code
stringlengths
1
13.8M
rm(list=ls()) setwd("C:/Users/Tom/Documents/Kaggle/Santander") library(data.table) targetDate <- "12-11-2016" modelGroup <- "trainTrainAll" topNFeatures <- 10 rankImpExponent <- -0.75 K <- 5 source("Common/getModelWeights.R") dateTargetWeights <- readRDS(file.path(getwd(), "Model weights", targetDate, "model weights first.rds")) jun16Counts <- c(0, 0, 9704, 9, 2505, 48, 474, 201, 119, 0, 0, 99, 2072, 114, 20, 14, 6, 3254, 4137, 290, 0, 4487, 4600, 8651) baseProducts <- c("ahor_fin", "aval_fin", "cco_fin", "cder_fin", "cno_fin", "ctju_fin", "ctma_fin", "ctop_fin", "ctpp_fin", "deco_fin", "deme_fin", "dela_fin", "ecue_fin", "fond_fin", "hip_fin", "plan_fin", "pres_fin", "reca_fin", "tjcr_fin", "valo_fin", "viv_fin", "nomina", "nom_pens", "recibo" ) targetVars <- paste0("ind_", baseProducts, "_ult1") nbTargetVars <- length(targetVars) dropPredictors <- c( "trainWeight" , "hasNewProduct", "nbNewProducts", "hasAnyPosFlank" , "ncodpers" , "lastDate" , "gapsFrac", "dataMonths", "monthsFrac", "nbLagRecords " , "grossIncome" , "seniorityDensity" , paste0(targetVars, "MAPRatioJune15") , paste0(targetVars, "RelMAP") , "familyId" , targetVars ) featureSample <- readRDS(file.path(getwd(), "Feature engineering", "12-11-2016", "train", "Back0Lag16 features.rds")) possibleFeatures <- setdiff(colnames(featureSample), dropPredictors) modelGroupsFolder <- file.path(getwd(), "First level learners", targetDate, modelGroup) modelGroups <- list.dirs(modelGroupsFolder)[-1] modelGroups <- modelGroups[!grepl("Manual tuning", modelGroups)] modelGroups <- modelGroups[!grepl("no fold BU", modelGroups)] nbModelGroups <- length(modelGroups) if(nbModelGroups==0){ modelGroups <- modelGroupsFolder nbModelGroups <- 1 } featureImportance <- NULL for(i in 1:nbModelGroups){ modelGroup <- modelGroups[i] slashPositions <- gregexpr("\\/", modelGroup)[[1]] modelGroupExtension <- substring(modelGroup, 1 + slashPositions[length(slashPositions)]) modelGroupFiles <- list.files(modelGroup) modelGroupFiles <- modelGroupFiles[!grepl("no fold BU", modelGroupFiles)] nbModels <- length(modelGroupFiles) monthsBack <- as.numeric(substring(gsub("Lag.*$", "", modelGroupExtension), 5)) lag <- as.numeric(gsub("^.*Lag", "", modelGroupExtension)) if(nbModels>0){ for(j in 1:nbModels){ modelGroupFile <- modelGroupFiles[j] isFold <- grepl("Fold", modelGroupFile) if(isFold){ fold <- as.numeric(gsub("^.* Fold | - .*$", "", modelGroupFile)) } else{ fold <- NA } modelInfo <- readRDS(file.path(modelGroup, modelGroupFile)) importanceMatrix <- modelInfo$importanceMatrix targetVar <- modelInfo$targetVar relativeWeight <- getModelWeights(monthsBack, targetVar, dateTargetWeights) foldWeight <- ifelse(isFold, 1 - 1/K, 1) if(isFold){ prodMonthFiles <- modelGroupFiles[grepl(targetVar, modelGroupFiles)] nbFoldsProd <- sum(grepl("Fold", prodMonthFiles)) foldWeight <- foldWeight * 4 / nbFoldsProd } featureRankWeight <- foldWeight * ((1:nrow(importanceMatrix))^rankImpExponent) featureWeight <- relativeWeight * featureRankWeight jun16W <- jun16Counts[match(targetVar, targetVars)] featureImportance <- rbind(featureImportance, data.table( modelGroupExtension = modelGroupExtension, targetVar = targetVar, relativeWeight = relativeWeight, rank = 1:nrow(importanceMatrix), monthsBack = monthsBack, lag = lag, feature = importanceMatrix$Feature, isFold = isFold, fold = fold, featureRankWeight = featureRankWeight, featureWeight = featureWeight, jun16W = jun16W, overallWeight = featureWeight*jun16W ) ) } } } allFeatures <- sort(unique(featureImportance$feature)) nonModeledFeatures <- setdiff(possibleFeatures, allFeatures) allFeatures <- c(allFeatures, nonModeledFeatures) overallProductFeatureRanks <- featureImportance[,sum(featureWeight), .(feature, targetVar)] names(overallProductFeatureRanks)[3] <- "weightSum" overallProductFeatureRanks <- overallProductFeatureRanks[order(targetVar, -weightSum)] overallProductFeatureRanks[,feature_rank := match(1:length(weightSum), order(-weightSum)), by=targetVar] generalRank <- featureImportance[, .(overallWeightSum = sum(overallWeight)), feature] generalRank <- generalRank[order(-overallWeightSum)] sortedFeatures <- generalRank$feature sortedFeatures <- c(sortedFeatures, nonModeledFeatures) for(i in 1:nbTargetVars){ targetVarLoop <- targetVars[i] overallFeatTargetVar <- overallProductFeatureRanks[targetVar==targetVarLoop, feature] missingFeatures <- setdiff(sortedFeatures, overallFeatTargetVar) feature_ranks <- rev(rev(1:length(allFeatures))[1:length(missingFeatures)]) overallProductFeatureRanks <- rbind(overallProductFeatureRanks, data.table(feature = missingFeatures, targetVar = targetVarLoop, weightSum = 0, feature_rank = feature_ranks)) } overallProductFeatureRanks <- overallProductFeatureRanks[order(targetVar, feature_rank)] productFeatureRanksMonths <- featureImportance[,sum(featureRankWeight), .(monthsBack, targetVar, feature)] names(productFeatureRanksMonths)[4] <- "weightSum" productFeatureRanksMonths <- productFeatureRanksMonths[order(-monthsBack, targetVar, -weightSum)] productFeatureRanksMonths[,feature_rank := match(1:length(weightSum), order(-weightSum)), by=.(monthsBack, targetVar)] monthsBacks <- sort(unique(featureImportance$monthsBack)) nbMonthsBack <- length(monthsBacks) for(i in 1:nbMonthsBack){ monthsBackLoop <- monthsBacks[i] for(j in 1:nbTargetVars){ targetVarLoop <- targetVars[j] overallFeatTargetVar <- productFeatureRanksMonths[targetVar==targetVarLoop & monthsBack == monthsBackLoop, feature] sortedFeatures <- overallProductFeatureRanks[targetVar==targetVarLoop, feature] if(length(sortedFeatures) != length(allFeatures)) browser() missingFeatures <- setdiff(sortedFeatures, overallFeatTargetVar) feature_ranks <- rev(rev(1:length(allFeatures))[1:length(missingFeatures)]) productFeatureRanksMonths <- rbind(productFeatureRanksMonths, data.table(monthsBack = monthsBackLoop, targetVar = targetVarLoop, feature = missingFeatures, weightSum = 0, feature_rank = feature_ranks)) } } productFeatureRanksMonths <- productFeatureRanksMonths[ order(-monthsBack, targetVar, feature_rank)] saveRDS(overallProductFeatureRanks, file.path(getwd(), "first level learners", targetDate, "product feature order.rds")) saveRDS(productFeatureRanksMonths, file.path(getwd(), "first level learners", targetDate, "product month feature order.rds"))
context("shinyAce") test_that("modes", { modes <- shinyAce::getAceModes() expect_true(is.character(modes)) expect_true(length(modes) > 0) expect_true(sum(nchar(modes)) > 500) }) test_that("themes", { themes <- shinyAce::getAceThemes() expect_true(is.character(themes)) expect_true(length(themes) > 0) expect_true(sum(nchar(themes)) > 300) }) test_that("is.empty", { expect_true(is.empty(NULL)) expect_true(is.empty(NA)) expect_true(is.empty(c())) expect_true(is.empty("")) expect_true(is.empty(" ")) expect_true(is.empty(c(" ", " "))) expect_true(is.empty(list())) expect_true(is.empty(list(a = "", b = ""))) })
SimulatorReference <- R6Class("SimulatorReference", public = list( attached = list(), results = list() ), )
pkgdown_template <- function(path = ".") { stop_if_not_installed("pkgdown") reference <- pkgdown::template_reference(path = path) articles <- pkgdown::template_articles(path = path) navbar <- pkgdown::template_navbar(path = path) c(reference, articles, navbar) %>% as_yml() } yml_pkgdown <- function(.yml, as_is = yml_blank(), extension = yml_blank()) { .yml$pkgdown <- list(as_is = as_is, extension = extension) .yml } yml_pkgdown_opts <- function( .yml, site_title = yml_blank(), destination = yml_blank(), url = yml_blank(), toc_depth = yml_blank() ) { pkgdown_opts <- list( title = site_title, destination = destination, url = url, toc = list(depth = toc_depth) %>% purrr::discard(is_yml_blank) ) %>% purrr::discard(is_yml_blank) warn_if_duplicate_fields(.yml, pkgdown_opts) .yml[names(pkgdown_opts)] <- pkgdown_opts .yml } yml_pkgdown_development <- function( .yml, mode = yml_blank(), dev_destination = yml_blank(), version_label = yml_blank(), version_tooltip = yml_blank() ) { pkgdown_development_opts <- list( mode = mode, destination = dev_destination, version_label = version_label, version_tooltip = version_tooltip ) %>% purrr::discard(is_yml_blank) warn_if_duplicate_fields(.yml, pkgdown_development_opts) .yml[names(pkgdown_development_opts)] <- pkgdown_development_opts .yml } yml_pkgdown_template <- function( .yml, bootswatch = yml_blank(), ganalytics = yml_blank(), noindex = yml_blank(), package = yml_blank(), path = yml_blank(), assets = yml_blank(), default_assets = yml_blank() ) { pkgdown_template_opts <- list( bootswatch = bootswatch, ganalytics = ganalytics, noindex = noindex, package = package, path = path, assets = assets, default_assets = default_assets ) %>% purrr::discard(is_yml_blank) warn_if_duplicate_fields(.yml, pkgdown_template_opts) .yml[names(pkgdown_template_opts)] <- pkgdown_template_opts .yml } yml_pkgdown_reference <- function(.yml, ...) { warn_if_duplicate_fields(.yml, list(references = "")) .yml$references <- c(...) .yml } pkgdown_ref <- function( title = yml_blank(), desc = yml_blank(), contents = yml_blank(), exclude = yml_blank(), ... ) { list( title = title, desc = desc, contents = contents, exclude = exclude, ... ) %>% purrr::discard(is_yml_blank) } yml_pkgdown_news <- function(.yml, one_page = yml_blank()) { warn_if_duplicate_fields(.yml, list(news = "")) .yml$news <- list(one_page = one_page) .yml } yml_pkgdown_articles <- function(.yml, ...) { warn_if_duplicate_fields(.yml, list(articles = "")) .yml$articles <- c(...) .yml } pkgdown_article <- function( title = yml_blank(), desc = yml_blank(), contents = yml_blank(), exclude = yml_blank(), ... ) { list( title = title, desc = desc, contents = contents, exclude = exclude, ... ) %>% purrr::discard(is_yml_blank) } yml_pkgdown_tutorial <- function(.yml, ...) { warn_if_duplicate_fields(.yml, list(references = "")) .yml$references <- c(...) .yml } pkgdown_tutorial <- function( name = yml_blank(), title = yml_blank(), tutorial_url = yml_blank(), source = yml_blank(), ... ) { list( name = name, title = title, url = tutorial_url, source = source, ... ) %>% purrr::discard(is_yml_blank) } yml_pkgdown_figures <- function( .yml, dev = yml_blank(), dpi = yml_blank(), dev.args = yml_blank(), fig.ext = yml_blank(), fig.width = yml_blank(), fig.height = yml_blank(), fig.retina = yml_blank(), fig.asp = yml_blank(), ... ) { warn_if_duplicate_fields(.yml, list(figures = "")) .yml$figures <- list( dev = dev, dpi = dpi, dev.args = dev.args, fig.ext = fig.ext, fig.width = fig.width, fig.height = fig.height, fig.retina = fig.retina, fig.asp = fig.asp, ... ) %>% purrr::discard(is_yml_blank) .yml } yml_pkgdown_docsearch <- function(.yml, api_key = yml_blank(), index_name = yml_blank(), doc_url = yml_blank()) { docsearch <- list( template = list( params = list( docsearch = list( api_key = api_key, index_name = index_name ) %>% purrr::discard(is_yml_blank) ) ), url = doc_url ) %>% purrr::discard(is_yml_blank) warn_if_duplicate_fields(.yml, docsearch) .yml[names(docsearch)] <- docsearch .yml }
library(testthat) library(synthACS) context("pull_household") test_that("errors work", { ca_counties <- geo.make(state= 'CA', county= '*') diamonds <- data.frame( carat= rexp(100), cut= factor(sample(c("A", "B", "C"), size= 100, replace= TRUE)), x= runif(100, min= 0, max= 10), y= runif(100, min= 0, max= 10), x= runif(100, min= 0, max= 10) ) expect_error(pull_household(endyear= 2016, span=0, ca_counties)) expect_error(pull_household(endyear= 2016, span= -1, ca_counties)) expect_error(pull_household(endyear= 2016, span= 7, ca_counties)) expect_error(pull_household(endyear= 2000, span=5, ca_counties)) expect_error(pull_household(endyear= 2010.5, span=5, ca_counties)) expect_error(pull_household(endyear= "ABC", span=5, ca_counties)) ca_counties2 <- ca_counties class(ca_counties2) <- "ABC" expect_error(pull_household(endyear= 2010, span=5, ca_counties2)) expect_error(pull_household(endyear= 2010, span=5, diamonds)) }) test_that("returns results accurately - counties", { ca_geo <- geo.make(state= 'CA', county= 'Los Angeles') ca_dat <- pull_household(2014, 5, ca_geo) synthACS:::confirm_macroACS_class(ca_dat) }) test_that("returns results accurately - state", { ca_geo <- geo.make(state= "CA") ca_dat <- pull_household(2016, 5, ca_geo) synthACS:::confirm_macroACS_class(ca_dat) ca_geo <- geo.make(state= "CA", county= '*') ca_dat <- pull_household(2016, 5, ca_geo) synthACS:::confirm_macroACS_class(ca_dat) })
library(shiny) library(ggplot2) ui <- fluidPage( h4("Demo - brushedPoints - Interactive plots - select data points in plot - return the rows of data that are selected by brush"), plotOutput(outputId = "boxplot", brush = "plot_brush_"), fixedRow( column(width= 5, tags$b(tags$i("Actual Dataset")), tableOutput("data1")), column(width = 5, tags$b(tags$i("Updated Dataset")), tableOutput("data2"), offset = 2) ) ) server <- function(input, output) { mtcars1 = mtcars mtcars1$cyl = as.factor(mtcars1$cyl) mt <- reactiveValues(data=mtcars1) output$boxplot <- renderPlot({ ggplot(mt$data, aes(cyl, mpg)) + geom_boxplot(outlier.colour = "red") + coord_flip() }) output$data1 <- renderTable({ mtcars1 }) output$data2 <- renderTable({ mt$data }) observe({ df = brushedPoints(mt$data, brush = input$plot_brush_, allRows = TRUE) mt$data = df[df$selected_== FALSE, ] }) } shinyApp(ui = ui, server = server)
summary.xxirt <- function( object, digits=3, file=NULL, ...) { sirt_osink( file=file ) res <- xxirt_summary_parts(object=object, digits=digits) sirt_csink( file=file ) }
"exGWAS"
d_ACG <- function(x, Lambda, log = FALSE) { if (is.null(dim(x))) { x <- rbind(x) } p <- ncol(x) if (p != sqrt(length(Lambda))) { stop("x and Lambda do not have the same dimension.") } if (p == 1) { log_dens <- d_unif_sphere(x = x, log = TRUE) } else { x <- check_unit_norm(x = x, warnings = TRUE) log_dens <- c_ACG(p = p, Lambda = Lambda, log = TRUE) - 0.5 * p * log(rowSums((x %*% solve(Lambda)) * x)) } return(switch(log + 1, exp(log_dens), log_dens)) } c_ACG <- function(p, Lambda, log = FALSE) { if (!isSymmetric(Lambda, tol = sqrt(.Machine$double.eps), check.attributes = FALSE)) { stop("Lambda must be a symmetric matrix") } log_det <- 2 * sum(log(diag(chol(Lambda)))) log_c_ACG <- - (w_p(p = p, log = TRUE) + 0.5 * log_det) return(switch(log + 1, exp(log_c_ACG), log_c_ACG)) } r_ACG <- function(n, Lambda) { p <- sqrt(length(Lambda)) x <- matrix(rnorm(n = n * p), nrow = n, ncol = p, byrow = TRUE) %*% chol(Lambda) return(x / sqrt(rowSums(x * x))) }
ChronAmp = function(Co = 0.001, exptime = 1, Dx = 0.00001, Dm = 0.45, Temp = 298.15, n = 1, Area = 1, DerApprox = 2, l = 100, errCheck = FALSE, Method = "Euler") { Par = ParCall("ChronAmp", n. = n, Temp. = Temp, Dx1. = Dx, exptime. = exptime, Dm. = Dm, l. = l) Ox = OneMat(Par$l, Par$j) Jox = ZeroMat(Par$l, 1) if (Method == "Euler") { for (i1 in 1:(Par$l-1)) { Ox[i1,1] = 0 for (j1 in 2:(Par$j-1)) { Ox[i1 + 1,j1] = Ox[i1,j1] + Dm*(Ox[i1, j1 -1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "RK4") { for (i1 in 1:(Par$l-1)) { k1 = ZeroMat(Par$j) k2 = ZeroMat(Par$j) k3 = ZeroMat(Par$j) k4 = ZeroMat(Par$j) Ox[i1,1] = 0 Ox[i1 +1, 1] = 0 for (j1 in 2:(Par$j-1)) { k1[j1] = Dm*(Ox[i1, j1 -1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k1[j1]*0.5 } for (j1 in 2:(Par$j-1)) { k2[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k2[j1]*0.5 } for (j1 in 2:(Par$j-1)) { k3[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k3[j1] } for (j1 in 2:(Par$j-1)) { k4[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + (k1[j1] + 2*k2[j1] + 2*k3[j1] + k4[j1])/6 } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "BI") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1/Par$dtn)/al1 a2 = al3/al1 for (i1 in 1:(Par$l-1)) { Y = ZeroMat(Par$j-2,Par$j-2) Y[1,1] = a1 Y[1,2] = a2 Y[Par$j-2,Par$j-3] = 1 Y[Par$j-2,Par$j-2] = a1 for (i in 2:(Par$j-3)) { Y[i,i] = a1 Y[i,i-1] = 1 Y[i, i +1] = a2 } Ox[i1,1] = 0 Ox[i1+1,1] = 0 b = (-Ox[i1,2:(Par$j-1)]/(al1*Par$dtn)) b[Par$j-2] = b[Par$j-2] - a2*1 b[1] = b[1] - Ox[i1+1,1] Ox[i1+1,2:(Par$j-1)] = solve(Y) %*% b } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "CN") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 2/Par$dtn)/al1 a2 = al3/al1 a3 = (al2 + 2/Par$dtn)/al1 for (i1 in 1:(Par$l-1)) { Y = ZeroMat(Par$j-2,Par$j-2) Y[1,1] = a1 Y[1,2] = a2 Y[Par$j-2,Par$j-3] = 1 Y[Par$j-2,Par$j-2] = a1 for (i in 2:(Par$j-3)) { Y[i,i] = a1 Y[i,i-1] = 1 Y[i, i +1] = a2 } Ox[i1,1] = 0 Ox[i1+1,1] = 0 b = -a3*Ox[i1,2:(Par$j-1)] - Ox[i1,1:((Par$j-1)-1)] - a2*Ox[i1,3:((Par$j-1)+1)] b[Par$j-2] = b[Par$j-2] - a2*1 b[1] = b[1] - Ox[i1+1,1] Ox[i1+1,2:(Par$j-1)] = solve(Y) %*% b } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "BDF") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1.5/Par$dtn)/al1 a2 = al3/al1 for (i1 in 1:(Par$l-1)) { Y = ZeroMat(Par$j-2,Par$j-2) Y[1,1] = a1 Y[1,2] = a2 Y[Par$j-2,Par$j-3] = 1 Y[Par$j-2,Par$j-2] = a1 for (i in 2:(Par$j-3)) { Y[i,i] = a1 Y[i,i-1] = 1 Y[i, i +1] = a2 } Ox[i1,1] = 0 Ox[i1+1,1] = 0 if (i1 == 1) { b = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[1,2:(Par$j-1)]/(2*Par$dtn*al1) } else { b = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1) } b[Par$j-2] = b[Par$j-2] - a2*1 b[1] = b[1] - Ox[i1+1,1] Ox[i1+1,2:(Par$j-1)] = solve(Y) %*% b } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (!(Method %in% c("Euler", "BI", "RK4", "CN", "BDF"))) { return("Available methods are Euler, BI, RK4, CN and BDF") } G = Jox i = (n*Par$FA*G*Dx*Area*Co)/(sqrt(Dx*Par$tau)) graphy = ggplot(data = data.frame(i[1:(length(i)-1)],Par$t[1:(length(i)-1)]), aes(y = i[1:(length(i)-1)], x = Par$t[1:(length(i)-1)])) + geom_point() + xlab("t / s") + ylab("I / A") + theme_classic() if (errCheck == TRUE){ return(list(G,Dx,Co,Par$dtn,Par$h,Par$l,Par$j,i,n,Area)) } else { return(graphy) } } PotStep = function(Co = 0.001, exptime = 1, Dx = 0.00001, Dm = 0.45, eta = 0, Temp = 298.15, n = 1, Area = 1, l= 100, DerApprox = 2, errCheck = FALSE, Method = "Euler") { Par = ParCall("PotStep", n. = n, Temp. = Temp, Dx1. = Dx, exptime. = exptime, Dm. = Dm, eta. = eta, l. = l) Ox = OneMat(Par$l, Par$j) Red = ZeroMat(Par$l, Par$j) Jox = ZeroMat(Par$l, 1) if (Method == "Euler") { for (i1 in 1:(Par$l-1)) { B = matrix(data = c(1,-exp(Par$p),Derv(npoints = DerApprox, CoefMat = T)[1],Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(0, -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] for (j1 in 2:(Par$j-1)) { Ox[i1+1,j1] = Ox[i1,j1] + Dm*(Ox[i1, j1-1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Red[i1+1, j1] = Red[i1, j1] + Dm*(Red[i1, j1-1] + Red[i1, j1+1] - 2*Red[i1,j1]) } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "RK4") { for (i1 in 1:(Par$l-1)) { k1 = ZeroMat(Par$j) k2 = ZeroMat(Par$j) k3 = ZeroMat(Par$j) k4 = ZeroMat(Par$j) k1red = ZeroMat(Par$j) k2red = ZeroMat(Par$j) k3red = ZeroMat(Par$j) k4red = ZeroMat(Par$j) B = matrix(data = c(1,-exp(Par$p),Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(0, -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] for (j1 in 2:(Par$j-1)) { k1[j1] = Dm*(Ox[i1, j1 -1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k1[j1]*0.5 k1red[j1] = Dm*(Red[i1, j1 -1] - 2*Red[i1, j1] + Red[i1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k1red[j1]*0.5 } B = matrix(data = c(1,-exp(Par$p),Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(0, -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 2:(Par$j-1)) { k2[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k2[j1]*0.5 k2red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k2red[j1]*0.5 } B = matrix(data = c(1,-exp(Par$p),Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(0, -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 2:(Par$j-1)) { k3[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k3[j1] k3red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k3red[j1] } B = matrix(data = c(1,-exp(Par$p),Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(0, -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 2:(Par$j-1)) { k4[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + (k1[j1] + 2*k2[j1] + 2*k3[j1] + k4[j1])/6 k4red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + (k1red[j1] + 2*k2red[j1] + 2*k3red[j1] + k4red[j1])/6 } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "BI") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1/Par$dtn)/al1 a2 = al3/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c(1,-exp(Par$p),Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(0, -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] bOx = (-Ox[i1,(2:(Par$j-1))]/(al1*Par$dtn)) bRed = (-Red[i1,(2:(Par$j-1))]/(al1*Par$dtn)) A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*Red[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c(1,-exp(Par$p), Derv(npoints = DerApprox, CoefMat = T)[1] + sum(vox[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]), Derv(npoints = DerApprox, CoefMat = T)[1] + sum(vRed[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox])), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(0, -sum(uox[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]) - sum(uRed[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] -Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] -Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "CN") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 2/Par$dtn)/al1 a2 = al3/al1 a3 = (al2 + 2/Par$dtn)/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c(1,-exp(Par$p),Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(0, -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] bOx = -a3*Ox[i1,(2:(Par$j-1))] - Ox[i1,(1:(Par$j-2))] - a2*Ox[i1,(3:Par$j)] bRed = -a3*Red[i1,(2:(Par$j-1))]- Red[i1,(1:(Par$j-2))] - a2*Red[i1,(3:Par$j)] A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*Red[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c(1,-exp(Par$p), Derv(npoints = DerApprox, CoefMat = T)[1] + sum(vox[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]), Derv(npoints = DerApprox, CoefMat = T)[1] + sum(vRed[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox])), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(0, -sum(uox[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]) - sum(uRed[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] -Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] -Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "BDF") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1.5/Par$dtn)/al1 a2 = al3/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c(1,-exp(Par$p),Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(0, -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] if (i1 == 1) { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[1,2:(Par$j-1)]/(2*Par$dtn*al1) bRed = -2*Red[i1,2:(Par$j-1)]/(Par$dtn*al1) + Red[1,2:(Par$j-1)]/(2*Par$dtn*al1) } else { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1) bRed = -2*Red[i1,2:(Par$j-1)]/(Par$dtn*al1) + Red[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1) } A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*Red[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c(1,-exp(Par$p), Derv(npoints = DerApprox, CoefMat = T)[1] + sum(vox[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]), Derv(npoints = DerApprox, CoefMat = T)[1] + sum(vRed[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox])), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(0, -sum(uox[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]) - sum(uRed[2:DerApprox]*Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] -Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] -Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (!(Method %in% c("Euler", "BI", "RK4", "CN", "BDF"))) { return("Available methods are Euler, BI, RK4, CN and BDF") } G = Jox i = (n*Par$FA*G*Dx*Area*Co)/(sqrt(Dx*Par$tau)) graphy = ggplot(data = data.frame(i[1:(length(i)-1)],Par$t[1:(length(i)-1)]), aes(y = i[1:(length(i)-1)], x = Par$t[1:(length(i)-1)])) + geom_point() + xlab("t / s") + ylab("I / A") + theme_classic() if (errCheck == TRUE){ return(list(G,Dx,Co,Par$dtn,Par$h,Par$l,Par$j,i,n,Area)) } else { return(graphy) } } CottrCheck = function(Elefun) { FA = 96485 R = 8.3145 Check = Elefun if (length(Check) == 9){ return("ErrCheck inside the called function should be activated") } else { vt = c(1:Check[[6]]) if (length(Check) == 10){ Gcot = 1/sqrt(3.14*Check[[4]]*vt) } else if (length(Check) == 12){ Gcot = (1/sqrt(3.14*Check[[4]]*vt))/(1+ (1/Check[[12]])*exp(Check[[11]])) } Err = (Check[[1]]/Gcot) t = Check[[4]]*vt ErrorGraphy = ggplot(data = data.frame(Err[1:(length(Err)-1)],t[1:(length(Err)-1)]), aes(y = Err[1:(length(Err)-1)], x = t[1:(length(Err)-1)])) + geom_point() +xlab("Time(s)") + ylab("G/Gcott") + theme_classic() return(ErrorGraphy) } } LinSwp = function(Co = 0.001, Dx = 0.00001, Eo = 0, Dm = 0.45, Vi = 0.3, Vf = -0.3, Vs = 0.001, ko = 0.01, alpha = 0.5, Temp = 298.15, n = 1, Area = 1, l = 100, DerApprox = 2, errCheck = FALSE, Method = "Euler"){ Par = ParCall("LinSwp", n. = n, Temp. = Temp, Dx1. = Dx, Eo1. = Eo, Dm. = Dm, Vi. = Vi, Vf. = Vf, Vs. = Vs, ko1. = ko, alpha1. = alpha, l. = l) Ox = OneMat(Par$l+1, Par$j) Red =ZeroMat(Par$l+1, Par$j) Jox = ZeroMat(Par$l+1, 1) if (Method == "Euler") { for (i1 in 1:Par$l) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] for (j1 in 2:(Par$j-1)) { Ox[i1+1,j1] = Ox[i1,j1] + Dm*(Ox[i1, j1-1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Red[i1+1, j1] = Red[i1, j1] + Dm*(Red[i1, j1-1] + Red[i1, j1+1] - 2*Red[i1,j1]) } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "RK4") { for (i1 in 1:(Par$l-1)) { k1 = ZeroMat(Par$j) k2 = ZeroMat(Par$j) k3 = ZeroMat(Par$j) k4 = ZeroMat(Par$j) k1red = ZeroMat(Par$j) k2red = ZeroMat(Par$j) k3red = ZeroMat(Par$j) k4red = ZeroMat(Par$j) B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] for (j1 in 2:(Par$j-1)) { k1[j1] = Dm*(Ox[i1, j1 -1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k1[j1]*0.5 k1red[j1] = Dm*(Red[i1, j1 -1] - 2*Red[i1, j1] + Red[i1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k1red[j1]*0.5 } B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 2:(Par$j-1)) { k2[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k2[j1]*0.5 k2red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k2red[j1]*0.5 } B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 2:(Par$j-1)) { k3[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k3[j1] k3red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k3red[j1] } B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 2:(Par$j-1)) { k4[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + (k1[j1] + 2*k2[j1] + 2*k3[j1] + k4[j1])/6 k4red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + (k1red[j1] + 2*k2red[j1] + 2*k3red[j1] + k4red[j1])/6 } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "BI") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1/Par$dtn)/al1 a2 = al3/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] bOx = (-Ox[i1,(2:(Par$j-1))]/(al1*Par$dtn)) bRed = (-Red[i1,(2:(Par$j-1))]/(al1*Par$dtn)) A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*Red[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c((Par$Kf[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] -Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] -Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "CN") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 2/Par$dtn)/al1 a2 = al3/al1 a3 = (al2 + 2/Par$dtn)/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] bOx = -a3*Ox[i1,(2:(Par$j-1))] - Ox[i1,(1:(Par$j-2))] - a2*Ox[i1,(3:Par$j)] bRed = -a3*Red[i1,(2:(Par$j-1))]- Red[i1,(1:(Par$j-2))] - a2*Red[i1,(3:Par$j)] A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*Red[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c((Par$Kf[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] -Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] -Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "BDF") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1.5/Par$dtn)/al1 a2 = al3/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] if (i1 == 1) { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[1,2:(Par$j-1)]/(2*Par$dtn*al1) bRed = -2*Red[i1,2:(Par$j-1)]/(Par$dtn*al1) + Red[1,2:(Par$j-1)]/(2*Par$dtn*al1) } else { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1) bRed = -2*Red[i1,2:(Par$j-1)]/(Par$dtn*al1) + Red[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1) } A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*Red[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c((Par$Kf[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] -Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] -Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (!(Method %in% c("Euler", "BI", "RK4", "CN", "BDF"))) { return("Available methods are Euler, BI, RK4, CN and BDF") } G = Jox i = (n*Par$FA*G*Dx*Area*Co)/(sqrt(Dx*Par$tau)) graphy = ggplot(data = data.frame(i[1:(length(i)-1)], Par$PotentialScan[1:(length(i)-1)]), aes(y = i[1:(length(i)-1)], x = Par$PotentialScan[1:(length(i)-1)])) + geom_point() + scale_x_continuous(trans = "reverse") + xlab("E / V") + ylab("I / A") + theme_classic() if (errCheck == TRUE){ return(list(G,Dx,Co,Par$dtn,Par$h,Par$l,Par$j,i,n,Area,Par$p,Par$Da)) } else { return(graphy) } } CV = function(Co = 0.001, Dx = 0.00001, Eo = 0, Dm = 0.45, Vi = 0.3, Vf = -0.3, Vs = 0.001, ko = 0.01, alpha = 0.5, Temp = 298.15, n = 1, Area = 1, l = 100, DerApprox = 2, errCheck = FALSE, Method = "Euler"){ Par = ParCall("CV", n. = n, Temp. = Temp, Dx1. = Dx, Eo1. = Eo, Dm. = Dm, Vi. = Vi, Vf. = Vf, Vs. = Vs, ko1. = ko, alpha1. = alpha, l. = l) Ox = OneMat(Par$l +1, Par$j) Red =ZeroMat(Par$l +1, Par$j) Jox = ZeroMat(Par$l+1, 1) if (Method == "Euler") { for (i1 in 1:Par$l) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] for (j1 in 2:(Par$j-1)) { Ox[i1+1,j1] = Ox[i1,j1] + Dm*(Ox[i1, j1-1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Red[i1+1, j1] = Red[i1, j1] + Dm*(Red[i1, j1-1] + Red[i1, j1+1] - 2*Red[i1,j1]) } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "RK4") { for (i1 in 1:(Par$l-1)) { k1 = ZeroMat(Par$j) k2 = ZeroMat(Par$j) k3 = ZeroMat(Par$j) k4 = ZeroMat(Par$j) k1red = ZeroMat(Par$j) k2red = ZeroMat(Par$j) k3red = ZeroMat(Par$j) k4red = ZeroMat(Par$j) B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] for (j1 in 2:(Par$j-1)) { k1[j1] = Dm*(Ox[i1, j1 -1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k1[j1]*0.5 k1red[j1] = Dm*(Red[i1, j1 -1] - 2*Red[i1, j1] + Red[i1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k1red[j1]*0.5 } B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 2:(Par$j-1)) { k2[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k2[j1]*0.5 k2red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k2red[j1]*0.5 } B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 2:(Par$j-1)) { k3[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k3[j1] k3red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k3red[j1] } B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 2:(Par$j-1)) { k4[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + (k1[j1] + 2*k2[j1] + 2*k3[j1] + k4[j1])/6 k4red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + (k1red[j1] + 2*k2red[j1] + 2*k3red[j1] + k4red[j1])/6 } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "BI") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1/Par$dtn)/al1 a2 = al3/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] bOx = (-Ox[i1,(2:(Par$j-1))]/(al1*Par$dtn)) bRed = (-Red[i1,(2:(Par$j-1))]/(al1*Par$dtn)) A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*Red[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c((Par$Kf[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] -Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] -Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "CN") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 2/Par$dtn)/al1 a2 = al3/al1 a3 = (al2 + 2/Par$dtn)/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] bOx = -a3*Ox[i1,(2:(Par$j-1))] - Ox[i1,(1:(Par$j-2))] - a2*Ox[i1,(3:Par$j)] bRed = -a3*Red[i1,(2:(Par$j-1))]- Red[i1,(1:(Par$j-2))] - a2*Red[i1,(3:Par$j)] A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*Red[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c((Par$Kf[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] -Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] -Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "BDF") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1.5/Par$dtn)/al1 a2 = al3/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] if (i1 == 1) { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[1,2:(Par$j-1)]/(2*Par$dtn*al1) bRed = -2*Red[i1,2:(Par$j-1)]/(Par$dtn*al1) + Red[1,2:(Par$j-1)]/(2*Par$dtn*al1) } else { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1) bRed = -2*Red[i1,2:(Par$j-1)]/(Par$dtn*al1) + Red[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1) } A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*Red[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c((Par$Kf[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] -Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] -Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (!(Method %in% c("Euler", "BI", "RK4", "CN", "BDF"))) { return("Available methods are Euler, BI, RK4, CN and BDF") } G = Jox i = (n*Par$FA*G*Dx*Area*Co)/(sqrt(Dx*Par$tau)) graphy = ggplot(data = data.frame(i[1:(length(i)-1)], Par$PotentialScan[1:(length(i)-1)]), aes(y = i[1:(length(i)-1)], x = Par$PotentialScan[1:(length(i)-1)])) + geom_point() + scale_x_continuous(trans = "reverse") + xlab("E / V") + ylab("I / A") + theme_classic() if (errCheck == TRUE){ return(list(G,Dx,Co,Par$dtn,Par$h,Par$l,Par$j,i,n,Area,Par$p,Par$Da)) } else { return(graphy) } } CVEC = function(Co = 0.001, Dx = 0.00001, Eo = 0, Dm = 0.45, Vi = 0.3, Vf = -0.3, Vs = 0.001, ko = 0.01, kc = 0.001, l = 100, alpha = 0.5, Temp = 298.15, n = 1, Area = 1, DerApprox = 2, errCheck = FALSE, Method = "Euler"){ Par = ParCall("CVEC", n. = n, Temp. = Temp, Dx1. = Dx, Eo1. = Eo, Dm. = Dm, Vi. = Vi, kc. = kc, Vf. = Vf, Vs. = Vs, ko1. = ko, alpha1. = alpha, l. = l) Ox = OneMat(Par$l +1, Par$j) Red =ZeroMat(Par$l +1, Par$j) Jox = ZeroMat(Par$l+1, 1) if (Method == "Euler") { for (i1 in 1:Par$l) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] - Par$KC*Red[i1,1] for (j1 in 2:(Par$j-1)) { Ox[i1+1,j1] = Ox[i1,j1] + Dm*(Ox[i1, j1-1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Red[i1+1, j1] = Red[i1, j1] + Dm*(Red[i1, j1-1] + Red[i1, j1+1] - 2*Red[i1,j1]) - Par$KC*Par$dtn*Red[i1,j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "RK4") { for (i1 in 1:(Par$l-1)) { k1 = ZeroMat(Par$j) k2 = ZeroMat(Par$j) k3 = ZeroMat(Par$j) k4 = ZeroMat(Par$j) k1red = ZeroMat(Par$j) k2red = ZeroMat(Par$j) k3red = ZeroMat(Par$j) k4red = ZeroMat(Par$j) B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] for (j1 in 2:(Par$j-1)) { k1[j1] = Dm*(Ox[i1, j1 -1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k1[j1]*0.5 k1red[j1] = Dm*(Red[i1, j1 -1] - 2*Red[i1, j1] + Red[i1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k1red[j1]*0.5 } B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 2:(Par$j-1)) { k2[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k2[j1]*0.5 k2red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k2red[j1]*0.5 } B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 2:(Par$j-1)) { k3[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k3[j1] k3red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + k3red[j1] } B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] - Par$KC*Red[i1+1,1] for (j1 in 2:(Par$j-1)) { k4[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + (k1[j1] + 2*k2[j1] + 2*k3[j1] + k4[j1])/6 k4red[j1] = Dm*(Red[i1 + 1, j1 -1] - 2*Red[i1 + 1, j1] + Red[i1 + 1, j1+1]) Red[i1 + 1,j1] = Red[i1,j1] + (k1red[j1] + 2*k2red[j1] + 2*k3red[j1] + k4red[j1])/6 - Par$KC*Par$dtn*Red[i1+1,j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "BI") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1/Par$dtn)/al1 a2 = al3/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] - Par$KC*Red[i1,1] bOx = (-Ox[i1,(2:(Par$j-1))]/(al1*Par$dtn)) bRed = (-Red[i1,(2:(Par$j-1))]/(al1*Par$dtn)) + Par$KC*Red[i1,2:(Par$j-1)]/al1 A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*(Red[i1,Par$j] - Par$KC*Red[i1,Par$j]) uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c((Par$Kf[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] - Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] - Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "CN") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 2/Par$dtn)/al1 a2 = al3/al1 a3 = (al2 + 2/Par$dtn)/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] - Par$KC*Red[i1,1] bOx = -a3*Ox[i1,(2:(Par$j-1))] - Ox[i1,(1:(Par$j-2))] - a2*Ox[i1,(3:Par$j)] bRed = -a3*Red[i1,(2:(Par$j-1))]- Red[i1,(1:(Par$j-2))] - a2*Red[i1,(3:Par$j)] + Par$KC*Red[i1,2:(Par$j-1)]/al1 A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*Ox[i1,Par$j] bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*(Red[i1,Par$j] - Par$KC*Red[i1,Par$j]) uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c((Par$Kf[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] -Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] -Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (Method == "BDF") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1.5/Par$dtn)/al1 a2 = al3/al1 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red[i1,1] = C[2] - Par$KC*Red[i1,1] if (i1 == 1) { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[1,2:(Par$j-1)]/(2*Par$dtn*al1) bRed = -2*Red[i1,2:(Par$j-1)]/(Par$dtn*al1) + Red[1,2:(Par$j-1)]/(2*Par$dtn*al1) + Par$KC*Red[i1,2:(Par$j-1)]/al1 } else { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1) bRed = -2*Red[i1,2:(Par$j-1)]/(Par$dtn*al1) + Red[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1) + Par$KC*Red[i1,2:(Par$j-1)]/al1 } A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*Ox[i1,Par$j] bRed[Par$j-2] = bRed[Par$j-2] - A2[Par$j-2]*(Red[i1,Par$j] - Par$KC*Red[i1,Par$j]) uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2[Par$j-2]*bRed[j1+1]/A1[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1[m-1] vRed[m] = -vRed[m-1]/A1[m-1] } B = matrix(data = c((Par$Kf[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 2, ncol = 2) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red[i1+1,1] = C[2] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] -Ox[i1+1,j1])/A1[j1] Red[i1+1,j1+1] = (bRed[j1] -Red[i1+1,j1])/A1[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) } else if (!