code
stringlengths 1
13.8M
|
---|
phyloglmstep <- function(formula, starting.formula = NULL, data=list(), phy,
method = c("logistic_MPLE","logistic_IG10"),
direction = c("both", "backward", "forward"), trace = 2,
btol = 10, log.alpha.bound = 4, start.beta=NULL,
start.alpha=NULL, boot = 0, full.matrix = TRUE,
k=2, ...)
{
method = match.arg(method)
direction = match.arg(direction)
fit.full = phyloglm(formula, data, phy, method, btol, log.alpha.bound, start.beta, start.alpha, boot, full.matrix, ...)
response = fit.full$formula[[2]]
covariates = attr(terms(formula), "term.labels")
p = length(covariates)
if (p==0) stop("Your full model only has intercept. Model selection is not needed.")
plm.full = rep(1,p)
create.formula <- function(plm) {
on = which(plm==1)
str = paste(response," ~ 1",sep="")
if (length(on) > 0)
for (i in 1:length(on)) str = paste(str," + ",covariates[on[i]],sep="")
return(str)
}
fit <- function(plm) {
return(phyloglm(create.formula(plm), data, phy, method, btol, log.alpha.bound, start.beta, start.alpha, boot, full.matrix, ...))
}
if (direction == "forward") {
plm.current = rep(0,p)
fit.current = fit(plm.current)
} else {
plm.current = plm.full
fit.current = fit.full
}
if (!is.null(starting.formula)) {
fit.current = phylolm(starting.formula, data, phy, method, btol, log.alpha.bound, start.beta, start.alpha, boot, full.matrix, ...)
covariates.current = attr(terms(starting.formula), "term.labels")
plm.current = rep(0,p)
position = match(covariates.current,covariates)
if (any(is.na(position))) stop("The starting model is not a submodel of the full model.")
plm.current[position] = 1
}
if (trace>0) {
cat("----------\n")
cat(paste("Starting model: ",create.formula(plm.current),"\n",sep=""))
cat(paste("Direction: ",direction,"\n",sep=""))
cat(paste("AIC(k=",k,"): ",AIC(fit.current,k),"\n",sep=""))
}
flag = 0
count = 1
while (flag == 0) {
flag = 1
plm.best = plm.current
fit.best = fit.current
terms.add = add.scope(formula(create.formula(plm.current)),
formula(create.formula(plm.full)))
terms.drop = drop.scope(formula(create.formula(plm.current)))
for (i in 1:p) {
plm.propose = plm.current
do.update = FALSE
if ((plm.current[i]==1)&&(direction %in% c("both", "backward"))
&&(covariates[i] %in% terms.drop)) {
plm.propose[i] = 0
do.update = TRUE
}
if ((plm.current[i]==0)&&(direction %in% c("both", "forward"))
&&(covariates[i] %in% terms.add)) {
plm.propose[i] = 1
do.update = TRUE
}
if (do.update){
fit.propose = fit(plm.propose)
if (trace>1) {
cat(paste0("\tProposed: ",create.formula(plm.propose),"\n"))
cat(paste0("\tAIC(k=",k,"): ",AIC(fit.propose,k),"\n"))
}
if (AIC(fit.propose,k) < AIC(fit.best,k)) {
plm.best = plm.propose
fit.best = fit.propose
flag = 0
}
}
}
plm.current = plm.best
fit.current = fit.best
if (trace>0) {
cat("----------\nStep ",count,"\n",sep="")
cat(paste("Current model: ",create.formula(plm.current),"\n",sep=""))
cat(paste("AIC(k=",k,"): ",AIC(fit.current,k),"\n",sep=""))
}
count = count + 1
}
if (trace>0) cat("---END\n")
return(fit.current)
}
|
plotClass.result<-function(true.classified, cross.method, class.method, flag.feature, feat.num)
{
if((cross.method=="sub-sampling")||(cross.method=="fold-crossval"))
{
if(flag.feature)
{
if(length(class.method)==1)
{
vrem=matrix(1:ncol(true.classified),ncol(true.classified),1)
}
else
{
vrem=sapply(class.method,function(z) which(colnames(true.classified)==z))
}
par(mfrow=c(length(class.method),1))
for(i in 1:length(class.method))
{
if(feat.num==1)
{
values=true.classified[,vrem[i],drop=FALSE]
}
else
{
values=true.classified[,vrem[,i],drop=FALSE]
}
colnames(values)=seq(feat.num,1,-1)
box=boxplot(values,main = paste("Cross validation",class.method[i]),ylab = "Classification accuracy",xlab="n of features",col=i+1)
}
}
else
{
box=boxplot(true.classified,main = "Cross validation",ylab = "Classification accuracy",xlab="Classifiers",col=3)
}
}
if(cross.method=="leaveOneOut")
{
if(flag.feature)
{
dim(true.classified)=c(length(class.method),feat.num)
barplot (true.classified, beside=TRUE, col=(1:length(class.method))+1, border='white'
, xlab="n of features", ylab="Accuracy", names.arg=as.character(seq(feat.num,1,-1))
, ylim=c(0,1), main="Classification with n of features")
legend("bottomright", col=(1:length(class.method))+1, class.method, bg="white", lwd=1, pch=1:length(class.method))
}
else
{
barplot (true.classified, col=(1:length(class.method))+1, border='white'
, space=0.2, xlab="Classifiers", ylab="Accuracy", names.arg=class.method
, ylim=c(0,1), main="Classification results")
legend("bottomright", col=(1:length(class.method))+1, paste(class.method,format(true.classified,digits=3)),bg="white", lwd=1, pch=1:length(class.method))
}
}
}
|
hires <- function( yini = NULL, times = seq(0, 321.8122, by = 321.8122/500),
parms = list(), printmescd = TRUE,
method = mebdfi, atol = 1e-6, rtol = 1e-6, ...) {
hires <- function(t,y,parms) {
with (as.list(c(y,parms)),{
dPr <- -k1*Pr + k2*Pfr + k6*PrX + Oks
dPfr <- k1*Pr - (k2+k3)*Pfr
dPrX <- -(k6+k1)*PrX + k2*PfrX + k5*PrX2
dPfrX <- k3*Pfr + k1*PrX -(k4+k2)*PfrX
dPrX2 <- -(k5+k1)*PrX2 + k2*(PfrX2+PfrX2E)
dPfrX2 <- -k7*PfrX2*E + k8*PfrX + k1*PrX2 - k2*PfrX2+ k8*PfrX2E
dPfrX2E <- k7*PfrX2*E - (k2+k8+k9)*PfrX2E
dE <- -k7*PfrX2*E + (k2+k8+k9)*PfrX2E
list(c(dPr, dPfr, dPrX, dPfrX, dPrX2, dPfrX2, dPfrX2E, dE))
})
}
parameter <- c(k1 = 1.71, k2 = 0.43, k3 = 8.32, k4 = 0.69, k5 = 0.035,
k6 = 8.32, k7 = 280, k8 = 0.69, k9 = 0.69, Oks = 0.0007)
parameter <- overrulepar(parameter, parms, 10)
prob <- hiresprob()
if (is.null(yini)) yini <- hiresinit()
checkini(prob$neqn, yini)
useres <- FALSE
if (is.character(method)) {
if (method %in% c("mebdfi", "daspk"))
useres <- TRUE
} else
if("res" %in% names(formals(method)))
useres <- TRUE
if (useres){
out <- ode(func = "hiresfun", dllname = "deTestSet",
initfunc = "hirespar", method = method,
atol=atol,rtol=rtol,parms = parameter,
y = yini, times = times, ...)
}else{
if (prob$numjac)
out <- ode(func = "hiresfun", dllname = "deTestSet",
initfunc = "hirespar", method = method,
atol=atol,rtol=rtol,parms = parameter,
y = yini, times = times, ...)
else{
fulljac = (prob$mujac == prob$neqn & prob$mljac == prob$neqn)
if (fulljac)
jactype <- "fullusr"
else
jactype <- "bandusr"
out <- ode(func = "hiresfun", dllname = "deTestSet",
initfunc = "hirespar", method = method,
atol=atol,rtol=rtol, parms = parameter,
y = yini, times = times,jacfunc ="hiresjac", jactype = jactype,...)
}}
if(printmescd)
out <- printpr (out, prob, "hires", rtol, atol)
return(out)
}
hiresprob <- function(){
fullnm <- 'Problem HIRES'
problm <- 'hires'
type <- 'ODE'
neqn <- 8
ndisc <- 500
t <- matrix(1,2)
t[1] <- 0
t[2] <- 321.8122
numjac <- FALSE
mljac <- neqn
mujac <- neqn
return(list(fullnm=fullnm, problm=problm,type=type,neqn=neqn,ndisc=ndisc,
t=t,numjac=numjac,mljac=mljac,mujac=mujac))
}
hiresinit <- function( ){
yini= c(Pr=1, Pfr=0, PrX=0, PfrX=0,
PrX2=0, PfrX2=0, PfrX2E=0, E=0.0057)
return(yini)
}
|
context("cache_options_get")
test_that("cache_options_get - onload conditions", {
skip_on_cran()
aa <- cache_options_get()
expect_is(aa, "list")
expect_named(aa, c('cache', 'backend', 'path', 'overwrite'))
expect_is(aa$cache, 'logical')
expect_is(aa$backend, 'character')
expect_is(aa$path, 'character')
expect_is(aa$overwrite, 'logical')
expect_false(aa$overwrite)
expect_match(aa$path, 'R/fulltext')
expect_identical(cache_options_set(), aa)
})
context("cache_options_set")
test_that("cache_options_set - onload conditions", {
skip_on_cran()
aa <- cache_options_set(path = "foobar")
expect_is(aa, "list")
expect_named(aa, c('cache', 'backend', 'path', 'overwrite'))
expect_match(aa$path, 'R/foobar')
bb <- cache_options_set(overwrite = TRUE)
expect_true(bb$overwrite)
skip_on_os("windows")
mypath <- tempdir()
cache_options_set(full_path = mypath)
cc <- cache_options_get()
expect_match(cc$path, mypath)
})
test_that("cache_options_set fails well", {
skip_on_cran()
expect_error(cache_options_set(5), "class character")
expect_error(cache_options_set(overwrite = "afd"), "class logical")
expect_error(cache_options_set(full_path = 5), "class character")
expect_message(cache_options_set("foo", full_path = "bar"), "ignoring")
})
invisible(cache_options_set())
|
getCMCm = function(tree, C) {
k = (nrow(tree$edge) + 2)/2
s.cna = nrow(C)
CM = matrix(nrow = s.cna, ncol = k, data = 1)
rownames(CM) = rownames(C)
colnames(CM) = paste("clone", 1:k, sep = "")
Cm = CM
clonal.cna = vector("list", k)
for (tip in 2:k) {
child.node = tip
parent.node = tree$edge[which(tree$edge[, 2] == child.node),
1]
while (parent.node >= (k + 1)) {
cnatemp = intersect(which(tree$cna[, 2] == parent.node),
which(tree$cna[, 3] == child.node))
if (length(cnatemp) > 0) {
clonal.cna[[tip]] = c(clonal.cna[[tip]], cnatemp)
}
child.node = parent.node
if (child.node == (k + 1))
break
parent.node = tree$edge[which(tree$edge[, 2] == child.node), 1]
}
}
clonal.cna[[1]] = 0
if(all(apply(C,1,sum)==1)){
Z = matrix(nrow = nrow(tree$cna), ncol = k, data = 0)
for (ki in 2:k) {
Z[clonal.cna[[ki]], ki] = 1
}
CM.temp=as.matrix(tree$cna.copy[1,])%*%rep(1,ncol(Z))*Z
Cm.temp=as.matrix(tree$cna.copy[2,])%*%rep(1,ncol(Z))*Z
CM[Z==1]=CM.temp[Z==1]
Cm[Z==1]=Cm.temp[Z==1]
} else{
for (i in 1:nrow(C)) {
cnai = which(C[i, ] == 1)
cnai = cnai[rank(tree$cna[cnai, 2], ties.method = "random")]
for (s in cnai) {
for (t in 2:k) {
if (is.element(s, clonal.cna[[t]])) {
CM[i, t] = tree$cna.copy[1, s]
Cm[i, t] = tree$cna.copy[2, s]
}
}
}
}
}
return(list(CM, Cm))
}
|
library(testthat)
library(ggalt)
test_check("ggalt")
|
library(MASS)
all_n = 1000 * 10**(0:3)
all_rep = 1:10
a = 1
b = 0.05
base_all = array(data.frame(), dim = c(length(all_n), length(all_rep)))
for(i in 1:length(all_n)){
cat("i =", i)
n = all_n[i]
dum_all = list()
nb_dum = c(n/20, floor(sqrt(n)), floor(n**.33))
N = nb_dum**3
dum_all[[1]] = sample(nb_dum[1], n, TRUE)
dum_all[[2]] = sample(nb_dum[2], n, TRUE)
dum_all[[3]] = sample(nb_dum[3], n, TRUE)
for(r in all_rep){
cat(".")
X1 = rnorm(n)
X2 = X1**2
mu = a*X1 + b*X2
for(m in 1:3){
coef_dum = rnorm(nb_dum[m])
mu = mu + coef_dum[dum_all[[m]]]
}
mu = exp(mu)
y = rnegbin(mu, theta = 0.5)
base = data.frame(y, X1, ln_y = log(y + 1))
for(m in 1:3){
base[[paste0("dum_", m)]] = dum_all[[m]]
}
base_all[i, r][[1]] = base
}
cat("\n")
}
save(base_all, file = "DATA/base_all_simulations.Rdata")
n = 1e7
dum_all = list()
nb_dum = c(n/20, floor(sqrt(n)), floor(n**.33))
N = nb_dum**3
dum_all[[1]] = sample(nb_dum[1], n, TRUE)
dum_all[[2]] = sample(nb_dum[2], n, TRUE)
dum_all[[3]] = sample(nb_dum[3], n, TRUE)
X1 = rnorm(n)
X2 = X1**2
mu = a*X1 + b*X2
for(m in 1:3){
coef_dum = rnorm(nb_dum[m])
mu = mu + coef_dum[dum_all[[m]]]
}
mu = exp(mu)
y = rnegbin(mu, theta = 0.5)
base = data.frame(ln_y = log(y + 1), X1)
for(m in 1:3){
base[[paste0("dum_", m)]] = dum_all[[m]]
}
fwrite(base, "DATA/base_10M.csv")
load( "DATA/base_all_simulations.Rdata")
library(haven)
for(size in 1:4){
for(replication in 1:10){
cat(".")
stata_name = paste0("_STATA/base_s", size, "_r", replication, ".dta")
write_dta(as.data.frame(base_all[size, replication]), stata_name)
}
}
set.seed(1)
base_all_diff = list()
for(pow in 4:7){
cat(".")
n = 10**pow
nb_indiv = n/20
nb_firm = round(n/160)
nb_year = round(n**.3)
id_indiv = sample(1:nb_indiv, n, TRUE)
id_firm = pmin(sample(0:20, n, TRUE) + pmax(1, id_indiv %/% 8 - 10), nb_firm)
id_year = sample(nb_year, n, TRUE)
x1 = 5 * cos(id_indiv) + 5 * sin(id_firm) + 5 * sin(id_year) + runif(n)
x2 = cos(id_indiv) + sin(id_firm) + sin(id_year) + rnorm(n)
y= 3 * x1 + 5 * x2 + cos(id_indiv) + cos(id_firm)^2 + sin(id_year) + rnorm(n)
df = data.frame(id_indiv = id_indiv, id_firm = id_firm, id_year = id_year, x1 = x1, x2 = x2, y = y)
base_all_diff[[length(base_all_diff) + 1]] = df
if(pow < 7){
stata_name = paste0("_STATA/base_diff_e", pow, ".dta")
haven::write_dta(df, stata_name)
}
}
save(base_all_diff, file = "DATA/base_all_diff.Rdata")
|
test.MA <- function() {
x <- rnorm(100L); myMA <- numeric(length(x)); order <- 5L
for (i in order:length(x))
myMA[i] <- sum(x[(i - order + 1):i])/order
checkEquals(MA(x, order = order)[-(1:(order-1))],
myMA[-(1:(order-1))])
x <- rnorm(100L); myMA <- numeric(length(x)); order <- 1L
checkEquals(x, MA(x, order = order))
checkEquals(x, MA(x, order = order, pad = NA))
}
|
extremophileDis<-function()
{
angz<-c(0, 9.0, 18.0, 27.0, 36.0, 45.0, 54.0, 63.0, 72.0, 81.0, 90.0)
sDis<-0
pi180<-pi/180.0
extremophileLAD<-function(LeafAngle)
{
2*(1-cos(4*LeafAngle))/pi
}
for(i in 1:(length(angz)-1))
{
fraction<-integrate(extremophileLAD, lower=angz[i]*pi180, upper=angz[i+1]*pi180)
sDis[i]<-fraction[[1]]
}
sDis
}
|
test_that("bind_dimensions_n.mcmcarray", {
expect_identical(bind_dimensions_n(mcmcr_example$beta), mcmcr_example$beta)
expect_identical(
pdims(bind_dimensions_n(mcmcr_example$beta, mcmcr_example$beta, mcmcr_example$beta)),
c(2L, 2L, 3L)
)
})
test_that("bind_dimensions_n.mcmcr", {
expect_identical(bind_dimensions_n(mcmcr_example), mcmcr_example)
expect_identical(
pdims(bind_dimensions_n(mcmcr_example, mcmcr_example, mcmcr_example)),
list(alpha = c(2L, 3L), beta = c(2L, 2L, 3L), sigma = c(1L, 3L))
)
})
|
print.pstest <- function(x, ...){
if(x$argu$w == "ind") ww <- "Indicator function: w(q,u) = 1(q<=u)"
if(x$argu$w == "exp") ww <- "Exponential function: w(q,u) = exp(qu)"
if(x$argu$w == "logistic") ww <- "Logistic function: w(q,u) = 1/[1+exp(-qu)]"
if(x$argu$w == "sin") ww <- "Sine function: w(q,u) = sin(qu)"
if(x$argu$w == "sincos") ww <- "Sine and cosine function: w(q,u) = sin(qu)+ cos(qu)"
distt <- x$argu$dist
if(distt == "Mammen") distt <- "Mammen's"
header <- c("", "Test statistic", "Bootstrapped P-value")
body <- cbind(c("Kolmogorov-Smirnov", "Cramer-von Mises"),
c(round(x$kstest, digits = 4), round(x$cvmtest, digits = 4)),
c(round(x$pvks, digits = 4), round(x$pvcvm, digits = 4)))
colnames(body) <- header
cat(" Call:\n")
print(x$call)
cat("\n Sant'Anna and Song (2016) specification tests for the propensity score:\n")
print.matrix1(rbind(header, body))
cat(" -------------------------------------------------------------------------")
cat("\n Weight function:", "\t \t", ww)
cat("\n Number of boostrap draws:", "\t", x$argu$nboot)
cat("\n Boostrap draws from", distt, 'distribution')
}
|
test_that("KP - Get foul trouble", {
skip_on_cran()
x <- kp_foul_trouble(min_year = 2020, max_year = 2020)
cols <- c(
"team", "conf", "two_foul_particpation_pct",
"two_foul_particpation_pct_rk", "adj2fp", "adj2fp_rk", "two_foul_total_time",
"two_foul_total_time_rk", "two_foul_time_on",
"two_foul_time_on_rk", "bench_pct", "bench_pct_rk", "ncaa_seed", "year"
)
expect_equal(colnames(x), cols)
expect_s3_class(x, 'data.frame')
})
|
ranges_espace <- function(..., add_occurrences = TRUE, variables, do_pca = FALSE,
max_background = 10000, occurrence_color = "blue",
range_colors = NULL, alpha = 0.6, legend = TRUE,
verbose = TRUE) {
if (missing(...)) {
stop("Argument '...' is necessary to perform the analysis.")
} else {
ranges <- list(...)
if (length(ranges) < 1) {
stop("At least one sp_range* object is needed to produce plots.")
}
if (length(ranges) > 5) {
stop("Only 5 sp_range* objects can be plotted at the time.")
}
cls <- sapply(ranges, function(x) {class(x)[1]})
if (any(!cls %in% c("sp_range", "sp_range_iucn", "sp_range_iucnextra"))) {
stop("All objects to be plotted must be of class sp_range*.")
}
}
if (missing(variables)) {
stop("Argument 'variables' must be defined. See function's help for details.")
} else {
if (raster::nlayers(variables) < 3) {
stop("At least three 'variables' are required.")
}
}
WGS84 <- ranges[[1]]@species_range@proj4string
sp_ranges <- lapply(ranges, function(x) {x@species_range})
rnames <- sapply(ranges, function(x) {x@name})
if (add_occurrences == TRUE) {
if (any(cls %in% c("sp_range_iucn", "sp_range_iucnextra"))){
wh <- which(cls %in% c("sp_range_iucn", "sp_range_iucnextra"))[1]
sp_records <- ranges[[wh]]@species_unique_records
pdata <- na.omit(cbind(sp_records@data[, 2:3],
raster::extract(variables, sp_records)))
} else {
add_occurrences <- FALSE
sp_records <- NULL
if (verbose == TRUE) {
message("None of the objects contain occurrences.")
}
}
} else {
sp_records <- NULL
}
variables <- raster::projectRaster(variables, crs = WGS84@projargs)
vdata <- raster::rasterToPoints(variables)
if (nrow(vdata) > max_background) {
vdata <- vdata[sample(nrow(vdata), max_background), ]
}
nr <- nrow(vdata)
nc <- ncol(vdata)
if (add_occurrences == TRUE) {
colnames(vdata)[1:2] <- colnames(pdata)[1:2]
vdata <- rbind(vdata, pdata)
} else {
vdata <- vdata
}
if (do_pca == TRUE) {
vdata <- data.frame(vdata[, 1:2], prcomp(vdata[, 3:nc], center = TRUE,
scale = TRUE)$x[, 1:3])
vnam <- c("PC 1", "PC 2", "PC 3")
} else {
if (verbose == TRUE) {
if ((nc - 2) > 3) {
message("Using only the three first variables\n")
}
}
vnam <- gsub("_", " ", colnames(vdata)[3:5])
}
nc <- 5
if (add_occurrences == TRUE) {
pc_occ <- vdata[(nr - nrow(pdata) + 1):nrow(vdata), 3:nc]
}
vdata <- sp::SpatialPointsDataFrame(coords = vdata[, 1:2],
data = as.data.frame(vdata[, 1:nc]),
proj4string = WGS84)
if (verbose == TRUE) {
message("Getting environmental conditions inside ranges, please wait...")
}
env_ranges <- lapply(sp_ranges, function(x) {vdata[x, ]@data})
if (is.null(range_colors)) {
colors <- c("black", "green", "red", "blue", "purple")
}else {
colors <- range_colors
}
if (verbose == TRUE) {
message("\nCreating interactive visualization...\n")
}
if (add_occurrences == TRUE) {
rgl::plot3d(pc_occ[, 1:3], col = occurrence_color, size = 6, xlab = vnam[1],
ylab = vnam[2], zlab = vnam[3])
ad <- TRUE
}else {
ad <- FALSE
}
ellipsoides <- lapply(1:length(env_ranges), function(x) {
centroid <- apply(env_ranges[[x]][, 3:nc], 2, mean)
cov_mat <- cov(env_ranges[[x]][, 3:nc])
ell <- rgl::ellipse3d(cov_mat, centre = centroid, level = 0.99)
adt <- ifelse(x == 1, ad, TRUE)
rgl::wire3d(ell, col = colors[x], alpha = alpha, xlab = vnam[1],
ylab = vnam[2], zlab = vnam[3], add = adt)
if (x == 1 & add_occurrences == FALSE) {
rgl::axes3d(box = T)
rgl::title3d(xlab = vnam[1], ylab = vnam[2], zlab = vnam[3])
}
})
if (legend == TRUE) {
rgl::legend3d("topright", legend = rnames, lty = 1, inset = 0.02,
col = colors[1:length(ranges)],
bty = "n")
}
rgl::aspect3d(1, 1, 1)
}
|
make.partial.C = function(rows, cols, index){
x=matrix(0, nrow = rows, ncol = cols)
for(i in index){
x[i-1, i] = 1
}
return(x)
}
|
context("'collect' on CrunchDataset")
test_that("transfer groups between datasets", {
grouped_df <- group_by(mtcars, cyl, wt)
df2 <- mtcars %>% select(-gear) %>% transfer_groups(grouped_df)
expect_identical(group_vars(df2), group_vars(grouped_df))
})
with_mock_crunch({
ds <- loadDataset("test ds")
test_that("collect generates expected POST request", {
expect_POST(
ds %>%
select(gender, birthyr) %>%
collect(),
'https://app.crunch.io/api/datasets/1/export/csv/',
'{"filter":null,"where":{"function":"select","args":[{"map":{"66ae9881e3524f7db84970d556c34552":{"variable":"https://app.crunch.io/api/datasets/1/variables/gender/"},"f78ca47313144b57adfb495893968e70":{"variable":"https://app.crunch.io/api/datasets/1/variables/birthyr/"}}}]},"options":{"use_category_ids":true}}'
)
})
test_that("collect on grouped dataset", {
expect_POST(
ds %>%
select(gender, birthyr) %>%
group_by(gender) %>%
collect(),
'https://app.crunch.io/api/datasets/1/export/csv/',
'{"filter":null,"where":{"function":"select","args":[{"map":{"66ae9881e3524f7db84970d556c34552":{"variable":"https://app.crunch.io/api/datasets/1/variables/gender/"},"f78ca47313144b57adfb495893968e70":{"variable":"https://app.crunch.io/api/datasets/1/variables/birthyr/"}}}]},"options":{"use_category_ids":true}}'
)
})
ds3 <- loadDataset("ECON.sav")
test_that("collect can pull hidden variables", {
expect_POST(
ds3 %>%
select(gender, birthyr) %>%
collect(),
'https://app.crunch.io/api/datasets/3/export/csv/',
'{"filter":null,"where":{"function":"select","args":[{"map":{"66ae9881e3524f7db84970d556c34552":{"variable":"https://app.crunch.io/api/datasets/3/variables/gender/"},"f78ca47313144b57adfb495893968e70":{"variable":"https://app.crunch.io/api/datasets/3/variables/birthyr/"}}}]},"options":{"use_category_ids":true}}'
)
})
test_that("collect doesn't affect dplyr methods", {
expect_identical(mtcars, collect(mtcars))
})
})
|
`bsjktest.formula` <-
function(x, data, index=NULL, listw, test=c("C.1","C.2","C.3","J"), ...){
if("listw" %in% class(listw)) {
w <- listw2mat(listw)
} else {
w <- listw
}
if(!("pdata.frame" %in% class(data))) {
data <- pdata.frame(data, index)
}
gindex <- dimnames(data)[[2]][1]
tindex <- dimnames(data)[[2]][2]
switch(match.arg(test), C.1 = {
bsjk = pbsjkSDtest(formula=x, data=data, w=w, index=index, ...)
}, C.2 = {
bsjk = pbsjkARtest(formula=x, data=data, w=w, index=index, ...)
}, C.3 = {
bsjk = pbsjkREtest(formula=x, data=data, w=w, index=index, ...)
}, J = {
bsjk = pbsjkJtest(formula=x, data=data, w=w, index=index, ...)
})
return(bsjk)
}
|
source("ESEUR_config.r")
rt=read.csv(paste0(ESEUR_dir, "economics/SSRN-id1028592.csv.xz"), as.is=TRUE)
rt20=subset(rt, basemultiple < 15)
plot(density(rt20$basemultiple, na.rm=TRUE, from=0),
xlab="ROI", ylab="Density\n")
|
read.dsm.matrix <- function (file, format=c("word2vec"), encoding="UTF-8", batchsize=1e6, verbose=FALSE) {
format <- match.arg(format)
if (is.character(file)) {
file <- file(file, "r", encoding=encoding)
on.exit(close(file))
}
else {
if (!inherits(file, "connection")) stop("'file' must be a character string or connection")
if (!isOpen(file, "r")) {
open(file, "r")
on.exit(close(file))
}
}
if (format == "word2vec") {
info <- read.table(file, header=FALSE, quote="", comment.char="", colClasses="integer", col.names=c("nR", "nC"), nrows=1)
if (!(info$nR > 0 && info$nC > 0)) stop("format error in 'word2vec' file")
if (as.double(info$nR) * info$nC > 2147483647) stop(sprintf("%d x %d matrix is too large for R", info$nR, info$nC))
batch.lines <- max(round(batchsize / info$nC), 10)
col.classes <- c("character", rep("double", info$nC))
M <- matrix(0, info$nR, info$nC)
row.names <- character(info$nR)
n.total <- 0
if (verbose) {
pb <- txtProgressBar(0, info$nR, style=3)
on.exit(close(pb), add=TRUE)
}
while (n.total < info$nR) {
A <- as.matrix(read.table(file, header=FALSE, quote="", comment.char="", na.strings=c(), colClasses=col.classes, row.names=1, nrows=batch.lines))
if (ncol(A) != info$nC) stop(sprintf("format error in 'word2vec' file -- expected %d-dim vector, but got %d columns", info$nC, ncol(A)))
nR <- nrow(A)
if (nR < 1) stop(sprintf("read error in 'word2vec' file -- expecting to read %d further rows", info$nR - n.total))
if (n.total + nR > info$nR) stop("format error in 'word2vec' file -- too many rows")
idx <- seq(n.total + 1, n.total + nR)
M[idx, ] <- A
row.names[idx] <- rownames(A)
n.total <- n.total + nR
if (verbose) setTxtProgressBar(pb, n.total)
}
structure(M, dimnames=list(row.names, NULL))
}
else stop(sprintf("internal error -- unsupported format '%s'", format))
}
|
'Objects in R'
'R allows to save the data by storing it inside an R object.'
'What’s an object?
It is just a name that you can use to call up stored data. For example,
you can save data into an object like a or b.'
a <- 5
a
'How to create an Object in R?'
'To create an R object, choose a name and then use the less-than symbol, <,
followed by a minus sign, -, to save data into it. This combination looks
like an arrow, <-. R will make an object, give it your name, and store in
it whatever follows the arrow.'
'When you ask R what’s in a, it tells you on the next line. For example:'
die <- 1:6
die
'You can name an object in R almost anything you want, but there are a few rules.
