code
stringlengths 1
13.8M
|
---|
library(onls)
DNase1 <- subset(DNase, Run == 1)
DNase1$density <- sapply(DNase1$density, function(x) rnorm(1, x, 0.1 * x))
mod1 <- onls(density ~ Asym/(1 + exp((xmid - log(conc))/scal)),
data = DNase1, start = list(Asym = 3, xmid = 0, scal = 1))
mod1
x <- c(0, 10, 20, 30, 40, 50, 60, 70, 80, 85, 90, 95, 100, 105)
y <- c(4.14, 8.52, 16.31, 32.18, 64.62, 98.76, 151.13, 224.74, 341.35,
423.36, 522.78, 674.32, 782.04, 920.01)
DAT <- data.frame(x, y)
mod4 <- onls(y ~ b1 * 10^(b2 * x/(b3 + x)), data = DAT,
start = list(b1 = 1, b2 = 5, b3 = 100))
coef(mod4)
deviance_o(mod4)
mod5 <- onls(y ~ b1 * 10^(b2 * x/(b3 + x)), data = DAT,
start = list(b1 = 1, b2 = 5, b3 = 100), extend = c(0, 0))
check_o(mod5)
x <- 1:100
y <- x^2
set.seed(123)
y <- sapply(y, function(a) rnorm(1, a, 0.1 * a))
DAT <- data.frame(x, y)
mod6 <- onls(y ~ x^a, data = DAT, start = list(a = 1))
mod6
mod7 <- onls(y ~ x^a, data = DAT, start = list(a = 10), window = 17)
mod7
plot(mod1)
plot(mod1, xlim = c(0, 1), ylim = c(0, 1))
summary(mod1)
coef(mod1)
vcov(mod1)
predict(mod1, newdata = data.frame(conc = 6))
confint(mod1)
residuals(mod1)
fitted(mod1)
deviance(mod1)
logLik(mod1)
residuals_o(mod1)
deviance_o(mod1)
logLik_o(mod1)
x0(mod1)
y0(mod1)
plot(mod1)
plot(mod1, xlim = c(0, 0.25), ylim = c(0, 0.25))
|
specInfo <- read.csv("sample-data.csv")
specFiltered <- subset(data, nutr >= "5")
outFile <- tempfile(fileext=".csv")
write.csv(specFiltered, file=outFile, row.names=FALSE)
|
setClass(Class = "PT.Nested.Design",
representation = representation(nested.space = "numeric",
no.complex = "numeric"),
contains = "PT.Design")
setMethod(
f="initialize",
signature="PT.Nested.Design",
definition=function(.Object, region, spacing, nested.space = numeric(0), no.complex = numeric(0), design.axis, plus.sampling, path = character(0), ...){
filenames <- character(0)
file.index <- numeric(0)
if(length(path) > 0){
filenames <- get.shapefile.names(path)
file.index <- 1
}
[email protected] <- region
[email protected] <- plus.sampling
.Object@spacing <- spacing
[email protected] <- nested.space
[email protected] <- no.complex
[email protected] <- design.axis
.Object@path <- path
.Object@filenames <- filenames
[email protected] <- file.index
validObject(.Object)
return(.Object)
}
)
setValidity("PT.Nested.Design",
function(object){
if(length(object@path) > 1){
return("You must only specify one path. All transect shapefiles must be in the same folder.")
}
nested.space <- [email protected]
if(length(nested.space) > 0){
if(any(!as.integer(nested.space) == nested.space)){
return("The nested space value should be an integer specifying how many point in the main grid are between each nested point.")
}
}
if(any(ifelse([email protected] != 0, TRUE, FALSE))){
warning("Only a design axis of 0 is currently implemented, other values will be ignored at present.", call. = FALSE, immediate. = TRUE)
}
if(length([email protected]) == 0 & length([email protected]) == 0){
return("A value must be supplied for either nested.space or no.complex.")
}
return(TRUE)
}
)
setMethod(
f="generate.transects",
signature="PT.Nested.Design",
definition=function(object, region = NULL, index = NULL, silent = FALSE){
if(is.null(region) | class(region) != "Region"){
region <- [email protected]
region <- get(region, pos = 1)
warning("Obtaining region object from the global environment.", call. = FALSE, immediate. = TRUE)
}
if(length(object@path) == 0){
read.from.file = FALSE
}else if(length(object@path) > 0){
read.from.file = TRUE
}
if(read.from.file){
stop("Cannot currently load surveys of this type from file.")
return(NULL)
}else{
if(length([email protected]) > 0){
strata.names <- [email protected]
strata.no <- length([email protected])
}else{
strata.names <- [email protected]
strata.no <- 1
}
if(length(object@spacing) != strata.no){
if(length(object@spacing) > 1){
warning("Number of spacing values not equal to number of strata. Using first value only.", immediate. = TRUE, call. = FALSE)
}
object@spacing <- rep(object@spacing[1], strata.no)
}
nested = FALSE
if(length([email protected]) > 0){
nested = TRUE
if(strata.no != length([email protected])){
[email protected] <- rep([email protected][1], strata.no)
if(!silent){
warning("The number of nested space values did not match the number of strata. Only the first value will be used.", call. = FALSE, immediate. = TRUE)
}
}
}else{
if(strata.no != length([email protected])){
[email protected] <- rep([email protected][1], strata.no)
if(!silent){
warning("The number of no.complex values did not match the number of strata. Only the first value will be used.", call. = FALSE, immediate. = TRUE)
}
}
}
for (strat in seq(along = region@coords)) {
spacing <- object@spacing[strat]
start.x <- region@box[["xmin"]] + runif(1, 0, spacing)
start.y <- region@box[["ymin"]] + runif(1, 0, spacing)
x.vals <- seq(start.x, region@box[["xmax"]], by = spacing)
y.vals <- seq(start.y, region@box[["ymax"]], by = spacing)
temp.coords <- expand.grid(x.vals, y.vals)
names(temp.coords) <- c("x","y")
to.keep <-
in.polygons(region@coords[[strat]], pts = temp.coords, boundary = TRUE)
gridpoints <- temp.coords[to.keep, ]
to.discard <-
in.polygons(region@gaps[[strat]], pts = gridpoints, boundary = TRUE)
gridpoints <- gridpoints[!to.discard,]
gridpoints$strata <- rep(strata.names[strat], nrow(gridpoints))
if(nested){
no.point.space <- [email protected][strat]
nested.spacing <- no.point.space*spacing
start.x.offset <- sample(0:(no.point.space-1), 1, prob = rep(1/(no.point.space), (no.point.space)))
start.y.offset <- sample(0:(no.point.space-1), 1, prob = rep(1/(no.point.space), (no.point.space)))
nested.start.x <- start.x + start.x.offset*spacing
nested.start.y <- start.y + start.y.offset*spacing
nested.x.vals <- seq(nested.start.x, region@box[["xmax"]], by = nested.spacing)
nested.y.vals <- seq(nested.start.y, region@box[["ymax"]], by = nested.spacing)
nested.temp.coords <- expand.grid(nested.x.vals, nested.y.vals)
names(nested.temp.coords) <- c("x","y")
to.keep <-
in.polygons(region@coords[[strat]], pts = nested.temp.coords, boundary = TRUE)
nested.gridpoints <- nested.temp.coords[to.keep, ]
to.discard <-
in.polygons(region@gaps[[strat]], pts = nested.gridpoints, boundary = TRUE)
nested.gridpoints <- nested.gridpoints[!to.discard,]
}else{
index <- sample(1:nrow(gridpoints), [email protected][strat])
nested.gridpoints <- gridpoints[index,]
}
nested.gridpoints$strata <- rep(strata.names[strat], nrow(nested.gridpoints))
gridpoints <- cbind(gridpoints, ID = 1:nrow(gridpoints))
duplicate.ID <- merge(gridpoints, nested.gridpoints, by = c("x","y"))$ID
gridpoints <- gridpoints[!gridpoints$ID %in% duplicate.ID,]
ID.col <- which(names(gridpoints) == "ID")
gridpoints <- gridpoints[,-ID.col]
gridpoints$ac.simple <- rep(TRUE, nrow(gridpoints))
nested.gridpoints$ac.simple <- rep(FALSE, nrow(nested.gridpoints))
all.gridpoints <- rbind(gridpoints, nested.gridpoints)
if (strat == 1) {
transects <- all.gridpoints
} else{
transects <- rbind(transects, all.gridpoints)
}
}
}
sampler.info <- data.frame(ID = 1:nrow(transects), X = transects$x, Y = transects$y, region = transects$strata, ac.simple = transects$ac.simple, effort = rep(1, nrow(transects)))
point.transect <- new(Class = "Point.Transect", region = region, sampler.info = sampler.info)
return(point.transect)
}
)
|
library("quanteda.textmodels")
pdf(file = tempfile(".pdf"), width = 10, height = 10)
test_that("test textplot_scale1d wordfish in the most basic way", {
wf <- textmodel_wordfish(dfm(tokens(data_corpus_irishbudget2010)), dir = c(6, 5))
expect_false(identical(textplot_scale1d(wf, sort = TRUE),
textplot_scale1d(wf, sort = FALSE)))
expect_silent(textplot_scale1d(wf, sort = TRUE,
groups = quanteda::docvars(data_corpus_irishbudget2010, "party")))
expect_silent(textplot_scale1d(wf, sort = FALSE,
groups = quanteda::docvars(data_corpus_irishbudget2010, "party")))
expect_silent(
textplot_scale1d(wf, doclabels = apply(quanteda::docvars(data_corpus_irishbudget2010,
c("name", "party")),
1, paste, collapse = " "))
)
p1 <- textplot_scale1d(wf, margin = "features", sort = TRUE)
p2 <- textplot_scale1d(wf, margin = "features", sort = FALSE)
p1$plot_env <- NULL
p2$plot_env <- NULL
expect_equal(p1, p2, check.environment = FALSE)
})
test_that("test textplot_scale1d wordscores in the most basic way", {
mt <- dfm(tokens(data_corpus_irishbudget2010))
ws <- quanteda.textmodels::textmodel_wordscores(mt, c(rep(NA, 4), -1, 1, rep(NA, 8)))
pr <- suppressWarnings(predict(ws, mt, force = TRUE))
ca <- quanteda.textmodels::textmodel_ca(mt)
expect_false(identical(textplot_scale1d(pr, sort = TRUE),
textplot_scale1d(pr, sort = FALSE)))
expect_silent(textplot_scale1d(pr, sort = TRUE,
groups = quanteda::docvars(data_corpus_irishbudget2010, "party")))
expect_silent(textplot_scale1d(pr, sort = FALSE,
groups = quanteda::docvars(data_corpus_irishbudget2010, "party")))
expect_silent(textplot_scale1d(pr, doclabels = apply(quanteda::docvars(data_corpus_irishbudget2010,
c("name", "party")),
1, paste, collapse = " ")))
expect_silent(textplot_scale1d(ca))
expect_silent(textplot_scale1d(ca, groups = quanteda::docvars(data_corpus_irishbudget2010, "party")))
p1 <- textplot_scale1d(ws, margin = "features", sort = TRUE)
p2 <- textplot_scale1d(ws, margin = "features", sort = FALSE)
p1$plot_env <- NULL
p2$plot_env <- NULL
expect_equal(p1, p2, check.environment = FALSE)
expect_error(
textplot_scale1d(ws, margin = "documents"),
"This margin can only be run on a predicted wordscores object"
)
expect_error(
suppressWarnings(textplot_scale1d(predict(ws), margin = "features")),
"This margin can only be run on a fitted wordscores object"
)
})
dev.off()
|
dml <- function(x,tail,scale=1,log=FALSE, second.type=FALSE){
stopifnot(tail > 0, tail <= 1, scale > 0)
if (length(tail) > 1){
stop("length(tail) must be 1.")
}
if(log == TRUE & any(x <= 0)) {
stop("For x <= 0 the density is zero. You schould not use log = T")
}
ind <- which(x <= 0)
x[ind] <- 0
if (second.type==FALSE) {
y <- dml1(x,tail,scale)
}
else {
y <- dml2(x/scale,tail)/scale
}
y[ind] <- 0
if (!log) {return(y)}
else {
stopifnot(all(y != 0))
return(log(y))
}
}
dml1 <- function(t,tail,scale=1,log=FALSE) {
ml <- (t^(tail-1)/(scale^tail))*mlf(-(t/scale)^tail, tail, tail, 1)
if (log) {
ml <- log(ml)
}
return(ml)
}
dml2 <- function(u,tail) {
gamma <- (cos(pi*tail/2))^(1/tail)
h <- (1/tail)*u^(-1-1/tail)*stabledist::dstable(x = u^(-1/tail),
alpha = tail, beta = 1, gamma = gamma, delta = 0, pm = 1)
}
pml <- function(q, tail, scale=1, second.type=FALSE, lower.tail=TRUE,
log.p=FALSE) {
stopifnot(tail > 0, tail <= 1, scale > 0)
ind <- which(q <= 0)
q[ind] <- 1
q <- q/scale
if (!second.type){
p <- pml1(q,tail)
} else {
p <- pml2(q,tail)
}
if (!lower.tail) {
p <- 1-p
}
if (log.p) {
p <- log(p)
}
p[ind] <- 0
return(p)
}
pml1 <- function(q,tail) {
p <- 1 - mlf(-(q)^tail,tail,1,1)
}
pml2 <- function(q,tail) {
gamma <- (cos(pi*tail/2))^(1/tail)
p <- stabledist::pstable(q^(-1/tail), alpha=tail, beta=1, gamma=gamma, delta=0,
pm=1, lower.tail = FALSE)
}
qml <- function(p, tail, scale=1, second.type=FALSE, lower.tail=TRUE,
log.p=FALSE) {
stopifnot(tail > 0, tail <= 1, scale > 0, p >= 0, p <= 1)
if (log.p) {
p <- exp(p)
}
if (!lower.tail) {
p <- 1-p
}
if (!second.type) {
q <- qml1(p, tail, scale)
} else {
q <- scale * qml2(p, tail)
}
q[p == 0] <- 0
return(q)
}
qml1 <- function(p,tail,scale=1) {
x <- numeric(length(p))
for (i in seq_along(p)) {
qml_p <- function(t) {pml(exp(t),tail,scale) - p[i]}
x[i] <- stats::uniroot(qml_p, interval = c(log(10^-14),log(100)),
extendInt="yes", tol = 1e-14)$root
}
return(exp(x))
}
qml2 <- function(p, tail){
gamma <- (cos(pi*tail/2))^(1/tail)
q <- stabledist::qstable(p, alpha=tail, beta=1, gamma=gamma, delta=0, pm=1,
lower.tail=FALSE)^(-tail)
}
rml <- function(n,tail,scale=1, second.type=FALSE){
stopifnot(tail > 0, tail <= 1, scale > 0, is.numeric(n), length(n) == 1)
if (!second.type){
x <- scale * rml1(n,tail)
} else {
x <- scale * rml2(n,tail)
}
return(x)
}
rml1 <- function(n, tail){
if (tail == 1) return(stats::rexp(n))
gamma <- (cos(pi*tail/2))^(1/tail)
y <- stabledist::rstable(n, alpha=tail, beta=1, gamma=gamma, delta=0, pm=1)
x <- stats::rexp(n)
y * x^(1/tail)
}
rml2 <- function(n, tail){
gamma <- (cos(pi*tail/2))^(1/tail)
stabledist::rstable(n, alpha=tail, beta=1, gamma=gamma, delta=0, pm=1)^(-tail)
}
|
censbnd <-
function(lambda,p,crate,rootint=c(0.1,1000))
{
eqn<-function(M,lambda,p,crate)
{
lhs=p*((1-exp(-M*lambda))/lambda)
sum(lhs)-M*crate
}
uniroot(eqn,rootint,lambda=lambda,p,crate=crate)
}
|
FV_pre_quad=function(data,years=10){
n=years
u=mean(data)
u2=mean(data^2)
final_value=n+(n*(n+1)/2)*u+(n*(n+1)/4) *(1+(2*n-1)/3)*u2
return(final_value)
}
|
MakeRelationshipExtended <- function(ped, counseland.id){
iid <- ped[,"indID"]
fid <- ped[,"fatherID"]
mid <- ped[,"motherID"]
gender <- ped[,"gender"]
relationship <- rep(0,nrow(ped))
current.id <- counseland.id
indiv <- iid == current.id
relationship[indiv] <- 1
sibs <- NULL
nep <- NULL
spouse.id <- NULL
potent.spouse.id <- NULL
if (sum(indiv)!=0){
if (fid[indiv] !=0 ){
relationship[iid == fid[indiv]] <- 4
sibs <- c(sibs, which(fid == fid[indiv] & !indiv))
}
if (mid[indiv]!=0 ){
relationship[iid == mid[indiv]] <- 4
sibs <- c(sibs, which(mid == mid[indiv] & !indiv))
}
if (length(unique(sibs))!=0){
relationship[unique(sibs)] <- 2
for (i in 1:length(unique(sibs))){
nep <- c(nep,which(fid==iid[unique(sibs)[i]]|mid==iid[unique(sibs)[i]]))
relationship[iid==fid[unique(sibs)[i]] | iid==mid[unique(sibs)[i]] ] <- 4
}
if (sum(nep)!=0)
relationship[unique(nep)] <- 5
}
}
if(sum(indiv)!=0){
if (gender[indiv]==0){
relationship[mid==iid[indiv]] <- 3
child <- which(mid==iid[indiv])
if (sum(child)!=0){
spouse.id <- unique(fid[child])
if (sum(spouse.id)!=0){
for (i in 1:length(spouse.id)){
relationship[iid==spouse.id[i]] <- 6
}
}
}
}else {
relationship[fid==iid[indiv]] <- 3
child <- which(fid==iid[indiv])
if (sum(child)!=0){
spouse.id <- unique(mid[child])
if (sum(spouse.id)!=0){
for ( i in 1:length(spouse.id)){
relationship[iid==spouse.id[i]] <- 6
}
}
}
}
}
gcid <- is.element(fid, iid[relationship==3]) | is.element(mid, iid[relationship==3])
relationship[gcid] <- 15
if (sum(gcid)!=0) {
child.spouse.id <- unique(c(fid[gcid],mid[gcid]))
if (sum(child.spouse.id)!=0){
for ( i in 1:length(child.spouse.id)){
csid <- iid==child.spouse.id[i]
if (sum(csid)!=0){
if (relationship[csid]==0) relationship[csid] <- 14
}
}
}
}
current.fid <- fid[indiv]
current.mid <- mid[indiv]
indiv <- iid==current.fid
if(sum(indiv, na.rm=TRUE)!=0) {
if (fid[indiv]!=0){
relationship[iid==fid[indiv]] <- 8
relationship[fid==fid[indiv] & !indiv] <- 9
}
if (mid[indiv]!=0){
relationship[iid==mid[indiv]] <- 8
relationship[mid==mid[indiv] & !indiv] <- 9
}
cid <- is.element(fid, iid[relationship==9]) | is.element(mid, iid[relationship==9])
relationship[cid] <- 10
}
indiv <- iid==current.mid
if(sum(indiv, na.rm=TRUE)!=0){
if (fid[indiv] != 0){
relationship[iid==fid[indiv]] <- 11
relationship[fid==fid[indiv] & !indiv] <- 12
}
if (mid[indiv] !=0){
relationship[iid==mid[indiv]] <- 11
relationship[mid==mid[indiv] & !indiv] <- 12
}
cid <- is.element(fid, iid[relationship==12]) | is.element(mid, iid[relationship==12])
relationship[cid] <- 13
}
if (sum(nep)!=0)
potent.spouse.id <- unique(c(fid[nep],mid[nep]))
if (sum(potent.spouse.id)!=0){
for ( i in 1:length(potent.spouse.id)){
indiv <- iid==potent.spouse.id[i]
if (sum(indiv)!=0){
if (relationship[indiv]==0){
relationship[indiv] <- 7
}
}
}
}
cousin <- which(relationship==10 | relationship == 13)
if (sum(cousin)!=0) {
uncle.spouse.id <- unique(c(fid[cousin],mid[cousin]))
if (sum(uncle.spouse.id)!=0){
for ( i in 1:length(uncle.spouse.id)){
indiv <- iid==uncle.spouse.id[i]
if (sum(indiv)!=0){
if (relationship[indiv]==0){
relationship[indiv] <- 16
}
}
}
}
}
return(relationship)
}
|
context("(de)serialization of PCA models")
test_that("PCA models can be serialized and unserialized correctly", {
models <- list()
for (whiten in c(FALSE, TRUE)) {
for (transform_input in c(FALSE, TRUE)) {
model <- cuda_ml_pca(
iris[1:4],
n_components = 3, whiten = whiten,
transform_input = transform_input
)
models <- append(models, list(model))
}
}
for (model in models) {
actual_inv_transform <- callr::r(
function(model_state, expected_components, expected_expl_var,
expected_expl_var_ratio, expected_sg_vals, expected_m,
expected_tf_data, whiten) {
library(cuda.ml)
library(testthat)
stopifnot(has_cuML())
model <- cuda_ml_unserialize(model_state)
expect_equal(model$components, expected_components)
expect_equal(model$explained_variance, expected_expl_var)
expect_equal(
model$explained_variance_ratio, expected_expl_var_ratio
)
expect_equal(model$singular_values, expected_sg_vals)
expect_equal(model$mean, expected_m)
expect_equal(model$transformed_data, expected_tf_data)
if (!is.null(model$transformed_data) && !whiten) {
cuda_ml_inverse_transform(model, model$transformed_data)
} else {
NULL
}
},
args = list(
model_state = cuda_ml_serialize(model),
expected_components = model$components,
expected_expl_var = model$explained_variance,
expected_expl_var_ratio = model$explained_variance_ratio,
expected_sg_vals = model$singular_values,
expected_m = model$mean,
expected_tf_data = model$transformed_data,
whiten = whiten
)
)
if (!is.null(model$transformed_data) && !whiten) {
expected_inv_transform <- cuda_ml_inverse_transform(
model, model$transformed_data
)
expect_equal(expected_inv_transform, actual_inv_transform)
} else {
succeed()
}
}
})
|
test_that("Simple colours convert", {
expect_equal(colourName("red"), "red")
expect_equal(colourName("
expect_equal(colourName("
expect_equal(colourName("
expect_equal(colourName("
expect_equal(colourName("
})
|
gpb.interprete <- function(model,
data,
idxset,
num_iteration = NULL) {
tree_dt <- gpb.model.dt.tree(model = model, num_iteration = num_iteration)
num_class <- model$.__enclos_env__$private$num_class
tree_interpretation_dt_list <- vector(mode = "list", length = length(idxset))
pred_mat <- t(
model$predict(
data = data[idxset, , drop = FALSE]
, num_iteration = num_iteration
, predleaf = TRUE
)
)
leaf_index_dt <- data.table::as.data.table(x = pred_mat)
leaf_index_mat_list <- lapply(
X = leaf_index_dt
, FUN = function(x) matrix(x, ncol = num_class, byrow = TRUE)
)
tree_index_mat_list <- lapply(
X = leaf_index_mat_list
, FUN = function(x) {
matrix(seq_len(length(x)) - 1L, ncol = num_class, byrow = TRUE)
}
)
for (i in seq_along(idxset)) {
tree_interpretation_dt_list[[i]] <- single.row.interprete(
tree_dt = tree_dt
, num_class = num_class
, tree_index_mat = tree_index_mat_list[[i]]
, leaf_index_mat = leaf_index_mat_list[[i]]
)
}
return(tree_interpretation_dt_list)
}
single.tree.interprete <- function(tree_dt,
tree_id,
leaf_id) {
single_tree_dt <- tree_dt[tree_index == tree_id, ]
leaf_dt <- single_tree_dt[leaf_index == leaf_id, .(leaf_index, leaf_parent, leaf_value)]
node_dt <- single_tree_dt[!is.na(split_index), .(split_index, split_feature, node_parent, internal_value)]
feature_seq <- character(0L)
value_seq <- numeric(0L)
leaf_to_root <- function(parent_id, current_value) {
value_seq <<- c(current_value, value_seq)
if (!is.na(parent_id)) {
this_node <- node_dt[split_index == parent_id, ]
feature_seq <<- c(this_node[["split_feature"]], feature_seq)
leaf_to_root(
parent_id = this_node[["node_parent"]]
, current_value = this_node[["internal_value"]]
)
}
}
leaf_to_root(
parent_id = leaf_dt[["leaf_parent"]]
, current_value = leaf_dt[["leaf_value"]]
)
return(
data.table::data.table(
Feature = feature_seq
, Contribution = diff.default(value_seq)
)
)
}
multiple.tree.interprete <- function(tree_dt,
tree_index,
leaf_index) {
interp_dt <- data.table::rbindlist(
l = mapply(
FUN = single.tree.interprete
, tree_id = tree_index
, leaf_id = leaf_index
, MoreArgs = list(
tree_dt = tree_dt
)
, SIMPLIFY = FALSE
, USE.NAMES = TRUE
)
, use.names = TRUE
)
interp_dt <- interp_dt[, .(Contribution = sum(Contribution)), by = "Feature"]
interp_dt[, abs_contribution := abs(Contribution)]
data.table::setorder(
x = interp_dt
, -abs_contribution
)
interp_dt[, abs_contribution := NULL]
return(interp_dt)
}
single.row.interprete <- function(tree_dt, num_class, tree_index_mat, leaf_index_mat) {
tree_interpretation <- vector(mode = "list", length = num_class)
for (i in seq_len(num_class)) {
next_interp_dt <- multiple.tree.interprete(
tree_dt = tree_dt
, tree_index = tree_index_mat[, i]
, leaf_index = leaf_index_mat[, i]
)
if (num_class > 1L) {
data.table::setnames(
x = next_interp_dt
, old = "Contribution"
, new = paste("Class", i - 1L)
)
}
tree_interpretation[[i]] <- next_interp_dt
}
if (num_class == 1L) {
tree_interpretation_dt <- tree_interpretation[[1L]]
} else {
tree_interpretation_dt <- Reduce(
f = function(x, y) {
merge(x, y, by = "Feature", all = TRUE)
}
, x = tree_interpretation
)
for (j in 2L:ncol(tree_interpretation_dt)) {
data.table::set(
x = tree_interpretation_dt
, i = which(is.na(tree_interpretation_dt[[j]]))
, j = j
, value = 0.0
)
}
}
return(tree_interpretation_dt)
}
|
eggers.test = function(x) {
x = x
if (x$k < 10) {
warning(paste("Your meta-analysis contains k =", x$k, "studies. Egger's test may lack the statistical power to detect bias when the number of studies is small (i.e., k<10)."))
}
if (class(x)[1] %in% c("meta", "metabin", "metagen", "metacont", "metacor", "metainc", "metaprop")) {
eggers = meta::metabias(x, k.min = 3, method = "linreg")
intercept = as.numeric(eggers$estimate[1]) %>% round(digits = 3)
se = as.numeric(eggers$estimate[2])
LLCI = intercept - 1.96 * se %>% round(digits = 1)
ULCI = intercept + 1.96 * se %>% round(digits = 1)
CI = paste(LLCI, "-", ULCI, sep = "")
t = as.numeric(eggers$statistic) %>% round(digits = 3)
df = as.numeric(eggers$parameters)
p = as.numeric(eggers$p.value) %>% round(digits = 5)
df = data.frame(Intercept = intercept, ConfidenceInterval = CI, t = t, p = p)
row.names(df) = "Egger's test"
} else {
stop("x must be of type 'metabin', 'metagen', 'metacont', 'metainc' or 'metaprop'")
}
return(df)
}
|
computeLeafOrder<-function
(
merging,
dbg=0
) {
m<-dim(merging)[1]
if (dbg) printVar(m)
n<-m+1
if (dbg) printVar(m)
lifo<-rep(0,m)
lifoIdx<-0
ordering<-rep(0,n)
oi<-1
if (dbg) cat(sprintf('pushing %d\n',m))
lifoIdx<-lifoIdx+1
lifo[lifoIdx]<-m
while (lifoIdx>0) {
clstr<-lifo[lifoIdx]
lifoIdx<-lifoIdx-1
if (dbg) cat(sprintf('popping %d\n',clstr))
if (clstr<0) {
if (dbg) cat(sprintf(' -> %d\n',oi))
ordering[-clstr]<-oi
oi<-oi+1
} else {
for (i in 2:1) {
subclstr<-merging[clstr,i]
if (dbg) cat(sprintf('pushing %d\n',subclstr))
lifoIdx<-lifoIdx+1
lifo[lifoIdx]<-subclstr
}
}
}
if (dbg) printVar(ordering)
return(ordering)
}
|
`p1p2.c` <-
function (typ,p1,p2) switch (typ, b = p1p2.c.b(p1,p2), l = p1p2.c.l(p1,p2), v = p1p2.c.v(p1,p2), h = p1p2.c.h(p1,p2) )
|
"dgev" <-
function(x, xi = 1, mu = 0, sigma = 1)
{
tmp <- (1 + (xi * (x - mu))/sigma)
(as.numeric(tmp > 0) * (tmp^(-1/xi - 1) * exp( - tmp^(-1/xi))))/
sigma
}
"dgpd" <-
function(x, xi, mu = 0, beta = 1)
{
(beta^(-1)) * (1 + (xi * (x - mu))/beta)^((-1/xi) - 1)
}
"pgev" <-
function(q, xi = 1, mu = 0, sigma = 1)
{
exp( - (1 + (xi * (q - mu))/sigma)^(-1 /xi))
}
"pgpd" <-
function(q, xi, mu = 0, beta = 1)
{
(1 - (1 + (xi * (q - mu))/beta)^(-1 /xi))
}
"qgev" <-
function(p, xi = 1, mu = 0, sigma = 1)
{
mu + (sigma/xi) * (( - logb(p))^( - xi) - 1)
}
"qgpd" <-
function(p, xi, mu = 0, beta = 1)
{
mu + (beta/xi) * ((1 - p)^( - xi) - 1)
}
"rgev" <-
function(n, xi = 1, mu = 0, sigma = 1)
{
mu - (sigma * (1 - ( - logb(runif(n)))^( - xi)))/xi
}
"rgpd" <-
function(n, xi, mu = 0, beta = 1)
{
mu + (beta/xi) * ((1 - runif(n))^( - xi) - 1)
}
|
KdCov = function(x,y, sigma){
n <- nrow(as.matrix(x))
if (length(y)!=n)
stop( "x and y must be the same size")
x=sqrt(2-2*exp(-as.matrix(dist(as.matrix(x),diag=TRUE, upper=TRUE))/sigma))
y <- as.matrix(dist(as.matrix(y),diag=TRUE, upper=TRUE))
y[which(y!=0)]=1
return(dcov(x,y))
}
|
parallel.ade <-
function(vars, vnames=NULL, data=NULL, group=NULL, ylim=NULL , xlab=NULL, ylab=NULL, main=NULL, alpha = NULL, col=NULL, tcol=NULL, bgcol=NULL, lcol=NULL, scale=FALSE, desc=FALSE, means=TRUE, legendon='top', wall=0){
if(any(par('mfg')!=c(1,1,1,1)) & any(par('mai') < c(1.02, 0.82, 0.82, 0.42))){
maidiff<-rep(0, 4)
norm<-c(1.02, 0.82, 0.82, 0.42)
maidiff[par('mai')<norm]<- norm[par('mai')<norm] - par('mai')[par('mai')<norm]
par(mai=par('mai')+maidiff)
}
oldpar<-par(no.readonly =TRUE)
oldpar<-oldpar[-which(names(oldpar)%in%c('usr', 'plt', 'pin', 'fin', 'fig', 'mfg', 'mfcol', 'mfrow', 'omd', 'omi', 'oma'))]
on.exit(par(oldpar))
if(is.list(vars)){
x<- vars[[1]]
data<-as.data.frame(x)
newvars<-NULL
for(i in 1:length(vars)){
eval(parse(text=paste("data$var_",i,"<-vars[[i]]", sep='')))
newvars<-c(newvars, paste("var_",i, sep=''))
}
data$groupmy<-group
vars<-newvars
if(!is.null(group)) group<-'groupmy'
}
for(i in 1:length(vars)){
data<- subset(data, !is.na(eval(parse(text=paste(vars[i], sep='')))))
}
if (is.null(vnames)) vnames <- vars
if(!is.null(group)) gg<- eval(parse(text=paste("data$",group, sep='')))
if(!is.null(group)) ggf<-eval(parse(text=paste("data$",group, sep='')))
if(!is.null(group)) ggf<-as.factor(ggf)
if(!is.null(group)) gg<-as.numeric(gg)
if(is.null(tcol) & wall==0) tcol<-1
if(is.null(tcol) & wall!=0) tcol<-rgb(0.1,0.1,0.25)
if(is.null(bgcol) & wall==0) bgcol<-1
if(is.null(bgcol) & wall!=0) bgcol<-'
if(is.null(alpha)){
alpha<-0.25
if(wall==0) alpha<-1
}
M<-NULL
for(i in 1:length(vars)){
M<-cbind(M, eval(parse(text=paste("data$",vars[i], sep=''))))
}
runlines<-function(alcol, mcol=tcol, plot=TRUE){
M<-NULL
for(i in 1:length(vars)){
M<-cbind(M, eval(parse(text=paste("data$",vars[i], sep=''))))
}
rbc2 <-alcol
if(scale){
if(is.null(group)) yr<-range(M, na.rm=TRUE)
if(!is.null(group)) yr<-range(M[(!is.na(gg)), ], na.rm=TRUE)
for(i in 1:length(vars)){
if(is.null(group)) M[ , i]<-(M[, i]/(range(M[,i], na.rm=TRUE)[2]-range(M[,i], na.rm=TRUE)[1]))-(range(M[,i], na.rm=TRUE)[1]/(range(M[,i], na.rm=TRUE)[2]-range(M[,i], na.rm=TRUE)[1]))
if(!is.null(group)) M[ , i]<-(M[, i]/(range(M[(!is.na(gg)),i], na.rm=TRUE)[2]-range(M[(!is.na(gg)),i], na.rm=TRUE)[1]))-(range(M[(!is.na(gg)),i], na.rm=TRUE)[1]/(range(M[(!is.na(gg)),i], na.rm=TRUE)[2]-range(M[(!is.na(gg)),i], na.rm=TRUE)[1]))
ylim=(ylim/(ylim[2]-ylim[1]))-(ylim[1]/(ylim[2]-ylim[1]))
}
}
d<-dim(M)
x<-1:dim(M)[2]
if(is.null(group)){
if(is.null(col)) rbc<-rainbow(dim(M)[1], start=0.2, end=0, alpha=alpha)
if(!is.null(col)) rbc<-rep(col, round(d[1]/length(col))+1 )
o<-order(as.numeric(M[,1] ), decreasing = desc)
M<-M[o,]
}
if(!is.null(group)){
if(is.null(col)) col <- a.getcol.ade(nlevels(ggf))
if(!is.null(col)){
rbc<- a.alpha.ade(col, alpha)
rbc2<-a.alpha.ade(col, 1)
}
o<-order(as.numeric(gg), decreasing = F)
M<-M[o,]
gg<-gg[o]
}
if(!is.null(group)) if(min(gg, na.rm=TRUE)==0) gg<-gg+1
if(plot){
for(i in 1:(dim(M)[2]-1)){
for(j in 1:dim(M)[1]){
if(is.null(group)) segments(i,M[j,i],(i+1),M[j,(i+1)], col=rbc[j])
if(!is.null(group)) segments(i,M[j,i],(i+1),M[j,(i+1)], col=rbc[gg[j]])
}
if(means){
if(is.null(group) & is.null(lcol)) segments(i,mean(M[,i], na.rm=TRUE),(i+1),mean(M[,(i+1)], na.rm=TRUE), col=mcol, lwd=2)
if(is.null(group) & !is.null(lcol)) segments(i,mean(M[,i], na.rm=TRUE),(i+1),mean(M[,(i+1)], na.rm=TRUE), col=lcol, lwd=2)
if(!is.null(group)){
for(k in 1:length(rbc)){
MD<-cbind(M, gg)
x<-levels(factor(gg))[k]
MD<-as.data.frame(MD)
MD<-subset(MD, gg==x )
segments(i,mean(MD[,i], na.rm=TRUE),(i+1),mean(MD[,(i+1)], na.rm=TRUE), col=a.alpha.ade(a.coladd.ade(rbc[k], -75), 1), lwd=3)
}
}
}
abline(v=i, col=alcol)
}
}
if(is.null(group)) yrange<-range(M, na.rm=TRUE)
if(!is.null(group)) yrange<-range(M[(!is.na(gg)), ], na.rm=TRUE)
if(plot) abline(v=(i+1), col=alcol)
return(list(rbc2, yrange[1], yrange[2]))
}
if(wall==0){
par(col.axis=tcol)
par(col.lab=tcol)
par(col.main=tcol)
if(!is.null(ylim)) yrange<-ylim
xrange<-c(1, length(vars))
out<-runlines(a.coladd.ade(bgcol, -50), tcol, plot=FALSE)
rbc2<-out[[1]]
if(is.null(ylim)) yrange<-c(out[[2]], out[[3]])
yrange[2]<-yrange[2]+yrange[2]/10
plot(0, 0 , xlim=xrange, ylim=yrange, axes=FALSE, xlab=xlab, ylab=ylab, main=main, col=rgb(1,1,1,0))
axis(2 , at=pretty(c(yrange[1],yrange[2])) , col.ticks=bgcol)
a1<-axis(1, at=1:length(vars), labels=vnames, col.ticks=bgcol)
runlines(bgcol)
if(!is.null(group)) legend(legendon, legend=levels(ggf), text.col=tcol, box.col=bgcol, fill=rbc2, border=bgcol, yjust=0.425, horiz=TRUE, bg=rgb(1,1,1, 0.99))
box(col=bgcol)
}
if(wall==1){
par(col.axis=tcol)
par(col.lab=tcol)
par(col.main=tcol)
if(!is.null(ylim)) yrange=ylim
xrange<-c(1, length(vars))
out<-runlines(a.coladd.ade(bgcol, -50), tcol, plot=FALSE)
rbc2<-out[[1]]
if(is.null(ylim)) yrange<-c(out[[2]], out[[3]])
yrange[2]<-yrange[2]+yrange[2]/10
plot(0, 0 , xlim=xrange, ylim=yrange, axes=FALSE, xlab=xlab, ylab=ylab, main=main, col=rgb(1,1,1,0))
polygon( c(par('usr')[c(1,1,2,2)]), par('usr')[c(3,4,4,3)], col=bgcol, border=FALSE)
a2<-axis(2 , at=pretty(c(yrange[1],yrange[2])) , col.ticks=bgcol)
a1<-axis(1, at=1:length(vars), labels=vnames, col.ticks=bgcol)
abline(v=a1, h=a2, lty=1, col=rgb(1,1,1), lwd=1)
runlines(rgb(1,1,1), tcol)
if(!is.null(group)) legend(legendon, legend=levels(ggf), text.col=tcol, box.col=rgb(1,1,1), fill=rbc2, border=tcol, box.lwd=2, horiz=TRUE, bg=bgcol)
box(col=rgb(1,1,1))
}
if(wall==2){
par(col.axis=tcol)
par(col.lab=tcol)
par(col.main=tcol)
if(!is.null(ylim)) yrange=ylim
xrange<-c(1, length(vars))
out<-runlines(a.coladd.ade(bgcol, -50), tcol, plot=FALSE)
rbc2<-out[[1]]
if(is.null(ylim)) yrange<-c(out[[2]], out[[3]])
yrange[2]<-yrange[2]+yrange[2]/10
plot(0, 0 , xlim=xrange, ylim=yrange, axes=FALSE, xlab=xlab, ylab=ylab, main=main, col=rgb(1,1,1,0))
a2<-axis(2 , at=pretty(c(yrange[1],yrange[2])) , col.ticks=bgcol)
a1<-axis(1, at=1:length(vars), labels=vnames, col.ticks=bgcol)
abline(v=a1, h=a2, lty=1, col=bgcol, lwd=1)
runlines(bgcol, tcol)
if(!is.null(group)) legend(legendon, legend=levels(ggf), text.col=tcol, box.col=a.coladd.ade(bgcol, -75), fill=rbc2, border=a.coladd.ade(bgcol, -75), box.lwd=1, horiz=TRUE, bg=rgb(1,1,1))
box(col=a.coladd.ade(bgcol, -75))
}
if(wall==3){
par(col.axis=tcol)
par(col.lab=tcol)
par(col.main=tcol)
if(!is.null(ylim)) yrange=ylim
xrange<-c(1, length(vars))
out<-runlines(a.coladd.ade(bgcol, -50), tcol, plot=FALSE)
rbc2<-out[[1]]
if(is.null(ylim)) yrange<-c(out[[2]], out[[3]])
yrange[2]<-yrange[2]+yrange[2]/10
plot(0, 0 , ylim=yrange, axes=FALSE, xlab=xlab, ylab=ylab, main=main, xlim=xrange, col=rgb(1,1,1,0))
polygon( c(par('usr')[c(1,1,2,2)]), par('usr')[c(3,4,4,3)], col=bgcol, border=FALSE)
a1<-axis(1, at=1:length(vars), labels=vnames, col.ticks=bgcol)
a2<-axis(2 , at=pretty(c(yrange[1],yrange[2])) , col.ticks=bgcol)
abline(v=a1, h=a2, lty=1, col=a.coladd.ade(bgcol, -50), lwd=1)
out<-runlines(a.coladd.ade(bgcol, -50), tcol, plot=TRUE)
