code
stringlengths
1
13.8M
source("ESEUR_config.r") library(plyr) library(survival) study_start=as.Date("9-November-2004", format="%d-%B-%Y") study_end=as.Date("1-October-2010", format="%d-%B-%Y") every_day=seq(study_start, study_end, by=1) version_fault=read.csv(paste0(ESEUR_dir, "faults/ff-version-fault.csv.xz"), row.names=1, as.is=TRUE) vf_names=colnames(version_fault) version_dates=read.csv(paste0(ESEUR_dir, "faults/ff-release-retire.csv.xz"), row.names=1, as.is=TRUE) version_dates$release=as.Date(version_dates$release, format="%d-%B-%Y") version_dates$retire=as.Date(version_dates$retire, format="%d-%B-%Y") version_dates$retire[version_dates$retire > study_end]=study_end mk_censored_release=function(censor_count, src_cluster) { if (censor_count == 0) return(NULL) rep_cluster=names(censor_count) src_start=version_dates[src_cluster, 1] rep_start=version_dates[rep_cluster, 1] survive_list=data.frame(rep_date=rep(NA, censor_count)) survive_list$end=as.numeric(rep_start-study_start) survive_list$start=as.numeric(src_start-study_start) survive_list$src_id=src_cluster survive_list$rep_id=rep_cluster survive_list$event=0 return(survive_list) } mk_censored_faults=function(fault_count, src_cluster, rep_cluster) { if (src_cluster == rep_cluster) return(NULL) start_col= 1+which(names(src_percent) == src_cluster) end_col= which(names(src_percent) == rep_cluster) percent_missing=as.numeric(1-src_percent[src_cluster, start_col:end_col]) latest_missing=percent_missing[length(percent_missing)] if (latest_missing == 0) return(NULL) total_cendored=fault_count/latest_missing faults_censored=cummax(total_cendored*(percent_missing/latest_missing)) ver_cen_fault=round(diff(c(0, faults_censored))) names(ver_cen_fault)=names(src_percent)[start_col:end_col] t=adply(ver_cen_fault, 1, function(X) mk_censored_release(X, src_cluster)) return(t) } mk_cell_survive=function(fault_count) { if (is.na(fault_count)) return(NULL) src_cluster=rownames(fault_count) rep_cluster=colnames(fault_count) src_start_date=version_dates[src_cluster, 1] rep_start_date=version_dates[rep_cluster, 1] rep_end_date=version_dates[rep_cluster, 2] cur_fault_count=as.integer(fault_count) if (cur_fault_count == 0) { return(NULL) } censored_faults=mk_censored_faults(cur_fault_count, src_cluster, rep_cluster) censored_faults$X1=NULL start_offset=as.numeric(rep_start_date) end_offset=as.numeric(rep_end_date) v_interval=end_offset-start_offset f_width=v_interval / cur_fault_count survive_list=data.frame(rep_date=rep_start_date+runif(cur_fault_count, 1, v_interval)) survive_list=data.frame(rep_date=rep_start_date+(1:cur_fault_count)*f_width) survive_list$start=as.numeric(src_start_date-study_start) survive_list$src_id=src_cluster survive_list$rep_id=rep_cluster survive_list$event=1 return(rbind(survive_list, censored_faults)) } mk_row_survive=function(version_row) { t=adply(version_row, 2, mk_cell_survive) return(t) } mk_survive=function(version_array) { t=adply(version_array, 1, mk_row_survive) return(t) } src_LOC=read.csv(paste0(ESEUR_dir, "faults/ff-src-version.csv.xz"), row.names=1, as.is=TRUE) LOC_diag=diag(src_LOC) src_percent=src_LOC/diag(as.matrix(src_LOC)) ff_faults=mk_survive(version_fault) ff_faults$fault_id=1:nrow(ff_faults) ff_faults$v1.0=NULL ff_faults$v1.5=NULL ff_faults$v2.0=NULL ff_faults$v3.0=NULL ff_faults$v3.5=NULL ff_faults$v3.6=NULL ff_faults$X1=NULL total_usage=function(one_fault) { total_usage=sum(daily_ff_usage[(one_fault$start+1):one_fault$end]) return(data.frame(total_usage)) } browser_ms=read.csv(paste0(ESEUR_dir, "faults/w3stats_browser.csv.xz"), as.is=TRUE) browser_ms$date=as.Date(browser_ms$date, format="%m/%d/%Y") total_ff_ms=ddply(browser_ms, .(date), function(df) data.frame(ms=sum(df$market_share))) total_ff_ms$date=as.numeric(total_ff_ms$date) l_mod=loess(ms ~ date, data=total_ff_ms, span=0.2) daily_ff_ms=predict(l_mod, newdata=data.frame(date=as.numeric(every_day))) i_users=read.csv(paste0(ESEUR_dir, "faults/itu-internet-users.csv.xz"), as.is=TRUE) i_users$year=as.Date(i_users$year) user_mod=lm(Developed ~ year, data=i_users) daily_i_users=predict(user_mod, newdata=data.frame(year=every_day)) pop_growth=(1.09^(1/365))^(1:length(daily_i_users)) daily_i_users=daily_i_users*pop_growth daily_ff_usage=daily_ff_ms*daily_i_users split_start_end=function(one_fault) { t=seq(one_fault$start, one_fault$end, by = 7) split_start=t[t < one_fault$end-7] if (one_fault$end-7 < one_fault$start) { f_interval=one_fault } else { f_interval=one_fault[rep(1, length(split_start)), ] f_interval$start=split_start f_interval$end=split_start+7 f_interval$event=0 t=one_fault t$start=f_interval$end[nrow(f_interval)] f_interval=rbind(f_interval, t) } t=adply(f_interval, 1, total_usage) return(t) } ff_usage=adply(ff_faults, 1, split_start_end) f_sur=Surv(time=ff_usage$start, time2=ff_usage$end, event=ff_usage$event) f_fit=survfit(f_sur ~ 1+cluster(ff_usage$fault_id)) plot(f_fit) ff_cox=coxph(f_sur ~ total_usage+strata(src_id)+cluster(fault_id), data=ff_usage) t=cox.zph(ff_cox) t plot(t) ff_cox=coxph(Surv(time=start, time2=end, event=event) ~ total_usage+strata(src_id)+cluster(fault_id), data=ff_usage) v1=subset(ff_usage, src_id == "v1.0") v_sur=Surv(v1$start, v1$end, v1$event) ff_cox=coxph(v_sur ~ total_usage, data=v1, ties="breslow") v1=ff_usage[1:100, ] v_sur=Surv(time=v1$start, time2=v1$end, event=v1$event) ff_cox=coxph(v_sur ~ total_usage+cluster(fault_id), data=v1) library(rms) f_sur=Srv(time=ff_usage$start, time2=ff_usage$end, event=ff_usage$event) ff_cox=cph(f_sur ~ total_usage+strat(src_id)+cluster(fault_id), data=ff_usage)
random.shortonly.test <- function( n=2, k=n, segments=NULL, x.t=1, x.l=0, x.u=x.t, max.iter=1000 ) { if ( x.l >= x.u ) stop( "Argument 'x.l' is greater than or equal to argument 'x.u'" ) if ( x.l < 0 ) stop( "Argument 'x.l' is less than zero" ) if ( x.u < 0 ) stop( "Argument 'x.u' is less than zero" ) thisResult <- random.longonly.test( n, k, segments, x.t, x.l, x.u, max.iter ) x <- -thisResult$x iter <- thisResult$iter newResult <- list( x=x, iter=iter ) return( newResult ) }
tbl_format_header <- function(x, setup, ...) { check_dots_empty() UseMethod("tbl_format_header") } tbl_format_header.tbl <- function(x, setup, ...) { named_header <- setup$tbl_sum if (all(names2(named_header) == "")) { header <- named_header } else { header <- paste0( align(paste0(names2(named_header), ":"), space = NBSP), " ", named_header ) } style_subtle(format_comment(header, width = setup$width)) } tbl_format_header.pillar_tbl_format_setup <- function(x, ...) { as_glue(c( cli::style_bold("<tbl_format_header(setup)>"), tbl_format_header(x$x, setup = x) )) }
split.data.byext.comb <- function(dat,ext.mat=ext.mat, clstr0.vec=NULL){ printcheck <- TRUE H <- ncol(ext.mat) if(is.null(H)){ ext.mat=as.matrix(ext.mat,ncol=1) H=1 } J=ncol(dat) ; N=nrow(dat) extcate.vec<-sapply(seq(1,H),function(x){length(unique(ext.mat[,x]))}) extcate.list=rep(list(NA),H) for(hh in 1:H){ extcate.list[[hh]]=unique(ext.mat[,hh]) if(all(is.numeric(extcate.list[[hh]])))extcate.list[[hh]]=sort(extcate.list[[hh]]) extcate.vec[hh]=length(extcate.list[[hh]]) } C<-prod(extcate.vec) extcomb <- expand.grid(lapply(c(1:H),function(x){extcate.list[[x]]})) if(nrow(extcomb)!=C){ stop("something is wrong.") } classlab.mat=matrix(NA,C,H+1) rownames(classlab.mat)=paste0(c(1:C),"th class") colnames(classlab.mat)=c(paste0("extvari",c(1:H)),"classlabel") classlab.mat[,c(1:H)]=as.matrix(extcomb) classlab.mat[,(H+1)]=apply(extcomb,1,function(x){paste(x,collapse="&")}) X.list<-clstr0.list <- clstr.list <- oriindex.list <-rep(list(NA),C) names(X.list)<-names(clstr0.list) <- names(clstr.list) <- names(oriindex.list) <-classlab.mat[,(H+1)] class.n.vec <- clstr.vec<-rep(NA,N) names(class.n.vec)=rownames(dat) Ktrue.vec<-N.vec <- rep(NA,C) names(Ktrue.vec)<-names(N.vec) <-classlab.mat[,(H+1)] emptyclass=rep(FALSE,C) cc <- emp<-1 for(cc in 1:C){ comb <- as.vector(extcomb[cc,]) as.character(extcomb[cc,]) pickupsub <- apply(ext.mat,1,function(x){all(x==comb)}) N.vec[cc] <- Nc <-sum(pickupsub) if(printcheck) cat(cc,"th class:","(",paste(as.matrix(comb),collapse=","),") data, n=",Nc,"\n") if(Nc==0){ cat("the emptyclass[cc]=TRUE Ktrue.vec[cc]=0 }else{ X.list[[cc]]<-dat[pickupsub,] class.n.vec[pickupsub]=cc oriindex.list[[cc]]=which(pickupsub) if(!is.null(clstr0.vec)){ clstr0.list[[cc]] <- clstr0.vec[pickupsub] Ktrue.vec[cc]=length(unique(clstr0.list[[cc]])) } } } ded=1 ; class.n.vec.old=class.n.vec for(emp in which(emptyclass)){ whichlist=(which(names(X.list)==classlab.mat[emp,H+1])) X.list[[whichlist]]<-clstr0.list[[whichlist]] <- oriindex.list[[whichlist]]<-NULL class.n.vec[emp<class.n.vec.old]=class.n.vec.old[emp<class.n.vec.old]-ded ded=ded+1 } if(any(emptyclass)){ classlab.mat=classlab.mat[-which(emptyclass),] N.vec<-N.vec[-which(emptyclass)] ; Ktrue.vec<-Ktrue.vec[-which(emptyclass)] } C2=nrow(classlab.mat) rownames(classlab.mat)<-paste0(c(1:C2),"th class") names(N.vec)<-names(Ktrue.vec)<-mapply(function(x,y){paste(x,y,sep=":")},c(1:C2),classlab.mat[,(H+1)]) names(oriindex.list)=mapply(function(x,y){paste(x,y,sep=":")},c(1:C2),names(oriindex.list)) names(X.list)=mapply(function(x,y){paste(x,y,sep=":")},c(1:C2),names(X.list)) classname.n.vec=classlab.mat[class.n.vec,(H+1)] classname.n.vec=mapply(function(x,y){paste(x,y,sep=":")},class.n.vec,classname.n.vec) if(is.null(clstr0.vec)){ clstr0.list <- Ktrue.vec<-NULL } list(data.list=X.list,clstr0.list=clstr0.list,Ktrue.vec=Ktrue.vec ,N.vec=N.vec,classlab.mat=classlab.mat,class.n.vec=class.n.vec,classname.n.vec=classname.n.vec, oriindex.list=oriindex.list) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) required <- c("tidyverse", "MortalityLaws", "reshape2") if (!all(sapply(required, function(pkg) requireNamespace(pkg, quietly = TRUE)))) { message(paste("This vignette needs the followig packages:\n\t", paste(required, collapse = " "), "\nSince not all are installed, code will not be executed: ")) knitr::opts_chunk$set(eval = FALSE) }
options("repos" = c(CRAN = "http://cran.ma.imperial.ac.uk/")) \dontrun{ install.packages("fortunes") } library("fortunes") library(help=fortunes) \dontrun{ vignette("fortunes") } \dontrun{ update.packages() } search() detach(package:fortunes, unload=TRUE) \dontrun{ install.packages("data.table", repos="http://R-Forge.R-project.org") } \dontrun{ source("http://bioconductor.org/biocLite.R") }
get_comptab <- function(pdat, var1="ZC", var2="nH2O", plot.it=FALSE, mfun="median", oldstyle = FALSE, basis = getOption("basis")) { ZC <- function() ZCAA(pdat$pcomp$aa) nH2O <- function() H2OAA(pdat$pcomp$aa, basis = basis) nO2 <- function() O2AA(pdat$pcomp$aa, basis = basis) AA3 <- c("Ala", "Cys", "Asp", "Glu", "Phe", "Gly", "His", "Ile", "Lys", "Leu", "Met", "Asn", "Pro", "Gln", "Arg", "Ser", "Thr", "Val", "Trp", "Tyr") icol <- match(AA3, colnames(pdat$pcomp$aa)) nAA <- function() rowSums(pdat$pcomp$aa[, icol]) V0 <- function() { volumes <- c(26.864, 39.913, 41.116, 56.621, 88.545, 9.606, 65.753, 72.204, 75.048, 74.2, 71.832, 43.826, 49.049, 60.078, 105.825, 27.042, 44.03, 57.279, 110.045, 90.904, 26.296, 33.585) vAA <- volumes[1:20] vUPBB <- volumes[21] vAABB <- volumes[22] VAA <- rowSums(t(t(pdat$pcomp$aa[, icol]) * vAA)) chains <- pdat$pcomp$aa$chains plength <- nAA() VUPBB <- (plength - chains) * vUPBB VAABB <- chains * vAABB (VAA + VUPBB + VAABB) / plength } GRAVY <- function() canprot::GRAVY(pdat$pcomp$aa) pI <- function() canprot::pI(pdat$pcomp$aa) MW <- function() MWAA(pdat$pcomp$aa) val1 <- get(var1)() val2 <- get(var2)() if(plot.it) { col <- ifelse(pdat$up2, 2, 4) pch <- ifelse(pdat$up2, 0, 19) cex <- ifelse(pdat$up2, 1, 0.8) i <- sample(1:length(val1)) plot(val1[i], val2[i], xlab=cplab[[var1]], ylab=cplab[[var2]], col=col[i], pch=pch[i], cex=cex[i]) title(pdat$description) mtext(pdat$dataset, side=4, cex=0.85, las=0, adj=0, line=-0.1) } val1_dn <- val1[!pdat$up2] val1_up <- val1[pdat$up2] val2_dn <- val2[!pdat$up2] val2_up <- val2[pdat$up2] message(paste0(pdat$dataset, " (", pdat$description ,"): n1 ", length(val1_dn), ", n2 ", length(val1_up))) mfun1_dn <- get(mfun)(val1_dn) mfun1_up <- get(mfun)(val1_up) mfun2_dn <- get(mfun)(val2_dn) mfun2_up <- get(mfun)(val2_up) val1.diff <- mfun1_up - mfun1_dn val2.diff <- mfun2_up - mfun2_dn out <- data.frame(dataset=pdat$dataset, description=pdat$description, n1=length(val1_dn), n2=length(val1_up), val1.median1=mfun1_dn, val1.median2=mfun1_up, val1.diff, val2.median1=mfun2_dn, val2.median2=mfun2_up, val2.diff, stringsAsFactors=FALSE) if(oldstyle) { val1.CLES <- 100*CLES(val1_dn, val1_up, distribution = NA) val2.CLES <- 100*CLES(val2_dn, val2_up, distribution = NA) val1.p.value <- val2.p.value <- NA if(!any(is.na(val1_dn)) & !any(is.na(val1_up))) val1.p.value <- stats::wilcox.test(val1_dn, val1_up)$p.value if(!any(is.na(val2_dn)) & !any(is.na(val2_up))) val2.p.value <- stats::wilcox.test(val2_dn, val2_up)$p.value nchar1 <- nchar(var1) nchar2 <- nchar(var2) start1 <- paste0(var1, substr(" MD ", nchar1, 10)) start2 <- paste0(var2, substr(" MD ", nchar2, 10)) message(paste0(start1, format(round(val1.diff, 3), nsmall=3, width=6), ", CLES ", round(val1.CLES), "%", ", p-value ", format(round(val1.p.value, 3), nsmall=3))) message(paste0(start2, format(round(val2.diff, 3), nsmall=3, width=6), ", CLES ", round(val2.CLES), "%", ", p-value ", format(round(val2.p.value, 3), nsmall=3), "\n")) out <- data.frame(dataset=pdat$dataset, description=pdat$description, n1=length(val1_dn), n2=length(val1_up), val1.median1=mfun1_dn, val1.median2=mfun1_up, val1.diff, val1.CLES, val1.p.value, val2.median1=mfun2_dn, val2.median2=mfun2_up, val2.diff, val2.CLES, val2.p.value, stringsAsFactors=FALSE) } colnames(out) <- gsub("val1", var1, colnames(out)) colnames(out) <- gsub("val2", var2, colnames(out)) if(mfun == "mean") colnames(out) <- gsub("median", "mean", colnames(out)) return(invisible(out)) }
context("dockerignore") test_that("parse_dockerignore: empty", { expect_null(parse_dockerignore(character())) expect_null(parse_dockerignore(NULL)) expect_null(parse_dockerignore(" expect_null(parse_dockerignore(" ")) expect_null(parse_dockerignore(c(" }) test_that("parse_dockerignore: empty", { expect_null(parse_dockerignore(character())) expect_null(parse_dockerignore(NULL)) expect_null(parse_dockerignore(" expect_null(parse_dockerignore(" ")) expect_null(parse_dockerignore(c(" }) test_that("parse_dockerignore: simple", { expect_equal(parse_dockerignore("hello"), list(patterns = "hello", is_exception = FALSE)) }) test_that("parse_dockerignore: exceptions", { expect_equal(parse_dockerignore(c("*.md", "!README.md")), list(patterns = c("*.md", "README.md"), is_exception = c(FALSE, TRUE))) }) test_that("parse_dockerignore: cleanup", { parse_dockerignore("//a///b\\c")$patterns expect_equal(parse_dockerignore("a/b/c")$patterns, "a/b/c") expect_equal(parse_dockerignore("a//b/c")$patterns, "a/b/c") expect_equal(parse_dockerignore("a//b\\c")$patterns, "a/b/c") expect_equal(parse_dockerignore("/a//b\\c")$patterns, "a/b/c") expect_equal(parse_dockerignore("////a/////b///c\\\\\\d")$patterns, "a/b/c/d") }) test_that("simple cases", { paths <- c(paste0("dir1/", c("a.txt", "b.md", "c.c")), paste0("dir2/", c("file.txt", "foo.md", "secret.json")), paste0("dir3/", c("bar.md", "bar.c")), "README.md", "Dockerfile") root <- make_fake_files(paths) on.exit(unlink(root, recursive = TRUE), add = TRUE) dockerfile <- "Dockerfile" expect_equal(build_file_list(root, NULL), ".") dockerignore <- parse_dockerignore(c("*/*.md", "dir2")) expect_equal( build_file_list(root, dockerignore), sort(c("Dockerfile", "README.md", "dir1/a.txt", "dir1/c.c", "dir3/bar.c"))) dockerignore <- parse_dockerignore(c("*/*.md", "dir2", "!dir2/foo.md")) expect_equal( build_file_list(root, dockerignore), sort(c("Dockerfile", "README.md", "dir1/a.txt", "dir1/c.c", "dir2/foo.md", "dir3/bar.c"))) dockerignore <- parse_dockerignore(c("**/*.md", "dir2")) expect_equal( build_file_list(root, dockerignore), sort(c("Dockerfile", "dir1/a.txt", "dir1/c.c", "dir3/bar.c"))) dockerignore <- parse_dockerignore(c("**/*.md", "dir2", "!dir2/foo.md")) expect_equal( build_file_list(root, dockerignore), sort(c("Dockerfile", "dir1/a.txt", "dir1/c.c", "dir2/foo.md", "dir3/bar.c"))) }) test_that("build file list with excluded dockerignore", { paths <- c(paste0("dir1/", c("a.txt", "Dockerfile")), paste0("dir2/", c("file.txt", "foo.md", "secret.json")), "README.md") root <- make_fake_files(paths) on.exit(unlink(root, recursive = TRUE), add = TRUE) dockerfile <- "dir1/Dockerfile" writeLines("dir1", file.path(root, ".dockerignore")) ignore1 <- parse_dockerignore("dir1") ignore2 <- include_dockerfile(ignore1, root, dockerfile) ignore3 <- read_dockerignore(root, dockerfile) expect_equal(ignore2, ignore3) expect_equal(build_file_list(root, ignore1), sort(c(".dockerignore", "dir2", "README.md"))) expect_equal(build_file_list(root, ignore2), sort(c(".dockerignore", "dir1/Dockerfile", "dir2", "README.md"))) expect_equal(build_file_list(root, ignore3), sort(c(".dockerignore", "dir1/Dockerfile", "dir2", "README.md"))) }) test_that("build_tar", { skip_if_external_tar_unsupported() paths <- c(paste0("dir1/", c("a.txt", "Dockerfile")), paste0("dir2/", c("file.txt", "foo.md", "secret.json")), "README.md") root <- make_fake_files(paths) dockerfile <- "dir1/Dockerfile" x <- build_tar(root, dockerfile) expect_is(x, "raw") tmp <- untar_bin(x) expect_equal(dir(tmp, all.files = TRUE, recursive = TRUE), dir(root, all.files = TRUE, recursive = TRUE)) unlink(tmp, recursive = TRUE) writeLines("dir2", file.path(root, ".dockerignore")) x <- build_tar(root, dockerfile) tmp2 <- untar_bin(x) f1 <- dir(tmp2, all.files = TRUE, recursive = TRUE) f2 <- dir(root, all.files = TRUE, recursive = TRUE) expect_equal(sort(f1), sort(grep("^dir2", f2, invert = TRUE, value = TRUE))) unlink(root, recursive = TRUE) unlink(tmp2, recursive = TRUE) }) test_that("validate_tar_directory", { skip_if_external_tar_unsupported() paths <- c(paste0("dir1/", c("a.txt", "Dockerfile")), paste0("dir2/", c("file.txt", "foo.md", "secret.json")), "README.md") root <- make_fake_files(paths) on.exit(unlink(root, recursive = TRUE), add = TRUE) dockerfile <- "dir1/Dockerfile" bin <- validate_tar_directory(root, dockerfile) expect_is(bin, "raw") expect_identical(validate_tar_directory(bin), bin) })
pwr.1way<-function(k=k, n=n,alpha=alpha, f=NULL, delta=delta, sigma=sigma){ if (is.null(f)) {f<-sqrt(((1/k)*(delta/2)^2*2)/sigma^2) lambda<-n*k*f^2 q<- qf(alpha, k - 1, (n - 1) * k, lower.tail = FALSE) pwr<-pf(q, k - 1, (n - 1) * k, lambda, lower.tail = FALSE) NOTE <- paste("n is number in each group, total sample =", k*n, "power =", pwr) METHOD <- "Balanced one-way analysis of variance power calculation" structure(list(k=k, n=n, delta=delta, sigma=sigma, effect.size=f, sig.level=alpha, power = pwr, note = NOTE, method = METHOD), class = "power.htest") } else {f<-f lambda<-n*k*f^2 q<- qf(alpha, k - 1, (n - 1) * k, lower.tail = FALSE) pwr<-pf(q, k - 1, (n - 1) * k, lambda, lower.tail = FALSE) NOTE <- paste("n is number in each group, total sample =", k*n, "power =", pwr) METHOD <- "Balanced one-way analysis of variance power calculation" structure(list(k=k, n=n, effect.size=f, sig.level=alpha, power = pwr, note = NOTE, method = METHOD), class = "power.htest") } }
KO_evaluation=function(W,reg_coef,fdr_range=0.2,offset=1){ fdp = function(selected,reg_coef) {sum(reg_coef[selected] == 0) / max(1, length(selected))} fpr = function(selected,reg_coef) {sum(reg_coef[selected] == 0) / max(1, sum(reg_coef==0))} tpr = function(selected,reg_coef) {sum(reg_coef[selected] != 0) / max(1, sum(reg_coef!=0))} perf=c() for (i_fdr in fdr_range){ thres = knockoff.threshold(W, fdr=i_fdr, offset=offset) selected = which(W >= thres) perf=c(perf,fdp(selected,reg_coef),fpr(selected,reg_coef),tpr(selected,reg_coef)) } perf=t(perf) colnames(perf)=paste(rep(c("FDP","FPR","TPR"),length(fdr_range)),"_",rep(fdr_range,each=3),sep="") return(perf) }
context("earth") test_that("parsnip + earth + axe_() works", { skip_on_cran() skip_if_not_installed("parsnip") skip_if_not_installed("earth") library(parsnip) library(earth) earth_fit <- mars(mode = "regression") %>% set_engine("earth") %>% fit(Volume ~ ., data = trees) x <- axe_call(earth_fit) expect_equal(x$fit$call, rlang::expr(dummy_call())) expect_error(update(x)) x <- axe_fitted(earth_fit) expect_equal(x$fit$residuals, numeric(0)) x <- axe_data(earth_fit) expect_equal(x$fit$data, data.frame(NA)) expect_equal(residuals(x$fit), residuals(earth_fit$fit)) x <- butcher(earth_fit) expect_equal(format(x$fit), format(earth_fit$fit)) expected_output <- predict(earth_fit, trees[1:3,]) new_output <- predict(x, trees[1:3,]) expect_equal(new_output, expected_output) }) test_that("earth + axe_() works", { skip_on_cran() skip_if_not_installed("earth") library(earth) earth_mod <- earth(Volume ~ ., data = trees) x <- axe_call(earth_mod) expect_equal(x$call, rlang::expr(dummy_call())) expect_error(update(x)) x <- axe_fitted(earth_mod) expect_equal(x$residuals, numeric(0)) expect_warning(expect_error(residuals(x))) x <- axe_data(earth_mod) expect_equal(x, earth_mod) expect_equal(class(x), class(earth_mod)) x <- butcher(earth_mod) expect_equal(format(x), format(earth_mod)) expected_output <- predict(earth_mod, trees[1:3,]) new_output <- predict(x, trees[1:3,]) expect_equal(new_output, expected_output) })
context("util.list") test_that("which.pmax() properly applies attributes, and also works for lists of length 1", { x <- list(a = matrix(c(1, 2, 3, 4)), b = matrix(c(4, 3, 2, 1))) xattr <- attributes(x[[1]]) expect_equal(attributes(which.pmax(x)), xattr) expect_equal(as.numeric(which.pmax(x[1])), c(1, 1, 1, 1)) }) test_that("which.pmax() can handle NA values", { x <- list(a = matrix(c(1, 2, NA, 4)), b = matrix(c(4, 3, 2, 1))) expect_equal(as.numeric(which.pmax(x)), c(2, 2, NA, 1)) })
output$Bullet0 <- rAmCharts::renderAmCharts({ rates <- data.frame(name = c('excelent', 'good', 'average', 'poor', 'bad'), min = c(0, 20, 40, 60, 80), max = c(20, 40, 60, 80, 100), color = c(' ' stringsAsFactors = FALSE) dataProvider <- data.frame(category = '', t(rates$max - rates$min), stringsAsFactors = FALSE) colnames(dataProvider)[-1] <- as.character(rates$name) dataProvider$limit <- 90 dataProvider$full <- 100 dataProvider$bullet <- 85 chart <- sapply(1:nrow(rates), FUN = function(rt) { amGraph(type = 'column', valueField = as.character(rates$name[rt]), fillAlphas = 0.8, lineColor = rates$color[rt], showBalloon = FALSE, columnWidth = 1) }) chart <- c(chart,amGraph(type = 'step', valueField = 'limit', columnWidth = 0.5, lineThickness = 3, noStepRisers = TRUE, stackable = FALSE)) chart <- c(chart,amGraph(type = 'column', valueField = 'bullet', columnWidth = 0.3, fillAlphas = 1, clustered = FALSE, stackable = FALSE)) pipeR::pipeline( amSerialChart(dataProvider = dataProvider , categoryField = 'category', columnWidth = 1) , addValueAxes(stackType = 'regular', gridAlpha = 0), setGraphs(chart) ) }) output$code_Bullet0 <- renderText({ " rates <- data.frame(name = c('excelent', 'good', 'average', 'poor', 'bad'), min = c(0, 20, 40, 60, 80), max = c(20, 40, 60, 80, 100), color = c(' ' stringsAsFactors = FALSE) dataProvider <- data.frame(category = '', t(rates$max - rates$min), stringsAsFactors = FALSE) colnames(dataProvider)[-1] <- as.character(rates$name) dataProvider$limit <- 90 dataProvider$full <- 100 dataProvider$bullet <- 85 chart <- sapply(1:nrow(rates), FUN = function(rt) { amGraph(type = 'column', valueField = as.character(rates$name[rt]), fillAlphas = 0.8, lineColor = rates$color[rt], showBalloon = FALSE, columnWidth = 1) }) chart <- c(chart,amGraph(type = 'step', valueField = 'limit', columnWidth = 0.5, lineThickness = 3, noStepRisers = TRUE, stackable = FALSE)) chart <- c(chart,amGraph(type = 'column', valueField = 'bullet', columnWidth = 0.3, fillAlphas = 1, clustered = FALSE, stackable = FALSE)) pipeR::pipeline( amSerialChart(dataProvider = dataProvider , categoryField = 'category', columnWidth = 1) , addValueAxes(stackType = 'regular', gridAlpha = 0), setGraphs(chart) ) " })
library(shiny.fluent) people <- tibble::tribble( ~key, ~imageUrl, ~imageInitials, ~text, ~secondaryText, ~tertiaryText, ~optionalText, ~isValid, ~presence, ~canExpand, 1, "https://static2.sharepointonline.com/files/fabric/office-ui-fabric-react-assets/persona-female.png", "PV", "Annie Lindqvist", "Designer", "In a meeting", "Available at 4:00pm", TRUE, 2, NA, 2, "https://static2.sharepointonline.com/files/fabric/office-ui-fabric-react-assets/persona-male.png", "AR", "Aaron Reid", "Designer", "In a meeting", "Available at 4:00pm", TRUE, 6, NA, 3, "https://static2.sharepointonline.com/files/fabric/office-ui-fabric-react-assets/persona-male.png", "AL", "Alex Lundberg", "Software Developer", "In a meeting", "Available at 4:00pm", TRUE, 4, NA, 4, "https://static2.sharepointonline.com/files/fabric/office-ui-fabric-react-assets/persona-male.png", "RK", "Roko Kolar", "Financial Analyst", "In a meeting", "Available at 4:00pm", TRUE, 1, NA, 5, "https://static2.sharepointonline.com/files/fabric/office-ui-fabric-react-assets/persona-male.png", "CB", "Christian Bergqvist", "Sr. Designer", "In a meeting", "Available at 4:00pm", TRUE, 2, NA, 6, "https://static2.sharepointonline.com/files/fabric/office-ui-fabric-react-assets/persona-female.png", "VL", "Valentina Lovric", "Design Developer", "In a meeting", "Available at 4:00pm", TRUE, 2, NA, 7, "https://static2.sharepointonline.com/files/fabric/office-ui-fabric-react-assets/persona-male.png", "MS", "Maor Sharett", "UX Designer", "In a meeting", "Available at 4:00pm", TRUE, 3, NA ) if (interactive()) { shinyApp( ui = tagList( textOutput("selectedPeople"), NormalPeoplePicker.shinyInput( "selectedPeople", options = people, pickerSuggestionsProps = list( suggestionsHeaderText = 'Matching people', mostRecentlyUsedHeaderText = 'Sales reps', noResultsFoundText = 'No results found', showRemoveButtons = TRUE ) ) ), server = function(input, output) { output$selectedPeople <- renderText({ if (length(input$selectedPeople) == 0) { "Select recipients below:" } else { selectedPeople <- dplyr::filter(people, key %in% input$selectedPeople) paste("You have selected:", paste(selectedPeople$text, collapse=", ")) } }) } ) }
qrsgld = function(p,lambda){ out = .Fortran(.F_RGldx, y=as.double(p), as.double(lambda),n=as.integer(length(p))) if(out$n<0) stop("Invalid RS-GLD parameters.") out$y } prsgld = function(x,lambda){ out = .Fortran(.F_RGldFx, y=as.double(x), as.double(lambda),n=as.integer(length(x))) if(out$n<0) stop("Invalid RS-GLD parameters.") out$y } drsgld = function(x,lambda){ out = .Fortran(.F_RGldfx, y=as.double(x), as.double(lambda),n=as.integer(length(x))) if(out$n<0) stop("Invalid RS-GLD parameters.") out$y } rrsgld = function(n, lambda){ qrsgld(runif(n),lambda) } .lecount <- function(x,y) sum(y<=x) .bincount <- function(x){ x=x[!is.na(x)]; s = sd(x); mu = mean(x); n=length(x) x0 = seq(mu-5.7*s,mu+6*s,by=0.3*s) ps = apply(matrix(x0,ncol=1),1,FUN=.lecount,y=x) cts = diff(ps) bounds = NULL; counts=NULL; k = length(cts) for(i in 1:(k-1)){ if(cts[i]>=5){ bounds = c(bounds,x0[i]) counts = c(counts,cts[i]) ul = x0[i+1] }else{ cts[i+1] = cts[i+1]+cts[i] } } m = n - sum(counts) if(m>5){ bounds = c(bounds,ul) counts = c(counts,m) }else{ counts[length(counts)] = counts[length(counts)]+m } list(x=bounds,y=counts); } .mom <- function(x){ x = x[!is.na(x)] s = sd(x); m1 = mean(x); m2 = mean((x-m1)^2) m3 = mean((x-m1)^3)/s^3 m4 = mean((x-m1)^4)/s^4 c(m1,m2,m3,m4) } .mop <- function(x){ pctls = quantile(x,c(.10,.25,.50,.75,.90)) mp1 = pctls[3]; mp2 = pctls[5]-pctls[1]; mp3 = (pctls[3]-pctls[1])/(pctls[5]-pctls[3]); mp4 = (pctls[4]-pctls[2])/mp2; as.numeric(c(mp1,mp2,mp3,mp4)) } .lmom = function(x){ x = sort(x); n = length(x); b0 = mean(x); w1 = (0:(n-1))/(n-1); b1 = mean(w1*x); s2 = 2:n; w2 = c(0,(s2-1)*(s2-2)/(n-1)/(n-2)) b2 = mean(w2*x); s3 = 3:n; w3 = c(0,0,(s3-1)*(s3-2)*(s3-3)/(n-1)/(n-2)/(n-3)); b3 = mean(w3*x); s4 = 4:n; w4 = c(0,0,0,(s4-1)*(s4-2)*(s4-3)*(s4-4)/(n-1)/(n-2)/(n-3)/(n-4)); b4 = mean(w4*x); p10=1;p20=-1;p30=1;p40=-1;p50=1; p21=2; p31=-6;p41=12;p51=-20; p32=6;p42=-30;p52=90; p43 = 20;p53=-140;p54=70; l1=p10*b0; l2=p20*b0+p21*b1; l3=p30*b0+p31*b1+p32*b2; l4=p40*b0+p41*b1+p42*b2+p43*b3; return(c(l1,l2,l3,l4)); } fit.gld <- function(x,method='LMoM'){ name <- deparse(substitute(x)) if(!is.numeric(x)) stop("\n\n\t 'x' must be numeric values!\n\n\n"); x = x[!is.na(x)]; n = length(x); if(n < 6) stop("\n\n\t Sample size is too small!\n\n\n"); if(n < 30) warning("\n Sample size might be too small to fit moment matching GLD!\n"); s = sd(x); gpoints = seq(min(x)-s,max(x)+s,length=100); out = .bincount(x); os = out$y; nbins = length(out$y); xbin = out$x if(nbins<3) stop("Data has less than 3 bins. Double-check the raw data.") method = match.arg(tolower(method), c("mom","mop","lmom")) out = switch(method, mom = .Fortran(.F_GLDMoM, b=as.double(.mom(x)), chisq = as.double(0.), as.integer(c(n,nbins)),as.double(os),as.double(xbin)), mop = .Fortran(.F_GLDMoP, b=as.double(.mop(x)), chisq = as.double(0.), as.integer(c(n,nbins)),as.double(os),as.double(xbin)), lmom = .Fortran(.F_GLDLMoM, b=as.double(.lmom(x)), chisq = as.double(0.), as.integer(c(n,nbins)),as.double(os),as.double(xbin)) ) DF = nbins - 5 D2 = out$chisq pv = ifelse(DF>0,pchisq(D2,DF,lower.tail=FALSE),NA) y = drsgld(gpoints,out$b) sele = y>0 return(structure(list(x = gpoints[sele],y = y[sele],n = n,para=out$b, chisq = out$chisq, p.value=pv,method=method, call = match.call(), data.name = name), class = "gld")) } print.gld <- function (x, digits = NULL, ...) { tmp=NULL;k=length(x$para) for(i in 1:(k-1)) tmp = paste(tmp,formatC(x$para[i]),",",sep='') tmp = paste(tmp,formatC(x$para[k]),sep='') cat("\nCall:\n\t", deparse(x$call), "\n\nData: ", x$data.name, " (", x$n, " obs.);", "\tMethod: = ", x$method,"\n", "Parameters: \t'para' = (",tmp, ")", sep = "") cat("\nGoodness-of-fit: \n\tChi-Square = ",x$chisq, ",\tp-value = ", format(x$p.value,6), "\n",sep = "") print(summary(as.data.frame(x[c("x", "y")])), digits = digits, ...) invisible(x) } plot.gld <- function (x, main = NULL, xlab = NULL, ylab = "Density", type = "l", zero.line = TRUE, ...) { tmp=NULL;k=length(x$para) for(i in 1:(k-1)) tmp = paste(tmp,formatC(x$para[i]),",",sep='') tmp = paste(tmp,formatC(x$para[k]),sep='') if (is.null(xlab)) xlab <- paste("N =", x$n, " Parameters =(",tmp,")") if (is.null(main)) main <- deparse(x$call) sele = x$y>0 plot.default(x$x[sele],x$y[sele], type = type, main = main, xlab = xlab, ylab = ylab, ...) if (zero.line) abline(h = 0, lwd = 0.1, col = "gray") invisible(NULL) } lines.gld <- function (x, zero.line = TRUE, ...) { sele = x$y>0 lines.default(x$x[sele],x$y[sele], ...) invisible(NULL) }
koyckDlm <- function(x , y , intercept) UseMethod("koyckDlm")
library("matrixStats") rowDiffs_R <- function(x, lag = 1L, differences = 1L, ..., useNames = NA) { ncol2 <- ncol(x) - lag * differences if (ncol2 <= 0) { y <- matrix(x[integer(0L)], nrow = nrow(x), ncol = 0L) if (isTRUE(useNames) && !is.null(rownames(x))) rownames(y) <- rownames(x) return(y) } suppressWarnings({ y <- apply(x, MARGIN = 1L, FUN = diff, lag = lag, differences = differences) }) y <- t(y) dim(y) <- c(nrow(x), ncol2) if (isTRUE(useNames) && !is.null(dimnames(x))) { colnames <- colnames(x) if (!is.null(colnames)) { len <- length(colnames) colnames <- colnames[(len - ncol2 + 1):len] } dimnames(y) <- list(rownames(x), colnames) } else dimnames(y) <- NULL y } source("utils/validateIndicesFramework.R") x <- matrix(runif(6 * 6, min = -6, max = 6), nrow = 6, ncol = 6) storage.mode(x) <- "integer" dimnames <- list(letters[1:6], LETTERS[1:6]) for (setDimnames in c(TRUE, FALSE)) { if (setDimnames) dimnames(x) <- dimnames else dimnames(x) <- NULL for (rows in index_cases) { for (cols in index_cases) { for (lag in 1:2) { for (differences in 1:3) { for (useNames in c(NA, TRUE, FALSE)) { validateIndicesTestMatrix(x, rows, cols, ftest = rowDiffs, fsure = rowDiffs_R, lag = lag, differences = differences, useNames = useNames) validateIndicesTestMatrix(x, rows, cols, ftest = function(x, rows, cols, ..., useNames) { t(colDiffs(t(x), rows = cols, cols = rows, ..., useNames = useNames)) }, fsure = rowDiffs_R, lag = lag, differences = differences, useNames = useNames) } } } } } }
NULL "-.ggplot" <- function(e1, e2) { if (should_autowrap(e2)) e2 <- wrap_elements(full = e2) if (!is.ggplot(e2)) stop("Only knows how to fold ggplot objects together", call. = FALSE) patchwork <- new_patchwork() if (is_patchwork(e2)) { plot <- plot_filler() patchwork$plots <- list(e1, e2) } else { plot <- e2 patchwork$plots <- list(e1) } add_patches(plot, patchwork) } "/.ggplot" <- function(e1, e2) { if (should_autowrap(e2)) e2 <- wrap_elements(full = e2) if (!is_patchwork(e1)) { e1 + e2 + plot_layout(ncol = 1) } else if (!is.null(e1$patches$layout$ncol) && e1$patches$layout$ncol == 1) { e1 + e2 } else { e1 - e2 + plot_layout(ncol = 1) } } "|.ggplot" <- function(e1, e2) { if (should_autowrap(e2)) e2 <- wrap_elements(full = e2) if (!is_patchwork(e1)) { e1 + e2 + plot_layout(nrow = 1) } else if (!is.null(e1$patches$layout$nrow) && e1$patches$layout$nrow == 1) { e1 + e2 } else { e1 - e2 + plot_layout(nrow = 1) } } "*.gg" <- function(e1, e2) { if (is_patchwork(e1)) { e1$patches$plots <- lapply(e1$patches$plots, function(p) { if (!is_patchwork(p)) p <- p + e2 p }) } e1 + e2 } "&.gg" <- function(e1, e2) { if (is_patchwork(e1)) { if (is.theme(e2)) { e1$patches$annotation$theme <- e1$patches$annotation$theme + e2 } e1$patches$plots <- lapply(e1$patches$plots, function(p) { if (is_patchwork(p)) { p <- p & e2 } else { p <- p + e2 } p }) } e1 + e2 }
enforce_form = function(file, ...) { file = checkimg(file) stopifnot(length(file) == 1) form = getForms(file = file, ...) both_zero = form$qform_code == 0 & form$sform_code == 0 if (any(both_zero)) { us = !any(form$ssor == "UU") fs = !any(form$sqor == "UU") if (fs && us) { stop("both qform and sform are set") } if (!fs && !us) { stop("neither qform or sform has orientation") } if (fs && !us) { if (all(form$qform == 0)) { stop("qform selected but all zero") } code = "qform_code" } if (!fs && us) { if (all(form$sform == 0)) { stop("sform selected but all zero") } code = "sform_code" } stopifnot(all(code %in% c("qform_code", "sform_code"))) img = readnii(file) slot(img, code) = 1 pixdim(img)[1] = 1 file = tempimg(img) } return(file) }
context("Test ug_delta") library(hBayesDM) test_that("Test ug_delta", { skip_on_cran() expect_output(ug_delta( data = "example", niter = 10, nwarmup = 5, nchain = 1, ncore = 1)) })
test_that("acc_multivariate_outlier works with 3 args", { skip_if_translated() load(system.file("extdata/meta_data.RData", package = "dataquieR"), envir = environment()) load(system.file("extdata/study_data.RData", package = "dataquieR"), envir = environment()) expect_error( res1 <- acc_multivariate_outlier( study_data = study_data, meta_data = meta_data), regexp = "argument .+resp_vars.+ is missing, with no default", perl = TRUE ) expect_error( res1 <- acc_multivariate_outlier( resp_vars = "v00014", study_data = study_data, meta_data = meta_data), regexp = "Need at least two variables for multivariate outliers.", perl = TRUE ) expect_warning( res1 <- acc_multivariate_outlier(resp_vars = c("v00014", "v00006"), study_data = study_data, meta_data = meta_data), regexp = sprintf( "(%s|%s)", paste("As no ID-var has been specified the rownumbers will be used."), paste("Due to missing values in v00014, v00006 or dq_id N=602", "observations were excluded.") ), perl = TRUE, all = TRUE ) expect_true(all(c("FlaggedStudyData", "SummaryTable", "SummaryPlot") %in% names(res1))) expect_lt( suppressWarnings(abs(sum(as.numeric( as.matrix(res1$FlaggedStudyData)), na.rm = TRUE) - 4493047)), 0.5 ) expect_equal( suppressWarnings(abs(sum(as.numeric( as.matrix(res1$SummaryTable)), na.rm = TRUE))), 182 ) }) test_that("acc_multivariate_outlier works with label_col", { load(system.file("extdata/meta_data.RData", package = "dataquieR"), envir = environment()) load(system.file("extdata/study_data.RData", package = "dataquieR"), envir = environment()) expect_error( res1 <- acc_multivariate_outlier( label_col = LABEL, study_data = study_data, meta_data = meta_data), regexp = "argument .+resp_vars.+ is missing, with no default", perl = TRUE ) expect_error( res1 <- acc_multivariate_outlier( label_col = LABEL, resp_vars = "CRP_0", study_data = study_data, meta_data = meta_data), regexp = "Need at least two variables for multivariate outliers.", perl = TRUE ) expect_warning( res1 <- acc_multivariate_outlier(resp_vars = c("CRP_0", "GLOBAL_HEALTH_VAS_0"), label_col = LABEL, study_data = study_data, meta_data = meta_data), regexp = sprintf( "(%s|%s)", paste("As no ID-var has been specified the rownumbers will be used."), paste("Due to missing values in CRP_0, GLOBAL_HEALTH_VAS_0 or", "dq_id N=602 observations were excluded.") ), perl = TRUE, all = TRUE ) expect_true(all(c("FlaggedStudyData", "SummaryTable", "SummaryPlot") %in% names(res1))) expect_lt( suppressWarnings(abs(sum(as.numeric( as.matrix(res1$FlaggedStudyData)), na.rm = TRUE) - 4493047)), 0.5 ) expect_equal( suppressWarnings(abs(sum(as.numeric( as.matrix(res1$SummaryTable)), na.rm = TRUE))), 182 ) skip_on_cran() skip_if_not_installed("vdiffr") skip_if_not(capabilities()["long.double"]) vdiffr::expect_doppelganger( "acc_mv_outlierCRP0GLOBHEAVA0", res1$SummaryPlot) })