(Method %in% c("Euler", "BI", "RK4", "CN", "BDF"))) { return("Available methods are Euler, BI, RK4, CN and BDF") } G = Jox i = (n*Par$FA*G*Dx*Area*Co)/(sqrt(Dx*Par$tau)) graphy = ggplot(data = data.frame(i[1:(length(i)-1)], Par$PotentialScan[1:(length(i)-1)]), aes(y = i[1:(length(i)-1)], x = Par$PotentialScan[1:(length(i)-1)])) + geom_point() + scale_x_continuous(trans = "reverse") + xlab("E / V") + ylab("I / A") + theme_classic() if (errCheck == TRUE){ return(list(G,Dx,Co,Par$dtn,Par$h,Par$l,Par$j,i,n,Area,Par$p,Par$Da)) } else { return(graphy) } } CVEE = function(Co = 0.001, Dx1 = 0.00001, Eo1 = 0, Vi = 0.3, Vf = -0.3, Vs = 0.001, ko1 = 0.01, alpha1 = 0.5, Dred = 0.00001, Dred2 = 0.00001, Eo2 = 0, ko2 = 0.01, alpha2 = 0.5, Dm = 0.45, l = 100, Temp = 298.15, n = 1, Area = 1, DerApprox = 2, errCheck = FALSE, Method = "Euler") { Par = ParCall("CVEE", n. = n, Temp. = Temp, Dx1. = Dx1, Dred1. = Dred, Eo1. = Eo1, Eo2. = Eo2, Dm. = Dm, Vi. = Vi, Vf. = Vf, Vs. = Vs, ko1. = ko1, ko2. = ko2, alpha1. = alpha1, alpha2. = alpha2, Dred2. = Dred2, l. = l) Ox = OneMat(Par$l +1, Par$j) Red1 = ZeroMat(Par$l +1, Par$j) Jox = ZeroMat(Par$l+1, 1) Red2 = ZeroMat(Par$l +1, Par$j) Jred1 = ZeroMat(Par$l+1, 1) if (Method == "Euler") { for (i1 in 1:Par$l) { B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 3, ncol = 3) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red1[i1,1] = C[2] Red2[i1,1] = C[3] for (j1 in 2:(Par$j-1)) { Ox[i1+1,j1] = Ox[i1,j1] + Dm*(Ox[i1, j1-1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Red1[i1+1, j1] = Red1[i1, j1] + Par$DRED*Dm*(Red1[i1, j1-1] + Red1[i1, j1+1] - 2*Red1[i1,j1]) Red2[i1+1, j1] = Red2[i1, j1] + Par$DRED2*Dm*(Red2[i1, j1-1] + Red2[i1, j1+1] - 2*Red2[i1,j1]) } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) Jred1 = Derv(Ox = Red1, h = Par$h, npoints = DerApprox) } else if (Method == "RK4") { for (i1 in 1:(Par$l-1)) { k1 = ZeroMat(Par$j) k2 = ZeroMat(Par$j) k3 = ZeroMat(Par$j) k4 = ZeroMat(Par$j) k1red = ZeroMat(Par$j) k2red = ZeroMat(Par$j) k3red = ZeroMat(Par$j) k4red = ZeroMat(Par$j) k1red2 = ZeroMat(Par$j) k2red2 = ZeroMat(Par$j) k3red2 = ZeroMat(Par$j) k4red2 = ZeroMat(Par$j) B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 3, ncol = 3) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red1[i1,1] = C[2] Red2[i1,1] = C[3] for (j1 in 2:(Par$j-1)) { k1[j1] = Dm*(Ox[i1, j1 -1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k1[j1]*0.5 k1red[j1] = Par$DRED*Dm*(Red1[i1, j1 -1] - 2*Red1[i1, j1] + Red1[i1, j1+1]) Red1[i1 + 1,j1] = Red1[i1,j1] + k1red[j1]*0.5 k1red2[j1] = Par$DRED*Dm*(Red2[i1, j1 -1] - 2*Red2[i1, j1] + Red2[i1, j1+1]) Red2[i1 + 1,j1] = Red2[i1,j1] + k1red2[j1]*0.5 } B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 3, ncol = 3) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red1[i1+1,1] = C[2] Red2[i1+1,1] = C[3] for (j1 in 2:(Par$j-1)) { k2[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k2[j1]*0.5 k2red[j1] = Par$DRED*Dm*(Red1[i1+1, j1 -1] - 2*Red1[i1+1, j1] + Red1[i1+1, j1+1]) Red1[i1 + 1,j1] = Red1[i1,j1] + k2red[j1]*0.5 k2red2[j1] = Par$DRED*Dm*(Red2[i1+1, j1 -1] - 2*Red2[i1+1, j1] + Red2[i1+1, j1+1]) Red2[i1 + 1,j1] = Red2[i1,j1] + k2red2[j1]*0.5 } B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 3, ncol = 3) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red1[i1+1,1] = C[2] Red2[i1+1,1] = C[3] for (j1 in 2:(Par$j-1)) { k3[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k3[j1] k3red[j1] = Par$DRED*Dm*(Red1[i1 + 1, j1 -1] - 2*Red1[i1 + 1, j1] + Red1[i1 + 1, j1+1]) Red1[i1 + 1,j1] = Red1[i1,j1] + k3red[j1] k3red2[j1] = Par$DRED*Dm*(Red2[i1 + 1, j1 -1] - 2*Red2[i1 + 1, j1] + Red2[i1 + 1, j1+1]) Red2[i1 + 1,j1] = Red2[i1,j1] + k3red2[j1] } B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 3, ncol = 3) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red1[i1+1,1] = C[2] Red2[i1+1,1] = C[3] for (j1 in 2:(Par$j-1)) { k4[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + (k1[j1] + 2*k2[j1] + 2*k3[j1] + k4[j1])/6 k4red[j1] = Par$DRED*Dm*(Red1[i1 + 1, j1 -1] - 2*Red1[i1 + 1, j1] + Red1[i1 + 1, j1+1]) Red1[i1 + 1,j1] = Red1[i1,j1] + (k1red[j1] + 2*k2red[j1] + 2*k3red[j1] + k4red[j1])/6 k4red2[j1] = Par$DRED*Dm*(Red2[i1 + 1, j1 -1] - 2*Red2[i1 + 1, j1] + Red2[i1 + 1, j1+1]) Red2[i1 + 1,j1] = Red2[i1,j1] + (k1red2[j1] + 2*k2red2[j1] + 2*k3red2[j1] + k4red2[j1])/6 } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) Jred1 = Derv(Ox = Red1, h = Par$h, npoints = DerApprox) } else if (Method == "BI") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1/Par$dtn)/al1 a2 = al3/al1 al1red = Par$DRED/(Par$h^2) al2red = -(2*Par$DRED)/(Par$h^2) al3red = Par$DRED/(Par$h^2) a1red = (al2red - 1/Par$dtn)/al1red a2red = al3red/al1red al1red2 = Par$DRED2/(Par$h^2) al2red2 = -(2*Par$DRED2)/(Par$h^2) al3red2 = Par$DRED2/(Par$h^2) a1red2 = (al2red2 - 1/Par$dtn)/al1red2 a2red2 = al3red2/al1red2 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 3, ncol = 3) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red1[i1,1] = C[2] Red2[i1,1] = C[3] bOx = (-Ox[i1,(2:(Par$j-1))]/(al1*Par$dtn)) bRed = (-Red1[i1,(2:(Par$j-1))]/(al1red*Par$dtn)) bRed2 = (-Red2[i1,(2:(Par$j-1))]/(al1red2*Par$dtn)) A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) A1red = c(rep(a1red,Par$j-2)) A2red = c(rep(a2red,Par$j-2)) A1red2 = c(rep(a1red2,Par$j-2)) A2red2 = c(rep(a2red2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2red[Par$j-2]*Red1[i1,Par$j] bRed2[Par$j-2] = bRed2[Par$j-2] - A2red2[Par$j-2]*Red2[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) uRed2 = c(rep(0, DerApprox)) vRed2 = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2red[Par$j-2]*bRed[j1+1]/A1red[j1+1] bRed2[j1] = bRed2[j1] - A2red2[Par$j-2]*bRed2[j1+1]/A1red2[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] A1red[j1] = A1red[j1] - A2red[Par$j-2]/A1red[j1+1] A1red2[j1] = A1red2[j1] - A2red2[Par$j-2]/A1red2[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1red[m-1] vRed[m] = -vRed[m-1]/A1red[m-1] uRed2[m] = (bRed2[m-1] - uRed2[m-1])/A1red2[m-1] vRed2[m] = -vRed2[m-1]/A1red2[m-1] } B = matrix(data = c((Par$Kf1[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb1[i1]*Par$h, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb2[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed2*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 3, ncol = 3) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed2*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red1[i1+1,1] = C[2] Red2[i1+1,1] = C[3] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] - Ox[i1+1,j1])/A1[j1] Red1[i1+1,j1+1] = (bRed[j1] - Red1[i1+1,j1])/A1red[j1] Red2[i1+1,j1+1] = (bRed2[j1] - Red2[i1+1,j1])/A1red2[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) Jred1 = Derv(Ox = Red1, h = Par$h, npoints = DerApprox) } else if (Method == "CN") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 2/Par$dtn)/al1 a2 = al3/al1 a3 = (al2 + 2/Par$dtn)/al1 al1red = Par$DRED/(Par$h^2) al2red = -(2*Par$DRED)/(Par$h^2) al3red = Par$DRED/(Par$h^2) a1red = (al2red - 2/Par$dtn)/al1red a2red = al3red/al1red a3red = (al2red + 2/Par$dtn)/al1red al1red2 = Par$DRED2/(Par$h^2) al2red2 = -(2*Par$DRED2)/(Par$h^2) al3red2 = Par$DRED2/(Par$h^2) a1red2 = (al2red2 - 2/Par$dtn)/al1red2 a2red2 = al3red2/al1red2 a3red2 = (al2red2 + 2/Par$dtn)/al1red2 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 3, ncol = 3) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red1[i1,1] = C[2] Red2[i1,1] = C[3] bOx = -a3*Ox[i1,(2:(Par$j-1))] - Ox[i1,(1:(Par$j-2))] - a2*Ox[i1,(3:Par$j)] bRed = -a3red*Red1[i1,(2:(Par$j-1))]- Red1[i1,(1:(Par$j-2))] - a2red*Red1[i1,(3:Par$j)] bRed2 = -a3red2*Red2[i1,(2:(Par$j-1))]- Red2[i1,(1:(Par$j-2))] - a2red2*Red2[i1,(3:Par$j)] A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) A1red = c(rep(a1red,Par$j-2)) A2red = c(rep(a2red,Par$j-2)) A1red2 = c(rep(a1red2,Par$j-2)) A2red2 = c(rep(a2red2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2red[Par$j-2]*Red1[i1,Par$j] bRed2[Par$j-2] = bRed2[Par$j-2] - A2red2[Par$j-2]*Red2[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) uRed2 = c(rep(0, DerApprox)) vRed2 = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2red[Par$j-2]*bRed[j1+1]/A1red[j1+1] bRed2[j1] = bRed2[j1] - A2red2[Par$j-2]*bRed2[j1+1]/A1red2[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] A1red[j1] = A1red[j1] - A2red[Par$j-2]/A1red[j1+1] A1red2[j1] = A1red2[j1] - A2red2[Par$j-2]/A1red2[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1red[m-1] vRed[m] = -vRed[m-1]/A1red[m-1] uRed2[m] = (bRed2[m-1] - uRed2[m-1])/A1red2[m-1] vRed2[m] = -vRed2[m-1]/A1red2[m-1] } B = matrix(data = c((Par$Kf1[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb1[i1]*Par$h, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb2[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed2*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 3, ncol = 3) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed2*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red1[i1+1,1] = C[2] Red2[i1+1,1] = C[3] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] - Ox[i1+1,j1])/A1[j1] Red1[i1+1,j1+1] = (bRed[j1] - Red1[i1+1,j1])/A1red[j1] Red2[i1+1,j1+1] = (bRed2[j1] - Red2[i1+1,j1])/A1red2[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) Jred1 = Derv(Ox = Red1, h = Par$h, npoints = DerApprox) } else if (Method == "BDF") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1.5/Par$dtn)/al1 a2 = al3/al1 al1red = Par$DRED/(Par$h^2) al2red = -(2*Par$DRED)/(Par$h^2) al3red = Par$DRED/(Par$h^2) a1red = (al2red - 1.5/Par$dtn)/al1red a2red = al3red/al1red al1red2 = Par$DRED2/(Par$h^2) al2red2 = -(2*Par$DRED2)/(Par$h^2) al3red2 = Par$DRED2/(Par$h^2) a1red2 = (al2red2 - 1.5/Par$dtn)/al1red2 a2red2 = al3red2/al1red2 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 3, ncol = 3) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red1[i1,1] = C[2] Red2[i1,1] = C[3] if (i1 == 1) { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[1,2:(Par$j-1)]/(2*Par$dtn*al1) bRed = -2*Red1[i1,2:(Par$j-1)]/(Par$dtn*al1red) + Red1[1,2:(Par$j-1)]/(2*Par$dtn*al1red) bRed2 = -2*Red2[i1,2:(Par$j-1)]/(Par$dtn*al1red2) + Red2[1,2:(Par$j-1)]/(2*Par$dtn*al1red2) } else { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1) bRed = -2*Red1[i1,2:(Par$j-1)]/(Par$dtn*al1red) + Red1[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1red) bRed2 = -2*Red2[i1,2:(Par$j-1)]/(Par$dtn*al1red2) + Red2[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1red2) } A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) A1red = c(rep(a1red,Par$j-2)) A2red = c(rep(a2red,Par$j-2)) A1red2 = c(rep(a1red2,Par$j-2)) A2red2 = c(rep(a2red2,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*1 bRed[Par$j-2] = bRed[Par$j-2] - A2red[Par$j-2]*Red1[i1,Par$j] bRed2[Par$j-2] = bRed2[Par$j-2] - A2red2[Par$j-2]*Red2[i1,Par$j] uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) uRed2 = c(rep(0, DerApprox)) vRed2 = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2red[Par$j-2]*bRed[j1+1]/A1red[j1+1] bRed2[j1] = bRed2[j1] - A2red2[Par$j-2]*bRed2[j1+1]/A1red2[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] A1red[j1] = A1red[j1] - A2red[Par$j-2]/A1red[j1+1] A1red2[j1] = A1red2[j1] - A2red2[Par$j-2]/A1red2[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1red[m-1] vRed[m] = -vRed[m-1]/A1red[m-1] uRed2[m] = (bRed2[m-1] - uRed2[m-1])/A1red2[m-1] vRed2[m] = -vRed2[m-1]/A1red2[m-1] } B = matrix(data = c((Par$Kf1[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb1[i1]*Par$h, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb2[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed2*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 3, ncol = 3) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed2*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red1[i1+1,1] = C[2] Red2[i1+1,1] = C[3] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] - Ox[i1+1,j1])/A1[j1] Red1[i1+1,j1+1] = (bRed[j1] - Red1[i1+1,j1])/A1red[j1] Red2[i1+1,j1+1] = (bRed2[j1] - Red2[i1+1,j1])/A1red2[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) Jred1 = Derv(Ox = Red1, h = Par$h, npoints = DerApprox) } else if (!(Method %in% c("Euler", "BI", "RK4", "CN", "BDF"))) { return("Available methods are Euler, BI, RK4, CN and BDF") } G1 = Jox G2 = Jox + Jred1 i = (n*Par$FA*(G1+G2)*Dx1*Area*Co)/(sqrt(Dx1*Par$tau)) graphy = ggplot(data = data.frame(i[1:(length(i)-1)],Par$PotentialScan[1:(length(i)-1)]), aes(y = i[1:(length(i)-1)], x = Par$PotentialScan[1:(length(i)-1)])) + geom_point() + scale_x_continuous(trans = "reverse") + xlab("E / V") + ylab("I / A") + theme_classic() if (errCheck == TRUE){ return(list((G1+G2),Dx1,Dred,Dred2,Co,Par$dtn,Par$h,i,Par$l,Par$j,n,Area,Par$DOx,Par$DRED,Par$DRED2,Par$p1,Par$p2)) } else { return(graphy) } } Gen_CV = function(Co = 0.001, Cred= 0, kco = 0, Dx1 = 0.00001, Eo1 = 0, kc1 = 0, Vi = 0.3, Vf = -0.3, Vs = 0.001, ko1 = 0.01, alpha1 = 0.5, Dred = 0.00001, Dred2 = 0.00001, Eo2 = 0, kc2 = 0, ko2 = 0, alpha2 = 0.5, Dm = 0.45, Dred3 = 0.00001, Eo3 = 0, kc3 = 0, ko3 = 0, alpha3 = 0.5, Dred4 = 0.00001, Eo4 = 0, kc4 = 0, ko4 = 0, alpha4 = 0.5, Temp = 298.15, n = 1, Area = 1, l = 100, DerApprox = 2, errCheck = FALSE, Method = "Euler") { if (kco > 0.001 | kc1 > 0.001 | kc2 > 0.001 | kc3 > 0.001 | kc4 > 0.001 ) { warning("Chemical rate costant is too high, this will result in unstable simulation") } Par = ParCall("Gen_CV", n. = n, Temp. = Temp, Dx1. = Dx1, Dred1. = Dred, Dred2. = Dred2, Dred3. = Dred3, Dred4. = Dred4, Eo1. = Eo1, Eo2. = Eo2, Eo3. = Eo3, Eo4. = Eo4, Dm. = Dm, Vi. = Vi, kco. = kco, kc1. = kc1, kc2. = kc2, kc3. = kc3, kc4. = kc4, Vf. = Vf, Vs. = Vs, ko1. = ko1, ko2. = ko2, ko3. = ko3, ko4. = ko4, alpha1. = alpha1, alpha2. = alpha2, alpha3. = alpha3, alpha4. = alpha4, l. = l) Ox = OneMat(Par$l +1, Par$j) if (Co == 0) { Co = 0.0000001 } Red1 = (Cred/Co)*OneMat(Par$l +1, Par$j) Jox = ZeroMat(Par$l+1, 1) Red2 = ZeroMat(Par$l +1, Par$j) Jred1 = ZeroMat(Par$l+1, 1) Red3 = ZeroMat(Par$l +1, Par$j) Jred2 = ZeroMat(Par$l+1, 1) Red4 = ZeroMat(Par$l +1, Par$j) Jred3 = ZeroMat(Par$l+1, 1) if (Method == "Euler") { for (i1 in 1:Par$l) { B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, 0, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, 0, 0, 0, -Par$Kf2[i1]*Par$h, Par$Kb2[i1]*Par$h + Par$Kf3[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb3[i1]*Par$h, 0, 0, 0, -Par$Kf3[i1]*Par$h, Par$Kb3[i1]*Par$h + Par$Kf4[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb4[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 5, ncol = 5) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]), Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]), Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]) - Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1,2:DerApprox]) - Par$DRED4*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red4[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] - Par$KCo*Ox[i1,1] Red1[i1,1] = C[2] - Par$KC1*Red1[i1,1] Red2[i1,1] = C[3] - Par$KC2*Red2[i1,1] Red3[i1,1] = C[4] - Par$KC3*Red3[i1,1] Red4[i1,1] = C[5] - Par$KC4*Red4[i1,1] for (j1 in 2:(Par$j-1)) { Ox[i1+1,j1] = Ox[i1,j1] + Dm*(Ox[i1, j1-1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) - Par$KCo*Par$dtn*Ox[i1,j1] Red1[i1+1, j1] = Red1[i1, j1] + Par$DRED*Dm*(Red1[i1, j1-1] + Red1[i1, j1+1] - 2*Red1[i1,j1]) - Par$KC1*Par$dtn*Red1[i1,j1] Red2[i1+1, j1] = Red2[i1, j1] + Par$DRED2*Dm*(Red2[i1, j1-1] + Red2[i1, j1+1] - 2*Red2[i1,j1]) - Par$KC2*Par$dtn*Red2[i1,j1] Red3[i1+1, j1] = Red3[i1, j1] + Par$DRED3*Dm*(Red3[i1, j1-1] + Red3[i1, j1+1] - 2*Red3[i1,j1]) - Par$KC3*Par$dtn*Red3[i1,j1] Red4[i1+1, j1] = Red4[i1, j1] + Par$DRED4*Dm*(Red4[i1, j1-1] + Red4[i1, j1+1] - 2*Red4[i1,j1]) - Par$KC4*Par$dtn*Red4[i1,j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) Jred1 = Derv(Ox = Red1, h = Par$h, npoints = DerApprox) Jred2 = Derv(Ox = Red2, h = Par$h, npoints = DerApprox) Jred3 = Derv(Ox = Red3, h = Par$h, npoints = DerApprox) Jred4 = Derv(Ox = Red4, h = Par$h, npoints = DerApprox) } else if (Method == "RK4") { for (i1 in 1:(Par$l-1)) { k1 = ZeroMat(Par$j) k2 = ZeroMat(Par$j) k3 = ZeroMat(Par$j) k4 = ZeroMat(Par$j) k1red1 = ZeroMat(Par$j) k2red1 = ZeroMat(Par$j) k3red1 = ZeroMat(Par$j) k4red1 = ZeroMat(Par$j) k1red2 = ZeroMat(Par$j) k2red2 = ZeroMat(Par$j) k3red2 = ZeroMat(Par$j) k4red2 = ZeroMat(Par$j) k1red3 = ZeroMat(Par$j) k2red3 = ZeroMat(Par$j) k3red3 = ZeroMat(Par$j) k4red3 = ZeroMat(Par$j) k1red4 = ZeroMat(Par$j) k2red4 = ZeroMat(Par$j) k3red4 = ZeroMat(Par$j) k4red4 = ZeroMat(Par$j) B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, 0, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, 0, 0, 0, -Par$Kf2[i1]*Par$h, Par$Kb2[i1]*Par$h + Par$Kf3[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb3[i1]*Par$h, 0, 0, 0, -Par$Kf3[i1]*Par$h, Par$Kb3[i1]*Par$h + Par$Kf4[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb4[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 5, ncol = 5) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]), Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]), Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]) - Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1,2:DerApprox]) - Par$DRED4*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red4[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] Red1[i1,1] = C[2] Red2[i1,1] = C[3] Red3[i1,1] = C[4] Red4[i1,1] = C[5] for (j1 in 2:(Par$j-1)) { k1[j1] = Dm*(Ox[i1, j1 -1] - 2*Ox[i1, j1] + Ox[i1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k1[j1]*0.5 k1red1[j1] = Par$DRED*Dm*(Red1[i1, j1 -1] - 2*Red1[i1, j1] + Red1[i1, j1+1]) Red1[i1 + 1,j1] = Red1[i1,j1] + k1red1[j1]*0.5 k1red2[j1] = Par$DRED2*Dm*(Red2[i1, j1 -1] - 2*Red2[i1, j1] + Red2[i1, j1+1]) Red2[i1 + 1,j1] = Red2[i1,j1] + k1red2[j1]*0.5 k1red3[j1] = Par$DRED3*Dm*(Red3[i1, j1 -1] - 2*Red3[i1, j1] + Red3[i1, j1+1]) Red3[i1 + 1,j1] = Red3[i1,j1] + k1red3[j1]*0.5 k1red4[j1] = Par$DRED4*Dm*(Red4[i1, j1 -1] - 2*Red4[i1, j1] + Red4[i1, j1+1]) Red4[i1 + 1,j1] = Red4[i1,j1] + k1red4[j1]*0.5 } B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, 0, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, 0, 0, 0, -Par$Kf2[i1]*Par$h, Par$Kb2[i1]*Par$h + Par$Kf3[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb3[i1]*Par$h, 0, 0, 0, -Par$Kf3[i1]*Par$h, Par$Kb3[i1]*Par$h + Par$Kf4[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb4[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 5, ncol = 5) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]), Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1+1,2:DerApprox]), Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1+1,2:DerApprox]) - Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1+1,2:DerApprox]) - Par$DRED4*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red4[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red1[i1+1,1] = C[2] Red2[i1+1,1] = C[3] Red3[i1+1,1] = C[4] Red4[i1+1,1] = C[5] for (j1 in 2:(Par$j-1)) { k2[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k2[j1]*0.5 k2red1[j1] = Par$DRED*Dm*(Red1[i1+1, j1 -1] - 2*Red1[i1+1, j1] + Red1[i1+1, j1+1]) Red1[i1 + 1,j1] = Red1[i1,j1] + k2red1[j1]*0.5 k2red2[j1] = Par$DRED2*Dm*(Red2[i1+1, j1 -1] - 2*Red2[i1+1, j1] + Red2[i1+1, j1+1]) Red2[i1 + 1,j1] = Red2[i1,j1] + k2red2[j1]*0.5 k2red3[j1] = Par$DRED3*Dm*(Red3[i1+1, j1 -1] - 2*Red3[i1+1, j1] + Red3[i1+1, j1+1]) Red3[i1 + 1,j1] = Red3[i1,j1] + k2red3[j1]*0.5 k2red4[j1] = Par$DRED4*Dm*(Red4[i1+1, j1 -1] - 2*Red4[i1+1, j1] + Red4[i1+1, j1+1]) Red4[i1 + 1,j1] = Red4[i1,j1] + k2red4[j1]*0.5 } B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, 0, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, 0, 0, 0, -Par$Kf2[i1]*Par$h, Par$Kb2[i1]*Par$h + Par$Kf3[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb3[i1]*Par$h, 0, 0, 0, -Par$Kf3[i1]*Par$h, Par$Kb3[i1]*Par$h + Par$Kf4[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb4[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 5, ncol = 5) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]), Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1+1,2:DerApprox]), Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1+1,2:DerApprox]) - Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1+1,2:DerApprox]) - Par$DRED4*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red4[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red1[i1+1,1] = C[2] Red2[i1+1,1] = C[3] Red3[i1+1,1] = C[4] Red4[i1+1,1] = C[5] for (j1 in 2:(Par$j-1)) { k3[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + k3[j1] k3red1[j1] = Par$DRED*Dm*(Red1[i1 + 1, j1 -1] - 2*Red1[i1 + 1, j1] + Red1[i1 + 1, j1+1]) Red1[i1 + 1,j1] = Red1[i1,j1] + k3red1[j1] k3red2[j1] = Par$DRED2*Dm*(Red2[i1 + 1, j1 -1] - 2*Red2[i1 + 1, j1] + Red2[i1 + 1, j1+1]) Red2[i1 + 1,j1] = Red2[i1,j1] + k3red2[j1] k3red3[j1] = Par$DRED3*Dm*(Red3[i1+1, j1 -1] - 2*Red3[i1+1, j1] + Red3[i1+1, j1+1]) Red3[i1 + 1,j1] = Red3[i1,j1] + k3red3[j1] k3red4[j1] = Par$DRED4*Dm*(Red4[i1+1, j1 -1] - 2*Red4[i1+1, j1] + Red4[i1+1, j1+1]) Red4[i1 + 1,j1] = Red4[i1,j1] + k3red4[j1] } B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, 0, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, 0, 0, 0, -Par$Kf2[i1]*Par$h, Par$Kb2[i1]*Par$h + Par$Kf3[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb3[i1]*Par$h, 0, 0, 0, -Par$Kf3[i1]*Par$h, Par$Kb3[i1]*Par$h + Par$Kf4[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb4[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 5, ncol = 5) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]), Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1+1,2:DerApprox]), Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1+1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1+1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1+1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1+1,2:DerApprox]) - Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1+1,2:DerApprox]) - Par$DRED4*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red4[i1+1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] - Par$KCo*Ox[i1+1,1] Red1[i1+1,1] = C[2] - Par$KC1*Red1[i1+1,1] Red2[i1+1,1] = C[3] - Par$KC2*Red2[i1+1,1] Red3[i1+1,1] = C[4] - Par$KC3*Red3[i1+1,1] Red4[i1+1,1] = C[5] - Par$KC4*Red4[i1+1,1] for (j1 in 2:(Par$j-1)) { k4[j1] = Dm*(Ox[i1 + 1, j1 -1] - 2*Ox[i1 + 1, j1] + Ox[i1 + 1, j1+1]) Ox[i1 + 1,j1] = Ox[i1,j1] + (k1[j1] + 2*k2[j1] + 2*k3[j1] + k4[j1])/6 - Par$KCo*Par$dtn*Ox[i1+1,j1] k4red1[j1] = Par$DRED*Dm*(Red1[i1 + 1, j1 -1] - 2*Red1[i1 + 1, j1] + Red1[i1 + 1, j1+1]) Red1[i1 + 1,j1] = Red1[i1,j1] + (k1red1[j1] + 2*k2red1[j1] + 2*k3red1[j1] + k4red1[j1])/6 - Par$KC1*Par$dtn*Red1[i1+1,j1] k4red2[j1] = Par$DRED2*Dm*(Red2[i1 + 1, j1 -1] - 2*Red2[i1 + 1, j1] + Red2[i1 + 1, j1+1]) Red2[i1 + 1,j1] = Red2[i1,j1] + (k1red2[j1] + 2*k2red2[j1] + 2*k3red2[j1] + k4red2[j1])/6 - Par$KC2*Par$dtn*Red2[i1+1,j1] k4red3[j1] = Par$DRED3*Dm*(Red3[i1 + 1, j1 -1] - 2*Red3[i1 + 1, j1] + Red3[i1 + 1, j1+1]) Red3[i1 + 1,j1] = Red3[i1,j1] + (k1red3[j1] + 2*k2red3[j1] + 2*k3red3[j1] + k4red3[j1])/6 - Par$KC3*Par$dtn*Red3[i1+1,j1] k4red4[j1] = Par$DRED4*Dm*(Red4[i1 + 1, j1 -1] - 2*Red4[i1 + 1, j1] + Red4[i1 + 1, j1+1]) Red4[i1 + 1,j1] = Red4[i1,j1] + (k1red4[j1] + 2*k2red4[j1] + 2*k3red4[j1] + k4red4[j1])/6 - Par$KC4*Par$dtn*Red4[i1+1,j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) Jred1 = Derv(Ox = Red1, h = Par$h, npoints = DerApprox) Jred2 = Derv(Ox = Red2, h = Par$h, npoints = DerApprox) Jred3 = Derv(Ox = Red3, h = Par$h, npoints = DerApprox) Jred4 = Derv(Ox = Red4, h = Par$h, npoints = DerApprox) } else if (Method == "BI") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1/Par$dtn)/al1 a2 = al3/al1 al1red = Par$DRED/(Par$h^2) al2red = -(2*Par$DRED)/(Par$h^2) al3red = Par$DRED/(Par$h^2) a1red = (al2red - 1/Par$dtn)/al1red a2red = al3red/al1red al1red2 = Par$DRED2/(Par$h^2) al2red2 = -(2*Par$DRED2)/(Par$h^2) al3red2 = Par$DRED2/(Par$h^2) a1red2 = (al2red2 - 1/Par$dtn)/al1red2 a2red2 = al3red2/al1red2 al1red3 = Par$DRED3/(Par$h^2) al2red3 = -(2*Par$DRED3)/(Par$h^2) al3red3 = Par$DRED3/(Par$h^2) a1red3 = (al2red3 - 1/Par$dtn)/al1red3 a2red3 = al3red3/al1red3 al1red4 = Par$DRED4/(Par$h^2) al2red4 = -(2*Par$DRED4)/(Par$h^2) al3red4 = Par$DRED4/(Par$h^2) a1red4 = (al2red4 - 1/Par$dtn)/al1red4 a2red4 = al3red4/al1red4 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, 0, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, 0, 0, 0, -Par$Kf2[i1]*Par$h, Par$Kb2[i1]*Par$h + Par$Kf3[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb3[i1]*Par$h, 0, 0, 0, -Par$Kf3[i1]*Par$h, Par$Kb3[i1]*Par$h + Par$Kf4[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb4[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 5, ncol = 5) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]), Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]), Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]) - Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1,2:DerApprox]) - Par$DRED4*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red4[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] - Par$KCo*Ox[i1,1] Red1[i1,1] = C[2] - Par$KC1*Red1[i1,1] Red2[i1,1] = C[3] - Par$KC2*Red2[i1,1] Red3[i1,1] = C[4] - Par$KC3*Red3[i1,1] Red4[i1,1] = C[5] - Par$KC4*Red4[i1,1] bOx = (-Ox[i1,(2:(Par$j-1))]/(al1*Par$dtn)) + Par$KCo*Ox[i1,2:(Par$j-1)]/al1 bRed = (-Red1[i1,(2:(Par$j-1))]/(al1red*Par$dtn)) + Par$KC1*Red1[i1,2:(Par$j-1)]/al1red bRed2 = (-Red2[i1,(2:(Par$j-1))]/(al1red2*Par$dtn)) + Par$KC2*Red2[i1,2:(Par$j-1)]/al1red2 bRed3 = (-Red3[i1,(2:(Par$j-1))]/(al1red3*Par$dtn)) + Par$KC3*Red3[i1,2:(Par$j-1)]/al1red3 bRed4 = (-Red4[i1,(2:(Par$j-1))]/(al1red4*Par$dtn)) + Par$KC4*Red4[i1,2:(Par$j-1)]/al1red4 A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) A1red = c(rep(a1red,Par$j-2)) A2red = c(rep(a2red,Par$j-2)) A1red2 = c(rep(a1red2,Par$j-2)) A2red2 = c(rep(a2red2,Par$j-2)) A1red3 = c(rep(a1red3,Par$j-2)) A2red3 = c(rep(a2red3,Par$j-2)) A1red4 = c(rep(a1red4,Par$j-2)) A2red4 = c(rep(a2red4,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*(1 - Par$KCo*Ox[i1,Par$j]) bRed[Par$j-2] = bRed[Par$j-2] - A2red[Par$j-2]*(Red1[i1,Par$j] - Par$KC1*Red1[i1,Par$j]) bRed2[Par$j-2] = bRed2[Par$j-2] - A2red2[Par$j-2]*(Red2[i1,Par$j] - Par$KC2*Red2[i1,Par$j]) bRed3[Par$j-2] = bRed3[Par$j-2] - A2red3[Par$j-2]*(Red3[i1,Par$j] - Par$KC3*Red3[i1,Par$j]) bRed4[Par$j-2] = bRed4[Par$j-2] - A2red4[Par$j-2]*(Red4[i1,Par$j] - Par$KC4*Red4[i1,Par$j]) uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) uRed2 = c(rep(0, DerApprox)) vRed2 = c(rep(1, DerApprox)) uRed3 = c(rep(0, DerApprox)) vRed3 = c(rep(1, DerApprox)) uRed4 = c(rep(0, DerApprox)) vRed4 = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2red[Par$j-2]*bRed[j1+1]/A1red[j1+1] bRed2[j1] = bRed2[j1] - A2red2[Par$j-2]*bRed2[j1+1]/A1red2[j1+1] bRed3[j1] = bRed3[j1] - A2red3[Par$j-2]*bRed3[j1+1]/A1red3[j1+1] bRed4[j1] = bRed4[j1] - A2red4[Par$j-2]*bRed4[j1+1]/A1red4[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] A1red[j1] = A1red[j1] - A2red[Par$j-2]/A1red[j1+1] A1red2[j1] = A1red2[j1] - A2red2[Par$j-2]/A1red2[j1+1] A1red3[j1] = A1red3[j1] - A2red3[Par$j-2]/A1red3[j1+1] A1red4[j1] = A1red4[j1] - A2red4[Par$j-2]/A1red4[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1red[m-1] vRed[m] = -vRed[m-1]/A1red[m-1] uRed2[m] = (bRed2[m-1] - uRed2[m-1])/A1red2[m-1] vRed2[m] = -vRed2[m-1]/A1red2[m-1] uRed3[m] = (bRed3[m-1] - uRed3[m-1])/A1red3[m-1] vRed3[m] = -vRed3[m-1]/A1red3[m-1] uRed4[m] = (bRed4[m-1] - uRed4[m-1])/A1red4[m-1] vRed4[m] = -vRed4[m-1]/A1red4[m-1] } B = matrix(data = c((Par$Kf1[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb1[i1]*Par$h, 0, 0, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb2[i1]*Par$h, 0, 0, 0, -Par$Kf2[i1]*Par$h, Par$Kb2[i1]*Par$h + Par$Kf3[i1]*Par$h - sum(vRed2*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb3[i1]*Par$h, 0, 0, 0, -Par$Kf3[i1]*Par$h, Par$Kb3[i1]*Par$h + Par$Kf4[i1]*Par$h - sum(vRed3*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb4[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed2*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed3*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed4*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 5, ncol = 5) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed2*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed3*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed2*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed3*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed4*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red1[i1+1,1] = C[2] Red2[i1+1,1] = C[3] Red3[i1+1,1] = C[4] Red4[i1+1,1] = C[5] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] - Ox[i1+1,j1])/A1[j1] Red1[i1+1,j1+1] = (bRed[j1] - Red1[i1+1,j1])/A1red[j1] Red2[i1+1,j1+1] = (bRed2[j1] - Red2[i1+1,j1])/A1red2[j1] Red3[i1+1,j1+1] = (bRed3[j1] - Red3[i1+1,j1])/A1red3[j1] Red4[i1+1,j1+1] = (bRed4[j1] - Red4[i1+1,j1])/A1red4[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) Jred1 = Derv(Ox = Red1, h = Par$h, npoints = DerApprox) Jred2 = Derv(Ox = Red2, h = Par$h, npoints = DerApprox) Jred3 = Derv(Ox = Red3, h = Par$h, npoints = DerApprox) Jred4 = Derv(Ox = Red4, h = Par$h, npoints = DerApprox) } else if (Method == "CN") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 2/Par$dtn)/al1 a2 = al3/al1 a3 = (al2 + 2/Par$dtn)/al1 al1red = Par$DRED/(Par$h^2) al2red = -(2*Par$DRED)/(Par$h^2) al3red = Par$DRED/(Par$h^2) a1red = (al2red - 2/Par$dtn)/al1red a2red = al3red/al1red a3red = (al2red + 2/Par$dtn)/al1red al1red2 = Par$DRED2/(Par$h^2) al2red2 = -(2*Par$DRED2)/(Par$h^2) al3red2 = Par$DRED2/(Par$h^2) a1red2 = (al2red2 - 2/Par$dtn)/al1red2 a2red2 = al3red2/al1red2 a3red2 = (al2red2 + 2/Par$dtn)/al1red2 al1red3 = Par$DRED3/(Par$h^2) al2red3 = -(2*Par$DRED3)/(Par$h^2) al3red3 = Par$DRED3/(Par$h^2) a1red3 = (al2red3 - 2/Par$dtn)/al1red3 a2red3 = al3red3/al1red3 a3red3 = (al2red3 + 2/Par$dtn)/al1red3 al1red4 = Par$DRED4/(Par$h^2) al2red4 = -(2*Par$DRED4)/(Par$h^2) al3red4 = Par$DRED4/(Par$h^2) a1red4 = (al2red4 - 2/Par$dtn)/al1red4 a2red4 = al3red4/al1red4 a3red4 = (al2red4 + 2/Par$dtn)/al1red4 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, 0, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, 0, 0, 0, -Par$Kf2[i1]*Par$h, Par$Kb2[i1]*Par$h + Par$Kf3[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb3[i1]*Par$h, 0, 0, 0, -Par$Kf3[i1]*Par$h, Par$Kb3[i1]*Par$h + Par$Kf4[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb4[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 5, ncol = 5) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]), Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]), Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]) - Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1,2:DerApprox]) - Par$DRED4*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red4[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] - Par$KCo*Ox[i1,1] Red1[i1,1] = C[2] - Par$KC1*Red1[i1,1] Red2[i1,1] = C[3] - Par$KC2*Red2[i1,1] Red3[i1,1] = C[4] - Par$KC3*Red3[i1,1] Red4[i1,1] = C[5] - Par$KC4*Red4[i1,1] bOx = -a3*Ox[i1,(2:(Par$j-1))] - Ox[i1,(1:(Par$j-2))] - a2*Ox[i1,(3:Par$j)] + Par$KCo*Ox[i1,2:(Par$j-1)]/al1 bRed = -a3red*Red1[i1,(2:(Par$j-1))]- Red1[i1,(1:(Par$j-2))] - a2red*Red1[i1,(3:Par$j)] + Par$KC1*Red1[i1,2:(Par$j-1)]/al1red bRed2 = -a3red2*Red2[i1,(2:(Par$j-1))]- Red2[i1,(1:(Par$j-2))] - a2red2*Red2[i1,(3:Par$j)] + Par$KC2*Red2[i1,2:(Par$j-1)]/al1red2 bRed3 = -a3red3*Red3[i1,(2:(Par$j-1))]- Red3[i1,(1:(Par$j-2))] - a2red3*Red3[i1,(3:Par$j)] + Par$KC3*Red3[i1,2:(Par$j-1)]/al1red3 bRed4 = -a3red4*Red4[i1,(2:(Par$j-1))]- Red4[i1,(1:(Par$j-2))] - a2red4*Red4[i1,(3:Par$j)] + Par$KC4*Red4[i1,2:(Par$j-1)]/al1red4 A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) A1red = c(rep(a1red,Par$j-2)) A2red = c(rep(a2red,Par$j-2)) A1red2 = c(rep(a1red2,Par$j-2)) A2red2 = c(rep(a2red2,Par$j-2)) A1red3 = c(rep(a1red3,Par$j-2)) A2red3 = c(rep(a2red3,Par$j-2)) A1red4 = c(rep(a1red4,Par$j-2)) A2red4 = c(rep(a2red4,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*(1 - Par$KCo*Ox[i1,Par$j]) bRed[Par$j-2] = bRed[Par$j-2] - A2red[Par$j-2]*(Red1[i1,Par$j] - Par$KC1*Red1[i1,Par$j]) bRed2[Par$j-2] = bRed2[Par$j-2] - A2red2[Par$j-2]*(Red2[i1,Par$j] - Par$KC2*Red2[i1,Par$j]) bRed3[Par$j-2] = bRed3[Par$j-2] - A2red3[Par$j-2]*(Red3[i1,Par$j] - Par$KC3*Red3[i1,Par$j]) bRed4[Par$j-2] = bRed4[Par$j-2] - A2red4[Par$j-2]*(Red4[i1,Par$j] - Par$KC4*Red4[i1,Par$j]) uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) uRed2 = c(rep(0, DerApprox)) vRed2 = c(rep(1, DerApprox)) uRed3 = c(rep(0, DerApprox)) vRed3 = c(rep(1, DerApprox)) uRed4 = c(rep(0, DerApprox)) vRed4 = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2red[Par$j-2]*bRed[j1+1]/A1red[j1+1] bRed2[j1] = bRed2[j1] - A2red2[Par$j-2]*bRed2[j1+1]/A1red2[j1+1] bRed3[j1] = bRed3[j1] - A2red3[Par$j-2]*bRed3[j1+1]/A1red3[j1+1] bRed4[j1] = bRed4[j1] - A2red4[Par$j-2]*bRed4[j1+1]/A1red4[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] A1red[j1] = A1red[j1] - A2red[Par$j-2]/A1red[j1+1] A1red2[j1] = A1red2[j1] - A2red2[Par$j-2]/A1red2[j1+1] A1red3[j1] = A1red3[j1] - A2red3[Par$j-2]/A1red3[j1+1] A1red4[j1] = A1red4[j1] - A2red4[Par$j-2]/A1red4[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1red[m-1] vRed[m] = -vRed[m-1]/A1red[m-1] uRed2[m] = (bRed2[m-1] - uRed2[m-1])/A1red2[m-1] vRed2[m] = -vRed2[m-1]/A1red2[m-1] uRed3[m] = (bRed3[m-1] - uRed3[m-1])/A1red3[m-1] vRed3[m] = -vRed3[m-1]/A1red3[m-1] uRed4[m] = (bRed4[m-1] - uRed4[m-1])/A1red4[m-1] vRed4[m] = -vRed4[m-1]/A1red4[m-1] } B = matrix(data = c((Par$Kf1[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb1[i1]*Par$h, 0, 0, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb2[i1]*Par$h, 0, 0, 0, -Par$Kf2[i1]*Par$h, Par$Kb2[i1]*Par$h + Par$Kf3[i1]*Par$h - sum(vRed2*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb3[i1]*Par$h, 0, 0, 0, -Par$Kf3[i1]*Par$h, Par$Kb3[i1]*Par$h + Par$Kf4[i1]*Par$h - sum(vRed3*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb4[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed2*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed3*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed4*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 5, ncol = 5) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed2*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed3*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed2*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed3*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed4*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red1[i1+1,1] = C[2] Red2[i1+1,1] = C[3] Red3[i1+1,1] = C[4] Red4[i1+1,1] = C[5] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] - Ox[i1+1,j1])/A1[j1] Red1[i1+1,j1+1] = (bRed[j1] - Red1[i1+1,j1])/A1red[j1] Red2[i1+1,j1+1] = (bRed2[j1] - Red2[i1+1,j1])/A1red2[j1] Red3[i1+1,j1+1] = (bRed3[j1] - Red3[i1+1,j1])/A1red3[j1] Red4[i1+1,j1+1] = (bRed4[j1] - Red4[i1+1,j1])/A1red4[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) Jred1 = Derv(Ox = Red1, h = Par$h, npoints = DerApprox) Jred2 = Derv(Ox = Red2, h = Par$h, npoints = DerApprox) Jred3 = Derv(Ox = Red3, h = Par$h, npoints = DerApprox) Jred4 = Derv(Ox = Red4, h = Par$h, npoints = DerApprox) } else if (Method == "BDF") { al1 = 1/(Par$h^2) al2 = -2/(Par$h^2) al3 = 1/(Par$h^2) a1 = (al2 - 1.5/Par$dtn)/al1 a2 = al3/al1 al1red = Par$DRED/(Par$h^2) al2red = -(2*Par$DRED)/(Par$h^2) al3red = Par$DRED/(Par$h^2) a1red = (al2red - 1.5/Par$dtn)/al1red a2red = al3red/al1red al1red2 = Par$DRED2/(Par$h^2) al2red2 = -(2*Par$DRED2)/(Par$h^2) al3red2 = Par$DRED2/(Par$h^2) a1red2 = (al2red2 - 1.5/Par$dtn)/al1red2 a2red2 = al3red2/al1red2 al1red3 = Par$DRED3/(Par$h^2) al2red3 = -(2*Par$DRED3)/(Par$h^2) al3red3 = Par$DRED3/(Par$h^2) a1red3 = (al2red3 - 1.5/Par$dtn)/al1red3 a2red3 = al3red3/al1red3 al1red4 = Par$DRED4/(Par$h^2) al2red4 = -(2*Par$DRED4)/(Par$h^2) al3red4 = Par$DRED4/(Par$h^2) a1red4 = (al2red4 - 1.5/Par$dtn)/al1red4 a2red4 = al3red4/al1red4 for (i1 in 1:(Par$l-1)) { B = matrix(data = c((Par$Kf1[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1]), -Par$Kb1[i1]*Par$h, 0, 0, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb2[i1]*Par$h, 0, 0, 0, -Par$Kf2[i1]*Par$h, Par$Kb2[i1]*Par$h + Par$Kf3[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb3[i1]*Par$h, 0, 0, 0, -Par$Kf3[i1]*Par$h, Par$Kb3[i1]*Par$h + Par$Kf4[i1]*Par$h - Derv(npoints = DerApprox, CoefMat = T)[1], -Par$Kb4[i1]*Par$h, Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1], Derv(npoints = DerApprox, CoefMat = T)[1]), byrow = T, nrow = 5, ncol = 5) Y = matrix(data = c(sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]), Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]), Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]), Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1,2:DerApprox]), -sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Ox[i1,2:DerApprox]) - Par$DRED*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red1[i1,2:DerApprox]) - Par$DRED2*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red2[i1,2:DerApprox]) - Par$DRED3*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red3[i1,2:DerApprox]) - Par$DRED4*sum(Derv(npoints = DerApprox, CoefMat = T)[2:DerApprox]*Red4[i1,2:DerApprox]))) C = invMat(B) %*% Y Ox[i1,1] = C[1] - Par$KCo*Ox[i1,1] Red1[i1,1] = C[2] - Par$KC1*Red1[i1,1] Red2[i1,1] = C[3] - Par$KC2*Red2[i1,1] Red3[i1,1] = C[4] - Par$KC3*Red3[i1,1] Red4[i1,1] = C[5] - Par$KC4*Red4[i1,1] if (i1 == 1) { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[1,2:(Par$j-1)]/(2*Par$dtn*al1) + Par$KCo*Ox[i1,2:(Par$j-1)]/al1 bRed = -2*Red1[i1,2:(Par$j-1)]/(Par$dtn*al1red) + Red1[1,2:(Par$j-1)]/(2*Par$dtn*al1red) + Par$KC1*Red1[i1,2:(Par$j-1)]/al1red bRed2 = -2*Red2[i1,2:(Par$j-1)]/(Par$dtn*al1red2) + Red2[1,2:(Par$j-1)]/(2*Par$dtn*al1red2) + Par$KC2*Red2[i1,2:(Par$j-1)]/al1red2 bRed3 = -2*Red3[i1,2:(Par$j-1)]/(Par$dtn*al1red3) + Red3[1,2:(Par$j-1)]/(2*Par$dtn*al1red3) + Par$KC3*Red3[i1,2:(Par$j-1)]/al1red3 bRed4 = -2*Red4[i1,2:(Par$j-1)]/(Par$dtn*al1red4) + Red4[1,2:(Par$j-1)]/(2*Par$dtn*al1red4) + Par$KC4*Red4[i1,2:(Par$j-1)]/al1red4 } else { bOx = -2*Ox[i1,2:(Par$j-1)]/(Par$dtn*al1) + Ox[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1) + Par$KCo*Ox[i1,2:(Par$j-1)]/al1 bRed = -2*Red1[i1,2:(Par$j-1)]/(Par$dtn*al1red) + Red1[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1red) + Par$KC1*Red1[i1,2:(Par$j-1)]/al1red bRed2 = -2*Red2[i1,2:(Par$j-1)]/(Par$dtn*al1red2) + Red2[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1red2) + Par$KC2*Red2[i1,2:(Par$j-1)]/al1red2 bRed3 = -2*Red3[i1,2:(Par$j-1)]/(Par$dtn*al1red3) + Red3[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1red3) + Par$KC3*Red3[i1,2:(Par$j-1)]/al1red3 bRed4 = -2*Red4[i1,2:(Par$j-1)]/(Par$dtn*al1red4) + Red4[i1-1,2:(Par$j-1)]/(2*Par$dtn*al1red4) + Par$KC4*Red4[i1,2:(Par$j-1)]/al1red4 } A = c(rep(1,Par$j-2)) A1 = c(rep(a1,Par$j-2)) A2 = c(rep(a2,Par$j-2)) A1red = c(rep(a1red,Par$j-2)) A2red = c(rep(a2red,Par$j-2)) A1red2 = c(rep(a1red2,Par$j-2)) A2red2 = c(rep(a2red2,Par$j-2)) A1red3 = c(rep(a1red3,Par$j-2)) A2red3 = c(rep(a2red3,Par$j-2)) A1red4 = c(rep(a1red4,Par$j-2)) A2red4 = c(rep(a2red4,Par$j-2)) bOx[Par$j-2] = bOx[Par$j-2] - A2[Par$j-2]*(1 - Par$KCo*Ox[i1,Par$j]) bRed[Par$j-2] = bRed[Par$j-2] - A2red[Par$j-2]*(Red1[i1,Par$j] - Par$KC1*Red1[i1,Par$j]) bRed2[Par$j-2] = bRed2[Par$j-2] - A2red2[Par$j-2]*(Red2[i1,Par$j] - Par$KC1*Red1[i1,Par$j]) bRed3[Par$j-2] = bRed3[Par$j-2] - A2red3[Par$j-2]*(Red3[i1,Par$j] - Par$KC2*Red2[i1,Par$j]) bRed4[Par$j-2] = bRed4[Par$j-2] - A2red4[Par$j-2]*(Red4[i1,Par$j] - Par$KC3*Red3[i1,Par$j]) uox = c(rep(0, DerApprox)) vox = c(rep(1, DerApprox)) uRed = c(rep(0, DerApprox)) vRed = c(rep(1, DerApprox)) uRed2 = c(rep(0, DerApprox)) vRed2 = c(rep(1, DerApprox)) uRed3 = c(rep(0, DerApprox)) vRed3 = c(rep(1, DerApprox)) uRed4 = c(rep(0, DerApprox)) vRed4 = c(rep(1, DerApprox)) for (j1 in ((Par$j-3):1)) { bOx[j1] = bOx[j1] - A2[Par$j-2]*bOx[j1+1]/A1[j1+1] bRed[j1] = bRed[j1] - A2red[Par$j-2]*bRed[j1+1]/A1red[j1+1] bRed2[j1] = bRed2[j1] - A2red2[Par$j-2]*bRed2[j1+1]/A1red2[j1+1] bRed3[j1] = bRed3[j1] - A2red3[Par$j-2]*bRed3[j1+1]/A1red3[j1+1] bRed4[j1] = bRed4[j1] - A2red4[Par$j-2]*bRed4[j1+1]/A1red4[j1+1] A1[j1] = A1[j1] - A2[Par$j-2]/A1[j1+1] A1red[j1] = A1red[j1] - A2red[Par$j-2]/A1red[j1+1] A1red2[j1] = A1red2[j1] - A2red2[Par$j-2]/A1red2[j1+1] A1red3[j1] = A1red3[j1] - A2red3[Par$j-2]/A1red3[j1+1] A1red4[j1] = A1red4[j1] - A2red4[Par$j-2]/A1red4[j1+1] } for (m in 2:DerApprox) { uox[m] = (bOx[m-1] - uox[m-1])/A1[m-1] vox[m] = -vox[m-1]/A1[m-1] uRed[m] = (bRed[m-1] - uRed[m-1])/A1red[m-1] vRed[m] = -vRed[m-1]/A1red[m-1] uRed2[m] = (bRed2[m-1] - uRed2[m-1])/A1red2[m-1] vRed2[m] = -vRed2[m-1]/A1red2[m-1] uRed3[m] = (bRed3[m-1] - uRed3[m-1])/A1red3[m-1] vRed3[m] = -vRed3[m-1]/A1red3[m-1] uRed4[m] = (bRed4[m-1] - uRed4[m-1])/A1red4[m-1] vRed4[m] = -vRed4[m-1]/A1red4[m-1] } B = matrix(data = c((Par$Kf1[i1]*Par$h - sum(vox*Derv(npoints = DerApprox, CoefMat = T))), -Par$Kb1[i1]*Par$h, 0, 0, 0, -Par$Kf1[i1]*Par$h, Par$Kb1[i1]*Par$h + Par$Kf2[i1]*Par$h - sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb2[i1]*Par$h, 0, 0, 0, -Par$Kf2[i1]*Par$h, Par$Kb2[i1]*Par$h + Par$Kf3[i1]*Par$h - sum(vRed2*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb3[i1]*Par$h, 0, 0, 0, -Par$Kf3[i1]*Par$h, Par$Kb3[i1]*Par$h + Par$Kf4[i1]*Par$h - sum(vRed3*Derv(npoints = DerApprox, CoefMat = T)), -Par$Kb4[i1]*Par$h, sum(vox*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed2*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed3*Derv(npoints = DerApprox, CoefMat = T)), sum(vRed4*Derv(npoints = DerApprox, CoefMat = T))), byrow = T, nrow = 5, ncol = 5) Y = matrix(data = c(sum(uox*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed2*Derv(npoints = DerApprox, CoefMat = T)), sum(uRed3*Derv(npoints = DerApprox, CoefMat = T)), -sum(uox*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed2*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed3*Derv(npoints = DerApprox, CoefMat = T)) - sum(uRed4*Derv(npoints = DerApprox, CoefMat = T)))) C = invMat(B) %*% Y Ox[i1+1,1] = C[1] Red1[i1+1,1] = C[2] Red2[i1+1,1] = C[3] Red3[i1+1,1] = C[4] Red4[i1+1,1] = C[5] for (j1 in 1:(Par$j-2)) { Ox[i1+1,j1+1] = (bOx[j1] - Ox[i1+1,j1])/A1[j1] Red1[i1+1,j1+1] = (bRed[j1] - Red1[i1+1,j1])/A1red[j1] Red2[i1+1,j1+1] = (bRed2[j1] - Red2[i1+1,j1])/A1red2[j1] Red3[i1+1,j1+1] = (bRed3[j1] - Red3[i1+1,j1])/A1red3[j1] Red4[i1+1,j1+1] = (bRed4[j1] - Red4[i1+1,j1])/A1red4[j1] } } Jox = Derv(Ox = Ox, h = Par$h, npoints = DerApprox) Jred1 = Derv(Ox = Red1, h = Par$h, npoints = DerApprox) Jred2 = Derv(Ox = Red2, h = Par$h, npoints = DerApprox) Jred3 = Derv(Ox = Red3, h = Par$h, npoints = DerApprox) Jred4 = Derv(Ox = Red4, h = Par$h, npoints = DerApprox) } else if (!(Method %in% c("Euler", "BI", "RK4", "CN", "BDF"))) { return("Available methods are Euler, BI, RK4, CN and BDF") } G1 = Jox G2 = Jox + Jred1 G3 = Jox + Jred1 + Jred2 G4 = Jox + Jred1 + Jred2 + Jred3 G5 = Jox + Jred1 + Jred2 + Jred3 + Jred4 i = (n*Par$FA*(G1+G2+G3+G4+G5)*Dx1*Area*Co)/(sqrt(Dx1*Par$tau)) graphy = ggplot(data = data.frame(i[1:(length(i)-1)],Par$PotentialScan[1:(length(i)-1)]), aes(y = i[1:(length(i)-1)], x = Par$PotentialScan[1:(length(i)-1)])) + geom_point() + scale_x_continuous(trans = "reverse") + xlab("E / V") + ylab("I / A") + theme_classic() if (errCheck == TRUE){ return(list((G1+G2),Dx1,Dred,Dred2,Co, Par$dtn,Par$h,i,Par$l,Par$j,n, Area,Par$DOx,Par$DRED,Par$DRED2, Par$p1,Par$p2,Par$p3,Par$p4)) } else { return(graphy) } }
gd_token <- function(verbose = TRUE) { if (!token_available(verbose = verbose) || !is_legit_token(.state$token)) { if (verbose) message("No token currently in force.") return(invisible(NULL)) } token <- .state$token token_valid <- token$validate() first_last_n <- function(x, n = 5) { paste(substr(x, start = 1, stop = n), substr(x, start = nchar(x) - n + 1, stop = nchar(x)), sep = "...") } scopes <- token$params$scope %>% strsplit(split = "\\s+") %>% purrr::flatten_chr() cpf(" access token: %s", if (token_valid) "valid" else "expired, will auto-refresh") cpf(" peek at access token: %s", first_last_n(token$credentials$access_token)) cpf("peek at refresh token: %s", first_last_n(token$credentials$refresh_token)) cpf(" scopes: %s", paste(scopes, collapse = "\n ")) cpf(" token cache_path: %s", token$cache_path) invisible(token) } gs_token <- gd_token