if(!is.null(group)) legend(legendon, legend=levels(ggf), text.col=tcol, fill=rbc2, box.col=a.coladd.ade(bgcol, -75), border=a.coladd.ade(bgcol, -75), box.lwd=1, horiz=TRUE, bg=rgb(1,1,1))
box(col=a.coladd.ade(bgcol, -75))
}
if(wall==4){
par(col.axis=tcol)
par(col.lab=tcol)
par(col.main=rgb(1,1,1))
par(font=2)
if(!is.null(ylim)) yrange=ylim
xrange<-c(1, length(vars))
out<-runlines(a.coladd.ade(bgcol, -50), tcol, plot=FALSE)
rbc2<-out[[1]]
if(is.null(ylim)) yrange<-c(out[[2]], out[[3]])
yrange[2]<-yrange[2]+yrange[2]/10
plot(0, 0 , xlim=xrange, ylim=yrange, axes=FALSE, xlab='', ylab='', main='', col=rgb(1,1,1,0))
polygon( c(par('usr')[c(1,1,2,2)]), par('usr')[c(3,4,4,3)], col=bgcol, border=FALSE)
a2<-axis(2 , at=pretty(c(yrange[1],yrange[2])) , col.ticks=bgcol)
a1<-axis(1, at=1:length(vars), labels=vnames, col.ticks=bgcol)
abline(v=a1, h=a2, lty=1, col=rgb(1,1,1), lwd=1)
par(xpd=TRUE)
polygon(a.glc(side=c(2,2,4,4), line=c(0,0,0,0)), a.glc(side=3, line=c(0, 2.75, 2.75, 0)), col=tcol, border=rgb(1,1,1))
if(!is.null(ylab)) if(ylab!='' & ylab!=' ') polygon( a.glc(side=2, line=c(3.5, 3.5, 2, 2)), a.glc(side=c(1, 3, 3, 1), line=0), col=bgcol, border=rgb(1,1,1))
if(!is.null(xlab)) if(xlab!='' & xlab!=' ') polygon( a.glc(side=c(2, 2, 4, 4), line=0), a.glc(side=1, line=c(4, 2.5, 2.5, 4)), col=bgcol, border=rgb(1,1,1))
text(a.glc(side=0), a.glc(side=3, line=1), labels=main, cex = 1.25, font=2, col=rgb(1,1,1), adj=c(0.5,0))
text(a.glc(side=0), a.glc(side=1, line=3.5), labels=xlab, cex = 1.1, font=2, col=tcol, adj=c(0.5,0))
text(a.glc(side=2, line=2.5), a.glc(side=5), labels=ylab, cex = 1.1, font=2, col=tcol, adj=c(0.5,0), srt=90)
par(xpd=FALSE)
box(col=rgb(1,1,1))
runlines(rgb(1,1,1), tcol)
if(!is.null(group)) legend(legendon, legend=levels(ggf), text.col=rgb(1,1,1), fill=rbc2, box.col=rgb(1,1,1), border=rgb(1,1,1), lty=0,box.lwd=1, pt.cex=2, col=rbc2, horiz=TRUE, bg=tcol, text.width=max(strwidth(levels(ggf),font = 2)))
box(col=rgb(1,1,1))
}
if(wall==5){
par(col.axis=tcol)
par(col.lab=tcol)
par(col.main=tcol)
par(font=2)
newmai<-rep(0, 4)
oldmai<-par('mai')
if(oldmai[2]<1) newmai[2]<- 1 - oldmai[2]
if(oldmai[3]>0.75 & oldmai[3]<=0.82) newmai[3]<- 0.75-oldmai[3]
if(oldmai[4]>0.25 & oldmai[4]<=0.42) newmai[4]<- 0.25-oldmai[4]
par(mai=(oldmai+newmai))
if(!is.null(ylim)) yrange=ylim
xrange<-c(1, length(vars))
out<-runlines(a.coladd.ade(bgcol, -50), tcol, plot=FALSE)
rbc2<-out[[1]]
if(is.null(ylim)) yrange<-c(out[[2]], out[[3]])
yrange[2]<-yrange[2]+yrange[2]/10
plot(0, 0 , xlim=xrange, ylim=yrange, axes=FALSE, xlab='', ylab='', main='', col=rgb(1,1,1,0))
a2<-axis(2 , at=pretty(c(yrange[1],yrange[2])) , col.ticks=bgcol)
a1<-axis(1, at=1:length(vars), labels=vnames, col.ticks=bgcol)
abline(v=a1, h=a2, lty=1, col=rgb(1,1,1), lwd=1)
par(xpd=TRUE)
polygon(a.glc(side=2, line=c(4.25, 4.25, 0, 0)), a.glc(side=3, line=c(0.6, 3, 3, 0.6)), col=bgcol, border=tcol)
polygon(a.glc(side=c(2,2,4,4), line=c(0,0,0,0)), a.glc(side=3, line=c(0.6, 3, 3, 0.6)), col=rgb(1,1,1,0), border=tcol)
polygon(a.glc(side=4, line=c(0, 0 ,0.6, 0.6)), a.glc(side=3, line=c(0.6, 3, 3, 0.6)), col=bgcol, border=tcol)
polygon(a.glc(side=2, line=c(4.25, 4.25 ,3.65, 3.65)), a.glc(side=c(1,3,3,1), line=c(2.6, 0.6, 0.6, 2.6)), col=bgcol, border=tcol)
polygon(a.glc(side=4, line=c(0, 0 ,0.6, 0.6)), a.glc(side=c(1, 3, 3, 1), line=0), col=bgcol, border=tcol)
polygon(a.glc(side=2, line=c(4.25, 4.25, 0, 0)), a.glc(side=1, line=c(2.6, 4.5, 4.5, 2.6)), col=bgcol, border=tcol)
polygon(a.glc(side=c(2, 2, 4, 4), line=0), a.glc(side=1, line=c(2.6, 4.5, 4.5, 2.6)), col=rgb(1,1,1,0), border=tcol)
polygon(a.glc(side=4, line=c(0, 0, 0.6, 0.6)), a.glc(side=1, line=c(2.6, 4.5, 4.5, 2.6)), col=bgcol, border=tcol)
text(a.glc(side=0), a.glc(side=3, line=1.5), labels=main, cex = 1.25, font=2, col=tcol, adj=c(0.5,0))
text(a.glc(side=0), a.glc(side=1, line=3.75), labels=xlab, cex = 1.1, font=2, col=tcol, adj=c(0.5,0))
text(a.glc(side=2, line=2.5), a.glc(side=5), labels=ylab, cex = 1.1, font=2, col=tcol, adj=c(0.5,0), srt=90)
par(xpd=FALSE)
box(col=rgb(1,1,1))
runlines(tcol, tcol)
if(!is.null(group)) legend(legendon, legend=levels(ggf), text.col=tcol, fill=rbc2, box.col=tcol, border=tcol, lty=0,box.lwd=1, pt.cex=2, col=rbc2, horiz=TRUE, bg=rgb(1,1,1), text.width=max(strwidth(levels(ggf),font = 2)))
box(col=tcol)
}
if(wall==6){
par(col.axis=tcol)
par(col.lab=tcol)
par(col.main=tcol)
if(!is.null(ylim)) yrange=ylim
xrange<-c(1, length(vars))
out<-runlines(a.coladd.ade(bgcol, -50), tcol, plot=FALSE)
rbc2<-out[[1]]
if(is.null(ylim)) yrange<-c(out[[2]], out[[3]])
yrange[2]<-yrange[2]+yrange[2]/10
plot(0, 0 , xlim=xrange, ylim=yrange, axes=FALSE, xlab=xlab, ylab=ylab, main=main, col=rgb(1,1,1,0))
polygon( c(par('usr')[c(1,1,2,2)]), par('usr')[c(3,4,4,3)], col=bgcol, border=NA)
a2<-axis(2 , at=pretty(c(yrange[1],yrange[2])) , col.ticks=a.coladd.ade(bgcol, -35), lwd.ticks=3)
a2<-axis(2 , at=pretty(c(yrange[1],yrange[2])) , col.ticks=rgb(1,1,1), lwd.ticks=1)
a1<-axis(1, at=1:length(vars), labels=vnames, col.ticks=a.coladd.ade(bgcol, -35), lwd.ticks=3)
a1<-axis(1, at=1:length(vars), labels=vnames, col.ticks=rgb(1,1,1), lwd.ticks=1)
abline(v=a1, h=a2, lty=1, col=a.coladd.ade(bgcol, -35), lwd=3)
abline(v=a1, h=a2, lty=1, col=rgb(1,1,1), lwd=1)
runlines(rgb(1,1,1), tcol)
if(!is.null(group)) legend(legendon, legend=levels(ggf), text.col=tcol, box.col=rgb(1,1,1), fill=rbc2, border=tcol, box.lwd=3, horiz=TRUE, bg=bgcol)
if(!is.null(group)) legend(legendon, legend=levels(ggf), text.col=tcol, box.col=a.coladd.ade(bgcol, -35), fill=rbc2, border=tcol, box.lwd=1, horiz=TRUE, bg=rgb(0,0,0,0))
box(lwd=3, col=rgb(1,1,1))
box(lwd=1, col=a.coladd.ade(bgcol, -35))
}
}
|
raw2temp <-function(raw,E=1,OD=1,RTemp=20,ATemp=RTemp,IRWTemp=RTemp,IRT=1,RH=50,
PR1=21106.77,PB=1501,PF=1,PO=-7340,PR2=0.012545258,
ATA1=0.006569, ATA2=0.01262, ATB1=-0.002276, ATB2=-0.00667, ATX=1.9)
{
emiss.wind<-1-IRT
refl.wind<-0
h2o<-(RH/100)*exp(1.5587+0.06939*(ATemp)-0.00027816*(ATemp)^2+0.00000068455*(ATemp)^3)
tau1<-ATX*exp(-sqrt(OD/2)*(ATA1+ATB1*sqrt(h2o)))+(1-ATX)*exp(-sqrt(OD/2)*(ATA2+ATB2*sqrt(h2o)))
tau2<-ATX*exp(-sqrt(OD/2)*(ATA1+ATB1*sqrt(h2o)))+(1-ATX)*exp(-sqrt(OD/2)*(ATA2+ATB2*sqrt(h2o)))
raw.refl1<-PR1/(PR2*(exp(PB/(RTemp+273.15))-PF))-PO
raw.refl1.attn<-(1-E)/E*raw.refl1
raw.atm1<-PR1/(PR2*(exp(PB/(ATemp+273.15))-PF))-PO
raw.atm1.attn<-(1-tau1)/E/tau1*raw.atm1
raw.wind<-PR1/(PR2*(exp(PB/(IRWTemp+273.15))-PF))-PO
raw.wind.attn<-emiss.wind/E/tau1/IRT*raw.wind
raw.refl2<-PR1/(PR2*(exp(PB/(RTemp+273.15))-PF))-PO
raw.refl2.attn<-refl.wind/E/tau1/IRT*raw.refl2
raw.atm2<-PR1/(PR2*(exp(PB/(ATemp+273.15))-PF))-PO
raw.atm2.attn<-(1-tau2)/E/tau1/IRT/tau2*raw.atm2
raw.obj<-(raw/E/tau1/IRT/tau2-raw.atm1.attn-raw.atm2.attn-raw.wind.attn-raw.refl1.attn-raw.refl2.attn)
temp.C<-PB/log(PR1/(PR2*(raw.obj+PO))+PF)-273.15
temp.C
}
|
QuantoAmerPutLSM <-
function(Spot=1, sigma=0.2, n=1000, m=365, Strike=1.1, r=0.06, dr=0.0, mT=1, Spot2=1, sigma2=0.2, r2=0.0, dr2=0.0, rho=0){
covmat <- matrix(c(1,rho,rho,1), ncol=2)
GBM1<-matrix(NA, nrow=n, ncol=m)
GBM2<-matrix(NA, nrow=n, ncol=m)
GBMD<-matrix(NA, nrow=m, ncol=2)
for(i in 1:n) {
GBMD<-rmvnorm(m, mean=c(0,0), sigma=covmat)
GBM1[i,]<-Spot*exp(cumsum(((r-dr)*(mT/m)-0.5*sigma*sigma*(mT/m))+(sigma*(sqrt(mT/m))*GBMD[,1])))
GBM2[i,]<-Spot2*exp(cumsum(((r2-dr2)*(mT/m)-0.5*sigma2*sigma2*(mT/m))+(sigma2*(sqrt(mT/m))*GBMD[,2])))
}
X<-ifelse(GBM1<Strike,GBM1,NA)
CFL1<-matrix(pmax(0,Strike-GBM1), nrow=n, ncol=m)
CFL<-CFL1*GBM2
Xsh<-X[,-m]
X2sh<-Xsh*Xsh
G<-ifelse(GBM1<Strike,GBM2,NA)
Gsh<-G[,-m]
G2sh<-Gsh*Gsh
H<-Xsh*Gsh
Y1<-CFL*exp(-1*r*(mT/m))
Y2<-cbind((matrix(NA, nrow=n, ncol=m-1)), Y1[,m])
CV<-matrix(NA, nrow=n, ncol=m-1)
try(for(i in (m-1):1) {
reg1<-lm(Y2[,i+1]~Xsh[,i]+X2sh[,i]+Gsh[,i]+G2sh[,i]+H[,i])
mat1<-cbind(matrix(reg1$coefficients)[1,1], matrix(reg1$coefficients)[2,1], matrix(reg1$coefficients)[3,1], matrix(reg1$coefficients)[4,1], matrix(reg1$coefficients)[5,1], matrix(reg1$coefficients)[6,1])
mat2<-(ifelse(is.na(mat1),0,mat1))
CV[,i]<-(mat2[1,1])+((mat2[1,2])*Xsh[,i])+((mat2[1,3])*X2sh[,i])+((mat2[1,4])*Gsh[,i])+((mat2[1,5])*G2sh[,i])+((mat2[1,6])*H[,i])
CV[,i]<-(ifelse(is.na(CV[,i]),0,CV[,i]))
Y2[,i]<-ifelse(CFL[,i]>CV[,i], Y1[,i], Y2[,i+1]*exp(-1*r*(mT/m)))
}
, silent = TRUE)
CV<-ifelse(is.na(CV),0,CV)
CVp<-cbind(CV, (matrix(0, nrow=n, ncol=1)))
POF<-ifelse(CVp>CFL,0,CFL)
FPOF<-firstValueRow(POF)
dFPOF<-matrix(NA, nrow=n, ncol=m)
for(i in 1:m) {
dFPOF[,i]<-FPOF[,i]*exp(-1*mT/m*r*i)
}
PRICE<-mean(rowSums(dFPOF))
res<- list(price=(PRICE), Spot, Strike, sigma, n, m, r, dr, mT, Spot2, sigma2, r2, dr2, rho)
class(res)<-"QuantoAmerPut"
return(res)
}
|
source("ESEUR_config.r")
pal_col=rainbow(2)
fit_contract=function(df, col_str)
{
fp_mod=nls(l_Management ~ SSlogis(Project_size, a, b, c),
data=df)
pred=predict(fp_mod, newdata=data.frame(Project_size=x_range))
lines(x_range/1e3, exp(pred), col=col_str)
}
ah=read.csv(paste0(ESEUR_dir, "projects/ahonen2015.csv.xz"), as.is=TRUE)
ah$l_Management=log(ah$Management)
fp=subset(ah, Contract == "FP")
tm=subset(ah, Contract == "TM")
plot(1, type="n", log="xy",
xlim=range(ah$Project_size)/1e3, ylim=range(ah$Management),
xlab="Effort (thousand hours)", ylab="Management (percentage)\n")
points(fp$Project_size/1e3, fp$Management, col=pal_col[1])
points(tm$Project_size/1e3, tm$Management, col=pal_col[2])
legend(x="bottomright", legend=c("Fixed-price", "Time-and-materials"), bty="n", fill=pal_col, cex=1.2)
x_range=exp(seq(0, log(max(ah$Project_size)), by=0.1))
fit_contract(fp, pal_col[1])
fit_contract(tm, pal_col[2])
|
miniusloglik.ce.xt.logis <-
function(dat, pars)
{
mu=pars[1]
npars=length(pars)
sigma=exp(pars[npars])
beta.vec=pars[2:(npars-1)]
failure.dat=dat$failure.dat
aux.inf=dat$aux.inf
xt.obj=dat$xt.obj
wts.mat=aux.inf$wts.mat
npts.vec=aux.inf$npts.vec
x.val=xt.obj$x.val
npts=xt.obj$npts
n=xt.obj$n
para.vec=kronecker(beta.vec,rep(1,npts))
para.mat=kronecker(t(para.vec),rep(1,n))
beta.xt.mat=para.mat*x.val
tmp.mat=kronecker(rep(1,npars-2),diag(npts))
sum.beta.xt.mat=beta.xt.mat%*%tmp.mat
sum.beta.xt.mat=exp(sum.beta.xt.mat)
int.g.beta.xt=rowSums(wts.mat*sum.beta.xt.mat)
g.beta.xt=as.vector(sum.beta.xt.mat)[1:n+n*(npts.vec-1)]
delta=failure.dat[,"delta"]
zz=(log(int.g.beta.xt)-mu)/sigma
ff=dlogis(zz)/(int.g.beta.xt*sigma)
FF=plogis(zz)
ll=delta*log(g.beta.xt*ff)+(1-delta)*log(1-FF)
res=(-1)*sum(ll)
return(res)
}
|
gen_ar1blocks = function(phi, sigma2, n_total, n_block,
scale = 10, title = NULL, seed = 135, ...){
set.seed(seed)
ar = NULL
for (i in (1:(n_total / n_block))) {
xt = gen_ar1(N = n_block * scale, phi = phi, sigma2 = sigma2)
x0 = xt[(n_block*(scale-1))]
xt = xt[(n_block*(scale-1)+1): (n_block*scale)]
ar = c(ar, xt)
}
if (is.null(title)){
title = "Simulated AR(1) Blocks Process"
}
ar = gts(ar, data_name = title)
return(ar)
}
gen_nswn = function(n_total, title = NULL, seed = 135, ...){
set.seed(seed)
wn = NULL
for (i in (1:n_total)){
y = rnorm(n = 1, mean = 0, sd = sqrt(i))
wn = c(wn, y)
}
if (is.null(title)){
title = "Simulated Non-Stationary White Noise Process"
}
wn = gts(wn, data_name = title)
return(wn)
}
gen_bi = function(sigma2, n_total, n_block, title = NULL, seed = 135, ...){
set.seed(seed)
bi = NULL
for (i in (1:(n_total / n_block))){
x = rnorm(n = 1, mean = 0, sd = sqrt(sigma2))
bi = c(bi, rep(x, n_block))
}
if (is.null(title)){
title = "Simulated Bias-Instability Process"
}
bi = gts(bi, data_name = title)
return(bi)
}
|
VARB.Boot <-
function(x,p,nb=200,type="const")
{
n <- nrow(x); k <- ncol(x)
var1 <- VAR.est(x,p,type)
b <- var1$coef
e <- sqrt( (n-p) / ( (n-p)-ncol(b)))*var1$resid
var2 <- VARB.est(x,p,type)
bb <- var2$coef
eb <- sqrt( (n-p) / ( (n-p)-ncol(b)))*var2$resid
mat <- matrix(0,nrow=k,ncol=ncol(b))
matb <- matrix(0,nrow=k,ncol=ncol(b))
for(i in 1:nb)
{
es <- resamp(e)
xs <- VAR.ys(x,b,p,es,type)
bs <- VAR.est(xs,p,type)$coef
mat <- mat + bs/nb
es <- resamp(eb)
xs <- VARB.ys(x,bb,p,es,type)
bs <- VARB.est(xs,p,type)$coef
matb <- matb + bs/nb
}
bias <- mat - b
bs <- VAR.adjust(b,bias,p,type); colnames(bs) <- VAR.names(x,p,type)
es <- VAR.resid(x,bs,var1$zmat,p); colnames(es) <- rownames(b)
biasb <- matb - bb
bsb <- VAR.adjust(bb,biasb,p,type); colnames(bs) <- VAR.names(x,p,type)
esb <- VAR.resid(x,bs,var1$zmat,p); colnames(es) <- rownames(b)
sigu <- t(es) %*% es / ( (n-p) -k*p -1)
return(list(coef=bs,coefb=bsb,resid=es,residb=esb,sigu=sigu,Bias=bias))
}
|
"irf.svarest" <-
function(x, impulse=NULL, response=NULL, n.ahead=10, ortho=TRUE, cumulative=FALSE, boot=TRUE, ci=0.95, runs=100, seed=NULL, ...){
if(!(class(x)=="svarest")){
stop("\nPlease provide an object of class 'svarest', generated by 'SVAR()'.\n")
}
y.names <- colnames(x$var$y)
if(is.null(impulse)){
impulse <- y.names
} else {
impulse <- as.vector(as.character(impulse))
if(any(!(impulse %in% y.names))) {
stop("\nPlease provide variables names in impulse\nthat are in the set of endogenous variables.\n")
}
impulse <- subset(y.names, subset = y.names %in% impulse)
}
if(is.null(response)){
response <- y.names
} else {
response <- as.vector(as.character(response))
if(any(!(response %in% y.names))){
stop("\nPlease provide variables names in response\nthat are in the set of endogenous variables.\n")
}
response <- subset(y.names, subset = y.names %in% response)
}
irs <- .irf(x = x, impulse = impulse, response = response, y.names = y.names, n.ahead = n.ahead, ortho = ortho, cumulative = cumulative)
Lower <- NULL
Upper <- NULL
if(boot){
ci <- as.numeric(ci)
if((ci <= 0)|(ci >= 1)){
stop("\nPlease provide a number between 0 and 1 for the confidence interval.\n")
}
ci <- 1 - ci
BOOT <- .boot(x = x, n.ahead = n.ahead, runs = runs, ortho = ortho, cumulative = cumulative, impulse = impulse, response = response, ci = ci, seed = seed, y.names = y.names)
Lower <- BOOT$Lower
Upper <- BOOT$Upper
}
result <- list(irf=irs, Lower=Lower, Upper=Upper, response=response, impulse=impulse, ortho=ortho, cumulative=cumulative, runs=runs, ci=ci, boot=boot, model = class(x))
class(result) <- "varirf"
return(result)
}
|
setGeneric("otu_table", function(object, taxa_are_rows, errorIfNULL=TRUE){
standardGeneric("otu_table")
})
setMethod("otu_table", "phyloseq", function(object, errorIfNULL=TRUE){
access(object, "otu_table", errorIfNULL)
})
setMethod("otu_table", "otu_table", function(object, errorIfNULL=TRUE){ return(object) })
setMethod("otu_table", "matrix", function(object, taxa_are_rows){
otutab <- new("otu_table", object, taxa_are_rows=taxa_are_rows)
if(taxa_are_rows){
if(is.null(rownames(otutab))){
rownames(otutab) <- paste("sp", 1:nrow(otutab), sep="")
}
if(is.null(colnames(otutab))){
colnames(otutab) <- paste("sa", 1:ncol(otutab), sep="")
}
} else {
if(is.null(rownames(otutab))){
rownames(otutab) <- paste("sa",1:nrow(otutab),sep="")
}
if(is.null(colnames(otutab))){
colnames(otutab) <- paste("sp",1:ncol(otutab),sep="")
}
}
return(otutab)
})
setMethod("otu_table", "data.frame", function(object, taxa_are_rows){
otu_table(as(object, "matrix"), taxa_are_rows)
})
setMethod("otu_table", "ANY", function(object, errorIfNULL=TRUE){
access(object, "otu_table", errorIfNULL)
})
taxa_sums <- function(x){
x <- otu_table(x)
if( taxa_are_rows(x) ){
rowSums(x)
} else {
colSums(x)
}
}
sample_sums <- function(x){
x <- otu_table(x)
if( taxa_are_rows(x) ){
colSums(x)
} else {
rowSums(x)
}
}
|
test.interactivePlot <-
function()
{
testPlot = function(x, which = "all", ...) {
plot.1 <<- function(x, ...) plot(x, ...)
plot.2 <<- function(x, ...) acf(x, ...)
plot.3 <<- function(x, ...) hist(x, ...)
plot.4 <<- function(x, ...) qqnorm(x, ...)
interactivePlot(x,
choices = c("Series Plot", "ACF", "Histogram", "QQ Plot"),
plotFUN = c("plot.1", "plot.2", "plot.3", "plot.4"),
which = which, ...)
invisible()
}
par(mfrow = c(2, 2), cex = 0.7)
testPlot(rnorm(500))
par(mfrow = c(2, 1), cex = 0.7)
testPlot(rnorm(500), which = c(1, 2))
return()
}
|
skip_if_not_installed("cli")
cli::test_that_cli(configs = c("plain", "ansi"), "can style strings with cli", {
expect_snapshot({
mark_emph("foo")
mark_strong("foo")
mark_code("foo")
mark_q("foo")
mark_pkg("foo")
mark_fn("foo")
mark_arg("foo")
mark_kbd("foo")
mark_key("foo")
mark_file("foo")
mark_path("foo")
mark_email("foo")
mark_url("foo")
mark_var("foo")
mark_envvar("foo")
mark_field("foo")
mark_cls("foo")
mark_cls(c("foo", "bar"))
})
})
cli::test_that_cli(configs = c("plain", "ansi"), "can format strings with cli", {
expect_snapshot({
format_emph("foo")
format_strong("foo")
format_code("foo")
format_q("foo")
format_pkg("foo")
format_fn("foo")
format_arg("foo")
format_kbd("foo")
format_key("foo")
format_file("foo")
format_path("foo")
format_email("foo")
format_url("foo")
format_var("foo")
format_envvar("foo")
format_field("foo")
format_cls("foo")
format_cls(c("foo", "bar"))
})
})
cli::test_that_cli(configs = c("plain", "ansi"), "styled strings may contain `{` syntax", {
expect_snapshot({
mark_emph("{foo {}")
format_message(mark_emph("{foo {}"))
})
})
cli::test_that_cli(configs = c("plain", "ansi"), "can apply ANSI styles with cli", {
expect_snapshot({
col_black("foo")
col_blue("foo")
col_cyan("foo")
col_green("foo")
col_magenta("foo")
col_red("foo")
col_white("foo")
col_yellow("foo")
col_grey("foo")
col_silver("foo")
col_none("foo")
bg_black("foo")
bg_blue("foo")
bg_cyan("foo")
bg_green("foo")
bg_magenta("foo")
bg_red("foo")
bg_white("foo")
bg_yellow("foo")
bg_none("foo")
style_dim("foo")
style_blurred("foo")
style_bold("foo")
style_hidden("foo")
style_inverse("foo")
style_italic("foo")
style_strikethrough("foo")
style_underline("foo")
style_no_dim("foo")
style_no_blurred("foo")
style_no_bold("foo")
style_no_hidden("foo")
style_no_inverse("foo")
style_no_italic("foo")
style_no_strikethrough("foo")
style_no_underline("foo")
style_reset("foo")
style_no_colour("foo")
style_no_bg_colour("foo")
})
})
cli::test_that_cli("can create symbols with cli", {
expect_snapshot({
symbol_info()
symbol_cross()
symbol_tick()
symbol_bullet()
symbol_arrow()
symbol_alert()
})
})
cli::test_that_cli("can create ANSI symbols with cli", {
expect_snapshot({
ansi_info()
ansi_cross()
ansi_tick()
ansi_bullet()
ansi_arrow()
ansi_alert()
})
})
cli::test_that_cli("can format messages", {
expect_snapshot({
format_error(c("Header", "i" = "Bullet."))
format_warning(c("Header", "i" = "Bullet."))
format_message(c("Header", "i" = "Bullet."))
})
})
cli::test_that_cli("formatters restore strings", {
expect_true(is_bare_character(format_error("foo")))
expect_true(is_bare_character(format_warning("foo")))
expect_true(is_bare_character(format_message("foo")))
})
cli::test_that_cli(configs = c("plain", "ansi"), "cli_escape() conditionally escapes `{`", {
expect_snapshot({
format_error(cli_escape("{"))
})
})
|
LL_CRE = function(par,y,z,x,w,group,rule,verbose=1){
if(length(par) != ncol(x)+ncol(w)+3 && length(par) != ncol(x)+ncol(w)+2)
stop("Number of parameters incorrect")
alpha = par[1:ncol(w)]
beta = par[ncol(w)+1:ncol(x)]
sigma = par["sigma"]
delta = par["delta"]
rho = ifelse("rho" %in% names(par), par["rho"], 0)
Omega = rule$Omega
v = rule$v
Weight = rule$Weight
r = rule$r
N = length(group)-1
obs = length(y)
wa = as.vector(w %*% alpha)
xb = as.vector(x %*% beta)
d = 2*z - 1
Li = rep(0, N)
for(h in 1:length(r)){
lamh = exp(xb + sqrt(2)*sigma*r[h])
ix = (z==1)
Pz = rep(1, obs)
Pz[ix] = dpois(y[ix], lamh[ix])
Pz_prod = as.vector(groupProd(Pz, group))
sumk = rep(0, N)
for(k in 1:length(v)){
q = wa + sqrt(2)*delta*rho*r[h] + sqrt(2*(1-rho^2))*delta*v[k]
Phi = pnorm(d*q)
Phi_prod = as.vector(groupProd(Phi, group))
sumk = sumk + Omega[k]*Phi_prod
}
Li = Li + Weight[h] * Pz_prod * sumk
}
Li = pmax(Li, 1e-100)
LL = sum(log(Li/pi))
if(verbose>=1){
writeLines(paste("==== Iteration ", tmp.env$iter, ": LL=",round(LL,digits=5)," =====", sep=""))
print(round(par,digits=3))
}
tmp.env$iter = tmp.env$iter + 1
if(is.na(LL) || !is.finite(LL)){
if(verbose>=2) writeLines("NA or infinite likelihood, will try others")
LL = -1e300
}
if(tmp.env$iter==1) tmp.env$initLL = LL
return (LL)
}
Gradient_CRE = function(par,y,z,x,w,group,rule,variance=F,verbose=1){
if(length(par) != ncol(x)+ncol(w)+3 && length(par) != ncol(x)+ncol(w)+2)
stop("Number of parameters incorrect")
alpha = par[1:ncol(w)]
beta = par[ncol(w)+1:ncol(x)]
sigma = par["sigma"]
delta = par["delta"]
rho = ifelse("rho" %in% names(par), par["rho"], 0)
N = length(group)-1
obs = length(y)
Omega = rule$Omega
v = rule$v
Weight = rule$Weight
r = rule$r
wa = as.vector(w %*% alpha)
xb = as.vector(x %*% beta)
d = 2*z - 1
w_ext = cbind(w,delta=0,rho=0)
x_ext = cbind(x,sigma=0)
colnames(w_ext) = c(paste0("w",1:ncol(w)),"delta","rho")
colnames(x_ext) = c(paste0("x",1:ncol(x)),"sigma")
Li = rep(0, N)
sumH_alp = matrix(0, N, ncol(w_ext))
sumH_beta = matrix(0, N, ncol(x_ext))
colnames(sumH_alp) = colnames(w_ext)
colnames(sumH_beta) = colnames(x_ext)
a1 = sqrt(2)*rho
a2 = sqrt(2*(1-rho^2))
a3 = sqrt(2)*delta
a4 = sqrt(2/(1-rho^2))*rho*delta
b1 = sqrt(2)*delta*rho
b2 = sqrt(2*(1-rho^2))*delta
for(h in 1:length(r)){
lamh = exp(xb + sqrt(2)*sigma*r[h])
ix = (z==1)
Pz = rep(1, obs)
Pz[ix] = dpois(y[ix], lamh[ix])
Pz_prod = as.vector(groupProd(Pz, group))
zyl = rep(0, obs)
zyl[ix] = y[ix] - lamh[ix]
sumK_beta = rep(0, N)
sumT_beta = matVecProdSum(x_ext, sqrt(2)*r[h], zyl, group)
sumK_alp = matrix(0, N, ncol(w_ext))
for(k in 1:length(v)){
dq = d * (b1*r[h] + b2*v[k] + wa)
phi = dnorm(dq)
Phi = pnorm(dq)
Phi_prod = as.vector(groupProd(Phi, group))
sumK_beta = sumK_beta + Omega[k]*Phi_prod
sumT_alp = matVecProdSum(w_ext,c(a1*r[h] + a2*v[k], a3*r[h] - a4*v[k]), d*phi/Phi, group)
sumK_alp = sumK_alp + matVecProd(sumT_alp, Omega[k]*Phi_prod)
}
Li = Li + Weight[h] * Pz_prod * sumK_beta
sumH_alp = sumH_alp + matVecProd(sumK_alp, Weight[h] * Pz_prod)
sumH_beta = sumH_beta + matVecProd(sumT_beta, Weight[h]*Pz_prod*sumK_beta)
}
Li = pmax(Li, 1e-100)
dLogLi = matVecProd(cbind(sumH_alp, sumH_beta), 1/Li)
colnames(dLogLi) = c(colnames(sumH_alp), colnames(sumH_beta))
dLogLi = dLogLi[, c(paste0("w",1:ncol(w)),paste0("x",1:ncol(x)),names(par[(ncol(x)+ncol(w)+1):length(par)]))]
colnames(dLogLi) = names(par)
gradient = colSums(dLogLi)
if(variance){
if(verbose>=1){
writeLines("----Converged, the gradient at optimum:")
print(round(gradient,digits=3))
}
LL = sum(log(Li/pi))
var = solve(crossprod(dLogLi))
return (list(LL=LL, g=gradient, var=var, I=crossprod(dLogLi)))
}
if(verbose>=2){
writeLines("----Gradient:")
print(round(gradient,digits=3))
}
if(any(is.na(gradient) | !is.finite(gradient))){
if(verbose>=2) writeLines("NA or infinite gradient, reset to all -1")
gradient = rep(-1, length(gradient))
}
return (gradient)
}
Partial_CRE = function(res,w,xnames,rule,intercept=F){
wnames = colnames(w)
par = res$estimates[, 1]
alpha = par[1:length(wnames)]
beta = par[length(wnames)+1:length(xnames)]
sigma = par["sigma"]
delta = par["delta"]
rho = ifelse("rho" %in% names(par), par["rho"], 0)
com = xnames[xnames %in% wnames & xnames!="(Intercept)"]
if(intercept){
xunq = c("(Intercept)", xnames[!xnames %in% wnames])
wunq = c("(Intercept)", wnames[!wnames %in% xnames])
} else {
xunq = xnames[!xnames %in% wnames]
wunq = wnames[!wnames %in% xnames]
}
Omega = rule$Omega
v = rule$v
wa = as.vector(w %*% alpha)
w_ext = cbind(w,delta=0,sigma=0,rho=0)
obs = nrow(w)
A = rep(0, obs)
B = rep(0, obs)
dA = matrix(0, obs, ncol(w_ext))
dB = matrix(0, obs, ncol(w_ext))
for(h in 1:length(v)){
q = sqrt(2)*delta*v[h] + rho*sigma*delta + wa
phi = dnorm(q)
Phi = pnorm(q)
A = A + Omega[h] * phi
B = B + Omega[h] * Phi
ext = c(sqrt(2)*v[h]+rho*sigma, rho*delta, sigma*delta)
phi_dq = matVecProdSum(w_ext, ext, Omega[h]*phi, numeric(0))
dA = dA - matVecProd(phi_dq, q)
dB = dB + phi_dq
}
ratio = A/B
Gw = mean(ratio) * alpha
Gx = beta
G = Gw[com]+Gx[com]
if(length(wunq)>0) G = c(G, Gw[wunq])
if(length(xunq)>0) G = c(G, Gx[xunq])
names(G) = c(com, wunq, xunq)
Jw_1 = mean(ratio) * cbind(diag(length(alpha)), matrix(0,length(alpha),3))
nmr = dA - matVecProd(dB, A/B)
frac = matVecProd(nmr, 1/B)
Jw_2 = outer(alpha, colMeans(frac))
Jw = Jw_1 + Jw_2
Jw = cbind(Jw[, 1:(ncol(Jw)-3)], matrix(0,length(alpha),length(beta)), Jw[, tail(1:ncol(Jw), 3)])
rownames(Jw) = wnames
Jx = cbind(matrix(0,length(beta),length(alpha)), diag(length(beta)), matrix(0,length(beta),3))
rownames(Jx) = xnames
J = Jx[com, ] + Jw[com, ]
if(length(wunq)>0) J = rbind(J, Jw[wunq,])
if(length(xunq)>0) J = rbind(J, Jx[xunq,])
rownames(J) = c(com, wunq, xunq)
colnames(J) = c(wnames,xnames,tail(colnames(w_ext), 3))
J = cbind(J[,1:(ncol(J)-3)], J[, tail(names(par), 3)])
se = sqrt(diag(J %*% res$var %*% t(J)))
z = G/se
p = 1 - pchisq(z^2, 1)
pe = cbind(estimates=G,se=se,z=z,p=p)
return (pe)
}
CRE = function(sel_form, out_form, id, data=NULL, par=NULL, par_files=NULL, delta=1, max_delta=3, sigma=1, max_sigma=3, rho=0, lower=c(rho=-1), upper=c(rho=1), method='L-BFGS-B',H=c(10,10),psnH=20,prbH=20,accu=1e4,reltol=1e-8,verbose=0,tol_gtHg=Inf){
ord = order(id)
data = data[ord,]
id = id[ord]
group = c(0,cumsum(table(as.integer(factor(id)))))
rule1 = gauss.quad(H[1], "hermite")
rule2 = gauss.quad(H[2], "hermite")
rule = list(Weight=rule1$weights, r=rule1$nodes, Omega=rule2$weights, v=rule2$nodes)
mf = model.frame(sel_form, data=data, na.action=NULL, drop.unused.levels=T)
z = model.response(mf, "numeric")
w = model.matrix(attr(mf, "terms"), data=mf)
mf2 = model.frame(out_form, data=data, na.action=NULL, drop.unused.levels=T)
y = model.response(mf2, "numeric")
x = model.matrix(attr(mf2, "terms"), data=mf2)
if(length(id)!=nrow(w) || length(id)!=nrow(x)) stop("Error: id and w or x length don't match, potentially due to removal of data points with missing values!")
if(is.null(par)){
if(length(par_files)==2){
writeLines("========Loading initial parameters from estimated models=======")
load(par_files$sel, .GlobalEnv)
sel_est = res$estimates[,1]
load(par_files$out, .GlobalEnv)
out_est = res$estimates[,1]
par = c(sel_est[-length(sel_est)], out_est, sel_est[length(sel_est)], rho=rho)
} else {
writeLines("========Initializing outcome equation parameters===========")
psn_re = PoissonRE(out_form, id=id[!is.na(y)], data=data[!is.na(y),], sigma=sigma, max_sigma=max_sigma, H=psnH, method='BFGS',reltol=reltol,verbose=verbose-1)
writeLines("========Initializing selection equation parameters=========")
probit = ProbitRE(sel_form, id=id, data=data, delta=delta, max_delta=max_delta, method='BFGS',H=prbH,reltol=reltol,verbose=verbose-1)
sel_est = probit$estimates[,1]
out_est = psn_re$estimates[,1]
par = c(sel_est[-length(sel_est)], out_est, sel_est[length(sel_est)], rho=rho)
}
}
tmp.env <<- new.env()
tmp.env$iter = 1
tmp.env$initLL = -Inf
tmp.env$begin = Sys.time()
if(method=="L-BFGS-B"){
lb = rep(-Inf, length(par))
names(lb) = names(par)
ub = rep(Inf, length(par))
names(ub) = names(par)
lb[match(names(lower), names(lb))] = lower
ub[match(names(upper), names(ub))] = upper
if(verbose>=2){
writeLines("Lower and upper bounds, and initial values:")
print(lb)
print(ub)
print(par)
}
res = optim(par=par, fn=LL_CRE, gr=Gradient_CRE, method="L-BFGS-B", control=list(factr=accu,fnscale=-1), lower=lb, upper=ub, y=y, z=z, x=x, w=w, group=group,rule=rule,verbose=verbose)
} else {
res = optim(par=par, fn=LL_CRE, gr=Gradient_CRE, method="BFGS", control=list(reltol=reltol,fnscale=-1), y=y, z=z, x=x, w=w, group=group,rule=rule,verbose=verbose)
}
gvar = Gradient_CRE(res$par,y,z,x,w,group,rule,variance=T,verbose=verbose-1)
res$LL = gvar$LL
res$AIC = -2*res$LL + 2 * length(res$par)
res$BIC = -2*res$LL + log(length(z)) * length(res$par)
res$var = gvar$var
res$g = gvar$g
res$gtHg = matrix(res$g, nrow=1) %*% res$var %*% matrix(res$g, ncol=1)
if(any(is.na(res$g) | !is.finite(res$g)) | res$gtHg>tol_gtHg){
par['rho'] = runif(1,-1,1)
writeLines(paste("====Failed to converge gtHg =", res$gtHg, ", trying rho =", par['rho'], ", current gradient shown below===="))
print(res$g)
return (CRE(sel_form, out_form, id, data=data, par=par, par_files=par_files, delta=delta, max_delta=max_delta, sigma=sigma, max_sigma=max_sigma, lower=lower, upper=upper, method=method,H=H,psnH=psnH,prbH=prbH,accu=accu,reltol=reltol,verbose=verbose,tol_gtHg=tol_gtHg))
}
res$se = sqrt(diag(res$var))
res$z = res$par/res$se
res$p = 1 - pchisq(res$z^2, 1)
if('delta' %in% names(res$par) && res$par['delta']<0){
res$par['delta'] = -res$par['delta']
if('rho' %in% names(res$par)) res$par['rho'] = -res$par['rho']
}
if('sigma' %in% names(res$par) && res$par['sigma']<0){
res$par['sigma'] = -res$par['sigma']
if('rho' %in% names(res$par)) res$par['rho'] = -res$par['rho']
}
res$estimates = cbind(estimates=res$par,se=res$se,z=res$z,p=res$p)
res$partial = Partial_CRE(res,w,colnames(x),rule)
wavg = t(colMeans(w))
res$partialAvgObs = Partial_CRE(res,wavg,colnames(x),rule)
res$iter = tmp.env$iter
res$input = list(sel_form=sel_form, out_form=out_form, par=par, par_files=par_files, delta=delta, max_delta=max_delta, sigma=sigma, max_sigma=max_sigma, rho=rho, lower=lower, upper=upper, method=method,H=H,psnH=psnH,prbH=prbH,accu=accu,reltol=reltol,verbose=verbose,tol_gtHg=tol_gtHg)
writeLines(paste0("\n *** Estimation of CRE model finished, LL=",res$LL," ***"))
print(res$estimates)
print(Sys.time()-tmp.env$begin)
res$scgrad=tryCatch(solve(chol(gvar$I),gvar$g), error=function(e)e)
if('numeric' %in% class(res$scgrad)[1]) {
max_grad = round(max(abs(res$scgrad)), digits=3)
max_grad_var = names(which.max(abs(res$scgrad)))
if(verbose>=1)
writeLines(paste0('Max absolute scaled gradient: ', max_grad, ' on ', paste(max_grad_var, collapse=', ')))
} else {
writeLines('Error occured while computing scaled gradient, details below:')
print(res$scgrad)
}
writeLines(paste0('Convergence criterion gtHg: ', round(res$gtHg, digits=6)))
rm(tmp.env)
return (res)
}
|
plot.coef.dfrr<-function(x,select=NULL,ask.hit.return=TRUE,...){
coefs<-x
attr(coefs,"dfrr_fit")->dfrr_fit
attr(coefs,"standardized")->standardized
attr(coefs,"pc.coefs")->return.principal.components
time<-seq(dfrr_fit$range[1],dfrr_fit$range[2],length.out = 100)
basis<-basis(dfrr_fit)
E<-t(fda::eval.basis(time,basis))
if(return.principal.components){
if(standardized)
yval<-dfrr_fit$Theta_std%*%E
else
yval<-dfrr_fit$Theta%*%E
}else{
if(standardized)
yval<-dfrr_fit$B_std%*%E
else
yval<-dfrr_fit$B%*%E
}
if(is.null(select))
select<-1:nrow(yval)
if(standardized)
nus<-dfrr_fit$nus_std/sum(dfrr_fit$nus_std)
else
nus<-dfrr_fit$nus/sum(dfrr_fit$nus)
plotnames<-if(return.principal.components)
paste0("PC ",select)
else
paste0("Reg.Coef. ",dfrr_fit$varnames[select])
for(i in 1:length(select)){
if(return.principal.components){
variance_explained<-round(nus[select[i]]*100,digits = 2)
if(variance_explained<=0)
return()
}
if(ask.hit.return){
invisible(readline(prompt="Hit <Returen> to see next plot:"))
}
lbl<-plotnames[i]
if(standardized)
lbl<-paste0("Standardized ",lbl)
if(return.principal.components){
variance_explained<-round(nus[select[i]]*100,digits = 2)
if(variance_explained<=0)
return()
lbl<-paste0(lbl," (",round(nus[select[i]]*100,digits = 2),"%)")
}
value<-yval[select[i],]
plot(time,value,'l',main=lbl,...)