xsecmanyfoc <- function(MEK, theta=NULL, focsiz=0.5, foccol=NULL, UP=TRUE, focstyle=1, LEG = FALSE, DOBAR=FALSE) { if(missing(theta)) { theta = NULL } if(missing(UP)) UP = TRUE if(missing(foccol)) foccol=NULL if(missing(LEG)) LEG = FALSE if(missing(DOBAR)) DOBAR=FALSE if(missing(focsiz)) { focsiz = 0.04 } if(length(MEK$Elat)<1 | (length(MEK$Elon)<1)) { MEK$Elat = rep(NA, length(MEK$lat)) MEK$Elon = rep(NA, length(MEK$lat)) } XYplode = list(x=MEK$Elat, y=MEK$Elon) tem1 = list(x=MEK$x, y=MEK$y) tem2 = tem1 ww = which(!is.na(MEK$x)) if( length(ww) < 1 ) { return() } for(IW in 1:length(ww)) { i = ww[IW] lind= foc.icolor(MEK$rake1[i]) focal.col = foc.color(lind, pal=1) a1 = SDRfoc(MEK$str1[i], MEK$dip1[i],MEK$rake1[i] , u=UP, ALIM=c(-1,-1, +1, +1), PLOT=FALSE) if(!is.null(theta)) { b1 = Rotfocphi(theta, a1$M$uaz, a1$M$ud, a1$M$vaz, a1$M$vd, a1$M$az1, a1$M$d1, a1$M$az2, a1$M$d2, a1$M$paz, a1$M$pd, a1$M$taz, a1$M$td) FMEC=list(UP=a1$UP, LIM=a1$LIM, P=b1$P, az1=b1$A2$az-90 , dip1=b1$A2$dip , az2=b1$A1$az-90, dip2=b1$A1$dip ) FMEC$sense = 0 pax = focpoint(FMEC$P$az, FMEC$P$dip, lab="P", UP=FMEC$UP, PLOT=FALSE) PLS = polyfoc(FMEC$az1, FMEC$dip1, FMEC$az2, FMEC$dip2, UP=FMEC$UP, PLOT = FALSE) kin = splancs::inout(cbind(pax$x, pax$y) ,cbind(PLS$Px, y =PLS$Py), bound=TRUE) if(kin==0) FMEC$sense = 1 ang2 = GetRakeSense(b1$U$az, b1$U$dip, b1$V$az, b1$V$dip ,b1$P$az, b1$P$dip , b1$T$az, b1$T$dip ) MEC = GetRake(FMEC$az1, FMEC$dip1, FMEC$az2, FMEC$dip2, ang2) MEC$sense = ang2 MEC$UP = TRUE MEC = c(MEC, b1) } else { MEC = a1 } if(focstyle==1) { justfocXY(MEC, x=tem1$x[i], y= tem1$y[i], focsiz=focsiz, fcol =focal.col , fcolback = "white", xpd = TRUE) } if(focstyle==2) { nipXY(MEC, x=tem1$x[i], y= tem1$y[i], focsiz =focsiz, fcol =focal.col, nipcol="black", cex=.4) } if(focstyle==4) { PTXY2( tem1$x[i], tem1$y[i] , MEC ,focsiz, col=focal.col, pt=0, lwd=2 ) } if(focstyle==5) { PTXY2( tem1$x[i], tem1$y[i] , MEC ,focsiz, col=focal.col, pt=1, lwd=2 ) } if(focstyle==6) { PTXY2( tem1$x[i], tem1$y[i] , MEC ,focsiz, col=focal.col, pt=2, lwd=2 ) } } if(LEG) { fleg = 1:7 flegc = foc.color(fleg, pal=1) flab = focleg(fleg) legend("topleft", legend=flab, col=flegc, pch=19, bg="white" ) } }
bq_test_project <- function() { if (is_testing() && !bq_authable()) { testthat::skip("No BigQuery access credentials available") } env <- Sys.getenv("BIGQUERY_TEST_PROJECT") if (!identical(env, "")) { return(env) } if (is_testing()) { testthat::skip("BIGQUERY_TEST_PROJECT not set") } stop( "To run bigrquery tests you must have BIGQUERY_TEST_PROJECT envvar set ", "to name of project which has billing set up and to which you have ", "write access", call. = FALSE ) } bq_test_init <- function(name = "basedata") { proj <- bq_test_project() basedata <- bq_dataset(proj, name) if (!bq_dataset_exists(basedata)) { bq_dataset_create(basedata) } bq_mtcars <- bq_table(basedata, "mtcars") if (!bq_table_exists(bq_mtcars)) { bq_table_upload(bq_mtcars, values = datasets::mtcars) } } bq_test_dataset <- function(name = random_name(), location = "US") { ds <- bq_dataset(bq_test_project(), name) bq_dataset_create(ds, location = location) env <- new.env() reg.finalizer( env, function(e) bq_dataset_delete(ds, delete_contents = TRUE), onexit = TRUE ) attr(ds, "env") <- env ds } bq_testable <- function() { bq_authable() && !identical(Sys.getenv("BIGQUERY_TEST_PROJECT"), "") } bq_authable <- function() { bq_has_token() || (interactive() && !is_testing()) } gs_test_bucket <- function() { env <- Sys.getenv("BIGQUERY_TEST_BUCKET") if (!identical(env, "")) { return(env) } if (is_testing()) { testthat::skip("BIGQUERY_TEST_BUCKET not set") } stop( "To run bigrquery extract/load tests you must have BIGQUERY_TEST_BUCKET set ", "to name of the bucket where `bq_test_project()` has write acess", call. = FALSE ) } gs_test_object <- function(name = random_name()) { gs_object(gs_test_bucket(), name) } random_name <- function(n = 10) { paste0("TESTING_", paste(sample(letters, n, replace = TRUE), collapse = "")) } is_testing <- function() identical(Sys.getenv("TESTTHAT"), "true") skip_if_no_auth <- function() { testthat::skip_if_not(bq_has_token(), "Authentication not available") }
aoplot <- function(x, ...) UseMethod("aoplot")
lrtestm <- function(x, mu, lam, cvar, vare, th0, th1, vari, nfac){ nume0 <- 0 nume1 <- 0 deno0 <- 0 deno1 <- 0 ni <- size(x)[2] for (j in 1:ni){ if (nfac == 2){ lamtmp <- c(lam[j,1],lam[j,2]) term01 <- (x[j] - mu[j] - (lam[j,1] * th0[1]) - (lam[j,2] * th0[2]))^2 term11 <- (x[j] - mu[j] - (lam[j,1] * th1[1]) - (lam[j,2] * th1[2]))^2 } if (nfac == 3){ lamtmp <- c(lam[j,1],lam[j,2],lam[j,3]) term01 <- (x[j] - mu[j] - (lam[j,1] * th0[1]) - (lam[j,2] * th0[2]) - (lam[j,3] * th0[3]))^2 term11 <- (x[j] - mu[j] - (lam[j,1] * th1[1]) - (lam[j,2] * th1[2]) - (lam[j,3] * th1[3]))^2 } if (nfac == 4){ lamtmp <- c(lam[j,1],lam[j,2],lam[j,3],lam[j,4]) term01 <- (x[j] - mu[j] - (lam[j,1] * th0[1]) - (lam[j,2] * th0[2]) - (lam[j,3] * th0[3]) - (lam[j,4] * th0[4]))^2 term11 <- (x[j] - mu[j] - (lam[j,1] * th1[1]) - (lam[j,2] * th1[2]) - (lam[j,3] * th1[3]) - (lam[j,4] * th1[4]))^2 } rlamtmp <- lamtmp %*% transpose(lamtmp) term02 <- rlamtmp * (cvar + vare[j]) term12 <- rlamtmp * (vari + vare[j]) t0 <- term01 / term02 t1 <- term11 / term12 nume0 <- nume0 + t0 nume1 <- nume1 + t1 term03 <- log(cvar + vare[j]) term13 <- log(vari + vare[j]) deno0 <- deno0 + term03 deno1 <- deno1 + term13 } provi <- nume0 + deno0 - nume1 - deno1 if (provi < 0){ chi <- 0.01 } else if (provi > 15){ chi <- 15 } else { chi <- provi } LR <- exp(-2 * chi) OUT <- list("LR"=LR, "chi"=chi) return(OUT) }
"thyroids"
class_summary<-function(data){ classes_url <- RCurl::getURL("https://gitlab.com/Algorithm379/databases/-/raw/main/HS_protein_classes_curated.csv") classes <- utils::read.csv(text = classes_url) data$"Class"<-ifelse(data$"Symbol"%in%classes$"Gene",classes$"Class","NA") df<-table(data$"Class") df<-as.data.frame(sort(df,decreasing = TRUE)) colnames(df)<-c("Class","Freq") print(df) Class<-df$"Class" Freq<-df$"Freq" p1<-ggplot2::ggplot(df)+ggplot2::geom_col(ggplot2::aes(x=Class,y=Freq, fill=Class))+ggplot2::theme(axis.text.x = ggplot2::element_text(angle = 90, vjust = 0.5, hjust=1)) methods::show(p1) }
ConfidenceInterval <- function (n, mean_azimuth, mean_module, von_mises) { z = 1.96 vm = 1/(sqrt(n * von_mises * mean_module)) ci1 = mean_azimuth + ToSexagesimal(asin(z * vm)) ci2 = mean_azimuth - ToSexagesimal(asin(z * vm)) return(c(ci1, ci2)) }
rmodel<-function(formula,weights,X) { cl <- match.call() mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "weights"), names(mf), 0) mf <- mf[c(1, m)] mf$drop.unused.levels <- TRUE mf[[1]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") y <- model.response(mf, "numeric") w <- as.vector(model.weights(mf)) x <- model.matrix(mt, mf, contrasts) prob<-glm(y~x,family="binomial",weights=w)$fitted.values result<-cbind.data.frame(X,prob) names(result)<-c(names(X),"prob_resp") result }
mbeta <- function(order, shape1, shape2) .External(C_actuar_do_dpq, "mbeta", order, shape1, shape2, FALSE) levbeta <- function(limit, shape1, shape2, order = 1) .External(C_actuar_do_dpq, "levbeta", limit, shape1, shape2, order, FALSE)
splineDesign <- function(knots, x, ord = 4, derivs = 0L, outer.ok = FALSE, sparse = FALSE) { if((nk <- length(knots <- as.numeric(knots))) <= 0) stop("must have at least 'ord' knots") if(is.unsorted(knots)) knots <- sort.int(knots) x <- as.numeric(x) nx <- length(x) if(length(derivs) > nx) stop("length of 'derivs' is larger than length of 'x'") if(length(derivs) < 1L) stop("empty 'derivs'") ord <- as.integer(ord) if(ord > nk || ord < 1) stop("'ord' must be positive integer, at most the number of knots") if(!outer.ok && nk < 2*ord-1) stop(gettextf("need at least %s (=%d) knots", "2*ord -1", 2*ord -1), domain = NA) o1 <- ord - 1L if(need.outer <- any(x < knots[ord] | knots[nk - o1] < x)) { if(outer.ok) { in.x <- knots[1L] <= x & x <= knots[nk] if((x.out <- !all(in.x))) { x <- x[in.x] nnx <- length(x) } dkn <- diff(knots)[(nk-1L):1] knots <- knots[c(rep.int(1L, o1), seq_len(nk), rep.int(nk, max(0L, ord - match(TRUE, dkn > 0))))] } else stop(gettextf("the 'x' data must be in the range %g to %g unless you set '%s'", knots[ord], knots[nk - o1], "outer.ok = TRUE"), domain = NA) } temp <- .Call(C_spline_basis, knots, ord, x, derivs) ncoef <- nk - ord ii <- if(need.outer && x.out) { rep.int((1L:nx)[in.x], rep.int(ord, nnx)) } else rep.int(1L:nx, rep.int(ord, nx)) jj <- c(outer(1L:ord, attr(temp, "Offsets"), "+")) if(sparse) { if(is.null(tryCatch(loadNamespace("Matrix"), error = function(e)NULL))) stop(gettextf("%s needs package 'Matrix' correctly installed", "splineDesign(*, sparse=TRUE)"), domain = NA) if(need.outer) { jj <- jj - o1 - 1L ok <- 0 <= jj & jj < ncoef methods::as(methods::new("dgTMatrix", i = ii[ok] - 1L, j = jj[ok], x = as.double(temp[ok]), Dim = c(nx, ncoef)), "CsparseMatrix") } else methods::as(methods::new("dgTMatrix", i = ii - 1L, j = jj - 1L, x = as.double(temp), Dim = c(nx, ncoef)), "CsparseMatrix") } else { design <- matrix(double(nx * ncoef), nx, ncoef) if(need.outer) { jj <- jj - o1 ok <- 1 <= jj & jj <= ncoef design[cbind(ii, jj)[ok , , drop=FALSE]] <- temp[ok] } else design[cbind(ii, jj)] <- temp design } } interpSpline <- function(obj1, obj2, bSpline = FALSE, period = NULL, na.action = na.fail, sparse = FALSE) UseMethod("interpSpline") interpSpline.default <- function(obj1, obj2, bSpline = FALSE, period = NULL, na.action = na.fail, sparse = FALSE) { ord <- 4L deg <- ord - 1L frm <- na.action(data.frame(x = as.numeric(obj1), y = as.numeric(obj2))) frm <- frm[order(frm$x), ] ndat <- nrow(frm) x <- frm$x if(anyDuplicated(x)) stop("values of 'x' must be distinct") knots <- c(x[1L:deg] + x[1L] - x[ord], x, x[ndat + (1L:deg) - deg] + x[ndat] - x[ndat - deg]) derivs <- c(2, integer(ndat), 2) x <- c(x[1L], x, x[ndat]) des <- splineDesign(knots, x, ord, derivs, sparse=sparse) y <- c(0, frm$y, 0) coeff <- if(sparse) Matrix::solve(des, Matrix::..2dge(y), sparse=TRUE) else solve(des, y) value <- structure(list(knots = knots, coefficients = coeff, order = ord), formula = do.call(`~`, list(substitute(obj2), substitute(obj1))), class = c("nbSpline", "bSpline", "spline")) if (bSpline) return(value) value <- polySpline(value) coeff <- coef(value) coeff[ , 1] <- frm$y coeff[1, deg] <- coeff[nrow(coeff), deg] <- 0 value$coefficients <- coeff value } interpSpline.formula <- function(obj1, obj2, bSpline = FALSE, period = NULL, na.action = na.fail, sparse = FALSE) { form <- as.formula(obj1) if (length(form) != 3) stop("'formula' must be of the form \"y ~ x\"") local <- if (missing(obj2)) sys.parent(1) else as.data.frame(obj2) value <- interpSpline(as.numeric(eval(form[[3L]], local)), as.numeric(eval(form[[2L]], local)), bSpline = bSpline, period = period, na.action = na.action, sparse = sparse) attr(value, "formula") <- form value } periodicSpline <- function(obj1, obj2, knots, period = 2 * pi, ord = 4) UseMethod("periodicSpline") periodicSpline.default <- function(obj1, obj2, knots, period = 2 * pi, ord = 4) { x <- as.numeric(obj1) y <- as.numeric(obj2) lenx <- length(x) if(lenx != length(y)) stop("lengths of 'x' and 'y' must match") ind <- order(x) x <- x[ind] if(length(unique(x)) != lenx) stop("values of 'x' must be distinct") if(any((x[-1L] - x[ - lenx]) <= 0)) stop("values of 'x' must be strictly increasing") if(ord < 2) stop("'ord' must be >= 2") o1 <- ord - 1 if(!missing(knots)) { period <- knots[length(knots) - o1] - knots[1L] } else { knots <- c(x[(lenx - (ord - 2)):lenx] - period, x, x[1L:ord] + period) } if((x[lenx] - x[1L]) >= period) stop("the range of 'x' values exceeds one period") y <- y[ind] coeff.mat <- splineDesign(knots, x, ord) i1 <- seq_len(o1) sys.mat <- coeff.mat[, (1L:lenx)] sys.mat[, i1] <- sys.mat[, i1] + coeff.mat[, lenx + i1] coeff <- qr.coef(qr(sys.mat), y) coeff <- c(coeff, coeff[i1]) structure(list(knots = knots, coefficients = coeff, order = ord, period = period), formula = do.call("~", as.list(sys.call())[3:2]), class = c("pbSpline", "bSpline", "spline")) } periodicSpline.formula <- function(obj1, obj2, knots, period = 2 * pi, ord = 4) { form <- as.formula(obj1) if (length(form) != 3) stop("'formula' must be of the form \"y ~ x\"") local <- if (missing(obj2)) sys.parent(1) else as.data.frame(obj2) structure(periodicSpline.default(as.numeric(eval(form[[3L]], local)), as.numeric(eval(form[[2L]], local)), knots = knots, period = period, ord = ord), formula = form) } polySpline <- function(object, ...) UseMethod("polySpline") polySpline.polySpline <- function(object, ...) object as.polySpline <- function(object, ...) polySpline(object, ...) polySpline.bSpline <- function(object, ...) { ord <- splineOrder(object) knots <- splineKnots(object) if(is.unsorted(knots)) stop("knot positions must be non-decreasing") knots <- knots[ord:(length(knots) + 1L - ord)] coeff <- array(0, c(length(knots), ord)) coeff[, 1] <- asVector(predict(object, knots)) if(ord > 1) { for(i in 2:ord) { coeff[, i] <- asVector(predict(object, knots, deriv = i - 1))/ prod(1L:(i - 1)) } } structure(list(knots = knots, coefficients = coeff), formula = attr(object, "formula"), class = c("polySpline", "spline")) } polySpline.nbSpline <- function(object, ...) { structure(NextMethod("polySpline"), class = c("npolySpline", "polySpline", "spline")) } polySpline.pbSpline <- function(object, ...) { value <- NextMethod("polySpline") value[["period"]] <- object$period class(value) <- c("ppolySpline", "polySpline", "spline") value } splineKnots <- function(object) UseMethod("splineKnots") splineKnots.spline <- function(object) object$knots splineOrder <- function(object) UseMethod("splineOrder") splineOrder.bSpline <- function(object) object$order splineOrder.polySpline <- function(object) ncol(coef(object)) xyVector <- function(x, y) { x <- as.vector(x) y <- as.vector(y) if(length(x) != length(y)) stop("lengths of 'x' and 'y' must be the same") structure(list(x = x, y = y), class = "xyVector") } asVector <- function(object) UseMethod("asVector") asVector.xyVector <- function(object) object$y as.data.frame.xyVector <- function(x, ...) data.frame(x = x$x, y = x$y) plot.xyVector <- function(x, ...) { plot(x = x$x, y = x$y, ...) } predict.polySpline <- function(object, x, nseg = 50, deriv = 0, ...) { knots <- splineKnots(object) coeff <- coef(object) cdim <- dim(coeff) ord <- cdim[2L] if(missing(x)) x <- seq.int(knots[1L], knots[cdim[1L]], length.out = nseg + 1) i <- as.numeric(cut(x, knots)) i[x == knots[1L]] <- 1 delx <- x - knots[i] deriv <- as.integer(deriv)[1L] if(deriv < 0 || deriv >= ord) stop(gettextf("'deriv' must be between 0 and %d", ord - 1), domain = NA) while(deriv > 0) { ord <- ord - 1 coeff <- t(t(coeff[, -1]) * (1L:ord)) deriv <- deriv - 1 } y <- coeff[i, ord] if(ord > 1) { for(j in (ord - 1):1) y <- y * delx + coeff[i, j] } xyVector(x = x, y = y) } predict.bSpline <- function(object, x, nseg = 50, deriv = 0, ...) { knots <- splineKnots(object) if(is.unsorted(knots)) stop("knot positions must be non-decreasing") ord <- splineOrder(object) if(deriv < 0 || deriv >= ord) stop(gettextf("'deriv' must be between 0 and %d", ord - 1), domain = NA) ncoeff <- length(coeff <- coef(object)) if(missing(x)) { x <- seq.int(knots[ord], knots[ncoeff + 1], length.out = nseg + 1) accept <- TRUE } else accept <- knots[ord] <= x & x <= knots[ncoeff + 1] y <- x y[!accept] <- NA y[accept] <- .Call(C_spline_value, knots, coeff, ord, x[accept], deriv) xyVector(x = x, y = y) } predict.nbSpline <- function(object, x, nseg = 50, deriv = 0, ...) { value <- NextMethod("predict") if(!any(is.na(value$y))) return(value) x <- value$x y <- value$y knots <- splineKnots(object) ord <- splineOrder(object) ncoeff <- length(coef(object)) bKn <- knots[c(ord,ncoeff + 1)] coeff <- array(0, c(2L, ord)) coeff[,1] <- asVector(predict(object, bKn)) coeff[,2] <- asVector(predict(object, bKn, deriv = 1)) deriv <- as.integer(deriv) while(deriv) { ord <- ord - 1 coeff <- t(t(coeff[, -1]) * (1L:ord)) deriv <- deriv - 1 } nc <- ncol(coeff) if(any(which <- (x < bKn[1L]) & is.na(y))) y[which] <- if(nc==0) 0 else if(nc==1) coeff[1, 1] else coeff[1, 1] + coeff[1, 2] * (x[which] - bKn[1L]) if(any(which <- (x > bKn[2L]) & is.na(y))) y[which] <- if(nc==0) 0 else if(nc==1) coeff[1, 1] else coeff[2, 1] + coeff[2, 2] * (x[which] - bKn[2L]) xyVector(x = x, y = y) } predict.pbSpline <- function(object, x, nseg = 50, deriv = 0, ...) { knots <- splineKnots(object) ord <- splineOrder(object) period <- object$period ncoeff <- length(coef(object)) if(missing(x)) x <- seq.int(knots[ord], knots[ord] + period, length.out = nseg + 1) x.original <- x if(any(ind <- x < knots[ord])) x[ind] <- x[ind] + period * (1 + (knots[ord] - x[ind]) %/% period) if(any(ind <- x > knots[ncoeff + 1])) x[ind] <- x[ind] - period * (1 + (x[ind] - knots[ncoeff +1]) %/% period) xyVector(x = x.original, y = .Call(C_spline_value, knots, coef(object), ord, x, deriv)) } predict.npolySpline <- function(object, x, nseg = 50, deriv = 0, ...) { value <- NextMethod() if(!any(is.na(value$y))) return(value) x <- value$x y <- value$y nk <- length(knots <- splineKnots(object)) coeff <- coef(object)[ - (2:(nk - 1)), ] ord <- dim(coeff)[2L] if(ord >= 3) coeff[, 3:ord] <- 0 deriv <- as.integer(deriv) while(deriv) { ord <- ord - 1 coeff <- t(t(coeff[, -1]) * (1L:ord)) deriv <- deriv - 1 } nc <- ncol(coeff) if(any(which <- (x < knots[1L]) & is.na(y))) y[which] <- if(nc==0) 0 else if(nc==1) coeff[1, 1] else coeff[1, 1] + coeff[1, 2] * (x[which] - knots[1L]) if(any(which <- (x > knots[nk]) & is.na(y))) y[which] <- if(nc==0) 0 else if(nc==1) coeff[1, 1] else coeff[2, 1] + coeff[2, 2] * (x[which] - knots[nk]) xyVector(x = x, y = y) } predict.ppolySpline <- function(object, x, nseg = 50, deriv = 0, ...) { knots <- splineKnots(object) nknot <- length(knots) period <- object$period if(missing(x)) x <- seq.int(knots[1L], knots[1L] + period, length.out = nseg + 1) x.original <- x if(any(ind <- x < knots[1L])) x[ind] <- x[ind] + period * (1 + (knots[1L] - x[ind]) %/% period) if(any(ind <- x > knots[nknot])) x[ind] <- x[ind] - period * (1 + (x[ind] - knots[nknot]) %/% period) value <- NextMethod("predict") value$x <- x.original value } plot.spline <- function(x, ...) { args <- list(x = as.data.frame(predict(x)), type = "l") if(length(form <- attr(x, "formula")) == 3) { args <- c(args, list(xlab = deparse(form[[3L]]), ylab = deparse(form[[2L]]))) } args <- c(list(...), args) do.call("plot", args[unique(names(args))]) } print.polySpline <- function(x, ...) { coeff <- coef(x) dnames <- dimnames(coeff) if (is.null(dnames[[2L]])) dimnames(coeff) <- list(format(splineKnots(x)), c("constant", "linear", "quadratic", "cubic", paste0(4:29, "th"))[1L:(dim(coeff)[2L])]) cat("polynomial representation of spline") if (!is.null(form <- attr(x, "formula"))) cat(" for", deparse(as.vector(form))) cat("\n") print(coeff, ...) invisible(x) } print.ppolySpline <- function(x, ...) { cat("periodic ") value <- NextMethod("print") cat("\nPeriod:", format(x[["period"]]), "\n") value } print.bSpline <- function(x, ...) { value <- c(rep(NA, splineOrder(x)), coef(x)) names(value) <- format(splineKnots(x), digits = 5) cat("bSpline representation of spline") if (!is.null(form <- attr(x, "formula"))) cat(" for", deparse(as.vector(form))) cat("\n") print(value, ...) invisible(x) } backSpline <- function(object) UseMethod("backSpline") backSpline.npolySpline <- function(object) { knots <- splineKnots(object) nk <- length(knots) nkm1 <- nk - 1 kdiff <- diff(knots) if(any(kdiff <= 0)) stop("knot positions must be strictly increasing") coeff <- coef(object) bknots <- coeff[, 1] adiff <- diff(bknots) if(all(adiff < 0)) revKnots <- TRUE else if(all(adiff > 0)) revKnots <- FALSE else stop("spline must be monotone") bcoeff <- array(0, dim(coeff)) bcoeff[, 1] <- knots bcoeff[, 2] <- 1/coeff[, 2] a <- array(c(adiff^2, 2 * adiff, adiff^3, 3 * adiff^2), c(nkm1, 2L, 2L)) b <- array(c(kdiff - adiff * bcoeff[ - nk, 2L], bcoeff[-1L, 2L] - bcoeff[ - nk, 2L]), c(nkm1, 2)) for(i in 1L:(nkm1)) bcoeff[i, 3L:4L] <- solve(a[i,, ], b[i, ]) bcoeff[nk, 2L:4L] <- NA if(nk > 2L) { bcoeff[1L, 4L] <- bcoeff[nkm1, 4L] <- 0 bcoeff[1L, 2L:3L] <- solve(array(c(adiff[1L], 1, adiff[1L]^2, 2 * adiff[1L]), c(2L, 2L)), c(kdiff[1L], 1/coeff[2L, 2L])) bcoeff[nkm1, 3L] <- (kdiff[nkm1] - adiff[nkm1] * bcoeff[nkm1, 2L])/adiff[nkm1]^2 } if(bcoeff[1L, 3L] > 0) { bcoeff[1L, 3L] <- 0 bcoeff[1L, 2L] <- kdiff[1L]/adiff[1L] } if(bcoeff[nkm1, 3L] < 0) { bcoeff[nkm1, 3L] <- 0 bcoeff[nkm1, 2L] <- kdiff[nkm1]/adiff[nkm1] } value <- if(!revKnots) list(knots = bknots, coefficients = bcoeff) else { ikn <- length(bknots):1L list(knots = bknots[ikn], coefficients = bcoeff[ikn,]) } attr(value, "formula") <- do.call("~", as.list(attr(object, "formula"))[3L:2L]) class(value) <- c("polySpline", "spline") value } backSpline.nbSpline <- function(object) backSpline(polySpline(object))
modify_column_alignment <- function(x, columns, align = c("left", "right", "center")) { updated_call_list <- c(x$call_list, list(modify_column_hide = match.call())) align <- match.arg(align) x <- modify_table_styling( x = x, columns = {{ columns }}, align = align ) x$call_list <- updated_call_list x }
NULL SPCModellogregLikRatio <- function(formula,Delta=1){ SPCModelNonpar( updates=function(xi,data){ xbeta <- predict.glm(xi,newdata=data) response <- model.response( model.frame( formula,data=data)) Delta*response + log(1+exp(xbeta)) - log(1+exp(Delta+xbeta)) }, xiofP=function(P) glm(formula,data=P,family=binomial("logit")) ) } SPCModellogregOE <- function(formula,Delta=0){ SPCModelNonpar( updates=function(xi,data){ response <- model.response( model.frame( formula,data=data)) response - predict.glm(xi,newdata=data,type="response")-Delta/2 }, xiofP=function(P) glm(formula,data=P,family=binomial("logit")) ) }
defaultTimeseries <- function(N,AC,Years,PD){ Psi=rnorm(Years) PDcond1=pnorm((qnorm(PD)-sqrt(AC)*Psi)/sqrt(1-AC)) size_p=rep(N,Years) D1=rbinom(Years,size_p,PDcond1) return(D1) }
"abweich.nair.fun" <- function(matrix,c) { kap.mei <- matrix[,2] sigma <- matrix[,3] result1 <- c*sqrt(sigma)*kap.mei result2 <- exp((c*sqrt(sigma))/log(kap.mei)) return(list(lin.dev=result1,log.dev=result2)) }
fem.mstep.par <- function(Y,U,T,model,method){ Y = as.matrix(Y) n = nrow(Y) p = ncol(Y) K = ncol(T) d = min(p-1,(K-1)) U = as.matrix(U) mu = matrix(NA,K,d) m = matrix(NA,K,p) prop = rep(c(NA),1,K) D = array(0,c(K,d,d)) b = rep(NA,K) X = as.matrix(Y) %*% as.matrix(U) test = 0 fun <- function(k){ nk = sum(T[,k]) if (nk ==0) stop("some classes become empty\n",call.=FALSE) prop[k] = nk / n mu[k,] = colSums((T[,k]*matrix(1,n,d))* X) / nk m[k,] = colSums(T[,k]*matrix(1,n,p)* Y) / nk YY = as.matrix(Y - t(m[k,]*matrix(1,p,n))) if (nk < 1) denk = 1 else denk = (nk-1) YYk = T[,k] * matrix(1,n,p) * YY if (model %in% c('DkB','DB','AkjB','AkB','AjB','AB')){ TT = t(apply(T,1,"/",sqrt(colSums(T)))) W = (crossprod(YY) - crossprod(t(TT)%*%YY)) / n } if (model=='DkBk'){ D[k,(1:d),(1:d)] = crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk bk = (sum(YYk*YY)/denk - sum(diag(D[k,(1:d),(1:d)]))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } else if (model=='DkB'){ D[k,(1:d),(1:d)] = crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk bk = (sum(diag(W)) - sum(diag(crossprod(W%*%U,U)))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } else if (model=='DBk'){ D[k,(1:d),(1:d)] = crossprod(YY%*%U,YY%*%U)/n bk = (sum(YYk*YY)/denk - sum(diag(D[k,(1:d),(1:d)]))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } else if (model=='DB'){ D[k,(1:d),(1:d)] = crossprod(YY%*%U,YY%*%U)/n bk = (sum(YY*YY)/n - sum(diag(D[k,(1:d),(1:d)]))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } else if (model=='AkjBk'){ if (d==1){D[k,1,1] = diag(crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk)} else { D[k,(1:d),(1:d)] = diag(diag(crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk))} bk = (sum(YYk*YY)/denk - sum(diag(D[k,(1:d),(1:d)]))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } else if (model=='AkjB'){ if (d==1){D[k,1,1] = diag(crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk)} else { D[k,(1:d),(1:d)] = diag(diag(crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk))} bk = (sum(YY*YY)/n - sum(diag(D[k,(1:d),(1:d)]))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } else if (model=='AkBk'){ if (d==1){D[k,1,1] = sum(diag(crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk))/d} else{ D[k,(1:d),(1:d)] = diag(rep(sum(diag(crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk))/d,d))} bk = (sum(YYk*YY)/denk - sum(diag(D[k,(1:d),(1:d)]))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } else if (model=='AkB'){ if (d==1){D[k,1,1] = sum(diag(crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk))/d} else{ D[k,(1:d),(1:d)] = diag(rep(sum(diag(crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk))/d,d))} bk = (sum(YY*YY)/n - sum(diag(D[k,(1:d),(1:d)]))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } else if (model=='AjBk'){ if (d==1){D[k,1,1] = diag(crossprod(YY%*%U,YY%*%U)/n)} else { D[k,(1:d),(1:d)] = diag(diag(crossprod(YY%*%U,YY%*%U)/n))} bk = (sum(YYk*YY)/denk - sum(diag(crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } else if (model=='AjB'){ if (d==1){D[k,1,1] = diag(crossprod(YY%*%U,YY%*%U)/n)} else{ D[k,(1:d),(1:d)] = diag(diag(crossprod(YY%*%U,YY%*%U)/n))} bk = (sum(YY*YY)/n - sum(diag(D[k,(1:d),(1:d)]))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } else if (model=='ABk'){ if (d==1){D[k,1,1] = sum(diag(crossprod(YY%*%U,YY%*%U)/n))} else { D[k,(1:d),(1:d)] = diag(rep(sum(diag(crossprod(YY%*%U,YY%*%U)/n))/d,d))} bk = (sum(YYk*YY)/denk - sum(diag(crossprod(T[,k]*matrix(1,n,d)* YY %*%U, YY%*%U) / denk))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } else if (model=='AB'){ if (d==1){D[k,1,1] = sum(diag(crossprod(YY%*%U,YY%*%U)/n))} else { D[k,(1:d),(1:d)] = diag(rep(sum(diag(crossprod(YY%*%U,YY%*%U)/n))/d,d))} bk = (sum(YY*YY)/n - sum(diag(D[k,(1:d),(1:d)]))) / (p-d) bk[bk<=0] = 1e-3 b[k] = bk if (sum(diag(D[k,,]<1e-3))!=0) test = test+1 } } prms = list(K=K,p=p,mean=mu,my=m,prop=prop,D=D,b=b,model=model,method=method,V=U,test=test) }
var_boot_fis <- function(ri, n, r, dv = 10, reps = 1000) { r_thetai <- mean(ri) cov <- r Sigma <- matrix(cov, nrow = dv+1, ncol = dv+1) Sigma[1, ] <- r_thetai Sigma[ ,1] <- r_thetai diag(Sigma) <- 1 boot_var <- get_var_boot_fis(Sigma, n, dv, reps) return(boot_var) }
get_predict <- function(model, newdata, type, ...) { UseMethod("get_predict", model) } get_predict.default <- function(model, newdata = insight::get_data(model), type = "response", conf.level = NULL, ...) { type <- sanity_type(model, type) type_base <- unname(type) type_insight <- names(type) dots <- list(...) unused <- c("normalize_dydx", "step_size", "numDeriv_method") dots <- dots[setdiff(names(dots), unused)] if (!is.na(type_insight) && (!is.null(conf.level) || "include_random" %in% names(dots))) { if ("include_random" %in% names(dots)) { if (any(c("re.form", "re_formula") %in% names(dots))) { stop("The `include_random` and `re.form` (or `re_formula`) arguments cannot be used together.") } } if ("re_formula" %in% names(dots)) { dots[["re.form"]] <- dots[["re_formula"]] } if ("re.form" %in% names(dots)) { if (isTRUE(checkmate::check_formula(dots[["re.form"]]))) { dots[["include_random"]] <- dots[["re.form"]] } else if (is.na(dots[["re.form"]])) { dots[["include_random"]] <- FALSE } else { dots[["include_random"]] <- TRUE } dots[["re.form"]] <- NULL } args <- list( x = model, data = newdata, predict = type_insight, ci = conf.level) args <- c(args, dots) f <- insight::get_predicted pred <- try(do.call("f", args), silent = TRUE) if (inherits(pred, "get_predicted")) { out <- data.frame(pred) colnames(out)[colnames(out) == "Row"] <- "rowid" colnames(out)[colnames(out) == "Response"] <- "group" return(out) } } dots[["newdata"]] <- newdata dots[["type"]] <- type_base args <- c(list(model), dots) fun <- stats::predict pred <- do.call("fun", args) if (is.array(pred) && length(dim(pred)) == 1) { pred <- as.vector(pred) } if (is.array(pred) && length(dim(pred)) == 3 && dim(pred)[1] == 1 && dim(pred)[2] == 1 && dim(pred)[3] > 1) { pred <- as.vector(pred) } if (isTRUE(checkmate::check_atomic_vector(pred))) { out <- data.frame( rowid = 1:nrow(newdata), predicted = as.numeric(pred)) } else if (is.matrix(pred)) { out <- data.frame( rowid = rep(1:nrow(pred), times = ncol(pred)), group = rep(colnames(pred), each = nrow(pred)), predicted = c(pred)) } else { stop(sprintf("Unable to extract predictions of type %s from a model of class %s. Please report this problem, along with reproducible code and data on Github: https://github.com/vincentarelbundock/marginaleffects/issues", type, class(model)[1])) } return(out) }
NULL NULL NULL NULL NULL
UtilIntrinsic2PhysicalRSM <- function(mu, lambda, nu) { lambdaP <- lambda / mu nuP <- 1 - exp(-nu * mu) return (list( lambdaP = lambdaP, nuP = nuP)) }
triple_ins = function(x, path_start, path_end){ inserts = c(path_start:path_end)[x[path_start:path_end] == 0] triples = c() if(length(inserts) > 2){ for(i in 1:(length(inserts)-2)){ potential = inserts[i]:(inserts[i]+2) observed = inserts[i:(i+2)] if(isTRUE(all.equal(potential, observed))){ triples = c(triples, observed) } } return(triples) }else{ return(c()) } } triple_dels = function(x, path_start, path_end){ deletes = c(path_start:path_end)[x[path_start:path_end] == 2] triples = c() if(length(deletes) > 2){ for(i in 1:(length(deletes)-2)){ potential = deletes[i]:(deletes[i]+2) observed = deletes[i:(i+2)] if(isTRUE(all.equal(potential, observed))){ triples = c(triples, observed) } } return(triples) }else{ return(c()) } } adj_seq = function(frame_dat, path_out, censor_length = 3, added_phred = "*"){ org_seq_vec = frame_dat$trimmed_seq new_seq = c() org_seq_pos = 1 path_pos = frame_dat$path_start path_end = frame_dat$path_end new_pos = 1 censor_0s = c() censor_2s = c() match_seen = FALSE first_0 = TRUE triple_inserts = triple_ins(path_out, path_pos, path_end) triple_deletes = triple_dels(path_out, path_pos, path_end) for(i in path_pos:path_end){ if(org_seq_pos > length(org_seq_vec)){ break } if(path_out[i] == 0){ if(paste(path_out[i:(i+4)], collapse='') == "00000"){ break } if(match_seen == TRUE){ if(!i %in% triple_inserts){ if(first_0 == TRUE){ new_seq = c(new_seq, org_seq_vec[org_seq_pos]) org_seq_pos = org_seq_pos + 1 new_pos = new_pos + 1 match_seen = TRUE first_0 = FALSE } add_char = '-' if(!is.null(names(org_seq_vec))){ names(add_char) = added_phred } new_seq = c(new_seq, add_char) new_pos = new_pos + 1 censor_0s = c(censor_0s, new_pos) if(i < path_end){ if(path_out[(i+1)] != 0){ first_0 = TRUE } } } } }else if(path_out[i] == 1){ new_seq = c(new_seq, org_seq_vec[org_seq_pos]) org_seq_pos = org_seq_pos + 1 new_pos = new_pos + 1 match_seen = TRUE }else if(path_out[i] == 2){ if(match_seen == TRUE){ if(paste(path_out[i:(i+4)], collapse='') == "22222"){ break } if(!i %in% triple_deletes){ org_seq_pos = org_seq_pos + 1 censor_2s = c(censor_2s, new_pos) } } } } if(org_seq_pos < length(org_seq_vec)){ trimmed_end = org_seq_vec[org_seq_pos:length(org_seq_vec)] }else{ trimmed_end = c() } if(censor_length != 0){ if(!is.null(censor_0s)){ censor_0s_masks = unlist(lapply(censor_0s, function(pos){ (pos-censor_length-1):(pos+censor_length-1) })) censor_0s_masks = unique(censor_0s_masks) censor_0s_masks = censor_0s_masks[censor_0s_masks>0] censor_0s_masks = censor_0s_masks[censor_0s_masks<=length(new_seq)] new_seq[censor_0s_masks] = "-" } if(!is.null(censor_2s)){ censor_2s_masks = unlist(lapply(censor_2s, function(pos){ (pos-(censor_length)):(pos+censor_length-1) })) censor_2s_masks = unique(censor_2s_masks) censor_2s_masks = censor_2s_masks[censor_2s_masks>0] censor_2s_masks = censor_2s_masks[censor_2s_masks<=length(new_seq)] new_seq[censor_2s_masks] = "-" } } adj_count = length(c(censor_0s,censor_2s)) return(list(c(frame_dat$front, new_seq), adj_count, trimmed_end, censor_0s, censor_2s)) } adjust = function(x, ...){ UseMethod("adjust") } adjust.DNAseq = function(x, ..., censor_length = 7, added_phred = "*"){ adj_out = adj_seq(x$frame_dat, x$data$path, censor_length = censor_length, added_phred = added_phred) x$adjusted_sequence = adj_out[[1]] x$adjustment_count = adj_out[[2]] x$data$adjusted_trimmed = adj_out[[3]] x$data$deletes_changed = adj_out[[4]] x$data$inserts_changed = adj_out[[5]] return(x) }
job_formats_zh_tw <- c( "BIOS\u5de5\u7a0b\u5e2b", "CAD\uff0fCAM\u5de5\u7a0b\u5e2b", "CNC\u6a5f\u53f0\u64cd\u4f5c\u4eba\u54e1", "CNC\u96fb\u8166\u7a0b\u5f0f\u7de8\u6392\u4eba\u54e1", "EMC\uff0f\u96fb\u5b50\u5b89\u898f\u5de5\u7a0b\u5e2b", "FAE\u5de5\u7a0b\u5e2b", "IC\u4f48\u5c40\u5de5\u7a0b\u5e2b", "IC\u5c01\u88dd\uff0f\u6e2c\u8a66\u5de5\u7a0b\u5e2b", "ISO\uff0f\u54c1\u4fdd\u4eba\u54e1", "Internet\u7a0b\u5f0f\u8a2d\u8a08\u5e2b", "LCD\u88fd\u7a0b\u5de5\u7a0b\u5e2b", "LCD\u8a2d\u5099\u5de5\u7a0b\u5e2b", "MES\u5de5\u7a0b\u5e2b", "MIS\u7a0b\u5f0f\u8a2d\u8a08\u5e2b", "MIS\uff0f\u7db2\u7ba1\u4e3b\u7ba1", "OP\uff0f\u65c5\u884c\u793e\u4eba\u54e1", "PCB\u4f48\u7dda\u5de5\u7a0b\u5e2b", "PCB\u6280\u8853\u4eba\u54e1", "RF\u901a\u8a0a\u5de5\u7a0b\u5e2b", "SMT\u5de5\u7a0b\u5e2b", "\u4e00\u822c\u52d5\u7269\u98fc\u80b2\u5de5\u4f5c\u8005", "\u4e0d\u52d5\u7522\u7522\u6b0a\u5be9\u6838\uff0f\u4f30\u50f9\u5e2b", "\u4e0d\u52d5\u7522\u7d93\u7d00\u4eba", "\u4e0d\u52d5\u7522\uff0f\u5546\u5834\u958b\u767c\u4eba\u54e1", "\u4e2d\u7b49\u5b78\u6821\u6559\u5e2b", "\u4e2d\u91ab\u5e2b", "\u4e2d\u9910\u5eda\u5e2b", "\u4e3b\u6301\u4eba", "\u4e3b\u7ba1\u7279\u5225\u52a9\u7406", "\u4e3b\u8fa6\u6703\u8a08", "\u4eba\u529b\u8cc7\u6e90\u4e3b\u7ba1", "\u4eba\u529b\u8cc7\u6e90\u4eba\u54e1", "\u4eba\u529b\u8cc7\u6e90\u52a9\u7406", "\u4eba\u529b\uff0f\u5916\u52de\u4ef2\u4ecb", "\u4ee3\u66f8\uff0f\u5730\u653f\u58eb", "\u4f30\u7b97\u4eba\u54e1", "\u4f5c\u66f2\u5bb6", "\u4f5c\u696d\u54e1\uff0f\u5305\u88dd\u54e1", "\u4fdd\u5168\u4eba\u54e1\uff0f\u8b66\u885b", "\u4fdd\u5168\u6280\u8853\u4eba\u54e1", "\u4fdd\u5b89\u670d\u52d9\u5de5\u4f5c", "\u4fdd\u7a05\u4eba\u54e1", "\u4fdd\u96aa\u696d\u52d9\uff0f\u7d93\u7d00\u4eba", "\u5009\u5132\u7269\u6d41\u4eba\u54e1", "\u5009\u7ba1", "\u50ac\u6536\u4eba\u54e1", "\u50b3\u64ad\u5a92\u9ad4\u4f01\u5283\u4eba\u54e1", "\u50b3\u92b7\u4eba\u54e1", "\u5132\u5099\u5e79\u90e8", "\u5149\u5b78\u5de5\u7a0b\u5e2b", "\u5149\u96fb\u5de5\u7a0b\u5e2b", "\u5149\u96fb\u5de5\u7a0b\u7814\u767c\u4e3b\u7ba1", "\u5167\u696d\u5de5\u7a0b\u5e2b", "\u516c\u5171\u885b\u751f\u4eba\u54e1", "\u516c\u5171\u885b\u751f\u91ab\u5e2b", "\u516c\u5bb6\u6a5f\u95dc\u4eba\u54e1", "\u5238\u5546\u5f8c\u7dda\u4eba\u54e1", "\u526f\u6559\u6388", "\u52a0\u6cb9\u54e1", "\u52a9\u6559", "\u52a9\u7406\u5de5\u7a0b\u5e2b", "\u52a9\u7406\u6559\u6388", "\u52de\u5de5\u5b89\u5168\u885b\u751f\u7ba1\u7406\u4eba\u54e1", "\u52de\u5de5\u5b89\u5168\u885b\u751f\u7ba1\u7406\u5e2b", "\u5305\u88dd\u8a2d\u8a08", "\u5316\u5b78\u5de5\u7a0b\u7814\u767c\u4eba\u54e1", "\u5316\u5b78\u7814\u7a76\u54e1", "\u5316\u5de5\u5316\u5b78\u5de5\u7a0b\u5e2b", "\u5347\u5b78\u88dc\u7fd2\u73ed\u8001\u5e2b", "\u534a\u5c0e\u9ad4\u5de5\u7a0b\u5e2b", "\u534a\u5c0e\u9ad4\u88fd\u7a0b\u5de5\u7a0b\u5e2b", "\u534a\u5c0e\u9ad4\u8a2d\u5099\u5de5\u7a0b\u5e2b", "\u5370\u524d\u88fd\u4f5c\uff0f\u5370\u5237\u6280\u8853\u4eba\u54e1", "\u53ef\u9760\u5ea6\u5de5\u7a0b\u5e2b", "\u540a\u8eca\uff0f\u8d77\u91cd\u6a5f\u8a2d\u5099\u64cd\u4f5c\u54e1", "\u547c\u5438\u6cbb\u7642\u5e2b", "\u54c1\u724c\u5ba3\u50b3\u53ca\u5a92\u9ad4\u516c\u95dc", "\u54c1\u7ba1\uff0f\u54c1\u4fdd\u4e3b\u7ba1", "\u54c1\u7ba1\uff0f\u54c1\u4fdd\u5de5\u7a0b\u5e2b", "\u54c1\u7ba1\uff0f\u6aa2\u9a57\u4eba\u54e1", "\u54f2\u5b78\uff0f\u6b77\u53f2\uff0f\u653f\u6cbb\u7814\u7a76\u4eba\u54e1", "\u552e\u7968\uff0f\u6536\u9280\u4eba\u54e1", "\u5546\u696d\u8a2d\u8a08", "\u5546\u6a19\uff0f\u5c08\u5229\u4eba\u54e1", "\u5674\u6f06\u4eba\u54e1", "\u570b\u5167\u696d\u52d9\u4e3b\u7ba1", "\u570b\u5167\u696d\u52d9\u4eba\u54e1", "\u570b\u5916\u696d\u52d9\u4e3b\u7ba1", "\u570b\u5916\u696d\u52d9\u4eba\u54e1", "\u570b\u5c0f\u5b78\u6821\u6559\u5e2b", "\u570b\u8cbf\u4eba\u54e1", "\u5716\u66f8\u8cc7\u6599\u7ba1\u7406\u4eba\u54e1", "\u571f\u5730\u958b\u767c\u4eba\u54e1", "\u571f\u6728\u6280\u5e2b\uff0f\u571f\u6728\u5de5\u7a0b\u5e2b", "\u5730\u52e4\u4eba\u54e1", "\u5730\u8cea\u8207\u5730\u7403\u79d1\u5b78\u7814\u7a76\u54e1", "\u5851\u81a0\u5c04\u51fa\u6280\u8853\u4eba\u54e1", "\u5851\u81a0\u6a21\u5177\u6280\u8853\u4eba\u54e1", "\u5857\u88dd\u6280\u8853\u4eba\u54e1", "\u58d3\u9444\u6a21\u5177\u6280\u8853\u4eba\u54e1", "\u5916\u52d9\uff0f\u5feb\u905e\uff0f\u9001\u8ca8", "\u591a\u5a92\u9ad4\u52d5\u756b\u8a2d\u8a08\u5e2b", "\u591a\u5a92\u9ad4\u958b\u767c\u4e3b\u7ba1", "\u5927\u6a13\u7ba1\u7406\u54e1", "\u5927\u8ca8\u8eca\u53f8\u6a5f", "\u5929\u6587\u7814\u7a76\u54e1", "\u592a\u967d\u80fd\u6280\u8853\u5de5\u7a0b\u5e2b", "\u5a1b\u6a02\u4e8b\u696d\u4eba\u54e1", "\u5a92\u9ad4\u516c\u95dc\uff0f\u5ba3\u50b3\u63a1\u8cb7", "\u5b89\u5168\uff0f\u885b\u751f\u6aa2\u9a57\u4eba\u54e1", "\u5b89\u5fc3\u670d\u52d9\u54e1", "\u5b89\u89aa\u73ed\u8001\u5e2b", "\u5ba2\u6236\u670d\u52d9\u4e3b\u7ba1", "\u5ba2\u6236\u670d\u52d9\u4eba\u54e1", "\u5ba4\u5167\u8a2d\u8a08\uff0f\u88dd\u6f62\u4eba\u54e1", "\u5bb6\u4e8b\u670d\u52d9\u4eba\u54e1", "\u5bb6\u5ead\u4ee3\u5de5", "\u5be6\u9a57\u5316\u9a57\u4eba\u54e1", "\u5bf5\u7269\u7f8e\u5bb9\u5c08\u696d\u4eba\u54e1", "\u5c08\u6848\u696d\u52d9\u4e3b\u7ba1", "\u5c08\u6848\u7ba1\u7406\u4e3b\u7ba1", "\u5c08\u6848\u7ba1\u7406\u5e2b", "\u5c08\u79d1\u8b77\u7406\u5e2b", "\u5c0e\u64ad", "\u5c0e\u6f14", "\u5c0e\u904a", "\u5c0f\u5ba2\u8eca\u53f8\u6a5f", "\u5c0f\u8ca8\u8eca\u53f8\u6a5f", "\u5c45\u5bb6\u670d\u52d9\u7763\u5c0e\u54e1", "\u5c55\u5834\uff0f\u6ae5\u7a97\u4f48\u7f6e\u4eba\u54e1", "\u5de5\u52d9\u4eba\u54e1\uff0f\u52a9\u7406", "\u5de5\u5546\u767b\u8a18\u670d\u52d9\u4eba\u54e1", "\u5de5\u5730\u76e3\u5de5\uff0f\u4e3b\u4efb", "\u5de5\u5ee0\u4e3b\u7ba1", "\u5de5\u696d\u5de5\u7a0b\u5e2b\uff0f\u751f\u7522\u7dda\u898f\u5283", "\u5de5\u696d\u8a2d\u8a08", "\u5de5\u7a0b\u52a9\u7406", "\u5de5\u7a0b\u7814\u767c\u4e3b\u7ba1", "\u5de5\u7a0b\u914d\u7ba1\u7e6a\u5716", "\u5de5\u8b80\u751f", "\u5e02\u5834\u8abf\u67e5\uff0f\u5e02\u5834\u5206\u6790", "\u5e73\u9762\u8a2d\u8a08\uff0f\u7f8e\u7de8\u4eba\u54e1", "\u5e7c\u6559\u73ed\u8001\u5e2b", "\u5e97\u9577\uff0f\u8ce3\u5834\u7ba1\u7406\u4eba\u54e1", "\u5ee0\u52d9", "\u5ee0\u52d9\u52a9\u7406", "\u5ee3\u544aAE\u696d\u52d9\u4eba\u54e1", "\u5ee3\u544a\u4f01\u5283\u4e3b\u7ba1", "\u5ee3\u544a\u6587\u6848\uff0f\u4f01\u5283", "\u5ee3\u544a\u8a2d\u8a08", "\u5efa\u7bc9\u5e2b", "\u5efa\u7bc9\u7269\u6e05\u6f54\u5de5", "\u5efa\u7bc9\u7269\u96fb\u529b\u7cfb\u7d71\u7dad\u4fee\u5de5", "\u5efa\u7bc9\u8a2d\u8a08\uff0f\u7e6a\u5716\u4eba\u54e1", "\u5f71\u7247\u88fd\u4f5c\u6280\u8853\u4eba\u54e1", "\u5f8b\u5e2b", "\u5fa9\u5efa\u6280\u8853\u5e2b", "\u5fae\u6a5f\u96fb\u5de5