library(leaflet.extras) leaflet() %>% setView(0, 0, 2) %>% addProviderTiles(providers$CartoDB.Positron) %>% addDrawToolbar( targetGroup = "draw", editOptions = editToolbarOptions(selectedPathOptions = selectedPathOptions())) %>% addLayersControl(overlayGroups = c("draw"), options = layersControlOptions(collapsed = FALSE)) %>% addStyleEditor() cities <- read.csv(textConnection(" City,Lat,Long,Pop Boston,42.3601,-71.0589,645966 Hartford,41.7627,-72.6743,125017 New York City,40.7127,-74.0059,8406000 Philadelphia,39.9500,-75.1667,1553000 Pittsburgh,40.4397,-79.9764,305841 Providence,41.8236,-71.4222,177994 ")) leaflet(cities) %>% addTiles() %>% addCircles(lng = ~Long, lat = ~Lat, weight = 1, radius = ~sqrt(Pop) * 30, label = ~City, group = "cities") %>% addDrawToolbar( targetGroup = "cities", editOptions = editToolbarOptions(selectedPathOptions = selectedPathOptions())) %>% addLayersControl(overlayGroups = c("cities"), options = layersControlOptions(collapsed = FALSE)) %>% addStyleEditor() library(rbgm) set.seed(2) fs <- sample(bgmfiles::bgmfiles(), 1) model <- boxSpatial(bgmfile(fs)) model <- spTransform(model, "+init=epsg:4326") leaflet() %>% addTiles() %>% addPolygons(data = model, group = "model") %>% addDrawToolbar(targetGroup = "model", editOptions = editToolbarOptions( selectedPathOptions = selectedPathOptions())) %>% addLayersControl(overlayGroups = c("model"), options = layersControlOptions(collapsed = FALSE)) %>% addStyleEditor() fName <- "https://rawgit.com/benbalter/dc-maps/master/maps/ward-2012.geojson" geoJson <- readr::read_file(fName) geoJson2 <- rmapshaper::ms_simplify(geoJson, keep = 0.01) leaflet() %>% addTiles() %>% setView(-77.0369, 38.9072, 12) %>% addGeoJSONv2(geoJson2, group = "wards", layerId = "dc-wards") %>% addDrawToolbar( targetLayerId = "dc-wards", editOptions = editToolbarOptions( selectedPathOptions = selectedPathOptions())) %>% addLayersControl(overlayGroups = c("wards"), options = layersControlOptions(collapsed = FALSE)) %>% addStyleEditor()
graph_model <- function(model, ...) UseMethod('graph_model') graph_model_q <- function(model, ...) UseMethod('graph_model_q') graph_model.lm <- function(model, y, x, lines=NULL, split=NULL, errorbars=c('CI', 'SE', 'none'), ymin=NULL, ymax=NULL, labels=NULL, bargraph=FALSE, draw.legend=TRUE, dodge=0, exp=FALSE, ...) { call <- as.list(match.call())[-1] call$y <- deparse(substitute(y)) call$x <- deparse(substitute(x)) if (!is.null(call$lines)) { call$lines <- deparse(substitute(lines)) } if (!is.null(call$split)) { call$split <- deparse(substitute(split)) } return(do.call(graph_model_q.lm, call)) } graph_model_q.lm <- function(model, y, x, lines=NULL, split=NULL, errorbars=c('CI', 'SE', 'none'), ymin=NULL, ymax=NULL, labels=NULL, bargraph=FALSE, draw.legend=TRUE, dodge=0, exp=FALSE, ...) { call <- as.list(match.call())[-1] call$type <- 'response' return(do.call(graph_model_q.glm, call)) } graph_model.aov <- function(model, y, x, lines=NULL, split=NULL, errorbars=c('CI', 'SE', 'none'), ymin=NULL, ymax=NULL, labels=NULL, bargraph=FALSE, draw.legend=TRUE, dodge=0, exp=FALSE, ...) { call <- as.list(match.call())[-1] call$y <- deparse(substitute(y)) call$x <- deparse(substitute(x)) if (!is.null(call$lines)) { call$lines <- deparse(substitute(lines)) } if (!is.null(call$split)) { call$split <- deparse(substitute(split)) } return(do.call(graph_model_q.aov, call)) } graph_model_q.aov <- function(model, y, x, lines=NULL, split=NULL, errorbars=c('CI', 'SE', 'none'), ymin=NULL, ymax=NULL, labels=NULL, bargraph=FALSE, draw.legend=TRUE, dodge=0, exp=FALSE, ...) { call <- as.list(match.call())[-1] return(do.call(graph_model_q.lm, call)) } graph_model.glm <- function(model, y, x, lines=NULL, split=NULL, type=c('link', 'response'), errorbars=c('CI', 'SE', 'none'), ymin=NULL, ymax=NULL, labels=NULL, bargraph=FALSE, draw.legend=TRUE, dodge=0, exp=FALSE, ...) { call <- as.list(match.call())[-1] call$y <- deparse(substitute(y)) call$x <- deparse(substitute(x)) if (!is.null(call$lines)) { call$lines <- deparse(substitute(lines)) } if (!is.null(call$split)) { call$split <- deparse(substitute(split)) } return(do.call(graph_model_q.glm, call)) } graph_model_q.glm <- function(model, y, x, lines=NULL, split=NULL, type=c('link', 'response'), errorbars=c('CI', 'SE', 'none'), ymin=NULL, ymax=NULL, labels=NULL, bargraph=FALSE, draw.legend=TRUE, dodge=0, exp=FALSE, ...) { type <- match.arg(type) errorbars <- match.arg(errorbars) data <- model$model factors <- list() i <- 1 for (term in c(x, lines, split)) { if (!is.null(term)) { if (is.factor(data[[term]])) { factors[[i]] <- levels(data[[term]]) } else if (is.character(data[[term]])) { data[[term]] <- factor(data[[term]]) factors[[i]] <- levels(data[[term]]) } else { factors[[i]] <- c( mean(data[[term]], na.rm=TRUE)+sd(data[[term]], na.rm=TRUE), mean(data[[term]], na.rm=TRUE)-sd(data[[term]], na.rm=TRUE) ) } i <- i + 1 } } if (is.null(lines) && is.null(split)) { grid <- with(data, expand.grid( x=factors[[1]], g=1 )) names(grid)[names(grid) == 'x'] <- x } else if (is.null(split)) { grid <- with(data, expand.grid( x=factors[[1]], lines=factors[[2]] )) names(grid) <- c(x, lines) } else { grid <- with(data, expand.grid( x=factors[[1]], lines=factors[[2]], split=factors[[3]] )) names(grid) <- c(x, lines, split) } variables <- all.vars(formula(model))[-1] factor_name <- NULL for (i in 1:length(variables)) { if (!(variables[[i]] %in% colnames(grid))) { v <- data[[variables[[i]]]] if (is.character(v)) { data[[variables[[i]]]] <- factor(v) } if (is.factor(v)) { temp_list <- lapply(as.list(grid), unique) temp_list[[variables[[i]]]] <- levels(v) grid <- expand.grid(temp_list) factor_name <- variables[[i]] } else { grid[[variables[[i]]]] <- mean(v, na.rm=TRUE) } } } predicted <- predict(model, newdata=grid, type=type, se.fit=TRUE) if (exp == TRUE) { grid[[y]] <- exp(predicted$fit) } else { grid[[y]] <- predicted$fit } errors <- FALSE if (errorbars == 'CI') { grid$error_upper <- predicted$fit + 1.96 * predicted$se.fit grid$error_lower <- predicted$fit - 1.96 * predicted$se.fit errors <- TRUE } else if (errorbars == 'SE') { grid$error_upper <- predicted$fit + predicted$se.fit grid$error_lower <- predicted$fit - predicted$se.fit errors <- TRUE } if (exp == TRUE && errors == TRUE) { grid$error_upper <- exp(grid$error_upper) grid$error_lower <- exp(grid$error_lower) } if (!is.null(factor_name)) { grid2 <- subset(grid, FALSE) lev <- levels(data[[factor_name]]) location <- which(names(grid) == factor_name) for (i in 1:(nrow(grid)/length(lev))) { grid2[i, -location] <- apply(grid[seq(i, nrow(grid), by=(nrow(grid)/length(lev))), -location], 2, mean, na.rm=TRUE) } grid2[[location]] <- NULL grid <- grid2 } for (term in c(x, lines, split)) { if (!is.null(term) && !is.factor(data[[term]])) { grid[[term]] <- factor(grid[[term]], labels=c('-1 SD', '+1 SD')) } } if (!is.null(split)) { if (is.null(labels$split)) { labels$split <- paste0(split, ': ') } else if (is.na(labels$split)) { labels$split <- '' } else { labels$split <- paste0(labels$split, ': ') } if (!is.factor(data[[split]])) { levels(grid[[split]]) <- c(paste0(labels$split, '-1 SD'), paste0(labels$split, '+1 SD')) } else { num_levels <- length(levels(grid[[split]])) levels(grid[[split]]) <- paste0(rep(labels$split, num_levels), levels(grid[[split]])) } } if (is.null(lines)) { lines <- 'g' draw.legend <- FALSE } graph <- .build_plot(grid, y, x, lines, split, errors, ymin, ymax, labels, bargraph, draw.legend, dodge, exp) return(graph) } graph_model.lme <- function(model, y, x, lines=NULL, split=NULL, errorbars=c('CI', 'SE', 'none'), ymin=NULL, ymax=NULL, labels=NULL, bargraph=FALSE, draw.legend=TRUE, dodge=0, exp=FALSE, ...) { call <- as.list(match.call())[-1] call$y <- deparse(substitute(y)) call$x <- deparse(substitute(x)) if (!is.null(call$lines)) { call$lines <- deparse(substitute(lines)) } if (!is.null(call$split)) { call$split <- deparse(substitute(split)) } return(do.call(graph_model_q.lme, call)) } graph_model_q.lme <- function(model, y, x, lines=NULL, split=NULL, errorbars=c('CI', 'SE', 'none'), ymin=NULL, ymax=NULL, labels=NULL, bargraph=FALSE, draw.legend=TRUE, dodge=0, exp=FALSE, ...) { errorbars <- match.arg(errorbars) data <- model$data factors <- list() i <- 1 for (term in c(x, lines, split)) { if (!is.null(term)) { if (is.factor(data[[term]])) { factors[[i]] <- levels(data[[term]]) } else if (is.character(data[[term]])) { data[[term]] <- factor(data[[term]]) factors[[i]] <- levels(data[[term]]) } else { factors[[i]] <- c( mean(data[[term]], na.rm=TRUE)+sd(data[[term]], na.rm=TRUE), mean(data[[term]], na.rm=TRUE)-sd(data[[term]], na.rm=TRUE) ) } i <- i + 1 } } if (is.null(lines) && is.null(split)) { grid <- with(data, expand.grid( x=factors[[1]], g=1 )) names(grid)[names(grid) == 'x'] <- x } else if (is.null(split)) { grid <- with(data, expand.grid( x=factors[[1]], lines=factors[[2]] )) names(grid) <- c(x, lines) } else { grid <- with(data, expand.grid( x=factors[[1]], lines=factors[[2]], split=factors[[3]] )) names(grid) <- c(x, lines, split) } variables <- all.vars(formula(model))[-1] factor_name <- NULL for (i in 1:length(variables)) { if (!(variables[[i]] %in% colnames(grid))) { v <- data[[variables[[i]]]] if (is.character(v)) { data[[variables[[i]]]] <- factor(v) } if (is.factor(v)) { temp_list <- lapply(as.list(grid), unique) temp_list[[variables[[i]]]] <- levels(v) grid <- expand.grid(temp_list) factor_name <- variables[[i]] } else { grid[[variables[[i]]]] <- mean(v, na.rm=TRUE) } } } predicted <- predict(model, newdata=grid, level=0) if (exp == TRUE) { grid[[y]] <- exp(predicted) } else { grid[[y]] <- predicted } errors <- FALSE if (errorbars == 'CI' || errorbars == 'SE') { designmat <- model.matrix(formula(model)[-2], grid) predvar <- diag(designmat %*% vcov(model) %*% t(designmat)) se <- sqrt(predvar) if (errorbars == 'CI') { grid$error_upper <- predicted + 1.96 * se grid$error_lower <- predicted - 1.96 * se } else if (errorbars == 'SE') { grid$error_upper <- predicted + se grid$error_lower <- predicted - se } errors <- TRUE } if (exp == TRUE && errors == TRUE) { grid$error_upper <- exp(grid$error_upper) grid$error_lower <- exp(grid$error_lower) } if (!is.null(factor_name)) { grid2 <- subset(grid, FALSE) lev <- levels(data[[factor_name]]) location <- which(names(grid) == factor_name) for (i in 1:(nrow(grid)/length(lev))) { grid2[i, -location] <- apply(grid[seq(i, nrow(grid), by=(nrow(grid)/length(lev))), -location], 2, mean, na.rm=TRUE) } grid2[[location]] <- NULL grid <- grid2 } for (term in c(x, lines, split)) { if (!is.null(term) && !is.factor(data[[term]])) { grid[[term]] <- factor(grid[[term]], labels=c('-1 SD', '+1 SD')) } } if (!is.null(split)) { if (is.null(labels$split)) { labels$split <- paste0(split, ': ') } else if (is.na(labels$split)) { labels$split <- '' } else { labels$split <- paste0(labels$split, ': ') } if (!is.factor(data[[split]])) { levels(grid[[split]]) <- c(paste0(labels$split, '-1 SD'), paste0(labels$split, '+1 SD')) } else { num_levels <- length(levels(grid[[split]])) levels(grid[[split]]) <- paste0(rep(labels$split, num_levels), levels(grid[[split]])) } } if (is.null(lines)) { lines <- 'g' draw.legend <- FALSE } graph <- .build_plot(grid, y, x, lines, split, errors, ymin, ymax, labels, bargraph, draw.legend, dodge, exp) return(graph) } graph_model.merMod <- function(model, y, x, lines=NULL, split=NULL, errorbars=c('CI', 'SE', 'none'), ymin=NULL, ymax=NULL, labels=NULL, bargraph=FALSE, draw.legend=TRUE, dodge=0, exp=FALSE, ...) { call <- as.list(match.call())[-1] call$y <- deparse(substitute(y)) call$x <- deparse(substitute(x)) if (!is.null(call$lines)) { call$lines <- deparse(substitute(lines)) } if (!is.null(call$split)) { call$split <- deparse(substitute(split)) } return(do.call(graph_model_q.merMod, call)) } graph_model_q.merMod <- function(model, y, x, lines=NULL, split=NULL, errorbars=c('CI', 'SE', 'none'), ymin=NULL, ymax=NULL, labels=NULL, bargraph=FALSE, draw.legend=TRUE, dodge=0, exp=FALSE, ...) { errorbars <- match.arg(errorbars) data <- model@frame factors <- list() i <- 1 for (term in c(x, lines, split)) { if (!is.null(term)) { if (is.factor(data[[term]])) { factors[[i]] <- levels(data[[term]]) } else if (is.character(data[[term]])) { data[[term]] <- factor(data[[term]]) factors[[i]] <- levels(data[[term]]) } else { factors[[i]] <- c( mean(data[[term]], na.rm=TRUE)+sd(data[[term]], na.rm=TRUE), mean(data[[term]], na.rm=TRUE)-sd(data[[term]], na.rm=TRUE) ) } i <- i + 1 } } if (is.null(lines) && is.null(split)) { grid <- with(data, expand.grid( x=factors[[1]], g=1 )) names(grid)[names(grid) == 'x'] <- x } else if (is.null(split)) { grid <- with(data, expand.grid( x=factors[[1]], lines=factors[[2]] )) names(grid) <- c(x, lines) } else { grid <- with(data, expand.grid( x=factors[[1]], lines=factors[[2]], split=factors[[3]] )) names(grid) <- c(x, lines, split) } variables <- all.vars(formula(model, fixed.only=TRUE))[-1] factor_name <- NULL for (i in 1:length(variables)) { if (!(variables[[i]] %in% colnames(grid))) { v <- data[[variables[[i]]]] if (is.character(v)) { data[[variables[[i]]]] <- factor(v) } if (is.factor(v)) { temp_list <- lapply(as.list(grid), unique) temp_list[[variables[[i]]]] <- levels(v) grid <- expand.grid(temp_list) factor_name <- variables[[i]] } else { grid[[variables[[i]]]] <- mean(v, na.rm=TRUE) } } } predicted <- predict(model, newdata=grid, re.form=NA) if (exp == TRUE) { grid[[y]] <- exp(predicted) } else { grid[[y]] <- predicted } errors <- FALSE if (errorbars == 'CI' || errorbars == 'SE') { designmat <- model.matrix(delete.response(terms(model)), grid) predicted <- predict(model, grid, re.form=NA) predvar <- diag(designmat %*% as.matrix(vcov(model)) %*% t(designmat)) se <- sqrt(predvar) if (errorbars == 'CI') { grid$error_upper <- predicted + 1.96 * se grid$error_lower <- predicted - 1.96 * se } else if (errorbars == 'SE') { grid$error_upper <- predicted + se grid$error_lower <- predicted - se } errors <- TRUE } if (exp == TRUE && errors == TRUE) { grid$error_upper <- exp(grid$error_upper) grid$error_lower <- exp(grid$error_lower) } if (!is.null(factor_name)) { grid2 <- subset(grid, FALSE) lev <- levels(data[[factor_name]]) location <- which(names(grid) == factor_name) for (i in 1:(nrow(grid)/length(lev))) { grid2[i, -location] <- apply(grid[seq(i, nrow(grid), by=(nrow(grid)/length(lev))), -location], 2, mean, na.rm=TRUE) } grid2[[location]] <- NULL grid <- grid2 } for (term in c(x, lines, split)) { if (!is.null(term) && !is.factor(data[[term]])) { grid[[term]] <- factor(grid[[term]], labels=c('-1 SD', '+1 SD')) } } if (!is.null(split)) { if (is.null(labels$split)) { labels$split <- paste0(split, ': ') } else if (is.na(labels$split)) { labels$split <- '' } else { labels$split <- paste0(labels$split, ': ') } if (!is.factor(data[[split]])) { levels(grid[[split]]) <- c(paste0(labels$split, '-1 SD'), paste0(labels$split, '+1 SD')) } else { num_levels <- length(levels(grid[[split]])) levels(grid[[split]]) <- paste0(rep(labels$split, num_levels), levels(grid[[split]])) } } if (is.null(lines)) { lines <- 'g' draw.legend <- FALSE } graph <- .build_plot(grid, y, x, lines, split, errors, ymin, ymax, labels, bargraph, draw.legend, dodge, exp) return(graph) } .build_plot <- function(grid, y, x, lines=NULL, split=NULL, errors=TRUE, ymin=NULL, ymax=NULL, labels=NULL, bargraph=FALSE, draw.legend=TRUE, dodge=0, exp=FALSE) { if (bargraph == FALSE) { pd <- ggplot2::position_dodge(dodge) graph <- ggplot2::ggplot( data=grid, ggplot2::aes_string(x=x, y=y, colour=lines, ymin=ymin, ymax=ymax)) graph <- graph + ggplot2::geom_point(position=pd) + ggplot2::geom_line(position=pd, ggplot2::aes_string(group=lines)) } else { pd <- ggplot2::position_dodge(dodge + .9) graph <- ggplot2::ggplot( data=grid, ggplot2::aes_string(x=x, y=y, fill=lines, ymin=ymin, ymax=ymax)) graph <- graph + ggplot2::geom_bar( position=pd, stat='identity', ggplot2::aes_string(group=lines)) } if (draw.legend == FALSE) { graph <- graph + ggplot2::theme(legend.position='none') } if (errors) { graph <- graph + ggplot2::geom_errorbar( ggplot2::aes_string(ymax='error_upper', ymin='error_lower'), width=0.1, position=pd) } if (!is.null(split)) { graph <- graph + ggplot2::facet_grid(paste0('. ~ ', split)) } if (!is.null(labels)) { if (!is.null(labels$y) && is.na(labels$y)) { labels$y <- '' } if (!is.null(labels$x) && is.na(labels$x)) { labels$x <- '' } if (!is.null(labels$lines) && is.na(labels$lines)) { labels$lines <- '' } if (!is.null(labels$title) && !is.na(labels$title)) { graph <- graph + ggplot2::ggtitle(labels$title) } if (!is.null(labels$y)) { graph <- graph + ggplot2::ylab(labels$y) } if (!is.null(labels$x)) { graph <- graph + ggplot2::xlab(labels$x) } if (!is.null(labels$lines)) { graph <- graph + ggplot2::labs(colour=labels$lines) } } return(graph) }
print.TransitionTable <- function(x, activeOnly=FALSE, ...) { geneCols <- setdiff(colnames(x),c("attractorAssignment","transitionsToAttractor")) numGenes <- (length(geneCols)) / 2 colIndices <- c(1,numGenes,numGenes + 1, 2*numGenes); if ("attractorAssignment" %in% colnames(x)) colIndices <- c(colIndices, 2*numGenes + 1) if ("transitionsToAttractor" %in% colnames(x)) colIndices <- c(colIndices, 2*numGenes + 2) genes <- sapply(colnames(x)[seq_len(numGenes)],function(n)strsplit(n,".",fixed=TRUE)[[1]][2]) if(activeOnly) { inputStates <- apply(x,1,function(row) { r <- paste(genes[which(row[colIndices[1]:colIndices[2]] == 1)],collapse=", ") if (r == "") r <- "--" r }) outputStates <- apply(x,1,function(row) { r <- paste(genes[which(row[colIndices[3]:colIndices[4]] == 1)],collapse=", ") if (r == "") r <- "--" r }) colWidth <- max(c(sapply(inputStates,nchar),sapply(outputStates,nchar))) align <- "left" } else { inputStates <- apply(x,1,function(row) paste(row[colIndices[1]:colIndices[2]],collapse="")) outputStates <- apply(x,1,function(row) paste(row[colIndices[3]:colIndices[4]],collapse="")) colWidth <- numGenes align <- "right" } binMatrix <- cbind(inputStates,outputStates) if ("attractorAssignment" %in% colnames(x)) binMatrix <- cbind(binMatrix, x[,colIndices[5]]) if ("transitionsToAttractor" %in% colnames(x)) binMatrix <- cbind(binMatrix, x[,colIndices[6]]) binMatrix <- as.data.frame(binMatrix) cat(format("State",width=max(7,colWidth),justify=align)," ", format("Next state",width=max(11,colWidth + 2),justify=align), if ("attractorAssignment" %in% colnames(x)) { format("Attr. basin",width=13,justify="right") } else "", if ("transitionsToAttractor" %in% colnames(x)) { format(" } else "", "\n",sep="") apply(binMatrix,1,function(row) { cat(format(row[1],width=max(7,colWidth),justify=align), " => ", format(row[2],width=max(11,colWidth + 2),justify=align), if ("attractorAssignment" %in% colnames(x)) { format(row[3],width=13,justify="right") } else "", if ("transitionsToAttractor" %in% colnames(x)) { format(row[4],width=19,justify="right") } else "", "\n",sep="") }) if (!activeOnly) cat("\nGenes are encoded in the following order: ", paste(genes,collapse=" "),"\n",sep="") return(invisible(x)) }
afterhours_rank <- function(data, hrvar = extract_hr(data), mingroup = 5, return = "table"){ data %>% create_rank(metric = "After_hours_collaboration_hours", hrvar = hrvar, mingroup = mingroup, return = return) }
rtext_loadsave <- R6::R6Class( classname = "rtext_loadsave", active = NULL, inherit = rtext_base, lock_objects = TRUE, class = TRUE, portable = TRUE, lock_class = FALSE, cloneable = TRUE, parent_env = asNamespace('rtext'), private = list( prepare_save = function(id=NULL){ if( is.null(id) ){ id <- self$id }else if( id[1] == "hash"){ tb_saved$meta$id <- self$hash() }else{ tb_saved$meta$id <- id[1] } tb_saved <- list( meta = data.frame( id = id, date = as.character(Sys.time()), text_file = self$text_file, encoding = self$encoding, save_file = ifelse(is.null(self$save_file), NA, self$save_file), sourcetype = self$sourcetype, rtext_version= as.character(packageVersion("rtext")), r_version = paste(version$major, version$minor, sep="."), save_format_version = 1 ), hashes = as.data.frame(private$hash()), char = private$char, char_data = private$char_data ) class(tb_saved) <- c("rtext_save","list") return(tb_saved) }, execute_load = function(tmp){ self$id <- tmp$meta$id self$text_file <- tmp$meta$text_file self$encoding <- tmp$meta$encoding self$sourcetype <- tmp$meta$sourcetype self$save_file <- tmp$meta$save_file private$char <- tmp$char private$char_data <- tmp$char_data private$hash() invisible(self) } ), public = list( save = function(file=NULL, id=NULL){ rtext_save <- as.environment(private$prepare_save(id=id)) if( (is.na(rtext_save$meta$save_file) | is.null(rtext_save$meta$save_file)) & is.null(file) ){ stop("rtext$save() : Neither file nor save_file given, do not know where to store file.") }else if( !is.null(file) ){ file <- file }else if( !is.null(rtext_save$meta$save_file) ){ file <- rtext_save$meta$save_file } base::save( list = ls(rtext_save), file = file, envir = rtext_save ) return(invisible(self)) }, load = function(file=NULL){ if( is.null(file) ){ stop("rtext$load() : file is not given, do not know where to load file from.") }else{ file <- file } tmp <- load_into(file) private$execute_load(tmp) return(invisible(self)) } ) )
library(hamcrest) expected <- c(-0x1.c88d0d69dc594p-2 + 0x0p+0i, -0x1.9c02d3ab5010ep-3 + 0x1.5e65943d33391p-1i, -0x1.2a3fdbc77b9bep+1 + -0x1.8a6cc9834e07bp-2i, 0x1.5e26f462d3552p-5 + 0x1.f0c11230fe2fp-3i, -0x1.27a07f3e974aep-1 + -0x1.60db37940fd21p+1i, 0x1.3691753902679p+0 + 0x1.0403f5003c7acp-3i, 0x1.cbc2de62a1a6ep-1 + 0x1.66c294ccd2321p-2i, 0x1.e4353e99be1ap-5 + 0x1.d0e3b1fe69c2ep-1i, -0x1.40eb75f058fe8p-1 + -0x1.25474452ef70bp+0i, -0x1.b11f07bf7ede5p-3 + 0x1.c6ff946f7ecbp-7i, -0x1.0f9508285f988p-3 + 0x1.b27d8643e4f94p-2i, -0x1.2a6f19debf1e8p-1 + 0x1.0f3b41f4e8c0cp-1i, -0x1.851a9ea109181p+0 + 0x0p+0i, -0x1.2a6f19debf1e6p-1 + -0x1.0f3b41f4e8c0bp-1i, -0x1.0f9508285f998p-3 + -0x1.b27d8643e4f8dp-2i, -0x1.b11f07bf7edecp-3 + -0x1.c6ff946f7ed4p-7i, -0x1.40eb75f058feep-1 + 0x1.25474452ef70ap+0i, 0x1.e4353e99be1ap-5 + -0x1.d0e3b1fe69c2dp-1i, 0x1.cbc2de62a1a7p-1 + -0x1.66c294ccd2323p-2i, 0x1.3691753902679p+0 + -0x1.0403f5003c7b2p-3i, -0x1.27a07f3e974b4p-1 + 0x1.60db37940fd22p+1i, 0x1.5e26f462d3584p-5 + -0x1.f0c11230fe2e5p-3i, -0x1.2a3fdbc77b9bep+1 + 0x1.8a6cc9834e076p-2i, -0x1.9c02d3ab5010bp-3 + -0x1.5e65943d33392p-1i ) assertThat(stats:::fft(z=c(-0.286027622792142, 0.0850139363831411, -0.175844765676884, -0.0195878168855467, 0.0547396065555839, -0.125844837790663, 0.0193917857980049, 0.326765455053088, 0.101630594070502, 0.0495244570922387, -0.228418032116601, -0.557775319978623, -0.339272039245778, 0.193030443660542, 0.106870700470349, 0.152732595917981, 0.120980858690617, -0.0882566624696145, -0.123121055673646, 0.708937464819026, 0.3054871538559, -0.0201214433194038, -0.539311186803385, -0.167374841806141)) , identicalTo( expected, tol = 1e-6 ) )
assign.class <- function(x, emobj = NULL, pi = NULL, Mu = NULL, LTSigma = NULL, lab = NULL, return.all = TRUE){ if(is.null(emobj)){ emobj <- list(pi = pi, Mu = Mu, LTSigma = LTSigma) } n <- nrow(x) p <- ncol(x) nclass <- length(emobj$pi) p.LTSigma <- p * (p + 1) / 2 check.dim(emobj, p, nclass, p.LTSigma) ss <- FALSE if(! is.null(lab)){ labK <- max(lab) lab <- lab - 1 if(length(unique(lab[lab != -1])) != labK) stop("lab is not correct.") if(labK > nclass) stop("lab is not correct.") if(any(table(lab[lab >= 0]) < (p + 1))) stop("lab is not correct.") ss <- TRUE } if(!ss){ ret <- .Call("R_assign", as.double(t(x)), as.integer(n), as.integer(p), as.integer(nclass), as.integer(p.LTSigma), as.double(emobj$pi), as.double(t(emobj$Mu)), as.double(t(emobj$LTSigma))) } else{ ret <- .Call("ss_R_assign", as.double(t(x)), as.integer(n), as.integer(p), as.integer(nclass), as.integer(p.LTSigma), as.double(emobj$pi), as.double(t(emobj$Mu)), as.double(t(emobj$LTSigma)), as.integer(lab)) } ret$class <- ret$class + 1 if(return.all){ emobj$nc <- ret$nc emobj$class <- ret$class ret <- emobj class(ret) <- "emret" } ret } assign.class.wt <- function(x, emobj, lab = NULL, return.all = TRUE){ n <- ncol(x) p <- nrow(x) nclass <- length(emobj$pi) p.LTSigma <- p * (p + 1) / 2 check.dim.wt(emobj, p, nclass, p.LTSigma) ss <- FALSE if(! is.null(lab)){ labK <- max(lab) lab <- lab - 1 if(length(unique(lab[lab != -1])) != labK) stop("lab is not correct.") if(labK > nclass) stop("lab is not correct.") if(any(table(lab[lab >= 0]) < (p + 1))) stop("lab is not correct.") ss <- TRUE } if(!ss){ ret <- .Call("R_assign", as.double(x), as.integer(n), as.integer(p), as.integer(nclass), as.integer(p.LTSigma), as.double(emobj$pi), as.double(emobj$Mu), as.double(emobj$LTSigma)) } else{ ret <- .Call("ss_R_assign", as.double(x), as.integer(n), as.integer(p), as.integer(nclass), as.integer(p.LTSigma), as.double(emobj$pi), as.double(emobj$Mu), as.double(emobj$LTSigma), as.integer(lab)) } ret$class <- ret$class + 1 if(return.all){ emobj$nc <- ret$nc emobj$class <- ret$class ret <- emobj class(ret) <- "emret.wt" } ret } meandispersion <- function(x, type = c("MLE", "MME", "rough")){ n <- nrow(x) p <- ncol(x) type.index <- switch(type[1], MLE = 1, MME = 2, 0) ret <- .Call("R_meandispersion", as.double(t(x)), as.integer(n), as.integer(p), as.integer(type.index)) ret$mu <- matrix(ret$mu, nrow = 1) ret$ltsigma <- matrix(ret$ltsigma, nrow = 1) ret$type <- type[1] ret }
SADEG.GC3 = function(Nucleotide_Sequence) { RSCU_List=NULL Nucleotide_Sequence=toupper(Nucleotide_Sequence) Codon=sapply(0:((nchar(Nucleotide_Sequence)/3)-1), function(x) substr(Nucleotide_Sequence,(x*3)+1,(x*3)+3)) Codon_Table=table(Codon) Spare=c("ATG","TGG","TAG","TAA","TGA") Codons=Codon_Table[-which(names(Codon_Table) %in% Spare)] L=sum(Codons) GC3=sum(Codons[which(substr(names(Codons),3,3) %in% c("C","G"))]) names(GC3)="GC3" if (GC3>0) return(GC3/L) }
getclf<-function(data, freq) { nvars<-ncol(data) pars<-double(nvars+nvars*(nvars+1)/2) testdata<-data[cumsum(freq),] presabs<-ifelse(is.na(testdata),0,1) data<-t(data) presabs<-t(presabs) dim(presabs)<-NULL dim(data)<-NULL data<-data[!is.na(data)] function(pars){ .C("evallf",as.double(data),as.integer(nvars),as.integer(freq), as.integer(x=length(freq)),as.integer(presabs),as.double(pars),val=double(1))$val; } }
cron_rstudioaddin <- function(RscriptRepository = Sys.getenv("CRON_LIVE", unset = getwd())) { cron_current <- function(){ x <- try(parse_crontab(), silent = TRUE) if(inherits(x, "try-error")){ x <- list(cronR = character()) } x } requireNamespace("cronR") requireNamespace("shiny") requireNamespace("miniUI") requireNamespace("shinyFiles") check <- NULL popup <- shiny::modalDialog(title = "Request for approval", "By using this app, you approve that you are aware that the app has access to your cron schedule and that it will add or remove elements in your crontab.", shiny::tags$br(), shiny::tags$br(), shiny::modalButton("Yes, I know", icon = shiny::icon("play")), shiny::actionButton(inputId = "ui_validate_no", label = "No I don't want this, close the app", icon = shiny::icon("stop")), footer = NULL, easyClose = FALSE) ui <- miniUI::miniPage( miniUI::gadgetTitleBar("Use cron to schedule your R script"), miniUI::miniTabstripPanel( miniUI::miniTabPanel(title = 'Upload and create new jobs', icon = shiny::icon("cloud-upload"), miniUI::miniContentPanel( shiny::h4("Choose your Rscript"), shinyFiles::shinyFilesButton('fileSelect', label='Select file', title='Choose your Rscript', multiple=FALSE), shiny::br(), shiny::br(), shiny::fillRow(flex = c(3, 3), shiny::column(6, shiny::div(class = "control-label", shiny::strong("Selected Rscript")), shiny::verbatimTextOutput('currentfileselected'), shiny::dateInput('date', label = "Launch date:", startview = "month", weekstart = 1, min = Sys.Date()), shiny::textInput('hour', label = "Launch hour:", value = format(Sys.time() + 122, "%H:%M")), shiny::radioButtons('task', label = "Schedule:", choices = c('ONCE', 'EVERY MINUTE', 'EVERY HOUR', 'EVERY DAY', 'EVERY WEEK', 'EVERY MONTH', 'ASIS'), selected = "ONCE"), shiny::textInput('custom_schedule', label = "ASIS cron schedule", value = "") ), shiny::column(6, shiny::textInput('jobdescription', label = "Job description", value = "I execute things"), shiny::textInput('jobtags', label = "Job tags", value = ""), shiny::textInput('rscript_args', label = "Additional arguments to Rscript", value = ""), shiny::textInput('jobid', label = "Job identifier", value = sprintf("job_%s", digest(runif(1)))), shiny::textInput('rscript_repository', label = "Rscript repository path: launch & log location", value = RscriptRepository) )) ), miniUI::miniButtonBlock(border = "bottom", shiny::actionButton('create', "Create job", icon = shiny::icon("play-circle")) ) ), miniUI::miniTabPanel(title = 'Manage existing jobs', icon = shiny::icon("table"), miniUI::miniContentPanel( shiny::fillRow(flex = c(3, 3), shiny::column(6, shiny::h4("Existing crontab"), shiny::actionButton('showcrontab', "Show current crontab schedule", icon = shiny::icon("calendar")), shiny::br(), shiny::br(), shiny::h4("Show/Delete 1 specific job"), shiny::uiOutput("getFiles"), shiny::actionButton('showjob', "Show job", icon = shiny::icon("clock-o")), shiny::actionButton('deletejob', "Delete job", icon = shiny::icon("remove")) ), shiny::column(6, shiny::h4("Save crontab"), shiny::textInput('savecrontabpath', label = "Save current crontab schedule to", value = file.path(Sys.getenv("HOME"), "my_schedule.cron")), shiny::actionButton('savecrontab', "Save", icon = shiny::icon("save")), shiny::br(), shiny::br(), shiny::h4("Load crontab"), shinyFiles::shinyFilesButton('crontabSelect', label='Select crontab schedule', title='Select crontab schedule', multiple=FALSE), shiny::br(), shiny::br(), shiny::actionButton('loadcrontab', "Load selected schedule", icon = shiny::icon("load")), shiny::br(), shiny::br(), shiny::verbatimTextOutput('currentcrontabselected') )) ), miniUI::miniButtonBlock(border = "bottom", shiny::actionButton('deletecrontab', "Completely clear current crontab schedule", icon = shiny::icon("delete")) ) ) ) ) server <- function(input, output, session) { shiny::showModal(popup) shiny::observeEvent(input$ui_validate_no, { shiny::stopApp() }) volumes <- c('Current working dir' = getwd(), 'HOME' = Sys.getenv('HOME'), 'R Installation' = R.home(), 'Root' = "/") getSelectedFile <- function(inputui, default = "No R script selected yet"){ f <- shinyFiles::parseFilePaths(volumes, inputui)$datapath f <- as.character(f) if(length(f) == 0){ return(default) }else{ if(length(grep(" ", f, value=TRUE))){ warning(sprintf("It is advised that the file you want to schedule (%s) does not contain spaces", f)) } } f } shinyFiles::shinyFileChoose(input, id = 'fileSelect', roots = volumes, session = session) output$fileSelect <- shiny::renderUI({shinyFiles::parseFilePaths(volumes, input$fileSelect)}) output$currentfileselected <- shiny::renderText({getSelectedFile(inputui = input$fileSelect)}) shinyFiles::shinyFileChoose(input, id = 'crontabSelect', roots = volumes, session = session) output$crontabSelect <- shiny::renderUI({shinyFiles::parseFilePaths(volumes, input$crontabSelect)}) output$currentcrontabselected <- shiny::renderText({basename(getSelectedFile(inputui = input$crontabSelect, default = ""))}) shiny::observeEvent(input$rscript_repository, { RscriptRepository <<- normalizePath(input$rscript_repository, winslash = "/") verify_rscript_path(RscriptRepository) }) shiny::observeEvent(input$create, { shiny::req(input$task) if(input$task == "EVERY MONTH" ){ days <- as.integer(format(input$date, "%d")) } else if(input$task == "EVERY WEEK"){ days <- as.integer(format(input$date, "%w")) } else { days <- NULL } starttime <- input$hour rscript_args <- input$rscript_args frequency <- factor(input$task, levels = c('ONCE', 'EVERY MINUTE', 'EVERY HOUR', 'EVERY DAY', 'EVERY WEEK', 'EVERY MONTH', "ASIS"), labels = c('once', 'minutely', 'hourly', 'daily', 'weekly', 'monthly', 'asis')) frequency <- as.character(frequency) if(length(grep(" ", RscriptRepository)) > 0){ warning(sprintf("It is advised that the RscriptRepository does not contain spaces, change argument %s to another location on your drive which contains no spaces", RscriptRepository)) } if (!file.exists(RscriptRepository)) { stop(sprintf("The specified Rscript repository path, at %s, does not exist. Please set it to an existing directory.", RscriptRepository)) } runme <- getSelectedFile(inputui = input$fileSelect) myscript <- paste0(RscriptRepository, "/", basename(runme)) if(runme != myscript){ done <- file.copy(runme, myscript, overwrite = TRUE) if(!done){ stop(sprintf('Copying file %s to %s failed. Do you have access rights to %s?', file.path(runme, input$file$name), myscript, dirname(myscript))) } } cmd <- sprintf("Rscript %s %s >> %s.log 2>&1", myscript, rscript_args, tools::file_path_sans_ext(myscript)) cmd <- sprintf('%s %s %s >> %s 2>&1', file.path(Sys.getenv("R_HOME"), "bin", "Rscript"), shQuote(myscript), rscript_args, shQuote(sprintf("%s.log", tools::file_path_sans_ext(myscript)))) if(frequency %in% c('minutely')){ cron_add(command = cmd, frequency = frequency, id = input$jobid, tags = input$jobtags, description = input$jobdescription, ask=FALSE) }else if(frequency %in% c('hourly')){ cron_add(command = cmd, frequency = frequency, at = starttime, id = input$jobid, tags = input$jobtags, description = input$jobdescription, ask=FALSE) }else if(frequency %in% c('daily')){ cron_add(command = cmd, frequency = 'daily', at = starttime, id = input$jobid, tags = input$jobtags, description = input$jobdescription, ask=FALSE) }else if(frequency %in% c('weekly')){ cron_add(command = cmd, frequency = 'daily', days_of_week = days, at = starttime, id = input$jobid, tags = input$jobtags, description = input$jobdescription, ask=FALSE) }else if(frequency %in% c('monthly')){ cron_add(command = cmd, frequency = 'monthly', days_of_month = days, days_of_week = 1:7, at = starttime, id = input$jobid, tags = input$jobtags, description = input$jobdescription, ask=FALSE) }else if(frequency %in% c('once')){ message(sprintf("This is not a cron schedule but will launch: %s", sprintf('nohup %s &', cmd))) system(sprintf('nohup %s &', cmd)) }else if(frequency %in% c('asis')){ cron_add(command = cmd, frequency = input$custom_schedule, id = input$jobid, tags = input$jobtags, description = input$jobdescription, ask=FALSE) } shiny::updateDateInput(session, inputId = 'date', value = Sys.Date()) shiny::updateTextInput(session, inputId = "hour", value = format(Sys.time() + 122, "%H:%M")) shiny::updateRadioButtons(session, inputId = 'task', selected = "ONCE") shiny::updateTextInput(session, inputId = "jobid", value = sprintf("job_%s", digest(runif(1)))) shiny::updateTextInput(session, inputId = "jobdescription", value = "I execute things") shiny::updateTextInput(session, inputId = "jobtags", value = "") shiny::updateTextInput(session, inputId = "rscript_args", value = "") shiny::updateSelectInput(session, inputId="getFiles", choices = sapply(cron_current()$cronR, FUN=function(x) x$id)) }) output$getFiles <- shiny::renderUI({ shiny::selectInput(inputId = 'getFiles', "Select job", choices = sapply(cron_current()$cronR, FUN=function(x) x$id)) }) shiny::observeEvent(input$showcrontab, { cron_ls() }) shiny::observeEvent(input$showjob, { cron_ls(input$getFiles) }) shiny::observeEvent(input$savecrontab, { message(input$savecrontabpath) cron_save(file = input$savecrontabpath, overwrite = TRUE) }) shiny::observeEvent(input$loadcrontab, { f <- getSelectedFile(inputui = input$crontabSelect, default = "") message(f) if(f != ""){ cron_load(file = f, ask=FALSE) } output$getFiles <- shiny::renderUI({ shiny::selectInput(inputId = 'getFiles', "Select job", choices = sapply(cron_current()$cronR, FUN=function(x) x$id)) }) }) shiny::observeEvent(input$deletecrontab, { cron_clear(ask = FALSE) output$getFiles <- shiny::renderUI({ shiny::selectInput(inputId = 'getFiles', "Select job", choices = sapply(cron_current()$cronR, FUN=function(x) x$id)) }) }) shiny::observeEvent(input$deletejob, { cron_rm(input$getFiles, ask=FALSE) output$getFiles <- shiny::renderUI({ shiny::selectInput(inputId = 'getFiles', "Select job", choices = sapply(cron_current()$cronR, FUN=function(x) x$id)) }) }) shiny::observeEvent(input$done, { shiny::stopApp() }) } viewer <- shiny::dialogViewer("Cron job scheduler", width = 700, height = 800) shiny::runGadget(ui, server, viewer = viewer) } verify_rscript_path <- function(RscriptRepository) { if(is.na(file.info(RscriptRepository)$isdir)){ warning(sprintf("The specified Rscript repository path %s does not exist, make sure this is an existing directory without spaces.", RscriptRepository)) } else if (as.logical(file.access(RscriptRepository, mode = 2))) { warning(sprintf("You do not have write access to the specified Rscript repository path, %s.", RscriptRepository)) } }
expected <- eval(parse(text="-29L")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(c(\"4.1-0\", \"4.1-0\", \"4.1-0\", \"4.1-0\", \"4.1-0\", \"4.1-0\", \"4.0-3\", \"4.0-3\", \"4.0-3\", \"4.0-3\", \"4.0-3\", \"4.0-2\", \"4.0-2\", \"4.0-1\", \"4.0-1\", \"4.0-1\", \"4.0-1\", \"4.0-1\", \"4.0-1\", \"4.0-1\", \"4.0-1\", \"3.1-55\", \"3.1-55\", \"3.1-55\", \"3.1-54\", \"3.1-53\", \"3.1-53\", \"3.1-52\", \"3.1-51\"), c(NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_), c(NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_, NA_character_), c(\"The C and R code has been reformatted for legibility.\", \"The old compatibility function rpconvert() has been removed.\", \"The cross-validation functions allow for user interrupt at the end\\nof evaluating each split.\", \"Variable Reliability in data set car90 is corrected to be an\\nordered factor, as documented.\", \"Surrogate splits are now considered only if they send two or more\\ncases _with non-zero weight_ each way. For numeric/ordinal\\nvariables the restriction to non-zero weights is new: for\\ncategorical variables this is a new restriction.\", \"Surrogate splits which improve only by rounding error over the\\ndefault split are no longer returned. Where weights and missing\\nvalues are present, the splits component for some of these was not\\nreturned correctly.\", \"A fit of class \\\"rpart\\\" now contains a component for variable\\n‘importance’, which is reported by the summary() method.\", \"The text() method gains a minlength argument, like the labels()\\nmethod. This adds finer control: the default remains pretty =\\nNULL, minlength = 1L.\", \"The handling of fits with zero and fractional weights has been\\ncorrected: the results may be slightly different (or even\\nsubstantially different when the proportion of zero weights is\\nlarge).\", \"Some memory leaks have been plugged.\", \"There is a second vignette, longintro.Rnw, a version of the\\noriginal Mayo Tecnical Report on rpart.\", \"Added dataset car90, a corrected version of the S-PLUS dataset\\ncar.all (used with permission).\", \"This version does not use paste0{} and so works with R 2.14.x.\", \"Merged in a set of Splus code changes that had accumulated at Mayo\\nover the course of a decade. The primary one is a change in how\\nindexing is done in the underlying C code, which leads to a major\\nspeed increase for large data sets. Essentially, for the lower\\nleaves all our time used to be eaten up by bookkeeping, and this\\nwas replaced by a different approach. The primary routine also\\nuses .Call{} so as to be more memory efficient.\", \"The other major change was an error for asymmetric loss matrices,\\nprompted by a user query. With L=loss asymmetric, the altered\\npriors were computed incorrectly - they were using L' instead of L.\\nUpshot - the tree would not not necessarily choose optimal splits\\nfor the given loss matrix. Once chosen, splits were evaluated\\ncorrectly. The printed “improvement” values are of course the\\nwrong ones as well. It is interesting that for my little test\\ncase, with L quite asymmetric, the early splits in the tree are\\nunchanged - a good split still looks good.\", \"Add the return.all argument to xpred.rpart().\", \"Added a set of formal tests, i.e., cases with known answers to\\nwhich we can compare.\", \"Add a usercode vignette, explaining how to add user defined\\nsplitting functions.\", \"The class method now also returns the node probability.\", \"Add the stagec data set, used in some tests.\", \"The plot.rpart routine needs to store a value that will be visible\\nto the rpartco routine at a later time. This is now done in an\\nenvironment in the namespace.\", \"Force use of registered symbols in R >= 2.16.0\", \"Update Polish translations.\", \"Work on message formats.\", \"Add Polish translations\", \"rpart, rpart.matrix: allow backticks in formulae.\", \"tests/backtick.R: regession test\", \"src/xval.c: ensure unused code is not compiled in.\", \"Change description of margin in ?plot.rpart as suggested by Bill\\nVenables.\")), row.names = c(NA, -29L), class = \"data.frame\"), 1L)")); .Internal(shortRowNames(argv[[1]], argv[[2]])); }, o=expected);
summary.immer_latent_regression <- function( object, digits=3, file=NULL, ... ) { immer_osink( file=file ) cat("-----------------------------------------------------------------\n") immer_summary_print_package_rsession(pack="immer") cat( object$description, "\n\n") immer_summary_print_call(CALL=object$CALL) immer_summary_print_computation_time(object=object ) cat( "Number of iterations=", object$iter, "\n" ) cat("\n") cat( "Deviance=", round( object$ic$dev, 2 ), " | " ) cat( "Log Likelihood=", round( -object$ic$dev/2, 2 ), "\n" ) cat( "Number of persons=", object$ic$n, "\n" ) cat( "Number of groups=", object$ic$G, "\n" ) cat( "Number of estimated parameters=", object$ic$np, "\n" ) cat("\n") immer_summary_print_ic(object=object) cat("-----------------------------------------------------------------\n") cat( "Regression coefficients\n" ) immer_summary_print_objects(obji=object$beta_stat, from=2, digits=digits, rownames_null=TRUE) cat("-----------------------------------------------------------------\n") cat( "Standard deviations\n" ) immer_summary_print_objects(obji=object$gamma_stat, from=2, digits=digits, rownames_null=TRUE) immer_csink( file=file ) }
