object, "ncol")) } pdMatrix.pdIdnot <- function(object, factor = FALSE) { if (!nlme::isInitialized(object)) { stop("Cannot extract the matrix from an uninitialized pdMat object") } if (is.null(Ncol <- attr(object, "ncol"))) { stop(paste("Cannot extract the matrix with uninitialized dimensions")) } value <- diag(Ncol) if (factor) { value <- sqrt(notExp2(as.vector(object))) * value attr(value, "logDet") <- Ncol * log(notExp2(as.vector(object)))/2 } else { value <- notExp2(as.vector(object)) * value } dimnames(value) <- attr(object, "Dimnames") value } coef.pdIdnot <- function(object, unconstrained = TRUE, ...) { if (unconstrained) NextMethod() else structure(notExp2(as.vector(object)), names = c(paste("sd(", deparse(formula(object)[[2]],backtick=TRUE),")",sep = ""))) } Dim.pdIdnot <- function(object, ...) { if (!is.null(val <- attr(object, "ncol"))) { c(val, val) } else { stop("Cannot extract the dimensions") } } logDet.pdIdnot <- function(object, ...) { attr(object, "ncol") * log(notExp2(as.vector(object)))/2 } solve.pdIdnot <- function(a, b, ...) { if (!nlme::isInitialized(a)) { stop("Cannot extract the inverse from an uninitialized object") } atr <- attributes(a) a <- -coef(a, TRUE) attributes(a) <- atr a } summary.pdIdnot <- function(object, structName = "Multiple of an Identity", ...) { NextMethod(object, structName, noCorrelation=TRUE) } smooth2random <- function(object,vnames,type=1) UseMethod("smooth2random") smooth2random.fs.interaction <- function(object,vnames,type=1) { if (object$fixed) return(list(fixed=TRUE,Xf=object$X)) if (!is.null(object$Xb)) { object$X <- object$Xb object$S <- object$base$S if (!is.null(object$S.scale)&&length(object$S)>0) for (i in 1:length(object$S)) object$S[[i]] <- object$S[[i]]/object$S.scale[i] } colx <- ncol(object$X) diagU <- rep(1,colx) ind <- 1:colx n.lev <- length(object$flev) if (type==2) { pen.ind <- rep(ind*0,n.lev) } else pen.ind <- NULL random <- list() k <- 1 rinc <- rind <- rep(0,0) for (i in 1:length(object$S)) { indi <- ind[diag(object$S[[i]])!=0] X <- object$X[,indi,drop=FALSE] D <- diag(object$S[[i]])[indi] diagU[indi] <- 1/sqrt(D) X <- X%*%diag(diagU[indi],ncol=length(indi)) term.name <- new.name("Xr",vnames) vnames <- c(vnames,term.name) rind <- c(rind,k:(k+ncol(X)-1)) rinc <- c(rinc,rep(ncol(X),ncol(X))) k <- k + n.lev * ncol(X) if (type==1) { form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv) fname <- new.name(object$fterm,vnames) vnames <- c(vnames,fname) random[[i]] <- pdIdnot(form) names(random)[i] <- fname attr(random[[i]],"group") <- object$fac attr(random[[i]],"Xr.name") <- term.name attr(random[[i]],"Xr") <- X } else { Xr <- as(matrix(0,nrow(X),0),"dgCMatrix") ii <- 0 for (j in 1:n.lev) { Xr <- cbind2(Xr,as(X*as.numeric(object$fac==object$flev[j]),"dgCMatrix")) pen.ind[indi+ii] <- i;ii <- ii + colx } random[[i]] <- if (is.null(object$Xb)) Xr else as(Xr,"matrix") names(random)[i] <- term.name attr(random[[i]],"s.label") <- object$label } } if (type==2) { ind <- 1:length(rind) ni <- length(ind) rind <- rep(rind,n.lev) if (n.lev>1) for (k in 2:n.lev) { rind[ind+ni] <- rind[ind]+rinc ind <- ind + ni } D <- rep(diagU,n.lev) } else D <- diagU Xf <- matrix(0,nrow(object$X),0) list(rand=random,trans.D=D,Xf=Xf,fixed=FALSE,rind=rind,rinc=rinc, pen.ind=pen.ind) } smooth2random.t2.smooth <- function(object,vnames,type=1) { if (object$fixed) return(list(fixed=TRUE,Xf=object$X)) fixed <- rep(TRUE,ncol(object$X)) random <- list() diagU <- rep(1,ncol(object$X)) ind <- 1:ncol(object$X) pen.ind <- ind*0 n.para <- 0 for (i in 1:length(object$S)) { indi <- ind[diag(object$S[[i]])!=0] pen.ind[indi] <- i X <- object$X[,indi,drop=FALSE] D <- diag(object$S[[i]])[indi] diagU[indi] <- 1/sqrt(D) X <- X%*%diag(diagU[indi]) fixed[indi] <- FALSE term.name <- new.name("Xr",vnames) group.name <- new.name("g",vnames) vnames <- c(vnames,term.name,group.name) if (type==1) { form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv) random[[i]] <- pdIdnot(form) names(random)[i] <- group.name attr(random[[i]],"group") <- factor(rep(1,nrow(X))) attr(random[[i]],"Xr.name") <- term.name attr(random[[i]],"Xr") <- X } else { random[[i]] <- X names(random)[i] <- term.name attr(random[[i]],"s.label") <- object$label } n.para <- n.para + ncol(X) } if (sum(fixed)) { Xf <- object$X[,fixed,drop=FALSE] } else Xf <- matrix(0,nrow(object$X),0) list(rand=random,trans.D=diagU,Xf=Xf,fixed=FALSE, rind=1:n.para,rinc=rep(n.para,n.para),pen.ind=pen.ind) } smooth2random.mgcv.smooth <- function(object,vnames,type=1) { if (object$fixed) return(list(fixed=TRUE,Xf=object$X)) if (length(object$S)>1) stop("Can not convert this smooth class to a random effect") ev <- eigen(object$S[[1]],symmetric=TRUE) null.rank <- object$df - object$rank p.rank <- object$rank if (p.rank>ncol(object$X)) p.rank <- ncol(object$X) U <- ev$vectors D <- c(ev$values[1:p.rank],rep(1,null.rank)) D <- 1/sqrt(D) UD <- t(t(U)*D) X <- object$X%*%UD if (p.rank<object$df) Xf <- X[,(p.rank+1):object$df,drop=FALSE] else Xf <- matrix(0,nrow(object$X),0) term.name <- new.name("Xr",vnames) if (type==1) { form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv) random <- list(pdIdnot(form)) group.name <- new.name("g",vnames) names(random) <- group.name attr(random[[1]],"group") <- factor(rep(1,nrow(X))) attr(random[[1]],"Xr.name") <- term.name attr(random[[1]],"Xr") <- X[,1:p.rank,drop=FALSE] } else { random <- list(X[,1:p.rank,drop=FALSE]) names(random)[1] <- term.name attr(random[[1]],"s.label") <- object$label } rind <- 1:p.rank pen.ind <- rep(0,ncol(object$X)) pen.ind[rind] <- 1 rinc <- rep(p.rank,p.rank) list(rand=random, Xf=Xf, trans.U=U, trans.D=D, fixed=FALSE,rind=rind,rinc=rinc, pen.ind=pen.ind) } smooth2random.tensor.smooth <- function(object,vnames,type=1) { if (type==2) stop("te smooths not useable with gamm4: use t2 instead") if (sum(object$fx)==length(object$fx)) return(list(fixed=TRUE,Xf=object$X)) else if (sum(object$fx)!=0) warning("gamm can not fix only some margins of tensor product.") sum.S <- object$S[[1]]/mean(abs(object$S[[1]])) if (length(object$S)>1) for (l in 2:length(object$S)) { sum.S <- sum.S + object$S[[l]]/mean(abs(object$S[[l]])) } null.rank <- object$null.space.dim ev <- eigen(sum.S,symmetric=TRUE) p.rank <- ncol(object$X) - null.rank if (p.rank>ncol(object$X)) p.rank <- ncol(object$X) U <- ev$vectors D <- c(ev$values[1:p.rank],rep(1,null.rank)) if (sum(D<=0)) stop( "Tensor product penalty rank appears to be too low: please email [email protected] with details.") U <- U X <- object$X%*%U if (p.rank<ncol(X)) Xf <- X[,(p.rank+1):ncol(X),drop=FALSE] else Xf <- matrix(0,nrow(X),0) for (l in 1:length(object$S)) { object$S[[l]] <- (t(U)%*%object$S[[l]]%*%U)[1:p.rank,1:p.rank] object$S[[l]] <- (object$S[[l]]+t(object$S[[l]]))/2 } term.name <- new.name("Xr",vnames) form <- as.formula(paste("~",term.name,"-1",sep=""),env=.GlobalEnv) attr(form,"S") <- object$S random <- list(pdTens(form)) group.name <- new.name("g",vnames) names(random) <- group.name attr(random[[1]],"group") <- factor(rep(1,nrow(X))) attr(random[[1]],"Xr.name") <- term.name attr(random[[1]],"Xr") <- X[,1:p.rank,drop=FALSE] rind <- 1:p.rank rinc <- rep(p.rank,p.rank) list(rand=random, Xf=Xf, trans.U=U, trans.D=rep(1,ncol(U)), fixed=FALSE,rind=rind,rinc=rinc) } gamm.setup <- function(formula,pterms, data=stop("No data supplied to gamm.setup"),knots=NULL, parametric.only=FALSE,absorb.cons=FALSE) { G <- gam.setup(formula,pterms, data=data,knots=knots,sp=NULL, min.sp=NULL,H=NULL,absorb.cons=TRUE,sparse.cons=0,gamm.call=TRUE) if (!is.null(G$L)) stop("gamm can not handle linked smoothing parameters (probably from use of `id' or adaptive smooths)") first.f.para <- G$nsdf+1 first.r.para <- 1 G$Xf <- G$X random <- list() if (G$nsdf>0) ind <- 1:G$nsdf else ind <- rep(0,0) X <- G$X[,ind,drop=FALSE] xlab <- rep("",0) if (G$m>0) { pord <- 1:G$m done <- rep(FALSE,length(pord)) k <- 0 f.name <- NULL for (i in 1:G$m) if (is.null(G$smooth[[i]]$fac)) { k <- k + 1 pord[k] <- i done[i] <- TRUE } else { if (is.null(f.name)) f.name <- G$smooth[[i]]$fterm else if (f.name!=G$smooth[[i]]$fterm) stop("only one level of smooth nesting is supported by gamm") if (!is.null(attr(G$smooth[[i]],"del.index"))) stop("side conditions not allowed for nested smooths") } if (k < G$m) pord[(k+1):G$m] <- (1:G$m)[!done] } if (G$m) for (i in 1:G$m) { sm <- G$smooth[[pord[i]]] sm$X <- G$X[,sm$first.para:sm$last.para,drop=FALSE] rasm <- smooth2random(sm,names(data)) sm$fixed <- rasm$fixed if (!is.null(sm$fac)) { flev <- levels(sm$fac) } n.para <- 0 if (!sm$fixed) { for (k in 1:length(rasm$rand)) { group.name <- names(rasm$rand)[k] group <- attr(rasm$rand[[k]],"group") Xr.name <- attr(rasm$rand[[k]],"Xr.name") Xr <- attr(rasm$rand[[k]],"Xr") attr(rasm$rand[[k]],"group") <- attr(rasm$rand[[k]],"Xr") <- attr(rasm$rand[[k]],"Xr.name") <- NULL n.para <- n.para + ncol(Xr) data[[group.name]] <- group data[[Xr.name]] <- Xr } random <- c(random,rasm$rand) sm$trans.U <- rasm$trans.U sm$trans.D <- rasm$trans.D } if (ncol(rasm$Xf)) { Xfnames <- rep("",ncol(rasm$Xf)) k <- length(xlab)+1 for (j in 1:ncol(rasm$Xf)) { xlab[k] <- Xfnames[j] <- new.name(paste(sm$label,"Fx",j,sep=""),xlab) k <- k + 1 } colnames(rasm$Xf) <- Xfnames } X <- cbind(X,rasm$Xf) sm$first.f.para <- first.f.para first.f.para <- first.f.para + ncol(rasm$Xf) sm$last.f.para <- first.f.para - 1 sm$rind <- rasm$rind - 1 + first.r.para sm$rinc <- rasm$rinc first.r.para <- first.r.para+n.para sm$n.para <- n.para if (!is.null(sm$fac)) { first.r.para <- first.r.para + n.para*(length(flev)-1) } sm$X <- NULL if (G$m>0) G$smooth[[pord[i]]] <- sm } G$random <- random G$X <- X G$data <- data if (G$m>0) G$pord <- pord G } varWeights.dfo <- function(b,data) { w <- nlme::varWeights(b$modelStruct$varStruct) group.name <- names(b$groups) ind <- NULL order.txt <- paste("ind<-order(data[[\"",group.name[1],"\"]]",sep="") if (length(b$groups)>1) for (i in 2:length(b$groups)) order.txt <- paste(order.txt,",data[[\"",group.name[i],"\"]]",sep="") order.txt <- paste(order.txt,")") eval(parse(text=order.txt)) w[ind] <- w w } extract.lme.cov2<-function(b,data=NULL,start.level=1) { if (!inherits(b,"lme")) stop("object does not appear to be of class lme") if (is.null(data)) { na.act <- na.action(b) data <- if (is.null(na.act)) b$data else b$data[-na.act,] } grps <- nlme::getGroups(b) n <- length(grps) n.levels <- length(b$groups) n.corlevels <- if (is.null(b$modelStruct$corStruct)) 0 else length(all.vars(nlme::getGroupsFormula(b$modelStruct$corStruct))) if (n.levels<n.corlevels) { getGroupsFormula(b$modelStruct$corStruct) vnames <- all.vars(nlme::getGroupsFormula(b$modelStruct$corStruct)) lab <- paste(eval(parse(text=vnames[1]),envir=b$data)) if (length(vnames)>1) for (i in 2:length(vnames)) { lab <- paste(lab,"/",eval(parse(text=vnames[i]),envir=b$data),sep="") } grps <- factor(lab) } if (n.levels >= start.level||n.corlevels >= start.level) { if (n.levels >= start.level) Cgrps <- nlme::getGroups(b,level=start.level) else Cgrps <- grps Cind <- sort(as.numeric(Cgrps),index.return=TRUE)$ix rCind <- 1:n; rCind[Cind] <- 1:n Clevel <- levels(Cgrps) n.cg <- length(Clevel) size.cg <- array(0,n.cg) for (i in 1:n.cg) size.cg[i] <- sum(Cgrps==Clevel[i]) } else { n.cg <- 1; Cind<-1:n } if (is.null(b$modelStruct$varStruct)) w<-rep(b$sigma,n) else { w <- 1/nlme::varWeights(b$modelStruct$varStruct) group.name<-names(b$groups) order.txt <- paste("ind<-order(data[[\"",group.name[1],"\"]]",sep="") if (length(b$groups)>1) for (i in 2:length(b$groups)) order.txt <- paste(order.txt,",data[[\"",group.name[i],"\"]]",sep="") order.txt <- paste(order.txt,")") eval(parse(text=order.txt)) w[ind] <- w w <- w*b$sigma } w <- w[Cind] if (is.null(b$modelStruct$corStruct)) V <- array(1,n) else { c.m <- nlme::corMatrix(b$modelStruct$corStruct) if (!is.list(c.m)) { V <- c.m;V[Cind,] -> V;V[,Cind] -> V } else { V<-list() ind <- list() for (i in 1:n.cg) { V[[i]] <- matrix(0,size.cg[i],size.cg[i]) ind[[i]] <- 1:size.cg[i] } Voff <- cumsum(c(1,size.cg)) gr.name <- names(c.m) n.g<-length(c.m) j0<-rep(1,n.cg) ii <- 1:n for (i in 1:n.g) { Clev <- unique(Cgrps[grps==gr.name[i]]) if (length(Clev)>1) stop("inner groupings not nested in outer!!") k <- (1:n.cg)[Clevel==Clev] j1<-j0[k]+nrow(c.m[[i]])-1 V[[k]][j0[k]:j1,j0[k]:j1]<-c.m[[i]] ind1 <- ii[grps==gr.name[i]] ind2 <- rCind[ind1] ind[[k]][j0[k]:j1] <- ind2 - Voff[k] + 1 j0[k]<-j1+1 } for (k in 1:n.cg) { V[[k]][ind[[k]],]<-V[[k]];V[[k]][,ind[[k]]]<-V[[k]] } } } if (is.list(V)) { for (i in 1:n.cg) { wi <- w[Voff[i]:(Voff[i]+size.cg[i]-1)] V[[i]] <- as.vector(wi)*t(as.vector(wi)*V[[i]]) } } else if (is.matrix(V)) { V <- as.vector(w)*t(as.vector(w)*V) } else { V <- w^2*V } X <- list() grp.dims <- b$dims$ncol Zt <- model.matrix(b$modelStruct$reStruct,data) cov <- as.matrix(b$modelStruct$reStruct) i.col<-1 Z <- matrix(0,n,0) if (start.level<=n.levels) { for (i in 1:(n.levels-start.level+1)) { if(length(levels(b$groups[[n.levels-i+1]]))==1) { X[[1]] <- matrix(rep(1,nrow(b$groups))) } else { clist <- list('b$groups[[n.levels - i + 1]]'=c("contr.treatment","contr.treatment")) X[[1]] <- model.matrix(~b$groups[[n.levels - i + 1]]-1, contrasts.arg=clist) } X[[2]] <- Zt[,i.col:(i.col+grp.dims[i]-1),drop=FALSE] i.col <- i.col+grp.dims[i] Z <- cbind(Z,tensor.prod.model.matrix(X)) } Vr <- matrix(0,ncol(Z),ncol(Z)) start <- 1 for (i in 1:(n.levels-start.level+1)) { k <- n.levels-i+1 for (j in 1:b$dims$ngrps[i]) { stop <- start+ncol(cov[[k]])-1 Vr[start:stop,start:stop]<-cov[[k]] start <- stop+1 } } Vr <- Vr*b$sigma^2 Z <- Z[Cind,] if (n.cg == 1) { if (is.matrix(V)) { V <- V+Z%*%Vr%*%t(Z) } else V <- diag(V) + Z%*%Vr%*%t(Z) } else { j0 <- 1 Vz <- list() for (i in 1:n.cg) { j1 <- size.cg[i] + j0 -1 Zi <- Z[j0:j1,,drop=FALSE] Vz[[i]] <- Zi %*% Vr %*% t(Zi) j0 <- j1+1 } if (is.list(V)) { for (i in 1:n.cg) V[[i]] <- V[[i]]+Vz[[i]] } else { j0 <-1 for (i in 1:n.cg) { kk <- size.cg[i] j1 <- kk + j0 -1 Vz[[i]] <- Vz[[i]] + diag(x=V[j0:j1],nrow=kk,ncol=kk) j0 <- j1+1 } V <- Vz } } } list(V=V,ind=Cind) } extract.lme.cov<-function(b,data=NULL,start.level=1) { if (!inherits(b,"lme")) stop("object does not appear to be of class lme") if (is.null(data)) { na.act <- na.action(b) data <- if (is.null(na.act)) b$data else b$data[-na.act,] } grps<-nlme::getGroups(b) n<-length(grps) if (is.null(b$modelStruct$varStruct)) w<-rep(b$sigma,n) else { w<-1/nlme::varWeights(b$modelStruct$varStruct) group.name<-names(b$groups) order.txt <- paste("ind<-order(data[[\"",group.name[1],"\"]]",sep="") if (length(b$groups)>1) for (i in 2:length(b$groups)) order.txt <- paste(order.txt,",data[[\"",group.name[i],"\"]]",sep="") order.txt <- paste(order.txt,")") eval(parse(text=order.txt)) w[ind] <- w w<-w*b$sigma } if (is.null(b$modelStruct$corStruct)) V<-diag(n) else { c.m<-nlme::corMatrix(b$modelStruct$corStruct) if (!is.list(c.m)) V<-c.m else { V<-matrix(0,n,n) gr.name <- names(c.m) n.g<-length(c.m) j0<-1 ind<-ii<-1:n for (i in 1:n.g) { j1<-j0+nrow(c.m[[i]])-1 V[j0:j1,j0:j1]<-c.m[[i]] ind[j0:j1]<-ii[grps==gr.name[i]] j0<-j1+1 } V[ind,]<-V;V[,ind]<-V } } V <- as.vector(w)*t(as.vector(w)*V) X<-list() grp.dims<-b$dims$ncol Zt<-model.matrix(b$modelStruct$reStruct,data) cov<-as.matrix(b$modelStruct$reStruct) i.col<-1 n.levels<-length(b$groups) Z<-matrix(0,n,0) if (start.level<=n.levels) { for (i in 1:(n.levels-start.level+1)) { if(length(levels(b$groups[[n.levels-i+1]]))==1) { X[[1]] <- matrix(rep(1,nrow(b$groups))) } else { clist <- list('b$groups[[n.levels - i + 1]]'=c("contr.treatment","contr.treatment")) X[[1]] <- model.matrix(~b$groups[[n.levels - i + 1]]-1, contrasts.arg=clist) } X[[2]] <- Zt[,i.col:(i.col+grp.dims[i]-1),drop=FALSE] i.col <- i.col+grp.dims[i] Z <- cbind(Z,tensor.prod.model.matrix(X)) } Vr <- matrix(0,ncol(Z),ncol(Z)) start <- 1 for (i in 1:(n.levels-start.level+1)) { k <- n.levels-i+1 for (j in 1:b$dims$ngrps[i]) { stop <- start+ncol(cov[[k]])-1 Vr[start:stop,start:stop]<-cov[[k]] start <- stop+1 } } Vr <- Vr*b$sigma^2 V <- V+Z%*%Vr%*%t(Z) } V } formXtViX <- function(V,X) { X <- X[V$ind,,drop=FALSE] if (is.list(V$V)) { Z <- X j0 <- 1 for (i in 1:length(V$V)) { Cv <- chol(V$V[[i]]) j1 <- j0+nrow(V$V[[i]])-1 Z[j0:j1,] <- backsolve(Cv,X[j0:j1,,drop=FALSE],transpose=TRUE) j0 <- j1 + 1 } } else if (is.matrix(V$V)) { Cv <- chol(V$V) Z <- backsolve(Cv,X,transpose=TRUE) } else { Z <- X/sqrt(as.numeric(V$V)) } qrz <- qr(Z,LAPACK=TRUE) R <- qr.R(qrz);R[,qrz$pivot] <- R colnames(R) <- colnames(X) R } new.name <- function(proposed,old.names) { prop <- proposed k <- 0 while (sum(old.names==prop)) { prop<-paste(proposed,".",k,sep="") k <- k + 1 } prop } gammPQL <- function (fixed, random, family, data, correlation, weights, control, niter = 30, verbose = TRUE, mustart=NULL, etastart=NULL, ...) { off <- model.offset(data) if (is.null(off)) off <- 0 y <- model.response(data) nobs <- nrow(data) if (is.null(weights)) weights <- rep(1, nrow(data)) start <- NULL if (is.null(mustart)) { eval(family$initialize) } else { mukeep <- mustart eval(family$initialize) mustart <- mukeep } wts <- weights wts.name <- new.name("wts",names(data)) data[[wts.name]] <- wts fam <- family eta <- if (!is.null(etastart)) etastart else fam$linkfun(mustart) mu <- fam$linkinv(eta) w <- wts; mu.eta.val <- fam$mu.eta(eta) zz <- eta + (y - mu)/mu.eta.val - off wz <- w * mu.eta.val^2/fam$variance(mustart) zz.name <- new.name("zz",names(data)) eval(parse(text=paste("fixed[[2]] <- quote(",zz.name,")"))) data[[zz.name]] <- zz invwt.name <- new.name("invwt",names(data)) data[[invwt.name]] <- 1/wz w.formula <- as.formula(paste("~",invwt.name,sep="")) converged <- FALSE if (family$family %in% c("poisson","binomial")) { control$sigma <- 1 control$apVar <- FALSE } for (i in 1:niter) { if (verbose) message(gettextf("iteration %d", i)) fit <- lme(fixed=fixed,random=random,data=data,correlation=correlation, control=control,weights=varFixed(w.formula),method="ML",...) etaold <- eta eta <- fitted(fit) + off if (sum((eta - etaold)^2) < 1e-06 * sum(eta^2)) { converged <- TRUE break } mu <- fam$linkinv(eta) mu.eta.val <- fam$mu.eta(eta) data[[zz.name]] <- eta + (y - mu)/mu.eta.val - off wz <- w * mu.eta.val^2/fam$variance(mu) data[[invwt.name]] <- 1/wz } if (!converged) warning("gamm not converged, try increasing niterPQL") fit$y <- y fit$w <- w fit } gamm <- function(formula,random=NULL,correlation=NULL,family=gaussian(),data=list(),weights=NULL, subset=NULL,na.action,knots=NULL,control=list(niterEM=0,optimMethod="L-BFGS-B",returnObject=TRUE), niterPQL=20,verbosePQL=TRUE,method="ML",drop.unused.levels=TRUE,mustart=NULL, etastart=NULL,...) { if (inherits(family,"extended.family")) warning("family are not designed for use with gamm!") if (inherits(family,"extended.family")) warning("gamm is not designed to use extended families") control <- do.call("lmeControl",control) if (!is.null(random)) { if (is.list(random)) { r.names<-names(random) if (is.null(r.names)) stop("random argument must be a *named* list.") else if (sum(r.names=="")) stop("all elements of random list must be named") } else stop("gamm() can only handle random effects defined as named lists") random.vars<-c(unlist(lapply(random, function(x) all.vars(formula(x)))),r.names) } else random.vars<-NULL if (!is.null(correlation)) { cor.for<-attr(correlation,"formula") if (!is.null(cor.for)) cor.vars<-all.vars(cor.for) } else cor.vars<-NULL wisvf <- try(inherits(weights,"varFunc"),silent=TRUE) if (inherits(wisvf,"try-error")) wisvf <- FALSE if (wisvf) { if (inherits(weights,"varComb")) { vf.vars <- rep("",0) for (i in 1:length(weights)) { vf.vars <- c(vf.vars,all.vars(attr(weights[[i]],"formula"))) } vf.vars <- unique(vf.vars) } else { vf.for<-attr(weights,"formula") if (!is.null(vf.for)) vf.vars<-all.vars(vf.for) } } else vf.vars <- NULL gp <- interpret.gam(formula) mf <- match.call(expand.dots=FALSE) mf$formula <- gp$fake.formula if (wisvf) { mf$correlation <- mf$random <- mf$family <- mf$control <- mf$scale <- mf$knots <- mf$sp <- mf$weights <- mf$min.sp <- mf$H <- mf$gamma <- mf$fit <- mf$niterPQL <- mf$verbosePQL <- mf$G <- mf$method <- mf$... <- NULL } else { mf$correlation <- mf$random <- mf$family <- mf$control <- mf$scale <- mf$knots <- mf$sp <- mf$min.sp <- mf$H <- mf$gamma <- mf$fit <- mf$niterPQL <- mf$verbosePQL <- mf$G <- mf$method <- mf$... <- NULL } mf$drop.unused.levels <- drop.unused.levels mf[[1]] <- quote(stats::model.frame) pmf <- mf gmf <- eval(mf, parent.frame()) gam.terms <- attr(gmf,"terms") if (!wisvf) weights <- gmf[["(weights)"]] allvars <- c(cor.vars,random.vars,vf.vars) if (length(allvars)) { mf$formula <- as.formula(paste(paste(deparse(gp$fake.formula,backtick=TRUE),collapse=""), "+",paste(allvars,collapse="+"))) mf <- eval(mf, parent.frame()) } else mf <- gmf rm(gmf) if (nrow(mf)<2) stop("Not enough (non-NA) data to do anything meaningful") vars <- all.vars1(gp$fake.formula[-2]) inp <- parse(text = paste("list(", paste(vars, collapse = ","),")")) dl <- eval(inp, data, parent.frame()) names(dl) <- vars var.summary <- variable.summary(gp$pf,dl,nrow(mf)) rm(dl) pmf$formula <- gp$pf pmf <- eval(pmf, parent.frame()) pTerms <- attr(pmf,"terms") if (is.character(family)) family<-eval(parse(text=family)) if (is.function(family)) family <- family() if (is.null(family$family)) stop("family not recognized") G <- gamm.setup(gp,pterms=pTerms, data=mf,knots=knots,parametric.only=FALSE,absorb.cons=TRUE) G$var.summary <- var.summary mf <- G$data n.sr <- length(G$random) if (is.null(random)&&n.sr==0) stop("gamm models must have at least 1 smooth with unknown smoothing parameter or at least one other random effect") offset.name <- attr(mf,"names")[attr(attr(mf,"terms"),"offset")] yname <- new.name("y",names(mf)) eval(parse(text=paste("mf$",yname,"<-G$y",sep=""))) Xname <- new.name("X",names(mf)) eval(parse(text=paste("mf$",Xname,"<-G$X",sep=""))) fixed.formula <- paste(yname,"~",Xname,"-1") fixed.formula <- as.formula(fixed.formula) rand <- G$random if (!is.null(random)) { r.m <- length(random) r.names <- c(names(rand),names(random)) for (i in 1:r.m) rand[[n.sr+i]]<-random[[i]] names(rand) <- r.names } if (length(formula(correlation))) { corGroup <- paste(names(rand),collapse="/") groupForm<-nlme::getGroupsFormula(correlation) if (!is.null(groupForm)) { groupFormNames <- all.vars(groupForm) exind <- groupFormNames %in% names(rand) groupFormNames <- groupFormNames[!exind] if (length(groupFormNames)) corGroup <- paste(corGroup,paste(groupFormNames,collapse="/"),sep="/") } corForm <- as.formula(paste(deparse(nlme::getCovariateFormula(correlation)),"|",corGroup)) attr(correlation,"formula") <- corForm } ret <- list() if (family$family=="gaussian"&&family$link=="identity"&& length(offset.name)==0) lme.used <- TRUE else lme.used <- FALSE if (lme.used&&!is.null(weights)&&!wisvf) lme.used <- FALSE if (lme.used) { eval(parse(text=paste("ret$lme<-lme(",deparse(fixed.formula), ",random=rand,data=strip.offset(mf),correlation=correlation,", "control=control,weights=weights,method=method)" ,sep="" ))) } else { if (wisvf) stop("weights must be like glm weights for generalized case") if (verbosePQL) cat("\n Maximum number of PQL iterations: ",niterPQL,"\n") eval(parse(text=paste("ret$lme<-gammPQL(",deparse(fixed.formula), ",random=rand,data=strip.offset(mf),family=family,", "correlation=correlation,control=control,", "weights=weights,niter=niterPQL,verbose=verbosePQL,mustart=mustart,etastart=etastart,...)",sep=""))) G$y <- ret$lme$y } object <- list(model=mf,formula=formula,smooth=G$smooth,nsdf=G$nsdf,family=family, df.null=nrow(G$X),y=G$y,terms=gam.terms,pterms=G$pterms,xlevels=G$xlevels, contrasts=G$contrasts,assign=G$assign,na.action=attr(mf,"na.action"), cmX=G$cmX,var.summary=G$var.summary,scale.estimated=TRUE) pvars <- all.vars(delete.response(object$terms)) object$pred.formula <- if (length(pvars)>0) reformulate(pvars) else NULL bf <- as.numeric(ret$lme$coefficients$fixed) br <- as.numeric(unlist(lapply(ret$lme$coefficients$random,t))) fs.present <- FALSE if (G$nsdf) p <- bf[1:G$nsdf] else p <- array(0,0) if (G$m>0) for (i in 1:G$m) { fx <- G$smooth[[i]]$fixed first <- G$smooth[[i]]$first.f.para;last <- G$smooth[[i]]$last.f.para if (first <=last) beta <- bf[first:last] else beta <- array(0,0) if (fx) p <- c(p, beta) else { ind <- G$smooth[[i]]$rind if (!is.null(G$smooth[[i]]$fac)) { fs.present <- TRUE if (first<=last) stop("Nested smooths must be fully random") flev <- levels(G$smooth[[i]]$fac) for (j in 1:length(flev)) { b <- br[ind] b <- G$smooth[[i]]$trans.D*b if (!is.null(G$smooth[[i]]$trans.U)) b <- G$smooth[[i]]$trans.U%*%b ind <- ind + G$smooth[[i]]$rinc p <- c(p,b) } } else { b <- c(br[ind],beta) b <- G$smooth[[i]]$trans.D*b if (!is.null(G$smooth[[i]]$trans.U)) b <- G$smooth[[i]]$trans.U%*%b p <- c(p,b) } } } var.param <- coef(ret$lme$modelStruct$reStruct) n.v <- length(var.param) spl <- list() if (G$m>0) for (i in 1:G$m) { ii <- G$pord[i] n.sp <- length(object$smooth[[ii]]$S) if (n.sp>0) { if (inherits(object$smooth[[ii]],"tensor.smooth")) spl[[ii]] <- notExp2(var.param[(n.v-n.sp+1):n.v]) else spl[[ii]] <- 1/notExp2(var.param[n.v:(n.v-n.sp+1)]) } n.v <- n.v - n.sp } object$sp <- rep(0,0) if (length(spl)) for (i in 1:length(spl)) if (!is.null(spl[[i]])) object$sp <- c(object$sp,spl[[i]]) if (length(object$sp)==0) object$sp <- NULL object$coefficients <- p V <- extract.lme.cov2(ret$lme,mf,n.sr+1) first.para <- last.para <- rep(0,G$m) if (fs.present) { Xf <- G$Xf[,1:G$nsdf,drop=FALSE] if (G$m>0) for (i in 1:G$m) { ind <- object$smooth[[i]]$first.para:object$smooth[[i]]$last.para if (is.null(object$smooth[[i]]$fac)) { first.para[i] <- ncol(Xf)+1 Xf <- cbind(Xf,G$Xf[,ind]) last.para[i] <- ncol(Xf) } else { flev <- levels(object$smooth[[i]]$fac) first.para[i] <- ncol(Xf)+1 for (k in 1:length(flev)) { Xf <- cbind(Xf,G$Xf[,ind]*as.numeric(object$smooth[[i]]$fac==flev[k])) } last.para[i] <- ncol(Xf) } } object$R <- formXtViX(V,Xf) XVX <- crossprod(object$R) nxf <- ncol(Xf) } else { if (G$m>0) for (i in 1:G$m) { first.para[i] <- object$smooth[[i]]$first.para last.para[i] <- object$smooth[[i]]$last.para } object$R <- formXtViX(V,G$Xf) XVX <- crossprod(object$R) nxf <- ncol(G$Xf) } object$R <- object$R*ret$lme$sigma S <- matrix(0,nxf,nxf) first <- G$nsdf+1 k <- 1 if (G$m>0) for (i in 1:G$m) { if (is.null(object$smooth[[i]]$fac)) { ind <- first.para[i]:last.para[i] ns <-length(object$smooth[[i]]$S) if (ns) for (l in 1:ns) { S[ind,ind] <- S[ind,ind] + object$smooth[[i]]$S[[l]]*object$sp[k] k <- k+1 } } else { flev <- levels(object$smooth[[i]]$fac) ind <- first.para[i]:(first.para[i]+object$smooth[[i]]$n.para-1) ns <- length(object$smooth[[i]]$S) for (j in 1:length(flev)) { if (ns) for (l in 1:ns) { S[ind,ind] <- S[ind,ind] + object$smooth[[i]]$S[[l]]*object$sp[k] k <- k+1 } k <- k - ns ind <- ind + object$smooth[[i]]$n.para } k <- k + ns } } S <- S/ret$lme$sigma^2 if (G$m) for (i in 1:G$m) { object$smooth[[i]]$first.para <- first.para[i] object$smooth[[i]]$last.para <- last.para[i] } ev <- eigen(XVX+S,symmetric=TRUE) ind <- ev$values != 0 iv <- ev$values;iv[ind] <- 1/ev$values[ind] Vb <- ev$vectors%*%(iv*t(ev$vectors)) object$edf<-rowSums(Vb*t(XVX)) object$df.residual <- length(object$y) - sum(object$edf) object$sig2 <- ret$lme$sigma^2 if (lme.used) { object$method <- paste("lme.",method,sep="")} else { object$method <- "PQL"} if (!lme.used||method=="ML") Vb <- Vb*length(G$y)/(length(G$y)-G$nsdf) object$Vp <- Vb object$Ve <- Vb%*%XVX%*%Vb object$prior.weights <- weights class(object) <- "gam" if (!is.null(G$P)) { object$coefficients <- G$P %*% object$coefficients object$Vp <- G$P %*% object$Vp %*% t(G$P) object$Ve <- G$P %*% object$Ve %*% t(G$P) } object$linear.predictors <- predict.gam(object,type="link") object$fitted.values <- object$family$linkinv(object$linear.predictors) object$residuals <- residuals(ret$lme) if (G$nsdf>0) term.names<-colnames(G$X)[1:G$nsdf] else term.names<-array("",0) n.smooth <- length(G$smooth) if (n.smooth) { for (i in 1:n.smooth) { k <- 1 for (j in object$smooth[[i]]$first.para:object$smooth[[i]]$last.para) { term.names[j] <- paste(object$smooth[[i]]$label,".",as.character(k),sep="") k <- k+1 } } if (!is.null(object$sp)) names(object$sp) <- names(G$sp) } names(object$coefficients) <- term.names names(object$edf) <- term.names if (is.null(weights)) object$prior.weights <- object$y*0+1 else if (wisvf) object$prior.weights <- varWeights.dfo(ret$lme,mf)^2 else object$prior.weights <- ret$lme$w object$weights <- object$prior.weights if (!is.null(G$Xcentre)) object$Xcentre <- G$Xcentre environment(attr(object$model,"terms")) <- environment(object$terms) <- environment(object$pterms) <- environment(object$formula) <- .GlobalEnv if (!is.null(object$pred.formula)) environment(object$pred.formula) <- .GlobalEnv ret$gam <- object environment(attr(ret$lme$data,"terms")) <- environment(ret$lme$terms) <- .GlobalEnv if (!is.null(ret$lme$modelStruct$varStruct)) { environment(attr(ret$lme$modelStruct$varStruct,"formula")) <- .GlobalEnv } if (!is.null(ret$lme$modelStruct$corStruct)) { environment(attr(ret$lme$modelStruct$corStruct,"formula")) <- .GlobalEnv } class(ret) <- c("gamm","list") ret } test.gamm <- function(control=nlme::lmeControl(niterEM=3,tolerance=1e-11,msTol=1e-11)) { test1<-function(x,z,sx=0.3,sz=0.4) { x<-x*20 (pi**sx*sz)*(1.2*exp(-(x-0.2)^2/sx^2-(z-0.3)^2/sz^2)+ 0.8*exp(-(x-0.7)^2/sx^2-(z-0.8)^2/sz^2)) } compare <- function(b,b1,edf.tol=.001) { edf.diff <- abs(sum(b$edf)-sum(b1$edf)) fit.cor <- cor(fitted(b),fitted(b1)) if (fit.cor<.999) { cat("FAILED: fit.cor = ",fit.cor,"\n");return()} if (edf.diff>edf.tol) { cat("FAILED: edf.diff = ",edf.diff,"\n");return()} cat("PASSED \n") } n<-500 x<-runif(n)/20;z<-runif(n); f <- test1(x,z) y <- f + rnorm(n)*0.2 control$sigma <- NULL cat("testing covariate scale invariance ... ") b <- gamm(y~te(x,z), control=control ) x1 <- x*100 b1 <- gamm(y~te(x1,z),control=control) res <- compare(b$gam,b1$gam) cat("testing invariance w.r.t. response ... ") y1 <- y*100 b1 <- gamm(y1~te(x,z),control=control) res <- compare(b$gam,b1$gam) cat("testing equivalence of te(x) and s(x) ... ") b2 <- gamm(y~te(x,k=10,bs="cr"),control=control) b1 <- gamm(y~s(x,bs="cr",k=10),control=control) res <- compare(b2$gam,b1$gam,edf.tol=.1) cat("testing equivalence of gam and gamm with same sp ... ") b1 <- gam(y~te(x,z),sp=b$gam$sp) res <- compare(b$gam,b1) if (FALSE) cat(res,x1,y1) }
print.edr <- function(x,...){ if (!inherits(x, "edr")) stop("use only with \"edr\" objects") cat(paste("Reduction method performed:", x$method),"\n") cat(" \n") cat(paste("Number of observations:", x$n),"\n") cat(paste("Dimension reduction K:", x$K),"\n") cat(paste("Number of slices:", paste(x$H, collapse=", ")),"\n") cat(" \n") if (is.null(x$matEDR)) { cat("Indices estimation results:\n") tmp <- x$indices colnames(tmp) <- 1:x$K row.names(tmp) <- paste("estimated index", 1:x$n, sep=" ") } else { cat("Result of EDR directions estimation:\n" ) tmp <- matrix(x$matEDR[,1:x$K],ncol=x$K) row.names(tmp) <- 1:dim(tmp)[1] colnames(tmp) <- paste("estimated direction",1:x$K,sep=" ") } cat("\n") prmatrix(signif(tmp,3)) cat("\n") }
get.components <- function(id) { if( length(id) > 1 ) { stop('Function not vectorized - use apply functions'); } components <- strsplit(id, split = ':|-')[[ 1 ]]; component.list <- list( chr = components[1], start = as.numeric(components[2]), end = as.numeric(components[3]) ); return(component.list); }
multi.mcp <- function(X, Y, p.fac = NULL, fold.num) { if (is.null(p.fac)) { p.fac <- rep(1, ncol(X)) } mcp_cv <- ncvreg::cv.ncvreg(X = X, y = Y, penalty = "MCP", penalty.factor = p.fac, family = "gaussian", gamma = 3, nfolds = fold.num) n <- nrow(X) nzero <- (colSums(mcp_cv$fit$beta != 0) - 1) lambda.index <- which(nzero < (n - floor(n/2))) lambda_hat <- mcp_cv$lambda[lambda.index[which.min(mcp_cv$cve[lambda.index])]] beta.est <- coef(mcp_cv, lambda=lambda_hat) selected.index <- which(beta.est!=0,arr.ind = T)[-1]-1 unselected.index <- which(beta.est==0,arr.ind = T)-1 return (list("selected.index"=selected.index, "unselected.index"=unselected.index)) }
matdistl2dnormpar <- function(meanL, varL) { n <- length(meanL) W = diag(0, nrow = n) dimnames(W) = list(names(meanL), names(meanL)) W = matipl2dpar(meanL, varL) norme <- sqrt(diag(W)) for (i in 2:n) for (j in 1:i) W[i, j] <- W[j, i] <- W[i, j]/(norme[i]*norme[j]) distances = diag(0, nrow = n) dimnames(distances) = list(names(meanL), names(meanL)) for (i in 2:n) for (j in 1:(i-1)) { distances[i, j] = distances[j, i] = sqrt( 2 - 2 * W[i, j] ) } as.dist(distances) }
send_unsecure <- function(data, send.more=FALSE) { pbdZMQ::send.socket(getval(socket), data=data, send.more=send.more) } send_secure <- function(data, send.more=FALSE) { serialized <- serialize(data, NULL) encrypted <- sodium::auth_encrypt(serialized, getkey(private), getkey(theirs)) send_unsecure(data=encrypted, send.more=send.more) } receive_unsecure <- function() { msg <- pbdZMQ::receive.socket(getval(socket)) if (identical(msg, magicmsg_first_connection)) { first_receive() return(magicmsg_first_connection) } msg } receive_secure <- function() { encrypted <- pbdZMQ::receive.socket(getval(socket)) if (identical(encrypted, magicmsg_first_connection)) { first_receive() return(magicmsg_first_connection) } raw <- sodium::auth_decrypt(encrypted, getkey(private), getkey(theirs)) unserialize(raw) } remoter_send <- function(data, send.more=FALSE) { if (getval(secure)) send_secure(data=data, send.more=send.more) else send_unsecure(data=data, send.more=send.more) } remoter_receive <- function() { if (getval(secure)) receive_secure() else receive_unsecure() } first_send <- function() { send_unsecure(magicmsg_first_connection) security <- receive_unsecure() if (security && !has.sodium()) stop("remoter server communications are encrypted but the 'sodium' package is not detected on the client. Please install the 'sodium' package, or start an unsecure server.") else if (!security && has.sodium()) cat("WARNING: server not secure; communications are not encrypted.\n") set(secure, security) if (getval(secure)) { send_unsecure(NULL) setkey(theirs, receive_unsecure()) send_unsecure(getkey(public)) } else send_unsecure(NULL) invisible() } first_receive <- function() { logprint(level="INIT", "Receiving first connection from client...", checkverbose=TRUE) logprint(level="INIT", paste("alerting that server", ifelse(getval(secure), "is", "isn't"), "secure"), checkverbose=TRUE) send_unsecure(getval(secure)) logprint(level="INIT", "receiving security acknowledgement from client", checkverbose=TRUE) if (getval(secure)) { receive_unsecure() logprint(level="AUTH", "sending server public key", checkverbose=TRUE) send_unsecure(getkey(public)) logprint(level="AUTH", "receiving client public key", checkverbose=TRUE) setkey(theirs, receive_unsecure()) } else receive_unsecure() invisible() }
prodestACF <- function(Y, fX, sX, pX, idvar, timevar, R = 20, cX = NULL, opt = 'optim', theta0 = NULL, cluster = NULL){ Start = Sys.time() Y <- checkM(Y) fX <- checkM(fX) sX <- checkM(sX) pX <- checkM(pX) idvar <- checkM(idvar) timevar <- checkM(timevar) snum <- ncol(sX) fnum <- ncol(fX) if (!is.null(cX)) {cX <- checkM(cX); cnum <- ncol(cX)} else {cnum <- 0} if (length(theta0) != cnum + fnum + snum & !is.null(theta0)){ stop(paste0('theta0 length (', length(theta0), ') is inconsistent with the number of parameters (', cnum + fnum + snum, ')'), sep = '') } polyframe <- data.frame(fX,sX,pX) mod <- model.matrix( ~.^2-1, data = polyframe) mod <- mod[match(rownames(polyframe),rownames(mod)),] regvars <- cbind(mod, fX^2, sX^2, pX^2) lag.sX = sX for (i in 1:snum) { lag.sX[, i] = lagPanel(sX[, i], idvar = idvar, timevar = timevar) } lag.fX = fX for (i in 1:fnum) { lag.fX[, i] = lagPanel(fX[, i], idvar = idvar, timevar = timevar) } if (!is.null(cX)) { data <- as.matrix(data.frame(Y = Y, idvar = idvar, timevar = timevar, Z = data.frame(lag.fX, sX), Xt = data.frame(fX, sX), lX = data.frame(lag.fX, lag.sX), cX = data.frame(cX), regvars = regvars)) } else { data <- as.matrix(data.frame(Y = Y, idvar = idvar, timevar = timevar, Z = data.frame(lag.fX, sX), Xt = data.frame(fX, sX), lX = data.frame(lag.fX,lag.sX), regvars = regvars)) } betas <- finalACF(ind = TRUE, data = data, fnum = fnum, snum = snum, cnum = cnum, opt = opt, theta0 = theta0) boot.indices <- block.boot.resample(idvar, R) if (is.null(cluster)){ nCores = NULL boot.betas <- matrix(unlist( lapply(boot.indices, finalACF, data = data, fnum = fnum, snum = snum, cnum = cnum, opt = opt, theta0 = theta0, boot = TRUE)), ncol = fnum + snum + cnum, byrow = TRUE) } else { nCores = length(cluster) clusterEvalQ(cl = cluster, library(prodest)) boot.betas <- matrix( unlist( parLapply(cl = cluster, boot.indices, finalACF, data = data, fnum = fnum, snum = snum, cnum = cnum, opt = opt, theta0 = theta0, boot = TRUE) ), ncol = fnum + snum + cnum, byrow = TRUE ) } boot.errors <- apply(boot.betas, 2, sd, na.rm = TRUE) res.names <- c(colnames(fX, do.NULL = FALSE, prefix = 'fX'), colnames(sX, do.NULL = FALSE, prefix = 'sX') ) if (!is.null(cX)) { res.names <- c(res.names, colnames(cX, do.NULL = FALSE, prefix = 'cX')) } names(betas$betas) <- res.names names(boot.errors) <- res.names elapsedTime = Sys.time() - Start out <- new("prod", Model = list(method = 'ACF', FSbetas = NA, boot.repetitions = R, elapsed.time = elapsedTime, theta0 = theta0, opt = opt, opt.outcome = betas$opt.outcome, nCores = nCores), Data = list(Y = Y, free = fX, state = sX, proxy = pX, control = cX, idvar = idvar, timevar = timevar, FSresiduals = betas$FSresiduals), Estimates = list(pars = betas$betas, std.errors = boot.errors)) return(out) } finalACF <- function(ind, data, fnum, snum, cnum, opt, theta0, boot = FALSE){ if (sum(as.numeric(ind)) == length(ind)){ newid <- data[ind, 'idvar', drop = FALSE] } else { newid <- as.matrix(as.numeric(rownames(ind))) ind <- as.matrix(ind) } data <- data[ind,] first.stage <- lm(data[,'Y', drop = FALSE] ~ data[, grepl('regvars', colnames(data)), drop = FALSE], na.action = na.exclude) phi <- fitted(first.stage) if (is.null(theta0)) { theta0 <- coef(first.stage)[2:(1 + snum + fnum + cnum)] + rnorm((snum + fnum), 0, 0.01) } newtime <- data[,'timevar', drop = FALSE] rownames(phi) <- NULL rownames(newtime) <- NULL lag.phi <- lagPanel(idvar = newid, timevar = newtime, value = phi) Z <- data[, grepl('Z', colnames(data)), drop = FALSE] X <- data[, grepl('Xt', colnames(data)), drop = FALSE] lX <- data[, grepl('lX', colnames(data)), drop = FALSE] tmp.data <- model.frame(Z ~ X + lX + phi + lag.phi) W <- solve(crossprod(tmp.data$Z)) / nrow(tmp.data$Z) if (opt == 'optim'){ try.out <- try(optim(theta0, gACF, method = "BFGS", mZ = tmp.data$Z, mW = W, mX = tmp.data$X, mlX = tmp.data$lX, vphi = tmp.data$phi, vlag.phi = tmp.data$lag.phi), silent = TRUE) if (!inherits(try.out, "try-error")) { betas <- try.out$par opt.outcome <- try.out } else { betas <- matrix(NA,(snum + fnum), 1) opt.outcome <- list(convergence = 999) } } else if (opt == 'DEoptim'){ try.out <- try(DEoptim(gACF, lower = theta0, upper = rep.int(1,length(theta0)), mZ = tmp.data$Z, mW = W, mX = tmp.data$X, mlX = tmp.data$lX, vphi = tmp.data$phi, vlag.phi = tmp.data$lag.phi, control = DEoptim.control(trace = FALSE)), silent = TRUE) if (!inherits(try.out, "try-error")) { betas <- try.out$optim$bestmem opt.outcome <- try.out } else { betas <- matrix(NA, (snum + fnum), 1) opt.outcome <- list(convergence = 99) } } else if (opt == 'solnp'){ try.out <- try(suppressWarnings(solnp(theta0, gACF, mZ = tmp.data$Z, mW = W, mX = tmp.data$X, mlX = tmp.data$lX, vphi = tmp.data$phi, vlag.phi = tmp.data$lag.phi, control = list(trace = FALSE))), silent = TRUE) if (!inherits(try.out, "try-error")) { betas <- try.out$pars opt.outcome <- try.out } else { betas <- matrix(NA,(snum + fnum), 1) opt.outcome <- list(convergence = 999) } } if (boot == FALSE){ return(list(betas = betas, opt.outcome = opt.outcome, FSresiduals = resid(first.stage))) } else { return(betas) } } gACF <- function(theta, mZ, mW, mX, mlX, vphi, vlag.phi){ Omega <- vphi - mX %*% theta Omega_lag <- vlag.phi - mlX %*% theta Omega_lag_pol <- cbind(1, Omega_lag, Omega_lag^2, Omega_lag^3) g_b <- solve(crossprod(Omega_lag_pol)) %*% t(Omega_lag_pol) %*% Omega XI <- Omega - Omega_lag_pol %*% g_b crit <- t(crossprod(mZ, XI)) %*% mW %*% (crossprod(mZ, XI)) return(crit) }
afc.dd = function(obsv,fcst){ fcst.1 = fcst[which(obsv == 1)] fcst.0 = fcst[which(obsv == 0)] a = sum(fcst.1) b = sum(fcst.0) c = length(fcst.1)-a d = length(fcst.0)-b p.afc = (a*d + 0.5*(a*b + c*d))/((a+c)*(b+d)) return(p.afc) }
validate_parameters <- function(response, n_min, n_folds, n_trees, min_node_impurity, sample_size, testSize, sampleWithReplacement, useIdentity, pruning, parallelize, use_smote = FALSE, useOOBEE = FALSE, calcVarImp = FALSE, max_features = NA){ response_choices <- c("classify", "regressor") checkmate::assertChoice(response, response_choices) checkmate::assertInt(n_min, lower = 1) checkmate::assertInt(n_folds, lower = 1) if(is.na(max_features)){ checkmate::assertInt(n_trees, lower = 1, upper = 1) } else { checkmate::assertInt(n_trees, lower = 1, upper = 10000) } if(typeof(min_node_impurity) == "character"){ checkmate::assert_character(min_node_impurity, pattern = "auto") } else { checkmate::assert_number(min_node_impurity, lower = 0.0, upper = 1.0) } checkmate::assert_number(sample_size, lower = 0.10, upper = 1.0) checkmate::assert_number(testSize, lower = 0.0, upper = 0.75) choices <- c(TRUE, FALSE) checkmate::assertChoice(sampleWithReplacement, choices) checkmate::assertChoice(useIdentity, choices) checkmate::assertChoice(parallelize, choices) checkmate::assertChoice(pruning, choices) checkmate::assertChoice(use_smote, choices) checkmate::assertChoice(useOOBEE, choices) checkmate::assertChoice(calcVarImp, choices) if(!is.na(max_features)){ if(is.integer(max_features)){ checkmate::assertInteger(max_features, lower = 1) } else if(is.double(max_features)){ checkmate::assert_number(max_features, lower = 1.0) } else { choices <- c("sqrt", "log2", "None") checkmate::assertChoice(max_features, choices) } } } gini_ <- function(y, length_of_y){ m <- length_of_y num_samples_per_class <- data.frame(table(y)) G <- 1.0 - sum((num_samples_per_class$Freq/m)**2) return (G) } compute_max_features <- function(max_features, n_features_){ if(max_features == "None"){ return(n_features_) } else if(max_features == "sqrt"){ return(as.integer(sqrt(n_features_))) } else if(is.integer(max_features)){ return(max_features) } else if(is.double(max_features)){ return(as.integer(max_features)) } else { if(pkg.env$show_progress){ message("compute_max_features() max_features unknown, defaulting to n_features_.") } return(n_features_) } } find_number_valid_feature_columns <- function(X, n_features_){ debug_msg <- FALSE initial_feature_list <- 1:n_features_ for(k in 1:n_features_){ if(length(unique(X[,k])) == 1){ initial_feature_list <- initial_feature_list[!initial_feature_list %in% k] if(debug_msg){ msg <- "find_number_valid_feature_columns() Skipping column %s as all values are the same." msgs <- sprintf(msg, k) message(msgs) } } } return(initial_feature_list) } check_package <- function(pkgname){ package.check <- lapply(pkgname, FUN = function(x) { if (!require(x, character.only = TRUE)) { library(x, character.only = TRUE) } }) } `%notin%` <- Negate(`%in%`) is.not.null <- function(x) !is.null(x) mni.control <- function(mni_trials = 1, mni_n_folds = 10, mni_n_trees = 1, mni_size = 0.01, mni_start = 0.05, mni_numvals = 50, ...){ mni_parms <- c(as.list(environment()), list(...)) checkmate::assertInt(mni_parms$mni_trials, lower = 1) checkmate::assertInt(mni_parms$mni_n_folds, lower = 1) checkmate::assertInt(mni_parms$mni_n_trees, lower = 1, upper = 1) checkmate::assert_number(mni_parms$mni_size, lower = 0.001, upper = 0.10) checkmate::assert_number(mni_parms$mni_start, lower = 0.001, upper = 1.0) checkmate::assertInt(mni_parms$mni_numvals, lower = 1, upper = 1000) outp <- list(mni_parms$mni_trials, mni_parms$mni_n_folds, mni_parms$mni_n_trees, mni_parms$mni_size, mni_parms$mni_start, mni_parms$mni_numvals) return(outp) } prune.control <- function(prune_type = "ccp", prune_stochastic_max_nodes = 10, prune_stochastic_max_depth = 10, prune_stochastic_samples = 100, ...){ prune_parms <- c(as.list(environment()), list(...)) choices <- c("ccp", "all") checkmate::assertChoice(prune_parms$prune_type, choices) checkmate::assertInt(prune_parms$prune_stochastic_max_nodes, lower = 2, upper = 24) checkmate::assert(prune_parms$prune_stochastic_max_nodes %% 2 == 0) checkmate::assertInt(prune_parms$prune_stochastic_max_depth, lower = 1) checkmate::assertInt(prune_parms$prune_stochastic_samples, lower = 1, upper = 10000) outp <- list(prune_parms$prune_type, prune_parms$prune_stochastic_max_nodes, prune_parms$prune_stochastic_max_depth, prune_parms$prune_stochastic_samples) return(outp) }