\u7a0b\u5e2b", "\u5fc3\u7406\u5b78\u7814\u7a76\u4eba\u54e1", "\u5fd7\u5de5\u4eba\u54e1", "\u5fd7\u9858\u5f79\u8ecd\u5b98\uff0f\u58eb\u5b98\uff0f\u58eb\u5175", "\u61c9\u7528\u79d1\u5b78\u7814\u7a76\u54e1", "\u6210\u672c\u6703\u8a08", "\u624b\u5de5\u5305\u88dd\u5de5", "\u624d\u85dd\u985e\u8001\u5e2b", "\u6253\u7248\u4eba\u54e1", "\u6280\u8853\u6587\u4ef6\uff0f\u8aaa\u660e\u66f8\u7de8\u8b6f", "\u6309\u6469\uff0f\u63a8\u62ff\u5e2b", "\u6392\u7248\u4eba\u54e1", "\u63a1\u8cfc\u4e3b\u7ba1", "\u63a1\u8cfc\u4eba\u54e1", "\u63a1\u8cfc\u52a9\u7406", "\u63a8\u571f\u6a5f\u8a2d\u5099\u64cd\u4f5c\u54e1", "\u64ad\u97f3\uff0f\u914d\u97f3\u4eba\u54e1", "\u651d\u5f71\u52a9\u7406", "\u651d\u5f71\u5e2b", "\u653e\u5c04\u6027\u8a2d\u5099\u4f7f\u7528\u6280\u8853\u54e1", "\u6551\u751f\u54e1", "\u6559\u4fdd\u54e1", "\u6559\u6388", "\u6559\u80b2\u8a13\u7df4\u4eba\u54e1", "\u6574\u9ad4\u9020\u578b\u5e2b", "\u6578\u4f4dIC\u8a2d\u8a08\u5de5\u7a0b\u5e2b", "\u6578\u5b78\u7814\u7a76\u54e1", "\u6578\u7406\u88dc\u7fd2\u73ed\u8001\u5e2b", "\u6587\u4ef6\u7ba1\u7406\u5e2b", "\u6587\u7de8\uff0f\u6821\u5c0d\uff0f\u6587\u5b57\u5de5\u4f5c\u8005", "\u65c5\u904a\u4f11\u9592\u985e\u4e3b\u7ba1", "\u65e5\u5f0f\u5eda\u5e2b", "\u65e5\u6587\u7ffb\u8b6f\uff0f\u53e3\u8b6f\u4eba\u54e1", "\u661f\u8c61\u5360\u535c\u4eba\u54e1", "\u666f\u89c0\u8a2d\u8a08\u5e2b", "\u6703\u8a08\u5e2b", "\u670d\u88dd\uff0f\u76ae\u5305\uff0f\u978b\u985e\u8a2d\u8a08", "\u6728\u5de5", "\u6750\u6599\u7814\u767c\u4eba\u54e1", "\u677f\u91d1\u6280\u8853\u54e1", "\u6797\u6728\u4f10\u904b\u5de5\u4f5c\u8005", "\u67d3\u6574\u6280\u8853\u4eba\u54e1", "\u67e5\u5e33\uff0f\u5be9\u8a08\u4eba\u54e1", "\u6838\u4fdd\uff0f\u4fdd\u96aa\u5167\u52e4\u4eba\u54e1", "\u696d\u52d9\u52a9\u7406", "\u696d\u52d9\u652f\u63f4\u5de5\u7a0b\u5e2b", "\u6a02\u5668\u88fd\u9020\u54e1", "\u6a21\u7279\u5152", "\u6a5f\u68b0\u52a0\u5de5\u6280\u8853\u4eba\u54e1", "\u6a5f\u68b0\u5de5\u7a0b\u5e2b", "\u6a5f\u68b0\u64cd\u4f5c\u54e1", "\u6a5f\u68b0\u88dd\u914d\u54e1", "\u6a5f\u68b0\u8a2d\u8a08\uff0f\u7e6a\u5716\u4eba\u54e1", "\u6a5f\u69cb\u5de5\u7a0b\u5e2b", "\u6a5f\u96fb\u6280\u5e2b\uff0f\u5de5\u7a0b\u5e2b", "\u6ac3\u6aaf\u63a5\u5f85\u4eba\u54e1", "\u6c23\u8c61\u7814\u7a76\u54e1", "\u6c34\u4fdd\u5de5\u7a0b\u5e2b", "\u6c34\u4fdd\u6280\u5e2b", "\u6c34\u5229\u5de5\u7a0b\u5e2b", "\u6c34\u7522\u990a\u6b96\u5de5\u4f5c\u8005", "\u6c34\u96fb\u5de5", "\u6c34\u96fb\u5de5\u7a0b\u5e2b", "\u6c34\u96fb\u5de5\u7a0b\u7e6a\u5716\u4eba\u54e1", "\u6c7d\u8eca\u7f8e\u5bb9\u4eba\u54e1", "\u6c7d\u8eca\u92b7\u552e\u4eba\u54e1", "\u6c7d\u8eca\uff0f\u6a5f\u8eca\u5f15\u64ce\u6280\u8853\u4eba\u54e1", "\u6c7d\u8eca\uff0f\u6a5f\u8eca\u6280\u8853\u7dad\u4fee\u4eba\u54e1", "\u6c96\u58d3\u6a21\u5177\u6280\u8853\u4eba\u54e1", "\u6cb9\u6f06\u5de5", "\u6cbb\u7642\u5e2b", "\u6cd5\u52d9\u4eba\u54e1", "\u6cd5\u52d9\u52a9\u7406", "\u6cd5\u52d9\uff0f\u667a\u8ca1\u4e3b\u7ba1", "\u6cd5\u5f8b\u5c08\u696d\u4eba\u54e1", "\u6ce5\u6c34\u5c0f\u5de5", "\u6ce5\u6c34\u5de5", "\u6d17\u7897\u4eba\u54e1", "\u6d3b\u52d5\u4f01\u5283\u4eba\u54e1", "\u6d3e\u5831\u751f\uff0f\u50b3\u55ae\u6d3e\u9001", "\u6d88\u9632\u54e1", "\u6d88\u9632\u5c08\u696d\u4eba\u54e1", "\u6df7\u51dd\u571f\u5de5", "\u6e05\u6f54\u5de5", "\u6e2c\u8a66\u4eba\u54e1", "\u6f14\u54e1", "\u6f14\u594f\u5bb6", "\u6f14\u7b97\u6cd5\u958b\u767c\u5de5\u7a0b\u5e2b", "\u710a\u63a5\u53ca\u5207\u5272\u6280\u8853\u54e1", "\u7167\u9867\u6307\u5c0e\u54e1", "\u7167\u9867\u670d\u52d9\u54e1", "\u71b1\u50b3\u5de5\u7a0b\u5e2b", "\u71c8\u5149\uff0f\u97f3\u97ff\u5e2b", "\u71df\u5efa\u4e3b\u7ba1", "\u71df\u5efa\u69cb\u9020\u5de5", "\u71df\u9020\u5de5\u7a0b\u5e2b", "\u71df\u904b\u7ba1\u7406\u5e2b", "\u71df\u990a\u5e2b", "\u7259\u91ab\u52a9\u7406", "\u7259\u91ab\u5e2b", "\u7269\u7406\u6cbb\u7642\u5e2b", "\u7269\u7406\u7814\u7a76\u54e1", "\u7269\u7ba1\uff0f\u8cc7\u6750", "\u7279\u6b8a\u5de5\u7a0b\u5e2b", "\u7279\u6b8a\u6559\u80b2\u6559\u5e2b", "\u7279\u7528\u5316\u5b78\u5de5\u7a0b\u5e2b", "\u7378\u91ab\u5e2b", "\u73e0\u5bf6\u53ca\u8cb4\u91d1\u5c6c\u6280\u8853\u54e1", "\u73e0\u5fc3\u7b97\u8001\u5e2b", "\u7406\u8ce0\u4eba\u54e1", "\u74b0\u5883\u5de5\u7a0b\u5e2b", "\u751f\u547d\u79ae\u5100\u5e2b", "\u751f\u7269\u5b78\u5c08\u696d\u8207\u7814\u7a76", "\u751f\u7269\u79d1\u6280\u7814\u767c\u4eba\u54e1", "\u751f\u7522\u6280\u8853\uff0f\u88fd\u7a0b\u5de5\u7a0b\u5e2b", "\u751f\u7522\u7ba1\u7406\u4e3b\u7ba1", "\u751f\u7522\u8a2d\u5099\u5de5\u7a0b\u5e2b", "\u751f\u7ba1", "\u751f\u7ba1\u52a9\u7406", "\u751f\u9bae\u4eba\u54e1", "\u7522\u54c1\u4e8b\u696d\u8655\u4e3b\u7ba1", "\u7522\u54c1\u4f01\u5283\u4e3b\u7ba1", "\u7522\u54c1\u4f01\u5283\u958b\u767c\u4eba\u54e1", "\u7522\u54c1\u552e\u5f8c\u6280\u8853\u670d\u52d9", "\u7522\u54c1\u7ba1\u7406\u5e2b", "\u7522\u54c1\u7dad\u4fee\u4eba\u54e1", "\u7522\u54c1\u884c\u92b7\u4eba\u54e1", "\u75c5\u7406\u85e5\u7406\u7814\u7a76\u4eba\u54e1", "\u767c\u5305\u4eba\u54e1", "\u767c\u884c\u4f01\u5283\uff0f\u51fa\u7248\u4eba\u54e1", "\u780c\u78da\u5de5", "\u7814\u7a76\u4eba\u54e1", "\u7814\u7a76\u52a9\u7406", "\u786c\u9ad4\u5de5\u7a0b\u7814\u767c\u4e3b\u7ba1", "\u786c\u9ad4\u6e2c\u8a66\u5de5\u7a0b\u5e2b", "\u786c\u9ad4\u7814\u767c\u5de5\u7a0b\u5e2b", "\u793e\u5de5\u4eba\u54e1", "\u793e\u6703\uff0f\u4eba\u985e\u5b78\u7814\u7a76\u4eba\u54e1", "\u79d8\u66f8", "\u7a05\u52d9\u4eba\u54e1", "\u7a3d\u6838\u4eba\u54e1", "\u7a7a\u670d\u54e1", "\u7a7a\u8abf\u51b7\u51cd\u6280\u8853\u4eba\u54e1", "\u7bc0\u76ee\u52a9\u7406", "\u7bc0\u76ee\u88fd\u4f5c\u4eba\u54e1", "\u7c89\u672b\u51b6\u91d1\u6a21\u5177\u6280\u8853\u4eba\u54e1", "\u7cbe\u5bc6\u5100\u5668\u88fd\u9020\u5de5", "\u7cbe\u5bc6\u62cb\u5149\u6280\u8853\u4eba\u54e1", "\u7cfb\u7d71\u6574\u5408\uff0fERP\u5c08\u6848\u5e2b", "\u7cfb\u7d71\u7dad\u8b77\uff0f\u64cd\u4f5c\u4eba\u54e1", "\u7d21\u7e54\u5316\u5b78\u5de5\u7a0b\u5e2b", "\u7d21\u7e54\u5de5\u52d9", "\u7d50\u69cb\u6280\u5e2b", "\u7d71\u8a08\u5b78\u7814\u7a76\u54e1", "\u7d71\u8a08\u7cbe\u7b97\u4eba\u54e1", "\u7d93\u71df\u7ba1\u7406\u4e3b\u7ba1", "\u7db2\u7ad9\u884c\u92b7\u4f01\u5283", "\u7db2\u8def\u5b89\u5168\u5206\u6790\u5e2b", "\u7db2\u8def\u7ba1\u7406\u5de5\u7a0b\u5e2b", "\u7db2\u9801\u8a2d\u8a08\u5e2b", "\u7dda\u5207\u5272\u6280\u8853\u54e1", "\u7e3d\u52d9\u4e3b\u7ba1", "\u7e3d\u52d9\u4eba\u54e1", "\u7e3d\u5e79\u4e8b", "\u7e3d\u6a5f\u4eba\u54e1", "\u7e54\u54c1\u8a2d\u8a08", "\u7f8e\u59ff\u7f8e\u5100\u4eba\u54e1", "\u7f8e\u5bb9\u5de5\u4f5c\u8005", "\u7f8e\u5bb9\u985e\u52a9\u7406", "\u7f8e\u7532\u5f69\u7e6a\u5e2b", "\u7f8e\u7642\uff0f\u82b3\u7642\u5e2b", "\u7f8e\u8853\u8001\u5e2b", "\u7f8e\u8853\u8a2d\u8a08", "\u7f8e\u9aee\u5de5\u4f5c\u8005", "\u7f8e\u9aee\u985e\u52a9\u7406", "\u7ffb\u8b6f\uff0f\u53e3\u8b6f\u4eba\u54e1", "\u8072\u5b78\uff0f\u566a\u97f3\u5de5\u7a0b\u5e2b", "\u8072\u6a02\u5bb6", "\u8077\u80fd\u6cbb\u7642\u5e2b", "\u80a1\u52d9\u4eba\u54e1", "\u81ea\u52d5\u63a7\u5236\u5de5\u7a0b\u5e2b", "\u821e\u8e48\u6307\u5c0e\u8207\u821e\u8e48\u5bb6", "\u8239\u52d9\uff0f\u62bc\u532f\uff0f\u5831\u95dc\u4eba\u54e1", "\u8239\u9577\uff0f\u5927\u526f\uff0f\u8239\u54e1", "\u82b1\u85dd\uff0f\u5712\u85dd\u4eba\u54e1", "\u82f1\u6587\u7ffb\u8b6f\uff0f\u53e3\u8b6f\u4eba\u54e1", "\u85dd\u8853\u54c1\uff0f\u73e0\u5bf6\u9451\u50f9\uff0f\u62cd\u8ce3\u9867\u554f", "\u85dd\u8853\u6307\u5c0e\uff0f\u7e3d\u76e3", "\u85e5\u5b78\u52a9\u7406", "\u85e5\u5e2b", "\u878d\u8cc7\uff0f\u4fe1\u7528\u696d\u52d9\u4eba\u54e1", "\u884c\u653f\u4e3b\u7ba1", "\u884c\u653f\u4eba\u54e1", "\u884c\u653f\u52a9\u7406", "\u884c\u92b7\u4f01\u5283\u4e3b\u7ba1", "\u884c\u92b7\u4f01\u5283\u4eba\u54e1", "\u884c\u92b7\u4f01\u5283\u52a9\u7406", "\u88dc\u7fd2\u73ed\u5c0e\u5e2b\uff0f\u7ba1\u7406\u4eba\u54e1", "\u88dc\u7fd2\u73ed\u8001\u5e2b", "\u88fd\u978b\u985e\u4eba\u54e1", "\u897f\u9910\u5eda\u5e2b", "\u897f\u9ede\uff0f\u86cb\u7cd5\u5e2b", "\u8996\u807d\u5de5\u7a0b\u985e\u4eba\u54e1", "\u8a08\u7a0b\u8eca\u53f8\u6a5f", "\u8a18\u5e33\uff0f\u51fa\u7d0d\uff0f\u4e00\u822c\u6703\u8a08", "\u8a18\u8005\uff0f\u63a1\u7de8", "\u8a2d\u8a08\u52a9\u7406", "\u8a3a\u6240\u52a9\u7406", "\u8a9e\u6587\u88dc\u7fd2\u73ed\u8001\u5e2b", "\u8a9e\u8a00\u6cbb\u7642\u5e2b", "\u8abf\u9152\u5e2b\uff0f\u5427\u53f0\u4eba\u54e1", "\u8abf\u97f3\u6280\u8853\u54e1", "\u8b1b\u5e2b", "\u8b77\u7406\u5e2b", "\u8ca1\u52d9\u5206\u6790\u4eba\u54e1", "\u8ca1\u52d9\u6216\u6703\u8a08\u4e3b\u7ba1", "\u8ca1\u52d9\u6703\u8a08\u52a9\u7406", "\u8cc7\u6599\u5eab\u7ba1\u7406\u4eba\u54e1", "\u8cc7\u6599\u8f38\u5165\u4eba\u54e1", "\u8cc7\u6750\u4e3b\u7ba1", "\u8cc7\u6e90\u56de\u6536\u4eba\u54e1", "\u8cc7\u8a0a\u52a9\u7406\u4eba\u54e1", "\u8cc7\u8a0a\u5c08\u696d\u4eba\u54e1", "\u8cc7\u8a0a\u8a2d\u5099\u7ba1\u5236\u4eba\u54e1", "\u8eca\u5e8a\u4eba\u54e1", "\u8eca\u7e2b\uff0f\u88c1\u7e2b\u985e\u4eba\u54e1", "\u8edf\u97cc\u9ad4\u6e2c\u8a66\u5de5\u7a0b\u5e2b", "\u8edf\u9ad4\u5c08\u6848\u4e3b\u7ba1", "\u8edf\u9ad4\u5c08\u6848\u7ba1\u7406\u5e2b", "\u8edf\u9ad4\u8a2d\u8a08\u5de5\u7a0b\u5e2b", "\u8fb2\u5de5\u696d\u7528\u6a5f\u5668\u88dd\u4fee\u5de5", "\u8fb2\u6797\u696d\u8a2d\u5099\u64cd\u4f5c\u54e1", "\u8fb2\u85dd\u4f5c\u7269\u683d\u57f9\u5de5\u4f5c\u8005", "\u8fb2\u85dd\uff0f\u755c\u7522\u7814\u7a76\u4eba\u54e1", "\u901a\u4fe1\u6e2c\u8a66\u7dad\u4fee\u4eba\u54e1", "\u901a\u8a0a\u5de5\u7a0b\u7814\u767c\u4e3b\u7ba1", "\u901a\u8a0a\u8edf\u9ad4\u5de5\u7a0b\u5e2b", "\u901a\u8def\u958b\u767c\u4eba\u54e1", "\u9023\u9396\u5e97\u7ba1\u7406\u4eba\u54e1", "\u904a\u6232\u4f01\u5283\u4eba\u54e1", "\u904b\u52d5\u6559\u7df4", "\u904b\u8f38\u4ea4\u901a\u5c08\u696d\u4eba\u54e1", "\u904b\u8f38\u7269\u6d41\u985e\u4e3b\u7ba1", "\u90fd\u5e02\uff0f\u4ea4\u901a\u898f\u5283\u4eba\u54e1", "\u91ab\u4e8b\u653e\u5c04\u5e2b", "\u91ab\u4e8b\u6aa2\u9a57\u5e2b", "\u91ab\u5e2b", "\u91ab\u7642\u4eba\u54e1", "\u91ab\u7642\u5668\u6750\u7814\u767c\u5de5\u7a0b\u5e2b", "\u91ab\u7642\u5f9e\u696d\u4eba\u54e1", "\u91ab\u7642\u8a2d\u5099\u63a7\u5236\u4eba\u54e1", "\u91ab\u85e5\u696d\u52d9\u4ee3\u8868", "\u91ab\u85e5\u7814\u767c\u4eba\u54e1", "\u91ab\u9662\u884c\u653f\u7ba1\u7406\u4eba\u54e1", "\u91cf\u6e2c\uff0f\u5100\u6821\u4eba\u54e1", "\u91d1\u5c6c\u5efa\u6750\u67b6\u69cb\u4eba\u54e1", "\u91d1\u878d\u4ea4\u6613\u54e1", "\u91d1\u878d\u5c08\u696d\u4e3b\u7ba1", "\u91d1\u878d\u627f\u92b7\u54e1", "\u91d1\u878d\u71df\u696d\u54e1", "\u91d1\u878d\u7406\u8ca1\u5c08\u54e1", "\u91d1\u878d\u7814\u7a76\u54e1", "\u9280\u884c\u8fa6\u4e8b\u54e1", "\u9291\u5e8a\u4eba\u54e1", "\u934b\u7210\u64cd\u4f5c\u6280\u8853\u4eba\u54e1", "\u9435\u8def\u8eca\u8f1b\u99d5\u99db\u54e1", "\u9444\u9020\uff0f\u935b\u9020\u6a21\u5177\u6280\u8853\u4eba\u54e1", "\u9580\u5e02\uff0f\u5e97\u54e1\uff0f\u5c08\u6ac3\u4eba\u54e1", "\u9632\u6c34\u65bd\u5de5\u4eba\u54e1", "\u9632\u706b\u53ca\u5efa\u7bc9\u6aa2\u9a57\u4eba\u54e1", "\u96f6\u4ef6\u5de5\u7a0b\u5e2b", "\u96f7\u5c04\u64cd\u4f5c\u6280\u8853\u54e1", "\u96fb\u4fe1\u53ca\u96fb\u529b\u7dda\u8def\u67b6\u8a2d\u5de5", "\u96fb\u4fe1\uff0f\u901a\u8a0a\u7cfb\u7d71\u5de5\u7a0b\u5e2b", "\u96fb\u53f0\u5de5\u4f5c\u4eba\u54e1", "\u96fb\u5b50\u5546\u52d9\u6280\u8853\u4e3b\u7ba1", "\u96fb\u5b50\u5de5\u7a0b\u5e2b", "\u96fb\u5b50\u7522\u54c1\u7cfb\u7d71\u5de5\u7a0b\u5e2b", "\u96fb\u5b50\u8a2d\u5099\u88dd\u4fee\u5de5", "\u96fb\u6a5f\u5de5\u7a0b\u6280\u8853\u54e1", "\u96fb\u6a5f\u6280\u5e2b\uff0f\u5de5\u7a0b\u5e2b", "\u96fb\u6a5f\u88dd\u4fee\u5de5", "\u96fb\u6a5f\u8a2d\u5099\u88dd\u914d\u54e1", "\u96fb\u6e90\u5de5\u7a0b\u5e2b", "\u96fb\u73a9\u7a0b\u5f0f\u8a2d\u8a08\u5e2b", "\u96fb\u8166\u7cfb\u7d71\u5206\u6790\u5e2b", "\u96fb\u8166\u7d44\u88dd\uff0f\u6e2c\u8a66", "\u96fb\u8166\u7e6a\u5716\u4eba\u54e1", "\u96fb\u8166\u88dc\u7fd2\u73ed\u8001\u5e2b", "\u96fb\u8a71\u53ca\u96fb\u5831\u6a5f\u88dd\u4fee\u5de5", "\u96fb\u8a71\u5ba2\u670d\u985e\u4eba\u54e1", "\u96fb\u8a71\u884c\u92b7\u4eba\u54e1", "\u96fb\u934d\uff0f\u8868\u9762\u8655\u7406\u6280\u8853\u4eba\u54e1", "\u97cc\u9ad4\u8a2d\u8a08\u5de5\u7a0b\u5e2b", "\u97f3\u6a02\u5bb6", "\u97f3\u6a02\u8001\u5e2b", "\u9818\u73ed", "\u9818\u968a", "\u985e\u5eda\u5e2b", "\u985e\u6bd4IC\u8a2d\u8a08\u5de5\u7a0b\u5e2b", "\u985e\u8b1b\u5e2b", "\u9867\u554f\u4eba\u54e1", "\u98db\u5b89\u4eba\u54e1", "\u98db\u6a5f\u88dd\u4fee\u5de5", "\u98db\u884c\u6a5f\u5e2b", "\u98df\u54c1\u7814\u767c\u4eba\u54e1", "\u98df\u54c1\u885b\u751f\u7ba1\u7406\u5e2b", "\u98ef\u5e97\u5de5\u4f5c\u4eba\u54e1", "\u98ef\u5e97\u9910\u5ef3\u4e3b\u7ba1", "\u9910\u5eda\u52a9\u624b", "\u9910\u98f2\u670d\u52d9\u751f", "\u99d0\u6821\u4ee3\u8868", "\u9a57\u5149\u5e2b", "\u9eb5\u5305\u5e2b", "\u9ebb\u9189\u91ab\u5e2b" )
is_character <- function(f) { function(..., msg = '[\u2713] function output is character') { c <- f(...) if (is.character(c)) cat(msg, '\n') else stop('found object of class', class(c), call. = FALSE) c } } hello <- function(world = 'world!') { paste('hello,', world) }
CreateInputsCrit <- function(FUN_CRIT, InputsModel, RunOptions, Qobs, Obs, VarObs = "Q", BoolCrit = NULL, transfo = "", Weights = NULL, Ind_zeroes = NULL, epsilon = NULL, warnings = TRUE, verbose = TRUE) { ObjectClass <- NULL if (!missing(Qobs)) { if (missing(Obs)) { if (warnings) { warning("argument 'Qobs' is deprecated. Please use 'Obs' and 'VarObs' instead") } Obs <- Qobs } else { warning("argument 'Qobs' is deprecated. The values set in 'Obs' will be used instead") } } if (!missing(Ind_zeroes) & warnings) { warning("deprecated 'Ind_zeroes' argument") } if (!missing(verbose)) { warning("deprecated 'verbose' argument. Use 'warnings', instead") } if (!inherits(InputsModel, "InputsModel")) { stop("'InputsModel' must be of class 'InputsModel'") } LLL <- length(InputsModel$DatesR[RunOptions$IndPeriod_Run]) vecObs <- unlist(Obs) if (length(vecObs) %% LLL != 0 | !is.numeric(vecObs)) { stop(sprintf("'Obs' must be a (list of) vector(s) of numeric values of length %i", LLL), call. = FALSE) } if (!is.list(Obs)) { idLayer <- list(1L) Obs <- list(Obs) } else { idLayer <- lapply(Obs, function(i) { if (is.list(i)) { length(i) } else { 1L } }) Obs <- lapply(Obs, function(x) rowMeans(as.data.frame(x))) } listArgs <- list(FUN_CRIT = FUN_CRIT, Obs = Obs, VarObs = VarObs, BoolCrit = BoolCrit, idLayer = idLayer, transfo = as.character(transfo), Weights = Weights, epsilon = epsilon) for (iArgs in names(listArgs)) { if (iArgs %in% c("Weights", "BoolCrit", "epsilon")) { if (any(is.null(listArgs[[iArgs]]))) { listArgs[[iArgs]] <- lapply(seq_along(listArgs$FUN_CRIT), function(x) NULL) } } if (iArgs %in% c("FUN_CRIT", "VarObs", "transfo", "Weights") & length(listArgs[[iArgs]]) > 1L) { listArgs[[iArgs]] <- as.list(listArgs[[iArgs]]) } if (!is.list(listArgs[[iArgs]])) { listArgs[[iArgs]] <- list(listArgs[[iArgs]]) } } listArgs$FUN_CRIT <- lapply(listArgs$FUN_CRIT, FUN = match.fun) if (missing(VarObs)) { listArgs$VarObs <- as.list(rep("Q", times = length(listArgs$Obs))) } if ("Q" %in% VarObs & !inherits(RunOptions, "GR")) { stop("'VarObs' cannot contain Q if a GR rainfall-runoff model is not used") } if (any(c("SCA", "SWE") %in% VarObs) & !inherits(RunOptions, "CemaNeige")) { stop("'VarObs' cannot contain SCA or SWE if CemaNeige is not used") } if ("SCA" %in% VarObs & inherits(RunOptions, "CemaNeige") & !"Gratio" %in% RunOptions$Outputs_Sim) { stop("'Gratio' is missing in 'Outputs_Sim' of 'RunOptions', which is necessary to output SCA with CemaNeige") } if ("SWE" %in% VarObs & inherits(RunOptions, "CemaNeige") & !"SnowPack" %in% RunOptions$Outputs_Sim) { stop("'SnowPack' is missing in 'Outputs_Sim' of 'RunOptions', which is necessary to output SWE with CemaNeige") } if (missing(transfo)) { listArgs$transfo <- as.list(rep("", times = length(listArgs$Obs))) } if (length(unique(sapply(listArgs, FUN = length))) != 1) { stopListArgs <- paste(sapply(names(listArgs), shQuote), collapse = ", ") stop(sprintf("arguments %s must have the same length", stopListArgs)) } if (!inherits(RunOptions , "RunOptions")) { stop("'RunOptions' must be of class 'RunOptions'") } if (length(listArgs$Weights) > 1 & sum(unlist(listArgs$Weights)) == 0 & !any(sapply(listArgs$Weights, is.null))) { stop("sum of 'Weights' cannot be equal to zero") } listArgs2 <- lapply(seq_along(listArgs$FUN_CRIT), function(i) lapply(listArgs, "[[", i)) inVarObs <- c("Q", "SCA", "SWE") msgVarObs <- "'VarObs' must be a (list of) character vector(s) and one of %s" msgVarObs <- sprintf(msgVarObs, paste(sapply(inVarObs, shQuote), collapse = ", ")) inTransfo <- c("", "sqrt", "log", "inv", "sort", "boxcox") msgTransfo <- "'transfo' must be a (list of) character vector(s) and one of %s, or numeric value for power transformation" msgTransfo <- sprintf(msgTransfo, paste(sapply(inTransfo, shQuote), collapse = ", ")) InputsCrit <- lapply(listArgs2, function(iListArgs2) { if (!(identical(iListArgs2$FUN_CRIT, ErrorCrit_NSE ) | identical(iListArgs2$FUN_CRIT, ErrorCrit_KGE ) | identical(iListArgs2$FUN_CRIT, ErrorCrit_KGE2) | identical(iListArgs2$FUN_CRIT, ErrorCrit_RMSE))) { stop("incorrect 'FUN_CRIT' for use in 'CreateInputsCrit'", call. = FALSE) } if (identical(iListArgs2$FUN_CRIT, ErrorCrit_RMSE) & length(listArgs$Weights) > 1 & all(!is.null(unlist(listArgs$Weights)))) { stop("calculating a composite criterion with the RMSE is not allowed since RMSE is not a dimensionless metric", call. = FALSE) } if (!is.vector(iListArgs2$Obs) | length(iListArgs2$Obs) != LLL | !is.numeric(iListArgs2$Obs)) { stop(sprintf("'Obs' must be a (list of) vector(s) of numeric values of length %i", LLL), call. = FALSE) } if (is.null(iListArgs2$BoolCrit)) { iListArgs2$BoolCrit <- rep(TRUE, length(iListArgs2$Obs)) } if (!is.logical(iListArgs2$BoolCrit)) { stop("'BoolCrit' must be a (list of) vector(s) of boolean", call. = FALSE) } if (length(iListArgs2$BoolCrit) != LLL) { stop("'BoolCrit' and the period defined in 'RunOptions' must have the same length", call. = FALSE) } if (!is.vector(iListArgs2$VarObs) | length(iListArgs2$VarObs) != 1 | !is.character(iListArgs2$VarObs) | !all(iListArgs2$VarObs %in% inVarObs)) { stop(msgVarObs, call. = FALSE) } if (any(iListArgs2$VarObs %in% "SCA")) { idSCA <- which(iListArgs2$VarObs == "SCA") if (length(idSCA) == 1L) { vecSCA <- iListArgs2$Obs } else { vecSCA <- unlist(iListArgs2$Obs[idSCA]) } if (min(vecSCA, na.rm = TRUE) < 0 | max(vecSCA, na.rm = TRUE) > 1) { stop("'Obs' outside [0,1] for \"SCA\"", call. = FALSE) } } inPosVarObs <- c("Q", "SWE") if (any(iListArgs2$VarObs %in% inPosVarObs)) { idQSS <- which(iListArgs2$VarObs %in% inPosVarObs) if (length(idQSS) == 1L) { vecQSS <- iListArgs2$Obs } else { vecQSS <- unlist(iListArgs2$Obs[idQSS]) } if (all(is.na(vecQSS))) { stop("'Obs' contains only missing values", call. = FALSE) } if (min(vecQSS, na.rm = TRUE) < 0) { stop(sprintf("'Obs' outside [0,Inf[ for \"%s\"", iListArgs2$VarObs), call. = FALSE) } } if (is.null(iListArgs2$transfo) | !is.vector(iListArgs2$transfo) | length(iListArgs2$transfo) != 1 | !is.character(iListArgs2$transfo)) { stop(msgTransfo, call. = FALSE) } isNotInTransfo <- !(iListArgs2$transfo %in% inTransfo) if (any(isNotInTransfo)) { powTransfo <- iListArgs2$transfo[isNotInTransfo] powTransfo <- gsub("\\^|[[:alpha:]]", "", powTransfo) numExpTransfo <- suppressWarnings(as.numeric(powTransfo)) if (any(is.na(numExpTransfo))) { stop(msgTransfo, call. = FALSE) } iListArgs2$transfo <- paste0("^", iListArgs2$transfo) } if (!is.null(iListArgs2$Weights)) { if (!is.vector(iListArgs2$Weights) | length(iListArgs2$Weights) != 1 | !is.numeric(iListArgs2$Weights) | any(iListArgs2$Weights < 0)) { stop("'Weights' must be a single (list of) positive or equal to zero value(s)", call. = FALSE) } } if (!is.null(iListArgs2$epsilon)) { if (!is.vector(iListArgs2$epsilon) | length(iListArgs2$epsilon) != 1 | !is.numeric(iListArgs2$epsilon) | any(iListArgs2$epsilon <= 0)) { stop("'epsilon' must be a single (list of) positive value(s)", call. = FALSE) } } else if (iListArgs2$transfo %in% c("log", "inv") & any(iListArgs2$Obs %in% 0) & warnings) { warning("zeroes detected in Obs: the corresponding time-steps will be excluded by the 'ErrorCrit*' functions as the epsilon argument was set to NULL", call. = FALSE) } if (iListArgs2$transfo == "log" & warnings) { warn_log_kge <- "we do not advise using the %s with a log transformation on Obs (see the details section in the 'CreateInputsCrit' help)" if (identical(iListArgs2$FUN_CRIT, ErrorCrit_KGE)) { warning(sprintf(warn_log_kge, "KGE"), call. = FALSE) } if (identical(iListArgs2$FUN_CRIT, ErrorCrit_KGE2)) { warning(sprintf(warn_log_kge, "KGE'"), call. = FALSE) } } iInputsCrit <- list(FUN_CRIT = iListArgs2$FUN_CRIT, Obs = iListArgs2$Obs, VarObs = iListArgs2$VarObs, BoolCrit = iListArgs2$BoolCrit, idLayer = iListArgs2$idLayer, transfo = iListArgs2$transfo, epsilon = iListArgs2$epsilon, Weights = iListArgs2$Weights) class(iInputsCrit) <- c("Single", "InputsCrit", ObjectClass) return(iInputsCrit) }) names(InputsCrit) <- paste0("IC", seq_along(InputsCrit)) listErrorCrit <- c("ErrorCrit_KGE", "ErrorCrit_KGE2", "ErrorCrit_NSE", "ErrorCrit_RMSE") InputsCrit <- lapply(InputsCrit, function(i) { i$FUN_CRIT <- listErrorCrit[sapply(listErrorCrit, function(j) identical(i$FUN_CRIT, get(j)))] i }) listVarObs <- sapply(InputsCrit, FUN = "[[", "VarObs") inCnVarObs <- c("SCA", "SWE") if (!"ZLayers" %in% names(InputsModel)) { if(any(listVarObs %in% inCnVarObs)) { stop(sprintf("'VarObs' can not be equal to %i if CemaNeige is not used", paste(sapply(inCnVarObs, shQuote), collapse = " or "))) } } else { listGroupLayer0 <- sapply(InputsCrit, FUN = "[[", "idLayer") listGroupLayer <- rep(listVarObs, times = listGroupLayer0) tabGroupLayer <- as.data.frame(table(listGroupLayer)) colnames(tabGroupLayer) <- c("VarObs", "freq") nLayers <- length(InputsModel$ZLayers) for (iInCnVarObs in inCnVarObs) { if (any(listVarObs %in% iInCnVarObs)) { if (tabGroupLayer[tabGroupLayer$VarObs %in% iInCnVarObs, "freq"] != nLayers) { stop(sprintf("'Obs' must contain %i vector(s) about %s", nLayers, iInCnVarObs)) } } } } for (iInCnVarObs in unique(listVarObs)) { if (iInCnVarObs == "Q") { for (i in which(listVarObs == iInCnVarObs)) { InputsCrit[[i]]$idLayer <- NA } } else { aa <- listGroupLayer0[listVarObs == iInCnVarObs] aa <- unname(aa) bb <- cumsum(c(0, aa[-length(aa)])) cc <- lapply(seq_along(aa), function(x) seq_len(aa[x]) + bb[x]) k <- 1 for (i in which(listVarObs == iInCnVarObs)) { InputsCrit[[i]]$idLayer <- cc[[k]] k <- k + 1 } } } if (length(InputsCrit) < 2) { InputsCrit <- InputsCrit[[1L]] InputsCrit["Weights"] <- list(Weights = NULL) } else { if (any(sapply(listArgs$Weights, is.null))) { for (iListArgs in InputsCrit) { iListArgs$Weights <- NULL } class(InputsCrit) <- c("Multi", "InputsCrit", ObjectClass) } else { class(InputsCrit) <- c("Compo", "InputsCrit", ObjectClass) } combInputsCrit <- combn(x = length(InputsCrit), m = 2) apply(combInputsCrit, MARGIN = 2, function(i) { equalInputsCrit <- identical(InputsCrit[[i[1]]], InputsCrit[[i[2]]]) if(equalInputsCrit) { warning(sprintf("elements %i and %i of the criteria list are identical. This might not be necessary", i[1], i[2]), call. = FALSE) } }) } return(InputsCrit) }
lslx <- R6::R6Class( classname = "lslx", inherit = prelslx, private = list( model = "lslxModel", data = "lslxData", fitting = "lslxFitting" ) )
tenant <- Sys.getenv("AZ_TEST_TENANT_ID") app <- Sys.getenv("AZ_TEST_NATIVE_APP_ID") team_name <- Sys.getenv("AZ_TEST_TEAM_NAME") team_id <- Sys.getenv("AZ_TEST_TEAM_ID") channel_name <- Sys.getenv("AZ_TEST_CHANNEL_NAME") channel_id <- Sys.getenv("AZ_TEST_CHANNEL_ID") if(tenant == "" || app == "" || team_name == "" || team_id == "" || channel_name == "" || channel_id == "") skip("Teams tests skipped: Microsoft Graph credentials not set") if(!interactive()) skip("Teams tests skipped: must be in interactive session") tok <- get_test_token(tenant, app, c("Group.ReadWrite.All", "Directory.Read.All")) if(is.null(tok)) skip("Teams tests skipped: no access to tenant") team <- try(call_graph_endpoint(tok, file.path("teams", team_id)), silent=TRUE) if(inherits(team, "try-error")) skip("Teams tests skipped: service not available") team <- ms_team$new(tok, tenant, team) test_that("Teams client works", { expect_error(get_team(team_name=team_name, team_id=team_id, token=tok)) team1 <- get_team(team_name=team_name, token=tok) expect_is(team1, "ms_team") expect_identical(team1$properties$displayName, team_name) team2 <- get_team(team_id=team_id, token=tok) expect_is(team2, "ms_team") expect_identical(team1$properties$id, team_id) teams <- list_teams(token=tok) expect_is(teams, "list") expect_true(all(sapply(teams, inherits, "ms_team"))) }) test_that("Teams methods work", { expect_is(team, "ms_team") drives <- team$list_drives() expect_is(drives, "list") expect_true(all(sapply(drives, inherits, "ms_drive"))) drv <- team$get_drive() expect_is(drv, "ms_drive") drv2 <- team$get_drive("Documents") expect_is(drv2, "ms_drive") grp <- team$get_group() expect_is(grp, "az_group") drv3 <- grp$get_drive("Documents") expect_is(drv3, "ms_drive") site <- team$get_sharepoint_site() expect_is(site, "ms_site") chans <- team$list_channels() expect_is(chans, "list") expect_true(all(sapply(chans, inherits, "ms_channel"))) chanpager <- team$list_channels(filter=sprintf("displayName eq '%s'", channel_name), n=NULL) expect_is(chanpager, "ms_graph_pager") chans0 <- chanpager$value expect_true(length(chans0) == 1 && inherits(chans0[[1]], "ms_channel")) expect_error(team$get_channel(channel_name, channel_id)) chan0 <- team$get_channel() expect_is(chan0, "ms_channel") f0 <- chan0$get_folder() expect_is(f0, "ms_drive_item") expect_is(f0$list_files(), "data.frame") chan1 <- team$get_channel(channel_name=channel_name) expect_is(chan1, "ms_channel") f1 <- chan1$get_folder() expect_is(f1, "ms_drive_item") expect_is(f1$list_files(), "data.frame") src <- write_file() it <- chan1$upload_file(src) expect_is(it, "ms_drive_item") expect_silent(it$delete(confirm=FALSE)) chan2 <- team$get_channel(channel_id=channel_id) expect_is(chan2, "ms_channel") }) test_that("Team member methods work", { mlst <- team$list_members() expect_is(mlst, "list") expect_true(all(sapply(mlst, inherits, "ms_team_member"))) expect_true(all(sapply(mlst, function(obj) obj$type == "team member"))) mpager <- team$list_members(filter=sprintf("displayName eq '%s'", mlst[[1]]$properties$displayName), n=NULL) expect_is(mpager, "ms_graph_pager") mlst0 <- mpager$value expect_true(length(mlst0) == 1 && inherits(mlst0[[1]], "ms_team_member")) usr <- mlst[[1]] usrname <- usr$properties$displayName usremail <- usr$properties$email usrid <- usr$properties$id expect_false(is.null(usrname)) expect_false(is.null(usremail)) expect_false(is.null(usrid)) usr1 <- team$get_member(usrname) expect_is(usr1, "ms_team_member") expect_identical(usr$properties$id, usr1$properties$id) usr2 <- team$get_member(email=usremail) expect_is(usr2, "ms_team_member") expect_identical(usr$properties$id, usr2$properties$id) usr3 <- team$get_member(id=usrid) expect_is(usr3, "ms_team_member") expect_identical(usr$properties$id, usr3$properties$id) aaduser <- usr$get_aaduser() expect_is(aaduser, "az_user") aaduser1 <- usr1$get_aaduser() expect_is(aaduser1, "az_user") })
context("gradient and Hessian") library(uGMAR) foo1 <- function(x) x^2 foo2 <- function(x, a=1, b=1) a*x[1]^2 - b*x[2]^2 foo3 <- function(x) x[1]^2 + log(x[2]) - x[3]^3 test_that("calc_gradient works correctly", { expect_equal(calc_gradient(x=0, fn=foo1), 0, tolerance=1e-4) expect_equal(calc_gradient(x=1, fn=foo1), 2, tolerance=1e-4) expect_equal(calc_gradient(x=-2, fn=foo1), -4, tolerance=1e-4) expect_equal(calc_gradient(x=c(0, 0), fn=foo2), c(0, 0), tolerance=1e-4) expect_equal(calc_gradient(x=c(0, 0), fn=foo2, a=2, b=3), c(0, 0), tolerance=1e-4) expect_equal(calc_gradient(x=c(1, 2), fn=foo2), c(2, -4), tolerance=1e-4) expect_equal(calc_gradient(x=c(1, 2), fn=foo2, a=2, b=3), c(4, -12), tolerance=1e-4) expect_equal(calc_gradient(x=c(1, 2, 3), fn=foo3), c(2.0, 0.5, -27.0), tolerance=1e-4) expect_equal(calc_gradient(x=c(1, 2, 3), fn=foo3, varying_h=c(0.1, 0.2, 0.5)), c(2.0000000, 0.5016767, -27.2500000), tolerance=1e-4) }) test_that("calc_hessian works correctly", { expect_equal(calc_hessian(x=0, fn=foo1), as.matrix(2), tolerance=1e-4) expect_equal(calc_hessian(x=1, fn=foo1), as.matrix(2), tolerance=1e-4) expect_equal(calc_hessian(x=-2, fn=foo1), as.matrix(2), tolerance=1e-4) expect_equal(calc_hessian(x=-2, fn=foo1, varying_h=1), as.matrix(2), tolerance=1e-4) expect_equal(calc_hessian(x=c(0, 0), fn=foo2), diag(c(2, -2)), tolerance=1e-4) expect_equal(calc_hessian(x=c(0, 0), fn=foo2, a=2, b=3), diag(c(4, -6)), tolerance=1e-4) expect_equal(calc_hessian(x=c(1, 2), fn=foo2), diag(c(2, -2)), tolerance=1e-4) expect_equal(calc_hessian(x=c(1, 2), fn=foo2, a=2, b=3), diag(c(4, -6)), tolerance=1e-4) expect_equal(calc_hessian(x=c(1, 2), fn=foo2, varying_h=c(1, 2), a=2, b=3), diag(c(4, -6)), tolerance=1e-4) expect_equal(calc_hessian(x=c(1, 2, 3), fn=foo3), diag(c(1.99998, -0.2500222, -18.00002)), tolerance=1e-4) expect_equal(calc_hessian(x=c(1, 2, 3), fn=foo3, varying_h=c(0.1, 0.2, 0.3)), diag(c(2.000000, -0.2551375, -18.00000)), tolerance=1e-4) })
sen2r <- function(param_list = NULL, gui = NA, preprocess = TRUE, s2_levels = "l2a", sel_sensor = c("s2a","s2b"), online = TRUE, server = "scihub", order_lta = TRUE, apihub = NA, downloader = "builtin", overwrite_safe = FALSE, rm_safe = "no", step_atmcorr = "auto", sen2cor_use_dem = NA, sen2cor_gipp = NA, max_cloud_safe = 100, timewindow = NA, timeperiod = "full", extent = NA, extent_name = "sen2r", s2tiles_selected = NA, s2orbits_selected = NA, list_prods = NA, list_rgb = NA, list_indices = NA, index_source = "BOA", rgb_ranges = NA, mask_type = NA, max_mask = 100, mask_smooth = 0, mask_buffer = 0, clip_on_extent = TRUE, extent_as_mask = FALSE, reference_path = NA, res = NA, res_s2 = "10m", unit = "Meter", proj = NA, resampling = "near", resampling_scl = "near", outformat = "GTiff", rgb_outformat = "GTiff", index_datatype = "Int16", compression = "DEFLATE", rgb_compression = "90", overwrite = FALSE, path_l1c = NA, path_l2a = NA, path_tiles = NA, path_merged = NA, path_out = NA, path_rgb = NA, path_indices = NA, path_subdirs = TRUE, thumbnails = TRUE, parallel = FALSE, processing_order = "by_groups", use_python = NA, tmpdir = NA, rmtmp = TRUE, log = NA) { if (!is.na(log[2])) { dir.create(dirname(log[2]), showWarnings=FALSE) sink(log[2], split = TRUE, type = "output", append = TRUE) } if (!is.na(log[1])) { dir.create(dirname(log[1]), showWarnings=FALSE) logfile_message = file(log[1], open = "a") sink(logfile_message, type="message") } sen2r_args <- formalArgs(.sen2r) sen2r_args <- sen2r_args[!sen2r_args %in% c(".only_list_names", "globenv")] pm_arg_passed <- logical(0) for (i in seq_along(sen2r_args)) { pm_arg_passed[i] <- !do.call(missing, list(sen2r_args[i])) } sen2r_env <- new.env() names_out_created <- .sen2r( param_list = param_list, pm_arg_passed = pm_arg_passed, gui = gui, preprocess = preprocess, s2_levels = s2_levels, sel_sensor = sel_sensor, online = online, server = server, order_lta = order_lta, apihub = apihub, downloader = downloader, overwrite_safe = overwrite_safe, rm_safe = rm_safe, step_atmcorr = step_atmcorr, sen2cor_use_dem = sen2cor_use_dem, sen2cor_gipp = sen2cor_gipp, max_cloud_safe = max_cloud_safe, timewindow = timewindow, timeperiod = timeperiod, extent = extent, extent_name = extent_name, s2tiles_selected = s2tiles_selected, s2orbits_selected = s2orbits_selected, list_prods = list_prods, list_rgb = list_rgb, list_indices = list_indices, index_source = index_source, rgb_ranges = rgb_ranges, mask_type = mask_type, max_mask = max_mask, mask_smooth = mask_smooth, mask_buffer = mask_buffer, clip_on_extent = clip_on_extent, extent_as_mask = extent_as_mask, reference_path = reference_path, res = res, res_s2 = res_s2, unit = unit, proj = proj, resampling = resampling, resampling_scl = resampling_scl, outformat = outformat, rgb_outformat = rgb_outformat, index_datatype = index_datatype, compression = compression, rgb_compression = rgb_compression, overwrite = overwrite, path_l1c = path_l1c, path_l2a = path_l2a, path_tiles = path_tiles, path_merged = path_merged, path_out = path_out, path_rgb = path_rgb, path_indices = path_indices, path_subdirs = path_subdirs, thumbnails = thumbnails, parallel = parallel, processing_order = processing_order, use_python = use_python, tmpdir = tmpdir, rmtmp = rmtmp, log = log, globenv = sen2r_env, .only_list_names = FALSE ) if (!is.na(log[2])) { sink(type = "output") } if (!is.na(log[1])) { sink(type = "message"); close(logfile_message) } if (!is.null(sen2r_env$internal_log)) { sink(type = "message") sen2r_env$internal_log <- NULL } return(invisible(names_out_created)) } .sen2r <- function(param_list, pm_arg_passed, gui, preprocess, s2_levels, sel_sensor, online, server, order_lta, apihub, downloader, overwrite_safe, rm_safe, step_atmcorr, sen2cor_use_dem, sen2cor_gipp, max_cloud_safe, timewindow, timeperiod, extent, extent_name, s2tiles_selected, s2orbits_selected, list_prods, list_rgb, list_indices, index_source, rgb_ranges, mask_type, max_mask, mask_smooth, mask_buffer, clip_on_extent, extent_as_mask, reference_path, res, res_s2, unit, proj, resampling, resampling_scl, outformat, rgb_outformat, index_datatype, compression, rgb_compression, overwrite, path_l1c, path_l2a, path_tiles, path_merged, path_out, path_rgb, path_indices, path_subdirs, thumbnails, parallel, processing_order, use_python = NA, tmpdir, rmtmp, log, globenv, .only_list_names = FALSE) { . <- sensing_datetime <- creation_datetime <- mission <- level <- id_orbit <- id_tile <- name <- id_baseline <- prod_type <- name <- sel_group_A <- i_group_A <- sel_apihub_path <- i_group_B <- sensing_date <- lta <- centroid_x <- centroid_y <- res_type <-path <- footprint <- sel_out <- NULL print_message( type = "message", date = TRUE, " ) if (requireNamespace("sf", quietly = TRUE)) { try({ invisible(capture.output(sf_use_s2_prev <- sf::sf_use_s2(FALSE))) on.exit(invisible(capture.output(sf::sf_use_s2(sf_use_s2_prev)))) }, silent = TRUE) } pm_def <- formals(sen2r::sen2r) pm_def <- sapply(pm_def[!names(pm_def) %in% c("param_list","gui","use_python","tmpdir","rmtmp")], eval) sen2r_args <- formalArgs(.sen2r) pm_arg <- sapply(sen2r_args[pm_arg_passed], function(x){ do.call(get, list(x)) }, simplify=FALSE) pm_arg <- pm_arg[!names(pm_arg) %in% c("param_list","gui","use_python","tmpdir","rmtmp")] pm_list <- if (is(param_list, "character")) { jsonlite::fromJSON(param_list) } else if (is(param_list, "list")) { param_list } else { list("pkg_version" = packageVersion("sen2r")) } pm <- pm_def pm[names(pm_list)] <- pm_list pm[names(pm_arg)] <- pm_arg if (is.na(gui)) { gui <- if (is.null(param_list)) {TRUE} else {FALSE} } suppressWarnings(suppressMessages({ pm <- check_param_list( pm, type = if (gui) {"message"} else {"error"}, check_paths = FALSE, correct = TRUE ) })) if (is.null(pm_list$pkg_version)) { if (!is.null(pm_list$fidolasen_version)) { pm_list$pkg_version <- pm_list$fidolasen_version } else { pm_list$pkg_version <- package_version("0.2.0") } } if (packageVersion("sen2r") > package_version(pm_list$pkg_version)) { if (interactive() & !gui) { open_gui <- NA while(is.na(open_gui)) { open_gui_prompt <- print_message( type="waiting", "\nThe parameter file was created with an old version of the package: ", "would you like to open a GUI and check that the input parameters are correct? (y/n)\n", "Alternatively, press ESC to interrupt and check the parameter file manually." ) open_gui <- if (grepl("^[Yy]",open_gui_prompt)) { gui <- TRUE TRUE } else if (grepl("^[Nn]",open_gui_prompt)) { FALSE } else { NA } } } else { print_message( type="warning", "The parameter file was created with an old version of the package ", "(this could lead to errors)." ) } } pm_prev <- pm if (gui==TRUE) { print_message( type = "message", date = TRUE, "Launching GUI..." ) pm <- .s2_gui(pm, par_fun = "sen2r") if (is.null(pm)) { print_message( type = "message", date = TRUE, "Program interrupted by the user (GUI closed)." ) sen2r_output <- character(0) attr(sen2r_output, "status") <- data.frame(completed = FALSE) return(invisible(sen2r_output)) } print_message( type = "message", date = TRUE, "Gui closed by the user. Starting processing." ) } pm <- check_param_list(pm, type = "error", check_paths = TRUE, correct = TRUE) if (pm$online == TRUE & "gcloud" %in% pm$server) { if (!check_gcloud_connection()) { print_message( type = "error", "Impossible to reach the Sentinel-2 bucket on Google Cloud ", "(internet connection may be down)." ) } } if (pm$online == TRUE & "scihub" %in% pm$server) { if (!check_scihub_connection()) { print_message( type = "error", "Impossible to reach the SciHub server ", "(internet connection or SciHub may be down)." ) } } outpm_dir <- file.path(dirname(attr(load_binpaths(), "path")), "proc_par") dir.create(outpm_dir, showWarnings = FALSE) outpm_path <- file.path( outpm_dir, strftime(Sys.time(), format = "s2proc_%Y%m%d_%H%M%S.json") ) pm_exported <- pm[!names(pm) %in% c(".only_list_names", "globenv")] if (inherits(pm$extent, "sf") | inherits(pm$extent, "sfc")) { pm_exported$extent <- geojson_json( st_transform(pm$extent, 4326), pretty = TRUE ) } if (inherits(pm$pkg_version, "numeric_version")) { pm_exported$pkg_version <- as.character(pm$pkg_version) } writeLines(toJSON(pm_exported, pretty = TRUE), outpm_path) attr(pm, "outpath") <- outpm_path out_attributes <- list() out_attributes[["procpath"]] <- attr(pm, "outpath") if (all(is.na(pm_prev$log), length(nn(pm$log))>0, !is.na(pm$log))) { if (!is.na(pm$log[1]) & is.na(pm_prev$log[1])) { print_message( type = "message", "Output messages are redirected to log file \"",pm$log[1],"\"." ) dir.create(dirname(pm$log[1]), showWarnings=FALSE) logfile_message = file(pm$log[1], open = "a") sink(logfile_message, type="message") assign("internal_log", pm$log[1], envir = globenv) } } rm(pm_prev) .log_message <- pm$log[1] .log_output <- pm$log[2] if (grepl("^[0-9A-Z]{5}$",extent_name)) { print_message( type = "error", "\"extent_name\" cannot have the same structure of a tile ID ", "(two numeric and by three uppercase character values)." ) } else if (grepl("^[0-9A-Z]{5}[a-z]$",extent_name)) { print_message( type = "error", "\"extent_name\" cannot have the same structure of a tile ID ", "(two numeric and by three uppercase character values)", "followed by a lowercase letter." ) } else if (grepl("[\\.