}
}
|
test_that("basic formatting",
{
expect_equal(n_perc(mtcars$cyl == 6), "7 (21.88\\%)")
expect_equal(n_perc0(mtcars$cyl == 6), "7 (22)")
expect_equal(perc_n(mtcars$cyl == 6), paste0("21.88\\% (n = ", nrow(mtcars), ")"))
})
|
library(caper)
for(f in dir('../../R', full=TRUE)) (source(f))
par(mfrow=c(2,2), mar=c(3,3,1,1), mgp=c(2,0.7,0))
plot(c(0,13),c(0,10), typ="n", bty="n", xaxt="n",yaxt="n", xlab="", ylab="", xaxs="i",yaxs="i")
lines(c(0,7), c(5,8.5))
lines(c(0,7), c(5,1.5))
lines(c(3.5,7), c(3.25,5))
polygon(c(7,10,10), y=c(8.5,10,7))
polygon(c(7,10,10), y=c(5,6.5,3.5))
polygon(c(7,10,10), y=c(1.5,3,0))
points( c(0.5,1.5) +0.5, c(5,5), cex=1, col=1:2)
points(c(7.5,8.5)+0.5, c(8.5,8.5), cex=1, col=1:2)
points(c(4,5)+0.5, c(3.25,3.25), cex=1.5, col=1:2)
points(c(7.5,8.5)+0.5, c(5,5), cex=1.5, col=1:2)
points(c(7.5,8.5)+0.5, c(1.5,1.5), cex=2, col=1:2)
rect(11 - c(.3,.2,.1), c(0,3.5,7), 11 + c(.3,.2,.1) , c(3,6.5,10))
rect(12 - c(.3,.2,.1), c(0,3.5,7), 12 + c(.3,.2,.1) , c(3,6.5,10), border="red")
par(usr=c(0,1,0,1)); text(0.1,0.9, cex=2,"a")
dat <- data.frame(x = rnorm(120, mean= rep(2:4, each=40), sd=0.5),
y = rnorm(120, mean= rep(2:4, each=40), sd=0.5),
tx = gl(3,40))
plot(y~x, col=unclass(tx), data=dat, xaxt="n", xlab="", ylab="")
axis(1, col.axis="red")
abline(lm(y~x, data=dat))
for(sub in split(dat, dat$tx)) abline(lm(y~x, data=sub), col=unclass(sub$tx)[1], lty=2)
plot(c(0,13),c(0,10), typ="n", bty="n", xaxt="n",yaxt="n", xlab="", ylab="", xaxs="i",yaxs="i")
lines(c(0,7), c(5,8.5))
lines(c(0,7), c(5,1.5))
lines(c(3.5,7), c(3.25,5))
polygon(c(7,10,10), y=c(8.5,10,7))
polygon(c(7,10,10), y=c(5,6.5,3.5))
polygon(c(7,10,10), y=c(1.5,3,0))
points(c(0.5,1.5)+0.5, c(5,5), cex=1, col=1:2)
points(c(7.5,8.5)+0.5, c(8.5,8.5), cex=1, col=1:2)
points(c(4,5)+0.5, c(3.25,3.25), cex=c(1,1.5), col=1:2)
points(c(7.5,8.5)+0.5, c(5,5), cex=c(1,1.5), col=1:2)
points(c(7.5,8.5)+0.5, c(1.5,1.5), cex=c(1,2), col=1:2)
polygon(11 + c(-0,-0.1,0.1,0), c(3,0,0,3))
polygon(12 + c(-0.2,-0.3,0.3,0.2), c(3,0,0,3), border="red")
polygon(11 + c(-0,-0.1,0.1,0), c(6.5,3.5,3.5,6.5))
polygon(12 + c(-0.1,-0.2,0.2,0.1), c(6.5,3.5,3.5,6.5), border="red")
polygon(11 + c(-0,-0.1,0.1,0), c(10,7.5,7.5,10))
polygon(12 + c(-0.0,-0.1,0.1,0.), c(10,7.5,7.5,10), border="red")
par(usr=c(0,1,0,1)); text(0.1,0.9, cex=2, "b")
dat <- data.frame(x = rnorm(120, mean= rep(2:4, each=40), sd=0.5),
tx = gl(3,40))
dat$y <- dat$x - rnorm(120, mean= rep(0:2, each=40), sd=0.5)
plot(y~x, col=unclass(tx), data=dat, xaxt="n", xlab="", ylab="")
axis(1, col.axis="red")
abline(lm(y~x, data=dat))
for(sub in split(dat, dat$tx)) abline(lm(y~x, data=sub), col=unclass(sub$tx)[1], lty=2)
phy <- read.tree(text='(((B:2,A:2):1,D:3):1,(C:1,E:1):3);')
dat <- data.frame(taxa=c("A","B","C","D","E"), n.species=c(5,9,12,1,13), mass=c(4.1,4.5,5.9,3.0,6.0))
cdat <- comparative.data(data=dat, phy=phy, names.col="taxa")
print(cdat)
data(perissodactyla)
(perisso <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial))
(perissoFull <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial, na.omit=FALSE))
na.omit(perisso)
comparative.data(perissodactyla.tree, perissodactyla.data, Binomial, scope= log.female.wt ~ log.gestation.length)
na.omit(perissoFull, scope=log.female.wt ~ log.gestation.length + Territoriality)
subset(perissoFull, subset=! is.na(Territoriality))
subset(perissoFull, subset=log.female.wt > 5.5, select=c(log.female.wt, log.gestation.length))
horses <- grep('Equus', perissoFull$phy$tip.label)
perissoFull[horses,]
perissoFull[horses, 2:3]
z <- structure(list(edge = structure(c(11L, 15L, 18L, 18L, 15L, 16L,
16L, 11L, 12L, 13L, 13L, 19L, 19L, 12L, 14L, 14L, 17L, 17L, 15L,
18L, 1L, 2L, 16L, 3L, 4L, 12L, 13L, 5L, 19L, 6L, 7L, 14L, 8L,
17L, 9L, 10L), .Dim = c(18L, 2L)), edge.length = c(5.723, 2.186,
1.09, 1.09, 0.627, 2.649, 2.649, 1.049, 1.411, 6.54, 5.538, 1.001,
1.001, 1.863, 6.088, 4.777, 1.312, 1.312), tip.label = c("t8",
"t6", "t4", "t10", "t9", "t5", "t7", "t1", "t3", "t2"), Nnode = 9L), .Names = c("edge",
"edge.length", "tip.label", "Nnode"), class = "phylo", order = "cladewise")
V <- VCV.array(z)
ec <- rep('grey50', 18)
ec[c(1,5,7)] <- 'red'
ec[c(8,14)] <- 'blue'
plot(z, no.margin=TRUE, cex=0.6, label.offset=0.3, edge.col=ec)
internal <- z$edge[,2] > 10
vlines <- 9 * c(0, 0.5, 1, 1.5)
zz <- z
layout(matrix(c(1:9), ncol=3))
par(mar=c(0,0.5,2,0.5))
cx <- 0.8
ln <- 0.5
xl <- c(0,15)
pvals <- c(1.4, 0.5)
ec <- ifelse(internal,'red', 'grey30')
dd <- ifelse(lower.tri(V) | upper.tri(V), V * pvals[1], V)
ddh <- as.phylo(hclust(dist(dd)))
plot(ddh, edge.col = 'red', x.lim=xl, label.offset=0.2)
mtext(bquote(lambda == .(pvals[1])), side=3, cex=cx, line=ln)
abline(v=vlines, lty=2, col='grey')
plot(z, edge.col=ec, x.lim=xl, label.offset=0.2)
abline(v=vlines, lty=2, col='grey')
mtext(expression(lambda == 1), side=3, cex=cx, line=ln)
dd <- ifelse(lower.tri(V) | upper.tri(V), V * pvals[2], V)
ddh <- as.phylo(hclust(dist(dd)))
plot(ddh, edge.col = 'red', x.lim=xl, label.offset=0.2)
mtext(bquote(lambda == .(pvals[2])), side=3, cex=cx, line=ln)
abline(v=vlines, lty=2, col='grey')
pvals <- c(1.2, 0.5)
dd <- V ^ pvals[1]
ddh <- as.phylo(hclust(dist(dd)))
plot(ddh, edge.col = 'red', x.lim=xl, label.offset=0.2)
mtext(bquote(delta == .(pvals[1])), side=3, cex=cx, line=ln)
abline(v=vlines, lty=2, col='grey')
plot(z, edge.col='red', x.lim=xl, label.offset=0.2)
abline(v=vlines, lty=2, col='grey')
mtext(expression(delta == 1), side=3, cex=cx, line=ln)
dd <- V ^ pvals[2]
ddh <- as.phylo(hclust(dist(dd)))
plot(ddh, edge.col='red', x.lim=xl, label.offset=0.2)
mtext(bquote(delta == .(pvals[2])), cex=cx, line=ln)
abline(v=vlines, lty=2, col='grey')
pvals <- c(1.2, 0.0)
ec <- ifelse(internal,'red', 'grey30')
zz$edge.length <- z$edge.length^pvals[1]
plot(zz, edge.col = 'red', x.lim=xl, label.offset=0.2)
mtext(bquote(kappa == .(pvals[1])), side=3, cex=cx, line=ln)
abline(v=vlines, lty=2, col='grey')
plot(z, edge.col='red', x.lim=xl, label.offset=0.2)
abline(v=vlines, lty=2, col='grey')
mtext(expression(kappa == 1), side=3, cex=cx, line=ln)
zz$edge.length <- z$edge.length^pvals[2]
plot(zz, edge.col='red', x.lim=xl, label.offset=0.2)
mtext(bquote(kappa == .(pvals[1])), cex=cx, line=ln)
abline(v=vlines, lty=2, col='grey')
data(shorebird)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species, vcv=TRUE)
mod <- pgls(log(Egg.Mass) ~ log(M.Mass), shorebird)
print(mod)
summary(mod)
data(shorebird)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species, vcv=TRUE, vcv.dim=3)
mod <- pgls(log(Egg.Mass) ~ log(M.Mass), shorebird, lambda='ML')
summary(mod)
mod.l <- pgls.profile(mod, 'lambda')
mod.d <- pgls.profile(mod, 'delta')
mod.k <- pgls.profile(mod, 'kappa')
plot(mod.l); plot(mod.d); plot(mod.k)
par(mar=c(4.5,3,1,1), mfrow=c(1,3), mgp=c(1.8,0.8,0), tcl=-0.2)
plot(mod.l); plot(mod.d); plot(mod.k)
par(mfrow=c(2,2), mar=c(3,3,1,1), mgp=c(2,0.7,0), tcl=-0.2)
plot(mod)
mod1 <- pgls(log(Egg.Mass) ~ log(M.Mass) * log(F.Mass), shorebird)
anova(mod1)
mod2 <- pgls(log(Egg.Mass) ~ log(M.Mass) + log(F.Mass), shorebird)
mod3 <- pgls(log(Egg.Mass) ~ log(M.Mass) , shorebird)
mod4 <- pgls(log(Egg.Mass) ~ 1, shorebird)
anova(mod1, mod2, mod3, mod4)
AIC(mod1, mod2, mod3, mod4)
data(shorebird)
shorebird.data$lgEgg.Mass <- log(shorebird.data$Egg.Mass)
shorebird.data$lgM.Mass <- log(shorebird.data$M.Mass)
shorebird.data$lgF.Mass <- log(shorebird.data$F.Mass)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)
crunchMod <- crunch(lgEgg.Mass ~ lgF.Mass + lgM.Mass, data=shorebird)
summary(crunchMod)
perisso <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial)
brunchMod <- brunch(log.female.wt ~ Territoriality, data=perisso)
caic.table(brunchMod)
bwd <- rep(1,15)
bwd[c(5,6,11,12,9,13,14,15)] <- 3
plot(perisso$phy, 'cladogram', use.edge.length=FALSE, label.offset=0.4, show.node=TRUE, cex=0.7, show.tip=FALSE, x.lim=c(0,12), no.margin=TRUE, edge.width=bwd)
points(rep(8.25,9), 1:9, pch=ifelse(perisso$data$Terr=='Yes', 1,19))
text(rep(8.5,9), 1:9, perisso$phy$tip.label, font=3, adj=0)
data(IsaacEtAl)
primates <- comparative.data(primates.tree, primates.data, binomial, na.omit=FALSE)
primatesBodySize <- macrocaic(species.rich ~ body.mass, data=primates)
summary(primatesBodySize)
data(BritishBirds)
BritishBirds <- comparative.data(BritishBirds.tree, BritishBirds.data, binomial)
redPD <- phylo.d(BritishBirds, binvar=Red_list)
par(mar=c(3,3,2,1), mgp=c(1.8,0.8,0), tcl=-0.3)
plot(density(redPD$Permutations$random, bw=0.5), main='', xlim=c(10,55), col='blue', xlab='Sum of character change')
lines(density(redPD$Permutations$brownian,bw=0.5), col='red')
abline(v=redPD$Parameters$Observed)
abline(v=redPD$Parameters$Observed, col='grey')
abline(v=redPD$Parameters$MeanRandom, col='blue')
abline(v=redPD$Parameters$MeanBrownian, col='red')
with(redPD$Parameters, axis(3, at=c(MeanBrownian, Observed, MeanRandom), labels=c(0, round(redPD$DEstimate,2),1), mgp=c(1.5,0.7,0.25)))
mtext(expression(italic(D)==phantom(x)), side=3, at=25, line=1.2)
data(BritishBirds)
BritishBirds <- comparative.data(BritishBirds.tree, BritishBirds.data, binomial)
redPhyloD <- phylo.d(BritishBirds, binvar=Red_list)
print(redPhyloD)
par(mfrow=c(2,3))
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)
crunchMod <- crunch(Egg.Mass ~ M.Mass, data=shorebird)
caic.diagnostics(crunchMod)
shorebird.data$lgEgg.Mass <- log(shorebird.data$Egg.Mass)
shorebird.data$lgM.Mass <- log(shorebird.data$M.Mass)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)
crunchMod2 <- crunch(lgEgg.Mass ~ lgM.Mass, data=shorebird)
caic.diagnostics(crunchMod2)
par(mfrow=c(2,3), mar=c(3,3,1,1), mgp=c(2,0.7,0), tcl=-0.2)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)
crunchMod <- crunch(Egg.Mass ~ M.Mass, data=shorebird)
x <- caic.diagnostics(crunchMod)
crunchMod2 <- crunch(lgEgg.Mass ~ lgM.Mass, data=shorebird)
x <- caic.diagnostics(crunchMod2)
data(shorebird)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)
crunchMod <- crunch(Egg.Mass ~ M.Mass, data=shorebird)
caic.diagnostics(crunchMod)
crunchModRobust <- caic.robust(crunchMod)
caic.diagnostics(crunchModRobust, outlier=2)
par(mfrow=c(2,3), mar=c(3,3,1,1), mgp=c(2,0.7,0), tcl=-0.2)
data(shorebird)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)
crunchMod <- crunch(Egg.Mass ~ M.Mass, data=shorebird)
x <-caic.diagnostics(crunchMod)
crunchModRobust <- caic.robust(crunchMod)
x <-caic.diagnostics(crunchModRobust, outlier=2)
data(shorebird)
shorebird.data$lgEgg.Mass <- log(shorebird.data$Egg.Mass)
shorebird.data$lgM.Mass <- log(shorebird.data$M.Mass)
shorebird.data$lgF.Mass <- log(shorebird.data$F.Mass)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)
crunchMod <- crunch(lgEgg.Mass ~ lgF.Mass + lgM.Mass, data=shorebird)
par(mfrow=c(2,2))
plot(crunchMod)
par(mfrow=c(2,2), mar=c(3,3,2,1), mgp=c(2,0.7,0), tcl=-0.2)
data(shorebird)
crunchMod <- crunch(lgEgg.Mass ~ lgF.Mass + lgM.Mass, data=shorebird)
plot(crunchMod)
shorebird.data$lgEgg.Mass <- log(shorebird.data$Egg.Mass)
shorebird.data$lgM.Mass <- log(shorebird.data$M.Mass)
shorebird.data$lgF.Mass <- log(shorebird.data$F.Mass)
shorebird <- comparative.data(shorebird.tree, shorebird.data, Species)
cMod1 <- crunch(lgEgg.Mass ~ lgM.Mass * lgF.Mass, data=shorebird)
cMod2 <- crunch(lgEgg.Mass ~ lgM.Mass + lgF.Mass, data=shorebird)
cMod3 <- crunch(lgEgg.Mass ~ lgM.Mass , data=shorebird)
anova(cMod1, cMod2, cMod3)
AIC(cMod1, cMod2, cMod3)
data(syrphidae)
syrphidae <- comparative.data(phy=syrphidaeTree, dat=syrphidaeRich, names.col=genus)
summary(fusco.test(syrphidae, rich=nSpp))
summary(fusco.test(syrphidae, tipsAsSpecies=TRUE))
data(BritishBirds)
BritishBirds.cm <- clade.matrix(BritishBirds.tree)
redListSpecies <- with(BritishBirds.data, binomial[Red_list==1])
obs <- pd.calc(BritishBirds.cm, redListSpecies, method="TBL")
rand <- pd.bootstrap(BritishBirds.cm, ntips=length(redListSpecies), rep=1000, method="TBL")
plot(density(rand), main='Total branch length for random sets of 32 species.')
abline(v=obs, col='red')
tree <- read.tree(text="((((A:1,B:1):1.5,C:2.5):0.5,(D:0.6,E:0.6):2.4):0.5,((F:1.9,G:1.9):0.8,(H:1.6,I:1.6):1.1):0.8):0.2;")
clmat <- clade.matrix(tree)
tips <- c("A","C","D","E","G","H")
par(mfrow=c(2,3), mar=rep(1,4))
tip.col <- rep('grey', length=length(tree$tip.label))
tip.col[c(1,3,4,5,7,8)] <- 'black'
cl <- rep('black', length=length(tree$edge.length))
cl[c(1,2,3,4,6,7,8,9,10,11,13,14,15)] <- 'red'
plot(tree, label.offset=0.1, cex=1.2, tip.color=tip.col, x.lim=3.8, edge.col=cl)
text(0.2,8.5, "TBL", cex=1.2, adj=c(0,0))
cl <- rep('black', length=length(tree$edge.length))
cl[c(3,4,6,8,9,11,14,13,15)] <- 'red'
plot(tree, label.offset=0.1, cex=1.2, tip.color=tip.col, x.lim=3.8, edge.col=cl)
text(0.2,8.5, "UEH", cex=1.2, adj=c(0,0))
cl <- rep('black', length=length(tree$edge.length))
cl[c(1,2,7,10)] <- 'red'
plot(tree, label.offset=0.1, cex=1.2, tip.color=tip.col, x.lim=3.8, edge.col=cl)
text(0.2,8.5, "SBL", cex=1.2, adj=c(0,0))
cl <- rep('black', length=length(tree$edge.length))
cl[c(4,6,8,9,13,15)] <- 'red'
plot(tree, label.offset=0.1, cex=1.2, tip.color=tip.col, x.lim=3.8, edge.col=cl)
text(0.2,8.5, "TIP", cex=1.2, adj=c(0,0))
tips <- c("A","C")
tip.col <- rep('grey', length=length(tree$tip.label))
tip.col[c(1,3)] <- 'black'
cl <- rep('black', length=length(tree$edge.length))
cl[c(3,4,6)] <- 'red'
plot(tree, label.offset=0.1, cex=1.2, tip.color=tip.col, x.lim=3.8, edge.col=cl)
text(0.2,8.5, "MST", cex=1.2, adj=c(0,0))
par(mar=c(3,3,1,1))
plot(density(rand), main='', xlab= 'TBL values for red listed British birds.')
abline(v=obs, col='red')
data(IsaacEtAl)
primates.cm <- clade.matrix(primates.tree)
primateED <- ed.calc(primates.cm)
str(primateED)
plot(density(primateED$spp$ED))
with(primateED, spp[spp$ED == max(spp$ED),])
par(mfrow=c(1,3), mar=c(0,0,0,0), mgp=c(2,0.7,0))
edDemo <- ed.calc(clmat)
edge.col <- rep('gray30', 16)
edge.col[c(1,2,6)] <- 'red'
edge.col[10:12] <- 'blue'
xx <- plot(tree, show.tip.label=FALSE, x.lim=c(0,4),y.lim=c(0.6,9.4), edge.col=edge.col, edge.width=2, no.margin=TRUE)
edgeLab <- with(edDemo$branch, paste(len, '/' , nSp)) [tree$edge[,2]]
edgelabels(edgeLab, 1:16, adj=c(0.5,-0.3), frame='none', col='gray30', cex=0.7)
edgeLab <- edDemo$branch$ED[tree$edge[,2]]
edgelabels(sprintf("%0.2f", edgeLab), 1:16, adj=c(0.5,1.3), frame='none', col=edge.col, cex=0.9)
tipLab <- with(edDemo$spp, sprintf("%0.2f", ED))
tipCol <- rep('gray30', 9)
tipCol[c(3,6)] <- c('red','blue')
tiplabels(text=tipLab, adj=c(-0.25,0.5), frame='none', col=tipCol)
par(usr=c(0,1,0,1))
text(0.1, 0.9, "a)", cex=1.2)
par(mar=c(3,3,1,1))
plot(density(primateED$spp$ED), main='', xlab='Species ED score')
edMax <- max(primateED$spp$ED)
arrows(edMax, 0.04, edMax, 0.01, col='red', len=0.1)
par(usr=c(0,1,0,1), mar=c(0,0,0,0))
text(0.1, 0.9, "b)", cex=1.2)
maxSpp <- which(primateED$spp$ED == edMax)
xx <- which(rowSums(primates.cm$clade.matrix[,maxSpp])> 0)
edgeCol <- rep('grey30', length(primates.tree$edge.length))
edgeCol[match(xx, primates.tree$edge[,2])] <- 'red'
plot(primates.tree, show.tip=FALSE, no.margin=TRUE, edge.col=edgeCol)
par(usr=c(0,1,0,1))
text(0.1, 0.9, "c)", cex=1.2)
set.seed(2345)
basicTree <- growTree(b=1, d=0, halt=20, grain=Inf)
extendTree <- growTree(b=1, d=0, halt=20, extend.proportion=1, grain=Inf)
timeLimit <- growTree(b=1, d=0, halt=expression(clade.age>=3), grain=0.01)
extinctTree <- growTree(b=1, d=0.1, halt=expression(nExtinctTip>=3), extend.proportion=1, grain=Inf)
densityDependence <- growTree(b=expression(2/nExtantTip), d=0, halt=50, grain=Inf)
increasingExtinction <- growTree(b=1, d=expression(0.2 * clade.age), halt=50)
par(mfrow=c(2,3), mar=c(1.5,0.5,0,0.5), tcl=-0.2, mgp=c(1,0.5,0), cex.axis=0.8)
plot(basicTree$phy , root.edge=TRUE); axis(1); par(usr=c(0,1,0,1)); text(0.1,0.06,"a)")
plot(extendTree$phy , root.edge=TRUE); axis(1); par(usr=c(0,1,0,1)); text(0.1,0.06,"b)")
plot(timeLimit$phy , root.edge=TRUE); axis(1); par(usr=c(0,1,0,1)); text(0.1,0.06,"c)")
plot(extinctTree$phy, root.edge=TRUE); axis(1); par(usr=c(0,1,0,1)); text(0.1,0.06,"d)")
plot(densityDependence$phy, root.edge=TRUE); axis(1); par(usr=c(0,1,0,1)); text(0.1,0.06,"e)")
plot(increasingExtinction$phy, root.edge=TRUE); axis(1); par(usr=c(0,1,0,1)); text(0.1,0.06,"f)")
set.seed(421)
mammalMeans <- c(logBodyMass=5.48, logLitterSize=0.69)
simpleBrownian <- growTree(halt=100, ct.start=mammalMeans, extend.proportion=1, grain=Inf)
mammalVar <- c(10, 0.44)
varBrownian <- growTree(halt=100, ct.start=mammalMeans, ct.var=mammalVar, extend.proportion=1, grain=Inf)
mammalCovar <- matrix(c(10,-0.65, -0.65, 0.44), ncol=2)
covarBrownian <- growTree(halt=100, ct.start=mammalMeans, ct.var=mammalCovar, extend.proportion=1, grain=Inf)
par(mfrow=c(1,3), mar=c(2.5,2.5,0.5,0.5), tcl=-0.2, mgp=c(1.5,0.5,0), cex.axis=0.8)
stips <- simpleBrownian$data
vtips <- varBrownian$data
cvtips <- covarBrownian$data
lims <- sapply( rbind(stips, vtips,cvtips)[, c('logBodyMass','logLitterSize')], range)
plot(logBodyMass ~ logLitterSize, data=stips, xlim=lims[,2], ylim=lims[,1])
plot(logBodyMass ~ logLitterSize, data=vtips, xlim=lims[,2], ylim=lims[,1])
plot(logBodyMass ~ logLitterSize, data=cvtips, xlim=lims[,2], ylim=lims[,1])
flight <- matrix(c(0,0.1,0.001,0), ncol=2)
flightNames <- c('ter','fly')
dimnames(flight) <- list(flightNames, flightNames)
trophic <- matrix(c(0,0.2,0.01,0.2,0,0.1,0,0.05,0), ncol=3)
trophNames <- c('herb','omni','carn')
dimnames(trophic) <- list(trophNames, trophNames)
discTraits <- list(flight=flight, trophic=trophic)
discreteTree <- growTree(halt=60, dt=discTraits, extend.proportion=1, grain=Inf)
par(mar=c(0,0,0,0), tcl=-0.2, mgp=c(1,0.5,0), cex.axis=0.8)
plot(discreteTree$phy, show.tip=FALSE)
lastPP <- get("last_plot.phylo", envir = .PlotPhyloEnv)
traitsByNode <- with(discreteTree, rbind( cbind(node=phy$tip.label, data[, c('flight','trophic')]), node.data[, c('node','flight','trophic')]))
traitsByNode <- traitsByNode[match(1:199, traitsByNode$node), ]
with(lastPP, points(xx + 0.06, yy, pch=21, col=unclass(traitsByNode$flight), xpd=NA, cex=0.6))
with(lastPP, points(xx + 0.12, yy, pch=22, col=unclass(traitsByNode$trophic), xpd=NA, cex=0.6))
set.seed(95132)
bLatency <- expression((0.2 *lin.age)/(0.1 + lin.age))
dSenesce <- expression(lin.age * 0.02)
halt <- expression(nExtantTip >= 60)
latencyTree <- growTree(b=bLatency, d=dSenesce, halt=halt, grain=0.01)
traitMean <- c(logBodyMass=5.48)
traitVar <- c(logBodyMass=10)
bLatTrait <- expression(((0.2 + ((5.48 - logBodyMass)/25))*lin.age)/(0.1 + lin.age))
latTraitTree <- growTree(b=bLatTrait, d=dSenesce, halt=halt, ct.start=traitMean, ct.var=traitVar, grain=0.01)
par(mfrow=c(2,2), mar=c(2.5,2.5,1,1), tcl=-0.2, mgp=c(1.5,0.5,0), cex.axis=0.8)
curve(0.02*x, xlim=c(0,20), ylab='Rate', xlab="Lineage age")
curve(((0.2 + ((5.48 - 5.48)/25))*x)/(0.1 + x), add=TRUE, col='red')
curve(((0.2 + ((5.48 - 3.48)/25))*x)/(0.1 + x), add=TRUE, col='red', lty=2)
curve(((0.2 + ((5.48 - 7.48)/25))*x)/(0.1 + x), add=TRUE, col='red', lty=2)
plot(latencyTree$phy, no.margin=TRUE, cex=0.8)
plot(latTraitTree$phy, no.margin=TRUE, cex=0.8, show.tip=FALSE)
traitMean <- c(logBodyMass=5.48)
traitVar <- c(logBodyMass=10)
inherit <- list(logBodyMass=expression(logBodyMass * c(0.8, 1.2)))
inheritTree <- growTree(b=1, halt=40, ct.start=traitMean, ct.var=traitVar, inheritance=inherit, grain=Inf, extend.proportion=1)
rNames <- c("AB", "A", "B")
regions <- list(region = matrix(c(0, 0.05, 0.05, 0.1, 0,0,0.1,0,0), ncol=3,
dimnames=list(rNames,rNames)))
extinct <- expression(ifelse(region == "AB", 0.0001, 0.01))
spec <- list(regA_spec = expression(ifelse(region == "AB" | region == "A", 1, 0)),
regB_spec = expression(ifelse(region == "AB" | region == "B", 0.5, 0)))
inherit <- list(region = expression(if(winnerName=="regB_spec" && region[1] == "AB") c("B","A") else region),
region = expression(if(winnerName=="regA_spec" && region[1] == "AB") c("A","B") else region))
biogeogTree <- growTree(b=spec, d=extinct, halt=80, inherit=inherit, dt.rates=regions, inf.rates="quiet", grain=Inf)
epochTree <- growTree(halt=100, output.lineages=TRUE, grain=Inf)
epochTree2 <- growTree(d=5, halt=expression(nExtantTip==20), linObj=epochTree, output.lineages=TRUE, grain=Inf)
epochTree3 <- growTree(linObj=epochTree2, halt=100, grain=Inf)
par(mfrow=c(1,3), mar=c(1,1,1,1))
depth <- VCV.array(inheritTree$phy)[1,1]
plot(inheritTree$phy, no.margin=TRUE, cex=0.8, show.tip=FALSE, root.edge=TRUE, x.lim=c(0,depth*1.1))
rightEdge <- depth*1.05
tips <- seq_along(inheritTree$phy$tip.label)
bm <- inheritTree$data$logBodyMass
sc <- max(bm) / (depth*0.04)
rect(rightEdge - 5.48/sc, 0 , rightEdge + 5.48/sc, max(tips)+1, col='grey80', border=NA)
arrows(rightEdge-bm/sc, tips, rightEdge+bm/sc, tips, code=0, col='red', xpd=NA, lwd=2, lend=2)
plot(biogeogTree$phy, edge.col= unclass(biogeogTree$data$region), show.tip.label=FALSE, root.edge=TRUE)
plot(epochTree3$phy, show.tip.label=FALSE)
data(perissodactyla)
perisso <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial)
perissoCM <- clade.matrix(perisso$phy)
str(perissoCM)
perissoCM$clade.matrix
data(perissodactyla)
perisso <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial)
clade.members(15, perisso$phy)
clade.members(15, perisso$phy, tip.labels=TRUE)
clade.members(15, perisso$phy, tip.labels=TRUE, include.nodes=TRUE)
str(clade.members.list(perisso$phy))
str(clade.members.list(perisso$phy, tip.labels=TRUE))
data(perissodactyla)
perisso <- comparative.data(perissodactyla.tree, perissodactyla.data, Binomial)
str(VCV.array(perisso$phy))
str(VCV.array(perisso$phy, dim=3))
|
invisible(NULL)
NULL
|
roxy_tag_parse.roxy_tag_inherit <- function(x) tag_inherit(x)
roxy_tag_rd.roxy_tag_inherit <- function(x, base_path, env) {
rd_section_inherit(x$val$source, list(x$val$fields))
}
roxy_tag_parse.roxy_tag_inheritParams <- function(x) tag_value(x)
roxy_tag_rd.roxy_tag_inheritParams <- function(x, base_path, env) {
rd_section_inherit(x$val, list("params"))
}
roxy_tag_parse.roxy_tag_inheritDotParams <- function(x) {
tag_two_part(x, "source", "args", required = FALSE, markdown = FALSE)
}
roxy_tag_rd.roxy_tag_inheritDotParams <- function(x, base_path, env) {
rd_section_inherit_dot_params(x$val$source, x$val$args)
}
roxy_tag_parse.roxy_tag_inheritSection <- function(x) tag_name_description(x)
roxy_tag_rd.roxy_tag_inheritSection <- function(x, base_path, env) {
rd_section_inherit_section(x$val$name, x$val$description)
}
rd_section_inherit <- function(source, fields) {
stopifnot(is.character(source), is.list(fields))
stopifnot(!anyDuplicated(source))
stopifnot(length(source) == length(fields))
rd_section("inherit", list(source = source, fields = fields))
}
merge.rd_section_inherit <- function(x, y, ...) {
stopifnot(identical(class(x), class(y)))
dedup <- collapse(
c(x$value$source, y$value$source),
c(x$value$fields, y$value$fields),
function(x) Reduce(union, x)
)
rd_section("inherit", list(source = dedup$key, fields = dedup$value))
}
format.rd_section_inherit <- function(x, ...) NULL
rd_section_inherit_section <- function(source, title) {
stopifnot(is.character(source), is.character(title))
stopifnot(length(source) == length(title))
rd_section("inherit_section", list(source = source, title = title))
}
format.rd_section_inherit_section <- function(x, ...) NULL
merge.rd_section_inherit_section <- function(x, y, ...) {
stopifnot(identical(class(x), class(y)))
rd_section_inherit_section(c(x$value$source, y$value$source), c(x$value$title, y$value$title))
}
rd_section_inherit_dot_params <- function(source, args) {
stopifnot(is.character(source), is.character(args))
stopifnot(length(source) == length(args))
rd_section("inherit_dot_params", list(source = source, args = args))
}
format.rd_section_inherit_dot_params <- function(x, ...) NULL
merge.rd_section_inherit_dot_params <- function(x, y, ...) {
stopifnot(identical(class(x), class(y)))
rd_section_inherit_dot_params(c(x$value$source, y$value$source), c(x$value$args, y$value$args))
}
topics_process_inherit <- function(topics, env) {
inherits <- function(type) {
function(x) x$inherits_from(type)
}
topics$topo_apply(inherits("return"), inherit_field,
roxy_name = "return", rd_name = "value")
topics$topo_apply(inherits("title"), inherit_field, "title")
topics$topo_apply(inherits("description"), inherit_field, "description")
topics$topo_apply(inherits("details"), inherit_field, "details")
topics$topo_apply(inherits("seealso"), inherit_field, "seealso")
topics$topo_apply(inherits("references"), inherit_field, "references")
topics$topo_apply(inherits("examples"), inherit_field, "examples")
topics$topo_apply(inherits("author"), inherit_field, "author")
topics$topo_apply(inherits("source"), inherit_field, "source")
topics$topo_apply(function(x) x$inherits_section_from(), inherit_section)
topics$topo_apply(inherits("sections"), inherit_sections)
topics$topo_apply(inherits("params"), inherit_params)
topics$apply(inherit_dot_params, env = env)
invisible()
}
inherit_params <- function(topic, topics) {
inheritors <- topic$inherits_from("params")
if (length(inheritors) == 0) {
return()
}
documented <- get_documented_params(topic)
needed <- topic$get_value("formals")
missing <- setdiff(needed, documented)
if (length(missing) == 0) {
warn(paste0(
"Topic '", topic$get_name(), "': ",
"no parameters to inherit with @inheritParams"
))
return()
}
for (inheritor in inheritors) {
inherited <- find_params(inheritor, topics)
matches <- map_chr(missing, match_param, names(inherited))
new_match <- !is.na(matches)
if (!any(new_match)) {
next
}
topic$add(
rd_section(
"param",
setNames(inherited[matches[new_match]], missing[new_match])
)
)
missing <- missing[!new_match]
}
}
inherit_dot_params <- function(topic, topics, env) {
inheritors <- topic$get_value("inherit_dot_params")
if (is.null(inheritors))
return()
funs <- lapply(inheritors$source, function(x) eval(parse(text = x), envir = env))
args <- map2(funs, inheritors$args, select_args_text)
docs <- lapply(inheritors$source, find_params, topics = topics)
arg_matches <- function(args, docs) {
doc_args <- str_split(names(docs), ", ?")
match <- map_lgl(doc_args, function(x) x %in% args)
docs[match]
}
docs_selected <- unlist(map2(args, docs, arg_matches))
documented <- get_documented_params(topic)
non_documented_params <- setdiff(names(docs_selected), documented)
docs_selected <- docs_selected[non_documented_params]
src <- inheritors$source
dest <- map_chr(src, resolve_qualified_link)
from <- paste0("\\code{\\link[", dest, "]{", src, "}}", collapse = ", ")
arg_names <- paste0("\\code{", names(docs_selected), "}")
args <- paste0(" \\item{", arg_names, "}{", docs_selected, "}", collapse = "\n")
rd <- paste0(
"\n",
" Arguments passed on to ", from, "\n",
" \\describe{\n",
args, "\n",
" }"
)
topic$add(rd_section("param", c("..." = rd)))
}
get_documented_params <- function(topic, only_first = FALSE) {
documented <- names(topic$get_value("param"))
if (length(documented) > 0) {
documented <- strsplit(documented, ",")
if (only_first)
documented <- map_chr(documented, 1)
else
documented <- unlist(documented)
}
documented[documented == "\\dots"] <- "..."
documented
}
find_params <- function(name, topics) {
topic <- get_rd(name, topics)
if (is.null(topic)) {
return()
}
params <- topic_params(topic)
if (is.null(params))
return()
param_names <- str_trim(names(params))
param_names[param_names == "\\dots"] <- "..."
individual_names <- strsplit(param_names, ",\\s*")
reps <- map_int(individual_names, length)
setNames(rep.int(params, reps), unlist(individual_names))
}
topic_params <- function(x) UseMethod("topic_params")
topic_params.Rd <- function(x) {
arguments <- get_tags(x, "\\arguments")
if (length(arguments) != 1) {
return(list())
}
items <- get_tags(arguments[[1]], "\\item")
values <- map_chr(items, function(x) rd2text(x[[2]]))
params <- map_chr(items, function(x) rd2text(x[[1]]))
setNames(values, params)
}
topic_params.RoxyTopic <- function(x) {
x$get_value("param")
}
inherit_sections <- function(topic, topics) {
current_secs <- topic$get_value("section")$title
for (inheritor in topic$inherits_from("sections")) {
inheritor <- get_rd(inheritor, topics)
if (is.null(inheritor)) {
return()
}
sections <- find_sections(inheritor)
needed <- !(sections$title %in% current_secs)
if (!any(needed))
next
topic$add(
rd_section_section(sections$title[needed], sections$content[needed])
)
}
}
inherit_section <- function(topic, topics) {
sections <- topic$get_value("inherit_section")
sources <- sections$source
titles <- sections$title
for (i in seq_along(sources)) {
inheritor <- get_rd(sources[[i]], topics)
if (is.null(inheritor)) {
return()
}
new_section <- find_sections(inheritor)
selected <- new_section$title %in% titles[[i]]
if (sum(selected) != 1) {
warning(
"Can't find section '", titles[[i]], "' in ?",
sources[[i]], call. = FALSE
)
}
topic$add(
rd_section_section(new_section$title[selected], new_section$content[selected])
)
}
}
find_sections <- function(topic) {
if (inherits(topic, "Rd")) {
tag <- get_tags(topic, "\\section")
titles <- map_chr(map(tag, 1), rd2text)
contents <- map_chr(map(tag, 2), rd2text)
list(title = titles, content = contents)
} else {
topic$get_value("section")
}
}
inherit_field <- function(topic, topics, rd_name, roxy_name = rd_name) {
if (topic$has_section(rd_name))
return()
for (inherit_from in topic$inherits_from(roxy_name)) {
inherit_topic <- get_rd(inherit_from, topics)
if (is.null(inherit_topic)) {
next
}
inheritee <- find_field(inherit_topic, rd_name)
if (is.null(inheritee))
next
topic$add(rd_section(rd_name, inheritee))
return()
}
}
find_field <- function(topic, field_name) {
if (inherits(topic, "Rd")) {
tag <- get_tags(topic, paste0("\\", field_name))
if (length(tag) == 0)
return()
value <- tag[[1]]
attr(value, "Rd_tag") <- NULL
str_trim(rd2text(value))
} else {
topic$get_value(field_name)
}
}
get_rd <- function(name, topics) {
if (has_colons(name)) {
parsed <- parse_expr(name)
pkg <- as.character(parsed[[2]])
fun <- as.character(parsed[[3]])
tweak_links(get_rd_from_help(pkg, fun), package = pkg)
} else {
rd_name <- topics$find_filename(name)
if (identical(rd_name, NA_character_)) {
warn(paste0("Can't find help topic '", name, "' in current package"))
}
topics$get(rd_name)
}
}
get_rd_from_help <- function(package, alias) {
if (!is_installed(package)) {
warn(paste0("Can't find package '", package, "'"))
return()
}
help <- eval(expr(help(!!alias, !!package)))
if (length(help) == 0) {
warn(paste0("Can't find help topic '", alias, "' in '", package, "' package"))
return()
}
internal_f("utils", ".getHelpFile")(help)
}
match_param <- function(needle, haystack) {
if (needle %in% haystack) {
return(needle)
}
if (substr(needle, 1, 1) == ".") {
if (needle %in% paste0(".", haystack)) {
return(substr(needle, 2, nchar(needle)))
}
} else {
if (paste0(".", needle) %in% haystack) {
return(paste0(".", needle))
}
}
NA
}
|
.arsa_control <- list(
cool = 0.5,
tmin = 0.0001,
swap_to_inversion = .5,
try_multiplier = 100,
reps = 1L,
verbose = FALSE
)
seriate_dist_arsa <- function(x, control = NULL) {
param <- .get_parameters(control, .arsa_control)
A <- as.matrix(x)
N <- ncol(A)
NREPS <- as.integer(param$reps)
IPERM <- integer(N)
D <- double(N * N)
U <- integer(N)
S <- integer(N)
T <- integer(NREPS * N)
SB <- integer(N)
ZBEST <- double(1)
ret <- .Fortran(
"arsa",
N,
A,
as.numeric(param$cool),
as.numeric(param$tmin),
NREPS,
IPERM,
D,
U,
S,
T,
SB,
ZBEST,
as.numeric(param$swap_to_insertion),
as.numeric(param$try_multiplier),
as.integer(param$verbose),
PACKAGE = "seriation"
)
o <- ret[[6]]
names(o) <- labels(x)[o]
if (all(o == 0)) {
o <- 1:N
warning(
"ARSA has returned an invalid permutation vector! Check the supplied dissimilarity matrix."
)
}
o
}
.bb_control <- list(eps = 1e-7,
verbose = FALSE)
seriate_dist_bburcg <- function(x, control = NULL) {
param <- .get_parameters(control, .bb_control)
A <- as.matrix(x)
N <- ncol(A)
X <- integer(N)
Q <- integer(N)
D <- integer(N * N * N)
DD <- integer(N * N * N)
S <- integer(N)
UNSEL <- integer(N)
ret <- .Fortran("bburcg", N, A, param$eps, X, Q, D, DD, S, UNSEL,
param$verbose)
o <- ret[[4]]
names(o) <- labels(x)[o]
o
}
seriate_dist_bbwrcg <- function(x, control = NULL) {
param <- .get_parameters(control, .bb_control)
A <- as.matrix(x)
N <- ncol(A)
X <- integer(N)
Q <- integer(N)
D <- double(N * N * N)
DD <- double(N * N * N)
S <- integer(N)
UNSEL <- integer(N)
ret <- .Fortran("bbwrcg", N, A, param$eps, X, Q, D, DD, S, UNSEL,
param$verbose)
o <- ret[[4]]
names(o) <- labels(x)[o]
o
}
set_seriation_method(
"dist",
"ARSA",
seriate_dist_arsa,
"Minimize the linear seriation criterion using simulated annealing (Brusco et al, 2008).\ncontrol parameters:\n - cool (cooling rate)\n - tmin (minimum temperature)\n - swap_to_inversion (proportion of swaps to inversions for local neighborhood search)\n - try_multiplier (local search tries per temperature; multiplied with the number of objects)\n - reps (repeat the algorithm with random initialization)\n",
control = .arsa_control
)
set_seriation_method(
"dist",
"BBURCG",
seriate_dist_bburcg,
"Minimize the unweighted row/column gradient by branch-and-bound (Brusco and Stahl 2005). This is only feasible for a relatively small number of objects.",
control = .bb_control
)
set_seriation_method(
"dist",
"BBWRCG",
seriate_dist_bbwrcg,
"Minimize the weighted row/column gradient by branch-and-bound (Brusco and Stahl 2005). This is only feasible for a relatively small number of objects.",
control = .bb_control
)
|
context("Testing new_storage_location()")
root_name <- paste0("test_new_storate_location_",
openssl::sha1(x = as.character(Sys.time())))
root <- tempdir()
hash <- openssl::sha1(x = root_name)
path <- paste0(hash, ".h5")
endpoint <- Sys.getenv("FDP_endpoint")
storage_root_url <- new_storage_root(root = root,
local = TRUE,
endpoint = endpoint)
test_that("new entry in storage_location returns API URL", {
expect_true(grepl("storage_location",
new_storage_location(path = path,
hash = hash,
public = TRUE,
storage_root_url = storage_root_url,
endpoint = endpoint)))
})
test_that("existing entry in storage_location returns API URL", {
expect_true(grepl("storage_location",
new_storage_location(path = path,
hash = hash,
public = TRUE,
storage_root_url = storage_root_url,
endpoint = endpoint)))
})
|
setPolicyValues <- function(network, ...)
{
policyValues <- list(...)
for (i in names(policyValues))
{
network[["nodePolicyValues"]][[i]] <- policyValues[[i]]
}
network
}
|
"ctenocidaris.nutrix"
|
createImageSeq <- function (moviepath='Movies',
imagepath='ImageSequences',
x=1920,
y=1080,
fps=15,
nsec=2,
start=NULL,
stop=NULL,
ext='MTS',
libavpath='avconv',
exiftoolpath='exiftool',
pythonpath='python',
verbose=FALSE,
logfile=FALSE)
{
if (is.null(moviepath)) {
moviepath = 'NULL'
}
if (is.null(imagepath)) {
imagepath = 'NULL'
}
if (is.null(x)) {
x = 'NULL'
}
if (is.null(y)) {
y = 'NULL'
}
if (is.null(fps)) {
fps = 'NULL'
}
if (is.null(nsec)) {
nsec = 'NULL'
}
if (is.null(start)) {
start = 'NULL'
}
if (is.null(stop)) {
stop = 'NULL'
}
if (is.null(ext)) {
ext = list('NULL')
}
if (is.null(verbose)) {
verbose = 'NULL'
}
if (is.null(logfile)) {
logfile = 'NULL'
}
system(paste(
pythonpath,
system.file("python", "createImageSeq.py", package = "trackdem"),
"-moviepath", moviepath,
"-imagepath", imagepath,
"-x", x,
"-y", y,
"-fps", fps,
"-nsec", nsec,
"-start", start,
"-stop", stop,
"-ext", paste(ext, collapse=' '),
"-libavpath", libavpath,
"-exiftoolpath", exiftoolpath,
"-verbose", verbose,
"-logfile", logfile
))
}
loadImages <- function (dirPictures,filenames=NULL,nImages=1:30,
xranges=NULL,yranges=NULL) {
if (is.null(dirPictures)) {
dirPictures <- getwd()
}
if (is.null(filenames)) {
allFiles <- list.files(path=dirPictures)
allFiles <- allFiles[nImages]
}
else {filenames <- filenames[nImages]}
im1 <- png::readPNG(file.path(dirPictures,allFiles[1]))
if (length(dim(im1)) == 2) {
im1 <- array(im1,dim=c(nrow(im1),ncol(im1),1))
}
nc <- dim(im1)[3]
if (is.null(xranges)) xranges <- 1:dim(im1)[2]
if (is.null(yranges)) yranges <- 1:dim(im1)[1]
im1 <- im1[yranges,xranges,,drop=FALSE]
allFullImages <- structure(vapply(seq_along(nImages),
function(x) {
im <- png::readPNG(file.path(dirPictures,
allFiles[x]))
if (length(dim(im)) == 2) im <- array(im,dim=c(nrow(im),ncol(im),1))
im <- im[yranges,xranges,]
}, numeric(prod(dim(im1)))),
dim=c(dim(im1),length(nImages)))
if (dim(allFullImages)[3] == 3) {
} else if (dim(allFullImages)[3] == 4) {
if (all(allFullImages[,,4,] == 1)) {
warning("Color channel 4 (for transparency) is safely ignored as all
values equaled 1.")
} else {
warning("Color channel 4 (for transparency) is ignored. Note that
not all values equaled 1.")
}
allFullImages <- allFullImages[,,1:3,]
} else if (dim(allFullImages)[3] == 1) {
warning("Only 1 color channel detected (grey scale image).")
} else {
stop("Wrong number of color channels; only 1 and 3 color layers are
supported.")