preprocess.pfr <- function (subj=NULL, covariates = NULL, funcs, kz = NULL, kb = NULL, nbasis=10, funcs.new=NULL, smooth.option="fpca.sc",pve=0.99){ N_subj = length(unique(subj)) p = ifelse(is.null(covariates), 0, dim(covariates)[2]) if (is.matrix(funcs)) { Funcs = list(length = 1) Funcs[[1]] = funcs }else { Funcs = funcs } if (is.matrix(funcs.new)) { Funcs.new = list(length = 1) Funcs.new[[1]] = funcs.new }else { Funcs.new = funcs.new } N.Pred = length(Funcs) if(!is.null(kz)){ if(length(kz)==1) kz = rep(kz,N.Pred) if(length(kz)!=N.Pred) stop("Length of kz is not the number of predictors\n") } kz.adj = rep(NA, N.Pred) if(is.null(funcs.new)){o.len <- nrow(as.matrix(Funcs[[1]])) }else{o.len <- nrow(as.matrix(Funcs.new[[1]]))} t <- phi <- FPCA <- psi <- C <- J <- CJ <- D <- list() if (smooth.option=="fpca.sc"){ for(i in 1:N.Pred){ t[[i]] = seq(0, 1, length = dim(Funcs[[i]])[2]) FPCA[[i]] = fpca.sc(Y = Funcs[[i]], Y.pred = Funcs.new[[i]], pve=pve, nbasis=nbasis, npc=kz[i]) psi[[i]] = FPCA[[i]]$efunctions C[[i]]=FPCA[[i]]$scores kz.adj[i]=FPCA[[i]]$npc } } if (smooth.option=="fpca.face"){ for(i in 1:N.Pred){ Funcs[[i]] = apply(Funcs[[i]],2,function(x){x-0*mean(x,na.rm=TRUE)}) if(!is.null(Funcs.new[[i]])) Funcs.new[[i]] = apply(Funcs.new[[i]],2,function(x){x-0*mean(x,na.rm=TRUE)}) t[[i]] = seq(0, 1, length = dim(Funcs[[i]])[2]) FPCA[[i]] = fpca.face(Y = Funcs[[i]], Y.pred = Funcs.new[[i]], knots=nbasis,pve = pve) if (is.null(kz[i]) || kz[i]>dim(FPCA[[i]]$efunctions)[2]){ psi[[i]] = FPCA[[i]]$efunctions C[[i]]=FPCA[[i]]$scores*sqrt(dim(Funcs[[i]])[2]) kz.adj[i] = dim(FPCA[[i]]$efunctions)[2] cat("For the ", i, "-th functional predictor, the number of PCs changes to", kz.adj[i],"\n"); cat("For details, see the manual\n"); } else { psi[[i]] = FPCA[[i]]$efunctions[,1:kz[i]] C[[i]]=FPCA[[i]]$scores[,1:kz[i]]*sqrt(dim(Funcs[[i]])[2]) kz.adj[i] = kz[i] } } } for(i in 1:N.Pred){ phi[[i]] = cbind(1, bs(t[[i]], df=kb-1, intercept=FALSE, degree=3)) J[[i]] = t(psi[[i]]) %*% phi[[i]] CJ[[i]] = C[[i]] %*% J[[i]] } if(!is.null(subj)){ Z1 = matrix(0, nrow = o.len, ncol = N_subj) for (i in 1:length(unique(subj))) { Z1[which(subj == unique(subj)[i]), i] = 1 } colnames(Z1)=c(paste("i",1:dim(Z1)[2], sep="")) D[[1]] = diag(c(rep(0, 1 + p), rep(1, N_subj), rep(0, length = N.Pred * (kb)))) totD <- N.Pred+1 startD <- 2 }else{ Z1 <- NULL totD <- N.Pred startD <- 1 } temp=matrix(0, nrow=kb-1, ncol=kb-1) for(ii in 1:(kb-1)){ for(jj in 1:(kb-1)){ temp[ii,jj]=min(ii,jj)-1 } } spl.pen = matrix(1, nrow=kb-1, ncol=kb-1)+temp Dinv=solve(spl.pen) for (i in startD:totD) { D[[i]] = magic::adiag( diag(c(rep(0, 1 + p + N_subj*!is.null(subj)), rep(0, kb * (i - startD)) , rep(0, 1))), Dinv, diag(rep(0, kb * (totD - i)))) } X = cbind(rep(1,o.len), covariates, Z1) for (i in 1:N.Pred) { X = cbind(X, CJ[[i]]) } fixed.mat = X[,1:(1+p)] rand.mat = Z1 for (i in 1:N.Pred) { fixed.mat = cbind(fixed.mat, CJ[[i]][,1]) rand.mat = cbind(rand.mat , CJ[[i]][,2:kb]) } ret <- list( X, D, phi, psi, C, J, CJ, Z1, subj, fixed.mat, rand.mat, N_subj, p, N.Pred, kz, kz.adj, kb, nbasis, totD, funcs, covariates, smooth.option) names(ret) <- c("X", "D", "phi", "psi", "C", "J", "CJ", "Z1", "subj", "fixed.mat", "rand.mat", "N_subj", "p", "N.Pred", "kz", "kz.adj", "kb", "nbasis", "totD", "funcs", "covariates", "smooth.option") ret }
PushGist <- function(mdFile, githubUserName = "") { reportName <- strsplit(basename(mdFile), ".", fixed = TRUE)[[1]][1] conf <- getConfig() pConf <- conf$network$proxy HTTP_PROXY <- pConf$http USE_PROXY_URL <- pConf$ip USE_PROXY_PORT <- pConf$port Sys.setenv(http_proxy=HTTP_PROXY) Sys.setenv(https_proxy=HTTP_PROXY) PAT <- conf$github$PAT[githubUserName] if (PAT != "") { tryCatch({ Sys.setenv(GITHUB_PAT=PAT) gistr::gist_auth() }, warning = function(war) { return(paste("Authentication warning:", war)) }, error = function(err) { return(paste("Authentication error:", err)) }) } gistId <- as.character(conf$github$gistId[reportName]) if (gistId == "") { tryCatch({ g <- gistr::run(mdFile, knitopts = list(quiet=TRUE)) gistr::gist_create(g, browse=FALSE) }, warning = function(war) { return(paste("Create gist warning:", war)) }, error = function(err){ return(paste("Create gist error:", err)) }) } else { tryCatch({ g <- gistr::gist(id = gistId) g <- gistr::update_files(g, gistr::run(mdFile, knitopts = list(quiet=TRUE))) g <- gistr::update(g) }, warning = function(war){ return(paste("Update gist warning:", war)) }, error = function(err) { return(paste("Update gist error:", err)) }) } }
library("dbscan") data("moons") plot(moons, pch=20) cl <- hdbscan(moons, minPts = 5) cl plot(moons, col=cl$cluster+1, pch=20) cl$hc plot(cl$hc, main="HDBSCAN* Hierarchy") cl <- hdbscan(moons, minPts = 5) check <- rep(F, nrow(moons)-1) core_dist <- kNNdist(moons, k=5-1) cut_tree <- function(hcl, eps, core_dist){ cuts <- unname(cutree(hcl, h=eps)) cuts[which(core_dist > eps)] <- 0 cuts } eps_values <- sort(cl$hc$height, decreasing = T)+.Machine$double.eps for (i in 1:length(eps_values)) { cut_cl <- cut_tree(cl$hc, eps_values[i], core_dist) dbscan_cl <- dbscan(moons, eps = eps_values[i], minPts = 5, borderPoints = F) check[i] <- (all.equal(rle(cut_cl)$lengths, rle(dbscan_cl$cluster)$lengths) == "TRUE") } print(all(check == T)) plot(cl) plot(cl, gradient = c("yellow", "orange", "red", "blue")) plot(cl, gradient = c("purple", "blue", "green", "yellow"), scale=1.5) plot(cl, gradient = c("purple", "blue", "green", "yellow"), show_flat = T) print(cl$cluster_scores) head(cl$membership_prob) plot(moons, col=cl$cluster+1, pch=21) colors <- mapply(function(col, i) adjustcolor(col, alpha.f = cl$membership_prob[i]), palette()[cl$cluster+1], seq_along(cl$cluster)) points(moons, col=colors, pch=20) top_outliers <- order(cl$outlier_scores, decreasing = T)[1:10] colors <- mapply(function(col, i) adjustcolor(col, alpha.f = cl$outlier_scores[i]), palette()[cl$cluster+1], seq_along(cl$cluster)) plot(moons, col=colors, pch=20) text(moons[top_outliers, ], labels = top_outliers, pos=3) data("DS3") plot(DS3, pch=20, cex=0.25) cl2 <- hdbscan(DS3, minPts = 25) cl2 plot(DS3, col=cl2$cluster+1, pch=ifelse(cl2$cluster == 0, 8, 1), cex=ifelse(cl2$cluster == 0, 0.5, 0.75), xlab=NA, ylab=NA) colors <- sapply(1:length(cl2$cluster), function(i) adjustcolor(palette()[(cl2$cluster+1)[i]], alpha.f = cl2$membership_prob[i])) points(DS3, col=colors, pch=20) plot(cl2, scale = 3, gradient = c("purple", "orange", "red"), show_flat = T)
plot_dendocluster <- function(spectral_count_object, target_variable, file_title, hclust_method = "ward.D", correlation_method = "spearman", force = FALSE){ spectral_count_object <- spectral_count_object if (!force && interactive()) { response <- select.list(c("yes", "no"), title = "Do you allow to create a pdf file with a dendogram?") if (response == "yes") { if ((length(spectral_count_object) == 4) & (spectral_count_object[[4]] == "spectral_count_object")) { metadata <- spectral_count_object[[2]] if(target_variable %in% colnames(metadata)){ elements_meta <- as.character(metadata[[target_variable]]) colors_condition = NULL unique_conditions <- unique(elements_meta) print("Indicate colors by name (ex. red) or hexadecimal code (ex. for(i in 1:length(unique_conditions)){ color <- readline(prompt = paste0("Enter the color for ", unique_conditions[i], ": " )) colors_condition <- rbind.data.frame( colors_condition, cbind.data.frame(condition = as.character(unique_conditions[i]), color = as.character(color)) ) } colors_vector = NULL for(i in 1:length(elements_meta)){ for(j in 1:dim(colors_condition)[1]){ if(elements_meta[i] == as.character(colors_condition[j, 1])){ colors_vector <- append(colors_vector, as.character(colors_condition[j, 2])) } } } ncols <- length(colnames(spectral_count_object[[1]])) ncolors <- length(colors_vector) if (ncols == ncolors) { if (is.character(file_title) == TRUE && nchar(file_title) > 1){ SC_sampple_id <- spectral_count_object[[1]] colnames(SC_sampple_id) <- metadata$SampleID max_length_name <- max(nchar(colnames(SC_sampple_id))) for (sample in 1:c(length(colnames(SC_sampple_id)))) { sample_name <- names(SC_sampple_id[sample]) length_name <- nchar(sample_name) length_space <- max_length_name - length_name + 7 length_space <- paste(replicate(length_space, " "), collapse = "") sample_elements <- nrow(SC_sampple_id[SC_sampple_id[sample] > 0, ]) new_name <- paste(sample_name, length_space, sample_elements) names(SC_sampple_id)[sample] <- new_name } SC_sampple_id_corr <- 1 - cor(SC_sampple_id, method = correlation_method) SC_sampple_id_dist <- as.dist(SC_sampple_id_corr) SC_sampple_id_hc <- hclust(SC_sampple_id_dist, method = hclust_method) SC_sampple_id_dend <- as.dendrogram(SC_sampple_id_hc) colors_vector <- colors_vector[order.dendrogram(SC_sampple_id_dend)] labels_colors(SC_sampple_id_dend) <- colors_vector if(ncolors > 15){ height = ncolors * 0.3 } else { height = 7 } old_par <- par(no.readonly = TRUE) on.exit(suppressWarnings(par(old_par))) filename <- paste(file_title, ".pdf", sep = "") pdf(filename, width = 7, height = height) par(cex = 1.2, mar = c(2, 2, 0, 13)) print(plot(SC_sampple_id_dend, horiz = TRUE)) dev.off() print("Clustering file generated") } else { stop("The third argument must be a character indication the title of the file") } } else{ stop("Check that the number of colors are equal to the number of samples!") } } else{ var_options <- paste(colnames(metadata), collapse = ", ") stop(paste(c("The second argument must be ONE of the following options:", var_options), collapse = " ")) } } else{ stop("Invalid object") } } else{ stop("No file was created") } } }
data(synth) repl.levs <- function(x, ch.lev){ for (j in 1:length(ch.lev)) x <- gsub(ch.levs[j], j, x) return(x) } d <- paste(synth$data, collapse = " ") d <- strsplit(d, " ")[[1]] ch.levs <- levels(as.factor(d)) S <- strsplit(synth$data, " ") S <- sapply(S, repl.levs, ch.levs) S <- sapply(S, as.numeric) C <- click.read(S) set.seed(123) N2 <- click.EM(X = C$X, K = 2) T <- click.predict(M = 3, gamma = N2$gamma, pr = N2$z[1,]) colnames(T) <- ch.levs T[S[[1]][length(S[[1]])],]
bi2ste3 <- function(m,n,eps,alpha,sw,tolrd,tol,maxh) { outste3 <- tempfile() cat(" m = ",m," n = ",n," eps = ",eps," alpha = ",alpha, "\n","sw = ",sw," tolrd = ",tolrd," tol = ",tol," maxh = ",maxh,"\n", file=outste3,append=FALSE) fakl <- rep(0,2000) hyp0 <- matrix(rep(0,2000*2000),nrow=2000) rho0l <- log(1-eps) nn <- m+n fakl[1+0] <- 0 for (i in 1:2000) { qi <- i fakl[1+i] <- fakl[1+i-1] + log(qi) } oom0l <- 0 for (is in 1:(nn-1)) { ixl <- max(0,is-n) ixu <- min(is,m) hyp0[2+is,2+ixu] <- 0 for (j in 1:(ixu-ixl+1)) { ix <- ixu - j hl <- fakl[1+m] - fakl[1+ix+1] - fakl[1+m-ix-1] + fakl[1+n] - fakl[1+is-ix-1] - fakl[1+n-is+ix+1] hyp0[2+is,2+ix] <- exp(hl + (ix+1)*rho0l - oom0l) hyp0[2+is,2+ix] <- hyp0[2+is,2+ix] + hyp0[2+is,2+ix+1] } oom0l <- oom0l + log(hyp0[2+is,2+ixl-1]) for (ix in ixl:(ixu-1)) { hyp0[2+is,2+ix] <- hyp0[2+is,2+ix] / hyp0[2+is,2+ixl-1] } hyp0[2+is,2+ixl-1] <- 1 } alph_0 <- alpha nhst <- 0 size <- rejmax(m,n,eps,sw,tolrd,alph_0,fakl,hyp0) cat("\n","alph_0 =",alph_0," NHST =",nhst," SIZE =",size,file=outste3,append=TRUE) while (size <= alpha) { alph_0 <- alph_0 + .01 size <- rejmax(m,n,eps,sw,tolrd,alph_0,fakl,hyp0) cat("\n","alph_0 =",alph_0," NHST =",nhst, " SIZE =",size,file=outste3,append=TRUE) } nhst <- 0 alph_1 <- alph_0 - .01 alph_2 <- alph_0 repeat { nhst <- nhst + 1 alph_0 <- (alph_1 + alph_2) / 2 size <- rejmax(m,n,eps,sw,tolrd,alph_0,fakl,hyp0) cat("\n","alph_0 =",alph_0," NHST =",nhst," SIZE =",size,file=outste3,append=TRUE) if (abs(size-alpha) < tol || nhst >= maxh) break if (abs(size-alpha) >= tol && nhst < maxh) { if (size > alpha && size < (alpha + 0.001) ) break } if (size > alpha) alph_2 <- alph_0 if (size < alpha) alph_1 <- alph_0 } size <- rejmax(m,n,eps,sw,tolrd,alph_0,fakl,hyp0) cat("\n","alph_0 =",alph_0," NHST =",nhst," SIZE =",size,file=outste3,append=TRUE) file.show(outste3) }
library(LoopRig) ovary_loops <- system.file("extdata/loops", "ovary_hg19.bedpe", package = "LoopRig", mustWork = TRUE) pancreas_loops <- system.file("extdata/loops", "pancreas_hg19.bedpe", package = "LoopRig", mustWork = TRUE) spleen_loops <- system.file("extdata/loops", "spleen_hg19.bedpe", package = "LoopRig", mustWork = TRUE) loops <- LoopsToRanges(ovary_loops, pancreas_loops, spleen_loops, custom_cols = 0) loops_single <- LoopsToRanges(ovary_loops, custom_cols = 0) test_that("error handling", { expect_error(DropLoops(ovary_loops, type = "loop_size", size = c(1000, 10000)), "Please enter an object of LoopRanges class for the 'loop_ranges' parameter") expect_error(DropLoops(loops, type = "type", size = c(1000, 20000)), "Please enter either 'loop_size' or 'anchor_size' for the 'type' parameter") expect_error(DropLoops(loops, type = "loop_size", size = 1000), "Please enter a numerical vector of two integers for the 'size' parameter") }) test_that("class output", { expect_is(DropLoops(loops, type = "loop_size", size = c(100, 10000)), "LoopRanges") expect_is(DropLoops(loops, type = "anchor_size", size = c(1000, 25000)), "LoopRanges") })
print.sim.seqtest.cor <- function(x, ...) { if (!inherits(x, "sim.seqtest.cor")) { stop("Object is not a sim.seqtest.cor object!") } cat("\n Statistical Simulation for the Sequential Triangular Test\n\n") if (x$spec$alternative == "two.sided") { cat(" H0: rho =", x$spec$rho, " versus H1: rho !=", x$spec$rho, "\n\n") } else { if (x$spec$alternative == "less") { cat(" H0: rho >=", x$spec$rho, " versus H1: rho <", x$spec$rho, "\n\n") } else { cat(" H0: rho <=", x$spec$rho, " versus H1: rho >", x$spec$rho, "\n\n") } } if (length(x$spec$k) == 1 & length(x$spec$beta) == 1) { cat(" Nominal type-I-risk (alpha): ", x$spec$alpha, "\n", " Nominal type-II-risk (beta): ", x$spec$beta, "\n", " Practical relevant effect (delta):", x$spec$delta, "\n", " n in each sub-sample (k): ", x$spec$k, "\n\n", " Simulated data based on rho: ", x$spec$rho.sim, "\n", " Simulation runs: ", x$spec$runs, "\n") if (x$spec$rho.sim == x$spec$rho) { cat("\n Estimated empirical type-I-risk (alpha):", x$res$alpha.emp, "\n", " Average number of steps (AVN): ", x$res$AVN, "\n", " Average number of sample pairs (ASN): ", x$res$ASN, "\n\n") } else { cat("\n Estimated empirical type-II-risk (beta):", formatC(x$res$beta.emp, digits = x$spec$digits, format = "f"), "\n", " Average number of steps (AVN): ", formatC(x$res$AVN, digits = x$spec$digits, format = "f"), "\n", " Average number of sample pairs (ASN): ", formatC(x$res$ASN, digits = x$spec$digits, format = "f"), "\n\n") } } else { if (length(x$spec$k) > 1) { cat(" Nominal type-I-risk (alpha): ", x$spec$alpha, "\n", " Nominal type-II-risk (beta): ", x$spec$beta, "\n", " Practical relevant effect (delta):", x$spec$delta, "\n\n", " Simulated data based on rho: ", x$spec$rho.sim, "\n", " Simulation runs: ", x$spec$runs, "\n\n") cat(" Estimated empirical type-I-risk (alpha):\n") for (i in x$spec$k) { cat(paste0(" k = ", i, ": ", formatC(x$res$p.H1[x$res$k == i], digits = x$spec$digits, format = "f")), "\n") } cat("\n Average number of steps (AVN):\n") for (i in x$spec$k) { cat(paste0(" k = ", i, ": ", formatC(x$res$AVN[x$res$k == i], digits = x$spec$digits, format = "f")), "\n") } cat("\n Average number of sample pairs (ASN):\n") for (i in x$spec$k) { cat(paste0(" k = ", i, ": ", formatC(x$res$ASN[x$res$k == i], digits = x$spec$digits, format = "f")), "\n") } } else { cat(" Nominal type-I-risk (alpha): ", x$spec$alpha, "\n", " Practical relevant effect (delta):", x$spec$delta, "\n", " n in each sub-sample (k): ", x$spec$k, "\n\n", " Simulated data based on rho: ", x$spec$rho.sim, "\n", " Simulation runs: ", x$spec$runs, "\n\n") cat(" Estimated empirical type-II-risk (beta):\n") digits <- max(nchar(x$spec$beta)) - 2 for (i in x$spec$beta) { cat(paste0(" Nominal beta = ", formatC(i, format = "f", digits = digits), ": ", formatC(x$res$beta.emp[x$res$beta.nom == i], digits = x$spec$digits, format = "f")), "\n") } cat("\n Average number of steps (AVN):\n") for (i in x$spec$beta) { cat(paste0(" Nominal beta = ", formatC(i, format = "f", digits = digits), ": ", formatC(x$res$AVN[x$res$beta.nom == i], digits = x$spec$digits, format = "f")), "\n") } cat("\n Average number of sample pairs (ASN):\n") for (i in x$spec$beta) { cat(paste0(" Nominal beta = ", formatC(i, format = "f", digits = digits), ": ", formatC(x$res$ASN[x$res$beta.nom == i], digits = x$spec$digits, format = "f")), "\n") } } cat("\n") } }
write_vc <- function(work_item, path_absolute, output_dir, export_as) { if (path_absolute) { output_path <- here::here(output_dir, paste0(work_item$BIBTEXKEY, ".html")) } else { output_path <- file.path(output_dir, paste0(work_item$BIBTEXKEY, ".html")) } if (export_as == "html_full") { tryCatch( expr = { htmltools::save_html(work_item$vcs, file = here::here(output_path)) }, error = function(e) { message("Could not save the HTML output:") print(e) }, warning = function(w) { message("Having difficulties saving the HTML output:") print(w) } ) } else if (export_as == "html") { tryCatch( expr = { write( as.character(htmltools::as.tags(work_item$vcs)), file = here::here(output_path) ) }, error = function(e) { message("Could not save the HTML output:") print(e) }, warning = function(w) { message("Having difficulties saving the HTML output:") print(w) } ) } else if (export_as == "png") { if (!webshot::is_phantomjs_installed()) { message("You need to download and install phantomJS to save output as PNG. Try running 'webshot::install_phantomjs()' once.") } else { tryCatch( expr = { htmltools::save_html(work_item$vcs, file = here::here(output_path)) }, error = function(e) { message("Could not save the intermediate HTML output:") print(e) }, warning = function(w) { message("Having difficulties saving the intermediate HTML output:") print(w) } ) tryCatch( expr = { webshot::webshot(output_path, paste0(output_path, ".png"), selector = ".visual-citation", zoom = 2) }, error = function(e) { message("Could not take a screenshot of the intermediate HTML.") print(e) }, warning = function(w) { message("Having difficulties taking a screenshot of the intermediate HTML output:") print(w) } ) unlink(output_path) return(paste0(output_path, ".png")) } } else { stop("Output format unknown") } return(as.character(output_path)) }
makeRLearner.classif.LiblineaRL1LogReg = function() { makeRLearnerClassif( cl = "classif.LiblineaRL1LogReg", package = "LiblineaR", par.set = makeParamSet( makeNumericLearnerParam(id = "cost", default = 1, lower = 0), makeNumericLearnerParam(id = "epsilon", default = 0.01, lower = 0), makeLogicalLearnerParam(id = "bias", default = TRUE), makeNumericVectorLearnerParam(id = "wi", len = NA_integer_), makeIntegerLearnerParam(id = "cross", default = 0L, lower = 0L, tunable = FALSE), makeLogicalLearnerParam(id = "verbose", default = FALSE, tunable = FALSE) ), properties = c("twoclass", "multiclass", "numerics", "class.weights", "prob"), class.weights.param = "wi", name = "L1-Regularized Logistic Regression", short.name = "liblinl1logreg", callees = "LiblineaR" ) } trainLearner.classif.LiblineaRL1LogReg = function(.learner, .task, .subset, .weights = NULL, ...) { d = getTaskData(.task, .subset, target.extra = TRUE) LiblineaR::LiblineaR(data = d$data, target = d$target, type = 6L, ...) } predictLearner.classif.LiblineaRL1LogReg = function(.learner, .model, .newdata, ...) { if (.learner$predict.type == "response") { as.factor(predict(.model$learner.model, newx = .newdata, ...)$predictions) } else { predict(.model$learner.model, newx = .newdata, proba = TRUE, ...)$probabilities } }
create_barebone <- function(path){ dir.create(path, showWarnings = FALSE, recursive = TRUE) src <- system.file("builtin-templates", "AdminLTE3-bare", package = "shidashi") fs <- list.files(src, full.names = TRUE, recursive = FALSE, all.files = FALSE, no.. = TRUE, include.dirs = TRUE) file.copy( from = fs, to = path, overwrite = TRUE, recursive = TRUE, copy.date = TRUE ) { writeLines( c( "{", " library(shiny)", " server <- function(input, output, session) {", " shiny::observeEvent(session$clientData$url_search, {", " req <- list(QUERY_STRING = session$clientData$url_search)", " resource <- shidashi::load_module(request = req)", " if (resource$has_module) {", " module_table <- shidashi::module_info()", " module_table <- module_table[module_table$id %in% ", " resource$module$id, ]", " if (nrow(module_table)) {", " group_name <- as.character(module_table$group[[1]])", " if (is.na(group_name)) {", " group_name <- \"<no group>\"", " }", " if (system.file(package = \"logger\") != \"\") {", " logger::log_info(\"Loading - { module_table$label[1] } ({group_name}/{ module_table$id })\")", " }", " shiny::moduleServer(resource$module$id, resource$module$server, ", " session = session)", " }", " }", " })", " }", "}" ), file.path(path, "server.R")) } dir.create(file.path(path, 'R'), showWarnings = FALSE, recursive = TRUE) dir.create(file.path(path, 'modules', 'module_id', 'R'), showWarnings = FALSE, recursive = TRUE) { writeLines( c( "library(shiny)", "page_title <- function(complete = TRUE){", " if(complete){", " \"Shiny Dashboard Template - Barebone\"", " } else {", " \"ShiDashi\"", " }", "}", "page_logo <- function(size = c(\"normal\", \"small\", \"large\")){", " " " NULL", "}", "page_loader <- function(){", " " shiny::div(", " class = \"preloader flex-column justify-content-center align-items-center\",", " shiny::img(", " class = \"animation__shake\",", " src = page_logo(\"large\"),", " alt = \"Logo\", height=\"60\", width=\"60\"", " )", " )", "}", "body_class <- function(){", " c(", " " "", " " "", " " "", " " \"layout-fixed\",", "", " " "", " " \"navbar-iframe-hidden\",", "", " " \"dark-mode\"", "", " " "", " )", "}", "nav_class <- function(){", " c(", " \"main-header\",", " \"navbar\",", " \"navbar-expand\",", " \"navbar-dark\",", " \"navbar-primary\"", " )", "}", "", "module_breadcrumb <- function(){}" ), con = file.path(path, 'R', 'common.R')) } { writeLines( c( "library(shiny)", "library(shidashi)", "ui <- function(){", "", " fluidPage(", " fluidRow(", " column(", " width = 12L,", "", " " plotOutput(ns(\"plot\"))", " )", " )", " )", "", "}", "", "server_chunk_1 <- function(input, output, session, ...){", "", " event_data <- register_session_events()", "", " output$plot <- renderPlot({", " theme <- get_theme(event_data)", " set.seed(1)", " par(", " bg = theme$background, fg = theme$foreground,", " col.main = theme$foreground,", " col.axis = theme$foreground,", " col.lab = theme$foreground", " )", " hist(rnorm(1000))", " })", "", "}" ), con = file.path(path, 'modules', 'module_id', 'R', "chunk-1.R") ) } { writeLines( c( "library(shiny)", "library(shidashi)", "", "server <- function(input, output, session, ...){", "", " shared_data <- shidashi::register_session_id(session)", "", " server_chunk_1(input, output, session, ...)", "", "}" ), con = file.path(path, 'modules', 'module_id', 'server.R') ) } invisible() }