\\_]",extent_name)) { print_message( type = "error", "\"extent_name\" cannot contain points nor underscores." ) } if (is.null(pm$parallel)) {pm$parallel <- parallel} if (is.null(pm$processing_order)) {pm$processing_order <- processing_order} if (pm$preprocess == FALSE & !pm$processing_order %in% c(1,"by_step")) { print_message( type = "warning", "Only processing_order = \"by_step\" is accepted if preprocess = FALSE." ) pm$processing_order <- "by_step" } if (!pm$processing_order %in% c( 1,"by_step", 2,"by_date", 3,"mixed", 4,"by_groups" )) { print_message( type = "warning", "processing_order = \"",pm$processing_order,"\"not recognised, ", "using default \"by_step\"." ) pm$processing_order <- "by_step" } if (pm$parallel == TRUE | is.numeric(pm$parallel)) { if (pm$processing_order %in% c(1,"by_step", 2,"by_date")) { parallel_groups_A <- FALSE parallel_groups_B <- FALSE parallel_steps <- pm$parallel } else if (pm$processing_order %in% c(3,"mixed", 4,"by_groups")) { parallel_groups_A <- FALSE parallel_groups_B <- pm$parallel parallel_steps <- FALSE } } else { parallel_groups_A <- FALSE parallel_groups_B <- FALSE parallel_steps <- FALSE } if (is.na(tmpdir)) { tmpdir <- if ( pm$outformat == "VRT" & !all(is.na(pm[c("path_out","path_rgb","path_indices","path_tiles","path_merged")])) ) { main_dir <- unlist(pm[c("path_out","path_rgb","path_indices","path_tiles","path_merged")])[ !is.na(pm[c("path_out","path_rgb","path_indices","path_tiles","path_merged")]) ][1] dir.create(main_dir, showWarnings=FALSE) file.path(main_dir, ".vrt") } else { tempfile(pattern="sen2r_") } } if (pm$outformat == "VRT") { rmtmp <- FALSE } dir.create(tmpdir, showWarnings=FALSE) l1c_prods <- c("TOA") l2a_prods <- c("BOA","SCL","TCI","AOT","WVP","CLD","SNW") nomsk <- c("SCL", "CLD", "SNW", "AOT") list_prods <- if (!is.na(pm$mask_type)) { unique(c(pm$list_prods, "SCL")) } else { pm$list_prods } if (any(!is.na(pm$list_rgb))) { list_prods <- unique(c( list_prods, paste0(unique(substr(pm$list_rgb,7,7)),"OA") )) } if (any(!is.na(pm$list_indices))) { list_prods <- unique(c(list_prods, pm$index_source)) } list_prods <- list_prods[!is.na(list_prods)] if (pm$preprocess == TRUE && length(list_prods) == 0) { print_message( type ="message", "No output products selected. Use \"preprocess = FALSE\" if you only want to download S2 images.\n" ) print_message( type = "message", date = TRUE, " ) return(invisible(character(0))) } if (pm$preprocess==TRUE) { pm$s2_levels <- c( if (any(list_prods %in% l1c_prods)) {"l1c"}, if (any(list_prods %in% l2a_prods)) {"l2a"} ) } parent_paths <- sapply( pm[c("path_l1c","path_l2a","path_tiles","path_merged","path_out","path_rgb","path_indices")], function(x){if(is.na(nn(x))){NA}else{dirname(x)}} ) parent_paths <- as.character(na.omit(unique(parent_paths))) paths_exist <- sapply(parent_paths, file.exists) if (any(!paths_exist)) { print_message( type="error", "The following output ", if (sum(!paths_exist)==1) {"directory does "} else {"directories do "}, "not exist:\n", paste(names(paths_exist[!paths_exist]),collapse="\n"), ".\nPlease create ", if (sum(!paths_exist)==1) {"it "} else {"them "}, "before continuing." ) } sapply( pm[c("path_l1c","path_l2a","path_tiles","path_merged","path_out","path_rgb","path_indices")], function(x) {if(is.na(nn(x))){NA}else{dir.create(x, recursive = FALSE, showWarnings = FALSE)}} ) if (pm$outformat == "BigTIFF") { pm$outformat <- "GTiff" bigtiff <- TRUE } else { bigtiff <- FALSE } suppressWarnings(gdal_formats <- fromJSON( system.file("extdata/settings/gdal_formats.json",package="sen2r") )$drivers) sel_driver <- gdal_formats[gdal_formats$name==pm$outformat,] sel_rgb_driver <- gdal_formats[gdal_formats$name==pm$rgb_outformat,] s2_lists <- s2_lists_islta <- s2_lists_footprints <- list() if (pm$online == TRUE) { print_message( type = "message", date = TRUE, "Searching for available SAFE products..." ) if ("l1c" %in% pm$s2_levels) { s2_lists[["l1c"]] <- s2_list( spatial_extent = pm$extent, time_interval = pm$timewindow, time_period = pm$timeperiod, tile = if (any(length(nn(pm$s2tiles_selected))==0, all(is.na(pm$s2tiles_selected)))) { tiles_intersects(pm$extent) } else { pm$s2tiles_selected }, orbit = pm$s2orbits_selected, level = "L1C", server = pm$server, max_cloud = pm$max_cloud_safe, availability = "check", apihub = pm$apihub ) s2_lists_footprints[["l1c"]] <- nn(attr(s2_lists[["l1c"]], "footprint")) s2_lists_islta[["l1c"]] <- !nn(attr(s2_lists[["l1c"]], "online")) names(s2_lists_islta[["l1c"]]) <- names(s2_lists[["l1c"]]) } if ("l2a" %in% pm$s2_levels) { s2_lists[["l2a"]] <- s2_list( spatial_extent = pm$extent, time_interval = pm$timewindow, time_period = pm$timeperiod, tile = if (any(length(nn(pm$s2tiles_selected))==0, all(is.na(pm$s2tiles_selected)))) { tiles_intersects(pm$extent) } else { pm$s2tiles_selected }, orbit = pm$s2orbits_selected, level = if (pm$step_atmcorr=="auto") { "auto" } else if (pm$step_atmcorr=="l2a") { "L2A" } else if (pm$step_atmcorr %in% c("scihub")) { "L1C" }, server = pm$server, max_cloud = pm$max_cloud_safe, availability = "check", apihub = pm$apihub ) s2_lists_footprints[["l2a"]] <- nn(attr(s2_lists[["l2a"]], "footprint")) s2_lists_islta[["l2a"]] <- !nn(attr(s2_lists[["l2a"]], "online")) names(s2_lists_islta[["l2a"]]) <- names(s2_lists[["l2a"]]) } } else { if ("l1c" %in% pm$s2_levels) { s2_lists[["l1c"]] <- list.files(pm$path_l1c, "\\.SAFE$") suppressWarnings({ s2_lists_footprints[["l1c"]] <- safe_getMetadata( file.path(pm$path_l1c, s2_lists[["l1c"]]), "footprint", abort = FALSE, format = "vector", simplify = TRUE ) }) } if ("l2a" %in% pm$s2_levels) { s2_lists[["l2a"]] <- if (pm$step_atmcorr=="l2a") { list.files(pm$path_l2a, "\\.SAFE$", full.names = TRUE) } else if (pm$step_atmcorr %in% c("scihub")) { list.files(pm$path_l1c, "\\.SAFE$", full.names = TRUE) } else if (pm$step_atmcorr=="auto") { all_l1c <- list.files(pm$path_l1c, "\\.SAFE$", full.names = TRUE) all_l2a <- list.files(pm$path_l2a, "\\.SAFE$", full.names = TRUE) c( all_l2a, all_l1c[ !gsub( "\\_OPER\\_","_USER_", gsub( "S2([AB])\\_((?:OPER\\_PRD\\_)?)MSIL1C\\_","S2\\1\\_\\2MSIL2A\\_", all_l1c ) ) %in% all_l2a ] ) } suppressWarnings({ s2_lists_footprints[["l2a"]] <- safe_getMetadata( s2_lists[["l2a"]], "footprint", abort = FALSE, format = "vector", simplify = TRUE ) }) s2_lists[["l2a"]] <- basename(s2_lists[["l2a"]]) } s2_lists <- lapply(s2_lists, function(l) { safe_getMetadata(l, "level", abort = FALSE, format = "vector", simplify = TRUE) }) s2_lists_whichna <- lapply(s2_lists, function(l) {is.na(l)}) s2_lists <- lapply(seq_along(s2_lists), function(i) { s2_lists[[i]][!s2_lists_whichna[[i]]] }) s2_lists_footprints <- lapply(seq_along(s2_lists_footprints), function(i) { s2_lists_footprints[[i]][!s2_lists_whichna[[i]]] }) } s2_list <- unlist(s2_lists)[!duplicated(unlist(lapply(s2_lists, names)))] s2_list_footprints <- unlist(s2_lists_footprints)[!duplicated(unlist(lapply(s2_lists, names)))] s2_list_islta <- unlist(s2_lists_islta)[!duplicated(unlist(lapply(s2_lists_islta, names)))] rm(s2_lists, s2_lists_islta, s2_lists_footprints) if (length(s2_list)==0) { print_message( type = "message", date = TRUE, if (pm$online == FALSE) { "No SAFE products which match the settings were found locally." } else { "No SAFE products matching the settings were found." } ) } if (length(nn(s2_list))>0) { names(s2_list) <- gsub("^l[12][ac]\\.","",names(s2_list)) } s2_dt <- safe_getMetadata( names(s2_list), info = c("nameinfo"), format = "data.table" ) s2_dt$footprint <- s2_list_footprints if (nrow(s2_dt)==0) { s2_dt <- safe_getMetadata( "S2A_MSIL2A_20000101T000000_N0200_R001_T01TAA_20000101T000000.SAFE", info = "nameinfo", format = "data.table" )[-1,] s2_dt$footprint <- character(0) } s2_dt[,"lta":=if (is.null(s2_list_islta)) {FALSE} else {s2_list_islta}] s2_dt[,c("name","url"):=list(nn(names(s2_list)),nn(s2_list))] if (nrow(s2_dt) > 0) { s2_footprint_sf_l <- lapply(s2_dt$footprint, function(f) { tryCatch( st_as_sfc(f, crs = 4326), error = function(e) {st_sfc(st_polygon(), crs = 4326)} ) }) s2_dt_centroid <- suppressMessages(round(st_coordinates( st_centroid(st_transform(do.call("c",s2_footprint_sf_l), 3857)) ), -3)) s2_dt[,c("centroid_x", "centroid_y") := list(s2_dt_centroid[,"X"], s2_dt_centroid[,"Y"])] } else { s2_dt[,c("centroid_x", "centroid_y") := list(numeric(), numeric())] } s2_existing_list <- list.files(unique(c(pm$path_l1c,pm$path_l2a)), "\\.SAFE$", full.names = TRUE) if (length(s2_existing_list) > 0 & pm$online == TRUE) { s2_isvalid <- safe_isvalid(s2_existing_list, check_file = FALSE) s2_existing_list <- s2_existing_list[s2_isvalid] s2_existing_dt <- safe_getMetadata( s2_existing_list, info = c("name", "mission", "level", "sensing_datetime", "id_orbit", "id_tile", "creation_datetime", "footprint"), format = "data.table" ) s2_existing_dt_centroid <- suppressMessages(round(st_coordinates( st_centroid(st_transform(st_as_sfc(s2_existing_dt$footprint, crs = 4326), 3857)) ), -3)) s2_existing_dt[,c("centroid_x", "centroid_y") := list(s2_existing_dt_centroid[,"X"], s2_existing_dt_centroid[,"Y"])] s2_meta_pasted <- s2_dt[,list("V1" = paste( mission, level, strftime(sensing_datetime,"%y%m%d"), id_orbit, centroid_x, centroid_y ))]$V1 s2_existing_meta_pasted <- s2_existing_dt[,list("V1" = paste( mission, level, strftime(sensing_datetime,"%y%m%d"), id_orbit, centroid_x, centroid_y ))]$V1 s2_existing_list_touse <- s2_existing_dt[s2_existing_meta_pasted %in% s2_meta_pasted,]$name if (!pm$overwrite_safe) { s2_dt[ !is.na(match(s2_meta_pasted, s2_existing_meta_pasted)), name := basename(s2_existing_list)[na.omit(match(s2_meta_pasted, s2_existing_meta_pasted))] ] s2_dt[!is.na(match(s2_meta_pasted, s2_existing_meta_pasted)), c("url","lta"):=list("",FALSE)] } } s2_dt <- if (!is.null(s2_dt$id_baseline)) { s2_dt[order(-sensing_datetime, lta, -creation_datetime, -id_baseline),] } else { s2_dt[order(-sensing_datetime, lta, -creation_datetime),] } s2_dt <- s2_dt[!duplicated(paste( prod_type, version, mission, level, sensing_datetime, id_orbit, centroid_x, centroid_y )),] if (is.null(s2_dt$id_tile)) { s2_dt$id_tile <- as.character(NA) } s2_dt <- s2_dt[mission %in% toupper(substr(pm$sel_sensor,2,3)),] if (!anyNA(pm$timewindow)) { s2_dt <- s2_dt[as.Date(sensing_datetime) >= pm$timewindow[1] & as.Date(sensing_datetime) <= pm$timewindow[2],] } if ( pm$online == FALSE && identical(pm$extent, NA) && identical(pm$s2tiles_selected, NA) ) { pm$s2tiles_selected <- unique(s2_dt$id_tile) } if (pm$online == FALSE && nrow(s2_dt) == 0) { print_message( type = "error", "There are no images on your machine acquired ", "in the specified time period." ) } if (!any(length(nn(pm$s2tiles_selected))==0, all(is.na(pm$s2tiles_selected)))) { s2_dt <- s2_dt[id_tile %in% c(as.character(pm$s2tiles_selected),NA),] } else if (all(is.na(pm$extent)) && all(st_is_valid(pm$extent))) { s2tiles_sel_id <- tiles_intersects(pm$extent) s2_dt <- s2_dt[id_tile %in% s2tiles_sel_id,] } if (all(!is.na(pm$s2orbits_selected))) { s2_dt <- s2_dt[id_orbit %in% pm$s2orbits_selected,] } if (all(!is(pm$extent, "logical"), !anyNA(pm$extent), !is.na(s2_dt$footprint))) { extent_dissolved <- suppressMessages(st_union(pm$extent)) if (any(!st_is_valid(extent_dissolved))) { extent_dissolved <- st_make_valid(extent_dissolved) } s2_dt <- s2_dt[suppressMessages(st_intersects( extent_dissolved, st_transform(st_as_sfc(s2_dt$footprint, crs = 4326), st_crs2(pm$extent)) ))[[1]],] } s2_lta_dates <- s2_dt[ ,list(lta = any(lta)), by = list(sensing_date = as.Date(sensing_datetime)) ][lta==TRUE, sensing_date] s2_list_lta <- s2_dt[lta==TRUE, url] s2_list_ign <- s2_dt[lta==FALSE & as.Date(sensing_datetime) %in% s2_lta_dates, url] s2_list_l1c <- s2_dt[lta==FALSE & !as.Date(sensing_datetime) %in% s2_lta_dates & level=="1C", url] s2_list_l2a <- s2_dt[lta==FALSE & !as.Date(sensing_datetime) %in% s2_lta_dates & level=="2A", url] names(s2_list_lta) <- s2_dt[lta==TRUE, name] names(s2_list_ign) <- s2_dt[lta==FALSE & as.Date(sensing_datetime) %in% s2_lta_dates, name] names(s2_list_l1c) <- s2_dt[lta==FALSE & !as.Date(sensing_datetime) %in% s2_lta_dates & level=="1C", name] names(s2_list_l2a) <- s2_dt[lta==FALSE & !as.Date(sensing_datetime) %in% s2_lta_dates & level=="2A", name] s2_list_ordered <- if (pm$online == TRUE & pm$order_lta == TRUE) { .s2_order( s2_list_lta, .s2_availability = rep(FALSE, length(s2_list_lta)), apihub = pm$apihub, .log_path = FALSE ) } else { character(0) } out_attributes[["ltapath"]] <- attr(s2_list_ordered, "path") if (pm$step_atmcorr %in% c("auto","scihub")) { s2_list_l1c_tocorrect <- if (pm$overwrite_safe==FALSE) { s2_list_l1c[ !gsub( "\\_OPER\\_","_USER_", gsub( "^S2([AB])\\_((?:OPER\\_PRD\\_)?)MSIL1C\\_([0-9T]{15})\\_N[0-9]{4}\\_", "S2\\1\\_\\2MSIL2A\\_\\3\\_NXXXX\\_", names(s2_list_l1c) ) ) %in% gsub("\\_N[0-9]{4}\\_", "_NXXXX_", names(s2_list_l2a)) ] } else { s2_list_l1c } if (length(s2_list_l1c_tocorrect)>0) { s2_list_l2a_tobecorrected <- gsub( "\\_OPER\\_","_USER_", gsub( "^S2([AB])\\_((?:OPER\\_PRD\\_)?)MSIL1C\\_","S2\\1\\_\\2MSIL2A\\_", names(s2_list_l1c_tocorrect) ) ) names(s2_list_l2a_tobecorrected) <- basename(s2_list_l2a_tobecorrected) s2_list_l2a_exp <- c(s2_list_l2a,s2_list_l2a_tobecorrected) } else { s2_list_l2a_exp <- s2_list_l2a } } else { s2_list_l1c_tocorrect <- character() s2_list_l2a_exp <- s2_list_l2a } if (length(s2_list_lta) == dim(s2_dt)[1]) { status <- sen2r_process_report( s2_list_ordered = s2_list_ordered, pm = pm, download_only = !pm$preprocess ) sen2r_output <- character(0) attr(sen2r_output, "status") <- status attr(sen2r_output, "ltapath") <- attr(s2_list_ordered, "path") return(invisible(sen2r_output)) } if (pm$preprocess == TRUE) { ignorelist <- read_ignorelist(pm = pm, param_list = param_list) if (all(c("l1c", "l2a") %in% pm$s2_levels)) { s2_meta_l2a <- apply( safe_getMetadata( names(s2_list_l2a_exp), info = c("nameinfo"), format = "data.table" )[,list(mission, sensing_datetime, id_orbit, id_tile)], 1, paste, collapse = "_" ) s2_meta_l1c <- apply( safe_getMetadata( names(s2_list_l1c), info = c("nameinfo"), format = "data.table" )[,list(mission, sensing_datetime, id_orbit, id_tile)], 1, paste, collapse = "_" ) s2_l2a_orphan <- !s2_meta_l2a %in% s2_meta_l1c s2_l1c_orphan <- !s2_meta_l1c %in% s2_meta_l2a if (any(s2_l2a_orphan, s2_l1c_orphan)) { print_message( type = "warning", "Some SAFE archive is present only as Level-1C or Level-2A, ", "while both are required. ", "To prevent errors, only coupled products will be used. ", if (any(s2_l1c_orphan)) {paste0( "This issue can be avoided by setting argument \"step_atmcorr\" ", "to 'auto' or 'scihub', or \"online\" to TRUE, ", "or re-launching the processing when products ordered from the ", "Long Term Archive will be made available, ", "so that missing Level-2A can be produced or downloaded." )} ) s2_list_l2a_exp <- s2_list_l2a_exp[!s2_l2a_orphan] s2_list_l1c <- s2_list_l1c[!s2_l1c_orphan] } } print_message(type = "message", date = TRUE, "Computing output names...") s2names <- compute_s2_paths( pm=pm, s2_list_l1c=s2_list_l1c, s2_list_l2a=s2_list_l2a_exp, tmpdir=tmpdir, list_prods=list_prods, force_tiles = TRUE, ignorelist = ignorelist ) out_ext <- attr(s2names, "out_ext") out_format <- attr(s2names, "out_format") s2_tiles <- names(sort(table(tile_utmzone(s2_dt$id_tile)), decreasing = TRUE)) out_proj <- if (!is.na(pm$proj)) {st_crs2(pm$proj)} else { if (is.null(s2_tiles)) {NA} else {st_crs2(s2_tiles[1])} } gdal_tap <- any( length(s2_tiles) > 2, !is.null(out_proj$epsg) && !is.na(out_proj$epsg) && out_proj$epsg > 32601 && out_proj$epsg < 32799 ) s2_mask_extent <- if (is(pm$extent, "vector") && is.na(pm$extent)) { NULL } else if (anyNA(pm$extent$geometry)) { NULL } else if (pm$extent_as_mask==TRUE) { st_combine(pm$extent) } else { st_combine( suppressWarnings(st_cast(st_cast(pm$extent,"POLYGON"), "LINESTRING")) ) } if (inherits(s2_mask_extent, c("sf", "sfc")) && any(!st_is_valid(s2_mask_extent))) { s2_mask_extent <- st_make_valid(s2_mask_extent) } if (all(unlist(sapply(s2names$new, sapply, length)) == 0)) { if (all(unlist(sapply(s2names$exp, sapply, length)) == 0)) { if (length(ignorelist$dates_cloudcovered) + length(ignorelist$names_missing) == 0) { print_message( type = "message", date = TRUE, "No S2 products matching the query settings were found; please ", if (pm$online == FALSE) {"try in online mode, or "}, "specify less restrictive settings." ) } else { print_message( type = "message", date = TRUE, "All S2 products matching the query settings were ignored because ", "they are included in the list of files with cloudiness above the ", "\"max_mask\" threshold ", "or in the list of files for which previous processing failed", " (see the \"Details\" section of sen2r() documentation)." ) } } else { print_message( type = "message", date = TRUE, "All the required output files for dates not on lta already exist; nothing to do. ", "To reprocess, run sen2r() with the argument overwrite = TRUE, or ", if (pm$online == FALSE) {"try running sen2r() in online mode, or "}, "specify a different output directory." ) } ignorelist_path <- write_ignorelist( pm = pm, dates_cloudcovered = ignorelist$dates_cloudcovered, names_missing = ignorelist$names_missing, param_list = param_list ) clean_ignorelist(pm = pm, param_list = param_list) sen2r_output <- character(0) attributes(sen2r_output) <- c(attributes(sen2r_output), out_attributes) status <- sen2r_process_report( s2_list_ordered = s2_list_ordered, s2names = s2names, pm =pm, ignorelist = ignorelist ) attr(sen2r_output, "status") <- status return(invisible(sen2r_output)) } } if (pm$preprocess == TRUE & .only_list_names == TRUE) { sen2r_output <- s2names attributes(sen2r_output) <- c(attributes(sen2r_output), out_attributes) return(sen2r_output) } if (pm$preprocess==TRUE) { exi_meta <- cbind( sen2r_getElements(unlist(s2names$exi[c("indices","rgb","masked","warped_nomsk","warped")])), data.frame(path=unlist(s2names$exi[c("indices","rgb","masked","warped_nomsk","warped")])) ) exi_meta[,res_type:=ifelse(prod_type %in% c("SCL","CLD","SNW"), "res20", "res10")] reference_exi_paths <- if (nrow(exi_meta)>0) { exi_meta[!duplicated(res_type),list(res_type,path)] } else { data.table(res_type = character(0), path = character(0)) } } if (pm$preprocess==TRUE) { s2_list_l2a_req <- s2_list_l2a[ names(s2_list_l2a) %in% basename(nn(s2names$req$tiles$L2A)) ] safe_names_l2a_reqout <- s2names$req$tiles$L2A[ !gsub("\\_N[0-9]{4}\\_", "_NXXXX_", basename(nn(s2names$req$tiles$L2A))) %in% gsub("\\_N[0-9]{4}\\_", "_NXXXX_", names(s2_list_l2a)) ] safe_names_l1c_tocorrect <- gsub( "\\_USER\\_","_OPER_", gsub( "^S2([AB])\\_((?:USER\\_PRD\\_)?)MSIL2A\\_","S2\\1\\_\\2MSIL1C\\_", basename(nn(safe_names_l2a_reqout)) ) ) s2_list_l1c_req <- s2_list_l1c[ gsub("\\_N[0-9]{4}\\_", "_NXXXX_", names(s2_list_l1c)) %in% gsub("\\_N[0-9]{4}\\_", "_NXXXX_", c(safe_names_l1c_tocorrect,basename(nn(s2names$req$tiles$L1C)))) ] s2_dt <- s2_dt[name %in% c(names(s2_list_l1c_req),names(s2_list_l2a_req)),] s2_list_l1c <- s2_list_l1c_req s2_list_l2a <- s2_list_l2a_req } else { safe_names_l1c_tocorrect <- names(s2_list_l1c_tocorrect) } max_n_cores <- if (is.numeric(pm$parallel)) { as.integer(pm$parallel) } else if (pm$parallel == FALSE) { 1 } else { min(parallel::detectCores()-1, 8) } if (pm$processing_order %in% c(2,"by_date", 4,"by_groups")) { sen2r_dates_A <- if (pm$preprocess == TRUE) { sort(unique(sen2r_getElements( unlist(s2names$new) )$sensing_date)) } else { s2names <- list() sort(unique(as.Date(s2_dt$sensing_datetime))) } sen2r_groups_A <- if (pm$processing_order %in% c(2,"by_date")) { setNames(as.list(sen2r_dates_A), sen2r_dates_A) } else if (pm$processing_order %in% c(4,"by_groups")) { suppressWarnings(split( sen2r_dates_A, seq_len(ceiling(length(sen2r_dates_A)/max_n_cores)) )) } s2names_groups_A <- lapply(sen2r_groups_A, function(d) { d_string <- strftime(d, "%Y%m%d") sapply(s2names, function(v1) { sapply(v1, function(v2) { sapply(v2, function(v3) { v3[grepl(paste0("[12][ABC]\\_((",paste(d_string,collapse=")|("),"))"), basename(nn(v3)))] }, simplify = FALSE, USE.NAMES = TRUE) }, simplify = FALSE, USE.NAMES = TRUE) }, simplify = FALSE, USE.NAMES = TRUE) }) s2_list_l1c_groups_A <- lapply(sen2r_groups_A, function(d) { d_string <- strftime(d, "%Y%m%d") s2_list_l1c[grepl(paste0("[12][ABC]\\_((",paste(d_string,collapse=")|("),"))"), names(s2_list_l1c))] }) s2_list_l2a_groups_A <- lapply(sen2r_groups_A, function(d) { d_string <- strftime(d, "%Y%m%d") s2_list_l2a[grepl(paste0("[12][ABC]\\_((",paste(d_string,collapse=")|("),"))"), names(s2_list_l2a))] }) s2_dt_groups_A <- lapply(sen2r_groups_A, function(d) { s2_dt[ as.Date( gsub("^S2[AB]\\_MSIL[12][AC]\\_([0-9]{8})T.+$", "\\1", name), "%Y%m%d" ) %in% d, ] }) names(s2names_groups_A) <- names(s2_list_l1c_groups_A) <- names(s2_list_l2a_groups_A) <- names(s2_dt_groups_A) <- names(sen2r_groups_A) } else if (pm$processing_order %in% c(1,"by_step", 3,"mixed")) { s2names_groups_A <- if (pm$preprocess == TRUE) {list(s2names)} else {"dummy"} s2_list_l1c_groups_A <- list(s2_list_l1c) s2_list_l2a_groups_A <- list(s2_list_l2a) s2_dt_groups_A <- list(s2_dt) names(s2names_groups_A) <- names(s2_list_l1c_groups_A) <- names(s2_list_l2a_groups_A) <- names(s2_dt_groups_A) <- "unique" } if (all(pm$online == TRUE, "scihub" %in% pm$server)) { apihubs <- read_scihub_login(if (length(nn(pm$apihub) > 0)) {pm$apihub} else {NA}) n_apihubs <- min(nrow(apihubs), length(s2names_groups_A)) if (n_apihubs > 1 & pm$processing_order %in% c(2,"by_date")) { pm$apihub <- file.path(tmpdir,paste0("apihub_",seq_len(n_apihubs),".txt")) for (i in seq_len(n_apihubs)) { write_scihub_login(apihubs[i,1], apihubs[i,2], pm$apihub[i], append = FALSE, check = FALSE) } if (pm$parallel == TRUE | is.numeric(pm$parallel)) { parallel_groups_A <- pm$parallel parallel_groups_B <- FALSE parallel_steps <- FALSE } } } else { n_apihubs <- length(s2names_groups_A) } n_cores_A <- if (is.numeric(parallel_groups_A)) { min(as.integer(parallel_groups_A), length(s2names_groups_A)) } else if (parallel_groups_A == FALSE) { 1 } else { min(max_n_cores, length(s2names_groups_A), n_apihubs) } if (n_cores_A<=1) { `%DO_A%` <- `%do%` n_cores_A <- 1 } else { `%DO_A%` <- `%dopar%` cl <- makeCluster( n_cores_A, type = if (Sys.info()["sysname"] == "Windows") {"PSOCK"} else {"FORK"} ) registerDoParallel(cl) } outnames_list_A1 <- foreach( sel_group_A = suppressWarnings(split( seq_len(length(s2names_groups_A)), seq_len(ceiling(length(s2names_groups_A)/n_apihubs)) )) ) %do% { outnames_list_A2 <- foreach( sel_s2names = s2names_groups_A[sel_group_A], sel_s2_list_l1c = s2_list_l1c_groups_A[sel_group_A], sel_s2_list_l2a = s2_list_l2a_groups_A[sel_group_A], sel_s2_dt = s2_dt_groups_A[sel_group_A], i_group_A = match(names(s2names_groups_A[sel_group_A]), names(s2names_groups_A)), sel_apihub_path = pm$apihub, .packages = c("sf", "sen2r") ) %DO_A% { if (n_cores_A > 1) { if (!is.na(.log_output)) { sink(.log_output, split = TRUE, type = "output", append = TRUE) } if (!is.na(.log_message)) { logfile_message = file(.log_message, open = "a") sink(logfile_message, type="message") } } if (length(s2names_groups_A) > 1) { print_message( type="message", date=TRUE, "Processing group ",i_group_A," of ",length(s2names_groups_A),"..." ) } tmpdir_groupA <- file.path(tmpdir, basename(tempfile(pattern="group"))) dir.create(tmpdir_groupA, recursive = FALSE, showWarnings = FALSE) path_l1c <- if (!is.na(pm$path_l1c)) {pm$path_l1c} else {file.path(tmpdir_groupA,"SAFE")} path_l2a <- if (!is.na(pm$path_l2a)) {pm$path_l2a} else {file.path(tmpdir_groupA,"SAFE")} if (pm$online == TRUE) { print_message( type = "message", date = TRUE, "Starting to download the required level-2A SAFE products." ) if (all(safe_getMetadata( names(sel_s2_list_l2a), info = "version", format = "vector", simplify = TRUE ) == "compact")) { if (pm$overwrite_safe) { s2_to_download_l2a <- sel_s2_list_l2a } else { s2_to_download_l2a <- sel_s2_list_l2a[!names(sel_s2_list_l2a) %in% list.files(path_l2a, "\\.SAFE$")] s2_to_skip_l2a <- names(sel_s2_list_l2a[names(sel_s2_list_l2a) %in% list.files(path_l2a, "\\.SAFE$")]) if (length(s2_to_skip_l2a) != 0) { print_message( type = "message", "Images ", paste(s2_to_skip_l2a, collapse = ", "), " are already on your system and will be skipped. ", "Set \"overwrite_safe\" to TRUE to re-download them." ) } if (length(s2_to_download_l2a) == 0) { print_message(type = "message", "No L2A images are needed.") } } s2_to_download_l2a <- as(data.table( as.data.table(as(s2_to_download_l2a, "safelist")), footprint = s2_dt[match(names(s2_to_download_l2a), name), footprint] ), "safelist") s2_downloaded_l2a <- s2_download( s2_to_download_l2a, outdir = path_l2a, downloader = pm$downloader, apihub = sel_apihub_path, overwrite = pm$overwrite_safe ) } else { print_message( type = "error", "Old name SAFE products are no longer supported." ) } print_message( type = "message", date = TRUE, "Download of level-2A SAFE products terminated." ) print_message( type = "message", date = TRUE, "Starting to download the required level-1C SAFE products." ) if (all(safe_getMetadata( names(sel_s2_list_l1c), info = "version", format = "vector", simplify = TRUE ) == "compact")) { if (pm$overwrite_safe) { s2_to_download_l1c <- sel_s2_list_l1c } else { s2_to_download_l1c <- sel_s2_list_l1c[!names(sel_s2_list_l1c) %in% list.files(path_l1c, "\\.SAFE$")] s2_to_skip_l1c <- sel_s2_list_l1c[names(sel_s2_list_l1c) %in% list.files(path_l1c, "\\.SAFE$")] if (length(s2_to_skip_l1c) != 0) { print_message( type = "message", "Images ", paste(names(s2_to_skip_l1c), collapse = ", "), " are already on your system and will be skipped. ", "Set \"overwrite_safe\" to TRUE to re-download them." ) } if (length(s2_to_download_l1c) == 0) { print_message(type = "message", "No L1C images are needed.") } } s2_to_download_l1c <- as(data.table( as.data.table(as(s2_to_download_l1c, "safelist")), footprint = s2_dt[match(names(s2_to_download_l1c), name), footprint] ), "safelist") s2_downloaded_l1c <- s2_download( s2_to_download_l1c, outdir = path_l1c, downloader = pm$downloader, overwrite = pm$overwrite_safe ) } else { print_message( type = "error", "Old name SAFE products are no longer supported." ) } print_message( type = "message", date = TRUE, "Download of level-1C SAFE products terminated." ) } sel_s2_dt <- sel_s2_dt[order(-creation_datetime),] sel_s2_dt <- sel_s2_dt[ !duplicated( sel_s2_dt[, list( mission, level, id_orbit, centroid_x, centroid_y, as.Date(sensing_datetime) )] ), ] if (pm$online == TRUE) { sel_s2_dt_id <- sel_s2_dt[ ,paste(mission, level, sensing_datetime, id_orbit, centroid_x, centroid_y) ] s2_downloaded_dt <- rbind( safe_getMetadata( file.path(path_l1c, names(s2_downloaded_l1c)), info = c("name", "mission", "level", "sensing_datetime", "id_orbit", "id_tile", "creation_datetime", "footprint"), format = "data.table" ), safe_getMetadata( file.path(path_l2a, names(s2_downloaded_l2a)), info = c("name", "mission", "level", "sensing_datetime", "id_orbit", "id_tile", "creation_datetime", "footprint"), format = "data.table" ), fill = TRUE ) if (nrow(s2_downloaded_dt)>0) { s2_downloaded_dt_centroid <- suppressMessages(round(st_coordinates( st_centroid(st_transform(st_as_sfc(s2_downloaded_dt$footprint, crs = 4326), 3857)) ), -3)) s2_downloaded_dt[,c("centroid_x", "centroid_y") := list( s2_downloaded_dt_centroid[,"X"], s2_downloaded_dt_centroid[,"Y"] )] s2_downloaded_id <- s2_downloaded_dt[ ,paste(mission, level, sensing_datetime, id_orbit, centroid_x, centroid_y) ] sel_s2_dt[ match(s2_downloaded_id, sel_s2_dt_id), name:=names(c(s2_downloaded_l1c,s2_downloaded_l2a)) ] } } sel_s2_list_l1c <- sel_s2_dt[level=="1C",url] sel_s2_list_l2a <- sel_s2_dt[level=="2A",url] names(sel_s2_list_l1c) <- sel_s2_dt[level=="1C",name] names(sel_s2_list_l2a) <- sel_s2_dt[level=="2A",name] if (all( pm$step_atmcorr %in% c("auto","scihub"), "l2a" %in% pm$s2_levels )) { sel_s2_list_l1c_tocorrect <- if (pm$overwrite_safe==FALSE) { sel_s2_list_l1c[ !gsub( "\\_OPER\\_","_USER_", gsub( "^S2([AB])\\_((?:OPER\\_PRD\\_)?)MSIL1C\\_","S2\\1\\_\\2MSIL2A\\_", names(sel_s2_list_l1c) ) ) %in% names(sel_s2_list_l2a) & names(sel_s2_list_l1c) %in% safe_names_l1c_tocorrect ] } else { sel_s2_list_l1c[names(sel_s2_list_l1c) %in% safe_names_l1c_tocorrect] } if (length(sel_s2_list_l1c_tocorrect)>0) { if (sum(file.exists(file.path(path_l1c,names(sel_s2_list_l1c_tocorrect)))) > 0) { print_message( type = "message", date = TRUE, "Starting to correct level-1C SAFE products with Sen2Cor. ", "This operation could take very long time." ) } sel_s2_list_l2a_corrected <- sen2cor( names(sel_s2_list_l1c_tocorrect), l1c_dir = path_l1c, outdir = path_l2a, tiles = pm$s2tiles_selected, parallel = pm$parallel, use_dem = pm$sen2cor_use_dem, gipp = if (all(is.na(pm$sen2cor_gipp))) {list()} else {pm$sen2cor_gipp}, tmpdir = if (Sys.info()["sysname"] == "Windows") { file.path(tmpdir_groupA, "sen2cor") } else if (any(attr(mountpoint(tmpdir_groupA), "protocol") %in% c("cifs", "nsfs"))) { NA } else { file.path(tmpdir_groupA, "sen2cor") }, .log_message = .log_message, .log_output = .log_output, rmtmp = TRUE ) names(sel_s2_list_l2a_corrected) <- basename(sel_s2_list_l2a_corrected) sel_s2_list_l2a <- c(sel_s2_list_l2a,sel_s2_list_l2a_corrected) } if (!("l1c" %in% pm$s2_levels) & pm$rm_safe %in% c("all","l1c")) { unlink(file.path(path_l1c,names(sel_s2_list_l1c_tocorrect)), recursive=TRUE) } } if (pm$preprocess == FALSE) { sen2r_output <- c(file.path(path_l1c,names(sel_s2_list_l1c)), file.path(path_l2a,names(sel_s2_list_l2a))) status <- sen2r_process_report( s2_list_ordered = s2_list_ordered, download_only = TRUE, s2_downloaded = c( if (exists("s2_downloaded_l1c")) s2_downloaded_l1c else NA, if (exists("s2_downloaded_l2a")) s2_downloaded_l2a else NA ), s2_skipped = c( if (exists("s2_to_skip_l1c")) s2_to_skip_l1c else NA, if (exists("s2_to_skip_l2a")) s2_to_skip_l2a else NA ), s2_corrected = if (all("l1c" %in% pm$s2_levels, length(pm$s2_levels) == 1)) { NA } else { s2_list_l1c_tocorrect } ) out_attributes[["status"]] <- status attributes(sen2r_output) <- c(attributes(sen2r_output), out_attributes) return(invisible(sen2r_output)) } print_message(type = "message", date = TRUE, "Updating output names...") sel_s2names <- compute_s2_paths( pm=pm, s2_list_l1c = if (exists("sel_s2_list_l1c")) {sel_s2_list_l1c} else {character(0)}, s2_list_l2a = if (exists("sel_s2_list_l2a")) {sel_s2_list_l2a} else {character(0)}, tmpdir=tmpdir_groupA, list_prods=list_prods, force_tiles = FALSE, ignorelist = ignorelist ) paths <- attr(sel_s2names, "paths") paths_istemp <- attr(sel_s2names, "paths_istemp") if (pm$processing_order %in% c(2,"by_date", 3,"mixed", 4,"by_groups")) { sen2r_dates_B <- sort(unique(nn(sen2r_getElements( unlist(sel_s2names$new) )$sensing_date))) s2names_groups_B <- lapply(sen2r_dates_B, function(d) { d_string <- strftime(d, "%Y%m%d") sapply(sel_s2names, function(v1) { sapply(v1, function(v2) { sapply(v2, function(v3) { v3[grepl(paste0("[12][ABC]\\_((",paste(d_string,collapse=")|("),"))"), basename(nn(v3)))] }, simplify = FALSE, USE.NAMES = TRUE) }, simplify = FALSE, USE.NAMES = TRUE) }, simplify = FALSE, USE.NAMES = TRUE) }) names(s2names_groups_B) <- sen2r_dates_B } else if (pm$processing_order %in% c(1,"by_step")) { s2names_groups_B <- list(sel_s2names) } n_cores_B <- if (is.numeric(parallel_groups_B)) { min(as.integer(parallel_groups_B), length(s2names_groups_B)) } else if (parallel_groups_B == FALSE) { 1 } else { min(max_n_cores, length(s2names_groups_B)) } if (n_cores_B<=1) { `%DO_B%` <- `%do%` n_cores_B <- 1 } else { `%DO_B%` <- `%dopar%` cl <- makeCluster( n_cores_B, type = if (Sys.info()["sysname"] == "Windows") {"PSOCK"} else {"FORK"} ) registerDoParallel(cl) print_message( type="message", date=TRUE, "Starting running processing operations on multiple (",n_cores_B, ") parallel cores..." ) if (is.na(.log_message) & i_group_A == 1) { print_message( type="message", "Note: logging messages are not shown during this phase, ", "since it is not possible to send it to standard output. ", "To see them, send messages to an external log file ", "or use a different processing order (by_date or by_steps)." ) } } outnames_list_B <- foreach( sel_s2names = s2names_groups_B, i_group_B = seq_along(s2names_groups_B), .packages = c("sf", "sen2r") ) %DO_B% { if (n_cores_B > 1) { if (!is.na(.log_output)) { sink(.log_output, split = TRUE, type = "output", append = TRUE) } if (!is.na(.log_message)) { logfile_message = file(.log_message, open = "a") sink(logfile_message, type="message") } } if (length(s2names_groups_B) > 1) { print_message( type="message", date=TRUE, "Processing date ",i_group_B," of ",length(s2names_groups_B), " in group ",i_group_A," of ",length(s2names_groups_A),"..." ) } if (length(unlist(sel_s2names$req$tiles))>0) { print_message( type = "message", date = TRUE, "Starting to translate SAFE products in custom format." ) dir.create(paths["tiles"], recursive=FALSE, showWarnings=FALSE) if ("l1c" %in% pm$s2_levels) { list_l1c_prods <- list_prods[list_prods %in% l1c_prods] tiles_l1c_names_out <- foreach( sel_prod = sel_s2names$req$tiles$L1C, sel_out = lapply( seq_len(max(sapply(sel_s2names$exp$tiles, length))), function(i) {sapply(sel_s2names$exp$tiles, function(p) {p[i]})} ), .combine = c ) %do% { sel_tiles_l1c_names_out0 <- trace_function( s2_translate, infile = sel_prod, outdir = paths["tiles"], tmpdir = file.path(tmpdir_groupA, "s2_translate_l1c"), rmtmp = FALSE, prod_type = list_l1c_prods, format = out_format["tiles"], compress = pm$compression, bigtiff = bigtiff, tiles = pm$s2tiles_selected, res = pm$res_s2, subdirs = pm$path_subdirs, overwrite = pm$overwrite, trace_files = remove_tile_suffix(sel_out) ) sel_tiles_l1c_names_out <- add_tile_suffix( sel_tiles_l1c_names_out0, extract_tile_suffix(sel_out)[1] ) file.rename(sel_tiles_l1c_names_out0, sel_tiles_l1c_names_out) sel_tiles_l1c_names_out } } list_l2a_prods <- list_prods[list_prods %in% l2a_prods] tiles_l2a_names_out <- foreach( sel_prod = sel_s2names$req$tiles$L2A, sel_out = lapply( seq_len(max(sapply(sel_s2names$exp$tiles, length))), function(i) {sapply(sel_s2names$exp$tiles, function(p) {p[i]})} ), .combine = c ) %do% { sel_tiles_l2a_names_out0 <- trace_function( s2_translate, infile = sel_prod, tmpdir = file.path(tmpdir_groupA, "s2_translate_l2a"), rmtmp = FALSE, outdir = paths["tiles"], prod_type = list_l2a_prods, format = out_format["tiles"], compress = pm$compression, bigtiff = bigtiff, tiles = pm$s2tiles_selected, res = pm$res_s2, subdirs = pm$path_subdirs, overwrite = pm$overwrite, trace_files = remove_tile_suffix(sel_out) ) sel_tiles_l2a_names_out <- add_tile_suffix( sel_tiles_l2a_names_out0, extract_tile_suffix(sel_out)[1] ) file.rename(sel_tiles_l2a_names_out0, sel_tiles_l2a_names_out) sel_tiles_l2a_names_out } tiles_names_out <- c(if("l1c" %in% pm$s2_levels) {tiles_l1c_names_out}, if("l2a" %in% pm$s2_levels) {tiles_l2a_names_out}) } if (sum(file.exists(nn(unlist(sel_s2names$req$merged))))>0) { print_message( type = "message", date = TRUE, "Starting to merge tiles by orbit." ) dir.create(paths["merged"], recursive=FALSE, showWarnings=FALSE) merged_names_out <- trace_function( s2_merge, infiles = unlist(sel_s2names$req$merged)[file.exists(unlist(sel_s2names$req$merged))], outdir = paths["merged"], subdirs = pm$path_subdirs, tmpdir = file.path(tmpdir_groupA, "s2_merge"), rmtmp = FALSE, format = out_format["merged"], compress = pm$compression, bigtiff = bigtiff, out_crs = out_proj, parallel = if (out_format["merged"]=="VRT") {FALSE} else {parallel_steps}, overwrite = pm$overwrite, .log_message = .log_message, .log_output = .log_output, trace_files = unlist(sel_s2names$new$merged) ) } if (sum(file.exists(nn(unlist(c(sel_s2names$req$warped,sel_s2names$req$warped_nomsk)))))>0) { print_message( type = "message", date = TRUE, "Starting to edit geometry (clip, reproject, rescale)." ) warped_tomsk_reqout <- sapply(names(sel_s2names$req$warped), function(prod) { sel_s2names$exp$warped[[prod]][ sel_s2names$exp$merged[[prod]] %in% sel_s2names$req$warped[[prod]] ] }, simplify = FALSE, USE.NAMES = TRUE) warped_nomsk_reqout <- sapply(names(sel_s2names$req$warped_nomsk), function(prod) { sel_s2names$exp$warped_nomsk[[prod]][ sel_s2names$exp$merged[[prod]] %in% sel_s2names$req$warped_nomsk[[prod]] ] }, simplify = FALSE, USE.NAMES = TRUE) dir.create(paths["warped"], recursive=FALSE, showWarnings=FALSE) if(pm$path_subdirs==TRUE){ sapply(unique(dirname(unlist(c(warped_tomsk_reqout,warped_nomsk_reqout)))),dir.create,showWarnings=FALSE) } if (any(!file.exists(nn(unlist(warped_tomsk_reqout)))) | pm$overwrite==TRUE) { for (sel_prod in names(sel_s2names$req$warped)) { tracename_gdalwarp <- start_trace(warped_tomsk_reqout[[sel_prod]], "gdal_warp") trace_gdalwarp <- tryCatch({ gdal_warp( sel_s2names$req$warped[[sel_prod]], warped_tomsk_reqout[[sel_prod]], of = out_format["warped"], ref = if (!is.na(pm$reference_path)) { pm$reference_path } else { reference_exi_paths[ res_type == ifelse( sel_prod %in% c("SCL","CLD","SNW"), "res20", "res10" ), path ] }, mask = s2_mask_extent, tr = if (!anyNA(pm$res)) {pm$res} else {NULL}, t_srs = out_proj, r = pm$resampling, dstnodata = s2_defNA(sel_prod), co = if (out_format["warped"]=="GTiff") {c( paste0("COMPRESS=",pm$compression), "TILED=YES", if (bigtiff) {"BIGTIFF=YES"} )}, tap = gdal_tap, overwrite = pm$overwrite, tmpdir = file.path(tmpdir_groupA, "gdal_warp"), rmtmp = FALSE ) if (out_format["warped"]=="ENVI") {fix_envi_format( unlist(warped_tomsk_reqout)[file.exists(unlist(warped_tomsk_reqout))] )} }, error = print) if (is(trace_gdalwarp, "error")) { clean_trace(tracename_gdalwarp) stop(trace_gdalwarp) } else { end_trace(tracename_gdalwarp) } } } if (any(!file.exists(nn(unlist(warped_nomsk_reqout)))) | pm$overwrite==TRUE) { for (sel_prod in names(sel_s2names$req$warped_nomsk)) { tracename_gdalwarp <- start_trace(warped_nomsk_reqout[[sel_prod]], "gdal_warp") trace_gdalwarp <- tryCatch({ gdal_warp( sel_s2names$req$warped_nomsk[[sel_prod]], warped_nomsk_reqout[[sel_prod]], of = out_format["warped_nomsk"], ref = if (!is.na(pm$reference_path)) { pm$reference_path } else { reference_exi_paths[ res_type == ifelse( sel_prod %in% c("SCL","CLD","SNW"), "res20", "res10" ), path ] }, mask = s2_mask_extent, tr = if (!anyNA(pm$res)) {pm$res} else {NULL}, t_srs = out_proj, r = if (sel_prod == "SCL") {pm$resampling_scl} else {pm$resampling}, dstnodata = s2_defNA(sel_prod), co = if (out_format["warped_nomsk"]=="GTiff") {c( paste0("COMPRESS=",pm$compression), "TILED=YES", if (bigtiff) {"BIGTIFF=YES"} )}, tap = gdal_tap, overwrite = pm$overwrite, tmpdir = file.path(tmpdir_groupA, "gdal_warp"), rmtmp = FALSE ) if (out_format["warped_nomsk"]=="ENVI") {fix_envi_format( unlist(warped_nomsk_reqout)[file.exists(unlist(warped_nomsk_reqout))] )} }, error = print) if (is(trace_gdalwarp, "error")) { clean_trace(tracename_gdalwarp) stop(trace_gdalwarp) } else { end_trace(tracename_gdalwarp) } } } } if (sum(file.exists(nn(unlist(sel_s2names$req$masked))))>0) { if (!is.na(pm$mask_type) & length(unlist(sel_s2names$new$masked))>0) { print_message( type = "message", date = TRUE, "Starting to apply cloud masks." ) masked_names_out <- if (length(unlist(sel_s2names$req$masked))>0) { trace_function( s2_mask, infiles = unlist(sel_s2names$req$masked[names(sel_s2names$req$masked)!