}
attr(allFullImages,"settings") <- list(nImages=nImages)
attr(allFullImages, "class") <- c('TrDm','colorimage','array')
attr(allFullImages, "originalDirec") <- dirPictures
return(allFullImages)
}
createBackground <- function(colorimages,method='mean') {
if(!is.TrDm(colorimages)){
stop("Input does not appear to be of the class \"TrDm\"")
}
if (method == 'mean') {
if (dim(colorimages)[3] == 3) {
A <- cb(colorimages[,,1,],
colorimages[,,2,],
colorimages[,,3,],
dim(colorimages[,,1,]),
array(0,dim=dim(colorimages[,,,1])))
} else if (dim(colorimages)[3] == 1) {
A <- cb1(colorimages[,,1,],
dim(colorimages[,,1,]),
array(0,dim=dim(colorimages[,,,1])))
}
} else if (method == 'powerroot') {
A <- array(NA,dim=dim(colorimages)[1:3])
for (i in 1:dim(colorimages)[3]) {
A[,,i] <- apply(colorimages[,,i,],c(1,2),function(x) mean(x^50)^(1/50))
}
} else if (method == 'filter') {
if (dim(colorimages)[3] == 3) {
rst <- cb(colorimages[,,1,],
colorimages[,,2,],
colorimages[,,3,],
dim(colorimages[,,1,]),
array(0,dim=dim(colorimages[,,,1])))
} else if (dim(colorimages)[3] == 1) {
rst <- cb1(colorimages[,,1,],
dim(colorimages[,,1,]),
array(0,dim=dim(colorimages[,,,1])))
}
class(rst) <- class(colorimages)
subs <- aperm(subtractBackground(bg=rst,colorimages),c(1,2,4,3))
class(subs) <- class(colorimages)
attributes(subs) <- attributes(colorimages)
if (dim(colorimages)[3] == 3) {
SDs <- cb(subs[,,1,]^2,
subs[,,2,]^2,
subs[,,3,]^2,
dim(subs[,,1,]),array(0,dim=dim(colorimages[,,1,]))) *
dim(colorimages)[4]/(dim(colorimages)[4]-1)
SD <- sqrt(SDs[,,1]^2+SDs[,,2]^2+SDs[,,3]^2)
} else if (dim(colorimages)[3] == 1) {
SDs <- cb1(subs[,,1,]^2,
dim(subs[,,1,]),array(0,dim=dim(colorimages[,,1,]))) *
dim(colorimages)[4]/(dim(colorimages)[4]-1)
SD <- sqrt(SDs[,,1]^2)
}
Threshold <-
{
stats::optimize(function(a,i1){
t1 <- (i1 > a)
sum((i1[t1]-mean(i1[t1]))^2)+
sum((i1[!t1]-mean(i1[!t1]))^2)
}
,c(0,max(SD)),i1=c(SD))$min
}
rst[(SD>Threshold)] <- NA
A <- array(0,c(dim(colorimages)[1:3]))
for (i in 1:dim(colorimages)[3]) {
r <- raster::raster(rst[,,i],xmx=ncol(rst),ymx=nrow(rst))
f1 <- raster::focal(r,w=matrix(1,31,31),
fun=function(x){ raster::modal(x,na.rm=TRUE) },
NAonly=TRUE)
while((!all(is.finite(f1@data@values)))|any(is.na(f1@data@values))) {
f1@data@values[!is.finite(f1@data@values)] <- NA
f1 <- raster::focal(f1,w=matrix(1,31,31),
fun=function(x){ raster::modal(x,na.rm=TRUE) },
NAonly=TRUE,pad=TRUE)
}
A[,,i] <- matrix(f1[,,1],ncol=ncol(colorimages),
nrow=nrow(colorimages),byrow=TRUE)
}
} else {stop('No valid method for creating background')}
class(A) <- c('TrDm','colorimage','array')
attr(A,"originalImages") <- deparse(substitute(colorimages))
attr(A,"originalDirec") <- attributes(colorimages)$originalDirec
attr(A,"settings") <- c(attributes(colorimages)$settings,
list(BgMethod=method))
return(A)
}
subtractBackground <- function (bg,colorimages=NULL) {
if(is.null(colorimages)) { colorimages <- get(attributes(bg)$originalImages,
envir=.GlobalEnv) }
if(!is.TrDm(bg)) {
ch1 <- all(dim(bg)[1:3] == dim(colorimages)[1:3])
ch2 <- length(dim(bg)) %in% 3:4
ch3 <- TRUE
if (length(dim(bg)) == 4) ch3 <- dim(bg)[4] == dim(colorimages)[4]
if (!all(ch1,ch2,ch3)) {
stop(paste("Input does not appear to be of the class \"TrDm\"",
"and has wrong dimensions."))
} else {
message(paste("Input does not appear to be of the class \"TrDm\" but",
"has the correct dimensions and is therefore used."))
}
}
if (length(dim(bg)) == 3) {
sbg <- array(NA,dim=dim(colorimages))
for (i in 1:(dim(colorimages)[3])) {
sbg[,,i,] <- sb(colorimages[,,i,],
bg[,,i],
dim(colorimages[,,i,]),
array(0,dim=dim(colorimages)))
}
} else if (length(dim(bg)) == 4) {
sbg <- array(NA,dim=dim(colorimages))
for (i in 1:(dim(colorimages)[3])) {
sbg[,,i,] <- sb2(colorimages[,,i,],
bg[,,i,],
dim(colorimages[,,i,]),
array(0,dim=dim(colorimages)))
}
} else {stop("Wrong dimensions for background image.")}
attr(sbg,"background") <- deparse(substitute(bg))
attr(sbg,"originalImages") <- attributes(bg)$originalImages
attr(sbg,"originalDirec") <- attributes(bg)$originalDirec
attr(sbg,"settings") <- attributes(bg)$settings
class(sbg) <- c('TrDm','sbg','array')
return(sbg)
}
identifyParticles <- function (sbg,threshold=-0.1,pixelRange=NULL,
qthreshold=NULL,select='dark',
colorimages=NULL,autoThres=FALSE,
perFrame=FALSE,frames=NULL) {
if(!is.TrDm(sbg)){
stop("Input does not appear to be of the class \"TrDm\"")
}
if(is.null(colorimages)) { colorimages <- get(attributes(sbg)$originalImages,
envir=.GlobalEnv) }
namesbg <- deparse(substitute(sbg))
tmp <- attributes(sbg)
sbg <- aperm(sbg, c(1,2,4,3))
attributes(sbg)$background <- tmp$background
attributes(sbg)$originalImages <- tmp$originalImages
attributes(sbg)$originalDirec <- tmp$originalDirec
attributes(sbg)$settings <- tmp$settings
cat("\t Particle Identification: ")
n <- 1:dim(sbg)[3]
nc <- dim(sbg)[4]
cat("\r \t Particle Identification: Thresholding (1 of 5) ",
" ")
if (length(threshold) == 1) {threshold <- rep(threshold,nc)}
if (autoThres) {
cat("\r \t Particle Identification: Automated thresholding (1 of 5) ",
" ")
if (is.null(frames)) { frames <- n }
threshold <- calcAutoThres(sbg[,,frames,,drop=FALSE],perFrame=perFrame)
}
if (!is.null(qthreshold)) {
A <- array(NA,dim=dim(sbg))
for (i in 1:nc) {
A[,,,i] <- structure(vapply(seq_len(dim(sbg)[3]), function(x)
sbg[,,x,i] < stats::quantile(sbg[,,x,i],qthreshold),
numeric(prod(dim(sbg[,,1,1])))),dim=dim(sbg)[1:3])
}
} else {
if (select == 'dark') {
A <- structure(vapply(seq_along(threshold),
function(x) sbg[,,,x] < threshold[x],
numeric(prod(dim(sbg[,,,1])))),
dim=dim(sbg))
}
else if (select == 'light') {
A <- structure(vapply(seq_along(threshold),
function(x) sbg[,,,x] > threshold[x],
numeric(prod(dim(sbg[,,,1])))),
dim=dim(sbg))
}
else if (select == 'both') {
A <- structure(vapply(seq_along(threshold),
function(x) sbg[,,,x] > threshold[x] |
sbg[,,,x] < -threshold[x],
numeric(prod(dim(sbg[,,,1])))),
dim=dim(sbg))
}
else {stop("Invalid selection, choose 'dark', 'light' or 'both' ")}
}
sumRGB <- apply(A,c(2,3),rowSums)
sumRGB <- sumRGB > 0
cat("\r \t Particle Identification: Labeling (2 out of 5) ",
" ")
A <- array(NA,dim=dim(sumRGB))
for (i in n) {
A[,,i] <- .Call('ccl',sumRGB[,,i],PACKAGE='trackdem')
}
cat("\r \t Particle Identification: Size filtering (3 out of 5) ",
" ")
if (!is.null(pixelRange)) {
for (i in n) {
allLabels <- tabulate(as.vector(A[,,i]),nbins=max(A[,,i]))
allLabels <- allLabels[allLabels > 0]
names(allLabels) <- sort(unique(as.numeric(A[,,i])))[-1]
inc <- allLabels >= pixelRange[1] & allLabels <= pixelRange[2]
A[,,i] [!A[,,i] %in% names(inc[inc==TRUE])] <- 0
}
}
cat("\r \t Particle Identification: Particle statistics (4 out of 5) ",
" ")
dA <- dim(A[,,1])
totalPart <- apply(A,3,function(x) length(unique(c(x)))-1)
if (all(totalPart == 0)) {
cat("\n")
stop(c("\n \t No particle detected in any of the frames. ",
"Try different thresholds? \n"))
}
if (any(totalPart == 0)) {
warning(c("\n \t No particle detected in at least one of the frames.
You will run into problems with particle tracking.
Try different thresholds? \n"))
}
shape.index <- function(a,p) {
n <- trunc(sqrt(a))
m <- a - n^2
minp <- rep(0,length(m))
for (ii in 1:length(m)){
if (m[ii]==0) minp[ii] <- 4*n[ii]
if (n[ii]^2<a[ii] & a[ii]<=n[ii]*(1+n[ii])) minp[ii] <- 4 * n[ii] + 2
if (a[ii] > n[ii]*(1+n[ii])) minp[ii] <- 4 * n[ii] + 4
}
return(p/minp)
}
particleStats <- matrix(NA,nrow=sum(totalPart),ncol=15)
colnames(particleStats) <- c('patchID','n.cell','n.core.cell',
'n.edges.perimeter',
'n.edges.internal','perim.area.ratio',
'shape.index',
'frac.dim.index','core.area.index',
paste0('mu',c('R','G','B')),'x','y','frame')
for (i in n) {
if (totalPart[i] > 0) {
if (i == 1) loc <- 1:totalPart[i]
if (i > 1) {
cum <- sum(totalPart[1:(i-1)])+1
loc <- cum:(cum+totalPart[i]-1)
}
IDs <- sort(as.numeric(stats::na.omit(unique(c(A[,,i])))))[-1]
particleStats[loc,1:5] <- .Call('projectedPS',A[,,i],IDs,
PACKAGE='trackdem')
particleStats[loc,paste0('mu',c('R','G','B'))] <-
as.matrix(extractMean(
particleStats[loc,'patchID'],
colorimages=colorimages[,,,i],
images=A[,,i],ncolors=nc))
coords <- getCoords(m=A[,,i],d=dA)
ind <- A[,,i] > 0
particleStats[loc,'x'] <- tapply(coords[,2],A[,,i][ind],mean)
particleStats[loc,'y'] <- tapply(coords[,1],A[,,i][ind],mean)
particleStats[loc,'frame'] <- i
}
}
particleStats[,'perim.area.ratio'] <- particleStats[,'n.edges.perimeter'] /
particleStats[,'n.cell']
particleStats[,'shape.index'] <- shape.index(particleStats[,'n.cell'],
particleStats[,'n.edges.perimeter'])
particleStats[,'frac.dim.index'] <- (2 * log(0.25 *
particleStats[,'n.edges.perimeter'])) /
log(particleStats[,'n.cell'])
particleStats[,'core.area.index'] <- particleStats[,'n.core.cell'] /
particleStats[,'n.cell']
particleStats <- as.data.frame(particleStats)
cat("\r \t Particle Identification: Finalizing (5 out of 5) ",
" \n ")
attr(particleStats,"images") <- A
attr(particleStats, "class") <- c("TrDm","particles","data.frame")
attr(particleStats,"threshold") <- threshold
attr(particleStats,"background") <- attributes(sbg)$background
attr(particleStats,"originalImages") <- attributes(sbg)$originalImages
attr(particleStats,"originalDirec") <- attributes(sbg)$originalDirec
attr(particleStats,"subtractedImages") <- namesbg
attr(particleStats,"settings") <- c(attributes(sbg)$settings,
list(threshold=threshold,
pixelRange=pixelRange,
qthreshold=qthreshold,
select=select,
autoThres=autoThres,
perFrame=perFrame,
frames=frames))
attr(particleStats,"nn") <- FALSE
return(particleStats)
}
calcAutoThres <- function(sbg,perFrame=FALSE){
ncolours <- dim(sbg)[4]
nframes <- dim(sbg)[3]
f <- function(a){
t1 <- (i1 > a)
sum((i1[t1]-mean(i1[t1]))^2) + sum((i1[!t1]-mean(i1[!t1]))^2)
}
if (perFrame) {
pp <- array(0,c(nframes,ncolours))
for (j in 1:nframes) {
for (i in 1:ncolours) {
i1 <- c(sbg[,,j,i])
pp[j,i] <- stats::optimize(function(a) {
t1 <- (i1 > a) + 1
sum((i1[t1==1]-mean(i1[t1==1]))^2) +
sum((i1[t1==2]-mean(i1[t1==2]))^2)
}, range(i1))$min
}
}
} else {
pp <- numeric(ncolours)
for (i in 1:ncolours) {
i1 <- c(sbg[,,,i])
pp[i] <- stats::optimize(f,range(i1))$min
}
}
return(pp)
}
findThreshold <- function (images,frame=1,colorimages=NULL) {
if(is.null(colorimages)) {
colorimages <- get(attributes(images)$originalImages,
envir=.GlobalEnv)
}
thr <- runThreshold(frame,images,colorimages)
return(thr)
}
runThreshold <- function(frame,images,colorimages,ui,server) {
shiny::runApp(
list(ui=shiny::fluidPage(
shiny::titlePanel(paste0("Find threshold for particle detection")),
shiny::fluidRow(
shiny::column(3,
'The graph on the right shows the original image that can be used to zoom, by
drawing a polygon. Bottom graphs show the original image (left) and
a binary image (right) in which all particles are either labeled as zero (white),
or as one (black). Set whether particles are light or dark compared to the
background. Use the slider to find the best threshold, that results in all
focal particles being labeled as one, and all background pixels labeld as
zero. When finished, click on "Done".',
align='left',offset=0),
shiny::column(2,
shiny::actionButton("stop", "Done"),
shiny::br(),shiny::br(),
shiny::radioButtons("select", shiny::h5("Select:"),
choices = list("Dark particles" = 1,
"Light particles" = 2,
"Both" = 3),selected = 1),
shiny::radioButtons("ch", shiny::h5("Color channel:"),
choices = list("Red" = 1,
"Green" = 2,
"Blue" = 3),selected = 1)),
shiny::column(5,
shiny::h5('Choose region of interest to zoom (slower for larger images).'),
shiny::plotOutput("plot3",brush = shiny::brushOpts(id="plot3_brush",
resetOnNew = TRUE,clip=TRUE)))
),
shiny::hr(),
shiny::fluidRow(
shiny::column(12,shiny::sliderInput("obs", "Threshold:",
min=-0.3,max=0.3,value=0,step=0.005,width='1000px',
))
),
shiny::fluidRow(
shiny::column(6,
shiny::plotOutput("plot2")),
shiny::column(6 ,shiny::plotOutput("plot1"))
)
),
server=function(input, output) {
ranges <- shiny::reactiveValues(x=NULL,y=NULL)
coords <- shiny::reactiveValues(x=NULL,y=NULL)
output$plot3 <- shiny::renderPlot(suppressWarnings(graphics::plot(colorimages,frame=frame)))
shiny::observe({
brush <- input$plot3_brush
if (!is.null(brush)) {
ranges$x <- floor(c(brush$xmin, brush$xmax) * ncol(colorimages))
ranges$y <- nrow(colorimages) - floor(c(brush$ymin, brush$ymax) *
nrow(colorimages))
} else {
ranges$x <- c(1,ncol(colorimages))
ranges$y <- c(nrow(colorimages),1)
}
coords$x <- ranges$x / ncol(colorimages)
coords$y <- 1 - (ranges$y / nrow(colorimages))
})
output$plot2 <- shiny::renderPlot({
im <- colorimages[c(min(ranges$y):max(ranges$y)),
c(min(ranges$x):max(ranges$x)),,frame,drop=FALSE]
im <- array(im,dim=c(dim(im)[1:3]))
im <- raster::brick(im)
suppressWarnings(raster::plotRGB(im,scale=1,asp=nrow(im)/ncol(im)))
})
shiny::observe({
if (input$select == 1) {
if (input$ch == 1) {
m <- t(apply(images[,,1,frame] < input$obs,2,rev))
}
if (input$ch == 2) {
m <- t(apply(images[,,2,frame] < input$obs,2,rev))
}
if (input$ch == 3) {
m <- t(apply(images[,,3,frame] < input$obs,2,rev))
}
} else if (input$select == 2) {
if (input$ch == 1) {
m <- t(apply(images[,,1,frame] > input$obs,2,rev))
}
if (input$ch == 2) {
m <- t(apply(images[,,2,frame] > input$obs,2,rev))
}
if (input$ch == 3) {
m <- t(apply(images[,,3,frame] > input$obs,2,rev))
}
} else if (input$select == 3) {
if (input$ch == 1) {
m <- t(apply((images[,,1,frame] > input$obs) |
(images[,,1,frame] < -input$obs),2,rev))
}
if (input$ch == 2) {
m <- t(apply((images[,,2,frame] > input$obs) |
(images[,,2,frame] < -input$obs),2,rev))
}
if (input$ch == 3) {
m <- t(apply((images[,,3,frame] > input$obs) |
(images[,,3,frame] < -input$obs),2,rev))
}
}
output$plot1 <- shiny::renderPlot(graphics::image(m,
xlab='',ylab='',xaxt='n',yaxt='n',
col=c('white','black'),
xlim=coords$x,
ylim=coords$y))
})
shiny::observeEvent(input$stop, shiny::stopApp({
input$obs
}))
}
))
}
findPixelRange <- function (colorimages,frame=1) {
invisible(runPixelRange(frame,colorimages))
}
runPixelRange <- function(frame,colorimages,ui,server) {
shiny::runApp(
list(ui=shiny::fluidPage(
shiny::titlePanel(paste0("Find particle size range for particle detection")),
shiny::fluidRow(
shiny::column(3,
'The graph on the right shows the original image that can be used to zoom, by
drawing a polygon. Bottom graph shows the zoomed image. Draw a polygon
on this image and see its size in pixels. By drawing polygons over both the
smallest and largest particles of interest, an appropriate range can be found.
When finished, click on "Done".',
align='left',offset=0),
shiny::column(2,
shiny::actionButton("stop", "Done"),
shiny::br(),shiny::br()),
shiny::column(5,
shiny::h5('Choose region of interest to zoom (slower for larger images).'),
shiny::plotOutput("plot3",brush = shiny::brushOpts(id="plot3_brush",
resetOnNew = TRUE,clip=TRUE)))
),
shiny::hr(),
shiny::fluidRow(
shiny::column(6,
shiny::h3('Zoomed image'),
shiny::plotOutput("plot2",brush = shiny::brushOpts(id="plot2_brush",
resetOnNew = TRUE,clip=TRUE))),
shiny::column(6,
shiny::verbatimTextOutput("info"))
)
),
server=function(input, output) {
ranges <- shiny::reactiveValues(x=NULL,y=NULL)
coords <- shiny::reactiveValues(x=NULL,y=NULL)
output$plot3 <- shiny::renderPlot(suppressWarnings(graphics::plot(colorimages,frame=frame)))
shiny::observe({
brush <- input$plot3_brush
if (!is.null(brush)) {
ranges$x <- floor(c(brush$xmin, brush$xmax) * ncol(colorimages))
ranges$y <- nrow(colorimages) - floor(c(brush$ymin, brush$ymax) *
nrow(colorimages))
} else {
ranges$x <- c(1,ncol(colorimages))
ranges$y <- c(nrow(colorimages),1)
}
coords$x <- ranges$x / ncol(colorimages)
coords$y <- 1 - (ranges$y / nrow(colorimages))
})
output$plot2 <- shiny::renderPlot({
im <- colorimages[c(min(ranges$y):max(ranges$y)),
c(min(ranges$x):max(ranges$x)),,frame,drop=FALSE]
im <- array(im,dim=c(dim(im)[1:3]))
im <- raster::brick(im)
suppressWarnings(raster::plotRGB(im,scale=1,asp=nrow(im)/ncol(im)))
})
output$info <- shiny::renderText({
x <- abs(diff(ranges$x)) * abs(input$plot2_brush$xmin-input$plot2_brush$xmax)
y <- abs(diff(ranges$y)) * abs(input$plot2_brush$ymin-input$plot2_brush$ymax)
paste0("Area: \n", round(x), ' by ',round(y),' = ',round(y*x),' pixels.')
})
shiny::observeEvent(input$stop, shiny::stopApp({
}))
}
))
}
|
DAISIE_sim_core_constant_rate <- function(
time,
mainland_n,
pars,
nonoceanic_pars,
hyper_pars,
area_pars
) {
timeval <- 0
totaltime <- time
testit::assert(length(pars) == 5 || length(pars) == 10)
testit::assert(is.null(area_pars) || are_area_pars(area_pars))
if (pars[4] == 0 && nonoceanic_pars[1] == 0) {
stop("Island has no species and the rate of
colonisation is zero. Island cannot be colonised.")
}
nonoceanic_sample <- DAISIE_nonoceanic_spec(
prob_samp = nonoceanic_pars[1],
prob_nonend = nonoceanic_pars[2],
mainland_n = mainland_n)
maxspecID <- mainland_n
island_spec <- c()
stt_table <- matrix(ncol = 4)
colnames(stt_table) <- c("Time", "nI", "nA", "nC")
spec_tables <- DAISIE_spec_tables(stt_table,
totaltime,
timeval,
nonoceanic_sample,
island_spec)
stt_table <- spec_tables$stt_table
mainland_spec <- spec_tables$mainland_spec
island_spec <- spec_tables$island_spec
lac <- pars[1]
mu <- pars[2]
K <- pars[3]
gam <- pars[4]
laa <- pars[5]
num_spec <- length(island_spec[, 1])
num_immigrants <- length(which(island_spec[, 4] == "I"))
while (timeval < totaltime) {
rates <- update_rates(
timeval = timeval,
totaltime = totaltime,
gam = gam,
laa = laa,
lac = lac,
mu = mu,
hyper_pars = hyper_pars,
area_pars = area_pars,
K = K,
num_spec = num_spec,
num_immigrants = num_immigrants,
mainland_n = mainland_n,
extcutoff = NULL,
island_ontogeny = 0,
sea_level = 0
)
testit::assert(are_rates(rates))
timeval_and_dt <- calc_next_timeval(
max_rates = rates,
timeval = timeval
)
timeval <- timeval_and_dt$timeval
if (timeval <= totaltime) {
rates <- update_rates(
timeval = timeval,
totaltime = totaltime,
gam = gam,
laa = laa,
lac = lac,
mu = mu,
hyper_pars = hyper_pars,
area_pars = area_pars,
K = K,
num_spec = num_spec,
num_immigrants = num_immigrants,
mainland_n = mainland_n,
extcutoff = NULL,
island_ontogeny = 0,
sea_level = 0
)
testit::assert(are_rates(rates))
possible_event <- DAISIE_sample_event_constant_rate(
rates = rates
)
updated_state <- DAISIE_sim_update_state_constant_rate(
timeval = timeval,
totaltime = totaltime,
possible_event = possible_event,
maxspecID = maxspecID,
mainland_spec = mainland_spec,
island_spec = island_spec,
stt_table = stt_table
)
island_spec <- updated_state$island_spec
maxspecID <- updated_state$maxspecID
stt_table <- updated_state$stt_table
num_spec <- length(island_spec[, 1])
num_immigrants <- length(which(island_spec[, 4] == "I"))
}
}
stt_table <- rbind(
stt_table,
c(
0,
stt_table[nrow(stt_table), 2],
stt_table[nrow(stt_table), 3],
stt_table[nrow(stt_table), 4]
)
)
island <- DAISIE_create_island(
stt_table = stt_table,
totaltime = totaltime,
island_spec = island_spec,
mainland_n = mainland_n)
ordered_stt_times <- sort(island$stt_table[, 1], decreasing = TRUE)
testit::assert(all(ordered_stt_times == island$stt_table[, 1]))
return(island)
}
|
library(renz)
context("Linearized integrated MM equation")
test_that('int.MM() works properly', {
a <-int.MM(data = sE.progress(So = 10, time = 5,
Km = 4, Vm = 50)[, c(1,3)])
expect_is(a, 'list')
expect_equal(length(a), 2)
expect_equivalent(a$parameters[1], 3.686)
expect_equivalent(a$parameters[2], 48.303)
expect_is(a$data, 'data.frame')
expect_equal(dim(a$data), c(15,4))
})
|
library(testthat)
library(rgeos)
setScale()
context("Translate Points")
test_that("translate points", {
p = readWKT("POINT(1 1)")
mp = readWKT("MULTIPOINT(1 1, 2 2, 3 3, 4 4, 5 5)")
gcp1 = readWKT("GEOMETRYCOLLECTION( POINT(1 1), POINT(2 2), POINT(3 3), POINT(4 4), POINT(5 5))")
gcp2 = readWKT("GEOMETRYCOLLECTION( POINT(1 1), POINT(2 2), MULTIPOINT(3 3, 4 4, 5 5))")
gcp3 = readWKT("GEOMETRYCOLLECTION( POINT(1 1), POINT(2 2), MULTIPOINT(3 3, 4 4),POINT(5 5))")
gcp4 = readWKT("GEOMETRYCOLLECTION( MULTIPOINT(1 1, 2 2), MULTIPOINT(3 3, 4 4, 5 5))")
gcp5 = readWKT("GEOMETRYCOLLECTION( MULTIPOINT(1 1, 2 2), MULTIPOINT(3 3, 4 4),POINT(5 5))")
spp = SpatialPoints(list(x=1,y=1))
spmp = SpatialPoints(list(x=1:5,y=1:5))
rownames(spp@coords) = c("1")
expect_that( identical(p,spp), is_true())
expect_that( identical(spp, translate(spp)), is_true())
rownames(spmp@coords) = c("1","1","1","1","1")
expect_that( identical(mp,spmp), is_true() )
expect_that( identical(spmp,translate(spmp)), is_true())
rownames(spmp@coords) = c("1","2","3","4","5")
expect_that( identical(gcp1,spmp), is_true() )
expect_that( identical(spmp,translate(spmp)), is_true())
rownames(spmp@coords) = c("1","2","3","3","3")
expect_that( identical(gcp2,spmp), is_true() )
expect_that( identical(spmp,translate(spmp)), is_true())
rownames(spmp@coords) = c("1","2","3","3","4")
expect_that( identical(gcp3,spmp), is_true() )
expect_that( identical(spmp,translate(spmp)), is_true())
rownames(spmp@coords) = c("1","1","2","2","2")
expect_that( identical(gcp4,spmp), is_true() )
expect_that( identical(spmp,translate(spmp)), is_true())
rownames(spmp@coords) = c("1","1","2","2","3")
expect_that( identical(gcp5,spmp), is_true() )
expect_that( identical(spmp,translate(spmp)), is_true())
expect_that( identical(p, translate(p) ), is_true())
expect_that( identical(mp, translate(mp) ), is_true())
expect_that( identical(gcp1, translate(gcp1) ), is_true())
expect_that( identical(gcp2, translate(gcp2) ), is_true())
expect_that( identical(gcp3, translate(gcp3) ), is_true())
expect_that( identical(gcp4, translate(gcp4) ), is_true())
expect_that( identical(gcp5, translate(gcp5) ), is_true())
})
|
NULL
modify_header <- function(x, update = NULL, ..., text_interpret = c("md", "html"),
quiet = NULL, stat_by = NULL) {
updated_call_list <- c(x$call_list, list(modify_header = match.call()))
quiet <- quiet %||% get_theme_element("pkgwide-lgl:quiet") %||% FALSE
text_interpret <- match.arg(text_interpret)
if (!is.null(stat_by)) {
lifecycle::deprecate_warn(
"1.3.6", "gtsummary::modify_header(stat_by=)",
details = glue("Use `all_stat_cols(FALSE) ~ {stat_by}` instead."))
lst_stat_by <-
list(rlang::new_formula(lhs = expr(all_stat_cols(FALSE)), rhs = stat_by))
if (is.null(update) || rlang::is_list(update)) {
update <- c(lst_stat_by, update)
}
else if (!rlang::is_list(update)) {
update <- c(lst_stat_by, list(update))
}
}
update <- .combine_update_and_dots(x, update, ...)
if (is.null(update) && identical(quiet, FALSE)) .modify_no_selected_vars(x)
if (is.null(update)) {
return(x)
}
df_info_tibble <- .info_tibble(x)
update <-
update %>%
imap(
~ expr(ifelse(!is.na(!!.x), glue(!!.x), NA_character_)) %>%
eval_tidy(
data = df_info_tibble %>%
filter(column %in% .y) %>%
as.list() %>%
discard(is.na)
)
)
x <-
modify_table_styling(
x,
columns = names(update),
label = unlist(update),
text_interpret = as.character(text_interpret),
hide = FALSE
)
x$call_list <- updated_call_list
x
}
modify_footnote <- function(x, update = NULL, ..., abbreviation = FALSE,
text_interpret = c("md", "html"), quiet = NULL) {
updated_call_list <- c(x$call_list, list(modify_footnote = match.call()))
if (!inherits(x, "gtsummary")) {
stop("Argument `x=` must be an object with 'gtsummary' class", call. = FALSE)
}
quiet <- quiet %||% get_theme_element("pkgwide-lgl:quiet") %||% FALSE
x <- .update_table_styling(x)
update <- .combine_update_and_dots(x, {update}, ...)
if (identical(quiet, FALSE) && rlang::is_empty(update)) .modify_no_selected_vars(x)
if (is.null(update)) {
return(x)
}
footnote_column_name <- ifelse(abbreviation == TRUE, "footnote_abbrev", "footnote")
df_info_tibble <- .info_tibble(x)
update <-
update %>%
imap(
~ expr(ifelse(!is.na(!!.x), glue(!!.x), NA_character_)) %>%
eval_tidy(
data = df_info_tibble %>%
filter(column %in% .y) %>%
as.list() %>%
discard(is.na)
)
)
if (abbreviation == FALSE) {
x <-
modify_table_styling(
x,
columns = names(update),
footnote = unlist(update),
text_interpret = text_interpret
)
}
else if (abbreviation == TRUE) {
x <-
modify_table_styling(
x,
columns = names(update),
footnote_abbrev = unlist(update),
text_interpret = text_interpret
)
}
x$call_list <- updated_call_list
x
}
modify_spanning_header <- function(x, update = NULL, ...,
text_interpret = c("md", "html"), quiet = NULL) {
updated_call_list <- c(x$call_list, list(modify_spanning_header = match.call()))
if (!inherits(x, "gtsummary")) {
stop("Argument `x=` must be an object with 'gtsummary' class", call. = FALSE)
}
quiet <- quiet %||% get_theme_element("pkgwide-lgl:quiet") %||% FALSE
x <- .update_table_styling(x)
update <- .combine_update_and_dots(x, {update}, ...)
if (identical(quiet, FALSE) && rlang::is_empty(update)) .modify_no_selected_vars(x)
if (is.null(update)) {
return(x)
}
df_info_tibble <- .info_tibble(x)
update <-
update %>%
imap(
~ expr(ifelse(!is.na(!!.x), glue(!!.x), NA_character_)) %>%
eval_tidy(
data = df_info_tibble %>%
filter(column %in% .y) %>%
as.list() %>%
discard(is.na)
)
)
x <-
modify_table_styling(
x,
columns = names(update),
spanning_header = unlist(update),
text_interpret = text_interpret
)
x$call_list <- updated_call_list
x
}
modify_caption <- function(x, caption, text_interpret = c("md", "html")) {
if (!inherits(x, "gtsummary")) abort("`x=` must be class 'gtsummary'.")
if (!rlang::is_string(caption)) abort("`caption=` must be a string.")
text_interpret <- match.arg(text_interpret)
updated_call_list <- c(x$call_list, list(modify_caption = match.call()))
caption <-
.info_tibble(x) %>%
filter(.data$column == "label") %>%
with(glue(caption)) %>%
as.character()
x$table_styling$caption <- caption
attr(x$table_styling$caption, "text_interpret") <- text_interpret
x$call_list <- updated_call_list
x
}
show_header_names <- function(x = NULL, include_example = TRUE, quiet = NULL) {
quiet <- quiet %||% get_theme_element("pkgwide-lgl:quiet") %||% FALSE
if (!inherits(x, "gtsummary")) {
stop("Pass a 'gtsummary' object in `x=` to print current column names and headers.")
}
df_cols <-
x$table_styling$header %>%
filter(.data$hide == FALSE) %>%
select(.data$column, .data$label)
if (identical(quiet, FALSE) && isTRUE(include_example)) {
cat("\n")
cli_alert_info("As a usage guide, the code below re-creates the current column headers.")
block <- mutate(df_cols, formula = glue(" {column} = {shQuote(label)}")) %>%
pull(.data$formula) %>%
paste0("", collapse = ",\n") %>%
{
glue("modify_header(\n{.}\n)")
}
cli_code(block)
}
if (identical(quiet, FALSE)) {
knitr::kable(df_cols, col.names = c("Column Name", "Column Header"), format = "pandoc") %>%
print()
}
return(invisible(df_cols))
}
.modify_no_selected_vars <- function(x) {
paste(
"No columns were selected.",
"Use {.code quiet = TRUE} to supress these messages."
) %>%
stringr::str_wrap() %>%
cli_alert_info()
show_header_names(x)
}
.info_tibble <- function(x) {
if (inherits(x, c("tbl_summary", "tbl_svysummary")) && is.null(x$df_by)) {
return(
x$meta_data %>%
dplyr::slice(1) %>%
pluck("df_stats", 1) %>%
select(any_of(c("N_obs", "N_unweighted"))) %>%
dplyr::slice(1) %>%
dplyr::rename(N = .data$N_obs) %>%
full_join(
select(x$table_styling$header, .data$column),
by = character()
)
)
}
if (inherits(x, c("tbl_summary", "tbl_svysummary", "tbl_continuous")) &&
!is.null(x$df_by)) {
return(
x$table_styling$header %>%
select(.data$column) %>%
full_join(
x$df_by %>%
select(any_of(c("N", "N_unweighted"))) %>%
distinct(),
by = character()
) %>%
left_join(
x$df_by %>%
select(
column = .data$by_col, level = .data$by_chr,
any_of(c("n", "p", "n_unweighted", "p_unweighted"))
),
by = "column"
)
)
}
df_new_cols <- x[names(x) %in% c("N", "N_event", "n")] %>% tibble::as_tibble()
if (ncol(df_new_cols) == 0) {
return(x$table_styling$header %>% select(.data$column))
}
if (!"n" %in% names(df_new_cols) && "N" %in% names(df_new_cols)) {
df_new_cols <- mutate(df_new_cols, n = .data$N)
}
x$table_styling$header %>%
select(.data$column) %>%
bind_cols(df_new_cols)
}
.combine_update_and_dots <- function(x, update, ...) {
dots <- rlang::dots_list(...)
if (!is.null(update) && !rlang::is_list(update)) {
update <- list(update)
}
.formula_list_to_named_list(
x = c(update, dots),
var_info = x$table_styling$header$column,
arg_name = "... or update",
type_check = chuck(type_check, "is_string_or_na", "fn"),
type_check_msg = chuck(type_check, "is_string_or_na", "msg")
)
}
|
fredr_source_releases <- function(source_id,
...,
limit = NULL,
offset = NULL,
order_by = NULL,
sort_order = NULL,
realtime_start = NULL,
realtime_end = NULL) {
check_dots_empty(...)
check_not_null(source_id, "source_id")
user_args <- capture_args(
realtime_start = realtime_start,
realtime_end = realtime_end,
source_id = source_id,
limit = limit,
offset = offset,
order_by = order_by,
sort_order = sort_order
)
fredr_args <- list(
endpoint = "source/releases"
)
do.call(fredr_request, c(fredr_args, user_args))
}
|
expected <- eval(parse(text="-34.9710571817686"));
test(id=0, code={
argv <- eval(parse(text="list(structure(c(-3.02896519757699, -2.37177231827064, -2.49295252901048, -2.99672420295655, -2.59773735414265, -2.26026537208028, -2.74080517809177, -3.785668787425, -2.80120311135215, -2.57773983108655, -5.06092522358575, -2.25629807618983), .Names = c(\"1\", \"3\", \"5\", \"7\", \"9\", \"11\", \"13\", \"15\", \"17\", \"19\", \"21\", \"23\")))"));
do.call(`sum`, argv);
}, o=expected);
|
oxcalSumSim <- function(timeframe_begin,
timeframe_end,
n,
stds,
date_distribution = c("equidist", "uniform")) {
if (!(length(stds) %in% c(1, n))) {
stop("Please give either one stds for all
dates or a vector of stds of n length.")
}
date_distribution <- match.arg(date_distribution)
if (date_distribution == "equidist") {
cal_dates <- seq(timeframe_begin,
timeframe_end,
by = ( (timeframe_end - timeframe_begin) / n) )
} else {
date_range <- seq(timeframe_begin, timeframe_end)
cal_dates <- sample(date_range, n, replace = T)
}
script <- oxcal_Sum(R_Simulate(cal_dates, stds))
result_file <- executeOxcalScript(script)
result <- readOxcalOutput(result_file)
cleanupOxcalFiles(result_file)
RVAL <- parseOxcalOutput(result,first=TRUE,only.R_Date=FALSE)[[1]]
RVAL
}
|
summary.nplr <- function(object, ...){
pars <- unlist(getPar(object))
pars[-1] <- format(pars[-1], digits = 6, scientific = TRUE)
goodness <- getGoodness(object)
gof <- format(goodness$gof, digits = 6, scientific = TRUE)
wgof <- format(goodness$wgof, digits = 6, scientific = TRUE)
errors <- t(getStdErr(object))
auc <- format(getAUC(object), digits = 6)
infl <- as.numeric(getInflexion(object))
inflpt <- cbind.data.frame(
xInfl = format(infl[1], digits = 6),
yInfl = format(infl[2], digits = 6)
)
estim <- getEstimates(object, .5)
interv <- sprintf("[%s | %s]",
format(estim$x.025, digits = 6, scientific = TRUE),
format(estim$x.975, digits = 6, scientific = TRUE)
)
ic50 <- format(estim$x, digits = 6, scientific = TRUE)
IC50 <- cbind(IC50 = ic50, "[95%]" = interv)
nplrVersion <- as.character(packageVersion("nplr"))
nplrDate <- as.character(packageDescription("nplr")["Date"])
Rversion <- as.character(version["version.string"])
out <- cbind.data.frame(t(pars),
GOF = gof,
weightedGOF = wgof,
errors,
auc,
inflpt,
"Log10(IC50)" = log10(estim$x),
IC50,
"date (Y-m-d)" = format(Sys.Date(), "%Y-%m-%d"),
"nplr version" = sprintf("%s (%s)",nplrVersion, nplrDate),
"R version" = gsub("R version ", "", Rversion)
)
out <- data.frame(summary = t(out))
colnames(out) <- 'value'
print(out)
}
|
"getLightDiff" <-
function(theta, x, kinscal, kmat, jvec,fixedkmat=FALSE,
kinscalspecial = list(), kinscalspecialspec = list(),
lightregimespec = list())
{
depkIn <- lightregimespec$depkIn
br <- lightregimespec$lightBreaks
br <- append(br, tail(x,1) )
inten <- lightregimespec$intensity
depkin <- as.logical(depkIn)
dimk <- ncol(kmat)
theta1 <- theta
theta1[which(depkin)] <- 0
K1 <- fillK(theta1, kinscal, kmat, fixedkmat, kinscalspecial,
kinscalspecialspec,nocolsums=TRUE)
eigenlijk1 <- eigen(K1, only.values = F)
V1 <- eigenlijk1$vectors
gamma1 <- solve(V1)
k1 <- -eigenlijk1$values
cat("eigen dark", k1, "\n")
theta2 <- theta
theta2[which(depkin)] <- theta[which(depkin)] * inten
K2 <- fillK(theta2, kinscal, kmat, fixedkmat, kinscalspecial,
kinscalspecialspec, nocolsums=TRUE)
eigenlijk2 <- eigen(K2, only.values = F)
V2 <- eigenlijk2$vectors
gamma2 <- solve(V2)
k2 <- -eigenlijk2$values
cat("eigen light", k2, "\n")
A <- matrix(nrow = dimk, ncol = dimk)
break2 <- 0
for(i in 1:(length(br))) {
break1 <- break2 + 1
break2 <- which(x >= br[i])[1]
if(is.na(break2)) break2 <- length(x)
if(break1 > break2) break
if(break2 < length(x)) break2 <- break2 - 1
cat("times are from", break1, "to", break2,"\n")
xtemp <- x[break1:break2]
if(i %% 2 != 0) {
k <- k1
V <- V1
gamma <- gamma1
}
else {
k <- k2
V <- V2
gamma <- gamma2
}
if(i > 1) {
finalcon <- c.tempA[nrow(c.tempA),]
} else finalcon <- jvec
finalcon <- finalcon/max(finalcon)
cat("finalcon", finalcon, "\n")
gamma <- gamma %*% finalcon
for(j in 1:dimk)
A[j, ] <- V[ ,j] * gamma[j]
c.temp <- calcC(k, xtemp)
c.temp <- c.temp %*% A
if(i == 1)
c.tempA <- c.temp
else
c.tempA <- rbind(c.tempA, c.temp)
}
c.tempA
}
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
run_bg = function(expr) {
args = c("--vanilla", "-q")
expr_c = deparse(substitute(expr))
expr_c = paste(expr_c, collapse = "\n")
pid = sys::r_background(c(args, "-e", expr_c), std_out = TRUE, std_err = TRUE)
return(pid)
}
library(RestRserve)
app = Application$new()
calc_fib = function(n) {
if (n < 0L) stop("n should be >= 0")
if (n == 0L) return(0L)
if (n == 1L || n == 2L) return(1L)
x = rep(1L, n)
for (i in 3L:n) {
x[[i]] = x[[i - 1]] + x[[i - 2]]
}
return(x[[n]])
}
fib_handler = function(.req, .res) {
n = as.integer(.req$parameters_query[["n"]])
if (length(n) == 0L || is.na(n)) {
raise(HTTPError$bad_request())
}
.res$set_body(as.character(calc_fib(n)))
.res$set_content_type("text/plain")
}
app$add_get(path = "/fib", FUN = fib_handler)
request = Request$new(path = "/fib", parameters_query = list(n = 10))
response = app$process_request(request)
cat("Response status:", response$status)
cat("Response body:", response$body)
yaml_file = system.file("examples", "openapi", "openapi.yaml", package = "RestRserve")
app$add_openapi(path = "/openapi.yaml", file_path = yaml_file)
app$add_swagger_ui(path = "/doc", path_openapi = "/openapi.yaml", use_cdn = TRUE)
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(metapower)
my_power <- mpower(effect_size = .2, study_size = 20, k = 10, i2 = .50, es_type = "d")
print(my_power)
plot_mpower(my_power)
str(my_power$power_range)
(my_homogen_power <- homogen_power(effect_size = .25, study_size = 20, k = 30,i2 = .50, es_type = "d"))
plot_homogen_power(my_homogen_power)
my_subgroup_power <- subgroup_power(n_groups = 2,
effect_sizes = c(.2,.5),
study_size = 20,
k = 30,
i2 = .5,
es_type = "d")
print(my_subgroup_power)
plot_subgroup_power(my_subgroup_power)
|
profkern<-function(dendat,h,N,Q,cvol=TRUE,ccen=TRUE,cfre=FALSE,kernel="epane",
compoinfo=FALSE,trunc=3,threshold=0.0000001,sorsa="crc",hw=NULL)
{
if (kernel=="gauss") h<-h*trunc
hnum<-length(h)
hrun<-1
while (hrun<=hnum){
hcur<-h[hrun]
if (sorsa=="crc")
curtree<-profkernCRC(dendat,hcur,N,Q,kernel=kernel,compoinfo=compoinfo,
trunc=trunc,threshold=threshold,hw=hw)
else
curtree<-profkernC(dendat,hcur,N,Q)
if (hrun==1){
if (hnum==1){
treelist<-curtree
}
else{
treelist=list(curtree)
}
}
else{
treelist=c(treelist,list(curtree))
}
hrun<-hrun+1
}
return(treelist)
}
|
est.net = function(Y, lambda, nruns = 50, rank = "optimal", algtype = "brunet", changepoints = NULL) {
Y = as.matrix(Y)
if (rank == "optimal"){
n.rank = opt.rank(Y, nruns, algtype)
} else {
n.rank = rank
print(paste("User defined rank:", n.rank))
}
if(!is.null(changepoints)){
changepoints = c(0, changepoints, nrow(Y))
Y.split = list()
for(i in 1:(length(changepoints) - 1)){
indices = (changepoints[i] + 1):changepoints[i + 1]
Y.split[[i]] = Y[indices, ]
}
Y = Y.split
} else if(is.null(changepoints)){
Y = list(Y)
}
output = list()
for(j in 1:length(Y)){
print(paste("Estimating stationary block", j))
nmf.output = nmf(Y[[j]], method = algtype, rank = n.rank, nrun = nruns)
cons.matrix = nmf.output@consensus
if (length(lambda) == 1){
if (lambda > 1){
hc.out = hclust(dist(cons.matrix))
ct.out = cutree(hc.out, lambda)
matr.fact = matrix(nrow = lambda, ncol = nrow(cons.matrix))
for (i in 1:lambda){
matr.fact[i,] = ct.out == i
}
matr.fact = matr.fact*1
adj.matrix = t(matr.fact) %*% matr.fact
diag(adj.matrix) = 0
colnames(adj.matrix) = rownames(adj.matrix) = colnames(cons.matrix)
} else if (lambda <= 1 && lambda >=0){
cons.matrix[cons.matrix > lambda] = 1
cons.matrix[cons.matrix <= lambda] = 0
adj.matrix = cons.matrix
diag(adj.matrix) = 0
}
} else if (length(lambda) > 1){
if (all(lambda > 1)){
hc.out = hclust(dist(cons.matrix))
adj.matrix = list()
for (i in 1:length(lambda)){
ct.out = cutree(hc.out, lambda[i])
matr.fact = matrix(nrow = lambda[i], ncol = nrow(cons.matrix))
for (j in 1:lambda[i]){
matr.fact[j,] = ct.out == j
}
matr.fact = matr.fact*1
curr.adj.matrix = t(matr.fact) %*% matr.fact
diag(curr.adj.matrix) = 0
colnames(curr.adj.matrix) = rownames(curr.adj.matrix) = colnames(cons.matrix)
adj.matrix[[i]] = curr.adj.matrix
}
} else if (all(lambda <= 1 && lambda >= 0)){
adj.matrix = list()
for (i in 1:length(lambda)){
curr.adj.matrix = cons.matrix
curr.adj.matrix[curr.adj.matrix > lambda[i]] = 1
curr.adj.matrix[curr.adj.matrix <= lambda[i]] = 0
diag(curr.adj.matrix) = 0
adj.matrix[[i]] = curr.adj.matrix
}
}
}
if (length(Y) == 1){
output = adj.matrix
} else if (length(Y) > 1){
output[[j]] = adj.matrix
}
}
return(output)
}
|
print.univariateTable <- function(x,...){
sx <- summary(x,...)
print(sx)
invisible(sx)
}
|
CompareManyTs <- function (list.of.ts, burn = 0, type = "l", gap
= 0, boxes = TRUE, thin = 1, labels = NULL,
same.scale = TRUE, ylim = NULL, refline =
NULL, color = NULL, ...) {
add.refline <- function(refline, i) {
if (is.null(refline))
return()
if (length(refline) == 1)
y <- refline
else y <- refline[i]
abline(h = y, lty = 3)
}
stopifnot(is.list(list.of.ts))
for (i in 1:length(list.of.ts)) {
if (is.data.frame(list.of.ts[[i]])) {
list.of.ts[[i]] <- as.matrix(list.of.ts[[i]])
} else {
list.of.ts[[i]] <- as.array(list.of.ts[[i]])
}
}
stopifnot(all(sapply(list.of.ts, is.array)))
ngroups <- length(list.of.ts)
ndim <- sapply(list.of.ts, function(x) length(dim(x)))
stopifnot(all(ndim == ndim[1]))
if (ndim[1] == 3) {
dim <- dim(list.of.ts[[1]])
for (i in 1:ngroups) {
list.of.ts[[i]] <- matrix(aperm(list.of.ts[[i]], c(1, 3, 2)),
nrow = dim[1])
}
}
if (burn > 0) {
for (i in 1:ngroups) {
list.of.ts[[i]] <- list.of.ts[[i]][-(1:burn), ]
}
}
nvars <- ncol(list.of.ts[[1]])
nobs <- nrow(list.of.ts[[1]])
stopifnot(all(sapply(list.of.ts, ncol) == nvars))
stopifnot(all(sapply(list.of.ts, nrow) == nobs))
nrows <- max(1, floor(sqrt(nvars)))
ncols <- ceiling(nvars/nrows)
index <- thin * (1:floor(nobs/thin))
for (i in 1:ngroups) {
list.of.ts[[i]] <- list.of.ts[[i]][index, , drop = FALSE]
}
nobs <- length(index)
if (is.null(color)) {
color <- 1:ngroups
}
if (!is.null(ylim)) {
same.scale <- TRUE
}
if (is.null(ylim)) {
ylim <- range(sapply(list.of.ts, range, na.rm = TRUE))
}
opar <- par(mfrow = c(nrows, ncols),
mar = rep(gap/2, 4),
oma = c(4, 4, 4, 4))
on.exit(par(opar))
m <- 0
for (j in 1:nrows) {
for (k in 1:ncols) {
m <- m + 1
if (m > nvars) {
plot(index, rep(ylim, len = nobs), type = "n", axes = FALSE)
} else {
if (same.scale == FALSE) {
ylim <- range(sapply(list.of.ts, function(x) range(x[, m])))
}
plot(index, list.of.ts[[1]][, m], axes = FALSE,
type = "n", ylim = ylim, ...)
for (group in 1:ngroups) {
lines(index, list.of.ts[[group]][, m],
type = type, col = color[group], lty = group)
}
if (is.null(labels)) {
labels <- colnames(list.of.ts[[1]])
}
if (!is.null(labels)) {
text(min(index), max(ylim), labels[m], pos = 4)
}
add.refline(refline, m)
if (boxes) {
box()
}
}
if (j == nrows & IsOdd(k)) {
axis(1, xpd = NA, ...)