options(width = 80) options(digits = 6) logfO2 <- "log<i>f</i><sub>O<sub>2</sub></sub>" zc <- "<i>Z</i><sub>C</sub>" o2 <- "O<sub>2</sub>" h2o <- "H<sub>2</sub>O" sio2 <- "SiO<sub>2</sub>" ch4 <- "CH<sub>4</sub>" library(knitr) opts_chunk$set(tidy = FALSE, cache.extra = packageVersion('tufte')) options(htmltools.dir.version = FALSE) knit_hooks$set(small.mar = function(before, options, envir) { if (before) par(mar = c(4.2, 4.2, .1, .1)) }) knit_hooks$set(tiny.mar = function(before, options, envir) { if (before) par(mar = c(.1, .1, .1, .1)) }) knit_hooks$set(smallish.mar = function(before, options, envir) { if (before) par(mar = c(4.2, 4.2, 0.9, 0.9)) }) knit_hooks$set(pngquant = hook_pngquant) pngquant <- "--speed=1 --quality=0-25" if (!nzchar(Sys.which("pngquant"))) pngquant <- NULL dpi <- 50 knit_hooks$set(custom.plot = hook_plot_custom) hook_plot <- knit_hooks$get("plot") knit_hooks$set(plot = function(x, options) { x <- hook_plot(x, options) if (!is.null(options$embed.tag) && options$embed.tag) x <- gsub("<img ", "<embed ", x) x }) now = Sys.time() knit_hooks$set(timeit = function(before) { if (before) { now <<- Sys.time() } else { paste("%", sprintf("Chunk rendering time: %s seconds.\n", round(Sys.time() - now, digits = 3))) } }) timeit <- NULL color_block = function(color) { function(x, options) sprintf('<pre style="color:%s">%s</pre>', color, x) } knit_hooks$set(warning = color_block('magenta'), error = color_block('red'), message = color_block('blue')) library(CHNOSZ) reset() info("CH4") info("CH4", "gas") info("methane") info("oxygen") info("carbon dioxide") info("S") info("S2") iCH4 <- info("CH4") info(iCH4) info(info("water")) options(width = 180) info("acid") options(width = 80) info(" ribose") info(iCH4)$formula makeup(iCH4) as.chemical.formula(makeup(iCH4)) ZC(iCH4) ZC(info(iCH4)$formula) ZC(makeup(iCH4)) subcrt("water") subcrt("water", T = c(400, 500, 600), P = c(200, 400, 600), grid = "P")$out$water substuff <- subcrt("water", T=seq(0,1000,100), P=c(NA, seq(1,500,1)), grid="T") water <- substuff$out$water plot(water$P, water$rho, type = "l") T.units("K") P.units("MPa") E.units("J") subcrt("CH4", T = 298.15, P = 0.1)$out$CH4$G convert(info(info("CH4"))$G, "J") reset() subcrt(c("CO2", "CO2"), c("gas", "aq"), c(-1, 1), T = seq(0, 250, 50)) T <- seq(0, 350, 10) CO2 <- subcrt(c("CO2", "CO2"), c("gas", "aq"), c(-1, 1), T = T)$out$logK CO <- subcrt(c("CO", "CO"), c("gas", "aq"), c(-1, 1), T = T)$out$logK CH4 <- subcrt(c("CH4", "CH4"), c("gas", "aq"), c(-1, 1), T = T)$out$logK logK <- data.frame(T, CO2, CO, CH4) matplot(logK[, 1], logK[, -1], type = "l", col = 1, lty = 1, xlab = axis.label("T"), ylab = axis.label("logK")) text(80, -1.7, expr.species("CO2")) text(240, -2.37, expr.species("CO")) text(300, -2.57, expr.species("CH4")) subcrt(c("CO2", "CH4"), c(-1, 1)) basis(c("CO2", "H2", "H2CO2")) basis(c("CO2", "H2", "H2O")) basis(c("CO2", "H2", "H2O", "H+")) subcrt(c("acetate", "CH4"), c(-1, 1))$reaction acetate_oxidation <- subcrt("acetate", -1) hydrogenotrophic <- subcrt("CH4", 1) acetoclastic <- subcrt(c("acetate", "CH4"), c(-1, 1)) plot(0, 0, type = "n", axes = FALSE, ann=FALSE, xlim=c(0, 5), ylim=c(5.2, -0.2)) text(0, 0, "acetoclastic methanogenesis", adj = 0) text(5, 1, describe.reaction(acetoclastic$reaction), adj = 1) text(0, 2, "acetate oxidation", adj = 0) text(5, 3, describe.reaction(acetate_oxidation$reaction), adj = 1) text(0, 4, "hydrogenotrophic methanogenesis", adj = 0) text(5, 5, describe.reaction(hydrogenotrophic$reaction), adj = 1) E.units("J") basis(c("CO2", "H2", "H2O", "H+")) basis(c("CO2", "H2"), "gas") basis(c("H2", "pH"), c(-3.92, 7.3)) subcrt(c("acetate", "CH4"), c(-1, 1), c("aq", "gas"), logact = c(-3.4, -0.18), T = 55, P = 50)$out subcrt("CH4", 1, "gas", logact = -0.18, T = 55, P = 50)$out rxnfun <- function(coeffs) { subcrt(c("acetate", "CH4"), coeffs, c("aq", "gas"), logact = c(-3.4, -0.18), T = 55, P = 50)$out } Adat <- lapply(c(-3, 3), function(logfCO2) { basis("CO2", logfCO2) data.frame(logfCO2, rxnfun(c(0, 0))$A, rxnfun(c(-1, 0))$A, rxnfun(c(-1, 1))$A, rxnfun(c(0, 1))$A ) }) Adat <- do.call(rbind, Adat) matplot(Adat[, 1], -Adat[, -1]/1000, type = "l", lty = 1, lwd = 2, xlab = axis.label("CO2"), ylab = axis.label("DG", prefix = "k")) legend("topleft", c("acetate oxidation", "acetoclastic methanogenesis", "hydrogenotrophic methanogenesis"), lty = 1, col = 2:4) reset() basis("CHNOSe") species(c("H2S", "HS-", "HSO4-", "SO4-2")) unlist(affinity()$values) a <- affinity(pH = c(0, 12), Eh = c(-0.5, 1)) diagram(a, limit.water = TRUE) diagram(a, fill = "terrain", lwd = 2, lty = 3, names = c("hydrogen sulfide", "bisulfide", "bisulfate", "sulfate"), las = 0) water.lines(a, col = 6, lwd = 2) retrieve("Mn", c("O", "H"), "aq") retrieve("Mn", c("O", "H"), "cr") logact <- -4 T <- 100 res <- 400 basis(c("Mn+2", "H2O", "H+", "e-")) iaq <- retrieve("Mn", c("O", "H"), "aq") species(iaq, logact) aaq <- affinity(pH = c(4, 16, res), Eh = c(-1.5, 1.5, res), T = T) names <- names(iaq) names[!names(iaq) %in% c("MnOH+", "MnO", "HMnO2-")] <- "" diagram(aaq, lty = 2, col = " icr <- retrieve("Mn", c("O", "H"), "cr") species(icr, add = TRUE) acr <- affinity(aaq) diagram(acr, add = TRUE, bold = acr$species$state=="cr", limit.water = FALSE) legend <- c( bquote(log * italic(a)["Mn(aq)"] == .(logact)), bquote(italic(T) == .(T) ~ degree*C) ) legend("topright", legend = as.expression(legend), bty = "n") info(" CuCl") basis(c("Cu", "H2S", "Cl-", "H2O", "H+", "e-")) basis("H2S", -6) basis("Cl-", -0.7) species(c("CuCl", "CuCl2-", "CuCl3-2", "CuCl+", "CuCl2", "CuCl3-", "CuCl4-2")) species(c("chalcocite", "tenorite", "cuprite", "copper"), add = TRUE) info(info("chalcocite", c("cr", "cr2", "cr3")))$T T <- 200 res <- 200 bases <- c("H2S", "HS-", "HSO4-", "SO4-2") m1 <- mosaic(bases, pH = c(0, 12, res), Eh=c(-1.2, 0.75, res), T=T) diagram(m1$A.species, lwd = 2) diagram(m1$A.bases, add = TRUE, col = 4, col.names = 4, lty = 3, italic = TRUE) water.lines(m1$A.species, col = "blue1") file <- system.file("extdata/cpetc/SC10_Rainbow.csv", package = "CHNOSZ") rb <- read.csv(file, check.names = FALSE) basis(c("CO2", "H2", "NH4+", "H2O", "H2S", "H+")) species("CH4", -3) species(c("adenine", "cytosine", "aspartic acid", "deoxyribose", "CH4", "leucine", "tryptophan", "n-nonanoic acid"), -6) a <- affinity(T = rb$T, CO2 = rb$CO2, H2 = rb$H2, `NH4+` = rb$`NH4+`, H2S = rb$H2S, pH = rb$pH) T <- convert(a$vals[[1]], "K") a$values <- lapply(a$values, convert, "G", T) a$values <- lapply(a$values, `*`, -0.001) diagram(a, balance = 1, ylim = c(-100, 100), ylab = axis.label("A", prefix="k"), col = rainbow(8), lwd = 2, bg = "slategray3") abline(h = 0, lty = 2, lwd = 2) basis(c("FeS2", "H2S", "O2", "H2O")) species(c("pyrite", "magnetite")) species("pyrrhotite", "cr2") unlist(affinity(T = 300, P = 100)$values) mod.buffer("PPM", "pyrrhotite", "cr2") basis(c("H2S", "O2"), c("PPM", "PPM")) unlist(affinity(T = 300, P = 100, return.buffer = TRUE)[1:3]) demo(buffer, echo = FALSE) par(mfrow = c(3, 1)) basis("CHNOS+") species(c("CO2", "HCO3-", "CO3-2")) a25 <- affinity(pH = c(4, 13)) a150 <- affinity(pH = c(4, 13), T = 150) diagram(a25, dy = 0.4) diagram(a150, add = TRUE, names = FALSE, col = "red") e25 <- equilibrate(a25, loga.balance = -3) e150 <- equilibrate(a150, loga.balance = -3) diagram(e25, ylim = c(-6, 0), dy = 0.15) diagram(e150, add = TRUE, names = FALSE, col = "red") diagram(e25, alpha = TRUE, dy = -0.25) diagram(e150, alpha = TRUE, add = TRUE, names = FALSE, col = "red") add.OBIGT("SLOP98") basis(c("Al+3", "H2O", "H+", "O2")) species("corundum") iaq <- c("Al+3", "AlO2-", "AlOH+2", "AlO+", "HAlO2") s <- solubility(iaq, pH = c(0, 10), IS = 0, in.terms.of = "Al+3") diagram(s, type = "loga.balance", ylim = c(-10, 0), lwd = 4, col = "green3") diagram(s, add = TRUE, adj = c(0, 1, 2.1, -0.2, -1.5), dy = c(0, 0, 4, -0.3, 0.1)) legend("topright", c("25 °C", "1 bar"), text.font = 2, bty = "n") reset() oldnon <- nonideal("Alberty") subcrt(c("MgATP-2", "MgHATP-", "MgH2ATP"), T = c(25, 100), IS = c(0, 0.25), property = "G")$out info(" ATP") T <- 100 par(mfrow = c(1, 4), mar = c(3.1, 3.6, 2.1, 1.6), mgp = c(1.8, 0.5, 0)) basis("MgCHNOPS+") species(c("ATP-4", "HATP-3", "H2ATP-2", "H3ATP-", "H4ATP")) a <- affinity(pH = c(3, 9), T = T) e <- equilibrate(a) d <- diagram(e, alpha = TRUE, tplot = FALSE) title(main = describe.property("T", T)) alphas <- do.call(rbind, d$plotvals) nH <- alphas * 0:4 Hlab <- substitute(italic(N)[H^`+`]) plot(a$vals[[1]], colSums(nH), type = "l", xlab = "pH", ylab=Hlab, lty=2, col=2) a <- affinity(pH = c(3, 9), IS = 0.25, T = T) e <- equilibrate(a) d <- diagram(e, alpha = TRUE, plot.it = FALSE) alphas <- do.call(rbind, d$plotvals) nH <- alphas * 0:4 lines(a$vals[[1]], colSums(nH)) legend("topright", legend = c("I = 0 M", "I = 0.25 M"), lty = 2:1, col = 2:1, cex = 0.8) ATP.H <- substitute("ATP and H"^`+`) title(main = ATP.H) species(c("MgATP-2", "MgHATP-", "MgH2ATP", "Mg2ATP"), add = TRUE) Hplot <- function(pMg, IS = 0.25) { basis("Mg+2", -pMg) a <- affinity(pH = c(3, 9), IS = IS, T = T) e <- equilibrate(a) d <- diagram(e, alpha = TRUE, plot.it = FALSE) alphas <- do.call(rbind, d$plotvals) NH <- alphas * c(0:4, 0, 1, 2, 0) lines(a$vals[[1]], colSums(NH), lty = 7 - pMg, col = 7 - pMg) } plot(c(3, 9), c(0, 2), type = "n", xlab = "pH", ylab = Hlab) lapply(2:6, Hplot) legend("topright", legend = paste("pMg = ", 2:6), lty = 5:1, col = 5:1, cex = 0.8) ATP.H.Mg <- substitute("ATP and H"^`+`~"and Mg"^`+2`) title(main = ATP.H.Mg) Mgplot <- function(pH, IS = 0.25) { basis("pH", pH) a <- affinity(`Mg+2` = c(-2, -7), IS = IS, T = T) e <- equilibrate(a) d <- diagram(e, alpha = TRUE, plot.it = FALSE) alphas <- do.call(rbind, d$plotvals) NMg <- alphas * species()$`Mg+` lines(-a$vals[[1]], colSums(NMg), lty = 10 - pH, col = 10 - pH) } Mglab <- substitute(italic(N)[Mg^`+2`]) plot(c(2, 7), c(0, 1.2), type = "n", xlab = "pMg", ylab = Mglab) lapply(3:9, Mgplot) legend("topright", legend = paste("pH = ", 3:9), lty = 7:1, col = 7:1, cex = 0.8) title(main = ATP.H.Mg) nonideal(oldnon) p1 <- pinfo("LYSC_CHICK") p2 <- pinfo(c("SHH", "OLIG2"), "HUMAN") pinfo(c(p1, p2)) pl <- protein.length("LYSC_CHICK") pf <- protein.formula("LYSC_CHICK") list(length = pl, protein = pf, residue = pf / pl, ZC_protein = ZC(pf), ZC_residue = ZC(pf / pl)) subcrt("LYSC_CHICK")$out[[1]][1:6, ] PM90 <- read.csv(system.file("extdata/cpetc/PM90.csv", package = "CHNOSZ")) plength <- protein.length(colnames(PM90)[2:5]) Cp_expt <- t(t(PM90[, 2:5]) / plength) matplot(PM90[, 1], convert(Cp_expt, "cal"), type = "p", pch = 19, xlab = axis.label("T"), ylab = axis.label("Cp0"), ylim = c(28, 65)) for(i in 1:4) { pname <- colnames(Cp_expt)[i] aq <- subcrt(pname, "aq", T = seq(0, 150))$out[[1]] cr <- subcrt(pname, "cr", T = seq(0, 150))$out[[1]] lines(aq$T, aq$Cp / plength[i], col = i) lines(cr$T, cr$Cp / plength[i], col = i, lty = 2) } legend("right", legend = colnames(Cp_expt), col = 1:4, pch = 19, lty = 1, bty = "n", cex = 0.9) legend("bottomright", legend = c("experimental", "calculated (aq)", "calculated (cr)"), lty = c(NA, 1, 2), pch = c(19, NA, NA), bty = "n") ip <- pinfo(c("CYC_BOVIN", "LYSC_CHICK", "MYG_PHYCA", "RNAS1_BOVIN")) basis("CHNOS+") a_ion <- affinity(pH = c(0, 14), iprotein = ip) basis("CHNOS") a_nonion <- affinity(iprotein = ip) plot(c(0, 14), c(50, 300), xlab = "pH", ylab = axis.label("A"), type = "n") for(i in 1:4) { A_ion <- as.numeric(a_ion$values[[i]]) A_nonion <- as.numeric(a_nonion$values[[i]]) lines(a_ion$vals[[1]], A_ion - A_nonion, col=i) } legend("topright", legend = a_ion$species$name, col = 1:4, lty = 1, bty = "n", cex = 0.9) basis("CHNOS") species(c("CYC_BOVIN", "LYSC_CHICK", "MYG_PHYCA", "RNAS1_BOVIN")) a_nonion_species <- affinity() unlist(a_nonion_species$values) unlist(a_nonion$values) file.copy("rubisco.svg", fig_path(".svg")) datfile <- system.file("extdata/cpetc/rubisco.csv", package = "CHNOSZ") fastafile <- system.file("extdata/protein/rubisco.fasta", package = "CHNOSZ") dat <- read.csv(datfile) aa <- read.fasta(fastafile) Topt <- (dat$T1 + dat$T2) / 2 idat <- match(dat$ID, substr(aa$protein, 4, 9)) aa <- aa[idat, ] ZC <- ZC(protein.formula(aa)) pch <- match(dat$domain, c("E", "B", "A")) - 1 col <- match(dat$domain, c("A", "B", "E")) + 1 plot(Topt, ZC, pch = pch, cex = 2, col = col, xlab = expression(list(italic(T)[opt], degree*C)), ylab = expression(italic(Z)[C])) text(Topt, ZC, rep(1:9, 3), cex = 0.8) abline(v = c(36, 63), lty = 2, col = "grey") legend("topright", legend = c("Archaea", "Bacteria", "Eukaryota"), pch = c(2, 1, 0), col = 2:4, pt.cex = 2) layout(matrix(1:4, nrow = 2)) par(mgp = c(1.8, 0.5, 0)) pl <- protein.length(aa) ZClab <- axis.label("ZC") nO2lab <- expression(bar(italic(n))[O[2]]) nH2Olab <- expression(bar(italic(n))[H[2]*O]) lapply(c("CHNOS", "QEC"), function(thisbasis) { basis(thisbasis) pb <- protein.basis(aa) nO2 <- pb[, "O2"] / pl plot(ZC, nO2, pch = pch, col = col, xlab = ZClab, ylab = nO2lab) nH2O <- pb[, "H2O"] / pl plot(ZC, nH2O, pch = pch, col = col, xlab = ZClab, ylab = nH2Olab) mtext(thisbasis, font = 2) }) protein <- c("YDL195W", "YHR098C", "YIL109C", "YLR208W", "YNL049C", "YPL085W") abundance <- c(1840, 12200, NA, 21400, 1720, 358) ina <- is.na(abundance) ip <- match(protein[!ina], thermo()$protein$protein) pl <- protein.length(ip) logact <- unitize(numeric(5), pl) logabundance <- unitize(log10(abundance[!ina]), pl) par(mfrow = c(1, 3)) basis("CHNOS+") a <- affinity(O2 = c(-80, -73), iprotein = ip, loga.protein = logact) e <- equilibrate(a) diagram(e, ylim = c(-5, -2), col = 1:5, lwd = 2) e <- equilibrate(a, normalize = TRUE) diagram(e, ylim = c(-5, -2.5), col = 1:5, lwd = 2) abline(h = logabundance, lty = 1:5, col = 1:5) revisit(e, "DGinf", logabundance) file <- system.file("extdata/protein/POLG.csv", package = "CHNOSZ") aa_POLG <- read.csv(file, as.is = TRUE, nrows = 5) file <- system.file("extdata/protein/EF-Tu.aln", package = "CHNOSZ") aa_Ef <- read.fasta(file, iseq = 1:2) aa_PRIO <- seq2aa("PRIO_HUMAN", " MANLGCWMLVLFVATWSDLGLCKKRPKPGGWNTGGSRYPGQGSPGGNRYPPQGGGGWGQP HGGGWGQPHGGGWGQPHGGGWGQPHGGGWGQGGGTHSQWNKPSKPKTNMKHMAGAAAAGA VVGGLGGYMLGSAMSRPIIHFGSDYEDRYYRENMHRYPNQVYYRPMDEYSNQNNFVHDCV NITIKQHTVTTTTKGENFTETDVKMMERVVEQMCITQYERESQAYYQRGSSMVLFSSPPV ILLISFLIFLIVG ") aa_ALAT1 <- seq2aa("ALAT1_HUMAN", " MASSTGDRSQAVRHGLRAKVLTLDGMNPRVRRVEYAVRGPIVQRALELEQELRQGVKKPF TEVIRANIGDAQAMGQRPITFLRQVLALCVNPDLLSSPNFPDDAKKRAERILQACGGHSL GAYSVSSGIQLIREDVARYIERRDGGIPADPNNVFLSTGASDAIVTVLKLLVAGEGHTRT GVLIPIPQYPLYSATLAELGAVQVDYYLDEERAWALDVAELHRALGQARDHCRPRALCVI NPGNPTGQVQTRECIEAVIRFAFEERLFLLADEVYQDNVYAAGSQFHSFKKVLMEMGPPY AGQQELASFHSTSKGYMGECGFRGGYVEVVNMDAAVQQQMLKLMSVRLCPPVPGQALLDL VVSPPAPTDPSFAQFQAEKQAVLAELAAKAKLTEQVFNEAPGISCNPVQGAMYSFPRVQL PPRAVERAQELGLAPDMFFCLRLLEETGICVVPGSGFGQREGTYHFRMTILPPLEKLRLL LEKLSRFHAKFTLEYS ") aa_CO1A1 <- seq2aa("CO1A1_HUMAN", " MFSFVDLRLLLLLAATALLTHGQEEGQVEGQDEDIPPITCVQNGLRYHDRDVWKPEPCRI CVCDNGKVLCDDVICDETKNCPGAEVPEGECCPVCPDGSESPTDQETTGVEGPKGDTGPR GPRGPAGPPGRDGIPGQPGLPGPPGPPGPPGPPGLGGNFAPQLSYGYDEKSTGGISVPGP MGPSGPRGLPGPPGAPGPQGFQGPPGEPGEPGASGPMGPRGPPGPPGKNGDDGEAGKPGR PGERGPPGPQGARGLPGTAGLPGMKGHRGFSGLDGAKGDAGPAGPKGEPGSPGENGAPGQ MGPRGLPGERGRPGAPGPAGARGNDGATGAAGPPGPTGPAGPPGFPGAVGAKGEAGPQGP RGSEGPQGVRGEPGPPGPAGAAGPAGNPGADGQPGAKGANGAPGIAGAPGFPGARGPSGP QGPGGPPGPKGNSGEPGAPGSKGDTGAKGEPGPVGVQGPPGPAGEEGKRGARGEPGPTGL PGPPGERGGPGSRGFPGADGVAGPKGPAGERGSPGPAGPKGSPGEAGRPGEAGLPGAKGL TGSPGSPGPDGKTGPPGPAGQDGRPGPPGPPGARGQAGVMGFPGPKGAAGEPGKAGERGV PGPPGAVGPAGKDGEAGAQGPPGPAGPAGERGEQGPAGSPGFQGLPGPAGPPGEAGKPGE QGVPGDLGAPGPSGARGERGFPGERGVQGPPGPAGPRGANGAPGNDGAKGDAGAPGAPGS QGAPGLQGMPGERGAAGLPGPKGDRGDAGPKGADGSPGKDGVRGLTGPIGPPGPAGAPGD KGESGPSGPAGPTGARGAPGDRGEPGPPGPAGFAGPPGADGQPGAKGEPGDAGAKGDAGP PGPAGPAGPPGPIGNVGAPGAKGARGSAGPPGATGFPGAAGRVGPPGPSGNAGPPGPPGP AGKEGGKGPRGETGPAGRPGEVGPPGPPGPAGEKGSPGADGPAGAPGTPGPQGIAGQRGV VGLPGQRGERGFPGLPGPSGEPGKQGPSGASGERGPPGPMGPPGLAGPPGESGREGAPGA EGSPGRDGSPGAKGDRGETGPAGPPGAPGAPGAPGPVGPAGKSGDRGETGPAGPTGPVGP VGARGPAGPQGPRGDKGETGEQGDRGIKGHRGFSGLQGPPGPPGSPGEQGPSGASGPAGP RGPPGSAGAPGKDGLNGLPGPIGPPGPRGRTGDAGPVGPPGPPGPPGPPGPPSAGFDFSF LPQPPQEKAHDGGRYYRADDANVVRDRDLEVDTTLKSLSQQIENIRSPEGSRKNPARTCR DLKMCHSDWKSGEYWIDPNQGCNLDAIKVFCNMETGETCVYPTQPSVAQKNWYISKNPKD KRHVWFGESMTDGFQFEYGGQGSDPADVAIQLTFLRLMSTEASQNITYHCKNSVAYMDQQ TGNLKKALLLQGSNEIEIRAEGNSRFTYSVTVDGCTSHTGAWGKTVIEYKTTKTSRLPII DVAPLDVGAPDQEFGFDVGPVCFL ") aa_UniProt <- rbind(aa_ALAT1, aa_CO1A1) aa_UniProt$abbrv <- c("ALAT1", "CO1A1") aa_UniProt myaa <- rbind(aa_Ef, aa_PRIO, aa_ALAT1) protein.length(myaa) options(width = 180) iATP <- info("ATP-4") iMgATP <- info("MgATP-2") thermo.refs(c(iATP, iMgATP)) thermo.refs(c("HDNB78", "MGN03")) substuff <- subcrt(c("C2H5OH", "O2", "CO2", "H2O"), c(-1, -3, 2, 3)) thermo.refs(substuff) options(width = 80) file <- system.file("extdata/adds/BZA10.csv", package = "CHNOSZ") read.csv(file, as.is = TRUE) iCd <- add.OBIGT(file) subcrt(c("CdCl+", "Cl-", "CdCl2"), c(-1, -1, 1), T = 25, P = c(1, 2000)) reset() thermo.refs(iCd)[, 1:3] subcrt(c("CdCl+", "Cl-", "CdCl2"), c(-1, -1, 1), T = 25, P = c(1, 2000)) mod.OBIGT("CoCl4-2", formula = "CoCl4-2", state = "aq", ref1 = "LBT+11", date = as.character(Sys.Date()), G = -134150, H = -171558, S = 19.55, Cp = 72.09, V = 27.74) mod.OBIGT("CoCl4-2", a1 = 6.5467, a2 = 8.2069, a3 = 2.0130, a4 = -3.1183, c1 = 76.3357, c2 = 11.6389, omega = 2.9159, z = -2) T <- c(25, seq(50, 350, 50)) sres <- subcrt(c("Co+2", "Cl-", "CoCl4-2"), c(-1, -4, 1), T = T) round(sres$out$logK, 2) stopifnot(identical(round(sres$out$logK, 2), c(-3.2, -2.96, -2.02, -0.74, 0.77, 2.5, 4.57, 7.29))) H <- -1762000 S <- 119.6 V <- 43.56 mod.OBIGT("magnesiochromite", formula = "MgCr2O4", state = "cr", ref1 = "KOSG00", date = as.character(Sys.Date()), E_units = "J", H = H, S = S, V = V) a <- 221.4 b <- -0.00102030 * 1e3 c <- -1757210 * 1e-5 d <- -1247.9 mod.OBIGT("magnesiochromite", E_units = "J", a = a, b = b, c = c, d = d, e = 0, f = 0, lambda = 0, T = 1500) T.units("K") E.units("J") subcrt("magnesiochromite", property = "Cp", T = c(250, 300, 340), P = 1) T.units("C") E.units("cal") inew <- info("CoCl4-2") info(inew) info(info("S3-")) file <- system.file("extdata/adds/OBIGT_check.csv", package = "CHNOSZ") dat <- read.csv(file, as.is = TRUE) nrow(dat) cref <- citation("CHNOSZ") print(cref, style = "html") maintainer("CHNOSZ") sessionInfo()
APML <- function(model='gbm',AUC_stopping=F,xcol,traindata,testdata,hyper,distribution='bernoulli',imbalance=F,sort_by='auc', extra_data=NULL,stopping_metric='AUTO' ){ search_criteria=NULL if(AUC_stopping==T) search_criteria = list(strategy = 'RandomDiscrete',stopping_metric = "AUC",stopping_rounds = 3) traindata=as.h2o(traindata) testdata=as.h2o(testdata) if(!is.null(extra_data))extra_data=as.h2o(extra_data) if(model=="gbm"){ grid1=NULL grid1=h2o.grid("gbm", distribution=distribution,x=xcol, y=1, training_frame=traindata,nfolds=5,seed=666, sample_rate=0.7,col_sample_rate=0.7,fold_assignment = "AUTO",balance_classes=isTRUE(imbalance), hyper_params=hyper,search_criteria = search_criteria,stopping_metric=stopping_metric ) } if(model=="rf"){ grid1=NULL grid1=h2o.grid("randomForest",x=xcol, y=1, training_frame=traindata,nfolds=5,seed=666,balance_classes=isTRUE(imbalance), sample_rate=0.7,col_sample_rate_per_tree=0.7,fold_assignment = "AUTO",distribution=distribution, hyper_params=hyper,search_criteria = search_criteria,stopping_metric=stopping_metric) } if(sort_by=='auc'){ gridperf1=NULL gridperf1 <- h2o.getGrid(grid_id = grid1@grid_id, sort_by = sort_by, decreasing = TRUE) best_gd <- h2o.getModel(gridperf1@model_ids[[1]]) best_perf1=h2o.performance(model = best_gd,newdata = testdata) out=data.frame( train_AUC=best_gd@model$training_metrics@metrics$AUC, train_prAUC=best_gd@model$training_metrics@metrics$pr_auc, cv_AUC=best_gd@model$cross_validation_metrics@metrics$AUC, cv_prAUC=best_gd@model$cross_validation_metrics@metrics$pr_auc, test_AUC=best_perf1@metrics$AUC, test_prAUC=best_perf1@metrics$pr_auc ) OUT=data.frame(gridperf1@summary_table) para=list(metrics=out,grid_summary=OUT) train_metrics <- h2o.metric(h2o.performance(model = best_gd,newdata = traindata)) test_metrics <- h2o.metric(h2o.performance(model = best_gd,newdata = testdata)) train0_metrics=NULL if(!is.null(extra_data)) train0_metrics <- h2o.metric(h2o.performance(model = best_gd,newdata = extra_data)) result <- list(bestmodel=best_gd,train_metrics=train_metrics,test_metrics=test_metrics,summary=para,extra_metrics=train0_metrics) }else{ gridperf1=NULL if(sort_by=='r2'){ gridperf1 <- h2o.getGrid(grid_id = grid1@grid_id, sort_by = sort_by, decreasing = TRUE) }else{ gridperf1 <- h2o.getGrid(grid_id = grid1@grid_id, sort_by = sort_by, decreasing = FALSE) } best_gd <- h2o.getModel(gridperf1@model_ids[[1]]) best_perf1=h2o.performance(model = best_gd,newdata = testdata) out=data.frame( train_MSE=best_gd@model$training_metrics@metrics$MSE, train_RMSE=best_gd@model$training_metrics@metrics$RMSE, train_R2=best_gd@model$training_metrics@metrics$r2, cv_MSE=best_gd@model$cross_validation_metrics@metrics$MSE, cv_RMSE=best_gd@model$cross_validation_metrics@metrics$RMSE, cv_R2=best_gd@model$cross_validation_metrics@metrics$r2, test_MSE=best_perf1@metrics$MSE, test_RMSE=best_perf1@metrics$RMSE, test_R2=best_perf1@metrics$r2 ) OUT=data.frame(gridperf1@summary_table) para=list(metrics=out,grid_summary=OUT) train_metrics <- h2o.performance(model = best_gd,newdata = traindata) test_metrics <- h2o.performance(model = best_gd,newdata = testdata) train0_metrics=NULL if(!is.null(extra_data)) train0_metrics <- h2o.metric(h2o.performance(model = best_gd,newdata = extra_data)) result <- list(bestmodel=best_gd,train_metrics=train_metrics,test_metrics=test_metrics,summary=para,extra_metrics=train0_metrics) } return(result) }