First, a name cannot start with a number. Second, a name cannot use some special
symbols, like ^, !, $, @, +, -, /, or *:'
'R also understands capitalization (or is case-sensitive), so name and Name will
refer to different objects. You can see which object names you have already
used with the function ls().'
|
tabPanel('RFM', value = 'tab_rfm', icon = icon('sitemap'),
navlistPanel(id = 'navlist_rfm',
well = FALSE,
widths = c(2, 10),
source('ui/ui_rfm_score_transaction.R', local = TRUE)[[1]],
source('ui/ui_rfm_customer_1.R', local = TRUE)[[1]],
source('ui/ui_rfm_customer_2.R', local = TRUE)[[1]],
source('ui/ui_rfm_heat_map.R', local = TRUE)[[1]],
source('ui/ui_rfm_bar_chart.R', local = TRUE)[[1]],
source('ui/ui_rfm_histogram.R', local = TRUE)[[1]],
source('ui/ui_rfm_scatter_plot.R', local = TRUE)[[1]]
)
)
|
NULL
is_tabular <- function(x) {
if (is.matrix(x) | is.data.frame(x)) {
TRUE
} else FALSE
}
is_numeric_tabular <- function(x) {
if (is_numeric_matrix(x) | is_numeric_dataframe(x)) {
TRUE
} else FALSE
}
is_string_tabular <- function(x) {
if (is_string_matrix(x) | is_string_dataframe(x)) {
TRUE
} else FALSE
}
is_not_tabular <- function(x) {
!is_tabular(x)
}
|
library("netregR")
data("wolf")
vlist <- list(wolf$wolf_age_diff, wolf$wolf_same_sex, Y=wolf$wolf)
r <- inputs_lmnet(vlist)
X <- r$X ; colnames(X) <- c("Intercept", "age_diff", "same_sex")
fit <- lmnet(r$Y, X)
summary(fit)
plot(fit)
summary(lm(r$Y ~ X - 1))
range(vnet(e=resid(fit), X=model.matrix(fit))$vhat - vcov(fit))
range(vnet(fit=fit)$vhat - vcov(fit))
fitgls <- lmnet(r$Y, X, reweight=T)
cat("Converged?:", fitgls$converged, "\nNumber of iterations:", fitgls$nit)
coeftable <- cbind(coef(lm(r$Y ~ X - 1)), coef(fitgls))
colnames(coeftable) <- c("OLS", "GLS")
knitr::kable(round(coeftable, 4), caption="Coefficients for OLS and GLS fits of complete, directed data.")
see <- sqrt(diag( vcov(fitgls) ))
sedc <- sqrt(diag( vnet(fit=fitgls, type="dyadic clustering")$vhat ))
setable <- data.frame( "exchangeable"=see, "dyadic_clustering"=sedc )
knitr::kable(round(setable, 4), caption="Standard errors of GLS coefficient estimates based on complete, directed data.")
wolf_undir <- .5*(wolf$wolf + t(wolf$wolf))
vlist <- list(abs(wolf$wolf_age_diff), wolf$wolf_same_sex, Y=wolf_undir)
ru <- inputs_lmnet(vlist, directed=F)
X <- ru$X ; colnames(X) <- c("Intercept", "abs_age_diff", "same_sex")
fit <- lmnet(ru$Y, X, directed=F, reweight=T)
summary(fit)
Y <- wolf$wolf
Y[which(wolf_undir == 0)] <- NA
r <- inputs_lmnet(list(wolf$wolf_age_diff, wolf$wolf_same_sex, Y=Y))
X <- r$X ; colnames(X) <- c("Intercept", "abs_age_diff", "same_sex")
scramble <- sample(1:nrow(X))
fit <- lmnet(r$Y, X, nodes=r$nodes, reweight=T)
fit1 <- lmnet(r$Y[scramble], X[scramble,], nodes=r$nodes[scramble,], reweight=T)
range(coef(fit) - coef(fit1))
summary(fit)
data("interactions")
temp <- inputs_lmnet(Xlist=list(Y=interactions$interactions, X1=interactions$xbinary,
X2=interactions$xabs), directed = TRUE, add_intercept=TRUE,
time_intercept = TRUE)
fit1 <- lmnet(temp$Y, temp$X, directed=TRUE, tmax=5,
nodes=temp$nodes, reweight=FALSE, type="ind")
fit2 <- lmnet(temp$Y, temp$X, directed=TRUE, tmax=5,
nodes=temp$nodes, reweight=FALSE, type="exch")
fit3 <- lmnet(temp$Y, temp$X, directed=TRUE, tmax=5,
nodes=temp$nodes, reweight=TRUE, type="ind")
fit4 <- lmnet(temp$Y, temp$X, directed=TRUE, tmax=5,
nodes=temp$nodes, reweight=TRUE, type="exch")
timetable <- round(cbind(coef(fit1), coef(fit2), coef(fit3), coef(fit4)), 4)
signifs <- cbind( summary(fit1)$coef[,4] < .05,
summary(fit2)$coef[,4] < .05,
summary(fit3)$coef[,4] < .05,
summary(fit4)$coef[,4] < .05)
signif_coefs <- rep("*", length(signifs))
signif_coefs[!signifs] <- ""
esttable <- matrix(paste0(timetable, signif_coefs), ncol=ncol(timetable))
rownames(esttable) <- c(paste0("intercept ", c("school", "friends", "family", "significant others", "popular culture")), "xbinary", "xabs")
colnames(esttable) <- c("OLS/ind", "OLS/exch", "GLS/ind", "GLS/exch")
knitr::kable(esttable, caption="Estimated coefficients for the multiple network observation. `*' indicates a p-value less than 0.05.")
n <- 10
phi1 <- rphi(n, seed=1)
phi2 <- rphi(n, seed=1, phi6=T)
O1 <- build_exchangeable_matrix(n, phi1)
min(eigen(O1)$values) > 0
p1 <- invert_exchangeable_matrix(n, phi1)
p2 <- invert_exchangeable_matrix(n, phi2)
I1 <- O1 %*% build_exchangeable_matrix(n, p1)
range(I1 - diag(nrow(I1)))
I2 <- build_exchangeable_matrix(n, phi2) %*% build_exchangeable_matrix(n, p2)
range(I2 - diag(nrow(I2)))
|
library(gridGraphics)
pairs1 <- function() {
pairs(iris[1:4], main = "Anderson's Iris Data -- 3 species",
pch = 21, bg = c("red", "green3", "blue")[unclass(iris$Species)])
}
pairs2 <- function() {
pairs(~ Fertility + Education + Catholic, data = swiss,
subset = Education < 20, main = "Swiss data, Education < 20")
}
pairs3 <- function() {
pairs(USJudgeRatings)
}
pairs4 <- function() {
pairs(USJudgeRatings, text.panel = NULL, upper.panel = NULL)
}
pairs5 <- function() {
panel.hist <- function(x, ...) {
usr <- par("usr"); on.exit(par(usr))
par(usr = c(usr[1:2], 0, 1.5) )
h <- hist(x, plot = FALSE)
breaks <- h$breaks; nB <- length(breaks)
y <- h$counts; y <- y/max(y)
rect(breaks[-nB], 0, breaks[-1], y, col = "cyan", ...)
}
pairs(USJudgeRatings[1:5], panel = panel.smooth,
cex = 1.5, pch = 24, bg = "light blue",
diag.panel = panel.hist, cex.labels = 2, font.labels = 2)
}
pairs6 <- function() {
panel.cor <- function(x, y, digits = 2, prefix = "", cex.cor, ...) {
usr <- par("usr"); on.exit(par(usr))
par(usr = c(0, 1, 0, 1))
r <- abs(cor(x, y))
txt <- format(c(r, 0.123456789), digits = digits)[1]
txt <- paste0(prefix, txt)
if(missing(cex.cor)) cex.cor <- 0.8/strwidth(txt)
text(0.5, 0.5, txt, cex = cex.cor * r)
}
pairs(USJudgeRatings, lower.panel = panel.smooth, upper.panel = panel.cor)
}
pairs7 <- function() {
pairs(iris[-5], log = "xy")
}
pairs8 <- function() {
pairs(iris, log = 1:4,
main = "Lengths and Widths in [log]", line.main=1.5, oma=c(2,2,3,2))
}
plotdiff(expression(pairs1()), "pairs-1", width=10, height=10)
plotdiff(expression(pairs2()), "pairs-2")
plotdiff(expression(pairs3()), "pairs-3", width=15, height=15)
plotdiff(expression(pairs4()), "pairs-4", width=15, height=15)
plotdiff(expression(pairs5()), "pairs-5")
plotdiff(expression(pairs6()), "pairs-6", width=15, height=15, antialias=FALSE)
plotdiff(expression(pairs7()), "pairs-7", width=10, height=10)
plotdiff(expression(pairs8()), "pairs-8", width=12, height=12)
plotdiffResult()
|
ql <- function(x, ...) {
UseMethod("ql", x)
}
ql.ql <- function(x, ...) {
pipe_autoexec(toggle = FALSE)
make_query(x)
}
ql.character <- function(x, ..., flags = jq_flags()) {
query <- query_from_dots(...)
structure(jqr(x, query, flags),
class = c("jqson", "character"))
}
ql.default <- function(x, ...) {
stop(sprintf("ql method not implemented for ", class(x)), call. = FALSE)
}
print.ql <- function(x, ...) {
cat(jsonlite::prettify(combine(x)))
}
query_from_dots <- function(...) {
dots <- list(...)
if (!all(vapply(dots, is.character, logical(1))))
stop("jq query specification must be character.", call. = FALSE)
paste(unlist(dots), collapse = " | ")
}
make_query <- function(x) {
paste0(pop(x), collapse = " | ")
}
|
library(fracdiff)
if(FALSE) {
data(npext, package = "urca")
realgnp2 <- npext[50:129, "realgnp"]
} else {
realgnp2 <-
c(4.7604631, 4.7883247, 4.8138091, 4.8690717, 4.8782461, 4.8331023,
4.8243057, 4.9000761, 4.9067552, 5.0225639, 4.9863426, 4.9416424,
4.8504665, 4.9972123, 5.1113852, 5.1089712, 5.1896179, 5.2470241,
5.2459709, 5.2517497, 5.3161573, 5.2122147, 5.1316723, 4.9712012,
4.9522997, 5.0388988, 5.1328529, 5.2626902, 5.3141907, 5.2621719,
5.3442463, 5.4258307, 5.5748121, 5.6964221, 5.8203796, 5.8897086,
5.872681, 5.7449244, 5.7362497, 5.7798172, 5.7810521, 5.8729625,
5.9490788, 5.9791389, 6.0229632, 6.0088132, 6.0822189, 6.1005431,
6.1147878, 6.1032295, 6.1652077, 6.1897005, 6.2089924, 6.2724996,
6.3117348, 6.3649229, 6.4261648, 6.4893569, 6.5150089, 6.5604647,
6.5857578, 6.5792512, 6.6067, 6.6552832, 6.705961, 6.700553,
6.687906, 6.7356178, 6.781224, 6.8328012, 6.8572808, 6.8556192,
6.8747935, 6.8489768, 6.8840768, 6.9496707, 6.9826227, 7.0096668,
7.0455416, 7.0888837)
}
fr1 <- fracdiff(realgnp2, nar = 0, nma = 0, M = 100)
fr1
summary(fr1)
|
test_that("cusum_single works", {
test_vec <- c(0.175, 0.152, 0.15, 0.207, 0.136, 0.212, 0.166)
expected_res <- c(0.1750000, 0.1558571, 0.1347143, 0.1705714,
0.1354286, 0.1762857, 0.1711429)
expected_res <- round(expected_res,6)
func_res <- cusum_single(test_vec)
func_res <- round(func_res,6)
expect_equal(func_res, expected_res)
})
test_that("target replaces mean and gives expected results", {
test_vec2 <- c(0.175, 0.152, 0.15, 0.207, 0.136, 0.212, 0.166)
expected_res2 <- c(0.175, 0.167, 0.157, 0.204, 0.180, 0.232, 0.238)
func_res2 <- cusum_single(test_vec2, target = 0.16)
expect_equal(func_res2, expected_res2)
})
test_that("non numeric vector fails", {
test_vec3 <- as.character(c(0.175, 0.152, 0.15, 0.207, 0.136, 0.212, 0.166))
expect_error(cusum_single(test_vec3, target = 0.16))
})
test_that("na elements fail", {
test_vec3 <- c(0.175, NA, 0.15, 0.207, 0.136, NA, 0.166)
expect_error(cusum_single(test_vec3, target = 0.16))
})
|
base2Geno <-
function (baseData = NULL, allele.matrix = NULL)
{
if (nrow(baseData) == ncol(allele.matrix))
allele.matrix <- t(allele.matrix)
if (nrow(baseData) != nrow(allele.matrix))
stop("nrow(baseData)!=nrow(allele.matrix), allele.matrix error!!!")
genoData <- baseData
genoData[baseData == allele.matrix[, 1]] <- 1
genoData[baseData == allele.matrix[, 2]] <- -1
genoData[is.na(genoData)] <- 0
genoData <- matrix(as.numeric(genoData), ncol = ncol(genoData))
dimnames(genoData) <- dimnames(baseData)
genoData
}
|
context("apa_print() for MANOVA")
test_that(
"Two-way MANOVA: apa_print.manova and apa_print.summary.manova"
, {
set.seed(42)
data <- npk
data$yield2 <- as.integer(data$N) * 2 + rnorm(n = nrow(data), sd = 2)
x1 <- manova(formula = cbind(yield, yield2) ~ N * P, data = data)
x2 <- summary(x1, test = "Wilks")
out1 <- apa_print(x1)
out3 <- apa_print(x1, test = "H")
out4 <- apa_print(x1, test = "R", in_paren = TRUE)
expect_identical(
object = out1$statistic$N
, expected = "$V = 0.25$, $F(2, 19) = 3.22$, $p = .062$"
)
expect_identical(
object = out3$full_result$P
, expected = "$T = 0.02$, $F(2, 19) = 0.20$, $p = .821$"
)
expect_identical(
object = out4$statistic$N
, expected = "$\\theta = 0.34$, $F[2, 19] = 3.22$, $p = .062$"
)
expect_identical(
object = variable_labels(out3$table)
, expected = list(
Effect = "Effect"
, hl = "$T$"
, `F` = "$F$"
, df1 = "$\\mathit{df}_1$"
, df2 = "$\\mathit{df}_2$"
, p = "$p$"
)
)
expect_identical(
object = class(out1$table)
, expected = c("apa_results_table", "data.frame")
)
}
)
test_that(
"Anova.mlm from MANOVA not supported"
, {
set.seed(42)
data <- npk
data$yield2 <- as.integer(data$N) * 2 + rnorm(n = nrow(data), sd = 2)
expect_error(
apa_print(car::Manova(manova(formula = cbind(yield, yield2) ~ N * P, data = data), type = 3))
, fixed = TRUE
, regexp = "Anova.mlm objects from car::Manova are not supported, yet. Visit https://github.com/crsh/papaja/issues to request support for this class. You can try using stats::manova instead if Type I oder Type II sums of squares are adequate for your analysis."
)
}
)
|
context("maps tidiers")
skip_on_cran()
skip_if_not_installed("modeltests")
library(modeltests)
skip_if_not_installed("maps")
ca <- maps::map("county", "ca", plot = FALSE, fill = TRUE)
test_that("tidy.map", {
check_arguments(tidy.map)
td <- tidy(ca)
check_tidy_output(td, strict = FALSE)
check_dims(td, expected_cols = 7)
})
|
gibsDependency <- function() {
list(
htmltools::htmlDependency(
"lfx-gibs", version = "1.0.0",
src = system.file("htmlwidgets/lfx-gibs", package = "leaflet.extras2"),
script = c(
"GIBSLayer.js",
"GIBSMetadata.js",
"gibs-bindings.js")
)
)
}
addGIBS <- function(map, layers = NULL, group = NULL, dates = NULL,
opacity = 0.5, transparent = TRUE) {
if (is.null(layers))
stop("You must define one or multiple `layers`.\n",
"See `gibs_layers` for a list of all available layers and their attributes.")
if (is.null(dates))
stop("You must define one or multiple `dates` for each layer.")
if (!all(layers %in% gibs_layers$title)) {
stop("The layer is not valid. Did you mean: `",
gibs_layers$title[which.min(adist(layers, gibs_layers$title))], "`?\n",
"If not, please see `gibs_layers` for a list of all available layers and their attributes.")
}
lenlay = length(layers)
if (lenlay > 1) {
seqlen <- seq.int(lenlay)
if (lenlay != length(group)) {
group <- rep(group, lenlay)[seqlen]
}
if (lenlay != length(dates)) {
dates <- rep(dates, lenlay)[seqlen]
}
if (lenlay != length(opacity)) {
opacity <- rep(opacity, lenlay)[seqlen]
}
if (lenlay != length(transparent)) {
transparent <- rep(transparent, lenlay)[seqlen]
}
}
map$dependencies <- c(map$dependencies, gibsDependency())
invokeMethod(map, getMapData(map), "addGIBS", layers, group, dates, opacity, transparent)
}
setDate <- function(map, layers = NULL, dates = NULL) {
if (is.null(layers))
stop("You must define one or multiple `layers`.\n",
"See `gibs_layers` for a list of all available layers and their attributes.")
if (is.null(dates))
stop("You must define one or multiple `dates`.")
invokeMethod(map, NULL, "setDate", layers, dates)
}
setTransparent <- function(map, layers = NULL, transparent = TRUE) {
if (is.null(layers))
stop("You must define one or multiple `layers`.\n",
"See `gibs_layers` for a list of all available layers and their attributes.")
invokeMethod(map, NULL, "setTransparent", layers, transparent)
}
|
mmpcbackphase <- function(target, dataset, max_k = 3, threshold = 0.05, test = NULL, wei = NULL, R = 1 ) {
d <- NCOL(dataset)
met <- 1:d
counter <- 0
if (R == 1) {
threshold = log(threshold)
if (d == 1) {
tes <- test(target, dataset, 1, 0, wei = wei)
pv <- tes$pvalue
counter <- 1
if ( pv > threshold ) met <- 0
pvalue <- pv
} else if ( d == 2 ) {
tes1 <- test(target, dataset, 1, 2, wei = wei)
tes2 <- test(target, dataset, 2, 1, wei = wei)
pv1 <- tes1$pvalue
pv2 <- tes2$pvalue
counter <- 2
if ( pv1 > threshold ) met[1] <- 0
if ( pv2 > threshold ) met[2] <- 0
pvalue <- c(pv1, pv2)
} else {
pvalue <- 0
for (i in 1:d) {
k <- 0
pval <- -5
b <- 0
while ( k < d - 1 & k < max_k & pval < threshold ) {
k <- k + 1
ze <- combn(d, k)
rem <- which(ze == i,arr.ind = TRUE)[, 2]
ze <- ze[, -rem, drop = FALSE]
j <- 0
while ( j < dim(ze)[2] & pval < threshold ) {
j <- j + 1
tes <- test(target, dataset, i, ze[, j], wei = wei)
pval <- tes$pvalue
b[j] <- pval
counter <- counter + 1
}
}
if ( pval > threshold ) met[i] <- 0
pvalue[i] <- max(b)
}
}
} else {
if (d == 1) {
tes <- test(target, dataset, 1, 2, wei = wei, threshold = threshold, R = R)
pv <- tes$pvalue
counter <- 1
if ( pv > threshold ) met <- 0
pvalue <- pv
} else if ( d == 2 ) {
tes1 <- test(target, dataset, 1, 2, wei = wei, threshold = threshold, R = R)
tes2 <- test(target, dataset, 2, 1, wei = wei, threshold = threshold, R = R)
pv1 <- tes1$pvalue
pv2 <- tes2$pvalue
counter <- 2
if ( pv1 > threshold ) met[1] <- 0
if ( pv2 > threshold ) met[2] <- 0
pvalue <- c(pv1, pv2)
} else {
pvalue <- 0
for (i in 1:d) {
k <- 0
pval <- 0
b <- 0
while ( k < d - 1 & k < max_k & pval < threshold ) {
k <- k + 1
ze <- combn(d, k)
rem <- which(ze == i,arr.ind = TRUE)[, 2]
ze <- ze[, -rem, drop = FALSE]
j <- 0
while ( j < dim(ze)[2] & pval < threshold ) {
j <- j + 1
tes <- test(target, dataset, i, ze[, j], wei = wei, threshold = threshold, R = R)
pval <- tes$pvalue
b[j] <- pval
counter <- counter + 1
}
}
if ( pval > threshold ) met[i] <- 0
pvalue[i] <- max(b)
}
}
}
list(met = met, counter = counter, pvalues = pvalue)
}
|
WeakRankNorm<-function(K){
if(missing(K)) stop("Need to specify the number K of best instances.")
Family(
ngradient=function(y,f) NULL,
loss=function(y,f){
if(missing(f)|missing(y)) stop("Need two vectors.")
if(length(y)!=length(f)) stop("Objects lengths must be identical.")
if(K!=round(K)) stop("K must be an integer.")
if(K<=0) stop("K must be positive.")
if(K>length(y)) stop("K must not be higher than the length of the vectors.")
if(K==length(y)) warning("You are using K=n. The weak ranking loss will not produce a reasonable result.")
indy<-order(y,decreasing=TRUE)
indf<-order(f,decreasing=TRUE)
s<-sum(indf[1:K]%in%indy[1:K])
return((K-s)/K)
},
offset=function(y,f) NULL,
name="Weak ranking family"
)}
|
criteria.after.split.calculator <- function(x.node = data.frame(), y.new.node = c(), split.record = kidids_split(), entropy = TRUE){
ent.status <- entropy
criteria.x.node <- criteria.calculator(x.node, y.new.node, ent.status)$criteria
unique.length.split.record <- length(unique(split.record))
if(!(dim(x.node)[1] > 1) || !(dim(x.node)[2] >= 1) || is.null(dim(x.node))){
stop("Invalid dimension for x.node")
}
if(!(length(y.new.node) > 1) || is.null(y.new.node)){
stop("Invalid length for the y.new.node")
}
if(!(dim(x.node)[1] == length(y.new.node))){
stop("The number of observations in x.node and y.new.node do not match")
}
if(is.null(split.record)){
stop("'split.record' (kikids_split object) has to be provided as a parameter")
}
if(!is.boolean(entropy)){
stop("The parameter 'entropy' has to be either TRUE or FALSE")
}
if(!(unique.length.split.record == 1 || unique.length.split.record == 2)){
stop("Error in 'split.record': the number of splits is not 1 or 2")
}
if(unique.length.split.record == 2){
length.split.record <- length(split.record)
split.record.level <- levels(as.factor(split.record))
length.split.record.level <- length(split.record.level)
criteria.vec <- rep(0, length.split.record.level)
n.vec <- rep(0, length.split.record.level)
for (z in 1:length.split.record.level){
n.vec[z] <- length(which(split.record %in% as.numeric(c(split.record.level[z]))))
y.new.split.record <- y.new.node[which(split.record %in% as.numeric(c(split.record.level[z])))]
vec.levels <- unique(y.new.split.record)
vec2 <- rep(0, length(unique(y.new.split.record)))
for (p in 1:(length(unique(y.new.split.record)))){
vec2[p] <- sum(y.new.split.record %in% vec.levels[p])
}
prop <- vec2/n.vec[z]
if (ent.status == TRUE){
criteria <- 0
for (y in 1:(length(prop))){
criteria2<- -prop[y] * ifelse(prop[y] > 0, log2(prop[y]), 0)
criteria <- criteria + criteria2
}
criteria.vec[z] <- criteria
}
else {criteria.vec[z] <- 1-sum((prop)^2)}
}
criteria.after.split <- criteria.vec[1] * n.vec[1] / (sum(n.vec)) + criteria.vec[2] * n.vec[2] / (sum(n.vec))
}
else {criteria.after.split <- criteria.x.node}
criteria.after.split
}
|
ewspecHaarNonPer <-
function (x, filter.number = 1, family = "DaubExPhase", UseLocalSpec = TRUE,
DoSWT = TRUE, WPsmooth = TRUE, verbose = FALSE,
smooth.filter.number = 10, smooth.family = "DaubLeAsymm",
smooth.levels = 3:WPwst$nlevels - 1, smooth.dev = madmad,
smooth.policy = "LSuniversal", smooth.value = 0, smooth.by.level = FALSE,
smooth.type = "soft", smooth.verbose = FALSE, smooth.cvtol = 0.01,
smooth.cvnorm = l2norm, smooth.transform = I, smooth.inverse = I)
{
coarser <- 0
if (verbose)
cat("Smoothing then inversion\n")
if (DoSWT == TRUE) {
if (verbose)
cat("Computing nondecimated wavelet transform of data\n")
xwdS <- HwdS(x)
}
else xwdS <- x
if (UseLocalSpec == TRUE) {
if (verbose)
cat("Computing raw wavelet periodogram\n")
xwdWP <- LocalSpec(xwdS, lsmooth = "none", nlsmooth = FALSE)
}
else xwdWP <- x
J <- xwdWP$nlevels
if (verbose)
cat("Computing A matrix\n")
rm <- ipndacw(-J, filter.number = filter.number, family = family)
if (verbose)
cat("Computing inverse of A\n")
irm <- solve(rm)
if (verbose)
cat("Putting wavelet periodogram into a matrix\n")
WavPer <- matrix(0, nrow = (J - coarser), ncol = 2^J)
for (j in 1:(J - coarser)) {
WavPer[j, ] <- accessD(xwdWP, lev = J - j)
}
if (WPsmooth == TRUE) {
if (verbose) {
cat("Smoothing the wavelet periodogram\n")
cat("Smoothing level: ")
}
for (j in 1:(J - coarser)) {
if (verbose)
cat(J - j)
WP <- WavPer[j, ]
WP <- smooth.transform(WP)
WPwst <- wst(WP, filter.number = smooth.filter.number,
family = smooth.family)
if (verbose == TRUE)
cat(".w")
WPwstT <- threshold.wst(WPwst, levels = smooth.levels,
dev = smooth.dev, policy = smooth.policy, value = smooth.value,
by.level = smooth.by.level, type = smooth.type,
verbose = smooth.verbose, cvtol = smooth.cvtol,
cvnorm = smooth.cvnorm)
if (verbose == TRUE)
cat(".t")
WPwsrR <- AvBasis(WPwstT)
if (verbose == TRUE)
cat(".i")
WavPer[j, ] <- smooth.inverse(WPwsrR)
}
if (verbose == TRUE)
cat("\n")
}
irm <- irm[1:(J - coarser), 1:(J - coarser)]
S <- irm %*% WavPer
xwdS <- xwdWP
for (j in 1:(J - coarser)) {
xwdS <- putD(xwdS, lev = J - j, v = S[j, ])
}
if (coarser > 0)
for (j in (J - coarser + 1):J) xwdS <- putD(xwdS, lev = J -
j, v = rep(0, 2^J))
list(S = xwdS, WavPer = xwdWP, rm = rm, irm = irm)
}
|
library(testthat)
library(rly)
context("Literals as a string")
Lexer <- R6::R6Class("Lexer",
public = list(
tokens = c('NUMBER'),
literals = "+-*",
t_NUMBER = function(re='\\d+', t) {
return(t)
},
t_error = function(t) {}
)
)
test_that("literals as a string", {
expect_output(rly::lex(Lexer), NA)
})
|
mice.impute.rfpred.norm <- function(
y,
ry,
x,
wy = NULL,
num.trees.cont = 10,
norm.err.cont = TRUE,
alpha.oob = 0.0,
pre.boot = TRUE,
num.threads = NULL,
...) {
if (is.null(wy))
wy <- !ry
yMisNum <- sum(wy)
if (isTRUE(pre.boot)) {
bootIdx <- sample(sum(ry), replace = TRUE)
yObs <- y[ry][bootIdx]
xObs <- x[ry, , drop = FALSE][bootIdx, , drop = FALSE]
} else {
yObs <- y[ry]
xObs <- x[ry, , drop = FALSE]
}
xMis <- x[wy, , drop = FALSE]
rfObj <- rangerCallerSafe(
x = xObs,
y = yObs,
oob.error = TRUE,
num.trees = num.trees.cont,
num.threads = num.threads,
...)
misPredVal <- predictions(predict(rfObj, xMis))
if (norm.err.cont) {
oobMse <- NULL
if (isTRUE(alpha.oob > 0 && alpha.oob < 1)) {
oobErr <- yObs - rfObj[["predictions"]]
oobErrAbs <- abs(oobErr[!is.na(oobErr)])
oobErrorAbsHi <- quantile(
oobErrAbs,
probs = (1 - alpha.oob),
na.rm = TRUE,
names = FALSE
)
oobErrAbs <- oobErrAbs[oobErrAbs < oobErrorAbsHi]
oobMse <- mean(oobErrAbs * oobErrAbs)
} else {
oobMse <- rfObj[["prediction.error"]]
}
impVal <- rnorm(length(misPredVal),
mean = misPredVal,
sd = sqrt(rfObj[["prediction.error"]]))
return(impVal)
} else {
return(misPredVal)
}
}
|
MapXform <- function(boxdata,xformInfo,table=NA,defaultValue=NA,mapMissingTo=NA,...)