testthat::test_that("Passing in weights and data arguments", { variables = c("gender", "age_years_interview", "education_adult") res = cforward(nhanes_example, event_time = "event_time_years", event_status = "mortstat", weight_column = "WTMEC4YR_norm", variables = variables, included_variables = NULL, n_folds = 1, seed = 1989, max_model_size = 2, verbose = FALSE) testthat::expect_equal( res[[1]]$full_concordance, c(res[[1]]$cv_concordance) ) testthat::expect_warning({ res = cforward(nhanes_example, event_time = "event_time_years", event_status = "mortstat", weight_column = "WTMEC4YR_norm", variables = variables, included_variables = NULL, n_folds = 2, weights = 5, seed = 1989, max_model_size = 50, verbose = FALSE) }, regexp = "were specified") testthat::expect_error({ res = cforward(nhanes_example, event_time = "event_time_years", event_status = "mortstat", weight_column = "WTMEC4YR_norm", variables = "blahblahbald", included_variables = NULL, n_folds = 2, weights = 5, seed = 1989, max_model_size = 50, verbose = FALSE) }, regexp = "Independent variables") testthat::expect_warning({ estimate_concordance(nhanes_example, nhanes_example, data = nhanes_example, all_variables = "1") }, regexp = "data set in.*overridden.*") x = nhanes_example x$strata = rbinom(nrow(x), size = 1, prob = 0.2) res = cforward(x, event_time = "event_time_years", event_status = "mortstat", weight_column = "WTMEC4YR_norm", variables = variables, included_variables = NULL, n_folds = 2, cfit_args = list(strata_column = "strata"), seed = 1989, max_model_size = 50, verbose = FALSE) x$gender[1] = NA testthat::expect_warning({ res = cforward(x, event_time = "event_time_years", event_status = "mortstat", weight_column = "WTMEC4YR_norm", variables = variables, included_variables = NULL, n_folds = 2, seed = 1989, max_model_size = 50, verbose = FALSE) }, regexp = "elements in the test") })
estep.Z.cost <- function(xx,alpha,beta,mu,a,b,d,Q,k,l,Wmat){ nbasis = ncol(xx) Qkl = Wmat[[k]][[l]]%*%as.matrix(Q[[k]][[l]]) Pa = (as.matrix(xx - matrix(1,nrow(xx),1)%*%mu[k,l,]) %*% Qkl) %*% t(Qkl) Pb = Pa + as.matrix(matrix(1,nrow(xx),1)%*%mu[k,l,] - xx) A = t(1/a[k,l] * rowSums(Pa^2) + (1/b[k,l] * rowSums(Pb^2)) + d[k,l] * log(a[k,l]) + (nbasis-d[k,l]) * log(b[k,l])) - 2 * log(beta[l]) }
seqtest.prop <- function(x, y = NULL, pi = NULL, alternative = c("two.sided", "less", "greater"), delta, alpha = 0.05, beta = 0.1, output = TRUE, plot = FALSE) { if (any(!x %in% c(0, 1)) || any(!y %in% c(0, 1))) { stop("Only 0 and 1 are allowed for x and y") } if (is.null(pi)) { pi <- 0.5 } if (pi <= 0 || pi >= 1) { stop("Argument pi out of bound, specify a value between 0 and 1") } if (!all(alternative %in% c("two.sided", "less", "greater"))) { stop("Argument alternative should be \"two.sided\", \"less\" or \"greater\"") } if (delta <= 0) { stop("Argument delta out of bound, specify a value > 0") } if (alpha <= 0 || alpha >= 1) { stop("Argument alpha out of bound, specify a value between 0 and 1") } if (beta <= 0 || beta >= 1) { stop("Argument beta out of bound, specify a value between 0 and 1") } sample <- ifelse(is.null(y), "one.sample", "two.sample") alternative <- ifelse(all(c("two.sided", "less", "greater") %in% alternative), "two.sided", alternative) if (alternative == "two.sided") { if ((pi + delta) >= 1 || (pi - delta) <= 0) { stop("Value pi + delta or pi - delta out of bound") } } else { if (sample == "one.sample") { if (alternative == "less") { if ((pi - delta) <= 0) { stop("Value (pi - delta) out of bound") } } else { if ((pi + delta) >= 1) { stop("Value (pi + delta) out of bound") } } } else { if (alternative == "less") { if ((pi + delta) >= 1) { stop("Value (pi + delta) out of bound") } } else { if ((pi - delta) <= 0) { stop("Value (pi - delta) out of bound") } } } } ifelse(alternative == "two.sided", u.1a <- qnorm(1 - alpha / 2), u.1a <- qnorm(1 - alpha)) u.1b <- qnorm(1 - beta) if (alternative == "two.sided") { if (sample == "one.sample") { theta1 <- log(((pi - delta) * (1 - pi)) / (pi * (1 - (pi - delta)))) theta2 <- log(((pi + delta) * (1 - pi)) / (pi * (1 - (pi + delta)))) } else { theta1 <- -log(((pi + delta) * (1 - pi)) / (pi * (1 - (pi + delta)))) theta2 <- -log(((pi - delta) * (1 - pi)) / (pi * (1 - (pi - delta)))) } a1 <- (1 + u.1b / u.1a) * log(1 / (2 * alpha / 2)) / theta1 a2 <- (1 + u.1b / u.1a) * log(1 / (2 * alpha / 2)) / theta2 b1 <- theta1 / (2 * (1 + u.1b / u.1a)) b2 <- theta2 / (2 * (1 + u.1b / u.1a)) V.max <- c(a1 / b1, a2 / b2) Z.max <- c(2 * a1, 2 * a2) f1 <- function(x1) { -a1 + 3 * b1 * x1 } f2 <- function(x2) { -a2 + 3 * b2 * x2 } intersec <- uniroot(function(z) f1(z) - f2(z), interval = c(0, max(V.max)))$root } else { if (sample == "one.sample") { if (alternative == "less") { theta <- log(((pi - delta) * (1 - pi)) / (pi * (1 - (pi - delta)))) } else { theta <- log(((pi + delta) * (1 - pi)) / (pi * (1 - (pi + delta)))) } } else { if (alternative == "less") { theta <- -log(((pi + delta) * (1 - pi)) / (pi * (1 - (pi + delta)))) } else { theta <- -log(((pi - delta) * (1 - pi)) / (pi * (1 - (pi - delta)))) } } a <- (1 + u.1b / u.1a) * log(1 / (2 * alpha)) / theta b <- theta / (2 * (1 + u.1b / u.1a)) V.max <- a / b Z.max <- 2 * a } if (sample == "one.sample") { if (alternative == "two.sided") { object <- list(call = match.call(), type = "prop", spec = list(pi = pi, alternative = alternative, sample = sample, delta = delta, theta1 = theta1, theta2 = theta2, alpha = alpha, beta = beta), tri = list(a1 = a1, a2 = a2, b1 = b1, b2 = b2, u.1a = u.1a, u.1b = u.1b, V.max = V.max, Z.max = Z.max, intersec = intersec), dat = list(x = NULL, n = NULL), res = list(V.m = NULL, Z.m = NULL, decision = "continue", step = 0)) } else { object <- list(call = match.call(), type = "prop", spec = list(pi = pi, alternative = alternative, sample = sample, delta = delta, theta = theta, alpha = alpha, beta = beta), tri = list(a = a, b = b, u.1a = u.1a, u.1b = u.1b, V.max = V.max, Z.max = Z.max), dat = list(x = NULL, n = NULL), res = list(V.m = NULL, Z.m = NULL, decision = "continue", step = 0)) } } else { if (alternative == "two.sided") { object <- list(call = match.call(), type = "prop", spec = list(pi = pi, alternative = alternative, sample = sample, delta = delta, theta1 = theta1, theta2 = theta2, alpha = alpha, beta = beta), tri = list(a1 = a1, a2 = a2, b1 = b1, b2 = b2, u.1a = u.1a, u.1b = u.1b, V.max = V.max, Z.max = Z.max, intersec = intersec), dat = list(x = NULL, y = NULL, n.1 = NULL, n.2 = NULL), res = list(V.m = NULL, Z.m = NULL, decision = "continue", step = 0)) } else { object <- list(call = match.call(), type = "prop", spec = list(pi = pi, alternative = alternative, sample = sample, delta = delta, theta = theta, alpha = alpha, beta = beta), tri = list(a = a, b = b, u.1a = u.1a, u.1b = u.1b, V.max = V.max, Z.max = Z.max), dat = list(x = NULL, y = NULL, n.1 = NULL, n.2 = NULL), res = list(V.m = NULL, Z.m = NULL, decision = "continue", step = 0)) } } class(object) <- "seqtest" print.step <- 0 if (object$spec$sample == "one.sample") { print.max <- length(x) for (x.i in x) { print.step <- print.step + 1 object <- internal.seqtest.prop(object, x = x.i, initial = TRUE, print.step = print.step, print.max = print.max, output = output, plot = plot) if (object$res$decision != "continue") break } } else { print.max <- length(c(x, y)) - 1 print.step <- print.step + 1 object <- internal.seqtest.prop(object, x = x[1], y = y[1], initial = TRUE, print.step = print.step, print.max = print.max, output = output, plot = plot) x.seq <- seq_along(x) y.seq <- seq_along(y) if (max(x.seq, y.seq) > 1) { xy.sum <- sum(x.seq %in% y.seq) if (xy.sum > 1) { for (i in 2:xy.sum) { print.step <- print.step + 1 object <- internal.seqtest.prop(object, x = x[i], initial = TRUE, print.step = print.step, print.max = print.max, output = output, plot = plot) if (object$res$decision != "continue") break print.step <- print.step + 1 object <- internal.seqtest.prop(object, y = y[i], initial = TRUE, print.step = print.step, print.max = print.max, output = output, plot = plot) if (object$res$decision != "continue") break } } if (length(x) > length(y) & object$res$decision == "continue") { for (i in (xy.sum + 1):length(x)) { print.step <- print.step + 1 object <- internal.seqtest.prop(object, x = x[i], initial = TRUE, print.step = print.step, print.max = print.max, output = output, plot = plot) if (object$res$decision != "continue") break } } if (length(x) < length(y) & object$res$decision == "continue") { for (i in (xy.sum + 1):length(y)) { print.step <- print.step + 1 object <- internal.seqtest.prop(object, y = y[i], initial = TRUE, print.step = print.step, print.max = print.max, output = output, plot = plot) if (object$res$decision != "continue") break } } } } return(invisible(object)) }
"stat_locs" "apacpnut" "apacpwq" "apadbwq" "apaebmet"
"ICEuncrt" <- function (df, trtm, xeffe, ycost, lambda = 1, ceunit = "cost", R = 25000, seed = 0) { if (missing(df) || !inherits(df, "data.frame")) stop("The first argument to ICEuncrt must be an existing Data Frame.") if (lambda <= 0) stop("The lambda argument to ICEuncrt must be strictly positive.") if (ceunit != "effe") ceunit <- "cost" ICEuncol <- list(df = deparse(substitute(df)), lambda = lambda, ceunit = ceunit, R = R) if (missing(trtm)) stop("The Second argument to ICEuncrt must name the Treatment factor.") trtm <- deparse(substitute(trtm)) if (!is.element(trtm, dimnames(df)[[2]])) stop("Treatment factor must be an existing Data Frame variable.") if (length(table(df[, trtm])) != 2) stop("Treatment factor must assume exactly two different levels.") if (missing(xeffe)) stop("The Third argument to ICEuncrt must name the Treatment Effectiveness variable.") xeffe <- deparse(substitute(xeffe)) if (!is.element(xeffe, dimnames(df)[[2]])) stop("Effectiveness measure must be an existing Data Frame variable.") if (missing(ycost)) stop("The Fourth argument to ICEuncrt must name the Treatment Cost variable.") ycost <- deparse(substitute(ycost)) if (!is.element(ycost, dimnames(df)[[2]])) stop("Cost measure must be an existing Data Frame variable.") effcst <- na.omit(df[, c(trtm, xeffe, ycost)]) names(effcst) <- c("trtm", "effe", "cost") effcst <- effcst[do.call(order, effcst), ] if (ceunit != "cost") effcst[, 3] <- effcst[, 3]/lambda else effcst[, 2] <- effcst[, 2] * lambda if (R > 25000) R <- 25000 else if (R < 50) R <- 50 idx <- table(as.numeric(effcst$trtm)) rowstd <- 1:idx[1] rownew <- 1:idx[2] + idx[1] nstd <- length(rowstd) nnew <- nstd + length(rownew) t1 <- ICEd2m(effcst, rownew, rowstd) t <- matrix(rep(0, R * 2), nrow = R, ncol = 2) if (seed == 0) seed <- 1 + floor(25000 * runif(1)) set.seed(seed) for (i in 1:R) { rowstd <- ICErunif(1, nstd) rownew <- ICErunif(nstd + 1, nnew) t[i, ] <- ICEd2m(effcst, rownew, rowstd) } icer.bias <- t1[1] / t1[2] icer.boot <- mean(t[,1]) / mean(t[,2]) icer.unbi <- 2 * icer.bias - icer.boot ICEuncol <- c(ICEuncol, list(trtm = trtm, xeffe = xeffe, ycost = ycost, effcst = effcst, t1 = t1, t = t, icer.bias = icer.bias, icer.boot = icer.boot, icer.unbi = icer.unbi, seed = seed)) class(ICEuncol) <- "ICEuncrt" ICEuncol } "plot.ICEuncrt" <- function (x, lfact = 1, swu = FALSE, alibi = FALSE, ...) { if (missing(x) || !inherits(x, "ICEuncrt")) stop("The first argument to plot(ICEuncrt) must be an ICEuncrt object.") if (lfact > 0) lambda <- lfact * x$lambda else lambda <- x$lambda ceunit <- x$ceunit if (ceunit != "cost") ceunit <- "effe" if (swu) { if (ceunit == "cost") { ceunit <- "effe" if (x$lambda != 1) { x$t1[1] <- x$t1[1] / x$lambda x$t[, 1] <- x$t[, 1] / x$lambda x$t1[2] <- x$t1[2] / x$lambda x$t[, 2] <- x$t[, 2] / x$lambda } } else { ceunit <- "cost" if (x$lambda != 1) { x$t1[1] <- x$t1[1] * x$lambda x$t[, 1] <- x$t[, 1] * x$lambda x$t1[2] <- x$t1[2] * x$lambda x$t[, 2] <- x$t[, 2] * x$lambda } } } if (lfact != 1) { x$lambda <- lambda if (ceunit == "cost") { x$t1[1] <- x$t1[1] * lfact x$t[, 1] <- x$t[, 1] * lfact } else { x$t1[2] <- x$t1[2] / lfact x$t[, 2] <- x$t[, 2] / lfact } } emax <- max(abs(max(x$t[, 1])), abs(min(x$t[, 1]))) cmax <- max(abs(max(x$t[, 2])), abs(min(x$t[, 2]))) if (alibi == FALSE) { plot(x$t[, 1], x$t[, 2], ann = FALSE, type = "p", ylim = c(-cmax, cmax), xlim = c(-emax, emax)) par(lty = 1) abline(v = 0, h = 0) par(lty = 2) abline(v = x$t1[1], h = x$t1[2]) par(lty = 3) abline(c(0, 1)) title(main = paste("ICE Alias Uncertainty for Lambda =", lambda), xlab = "Effectiveness Difference", ylab = "Cost Difference", sub = paste("Units =", ceunit, ": Bootstrap Reps =", x$R)) } else { amax <- max(emax, cmax) plot(x$t[, 1], x$t[, 2], ann = FALSE, type = "p", ylim = c(-amax, amax), xlim = c(-amax, amax)) par(lty = 1) abline(v = 0, h= 0) par(lty = 2) abline(v = x$t1[1], h = x$t1[2]) par(lty = 3) abline(c(0, 1)) title(main = paste("ICE Alibi Uncertainty for Lambda =", lambda), xlab = "Effectiveness Difference", ylab = "Cost Difference", sub = paste("Units =", ceunit, ": Bootstrap Reps =", x$R)) } } "print.ICEuncrt" <- function (x, lfact = 1, swu = FALSE, ...) { if (missing(x) || !inherits(x, "ICEuncrt")) stop("The first argument to print.ICEuncrt() must be an ICEuncrt object.") cat("\nIncremental Cost-Effectiveness (ICE) Bivariate Bootstrap Uncertainty\n") if (lfact > 0) lambda <- lfact * x$lambda else lambda <- x$lambda ceunit <- x$ceunit if (ceunit != "cost") ceunit <- "effe" if (swu) { if (ceunit == "cost") { ceunit <- "effe" if (x$lambda != 1) { x$t1[1] <- x$t1[1] / x$lambda x$t[, 1] <- x$t[, 1] / x$lambda x$t1[2] <- x$t1[2] / x$lambda x$t[, 2] <- x$t[, 2] / x$lambda } } else { ceunit <- "cost" if (x$lambda != 1) { x$t1[1] <- x$t1[1] * x$lambda x$t[, 1] <- x$t[, 1] * x$lambda x$t1[2] <- x$t1[2] * x$lambda x$t[, 2] <- x$t[, 2] * x$lambda } } } cat(paste("\nShadow Price = Lambda =", lambda)) cat(paste("\nBootstrap Replications, R =", x$R)) cat(paste("\nEffectiveness variable Name =", x$xeffe)) cat(paste("\n Cost variable Name =", x$ycost)) cat(paste("\n Treatment factor Name =", x$trtm)) cat(paste("\nNew treatment level is =", names(table(x$effcst[,1]))[2], "and Standard level is =", names(table(x$effcst[,1]))[1], "\n")) cat(paste("\nCost and Effe Differences are both expressed in", ceunit, "units\n")) if (lfact != 1) { x$lambda <- lambda if (ceunit == "cost") { x$t1[1] <- x$t1[1] * lfact x$t[, 1] <- x$t[, 1] * lfact } else { x$t1[2] <- x$t1[2] / lfact x$t[, 2] <- x$t[, 2] / lfact } } cat(paste("\nObserved Treatment Diff =", round(x$t1[1], digits = 3))) cat(paste("\nMean Bootstrap Trtm Diff =", round(mean(x$t[,1]), digits = 3), "\n")) cat(paste("\nObserved Cost Difference =", round(x$t1[2], digits = 3))) cat(paste("\nMean Bootstrap Cost Diff =", round(mean(x$t[,2]), digits = 3), "\n")) cat(paste("\nConsistent (Biased) ICER =", round(x$icer.bias, digits = 4), "\n")) cat(paste("\nBootstrap Mean ICE ratio =", round(x$icer.boot, digits = 4), "\n")) cat(paste("\nUnbiased ICER estimate =", round(x$icer.unbi, digits = 4), "\n\n")) }
pointsCovarModel <- function(feature, cov.var, studyplot=NULL, oneplot=FALSE){ options(scipen=999) if(is.null(studyplot)==TRUE){ cov.var.copy <- cov.var cov.var.copy[na.omit(cov.var.copy)] <- 1 studyplot <-rasterToPolygons(cov.var.copy, na.rm=TRUE, dissolve=TRUE) } else {} feature.ppp <- unmark(as.ppp(feature)) W <- maptools::as.owin.SpatialPolygons(studyplot) spatstat.geom::Window(feature.ppp) <- W cov.var.im <- spatstat.geom::as.im(cov.var) PPM0 <- ppm(feature.ppp ~ 1) PPM1 <- ppm(feature.ppp ~ cov.var.im) kolmsmirn <- cdf.test(feature.ppp, cov.var.im) areaundercurve <- spatstat.core::auc(feature.ppp, cov.var.im, high=FALSE) model.comp <- anova(PPM0, PPM1, test="LRT") if(oneplot==TRUE){ par(mfrow=c(2,2)) } else {} anova.p <- model.comp$"Pr(>Chi)"[2] anova.p.to.report <- ifelse(anova.p < 0.001, "< 0.001", ifelse(anova.p < 0.01, "< 0.01", ifelse(anova.p < 0.05, "< 0.05", round(anova.p, 3)))) raster::plot(cov.var, main="Point pattern against the numeric covariate data", cex.main=0.75, sub=paste0("Null Hypothesis (H0): Homogeneous Poisson process model\nAlternative Hyphotesis (H1): Inhomogeneous Poisson process model (intensity as loglinear function of the covariate)\nH1 ", ifelse(anova.p > 0.05, "is not", "is"), " a significant improvement over H0 (Likelihood Ratio p-value: ", anova.p.to.report,"; AUC: ", round(areaundercurve,3), ")"), cex.sub=0.70) raster::plot(feature, add=TRUE, pch=20) raster::plot(studyplot, add=TRUE) plot(spatstat.core::effectfun(PPM1, names(PPM1$covariates), se.fit=TRUE), main="Fitted intensity of the point pattern \nas (loglinear) function of the covariate", cex.main=0.8, cex.axis=0.7, cex.lab=0.8, legend=TRUE) plot(kolmsmirn, cex.main=0.8) plot(spatstat.core::roc(PPM1), main=paste0("ROC curve of the fitted intensity of point patter \nas (loglinear) function of the cavariate \nAUC: ", round(areaundercurve,3)), cex.main=0.8) results <- list("H0-model"=PPM0, "H1-model"=PPM1, "Model comparison (LRT)"=model.comp, "AIC-H0"=AIC(PPM0), "AIC-H1"=AIC(PPM1), "KS test"=kolmsmirn, "AUC"=areaundercurve) par(mfrow = c(1,1)) return(results) }
setGeneric(name="query",def=function(.Object, field, ...){standardGeneric("query")}) setMethod(f = "query",signature("webdata",'character'), definition = function(.Object, field, ...){ field <- match.arg(field, c('variables','times')) args <- list(fabric = .Object, ...) values <- do.call(paste0(field,"_query"), args) return(values) } ) setMethod(f = "query",signature("webdata",'missing'), definition = function(.Object, field, ...){ stop('specify a field to query against for webdata object') } ) setMethod(f = "query",signature("character",'missing'), definition = function(.Object, field, ...){ field <- match.arg(.Object, c('webdata')) values <- do.call(paste0(field,"_query"), list(...)) return(values) } ) webdata_query <- function(csw_url = 'https://www.sciencebase.gov/catalog/item/54dd2326e4b08de9379b2fb1/csw'){ request = '<csw:GetRecords xmlns:csw="http://www.opengis.net/cat/csw/2.0.2" service="CSW" version="2.0.2" resultType="results" outputSchema="http://www.isotc211.org/2005/gmd" maxRecords="1000"> <csw:Query typeNames="csw:Record"> <csw:ElementSetName>full</csw:ElementSetName> </csw:Query> </csw:GetRecords>' xpath <- '//srv:containsOperations/srv:SV_OperationMetadata/srv:connectPoint/gmd:CI_OnlineResource/gmd:linkage/gmd:URL' parentxpath <- paste0(xpath,paste(rep('/parent::node()[1]',6), collapse='')) response <- gcontent(gPOST(url = csw_url, body = request, content_type_xml())) namespaces = xml2::xml_ns(response) urls <- lapply(xml2::xml_find_all(response, xpath, ns = namespaces), xml2::xml_text) abstracts = xml2::xml_text(xml2::xml_find_all(response, paste0(parentxpath,'/gmd:abstract'), ns = namespaces)) titles = xml2::xml_text(xml2::xml_find_all(response, paste0(parentxpath, '/gmd:citation/gmd:CI_Citation/gmd:title/gco:CharacterString'), ns = namespaces)) group = list() sort.ix <- sort(titles, index.return = TRUE)$ix for (i in 1:length(urls)){ group[[i]] <- list(title = titles[sort.ix[i]], url=urls[[sort.ix[i]]], abstract = abstracts[sort.ix[i]]) } types = unname(xml2::xml_attrs(xml2::xml_find_all(response, parentxpath, ns = namespaces))) group[which(substr(types[sort.ix],1,7) != "OPeNDAP")] <- NULL return(datagroup(group)) }
unmix <- function(x, pure, alpha, shift, power=1, format="matrix", quiet=FALSE) { format <- match.arg(format, c("matrix","list")) if (missing(alpha)) stopifnot(!missing(shift)) if (missing(shift)) stopifnot(!missing(alpha)) stopifnot(missing(shift) | missing(alpha)) stopifnot(power %in% 1:2) stopifnot(nrow(x) == nrow(pure)) stopifnot(ncol(pure) > 1) if (requireNamespace("pbapply", quietly=TRUE) & !quiet) { lapply <- pbapply::pblapply } cor.msg <- "some columns of 'pure' are highly correlated (>.99 after VST), may result in instabilty of unmix(). visually inspect correlations of 'pure'" if (missing(shift)) { stopifnot(alpha > 0) vst <- function(q, alpha) ( 2 * asinh(sqrt(alpha * q)) - log(alpha) - log(4) ) / log(2) pure.cor <- cor(vst(pure, alpha)); diag(pure.cor) <- 0 if (any(pure.cor > .99)) warning(cor.msg) sumLossVST <- function(p, i, vst, alpha, power) { sum(abs(vst(x[,i], alpha) - vst(pure %*% p, alpha))^power) } res <- lapply(seq_len(ncol(x)), function(i) { optim(par=rep(1, ncol(pure)), fn=sumLossVST, gr=NULL, i, vst, alpha, power, method="L-BFGS-B", lower=0, upper=100)$par }) } else { stopifnot(shift > 0) vstSL <- function(q, shift) log(q + shift) pure.cor <- cor(vstSL(pure, shift)); diag(pure.cor) <- 0 if (any(pure.cor > .99)) warning(cor.msg) sumLossSL <- function(p, i, vst, shift, power) { sum(abs(vstSL(x[,i], shift) - vstSL(pure %*% p, shift))^power) } res <- lapply(seq_len(ncol(x)), function(i) { optim(par=rep(1, ncol(pure)), fn=sumLossSL, gr=NULL, i, vstSL, shift, power, method="L-BFGS-B", lower=0, upper=100)$par }) } mix <- do.call(rbind, res) mix <- mix / rowSums(mix) colnames(mix) <- colnames(pure) rownames(mix) <- colnames(x) if (format == "matrix") { return(mix) } else { fitted <- pure %*% t(mix) cor <- if (missing(shift)) { cor(vst(x, alpha), vst(fitted, alpha)) } else { cor(vstSL(x, shift), vstSL(fitted, shift)) } return(list(mix=mix, cor=diag(cor), fitted=fitted)) } } collapseReplicates <- function(object, groupby, run, renameCols=TRUE) { if (!is.factor(groupby)) groupby <- factor(groupby) groupby <- droplevels(groupby) stopifnot(length(groupby) == ncol(object)) sp <- split(seq(along=groupby), groupby) countdata <- sapply(sp, function(i) rowSums(assay(object)[,i,drop=FALSE])) mode(countdata) <- "integer" colsToKeep <- sapply(sp, `[`, 1) collapsed <- object[,colsToKeep] dimnames(countdata) <- dimnames(collapsed) assay(collapsed) <- countdata if (!missing(run)) { stopifnot(length(groupby) == length(run)) colData(collapsed)$runsCollapsed <- sapply(sp, function(i) paste(run[i],collapse=",")) } if (renameCols) { colnames(collapsed) <- levels(groupby) } stopifnot(sum(as.numeric(assay(object))) == sum(as.numeric(assay(collapsed)))) collapsed } fpkm <- function(object, robust=TRUE) { fpm <- fpm(object, robust=robust) if ("avgTxLength" %in% assayNames(object)) { exprs <- 1e3 * fpm / assays(object)[["avgTxLength"]] if (robust) { sf <- estimateSizeFactorsForMatrix(exprs) exprs <- t(t(exprs)/sf) return(exprs) } else { return(exprs) } } if (is.null(mcols(object)$basepairs)) { if (is(rowRanges(object), "GRangesList")) { ubp <- DataFrame(basepairs = sum(width(reduce(rowRanges(object))))) } else if (is(rowRanges(object), "GRanges")) { ubp <- DataFrame(basepairs = width(rowRanges(object))) } if (all(ubp$basepairs == 0)) { stop("rowRanges(object) has all ranges of zero width. the user should instead supply a column, mcols(object)$basepairs, which will be used to produce FPKM values") } if (is.null(mcols(mcols(object)))) { mcols(object) <- ubp } else { mcols(ubp) <- DataFrame(type="intermediate", description="count of basepairs in the union of all ranges") mcols(object) <- cbind(mcols(object), ubp) } } 1e3 * sweep(fpm, 1, mcols(object)$basepairs, "/") } fpm <- function(object, robust=TRUE) { noAvgTxLen <- !("avgTxLength" %in% assayNames(object)) if (robust & is.null(sizeFactors(object)) & noAvgTxLen) { object <- estimateSizeFactors(object) } k <- counts(object) library.sizes <- if (robust & noAvgTxLen) { sizeFactors(object) * exp(mean(log(colSums(k)))) } else { colSums(k) } 1e6 * sweep(k, 2, library.sizes, "/") } normalizeGeneLength <- function(...) { .Deprecated("tximport, a separate package on Bioconductor") } normTransform <- function(object, f=log2, pc=1) { if (is.null(colnames(object))) { colnames(object) <- seq_len(ncol(object)) } if (is.null(sizeFactors(object)) & is.null(normalizationFactors(object))) { object <- estimateSizeFactors(object) } nt <- f(counts(object, normalized=TRUE) + pc) se <- SummarizedExperiment( assays = nt, colData = colData(object), rowRanges = rowRanges(object), metadata = metadata(object)) DESeqTransform(se) } integrateWithSingleCell <- function(res, dds, ...) { stopifnot(is(res, "DESeqResults")) stopifnot(is(dds, "DESeqDataSet")) tximetaOrg <- metadata(dds)$txomeInfo$organism if (!is.null(tximetaOrg)) { org <- if (tximetaOrg == "Homo sapiens") { "human" } else if (tximetaOrg == "Mus musculus") { "mouse" } else { stop("Only human and mouse are currently supported") } } else { test.gene <- rownames(res)[1] org <- if (substr(test.gene, 1, 4) == "ENSG") { "human" } else if (substr(test.gene, 1, 7) == "ENSMUSG") { "mouse" } else { stop("Only human and mouse are currently supported") } } message(paste("Your dataset appears to be", org, "\n")) csv.file <- system.file("extdata/singleCellTab.csv", package="DESeq2") tab <- read.csv(csv.file) message(paste("Choose a",org,"single-cell dataset to integrate with (0 to cancel):\n")) tab <- tab[tab$org == org,] tab2 <- tab[,c("pkg","func","data", "pub","nCells","desc")] tab2$data <- ifelse(is.na(tab2$data), "", tab2$data) rownames(tab2) <- seq_len(nrow(tab2)) print(tab2[,1:3]) print(tab2[,4:6]) cat("\n") message(paste("Choose a",org,"single-cell dataset to integrate with (0 to cancel):")) menuOpts <- ifelse(is.na(tab$data), tab$func, paste(tab$func, tab$data, sep="-")) ans <- menu(menuOpts) if (ans == 0) stop("No scRNA-seq dataset selected") pkg <- tab$pkg[ans] if (!requireNamespace(package=pkg, quietly=TRUE)) { message(paste0("Package: '",pkg, "' is not installed")) ask <- askYesNo("Would you like to install the necessary data package?") if (ask) { if (!requireNamespace(package="BiocManager", quietly=TRUE)) { stop("'BiocManager' required to install packages, install from CRAN") } BiocManager::install(pkg) } else { stop("Package would need to be installed") } if (requireNamespace(package=pkg, quietly=TRUE)) { message("Data package was installed successfully") } else { stop("Data package still needs to be installed for integrateWithSingleCell to work") } } require(pkg, character.only=TRUE) if (pkg == "scRNAseq") { if (is.na(tab$data[ans])) { sce <- do.call(tab$func[ans], list(ensembl=TRUE, ...)) } else { sce <- do.call(tab$func[ans], list(which=tab$data[ans], ensembl=TRUE, ...)) } } else { if (is.na(tab$data[ans])) { sce <- do.call(tab$func[ans], list(...)) } else { sce <- do.call(tab$func[ans], list(dataset=tab$data[ans], ...)) } } return(list(res=res, dds=dds, sce=sce)) }
cpa.sw.normal <- function(alpha = 0.05, power = 0.80, nclusters = NA, nsubjects = NA, ntimes = NA, d = NA, ICC = NA, rho_c = NA, rho_s = NA, vart = NA, tol = .Machine$double.eps^0.25){ needlist <- list(alpha, power, nclusters, nsubjects, ntimes, d, ICC, rho_c, rho_s, vart) neednames <- c("alpha", "power", "nclusters", "nsubjects", "ntimes", "d", "ICC", "rho_c", "rho_s", "vart") needind <- which(unlist(lapply(needlist, is.na))) if (length(needind) != 1) { neederror = "Exactly one of 'alpha', 'power', 'nclusters', 'nsubjects', 'ntimes', 'd', 'ICC', 'rho_c', 'rho_s', and 'vart' must be NA." stop(neederror) } target <- neednames[needind] pwr <- quote({ DEFFc <- 1 + (nsubjects - 1)*ICC r <- (nsubjects*ICC*rho_c + (1 - ICC)*rho_s)/DEFFc DEFFr <- 3*ntimes*(1 - r)*(1 + ntimes*r)/( (ntimes^2 - 1)*(2 + ntimes*r) ) VIF <-DEFFr*DEFFc zcrit <- qnorm(alpha/2, lower.tail = FALSE) zstat <- abs(d)/sqrt( 4*vart/(nclusters*nsubjects*ntimes)*VIF ) pnorm(zcrit, zstat, lower.tail = FALSE) }) if (is.na(alpha)) { alpha <- stats::uniroot(function(alpha) eval(pwr) - power, interval = c(1e-10, 1 - 1e-10), tol = tol)$root } if (is.na(power)) { power <- eval(pwr) } if (is.na(nclusters)) { nclusters <- stats::uniroot(function(nclusters) eval(pwr) - power, interval = c(2 + 1e-10, 1e+07), tol = tol, extendInt = "upX")$root } if (is.na(nsubjects)) { nsubjects <- stats::uniroot(function(nsubjects) eval(pwr) - power, interval = c(2 + 1e-10, 1e+07), tol = tol, extendInt = "upX")$root } if (is.na(ntimes)) { ntimes <- stats::uniroot(function(ntimes) eval(pwr) - power, interval = c(1 + 1e-10, 1e+07), tol = tol, extendInt = "upX")$root } if (is.na(d)) { d <- stats::uniroot(function(d) eval(pwr) - power, interval = c(1e-07, 1e+07), tol = tol, extendInt = "upX")$root } if (is.na(ICC)){ ICC <- stats::uniroot(function(ICC) eval(pwr) - power, interval = c(1e-07, 1 - 1e-07), tol = tol)$root } if (is.na(rho_c)){ rho_c <- stats::uniroot(function(rho_c) eval(pwr) - power, interval = c(1e-07, 1 - 1e-07), tol = tol)$root } if (is.na(rho_s)){ rho_s <- stats::uniroot(function(rho_s) eval(pwr) - power, interval = c(1e-07, 1 - 1e-07), tol = tol)$root } if (is.na(vart)) { vart <- stats::uniroot(function(vart) eval(pwr) - power, interval = c(1e-07, 1e+07), tol = tol, extendInt = "downX")$root } structure(get(target), names = target) }
vis_snps <- function(output=NULL, stacks_param=NULL){ snps <- var <- snps.80 <- NULL snp.df<-output$snp snp.df$var<-as.factor(snp.df$var) snp.df$snps<-as.numeric(as.character(snp.df$snps)) snp.R80.df<-output$snp.R80 snp.R80.df$var<-as.factor(snp.R80.df$var) snp.R80.df$snps.80<-as.numeric(as.character(snp.R80.df$snps.80)) cat("Visualize how different values of", stacks_param, "affect number of SNPs retained. Density plot shows the distribution of the number of SNPs retained in each sample, while the asterisk denotes the total number of SNPs retained at an 80% completeness cutoff.", "\n") return( ggplot2::ggplot(snp.df, ggplot2::aes(x = snps, y = var)) + ggridges::geom_density_ridges(jittered_points = FALSE, alpha = .5) + ggplot2::geom_point(snp.R80.df, mapping=ggplot2::aes(x=snps.80, y=var), pch=8, cex=3)+ ggplot2::theme_classic() + ggplot2::labs(x = "SNPs retained", y = paste(stacks_param, "value")) + ggplot2::theme(legend.position = "none") ) }
context("Generic comorbidity calculation") test_that("comorbid quick test", { testres <- icd9_comorbid(two_pts, two_map, return_df = TRUE) testres_cat_simple <- categorize_simple(two_pts, two_map, return_df = TRUE, id_name = "visit_id", code_name = "icd9" ) trueres <- data.frame( "visit_id" = c("visit01", "visit02"), "malady" = c(FALSE, TRUE), "ailment" = c(TRUE, FALSE), stringsAsFactors = FALSE ) expect_equal(testres, trueres) expect_equal(testres_cat_simple, trueres) testmat <- icd9_comorbid(two_pts, two_map, return_df = FALSE) truemat <- matrix(c(FALSE, TRUE, TRUE, FALSE), nrow = 2, dimnames = list(c("visit01", "visit02"), c("malady", "ailment")) ) expect_equal(testmat, truemat) testresfac <- icd9_comorbid(two_pts_fac, two_map_fac, return_df = TRUE) trueresfac <- data.frame( "visit_id" = c("visit01", "visit02"), "malady" = c(FALSE, TRUE), "ailment" = c(TRUE, FALSE), stringsAsFactors = TRUE ) expect_equal(testresfac, trueresfac) expect_equal(icd9_comorbid(two_pts, two_map_fac, return_df = FALSE), truemat) expect_equal(icd9_comorbid(two_pts_fac, two_map, return_df = FALSE), truemat) expect_equal(icd9_comorbid(two_pts_fac, two_map_fac, return_df = FALSE), truemat) }) test_that("failing example", { mydf <- data.frame( visit_id = c("a", "b", "c"), icd9 = c("441", "412.93", "042") ) cmb <- icd9_comorbid_quan_deyo(mydf, short_code = FALSE, hierarchy = TRUE) expect_false("names" %in% names(attributes(cmb))) charlson(mydf, short_code = FALSE) expect_is(charlson(mydf, short_code = FALSE, return_df = TRUE), "data.frame") charlson_from_comorbid(cmb) }) test_that("disordered visit_ids works by default", { set.seed(1441) rnd_ord <- sample(seq_along(test_twenty$visit_id)) dat <- test_twenty[rnd_ord, ] tres <- icd9_comorbid(dat, icd9_map_ahrq) cres <- icd9_comorbid(test_twenty, icd9_map_ahrq) expect_equal(dim(tres), dim(cres)) expect_equal(sum(tres), sum(cres)) expect_true(setequal(rownames(tres), rownames(cres))) expect_equal(colnames(tres), colnames(cres)) }) context("ICD-9 comorbidity calculations") test_that("ahrq all comorbidities in one patient, no abbrev, hier", { res <- icd9_comorbid_ahrq(ahrq_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = TRUE, return_df = TRUE ) expect_equal(dim(res), c(1, 30)) expect_true(setequal(c("visit_id", names_ahrq), names(res))) expect_false(all(as.logical(res[1, unlist(names_ahrq)]))) expect_false(res[1, "Diabetes, uncomplicated"]) expect_false(res[1, "Solid tumor without metastasis"]) res <- icd9_comorbid_ahrq(ahrq_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = TRUE, return_df = FALSE ) expect_equal(dim(res), c(1, 29)) expect_true(setequal(names_ahrq, colnames(res))) expect_false(all(as.logical(res[1, unlist(names_ahrq)]))) expect_false(res[1, "Diabetes, uncomplicated"]) expect_false(res[1, "Solid tumor without metastasis"]) }) test_that("empty data returns empty data with or without hierarchy", { res <- icd9_comorbid_ahrq(empty_pts, hierarchy = FALSE) res2 <- dim(icd9_comorbid_ahrq(empty_pts, hierarchy = TRUE)) res3 <- icd9_comorbid_ahrq(empty_pts, hierarchy = TRUE) expect_identical(res, empty_ahrq_mat) expect_identical(res2, dim(empty_ahrq_mat_heir)) expect_identical(res3, empty_ahrq_mat_heir) }) test_that("elix, all cmb in one patient, no abbrev, hier", { res <- icd9_comorbid_elix(elix_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = TRUE, return_df = TRUE ) expect_equal(dim(res), c(1, 31)) expect_true(setequal(c("visit_id", names_elix), names(res))) expect_false(all(as.logical(res[1, unlist(names_elix)]))) expect_false(res[1, "Diabetes, uncomplicated"]) expect_false(res[1, "Solid tumor without metastasis"]) res <- icd9_comorbid_elix(elix_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = TRUE, return_df = FALSE ) expect_equal(dim(res), c(1, 30)) expect_true(setequal(names_elix, colnames(res))) expect_false(all(as.logical(res[1, unlist(names_elix)]))) expect_false(res[1, "Diabetes, uncomplicated"]) expect_false(res[1, "Solid tumor without metastasis"]) }) test_that("elix, all cmb in one patient, abbrev, hier", { res <- icd9_comorbid_elix(elix_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = TRUE, return_df = TRUE ) expect_equal(dim(res), c(1, 31)) expect_true(setequal(c("visit_id", names_elix_abbrev), names(res))) expect_false( all(as.logical(res[1, unlist(names_elix_abbrev)])) ) expect_false(res[1, "DM"]) expect_false(res[1, "Tumor"]) res <- icd9_comorbid_elix(elix_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = TRUE, return_df = FALSE ) expect_equal(dim(res), c(1, 30)) expect_true(setequal(names_elix_abbrev, colnames(res))) expect_false( all(as.logical(res[1, unlist(names_elix_abbrev)])) ) expect_false(res[1, "DM"]) expect_false(res[1, "Tumor"]) }) test_that("elix, all cmb in one patient, no abbrev, no hier", { res <- icd9_comorbid_elix(elix_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = FALSE, return_df = TRUE ) expect_equal(dim(res), c(1, 32)) expect_true(setequal(c("visit_id", names_elix_htn), names(res))) expect_true(all(as.logical(res[1, unlist(names_elix_htn)]))) res <- icd9_comorbid_elix(elix_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = FALSE, return_df = FALSE ) expect_equal(dim(res), c(1, 31)) expect_true(setequal(names_elix_htn, colnames(res))) expect_true(all(as.logical(res[1, unlist(names_elix_htn)]))) }) test_that("elix, all cmb in one patient, abbrev, no hier", { res <- icd9_comorbid_elix(elix_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = FALSE, return_df = TRUE ) expect_equal(dim(res), c(1, 32)) expect_true(setequal(c("visit_id", names_elix_htn_abbrev), names(res))) expect_true( all(as.logical(res[1, unlist(names_elix_htn_abbrev)])) ) res <- icd9_comorbid_elix(elix_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = FALSE, return_df = FALSE ) expect_equal(dim(res), c(1, 31)) expect_true(setequal(names_elix_htn_abbrev, colnames(res))) expect_true( all(as.logical(res[1, unlist(names_elix_htn_abbrev)])) ) }) test_that("qelix, all cmb in one patient, no abbrev, hier", { res <- icd9_comorbid_quan_elix(quan_elix_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = TRUE, return_df = TRUE ) expect_equal(dim(res), c(1, 31)) expect_true(setequal(c("visit_id", names_quan_elix), names(res))) expect_false( all(as.logical(res[1, unlist(names_quan_elix)])) ) expect_false(res[1, "Diabetes, uncomplicated"]) expect_false(res[1, "Solid tumor without metastasis"]) res <- icd9_comorbid_quan_elix(quan_elix_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = TRUE, return_df = FALSE ) expect_equal(dim(res), c(1, 30)) expect_true(setequal(names_quan_elix, colnames(res))) expect_false( all(as.logical(res[1, unlist(names_quan_elix)])) ) expect_false(res[1, "Diabetes, uncomplicated"]) expect_false(res[1, "Solid tumor without metastasis"]) }) test_that("qelix, cmb in one patient, abbrev, hier", { res <- icd9_comorbid_quan_elix(quan_elix_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = TRUE, return_df = TRUE ) expect_equal(dim(res), c(1, 31)) expect_true(setequal(c("visit_id", names_quan_elix_abbrev), colnames(res))) expect_false( all(as.logical(res[1, unlist(names_quan_elix_abbrev)])) ) expect_false(res[1, "DM"]) expect_false(res[1, "Tumor"]) res <- icd9_comorbid_quan_elix(quan_elix_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = TRUE, return_df = FALSE ) expect_equal(dim(res), c(1, 30)) expect_equal(rownames(res)[1], quan_elix_test_dat[1, "visit_id"]) expect_true(setequal(names_quan_elix_abbrev, colnames(res))) expect_false( all(as.logical(res[1, unlist(names_quan_elix_abbrev)])) ) expect_false(res[1, "DM"]) expect_false(res[1, "Tumor"]) }) test_that("qelix, all cmb in one patient, no abbrev, no hier", { res <- icd9_comorbid_quan_elix(quan_elix_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = FALSE, return_df = TRUE ) expect_equal(dim(res), c(1, 32)) expect_true(setequal(c("visit_id", names_quan_elix_htn), names(res))) expect_true( all(as.logical(res[1, unlist(names_quan_elix_htn)])) ) res <- icd9_comorbid_quan_elix(quan_elix_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = FALSE, return_df = FALSE ) expect_equal(dim(res), c(1, 31)) expect_true(setequal(names_quan_elix_htn, colnames(res))) expect_true( all(as.logical(res[1, unlist(names_quan_elix_htn)])) ) }) test_that("qelix, all cmb in one patient, abbrev, no hier", { res <- icd9_comorbid_quan_elix(quan_elix_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = FALSE, return_df = TRUE ) expect_equal(dim(res), c(1, 32)) expect_true(setequal(c("visit_id", names_quan_elix_htn_abbrev), names(res))) expect_true( all(as.logical(res[1, unlist(names_quan_elix_htn_abbrev)])) ) res <- icd9_comorbid_quan_elix(quan_elix_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = FALSE, return_df = FALSE ) expect_equal(dim(res), c(1, 31)) expect_true(setequal(names_quan_elix_htn_abbrev, colnames(res))) expect_true( all(as.logical(res[1, unlist(names_quan_elix_htn_abbrev)])) ) }) test_that("ahrq, all cmb in one patient, abbrev, hier", { res <- icd9_comorbid_ahrq(ahrq_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = TRUE, return_df = TRUE ) expect_equal(dim(res), c(1, 30)) expect_true(setequal(c("visit_id", names_ahrq_abbrev), names(res))) expect_false( all(as.logical(res[1, unlist(names_ahrq_abbrev)])) ) expect_false(res[1, "DM"]) expect_false(res[1, "Tumor"]) res <- icd9_comorbid_ahrq(ahrq_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = TRUE, return_df = FALSE ) expect_equal(dim(res), c(1, 29)) expect_true(setequal(names_ahrq_abbrev, colnames(res))) expect_false( all(as.logical(res[1, unlist(names_ahrq_abbrev)])) ) expect_false(res[1, "DM"]) expect_false(res[1, "Tumor"]) }) test_that("ahrq, all cmb in one patient, no abbrev, no hier", { res <- icd9_comorbid_ahrq(ahrq_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = FALSE, return_df = TRUE ) expect_equal(dim(res), c(1, 31)) expect_true(setequal(c("visit_id", names_ahrq_htn), names(res))) expect_true(all(as.logical(res[1, unlist(names_ahrq_htn)]))) res <- icd9_comorbid_ahrq(ahrq_test_dat, short_code = TRUE, abbrev_names = FALSE, hierarchy = FALSE, return_df = FALSE ) expect_equal(dim(res), c(1, 30)) expect_true(setequal(names_ahrq_htn, colnames(res))) expect_true(all(as.logical(res[1, unlist(names_ahrq_htn)]))) }) test_that("ahrq, all cmb in one patient, abbrev, no hier", { res <- icd9_comorbid_ahrq(ahrq_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = FALSE, return_df = TRUE ) expect_equal(dim(res), c(1, 31)) expect_true(setequal(c("visit_id", names_ahrq_htn_abbrev), names(res))) expect_true( all(as.logical(res[1, unlist(names_ahrq_htn_abbrev)])) ) res <- icd9_comorbid_ahrq(ahrq_test_dat, short_code = TRUE, abbrev_names = TRUE, hierarchy = FALSE, return_df = FALSE ) expect_equal(dim(res), c(1, 30)) expect_true(setequal(names_ahrq_htn_abbrev, colnames(res))) expect_true( all(as.logical(res[1, unlist(names_ahrq_htn_abbrev)])) ) }) test_that("Charlson/Deyo comorbidities for a single patient, one icd9", { expect_equal( icd9_comorbid_quan_deyo(one_pt_one_icd9, short_code = FALSE, return_df = TRUE), structure( list( visit_id = "a", MI = FALSE, CHF = FALSE, PVD = FALSE, Stroke = FALSE, Dementia = FALSE, Pulmonary = FALSE, Rheumatic = FALSE, PUD = FALSE, LiverMild = FALSE, DM = FALSE, DMcx = FALSE, Paralysis = FALSE, Renal = FALSE, Cancer = FALSE, LiverSevere = FALSE, Mets = FALSE, HIV = TRUE ), .Names = c( "visit_id", "MI", "CHF", "PVD", "Stroke", "Dementia", "Pulmonary", "Rheumatic", "PUD", "LiverMild", "DM", "DMcx", "Paralysis", "Renal", "Cancer", "LiverSevere", "Mets", "HIV" ), row.names = 1L, class = "data.frame" ) ) }) test_that("no error for deyo single pt w two identical (major) icd9 codes", { expect_error(icd9_comorbid_quan_deyo(one_pt_two_icd9, short_code = FALSE, return_df = TRUE), NA) }) test_that("no error for deyo single pt w two different decimal icd9 codes", { mydf <- data.frame(visit_id = c("a", "a"), icd9 = c("441", "412.93")) expect_error(icd9_comorbid_quan_deyo(mydf), NA) expect_error(icd9_comorbid_quan_deyo(mydf, short_code = FALSE, return_df = TRUE), NA) }) test_that("dispatch from column class when specified", { mydf <- data.frame( visit_id = c("a", "b", "c"), icd9 = icd:::icd9cm(c("412.93", "441", "042")) ) expect_warning(icd9_comorbid_quan_elix(mydf), regexp = NA) expect_warning(icd9_comorbid_quan_deyo(mydf), regexp = NA) expect_warning(icd9_comorbid_elix(mydf), regexp = NA) expect_warning(icd9_comorbid_ahrq(mydf), regexp = NA) }) test_that("dispatch from column class when not specified", { mydf <- data.frame( visit_id = c("a", "b", "c"), icd9 = c("412.93", "441", "042") ) expect_warning(icd9_comorbid_quan_elix(mydf), regexp = NA) expect_warning(icd9_comorbid_quan_deyo(mydf), regexp = NA) expect_warning(icd9_comorbid_elix(mydf), regexp = NA) expect_warning(icd9_comorbid_ahrq(mydf), regexp = NA) }) test_that("if we try to do comorbidity calc on wide data, it works!", { expect_error(comorbid_elix(vermont_dx), regexp = NA ) expect_error(comorbid_charlson(long_to_wide(uranium_pathology)), regexp = NA ) }) test_that("code appearing in two icd9 comorbidities", { dat <- data.frame(id = 1, icd9 = c("123")) map <- list(a = "123", b = "123") expect_identical( res <- icd9_comorbid(dat, map), matrix(c(TRUE, TRUE), nrow = 1, dimnames = list("1", c("a", "b")) ) ) dat_clean <- data.frame( id = "1", icd9 = factor("123"), stringsAsFactors = FALSE ) }) test_that("calling specific functions df binary output", { for (f in list( "icd9_comorbid_ahrq", "icd9_comorbid_charlson", "icd9_comorbid_elix", "icd9_comorbid_pccc_dx", "icd9_comorbid_quan_deyo", "icd9_comorbid_quan_elix" )) { res <- do.call(f, args = list(random_test_patients, return_binary = TRUE, return_df = TRUE )) expect_true(all(vapply(res[-1], FUN = is.integer, FUN.VALUE = logical(1) )), info = f ) } }) test_that("comorbid for icd9 gives binary values if asked for matrices", { for (map in list( icd9_map_charlson, icd9_map_ahrq, icd9_map_elix, icd9_map_quan_elix, icd9_map_quan_deyo )) { res_bin <- comorbid(random_test_patients, map = map, return_binary = TRUE, return_df = FALSE ) res_log <- comorbid(random_test_patients, map = map, return_binary = FALSE, return_df = FALSE ) expect_true(is.integer(res_bin)) expect_true(is.logical(res_log)) expect_equivalent(apply(res_log, 2, as.integer), res_bin) expect_identical(res_bin, logical_to_binary(res_log)) expect_identical(res_log, binary_to_logical(res_bin)) } }) test_that("comorbid for icd9 gives binary values if asked for data.frames", { for (map in list( icd9_map_charlson, icd9_map_ahrq, icd9_map_elix, icd9_map_quan_elix, icd9_map_quan_deyo )) { res_bin <- comorbid(random_test_patients, map = icd9_map_charlson, return_binary = TRUE, return_df = TRUE ) res_log <- comorbid(random_test_patients, map = icd9_map_charlson, return_binary = FALSE, return_df = TRUE ) expect_true(all(vapply(res_bin[-1], is.integer, logical(1)))) expect_true(all(vapply(res_log[-1], is.logical, logical(1)))) expect_identical(res_bin, logical_to_binary(res_log)) expect_identical(res_log, binary_to_logical(res_bin)) } }) test_that("binary output for CCS", { res_bin <- comorbid_ccs(random_test_patients, return_binary = TRUE, return_df = TRUE ) res_log <- comorbid_ccs(random_test_patients, return_binary = FALSE, return_df = TRUE ) expect_true(all(vapply(res_bin[-1], is.integer, logical(1)))) expect_true(all(vapply(res_log[-1], is.logical, logical(1)))) expect_identical(res_bin, logical_to_binary(res_log)) expect_identical(res_log, binary_to_logical(res_bin)) }) test_that("integer visit IDs", { d <- ahrq_test_dat d$visit_id <- -1L mat_res <- comorbid_ahrq(d) expect_identical(rownames(mat_res), as.character(unique(d$visit_id))) df_res <- comorbid_ahrq(d, return_df = TRUE, preserve_id_type = TRUE) expect_identical(df_res$visit_id, d[1, "visit_id"]) }) test_that("float visit IDs", { d <- ahrq_test_dat d$visit_id <- -1.7 mat_res <- comorbid_ahrq(d) expect_identical(rownames(mat_res), as.character(unique(d$visit_id))) df_res <- comorbid_ahrq(d, return_df = TRUE, preserve_id_type = TRUE) expect_identical(df_res$visit_id, d[1, "visit_id"]) }) test_that("plot comorbid", { expect_error( regexp = NA, plot_comorbid(vermont_dx[1:1000, ]) ) expect_error( regexp = NA, plot_comorbid(uranium_pathology) ) })
