code
stringlengths 1
13.8M
|
---|
isDictionaryLoaded <- function(){
options("loadedDictionary" = function(){return(exists(".loadedDictionary"))})
return(options()$loadedDictionary())
} |
fish.kent <- function(x, logged = FALSE) {
n <- dim(x)[1]
estim <- Rfast::vmf.mle(x)
k <- estim$kappa
mu <- - estim$mu
mu[1] <- 1 + mu[1]
i3 <- diag(3)
P <- i3 - tcrossprod(mu)/mu[1]
y <- tcrossprod(x, P)[, 2:3]
lam <- eigen( crossprod(y) )$values/n
rat <- besselI(k, 0.5, expon.scaled = TRUE)/besselI(k, 2.5,
expon.scaled = TRUE)
Ta <- n * (k/2)^2 * rat * (lam[1] - lam[2])^2
pvalue <- pchisq(Ta, 2, lower.tail = FALSE, log.p = logged)
res <- c(Ta, pvalue)
names(res) <- c("test", "p-value")
res
} |
binomGraphs <- function(bound,region="below",size=100,prob=0.5,graph=TRUE,
xlab="x") {
if (!is.numeric(bound)) stop("Specify one or two numerical boundaries")
below <- grepl("^be[lf]",region,perl=TRUE)
above <- grepl("^a[bf]",region,perl=TRUE)
between <- grepl("^bet|^in",region,perl=TRUE)
outside <- grepl("^out",region,perl=TRUE)
if (length(bound)==1 & !(below | above)) stop("Specify region=\"below\" or
region=\"above\"")
if (length(bound)==2 & !(between | outside)) stop("Specify region=\"between\" or
region=\"outside\"")
if (length(bound)>2) stop("Specify one or two numerical boundaries")
if (length(bound)==2 & bound[1]>bound[2]) bound <- rev(bound)
sd <- sqrt(size*prob*(1-prob))
if (below) {
area <- pbinom(bound,size=size,prob=prob)
if (graph) {
upper <- ceiling(max(qbinom(.9999,size=size,prob=prob),bound+0.1*sd))
lower <- floor(min(qbinom(0.0001,size=size,prob=prob),bound-0.1*sd))
nvals <- lower:upper
Shading <- ifelse(nvals <= bound,"lightblue",NA)
plot(nvals,dbinom(nvals,size=size,prob=prob),type="h",col=NA,axes=FALSE,
xlab=xlab,ylab="p(x)",xlim=c(lower-0.5,upper+0.5),
main=paste("binom(",size,",",prob,") Distribution:\nShaded Area = ",round(area,3),sep=""))
rect(nvals-0.5,rep(0,times=size+1),nvals+0.5,dbinom(nvals,size=size,prob=prob),
col=Shading,border="black")
axis(2)
places <- c(lower,floor(bound),upper)
axis(1,at=places,labels=c("",as.character(places[2]),""))
}
}
if (above) {
area <- pbinom(bound,size=size,prob=prob,lower.tail=FALSE)
if (graph) {
upper <- ceiling(max(qbinom(.9999,size=size,prob=prob),bound+0.1*sd))
lower <- floor(min(qbinom(0.0001,size=size,prob=prob),bound-0.1*sd))
nvals <- lower:upper
Shading <- ifelse(nvals > bound,"lightblue",NA)
plot(nvals,dbinom(nvals,size=size,prob=prob),type="h",col=NA,axes=FALSE,
xlab=xlab,ylab="p(x)",xlim=c(lower-0.5,upper+0.5),
main=paste("binom(",size,",",prob,") Distribution:\nShaded Area = ",round(area,3),sep=""))
rect(nvals-0.5,rep(0,times=size+1),nvals+0.5,dbinom(nvals,size=size,prob=prob),
col=Shading,border="black")
axis(2)
places <- c(lower,floor(bound)+1,upper)
axis(1,at=places,labels=c("",as.character(places[2]),""))
}
}
if (between) {
area <- pbinom(bound[2],size=size,prob=prob)-pbinom(bound[1]-1,size=size,prob=prob)
if (graph) {
upper <- ceiling(max(qbinom(.9999,size=size,prob=prob),bound+0.1*sd))
lower <- floor(min(qbinom(0.0001,size=size,prob=prob),bound-0.1*sd))
nvals <- lower:upper
Shading <- ifelse((bound[1] <= nvals & nvals <= bound[2]),"lightblue",NA)
plot(nvals,dbinom(nvals,size=size,prob=prob),type="h",col=NA,axes=FALSE,
xlab=xlab,ylab="p(x)",xlim=c(lower-0.5,upper+0.5),
main=paste("binom(",size,",",prob,") Distribution:\nShaded Area = ",round(area,3),sep=""))
rect(nvals-0.5,rep(0,times=size+1),nvals+0.5,dbinom(nvals,size=size,prob=prob),
col=Shading,border="black")
axis(2)
places <- c(lower,floor(bound[1]),floor(bound[2]),upper)
axis(1,at=places,labels=c("",as.character(places[2:3]),""))
}
}
if (outside) {
area <- pbinom(bound[2],size=size,prob=prob,lower.tail=FALSE)+pbinom(bound[1]-1,size=size,prob=prob)
if (graph) {
upper <- ceiling(max(qbinom(.9999,size=size,prob=prob),bound+0.1*sd))
lower <- floor(min(qbinom(0.0001,size=size,prob=prob),bound-0.1*sd))
nvals <- lower:upper
Shading <- ifelse(bound[1] <= nvals & nvals <= bound[2],NA,"lightblue")
plot(nvals,dbinom(nvals,size=size,prob=prob),type="h",col=NA,axes=FALSE,
xlab=xlab,ylab="p(x)",xlim=c(lower-0.5,upper+0.5),
main=paste("binom(",size,",",prob,") Distribution:\nShaded Area = ",round(area,3),sep=""))
rect(nvals-0.5,rep(0,times=size+1),nvals+0.5,dbinom(nvals,size=size,prob=prob),
col=Shading,border="black")
axis(2)
places <- c(lower,floor(bound[1])-1,floor(bound[2])+1,upper)
axis(1,at=places,labels=c("",as.character(places[2:3]),""))
}
}
} |
Dunnetts.K.fcn.to.integrate.1 <-
function (s, d, n, df, k, rho)
{
arg.mat <- cbind.no.warn(s = as.vector(s), d = as.vector(d),
n = as.vector(n), df = as.vector(df), k = as.vector(k),
rho = as.vector(rho))
for (i in c("s", "d", "n", "df", "k", "rho")) assign(i, arg.mat[,
i])
N <- length(s)
ret.val <- numeric(N)
for (i in 1:N) {
ret.val[i] <- Dunnetts.K.F1(d[i] * s[i], k[i], rho[i]) *
dchi(sqrt(df[i]) * s[i], df[i]) * sqrt(df[i])
}
ret.val
} |
fit_MRMC_casewise<- function(
dataList,
DrawCurve = FALSE,
type_to_be_passed_into_plot="p",
verbose = TRUE,
print_CI_of_AUC = TRUE,
PreciseLogLikelihood = FALSE,
summary =TRUE,
dataList.Name = "",
prior=1,
ModifiedPoisson=TRUE,
mesh.for.drawing.curve=10000,
significantLevel = 0.7,
cha = 1,
war = floor(ite/5),
ite = 10000,
dig = 3,
see = 1234569,
Null.Hypothesis=FALSE,
prototype = FALSE,
model_reparametrized =FALSE,
Model_MRMC_non_hierarchical = TRUE,
ww=-0.81,
www =1,
mm=0.65,
mmm=1,
vv=5.31,
vvv=1,
zz= 1.55,
zzz=1,
...
){
M <- dataList$M
scr <- system.file("extdata", "Model_MRMC_Multinomial_casewise.stan", package="BayesianFROC")
scrr <- system.file("extdata", "Model_MRMC_Multinomial_casewise.rds", package="BayesianFROC")
data <-metadata_to_fit_MRMC_casewise(dataList,ModifiedPoisson)
data <- c(data,
prior = prior,
PreciseLogLikelihood=PreciseLogLikelihood,
ww = ww,
www = www,
mm = mm,
mmm = mmm,
vv = vv,
vvv = vvv,
zz = zz,
zzz = zzz,
prototype=prototype
)
m<-data$m ;S<-data$S; NL<-data$NL;NI<-data$NI;c<-data$c;q<-data$q;
h<-data$h; f<-data$f;
hh<-data$hh; hhN<-data$hhN;
ff<-data$ff;ffN<-data$ffN;
harray<-data$harray; farray<-data$farray;
hharray<-data$hharray; ffarray<-data$ffarray;
hharrayN<-data$hharrayN; ffarrayN<-data$ffarrayN;
C<-as.integer(data$C)
M<-as.integer(data$M)
N<-as.integer(data$N)
Q<-as.integer(data$Q)
NI_deseased <- data$NI_deseased
if (summary==FALSE)message("\n* Now, the Hamiltonian Monte Carlo simulation is running...")
rstan_options(auto_write = TRUE)
if(scrr=="")message("Now, the Stan file is being compiled and it tooks a few minuites, wait ...")
if(!(scrr==""))message("Already, the Stan file has been compiled. But...Darn it!")
scr <- rstan::stan_model(scr)
init_fun <- function(...) list(
w=array(0,c(NI_deseased,M,Q)),
dz =array(1,c(C-1,NI_deseased,M,Q)),
modalityID_dummy_array_slop_mu =array(1,c(NI_deseased,M,Q)),
readerID_dummy_array_slop_mu =array(1,c(NI_deseased,M,Q)),
caseID_dummy_array_slop_mu =array(1,c(NI_deseased,M,Q)),
ground_v =1,
modalityID_dummy_array_slop_v =array(1,c(NI_deseased,M,Q)),
readerID_dummy_array_slop_v =array(1,c(NI_deseased,M,Q)),
caseID_dummy_array_slop_v =array(1,c(NI_deseased,M,Q))
)
invisible(utils::capture.output(
fit <- rstan::sampling(
init = init_fun,
object= scr, data=data, verbose = FALSE,
seed=see, chains=cha, warmup=war, iter=ite
, control = list(adapt_delta = 0.9999999,
max_treedepth = 15),...
)
))
convergence <- ConfirmConvergence(fit)
fit.new.class <- methods::as(fit,"stanfitExtended")
fit.new.class@metadata <-data
fit.new.class@dataList <-dataList
fit.new.class@studyDesign <- "MRMC"
fit.new.class@PreciseLogLikelihood <- PreciseLogLikelihood
fit.new.class@ModifiedPoisson <- ModifiedPoisson
if(PreciseLogLikelihood==TRUE) {fit.new.class@WAIC <- waic(fit,dig,summary=FALSE)}
fit.new.class@convergence <- convergence
fit.new.class@prototype <- prototype
if ( dataList.Name=="" ) dataList.Name <- deparse(substitute(dataList))
[email protected] <- dataList.Name
e <- extract(fit)
p.value <- mean(e$p_value_logicals)
fit.new.class@posterior_predictive_pvalue_for_chi_square_goodness_of_fit <- p.value
invisible(fit.new.class)
} |
`[.index0` <- function(x, i, j, ...) {
if (!missing(i))
i <- i + 1
if (!missing(j))
j <- j + 1
as.index0(NextMethod())
}
`[<-.index0` <- function(x, i, j, ..., value) {
if (!missing(i))
i <- i + 1
if (!missing(j))
j <- j + 1
as.index0(NextMethod())
}
as.index0 <- function(x) {
class(x) <- union(class(x), 'index0')
x
}
as.index1 <- function(x) {
class(x) <- setdiff(class(x), 'index0')
x
}
is.index0 <- function(x) {
inherits(x, 'index0')
}
index_from_0 <- as.index0
print.index0 <- function(x, ...) {
print(as.index1(x))
cat('indexed from 0\n')
invisible(x)
} |
tmp_02_save <- tempfile()
tmp_02_dump <- tempfile()
tmp_03_save <- tempfile()
tmp_03_dump <- tempfile()
teardown(unlink(c(tmp_02_save, tmp_02_dump, tmp_03_save, tmp_03_dump), recursive = TRUE))
test_that("default invalidValueTreatment attribute is exported correctly for linear models", {
lm_model_0 <- lm(Sepal.Length ~ ., data = iris[, -5])
lm_model_1 <- pmml(lm_model_0)
ms <- xmlToList(lm_model_1)$RegressionModel$MiningSchema
expect_equal(unlist(ms), c(
"Sepal.Length", "predicted", "returnInvalid", "Sepal.Width",
"active", "returnInvalid", "Petal.Length", "active",
"returnInvalid", "Petal.Width", "active", "returnInvalid"
))
})
test_that("invalidValueTreatment attribute is exported correctly for xgboost models", {
skip_if_not_installed("xgboost")
library(xgboost)
data(agaricus.train, package = "xgboost")
train <- agaricus.train
invisible(capture.output(model_fit <- xgboost(
data = train$data, label = train$label,
max_depth = 2, eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic",
save_name = tmp_02_save
)))
xgb.dump(model_fit, tmp_02_dump)
model_pmml <- pmml(
model = model_fit, input_feature_names = colnames(train$data),
output_label_name = "f", output_categories = c("0", "1"),
xgb_dump_file = tmp_02_dump
)
ms2 <- unlist(xmlToList(model_pmml)$MiningModel$MiningSchema)
expect_equal(ms2, c(
"odor", "active", "returnInvalid", "stalk-root", "active", "returnInvalid",
"spore-print-color", "active", "returnInvalid", "f", "predicted", "returnInvalid"
))
ms3 <- unlist(xmlToList(model_pmml)$MiningModel$Segmentation[[2]]$MiningSchema)
expect_equal(ms3, c(
"odor", "active", "asIs", "stalk-root", "active", "asIs",
"spore-print-color", "active", "asIs", "f", "predicted", "asIs"
))
ms4 <- unlist(xmlToList(model_pmml)$MiningModel$Segmentation[[5]]$MiningSchema)
expect_equal(ms4, c(
"odor", "active", "asIs", "stalk-root", "active", "asIs",
"spore-print-color", "active", "asIs", "f", "predicted", "asIs"
))
ms5 <- unlist(xmlToList(model_pmml)$MiningModel$Segmentation[[8]]$MiningSchema)
expect_equal(ms5, c(
"predictedValueTree0", "active", "continuous", "asIs",
"predictedValueTree1", "active", "continuous", "asIs"
))
model_pmml_2 <- pmml(
model = model_fit, input_feature_names = colnames(train$data),
output_label_name = "f", output_categories = c("0", "1"),
xgb_dump_file = tmp_02_dump,
parent_invalid_value_treatment = "returnInvalid",
child_invalid_value_treatment = "returnInvalid"
)
ms22 <- xmlToList(model_pmml_2)$MiningModel$MiningSchema
expect_equal(unlist(ms22), c(
"odor", "active", "returnInvalid", "stalk-root", "active", "returnInvalid",
"spore-print-color", "active", "returnInvalid", "f", "predicted", "returnInvalid"
))
ms23 <- unlist(xmlToList(model_pmml_2)$MiningModel$Segmentation[[2]]$MiningSchema)
expect_equal(ms23, c(
"odor", "active", "returnInvalid", "stalk-root", "active", "returnInvalid",
"spore-print-color", "active", "returnInvalid", "f", "predicted", "returnInvalid"
))
ms24 <- unlist(xmlToList(model_pmml_2)$MiningModel$Segmentation[[5]]$MiningSchema)
expect_equal(ms24, c(
"odor", "active", "returnInvalid", "stalk-root", "active", "returnInvalid",
"spore-print-color", "active", "returnInvalid", "f", "predicted", "returnInvalid"
))
ms25 <- unlist(xmlToList(model_pmml_2)$MiningModel$Segmentation[[8]]$MiningSchema)
expect_equal(ms25, c(
"predictedValueTree0", "active", "continuous", "returnInvalid",
"predictedValueTree1", "active", "continuous", "returnInvalid"
))
model_pmml_3 <- pmml(
model = model_fit, input_feature_names = colnames(train$data),
output_label_name = "f", output_categories = c("0", "1"),
xgb_dump_file = tmp_02_dump,
parent_invalid_value_treatment = "asIs"
)
ms32 <- xmlToList(model_pmml_3)$MiningModel$MiningSchema
expect_equal(unlist(ms32), c(
"odor", "active", "asIs", "stalk-root", "active", "asIs",
"spore-print-color", "active", "asIs", "f", "predicted", "asIs"
))
ms33 <- unlist(xmlToList(model_pmml_3)$MiningModel$Segmentation[[2]]$MiningSchema)
expect_equal(ms33, c(
"odor", "active", "asIs", "stalk-root", "active", "asIs",
"spore-print-color", "active", "asIs", "f", "predicted", "asIs"
))
ms34 <- unlist(xmlToList(model_pmml_3)$MiningModel$Segmentation[[5]]$MiningSchema)
expect_equal(ms34, c(
"odor", "active", "asIs", "stalk-root", "active", "asIs",
"spore-print-color", "active", "asIs", "f", "predicted", "asIs"
))
ms35 <- unlist(xmlToList(model_pmml_3)$MiningModel$Segmentation[[8]]$MiningSchema)
expect_equal(ms35, c(
"predictedValueTree0", "active", "continuous", "asIs",
"predictedValueTree1", "active", "continuous", "asIs"
))
})
test_that("invalidValueTreatment attribute is exported correctly for randomForest models", {
skip_if_not_installed("randomForest")
require("randomForest")
rf_fit <- randomForest(Species ~ ., data = iris, ntree = 3)
rf_fit_pmml_1 <- pmml(rf_fit)
expect_equal(
unlist(xmlToList(rf_fit_pmml_1)$MiningModel$MiningSchema),
c(
"Species", "predicted", "returnInvalid", "Sepal.Length", "active", "returnInvalid",
"Sepal.Width", "active", "returnInvalid", "Petal.Length", "active", "returnInvalid",
"Petal.Width", "active", "returnInvalid"
)
)
expect_equal(
unlist(xmlToList(rf_fit_pmml_1)$MiningModel$Segmentation[[2]]$MiningSchema),
c(
"Species", "predicted", "asIs", "Sepal.Length", "active", "asIs",
"Sepal.Width", "active", "asIs", "Petal.Length", "active", "asIs",
"Petal.Width", "active", "asIs"
)
)
expect_equal(
unlist(xmlToList(rf_fit_pmml_1)$MiningModel$Segmentation[[5]]$MiningSchema),
c(
"Species", "predicted", "asIs", "Sepal.Length", "active", "asIs",
"Sepal.Width", "active", "asIs", "Petal.Length", "active", "asIs",
"Petal.Width", "active", "asIs"
)
)
expect_equal(
unlist(xmlToList(rf_fit_pmml_1)$MiningModel$Segmentation[[8]]$MiningSchema),
c(
"Species", "predicted", "asIs", "Sepal.Length", "active", "asIs",
"Sepal.Width", "active", "asIs", "Petal.Length", "active", "asIs",
"Petal.Width", "active", "asIs"
)
)
rf_fit_pmml_2 <- pmml(rf_fit,
parent_invalid_value_treatment = "returnInvalid",
child_invalid_value_treatment = "returnInvalid"
)
expect_equal(
unlist(xmlToList(rf_fit_pmml_2)$MiningModel$MiningSchema),
c(
"Species", "predicted", "returnInvalid", "Sepal.Length", "active", "returnInvalid",
"Sepal.Width", "active", "returnInvalid", "Petal.Length", "active", "returnInvalid",
"Petal.Width", "active", "returnInvalid"
)
)
expect_equal(
unlist(xmlToList(rf_fit_pmml_2)$MiningModel$Segmentation[[2]]$MiningSchema),
c(
"Species", "predicted", "returnInvalid", "Sepal.Length", "active", "returnInvalid",
"Sepal.Width", "active", "returnInvalid", "Petal.Length", "active", "returnInvalid",
"Petal.Width", "active", "returnInvalid"
)
)
expect_equal(
unlist(xmlToList(rf_fit_pmml_2)$MiningModel$Segmentation[[5]]$MiningSchema),
c(
"Species", "predicted", "returnInvalid", "Sepal.Length", "active", "returnInvalid",
"Sepal.Width", "active", "returnInvalid", "Petal.Length", "active", "returnInvalid",
"Petal.Width", "active", "returnInvalid"
)
)
expect_equal(
unlist(xmlToList(rf_fit_pmml_2)$MiningModel$Segmentation[[8]]$MiningSchema),
c(
"Species", "predicted", "returnInvalid", "Sepal.Length", "active", "returnInvalid",
"Sepal.Width", "active", "returnInvalid", "Petal.Length", "active", "returnInvalid",
"Petal.Width", "active", "returnInvalid"
)
)
rf_fit_pmml_3 <- pmml(rf_fit,
parent_invalid_value_treatment = "asIs"
)
expect_equal(
unlist(xmlToList(rf_fit_pmml_3)$MiningModel$MiningSchema),
c(
"Species", "predicted", "asIs", "Sepal.Length", "active", "asIs",
"Sepal.Width", "active", "asIs", "Petal.Length", "active", "asIs",
"Petal.Width", "active", "asIs"
)
)
expect_equal(
unlist(xmlToList(rf_fit_pmml_3)$MiningModel$Segmentation[[2]]$MiningSchema),
c(
"Species", "predicted", "asIs", "Sepal.Length", "active", "asIs",
"Sepal.Width", "active", "asIs", "Petal.Length", "active", "asIs",
"Petal.Width", "active", "asIs"
)
)
expect_equal(
unlist(xmlToList(rf_fit_pmml_3)$MiningModel$Segmentation[[5]]$MiningSchema),
c(
"Species", "predicted", "asIs", "Sepal.Length", "active", "asIs",
"Sepal.Width", "active", "asIs", "Petal.Length", "active", "asIs",
"Petal.Width", "active", "asIs"
)
)
expect_equal(
unlist(xmlToList(rf_fit_pmml_3)$MiningModel$Segmentation[[8]]$MiningSchema),
c(
"Species", "predicted", "asIs", "Sepal.Length", "active", "asIs",
"Sepal.Width", "active", "asIs", "Petal.Length", "active", "asIs",
"Petal.Width", "active", "asIs"
)
)
})
test_that("error is thrown if invalidValueTreatment argument is incorrect", {
skip_if_not_installed("xgboost")
library(xgboost)
data(agaricus.train, package = "xgboost")
train <- agaricus.train
invisible(capture.output(model_fit_2 <- xgboost(
data = train$data, label = train$label,
max_depth = 2, eta = 1, nthread = 2, nrounds = 2, objective = "binary:logistic",
save_name = tmp_03_save
)))
xgb.dump(model_fit_2, tmp_03_dump)
model_pmml_5 <- pmml(
model = model_fit_2, input_feature_names = colnames(train$data),
output_label_name = "f", output_categories = c("0", "1"),
xgb_dump_file = tmp_03_dump
)
expect_error(
pmml(
model = model_fit_2, input_feature_names = colnames(train$data),
output_label_name = "f", output_categories = c("0", "1"),
xgb_dump_file = tmp_03_dump,
parent_invalid_value_treatment = "foobar"
),
"\"foobar\" is not a valid enumeration value for parent_invalid_value_treatment. Use one of the following: returnInvalid, asIs, asMissing."