{
newrow <- NULL
colnamesGiven <- FALSE
j <- 0
origFieldName <- NULL
derivedFieldName <- NA
sampleMin <- NA
sampleMax<- NA
xformedMin <- NA
xformedMax <- NA
centers <- NA
scales <- NA
missingValue <- NA
functionXform <- NA
dataMatrix <- NULL
default <- NA
newBoxData <- Initialize(boxdata)
if(!is.list(xformInfo))
{
minf <- as.character(xformInfo)
split0 <- strsplit(minf,"]\\[")[[1]]
split0[1] <- gsub("\\[","",split0[1])
given <- length(split0)
if(given == 2)
{
mapVal <- split0[1]
split0[2] <- gsub("]","",split0[2])
datType <- split0[2]
} else
{
split0[1] <- gsub("]","",split0[1])
mapVal <- split0[1]
datType <- NA
}
mapVal <- gsub("^[ ]*","",mapVal)
mapVal <- gsub("[ $]*","",mapVal)
if(grepl("[^-]->",mapVal))
{
st <- "->"
} else
{
st <- "-->"
}
val <- strsplit(mapVal,st)[[1]]
inVal <- val[1]
valsplit <- strsplit(inVal,",")[[1]]
inVals <- valsplit
for(i in 1:length(inVals))
{
inVals[i] <- gsub("^[ ]*","",inVals[i])
inVals[i] <- gsub("[ $]*","",inVals[i])
}
outVal <- val[2]
outVal <- gsub("^[ ]*","",outVal)
outVal <- gsub("[ $]*","",outVal)
inDats <- NULL
outDat <- NULL
if(!is.na(datType))
{
if(grepl("[^-]->",datType))
{
st <- "->"
} else
{
st <- "-->"
}
datsplit <- strsplit(datType,st)[[1]]
inDat <- datsplit[1]
inDats <- strsplit(inDat,",")[[1]]
for(i in 1:length(inDats))
{
inDats[i] <- gsub("^[ ]*","",inDats[i])
inDats[i] <- gsub("[ $]*","",inDats[i])
}
outDat <- datsplit[2]
outDat <- gsub("^[ ]*","",outDat)
outDat <- gsub("[ $]*","",outDat)
}
if(!is.null(outDat))
{
if((outDat == "double") || (outDat == "integer"))
{
outDat <- "numeric"
}
} else
{
outDat <- "string"
}
vnames <- NULL
vdtype <- NULL
for(i in 1:length(inVals))
{
vnames <- c(vnames,inVals[i])
if(is.null(inDats[i]))
{
vdtype <- c(vdtype,"string")
} else
{
vdtype <- c(vdtype,inDats[i])
}
}
vnames <- c(vnames,outVal)
if(is.na(outDat))
{
vdtype <- c(vdtype,"string")
} else
{
vdtype <- c(vdtype,outDat)
}
tabl <- as.character(table)
file <- scan(tabl,what=character(0),sep=",",quiet=T)
ndat <- length(file)
nrows <- length(scan(tabl,what=character(0),sep="\n",quiet=T))
numcols <- ndat/nrows
dataMatrix <- matrix(file,nrow=nrows,byrow=TRUE)
if(!is.na(defaultValue))
{
default <- as.character(defaultValue)
}
if(!is.na(mapMissingTo))
{
missingValue <- as.character(mapMissingTo)
}
top <- rbind(vnames,vdtype)
dataMatrix <- rbind(top,dataMatrix)
rownames(dataMatrix) <- NULL
type <- "derived"
origFieldName <- paste(inVals,collapse=",")
if(is.null(outDat))
{
dataType <- "string"
} else
{
dataType <- outDat
}
fieldsMap <- list(dataMatrix)
transform <- "MapValues"
derivedFieldName <- outVal
suppressWarnings(newrow <- data.frame(type,dataType,I(origFieldName),sampleMin,sampleMax,xformedMin,xformedMax,centers,scales,I(fieldsMap),transform,default,missingValue,functionXform,row.names=derivedFieldName,check.names=FALSE))
suppressWarnings(newBoxData$fieldData <- rbind(newBoxData$fieldData,newrow))
newcol <- NULL
newmatrixcol <- NULL
if(!is.na(default))
{
if(outDat == "numeric")
{
newcol <- rep(as.numeric(default),nrow(newBoxData$data))
newmatrixcol <- rep(as.numeric(default),nrow(newBoxData$data))
} else if(outDat == "boolean"){
newcol <- rep(as.logical(default),nrow(newBoxData$data))
}
else
{
newcol <- rep(default,nrow(newBoxData$data))
newmatrixcol <- rep(default,nrow(newBoxData$data))
}
} else
{
newcol <- rep(NA,nrow(newBoxData$data))
newmatrixcol <- rep(NA,nrow(newBoxData$data))
}
if(!is.na(missingValue))
{
for(i in 1:length(inVals))
{
na <- which(is.na(newBoxData$data[,inVals[i]]))
for(j in na)
{
if(outDat == "numeric")
{
newcol[j] <- rep(as.numeric(missingValue),nrow(newBoxData$data))
newmatrixcol[j] <- rep(as.numeric(missingValue),nrow(newBoxData$data))
} else if(outDat == "boolean")
{
newcol[j] <- rep(as.logical(missingValue),nrow(newBoxData$data))
newmatrixcol[j] <- rep(as.logical(missingValue),nrow(newBoxData$data))
} else
{
newcol[j] <- rep(missingValue,nrow(newBoxData$data))
newmatrixcol[j] <- rep(missingValue,nrow(newBoxData$data))
}
}
}
}
for( j in 3:nrow(dataMatrix))
{
if(outDat == "numeric")
{
newcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-as.numeric(dataMatrix[j,ncol(dataMatrix)])
newmatrixcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-as.numeric(dataMatrix[j,ncol(dataMatrix)])
} else if(outDat == "boolean"){
newcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-as.logical(dataMatrix[j,ncol(dataMatrix)])
newmatrixcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-as.logical(dataMatrix[j,ncol(dataMatrix)])
} else
{
newcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-dataMatrix[j,ncol(dataMatrix)]
newmatrixcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-dataMatrix[j,ncol(dataMatrix)]
}
}
col <- as.matrix(newcol)
newBoxData$data <- data.frame(newBoxData$data,col,check.names=FALSE)
if(outDat=="string")
newBoxData$data[,ncol(newBoxData$data)] <- as.factor(newBoxData$data[,ncol(newBoxData$data)])
colnames(newBoxData$data)[ncol(newBoxData$data)] <- dataMatrix[1,ncol(dataMatrix)]
rownames(newBoxData$data) <- NULL
if(!is.null(newBoxData$matrixData))
{
matrixcol <- as.matrix(newmatrixcol)
newBoxData$matrixData <- cbind(newBoxData$matrixData,matrixcol)
colnames(newBoxData$matrixData) <- colnames(newBoxData$data)
rownames(newBoxData$matrixData) <- NULL
}
} else
{
for(k in 1:length(xformInfo))
{
ifelse(is.list(xformInfo),xform<-xformInfo[[k]],xform<-table[[k]])
datatypes<-c("string","String","double","Double","boolean","Boolean","integer","Integer","float","Float")
if(!(xform[2,ncol(xform)] %in% datatypes))
{
datype<-rep("string",ncol(xform))
for(l in 1:ncol(xform)){xform[[l]]<-as.character(xform[[l]])}
xform <- rbind(xform[1,],datype,xform[-1,])
}
orig <- as.matrix(xform[1,-ncol(xform)])
colnames(orig) <- NULL
rownames(orig) <- NULL
origFieldName <- list(orig)
derivedFieldName <- as.character(xform[1,ncol(xform)])
default <- defaultValue[k]
missingValue <- mapMissingTo[k]
if((as.character(xform[2,ncol(xform)]) == "double") || (as.character(xform[2,ncol(xform)]) == "integer"))
{
outDat <- "numeric"
} else if(as.character(xform[2,ncol(xform)]) == "double")
{
outDat <- "boolean"
} else
{
outDat <- "string"
}
if(derivedFieldName %in% rownames(newBoxData$fieldData)[newBoxData$fieldData[,"type"]=="derived"])
{
newBoxData$fieldData <- newBoxData$fieldData[-which(rownames(newBoxData$fieldData)==derivedFieldName),]
}
suppressWarnings(newrow <- data.frame("derived",outDat,I(origFieldName),sampleMin,sampleMax,xformedMin,xformedMax,centers,scales,I(list(as.matrix(xform))),"MapValues",defaultValue[k],mapMissingTo[k],functionXform,row.names=derivedFieldName,check.names=FALSE))
colnames(newrow)<-c("type","dataType","origFieldName","sampleMin","sampleMax","xformedMin","xformedMax","centers","scales","fieldsMap","transform","default","missingValue","functionXform")
suppressWarnings(newBoxData$fieldData <- rbind(newBoxData$fieldData,newrow))
dataMatrix <- as.matrix(xform)
newcol <- NULL
newmatrixcol <- NULL
if(!is.na(default))
{
if(outDat == "numeric")
{
newcol <- rep(as.numeric(default),nrow(newBoxData$data))
newmatrixcol <- rep(as.numeric(default),nrow(newBoxData$data))
} else if(outDat == "boolean"){
newcol <- rep(as.logical(default),nrow(newBoxData$data))
}
else
{
newcol <- rep(default,nrow(newBoxData$data))
newmatrixcol <- rep(default,nrow(newBoxData$data))
}
}
if(!is.na(missingValue))
{
for(i in 1:length(orig[1,]))
{
na <- which(is.na(newBoxData$data[,orig[1,i]]))
for(j in na)
{
if(outDat == "numeric")
{
newcol[j] <- rep(as.numeric(missingValue),nrow(newBoxData$data))
newmatrixcol[j] <- rep(as.numeric(missingValue),nrow(newBoxData$data))
} else if(outDat == "boolean"){
newcol[j] <- rep(as.logical(missingValue),nrow(newBoxData$data))
newmatrixcol[j] <- rep(as.logical(missingValue),nrow(newBoxData$data))
} else
{
newcol[j] <- rep(missingValue,nrow(newBoxData$data))
newmatrixcol[j] <- rep(missingValue,nrow(newBoxData$data))
}
}
}
}
for( j in 3:nrow(dataMatrix))
{
if(outDat == "numeric")
{
newcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-as.numeric(dataMatrix[j,ncol(dataMatrix)])
newmatrixcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-as.numeric(dataMatrix[j,ncol(dataMatrix)])
} else if(outDat == "boolean"){
newcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-as.logical(dataMatrix[j,ncol(dataMatrix)])
newmatrixcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-as.logical(dataMatrix[j,ncol(dataMatrix)])
} else
{
newcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-dataMatrix[j,ncol(dataMatrix)]
newmatrixcol[apply(as.matrix(newBoxData$data[,dataMatrix[1,1:(ncol(dataMatrix)-1)]]==matrix(rep(dataMatrix[j,1:(ncol(dataMatrix)-1)],nrow(newBoxData$data)),nrow=nrow(newBoxData$data),byrow=T)),1,all)]<-dataMatrix[j,ncol(dataMatrix)]
}
}
col <- as.matrix(newcol)
matrixcol <- as.matrix(newmatrixcol)
newBoxData$data <- data.frame(newBoxData$data,col,check.names=FALSE)
colnames(newBoxData$data)[ncol(newBoxData$data)] <- dataMatrix[1,ncol(dataMatrix)]
rownames(newBoxData$data) <- NULL
if(!is.null(newBoxData$matrixData))
{
newBoxData$matrixData <- cbind(newBoxData$matrixData,matrixcol)
colnames(newBoxData$matrixData) <- colnames(newBoxData$data)
rownames(newBoxData$matrixData) <- NULL
}
}
}
return(newBoxData)
}
|
filing_funds <- function(x) {
UseMethod("filing_funds")
}
filing_funds.character <- function(x) {
filing_funds(charToDoc(x))
}
filing_funds.xml_node <- function(x) {
entries_xpath <- "//td[@class='classContract']"
info_pieces <- list(
"cik" = "preceding::td[@class='CIKname']/a",
"cik_href" = "preceding::td[@class='CIKname']/a/@href",
"series" = "preceding::td[@class='seriesName'][1]/a",
"series_href" = "preceding::td[@class='seriesName'][1]/a/@href",
"series_name" = "preceding::td[@class='seriesName'][1]/following-sibling::td[2]/text()",
"contract" = "a/text()",
"contract_href" = "a/@href",
"contract_name" = "following-sibling::td[2]/text()",
"ticker" = "following-sibling::td[3]/text()"
)
res <- map_xml(x, entries_xpath, info_pieces)
return(res)
}
|
context("AnnotateIDVCF")
test_that("AnnotateIDVCF function with hg19", {
skip_if("" == system.file(package = "BSgenome.Hsapiens.1000genomes.hs37d5"))
stopifnot(requireNamespace("BSgenome.Hsapiens.1000genomes.hs37d5"))
load("testdata/test_AnnotateIDVCF.Rdata")
id.vcf <- ReadStrelkaIDVCF("testdata/Strelka-ID-GRCh37/Strelka.ID.GRCh37.s1.vcf")
list <-
AnnotateIDVCF(id.vcf,
ref.genome =
BSgenome.Hsapiens.1000genomes.hs37d5::BSgenome.Hsapiens.1000genomes.hs37d5)
list1 <- AnnotateIDVCF(id.vcf, ref.genome = "GRCh37")
list2 <- AnnotateIDVCF(id.vcf, ref.genome = "hg19")
expect_equal(list$annotated.vcf, strelka.ID.vcf.GRCh37)
expect_equal(list$annotated.vcf, list1$annotated.vcf)
expect_equal(list$annotated.vcf, list2$annotated.vcf)
})
test_that("AnnotateIDVCF with hg38", {
skip_if("" == system.file(package = "BSgenome.Hsapiens.UCSC.hg38"))
stopifnot(requireNamespace("BSgenome.Hsapiens.UCSC.hg38"))
load("testdata/test_AnnotateIDVCF.Rdata")
id.vcf <- ReadStrelkaIDVCF("testdata/Strelka.ID.GRCh38.vcf")
list3 <- AnnotateIDVCF(id.vcf,
ref.genome =
BSgenome.Hsapiens.UCSC.hg38::BSgenome.Hsapiens.UCSC.hg38)
list4 <- AnnotateIDVCF(id.vcf, ref.genome = "GRCh38")
list5 <- AnnotateIDVCF(id.vcf, ref.genome = "hg38")
expect_equal(list3$annotated.vcf, strelka.ID.vcf.GRCh38)
expect_equal(list3$annotated.vcf, list4$annotated.vcf)
expect_equal(list3$annotated.vcf, list5$annotated.vcf)
})
|
matching <- function(z, score, replace=FALSE){
n <- length(score)
nt <- sum(z)
nc <- sum(1-z)
ind.t <- c(1:n)[z==1]
ind.c <- c(1:n)[z==0]
cnts <- rep(0, n)
cnts[z==1] = rep(1,nt)
scorec <- score[z == 0]
scoret <- score[z == 1]
if (replace){
dist = abs(outer(scoret,scorec,FUN="-"))
mins = apply(dist,1,min)
matches = dist - mins
matches[matches!=0] = 1
matches = 1 - matches
if(sum(matches)>nt){
for(i in c(1:nt)[apply(matches,1,sum)>1]){
matches_i <- c(1:nc)[matches[i,]==1]
nmi <- length(matches_i)
matches[i,matches_i] <- sample(c(1,rep(0,nmi-1)),nmi,replace=FALSE)
}
}
ind.cm <- matches %*% ind.c
cnts[z==0] <- apply(matches,2,sum)
match.ind <- c(ind.t, ind.cm)
out <- list(match.ind = match.ind, cnts = cnts, matches = matches)
}
if (!replace){
pairs = rep(NA,n)
match.ind <- rep(0, n)
tally <- 0
for (i in ind.t) {
available <- (1:n)[(z == 0) & (match.ind == 0)]
j <- available[order(abs(score[available] - score[i]))[1]]
cnts[j] <- 1
match.ind[i] <- j
match.ind[j] <- i
tally <- tally + 1
pairs[c(i, j)] <- tally
}
out <- list(match.ind = match.ind, cnts = cnts, pairs = pairs)
}
return(out)
}
|
registerISOMetadataSchema <- function(xsdFile){
schemas <- tryCatch(
XML::xmlParse(
xsdFile, isSchema = TRUE, xinclude = TRUE,
error = function (msg, code, domain, line, col, level, filename, class = "XMLError"){}
)
)
.geometa.iso$schemas <- schemas
}
setISOMetadataSchemas <- function(){
packageStartupMessage("Loading ISO 19139 XML schemas...")
schemaPath <- "extdata/schemas"
namespace <- "gmd"
defaultXsdFile <- system.file(paste(schemaPath, namespace, sep="/"), paste0(namespace,".xsd"),
package = "geometa", mustWork = TRUE)
registerISOMetadataSchema(defaultXsdFile)
}
getISOMetadataSchemas <- function(){
return(.geometa.iso$schemas)
}
|
mdp_LP <- function(P, R, discount) {
start<-as.POSIXlt(Sys.time())
if ( discount <= 0 | discount > 1 ) {
print('--------------------------------------------------------')
print('MDP Toolbox ERROR: Discount rate must be in ]0; 1]')
print('--------------------------------------------------------')
} else if (is.list(P)) {
print('--------------------------------------------------------')
print('MDPR ERROR: mdp_LP cannot be used with sparse matrices')
print('--------------------------------------------------------')
} else {
if (is.list(P)) {
S <- dim(P[[1]])[1]
A <- length(P)
} else {
S <- dim(P)[1]
A <- dim(P)[3]
}
PR <- mdp_computePR(P,R)
f <- rep(1,S)
M <- NULL
if (is.list(P)) {
for (a in 1:A) {
M <- rbind2(M, discount*P[[a]] - Diagonal(S))
}
} else {
for (a in 1:A) {
M <- rbind(M, as.matrix(discount*P[,,a] - Diagonal(S)))
}
}
V <- as.numeric(solveLP(f,as.vector(-PR),M)$solution)
bellman <- mdp_bellman_operator(P,PR,discount,V)
V <- bellman[[1]]
policy <- bellman[[2]]
end <-as.POSIXlt(Sys.time())
return(list("V"=V, "policy"=policy, "time"=end-start))
}
}
|
predict.filter.NULL <-
function (object, newdata, ...)
{
return(newdata)
}
predict.filter.PCA <-
function (object, newdata, ...)
{
res = predict(object$mod, newdata)[,1:object$nbreVarX]
return(res)
}
predict.filter.RegressionTreeFilter <-
function (object, newdata, ...)
{
if(is.matrix(newdata))
nbreDExempleMax=dim(newdata)[1]
else
nbreDExempleMax=1
resFinal=c()
for(nbreDExemple in 1:nbreDExempleMax)
{
Nmax = object$nbreVarX
a = newdata
resume = TRUE
shortResume = TRUE
D = list()
L = list()
t = c(1:length(a))
D[[1]] = t[1]
D[[2]] = t[length(t)]
L[[1]] = struct(g = integer(), d = integer())
L[[1]]$g = t[1]
L[[1]]$d = t[length(t)]
ac = rep(mean(a), (t[length(t)]))
Np = 1
while (Np != Nmax) {
if (is.struct(L[[1]])) {
max = (L[[1]]$d - L[[1]]$g) * var(a[c(L[[1]]$g:L[[1]]$d)])
ti = L[[1]]$g
tj = L[[1]]$d
LIndex = 1
if (length(L) != 1) {
for (i in 2:length(L)) {
if (is.struct(L[[i]])) {
tmp = (L[[i]]$d - L[[i]]$g) * var(a[c(L[[i]]$g:L[[i]]$d)])
if (tmp > max) {
max = tmp
ti = L[[i]]$g
tj = L[[i]]$d
LIndex = i
}
}
}
}
L[[LIndex]] = NA
}
max = 0
maxE = -1
vartitj = (tj - ti) * var(a[which(t == ti):which(t ==
tj)])
for (e in which(t == ti):which(t == tj)) {
varIE = var(a[ti:t[e]])
if (is.na(varIE)) {
varIE = 0
}
varEJ = var(a[t[e]:tj])
if (is.na(varEJ)) {
varEJ = 0
}
tmp = vartitj - (t[e] - ti) * varIE - (tj - t[e]) *
varEJ
if (tmp > max) {
max = tmp
maxE = e
}
}
e = maxE
te = t[e]
distIE = length(which(t == ti):which(t == te))
distEJ = length(which(t == te):which(t == tj))
ac[ti:te] = rep(mean(a[ti:te]), distIE)
ac[te:tj] = rep(mean(a[te:tj]), distEJ)
Np = Np + 1
trouve = FALSE
trouveI = -1
for (i in 1:length(L)) {
if (!is.struct(L[[i]]) && !trouve) {
trouve = TRUE
trouveI = i
}
}
if (!trouve) {
trouveI = length(L) + 1
}
L[[trouveI]] = struct(g = integer(), d = integer())
L[[trouveI]]$g = ti
L[[trouveI]]$d = te
trouve = FALSE
trouveI = -1
for (i in 1:length(L)) {
if (!is.struct(L[[i]]) && !trouve) {
trouve = TRUE
trouveI = i
}
}
if (!trouve) {
trouveI = length(L) + 1
}
L[[trouveI]] = struct(g = integer(), d = integer())
L[[trouveI]]$g = te
L[[trouveI]]$d = tj
D[[length(D) + 1]] = te
}
if (!resume) {
resFinal = rbind(ac)
}
else {
if (shortResume) {
resFinal = rbind(unique(ac))
}
else {
resTmp = unique(ac)
res = resTmp
for (i in resTmp) {
res = c(res, length(which(ac == i)))
}
resFinal = rbind(res)
}
}
}
return(resFinal)
}
predict.filter.mRMR <-
function (object, newdata, ...)
{
return(newdata[, object$filter])
}
predict.filter.MAX <-
function (object, newdata, ...)
{
if(is.matrix(newdata))
nbreDExempleMax=dim(newdata)[1]
else
nbreDExempleMax=1
res=c()
for(nbreDExemple in 1:nbreDExempleMax)
{
res = rbind(res,sort(newdata[nbreDExemple,])[(dim(newdata)[2]-object$nbreVarX+1):(dim(newdata)[2])])
}
return(res)
}
|
print.userContribsClass <-function(x, maxprint = 10,...)
{
if(class(x)!="userContribsClass") stop("The argument Object must be a class userContribsClass")
cl <- x$call
if (!is.null(cl)){
cat("Call:\n")
dput(cl)
cat("\n")
}
if(any(names(x)=="user"))
{
cat("User name:", x$user[1],"\n")
cat("User id:", x$user[2],"\n")
cat("Domain:", x$user[3],"\n")
cat("\n")
if(any(names(x)=="contribs"))
{
cat("Total number of contributions:",nrow(x$contribs))
cat("\n")
cat("List of contributions :","\n")
nbprint <- min(maxprint,nrow(x$contribs))
print(x$contribs[1:nbprint,])
if(nbprint <nrow(x$contribs) ) {cat("... last",nrow(x$contribs) -maxprint,"contributions not printed")}
}
else{cat("0 contribution")}
cat("\n")
}
}
|
NMixPredDensJoint2.NMixMCMC <- function(x, grid, lgrid=50, scaled=FALSE, ...)
{
if (scaled) scale <- list(shift=0, scale=1)
else scale <- x$scale
if (x$nx_w == 1){
if (missing(grid)){
grid <- list()
if (scaled){
if (x$dim == 1){
rangeGrid <- x$summ.z.Mean["Median"] + c(-3.5, 3.5)*x$summ.z.SDCorr["Median"]
grid[[1]] <- seq(rangeGrid[1], rangeGrid[2], length=lgrid)
}else{
for (i in 1:x$dim){
rangeGrid <- x$summ.z.Mean["Median", i] + c(-3.5, 3.5)*x$summ.Z.SDCorr["Median", (i-1)*(2*x$dim - i + 2)/2 + 1]
grid[[i]] <- seq(rangeGrid[1], rangeGrid[2], length=lgrid)
}
}
}else{
if (x$dim == 1){
rangeGrid <- x$summ.y.Mean["Median"] + c(-3.5, 3.5)*x$summ.y.SDCorr["Median"]
grid[[1]] <- seq(rangeGrid[1], rangeGrid[2], length=lgrid)
}else{
for (i in 1:x$dim){
rangeGrid <- x$summ.y.Mean["Median", i] + c(-3.5, 3.5)*x$summ.y.SDCorr["Median", (i-1)*(2*x$dim - i + 2)/2 + 1]
grid[[i]] <- seq(rangeGrid[1], rangeGrid[2], length=lgrid)
}
}
}
names(grid) <- paste("x", 1:x$dim, sep="")
}
if (x$dim == 1) if (is.numeric(grid)) grid <- list(x1=grid)
if (!is.list(grid)) stop("grid must be a list")
if (x$prior$priorK == "fixed"){
dns <- NMixPredDensJoint2.default(x=grid, scale=scale, K=x$K, w=as.numeric(t(x$w)), mu=as.numeric(t(x$mu)), Li=as.numeric(t(x$Li)), Krandom=FALSE)
}else{
dns <- NMixPredDensJoint2.default(x=grid, scale=scale, K=x$K, w=x$w, mu=x$mu, Li=x$Li, Krandom=TRUE)
}
dns$nx_w <- 1
dns$lx_w <- ""
return(dns)
}else{
if (missing(grid)){
grid <- list()
if (scaled){
for (ixw in 1:x$nx_w){
for (i in 1:x$dim){
naamM <- paste("z.Mean.", i, "-", x$lx_w[ixw], sep = "")
naamS <- paste("z.SD.", i, "-", x$lx_w[ixw], sep = "")
rangeGrid <- x$summ.z.Mean["Median", naamM] + c(-3.5, 3.5) * x$summ.z.SDCorr["Median", naamS]
grid[[(ixw - 1)*x$dim + i]] <- seq(rangeGrid[1], rangeGrid[2], length = lgrid)
}
}
}else{
for (ixw in 1:x$nx_w){
for (i in 1:x$dim){
naamM <- paste("y.Mean.", i, "-", x$lx_w[ixw], sep = "")
naamS <- paste("y.SD.", i, "-", x$lx_w[ixw], sep = "")
rangeGrid <- x$summ.y.Mean["Median", naamM] + c(-3.5, 3.5) * x$summ.y.SDCorr["Median", naamS]
grid[[(ixw - 1)*x$dim + i]] <- seq(rangeGrid[1], rangeGrid[2], length = lgrid)
}
}
}
names(grid) <- paste("x", rep(1:x$dim, x$nx_w), "-", rep(x$lx_w, each = x$dim), sep="")
}
if (!is.list(grid)) stop("grid must be a list")
dns <- list()
for (ixw in 1:x$nx_w){
gridixw <- list()
for (i in 1:x$dim){
gridixw[[i]] <- grid[[(ixw - 1)*x$dim + i]]
}
names(gridixw) <- paste("x", 1:x$dim, sep = "")
dns[[ixw]] <- NMixPredDensJoint2.default(x = gridixw, scale = scale, K=x$K, w = as.numeric(t(x$w[, (ixw - 1)*x$K[1] + 1:x$K[1]])), mu = as.numeric(t(x$mu)), Li = as.numeric(t(x$Li)), Krandom = FALSE)
}
names(dns) <- x$lx_w
dns$nx_w <- x$nx_w
dns$lx_w <- x$lx_w
class(dns) <- "NMixPredDensJoint2"
return(dns)
}
}
|
`covAxis` <-
function(X, na.action = na.fail)
{
X<-na.action(X)
X<-as.matrix(X)
n <- dim(X)[1]
p <- dim(X)[2]
if (p<2) stop("'X' must be at least bivariate")
Xmeans <- colMeans(X)
di<-sqrt(mahalanobis(X,Xmeans,cov(X)))
X.centered <- sweep(X, 2, Xmeans)
Y<-sweep(X.centered,1,di,FUN="/")
v.tilde <- p*crossprod(Y) / n
return(v.tilde)
}
|
effectContinuousmod7 <-
function(object, x1x2, level, nboot, IQReffect, effectsOutRange)
{
betaCI <- betaCIContinuousExactTrans(object = object, level = level)
effect <- t(apply(x1x2, 1, FUN = function(x) exp((x[2] - x[1]) * betaCI)))
effect <- cbind(x1x2, effect)
names(effect)[3:5] <- c("OR", paste(c("lower", "upper"), 100 * level, "%", sep = ""))
if (IQReffect)
{
info <- paste("Adjusted odds ratio of the response variable when the explanatory\nvariable changes from the 1st to the 3rd quartile", sep = "")
} else {
info <- paste("Adjusted odds ratio of the response variable when the explanatory\nvariable changes from x1 to x2", sep = "")
}
if (effectsOutRange)
info <- paste("WARNING: computing effects out of the observed range of X.\n\n", info, sep = "")
info <- paste(info, ":\n\n", sep = "")
res <- list(effect = effect, info = info)
res
}
|
NULL
NULL
NULL
NULL
NULL
release_questions <- function() {
c(
"Have you updated the inst/NEWS file?",
"Have you changed the version+dates in DESCRIPTION and NEWS.md?",
"Have you added all new files to GIT?",
"Have you clean the vignettes file (source)?"
)
}
NULL
.onLoad <- function(libname, pkgname) {
options(
aphylo_informative = FALSE,
aphylo_reduce_pseq = TRUE
)
}
|
context('ab_test')
test_that("basic ab_test works", {
library(truncnorm)
H0int <- function(beta, data, prior_par) {
p <- plogis(beta)
p^(data$y1 + data$y2) *
(1 - p)^(data$n1 + data$n2 - data$y1 - data$y2) *
dnorm(beta, prior_par$mu_beta, prior_par$sigma_beta)
}
inner_integrand <- function(beta, psi, data, prior_par) {
p1 <- plogis(beta - psi / 2)
p2 <- plogis(beta + psi / 2)
p1^data$y1 * (1 - p1)^(data$n1 - data$y1) *
p2^data$y2 * (1 - p2)^(data$n2 - data$y2) *
dnorm(beta, prior_par$mu_beta, prior_par$sigma_beta)
}
Haltint <- function(psi, data, prior_par, hypothesis) {
bounds <- switch(hypothesis,
"H1" = c(-Inf, Inf),
"H+" = c(0, Inf),
"H-" = c(-Inf, 0))
vapply(psi, FUN = function(x) {
integrate(inner_integrand, lower = -Inf, upper = Inf,
psi = x, data = data, prior_par = prior_par)$value
}, FUN.VALUE = 0) * dtruncnorm(psi, a = bounds[1], b = bounds[2],
mean = prior_par$mu_psi,
sd = prior_par$sigma_psi)
}
mean_psi_int <- function(psi, data, prior_par, hypothesis) {
bounds <- switch(hypothesis,
"H1" = c(-Inf, Inf),
"H+" = c(0, Inf),
"H-" = c(-Inf, 0))
vapply(psi, FUN = function(x) {
integrate(inner_integrand, lower = -Inf, upper = Inf,
psi = x, data = data, prior_par = prior_par)$value
}, FUN.VALUE = 0) * psi * dtruncnorm(psi, a = bounds[1], b = bounds[2],
mean = prior_par$mu_psi,
sd = prior_par$sigma_psi)
}
var_psi_int <- function(psi, m, data, prior_par, hypothesis) {
bounds <- switch(hypothesis,
"H1" = c(-Inf, Inf),
"H+" = c(0, Inf),
"H-" = c(-Inf, 0))
vapply(psi, FUN = function(x) {
integrate(inner_integrand, lower = -Inf, upper = Inf,
psi = x, data = data, prior_par = prior_par)$value
}, FUN.VALUE = 0) * (psi - m)^2 * dtruncnorm(psi, a = bounds[1],
b = bounds[2],
mean = prior_par$mu_psi,
sd = prior_par$sigma_psi)
}
mean_beta_int <- function(beta, data, prior_par, hypothesis) {
bounds <- switch(hypothesis,
"H1" = c(-Inf, Inf),
"H+" = c(0, Inf),
"H-" = c(-Inf, 0))
vapply(beta, FUN = function(x) {
integrate(function(psi, beta, data, prior_par, hypothesis, bounds) {
p1 <- plogis(beta - psi / 2)
p2 <- plogis(beta + psi / 2)
p1^data$y1 * (1 - p1)^(data$n1 - data$y1) *
p2^data$y2 * (1 - p2)^(data$n2 - data$y2) *
dtruncnorm(psi, a = bounds[1], b = bounds[2],
mean = prior_par$mu_psi,
sd = prior_par$sigma_psi)
}, lower = -Inf, upper = Inf,
beta = x, data = data, prior_par = prior_par,
hypothesis = hypothesis, bounds = bounds)$value
}, FUN.VALUE = 0) * beta *
dnorm(beta, prior_par$mu_beta, prior_par$sigma_beta)
}
var_beta_int <- function(beta, m, data, prior_par, hypothesis) {
bounds <- switch(hypothesis,
"H1" = c(-Inf, Inf),
"H+" = c(0, Inf),
"H-" = c(-Inf, 0))
vapply(beta, FUN = function(x) {
integrate(function(psi, beta, data, prior_par, hypothesis, bounds) {
p1 <- plogis(beta - psi / 2)
p2 <- plogis(beta + psi / 2)
p1^data$y1 * (1 - p1)^(data$n1 - data$y1) *
p2^data$y2 * (1 - p2)^(data$n2 - data$y2) *
dtruncnorm(psi, a = bounds[1], b = bounds[2],
mean = prior_par$mu_psi,
sd = prior_par$sigma_psi)
}, lower = -Inf, upper = Inf,
beta = x, data = data, prior_par = prior_par,
hypothesis = hypothesis, bounds = bounds)$value
}, FUN.VALUE = 0) * (beta - m)^2 *
dnorm(beta, prior_par$mu_beta, prior_par$sigma_beta)
}
set.seed(1)
data <- list(y1 = 11, n1 = 15, y2 = 5, n2 = 13)
prior_par <- list(mu_psi = -0.4, sigma_psi = 1.2,
mu_beta = 0.2, sigma_beta = 0.6)
ab <- ab_test(data = data, prior_par = prior_par)
mlH0 <- integrate(H0int, lower = -Inf, upper = Inf, data = data,
prior_par = prior_par)$value
mlH1 <- integrate(Haltint, lower = -Inf, upper = Inf, data = data,
prior_par = prior_par, hypothesis = "H1")$value
mlHplus <- integrate(Haltint, lower = 0, upper = Inf, data = data,
prior_par = prior_par, hypothesis = "H+")$value
mlHminus <- integrate(Haltint, lower = -Inf, upper = 0, data = data,
prior_par = prior_par, hypothesis = "H-")$value
BF10 <- mlH1 / mlH0
BFplus0 <- mlHplus / mlH0
BFminus0 <- mlHminus / mlH0
expect_equal(ab$bf$bf10, expected = BF10, tolerance = 0.1)
expect_equal(ab$bf$bfplus0, expected = BFplus0, tolerance = 0.1)
expect_equal(ab$bf$bfminus0, expected = BFminus0, tolerance = 0.1)
prior_prob <- ab$input$prior_prob
mls <- c(mlH1, mlHplus, mlHminus, mlH0)
post_prob <- mls * prior_prob / sum(mls * prior_prob)
expect_equal(ab$post_prob, expected = post_prob, tolerance = 0.05)
prior_prob2 <- c(0.1, 0.3, 0.2, 0.4)
names(prior_prob2) <- names(prior_prob)
ab2 <- ab_test(data = data, prior_par = prior_par,
prior_prob = prior_prob2)
post_prob2 <- mls * prior_prob2 / sum(mls * prior_prob2)
expect_equal(ab2$post_prob, expected = post_prob2, tolerance = 0.05)
ab3 <- ab_test(data = data, prior_par = prior_par, posterior = TRUE)
ml <- list("H1" = mlH1, "H+" = mlHplus, "H-" = mlHminus)
for (hypothesis in c("H1", "H+", "H-")) {
bounds <- switch(hypothesis,
"H1" = c(-Inf, Inf),
"H+" = c(0, Inf),
"H-" = c(-Inf, 0))
hypothesis2 <- switch(hypothesis,
"H1" = "H1",
"H+" = "Hplus",
"H-" = "Hminus")
mnum <- integrate(mean_psi_int, lower = bounds[1], upper = bounds[2],
data = data, prior_par = prior_par,
hypothesis = hypothesis)$value / ml[[hypothesis]]
expect_equal(mean(ab3$post[[hypothesis2]]$psi), expected = mnum,
tolerance = 0.05)
vnum <- integrate(var_psi_int, lower = bounds[1], upper = bounds[2],
m = mnum, data = data, prior_par = prior_par,
hypothesis = hypothesis)$value / ml[[hypothesis]]
expect_equal(var(ab3$post[[hypothesis2]]$psi), expected = vnum,
tolerance = 0.05)
mnum <- integrate(mean_beta_int, lower = -Inf, upper = Inf,
data = data, prior_par = prior_par,
hypothesis = hypothesis)$value / ml[[hypothesis]]
expect_equal(mean(ab3$post[[hypothesis2]]$beta), expected = mnum,
tolerance = 0.05)
vnum <- integrate(var_beta_int, lower = -Inf, upper = Inf, m = mnum,
data = data, prior_par = prior_par,
hypothesis = hypothesis)$value / ml[[hypothesis]]
expect_equal(var(ab3$post[[hypothesis2]]$beta), expected = vnum,
tolerance = 0.05)
}
})
test_that("different sequential data formats yield same result", {
set.seed(1)
data <- list(y1 = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 4, 4),
n1 = c(1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10, 10),
y2 = c(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 9),
n2 = c(0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, 8, 9, 9, 10))
data_seq <- data.frame(outcome = c(1, 1, 0, 1, 0, 1, 0, 1, 0, 1,
0, 1, 0, 1, 1, 1, 1, 1, 1, 0),
group = rep(c(1, 2), 10))
data_seq_mat <- as.matrix(data_seq)
ab <- ab_test(data)
ab_seq <- ab_test(data_seq)
ab_seq_mat <- ab_test(data_seq_mat)
expect_equal(ab_seq$bf$bf10, expected = ab$bf$bf10)
expect_equal(ab_seq_mat$bf$bf10, expected = ab$bf$bf10)
})
test_that("y and n alternative data specification works", {
set.seed(1)
data <- list(y1 = 11, n1 = 15, y2 = 5, n2 = 13)
ab <- ab_test(data)
ab2 <- ab_test(y = c(11, 5), n = c(15, 13))
expect_equal(ab2$bf$bf10, expected = ab$bf$bf10)
})
|
context("epinow")
if (!testthat:::on_cran()) {
generation_time <- get_generation_time(disease = "SARS-CoV-2", source = "ganyani", max_value = 15)
incubation_period <- get_incubation_period(disease = "SARS-CoV-2", source = "lauer", max_value = 15)
reporting_delay <- list(mean = convert_to_logmean(3,1), mean_sd = 0.1,
sd = convert_to_logsd(3,1), sd_sd = 0.1,
max = 10)
reported_cases <- EpiNow2::example_confirmed[1:30]
futile.logger::flog.threshold("FATAL")
df_non_zero <- function(df) {
expect_true(nrow(df) > 0)
}
expected_out <- c("estimates", "estimated_reported_cases", "summary", "plots", "timing")
}
test_that("epinow produces expected output when run with default settings", {
skip_on_cran()
out <- suppressWarnings(epinow(reported_cases = reported_cases,
generation_time = generation_time,
delays = delay_opts(incubation_period, reporting_delay),
stan = stan_opts(samples = 25, warmup = 25,
cores = 1, chains = 2,
control = list(adapt_delta = 0.8)),
logs = NULL))
expect_equal(names(out), expected_out)
df_non_zero(out$estimates$samples)
df_non_zero(out$estimates$summarised)
df_non_zero(out$estimated_reported_cases$samples)
df_non_zero(out$estimated_reported_cases$summarised)
df_non_zero(out$summary)
expect_equal(names(out$plots), c("infections", "reports", "R", "growth_rate","summary"))
})
test_that("epinow runs without error when saving to disk", {
skip_on_cran()
expect_null(suppressWarnings(epinow(reported_cases = reported_cases,
generation_time = generation_time,
delays = delay_opts(incubation_period, reporting_delay),
stan = stan_opts(samples = 25, warmup = 25, cores = 1, chains = 2,
control = list(adapt_delta = 0.8)),
target_folder = tempdir(check = TRUE),
logs = NULL,
)))
})
test_that("epinow can produce partial output as specified", {
skip_on_cran()
out <- suppressWarnings(epinow(reported_cases = reported_cases,
generation_time = generation_time,
delays = delay_opts(incubation_period, reporting_delay),
stan = stan_opts(samples = 25, warmup = 25,
cores = 1, chains = 2,
control = list(adapt_delta = 0.8)),
output = c(),
logs = NULL))
expect_equal(names(out), c("estimates", "estimated_reported_cases", "summary"))
expect_null(out$estimates$samples)
df_non_zero(out$estimates$summarised)
expect_null(out$estimated_reported_cases$samples)
df_non_zero(out$estimated_reported_cases$summarised)
df_non_zero(out$summary)
})
test_that("epinow fails as expected when given a short timeout", {
skip_on_cran()
expect_error(suppressWarnings(epinow(reported_cases = reported_cases,
generation_time = generation_time,
delays = delay_opts(incubation_period, reporting_delay),
stan = stan_opts(samples = 100, warmup = 100,
cores = 1, chains = 2,
control = list(adapt_delta = 0.8),
max_execution_time = 10),
logs = NULL)))
})
test_that("epinow fails if given NUTs arguments when using variational inference", {
skip_on_cran()
expect_error(suppressWarnings(epinow(reported_cases = reported_cases,
generation_time = generation_time,
delays = delay_opts(incubation_period, reporting_delay),
stan = delay_opts(samples = 100, warmup = 100,
cores = 1, chains = 2,
method = "vb"),
logs = NULL)))
})
test_that("epinow fails if given variational inference arguments when using NUTs", {
skip_on_cran()
expect_error(suppressWarnings(epinow(reported_cases = reported_cases,
generation_time = generation_time,
delays = delay_opts(incubation_period, reporting_delay),
stan = stan_opts(method = "sampling", tol_rel_obj = 1),
logs = NULL)))
})
|
repeat_anticlustering <- function(x, K, objective, categories, method, repetitions) {
N <- nrow(x)
clusters <- list(initialize_clusters(N, K, categories))
if (argument_exists(repetitions) && repetitions > 1) {
if (argument_exists(categories)) {
if (length(K) > 1 && sum(K) != N) {
stop("If `K` is of length `nrow(x)` and `repetitions` is given, you cannot use `preclustering = TRUE` or `categories`, sorry.")