tx_vl_unsuppressed <- function(data, ref = NULL, states = NULL, facilities = NULL, status = "calculated", n = 1000) { ref <- lubridate::ymd(ref %||% get("Sys.Date")()) states <- states %||% unique(data$state) facilities <- facilities %||% unique(subset(data, state %in% states)$facility) validate_vl_unsuppressed(data, ref, states, facilities, status, n) get_tx_vl_unsuppressed(data, ref, states, facilities, status, n) } validate_vl_unsuppressed <- function(data, ref, states, facilities, status, n) { if (!all(states %in% unique(data$state))) { rlang::abort("state(s) is not contained in the supplied data. Check the spelling and/or case.") } if (!all(facilities %in% unique(subset(data, state %in% states)$facility))) { rlang::abort("facilit(ies) is/are not found in the data or state supplied. Check that the facility is correctly spelt and located in the state.") } if (is.na(ref)) { rlang::abort("The supplied date is not in 'yyyy-mm-dd' format.") } if (!status %in% c("default", "calculated")) { rlang::abort("`status` can only be one of 'default' or 'calculated'. Check that you did not mispell, include CAPS or forget to quotation marks!") } if (n < 0) { rlang::abort("n cannot be less than zero") } } get_tx_vl_unsuppressed <- function(data, ref, states, facilities, status, n) { switch(status, "calculated" = dplyr::filter( data, current_status == "Active", !patient_has_died %in% TRUE, !patient_transferred_out %in% TRUE, lubridate::as_date(ref) - art_start_date >= lubridate::period(6, "months"), dplyr::if_else( current_age < 20, lubridate::as_date(ref) - date_of_current_viral_load <= lubridate::period(6, "months"), lubridate::as_date(ref) - date_of_current_viral_load <= lubridate::period(1, "year") ), current_viral_load >= n, state %in% states, facility %in% facilities ), "default" = dplyr::filter( data, current_status_28_days == "Active", !patient_has_died %in% TRUE, !patient_transferred_out %in% TRUE, lubridate::as_date(ref) - art_start_date >= lubridate::period(6, "months"), dplyr::if_else( current_age < 20, lubridate::as_date(ref) - date_of_current_viral_load <= lubridate::period(6, "months"), lubridate::as_date(ref) - date_of_current_viral_load <= lubridate::period(1, "year") ), current_viral_load >= n, state %in% states, facility %in% facilities ) ) } utils::globalVariables(c( "art_start_date", "current_age", "current_status", "date_of_current_viral_load", "current_viral_load" ))
test_that("oanda error handling ok", { expect_error(oanda("USD_JPY", apikey = NULL, from = "a", to = "b"), regexp = "value of 'from'") expect_error(oanda("usd_jpy", apikey = NULL, from = "2021-01-01", to = "b"), regexp = "value of 'to'") expect_error(oanda("USD-JPY", apikey = NULL, from = "2021-01-01", to = "2020-01-01"), regexp = "time period invalid") expect_error(oanda("usd-jpy", apikey = NULL, from = "a"), regexp = "value of 'from'") expect_error(oanda("USD_JPY", apikey = NULL, to = "b"), regexp = "value of 'to'") }) test_that("oanda switch ok", { expect_message(expect_invisible(oanda_switch()), regexp = "switched to 'live'") expect_message(expect_invisible(oanda_switch()), regexp = "switched to 'practice'") })
print.cccUst<- function(x,...) { cat("CCC estimated by U-statistics: \n") print(x[1:4]) cat("\n") }
sewma.sf <- function(n, l, cl, cu, sigma, df, hs=1, sided="upper", r=40, qm=30) { if ( n < 1 ) stop("n has to be a natural number") if ( l <= 0 | l > 1 ) stop("l (lambda) has to be between 0 and 1") if ( cu<=0 ) stop("cu has to be positive") if ( cl<0 ) stop("cl has to be non-negative") if ( sided!="upper" & cl<1e-6 ) stop("cl is too small") if ( sigma<=0 ) stop("sigma must be positive") if ( df<1 ) stop("df must be larger than or equal to 1") if ( hs<cl | hs>cu ) stop("wrong headstart hs") if ( r<10 ) stop("r is too small") ctyp <- pmatch(sided, c("upper","Rupper","two","Rlower")) - 1 if (is.na(ctyp)) stop("invalid ewma type") if ( qm<5 ) stop("qm is too small") sf <- .C("sewma_sf", as.integer(ctyp), as.double(l), as.double(cl), as.double(cu), as.double(hs), as.integer(r), as.double(sigma), as.integer(df), as.integer(qm), as.integer(n), ans=double(length=n),PACKAGE="spc")$ans names(sf) <- NULL sf }
crossStat <- function(var1, var2="PM10", STxDF=DE_RB_2005, digits=NA) { diff <- STxDF[,,var1,drop=F]@data[[1]] - STxDF[,,var2,drop=F]@data[[1]] RMSE <- sqrt(mean(diff^2)) MAE <- mean(abs(diff)) ME <- mean(diff) COR <- cor(STxDF[,,var1,drop=F]@data[[1]], STxDF[,,var2,drop=F]@data[[1]]) res <- c(RMSE, MAE, ME, COR) names(res) <- c("RMSE", "MAE", "ME", "COR") if(is.na(digits)) return(res) else return(round(res, digits)) } DE_RB_2005 <- as(DE_RB_2005, "STSDF") pureSp <- NULL for(i in 1:365) { pureSp <- c(pureSp, krige.cv(PM10~1,DE_RB_2005[,i,"PM10"], model=spVgmMod, nmax=10)$var1.pred) } DE_RB_2005@data$pureSp10Nghbr <- pureSp pureSp <- NULL for(i in 1:365) { pureSp <- c(pureSp, krige.cv(PM10~1,DE_RB_2005[,i,"PM10"],model=spVgmMod,nmax=50)$var1.pred) } DE_RB_2005@data$pureSp50Nghbr <- pureSp target <- as(DE_RB_2005[,,"PM10"],"STFDF") res <- matrix(NA, length(DE_RB_2005@sp), 365) for(loc in 1:length(DE_RB_2005@sp)) { cat("Location", loc, "\n") res[loc,!is.na(target[loc,])[,"PM10"]] <- krigeST(PM10~1, data=DE_RB_2005[(1:length(DE_RB_2005@sp))[-loc],], newdata=DE_RB_2005[loc,,drop=F], fitSepModel, nmax=10, stAni=fitMetricModel$stAni/24/3600)$var1.pred } DE_RB_2005@data$sepModel10Nghbr <- as.vector(res)[!is.na(as.vector(res))] res <- matrix(NA, length(DE_RB_2005@sp), 365) for(loc in 1:length(DE_RB_2005@sp)) { cat("Location", loc, "\n") res[loc,!is.na(target[loc,])[,"PM10"]] <- krigeST(PM10~1, data=DE_RB_2005[(1:length(DE_RB_2005@sp))[-loc],], newdata=DE_RB_2005[loc,,drop=F], fitSepModel, nmax=50, stAni=fitMetricModel$stAni/24/3600)$var1.pred } DE_RB_2005@data$sepModel50Nghbr <- as.vector(res)[!is.na(as.vector(res))] res <- matrix(NA, length(DE_RB_2005@sp), 365) for(loc in 1:length(DE_RB_2005@sp)) { cat("Location", loc, "\n") res[loc,!is.na(target[loc,])[,"PM10"]] <- krigeST(PM10~1, data=DE_RB_2005[(1:length(DE_RB_2005@sp))[-loc],], newdata=DE_RB_2005[loc,,drop=F], fitProdSumModel, nmax=10, stAni=fitMetricModel$stAni/24/3600)$var1.pred } DE_RB_2005@data$psModel10Nghbr <- as.vector(res)[!is.na(as.vector(res))] res <- matrix(NA, length(DE_RB_2005@sp), 365) for(loc in 1:length(DE_RB_2005@sp)) { cat("Location", loc, "\n") res[loc,!is.na(target[loc,])[,"PM10"]] <- krigeST(PM10~1, data=DE_RB_2005[(1:length(DE_RB_2005@sp))[-loc],], newdata=DE_RB_2005[loc,,drop=F], fitProdSumModel, nmax=50, stAni=fitMetricModel$stAni/24/3600)$var1.pred } DE_RB_2005@data$psModel50Nghbr <- as.vector(res)[!is.na(as.vector(res))] res <- matrix(NA, length(DE_RB_2005@sp), 365) for(loc in 1:length(DE_RB_2005@sp)) { cat("Location", loc, "\n") res[loc,!is.na(target[loc,])[,"PM10"]] <- krigeST(PM10~1, data=DE_RB_2005[(1:length(DE_RB_2005@sp))[-loc],], newdata=DE_RB_2005[loc,,drop=F], fitMetricModel, nmax=10, stAni=fitMetricModel$stAni/24/3600)$var1.pred } DE_RB_2005@data$metricModel10Nghbr <- as.vector(res)[!is.na(as.vector(res))] res <- matrix(NA, length(DE_RB_2005@sp), 365) for(loc in 1:length(DE_RB_2005@sp)) { cat("Location", loc, "\n") res[loc,!is.na(target[loc,])[,"PM10"]] <- krigeST(PM10~1, data=DE_RB_2005[(1:length(DE_RB_2005@sp))[-loc],], newdata=DE_RB_2005[loc,,drop=F], fitMetricModel, nmax=50, stAni=fitMetricModel$stAni/24/3600)$var1.pred } DE_RB_2005@data$metricModel50Nghbr <- as.vector(res)[!is.na(as.vector(res))] res <- matrix(NA, length(DE_RB_2005@sp), 365) for(loc in 1:length(DE_RB_2005@sp)) { cat("Location", loc, "\n") res[loc,!is.na(target[loc,])[,"PM10"]] <- krigeST(PM10~1, data=DE_RB_2005[(1:length(DE_RB_2005@sp))[-loc],], newdata=DE_RB_2005[loc,,drop=F], fitSumMetricModel, nmax=10, stAni=fitMetricModel$stAni/24/3600)$var1.pred } DE_RB_2005@data$sumMetricModel10Nghbr <- as.vector(res)[!is.na(as.vector(res))] res <- array(NA, c(length(DE_RB_2005@sp), 365,2)) for(loc in 1:length(DE_RB_2005@sp)) { cat("Location", loc, "\n") res[loc,!is.na(target[loc,])[,"PM10"],] <- as.matrix(krigeST(PM10~1, data=DE_RB_2005[(1:length(DE_RB_2005@sp))[-loc],], newdata=DE_RB_2005[loc,,drop=F], fitSumMetricModel, nmax=50, computeVar=T, stAni=linStAni*1000/24/3600)@data[,c("var1.pred","var1.var")]) } DE_RB_2005@data$sumMetricModel50Nghbr <- as.vector(res[,,1])[!is.na(target@data)] DE_RB_2005@data$sumMetricModel50NghbrVar <- as.vector(res[,,2])[!is.na(target@data)] DE_RB_2005@data$sumMetricModel50Nghbr95u <- apply(DE_RB_2005@data, 1, function(x) { qnorm(0.975, x["sumMetricModel50Nghbr"], sqrt(x["sumMetricModel50NghbrVar"])) }) DE_RB_2005@data$sumMetricModel50Nghbr95l <- apply(DE_RB_2005@data, 1, function(x) { qnorm(0.025, x["sumMetricModel50Nghbr"], sqrt(x["sumMetricModel50NghbrVar"])) }) res <- matrix(NA, length(DE_RB_2005@sp), 365) for(loc in 1:length(DE_RB_2005@sp)) { cat("Location", loc, "\n") res[loc,!is.na(target[loc,])[,"PM10"]] <- krigeST(PM10~1, data=DE_RB_2005[(1:length(DE_RB_2005@sp))[-loc],], newdata=DE_RB_2005[loc,,drop=F], fitSimpleSumMetricModel, nmax=10, stAni=fitMetricModel$stAni/24/3600)$var1.pred } DE_RB_2005@data$simpleSumMetricModel10Nghbr <- as.vector(res)[!is.na(as.vector(res))] res <- matrix(NA, length(DE_RB_2005@sp), 365) for(loc in 1:length(DE_RB_2005@sp)) { cat("Location", loc, "\n") res[loc,!is.na(target[loc,])[,"PM10"]] <- krigeST(PM10~1, data=DE_RB_2005[(1:length(DE_RB_2005@sp))[-loc],], newdata=DE_RB_2005[loc,,drop=F], fitSimpleSumMetricModel, nmax=50, stAni=fitMetricModel$stAni/24/3600)$var1.pred } DE_RB_2005@data$simpleSumMetricModel50Nghbr <- as.vector(res)[!is.na(as.vector(res))] rbind( crossStat("pureSp10Nghbr", digits=2), crossStat("pureSp50Nghbr", digits=2), crossStat("sepModel10Nghbr", digits=2), crossStat("sepModel50Nghbr", digits=2), crossStat("psModel10Nghbr", digits=2), crossStat("psModel50Nghbr", digits=2), crossStat("metricModel10Nghbr", digits=2), crossStat("metricModel50Nghbr", digits=2), crossStat("sumMetricModel10Nghbr", digits=2), crossStat("sumMetricModel50Nghbr", digits=2)) if(paper) { texRow <- function(x) { paste(paste(x,collapse=" & ")," \\\\ \n") } cat(apply(round(rbind(crossStat("pureSp10Nghbr"), crossStat("sepModel10Nghbr"), crossStat("psModel10Nghbr"), crossStat("metricModel10Nghbr"), crossStat("sumMetricModel10Nghbr"), crossStat("simpleSumMetricModel50Nghbr"), crossStat("pureSp50Nghbr"), crossStat("sepModel50Nghbr"), crossStat("psModel50Nghbr"), crossStat("metricModel50Nghbr"), crossStat("sumMetricModel50Nghbr"), crossStat("simpleSumMetricModel50Nghbr") ), 2),1,texRow)) loc <- 38 tw <- "2005-01-15/2005-04-15" png("vignettes/figures/singleStationTimeSeries.png", 9, 4, "in", bg="white", res = 149) plot(DE_RB_2005[loc,tw][,"sumMetricModel50Nghbr"], main=paste("Location", DE_RB_2005@sp@data$station_european_code[loc]), ylim=c(0,70)) points(DE_RB_2005[loc,tw][,"PM10"], type="l", col="darkgreen", lty=1) points(DE_RB_2005[loc,tw][,"sumMetricModel50Nghbr95u"], type="l", col="darkgrey", lty=2) points(DE_RB_2005[loc,tw][,"sumMetricModel50Nghbr95l"], type="l", col="darkgrey", lty=2) legend("topright",legend = c("observed","sum-metric","95 % prediction band"), lty=c(1,1,2), col=c("darkgreen", "black", "darkgrey") ) dev.off() DE_RB_2005@data$diffPM10 <- DE_RB_2005@data$sumMetricModel50Nghbr - DE_RB_2005@data$PM10 stpl <- stplot(as(DE_RB_2005[,smplDays, "diffPM10"],"STFDF"), col.regions=bpy.colors(5), sp.layout = list("sp.polygons", DE_NUTS1), scales=list(draw=F), key.space="right", colorkey=T, cuts=c(-25,-15,-5,5,15,25), main=NULL) png("vignettes/figures/diffs_daily_means_PM10.png", width=9, height=6, "in", res=150) print(stpl) dev.off() }
rotatev <- function(mat) { matV <- mat; elementi <- rev(mat); matV <- array(elementi, dim=c(nrow(mat), ncol(mat))); for(i in 1:ncol(matV)) { matV[,i] <- rev(matV[,i]); } return(matV); }
tdROC <- function( X, Y, delta, tau, span = 0.1, h=NULL, type="uniform", cut.off = NULL, nboot = 0, alpha = 0.05, n.grid = 1000, X.min = NULL, X.max = NULL ) { n <- length(X) ; positive <- rep(NA, n) ; for (i in 1:n) { if ( Y[i] > tau ) { positive[i] <- 0 ; } else { if ( delta[i] == 1 ) { positive[i] <- 1 ; } else { kw <- calc.kw( X=X, x0=X[i], span=span, h=h, type=type ) ; fm <- survfit( Surv(Y, delta) ~ 1, weights = kw ) ; tmp <- summary(fm, times = c(Y[i], tau))$surv ; if ( tmp[1] == 0 ) { positive[i] <- 1 ; } else { positive[i] <- 1 - tmp[2]/tmp[1] ; } } } } negative <- 1 - positive ; if ( is.null(X.min) ) { X.min <- min(X) } if ( is.null(X.max) ) { X.max <- max(X) } grid <- c( -Inf, seq( X.min, X.max, length=n.grid ), Inf ) ; sens <- spec <- NULL ; for (this.c in grid ) { sens <- c( sens, sum(positive*as.numeric(X > this.c))/sum(positive) ) ; spec <- c( spec, sum(negative*as.numeric(X <= this.c))/sum(negative) ) ; } ROC <- data.frame( grid = grid, sens = sens, spec = spec ) ; AUC <- data.frame( value = calc.AUC( sens, spec ), sd = NA, lower = NA, upper = NA ) ; W <- positive ; numer <- denom <- 0 ; for (i in 1:n) { for (j in 1:n) { numer <- numer + W[i]*(1-W[j])*( as.numeric(X[i] > X[j]) + 0.5*as.numeric(X[i] == X[j]) ) ; denom <- denom + W[i]*(1-W[j]) ; } } AUC2 <- data.frame( value = numer/denom , sd = NA, lower = NA, upper = NA ) ; sens <- spec <- NULL ; if ( !is.null(cut.off) ) { for (this.c in cut.off ) { sens <- c( sens, sum(positive*as.numeric(X > this.c))/sum(positive) ) ; spec <- c( spec, sum(negative*as.numeric(X <= this.c))/sum(negative) ) ; } prob <- data.frame( cut.off = cut.off, sens = sens, spec = spec ) ; } else { prob <- NULL ; } if ( nboot > 0 ) { boot.AUC <- boot.AUC2 <- rep(NA, nboot) ; if ( !is.null(cut.off) ) { boot.sens <- matrix( NA, nrow=nboot, ncol=length(cut.off) ) ; boot.spec <- matrix( NA, nrow=nboot, ncol=length(cut.off) ) ; } set.seed(123) ; for (b in 1:nboot) { loc <- sample( x = 1:n, size = n, replace = T ) ; X2 <- X[loc] ; Y2 <- Y[loc] ; delta2 <- delta[loc] ; out <- tdROC( X2, Y2, delta2, tau, span, nboot = 0, alpha, n.grid, cut.off = cut.off, X.min = X.min, X.max = X.max ) ; boot.AUC[b] <- out$AUC$value ; boot.AUC2[b] <- out$AUC2$value ; if ( !is.null(cut.off) ) { boot.sens[b, ] <- out$prob$sens ; boot.spec[b, ] <- out$prob$spec ; } } tmp1 <- sd(boot.AUC) ; tmp2 <- as.numeric( quantile( boot.AUC, prob = c(alpha/2, 1-alpha/2) ) ) ; AUC$sd <- tmp1 ; AUC$lower <- tmp2[1] ; AUC$upper <- tmp2[2] ; tmp1 <- sd(boot.AUC2) ; tmp2 <- as.numeric( quantile( boot.AUC2, prob = c(alpha/2, 1-alpha/2) ) ) ; AUC2$sd <- tmp1 ; AUC2$lower <- tmp2[1] ; AUC2$upper <- tmp2[2] ; if ( !is.null(cut.off) ) { prob$sens.sd <- apply( boot.sens, 2, sd ) ; prob$sens.lower <- apply( boot.sens, 2, quantile, prob = alpha/2 ) ; prob$sens.upper <- apply( boot.sens, 2, quantile, prob = 1-alpha/2 ) ; prob$spec.sd <- apply( boot.spec, 2, sd ) ; prob$spec.lower <- apply( boot.spec, 2, quantile, prob = alpha/2 ) ; prob$spec.upper <- apply( boot.spec, 2, quantile, prob = 1-alpha/2 ) ; } else { prob$sens.sd <- NA ; prob$sens.lower <- NA ; prob$sens.upper <- NA ; prob$spec.sd <- NA ; prob$spec.lower <- NA ; prob$spec.upper <- NA ; } } pct.ctrl <- mean( Y > tau ) ; pct.case <- mean( Y <= tau & delta == 1 ) ; pct.not.sure <- mean( Y <= tau & delta == 0 ) ; return( list( ROC = ROC, AUC = AUC, AUC2 = AUC2, prob = prob ) ) ; }
linrmir <- function(Y, id = NULL, age, weight = NULL, sort = NULL, Dom = NULL, period = NULL, dataset = NULL, order_quant = 50, var_name = "lin_rmir", checking = TRUE) { if (min(dim(data.table(var_name)) == 1) != 1) { stop("'var_name' must have defined one name of the linearized variable")} if (checking) { order_quant <- check_var(vars = order_quant, varn = "order_quant", varntype = "numeric0100") Y <- check_var(vars = Y, varn = "Y", dataset = dataset, ncols = 1, isnumeric = TRUE, isvector = TRUE, grepls = "__") Ynrow <- length(Y) age <- check_var(vars = age, varn = "age", dataset = dataset, ncols = 1, Ynrow = Ynrow, isnumeric = TRUE, isvector = TRUE) weight <- check_var(vars = weight, varn = "weight", dataset = dataset, ncols = 1, Ynrow = Ynrow, isnumeric = TRUE, isvector = TRUE) sort <- check_var(vars = sort, varn = "sort", dataset = dataset, ncols = 1, Ynrow = Ynrow, mustbedefined = FALSE, isnumeric = TRUE, isvector = TRUE) period <- check_var(vars = period, varn = "period", dataset = dataset, Ynrow = Ynrow, ischaracter = TRUE, mustbedefined = FALSE, duplicatednames = TRUE) Dom <- check_var(vars = Dom, varn = "Dom", dataset = dataset, Ynrow = Ynrow, ischaracter = TRUE, mustbedefined = FALSE, duplicatednames = TRUE, grepls = "__") id <- check_var(vars = id, varn = "id", dataset = dataset, ncols = 1, Ynrow = Ynrow, ischaracter = TRUE, periods = period) } ind0 <- rep.int(1, length(Y)) period_agg <- period1 <- NULL if (!is.null(period)) { period1 <- copy(period) period_agg <- data.table(unique(period)) } else period1 <- data.table(ind=ind0) period1_agg <- data.table(unique(period1)) age_under_65s <- data.table(age_under_65s = as.integer(age < 65)) if (!is.null(Dom)) age_under_65s <- data.table(age_under_65s, Dom) quantile <- incPercentile(Y = Y, weights = weight, sort = sort, Dom = age_under_65s, period = period, k = order_quant, dataset = NULL, checking = TRUE) quantile_under_65 <- quantile[age_under_65s == 1][, age_under_65s := NULL] quantile_over_65 <- quantile[age_under_65s == 0][, age_under_65s := NULL] setnames(quantile_under_65, names(quantile_under_65)[ncol(quantile_under_65)], "quantile_under_65") setnames(quantile_over_65, names(quantile_over_65)[ncol(quantile_over_65)], "quantile_over_65") sk <- length(names(quantile_under_65)) - 1 if (sk > 0) { setkeyv(quantile_under_65, names(quantile_under_65)[1 : sk]) setkeyv(quantile_over_65, names(quantile_over_65)[1 : sk]) quantile <- merge(quantile_under_65, quantile_over_65, all = TRUE) } else quantile <- data.table(quantile_under_65, quantile_over_65) rmir_id <- id age_under_65s <- age_under_65s[["age_under_65s"]] if (!is.null(period)) rmir_id <- data.table(rmir_id, period) if (!is.null(Dom)) { Dom_agg <- data.table(unique(Dom)) setkeyv(Dom_agg, names(Dom_agg)) rmir_v <- c() rmir_m <- copy(rmir_id) for(i in 1:nrow(Dom_agg)) { g <- c(var_name, paste(names(Dom), as.matrix(Dom_agg[i,]), sep = ".")) var_nams <- do.call(paste, as.list(c(g, sep = "__"))) ind <- as.integer(rowSums(Dom == Dom_agg[i,][ind0,]) == ncol(Dom)) rmirl <- lapply(1 : nrow(period1_agg), function(j) { if (!is.null(period)) { rown <- cbind(period_agg[j], Dom_agg[i]) setkeyv(rown, names(rown)) rown2 <- copy(rown) rown <- merge(rown, quantile, all.x = TRUE) } else {rown <- quantile[i] rown2 <- Dom_agg[i] } indj <- (rowSums(period1 == period1_agg[j,][ind0,]) == ncol(period1)) rmir_l <- rmirlinCalc(Y1 = Y[indj], ids = rmir_id[indj], wght = weight[indj], indicator = ind[indj], order_quants = order_quant, age_under_65 = age_under_65s[indj], quant_under_65 = rown[["quantile_under_65"]], quant_over_65 = rown[["quantile_over_65"]]) list(rmir = data.table(rown2, rmir = rmir_l$rmir_val), lin = rmir_l$lin) }) rmirs <- rbindlist(lapply(rmirl, function(x) x[[1]])) rmirlin <- rbindlist(lapply(rmirl, function(x) x[[2]])) setnames(rmirlin, names(rmirlin), c(names(rmir_id), var_nams)) rmir_m <- merge(rmir_m, rmirlin, all.x = TRUE, by = names(rmir_id)) rmir_v <- rbind(rmir_v, rmirs) } } else { rmirl <- lapply(1:nrow(period1_agg), function(j) { if (!is.null(period)) { rown <- period_agg[j] rown <- merge(rown, quantile, all.x = TRUE, by = names(rown)) } else rown <- quantile ind2 <- (rowSums(period1 == period1_agg[j,][ind0,]) == ncol(period1)) rmir_l <- rmirlinCalc(Y1 = Y[ind2], ids = rmir_id[ind2], wght = weight[ind2], indicator = ind0[ind2], order_quants = order_quant, age_under_65 = age_under_65s[ind2], quant_under_65 = rown[["quantile_under_65"]], quant_over_65 = rown[["quantile_over_65"]]) if (!is.null(period)) { rmirs <- data.table(period_agg[j], rmir = rmir_l$rmir_val) } else rmirs <- data.table(rmir = rmir_l$rmir_val) list(rmir = rmirs, lin = rmir_l$lin) }) rmir_v <- rbindlist(lapply(rmirl, function(x) x[[1]])) rmir_m <- rbindlist(lapply(rmirl, function(x) x[[2]])) setnames(rmir_m, names(rmir_m), c(names(rmir_id), var_name)) } rmir_m[is.na(rmir_m)] <- 0 setkeyv(rmir_m, names(rmir_id)) return(list(value = rmir_v, lin = rmir_m)) } rmirlinCalc <- function(Y1, ids, wght, indicator, order_quants, age_under_65, quant_under_65, quant_over_65) { dom1 <- (age_under_65 == 1) * indicator dom2 <- (age_under_65 == 0) * indicator N1 <- sum(wght * dom1) N2 <- sum(wght * dom2) rmir_val <- quant_over_65 / quant_under_65 h <- sqrt((sum(wght * Y1 * Y1) - sum(wght * Y1) * sum(wght * Y1) / sum(wght)) / sum(wght)) / exp(0.2 * log(sum(wght))) u1 <- (quant_under_65 - Y1) / h vect_f1 <- exp(-(u1^2) / 2) / sqrt(2 * pi) f_quant1 <- sum(vect_f1 * wght * dom1) / (N1 * h) lin_quant_under_65 <- - (1 / N1) * dom1 * ((Y1 <= quant_under_65) - order_quants / 100) / f_quant1 u2 <- (quant_over_65 - Y1) / h vect_f2 <- exp(-(u2^2) / 2) / sqrt(2 * pi) f_quant2 <- sum(vect_f2 * wght * dom2) / (N2 * h) lin_quant_over_65 <- -(1 / N2) * dom2 * ((Y1 <= quant_over_65) - order_quants / 100) / f_quant2 lin <- (quant_under_65 * lin_quant_over_65 - quant_over_65 * lin_quant_under_65) / (quant_under_65 * quant_under_65) lin_id <- data.table(ids, lin) return(list(rmir_val = rmir_val, lin = lin_id)) }
subset.sim_geno <- function(x, ind=NULL, chr=NULL, ...) subset.calc_genoprob(x, ind, chr, ...) `[.sim_geno` <- function(x, ind=NULL, chr=NULL) subset(x, ind, chr)
expected <- eval(parse(text="structure(list(sec = c(0, 0, 0, 0, 0), min = c(0L, 0L, 0L, 0L, 0L), hour = c(12L, 12L, 12L, 12L, 12L), mday = 22:26, mon = c(3L, 3L, 3L, 3L, 3L), year = c(108L, 108L, 108L, 108L, 108L), wday = 2:6, yday = 112:116, isdst = c(0L, 0L, 0L, 0L, 0L)), .Names = c(\"sec\", \"min\", \"hour\", \"mday\", \"mon\", \"year\", \"wday\", \"yday\", \"isdst\"), class = c(\"POSIXlt\", \"POSIXt\"), tzone = \"GMT\")")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(1208865600, 1208952000, 1209038400, 1209124800, 1209211200), tzone = \"GMT\", class = c(\"POSIXct\", \"POSIXt\")), \"GMT\")")); .Internal(`as.POSIXlt`(argv[[1]], argv[[2]])); }, o=expected);
ccacontrol <- function(algorithm="quick",full=FALSE, itercca=1, consrankitermax=10,np=15, gl=100,ff=0.4,cr=0.9,proc=FALSE, ps=FALSE) { return(list(algorithm=algorithm, full=full, itercca=itercca, consrankitermax=consrankitermax, np=np, gl=gl, ff=ff, cr=cr, proc=proc, ps=ps)) }
expandEventCount <- function(count, time) { if ( (!is.numeric(count)) || (!is.numeric(time)) ) { stop("Require numeric input!") } true.count <- as.integer(count) if (any(as.numeric(true.count) != count)) { stop("Event counts are non-integer.") } if (any(true.count < 0)) { stop("Cannot have negative event counts") } time <- as.numeric(time) if (any(time <= 0)) { stop("Cannot have non-positive followup times") } if (length(time) == 1) { time <- rep.int(time, length(true.count)) } if (length(time) != length(true.count)) { stop("time does not match event count") } warning("Synthesizing fake event times from event count data.") mapply(function(count, duration) { duration * (seq_len(count) / count) }, true.count, time, SIMPLIFY=FALSE) }
data(ExampleData.DeValues, envir = environment()) results <- Second2Gray(ExampleData.DeValues$BT998, c(0.2,0.01)) results_alt1 <- Second2Gray(ExampleData.DeValues$BT998, c(0.2,0.01), error.propagation = "gaussian") results_alt2 <- Second2Gray(ExampleData.DeValues$BT998, c(0.2,0.01), error.propagation = "absolute") test_that("check class and length of output", { testthat::skip_on_cran() local_edition(3) expect_s3_class(results, class = "data.frame") }) test_that("check values from output example", { testthat::skip_on_cran() local_edition(3) expect_equal(sum(results[[1]]), 14754.09) expect_equal(sum(results[[2]]), 507.692) expect_equal(sum(results_alt1[[2]]), 895.911) expect_equal(sum(results_alt2[[2]]), 1245.398) })
vcfR2migrate <- function(vcf, pop, in_pop, out_file = "MigrateN_infile.txt", method = c('N','H') ) { method <- match.arg(method, c('N','H'), several.ok = FALSE) if( class(vcf) != "vcfR"){ stop(paste("Expecting an object of class vcfR, received a", class(vcf), "instead")) } if( class(pop) != "factor"){ stop(paste("Expecting population vector, received a", class(pop), "instead")) } vcf <- extract.indels(vcf, return.indels = F) vcf <- vcf[is.biallelic(vcf),] gt <- extract.gt(vcf, convertNA = T) vcf <- vcf[!rowSums((is.na(gt))),] vcf_list <- lapply(in_pop, function(x){ vcf[,c(TRUE, x == pop)] }) names(vcf_list) <- in_pop if(method == 'N'){ myHeader <- c('N', length(vcf_list), nrow(vcf_list[[1]])) pop_list <- vector(mode = 'list', length=length(vcf_list)) names(pop_list) <- names(vcf_list) for(i in 1:length(vcf_list)){ gt <- extract.gt(vcf_list[[i]], return.alleles = T) allele1 <- apply(gt, MARGIN = 2, function(x){ substr(x, 1, 1) }) rownames(allele1) <- NULL allele1 <- t(allele1) rownames(allele1) <- paste(rownames(allele1), "_1", sep = "") allele2 <- apply(gt, MARGIN = 2, function(x){ substr(x, 3, 3) }) rownames(allele2) <- NULL allele2 <- t(allele2) rownames(allele2) <- paste(rownames(allele2), "_2", sep = "") pop_list[[i]][[1]] <- allele1 pop_list[[i]][[2]] <- allele2 } write(myHeader, file = out_file, ncolumns = length(myHeader), sep = "\t") write(rep(1, times = ncol(pop_list[[1]][[1]])), file = out_file, ncolumns = ncol(pop_list[[1]][[1]]), append = TRUE, sep = "\t") for(i in 1:length(pop_list)){ popName <- c(2*nrow(pop_list[[i]][[1]]), names(pop_list)[i]) write(popName, file = out_file, ncolumns = length(popName), append = TRUE, sep = "\t") for(j in 1:ncol(pop_list[[i]][[1]])){ utils::write.table(pop_list[[i]][[1]][,j], file = out_file, append = TRUE, quote = FALSE, sep = "\t", row.names = TRUE, col.names = FALSE) utils::write.table(pop_list[[i]][[2]][,j], file = out_file, append = TRUE, quote = FALSE, sep = "\t", row.names = TRUE, col.names = FALSE) } } } else if(method == 'H'){ myHeader <- c('H', length(vcf_list), nrow(vcf_list[[1]])) pop_list <- vector(mode = 'list', length=length(vcf_list)) names(pop_list) <- names(vcf_list) for(i in 1:length(vcf_list)){ myMat <- matrix(nrow = nrow(vcf_list[[i]]), ncol = 6) var_info <- as.data.frame(vcf_list[[i]]@fix[,1:2, drop = FALSE]) var_info$mask <- TRUE gt <- extract.gt(vcf_list[[i]]) popSum <- .gt_to_popsum(var_info = var_info, gt = gt) myMat[,1] <- paste(vcf_list[[i]]@fix[,'CHROM'], vcf_list[[i]]@fix[,'POS'], sep = "_") myMat[,2] <- vcf_list[[i]]@fix[,'REF'] myMat[,4] <- vcf_list[[i]]@fix[,'ALT'] myMat[,3] <- unlist(lapply(strsplit(as.character(popSum$Allele_counts), split = ",", fixed = TRUE), function(x){x[1]})) myMat[,3][is.na(myMat[,3])] <- 0 myMat[,5] <- unlist(lapply(strsplit(as.character(popSum$Allele_counts), split = ",", fixed = TRUE), function(x){x[2]})) myMat[,5][is.na(myMat[,5])] <- 0 myMat[,6] <- as.numeric(myMat[,3]) + as.numeric(myMat[,5]) pop_list[[i]] <- myMat } write(myHeader, file = out_file, ncolumns = length(myHeader), sep = "\t") for(i in 1:length(pop_list)){ popName <- c(pop_list[[i]][1,6], names(pop_list[i])) write(popName, file = out_file, ncolumns = length(popName), append = TRUE, sep = "\t") utils::write.table(pop_list[[i]], file = out_file, append = TRUE, quote = FALSE, sep = "\t", row.names = FALSE, col.names = FALSE) } } else { stop("You should never get here!") } return( invisible(NULL) ) }
test_that("Singapore results, splits in parenthesis", { file <- system.file("extdata", "s2-results.pdf", package = "SwimmeR") df <- swim_parse( read_results(file), avoid = c("MR:"), typo = c( "Swim\\s{2,}Club", "Performance\\s{2,}Swim", "Swimming\\s{2,}Club", "Stamford\\s{2,}American\\s{2,}Internationa", "Uwcsea\\s{2,}Phoenix-ZZ", "AquaTech\\s{2,}Swimming", "Chinese\\s{2,}Swimming", "Aquatic\\s{2,}Performance", "SwimDolphia\\s{2}Aquatic School" ), replacement = c( "Swim Club", "Performance Swim", "Swimming Club", "Stamford American International", "Uwcsea Phoenix-ZZ", "AquaTech Swimming", "Chinese Swimming", "Aquatic Performance", "SwimDolphia Aquatic School" ), splits = TRUE ) %>% splits_reform() match_sum <- sum(df$not_matching, na.rm = TRUE) expect_equivalent(match_sum, 0) }) test_that("NYS results, multiple lines of splits with different lengths, has parenthesis", { skip_on_cran() file <- "http://www.nyhsswim.com/Results/Boys/2008/NYS/Single.htm" if(is_link_broken(file) == TRUE){ warning("Link to external data is broken") } else { df <- swim_parse( read_results(file), typo = c("-1NORTH ROCKL"), replacement = c("1-NORTH ROCKL"), splits = TRUE ) %>% splits_reform() match_sum <- sum(df$not_matching, na.rm = TRUE) expect_equivalent(match_sum, 75) } }) test_that("USA Swimming results, splits don't have parenthesis, some splits longer than 59.99", { file <- system.file("extdata", "jets08082019_067546.pdf", package = "SwimmeR") df <- file %>% read_results() %>% swim_parse(splits = TRUE) %>% splits_reform() match_sum <- sum(df$not_matching, na.rm = TRUE) expect_equivalent(match_sum, 11) }) test_that("ISL results", { skip_on_cran() file <- "https://github.com/gpilgrim2670/Pilgrim_Data/raw/master/ISL/Season_1_2019/ISL_19102019_Lewisville_Day_1.pdf" if(is_link_broken(file) == TRUE){ warning("Link to external data is broken") } else { df <- swim_parse_ISL(read_results(file), splits = TRUE) %>% splits_reform() match_sum <- sum(df$not_matching, na.rm = TRUE) expect_equivalent(match_sum, 24) } }) test_that("multiple splits below 59.99 in parens and out", { skip_on_cran() file <- "https://data.ohiostatebuckeyes.com/livestats/m-swim/210302F001.htm" if(is_link_broken(file) == TRUE){ warning("Link to external data is broken") } else { df <- swim_parse( read_results(file), splits = TRUE, relay_swimmers = TRUE, split_length = 25 ) %>% dplyr::mutate(dplyr::across(Split_25:Split_200, as.numeric)) %>% dplyr::rowwise() %>% dplyr::mutate( total = sum(Split_50, Split_100, Split_150, Split_200), F_sec = sec_format(Finals_Time), not_matching = dplyr::case_when(round(F_sec - total, 2) == 0 ~ FALSE, round(F_sec - total, 2) != 0 ~ TRUE) ) match_sum <- sum(df$not_matching, na.rm = TRUE) expect_equivalent(match_sum, 0) } }) test_that("correct split distances", { df_standard <- data.frame( Name = c("Lilly King", "Caeleb Dressel", "Mallory Comerford"), Event = as.factor( c( "Women 100 Meter Breaststroke", "Men 50 Yard Freestyle", "Women 200 Yard Freestyle" ) ), Split_50 = c(NA, "8.48", NA), Split_50 = c("29.80", "9.15", "23.90"), Split_100 = c("34.33", NA, "25.52"), Split_150 = c(NA, NA, "25.13"), Split_200 = c(NA, NA, "25.25"), stringsAsFactors = FALSE ) df_test <- data.frame( Name = c("Lilly King", "Caeleb Dressel", "Mallory Comerford"), Event = c( "Women 100 Meter Breaststroke", "Men 50 Yard Freestyle", "Women 200 Yard Freestyle" ), Split_50 = c("29.80", "8.48", "23.90"), Split_100 = c("34.33", "9.15", "25.52"), Split_150 = c(NA, NA, "25.13"), Split_200 = c(NA, NA, "25.25"), stringsAsFactors = FALSE ) df_test <- df_test %>% correct_split_distance(new_split_length = 25, events = c("Men 50 Yard Freestyle")) expect_equivalent(df_test, df_standard) })
set.seed(1) n=500 library(clusterGeneration) library(mnormt) S=genPositiveDefMat("eigen",dim=15) S S=genPositiveDefMat("unifcorrmat",dim=15) S X=rmnorm(n,varcov=S$Sigma) X library(corrplot) corrplot(cor(X), order = "hclust") P=exp(Score)/(1+exp(Score)) P=exp(S)/(1+exp(S)) Y=rbinom(n,size=1,prob=P) df=data.frame(Y,X) allX=paste("X",1:ncol(X),sep="") names(df)=c("Y",allX) require(randomForest) fit=randomForest(factor(Y)~., data=df) (VI_F=importance(fit))
lineups_comparator_stats <- function(df1,m){ if(ncol(df1)==41){ adv_stats <-df1[1:6] tm_poss <- df1[9] - (df1[23]/(df1[23] + df1[26])) * (df1[9] - df1[7]) * 1.07 + df1[35] + 0.4 * df1[21] opp_poss <- df1[10] - (df1[24]/(df1[24] + df1[25])) * (df1[10] - df1[8]) * 1.07 + df1[36] + 0.4 * df1[22] team <- df1[6]/cumsum(df1[6]) pace <- m * ((tm_poss + opp_poss) / (2 * df1[6])) fg <- df1[7] - df1[8] fga <-df1[9] - df1[10] fg1 <- (df1[7]/df1[9]) fg2 <- (df1[8]/df1[10]) fg1[is.na(fg1)] <- 0; fg2[is.na(fg2)] <- 0 fgp <- fg1 - fg2 fgp[is.na(fgp)] <- 0 tp <- df1[11] - df1[12] tpa <-df1[13] - df1[14] t1 <- (df1[11]/df1[13]) t2 <- (df1[12]/df1[14]) t1[is.na(t1)] <- 0; t2[is.na(t2)] <- 0 tgp <- t1 - t2 twp <- df1[15] - df1[16] twpa <-df1[17] - df1[18] tw1 <- (df1[15]/df1[17]) tw2 <- (df1[16]/df1[18]) tw1[is.na(tw1)] <- 0; tw2[is.na(tw2)] <- 0 twgp <- tw1 - tw2 efg <- (df1[7] + 0.5 * df1[11]) / df1[9] efg_opp <- (df1[8] + 0.5 * df1[12]) / df1[10] efg[is.na(efg)] <- 0; efg_opp[is.na(efg_opp)] <- 0 efgp<- efg - efg_opp ts <- df1[39] / (2 * (df1[9] + 0.44 * df1[21])) ts_opp <- df1[40] / (2 * (df1[10] + 0.44 * df1[22])) ts[is.na(ts)] <- 0; ts_opp[is.na(ts_opp)] <- 0 tsp <- ts - ts_opp ft <- df1[19] - df1[20] fta <-df1[21] - df1[22] f1 <-(df1[19]/df1[21]) f2 <- (df1[20]/df1[22]) f1[is.na(f1)] <- 0; f2[is.na(f2)] <- 0 ftp <- f1 - f2 pm <- df1[41] adv_stats <- cbind(adv_stats,round(team,3),round(pace,2),fg,fga,round(fgp,3),tp,tpa,round(tgp,3),twp,twpa,round(twgp,3),round(efgp,3),round(tsp,3),ft,fta,round(ftp,3),pm) names(adv_stats) = c("PG","SG","SF","PF","C","MP","Team%","Pace","FG","FGA","FG%","3P","3PA","3P%", "2P","2PA","2P%","eFG%","TS%","FT","FTA","FT%","+/-") }else if (ncol(df1)==39){ adv_stats <-df1[1:4] tm_poss <- df1[7] - (df1[21]/(df1[21] + df1[24])) * (df1[7] - df1[5]) * 1.07 + df1[33] + 0.4 * df1[19] opp_poss <- df1[8] - (df1[22]/(df1[22] + df1[23])) * (df1[8] - df1[6]) * 1.07 + df1[34] + 0.4 * df1[20] team <- df1[4]/cumsum(df1[4]) pace <- m * ((tm_poss + opp_poss) / (2 * df1[4])) fg <- df1[5] - df1[6] fga <-df1[7] - df1[8] fg1 <- (df1[5]/df1[7]) fg2 <- (df1[6]/df1[8]) fg1[is.na(fg1)] <- 0; fg2[is.na(fg2)] <- 0 fgp <- fg1 - fg2 fgp[is.na(fgp)] <- 0 tp <- df1[9] - df1[10] tpa <-df1[11] - df1[12] t1 <- (df1[9]/df1[11]) t2 <- (df1[10]/df1[12]) t1[is.na(t1)] <- 0; t2[is.na(t2)] <- 0 tgp <- t1 - t2 twp <- df1[13] - df1[14] twpa <-df1[15] - df1[16] tw1 <- (df1[13]/df1[15]) tw2 <- (df1[14]/df1[16]) tw1[is.na(tw1)] <- 0; tw2[is.na(tw2)] <- 0 twgp <- tw1 - tw2 efg <- (df1[5] + 0.5 * df1[9]) / df1[7] efg_opp <- (df1[6] + 0.5 * df1[10]) / df1[8] efg[is.na(efg)] <- 0; efg_opp[is.na(efg_opp)] <- 0 efgp<- efg - efg_opp ts <- df1[37] / (2 * (df1[7] + 0.44 * df1[19])) ts_opp <- df1[38] / (2 * (df1[8] + 0.44 * df1[20])) ts[is.na(ts)] <- 0; ts_opp[is.na(ts_opp)] <- 0 tsp <- ts - ts_opp ft <- df1[17] - df1[18] fta <-df1[19] - df1[20] f1 <-(df1[17]/df1[19]) f2 <- (df1[18]/df1[20]) f1[is.na(f1)] <- 0; f2[is.na(f2)] <- 0 ftp <- f1 - f2 pm <- df1[39] adv_stats <- cbind(adv_stats,round(team,3),round(pace,2),fg,fga,round(fgp,3),tp,tpa,round(tgp,3),twp,twpa,round(twgp,3),round(efgp,3),round(tsp,3),ft,fta,round(ftp,3),pm) names(adv_stats) = c("PG","SG","SF","MP","Team%","Pace","FG","FGA","FG%","3P","3PA","3P%", "2P","2PA","2P%","eFG%","TS%","FT","FTA","FT%","+/-") }else if (ncol(df1)==38){ adv_stats <-df1[1:3] tm_poss <- df1[6] - (df1[20]/(df1[20] + df1[23])) * (df1[6] - df1[4]) * 1.07 + df1[32] + 0.4 * df1[18] opp_poss <- df1[7] - (df1[21]/(df1[21] + df1[22])) * (df1[7] - df1[5]) * 1.07 + df1[33] + 0.4 * df1[19] team <- df1[3]/cumsum(df1[3]) pace <- m * ((tm_poss + opp_poss) / (2 * df1[3])) fg <- df1[4] - df1[5] fga <-df1[6] - df1[7] fg1 <- (df1[4]/df1[6]) fg2 <- (df1[5]/df1[7]) fg1[is.na(fg1)] <- 0; fg2[is.na(fg2)] <- 0 fgp <- fg1 - fg2 fgp[is.na(fgp)] <- 0 tp <- df1[8] - df1[9] tpa <-df1[10] - df1[11] t1 <- (df1[8]/df1[10]) t2 <- (df1[9]/df1[11]) t1[is.na(t1)] <- 0; t2[is.na(t2)] <- 0 tgp <- t1 - t2 twp <- df1[12] - df1[13] twpa <-df1[14] - df1[15] tw1 <- (df1[12]/df1[14]) tw2 <- (df1[13]/df1[15]) tw1[is.na(tw1)] <- 0; tw2[is.na(tw2)] <- 0 twgp <- tw1 - tw2 efg <- (df1[4] + 0.5 * df1[8]) / df1[6] efg_opp <- (df1[5] + 0.5 * df1[9]) / df1[7] efg[is.na(efg)] <- 0; efg_opp[is.na(efg_opp)] <- 0 efgp<- efg - efg_opp ts <- df1[36] / (2 * (df1[6] + 0.44 * df1[18])) ts_opp <- df1[37] / (2 * (df1[7] + 0.44 * df1[19])) ts[is.na(ts)] <- 0; ts_opp[is.na(ts_opp)] <- 0 tsp <- ts - ts_opp ft <- df1[16] - df1[17] fta <-df1[18] - df1[19] f1 <-(df1[16]/df1[18]) f2 <- (df1[17]/df1[19]) f1[is.na(f1)] <- 0; f2[is.na(f2)] <- 0 ftp <- f1 - f2 pm <- df1[38] adv_stats <- cbind(adv_stats,round(team,3),round(pace,2),fg,fga,round(fgp,3),tp,tpa,round(tgp,3),twp,twpa,round(twgp,3),round(efgp,3),round(tsp,3),ft,fta,round(ftp,3),pm) names(adv_stats) = c("PF","C","MP","Team%","Pace","FG","FGA","FG%","3P","3PA","3P%", "2P","2PA","2P%","eFG%","TS%","FT","FTA","FT%","+/-") }else if (ncol(df1)==37){ adv_stats <-df1[1:2] tm_poss <- df1[5] - (df1[19]/(df1[19] + df1[22])) * (df1[5] - df1[3]) * 1.07 + df1[31] + 0.4 * df1[17] opp_poss <- df1[6] - (df1[20]/(df1[20] + df1[21])) * (df1[6] - df1[4]) * 1.07 + df1[32] + 0.4 * df1[18] team <- df1[2]/cumsum(df1[2]) pace <- m * ((tm_poss + opp_poss) / (2 * df1[2])) fg <- df1[3] - df1[4] fga <-df1[5] - df1[6] fg1 <- (df1[3]/df1[5]) fg2 <- (df1[4]/df1[6]) fg1[is.na(fg1)] <- 0; fg2[is.na(fg2)] <- 0 fgp <- fg1 - fg2 fgp[is.na(fgp)] <- 0 tp <- df1[7] - df1[8] tpa <-df1[9] - df1[10] t1 <- (df1[7]/df1[9]) t2 <- (df1[8]/df1[10]) t1[is.na(t1)] <- 0; t2[is.na(t2)] <- 0 tgp <- t1 - t2 twp <- df1[11] - df1[12] twpa <-df1[13] - df1[14] tw1 <- (df1[11]/df1[13]) tw2 <- (df1[12]/df1[14]) tw1[is.na(tw1)] <- 0; tw2[is.na(tw2)] <- 0 twgp <- tw1 - tw2 efg <- (df1[3] + 0.5 * df1[7]) / df1[5] efg_opp <- (df1[4] + 0.5 * df1[8]) / df1[6] efg[is.na(efg)] <- 0; efg_opp[is.na(efg_opp)] <- 0 efgp<- efg - efg_opp ts <- df1[35] / (2 * (df1[5] + 0.44 * df1[17])) ts_opp <- df1[36] / (2 * (df1[6] + 0.44 * df1[18])) ts[is.na(ts)] <- 0; ts_opp[is.na(ts_opp)] <- 0 tsp <- ts - ts_opp ft <- df1[15] - df1[16] fta <-df1[17] - df1[18] f1 <-(df1[15]/df1[17]) f2 <- (df1[16]/df1[18]) f1[is.na(f1)] <- 0; f2[is.na(f2)] <- 0 ftp <- f1 - f2 pm <- df1[37] adv_stats <- cbind(adv_stats,round(team,3),round(pace,2),fg,fga,round(fgp,3),tp,tpa,round(tgp,3),twp,twpa,round(twgp,3),round(efgp,3),round(tsp,3),ft,fta,round(ftp,3),pm) names(adv_stats) = c("Name","MP","Team%","Pace","FG","FGA","FG%","3P","3PA","3P%", "2P","2PA","2P%","eFG%","TS%","FT","FTA","FT%","+/-") } adv_stats[is.na(adv_stats)] <- 0 return(adv_stats) }