)
expect_error(
pmml(
model = model_fit_2, input_feature_names = colnames(train$data),
output_label_name = "f", output_categories = c("0", "1"),
xgb_dump_file = tmp_03_dump,
child_invalid_value_treatment = "asis"
),
"\"asis\" is not a valid enumeration value for child_invalid_value_treatment. Use one of the following: returnInvalid, asIs, asMissing."
)
}) |
context("spark apply bundle")
sc <- testthat_spark_connection()
test_that("'spark_apply_bundle' can `worker_spark_apply_unbundle`", {
bundlePath <- spark_apply_bundle()
unbundlePath <- worker_spark_apply_unbundle(bundlePath, tempdir(), "package")
unlink(bundlePath, recursive = TRUE)
unlink(unbundlePath, recursive = TRUE)
succeed()
})
available_packages_mock <- function() {
packages_sample <- dir(
getwd(),
recursive = TRUE,
pattern = "packages-sample.rds",
full.names = TRUE
)
as.matrix(
readRDS(file = packages_sample)
)
}
test_that("'spark_apply_packages' uses different names for different packages", {
with_mock(
`available.packages` = available_packages_mock,
expect_true(
length(spark_apply_packages("purrr")) > 0
)
)
})
test_that("'spark_apply_bundle_file' uses different names for different packages", {
purrr_file <- spark_apply_bundle_file(spark_apply_packages("purrr"), tempdir())
tidyr_file <- spark_apply_bundle_file(spark_apply_packages("tidyr"), tempdir())
expect_true(purrr_file != tidyr_file)
}) |
big_prodMat <- function(X, A.col,
ind.row = rows_along(X),
ind.col = cols_along(X),
ncores = 1,
block.size = block_size(nrow(X), ncores),
center = NULL,
scale = NULL) {
check_args()
assert_lengths(ind.col, rows_along(A.col))
if (length(ind.row) == 0 || length(ind.col) == 0)
return(matrix(0, length(ind.row), ncol(A.col)))
if (!is.null(scale)) {
assert_lengths(scale, ind.col)
A.col <- A.col / as_vec(scale)
}
if (!is.null(center)) {
assert_lengths(center, ind.col)
center2 <- crossprod(as_vec(center), A.col)
}
res <- big_parallelize(X, function(X, ind, A.col, ind.row, ind.col, block.size) {
prod_FBM_block_mat(X, A.col[ind, , drop = FALSE], ind.row, ind.col[ind], block.size)
}, p.combine = plus, ind = seq_along(ind.col), ncores = ncores,
A.col = A.col, ind.row = ind.row, ind.col = ind.col, block.size = block.size)
`if`(is.null(center), res, centering(res, center2))
}
setMethod("%*%", signature(x = "FBM", y = "matrix"),
function(x, y) prod_FBM_mat(x, y))
setMethod("%*%", signature(x = "matrix", y = "FBM"),
function(x, y) prod_mat_FBM(x, y))
big_cprodMat <- function(X, A.row,
ind.row = rows_along(X),
ind.col = cols_along(X),
ncores = 1,
block.size = block_size(nrow(X), ncores),
center = NULL,
scale = NULL) {
check_args()
assert_lengths(ind.row, rows_along(A.row))
if (length(ind.row) == 0 || length(ind.col) == 0)
return(matrix(0, length(ind.col), ncol(A.row)))
if (!is.null(scale)) {
assert_lengths(scale, ind.col)
scale <- as_vec(scale)
}
if (!is.null(center)) {
assert_lengths(center, ind.col)
center <- as_vec(center)
}
res <- big_parallelize(X, function(X, ind, A.row, ind.row, block.size) {
cprod_FBM_block_mat(X, A.row, ind.row, ind, block.size)
}, p.combine = rbind, ind = ind.col, ncores = ncores,
A.row = A.row, ind.row = ind.row, block.size = block.size)
if (!is.null(center)) res <- res - tcrossprod(center, colSums(A.row))
if (!is.null(scale)) res <- res / scale
res
}
setMethod("crossprod", signature(x = "FBM", y = "matrix"),
function(x, y) crossprod_FBM_mat(x, y))
setMethod("tcrossprod", signature(x = "FBM", y = "matrix"),
function(x, y) tcrossprod_FBM_mat(x, y))
setMethod("crossprod", signature(x = "matrix", y = "FBM"),
function(x, y) crossprod_mat_FBM(x, y))
setMethod("tcrossprod", signature(x = "matrix", y = "FBM"),
function(x, y) tcrossprod_mat_FBM(x, y)) |
library(leafdown)
library(shiny)
context("Test 'add_data'")
test_that("Add data correctly", {
my_leafdown <- init_leafdown()
data <- my_leafdown$curr_data
data$y <- 1:nrow(data)
my_leafdown$add_data(data)
expect_true(identical(data, my_leafdown$curr_data))
})
test_that("Add 'Null' as data throws error", {
my_leafdown <- init_leafdown()
expect_error(my_leafdown$add_data(NULL), "The given data must be a data.frame")
})
test_that("Add empty List as data throws error", {
my_leafdown <- init_leafdown()
expect_error(my_leafdown$add_data(data.frame()), "You cannot remove columns from the existing meta-data. Only add to it")
})
test_that("Changed values in data throws error", {
my_leafdown <- init_leafdown()
data <- my_leafdown$curr_data
col <- 1
row <- 42
data[row, col] <- NA
expect_error(my_leafdown$add_data(data), "You cannot change the existing meta-data. Only add to it")
})
test_that("Missing columns in data throws error", {
my_leafdown <- init_leafdown()
data <- my_leafdown$curr_data
col <- floor(runif(1, min=1, max=dim(data)[2]))
data <- data[, -col]
expect_error(my_leafdown$add_data(data), "You cannot remove columns from the existing meta-data. Only add to it")
})
test_that("Missing row in data throws error", {
my_leafdown <- init_leafdown()
data <- my_leafdown$curr_data
row <- floor(runif(1, min=1, max=dim(data)[1]))
data <- data[-row, ]
expect_error(my_leafdown$add_data(data), "You cannot change the existing meta-data. Only add to it")
})
test_that("Reordering Data throws correct error", {
my_leafdown <- init_leafdown()
data <- my_leafdown$curr_data
data$y <- nrow(data):1
data <- data[order(data$y), ]
expect_error(my_leafdown$add_data(data), "Please do not reorder the data. Use left_joins to add the data")
}) |
options(sd_num_thread=1L)
x <- c("ca", "abc", "cba")
expect_equal(stringsimmatrix(x), t(stringsimmatrix(x)))
|
KLentropy=function(x,k,weights=FALSE,stderror=FALSE){
dim=dim(as.matrix(x)); n=dim[1]; d=dim[2]
V=pi^(d/2)/gamma(1+d/2)
if(length(weights)>1){
w=weights
}else if(weights==TRUE){
w=L2OptW(k,d)
}else{
w=c(rep(0,k-1),1)
}
rho=knn.dist(x,k=k)
H=(1/n)*colSums(t(log(t(rho)^d*V*(n-1))-digamma(1:k)))
value=list(); value[[1]]=H; value[[2]]=sum(H*w)
if(stderror==TRUE){
H2=(1/n)*sum((log(rho[,k]^d*V*(n-1))-digamma(k))^2)
value[[3]]=n^(-1/2)*sqrt(H2-(value[[2]])^2)
names(value)=c("Unweighted","Estimate","StdError")
} else {
names(value)=c("Unweighted","Estimate")
}
return(value)
} |
context("binPeaks")
p <- list(createMassPeaks(mass=seq(100, 500, 100), intensity=1:5),
createMassPeaks(mass=c(seq(100.2, 300.2, 100), 395), intensity=1:4))
p2 <- c(createMassPeaks(mass=c(1.009, 1.01, 3), intensity=c(2, 1, 1), snr=1:3),
createMassPeaks(mass=c(1, 3), intensity=1:2, snr=1:2),
createMassPeaks(mass=c(1.03, 3), intensity=1:2, snr=1:2))
test_that("binPeaks throws errors", {
expect_error(binPeaks(list()), "no list of MALDIquant::MassPeaks")
expect_error(binPeaks(p, method="foobar"),
".*arg.* should be one of .*strict.*, .*relaxed.*")
})
test_that("binPeaks bins peaks strict", {
b <- binPeaks(p, tolerance=0.002)
expect_true(all(b[[1]]@mass[1:3]==b[[2]]@mass[1:3]))
expect_false(all(b[[1]]@mass[4]==b[[2]]@mass[4]))
expect_true(length(b[[1]])==5)
expect_true(length(b[[2]])==4)
expect_false(all(p[[1]]@mass==b[[1]]@mass))
expect_false(all(p[[2]]@mass==b[[2]]@mass))
b <- binPeaks(p, tolerance=0.1)
expect_true(all(b[[1]]@mass[1:4]==b[[2]]@mass[1:4]))
expect_true(length(b[[1]])==5)
expect_true(length(b[[2]])==4)
expect_false(all(p[[1]]@mass==b[[1]]@mass))
expect_false(all(p[[2]]@mass==b[[2]]@mass))
})
test_that("binPeaks bins peaks releaxed", {
b <- binPeaks(p2, method="relaxed", tolerance=0.05)
expect_true(all(b[[1]]@mass==c(1.01, 1.013, 3)))
ip <- sort(p2[[1]]@mass, index.return=TRUE)
ib <- sort(b[[1]]@mass, index.return=TRUE)
expect_equal(ip$ix, ib$ix)
expect_false(all(p2[[1]]@intensity == b[[1]]@intensity))
expect_false(all(p2[[1]]@snr== b[[1]]@snr))
expect_true(all(b[[1]]@intensity == c(1, 2, 1)))
expect_true(all(b[[2]]@intensity == 1:2))
expect_true(all(b[[3]]@intensity == 1:2))
expect_true(all(b[[1]]@snr == c(2, 1, 3)))
expect_true(all(b[[2]]@snr == 1:2))
expect_true(all(b[[3]]@snr == 1:2))
})
test_that("binPeaks bins peaks to reference", {
ref <- createMassPeaks(mass=1:3, intensity=1:3, snr=1:3)
r <- c(createMassPeaks(mass=c(1, 1.01, 3), intensity=c(2, 1, 1), snr=1:3),
createMassPeaks(mass=c(1, 3), intensity=1:2, snr=1:2),
createMassPeaks(mass=c(1, 3), intensity=1:2, snr=1:2))
expect_equal(binPeaks(c(ref, p2), method="reference", tolerance=0.05)[-1], r)
})
test_that("binPeaks don't introduce new peaks; issue 61", {
p1 <- createMassPeaks(1:5, 1:5, metaData=list(name="foo"))
p0 <- createMassPeaks(numeric(), numeric(), metaData=list(name="bar"))
expect_equal(binPeaks(list(p1, p0)), list(p1, p0))
expect_equal(binPeaks(list(p0, p1)), list(p0, p1))
expect_equal(binPeaks(list(p0, p0, p1)), list(p0, p0, p1))
expect_equal(binPeaks(list(p0, p1, p1)), list(p0, p1, p1))
}) |
abe.mcmc.DrawParameters <- function(cal.cbs, covariates = c(), mcmc = 2500, burnin = 500, thin = 50, chains = 2,
mc.cores = NULL, trace = 100) {
draw_level_2 <- function(covars, level_1, hyper_prior) {
draw <- bayesm::rmultireg(Y = log(t(level_1[c("lambda", "mu"), ])),
X = covars,
Bbar = hyper_prior$beta_0,
A = hyper_prior$A_0,
nu = hyper_prior$nu_00,
V = hyper_prior$gamma_00)
return(list(beta = t(draw$B), gamma = draw$Sigma))
}
draw_z <- function(data, level_1) {
tx <- data$t.x
Tcal <- data$T.cal
lambda <- level_1["lambda", ]
mu <- level_1["mu", ]
mu_lam <- mu + lambda
t_diff <- Tcal - tx
prob <- 1 / (1 + (mu / mu_lam) * (exp(mu_lam * t_diff) - 1))
z <- as.numeric(runif(length(prob)) < prob)
return(z)
}
draw_tau <- function(data, level_1) {
N <- nrow(data)
tx <- data$t.x
Tcal <- data$T.cal
lambda <- level_1["lambda", ]
mu <- level_1["mu", ]
mu_lam <- mu + lambda
z <- level_1["z", ]
alive <- z == 1
tau <- numeric(N)
if (any(alive)) {
tau[alive] <- Tcal[alive] + rexp(sum(alive), mu[alive])
}
if (any(!alive)) {
mu_lam_tx <- pmin(700, mu_lam[!alive] * tx[!alive])
mu_lam_Tcal <- pmin(700, mu_lam[!alive] * Tcal[!alive])
rand <- runif(n = sum(!alive))
tau[!alive] <- -log( (1 - rand) * exp(-mu_lam_tx) + rand * exp(-mu_lam_Tcal)) / mu_lam[!alive]
}
return(tau)
}
draw_level_1 <- function(data, covars, level_1, level_2) {
N <- nrow(data)
x <- data$x
Tcal <- data$T.cal
z <- level_1["z", ]
tau <- level_1["tau", ]
mvmean <- covars[, ] %*% t(level_2$beta)
gamma <- level_2$gamma
inv_gamma <- solve(gamma)
cur_lambda <- level_1["lambda", ]
cur_mu <- level_1["mu", ]
log_post <- function(log_theta) {
log_lambda <- log_theta[1, ]
log_mu <- log_theta[2, ]
diff_lambda <- log_lambda - mvmean[, 1]
diff_mu <- log_mu - mvmean[, 2]
likel <- x * log_lambda + (1 - z) * log_mu - (exp(log_lambda) + exp(log_mu)) * (z * Tcal + (1 - z) *
tau)
prior <- -0.5 * (diff_lambda ^ 2 * inv_gamma[1, 1] +
2 * diff_lambda * diff_mu * inv_gamma[1, 2] +
diff_mu ^ 2 * inv_gamma[2, 2])
post <- likel + prior
post[log_mu > 5] <- -Inf
return(post)
}
cur_log_theta <- rbind(log(cur_lambda), log(cur_mu))
cur_post <- log_post(cur_log_theta)
step <- function(cur_log_theta, cur_post) {
new_log_theta <- cur_log_theta + rbind(gamma[1, 1] * rt(N, df = 3), gamma[2, 2] * rt(n = N, df = 3))
new_log_theta[1, ] <- pmax(pmin(new_log_theta[1, ], 70), -70)
new_log_theta[2, ] <- pmax(pmin(new_log_theta[2, ], 70), -70)
new_post <- log_post(new_log_theta)
mhratio <- exp(new_post - cur_post)
accepted <- mhratio > runif(n = N)
cur_log_theta[, accepted] <- new_log_theta[, accepted]
cur_post[accepted] <- new_post[accepted]
list(cur_log_theta = cur_log_theta, cur_post = cur_post)
}
iter <- 1
for (i in 1:iter) {
draw <- step(cur_log_theta, cur_post)
cur_log_theta <- draw$cur_log_theta
cur_post <- draw$cur_post
}
cur_theta <- exp(cur_log_theta)
return(list(lambda = cur_theta[1, ], mu = cur_theta[2, ]))
}
run_single_chain <- function(chain_id, data, hyper_prior) {
nr_of_cust <- nrow(data)
nr_of_draws <- (mcmc - 1) %/% thin + 1
level_1_draws <- array(NA_real_, dim = c(nr_of_draws, 4, nr_of_cust))
dimnames(level_1_draws)[[2]] <- c("lambda", "mu", "tau", "z")
level_2_draws <- array(NA_real_, dim = c(nr_of_draws, 2 * K + 3))
nm <- c("log_lambda", "log_mu")
if (K > 1)
nm <- paste(rep(nm, times = K), rep(colnames(covars), each = 2), sep = "_")
dimnames(level_2_draws)[[2]] <- c(nm, "var_log_lambda", "cov_log_lambda_log_mu", "var_log_mu")
level_1 <- level_1_draws[1, , ]
level_1["lambda", ] <- mean(data$x) / mean(ifelse(data$t.x == 0, data$T.cal, data$t.x))
level_1["mu", ] <- 1 / (data$t.x + 0.5 / level_1["lambda", ])
hyper_prior$beta_0[1, "log_lambda"] <- log(mean(level_1["lambda", ]))
hyper_prior$beta_0[1, "log_mu"] <- log(mean(level_1["mu", ]))
for (step in 1:(burnin + mcmc)) {
if (step %% trace == 0)
cat("chain:", chain_id, "step:", step, "of", (burnin + mcmc), "\n")
level_1["z", ] <- draw_z(data, level_1)
level_1["tau", ] <- draw_tau(data, level_1)
level_2 <- draw_level_2(covars, level_1, hyper_prior)
draw <- draw_level_1(data, covars, level_1, level_2)
level_1["lambda", ] <- draw$lambda
level_1["mu", ] <- draw$mu
if ( (step - burnin) > 0 & (step - 1 - burnin) %% thin == 0) {
idx <- (step - 1 - burnin) %/% thin + 1
level_1_draws[idx, , ] <- level_1
level_2_draws[idx, ] <- c(level_2$beta, level_2$gamma[1, 1], level_2$gamma[1, 2], level_2$gamma[2,
2])
}
}
return(list(
"level_1" = lapply(1:nr_of_cust,
function(i) mcmc(level_1_draws[, , i], start = burnin, thin = thin)),
"level_2" = mcmc(level_2_draws, start = burnin, thin = thin)))
}
stopifnot(is.data.frame(cal.cbs))
stopifnot(all(c("x", "t.x", "T.cal") %in% names(cal.cbs)))
stopifnot(all(covariates %in% names(cal.cbs)))
cal.cbs[, "intercept"] <- 1
covariates <- c("intercept", covariates)
K <- length(covariates)
covars <- as.matrix(subset(cal.cbs, select = covariates))
beta_0 <- matrix(0, nrow = K, ncol = 2, dimnames = list(NULL, c("log_lambda", "log_mu")))
A_0 <- diag(rep(0.01, K), ncol = K, nrow = K)
nu_00 <- 3 + K
gamma_00 <- nu_00 * diag(2)
hyper_prior <- list(beta_0 = beta_0, A_0 = A_0, nu_00 = nu_00, gamma_00 = gamma_00)
ncores <- ifelse(!is.null(mc.cores), min(chains, mc.cores), ifelse(.Platform$OS.type == "windows", 1, min(chains,
detectCores())))
if (ncores > 1)
cat("running in parallel on", ncores, "cores\n")
draws <- mclapply(1:chains, function(i) run_single_chain(i, cal.cbs, hyper_prior = hyper_prior), mc.cores = ncores)
out <- list(level_1 = lapply(1:nrow(cal.cbs), function(i) mcmc.list(lapply(draws, function(draw) draw$level_1[[i]]))),
level_2 = mcmc.list(lapply(draws, function(draw) draw$level_2)))
if ("cust" %in% names(cal.cbs))
names(out$level_1) <- cal.cbs$cust
return(out)
}
abe.GenerateData <- function(n, T.cal, T.star, params, date.zero = "2000-01-01", covariates = NULL) {
T.cal.fix <- max(T.cal)
T.cal <- rep(T.cal, length.out = n)
T.zero <- T.cal.fix - T.cal
date.zero <- as.POSIXct(date.zero)
if (!is.matrix(params$beta))
params$beta <- matrix(params$beta, nrow = 1, ncol = 2)
nr_covars <- nrow(params$beta)
if (!is.null(covariates)) {
covars <- covariates
if (is.data.frame(covars)) covars <- as.matrix(covars)
if (!is.matrix(covars)) covars <- matrix(covars, ncol = 1, dimnames = list(NULL, "covariate_1"))
if (!all(covars[, 1] == 1)) covars <- cbind("intercept" = rep(1, nrow(covars)), covars)
if (is.null(colnames(covars)) & ncol(covars) > 1)
colnames(covars)[-1] <- paste("covariate", 1:(nr_covars - 1), sep = "_")
if (nr_covars != ncol(covars))
stop("provided number of covariate columns does not match implied covariate number by parameter `beta`")
if (n != nrow(covars))
covars <- covars[sample(1:nrow(covars), n, replace = TRUE), ]
} else {
covars <- matrix(c(rep(1, n), runif( (nr_covars - 1) * n, -1, 1)), nrow = n, ncol = nr_covars)
colnames(covars) <- paste("covariate", 0:(nr_covars - 1), sep = "_")
colnames(covars)[1] <- "intercept"
}
thetas <- exp( (covars %*% params$beta) + mvtnorm::rmvnorm(n, mean = c(0, 0), sigma = params$gamma))
lambdas <- thetas[, 1]
mus <- thetas[, 2]
taus <- rexp(n, rate = mus)
elog_list <- lapply(1:n, function(i) {
minT <- min(T.cal[i] + max(T.star), taus[i])
itt_draws <- max(10, round(minT * lambdas[i] * 1.5))
itt_fn <- function(n) rexp(n, rate = lambdas[i])
itts <- itt_fn(itt_draws)
if (sum(itts) < minT) itts <- c(itts, itt_fn(itt_draws * 4))
if (sum(itts) < minT) itts <- c(itts, itt_fn(itt_draws * 800))
if (sum(itts) < minT) stop("not enough inter-transaction times sampled: ", sum(itts), " < ", minT)
ts <- cumsum(c(0, itts))
ts <- ts[ts <= taus[i]]
ts <- T.zero[i] + ts
ts <- ts[ts <= (T.cal.fix + max(T.star))]
return(ts)
})
elog <- data.table("cust" = rep(1:n, sapply(elog_list, length)), "t" = unlist(elog_list))
elog[["date"]] <- date.zero + elog[["t"]] * 3600 * 24 * 7
date.cal <- date.zero + T.cal.fix * 3600 * 24 * 7
date.tot <- date.cal + T.star * 3600 * 24 * 7
cbs <- elog2cbs(elog, T.cal = date.cal)
if (length(T.star) == 1) set(cbs, j = "T.star", value = T.star[1])
xstar.cols <- if (length(T.star) == 1) "x.star" else paste0("x.star", T.star)
for (j in 1:length(date.tot)) {
set(cbs, j = xstar.cols[j],
value = sapply(elog_list, function(t) sum(t > T.cal.fix & t <= T.cal.fix + T.star[j])))
}
set(cbs, j = "lambda", value = lambdas)
set(cbs, j = "mu", value = mus)
set(cbs, j = "tau", value = taus)
set(cbs, j = "alive", value = (T.zero + taus) > T.cal.fix)
cbs <- cbind(cbs, covars)
return(list("cbs" = setDF(cbs), "elog" = setDF(elog)))
} |
source("ESEUR_config.r")
pal_col=rainbow(3)
source(paste0(ESEUR_dir, "projects/agile-work/feat-common-7dig.R"))
plot_two_ratio=function(red_vals, blue_vals)
{
plot(blue_vals, type="l", col=pal_col[1],
xaxs="i", yaxs="i",
xlim=c(0, 820), ylim=c(0, 7),
xlab="Work days since Apr 2009", ylab="")
lines(red_vals, col=pal_col[2])
lines(red_vals/blue_vals, col=pal_col[3])
}
all_bugs=sum_starts(subset(p, grepl(".*Bug$", p$Type))$Dev.Started)
all_bugs=all_bugs[-weekends]
non_bugs=sum_starts(subset(p, !grepl(".*Bug$", p$Type))$Dev.Started)
non_bugs=non_bugs[-weekends]
plot_two_ratio(rollmean(all_bugs, 25), rollmean(non_bugs, 25))
legend(x="topleft", legend=c("New features", "Bug fixes", "Bug-fix/New-feature"), bty="n", fill=pal_col, cex=1.2) |
jumbotron <- function(header , content, button = TRUE, ...){
button_label = c(...)