="SCL"]), maskfiles = sel_s2names$req$masked[["SCL"]], mask_type = pm$mask_type, smooth = pm$mask_smooth, buffer = pm$mask_buffer, max_mask = pm$max_mask, outdir = paths["masked"], tmpdir = file.path(tmpdir_groupA, "s2_mask"), rmtmp = FALSE, format = out_format["masked"], compress = pm$compression, bigtiff = bigtiff, subdirs = pm$path_subdirs, overwrite = pm$overwrite, parallel = parallel_steps, .log_message = .log_message, .log_output = .log_output, trace_files = unlist(sel_s2names$new$masked) ) } else {character(0)} masked_names_notcreated <- c( attr(masked_names_out, "toomasked") ) } } if (sum(file.exists(nn(unlist(sel_s2names$req$rgb))))>0) { print_message( type = "message", date = TRUE, "Producing required RGB images." ) dir.create(paths["rgb"], recursive=FALSE, showWarnings=FALSE) if (sum(file.exists(nn(sel_s2names$req$rgb[["TOA"]])))>0) { rgb_names <- trace_function( s2_rgb, infiles = sel_s2names$req$rgb[["TOA"]][file.exists(sel_s2names$req$rgb[["TOA"]])], rgb_bands = lapply( strsplit(unique(gsub("^RGB([0-9a-f]{3})T$","\\1",pm$list_rgb[grepl("T$",pm$list_rgb)])),""), function(x) {strtoi(paste0("0x",x))} ), scaleRange = pm$rgb_ranges[grepl("T$",pm$list_rgb)], outdir = paths["rgb"], subdirs = pm$path_subdirs, format = out_format["rgb"], compress = pm$rgb_compression, bigtiff = bigtiff, tmpdir = file.path(tmpdir_groupA, "s2_rgb"), rmtmp = FALSE, parallel = parallel_steps, overwrite = pm$overwrite, .log_message = .log_message, .log_output = .log_output, trace_files = unlist(sel_s2names$new$rgb)[grepl("T$",names(unlist(sel_s2names$new$rgb)))] ) } if (sum(file.exists(nn(sel_s2names$req$rgb[["BOA"]])))>0) { rgb_names <- trace_function( s2_rgb, infiles = sel_s2names$req$rgb[["BOA"]][file.exists(sel_s2names$req$rgb[["BOA"]])], rgb_bands = lapply( strsplit(unique(gsub("^RGB([0-9a-f]{3})B$","\\1",pm$list_rgb[grepl("B$",pm$list_rgb)])),""), function(x) {strtoi(paste0("0x",x))} ), scaleRange = pm$rgb_ranges[grepl("B$",pm$list_rgb)], outdir = paths["rgb"], subdirs = pm$path_subdirs, format = out_format["rgb"], compress = pm$rgb_compression, bigtiff = bigtiff, tmpdir = file.path(tmpdir_groupA, "s2_rgb"), rmtmp = FALSE, parallel = parallel_steps, overwrite = pm$overwrite, .log_message = .log_message, .log_output = .log_output, trace_files = unlist(sel_s2names$new$rgb)[grepl("B$",names(unlist(sel_s2names$new$rgb)))] ) } } if (sum(file.exists(nn(sel_s2names$req$indices[[pm$index_source]])))>0) { print_message( type = "message", date = TRUE, "Computing required spectral indices." ) dir.create(paths["indices"], recursive=FALSE, showWarnings=FALSE) indices_names <- trace_function( s2_calcindices, infiles = sel_s2names$req$indices[[pm$index_source]][file.exists(sel_s2names$req$indices[[pm$index_source]])], indices = pm$list_indices, outdir = paths["indices"], subdirs = pm$path_subdirs, tmpdir = file.path(tmpdir_groupA, "s2_calcindices"), source = pm$index_source, format = out_format["indices"], dataType = pm$index_datatype, compress = pm$compression, bigtiff = bigtiff, overwrite = pm$overwrite, parallel = parallel_steps, .log_message = .log_message, .log_output = .log_output, trace_files = unlist(sel_s2names$new$indices) ) } if (exists("masked_names_notcreated")) { if (length(masked_names_notcreated)>0 & length(unlist(sel_s2names$req$indices))>0) { indices_names_notcreated_raw <- sen2r_getElements( masked_names_notcreated, format="data.table" )[prod_type == pm$index_source, paste0("S2", mission, level,"_", strftime(sensing_date,"%Y%m%d"),"_", id_orbit,"_", if (pm$clip_on_extent) {pm$extent_name},"_", "<index>_", substr(res,1,2),".", out_ext["masked"])] indices_names_notcreated <- file.path( paths["indices"], apply( expand.grid(indices_names_notcreated_raw, pm$list_indices), 1, function(x) { file.path( if(pm$path_subdirs==TRUE){x[2]}else{""}, gsub("<index>",x[2],x[1]) ) } ) ) indices_names_notcreated <- gsub( paste0(out_ext["merged"],"$"), out_ext["masked"], indices_names_notcreated ) } } names_out <- unique(unlist( sel_s2names$new[!paths_istemp[names(sel_s2names$new)]] )) names_out_created <- names_out[file.exists(nn(names_out))] if (pm$thumbnails==TRUE) { thumb_names_req <- names_out_created if (length(thumb_names_req)>0) { print_message( type = "message", date = TRUE, "Generating thumbnails." ) thumb_names_new <- file.path( dirname(thumb_names_req), "thumbnails", sapply( basename(thumb_names_req), function(x) { gsub( "\\..+$", if (sen2r_getElements(x)$prod_type %in% c("SCL")) {".png"} else {".jpg"}, x ) } ) ) thumb_names_out <- trace_function( s2_thumbnails, infiles = thumb_names_req, tmpdir = file.path(tmpdir_groupA, "s2_thumbnails"), rmtmp = FALSE, trace_files = c(thumb_names_new,paste0(thumb_names_new,".aux.xml")), overwrite = pm$overwrite ) } } if (n_cores_B > 1) { if (!is.na(.log_output)) { sink(type = "output") } if (!is.na(.log_message)) { sink(type = "message"); close(logfile_message) } } gc() list( "out" = names_out, "out_created" = names_out_created, "cloudcovered" = nn(c( if(exists("masked_names_notcreated")) {masked_names_notcreated}, if(exists("indices_names_notcreated")) {indices_names_notcreated} )) ) } if (n_cores_B > 1) { stopCluster(cl) print_message( type="message", date=TRUE, "Processing operations on multiple parallel cores was done." ) } if (rmtmp == TRUE) { unlink(tmpdir_groupA, recursive=TRUE) } if (pm$rm_safe %in% c("all", "yes")) { unlink(file.path(path_l1c,names(sel_s2_list_l1c)), recursive=TRUE) unlink(file.path(path_l2a,names(sel_s2_list_l2a)), recursive=TRUE) } else if (pm$rm_safe == "l1c") { unlink(file.path(path_l1c,names(sel_s2_list_l1c)), recursive=TRUE) } gc() list( "out" = as.vector(unlist(lapply(outnames_list_B, function(x){x$out}))), "out_created" = as.vector(unlist(lapply(outnames_list_B, function(x){x$out_created}))), "cloudcovered" = as.vector(unlist(lapply(outnames_list_B, function(x){x$cloudcovered}))) ) } gc() if (n_cores_A > 1) { stopCluster(cl) } if (pm$preprocess == FALSE | .only_list_names == TRUE) { outnames_list_A2 } else { list( "out" = as.vector(unlist(lapply(outnames_list_A2, function(x){x$out}))), "out_created" = as.vector(unlist(lapply(outnames_list_A2, function(x){x$out_created}))), "cloudcovered" = as.vector(unlist(lapply(outnames_list_A2, function(x){x$cloudcovered}))) ) } } if (pm$preprocess == FALSE | .only_list_names == TRUE) { sen2r_output <- unlist(outnames_list_A1) attributes(sen2r_output) <- c(attributes(sen2r_output), out_attributes) return(sen2r_output) } names_out <- as.vector(unlist(lapply(outnames_list_A1, function(x){x$out}))) names_out_created <- as.vector(unlist(lapply(outnames_list_A1, function(x){x$out_created}))) names_cloudcovered <- as.vector(unlist(lapply(outnames_list_A1, function(x){x$cloudcovered}))) names_missing <- names_out[!file.exists(nn(names_out))] names_missing <- names_missing[!names_missing %in% names_cloudcovered] ignorelist_path <- write_ignorelist( pm = pm, names_cloudcovered = names_cloudcovered, names_missing = names_missing, param_list = param_list ) clean_ignorelist(pm = pm, param_list = param_list) if (length(names_missing)>0) { print_message( type="warning", "Some files were not created:\n\"", paste(names_missing,collapse="\"\n\""),"\"", "\"\nThese files will be skipped during next executions ", "from the current parameter file (\"",param_list,"\"). ", "To try again to build them, remove their file name in the text file \"", ignorelist_path,"\"." ) } status <- sen2r_process_report( s2_list_ordered = s2_list_ordered, s2names = s2names, pm = pm, ignorelist = ignorelist, s2_list_cloudcovered = if (length(names_cloudcovered) != 0) names_cloudcovered else NA, s2_list_failed = if (length(names_missing) != 0) names_missing else NA, s2_downloaded = c( if (exists("s2_downloaded_l1c")) s2_downloaded_l1c else NA, if (exists("s2_downloaded_l2a")) s2_downloaded_l2a else NA ), s2_skipped = c( if (exists("s2_to_skip_l1c")) s2_to_skip_l1c else NA, if (exists("s2_to_skip_l2a")) s2_to_skip_l2a else NA ), s2_corrected = if (all("l1c" %in% pm$s2_levels, length(pm$s2_levels) == 1)) { NA } else { s2_list_l1c_tocorrect } ) sen2r_output <- names_out_created attributes(sen2r_output) <- c(attributes(sen2r_output), out_attributes) new_ignorelist <- read_ignorelist(pm) attr(sen2r_output, "clouddates") <- new_ignorelist$dates_cloudcovered attr(sen2r_output, "missing") <- new_ignorelist$names_missing attr(sen2r_output, "status") <- status gc() return(invisible(sen2r_output)) }
mediancenter <- function(x) { if (is.data.frame(x)) x <- as.matrix(x) else if (!is.matrix(x)) stop("'x' must be a matrix or a data frame") if (!all(is.finite(x))) stop("'x' must contain finite values only") n <- nrow(x) p <- ncol(x) storage.mode(x) <- "double" z <- .Fortran("median_center", x = x, ldx = as.integer(n), n = as.integer(n), p = as.integer(p), median = double(p), iter = as.integer(0), info = as.integer(0))[c("median","iter")] z }
test_that("datapack library loads", { expect_true(library(datapack, logical.return = TRUE)) }) test_that("DataObject constructors work", { library(datapack) library(digest) identifier <- "id1" user <- "matt" data <- charToRaw("1,2,3\n4,5,6\n") format <- "text/csv" node <- "urn:node:KNB" do <- new("DataObject", identifier, data, filename="test.cvs", format=format, user=user, mnNodeId=node) expect_equal(class(do)[[1]], "DataObject") expect_equal(do@sysmeta@serialVersion, 1) expect_equal(do@sysmeta@identifier, identifier) expect_equal(do@sysmeta@submitter, user) expect_equal(do@sysmeta@size, length(data)) expect_equal(length(do@data), length(data)) expect_equal(getIdentifier(do), identifier) expect_equal(getFormatId(do), format) sha <- digest(data, algo="sha256", serialize=FALSE, file=FALSE) sm <- new("SystemMetadata", identifier=identifier, formatId=format, size=length(data), submitter=user, rightsHolder=user, checksum=sha, originMemberNode=node, authoritativeMemberNode=node) expect_equal(sm@identifier, identifier) do <- new("DataObject", sm, data, filename="test.csv") expect_equal(do@sysmeta@serialVersion, 1) expect_equal(do@sysmeta@identifier, identifier) expect_equal(do@sysmeta@submitter, user) expect_equal(do@sysmeta@checksumAlgorithm, "SHA-256") expect_equal(do@sysmeta@checksum, sha) expect_equal(do@sysmeta@size, length(data)) expect_equal(do@sysmeta@size, length(data)) expect_equal(length(do@data), length(data)) expect_equal(getIdentifier(do), identifier) expect_equal(getFormatId(do), format) tf <- tempfile() con <- file(tf, "wb") writeBin(data, con) close(con) sha_file <- digest(tf, algo="sha256", serialize=FALSE, file=TRUE) do <- new("DataObject", sm, filename=tf, checksumAlgorith="SHA-256") expect_equal(do@sysmeta@serialVersion, 1) expect_equal(do@sysmeta@identifier, identifier) expect_equal(do@sysmeta@submitter, user) expect_equal(do@sysmeta@checksumAlgorithm, "SHA-256") expect_equal(do@sysmeta@checksum, sha) expect_equal(do@sysmeta@size, length(data)) expect_equal(file.info(tf)$size, length(data)) expect_equal(getIdentifier(do), identifier) expect_equal(getFormatId(do), format) data2 <- getData(do) sha_get_data <- digest(data2, algo="sha256", serialize=FALSE, file=FALSE) expect_match(sha_get_data, sha) expect_match(sha_file, do@sysmeta@checksum) expect_match(sha_get_data, do@sysmeta@checksum) sha_file <- digest(tf, algo="sha1", serialize=FALSE, file=TRUE) do <- new("DataObject", identifier, filename=tf, checksumAlgorith="SHA1") expect_equal(do@sysmeta@checksum, sha_file) expect_equal(do@sysmeta@checksumAlgorithm, "SHA1") sha_file <- digest(tf, algo="md5", serialize=FALSE, file=TRUE) do <- new("DataObject", identifier, filename=tf, checksumAlgorith="MD5") expect_equal(do@sysmeta@checksum, sha_file) expect_equal(do@sysmeta@checksumAlgorithm, "MD5") unlink(tf) targetPath="./data/rasters/test.csv" do <- new("DataObject", sm, data, filename="test.csv", targetPath=targetPath) expect_equal(do@targetPath, targetPath) targetPath="data/rasters/test.csv" do <- new("DataObject", sm, data, filename="test.csv", targetPath=targetPath) expect_equal(do@targetPath, targetPath) }) test_that("DataObject accessPolicy methods", { library(datapack) library(digest) identifier <- "id1" user <- "matt" data <- charToRaw("1,2,3\n4,5,6") format <- "text/csv" node <- "urn:node:KNB" do <- new("DataObject", identifier, data, format, user, node, filename="test.csv") expect_equal(class(do)[[1]], "DataObject") canRead <- canRead(do, "uid=anybody,DC=somedomain,DC=org") expect_false(canRead) do <- setPublicAccess(do) isPublic <- hasAccessRule(do@sysmeta, "public", "read") expect_true(isPublic) accessRules <- data.frame(subject=c("uid=smith,ou=Account,dc=example,dc=com", "uid=wiggens,o=unaffiliated,dc=example,dc=org"), permission=c("write", "changePermission"), stringsAsFactors=FALSE) do <- addAccessRule(do, accessRules) expect_true(hasAccessRule(do@sysmeta, "uid=smith,ou=Account,dc=example,dc=com", "write")) expect_true(hasAccessRule(do@sysmeta, "uid=wiggens,o=unaffiliated,dc=example,dc=org", "changePermission")) expect_false(hasAccessRule(do@sysmeta, "uid=smith,ou=Account,dc=example,dc=com", "changePermission")) canRead <- canRead(do, "uid=anybody,DC=somedomain,DC=org") expect_true(canRead) do <- clearAccessPolicy(do) expect_true(nrow(do@sysmeta@accessPolicy) == 0) expect_false(hasAccessRule(do@sysmeta, "uid=smith,ou=Account,dc=example,dc=com", "write")) expect_false(hasAccessRule(do@sysmeta, "uid=wiggens,o=unaffiliated,dc=example,dc=org", "changePermission")) expect_false(hasAccessRule(do@sysmeta, "uid=smith,ou=Account,dc=example,dc=com", "changePermission")) do <- new("DataObject", identifier, data, format, user, node, filename="test.csv") do <- addAccessRule(do, "uid=smith,ou=Account,dc=example,dc=com", "write") do <- addAccessRule(do, "uid=smith,ou=Account,dc=example,dc=com", "changePermission") expect_true(hasAccessRule(do, "uid=smith,ou=Account,dc=example,dc=com", "write")) expect_true(hasAccessRule(do, "uid=smith,ou=Account,dc=example,dc=com", "changePermission")) do <- removeAccessRule(do, "uid=smith,ou=Account,dc=example,dc=com", "changePermission") expect_false(hasAccessRule(do, "uid=smith,ou=Account,dc=example,dc=com", "changePermission")) do <- removeAccessRule(do, "uid=smith,ou=Account,dc=example,dc=com", "write") expect_false(hasAccessRule(do, "uid=smith,ou=Account,dc=example,dc=com", "write")) do <- addAccessRule(do, "uid=jones,ou=Account,dc=example,dc=com", "write") do <- addAccessRule(do, "uid=jones,ou=Account,dc=example,dc=com", "changePermission") expect_true(hasAccessRule(do, "uid=jones,ou=Account,dc=example,dc=com", "write")) expect_true(hasAccessRule(do, "uid=jones,ou=Account,dc=example,dc=com", "changePermission")) accessRules <- data.frame(subject=c("uid=jones,ou=Account,dc=example,dc=com", "uid=jones,ou=Account,dc=example,dc=com"), permission=c("write", "changePermission")) do <- removeAccessRule(do, accessRules) expect_false(hasAccessRule(do, "uid=jones,ou=Account,dc=example,dc=com", "write")) expect_false(hasAccessRule(do, "uid=jones,ou=Account,dc=example,dc=com", "changePermission")) }) test_that("DataObject updateXML method", { library(datapack) library(XML) resolveURL <- "https://cn.dataone.org/cn/v2/resolve" sampleMeta <- system.file("./extdata/sample-eml.xml", package="datapack") metaObj <- new("DataObject", format="eml://ecoinformatics.org/eml-2.1.1", file=sampleMeta) sampleData <- system.file("./extdata/sample-data.csv", package="datapack") dataObj <- new("DataObject", format="text/csv", file=sampleData) xp <- sprintf("//dataTable/physical/distribution[../objectName/text()=\"%s\"]/online/url", "sample-data.csv") newURL <- sprintf("%s/%s", resolveURL, getIdentifier(dataObj)) metaObj <- updateXML(metaObj, xpath=xp, replacement=newURL) metadataDoc <- xmlInternalTreeParse(rawToChar(getData(metaObj))) nodeSet = xpathApply(metadataDoc,xp) URL <- xmlValue(nodeSet[[1]]) expect_match(newURL, URL) })
create.ascii <- function(file_genotype=NULL, type="text", AA=NULL, AB=NULL, BB=NULL, availmemGb=8, dim_of_M=NULL, quiet=TRUE, missing=NULL){ if(.Platform$OS.type == "unix") { asciiMfile <- paste(tempdir() , "/", "M.ascii", sep="") asciiMtfile <- paste(tempdir() , "/", "Mt.ascii", sep="") } else { asciiMfile <- paste(tempdir() , "\\", "M.ascii", sep="") asciiMtfile <- paste(tempdir() , "\\", "Mt.ascii", sep="") } if (type=="text"){ if(!is.null(missing)) { missing <- as.character(missing) } else { missing <- "NA" } it_worked <- createM_ASCII_rcpp(f_name = file_genotype, type=type , f_name_ascii = asciiMfile, AA = AA, AB = AB, BB = BB, max_memory_in_Gbytes=availmemGb, dims = dim_of_M , quiet = quiet, message=message, missing=missing) if(!it_worked) return(FALSE) message(" \n Taking transpose of marker data and writing untransposed and transposed data to disc ... \n") createMt_ASCII_rcpp(f_name = asciiMfile, f_name_ascii = asciiMtfile, type=type, max_memory_in_Gbytes=availmemGb, dims = dim_of_M, quiet = quiet, message=message ) message("\n Writing of marker data to disc is complete ... \n") } else { ncol <- dim_of_M[2] dim_of_M[2] <- 2*dim_of_M[2] + 6 it_worked <- createM_ASCII_rcpp(f_name = file_genotype, type=type, f_name_ascii = asciiMfile, AA ="-9", AB = "-9", BB = "-9", max_memory_in_Gbytes=availmemGb, dims = dim_of_M , quiet = quiet, message=message, missing="NA") if(!it_worked) return(FALSE) dim_of_M[2] <- ncol message(" \n Taking transpose of marker data and writing untransposed and transposed data to disc ... \n") createMt_ASCII_rcpp(f_name = asciiMfile, f_name_ascii = asciiMtfile, type=type, max_memory_in_Gbytes=availmemGb, dims = dim_of_M, quiet = quiet, message=message ) message(" \n Writing of marker data to disc is complete ... \n") } return(TRUE) }
aqs_credentials <- function(username = NA_character_, key = NA_character_) { if (!is.na(username) || !is.na(key) || !is_character(username) || !is_character(key) ) { options(aqs_username = username) options(aqs_key = key) } else {cat("Please enter a valid username and key \n") } } aqs_sign_up <- function(email) { url <- glue("https://aqs.epa.gov/data/api/signup?email={email}") httr::GET(url) glue("A verification email will be sent to {email} \n") %>% message() }
context("diagnose design") test_that("error when you send other objects to diagnose", { expect_error(diagnose_design(rep(3, 2)), "Please only send design objects or functions with no arguments.") }) test_that("default diagnosands work", { my_designer <- function(N = 10) { my_population <- declare_population(N = N, noise = rnorm(N)) my_potential_outcomes <- declare_potential_outcomes(Y_Z_0 = noise, Y_Z_1 = noise + rnorm(N, mean = 2, sd = 2)) my_assignment <- declare_assignment(Z = complete_ra(N, m = 25)) my_inquiry <- declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) my_estimator <- declare_estimator(Y ~ Z, inquiry = my_inquiry) my_measurement <- declare_measurement(Y = reveal_outcomes(Y ~ Z)) design <- my_population + my_potential_outcomes + my_inquiry + declare_step(dplyr::mutate, q = 5) + my_assignment + my_measurement + my_estimator diagnosands <- declare_diagnosands(med_bias = median(estimate - estimand)) set_diagnosands(design, diagnosands) } design_1 <- my_designer(N = 100) design_2 <- my_designer(N = 200) diag <- diagnose_design( design_2 = design_2, design_1 = design_1, sims = 2 ) expect_equal(dim(tidy(diag)), c(2, 9)) expect_equal(names(tidy(diag)), c("design", "inquiry", "estimator", "term", "diagnosand", "estimate", "std.error", "conf.low", "conf.high")) expect_equal(names(diag$diagnosands_df), c("design", "inquiry", "estimator", "term", "med_bias", "se(med_bias)", "n_sims" )) design_1 <- set_diagnosands(my_designer(N = 100), NULL) design_2 <- set_diagnosands(my_designer(N = 200), NULL) diagnosand_1 <- declare_diagnosands(my_bias = median(estimate - estimand)) diagnosand_2 <- declare_diagnosands(my_power = mean(p.value <= .5)) diag <- diagnose_design( design_2 = set_diagnosands(design_2, diagnosand_2), design_1 = set_diagnosands(design_1, diagnosand_1), sims = 2 ) expect_equal(dim(tidy(diag)), c(4, 9)) expect_equal(names(tidy(diag)), c("design", "inquiry", "estimator", "term", "diagnosand", "estimate", "std.error", "conf.low", "conf.high")) expect_equal(names(diag$diagnosands_df), c("design", "inquiry", "estimator", "term", "my_bias", "se(my_bias)", "my_power", "se(my_power)", "n_sims")) diag <- diagnose_design( design_2 = design_2, design_1 = design_1, sims = 2 ) expect_equal(names(diag$diagnosands_df), c("design", "inquiry", "estimator", "term", "mean_estimand", "se(mean_estimand)", "mean_estimate", "se(mean_estimate)", "bias", "se(bias)", "sd_estimate", "se(sd_estimate)", "rmse", "se(rmse)", "power", "se(power)", "coverage", "se(coverage)", "n_sims")) expect_equal(dim(tidy(diag)), c(14, 9)) expect_equal(names(tidy(diag)), c("design", "inquiry", "estimator", "term", "diagnosand", "estimate", "std.error", "conf.low", "conf.high")) diag <- diagnose_design( design_2 = design_2, design_1 = design_1, diagnosands = declare_diagnosands(med_bias = median(estimate - estimand)), sims = 2 ) expect_equal(names(diag$diagnosands_df), c("design", "inquiry", "estimator", "term", "med_bias", "se(med_bias)", "n_sims" )) expect_equal(dim(tidy(diag)), c(2, 9)) expect_equal(names(tidy(diag)), c("design", "inquiry", "estimator", "term", "diagnosand", "estimate", "std.error", "conf.low", "conf.high")) designs <- expand_design(my_designer, N = c(100, 200)) diag <- diagnose_design(designs, sims = 5, bootstrap_sims = FALSE) expect_equal(names(diag$diagnosands_df), c("design", "N", "inquiry", "estimator", "term", "med_bias", "n_sims")) expect_equal(dim(tidy(diag)), c(2, 7)) expect_equal(names(tidy(diag)), c("design", "inquiry", "estimator", "term", "N", "diagnosand", "estimate")) attr(designs[[1]], "diagnosands") <- NULL diag <- diagnose_design(designs, sims = 5, bootstrap_sims = FALSE) expect_equal(ncol(diag$diagnosands_df), 14) expect_equal(dim(tidy(diag)), c(16, 7)) expect_equal(names(tidy(diag)), c("design", "inquiry", "estimator", "term", "N", "diagnosand", "estimate")) sims <- set_diagnosands(simulate_design(designs, sims = 5), declare_diagnosands(med_bias = median(estimate - estimand))) diag <- diagnose_design(sims, sims = 5, bootstrap_sims = FALSE) expect_equal(dim(tidy(diag)), c(2, 7)) expect_equal(names(tidy(diag)), c("design", "inquiry", "estimator", "term", "N", "diagnosand", "estimate")) }) test_that("more term",{ population <- declare_model(N = 100, Z = rep(0:1, 50), Y = rnorm(N)) inquiries_regression <- declare_inquiry( `(Intercept)` = 0, `Z` = 1, term = TRUE, label = "Regression_Inquiries" ) estimators_regression <- declare_estimator(Y ~ Z, inquiry = inquiries_regression, model = lm_robust, term = TRUE) inquiry_2 <- declare_inquiry(ATE = 2, label = "2") estimator_2 <- declare_estimator(Y ~ Z, inquiry = inquiry_2, label = "dim") design <- population + inquiries_regression + estimators_regression + inquiry_2 + estimator_2 sims_df <- simulate_design(design, sims = 1) expect_equal(nrow(sims_df), 3) expect_equal(sims_df[, 1:6], structure( list( design = c("design", "design", "design"), sim_ID = c(1L, 1L, 1L), inquiry = c("ATE", "Regression_Inquiries", "Regression_Inquiries"), estimand = c(2, 0, 1), estimator = c("dim", "estimator", "estimator"), term = c("Z", "(Intercept)", "Z") ), class = "data.frame", row.names = c(NA,-3L) )) }) test_that("diagnose_design does not reclass the variable N", { skip_if(compareVersion("3.5", paste(R.Version()$major, R.Version()$minor, sep = ".")) == 1) design <- declare_model(N = 5, noise = rnorm(N)) + declare_inquiry(mean_noise = mean(noise)) designs <- redesign(design, N = 5:10) dx <- diagnose_design(designs, sims = 50, bootstrap_sims = FALSE) expect_equal(class(dx$simulations_df$N), "integer") expect_equal(class(dx$diagnosands_df$N), "integer") expect_equal(class(tidy(dx)$N), "integer") designer <- function(N = 5) { declare_model(N = N, noise = rnorm(N)) + declare_inquiry(mean_noise = mean(noise)) } designs <- expand_design(designer, N = 5:10) dx <- diagnose_design(designs, sims = 50, bootstrap_sims = FALSE) expect_equal(class(dx$simulations_df$N), "integer") expect_equal(class(dx$diagnosands_df$N), "integer") expect_equal(class(tidy(dx)$N), "integer") }) test_that("diagnose_design works when simulations_df lacking parameters attr", { design <- declare_model(N = 100, X = rnorm(N), Y = rnorm(N, X)) + declare_inquiry(true_effect = 1) + declare_estimator(Y ~ X, model=lm_robust, inquiry = "true_effect", label = "Y on X") simulations <- simulate_design(design, sims = 20) simulations_no_attr <- simulations attributes(simulations_no_attr)["parameters"] <- NULL d1 <- diagnose_design(simulations, bootstrap_sims = FALSE) d2 <- diagnose_design(simulations_no_attr, bootstrap_sims = FALSE) attributes(d1$simulations_df)["parameters"] <- NULL d1$simulations_df$design <- as.character(d1$simulations_df$design) d1$diagnosands_df$design <- as.character(d1$diagnosands_df$design) d1["parameters_df"] <- list(NULL) d1$duration <- NULL d2$duration <- NULL expect_identical(d1,d2) expect_identical(tidy(d1), tidy(d2)) }) test_that("diagnose_design stops when a zero-row simulations_df is sent", { expect_error(diagnose_design(data.frame(estimator = rep(1, 0))), "which has zero rows") }) test_that("diagnose_design can generate and use grouping variables", { set.seed(5) design <- declare_model(N = 100, u = rnorm(N), Y_Z_0 = 0, Y_Z_1 = ifelse(rbinom(N, 1, prob = 0.5), 0.1, -0.1) + u ) + declare_assignment(Z = complete_ra(N)) + declare_inquiry(ATE_positive = mean(Y_Z_1 - Y_Z_0) > 0) + declare_measurement(Y = reveal_outcomes(Y ~ Z)) + declare_estimator(Y ~ Z, inquiry = "ATE_positive") diagnosis <- diagnose_design(design, make_groups = vars(estimand, significant = p.value <= 0.05), sims = 5 ) expect_equivalent(diagnosis$diagnosands_df$significant, c(FALSE, FALSE)) expect_equivalent(diagnosis$diagnosands_df$estimand, c(FALSE, TRUE)) expect_equal(dim(tidy(diagnosis)), c(14, 11)) expect_equal(names(tidy(diagnosis)), c("design", "inquiry", "estimator", "term", "estimand", "significant", "diagnosand", "estimate", "std.error", "conf.low", "conf.high")) design <- declare_model(N = 100, u = rnorm(N), Y_Z_0 = 0, Y_Z_1 = ifelse(rbinom(N, 1, prob = 0.5), 0.1, -0.1) + u ) + declare_assignment(Z = complete_ra(N)) + declare_inquiry(ATE = mean(Y_Z_1 - Y_Z_0)) + declare_measurement(Y = reveal_outcomes(Y ~ Z)) + declare_estimator(Y ~ Z, inquiry = "ATE") diagnosis <- diagnose_design( design, make_groups = vars(effect_size = cut( estimand, quantile(estimand, (0:4) / 4), include.lowest = TRUE )), sims = 5 ) expect_equivalent(nrow(diagnosis$diagnosands_df), 4) expect_equal(dim(tidy(diagnosis)), c(28, 10)) expect_equal(names(tidy(diagnosis)), c("design", "inquiry", "estimator", "term", "effect_size", "diagnosand", "estimate", "std.error", "conf.low", "conf.high")) design <- declare_model(N = 100, u = rnorm(N), Y_Z_0 = 0, Y_Z_1 = ifelse(rbinom(N, 1, prob = 0.5), 0.1, -0.1) + u ) + declare_assignment(Z = complete_ra(N)) + declare_inquiry(ATE_positive = mean(Y_Z_1 - Y_Z_0) > 0) + declare_measurement(Y = reveal_outcomes(Y ~ Z)) + declare_estimator(Y ~ Z, inquiry = "ATE_positive") diagnosis <- diagnose_design(design, make_groups = vars(significant = ifelse(p.value > 0.1, NA, p.value <= 0.05)), sims = 5 ) expect_equal(dim(tidy(diagnosis)), c(14, 10)) expect_equal(names(tidy(diagnosis)), c("design", "inquiry", "estimator", "term", "significant", "diagnosand", "estimate", "std.error", "conf.low", "conf.high")) print(diagnosis, digits = 5, select = "Bias") diagnosis <- diagnose_design(design, make_groups = vars(significant = factor(ifelse(p.value > 0.1, NA, p.value <= 0.05))), sims = 100 ) expect_equal(dim(tidy(diagnosis)), c(21, 10)) expect_equal(names(tidy(diagnosis)), c("design", "inquiry", "estimator", "term", "significant", "diagnosand", "estimate", "std.error", "conf.low", "conf.high")) }) test_that("tidy.diagnosis handles NAs", { design <- declare_model(N = 10, Y = rnorm(N)) + declare_estimator(Y ~ 1, label = "normal") + declare_estimator(handler = function(data){data.frame(estimate = 5)}) dx <- diagnose_design(design, sims = 5) expect_equal(dim(tidy(dx)), c(14, 8)) set.seed(343) portola <- fabricate( N = 2100, Y_star = rnorm(N) ) design <- declare_model(data = portola) + declare_measurement(Y = as.numeric(cut(Y_star, 7))) + declare_inquiry(Y_bar = mean(Y)) + declare_sampling(S = complete_rs(N, n = 100)) + declare_measurement( R = rbinom(n = N, size = 1, prob = pnorm(Y_star + effort)), Y = ifelse(R == 1, Y, NA_real_) ) + declare_estimator(Y ~ 1, inquiry = "Y_bar") + declare_estimator(R ~ 1, label = "Response Rate") designs <- redesign(design, effort = seq(0, 5, by = 1)) diagnosis <- diagnose_designs( designs, sims = 20, bootstrap_sims = 20 ) expect_equal(sum(is.na(tidy(diagnosis) %>% dplyr::filter(diagnosand == "mean_estimate", estimator == "estimator") %>% dplyr::pull(estimate))), 0) })
shifted_gamma <- function(shape = 1, scale = 1, shift = 0, autoscale = TRUE) { validate_parameter_value(scale) nlist(dist = "gamma", df = NA, shape, scale, shift, autoscale) } hexp <- function(prior_aux = rstanarm::exponential(0.03)) { check_prior(prior_aux) check_in_set(prior_aux$dist, ok_aux_dists) out <- nlist(dist = "hexp", prior_aux) out$df <- NA out$location <- NA out$scale <- 1 out$autoscale <- FALSE return(out) }
xport.dateFMT <- function(when, fill=16) { if(missing(when)) when <- Sys.time() date.format <- sprintf("%%-%d.%ds", fill, fill) toupper(sprintf(date.format, format(when, "%d%b%y:%H:%M:%S"))) }
setMethod("pemix", signature(x = "REBMIX"), function(x, pos, variables, lower.tail, log.p, ...) { digits <- getOption("digits"); options(digits = 15) if (missing(x)) { stop(sQuote("x"), " object of class REBMIX is requested!", call. = FALSE) } if (!is.wholenumber(pos)) { stop(sQuote("pos"), " integer is requested!", call. = FALSE) } length(pos) <- 1 if ((pos < 1) || (pos > nrow(x@summary))) { stop(sQuote("pos"), " must be greater than 0 and less or equal than ", nrow(x@summary), "!", call. = FALSE) } Dataset <- x@Dataset[[which(names(x@Dataset) == x@summary[pos, "Dataset"])]] d <- ncol(Dataset); dini <- d; variables <- eval(variables) n <- nrow(Dataset) if (length(variables) != 0) { if (!is.wholenumber(variables)) { stop(sQuote("variables"), " integer is requested!", call. = FALSE) } if ((min(variables) < 1) || (max(variables) > d)) { stop(sQuote("variables"), " must be greater than 0 and less or equal than ", d, "!", call. = FALSE) } variables <- unique(variables); d <- length(variables) } else { variables <- 1:d } if (!is.logical(lower.tail)) { stop(sQuote("lower.tail"), " logical is requested!", call. = FALSE) } if (!is.logical(log.p)) { stop(sQuote("log.p"), " logical is requested!", call. = FALSE) } Dataset <- as.matrix(Dataset[, variables]) F <- array(data = 0.0, dim = n, dimnames = NULL) if (lower.tail == TRUE) { for (i in 1:n) { F[i] <- sum(apply(Dataset <= Dataset[i,], 1, all)) } } else { for (i in 1:n) { F[i] <- sum(apply(Dataset > Dataset[i,], 1, all)) } } F <- F / n if (log.p == TRUE) { F <- log(F) } output <- as.data.frame(cbind(Dataset, F), stringsAsFactors = FALSE) colnames(output) <- c(paste("x", if (dini > 1) variables else "", sep = ""), "F") options(digits = digits) rm(list = ls()[!(ls() %in% c("output"))]) output }) setMethod("pemix", signature(x = "REBMVNORM"), function(x, pos, variables, lower.tail, log.p, ...) { digits <- getOption("digits"); options(digits = 15) if (missing(x)) { stop(sQuote("x"), " object of class REBMVNORM is requested!", call. = FALSE) } if (!is.wholenumber(pos)) { stop(sQuote("pos"), " integer is requested!", call. = FALSE) } length(pos) <- 1 if ((pos < 1) || (pos > nrow(x@summary))) { stop(sQuote("pos"), " must be greater than 0 and less or equal than ", nrow(x@summary), "!", call. = FALSE) } Dataset <- x@Dataset[[which(names(x@Dataset) == x@summary[pos, "Dataset"])]] d <- ncol(Dataset); dini <- d; variables <- eval(variables) n <- nrow(Dataset) if (length(variables) != 0) { if (!is.wholenumber(variables)) { stop(sQuote("variables"), " integer is requested!", call. = FALSE) } if ((min(variables) < 1) || (max(variables) > d)) { stop(sQuote("variables"), " must be greater than 0 and less or equal than ", d, "!", call. = FALSE) } variables <- unique(variables); d <- length(variables) } else { variables <- 1:d } if (!is.logical(lower.tail)) { stop(sQuote("lower.tail"), " logical is requested!", call. = FALSE) } if (!is.logical(log.p)) { stop(sQuote("log.p"), " logical is requested!", call. = FALSE) } Dataset <- as.matrix(Dataset[, variables]) F <- array(data = 0.0, dim = n, dimnames = NULL) if (lower.tail == TRUE) { for (i in 1:n) { F[i] <- sum(apply(Dataset <= Dataset[i,], 1, all)) } } else { for (i in 1:n) { F[i] <- sum(apply(Dataset > Dataset[i,], 1, all)) } } F <- F / n if (log.p == TRUE) { F <- log(F) } output <- as.data.frame(cbind(Dataset, F), stringsAsFactors = FALSE) colnames(output) <- c(paste("x", if (dini > 1) variables else "", sep = ""), "F") options(digits = digits) rm(list = ls()[!(ls() %in% c("output"))]) output })
source(here::here('dictionary/utilities.R')) url <- 'http://geonames.nga.mil/gns/html/Docs/GEOPOLITICAL_CODES.xls' filename <- tempfile(fileext = '.xls') httr::GET(url, write_disk(filename, overwrite=TRUE)) bad <- c('AKROTIRI SOVEREIGN BASE AREA', 'ASHMORE AND CARTIER ISLANDS', 'BAKER ISLAND', 'CLIPPERTON ISLAND', 'CORAL SEA ISLANDS', 'DHEKELIA SOVEREIGN BASE AREA', 'ETOROFU, HABOMAI, KUNASHIRI, AND SHIKOTAN ISLANDS', 'EUROPA ISLAND', 'GLORIOSO ISLANDS', 'HOWLAND ISLAND', 'JAN MAYEN', 'JARVIS ISLAND', 'JOHNSTON ATOLL', 'JUAN DE NOVA ISLAND', 'KINGMAN REEF', 'MIDWAY ISLANDS', 'NAVASSA ISLAND', 'PALMYRA ATOLL', 'PARACEL ISLANDS', 'SAINT MARTIN', 'SPRATLY ISLANDS', 'TROMELIN ISLAND', 'WAKE ISLAND', 'BASSAS DA INDIA', 'GAZA STRIP') out <- readxl::read_excel(filename, sheet = 'TABLE 1', skip = 2) %>% select(fips = Code, country = Name) %>% filter(!country %in% bad) out %>% write_csv('dictionary/data_fips.csv', na = "")
get.360matchFree <- function(Match){ print("Whilst we are keen to share data and facilitate research, we also urge you to be responsible with the data. Please register your details on https://www.statsbomb.com/resource-centre and read our User Agreement carefully.") Events.url <- paste0("https://raw.githubusercontent.com/statsbomb/open-data/master/data/three-sixty/", Match$match_id[1], ".json") raw.events.api <- GET(url = Events.url) events.string <- rawToChar(raw.events.api$content) Encoding(events.string) <- "UTF-8" events <- fromJSON(events.string, flatten = T) events <- events %>% mutate(match_id = Match$match_id[1], competition_id = Match$competition.competition_id[1], season_id = Match$season.season_id[1]) return(events) }