}
clusters_repetitions <- as.list(data.frame(as.matrix(
replicate(repetitions - 1, categorical_sampling(categories, K))
)))
} else {
clusters_repetitions <- as.list(data.frame(as.matrix(
replicate(repetitions - 1, sample(clusters[[1]]))
)))
}
clusters_repetitions <- unname(clusters_repetitions)
clusters <- merge_lists(list(clusters, clusters_repetitions))
}
if (inherits(objective, "function")) {
obj_function <- objective
} else if (objective == "variance") {
obj_function <- variance_objective
} else if (objective == "diversity" || objective == "distance") {
obj_function <- diversity_objective
} else if (objective == "dispersion") {
obj_function <- dispersion_objective
}
if (method == "local-maximum") {
candidate_solutions <- lapply(
clusters,
local_maximum_anticlustering,
data = x,
objective = objective,
obj_function = obj_function,
categories = categories
)
} else if (method == "exchange") {
candidate_solutions <- lapply(
clusters,
anticlustering_,
data = x,
objective = objective,
categories = categories
)
candidate_solutions
}
obj_function_ <- function(clusters, x) {
obj_function(x, clusters)
}
objs <- lapply(
candidate_solutions,
obj_function_,
x = x
)
candidate_solutions[[which.max(objs)]]
}
local_maximum_anticlustering <- function(
clusters, data, objective, obj_function, categories) {
old_obj <- obj_function(data, clusters)
has_improved <- TRUE
while (has_improved) {
new_clusters <- anticlustering(
x = data,
K = clusters,
objective = objective,
categories = categories,
repetitions = NULL,
method = "exchange",
preclustering = FALSE
)
new_obj <- obj_function(data, new_clusters)
if (new_obj > old_obj) {
clusters <- new_clusters
old_obj <- new_obj
} else {
has_improved <- FALSE
}
}
clusters
}
anticlustering_ <- function(clusters, data, objective, categories) {
anticlustering(
data,
K = clusters,
objective = objective,
method = "exchange",
categories = categories,
repetitions = NULL,
preclustering = FALSE
)
}
|
sim_bmat <- function(n_items, k,
ncat = 2,
xi_dist = list(runif, min = -1, max = 1),
omega_dist = list(runif, min = -1, max = 1),
alpha_dist = list(runif, min = -1, max = .5),
tau_dist = list(runif, min = -3, max = 0)) {
maxk <- max(k)
maxncat <- max(ncat)
bmat <- matrix(0, nrow = n_items, ncol = 2 * maxk + maxncat)
if (length(k) == 1) k <- rep(k, n_items)
if (length(k) != n_items)
stop("k must either have 1 or n_items elements")
if (length(ncat) == 1) ncat <- rep(ncat, n_items)
if (length(ncat) != n_items)
stop("ncat must either have 1 or n_items elements")
xi <- matrix(do.call(xi_dist[[1]],
c(list(n = n_items * (maxncat - 1)), xi_dist[-1])),
ncol = maxncat - 1)
omega <- do.call(omega_dist[[1]], c(list(n = n_items), omega_dist[-1]))
alpha <- matrix(0, nrow = n_items, ncol = maxk)
tau <- matrix(-Inf, nrow = n_items, ncol = maxk)
for (i in 1:n_items) {
if (ncat[i] < maxncat) xi[i, ncat[i]:ncol(xi)] <- NA
xi[i, 1:(ncat[i] - 1)] <- sort(xi[i, 1:(ncat[i] - 1)], decreasing = TRUE)
if (k[i] != 0) {
alpha[i, 1:k[i]] <- do.call(alpha_dist[[1]],
c(list(n = k[i]), alpha_dist[-1]))
tau[i, 1:k[i]] <- do.call(tau_dist[[1]],
c(list(n = k[i]), tau_dist[-1]))
bmat[i, ] <- greek2b(xi = xi[i, ], omega = omega[i],
alpha = alpha[i, ], tau = tau[i, ])
} else bmat[i, 1:maxncat] <- greek2b(xi = xi[i, ], omega = omega[i])
}
greekmat <- matrix(rbind(alpha, tau), nrow = n_items)
greekmat <- cbind(xi, omega, greekmat)
if (maxk == 0) colnames(greekmat) <- c(paste0("xi", 1:(maxncat - 1)),
"omega") else
colnames(greekmat) <- c(paste0("xi", 1:(maxncat - 1)), "omega",
paste0(rep(c("alpha", "tau"), maxk),
rep(1:maxk, each = 2)))
if (maxncat > 2)
colnames(bmat) <- c(paste0("b0_", 1:(maxncat - 1)),
paste0("b", 1:(2 * maxk + 1))) else
colnames(bmat) <- paste0("b", 0:(ncol(bmat) - 1))
list(bmat = bmat, greekmat = greekmat)
}
|
applytopup = function(
infile,
datain,
index,
topup_files,
out = NULL,
method = c("lsr", "jac"),
interp = c("spline", "trilinear"),
verbose = TRUE ){
warning("This function has not been tested")
index = paste(index, collapse = ",")
topup_files = checkimg(topup_files)
topup_files = unname(topup_files)
method = match.arg(method)
interp = match.arg(interp)
parse_num_args = function(x){
x = paste0(names(x), '=', x)
x = paste(x, collapse = " ")
x
}
if (is.null(out)) {
out = tempfile()
}
L = list(out = out,
inindex = index,
topup = topup_files,
interp = interp,
method = method
)
nulls = sapply(L, is.null)
L = L[!nulls]
names(L) = paste0("--", names(L))
opts = parse_num_args(L)
if (verbose) {
opts = paste(opts, "--verbose")
}
cmd = get.fsl()
cmd = paste0(cmd, "applytopup")
infile = checkimg(infile)
infile = unname(infile)
infile = normalizePath(infile)
infile = paste(infile, collapse = ",")
datain = normalizePath(datain)
datain = unname(datain)
args = paste0("--imain=", infile, " --datain=", datain)
cmd = paste(cmd, args, opts)
if (verbose) {
message(cmd, "\n")
}
res = system(cmd)
return(res)
}
apply_topup = function(...){
res = applytopup(...)
return(res)
}
fsl_applytopup = function(...){
res = applytopup(...)
return(res)
}
|
check_tf_version <- function(alert = c("none",
"error",
"warn",
"message",
"startup")) {
ac_flag <- Sys.getenv("RETICULATE_AUTOCONFIGURE")
on.exit(
Sys.setenv(
RETICULATE_AUTOCONFIGURE = ac_flag
)
)
Sys.setenv(RETICULATE_AUTOCONFIGURE = FALSE)
alert <- match.arg(alert)
if (is_mac_arm64()) {
msg <- cli::format_error(
c(
"{.pkg greta} does not currently work with Apple Silicon (M1)",
"We are working on getting this resolved ASAP, see {.url https://github.com/greta-dev/greta/issues/458} for current progress."
)
)
stop(
msg,
call. = FALSE
)
}
if (!greta_stash$python_has_been_initialised) {
cli_process_start(
msg = "Initialising python and checking dependencies, this may take a \\
moment."
)
}
requirements_valid <- c(
python_exists = have_python(),
correct_tf = have_tf(),
correct_tfp = have_tfp()
)
if ((all(requirements_valid))) {
if (!greta_stash$python_has_been_initialised) {
cli_process_done(
msg_done = "Initialising python and checking dependencies ... done!")
cat("\n")
greta_stash$python_has_been_initialised <- TRUE
}
}
if (!all(requirements_valid)) {
cli_process_failed()
cli_msg <- c(
"We have detected that you do not have the expected python packages \\
setup.",
"You can set these up by running this R code in the console:",
"{.code install_greta_deps()}",
"Then, restart R and run:",
"{.code library(greta)}",
"({.strong Note}: Your R session should not have initialised \\
Tensorflow yet.)",
"For more information, see {.code ?install_greta_deps}"
)
message_text <- cli::format_message(cli_msg)
warning_text <- cli::format_warning(cli_msg)
error_text <- cli::format_error(cli_msg)
switch(
alert,
error = stop(error_text, call. = FALSE),
warn = warning(warning_text, call. = FALSE),
message = message(message_text),
startup = packageStartupMessage(message_text),
none = NULL
)
}
invisible(all(requirements_valid))
}
check_dims <- function(..., target_dim = NULL) {
elem_list <- list(...)
elem_list <- lapply(elem_list, as.greta_array)
dim_list <- lapply(elem_list, dim)
dims_paste <- vapply(dim_list, paste, "", collapse = "x")
dims_text <- paste(dims_paste, collapse = ", ")
scalars <- vapply(elem_list, is_scalar, FALSE)
if (sum(!scalars) > 1) {
match_first <- vapply(dim_list[!scalars],
identical,
FUN.VALUE = FALSE,
dim_list[!scalars][[1]]
)
if (!all(match_first)) {
msg <- cli::format_error(
"incompatible dimensions: {dims_text}"
)
stop(msg, call. = FALSE)
}
}
if (!is.null(target_dim)) {
if (length(target_dim) == 1) {
target_dim <- c(target_dim, 1)
}
target_dim <- as.integer(target_dim)
if (!all(scalars)) {
matches_target <- vapply(dim_list[!scalars],
identical,
FUN.VALUE = FALSE,
target_dim
)
if (!all(matches_target)) {
msg <- cli::format_error(
c(
"incorrect array dimensions",
"x" = "array dimensions should be \\
{paste(target_dim, collapse = 'x')},",
"but input dimensions were {dims_text}."
)
)
stop(
msg,
call. = FALSE
)
}
}
output_dim <- target_dim
} else {
dim_lengths <- vapply(dim_list, length, numeric(1))
dim_list <- lapply(dim_list, pad_vector, to_length = max(dim_lengths))
output_dim <- do.call(pmax, dim_list)
}
output_dim
}
check_2d <- function(x) {
if (length(dim(x)) != 2L) {
msg <- cli::format_error(
c(
"Dimensions of parameters not compatible with multivariate \\
distribution parameters of multivariate distributions cannot have \\
more than two dimensions",
"object {.var x} has dimensions: {paste(dim(x), collapse = 'x')}"
)
)
stop(
msg,
call. = FALSE
)
}
}
check_square <- function(x) {
dim <- dim(x)
ndim <- length(dim)
is_square <- ndim == 2 && dim[1] == dim[2]
if (!is_square) {
msg <- cli::format_error(
c(
"Not 2D square greta array",
"x" = "expected a 2D square greta array, but object {.var x} had \\
dimension: {paste(dim, collapse = 'x')}"
)
)
stop(
msg,
call. = FALSE
)
}
}
check_n_realisations <- function(vectors = list(),
scalars = list(),
target = NULL) {
nrows <- lapply(c(vectors, scalars), nrow)
single_rows <- unlist(nrows) == 1
if (sum(!single_rows) > 1) {
match_first <- vapply(nrows[!single_rows],
identical,
FUN.VALUE = FALSE,
nrows[!single_rows][[1]]
)
if (!all(match_first)) {
msg <- cli::format_error(
c(
"incompatible number of rows",
x = "{paste(nrows, collapse = ' vs ')}"
)
)
stop(
msg,
call. = FALSE
)
}
}
if (!is.null(target)) {
if (length(target) != 1 || target < 1) {
msg <- cli::format_error(
c(
"{.code n_realisations is not a positive scalar interger}",
"{.code n_realisations} must be a positive scalar integer giving \\
the number of rows of the output",
"x" = "We see {.code n_realisations} = {.code {n_realisations}} \\
having class: \\
{.cls {class(n_realisations)}} and length \\
{.var {length(n_realisations)}}"
)
)
stop(
msg,
call. = FALSE
)
}
target <- as.integer(target)
if (!all(single_rows)) {
matches_target <- vapply(nrows[!single_rows],
identical,
FUN.VALUE = FALSE,
target
)
if (!all(matches_target)) {
msg <- cli::format_error(
c(
"Realisations do not match rows",
"number of realisations should be {target},",
"but arguments had {paste(nrows, collapse = ', ')} rows"
)
)
stop(
msg,
call. = FALSE
)
}
}
n_realisations <- target
} else {
n_realisations <- max(unlist(nrows))
}
n_realisations
}
check_dimension <- function(vectors = list(),
squares = list(),
target = NULL,
min_dimension = 2L) {
ncols <- lapply(c(vectors, squares), ncol)
if (!is.null(target)) {
if (length(target) != 1 || target < 1 || !is.finite(target)) {
msg <- cli::format_error(
c(
"{.var dimension} must be a positive scalar integer giving the \\
dimension of the distribution",
"{.code dim(target)} returns: {dim(target)}"
)
)
stop(
msg,
call. = FALSE
)
}
dimension <- as.integer(target)
} else {
dimension <- ncols[[1]]
}
if (dimension < min_dimension) {
msg <- cli::format_error(
c(
"the dimension of this distribution must be at least \\
{min_dimension}, but was {dimension}",
"multivariate distributions treat each {.emph row} as a separate \\
realisation - perhaps you need to transpose something?"
)
)
stop(
msg,
call. = FALSE
)
}
match_dimension <- vapply(ncols, identical, dimension,
FUN.VALUE = FALSE
)
if (!all(match_dimension)) {
msg <- cli::format_error(
c(
"distribution dimensions do not match implied dimensions",
"The distribution dimension should be {dimension}, but parameters \\
implied dimensions: {paste(ncols, collapse = ' vs ')}",
"Multivariate distributions treat each {.emph row} as a separate \\
realisation - perhaps you need to transpose something?"
)
)
stop(
msg,
call. = FALSE)
}
dimension
}
check_multivariate_dims <- function(vectors = list(),
scalars = list(),
squares = list(),
n_realisations = NULL,
dimension = NULL,
min_dimension = 2L) {
vectors <- lapply(vectors, as.greta_array)
scalars <- lapply(scalars, as.greta_array)
squares <- lapply(squares, as.greta_array)
lapply(c(vectors, scalars, squares), check_2d)
lapply(squares, check_square)
n_realisations <- check_n_realisations(
vectors,
scalars,
n_realisations
)
dimension <- check_dimension(
vectors,
squares,
dimension,
min_dimension
)
c(n_realisations, dimension)
}
check_positive <- function(truncation) {
if (truncation[1] < 0) {
msg <- cli::format_error(
c(
"lower bound must be 0 or higher",
"lower bound is: {.val {truncation[1]}}"
)
)
stop(
msg,
call. = FALSE
)
}
}
check_unit <- function(truncation) {
if (truncation[1] < 0 | truncation[2] > 1) {
msg <- cli::format_error(
c(
"lower and upper bounds must be between 0 and 1",
"lower bound is: {.val {truncation[1]}}",
"upper bound is: {.val {truncation[2]}}"
)
)
stop(
msg,
call. = FALSE
)
}
}
check_in_family <- function(function_name, arg) {
if (missing(arg)) {
arg_is_link <- TRUE
} else {
links <- c(
"logit", "probit", "cloglog", "cauchit",
"log", "identity", "sqrt"
)
arg_is_link <- inherits(arg, "character") &&
length(arg) == 1 && arg %in% links
}
greta_function <- get(function_name, envir = asNamespace("greta"))
family <- parent.frame(2)$family
function_is_family <- !is.null(family) && identical(family, greta_function)
if (arg_is_link | function_is_family) {
msg <- cli::format_error(
c(
"Wrong function name provided in another model",
"It looks like you're using {.pkg greta}'s {.fun {function_name}} \\
function in the family argument of another model.",
"Maybe you want to use {.code family = stats::{function_name}},instead?"
)
)
stop(msg, call. = FALSE)
}
}
check_future_plan <- function() {
plan_info <- future::plan()
plan_is <- list(
parallel = !inherits(plan_info, "sequential"),
cluster = inherits(plan_info, "cluster"),
multiprocess = inherits(plan_info, "multiprocess"),
multisession = inherits(plan_info, "multisession"),
local = TRUE
)
if (plan_is$parallel) {
if (plan_is$cluster) {
test_if_forked_cluster()
f <- future::future(NULL, laze = FALSE)
workers <- f$workers
if (inherits(workers, "cluster")) {
worker <- workers[[1]]
}
if (!is.null(worker$host)) {
localhosts <- c("localhost", "127.0.0.1", Sys.info()[["nodename"]])
plan_is$local <- worker$host %in% localhosts
}
} else {
if (plan_is$multiprocess && !plan_is$multisession) {
msg <- cli::format_error(
"parallel mcmc samplers cannot be run with \\
{.code plan(multiprocess)} or {.code plan(multicore)}"
)
stop(
msg,
call. = FALSE
)
}
}
}
plan_is
}
check_greta_arrays <- function(greta_array_list, fun_name, hint = NULL) {
are_greta_arrays <- vapply(greta_array_list,
inherits, "greta_array",
FUN.VALUE = FALSE
)
msg <- NULL
if (length(greta_array_list) == 0) {
msg <- cli::format_error(
c(
"could not find any non-data {.cls greta_array}s"
)
)
}
if (!all(are_greta_arrays)) {
unexpected_items <- names(greta_array_list)[!are_greta_arrays]
msg <- cli::format_error(
c(
"{.fun {fun_name}} arguments must be {.cls greta_array}s",
"The following {cli::qty(length(unexpected_items))} object{?s} passed \\
to {.fun {fun_name}} {cli::qty(length(unexpected_items))} \\
{?is not a/are not} {.cls greta array}{?s}:",
"{.val {unexpected_items}}",
"{hint}"
)
)
}
if (!is.null(msg)) {
stop(
msg,
call. = FALSE
)
}
greta_array_list
}
check_values_list <- function(values, env) {
names <- names(values)
stopifnot(length(names) == length(values))
fixed_greta_arrays <- lapply(names, get, envir = env)
are_greta_arrays <- vapply(fixed_greta_arrays,
inherits,
"greta_array",
FUN.VALUE = FALSE
)
if (!all(are_greta_arrays)) {
msg <- cli::format_error(
"the names of arguments to values must all correspond to named \\
{.cls greta_array}s"
)
stop(
msg,
call. = FALSE
)
}
assign_dim <- function(value, greta_array) {
array <- unclass(get_node(greta_array)$value())
if (length(array) != length(value)) {
msg <- cli::format_error(
"a provided value has different number of elements than the \\
{.cls greta_array}"
)
stop(
msg,
call. = FALSE
)
}
array[] <- value
array
}
values <- mapply(assign_dim,
values,
fixed_greta_arrays,
SIMPLIFY = FALSE
)
list(
fixed_greta_arrays = fixed_greta_arrays,
values = values
)
}
check_dependencies_satisfied <- function(target, fixed_greta_arrays, dag, env) {
dependency_names <- function(x) {
get_node(x)$parent_names(recursive = TRUE)
}
dependencies <- dependency_names(target)
complete_dependencies <- unlist(
lapply(
fixed_greta_arrays,
dependency_names
)
)
unmet <- !dependencies %in% complete_dependencies
unmet_dependencies <- dependencies[unmet]
unmet_nodes <- dag$node_list[unmet_dependencies]
unmet_node_types <- vapply(unmet_nodes, node_type, FUN.VALUE = "")
is_variable <- unmet_node_types == "variable"
if (any(is_variable)) {
greta_arrays <- all_greta_arrays(env, include_data = FALSE)
greta_array_node_names <- vapply(greta_arrays,
function(x) get_node(x)$unique_name,
FUN.VALUE = ""
)
unmet_variables <- unmet_nodes[is_variable]
matches <- names(unmet_variables) %in% greta_array_node_names
unmet_names_idx <- greta_array_node_names %in% names(unmet_variables)
unmet_names <- names(greta_array_node_names)[unmet_names_idx]
if (any(matches)) {
names_text <- paste(unmet_names, collapse = ", ")
msg <- cli::format_error(
c(
"Please provide values for the following {length(names_text)} \\
{.cls greta_array}{?s}:",
"{.var {names_text}}"
)
)
} else {
msg <- cli::format_error(
"The names of the missing {.cls greta_array}s could not be detected"
)
}
final_msg <- cli::format_error(
c(
"greta array(s) do not have values",
"values have not been provided for all {.cls greta_array}s on which the \\
target depends, and {.var nsim} has not been set.",
"{msg}"
)
)
stop(
msg,
call. = FALSE
)
}
}
check_cum_op <- function(x) {
dims <- dim(x)
if (length(dims) > 2 | dims[2] != 1) {
msg <- cli::format_error(
c(
"{.var x} must be a column vector",
"but {.var x} has dimensions {paste(dims, collapse = 'x')}"
)
)
stop(
msg,
call. = FALSE
)
}
}
check_n_cores <- function(n_cores, samplers, plan_is) {
if (is.null(n_cores) & !plan_is$local) {
return(NULL)
}
n_cores_detected <- future::availableCores()
allowed_n_cores <- seq_len(n_cores_detected)
if (!is.null(n_cores) && !n_cores %in% allowed_n_cores) {
check_positive_integer(n_cores, "n_cores")
msg <- cli::format_warning(
"{n_cores} cores were requested, but only {n_cores_detected} \\
are available."
)
warning(
msg,
call. = FALSE
)
n_cores <- NULL
}
if (is.null(n_cores)) {
n_cores <- floor(n_cores_detected / samplers)
}
n_cores <- max(n_cores, 1)
as.integer(n_cores)
}
check_positive_integer <- function(x, name = "") {
suppressWarnings(x <- as.integer(x))
if (length(x) != 1 | is.na(x) | x < 1) {
msg <- cli::format_error(
c(
"{name} must be a positive integer",
"However the value provided was: {.val {x}}"
)
)
stop(
msg,
call. = FALSE
)
}
x
}
check_trace_batch_size <- function(x) {
valid <- is.numeric(x) && length(x) == 1 && x >= 1
if (!valid) {
msg <- cli::format_error(
"{.var trace_batch_size} must be a single numeric value greater than or \\
equal to 1"
)
stop(
msg,
call. = FALSE
)
}
x
}
complex_error <- function(z) {
msg <- cli::format_error(
"{.pkg greta} does not yet support complex numbers"
)
stop(
msg,
call. = FALSE
)
}
Im.greta_array <- complex_error
Re.greta_array <- complex_error
Arg.greta_array <- complex_error
Conj.greta_array <- complex_error
Mod.greta_array <- complex_error
checks_module <- module(
check_tf_version,
check_dims,
check_unit,
check_positive,
check_in_family,
check_future_plan,
check_greta_arrays,
check_values_list,
check_dependencies_satisfied,
check_cum_op,
check_future_plan,
check_n_cores,
check_positive_integer,
complex_error
)
|
binom.test <-
function(x, n, p = 0.5, alternative = c("two.sided", "less", "greater"),
conf.level = 0.95)
{
DNAME <- deparse(substitute(x))
xr <- round(x)
if(any(is.na(x) | (x < 0)) || max(abs(x-xr)) > 1e-7)
stop("'x' must be nonnegative and integer")
x <- xr
if(length(x) == 2L) {
n <- sum(x)
x <- x[1L]
}
else if(length(x) == 1L) {
nr <- round(n)
if((length(n) > 1L) || is.na(n) || (n < 1) || abs(n-nr) > 1e-7
|| (x > nr))
stop("'n' must be a positive integer >= 'x'")
DNAME <- paste(DNAME, "and", deparse(substitute(n)))
n <- nr
}
else
stop("incorrect length of 'x'")
if(!missing(p) && (length(p) > 1L || is.na(p) || p < 0 || p > 1))
stop ("'p' must be a single number between 0 and 1")
alternative <- match.arg(alternative)
if(!((length(conf.level) == 1L) && is.finite(conf.level) &&
(conf.level > 0) && (conf.level < 1)))
stop("'conf.level' must be a single number between 0 and 1")
PVAL <- switch(alternative,
less = pbinom(x, n, p),
greater = pbinom(x - 1, n, p, lower.tail = FALSE),
two.sided = {
if(p == 0)
(x == 0)
else if(p == 1)
(x == n)
else {
relErr <- 1 + 1e-7
d <- dbinom(x, n, p)
m <- n * p
if (x == m)
1
else if (x < m) {
i <- seq.int(from = ceiling(m), to = n)
y <- sum(dbinom(i, n, p) <= d * relErr)
pbinom(x, n, p) +
pbinom(n - y, n, p, lower.tail = FALSE)
} else {
i <- seq.int(from = 0, to = floor(m))
y <- sum(dbinom(i, n, p) <= d * relErr)
pbinom(y - 1, n, p) +
pbinom(x - 1, n, p, lower.tail = FALSE)
}
}
})
p.L <- function(x, alpha) {
if(x == 0)
0
else
qbeta(alpha, x, n - x + 1)
}
p.U <- function(x, alpha) {
if(x == n)
1
else
qbeta(1 - alpha, x + 1, n - x)
}
CINT <- switch(alternative,
less = c(0, p.U(x, 1 - conf.level)),
greater = c(p.L(x, 1 - conf.level), 1),
two.sided = {
alpha <- (1 - conf.level) / 2
c(p.L(x, alpha), p.U(x, alpha))
})
attr(CINT, "conf.level") <- conf.level
ESTIMATE <- x / n
names(x) <- "number of successes"
names(n) <- "number of trials"
names(ESTIMATE) <-
names(p) <- "probability of success"
structure(list(statistic = x,
parameter = n,
p.value = PVAL,
conf.int = CINT,
estimate = ESTIMATE,
null.value = p,
alternative = alternative,
method = "Exact binomial test",
data.name = DNAME),
class = "htest")
}
|
graycode2 <- function(a) {
rows <- 2^floor(a/2)
cols <- 2^(a - floor(a/2))
dec <- grays(a)
dim(dec) <- c(cols, rows)
dec <- t(dec)
nrow_dec <- nrow(dec)
if (nrow_dec == 1) {
return(list(rows, cols, dec))
} else if (nrow_dec == 2) {
dec[2, ] <- rev(dec[2, ])
return(list(rows, cols, dec))
} else {
dec[seq(2, nrow_dec, 2), ] <- t(apply(dec[seq(2, nrow_dec, 2), ], 1, rev))
return(list(rows, cols, dec))
}
}
|
table_scrap <- function(link,
choose = 1,
header = TRUE,
fill = FALSE,
askRobot = FALSE) {
if(missing(link)) {
stop("'link' is a mandatory parameter")
}
if(!is.character(link)) {
stop("'link' parameter must be provided as a character string")
}
if(!is.numeric(choose)){
stop(paste0("the 'choose' parameter must be provided as numeric not as "),
typeof(choose))
}
if (askRobot) {
if (paths_allowed(link) == TRUE) {
message(green("the robot.txt doesn't prohibit scraping this web page"))
} else {
message(bgRed(
"WARNING: the robot.txt doesn't allow scraping this web page"
))
}
}
tryCatch(
expr = {
table <- link %>%
read_html() %>%
html_table(header, fill = fill)
chosen_table <- table[[choose]]
return(chosen_table)
},
error = function(cond){
if(!has_internet()){
message(paste0("Please check your internet connexion: ", cond))
return(NA)
} else if (grepl("current working directory", cond) || grepl("HTTP error 404", cond)) {
message(paste0("The URL doesn't seem to be a valid one: ", link))
message(paste0("Here the original error message: ", cond))
return(NA)
} else if(grepl("subscript out of bounds", cond)) {
message(
"Are you sure that your web page contains more than one HTML table ?"