if (button){
div(class = "jumbotron",
h1(header), p(content), p(a(class = "btn btn-primary btn-lg button", id='tabBut', button_label)))
} else {
div(class = "jumbotron", h1(header), p(content))
}
} |
meechua_reg<-function(x){
models <- dlply(mee_chua_sort, "mu", function(df)
lm(after~before, data = df))
mod_coef<-ldply(models, coef)
results <- ldply(models,function(i)coef(summary(i)))
se<-results[,"Std. Error"]
se_after<- se[seq(1,length(se),2)]
Variable<-rep(c("Before","Intercept"),times=101)
res_model_tab<-cbind(Variable,results)
res_model_tab<-as.data.frame(res_model_tab)
models<<-models
mod_coef<<-mod_coef
se_after<<-se_after
formattable(res_model_tab,
align =c("l","c","c","c","c","r"),
list(`Indicator Name` = formatter("span", style = ~ style(color = "grey",font.weight = "bold"))
))
} |
dfp_getTrafficAdjustmentsByStatement <- function(request_data, as_df=TRUE, verbose=FALSE){
request_body <- form_request_body(service='AdjustmentService', root_name='getTrafficAdjustmentsByStatement', data=request_data)
httr_response <- execute_soap_request(request_body=request_body, verbose=verbose)
result <- parse_soap_response(httr_response=httr_response, resp_element='getTrafficAdjustmentsByStatementResponse', as_df=as_df)
return(result)
}
dfp_updateTrafficAdjustments <- function(request_data, as_df=TRUE, verbose=FALSE){
request_body <- form_request_body(service='AdjustmentService', root_name='updateTrafficAdjustments', data=request_data)
httr_response <- execute_soap_request(request_body=request_body, verbose=verbose)
result <- parse_soap_response(httr_response=httr_response, resp_element='updateTrafficAdjustmentsResponse', as_df=as_df)
return(result)
} |
textplot <- function(object, halign="center", valign="center", cex,
max.cex = 1, cmar=2, rmar=0.5,
show.rownames=TRUE, show.colnames=TRUE,
hadj=1, vadj=NULL,
row.valign="center",
heading.valign = "bottom",
mar= c(0,0,0,0)+0.1,
col.data=par("col"),
col.rownames=par("col"),
col.colnames=par("col"),
wrap = TRUE,
wrap.colnames = 10,
wrap.rownames = 10, ... )
UseMethod('textplot')
textplot.default <- function(object,
halign=c("center","left","right"),
valign=c("center","top","bottom"),
cex,
max.cex, cmar, rmar,
show.rownames, show.colnames,
hadj, vadj,
row.valign,
heading.valign,
mar,
col.data,
col.rownames,
col.colnames,
wrap,
wrap.colnames,
wrap.rownames,... )
{
if (is.matrix(object) || (is.vector(object) && length(object)>1) )
return(textplot.matrix(object, halign, valign, cex, ... ))
halign <- match.arg(halign)
valign <- match.arg(valign)
textplot.character(object, halign, valign, cex, ...)
}
textplot.data.frame <- function(object,
halign=c("center","left","right"),
valign=c("center","top","bottom"),
cex,
max.cex = 1, cmar=2, rmar=0.5,
show.rownames=TRUE, show.colnames=TRUE,
hadj=1, vadj=NULL,
row.valign="center",
heading.valign = "bottom",
mar= c(0,0,0,0)+0.1,
col.data=par("col"),
col.rownames=par("col"),
col.colnames=par("col"),
wrap = TRUE,
wrap.colnames = 10,
wrap.rownames = 10, ... ){
textplot.matrix(object, halign, valign, cex,
max.cex, cmar, rmar,
show.rownames, show.colnames,
hadj, vadj,
row.valign,
heading.valign,
mar,
col.data,
col.rownames,
col.colnames,
wrap,
wrap.colnames,
wrap.rownames, ... )
}
textplot.matrix <- function(object,
halign=c("center","left","right"),
valign=c("center","top","bottom"),
cex, max.cex = 1, cmar=2, rmar=0.5,
show.rownames=TRUE, show.colnames=TRUE,
hadj=1, vadj=NULL,
row.valign="center",
heading.valign = "bottom",
mar= c(0,0,0,0)+0.1,
col.data=par("col"),
col.rownames=par("col"),
col.colnames=par("col"),
wrap = TRUE,
wrap.colnames = 10,
wrap.rownames = 10,
... )
{
if(is.vector(object))
object <- t(as.matrix(object))
else
object <- as.matrix(object)
if(length(col.data)==1)
col.data <- matrix(col.data, nrow=nrow(object), ncol=ncol(object))
else
if( nrow(col.data)!=nrow(object) || ncol(col.data)!=ncol(object) )
stop("Dimensions of 'col.data' do not match dimensions of 'object'.")
if(length(col.rownames)==1)
col.rownames <- rep(col.rownames, nrow(object))
if(length(col.colnames)==1)
if(show.rownames)
col.colnames <- rep(col.colnames, ncol(object)+1)
else
col.colnames <- rep(col.colnames, ncol(object))
halign=match.arg(halign)
valign=match.arg(valign)
opar <- par()[c("mar","xpd","cex")]
on.exit( par(opar) )
par(mar=mar, xpd=FALSE )
plot.new()
plot.window(xlim=c(0,1),ylim=c(0,1), log = "", asp=NA)
if( is.null(colnames(object) ) )
colnames(object) <- paste( "[,", 1:ncol(object), "]", sep="" )
if( is.null(rownames(object)) )
rownames(object) <- paste( "[", 1:nrow(object), ",]", sep="")
if( show.rownames )
{
if(wrap)
row.names = sapply(rownames(object), function(x) paste(strwrap(x,wrap.rownames), collapse = "\n"), USE.NAMES=FALSE)
else
row.names = rownames(object)
object <- cbind( row.names, object )
col.data <- cbind( col.rownames, col.data )
}
if( show.colnames )
{
if(wrap)
column.names = sapply(colnames(object), function(x) paste(strwrap(x,wrap.colnames), collapse = "\n"), USE.NAMES=FALSE)
else
column.names = colnames(object)
object <- rbind( column.names, object )
col.data <- rbind( col.colnames, col.data )
}
if( missing(cex) )
{
cex <- max.cex
lastloop <- FALSE
}
else
{
lastloop <- TRUE
}
for (i in 1:20)
{
oldcex <- cex
colwidth = apply( object, 2, function(XX) max(strwidth(XX, cex=cex)) ) + strwidth("W",cex=cex) * cmar
width = sum(colwidth)
rowheight = apply(object,1, function(X) max(strheight(X,cex=cex)) ) + strheight("(",cex=cex) * (1 + rmar )
height=sum(rowheight)
if(lastloop) break
cex <- cex / max(width,height)
if (abs(oldcex - cex) < 0.001)
{
lastloop <- TRUE
}
}
if(cex>max.cex) {
cex = max.cex
colwidth = apply( object, 2, function(XX) max(strwidth(XX, cex=cex)) ) + strwidth("W",cex=cex) * cmar
width = sum(colwidth)
rowheight = apply(object,1, function(X) max(strheight(X,cex=cex)) ) + strheight("(",cex=cex) * (1 + rmar )
height=sum(rowheight)
}
if(halign=="left")
xpos <- 0
else if(halign=="center")
xpos <- 0 + (1-width)/2
else
xpos <- 0 + (1-width)
if(valign=="top")
ypos <- 1
else if (valign=="center")
ypos <- 1 - (1-height)/2
else
ypos <- 0 + height
x <- xpos
y <- ypos
xpos<-x
for(i in 1:ncol(object)) {
xpos <- xpos + colwidth[i]
for(j in 1:nrow(object)) {
if( show.colnames && j==1 ){
if (i==1 && j==1){}
else {
if(heading.valign=="top") {
ypos = y
vadj = 1
}
if(heading.valign=="bottom") {
ypos = y - rowheight[1] + strheight("(",cex=cex) * (1 + rmar)
vadj = 0
}
if(heading.valign=="center") {
ypos = y - rowheight[1]/2 + strheight("(",cex=cex) * (1 + rmar)/2
vadj = .5
}
text(xpos, ypos, object[j,i], adj=c(hadj,vadj), cex=cex, font=2, col=col.data[j,i], ... )
}
}
else {
if(row.valign=="top") {
ypos = y - sum(rowheight[0:(j-1)])
vadj = 1
}
if(row.valign=="bottom") {
ypos = y - sum(rowheight[1:(j)]) + strheight("(",cex=cex) * (1 + rmar)
vadj = 0
}
if(row.valign=="center") {
ypos = y - (sum(rowheight[1:(j)]) + sum(rowheight[0:(j-1)]))/2 + strheight("(",cex=cex) * (1 + rmar)/2
vadj = .5
}
if(show.rownames && i==1)
font = 2
else
font = 1
text(xpos, ypos, object[j,i], adj=c(hadj,vadj), cex=cex, font=font, col=col.data[j,i], ... )
}
}
}
par(opar)
}
textplot.character <- function (object,
halign = c("center", "left", "right"),
valign = c("center", "top", "bottom"),
cex,
max.cex = 1, cmar=2, rmar=0.5,
show.rownames=TRUE, show.colnames=TRUE,
hadj=1, vadj=NULL,
row.valign="center",
heading.valign = "bottom",
mar= c(0,0,3,0)+0.1,
col.data=par("col"),
col.rownames=par("col"),
col.colnames=par("col"),
wrap = TRUE,
wrap.colnames = 10,
wrap.rownames = 10,
fixed.width=TRUE,
cspace=1,
lspace=1,
tab.width=8,
...)
{
object <- paste(object,collapse="\n",sep="")
object <- replaceTabs(object, width=tab.width)
halign = match.arg(halign)
valign = match.arg(valign)
plot.new()
opar <- par()[c("mar","xpd","cex","family")]
on.exit( par(opar) )
par(mar=mar,xpd=FALSE )
if(fixed.width)
par(family="mono")
plot.window(xlim = c(0, 1), ylim = c(0, 1), log = "", asp = NA)
slist <- unlist(lapply(object, function(x) strsplit(x,'\n')))
slist <- lapply(slist, function(x) unlist(strsplit(x,'')))
slen <- sapply(slist, length)
slines <- length(slist)
if (missing(cex))
{
lastloop <- FALSE
cex <- 1
}
else
lastloop <- TRUE
for (i in 1:20)
{
oldcex <- cex
cwidth <- max(sapply(unlist(slist), strwidth, cex=cex)) * cspace
cheight <- max(sapply(unlist(slist), strheight, cex=cex)) * ( lspace + 0.5 )
width <- strwidth(object, cex=cex)
height <- strheight(object, cex=cex)
if(lastloop) break
cex <- cex / max(width, height)
if (abs(oldcex - cex) < 0.001)
{
lastloop <- TRUE
}
}
if (halign == "left")
xpos <- 0
else if (halign == "center")
xpos <- 0 + (1 - width)/2
else xpos <- 0 + (1 - width)
if (valign == "top")
ypos <- 1
else if (valign == "center")
ypos <- 1 - (1 - height)/2
else ypos <- 1 - (1 - height)
text(x=xpos, y=ypos, labels=object, adj=c(0,1),
cex=cex, ...)
par(opar)
invisible(cex)
} |
source("ESEUR_config.r")
library("plyr")
plot_layout(2, 1)
pal_col=rainbow(4)
plot_foil=function(df)
{
lines(df$Thematic, df$False_Pos, type="b", col=df$col_str)
}
plot_period=function(period_str)
{
DCweek=subset(DC, Period == period_str)
plot(0, type="n",
xaxt="n", yaxs="i",
xlim=c(1, 4), ylim=c(0, max(DC$False_Pos)),
xlab="", ylab="False positive (percent)\n")
axis(1, at=1:4, label=c("Neutral", "Low", "Medium", "High"))
text(3, 5, gsub("_", " ", period_str), cex=1.3)
plot_foil(subset(DCweek, Foils == "Before"))
plot_foil(subset(DCweek, Foils == "After"))
plot_foil(subset(DCweek, Foils == "Famous"))
plot_foil(subset(DCweek, Foils == "Fictitious"))
legend(x="topleft", legend=c("Before", "After", "Famous", "Fictitious"), bty="n", fill=pal_col, cex=1.2)
}
DC=read.csv(paste0(ESEUR_dir, "sourcecode/DoolingChristiaansen77.csv.xz"), as.is=TRUE)
Foil_str=unique(DC$Foils)
DC$col_str=mapvalues(DC$Foils, Foil_str, pal_col)
DCweek=subset(DC, Period == "1_week")
plot_period("2_days")
plot_period("1_week") |
github_info <- function(path = ".",
remote = "origin",
.token = NULL) {
remote_url <- get_remote_url(path, remote)
repo <- extract_repo(remote_url)
get_repo_data(repo, .token)
}
get_repo_data <- function(repo, .token = NULL) {
req <- gh::gh("/repos/:repo", repo = repo, .token = .token)
return(req)
}
get_remote_url <- function(path, remote) {
remote_names <- gert::git_remote_list(path)
if (!length(remote_names)) {
stop("Failed to lookup git remotes")
}
remote_name <- remote
if (!(remote_name %in% remote_names)) {
stop(sprintf(
"No remote named '%s' found in remotes: '%s'.",
remote_name, remote_names
))
}
return(remote_names[remote_names$name == remote]$url)
}
extract_repo <- function(url) {
re <- "github[^/:]*[/:]([^/]+)/(.*?)(?:\\.git)?$"
m <- regexec(re, url)
match <- regmatches(url, m)[[1]]
if (length(match) == 0) {
stop("Unrecognized repo format: ", url)
}
paste0(match[2], "/", match[3])
} |
opticskxi_pipeline <- function(m_data,
df_params = expand.grid(n_xi = 1:10, pts = c(20, 30, 40),
dist = c('euclidean', 'abscorrelation'),
dim_red = c('identity', 'PCA', 'ICA'), n_dimred_comp = c(5, 10, 20)),
n_cores = 1) {
if (!all(c('n_xi', 'pts', 'dist') %in% names(df_params))) {
stop('Missing required columns in parameter grid.')
}
if (!'dim_red' %in% names(df_params)) {
df_params %<>% cbind(dim_red = 'identity')
}
uniq_names <- c('dim_red', 'n_dimred_comp')
df_params <- fetch_dimred(m_data, df_params, uniq_names, n_cores)
uniq_names %<>% c('dist')
df_params %<>% derive_column(uniq_names, c('m_dimred', 'dist'), amap::Dist,
'm_dist', c('x', 'method'), mc.cores = n_cores)
uniq_names %<>% c('pts')
df_params %<>% derive_column(uniq_names, c('m_dist', 'pts'), dbscan::optics,
'optics', c('x', 'minPts'), mc.cores = n_cores)
df_params <- fetch_opticskxi(df_params, n_cores)
m_dist <- dist(m_data) %>% as.matrix
df_params$metrics <- parallel::mclapply(df_params$clusters,
get_kxi_metrics, m_dist, mc.cores = n_cores)
df_params
}
get_best_kxi <- function(df_kxi, metric = 'avg.silwidth', rank = 1) {
if (all(unlist(df_kxi$metrics) == 0)) stop('All metrics equal 0')
metric_value <- as.matrix(as.data.frame(df_kxi$metrics))[metric, ]
if (all(metric_value == 0)) stop(paste('All', metric, 'values equal 0'))
df_kxi %<>% `[`(order(metric_value, decreasing = TRUE)[rank], )
if (length(rank) == 1) {
df_kxi %<>% as.list
df_kxi[c('optics', 'clusters', 'metrics')] %<>% lapply(`[[`, 1)
}
df_kxi
}
fetch_dimred <- function(m_data, df_params, uniq_names, n_cores) {
df_params[df_params$dim_red == 'identity', 'n_dimred_comp'] <- NA
df_params %<>% unique %>% `rownames<-`(NULL)
df_params$m_data <- list(m_data)
df_params <- derive_column(df_params, uniq_names,
c('m_data', 'dim_red', 'n_dimred_comp'), .fetch_dimred, 'm_dimred',
mc.cores = n_cores)
}
.fetch_dimred <- function(m_data, dim_red, n_dimred_comp) {
n_dimred_comp <- as.numeric(n_dimred_comp)
switch(dim_red, identity = m_data,
PCA = stats::prcomp(m_data)$x[, seq_len(n_dimred_comp)],
ICA = {
set.seed(0)
fastICA::fastICA(m_data, n_dimred_comp)$S %>%
`colnames<-`(paste0('IC', seq_len(ncol(.))))
})
}
fetch_opticskxi <- function(df_params, n_cores) {
df_opt <- data.frame(t(df_params[c('optics', 'n_xi', 'pts')]),
stringsAsFactors = FALSE)
df_params$clusters <- parallel::mclapply(df_opt,
function(params) do.call(opticskxi, params), mc.cores = n_cores)
df_params
}
derive_column <- function(df_prm, uniq_names, df_names, fun, col_name,
param_names = df_names, ...) {
uniq_idxs <- which(!duplicated(df_prm[uniq_names]))
uniq_params <- df_prm[uniq_idxs, df_names]
uniq_df <- df_prm[uniq_idxs, uniq_names]
uniq_df[[col_name]] <- parallel::mclapply(
data.frame(t(uniq_params), stringsAsFactors = FALSE), .derive_column, fun,
param_names, ...)
df_prm %<>% `[`(-match(df_names[1], names(.)))
merge(uniq_df, df_prm, by = uniq_names)
}
.derive_column <- function(params, fun, param_names) {
do.call(fun, as.list(stats::setNames(params, param_names)))
}
get_kxi_metrics <- function(clusters, m_dist,
metrics = c('avg.silwidth', 'bw.ratio', 'ch', 'pearsongamma', 'dunn',
'dunn2', 'entropy', 'widestgap', 'sindex')) {
if (length(table(clusters)) < 2) return(rep(0, length(metrics)))
ids <- which(!is.na(clusters))
m_dist[ids, ids] %>% fpc::cluster.stats(clusters[ids]) %>%
`[[<-`('bw.ratio', 1 / .$wb.ratio) %>% `[`(metrics) %>% unlist
} |
context("test-likelihood_st.R")
test_that("Luetkepohl Netsunajev 5*5 example", {
v1 <- vars::VAR(LN, p = 3, type = 'const')
u <- residuals(v1)
transition_f <- function(gamma, cc, st){
G <- (1 + exp(-exp(gamma)*(st - cc)))^(-1)
return(G)
}
G_grid <- mapply(transition_f, -2.77, 167, MoreArgs = list(st = seq(1:447)))
B <- matrix(c(0.213883587513229, 0.772120510734492, -0.132282532851005, -0.0318059401299042, 0.183421072804760,
-0.000909983103775138, 0.0611927897127684, -0.133387139716194, 0.224482965869132, -0.178566415153278,
-0.489608073426655, 1.34883810601586, 3.16440093460292, 1.18136247975495, -0.349727160207559,
-0.241998772722667, 1.07756860248053, 0.547129661435694, -2.40448854722913, -2.27634107379356,
0.885487887527691, 0.0288063531310017, 0.0196527566892526, 0.0206577929300702, 0.00150251343596967), nrow = 5, byrow = T)
Lambda <- c(0.0199927489696526, 0.314911226555606, 0.548190884220239, 0.866994133953794, 0.926892018919112)*diag(5)
expect_equal(round(LikelihoodST(parameter = c(B, diag(Lambda)), u = u, G = G_grid, k = 5, Tob = 447,
RestrictionMatrix = matrix(NA, 5,5), restrictions = 0), 3),
2976.656)
})
test_that("Random 2*2 example works", {
set.seed(12123)
u <- matrix(rnorm(400, sd = 1.2), 200, 2)
transition_f <- function(gamma, cc, st){
G <- (1 + exp(-exp(gamma)*(st - cc)))^(-1)
return(G)
}
G_grid <- mapply(transition_f, -2, 100, MoreArgs = list(st = seq(1:200)))
B <- matrix(c(rnorm(mean = 3, 4)), nrow = 2)
Lambda <- c(rnorm(mean = 2, 2))*diag(2)
expect_equal(round(LikelihoodST(parameter = c(B, diag(Lambda)), u = u, G = G_grid, k = 2, Tob = 200,
RestrictionMatrix = matrix(NA, 2, 2), restrictions = 0), 3),
906.717)
})
test_that("2*2 example with negative variance", {
set.seed(12123)
u <- matrix(rnorm(400, sd = 1.2), 200, 2)
transition_f <- function(gamma, cc, st){
G <- (1 + exp(-exp(gamma)*(st - cc)))^(-1)
return(G)
}
G_grid <- mapply(transition_f, -2, 100, MoreArgs = list(st = seq(1:200)))
B <- matrix(c(rnorm(mean = 3, 4)), nrow = 2)
Lambda <- c(-2, 2)*diag(2)
expect_equal(round(LikelihoodST(parameter = c(B, diag(Lambda)), u = u, G = G_grid, k = 2, Tob = 200,
RestrictionMatrix = matrix(NA, 2, 2), restrictions = 0), 3),
1e25)
}) |
data("dataHigherMoments")
context("Inputchecks - higherMomentsIV - Parameter formula")
test_that("Fail if bad 2nd RHS", {
expect_error(higherMomentsIV(y~X1+X2+P||IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2|P|IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+P|X2|IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P2|IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1|X1|IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~P|P|IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+log(P)|P|IIV(iiv=gp, g=x2, X1, X2), data = dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|log(P)|IIV(iiv=gp, g=x2, X1, X2), data = dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if more than a single endo regressor is given", {
expect_error(higherMomentsIV(y~X1+X2+P|P+X1|IIV(iiv=gp, g=x2, X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P+X2|IIV(iiv=gp, g=x2, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|X1+X2|IIV(iiv=gp,g=x2, P), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if bad 3rd RHS", {
expect_error(higherMomentsIV(y~X1+X2+P|P), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, X3), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+P|P|IIV(g=x2, iiv=g, X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X2+P|P|IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, P), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, X1, P), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P+X1|IIV(g=x2, iiv=g, X1, X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P+X2|IIV(g=x2, iiv=g, X1, X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if > 4RHS",{
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, X1)|IIV(g=x2, iiv=g, X2)|IIV(g=x3, iiv=g, X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, X1)| X2|X1), regexp = "The above errors were encountered!")