getbb <- function(obj){ bb <- bbox(obj) pg <- matrix(NA,5,2) pg[1,] <- c(bb[1,1],bb[2,1]) pg[2,] <- c(bb[1,1],bb[2,2]) pg[3,] <- c(bb[1,2],bb[2,2]) pg[4,] <- c(bb[1,2],bb[2,1]) pg[5,] <- pg[1,] bound <- Polygon(pg) bound <- Polygons(list(poly1=bound),ID=1) bound <- SpatialPolygons(list(poly=bound)) proj4string(bound) <- CRS(proj4string(obj)) return(bound) } getgrd <- function(shape,cellwidth){ shape <- gBuffer(shape,width=cellwidth) bb <- bbox(shape) xwid <- diff(bb[1,]) ywid <- diff(bb[2,]) delx <- xwid/cellwidth dely <- ywid/cellwidth M <- ceiling(delx) N <- ceiling(dely) xg <- bb[1,1] - (M*cellwidth-xwid)/2 + cellwidth*(0:M) yg <- bb[2,1] - (N*cellwidth-ywid)/2 + cellwidth*(0:N) spts <- SpatialPoints(expand.grid(xg,yg),proj4string=CRS(proj4string(shape))) ov <- over(spts,geometry(shape)) spts <- spts[!is.na(ov),] return(as(SpatialPixels(spts),"SpatialPolygons")) } neighLocs <- function(coord,cellwidth,order){ M <- outer(abs(-order:order),abs(-order:order),"+") M[M>order] <- NA idx <- which(!is.na(M),arr.ind=TRUE) xv <- matrix(coord[1]+cellwidth*(-order:order),nrow=2*order+1,ncol=2*order+1,byrow=TRUE) yv <- matrix(coord[2]+cellwidth*(order:(-order)),nrow=2*order+1,ncol=2*order+1) return(cbind(xv[idx],yv[idx])) } neighOrder <- function(neighlocs){ mid <- neighlocs[(nrow(neighlocs)-1)/2+1,] del <- t(apply(neighlocs,1,function(x){x-mid})) md <- min(del[del>0]) del <- round(del/md) del <- del*md dis <- apply(del,1,function(x){x[1]^2+x[2]^2}) rk <- rank(dis) tb <- table(rk) ds <- as.numeric(names(tb)) ord <- 0:(length(tb)-1) return(sapply(rk,function(x){ord[which(ds==x)]})) } setupPrecMatStruct <- function(shape,cellwidth,no){ gr <- getgrd(shape,cellwidth) p4s <- proj4string(shape) ng <- neighLocs(coordinates(gr)[1,],cellwidth,no) nord <- neighOrder(ng) maxord <- max(nord) nneigh <- nrow(ng) npoly <- length(gr) index <- c() ng <- c() cat("Setting up computational grid ...\n") pb <- txtProgressBar(1,length(gr)) for (i in 1:npoly){ ng <- rbind(ng,neighLocs(coordinates(gr)[i,],cellwidth,no)) setTxtProgressBar(pb, value=i) } cat("Done.\n") close(pb) idx <- over(SpatialPoints(ng,CRS(proj4string(gr))),geometry(gr)) ind <- which(!is.na(idx)) index <- cbind(rep(1:npoly,each=nneigh),idx,rep(nord,npoly)) index <- index[ind,] index <- index[-which(index[,2]>index[,1]),] ord <- order(index[,3]) index <- index[ord,] idxls <- lapply(0:maxord,function(x){which(index[,3]==x)}) f <- function(fun){ entries <- c() for(i in 0:maxord){ entries[idxls[[i+1]]] <- fun(i) } return(sparseMatrix(i=index[,1],j=index[,2],x=entries,symmetric=TRUE)) } attr(f,"order") <- no ans <- list() ans$f <- f ans$grid <- gr return(ans) } SPDEprec <- function(a,ord){ if(ord==1){ f <- function(i){ if(i==0){ return(a) } else if(i==1){ return(-1) } else{ stop("error in function SPDEprec") } } } else if(ord==2){ f <- function(i){ if(i==0){ return(4+a^2) } else if(i==1){ return(-2*a) } else if(i==2){ return(2) } else if(i==3){ return(1) } else{ stop("error in function SPDEprec") } } } else if(ord==3){ f <- function(i){ if(i==0){ return(a*(a^2+12)) } else if(i==1){ return(-3*(a^2+3)) } else if(i==2){ return(6*a) } else if(i==3){ return(3*a) } else if(i==4){ return(-3) } else if(i==5){ return(-1) } else{ stop("error in function SPDEprec") } } } else{ stop("Higher order neighbourhood structures not currently supported.") } return(f) } YFromGamma_SPDE <- function(gamma,U,mu){ return(mu+as.numeric(Matrix::solve(U,gamma))) } GammaFromY_SPDE <- function(Y,U,mu){ return(as.numeric(U%*%(Y-mu))) }
test_that("provide_parameters provides parameters", { x <- rnorm(1) expect_identical(provide_parameters(x), list(x = x)) }) test_that("provide_parameters handles named and unnamed NULL arguments", { expect_equivalent(provide_parameters(NULL), list("NULL" = NULL)) expect_identical(provide_parameters(a = NULL), list(a = NULL)) expect_identical( provide_parameters(NULL, b = NULL, 1:3), list("NULL" = NULL, b = NULL, "1:3" = 1:3) ) }) test_that("provide_parameters handles internal references", { expect_identical(provide_parameters(a = 1, b = a), list(a = 1, b = 1)) expect_identical(provide_parameters(a = NULL, b = a), list(a = NULL, b = NULL)) }) test_that("provide_parameters supports duplicate names", { expect_identical(provide_parameters(a = 1, a = a + 1, b = a), list(a = 1, a = 2, b = 2)) expect_identical(provide_parameters(b = 1, a = b, a = b + 1, b = a), list(b = 1, a = 1, a = 2, b = 2)) })
setwd("/tmp") url <- "https://dailies.rstudio.com/rstudio/latest/index.json" js <- jsonlite::fromJSON(url) fileurl <- js$products$desktop$platforms$bionic$link file <- basename(fileurl) cat("'", fileurl, "' -> '", file, "'\n", sep="") download.file(fileurl, file)
setConstructorS3("DChipDcpSet", function(files=NULL, ...) { if (is.null(files)) { } else if (is.list(files)) { reqFileClass <- "DChipDcpFile" lapply(files, FUN=function(df) { df <- Arguments$getInstanceOf(df, reqFileClass, .name="files") }) } else if (inherits(files, "DChipDcpSet")) { return(as.DChipDcpSet(files)) } else { throw("Argument 'files' is of unknown type: ", mode(files)) } extend(AffymetrixFileSet(files=files, ...), "DChipDcpSet") }) setMethodS3("as.character", "DChipDcpSet", function(x, ...) { this <- x s <- sprintf("%s:", class(this)[1]) s <- c(s, sprintf("Name: %s", getName(this))) tags <- getTags(this) tags <- paste(tags, collapse=",") s <- c(s, sprintf("Tags: %s", tags)) s <- c(s, sprintf("Path: %s", getPath(this))) n <- length(this) s <- c(s, sprintf("Number of arrays: %d", n)) names <- getNames(this) s <- c(s, sprintf("Names: %s [%d]", hpaste(names), n)) s <- c(s, sprintf("Total file size: %s", hsize(getFileSize(this), digits = 2L, standard = "IEC"))) GenericSummary(s) }, protected=TRUE) setMethodS3("findByName", "DChipDcpSet", function(static, ..., paths=c("rawData(|,.*)/", "probeData(|,.*)/")) { if (is.null(paths)) { paths <- eval(formals(findByName.DChipDcpSet)[["paths"]]) } NextMethod("findByName", paths=paths) }, static=TRUE, protected=TRUE) setMethodS3("byName", "DChipDcpSet", function(static, name, tags=NULL, chipType, paths=NULL, ...) { chipType <- Arguments$getCharacter(chipType, length=c(1,1)) suppressWarnings({ path <- findByName(static, name, tags=tags, chipType=chipType, paths=paths, ...) }) if (is.null(path)) { path <- file.path(paste(c(name, tags), collapse=","), chipType) throw("Cannot create ", class(static)[1], ". No such directory: ", path) } suppressWarnings({ byPath(static, path=path, ...) }) }, static=TRUE) setMethodS3("byPath", "DChipDcpSet", function(static, path="rawData/", pattern="[.](dcp|DCP)$", ..., fileClass="DChipDcpFile", verbose=FALSE) { verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } verbose && enter(verbose, "Defining ", class(static)[1], " from files") this <- NextMethod("byPath", pattern=pattern, fileClass=fileClass, verbose=less(verbose)) verbose && cat(verbose, "Retrieved files: ", length(this)) if (length(this) > 0) { path <- getPath(this) chipType <- basename(path) verbose && cat(verbose, "The chip type according to the path is: ", chipType) } verbose && exit(verbose) this }, static=TRUE, protected=TRUE) setMethodS3("as.DChipDcpSet", "DChipDcpSet", function(object, ...) { object }) setMethodS3("as.DChipDcpSet", "list", function(object, ...) { DChipDcpSet(object, ...) }) setMethodS3("as.DChipDcpSet", "default", function(object, ...) { throw("Cannot coerce object to an DChipDcpSet object: ", mode(object)) }) setMethodS3("extractTheta", "DChipDcpSet", function(this, units=NULL, ..., drop=FALSE, verbose=FALSE) { verbose <- Arguments$getVerbose(verbose) if (verbose) { pushState(verbose) on.exit(popState(verbose)) } data <- NULL nbrOfArrays <- length(this) gcCount <- 0 for (kk in seq_len(nbrOfArrays)) { df <- this[[kk]] verbose && enter(verbose, sprintf("Array dataKK <- extractTheta(df, units=units, ..., verbose=less(verbose, 5)) verbose && str(verbose, dataKK) if (is.null(data)) { dim <- c(nrow(dataKK), ncol(dataKK), nbrOfArrays) dimnames <- list(NULL, NULL, getNames(this)) naValue <- as.double(NA) data <- array(naValue, dim=dim, dimnames=dimnames) } data[,,kk] <- dataKK dataKK <- NULL gcCount <- gcCount + 1 if (gcCount %% 10 == 0) { gc <- gc() verbose && print(verbose, gc) } verbose && exit(verbose) } if (drop) { data <- drop(data) } verbose && cat(verbose, "Thetas:") verbose && str(verbose, data) data })
"mvdst" <- function (x, variant=2, inverted=FALSE) mvdtt(x, type="dst", variant=variant, inverted=inverted)
context("test-pat_aggregate") test_that('Alternative aggregation', { data("example_pat") expect_true(identical( pat_aggregate(example_pat, FUN = function(x) mean(x,na.rm = TRUE)), pat_aggregate(example_pat, FUN = function(x) mean(x, na.rm = TRUE), unit = 'minutes', count = 60) )) })
test_that("parse_query(tidy = TRUE) works on 'flights' and 'planes' left outer join example query", { expect_equal( { query <- "SELECT origin, dest, round(AVG(distance)) AS dist, round(COUNT(*)/10) AS flights_per_year, round(SUM(seats)/10) AS seats_per_year, round(AVG(arr_delay)) AS avg_arr_delay FROM fly.flights f LEFT OUTER JOIN fly.planes p ON f.tailnum = p.tailnum WHERE distance BETWEEN 300 AND 400 GROUP BY origin, dest HAVING flights_per_year > 5000 ORDER BY seats_per_year DESC LIMIT 6;" parse_query(query, tidy = TRUE) }, structure(list(select = structure(list(quote(origin), quote(dest), dist = quote(round(mean(distance, na.rm = TRUE))), flights_per_year = str2lang("round(dplyr::n()/10)"), seats_per_year = quote(round(sum(seats, na.rm = TRUE)/10)), avg_arr_delay = quote(round(mean(arr_delay, na.rm = TRUE)))), aggregate = c(FALSE, FALSE, dist = TRUE, flights_per_year = TRUE, seats_per_year = TRUE, avg_arr_delay = TRUE)), from = structure(list(f = quote(fly.flights), p = quote(fly.planes)), join_types = "left outer join", join_conditions = list(quote(f.tailnum == p.tailnum))), where = list(str2lang("dplyr::between(distance,300, 400)")), group_by = list(quote(origin), quote(dest)), having = list(quote(flights_per_year > 5000)), order_by = structure(list(str2lang("dplyr::desc(seats_per_year)")), aggregate = FALSE), limit = list(6)), aggregate = TRUE) ) }) test_that("parse_query() works on SQL-92-style (explicit) join with ON", { expect_equal( parse_query("SELECT y.w, z.x FROM y JOIN z ON y.a = z.b"), list(select = list(quote(y.w), quote(z.x)), from = structure(list(quote(y), quote(z)), join_types = "inner join", join_conditions = list(quote(y.a == z.b)))) ) }) test_that("parse_query() works on SQL-92-style (explicit) join with ON with parentheses", { expect_equal( parse_query("SELECT y.w, z.x FROM y JOIN z ON (y.a = z.b)"), list(select = list(quote(y.w), quote(z.x)), from = structure(list(quote(y), quote(z)), join_types = "inner join", join_conditions = list(quote(y.a == z.b)))) ) }) test_that("parse_query() works on SQL-92-style (explicit) join with USING", { expect_equal( parse_query("SELECT y.w, z.x FROM y JOIN z USING (a)"), list(select = list(quote(y.w), quote(z.x)), from = structure(list(quote(y), quote(z)), join_types = "inner join", join_conditions = list(quote(y.a == z.a)))) ) }) test_that("parse_query() works on join with aliases", { expect_equal( parse_query("SELECT y.a, z.`b`, `w`.c FROM why AS y LEFT OUTER JOIN zee 'z' ON y.a = z.b INNER JOIN dub w USING(c,d,e)"), list(select = list(quote(y.a), quote(z.b), quote(w.c)), from = structure(list(y = quote(why), z = quote(zee), w = quote(dub)), join_types = c("left outer join", "inner join"), join_conditions = list(quote(y.a == z.b), quote(z.c == w.c & z.d == w.d & z.e == w.e)))) ) }) test_that("parse_query() works on CROSS JOIN", { expect_equal( parse_query("SELECT a, b FROM x CROSS JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "cross join", join_conditions = NA)) ) }) test_that("parse_query() works on NATURAL JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural inner join", join_conditions = NA)) ) }) test_that("parse_query() works on NATURAL INNER JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL INNER JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural inner join", join_conditions = NA)) ) }) test_that("parse_query() works on INNER JOIN", { expect_equal( parse_query("SELECT a, b FROM x INNER JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "inner join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() works on NATURAL OUTER JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL OUTER JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural left outer join", join_conditions = NA)) ) }) test_that("parse_query() works on NATURAL LEFT OUTER JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL LEFT OUTER JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural left outer join", join_conditions = NA)) ) }) test_that("parse_query() works on LEFT OUTER JOIN", { expect_equal( parse_query("SELECT a, b FROM x LEFT OUTER JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "left outer join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() works on NATURAL RIGHT OUTER JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL RIGHT OUTER JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural right outer join", join_conditions = NA)) ) }) test_that("parse_query() works on RIGHT OUTER JOIN", { expect_equal( parse_query("SELECT a, b FROM x RIGHT OUTER JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "right outer join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() works on NATURAL FULL OUTER JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL FULL OUTER JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural full outer join", join_conditions = NA)) ) }) test_that("parse_query() works on FULL OUTER JOIN", { expect_equal( parse_query("SELECT a, b FROM x FULL OUTER JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "full outer join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() works on OUTER JOIN", { expect_equal( parse_query("SELECT a, b FROM x OUTER JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "left outer join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() works on NATURAL LEFT SEMI JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL LEFT SEMI JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural left semi join", join_conditions = NA)) ) }) test_that("parse_query() works on LEFT SEMI JOIN", { expect_equal( parse_query("SELECT a, b FROM x LEFT SEMI JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "left semi join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() works on NATURAL RIGHT SEMI JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL RIGHT SEMI JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural right semi join", join_conditions = NA)) ) }) test_that("parse_query() works on RIGHT SEMI JOIN", { expect_equal( parse_query("SELECT a, b FROM x RIGHT SEMI JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "right semi join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() stops on SEMI JOIN without RIGHT or LEFT", { expect_error( parse_query("SELECT a, b FROM x SEMI JOIN y ON x.k = y.k"), "LEFT or RIGHT" ) }) test_that("parse_query() works on NATURAL LEFT ANTI JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL LEFT ANTI JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural left anti join", join_conditions = NA)) ) }) test_that("parse_query() works on LEFT ANTI JOIN", { expect_equal( parse_query("SELECT a, b FROM x LEFT ANTI JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "left anti join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() works on NATURAL RIGHT ANTI JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL RIGHT ANTI JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural right anti join", join_conditions = NA)) ) }) test_that("parse_query() works on RIGHT ANTI JOIN", { expect_equal( parse_query("SELECT a, b FROM x RIGHT ANTI JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "right anti join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() stops on ANTI JOIN without RIGHT or LEFT", { expect_error( parse_query("SELECT a, b FROM x ANTI JOIN y ON x.k = y.k"), "LEFT or RIGHT" ) }) test_that("parse_query() works on NATURAL LEFT JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL LEFT JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural left outer join", join_conditions = NA)) ) }) test_that("parse_query() works on LEFT JOIN", { expect_equal( parse_query("SELECT a, b FROM x LEFT JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "left outer join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() works on NATURAL RIGHT JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL RIGHT JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural right outer join", join_conditions = NA)) ) }) test_that("parse_query() works on RIGHT JOIN", { expect_equal( parse_query("SELECT a, b FROM x RIGHT JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "right outer join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() works on NATURAL FULL JOIN", { expect_equal( parse_query("SELECT a, b FROM x NATURAL FULL JOIN y"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "natural full outer join", join_conditions = NA)) ) }) test_that("parse_query() works on FULL JOIN", { expect_equal( parse_query("SELECT a, b FROM x FULL JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "full outer join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() works on JOIN with no modifying keywords", { expect_equal( parse_query("SELECT a, b FROM x JOIN y ON x.k = y.k"), list(select = list(quote(a), quote(b)), from = structure(list(quote(x), quote(y)), join_types = "inner join", join_conditions = list(quote(x.k == y.k)))) ) }) test_that("parse_query() stops on LEFT INNER JOIN", { expect_error( parse_query("SELECT a, b FROM x LEFT INNER JOIN y ON x.k = y.k"), "Invalid" ) }) test_that("parse_query() stops on INNER OUTER JOIN", { expect_error( parse_query("SELECT a, b FROM x INNER OUTER JOIN y ON x.k = y.k"), "Invalid" ) }) test_that("parse_query() stops on OUTER INNER JOIN", { expect_error( parse_query("SELECT a, b FROM x OUTER INNER JOIN y ON x.k = y.k"), "Invalid" ) }) test_that("parse_query() stops on SQL-89-style (implicit) join", { expect_error( parse_query("SELECT y.w, z.x FROM y, z WHERE y.a = z.b"), "implicit" ) }) test_that("parse_query() stops on join with repeated AS in table alias", { expect_error( parse_query("SELECT a FROM bee AS AS b NATURAL JOIN see AS c"), "Repeated" ) }) test_that("parse_query() stops on join with no left table alias after AS", { expect_error( parse_query("SELECT a FROM bee AS NATURAL JOIN see AS c"), "Missing table alias" ) }) test_that("parse_query() stops on join with no right table alias after AS", { expect_error( parse_query("SELECT a FROM bee AS b NATURAL JOIN see AS"), "Missing table alias" ) }) test_that("parse_query() stops on join with missing right table reference before ON", { expect_error( parse_query("SELECT a FROM b JOIN ON b.x = c.y"), "Missing table reference" ) }) test_that("parse_query() stops on join with missing right table reference before USING", { expect_error( parse_query("SELECT a FROM b JOIN USING (z)"), "Missing table reference" ) }) test_that("parse_query() stops on join no parentheses after USING", { expect_error( parse_query("SELECT y.w, z.x FROM y JOIN z USING a"), "parenthes" ) }) test_that("parse_query() stops on join no column references in USING clause", { expect_error( parse_query("SELECT y.w, z.x FROM y JOIN z USING ()"), "Missing" ) }) test_that("parse_query() stops on join with required conditions missing", { expect_error( parse_query("SELECT y.w, z.x FROM y JOIN z"), "conditions" ) }) test_that("parse_query() stops on three-table join with required conditions missing", { expect_error( parse_query("SELECT a, b, c FROM x JOIN y JOIN z USING (t)"), "conditions" ) }) test_that("parse_query() stops on NATURAL JOIN with ON clause", { expect_error( parse_query("SELECT a, b FROM x NATURAL JOIN y ON x.k = y.k"), "Unexpected ON" ) }) test_that("parse_query() stops on NATURAL JOIN with USING clause", { expect_error( parse_query("SELECT a, b FROM x NATURAL JOIN y USING (k)"), "Unexpected USING" ) }) test_that("parse_query() stops when unexpected word or symbol in join", { expect_error( parse_query("SELECT a, b FROM c JOIN d USING (e) NOT f"), "Unexpected" ) }) test_that("parse_query() stops on incomplete join conditions", { expect_error( parse_query("SELECT a, b FROM x JOIN y ON x"), "Malformed" ) }) test_that("parse_query() stops on malformed join conditions expect_error( parse_query("SELECT a, b FROM x JOIN y ON x AND y"), "Malformed" ) }) test_that("parse_query() stops on malformed join conditions expect_error( parse_query("SELECT a, b FROM x JOIN y ON x AND y = q AND r"), "Malformed" ) }) test_that("parse_query() stops on disallowed values in USING", { expect_error( parse_query("SELECT a, b FROM x JOIN y USING(a = b)"), "column" ) }) test_that("parse_query() stops on join conditions with disallowed operators and/or functions", { expect_error( parse_query("SELECT a, b FROM x JOIN y ON sqrt(t) - 4 = 0"), "equality" ) }) test_that("parse_query() stops on self-join with no table aliases", { expect_error( parse_query("SELECT * FROM x JOIN x USING (z)"), "different" ) }) test_that("parse_query() stops on join with non-unique table aliases", { expect_error( parse_query("SELECT * FROM x AS y JOIN x AS y USING (z)"), "different" ) }) test_that("parse_query() succeeds on self-join with unique table aliases", { expect_error( parse_query("SELECT * FROM x AS w JOIN x AS y USING (z)"), NA ) }) test_that("parse_query() succeeds on self-join with unique table names/aliases", { expect_error( parse_query("SELECT * FROM x JOIN x AS y USING (z)"), NA ) }) test_that("parse_query() succeeds when parentheses enclose FROM clause with join", { expect_error( parse_query("SELECT * FROM (x JOIN y ON x.a = y.a)"), NA ) }) test_that("parse_query() succeeds when parentheses enclose FROM clause and table names in join", { expect_error( parse_query("SELECT * FROM ((ex) x JOIN (why) y ON x.a = y.a)"), NA ) }) test_that("parse_query() succeeds when two pairs of parentheses enclose FROM clause with join", { expect_error( parse_query("SELECT * FROM ((x JOIN y ON x.a = y.a))"), NA ) }) test_that("parse_query() succeeds when join in FROM clause is not enclosed in parentheses but begins with ( and ends with )", { expect_error( parse_query("SELECT * FROM (x) JOIN (y) USING (a)"), NA ) })
pk.tss.monoexponential <- function(..., tss.fraction=0.9, output=c( "population", "popind", "individual", "single"), check=TRUE, verbose=FALSE) { modeldata <- pk.tss.data.prep(..., check=check) if (is.factor(tss.fraction) | !is.numeric(tss.fraction)) stop("tss.fraction must be a number") if (!length(tss.fraction) == 1) { warning("Only first value of tss.fraction is being used") tss.fraction <- tss.fraction[1] } if (tss.fraction <= 0 | tss.fraction >= 1) { stop("tss.fraction must be between 0 and 1, exclusive") } else if (tss.fraction < 0.8) { warning("tss.fraction is usually >= 0.8") } output <- match.arg(output, several.ok=TRUE) if (!("subject" %in% names(modeldata))) { if (any(c("population", "popind", "individual") %in% output)) { warning("Cannot give 'population', 'popind', or 'individual' ", "output without multiple subjects of data") output <- setdiff(output, c("population", "popind", "individual")) } } modeldata$tss.constant <- log(1-tss.fraction) ret_population <- if (any(c("population", "popind") %in% output)) { pk.tss.monoexponential.population( modeldata, output=intersect(c("population", "popind"), output), verbose=verbose) } else { NA } ret_individual <- if (any(c("individual", "single") %in% output)) { pk.tss.monoexponential.individual( modeldata, output=intersect(c("individual", "single"), output), verbose=verbose) } else { NA } ret <- if (!identical(NA, ret_population) & !identical(NA, ret_individual)) { merge(ret_population, ret_individual) } else if (!identical(NA, ret_population)) { ret_population } else if (!identical(NA, ret_individual)) { ret_individual } else { stop("Error in selection of return values for pk.tss.monoexponential. This is likely a bug.") } ret } tss.monoexponential.generate.formula <- function(data) { if ("treatment" %in% names(data)) { ctrough.by <- list("Ctrough.ss by treatment"=list( formula=ctrough.ss~treatment-1, start=dplyr::summarize_( dplyr::group_by_(data, "treatment"), .dots=list(conc.mean=~mean(conc)))$conc.mean)) } else { ctrough.by <- list("Single Ctrough.ss"=list( formula=ctrough.ss~1, start=mean(data$conc))) } tss.by <- list( "Single value for Tss"=list( formula=tss~1, start=stats::median(unique(data$time)))) if ("treatment" %in% names(data)) tss.by[["Tss by treatment"]] <- list( formula=tss~treatment, start=rep(stats::median(unique(data$time)), length(unique(data$treatment)))) ranef.by <- list("Ctrough.ss and Tss"=list(formula=ctrough.ss+tss~1|subject), "Tss"=list(formula=tss~1|subject), "Ctrough.ss"=list(formula=ctrough.ss~1|subject)) list( ctrough.by=ctrough.by, tss.by=tss.by, ranef.by=ranef.by ) } pk.tss.monoexponential.population <- function(data, output=c( "population", "popind"), verbose=FALSE) { output <- match.arg(output, several.ok=TRUE) test.formula <- tss.monoexponential.generate.formula(data) models <- list() for (myctrough.ss in names(test.formula$ctrough.by)) { for (mytss in names(test.formula$tss.by)) { for (myranef in names(test.formula$ranef.by)) { current.desc <- sprintf("Fixed effects of %s and %s; random effects of %s", myctrough.ss, mytss, myranef) if (verbose) print(current.desc) current.model <- NA current.aic <- NA current.model.summary <- "Did not converge" try({ current.model <- nlme::nlme(conc~ctrough.ss*(1-exp(tss.constant*time/tss)), fixed=list( test.formula$ctrough.by[[myctrough.ss]]$formula, test.formula$tss.by[[mytss]]$formula), random=test.formula$ranef.by[[myranef]]$formula, start=c( test.formula$ctrough.by[[myctrough.ss]]$start, test.formula$tss.by[[mytss]]$start), data=data, verbose=verbose) if (!is.null(current.model)) { current.model.summary <- summary(current.model) current.aic <- stats::AIC(current.model) } }, silent=!verbose) models <- append( models, list( list( desc=current.desc, model=current.model, summary=current.model.summary, AIC=current.aic ) ) ) } } } all.model.summary <- AIC.list(lapply(models, function(x) x$model)) rownames(all.model.summary) <- sapply(models, function(x) x$desc) if (verbose) print(all.model.summary) if (all(is.na(all.model.summary$AIC)) | length(all.model.summary) == 0) { warning("No population model for monoexponential Tss converged, no results given") ret <- data.frame( tss.monoexponential.population=NA, tss.monoexponential.popind=NA, subject=unique(data[["subject"]]), stringsAsFactors=FALSE ) } else { best.model <- models[all.model.summary$AIC %in% min(all.model.summary$AIC, na.rm=TRUE)][[1]]$model ret <- data.frame( tss.monoexponential.population=nlme::fixef(best.model)[["tss"]], stringsAsFactors=FALSE ) best.ranef <- nlme::ranef(best.model) if ("tss" %in% names(best.ranef)) { ret <- merge( ret, data.frame( tss.monoexponential.popind=(best.ranef$tss + ret$tss.monoexponential.population), subject=factor(rownames(best.ranef)), stringsAsFactors=FALSE ), all=TRUE ) } else if ("popind" %in% output) { warning("tss.monoexponential.popind was requested, but the best model did not include a random effect for tss. Set to NA.") ret <- merge( ret, data.frame( tss.monoexponential.popind=NA, subject=unique(data$subject), stringsAsFactors=FALSE ), all=TRUE ) } } ret[,intersect(c("subject", "treatment", paste("tss.monoexponential", output, sep=".")), names(ret)), drop=FALSE] } pk.tss.monoexponential.individual <- function(data, output=c( "individual", "single"), verbose=FALSE) { fit.tss <- function(d) { tss <- NA_real_ try({ current.model <- nlme::gnls(conc~ctrough.ss*(1-exp(tss.constant*time/tss)), params=list( ctrough.ss~1, tss~1), start=c( mean(d$conc), stats::median(unique(d$time))), data=d, verbose=verbose) if (!is.null(current.model)) { tss <- stats::coef(current.model)[["tss"]] } }, silent=!verbose) if (is.null(tss)) { tss <- NA_real_ } tss } output <- match.arg(output, several.ok=TRUE) data_maybe_grouped <- if ("treatment" %in% names(data)) { data %>% dplyr::group_by_("treatment") } else { data } ret <- data_maybe_grouped %>% dplyr::summarize( tss.monoexponential.single= fit.tss( data.frame( time=.$time, tss.constant=.$tss.constant, conc=.$conc, treatment=.$treatment, stringsAsFactors=FALSE ) ) ) if ("subject" %in% names(data) & "individual" %in% output) { data_grouped <- if (all(c("treatment", "subject") %in% names(data))) { data %>% group_by_("treatment", "subject") } else if ("subject" %in% names(data)) { data %>% group_by_("subject") } else { stop("Subject must be specified to have subject-level fitting") } ret.sub <- data_grouped %>% dplyr::summarize_( .dots=list( tss.monoexponential.individual= ~fit.tss( data.frame( time=time, tss.constant=tss.constant, conc=conc, stringsAsFactors=FALSE ) ) ) ) ret <- merge(ret, ret.sub, all=TRUE) } as.data.frame( ret[,c(intersect(names(ret), c("subject", "treatment")), paste("tss.monoexponential", output, sep=".")), drop=FALSE], stringsAsFactors=FALSE ) }
select_threshold <- function(pairs, threshold, weight, var = "select") { if (!methods::is(pairs, "pairs")) stop("pairs should be an object of type 'pairs'.") UseMethod("select_threshold") } select_threshold.ldat <- function(pairs, threshold, weight, var = "select") { if (missing(weight) || is.null(weight)) weight <- attr(pairs, "score") if (is.null(weight)) stop("Missing weight") if (is.character(weight)) weight <- pairs[[weight]] pairs[[var]] <- weight > threshold attr(pairs, "selection") <- var pairs } select_threshold.data.frame <- function(pairs, threshold, weight, var = "select") { if (missing(weight) || is.null(weight)) weight <- attr(pairs, "score") if (is.null(weight)) stop("Missing weight") if (is.character(weight)) weight <- pairs[[weight]] pairs[[var]] <- weight > threshold attr(pairs, "selection") <- var pairs }
shinydashboard::tabItem( tabName = "radar", fluidRow( column( width = 12, br(), tabBox(width=12,height=550, tabPanel( title = "Graphic", fluidRow( h2("Simple example", align="center"), column( width = 12, rAmCharts::amChartsOutput("radar1"), type = "radar") )), tabPanel( title = "Code", fluidRow( h2("Simple example", align="center"), column( width = 12, verbatimTextOutput("code_radar1")) ) ) ), tabBox(width=12,height=550, tabPanel( title = "Graphic", fluidRow( h2("Add legend, title, font area color, bullets ....", align="center"), column( width = 12, rAmCharts::amChartsOutput("radar3"), type = "radar") )), tabPanel( title = "Code", fluidRow( h2("Add legend, title, font area color, bullets ....", align="center"), column( width = 12, verbatimTextOutput("code_radar3")) ) ) ), tabBox(width=12,height=550, tabPanel( title = "Graphic", fluidRow( h2("Wind, add guides", align="center"), column( width = 12, rAmCharts::amChartsOutput("radar2"), type = "radar") )), tabPanel( title = "Code", fluidRow( h2("Wind, add guides", align="center"), column( width = 12, verbatimTextOutput("code_radar2")) ) ) ) ) ) )
read.community <- function(file, grids="grids", species="species", ...){ d <- read.csv(file, stringsAsFactors = TRUE, ...) M <- Matrix::sparseMatrix(as.integer(d[,grids]), as.integer(d[,species]), x = rep(1L, nrow(d)), dimnames = list(levels(d[,"grids"]), levels(d[,"species"]))) M }
quickEP = function(claim, true, ids, afreq = NULL, ...) { als = if(is.null(afreq)) NULL else seq_along(afreq) exclusionPower(claim, true, ids, alleles = als, afreq = afreq, plot = F, verbose = F, ...)$EPtotal } test_that("EP works in empty paternity case", { claim = nuclearPed(1) true = list(singleton(1), singleton(3)) ids = c(1, 3) afr = c(.1, .9) ep_aut = quickEP(claim, true, ids, afr) expect_equal(ep_aut, 2 * afr[1]^2 * afr[2]^2) expect_equal(quickEP(claim, true, ids, afr, Xchrom = T), 0) claim2 = nuclearPed(1, sex = 2) true2 = list(singleton(1), singleton(3, sex = 2)) ep_X = quickEP(claim2, true2, ids, afr, Xchrom = T) expect_equal(ep_X, afr[1] * afr[2]) }) test_that("EP works in empty pat-case with added singletons", { claim = list(nuclearPed(1), singleton(4)) true = list(singleton(1), singleton(3), singleton(4)) ids = c(1, 3, 4) afr = c(.1, .9) expect_equal(quickEP(claim, true, ids, afr), 2 * afr[1]^2 * afr[2]^2) expect_equal(quickEP(claim, true, ids, afr, Xchrom = T), 0) claim2 = list(nuclearPed(1, sex = 2), singleton(4)) true2 = list(singleton(1), singleton(3, sex = 2), singleton(4)) expect_equal(quickEP(claim2, true2, ids, afr, Xchrom = T), afr[1] * afr[2]) }) test_that("EP works in paternity case with child typed", { claim = nuclearPed(1, sex = 2) true = list(singleton(1), singleton(3)) afr = c(.5, .3, .2) m = mX = marker(claim, `3` = 1, alleles = 1:3, afreq = afr) chrom(mX) = 23L claim = setMarkers(claim, list(m, mX)) ep_aut = quickEP(claim, true, ids = 1, markers = 1) expect_equal(ep_aut, sum(afr[-1])^2) ep_X = quickEP(claim, true, ids = 1, markers = 2) expect_equal(ep_X, sum(afr[-1])) }) test_that("EP works in paternity case with parents typed", { claim = nuclearPed(1, sex = 2) true = list(singleton(1), singleton(3, sex = 2)) afr = c(.5, .3, .2) m = mX = marker(claim, `1` = 1, `2` = 2, alleles = 1:3, afreq = afr) chrom(mX) = 23L claim = setMarkers(claim, list(m, mX)) ep_aut = quickEP(claim, true, ids = 3, markers = 1) expect_equal(ep_aut, 1 - 2*afr[1]*afr[2]) ep_X = quickEP(claim, true, ids = 3, markers = 2) expect_equal(ep_X, 1 - 2*afr[1]*afr[2]) })
ml0a <- maxLik(loglik.faithful, x = geyser$duration, start = c(0.5, m - 1, m + 1, s, s), fixed = 1) coef(ml0a) logLik(ml0a)
poset.scores<-function(posetparenttable,scoretable,numberofparentsvec,rowmaps,n,plus1lists=NULL, numparents,updatenodes=c(1:n)){ orderscore<-list(length=n) revnumberofparentsvec<-lapply(numberofparentsvec,rev) if (is.null(plus1lists)){ for (j in updatenodes){ len<-numparents[j] binomcoefs<-choose(len,c(0:len)) nrows<-nrow(posetparenttable[[j]]) P_local<-vector("numeric",length=nrows) P_local[nrows] <-scoretable[[j]][1,1] maxoverall<-max(scoretable[[j]][,1]) P_local[1]<-log(sum(exp(scoretable[[j]][,1]-maxoverall)))+maxoverall cutoff<-1 if(nrows>2){ for(level in 1:(len-1)){ cutoff<-cutoff+binomcoefs[level] for (i in (nrows-1):cutoff) { posetparentnodes <- posetparenttable[[j]][i,c(1:revnumberofparentsvec[[j]][i])] maxparents<-max(P_local[posetparentnodes]) parentsum<-log(sum(exp(P_local[posetparentnodes]-maxparents)))+maxparents-log(len-revnumberofparentsvec[[j]][i]-level+1) conjugatescore<-scoretable[[j]][rowmaps[[j]]$backwards[nrows-rowmaps[[j]]$forward[i]+1],1] maxoverall<-max(parentsum,conjugatescore) P_local[i]<- log(exp(parentsum-maxoverall)+exp(conjugatescore-maxoverall)) + maxoverall } } } orderscore[[j]]<-as.matrix(P_local) } return(orderscore) } else { for (j in updatenodes) { len<-numparents[j] binomcoefs<-choose(len,c(0:len)) ll<-length(plus1lists$parents[[j]])+1 nrows<-nrow(posetparenttable[[j]]) P_local <- matrix(nrow=nrows,ncol=ll) for (li in 1:ll){ P_local[nrows,li] <-scoretable[[j]][[li]][1,1] maxoverall<-max(scoretable[[j]][[li]][,1]) P_local[1,li]<-log(sum(exp(scoretable[[j]][[li]][,1]-maxoverall)))+maxoverall cutoff<-1 if(nrows>2){ for(level in 1:(len-1)){ cutoff<-cutoff+binomcoefs[level] for (i in (nrows-1):cutoff) { posetparentnodes <- posetparenttable[[j]][i,c(1:revnumberofparentsvec[[j]][i])] maxparents<-max(P_local[posetparentnodes,li]) parentsum<-log(sum(exp(P_local[posetparentnodes,li]-maxparents)))+maxparents-log(len-revnumberofparentsvec[[j]][i]-level+1) conjugatescore<-scoretable[[j]][[li]][rowmaps[[j]]$backwards[nrows-rowmaps[[j]]$forward[i]+1],1] maxoverall<-max(parentsum,conjugatescore) P_local[i,li]<- log(exp(parentsum-maxoverall)+exp(conjugatescore-maxoverall)) + maxoverall } } } } orderscore[[j]]<-P_local } return(orderscore) } } posetscoremax<-function(posetparenttable,scoretable,numberofparentsvec,rowmaps,n,plus1lists=NULL, updatenodes=c(1:n)) { listy<-list() revnumberofparentsvec<-lapply(numberofparentsvec,rev) if (is.null(plus1lists)) { maxmatrix<-list() maxrows<-list() for (j in updatenodes) { nrows<-nrow(posetparenttable[[j]]) P_local <- numeric(nrows) maxrow<-numeric(nrows) P_local[nrows]<-scoretable[[j]][1,1] maxrow[nrows]<-1 if(nrows>1) { for (i in (nrows-1):1) { posetparentnodes <- posetparenttable[[j]][i,c(1:revnumberofparentsvec[[j]][i])] prevmax<- max(P_local[posetparentnodes]) candmax<-scoretable[[j]][rowmaps[[j]]$backwards[nrows-rowmaps[[j]]$forward[i]+1],1] if (prevmax>candmax) { P_local[i]<-prevmax maxrow[i]<-maxrow[posetparentnodes[which.max(P_local[posetparentnodes])]] } else { P_local[i]<-candmax maxrow[i]<-rowmaps[[j]]$backwards[nrows-rowmaps[[j]]$forward[i]+1] } } } maxmatrix[[j]]<-as.matrix(P_local) maxrows[[j]]<- maxrow } listy$maxmatrix<-maxmatrix listy$maxrows<-maxrows return(listy) } else { maxmatrix<-list() maxrows<-list() for (j in updatenodes) { ll<-length(plus1lists$parents[[j]])+1 nrows<-nrow(posetparenttable[[j]]) P_local <- matrix(nrow=nrows,ncol=ll) maxrow<-matrix(nrow=nrows,ncol=ll) for (li in 1:ll) { P_local[nrows,li]<-scoretable[[j]][[li]][1,1] maxrow[nrows,li]<-1 if(nrows>1) { for (i in (nrows-1):1) { posetparentnodes <- posetparenttable[[j]][i,c(1:revnumberofparentsvec[[j]][i])] prevmax<- max(P_local[posetparentnodes,li]) candmax<-scoretable[[j]][[li]][rowmaps[[j]]$backwards[nrows-rowmaps[[j]]$forward[i]+1],1] if (prevmax>candmax) { P_local[i,li]<-prevmax maxrow[i,li]<-maxrow[posetparentnodes[which.max(P_local[posetparentnodes,li])],li] } else { P_local[i,li]<-candmax maxrow[i,li]<-rowmaps[[j]]$backwards[nrows-rowmaps[[j]]$forward[i]+1] } } } } maxmatrix[[j]]<-P_local maxrows[[j]]<-maxrow } listy$maxmatrix<-maxmatrix listy$maxrow<-maxrows return(listy) } } parentsmapping<-function(parenttable,numberofparentsvec,n,updatenodes=c(1:n)) { maps<-list() mapi<-list() for (i in updatenodes) { nrows<-nrow(parenttable[[i]]) P_local <- numeric(nrows) P_localinv <- numeric(nrows) P_local[1]<-1 P_localinv[1]<-1 if (nrows>1){ for (j in 2:nrows) { parentnodes <- parenttable[[i]][j,c(1:numberofparentsvec[[i]][j])] P_local[j]<-sum(2^parentnodes)/2+1 P_localinv[P_local[j]]<-j } } mapi$forward<-P_local mapi$backwards<-P_localinv maps[[i]]<- mapi } return(maps) } poset<-function(parenttable,numberofparentsvec,rowmaps,n,updatenodes=c(1:n)){ posetparenttables<-list(length=n) for (i in updatenodes) { nrows<-nrow(parenttable[[i]]) ncols<-ncol(parenttable[[i]]) posetparenttables[[i]]<-matrix(NA,nrow=nrows,ncol=ncols) offsets<-rep(1,nrows) if(nrows>1) { for(j in nrows:2){ parentnodes<- parenttable[[i]][j,c(1:numberofparentsvec[[i]][j])] children<-rowmaps[[i]]$backwards[rowmaps[[i]]$forward[j]-2^parentnodes/2] posetparenttables[[i]][cbind(children,offsets[children])]<-j offsets[children]<-offsets[children]+1 } } } return(posetparenttables) }
ff_scoringhistory.flea_conn <- function(conn, season = 1999:2020, ...) { checkmate::assert_numeric(season, lower = 1999, upper = as.integer(format(Sys.Date(), "%Y"))) league_rules <- ff_scoring(conn) %>% dplyr::left_join( ffscrapr::nflfastr_stat_mapping %>% dplyr::filter(.data$platform == "fleaflicker") %>% dplyr::mutate(ff_event = as.integer(.data$ff_event)), by = c("event_id" = "ff_event") ) ros <- .nflfastr_roster(season) ps <- .nflfastr_offense_long(season) if("K" %in% league_rules$pos){ ps <- dplyr::bind_rows( ps, .nflfastr_kicking_long(season)) } ros %>% dplyr::inner_join(ps, by = c("gsis_id"="player_id","season")) %>% dplyr::inner_join(league_rules, by = c("metric"="nflfastr_event","pos")) %>% dplyr::mutate(points = .data$value * .data$points) %>% dplyr::group_by(.data$season, .data$week, .data$gsis_id, .data$sportradar_id) %>% dplyr::mutate(points = round(sum(.data$points, na.rm = TRUE), 2)) %>% dplyr::ungroup() %>% tidyr::pivot_wider( id_cols = c("season", "week", "gsis_id", "sportradar_id","fleaflicker_id", "player_name", "pos", "team", "points"), names_from = .data$metric, values_from = .data$value, values_fill = 0, values_fn = max ) }
dof.tr <- function(var.st){ var.st <- ifelse( var.st > 5.51, 5.51, var.st ) var.st <- ifelse( var.st < -10, -10, var.st ) vao <- exp(var.st) + 2 list(var.st = var.st, vao = vao ) }
context("test-preprocessing") cds <- load_a549() cds <- estimate_size_factors(cds) test_that("preprocessing stays the same", { cds <- preprocess_cds(cds, method = "PCA", num_dim = 20) expect_equivalent(ncol(reducedDims(cds)$PCA), 20) expect_equivalent(nrow(reducedDims(cds)$PCA), nrow(colData(cds))) expect_equivalent(reducedDims(cds)$PCA[1,1], 2.4207391, tol = 1e-5) cds <- preprocess_cds(cds, method = "LSI", num_dim = 20) expect_equivalent(ncol(reducedDims(cds)$LSI), 20) expect_equivalent(nrow(reducedDims(cds)$LSI), nrow(colData(cds))) expect_equivalent(reducedDims(cds)$LSI[1,1], 13.73796, tol = 1e-5) cds <- preprocess_cds(cds, method = "PCA", norm_method = "size_only", num_dim = 20) expect_equivalent(ncol(reducedDims(cds)$PCA), 20) expect_equivalent(nrow(reducedDims(cds)$PCA), nrow(colData(cds))) expect_equivalent(reducedDims(cds)$PCA[1,1], 2.222207, tol = 1e-5) cds <- preprocess_cds(cds, method = "LSI", norm_method = "size_only", num_dim = 20) expect_equivalent(ncol(reducedDims(cds)$LSI), 20) expect_equivalent(nrow(reducedDims(cds)$LSI), nrow(colData(cds))) expect_equivalent(reducedDims(cds)$LSI[1,1], 13.49733, tol = 1e-5) cds <- preprocess_cds(cds, method = "PCA", norm_method = "none", num_dim = 20) expect_equivalent(ncol(reducedDims(cds)$PCA), 20) expect_equivalent(nrow(reducedDims(cds)$PCA), nrow(colData(cds))) expect_equivalent(reducedDims(cds)$PCA[1,1], -2.42836, tol = 1e-5) cds <- preprocess_cds(cds, method = "LSI", norm_method = "none", num_dim = 20) expect_equivalent(ncol(reducedDims(cds)$LSI), 20) expect_equivalent(nrow(reducedDims(cds)$LSI), nrow(colData(cds))) expect_equivalent(reducedDims(cds)$LSI[1,1], 13.49733, tol = 1e-5) cds <- preprocess_cds(cds, method = "PCA", scaling=FALSE, verbose = TRUE, norm_method = "size_only", pseudo_count = 1.4, num_dim = 20) expect_equal(ncol(reducedDims(cds)$PCA), 20) expect_equal(nrow(reducedDims(cds)$PCA), nrow(colData(cds))) expect_equal(reducedDims(cds)$PCA[1,1], -24.30544, tol = 1e-5) cds <- preprocess_cds(cds, method = "PCA", num_dim = 20, residual_model_formula_str = "~PCR_plate") expect_equal(ncol(reducedDims(cds)$PCA), 20) expect_equal(nrow(reducedDims(cds)$PCA), nrow(colData(cds))) expect_equal(reducedDims(cds)$PCA[2,1], 1.982232, tol = 1e-5) cds <- preprocess_cds(cds, method = "PCA", num_dim = 20, use_genes = c(row.names(rowData(cds))[1:100])) expect_equal(ncol(reducedDims(cds)$PCA), 20) expect_equal(nrow(reducedDims(cds)$PCA), nrow(colData(cds))) expect_equal(reducedDims(cds)$PCA[2,1], -0.5347819, tol = 1e-5) })