}
else if (j == 1 & IsEven(k)) {
axis(3, xpd = NA, ...)
}
if (k == 1 & same.scale == TRUE & IsOdd(j))
axis(2, xpd = NA, ...)
else if (k == ncols & same.scale == TRUE & IsEven(j))
axis(4, xpd = NA, ...)
}
}
}
|
dotPlot <- function(x, fact=NULL, vertical=FALSE, at=1, key=NULL, pch=20, col=fadeColor('black', '66'), cex=1.5, add=FALSE, axes=TRUE, xlim=NULL, ylim=NULL, ...){
skipOut <- FALSE
if(!is.null(fact[1])){
if(!is.null(key[1])){
uFact <- key
} else {
uFact <- unique(fact)
}
n <- length(uFact)
if(length(at) == 1){
at <- 1:n
}
dataR <- range(x)
atR <- range(at)
if(!vertical){
if(is.null(xlim[1])){
xlim <- dataR
}
if(is.null(ylim[1])){
ylim <- atR + c(-1,1)*diff(atR)/7
}
} else {
if(is.null(xlim[1])){
xlim <- atR + c(-1,1)*diff(atR)/7
}
if(is.null(ylim[1])){
ylim <- dataR
}
}
if(length(pch) == 1){
pch <- rep(pch, length(at))
}
if(length(col) == 1){
col <- rep(col, length(at))
}
if(length(cex) == 1){
cex <- rep(cex, length(at))
}
dotPlot(x[fact == uFact[1]], vertical=vertical, at=at[1], axes=axes, add=add, pch=pch[1], col=col[1], cex=cex[1], xlim=xlim, ylim=ylim, ...)
for(i in 2:n){
dotPlot(x[fact == uFact[i]], vertical=vertical, at=at[i], add=TRUE, pch=pch[i], col=col[i], cex=cex[i], axes=FALSE)
}
if(axes & !add){
if(vertical){
graphics::axis(1, at=at, labels=uFact)
} else {
graphics::axis(2, at=at, labels=uFact)
}
}
skipOut=TRUE
}
y <- rep(at[1], length(x))
if(vertical & !skipOut){
if(add){
graphics::points(y,x, pch=pch[1], col=col[1], cex=cex[1], ...)
} else {
if(is.null(xlim[1])){
xlim <- at[1]+c(-1,1)
}
if(is.null(ylim[1])){
ylim <- range(x)
}
graphics::plot(y,x,axes=FALSE,xlim=xlim, ylim=ylim, pch=pch[1], col=col[1], cex=cex[1], ...)
}
} else if(!skipOut){
if(add){
graphics::points(x,y, pch=pch[1], col=col[1], cex=cex[1], ...)
} else {
if(is.null(ylim[1])){
ylim <- at[1]+c(-1,1)
}
if(is.null(xlim[1])){
xlim <- range(x)
}
graphics::plot(x,y,axes=FALSE,xlim=xlim, ylim=ylim, pch=pch[1], col=col[1], cex=cex[1], ...)
}
}
if(axes & !add & is.null(fact[1])){
graphics::axis(vertical+1)
}
}
|
sedRamp<- function (dat,srstart=0.01,srend=0.05,genplot=T,verbose=T)
{
if(verbose) cat("\n----- APPLY RAMPING SEDIMENTATION RATE MODEL TO CONVERT TIME TO STRATIGRAPHY -----\n")
dat <- data.frame(dat)
npts <- length(dat[,1])
if(verbose) cat(" * Number of points in stratigraphic series=", npts,"\n")
dtt <- dat[2:npts,1]-dat[1:(npts-1),1]
if((min(dtt)-max(dtt)) != 0)
{
cat("\n**** ERROR: sampling interval is not uniform.\n")
stop("**** TERMINATING NOW!")
}
dt=dtt[1]
if(verbose) cat(" * Sample interval=", dt,"\n")
srstep=(srend-srstart)/(npts-1)
sedrate <- srstart + srstep*( (1:npts)-1 )
depth <- cumsum(dt*sedrate)
depth <- depth - min(depth)
out <- as.data.frame(cbind(depth,dat[,2]))
if(genplot)
{
par(mfrow=c(2,1))
plot(dat, cex=.5,xlab="Time",ylab="Value",main="Time Series",bty="n")
lines(dat)
plot(out, cex=.5,xlab="Space",ylab="Value",main="Modeled Stratigraphic Series",bty="n")
lines(out)
}
return(out)
}
|
corpage <- tabItem(tabName = "cor",
h2("Precision of a correlation coefficient"),
"Enter the correlation coefficient you expect. To estimate the confidence interval width from a number of events, enter the number of events in 'Number of events'. To estimate the number of observations required to get a confidence interval width of X, enter the width in 'Confidence interval width'.",
h4("Please enter the following"),
sliderInput("cor_r", "Correlation coefficient",
value = 0, min = -1, max = 1, step = .01),
selectInput("cor_method", label = "Type of correlation coefficient",
choices = c("Pearson" = "pearson",
"Kendall" = "kendall",
"Spearman" = "spearman"),
selected = "pearson"),
h4("Please enter one of the following"),
uiOutput("cor_resetable_input"),
actionButton("cor_reset_input",
"Reset 'Number of observations' or 'Confidence interval width'"),
h4("Results"),
verbatimTextOutput("cor_out"),
tableOutput("cor_tab"),
"Code to replicate in R:",
verbatimTextOutput("cor_code"),
h4("References"),
"Bonett DG, and Wright TA (2000) Sample size requirements for estimating Pearson, Kendall and Spearman correlations. ",
tags$i("Psychometrika"), " 65:23-28", tags$a(href = "https://doi.org/10.1007/BF02294183","doi:10.1007/BF02294183")
)
cor_fn <- function(input, code = FALSE){
if(is.na(input$cor_n) & is.na(input$cor_ciwidth)) {
cat("Awaiting 'number of observations' or 'confidence interval width'")
} else {
z <- ifelse(is.na(input$cor_n),
paste0(", conf.width = ", input$cor_ciwidth),
paste0(", n = ", input$cor_n))
x <- paste0("prec_cor(r = ", input$cor_r,
z, ", conf.level = ", input$conflevel,
", method = '", input$cor_method,
"')")
if(code){
cat(x)
} else {
eval(parse(text = x))
}
}
}
|
scale_fill_matcha_d <- function(){ggplot2::scale_fill_manual(values = c("
|
cor_to_spcor <- function(cor = NULL, cov = NULL, tol = .Machine$double.eps^(2 / 3)) {
cor <- .get_cor(cor, cov)
if (is.null(cov)) {
stop("Covariance matrix (or vector of SD of variables) needs to be passed for semi-partial correlations.")
} else {
if (!is.matrix(cov)) {
cov <- cor_to_cov(cor, sd = cov)
}
inverted <- .invert_matrix(cov, tol = tol)
out <- -cov2cor(inverted) / sqrt(diag(cov)) / sqrt(abs(diag(inverted) - t(t(inverted^2) / diag(inverted))))
}
diag(out) <- 1
out
}
|
library(ggplot2)
library(data.table)
library(doremi)
set.seed(1)
knitr::opts_chunk$set(
collapse = TRUE,
warning = FALSE,
fig.align="center",
fig.width = 5,
fig.height = 5,
comment = "
)
time <- 0:90
exc <- rep(c(0,1,0),c(11,30,50))
set.seed(123)
variable <- generate.panel.1order(time = time,
excitation = exc,
tau = 5,
nind = 1,
intranoise = 1)
plot(variable)
est_result <- analyze.1order(data = variable,
input = "excitation",
time = "time",
signal = "signal",
dermethod = "gold",
derparam = 13)
plot(est_result)+
ggplot2::geom_line(data = variable,aes(time,signalraw,color = "underlying model"))+
ggplot2::labs(y = "",
title = "estimation of first order\n differential equation parameters")
set.seed(123)
variable2 <- generate.panel.2order(time = time,
excitation = exc,
period = 30,
y0 = 0,
xi = 0.1,
nind = 1,
intranoise = 0.8)
plot(variable2)
est_result2 <- analyze.2order(variable2,
input = "excitation",
time = "time",
signal = "signal",
dermethod = "glla",
derparam = 14)
plot(est_result2)+
ggplot2::geom_line(data = variable2,aes(time,signalraw,color = "underlying model"))+
ggplot2::labs(color = "",
y = "",
title = "estimation of second order \ndifferential equation parameters")
time <- seq(0,100,0.1)
exc <- as.numeric(time >= 10 & time <= 40)
variable <- generate.1order(time = time,
excitation = exc,
y0 = 0,
tau = 10,
k = 1)
ggplot2::ggplot(data = as.data.table(variable)) +
ggplot2::ggtitle( "First order differential equation solution")+
ggplot2::geom_line(ggplot2::aes(t,y, colour = "variable"))+
ggplot2::geom_line(ggplot2::aes(t,exc, colour = "Excitation"),size = 1.5)+
ggplot2::geom_hline(yintercept=0.63*max(variable$y), linetype="dashed", colour = "gray")+
ggplot2::geom_hline(yintercept=0.37*max(variable$y), linetype="dashed", colour = "gray")+
ggplot2::geom_vline(xintercept=variable$t[variable$y==max(variable$y)], colour = "gray")+
ggplot2::geom_vline(xintercept=50, colour = "gray")+
ggplot2::geom_vline(xintercept=19, colour = "gray")+
ggplot2::geom_vline(xintercept=10, colour = "gray")+
ggplot2::annotate("segment", x = 10, xend = 19, y = -0.1, yend = -0.1, colour = "dark green", size = 1)+
ggplot2::annotate("text", x = 15, y = -0.2, label = "tau", parse = TRUE, colour = "dark green")+
ggplot2::annotate("segment", x = 40, xend = 50, y = -0.1, yend = -0.1, colour = "dark green", size = 1)+
ggplot2::annotate("text", x = 45, y = -0.2, label = "tau", parse = TRUE, colour = "dark green")+
ggplot2::annotate("text", x = 75, y = 0.7, label = "63% diff. max and eq. value", colour = "gray")+
ggplot2::annotate("text", x = 75, y = 0.3*max(variable$y), label = "37% diff. max and eq. value", colour = "gray")+
ggplot2::labs(x = "Time (arb. unit)",
y = "variable (arb. unit)",
colour = "Legend")+
ggplot2::theme_bw() +
ggplot2::theme(legend.position = "top", plot.title = ggplot2::element_text(hjust = 0.5))
time <- 0:130
excitation <- c(rep(0,30),rep(1,50),rep(0,51))
variable <- generate.2order(time = time,
excitation = excitation,
xi = 0.2,
period = 15,
k = 1)
ggplot2::ggplot(variable)+
ggplot2::ggtitle( "Second order differential equation solution")+
ggplot2::geom_line(aes(t,y,color = "variable"))+
ggplot2::geom_line(aes(time,excitation,color = "excitation"))+
ggplot2::geom_vline(xintercept=80, colour = "gray")+
ggplot2::annotate("text", x = 100, y = 1, label = "DLO", parse = TRUE, colour = "gray")+
ggplot2::labs(x = "Time (arb. unit)",
y = "variable (arb. unit)",
colour = "Legend")+
ggplot2::theme_bw() +
ggplot2::theme(legend.position = "top", plot.title = ggplot2::element_text(hjust = 0.5))
|
unnest. <- function(.df,
...,
keep_empty = FALSE,
.drop = TRUE,
names_sep = NULL,
names_repair = "unique") {
UseMethod("unnest.")
}
unnest..tidytable <- function(.df,
...,
keep_empty = FALSE,
.drop = TRUE,
names_sep = NULL,
names_repair = "unique") {
vec_assert(.drop, logical(), 1)
dots <- enquos(...)
data_names <- names(.df)
list_bool <- map_lgl.(.df, is.list)
if (length(dots) == 0) {
dots <- syms(data_names[list_bool])
} else {
dots <- tidyselect_syms(.df, ...)
}
if (.drop) {
keep_cols <- data_names[!list_bool]
} else {
keep_cols <- data_names[data_names %notin% as.character(dots)]
}
if (keep_empty) {
.df <- mutate_lapply(.df, as.character(dots), keep_empty_prep)
}
unnest_data <- map.(dots, ~ unnest_col(.df, .x, names_sep))
unnest_nrow <- list_sizes(unnest_data)
if (!length(vec_unique(unnest_nrow)) == 1) {
abort("unnested data contains different row counts")
}
rep_vec <- list_sizes(pull.(.df, !!dots[[1]]))
if (length(keep_cols) > 0) {
keep_df <- .df[, ..keep_cols]
keep_df <- keep_df[vec_rep_each(1:.N, rep_vec)]
result_df <- bind_cols.(keep_df, unnest_data, .name_repair = names_repair)
} else {
result_df <- bind_cols.(unnest_data, .name_repair = names_repair)
}
result_df
}
unnest..data.frame <- function(.df,
...,
keep_empty = FALSE,
.drop = TRUE,
names_sep = NULL,
names_repair = "unique") {
.df <- as_tidytable(.df)
unnest.(
.df, ..., keep_empty = keep_empty, .drop = .drop,
names_sep = names_sep, names_repair = names_repair
)
}
unnest_col <- function(.df, col = NULL, names_sep = NULL) {
.l <- pull.(.df, !!col)
null_bool <- map_lgl.(.l, is.null)
.check_data <- .l[!null_bool][[1]]
is_vec <- is.atomic(.check_data) && !is.matrix(.check_data)
if (is_vec) {
result_df <- tidytable(!!col := do.call("c", .l))
} else {
result_df <- bind_rows.(.l)
}
if (!is.null(names_sep)) {
names(result_df) <- paste(as_name(col), names(result_df), sep = names_sep)
}
result_df
}
keep_empty_prep <- function(.l) {
null_bool <- map_lgl.(.l, is.null)
if (!any(null_bool)) return(.l)
.check_data <- .l[!null_bool][[1]]
is_vec <- is.atomic(.check_data) && !is.matrix(.check_data)
if (is_vec) {
.replace <- NA
} else {
null_df <- vec_slice(.check_data, 1)
vec_slice(null_df, 1) <- NA
.replace <- list(null_df)
}
replace_na.(.l, .replace)
}
globalVariables("..keep_cols")
|
NMreadSection <- function(file=NULL, lines=NULL, text=NULL, section, return="text",
keepEmpty=FALSE, keepName=TRUE,
keepComments=TRUE, asOne=TRUE,
simplify=TRUE, cleanSpaces=FALSE, ...){
if(missing(section)||is.null(section)){
section="."
asOne=FALSE
simplify=FALSE
keepName.arg <- keepName
keepName=TRUE
} else {
section <- toupper(section)
}
res <- NMextractText(file=file, lines=lines, text=text, section=section,
char.section="\\$",
return=return,
keepEmpty=keepEmpty,
keepName=keepName,
keepComments=keepComments,
asOne=asOne,
simplify=simplify,
cleanSpaces=cleanSpaces,
type="mod",
...)
if(section=="."){
names(res) <-
unlist(
lapply(res,function(x) sub("\\$([^ ]+)","\\1",strsplit(x[1]," ")[[1]][1]))
)
res2 <- lapply(unique(names(res)),function(x)do.call(c,res[names(res)==x]))
names(res2) <- unique(names(res))
res2 <- lapply(res2,function(x){names(x) <- NULL
x}
)
if(keepName.arg==FALSE){
names.res2 <- names(res2)
res2 <- lapply(1:length(res2),function(x)sub(paste0(" *\\$",names.res2[x]," *"),"",res2[[x]]))
names(res2) <- names.res2
}
res <- res2
}
res
}
NMgetSection <- function(...){
.Deprecated("NMreadSection")
NMreadSection(...)
}
|
compute_tol <- function (graph, depth, msg_new, msg_old) {
heads <- as.integer(head_of(graph, E(graph)))
tails <- as.integer(tail_of(graph, E(graph)))
tol <- 0
for (i in 1:length(heads)) {
key_dir <- paste(c(heads[i], tails[i]), collapse="")
key_rev <- paste(c(tails[i], heads[i]), collapse="")
tol <- max(
tol,
max(0, abs(stats::na.omit(msg_new$A[[key_dir]] - msg_old$A[[key_dir]]))),
max(0, abs(stats::na.omit(msg_new$A[[key_rev]] - msg_old$A[[key_rev]]))),
max(0, abs(stats::na.omit(msg_new$E[[key_dir]] - msg_old$E[[key_dir]]))),
max(0, abs(stats::na.omit(msg_new$E[[key_rev]] - msg_old$E[[key_rev]]))),
stats::na.omit(abs(msg_new$B[[key_dir]] - msg_old$B[[key_dir]])),
stats::na.omit(abs(msg_new$B[[key_rev]] - msg_old$B[[key_rev]])),
stats::na.omit(abs(msg_new$D[[key_dir]] - msg_old$D[[key_dir]])),
stats::na.omit(abs(msg_new$D[[key_rev]] - msg_old$D[[key_rev]]))
)
}
return (tol)
}
|
boxcoxtype <- function(formula,random = ~1, k=3,trials=1, data,find.in.range = c(-2,2), s = 20, plot.opt=1,random.distribution='np',...) {
call <- match.call()
N <- NROW(data)
weights= rep(trials, N)
data$weights <- weights
S <- 0:s
lam <- find.in.range[1] + (find.in.range[2] - find.in.range[1]) *
S/s
loglik <- rep(0, s+1 )
mform <- strsplit(as.character(random)[2], "\\|")[[1]]
mform <- gsub(" ", "", mform)
for (t in 1:(s+1) ) {
if (length(mform) == 1) {
fit <- try(alldist( formula = formula,random = formula(random), k=k,weights = weights,data = data, family=binomial(link=boxcoxpower(lam[t])),
verbose=FALSE, plot.opt = 0))
if (class(fit) == "try-error") {
cat("boxcoxtype failed using lambda=", lam[t], ". Hint: specify another range of lambda values and try again.")
return()
}
loglik[t] <- -1/2*(fit$disparity)
}else {
fit <- try(allvc( formula = formula,random = formula(random), k=k,weights = weights,data = data, family=binomial(link=boxcoxpower(lam[t])),
verbose=FALSE, plot.opt = 0))
if (class(fit) == "try-error") {
cat("boxcoxtype failed using lambda=", lam[t], ". Hint: specify another range of lambda values and try again.")
return()
}
loglik[t] <- -1/2*(fit$disparity)
}
}
max.result <- which.max(loglik)
maxloglik<-max(loglik)
lambda.max <- lam[max.result]
if (length(mform) == 1) {
fit <- alldist(formula =formula,random = formula(random), k=k, weights=weights, data = data,
family=binomial(link=boxcoxpower(lambda.max )), verbose=FALSE, random.distribution = random.distribution, plot.opt = 0)
}else {fit <- allvc(formula =formula,random = formula(random), k=k, weights=weights, data = data,
family=binomial(link=boxcoxpower(lambda.max )), verbose=FALSE, random.distribution = random.distribution, plot.opt = 0)
}
if(k==1){coef<-fit$coefficients
}else{
coef<-fit$coefficients[1:abs(length(fit$coefficients)-length(fit$mass.points))]}
ylim1 = range(loglik, maxloglik)
ml <- paste("Maximum profile log-likelihood:",round(maxloglik) , "at lambda=", lambda.max, "\n")
if (plot.opt==1){
graphics::plot(lam, loglik, type = "l", xlab = expression(lambda),
ylab = "Profile log-likelihood", ylim = ylim1,col="green", main=ml)
plims <- graphics::par("usr")
y0 <- plims[3]
graphics::segments(lambda.max, y0, lambda.max, maxloglik, lty = 1,col="red")
cat("Maximum Profile Log-likelihood:", maxloglik, "at lambda=",
lambda.max, "\n")
}
aic<- fit$disparity+2*(length(coef)+2*k)
bic<-fit$disparity+log(N)*(length(coef)+2*k)
result <- list(coef=coef,fit=fit, All.lam=lam, profile.loglik = loglik, lastfit = list(fit), objective = maxloglik,
Maximum = lambda.max,y0=y0,ml=ml, "kind"=5, ylim1=ylim1, aic = aic, bic = bic)
class(result)<-"boxcoxmix"
return(result)
}
boxcoxpower <- function(Lambda=0)
{
linkfun <- function(mu){ if(Lambda==0) log(mu/(1-mu))
else (((mu/(1-mu))^Lambda)-1)/Lambda}
linkinv <- function(eta) { if(Lambda==0) plogis(eta)
else (((1+Lambda*eta)^(-1/Lambda))+1)^(-1)}
mu.eta<- function(eta) { if(Lambda==0) ifelse(abs(eta)>30,.Machine$double.eps,
exp(eta)/(1+exp(eta))^2) else
pmax(((1+Lambda*eta)^((1/Lambda)-1))/((1+Lambda*eta)^(1/Lambda)+1)^2,
.Machine$double.eps)}
valideta <- function(eta) TRUE
link <-paste("boxcoxpower(",Lambda,")", sep="")
structure(list(linkfun = linkfun, linkinv = linkinv,
mu.eta = mu.eta, valideta = valideta,
name = link),
class = "link-glm")
}
binomial <- function (link = boxcoxpower(0))
{
linktemp <- substitute(link)
if (!is.character(linktemp)) linktemp <- deparse(linktemp)
okLinks <- c("logit", "probit", "cloglog", "cauchit", "log", "boxcoxpower")
if (linktemp %in% okLinks)
stats <- make.link(linktemp)
else if (is.character(link)) {
stats <- make.link(link)
linktemp <- link
} else {
if(inherits(link, "link-glm")) {
stats <- link
if(!is.null(stats$name)) linktemp <- stats$name
} else {
stop(gettextf('link "%s" not available for binomial family; available links are %s',
linktemp, paste(sQuote(okLinks), collapse =", ")),
domain = NA)
}
}
variance <- function(mu) mu * (1 - mu)
validmu <- function(mu) all(is.finite(mu)) && all(mu>0 &mu<1)
dev.resids <- stats::binomial()$dev.resids
aic <- function(y, n, mu, wt, dev) {
m <- if(any(n > 1)) n else wt
-2*sum(ifelse(m > 0, (wt/m), 0)*
dbinom(round(m*y), round(m), mu, log=TRUE))
}
initialize <- expression({
if (NCOL(y) == 1) {
if (is.factor(y)) y <- y != levels(y)[1L]
n <- rep.int(1, nobs)
y[weights == 0] <- 0
if (any(y < 0 | y > 1))
stop("y values must be 0 <= y <= 1")
mustart <- (weights * y + 0.5)/(weights + 1)
m <- weights * y
if(any(abs(m - round(m)) > 1e-3))
warning("non-integer
}
else if (NCOL(y) == 2) {
if(any(abs(y - round(y)) > 1e-3))
warning("non-integer counts in a binomial glm!")
n <- y[, 1] + y[, 2]
y <- ifelse(n == 0, 0, y[, 1]/n)
weights <- weights * n
mustart <- (n * y + 0.5)/(n + 1)
}
else stop("for the 'binomial' family, y must be a vector of 0 and 1\'s\nor a 2 column
matrix where col 1 is no. successes and col 2 is no. failures")
})
simfun <- function(object, nsim) {
ftd <- fitted(object)
n <- length(ftd)
ntot <- n*nsim
wts <- object$prior.weights
if (any(wts %% 1 != 0))
stop("cannot simulate from non-integer prior.weights")
if (!is.null(m <- object$model)) {
y <- model.response(m)
if(is.factor(y)) {
yy <- factor(1+rbinom(ntot, size = 1, prob = ftd),
labels = levels(y))
split(yy, rep(seq_len(nsim), each = n))
} else if(is.matrix(y) && ncol(y) == 2) {
yy <- vector("list", nsim)
for (i in seq_len(nsim)) {
Y <- rbinom(n, size = wts, prob = ftd)
YY <- cbind(Y, wts - Y)
colnames(YY) <- colnames(y)
yy[[i]] <- YY
}
yy
} else
rbinom(ntot, size = wts, prob = ftd)/wts
} else rbinom(ntot, size = wts, prob = ftd)/wts
}
structure(list(family = "binomial",
link = linktemp,
linkfun = stats$linkfun,
linkinv = stats$linkinv,
variance = variance,
dev.resids = dev.resids,
aic = aic,
mu.eta = stats$mu.eta,
initialize = initialize,
validmu = validmu,
valideta = stats$valideta,
simulate = simfun),
class = "family")
}
|
Persisters <- R6::R6Class(
"Persisters",
public = list(
persisters = list(),
name = "FileSystem",
initialize = function(persisters = list(), name = "FileSystem") {
self$persisters <- persisters
self$name <- name
private$persister_get()
}
),
private = list(
persister_get = function() {
if (!self$name %in% 'FileSystem') {
stop(sprintf("The requested VCR cassette persister (%s) is not registered.", self$name),
call. = FALSE)
}
self$persisters <- switch(self$name, FileSystem = FileSystem)
}
)
)
persister_fetch <- function(x = "FileSystem", file_name) {
per <- Persisters$new(name = x)
per <- per$persisters
per$new(file_name = file_name)
}
|
context("LVar")
library(aglm)
test_that("getLVarMatForOneVec()'s outputs are correct.", {
expect_equal(getLVarMatForOneVec(1:3)$dummy_mat, matrix(c(1, 0, 1), 3, 1))
expect_equal(getLVarMatForOneVec(c(1, 1.5, 2, 2.3, 3), breaks=1:3)$dummy_mat,
matrix(c(1, 0.5, 0, 0.3, 1), 5, 1))
expect_equal(getLVarMatForOneVec(c(1, 1.5, 2, 2.3, 3), breaks=c(0, 1.8, 4))$dummy_mat,
matrix(c(0.8, 0.3, 0.2, 0.5, 1.2), 5, 1))
})
createX <- function(nobs, nvar_numeric, seed=12345) {
set.seed(seed)
nobs <- nobs
data <- list()
if (nvar_numeric > 0) for (i in 1:nvar_numeric) data[[paste0("Num", i)]] <- rnorm(nobs)
return(data.frame(data))
}
test_that("Check newInput() for L-Variable", {
x <- newInput(createX(10, 1), use_LVar=TRUE)
expect_equal(x@vars_info[[1]]$id, 1)
expect_equal(x@vars_info[[1]]$data_column_idx, 1)
expect_equal(x@vars_info[[1]]$type, "quan")
expect_equal(x@vars_info[[1]]$use_linear, TRUE)
expect_equal(x@vars_info[[1]]$use_UD, FALSE)
expect_equal(x@vars_info[[1]]$use_OD, FALSE)
expect_equal(x@vars_info[[1]]$use_LV, TRUE)
expect_true(is.null(x@vars_info[[1]]$OD_info))
expect_true(is.null(x@vars_info[[1]]$UD_info))
expect_true(!is.null(x@vars_info[[1]]$LV_info))
mat_num <- getDesignMatrix(x)
expect_equal(mat_num[,1], x@data[,1])
ncol <- dim(getLVarMatForOneVec(mat_num[,1])$dummy_mat)[2] + 1
expect_equal(dim(mat_num), c(10, ncol))
bins_list <- list(c(0, 1, 2))
x <- newInput(createX(10, 1), use_LVar=TRUE, bins_list=bins_list)
expect_equal(x@vars_info[[1]]$LV_info$breaks, bins_list[[1]])
})
|
setGeneric("vox_offset", function(object) standardGeneric("vox_offset"))
setMethod("vox_offset", "nifti", function(object) object@"vox_offset")
setMethod("vox_offset", "anlz", function(object) object@"vox_offset")
setGeneric("vox_offset<-", function(object, value) standardGeneric("vox_offset<-"))
setMethod("vox_offset<-",
signature(object="nifti"),
function(object, value) {
if ( "vox_offset" %in% slotNames(object) ){
object@"vox_offset" <- value
audit.trail(object) <-
niftiAuditTrailEvent(object, "modification", match.call(),
paste("vox_offset <-", value))
} else {
warning("vox_offset is not in slotNames of object")
}
return(object)
})
setMethod("vox_offset<-",
signature(object="anlz"),
function(object, value) {
if ( "vox_offset" %in% slotNames(object) ){
object@"vox_offset" <- value
} else {
warning("vox_offset is not in slotNames of object")
}
return(object)
})
setGeneric("vox.offset", function(object) standardGeneric("vox.offset"))
setMethod("vox.offset", "nifti", function(object) object@"vox_offset")
setMethod("vox.offset", "anlz", function(object) object@"vox_offset")
setGeneric("vox.offset<-", function(object, value) standardGeneric("vox.offset<-"))
setMethod("vox.offset<-",
signature(object="nifti"),
function(object, value) {
if ( "vox_offset" %in% slotNames(object) ){
object@"vox_offset" <- value
audit.trail(object) <-
niftiAuditTrailEvent(object, "modification", match.call(),
paste("vox_offset <-", value))
} else {
warning("vox_offset is not in slotNames of object")
}
return(object)
})
setMethod("vox.offset<-",
signature(object="anlz"),
function(object, value) {
if ( "vox_offset" %in% slotNames(object) ){
object@"vox_offset" <- value
} else {
warning("vox_offset is not in slotNames of object")
}
return(object)
})
|
"Rad.cov" <- function(x1, x2=NULL, p = 1, m = NA, with.log = TRUE,
with.constant = TRUE, C = NA, marginal = FALSE, derivative = 0) {
if (marginal) {
return(rep(0, nrow(x1)))
}
if (!is.matrix(x1))
x1 <- as.matrix(x1)
if( is.null( x2)){
x2<- x1
}
if (!is.matrix(x2))
x2 <- as.matrix(x2)
d <- ncol(x1)
n1 <- nrow(x1)
n2 <- nrow(x2)
if (is.na(m)) {
m <- (d + p)/2
}
else {
p <- 2 * m - d
}
if (p < 0) {
stop(" p is negative (m possibly too small)")
}
par <- c(p/2, ifelse((d%%2 == 0) & (with.log), 1, 0))
rbf.constant <- ifelse(with.constant, radbas.constant(m,
d), 1)
if (is.na(C[1])) {
temp <- .Fortran("radbas", PACKAGE="fields",
nd = as.integer(d), x1 = as.double(x1),
n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2),
par = as.double(par), k = as.double(rep(0, n1 * n2)))
return(rbf.constant * matrix(temp$k, ncol = n2, nrow = n1))
}
else {
if (derivative == 0) {
C <- as.matrix(C)
n3 <- ncol(C)
temp <- .Fortran("multrb",PACKAGE="fields",
nd = as.integer(d), x1 = as.double(x1),
n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2),
par = as.double(par), c = as.double(C), n3 = as.integer(n3),
h = as.double(rep(0, n1 * n3)), work = as.double(rep(0,
n2)))$h
return(rbf.constant * matrix(temp, nrow = n1, ncol = n3))
}
else {
if (ncol(C) > 1) {
stop("Can only evaluate derivatives on one spline fit")
}
temp <- .Fortran("mltdrb", PACKAGE="fields",
nd = as.integer(d), x1 = as.double(x1),
n1 = as.integer(n1), x2 = as.double(x2), n2 = as.integer(n2),
par = as.double(par), c = as.double(C), h = as.double(rep(0,
n1 * d)), work = as.double(rep(0, n2)))$h
return(rbf.constant * matrix(temp, nrow = n1, ncol = d))
}
}
stop("should not get here!")
}
|
latex.ftable <- function(object, ...,
style=c("ftableX", "array", "ftable"),
quote=FALSE, digits=getOption("digits")) {
style <- match.arg(style)
result <- unclass(object)
rv <- attr(object, "row.vars")
n.row.vars <- length(rv)
dimrv <- sapply(rv, length)
rg <-rep(dimrv[n.row.vars], prod(dimrv[-n.row.vars]))
if (!is.null(list(...)$rgroup)) row.names(object) <- 1:nrow(object)
cv <- attr(object, "col.vars")
n.col.vars <- length(cv)
dimcv <- sapply(cv, length)
cg <-rep(dimcv[n.col.vars], prod(dimcv[-n.col.vars]))
dimobj <- dim(object)
switch(style,
ftableX={
r <- format(object, ...,
quote = quote, digits = digits)
latex(r,
n.cgroup=c(n.row.vars+1, cg),
n.rgroup=c(n.col.vars+1, rg),
...)
},
array={
latex(object)
},
ftable={
r <- format(object, ...,
quote = quote, digits = digits)
latex(r)
}
)
}
if (FALSE) {
ft31 <- ftable(Titanic, row.vars = 3:1, col.vars = 4)
write.ftable(ft31, quote = FALSE)
write.ftable(ft31, quote = FALSE, method="row.compact")
write.ftable(ft31, quote = FALSE, method="col.compact")
write.ftable(ft31, quote = FALSE, method="compact")
latex(ft31, style="ftable")
latex(ft31, style="ftableX")
latex(ft31, style="ftableX", rgroup=c("","A","B","C","D"))
latex(ft31, style="array")
latex(ft31)
ft13 <- ftable(Titanic, row.vars = 1, col.vars = 4:2)
write.ftable(ft13, quote = FALSE)
write.ftable(ft13, quote = FALSE, method="row.compact")
write.ftable(ft13, quote = FALSE, method="col.compact")
write.ftable(ft13, quote = FALSE, method="compact")
latex(ft13, style="ftableX", cgroup=c("","A","B","C","D"))
latex(ft13, style="ftableX")
latex(ft13, style="ftable")
latex(ft13, style="array")
}
|
test_that("illegal initializations are rejected", {
expect_silent(ConstModVar$new("const", "GBP", 42.5))
expect_error(ConstModVar$new(42,42,42), class="description_not_string")
expect_error(ConstModVar$new("const",42,42), class="units_not_string")
expect_error(ConstModVar$new("const","GBP","42"), class="const_not_numeric")
})
test_that("properties are correct", {
lue <- ConstModVar$new("lue", "GBP", 42)
expect_false(lue$is_expression())
expect_false(lue$is_probabilistic())
})
test_that("it has correct distribution name", {
lue <- ConstModVar$new("lue", "GBP", 42)
expect_identical(lue$distribution(), "Const(42)")
})
test_that("const values are returned", {
x <- ConstModVar$new("const", "GBP", 42)
expect_equal(x$mean(),42)
expect_equal(x$SD(),0)
expect_equal(x$mode(),42)
expect_error(x$quantile(probs=c(0.25,NA,0.75)), class="probs_not_defined")
expect_error(x$quantile(probs=c(0.25,"A",0.75)), class="probs_not_numeric")
expect_error(x$quantile(probs=c(-0.25,0.75)), class="probs_out_of_range")
expect_equal(x$quantile(probs=c(0.22)),42)
})
test_that("set and get function as expected", {
x <- ConstModVar$new("y", "GBP", 42)
expect_intol(x$get(), 42, 0.01)
expect_error(x$set(TRUE), class="what_not_character")
expect_error(x$set("red"), class="what_not_supported")
expect_silent(x$set())
expect_silent(x$set("expected"))
expect_intol(x$get(), 42, 0.01)
S <- vector(mode="numeric", length=1000)
for (i in 1:1000) {
x$set()
S[i] <- x$get()
}
expect_intol(mean(S), 42, 0.1)
expect_intol(sd(S), 0, 0.01)
})
test_that("set('value') works as expected", {
x <- ConstModVar$new("x", "GBP", 42)
expect_equal(x$get(), 42)
x$set("value", 7)
expect_equal(x$get(), 7)
expect_equal(x$mean(), 42)
})
|
xmastreeshape <- function(year = 2018,
language = c("english", "spanish", "catalan"),
shape = c("piramidal", "oval", "vshaped", "round", "columnar"),
nballs = 15,
ballscolor = NULL,
seed = NULL) {
if (!inherits(year, c("numeric", "integer")) || length(year) != 1L)
stop("'year' must be a number")
language <- match.arg(language)
shape <- match.arg(shape)
if (!inherits(nballs, c("numeric", "integer")) || length(nballs) != 1L || nballs < 0)
stop("'nballs' must be a non negative integer")
if(!is.null(ballscolor) & (anyNA(ballscolor) || !all(ballscolor %in% grDevices::colors())))
stop("'ballscolor' must be NULL or valid R color(s)")
if(!is.null(seed) & (is.na(seed) || !is(seed, "numeric")))
stop("'seed' must be numeric or NULL")
if (!is.null(seed))
set.seed(seed)
newwindow()
xmin <- -3
xmax <- 3
ymin <- -2
ymax <- 4
np <- 1000
u <- runif(np, xmin, xmax)
v <- runif(np, ymin, ymax)
plot(c(xmin, xmax), c(ymin, ymax), type = "n", asp = 1, axes = F, xlab = "", ylab = "")
h <- - 0.5
polygon(c(xmin, xmin, xmax, xmax), c(ymin, h, h, ymin), border = NA, col = "azure2")
polygon(c(xmin, xmin, xmax, xmax), c(h, ymax, ymax, h), border = NA, col = "darkblue")
d <- (xmax - xmin) / 100
x0 <- seq(xmin + d, xmax - d, by = 0.01)
lines(x0, h + rnorm(length(x0), 0, 0.05), type = "l", lwd = 3, col = "blue4")
plottrunk()
if (is.null(ballscolor))
ballscolor <- c("cornflowerblue", "blue", "darkgoldenrod1", "darkmagenta",
"yellow", "violet", "red", "darkorchid1", "gold1")
switch(shape,
piramidal = plotTreePiramidal(nballs = nballs, ballscolor = ballscolor),
oval = plotTreeOval(nballs = nballs, ballscolor = ballscolor),
vshaped = plotTreeVshaped(nballs = nballs, ballscolor = ballscolor),
round = plotTreeRound(nballs = nballs, ballscolor = ballscolor),
columnar = plotTreeColumnar(nballs = nballs, ballscolor = ballscolor))
for(i in 1:40) {
snow(np = 20, x0 = xmin, x1 = xmax, y0 = ymin, y1 = ymax)
Sys.sleep(0.1)
}
Sys.sleep(0.5)
mess <- switch(language,
english = "Happy ",
spanish = "Feliz ",
catalan = "Bon ")
myvfont <- c("serif", "bold")
text(x = 0, y = 3, labels = paste0(mess, year, "!"), vfont = myvfont, cex = 2, col = "red")
Sys.sleep(1)
text(x = 0, y = 2.1, labels = "R", srt = 15, vfont = myvfont, cex = 3, col = "gold")
}
|
ms_plan <- R6::R6Class("ms_plan", inherit=ms_object,
public=list(
initialize=function(token, tenant=NULL, properties=NULL)
{
self$type <- "plan"
private$api_type <- "planner/plans"
super$initialize(token, tenant, properties)
},
list_tasks=function(filter=NULL, n=Inf)
{
private$make_basic_list("tasks", filter, n)
},
get_task=function(task_title=NULL, task_id=NULL)
{
assert_one_arg(task_title, task_id, msg="Supply exactly one of task title or ID")
if(!is.null(task_id))
{
res <- call_graph_endpoint(self$token, file.path("planner/tasks", task_id))
ms_plan_task$new(self$token, self$tenant, res)
}
else
{
tasks <- self$list_tasks(filter=sprintf("title eq '%s'", task_title))
if(length(tasks) != 1)
stop("Invalid task title", call.=FALSE)
tasks[[1]]
}
},
list_buckets=function(filter=NULL, n=Inf)
{
private$make_basic_list("buckets", filter, n)
},
get_bucket=function(bucket_name=NULL, bucket_id=NULL)
{
assert_one_arg(bucket_name, bucket_id, msg="Supply exactly one of bucket name or ID")
if(!is.null(bucket_id))
{
res <- call_graph_endpoint(self$token, file.path("planner/buckets", bucket_id))
ms_plan_bucket$new(self$token, self$tenant, res)
}
else
{
buckets <- self$list_buckets(filter=sprintf("name eq '%s'", bucket_name))
if(length(buckets) != 1)
stop("Invalid bucket name", call.=FALSE)
buckets[[1]]
}
},
get_details=function()
{
do_operation("details")
},
print=function(...)
{
name <- paste0("<Plan for ", self$properties$title, ">\n")
cat(name)
cat("---\n")
cat(format_public_methods(self))
invisible(self)
}
))
|
loclda <- function(x, ...)
UseMethod("loclda")
loclda.default <- function(x, grouping, weight.func = function(x) 1/exp(x),
k = nrow(x), weighted.apriori = TRUE, ...)
{
cl <- match.call()
cl[[1]] <- as.name("loclda")
structure(list(learn = x, grouping = grouping, lev = levels(grouping),
weight.func = weight.func, k = k, weighted.apriori = weighted.apriori,
call = cl),
class = "loclda")
}
loclda.formula <- function(formula, data = NULL, ...,
subset, na.action = na.fail)
{
m <- match.call(expand.dots = FALSE)
m$... <- NULL
m[[1]] <- as.name("model.frame")
m <- eval.parent(m)
Terms <- attr(m, "terms")
grouping <- model.response(m)
x <- model.matrix(Terms, m)
xint <- match("(Intercept)", colnames(x), nomatch = 0)
if (xint > 0)
x <- x[, -xint, drop = FALSE]
res <- loclda(x, grouping, ...)
res$terms <- Terms
cl <- match.call()
cl[[1]] <- as.name("loclda")
res$call <- cl
res$contrasts <- attr(x, "contrasts")
res$xlevels <- .getXlevels(Terms, m)
res$na.action <- attr(m, "na.action")
res
}
loclda.matrix <- function (x, grouping, ..., subset, na.action = na.fail)
{
if (!missing(subset)){
x <- x[subset, , drop = FALSE]
grouping <- grouping[subset]
}
if (!missing(na.action)) {
dfr <- na.action(structure(list(g = grouping, x = x),
class = "data.frame"))
grouping <- dfr$g
x <- dfr$x
}
res <- loclda.default(x, grouping, ...)
cl <- match.call()
cl[[1]] <- as.name("loclda")
res$call <- cl
res
}
loclda.data.frame <- function (x, ...)