})
test_that("Fail if bad LHS", {
expect_error(higherMomentsIV(~X1+X2+P|P|IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y|X1~X2+P|P|IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~y+X2+P|P|IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(X1~X1+X2+P|P|IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y+IIV(g=x2, iiv=g, X1)~X1+X2+P|P|IIV(g=x2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if formula contains dot (.)", {
expect_error(higherMomentsIV(y~X1+X2+.|P|IIV(g=x2, iiv=gp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(.~X1+X2+X2|P|IIV(g=x2, iiv=gp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+X2|.|IIV(g=x2, iiv=gp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+X2|P|IIV(g=x2, iiv=gp, .), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if no special function", {
expect_error(higherMomentsIV(y~X1+X2+P|P|x2+gp+X1, data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|X1+X2), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV+IIV(g=x2, iiv=gp, X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if missing regressors in IIV", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=gp), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=gp, ), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if missing iiv in IIV", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv = NULL, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv = NA_character_, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv = character(0), X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv = "", X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if missing g in IIV", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(iiv=gy, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=NULL,iiv=gy, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=NA_character_, iiv=gy, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=character(0), iiv=gy, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if invalid iiv in IIV", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=gpp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=p, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=y3, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=c(g, gy), X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=c("g", "g"), X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=list(g), X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if multiple iiv in IIV", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g,iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g,(iiv=g), X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g,iiv=gp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if multiple g in IIV", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, g=x3, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, g=x3, iiv=g, X1)+IIV(iiv=gp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=c(x2,x3), iiv=g, X1)+IIV(iiv=gp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=c("x2","x3"), iiv=g, X1)+IIV(iiv=gp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=list("x2","x3"), iiv=g, X1)+IIV(iiv=gp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if invalid colname in IIV", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, X3), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, P), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, X1, P), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, X2, P), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, X1, X3), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if non existent special function", {
expect_error(higherMomentsIV(y~X1+X2+P|P|iiv(g=x2, iiv=g, X1,X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, X1,X2)+iiv(g=x2, iiv=gy, X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, X1,X2)+brunz(), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if transformation inside special", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, log(X1)), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, log(X1+X2)), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g, I(X1^2)), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x^2, iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=log(x), iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=g*p, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(iiv=g2*p, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(iiv=x2*p, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if transformation only for one var but not in special", {
expect_error(higherMomentsIV(y~X1+log(X2)+P|P|IIV(g=x2, iiv=g, X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+log(X2)+P|P|IIV(g=x2, iiv=g, log(X1)), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~log(X1)+log(X2)+P|P|IIV(g=x2, iiv=g, log(X1+X2)), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if special outside RHS3", {
expect_error(higherMomentsIV(y~IIV(g=x2, iiv=g,X1)+X2+P|P|IIV(g=x2, iiv=g,X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(IIV(g=x2, iiv=yp,y)~X1+X2+P|P|IIV(g=x2, iiv=g,X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|IIV(g=x2, iiv=yp,X1)|IIV(g=x2, iiv=g,X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2, iiv=yp,P)|IIV(g=x2, iiv=g,X2), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if missing g but IIV does require it", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(iiv=gp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(iiv=gy, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=,iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=,iiv=gp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=,iiv=gy, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=NULL,iiv=g, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=NULL,iiv=gp, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=NULL,iiv=gy, X1), data=dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Warning if g but IIV does not need it", {
expect_warning(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=yp, X1, X2), data=dataHigherMoments), regexp = "ignored", all = TRUE)
expect_warning(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=p2, X1, X2), data=dataHigherMoments), regexp = "ignored", all = TRUE)
expect_warning(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=y2, X1, X2), data=dataHigherMoments), regexp = "ignored", all = TRUE)
})
test_that("Warning if exo regr but IIV does not need it", {
expect_warning(higherMomentsIV(y~X1+X2+P|P|IIV(iiv=yp, X1, X2), data=dataHigherMoments), regexp = "ignored because they are not needed to built", all = TRUE)
expect_warning(higherMomentsIV(y~X1+X2+P|P|IIV(iiv=p2, X1, X2), data=dataHigherMoments), regexp = "ignored because they are not needed to built", all = TRUE)
expect_warning(higherMomentsIV(y~X1+X2+P|P|IIV(iiv=y2, X1, X2), data=dataHigherMoments), regexp = "ignored because they are not needed to built", all = TRUE)
})
test_that("Silent if no g and IIV does not need it", {
expect_silent(higherMomentsIV(y~X1+P|P|IIV(iiv=yp)+IIV(iiv=yp)+IIV(iiv=y2),
data=dataHigherMoments, verbose = FALSE))
expect_silent(higherMomentsIV(y~X1+X2+P|P|IIV(g=,iiv=yp)+IIV(g=,iiv=p2)+IIV(g=,iiv=y2),
data=dataHigherMoments, verbose=FALSE))
expect_silent(higherMomentsIV(y~X1+X2+P|P|IIV(g=NULL,iiv=yp)+IIV(g=,iiv=p2)+IIV(g=,iiv=y2),
data=dataHigherMoments, verbose = FALSE))
})
context("Inputchecks - higherMomentsIV - Parameter data")
test_that("Fail if is NA, NULL or missing", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1), data= ), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1), data=NULL), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1), data=NA_real_), regexp = "The above errors were encountered!")
})
test_that("Fail if not data.frame", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1), data= c(y=1:10, X1=1:10, X2=1:10, P=1:10)), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1), data= list(y=1:10, X1=1:10, X2=1:10, P=1:10)), regexp = "The above errors were encountered!")
})
test_that("Fail if no rows or cols",{
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1), data= data.frame()), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1), data= data.frame(y=integer(), X1=numeric(), X2=numeric(), P=integer())), regexp = "The above errors were encountered!")
})
test_that("Fail if contains any non-finite", {
call.args <- list(formula=y~X1+X2+P|P|IIV(g=x2,iiv=g, X1))
test.nonfinite.in.data(data = dataHigherMoments, name.col = "y", fct = higherMomentsIV, call.args = call.args)
test.nonfinite.in.data(data = dataHigherMoments, name.col = "X1", fct = higherMomentsIV, call.args = call.args)
test.nonfinite.in.data(data = dataHigherMoments, name.col = "X2", fct = higherMomentsIV, call.args = call.args)
test.nonfinite.in.data(data = dataHigherMoments, name.col = "P", fct = higherMomentsIV, call.args = call.args)
})
test_that("Fail if EIV not in data", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1)|EIV,data= dataHigherMoments), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1)|X1+eiv,data= dataHigherMoments), regexp = "The above errors were encountered!")
})
test_that("Fail if wrong data type in endo", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1),data= data.frame(y=1:10, X1=1:10, X2=1:10, P=factor(1:10))), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1),data= data.frame(y=1:10, X1=1:10, X2=1:10, P=as.character(1:10), stringsAsFactors=FALSE)), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1),data= data.frame(y=1:10, X1=1:10, X2=1:10, P=as.logical(0:9))), regexp = "The above errors were encountered!")
})
test_that("Fail if wrong data type in exo used in IIV", {
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1),data= data.frame(y=1:10, X1=factor(1:10), X2=1:10, P=1:10)), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1),data=data.frame(y=1:10, X1=as.character(1:10), X2=1:10, P=1:10, stringsAsFactors=FALSE)), regexp = "The above errors were encountered!")
expect_error(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g, X1),data= data.frame(y=1:10, X1=as.logical(0:9), X2=1:10, P=1:10)), regexp = "The above errors were encountered!")
})
test_that("Allow wrong data type in irrelevant columns", {
expect_silent(higherMomentsIV(y~X1+X2+P|P|IIV(g=x2,iiv=g,X2)+IIV(iiv=p2)+IIV(iiv=y2)+IIV(iiv=gp,g=x2,X1), verbose=FALSE,
data = cbind(dataHigherMoments,
unused1=as.logical(0:9), unused2=as.character(1:10),unused3=as.factor(1:10), stringsAsFactors = FALSE)))
})
context("Inputchecks - higherMomentsIV - Parameter verbose")
test.single.logical(function.to.test = higherMomentsIV, parameter.name="verbose",
formula=y~X1+X2+P|P|IIV(g=x2,iiv=g, X1, X2), function.std.data=dataHigherMoments) |
lastAdd <- function(fun) {
if (!is.function(fun)) stop("fun must be a function")
if (!exists(".Last", envir = .GlobalEnv, mode = "function")) {
return(fun)
}
else {
Last <- get(".Last", envir = .GlobalEnv, mode = "function")
newfun <- function(...) {
browser()
fun()
Last()
}
return(newfun)
}
} |
expected <- eval(parse(text="logical(0)"));
test(id=0, code={
argv <- eval(parse(text="list(structure(integer(0), .Label = character(0), class = \"factor\"))"));
do.call(`>=`, argv);
}, o=expected); |
context("rr_publisher_id")
test_that("rr_publisher_id() works", {
expect_error(rr_publisher_id("a"),
regexp = "All provided IDs should be integers")
skip_on_cran()
use_cassette("rr_publisher_id", {
res <- rr_publisher_id(55)
expect_is(res, "data.frame")
expect_named(res, c("romeoid", "publisher", "alias", "romeocolour",
"preprint", "postprint", "pdf"))
expect_is(res$romeoid, "numeric")
expect_is(res$publisher, "character")
expect_is(res$alias, "character")
expect_is(res$romeocolour, "character")
expect_is(res$preprint, "character")
expect_is(res$postprint, "character")
expect_is(res$pdf, "character")
expect_equal(res$alias, "OUP")
expect_equal(res$pdf, "unclear")
})
use_cassette("rr_publisher_id_multiple", {
res <- rr_publisher_id(c(55, 735))
expect_is(res, "data.frame")
expect_named(res, c("romeoid", "publisher", "alias", "romeocolour",
"preprint", "postprint", "pdf"))
expect_equal(dim(res), c(2, 7))
expect_is(res$romeoid, "numeric")
expect_is(res$publisher, "character")
expect_is(res$alias, "character")
expect_is(res$romeocolour, "character")
expect_is(res$preprint, "character")
expect_is(res$postprint, "character")
expect_is(res$pdf, "character")
expect_equal(res$romeoid, c(55, 735))
})
use_cassette("rr_publisher_id_notfound", {
expect_error(rr_publisher_id(1500000),
"No publisher was found. Maybe try another query? ;)",
fixed = TRUE)
})
expect_error(rr_publisher_id("azerty"), "All provided IDs should be integers")
use_cassette("api_unreachable_publisher", {
expect_error(rr_publisher_id(55),
paste0("The API endpoint could not be reached. Please try",
" again later."))
})
}) |
testthat::context("Testing time.functions")
testthat::test_that("tloglin functions correctly", {
timefun <- tloglin(pool.rate="rel", method.rate="common")
expect_equal(timefun$nparam, 1)
expect_equal(timefun$apool, c("rate"="rel"))
expect_equal(timefun$amethod, c("rate"="common"))
expect_equal(timefun$name, "loglin")
timefun <- tloglin(pool.rate="abs", method.rate="random")
expect_equal(timefun$nparam, 1)
expect_equal(timefun$apool, c("rate"="abs"))
expect_equal(timefun$amethod, c("rate"="random"))
expect_equal(timefun$name, "loglin")
})
testthat::test_that("temax functions correctly", {
timefun <- temax(pool.emax="rel", method.emax="common", pool.et50="rel", method.et50="common")
expect_equal(timefun$nparam, 2)
timefun <- temax(pool.emax="rel", method.emax="common", pool.et50="rel", method.et50="common",
pool.hill="rel", method.hill="common")
expect_equal(timefun$nparam, 3)
expect_message(temax(pool.emax="rel", method.emax="common", pool.et50="rel", method.et50="common"), "et50")
expect_message(temax(pool.emax="rel", method.emax="common", pool.et50="rel", method.et50="common",
pool.hill="abs", method.hill="random"), "hill")
timefun <- temax(pool.emax="abs", method.emax="random", pool.et50="rel", method.et50="random",
pool.hill="abs", method.hill="common")
expect_equal(timefun$apool, c(emax="abs", et50="rel", hill="abs"))
expect_equal(timefun$amethod, c(emax="random", et50="random", hill="common"))
}) |
Bornmann07 <-
structure(list(Id = c(1L, 2L, 3L, 4L, 5L, 6L, 7L, 8L, 9L, 10L,
11L, 12L, 13L, 14L, 15L, 16L, 17L, 18L, 19L, 20L, 21L, 22L, 23L,
24L, 25L, 26L, 27L, 28L, 29L, 30L, 31L, 32L, 33L, 34L, 35L, 36L,
37L, 38L, 39L, 40L, 41L, 42L, 43L, 44L, 45L, 48L, 49L, 50L, 46L,
47L, 51L, 52L, 53L, 57L, 56L, 55L, 54L, 58L, 59L, 60L, 61L, 62L,
63L, 64L, 65L, 66L), Study = c("Ackers (2000a; Marie Curie)",
"Ackers (2000b; Marie Curie)", "Ackers (2000c; Marie Curie)",
"Ackers (2000d; Marie Curie)", "Ackers (2000e; Marie Curie)",
"Ackers (2000f; Marie Curie)", "Ackers (2000g; Marie Curie)",
"Allmendinger (2002a; DFG)", "Allmendinger (2002b; DFG)", "Allmendinger (2002c; DFG)",
"Allmendinger (2002d; DFG)", "Allmendinger (2002e; DFG)", "Allmendinger (2002f; DFG)",
"Allmendinger (2002g; DFG)", "Bazeley (1998; ARC)", "Bornmann (2005; BIF)",
"Brouns (2000a; NWO/ KNAW)", "Brouns (2000b; NWO/ KNAW)", "Brouns (2000c; NWO/ KNAW)",
"Brouns (2000d; NWO/ KNAW)", "Brouns (2000e; NWO/ KNAW)", "Dexter (2002a; Wellcome Trust)",
"Dexter (2002b; Wellcome Trust)", "Dexter (2002c; Wellcome Trust)",
"Emery (1992; NIH)", "Friesen (1998a; MRC)", "Friesen (1998b; MRC)",
"Friesen (1998c; MRC)", "Goldsmith (2002a; NSF)", "Goldsmith (2002b; NSF)",
"Grant (1997a; Wellcome Trust)", "Grant (1997b; Wellcome Trust)",
"Grant (1997c; MRC)", "Grant (1997d; MRC)", "Jayasinghe (2001; ARC)",
"National Science Foundation (2005a)", "National Science Foundation (2005b)",
"National Science Foundation (2005c)", "National Science Foundation (2005d)",
"National Science Foundation (2005e)", "National Science Foundation (2005f)",
"National Science Foundation (2005g)", "National Science Foundation (2005h)",
"Over (1996; ARC)", "Sigelman (1987; NSF)", "Taplick (2005a; EMBO)",
"Taplick (2005b; EMBO)", "Taplick (2005c; EMBO)", "Viner (2004a; EPSRC)",
"Viner (2004b; EPSRC)", "Ward (1998; NHMRC)", "Wellcome Trust (1997)",
"Wenneras (1997; MRC)", "Willems (2001a; DFG)", "Willems (2001b; DFG)",
"Willems (2001c; DFG)", "Willems (2001d; DFG)", "Wood (1997a; ARC)",
"Wood (1997b; ARC)", "Wood (1997c; ARC)", "Wood (1997d; ARC)",
"Wood (1997e; ARC)", "Wood (1997f; ARC)", "Wood (1997g; ARC)",
"Wood (1997h; ARC)", "Wood (1997i; ARC)"), Cluster = c(1L, 1L,
1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 4L, 5L, 5L,
5L, 5L, 5L, 6L, 6L, 6L, 7L, 8L, 8L, 8L, 9L, 9L, 10L, 10L, 10L,
10L, 11L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 12L, 13L, 14L, 16L,
16L, 16L, 15L, 15L, 17L, 18L, 19L, 20L, 20L, 20L, 20L, 21L, 21L,
21L, 21L, 21L, 21L, 21L, 21L, 21L), logOR = c(-0.40108, -0.05727,
-0.29852, 0.36094, -0.33336, -0.07173, -0.16793, -0.55585, -0.09217,
0.48184, -0.25672, -0.429, -0.55207, -1.113, -0.24714, -0.45176,
-0.44629, -0.87855, 1.50539, -0.8546, -0.09465, 0.04879, -0.14259,
-0.89097, 0.35229, -0.05753, -0.20078, -0.27131, -0.31304, -0.05053,
-0.03353, 0.48551, 0.14548, -0.5499, -0.00307, 0.18275, 0.08592,
-0.02845, 0.11214, 0.0739, 0.00872, 0.06467, 0.07257, 0.10536,
-0.86392, -0.1039, -0.31322, -0.16188, 0.35424, 0.05373, 0.08573,
0.71562, -1.42885, -0.07833, -0.10434, -0.07452, -0.08312, -0.26194,
-0.43191, -0.56531, -1.48881, -0.15985, 0.11464, -0.17096, 0.02763,
0.66155), v = c(0.0139169209, 0.0342879289, 0.0339112225, 0.03404025,
0.0128210329, 0.0136118889, 0.00583696, 0.3964969024, 0.5866794025,
0.7119478129, 0.2932547409, 0.43652449, 0.136161, 0.3360289024,
0.1291467969, 0.0092083216, 0.5400045225, 0.3606843249, 0.3146649025,
0.1750836649, 0.0834227689, 0.0438567364, 0.0225690529, 0.3852560761,
0.0899220169, 0.0056896849, 0.0768620176, 0.0157301764, 0.0106688241,
0.0051955264, 0.0235591801, 0.20967241, 0.0372219849, 0.1441341225,
0.01532644, 0.0009903609, 0.0009897316, 0.0010686361, 0.0009853321,
0.0009653449, 0.0008838729, 0.0008305924, 0.0007963684, 0.1429520481,
0.6091334209, 0.0151831684, 0.0035414401, 0.0460274116, 0.0258984649,
0.0228644641, 0.0510714801, 0.2265188836, 0.3550729744, 0.0065788321,
0.0057441241, 0.0062805625, 0.0055234624, 0.1470952609, 0.1526230489,
0.6184092321, 1.1067250401, 0.2695997929, 0.0751527396, 0.4548558249,
0.0569920129, 0.2744397769), Year = c(1996L, 1996L, 1996L, 1996L,
1996L, 1996L, 1996L, 1993L, 1994L, 1995L, 1996L, 1997L, 1998L,
1999L, 1995L, 1992L, 1994L, 1994L, 1994L, 1994L, 1994L, 2000L,
2000L, 2000L, 1990L, 1998L, 1998L, 1998L, 1979L, 1993L, 1996L,
1996L, 1996L, 1995L, 1996L, 1997L, 1998L, 1999L, 2000L, 2001L,
2002L, 2003L, 2004L, 1993L, 1986L, 2002L, 2000L, 2002L, 1994L,
1998L, 1996L, 1995L, 2001L, 2000L, 1999L, 1998L, 1997L, 1995L,
1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L, 1995L), Type = structure(c(2L,
2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L,
2L, 2L, 2L, 2L, 2L, 1L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 1L,
2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 1L,
1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L,
1L), .Label = c("Grant", "Fellowship"), class = "factor"), Discipline = structure(c(1L,
1L, 1L, 1L, 3L, 1L, 2L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 4L, 2L, 3L,
3L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 2L, 2L, 2L,
2L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 4L, 3L, 2L, 2L, 2L, 1L,
1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 3L, 1L, 3L,
1L), .Label = c("Physical sciences", "Life sciences/biology",
"Social sciences/humanities", "Multidisciplinary"), class = "factor"),
Country = structure(c(5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L, 5L,
5L, 5L, 5L, 5L, 5L, 3L, 5L, 5L, 5L, 5L, 5L, 5L, 4L, 4L, 4L,
1L, 2L, 2L, 2L, 1L, 1L, 4L, 4L, 4L, 4L, 3L, 1L, 1L, 1L, 1L,
1L, 1L, 1L, 1L, 3L, 1L, 5L, 5L, 5L, 4L, 4L, 3L, 4L, 5L, 5L,
5L, 5L, 5L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L, 3L), .Label = c("United States",
"Canada", "Australia", "United Kingdom", "Europe"), class = "factor")), .Names = c("Id",
"Study", "Cluster", "logOR", "v", "Year", "Type", "Discipline",
"Country"), row.names = c(NA, -66L), class = "data.frame") |
module_correctedstats_server <- function(input,
output,
session,
rv,
input_re) {
observe({
req(rv$corrected_finished)
output$regression_stats_corrected_h <- renderUI({
output$dt_reg_corrected_h <- DT::renderDataTable({
dt <- rv$reg_stats_corrected_h
render_regressionstatistics(dt,
mode = "corrected",
minmax = rv$minmax)
})
d <- DT::dataTableOutput("moduleCorrectedStatistics-dt_reg_corrected_h")
do.call(tagList, list(d))
})
output$regression_stats_corrected_c <- renderUI({
output$dt_reg_corrected_c <- DT::renderDataTable({
dt <- rv$reg_stats_corrected_c
render_regressionstatistics(dt,
mode = "corrected",
minmax = rv$minmax)
})
d <- DT::dataTableOutput("moduleCorrectedStatistics-dt_reg_corrected_c")
do.call(tagList, list(d))
})
output$download_regstat_corrected_h <- downloadHandler(
filename = function() {
paste0(
rv$sample_locus_name,
"_corrected_regression_stats_h_",
gsub("\\-",
"",
substr(Sys.time(), 1, 10)),
"_",
gsub("\\:",
"",
substr(Sys.time(), 12, 16)),
".csv"
)
},
content = function(file) {
rBiasCorrection::write_csv(
table = rv$reg_stats_corrected_h[, -which(
colnames(rv$reg_stats_corrected_h) == "better_model")
, with = FALSE],
filename = file)
},
contentType = "text/csv"
)
output$download_regstat_corrected_c <- downloadHandler(
filename = function() {
paste0(
rv$sample_locus_name,
"_corrected_regression_stats_c_",
gsub("\\-", "", substr(Sys.time(), 1, 10)), "_",
gsub("\\:", "", substr(Sys.time(), 12, 16)), ".csv"
)
},
content = function(file) {
rBiasCorrection::write_csv(
table = rv$reg_stats_corrected_c[, -which(
colnames(rv$reg_stats_corrected_c) == "better_model")
, with = FALSE],
filename = file)
},
contentType = "text/csv"
)
output$substitutions_corrected_h <- DT::renderDataTable({
DT::datatable(rv$substitutions_corrected_h,
options = list(scrollX = TRUE,
pageLength = 20,
dom = "ltip"),
rownames = FALSE) %>%
DT::formatRound(columns = c(3:4), digits = 3)
})
output$substitutions_corrected_c <- DT::renderDataTable({
DT::datatable(rv$substitutions_corrected_c,
options = list(scrollX = TRUE,
pageLength = 20,
dom = "ltip"),
rownames = FALSE) %>%
DT::formatRound(columns = c(3:4), digits = 3)
})
output$download_subs_corrected_h <- downloadHandler(
filename = function() {
paste0(rv$sample_locus_name,
"_substituted_corrected_h_",
rBiasCorrection::get_timestamp(), ".csv")
},
content = function(file) {
rBiasCorrection::write_csv(
table = rv$substitutions_corrected_h,
filename = file)
},
contentType = "text/csv"
)
output$download_subs_corrected_c <- downloadHandler(
filename = function() {
paste0(rv$sample_locus_name,
"_substituted_corrected_c_",
rBiasCorrection::get_timestamp(),
".csv")
},
content = function(file) {
rBiasCorrection::write_csv(
table = rv$substitutions_corrected_c,
filename = file)
},
contentType = "text/csv"
)
})
}
module_correctedstatistics_ui <- function(id) {
ns <- NS(id)
tagList(
fluidRow(
column(
9,
box(
title = "Regression Statistics (corrected)",
tabsetPanel(
tabPanel(
"Hyperbolic Correction",
uiOutput(ns("regression_stats_corrected_h"))
),
tabPanel(
"Cubic Correction",
uiOutput(ns("regression_stats_corrected_c"))
)
),
width = 12
)
),
column(
3,
box(
title = "Download Regression Statistics (corrected)",
uiOutput(ns("statistics_select")),
div(class = "row",
style = "text-align: center",
downloadButton(
ns("download_regstat_corrected_h"),
"Download regression statistics (hyperbolic correction)",
style = paste0(
"white-space: normal; ",
"text-align:center; ",
"padding: 9.5px 9.5px 9.5px 9.5px; ",
"margin: 6px 10px 6px 10px;"))),
div(class = "row",
style = "text-align: center",
downloadButton(
ns("download_regstat_corrected_c"),
"Download regression statistics (cubic correction)",
style = paste0(
"white-space: normal; ",
"text-align:center; ",
"padding: 9.5px 9.5px 9.5px 9.5px; ",
"margin: 6px 10px 6px 10px;"))),
tags$hr(),
width = 12
)
)
),
fluidRow(
column(
9,
box(
title = "Substitutions (corrected)",
tabsetPanel(
tabPanel(
"Hyperbolic Correction",
DT::dataTableOutput(ns("substitutions_corrected_h"))
),
tabPanel(
"Cubic Correction",
DT::dataTableOutput(ns("substitutions_corrected_c"))
)
),
width = 12
)
),
column(
3,
box(
title = "Download substitutions (corrected)",
div(class = "row",
style = "text-align: center",
downloadButton(
ns("download_subs_corrected_h"),
"Download substitutions (hyperbolic correction)",
style = paste0(
"white-space: normal; ",
"text-align:center; ",
"padding: 9.5px 9.5px 9.5px 9.5px; ",
"margin: 6px 10px 6px 10px;"))),
div(class = "row",
style = "text-align: center",
downloadButton(
ns("download_subs_corrected_c"),
"Download substitutions (cubic correction)",
style = paste0(
"white-space: normal; ",
"text-align:center; ",
"padding: 9.5px 9.5px 9.5px 9.5px; ",
"margin: 6px 10px 6px 10px;"))),
tags$hr(),
width = 12
)
)
)
)
} |
arrange.tbl_lazy <- function(.data, ..., .by_group = FALSE) {
dots <- quos(...)