epcreg.baselearner.control <- function(baselearners=c("nnet","rf","svm","gbm","knn") , baselearner.configs=make.configs(baselearners, type="regression"), npart=1, nfold=5) { return (list(configs=baselearner.configs, npart=npart, nfold=nfold)) } epcreg.integrator.control <- function(errfun=rmse.error, nfold=5, method=c("default")) { return (list(errfun=rmse.error, nfold=nfold, method=method)) } epcreg.set.filemethod <- function(formula, data, instance.list, type="regression") FALSE epcreg <- function(formula, data , baselearner.control=epcreg.baselearner.control() , integrator.control=epcreg.integrator.control() , ncores=1, filemethod=FALSE, print.level=1 , preschedule = TRUE , schedule.method = c("random", "as.is", "task.length"), task.length) { if (integrator.control$method!="default") stop("invalid PCR integration method") ncores.max <- try(detectCores(),silent=T) mycall <- match.call() if (!inherits(ncores.max,"try-error")) ncores <- min(ncores,ncores.max) if (print.level>=1 && ncores>1) cat("running in parallel mode, using", ncores, "cores\n") partitions.bl <- generate.partitions(baselearner.control$npart, nrow(data), baselearner.control$nfold) my.instance.list <- make.instances(baselearner.control$configs, partitions.bl) if (missing(filemethod)) filemethod <- epcreg.set.filemethod(formula, data, my.instance.list) if (print.level>=1) cat("CV training of base learners...\n") est.baselearner.cv.batch <- Regression.CV.Batch.Fit(my.instance.list, formula, data, ncores=ncores, filemethod=filemethod, print.level=print.level, preschedule = preschedule, schedule.method = schedule.method, task.length = task.length) if (print.level>=1) cat("finished CV training of base learners\n") Xcv <- est.baselearner.cv.batch@pred y <- data[,all.vars(formula)[1]] partition.int <- generate.partition(nrow(data), integrator.control$nfold) my.integrator.config <- Regression.Integrator.PCR.SelMin.Config(errfun=integrator.control$errfun, partition=partition.int) est.integrator <- Regression.Integrator.Fit(my.integrator.config, X=Xcv, y=y, print.level=print.level) pred <- est.integrator@pred ret <- list(call=mycall, formula=formula, instance.list=my.instance.list, integrator.config=my.integrator.config, method=integrator.control$method , est=list(baselearner.cv.batch=est.baselearner.cv.batch, integrator=est.integrator) , y=y, pred=pred, filemethod=filemethod) class(ret) <- "epcreg" if (filemethod) class(ret) <- c(class(ret), "epcreg.file") return (ret) } predict.epcreg <- function(object, newdata=NULL, ncores=1, preschedule = TRUE, ...) { if (is.null(newdata)) return (object$pred) if (object$method=="default") { newpred.baselearner.cv.batch <- predict(object$est$baselearner.cv.batch, newdata, ncores=ncores, preschedule = preschedule, ...) newpred <- predict(object$est$integrator, Xnew=newpred.baselearner.cv.batch, [email protected], ...) } else { stop("invalid PCR integration method") } return (as.numeric(newpred)) } plot.epcreg <- function(x, ...) { errfun <- x$integrator.config@errfun error <- errfun(x$pred, x$y) oldpar <- par(mfrow=c(1,2)) plot(x$est$baselearner.cv.batch, errfun=errfun, ylim.adj = error) abline(h=error, lty=2) pcr.errors <- x$est$integrator@est$select@est$error plot(pcr.errors, type="l", xlab="Number of Principal Components", ylab="CV Error", main="Integrator Performance") par(oldpar) } epcreg.save <- function (obj, file) { if (!("epcreg" %in% class(obj))) stop("invalid object class (must be epcreg & epcreg.file)") if (missing(file)) stop("must provide file argument") tmpfiles <- obj$est$baselearner.cv.batch@tmpfiles if (is.null(tmpfiles)) { save(obj, file = file) } else { tmpfile.new <- tempfile() save(obj, file = tmpfile.new, compress = F) all.files <- c(tmpfile.new, tmpfiles) all.files.basename <- basename(all.files) tmpdir <- paste0("./.", basename(tempfile("dir")), "/") dir.create(tmpdir) all.files.new <- paste0(tmpdir, all.files.basename) file.copy(all.files, all.files.new) meta <- list(filename.mainobj = all.files.basename[1], filenames.batchobj = all.files.basename[1 + 1:length(tmpfiles)]) save(meta, file = paste0(tmpdir, "meta"), compress = FALSE) tar(file, files = tmpdir, compression = "gzip") unlink(tmpdir, recursive = TRUE) } } epcreg.load <- function (file) { env <- new.env() loadret <- suppressWarnings(try(load(file, envir = env), silent = TRUE)) if (class(loadret) == "try-error") { filepaths <- untar(file, list = T) basenames <- basename(filepaths) dirnames <- dirname(filepaths) if (length(unique(dirnames)) > 1) stop("unexpected multiple directories in tar filepaths") metafile.index <- which(basenames == "meta") extdir <- dirnames[1] untar(file) meta <- NULL load(filepaths[metafile.index]) mainfile.index <- which(basenames == meta$filename.mainobj) load(filepaths[mainfile.index]) if (!identical(class(obj), c("epcreg", "epcreg.file"))) stop("invalid object class (must be epcreg & epcreg.file)") basenames.ordered <- basename(obj$est$baselearner.cv.batch@tmpfiles) filepaths.ordered <- paste(extdir, basenames.ordered, sep = "/") tmpfiles.new <- tempfile(rep("file", length(filepaths.ordered))) file.copy(from = filepaths.ordered, to = tmpfiles.new) unlink(filepaths.ordered, recursive = TRUE) unlink(extdir, recursive = TRUE) obj$est$baselearner.cv.batch@tmpfiles <- tmpfiles.new n.instance <- length([email protected]@instances) for (i in 1:n.instance) { partid <- [email protected]@instances[[1]]@partid nfold <- length(unique([email protected]@partitions[, partid])) for (j in 1:nfold) { [email protected][[i]]@fitobj.list[[j]]@est <- tmpfiles.new[[email protected]$start[i] + j - 1] } } return(obj) } else { loadedObjects <- objects(env, all.names = TRUE) stopifnot(length(loadedObjects) == 1) return (env[[loadedObjects]]) } } print.epcreg <- function(x, ...) { cat("Call:\n") print(x$call) } summary.epcreg <- function(object, ...) { n.instance <- length(object$instance.list@instances) maxpc <- object$est$integrator@[email protected][[1]]@config@n index.min <- object$est$integrator@est$select@est$index.min error.min <- object$est$integrator@est$select@est$error.min tvec <- object$est$baselearner.cv.batch@tvec ret <- list(n.instance=n.instance, maxpc=maxpc, index.min=index.min, error.min=error.min, tvec = tvec) class(ret) <- "summary.epcreg" return (ret) } print.summary.epcreg <- function(x, ...) { cat("number of base learner instances:", x$n.instance, "\n") cat("maximum number of PC's considered:", x$maxpc, "\n") cat("optimal number of PC's:", x$index.min, "\n") cat("minimum error:", x$error.min, "\n") }
lsem_fitsem_raw_data_lavaan <- function(dat, pseudo_weights, survey.fit, lavaan_est_fun, se, ...) { res <- lsem_fitsem_raw_data_define_pseudo_weights(dat=dat, pseudo_weights=pseudo_weights) dat1 <- res$dat sampling_weights <- res$sampling_weights nobs_pseudo <- res$nobs_pseudo sum_weight <- res$sum_weight partable <- sirt_import_lavaan_parameterTable(object=survey.fit) partable$start <- partable$est survey.fit <- lavaan_est_fun(model=partable, data=dat1, sampling.weights=sampling_weights, se=se, ... ) survey.fit <- lavaan_object_adjust_sample_size(object=survey.fit, n_used=sum_weight) return(survey.fit) }
rm(list=ls(all=TRUE)) cols=c("city","sex","doseg","agexg","calg","kerma","PY","adjPY","num.entering", "age","agex","tsx","cal","sv","gam","neut","lymphoma","NHL","leukemia","AML","ALL","CML","ATL","MM") d<-read.table("c:/data/abomb/HEMA87.dat", header=F,col.names=cols); d=d[d$adjPY>0,] d=d[d$kerma==1,] d=d[d$city==1,] d$py=10^4*d$adjPY d$calg=as.integer(cut(d$calg,c(0,2,4,6,8,10))) m=d[d$sex==1,]; f=d[d$sex==2,] agem=55 agem=0 require(bbmle) nLL<-function(c0,k,beta,L1,L2,L3,L4,L5,x,agem) with(x, {L=c(L1,L2,L3,L4,L5) mn = (exp(c0+k*(age-agem)) + exp(-beta*abs(agex-30)/28.85)*sv*exp(L[calg]))*py -sum(stats::dpois(CML, mn, log=TRUE))}) fit0 <- mle2(nLL,start=list(c0=-10,k=.04,L1=-10,L2=-10,L3=-10,L4=-10,L5=-10,beta=0.5),data=list(x=m,agem=agem)) fit0Fx <- mle2(nLL,start=list(c0=-10,k=.04,L1=-10,L2=-10,L3=-10,L4=-10,L5=-10),fixed = list(beta=0),data=list(x=m,agem=agem)) deviance(fit0Fx)-deviance(fit0) fit0 <- mle2(nLL,start=list(c0=-10,k=.04,L1=-10,L2=-10,L3=-10,L4=-10,L5=-10,beta=0.5),data=list(x=f,agem=agem)) fit0Fx <- mle2(nLL,start=list(c0=-10,k=.04,L1=-10,L2=-10,L3=-10,L4=-10,L5=-10),fixed = list(beta=0),data=list(x=f,agem=agem)) deviance(fit0Fx)-deviance(fit0)
power.scABEL2 <- function(alpha=0.05, theta1, theta2, theta0, CV, n, design=c("2x3x3", "2x2x4", "2x2x3"), regulator, nsims, details=FALSE, setseed=TRUE) { if (missing(CV)) stop("CV must be given!") if (missing(n)) stop("Number of subjects n must be given!") if (missing(theta0)) theta0 <- 0.90 if (length(theta0)>1) { theta0 <- theta0[2] warning(paste0("theta0 has to be scalar. theta0 = ", theta0, " used."), call. = FALSE) } if (missing(theta1) & missing(theta2)) theta1 <- 0.8 if (missing(theta2)) theta2 <- 1/theta1 if (missing(theta1)) theta1 <- 1/theta2 ptm <- proc.time() CVwT <- CV[1] if (length(CV)==2) CVwR <- CV[2] else CVwR <- CVwT if (missing(nsims)) { if (theta0 == scABEL(CVwR)[["lower"]] | theta0 == scABEL(CVwR)[["upper"]]) { nsims <- 1e6 } else { nsims <- 1e5 } } s2wT <- log(1.0 + CVwT^2) s2wR <- log(1.0 + CVwR^2) if(missing(regulator)) regulator <- "EMA" reg <- reg_check(regulator) CVcap <- reg$CVcap CVswitch <- reg$CVswitch r_const <- reg$r_const pe_constr <- reg$pe_constr if(is.null(pe_constr)) pe_constr <- TRUE design <- match.arg(design) if (design=="2x3x3") { seqs <- 3 dfe <- parse(text="n-3", srcfile=NULL) dfRRe <- parse(text="n-3", srcfile=NULL) Emse <- s2wT + s2wR/2 } if (design=="2x2x4") { seqs <- 2 dfe <- parse(text="n-2", srcfile=NULL) dfRRe <- parse(text="n-2", srcfile=NULL) Emse <- (s2wT + s2wR)/2 } if (design=="2x2x3") { seqs <- 2 dfe <- parse(text="n-2", srcfile=NULL) dfRRe <- parse(text="n/2-1", srcfile=NULL) Emse <- 1.5*(s2wT + s2wR)/2 } if (length(n)==1){ nv <- nvec(n=n, grps=seqs) if (nv[1]!=nv[length(nv)]){ message("Unbalanced design. n(i)=", paste(nv, collapse="/"), " assumed.") } } else { if (length(n)!=seqs) stop("n must be a vector of length=",seqs,"!") nv <- n } C3 <- sum(1/nv)/seqs^2 n <- sum(nv) df <- eval(dfe) if (design=="2x2x3"){ dfTT <- nv[1]-1 dfRR <- nv[2]-1 Emse <- (dfRR*(s2wT + s2wR/2)+dfTT*(s2wT/2 + s2wR))/(dfRR+dfTT) } else { dfRR <- eval(dfRRe) } sdm <- sqrt(Emse*C3) mlog <- log(theta0) if(setseed) set.seed(123456) p <- .pwr.ABEL.ISC(mlog, sdm, C3, Emse, df, s2wR, dfRR, nsims, CVswitch=CVswitch, r_const=r_const, CVcap=CVcap, pe_constr=pe_constr, ln_lBEL=log(theta1),ln_uBEL=log(theta2), alpha=alpha) if (details) { ptm <- summary(proc.time()-ptm) message(nsims," sims. Time elapsed (sec): ", formatC(ptm["elapsed"], digits=2), "\n") names(p) <- c("p(BE)", "p(BE-ABEL)", "p(BE-pe)", "p(BE-ABE)") if (!pe_constr) p <- p[-3] p } else { as.numeric(p["BE"]) } }
NULL opsworkscm <- function(config = list()) { svc <- .opsworkscm$operations svc <- set_config(svc, config) return(svc) } .opsworkscm <- list() .opsworkscm$operations <- list() .opsworkscm$metadata <- list( service_name = "opsworks-cm", endpoints = list("*" = list(endpoint = "opsworks-cm.{region}.amazonaws.com", global = FALSE), "cn-*" = list(endpoint = "opsworks-cm.{region}.amazonaws.com.cn", global = FALSE), "us-iso-*" = list(endpoint = "opsworks-cm.{region}.c2s.ic.gov", global = FALSE), "us-isob-*" = list(endpoint = "opsworks-cm.{region}.sc2s.sgov.gov", global = FALSE)), service_id = "OpsWorksCM", api_version = "2016-11-01", signing_name = "opsworks-cm", json_version = "1.1", target_prefix = "OpsWorksCM_V2016_11_01" ) .opsworkscm$service <- function(config = list()) { handlers <- new_handlers("jsonrpc", "v4") new_service(.opsworkscm$metadata, handlers, config) }
phylostruct<-function(samp,tree,env=NULL,metric=c("psv","psr","pse","psc","sppregs"),null.model=c("frequency","richness","independentswap","trialswap"),runs=100,it=1000,alpha=0.05,fam="binomial"){ metric<-match.arg(metric) null.model<-match.arg(null.model) if(metric=="sppregs") { nulls<-t(replicate(runs,sppregs(randomizeMatrix(samp,null.model=null.model,iterations=it),env,tree,fam=fam)$correlations)) obs<-sppregs(samp,env,tree,fam=fam)$correlations mean.null<-apply(nulls,2,mean) quantiles.null<-t(apply(nulls,2,quantile,probs=c(alpha/2,1-(alpha/2)))) if((null.model!="independentswap")&&(null.model!="trialswap")){it=NA} return(list(metric=metric,null.model=null.model,runs=runs,it=it,obs=obs,mean.null=mean.null ,quantiles.null=quantiles.null,phylo.structure=NULL,nulls=nulls)) } else { nulls<-switch(metric, psv = replicate(runs,mean(psv(as.matrix(randomizeMatrix(samp,null.model=null.model,iterations=it)),tree,compute.var=FALSE)[,1],na.rm=TRUE)), psr = replicate(runs,mean(psr(as.matrix(randomizeMatrix(samp,null.model=null.model,iterations=it)),tree,compute.var=FALSE)[,1],na.rm=TRUE)), pse = replicate(runs,mean(pse(as.matrix(randomizeMatrix(samp,null.model=null.model,iterations=it)),tree)[,1],na.rm=TRUE)), psc = replicate(runs,mean(psc(as.matrix(randomizeMatrix(samp,null.model=null.model,iterations=it)),tree)[,1],na.rm=TRUE))) quantiles.null<-quantile(nulls,probs=c(alpha/2,1-(alpha/2))) mean.null<-mean(nulls) mean.obs<-switch(metric, psv = mean(psv(samp,tree,compute.var=FALSE)[,1],na.rm=TRUE), psr = mean(psr(samp,tree,compute.var=FALSE)[,1],na.rm=TRUE), pse = mean(pse(samp,tree)[,1],na.rm=TRUE), psc = mean(psc(samp,tree)[,1],na.rm=TRUE)) if(mean.obs<=quantiles.null[1]) {phylo.structure="underdispersed" } else {if(mean.obs>=quantiles.null[2]){ phylo.structure="overdispersed"} else {phylo.structure="random"} } if((null.model!="independentswap")&&(null.model!="trialswap")){it=NA} return(list(metric=metric,null.model=null.model,runs=runs,it=it,mean.obs=mean.obs,mean.null=mean.null ,quantiles.null=quantiles.null,phylo.structure=phylo.structure,null.means=nulls)) } }
runlinear=function( x, y, nPredics, fwerRate=0.25, adjust_method="fdr", zeroSDCut=0 ){ results=list() nBeta=ncol(x) nObsAll=length(y) print(paste("length of y: ",length(y))) lm_res<-lm(as.vector(y)~as.matrix(x)-1) full_name_coef<-names(lm_res$coefficients) valid_coef<-summary(lm_res)$coefficients bootResu<-matrix(nrow = length(full_name_coef),ncol = 4) rownames(bootResu)<-full_name_coef bootResu[rownames(bootResu)%in%rownames(valid_coef),]<-valid_coef p_value_est<-bootResu[,4] p_value_est_noint<-p_value_est[-seq(1,length(p_value_est),by=(nPredics+1))] p_value_est_noint_adj<-p.adjust(p_value_est_noint,adjust_method) p_value_est_noint_adj[is.na(p_value_est_noint_adj)]<-1 coef_est<-abs(bootResu[,1]) coef_est_noint<-coef_est[-seq(1,length(coef_est),by=(nPredics+1))] coef_est_noint[is.na(coef_est_noint)]<-max(coef_est_noint,na.rm = T) results$betaNoInt=p_value_est_noint_adj<fwerRate results$betaInt=p_value_est results$coef_est_noint=coef_est_noint return(results) }
NULL normalizeGaussian_severalstations_prec <- function(x, data=x, cpf=NULL,mean=0, sd=1, inverse=FALSE, qnull=NULL, valmin=0.5, type=3, extremes=TRUE, sample=NULL, origin_x=NULL, origin_data=NULL ) { out <- x*NA if (is.null(sample)) { for (i in 1:ncol(x)) { out[,i] <- normalizeGaussian_prec(x=x[,i],data=data[,i],cpf=cpf,mean=mean,sd=sd,inverse=inverse,type=type,extremes=extremes,sample=sample,valmin=valmin,qnull=qnull) } } else if (sample=="monthly") { months <- months_f((0.5:11.5)*365/12,abbreviate=TRUE) for (m in 1:length(months)) { i_months_x <- extractmonths(data=1:nrow(x),when=months[m],origin=origin_x) i_months_data <- extractmonths(data=1:nrow(data),when=months[m],origin=origin_data) for (i in 1:ncol(x)) { out[i_months_x,i] <- normalizeGaussian_prec(x=x[i_months_x,i],data=data[i_months_data,i],cpf=cpf,mean=mean,sd=sd,inverse=inverse,valmin=valmin,qnull=qnull,type=type,extremes=extremes,sample=NULL) } } } else if (sample=="monthly_year"){ } else { print("Error in normalizaGaussian_sevaralStation_prec: sample option not yet implemented!!") } names(out) <- names(x) return(out) }
activity_names_repetitions <- function(repetition_and_path_log, xml_internal_doc) { activity <- NULL task_id <- NULL all_tasks <- task_names(xml_internal_doc) all_tasks$task_id <- as.character(all_tasks$task_id) all_tasks$task_names <- as.character(all_tasks$task_names) ids_activity <- all_tasks %>% pull(task_id) repetitions <- repetition_and_path_log[[2]] repetitions <- lapply(repetitions, function(repetition) { repetition <- sapply(1:length(repetition), function(index) { task_name <- all_tasks %>% filter(task_id == repetition[index]) %>% pull(task_names) }) repetition <- unlist(repetition) }) return(unique(repetitions)) } activity_multiple_times_executed <- function(repetition_and_path_log, xml_internal_doc, activity, direct_parallel) { task_id <- NULL structured_path_log <- NULL first_task <- NULL second_task <- NULL relation <- NULL all_tasks <- task_names(xml_internal_doc) all_tasks$task_id <- as.character(all_tasks$task_id) all_tasks$task_names <- as.character(all_tasks$task_names) ids_activity <- all_tasks %>% filter(task_names == activity) %>% pull(task_id) repetitions <- repetition_and_path_log[[3]] repetitions <- unique(unlist(repetitions)) activity_part_of_rep <- sapply(ids_activity, function(activity_id) { return(activity_id %in% repetitions) }) filtered_path_log <- lapply(structured_path_log, function(path) { indices_element_to_keep <- which(path %in% ids_activity) return(path[indices_element_to_keep]) }) paths_contain_more_than_two_executions <- sapply(filtered_path_log, function(path) { if (length(path) >= 2) return(TRUE) else return(FALSE) }) parallel_with_himself <- direct_parallel %>% select(first_task, second_task, relation) %>% filter(first_task == activity & second_task == activity & relation == "parallel") %>% summarise(n = n()) %>% pull(n) multiple_executions <- any(paths_contain_more_than_two_executions) | any(activity_part_of_rep) | parallel_with_himself > 0 return(multiple_executions) } some_traces_without_activity <- function(repetition_and_path_log, xml_internal_doc, activity) { task_id <- NULL all_tasks <- task_names(xml_internal_doc) all_tasks$task_id <- as.character(all_tasks$task_id) all_tasks$task_names <- as.character(all_tasks$task_names) ids_activity <- all_tasks %>% filter(task_names == activity) %>% pull(task_id) structured_path_log <- repetition_and_path_log[[4]] parallel_splits <- split_gateways( xml_internal_doc, "//bpmn:parallelGateway | //parallelGateway | //bpmn:task | //bpmn:sendTask | //bpmn:receiveTask | //bpmn:manualTask | //bpmn:businessRuleTask | //bpmn:userTask | //bpmn:scriptTask | //bpmn:subProcess | //bpmn:callActivity | //task" ) parallel_joins <- join_gateways(xml_internal_doc, "//bpmn:parallelGateway | //parallelGateway") filtered_path_log <- lapply(structured_path_log, function(path) { indices_element_to_keep <- which(path %in% ids_activity) return(path[indices_element_to_keep]) }) all_paths_contain_activity <- sapply(filtered_path_log, function(path) { if (length(path) > 0) return(TRUE) else return(FALSE) }) if (!all(all_paths_contain_activity)) { parallel_splits_with_relevant_activity <- lapply(structured_path_log, function(path) { indices_elements_parallel_splits <- which(path %in% parallel_splits) indices_elements_parallel_joins <- which(path %in% parallel_joins) indices_elements_activity <- which(path %in% ids_activity) parallel_splits_with_relevant_activity <- lapply(indices_elements_parallel_splits, function(index) { indices_elements_activity_after_split <- indices_elements_activity[indices_elements_activity > index] indices_elements_join_after_split <- indices_elements_parallel_joins[indices_elements_parallel_joins > index] if (length(indices_elements_activity_after_split) > 0 && length(indices_elements_join_after_split) > 0) if (indices_elements_activity_after_split[1] < indices_elements_join_after_split[1]) return(path[index]) }) return(parallel_splits_with_relevant_activity) }) parallel_splits_with_relevant_activity <- unique(unlist(parallel_splits_with_relevant_activity)) filtered_path_log <- lapply(structured_path_log, function(path) { indices_element_to_keep <- which(path %in% c(ids_activity, parallel_splits_with_relevant_activity)) return(path[indices_element_to_keep]) }) all_paths_contain_activity_or_parallel_gateway <- sapply(filtered_path_log, function(path) { if (length(path) > 0) return(TRUE) else return(FALSE) }) return(!all(all_paths_contain_activity_or_parallel_gateway)) } else { return(FALSE) } } traces_contain_relation <- function(repetition_and_path_log, xml_internal_doc, activity_1, activity_2, always = TRUE, filter_indirect = TRUE, precede = FALSE, alternate_response = FALSE, alternate_precedence = FALSE, chain_response = FALSE, chain_precedence = FALSE, negation_alternate_precedence = FALSE, negation_alternate_response = FALSE) { task_id <- NULL alternate <- alternate_response | alternate_precedence | negation_alternate_precedence | negation_alternate_response chain <- chain_response | chain_precedence all_tasks <- task_names(xml_internal_doc) all_tasks$task_id <- as.character(all_tasks$task_id) all_tasks$task_names <- as.character(all_tasks$task_names) if (filter_indirect) { indirect <- 1 } else { indirect <- 0 } ids_activity_1 <- all_tasks %>% filter(task_names == activity_1) %>% pull(task_id) ids_activity_2 <- all_tasks %>% filter(task_names == activity_2) %>% pull(task_id) structured_path_log <- repetition_and_path_log[[4]] several_path_logs <- FALSE if (always | alternate_response | alternate_precedence) { structured_path_log_1 <- filtered_path_log_parallel(structured_path_log, xml_internal_doc, activity_1) structured_path_log_2 <- filtered_path_log_parallel(structured_path_log, xml_internal_doc, activity_2) combinations_log_1_2 <- expand.grid(1:length(structured_path_log_1), 1:length(structured_path_log_2)) number_combinations <- dim(combinations_log_1_2)[1] structured_path_log <- lapply(1:number_combinations, function(combination_index) { path_log_1_index <- combinations_log_1_2$Var1[combination_index] path_log_2_index <- combinations_log_1_2$Var2[combination_index] return(intersect(structured_path_log_1[[path_log_1_index]], structured_path_log_2[[path_log_2_index]])) }) if (length(structured_path_log) > 1) { several_path_logs <- TRUE } else { structured_path_log <- unlist(structured_path_log, recursive = FALSE) } } if (!several_path_logs) structured_path_log <- list(structured_path_log) task_ids <- all_tasks %>% pull(task_id) parallel_ids <- node_ids(xml_internal_doc, "//bpmn:parallelGateway | //parallelGateway") exclusive_ids <- node_ids( xml_internal_doc, "//bpmn:exclusiveGateway | //exclusiveGateway | //bpmn:eventBasedGateway | //eventBasedGateway" ) inclusive_ids <- node_ids( xml_internal_doc, "//bpmn:inclusiveGateway | //inclusiveGateway | //bpmn:complexGateway | //complexGateway" ) events <- node_ids( xml_internal_doc, "//bpmn:startEvent | //bpmn:messageStartEvent | //bpmn:timerStartEvent | //bpmn:conditionalStartEvent | //bpmn:endEvent | //bpmn:messageEndEvent | //bpmn:terminateEndEvent | //bpmn:escalationEndEvent | //bpmn:errorEndEvent | //bpmn:compensationEndEvent | //bpmn:signalEndEvent | //bpmn:intermediateCatchEvent | //bpmn:intermediateThrowEvent | //bpmn:boundaryEvent | //startEvent | //endEvent" ) special_elements <- c( "AND-split", "AND-join", "OR-split", "OR-join", "XOR-join", "XOR-split", "XOR-loop-split", "XOR-loop-join", "Other-loop-split", "Other-loop-join", "start-join", "end-split" ) structured_path_log <- lapply(structured_path_log, function(structured_path_log) { structured_path_log <- lapply(structured_path_log, function(path) { indices_element_to_keep <- which(path %in% task_ids) return(path[indices_element_to_keep]) }) }) if (!alternate & !chain) { if (!precede) { relation_in_path <- lapply(structured_path_log, function(structured_path_log) { relation_in_path <- sapply(structured_path_log, function(path) { indices_activity_1 <- which(path %in% ids_activity_1) indices_activity_2 <- which(path %in% ids_activity_2) if (length(indices_activity_1) > 0 && length(indices_activity_2) > 0) { last_index_activity_2 <- indices_activity_2[length(indices_activity_2)] if (always) return(all( last_index_activity_2 - indices_activity_1 > indirect )) else return(any( last_index_activity_2 - indices_activity_1 > indirect )) } else if (length(indices_activity_1) == 0) { return (NA) } else { return (FALSE) } }) }) } else { relation_in_path <- lapply(structured_path_log, function(structured_path_log) { relation_in_path <- sapply(structured_path_log, function(path) { indices_activity_1 <- which(path %in% ids_activity_1) indices_activity_2 <- which(path %in% ids_activity_2) if (length(indices_activity_1) > 0 && length(indices_activity_2) > 0) { last_index_activity_2 <- indices_activity_2[length(indices_activity_2)] if (always) return(all( last_index_activity_2 - indices_activity_1 > indirect )) else return(any( last_index_activity_2 - indices_activity_1 > indirect )) } else if (length(indices_activity_2) == 0) { return (NA) } else { return (FALSE) } }) }) } } else if (alternate_precedence | chain_precedence) { relation_in_path <- lapply(structured_path_log, function(structured_path_log) { relation_in_path <- sapply(structured_path_log, function(path) { if (alternate_precedence) { path <- path[path %in% c(ids_activity_1, ids_activity_2)] indices_activity_1 <- which(path %in% ids_activity_1) indices_activity_2 <- which(path %in% ids_activity_2) indices_activity_2_plus_one <- indices_activity_2 + 1 two_activities_2_without_activity_1_between <- length(intersect(indices_activity_2, indices_activity_2_plus_one)) > 0 if (length(indices_activity_2) > 0) { last_index_activity_2 <- indices_activity_2[length(indices_activity_2)] indices_activity_1 <- indices_activity_1[indices_activity_1 < last_index_activity_2] at_least_as_many_a1_as_2 <- length(indices_activity_1) >= length(indices_activity_2) return( !two_activities_2_without_activity_1_between & at_least_as_many_a1_as_2 ) } else { if (length(indices_activity_1) > 0) return(TRUE) else return(NA) } } if (chain_precedence) { indices_activity_1 <- which(path %in% ids_activity_1) indices_activity_2 <- which(path %in% ids_activity_2) indices_directly_before_a2 <- indices_activity_2 - 1 intersection_a1_directly_before_a2 <- intersect(indices_activity_1, indices_directly_before_a2) return( length(indices_activity_2) == length(intersection_a1_directly_before_a2) ) } }) }) } else if (alternate_response | chain_response) { relation_in_path <- lapply(structured_path_log, function(structured_path_log) { relation_in_path <- sapply(structured_path_log, function(path) { if (alternate_response) { path <- path[path %in% c(ids_activity_1, ids_activity_2)] indices_activity_1 <- which(path %in% ids_activity_1) indices_activity_2 <- which(path %in% ids_activity_2) indices_activity_1_plus_one <- indices_activity_1 + 1 two_activities_1_without_activity_2_between <- length(intersect(indices_activity_1, indices_activity_1_plus_one)) > 0 if (length(indices_activity_1) > 0) { first_index_activity_1 <- indices_activity_1[1] indices_activity_2 <- indices_activity_2[indices_activity_2 > first_index_activity_1] at_least_as_many_a2_as_1 <- length(indices_activity_2) >= length(indices_activity_1) return( !two_activities_1_without_activity_2_between & at_least_as_many_a2_as_1 ) } else { if (length(indices_activity_2) > 0) return(TRUE) else return(NA) } } if (chain_response) { indices_activity_1 <- which(path %in% ids_activity_1) indices_activity_2 <- which(path %in% ids_activity_2) indices_directly_after_a1 <- indices_activity_1 + 1 intersection_a2_directly_after_a1 <- intersect(indices_activity_2, indices_directly_after_a1) return( length(indices_activity_1) == length(intersection_a2_directly_after_a1) ) } }) }) } else if (negation_alternate_response) { relation_in_path <- lapply(structured_path_log, function(structured_path_log) { sapply(structured_path_log, function(path) { indices_activity_1 <- which(path %in% ids_activity_1) indices_activity_2 <- which(path %in% ids_activity_2) if (length(indices_activity_1) > 0 && length(indices_activity_2) > 0) { first_index_activity_1 <- min(indices_activity_1) last_index_activity_1 <- max(indices_activity_1) return(!( any( indices_activity_2 > first_index_activity_1 & indices_activity_2 < last_index_activity_1 ) )) } else { return(TRUE) } }) }) } else if (negation_alternate_precedence) { relation_in_path <- lapply(structured_path_log, function(structured_path_log) { sapply(structured_path_log, function(path) { indices_activity_1 <- which(path %in% ids_activity_1) indices_activity_2 <- which(path %in% ids_activity_2) if (length(indices_activity_1) > 0 && length(indices_activity_2) > 0) { first_index_activity_2 <- min(indices_activity_2) last_index_activity_2 <- max(indices_activity_2) return(( !any( indices_activity_1 > first_index_activity_2 & indices_activity_1 < last_index_activity_2 ) )) } else { return(TRUE) } }) }) } relation_in_path <- lapply(relation_in_path, function(relation_in_path) { relation_in_path <- relation_in_path[!is.na(relation_in_path)] }) if (always) { relation_in_path <- sapply(relation_in_path, function(relation_in_path) { if (length(relation_in_path) > 0) return(all(relation_in_path)) else return(FALSE) }) return(any(relation_in_path)) } else relation_in_path <- sapply(relation_in_path, function(relation_in_path) { if (length(relation_in_path) > 0) return(any(relation_in_path) && any(!relation_in_path)) else return(FALSE) }) return(any(relation_in_path)) } filtered_path_log_parallel <- function(structured_path_log, xml_internal_doc, activity_name) { task_id <- NULL oldw <- getOption("warn") options(warn = -1) parallel_splits <- split_gateways( xml_internal_doc, "//bpmn:parallelGateway | //parallelGateway | //bpmn:task | //bpmn:sendTask | //bpmn:receiveTask | //bpmn:manualTask | //bpmn:businessRuleTask | //bpmn:userTask | //bpmn:scriptTask | //bpmn:subProcess | //bpmn:callActivity | //task" ) parallel_joins <- join_gateways(xml_internal_doc, "//bpmn:parallelGateway | //parallelGateway") other_splits <- split_gateways( xml_internal_doc, "//bpmn:exclusiveGateway | //exclusiveGateway | //bpmn:eventBasedGateway | //eventBasedGateway | //bpmn:inclusiveGateway | //inclusiveGateway | //bpmn:complexGateway | //complexGateway" ) other_joins <- join_gateways( xml_internal_doc, "//bpmn:exclusiveGateway | //exclusiveGateway | //bpmn:eventBasedGateway | //eventBasedGateway | //bpmn:inclusiveGateway | //inclusiveGateway | //bpmn:complexGateway | //complexGateway" ) task_ids <- task_names(xml_internal_doc) %>% filter(task_names == activity_name) %>% mutate(task_id = as.character(task_id)) %>% pull(task_id) parallel_gateway_with_activity_filter <- lapply(task_ids, function(task_id) { path_log_filtered_activity_id_parallel <- lapply(structured_path_log, function(path) { indices_to_filter <- which( path %in% c( parallel_splits, parallel_joins, task_id, other_splits, other_joins ) ) indices_to_filter <- sort(indices_to_filter) return(path[indices_to_filter]) }) parallel_gateway_with_task_id_filter <- lapply(path_log_filtered_activity_id_parallel, function(path) { sub_path_indices <- which(path %in% c(parallel_splits, parallel_joins, task_id)) sub_path <- path[sub_path_indices] parallel_split_indices <- which(sub_path %in% parallel_splits) parallel_join_indices <- which(sub_path %in% parallel_joins) task_indices <- which(sub_path %in% task_id) if (length(task_indices) > 0) { parallel_splits_before_task <- parallel_split_indices[parallel_split_indices < task_indices[1]] parallel_joins_before_task <- parallel_join_indices[parallel_join_indices < task_indices[1]] if (length(parallel_splits_before_task) > length(parallel_joins_before_task)) { sub_path_indices <- 1:length(sub_path) nesting_depth_path <- sub_path[sub_path_indices < task_indices[1]] nesting_depth_path[parallel_splits_before_task] <- 1 nesting_depth_path[parallel_joins_before_task] <- -1 nesting_depth_path[parallel_joins_before_task < parallel_splits_before_task[1]] <- 0 nesting_depth_path <- cumsum(nesting_depth_path) indices_nesting_depth_equal_zero <- which(nesting_depth_path == 0) if (length(indices_nesting_depth_equal_zero) == 0) { index_after_last_nesting_depth_zero <- 1 parallel_split_task <- sub_path[index_after_last_nesting_depth_zero] } else { index_after_last_nesting_depth_zero <- indices_nesting_depth_equal_zero[length(indices_nesting_depth_equal_zero)] + 1 parallel_split_task <- sub_path[index_after_last_nesting_depth_zero] } index_parallel_split_task <- which(path %in% parallel_split_task) task_indices <- which(path %in% task_id) sub_path <- path[index_parallel_split_task[1]:task_indices[1]] sub_path_indices <- which(sub_path %in% c(other_splits, other_joins)) sub_path <- sub_path[sub_path_indices] other_split_indices <- which(sub_path %in% other_splits) other_join_indices <- which(sub_path %in% other_joins) if (length(other_split_indices) > length(other_join_indices)) { nesting_depth_path <- sub_path nesting_depth_path[other_split_indices] <- 1 nesting_depth_path[other_join_indices] <- -1 nesting_depth_path[other_join_indices < other_split_indices[1]] <- 0 nesting_depth_path <- cumsum(nesting_depth_path) indices_exclusive_nesting_depth_zero <- which(nesting_depth_path == 0) if (length(indices_exclusive_nesting_depth_zero) == 0) { task_id <- sub_path[1] } else { task_id <- sub_path[indices_exclusive_nesting_depth_zero[length(indices_exclusive_nesting_depth_zero)] + 1] } } return(data.frame( parallel_split = as.character(parallel_split_task), task = as.character(task_id) )) } } }) }) parallel_gateway_with_activity_filter <- unlist(parallel_gateway_with_activity_filter, recursive = FALSE) parallel_gateway_with_activity_filter <- bind_rows(parallel_gateway_with_activity_filter) parallel_gateway_with_activity_filter <- parallel_gateway_with_activity_filter %>% distinct() if (length(parallel_gateway_with_activity_filter) > 0) { paths_to_filter <- lapply(1:length(parallel_gateway_with_activity_filter$parallel_split), function(gateway_index) { gateway <- parallel_gateway_with_activity_filter$parallel_split[gateway_index] activity <- parallel_gateway_with_activity_filter$task[gateway_index] path_indices_to_filter <- sapply(1:length(structured_path_log), function(path_index) { path <- structured_path_log[[path_index]] gateway_in_path <- length(which(path %in% gateway)) > 0 activity_in_path <- length(which(path %in% activity)) > 0 if (!activity_in_path & gateway_in_path) return(path_index) }) }) paths_to_filter <- lapply(paths_to_filter, unlist) filtered_path_log <- lapply(paths_to_filter, function(filter_vector) { lapply(1:length(structured_path_log), function(index) { if (!(index %in% filter_vector)) { return(structured_path_log[[index]]) } }) }) filtered_path_log <- lapply(filtered_path_log, function(path_log) { return(path_log[-which(sapply(path_log, is.null))]) }) options(warn = oldw) return(filtered_path_log) } else { options(warn = oldw) return(list(structured_path_log)) } } direct_parallel_relations <- function(repetition_and_path_log, xml_internal_doc) { oldw <- getOption("warn") options(warn = -1) second <- NULL number_of_occurences <- NULL task_id <- NULL sometimes <- NULL relation <- NULL first_task <- NULL second_task <- NULL X1 <- NULL X2 <- NULL exclusive <- NULL structured_path_log <- repetition_and_path_log[[4]] task_ids <- task_names(xml_internal_doc) %>% pull(task_id) parallel_ids <- node_ids(xml_internal_doc, "//bpmn:parallelGateway | //parallelGateway") exclusive_ids <- node_ids( xml_internal_doc, "//bpmn:exclusiveGateway | //exclusiveGateway | //bpmn:eventBasedGateway | //eventBasedGateway" ) inclusive_ids <- node_ids( xml_internal_doc, "//bpmn:inclusiveGateway | //inclusiveGateway | //bpmn:complexGateway | //complexGateway" ) events <- node_ids( xml_internal_doc, "//bpmn:startEvent | //bpmn:messageStartEvent | //bpmn:timerStartEvent | //bpmn:conditionalStartEvent | //bpmn:endEvent | //bpmn:messageEndEvent | //bpmn:terminateEndEvent | //bpmn:escalationEndEvent | //bpmn:errorEndEvent | //bpmn:compensationEndEvent | //bpmn:signalEndEvent | //bpmn:intermediateCatchEvent | //bpmn:intermediateThrowEvent | //bpmn:boundaryEvent | //startEvent | //endEvent" ) special_elements <- c( "AND-split", "AND-join", "OR-split", "OR-join", "XOR-join", "XOR-split", "XOR-loop-split", "XOR-loop-join", "Other-loop-split", "Other-loop-join", "start-join", "end-split" ) structured_path_log <- lapply(structured_path_log, function(path) { indices_element_to_keep <- which(path %in% task_ids) return(path[indices_element_to_keep]) }) relations <- lapply(structured_path_log, function(path) { if (length(path) >= 2) { path_without_end <- as.character(path[1:(length(path) - 1)]) path_without_start <- as.character(path[2:length(path)]) relations <- cbind(path_without_end, path_without_start) relations <- as.data.frame(relations) colnames(relations) <- c("first", "second") relations$first <- as.character(relations$first) relations$second <- as.character(relations$second) return(relations) } }) relations <- bind_rows(relations) direct_relations <- relations %>% unique() %>% mutate(relation = "d_l_t_r") if (nrow(direct_relations) > 0) { direct_relations_reversed <- cbind(direct_relations$second, direct_relations$first) direct_relations_reversed <- as.data.frame(direct_relations_reversed) colnames(direct_relations_reversed) <- c("first", "second") direct_relations_reversed$first <- as.character(direct_relations_reversed$first) direct_relations_reversed$second <- as.character(direct_relations_reversed$second) direct_relations_reversed <- direct_relations_reversed %>% mutate(relation = "d_r_t_l") all_direct_relations <- rbind(direct_relations, direct_relations_reversed) } else { all_direct_relations <- direct_relations %>% mutate(second = relation, first = relation) } structured_path_log <- repetition_and_path_log[[4]] path_log_with_parallel_gateways <- lapply(structured_path_log, function(path) { indices_gateways <- which(path %in% c(exclusive_ids, special_elements)) indices_all_elements <- 1:length(path) indices_element_to_keep <- setdiff(indices_all_elements, indices_gateways) return(path[indices_element_to_keep]) }) path_log_with_exclusive_gateways <- lapply(structured_path_log, function(path) { indices_gateways <- which(path %in% c(special_elements)) indices_all_elements <- 1:length(path) indices_element_to_keep <- setdiff(indices_all_elements, indices_gateways) return(path[indices_element_to_keep]) }) parallel_splits <- split_gateways( xml_internal_doc, "//bpmn:parallelGateway | //parallelGateway | //bpmn:task | //bpmn:sendTask | //bpmn:receiveTask | //bpmn:manualTask | //bpmn:businessRuleTask | //bpmn:userTask | //bpmn:scriptTask | //bpmn:subProcess | //bpmn:callActivity | //task" ) inclusive_splits <- split_gateways( xml_internal_doc, "//bpmn:inclusiveGateway | //inclusiveGateway | //bpmn:complexGateway | //complexGateway" ) parallel_joins <- join_gateways(xml_internal_doc, "//bpmn:parallelGateway | //parallelGateway") inclusive_joins <- join_gateways( xml_internal_doc, "//bpmn:inclusiveGateway | //inclusiveGateway | //bpmn:complexGateway | //complexGateway" ) exclusive_splits <- split_gateways( xml_internal_doc, "//bpmn:exclusiveGateway | //exclusiveGateway | //bpmn:eventBasedGateway | //eventBasedGateway" ) exclusive_joins <- join_gateways( xml_internal_doc, "//bpmn:exclusiveGateway | //exclusiveGateway | //bpmn:eventBasedGateway | //eventBasedGateway" ) parallel_splits <- c(parallel_splits, inclusive_splits) parallel_joins <- c(parallel_joins, inclusive_joins) parallel_relationships <- lapply(parallel_splits, function(parallel_split) { relevant_paths <- lapply(path_log_with_parallel_gateways, function(path) { parallel_index <- which(path %in% parallel_split) if (length(parallel_index) > 0) return(path[parallel_index[1]:length(path)]) }) null_indices <- which(sapply(relevant_paths, is.null)) if (length(null_indices) > 0) relevant_paths <- relevant_paths[-null_indices] intersection_elements <- reduce(relevant_paths, intersect) intersection_parallel_joins <- which(intersection_elements %in% c(parallel_joins, inclusive_joins)) parallel_join <- intersection_elements[intersection_parallel_joins[1]] sub_paths_between_split_join <- lapply(relevant_paths, function(path) { index_after_parallel_split <- which(path == parallel_split)[1] index_before_parallel_join <- which(path == parallel_join)[1] if (is.na(index_before_parallel_join)) index_before_parallel_join <- length(path) return (path[index_after_parallel_split:index_before_parallel_join]) }) second_elements_sub_paths <- sapply(sub_paths_between_split_join, function(sub_path) { if (length(sub_path) >= 3) return(sub_path[2]) }) second_elements_sub_paths <- unique(second_elements_sub_paths) elements_being_part_outgoing_flow_parallel_split <- lapply(second_elements_sub_paths, function(element) { if (length(element) > 0) { elements_of_path <- sapply(sub_paths_between_split_join, function(sub_path) { if (element %in% sub_path) if (length(sub_path) >= 2) return(sub_path[2:length(sub_path) - 1]) }) } else { elements_of_path <- character() } elements_of_path <- unique(unlist(elements_of_path)) elements_of_path <- elements_of_path[elements_of_path %in% task_ids] }) if (length(elements_being_part_outgoing_flow_parallel_split) > 1) { combinations_all_paths <- t(combn( 1:length(elements_being_part_outgoing_flow_parallel_split), 2 )) combinations_elements_two_paths <- lapply(1:dim(combinations_all_paths)[1], function(index) { sub_path_1 <- elements_being_part_outgoing_flow_parallel_split[[combinations_all_paths[index, 1]]] sub_path_2 <- elements_being_part_outgoing_flow_parallel_split[[combinations_all_paths[index, 2]]] combinations_all_paths <- expand.grid(first = sub_path_1, second = sub_path_2) }) combinations_elements_two_paths <- bind_rows(combinations_elements_two_paths) combinations_elements_two_paths_reversed <- data.frame( first = as.character(combinations_elements_two_paths$second), second = as.character(combinations_elements_two_paths$first) ) combinations_elements_two_paths <- rbind(combinations_elements_two_paths, combinations_elements_two_paths_reversed) combinations_elements_two_paths <- unique(combinations_elements_two_paths) combinations_elements_two_paths$first <- as.character(combinations_elements_two_paths$first) combinations_elements_two_paths$second <- as.character(combinations_elements_two_paths$second) combinations_elements_two_paths <- combinations_elements_two_paths return(combinations_elements_two_paths) } else { return(data.frame( first = character(), second = character(), exclusive = logical() )) } }) parallel_relationships <- bind_rows(parallel_relationships) direct_relations_part_parallel_gateway <- lapply(parallel_splits, function(parallel_split) { relevant_paths <- lapply(path_log_with_parallel_gateways, function(path) { parallel_index <- which(path %in% parallel_split) if (length(parallel_index) > 0) return(path[parallel_index[1]:length(path)]) }) null_indices <- which(sapply(relevant_paths, is.null)) if (length(null_indices) > 0) relevant_paths <- relevant_paths[-null_indices] intersection_elements <- reduce(relevant_paths, intersect) intersection_parallel_joins <- which(intersection_elements %in% c(parallel_joins, inclusive_joins)) parallel_join <- intersection_elements[intersection_parallel_joins[1]] sub_paths_between_split_join <- lapply(relevant_paths, function(path) { index_after_parallel_split <- which(path == parallel_split)[1] index_before_parallel_join <- which(path == parallel_join)[1] if (is.na(index_before_parallel_join)) index_before_parallel_join <- length(path) return (path[index_after_parallel_split:index_before_parallel_join]) }) sub_paths_between_split_join <- unique(sub_paths_between_split_join) direct_relations_part_parallel_gateway <- lapply(sub_paths_between_split_join, function(path) { path <- path[path %in% task_ids] if (length(path) > 1) { first <- path[1:length(path) - 1] second <- path[2:length(path)] direct_relations <- data.frame(first = as.character(first), second = as.character(second)) direct_relations <- direct_relations %>% mutate(relation = "d_l_t_r") direct_relations_reversed <- data.frame(first = as.character(second), second = as.character(first)) direct_relations_reversed <- direct_relations_reversed %>% mutate(relation = "d_r_t_l") direct_relations <- rbind(direct_relations, direct_relations_reversed) return(direct_relations) } else { return(data.frame( first = character(), second = character(), relation = character() )) } }) direct_relations_part_parallel_gateway <- bind_rows(direct_relations_part_parallel_gateway) }) direct_relations_part_parallel_gateway <- bind_rows(direct_relations_part_parallel_gateway) direct_relations_part_parallel_gateway <- direct_relations_part_parallel_gateway %>% mutate(sometimes = TRUE) exclusive_relationships <- lapply(exclusive_splits, function(exclusive_split) { path_indices <- 1:length(path_log_with_exclusive_gateways) path_indices_selector <- sapply(path_indices, function(path_index) { return(exclusive_split %in% path_log_with_exclusive_gateways[[path_index]]) }) relevant_paths <- path_log_with_exclusive_gateways[path_indices_selector] intersection_elements <- reduce(relevant_paths, intersect) intersection_exclusive_joins <- which(intersection_elements %in% exclusive_joins) exclusive_join <- intersection_elements[intersection_exclusive_joins[1]] sub_paths_between_split_join <- lapply(relevant_paths, function(path) { index_after_exclusive_split <- which(path == exclusive_split)[1] index_before_exclusive_join <- which(path == exclusive_join)[1] if (is.na(index_before_exclusive_join)) index_before_exclusive_join <- length(path) sub_path <- as.character(path[index_after_exclusive_split:index_before_exclusive_join]) return (sub_path) }) second_elements_sub_paths <- sapply(sub_paths_between_split_join, function(sub_path) { if (length(sub_path) >= 3) return(sub_path[2]) }) second_elements_sub_paths <- unique(second_elements_sub_paths) elements_being_part_outgoing_flow_exclusive_split <- lapply(second_elements_sub_paths, function(element) { if (length(element) > 0) { elements_of_path <- sapply(sub_paths_between_split_join, function(sub_path) { if (element %in% sub_path) if (length(sub_path) >= 2) return(sub_path[2:length(sub_path) - 1]) }) } else { elements_of_path <- character() } elements_of_path <- unique(unlist(elements_of_path)) elements_of_path <- elements_of_path[elements_of_path %in% task_ids] }) if (length(elements_being_part_outgoing_flow_exclusive_split) > 1) { combinations_all_paths <- t(combn( 1:length(elements_being_part_outgoing_flow_exclusive_split), 2 )) combinations_elements_two_paths <- lapply(1:dim(combinations_all_paths)[1], function(index) { sub_path_1 <- elements_being_part_outgoing_flow_exclusive_split[[combinations_all_paths[index, 1]]] sub_path_2 <- elements_being_part_outgoing_flow_exclusive_split[[combinations_all_paths[index, 2]]] combinations_all_paths <- expand.grid(first = sub_path_1, second = sub_path_2) }) combinations_elements_two_paths <- bind_rows(combinations_elements_two_paths) combinations_elements_two_paths_reversed <- data.frame( first = as.character(combinations_elements_two_paths$second), second = as.character(combinations_elements_two_paths$first) ) combinations_elements_two_paths <- rbind(combinations_elements_two_paths, combinations_elements_two_paths_reversed) combinations_elements_two_paths <- unique(combinations_elements_two_paths) combinations_elements_two_paths$first <- as.character(combinations_elements_two_paths$first) combinations_elements_two_paths$second <- as.character(combinations_elements_two_paths$second) combinations_elements_two_paths <- combinations_elements_two_paths %>% mutate(exclusive = TRUE) return(combinations_elements_two_paths) } else { return(data.frame( first = character(), second = character(), exclusive = logical() )) } }) exclusive_relationships <- bind_rows(exclusive_relationships) if (length(exclusive_relationships) != 0) { exclusive_relationships_filter <- exclusive_relationships %>% select(first, second) if (length(parallel_relationships) > 0) { interleaving_relations <- setdiff(parallel_relationships, exclusive_relationships_filter) } else { interleaving_relations <- data.frame(first = character(), second = character(), relation = character()) } } else { interleaving_relations <- parallel_relationships } interleaving_relations <- interleaving_relations %>% mutate(relation = "parallel") direct_parallel_relations <- rbind(interleaving_relations, all_direct_relations) if (nrow(direct_relations_part_parallel_gateway) > 0) { direct_parallel_relations <- left_join( direct_parallel_relations, direct_relations_part_parallel_gateway, by = c("first", "second", "relation") ) direct_parallel_relations$sometimes[is.na(direct_parallel_relations$sometimes)] <- FALSE direct_parallel_relations <- direct_parallel_relations %>% mutate(relation = if_else(sometimes, paste("s_", relation, sep = ""), relation)) %>% select(first, second, relation) } all_tasks <- task_names(xml_internal_doc) all_tasks$task_id <- as.character(all_tasks$task_id) all_tasks$task_names <- as.character(all_tasks$task_names) direct_parallel_relations <- left_join(direct_parallel_relations, all_tasks, by = c("first" = "task_id")) direct_parallel_relations <- left_join(direct_parallel_relations, all_tasks, by = c("second" = "task_id")) colnames(direct_parallel_relations) <- c("first", "second", "relation", "first_task", "second_task") relations_parallel_join <- relations_with_parallel_join_split(repetition_and_path_log, xml_internal_doc) direct_parallel_relations <- left_join(direct_parallel_relations, relations_parallel_join, by = c("first", "second")) direct_parallel_relations$sometimes[is.na(direct_parallel_relations$sometimes)] <- FALSE direct_parallel_relations <- direct_parallel_relations %>% mutate( relation = if_else( sometimes & relation != "s_d_l_t_r" & relation != "s_d_r_t_l", paste("s_", relation, sep = ""), relation ) ) %>% select(first, second, relation, first_task, second_task) %>% filter(!is.na(first_task) & !is.na(second_task)) %>% distinct() options(warn = oldw) return(direct_parallel_relations) } relations_with_parallel_join_split <- function(repetition_and_path_log, xml_internal_doc) { task_id <- NULL parallel_joins <- join_gateways(xml_internal_doc, "//bpmn:parallelGateway | //parallelGateway") parallel_splits <- split_gateways(xml_internal_doc, "//bpmn:parallelGateway | //parallelGateway") inclusive_joins <- join_gateways( xml_internal_doc, "//bpmn:inclusiveGateway | //inclusiveGateway | //bpmn:complexGateway | //complexGateway" ) inclusive_splits <- split_gateways( xml_internal_doc, "//bpmn:inclusiveGateway | //inclusiveGateway | //bpmn:complexGateway | //complexGateway" ) task_ids <- task_names(xml_internal_doc) %>% pull(task_id) structured_path_log <- repetition_and_path_log[[4]] relevant_relations <- lapply(structured_path_log, function(path) { parallel_join_indices <- which(path %in% c( parallel_joins, inclusive_joins, parallel_splits, inclusive_splits )) activity_indices <- which(path %in% task_ids) activities_before_parallel_join <- sapply(parallel_join_indices, function(index) { activity_indices_before_join <- activity_indices[activity_indices < index] last_activity_before_join <- path[activity_indices_before_join[length(activity_indices_before_join)]] return(as.character(last_activity_before_join)) }) activities_after_parallel_join <- sapply(parallel_join_indices, function(index) { activity_indices_after_join <- activity_indices[activity_indices > index] last_activity_after_join <- path[activity_indices_after_join[1]] return(as.character(last_activity_after_join)) }) relations <- as.data.frame(cbind( first = as.character(activities_before_parallel_join), second = as.character(activities_after_parallel_join) )) relations$first <- as.character(relations$first) relations$second <- as.character(relations$second) return (relations) }) relevant_relations <- bind_rows(relevant_relations) %>% distinct() %>% mutate(sometimes = TRUE) relevant_relations_reversed <- data_frame( first = relevant_relations$second, second = relevant_relations$first, sometimes = TRUE ) relevant_relations <- rbind(relevant_relations, relevant_relations_reversed) return(relevant_relations) }
handlers(handler_pbcol) with_progress({ y <- slow_sum(1:10) }) print(y)
PREPS$covr <- function(state, path = state$path, quiet) { covr <- try(list(coverage = package_coverage(path, quiet = quiet)), silent = quiet) if (inherits(covr, "try-error")) { warning("Prep step for test coverage failed.") } else { with_options( list(covr.rstudio_source_markers = FALSE), covr$zero <- zero_coverage(covr$coverage) ) covr$pct_by_line <- percent_coverage(covr$coverage, by = "line") covr$pct_by_expr <- percent_coverage(covr$coverage, by = "expression") } state$covr <- covr state }
local_edition(3) local_reproducible_output() test_that("check empty pk_model", { expect_snapshot(check(pk_model())) }) test_that("check complete pk_model", { expect_snapshot( check( pk_model() + pk_distribution_1cmp() + pk_elimination_linear() + obs_additive(conc~C["central"]) ) ) }) test_that("1cmp linear, advan", { m <- pk_model() + pk_distribution_1cmp() + pk_elimination_linear() + obs_additive(conc~C["central"]) render(m) %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("CL = THETA(2) * EXP(ETA(2))") %>% expect_contains(" ADVAN1 ") %>% expect_contains(" TRANS2 ") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") }) test_that("1cmp linear, ode", { m <- pk_model() + pk_distribution_1cmp() + pk_elimination_linear() + obs_additive(conc~C["central"]) render(m, options = assemblerr_options(ode.use_special_advans = FALSE, ode.use_general_linear_advans = FALSE) ) %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("CL = THETA(2) * EXP(ETA(2))") %>% expect_contains("DADT(1) = -(CL * (A(1)/VC))") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") }) test_that("2cmp linear", { m <- pk_model() + pk_distribution_2cmp() + pk_elimination_linear() + obs_additive(conc~C["central"]) render(m, options = assemblerr_options(ode.use_special_advans = FALSE, ode.use_general_linear_advans = FALSE) ) %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("VP = THETA(2) * EXP(ETA(2))") %>% expect_contains("Q = THETA(3) * EXP(ETA(3))") %>% expect_contains("CL = THETA(4) * EXP(ETA(4))") %>% expect_contains("DADT(1) = Q * (A(2)/VP) - (Q * (A(1)/VC) + CL * (A(1)/VC))") %>% expect_contains("DADT(2) = Q * (A(1)/VC) - Q * (A(2)/VP)") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") render(m, options = assemblerr_options(ode.use_special_advans = TRUE, ode.use_general_linear_advans = FALSE) ) %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("VP = THETA(2) * EXP(ETA(2))") %>% expect_contains("Q = THETA(3) * EXP(ETA(3))") %>% expect_contains("CL = THETA(4) * EXP(ETA(4))") %>% expect_contains("V1 = VC") %>% expect_contains("V2 = VP") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") render(m, options = assemblerr_options(ode.use_special_advans = FALSE, ode.use_general_linear_advans = TRUE) ) %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("VP = THETA(2) * EXP(ETA(2))") %>% expect_contains("Q = THETA(3) * EXP(ETA(3))") %>% expect_contains("CL = THETA(4) * EXP(ETA(4))") %>% expect_contains("K12 = Q * (1/VC)") %>% expect_contains("K21 = Q * (1/VP)") %>% expect_contains("K10 = CL * (1/VC)") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") }) test_that("1cmp nonlinear", { m <- pk_model() + pk_distribution_1cmp() + pk_elimination_nl() + obs_additive(conc~C["central"]) render(m, options = assemblerr_options(ode.use_special_advans = TRUE, ode.use_general_linear_advans = TRUE) ) %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("CLMM = THETA(2) * EXP(ETA(2))") %>% expect_contains("KM = THETA(3) * EXP(ETA(3))") %>% expect_contains("DADT(1) = -(CLMM * KM/(KM + A(1)/VC))") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") m <- pk_model() + pk_distribution_1cmp() + pk_elimination_nl(prm_vmax = prm_log_normal("vmax"), prm_clmm = NULL) + obs_additive(conc~C["central"]) render(m, options = assemblerr_options(ode.use_special_advans = TRUE, ode.use_general_linear_advans = TRUE) ) %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("VMAX = THETA(2) * EXP(ETA(2))") %>% expect_contains("KM = THETA(3) * EXP(ETA(3))") %>% expect_contains("DADT(1) = -(VMAX * (A(1)/VC)/(KM + A(1)/VC))") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") expect_warning(pk_elimination_nl(prm_clmm = prm_log_normal("clmm"), prm_vmax = prm_log_normal("vmax"))) }) test_that("1cmp linear 1st order absorption, advan", { m <- pk_model() + pk_absorption_fo() + pk_distribution_1cmp() + pk_elimination_linear() + obs_additive(conc~C["central"]) render(m) %>% expect_contains(" ADVAN2 ") %>% expect_contains(" TRANS2 ") %>% expect_does_not_contain("$MODEL") %>% expect_contains("MAT = THETA(1) * EXP(ETA(1))") %>% expect_contains("VC = THETA(2) * EXP(ETA(2))") %>% expect_contains("CL = THETA(3) * EXP(ETA(3))") %>% expect_contains("KA = 1/MAT") %>% expect_contains("CONC = A(2)/VC") %>% expect_contains("Y = CONC + EPS(1)") }) test_that("3cmp linear", { m <- pk_model() + pk_distribution_3cmp() + pk_elimination_linear() + obs_additive(conc~C["central"]) render(m, options = assemblerr_options(ode.use_special_advans = FALSE, ode.use_general_linear_advans = FALSE, ode.general_nonlinear_advan = "advan13") ) %>% expect_contains("$SUBROUTINES ADVAN13") %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("VP1 = THETA(2) * EXP(ETA(2))") %>% expect_contains("VP2 = THETA(3) * EXP(ETA(3))") %>% expect_contains("Q1 = THETA(4) * EXP(ETA(4))") %>% expect_contains("Q2 = THETA(5) * EXP(ETA(5))") %>% expect_contains("CL = THETA(6) * EXP(ETA(6))") %>% expect_contains("DADT(1) = Q1 * (A(2)/VP1) + Q2 * (A(3)/VP2) - (Q1 * (A(1)/VC) + Q2 * (A(1)/VC) + CL * (A(1)/VC))") %>% expect_contains("DADT(2) = Q1 * (A(1)/VC) - Q1 * (A(2)/VP1)") %>% expect_contains("DADT(3) = Q2 * (A(1)/VC) - Q2 * (A(3)/VP2)") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") render(m, options = assemblerr_options(ode.use_special_advans = TRUE, ode.use_general_linear_advans = FALSE) ) %>% expect_contains("$SUBROUTINES ADVAN11") %>% expect_does_not_contain("$MODEL") %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("VP1 = THETA(2) * EXP(ETA(2))") %>% expect_contains("VP2 = THETA(3) * EXP(ETA(3))") %>% expect_contains("Q1 = THETA(4) * EXP(ETA(4))") %>% expect_contains("Q2 = THETA(5) * EXP(ETA(5))") %>% expect_contains("CL = THETA(6) * EXP(ETA(6))") %>% expect_contains("V1 = VC") %>% expect_contains("V2 = VP1") %>% expect_contains("V3 = VP2") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") render(m, options = assemblerr_options(ode.use_special_advans = FALSE, ode.use_general_linear_advans = TRUE) ) %>% expect_contains("$SUBROUTINES ADVAN5") %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("VP1 = THETA(2) * EXP(ETA(2))") %>% expect_contains("VP2 = THETA(3) * EXP(ETA(3))") %>% expect_contains("Q1 = THETA(4) * EXP(ETA(4))") %>% expect_contains("Q2 = THETA(5) * EXP(ETA(5))") %>% expect_contains("CL = THETA(6) * EXP(ETA(6))") %>% expect_contains("K12 = Q1 * (1/VC)") %>% expect_contains("K21 = Q1 * (1/VP1)") %>% expect_contains("K13 = Q2 * (1/VC)") %>% expect_contains("K31 = Q2 * (1/VP2)") %>% expect_contains("K10 = CL * (1/VC)") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") }) test_that("2cmp linear, fo", { m <- pk_model() + pk_distribution_2cmp() + pk_elimination_linear() + pk_absorption_fo() + obs_additive(conc~C["central"]) render(m, options = assemblerr_options(ode.use_special_advans = TRUE, ode.use_general_linear_advans = FALSE, ode.general_nonlinear_advan = "advan13") ) %>% expect_contains("$SUBROUTINES ADVAN4") %>% expect_contains("TRANS4") %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("VP = THETA(2) * EXP(ETA(2))") %>% expect_contains("Q = THETA(3) * EXP(ETA(3))") %>% expect_contains("CL = THETA(4) * EXP(ETA(4))") %>% expect_contains("MAT = THETA(5) * EXP(ETA(5))") %>% expect_contains("KA = 1/MAT") %>% expect_contains("V2 = VC") %>% expect_contains("V3 = VP") %>% expect_contains("CONC = A(2)/VC") %>% expect_contains("Y = CONC + EPS(1)") }) test_that("3cmp linear, fo", { m <- pk_model() + pk_distribution_3cmp() + pk_elimination_linear() + pk_absorption_fo() + obs_additive(conc~C["central"]) render(m, options = assemblerr_options(ode.use_special_advans = TRUE, ode.use_general_linear_advans = FALSE, ode.general_nonlinear_advan = "advan13") ) %>% expect_contains("$SUBROUTINES ADVAN12") %>% expect_contains("TRANS4") %>% expect_does_not_contain("$MODEL") %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("VP1 = THETA(2) * EXP(ETA(2))") %>% expect_contains("VP2 = THETA(3) * EXP(ETA(3))") %>% expect_contains("Q1 = THETA(4) * EXP(ETA(4))") %>% expect_contains("Q2 = THETA(5) * EXP(ETA(5))") %>% expect_contains("CL = THETA(6) * EXP(ETA(6))") %>% expect_contains("MAT = THETA(7) * EXP(ETA(7))") %>% expect_contains("KA = 1/MAT") %>% expect_contains("V2 = VC") %>% expect_contains("V3 = VP1") %>% expect_contains("V4 = VP2") %>% expect_contains("CONC = A(2)/VC") %>% expect_contains("Y = CONC + EPS(1)") }) test_that("1cmp linear, transit delay", { m <- pk_model() + pk_distribution_1cmp() + pk_elimination_linear() + pk_absorption_fo_transit(transit_compartments = 3) + obs_additive(conc~C["central"]) render(m, options = assemblerr_options( ode.use_special_advans = TRUE, ode.use_general_linear_advans = TRUE ) ) %>% expect_contains(" ADVAN5 ") %>% expect_contains(" TRANS1 ") %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("CL = THETA(2) * EXP(ETA(2))") %>% expect_contains("MDT = THETA(3) * EXP(ETA(3))") %>% expect_contains("MAT = THETA(4) * EXP(ETA(4))") %>% expect_contains("KTR = 3/MDT") %>% expect_contains("KA = 1/MAT") %>% expect_contains("K12 = KTR") %>% expect_contains("K23 = KTR") %>% expect_contains("K34 = KTR") %>% expect_contains("K45 = KA") %>% expect_contains("K50 = CL * (1/VC)") %>% expect_contains("CONC = A(5)/VC") %>% expect_contains("Y = CONC + EPS(1)") }) test_that("1cmp linear, lagtime", { m <- pk_model() + pk_distribution_1cmp() + pk_elimination_linear() + pk_absorption_fo_lag() + obs_additive(conc~C["central"]) render(m, options = assemblerr_options( ode.use_special_advans = TRUE, ode.use_general_linear_advans = TRUE ) ) %>% expect_contains(" ADVAN2 ") %>% expect_contains(" TRANS2 ") %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("CL = THETA(2) * EXP(ETA(2))") %>% expect_contains("MDT = THETA(3) * EXP(ETA(3))") %>% expect_contains("MAT = THETA(4) * EXP(ETA(4))") %>% expect_contains("ALAG1 = MDT") %>% expect_contains("KA = 1/MAT") %>% expect_contains("V = VC") %>% expect_contains("CONC = A(2)/VC") %>% expect_contains("Y = CONC + EPS(1)") }) test_that("1cmp, zo", { m <- pk_model() + pk_distribution_1cmp() + pk_elimination_linear() + pk_absorption_zo() + obs_additive(conc~C["central"]) render(m, options = assemblerr_options( ode.use_special_advans = TRUE, ode.use_general_linear_advans = TRUE ) ) %>% expect_contains(" ADVAN1 ") %>% expect_contains(" TRANS2 ") %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("CL = THETA(2) * EXP(ETA(2))") %>% expect_contains("MAT = THETA(3) * EXP(ETA(3)") %>% expect_contains("R1 = AMT/MAT/2") %>% expect_contains("V = VC") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") }) test_that("1cmp, zo lag", { m <- pk_model() + pk_distribution_1cmp() + pk_elimination_linear() + pk_absorption_zo_lag() + obs_additive(conc~C["central"]) render(m, options = assemblerr_options( ode.use_special_advans = TRUE, ode.use_general_linear_advans = TRUE ) ) %>% expect_contains(" ADVAN1 ") %>% expect_contains(" TRANS2 ") %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("CL = THETA(2) * EXP(ETA(2))") %>% expect_contains("MAT = THETA(3) * EXP(ETA(3)") %>% expect_contains("R1 = AMT/MAT/2") %>% expect_contains("V = VC") %>% expect_contains("CONC = A(1)/VC") %>% expect_contains("Y = CONC + EPS(1)") }) test_that("1cmp, fo zo", { m <- pk_model() + pk_distribution_1cmp() + pk_elimination_linear() + pk_absorption_fo_zo() + obs_additive(conc~C["central"]) render(m, options = assemblerr_options( ode.use_special_advans = TRUE, ode.use_general_linear_advans = TRUE ) ) %>% expect_contains(" ADVAN2 ") %>% expect_contains(" TRANS2 ") %>% expect_contains("VC = THETA(1) * EXP(ETA(1))") %>% expect_contains("CL = THETA(2) * EXP(ETA(2))") %>% expect_contains("MAT = THETA(3) * EXP(ETA(3)") %>% expect_contains("MDT = THETA(4) * EXP(ETA(4)") %>% expect_contains("R1 = AMT/MDT/2") %>% expect_contains("KA = 1/MAT") %>% expect_contains("V = VC") %>% expect_contains("CONC = A(2)/VC") %>% expect_contains("Y = CONC + EPS(1)") })
NULL setGeneric ( name= "calcPriceDelta", def=function(object,levels = FALSE, market = FALSE,...){standardGeneric("calcPriceDelta")} ) setMethod( f= "calcPriceDelta", signature= "Antitrust", definition=function(object, levels = FALSE, market = FALSE, index=c("paasche","laspeyres"), ... ){ index <- match.arg(index) pricePre <- object@pricePre pricePost <- object@pricePost if(levels){priceDelta <- pricePost - pricePre} else{priceDelta <- pricePost/pricePre - 1} if(market){ sharesPre <- calcShares(object, preMerger=TRUE,revenue=FALSE,...) sharesPre <- sharesPre/sum(sharesPre,na.rm=TRUE) sharesPost <- calcShares(object, preMerger=FALSE,revenue=FALSE,...) sharesPost <- sharesPost/sum(sharesPost,revenue=FALSE,na.rm=TRUE) if(index=="paasche") priceDelta <- sum(sharesPost*pricePost)/sum(sharesPost*pricePre) - 1 else if (index=="laspeyres") priceDelta <- sum(sharesPre*pricePost)/sum(sharesPre*pricePre) - 1 } return(priceDelta) } ) setMethod( f= "calcPriceDelta", signature= "Cournot", definition=function(object, levels = FALSE, market=TRUE, ... ){ callNextMethod() } ) setMethod( f= "calcPriceDelta", signature= "VertBargBertLogit", definition=function(object, levels = FALSE, market = FALSE, ... ){ up <- object@up down <- object@down marginsPre <- calcMargins(object,preMerger=TRUE,level=TRUE) marginsPost <- calcMargins(object,preMerger=FALSE,level=TRUE) sharesPre <- calcShares(object, preMerger=TRUE,revenue=FALSE) sharesPost <- calcShares(object, preMerger=FALSE,revenue=FALSE) upMCPre=up@mcPre downMCPre=down@mcPre upPricePre <- up@pricePre upMCPost=up@mcPost downMCPost=down@mcPost upPricePost <- up@pricePost if(!market){ mcDeltaUp <- upMCPost - upMCPre mcDeltaDown <- (downMCPost+upPricePost) - (downMCPre + upPricePre) mcDeltaUp <- ifelse(is.na(mcDeltaUp),0,mcDeltaUp) mcDeltaDown <- ifelse(is.na(mcDeltaDown),0,mcDeltaDown) upDelta <- marginsPost$up - marginsPre$up + mcDeltaUp downDelta <- marginsPost$down - marginsPre$down + mcDeltaDown upPricePre <- up@pricePre downPricePre <- down@pricePre } else{ mcDeltaUp <- upMCPost *sharesPost - upMCPre*sharesPre mcDeltaDown <- (downMCPost+upPricePost)*sharesPost - (downMCPre + upPricePre)*sharesPre mcDeltaUp <- ifelse(is.na(mcDeltaUp),0,mcDeltaUp) mcDeltaDown <- ifelse(is.na(mcDeltaDown),0,mcDeltaDown) upDelta <- marginsPost$up*sharesPost - marginsPre$up*sharesPre + mcDeltaUp downDelta <- marginsPost$down*sharesPost - marginsPre$down*sharesPre + mcDeltaDown upPricePre <- up@pricePre*sharesPre downPricePre <- down@pricePre*sharesPre upDelta <- sum(upDelta,na.rm=TRUE) downDelta <- sum(downDelta,na.rm=TRUE) upPricePre <- sum(upPricePre,na.rm=TRUE) downPricePre <- sum(downPricePre,na.rm=TRUE) } if(!levels){ upDelta <- upDelta/upPricePre downDelta <- downDelta/downPricePre } priceDelta <- list(up = upDelta, down= downDelta) return(priceDelta) } ) setMethod( f= "calcPriceDelta", signature= "AIDS", definition=function(object,isMax=FALSE,levels=FALSE,subset,market=FALSE, index=c("paasche","laspeyres"),...){ index <- match.arg(index) if(market){ if(index=="paasche") shares <- calcShares(object, preMerger = FALSE) else{shares <- calcShares(object, preMerger = TRUE)} return(sum(object@priceDelta * shares,na.rm=TRUE)) } ownerPost <- object@ownerPost nprods <- length(object@shares) if(missing(subset)){subset <- rep(TRUE,nprods)} if(!is.logical(subset) || length(subset) != nprods ){stop("'subset' must be a logical vector the same length as 'shares'")} FOC <- function(priceDelta){ object@priceDelta <- exp(priceDelta)-1 sharePost <- calcShares(object,FALSE) elastPost <- t(elast(object,FALSE)) marginPost <- calcMargins(object,FALSE) thisFOC <- sharePost*diag(ownerPost) + as.vector((elastPost*ownerPost) %*% (sharePost*marginPost)) thisFOC[!subset] <- sharePost[!subset] return(thisFOC) } minResult <- BBsolve(object@priceStart,FOC,quiet=TRUE,[email protected]) if(minResult$convergence != 0){warning("'calcPrices' nonlinear solver may not have successfully converged. 'BBsolve' reports: '",minResult$message,"'")} if(isMax){ hess <- genD(FOC,minResult$par) hess <- hess$D[,1:hess$p] if(any(eigen(hess)$values>0)){warning("Hessian of first-order conditions is not positive definite. Price vector may not maximize profits. Consider rerunning 'calcPrices' using different starting values")} } deltaPrice <- exp(minResult$par)-1 names(deltaPrice) <- object@labels if(levels){deltaPrice <- calcPrices(object,FALSE) - calcPrices(object,TRUE)} if(market){ sharePost <- calcShares(object,FALSE,...) sharePost <- sharePost/sum(sharePost, na.rm=TRUE) deltaPrice <- sum(deltaPrice*sharePost,na.rm=TRUE) } return(deltaPrice) } ) setMethod( f= "calcPriceDelta", signature= "Auction2ndLogit", definition=function(object,levels=TRUE, market=FALSE,exAnte=ifelse(market,TRUE,FALSE),...){ if(!levels){ result <- callNextMethod() return(result) } subset <- object@subset mcDelta <- object@mcDelta if(exAnte){ sharesPost <- calcShares(object, preMerger=FALSE) mcDelta <- mcDelta*sharesPost } result <- calcMargins(object, preMerger=FALSE,exAnte=exAnte) + mcDelta - calcMargins(object, preMerger=TRUE,exAnte=exAnte) if(market) result <- sum(result,na.rm=TRUE) if(!market) names(result) <- object@labels return(result) } )