{
res <- loclda.matrix(structure(data.matrix(x), class = "matrix"),
...)
cl <- match.call()
cl[[1]] <- as.name("loclda")
res$call <- cl
res
}
predict.loclda <- function(object, newdata,...)
{
weighted <- function (z, Z, y, weight.func, k, weighted.apriori)
{
unique.y <- sort(unique(y))
Zn <- kronecker(rep(1, nrow(Z)), t(z)) - Z
distances <- sqrt(rowSums(Zn^2))
Knn <- sort(distances)[k]
indic <- distances <= Knn
kdist <- distances[indic] / Knn
weighted <- sapply(kdist, weight.func)
y <- y[indic]
Z <- Z[indic, , drop = FALSE]
indic2 <- y %in% (unique.y[table(y) > 1])
y <- y[indic2]
weighted <- weighted[indic2]
if (is.vector(Z))
Z <- matrix(Z, ncol = 1)
Z <- Z[indic2, , drop = FALSE]
apriori.table <- sapply(unique.y, function(x) sum(weighted[y == x]))
apriori.table <- apriori.table / sum(weighted)
if (!weighted.apriori)
{
indic3 <- apriori.table != 0
apriori.table [indic3] <- 1/sum (indic3)
}
return(list(y = y, Weights = weighted, X = Z, apriori = apriori.table))
}
cov.pooled <- function (X, y, Weights)
{
y <- as.numeric(y)
hilfe <- unique(y)
if (is.vector(X))
X <- matrix(X, ncol = 1)
cov.vecs <- sapply(hilfe, function(r){
temp <- y == r
cov.wt(matrix(X[temp, ], ncol = ncol(X)), wt = Weights[temp])$cov
})
if(ncol(X) == 1)
cov.vecs <- matrix(cov.vecs, nrow = 1)
ni <- sapply(hilfe, function(r) sum(y == r))
cov.vecs <- cov.vecs %*% diag(ni, nrow = length(ni))
1 / (nrow(X) - length(hilfe)) * matrix(rowSums(cov.vecs), nrow = ncol(X))
}
mu.weighted <- function (X, unique.y, y2, Weights, i)
{
if (is.vector(X))
X <- matrix(X, ncol = 1)
temp <- y2 == unique.y[i]
Xnow <- X[temp, , drop = FALSE]
Wnow <- Weights[temp]
as.vector(t(Wnow) %*% Xnow / sum(Wnow))
}
ML <- function (x, X, y, y2, Weights, apriori)
{
unique.y <- sort(unique(y))
sigma <- cov.pooled(X = X, y = y2, Weights = Weights)
sigma <- solve(sigma, tol = 1e-100)
mu.distances <- rep (Inf, length (unique.y))
posterior.loglik <- -mu.distances
for (i in seq(along=posterior.loglik)[apriori!= 0])
{
mu <- mu.weighted(X = X, unique.y = unique.y, y2 = y2, Weights = Weights, i = i)
temp <- x - mu
mu.distances[i] <- drop (crossprod (temp))
posterior.loglik[i] <-(-1/2) * t(temp) %*% sigma %*% (temp) + log (apriori[i])
}
names (posterior.loglik) <- names (mu.distances) <- as.character(unique.y)
c (mu.distances, posterior.loglik)
}
llda <- function (x, learn, y, weight.func, k, weighted.apriori)
{
Weighted <- weighted(z = x, Z = learn, y = y,
weight.func = weight.func, k = k, weighted.apriori = weighted.apriori)
ML(x = x, X = Weighted$X, y = y, y2 = Weighted$y, Weights = Weighted$Weights,
apriori = Weighted$apriori)
}
if (!inherits(object, "loclda"))
stop("object not of class", " 'loclda'")
if (!is.null(Terms <- object$terms)) {
if (missing(newdata))
newdata <- model.frame(object)
else {
newdata <- model.frame(as.formula(delete.response(Terms)),
newdata, na.action = function(x) x, xlev = object$xlevels)
}
x <- model.matrix(delete.response(Terms), newdata,
contrasts = object$contrasts)
xint <- match("(Intercept)", colnames(x), nomatch = 0)
if (xint > 0)
x <- x[, -xint, drop = FALSE]
}
else {
if (missing(newdata)){
if (!is.null(sub <- object$call$subset))
newdataa <- eval.parent(parse(
text = paste(deparse(object$call$x, backtick = TRUE),
"[", deparse(sub, backtick = TRUE), ",]")))
else newdata <- eval.parent(object$call$x)
if (!is.null(nas <- object$call$na.action))
newdata <- eval(call(nas, newdata))
}
if (is.null(dim(newdata)))
dim(newdata) <- c(1, length(newdata))
x <- as.matrix(newdata)
}
werte <- t(apply(x, 1, llda, learn = object$learn,
y = object$grouping, weight.func = object$weight.func,
k = object$k, weighted.apriori = object$weighted.apriori))
object.levels <- object$lev
indic4 <- seq (along = object.levels)
mu.distances <- werte[,indic4]
posterior.loglik <- werte[,-indic4]
if (nrow (newdata) == 1) {
mu.distances <- matrix (mu.distances, nrow = 1)
posterior.loglik <- matrix (posterior.loglik, nrow = 1)
}
posterior <- exp (posterior.loglik)
classes <- factor(max.col(posterior), levels = indic4,
labels = object.levels)
dim.posterior <- dim (posterior)
all.zero <- logical (dim.posterior[1])
for (i in seq (along = classes))
if (all (posterior.loglik[i,] < log(1e-150))) {
classes[i] <- object.levels[which.min(mu.distances[i,])]
all.zero[i] <- TRUE
}
all.zero <- which (all.zero)
posterior <- apply (posterior, 1, function (x)
if(sum(x) != 0)
x <- x/sum(x)
else
x <- rep (1/dim.posterior[2], dim.posterior[2])
)
result <- list(class = classes, posterior = t(posterior), all.zero = all.zero)
return(result)
}
print.loclda <- function (x, ...)
{
cat("Call:\n")
print(x$call, ...)
cat("\nWeighting function:\n")
print (x$weight.func, ...)
cat("\nNumber of next neighbours that will be used for prediction:\n")
print(x$k, ...)
cat("\nUsage of weighted a priori probabilities:\n")
print(x$weighted.apriori, ...)
invisible(x)
}
|
context("Checking rm_repeated_characters")
test_that("rm_repeated_characters is removing/replacing character strings",{
x <- "aaaahahahahaha that was a good joke peep and pepper and pepe"
expect_equal(
rm_repeated_characters(x),
"that was a good joke peep and pepper and"
)
})
test_that("rm_repeated_characters is extracting repeated character strings",{
x <- "aaaahahahahaha that was a good joke peep and pepper and pepe"
expect_equal(
rm_repeated_characters(x, extract=TRUE),
structure(list(c("aaaahahahahaha", "pepe")), class = c("extracted",
"list"))
)
})
|
"%
description(x) <- descr
return(x)
}
"%
for(n in names(annot)){
annotation(x)[n] <- as.character(annot[n])
}
return(x)
}
"%@%" <- function(x,nm){
nm <- substitute(nm)
if(typeof(nm)=="symbol"){
nm <- deparse(nm)
} else {
nm <- eval.parent(nm)
}
attr(x,nm)
}
"%@%<-" <- function(x,nm,value){
nm <- substitute(nm)
if(typeof(nm)=="symbol"){
nm <- deparse(nm)
} else {
nm <- eval.parent(nm)
}
attr(x,nm) <- value
return(invisible(x))
}
|
.fixupGFortranStdout <- function()
{
old <- Sys.getenv("GFORTRAN_STDOUT_UNIT")
if (nzchar(old) && old == "-1") {
Sys.unsetenv("GFORTRAN_STDOUT_UNIT")
TRUE
} else
FALSE
}
.fixupGFortranStderr <- function()
{
old <- Sys.getenv("GFORTRAN_STDERR_UNIT")
if (nzchar(old) && old == "-1") {
Sys.unsetenv("GFORTRAN_STDERR_UNIT")
TRUE
} else
FALSE
}
system <- function(command, intern = FALSE,
ignore.stdout = FALSE, ignore.stderr = FALSE,
wait = TRUE, input = NULL,
show.output.on.console = TRUE, minimized = FALSE,
invisible = TRUE, timeout = 0)
{
if(!is.logical(intern) || is.na(intern))
stop("'intern' must be TRUE or FALSE")
if(!is.logical(ignore.stdout) || is.na(ignore.stdout))
stop("'ignore.stdout' must be TRUE or FALSE")
if(!is.logical(ignore.stderr) || is.na(ignore.stderr))
stop("'ignore.stderr' must be TRUE or FALSE")
if(!is.logical(wait) || is.na(wait))
stop("'wait' must be TRUE or FALSE")
if(!is.logical(show.output.on.console) || is.na(show.output.on.console))
stop("'show.output.on.console' must be TRUE or FALSE")
if(!is.logical(minimized) || is.na(minimized))
stop("'minimized' must be TRUE or FALSE")
if(!is.logical(invisible) || is.na(invisible))
stop("'invisible' must be TRUE or FALSE")
stdout <- ifelse(ignore.stdout, FALSE, "")
stderr <- ifelse(ignore.stderr, FALSE, "")
f <- ""
if (!is.null(input)) {
f <- tempfile()
on.exit(unlink(f))
writeLines(input, f)
}
if (intern) {
flag <- 3L
if(stdout == "") stdout <- TRUE
if(!ignore.stderr && .Platform$GUI == "Rgui") stderr <- TRUE
} else {
flag <- if (wait) ifelse(show.output.on.console, 2L, 1L) else 0L
}
if (invisible) flag <- 20L + flag
else if (minimized) flag <- 10L + flag
if (.fixupGFortranStdout())
on.exit(Sys.setenv(GFORTRAN_STDOUT_UNIT = "-1"), add = TRUE)
if (.fixupGFortranStderr())
on.exit(Sys.setenv(GFORTRAN_STDERR_UNIT = "-1"), add = TRUE)
.Internal(system(command, as.integer(flag), f, stdout, stderr, timeout))
}
system2 <- function(command, args = character(),
stdout = "", stderr = "", stdin = "", input = NULL,
env = character(),
wait = TRUE, minimized = FALSE, invisible = TRUE,
timeout = 0)
{
if(!is.logical(wait) || is.na(wait))
stop("'wait' must be TRUE or FALSE")
if(!is.logical(minimized) || is.na(minimized))
stop("'minimized' must be TRUE or FALSE")
if(!is.logical(invisible) || is.na(invisible))
stop("'invisible' must be TRUE or FALSE")
command <- paste(c(shQuote(command), env, args), collapse = " ")
if(is.null(stdout)) stdout <- FALSE
if(is.null(stderr)) stderr <- FALSE
if(length(stdout) != 1L) stop("'stdout' must be of length 1")
if(length(stderr) != 1L) stop("'stderr' must be of length 1")
if (!is.null(input)) {
f <- tempfile()
on.exit(unlink(f))
writeLines(input, f)
} else f <- stdin
flag <- if (isTRUE(stdout) || isTRUE(stderr)) 3L
else if (wait)
ifelse(identical(stdout, "") || identical(stderr, ""), 2L, 1L)
else 0L
if (invisible) flag <- 20L + flag
else if (minimized) flag <- 10L + flag
if (.fixupGFortranStdout())
on.exit(Sys.setenv(GFORTRAN_STDOUT_UNIT = "-1"), add = TRUE)
if (.fixupGFortranStderr())
on.exit(Sys.setenv(GFORTRAN_STDERR_UNIT = "-1"), add = TRUE)
.Internal(system(command, flag, f, stdout, stderr, timeout))
}
shell <- function(cmd, shell, flag = "/c", intern = FALSE,
wait = TRUE, translate = FALSE, mustWork = FALSE, ...)
{
if(missing(shell)) {
shell <- Sys.getenv("R_SHELL")
if(!nzchar(shell)) shell <- Sys.getenv("COMSPEC")
}
if(missing(flag) &&
any(!is.na(pmatch(c("bash", "tcsh", "sh"), basename(shell)))))
flag <- "-c"
cmd0 <- cmd
if(translate) cmd <- chartr("/", "\\", cmd)
if(!is.null(shell)) cmd <- paste(shell, flag, cmd)
res <- system(cmd, intern = intern, wait = wait | intern,
show.output.on.console = wait, ...)
if(!intern && res && !is.na(mustWork))
if(mustWork)
if(res == -1L)
stop(gettextf("'%s' could not be run", cmd0), domain = NA)
else stop(gettextf("'%s' execution failed with error code %d",
cmd0, res), domain = NA)
else
if(res == -1L)
warning(gettextf("'%s' could not be run", cmd0), domain = NA)
else warning(gettextf("'%s' execution failed with error code %d",
cmd0, res), domain = NA)
if(intern) res else invisible(res)
}
shell.exec <- function(file) .Internal(shell.exec(file))
Sys.which <- function(names) .Internal(Sys.which(as.character(names)))
|
context("Test 14: direct vector computation of AFF xbar")
test_that("make computeAFFMean produce errors", {
x1 <- c(1, "a", 3)
expect_error(computeAFFMean(x1), "x contains non-numeric")
x2 <- c(1, NA, 3)
expect_error(computeAFFMean(x2), "contains NA")
x3 <- c(1, NaN, 3)
expect_error(computeAFFMean(x3), "contains NA")
x4 <- c(1, Inf, 4)
expect_error(computeAFFMean(x4), "contains non-finite")
x5 <- c(1, 2, 4)
expect_error(computeAFFMean(x5, eta=NA), "not a finite")
expect_error(computeAFFMean(x5, eta=NULL), "is NULL")
expect_error(computeAFFMean(x5, eta=0), NA)
expect_error(computeAFFMean(x5, eta=1), NA)
expect_error(computeAFFMean(x5, eta=0.9), NA)
expect_error(computeAFFMean(x5, eta=-0.1), "not in range")
expect_error(computeAFFMean(x5, eta=1.1), "not in range")
})
test_that("check computeAFFMean works", {
eta1 <- 0.01
x <- c(1, 2, 3, 4)
m2 <- x[1] + x[2]
w2 <- 2
Delta2 <- x[1]
Omega2 <- 1
xbarderiv2 <- (Delta2*w2 - m2*Omega2)/(w2*w2)
xbar1 <- x[1]
xbarderiv1 <- 0
lderiv2 <- 2*(xbar1 - x[2]) * xbarderiv1
lambda2 <- 1
xbar2 <- m2/w2
w3 <- 3
Omega3 <- 3
m3 <- 6
Delta3 <- 4
xbarderiv3 <- (Delta3*w3 - m3*Omega3)/(w3*w3)
xbar2 <- (1+2)/2
lderiv3 <- 2*(xbar2 - x[3]) * xbarderiv2
lambda3 <- lambda2 - eta1 * lderiv3
w4 <- w3 * lambda3 + 1
Omega4 <- Omega3 * lambda3 + w3
m4 <- m3 * lambda3 + x[4]
Delta4 <- Delta3 * lambda3 + m3
xbarderiv4 <- (Delta4*w4 - m4*Omega4)/(w4*w4)
xbar3 <- m3/w3
lderiv4 <- 2*(xbar3 - x[4]) * xbarderiv3
lambda4 <- lambda3 - eta1 * lderiv4
xbar4 <- m4/w4
expect_equal(computeAFFMean(x, eta=eta1), xbar4)
})
|
library(tidymodels)
library(sessioninfo)
library(testthat)
set.seed(455)
folds <- vfold_cv(mtcars, v = 5)
simple_rec <- recipe(mpg ~ ., data = mtcars)
form <- mpg ~ .
spline_rec <-
recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_predictors()) %>%
step_bs(disp, deg_free = tune())
lm_mod <- linear_reg() %>% set_engine("lm")
knn_mod <-
nearest_neighbor(mode = "regression", neighbors = tune()) %>%
set_engine("kknn")
knn_mod_two <-
nearest_neighbor(mode = "regression", neighbors = tune("K"), weight_func = tune()) %>%
set_engine("kknn")
get_coefs <- function(x) {
x %>%
extract_fit_parsnip() %>%
tidy()
}
verb <- FALSE
g_ctrl <- control_grid(verbose = verb, save_pred = TRUE, extract = get_coefs)
b_ctrl <- control_bayes(verbose = verb, save_pred = TRUE, extract = get_coefs)
mt_spln_lm <-
workflow() %>%
add_recipe(spline_rec) %>%
add_model(lm_mod)
mt_spln_knn <-
workflow() %>%
add_recipe(spline_rec) %>%
add_model(knn_mod)
mt_knn <-
workflow() %>%
add_recipe(simple_rec) %>%
add_model(knn_mod)
set.seed(8825)
mt_spln_lm_grid <-
tune_grid(mt_spln_lm,
resamples = folds,
control = g_ctrl)
set.seed(8825)
mt_spln_lm_bo <-
tune_bayes(
mt_spln_lm,
resamples = folds,
iter = 3,
control = b_ctrl
)
set.seed(8825)
mt_spln_knn_grid <-
tune_grid(
mt_spln_knn,
resamples = folds,
grid = grid_regular(parameters(mt_spln_knn)),
control = g_ctrl
)
set.seed(8825)
mt_spln_knn_bo <-
tune_bayes(mt_spln_knn,
resamples = folds,
iter = 3,
control = b_ctrl)
set.seed(8825)
mt_spln_knn_bo_sep <-
tune_bayes(knn_mod_two,
spline_rec,
resamples = folds,
iter = 3,
control = b_ctrl)
set.seed(8825)
mt_knn_grid <- tune_grid(mt_knn, resamples = folds, control = g_ctrl)
set.seed(8825)
mt_knn_bo <-
tune_bayes(mt_knn,
resamples = folds,
iter = 3,
control = b_ctrl)
save(
list = grep("^mt_", ls(), value = TRUE),
file = test_path("test_objects.RData"),
version = 2,
compress = "xz"
)
data(two_class_dat, package = "modeldata")
set.seed(7898)
data_folds <- vfold_cv(two_class_dat, repeats = 5)
two_class_rec <-
recipe(Class ~ ., data = two_class_dat) %>%
step_normalize(A, B)
knn_model <-
nearest_neighbor(
mode = "classification",
neighbors = tune("K"),
weight_func = tune(),
dist_power = tune("exponent")
) %>%
set_engine("kknn")
two_class_wflow <-
workflow() %>%
add_recipe(two_class_rec) %>%
add_model(knn_model)
two_class_set <-
parameters(two_class_wflow) %>%
update(K = neighbors(c(1, 50))) %>%
update(exponent = dist_power(c(1 / 10, 2)))
set.seed(2494)
two_class_grid <-
two_class_set %>%
grid_max_entropy(size = 10)
class_metrics <- metric_set(roc_auc, accuracy, kap, mcc)
knn_results <-
tune_grid(
two_class_wflow,
resamples = data_folds,
grid = two_class_grid,
metrics = class_metrics
)
knn_set <- two_class_set
knn_gp <-
tune:::fit_gp(collect_metrics(knn_results),
knn_set,
"accuracy",
control_bayes()
)
saveRDS(
knn_results,
file = testthat::test_path("knn_results.rds"),
version = 2,
compress = "xz"
)
saveRDS(
two_class_set,
file = testthat::test_path("knn_set.rds"),
version = 2,
compress = "xz"
)
saveRDS(
two_class_grid,
file = testthat::test_path("knn_grid.rds"),
version = 2,
compress = "xz"
)
saveRDS(
knn_set,
file = testthat::test_path("knn_set.rds"),
version = 2,
compress = "xz"
)
saveRDS(
knn_gp,
file = testthat::test_path("knn_gp.rds"),
version = 2,
compress = "xz"
)
svm_model <-
svm_poly(
mode = "classification",
cost = tune(),
degree = tune("%^*
scale_factor = tune()
) %>%
set_engine("kernlab")
two_class_wflow <-
workflow() %>%
add_recipe(two_class_rec) %>%
add_model(svm_model)
two_class_set <-
parameters(two_class_wflow) %>%
update(cost = cost(c(-10, 4)))
set.seed(2494)
two_class_grid <-
two_class_set %>%
grid_max_entropy(size = 5)
class_only <- metric_set(accuracy, kap, mcc)
svm_results <-
tune_grid(
two_class_wflow,
resamples = data_folds,
grid = two_class_grid,
metrics = class_only,
control = control_grid(save_pred = TRUE)
)
saveRDS(
svm_results,
file = testthat::test_path("svm_results.rds"),
version = 2,
compress = "xz"
)
two_class_reg_grid <-
two_class_set %>%
grid_regular(levels = c(5, 4, 2))
svm_reg_results <-
tune_grid(
two_class_wflow,
resamples = data_folds,
grid = two_class_reg_grid,
metrics = class_only,
control = control_grid(save_pred = TRUE)
)
saveRDS(
svm_reg_results,
file = testthat::test_path("svm_reg_results.rds"),
version = 2,
compress = "xz"
)
set.seed(7898)
data_folds <- vfold_cv(mtcars, repeats = 2)
base_rec <-
recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_predictors())
disp_rec <-
base_rec %>%
step_bs(disp, degree = tune(), deg_free = tune()) %>%
step_bs(wt, degree = tune("wt degree"), deg_free = tune("wt df"))
lm_model <-
linear_reg(mode = "regression") %>%
set_engine("lm")
cars_wflow <-
workflow() %>%
add_recipe(disp_rec) %>%
add_model(lm_model)
cars_set <-
cars_wflow %>%
parameters %>%
update(degree = degree_int(1:2)) %>%
update(deg_free = deg_free(c(2, 10))) %>%
update(`wt degree` = degree_int(1:2)) %>%
update(`wt df` = deg_free(c(2, 10)))
set.seed(255)
cars_grid <-
cars_set %>%
grid_regular(levels = c(3, 2, 3, 2))
rcv_results <-
tune_grid(
cars_wflow,
resamples = data_folds,
grid = cars_grid,
control = control_grid(verbose = FALSE, save_pred = TRUE)
)
saveRDS(
rcv_results,
file = testthat::test_path("rcv_results.rds"),
version = 2,
compress = "xz"
)
set.seed(6735)
folds <- vfold_cv(mtcars, v = 3)
rec <- recipe(mpg ~ ., data = mtcars)
mod <- linear_reg() %>%
set_engine("lm")
lm_resamples <- fit_resamples(mod, rec, folds)
lm_resamples
saveRDS(
lm_resamples,
file = testthat::test_path("lm_resamples.rds"),
version = 2,
compress = "xz"
)
set.seed(7898)
folds <- vfold_cv(mtcars, v = 2)
rec <- recipe(mpg ~ ., data = mtcars) %>%
step_normalize(all_predictors()) %>%
step_ns(disp, deg_free = tune())
mod <- linear_reg(mode = "regression") %>%
set_engine("lm")
wflow <- workflow() %>%
add_recipe(rec) %>%
add_model(mod)
set.seed(2934)
lm_bayes <- tune_bayes(wflow, folds, initial = 4, iter = 3)
saveRDS(
lm_bayes,
file = testthat::test_path("lm_bayes.rds"),
version = 2,
compress = "xz"
)
sessioninfo::session_info()
if (!interactive()) {
q("no")
}
|
bvecpost <- function(object) {
if (object[["model"]][["tvp"]]) {
object <- .bvectvpalg(object)
} else {
object <- .bvecalg(object)
}
k <- NCOL(object[["data"]][["Y"]])
p <- object[["model"]][["endogen"]][["lags"]]
s <- 0
tt <- NROW(object[["data"]][["Y"]])
r <- object[["model"]][["rank"]]
if (!is.null(object[["posteriors"]][["sigma"]][["lambda"]])) {
sigma_lambda <- matrix(diag(NA_real_, k), k * k, object[["model"]][["iterations"]])
sigma_lambda[which(lower.tri(diag(1, k))), ] <- object[["posteriors"]][["sigma"]][["lambda"]]
sigma_lambda[which(upper.tri(diag(1, k))), ] <- object[["posteriors"]][["sigma"]][["lambda"]]
object[["posteriors"]][["sigma"]][["lambda"]] <- sigma_lambda
rm(sigma_lambda)
}
A0 <- NULL
if (object[["model"]][["structural"]]) {
pos <- which(lower.tri(diag(1, k)))
draws <- object[["model"]][["iterations"]]
if (is.list(object$posteriors[["a0"]])) {
if ("coeffs" %in% names(object[["posteriors"]][["a0"]])) {
if (object[["model"]][["tvp"]]) {
A0[["coeffs"]] <- matrix(diag(1, k), k * k * tt, object[["model"]][["iterations"]])
A0[["coeffs"]][rep(0:(tt - 1) * k * k, each = length(pos)) + rep(pos, tt), ] <- object[["posteriors"]][["a0"]][["coeffs"]]
} else {
A0[["coeffs"]] <- matrix(diag(1, k), k * k, object[["model"]][["iterations"]])
A0[["coeffs"]][rep(0:(draws - 1) * k * k, each = length(pos)) + pos ] <- object[["posteriors"]][["a0"]][["coeffs"]]
}
}
if ("sigma" %in% names(object[["posteriors"]][["a0"]])) {
A0[["sigma"]] <- matrix(0, k * k, object[["model"]][["iterations"]])
A0[["sigma"]][pos, ] <- object[["posteriors"]][["a0"]][["sigma"]]
}
if ("lambda" %in% names(object[["posteriors"]][["a0"]])) {
A0[["lambda"]] <- matrix(diag(1, k), k * k, object[["model"]][["iterations"]])
A0[["lambda"]][pos, ] <- object[["posteriors"]][["a0"]][["lambda"]]
A0[["lambda"]][-pos, ] <- NA_real_
}
} else {
A0 <- matrix(diag(1, k), k * k, object[["model"]][["iterations"]])
A0[pos, ] <- object[["posteriors"]][["a0"]]
}
}
tsp_temp <- stats::tsp(object[["data"]][["Y"]])
w <- stats::ts(as.matrix(object[["data"]][["W"]][, 1:k]), class = c("mts", "ts", "matrix"))
stats::tsp(w) <- tsp_temp
dimnames(w)[[2]] <- dimnames(object[["data"]][["W"]])[[2]][1:k]
m <- 0
if (!is.null(object[["model"]][["exogen"]])) {
m <- length(object[["model"]][["exogen"]][["variables"]])
w_x <- stats::ts(as.matrix(object[["data"]][["W"]][, k + 1:m]), class = c("mts", "ts", "matrix"))
stats::tsp(w_x) <- tsp_temp
dimnames(w_x)[[2]] <- dimnames(object[["data"]][["W"]])[[2]][k + 1:m]
} else {
w_x <- NULL
}
if (!is.null(object[["model"]][["deterministic"]][["restricted"]])) {
n_r <- length(object[["model"]][["deterministic"]][["restricted"]])
w_d <- stats::ts(as.matrix(object[["data"]][["W"]][, k + m + 1:n_r]), class = c("mts", "ts", "matrix"))
stats::tsp(w_d) <- tsp_temp
dimnames(w_d)[[2]] <- dimnames(object[["data"]][["W"]])[[2]][k + m + n_r]
} else {
w_d <- NULL
}
x <- NULL
x_x <- NULL
x_d <- NULL
if (!is.null(object[["data"]][["X"]])) {
if (!is.null(object[["model"]][["endogen"]])) {
if (object[["model"]][["endogen"]][["lags"]] > 1) {
x <- stats::ts(as.matrix(object[["data"]][["X"]][, 1:(k * (p - 1))]), class = c("mts", "ts", "matrix"))
stats::tsp(x) <- tsp_temp
dimnames(x)[[2]] <- dimnames(object[["data"]][["X"]])[[2]][1:(k * (p - 1))]
}
}
if (!is.null(object[["model"]][["exogen"]])) {
s <- object[["model"]][["exogen"]][["lags"]]
x_x <- stats::ts(as.matrix(object[["data"]][["X"]][, k * (p - 1) + 1:(m * s)]), class = c("mts", "ts", "matrix"))
stats::tsp(x_x) <- tsp_temp
dimnames(x_x)[[2]] <- dimnames(object[["data"]][["X"]])[[2]][(k * (p - 1)) + 1:(m * s)]
}
if (!is.null(object[["model"]][["deterministic"]][["unrestricted"]])) {
n_ur <- length(object[["model"]][["deterministic"]][["unrestricted"]])
x_d <- stats::ts(as.matrix(object[["data"]][["X"]][, k * (p - 1) + m * s + 1:n_ur]), class = c("mts", "ts", "matrix"))
stats::tsp(x_d) <- tsp_temp
dimnames(x_d)[[2]] <- dimnames(object[["data"]][["X"]])[[2]][k * (p - 1) + m * s + 1:n_ur]
}
}
object <- bvec(y = object[["data"]][["Y"]],
w = w,
w_x = w_x,
w_d = w_d,
alpha = object[["posteriors"]][["alpha"]],
beta = object[["posteriors"]][["beta"]],
beta_x = object[["posteriors"]][["beta_x"]],
beta_d = object[["posteriors"]][["beta_d"]],
Pi = NULL, Pi_x = NULL, Pi_d = NULL,
x = x,
x_x = x_x,
x_d = x_d,
r = r,
A0 = A0,
Gamma = object[["posteriors"]][["gamma"]],
Upsilon = object[["posteriors"]][["upsilon"]],
C = object[["posteriors"]][["c"]],
Sigma = object[["posteriors"]][["sigma"]],
data = NULL, exogen = NULL)
return(object)
}
|
simulate.ergmm<-function(object, nsim=1, seed=NULL,...){
extraneous.argcheck(...)
old.seed <- .save_set_seed(seed)
l<-list()
for(i in seq_len(nsim)){
iter<-floor(runif(1,1,object[["control"]][["sample.size"]]+1))
l[[i]]<-sim.1.ergmm(object[["model"]],object[["sample"]][[iter]],object[["prior"]])
}
.restore_set_seed(old.seed)
if(nsim > 1){
l <- list(formula = object[["model"]][["formula"]], networks = l,
stats = NULL, coef=NULL)
attr(l,"class")<-"network.list"
}else{
l <- l[[1]]
}
return(l)
}
simulate.ergmm.model<-function(object,nsim=1,seed=NULL,par,prior=list(),...){
extraneous.argcheck(...)
old.seed <- .save_set_seed(seed)
l<-list()
for(i in seq_len(nsim)){
l[[i]]<-sim.1.ergmm(object,par,prior)
}
.restore_set_seed(old.seed)
if(nsim==1) return(l[[1]])
else{
attr(l,"class")<-"network.list"
return(l)
}
}
sim.1.ergmm<-function(model,par,prior=list()){
nv<-network.size(model[["Yg"]])
mypar<-par
if(length(model[["X"]])>0 && is.null(mypar[["beta"]]))
mypar[["beta"]]<-rnorm(length(model[["X"]]),prior[["beta.mean"]],sqrt(prior[["beta.var"]]))
if(model[["d"]]>0 && is.null(mypar[["Z"]])){
if(model[["G"]]>0){
if(is.null(mypar[["Z.mean"]]))
mypar[["Z.mean"]]<-matrix(rnorm(model[["G"]]*model[["d"]],0,sqrt(prior[["Z.mean.var"]])),nrow=model[["G"]])
if(is.null(mypar[["Z.K"]]))
mypar[["Z.K"]]<-sample(seq_len(model[["G"]]),nv,replace=TRUE)
}
if(is.null(mypar[["Z.var"]]))
mypar[["Z.var"]]<-prior[["Z.var"]]*prior[["Z.var.df"]]/rchisq(max(model[["G"]],1),prior[["Z.var.df"]])
mypar[["Z"]]<-matrix(rnorm(nv*model[["d"]],
if(model[["G"]]>0) mypar[["Z.mean"]][mypar[["Z.K"]],] else 0,
if(model[["G"]]>0) mypar[["Z.var"]][mypar[["Z.K"]]] else mypar[["Z.var"]]
),nrow=nv)
}
if(model[["sociality"]] && is.null(mypar[["sociality"]])){
if(is.null(mypar[["sociality.var"]]))
mypar[["sociality.var"]]<-with(prior,sociality.var*sociality.var.df/rchisq(1,sociality.var.df))
model[["sociality"]]<-rnorm(nv,0,sqrt(mypar[["sociality.var"]]))
}
if(model[["sender"]] && is.null(mypar[["sender"]])){
if(is.null(mypar[["sender.var"]]))
mypar[["sender.var"]]<-with(prior,sender.var*sender.var.df/rchisq(1,sender.var.df))
mypar[["sender"]]<-rnorm(nv,0,sqrt(mypar[["sender.var"]]))
}
if(model[["receiver"]] && is.null(mypar[["receiver"]])){
if(is.null(mypar[["receiver.var"]]))
mypar[["receiver.var"]]<-with(prior,receiver.var*receiver.var.df/rchisq(1,receiver.var.df))
mypar[["receiver"]]<-rnorm(nv,0,sqrt(mypar[["receiver.var"]]))
}
if(model[["dispersion"]] && is.null(mypar[["dispersion"]])){
mypar[["dispersion"]]<-with(prior,dispersion*dispersion.df/rchisq(1,dispersion.df))
}
eta<-ergmm.eta(model,mypar)
sm<-rsm.fs[[model[["familyID"]]]](eta,dispersion=mypar[["dispersion"]],fam.par=model[["fam.par"]])
if(!has.loops(model[["Yg"]]))
diag(sm)<-0
net<-with(model,as.network.matrix(sm,matrix.type="adjacency",
directed=is.directed(Yg),
loops=has.loops(Yg)))
if(!is.null(model[["response"]]))
net<-set.edge.value(net,model[["response"]],sm)
attr(net,"ergmm.par")<-mypar
net
}
|
"test.W" <-
function(Y,
nb,
xy,
MEM.autocor = c("all", "positive", "negative"),
f = NULL,
...) {
.Deprecated(new = "listw.select", package = "adespatial",
msg = "This function is now deprecated. Please try the new 'listw.select' function.")
mycall <- pairlist(...)
res <- list()
MEM.autocor <- match.arg(MEM.autocor)
if (!(is.null(f))) {
nbdist <- nbdists(nb, as.matrix(xy))
if (!(is.null(mycall))) {
param <- expand.grid(as.list(mycall))
m1 <- match(names(param), names(formals(f)))
for (i in 1:nrow(param)) {
formals(f)[m1] <- unclass(param[i,])
res[[i]] <-
scores.listw(nb2listw(
nb,
style = "B",
glist = lapply(nbdist, f),
zero.policy = TRUE
),
MEM.autocor = MEM.autocor)
}
}
else {
res[[1]] <-
scores.listw(nb2listw(nb, style = "B", glist = lapply(nbdist, f)),
MEM.autocor = MEM.autocor)
}
}
else {
res[[1]] <-
scores.listw(nb2listw(nb, style = "B"), MEM.autocor = MEM.autocor)
}
res2 <-
lapply(res, function(x)
ortho.AIC(
Y = Y,
X = x,
ord.var = TRUE
))
if (!(is.null(mycall))) {
res3 <-
data.frame(AICc = unlist(lapply(res2, function(x)
min(x[[1]], na.rm = TRUE))), NbVar = unlist(lapply(res2, function(x)
which.min(x[[1]]))))
res3 <- cbind(param, res3)
}
else{
res3 <-
data.frame(AICc = unlist(lapply(res2, function(x)
min(x[[1]], na.rm = TRUE))), NbVar = unlist(lapply(res2, function(x)
which.min(x[[1]]))))
}
thebest <- which.min(res3$AICc)
cat (paste("\n\nAICc for the null model:", res2[[thebest]]$AICc0, "\n"))
cat ("\nBest spatial model:\n")
print(res3[thebest,])
return(list(all = res3, best = list(MEM = res[[thebest]], AIC = res2[[thebest]])))
}
|
test_that("translate_Vensim_graph_func() returns the expected object", {
test_equation <- "WITHLOOKUP(Price,([(0,10)-(50,100)],(5,100),(10,73),(15,57),(20,45),(25,35),(30,28),(35,22),(40,18),(45,14),(50,10)))"
actual_obj <- translate_Vensim_graph_func(test_equation)
expected_obj <- list(
input = "Price",
graph_fun = approxfun(
x = seq(5, 50, 5),
y = c(100, 73, 57, 45, 35, 28, 22, 18, 14, 10),
method = "linear",
yleft = 100,
yright = 10))
comparison_result <- all.equal(actual_obj, expected_obj,
check.environment = FALSE)
expect_equal(comparison_result, TRUE)
})
test_that("translate_graph_func() returns the expected object", {
test_gf_xml <- xml2::read_xml('
<root>
<doc1 xmlns = "http://docs.oasis-open.org/xmile/ns/XMILE/v1.0">
<aux name="demand price schedule">
<eqn>Price</eqn>
<gf>
<xscale min="5" max="50"/>
<yscale min="0" max="2"/>
<ypts>100,73,57,45,35,28,22,18,14,10</ypts>
</gf>
</aux>
</doc1>
</root>')%>%
xml2::xml_find_first(".//d1:gf")
actual_obj <- translate_graph_func(test_gf_xml)
expected_obj <- approxfun(
x = seq(5, 50, 5),
y = c(100, 73, 57, 45, 35, 28, 22, 18, 14, 10),
method = "linear",
yleft = 100,
yright = 10)
comparison_result <- all.equal(actual_obj, expected_obj)
expect_equal(comparison_result, TRUE)
})
|
write_out_table<-function(table,table_name,outdir, relevant_table_columns){
if(!"id" %in% relevant_table_columns){
relevant_table_columns<-c(relevant_table_columns, "id")
}
if(!"table_name" %in% relevant_table_columns){
relevant_table_columns<-c(relevant_table_columns, "id", "table_name")
}
if(!any(c("id", "table_name") %in% names(table))){
PEcAn.logger::logger.severe("table provided doesn't have a table_name or id column or both. ")
}
table<-table[ , (relevant_table_columns)]
write.table(table, file=paste(outdir,"/query_of_",table_name ,sep=""),row.names = FALSE,sep="|")
}
|
NULL
library(grid)
library(gridBase)
c_gpar <- function(gp, ...){
x <- list(...)
do.call(gpar, c(gp, x[!names(x) %in% names(gp)]))
}
lo <- function (rown, coln, nrow, ncol, cellheight = NA, cellwidth = NA
, treeheight_col, treeheight_row, legend, main = NULL, sub = NULL, info = NULL
, annTracks, annotation_legend
, fontsize, fontsize_row, fontsize_col, gp = gpar()){
annotation_colors <- annTracks$colors
row_annotation <- annTracks$annRow
annotation <- annTracks$annCol
gp0 <- gp
coln_height <- unit(10, "bigpts")
if(!is.null(coln)){
longest_coln = which.max(nchar(coln))
coln_height <- coln_height + unit(1.1, "grobheight", textGrob(coln[longest_coln], rot = 90, gp = c_gpar(gp, fontsize = fontsize_col)))
}
rown_width <- rown_width_min <- unit(10, "bigpts")
if(!is.null(rown)){
longest_rown = which.max(nchar(rown))
rown_width <- rown_width_min + unit(1.2, "grobwidth", textGrob(rown[longest_rown], gp = c_gpar(gp, fontsize = fontsize_row)))
}
gp = c_gpar(gp, fontsize = fontsize)
if( !is_NA(legend) ){
longest_break = which.max(nchar(as.character(legend)))
longest_break = unit(1.1, "grobwidth", textGrob(as.character(legend)[longest_break], gp = gp))
min_lw = unit(1.1, "grobwidth", textGrob("-00.00", gp = gp))
longest_break = max(longest_break, min_lw)
title_length = unit(1.1, "grobwidth", textGrob("Scale", gp = c_gpar(gp0, fontface = "bold")))
legend_width = unit(12, "bigpts") + longest_break * 1.2
legend_width = max(title_length, legend_width)
}
else{
legend_width = unit(0, "bigpts")
}
.annLegend.dim <- function(annotation, fontsize){
longest_ann <- unlist(lapply(annotation, names))
longest_ann <- longest_ann[which.max(nchar(longest_ann))]
annot_legend_width = unit(1, "grobwidth", textGrob(longest_ann, gp = gp)) + unit(10, "bigpts")
annot_legend_title <- names(annotation)[which.max(nchar(names(annotation)))]
annot_legend_title_width = unit(1, "grobwidth", textGrob(annot_legend_title, gp = c_gpar(gp, fontface = "bold")))
max(annot_legend_width, annot_legend_title_width) + unit(5, "bigpts")
}
if( !is_NA(annotation) ){
annot_height = unit(ncol(annotation) * (8 + 2) + 2, "bigpts")
}
else{
annot_height = unit(0, "bigpts")
}
if ( !is_NA(row_annotation) ) {
row_annot_width = unit(ncol(row_annotation) * (8 + 2) + 2, "bigpts")
}
else {
row_annot_width = unit(0, "bigpts")
}
annot_legend_width <-
if( annotation_legend && !is_NA(annotation_colors) ){
.annLegend.dim(annotation_colors, fontsize)
}else unit(0, "bigpts")
treeheight_col = unit(treeheight_col, "bigpts") + unit(5, "bigpts")
treeheight_row = unit(treeheight_row, "bigpts") + unit(5, "bigpts")
main_height <- if(!is.null(main)) unit(1, "grobheight", main) + unit(20, "bigpts") else unit(0, "bigpts")
sub_height <- if(!is.null(sub)) unit(1, "grobheight", sub) + unit(10, "bigpts") else unit(0, "bigpts")
if( !is.null(info) ){
info_height <- unit(1, "grobheight", info) + unit(20, "bigpts")
info_width <- unit(1, "grobwidth", info) + unit(10, "bigpts")
}else{
info_height <- unit(0, "bigpts")
info_width <- unit(0, "bigpts")
}
if(is.na(cellwidth)){
matwidth = unit(1, "npc") - rown_width - legend_width - row_annot_width - treeheight_row - annot_legend_width
}
else{
matwidth = unit(cellwidth * ncol, "bigpts")
}
if(is.na(cellheight)){
matheight = unit(1, "npc") - treeheight_col - annot_height - main_height - coln_height - sub_height - info_height
if( is.na(cellwidth) && !is.null(rown) ){
cellheight <- convertHeight(unit(1, "grobheight", rectGrob(0,0, matwidth, matheight)), "bigpts", valueOnly = T) / nrow
fontsize_row <- convertUnit(min(unit(fontsize_row, 'points'), unit(0.6*cellheight, 'bigpts')), 'points')
rown_width <- rown_width_min + unit(1.2, "grobwidth", textGrob(rown[longest_rown], gp = c_gpar(gp0, fontsize = fontsize_row)))
matwidth <- unit(1, "npc") - rown_width - legend_width - row_annot_width - treeheight_row - annot_legend_width
}
}
else{
matheight = unit(cellheight * nrow, "bigpts")
}
unique.name <- vplayout(NULL)
lo <- grid.layout(nrow = 7, ncol = 6
, widths = unit.c(treeheight_row, row_annot_width, matwidth, rown_width, legend_width, annot_legend_width)
, heights = unit.c(main_height, treeheight_col, annot_height, matheight, coln_height, sub_height, info_height))
hvp <- viewport( name=paste('aheatmap', unique.name, sep='-'), layout = lo)
pushViewport(hvp)
vplayout('mat')
cellwidth = convertWidth(unit(1, "npc"), "bigpts", valueOnly = T) / ncol
cellheight = convertHeight(unit(1, "npc"), "bigpts", valueOnly = T) / nrow
upViewport()
height <- as.numeric(convertHeight(sum(lo$height), "inches"))
width <- as.numeric(convertWidth(sum(lo$width), "inches"))
mindim = min(cellwidth, cellheight)
return( list(width=width, height=height, vp=hvp, mindim=mindim, cellwidth=cellwidth, cellheight=cellheight) )
}
draw_dendrogram = function(hc, horizontal = T){
.draw.dendrodram <- function(hc, ...){
( opar <- par(plt = gridPLT(), new = TRUE) )
on.exit(par(opar))
if( getOption('verbose') ) grid.rect(gp = gpar(col = "blue", lwd = 2))
if( !is(hc, 'dendrogram') )
hc <- as.dendrogram(hc)
plot(hc, horiz=!horizontal, xaxs="i", yaxs="i", axes=FALSE, leaflab="none", ...)