dots <- partial_eval_dots(dots, vars = op_vars(.data))
names(dots) <- NULL
if (is_empty(dots)) {
return(.data)
}
add_op_single(
"arrange",
.data,
dots = dots,
args = list(.by_group = .by_group)
)
}
op_sort.op_arrange <- function(op) {
op$dots
}
op_desc.op_arrange <- function(x, ...) {
op_desc(x$x, ...)
}
sql_build.op_arrange <- function(op, con, ...) {
order_vars <- translate_sql_(op$dots, con, context = list(clause = "ORDER"))
if (op$args$.by_group) {
order_vars <- c.sql(ident(op_grps(op$x)), order_vars, con = con)
}
select_query(
sql_build(op$x, con),
order_by = order_vars
)
} |
clusterPreset<- function(
cloudProvider = c("","ECSFargateProvider"),
container = c("",
"rbaseDoRedis",
"rbaseRedisParam",
"biocDoRedis",
"biocRedisParam"
)
){
cloudProvider <- match.arg(cloudProvider)
container <- match.arg(container)
provider <- NULL
workerContainer <- NULL
if(cloudProvider == "ECSFargateProvider"){
loadPackage("ECSFargateProvider")
eval(parse(text = "provider <- ECSFargateProvider::ECSFargateProvider()"))
}
if(container == "rbaseDoRedis"){
loadPackage("doRedisContainer")
eval(parse(text = "workerContainer <- doRedisContainer::doRedisWorkerContainer(image = \"r-base\")"))
}
if(container == "rbaseRedisParam"){
loadPackage("RedisParamContainer")
eval(parse(text = "workerContainer <- RedisParamContainer::RedisParamWorkerContainer(image = \"r-base\")"))
}
if(container == "biocDoRedis"){
loadPackage("doRedisContainer")
eval(parse(text = "workerContainer <- doRedisContainer::doRedisWorkerContainer(image = \"bioconductor\")"))
}
if(container == "biocRedisParam"){
loadPackage("RedisParamContainer")
eval(parse(text = "workerContainer <- RedisParamContainer::RedisParamWorkerContainer(image = \"bioconductor\")"))
}
if(container!=""&&is.null(workerContainer)){
stop("Somethine is wrong")
}
packageSetting$cloudProvider <- provider
packageSetting$workerContainer <- workerContainer
invisible(NULL)
}
CloudPrivateServer <- function(publicIp = character(0),
publicPort = integer(0),
privateIp = character(0),
privatePort = integer(0),
password = "",
serverWorkerSameLAN = FALSE,
serverClientSameLAN = FALSE
){
list(publicIp = publicIp,
publicPort = publicPort,
privateIp = privateIp,
privatePort = privatePort,
password = password,
serverWorkerSameLAN = serverWorkerSameLAN,
serverClientSameLAN = serverClientSameLAN)
} |
context("bRacatus")
input_data <- giftRegions ("Babiana tubulosa")
input_data2 <- getOcc ("Babiana tubulosa")
test_that("Expected data structure",{
expect_equal(class(input_data),"list")
expect_true("Presence" %in% names(input_data))
expect_true("Native" %in% names(input_data))
expect_true("Alien" %in% names(input_data))
expect_equal(class(input_data2),"data.frame")
}) |
data.into.Grid <-
function(dataset.one.species, dimension, shift, resolution=1){
grid <- matrix(0,dimension[1],dimension[2])
long <- dataset.one.species$long
lat <- dataset.one.species$lat
long <- long - shift[1]
lat <- lat - shift[2]
long <- round(long / resolution)
lat <- round(lat / resolution)
for (i in 1:length(long)){
grid[long[i]+1,lat[i]+1] <- 1
}
return(grid)
} |
person_changes <-
function(api_key, id, start_date=NA, end_date=NA){
l <- list(start_date=start_date, end_date=end_date)
l <- l[!is.na(l)]
if(length(l)>0){
params <- paste("&", names(l), "=", stri_join_list(l, sep = ","), sep = "", collapse = "")
url <- fromJSON(GET(url=paste("http://api.themoviedb.org/3/person/", id, "/changes?api_key=",
api_key, params, sep=""))$url)
} else{
url <- fromJSON(GET(url=paste("http://api.themoviedb.org/3/person/", id, "/changes?api_key=",
api_key, sep=""))$url)
}
return(url)
} |
bfs_get_data <- function(url_bfs = NULL, language = "de", number_bfs = NULL, query = "all", column_name_type = "text", variable_value_type = "text", clean_names = FALSE) {
if (missing(language)) stop("must choose a language, either 'de', 'fr', 'it' or 'en'", call. = FALSE)
language <- match.arg(arg = language, choices = c("de", "fr", "it", "en"))
if(is.null(number_bfs) & is.null(url_bfs)) { stop("Please fill url_bfs or number_bfs", call. = FALSE) }
if(!is.null(number_bfs) & !is.null(url_bfs)) { stop("Please fill only url_bfs or number_bfs", call. = FALSE) }
if(!is.null(url_bfs) & is.null(number_bfs)) {
html_raw <- xml2::read_html(url_bfs)
html_table <- rvest::html_node(html_raw, ".table")
df_table <- rvest::html_table(html_table)
number_bfs <- df_table$X2[grepl("px", df_table$X2)]
if(!startsWith(number_bfs, "px")) { stop("The bfs number extracted do not start with 'px' from URL: ", url_bfs, "\nPlease add manually the bfs number with bfs_number.", call. = FALSE) }
number_bfs
}
pxweb_api_url <- paste0("https://www.pxweb.bfs.admin.ch/api/v1/", language, "/", number_bfs, "/", number_bfs, ".px")
df_json <- jsonlite::fromJSON(txt = pxweb_api_url)
if(query == "all") {
variables <- df_json$variables$code
values <- df_json$variables$values
df <- rbind(rep("*", length(values)))
names(df) <- variables
dims <- as.list(df)
pxq <- pxweb::pxweb_query(dims)
} else {
if(!is.list(query)) {
variables <- paste(df_json$variables$code, collapse = ", ")
stop(paste0("`query` should be a list using the variables: ", variables, "."), call. = FALSE)
}
dims <- query
pxq <- pxweb::pxweb_query(dims)
}
df_pxweb <- pxweb::pxweb_get_data(url = pxweb_api_url, query = pxq, column.name.type = column_name_type, variable.value.type = variable_value_type)
tbl <- tibble::as_tibble(df_pxweb)
if(clean_names) { tbl <- janitor::clean_names(tbl) }
return(tbl)
} |
library(testthat)
library(Publish)
data(Diabetes)
test_that("regressiontable: transformed variables and factor levels",{
Diabetes$hyp1 <- factor(1*(Diabetes$bp.1s>140))
Diabetes$ofak <- ordered(sample(letters[1:11],size=NROW(Diabetes),replace=1L))
levels(Diabetes$frame) <- c("+large","medi()um=.<",">8")
f <- glm(hyp1~frame+gender+log(age)+I(chol>245)+ofak,data=Diabetes,family="binomial")
regressionTable(f)
summary(regressionTable(f))
})
test_that("plot.regressionTable",{
Diabetes$hyp1 <- factor(1*(Diabetes$bp.1s>140))
Diabetes$ofak <- ordered(sample(letters[1:11],size=NROW(Diabetes),replace=1L))
levels(Diabetes$frame) <- c("+large","medi()um=.<",">8")
f <- glm(hyp1~frame+gender+log(age)+I(chol>245)+ofak,data=Diabetes,family="binomial")
f <- glm(hyp1~log(age)+I(chol>245),data=Diabetes,family="binomial")
u <- regressionTable(f)
plot(u)
}) |
makeTdmRandomSeed <- function(ID=0) {
seedModBuf <- ID;
getSeed <- function() {
seedModBuf <<- seedModBuf+1;
seed <- as.integer(Sys.time()) %% (seedModBuf+100001)
}
getSeed;
}
tdmRandomSeed <- makeTdmRandomSeed(); |
NULL
spark_apply_worker_config <- function(
sc,
debug,
profile,
schema = FALSE,
arrow = FALSE,
fetch_result_as_sdf = TRUE,
single_binary_column = FALSE) {
worker_config_serialize(
c(
list(
debug = isTRUE(debug),
profile = isTRUE(profile),
schema = isTRUE(schema),
arrow = isTRUE(arrow),
fetch_result_as_sdf = isTRUE(fetch_result_as_sdf),
spark_version = spark_version(sc),
single_binary_column = single_binary_column
),
sc$config
)
)
}
spark_apply <- function(x,
f,
columns = NULL,
memory = TRUE,
group_by = NULL,
packages = NULL,
context = NULL,
name = NULL,
barrier = NULL,
fetch_result_as_sdf = TRUE,
partition_index_param = "",
arrow_max_records_per_batch = NULL,
auto_deps = FALSE,
...) {
if (!is.character(partition_index_param)) {
stop("Expected 'partition_index_param' to be a string.")
}
memory <- force(memory)
args <- list(...)
if (identical(fetch_result_as_sdf, FALSE)) {
columns <- list(spark_apply_binary_result = "spark_apply_binary_result")
} else {
if (!identical(names(columns), NULL)) {
columns <- as.list(columns)
}
}
assert_that(is.function(f) || is.raw(f) || is.language(f))
if (is.language(f)) f <- rlang::as_closure(f)
sc <- spark_connection(x)
sdf <- spark_dataframe(x)
sdf_columns <- colnames(x)
if (identical(barrier, TRUE)) {
args$rdd <- TRUE
if (spark_version(sc) < "2.4.0") {
stop("Barrier execution is only available for spark 2.4.0 or greater.")
}
if (is.null(columns)) {
stop("Barrier execution requires explicit columns names.")
}
}
if (spark_version(sc) < "2.0.0") args$rdd <- TRUE
if (identical(args$rdd, TRUE)) {
rdd_base <- invoke(sdf, "rdd")
if (identical(columns, NULL)) columns <- colnames(x)
}
grouped <- !is.null(group_by)
rlang <- spark_config_value(sc$config, "sparklyr.apply.rlang", FALSE)
packages_config <- spark_config_value(sc$config, "sparklyr.apply.packages", NULL)
proc_env <- c(connection_config(sc, "sparklyr.apply.env."), args$env)
serialize_version <- spark_config_value(sc$config, "sparklyr.apply.serializer", 2)
time_zone <- ""
records_per_batch <- NULL
arrow <- if (!is.null(args$arrow)) args$arrow else arrow_enabled(sc, sdf)
if (identical(fetch_result_as_sdf, FALSE) &&
identical(arrow, TRUE)) {
warning("Disabling arrow due to its potential incompatibility with fetch_result_as_sdf = FALSE")
arrow <- FALSE
}
if (arrow) {
time_zone <- spark_session(sc) %>%
invoke("sessionState") %>%
invoke("conf") %>%
invoke("sessionLocalTimeZone")
records_per_batch <- as.integer(
arrow_max_records_per_batch %||%
spark_session_config(sc)[["spark.sql.execution.arrow.maxRecordsPerBatch"]] %||%
10000
)
}
if (sdf_is_streaming(sdf)) {
sdf_limit <- sdf
}
else {
sdf_limit <- invoke(
sdf,
"limit",
cast_scalar_integer(
spark_config_value(sc$config, "sparklyr.apply.schema.infer", 10)
)
)
}
if (!is.null(args$names)) {
columns <- args$names
}
if (!is.null(group_by) && sdf_is_streaming(sdf)) {
stop("'group_by' is unsupported with streams.")
}
if (identical(packages, NULL)) {
if (identical(packages_config, NULL)) {
packages <- TRUE
}
else {
packages <- packages_config
}
}
columns_typed <- length(names(columns)) > 0
if (rlang) warning("The `rlang` parameter is under active development.")
if (spark_master_is_local(sc$master)) packages <- FALSE
if (identical(tolower(sc$method), "livy") && identical(packages, TRUE)) packages <- FALSE
context <- list(
column_types = translate_spark_column_types(x),
partition_index_param = partition_index_param,
user_context = context
)
rlang_serialize <- spark_apply_rlang_serialize()
create_rlang_closure <- (rlang && !is.null(rlang_serialize))
serializer <- spark_apply_serializer()
serialize_impl <- (
if (is.list(serializer)) {
function(x, ...) serializer$serializer(x)
} else {
serializer
})
deserializer <- spark_apply_deserializer()
closure <- (
if (create_rlang_closure) {
serialize_impl(NULL, version = serialize_version)
} else if (is.function(f)) {
suppressWarnings(serialize_impl(f, version = serialize_version))
} else {
f
})
context_serialize <- serialize_impl(context, version = serialize_version)
closure_rlang <- if (create_rlang_closure) rlang_serialize(f) else raw()
if (isTRUE(args$debug)) {
message("Debugging spark_apply(), connect to worker debugging session as follows:")
message(" 1. Find the workers <sessionid> and <port> in the worker logs, from RStudio click")
message(" 'Log' under the connection, look for the last entry with contents:")
message(" 'Session (<sessionid>) is waiting for sparklyr client to connect to port <port>'")
message(" 2. From a new R session run:")
message(" debugonce(sparklyr:::spark_worker_main)")
message(" sparklyr:::spark_worker_main(<sessionid>, <port>)")
}
if (grouped) {
colpos <- which(colnames(x) %in% group_by)
if (length(colpos) != length(group_by)) stop("Not all group_by columns found.")
group_by_list <- as.list(as.integer(colpos - 1))
if (!columns_typed) {
columns <- c(group_by, columns)
}
if (identical(args$rdd, TRUE)) {
rdd_base <- invoke_static(sc, "sparklyr.ApplyUtils", "groupBy", rdd_base, group_by_list)
}
else if (arrow) {
sdf <- invoke_static(sc, "sparklyr.ApplyUtils", "groupByArrow", sdf, group_by_list, time_zone, records_per_batch)
sdf_limit <- invoke_static(sc, "sparklyr.ApplyUtils", "groupByArrow", sdf_limit, group_by_list, time_zone, records_per_batch)
}
else {
sdf <- invoke_static(sc, "sparklyr.ApplyUtils", "groupBy", sdf, group_by_list)
sdf_limit <- invoke_static(sc, "sparklyr.ApplyUtils", "groupBy", sdf_limit, group_by_list)
}
}
worker_port <- spark_config_value(sc$config, "sparklyr.gateway.port", "8880")
packages <- unlist(packages)
if (auto_deps && !spark_apply_packages_is_bundle(packages)) {
required_pkgs <- infer_required_r_packages(f)
if (is.character(packages)) {
packages <- union(packages, required_pkgs)
} else {
packages <- required_pkgs
}
}
bundle_path <- get_spark_apply_bundle_path(sc, packages)
spark_apply_options <- lapply(
connection_config(sc, "sparklyr.apply.options."),
as.character
)
if (!is.null(records_per_batch)) spark_apply_options[["maxRecordsPerBatch"]] <- as.character(records_per_batch)
if (identical(args$rdd, TRUE)) {
if (identical(barrier, TRUE)) {
rdd <- invoke_static(
sc,
"sparklyr.RDDBarrier",
"transformBarrier",
rdd_base,
closure,
as.list(sdf_columns),
spark_apply_worker_config(
sc,
args$debug,
args$profile,
arrow = arrow,
fetch_result_as_sdf = fetch_result_as_sdf,
single_binary_column = args$single_binary_column
),
as.integer(worker_port),
as.list(group_by),
closure_rlang,
bundle_path,
as.integer(60),
as.environment(proc_env),
context_serialize,
as.environment(spark_apply_options),
serialize(serializer, NULL, version = serialize_version),
serialize(deserializer, NULL, version = serialize_version)
)
} else {
rdd <- invoke_static(
sc,
"sparklyr.WorkerHelper",
"computeRdd",
rdd_base,
closure,
spark_apply_worker_config(
sc,
args$debug,
args$profile,
arrow = arrow,
fetch_result_as_sdf = fetch_result_as_sdf,
single_binary_column = args$single_binary_column
),
as.integer(worker_port),
as.list(sdf_columns),
as.list(group_by),
closure_rlang,
bundle_path,
as.environment(proc_env),
as.integer(60),
context_serialize,
as.environment(spark_apply_options),
serialize(serializer, NULL, version = serialize_version),
serialize(deserializer, NULL, version = serialize_version)
)
}
if (memory) rdd <- invoke(rdd, "cache")
schema <- spark_schema_from_rdd(sc, rdd, columns)
transformed <- invoke(hive_context(sc), "createDataFrame", rdd, schema)
}
else {
json_cols <- c()
if (identical(columns, NULL) || is.character(columns)) {
columns_schema <- spark_data_build_types(
sc,
list(
names = "character",
types = "character",
json_cols = "character"
)
)
columns_op <- invoke_static(
sc,
"sparklyr.WorkerHelper",
"computeSdf",
sdf_limit,
columns_schema,
closure,
spark_apply_worker_config(
sc,
args$debug,
args$profile,
schema = TRUE,
arrow = arrow,
fetch_result_as_sdf = fetch_result_as_sdf,
single_binary_column = args$single_binary_column
),
as.integer(worker_port),
as.list(sdf_columns),
as.list(group_by),
closure_rlang,
bundle_path,
as.environment(proc_env),
as.integer(60),
context_serialize,
as.environment(spark_apply_options),
spark_session(sc),
time_zone,
serialize(serializer, NULL, version = serialize_version),
serialize(deserializer, NULL, version = serialize_version)
)
columns_query <- columns_op %>% sdf_collect()
columns_infer <- strsplit(columns_query[1, ]$types, split = "\\|")[[1]]
names(columns_infer) <- strsplit(columns_query[1, ]$names, split = "\\|")[[1]]
json_cols <- array(strsplit(columns_query[1, ]$json_cols, split = "\\|")[[1]])
if (is.character(columns)) {
names(columns_infer)[seq_along(columns)] <- columns
}
columns <- columns_infer
if (identical(args$schema, TRUE)) {
return(columns)
}
}
schema <- spark_data_build_types(sc, columns)
transformed <- invoke_static(
sc,
"sparklyr.WorkerHelper",
"computeSdf",
sdf,
schema,
closure,
spark_apply_worker_config(
sc,
args$debug,
args$profile,
arrow = arrow,
fetch_result_as_sdf = fetch_result_as_sdf,
single_binary_column = args$single_binary_column
),
as.integer(worker_port),
as.list(sdf_columns),
as.list(group_by),
closure_rlang,
bundle_path,
as.environment(proc_env),
as.integer(60),
context_serialize,
as.environment(spark_apply_options),
spark_session(sc),
time_zone,
serialize(serializer, NULL, version = serialize_version),
serialize(deserializer, NULL, version = serialize_version)
)
if (spark_version(sc) >= "2.4.0" && !is.na(json_cols) && length(json_cols) > 0) {
transformed <- invoke_static(
sc,
"sparklyr.StructColumnUtils",
"parseJsonColumns",
transformed,
json_cols
)
}
}
if (identical(barrier, TRUE)) {
registered <- transformed
} else {
name <- name %||% random_string("sparklyr_tmp_")
registered <- sdf_register(transformed, name = name)
if (memory && !identical(args$rdd, TRUE) && !sdf_is_streaming(sdf)) tbl_cache(sc, name, force = FALSE)
}
if (identical(fetch_result_as_sdf, FALSE)) {
registered %>%
sdf_collect(arrow = arrow) %>%
(
function(x) {
lapply(x$spark_apply_binary_result, function(res) deserializer(res[[1]]))
})
} else {
registered
}
}
spark_apply_rlang_serialize <- function() {
rlang_serialize <- core_get_package_function("rlang", "serialise_bytes")
if (is.null(rlang_serialize)) {
core_get_package_function("rlanglabs", "serialise_bytes")
} else {
rlang_serialize
}
}
spark_apply_serializer <- function() {
serializer <- getOption("sparklyr.spark_apply.serializer")
impl <- (
if (identical(serializer, "qs")) {
qserialize <- core_get_package_function("qs", "qserialize")
if (is.null(qserialize)) {
stop(
"Unable to locate qs::qserialize(). Please ensure 'qs' is installed."