)
message(paste0("Here the original error message: ", cond))
return(NA)
} else {
message(paste0("Undefined Error: ", cond))
return(NA)
}
}
)}
|
library(ggplot2)
library(ggiraph)
set.seed(4393)
dsmall <- diamonds[sample(nrow(diamonds), 1000),]
p <- ggplot(dsmall, aes(x, y)) +
stat_density_2d(aes(
fill = stat(nlevel),
tooltip = paste("nlevel:", stat(nlevel))
),
geom = "interactive_polygon") +
facet_grid(. ~ cut)
p1 <- p + scale_fill_viridis_c_interactive(data_id = "nlevel",
tooltip = "nlevel")
x <- girafe(ggobj = p1)
if (interactive()) print(x)
p2 <- p + scale_fill_viridis_c_interactive(data_id = "nlevel",
tooltip = "nlevel",
guide = "legend")
x <- girafe(ggobj = p2)
if (interactive()) print(x)
p3 <- p + scale_fill_viridis_c_interactive(
data_id = function(breaks) {
as.character(breaks)
},
tooltip = function(breaks) {
as.character(breaks)
},
guide = "legend"
)
x <- girafe(ggobj = p3)
if (interactive()) print(x)
p4 <- p + scale_fill_viridis_c_interactive(
data_id = function(breaks) {
as.character(breaks)
},
tooltip = function(breaks) {
as.character(breaks)
},
guide = "legend",
name = label_interactive("nlevel", data_id = "nlevel",
tooltip = "nlevel"),
labels = function(breaks) {
label_interactive(
as.character(breaks),
data_id = as.character(breaks),
onclick = paste0("alert(\"", as.character(breaks), "\")"),
tooltip = as.character(breaks)
)
}
)
x <- girafe(ggobj = p4)
x <- girafe_options(x,
opts_hover_key(girafe_css("stroke:red", text="stroke:none;fill:red")))
if (interactive()) print(x)
|
CRI <- function(level){
x <- NULL
if(level==1){
x1 <- github.cssegisanddata.covid19(country = "Costa Rica")
x2 <- ourworldindata.org(id = "CRI")
x <- full_join(x1, x2, by = "date")
}
return(x)
}
|
calcul_part_ens <-
function(data,var)
{
msg_error1<-msg_error2 <- NULL
if(any(class(data)!="data.frame")) msg_error1 <- "Les donnees doivent etre dans un data.frame / "
if(!any(names(data) %in% var)) msg_error2 <- "La variable identifiant les donnees n'existe pas dans la table des donnees / "
if(any(!is.null(msg_error1),!is.null(msg_error2)))
{
stop(simpleError(paste0(msg_error1,msg_error2)))
}
if(sum(data[,var],na.rm = TRUE)==0)
{
data[data[,var] %in% 0,var] <- 0.0001
}
data$PART <- (data[,var]/sum(data[,var],na.rm = TRUE))*100
return(data)
}
|
"pew_energy_2018"
|
viz_type <- c(
"Distribution" = "dist", "Density" = "density", "Scatter" = "scatter",
"Surface" = "surface", "Line" = "line", "Bar" = "bar", "Box-plot" = "box"
)
viz_check <- c("Line" = "line", "Loess" = "loess", "Jitter" = "jitter", "Interpolate" = "interpolate")
viz_axes <- c(
"Flip" = "flip", "Log X" = "log_x", "Log Y" = "log_y",
"Scale-y" = "scale_y", "Density" = "density", "Sort" = "sort"
)
viz_theme <- c(
"Gray" = "theme_gray", "Black and White" = "theme_bw",
"Light" = "theme_light", "Dark" = "theme_dark",
"Minimal" = "theme_minimal", "Classic" = "theme_classic"
)
os_type = Sys.info()["sysname"]
if (os_type == "Windows") {
fnt <- names(windowsFonts())
names(fnt) <- tools::toTitleCase(fnt)
viz_base_family <- c("Theme default" = "", fnt)
} else {
viz_base_family = c(
"Theme default" = "", "Helvetica" = "Helvetica", "Serif" = "serif",
"Sans" = "sans", "Mono" = "mono", "Courier" = "Courier", "Times" = "Times"
)
}
viz_labs <- c("title", "subtitle", "caption", "x", "y")
viz_add_labs <- function() {
lab_list <- list()
for(l in viz_labs) {
inp <- input[[paste0("viz_labs_", l)]]
if(!radiant.data::is_empty(inp)) lab_list[[l]] <- inp
}
lab_list
}
viz_args <- as.list(formals(visualize))
viz_inputs <- reactive({
viz_args$data_filter <- if (isTRUE(input$show_filter)) input$data_filter else ""
viz_args$dataset <- input$dataset
viz_args$shiny <- input$shiny
viz_args$labs <- viz_add_labs()
for (i in r_drop(names(viz_args), drop = c("dataset", "data_filter", "labs")))
viz_args[[i]] <- input[[paste0("viz_", i)]]
viz_args
})
output$ui_viz_type <- renderUI({
selectInput(
inputId = "viz_type", label = "Plot-type:", choices = viz_type,
selected = state_single("viz_type", viz_type),
multiple = FALSE
)
})
output$ui_viz_nrobs <- renderUI({
req(input$viz_type == "scatter")
nrobs <- nrow(.get_data())
choices <- c("1,000" = 1000, "5,000" = 5000, "10,000" = 10000, "All" = -1) %>%
.[. < nrobs]
selectInput(
"viz_nrobs", "Number of data points plotted:",
choices = choices,
selected = state_single("viz_nrobs", choices, 1000)
)
})
output$ui_viz_yvar <- renderUI({
req(input$viz_type)
vars <- varying_vars()
req(available(vars))
vars <- vars["date" != .get_class()[vars]]
if (input$viz_type %in% c("line", "bar", "scatter", "surface", "box")) {
vars <- vars["character" != .get_class()[vars]]
}
if (input$viz_type %in% c("line", "scatter", "box")) {
vars <- vars["factor" != .get_class()[vars]]
}
selectInput(
inputId = "viz_yvar", label = "Y-variable:",
choices = vars,
selected = state_multiple("viz_yvar", vars, isolate(input$viz_yvar)),
multiple = TRUE, size = min(3, length(vars)), selectize = FALSE
)
})
output$ui_viz_xvar <- renderUI({
req(input$viz_type)
vars <- varying_vars()
req(available(vars))
if (input$viz_type == "dist") vars <- vars["date" != .get_class()[vars]]
if (input$viz_type == "density") vars <- vars["factor" != .get_class()[vars]]
if (input$viz_type %in% c("box", "bar")) vars <- groupable_vars_nonum()
selectInput(
inputId = "viz_xvar", label = "X-variable:", choices = vars,
selected = state_multiple("viz_xvar", vars, isolate(input$viz_xvar)),
multiple = TRUE, size = min(3, length(vars)), selectize = FALSE
)
})
output$ui_viz_comby <- renderUI({
checkboxInput(
"viz_comby", "Combine Y-variables in one plot",
state_init("viz_comby", FALSE)
)
})
output$ui_viz_combx <- renderUI({
checkboxInput(
"viz_combx", "Combine X-variables in one plot",
state_init("viz_combx", FALSE)
)
})
observeEvent(length(input$viz_xvar) < 2, {
updateCheckboxInput(session, "viz_combx", value = FALSE)
})
observeEvent(length(input$viz_yvar) < 2, {
updateCheckboxInput(session, "viz_comby", value = FALSE)
})
observeEvent(input$viz_type, {
if (input$viz_type %in% c("dist", "density")) {
updateCheckboxInput(session, "viz_comby", value = FALSE)
} else {
updateCheckboxInput(session, "viz_combx", value = FALSE)
}
})
observeEvent(input$viz_check, {
if (!"loess" %in% input$viz_check && input$viz_smooth != 1) {
updateSliderInput(session, "viz_smooth", value = 1)
}
})
output$ui_viz_facet_row <- renderUI({
vars <- c("None" = ".", groupable_vars_nonum())
selectizeInput(
"viz_facet_row", "Facet row:", vars,
selected = state_single("viz_facet_row", vars, init = "."),
multiple = FALSE
)
})
output$ui_viz_facet_col <- renderUI({
vars <- c("None" = ".", groupable_vars_nonum())
selectizeInput(
"viz_facet_col", "Facet column:", vars,
selected = state_single("viz_facet_col", vars, init = "."),
multiple = FALSE
)
})
output$ui_viz_color <- renderUI({
req(input$viz_type)
if (input$viz_type == "line") {
vars <- c("None" = "none", groupable_vars())
} else {
vars <- c("None" = "none", varnames())
}
if (isTRUE(input$viz_comby) && length(input$viz_yvar) > 1) vars <- c("None" = "none")
selectizeInput(
"viz_color", "Color:", vars, multiple = FALSE,
selected = state_single("viz_color", vars, init = "none")
)
})
output$ui_viz_fill <- renderUI({
vars <- c("None" = "none", groupable_vars())
if (isTRUE(input$viz_combx) && length(input$viz_xvar) > 1) vars <- vars[1]
selectizeInput(
"viz_fill", "Fill:", vars, multiple = FALSE,
selected = state_single("viz_fill", vars, init = "none")
)
})
output$ui_viz_size <- renderUI({
req(input$viz_type)
isNum <- .get_class() %in% c("integer", "numeric", "ts")
vars <- c("None" = "none", varnames()[isNum])
if (isTRUE(input$viz_comby) && length(input$viz_yvar) > 1) vars <- c("None" = "none")
selectizeInput(
"viz_size", "Size:", vars, multiple = FALSE,
selected = state_single("viz_size", vars, init = "none")
)
})
output$ui_viz_axes <- renderUI({
req(input$viz_type)
ind <- 1
if (input$viz_type %in% c("line", "scatter", "surface")) {
ind <- 1:3
} else if (input$viz_type == "dist") {
ind <- c(1:2, 5)
} else if (input$viz_type == "density") {
ind <- 1:2
} else if (input$viz_type %in% c("bar", "box")) {
ind <- c(1, 3)
}
if (!radiant.data::is_empty(input$viz_facet_row, ".") || !radiant.data::is_empty(input$viz_facet_col, ".")) ind <- c(ind, 4)
if (input$viz_type == "bar") ind <- c(ind, 6)
checkboxGroupInput(
"viz_axes", NULL, viz_axes[ind],
selected = state_group("viz_axes", ""),
inline = TRUE
)
})
output$ui_viz_check <- renderUI({
req(input$viz_type)
if (input$viz_type == "scatter") {
ind <- 1:3
} else if (input$viz_type == "box") {
ind <- 3
} else if (input$viz_type == "surface") {
ind <- 4
} else {
ind <- c()
}
if (!input$viz_type %in% c("scatter", "box")) {
r_state$viz_check <<- gsub("jitter", "", r_state$viz_check)
}
if (input$viz_type != "scatter") {
r_state$viz_check <<- gsub("line", "", r_state$viz_check)
r_state$viz_check <<- gsub("loess", "", r_state$viz_check)
}
checkboxGroupInput(
"viz_check", NULL, viz_check[ind],
selected = state_group("viz_check", ""),
inline = TRUE
)
})
output$ui_viz_run <- renderUI({
req(input$dataset)
actionButton("viz_run", "Create plot", width = "100%", icon = icon("play"), class = "btn-success")
})
output$ui_viz_labs <- renderUI({
req(input$dataset)
wellPanel(
textAreaInput("viz_labs_title", NULL, "", placeholder = "Title", rows = 1),
textAreaInput("viz_labs_subtitle", NULL, "", placeholder = "Subtitle", rows = 1),
textAreaInput("viz_labs_caption", NULL, "", placeholder = "Caption", rows = 1),
textAreaInput("viz_labs_y", NULL, "", placeholder = "Y-label", rows = 1),
textAreaInput("viz_labs_x", NULL, "", placeholder = "X-label", rows = 1)
)
})
output$ui_viz_colors <- renderUI({
tagList(
conditionalPanel(
condition = "input.viz_type == 'bar' ||
input.viz_type == 'dist' ||
input.viz_type == 'box' ||
input.viz_type == 'density'",
selectInput(
"viz_fillcol", "Fill color:", choices = colors(),
selected = state_single("viz_fillcol", colors(), "blue")
)
),
conditionalPanel(
condition = "input.viz_type == 'dist' ||
input.viz_type == 'density' ||
input.viz_type == 'box' ||
input.viz_type == 'scatter' ||
input.viz_type == 'line'",
selectInput(
"viz_linecol", "Line color:", choices = colors(),
selected = state_single("viz_linecol", colors(), "black")
)
),
conditionalPanel(
condition = "input.viz_type == 'scatter' ||
input.viz_type == 'line' ||
input.viz_type == 'box'",
selectInput(
"viz_pointcol", "Point color:", choices = colors(),
selected = state_single("viz_pointcol", colors(), "black")
)
)
)
})
run_refresh(
viz_args, "viz", init = "xvar", label = "Create plot", relabel = "Update plot",
inputs = c("labs_title", "labs_subtitle", "labs_caption", "labs_y", "labs_x")
)
output$ui_Visualize <- renderUI({
tagList(
wellPanel(
uiOutput("ui_viz_run")
),
checkboxInput("viz_details_main", "Main", state_init("viz_details_main", TRUE)),
conditionalPanel("input.viz_details_main == true",
wellPanel(
uiOutput("ui_viz_type"),
conditionalPanel("input.viz_type == 'scatter'",
uiOutput("ui_viz_nrobs")
),
conditionalPanel(
condition = "input.viz_type != 'dist' && input.viz_type != 'density'",
uiOutput("ui_viz_yvar"),
conditionalPanel(
"input.viz_yvar != undefined && input.viz_yvar != null && input.viz_yvar.length > 1",
uiOutput("ui_viz_comby")
)
),
uiOutput("ui_viz_xvar"),
conditionalPanel(
"input.viz_type == 'dist' || input.viz_type == 'density'",
conditionalPanel(
"input.viz_xvar != undefined && input.viz_xvar != null && input.viz_xvar.length > 1",
uiOutput("ui_viz_combx")
)
),
uiOutput("ui_viz_facet_row"),
uiOutput("ui_viz_facet_col"),
conditionalPanel(
condition = "input.viz_type == 'bar' ||
input.viz_type == 'dist' ||
input.viz_type == 'density' ||
input.viz_type == 'surface'",
uiOutput("ui_viz_fill")
),
conditionalPanel(
condition = "input.viz_type == 'scatter' ||
input.viz_type == 'line' ||
input.viz_type == 'box'",
uiOutput("ui_viz_color")
),
conditionalPanel(
condition = "input.viz_type == 'scatter'",
uiOutput("ui_viz_size")
),
conditionalPanel(
condition = "input.viz_type == 'bar' ||
input.viz_type == 'scatter' ||
input.viz_type == 'line'",
selectInput(
"viz_fun", "Function:", choices = getOption("radiant.functions"),
selected = state_single("viz_fun", getOption("radiant.functions"), "mean")
)
),
conditionalPanel(
condition = "input.viz_type == 'scatter' ||
input.viz_type == 'line' ||
input.viz_type == 'surface' ||
input.viz_type == 'box'",
uiOutput("ui_viz_check")
),
uiOutput("ui_viz_axes"),
conditionalPanel(
condition = "input.viz_type == 'dist'",
sliderInput(
"viz_bins", label = "Number of bins:",
value = state_init("viz_bins", 10),
min = 2, max = 50, step = 1
)
),
conditionalPanel(
"input.viz_type == 'density' ||
input.viz_type == 'dist' && (input.viz_axes && input.viz_axes.indexOf('density')) >= 0 ||
(input.viz_type == 'scatter' && (input.viz_check && input.viz_check.indexOf('loess') >= 0))",
sliderInput(
"viz_smooth", label = "Smooth:",
value = state_init("viz_smooth", 1),
min = 0.1, max = 3, step = .1
)
)
)
),
checkboxInput("viz_details_labels", "Labels", state_init("viz_details_labels", FALSE)),
conditionalPanel("input.viz_details_labels == true",
uiOutput("ui_viz_labs")
),
checkboxInput("viz_details_style", "Style", state_init("viz_details_style", FALSE)),
conditionalPanel("input.viz_details_style == true",
wellPanel(
selectInput(
"viz_theme", "Plot theme:", choices = viz_theme,
selected = state_single("viz_theme", viz_theme, "theme_gray")
),
numericInput(
"viz_base_size", "Base font size:", value = state_init("viz_base_size", 11)
),
selectInput(
"viz_base_family", "Font family:", choices = viz_base_family,
selected = state_single("viz_base_family", viz_base_family, "helvetica")
),
uiOutput("ui_viz_colors"),
sliderInput(
"viz_alpha", label = "Opacity:",
value = state_init("viz_alpha", .5),
min = 0, max = 1, step = .01
),
tags$table(
tags$td(
numericInput(
"viz_plot_height", label = "Plot height:", min = 100,
max = 2000, step = 50,
value = state_init("viz_plot_height", r_info[["plot_height"]]),
width = "117px"
)
),
tags$td(
numericInput(
"viz_plot_width", label = "Plot width:", min = 100,
max = 2000, step = 50,
value = state_init("viz_plot_width", r_info[["plot_width"]]),
width = "117px"
),
width = "100%"
)
)
)
),
help_and_report(
modal_title = "Visualize",
fun_name = "visualize",
help_file = inclRmd(file.path(getOption("radiant.path.data"), "app/tools/help/visualize.md")),
lic = "by-sa"
)
)
})
viz_plot_width <- reactive({
if (radiant.data::is_empty(input$viz_plot_width)) r_info[["plot_width"]] else input$viz_plot_width
})
viz_plot_height <- eventReactive({
input$viz_run
input$viz_plot_height
input$viz_plot_width
}, {
if (radiant.data::is_empty(input$viz_plot_height)) {
r_info[["plot_height"]]
} else {
lx <- ifelse(not_available(input$viz_xvar) || isTRUE(input$viz_combx), 1, length(input$viz_xvar))
ly <- ifelse(not_available(input$viz_yvar) || input$viz_type %in% c("dist", "density") ||
isTRUE(input$viz_comby), 1, length(input$viz_yvar))
nr <- lx * ly
if (nr > 1) {
(input$viz_plot_height / 2) * ceiling(nr / 2)
} else {
input$viz_plot_height
}
}
})
output$visualize <- renderPlot({
req(input$viz_type)
if (not_available(input$viz_xvar)) {
if (input$viz_type != "box") {
return(
plot(
x = 1, type = "n",
main = "\nPlease select variables from the dropdown menus to create a plot",
axes = FALSE, xlab = "", ylab = "", cex.main = .9
)
)
}
}
.visualize() %>% {
if (is.character(.)) {
plot(x = 1, type = "n", main = paste0("\n", .), axes = FALSE, xlab = "", ylab = "", cex.main = .9)
} else if (length(.) > 0) {
print(.)
}
}
}, width = viz_plot_width, height = viz_plot_height, res = 96)
.visualize <- eventReactive(input$viz_run, {
req(input$viz_type)
if (input$viz_type == "scatter") req(input$viz_nrobs)
req(input$viz_plot_height && input$viz_plot_width)
if (not_available(input$viz_xvar) && input$viz_type != "box") return()
if (input$viz_type %in% c("scatter", "line", "box", "bar", "surface") && not_available(input$viz_yvar)) {
return("No Y-variable provided for a plot that requires one")
}
if (input$viz_type == "box" && !all(input$viz_xvar %in% groupable_vars())) return()
if (input$viz_type %in% c("dist", "density")) {
if (isTRUE(input$viz_comby)) return()
if (length(input$viz_xvar) > 1 && is.null(input$viz_combx)) return()
} else {
if (isTRUE(input$viz_combx)) return()
if (length(input$viz_yvar) > 1 && is.null(input$viz_comby)) return()
}
req(!is.null(input$viz_color) || !is.null(input$viz_fill))
vizi <- viz_inputs()
vizi$shiny <- TRUE
vizi$envir <- r_data
withProgress(message = "Making plot", value = 1, {
do.call(visualize, vizi)
})
})
observeEvent(input$visualize_report, {
vi <- viz_inputs()
if (input$viz_type != "dist") {
vi$bins <- viz_args$bins
}
if (input$viz_type %in% c("dist", "density")) {
vi$yvar <- viz_args$yvar
}
if (!input$viz_type %in% c("density", "scatter", "dist") ||
!("loess" %in% input$viz_check || "density" %in% input$viz_axes || input$viz_type == "density")) {
vi$smooth <- viz_args$smooth
}
if (!input$viz_type %in% c("scatter", "box") && "jitter" %in% input$viz_check) {
vi$check <- base::setdiff(vi$check, "jitter")
}
if (input$viz_type != "scatter") {
vi$size <- "none"
vi$nrobs <- NULL
} else {
vi$nrobs <- as_integer(vi$nrobs)
}
if (!input$viz_type %in% c("scatter", "line", "box")) {
vi$color <- NULL
}
if (!input$viz_type %in% c("bar", "dist", "density", "surface")) {
vi$fill <- NULL
}
if (!input$viz_type %in% c("bar", "dist", "box", "density")) {
vi$fillcol <- "blue"
}
if (!input$viz_type %in% c("dist", "density", "box", "scatter", "line")) {
vi$linecol <- "black"
}
if (!input$viz_type %in% c("box", "scatter", "line")) {
vi$pointcol <- "black"
}
if (!input$viz_type %in% c("bar", "line", "scatter")) {
vi$fun <- "mean"
}
inp_main <- c(clean_args(vi, viz_args), custom = FALSE)
update_report(
inp_main = inp_main,
fun_name = "visualize",
outputs = character(0),
pre_cmd = "",
figs = TRUE,
fig.width = viz_plot_width(),
fig.height = viz_plot_height()
)
})
download_handler(
id = "dlp_visualize",
fun = download_handler_plot,
fn = function() paste0(input$dataset, "_visualize"),
type = "png",
caption = "Save visualize plot",
plot = .visualize,
width = viz_plot_width,
height = viz_plot_height
)
|
if (require("testthat") && require("effectsize")) {
test_that("sd_pooled", {
expect_equal(sd_pooled(1:4, 1:3 * 5), 3.316625, tolerance = 0.001)
expect_equal(mad_pooled(1:4, 1:3 * 5), 3.297154, tolerance = 0.001)
expect_equal(sd_pooled(c(1:3, 40), 1:3 * 5), 15.06652, tolerance = 0.001)
expect_equal(mad_pooled(c(1:3, 40), 1:3 * 5), 3.297154, tolerance = 0.001)
})
}
|
quit()
pdf(file.path(tempdir(), "segmentation.pdf"))
library("AntMAN")
set.seed(123)
LoadAndGenerate <- function(img_path) {
library(jpeg)
img <- readJPEG(img_path)
plot(1:2, type='n')
rasterImage(img, 1.01, 1.01, 1.99, 1.99)
imgDm <- dim(img)
imgRGB <- data.frame(
x = rep(1:imgDm[2], each = imgDm[1]),
y = rep(imgDm[1]:1, imgDm[2]),
R = as.vector(img[,,1]),
G = as.vector(img[,,2]),
B = as.vector(img[,,3])
)
x <- imgRGB[,c(3,4,5)]
return (list(pic = x, dim = imgDm))
}
DrawMat <- function(pic,imgDm) {
img_seg <- array(dim=imgDm)
img_seg[,,1] <- matrix(pic[,1],nrow=imgDm[1],ncol=imgDm[2])
img_seg[,,2] <- matrix(pic[,2],nrow=imgDm[1],ncol=imgDm[2])
img_seg[,,3] <- matrix(pic[,3],nrow=imgDm[1],ncol=imgDm[2])
plot(1:2, type='n')
rasterImage(img_seg, 1.01, 1.01, 1.99, 1.99)
}
DrawResult <- function(mat,imgDm,clusters) {
clusters = clusters / max(clusters)
img_seg <- array(dim=imgDm)
img_seg[,,1] <- matrix(clusters,nrow=imgDm[1],ncol=imgDm[2])
img_seg[,,2] <- matrix(clusters,nrow=imgDm[1],ncol=imgDm[2])
img_seg[,,3] <- matrix(clusters,nrow=imgDm[1],ncol=imgDm[2])
plot(1:2, type='n')
rasterImage(img_seg, 1.01, 1.01, 1.99, 1.99)
}
data(brain)
imgDm <- brain$dim
x = brain$pic
bn <- imgDm[1] * imgDm[2]
mat <- matrix(0,bn,3)
mat[,1 ] <-x$R
mat[,2 ] <-x$G
mat[,3 ] <-x$B
DrawMat(mat,imgDm)
mixture_mvn_params = AM_mix_hyperparams_multinorm (mu0=c(0,0,0),ka0=.1,nu0=5,Lam0=0.1*diag(3))
mcmc_params = AM_mcmc_parameters(niter=10000, burnin=5000, thin=5, verbose=0, output = c("CI","K","M"))
components_prior = AM_mix_components_prior_pois (init=5,a=10,b=2)
weights_prior = AM_mix_weights_prior_gamma(init=2, a=1, b=1)
set.seed(523)
fit <- AM_mcmc_fit(
init_K = 1,
y = mat,
mix_kernel_hyperparams = mixture_mvn_params,
mix_components_prior =components_prior,
mix_weight_prior = weights_prior,
mcmc_parameters = mcmc_params)
summary (fit)
|
stopifnot(require(testthat))
context("issue
library(naturalsort)
test_that("Produces an error when all elements are empty character", {
text <- ""
expected <- ""
actual <- naturalsort(text)
expect_that(actual, equals(expected))
})
|
.tmp_dir <- function(dir_out, action = 2, change_raster_tmp = F, tmp_orig = NULL) {
tmp_dir <- file.path(dir_out, "tmp")
if (dir.exists(tmp_dir) && action == 2) {
unlink(tmp_dir, recursive = T)
}
if (action == 1) {
dir.create(tmp_dir)
}
if (isTRUE(change_raster_tmp)) {
if (action == 1) {
rasterOptions(tmpdir = tmp_dir)
} else {
rasterOptions(tmpdir = tmp_orig)
}
}
return(tmp_dir)
}
.delete_tmp_files <- function(dir, patterns = c(".gri", ".grd")) {
patterns <- paste0(patterns, "$")
files <- unlist(sapply(patterns, function(p) list.files(dir, pattern = p)))
paths_del <- file.path(dir, files)
del <- sapply(paths_del, function(path) {
try <- try(unlink(path))
})
}
.column_summary <- function(records, records.names, download_success = F) {
gSD.cols <- grep("gSD", colnames(records))
if (length(gSD.cols > 0)) records <- records[, -gSD.cols]
diff.cols <- setdiff(colnames(records), records.names)
if (length(diff.cols) > 0) out(paste0("Columns added to records: '", paste0(diff.cols, collapse = "', '"), "'"))
if (isTRUE(download_success)) {
if (!is.null(records$download_success)) {
if (any(!records$download_success)) {
out(paste0("Some downloads have not been succesfull after ", max(records$download_attempts), " attempt(s) (see column 'download_success'). Please retry later."), type = 2)
} else {
out(paste0("All downloads have been succesfull after ", max(records$download_attempts), " attempt(s)."), msg = T)
}
}
}
return(records)
}
.translate_records <- function(records, product_name, simplify_cols = TRUE) {
records.names <- colnames(records) <- gsub("[.]", "", tolower(colnames(records)))
dict <- getOption("gSD.clients_dict")
dict$clients <- gsub("[.]", "", tolower(dict$clients))
pos.names <- match(dict$clients, colnames(records))
records.tr <- records[, as.numeric(na.omit(pos.names))]
colnames(records.tr) <- dict$gSD[!is.na(pos.names)]
if (isTRUE(simplify_cols)) {
records <- records.tr
} else {
records <- cbind(records.tr, records[, -as.numeric(na.omit(pos.names))])
}
products <- get_products(grouped = T, update_online = F)
records$product_group <- product_group <- names(products)[sapply(products, function(x) any(grepl(product_name, x)))]
records$product <- product_name
if (unique(records$product_group) == "sentinel") {
records$date_acquisition <- sapply(strsplit(records$start_time, "T"), "[", 1)
records$md5_url <- paste0(records$md5_url, "Checksum/Value/$value")
}
if (unique(records$product == "sentinel-2")) {
records$tile_id[is.na(records$tile_id)] <- sapply(strsplit(records$record_id[is.na(records$tile_id)], "_"), function(x) {
gsub("T", "", x[nchar(x) == 6 & substr(x, 1, 1) == "T"])
})
}
records$record_id <- gsub("[.]", "_", gsub(":", "_", records$record_id))
if (product_group == "sentinel") {
records$start_time <- as.POSIXct(strptime(records$start_time, "%Y-%m-%dT%T", tz = "UTC"))
records$stop_time <- as.POSIXct(strptime(records$stop_time, "%Y-%m-%dT%T", tz = "UTC"))
records$date_acquisition <- as.Date(records$date_acquisition)
}
if (product_group == "landsat") {
records$start_time <- as.POSIXct(strptime(records$start_time, "%Y:%j:%T", tz = "UTC"))
records$stop_time <- as.POSIXct(strptime(records$stop_time, "%Y:%j:%T", tz = "UTC"))
records$date_acquisition <- as.Date(records$start_time)
records$start_date <- records$stop_date <- NULL
}
if (product_group == "modis") {
records$start_time <- as.POSIXct(strptime(records$start_date, "%Y-%m-%d %T", tz = "UTC"))
records$stop_time <- as.POSIXct(strptime(records$stop_date, "%Y-%m-%d %T", tz = "UTC"))
records$date_acquisition <- as.Date(records$date_acquisition)
records$start_date <- records$stop_date <- NULL
}
if (product_group == "srtm") {
records$start_time <- as.POSIXct(strptime(records$start_time, "%Y-%m-%dT%T", tz = "UTC"))
records$stop_time <- as.POSIXct(strptime(records$stop_time, "%Y-%m-%dT%T", tz = "UTC"))
records$date_acquisition <- as.Date(records$start_time)
}
return(records)
}
.unlist_df <- function(records) {
for (i in 1:NCOL(records)) {
column <- records[, i]
not_matrix <- ifelse(inherits(records, SF()), !is.matrix(column[[1]][[1]]), !is.matrix(column[[1]][[1]][[1]]))
if (inherits(column, LIST())) {
if (not_matrix) {
column <- unlist(column)
if (!is.matrix(column) && length(column) == NROW(records)) {
records[, i] <- unlist(column)
}
}
}
}
return(records)
}
rbind.different <- function(x) {
if (.is_empty_array(x)) {
return(x)
} else {
x.bind <- x[[1]]
for (i in 2:length(x)) {
x.diff <- setdiff(colnames(x.bind), colnames(x[[i]]))
y.diff <- setdiff(colnames(x[[i]]), colnames(x.bind))
x.bind[, c(as.character(y.diff))] <- NA
x[[i]][, c(as.character(x.diff))] <- NA
x.bind <- rbind(x.bind, x[[i]])
}
return(x.bind)
}
}
.calc_aoi_area <- function(aoi) {
if (!.is_sf(aoi)) {
aoi <- st_as_sf(aoi)
}
aoi_area <- st_area(aoi)
if (length(aoi_area) > 1) {
aoi_area <- sum(aoi_area)
}
return(as.numeric(aoi_area) / 1000)
}
.calc_aoi_coverage <- function(x, aoi, aoi_ncell = NULL) {
if (is.null(aoi_ncell)) aoi_ncell <- .calc_aoi_corr_vals(aoi, x)
x_vals <- getValues(x)
x_valid <- length(x_vals[!is.na(x_vals)])
percent <- (x_valid / aoi_ncell) * 100
return(percent)
}
.calc_aoi_corr_vals <- function(aoi, x) {
e <- as.vector(st_bbox(aoi))
r <- raster(xmn = e[1], xmx = e[3], ymn = e[2], ymx = e[4], crs = crs(x), resolution = res(x))
values(r) <- as.integer(1)
r <- .mask_raster_by_polygon(r, aoi)
r_vals <- getValues(r)
aoi_npixels <- length(which(r_vals == 1))
return(aoi_npixels)
}
.has_SAR <- function(products) {
sentinel1 <- name_product_sentinel1()
if (sentinel1 %in% products) {
has_SAR <- ifelse(all(products == sentinel1), 100, 1)
} else {
has_SAR <- 0
}
}
.make_tileid <- function(records) {
if (is.null(getElement(records, name_tile_id()))) records[name_tile_id()] <- NA_character_
has_tileid <- !is.na(getElement(records, name_tile_id()))
has_vertical <- if (!is.null(getElement(records, name_tile_number_vertical()))) !is.na(getElement(records, name_tile_number_vertical())) else rep(FALSE, nrow(records))
has_horizontal <- if (!is.null(getElement(records, name_tile_number_horizontal()))) !is.na(getElement(records, name_tile_number_horizontal())) else rep(FALSE, nrow(records))
sub <- !has_tileid & has_vertical & has_horizontal
if (any(sub)) {
horizontal <- getElement(records[sub, ], name_tile_number_horizontal())
vertical <- getElement(records[sub, ], name_tile_number_vertical())
records[sub, name_tile_id()] <- paste0(horizontal, vertical)
}
records <- .make_tileid_sentinel1(records)
records <- .make_tileid_sentinel2(records)
records <- .make_tileid_sentinel3(records)
records <- .make_tileid_landsat(records)
records <- .make_tileid_modis(records)
return(records)
}
.make_tileid_sentinel1 <- function(records) {
TILEID <- name_tile_id()
RECORD_ID <- name_record_id()
FOOTPRINT <- name_footprint()
SENTINEL1 <- "S1"
POINT_SEP <- "\\."