}
if(!horizontal)
pushViewport( viewport(x=0,y=0,width=0.9,height=1,just=c("left", "bottom")) )
else
pushViewport( viewport(x=0,y=0.1,width=1,height=0.9,just=c("left", "bottom")) )
on.exit(upViewport())
.draw.dendrodram(hc)
}
draw_matrix = function(matrix, border_color, txt = NULL, gp = gpar()){
n = nrow(matrix)
m = ncol(matrix)
x = (1:m)/m - 1/2/m
y = (1:n)/n - 1/2/n
if( !is.null(txt) ) txt[is.na(txt)] <- ''
for(i in 1:m){
grid.rect(x = x[i], y = y, width = 1/m, height = 1/n, gp = gpar(fill = matrix[,i], col = border_color))
if( !is.null(txt) ){
grid.text(label=txt[, i],
x=x[i],
y=y,
rot=0,
check.overlap= FALSE,
default.units= 'npc',
gp=gp,
)
}
}
}
draw_colnames = function(coln, gp = gpar()){
m = length(coln)
width <- m * unit(1, "grobwidth", textGrob(coln[i <- which.max(nchar(coln))], gp = gp))
width <- as.numeric(convertWidth(width, "inches"))
gwidth <- as.numeric(convertWidth(unit(1, 'npc'), "inches"))
y <- NULL
if( gwidth < width ){
rot <- 270
vjust <- 0.5
hjust <- 0
y <- unit(1, 'npc') - unit(5, 'bigpts')
}else{
rot <- 0
vjust <- 0.5
hjust <- 0.5
}
if( is.null(y) ){
height <- unit(1, "grobheight", textGrob(coln[i], vjust = vjust, hjust = hjust, rot=rot, gp = gp))
y <- unit(1, 'npc') - height
}
x = (1:m)/m - 1/2/m
grid.text(coln, x = x, y = y, vjust = vjust, hjust = hjust, rot=rot, gp = gp)
}
draw_rownames = function(rown, gp = gpar()){
n = length(rown)
y = (1:n)/n - 1/2/n
grid.text(rown, x = unit(5, "bigpts"), y = y, vjust = 0.5, hjust = 0, gp = gp)
}
draw_legend = function(color, breaks, legend, gp = gpar()){
height = min(unit(1, "npc"), unit(150, "bigpts"))
pushViewport(viewport(x = 0, y = unit(1, "npc"), just = c(0, 1), height = height))
legend_pos = (legend - min(breaks)) / (max(breaks) - min(breaks))
breaks = (breaks - min(breaks)) / (max(breaks) - min(breaks))
h = breaks[-1] - breaks[-length(breaks)]
grid.rect(x = 0, y = breaks[-length(breaks)], width = unit(10, "bigpts"), height = h, hjust = 0, vjust = 0, gp = gpar(fill = color, col = "
grid.text(legend, x = unit(12, "bigpts"), y = legend_pos, hjust = 0, gp = gp)
upViewport()
}
convert_annotations = function(annotation, annotation_colors){
x <- sapply(seq_along(annotation), function(i){
a = annotation[[i]]
b <- attr(a, 'color')
if( is.null(b) )
b = annotation_colors[[names(annotation)[i]]]
if(class(a) %in% c("character", "factor")){
a = as.character(a)
if ( FALSE && length(setdiff(names(b), a)) > 0){
stop(sprintf("Factor levels on variable %s do not match with annotation_colors", names(annotation)[i]))
}
b[match(a, names(b))]
}
else{
a = cut(a, breaks = 100)
ccRamp(b, 100)[a]
}
})
colnames(x) <- names(annotation)
return(x)
}
draw_annotations = function(converted_annotations, border_color, horizontal=TRUE){
n = ncol(converted_annotations)
m = nrow(converted_annotations)
if( horizontal ){
x = (1:m)/m - 1/2/m
y = cumsum(rep(8, n)) - 4 + cumsum(rep(2, n))
for(i in 1:m){
grid.rect(x = x[i], unit(y[n:1], "bigpts"), width = 1/m, height = unit(8, "bigpts"), gp = gpar(fill = converted_annotations[i, ], col = border_color))
}
}else{
x = cumsum(rep(8, n)) - 4 + cumsum(rep(2, n))
y = (1:m)/m - 1/2/m
for (i in 1:m) {
grid.rect(x = unit(x[1:n], "bigpts"), y=y[i], width = unit(8, "bigpts"),
height = 1/m, gp = gpar(fill = converted_annotations[i,]
, col = border_color))
}
}
}
draw_annotation_legend = function(annotation_colors, border_color, gp = gpar()){
y = unit(1, "npc")
text_height = convertHeight(unit(1, "grobheight", textGrob("FGH", gp = gp)), "bigpts")
for(i in names(annotation_colors)){
grid.text(i, x = 0, y = y, vjust = 1, hjust = 0, gp = c_gpar(gp, fontface = "bold"))
y = y - 1.5 * text_height
acol <- annotation_colors[[i]]
if( attr(acol, 'afactor') ){
sapply(seq_along(acol), function(j){
grid.rect(x = unit(0, "npc"), y = y, hjust = 0, vjust = 1, height = text_height, width = text_height, gp = gpar(col = border_color, fill = acol[j]))
grid.text(names(acol)[j], x = text_height * 1.3, y = y, hjust = 0, vjust = 1, gp = gp)
y <<- y - 1.5 * text_height
})
}
else{
yy = y - 4 * text_height + seq(0, 1, 0.01) * 4 * text_height
h = 4 * text_height * 0.02
grid.rect(x = unit(0, "npc"), y = yy, hjust = 0, vjust = 1, height = h, width = text_height, gp = gpar(col = "
txt = c(tail(names(acol),1), head(names(acol))[1])
yy = y - c(0, 3) * text_height
grid.text(txt, x = text_height * 1.3, y = yy, hjust = 0, vjust = 1, gp = gp)
y = y - 4.5 * text_height
}
y = y - 1.5 * text_height
}
}
vplayout <- function ()
{
graphic.name <- NULL
.index <- 0L
function(x, y, verbose = getOption('verbose') ){
if( is.null(x) ){
.index <<- .index + 1L
graphic.name <<- paste0("AHEATMAP.VP.", .index)
return(graphic.name)
}
name <- NULL
if( !is.numeric(x) ){
name <- paste(graphic.name, x, sep='-')
if( !missing(y) && is(y, 'viewport') ){
y$name <- name
return(pushViewport(y))
}
if( !is.null(tryViewport(name, verbose=verbose)) )
return()
switch(x
, main={x<-1; y<-3;}
, ctree={x<-2; y<-3;}
, cann={x<-3; y<-3;}
, rtree={x<-4; y<-1;}
, rann={x<-4; y<-2;}
, mat={x<-4; y<-3;}
, rnam={x<-4; y<-4;}
, leg={x<-4; y<-5;}
, aleg={x<-4; y<-6;}
, cnam={x<-5; y<-3;}
, sub={x<-6; y<-3;}
, info={x<-7; y<-3;}
, stop("aheatmap - invalid viewport name")
)
}
if( verbose ) message("vp - create ", name)
pushViewport(viewport(layout.pos.row = x, layout.pos.col = y, name=name))
}
}
vplayout <- vplayout()
gfile <- function(filename, width, height, ...){
r = regexpr("\\.[a-zA-Z]*$", filename)
if(r == -1) stop("Improper filename")
ending = substr(filename, r + 1, r + attr(r, "match.length"))
f = switch(ending,
pdf = function(x, ...) pdf(x, ...),
svg = function(x, ...) svg(x, ...),
png = function(x, ...) png(x, ...),
jpeg = function(x, ...) jpeg(x, ...),
jpg = function(x, ...) jpeg(x, ...),
tiff = function(x, ...) tiff(x, compression = "lzw", ...),
bmp = function(x, ...) bmp(x, ...),
stop("File type should be: pdf, svg, png, bmp, jpg, tiff")
)
args <- c(list(filename), list(...))
if( !missing(width) ){
args$width <- as.numeric(width)
args$height <- as.numeric(height)
if( !ending %in% c('pdf','svg') && is.null(args[['res']]) ){
args$units <- "in"
args$res <- 300
}
}
do.call('f', args)
}
d <- function(x){
if( is.character(x) ) x <- rmatrix(dim(x))
nvp <- 0
on.exit(upViewport(nvp), add=TRUE)
lo <- grid.layout(nrow = 4, ncol = 3)
hvp <- viewport( name=basename(tempfile()), layout = lo)
pushViewport(hvp)
nvp <- nvp + 1
pushViewport(viewport(layout.pos.row = 2, layout.pos.col = 1))
nvp <- nvp + 1
w = convertWidth(unit(1, "npc"), "bigpts", valueOnly = T) / 10
h = convertHeight(unit(1, "npc"), "bigpts", valueOnly = T) / 10
grid.rect()
upViewport()
nvp <- nvp - 1
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 2))
nvp <- nvp + 1
pushViewport( viewport(x=0,y=0,width=0.9,height=0.9,just=c("left", "bottom")) )
nvp <- nvp + 1
( opar <- par(plt = gridPLT(), new = TRUE) )
on.exit(par(opar), add=TRUE)
hc <- hclust(dist(x))
plot(as.dendrogram(hc), xaxs="i", yaxs="i", axes=FALSE, leaflab="none")
invisible(basename(tempfile()))
}
heatmap_motor = function(matrix, border_color, cellwidth, cellheight
, tree_col, tree_row, treeheight_col, treeheight_row
, filename=NA, width=NA, height=NA
, breaks, color, legend, txt = NULL
, annTracks, annotation_legend=TRUE
, new=TRUE, fontsize, fontsize_row, fontsize_col
, main=NULL, sub=NULL, info=NULL
, verbose=getOption('verbose')
, gp = gpar()){
annotation_colors <- annTracks$colors
row_annotation <- annTracks$annRow
annotation <- annTracks$annCol
writeToFile <- !is.na(filename)
if( writeToFile ){
gfile(filename)
on.exit(dev.off())
}
vpp <- current.vpPath_patched()
if( is.null(vpp) ){
if( verbose ) message("Detected path: [ROOT]")
mf <- par('mfrow')
new <- if( !identical(mf, c(1L,1L)) ){
if( verbose ) message("Detected mfrow: ", mf[1], " - ", mf[2], ' ... MIXED')
opar <- grid.base.mix(trace=verbose>1)
on.exit( grid.base.mix(opar) )
FALSE
}
else{
if( verbose ){
message("Detected mfrow: ", mf[1], " - ", mf[2])
message("Honouring ", if( missing(new) ) "default "
,"argument `new=", new, '` ... '
, if( new ) "NEW" else "OVERLAY")
}
new
}
}else{
if( verbose ) message("Detected path: ", vpp)
if( missing(new) ){
if( verbose ) message("Missing argument `new` ... OVERLAY")
new <- FALSE
}else if( verbose ) message("Honouring argument `new=", new, '` ... '
, if( new ) "NEW" else "OVERLAY")
}
if( new ){
if( verbose ) message("Call: plot.new")
plot.new()
}
mainGrob <- if( !is.null(main) && !is.grob(main) ) textGrob(main, gp = c_gpar(gp, fontsize = 1.2 * fontsize, fontface="bold"))
subGrob <- if( !is.null(sub) && !is.grob(sub) ) textGrob(sub, gp = c_gpar(gp, fontsize = 0.8 * fontsize))
infoGrob <- if( !is.null(info) && !is.grob(info) ){
grobTree(gList(rectGrob(gp = gpar(fill = "grey80"))
,textGrob(paste(info, collapse=" | "), x=unit(5, 'bigpts'), y=0.5, just='left', gp = c_gpar(gp, fontsize = 0.8 * fontsize))))
}
glo = lo(coln = colnames(matrix), rown = rownames(matrix), nrow = nrow(matrix), ncol = ncol(matrix)
, cellwidth = cellwidth, cellheight = cellheight
, treeheight_col = treeheight_col, treeheight_row = treeheight_row
, legend = legend
, annTracks = annTracks, annotation_legend = annotation_legend
, fontsize = fontsize, fontsize_row = fontsize_row, fontsize_col = fontsize_col
, main = mainGrob, sub = subGrob, info = infoGrob, gp = gp)
if( writeToFile ){
if( verbose ) message("Compute size for file graphic device")
m <- par('mar')
if(is.na(height))
height <- glo$height
if(is.na(width))
width <- glo$width
dev.off()
if( verbose ) message("Resize file graphic device to: ", width, " - ", height)
gfile(filename, width=width, height=height)
if( new ){
if( verbose ) message("Call again plot.new")
op <- par(mar=c(0,0,0,0))
plot.new()
par(op)
}
if( verbose ) message("Push again top viewport")
pushViewport(glo$vp)
if( verbose ) grid.rect(width=unit(glo$width, 'inches'), height=unit(glo$height, 'inches'), gp = gpar(col='blue'))
}
mindim <- glo$mindim
if(mindim < 3) border_color = NA
if (!is_NA(tree_col) && treeheight_col != 0){
vplayout('ctree')
draw_dendrogram(tree_col, horizontal = T)
upViewport()
}
if(!is_NA(tree_row) && treeheight_row !=0){
vplayout('rtree')
draw_dendrogram(tree_row, horizontal = F)
upViewport()
}
fontsize_row <- convertUnit(min(unit(fontsize_row, 'points'), unit(0.6*glo$cellheight, 'bigpts')), 'points')
fontsize_col <- convertUnit(min(unit(fontsize_col, 'points'), unit(0.6*glo$cellwidth, 'bigpts')), 'points')
vplayout('mat')
draw_matrix(matrix, border_color, txt = txt, gp = gpar(fontsize = fontsize_row))
upViewport()
if(length(colnames(matrix)) != 0){
vplayout('cnam')
draw_colnames(colnames(matrix), gp = c_gpar(gp, fontsize = fontsize_col))
upViewport()
}
if(length(rownames(matrix)) != 0){
vplayout('rnam')
draw_rownames(rownames(matrix), gp = c_gpar(gp, fontsize = fontsize_row))
upViewport()
}
if( !is_NA(annotation) ){
vplayout('cann')
draw_annotations(annotation, border_color)
upViewport()
}
if ( !is_NA(row_annotation) ) {
vplayout('rann')
draw_annotations(row_annotation, border_color, horizontal=FALSE)
upViewport()
}
if( annotation_legend && !is_NA(annotation_colors) ){
vplayout('aleg')
draw_annotation_legend(annotation_colors, border_color, gp = c_gpar(gp, fontsize = fontsize))
upViewport()
}
if(!is_NA(legend)){
vplayout('leg')
draw_legend(color, breaks, legend, gp = c_gpar(gp, fontsize = fontsize))
upViewport()
}
if(!is.null(mainGrob)){
vplayout('main')
grid.draw(mainGrob)
upViewport()
}
if(!is.null(subGrob)){
vplayout('sub')
grid.draw(subGrob)
upViewport()
}
if(!is.null(infoGrob)){
vplayout('info')
grid.draw(infoGrob)
upViewport()
}
upViewport()
NULL
}
generate_breaks = function(x, n, center=NA){
if( missing(center) || is_NA(center) )
seq(min(x, na.rm = T), max(x, na.rm = T), length.out = n + 1)
else{
n2 <- ceiling((n+0.5)/2)
M <- max(abs(center - min(x, na.rm = TRUE)), abs(center - max(x, na.rm = TRUE)))
lb <- seq(center-M, center, length.out = n2)
rb <- seq(center, center+M, length.out = n2)
c(lb, rb[-1])
}
}
scale_vec_colours = function(x, col = rainbow(10), breaks = NA){
return(col[as.numeric(cut(x, breaks = breaks, include.lowest = T))])
}
scale_colours = function(mat, col = rainbow(10), breaks = NA){
mat = as.matrix(mat)
return(matrix(scale_vec_colours(as.vector(mat), col = col, breaks = breaks), nrow(mat), ncol(mat), dimnames = list(rownames(mat), colnames(mat))))
}
cutheight <- function(x, n){
if( n <=1 ) return( attr(x, 'height') )
res <- NULL
.heights <- function(subtree, n){
if( is.leaf(subtree) ) return()
if (!(K <- length(subtree)))
stop("non-leaf subtree of length 0")
for( k in 1:K){
res <<- c(res, attr(subtree[[k]], 'height'))
}
if( length(res) < n ){
for( k in 1:K){
.heights(subtree[[k]], n)
}
}
}
.heights(x, n)
res <- sort(res, decreasing=TRUE)
res[n-1]
}
cutdendro <- function(x, n){
if( n <= 1 ) return(x)
x <- dendrapply(x, function(n){
attr(n, 'id') <- digest(attributes(n))
n
})
h <- cutheight(x, n)
cfx <- cut(x, h)
ids <- sapply(cfx$lower, function(sub) attr(sub, 'id'))
dts <- c(lty=2, lwd=1.2, col=8)
a <- dendrapply(x, function(node){
a <- attributes(node)
if( a$id %in% ids || (!is.leaf(node) && any(c(attr(node[[1]], 'id'), attr(node[[2]], 'id')) %in% ids)) )
attr(node, 'edgePar') <- dts
node
})
}
as_treedef <- function(x, ...){
res <- if( is(x, 'hclust') )
list(dendrogram=as.dendrogram(x), dist.method=x$dist.method, method=x$method)
else list(dendrogram=x, ...)
class(res) <- "aheatmap_treedef"
res
}
rev.aheatmap_treedef <- function(x){
x$dendrogram <- rev(x$dendrogram)
x
}
is_treedef <- function(x) is(x, 'aheatmap_treedef')
isLogical <- function(x) isTRUE(x) || identical(x, FALSE)
subset2orginal_idx <- function(idx, subset){
if( is.null(subset) || is.null(idx) ) idx
else{
res <- subset[idx]
attr(res, 'subset') <- idx
res
}
}
cluster_mat = function(mat, param, distfun, hclustfun, reorderfun, na.rm=TRUE, subset=NULL, verbose = FALSE){
parg <- deparse(substitute(param))
Rowv <-
if( is(param, 'hclust') || is(param, 'dendrogram') ){
res <- as_treedef(param)
if( !is.null(subset) ){
warning("Could not directly subset dendrogram/hclust object `", parg
,"`: using subset of the dendrogram's order instead.")
param <- order.dendrogram(res$dendrogram)
}else
return(res)
}else if( is(param, 'silhouette') ){
si <- sortSilhouette(param)
param <- attr(si, 'iOrd')
}
if( is.integer(param) && length(param) > 1 ){
if( !is.null(subset) )
param <- order(match(subset, param))
param
}else{
param <-
if( is.integer(param) )
param
else if( is.null(param) || isLogical(param) )
rowMeans(mat, na.rm=na.rm)
else if( is.numeric(param) ){
if( !is.null(subset) )
param <- param[subset]
param
}else if( is.character(param) || is.list(param) ){
if( length(param) == 0 )
stop("aheatmap - Invalid empty character argument `", parg, "`.")
if( is.null(names(param)) ){
if( length(param) > 3 ){
warning("aheatmap - Only using the three first elements of `", parg, "` for distfun and hclustfun respectively.")
param <- param[1:3]
}
n.allowed <- c('distfun', 'hclustfun', 'reorderfun')
names(param) <- head(n.allowed, length(param))
}
if( 'distfun' %in% names(param) ) distfun <- param[['distfun']]
if( 'hclustfun' %in% names(param) ) hclustfun <- param[['hclustfun']]
if( 'reorderfun' %in% names(param) ) reorderfun <- param[['reorderfun']]
TRUE
}else
stop("aheatmap - Invalid value for argument `", parg, "`. See ?aheatmap.")
d <- if( isString(distfun) ){
distfun <- distfun[1]
corr.methods <- c("pearson", "kendall", "spearman")
av <- c("correlation", corr.methods, "euclidean", "maximum", "manhattan", "canberra", "binary", "minkowski")
i <- pmatch(distfun, av)
if( is_NA(i) )
stop("aheatmap - Invalid dissimilarity method, must be one of: ", str_out(av, Inf))
distfun <- av[i]
if(distfun == "correlation") distfun <- 'pearson'
if(distfun %in% corr.methods){
if( verbose ) message("Using distance method: correlation (", distfun, ')')
d <- dist(1 - cor(t(mat), method = distfun))
attr(d, 'method') <- distfun
d
}else{
if( verbose ) message("Using distance method: ", distfun)
dist(mat, method = distfun)
}
}else if( is(distfun, "dist") ){
if( verbose ) message("Using dist object: ", distfun)
distfun
}else if( is.function(distfun) ){
if( verbose ) message("Using custom dist function")
distfun(mat)
}else
stop("aheatmap - Invalid dissimilarity function: must be a character string, an object of class 'dist', or a function")
hc <- if( is.character(hclustfun) ){
av <- c('ward', 'single', 'complete', 'average', 'mcquitty', 'median', 'centroid')
i <- pmatch(hclustfun, av)
if( is.na(i) )
stop("aheatmap - Invalid clustering method, must be one of: ", paste("'", av, "'", sep='', collapse=', '))
hclustfun <- av[i]
if( verbose ) message("Using clustering method: ", hclustfun)
hclust(d, method=hclustfun)
}else if( is.function(hclustfun) )
hclustfun(d)
else
stop("aheatmap - Invalid clustering function: must be a character string or a function")
dh <- as.dendrogram(hc)
if( is.integer(param) )
dh <- cutdendro(dh, param)
else if( is.numeric(param) && length(param)==nrow(mat) )
dh <- reorderfun(dh, param)
as_treedef(dh, dist.method=hc$dist.method, method=hc$method)
}
}
scale_mat = function(x, scale, na.rm=TRUE){
av <- c("none", "row", "column", 'r1', 'c1')
i <- pmatch(scale, av)
if( is_NA(i) )
stop("scale argument shoud take values: 'none', 'row' or 'column'")
scale <- av[i]
switch(scale, none = x
, row = {
x <- sweep(x, 1L, rowMeans(x, na.rm = na.rm), check.margin = FALSE)
sx <- apply(x, 1L, sd, na.rm = na.rm)
sweep(x, 1L, sx, "/", check.margin = FALSE)
}
, column = {
x <- sweep(x, 2L, colMeans(x, na.rm = na.rm), check.margin = FALSE)
sx <- apply(x, 2L, sd, na.rm = na.rm)
sweep(x, 2L, sx, "/", check.margin = FALSE)
}
, r1 = sweep(x, 1L, rowSums(x, na.rm = na.rm), '/', check.margin = FALSE)
, c1 = sweep(x, 2L, colSums(x, na.rm = na.rm), '/', check.margin = FALSE)
)
}
.Rd.seed <- new.env()
round.pretty <- function(x, min=2){
if( is.null(x) ) return(NULL)
n <- 0
y <- round(sort(x), n)
if( all(diff(y)==0) ) return( round(x, min) )
while( any(diff(y)==0) ){
n <- n+1
y <- round(sort(x), n)
}
dec <- max(min,n)
round(x, dec)
}
generate_annotation_colours = function(annotation, annotation_colors, seed=TRUE){
if( is_NA(annotation_colors) ){
annotation_colors = list()
}
if( length(annotation_colors) > 0L
&& length(annotation_colors) <= length(annotation)
&& is.null(names(annotation_colors)) ){
names(annotation_colors) <- head(names(annotation), length(annotation_colors))
}
count = 0
annotationLevels <- list()
anames <- names(annotation)
sapply(seq_along(annotation), function(i){
a <- annotation[[i]]
if( class(annotation[[i]]) %in% c("character", "factor")){
a <- if( is.factor(a) ) levels(a) else unique(a)
count <<- count + nlevels(a)
if( !is.null(anames) && anames[i]!='' )
annotationLevels[[anames[i]]] <<- unique(c(annotationLevels[[anames[i]]], a))
else
annotationLevels <<- c(annotationLevels, list(a))
}else
annotationLevels <<- c(annotationLevels, annotation[i])
})
annotation <- annotationLevels
factor_colors = hcl(h = seq(1, 360, length.out = max(count+1,20)), 100, 70)
rs <- RNGseed()
on.exit({
.Rd.seed$.Random.seed <- getRNG()
RNGseed(rs)
})
if( !is.null(.Rd.seed$.Random.seed) )
setRNG(.Rd.seed$.Random.seed)
if( isTRUE(seed) ){
setRNG(c(401L, 0L, 0L))
set.seed(12345, 'default', 'default')
}
factor_colors <- sample(factor_colors)
res_colors <- list()
for(i in 1:length(annotation)){
ann <- annotation[[i]]
aname <- names(annotation)[i]
acol_def <- res_colors[[aname]]
if( !is.null(acol_def) ) next;
acol <- annotation_colors[[aname]]
if( is.null(acol) ){
res_colors[[aname]] <-
if( class(annotation[[i]]) %in% c("character", "factor")){
lev <- ann
ind = 1:length(lev)
acol <- setNames(factor_colors[ind], lev)
factor_colors = factor_colors[-ind]
acol[which(is.na(names(acol)))] <- NA
acol
}
else{
h = round(runif(1) * 360)
rg <- range(ann, na.rm=TRUE)
if( rg[1] == rg[2] ) rg <- sort(c(0, rg[1]))
setNames(rev(sequential_hcl(2, h, l = c(50, 95))), round.pretty(rg))
}
}else{
acol <-
if( length(acol) == 1 && grepl("^\\$", acol) )
annotation_colors[[substr(acol, 2, nchar(acol))]]
else if( !is.numeric(ann) ){
local({
lev <- ann
{
nl <- length(lev)
acol <- ccPalette(acol, nl)
if( is.null(names(acol)) )
names(acol) <- lev
c(acol_def, acol)
}
})
}else{
acol <- ccPalette(acol)
if( is.null(names(acol)) )
names(acol) <- round.pretty(seq(min(ann, na.rm=TRUE), max(ann, na.rm=TRUE), length.out=length(acol)))
acol
}
if( !is.null(acol) )
res_colors[[aname]] <- acol
}
attr(res_colors[[aname]], 'afactor') <- !is.numeric(ann)
}
res_colors[names(annotation)[!duplicated(names(annotation))]]
}
generate_dimnames <- function(x, n, ref){
if( is_NA(x) ) NULL
else if( length(x) == n ) x
else if( identical(x, 1) || identical(x, 1L) ) 1L:n
else if( isString(x) ){
regexp <- "^/(.+)/([0-9]+)?$"
if( grepl(regexp, x) ){
x <- str_match(x, regexp)
p <- x[1,2]
n <- if( x[1, 3] != '' ) as.numeric(x[1, 2]) else 2L
s <- str_match(ref, p)[, n]
ifelse(is.na(s), ref, s)
}
else paste(x, 1L:n, sep='')
}
else stop("aheatmap - Invalid row/column label. Possible values are:"
, " NA, a vector of correct length, value 1 (or 1L) or single character string.")
}
.make_annotation <- function(x, ord=NULL){
if( !is.data.frame(x) ){
x <- if( is(x, 'ExpressionSet') ) Biobase::pData(x)
else if( is.factor(x) || is.character(x) ) data.frame(Factor=x)
else if( is.numeric(x) ) data.frame(Variable=x)
else
stop("aheatmap - Invalid annotation argument `", substitute(x), "`: must be a data.frame, a factor or a numeric vector")
}
if( !is.null(ord) )
x <- x[ord, , drop = F]
x
}
renderAnnotations <- function(annCol, annRow, annotation_colors, verbose=getOption('verbose')){
annotation <- list()
if( is_NA(annotation_colors) ) annotation_colors <- list()
nc <- length(annCol)
nr <- length(annRow)
flag <- function(x, f){ if( missing(f) ) attr(x, 'flag') else{ attr(x, 'flag') <- f; x} }
if( !is_NA(annCol) ) annotation <- c(annotation, sapply(as.list(annCol), flag, 'col', simplify=FALSE))
if( !is_NA(annRow) ) annotation <- c(annotation, sapply(as.list(annRow), flag, 'row', simplify=FALSE))
if( length(annotation) == 0 ) return( list(annCol=NA, annRow=NA, colors=NA) )
n <- names(annotation)
xnames <- paste('X', 1:length(annotation), sep='')
if( is.null(n) ) names(annotation) <- xnames
else names(annotation)[n==''] <- xnames[n=='']
if( !is.null(cnames <- names(annotation_colors)) ){
m <- str_match(cnames, "^@([^{]+)\\{([^}]+)\\}")
apply(m, 1L, function(x){
if( is_NA(x[1]) ) return()
acol <- annotation_colors[[x[1]]]
if( x[2] != x[3] ){
annotation[[x[3]]] <<- annotation[[x[2]]]
annotation[[x[2]]] <<- NULL
if( !is_NA(acol) )
annotation_colors[[x[3]]] <<- acol
annotation_colors[[x[1]]] <<- NULL
}
})
}
if( verbose ) message("Generate column annotation colours")
annotation_colors <- generate_annotation_colours(annotation, annotation_colors)
if( verbose > 2 ){
message("
print(annotation_colors)
message("
}
res <- list()
lapply(seq_along(annotation), function(i){
aname <- names(annotation)[i]
acol <- annotation_colors[[aname]]
if( is.null(acol) )
stop("aheatmap - No color was defined for annotation '", aname, "'.")
attr(annotation[[i]], 'color') <- acol
if( flag(annotation[[i]]) == 'col' ) res$annCol <<- c(res$annCol, annotation[i])
else res$annRow <<- c(res$annRow, annotation[i])
})
res$annCol <- if( !is.null(res$annCol) ) convert_annotations(res$annCol, annotation_colors) else NA
res$annRow <- if( !is.null(res$annRow) ) convert_annotations(res$annRow, annotation_colors) else NA
res$colors <- annotation_colors
res
}
specialAnnotation <- local({
.empty <- list(list(), list())
.cache <- .empty
function(margin, name, fun, clear=FALSE){
if( isTRUE(clear) ){
if( nargs() > 1L )
stop("Invalid call: no other argument can be passed when `clear=TRUE`")
.cache <<- .empty
return()
}
if( missing(name) && missing(fun) ){
return(.cache[[margin]])
}else if( is.list(name) ){
.cache[[margin]] <<- c(.cache[[margin]], name)
}else if( missing(fun) ){
return(.cache[[margin]][[name]])
}else{
.cache[[margin]][[name]] <<- fun
}
}
})
subset_index <- function(x, margin, subset){
if( is.null(subset) ) return( NULL )
n <- dim(x)[margin]
dn <- dimnames(x)[[margin]]
dt <- if( margin == 1L ) "rows" else "columns"
so <- deparse(substitute(subset))
if( length(subset) == 0 )
stop("Invalid empty subset object `", so, "`")
subIdx <-
if( is.logical(subset) ){
if( length(subset) != n ){
if( n %% length(subset) == 0 )
subset <- rep(subset, n / length(subset))
else
stop("Invalid length for logical subset argument `", so, "`: number of ", dt, " ["
, n, "] is not a multiple of subset length [",length(subset),"].")
}
which(subset)
}
else if( is.integer(subset) || is.character(subset) ){
if( length(subset) > n )
stop("Invalid too long integer/character subset argument `", so
, "`: length must not exceed the number of ", dt, " [", n, "].")
if( anyDuplicated(subset) )
warning("Duplicated index or name in subset argument `", so, "`.")
if( is.character(subset) ){
if( is.null(dn) )
stop("Could not subset the ", dt, " with a character subset argument `", so, "`: no "
, if( margin == 1L ) "rownames" else "colnames"
, " are available.")
msubset <- match(subset, dn)
nas <- is.na(msubset)
if( any(nas) ){
warning("Mismatch in character subset argument `", so
,"`: Could not find ", sum(nas), " out of ", length(subset), " names ("
, paste("'", head(subset[nas], 5), "'", sep='', collapse=', ')
, if( sum(nas) > 5 ) ", ... ", ").")
msubset <- msubset[!nas]
}
subset <- msubset
}
subset
}else
stop("Invalid subset argument `", so, "`: should be a logical, integer or character vector.")
sort(subIdx)
}
aheatmap = function(x
, color = '-RdYlBu2:100'
, breaks = NA, border_color=NA, cellwidth = NA, cellheight = NA, scale = "none"
, Rowv=TRUE, Colv=TRUE
, revC = identical(Colv, "Rowv") || is_NA(Rowv) || (is.integer(Rowv) && length(Rowv) > 1)
|| is(Rowv, 'silhouette')
, distfun = "euclidean", hclustfun = "complete", reorderfun = function(d,w) reorder(d,w)
, treeheight = 50
, legend = TRUE, annCol = NA, annRow = NA, annColors = NA, annLegend = TRUE
, labRow = NULL, labCol = NULL
, subsetRow = NULL, subsetCol = NULL
, txt = NULL
, fontsize=10, cexRow = min(0.2 + 1/log10(nr), 1.2), cexCol = min(0.2 + 1/log10(nc), 1.2)
, filename = NA, width = NA, height = NA
, main = NULL, sub = NULL, info = NULL
, verbose=getOption('verbose'), gp = gpar()){
ol <- lverbose(verbose)
on.exit( lverbose(ol) )
if( is(x, 'ExpressionSet') ){
requireNamespace('Biobase')
if( isTRUE(annCol) ) annCol <- atrack(x)
x <- Biobase::exprs(x)
}
mat <- x
if( !is.null(txt) ){
if( !all(dim(mat), dim(x)) ){
stop("Incompatible data and text dimensions: arguments x and txt must have the same size.")
}
}
res <- list()
if( length(treeheight) == 1 )
treeheight <- c(treeheight, treeheight)
treeheight_row <- treeheight[1]
treeheight_col <- treeheight[2]
if( !is.null(subsetRow) ){
if( verbose ) message("Compute row subset indexes")
subsetRow <- subset_index(mat, 1L, subsetRow)
}
if( !is.null(subsetCol) ){
if( verbose ) message("Compute column subset indexes")
subsetCol <- subset_index(mat, 2L, subsetCol)
}
if( is.null(labRow) && is.null(rownames(mat)) )
labRow <- 1L
if( !is.null(labRow) ){
if( verbose ) message("Process labRow")
rownames(mat) <- generate_dimnames(labRow, nrow(mat), rownames(mat))
}
if( is.null(labCol) && is.null(colnames(mat)) )
labCol <- 1L
if( !is.null(labCol) ){
if( verbose ) message("Process labCol")
colnames(mat) <- generate_dimnames(labCol, ncol(mat), colnames(mat))
}
if( !is.null(subsetRow) ){
mat <- mat[subsetRow, ]
}
if( !is.null(subsetCol) ){
mat <- mat[, subsetCol]
}
tree_row <- if( !is_NA(Rowv) ){
if( verbose ) message("Cluster rows")
if( isReal(Rowv) ){
treeheight_row <- Rowv
Rowv <- TRUE
}
cluster_mat(mat, Rowv
, distfun=distfun, hclustfun=hclustfun
, reorderfun=reorderfun, subset=subsetRow
, verbose = verbose)
}
else NA
if( identical(Rowv, FALSE) || !is_treedef(tree_row) )
treeheight_row <- 0
tree_col <- if( !is_NA(Colv) ){
if( identical(Colv,"Rowv") ){
if( ncol(mat) != nrow(mat) )
stop("aheatmap - Colv='Rowv' but cannot treat columns and rows symmetrically: input matrix is not square.")
treeheight_col <- treeheight_row
tree_row
}else{
if( isReal(Colv) ){
treeheight_col <- Colv
Colv <- TRUE
}
if( verbose ) message("Cluster columns")
cluster_mat(t(mat), Colv
, distfun=distfun, hclustfun=hclustfun
, reorderfun=reorderfun, subset=subsetCol
, verbose = verbose)
}
}
else NA
if( identical(Colv, FALSE) || !is_treedef(tree_col) )
treeheight_col <- 0
if( !is_NA(tree_row) ){
if( revC ){
if( verbose ) message("Reverse row clustering")
tree_row <- rev(tree_row)
}
if( is_treedef(tree_row) ){
res$Rowv <- tree_row$dendrogram
res$rowInd <- order.dendrogram(tree_row$dendrogram)
if( length(res$rowInd) != nrow(mat) )
stop("aheatmap - row dendrogram ordering gave index of wrong length (", length(res$rowInd), ")")
}
else{
res$rowInd <- tree_row
tree_row <- NA
}
}else if( revC ){
res$rowInd <- nrow(mat):1L
}
res$rowInd <- subset2orginal_idx(res$rowInd, subsetRow)
if( !is.null(res$rowInd) ){
if( !is.integer(res$rowInd) || length(res$rowInd) != nrow(mat) )
stop("aheatmap - Invalid row ordering: should be an integer vector of length nrow(mat)=", nrow(mat))
if( verbose ) message("Order rows")
subInd <- attr(res$rowInd, 'subset')
ri <- if( is.null(subInd) ) res$rowInd else subInd
mat <- mat[ri, , drop=FALSE]
if( !is.null(txt) ) txt <- txt[ri, , drop = FALSE]
}
if( !is_NA(tree_col) ){
if( is_treedef(tree_col) ){
res$Colv <- tree_col$dendrogram
res$colInd <- order.dendrogram(tree_col$dendrogram)
if( length(res$colInd) != ncol(mat) )
stop("aheatmap - column dendrogram ordering gave index of wrong length (", length(res$colInd), ")")
}else{
res$colInd <- tree_col
tree_col <- NA
}
}
res$colInd <- subset2orginal_idx(res$colInd, subsetCol)
if( !is.null(res$colInd) ){
if( !is.integer(res$colInd) || length(res$colInd) != ncol(mat) )
stop("aheatmap - Invalid column ordering: should be an integer vector of length ncol(mat)=", ncol(mat))
if( verbose ) message("Order columns")
subInd <- attr(res$colInd, 'subset')
ci <- if( is.null(subInd) ) res$colInd else subInd
mat <- mat[, ci, drop=FALSE]
if( !is.null(txt) ) txt <- txt[, ci, drop = FALSE]
}
if( isTRUE(info) || is.character(info) ){
if( verbose ) message("Compute info")
if( !is.character(info) ) info <- NULL
linfo <- NULL
if( is_treedef(tree_row) && !is.null(tree_row$dist.method) )
linfo <- paste("rows:", tree_row$dist.method, '/', tree_row$method)
if( is_treedef(tree_col) && !is.null(tree_col$dist.method) )
linfo <- paste(linfo, paste(" - cols:", tree_col$dist.method, '/', tree_col$method))
info <- c(info, linfo)
}
if( is_treedef(tree_col) )
tree_col <- tree_col$dendrogram
if( is_treedef(tree_row) )
tree_row <- tree_row$dendrogram
if( verbose ) message("Scale matrix")
mat = as.matrix(mat)
mat = scale_mat(mat, scale)
color <- ccRamp(color)
if( is_NA(breaks) || isNumber(breaks) ){
if( verbose ) message("Generate breaks")
cbreaks <- if( isNumber(breaks) ) breaks else NA
breaks = generate_breaks(as.vector(mat), length(color), center=cbreaks)
}
if( isTRUE(legend) ){
if( verbose ) message("Generate data legend breaks")
legend = grid.pretty(range(as.vector(breaks)))
}
else {
legend = NA
}
mat = scale_colours(mat, col = color, breaks = breaks)
annotation_legend <- annLegend
annotation_colors <- annColors
annCol_processed <- atrack(annCol, order=res$colInd, .SPECIAL=specialAnnotation(2L), .DATA=amargin(x,2L), .CACHE=annRow)
annRow_processed <- atrack(annRow, order=res$rowInd, .SPECIAL=specialAnnotation(1L), .DATA=amargin(x,1L), .CACHE=annCol)
specialAnnotation(clear=TRUE)
annTracks <- renderAnnotations(annCol_processed, annRow_processed
, annotation_colors = annotation_colors
, verbose=verbose)
nr <- nrow(mat); nc <- ncol(mat)
res$vp <- heatmap_motor(mat, border_color = border_color, cellwidth = cellwidth, cellheight = cellheight
, treeheight_col = treeheight_col, treeheight_row = treeheight_row, tree_col = tree_col, tree_row = tree_row
, filename = filename, width = width, height = height, breaks = breaks, color = color, legend = legend
, annTracks = annTracks, annotation_legend = annotation_legend
, txt = txt
, fontsize = fontsize, fontsize_row = cexRow * fontsize, fontsize_col = cexCol * fontsize
, main = main, sub = sub, info = info
, verbose = verbose
, gp = gp)
invisible(res)
}
grid.base.mix <- function(opar, trace = getOption('verbose')){
if( !missing(opar) ){
if( !is.null(opar) ){
if( trace ) message("grid.base.mix - restore")
upViewport(2)
par(opar)
}
return(invisible())
}
if( trace ) message("grid.base.mix - init")
if( trace ) grid.rect(gp=gpar(lwd=40, col="blue"))
opar <- par(xpd=NA)
if( trace ) grid.rect(gp=gpar(lwd=30, col="green"))
if( trace ) message("grid.base.mix - plot.new")
plot.new()
if( trace ) grid.rect(gp=gpar(lwd=20, col="black"))
vps <- baseViewports()
pushViewport(vps$inner)
if( trace ) grid.rect(gp=gpar(lwd=10, col="red"))
pushViewport(vps$figure)
if( trace ) grid.rect(gp=gpar(lwd=3, col="yellow"))
opar
}
if( FALSE ){
testmix <- function(){
opar <- mixplot.start(FALSE)
profplot(curated$data$model, curated$fits[[1]])
mixplot.add(TRUE)
basismarker(curated$fits[[1]], curated$data$markers)
mixplot.end()
par(opar)
}
dd <- function(d, horizontal = TRUE, ...){
grid.rect(gp = gpar(col = "blue", lwd = 2))
opar <- par(plt = gridPLT(), new = TRUE)
on.exit(par(opar))
plot(d, horiz=horizontal, xaxs="i", yaxs="i", axes=FALSE, leaflab="none", ...)
}
toto <- function(new=FALSE){
library(RGraphics)
set.seed(123456)
x <- matrix(runif(30*20), 30)
x <- crossprod(x)
d <- as.dendrogram(hclust(dist(x)))
if( new ) plot.new()
lo <- grid.layout(nrow=2, ncol=2)
pushViewport(viewport(layout=lo))
pushViewport(viewport(layout.pos.row = 2, layout.pos.col = 1))
dd(d)
upViewport()
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 2))
dd(d, FALSE)
upViewport()
pushViewport(viewport(layout.pos.row = 2, layout.pos.col = 2))
grid.imageGrob(nrow(x), ncol(x), x)
upViewport()
popViewport()
stop("END toto")
}
test <- function(){
pdf('aheatmap.pdf')
try(v <- consensusmap(res, color='grey:100', Colv=2L, verbose=TRUE))
dev.off()
}
test2 <- function(){
op <- par(mfrow=c(1,2))
on.exit(par(op))
try(v <- consensusmap(res, verbose=TRUE))
try(v <- consensusmap(res, color='grey:100', Colv=2L, verbose=TRUE))
}
testsw <- function(file=TRUE){
if(file ){
pdf('asweave.pdf', width=20, height=7)
on.exit(dev.off())
}
opar <- par(mfrow=c(1,2))
coefmap(res, tracks=NA, verbose=TRUE)
coefmap(res, Colv = 'euclidean', Rowv='max', verbose=TRUE)
par(opar)
}
testvp <- function(file=TRUE){
if(file ){
pdf('avp.pdf', width=20, height=7)
on.exit(dev.off())
}
plot.new()
lo <- grid.layout(nrow=1, ncol=2)
pushViewport(viewport(layout=lo))
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 1))
basismap(res, Colv='eucl', verbose=TRUE)
upViewport()
pushViewport(viewport(layout.pos.row = 1, layout.pos.col = 2))
coefmap(res, tracks=NA, verbose=TRUE)
upViewport()
popViewport()
}
}
|
transformRateMatrix <- function(rateData, rate=NULL) {
V <- rateData$Vmat
if(is.null(rate)) { rate <- c(rep(1,length(rateData$Vmat))) } else { rate <- rate }
nV <- length(rate)
if(length(rate) != length(rateData$Vmat)){stop("The number of rates defined differs from the number of rate matrices")}
v1 <- V[[1]]
rateMats <- vector(mode="list", length = nV)
retMat <- matrix(0, nrow = dim(v1)[1], ncol = dim(v1)[2])
for(i in 1:nV) {
rateMats[[i]] <- rate[i] * V[[i]]
retMat <- retMat + rateMats[[i]]
}
return(retMat)}
|
RDS.SS.estimates <- function(rds.data,outcome.variable,N=NULL,subset=NULL,
number.ss.samples.per.iteration=500,number.ss.iterations=5,
control=control.rds.estimates(),
hajek=TRUE,empir.lik=TRUE,to.factor=FALSE){
se <- substitute(subset)
subset <- eval(se,rds.data,parent.frame())
if(length(outcome.variable) == 1){
result <- RDS.estimates.local(
rds.data=rds.data,
outcome.variable=outcome.variable,
N=N,
subset=subset,
number.ss.samples.per.iteration=number.ss.samples.per.iteration,
number.ss.iterations=number.ss.iterations,
control=control,
hajek=hajek,
empir.lik=empir.lik,
weight.type="Gile's SS",
to.factor=to.factor)
}
else {
result <- lapply(outcome.variable,function(g){
RDS.estimates.local(
rds.data=rds.data,
outcome.variable=g,
N=N,
subset=subset,
number.ss.samples.per.iteration=number.ss.samples.per.iteration,
number.ss.iterations=number.ss.iterations,
control=control,
hajek=hajek,
empir.lik=empir.lik,
weight.type="Gile's SS",
to.factor=to.factor)
})
names(result) <- outcome.variable
}
return(result)
}
|
caralloc = function(xmat,carwt,p,tol) {
if (!is.matrix(xmat)) xmat = as.matrix(xmat)
n = nrow(xmat)
result = rbinom(n,1,0.5)
if (n > 1) {
for (j in 2:n) {
matchx = apply(xmat[1:(j-1),,drop=FALSE],1, function(x,xrow) { as.numeric(x == xrow) }, xmat[j,] )
sumsofar = matchx %*% (2*result[1:(j-1)] - 1)
imbalance1 = crossprod (abs(sumsofar + 1) , carwt)
imbalance0 = crossprod (abs(sumsofar - 1) , carwt)
if (imbalance1 < imbalance0 & imbalance0 >= tol) result[j] = rbinom(1,1,p)
if (imbalance0 < imbalance1 & imbalance1 >= tol) result[j] = rbinom(1,1,1-p)
}
}
result
}
|
viz_thickforest <- function(x, group = NULL, type = "standard", method = "FE",
study_labels = NULL, summary_label = NULL,
confidence_level = 0.95, col = "Blues", summary_col = col, tick_col = "firebrick",
text_size = 3, xlab = "Effect", x_limit = NULL,
x_trans_function = NULL, x_breaks = NULL, annotate_CI = FALSE,
study_table = NULL, summary_table = NULL, table_headers = NULL,
table_layout = NULL) {
viz_forest(x, group = group, type = type, variant = "thick", method = method,
study_labels = study_labels, summary_label = summary_label,
confidence_level = confidence_level, col = col, summary_col = summary_col, tick_col = tick_col,
text_size = text_size, xlab = xlab, x_limit = x_limit,
x_trans_function = x_trans_function, x_breaks = NULL,
annotate_CI = annotate_CI, study_table = study_table, summary_table = summary_table,
table_headers = table_headers, table_layout = table_layout)
}
|
expected <- eval(parse(text="list(c(\"<none>\", \"- M.user:Temp\", \"+ Soft\"), c(\"Df\", \"Deviance\", \"AIC\"))"));
test(id=0, code={
argv <- eval(parse(text="list(structure(c(NA, 1, 2, 5.65604443125997, 8.44399377410362, 5.49523049516867, 71.3540021461976, 72.1419514890413, 75.1931882101063), .Dim = c(3L, 3L), .Dimnames = list(c(\"<none>\", \"- M.user:Temp\", \"+ Soft\"), c(\"Df\", \"Deviance\", \"AIC\"))))"));
do.call(`dimnames`, argv);
}, o=expected);
|
sandwich.cv <- function(object, sampling.attr, k=10, type="shp", ssh.id.col=NULL, reporting.id.col=NULL, ssh.weights=NULL){
if (type == "shp"){
sampling.lyr = object[[1]]
ssh.lyr = object[[2]]
reporting.lyr = object[[3]]
if (st_geometry_type(sampling.lyr, by_geometry=FALSE) != "POINT"){
stop("Geometry type of the sampling layer should be POINT.")