)
}
function(x, ...) qserialize(x)
} else if (is.null(serializer)) {
function(x, version = NULL) serialize(x, NULL, version = version)
} else {
list(serializer = serializer)
})
impl
}
spark_apply_deserializer <- function() {
if (identical(getOption("sparklyr.spark_apply.serializer"), "qs")) {
impl <- core_get_package_function("qs", "qdeserialize")
if (is.null(impl)) {
stop(
"Unable to locate qs::qdeserialize(). Please ensure 'qs' is installed."
)
}
impl
} else {
getOption("sparklyr.spark_apply.deserializer") %||% unserialize
}
}
spark_apply_log <- function(..., level = "INFO") {
worker_log_level(..., level = level, component = "RClosure")
} |
context("Test outputs of C++ functions directly")
dtm <- nih_sample_dtm
k <- 10
alpha <- rep(0.1, k)
eta <- matrix(0.05, nrow = k, ncol = ncol(dtm))
counts <-
initialize_topic_counts(
dtm = dtm,
k = 4,
alpha = rep(0.1, 10),
eta = matrix(0.05, nrow = 10, ncol = ncol(dtm)),
threads = 1
)
m <- fit_lda_c(
Docs = counts$Docs,
Zd_in = counts$Zd,
eta_in = eta,
alpha_in = alpha,
Cd_in = counts$Cd,
Cv_in = counts$Cv,
Ck_in = counts$Ck,
Beta_in = counts$Cv,
iterations = 20,
burnin = 10,
freeze_topics = FALSE,
calc_likelihood = TRUE,
optimize_alpha = TRUE,
verbose = FALSE
)
test_that("checksums match expectation",{
sum_tokens <- sum(dtm)
expect_equal(sum(m$Cd), sum_tokens)
expect_equal(sum(m$Cv), sum_tokens)
expect_equal(sum(m$Cd_mean), sum_tokens)
expect_equal(sum(m$Cv_mean), sum_tokens)
})
test_that("optimize_alpha doesn't break anything",{
expect_equal(sum(m$alpha), sum(alpha))
expect_true(sum(is.na(rowSums(m$log_likelihood))) == 0, "log likelihood check")
}) |
show_DBIDriver <- function(object) {
tryCatch(
show_driver(object),
error = function(e) NULL
)
invisible(NULL)
}
setMethod("show", signature("DBIDriver"), show_DBIDriver) |
.varCRDDiff <- function(nclus, nindiv, prtreat, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL) {
if(is.null(tauy)) {
if(is.null(iccy)) {
tauy <- totalvar - sigma2y
} else {
tauy <- iccy * totalvar
}
}
if(is.null(sigma2y)) {
if(is.null(iccy)) {
sigma2y <- totalvar - tauy
} else {
sigma2y <- (1 - iccy) * totalvar
}
}
if(length(nindiv) > 1) {
sigma2y <- sigma2y * (1 - r2within)
tauy <- tauy * (1 - r2between)
D <- 1/sigma2y
F <- 0 - (tauy)/(sigma2y * (sigma2y + nindiv*tauy))
ntreat <- round(prtreat*nclus)
prtreat <- ntreat/nclus
terms <- nindiv * (D + nindiv*F)
termstotal <- sum(terms)
termstreatment <- sum(terms[1:ntreat])
vargamma1 <- termstotal/(termstotal*termstreatment - termstreatment^2)
varclusmean <- vargamma1 * (nclus * prtreat * (1 - prtreat))
} else {
ntreat <- round(prtreat*nclus)
prtreat <- ntreat/nclus
varclusmean <- ((sigma2y * (1 - r2within)) / nindiv) + (tauy * (1 - r2between))
}
if(!is.null(assurance)) {
df <- nclus - 2 - numpredictor
varclusmean <- varclusmean * qchisq(assurance, df) / df
}
denominator <- nclus * prtreat * (1 - prtreat)
return(varclusmean/denominator)
}
.costCRD <- function(nclus, nindiv, cluscost, indivcost, diffsize = NULL) {
nindiv[nindiv == "> 100000"] <- Inf
nindiv <- as.numeric(nindiv)
if(!is.null(diffsize)) nindiv <- .findNindivVec(nindiv, diffsize, nclus)
result <- NULL
if(length(nindiv) > 1) {
result <- (nclus * cluscost) + sum(nindiv * indivcost)
} else {
result <- nclus * (cluscost + (nindiv * indivcost))
}
return(result)
}
.findWidthCRDDiff <- function(nclus, nindiv, prtreat, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize = NULL) {
nclus <- as.numeric(nclus)
prtreat <- round(nclus * prtreat)/nclus
nindiv <- as.numeric(nindiv)
if(!is.null(diffsize)) nindiv <- .findNindivVec(nindiv, diffsize, nclus)
v <- .varCRDDiff(nclus=nclus, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance)
alpha <- 1 - conf.level
width <- 2 * sqrt(v) * qt(1 - alpha/2, nclus - 2 - numpredictor)
return(width)
}
.findNindivVec <- function(nindiv, diffsize, nclus) {
isInteger <- all(round(diffsize) == diffsize)
result <- NULL
if(isInteger) {
result <- rep(nindiv + diffsize, length.out=nclus)
} else {
result <- rep(round(nindiv * diffsize), length.out=nclus)
}
result[result < 1] <- 1
result
}
.findNclusCRDDiff <- function(width, nindiv, prtreat, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize=NULL) {
nclus <- seq(100, 1000, 100)
result <- sapply(nclus, .findWidthCRDDiff, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
if(all(width > result)) {
nclus <- seq(ceiling(2 * (1/min(prtreat, 1 - prtreat))) + numpredictor, 100, 1)
result <- sapply(nclus, .findWidthCRDDiff, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
if(all(width > result)) {
return(3 + numpredictor)
} else if (all(width < result)) {
return(100)
} else {
return(nclus[which(width > result)[1]])
}
} else if (all(width < result)) {
start <- 1000
repeat {
nclus <- seq(start, start + 1000, 100)
result <- sapply(nclus, .findWidthCRDDiff, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
if(all(width > result)) {
return(start)
} else if (all(width < result)) {
start <- start + 1000
} else {
minval <- nclus[which(width > result)[1] - 1]
maxval <- nclus[which(width > result)[1]]
nclus <- seq(minval, maxval, 1)
result <- sapply(nclus, .findWidthCRDDiff, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
if(all(width > result)) {
return(minval)
} else if (all(width < result)) {
return(maxval)
} else {
return(nclus[which(width > result)[1]])
}
}
}
} else {
minval <- nclus[which(width > result)[1] - 1]
maxval <- nclus[which(width > result)[1]]
nclus <- seq(minval, maxval, 1)
result <- sapply(nclus, .findWidthCRDDiff, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
if(all(width > result)) {
return(minval)
} else if (all(width < result)) {
return(maxval)
} else {
return(nclus[which(width > result)[1]])
}
}
}
.findNindivCRDDiff <- function(width, nclus, prtreat, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize = NULL) {
baremaximum <- .findWidthCRDDiff(nclus=nclus, nindiv=100000, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
if(width < baremaximum) return("> 100000")
nindiv <- seq(100, 1000, 100)
result <- sapply(nindiv, .findWidthCRDDiff, nclus=nclus, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
if(all(width > result)) {
nindiv <- seq(2, 100, 1)
result <- sapply(nindiv, .findWidthCRDDiff, nclus=nclus, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
if(all(width > result)) {
return(2)
} else if (all(width < result)) {
return(100)
} else {
return(nindiv[which(width > result)[1]])
}
} else if (all(width < result)) {
start <- 1000
repeat {
nindiv <- seq(start, start + 1000, 100)
result <- sapply(nindiv, .findWidthCRDDiff, nclus=nclus, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
if(all(width > result)) {
return(start)
} else if (all(width < result)) {
start <- start + 1000
} else {
minval <- nindiv[which(width > result)[1] - 1]
maxval <- nindiv[which(width > result)[1]]
nindiv <- seq(minval, maxval, 1)
result <- sapply(nindiv, .findWidthCRDDiff, nclus=nclus, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
if(all(width > result)) {
return(minval)
} else if (all(width < result)) {
return(maxval)
} else {
return(nindiv[which(width > result)[1]])
}
}
}
} else {
minval <- nindiv[which(width > result)[1] - 1]
maxval <- nindiv[which(width > result)[1]]
nindiv <- seq(minval, maxval, 1)
result <- sapply(nindiv, .findWidthCRDDiff, nclus=nclus, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
if(all(width > result)) {
return(minval)
} else if (all(width < result)) {
return(maxval)
} else {
return(nindiv[which(width > result)[1]])
}
}
}
.findMinCostCRDDiff <- function(width, cluscost=0, indivcost=1, prtreat, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize = NULL) {
nclus <- seq(100, 1100, 100)
repeat {
nindiv <- sapply(nclus, .findNindivCRDDiff, width=width, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
cost <- mapply(.costCRD, nclus=nclus, nindiv=nindiv, MoreArgs=list(cluscost=cluscost, indivcost=indivcost, diffsize=diffsize), SIMPLIFY=TRUE)
if(!all(cost == Inf)) break
nclus <- nclus + 1000
}
posmin <- which(cost == min(cost))
if(length(posmin) > 1) posmin <- posmin[1]
if(posmin == 1) {
nclus <- seq(ceiling(2 * (1/min(prtreat, 1 - prtreat))) + numpredictor, 200, 1)
nindiv <- sapply(nclus, .findNindivCRDDiff, width=width, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
cost <- mapply(.costCRD, nclus=nclus, nindiv=nindiv, MoreArgs=list(cluscost=cluscost, indivcost=indivcost, diffsize=diffsize), SIMPLIFY=TRUE)
posmin <- which(cost == min(cost))
if(length(posmin) > 1) posmin <- posmin[1]
return(c(nclus[posmin], nindiv[posmin], cost[posmin]))
} else if (posmin == length(cost)) {
start <- nclus[length(nclus) - 1]
repeat {
nclus <- seq(start, start + 1100, 100)
nindiv <- sapply(nclus, .findNindivCRDDiff, width=width, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
cost <- mapply(.costCRD, nclus=nclus, nindiv=nindiv, MoreArgs=list(cluscost=cluscost, indivcost=indivcost, diffsize=diffsize), SIMPLIFY=TRUE)
posmin <- which(cost == min(cost))
if(length(posmin) > 1) posmin <- posmin[1]
if(posmin == 1) {
return(c(nclus[posmin], nindiv[posmin], cost[posmin]))
} else if (posmin == length(cost)) {
start <- start + 1000
} else {
minval <- nclus[posmin - 1]
maxval <- nclus[posmin + 1]
nclus <- seq(minval, maxval, 1)
nindiv <- sapply(nclus, .findNindivCRDDiff, width=width, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
cost <- mapply(.costCRD, nclus=nclus, nindiv=nindiv, MoreArgs=list(cluscost=cluscost, indivcost=indivcost, diffsize=diffsize), SIMPLIFY=TRUE)
posmin <- which(cost == min(cost))
if(length(posmin) > 1) posmin <- posmin[1]
return(c(nclus[posmin], nindiv[posmin], cost[posmin]))
}
}
} else {
minval <- nclus[posmin - 1]
maxval <- nclus[posmin + 1]
nclus <- seq(minval, maxval, 1)
nindiv <- sapply(nclus, .findNindivCRDDiff, width=width, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
cost <- mapply(.costCRD, nclus=nclus, nindiv=nindiv, MoreArgs=list(cluscost=cluscost, indivcost=indivcost, diffsize=diffsize), SIMPLIFY=TRUE)
posmin <- which(cost == min(cost))
if(length(posmin) > 1) posmin <- posmin[1]
return(c(nclus[posmin], nindiv[posmin], cost[posmin]))
}
}
.findNindivCRDBudget <- function(budget, nclus, cluscost, indivcost, diffsize = NULL) {
nindiv <- seq(100, 1000, 100)
result <- sapply(nindiv, .costCRD, nclus=nclus, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
if(all(budget < result)) {
nindiv <- seq(2, 100, 1)
result <- sapply(nindiv, .costCRD, nclus=nclus, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
if(all(budget < result)) {
return(NA)
} else if (all(budget > result)) {
return(100)
} else {
index <- which(budget >= result)
return(nindiv[index[length(index)]])
}
} else if (all(budget > result)) {
start <- 1000
repeat {
nindiv <- seq(start, start + 1000, 100)
result <- sapply(nindiv, .costCRD, nclus=nclus, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
if(all(budget < result)) {
return(start)
} else if (all(budget > result)) {
start <- start + 1000
} else {
minval <- nindiv[which(budget < result)[1] - 1]
maxval <- nindiv[which(budget < result)[1]]
nindiv <- seq(minval, maxval, 1)
result <- sapply(nindiv, .costCRD, nclus=nclus, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
if(all(budget < result)) {
return(minval)
} else if (all(budget > result)) {
return(maxval)
} else {
index <- which(budget >= result)
return(nindiv[index[length(index)]])
}
}
}
} else {
minval <- nindiv[which(budget < result)[1] - 1]
maxval <- nindiv[which(budget < result)[1]]
nindiv <- seq(minval, maxval, 1)
result <- sapply(nindiv, .costCRD, nclus=nclus, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
if(all(budget < result)) {
return(minval)
} else if (all(budget > result)) {
return(maxval)
} else {
index <- which(budget >= result)
return(nindiv[index[length(index)]])
}
}
}
.findMinWidthCRDDiff <- function(budget, cluscost=0, indivcost=1, prtreat, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize = NULL) {
FUN <- function(nclus, nindiv) {
.findWidthCRDDiff(nclus=nclus, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level=conf.level, diffsize=diffsize)
}
nclus <- seq(100, 1100, 100)
nindiv <- sapply(nclus, .findNindivCRDBudget, budget=budget, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
if(all(is.na(nindiv))) {
posmin <- 1
} else {
resultwidth <- rep(NA, length(nclus))
resultwidth[!is.na(nindiv)] <- mapply(FUN, nclus=nclus[!is.na(nindiv)], nindiv=nindiv[!is.na(nindiv)], SIMPLIFY=TRUE)
posmin <- which(resultwidth == min(resultwidth, na.rm=TRUE))
}
if(posmin == 1) {
nclus <- seq(ceiling(2 * (1/min(prtreat, 1 - prtreat))) + numpredictor, 200, 1)
nindiv <- sapply(nclus, .findNindivCRDBudget, budget=budget, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
resultwidth <- rep(NA, length(nclus))
resultwidth[!is.na(nindiv)] <- mapply(FUN, nclus=nclus[!is.na(nindiv)], nindiv=nindiv[!is.na(nindiv)])
posmin <- which(resultwidth == min(resultwidth, na.rm=TRUE))
return(c(nclus[posmin], nindiv[posmin], resultwidth[posmin]))
} else if (posmin == length(resultwidth)) {
start <- nclus[length(nclus) - 1]
repeat {
nclus <- seq(start, start + 1100, 100)
nindiv <- sapply(nclus, .findNindivCRDBudget, budget=budget, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
resultwidth <- rep(NA, length(nclus))
resultwidth[!is.na(nindiv)] <- mapply(FUN, nclus=nclus[!is.na(nindiv)], nindiv=nindiv[!is.na(nindiv)])
posmin <- which(resultwidth == min(resultwidth, na.rm=TRUE))
if(posmin == 1) {
return(c(nclus[posmin], nindiv[posmin], resultwidth[posmin]))
} else if (posmin == length(resultwidth)) {
start <- start + 1000
} else {
minval <- nclus[posmin - 1]
maxval <- nclus[posmin + 1]
nclus <- seq(minval, maxval, 1)
nindiv <- sapply(nclus, .findNindivCRDBudget, budget=budget, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
resultwidth <- rep(NA, length(nclus))
resultwidth[!is.na(nindiv)] <- mapply(FUN, nclus=nclus[!is.na(nindiv)], nindiv=nindiv[!is.na(nindiv)])
posmin <- which(resultwidth == min(resultwidth, na.rm=TRUE))
return(c(nclus[posmin], nindiv[posmin], resultwidth[posmin]))
}
}
} else {
minval <- nclus[posmin - 1]
maxval <- nclus[posmin + 1]
nclus <- seq(minval, maxval, 1)
nindiv <- sapply(nclus, .findNindivCRDBudget, budget=budget, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
resultwidth <- rep(NA, length(nclus))
resultwidth[!is.na(nindiv)] <- mapply(FUN, nclus=nclus[!is.na(nindiv)], nindiv=nindiv[!is.na(nindiv)])
posmin <- which(resultwidth == min(resultwidth, na.rm=TRUE))
return(c(nclus[posmin], nindiv[posmin], resultwidth[posmin]))
}
}
.findNclusCRDBudget <- function(budget, nindiv, cluscost, indivcost, diffsize = NULL) {
nclus <- seq(100, 1000, 100)
result <- sapply(nclus, .costCRD, nindiv=nindiv, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
if(all(budget < result)) {
nclus <- seq(4, 100, 1)
result <- sapply(nclus, .costCRD, nindiv=nindiv, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
if(all(budget < result)) {
return(NA)
} else if (all(budget > result)) {
return(100)
} else {
index <- which(budget >= result)
return(nclus[index[length(index)]])
}
} else if (all(budget > result)) {
start <- 1000
repeat {
nclus <- seq(start, start + 1000, 100)
result <- sapply(nclus, .costCRD, nindiv=nindiv, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
if(all(budget < result)) {
return(start)
} else if (all(budget > result)) {
start <- start + 1000
} else {
minval <- nclus[which(budget < result)[1] - 1]
maxval <- nclus[which(budget < result)[1]]
nclus <- seq(minval, maxval, 1)
result <- sapply(nclus, .costCRD, nindiv=nindiv, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
if(all(budget < result)) {
return(minval)
} else if (all(budget > result)) {
return(maxval)
} else {
index <- which(budget >= result)
return(nclus[index[length(index)]])
}
}
}
} else {
minval <- nclus[which(budget < result)[1] - 1]
maxval <- nclus[which(budget < result)[1]]
nclus <- seq(minval, maxval, 1)
result <- sapply(nclus, .costCRD, nindiv=nindiv, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
if(all(budget < result)) {
return(minval)
} else if (all(budget > result)) {
return(maxval)
} else {
index <- which(budget >= result)
return(nclus[index[length(index)]])
}
}
}
.reportCRD <- function(nclus, nindiv, width=NULL, cost=NULL, es=FALSE, estype=0, assurance=NULL, diffsize = NULL) {
cat(paste("The number of clusters is ", nclus, ".\n", sep=""))
if(is.null(diffsize)) {
cat(paste("The cluster size is ", nindiv, ".\n", sep=""))
} else {
cat("The cluster size is as follows:\n")
out <- data.frame(table(.findNindivVec(as.numeric(nindiv), diffsize, nclus)))
colnames(out) <- c("Cluster Size", "Frequency")
print(out)
}
if(!is.null(width)) {
if(es) {
eslab <- NULL
if(estype == 0) {
eslab <- "total"
} else if (estype == 1) {
eslab <- "individual-level"
} else {
eslab <- "cluster-level"
}
if(is.null(assurance)) {
cat(paste("The expected width of ", eslab, " effect size is ", round(width, 4), ".\n", sep=""))
} else {
cat(paste("The width of ", eslab, " effect size with ", round(assurance, 2), " assurance is ", round(width, 4), ".\n", sep=""))
}
} else {
if(is.null(assurance)) {
cat(paste("The expected width of unstandardized conditions difference is ", round(width, 4), ".\n", sep=""))
} else {
cat(paste("The width of unstandardized conditions difference with ", round(assurance, 2), " assurance is ", round(width, 4), ".\n", sep=""))
}
}
}
if(!is.null(cost)) cat(paste("The budget is ", cost, ".\n", sep=""))
}
ss.aipe.crd.nclus.fixedwidth <- function(width, nindiv, prtreat, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, cluscost=NULL, indivcost=NULL, diffsize = NULL) {
nclus <- .findNclusCRDDiff(width=width, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
calculatedWidth <- .findWidthCRDDiff(nclus=nclus, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
calculatedCost <- NULL
if(!is.null(cluscost) && !is.null(indivcost)) calculatedCost <- .costCRD(nclus, nindiv, cluscost, indivcost, diffsize = diffsize)
.reportCRD(nclus, nindiv, calculatedWidth, cost=calculatedCost, es=FALSE, estype=0, assurance=assurance, diffsize = diffsize)
invisible(nclus)
}
ss.aipe.crd.nindiv.fixedwidth <- function(width, nclus, prtreat, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, cluscost=NULL, indivcost=NULL, diffsize = NULL) {
nindiv <- .findNindivCRDDiff(width=width, nclus=nclus, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
if(nindiv == "> 100000") stop("With the current number of clusters, it is impossible to achieve the target width. Please increase the number of clusters.")