chrome_exec <- function() { exec_locate("chrome") exec_available("chrome", error = TRUE) .exec$chrome$exec_file } firefox_exec <- function() { exec_locate("firefox") exec_available("firefox", error = TRUE) .exec$firefox$exec_file } libreoffice_exec <- function() { exec_locate("libreoffice") exec_available("libreoffice", error = TRUE) .exec$libreoffice$exec_file } node_exec <- function() { exec_locate("node") .exec$node$exec_file } npm_exec <- function() { exec_locate("npm") .exec$npm$exec_file } python_exec <- function() { exec_locate("python") exec_available("python", error = TRUE) .exec$python$exec_file } pip_exec <- function() { exec_locate("pip") exec_available("pip", error = TRUE) .exec$pip$exec_file } word_exec <- function() { exec_locate("word") exec_available("word", error = TRUE) .exec$word$exec_file } powerpoint_exec <- function() { exec_locate("powerpoint") exec_available("powerpoint", error = TRUE) .exec$powerpoint$exec_file } excel_exec <- function() { exec_locate("excel") exec_available("excel", error = TRUE) .exec$excel$exec_file }
library(testthat) library(BayesianFirstAid) test_check("BayesianFirstAid")
library(testthat) library(gluedown) library(rvest) library(glue) test_that("md_convert can optionally disallow certain HTML", { "foo" %>% md_bold() %>% md_convert(disallow = FALSE) %>% read_html() %>% html_node("strong") %>% html_text() %>% expect_equal("foo") })
slurm_call <- function(f, params = list(), jobname = NA, global_objects = NULL, add_objects = NULL, pkgs = rev(.packages()), libPaths = NULL, rscript_path = NULL, r_template = NULL, sh_template = NULL, slurm_options = list(), submit = TRUE) { if (!is.function(f)) { stop("first argument to slurm_call should be a function") } if (!missing(params)) { if (!is.list(params)) { stop("second argument to slurm_call should be a list") } if (is.null(names(params)) || (!is.primitive(f) && !"..." %in% names(formals(f)) && any(!names(params) %in% names(formals(f))))) { stop("names of params must match arguments of f") } } if (!missing("add_objects")) { warning("Argument add_objects is deprecated; use global_objects instead.", .call = FALSE) global_objects <- add_objects } if(is.null(r_template)) { r_template <- system.file("templates/slurm_run_single_R.txt", package = "rslurm") } if(is.null(sh_template)) { sh_template <- system.file("templates/submit_single_sh.txt", package = "rslurm") } jobname <- make_jobname(jobname) tmpdir <- paste0("_rslurm_", jobname) dir.create(tmpdir, showWarnings = FALSE) saveRDS(params, file = file.path(tmpdir, "params.RDS")) saveRDS(f, file = file.path(tmpdir, "f.RDS")) if (!is.null(global_objects)) { save(list = global_objects, file = file.path(tmpdir, "add_objects.RData"), envir = environment(f)) } template_r <- readLines(r_template) script_r <- whisker::whisker.render(template_r, list(pkgs = pkgs, add_obj = !is.null(global_objects), libPaths = libPaths)) writeLines(script_r, file.path(tmpdir, "slurm_run.R")) template_sh <- readLines(sh_template) slurm_options <- format_option_list(slurm_options) if (is.null(rscript_path)){ rscript_path <- file.path(R.home("bin"), "Rscript") } script_sh <- whisker::whisker.render(template_sh, list(jobname = jobname, flags = slurm_options$flags, options = slurm_options$options, rscript = rscript_path)) writeLines(script_sh, file.path(tmpdir, "submit.sh")) if (submit && system('squeue', ignore.stdout = TRUE)) { submit <- FALSE cat("Cannot submit; no Slurm workload manager found\n") } if (submit) { jobid <- submit_slurm_job(tmpdir) } else { jobid <- NA cat(paste("Submission scripts output in directory", tmpdir,"\n")) } slurm_job(jobname, jobid, 1) }
step_lemma <- function(recipe, ..., role = NA, trained = FALSE, columns = NULL, skip = FALSE, id = rand_id("lemma")) { add_step( recipe, step_lemma_new( terms = enquos(...), role = role, trained = trained, columns = columns, skip = skip, id = id ) ) } step_lemma_new <- function(terms, role, trained, columns, skip, id) { step( subclass = "lemma", terms = terms, role = role, trained = trained, columns = columns, skip = skip, id = id ) } prep.step_lemma <- function(x, training, info = NULL, ...) { col_names <- recipes_eval_select(x$terms, training, info) check_list(training[, col_names]) step_lemma_new( terms = x$terms, role = x$role, trained = TRUE, columns = col_names, skip = x$skip, id = x$id ) } bake.step_lemma <- function(object, new_data, ...) { col_names <- object$columns for (i in seq_along(col_names)) { variable <- new_data[, col_names[i], drop = TRUE] if (is.null(maybe_get_lemma(variable))) { rlang::abort(paste0( "`", col_names[i], "` doesn't have a lemma attribute. ", "Make sure the tokenization step includes ", "lemmatization." )) } else { lemma_variable <- tokenlist_lemma(variable) } new_data[, col_names[i]] <- tibble(lemma_variable) } new_data <- factor_to_text(new_data, col_names) as_tibble(new_data) } print.step_lemma <- function(x, width = max(20, options()$width - 30), ...) { cat("Lemmatization for ", sep = "") printer(x$columns, x$terms, x$trained, width = width) invisible(x) } tidy.step_lemma <- function(x, ...) { if (is_trained(x)) { res <- tibble(terms = unname(x$columns)) } else { term_names <- sel2char(x$terms) res <- tibble(terms = term_names) } res$id <- x$id res } required_pkgs.step_lemma <- function(x, ...) { c("textrecipes") }
runExample <- function(example) { validExamples <- paste0( 'Valid examples are: "', paste(list.files(system.file("examples", package = "shinyjs")), collapse = '", "'), '"') if (missing(example) || !nzchar(example)) { message( 'Please run `runExample()` with a valid example app as an argument.\n', validExamples) return(invisible(NULL)) } appDir <- system.file("examples", example, package = "shinyjs") if (appDir == "") { errMsg(sprintf("could not find example app `%s`\n%s", example, validExamples)) } shiny::runApp(appDir, display.mode = "normal") }
student = read.csv('data/student1.csv') str(student) student$dob = as.Date(student$dob, format = "%d-%b-%y") str(student) student$age = round(as.numeric((Sys.Date() - student$dob)/365 )) head(student) smp_size <- floor(0.80 * nrow(student)) smp_size set.seed(123) train_ind <- sample(seq_len(nrow(student)), size = smp_size) train_ind train1 <- student[train_ind, ] head(train1) str(train1) test1 <- student[-train_ind, ] head(test1) str(test1) nrow(train1);nrow(test1) x_train = train1[,c('age','class10','sem1')] head(x_train) y_train = train1$btechmarks head(y_train) x_test = train1[,c('age','class10','sem1')] head(x_test)
select_last_nodes_created <- function(graph) { time_function_start <- Sys.time() fcn_name <- get_calling_fcn() if (graph_object_valid(graph) == FALSE) { emit_error( fcn_name = fcn_name, reasons = "The graph object is not valid") } if (graph_contains_nodes(graph) == FALSE) { emit_error( fcn_name = fcn_name, reasons = "The graph contains no nodes") } graph_transform_steps <- graph$graph_log %>% dplyr::mutate(step_created_nodes = dplyr::if_else( function_used %in% node_creation_functions(), 1, 0)) %>% dplyr::mutate(step_deleted_nodes = dplyr::if_else( function_used %in% node_deletion_functions(), 1, 0)) %>% dplyr::mutate(step_init_with_nodes = dplyr::if_else( function_used %in% graph_init_functions() & nodes > 0, 1, 0)) %>% dplyr::filter( step_created_nodes == 1 | step_deleted_nodes == 1 | step_init_with_nodes) %>% dplyr::select(-version_id, -time_modified, -duration) if (nrow(graph_transform_steps) > 0) { if (graph_transform_steps %>% utils::tail(1) %>% dplyr::pull(step_deleted_nodes) == 1) { emit_error( fcn_name = fcn_name, reasons = "The previous graph transformation function resulted in a removal of nodes") } else { if (nrow(graph_transform_steps) > 1) { number_of_nodes_created <- (graph_transform_steps %>% dplyr::select(nodes) %>% utils::tail(2) %>% dplyr::pull(nodes))[2] - (graph_transform_steps %>% dplyr::select(nodes) %>% utils::tail(2) %>% dplyr::pull(nodes))[1] } else { number_of_nodes_created <- graph_transform_steps %>% dplyr::pull(nodes) } } node_id_values <- graph$nodes_df %>% dplyr::select(id) %>% utils::tail(number_of_nodes_created) %>% dplyr::pull(id) } else { node_id_values <- NA } if (!any(is.na(node_id_values))) { graph <- suppressMessages( select_nodes( graph = graph, nodes = node_id_values)) graph$graph_log <- graph$graph_log[-nrow(graph$graph_log),] %>% add_action_to_log( version_id = nrow(graph$graph_log) + 1, function_used = fcn_name, time_modified = time_function_start, duration = graph_function_duration(time_function_start), nodes = nrow(graph$nodes_df), edges = nrow(graph$edges_df)) if (graph$graph_info$write_backups) { save_graph_as_rds(graph = graph) } } graph }
mdbeta <- function(D=1,rangebeta,ngridbeta,a=5,b=25,r=0.00025,a0=0.5,b0=0.5,plot=FALSE,log=FALSE) { if(D==1) { mbetas = seq(rangebeta[1],rangebeta[2],length=ngridbeta) res = rep(NA,ngridbeta) funcintegrated0 <- function(tau,betai) { C = b^a*gamma(a+0.5)/((2*pi)^(D/2+0.5)*gamma(a)) ret = C*(b+0.5*tau^2/r)^(-a-0.5)/abs(tau)*exp(-betai*betai/tau^2) return((b0/(a0+b0))*ret) } funcintegrated1 <- function(tau,betai) { C = b^a*gamma(a+0.5)/((2*pi)^(D/2+0.5)*gamma(a)) ret = C*(b+0.5*tau^2)^(-a-0.5)/abs(tau)*exp(-betai*betai/tau^2) return((a0/(a0+b0))*ret) } for(betai1 in 1:ngridbeta) { temp1 = integrate(funcintegrated0,0,Inf,betai=mbetas[betai1])$val temp2 = integrate(funcintegrated1,0,Inf,betai=mbetas[betai1])$val res[betai1] = temp1+temp2 rm(temp1,temp2) } if(plot && !log) { pl <- function() {plot(mbetas,res,type="l",xlab=expression(paste(beta,sep="")),ylab=expression(paste(p(beta),sep="")), main=expression(paste("Marginal density ",p(beta),sep=""))) } return(list(betas=mbetas,val=res,pl=pl)) } else if (plot && log) { pl <- function() {plot(mbetas,res,type="l",xlab=expression(paste(beta,sep="")),ylab=expression(paste(p(beta),sep="")), main=expression(paste("Marginal density ",p(beta),sep=""))) } logpl <- function() {plot(mbetas,logres,type="l",xlab=expression(paste(beta,sep="")),ylab=expression(paste(log(p(beta)),sep="")), main=expression(paste("Log-marginal density ",log(p(beta)),sep=""))) } logres = log(res) return(list(betas=mbetas,val=res,pl=pl,logval=logres,logpl=logpl)) } else if (!plot && log) { logres = log(res) return(list(betas=mbetas,val=res,logval=logres)) } else { return(list(betas=mbetas,val=res))} } else if(D==2) { betas = seq(rangebeta[1],rangebeta[2],length=ngridbeta) mbetas = expand.grid(betas,betas) mbetas = matrix(as.data.frame(t(mbetas)),nrow=ngridbeta) res = matrix(NA,nrow=dim(mbetas)[1],ncol=dim(mbetas)[2]) funcintegrated0 <- function(tau,betai) { C = b^a*gamma(a+0.5)/((2*pi)^(D/2+0.5)*gamma(a)) ret = C*(b+0.5*tau^2/r)^(-a-0.5)/abs(tau)*exp(-sum(betai*betai)/tau^2) return((b0/(a0+b0))*ret) } funcintegrated1 <- function(tau,betai) { C = b^a*gamma(a+0.5)/((2*pi)^(D/2+0.5)*gamma(a)) ret = C*(b+0.5*tau^2)^(-a-0.5)/abs(tau)*exp(-sum(betai*betai)/tau^2) return((a0/(a0+b0))*ret) } for(rowi in 1:ngridbeta) { for(coli in 1:ngridbeta) { temp1 = integrate(funcintegrated0,0,Inf,betai=mbetas[rowi,coli][[1]])$val temp2 = integrate(funcintegrated1,0,Inf,betai=mbetas[rowi,coli][[1]])$val res[rowi,coli] = temp1+temp2 rm(temp1,temp2) } } if(plot && !log) { pl <- function() {contour(betas,betas,res,xlab=expression(paste(beta[1],sep="")),ylab=expression(paste(beta[2],sep="")), main=expression(paste("Marginal density ",p(beta[1],beta[2]),sep="")),drawlabels=FALSE) } return(list(betas=betas,val=res,pl=pl)) } else if (plot && log) { pl <- function() {contour(betas,betas,res,xlab=expression(paste(beta[1],sep="")),ylab=expression(paste(beta[2],sep="")), main=expression(paste("Marginal density ",p(beta[1],beta[2]),sep="")),drawlabels=FALSE) } logpl <- function() {contour(betas,betas,log(res),xlab=expression(paste(beta[1],sep="")),ylab=expression(paste(beta[2],sep="")), main=expression(paste("Log-marginal density ",log(p(beta[1],beta[2])),sep="")),drawlabels=FALSE) } logres = log(res) return(list(betas=betas,val=res,pl=pl,logval=logres,logpl=logpl)) } else if (!plot && log) { logres = log(res) return(list(betas=betas,val=res,logval=logres)) } else { return(list(betas=betas,val=res))} } else { stop("D has to be either 1 or 2.") } }
`propdiff.freq0` <- function(len, c1, d1, c2, d2, level=0.95) { propdiff.freq(len, c1/(c1+d1), c2/(c2+d2), level) }
WrapCircular <- function(x, circular = "lon", wrap = c(0, 360)) { warningf("'WrapCircular' is deprecated, use ggperiodic::wrap instead.") checks <- makeAssertCollection() assertDataFrame(x, add = checks) assertCharacter(circular, len = 1, any.missing = FALSE, add = checks) assertNumeric(wrap, len = 2) reportAssertions(checks) if (nrow(x) == 0) return(x) x <- data.table::as.data.table(x) data.table::setorderv(x, circular) res <- ggplot2::resolution(x[[circular]]) m <- min(x[[circular]]) M <- max(x[[circular]]) right <- trunc((max(wrap) - M)/res) left <- trunc((min(wrap) - m)/res) x.new <- seq(m + left*res, M + right*res, by = res) right <- right + data.table::uniqueN(x[[circular]]) - 1 index <- seq(left, right) index <- index %% length(unique(x[[circular]])) + 1 x.old <- unique(x[[circular]])[index] x.new <- data.table::data.table(x.old, x.new) colnames(x.new) <- c(circular, paste0(circular, "new")) y <- x[x.new, on = circular, allow.cartesian = TRUE] data.table::set(y, NULL, circular, NULL ) data.table::setnames(y, paste0(circular, "new"), circular) return(y) } RepeatCircular <- function(x, circular = "lon", max = NULL) { .Deprecated("WrapCircular") }
get.2dfcom <- function(object, dfcom = NULL) { if (rlang::is_bare_numeric(dfcom, 1) && is.finite(dfcom)) { return(max(dfcom, 1L)) } else dfcom <- NULL if (!inherits(object, "mimira")) stop("The input for the object must be an object of the 'mimira' class.") glanced <- try(summary(mice::getfit(object), type = "glance"), silent = TRUE) if (!inherits(glanced, "try-error")) { if ("df.residual" %in% names(glanced)) { dfcom <- min(glanced$df.residual) } else { model <- mice::getfit(object, 1L) if (inherits(model, "coxph") && "nevent" %in% names(glanced)) { dfcom <- min(glanced$nevent - length(coef(model))) } else { if (!"nobs" %in% names(glanced)) { glanced$nobs <- min(lengths(lapply(object$analyses, stats::residuals)), na.rm = TRUE) } dfcom <- min(glanced$nobs - length(coef(model))) } } } if (is.null(dfcom) || !is.finite(dfcom)) dfcom <- 999999 dfcom }
"hybrid_phe"
tar_cue_skip <- function( condition, command = TRUE, depend = TRUE, format = TRUE, iteration = TRUE, file = TRUE ) { mode <- if_any(as.logical(condition), "never", "thorough") targets::tar_cue( mode = mode, command = command, depend = depend, format = format, iteration = iteration, file = file ) }
setGeneric(name="BinSeg", def=function(H, thresh="universal", q=0.99, p= 1, z=NULL,start.values=c(0.9,0.6),dampen.factor="auto",epsilon= 0.00001,LOG=TRUE,process="acd",acd_p=0,acd_q=1,do.parallel=2) { standardGeneric("BinSeg") } ) setMethod(f="BinSeg", definition = function(H, thresh="universal", q=0.99, p= 1, z=NULL,start.values=c(0.9,0.6),dampen.factor="auto",epsilon= 0.00001,LOG=TRUE,process="acd",acd_p=0,acd_q=1,do.parallel=2) { if (thresh == "universal"){ thresh = pi_thresh(N=length(H),q=q,process=process)*log(length(H)) } else if (thresh == "boot"){ thresh = boot_thresh(H=H,q=q,r=100,p=p,start.values=start.values,process=process,do.parallel=do.parallel,dampen.factor=dampen.factor,epsilon= epsilon,LOG=LOG,acd_p=acd_p,acd_q=acd_q) } if (is.null(z)) z=Z_trans(H=H,start.values = start.values,dampen.factor = dampen.factor,epsilon = epsilon,LOG = LOG,process = process,acd_p = acd_p,acd_q = acd_q) cp.est = BinSegTree(z,thresh=thresh,p=p)$breakpoints out = list() out[[1]] = cp.est out[[2]] = z return(out) })
anthroplus_zscores <- function(sex, age_in_months = NA_real_, oedema = NA_character_, height_in_cm = NA_real_, weight_in_kg = NA_real_) { stopifnot(all(tolower(sex) %in% c("1", "2", "f", "m", NA_character_))) stopifnot(all(tolower(oedema) %in% c("1", "2", "y", "n", NA_character_))) stopifnot(all(age_in_months >= 0, na.rm = TRUE)) stopifnot(all(height_in_cm >= 0, na.rm = TRUE)) stopifnot(all(weight_in_kg >= 0, na.rm = TRUE)) input <- data.frame(sex, age_in_months, oedema, height_in_cm, weight_in_kg) cbmi <- compute_bmi(input$weight_in_kg, input$height_in_cm) coedema <- anthro_api_standardize_oedema_var(input$oedema) csex <- anthro_api_standardize_sex_var(input$sex) zhfa <- zscore_height_for_age( sex = csex, age_in_months = input$age_in_months, height = input$height_in_cm ) zwfa <- zscore_weight_for_age( sex = csex, age_in_months = input$age_in_months, oedema = coedema, weight = input$weight_in_kg ) zbfa <- zscore_bmi_for_age( sex = csex, age_in_months = input$age_in_months, oedema = coedema, bmi = cbmi ) zhfa <- round(zhfa, digits = 2L) zwfa <- round(zwfa, digits = 2L) zbfa <- round(zbfa, digits = 2L) fhfa <- flag_scores(zhfa, !is.na(zhfa) & abs(zhfa) > 6) fwfa <- flag_scores(zwfa, !is.na(zwfa) & (zwfa > 5 | zwfa < -6)) fbfa <- flag_scores(zbfa, !is.na(zbfa) & abs(zbfa) > 5) data.frame( age_in_months, csex, coedema, cbmi, zhfa, zwfa, zbfa, fhfa, fwfa, fbfa ) } flag_scores <- function(zscores, condition) { stopifnot(length(zscores) == length(condition)) flags <- rep.int(0L, length(zscores)) flags[condition] <- 1L if (anyNA(zscores)) { flags[is.na(zscores)] <- NA_integer_ } flags } compute_bmi <- function(weight, height) { weight / ((height / 100)^2) } WFA_UPPER_AGE_LIMIT <- 120 zscore_weight_for_age <- function(sex, age_in_months, oedema, weight) { weight[oedema == "y"] <- NA_real_ zscore_indicator(sex, age_in_months, weight, wfa_growth_standards, age_upper_bound = WFA_UPPER_AGE_LIMIT, zscore_fun = anthro_api_compute_zscore_adjusted ) } zscore_height_for_age <- function(sex, age_in_months, height) { zscore_indicator(sex, age_in_months, height, hfa_growth_standards, age_upper_bound = 228, zscore_fun = anthro_api_compute_zscore ) } zscore_bmi_for_age <- function(sex, age_in_months, oedema, bmi) { bmi[oedema == "y"] <- NA_real_ zscore_indicator(sex, age_in_months, bmi, bfa_growth_standards, age_upper_bound = 228, zscore_fun = anthro_api_compute_zscore_adjusted ) } zscore_indicator <- function(sex, age_in_months, measure, growth_standards, age_upper_bound, zscore_fun) { low_age <- trunc(age_in_months) upp_age <- trunc(age_in_months + 1) diff_age <- age_in_months - low_age data <- data.frame( sex, low_age, upp_age, ordering = seq_along(sex) ) match_low_age <- merge(data, growth_standards, by.x = c("sex", "low_age"), by.y = c("sex", "age"), all.x = TRUE, sort = FALSE ) match_upp_age <- merge(data, growth_standards, by.x = c("sex", "upp_age"), by.y = c("sex", "age"), all.x = TRUE, sort = FALSE ) match_low_age <- match_low_age[order(match_low_age$ordering), ] match_upp_age <- match_upp_age[order(match_upp_age$ordering), ] m <- match_low_age[["m"]] l <- match_low_age[["l"]] s <- match_low_age[["s"]] is_diff_age_pos <- !is.na(diff_age) & diff_age > 0 if (any(is_diff_age_pos)) { adjust_param <- function(x) { x_name <- as.character(substitute(x)) x[is_diff_age_pos] + diff_age[is_diff_age_pos] * (match_upp_age[[x_name]][is_diff_age_pos] - x[is_diff_age_pos]) } m[is_diff_age_pos] <- adjust_param(m) l[is_diff_age_pos] <- adjust_param(l) s[is_diff_age_pos] <- adjust_param(s) } zscores <- zscore_fun(measure, m, l, s) has_invalid_valid_age <- is.na(age_in_months) | !(age_in_months >= 61 & age_in_months <= age_upper_bound) zscores[has_invalid_valid_age] <- NA_real_ zscores }
oceania <- function(title = "Oceania", coords = NULL) { select_proj <- '+proj=moll' world <- rnaturalearth::ne_countries(continent = "Oceania", scale = "medium", returnclass = "sf") %>% sf::st_transform(select_proj) num <- nrow(world) my_data <- data.frame( name = world$name, Numbers = 1 : num ) plot_data <- merge(world, my_data, by = "name", all.x = TRUE) if (!is.null( coords ) ) { d_points <- data.frame(long = coords[, 1] , lat = coords[, 2]) %>% st_as_sf(coords = c("long", "lat"), crs = 4326) %>% st_transform(crs = select_proj) } map_theme <- theme( plot.title = element_text(color = "chartreuse", size = 16, face = "bold", hjust = 0.5), axis.title.x = element_text(color = "limegreen", size = 14, face = "bold.italic"), axis.title.y = element_text(color = "limegreen", size = 14, face = "bold.italic"), plot.background = element_rect(fill = "black"), panel.grid.major = element_line(colour = "black", size = 0.5, linetype = 3), panel.background = element_rect(fill = "honeydew2", colour = "honeydew2", size = 0.8, linetype = "solid"), axis.line = element_line(size = 1.5, colour = "white"), axis.ticks = element_line(size = 2, colour = "white"), axis.text.x = element_text( size = 14, colour = "white"), axis.text.y = element_text( size = 14, colour = "white"), legend.background = element_rect(fill = "gray", size = 0.5, linetype = "solid") ) ggplot() + geom_sf(data = plot_data, aes(fill = my_data$Numbers)) + xlim(c(10000000, 17596910)) + ylim(c(-6361366, 0)) + {if (!is.null( coords ) ) geom_sf(data = d_points, color = "black", size = 1, shape = 23)} + ggtitle(title)+ labs(fill = "Number") + map_theme + scale_fill_gradientn(colors = heat.colors(num) ) }
build.lut <- function(LEVEL=6, REPSIM=5, RAJZ=FALSE, CIM="", ENV="data") { opar <- par(no.readonly =TRUE) on.exit(par(opar)) DIFF <- rep(0, 110) dim(DIFF) <- c(10, 11) IX <- 0 IY <- 0 for(luprho in seq(0, 0.2499999, 0.0277777)) { RHO <- luprho IX <- IX + 1 IY <- 0 for(lupcprop in seq(0.1, 0.9, 0.1)) { CPROP <- lupcprop IY <- IY + 1 for(lup in 1:REPSIM) { RESULTT <- wtest.run(REPSIM = REPSIM, LEVEL = LEVEL, RHO= RHO, CPROP = CPROP, RAJZ = RAJZ, CIM = CIM, ENV=ENV) } DIFF[IX, IY] <- median(RESULTT[1, ]) - median(RESULTT[2,]) } } return(DIFF) }
to_char_uneval_matrix <- function(x) { ex <- unlist(lapply(x, function(y) deparse(y$expr, width.cutoff = 500))) ex[ex == "0"] <- "" matrix(ex, byrow = TRUE, ncol = get_matrix_order(x), dimnames = list(get_state_names(x), get_state_names(x))) } print.uneval_matrix <- function(x, ...) { cat(sprintf( "A transition matrix, %i states.\n\n", get_matrix_order(x) )) res <- to_char_uneval_matrix(x) print(res, quote = FALSE, ...) } print.eval_matrix <- function(x, ...) { cat(sprintf( "An evaluated transition matrix, %i states, %i markov cycles.\n\n", get_matrix_order(x), length(x) )) cat("State names:\n\n") cat(get_state_names(x), sep = "\n") cat("\n") print(head(x, ...)) if (length(head(x, ...)) < length(x)) cat("...\n") } plot.uneval_matrix <- function(x, relsize = .75, shadow.size = 0, latex = TRUE, ...) { if (! requireNamespace("diagram")) { stop("'diagram' package required for transition plot.") } op <- graphics::par(mar = c(0, 0, 0, 0)) res <- to_char_uneval_matrix(x) diagram::plotmat( t(res[rev(seq_len(nrow(res))), rev(seq_len(nrow(res)))]), relsize = relsize, shadow.size = shadow.size, absent = "", latex = latex, ... ) graphics::par(op) } reindent_transition <- function(x, print = TRUE) { if (! requireNamespace("stringr")) { stop("Package 'stringer' required.") } n_col <- get_matrix_order(x) sn <- paste0('"', get_state_names(x), '"') cells <- to_text_dots(x, name = FALSE) max_char <- pmax( nchar(sn), apply(matrix(cells, ncol = n_col, byrow = TRUE), 2, function (x) max(nchar(x))) ) sn_pad <- stringr::str_pad( string = sn, width = max_char, side = "right" ) cells_pad <- stringr::str_pad( string = cells, width = rep(max_char, length(sn)), side = "right" ) res <- do.call( stringr::str_c, c(split(cells_pad, rep(seq_len(n_col), n_col)), sep = ", ", collapse = ",\n")) res <- paste0( "state_names = c(\n", paste(sn_pad, collapse = ", "), ")\n", res ) if (print) { cat(res) } invisible(res) }
library(hpiR) library(testthat) sales <- get(data(seattle_sales)) context('rtCreateTrans()') test_that("Can take a functional 'trans_df' object", { sales_df <- dateToPeriod(trans_df = sales, date = 'sale_date', periodicity = 'monthly') expect_is(rt_df <- rtCreateTrans(trans_df=sales_df, prop_id='pinx', trans_id='sale_id', price='sale_price'), 'rtdata') expect_true(nrow(rt_df) == 5102) }) test_that("Can create own salesdf object", { expect_is(rt_df <- rtCreateTrans(trans_df=sales, prop_id='pinx', trans_id='sale_id', price='sale_price', date='sale_date', periodicity='monthly'), 'rtdata') expect_true(nrow(rt_df) == 5102) }) test_that("Can use min/max dates own salesdf object", { expect_is(rt_df <- rtCreateTrans(trans_df=sales, prop_id='pinx', trans_id='sale_id', price='sale_price', date='sale_date', periodicity='monthly', min_date = as.Date('2012-03-21')), 'rtdata') expect_true(nrow(rt_df) == 5102) expect_is(rt_df <- rtCreateTrans(trans_df=sales, prop_id='pinx', trans_id='sale_id', price='sale_price', date='sale_date', periodicity='monthly', min_date = as.Date('2012-03-21'), adj_type='clip'), 'rtdata') expect_true(nrow(rt_df) == 2827) expect_is(rt_df <- rtCreateTrans(trans_df=sales, prop_id='pinx', trans_id='sale_id', price='sale_price', date='sale_date', periodicity='monthly', max_date = as.Date('2015-03-21')), 'rtdata') expect_true(nrow(rt_df) == 5102) expect_is(rt_df <- rtCreateTrans(trans_df=sales, prop_id='pinx', trans_id='sale_id', price='sale_price', date='sale_date', periodicity='monthly', max_date = as.Date('2014-03-21'), adj_type='clip'), 'rtdata') expect_true(nrow(rt_df) == 1148) }) test_that("Sequence only (seq_only) option works", { expect_is(rt_df <- rtCreateTrans(trans_df=sales, prop_id='pinx', trans_id='sale_id', price='sale_price', date='sale_date', periodicity='monthly', seq_only = TRUE), 'rtdata') expect_true(nrow(rt_df) == 4823) }) test_that("min_period_dist argument works", { expect_is(rt_df <- rtCreateTrans(trans_df=sales, prop_id='pinx', trans_id='sale_id', price='sale_price', date='sale_date', periodicity='monthly', seq_only = TRUE, min_period_dist = 12), 'rtdata') expect_true(nrow(rt_df) == 3795) }) test_that("Fails if sales creation fails", { expect_error(rt_df <- rtCreateTrans(trans_df=sales, prop_id='pinx', trans_id='sale_id', price='sale_price', date='sale_price', periodicity='monthly')) expect_error(rt_df <- rtCreateTrans(trans_df=sales, prop_id='pinx', trans_id='sale_id', price='sale_price', date='sale_date', periodicity='mocnthly')) }) sales_df <- dateToPeriod(trans_df = sales, date = 'sale_date', periodicity = 'monthly') test_that("Fails if bad arguments fails", { expect_error(rt_df <- rtCreateTrans(trans_df=sales_df, prop_id='pinxx', trans_id='sale_id', price='sale_price')) expect_error(rt_df <- rtCreateTrans(trans_df=sales_df, prop_id='pinx', trans_id='salex_id', price='sale_price')) expect_error(rt_df <- rtCreateTrans(trans_df=sales_df, prop_id='pinx', trans_id='sale_id', price='salex_price')) }) test_that("Returns NULL if no repeat sales", { expect_is(rt_df <- rtCreateTrans(trans_df=sales_df[!duplicated(sales_df$prop_id),], prop_id='pinx', trans_id='sale_id', price='sale_price'), "NULL") expect_is(rt_df <- rtCreateTrans(trans_df=sales_df[1:3, ], prop_id='pinx', trans_id='sale_id', price='sale_price'), "NULL") }) context('rtTimeMatrix()') rt_df <- rtCreateTrans(trans_df=sales_df, prop_id='pinx', trans_id='sale_id', price='sale_price') test_that('Time matrix operates properly', { expect_is(time_matrix <- rtTimeMatrix(rt_df), 'timematrix') expect_error(time_matrix <- rtTimeMatrix(sales_df)) expect_true(nrow(rtTimeMatrix(rt_df[1:2000,])) == 2000) expect_true(ncol(rtTimeMatrix(rt_df[1:2000,])) == nrow(attr(rt_df, 'period_table')) - 1) }) context('hpiModel.rtdata(): Prior to rtModel() call') test_that('hpiModel.rtdata works in simplest format',{ expect_is(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = TRUE), 'hpimodel') }) test_that('"log_dep" argument works both ways',{ expect_true(hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = TRUE)$model_obj$fitted.values[1] < 1) expect_true(hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = FALSE)$model_obj$fitted.values[1] > 10000) }) test_that('Check for zero or negative prices works',{ rt_dfx <- rt_df rt_dfx$price_1[1] <- 0 expect_error(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_dfx, estimator = 'base', log_dep = TRUE)) expect_is(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_dfx, estimator = 'base', log_dep = FALSE), 'hpimodel') rt_dfx$price_1[1] <- NA_integer_ expect_error(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_dfx, estimator = 'base', log_dep = TRUE)) expect_error(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_dfx, estimator = 'base', log_dep = FALSE)) rt_dfx$price_1[1] <- Inf expect_error(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_dfx, estimator = 'base', log_dep = TRUE)) expect_error(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_dfx, estimator = 'base', log_dep = FALSE)) }) test_that('Check for estimator type works',{ expect_true(hpiModel(model_type = 'rt', hpi_df = rt_df)$estimator == 'base') expect_true(hpiModel(model_type = 'rt', hpi_df = rt_df, estimator='xxxx')$estimator == 'base') expect_true(hpiModel(model_type = 'rt', hpi_df = rt_df, estimator='robust')$estimator == 'robust') expect_true(hpiModel(model_type = 'rt', hpi_df = rt_df, estimator='weighted')$estimator == 'weighted') }) context('rtModel()') time_matrix <- rtTimeMatrix(rt_df) price_diff_l <- log(rt_df$price_2) - log(rt_df$price_1) price_diff <- rt_df$price_2 - rt_df$price_1 test_that('Check for errort with bad arguments',{ expect_error(rt_model <- rtModel(rt_df = sales, time_matrix = time_matrix, price_diff = price_diff_l, estimator=structure('base', class='base'))) expect_error(rt_model <- rtModel(rt_df = rt_df, time_matrix = sales, price_diff = price_diff_l, estimator=structure('robust', class='robust'))) expect_error(rt_model <- rtModel(rt_df = rt_df, time_matrix = time_matrix, price_diff = price_diff_l[-1], estimator=structure('weighted', class='weighted'))) expect_error(rt_model <- rtModel(rt_df = rt_df, time_matrix = time_matrix, price_diff = price_diff, estimator=structure('base', class='xxx'))) }) test_that('Performance with sparse data',{ rt_df200 <- rt_df[1:200, ] time_matrix200 <- rtTimeMatrix(rt_df200) price_diff_l200 <- log(rt_df200$price_2) - log(rt_df200$price_1) price_diff200 <- rt_df200$price_2 - rt_df200$price_1 expect_is(rt_model <- rtModel(rt_df = rt_df200, time_matrix = time_matrix200, price_diff = price_diff_l200, estimator=structure('base', class='base')), 'rtmodel') expect_is(rt_model <- rtModel(rt_df = rt_df200, time_matrix = time_matrix200, price_diff = price_diff_l200, estimator=structure('robust', class='robust')), 'rtmodel') expect_is(rt_model <- rtModel(rt_df = rt_df200, time_matrix = time_matrix200, price_diff = price_diff200, estimator=structure('weighted', class='weighted')), 'rtmodel') rt_df20 <- rt_df[1:20, ] time_matrix20 <- rtTimeMatrix(rt_df20) price_diff_l20 <- log(rt_df20$price_2) - log(rt_df20$price_1) price_diff20 <- rt_df20$price_2 - rt_df20$price_1 expect_is(rt_model <- rtModel(rt_df = rt_df20, time_matrix = time_matrix20, price_diff = price_diff_l20, estimator=structure('base', class='base')), 'rtmodel') expect_warning(rt_model <- rtModel(rt_df = rt_df20, time_matrix = time_matrix20, price_diff = price_diff_l20, estimator=structure('robust', class='robust'))) expect_is(rt_model <- rtModel(rt_df = rt_df20, time_matrix = time_matrix20, price_diff = price_diff20, estimator=structure('weighted', class='weighted')), 'rtmodel') }) context('hpiModel.rtdata(): after rtModel()') test_that('hpiModel.rtdata works in both trim_model cases', { expect_is(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = TRUE, trim_model=TRUE), 'hpimodel') expect_is(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = TRUE, trim_model=FALSE), 'hpimodel') expect_is(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = FALSE, trim_model=TRUE), 'hpimodel') expect_is(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = FALSE, trim_model=FALSE), 'hpimodel') expect_is(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'weighted', log_dep = TRUE, trim_model=FALSE), 'hpimodel') expect_is(rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'robust', log_dep = FALSE, trim_model=TRUE), 'hpimodel') expect_true(is.null(hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'weighted', log_dep = TRUE, trim_model=TRUE)$model_obj$qr)) expect_true(!is.null(hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'weighted', log_dep = TRUE, trim_model=FALSE)$model_obj$qr)) }) test_that('hpiModel.rtdata outputs are correct', { rt_model_base <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = TRUE, trim_model=TRUE) rt_model_robust <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'robust', log_dep = TRUE, trim_model=FALSE) rt_model_wgt <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'weighted', log_dep = FALSE, trim_model=TRUE) set.seed(123) rt_model_wwgt <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'weighted', log_dep = FALSE, weights = runif(nrow(rt_df), 0, 1), trim_model=TRUE) expect_is(rt_model_base$estimator, 'base') expect_is(rt_model_robust$estimator, 'robust') expect_is(rt_model_wgt$estimator, 'weighted') expect_is(rt_model_base$coefficients, 'data.frame') expect_is(rt_model_robust$coefficients, 'data.frame') expect_is(rt_model_wgt$coefficients, 'data.frame') expect_true(nrow(rt_model_base$coefficients) == 84) expect_true(max(rt_model_robust$coefficients$time) == 84) expect_true(rt_model_wgt$coefficients$coefficient[1] == 0) expect_false(identical( rt_model_wgt$coefficients$coefficient, rt_model_wwgt$coefficients$coefficient)) expect_is(rt_model_base$model_obj, 'rtmodel') expect_is(rt_model_robust$model_obj, 'rtmodel') expect_is(rt_model_wgt$model_obj, 'rtmodel') expect_true(is.null(rt_model_base$model_spec)) expect_true(is.null(rt_model_robust$model_spec)) expect_true(is.null(rt_model_wgt$model_spec)) expect_true(round(rt_model_base$base_price, 0) == 427785) expect_true(round(rt_model_robust$base_price, 0) == 427785) expect_true(round(rt_model_wgt$base_price, 0) == 427785) expect_is(rt_model_base$periods, 'data.frame') expect_true(nrow(rt_model_base$periods) == 84) expect_is(rt_model_robust$periods, 'data.frame') expect_true(nrow(rt_model_robust$periods) == 84) expect_is(rt_model_wgt$periods, 'data.frame') expect_true(nrow(rt_model_wgt$periods) == 84) expect_true(rt_model_base$approach == 'rt') expect_true(rt_model_robust$approach == 'rt') expect_true(rt_model_wgt$approach == 'rt') }) context('modelToIndex') rt_model <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = TRUE, trim_model=TRUE) test_that('modelToIndex works', { expect_is(modelToIndex(rt_model), 'hpiindex') }) test_that('modelToIndex works with other estimatort and options', { expect_is(modelToIndex(hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'robust', log_dep = TRUE, trim_model=TRUE)), 'hpiindex') expect_is(modelToIndex(hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'weighted', log_dep = TRUE, trim_model=TRUE)), 'hpiindex') expect_is(modelToIndex(hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'robust', log_dep = FALSE, trim_model=TRUE)), 'hpiindex') expect_is(modelToIndex(hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'weighted', log_dep = TRUE, trim_model=FALSE)), 'hpiindex') }) test_that('modelToIndex fails with an error',{ expect_error(modelToIndex(model_obj = 'abc')) }) test_that('modelToIndex imputes properly, BASE model, LogDEP',{ model_base <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = TRUE, trim_model=TRUE) model_ex <- model_base model_ex$coefficients$coefficient[2] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(!is.na(modelToIndex(model_ex)$value[2])) expect_true(modelToIndex(model_ex)$value[2] == 100) expect_true(modelToIndex(model_ex)$imputed[2] == 1) model_ex <- model_base model_ex$coefficients$coefficient[3:5] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(all(!is.na(modelToIndex(model_ex)$value[3:5]))) model_ex <- model_base model_ex$coefficients$coefficient[81:84] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(all(!is.na(modelToIndex(model_ex)$value[81:84]))) expect_true(modelToIndex(model_ex)$value[80] == modelToIndex(model_ex)$value[84]) }) test_that('modelToIndex imputes properly, BASE model, LogDep=FALSE',{ model_base <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = FALSE, trim_model=TRUE) model_ex <- model_base model_ex$coefficients$coefficient[2] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(!is.na(modelToIndex(model_ex)$value[2])) expect_true(modelToIndex(model_ex)$value[2] == 100) expect_true(modelToIndex(model_ex)$imputed[2] == 1) model_ex <- model_base model_ex$coefficients$coefficient[3:5] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(all(!is.na(modelToIndex(model_ex)$value[3:5]))) model_ex <- model_base model_ex$coefficients$coefficient[81:84] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(all(!is.na(modelToIndex(model_ex)$value[81:84]))) expect_true(modelToIndex(model_ex)$value[80] == modelToIndex(model_ex)$value[84]) }) test_that('modelToIndex imputes properly, Robust model, LogDEP = TRUE',{ model_base <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'robust', log_dep = TRUE, trim_model=TRUE) model_ex <- model_base model_ex$coefficients$coefficient[2] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(!is.na(modelToIndex(model_ex)$value[2])) expect_true(modelToIndex(model_ex)$value[2] == 100) expect_true(modelToIndex(model_ex)$imputed[2] == 1) model_ex <- model_base model_ex$coefficients$coefficient[3:5] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(all(!is.na(modelToIndex(model_ex)$value[3:5]))) model_ex <- model_base model_ex$coefficients$coefficient[81:84] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(all(!is.na(modelToIndex(model_ex)$value[81:84]))) expect_true(modelToIndex(model_ex)$value[80] == modelToIndex(model_ex)$value[84]) }) test_that('modelToIndex imputes properly, Weighted model, LogDep=FALSE',{ model_base <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'weighted', log_dep = FALSE, trim_model=TRUE) model_ex <- model_base model_ex$coefficients$coefficient[2] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(!is.na(modelToIndex(model_ex)$value[2])) expect_true(modelToIndex(model_ex)$value[2] == 100) expect_true(modelToIndex(model_ex)$imputed[2] == 1) model_ex <- model_base model_ex$coefficients$coefficient[3:5] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(all(!is.na(modelToIndex(model_ex)$value[3:5]))) model_ex <- model_base model_ex$coefficients$coefficient[81:84] <- NA_real_ expect_is(modelToIndex(model_ex), 'hpiindex') expect_true(all(!is.na(modelToIndex(model_ex)$value[81:84]))) expect_true(modelToIndex(model_ex)$value[80] == modelToIndex(model_ex)$value[84]) }) test_that('modelToIndex "max_period" cutoff works',{ model_base <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'weighted', log_dep = FALSE, trim_model=TRUE) index_80 <- modelToIndex(model_base, max_period = 80) expect_is(index_80, 'hpiindex') expect_true(length(index_80$value) == 80) }) context('smoothIndex()') model_base <- hpiModel(model_type = 'rt', hpi_df = rt_df, estimator = 'base', log_dep = TRUE, trim_model=TRUE) index_base <- modelToIndex(model_obj = model_base) test_that('smoothing Function works with a variety of inputs',{ expect_is(index_smooth <- smoothIndex(index_obj = index_base, order = 4), 'indexsmooth') }) test_that('Errors are given when index is bad',{ expect_error(index_smooth <- smoothIndex(index_obj = 'abc', order = 3)) expect_error(index_smooth <- smoothIndex(index_obj = index_base, order = -3)) expect_error(index_smooth <- smoothIndex(index_obj = index_base, order = 'x')) expect_error(index_smooth <- smoothIndex(index_obj = index_base, order = NA_integer_)) }) test_that('Returning in place works',{ expect_is(index_base <- smoothIndex(index = index_base, order = 3, in_place = TRUE), 'hpiindex') expect_true('smooth' %in% names(index_base)) }) context('rtindex() wrapper') test_that('Function works with proper inputs',{ full_1 <- rtIndex(trans_df = sales, date = 'sale_date', price = 'sale_price', trans_id = 'sale_id', prop_id = 'pinx', estimator = 'base', log_dep = TRUE, periodicity = 'monthly') expect_is(full_1, 'hpi') expect_true(full_1$model$estimator == 'base') full_2 <- rtIndex(trans_df = sales_df, price = 'sale_price', trans_id = 'sale_id', prop_id = 'pinx', estimator = 'robust', log_dep = TRUE) expect_is(full_2, 'hpi') expect_true(full_2$model$estimator == 'robust') full_3 <- rtIndex(trans_df = rt_df, estimator = 'weighted', log_dep = TRUE) expect_is(full_3, 'hpi') expect_true(full_3$model$estimator == 'weighted') }) test_that('Additional arguments in rtIndex() work',{ mindate_index <- rtIndex(trans_df = sales, date = 'sale_date', price = 'sale_price', trans_id = 'sale_id', prop_id = 'pinx', min_date = as.Date('2011-01-01'), adj_type = 'clip') expect_true(min(mindate_index$index$period) == 2011) maxdate_index <- rtIndex(trans_df = sales, date = 'sale_date', price = 'sale_price', trans_id = 'sale_id', prop_id = 'pinx', max_date = as.Date('2015-12-31')) expect_true(max(maxdate_index$index$period) == 2016) per_index <- rtIndex(trans_df = sales, date = 'sale_date', price = 'sale_price', trans_id = 'sale_id', prop_id = 'pinx', periodicity = 'weekly') expect_true(max(per_index$index$period) == 364) seq_index <- rtIndex(trans_df = sales_df, date = 'sale_date', price = 'sale_price', trans_id = 'sale_id', prop_id = 'pinx', seq_only = TRUE) expect_true(nrow(seq_index$data) == 4823) trim_index <- rtIndex(trans_df = rt_df, trim_model=TRUE) expect_true(is.null(trim_index$model$model_obj$qr)) ld_index <- rtIndex(trans_df = rt_df, estimator = 'robust', log_dep = FALSE) expect_true(ld_index$model$log_dep == FALSE) expect_true(ld_index$model$estimator == 'robust') m2i_index <- rtIndex(trans_df = rt_df, estimator = 'robust', log_dep = FALSE, max_period = 80) expect_true(length(m2i_index$index$value) == 80) }) test_that("Bad arguments generate Errors: Full Case",{ expect_error(rtIndex(trans_df = sales, date = 'sale_price', price = 'sale_price', trans_id = 'sale_id', prop_id = 'pinx', estimator = 'base', log_dep = TRUE, periodicity = 'monthly')) expect_error(rtIndex(trans_df = sales, date = 'sale_date', price = 'sale_price', prop_id = 'pinx', estimator = 'base', log_dep = TRUE, periodicity = 'monthly')) expect_error(rtIndex(trans_df = sales, date = 'sale_date', price = 'sale_price', trans_id = 'sale_id', estimator = 'base', log_dep = TRUE, periodicity = 'monthly')) expect_error(rtIndex(trans_df = sales, date = 'sale_date', trans_id = 'sale_id', prop_id = 'pinx', estimator = 'base', log_dep = TRUE, periodicity = 'monthly')) expect_error(rtIndex(trans_df = sales, date = 'sale_date', price = 'sale_price', trans_id = 'sale_id', prop_id = 'pinx', estimator = 'base', log_dep = TRUE, periodicity = 'xxx')) expect_error(rtIndex(trans_df = sales[1, ], date = 'sale_date', price = 'sale_price', trans_id = 'sale_id', prop_id = 'pinx', estimator = 'base', log_dep = TRUE, periodicity = 'monthly'), 'Converting transactions') }) test_that("Bad arguments generate errort: trans_df Case",{ expect_error(rtIndex(trans_df = sales_df, price = 'xx', trans_id = 'sale_id', prop_id = 'pinx', estimator = 'base', log_dep = TRUE)) expect_error(rtIndex(trans_df = sales_df, price = 'sale_price', trans_id = 'xx', prop_id = 'pinx', estimator = 'base', log_dep = TRUE)) expect_error(rtIndex(trans_df = sales_df, price = 'sale_price', prop_id = 'pinx', estimator = 'base', log_dep = TRUE)) expect_error(rtIndex(trans_df = sales_df, price = 'sale_price', trans_id = 'sale_id', prop_id = 'xx', estimator = 'base', log_dep = TRUE)) }) test_that("Bad arguments handling: rt_sales Case",{ expect_true(rtIndex(trans_df = rt_df, estimator = 'basex', log_dep = TRUE)$model$estimator == 'base') expect_error(rtIndex(trans_df = rt_df, estimator = 'robust', log_dep = 'a')) expect_error(rtIndex(trans_df = rt_df, estimator = 'robust', trim_model = 'a')) expect_error(rtIndex(trans_df = rt_df, estimator = 'robust', max_period = 'a')) }) test_that("Smoothing in_place for 'hpi' object works",{ full_1 <- rtIndex(trans_df = sales, date = 'sale_date', price = 'sale_price', trans_id = 'sale_id', prop_id = 'pinx', estimator = 'base', log_dep = TRUE, periodicity = 'monthly', smooth = TRUE) expect_is(full_1$index$smooth, 'indexsmooth') expect_is(index_smooth <- smoothIndex(index_obj = full_1, order = 6), 'indexsmooth') expect_is(full_1s <- smoothIndex(index = full_1, order = 3, in_place = TRUE), 'hpi') expect_is(full_1s$index$smooth, 'ts') expect_is(full_1s$index$smooth, 'indexsmooth') })