codename <- function(type = "any", seed) { if (missing(seed)) { set.seed(NULL) } else { if (is.numeric(seed)) { set.seed(seed) } charseed <- char2seed(seed) set.seed(charseed) } if (type == "any") { all_adjs <- rbind(adjectives, xkcd_colors, wu_adjs) all_adjs$value <- tolower(all_adjs$value) my_adj <- sample(unique(all_adjs$value), 1) gods$type <- NULL all_nouns <- rbind(animals, gods, nouns, wu_nouns) all_nouns$value <- tolower(all_nouns$value) my_noun <- sample(unique(all_nouns$value), 1) the_codename <- paste(my_adj, my_noun) return(the_codename) } if (type == "gods") { my_noun <- sample(gods$value, 1) all_adjs <- rbind(adjectives, xkcd_colors) my_adj <- sample(unique(all_adjs$value), 1) the_codename <- paste(my_adj, my_noun) return(the_codename) } if (type == "ubuntu") { my_noun <- sample(animals$value, 1) sw <- substring(my_noun, 1, 1) all_adjs <- rbind(adjectives, xkcd_colors) all_adjs <- subset(all_adjs, sapply(strsplit(all_adjs$value, " "), length) == 1) matchingsw <- subset(all_adjs, tolower(substr(value, 1, 1)) == sw) my_adj <- sample(matchingsw$value, 1) the_codename <- paste(my_adj, my_noun) return(the_codename) } if (type == "wu-tang") { my_adj <- sample(wu_adjs$value, 1) my_noun <- sample(wu_nouns$value, 1) the_codename <- paste(my_adj, my_noun) return(the_codename) } }
library(extraDistr) library(ggplot2) d_para <- data.frame(mu=c(0, 0), sigma=c(1, 3), gr=letters[1:2]) my_labs <- parse(text=sprintf('mu=="%.0f"~~sigma=="%.0f"', d_para$mu, d_para$sigma)) p <- ggplot(data.frame(X=c(-6, 6)), aes(x=X)) + theme_bw(base_size=18) + theme(legend.key.width=grid::unit(2.5,'line')) + mapply( function(mu, sigma, co) stat_function(fun=dlaplace, args=list(mu=mu, sigma=sigma), aes_q(linetype=co)), d_para$mu, d_para$sigma, d_para$gr ) + scale_linetype_manual('parameter', values=c('solid', '12'), labels=my_labs) + labs(x='y', y='density') + scale_x_continuous(limit=c(-6, 6)) ggsave(file='output/fig6-15.png', plot=p, dpi=300, w=6, h=3)
library(ggplot2) library(treemapify) G20 ggplot(G20, aes(area = gdp_mil_usd, fill = hdi)) + geom_treemap() ggplot(G20, aes(area = gdp_mil_usd, fill = hdi, label = country)) + geom_treemap() + geom_treemap_text(fontface = "italic", colour = "white", place = "centre", grow = TRUE) ggplot(G20, aes(area = gdp_mil_usd, fill = hdi, label = country, subgroup = region)) + geom_treemap() + geom_treemap_subgroup_border() + geom_treemap_subgroup_text(place = "centre", grow = T, alpha = 0.5, colour = "black", fontface = "italic", min.size = 0) + geom_treemap_text(colour = "white", place = "topleft", reflow = T) ggplot(G20, aes(area = 1, label = country, subgroup = hemisphere, subgroup2 = region, subgroup3 = econ_classification)) + geom_treemap() + geom_treemap_subgroup3_border(colour = "blue", size = 1) + geom_treemap_subgroup2_border(colour = "white", size = 3) + geom_treemap_subgroup_border(colour = "red", size = 5) + geom_treemap_subgroup_text( place = "middle", colour = "red", alpha = 0.5, grow = T ) + geom_treemap_subgroup2_text( colour = "white", alpha = 0.5, fontface = "italic" ) + geom_treemap_subgroup3_text(place = "top", colour = "blue", alpha = 0.5) + geom_treemap_text(colour = "white", place = "middle", reflow = T)
[ { "title": "BaselR meetup", "href": "https://www.r-bloggers.com/baselr-meetup/" }, { "title": "Query a MySQL Database from R using RMySQL", "href": "http://www.gettinggeneticsdone.com/2011/12/query-mysql-database-from-r-using.html" }, { "title": "Packrat on CRAN", "href": "https://blog.rstudio.org/2014/09/05/packrat-on-cran/" }, { "title": "How to write and debug an R function", "href": "http://rforpublichealth.blogspot.com/2014/06/how-to-write-and-debug-r-function.html" }, { "title": "Using iterators for sparse vectors and matrices", "href": "http://gallery.rcpp.org/articles/sparse-iterators/" }, { "title": "Birth Month by Gender", "href": "http://www.exegetic.biz/blog/2016/07/birth-month-by-gender/" }, { "title": "Putting a football model into JAGS", "href": "http://wiekvoet.blogspot.com/2012/10/putting-football-model-into-jags.html" }, { "title": "Why [Not] Simulate?", "href": "http://ww1.danielmarcelino.com/why-not-simulate/" }, { "title": "Revolution Newsletter: April 2013", "href": "http://blog.revolutionanalytics.com/2013/04/revolution-newsletter-april-2013.html" }, { "title": "FII and DII turnover with effect on Nifty Downloader", "href": "http://foss.gauravsmind.com/2011/08/download-fii-and-dii-turnover-with.html" }, { "title": "R Cookbook with examples", "href": "https://rdatamining.wordpress.com/2011/10/27/r-cookbook-with-examples/" }, { "title": "Play 2048… using R!", "href": "http://decisionsandr.blogspot.com/2014/04/play-2048-using-r.html" }, { "title": "correlation matrices on copulas", "href": "https://xianblog.wordpress.com/2016/07/04/correlation-matrices-on-copulas/" }, { "title": "Risk, Return and Analyst Ratings", "href": "https://systematicinvestor.wordpress.com/2011/10/08/risk-return-and-analyst-ratings/" }, { "title": "Introduction to R for Data Science :: Session 3", "href": "http://www.exactness.net/post/144812605330/introduction-to-r-for-data-science-session-3" }, { "title": "Spirograph with R", "href": "http://menugget.blogspot.com/2012/12/spirograph-with-r.html" }, { "title": "Artificial Intelligence: Solving the Chinese Room Argument", "href": "https://feedproxy.google.com/~r/graphoftheweek/fzVA/~3/o-lMkg1nNV4/artificial-intelligence-solving-chinese.html" }, { "title": "New R User Group in Dublin, Ireland", "href": "http://blog.revolutionanalytics.com/2011/10/new-r-user-group-in-dublin-ireland.html" }, { "title": "Some R User Group Highlights for November 2014", "href": "http://blog.revolutionanalytics.com/2014/12/november-2014-r-user-group-roundup.html" }, { "title": "Comparing ESPN’s, CBS’s, and NFL.com’s Fantasy Football Projections using R", "href": "http://fantasyfootballanalyticsr.blogspot.com/2013/03/comparing-espns-cbss-and-nflcoms.html" }, { "title": "Data from the World Health Organization API", "href": "http://ellisp.github.io/blog/2016/02/06/world-health-organization" }, { "title": "The R-Files: Martyn Plummer", "href": "http://blog.revolutionanalytics.com/2011/08/the-r-files-martyn-plummer.html" }, { "title": "R programming challenge: Escape the zombie horde", "href": "http://blog.revolutionanalytics.com/2013/05/r-programming-challenge-escape-the-zombie-horde.html" }, { "title": "SCRIPT for NIR \"DEMO\" Tutorial – 001", "href": "http://nir-quimiometria.blogspot.com/2012/03/script-for-nir-demo-tutorial-001.html" }, { "title": "An OpenBLAS-based Rblas for Windows 64: Step-by-step", "href": "http://www.avrahamadler.com/2013/10/24/an-openblas-based-rblas-for-windows-64-step-by-step/" }, { "title": "Power and Sample Size Analysis: Z test", "href": "http://www.milanor.net/blog/power-and-sample-size-analysis-z-test/" }, { "title": "This Is the Place, Apparently", "href": "http://juliasilge.com/blog/This-Is-the-Place/" }, { "title": "The useR! 2016 Tutorials", "href": "http://blog.revolutionanalytics.com/2016/06/the-user-2016-tutorials.html" }, { "title": "R/Finance 2009: Applied Finance with R", "href": "https://feedproxy.google.com/~r/FossTrading/~3/smIn2-z7hv4/rfinance-2009-applied-finance-with-r.html" }, { "title": "Ideas on A Really Fast Statistics Journal", "href": "http://yihui.name/en/2012/03/a-really-fast-statistics-journal/" }, { "title": "Stan 2.5, now with MATLAB, Julia, and ODEs", "href": "http://andrewgelman.com/2014/10/22/stan-2-5-now-matlab-julia-odes/" }, { "title": "An epithet I can live with", "href": "http://andrewgelman.com/2012/12/04/an-epithet-i-can-live-with/" }, { "title": "More Readable Code with Pipes in R", "href": "http://www.econometricsbysimulation.com/2014/07/more-readable-code-with-pipes-in-r.html" }, { "title": "Tikz Nodes", "href": "http://www.wekaleamstudios.co.uk/posts/tikz-nodes/" }, { "title": "scheduleR: a web interface to schedule .R & .Rmd scripts", "href": "https://web.archive.org/web/http://fishyoperations.com/wp/scheduler-interface-schedule-r-rmd-scripts/" }, { "title": "KDD Cup 2015 winners announced", "href": "http://blog.revolutionanalytics.com/2015/07/kdd-cup-2015-winners-announced.html" }, { "title": "Pareto plot party!", "href": "https://4dpiecharts.com/2010/12/05/pareto-plot-party/" }, { "title": "Processing Data from a Statistica Worksheet Using R", "href": "https://rforwork.info/2012/08/30/processing-statistica-data-using-r/" }, { "title": "NHL Statistics – Goals scored by age", "href": "https://rocknrblog.wordpress.com/2011/06/26/nhl-goals-by-age/" }, { "title": "Upcoming R training by Hadley Wickham: SF Dec 3-4, DC Dec 10-11", "href": "https://www.r-bloggers.com/upcoming-r-training-by-hadley-wickham-sf-dec-3-4-dc-dec-10-11/" }, { "title": "R, HDF5 Data and Lightning", "href": "http://www.exegetic.biz/blog/2016/02/r-hdf5-and-lightning-data/" }, { "title": "R Helps With Employee Churn", "href": "http://blog.revolutionanalytics.com/2014/04/r-helps-with-employee-churn.html" }, { "title": "Rblogger Posting Patterns Analyzed with R", "href": "http://decisionsandr.blogspot.com/2014/04/rblogger-posting-patterns-analyzed-with.html" }, { "title": "R books are now showing up in the dollar bin. That’s a good…", "href": "http://jeffreyhorner.tumblr.com/post/6286598693/r-books-are-now-showing-up-in-the-dollar-bin" }, { "title": "Does R have too many packages?", "href": "http://www.econometricsbysimulation.com/2014/04/does-r-have-too-many-packages.html" }, { "title": "cpumemlog: Monitor CPU and RAM usage of a process (and its children)", "href": "http://ggorjan.blogspot.com/2015/01/cpumemlog-monitor-cpu-and-ram-usage-of.html" }, { "title": "R script to manipulate health data", "href": "https://web.archive.org/web/http://www.johnmarquess.com/?p=28" }, { "title": "htmltab: Next version and CRAN release", "href": "http://www.r-datacollection.com/blog/htmltab-Next-version-and-CRAN-release/" }, { "title": "Le Monde puzzle [ "href": "https://xianblog.wordpress.com/2015/04/01/le-monde-puzzle-905/" }, { "title": "R’s continued growth in academia", "href": "http://blog.revolutionanalytics.com/2012/04/rs-continued-growth-in-academia.html" } ]
library(bayesplot) context("PPC: misc. functions") source(test_path("data-for-ppc-tests.R")) expect_molten_yrep <- function(yrep) { y <- rnorm(ncol(yrep)) yrep <- validate_yrep(yrep, y) x <- melt_yrep(yrep) expect_equal(ncol(x), 4) expect_equal(nrow(x), prod(dim(yrep))) rep_nums <- rep(seq_len(nrow(yrep)), length(y)) obs_nums <- sort(rep(seq_len(length(y)), nrow(yrep))) expect_identical(colnames(x), c("y_id", "rep_id", "rep_label", "value")) expect_equal(x$y_id, obs_nums) expect_equal(x$rep_id, rep_nums) expect_s3_class(x, "data.frame") expect_s3_class(x$rep_label, "factor") expect_type(x$rep_id, "integer") expect_type(x$y_id, "integer") expect_type(x$value, "double") } test_that("melt_yrep returns correct structure", { expect_molten_yrep(yrep) expect_molten_yrep(yrep2) load(test_path("data-for-binomial.rda")) expect_molten_yrep(Ey) expect_molten_yrep(validate_yrep(yrep, y)) }) test_that("melt_and_stack returns correct structure", { molten_yrep <- melt_yrep(yrep) d <- melt_and_stack(y, yrep) expect_s3_class(d, "data.frame") expect_equal(nrow(d), nrow(molten_yrep) + length(y)) sorted_names <- sort(c(colnames(molten_yrep), c("is_y", "is_y_label"))) expect_equal(sort(colnames(d)), sorted_names) }) d <- ppc_group_data(y, yrep, group) d_stat <- ppc_group_data(y, yrep, group, stat = "mean") test_that("ppc_group_data returns correct structure", { expect_identical(colnames(d), c("group", "variable", "value")) expect_s3_class(d, c("grouped_df", "tbl_df", "tbl", "data.frame")) expect_identical(colnames(d_stat), colnames(d)) expect_s3_class(d, c("grouped_df", "tbl_df", "tbl", "data.frame")) nr <- length(unique(d$variable)) * length(unique(group)) expect_equal(nrow(d_stat), nr) }) test_that("ppc_group_data with stat returns correct values for y", { for (lev in levels(group)) { mean_y_group <- with(d_stat, value[group == lev & variable == "y"]) expect_equal(mean_y_group, mean(y[group == lev]), info = paste("group =", lev)) } }) test_that("ppc_group_data with stat returns correct values for yrep", { for (lev in levels(group)) { for (j in 1:nrow(yrep)) { var <- paste0("yrep_", j) mean_yrep_group <- with(d_stat, value[group == lev & variable == var]) expect_equal(mean_yrep_group, mean(yrep[j, group == lev]), info = paste("group =", lev, "|", "rep =", j)) } } }) test_that("is_whole_number works correctly", { expect_equal(is_whole_number(c(1L, 2, 3/3, 4/5)), c(rep(TRUE, 3), FALSE)) expect_true(!is_whole_number("1")) }) test_that("all_counts works correctly", { expect_true(all_counts(1)) expect_true(all_counts(0:5)) expect_true(all_counts(matrix(rpois(10, 1), 2, 5))) expect_false(all_counts(rnorm(5))) expect_false(all_counts(c("1", "2"))) expect_false(all_counts(c(1, 1.5))) expect_false(all_counts(c(-1, 2))) })
nrow <- function(df,...) { UseMethod("nrow") } nrow.default <- function(df, ...) { base::nrow(df, ...) } nrow.disk.frame <- function(df, ...) { stopifnot(is_ready(df)) path1 <- attr(df,"path", exact=TRUE) if(dir.exists(path1)) { path2 <- list.files(path1,full.names = TRUE) if(length(path2) == 0) { return(0) } tmpfstmeta = fst::fst.metadata(path2[1]) if("nrOfRows" %in% names(tmpfstmeta)) { return(sum(sapply(path2, function(p2) fst::fst.metadata(p2)$nrOfRows))) } else { return(sum(sapply(path2, function(p2) fst::fst.metadata(p2)$NrOfRows))) } } else { stop(glue::glue("nrow error: directory {} does not exist")) } } ncol <- function(df) { UseMethod("ncol") } ncol.disk.frame <- function(df) { length(colnames(df)) } ncol.default <- function(df) { base::ncol(df) }
source('../gsDesign_independent_code.R') testthat::test_that( desc = "Test: gridpoints validation, source: gridpts function is borrowed from gsdmvn package", code = { bounds <- c(-100, 100) sigma <- 1 mu <- 0 y <- gsDesign::normalGrid(r = 18, mu = 0, bounds = bounds, sigma = sigma) x <- gridpts(r = 18, mu = mu, a = bounds[1], b = bounds[2]) gridpoints <- x$z * sigma expect_equal(y$z, gridpoints) }) testthat::test_that( desc = "Test: gridpts() bounds", code = { bounds <- c(2, 1) sigma <- 1 mu <- 0 y <- gsDesign::normalGrid(r = 6, mu = 0, bounds = bounds, sigma = sigma) expect_error(gridpts(r = 6, mu = mu, a = bounds[1], b = bounds[2])) } ) testthat::test_that(desc = "Test: checking r out of range", code = { bounds <- c(5, 10) sigma <- 1 mu <- 0 expect_error(gsDesign::normalGrid(r = 0.5, mu = 0, bounds = bounds, sigma = sigma)) }) testthat::test_that(desc = "Test: checking sigma out of range", code = { bounds <- c(1, 2) sigma <- -0.000001 mu <- 0 expect_error(gsDesign::normalGrid(r = 10, mu = 0, bounds = bounds, sigma = sigma)) }) testthat::test_that(desc = "Test: checking gridpts() mu", code = { bounds <- c(0, 0) sigma <- 4 mu <- -1 y <- gsDesign::normalGrid(r = 80, mu = mu, bounds = bounds, sigma = sigma) expect_error(gridpts(r = 80, mu = mu, a = bounds[1], b = bounds[2])) }) testthat::test_that(desc = "Test: checking bounds length", code = { bounds <- c(1) sigma <- 4 mu <- -1 expect_error(gsDesign::normalGrid(r = 6, mu = mu, bounds = bounds, sigma = sigma)) })
.dfmix.x <- function(x, w, xTheta, ...) { n <- length(x) f <- array(data = 0.0, dim = n, dimnames = NULL) for (i in 1:length(w)) { if (xTheta[[i]]$pdf == .rebmix$pdf[1]) { fix <- dnorm(as.numeric(x), mean = as.numeric(xTheta[[i]]$theta1), sd = as.numeric(xTheta[[i]]$theta2), ...) } else if (xTheta[[i]]$pdf == .rebmix$pdf[2]) { fix <- dlnorm(as.numeric(x), meanlog = as.numeric(xTheta[[i]]$theta1), sdlog = as.numeric(xTheta[[i]]$theta2), ...) } else if (xTheta[[i]]$pdf == .rebmix$pdf[3]) { fix <- dweibull(as.numeric(x), scale = as.numeric(xTheta[[i]]$theta1), shape = as.numeric(xTheta[[i]]$theta2), ...) } else if (xTheta[[i]]$pdf == .rebmix$pdf[4]) { fix <- dbinom(as.integer(x), size = as.integer(xTheta[[i]]$theta1), prob = as.numeric(xTheta[[i]]$theta2), ...) } else if (xTheta[[i]]$pdf == .rebmix$pdf[5]) { fix <- dpois(as.integer(x), lambda = as.numeric(xTheta[[i]]$theta1), ...) } else if (xTheta[[i]]$pdf == .rebmix$pdf[6]) { fix <- ddirac(as.numeric(x), location = as.numeric(xTheta[[i]]$theta1)) } else if (xTheta[[i]]$pdf == .rebmix$pdf[7]) { fix <- dgamma(as.numeric(x), scale = as.numeric(xTheta[[i]]$theta1), shape = as.numeric(xTheta[[i]]$theta2), ...) } else if (xTheta[[i]]$pdf == .rebmix$pdf[8]) { fix <- dunif(as.numeric(x), min = as.numeric(xTheta[[i]]$theta1), max = as.numeric(xTheta[[i]]$theta2), ...) } else if (xTheta[[i]]$pdf == .rebmix$pdf[9]) { output <- .C(C_RvonMisesPdf, n = as.integer(n), y = as.double(x), Mean = as.double(xTheta[[i]]$theta1), Kappa = as.double(xTheta[[i]]$theta2), f = double(n), PACKAGE = "rebmix") fix <- output$f } else if (xTheta[[i]]$pdf == .rebmix$pdf[10]) { output <- .C(C_RGumbelPdf, n = as.integer(n), y = as.double(x), Mean = as.double(xTheta[[i]]$theta1), Sigma = as.double(xTheta[[i]]$theta2), Xi = as.double(xTheta[[i]]$theta3), f = double(n), PACKAGE = "rebmix") fix <- output$f } f <- f + w[i] * fix } rm(list = ls()[!(ls() %in% c("f"))]) return(f) }
context("json_types") test_that("works with simple input", { json <- '[{"key":"value"}, [1, 2], "string", 1, true, false, null]' expect_identical( json %>% gather_array %>% json_types, tbl_json( data.frame( document.id = rep(1L, 7), array.index = 1L:7L, type = factor( c("object", "array", "string", "number", "logical", "logical", "null"), levels = allowed_json_types) ), list(list(key = "value"), list(1L, 2L), "string", 1L, TRUE, FALSE, NULL) ) ) } ) test_that("works with varying array types", { json <- '[[1, 2], [1, null], [{"key":"value"}], [null]]' expect_identical( (json %>% gather_array %>% json_types)$type, factor(rep("array", 4), levels = allowed_json_types) ) } ) test_that("works with varying empty data", { json <- '[[], {}, null]' expect_identical( (json %>% gather_array %>% json_types)$type, factor(c("array", "object", "null"), levels = allowed_json_types) ) } ) test_that("works with character(0)", { expect_identical( (character(0) %>% json_types)$type, factor(character(0), levels = allowed_json_types) ) } )
`groupLikelihoodCurves` <- function(plotT, plotS, plotC, plotD, main=NULL, cex=0.7) { plotT <- update(plotT, main=main, sub="d)", par.settings=list(par.ylab.text=list(cex=cex))) plotC <- update(plotC, main=main, sub="c)",par.settings=list(par.zlab.text=list(cex=cex))) plotD <- update(plotD, main=main, sub="a)",par.settings=list(par.zlab.text=list(cex=cex))) plotS <- update(plotS, main=main, sub="b)",par.settings=list(par.zlab.text=list(cex=cex))) plot(plotT, split=c(2,2,2,2), more=TRUE) plot(plotC, split=c(2,1,2,2), more=TRUE) plot(plotS, split=c(1,2,2,2), more=TRUE) plot(plotD, split=c(1,1,2,2), more=FALSE) }
print.dLR <- function(x, ...){ cat("\n Call: \t Likelihood Ratio Test MPRM: dimension reduction \n\n") cat("emp Chi2: \t", x$emp_Chi2, "\n") cat("df: \t\t\t\t\t\t\t", x$df, "\n") cat("p-value: \t\t", deparse(round(x$pval,3)), "\n\n") }
tformshapes <- function(singletext=FALSE,transform=NA,jacobian=FALSE,driftdiag=FALSE, parname='param',stan=FALSE){ out = c('param', '(log1p_exp(param))', '(exp(param))', '(1/(1+exp(-param)))', '((param)^3)', 'log1p(param)', 'meanscale', '1/(1+exp(-param))', 'exp(param)', '1/(1+exp(-param))-(exp(param)^2)/(1+exp(param))^2', '3*param^2', '1/(1+param)') tfvec=c(0:5,50:55) out=gsub('param',parname,out,fixed=TRUE) if(!is.na(transform)&&transform!=0) out = out[tfvec == transform] if(!singletext) { out = paste0('if(transform==', tfvec,') param = ',out,';\n',collapse='') if(!stan) out <- paste0('param = parin * meanscale + inneroffset; \n ',out,' param=param*multiplier; if(transform < 49) param = param+offset;') if(stan) out <- paste0('if(meanscale!=1.0) param *= meanscale; if(inneroffset != 0.0) param += inneroffset; \n',out,' if(multiplier != 1.0) param *=multiplier; if(transform < 49 && offset != 0.0) param+=offset;') } if(singletext) out <- paste0('offset + multiplier*',gsub('param','(param*meanscale+inneroffset)',out)) out=gsub(' ','',out,fixed=TRUE) return(out) } tform <- function(parin, transform, multiplier, meanscale, offset, inneroffset, extratforms='',singletext=FALSE,jacobian=FALSE,driftdiag=FALSE){ param=parin if(!is.na(suppressWarnings(as.integer(transform)))) { out <- tformshapes(singletext=singletext,transform=as.integer(transform)) if(!singletext) paste0(out,extratforms) if(singletext) { for(i in c('param','multiplier', 'meanscale', 'inneroffset','offset')){ irep = get(i) out <- gsub(pattern = i,replacement = irep,out) } } } if(is.na(suppressWarnings(as.integer(transform)))) out <- transform if(!singletext) out <- eval(parse(text=out)) return(out) }
det <- function(x, ...) { z <- determinant(x, logarithm = TRUE, ...) c(z$sign * exp(z$modulus)) } determinant <- function(x, logarithm = TRUE, ...) UseMethod("determinant") determinant.matrix <- function(x, logarithm = TRUE, ...) { if ((n <- ncol(x)) != nrow(x)) stop("'x' must be a square matrix") if (n < 1L) return(structure(list(modulus = structure(if(logarithm) 0 else 1, logarithm = logarithm), sign = 1L), class = "det")) if (is.complex(x)) stop("'determinant' not currently defined for complex matrices") .Internal(det_ge_real(x, logarithm)) }