calculatedWidth <- .findWidthCRDDiff(nclus=nclus, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
calculatedCost <- NULL
if(!is.null(cluscost) && !is.null(indivcost)) calculatedCost <- .costCRD(nclus, nindiv, cluscost, indivcost, diffsize = diffsize)
.reportCRD(nclus, nindiv, calculatedWidth, cost=calculatedCost, es=FALSE, estype=0, assurance=assurance, diffsize = diffsize)
invisible(nindiv)
}
ss.aipe.crd.nclus.fixedbudget <- function(budget, nindiv, cluscost = 0, indivcost = 1, prtreat = NULL, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize = NULL) {
nclus <- .findNclusCRDBudget(budget=budget, nindiv=nindiv, cluscost=cluscost, indivcost=indivcost, diffsize = diffsize)
calculatedWidth <- NULL
if(!is.null(prtreat)) {
calculatedWidth <- .findWidthCRDDiff(nclus=nclus, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
}
calculatedCost <- .costCRD(nclus, nindiv, cluscost=cluscost, indivcost=indivcost, diffsize = diffsize)
.reportCRD(nclus, nindiv, calculatedWidth, cost=calculatedCost, es=FALSE, estype=0, assurance=assurance, diffsize = diffsize)
invisible(nclus)
}
ss.aipe.crd.nindiv.fixedbudget <- function(budget, nclus, cluscost = 0, indivcost = 1, prtreat = NULL, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize = NULL) {
nindiv <- .findNindivCRDBudget(budget=budget, nclus=nclus, cluscost=cluscost, indivcost=indivcost, diffsize = diffsize)
calculatedWidth <- NULL
if(!is.null(prtreat)) {
calculatedWidth <- .findWidthCRDDiff(nclus=nclus, nindiv=nindiv, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
}
calculatedCost <- .costCRD(nclus, nindiv, cluscost=cluscost, indivcost=indivcost, diffsize = diffsize)
.reportCRD(nclus, nindiv, calculatedWidth, cost=calculatedCost, es=FALSE, estype=0, assurance=assurance, diffsize = diffsize)
invisible(nindiv)
}
ss.aipe.crd.both.fixedbudget <- function(budget, cluscost=0, indivcost=1, prtreat, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize = NULL) {
result <- .findMinWidthCRDDiff(budget=budget, cluscost=cluscost, indivcost=indivcost, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
calculatedCost <- .costCRD(result[1], result[2], cluscost=cluscost, indivcost=indivcost, diffsize = diffsize)
.reportCRD(result[1], result[2], result[3], cost=calculatedCost, es=FALSE, estype=0, assurance=assurance, diffsize = diffsize)
invisible(result[1:2])
}
ss.aipe.crd.both.fixedwidth <- function(width, cluscost=0, indivcost=1, prtreat, tauy=NULL, sigma2y=NULL, totalvar=NULL, iccy=NULL, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, diffsize = NULL) {
result <- .findMinCostCRDDiff(width=width, cluscost=cluscost, indivcost=indivcost, prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
calculatedWidth <- .findWidthCRDDiff(nclus=result[1], nindiv=result[2], prtreat=prtreat, tauy=tauy, sigma2y=sigma2y, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
.reportCRD(result[1], result[2], calculatedWidth, cost=result[3], es=FALSE, estype=0, assurance=assurance, diffsize = diffsize)
invisible(result[1:2])
}
.createDataCRD <- function(nclus, ntreatclus, nindiv, iccy, es, estype = 1, totalvar=1, covariate=FALSE, iccz=NULL, r2within=NULL, r2between=NULL, totalvarz = 1, diffsize = NULL) {
if(!requireNamespace("MASS", quietly = TRUE)) stop("The package 'MASS' is needed; please install the package and try again.")
if(!is.null(diffsize)) {
nindiv <- .findNindivVec(nindiv, diffsize, nclus)
} else {
nindiv <- rep(nindiv, each=nclus)
}
id <- do.call(c, mapply(rep, 1:nclus, nindiv, SIMPLIFY=FALSE))
x <- c(rep(1, ntreatclus), rep(0, nclus - ntreatclus))
tau <- iccy * totalvar
sigma <- (1 - iccy) * totalvar
gamma1 <- NULL
if(estype == 0) {
gamma1 <- es * sqrt(totalvar)
} else if (estype == 1) {
gamma1 <- es * sqrt(sigma)
} else if (estype == 2) {
gamma1 <- es * sqrt(tau)
} else {
stop("'estype' can be 0 (total variance), 1 (level-1 variance), or 2 (level-2 variance) only.")
}
if(covariate) {
if(iccz == 0 && r2between != 0) stop("Because the covariate varies at the level 1 only, the r-square at level 2 must be 0.")
if(iccz == 1 && r2within != 0) stop("Because the covariate varies at the level 2 only, the r-square at level 1 must be 0.")
tauz <- totalvarz * iccz
sigmaz <- totalvarz * (1 - iccz)
gammazb <- sqrt(r2between * tau / tauz)
gammazw <- sqrt(r2within * sigma / sigmaz)
tau <- (1 - r2between) * tau
sigma <- (1 - r2within) * sigma
}
ybetween <- (gamma1 * x) + rnorm(nclus, 0, sqrt(tau))
if(covariate && iccz != 0) {
zbetween <- rnorm(nclus, 0, sqrt(tauz))
ybetween <- ybetween + gammazb * zbetween
}
ybetween <- do.call(c, mapply(rep, ybetween, nindiv, SIMPLIFY=FALSE))
y <- ybetween + rnorm(sum(nindiv), 0, sqrt(sigma))
if(covariate && iccz != 1) {
zwithin <- rnorm(sum(nindiv), 0, sqrt(sigmaz))
y <- y + gammazw * zwithin
}
x <- do.call(c, mapply(rep, x, nindiv, SIMPLIFY=FALSE))
dat <- data.frame(id, y, x)
if(covariate) {
z <- NULL
if(iccz == 0) {
z <- zwithin
} else if(iccz == 1) {
z <- do.call(c, mapply(rep, zbetween, nindiv, SIMPLIFY=FALSE))
} else {
z <- do.call(c, mapply(rep, zbetween, nindiv, SIMPLIFY=FALSE)) + zwithin
}
if(iccz == 0) {
zb <- 0
zw <- z
} else {
zlist <- split(z, id)
zb <- do.call(c, mapply(rep, sapply(zlist, mean), nindiv, SIMPLIFY=FALSE))
zw <- do.call(c, lapply(zlist, scale, scale=FALSE))
}
z <- data.frame(zw=zw, zb=zb)
dat <- data.frame(dat, z)
}
rownames(dat) <- NULL
return(dat)
}
.wideFormat <- function(data, betweencol, withincol, idcol) {
temp <- split(data[,withincol], data[,idcol])
temp <- lapply(temp, function(x) as.vector(as.matrix(x)))
dataw <- do.call(rbind, temp)
datab <- as.matrix(data[match(unique(data[,idcol]), data[,idcol]), betweencol])
colnames(datab) <- colnames(data)[betweencol]
nindiv <- nrow(data) / nrow(datab)
colnames(dataw) <- paste(rep(colnames(data)[withincol], each=nindiv), rep(1:nindiv, length(withincol)), sep="")
return(data.frame(datab, dataw))
}
.wideFormatUnequal <- function(data, betweencol, withincol, idcol) {
temp <- split(data[,withincol], data[,idcol])
temp <- lapply(temp, function(x) as.vector(as.matrix(x)))
size <- sapply(temp, length)/length(withincol)
dataw <- lapply(split(temp, size), function(x) do.call(rbind, x))
datab <- split(data[match(unique(data[,idcol]), data[,idcol]), betweencol], size)
resultdat <- mapply(data.frame, datab, dataw)
varnamesw <- lapply(sapply(dataw, ncol)/length(withincol), function(x) paste(rep(colnames(data)[withincol], each=x), rep(1:x, length(withincol)), sep=""))
varnames <- lapply(varnamesw, function(x) c(colnames(data)[betweencol], x))
resultdat <- mapply(function(x, y) { colnames(x) <- y; x}, x = resultdat, y = varnames)
return(resultdat)
}
.createDataCRDWide <- function(nclus, ntreatclus, nindiv, iccy, es, estype = 1, totalvar=1, covariate=FALSE, iccz=NULL, r2within=NULL, r2between=NULL, totalvarz = 1, diffsize = NULL) {
dat <- .createDataCRD(nclus=nclus, ntreatclus=ntreatclus, nindiv=nindiv, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=covariate, iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = totalvarz, diffsize = diffsize)
datawide <- NULL
if(!is.null(diffsize)) {
if(covariate) {
if(iccz == 0) {
datawide <- .wideFormatUnequal(dat, 3, c(2, 4), 1)
} else if(iccz == 1) {
datawide <- .wideFormatUnequal(dat, c(3, 5), 2, 1)
} else {
datawide <- .wideFormatUnequal(dat, c(3, 5), c(2, 4), 1)
}
} else {
datawide <- .wideFormatUnequal(dat, 3, 2, 1)
}
} else {
if(covariate) {
if(iccz == 0) {
datawide <- .wideFormat(dat, 3, c(2, 4), 1)
} else if(iccz == 1) {
datawide <- .wideFormat(dat, c(3, 5), 2, 1)
} else {
datawide <- .wideFormat(dat, c(3, 5), c(2, 4), 1)
}
} else {
datawide <- .wideFormat(dat, 3, 2, 1)
}
}
return(datawide)
}
.likCIESCRD <- function(datawide, ylab, xlab, zwlab=NULL, zblab=NULL, estype=1, iccy=0.25, es=0.5, totalvar=1, covariate=FALSE, iccz=0.25, r2within=0.5, r2between=0.5, totalvarz = 1, conf.level = 0.95) {
tau <- iccy * totalvar
sigma <- (1 - iccy) * totalvar
gamma1 <- NULL
if(estype == 0) {
gamma1 <- es * sqrt(totalvar)
} else if (estype == 1) {
gamma1 <- es * sqrt(sigma)
} else if (estype == 2) {
gamma1 <- es * sqrt(tau)
} else {
stop("'estype' can be 0 (total variance), 1 (level-1 variance), or 2 (level-2 variance) only.")
}
if(covariate) {
if(iccz == 0 && r2between != 0) stop("Because the covariate varies at the level 1 only, the r-square at level 2 must be 0.")
if(iccz == 1 && r2within != 0) stop("Because the covariate varies at the level 2 only, the r-square at level 1 must be 0.")
tauz <- totalvarz * iccz
sigmaz <- totalvarz * (1 - iccz)
gammazb <- sqrt(r2between * tau / tauz)
gammazw <- sqrt(r2within * sigma / sigmaz)
tau <- (1 - r2between) * tau
sigma <- (1 - r2within) * sigma
}
probx <- sum(datawide[,xlab])/nrow(datawide)
if(!requireNamespace("OpenMx", quietly = TRUE)) stop("The package 'OpenMx' is needed; please install the package and try again.")
latentlab <- c("intcept", "slope")
if(is.null(zwlab)) latentlab <- "intcept"
frowlab <- c(ylab, xlab, zblab)
fcollab <- c(frowlab, latentlab)
lenrow <- length(frowlab)
lencol <- length(fcollab)
Alab <- matrix(NA, lencol, lencol)
Aval <- matrix(0, lencol, lencol)
Afree <- matrix(FALSE, lencol, lencol)
colnames(Alab) <- colnames(Aval) <- colnames(Afree) <- rownames(Alab) <- rownames(Aval) <- rownames(Afree) <- fcollab
Alab["intcept", xlab] <- "groupdiff"
if(!is.null(zblab)) Alab["intcept", zblab] <- "zbeffect"
if(!is.null(zwlab)) Alab[ylab, "slope"] <- paste("data.", zwlab, sep="")
Aval["intcept", xlab] <- gamma1
if(!is.null(zblab)) Aval["intcept", zblab] <- gammazb
Aval[ylab, latentlab] <- 1
Afree["intcept", xlab] <- TRUE
if(!is.null(zblab)) Afree["intcept", zblab] <- TRUE
Slab <- matrix(NA, lencol, lencol)
Sval <- matrix(0, lencol, lencol)
Sfree <- matrix(FALSE, lencol, lencol)
colnames(Slab) <- colnames(Sval) <- colnames(Sfree) <- rownames(Slab) <- rownames(Sval) <- rownames(Sfree) <- fcollab
diag(Slab)[1:length(ylab)] <- "l1error"
diag(Sval)[1:length(ylab)] <- sigma
diag(Sfree)[1:length(ylab)] <- TRUE
Slab["intcept", "intcept"] <- "l2error"
Sval["intcept", "intcept"] <- tau
Sfree["intcept", "intcept"] <- TRUE
Slab[xlab, xlab] <- "varx"
Sval[xlab, xlab] <- probx * (1 - probx)
Sfree[xlab, xlab] <- TRUE
if(!is.null(zblab)) {
Slab[c(xlab, zblab), c(xlab, zblab)] <- "covxzb"
Slab[xlab, xlab] <- "varx"
Slab[zblab, zblab] <- "varzb"
Sval[c(xlab, zblab), c(xlab, zblab)] <- 0
Sval[xlab, xlab] <- probx * (1 - probx)
Sval[zblab, zblab] <- tauz
Sfree[c(xlab, zblab), c(xlab, zblab)] <- TRUE
}
Fval <- cbind(diag(lenrow), matrix(0, lenrow, length(latentlab)))
Flab <- matrix(NA, lenrow, lencol)
Ffree <- matrix(FALSE, lenrow, lencol)
colnames(Flab) <- colnames(Fval) <- colnames(Ffree) <- fcollab
rownames(Flab) <- rownames(Fval) <- rownames(Ffree) <- frowlab
Mlab <- c(rep(NA, length(ylab)), "meanX")
Mval <- c(rep(0, length(ylab)), probx)
Mfree <- c(rep(FALSE, length(ylab)), TRUE)
if(!is.null(zblab)) {
Mlab <- c(Mlab, "meanzb")
Mval <- c(Mval, 0)
Mfree <- c(Mfree, TRUE)
}
Mlab <- c(Mlab, "meanctrl")
Mval <- c(Mval, 0)
Mfree <- c(Mfree, TRUE)
if(!is.null(zwlab)) {
Mlab <- c(Mlab, "zweffect")
Mval <- c(Mval, gammazw)
Mfree <- c(Mfree, TRUE)
}
Mlab <- matrix(Mlab, 1, lencol)
Mval <- matrix(Mval, 1, lencol)
Mfree <- matrix(Mfree, 1, lencol)
colnames(Mlab) <- colnames(Mval) <- colnames(Mfree) <- fcollab
varzw <- 0
if(!is.null(zwlab)) varzw <- var(as.vector(as.matrix(datawide[,zwlab])))
groupdiff <- NULL
l1error <- NULL
l2error <- NULL
zbeffect <- NULL
varzb <- NULL
zweffect <- NULL
constraint <- NULL
if(estype == 0) {
if(is.null(zwlab)) {
if(is.null(zblab)) {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error + l2error), name = "es")
} else {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error + l2error + (zbeffect^2 * varzb)), name = "es")
}
} else {
if(is.null(zblab)) {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error + (zweffect^2 * varzw) + l2error), name = "es")
} else {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error + (zweffect^2 * varzw) + l2error + (zbeffect^2 * varzb)), name = "es")
}
}
} else if (estype == 1) {
if(is.null(zwlab)) {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error), name = "es")
} else {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error + (zweffect^2 * varzw)), name = "es")
}
} else if (estype == 2) {
if(is.null(zblab)) {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l2error), name = "es")
} else {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l2error + (zbeffect^2 * varzb)), name = "es")
}
} else {
stop("'estype' can be 0 (total variance), 1 (level-1 variance), or 2 (level-2 variance) only.")
}
onecov <- OpenMx::mxModel("effect size CRD", type="RAM",
OpenMx::mxData(datawide, type="raw"),
OpenMx::mxMatrix(type="Full", nrow=lencol, ncol=lencol, values=Aval, free=Afree, labels=Alab, name="A"),
OpenMx::mxMatrix(type="Symm", nrow=lencol, ncol=lencol, values=Sval, free=Sfree, labels=Slab, name="S"),
OpenMx::mxMatrix(type="Full", nrow=lenrow, ncol=lencol, values=Fval, free=Ffree, labels=Flab, name="F"),
OpenMx::mxMatrix(type="Full", nrow=1, ncol=lencol, values=Mval, free=Mfree, labels=Mlab, name="M"),
OpenMx::mxMatrix(type="Full", nrow=1, ncol=1, values=varzw, free=FALSE, labels="varzw", name="J"),
OpenMx::mxRAMObjective("A","S","F","M", dimnames=fcollab), constraint, OpenMx::mxCI(c("es"), interval = conf.level)
)
onecovfit <- OpenMx::mxRun(onecov, intervals=TRUE)
return(onecovfit@output$confidenceIntervals)
}
.likCIESCRDunequal <- function(datawide, ylab, xlab, zwlab=NULL, zblab=NULL, estype=1, iccy=0.25, es=0.5, totalvar=1, covariate=FALSE, iccz=0.25, r2within=0.5, r2between=0.5, totalvarz = 1, conf.level = 0.95)
{
if(!requireNamespace("OpenMx", quietly = TRUE)) stop("The package 'OpenMx' is needed; please install the package and try again.")
tau <- iccy * totalvar
sigma <- (1 - iccy) * totalvar
gamma1 <- NULL
if(estype == 0) {
gamma1 <- es * sqrt(totalvar)
} else if (estype == 1) {
gamma1 <- es * sqrt(sigma)
} else if (estype == 2) {
gamma1 <- es * sqrt(tau)
} else {
stop("'estype' can be 0 (total variance), 1 (level-1 variance), or 2 (level-2 variance) only.")
}
if(covariate)
{
if(iccz == 0 && r2between != 0) stop("Because the covariate varies at the level 1 only, the r-square at level 2 must be 0.")
if(iccz == 1 && r2within != 0) stop("Because the covariate varies at the level 2 only, the r-square at level 1 must be 0.")
tauz <- totalvarz * iccz
sigmaz <- totalvarz * (1 - iccz)
gammazb <- sqrt(r2between * tau / tauz)
gammazw <- sqrt(r2within * sigma / sigmaz)
tau <- (1 - r2between) * tau
sigma <- (1 - r2within) * sigma
}
ntreat <- sum(sapply(datawide, function(x) sum(x[,xlab])))
totaln <- sum(sapply(datawide, nrow))
probx <- ntreat/totaln
FUNgroupsize <- function(dat, y, zw = NULL) {
latentlab <- c("intcept", "slope")
if(is.null(zw)) latentlab <- "intcept"
frowlab <- c(y, xlab, zblab)
fcollab <- c(frowlab, latentlab)
lenrow <- length(frowlab)
lencol <- length(fcollab)
Alab <- matrix(NA, lencol, lencol)
Aval <- matrix(0, lencol, lencol)
Afree <- matrix(FALSE, lencol, lencol)
colnames(Alab) <- colnames(Aval) <- colnames(Afree) <- rownames(Alab) <- rownames(Aval) <- rownames(Afree) <- fcollab
Alab["intcept", xlab] <- "groupdiff"
if(!is.null(zblab)) Alab["intcept", zblab] <- "zbeffect"
if(!is.null(zw)) Alab[y, "slope"] <- paste("data.", zw, sep="")
Aval["intcept", xlab] <- gamma1
if(!is.null(zblab)) Aval["intcept", zblab] <- gammazb
Aval[y, latentlab] <- 1
Afree["intcept", xlab] <- TRUE
if(!is.null(zblab)) Afree["intcept", zblab] <- TRUE
Slab <- matrix(NA, lencol, lencol)
Sval <- matrix(0, lencol, lencol)
Sfree <- matrix(FALSE, lencol, lencol)
colnames(Slab) <- colnames(Sval) <- colnames(Sfree) <- rownames(Slab) <- rownames(Sval) <- rownames(Sfree) <- fcollab
diag(Slab)[1:length(y)] <- "l1error"
diag(Sval)[1:length(y)] <- sigma
diag(Sfree)[1:length(y)] <- TRUE
Slab["intcept", "intcept"] <- "l2error"
Sval["intcept", "intcept"] <- tau
Sfree["intcept", "intcept"] <- TRUE
Slab[xlab, xlab] <- "varx"
Sval[xlab, xlab] <- probx * (1 - probx)
Sfree[xlab, xlab] <- TRUE
if(!is.null(zblab)) {
Slab[c(xlab, zblab), c(xlab, zblab)] <- "covxzb"
Slab[xlab, xlab] <- "varx"
Slab[zblab, zblab] <- "varzb"
Sval[c(xlab, zblab), c(xlab, zblab)] <- 0
Sval[xlab, xlab] <- probx * (1 - probx)
Sval[zblab, zblab] <- tauz
Sfree[c(xlab, zblab), c(xlab, zblab)] <- TRUE
}
Fval <- cbind(diag(lenrow), matrix(0, lenrow, length(latentlab)))
Flab <- matrix(NA, lenrow, lencol)
Ffree <- matrix(FALSE, lenrow, lencol)
colnames(Flab) <- colnames(Fval) <- colnames(Ffree) <- fcollab
rownames(Flab) <- rownames(Fval) <- rownames(Ffree) <- frowlab
Mlab <- c(rep(NA, length(y)), "meanX")
Mval <- c(rep(0, length(y)), probx)
Mfree <- c(rep(FALSE, length(y)), TRUE)
if(!is.null(zblab)) {
Mlab <- c(Mlab, "meanzb")
Mval <- c(Mval, 0)
Mfree <- c(Mfree, TRUE)
}
Mlab <- c(Mlab, "meanctrl")
Mval <- c(Mval, 0)
Mfree <- c(Mfree, TRUE)
if(!is.null(zw)) {
Mlab <- c(Mlab, "zweffect")
Mval <- c(Mval, gammazw)
Mfree <- c(Mfree, TRUE)
}
Mlab <- matrix(Mlab, 1, lencol)
Mval <- matrix(Mval, 1, lencol)
Mfree <- matrix(Mfree, 1, lencol)
colnames(Mlab) <- colnames(Mval) <- colnames(Mfree) <- fcollab
onecov <- OpenMx::mxModel(paste0("group", length(y)), type="RAM",
OpenMx::mxData(dat, type="raw"),
OpenMx::mxMatrix(type="Full", nrow=lencol, ncol=lencol, values=Aval, free=Afree, labels=Alab, name="A"),
OpenMx::mxMatrix(type="Symm", nrow=lencol, ncol=lencol, values=Sval, free=Sfree, labels=Slab, name="S"),
OpenMx::mxMatrix(type="Full", nrow=lenrow, ncol=lencol, values=Fval, free=Ffree, labels=Flab, name="F"),
OpenMx::mxMatrix(type="Full", nrow=1, ncol=lencol, values=Mval, free=Mfree, labels=Mlab, name="M"),
OpenMx::mxMatrix(type="Full", nrow=1, ncol=1, values=varzw, free=FALSE, labels="varzw", name="J"),
OpenMx::mxRAMObjective("A","S","F","M", dimnames=fcollab)
)
return(onecov)
}
varzw <- 0
if(!is.null(zwlab)) varzw <- weighted.mean(do.call(c, mapply(function(x, y) var(as.vector(as.matrix(x[,y]))), x = datawide, y = zwlab,SIMPLIFY=FALSE)), as.numeric(names(datawide)))
groupdiff <- NULL
l1error <- NULL
l2error <- NULL
zbeffect <- NULL
varzb <- NULL
zweffect <- NULL
constraint <- NULL
if(estype == 0) {
if(is.null(zwlab)) {
if(is.null(zblab)) {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error + l2error), name = "es")
} else {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error + l2error + (zbeffect^2 * varzb)), name = "es")
}
} else {
if(is.null(zblab)) {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error + (zweffect^2 * varzw) + l2error), name = "es")
} else {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error + (zweffect^2 * varzw) + l2error + (zbeffect^2 * varzb)), name = "es")
}
}
} else if (estype == 1) {
if(is.null(zwlab)) {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error), name = "es")
} else {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l1error + (zweffect^2 * varzw)), name = "es")
}
} else if (estype == 2) {
if(is.null(zblab)) {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l2error), name = "es")
} else {
constraint <- OpenMx::mxAlgebra(expression = groupdiff/sqrt(l2error + (zbeffect^2 * varzb)), name = "es")
}
} else {
stop("'estype' can be 0 (total variance), 1 (level-1 variance), or 2 (level-2 variance) only.")