draft <- function(file, cls = c("jdsart", "jds")) { template_path <- system.file("rmarkdown", "templates", "pdf_article", package = "jds.rmd") template_yaml <- file.path(template_path, "template.yaml") if (file.exists(file)) stop("The file '", file, "' already exists.") cls <- match.arg(cls, c("jdsart", "jds")) sk_dir <- if (cls == "jdsart") { "skeleton" } else { "skeleton-jds.cls" } skeleton_files <- list.files(file.path(template_path, sk_dir), full.names = TRUE) to <- dirname(file) for (f in skeleton_files) { if (file.exists(file.path(to, basename(f)))) stop("The file '", basename(f), "' already exists") file.copy(from = f, to = to, overwrite = FALSE, recursive = TRUE) } file.rename(file.path(dirname(file), "skeleton.Rmd"), file) invisible(file) }
count_actions <- function(x, actions) { sapply(actions, function(a) sum(x==a)) } aseq2atranseqs <- function(x) { l <- length(x) rbind(x[-l], x[-1]) } action_seqs_summary <- function(action_seqs) { n_seq <- length(action_seqs) seq_length <- sapply(action_seqs, length) actions <- sort(unique(unlist(action_seqs))) n_action <- length(actions) action_freq_by_seq <- t(sapply(action_seqs, count_actions, actions=actions)) action_freq <- colSums(action_freq_by_seq) action_seq_counts_by_seq <- array(as.numeric(action_freq_by_seq > 0), dim=dim(action_freq_by_seq)) action_seq_freq <- colSums(action_seq_counts_by_seq) names(action_seq_freq) <- actions trans_counts <- matrix(0, n_action, n_action) colnames(trans_counts) <- actions rownames(trans_counts) <- actions action_tran_seqs <- sapply(action_seqs, aseq2atranseqs) all_pairs <- matrix(unlist(action_tran_seqs), nrow=2) n_pair <- ncol(all_pairs) for (i in 1:n_pair) trans_counts[all_pairs[1,i], all_pairs[2,i]] <- trans_counts[all_pairs[1,i], all_pairs[2,i]] + 1 list(n_seq=n_seq, n_action = n_action, actions=actions, seq_length=seq_length, action_freq=action_freq, action_seqfreq = action_seq_freq, trans_count = trans_counts) } tseq2interval <- function(x) { c(0, diff(x)) } time_seqs_summary <- function(time_seqs) { total_time <- sapply(time_seqs, max) mean_react_time <- sapply(time_seqs, max) / sapply(time_seqs, length) list(total_time=total_time, mean_react_time=mean_react_time) }
library(checkargs) context("isPositiveIntegerScalarOrNull") test_that("isPositiveIntegerScalarOrNull works for all arguments", { expect_identical(isPositiveIntegerScalarOrNull(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isPositiveIntegerScalarOrNull(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isPositiveIntegerScalarOrNull(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isPositiveIntegerScalarOrNull(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isPositiveIntegerScalarOrNull(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isPositiveIntegerScalarOrNull(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isPositiveIntegerScalarOrNull(0, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isPositiveIntegerScalarOrNull(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isPositiveIntegerScalarOrNull(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isPositiveIntegerScalarOrNull(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull("", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull("X", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isPositiveIntegerScalarOrNull(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) })
system('R -e "pavian::runApp(port=5004)"', wait=FALSE) DISPLAY = FALSE setwd("~/projects/pavian/vignettes") library(RSelenium) remDr <- remoteDriver(remoteServerAddr = "localhost", port = 6656, browserName = "chrome") remDr$open() remDr$getStatus() remDr$navigate("http://www.google.com") remDr$navigate("http://127.0.0.1:5004") remDr$setWindowSize(900,650) remDr$screenshot(display = DISPLAY, useViewer = FALSE, file="main-page.png") remDr$setWindowSize(900,1000) btn_load_example <- remDr$findElement(using="css selector"," btn_load_example$clickElement() remDr$screenshot(display = DISPLAY, useViewer = FALSE, file="load-data-set.png") system("convert load-data-set.png -crop 180x230+0+180 side-bar.png") menu_results <- remDr$findElement(using="css selector"," menu_results$clickElement() remDr$setWindowSize(1000,650) remDr$screenshot(display = DISPLAY, useViewer = FALSE, file="results-overview.png") menu_comp <- remDr$findElement(using="css selector"," menu_comp$clickElement() menu_comp1 <- remDr$findElement(using="css selector",".treeview-menu > li:nth-child(1) > a:nth-child(1)") menu_comp1$clickElement() remDr$setWindowSize(1200,1000) remDr$screenshot(display = DISPLAY, file="menu-comp.png") heatmap_tab <- remDr$findElement(using="css selector"," heatmap_tab$clickElement() remDr$screenshot(display = DISPLAY, file="comp-heatmap.png") system("convert comp-heatmap.png -crop 520x280+260+370 comp-heatmap1.png") menu_sample <- remDr$findElement(using="css selector"," menu_sample$clickElement() remDr$setWindowSize(1200,1000) remDr$screenshot(display = DISPLAY, file="flow-pt1.png") remDr$screenshot(display = DISPLAY, file="flow-pt5.png") remDr$findElement(using="css selector"," remDr$findElement(using="css selector"," remDr$screenshot(display = DISPLAY, file="alignment_viewer-pt5.png") remDr$findElement(using="css selector","div.tabbable:nth-child(2) > ul:nth-child(1) > li:nth-child(2) > a:nth-child(1)")$clickElement() remDr$setWindowSize(1200,800) remDr$screenshot(display = DISPLAY, file="download-genome-jcv.png")
expected <- eval(parse(text="NA_real_")); test(id=0, code={ argv <- eval(parse(text="list(c(49, 61, NA, NA))")); do.call(`sum`, argv); }, o=expected);
mcsamp.default <- function (object, n.chains=3, n.iter=1000, n.burnin=floor(n.iter/2), n.thin=max(1, floor(n.chains * (n.iter - n.burnin)/1000)), saveb=TRUE, deviance=TRUE, make.bugs.object=TRUE) { cat("mcsamp() used to be a wrapper for mcmcsamp() in lme4.\nCurrently, mcmcsamp() is no longer available in lme4.\nSo in the meantime, we suggest that users use sim() to get\nsimulated estimates.\n") } setMethod("mcsamp", signature(object = "merMod"), function (object, ...) { mcsamp.default(object, deviance=TRUE, ...) } )
test_that("IdfViewer Implemention", { skip_on_cran() idf <- read_idf(file.path(eplus_config(8.8)$dir, "ExampleFiles/4ZoneWithShading_Simple_1.idf")) expect_is(geoms <- extract_geom(idf), "list") expect_is(geoms <- align_coord_system(geoms, "absolute", "absolute", "absolute"), "list") expect_is(geoms$vertices2 <- triangulate_geoms(geoms), "data.table") rgl_init <- function (clear = TRUE) { new <- FALSE if (clear) { if (rgl::rgl.cur() == 0) new <- TRUE else rgl::rgl.clear() } if (!new) { dev <- rgl::rgl.cur() } else { rgl::rgl.open() dev <- rgl::rgl.cur() rgl::rgl.viewpoint(0, -60, 60) cur <- rgl::par3d("mouseMode") cur[["left"]] <- "trackball" cur[["wheel"]] <- "push" cur[["middle"]] <- "fov" rgl::par3d(dev = dev, mouseMode = cur) pan3d(2L) } rgl::rgl.bg(color = "white") rgl::rgl.set(dev) dev } dev <- rgl_init() expect_is(id_axis <- rgl_view_axis(dev, geoms), "integer") expect_is(id_ground <- rgl_view_ground(dev, geoms, alpha = 1.0), "integer") expect_is(id_wireframe <- rgl_view_wireframe(dev, geoms), "integer") expect_is(id_surface <- rgl_view_surface(dev, geoms, wireframe = FALSE), "integer") expect_length(id_dayl_pnts <- rgl_view_point(dev, geoms), 0) expect_is(rgl_pop(id = id_ground), "integer") expect_is(rgl_pop(id = unlist(id_surface)), "integer") expect_is(id_surface <- rgl_view_surface(dev, geoms, "boundary"), "integer") expect_is(rgl_pop(id = unlist(id_surface)), "integer") expect_is(id_surface <- rgl_view_surface(dev, geoms, "construction"), "integer") expect_is(id_surface <- rgl_view_surface(dev, geoms, "zone"), "integer") expect_is(rgl_pop(id = unlist(id_surface)), "integer") expect_is(id_surface <- rgl_view_surface(dev, geoms, "normal"), "integer") idf <- read_idf(file.path(eplus_config(8.8)$dir, "ExampleFiles/HospitalLowEnergy.idf")) expect_is(geoms <- extract_geom(idf), "list") expect_is(geoms <- align_coord_system(geoms, "relative", "relative", "relative"), "list") expect_equal(unlist(geoms$rules[3:5], FALSE, FALSE), rep("relative", 3L)) expect_is(geoms <- align_coord_system(geoms, "absolute", "absolute", "absolute"), "list") expect_equal(unlist(geoms$rules[3:5], FALSE, FALSE), rep("absolute", 3L)) expect_is(geoms$vertices2 <- triangulate_geoms(geoms), "data.table") expect_is(dev <- rgl_init(), "integer") expect_is(id_axis <- rgl_view_axis(dev, geoms), "integer") expect_is(id_ground <- rgl_view_ground(dev, geoms, alpha = 1.0), "integer") expect_is(id_surface <- rgl_view_surface(dev, geoms, "surface_type", wireframe = FALSE), "integer") expect_is(id_wireframe <- rgl_view_wireframe(dev, geoms), "integer") expect_is(id_dayl_pnts <- rgl_view_point(dev, geoms), "integer") expect_is(rgl_pop(id = id_ground), "integer") expect_is(rgl_pop(id = unlist(id_surface)), "integer") expect_is(id_surface <- rgl_view_surface(dev, geoms, "boundary"), "integer") expect_is(rgl_pop(id = unlist(id_surface)), "integer") expect_is(id_surface <- rgl_view_surface(dev, geoms, "construction"), "integer") expect_is(rgl_pop(id = unlist(id_surface)), "integer") expect_is(id_surface <- rgl_view_surface(dev, geoms, "zone"), "integer") expect_is(rgl_pop(id = unlist(id_surface)), "integer") expect_is(id_surface <- rgl_view_surface(dev, geoms, "normal"), "integer") rgl::rgl.close() })
read_docx <- function (file, skip = 0) { tmp <- tempfile() if (!dir.create(tmp)) stop("Temporary directory could not be established.") utils::unzip(file, exdir = tmp) xmlfile <- file.path(tmp, "word", "document.xml") doc <- XML::xmlTreeParse(xmlfile, useInternalNodes = TRUE) unlink(tmp, recursive = TRUE) nodeSet <- XML::getNodeSet(doc, "//w:p") pvalues <- sapply(nodeSet, XML::xmlValue) pvalues <- pvalues[pvalues != ""] if (skip > 0) pvalues <- pvalues[-seq(skip)] pvalues }
numerical.derivative <- function (x, func, lb=-Inf, ub=Inf, xmin=1, delta=1.e-7) { h <- pmax(x*delta,delta) df <- (func(x+h)-func(x-h))/(2*h) } arou.new <- function (pdf, dpdf=NULL, lb, ub, islog=FALSE, ...) { if (missing(pdf) || !is.function(pdf)) { if (!missing(pdf) && is(pdf,"unuran.cont")) stop ("argument 'pdf' is UNU.RAN distribution object. Did you mean 'aroud.new'?") else stop ("argument 'pdf' missing or invalid") } if (missing(lb) || missing(ub)) stop ("domain ('lb','ub') missing") f <- function(x) pdf(x, ...) if (is.null(dpdf)) { df <- function(x) { numerical.derivative(x,f) } } else { if (! is.function(dpdf) ) stop ("argument 'dpdf' invalid") else df <- function(x) dpdf(x,...) } dist <- new("unuran.cont", pdf=f, dpdf=df, lb=lb, ub=ub, islog=islog) unuran.new(dist, "arou") } aroud.new <- function (distr) { if ( missing(distr) || !(isS4(distr) && is(distr,"unuran.cont")) ) stop ("argument 'distr' missing or invalid") unuran.new(distr, "arou") } ars.new <- function (logpdf, dlogpdf=NULL, lb, ub, ...) { if (missing(logpdf) || !is.function(logpdf)) { if (!missing(logpdf) && is(logpdf,"unuran.cont")) stop ("argument 'logpdf' is UNU.RAN distribution object. Did you mean 'arsd.new'?") else stop ("argument 'logpdf' missing or invalid") } if (missing(lb) || missing(ub)) stop ("domain ('lb','ub') missing") f <- function(x) logpdf(x, ...) if (is.null(dlogpdf)) { df <- function(x) { numerical.derivative(x,f) } } else { if (! is.function(dlogpdf) ) stop ("argument 'dlogpdf' invalid") else df <- function(x) dlogpdf(x,...) } dist <- new("unuran.cont", pdf=f, dpdf=df, lb=lb, ub=ub, islog=TRUE) unuran.new(dist, "ars") } arsd.new <- function (distr) { if ( missing(distr) || !(isS4(distr) && is(distr,"unuran.cont")) ) stop ("argument 'distr' missing or invalid") unuran.new(distr, "ars") } itdr.new <- function (pdf, dpdf, lb, ub, pole, islog=FALSE, ...) { if (missing(pdf) || !is.function(pdf)) { if (!missing(pdf) && is(pdf,"unuran.cont")) stop ("argument 'pdf' is UNU.RAN distribution object. Did you mean 'itdrd.new'?") else stop ("argument 'pdf' missing or invalid") } if (missing(dpdf) || !is.function(dpdf)) stop ("argument 'dpdf' missing or invalid") if (missing(pole) || !is.numeric(pole)) stop ("argument 'pole' missing or invalid") if (missing(lb) || missing(ub)) stop ("domain ('lb','ub') missing") f <- function(x) pdf(x, ...) df <- function(x) dpdf(x, ...) dist <- new("unuran.cont", pdf=f, dpdf=df, lb=lb, ub=ub, islog=islog, mode=pole) unuran.new(dist, "itdr") } itdrd.new <- function (distr) { if ( missing(distr) || !(isS4(distr) && is(distr,"unuran.cont")) ) stop ("argument 'distr' missing or invalid") unuran.new(distr, "itdr") } pinv.new <- function (pdf, cdf, lb, ub, islog=FALSE, center=0, uresolution=1.e-10, smooth=FALSE, ...) { if (missing(pdf) && missing(cdf)) stop ("argument 'pdf' or 'cdf' required") if (!missing(pdf) && is(pdf,"unuran.cont")) stop ("argument 'pdf' is UNU.RAN distribution object. Did you mean 'pinvd.new'?") if (!is.numeric(center)) stop ("argument 'center' invalid") if (!is.numeric(uresolution)) stop ("argument 'uresolution' invalid") if (missing(lb) || missing(ub)) stop ("domain ('lb','ub') missing") usefunc <- if (missing(pdf)) "usecdf" else "usepdf" if (!missing(pdf)) { if (!is.function(pdf)) stop ("argument 'pdf' must be of class 'function'") PDF <- function(x) pdf(x, ...) } else { PDF <- NULL; } if (!missing(cdf)) { if (!is.function(cdf)) stop ("argument 'cdf' must be of class 'function'") CDF <- function(x) cdf(x, ...) } else { CDF <- NULL } dist <- new("unuran.cont", pdf=PDF, cdf=CDF, lb=lb, ub=ub, center=center, islog=islog) method <- paste("pinv;",usefunc, ";u_resolution=",uresolution, ";smoothness=",as.integer(smooth), ";keepcdf=on", sep="") unuran.new(dist, method) } pinvd.new <- function (distr, uresolution=1.e-10, smooth=FALSE) { if ( missing(distr) || !(isS4(distr) && is(distr,"unuran.cont")) ) stop ("argument 'distr' missing or invalid") method <- paste("pinv", ";u_resolution=",uresolution, ";smoothness=",as.integer(smooth), ";keepcdf=on", sep="") unuran.new(distr, method) } srou.new <- function (pdf, lb, ub, mode, area, islog=FALSE, r=1, ...) { if (missing(pdf) || !is.function(pdf)) { if (!missing(pdf) && is(pdf,"unuran.cont")) stop ("argument 'pdf' is UNU.RAN distribution object. Did you mean 'sroud.new'?") else stop ("argument 'pdf' missing or invalid") } if (missing(mode) || !is.numeric(mode)) stop ("argument 'mode' missing or invalid") if (missing(area) || !is.numeric(area)) stop ("argument 'area' missing or invalid") if (missing(lb) || missing(ub)) stop ("domain ('lb','ub') missing") f <- function(x) pdf(x, ...) dist <- new("unuran.cont", pdf=f, lb=lb, ub=ub, islog=islog, mode=mode, area=area) method <- paste("srou; r=",r, sep="") unuran.new(dist, method) } sroud.new <- function (distr, r=1) { if ( missing(distr) || !(isS4(distr) && is(distr,"unuran.cont")) ) stop ("argument 'distr' missing or invalid") method <- paste("srou; r=",r, sep="") unuran.new(distr, method) } tabl.new <- function (pdf, lb, ub, mode, islog=FALSE, ...) { if (missing(pdf) || !is.function(pdf)) { if (!missing(pdf) && is(pdf,"unuran.cont")) stop ("argument 'pdf' is UNU.RAN distribution object. Did you mean 'tabld.new'?") else stop ("argument 'pdf' missing or invalid") } if (missing(mode) || !is.numeric(mode)) stop ("argument 'mode' missing or invalid") if (missing(lb) || missing(ub)) stop ("domain ('lb','ub') missing") f <- function(x) pdf(x, ...) dist <- new("unuran.cont", pdf=f, lb=lb, ub=ub, islog=islog, mode=mode) unuran.new(dist, "tabl") } tabld.new <- function (distr) { if ( missing(distr) || !(isS4(distr) && is(distr,"unuran.cont")) ) stop ("argument 'distr' missing or invalid") unuran.new(distr, "tabl") } tdr.new <- function (pdf, dpdf=NULL, lb, ub, islog=FALSE, ...) { if (missing(pdf) || !is.function(pdf)) { if (!missing(pdf) && is(pdf,"unuran.cont")) stop ("argument 'pdf' is UNU.RAN distribution object. Did you mean 'tdrd.new'?") else stop ("argument 'pdf' missing or invalid") } if (missing(lb) || missing(ub)) stop ("domain ('lb','ub') missing") f <- function(x) pdf(x, ...) if (is.null(dpdf)) { df <- function(x) { numerical.derivative(x,f) } } else { if (! is.function(dpdf) ) stop ("argument 'dpdf' invalid") else df <- function(x) dpdf(x,...) } dist <- new("unuran.cont", pdf=f, dpdf=df, lb=lb, ub=ub, islog=islog) unuran.new(dist, "tdr") } tdrd.new <- function (distr) { if ( missing(distr) || !(isS4(distr) && is(distr,"unuran.cont")) ) stop ("argument 'distr' missing or invalid") unuran.new(distr, "tdr") } dari.new <- function (pmf, lb, ub, mode=NA, sum=1, ...) { if (missing(pmf) || !is.function(pmf)) { if (!missing(pmf) && is(pmf,"unuran.discr")) stop ("argument 'pmf' is UNU.RAN distribution object. Did you mean 'darid.new'?") else stop ("argument 'pmf' missing or invalid") } if (missing(lb) || missing(ub)) stop ("domain ('lb','ub') missing") f <- function(x) pmf(x, ...) distr <- new("unuran.discr",pmf=f,lb=lb,ub=ub,mode=mode,sum=sum) unuran.new(distr, "dari") } darid.new <- function (distr) { if ( missing(distr) || !(isS4(distr) && is(distr,"unuran.discr")) ) stop ("argument 'distr' missing or invalid") unuran.new(distr, "dari") } dau.new <- function (pv, from=1) { if (missing(pv) || !is.numeric(pv)) { if (!missing(pv) && is(pv,"unuran.discr")) stop ("argument 'pv' is UNU.RAN distribution object. Did you mean 'daud.new'?") else stop ("argument 'pv' missing or invalid") } distr <- new("unuran.discr",pv=pv,lb=from,ub=Inf) unuran.new(distr, "dau") } daud.new <- function (distr) { if ( missing(distr) || !(isS4(distr) && is(distr,"unuran.discr")) ) stop ("argument 'distr' missing or invalid") unuran.new(distr, "dau") } dgt.new <- function (pv, from=1) { if (missing(pv) || !is.numeric(pv)) { if (!missing(pv) && is(pv,"unuran.discr")) stop ("argument 'pv' is UNU.RAN distribution object. Did you mean 'dgtd.new'?") else stop ("argument 'pv' missing or invalid") } distr <- new("unuran.discr",pv=pv,lb=from,ub=Inf) unuran.new(distr, "dgt") } dgtd.new <- function (distr) { if ( missing(distr) || !(isS4(distr) && is(distr,"unuran.discr")) ) stop ("argument 'distr' missing or invalid") unuran.new(distr, "dgt") } hitro.new <- function (dim=1, pdf, ll=NULL, ur=NULL, mode=NULL, center=NULL, thinning=1, burnin=0, ...) { if (missing(pdf) || !is.function(pdf)) stop ("argument 'pdf' missing or invalid") f <- function(x) pdf(x, ...) dist <- new("unuran.cmv", dim=dim, pdf=f, mode=mode, center=center, ll=ll, ur=ur) method <- paste("hitro;thinning=",thinning,";burnin=",burnin, sep="") unuran.new(dist, method) } vnrou.new <- function (dim=1, pdf, ll=NULL, ur=NULL, mode=NULL, center=NULL, ...) { if (missing(pdf) || !is.function(pdf)) stop ("argument 'pdf' missing or invalid") f <- function(x) pdf(x, ...) dist <- new("unuran.cmv", dim=dim, pdf=f, mode=mode, center, ll=ll, ur=ur) unuran.new(dist, "VNROU") }
fPCAcapacity <- function(sftData, dimensions, acc.cutoff=.75, OR=NULL, stopping.rule=c("OR", "AND", "STST"), ratio=TRUE, register=c("median","mean","none"), plotPCs=FALSE, ...) { subjects <- sort(unique(sftData$Subject)) subjects <- factor(subjects) nsubjects <- length(subjects) conditions <- sort(unique(sftData$Condition)) conditions <- factor(conditions) nconditions <- length(conditions) subj.out <- character() cond.out <- character() channels <- grep("Channel", names(sftData), value=T) nchannels <- length(channels) if(nchannels < 2) { stop("Not enough channels for capacity analysis.") } if (!is.null(OR)) { if (OR) { capacity <- capacity.or } else { capacity <- capacity.and } } else { rule <- match.arg(stopping.rule, c("OR","AND","STST")) if(rule == "OR") { capacity <- capacity.or } else if (rule == "AND") { capacity <- capacity.and } else if (rule == "STST"){ capacity <- capacity.stst } else { stop("Please choose a valid stopping rule for fPCAcapacity.") } } if (rule!="STST") { for ( ch in channels ) { if(is.factor(sftData[,ch])) { sftData[,ch] <- as.numeric(levels(sftData[,ch]))[sftData[,ch]] } sftData <- subset(sftData, sftData[,ch] >=0) } } if(rule=="STST") { nchannels <- 2 } tvec <- seq(quantile(sftData$RT,.001), quantile(sftData$RT,.999), length.out=1000) midpoint <- floor(length(tvec)/2) capAllMat <- numeric() varAllMat <- numeric() subjVec <- c() condVec <- c() allRT <- numeric() registervals <- numeric() good <- logical() if (rule=="STST") { RTlist <- vector("list", nchannels) CRlist <- vector("list", nchannels) } else { RTlist <- vector("list", nchannels+1) CRlist <- vector("list", nchannels+1) } ltyvec <- numeric() colvec <- numeric() condLegend <- levels(conditions) for ( cn in 1:nconditions ) { if (is.factor(conditions)) {cond <- levels(conditions)[cn]} else {cond <- conditions[cn] } condsubjects <- factor(with(sftData, sort(unique(Subject[Condition==cond])))) ncondsubjects <- length(condsubjects) if (ncondsubjects ==0 ) { next; } for ( sn in 1:ncondsubjects ) { if (is.factor(condsubjects)) {subj <- levels(condsubjects)[sn]} else {subj <- condsubjects[sn] } subjVec <- c(subjVec, subj) condVec <- c(condVec, cond) ds <- sftData$Subject==subj & sftData$Condition==cond if (rule == "STST") { usechannel <- ds & (apply(sftData[,channels]>0, 1, sum)==1) & (apply(sftData[,channels]<0, 1, sum)>0) RTlist[[1]] <- sftData$RT[usechannel & (sftData$RT < quantile(sftData$RT[usechannel], .975)) ] CRlist[[1]] <- sftData$Correct[usechannel & (sftData$RT < quantile(sftData$RT[usechannel], .975))] usechannel <- ds & apply(sftData[,channels]>=0, 1, all) & (apply(sftData[,channels]!=0, 1, sum)==1) RTlist[[2]] <- sftData$RT[usechannel & (sftData$RT < quantile(sftData$RT[usechannel], .975)) ] CRlist[[2]] <- sftData$Correct[usechannel & (sftData$RT < quantile(sftData$RT[usechannel], .975))] } else { usechannel <- ds & apply(sftData[,channels]>0, 1, all) RTlist[[1]] <- sftData$RT[usechannel & (sftData$RT < quantile(sftData$RT[usechannel], .975)) ] CRlist[[1]] <- sftData$Correct[usechannel & (sftData$RT < quantile(sftData$RT[usechannel], .975))] for ( ch in 1:nchannels ) { usechannel <- ds & sftData[,channels[ch]]>0 & apply(as.matrix(sftData[,channels[-ch]]==0), 1, all) RTlist[[ch+1]] <- sftData$RT[usechannel & sftData$RT < quantile(sftData$RT[usechannel], .975)] CRlist[[ch+1]] <- sftData$Correct[usechannel & sftData$RT < quantile(sftData$RT[usechannel], .975)] } } if(any(lapply(CRlist, mean)<acc.cutoff) | any(lapply(RTlist, length) < 10) ) { good <- c(good, FALSE) capAllMat <- rbind(capAllMat, rep(NA, length(tvec))) varAllMat <- rbind(varAllMat, rep(NA, length(tvec))) next } else{ good <- c(good, TRUE) } if (register == "median") { registervals <- c(registervals, mean(median(RTlist[[1]], median(c(RTlist[2:nconditions],recursive=TRUE)))) ) shiftn <- midpoint - max( which(tvec < tail(registervals,1))) } else if (register == "mean") { registervals <- c(registervals, mean(c(RTlist,recursive=TRUE)) ) shiftn <- midpoint - max( which(tvec < tail(registervals,1))) } else { shiftn <- 0 } capout <- capacity(RTlist, CRlist, ratio=ratio) subj.out <- c(subj.out, subj) cond.out <- c(cond.out, cond) ltyvec <- c(ltyvec, sn) colvec <- c(colvec, cn) if (ratio) { tmin <- max( c(lapply(RTlist, quantile, probs=c(.01)), recursive=TRUE), na.rm=TRUE) tmax <- min( c(lapply(RTlist, quantile, probs=c(.99)), recursive=TRUE), na.rm=TRUE) ct <- capout$Ct(tvec) ct[tvec < tmin] <- NA ct[tvec > tmax] <- NA if (register != "none") { capAllMat <- rbind(capAllMat, shift(ct, shiftn)) } else { capAllMat <- rbind(capAllMat, ct) } } else { if (register != "none") { varAllMat <- rbind(varAllMat, shift(capout$Var(tvec), shiftn)) capAllMat <- rbind(capAllMat, shift(capout$Ct(tvec), shiftn)) } else { varAllMat <- rbind(varAllMat, capout$Var(tvec)) capAllMat <- rbind(capAllMat, capout$Ct(tvec)) } } } } if(register != "none") { tvec <- tvec - midpoint } tmin <- min(tvec[!apply(is.na(capAllMat[good,]), 2, all)]) tmax <- max(tvec[!apply(is.na(capAllMat[good,]), 2, all)]) tgood <- tvec[tvec >= tmin & tvec <= tmax] capGoodMat <- capAllMat[good,tvec >= tmin & tvec <= tmax] if (!ratio) { varGoodMat <- varAllMat[good,tvec >= tmin & tvec <= tmax] } k <- dim(capGoodMat)[1] if(plotPCs) { dev.new() par(mar=c(3.1, 3.1, 2.1, 1.1), mgp=c(1.75, .25,0)) matplot(tgood, t(capGoodMat), type='l', lty=ltyvec, col=colvec, xlim=c(tmin,1300), main="Capacity", ylab="C(t)", xlab="Time (Adjusted)") if(nconditions <= 5) { legend("topright", legend=condLegend, lty=1, col=1:5, cex=.9) } } capGoodmn <- apply(capGoodMat, 2, mean, na.rm=TRUE) for (i in 1:k) { capGoodMat[i, is.na(capGoodMat[i,])] <- capGoodmn[is.na(capGoodMat[i,])] } if(!ratio) { varGoodMat[i, is.na(capGoodMat[i,])] <- 0 } capGoodmn <- apply(capGoodMat, 2, mean) capGoodMat <- capGoodMat - matrix(capGoodmn, k, length(tgood), byrow=T) if(plotPCs) { dev.new() par(mfrow=c(1,2), mar=c(3.1, 3.1, 2.1, 1.1), mgp=c(1.75, .25,0)) plot(c(tmin-1000, tmax+1000), c(0,0), type='l', xlim=c(tmin, tmax), main="Mean C(t)", ylab="C(t)", xlab="Time (Adjusted)") lines(tgood, capGoodmn, lwd=2) if (ratio) { abline(0,0, lty=1, col=grey(.4)) } matplot(tgood, t(capGoodMat), type='l', lty=ltyvec, col=colvec, xlim=c(tmin,tmax), main="C(t)-Mean C(t)", ylab="C(t)", xlab="Time (Adjusted)") if(nconditions <= 5) { legend("topright", legend=condLegend, lty=1, col=1:5, cex=.9) } } wtvec <- rep(1, length(tgood)) wtGoodMat <- t(capGoodMat) basis <- create.bspline.basis(rangeval=c(min(tgood),max(tgood)), nbasis=sum(good)-1, norder=4) capGoodfd <- smooth.basis(tgood, wtGoodMat, basis) pcastrGood <- pca.fd(capGoodfd$fd,dimensions) if ( dimensions > 1) { pcastrGoodVarmx <- varmx.pca.fd(pcastrGood) } else { pcastrGoodVarmx <- pcastrGood } if(plotPCs) { values <- pcastrGood$values dev.new() par(mar=c(3.1, 3.1, 2.1, 1.1), mgp=c(1.75, .25,0)) plot(1:5, values[1:5]/sum(values), xlim=c(1, 5), ylim=c(0,1), pch=19, main="Scree Plot", xlab="Eigenfunction", ylab="Variance Accounted For") lines(1:5, values[1:5]/sum(values)) } harmmat <- eval.fd(tgood, pcastrGood$harmonics) harmmat <- harmmat / (wtvec %*% matrix(1, 1, dimensions)) facmult <- apply(abs(pcastrGood$scores), 2, mean) harmmatV <- eval.fd(tgood, pcastrGoodVarmx$harmonics) harmmatV <- harmmatV / (wtvec %*% matrix(1, 1, dimensions)) facmultV <- apply(abs(pcastrGoodVarmx$scores), 2, mean) scoreout <- data.frame(subjVec,condVec) for ( i in 1:dimensions) { scoreout[[i+2]] <- rep(NA, length(scoreout[[1]])) scoreout[[i+2]][good] <- pcastrGood$scores[,i] } names(scoreout) <- c("Subject","Condition",paste("D",1:dimensions,sep="")) scoreoutV <- data.frame(subjVec,condVec) for ( i in 1:dimensions) { scoreoutV[[i+2]] <- rep(NA, length(scoreoutV[[1]])) scoreoutV[[i+2]][good] <- pcastrGoodVarmx$scores[,i] } names(scoreoutV) <- c("Subject","Condition",paste("D",1:dimensions,sep="")) pflist <- vector("list", length=dimensions) for (ifac in 1:dimensions) { pflist[[ifac]] <- approxfun(tgood,harmmatV[,ifac]) } if(plotPCs) { if (ratio) { ylim<-c(0,mean(capGoodmn)+max(facmult)) } else { ylim=c(-1, mean(capGoodmn)+max(facmult)) } dev.new() par(mar=c(3.1, 3.1, 2.1, 1.1), mgp=c(1.75, .25,0), mfrow=c(dimensions,3)) for ( ifac in 1:dimensions) { mainstr <- paste("PC", ifac, "-", floor(100*pcastrGood$varprop[ifac]), "%") Wveci <- capGoodmn + facmult[ifac]* harmmat[,ifac] plot(tgood, Wveci, type='l', lty=2, main="", xlab="Time (Adjusted)", ylab="", ylim=ylim, xlim=c(tmin, tmax)) lines(tgood, capGoodmn) abline(0,0, col=grey(.4)) mtext(mainstr, side=2, line=1) if(ifac==1) { mtext("Component Function", side=3, line=.5) legend("topright", c("Component", "Mean"), lty=c(2,1)) } plot(tgood, Wveci - capGoodmn, type='l', main="", xlab="Time (Adjusted)", ylab="", ylim=ylim, xlim=c(tmin, tmax)) abline(0,0, col=grey(.4)) if(ifac==1) {mtext("Component - Mean", side=3, line=.5)} plot(scoreout$Subject, scoreout[[ifac+2]], type="n", xaxt='n', ylab="", xlab="Subject") axis(1,at=1:10, labels=rep("",10), las=0, cex=.1, tck=-.02) mtext(side=1, 1:10, at=1:10, line=.05, cex=.7) text(scoreout$Subject, scoreout[[ifac+2]], labels=scoreout$Condition, col=colvec) if(ifac==1) {mtext("Score", side=3, line=.5)} } dev.new() par(mar=c(3.1, 3.1, 2.1, 1.1), mgp=c(1.75, .25,0), mfrow=c(dimensions,3)) for ( ifac in 1:dimensions) { mainstr <- paste("PC", ifac, "-", floor(100*pcastrGoodVarmx$varprop[ifac]), "%") Wveci <- capGoodmn + facmultV[ifac]* harmmatV[,ifac] plot(tgood, Wveci, type='l', lty=2, main="", xlab="Time (Adjusted)", ylab="", ylim=ylim, xlim=c(tmin, tmax)) lines(tgood, capGoodmn) abline(0,0, col=grey(.4)) mtext(mainstr, side=2, line=1) if(ifac==1) { mtext("Component Function", side=3, line=.5) legend("topright", c("Component", "Mean"), lty=c(2,1)) } plot(tgood, Wveci - capGoodmn, type='l', main="", xlab="Time (Adjusted)", ylab="", ylim=ylim, xlim=c(tmin, tmax)) abline(0,0, col=grey(.4)) if(ifac==1) {mtext("Component - Mean", side=3, line=.5)} plot(scoreout$Subject, scoreoutV[[ifac+2]], type="n", xaxt='n', ylab="", xlab="Subject") axis(1,at=1:10, labels=rep("",10), las=0, cex=.1, tck=-.02) mtext(side=1, 1:10, at=1:10, line=.05, cex=.7) text(scoreout$Subject, scoreoutV[[ifac+2]], labels=scoreout$Condition, col=colvec) if(ifac==1) {mtext("Score", side=3, line=.5)} } } return(list(Scores=scoreoutV, MeanCT=approxfun(tgood,capGoodmn), PF=pflist, medianRT=registervals)) } shift <- function(x, n, wrap=FALSE) { if (abs(n) > length(x) ) { if (!wrap ) { return( rep(NA, length(x))) } n <- n %% length(x) } if ( n >= 0 ) { s <- length(x)-n +1 if (wrap) { xout <- c( x[s:length(x)], x[1:(s-1)]) } else { xout <- c(rep(NA,n), x[1:(s-1)]) } } else { s <- abs(n)+1 if (wrap) { xout <- c( x[s:length(x)], x[1:(s-1)]) } else { xout <- c( x[s:length(x)], rep(NA, abs(n))) } } return(xout) }
numiMultiX = function(nVar, dMax, Istep=1000, onestep=1/125, KDf, extF = extF, v0=NULL, method="rk4") { pMax <- d2pMax(nVar, dMax) if (dim(KDf)[2] != nVar) { stop("nVar (=",nVar,") does not match with the model dimension (=",dim(KDf)[2],")") } if (length(v0) != nVar) { stop("v0 length (=",length(v0),") does not match with the model dimension (=",dim(KDf)[2],")") } extFmemo <- extF if (dim(extF)[1] != (Istep - 1) * 2 + 1) { rsplextF <- matrix(0, ncol = dim(extF)[2], nrow = (Istep - 1) * 2 + 1) for (ivar in 1:(dim(extF)[2])) { tmp <- spline(x = extF[,1], y = extF[,ivar], xout = (0:(Istep*2-2))*onestep/2) rsplextF[,ivar] <- tmp$y } extF <- rsplextF } if (dim(extF)[1] != (Istep - 1) * 2 + 1 ) { stop("The forcing time length (",dim(extF)[1]," lignes) does not match with the required double time sampling (=",(Istep - 1) * 2 + 1,")") } if (method!="rk4") { warning("Only 4th order Runge-Kutta method 'rk4' is supported by the numiMultiX function") } tvec <- (0:(Istep-1)) * onestep reconstr <- reconstr2 <- ode(v0, tvec, derivODEwMultiX, KDf, extF = extF, method = 'rk4') iToUpdate <- which(is.na(colSums(KDf))) reconstr[, iToUpdate + 1] <- extF[(1:Istep) * 2 - 1,(1:length(iToUpdate)+1)] outNumiMultiX <- list() outNumiMultiX$input$extF <- extFmemo outNumiMultiX$input$v0 <- v0 outNumiMultiX$extF <- extF outNumiMultiX$KDf <- KDf outNumiMultiX$reconstr <- reconstr return(outNumiMultiX) }
NULL as.rvsummary <- function (x, ...) { UseMethod("as.rvsummary") } is.rvsummary <- function (x) { inherits(x, "rvsummary") } print.rvsummary <- function (x, digits=3, ...) { s <- summary(x) for (i in which(sapply(s, is.numeric))) { s[[i]] <- round(s[[i]], digits=digits) } print(s) } as.rvsummary.default <- function (x, ...) { as.rvsummary(as.rv(x), ...) } as.rvsummary.rv <- function (x, quantiles=(0:200/200), ...) { y <- if (is.logical(x)) { as.rvsummary.rvlogical(x, ...) } else if (is.integer(x)) { as.rvsummary.rvinteger(x, quantiles=quantiles, ...) } else { as.rvsummary.rvnumeric(x, quantiles=quantiles, ...) } return(y) } as.rvsummary.rvsummary <- function (x, ...) { return(x) } as.rvsummary.rvnumeric <- function (x, quantiles=(0:200/200), ...) { ms <- .rvmeansd(x, names.=c("mean", "sd", "NAS", "n.sims")) for (name in names(ms)) { rvattr(x, name) <- ms[[name]] } for (i in seq_along(x)) { a <- attributes(x[[i]]) Q <- quantile(x[[i]], probs=quantiles, na.rm=TRUE) attributes(Q) <- a x[[i]] <- Q } structure(x, class=c("rvsummary_numeric", "rvsummary"), quantiles=quantiles) } as.rvsummary.rvinteger <- function (x, quantiles=(0:200/200), ...) { ms <- .rvmeansd(x, names.=c("mean", "sd", "NAS", "n.sims")) for (name in names(ms)) { rvattr(x, name) <- ms[[name]] } for (i in seq_along(x)) { a <- attributes(x[[i]]) Q <- quantile(x[[i]], probs=quantiles, na.rm=TRUE) attributes(Q) <- a x[[i]] <- Q } structure(x, class=c("rvsummary_integer", "rvsummary"), quantiles=quantiles) } as.rvsummary.rvlogical <- function (x, ...) { ms <- .rvmeansd(x, names.=c("mean", "sd", "NAS", "n.sims")) for (name in names(ms)) { rvattr(x, name) <- ms[[name]] } for (i in seq_along(x)) { a <- attributes(x[[i]]) x[[i]] <- ms[["mean"]][i] attributes(x[[i]]) <- a } structure(x, class=c("rvsummary_logical", "rvsummary")) } as.rvsummary.rvfactor <- function (x, ...) { levels <- levels(x) llev <- length(levels) num.levels <- seq_len(llev) S <- sims(x) a <- apply(S, 2, function (x) table(c(x, num.levels))) if (is.null(dim(a))) { dim(a) <- c(ncol(S), llev) } a <- (a-1) ns <- rvnsims(x) if (any(naS <- is.na(S))) { NAS <- (colMeans(naS)*100) } else { NAS <- rep.int(0, length(x)) } nax <- if (is.null(dim(x))) NULL else names(x) M <- a rownames(M) <- levels remaining <- (ns-colSums(M)) if (any(remaining>0)) { stop("Impossible: levels won't sum up to 0") } P <- t(M/ns) for (i in seq_along(x)) { a <- attributes(x[[i]]) x[[i]] <- P[i,] attributes(x[[i]]) <- a } rvattr(x, "n.sims") <- as.list(ns) rvattr(x, "NAS") <- as.list(NAS) structure(x, class=c("rvsummary_rvfactor", "rvsummary")) } as.rvsummary.data.frame <- function (x, quantiles=rvpar("summary.quantiles.numeric"), ...) { name <- names(x) rnames <- rownames(x) q.columns <- (regexpr("^([0-9.]+)%", name)>0) q.names <- name[q.columns] d.quantiles <- (as.numeric(gsub("^([0-9.]+)%", "\\1", name[q.columns]))/100) lx <- nrow(x) ms <- list() ms$n.sims <- if ("sims" %in% name) { x[["sims"]] } else { rep(Inf, lx) } ms$NAS <- if ("NA%" %in% name) { x[["NA%"]] } else { rep(0L, lx) } ms$mean <- if ("mean" %in% name) { x[["mean"]] } else { rep(NA, lx) } ms$sd <- if ("sd" %in% name) { x[["sd"]] } else { rep(NA, lx) } if (length(d.quantiles)==0) { if (length(quantiles)>0) { x <- lapply(seq_along(ms$mean), function (i) qnorm(quantiles, mean=ms$mean[i], sd=ms$sd[i])) } else { x <- as.list(rep.int(NA, nrow(x))) } d.quantiles <- quantiles } else { x <- as.matrix(x[q.columns]) x <- split(x, row(x)) } for (name in names(ms)) { rvattr(x, name) <- ms[[name]] } structure(x, class=c("rvsummary_numeric", "rvsummary"), quantiles=d.quantiles, names=rnames) } as.double.rvsummary <- function (x, ...) { if (is.null(attr(x, "quantiles"))) { stop("Cannot coerce to double.") } return(x) } print.rvsummary_rvfactor <- function (x, all.levels=FALSE, ...) { print(summary(x, all.levels=all.levels, ...)) } as.data.frame.rvsummary <- function (x, ...) { S <- summary(x, ...) rownames(S) <- S[["name"]] S[["name"]] <- NULL return(S) } summary.rvsummary <- function (object, ...) { x <- object xdim <- dim(x) xdimnames <- dimnames(x) Summary <- attr(object, "summary") if (length(.names <- names(x))>0) { Summary <- cbind(name=.names, Summary) } Col <- NULL n.sims. <- rvnsims(x) NAS <- unlist(rvattr(x, "NAS")) if (all(NAS==0)) { Col <- data.frame(sims=n.sims.) } else { Col <- data.frame("NA%"=NAS, sims=n.sims.) } if (!all(is.na(Rhats <- rvRhat(x)))) { Col <- cbind(Col, Rhat=Rhats) } if (!all(is.na(n.effs <- rvneff(x)))) { Col <- cbind(Col, n.eff=n.effs) } Summary <- cbind(Summary, Col) if (!is.null(unlist(xdimnames))) { sud <- rvpar("summary.dimnames") if (is.null(sud) || isTRUE(sud)) { .f <- function (i) { X <- .dimind(dim.=xdim, MARGIN=i) na <- xdimnames[[i]] if (!is.null(na)) { na <- na[X] } return(na) } da <- lapply(seq_along(xdim), .f) names(da) <- names(xdimnames) if (is.null(names(da))) { names(da) <- if (length(xdim)==2) c("row", "col") else paste("d", seq_along(da), sep="") } da <- da[!sapply(da, is.null)] if (length(da)>0) { Summary <- cbind(as.data.frame(da), " "=':', Summary) } } } return(Summary) } summary.rvsummary_numeric <- function (object, ...) { x <- object if (is.null(qs <- rvpar("summary.quantiles.numeric"))) { qs <- c(0.025, 0.25, 0.5, 0.75, 0.975) } S <- t(sims(x)) Q <- attr(S, "quantiles") qa <- (Q%in%qs) q <- S[,qa,drop=FALSE] m <- rvmean(x) s <- rvsd(x) S <- data.frame(mean=m, sd=s) S <- cbind(S, as.data.frame(q)) rownames(S) <- .dim.index(x) attr(object, "summary") <- S NextMethod() } summary.rvsummary_logical <- function (object, ...) { x <- object S <- data.frame(mean=rvmean(x), sd=rvsd(x)) rownames(S) <- .dim.index(x) attr(object, "summary") <- S NextMethod() } summary.rvsummary_integer <- function (object, ...) { x <- object if (is.null(qs <- rvpar("summary.quantiles.integer"))) { qs <- c(0, 0.025, 0.25, 0.5, 0.75, 0.975, 1) } S <- t(sims(x)) Q <- attr(S, "quantiles") qa <- (Q%in%qs) q <- S[,qa,drop=FALSE] names_quantiles <- dimnames(q)[[2]] names_quantiles[names_quantiles=="0%"] <- "min" names_quantiles[names_quantiles=="100%"] <- "max" dimnames(q)[[2]] <- names_quantiles m <- rvmean(x) s <- rvsd(x) S <- data.frame(mean=m, sd=s) S <- cbind(S, as.data.frame(q)) rownames(S) <- .dim.index(x) attr(object, "summary") <- S NextMethod() } summary.rvsummary_rvfactor <- function (object, all.levels=TRUE, ...) { x <- object levels <- levels(x) llev <- length(levels) num.levels <- seq_along(levels) maxlev <- if (is.null(maxlev <- rvpar("max.levels"))) { 10 } else maxlev too.many.levels.to.show <- ((!all.levels) && (llev>maxlev)) last.lev.no <- llev proportions <- t(sims(x)) if (too.many.levels.to.show) { P1 <- proportions[,1:(maxlev-1),drop=FALSE] P2 <- proportions[,last.lev.no,drop=FALSE] omit_levels <- (!seq_along(levels) %in% c(1:(maxlev-1), last.lev.no)) rest <- rowSums(proportions[,omit_levels,drop=FALSE]) M <- cbind(P1, "*"=rest, P2) colnames(M) <- c(levels[1:(maxlev-1)], "*", levels[last.lev.no]) } else { M <- proportions colnames(M) <- levels } S <- as.data.frame(M) rownames(S) <- .dim.index(x) attr(object, "summary") <- S NextMethod() }