print_dust_html <- function(x, ..., asis=TRUE, linebreak_at_end = getOption("pixie_html_linebreak", 2), interactive = getOption("pixie_interactive")) { if (is.null(interactive)) interactive <- interactive() if (!is.null(x$caption) & x$caption_number) increment_pixie_count() caption_number_prefix <- if (x$caption_number) sprintf("Table %s: ", get_pixie_count()) else "" label <- if (is.null(x[["label"]])) { chunk_label <- knitr::opts_current$get("label") if (is.null(chunk_label)) sprintf("tab:pixie-%s", getOption("pixie_count")) else sprintf("tab:%s", chunk_label) } else { sprintf("tab:%s", x[["label"]]) } label <- if (x[["bookdown"]]) { sprintf("(\\ } else { caption_number_prefix } if (!is.numeric(x$longtable) & x$longtable) longtable_rows <- 25L else if (!is.numeric(x$longtable) & !x$longtable) longtable_rows <- as.integer(max(x$body$row)) else longtable_rows <- as.integer(x$longtable) Divisions <- data.frame(div_num = rep(1:ceiling(max(x$body$row) / longtable_rows), each = longtable_rows)[1:max(x$body$row)], row_num = 1:max(x$body$row)) total_div <- max(Divisions$div_num) head <- part_prep_html(x$head, head = TRUE, fixed_header = x[["fixed_header"]], fixed_header_class_name = x[["fixed_header_param"]][["fixed_header_class_name"]]) body <- part_prep_html(x$body) foot <- if (!is.null(x$foot)) part_prep_html(x$foot) else NULL interfoot <- if (!is.null(x$interfoot)) part_prep_html(x$interfoot) else NULL tmpfile <- tempfile(fileext=".html") non_interactive <- "" for (i in 1:total_div){ tbl <- dplyr::bind_rows(head, body[Divisions$row_num[Divisions$div_num == i], , drop=FALSE], if (i == total_div) foot else interfoot) rows <- apply(tbl, 1, paste0, collapse = "\n") rows <- sprintf("<tr>\n%s\n</tr>", rows) justify <- if (x[["justify"]] == "center") "margin:auto" else sprintf("float:%s", x[["justify"]]) float_guard <- if (x[["justify"]] == "center") "" else "<div style = 'clear:both'></div>" fixed_head_css <- if (x[["fixed_header"]] & x[["include_fixed_header_css"]]) do.call(fixed_header_css, c(x[["fixed_header_param"]], list(pretty = FALSE))) else "" if (x[["fixed_header"]]){ fixed_head_open_tag <- sprintf("<div style = 'text-align:%s'><section class='%s-section'><div class='%s-container'><div>", x[["justify"]], x[["fixed_header_param"]][["fixed_header_class_name"]], x[["fixed_header_param"]][["fixed_header_class_name"]]) fixed_head_close_tag <- "</div></section></div>" } else{ fixed_head_open_tag <- fixed_head_close_tag <- "" } html_code <- sprintf("%s%s%s<table style = '%s;border-collapse:%s;'>\n%s\n</table>%s%s%s", float_guard, fixed_head_css, fixed_head_open_tag, justify, x$border_collapse, paste0(rows, collapse = "\n"), fixed_head_close_tag, float_guard, paste0(rep("</br>", linebreak_at_end), collapse = "")) if (!is.null(x$caption)) html_code <- sub(">", sprintf(">\n<caption>%s %s</caption>", label, x$caption), html_code) if (interactive & asis){ write(html_code, tmpfile, append = i > 1) } else non_interactive <- paste0(non_interactive, html_code) } if (interactive & asis){ getOption("viewer")(tmpfile) } else if (asis){ if (x$html_preserve) knitr::asis_output(htmltools::htmlPreserve(non_interactive)) else knitr::asis_output(non_interactive) } else { if (x$html_preserve) htmltools::htmlPreserve(non_interactive) else non_interactive } } part_prep_html <- function(part, head=FALSE, fixed_header = FALSE, fixed_header_class_name = "") { numeric_classes <- c("double", "numeric") dh <- if (head) { if (fixed_header){ sprintf("th class = 'th-%s'", fixed_header_class_name) } else { "th" } } else { "td" } part <- perform_function(part) logic <- part$round == "" & part$col_class %in% numeric_classes part$round[logic] <- getOption("digits") logic <- part$col_class %in% numeric_classes if (any(logic)) part$value[logic] <- as.character(roundSafe(part$value[logic], as.numeric(part$round[logic]))) logic <- !is.na(part[["replace"]]) part[["value"]][logic] <- part[["replace"]][logic] boldify <- part$bold part$bold[boldify] <- "font-weight:bold;" part$bold[!boldify] <- "" italicize <- part$italic part$italic[italicize] <- "font-style:italic;" part$italic[!italicize] <- "" logic <- part$halign == "" part$halign[logic] <- vapply(X = part$col_class[logic], FUN = default_halign, FUN.VALUE = character(1), print_method = "html") part$halign <- with(part, sprintf("text-align:%s;", halign)) logic <- part$valign != "" part$valign[logic] <- with(part, sprintf("vertical-align:%s;", valign[logic])) logic <- part$bg != "" part$bg[logic] <- with(part, sprintf("background-color:%s;", bg[logic])) logic <- part$font_family != "" part$font_family[logic] <- with(part, sprintf("font-family:%s;", font_family[logic])) logic <- part$font_color != "" part$font_color[logic] <- with(part, sprintf("color:%s;", font_color[logic])) logic <- part$font_size != "" part$font_size[logic] <- with(part, sprintf("font-size:%s%s;", font_size[logic], font_size_units[logic])) logic <- part$height != "" part$height[logic] <- with(part, sprintf("height:%s%s;", height[logic], height_units[logic])) logic <- part$width != "" part$width[logic] <- with(part, sprintf("width:%s%s;", width[logic], width_units[logic])) logic <- part$top_border != "" part$top_border[logic] <- with(part, sprintf("border-top:%s;", top_border[logic])) logic <- part$bottom_border != "" part$bottom_border[logic] <- with(part, sprintf("border-bottom:%s;", bottom_border[logic])) logic <- part$left_border != "" part$left_border[logic] <- with(part, sprintf("border-left:%s;", left_border[logic])) logic <- part$right_border != "" part$right_border[logic] <- with(part, sprintf("border-right:%s;", right_border[logic])) logic <- is.na(part$value) & !is.na(part$na_string) part$value[logic] <- part$na_string[logic] logic <- part$pad != "" part$pad[logic] <- with(part, sprintf("padding:%spx;", pad[logic])) logic <- part$rotate_degree != "" part$rotate_degree[logic] <- with(part, rotate_tag(rotate_degree[logic])) part$value <- with(part, sprintf("<%s colspan = '%s'; rowspan = '%s'; style='%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s'>%s %s</%s>", dh, colspan, rowspan, bold, italic, halign, valign, bg, font_family, font_color, font_size, height, width, top_border, bottom_border, left_border, right_border, rotate_degree, pad, value, if (fixed_header) paste0("<div>", value, "</div>") else "", substr(dh, 1, 2))) ncol <- max(part$col) part <- dplyr::filter_(part, "!(rowspan == 0 | colspan == 0)") logic <- part[["row"]] == part[["html_row"]] & part[["col"]] == part[["html_col"]] & part[["colspan"]] > 1 if ("html_row_pos" %in% names(part)) part[["html_row"]][logic] <- part[["html_row_pos"]][logic] if ("html_col_pos" %in% names(part)) part[["html_col"]][logic] <- part[["html_col_pos"]][logic] part <- dplyr::select_(part, "html_row", "html_col", "value") %>% tidyr::spread_("html_col", "value", fill = "") %>% dplyr::select_("-html_row") if (ncol(part) != ncol){ part <- dplyr::bind_cols(part, do.call("cbind", lapply(1:(ncol - ncol(part)), function(i) dplyr::data_frame(value = "")))) names(part) <- 1:ncol } part } rotate_tag <- function(degree) { sprintf( paste0("-webkit-transform:rotate(%sdeg);", "-moz-transform:rotate(%sdeg);", "-ms-transform:rotate(%sdeg);", "-o-transform:rotate(%sdeg);", "transform:rotate(%sdeg);"), degree, degree, degree, degree, degree) }
compCDF <- function(data, weights, x=seq(min(data, na.rm=TRUE), max(data, na.rm=TRUE), len=250), comp=1:NCOL(weights), makeplot=TRUE, ...) { if (NROW(weights) != NROW(data)) { stop("data and weights arguments must have same number of rows") } weights <- t(t(weights) / (NCOL(data) * colSums(weights))) f <- function(row, cutpt) colSums(outer(row, cutpt, "<="), na.rm = TRUE) bc <- apply(data, 1, f, x) cdfs <- bc %*% weights[,comp,drop=FALSE] if(makeplot) { plot(range(x), 0:1, type="n", ...) for (i in 1:length(comp)) { lines(x, cdfs[,comp[i]], lty=i, ...) } } t(cdfs) }
doPermimp <- function(object, input, inp, y, OOB, threshold, conditional, whichxnames, ntree, nperm, scaled, progressBar, thresholdDiagnostics, w, AUC, pre1.0_0, mincriterion, asParty) { if (conditional) { if(!all(complete.cases(input))) stop("cannot compute variable importance measure with missing values") if (conditional && threshold == 1) { warning(sQuote("permimp"), paste0(": Unable to permute conditionally. \n", "The chosen threshold is too high, no variables to condition on were selected. \n", "Instead the unconditional permimp values are computed. "), call. = FALSE, immediate. = TRUE) doPermimpCall <- match.call() doPermimpCall$conditional <- FALSE return(eval(doPermimpCall)) } } xnames <- colnames(input) if(is.null(whichxnames)) { whichxnames <- xnames whichVarIDs <- seq_along(xnames) } else { whichVarIDs <- match(whichxnames, table = xnames) if(length(whichVarIDs) < 1){ stop("Error: whichxnames is not a subset of the predictor variable names in the forest.") } whichVarIDs <- whichVarIDs[order(whichVarIDs)] } type <- getOutcomeType(object) error <- selectError(type, AUC) nullError <- selectNullError(type) pred <- selectPred(object, type, w, inp, y) if (conditional && asParty) { cond_list <- create_cond_list(binnedVars = NULL, threshold, input, seq_along(xnames), asParty = TRUE) } perror <- array(0, dim = c(ntree, length(xnames), nperm), dimnames = list(NULL, xnames, NULL)) changeThres <- array(NA, dim = c(ntree, length(xnames), nperm), dimnames = list(NULL, xnames, NULL)) if(progressBar) pBar <- txtProgressBar(min = 0, max = ntree, style = 3, char = "|") for (treeNr in seq_len(ntree)){ tree <- getTree(object, treeNr) if(OOB){oob <- getOOB(object, treeNr)} else {oob <- rep(TRUE, length(y))} p <- pred(tree, inp, mincriterion, -1L, input) eoob <- error(p, oob, y) varsInTree <- intersect(unique(varIDs(tree)), whichVarIDs) if(conditional) { binnedVars <- makeBinnedVars(varsInTree, tree, oob, input) if (!asParty) { cond_list <- create_cond_list(binnedVars, threshold, input, varsInTree, asParty = FALSE) } } for(j in varsInTree){ for (per in 1:nperm){ if (!conditional && !pre1.0_0){ p <- pred(tree, inp, mincriterion, as.integer(j)) } else { if(conditional){ changeThres[treeNr, j, per] <- 0 if(asParty) varsToCondOn <- intersect(cond_list[[as.character(j)]], varsInTree) else varsToCondOn <- cond_list[[as.character(j)]] if(length(varsToCondOn) < 1){ changeThres[treeNr, j, per] <- -1 perm <- sample(which(oob)) } else { perm <- conditional_perm(varID = j, varsToCondOn, binnedVars, oob, asParty) } } else{ perm <- sample(which(oob)) } if(is.null(perm)) { changeThres[treeNr, j, per] <- 1 break} tmp <- replacePermVar(input, inp, permVarNr = j, oob, perm) p <- pred(tree, tmp, mincriterion, -1L, input = tmp) } perror[treeNr, j, per] <- (error(p, oob, y) - eoob) } } if(scaled){ perror[treeNr, , per] <- perror[treeNr, , per]/nullError(y, oob) } if(progressBar) setTxtProgressBar(pBar , treeNr) } perror <- apply(perror[ , whichVarIDs, , drop = FALSE], c(1, 2), mean) perror <- as.data.frame(perror) if(thresholdDiagnostics){ changeThres <- apply(changeThres[ , whichVarIDs, , drop = FALSE], 2, mean, na.rm = TRUE) increaseThres <- changeThres > .5 decreaseThres <- changeThres < -.5 if(any(increaseThres[!is.na(increaseThres)])){ warning(sQuote("permimp"), paste0(" Unable to permute conditionally for ", sum(increaseThres), " variable(s) in 50 percent of the cases.\n", "Increasing the threshold may help. \n", "The variables for which conditionally permuting (often) was impossible are: ", ifelse(sum(increaseThres) > 6, paste0("(showing only six) \n - ", paste0(whichxnames[increaseThres][1:6], collapse = "\n - ")), paste0("\n - ", paste0(whichxnames[increaseThres], collapse = "\n - ")))), call. = FALSE, immediate. = TRUE) } if(any(decreaseThres[!is.na(decreaseThres)])){ warning(sQuote("permimp"), paste0(" Conditionally permuting the predictor values of ", sum(decreaseThres), " variable(s) had no impact in 50 percent of the cases.\n", "Decreasing the threshold may help. \n", "The variables for which conditionally permuting (often) had no impact are: ", ifelse(sum(decreaseThres) > 6, paste0("(showing only six) \n - ", paste0(whichxnames[decreaseThres][1:6], collapse = "\n - ")), paste0("\n - ", paste0(whichxnames[decreaseThres], collapse = "\n - ")))), call. = FALSE, immediate. = TRUE) } } info <- list() if(conditional){ info$threshold = threshold if (asParty) info$conditioning = "as party" else info$conditioning = "permimp implementation" } info$outcomeType = type if (info$outcomeType == "nominal2") info$outcomeType <- "binary" if (type == "survival") info$errorType <- "Brier score" else if (type == "regression") info$errorType <- "MSE" else info$errorType <- "accuracy" if(AUC && type == "nominal2") info$errorType <- "AUC" out <- as.VarImp(perror, FUN = mean, type = 'if'(conditional, "Conditional Permutation", "Permutation"), info = info) if(progressBar) close(pBar) return(out) }
classify_milestone_network <- function(milestone_network) { is_directed <- any(milestone_network$directed) gr <- milestone_network %>% mutate(weight = length) %>% igraph::graph_from_data_frame(directed = is_directed) %>% simplify_igraph_network() props <- determine_milenet_props(gr) network_type <- determine_network_type(props) lst(network_type, directed = props$is_directed, properties = props) } determine_network_type <- function(props) { with(props, { if (is_directed) { if (num_components > 1) { "disconnected_graph" } else { if (!has_cycles) { if (num_branch_nodes == 0) { "linear" } else if (num_branch_nodes == 1) { if (num_convergences == 0) { if (max_degree <= 3 && max_degree_out < 3) { "bifurcation" } else { "multifurcation" } } else if (num_divergences == 0) { "convergence" } else { "acyclic_graph" } } else { if (num_convergences == 0) { "tree" } else { "acyclic_graph" } } } else { if (num_branch_nodes == 0) { "cycle" } else "graph" } } } else { if (num_components > 1) { "disconnected_graph" } else { if (!has_cycles) { if (num_branch_nodes == 0) { "linear" } else if (num_branch_nodes == 1) { if (max_degree == 3) { "bifurcation" } else { "multifurcation" } } else { "tree" } } else { if (num_branch_nodes == 0) { "cycle" } else { "graph" } } } } }) } determine_milenet_props <- function(gr) { requireNamespace("igraph") is_directed <- igraph::is_directed(gr) is_self_loop <- sapply(igraph::V(gr), function(n) igraph::are_adjacent(gr, n, n)) num_components <- igraph::components(gr)$no if (is_directed) { degr_in <- igraph::degree(gr, mode = "in") degr_out <- igraph::degree(gr, mode = "out") degr_tot <- degr_in + degr_out max_degree_in <- max(degr_in) max_degree_out <- max(degr_out) is_begin <- degr_in == is_self_loop & degr_out != 0 is_end <- degr_in != 0 & degr_out == 0 is_branch <- degr_out > 1 | degr_in > 1 is_outer <- is_begin | is_end num_begin_nodes <- sum(is_begin) num_end_nodes <- sum(is_end) num_branch_nodes <- sum(is_branch) num_outer_nodes <- sum(is_outer) num_divergences <- sum(degr_out > 1) num_convergences <- sum(degr_in > 1) } else { degr_tot <- igraph::degree(gr) is_outer <- degr_tot == 1 + is_self_loop is_branch <- !is_outer num_outer_nodes <- sum(is_outer) num_branch_nodes <- sum(is_branch) } max_degree <- max(degr_tot) has_cycles <- any(is_self_loop) || has_cycle_function(gr) out <- lst( is_directed, max_degree, degr_tot, is_branch, is_outer, num_branch_nodes, num_outer_nodes, is_self_loop, has_cycles, num_components ) if (is_directed) { c(out, lst( degr_in, degr_out, max_degree_in, max_degree_out, num_divergences, num_convergences, is_begin, is_end, num_begin_nodes, num_end_nodes )) } else { out } } has_cycle_function <- function(gr) { if (igraph::is_directed(gr)) { for (from in igraph::V(gr)) { for (to in igraph::V(gr)) { if (from != to) { one <- igraph::distances(gr, from, to, mode = "out") two <- igraph::distances(gr, to, from, mode = "out") if (is.finite(one) && is.finite(two)) { return(TRUE) } } } } return(FALSE) } else { for (from in names(igraph::V(gr))) { if (any(duplicated(igraph::neighbors(gr, from) %>% names))) { return(TRUE) } for (to in names(igraph::V(gr))) { if (from != to && igraph::are_adjacent(gr, from, to) && length(igraph::E(gr)) > 1) { newgr <- gr - igraph::edge(paste0(from, "|", to)) if (is.finite(igraph::distances(newgr, from, to))) { return(TRUE) } } } } return(FALSE) } }
yates <- function(fit, method=c("ATT", "STT", "NSTT")) { method <- match.arg(method) X <- model.matrix(fit) ax <- attr(X, "assign") xcon <- attr(X, "contrasts") Terms <- terms(fit) dfac <- attr(Terms, "factors") nacoef <- is.na(coef(fit)) if (any(nacoef)) { ax[nacoef] <- 0 X[,nacoef] <- 0 } ux <- unique(ax) ux <- ux[ux!=0] if (length(ux)==0) return(NULL) clist <- vector("list", length(ux)) names(clist) <- dimnames(dfac)[[2]] dtemp <- diag(length(ax)) dimnames(dtemp) <- list(NULL, dimnames(X)[[2]]) for (i in 1:length(ux)) clist[[i]] <- dtemp[ax== ux[i],] forder <- attr(Terms, "order") fvar <- dimnames(dfac)[[1]] %in% names(xcon) fterm <- colSums(dfac[!fvar,, drop=FALSE]) ==0 included <- diag(ncol(dfac)) for (i in which(fterm)) { temp <- dfac[,i] * dfac keep <- (colSums(temp) >0 & forder >=forder[i] & fterm) included[i,keep] <- 1 } adjust <- which(rowSums(included) >1) if (length(adjust) >0 && method != "NSTT") { if (method=="ATT") { for (i in adjust) { icol <- ax %in% which(included[i,] >0) xfac <- unique(X[, icol, drop=FALSE]) afac <- ax[icol] xtemp <- xfac[,afac==i, drop=FALSE] index <- xmatch(xtemp) dtemp <- matrix(0., max(index), ncol(X), dimnames=list(NULL, dimnames(X)[[2]])) for (j in 1:max(index)) dtemp[j, icol] <- colMeans(xfac[index==j,, drop=FALSE]) clist[[i]] <- dtemp[-1,] - rep(dtemp[1,], each=nrow(dtemp)-1) } } else { } } temp <- lapply(clist, contrast, fit) list(ss = sapply(temp, function(x) x$ss), df = sapply(temp, function(x) x$df), detail = temp) } xmatch <- function(x) { ux <- unique(x) result <- integer(nrow(x)) for (i in 1:nrow(x)){ for (j in 1:nrow(ux)) if (all(x[i,] == ux[j,])) result[i] <- j } result } qform <- function(beta, var) sum(beta * solve(var, beta)) contrast <- function(cmat, fit) { varmat <- vcov(fit) if (class(fit) == "lm") sigma2 <- summary(fit)$sigma^2 else sigma2 <- 1 beta <- coef(fit) if (!is.matrix(cmat)) cmat <- matrix(cmat, nrow=1) if (ncol(cmat) != length(beta)) stop("wrong dimension for contrast") estimate <- drop(cmat %*% beta) ss <- qform(estimate, cmat %*% varmat %*% t(cmat)) *sigma2 list(contrast=cmat, estimate=estimate, ss=ss, df=qr(cmat)$rank, var=drop(cmat %*% varmat %*% t(cmat))) }
resampLmer <- function(resamp,dam,sire,response,start,end,ml=F) { if (missing(resamp)) stop("Need the resampled data frame") if (missing(dam)) stop("Need the dam column name") if (missing(sire)) stop("Need the sire column name") if (missing(response)) stop("Need the response column name") if (missing(start)) stop("Need the starting model number") if (missing(end)) stop("Need the ending model number") print(time1<- Sys.time()) response2<- colnames(resamp)[grep(paste(response), colnames(resamp))] dam2<- colnames(resamp)[grep(paste(dam), colnames(resamp))] sire2<- colnames(resamp)[grep(paste(sire), colnames(resamp))] mod<- matrix(0,ncol=4,nrow=length(response2)) for (j in start:end) { print(paste("Working on model: ", j, sep="")) if (ml == F) { m<- lmer(formula= noquote(paste(response2[j],"~ (1|",dam2[j],") + (1|",sire2[j],") + (1|",dam2[j],":",sire2[j],")",sep="")), data=resamp) } if (ml == T) { m<- lmer(formula= noquote(paste(response2[j],"~ (1|",dam2[j],") + (1|",sire2[j],") + (1|",dam2[j],":",sire2[j],")",sep="")), data=resamp, REML=F) } mod[j,]<- c(colSums(diag(VarCorr(m))),attr(VarCorr(m),"sc")^2) col_names<- as.data.frame(VarCorr(m))$grp; rm(m) } comp<- as.data.frame(mod) colnames(comp)<- col_names comp$Total<- rowSums(comp) colnames(comp)<- gsub(end,'', colnames(comp)) temp<- comp colnames(temp)[which(colnames(temp)==dam)]<- "dam" colnames(temp)[which(colnames(temp)==sire)]<- "sire" colnames(temp)[which(colnames(temp)==noquote(paste(dam,":",sire,sep="")))]<- "dam:sire" comp$additive<- 4*temp$sire comp$nonadd<- 4*temp$'dam:sire' comp$maternal<- temp$dam- temp$sire print(Sys.time()- time1) invisible(comp) }
set.seed(320) par(mfrow = c(1, 2)) x = matrix(rnorm(200), ncol = 2) plot(x, pch = c(4, 19)[kmeans(x, centers = 2)$cluster], xlab = "$x_1$", ylab = "$x_2$") library(alphahull) plot(ahull(x, alpha = 0.4), xlab = "$x_1$", ylab = "$x_2$") box()
read_gbk <- function(file, sources=NULL, types=NULL, infer_cds_parents=TRUE){ gb2gff <- base::system.file("exec/gb2gff", package="gggenomes") if(file_is_zip(file) && file_suffix(file, ignore_zip = FALSE) != "gz") abort(str_glue("Decompressing for genbank only works with gzipped files, not `{suf}`")) if(file_is_url(file) && file_is_zip(file)){ file <- pipe(str_glue("curl {file} | gzip -cd | {gb2gff} -S")) }else if(file_is_url(file)){ file <- pipe(str_glue("curl {file} | {gb2gff} -S")) }else if(file_is_zip(file)){ suf <- file_suffix(file, ignore_zip = FALSE) if(suf != "gz") abort(str_glue("Decompressing for genbank only works with gzipped files, not `{suf}`")) file <- pipe(str_glue("gzip -cd {file} | {gb2gff} -S")) }else{ file <- pipe(str_glue("{gb2gff} -S {file}")) } read_gff3(file, sources=sources, types=types, infer_cds_parents=infer_cds_parents) }
a.estimate <- function (data, to = 1, min_points, alpha = 0.05, g = 1, r = 1) { cl <- match.call() if (round(max(data), 1) == round(2 * pi, 1)) data<-unique(data/(2*pi)) data<-sort(unique(data)) data <- c(data - 1, data, data + 1) close_to_min_index <- unique(findInterval(min_points, data) + 1) CVM_rejectionpnt <- numeric(length(close_to_min_index)) AD_rejectionpnt <- numeric(length(close_to_min_index)) KS_rejectionpnt <- numeric(length(close_to_min_index)) rayleigh_rejectionpnt <- numeric(length(close_to_min_index)) for (k in 1 : length(close_to_min_index)) { end <- close_to_min_index[k] begin <- close_to_min_index[k] - (length(data) / 3) start <- begin endpoint <- end lengte <- endpoint-start-1 ks <- numeric(trunc(lengte / g)) ks_p <- numeric(trunc(lengte / g)) c <- numeric(trunc(lengte / g)) d <- numeric(trunc(lengte / g)) asq <- numeric(trunc(lengte / g)) asq_p <- numeric(trunc(lengte / g)) CVM_pvalue <- numeric(trunc(lengte / g)) rayleigh_p <- numeric(trunc(lengte / g)) tol <- 1e-20 j <- 1 CVM_rejection <- FALSE KS_rejection <- FALSE AD_rejection <- FALSE rayleigh_rejection <- FALSE rejected <- (CVM_rejection & KS_rejection & AD_rejection & rayleigh_rejection) while (!rejected & (j <= trunc(lengte / g))) { sn<-0 n<-0 sn_star<-0 star_pval<-0 start <- endpoint - (j * g) - 1 n <- endpoint - start - 1 d[j] <- n if (n < 8) { asq[j] <- 0 asq_p[j] <-0.999 } else { sn <- ad.test(data[(start + 1) : (endpoint - 1)],punif, data[start]-tol, data[endpoint]+tol) asq[j] <-sn$statistic asq_p[j] <-sn$p.value } sn <- ((data[(start + 1) : (endpoint - 1)] - data[start]) / (data[endpoint] - data[start]) - (1 : n - 0.5)/(n))^2 c[j] <- sum(sn) + (1 / (12 * n)) CVM_pvalue[j] <- CVM_pvall(c[j], n) ks[j] <- ks.test(data[(start + 1) : (endpoint - 1)], punif, data[start], data[endpoint])$statistic ks_p[j] <- ks.test(data[(start + 1) : (endpoint - 1)], punif, data[start], data[endpoint])$p.value rayleigh_p[j] <- rayleigh.test(circular(((data[(start + 1) : (endpoint - 1)]) - data[(start + 1)]) / (data[(endpoint - 1)] - data[(start + 1)]) * 2 * pi))$p.value if (rayleigh_p[j] == "NaN") rayleigh_p[j] <- 1 if (j >= r) { if (CVM_rejection == FALSE) { if (max(CVM_pvalue[(j - r + 1) : j]) < alpha) { CVM_rejection <- TRUE if (endpoint - 1 - ((j - r + 1) * g) >= ((length(data) / 3) + 1)) CVM_rejectionpnt[k] <- (data[endpoint - 1 - ((j - r + 1) * g)]) / 1 else CVM_rejectionpnt[k] <- (data[endpoint - 1- ((j - r + 1) * g) + (length(data) / 3)])/1 } } if (KS_rejection == FALSE) { if (max(ks_p[(j - r + 1) : j]) < alpha) { KS_rejection <- TRUE if (endpoint - 1 - ((j - r + 1) * g) >= ((length(data) / 3) + 1)) KS_rejectionpnt[k] <- (data[endpoint - 1 - ((j - r + 1) * g)]) / 1 else KS_rejectionpnt[k] <- (data[endpoint - 1 - ((j - r + 1) * g)+(length(data) / 3)]) / 1 } } if (AD_rejection == FALSE) { if (max(asq_p[(j - r + 1) : j]) < alpha) { AD_rejection <- TRUE if (endpoint - 1 - ((j - r + 1) * g) >= ((length(data) / 3) + 1)) AD_rejectionpnt[k] <- (data[endpoint - 1 - ((j - r + 1) * g)]) / 1 else AD_rejectionpnt[k] <- (data[endpoint - 1 - ((j - r + 1) * g) + (length(data) / 3)]) / 1 } } if (rayleigh_rejection == FALSE) { if (max(rayleigh_p[(j - r + 1) : j]) < alpha) { rayleigh_rejection <- TRUE if (endpoint - 1 - ((j - r + 1) * g) >= ((length(data) / 3) + 1)) rayleigh_rejectionpnt[k] <- (data[endpoint - 1 - ((j - r + 1) * g)]) / 1 else rayleigh_rejectionpnt[k] <- (data[endpoint - 1 - ((j - r + 1) * g) + (length(data) / 3)]) / 1 } } } rejected <- (CVM_rejection & KS_rejection & AD_rejection & rayleigh_rejection) j <- j + 1 } if (!(is.na(which(c == 0)[1]))) CVM_pvalue <- CVM_pvalue[1 : ((which(CVM_pvalue == 0)[1]) - 1)] if (!(is.na(which(ks == 0)[1]))) ks <- ks[1 : ((which(ks == 0)[1] - 1))] if (!(is.na(which(ks_p == 0)[1]))) ks_p <- ks_p[1 : ((which(ks_p == 0)[1] - 1))] if (!(is.na(which(asq == 0)[1]))) asq <- asq[1 : ((which(asq == 0)[1] - 1))] if (!(is.na(which(asq_p == 0)[1]))) asq_p <- asq_p[1 : ((which(asq_p == 0)[1] - 1))] if (!(is.na(which(rayleigh_p == 0)[1]))) rayleigh_p<-rayleigh_p[1 : ((which(rayleigh_p == 0)[1] - 1))] } vec <- c(mean(CVM_rejectionpnt), mean(KS_rejectionpnt), mean(AD_rejectionpnt), mean(rayleigh_rejectionpnt)) sum <- matrix(c(mean(CVM_rejectionpnt), mean(KS_rejectionpnt), mean(AD_rejectionpnt), mean(rayleigh_rejectionpnt), median(vec)), ncol=5, dimnames=list(c("a-hat"), c("Cramer von Mises", "Kolmogorov-Smirnoff", "Anderson-Darling", "Rayleigh", "MEDIAN"))) CVM <- list(rejection = CVM_rejectionpnt, mean = mean(CVM_rejectionpnt)) KS <- list(rejection = KS_rejectionpnt, mean = mean(KS_rejectionpnt)) AD <- list(rejection = AD_rejectionpnt, mean = mean(AD_rejectionpnt)) rayleigh <- list(rejection = rayleigh_rejectionpnt, mean = mean(rayleigh_rejectionpnt)) general<-list(call = cl, Minimums = data[close_to_min_index], alpha = alpha, grow = g, nr_reject = r, kernel_function = "Epanechnikov") comb<-list(summary = sum, General = general) return(comb) }
blockNorm <- function(X, targetnorm = 1) { if (!any(class(X) %in% c("matrix", "data.frame"))) { stop("X should be a matrix or optionally a data.frame") } if (is.data.frame(X)) { X <- as.matrix(X) } if (targetnorm == 1) { f <- sum(X^2, na.rm = TRUE)^0.5 } else { fmax <- sum(X^2, na.rm = TRUE) fmaxn <- sum((X / fmax)^2, na.rm = TRUE) if (fmaxn > targetnorm) { fmin <- fmax fminn <- fmaxn while (fminn > targetnorm) { fmin <- fmin * 10 fminn <- sum((X / fmin)^2, na.rm = TRUE) } } else { fmin <- fmax fminn <- fmaxn while (fmaxn < targetnorm) { fmax <- fmax / 10 fmaxn <- sum((X / fmax)^2, na.rm = TRUE) } } n <- fmaxn while ((targetnorm - n)^2 > 1e-12) { f <- (fmin + fmax) / 2 n <- sum((X / f)^2, na.rm = TRUE) if (n > targetnorm) { fmax <- f } else { fmin <- f } } } Xn <- X / f return(list(Xscaled = Xn, f = f)) }
rvmatrix <- function (data = NA, nrow = 1, ncol = 1, byrow = FALSE, dimnames = NULL) { data <- as.vector(data) if (missing(nrow)) nrow <- ceiling(length(data)/ncol) else if (missing(ncol)) ncol <- ceiling(length(data)/nrow) if (byrow) { X <- t(rvarray(data, c(ncol, nrow), dimnames=dimnames)) } else { X <- rvarray(data, c(nrow, ncol), dimnames=dimnames) } return(X) } rvarray <- function (data = NA, dim = length(data), dimnames = NULL) { as.rv(array(data = data, dim = dim, dimnames = dimnames)) } is.matrix.rv <- function (x) { dx <- dim(x) return((!is.null(dx)) && length(dx)==2) } as.matrix.rv <- function (x, ...) { if (is.matrix(x)) { return(x) } dn <- if (!is.null(names(x))) list(names(x), NULL) else NULL rvarray(x, dim=c(length(x), 1), dimnames=dn) }
r_versions <- function(dots = TRUE) { df <- r_versions_fetch() dotver <- gsub('-', '.', df$version) if (dots) df$version <- dotver nicks <- cached_nicks() nonick <- setdiff(dotver, names(nicks)) if (length(nonick)) nicks <- c(nicks, get_nicknames(nonick)) df$date <- as.POSIXct( strptime(df$date, "%Y-%m-%dT%H:%M:%S", tz = "UTC") ) df$nickname <- rep(NA_character_, nrow(df)) df$nickname[match(names(nicks), dotver)] <- nicks df } r_release <- function(dots = TRUE) { tail(r_versions(dots), 1) } r_oldrel <- function(dots = TRUE) { versions <- r_versions(dots) version_strs <- package_version(versions$version) major <- version_strs$major minor <- version_strs$minor major_minor <- paste(major, sep = ".", minor) latest <- tail(major_minor, 1) tail(versions[ major_minor != latest, ], 1) } cache <- new.env(parent = emptyenv()) r_versions_fetch <- function() { if (is.null(cache$versions)) { h <- handle_setheaders(new_handle(customrequest = "PROPFIND"), Depth="1") req <- curl_fetch_memory(r_svn_url(), handle = h) doc <- read_xml(rawToChar(req$content)) prop <- xml_find_all(doc, ".//D:propstat/D:prop", xml_ns(doc)) dates <- xml_text(xml_find_first(prop, ".//D:creationdate", xml_ns(doc))) tags <- xml_text(xml_find_first(prop, ".//D:getetag", xml_ns(doc))) tags <- sub("^.*/tags/R-([-0-9]+).*$", "\\1", tags) is_release <- grepl("^[0-9]+-[0-9]+(-[0-9]+|)$", tags) tags <- tags[is_release] dates <- dates[is_release] versions <- data.frame( stringsAsFactors = FALSE, version = tags, date = dates ) df <- versions[order(package_version(tags)), ] rownames(df) <- NULL cache$versions <- df } cache$versions }
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(B = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L, 6L), .Label = c(\"I\", \"II\", \"III\", \"IV\", \"V\", \"VI\"), class = \"factor\"), V = structure(c(3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 3L, 3L, 3L, 3L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L), .Label = c(\"Golden.rain\", \"Marvellous\", \"Victory\"), class = \"factor\"), N = structure(c(2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L, 1L, 2L, 3L, 4L), .Label = c(\"0.0cwt\", \"0.2cwt\", \"0.4cwt\", \"0.6cwt\"), class = \"factor\"), Y = c(130L, 157L, 174L, 117L, 114L, 161L, 141L, 105L, 140L, 118L, 156L, 61L, 91L, 97L, 100L, 70L, 108L, 126L, 149L, 96L, 124L, 121L, 144L, 68L, 64L, 112L, 86L, 60L, 102L, 89L, 96L, 89L, 129L, 132L, 124L, 74L, 89L, 81L, 122L, 64L, 103L, 132L, 133L, 70L, 89L, 104L, 117L, 62L, 90L, 100L, 116L, 80L, 82L, 94L, 126L, 63L, 70L, 109L, 99L, 53L, 74L, 118L, 113L, 89L, 82L, 86L, 104L, 97L, 99L, 119L, 121L)), .Names = c(\"B\", \"V\", \"N\", \"Y\"), row.names = 2:72, class = \"data.frame\"))")); do.call(`is.environment`, argv); }, o=expected);
mutate_other <- function(.data, var, n = 5, count, by = NULL, var.weight = NULL, mass = NULL, copy = TRUE, other.category = "Other"){ stopifnot(is.data.table(.data), is.character(other.category), identical(length(other.category), 1L)) if (is.character(.data[[var]])){ had.key <- haskey(.data) if (!isTRUE(copy)){ stop("`copy` was ", copy, ", but must be TRUE.") } out <- copy(.data) has_null_nom_attr <- is.null(attr(names(out), ".match.hash")) if (had.key){ orig_key <- key(out) } else { orig_key <- "_order" out[, "_order" := seq_len(.N)] setkeyv(out, "_order") } stopifnot(!("nvar" %in% names(out)), var %in% names(out)) N <- .rank <- NULL if ("N" %chin% names(out)) { if ("_temp" %chin% names(out)) { `_temp` <- NULL new_nom <- paste0(names(out), collapse = "x") n_by_var <- out %>% .[, stats::setNames(list(`_temp` = .N), nm = new_nom), keyby = c(var, by)] %>% setorderv(c(by, new_nom)) %>% .[, .rank := seq_len(.N), by = by] } else { n_by_var <- out %>% .[, .(`_temp` = .N), keyby = c(var, by)] %>% .[, .rank := rank(-`_temp`), by = by] } } else { n_by_var <- out %>% .[, .N, keyby = c(var, by)] %>% .[, .rank := rank(-N), by = by] } if (!is.null(var.weight)) { stopifnot(var.weight %chin% names(out)) if ("wEiGhT" %in% names(out)) { stop("`data` contained column `wEiGhT`, but this is not allowed ", "as it conflicts with `mutate_other` internals. ", "Rename this column (temporarily at least) to use `mutate_other`.") } if (".rank" %in% names(out)) { stop("`data` contained column `.rank`, but this is not allowed ", "as it conflicts with `mutate_other` internals. ", "Rename this column (temporarily at least) to use `mutate_other`.") } setnames(out, var.weight, "wEiGhT") wEiGhT <- NULL wt_by_var <- out[, .(wEiGhT = sum(wEiGhT)), keyby = c(var, by)] setorderv(wt_by_var, "wEiGhT", order = -1L) wt_by_var[, .rank := seq_len(.N), by = by] if (!missing(mass) && !is.null(n)) { warning("`mass` was provided, yet `n` was not set to NULL. ", "As a result, `mass` may be misinterpreted. ", "If you intended to use `mass` to create the other category, ", "set `n = NULL`. Otherwise, do not provide `mass`.") } if (is.null(n)) { if (is.null(mass)) { warning("Setting mass to negative infinity. Choose a better value.") mass <- -Inf } wt_by_var[, .rank := NULL] out <- wt_by_var[out, on = c(var, by)] out[wEiGhT < mass, (var) := other.category] out[, wEiGhT := NULL] setnames(out, "i.wEiGhT", var.weight) } else { wt_by_var[, wEiGhT := NULL] out <- wt_by_var[out, on = c(var, by)] out[.rank > n, (var) := other.category] out[, .rank := NULL] setnames(out, "wEiGhT", var.weight) } } else { out <- n_by_var[out, on = c(var, by)] if (missing(count) || is.null(count)) { out[.rank > n, (var) := other.category] } else { out[N < count, (var) := other.category] } out[, N := NULL] out[, .rank := NULL] } setkeyv(out, orig_key) if (!had.key){ out[, (orig_key) := NULL] setkey(out, NULL) } out } else { warning("`by` was not a character vector, so `mutate_other()` will have no effect.") return(.data) } }
powernoise <- function(k, N) { N2 = floor(N/2)-1; f = (2:(N2+1)) A2 = 1/(f^(k/2)) p2 = complex(real=matrix(stats::rnorm(N2*1,0,1),N2,1), imaginary=matrix(stats::rnorm(N2*1,0,1),N2,1)) d2 = A2*p2; d = c(1,d2,1/((N2+2)^k),rev(Conj(d2))) x = Re(stats::fft(d, inverse=T)) xdft = stats::fft(x) xdft = xdft[1:(N/2+1)] psd_fft = (1/(2*pi*N))*abs(xdft)^2 psd_fft[2:(length(psd_fft)-1)] = 2*psd_fft[2:(length(psd_fft)-1)] f_fft = seq(from=0, to=pi, by=(2*pi)/N) psp=psd_fft/stats::var(x); x_scaled = (x - mean(x))/stats::sd(x) ret.list = list(x_scaled,psp,f_fft) names(ret.list) = c("x", "psp", "f_fft") return(ret.list) }
find_dependencies <- function(function_name, envir = .GlobalEnv, in_envir = TRUE, add_info = FALSE) { purrr::map_dfr(function_name, ~ { func <- tryCatch( get(.x, envir = envir), error = function(e) NULL ) if (is.null(func)) { message("No ", .x, " in given environment") return(NULL) } f_body <- deparse(body(func), width.cutoff = 500L) calls <- unlist(stringr::str_extract_all( f_body, "[[:alnum:]\\.\\_]+\\(|[[:alnum:]\\.\\_]+::[[:alnum:]\\.\\_]+\\(" )) calls <- stringr::str_remove_all(calls, "\\(") arguments <- unlist(stringr::str_extract_all(f_body, "\\((.*?)\\)")) arguments <- unlist(stringr::str_remove_all(arguments, "^\\(|\\)$")) arguments <- unlist(stringr::str_extract_all( arguments, "[[:alnum:]\\.\\_]+|[[:alnum:]\\.\\_]+::[[:alnum:]\\.\\_]+" )) functions <- tibble::tibble( Source = c(calls, arguments) ) %>% dplyr::group_by(Source) %>% dplyr::tally(name = "SourceRep") if (in_envir) { functions <- dplyr::filter(functions, Source %in% ls(envir)) } is_fun <- vapply(functions$Source, function(x) { tryCatch( { f_name <- stringr::str_split(x, "::")[[1]] func <- if (length(f_name) == 2) { getExportedValue(f_name[1], f_name[2]) } else { get(x, envir = envir) } is.function(func) }, error = function(e) FALSE )}, logical(1) ) functions <- dplyr::filter(functions, is_fun[names(is_fun) %in% functions$Source]) functions <- functions %>% dplyr::bind_cols(tibble::as_tibble(stringr::str_locate(functions$Source, "::"))) %>% dplyr::mutate( SourceNamespace = ifelse( is.na(start), Vectorize(find, "what")(Source, mode = "function"), stringr::str_sub(Source, 1, start - 1) ), SourceNamespace = gsub("package:", "", SourceNamespace), SourceNamespace = ifelse(SourceNamespace == "character(0)", NA, SourceNamespace), SourceNamespace = ifelse(Source %in% ls(envir), "user-defined", SourceNamespace), Source = ifelse( is.na(start), Source, stringr::str_sub(Source, end + 1) ) ) %>% dplyr::select(-c(start, end)) if (nrow(functions) == 0) { functions <- tibble::tibble( Source = NA, SourceRep = 0, SourceNamespace = "user-defined", Target = .x, TargetInDegree = 0 ) } if (add_info) { functions <- functions %>% dplyr::rowwise() %>% dplyr::mutate( SourcePosition = list(grep(paste0("\\b", Source, "\\b"), f_body) - 1), SourceContext = list(f_body[SourcePosition + 1]) ) %>% dplyr::ungroup() } functions %>% dplyr::mutate( Target = .x, TargetInDegree = ifelse(is.na(Source), 0, nrow(.)) ) }) }
library(shiny) library(shinydashboard) source("../R/function.R") source("../R/colorPicker.R") source("../R/transformation.R") source("../R/geneView.R") source("../R/columnSelector.R") source("../R/label.R") source("../R/limit.R") source("../R/global.R") source("../R/clarion.R") data <- data.table::as.data.table(mtcars, keep.rowname = "id") metadata <- data.table::data.table(names(data), level = c("feature", rep("sample", 7), rep("condition", 4)), factor1 = c(rep("a", 5), rep("b", 7)), factor2 = c(rep("1", 7), rep("2", 5)), factor3 = c(rep("", 4), rep("test", 5), rep("test2", 3))) names(metadata)[1] <- "key" clarion <- Clarion$new(data = data, metadata = metadata) ui <- dashboardPage(header = dashboardHeader(), sidebar = dashboardSidebar( numericInput(inputId = "width", label = "width in cm", value = 0, min = 0), numericInput(inputId = "height", label = "height in cm", value = 0, min = 0), sliderInput(inputId = "scale", label = "scale plot", value = 1, min = 1, max = 10) ), dashboardBody(fluidPage( geneViewUI("id") ))) server <- function(input, output) { gene <- callModule(geneView, "id", clarion = clarion, plot.method = "static", width = reactive(input$width), height = reactive(input$height), scale = reactive(input$scale)) observe({ print(gene()) }) } shinyApp(ui = ui, server = server)
pal_tron <- function(palette = c("legacy"), alpha = 1) { palette <- match.arg(palette) if (alpha > 1L | alpha <= 0L) stop("alpha must be in (0, 1]") raw_cols <- ggsci_db$"tron"[[palette]] raw_cols_rgb <- col2rgb(raw_cols) alpha_cols <- rgb( raw_cols_rgb[1L, ], raw_cols_rgb[2L, ], raw_cols_rgb[3L, ], alpha = alpha * 255L, names = names(raw_cols), maxColorValue = 255L ) manual_pal(unname(alpha_cols)) } scale_color_tron <- function(palette = c("legacy"), alpha = 1, ...) { palette <- match.arg(palette) discrete_scale("colour", "tron", pal_tron(palette, alpha), ...) } scale_colour_tron <- scale_color_tron scale_fill_tron <- function(palette = c("legacy"), alpha = 1, ...) { palette <- match.arg(palette) discrete_scale("fill", "tron", pal_tron(palette, alpha), ...) }
choose.target <- function(x,lower,upper,n,tvectors=tvectors, breakdown=FALSE){ if(is.data.frame(tvectors)){ tvectors <- as.matrix(tvectors) }else if("textmatrix" %in% class(tvectors)){ tvectors <- matrix(tvectors, nrow=nrow(tvectors),ncol=ncol(tvectors), dimnames=list(rownames(tvectors),colnames(tvectors))) } if(is.matrix(tvectors)){ if(class(x) != "character"){ x <- as.character(x) message("Note: x converted to character") } allwords <- vector(length=nrow(tvectors)) if(breakdown==TRUE){satz1 <- breakdown(x)} if(breakdown==FALSE){satz1 <- x} satz1split <- strsplit(satz1,split=" ")[[1]] used1 <- satz1split[satz1split %in% rownames(tvectors)] if(length(used1)==0){(warning("no element of x found in rownames(tvectors)")) return(NA)} if(length(used1) >1){satz1vec <- colSums(tvectors[used1,])} if(length(used1)==1){satz1vec <- tvectors[used1,]} for(i in 1:nrow(tvectors)){ allwords[i] <- cosine(satz1vec,tvectors[i,]) } names(allwords) <- rownames(tvectors) a <- sample(allwords[allwords >= lower & allwords <= upper])[1:n] return(a) }else{warning("tvectors must be a matrix!")} }
setMethodS3("clearCalls", "AbstractCBS", function(fit, ...) { segs <- fit$output params <- fit$params excl <- grep("Call$", colnames(segs)) if (length(excl) > 0L) { segs <- segs[,-excl] } for (ff in c("deltaROH", "deltaAB", "deltaLOH")) { params[[ff]] <- NULL } fit$output <- segs fit$params <- params invisible(fit) }, protected=TRUE)
test_df <- rbind( data.frame( date = as.Date(c("2015-01-01", "2015-10-01", "2016-02-04", "2016-12-31", "2017-01-01", "2017-02-01", "2017-02-05", "2020-01-01")), patient_id = "A" ), data.frame( date = as.Date(c("2015-01-01", "2016-02-01", "2016-12-31", "2017-01-01", "2017-02-03")), patient_id = "B" )) expect_equal(get_episode(test_df$date, 365), c(1, 1, 2, 2, 2, 3, 3, 4, 1, 2, 2, 2, 3)) expect_equal(get_episode(test_df$date[which(test_df$patient_id == "A")], 365), c(1, 1, 2, 2, 2, 2, 3, 4)) expect_equal(get_episode(test_df$date[which(test_df$patient_id == "B")], 365), c(1, 2, 2, 2, 3)) if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0")) { expect_identical(test_df %>% group_by(patient_id) %>% mutate(f = is_new_episode(date, 365)) %>% pull(f), c(TRUE, FALSE, TRUE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE)) suppressMessages( x <- example_isolates %>% mutate(out = first_isolate(., include_unknown = TRUE, method = "episode-based", info = FALSE)) ) y <- example_isolates %>% group_by(patient_id, mo) %>% mutate(out = is_new_episode(date, 365)) expect_identical(which(x$out), which(y$out)) }