record_ids <- records[[RECORD_ID]]
is_sentinel1 <- intersect(which(!is.na(record_ids)), which(startsWith(record_ids, SENTINEL1)))
if (!.is_empty_array(is_sentinel1)) {
no_tileid <- is_sentinel1[is.na(records[is_sentinel1, TILEID])]
footprints <- records[is_sentinel1, FOOTPRINT]
if (!is.na(no_tileid) && !.is_empty_array(no_tileid) && !.is_empty_array(footprints)) {
tileids <- sapply(footprints, function(footprint) {
tryCatch(
{
footprint <- footprint[[1]]
horizontal <- strsplit(as.character(mean(footprint[, 1][1:4])), POINT_SEP)[[1]]
vertical <- strsplit(as.character(mean(footprint[, 2][1:4])), POINT_SEP)[[1]]
id <- paste0(
"h", horizontal[1], ".", substr(horizontal[2], 1, 1),
"v", vertical[1], ".", substr(vertical[2], 1, 1)
)
},
error = function(err) {
return(NA)
}
)
})
records[no_tileid, TILEID] <- tileids
}
}
return(records)
}
.make_tileid_sentinel2 <- function(records) {
RECORD_ID <- name_record_id()
TILEID <- name_tile_id()
SENTINEL2 <- "S2"
record_ids <- records[[RECORD_ID]]
is_sentinel2 <- intersect(which(!is.na(record_ids)), which(startsWith(record_ids, SENTINEL2)))
if (!.is_empty_array(is_sentinel2)) {
no_tileid <- is_sentinel2[is.na(records[is_sentinel2, TILEID])]
if (!is.na(no_tileid) && !.is_empty_array(no_tileid)) {
tileids <- sapply(records[no_tileid, RECORD_ID], function(x) {
id <- strsplit(x, "_")[[1]][6]
})
records[no_tileid, TILEID] <- tileids
}
}
return(records)
}
.make_tileid_sentinel3 <- function(records) {
RECORD_ID <- name_record_id()
TILEID <- name_tile_id()
SENTINEL3 <- "S3"
record_ids <- records[[RECORD_ID]]
is_sentinel3 <- intersect(which(!is.na(record_ids)), which(startsWith(record_ids, SENTINEL3)))
if (!.is_empty_array(is_sentinel3)) {
no_tileid <- is_sentinel3[is.na(records[is_sentinel3, TILEID])]
if (!is.na(no_tileid) && !.is_empty_array(no_tileid)) {
tileids <- sapply(records[no_tileid, RECORD_ID], function(x) {
tryCatch(
{
sep <- "______"
if (grepl(sep, x)) {
splitted <- strsplit(x, sep)[[1]][1]
splitted1 <- strsplit(splitted, "_")[[1]]
len <- length(splitted1)
last <- tail(splitted1, 1)
if (grepl("[^0-9]", last)) {
id <- last
} else {
id <- paste0(splitted1[len - 1], splitted1[len])
}
} else {
splitted <- strsplit(x, "_LN1")[[1]]
splitted1 <- strsplit(splitted, "_")[[1]]
len <- length(splitted1)
if (len == 18) {
id <- paste0(splitted1[len - 6], splitted1[len - 5])
} else {
id <- paste0(splitted1[len - 2], splitted1[len - 1])
}
}
},
error = function(err) {
return(NA)
}
)
})
records[no_tileid, TILEID] <- tileids
}
}
return(records)
}
.make_tileid_landsat <- function(records) {
RECORD_ID <- name_record_id()
TILEID <- name_tile_id()
landsat <- name_product_group_landsat()
record_ids <- records[[RECORD_ID]]
is_landsat <- intersect(which(!is.na(record_ids)), which(startsWith(record_ids, landsat)))
if (!.is_empty_array(is_landsat)) {
no_tileid <- is_landsat[is.na(records[is_landsat, TILEID])]
if (!is.na(no_tileid) && !.is_empty_array(no_tileid)) {
tileids <- sapply(records[no_tileid, RECORD_ID], function(x) {
splitted <- strsplit(x, "_")[[1]][3]
id <- paste0(substr(splitted, 1, 3), substr(splitted, 4, 7))
})
records[no_tileid, TILEID] <- tileids
}
}
return(records)
}
.make_tileid_modis <- function(records) {
RECORD_ID <- name_record_id()
PRODUCT <- name_product()
TILEID <- name_tile_id()
modis <- name_product_group_modis()
POINT_SEP <- "\\."
h <- "h"
v <- "v"
product_names <- records[[PRODUCT]]
is_modis <- intersect(which(!is.na(product_names)), which(startsWith(product_names, modis)))
if (!.is_empty_array(is_modis)) {
no_tileid <- is_modis[is.na(records[is_modis, TILEID])]
if (!is.na(no_tileid) && !.is_empty_array(no_tileid)) {
tileids <- sapply(records[no_tileid, RECORD_ID], function(x) {
tryCatch(
{
splitted <- strsplit(x, POINT_SEP)[[1]]
splitted1 <- splitted[which(grepl(v, splitted) * grepl(h, splitted) == 1)]
splitted2 <- strsplit(splitted1, v)[[1]]
is_horizontal <- grepl(h, splitted2)
id <- paste0(h, strsplit(splitted2[is_horizontal], h)[[1]][2], v, splitted2[!is_horizontal])
},
error = function(err) {
return(NA)
}
)
})
records[no_tileid, TILEID] <- tileids
}
}
return(records)
}
.identify_period <- function(dates) {
dates_sorted <- sort(dates)
period <- c(dates_sorted[1], tail(dates_sorted, 1))
return(period)
}
.period_days <- function(period) {
days <- as.integer(unclass(as.Date(period[2])) - unclass(as.Date(period[1])))
return(days)
}
.landsat_preview_mask_edges <- function(preview) {
polygons <- "polygons"
COORDS_SLOT <- "coords"
ext <- try(extent(preview))
if (inherits(ext, TRY_ERROR())) {
return(preview)
}
poly <- as(ext, SPATIAL_POLYGONS())
crs(poly) <- crs(preview)
coords <- slot(slot(slot(poly, polygons)[[1]], "Polygons")[[1]], COORDS_SLOT)
coords[1, 1] <- coords[1, 1] + 0.08
coords[2, 1] <- coords[2, 1] + 0.42
coords[3, 1] <- coords[3, 1] - 0.08
coords[4, 1] <- coords[4, 1] - 0.42
coords[5, 1] <- coords[5, 1] + 0.08
coords[1, 2] <- coords[1, 2] + 0.38
coords[2, 2] <- coords[2, 2] - 0.06
coords[3, 2] <- coords[3, 2] - 0.38
coords[4, 2] <- coords[4, 2] + 0.05
coords[5, 2] <- coords[5, 2] + 0.38
slot(slot(slot(poly, polygons)[[1]], "Polygons")[[1]], COORDS_SLOT) <- coords
preview_masked <- .mask_raster_by_polygon(preview, poly)
extent(preview_masked) <- extent(c(coords[1, 1], coords[3, 1], coords[4, 2], coords[2, 2]))
return(preview_masked)
}
.sentinel2_preview_mask_edges <- function(preview) {
polygons <- "polygons"
COORDS_SLOT <- "coords"
ext <- try(extent(preview))
if (inherits(ext, TRY_ERROR())) {
return(preview)
}
poly <- as(ext, SPATIAL_POLYGONS())
crs(poly) <- crs(preview)
coords <- slot(slot(slot(poly, polygons)[[1]], "Polygons")[[1]], COORDS_SLOT)
val <- 0.005
coords[1, 1] <- coords[1, 1] + val
coords[2, 1] <- coords[2, 1] + val
coords[3, 1] <- coords[3, 1] - val
coords[4, 1] <- coords[4, 1] - val
coords[5, 1] <- coords[5, 1] + val
coords[1, 2] <- coords[1, 2] + val
coords[2, 2] <- coords[2, 2] - val
coords[3, 2] <- coords[3, 2] - val
coords[4, 2] <- coords[4, 2] + val
coords[5, 2] <- coords[5, 2] + val
slot(slot(slot(poly, polygons)[[1]], "Polygons")[[1]], COORDS_SLOT) <- coords
preview_masked <- .mask_raster_by_polygon(preview, poly)
extent(preview_masked) <- extent(c(coords[1, 1], coords[3, 1], coords[4, 2], coords[2, 2]))
return(preview_masked)
}
.ensure_minmax <- function(x) {
max <- 255
min_below_zero <- which(minValue(x) < 0)
max_above_255 <- which(maxValue(x) > max)
if (!.is_empty_array(min_below_zero)) {
}
if (!.is_empty_array(min_below_zero)) {
for (i in min_below_zero) {
x[[i]][x[[i]] < min] <- min
}
}
if (!.is_empty_array(max_above_255)) {
for (i in max_above_255) {
x[[i]][x[[i]] > max] <- max
}
}
return(x)
}
.raster_percent <- function(x, mode = "na", custom = c(), aoi = NULL, aoi_ncell = NULL) {
if (mode == "na") {
na_mask <- is.na(x)
x <- .mask_raster_by_polygon(na_mask, aoi)
x_mat <- as.integer(as.matrix(x))
percent <- (length(which(x_mat == 1)) / length(which(!is.na(x_mat)))) * 100
} else if (mode == "custom") {
x_mat <- as.integer(as.matrix(x))
val1 <- length(which(x_mat == custom[[1]]))
val2 <- length(which(x_mat == custom[[2]]))
percent <- (val1 / sum(val1, val2)) * 100
} else if (mode == "aoi") {
percent <- .calc_aoi_coverage(x, aoi, aoi_ncell)
}
percent <- ifelse(percent > 100, 100, percent)
}
.aggr_rasters <- function(x, x_names, aoi, factor = 750000, dir_out) {
aoi_area <- .calc_aoi_area(aoi)
adj <- aoi_area / factor
res_ref <- mean(res(raster(x[[1]])))
target_res <- 0.0019 * adj
if (target_res > 0.0042) target_res <- 0.004
adj <- target_res / res_ref
adj <- ifelse(adj < 2 && adj > 1, 2, adj)
if (adj > 1) {
x_adj <- sapply(1:length(x), function(i) {
r_save_path <- file.path(dir_out, paste0(x_names[i], "_aggr.tif"))
if (file.exists(r_save_path)) {
return(r_save_path)
}
r_load <- stack(x[[i]])
r_aggr <- aggregate(r_load, adj)
writeRaster(r_aggr, r_save_path, overwrite = T, datatype = dataType(r_load))
return(r_save_path)
})
} else {
return(x)
}
return(x_adj)
}
.make_mosaic <- function(x, save_path, mode = "mask",
srcnodata = NULL, datatype = NULL) {
write_mos <- try(gdalbuildvrt(x, save_path,
resolution = "highest",
srcnodata = as.character(srcnodata),
vrtnodata = "0",
seperate = F, overwrite = T,
datatype = datatype
))
if (inherits(write_mos, TRY_ERROR())) {
return(NA)
} else {
mos <- raster(save_path)
if (mode == "rgb") {
return(mos)
} else {
mos <- mos == 1
}
}
}
.mask_raster_by_polygon <- function(x, polygon) {
if (!inherits(polygon, SPATIAL_POLYGONS())) {
polygon <- as_Spatial(st_zm(polygon))
}
return(mask(x, polygon))
}
.crop_raster_by_polygon <- function(x, polygon) {
if (!inherits(polygon, SPATIAL_POLYGONS())) {
polygon <- as_Spatial(polygon)
}
return(crop(x, polygon))
}
.normalized_difference <- function(x, y) {
a <- x - y
b <- x + y
norm_diff <- a / b
return(norm_diff)
}
.rescale_raster <- function(x) {
return((x - minValue(x)) / (maxValue(x) - minValue(x)) * 100)
}
.create_preview_na_mask <- function(preview, record) {
product_group <- record[[name_product_group()]]
is_olci <- .record_is_olci(record)
is_landsat_or_sentinel2 <- product_group %in% c(name_product_group_landsat(), name_product_group_sentinel())
is_continental_s3 <- .record_is_s3_continental(record)
if (any(is_olci, is_landsat_or_sentinel2, is_continental_s3)) {
MIN_DN <- ifelse(is_landsat_or_sentinel2, 3, 0)
NA_mask <- ((preview[[1]] > MIN_DN) + (preview[[2]] > MIN_DN) + (preview[[3]] > MIN_DN)) >= 1
} else {
NA_mask <- preview[[1]] > -100
}
return(NA_mask)
}
.add_aoi <- function(map = NULL, aoi_colour, homebutton = F) {
if (isFALSE(getOption("gSD.aoi_set"))) {
out("No AOI is displayed, since no AOI has been set yet (use 'set_aoi()' to define an AOI).", type = 2)
} else {
aoi.sf <- getOption("gSD.aoi")
map.aoi <- mapview(aoi.sf, layer.name = "AOI", label = "AOI", lwd = 6, color = aoi_colour, legend = F, homebutton = homebutton)
if (!is.null(map)) {
return(map + map.aoi)
} else {
return(map.aoi)
}
}
}
.gsd_compact <- function(x) {
if (inherits(x, LIST()) || length(x) > 1) {
not_na <- sapply(x, function(y) {
return((!is.na(y) && !is.null(y)))
})
if (length(x) > 0) {
x <- x[not_na]
}
}
return(x)
}
.is_empty_array <- function(x) {
all_null <- sapply(x, function(element) {
return(ifelse(inherits(element, LIST()), FALSE, is.null(element)))
})
all_na <- sapply(x, function(element) {
return(ifelse(inherits(element, LIST()), FALSE, is.na(element)))
})
return(length(x) == 0 || is.null(x) || is.na(x) || all_null || all_na)
}
.char_can_be_int <- function(x) {
return(!grepl("[^0-9]", x))
}
.eval_records_footprints <- function(records, as_sf = TRUE) {
name_footprint <- name_footprint()
footprints <- list()
for (i in 1:NROW(records)) {
record <- records[i, ]
f <- record[[name_footprint]][[1]]
is_sfg <- inherits(f, "sfg")
is_sfc <- inherits(f, "sfc")
if (is_sfg) {
footprints[[i]] <- f
} else if (is_sfc) {
footprints[[i]] <- f[[1]]
} else {
footprint_eval <- try(unlist(eval(parse(text = f))))
if (inherits(footprint_eval, "try-error")) {
out("Could not create footprint", type = 2)
footprints[[i]] <- f
} else {
ncol <- 2
nrow <- length(footprint_eval) / ncol
m <- matrix(data = footprint_eval, nrow = nrow, ncol = ncol)
footprints[[i]] <- st_multipolygon(list(list(m)))
}
}
}
records[[name_footprint]] <- st_sfc(footprints, crs = 4326)
return(.check_records(records, as_sf = as_sf))
}
.generate_datetime_filename <- function(name, extension = "", sep = "_") {
return(paste(Sys.Date(), format(Sys.time(), "%Hh%Mm%Ss"), paste0(name, extension), sep = "_"))
}
.generate_records_filename <- function(file_name = NULL, dir_out = NULL, driver = NULL) {
if (is.null(driver)) driver <- "GeoJSON"
ext <- get_records_drivers()[[driver]]
if (is.null(file_name)) {
file_name <- .generate_datetime_filename("records", extension = ext)
} else {
file_name <- paste0(file_name, ext)
}
file <- file.path(dir_out, file_name)
return(file)
}
.set_verbose <- function(verbose) {
options("gSD.verbose" = verbose)
}
.uncharacter_dataframe <- function(df) {
if (inherits(df, "data.frame")) {
for (i in 1:NCOL(df)) {
column <- df[[i]]
column_new <- c()
if (inherits(column, "character")) {
for (j in 1:length(column)) {
element <- column[j]
if (is.null(element)) {
column_new[j] <- element
} else if (is.na(element)) {
column_new[j] <- element
} else if (is.na(suppressWarnings(try(as.numeric(element))))) {
char <- as.character(element)
if (char == "NA") char <- NA
column_new[j] <- char
} else {
column_new[j] <- as.numeric(element)
}
}
df[[i]] <- column_new
}
}
}
return(df)
}
.create_datetime_string <- function() {
return(gsub(":", "_", gsub(" ", "_", as.character(Sys.time()))))
}
.retry <- function(fun, ..., fail, ini = NULL, retry = NULL, final = NULL, n = 3, delay = 0, value = TRUE, verbose = T) {
extras <- list(...)
if (!is.null(ini)) eval(ini)
while (n != 0) {
x <- try(fun(...), silent = T)
if (inherits(x, "try-error")) {
if (grepl("aborted", as.character(attributes(x)$condition))) out("Operation was aborted by an application callback.", type = 3) else eval(retry)
n <- n - 1
if (n == 0) x <- eval(fail)
} else {
n <- 0
}
Sys.sleep(delay)
}
eval(final)
if (isTRUE(value)) {
return(x)
}
}
.lapply <- function(X, FUN, ..., verbose = FALSE) {
if (isTRUE(verbose)) pblapply(X, FUN, ...) else lapply(X, FUN, ...)
}
.sapply <- function(X, FUN, ..., verbose = FALSE) {
if (isTRUE(verbose)) pbsapply(X, FUN, ...) else sapply(X, FUN, ...)
}
.apply <- function(X, MARGIN, FUN, ..., verbose = FALSE) {
if (isTRUE(verbose)) pbapply(X, MARGIN, FUN, ...) else apply(X, MARGIN, FUN, ...)
}
.onLoad <- function(libname, pkgname) {
pboptions(type = "timer", char = "=", txt.width = getOption("width") - 30)
dict <- rbind.data.frame(
c("summary", "product_group"),
c("summary", "product"),
c("title", "record_id"),
c("displayId", "record_id"),
c("uuid", "entity_id"),
c("entityId", "entity_id"),
c("id", "entity_id"),
c("summary", "summary"),
c("dataset_id", "summary"),
c("localgranuleid", "summary"),
c("beginposition", "start_time"),
c("StartTime", "start_time"),
c("time_start", "start_time"),
c("temporalcoveragestartdate", "start_date"),
c("endposition", "stop_time"),
c("StopTime", "stop_time"),
c("temporalcoverageenddate", "stop_date"),
c("time_end", "stop_time"),
c("beginposition", "date_acquisition"),
c("acquisitionDate", "date_acquisition"),
c("AcquisitionStartDate", "date_acquisition"),
c("daynightindicator", "day_or_night"),
c("ingestiondate", "date_ingestion"),
c("publishdate", "date_publish"),
c("dateentered", "date_ingestion"),
c("dateupdated", "date_modified"),
c("modifiedDate", "date_modified"),
c("updated", "date_modified"),
c("creationdate", "date_creation"),
c("footprint", "footprint"),
c("boxes", "footprint"),
c("tileid", "tile_id"),
c("wrspath", "tile_number_horizontal"),
c("wrsrow", "tile_number_vertical"),
c("HorizontalTileNumber", "tile_number_horizontal"),
c("VerticalTileNumber", "tile_number_vertical"),
c("url.alt", "md5_url"),
c("browseUrl", "preview_url"),
c("url.icon", "preview_url"),
c("preview_url", "preview_url"),
c("metadataUrl", "meta_url"),
c("fgdcMetadataUrl", "meta_url_fgdc"),
c("slicenumber", "slice_number"),
c("orbitnumber", "orbit_number"),
c("orbitdirection", "orbit_direction"),
c("lastorbitnumber", "lastorbit_number"),
c("relativeorbitnumber", "relativeorbit_number"),
c("lastrelativeorbitnumber", "lastrelativeorbit_number"),
c("passnumber", "pass_number"),
c("passdirection", "pass_direction"),
c("relorbitdir", "relativeorbit_direction"),
c("relpassnumber", "relativepass_number"),
c("relpassdirection", "relativepass_direction"),
c("lastorbitdirection", "lastorbit_direction"),
c("lastpassnumber", "lastpass_number"),
c("lastpassdirection", "lastpass_direction"),
c("lastrelorbitdirection", "lastrelativeorbit_direction"),
c("lastrelpassnumber", "lastrelativepass_number"),
c("lastrelpassdirection", "lastrelativepass_direction"),
c("swathidentifier", "swath_id"),
c("producttype", "product_type"),
c("productclass", "product_class"),
c("productconsolidation", "product_consolidation"),
c("timeliness", "timeliness"),
c("platformname", "platform"),
c("Platform", "platform"),
c("platformidentifier", "platform_id"),
c("platformserialidentifier", "platform_serial"),
c("instrumentname", "sensor"),
c("Sensor", "sensor"),
c("instrumentshortname", "sensor_id"),
c("SensorIdentifier", "sensor_id"),
c("sensoroperationalmode", "sensor_mode"),
c("polarisationmode", "polarisation_mode"),
c("acquisitiontype", "acquistion_type"),
c("size", "size"),
c("is_gnss", "is_gnss"),
c("landcloudcover", "cloudcov_land"),
c("scenecloudcover", "cloudcov"),
c("cloudcover", "cloudcov"),
c("cloudcoverpercentage", "cloudcov"),
c("highprobacloudspercentage", "cloudcov_highprob"),
c("mediumprobacloudspercentage", "cloudcov_mediumprob"),
c("notvegetatedpercentage", "cloudcov_notvegetated"),
c("snowicepercentage", "snowice"),
c("unclassifiedpercentage", "unclassified"),
c("vegetationpercentage", "vegetation"),
c("waterpercentage", "water"),
c("processinglevel", "level"),
c("versionnumber", "version_product"),
c("productgenerationalgorithm", "version_algorithm"),
c("level", "level"),
c("AutoQualityFlag", "flag_autoquality"),
c("AutoQualityFlagExplanation", "flag_autoquality_expl"),
c("ScienceQualityFlag", "flag_sciencequality"),
c("ScienceQualityFlagExpln", "flag_sciencequality_expl"),
c("MissingDataPercentage", "missingdata"),
c("collectionnumber", "collection"),
c("collectioncategory", "collection_category"),
c("collection_concept_id", "product_id"),
c("product", "product"),
stringsAsFactors = F
)
colnames(dict) <- c("clients", "gSD")
op <- options()
op.gSD <- list(
gSD.api = list(
dhus = "https://scihub.copernicus.eu/dhus/",
codede = list(auth = "https://auth.cloud.code-de.org/auth/realms/code-de/protocol/openid-connect/token"),
s5p = "https://s5phub.copernicus.eu/",
gnss = "https://scihub.copernicus.eu/gnss/",
espa = "https://espa.cr.usgs.gov/api/v1/",
ee = "https://m2m.cr.usgs.gov/api/api/json/stable/",
aws.l8 = "https://landsat-pds.s3.amazonaws.com/c1/L8/",
aws.l8.sl = "https://landsat-pds.s3.amazonaws.com/c1/L8/scene_list.gz",
laads = "https://ladsweb.modaps.eosdis.nasa.gov/archive/allData/"
),
gSD.api.names = list(
dhus = "ESA Copernicus Open Hub",
codede = "CODE-DE",
s5p = "ESA Copernicus S5P Hub",
gnss = "ESA Copernicus GNSS Hub",
espa = "USGS-EROS ESPA",
ee = "USGS EarthExplorer",
aws.l8 = "AWS Landsat 8",
laads = "NASA DAAC LAADS"
),
gSD.copnames = data.frame(
name = c("sentinel-1", "sentinel-2", "sentinel-3", "sentinel-5p", "gnss"),
api = c("dhus", "dhus", "dhus", "s5p", "gnss"), stringsAsFactors = F
),
gSD.sen2cor = list(
win = "http://step.esa.int/thirdparties/sen2cor/2.5.5/Sen2Cor-02.05.05-win64.zip",
linux = "http://step.esa.int/thirdparties/sen2cor/2.5.5/Sen2Cor-02.05.05-Linux64.run",
mac = "http://step.esa.int/thirdparties/sen2cor/2.5.5/Sen2Cor-02.05.05-Darwin64.run"
),
gSD.verbose = FALSE,
gSD.dhus_session = NULL,
gSD.dhus_user = FALSE,
gSD.dhus_pass = FALSE,
gSD.dhus_set = FALSE,
gSD.dhus_time = NULL,
gSD.codede_token = NULL,
gSD.codede_user = NULL,
gSD.codede_pass = NULL,
gSD.codede_set = FALSE,
gSD.codede_time = NULL,
gSD.usgs_user = FALSE,
gSD.usgs_pass = FALSE,
gSD.usgs_set = FALSE,
gSD.usgs_time = NULL,
gSD.usgs_refresh = 60,
gSD.usgs_apikey = FALSE,
gSD.ed_user = FALSE,
gSD.ed_pass = FALSE,
gSD.ed_set = FALSE,
gSD.ed_time = NULL,
gSD.ed_refresh = 60,
gSD.archive = FALSE,
gSD.archive_set = FALSE,
gSD.aoi = FALSE,
gSD.aoi_set = FALSE,
gSD.products = NULL,
gSD.clients_dict = dict
)
toset <- !(names(op.gSD) %in% names(op))
if (any(toset)) options(op.gSD[toset])
invisible()
}
.onUnload <- function(libname, pkgname) {
if (isTRUE(getOption("gSD.usgs_set"))) .ERS_logout(getOption("gSD.usgs_apikey"))
}
|
setClass( "doubleEntry",
representation( meta = "list",
scale = "list",
coupled = "logical",
elements = "list",
constructs = "list",
elicitation = "list",
ratings = "array",
calcs = "list",
plotdata = "data.frame"))
|
library(googleCloudRunner)
bs <- c(
cr_buildstep_gitsetup("github-ssh"),
cr_buildstep_git(c("clone","[email protected]:MarkEdmondson1234/googleCloudRunner",".")),
cr_buildstep_docker("gcr.io/gcer-public/packagetools",
dir = "inst/docker/packages/")
)
build <- cr_build_yaml(bs, timeout = 2400)
cr_build_write(build, "inst/docker/packages/cloudbuild.yml")
s_me <- cr_build_schedule_http(build)
cr_schedule("packagetest-build2", schedule = "15 9 * * 1", httpTarget = s_me)
|
MaxentIC <- function(csvfile, grdfile, lambdasfile) {
nparams = 0
probsum = 0
loglikelihood = 0
AICcscore = 0
AICscore = 0
BICscore = 0
lambdases <- read.csv(lambdasfile, header=FALSE)
nparams <- nrow(lambdases[lambdases$V2 != 0, ])
nparams = nparams - 4
layerRaw <- raster::raster(grdfile)
probsum <- raster::cellStats(layerRaw, sum)
points <- read.csv(csvfile)
npoints <- nrow(points)
layerValues <- raster::extract(layerRaw, points[, c("longitude", "latitude")])
loglikelihood <- sum(log(layerValues / probsum))
if (nparams >= npoints - 1) {
AICcscore <- "x"
AICscore <- "x"
BICscore <- "x"
} else {
AICcscore = (2 * nparams - 2 * loglikelihood) + (2 * (nparams) * (nparams + 1) / (npoints - nparams - 1))
AICscore = 2 * nparams - 2 * loglikelihood
BICscore = nparams * log(npoints) - 2 * loglikelihood
}
ICs <- c(npoints, nparams, loglikelihood, AICscore, AICcscore, BICscore)
return(ICs)
}
|
require("TSsdmx")
ilo <- TSconnect("sdmx", dbname="ILO")
z <- TSget("DF_YI_ALL_EMP_TEMP_SEX_AGE_NB/YI.MEX.A.463.EMP_TEMP_NB.SEX_F.AGE_10YRBANDS_TOTAL",
ilo)
if (! all(c(1988,1) == start(z))) stop("ILO test 1 start date changed.")
z <- TSget("DF_YI_ALL_EMP_TEMP_SEX_AGE_NB/YI.MEX.A.463.EMP_TEMP_NB.SEX_F.AGE_10YRBANDS_TOTAL",
start=c(1995,1), end=c(2012,1), ilo)
if (! all(c(1995,1) == start(z))) stop("ILO test 2 start date error.")
z <- TSget("DF_YI_ALL_EMP_TEMP_SEX_AGE_NB/YI.MEX.A.463.EMP_TEMP_NB.SEX_F.AGE_10YRBANDS_TOTAL",
start="1995-01-01", end="2012-12-31", ilo)
if (!all(c(2012,1) == end(z))) stop("ILO test 2 end date error.")
z <- TSget( "DF_YI_ALL_EMP_TEMP_SEX_AGE_NB/YI.DEU+FRA+GBR+ITA.A..EMP_TEMP_NB.SEX_T.AGE_AGGREGATE_TOTAL", ilo)
if (10 != tframe::nseries(z))
stop("ILO test 3 number of series changed (again).")
if (! all(c(1969,1) == start(z))) stop("ILO test 3 start date error.")
tframe::seriesNames(z)
|
post1PYO=function(canc,brks=c(0,2,5),binIndx=1,Trt="rad",PYLong=FALSE,yearEnd,firstS,secondS) {
surv=yrdx=age=casenum=cancer=trt=yrdx1=seqnum=yrdiff=mn=NULL
age=NULL
yrdx2=yrdiffn=cancer1=cancer2=py=year=ageL=ageR=age1=age2=ageM=sem=NULL
if(sum(canc$trt==Trt,na.rm=T)==0) stop(paste0("canc must have a trt column containing",Trt))
binS=levels(cut(brks+0.1,breaks=c(brks,100)))
bin=binS[binIndx]
LL=getBinInfo(bin,binS)["LL"]
print(bin)
D0=canc%>%filter(seqnum==0,surv<200,surv>LL,trt==Trt,cancer%in%firstS)
D0$cancer=factor(D0$cancer,levels=firstS)
D1=canc%>%filter(seqnum==1,trt==Trt,cancer%in%firstS)%>%select(casenum,cancer,yrdx,age,trt)
D1$cancer=factor(D1$cancer,levels=firstS)
D2=canc%>%filter(seqnum==2)
D1=D1%>%filter(casenum%in%D2$casenum)
names(D1)[2:5]=c("cancer1","yrdx1","age1","trt1")
D2=D2%>%select(casenum,cancer2=cancer,yrdx2=yrdx,age2=age)
D12=left_join(D2,D1,by="casenum")
D12=D12%>%filter(!is.na(yrdx1))
D12=D12%>%mutate(yrdiffn=yrdx2-yrdx1)
D12$yrdiffn[D12$yrdiffn==0]=0.33/12
D12py=D12
D12=D12%>%mutate(yrdiff=cut(yrdiffn,breaks=c(-1,brks,100),include.lowest = TRUE))
D12=D12%>%filter(yrdiff==bin)
PY0=D0%>%mutate(py=getPY(surv,bin,binS,brks))
PY0=PY0%>%filter(py>0)
PY0=PY0%>%mutate(ageL=age+LL)
PY0$year=floor(PY0$yrdx+LL)
PY0$cancer2="none"
PY0=PY0%>%select(cancer1=cancer,cancer2,py,ageL,year)
PY12=D12py%>%mutate(py=getPY(yrdiffn,bin,binS,brks))
PY12=PY12%>%filter(py>0)
PY12=PY12%>%mutate(ageL=age1+LL)
PY12$year=floor(PY12$yrdx1+LL)
PY12=PY12%>%select(cancer1,cancer2,py,ageL,year)
PYL=rbind(PY0,PY12)
N=dim(PYL)[1]
binMidPnt=LL+sum(PYL$py)/N/2
PYL=PYL%>%mutate(ageM=ageL+py/2)
PYA=PYL%>%group_by(cancer1)%>%summarize(n=n(),py=sum(py),age=mean(ageM),sig2=var(ageM))%>%mutate(t=LL + py/n/2)
AgeO=D12%>%filter(cancer2%in%secondS)%>%group_by(cancer1,cancer2)%>%
summarize(age=mean(age2),sig2=var(age2),n=n())
PYin=PYL%>%select(-cancer1,-cancer2,-ageM)
LPYin=split(PYin,PYL$cancer1)
LPYinM=lapply(LPYin,as.matrix)
LPYM=NULL
yrs=1975:yearEnd
nyears=length(yrs)
ages=0.5:125.5
Zs=matrix(0,ncol=nyears,nrow=length(ages))
colnames(Zs)=yrs
rownames(Zs)=ages
for (i in firstS) {
PYMat=Zs+0
LPYM[[i]]=fillPYM(LPYinM[[i]],PYMat)
}
LD12=split(D12,D12$cancer1)
O=t(sapply(LD12,function(x) table(x$cancer2)))
rownames(O)=names(LD12)
colnames(O)=levels(D12$cancer2)
L1=list(LPYM=LPYM,O=O,binMidPnt=binMidPnt,AgeO=AgeO,PYA=PYA)
if (PYLong) L1$PYL=PYL
L1
}
|
mod <- function(x, minMI = 10) {
if ((x$means == TRUE | x$diff == TRUE) & packageVersion("lavaan") <= "0.5.15") {
stop("Modification indices do not work when mean structure or delta method are used. If you upgrade to lavaan 0.5.16 (or later), you can get MI for these models as well.")