}
if (st_geometry_type(ssh.lyr, by_geometry=FALSE) != "POLYGON" &
st_geometry_type(ssh.lyr, by_geometry=FALSE) != "MULTIPOLYGON"){
stop("Geometry type of the SSH layer should be POLYGON or MULTIPOLYGON.")
}
if (st_geometry_type(reporting.lyr, by_geometry=FALSE) != "POLYGON" &
st_geometry_type(reporting.lyr, by_geometry=FALSE) != "MULTIPOLYGON"){
stop("Geometry type of the reporting layer should be POLYGON or MULTIPOLYGON.")
}
if (!is.element(sampling.attr, names(sampling.lyr))){
stop("Attribute name not found in the sampling layer.")
}
sampling.lyr$index = 1:nrow(sampling.lyr)
folds = createFolds(sampling.lyr$index, k=k)
rmse = 0
for(i in 1:k){
val = lapply(folds[i], function(ind, dat) dat[ind,], dat=sampling.lyr)
val = st_as_sf(as.data.frame(val))
dev = lapply(list(unique(unlist(folds[-i]))), function(ind, dat) dat[ind,], dat=sampling.lyr)
dev = st_as_sf(as.data.frame(dev))
object_dev = list(dev, ssh.lyr, reporting.lyr)
out = sandwich.model(object_dev, sampling.attr, type)$object
val.join = suppressMessages(st_join(val, out))
st_geometry(val.join) = NULL
val.join = as.data.frame(val.join)
new.attr.name = paste(names(folds)[i], sampling.attr, sep=".")
dif = (val.join[new.attr.name] - val.join$mean)[[new.attr.name]]
rmse[i] = sqrt(mean(dif^2))
}
rmse.mean = mean(rmse)
rmse.mean}
else if (type == "txt"){
sampling_ssh = object[[1]]
reporting_ssh = object[[2]]
if (!ssh.id.col %in% names(sampling_ssh) | is.null(ssh.id.col)){
stop("Column name ssh.id.col not exists in the file linking sampling and SSH layers.")
}
if (!all(ssh.weights[[2]] %in% names(reporting_ssh)) | is.null(ssh.weights)){
stop("Some columns in ssh.weights not exist in the file linking reporting and SSH layers.")
}
if (!all(sort(ssh.weights[[1]]) == sort(unique(sampling_ssh[[ssh.id.col]])))){
stop("ssh.weights not matches with the values in column ssh.id.col")
}
if (!is.element(sampling.attr, names(sampling_ssh))){
stop("Attribute name not found in the file linking sampling and SSH layers.")
}
sampling_ssh$index = 1:nrow(sampling_ssh)
folds = createFolds(sampling_ssh$index, k=k)
rmse = 0
for(i in 1:k){
val = lapply(folds[i], function(ind, dat) dat[ind,], dat=sampling_ssh)[[1]]
dev = lapply(list(unique(unlist(folds[-i]))), function(ind, dat) dat[ind,], dat=sampling_ssh)[[1]]
object_dev = list(dev, reporting_ssh)
out = sandwich.model(object_dev, sampling.attr, type, ssh.id.col, ssh.weights)$object
val.join = merge(val, out, reporting.id.col, all.x=TRUE)
dif = (val.join[sampling.attr] - val.join$mean)[[sampling.attr]]
rmse[i] = sqrt(mean(dif^2))
}
rmse.mean = mean(rmse)
rmse.mean}
}
|
plot.qbpca <- function(x,
xlab='Index',
ylab='r',
pch=c(1,8),
col=c(4,2), ...)
{
if (!inherits(x, 'qbpca'))
stop("Use this function only with 'qbpca' class!")
plot(x$obs,
ylim=c(-1,1),
xlab=xlab,
ylab=ylab,
pch=pch[1],
col=col[1], ...)
points(x$var.rb,
col=col[2],
pch=pch[2])
legend('bottomleft',
c('r', 'r.rb'),
pch=pch,
col=col,
title='legend')
}
|
hypervolume_permute <- function(name, hv1, hv2, n = 50, cores = 1, verbose = TRUE) {
exists_cluster = TRUE
if(cores > 1 & getDoParWorkers() == 1) {
cl = makeCluster(cores)
clusterEvalQ(cl, {
library(hypervolume)
})
registerDoParallel(cl)
exists_cluster = FALSE
}
dir.create(file.path('./Objects', name))
if(verbose) {
pb = progress_bar$new(total = n)
}
foreach(i = 1:n, .combine = c) %dopar% {
combined_data = rbind(hv1@Data, hv2@Data)
perm_idx = sample(1:nrow(combined_data), nrow(hv1@Data))
h1 = copy_param_hypervolume(hv1, combined_data[perm_idx,], name = "hv1")
h2 = copy_param_hypervolume(hv2, combined_data[-1 * perm_idx,], name = "hv2")
subdir = file.path("./Objects", name, paste0("permutation", as.character(i)))
dir.create(subdir)
name1 = paste0(h1@Name, '.rds')
name2 = paste0(h2@Name, '.rds')
saveRDS(h1, file.path('./Objects', name, paste0("permutation", as.character(i)), name1))
saveRDS(h2, file.path('./Objects', name, paste0("permutation", as.character(i)), name2))
if(verbose) {
pb$tick()
}
}
if(!exists_cluster) {
stopCluster(cl)
registerDoSEQ()
}
return(file.path(getwd(), 'Objects', name))
}
|
tajima.K <-
function(DNAbin, prop = TRUE){
res <- mean(dist.dna(DNAbin, model="N"))
if(prop) res <- res/dim(DNAbin)[2]
res
}
|
NULL
local_testthat_assign <- function(x, values, envir = parent.frame()) {
exist <- exists(x, envir = envir)
if (exist) {
old_value <- envir[[x]]
withr::defer(assign(x, old_value, envir = envir), envir = envir)
} else {
withr::defer(rm(list = x, envir = envir), envir = envir)
}
assign(x, values, envir = envir)
}
local_testthat_tolerances <- function(tolerances = c(1e-4, 1e-2, 1e-1),
envir = parent.frame()) {
local_testthat_assign("lowtol", tolerances[1], envir = envir)
local_testthat_assign("midtol", tolerances[2], envir = envir)
local_testthat_assign("hitol", tolerances[3], envir = envir)
}
local_bru_options_set <- function(...,
.reset = FALSE,
envir = parent.frame()) {
old_opt <- bru_options_get(include_default = FALSE)
withr::defer(bru_options_set(old_opt, .reset = TRUE), envir = envir)
bru_options_set(..., .reset = .reset)
invisible(old_opt)
}
local_set_PROJ6_warnings <- function(proj4 = FALSE,
thin = TRUE,
envir = parent.frame()) {
withr::local_options(
list(
"rgdal_show_exportToProj4_warnings" =
if (!proj4) {
"none"
} else if (thin) {
"thin"
} else {
"all"
}
),
.local_envir = envir
)
requireNamespace("rgdal", quietly = TRUE)
if (fm_has_PROJ6()) {
old1 <- rgdal::get_rgdal_show_exportToProj4_warnings()
withr::defer(
rgdal::set_rgdal_show_exportToProj4_warnings(old1),
envir = envir
)
rgdal::set_rgdal_show_exportToProj4_warnings(proj4)
old2 <- rgdal::get_thin_PROJ6_warnings()
withr::defer(
rgdal::set_thin_PROJ6_warnings(old2),
envir = envir
)
rgdal::set_thin_PROJ6_warnings(thin)
}
}
local_get_rgdal_options <- function() {
requireNamespace("rgdal", quietly = TRUE)
list(
option_rgdal_show_exportToProj4_warnings =
getOption("rgdal_show_exportToProj4_warnings"),
rgdal_show_exportToProj4_warnings = rgdal::get_rgdal_show_exportToProj4_warnings(),
thin_PROJ6_warnings = rgdal::get_thin_PROJ6_warnings()
)
}
local_disable_PROJ6_warnings <- function(envir = parent.frame()) {
local_set_PROJ6_warnings(proj4 = FALSE, thin = TRUE, envir = envir)
}
local_basic_intercept_testdata <- function() {
set.seed(123)
data.frame(
Intercept = 1,
y = rnorm(100)
)
}
local_basic_fixed_effect_testdata <- function() {
set.seed(123)
cbind(
local_basic_intercept_testdata(),
data.frame(x1 = rnorm(100))
)
}
local_mrsea_convert <- function(x, use_km = FALSE) {
if (!use_km) {
crs_m <- fm_crs_set_lengthunit(x$mesh$crs, "m")
x$mesh <- fm_spTransform(x$mesh, crs_m)
x$samplers <- sp::spTransform(x$samplers, crs_m)
x$samplers$weight <- x$samplers$weight * 1000
x$points <- sp::spTransform(x$points, crs_m)
x$boundary <- sp::spTransform(x$boundary, crs_m)
x$covar <- sp::spTransform(x$covar, crs_m)
x$points$Effort <- x$points$Effort * 1000
x$points$mid.x <- x$points$mid.x * 1000
x$points$mid.y <- x$points$mid.y * 1000
x$points$start.x <- x$points$start.x * 1000
x$points$start.y <- x$points$start.y * 1000
x$points$end.x <- x$points$end.x * 1000
x$points$end.y <- x$points$end.y * 1000
x$points$distance <- x$points$distance * 1000
x$samplers$Effort <- x$samplers$Effort * 1000
x$samplers$mid.x <- x$samplers$mid.x * 1000
x$samplers$mid.y <- x$samplers$mid.y * 1000
}
x
}
local_bru_safe_inla <- function(multicore = FALSE,
quietly = TRUE,
envir = parent.frame()) {
if (requireNamespace("INLA", quietly = TRUE)) {
old_threads <- INLA::inla.getOption("num.threads")
withr::defer(
INLA::inla.setOption(num.threads = old_threads),
envir
)
old_fmesher_timeout <- INLA::inla.getOption("fmesher.timeout")
withr::defer(
INLA::inla.setOption(fmesher.timeout = old_fmesher_timeout),
envir
)
INLA::inla.setOption(fmesher.timeout = 30)
}
if (!multicore) {
local_bru_options_set(num.threads = "1:1", envir = envir)
}
testthat::skip_if_not(bru_safe_inla(multicore = multicore, quietly = quietly))
}
local_bru_testthat_setup <- function(envir = parent.frame()) {
local_disable_PROJ6_warnings(envir = envir)
local_testthat_tolerances(envir = envir)
local_bru_options_set(
control.compute = list(dic = FALSE, waic = FALSE),
inla.mode = "experimental",
envir = envir
)
}
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(ROCR)
table <- data.frame(group = c("Contingency ratios",
"Discrete covariation measures",
"Information retrieval measures",
"Performance in ROC space",
"Absolute scoring performance",
"Cost measures"),
measure = c("error rate, accuracy, sensitivity, specificity, true/false positive rate, fallout, miss, precision, recall, negative predictive value, prediction-conditioned fallout/miss.",
"Phi/Matthews correlation coefficient, mutual information, Chi-squared test statistic, odds ratio",
"F-measure, lift, precision-recall break-even point",
"ROC convex hull, area under the ROC curve",
"calibration error, mean cross-entropy, root mean-squared error",
"expected cost, explicit cost"))
knitr::kable(table,
caption = "***Table 1:**Performance measures in the ROCR package*",
col.names = c("",""),
align = "l")
data(ROCR.hiv)
predictions <- ROCR.hiv$hiv.svm$predictions
labels <- ROCR.hiv$hiv.svm$labels
pred <- prediction(predictions, labels)
pred
perf <- performance(pred, "tpr", "fpr")
perf
plot(perf,
avg="threshold",
spread.estimate="boxplot")
data(ROCR.hiv)
pp.unnorm <- ROCR.hiv$hiv.svm$predictions
ll <- ROCR.hiv$hiv.svm$labels
v <- unlist(pp.unnorm)
pp <- lapply(pp.unnorm, function(run) {approxfun(c(min(v), max(v)), c(0,1))(run)})
par(mfrow=c(1,4))
pred<- prediction(pp, ll)
perf <- performance(pred, "tpr", "fpr")
plot(perf, avg= "threshold", colorize=TRUE, lwd= 3,
coloraxis.at=seq(0,1,by=0.2),)
plot(perf, col="gray78", add=TRUE)
plot(perf, avg= "threshold", colorize=TRUE, colorkey=FALSE,lwd= 3,,add=TRUE)
mtext(paste0("(a)"), side = 3, adj = 0.01,line = 1)
perf <- performance(pred, "acc")
plot(perf, avg= "vertical", spread.estimate="boxplot", lwd=3,col='blue',
show.spread.at= seq(0.1, 0.9, by=0.1),)
mtext(paste0("(b)"), side = 3, adj = 0.01,line = 1)
plot(performance(pred, "cal", window.size= 10),
avg="vertical",)
mtext(paste0("(c)"), side = 3, adj = 0.01,line = 1)
plot(0,0,type="n", xlim= c(0,1), ylim=c(0,7),
xlab="Cutoff", ylab="Density",)
mtext(paste0("(d)"), side = 3, adj = 0.01,line = 1)
for (runi in 1:length(pred@predictions)) {
lines(density(pred@predictions[[runi]][pred@labels[[runi]]=="-1"]), col= "red")
lines(density(pred@predictions[[runi]][pred@labels[[runi]]=="1"]), col="green")
}
perf <- performance(pred, "tpr", "fpr")
plot(perf,
avg= "threshold",
colorize=TRUE,
lwd= 3,
main= "With ROCR you can produce standard plots\nlike ROC curves ...")
plot(perf,
lty=3,
col="grey78",
add=TRUE)
perf <- performance(pred, "prec", "rec")
plot(perf,
avg= "threshold",
colorize=TRUE,
lwd= 3,
main= "... Precision/Recall graphs ...")
plot(perf,
lty=3,
col="grey78",
add=TRUE)
perf <- performance(pred, "sens", "spec")
plot(perf,
avg= "threshold",
colorize=TRUE,
lwd= 3,
main="... Sensitivity/Specificity plots ...")
plot(perf,
lty=3,
col="grey78",
add=TRUE)
perf <- performance(pred, "lift", "rpp")
plot(perf,
avg= "threshold",
colorize=TRUE,
lwd= 3,
main= "... and Lift charts.")
plot(perf,
lty=3,
col="grey78",
add=TRUE)
data(ROCR.xval)
predictions <- ROCR.xval$predictions
labels <- ROCR.xval$labels
length(predictions)
pred <- prediction(predictions, labels)
perf <- performance(pred,'tpr','fpr')
plot(perf,
colorize=TRUE,
lwd=2,
main='ROC curves from 10-fold cross-validation')
plot(perf,
avg='vertical',
spread.estimate='stderror',
lwd=3,main='Vertical averaging + 1 standard error',
col='blue')
plot(perf,
avg='horizontal',
spread.estimate='boxplot',
lwd=3,
main='Horizontal averaging + boxplots',
col='blue')
plot(perf,
avg='threshold',
spread.estimate='stddev',
lwd=2,
main='Threshold averaging + 1 standard deviation',
colorize=TRUE)
plot(perf,
print.cutoffs.at=seq(0,1,by=0.2),
text.cex=0.8,
text.y=lapply(as.list(seq(0,0.5,by=0.05)), function(x) { rep(x,length([email protected][[1]])) } ),
col= as.list(terrain.colors(10)),
text.col= as.list(terrain.colors(10)),
points.col= as.list(terrain.colors(10)),
main= "Cutoff stability")
perf <- performance(pred,"pcmiss","lift")
plot(perf,
colorize=TRUE,
print.cutoffs.at=seq(0,1,by=0.1),
text.adj=c(1.2,1.2),
avg="threshold",
lwd=3,
main= "You can freely combine performance measures ...")
|
GaussianMatrix <- function(N, M) {
return( matrix( rnorm(N * M ), M,N ) )
}
|
check.norms <- function(y, nice.output = TRUE){
R <- sort(unique(y))
K <- length(R)
n <-matrix(0,K,1)
for (i in 1:K){
n[i] <- sum(y==R[i])
}
N <- length(y)
if (min(y)<=0) {
adjust <- abs(min(y) - 1)
y <- y + adjust
R <- R + adjust
} else {
adjust <- 0
}
A1 <- rbind(R,1)
A2 <- matrix(c(1,-1),1,2)
meany <- exp(A2%*%log(A1%*%n)) -adjust
g0 <- n
g1 <- log(A1%*%n)
G0 <- diag(K)
G1 <- solve(diag(c(A1%*%g0),length(A1%*%g0),length(A1%*%g0)))%*%A1%*%G0
G2 <- diag(c(exp(A2%*%g1)),length(exp(A2%*%g1)),length(exp(A2%*%g1)))%*%A2%*%G1
Gmean <-G2
Vmean <- Gmean%*%diag(c(n),length(n),length(n))%*%t(Gmean)-Gmean%*%(n%*%t(n)/N)%*%t(Gmean)
Se.mean <- sqrt(Vmean)
lomeany <- meany - 1.96*Se.mean
upmeany <- meany + 1.96*Se.mean
A1 <- rbind(R,R^2,1,1)
A2 <- diag(c(2,1,1,-1))
A2[4,3] <- 1
A2[1,3] <- -1
A3 <- matrix(c(-1,0,1,0,0,1,0,-1),2,4)
A4 <- matrix(c(.5,-0.5),1,2)
sdy <- exp(A4 %*% log (A3 %*% exp(A2 %*% log(A1 %*% n))))
g0 <- n
g1 <- log(A1%*%n)
g2 <- exp(A2%*%log(A1%*%n))
g3 <- log (A3 %*% exp(A2 %*% log(A1 %*% n)))
G0 <- diag(K)
G1 <- solve(diag(c(A1%*%g0),length(A1%*%g0),length(A1%*%g0)))%*%A1%*%G0
G2 <- diag(c(exp(A2%*%g1)),length(exp(A2%*%g1)),length(exp(A2%*%g1)))%*%A2%*%G1
G3 <- solve(diag(c(A3%*%g2),length(A3%*%g2),length(A3%*%g2)))%*%A3%*%G2
G4 <- diag(c(exp(A4%*%g3)),length(exp(A4%*%g3)),length(exp(A4%*%g3)))%*%A4%*%G3
Gsd <-G4
Vsd <- Gsd%*%diag(c(n),length(n),length(n))%*%t(Gsd)-Gsd%*%(n%*%t(n)/N)%*%t(Gsd)
Se.sd <- sqrt(Vsd)
losdy <- sdy - 1.96*Se.sd
upsdy <- sdy + 1.96*Se.sd
A1 <- t(cbind(diag(K),rep(1,K),rep(1,K)))
A2 <- direct.sum(diag(K), t(c(1,-1)))
A3 <- direct.sum(rbind(R, R^2, rep(1, K), rep(1, K)), matrix(R))
A4 <- direct.sum(matrix(c(1,2,0,0,0,0,0,1,0,0,0,0,0,0,1,-1,-1,0,1,-1),5,4),diag(K))
A5 <- direct.sum(matrix(1), cbind(-1,1), cbind(1,-1), diag(K))
A6 <- matrix(c(1,rep(0,K),-1/2, rep(1,K)-3/2, 1/2, rep(1,K)-1/2,rbind(rep(0,K),diag(K))),K+1, K+3)
A7 <- cbind(rep(-1,K), diag(K))
Zy <- A7%*%exp(A6%*%log(A5%*%exp(A4%*%log(A3%*%exp(A2%*%log(A1%*%n))))))
g0 <- n
g1 <- log(A1%*%n)
g2 <- exp(A2%*%log(A1%*%n))
g3 <- log(A3%*%exp(A2%*%log(A1%*%n)))
g4 <- exp(A4%*%log(A3%*%exp(A2%*%log(A1%*%n))))
g5 <- log(A5%*%exp(A4%*%log(A3%*%exp(A2%*%log(A1%*%n)))))
g6 <- exp(A6%*%log(A5%*%exp(A4%*%log(A3%*%exp(A2%*%log(A1%*%n))))))
G0 <- diag(K)
G1 <- solve(diag(c(A1%*%g0),length(A1%*%g0),length(A1%*%g0)))%*%A1%*%G0
G2 <- diag(c(exp(A2%*%g1)),length(exp(A2%*%g1)),length(exp(A2%*%g1)))%*%A2%*%G1
G3 <- solve(diag(c(A3%*%g2),length(A3%*%g2),length(A3%*%g2)))%*%A3%*%G2
G4 <- diag(c(exp(A4%*%g3)),length(exp(A4%*%g3)),length(exp(A4%*%g3)))%*%A4%*%G3
G5 <- solve(diag(c(A5%*%g4),length(A5%*%g4),length(A5%*%g4)))%*%A5%*%G4
G6 <- diag(c(exp(A6%*%g5)),length(exp(A6%*%g5)),length(exp(A6%*%g5)))%*%A6%*%G5
G7 <- A7 %*% G6
GZy <-G7
VZy <- GZy%*%diag(c(n),length(n),length(n))%*%t(GZy)-GZy%*%(n%*%t(n)/N)%*%t(GZy)-GZy%*%(n%*%t(n)/N)%*%t(GZy)
Se.Zy <- sqrt(diag(VZy))
loZy <- Zy - 1.96*Se.Zy
upZy <- Zy + 1.96*Se.Zy
A1 <- rbind(R,R^2,rep(1,K),rep(1,K))
A2 <- matrix(c(2,0,0,1,0,0,1,0,0,0,0,0,0,0,1,-1,0,1,-1,-1),5,4)
A3 <- matrix(c(-1,0,0,1,0,0,0,1,0,0,0,1,0,-1,0),3,5)
A4 <- matrix(c(1/2,0,-1/2,0,0,1),2,3)
A5 <- cbind(seq(-1.75,1.75,.50),rep(1,8))
Sty <- A5 %*% exp (A4 %*% log ( A3 %*% exp ( A2 %*% log ( A1 %*% n )))) -adjust
g0 <- n
g1 <- log(A1%*%n)
g2 <- exp(A2%*%log(A1%*%n))
g3 <- log(A3%*%exp(A2%*%log(A1%*%n)))
g4 <- exp(A4%*%log(A3%*%exp(A2%*%log(A1%*%n))))
G0 <- diag(K)
G1 <- solve(diag(c(A1%*%g0),length(A1%*%g0),length(A1%*%g0)))%*%A1%*%G0
G2 <- diag(c(exp(A2%*%g1)),length(exp(A2%*%g1)),length(exp(A2%*%g1)))%*%A2%*%G1
G3 <- solve(diag(c(A3%*%g2),length(A3%*%g2),length(A3%*%g2)))%*%A3%*%G2
G4 <- diag(c(exp(A4%*%g3)),length(exp(A4%*%g3)),length(exp(A4%*%g3)))%*%A4%*%G3
G5 <- A5 %*% G4
GSty <-G5
VSty <- GSty%*%diag(c(n),length(n),length(n))%*%t(GSty)-GSty%*%(n%*%t(n)/N)%*%t(GSty)
Se.Sty <- sqrt(diag(VSty))
loSty <- Sty - 1.96*Se.Sty
upSty <- Sty + 1.96*Se.Sty
A1 <- matrix(1,K+1,K)
A1[upper.tri(A1,diag=FALSE)] <- 0
A2 <- cbind(diag(K),rep(-1,K))
A3 <- matrix(0,K,K)
for (i in 0:K) {
i + 1
A3[i,i-1] <- 50
A3[i,i] <- 50
}
Pry <- A3%*%exp(A2%*%log(A1%*%n))
g0 <- n
g1 <- log(A1%*%n)
g2 <- exp(A2%*%log(A1%*%n))
G0 <- diag(K)
G1 <- solve(diag(c(A1%*%g0),length(A1%*%g0),length(A1%*%g0)))%*%A1%*%G0
G2 <- diag(c(exp(A2%*%g1)),length(exp(A2%*%g1)),length(exp(A2%*%g1)))%*%A2%*%G1
G3 <- A3 %*% G2
GPry <-G3
VPry <- GPry%*%diag(c(n),length(n),length(n))%*%t(GPry)-GPry%*%(n%*%t(n)/N)%*%t(GPry)
Se.Pry <- sqrt(diag(VPry))
loPry <- Pry - 1.96*Se.Pry
upPry <- Pry + 1.96*Se.Pry
if (nice.output){
output.matrix.mean. <- matrix(NA, 1, 4)
output.matrix.mean.[, 1] <- format(formatC(round(meany,3), digits = 3, format = "f"), width = 7, justify = "right")
output.matrix.mean.[, 2] <- format(paste("(",formatC(round(Se.mean, 3), digits = 3, format = "f"),")", sep = ""), width = 7, justify = "right")
output.matrix.mean.[, 3] <- format(formatC(round(lomeany,3), digits = 3, format = "f"), width = 7, justify = "right")
output.matrix.mean.[, 4] <- format(formatC(round(upmeany,3), digits = 3, format = "f"), width = 7, justify = "right")
dimnames(output.matrix.mean.) <- list("", c("Mean","SE", "lo", "up"))
output.matrix.mean. <- noquote(output.matrix.mean.)
output.matrix.sd. <- matrix(NA, 1, 4)
output.matrix.sd.[, 1] <- format(formatC(round(sdy,3), digits = 3, format = "f"), width = 7, justify = "right")
output.matrix.sd.[, 2] <- format(paste("(",formatC(round(Se.sd, 3), digits = 3, format = "f"),")", sep = ""), width = 7, justify = "right")
output.matrix.sd.[, 3] <- format(formatC(round(losdy,3), digits = 3, format = "f"), width = 7, justify = "right")
output.matrix.sd.[, 4] <- format(formatC(round(upsdy,3), digits = 3, format = "f"), width = 7, justify = "right")
dimnames(output.matrix.sd.) <- list("", c("SD","SE", "lo", "up"))
output.matrix.sd. <- noquote(output.matrix.sd.)
output.matrix.Zy. <- matrix(NA, K, 4)
output.matrix.Zy.[, 1] <- format(formatC(round(Zy,3), digits = 3, format = "f"), width = 7,justify = "right")
output.matrix.Zy.[, 2] <- format(paste("(",formatC(round(Se.Zy, 3), digits = 3, format = "f"),")", sep = ""), width = 7, justify = "right")
output.matrix.Zy.[, 3] <- format(formatC(round(loZy,3), digits = 3, format = "f"), width = 7,justify = "right")
output.matrix.Zy.[, 4] <- format(formatC(round(upZy,3), digits = 3, format = "f"), width = 7,justify = "right")
dimnames(output.matrix.Zy.) <- list(R-adjust, c("Zscores","SE", "lo", "up"))
output.matrix.Zy. <- noquote(output.matrix.Zy.)
output.matrix.Sty. <- matrix(NA, 8, 4)
output.matrix.Sty.[, 1] <- format(formatC(round(Sty,3), digits = 3, format = "f"), width = 7,justify = "right")
output.matrix.Sty.[, 2] <- format(paste("(",formatC(round(Se.Sty, 3), digits = 3, format = "f"),")", sep = ""), width = 7, justify = "right")
output.matrix.Sty.[, 3] <- format(formatC(round(loSty,3), digits = 3, format = "f"), width = 7,justify = "right")
output.matrix.Sty.[, 4] <- format(formatC(round(upSty,3), digits = 3, format = "f"), width = 7,justify = "right")
dimnames(output.matrix.Sty.) <- list(c("1-2","2-3","3-4","4-5","5-6","6-7","7-8","8-9"), c("Stanines","SE", "lo", "up"))
output.matrix.Sty. <- noquote(output.matrix.Sty.)
output.matrix.Pry. <- matrix(NA, K, 4)
output.matrix.Pry.[, 1] <- format(formatC(round(Pry,3), digits = 3, format = "f"), width = 7,justify = "right")
output.matrix.Pry.[, 2] <- format(paste("(",formatC(round(Se.Pry, 3), digits = 3, format = "f"),")", sep = ""), width = 7, justify = "right")
output.matrix.Pry.[, 3] <- format(formatC(round(loPry,3), digits = 3, format = "f"), width = 7,justify = "right")
output.matrix.Pry.[, 4] <- format(formatC(round(upPry,3), digits = 3, format = "f"), width = 7,justify = "right")
dimnames(output.matrix.Pry.) <- list(R-adjust, c("Percentiles","SE", "lo", "up"))
output.matrix.Pry. <- noquote(output.matrix.Pry.)
} else {
output.matrix.mean. <- matrix(NA, 1, 4)
output.matrix.mean.[, 1] <- meany
output.matrix.mean.[, 2] <- Se.mean
output.matrix.mean.[, 3] <- lomeany
output.matrix.mean.[, 4] <- upmeany
dimnames(output.matrix.mean.) <- list("", c("Mean","SE", "lo", "up"))
output.matrix.sd. <- matrix(NA, 1, 4)
output.matrix.sd.[, 1] <- sdy
output.matrix.sd.[, 2] <- Se.sd
output.matrix.sd.[, 3] <- losdy
output.matrix.sd.[, 4] <- upsdy
dimnames(output.matrix.sd.) <- list("", c("SD","SE", "lo", "up"))
output.matrix.Zy. <- matrix(NA, K, 4)
output.matrix.Zy.[, 1] <- Zy
output.matrix.Zy.[, 2] <- Se.Zy
output.matrix.Zy.[, 3] <- loZy
output.matrix.Zy.[, 4] <- upZy
dimnames(output.matrix.Zy.) <- list(R-adjust, c("Zscores","SE", "lo", "up"))
output.matrix.Sty. <- matrix(NA, 8, 4)
output.matrix.Sty.[, 1] <- Sty
output.matrix.Sty.[, 2] <- Se.Sty
output.matrix.Sty.[, 3] <- loSty
output.matrix.Sty.[, 4] <- upSty
dimnames(output.matrix.Sty.) <- list(c("1-2","2-3","3-4","4-5","5-6","6-7","7-8","8-9"), c("Stanines","SE", "lo", "up"))
output.matrix.Pry. <- matrix(NA, K, 4)
output.matrix.Pry.[, 1] <- Pry
output.matrix.Pry.[, 2] <- Se.Pry
output.matrix.Pry.[, 3] <- loPry
output.matrix.Pry.[, 4] <- upPry
dimnames(output.matrix.Pry.) <- list(R-adjust, c("Percentiles","SE", "lo", "up"))
}
return(list(mean = output.matrix.mean., sd = output.matrix.sd., z = output.matrix.Zy., sta9 = output.matrix.Sty., perc = output.matrix.Pry.))
}
|
CircleCI <- R6Class(
"CircleCI",
inherit = CI,
public = list(
get_branch = function() {
Sys.getenv("CIRCLE_BRANCH")
},
get_tag = function() {
Sys.getenv("CIRCLE_TAG")
},
is_tag = function() {
self$get_tag() != ""
},
get_slug = function() {
sprintf(
"%s/%s", Sys.getenv("CIRCLE_PROJECT_USERNAME"),
Sys.getenv("CIRCLE_PROJECT_REPONAME")
)
},
get_build_number = function() {
paste0("CircleCI build ", self$get_env("CIRCLE_BUILD_NUM"))
},
get_build_url = function() {
Sys.getenv("CIRCLE_BUILD_URL")
},
get_commit = function() {
Sys.getenv("CIRCLE_COMMIT")
},
can_push = function(name) {
TRUE
},
get_env = function(env) {
Sys.getenv(env)
},
is_env = function(env, value) {
self$get_env(env) == value
},
has_env = function(env) {
self$get_env(env) != ""
},
on_circle = function() {
TRUE
}
)
)
|
fisher.test <-
function(x, y = NULL, workspace = 200000, hybrid = FALSE,
hybridPars = c(expect = 5, percent = 80, Emin = 1),
control = list(), or = 1, alternative = "two.sided",
conf.int = TRUE, conf.level = 0.95,
simulate.p.value = FALSE, B = 2000)
{
DNAME <- deparse(substitute(x))
METHOD <- "Fisher's Exact Test for Count Data"
if(is.data.frame(x))
x <- as.matrix(x)
if(is.matrix(x)) {
if(any(dim(x) < 2L))
stop("'x' must have at least 2 rows and columns")
if(!is.numeric(x) || any(x < 0) || anyNA(x))
stop("all entries of 'x' must be nonnegative and finite")
if(!is.integer(x)) {
xo <- x
x <- round(x)
if(any(x > .Machine$integer.max))
stop("'x' has entries too large to be integer")
if(!identical(TRUE, (ax <- all.equal(xo, x))))
warning(gettextf("'x' has been rounded to integer: %s", ax),
domain = NA)
storage.mode(x) <- "integer"
}
}
else {
if(is.null(y))
stop("if 'x' is not a matrix, 'y' must be given")
if(length(x) != length(y))
stop("'x' and 'y' must have the same length")
DNAME <- paste(DNAME, "and", deparse(substitute(y)))
OK <- complete.cases(x, y)
x <- as.factor(x[OK])
y <- as.factor(y[OK])
if((nlevels(x) < 2L) || (nlevels(y) < 2L))
stop("'x' and 'y' must have at least 2 levels")
x <- table(x, y)
}
con <- list(mult = 30)
con[names(control)] <- control
if((mult <- as.integer(con$mult)) < 2)
stop("'mult' must be integer >= 2, typically = 30")
nr <- nrow(x)
nc <- ncol(x)
have.2x2 <- (nr == 2) && (nc == 2)
if(have.2x2) {
alternative <- char.expand(alternative,
c("two.sided", "less", "greater"))
if(length(alternative) > 1L || is.na(alternative))
stop("alternative must be \"two.sided\", \"less\" or \"greater\"")
if(!((length(conf.level) == 1L) && is.finite(conf.level) &&
(conf.level > 0) && (conf.level < 1)))
stop("'conf.level' must be a single number between 0 and 1")
if(!missing(or) && (length(or) > 1L || is.na(or) || or < 0))
stop("'or' must be a single number between 0 and Inf")
}
PVAL <- NULL
if(!have.2x2) {
if(simulate.p.value) {
sr <- rowSums(x)
sc <- colSums(x)
x <- x[sr > 0, sc > 0, drop = FALSE]
nr <- as.integer(nrow(x))
nc <- as.integer(ncol(x))
if (is.na(nr) || is.na(nc) || is.na(nr * nc))
stop("invalid nrow(x) or ncol(x)", domain = NA)
if(nr <= 1L)
stop("need 2 or more non-zero row marginals")
if(nc <= 1L)
stop("need 2 or more non-zero column marginals")
METHOD <- paste(METHOD, "with simulated p-value\n\t (based on", B,
"replicates)")
STATISTIC <- -sum(lfactorial(x))
tmp <- .Call(C_Fisher_sim, rowSums(x), colSums(x), B)
almost.1 <- 1 + 64 * .Machine$double.eps
PVAL <- (1 + sum(tmp <= STATISTIC/almost.1)) / (B + 1)
} else if(hybrid) {
if(!is.null(nhP <- names(hybridPars)) &&
!identical(nhP, c("expect", "percent", "Emin")))
stop("names(hybridPars) should be NULL or be identical to the default's")
stopifnot(is.double(hypp <- as.double(hybridPars)),
length(hypp) == 3L,
hypp[1] > 0, hypp[3] >= 0,
0 <= hypp[2], hypp[2] <= 100)
PVAL <- .Call(C_Fexact, x, hypp, workspace, mult)
METHOD <- paste(METHOD, sprintf("hybrid using asym.chisq. iff (exp=%g, perc=%g, Emin=%g)",
hypp[1], hypp[2], hypp[3]))
} else {
PVAL <- .Call(C_Fexact, x, c(-1, 100, 0), workspace, mult)
}
RVAL <- list(p.value = max(0, min(1, PVAL)))
} else {
if(hybrid) warning("'hybrid' is ignored for a 2 x 2 table")
m <- sum(x[, 1L])
n <- sum(x[, 2L])
k <- sum(x[1L, ])
x <- x[1L, 1L]
lo <- max(0L, k - n)
hi <- min(k, m)
NVAL <- c("odds ratio" = or)
support <- lo : hi
logdc <- dhyper(support, m, n, k, log = TRUE)
dnhyper <- function(ncp) {
d <- logdc + log(ncp) * support
d <- exp(d - max(d))
d / sum(d)
}
mnhyper <- function(ncp) {
if(ncp == 0)
return(lo)
if(ncp == Inf)
return(hi)
sum(support * dnhyper(ncp))
}
pnhyper <- function(q, ncp = 1, upper.tail = FALSE) {
if(ncp == 1) {
return(if(upper.tail)
phyper(x - 1, m, n, k, lower.tail = FALSE) else
phyper(x, m, n, k))
}
if(ncp == 0) {
return(as.numeric(if(upper.tail) q <= lo else q >= lo))
}
if(ncp == Inf) {
return(as.numeric(if(upper.tail) q <= hi else q >= hi))
}
sum(dnhyper(ncp)[if(upper.tail) support >= q else support <= q])
}
if(is.null(PVAL)) {
PVAL <-
switch(alternative,
less = pnhyper(x, or),
greater = pnhyper(x, or, upper.tail = TRUE),
two.sided = {
if(or == 0)
as.numeric(x == lo)
else if(or == Inf)
as.numeric(x == hi)
else {
relErr <- 1 + 10 ^ (-7)
d <- dnhyper(or)
sum(d[d <= d[x - lo + 1] * relErr])
}
})
RVAL <- list(p.value = PVAL)
}
mle <- function(x) {
if(x == lo)
return(0)
if(x == hi)
return(Inf)
mu <- mnhyper(1)
if(mu > x)
uniroot(function(t) mnhyper(t) - x, c(0, 1))$root
else if(mu < x)
1 / uniroot(function(t) mnhyper(1/t) - x,
c(.Machine$double.eps, 1))$root
else
1
}
ESTIMATE <- c("odds ratio" = mle(x))
if(conf.int) {
ncp.U <- function(x, alpha) {
if(x == hi)
return(Inf)
p <- pnhyper(x, 1)
if(p < alpha)
uniroot(function(t) pnhyper(x, t) - alpha,
c(0, 1))$root
else if(p > alpha)
1 / uniroot(function(t) pnhyper(x, 1/t) - alpha,
c(.Machine$double.eps, 1))$root
else
1
}
ncp.L <- function(x, alpha) {
if(x == lo)
return(0)
p <- pnhyper(x, 1, upper.tail = TRUE)
if(p > alpha)
uniroot(function(t)
pnhyper(x, t, upper.tail = TRUE) - alpha,
c(0, 1))$root
else if(p < alpha)
1 / uniroot(function(t)
pnhyper(x, 1/t, upper.tail = TRUE) - alpha,
c(.Machine$double.eps, 1))$root
else
1
}
CINT <- switch(alternative,
less = c(0, ncp.U(x, 1 - conf.level)),
greater = c(ncp.L(x, 1 - conf.level), Inf),
two.sided = {
alpha <- (1 - conf.level) / 2
c(ncp.L(x, alpha), ncp.U(x, alpha))
})
attr(CINT, "conf.level") <- conf.level
}
RVAL <- c(RVAL,
list(conf.int = if(conf.int) CINT,
estimate = ESTIMATE,
null.value = NVAL))
}
structure(c(RVAL,
alternative = alternative,
method = METHOD,
data.name = DNAME),
class = "htest")
}
|
find_random_slopes <- function(x) {
random_slopes <- vector(mode = "list")
forms <- find_formula(x, verbose = FALSE)
random_slopes$random <- .extract_random_slopes(forms$random)
random_slopes$zero_inflated_random <- .extract_random_slopes(forms$zero_inflated_random)
random_slopes <- .compact_list(random_slopes)
if (.is_empty_object(random_slopes)) {
NULL
} else {
random_slopes
}
}
.extract_random_slopes <- function(fr) {
if (is.null(fr)) {
return(NULL)
}
if (!is.list(fr)) fr <- list(fr)
random_slope <- lapply(fr, function(forms) {
if (grepl("(.*)\\|(.*)\\|(.*)", .safe_deparse(forms))) {
pattern <- "(.*)\\|(.*)\\|(.*)"
} else {
pattern <- "(.*)\\|(.*)"
}
pattern <- gsub(pattern, "\\1", .safe_deparse(forms))
re <- all.vars(forms)
re[sapply(re, function(x) {
grepl(x, pattern, fixed = TRUE)
})]
})
unique(unlist(.compact_list(random_slope)))
}
|
library(vtreat)
dTrainC <- data.frame(x=c('a','a','a','b','b',NA),
z=c(1,2,3,4,NA,6),y=c(FALSE,FALSE,TRUE,FALSE,TRUE,TRUE),
stringsAsFactors = FALSE)
treatmentsC <- designTreatmentsC(dTrainC,colnames(dTrainC),'y',TRUE)
scoreColsToPrint <- c('origName','varName','code','rsq','sig','extraModelDegrees')
print(treatmentsC$scoreFrame[,scoreColsToPrint])
vmap <- as.list(treatmentsC$scoreFrame$origName)
names(vmap) <- treatmentsC$scoreFrame$varName
print(vmap['x_catB'])
aggregate(sig~origName,data=treatmentsC$scoreFrame,FUN=min)
library(vtreat)
dTrainN <- data.frame(x=c('a','a','a','b','b',NA),
z=c(1,2,3,4,NA,6),y=as.numeric(c(FALSE,FALSE,TRUE,FALSE,TRUE,TRUE)),
stringsAsFactors = FALSE)
treatmentsN <- designTreatmentsN(dTrainN,colnames(dTrainN),'y')
print(treatmentsN$scoreFrame[,scoreColsToPrint])
library(vtreat)
dTrainZ <- data.frame(x=c('a','a','a','b','b',NA),
z=c(1,2,3,4,NA,6),
stringsAsFactors = FALSE)
treatmentsZ <- designTreatmentsZ(dTrainZ,colnames(dTrainZ))
print(treatmentsZ$scoreFrame[, c('origName','varName','code','extraModelDegrees')])
dTrainN <- data.frame(x=c('a','a','a','b','b',NA),
z=c(1,2,3,4,NA,6),y=as.numeric(c(FALSE,FALSE,TRUE,FALSE,TRUE,TRUE)),
stringsAsFactors = FALSE)
treatmentsN <- designTreatmentsN(dTrainN,colnames(dTrainN),'y',
codeRestriction = c('lev',
'catN',
'clean',
'isBAD'),
verbose=FALSE)
print(treatmentsN$scoreFrame[,scoreColsToPrint])
dTreated = prepare(treatmentsN, dTrainN,
codeRestriction = c('lev','clean', 'isBAD'))
head(dTreated)
dTrainN <- data.frame(x=c('a','a','a','b','b',NA),
z=c(1,2,3,4,NA,6),y=as.numeric(c(FALSE,FALSE,TRUE,FALSE,TRUE,TRUE)),
stringsAsFactors = FALSE)
treatmentsN <- designTreatmentsN(dTrainN,colnames(dTrainN),'y',
codeRestriction = c('lev',
'catN',
'clean',
'isBAD'),
verbose=FALSE)
print(treatmentsN$scoreFrame[,scoreColsToPrint])
pruneSig <- 1.0
vScoreFrame <- treatmentsN$scoreFrame
varsToUse <- vScoreFrame$varName[(vScoreFrame$sig<=pruneSig)]
print(varsToUse)
origVarNames <- sort(unique(vScoreFrame$origName[vScoreFrame$varName %in% varsToUse]))
print(origVarNames)
dTreated = prepare(treatmentsN, dTrainN,
varRestriction = varsToUse)
head(dTreated)
origVarNames <- sort(unique(vScoreFrame$origName[vScoreFrame$varName %in% varsToUse]))
print(origVarNames)
origVarSigs <- vScoreFrame[vScoreFrame$varName %in% varsToUse,]
aggregate(sig~origName,data=origVarSigs,FUN=min)
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.