implicIndep <- function (expression, n.samples = 1, size.sample = 100, corr = "0") { if (missing(expression)) { errmsg <- paste0("The expression is missing.") cat("\n") stop(paste(strwrap(errmsg, exdent = 7), collapse = "\n"), call. = FALSE) } expression <- gsub(" ", "", expression) antec <- substr(expression, 2, regexpr("<", expression)[1] - 1) out.f <- substr(expression, regexpr(">", expression)[1] + 1, regexpr(")", expression)[1] - 1) pos.irr.f <- as.vector(gregexpr("[+)]", expression)[[1]]) pos.irr.f <- tail(pos.irr.f, 2) irr.f <- toupper(substr(expression, pos.irr.f[1] + 1, pos.irr.f[2] - 1)) pos.last.lower <- tail(as.vector(gregexpr("[a-z]", expression)[[1]]), 1) pos.last.upper <- tail(as.vector(gregexpr("[A-Z]", expression)[[1]]), 1) if (tail(pos.last.lower, 1) < tail(pos.last.upper, 1)) { substr(expression, pos.last.lower, pos.last.lower) <- irr.f substr(expression, pos.last.upper, pos.last.upper) <- tolower(irr.f) } disj.list <- as.list(unlist(strsplit(antec, "[+]"))) conj.list <- lapply(disj.list, function (x) { if (grepl("[*]", antec)) { sort(unlist(strsplit(x, "[*]"))) } else if (!grepl("[0-9]", antec)) { strs <- substring(x, 1:nchar(x), 1:nchar(x)) sort(strs[strs != ""]) } else {sst <- strsplit(x, "")[[1]] sort(paste0(sst[c(TRUE, FALSE)], sst[c(FALSE, TRUE)])) } } ) if (any(sapply(conj.list, function (x) any(duplicated(toupper(x)))))) { errmsg <- paste0("Check the expression. At least one disjunct contains a contradiction or the same conjunct more than once.") cat("\n") stop(paste(strwrap(errmsg, exdent = 7), collapse = "\n"), call. = FALSE) } conj.sorted <- sort(unlist(lapply(conj.list, paste, collapse = "*"))) f.names <- c(unique(toupper(unlist(conj.list))), out.f, irr.f) tt <- data.frame(mintermMatrix(rep(2, length(f.names)))) dimnames(tt) <- list(as.character(seq(2^length(f.names))), f.names) antec.sorted <- paste(conj.sorted, sep = "", collapse = "+") conj.repl <- gsub( "[*]", ",", paste0("pmin(", unlist(strsplit(antec.sorted, "[+]")), ")") ) subs <- paste0("pmax(", paste0(conj.repl, collapse = ","), ")", "==", out.f) taut <- sub("[+]", ",", paste0(", pmax", substr( expression, regexpr(irr.f, expression)[1] - 1, nchar(expression))) ) coll <- paste0(gsub("([A-Z]+)", "tt$\\U\\1", gsub("(\\b[a-oq-z][a-z0-9]*)", "1-\\U\\1", paste0("pmin(", paste0(subs, taut), ")"), perl = TRUE), perl = TRUE), "==TRUE" ) tt <- tt[eval(parse(text = coll)), ] out.col <- match(out.f, names(tt)) irr.col <- match(irr.f, names(tt)) if (identical(mean(tt[, out.col]), 1)) { errmsg <- paste0("Check the expression. The endogenous factor is a constant.") cat("\n") stop(paste(strwrap(errmsg, exdent = 7), collapse = "\n"), call. = FALSE) } if (size.sample < nrow(tt)) { errmsg <- paste0("The sample size must be at least ", nrow(tt), ".") cat("\n") stop(paste(strwrap(errmsg, exdent = 7), collapse = "\n"), call. = FALSE) } ded <- 2^(length(f.names) - 1) dat.list <- sol.list <- vector("list", n.samples) if (corr == "0") { for (i in seq(length(dat.list))) { set.seed(i) dat.list[[i]] <- rbind(tt, head(tt[sample.int(nrow(tt), size.sample, replace = TRUE), ], -ded))[order(sample.int(size.sample, size.sample)), ] rownames(dat.list[[i]]) <- as.character(seq(size.sample)) sol.list[[i]] <- eQMC(dat.list[[i]], outcome = out.f)$solution } } else { if (corr == "+") { add.to <- tt[tt[, out.col] == tt[, irr.col], ] } else { add.to <- tt[tt[, out.col] != tt[, irr.col], ] } for (i in seq_along(dat.list)) { set.seed(i) dat.list[[i]] <- rbind(tt, head(add.to[sample.int(nrow(add.to), size.sample, replace = TRUE), ], -ded))[order(sample.int(size.sample, size.sample)), ] rownames(dat.list[[i]]) <- as.character(seq(size.sample)) sol.list[[i]] <- eQMC(dat.list[[i]], outcome = out.f)$solution } } for (i in seq_along(sol.list)) { for (j in seq_along(sol.list[[i]])) { sol.list[[i]][[j]] <- lapply(sol.list[[i]][[j]], function (x) { paste0(sort(unlist( if (grepl("[*]", x)) { strsplit(x, "[*]") } else { strsplit(x, "") } )), collapse = "*")} ) } } for (i in seq_along(sol.list)) { for (j in seq_along(sol.list[[i]])) { sol.list[[i]][[j]] <- gsub( "[*]", "", paste0(sort(unlist(sol.list[[i]][[j]], recursive = FALSE)), collapse = "+") ) } } cor.list <- sapply(dat.list, function (x) round(cor(x[, out.col], x[, irr.col]), 4)) sols.obj <- list(tt = tt, dat.list = dat.list, sol.list = sol.list, cor.list = cor.list, test = if ((any(sapply(sol.list, function (x) { grepl(irr.f, x, ignore.case = TRUE)})) == FALSE) & (gsub("[*]", "", antec.sorted) %in% unique(unlist(sol.list)) == FALSE)) { paste(irr.f, "has been eliminated (expression was not a causal structure).") } else if (any(sapply(sol.list, function (x) { grepl(irr.f, x, ignore.case = TRUE)} )) == FALSE) { paste(irr.f, "has been eliminated.") } else { paste(irr.f, "has not been eliminated.") } ) return(sols.obj) }
"Finnish_Lakes"
context("solr_group") test_that("solr_group works", { skip_on_cran() a <- conn_plos$group(params = list(q='ecology', group.field='journal', group.limit=3, fl=c('id','score'))) Sys.sleep(2) b <- conn_plos$group(params = list(q='ecology', group.field='journal', group.limit=3, fl=c('id','score','alm_twitterCount'), group.sort='alm_twitterCount desc')) Sys.sleep(2) out <- conn_plos$group(params = list(q='ecology', group.field=c('journal','article_type'), group.limit=3, fl='id'), raw=TRUE) Sys.sleep(2) c <- out d <- solr_parse(out, 'df') e <- conn_plos$group(params = list(q='ecology', group.field='journal', group.limit=3, fl=c('id','score'), group.format='grouped', group.main='true')) suppressPackageStartupMessages(library('jsonlite', quietly = TRUE)) f <- jsonlite::fromJSON(out, FALSE) expect_equal(NCOL(a), 5) expect_equal(NCOL(b), 6) expect_that(length(c), equals(1)) expect_that(length(d), equals(2)) expect_equal(NCOL(d$article_type), 4) expect_equal(NCOL(e), 4) expect_that(length(f), equals(1)) expect_that(length(f$grouped), equals(2)) expect_is(a, "data.frame") expect_is(b, "data.frame") expect_is(c, "sr_group") expect_is(d, "list") expect_is(d$journal, "data.frame") expect_is(e, "data.frame") }) test_that("solr_group old style works", { skip_on_cran() expect_is(solr_group(conn_plos, params = list(q='ecology', group.field='journal', group.limit=3, fl=c('id','score'))), "data.frame" ) expect_is(solr_group(conn_plos, params = list(q='ecology', group.field='journal', group.limit=3, fl=c('id','score'), group.format='grouped', group.main='true')), "data.frame" ) }) test_that("solr_group works when no group results and responseHeader exists", { skip_on_cran() x <- SolrClient$new(host = "services.itis.gov", scheme = "https", port = NULL, errors = "complete") args <- list(q = "nameWOInd:/[A-Za-z0-9]*[%20]{1,1}[A-Za-z0-9]*/", group.field = 'rank', group.limit = 3) expect_null(x$group(params = args)) })
lba.formula <- function(formula, data, A = NULL, B = NULL, K = 1L, cA = NULL, cB = NULL, logitA = NULL, logitB = NULL, omsk = NULL, psitk = NULL, S = NULL, T = NULL, row.weights = NULL, col.weights = NULL, tolG = 1e-10, tolA = 1e-05, tolB = 1e-05, itmax.unide = 1e3, itmax.ide = 1e3, trace.lba = TRUE, toltype = 'all', method = c("ls", "mle"), what = c('inner', 'outer'), ...) { data <- as.data.frame(apply(data, 2, factor)) aux.form <- strsplit(as.character(formula), '~') var.col <- aux.form[[2]] var.row <- aux.form[[3]] var.row1 <- unlist(strsplit(var.row, ' \\+ ')) var.col1 <- unlist(strsplit(var.col, ' \\+ ')) aux.tables <- rep(list(list()), length(var.row1)) aux.tables1 <- list() for(i in 1:length(var.row1)){ for(j in 1:length(var.col1)){ aux.tables[[i]][[j]] <- table(data[[var.row1[i]]], data[[var.col1[j]]]) } aux.tables1[[i]] <- do.call('cbind', aux.tables[[i]]) } tabs <- do.call('rbind', aux.tables1) aux.namesR <- sapply(var.row1, function(x)levels(data[[x]]), simplify=F) aux.namesR1 <- sapply(aux.namesR, length) aux.namesR2 <- rep(var.row1, aux.namesR1) rownames(tabs) <- paste(aux.namesR2, dimnames(tabs)[[1]], sep='') aux.namesC <- sapply(var.col1, function(x)levels(data[[x]]), simplify=F) aux.namesC1 <- sapply(aux.namesC, length) aux.namesC2 <- rep(var.col1, aux.namesC1) colnames(tabs) <- paste(aux.namesC2, dimnames(tabs)[[2]], sep='') switch(match.arg(what), inner = what <- 'inner', outer = what <- 'outer') switch(match.arg(method), ls = method <- 'ls', mle = method <- 'mle') if(is.null(cA) & is.null(cB) & is.null(logitA) & is.null(logitB)){ class(tabs) <- method result <- lba(tabs, A = A, B = B, K = K, row.weights = row.weights, col.weights = col.weights, tolG = tolG, tolA = tolA, tolB = tolB, itmax.unide = itmax.unide, itmax.ide = itmax.ide, trace.lba = trace.lba, toltype = toltype, what = what, ...) } else if((!is.null(cA) | !is.null(cB)) & is.null(logitA) & is.null(logitB)){ class(tabs) <- paste(method, 'fe', sep='.') result <- lba(tabs, A = A, B = B, K = K, cA = cA, cB = cB, row.weights = row.weights, col.weights = col.weights, tolG = tolG, tolA = tolA, tolB = tolB, itmax.unide = itmax.unide, itmax.ide = itmax.ide, trace.lba = trace.lba, toltype = toltype, what = what, ...) } else { class(tabs) <- paste(method, 'logit', sep='.') result <- lba(tabs, A = A, B = B, K = K, cA = cA, cB = cB, logitA = logitA, logitB = logitB, omsk = omsk, psitk = psitk, S = S, T = T, row.weights = row.weights, col.weights = col.weights, tolG = tolG, tolA = tolA, tolB = tolB, itmax.unide = itmax.unide, itmax.ide = itmax.ide, trace.lba = trace.lba, toltype = toltype, what = what, ...) } n_dim <- length(result$pk)-1 if(n_dim == 1){ class(result) <- c('lba.1d', class(result), 'lba.formula', 'lba') } if(n_dim == 2){ class(result) <- c('lba.2d', class(result), 'lba.formula', 'lba') } if(n_dim >= 3){ class(result) <- c('lba.3d', class(result), 'lba.formula', 'lba') } cl <- match.call() result$call <- cl result$what <- what result$tab <- tabs result }
mnis_lords_type <- function(date = Sys.Date(), tidy = TRUE, tidy_style = "snake_case") { query <- paste0(base_url, "LordsByType/", as.Date(date), "/") got <- mnis_query(query) x <- tibble::as_tibble(as.data.frame(got$LordsByType)) if (tidy == TRUE) { x <- mnis::mnis_tidy(x, tidy_style) } x }
dser <- function(x,ser_weight,cost=costBAR, ...) UseMethod("dser") dser.data.frame <- function(x,ser_weight,cost=costBAR,...) { dser.matrix(as.matrix(x),ser_weight,cost=cost,...) } dser.matrix <-function(x,ser_weight,cost=costBAR,scale=TRUE,dmethod="euclidean",...) { if (!is.matrix(x) || !is.numeric(x)) stop("'x' must be 2d numeric matrix") if (scale) x <- scale(x) d <- dist(x,method=dmethod) if (missing(ser_weight)) if (isTRUE(all.equal(cost, costLS))) ser_weight <- x[,1] else ser_weight <- as.matrix(d) dser.dist(d,ser_weight,cost=cost,...) } dser.dist <- function(x,ser_weight,cost=costBAR,hmethod="average",...) { h <- hclust(x,method=hmethod) if (missing(ser_weight) && !isTRUE(all.equal(cost, costLS))) ser_weight <- as.matrix(x) DendSer(h,ser_weight,cost=cost,...) } dser.hclust <- function(x,ser_weight,cost=costBAR,...) { DendSer(x,ser_weight,cost=cost,...) }
with_groups <- function(.data, .groups, .f, ...) { loc <- tidyselect::eval_select(enquo(.groups), data = tbl_ptype(.data)) val <- syms(names(.data)[loc]) out <- group_by(.data, !!!val) .f <- as_function(.f) out <- .f(out, ...) dplyr_reconstruct(out, .data) }
"gaussd" <- function(kode=1,x) { if (missing(x)) messagena("x") p <- double(1) f.res <- .Fortran("gausszd", kode=to.integer(kode), x=as.double(x), p=as.double(p)) list(p=f.res$p) }
mappingDE <- function(data, var = NULL, colID = NULL, type = c("static", "interactive"), typeStatic = c("tmap", "choro.cart", "typo", "bar"), unit = c("state","district", "municipal", "municipality"), matchWith = c("name", "code", "code_full"), dir = NULL, add_text = NULL, subset = NULL, facets = NULL, aggregation_fun = sum, aggregation_unit = NULL, options = mapping.options()) { check.unit.names = options$check.unit.names use_cache = options$use_cache use_internet = options$use_internet type <- match.arg(type, choices = eval(formals(mappingUK)$type)) typeStatic <- match.arg(typeStatic, choices = eval(formals(mappingUK)$typeStatic)) if(!is.null(var)) { if(is.numeric(var)) { var <- colnames(data)[var] }else{ if(!any(sapply(var, function(x) x == colnames(data)))) { stop("Column names var does not exist.", call. = FALSE) } } } if(!inherits(data, "DE")) { data <- data.frame(data, check.names = FALSE) unit <- match.arg(unit, choices = eval(formals(mappingDE)$unit)) matchWith <- match.arg(matchWith, choices = eval(formals(mappingDE)$matchWith)) data <- DE(data = data, colID = colID, unit = unit, matchWith = matchWith, subset = subset, check.unit.names = check.unit.names, use_cache = use_cache, use_internet = use_internet, crs = options$crs, aggregation_fun = aggregation_fun, aggregation_unit = aggregation_unit, aggregation_var = var, dir = dir) colID <- attributes(data)$colID }else { unit <- attributes(data)$unit colID <- attributes(data)$colID if(!is.null(subset)) { if(!inherits(subset, "formula")) { stop("subset must be a formula.") } data <- subset_formula(data = data, formula = subset) } if(!is.null(aggregation_unit)) { if(is.null(aggregation_fun)) { stop("aggregation_fun must be provided to aggregate data") } if(any(aggregation_unit%in%c("state","district", "municipal", "municipality"))) { unit <- aggregation_unit nm <- getNamesDE(unit = unit, all_levels = TRUE) if(attributes(data)$unit == aggregation_unit) { colnames(nm)[which(colnames(nm) == aggregation_unit)] <- attributes(data)$colID aggregation_unit <- attributes(data)$colID } if(is.null(facets)| isTRUE(facets == aggregation_unit)) { data <- aggregate(x = data[,var], by = list(var = data[, aggregation_unit, drop = TRUE]), FUN = aggregation_fun) colnames(data)[1] <- aggregation_unit facets_join <- NULL }else{ if(!any(facets %in% colnames(data))) { stop("facets name does not exit.") } dt <- lapply(levels(factor(data[,facets, drop = TRUE])), function(x) aggregate(x = data[data[,facets, drop = TRUE]==x, var], by = list(var = data[data[,facets, drop = TRUE]==x,aggregation_unit, drop = TRUE], var2 = data[data[,facets, drop = TRUE]==x,facets, drop = TRUE]), FUN = aggregation_fun)) data <- do.call("rbind", dt) class(data) <- c(class(data),"DE") colnames(data)[1] <- aggregation_unit if(any(facets %in% colnames(nm))) { facets <- paste(facets,"_facets", sep = "") } colnames(data)[2] <- facets facets_join <- facets } data[,aggregation_unit] <- stri_trans_tolower(data[,aggregation_unit, drop = TRUE]) nm[,aggregation_unit] <- as.character(stri_trans_tolower(nm[,aggregation_unit, drop = TRUE])) data[,aggregation_unit] = as.character(data[,aggregation_unit, drop = TRUE]) data <- suppressWarnings(left_join(data, nm,c(aggregation_unit))) }else{ if(is.null(facets)| isTRUE(facets == aggregation_unit)) { data <- aggregate(x = data[,var], by = list(var = data[, aggregation_unit, drop = TRUE]), FUN = aggregation_fun) colnames(data)[1] <- aggregation_unit }else{ dt <- lapply(levels(factor(data[,facets, drop = TRUE])), function(x) aggregate(x = data[data[,facets, drop = TRUE]==x, var], by = list(var = data[data[,facets, drop = TRUE]==x,aggregation_unit, drop = TRUE], var2 = data[data[,facets, drop = TRUE]==x,facets, drop = TRUE]), FUN = aggregation_fun)) data <- do.call("rbind", dt) colnames(data)[1] <- aggregation_unit colnames(data)[2] <- facets } } colID <- aggregation_unit } } if(type == "static") { if(typeStatic == "tmap") { mapping_tmap(data, var = var, facets = facets, add_text = add_text, options = options) }else if(typeStatic == "choro.cart") { mapping_choro(data = data, var = var, options = options) }else if(typeStatic == "typo") { mapping_typo(data = data, var = var, options = options) }else if(typeStatic == "bar") { mapping_bar(data = data, var = var, options = options) } }else if(type == "interactive"){ if(!is.null(facets)) { if(isFALSE(options$facets.free.scale)) { plot_interactive_choro_facetes(data = data, var = var, colID = colID, facets = facets, options = options) }else{ plot_interactive_choro_facetes_freeScale(data = data, var = var, colID = colID, facets = facets, options = options) } }else{ plot_interactive_choro(data = data, var = var, colID = colID, options = options) } } }
list.join <- function(x, y, xkey, ykey, ..., keep.order = TRUE) { if (missing(xkey) && missing(ykey)) stop("At least one key should be specified") sxkey <- substitute(xkey) sykey <- substitute(ykey) dfsxkey <- substitute(data.frame(xkey)) if (missing(sykey)) { sykey <- sxkey dfsykey <- substitute(data.frame(xkey)) } else { dfsykey <- substitute(data.frame(ykey)) } xkeys.list <- list.map.internal(x, dfsxkey, parent.frame()) ykeys.list <- list.map.internal(y, dfsykey, parent.frame()) xkeys.df <- list.rbind(xkeys.list) ykeys.df <- list.rbind(ykeys.list) if (is.name(sxkey)) colnames(xkeys.df) <- as.character(sxkey) if (is.name(sykey)) colnames(ykeys.df) <- as.character(sykey) if (!identical(colnames(xkeys.df), colnames(ykeys.df))) { stop("Inconsistent keys") } xkeys <- cbind(.xi = seq_along(xkeys.list), xkeys.df) ykeys <- cbind(.yi = seq_along(ykeys.list), ykeys.df) df <- merge.data.frame(xkeys, ykeys, by = colnames(xkeys)[-1L], ...) if (keep.order) df <- df[order(df$.xi), ] map(modifyList, list(x[df$.xi], y[df$.yi])) }
kpPlotCoverage <- function(karyoplot, data, show.0.cov=TRUE, data.panel=1, r0=NULL, r1=NULL, col=" if(missing(karyoplot)) stop("The parameter 'karyoplot' is required") if(!methods::is(karyoplot, "KaryoPlot")) stop("'karyoplot' must be a valid 'KaryoPlot' object") if(missing(data)) stop("The parameter 'data' is required") if(!methods::is(data, "GRanges") && !methods::is(data, "SimpleRleList")) { data <- tryCatch(toGRanges(data), error=function(e) {stop("'data' must be a GRanges object or a SimpleRleList")}) } if(!methods::is(data, "SimpleRleList")) { data <- data[as.character(GenomeInfoDb::seqnames(data)) %in% karyoplot$chromosomes,] GenomeInfoDb::seqlevels(data) <- karyoplot$chromosomes data <- GenomicRanges::coverage(data, width=karyoplot$chromosome.lengths[GenomeInfoDb::seqlevels(data)]) } coverage.gr <- toGRanges(data) if(show.0.cov==FALSE) { coverage.gr <- coverage.gr[coverage.gr$coverage!=0] } if(is.null(ymax)) ymax <- max(max(coverage.gr$coverage)) if(is.null(border)) border <- col cov.start <- coverage.gr end(cov.start) <- start(cov.start) cov.end <- coverage.gr start(cov.end) <- end(cov.end) cov.to.plot <- sort(c(cov.start, cov.end)) kpArea(karyoplot=karyoplot, data=cov.to.plot, y=cov.to.plot$coverage, base.y = 0, ymin=0, ymax=ymax, r0=r0, r1=r1, data.panel=data.panel, col=col, border=border, clipping=clipping, ...) karyoplot$latest.plot <- list(funct="kpPlotCoverage", computed.values=list(max.coverage=max(max(coverage.gr$coverage)), coverage=coverage.gr, ymax=ymax)) invisible(karyoplot) }
overglm <- function(formula,family,weights,data,subset,start=NULL,...){ if (missingArg(data)) data <- environment(eval(formula)) mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "weights", "data", "subset"), names(mf), 0L) mf <- mf[c(1L, m)] mf[[1L]] <- quote(stats::model.frame) mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") y <- as.matrix(model.response(mf, "any")) temp <- strsplit(gsub(" |link|=|'|'","",tolower(family)),"[()]")[[1]] family <- temp[1] if(is.na(temp[2])){ if(family=="bb") link <- "logit" else link="log" }else link <- temp[2] yres <- y colnames(yres) <- rep(" ",ncol(yres)) if(family=="bb"){ m <- as.matrix(y[,1]+y[,2]) y <- as.matrix(y[,1]) } weights <- as.vector(model.weights(mf)) offset <- as.vector(model.offset(mf)) X <- model.matrix(mt, mf) p <- ncol(X) n <- nrow(X) if(is.null(offset)) offs <- matrix(0,n,1) else offs <- as.matrix(offset) if(is.null(weights)) weights <- matrix(1,n,1) else weights <- as.matrix(weights) if(any(weights <= 0)) stop("Only positive weights are allowed!!",call.=FALSE) if(family=="bb") familyf <- binomial(link) else familyf <- poisson(link) if(family=="nb1"){ escore <- function(theta){ eta <- tcrossprod(X,t(theta[1:p])) + offs mu <- familyf$linkinv(eta) phi <- exp(theta[p+1]) u1 <- -crossprod(X,weights*(y-mu)*familyf$mu.eta(eta)/(mu + phi*mu^2)) u2 <- -sum(weights*(Digamma(1/phi)-Digamma(y+1/phi)+phi*(y-mu)/(phi*mu+1)+log(mu*phi+1))/phi) return(rbind(u1,u2)) } objetive <- function(theta){ mu <- familyf$linkinv(tcrossprod(X,t(theta[1:p])) + offs) phi <- exp(theta[p+1]) -sum(weights*(Lgamma(y+1/phi)-Lgamma(1/phi)+y*log(mu*phi)-(y+1/phi)*log(mu*phi+1))) } theta0 <- function(fits){ mus <- fitted(fits) fik <- lm((fit0$y - mus)^2 ~ -1 + I(mus^2) + offset(mus), weights=1/(mus + 2*mus^2)) c(coef(fits),log(abs(coef(fik)))) } } if(family=="nb2"){ escore <- function(theta){ eta <- tcrossprod(X,t(theta[1:p])) + offs mu <- familyf$linkinv(eta) phi <- exp(theta[p+1]) const <- Digamma(y+mu/phi)-Digamma(mu/phi)-log(1+phi) u1 <- -crossprod(X,weights*familyf$mu.eta(eta)*const/phi) u2 <- -sum(weights*(-const*mu/phi+y-phi*(y+mu/phi)/(1+phi))) return(rbind(u1,u2)) } objetive <- function(theta){ mu <- familyf$linkinv(tcrossprod(X,t(theta[1:p])) + offs) phi <- exp(theta[p+1]) result <- -sum(weights*(Lgamma(y+mu/phi)-Lgamma(mu/phi)+y*log(phi)-(y+mu/phi)*log(1+phi))) } theta0 <- function(fits){ mus <- fitted(fits) fik <- lm((fit0$y - mus)^2 ~ -1 + mus, weights=1/(mus + 2*mus^2)) c(coef(fits),log(abs(coef(fik)-1))) } } if(family=="nb3"){ escore <- function(theta){ eta <- tcrossprod(X,t(theta[1:p])) + offs mu <- familyf$linkinv(eta) phi <- exp(theta[p+1]) const1 <- Digamma(1/(phi*mu))-Digamma(y+1/(phi*mu))+log(phi*mu^2+1) const2 <- phi*y*mu-(phi*y*mu+1)*phi*mu^2/(phi*mu^2+1) u1 <- -crossprod(X,weights*familyf$mu.eta(eta)*(const1+2*const2)/(phi*mu^2)) u2 <- -sum(weights*((const1+const2)/(phi*mu))) return(rbind(u1,u2)) } objetive <- function(theta){ mu <- familyf$linkinv(tcrossprod(X,t(theta[1:p])) + offs) phi <- exp(theta[p+1]) -sum(weights*(Lgamma(y+1/(phi*mu))-Lgamma(1/(phi*mu))+y*log(mu^2*phi)-(y+1/(phi*mu))*log(mu^2*phi+1))) } theta0 <- function(fits){ mus <- fitted(fits) fik <- lm((fit0$y - mus)^2 ~ -1 + I(mus^3) + offset(mus), weights=1/(mus + 2*mus^2)) c(coef(fits),log(abs(coef(fik)))) } } if(family=="bb"){ escore <- function(theta){ eta <- tcrossprod(X,t(theta[1:p])) + offs mu <- familyf$linkinv(eta) phi <- exp(theta[p+1]) const1 <- Digamma(y+mu/phi)-Digamma(mu/phi) const2 <- Digamma((1-mu)/phi)-Digamma(m-y+(1-mu)/phi) u1 <- -crossprod(X,as.matrix(weights*familyf$mu.eta(eta)*(const1+const2)/phi)) const3 <- -const1*mu+const2*(1-mu)-Digamma(1/phi)+Digamma(m+1/phi) u2 <- -sum(weights*const3/phi) return(rbind(u1,u2)) } objetive <- function(theta){ mu <- familyf$linkinv(tcrossprod(X,t(theta[1:p])) + offs) phi <- exp(theta[p+1]) -sum(weights*(Lgamma(1/phi)+Lgamma(y+mu/phi)+Lgamma(m-y+(1-mu)/phi)-Lgamma(m+1/phi)-Lgamma(mu/phi)-Lgamma((1-mu)/phi))) } theta0 <- function(fits){ mus <- fitted(fits) l0 <- mean(abs((y - m*mus)^2/(m*mus*(1-mus)) - 1)/ifelse(m==1,1,m-1)) c(coef(fits),log(l0/(1-l0))) } } if(is.null(start)) fit0 <- glm.fit(y=yres,x=X,offset=offset,weights=weights,family=familyf) else fit0 <- glm.fit(y=yres,x=X,offset=offset,weights=weights,family=familyf,start=start) start <- theta0(fit0) salida <- optim(start,fn=objetive,gr=escore,method="BFGS",control=list(reltol=1e-15)) theta_hat <- as.matrix(salida$par,nrow=length(theta_hat),1) eta <- tcrossprod(X,t(theta_hat[1:p])) + offs mu <- familyf$linkinv(eta) colnames(mu) <- "" rownames(theta_hat) <- c(colnames(X),"log(dispersion)") colnames(theta_hat) <- "" estfun <- -escore(theta_hat) if(salida$convergence != 0) stop("Convergence not achieved!!",call.=FALSE) rownames(estfun) <- c(colnames(X),"log(dispersion)") colnames(estfun) <- "" logLik <- switch(family, "nb1"=-salida$value-sum(weights*lgamma(y+1)), "nb2"=-salida$value-sum(weights*lgamma(y+1)), "nb3"=-salida$value-sum(weights*lgamma(y+1)), "bb"=-salida$value + sum(weights*(Lgamma(m+1)-Lgamma(y+1)-Lgamma(m-y+1)))) out_ <- list(coefficients=theta_hat,fitted.values=mu,linear.predictors=eta, prior.weights=weights,y=yres,formula=formula,call=match.call(),offset=offs,model=mf,data=data, df.residual=n-p-1,logLik=logLik,converged=ifelse(salida$convergence==0,TRUE,FALSE), estfun=estfun,terms=mt,escore=escore,objetive=objetive) class(out_) <- "overglm" nano <- list(...) if(is.null(nano$si.mu.la.ti.on)){ hess <- -chol(jacobian(escore,theta_hat)) colnames(hess) <- rownames(theta_hat) rownames(hess) <- rownames(theta_hat) out_$R <- hess } familyf <- list(family=family,link=link) class(familyf) <- "family" out_$family <- familyf return(out_) } print.overglm <- function(x,...){ cat(" Family: ",switch(x$family$family,"nb1"="Negative Binomial I", "nb2"="Negative Binomial II", "nb3"="Negative Binomial III", "bb"="Beta-Binomial")) cat("\n Link: ",x$family$link) p <- length(x$coefficients) cat("\n********************************************************") cat("\n -2*log-likelihood: ",round(-2*x$logLik,digits=3),"\n") cat("degrees of freedom: ",length(x$coefficients),"\n") cat(" AIC: ",round(-2*x$logLik + 2*(p),digits=3),"\n") cat(" BIC: ",round(-2*x$logLik + log(nrow(x$y))*(p),digits=3),"\n") } confint.overglm <- function(object,parm,level=0.95,digits=4,verbose=TRUE,...){ ee <- sqrt(diag(vcov(object))) results <- matrix(0,length(ee),2) results[,1] <- coef(object) - qnorm(1-level/2)*ee results[,2] <- coef(object) + qnorm(1-level/2)*ee rownames(results) <- rownames(object$coefficients) colnames(results) <- c("Lower limit","Upper limit") if(verbose){ cat("\n Approximate",round(100*(1-level),digits=1),"percent confidence intervals based on the Wald test \n\n") print(round(results,digits=digits)) } return(invisible(results)) } estequa.overglm <- function(model,...){ salida <- model$estfun colnames(salida) <- " " return(salida) } anova.overglm <- function(object,...,test=c("wald","lr","score","gradient"),verbose=TRUE){ test <- match.arg(test) x <- list(object,...) if(any(lapply(x,function(xx) class(xx)[1])!="overglm")) stop("Only glm-type objects are supported!!",call.=FALSE) if(length(x)==1){ terminos <- attr(object$terms,"term.labels") x[[1]] <- update(object,paste(". ~ . -",paste(terminos,collapse="-"))) for(i in 1:length(terminos)) x[[i+1]] <- update(x[[i]],paste(". ~ . + ",terminos[i])) } hast <- length(x) out_ <- matrix(0,hast-1,3) for(i in 2:hast){ vars0 <- rownames(coef(x[[i-1]])) vars1 <- rownames(coef(x[[i]])) nest <- vars0 %in% vars1 ids <- is.na(match(vars1,vars0)) if(test=="wald") sc <- crossprod(coef(x[[i]])[ids],solve(vcov(x[[i]])[ids,ids]))%*%coef(x[[i]])[ids] if(test=="lr") sc <- 2*(logLik(x[[i]])-logLik(x[[i-1]])) if(test=="score" | test=="gradient"){ envir <- environment(x[[i]]$escore) envir$weights <- x[[i]]$prior.weights n <- length(x[[i]]$prior.weights) if(is.null(x[[i]]$offset)) envir$offs <- matrix(0,n,1) else envir$offs <- as.matrix(x[[i]]$offset) if(ncol(x[[i]]$y)==2){ envir$m <- x[[i]]$y[,1] + x[[i]]$y[,2] envir$y <- x[[i]]$y[,1] }else envir$y <- x[[i]]$y envir$X <- model.matrix(as.formula(x[[i]]$formula),x[[i]]$data) envir$p <- ncol(envir$X) if(x[[i]]$family$family=="bb") familyf <- binomial(x[[i]]$family$link) else familyf <- poisson(x[[i]]$family$link) envir$familyf <- familyf theta0 <- coef(x[[i]]) theta0[ids] <- rep(0,sum(ids)) theta0[!ids] <- coef(x[[i-1]]) u0 <- x[[i]]$escore(theta0)[ids] if(test=="score"){ v0 <- solve(jacobian(x[[i]]$escore,theta0))[ids,ids] sc <- abs(crossprod(u0,v0)%*%u0) }else sc <- abs(crossprod(u0,coef(x[[i]])[ids])) } df <- sum(ids) out_[i-1,] <- cbind(sc,df,1-pchisq(sc,df)) } colnames(out_) <- c(" Chi ", " Df", " Pr(>Chi)") rownames(out_) <- paste(1:(hast-1),"vs",2:hast) if(verbose){ test <- switch(test,"lr"="Likelihood-ratio test", "wald"="Wald test", "score"="Rao's score test", "gradient"="Gradient test") cat("\n ",test,"\n\n") for(i in 1:hast) cat(paste("Model", i,": ",x[[i]]$formula[2],x[[i]]$formula[1],x[[i]]$formula[3:length(x[[i]]$formula)],collapse=""),"\n") cat("\n") printCoefmat(out_, P.values=TRUE, has.Pvalue=TRUE, digits=5, signif.legend=TRUE, cs.ind=2) } return(invisible(out_)) } dfbeta.overglm <- function(model, coefs, identify,...){ envir <- environment(model$escore) weights <- model$prior.weights envir$weights <- weights n <- length(weights) if(is.null(model$offset)) envir$offs <- matrix(0,n,1) else envir$offs <- as.matrix(model$offset) if(ncol(model$y)==2){ envir$m <- model$y[,1] + model$y[,2] envir$y <- model$y[,1] }else envir$y <- model$y envir$X <- model.matrix(model) envir$p <- ncol(envir$X) if(model$family$family=="bb") familyf <- binomial(model$family$link) else familyf <- poisson(model$family$link) envir$familyf <- familyf dfbetas <- matrix(0,n,envir$p+1) temp <- data.frame(y=model$y,X=envir$X,offs=envir$offs,weights=weights,ids=1:n) d <- ncol(temp) colnames(temp) <- c(paste("var",1:(d-1),sep=""),"ids") orden <- eval(parse(text=paste("with(temp,order(",paste(colnames(temp)[-d],collapse=","),"))",sep=""))) temp2 <- temp[orden,] envir$weights[temp2$ids[1]] <- 0 dfbetas[1,] <- -solve(jacobian(model$escore,model$coefficients))%*%model$escore(model$coefficients) for(i in 2:n){ if(all(temp2[i,-d]==temp2[i-1,-d])) dfbetas[i,] <- dfbetas[i-1,] else{envir$weights <- weights envir$weights[temp2$ids[i]] <- 0 dfbetas[i,] <- solve(jacobian(model$escore,model$coefficients))%*%model$escore(model$coefficients) } } dfbetas <- dfbetas[order(temp2$ids),] colnames(dfbetas) <- c(colnames(envir$X),"log(dispersion)") if(!missingArg(coefs)){ ids <- grep(coefs,colnames(dfbetas),ignore.case=TRUE) if(length(ids) > 0){ nano <- list(...) if(is.null(nano$labels)) labels <- 1:nrow(dfbetas) else{ labels <- nano$labels nano$labels <-NULL } nano$x <- 1:nrow(dfbetas) if(is.null(nano$xlab)) nano$xlab <- "Cluster Index (i)" if(is.null(nano$type)) nano$type <- "h" if(is.null(nano$ylab)) nano$ylab <- expression(hat(beta)-hat(beta)[("- i")]) oldpar <- par(no.readonly=TRUE) on.exit(par(oldpar)) par(mfrow=c(1,length(ids))) for(i in 1:length(ids)){ nano$y <- dfbetas[,ids[i]] nano$main <- colnames(dfbetas)[ids[i]] do.call("plot",nano) if(!missingArg(identify)){ identify(nano$x,nano$y,n=max(1,floor(abs(identify))),labels=model$ids) } } } } return(invisible(dfbetas)) } cooks.distance.overglm <- function(model, plot.it=TRUE, coefs, identify,...){ dfbetas <- dfbeta(model) met <- vcov(model) met <- met[-ncol(dfbetas),-ncol(dfbetas)] dfbetas <- dfbetas[,-ncol(dfbetas)] subst <- NULL if(!missingArg(coefs)){ ids <- grepl(coefs,colnames(dfbetas),ignore.case=TRUE) if(sum(ids) > 0){ subst <- colnames(dfbetas)[ids] dfbetas <- as.matrix(dfbetas[,ids]) met <- as.matrix(met[ids,ids]) } } CD <- as.matrix(apply((dfbetas%*%solve(met))*dfbetas,1,sum)) colnames(CD) <- "Cook's distance" if(plot.it){ nano <- list(...) if(is.null(nano$labels)) labels <- 1:nrow(dfbetas) else{ labels <- nano$labels nano$labels <- NULL } nano$x <- 1:nrow(dfbetas) nano$y <- CD if(is.null(nano$xlab)) nano$xlab <- "Index (i)" if(is.null(nano$type)) nano$type <- "h" if(is.null(nano$ylab)) nano$ylab <- expression((hat(beta)-hat(beta)[{(-~~i)}])^{T}~(Var(hat(beta)))^{-1}~(hat(beta)-hat(beta)[{(-~~i)}])) do.call("plot",nano) if(!missingArg(identify)){ identify(nano$x,nano$y,n=max(1,floor(abs(identify))),labels=model$ids) } } if(!is.null(subst)){ message("The coefficients included in the Cook's distance are:\n") message(subst) } return(invisible(CD)) } summary.overglm <- function(object,...){ cat("\nSample size: ",nrow(object$y),"\n") cat(" Family: ",switch(object$family$family,"nb1"="Negative Binomial I", "nb2"="Negative Binomial II", "nb3"="Negative Binomial III", "bb"="Beta-Binomial")) cat("\n Link: ",object$family$link) cat("\n *************************************************************\n") p <- length(object$coefficients) - 1 rownamu <- rownames(object$coefficients)[1:p] rownaphi <- "Dispersion" delta <- max(nchar(rownamu)) - nchar(rownaphi) falta <- paste(replicate(max(abs(delta)-1,0)," "),collapse="") if(delta > 0) rownaphi[1] <- paste(rownaphi[1],falta,collapse="") if(delta < 0) rownamu[1] <- paste(rownamu[1],falta,collapse="") TAB <- cbind(Estimate <- object$coefficients[1:p], StdErr <- sqrt(diag(chol2inv(object$R)))[1:p], tval <- Estimate/StdErr, p.value <- 2*pnorm(-abs(tval))) colnames(TAB) <- c("Estimate", "Std.Error", "z-value", "Pr(>|z|)") rownames(TAB) <- rownamu printCoefmat(TAB, P.values=TRUE, signif.stars=FALSE, has.Pvalue=TRUE, digits=5, dig.tst=5, signif.legend=FALSE, tst.ind=c(1,2,3)) hess <- crossprod(object$R) hess[,p+1] <- hess[,p+1]/exp(object$coefficients[p+1]) hess[p+1,] <- hess[p+1,]/exp(object$coefficients[p+1]) TAB <- cbind(Estimate <- exp(object$coefficients[p+1]), StdErr <- sqrt(diag(solve(hess)))[p+1]) colnames(TAB) <- c("Estimate", "Std.Error") rownames(TAB) <- rownaphi cat("\n") printCoefmat(TAB, digits=5, dig.tst=5, signif.legend=FALSE, tst.ind=c(1,2)) cat(" *************************************************************\n") cat(" -2*log-likelihood: ",round(-2*object$logLik,digits=3),"\n") cat(" AIC: ",round(-2*object$logLik + 2*(p+1),digits=3),"\n") cat(" BIC: ",round(-2*object$logLik + log(nrow(object$y))*(p+1),digits=3),"\n") } coef.overglm <- function(object,...){ out_ <- object$coefficients colnames(out_) <- "" return(out_) } vcov.overglm <- function(object,...){ out_ <- chol2inv(object$R) rownames(out_) <- rownames(object$R) colnames(out_) <- rownames(object$R) return(out_) } model.matrix.overglm <- function(object,...){ if(is.null(object$call$data)) m <- get_all_vars(eval(object$call$formula)) else m <- get_all_vars(eval(object$call$formula),eval(object$call$data)) modelframe <- model.frame(object$call,m) X <- model.matrix(modelframe,m) return(X) } logLik.overglm <- function(object,...){ out_ <- object$logLik attr(out_,"df") <- length(object$coefficients) class(out_) <- "logLik" return(out_) } fitted.overglm <- function(object,...) return(object$fitted.values) predict.overglm <- function(object, ...,newdata, se.fit=FALSE, type=c("link","response")){ type <- match.arg(type) if(object$family$family=="bb") familyf <- binomial(object$family$link) else familyf <- poisson(object$family$link) type <- match.arg(type) if(missingArg(newdata)){ predicts <- object$linear.predictors X <- model.matrix(object) } else{ newdata <- data.frame(newdata) mf <- model.frame(delete.response(object$terms),newdata) X <- model.matrix(delete.response(object$terms),mf) predicts <- tcrossprod(X,t(object$coefficients[1:ncol(X)])) offs <- model.offset(mf) if(!is.null(offs)) predicts <- predicts + offs } if(type=="response") predicts <- familyf$linkinv(predicts) if(se.fit){ se <- sqrt(apply((X%*%chol2inv(object$R)[1:ncol(X),1:ncol(X)])*X,1,sum)) if(type=="response") se <- se*abs(familyf$mu.eta(familyf$linkfun(predicts))) predicts <- cbind(predicts,se) colnames(predicts) <- c("fit","se.fit") }else colnames(predicts) <- c("fit") rownames(predicts) <- rep(" ",nrow(predicts)) return(predicts) } residuals.overglm <- function(object, ...,type=c("quantile","standardized","response"), plot.it=TRUE, identify){ type <- match.arg(type) mu <- object$fitted.values phi <- exp(object$coefficients[length(object$coefficients)]) y <- object$y n <- length(mu) if(object$family$family=="bb"){ m <- as.matrix(y[,1]+y[,2]) y <- as.matrix(y[,1]) res <- y/m - mu if(type=="quantile"){ alpha <- mu/phi lambda <- (1-mu)/phi temp2 <- matrix(NA,length(alpha),1) temp1 <- choose(m,y)*beta(alpha+y,m-y+lambda) const <- beta(alpha,lambda) for(i in 1:length(alpha)){ if(y[i]==0) temp2[i] <- 0 if(y[i]==1) temp2[i] <- beta(alpha[i],m[i]+lambda[i]) if(y[i]>=2){ ys <- 1:(y[i]-1) temp2[i] <- beta(alpha[i],m[i]+lambda[i]) + sum(exp(cumsum(log(alpha[i]+ys-1)-log(ys) + log(m[i]+1-ys)-log(m[i]+lambda[i]-ys))-lgamma(m[i]+alpha[i]+lambda[i]) + lgamma(m[i]+lambda[i])+lgamma(alpha[i]))) } } res <- (temp2/const) + (temp1/const)*runif(n) res <- qnorm(ifelse(ifelse(res<1e-16,1e-16,res)>1-(1e-16),1-(1e-16),res)) } if(type=="standardized") res <- (y - m*mu)/sqrt(m*mu*(1-mu)*(1 + (m-1)*phi/(phi+1))) } if(object$family$family=="nb3"){ res <- y - mu if(type=="quantile"){ res <- pnbinom(y-1,mu=mu,size=mu/phi) + dnbinom(y,mu=mu,size=1/(phi*mu))*runif(n) res <- qnorm(ifelse(ifelse(res<1e-16,1e-16,res)>1-(1e-16),1-(1e-16),res)) } if(type=="standardized") res <- (y-mu)/sqrt((phi+1)*mu) } if(object$family$family=="nb2"){ res <- y - mu if(type=="quantile"){ res <- pnbinom(y-1,mu=mu,size=mu/phi) + dnbinom(y,mu=mu,size=mu/phi)*runif(n) res <- qnorm(ifelse(ifelse(res<1e-16,1e-16,res)>1-(1e-16),1-(1e-16),res)) } if(type=="standardized") res <- (y-mu)/sqrt((phi+1)*mu) } if(object$family$family=="nb1"){ res <- y - mu if(type=="quantile"){ res <- pnbinom(y-1,mu=mu,size=1/phi) + dnbinom(y,mu=mu,size=1/phi)*runif(n) res <- qnorm(ifelse(ifelse(res<1e-16,1e-16,res)>1-(1e-16),1-(1e-16),res)) } if(type=="standardized") res <- (y-mu)/sqrt(mu + phi*mu^2) } if(plot.it){ nano <- list(...) nano$x <- object$fitted.values nano$y <- res if(is.null(nano$ylim)) nano$ylim <- c(min(-3.5,min(res)),max(+3.5,max(res))) if(is.null(nano$xlab)) nano$xlab <- "Fitted values" if(is.null(nano$ylab)) nano$ylab <- paste(type," - type residuals",sep="") if(is.null(nano$pch)) nano$pch <- 20 if(is.null(nano$labels)) labels <- 1:length(res) else{ labels <- nano$labels nano$labels <- NULL } do.call("plot",nano) abline(h=-3,lty=3) abline(h=+3,lty=3) if(!missingArg(identify)) identify(object$fitted.values,res,n=max(1,floor(abs(identify))),labels=labels) } res <- as.matrix(res) colnames(res) <- "Residuals" return(invisible(res)) } AIC.overglm <- function(object,...,k=2,verbose=TRUE){ x <- list(object,...) if(!all(unlist(lapply(x,function(a) return(class(a)[1]=="overglm" | class(a)[1]=="glm"))))) stop("Only glm- and overglm-type objects are supported!!",call.=FALSE) results <- matrix(NA,length(x),3) results2 <- matrix(NA,length(x),4) rows <- matrix(NA,length(x),1) call. <- match.call() for(i in 1:length(x)){ results[i,1] <- -2*sum(logLik(x[[i]])) results[i,2] <- attr(logLik(x[[i]]),"df") results[i,3] <- -2*sum(logLik(x[[i]])) + k*attr(logLik(x[[i]]),"df") results2[i,1] <- as.character(call.