}
MI <- modindices(x$fit, standardized=TRUE)
MI <- MI[order(MI$mi, decreasing=TRUE), ]
if (max(MI$mi, na.rm=TRUE) < minMI) {
print(paste0("No modification index is larger then ", minMI, "."))
invisible(NULL)
}
MI2 <- MI[!is.na(MI$mi) & MI$mi>minMI, ]
if (nrow(MI2)>0) {
return(MI2)
} else {
invisible(NULL)
}
}
|
missingdata <- function(data,
unk=0
){
pedigree.data<-data
data <- c()
if( ncol(pedigree.data) != 3 ){
print("Data with more than 3 columns, please verify")
return()
}
ind.data <- as.vector(c(unk,as.character(pedigree.data[,1])))
sire.data <- as.vector(pedigree.data[,2])
dire.data <- as.vector(pedigree.data[,3])
sire <- match(sire.data, ind.data)
dire <- match(dire.data, ind.data)
ind <- as.vector(c(1:length(ind.data)))
missing <- c()
missing$conflict <- c(which( sire == ind[-1]),which( dire == ind[-1] ))
missing$sire.na <- c( which(is.na(sire)))
missing$dire.na <- c( which(is.na(dire)))
missing$sire <- as.matrix(summary(as.factor(pedigree.data[which(is.na(sire)),2])))
missing$dire <- as.matrix(summary(as.factor(pedigree.data[which(is.na(dire)),3])))
names <- unique(c(rownames(missing$sire),rownames(missing$dire)))
pos.sire <- match(rownames(missing$sire),names)
pos.dire <- match(rownames(missing$dire),names)
missing$parent <- rep(0,length(names))
missing$parent[pos.dire] <- missing$dire
missing$parent[pos.sire] <- missing$parent[pos.sire]+missing$sire
missing$parent <- as.matrix(missing$parent)
rownames(missing$parent) <- names
missing <- list(conflict=missing$conflict,missing.sire=missing$sire.na,missing.dire=missing$dire.na,summary.missing=missing$parent)
return(missing)
}
|
print.loglik_dglars <- function (x, digits = max(3, getOption("digits") - 3), ...){
model <- x$object$control$method
fml <- x$object$family
tbl <- data.frame(g = x$g, df = x$df, loglik = x$loglik)
cat("Sequence of log-likelihood values for the estimated", sQuote(model),"models.")
cat("\n\nDetails:\n")
cat("\t", sQuote(fml$family) ,"family with link function", sQuote(fml$link),"\n")
if(!fml$family %in% c("binomial", "poisson"))
cat("\t (dispersion parameter estimated by", sQuote(x$phi), ")\n\n")
else
cat("\t (dispersion parameter for", fml$family, "family taken to be 1)\n\n")
print.data.frame(tbl, print.gap = 2, quote = FALSE, row.names = FALSE, ...)
invisible(tbl)
}
|
AUCRFcv <-
function(x,nCV=5,M=20){
AUC.votes <-
function(votes,y=NULL,clase=1){
if(missing(y) || is.null(y)) y <- votes$y
r <- rank(votes[,as.character(clase)])
rd <- mean(r[y==clase])
nd <- sum(y==clase)
nnd <- length(y)-nd
return((rd-nd/2-0.5)/nnd)
}
cl <- match.call()
switch(class(x),
"AUCRF" = {
callRF <- x$call
data <- x$data
callRF$data <- as.name("newData")
yname <- as.character(eval(x$call$formula)[[2]])
},
stop("x must be a AUCRF object.")
)
cvAUC <- NULL
varnames <- colnames(data)[colnames(data)!=yname]
nSelect <- rep(0,length(varnames))
names(nSelect) <- varnames
for(m in 1:M){
CV <- list()
mpredict <- NULL
indPermuted <- matrix(c(sample(rownames(data)),rep(NA,nCV-nrow(data)%%nCV)),ncol=nCV,byrow=TRUE)
for(k in 1:nCV){
indTest <- indPermuted[,k]
indTest <- indTest[!is.na(indTest)]
indTrain <- rownames(data)[!(rownames(data) %in% indTest)]
newData <- data[indTrain,]
kaucRF <- eval(callRF)
mpredict <- rbind(mpredict, predict(kaucRF$RFopt,newdata=data[indTest,],type="vote"))
nSelect[kaucRF$Xopt] <- nSelect[kaucRF$Xopt]+1
}
mvotes <- data.frame(y=data[,yname],mpredict[rownames(data),])
class(mvotes) <- c("votes","data.frame")
colnames(mvotes) <- c("y","0","1")
cvAUC <- c(cvAUC, AUC.votes(mvotes))
}
if(class(x)=="AUCRF")
objectList <- x
else
objectList <- list()
objectList$cvAUC <- mean(cvAUC)
objectList$Psel <- nSelect/(M*nCV)
objectList$callcv <- cl
class(objectList) <- c("AUCRFcv","AUCRF")
return(objectList)
}
|
test_that("padding with interactions", {
skip_if_not_installed("insight", minimum_version = "0.14.4.1")
dat <- read.csv("https://vincentarelbundock.github.io/Rdatasets/csv/ggplot2movies/movies.csv")
dat$style <- ifelse(dat$Action == 1, "Action", "Other")
dat$style <- ifelse(dat$Comedy == 1, "Comedy", dat$style)
dat$style <- ifelse(dat$Drama == 1, "Drama", dat$style)
dat$style <- factor(dat$style)
dat$certified_fresh <- dat$rating >= 8
dat <- dat[dat$length < 240,]
mod <- glm(certified_fresh ~ length * style, data = dat, family = binomial)
res <- predictions(mod, type = c("response", "link"))
expect_predictions(res, n_row = nrow(dat) * 2)
})
|
print.summary.spsur <- function(x, digits = max(3L, getOption("digits") - 3L),
...) {
G <- x$G
cat("Call:\n")
print(x$call)
cat("\n","\n")
cat("Spatial SUR model type: ",x$type,"\n\n")
for (i in 1:G){
cat("Equation ",i,"\n")
printCoefmat(x$coef_table[[i]], P.values = TRUE, has.Pvalue = TRUE)
cat("R-squared: ", formatC(x$R2[i+1], digits = 4), " ", sep = "")
cat("\n"," ")
}
cat("\n")
if (x$Tm>1 | x$G>1){
cat("Variance-Covariance Matrix of inter-equation residuals:")
prmatrix(x$Sigma,digits=4,
rowlab=rep("", nrow(x$Sigma)), collab = rep("", ncol(x$Sigma)))
} else {
cat("Residual standard error:",formatC(sqrt(x$Sigma), digits = 4, width = 6))
}
if (x$Tm>1 | x$G>1){
cat("Correlation Matrix of inter-equation residuals:")
prmatrix(x$Sigma_corr,digits=3,
rowlab=rep("",nrow(x$Sigma)), collab = rep("",ncol(x$Sigma)))
}
if (x$Tm>1 | x$G>1){
cat("\n R-sq. pooled: ", formatC(x$R2[1], digits = 4)," ", sep = "")
if(!is.null(x$llsur)){
cat("\n Log-Likelihood: ",formatC(x$llsur, digits = 6, width = 6))
}
}
if (x$Tm>1 | x$G>1){
if(!is.null(x$BP)){
cat("\n Breusch-Pagan: ",formatC(x$BP, digits = 4),
" p-value: (",formatC(pchisq(x$BP, df = G*(G - 1)/2, lower.tail = FALSE),
digits = 3, width = 4),") ", sep = "")
}
}
if(!is.null(x$LMM)){
if (x$Tm==1 & x$G==1){
df= 1}
else {df= G*(G - 1)/2
}
cat("\n LMM: ",formatC(x$LMM, digits = 5),
" p-value: (",formatC(pchisq(x$LMM, df = df,
lower.tail = FALSE),
digits = 3, width = 4),")\n", sep = "")
}
invisible(x)
}
|
Yule04<-
function (X,YY,levX,nameYY,tri=0,alpha=0.05)
{
T4 <- Yule03(X, YY, levX,nameYY,tri=tri)
T4<-na.omit(T4)
couleur<-rep(1,nrow(T4))
couleur[T4[,4]<alpha]<-2
L <- nrow(T4)
MIN <- min(-1, T4[, 2] - 1.96 * T4[, 3])
MAX <- max(1, T4[, 2] + 1.96 * T4[, 3])
dotchart(T4[, 2], labels = rownames(T4), xlim = c(MIN, MAX),
main = levX,color=couleur,xlab="Yule's Q")
abline(v = 0, lty = 2)
segments(T4[, 2] - 1.96 * T4[, 3], 1:L, T4[, 2] + 1.96 *
T4[, 3], 1:L,col=couleur)
}
|
test_that("scent_select() selects the correct columns", {
gene1 <- c(0,0,0,0,1,2,3)
gene2 <- c(5,5,3,2,0,0,0)
gene3 <- c(2,0,2,1,3,0,1)
gene4 <- c(3,3,3,3,3,3,3)
gene5 <- c(0,0,0,0,5,0,0)
gene_counts <- matrix(c(gene1,gene2,gene3,gene4,gene5), ncol = 5)
rownames(gene_counts) <- paste0("cell",1:7)
colnames(gene_counts) <- paste0("gene",1:5)
expect_equal(
scent_select(gene_counts, bit_threshold = 0.85),
gene_counts[,c(1,2,5)]
)
expect_equal(
scent_select(gene_counts, count_threshold = 2),
gene_counts[,c(1,5)]
)
expect_equal(
scent_select(gene_counts, perc_threshold = 0.25),
gene_counts[,c(1,2,3,5)]
)
})
test_that("scent_select_tidy() selects the correct columns", {
library(tibble)
gene1 <- c(0,0,0,0,1,2,3)
gene2 <- c(5,5,3,2,0,0,0)
gene3 <- c(2,0,2,1,3,0,1)
gene4 <- c(3,3,3,3,3,3,3)
gene5 <- c(0,0,0,0,5,0,0)
gene_counts <- matrix(c(gene1,gene2,gene3,gene4,gene5), ncol = 5)
rownames(gene_counts) <- paste0("cell",1:7)
colnames(gene_counts) <- paste0("gene",1:5)
gene_counts <- as_tibble(gene_counts)
expect_equal(
scent_select_tidy(gene_counts, bit_threshold = 0.85),
gene_counts[,c(1,2,5)]
)
expect_equal(
scent_select_tidy(gene_counts, count_threshold = 2),
gene_counts[,c(1,5)]
)
expect_equal(
scent_select_tidy(gene_counts, perc_threshold = 0.25),
gene_counts[,c(1,2,3,5)]
)
})
|
table2office=function(x=NULL,target="Report",append=FALSE,title="",vanilla=FALSE,echo=FALSE,
preprocessing="",type="pptx",landscape=FALSE,left=1,top=1){
doc<-open_doc(target=target,type=type,append=append)
target=attr(doc,"name")
if(title!=""){
doc <- doc %>% add_text(title=title)
} else {
if(type=="pptx") doc <- doc %>% add_slide(layout="Blank")
}
pos=top
if(title!="") pos=pos+0.5
if(echo & is.character(x)) {
codeft=Rcode2flextable(x,preprocessing=preprocessing,format="pptx",eval=FALSE)
doc<-doc %>% ph_with(value=codeft, location = ph_location(left=1,top=pos))
pos=pos+0.5
}
if("character" %in% class(x)){
x<-eval(parse(text=x))
}
if("mytable" %in% class(x)){
ft<-mytable2flextable(x,vanilla=vanilla)
} else if(class(x)[1] %in%
c("matrix","lm","fitdistr","nls","aov","anova","glm","coxph","prcomp","summary.prcomp")){
ft<-ztable2flextable(ztable(x),vanilla=vanilla)
} else if(class(x)[1]=="data.frame"){
ft<-df2flextable(x,vanilla=vanilla)
} else if(class(x)[1]=="flextable"){
ft<-x
}
if(class(doc)=="rpptx"){
doc<-doc %>% ph_with(value=ft,location = ph_location(left=left,top=pos))
} else {
if(landscape) doc <- body_end_section_portrait(doc)
doc<-doc %>% body_add_flextable(ft)
if(landscape) doc <- body_end_section_landscape(doc)
}
message(paste0("Exported table as ", target))
doc %>% print(target=target)
}
table2pptx=function(...){
table2office(...,type="pptx")
}
table2docx=function(...){
table2office(...,type="docx")
}
|
context("test running dtw")
goal <- function(h, x, ws, dm, sp){
nx <- length(x)
nh <- length(h)
hscale <- IncDTW::scale(h, type = "01")
sapply(1:(nx-nh+1), function(i){
y <- IncDTW::scale(x[i:(i+nh-1)], type = "01")
IncDTW::dtw2vec(y, hscale, dist_method = dm,
step_pattern = sp, ws = ws)$dist
})
}
noise <- function(i) cumsum(rnorm(i))
test_that("no variance for a sequence", {
dm <- "norm1"
sp <- "symmetric1"
WS <- 10
h <- rep(rnorm(1), 20)
hscale <- IncDTW::scale(h, type="01")
x <- c(noise(10), rep(rnorm(1), 20), noise(10))
ret <- rundtw(Q = h, C = x, dist_method = dm, step_pattern = sp,
ws = WS, scale = "01", threshold = NULL, lower_bound = F)
ist <- ret$dist[11]
soll <- 0
expect_equal(ist, soll)
ret <- rundtw(Q = h, C = x, dist_method = dm, step_pattern = sp,
ws = WS, scale = "z", threshold = NULL, lower_bound = F)
ist <- ret$dist[11]
soll <- 0
expect_equal(ist, soll)
})
test_that("equal sapply univariate norm1", {
dm <- "norm1"
sp <- "symmetric1"
WS <- 10
h <- noise(10)
hscale <- IncDTW::scale(h, type="01")
x <- c(noise(10), h, noise(10))
ist <- rundtw(Q = h, C = x, dist_method = dm, step_pattern = sp,
ws = WS, scale = "01", threshold = NULL, lower_bound = F)
soll <- goal(h, x, WS, dm, sp)
expect_equal(ist$dist, soll)
})
test_that("equal sapply univariate sym2", {
dm <- "norm1"
sp <- "symmetric2"
WS <- 10
h <- noise(10)
hscale <- IncDTW::scale(h, type="01")
x <- c(noise(10), h, noise(10))
ist <- rundtw(Q = h, C = x, dist_method = dm, step_pattern = sp,
ws = WS, scale = "01", threshold = NULL, lower_bound = F)
soll <- goal(h, x, WS, dm, sp)
expect_equal(ist$dist, soll)
})
test_that("expected result, univariate", {
dm <- "norm1"
sp <- "symmetric1"
WS <- NULL
deform <- function(x) (x + rnorm(1, 0, 100)) * abs(rnorm(1, 0, 100))
h <- noise(10)
hscale <- IncDTW::scale(h, type="01")
x <- c(noise(10), h, noise(10), deform(h), noise(10), deform(h))
soll <- c(11, 31, 51)
ist <- rundtw(Q = hscale, C = x, dist_method = dm, step_pattern = sp,
scale = "01", threshold = NULL, lower_bound = FALSE)
ist <- which(ist$dist < 10^(-10))
expect_equal(ist, soll)
ist <- rundtw(Q = hscale, C = x, dist_method = dm, step_pattern = sp,
scale = "01", threshold = Inf, lower_bound = TRUE)
ist <- which(ist$dist < 10^(-10))
expect_equal(ist, soll)
})
test_that("rundtw and find_peaks", {
noise <- function(nr) cumsum(rnorm(nr))
nx <- 500
nh <- 30
nfits <- 5
nn <- nx - nfits * nh
nn <- nn/nfits
h <- noise(nh)
hscale <- IncDTW::scale( h , type="01")
x <- noise(0)
for(i in 1:nfits){
x <- c(x, noise(nn), h)
}
result <- rundtw(h, x, scale = "01", ws = 10, threshold = Inf, lower_bound = TRUE)
soll_indices <- c(71, 171, 271, 371, 471)
minima <- find_peaks(result$dist, w = nh)
ist <- sum(soll_indices %in% minima)
soll = length(soll_indices)
expect_equal(ist, soll)
})
test_that("kNN rundtw", {
noise <- function(nr) cumsum(rnorm(nr))
nx <- 500
nh <- 30
nfits <- 5
nn <- nx - nfits * nh
nn <- nn/nfits
h <- noise(nh)
hscale <- IncDTW::scale( h , type="01")
x <- noise(0)
for(i in 1:nfits){
x <- c(x, noise(nn), h)
}
k <- 10
result <- rundtw(h, x, scale = "01", ws = 10, threshold = Inf, k = k, lower_bound = TRUE)
soll <- c(71, 171, 271, 371, 471)
ord <- order(result$knn_values, decreasing = F)
ist <- sort(result$knn_indices[ord[1:5]])
expect_equal(ist, soll)
})
test_that("kNN rundtw", {
for(i in 1:1){
myseed <- sample(i + as.numeric(Sys.time())/10^5, size=1)
print(myseed)
set.seed(myseed)
nx <- 500
nh <- sample(20:50, size=1)
WS <- sample(nh, size=1)
dm <- "norm1"
sp <- "symmetric1"
noise <- function(nr) cumsum(rnorm(nr))
goal_knn <- function(hscale, x, sp, ws, kNNk){
allv <- rundtw(h, x, dist_method = dm, step_pattern = sp, ws = ws, threshold = NULL, k = 0,
lower_bound = FALSE, scale = "01")
dd <- allv$dist
best_i <- integer()
for(i in 1:kNNk){
ix <- which.min(dd)
if(dd[ix] < Inf){
best_i <- c(best_i, ix)
dd[max(1, (1 + ix - nh)):min((ix + nh - 1), length(dd))] <- Inf
}
}
return(list(indices=best_i, all_values = allv$dist))
}
nfits <- sample(10, size=1)
nn <- nx - nfits * nh
nn <- nn/nfits
h <- noise(nh)
hscale <- IncDTW::scale( h , type="01")
x <- noise(0)
for(i in 1:nfits){
x <- c(x, noise(nn), h)
}
k <- nfits + 2
a <- rundtw(h, x, dist_method = dm, step_pattern = sp, ws = WS, threshold = Inf, k = k,
lower_bound = TRUE, scale = "01")
ist <- sort(a$knn_indices)
b <- goal_knn(hscale, x, sp, ws=WS, kNNk = k)
soll <- sort( b$indices )
expect_equal(ist, soll)
}
})
test_that("bug go to end",{
skip("")
load("build_ignore/bug_data01.Rda")
zz <- file("build_ignore/mySink.Rout", open = "wt"); sink(zz); sink(zz, type = "message")
tmp <- rundtw( Q = Q, C = C, scale = "01", dist_method = "norm1",
ws = 20, threshold = 5, lower_bound = T, k = 5 )
sink();close(zz);
closeAllConnections()
tmp
})
test_that("bug counter", {
skip(" there is no bug!")
rw <- function(m) cumsum(rnorm(m))
noise <- function(x) rnorm(length(x))
deform <- function(x, p) {
( simulate_timewarp(x, p, preserve_length = T) +
rnorm(1, 0, 10) ) * abs(rnorm(1, 0, 10)) + noise(x)
}
infix <- function(x, y, i) {
if(length(i) == 1){
new_x <- c(x[1:(i-1)], deform(y, 0.1), x[i:length(x)])
}else{
new_x <- infix(infix(x, y, i[1]), y,i[-1])
}
return(new_x)
}
nQ <- 100
nC <- 1000
Q <- rw(nQ)
C0 <- rw(nC)
ii <- c(30, 550,700)
C <- infix(C0, Q, ii)
tmp <- rundtw( Q = Q, C = C, dist_method = "norm1", ws = 10, threshold = NULL,
lower_bound = F, k = 0 )
plot(C, type="l")
C2 <- C
C2[-as.vector(sapply(ii, function(i){i:(i+nQ)}))] <- NA
lines(C2, col="red")
plot(tmp$dist)
})
test_that("figure", {
skip("")
dm <- "norm1"
sp <- "symmetric1"
WS <- NULL
noise <- function(nr) cumsum(rnorm(nr))
nx <- 500
nh <- 100
nfits <- 2
nn <- nx - nfits * nh
nn <- nn/nfits
h <- noise(nh)
hscale <- IncDTW::scale( h , type="01")
x <- noise(0)
for(i in 1:nfits){
x <- c(x, noise(nn), h)
}
a <- rundtw(h, x, k = NULL)
b <- rundtw(h, x, k = 3)
par(mfrow=c(1,1))
plot(a$dist)
points(b$dist, col="red")
a <- rundtw(h, x, k = 10)
c0 <- rundtw(h, x, k = 10, overlap_tol = round(nh/2))
plot(a$dist)
points(c0$dist, col="red")
})
test_that("run time univ kNN", {
skip("runtime comparison")
dm <- "norm1"
sp <- "symmetric1"
noise <- function(i) cumsum(rnorm(i))
foo_2vec <- function(h, x, ws, k){
hscale <- IncDTW::scale( h , type="01")
dis <- sapply(1:(length(x)-length(hscale)+1), function(i){
y <- IncDTW::scale(x[i:(i+length(hscale)-1)], type = "01")
IncDTW::dtw2vec(y, hscale, dist_method = dm,
step_pattern = sp, ws = ws)$dist
})
nh <- length(hscale)
dd <- dis
best_i <- integer()
for(i in 1:k){
ix <- which.min(dd)
if(dd[ix] < Inf){
best_i <- c(best_i, ix)
dd[max(1, (1 + ix - nh)):min((ix + nh - 1), length(dd))] <- Inf
}
}
return(list(all_values = dis, indices=best_i))
}
foo_cm <- function(h, x, ws, k){
hscale <- IncDTW::scale( h , type="01")
dis <- sapply(1:(length(x)-length(hscale)+1), function(i){
y <- IncDTW::scale(x[i:(i+length(hscale)-1)], type = "01")
cm_tmp <- IncDTW::cm(y, hscale, dist_method = dm, ws = ws)
IncDTW::dtw2vec(cm_tmp, C = "cm", step_pattern = sp, ws = ws)$dist
})
nh <- length(hscale)
dd <- dis
best_i <- integer()
for(i in 1:k){
ix <- which.min(dd)
if(dd[ix] < Inf){
best_i <- c(best_i, ix)
dd[max(1, (1 + ix - nh)):min((ix + nh - 1), length(dd))] <- Inf
}
}
return(list(all_values = dis, indices=best_i))
}
foo_run <- function(h, x, ws, k){
dis <- rundtw(h, x, dm, sp, k=0, scale = "01", WS, Inf, T)$dist
dis[is.nan(dis)] <- Inf
nh <- length(hscale)
dd <- dis
best_i <- integer()
for(i in 1:k){
ix <- which.min(dd)
if(dd[ix] < Inf){
best_i <- c(best_i, ix)
dd[max(1, (1 + ix - nh)):min((ix + nh - 1), length(dd))] <- Inf
}
}
return(list(all_values = dis, indices=best_i))
}
nx <- 1000
nh <- 50
nfits0 <- 3
nfits1 <- min(nfits0, floor(nx/nh))
nfits <- sample(nfits1, size = 1)
nn <- nx - nfits * nh
nn <- nn/nfits
h <- noise(nh)
x <- c()
for(i in 1:nfits){
x <- c(x, noise(nn), h)
}
WS <- 30
k <- 5
mic <- microbenchmark::microbenchmark(foo_cm(h, x, WS,k=k),
foo_2vec(h, x, WS, k=k),
foo_run(h, x, WS, k=k),
rundtw(h, x, dm, sp, k, "01", WS, Inf, T),
times = 30)
df0 <- maxaR::rel_microbenchmark(mic,
cols = c("expr", "min", "mean", "median", "max", "neval"),
rel_expr = "rundtw(h, x, dm, sp, k, '01', WS, Inf, T)")$df
df0
})
test_that("run time univ", {
skip("runtime comparison")
dm <- "norm1"
sp <- "symmetric1"
nc <- 1
WS <- NULL
noise <- function(i) matrix(cumsum(rnorm(i*nc)), nrow =i, ncol=nc)
foo_2vec <- function(hscale, x, ws){
sapply(1:(length(x)-length(hscale)+1), function(i){
y <- IncDTW::scale(x[i:(i+length(hscale)-1)], type = "01")
IncDTW::dtw2vec(y, hscale, dist_method = dm,
step_pattern = sp, ws = ws)$dist
})
}
foo_cm <- function(hscale, x, ws){
sapply(1:(length(x)-length(hscale)+1), function(i){
y <- IncDTW::scale(x[i:(i+length(hscale)-1)], type = "01")
cm_tmp <- IncDTW::cm(y, hscale, dist_method = dm, ws = ws)
IncDTW::dtw2vec(cm_tmp, C = "cm", step_pattern = sp, ws = ws)$dist
})
}
NH <- c(0.05, 0.1, 0.15, 0.2)
NX <- c(100, 200)
NH <- seq(0.1, 0.5, 0.1)
NX <- c(100, 200, 300, 500, 1000)
df <- data.frame(expr = character(),
min = numeric(),
mean = numeric(),
median = numeric(),
max = numeric(),
neval = integer(),
rel = numeric(),
nh = integer(),
nx = integer(),
nfits = integer()
)
nhh <- NH[1]
nx <- NX[5]
data.table::fwrite(df, file = "build_ignore/comp_time_test_univ.txt")
tic <- Sys.time()
for(nhh in NH){
print(c(nhh))
print(Sys.time())
for(nx in NX){
print(c(nhh, nx))
print(Sys.time())
nh <- nhh*nx
nfits0 <- 10
nfits1 <- min(nfits0, floor(nx/nh))
nfits <- sample(nfits1, size = 1)
nn <- nx - nfits * nh
nn <- nn/nfits
h <- cumsum(rnorm(nh))
hscale <- IncDTW::scale( h , type="01")
x <- c()
for(i in 1:nfits){
x <- c(x, cumsum(rnorm(nn)), h)
}
mic <- microbenchmark::microbenchmark(foo_cm(hscale, x, WS),
foo_2vec(hscale, x, WS),
rundtw(hscale, x, dm, sp, 0, '01', WS, NULL),
rundtw(hscale, x, dm, sp, 0, '01', WS, Inf),
rundtw(hscale, x, dm, sp, 0, "z", WS, NULL),
rundtw(hscale, x, dm, sp, 0, "z", WS, Inf),
rundtw(hscale, x, dm, sp, 0, "none", WS, NULL),
rundtw(hscale, x, dm, sp, 0, "none", WS, Inf),
times = 30)
df0 <- maxaR::rel_microbenchmark(mic,
cols = c("expr", "min", "mean", "median", "max", "neval"),
rel_expr = "rundtw(hscale, x, dm, sp, 0, \"01\", WS, Inf)")$df
df0$nh <- nh
df0$nx <- nx
df0$nfits <- nfits
data.table::fwrite(df0, file = "build_ignore/comp_time_test_univ.txt", append = T, row.names = F, col.names = F)
df <- rbind(df, df0)
}
}
print(Sys.time())
require(ggplot2)
df <- data.table::fread(file = "build_ignore/comp_time_test_univ.txt")
df <- df[grep("foo_",df$expr, invert = TRUE), ]
df <- df[grep("none",df$expr, invert = TRUE), ]
ggplot(df) + geom_line(aes(x = nh/nx, y = rel, group = expr, col = expr), size = 2)+
facet_grid(~nx)
x <- matrix(cumsum(rnorm(3 * 1000)), ncol = 3)
hscale <- matrix(cumsum(rnorm(3 * 100)), ncol = 3)
mic <- microbenchmark::microbenchmark(rundtw(hscale, x, step_pattern = "symmetric1", scale = '01' , dist_method = "norm2_square", k = 0, ws = NULL, threshold = NULL, lower_bound = FALSE ),
rundtw(hscale, x, step_pattern = "symmetric1", scale = 'z' , dist_method = "norm2_square", k = 0, ws = NULL, threshold = NULL, lower_bound = FALSE ),
rundtw(hscale, x, step_pattern = "symmetric1", scale = 'none', dist_method = "norm2_square", k = 0, ws = NULL, threshold = NULL, lower_bound = FALSE ),
times = 5)
levels(mic$expr) <- c("f(01)", "f(z)", "f(none)")
mic
})
test_that("knn 01-scale vs. knn z-scale", {
skip("comparison 01-z")
dm <- "norm1"
sp <- "symmetric1"
WS <- 10
noise <- function(i) cumsum(rnorm(i))
h <- c(20, noise(10))
hscale01 <- IncDTW::scale(h, type="01")
hscalez <- IncDTW::scale(h, type="z")
par(mfrow=c(3,1))
plot(h, type="l")
plot(hscale01, type="l")
plot(hscalez, type="l")
par(mfrow=c(1,1))
x <- c(noise(10), h, noise(10), h, noise(10), h, noise(10), h, noise(10))
ret01 <- rundtw(Q = h, C = x, dist_method = dm, step_pattern = sp,
ws = WS, scale = "01", threshold = NULL, k = 10)
retz <- rundtw(Q = h, C = x, dist_method = dm, step_pattern = sp,
ws = WS, scale = "z", threshold = NULL, k = 10)
ret01$knn_indices
retz$knn_indices
})
|
library("testthat")
s <- "{DEFAULT @a = '123'} SELECT * FROM table WHERE x = @a AND {@b == 'blaat'}?{y = 1234}:{x = 1};"
test_that("Parameter substitution works", {
sql <- render(s, a = "abc")
expect_equal(sql, "SELECT * FROM table WHERE x = abc AND x = 1;")
})
test_that("Empty parameter does not cause trouble", {
sql <- render(s, a = "abc", b = "")
expect_equal(sql, "SELECT * FROM table WHERE x = abc AND x = 1;")
})
test_that("Default works", {
sql <- render(s, b = "1")
expect_equal(sql, "SELECT * FROM table WHERE x = 123 AND x = 1;")
})
test_that("If-then-else: then works", {
sql <- render(s, b = "blaat")
expect_equal(sql, "SELECT * FROM table WHERE x = 123 AND y = 1234;")
})
test_that("If-then-else: else works", {
sql <- render(s, b = "bla")
expect_equal(sql, "SELECT * FROM table WHERE x = 123 AND x = 1;")
})
test_that("If-then-else: boolean parameter interpreted as character", {
sql <- render("SELECT * FROM table {@a}?{WHERE x = 1}", a = FALSE)
expect_equal(sql, "SELECT * FROM table ")
sql <- render("SELECT * FROM table {@a}?{WHERE x = 1}", a = TRUE)
expect_equal(sql, "SELECT * FROM table WHERE x = 1")
})
s <- "{1 IN (@a)}?{SELECT * FROM table}"
test_that("If-then-else: IN pattern works if value is in", {
sql <- render(s, a = c(1, 2, 3, 4))
expect_equal(sql, "SELECT * FROM table")
})
test_that("If-then-else: IN pattern works if value is not in", {
sql <- render(s, a = c(2, 3, 4))
expect_equal(sql, "")
})
test_that("If-then-else: IN pattern works with space at start", {
sql <- render("{ 1 IN (@a)}?{SELECT * FROM table}", a = c(2, 3, 4))
expect_equal(sql, "")
sql <- render("{ 1 IN (@a)}?{SELECT * FROM table}", a = c(1, 2, 3, 4))
expect_equal(sql, "SELECT * FROM table")
})
test_that("If-then-else: AND operator", {
sql <- render("{true & true}?{true}:{false}")
expect_equal(sql, "true")
})
test_that("If-then-else: AND operator", {
sql <- render("{true & false}?{true}:{false}")
expect_equal(sql, "false")
})
test_that("If-then-else: OR operator", {
sql <- render("{true | false}?{true}:{false}")
expect_equal(sql, "true")
})
test_that("If-then-else: OR operator", {
sql <- render("{true | true}?{true}:{false}")
expect_equal(sql, "true")
})
test_that("If-then-else: OR operator", {
sql <- render("{false | false}?{true}:{false}")
expect_equal(sql, "false")
})
test_that("If-then-else: IN pattern nested in boolean condition", {
sql <- render("{true & (true & (true & 4 IN (@a)))}?{true}:{false}", a = c(1, 2, 3))
expect_equal(sql, "false")
})
test_that("If-then-else: nested if-then-else where nest in firing expression", {
sql <- render("{true}?{{true} ? {double true} : {true false}} : {false}")
expect_equal(sql, "double true")
})
test_that("If-then-else: nested if-then-else where nest in non-firing expression", {
sql <- render("{false}?{{true} ? {double true} : {true false}} : {false}")
expect_equal(sql, "false")
})
test_that("If-then-else: simple negation", {
sql <- render("{!false}?{true}:{false}")
expect_equal(sql, "true")
})
test_that("If-then-else: negation of parameter", {
sql <- render("{!@a}?{true}:{false}", a = "true")
expect_equal(sql, "false")
})
test_that("If-then-else: negation of parameter", {
sql <- render("{!@a}?{true}:{false}", a = "true")
expect_equal(sql, "false")
})
test_that("If-then-else: does not equals pattern 1", {
sql <- render("{123 != 123}?{true}:{false}")
expect_equal(sql, "false")
})
test_that("If-then-else: does not equals pattern 1", {
sql <- render("{123 != 234}?{true}:{false}")
expect_equal(sql, "true")
})
test_that("If-then-else: does not equals pattern 2", {
sql <- render("{123 <> 123}?{true}:{false}")
expect_equal(sql, "false")
})
test_that("If-then-else: does not equals pattern 2", {
sql <- render("{123 <> 234}?{true}:{false}")
expect_equal(sql, "true")
})
test_that("If-then-else: Nested IN evaluates to true", {
sql <- render("{TRUE & (FALSE | 1 IN (1,2,3))} ? {true} : {false}")
expect_equal(sql, "true")
})
test_that("If-then-else: Nested IN evaluates to false", {
sql <- render("{TRUE & (FALSE | 4 IN (1,2,3))} ? {true} : {false}")
expect_equal(sql, "false")
})
test_that("Backslash in parameter is handled correctly", {
sql <- render("SELECT * FROM table WHERE name = '@name';", name = "NA\\joe")
expect_equal(sql, "SELECT * FROM table WHERE name = 'NA\\joe';")
})
test_that("Dollar in parameter is handled correctly", {
sql <- render("SELECT * FROM table WHERE name = '@name';", name = "NA$joe")
expect_equal(sql, "SELECT * FROM table WHERE name = 'NA$joe';")
})
test_that("If-then-else: error on bad boolean logic syntax", {
expect_error(render("{true = true} ? {true} : {false}"))
})
test_that("rendering: warning on parameter name mismatch", {
expect_warning(render("SELECT * FROM @my_table", a_table = "x"))
})
test_that("rendering: no problem when not providing parameters", {
expect_equal(render("SELECT * FROM @my_table"), "SELECT * FROM @my_table")
})
test_that("rendering: warning when using old function", {
expect_warning(renderSql("SELECT * FROM @my_table"))
})
|
check_netmhc2pan_installation <- function(
netmhc2pan_folder_name = get_default_netmhc2pan_folder()
) {
if (!is_netmhc2pan_bin_installed(
netmhc2pan_folder_name = netmhc2pan_folder_name)
) {
bin_file_path <- file.path(
netmhc2pan_folder_name,
basename(get_default_netmhc2pan_subfolder()),
basename(get_default_netmhc2pan_bin_path())
)
netmhc2pan_version <- stringr::str_match(
bin_file_path,
"[:digit:]\\.[:digit:]"
)[1, 1]
stop(
"NetMHCIIpan binary not found at\n",
bin_file_path, "\n",
"\n",
"Tip 1: from R, run 'netmhc2pan::install_netmhc2pan()'\n",
" with a (non-expired) download URL\n",
"Tip 2: request a download URL at the NetMHCIIpan download page at\n",
"\n",
paste0(
"https://services.healthtech.dtu.dk/service.php?NetMHCIIpan-",
netmhc2pan_version,
"\n"
)
)
}
if (!is_netmhc2pan_data_installed(netmhc2pan_folder_name)) {
data_file_path <- file.path(
netmhc2pan_folder_name,
basename(get_default_netmhc2pan_subfolder()),
"data"
)
stop(
"NetMHCIIpan data not found at\n",
data_file_path, "\n",
"\n",
"Tip: from R, run 'netmhc2pan::install_netmhc2pan()'\n"
)
}
if (!is_netmhc2pan_set_up(netmhc2pan_folder_name)) {
stop(
"NetMHCIIpan not set up completely\n",
"\n",
"Tip: from R, run 'nethmhc2pan::install_netmhc2pan()'\n"
)
}
if (!is_tcsh_installed()) {
stop(
"Debian package 'tcsh' not found\n",
"\n",
"Tip: from the terminal, run 'sudo apt install tcsh'"
)
}
}
|
impute <- function(x, ...) UseMethod("impute")
impute.default <- function(x, fun=median, ...)
{
m <- is.na(x)
k <- sum(m)
if(k==0)
return(x)
nam <- names(x)
if(!length(nam)) {
nam <- as.character(1:length(x)); names(x) <- nam
}
if(!is.function(fun)) {
fill <- fun
if(is.character(fill) && length(fill)==1 && fill=="random")
fill <- sample(x[!is.na(x)], sum(is.na(x)), replace=TRUE)
} else if(is.factor(x)) {
freq <- table(x)
fill <- names(freq)[freq==max(freq)][1]
} else
fill <-
if(missing(fun) && is.logical(x))
(if(sum(x[!m]) >= sum(!m)/2)
TRUE
else
FALSE)
else
fun(x[!m])
if(length(fill)>1 && length(fill)!=k)
stop("length of vector of imputed values != no. NAs in x")
if(is.factor(x)) {
newlev <- sort(unique(fill))
if(any(!(z <- newlev %in% levels(x)))) {
xc <- as.character(x)
xc[m] <- fill
x <- factor(xc, c(levels(x), newlev[!z]))
} else x[m] <- fill
} else x[m] <- fill
structure(x, imputed=(1:length(x))[m],
class=c('impute', attr(x, 'class')))
}
print.impute <- function(x, ...)
{
i <- attr(x,"imputed")
if(!length(i)) {
print.default(x);
return(invisible())
}
if(is.factor(x))
w <- as.character(x)
else
w <- format(x)
names(w) <- names(x)
w[i] <- paste(w[i], "*", sep="")
attr(w, "label") <- attr(w,"imputed") <- attr(w, "class") <- NULL
print.default(w, quote=FALSE)
invisible()
}
summary.impute <- function(object, ...)
{
i <- attr(object, "imputed")
oi <- object
attr(oi,'class') <- attr(oi,'class')[attr(oi,'class')!="impute"]
oi <- oi[i]
if(all(oi==oi[1]))
cat("\n",length(i),"values imputed to",
if(is.numeric(oi))
format(oi[1])
else
as.character(oi[1]),
"\n\n")
else {
cat("\nImputed Values:\n\n")
if(length(i)<20)
print(oi)
else
print(describe(oi, descript=as.character(sys.call())[2]))
cat("\n")
}
NextMethod("summary")
}
"[.impute" <- function(x, ..., drop=FALSE)
{
ats <- attributes(x)
ats$dimnames <- NULL
ats$dim <- NULL
ats$names <- NULL
attr(x,'class') <- NULL
y <- x[..., drop = drop]
if(length(y)==0)
return(y)
k <- 1:length(x);
names(k) <- names(x)
k <- k[...]
attributes(y) <- c(attributes(y), ats)
imp <- attr(y, "imputed")
attr(y, "imputed") <- j <- (1:length(k))[k %in% imp]
if(length(j)==0) {
cy <- attr(y,'class')[attr(y,'class')!='impute']
y <- structure(y, imputed=NULL,
class=if(length(cy))
cy
else
NULL)
}
y
}
is.imputed <- function(x)
{
w <- rep(FALSE, if(is.matrix(x))nrow(x) else length(x))
if(length(z <- attr(x,"imputed")))
w[z] <- TRUE
w
}
as.data.frame.impute <- function(x, row.names = NULL, optional = FALSE, ...)
{
nrows <- length(x)
if(!length(row.names)) {
if(length(row.names <- names(x)) == nrows &&
!anyDuplicated(row.names)) {
} else if(optional)
row.names <- character(nrows)
else
row.names <- as.character(1:nrows)
}
value <- list(x)
if(!optional)
names(value) <- deparse(substitute(x))[[1]]
structure(value, row.names=row.names, class='data.frame')
}
|
pns <- function(subnational_shares, method = 'Jones-Mainwaring') {
if (class(subnational_shares) != 'numeric') {
stop('Input vector must be numeric')
}
if (is.na(sum(subnational_shares))) {
stop('NA not allowed in input')
}
if (!method %in% c('Jones-Mainwaring', 'Golosov')) {
stop('Not a valid method')
}
if (method == 'Jones-Mainwaring') {
pns <- 1 - Gini(subnational_shares)
} else if (method == 'Golosov') {
n_sub <- length(subnational_shares)
pns <- 1- (n_sub - sum(subnational_shares)^2/sum(subnational_shares^2))/(n_sub - 1)
}
pns
}
|
library(testthat)
library(shiny.router)
test_check("shiny.router")
|
rrpexpow = function(n, lambda = 1, mu= 0, sigma = 1, k = 0){
n = runif(n)
x = qrpexpow(n, lambda, mu, sigma, k)
return(x)
}
|
setMethodS3("addFinalizerToLast", "default", function(...) {
if (exists(".Last", mode="function")) {
.Last <- get(".Last", mode="function")
if (identical(attr(.Last, "finalizeSession"), TRUE)) {
ver <- attr(.Last, "finalizeSessionVersion")
if (!is.null(ver) && compareVersion(ver, "0.8.5") >= 0) {
return(invisible(FALSE))
}
} else {
env <- globalenv();
assign(".LastOriginal", .Last, envir=env)
}
.Last <- function(...) {
tryCatch({
if (exists("finalizeSession", mode="function"))
finalizeSession()
if (exists(".LastOriginal", mode="function")) {
.LastOriginal <- get(".LastOriginal", mode="function")
.LastOriginal()
}
}, error = function(ex) {
message("Ignoring error occured in .Last(): ", as.character(ex))
})
}
} else {
.Last <- function(...) {
tryCatch({
if (exists("finalizeSession", mode="function"))
finalizeSession()
}, error = function(ex) {
message("Ignoring error occured in .Last(): ", as.character(ex))
})
}
}
attr(.Last, "finalizeSession") <- TRUE
attr(.Last, "finalizeSessionVersion") <- packageDescription("R.utils")$Version
environment(.Last) <- globalenv()
env <- globalenv();
assign(".Last", .Last, envir=env)
invisible(FALSE)
}, private=TRUE)
|
context("currencies")
test_that("it should get currency data from BCB", {
skip_on_cran()
x <- get_currency("USD", "2017-03-01", "2017-03-02", as = "text")
expect_is(x, "character")
expect_equal(x, "01032017;220;A;USD;3,0970;3,0976;1,0000;1,0000\n02032017;220;A;USD;3,1132;3,1138;1,0000;1,0000\n")
})
test_that("it should get a time series of a currency from bcb", {
skip_on_cran()
x <- get_currency("USD", "2017-03-01", "2017-03-14")
expect_is(x, "data.frame")
expect_equal(dim(x), c(10, 3))
expect_error(
get_currency("BRL", "2017-03-01", "2017-03-14")
)
})
test_that("it should get currency code", {
skip_on_cran()
x <- get_currency_id("BRL")
expect_equal(x, 177)
})
test_that("it should get MXN and ARS data", {
skip_on_cran()
x <- get_currency("MXN", "2018-05-28", "2018-05-30")
expect_is(x, "data.frame")
expect_equal(dim(x), c(3, 3))
x <- get_currency("ARS", "2018-05-28", "2018-05-30")
expect_is(x, "data.frame")
expect_equal(dim(x), c(3, 3))
})
test_that("it should get a time series with a symbol attribute", {
skip_on_cran()
x <- get_currency("USD", "2017-03-01", "2017-03-14")
expect_is(x, "data.frame")
expect_equal(attr(x, "symbol"), "USD")
x <- get_currency("USD", "2017-03-01", "2017-03-14", as = "xts")
expect_is(x, "xts")
expect_equal(attr(x, "symbol"), "USD")
})
test_that("it should get ask/bid time series named with symbol", {
skip_on_cran()
x <- get_currency("USD", "2017-03-01", "2017-03-14")
x_ask <- Ask(x)
expect_equal(colnames(x_ask), c("date", "USD"))
x_bid <- Bid(x)
expect_equal(colnames(x_bid), c("date", "USD"))
x <- get_currency("USD", "2017-03-01", "2017-03-14", as = "xts")
x_ask <- Ask(x)
expect_equal(colnames(x_ask), "USD")
x_bid <- Bid(x)
expect_equal(colnames(x_bid), "USD")
})
|
message("\nTesting get_body_part_names")
test_that("Structure of body parts value", {
skip_on_cran()
bp_names_all <- get_body_part_names()
expect_equal(length(bp_names_all), 3)
expect_true(length(bp_names_all$body_parts) > 20)
expect_true(length(bp_names_all$content) > 20)
expect_equal(class(bp_names_all$response), "response")
})
test_that("Body part values for TCGA-BRCA", {
skip_on_cran()
bp_names_tcga <- get_body_part_names(collection = "TCGA-BRCA")
expect_identical(bp_names_tcga$body_parts, c("BREAST"))
})
test_that("Body part values for MR", {
skip_on_cran()
bp_names_mr <- get_body_part_names(modality = "MR")
expect_true(length(bp_names_mr$body_parts) > 10)
expect_true("BREAST" %in% bp_names_mr$body_parts)
})
test_that("Body part values for TCGA-BRCA and MR", {
skip_on_cran()
bp_names_tcga_mr <- get_body_part_names(collection = "TCGA-BRCA", modality = "MR")
expect_identical(bp_names_tcga_mr$body_parts, c("BREAST"))
})
test_that("Nonexistent collection and modality combination", {
skip_on_cran()
expect_warning(bp <- get_body_part_names(collection = "TCGA-BRCA", modality = "RTSTRUCT"))
suppressWarnings(bp <- get_body_part_names(collection = "TCGA-BRCA", modality = "RTSTRUCT"))
expect_equal(length(bp$body_parts), 0)
})
test_that("Invalid collection name", {
skip_on_cran()
expect_warning(bp <- get_body_part_names(collection = "fake_collection"))
suppressWarnings(bp <- get_body_part_names(collection = "fake_collection"))
expect_equal(length(bp$body_parts), 0)
})
test_that("Invalid modality", {
skip_on_cran()
expect_warning(bp <- get_body_part_names(modality = "fake_modality"))
suppressWarnings(bp <- get_body_part_names(modality = "fake_modality"))
expect_equal(length(bp$body_parts), 0)
})
|
intermediate.corr.BC <-
function(n.P, n.B, n.C, lambda.vec=NULL, prop.vec=NULL, coef.mat=NULL, corr.vec = NULL, corr.mat=NULL) {
validation.bin(n.B, prop.vec)
if(is.null(corr.mat) && !is.null(corr.vec)) {
d=ceiling(uniroot(function(d) d^2-d-2*length(corr.vec), interval=c(0,1000))$root)
corr.mat=diag(1,d)
corr.mat[lower.tri(corr.mat)]=corr.vec
corr.mat=corr.mat+t(corr.mat)-diag(1,d)
}
if((n.P+n.B+n.C) !=ncol(corr.mat)) stop("Dimension of the correlation matrix is misspecied!")
correlation.bound.check(n.P, n.B, n.C, lambda.vec, prop.vec, coef.mat, corr.vec = NULL, corr.mat=corr.mat)
cor.bn=apply(as.matrix(prop.vec,length(prop.vec),1),1,function(x) dnorm(qnorm(x))/sqrt(x*(1-x)))
bicor.mat=t(sapply(1:n.B, function(ii) sapply(1:n.C, function(i) (corr.mat[(ii+n.P),(i+n.B+n.P)]/cor.bn[ii])/(coef.mat[2,i]+3*coef.mat[4,i]))))
return(bicor.mat)
}
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(dplyr)
library(ggplot2)
library(survival)
library(survParamSim)
set.seed(12345)
colon2 <-
as_tibble(colon) %>%
filter(rx != "Lev",
etype == 1) %>%
mutate(rx = factor(rx, levels = c("Obs", "Lev+5FU")),
depth = as.numeric(extent <= 2))
survfit.colon <- survfit(Surv(time, status) ~ rx, data = colon2)
survminer::ggsurvplot(survfit.colon)
survfit.colon.censor <- survfit(Surv(time, 1-status) ~ rx, data = colon2)
survminer::ggsurvplot(survfit.colon.censor)
fit.colon <- survreg(Surv(time, status) ~ rx + node4 + depth,
data = colon2, dist = "lognormal")
summary(fit.colon)
sim <-
surv_param_sim(object = fit.colon, newdata = colon2,
censor.dur = c(1800, 3000),
n.rep = 100)
sim
km.pi <- calc_km_pi(sim, trt = "rx")
km.pi
plot_km_pi(km.pi) +
theme(legend.position = "bottom") +
labs(y = "Recurrence free rate") +
expand_limits(y = 0)
extract_medsurv_pi(km.pi)
km.pi <- calc_km_pi(sim, trt = "rx", group = c("node4", "depth"))
plot_km_pi(km.pi) +
theme(legend.position = "bottom") +
labs(y = "Recurrence free rate") +
expand_limits(y = 0)
hr.pi <- calc_hr_pi(sim, trt = "rx", group = c("depth"))
hr.pi
plot_hr_pi(hr.pi)
extract_hr_pi(hr.pi)
|
analysis.sensitivity <- function(Y, plan, nbcomp=2, sigma.car=NULL, analysis.args=list( keep.outputs=FALSE ) )
{
a.args=analysis.args
if(is.null(a.args$keep.outputs)){
a.args$keep.outputs=FALSE;
}
outputkept=NULL;
if(a.args$keep.outputs) outputkept=vector("list",nbcomp)
PC.names <- colnames(Y)[1:nbcomp];
indic.fact <- diag(1,nrow=ncol(plan$X))
rownames(indic.fact) <- colnames(plan$X)
colnames(indic.fact) <- colnames(plan$X)
indices <- as.data.frame(matrix(NA,ncol(plan$X),nbcomp))
rownames(indices) <-colnames(plan$X)
colnames(indices) <- PC.names
indices.tot <- indices
indices.inter <- indices.tot
indices.main <- indices.tot
if(class(plan)=="morris"){
cat("Be careful : morris method used, changes in outputs : SI contains mu, mSI contains mu.star, tSI contains sigma.\n")
}else {
if(class(plan)=="sobolroalhs"){
cat("Be careful : sobolroalhs method used, changes in outputs : SI contains Seff for the Janon-Monod estimator, mSI contains S for the standard estimator, tSI and iSI contain nothing.\n")
}
}
for(k in 1:nbcomp){
xtemp=plan
tell(xtemp,Y[,k])
if(class(plan)=="fast99"){
xtemp$S=matrix(xtemp$D1/xtemp$V,ncol(plan$X),1)
xtemp$T=matrix(1 - xtemp$Dt / xtemp$V,ncol(plan$X),1)
}else{if(class(plan)=="morris"){
indices[,k] <- matrix(colMeans(xtemp$ee),ncol(plan$X),1)
xtemp$S <- matrix(colMeans(abs(xtemp$ee)),ncol(plan$X),1)
xtemp$T <- matrix(apply(xtemp$ee, 2, sd),ncol(plan$X),1)
}}
indices.main[,k]=xtemp$S[1:nrow(indices.main),1]
if(!is.null(xtemp$T)){
indices.tot[,k]=xtemp$T[,1]
}else{if(class(plan)=="sobolroalhs"){
indices[,k] <- xtemp$S[seq(from=1+nrow(indices.main),to=2*nrow(indices.main),by=1),1]
}}
if(a.args$keep.outputs){
outputkept[[k]]=xtemp
names(outputkept)[[k]]=paste(class(plan),k,sep="_")
}
}
if(!is.null(sigma.car) && class(plan)!="morris"){
VarH=apply(Y[,1:nbcomp,drop=FALSE],2,var)
GSI=rowSums(indices.main*t(matrix(rep(VarH,nrow(indices.main)),nbcomp,nrow(indices.main))),na.rm=TRUE)/sum(VarH)
indices.main=cbind(indices.main,GSI)
if(!is.null(xtemp$T)){
GSI=rowSums(indices.tot*t(matrix(rep(VarH,nrow(indices.tot)),nbcomp,nrow(indices.tot))),na.rm=TRUE)/sum(VarH)
indices.tot=cbind(indices.tot,GSI)
}else{
indices.tot=cbind(indices.tot,NA)
colnames(indices.tot)[ncol(indices.tot)]="GSI"
}
}
indices.inter <- indices.tot- indices.main
call.info=list(analysis="sensitivity",fct=class(plan))
return(list(SI=indices,
mSI=indices.main,
tSI=indices.tot,
iSI=indices.inter,
inertia=rep(NA,nbcomp),
indic.fact=indic.fact,
Hpredict=NULL,
outputkept=outputkept,
call.info=call.info))
}
|
NULL
adj_object <- function(x, cluster = NULL, use_vcov = TRUE, ...) {
find_methods_fn <- function(i) as.vector(utils::methods(class = class(x)[i]))
all_methods <- unlist(sapply(1:length(class(x)), find_methods_fn))
has_logLikVec_method <- paste0("logLikVec.", class(x)) %in% all_methods
if (!any(has_logLikVec_method)) {
stop("A logLikVec method must be available for x")
}
loglik_fn <- function(pars, fitted_object, ...) {
return(logLikVec(fitted_object, pars = pars))
}
if (!use_vcov) {
H <- NULL
} else {
has_vcov_method <- paste0("vcov.", class(x)) %in% all_methods
if (any(has_vcov_method)) {
H <- -solve(vcov(x))
} else {
H <- NULL
}
}
mle <- coef(x)
n_obs <- nobs(x)
if (is.null(cluster)) {
V <- sandwich::meat(x, fitted_object = x, loglik_fn = loglik_fn,
...) * n_obs
} else {
V <- sandwich::meatCL(x, cluster = cluster, fitted_object = x,
loglik_fn = loglik_fn, ...) * n_obs
}
res <- chandwich::adjust_loglik(loglik = loglik_fn,
fitted_object = x,
p = length(mle),
par_names = names(mle),
name = paste(class(x), collapse = "_"),
mle = mle, H = H, V = V)
class(res) <- c("lax", "chandwich")
return(res)
}
ismev_ppp <- function (a, npy) {
u <- a[4]
la <- 1 - exp(-(1 + (a[3] * (u - a[1]))/a[2])^(-1/a[3])/npy)
sc <- a[2] + a[3] * (u - a[1])
xi <- a[3]
c(la, sc, xi)
}
return_level_gev <- function(x, m, level, npy, prof, inc, type) {
rl_sym <- gev_rl_CI(x, m, level, npy, type)
rl_se <- rl_sym["se"]
rl_sym <- rl_sym[c("lower", "mle", "upper")]
if (!prof) {
return(list(rl_sym = rl_sym, rl_prof = NULL, rl_se = rl_se))
}
temp <- gev_rl_prof(x, m, level, npy, inc, type, rl_sym)
return(list(rl_sym = rl_sym, rl_prof = temp$rl_prof, rl_se = rl_se,
max_loglik = logLik(x), crit = temp$crit,
for_plot = temp$for_plot))
}
gev_rl_prof <- function(x, m, level, npy, inc, type, rl_sym) {
if (is.null(inc)) {
inc <- (rl_sym["upper"] - rl_sym["lower"]) / 100
}
p <- 1 / (m * npy)
gev_neg_prof_loglik <- function(a, xp) {
if (a[1] <= 0) {
return(10 ^ 10)
}
mu <- xp - revdbayes::qgev(1 - p, loc = 0, scale = a[1], shape = a[2])
gev_pars <- c(mu, a[1:2])
return(-x(gev_pars))
}
rl_mle <- rl_sym["mle"]
max_loglik <- attr(x, "max_loglik")
conf_line <- max_loglik - 0.5 * stats::qchisq(level, 1)
v1 <- v2 <- x1 <- x2 <- NULL
x2[1] <- x1[1] <- rl_mle
v2[1] <- v1[1] <- max_loglik
xp <- rl_mle
my_val <- max_loglik
ii <- 1
sol <- attr(x, "MLE")[2:3]
while (my_val > conf_line){
xp <- xp + inc
opt <- stats::optim(sol, gev_neg_prof_loglik, method = "BFGS", xp = xp)
sol <- opt$par
ii <- ii + 1
x2[ii] <- xp
v2[ii] <- -opt$value
my_val <- v2[ii]
}
sol_up <- sol
xp <- rl_mle
my_val <- max_loglik
ii <- 1
sol <- attr(x, "MLE")[2:3]
while (my_val > conf_line){
xp <- xp - inc
opt <- stats::optim(sol, gev_neg_prof_loglik, method = "BFGS", xp = xp)
sol <- opt$par
ii <- ii + 1
x1[ii] <- xp
v1[ii] <- -opt$value
my_val <- v1[ii]
}
sol_low <- sol
prof_lik <- c(rev(v1), v2)
ret_levs <- c(rev(x1), x2)
temp <- diff(prof_lik - conf_line > 0)
loc <- which(temp == -1)
x1 <- ret_levs[loc]
x2 <- ret_levs[loc + 1]
y1 <- prof_lik[loc]
y2 <- prof_lik[loc + 1]
up_lim <- x1 + (conf_line - y1) * (x2 - x1) / (y2 - y1)
loc <- which(temp == 1)
x1 <- ret_levs[loc]
x2 <- ret_levs[loc+1]
y1 <- prof_lik[loc]
y2 <- prof_lik[loc+1]
low_lim <- x1 + (conf_line - y1) * (x2 - x1) / (y2 - y1)
rl_prof <- c(lower = low_lim, rl_mle, upper = up_lim)
return(list(rl_prof = rl_prof, crit = conf_line,
for_plot = cbind(ret_levs = ret_levs, prof_loglik = prof_lik)))
}
gev_rl_CI <- function (x, m, level, npy, type){
mle <- attr(x, "MLE")
mu <- mle[1]
sigma <- mle[2]
xi <- mle[3]
if (type == "none") {
mat <- attr(x, "VC")
} else {
mat <- attr(x, "adjVC")
}
p <- 1 / (m * npy)
rl_mle <- revdbayes::qgev(p, loc = mu, scale = sigma, shape = xi,
lower.tail = FALSE)
yp <- -log(1 - p)
delta <- matrix(0, 3, 1)
delta[1,] <- 1
delta[2,] <- revdbayes::qgev(p, loc = 0, scale = 1, shape = xi,
lower.tail = FALSE)
delta[3,] <- sigma * box_cox_deriv(yp, lambda = -xi)
rl_var <- t(delta) %*% mat %*% delta
rl_se <- sqrt(rl_var)
z_val <- stats::qnorm(1 - (1 - level) / 2)
rl_lower <- rl_mle - z_val * rl_se
rl_upper <- rl_mle + z_val * rl_se
res <- c(lower = rl_lower, mle = rl_mle, upper = rl_upper, se = rl_se)
return(res)
}
box_cox_deriv <- function(x, lambda = 1, lambda_tol = 1 / 50,
poly_order = 3) {
lnx <- log(x)
if (abs(lambda) > lambda_tol) {
retval <- (lambda * x ^ lambda * lnx - x ^ lambda + 1) / lambda ^ 2
} else {
i <- 0:poly_order
retval <- sum(lnx ^ (i + 2) * lambda ^ i / ((i + 2) * factorial(i)))
}
return(retval)
}
|
bq_projects <- function(page_size = 100, max_pages = 1, warn = TRUE) {
pages <- bq_get_paginated(
"projects",
query = list(fields = "projects(projectReference(projectId))"),
page_size = page_size,
max_pages = max_pages
)
projects <- unlist(lapply(pages, function(x) x$projects), recursive = FALSE)
map_chr(projects, function(x) x$projectReference$projectId)
}
|
SpellCheck =
function(file) {
if (interactive()) {
for (ThisFile in file) {
cat(paste0(ThisFile, ": "))
if (file.exists(ThisFile)) {
file.copy(ThisFile, paste0(ThisFile, ".bak"), overwrite = FALSE)
cat("\n", file = ThisFile, append = TRUE)
OldText <- readLines(con = ThisFile)
Mistakes = SpellCheckFiles(file = ThisFile)
for (i in names(Mistakes[[1]])) {
Lines = gsub(",", ", ", Mistakes[[1]][i])
LineNos = as.numeric(unlist(strsplit(Lines, ", ")))
UserPref = 6
while (UserPref > 4) {
UserPref =
menu(
list(
"Ignore this word",
"add this word to the global list of words to ignore",
"add this word to the list of words to ignore when checking this file",
"change it to...",
paste0("read the word '", i, "' in context")),
title = paste0(
"\n", i, " appears to be misspelled on ",
ifelse(length(LineNos) > 1, "lines", "line"), Lines))
if (UserPref == "5") {
cat(paste0(OldText[LineNos], "\n"))
}
}
if (UserPref == "2") {
cat(paste0(i, "\n"), file = paste0(getOption("BrailleR.Folder"),
"words.ignore.txt"),
append = TRUE)
}
if (UserPref == "3") {
cat(paste0(i, "\n"), file = paste0(ThisFile, ".ignore.txt"),
append = TRUE)
}
if (UserPref == "4") {
cat("Enter replacement text: ")
Replace = readLines(n = 1)
OldText = gsub(i, Replace, OldText)
}
}
NoLines = length(OldText)
if (NoLines > 2) {
if (all(OldText[c(NoLines - 1, NoLines)] == "\n")) {
NoLines = NoLines - 1
}
}
writeLines(OldText[1:NoLines], con = ThisFile)
message("Done.")
}
else {
warning("The specified file does not exist.\n")
}
}
}
else {
warning("This function is meant for use in interactive mode only.\n")
}
return(invisible(NULL))
}
|
pb_download_url <- function(file = NULL,
repo = guess_repo(),
tag = "latest",
.token = get_token()) {
df <- pb_info(repo, tag, .token)
if (is.null(file)) {
return(df$browser_download_url)
} else if (file %in% df$file_name) {
return(df[file == df$file_name, "browser_download_url"])
} else {
stop(paste("file", file, "not found in release", tag, "for repo", repo))
}
}
|
tts_speak_engine = function(options) {
if (!options$eval) {
return(knitr::engine_output(options, options$code, ""))
}
output_format = options$output_format
service = options$service
voice = options$voice
if (is.null(service)) {
service = "google"
}
if (is.null(voice)) {
voice = tts_default_voice(service = service)
}
if (is.null(output_format)) {
output_format = "mp3"
}
out_path = dirname(options$fig.path)
dir.create(out_path, showWarnings = FALSE, recursive = TRUE)
output = file.path(
out_path,
paste0(options$label, ".", output_format))
if (!file.exists(output)) {
options$cache = FALSE
}
key_or_json_file = options$key_or_json_file
if (!is.null(key_or_json_file)) {
text2speech::tts_auth(service = service,
key_or_json_file = key_or_json_file)
}
text = paste0(options$code, collapse = " ")
result = text2speech::tts(
text = text,
output_format = output_format,
service = service,
voice = voice
)
file.copy(result$file, output, overwrite = TRUE)
out = utils::capture.output(output)
if (knitr::is_html_output()) {
if (options$results != "hide") {
options$results = "asis"
out = c("<audio controls>",
paste0('<source src="', output, '">'),
"</audio>",
"")
} else {
out = ""
}
}
print(out)
knitr::engine_output(options, options$code, out)
}
|
dist2d <- function(a,b,c) {
v1 <- b - c
v2 <- a - b
m <- cbind(v1,v2)
abs(det(m))/sqrt(sum(v1*v1))
}
distMat <- function(x,y,theta) {
ncomp <- length(theta)
n <- length(x)
dM <- matrix(nrow=n,ncol=ncomp)
for(j in 1:ncomp) {
beta <- theta[[j]][["beta"]]
b0 <- if(length(beta)==2) beta[1] else 0
b1 <- if(length(beta)==2) beta[2] else beta[1]
for(i in 1:n) {
x1 <- (b1*y[i] + x[i] - b0*b1)/(1+b1^2)
y1 <- b0+b1*x1
dM[i,j] <- (x[i] - x1)^2 + (y[i] - y1)^2
}
}
sqrt(dM)
}
|
testthat_examples <- function() {
system.file("examples", package = "testthat")
}
testthat_example <- function(filename) {
system.file(
"examples", paste0("test-", filename, ".R"),
package = "testthat",
mustWork = TRUE
)
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.