[i+1]) results2[i,2] <- switch(x[[i]]$family$family,"nb1"="Negative Binomial I", "nb2"="Negative Binomial II", "nb3"="Negative Binomial III", "bb"="Beta-Binomial", "poisson"="Poisson", "binomial"="Binomial", "Gamma"="Gamma", "gaussian"="Gaussian", "inverse.gaussian"="Inverse Gaussian") results2[i,3] <- x[[i]]$family$link results2[i,4] <- paste(c(ifelse(is.null(attr(x[[i]]$terms,"offset")),attr(x[[i]]$terms,"intercept"), paste(c(attr(x[[i]]$terms,"intercept"),as.character(attr(x[[i]]$terms,"variables"))[[attr(x[[i]]$terms,"offset")+1]]),collapse=" + ")), attr(x[[i]]$terms,"term.labels")),collapse=" + ") } if(nrow(results) > 1){ if(verbose){ cat("\n") if(all(results2[,2]==results2[1,2])) cat("\n Family: ",results2[1,2],"\n") if(all(results2[,3]==results2[1,3])) cat(" Link: ",results2[1,3],"\n") if(all(results2[,4]==results2[1,4])) cat("Predictor: ",results2[1,4],"\n") cat("\n") ids <- c(TRUE,!all(results2[,2]==results2[1,2]),!all(results2[,3]==results2[1,3]),!all(results2[,4]==results2[1,4])) temp <- as.matrix(results2[,ids]) out_ <- data.frame(temp,results) colnames(out_) <- c(c("Object","Family","Link","Predictor")[ids],"-2*log-likelihood","df","AIC ") print(out_,row.names=FALSE) return(invisible(out_)) } }else return(invisible(round(results[,3],digits=3))) } BIC.overglm <- function(object,...,verbose=TRUE){ x <- list(object,...) if(!all(unlist(lapply(x,function(a) return(class(a)[1]=="overglm" | class(a)[1]=="glm"))))) stop("Only glm- and overglm-type objects are supported!!",call.=FALSE) results <- matrix(NA,length(x),3) results2 <- matrix(NA,length(x),4) rows <- matrix(NA,length(x),1) call. <- match.call() for(i in 1:length(x)){ results[i,1] <- -2*sum(logLik(x[[i]])) results[i,2] <- attr(logLik(x[[i]]),"df") results[i,3] <- -2*sum(logLik(x[[i]])) + log(nrow(model.matrix(x[[i]])))*attr(logLik(x[[i]]),"df") results2[i,1] <- as.character(call.[i+1]) results2[i,2] <- switch(x[[i]]$family$family,"nb1"="Negative Binomial I", "nb2"="Negative Binomial II", "nb3"="Negative Binomial III", "bb"="Beta-Binomial", "poisson"="Poisson", "binomial"="Binomial", "Gamma"="Gamma", "gaussian"="Gaussian", "inverse.gaussian"="Inverse Gaussian") results2[i,3] <- x[[i]]$family$link results2[i,4] <- paste(c(ifelse(is.null(attr(x[[i]]$terms,"offset")),attr(x[[i]]$terms,"intercept"), paste(c(attr(x[[i]]$terms,"intercept"),as.character(attr(x[[i]]$terms,"variables"))[[attr(x[[i]]$terms,"offset")+1]]),collapse=" + ")), attr(x[[i]]$terms,"term.labels")),collapse=" + ") } if(nrow(results) > 1){ if(verbose){ cat("\n") if(all(results2[,2]==results2[1,2])) cat("\n Family: ",results2[1,2],"\n") if(all(results2[,3]==results2[1,3])) cat(" Link: ",results2[1,3],"\n") if(all(results2[,4]==results2[1,4])) cat("Predictor: ",results2[1,4],"\n") cat("\n") ids <- c(TRUE,!all(results2[,2]==results2[1,2]),!all(results2[,3]==results2[1,3]),!all(results2[,4]==results2[1,4])) temp <- as.matrix(results2[,ids]) out_ <- data.frame(temp,results) colnames(out_) <- c(c("Object","Family","Link","Predictor")[ids],"-2*log-likelihood","df","BIC ") print(out_,row.names=FALSE) return(invisible(out_)) } }else return(invisible(round(results[,3],digits=3))) } envelope.overglm <- function(object, rep=100, conf=0.95, type=c("quantile","response","standardized"), plot.it=TRUE, identify, ...){ type <- match.arg(type) p <- length(coef(object)) X <- model.matrix(object) mu <- fitted(object) n <- length(mu) rep <- max(1,floor(abs(rep))) e <- matrix(0,n,rep) bar <- txtProgressBar(min=0, max=rep, initial=0, width=min(50,rep), char="+", style=3) i <- 1 while(i <= rep){ if(object$family$family=="bb"){ phi <- exp(coef(object)[p]) size <- apply(object$y,1,sum) prob <- rbeta(n,shape1=mu*((phi+1)/phi-1),shape2=(1-mu)*((phi+1)/phi-1)) resp <- rbinom(n,size=size,prob=prob) resp <- cbind(resp,size-resp) }else{ lambda <- switch(object$family$family, nb1 = rgamma(n,scale=mu*exp(coef(object)[p]),shape=1/exp(coef(object)[p])), nb2 = rgamma(n,scale=exp(coef(object)[p]),shape=mu/exp(coef(object)[p])), nb3 = rgamma(n,scale=mu^2*exp(coef(object)[p]),shape=1/(mu*exp(coef(object)[p])))) resp <- rpois(n,lambda=lambda) } fits <- try(overglm(resp ~ 0 + X + offset(object$offset),weights=object$weights,family=object$family$family,start=c(coef(object)[-p]),si.mu.la.ti.on=TRUE),silent=TRUE) rs <- try(residuals(fits,type=type,plot.it=FALSE),silent=TRUE) if(is.list(fits)){ if(fits$converged==TRUE){ e[,i] <- sort(rs) setTxtProgressBar(bar,i) i <- i + 1 } } } close(bar) alpha <- 1 - max(min(abs(conf),1),0) e <- as.matrix(e[,1:(i-1)]) es <- apply(e,1,function(x) return(quantile(x,probs=c(alpha/2,0.5,1-alpha/2)))) rd <- residuals(object,type=type,plot.it=FALSE) if(plot.it){ rango <- 1.1*range(rd) oldpar <- par(no.readonly=TRUE) on.exit(par(oldpar)) par(pty="s") qqnorm(es[2,],axes=FALSE,xlab="",ylab="",main="", type="l",ylim=rango,lty=3) par(new=TRUE) qqnorm(es[1,],axes=FALSE,xlab="",ylab="",main="", type="l",ylim=rango,lty=1) par(new=TRUE) qqnorm(es[3,],axes=FALSE,xlab="",ylab="", main="", type="l",ylim=rango,lty=1) par(new=TRUE) nano <- list(...) nano$y <- rd nano$type <- "p" nano$ylim <- rango if(is.null(nano$labels)) labels <- 1:nrow(X) else labels <- nano$labels if(is.null(nano$pch)) nano$pch <- 20 if(is.null(nano$col)) nano$col <- "black" if(is.null(nano$xlab)) nano$xlab <- "Expected quantiles" if(is.null(nano$ylab)) nano$ylab <- "Observed quantiles" if(is.null(nano$main)) nano$main <- paste0("Normal QQ plot with simulated envelope\n of ",type,"-type residuals") if(is.null(nano$labels)) labels <- 1:length(rd) else{ labels <- nano$labels nano$labels <- NULL } outm <- do.call("qqnorm",nano) if(!missingArg(identify)){ identify(outm$x,outm$y,labels=labels,n=max(1,floor(abs(identify))),labels=labels) } } out_ <- cbind(t(es),rd) colnames(out_) <- c("Lower limit","Median","Upper limit","Residuals") return(invisible(out_)) } stepCriterion.overglm <- function(model, criterion=c("bic","aic","p-value"), test=c("wald","score","lr","gradient"), direction=c("forward","backward"), levels=c(0.05,0.05), trace=TRUE, scope, ...){ xxx <- list(...) if(is.null(xxx$k)) k <- 2 else k <- xxx$k criterion <- match.arg(criterion) direction <- match.arg(direction) test <- match.arg(test) if(test=="wald") test2 <- "Wald test" if(test=="score") test2 <- "Rao's score test" if(test=="lr") test2 <- "likelihood-ratio test" if(test=="gradient") test2 <- "Gradient test" criters <- c("aic","bic","adjr2","p-value") criters2 <- c("AIC","BIC","adj.R-squared","P(Chisq>)(*)") sentido <- c(1,1,-1,1) if(missingArg(scope)){ upper <- formula(eval(model$call$formula)) lower <- formula(eval(model$call$formula)) lower <- formula(paste(deparse(lower[[2]]),"~",attr(terms(lower),"intercept"))) }else{ lower <- scope$lower upper <- scope$upper } U <- attr(terms(upper),"term.labels") fs <- attr(terms(upper),"factors") long <- max(nchar(U)) + 2 nonename <- paste("<none>",paste(replicate(max(long-6,0)," "),collapse=""),collapse="") cambio <- "" paso <- 1 tol <- TRUE if(trace){ cat("\n Family: ",model$family$family,"\n") cat("Link function: ",model$family$link,"\n") } if(direction=="forward"){ oldformula <- lower if(trace){ cat("\nInitial model:\n") cat(paste("~",as.character(oldformula)[length(oldformula)],sep=" "),"\n\n") cat("\nStep",0,":\n") } out_ <- list(initial=paste("~",as.character(oldformula)[length(oldformula)],sep=" "),direction=direction,criterion=criters2[criters==criterion]) while(tol){ oldformula <- update(oldformula,paste(as.character(eval(model$call$formula))[2],"~ .")) fit.x <- update(model,formula=oldformula,start=NULL) S <- attr(terms(oldformula),"term.labels") entran <- seq(1:length(U))[is.na(match(U,S))] salen <- seq(1:length(U))[!is.na(match(U,S))] mas <- TRUE fsalen <- matrix(NA,length(salen),5) if(length(salen) > 0){ nombres <- matrix("",length(salen),1) for(i in 1:length(salen)){ salida <- apply(as.matrix(fs[,salen[i]]*fs[,-c(entran,salen[i])]),2,sum) if(all(salida < sum(fs[,salen[i]])) & U[salen[i]]!=cambio){ newformula <- update(oldformula, paste("~ . -",U[salen[i]])) fit.0 <- update(model,formula=newformula,start=NULL) fsalen[i,1] <- fit.0$df.residual - fit.x$df.residual fsalen[i,5] <- anova(fit.0,fit.x,test=test,verbose=FALSE)[1,1] fsalen[i,5] <- sqrt(9*fsalen[i,1]/2)*((fsalen[i,5]/fsalen[i,1])^(1/3) - 1 + 2/(9*fsalen[i,1])) fsalen[i,2] <- AIC(fit.0,k=k) fsalen[i,3] <- BIC(fit.0) fsalen[i,4] <- 0 nombres[i] <- U[salen[i]] } } rownames(fsalen) <- paste("-",nombres) if(criterion=="p-value" & any(!is.na(fsalen))){ colnames(fsalen) <- c("df",criters2) if(nrow(fsalen) > 1){ fsalen <- fsalen[order(fsalen[,5]),] fsalen <- na.omit(fsalen) attr(fsalen,"na.action") <- attr(fsalen,"class") <- NULL } fsalen[,5] <- 1-pchisq((sqrt(2/(9*fsalen[,1]))*fsalen[,5] + 1 - 2/(9*fsalen[,1]))^3*fsalen[,1],fsalen[,1]) if(fsalen[1,5] > levels[2]){ fsalen <- rbind(fsalen,c(NA,AIC(fit.x,k=k),BIC(fit.x),NA,NA)) rownames(fsalen)[nrow(fsalen)] <- nonename fsalen <- fsalen[,-4] if(trace){ printCoefmat(fsalen,P.values=TRUE,has.Pvalue=TRUE,na.print="",cs.ind=2:(ncol(fsalen)-2), signif.stars=FALSE,tst.ind=ncol(fsalen)-1,dig.tst=4,digits=5) cat("\nStep",paso,":",rownames(fsalen)[1],"\n\n") } mas <- FALSE oldformula <- update(oldformula, paste("~ .",rownames(fsalen)[1])) paso <- paso + 1 cambio <- substring(rownames(fsalen)[1],3) } } } if(length(entran) > 0 & mas){ fentran <- matrix(NA,length(entran),5) nombres <- matrix("",length(entran),1) for(i in 1:length(entran)){ salida <- apply(as.matrix(fs[,-c(salen,entran[i])]),2,function(x) sum(fs[,entran[i]]*x)!=sum(x)) if(all(salida) & U[entran[i]]!=cambio){ newformula <- update(oldformula, paste("~ . +",U[entran[i]])) fit.0 <- update(model,formula=newformula,adjr2=FALSE,start=NULL) fentran[i,1] <- fit.x$df.residual - fit.0$df.residual fentran[i,5] <- anova(fit.x,fit.0,test=test,verbose=FALSE)[1,1] fentran[i,5] <- sqrt(9*fentran[i,1]/2)*((fentran[i,5]/fentran[i,1])^(1/3) - 1 + 2/(9*fentran[i,1])) fentran[i,2] <- AIC(fit.0,k=k) fentran[i,3] <- BIC(fit.0) fentran[i,4] <- 0 nombres[i] <- U[entran[i]] } } rownames(fentran) <- paste("+",nombres) if(criterion=="p-value"){ colnames(fentran) <- c("df",criters2) if(nrow(fentran) > 1){ fentran <- fentran[order(-fentran[,5]),] fentran <- na.omit(fentran) attr(fentran,"na.action") <- attr(fentran,"class") <- NULL } fentran[,5] <- 1-pchisq((sqrt(2/(9*fentran[,1]))*fentran[,5] + 1 - 2/(9*fentran[,1]))^3*fentran[,1],fentran[,1]) fentran <- rbind(fentran,c(NA,AIC(fit.x,k=k),BIC(fit.x),NA,NA)) rownames(fentran)[nrow(fentran)] <- nonename fentran <- fentran[,-4] if(trace) printCoefmat(fentran,P.values=TRUE,has.Pvalue=TRUE,na.print="",cs.ind=2:(ncol(fentran)-2), signif.stars=FALSE,tst.ind=ncol(fentran)-1,dig.tst=4,digits=5) if(fentran[1,ncol(fentran)] < levels[1]){ if(trace) cat("\nStep",paso,":",rownames(fentran)[1],"\n\n") paso <- paso + 1 cambio <- substring(rownames(fentran)[1],3) oldformula <- update(oldformula, paste("~ .",rownames(fentran)[1])) }else tol <- FALSE } } if(length(entran) > 0 & criterion!="p-value"){ if(any(!is.na(fsalen))) fentran <- rbind(fentran,fsalen) fentran[,5] <- 1-pchisq((sqrt(2/(9*fentran[,1]))*fentran[,5] + 1 - 2/(9*fentran[,1]))^3*fentran[,1],fentran[,1]) fentran <- rbind(fentran,c(0,AIC(fit.x,k=k),BIC(fit.x),0,0)) rownames(fentran)[nrow(fentran)] <- nonename ids <- criters == criterion colnames(fentran) <- c("df",criters2) fentran <- na.omit(fentran) attr(fentran,"na.action") <- attr(fentran,"class") <- NULL fentran[nrow(fentran),c(1,5)] <- NA fentran <- fentran[order(sentido[ids]*fentran[,c(FALSE,ids)]),] if(rownames(fentran)[1]!=nonename){ fentran <- fentran[,-4] if(trace){ printCoefmat(fentran,P.values=TRUE,has.Pvalue=TRUE,na.print="",cs.ind=2:(ncol(fentran)-2), signif.stars=FALSE,tst.ind=ncol(fentran)-1,dig.tst=4,digits=5) cat("\nStep",paso,":",rownames(fentran)[1],"\n\n") } paso <- paso + 1 cambio <- substring(rownames(fentran)[1],3) oldformula <- update(oldformula, paste("~ .",rownames(fentran)[1])) }else{ tol <- FALSE fentran <- fentran[,-4] if(trace) printCoefmat(fentran,P.values=TRUE,has.Pvalue=TRUE,na.print="",cs.ind=2:(ncol(fentran)-2), signif.stars=FALSE,tst.ind=ncol(fentran)-1,dig.tst=4,digits=5) } } if(length(entran) == 0 & mas) tol <- FALSE } } if(direction=="backward"){ oldformula <- upper if(trace){ cat("\nInitial model:\n") cat(paste("~",as.character(oldformula)[length(oldformula)],sep=" "),"\n\n") cat("\nStep",0,":\n") } out_ <- list(initial=paste("~",as.character(oldformula)[length(oldformula)],sep=" "),direction=direction,criterion=criters2[criters==criterion]) while(tol){ oldformula <- update(oldformula,paste(as.character(eval(model$call$formula))[2],"~ .")) fit.x <- update(model,formula=oldformula,start=NULL) S <- attr(terms(oldformula),"term.labels") entran <- seq(1:length(U))[is.na(match(U,S))] salen <- seq(1:length(U))[!is.na(match(U,S))] menos <- TRUE fentran <- matrix(NA,length(entran),5) if(length(entran) > 0){ nombres <- matrix("",length(entran),1) for(i in 1:length(entran)){ salida <- apply(as.matrix(fs[,-c(salen,entran[i])]),2,function(x) sum(fs[,entran[i]]*x)!=sum(x)) if(all(salida) & U[entran[i]]!=cambio){ newformula <- update(oldformula, paste("~ . +",U[entran[i]])) fit.0 <- update(model,formula=newformula,adjr2=FALSE,start=NULL) fentran[i,1] <- fit.x$df.residual - fit.0$df.residual fentran[i,5] <- anova(fit.x,fit.0,test=test,verbose=FALSE)[1,1] fentran[i,5] <- sqrt(9*fentran[i,1]/2)*((fentran[i,5]/fentran[i,1])^(1/3) - 1 + 2/(9*fentran[i,1])) fentran[i,2] <- AIC(fit.0,k=k) fentran[i,3] <- BIC(fit.0) fentran[i,4] <- 0 nombres[i] <- U[entran[i]] } } rownames(fentran) <- paste("+",nombres) if(criterion=="p-value" & any(!is.na(fentran))){ colnames(fentran) <- c("df",criters2) if(nrow(fentran) > 1){ fentran <- fentran[order(-fentran[,5]),] fentran <- na.omit(fentran) attr(fentran,"na.action") <- attr(fentran,"class") <- NULL } fentran[,5] <- 1-pchisq((sqrt(2/(9*fentran[,1]))*fentran[,5] + 1 - 2/(9*fentran[,1]))^3*fentran[,1],fentran[,1]) if(fentran[1,5] < levels[1]){ fentran <- rbind(fentran,c(NA,AIC(fit.x,k=k),BIC(fit.x),NA,NA)) rownames(fentran)[nrow(fentran)] <- nonename fentran <- fentran[,-4] if(trace){ printCoefmat(fentran,P.values=TRUE,has.Pvalue=TRUE,na.print="",cs.ind=2:(ncol(fentran)-2), signif.stars=FALSE,tst.ind=ncol(fentran)-1,dig.tst=4,digits=5) cat("\nStep",paso,":",rownames(fentran)[1],"\n\n") } menos <- FALSE oldformula <- update(oldformula, paste("~ .",rownames(fentran)[1])) paso <- paso + 1 cambio <- substring(rownames(fentran)[1],3) } } } if(length(salen) > 0 & menos){ fsalen <- matrix(NA,length(salen),5) nombres <- matrix("",length(salen),1) for(i in 1:length(salen)){ salida <- apply(as.matrix(fs[,salen[i]]*fs[,-c(entran,salen[i])]),2,sum) if(all(salida < sum(fs[,salen[i]]))){ newformula <- update(oldformula, paste("~ . -",U[salen[i]])) fit.0 <- update(model,formula=newformula,start=NULL) fsalen[i,1] <- fit.0$df.residual - fit.x$df.residual fsalen[i,5] <- anova(fit.0,fit.x,test=test,verbose=FALSE)[1,1] fsalen[i,5] <- sqrt(9*fsalen[i,1]/2)*((fsalen[i,5]/fsalen[i,1])^(1/3) - 1 + 2/(9*fsalen[i,1])) fsalen[i,2] <- AIC(fit.0,k=k) fsalen[i,3] <- BIC(fit.0) fsalen[i,4] <- 0 nombres[i] <- U[salen[i]] } } rownames(fsalen) <- paste("-",nombres) if(criterion=="p-value"){ colnames(fsalen) <- c("df",criters2) if(nrow(fsalen) > 1){ fsalen <- fsalen[order(fsalen[,5]),] fsalen <- na.omit(fsalen) attr(fsalen,"na.action") <- attr(fsalen,"class") <- NULL } fsalen[,5] <- 1-pchisq((sqrt(2/(9*fsalen[,1]))*fsalen[,5] + 1 - 2/(9*fsalen[,1]))^3*fsalen[,1],fsalen[,1]) fsalen <- rbind(fsalen,c(NA,AIC(fit.x,k=k),BIC(fit.x),NA,NA)) rownames(fsalen)[nrow(fsalen)] <- nonename fsalen <- fsalen[,-4] if(trace) printCoefmat(fsalen,P.values=TRUE,has.Pvalue=TRUE,na.print="",cs.ind=2:(ncol(fsalen)-2), signif.stars=FALSE,tst.ind=ncol(fsalen)-1,dig.tst=4,digits=5) if(fsalen[1,ncol(fsalen)] > levels[2]){ if(trace) cat("\nStep",paso,":",rownames(fsalen)[1],"\n\n") paso <- paso + 1 cambio <- substring(rownames(fsalen)[1],3) oldformula <- update(oldformula, paste("~ .",rownames(fsalen)[1])) }else tol <- FALSE } } if(criterion!="p-value"){ if(any(!is.na(fentran))) fsalen <- rbind(fsalen,fentran) fsalen[,5] <- 1-pchisq((sqrt(2/(9*fsalen[,1]))*fsalen[,5] + 1 - 2/(9*fsalen[,1]))^3*fsalen[,1],fsalen[,1]) fsalen <- rbind(fsalen,c(0,AIC(fit.x,k=k),BIC(fit.x),0,0)) rownames(fsalen)[nrow(fsalen)] <- nonename ids <- criters == criterion colnames(fsalen) <- c("df",criters2) fsalen <- na.omit(fsalen) attr(fsalen,"na.action") <- attr(fsalen,"class") <- NULL fsalen[nrow(fsalen),c(1,5)] <- NA fsalen <- fsalen[order(sentido[ids]*fsalen[,c(FALSE,ids)]),] if(rownames(fsalen)[1]!=nonename){ fsalen <- fsalen[,-4] if(trace){ printCoefmat(fsalen,P.values=TRUE,has.Pvalue=TRUE,na.print="",cs.ind=2:(ncol(fsalen)-2), signif.stars=FALSE,tst.ind=ncol(fsalen)-1,dig.tst=4,digits=5) cat("\nStep",paso,":",rownames(fsalen)[1],"\n\n") } paso <- paso + 1 cambio <- substring(rownames(fsalen)[1],3) oldformula <- update(oldformula, paste("~ .",rownames(fsalen)[1])) }else{ tol <- FALSE fsalen <- fsalen[,-4] if(trace) printCoefmat(fsalen,P.values=TRUE,has.Pvalue=TRUE,na.print="",cs.ind=2:(ncol(fsalen)-2), signif.stars=FALSE,tst.ind=ncol(fsalen)-1,dig.tst=4,digits=5) } } if(length(salen) == 0 & menos) tol <- FALSE } } if(trace){ cat("\n\nFinal model:\n") cat(paste("~",as.character(oldformula)[length(oldformula)],sep=" "),"\n\n") cat("****************************************************************************") cat("\n(*) p-values of the",test2) if(criterion=="p-value"){ cat("\n Effects are included when their p-values are lower than",levels[1]) cat("\n Effects are dropped when their p-values are higher than",levels[2]) } if(!is.null(xxx$k)) cat("The magnitude of the penalty in the AIC was set to be ",xxx$k) cat("\n") } out_$final <- paste("~",as.character(oldformula)[length(oldformula)],sep=" ") return(invisible(out_)) }
testthat::context("test-reconstruct_pattern_cluster") pattern_recon <- reconstruct_pattern_cluster(pattern = species_b, n_random = 3, max_runs = 1, verbose = FALSE) pattern_recon_ni <- reconstruct_pattern_cluster(pattern = species_b, n_random = 2, max_runs = 1, return_input = FALSE, verbose = FALSE) pattern_recon_comp_fast <- reconstruct_pattern_cluster(pattern = species_b, n_random = 1, max_runs = 1, comp_fast = 0, verbose = FALSE) pattern_recon_energy <- reconstruct_pattern_cluster(pattern = species_b, e_threshold = 0.1, n_random = 3, verbose = FALSE) pattern_recon_simple <- reconstruct_pattern_cluster(pattern = species_b, n_random = 1, max_runs = 1, return_input = FALSE, simplify = TRUE, verbose = FALSE) testthat::test_that("Output is a long as n_random for reconstruct_pattern_cluster", { testthat::expect_is(pattern_recon, class = "rd_pat") testthat::expect_type(pattern_recon$randomized, type = "list") testthat::expect_length(pattern_recon$randomized, n = 3) }) testthat::test_that("Output includes randomizations and original pattern for reconstruct_pattern_cluster", { testthat::expect_named(pattern_recon$randomized, expected = paste0("randomized_", c(1:3))) testthat::expect_equal(pattern_recon$observed, expected = spatstat.geom::unmark(species_b)) }) testthat::test_that("Reconstructed patterns have same number of points", { testthat::expect_true(all(vapply(pattern_recon$randomized, FUN.VALUE = logical(1), function(x) x$n == species_b$n))) }) testthat::test_that("Input pattern can not be returned for reconstruct_pattern_cluster", { testthat::expect_equal(object = pattern_recon_ni$observed, expected = "NA") }) testthat::test_that("Argument comp_fast = TRUE is working", { testthat::expect_is(pattern_recon_comp_fast, "rd_pat") }) testthat::test_that("Reconstruction stops if e_threshold is reached", { energy <- calculate_energy(pattern_recon_energy, verbose = FALSE) testthat::expect_true(object = all(energy < 0.1)) }) testthat::test_that("simplify works for reconstruct_pattern_cluster", { testthat::expect_is(pattern_recon_simple, "ppp") }) testthat::test_that("reconstruct_pattern_cluster returns error if n_random < 1", { testthat::expect_error(reconstruct_pattern_cluster(pattern = species_b, n_random = -5, verbose = FALSE), regexp = "n_random must be >= 1.", fixed = TRUE) }) testthat::test_that("reconstruct_pattern_cluster returns error if weights are wrong ", { testthat::expect_error(reconstruct_pattern_cluster(pattern = species_b, weights = c(0, 0), verbose = FALSE), regexp = "The sum of 'weights' must be 0 < sum(weights) <= 1.", fixed = TRUE) testthat::expect_error(reconstruct_pattern_cluster(pattern = species_b, weights = c(1, 1), verbose = FALSE), regexp = "The sum of 'weights' must be 0 < sum(weights) <= 1.", fixed = TRUE) }) testthat::test_that("reconstruct_pattern_cluster returns warnings", { testthat::expect_warning(reconstruct_pattern_cluster(pattern = species_b, n_random = 2, max_runs = 1, return_input = FALSE, simplify = TRUE), regexp = "'simplify = TRUE' not possible for 'n_random > 1'.", fixed = TRUE) testthat::expect_warning(reconstruct_pattern_cluster(pattern = species_b, n_random = 1, max_runs = 1, simplify = TRUE), regexp = "'simplify = TRUE' not possible for 'return_input = TRUE'.", fixed = TRUE) })
isolate({ visFun <- renderPrint({ "foo" }) visFun() invisFun <- renderPrint({ invisible("foo") }) invisFun() multiprintFun <- renderPrint({ print("foo"); "bar" }) multiprintFun() nullFun <- renderPrint({ NULL }) nullFun() invisNullFun <- renderPrint({ invisible(NULL) }) invisNullFun() vecFun <- renderPrint({ 1:5 }) vecFun() visFun <- renderText({ "foo" }) visFun() invisFun <- renderText({ invisible("foo") }) invisFun() multiprintFun <- renderText({ print("foo"); "bar" }) multiprintFun() nullFun <- renderText({ NULL }) nullFun() invisNullFun <- renderText({ invisible(NULL) }) invisNullFun() vecFun <- renderText({ 1:5 }) vecFun() })
makeNamespace <- function(name, version = NULL, lib = NULL) { impenv <- new.env(parent = .BaseNamespaceEnv, hash = TRUE) attr(impenv, "name") <- paste("imports", name, sep=":") env <- new.env(parent = impenv, hash = TRUE) name <- as.character(as.name(name)) version <- as.character(version) info <- new.env(hash = TRUE, parent = baseenv()) assign(".__NAMESPACE__.", info, envir = env) assign("spec", c(name = name,version = version), envir = info) setNamespaceInfo(env, "exports", new.env(hash = TRUE, parent = baseenv())) dimpenv <- new.env(parent = baseenv(), hash = TRUE) attr(dimpenv, "name") <- paste("lazydata", name, sep=":") setNamespaceInfo(env, "lazydata", dimpenv) setNamespaceInfo(env, "imports", list("base" = TRUE)) setNamespaceInfo(env, "path", normalizePath(file.path(lib, name), "/", TRUE)) setNamespaceInfo(env, "dynlibs", NULL) setNamespaceInfo(env, "S3methods", matrix(NA_character_, 0L, 3L)) assign(".__S3MethodsTable__.", new.env(hash = TRUE, parent = baseenv()), envir = env) registerNamespace(name, env) env }
.crit_cataXj=function(Xj, index, Stot){ n=nrow(Xj[[1]]) nblo=length(Xj) nvar=ncol(Xj[[1]]) S=Stot[index, index] if (length(index)>1) { ressvd=svd(S) u=ressvd$u[,1] u=u*sign(u[1]) lambda=ressvd$d[1] }else{ u=1 lambda=1 } C=matrix(0,n,nvar) for (j in 1:nblo) { C=C+(u[j]*Xj[[j]]) } Q=nblo-lambda return(list(S=S,C=C,alpha=u,lambda=lambda,Q=Q)) }
gibbs_mult_fpca = function(formula, Kt=5, Kp = 2, data=NULL, verbose = TRUE, N.iter = 5000, N.burn = 1000, sig2.me = .01, alpha = .1, SEED = NULL){ call <- match.call() tf <- terms.formula(formula, specials = "re") trmstrings <- attr(tf, "term.labels") specials <- attr(tf, "specials") where.re <-specials$re - 1 if (length(where.re) != 0) { mf_fixed <- model.frame(tf[-where.re], data = data) formula = tf[-where.re] responsename <- attr(tf, "variables")[2][[1]] REs = list(NA, NA) REs[[1]] = names(eval(parse(text=attr(tf[where.re], "term.labels")), envir=data)$data) REs[[2]]=paste0("(1|",REs[[1]],")") formula2 <- paste(responsename, "~", REs[[1]], sep = "") newfrml <- paste(responsename, "~", REs[[2]], sep = "") newtrmstrings <- attr(tf[-where.re], "term.labels") formula2 <- formula(paste(c(formula2, newtrmstrings), collapse = "+")) newfrml <- formula(paste(c(newfrml, newtrmstrings), collapse = "+")) mf <- model.frame(formula2, data = data) if (length(data) == 0) { Z = lme4::mkReTrms(lme4::findbars(newfrml), fr = mf)$Zt } else { Z = lme4::mkReTrms(lme4::findbars(newfrml), fr = data)$Zt } } else { mf_fixed <- model.frame(tf, data = data) } mt_fixed <- attr(mf_fixed, "terms") Y <- model.response(mf_fixed, "numeric") X <- model.matrix(mt_fixed, mf_fixed, contrasts) if(!is.null(SEED)) { set.seed(SEED) } W.des = X Z.des = t(as.matrix(Z)) I = dim(Z.des)[2] D = dim(Y)[2] Ji = as.numeric(apply(Z.des, 2, sum)) IJ = sum(Ji) SUBJ = factor(apply(Z.des %*% 1:dim(Z.des)[2], 1, sum)) firstobs = rep(NA, length(unique(SUBJ))) for(i in 1:length(unique(SUBJ))){ firstobs[i] = which(SUBJ %in% unique(SUBJ)[i])[1] } Wi = W.des[firstobs,] Theta = bs(1:D, df = Kt, intercept=TRUE, degree=3) diff0 = diag(1, D, D) diff2 = matrix(rep(c(1,-2,1, rep(0, D-2)), D-2)[1:((D-2)*D)], D-2, D, byrow = TRUE) P0 = t(Theta) %*% t(diff0) %*% diff0 %*% Theta P2 = t(Theta) %*% t(diff2) %*% diff2 %*% Theta P.mat = alpha * P0 + (1-alpha) * P2 A = .01 B = .01 p = dim(W.des)[2] BW = array(NA, c(Kt, p, N.iter)) BW[,,1] = matrix(0, Kt, p) bw = BW[,,1] BZ = array(NA, c(Kt, I, N.iter)) BZ[,,1] = matrix(0, Kt, I) bz = BZ[,,1] Bpsi = array(NA, c(Kt, Kp, N.iter)) Bpsi[,,1] = matrix(0, Kt, Kp) bpsi = Bpsi[,,1] C = array(NA, c(IJ, Kp, N.iter)) C[,,1] = matrix(rnorm(IJ*Kp, 0, .01), IJ, Kp) c.mat = C[,,1] SIGMA = rep(NA, N.iter) SIGMA[1] = sig2.me sig2.me = SIGMA[1] LAMBDA.BW = matrix(NA, nrow = N.iter, ncol = p) LAMBDA.BW[1,] = rep(1, p) lambda.bw = LAMBDA.BW[1,] LAMBDA.BZ = rep(NA, N.iter) LAMBDA.BZ[1] = 1 lambda.ranef = LAMBDA.BZ[1] LAMBDA.PSI = matrix(NA, nrow = N.iter, ncol = Kp) LAMBDA.PSI[1,] = rep(1,Kp) lambda.psi = LAMBDA.PSI[1,] Y.vec = as.vector(t(Y)) t.designmat.W = t(kronecker(W.des, Theta)) sig.W = kronecker(t(W.des) %*% W.des, t(Theta)%*% Theta) beta.cur = t(bw) %*% t(Theta) fixef.cur = W.des %*% beta.cur ranef.cur = Z.des %*% t(bz) %*% t(Theta) psi.cur = t(bpsi) %*% t(Theta) pcaef.cur = c.mat %*% psi.cur if(verbose) { cat("Beginning Sampler \n") } for(i in 1:N.iter){ mean.cur = as.vector(t(ranef.cur + pcaef.cur)) sigma = solve( (1/sig2.me) * sig.W + kronecker(diag(1/lambda.bw), P.mat) ) mu = (1/sig2.me) * sigma %*% (t.designmat.W %*% (Y.vec - mean.cur)) bw = matrix(mvrnorm(1, mu = mu, Sigma = sigma), nrow = Kt, ncol = p) beta.cur = t(bw) %*% t(Theta) fixef.cur = W.des %*% beta.cur for(subj in 1:length(unique(SUBJ))){ t.designmat.Z = t(kronecker(Theta, rep(1, Ji[subj]))) sig.Z = kronecker(Ji[subj], t(Theta)%*% Theta) mean.cur = as.vector((fixef.cur[which(SUBJ == unique(SUBJ)[subj]), ] + pcaef.cur[which(SUBJ == unique(SUBJ)[subj]), ])) sigma = solve( (1/sig2.me) * sig.Z + (1/lambda.ranef) * P.mat ) mu = (1/sig2.me) * sigma %*% (t.designmat.Z %*% (as.vector(Y[which(SUBJ == unique(SUBJ)[subj]),]) - mean.cur)) bz[,subj] = mvrnorm(1, mu = mu, Sigma = sigma) } ranef.cur = Z.des %*% t(bz) %*% t(Theta) mean.cur = as.vector(t(fixef.cur + ranef.cur)) sigma = solve( (1/sig2.me) * kronecker(t(c.mat) %*% c.mat, t(Theta)%*% Theta) + kronecker(diag(1/lambda.psi), P.mat )) mu = (1/sig2.me) * sigma %*% t(kronecker(c.mat, Theta)) %*% (Y.vec - mean.cur) bpsi = matrix(mvrnorm(1, mu = mu, Sigma = sigma), nrow = Kt, ncol = Kp) psi.cur = t(bpsi) %*% t(Theta) ppT = psi.cur %*% t(psi.cur) for(subj.vis in 1:(IJ)){ sigma = solve( (1/sig2.me)* ppT + diag(1, Kp, Kp) ) mu = (1/sig2.me) * sigma %*% psi.cur %*% (Y[subj.vis,] - fixef.cur[subj.vis,] - ranef.cur[subj.vis,] ) c.mat[subj.vis,] = mvrnorm(1, mu = mu, Sigma = sigma) } pcaef.cur = c.mat %*% psi.cur Y.cur = fixef.cur + ranef.cur + pcaef.cur a.post = A + IJ*D/2 b.post = B + 1/2*crossprod(as.vector(Y - Y.cur)) sig2.me = 1/rgamma(1, a.post, b.post) for(term in 1:p){ a.post = A + Kt/2 b.post = B + 1/2*bw[,term] %*% P.mat %*% bw[,term] lambda.bw[term] = 1/rgamma(1, a.post, b.post) } a.post = A + I*Kt/2 b.post = B + 1/2*sum(diag(t(bz) %*% P.mat %*% bz)) lambda.ranef = 1/rgamma(1, a.post, b.post) for(K in 1:Kp){ a.post = A + Kt/2 b.post = B + 1/2*bpsi[,K] %*% P.mat %*% bpsi[,K] lambda.psi[K] = 1/rgamma(1, a.post, b.post) } BW[,,i] = as.matrix(bw) BZ[,,i] = as.matrix(bz) Bpsi[,,i] = as.matrix(bpsi) C[,,i] = as.matrix(c.mat) SIGMA[i] = sig2.me LAMBDA.BW[i,] = lambda.bw LAMBDA.BZ[i] = lambda.ranef LAMBDA.PSI[i,] = lambda.psi if(verbose) { if(round(i %% (N.iter/10)) == 0) {cat(".")} } } beta.pm = beta.LB = beta.UB = matrix(NA, nrow = p, ncol = D) for(i in 1:p){ beta.post = matrix(NA, nrow = (N.iter - N.burn), ncol = D) for(n in 1:(N.iter - N.burn)){ beta.post[n,] = BW[,i, n + N.burn] %*% t(Theta) } beta.pm[i,] = apply(beta.post, 2, mean) beta.LB[i,] = apply(beta.post, 2, quantile, c(.025)) beta.UB[i,] = apply(beta.post, 2, quantile, c(.975)) } b.pm = matrix(NA, nrow = I, ncol = D) for(i in 1:I){ b.post = matrix(NA, nrow = (N.iter - N.burn), ncol = D) for(n in 1:(N.iter - N.burn)){ b.post[n,] = BZ[,i, n + N.burn] %*% t(Theta) } b.pm[i,] = apply(b.post, 2, mean) } psi.pm = matrix(NA, nrow = Kp, ncol = D) for(i in 1:Kp){ psi.post = matrix(NA, nrow = (N.iter - N.burn), ncol = D) for(n in 1:(N.iter - N.burn)){ psi.post[n,] = Bpsi[,i, n + N.burn] %*% t(Theta) } psi.pm[i,] = apply(psi.post, 2, mean) } fixef.pm = W.des %*% beta.pm ranef.pm = Z.des %*% b.pm Yhat = matrix(NA, nrow = IJ, ncol = D) psi.pm = t(svd(t(psi.pm))$u) data = if(is.null(data)) { mf_fixed } else { data } ret = list(beta.pm, beta.UB, beta.LB, fixef.pm + ranef.pm, ranef.pm, mt_fixed, data, psi.pm) names(ret) = c("beta.hat", "beta.UB", "beta.LB", "Yhat", "ranef", "terms", "data", "psi.pm") class(ret) = "fosr" ret }
SELECTVERB <- function(speakerID, situation, actor=NULL, undergoer=NULL){ roleNoise=world$roleNoise; distinctiveness=world$distinctiveness speaker=population[[speakerID]] target=situation[situation$target==1,] verbTarget=target[,grep('^V\\d',names(target))] targetTransitivity=ifelse(is.na(target$personU), 'onePlace', 'twoPlace') verbs=speaker$verbs[speaker$verbs$type==targetTransitivity,] verbs=verbs[sample(nrow(verbs)),] verbs$match=VMATCH(verbTarget, verbs[,grep('^D\\d',names(verbs))]) verbs$collostruction=0 if(!is.null(actor) & is.null(undergoer)){ collostructions=speaker$collostructions$SV[speaker$collostructions$SV$S==actor$ID,] verbs[verbs$ID%in%collostructions$V,]$collostruction=collostructions[na.omit(match(verbs$ID, collostructions$V)),]$frequency } if(!is.null(undergoer)){ collostructions=speaker$collostructions$OV[speaker$collostructions$OV$O==undergoer$ID,] verbs[verbs$ID%in%collostructions$V,]$collostruction=collostructions[na.omit(match(verbs$ID, collostructions$V)),]$frequency } verbOrder=order(CANDIDATESCORE(verbs), decreasing=TRUE) verb='' if(nrow(situation) > 1){ verbDistractors=situation[situation$target==0,] verbDistractors=unique(verbDistractors[,grep('^V\\d',names(verbDistractors))]) verbDistractors=verbDistractors[!VMATCH(verbTarget, verbDistractors)==1,] if(nrow(verbDistractors)!=0){ for (i in verbOrder){ distractorMatch=MAX(VMATCH(verbs[i,grep('^D\\d',names(verbs))], verbDistractors), value=TRUE, forceChoice=TRUE) if(verbs[i,]$match > (distractorMatch + distinctiveness)){ verb=verbs[i,] break() } } } } if(nrow(situation)==1){ for (i in verbOrder){ if(verbs[i,]$match > max(verbs[i,]$match)-distinctiveness){ verb=verbs[i,] break() } } } if(!is.data.frame(verb)){verb=verbs[MAX(verbs$match, forceChoice=TRUE),]} verb$topic=ifelse(target$topic=='verb', 1, 0) verb }
suppressGraphics <- function(expr, envir = parent.frame()) { toNullDev({ value <- expr }, envir = envir) value }
plot.mctp.rm <- function(x,...) { nc <- length(x$connames) text.Ci <- paste(x$input$conf.level*100, "%", "Simultaneous Confidence Intervals") Lowerp <- "|" asy.method <- x$input$asy.method alternative <- x$input$alternative if(asy.method!="log.odds") { plot(x$Analysis.Inf$Estimator,1:nc,xlim=c(-1,1), pch=15,axes=FALSE,xlab="",ylab="") points(x$Analysis.Inf$Lower,1:nc, pch=Lowerp,font=2,cex=2) points(x$Analysis.Inf$Upper,1:nc, pch=Lowerp,font=2,cex=2) abline(v=0, lty=3,lwd=2) for (ss in 1:nc){ polygon(x=c(x$Analysis.Inf$Lower[ss],x$Analysis.Inf$Upper[ss]),y=c(ss,ss),lwd=2) } axis(1, at = seq(-1, 1, 0.1)) } else { if(alternative=="two.sided") { LowerPlot <- x$Analysis.Inf$Lower UpperPlot <- x$Analysis.Inf$Upper } else if(alternative=="less") { LowerPlot <- x$Analysis.Inf$Estimator - (x$Analysis.Inf$Upper - x$Analysis.Inf$Estimator) UpperPlot <- x$Analysis.Inf$Upper } else { LowerPlot <- x$Analysis.Inf$Lower UpperPlot <- x$Analysis.Inf$Estimator + (x$Analysis.Inf$Estimator - x$Analysis.Inf$Lower) } plot(x$Analysis.Inf$Estimator, 1:nc, xlim = c(floor(min(LowerPlot)), ceiling(max(UpperPlot))), pch = 15, axes = FALSE, xlab = "", ylab = "") axis(1, at = seq(floor(min(LowerPlot)), ceiling(max(UpperPlot)), 0.05*(ceiling(max(UpperPlot))-floor(min(LowerPlot))))) hugenumber<-10000000 if(alternative=="two.sided") { points(LowerPlot, 1:nc, pch = Lowerp, font = 2, cex = 2) points(UpperPlot, 1:nc, pch = Lowerp, font = 2, cex = 2) for (ss in 1:nc) { polygon(x = c(LowerPlot[ss], UpperPlot[ss]), y = c(ss, ss), lwd = 2) } } else if(alternative=="less") { points(UpperPlot, 1:nc, pch = Lowerp, font = 2, cex = 2) for (ss in 1:nc) { polygon(x = c(-hugenumber, UpperPlot[ss]), y = c(ss, ss), lwd = 2) } } else{ points(LowerPlot, 1:nc, pch = Lowerp, font = 2, cex = 2) for (ss in 1:nc) { polygon(x = c(LowerPlot[ss], hugenumber), y = c(ss, ss), lwd = 2) } } abline(v = 0, lty = 3, lwd = 2) } axis(2,at=1:nc,labels=x$connames) box() title(main=c(text.Ci, paste("Type of Contrast:",x$input$type), paste("Method:", x$AsyMethod))) }
gbm.perspec <- function(gbm.object, x = 1, y = 2, pred.means = NULL, x.label = NULL, x.range = NULL, y.label = NULL, z.label = "fitted value", y.range = NULL, z.range = NULL, leg.coords = NULL, ticktype = "detailed", theta = 55, phi=40, smooth = "none", mask = FALSE, perspective = TRUE, ...) { if (! requireNamespace('gbm') ) { stop('you need to install the gbm package to use this function') } requireNamespace('splines') gbm.call <- gbm.object$gbm.call gbm.x <- gbm.call$gbm.x n.preds <- length(gbm.x) gbm.y <- gbm.call$gbm.y pred.names <- gbm.call$predictor.names family = gbm.call$family have.factor <- FALSE x.name <- gbm.call$predictor.names[x] if (is.null(x.label)) { x.label <- gbm.call$predictor.names[x] } y.name <- gbm.call$predictor.names[y] if (is.null(y.label)) { y.label <- gbm.call$predictor.names[y] } data <- gbm.call$dataframe[ , gbm.x, drop=FALSE] n.trees <- gbm.call$best.trees if (is.vector(data[,x])) { if (is.null(x.range)) { x.var <- seq(min(data[,x],na.rm=T),max(data[,x],na.rm=T),length = 50) } else { x.var <- seq(x.range[1],x.range[2],length = 50) } } else { x.var <- names(table(data[,x])) have.factor <- TRUE } if (is.vector(data[,y])) { if (is.null(y.range)) { y.var <- seq(min(data[,y],na.rm=T),max(data[,y],na.rm=T),length = 50) } else {y.var <- seq(y.range[1],y.range[2],length = 50)} } else { y.var <- names(table(data[,y])) if (have.factor) { stop("at least one marginal predictor must be a vector!") } else {have.factor <- TRUE} } pred.frame <- expand.grid(list(x.var,y.var)) names(pred.frame) <- c(x.name,y.name) pred.rows <- nrow(pred.frame) if (have.factor) { if (is.factor(pred.frame[,2])) { pred.frame <- pred.frame[,c(2,1)] x.var <- y.var } } j <- 3 for (i in 1:n.preds) { if (i != x & i != y) { if (is.vector(data[,i])) { m <- match(pred.names[i],names(pred.means)) if (is.na(m)) { pred.frame[,j] <- mean(data[,i],na.rm=T) } else pred.frame[,j] <- pred.means[m] } if (is.factor(data[,i])) { m <- match(pred.names[i],names(pred.means)) temp.table <- table(data[,i]) if (is.na(m)) { pred.frame[,j] <- rep(names(temp.table)[2],pred.rows) } else { pred.frame[,j] <- pred.means[m] } pred.frame[,j] <- factor(pred.frame[,j],levels=names(temp.table)) } names(pred.frame)[j] <- pred.names[i] j <- j + 1 } } prediction <- gbm::predict.gbm(gbm.object,pred.frame,n.trees = n.trees, type="response") if (smooth == "model") { pred.glm <- glm(prediction ~ ns(pred.frame[,1], df = 8) * ns(pred.frame[,2], df = 8), data=pred.frame,family=poisson) prediction <- fitted(pred.glm) } max.pred <- max(prediction) message("maximum value = ",round(max.pred,2),"\n") if (is.null(z.range)) { if (family == "bernoulli") { z.range <- c(0,1) } else if (family == "poisson") { z.range <- c(0,max.pred * 1.1) } else { z.min <- min(data[,y],na.rm=T) z.max <- max(data[,y],na.rm=T) z.delta <- z.max - z.min z.range <- c(z.min - (1.1 * z.delta), z.max + (1.1 * z.delta)) } } if (have.factor == FALSE) { pred.matrix <- matrix(prediction,ncol=50,nrow=50) if (smooth == "average") { pred.matrix.smooth <- pred.matrix for (i in 2:49) { for (j in 2:49) { pred.matrix.smooth[i,j] <- mean(pred.matrix[c((i-1):(i+1)),c((j-1):(j+1))]) } } pred.matrix <- pred.matrix.smooth } if (mask) { mask.trees <- gbm.object$gbm.call$best.trees point.prob <- gbm::predict.gbm(gbm.object[[1]],pred.frame, n.trees = mask.trees, type="response") point.prob <- matrix(point.prob,ncol=50,nrow=50) pred.matrix[point.prob < 0.5] <- 0.0 } if (!perspective) { image(x = x.var, y = y.var, z = pred.matrix, zlim = z.range) } else { persp(x=x.var, y=y.var, z=pred.matrix, zlim= z.range, xlab = x.label, ylab = y.label, zlab = z.label, theta=theta, phi=phi, r = sqrt(10), d = 3, ticktype = ticktype, mgp = c(4,1,0), ...) } } if (have.factor) { factor.list <- names(table(pred.frame[,1])) n <- 1 if (is.null(z.range)) { vert.limits <- c(0, max.pred * 1.1) } else { vert.limits <- z.range } plot(pred.frame[pred.frame[,1]==factor.list[1],2], prediction[pred.frame[,1]==factor.list[1]], type = 'l', ylim = vert.limits, xlab = y.label, ylab = z.label, ...) for (i in 2:length(factor.list)) { factor.level <- factor.list[i] lines(pred.frame[pred.frame[,1]==factor.level,2], prediction[pred.frame[,1]==factor.level], lty = i) } if(is.null(leg.coords)){ x.max <- max(pred.frame[,2]) x.min <- min(pred.frame[,2]) x.range <- x.max - x.min x.pos <- c(x.min + (0.02 * x.range),x.min + (0.3 * x.range)) y.max <- max(prediction) y.min <- min(prediction) y.range <- y.max - y.min y.pos <- c(y.min + (0.8 * y.range),y.min + (0.95 * y.range)) legend(x = x.pos, y = y.pos, factor.list, lty = c(1:length(factor.list)), bty = "n") } else { legend(x = leg.coords[1], y = leg.coords[2], factor.list, lty = c(1:length(factor.list)), bty = "n") } } }