}
listModel <- NULL
if(!is.null(zwlab)) {
listModel <- mapply(FUNgroupsize, dat=datawide, y=ylab, zw=zwlab)
} else {
listModel <- mapply(FUNgroupsize, dat=datawide, y=ylab)
}
title <- "Effect Size CRD"
algebra <- OpenMx::mxAlgebra("", name="allobjective")
groupnames <- paste0("group", names(datawide))
groupnames <- paste0(groupnames, ".objective")
groupnames <- lapply(groupnames, as.name)
algebra@formula <- as.call(c(list(as.name("sum")), groupnames))
objective <- OpenMx::mxAlgebraObjective("allobjective")
finalmodel <- OpenMx::mxModel(title, OpenMx::mxMatrix(type="Full", nrow=1, ncol=1, values=varzw, free=FALSE, labels="varzw", name="J"), unlist(listModel), constraint, algebra, objective, OpenMx::mxCI(c("es"), interval = conf.level))
finalmodelfit <- OpenMx::mxRun(finalmodel, intervals=TRUE)
return(finalmodelfit@output$confidenceIntervals)
}
.runrepWidthESCRD <- function(seed, nclus, ntreatclus, nindiv, iccy, es, estype = 1, totalvar=1, covariate=FALSE, iccz=NULL, r2within=NULL, r2between=NULL, totalvarz = 1, conf.level = 0.95, diffsize = NULL) {
set.seed(seed)
datawide <- .createDataCRDWide(nclus=nclus, ntreatclus=ntreatclus, nindiv=nindiv, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=covariate, iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = totalvarz, diffsize=diffsize)
ylab <- NULL
if(!is.null(diffsize)) {
size <- as.numeric(names(datawide))
ylab <- lapply(size, function(x) paste("y", 1:x, sep=""))
} else {
ylab <- paste("y", 1:nindiv, sep="")
}
xlab <- "x"
zwlab <- NULL
if(covariate && iccz != 1) {
if(!is.null(diffsize)) {
size <- as.numeric(names(datawide))
zwlab <- lapply(size, function(x) paste("zw", 1:x, sep=""))
} else {
zwlab <- paste("zw", 1:nindiv, sep="")
}
}
zblab <- NULL
if(covariate && iccz != 0) zblab <- "zb"
if(!is.null(diffsize)) {
screencapture <- capture.output(
result <- .likCIESCRDunequal(datawide=datawide, ylab=ylab, xlab=xlab, zwlab=zwlab, zblab=zblab, estype=estype, iccy=iccy, es=es, totalvar=totalvar, covariate=covariate, iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = totalvarz, conf.level = conf.level))
} else {
screencapture <- capture.output(
result <- .likCIESCRD(datawide=datawide, ylab=ylab, xlab=xlab, zwlab=zwlab, zblab=zblab, estype=estype, iccy=iccy, es=es, totalvar=totalvar, covariate=covariate, iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = totalvarz, conf.level = conf.level)
)
}
return(result[2] - result[1])
}
.findWidthCRDES <- function(nrep, nclus, ntreatclus, nindiv, iccy, es, estype = 1, totalvar=1, covariate=FALSE, iccz=NULL, r2within=NULL, r2between=NULL, totalvarz = 1, assurance=NULL, seed=123321, multicore=FALSE, numProc=NULL, conf.level=0.95, diffsize = NULL) {
set.seed(seed)
seedList <- as.list(sample(1:999999, nrep))
Result.l <- NULL
if (multicore) {
if(!requireNamespace("parallel", quietly = TRUE)) stop("The package 'parallel' is needed; please install the package and try again.")
sys <- .Platform$OS.type
if (is.null(numProc))
numProc <- parallel::detectCores()
if (sys == "windows") {
cl <- parallel::makeCluster(rep("localhost", numProc), type = "SOCK")
Result.l <- parallel::clusterApplyLB(cl, seedList, .runrepWidthESCRD, nclus=nclus, ntreatclus=ntreatclus, nindiv=nindiv, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=covariate, iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = totalvarz, conf.level = conf.level, diffsize=diffsize)
parallel::stopCluster(cl)
} else {
Result.l <- parallel::mclapply(seedList, .runrepWidthESCRD, nclus=nclus, ntreatclus=ntreatclus, nindiv=nindiv, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=covariate, iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = totalvarz, conf.level = conf.level, diffsize=diffsize)
}
} else {
Result.l <- lapply(seedList, .runrepWidthESCRD, nclus=nclus, ntreatclus=ntreatclus, nindiv=nindiv, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=covariate, iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = totalvarz, conf.level=conf.level, diffsize=diffsize)
}
result <- do.call(c, Result.l)
if(is.null(assurance)) {
return(mean(result, na.rm=TRUE))
} else {
return(quantile(result, assurance, na.rm=TRUE))
}
}
.findNclusCRDES <- function(width, nindiv, es, estype = 1, iccy, prtreat, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE, numProc=NULL, diffsize=NULL) {
if(numpredictor > 0 & is.null(iccz)) iccz <- iccy
if(numpredictor > 1) stop("Only one predictor is allowed.")
totalvar <- 1
if(estype == 0) {
totalvar <- 1
} else if (estype == 1) {
totalvar <- 1/(1 - iccy)
} else if (estype == 2) {
totalvar <- 1/iccy
} else {
stop("'estype' can be 0 (total variance), 1 (level-1 variance), or 2 (level-2 variance) only.")
}
startval <- .findNclusCRDDiff(width=width, nindiv=nindiv, prtreat=prtreat, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
startval <- as.numeric(startval)
startwidth <- .findWidthCRDES(nrep, assurance=assurance, nclus=startval, ntreatclus=round(startval * prtreat), nindiv=nindiv, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=as.logical(numpredictor), iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = 1, seed=seed, multicore=multicore, numProc=numProc, conf.level=conf.level, diffsize = diffsize)
if(startwidth < width) {
repeat {
startval <- startval - 1
if(round(startval * prtreat) == 1 | (startval - round(startval * prtreat)) == 1) return(c(startval + 1, startwidth))
savedwidth <- startwidth
startwidth <- .findWidthCRDES(nrep, assurance=assurance, nclus=startval, ntreatclus=round(startval * prtreat), nindiv=nindiv, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=as.logical(numpredictor), iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = 1, seed=seed, multicore=multicore, numProc=numProc, conf.level=conf.level, diffsize = diffsize)
if(startwidth > width) return(c(startval + 1, savedwidth))
}
} else if (startwidth > width) {
repeat {
startval <- startval + 1
startwidth <- .findWidthCRDES(nrep, assurance=assurance, nclus=startval, ntreatclus=round(startval * prtreat), nindiv=nindiv, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=as.logical(numpredictor), iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = 1, seed=seed, multicore=multicore, numProc=numProc, conf.level=conf.level, diffsize = diffsize)
if(startwidth < width) return(c(startval, startwidth))
}
} else {
return(c(startval, startwidth))
}
}
.findNindivCRDES <- function(width, nclus, es, estype = 1, iccy, prtreat, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE, numProc=NULL, diffsize=NULL) {
if(numpredictor > 0 & is.null(iccz)) iccz <- iccy
if(numpredictor > 1) stop("Only one predictor is allowed.")
totalvar <- 1
if(estype == 0) {
totalvar <- 1
} else if (estype == 1) {
totalvar <- 1/(1 - iccy)
} else if (estype == 2) {
totalvar <- 1/iccy
} else {
stop("'estype' can be 0 (total variance), 1 (level-1 variance), or 2 (level-2 variance) only.")
}
startval <- .findNindivCRDDiff(width=width, nclus=nclus, prtreat=prtreat, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
if(startval == "> 100000") stop("The starting number of individuals is > 100,000. With the specified number of clusters, it seems impossible to get the specified width.")
startval <- as.numeric(startval)
startwidth <- .findWidthCRDES(nrep, assurance=assurance, nclus=nclus, ntreatclus=round(nclus * prtreat), nindiv=startval, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=as.logical(numpredictor), iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = 1, seed=seed, multicore=multicore, numProc=numProc, conf.level=conf.level, diffsize = diffsize)
if(startwidth < width) {
repeat {
startval <- startval - 1
if(startval == 1) return(c(startval + 1, startwidth))
savedwidth <- startwidth
startwidth <- .findWidthCRDES(nrep, assurance=assurance, nclus=nclus, ntreatclus=round(nclus * prtreat), nindiv=startval, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=as.logical(numpredictor), iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = 1, seed=seed, multicore=multicore, numProc=numProc, conf.level=conf.level, diffsize = diffsize)
if(startwidth > width) return(c(startval + 1, savedwidth))
}
} else if (startwidth > width) {
repeat {
startval <- startval + 1
startwidth <- .findWidthCRDES(nrep, assurance=assurance, nclus=nclus, ntreatclus=round(nclus * prtreat), nindiv=startval, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=as.logical(numpredictor), iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = 1, seed=seed, multicore=multicore, numProc=numProc, conf.level=conf.level, diffsize = diffsize)
if(startwidth < width) return(c(startval, startwidth))
}
} else {
return(c(startval, startwidth))
}
}
.findMinCostCRDES <- function(width, cluscost=0, indivcost=1, es, estype = 1, iccy, prtreat, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE, numProc=NULL, diffsize=NULL) {
if(numpredictor > 0 & is.null(iccz)) iccz <- iccy
if(numpredictor > 1) stop("Only one predictor is allowed.")
totalvar <- 1
if(estype == 0) {
totalvar <- 1
} else if (estype == 1) {
totalvar <- 1/(1 - iccy)
} else if (estype == 2) {
totalvar <- 1/iccy
} else {
stop("'estype' can be 0 (total variance), 1 (level-1 variance), or 2 (level-2 variance) only.")
}
startval <- .findMinCostCRDDiff(width=width, cluscost=cluscost, indivcost=indivcost, prtreat=prtreat, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
startval <- as.numeric(startval)
startnindiv <- c(startval[2] - 1, startval[2], startval[2] + 1)
result <- sapply(startnindiv, .findNclusCRDES, width=width, es=es, estype = estype, iccy = iccy, prtreat=prtreat, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance = assurance, conf.level = conf.level, nrep = nrep, iccz = iccz, seed = seed, multicore = multicore, numProc = numProc, diffsize = diffsize)
resultnclus <- result[1,]
resultwidth <- result[2,]
startbudget <- mapply(.costCRD, nclus=resultnclus, nindiv=startnindiv, MoreArgs=list(cluscost=cluscost, indivcost=indivcost, diffsize = diffsize))
if(which(startbudget == min(startbudget)) == 1) {
repeat {
startnindiv <- startnindiv - 1
resultnclus[2:3] <- resultnclus[1:2]
startbudget[2:3] <- startbudget[1:2]
resultwidth[2:3] <- resultwidth[1:2]
result <- .findNclusCRDES(width=width, nindiv=startnindiv[1], es=es, estype = estype, iccy = iccy, prtreat=prtreat, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance = assurance, conf.level = conf.level, nrep = nrep, iccz = iccz, seed = seed, multicore = multicore, numProc = numProc, diffsize = diffsize)
resultnclus[1] <- result[1]
resultwidth[1] <- result[2]
startbudget[1] <- .costCRD(nclus=resultnclus[1], nindiv=startnindiv[1], cluscost=cluscost, indivcost=indivcost, diffsize = diffsize)
if(which(startbudget == min(startbudget)) != 1) return(c(resultnclus[2], startnindiv[2], startbudget[2], resultwidth[2]))
}
} else if (which(startbudget == min(startbudget)) == 3) {
repeat {
startnindiv <- startnindiv + 1
resultnclus[1:2] <- resultnclus[2:3]
startbudget[1:2] <- startbudget[2:3]
resultwidth[1:2] <- resultwidth[2:3]
result <- .findNclusCRDES(width=width, nindiv=startnindiv[3], es=es, estype = estype, iccy = iccy, prtreat=prtreat, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance = assurance, conf.level = conf.level, nrep = nrep, iccz = iccz, seed = seed, multicore = multicore, numProc = numProc, diffsize = diffsize)
resultnclus[3] <- result[1]
resultwidth[3] <- result[2]
startbudget[3] <- .costCRD(nclus=resultnclus[3], nindiv=startnindiv[3], cluscost=cluscost, indivcost=indivcost, diffsize = diffsize)
if(which(startbudget == min(startbudget)) != 3) return(c(resultnclus[2], startnindiv[2], startbudget[2], resultwidth[2]))
}
} else {
return(c(resultnclus[2], startnindiv[2], startbudget[2], resultwidth[2]))
}
}
.findMinWidthCRDES <- function(budget, cluscost=0, indivcost=1, es, estype = 1, iccy, prtreat, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE, numProc=NULL, diffsize = NULL) {
if(numpredictor > 0 & is.null(iccz)) iccz <- iccy
if(numpredictor > 1) stop("Only one predictor is allowed.")
totalvar <- 1
if(estype == 0) {
totalvar <- 1
} else if (estype == 1) {
totalvar <- 1/(1 - iccy)
} else if (estype == 2) {
totalvar <- 1/iccy
} else {
stop("'estype' can be 0 (total variance), 1 (level-1 variance), or 2 (level-2 variance) only.")
}
FUN <- function(nclus, nindiv) {
.findWidthCRDES(nrep=nrep, assurance=assurance, nclus=nclus, ntreatclus=round(nclus * prtreat), nindiv=nindiv, iccy=iccy, es=es, estype = estype, totalvar=totalvar, covariate=as.logical(numpredictor), iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = 1, seed=seed, multicore=multicore, numProc=numProc, conf.level=conf.level, diffsize=diffsize)
}
startval <- .findMinWidthCRDDiff(budget=budget, cluscost=cluscost, indivcost=indivcost, prtreat=prtreat, totalvar=totalvar, iccy=iccy, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, diffsize = diffsize)
startnclus <- c(startval[1] - 1, startval[1], startval[1] + 1)
resultnindiv <- sapply(startnclus, .findNindivCRDBudget, budget=budget, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
startwidth <- mapply(FUN, nclus = startnclus, nindiv=resultnindiv)
if(which(startwidth == min(startwidth)) == 1) {
repeat {
startnclus <- startnclus - 1
resultnindiv[2:3] <- resultnindiv[1:2]
startwidth[2:3] <- startwidth[1:2]
resultnindiv[1] <- .findNindivCRDBudget(startnclus[1], budget=budget, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
startwidth[1] <- FUN(nclus=startnclus[1], nindiv=resultnindiv[1])
if(which(startwidth == min(startwidth)) != 1) return(c(startnclus[2], resultnindiv[2], startwidth[2]))
}
} else if (which(startwidth == min(startwidth)) == 3) {
repeat {
startnclus <- startnclus + 1
resultnindiv[1:2] <- resultnindiv[2:3]
startwidth[1:2] <- startwidth[2:3]
resultnindiv[3] <- .findNindivCRDBudget(startnclus[3], budget=budget, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
startwidth[3] <- FUN(nclus=startnclus[3], nindiv=resultnindiv[3])
if(which(startwidth == min(startwidth)) != 3) return(c(startnclus[2], resultnindiv[2], startwidth[2]))
}
} else {
return(c(startnclus[2], resultnindiv[2], startwidth[2]))
}
}
ss.aipe.crd.es.nclus.fixedwidth <- function(width, nindiv, es, estype = 1, iccy, prtreat, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE, numProc=NULL, cluscost=NULL, indivcost=NULL, diffsize=NULL) {
suppressWarnings(result <- .findNclusCRDES(width=width, nindiv=nindiv, es=es, estype = estype, iccy=iccy, prtreat=prtreat, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, nrep = nrep, iccz = iccz, seed = seed, multicore = multicore, numProc=numProc, diffsize=diffsize))
calculatedCost <- NULL
if(!is.null(cluscost) && !is.null(indivcost)) calculatedCost <- .costCRD(result[1], nindiv, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
.reportCRD(result[1], nindiv, result[2], cost=calculatedCost, es=TRUE, estype=estype, assurance=assurance, diffsize=diffsize)
invisible(result[1])
}
ss.aipe.crd.es.nindiv.fixedwidth <- function(width, nclus, es, estype = 1, iccy, prtreat, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE, numProc=NULL, cluscost=NULL, indivcost=NULL, diffsize=NULL) {
suppressWarnings(result <- .findNindivCRDES(width=width, nclus=nclus, es=es, estype = estype, iccy=iccy, prtreat=prtreat, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, nrep = nrep, iccz = iccz, seed = seed, multicore = multicore, numProc=numProc, diffsize=diffsize))
calculatedCost <- NULL
if(!is.null(cluscost) && !is.null(indivcost)) calculatedCost <- .costCRD(nclus, result[1], cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
.reportCRD(nclus, result[1], result[2], cost=calculatedCost, es=TRUE, estype=estype, assurance=assurance, diffsize=diffsize)
invisible(result[1])
}
ss.aipe.crd.es.nclus.fixedbudget <- function(budget, nindiv, cluscost, indivcost, nrep=NULL, prtreat=NULL, iccy=NULL, es=NULL, estype = 1, numpredictor = 0, iccz=NULL, r2within=NULL, r2between=NULL, assurance=NULL, seed=123321, multicore=FALSE, numProc=NULL, conf.level=0.95, diffsize=NULL) {
nclus <- .findNclusCRDBudget(budget=budget, nindiv=nindiv, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
calculatedWidth <- NULL
if(!is.null(nrep) && !is.null(prtreat) && !is.null(nindiv) && !is.null(iccy)) {
suppressWarnings(calculatedWidth <- .findWidthCRDES(nrep=nrep, nclus=nclus, ntreatclus=round(nclus * prtreat), nindiv=nindiv, iccy=iccy, es=es, estype = estype, totalvar=1, covariate=as.logical(numpredictor), iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = 1, assurance=assurance, seed=seed, multicore=multicore, numProc=numProc, conf.level=conf.level, diffsize=diffsize))
}
calculatedCost <- .costCRD(nclus, nindiv, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
.reportCRD(nclus, nindiv, calculatedWidth, cost=calculatedCost, es=TRUE, estype=estype, assurance=assurance, diffsize=diffsize)
invisible(nclus)
}
ss.aipe.crd.es.nindiv.fixedbudget <- function(budget, nclus, cluscost, indivcost, nrep=NULL, prtreat=NULL, iccy=NULL, es=NULL, estype = 1, numpredictor = 0, iccz=NULL, r2within=NULL, r2between=NULL, assurance=NULL, seed=123321, multicore=FALSE, numProc=NULL, conf.level=0.95, diffsize=NULL) {
nindiv <- .findNindivCRDBudget(budget=budget, nclus=nclus, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
calculatedWidth <- NULL
if(!is.null(nrep) && !is.null(prtreat) && !is.null(nindiv) && !is.null(iccy)) {
suppressWarnings(calculatedWidth <- .findWidthCRDES(nrep=nrep, nclus=nclus, ntreatclus=round(nclus * prtreat), nindiv=nindiv, iccy=iccy, es=es, estype = estype, totalvar=1, covariate=as.logical(numpredictor), iccz=iccz, r2within=r2within, r2between=r2between, totalvarz = 1, assurance=assurance, seed=seed, multicore=multicore, numProc=numProc, conf.level=conf.level, diffsize=diffsize))
}
calculatedCost <- .costCRD(nclus, nindiv, cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
.reportCRD(nclus, nindiv, calculatedWidth, cost=calculatedCost, es=TRUE, estype=estype, assurance=assurance, diffsize=diffsize)
invisible(nindiv)
}
ss.aipe.crd.es.both.fixedbudget <- function(budget, cluscost=0, indivcost=1, es, estype = 1, iccy, prtreat, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE, numProc=NULL, diffsize=NULL) {
suppressWarnings(result <- .findMinWidthCRDES(budget=budget, cluscost=cluscost, indivcost=indivcost, es=es, estype = estype, iccy=iccy, prtreat=prtreat, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, nrep = nrep, iccz = iccz, seed = seed, multicore = multicore, numProc=numProc, diffsize=diffsize))
calculatedCost <- .costCRD(result[1], result[2], cluscost=cluscost, indivcost=indivcost, diffsize=diffsize)
.reportCRD(result[1], result[2], result[3], cost=calculatedCost, es=TRUE, estype=estype, assurance=assurance, diffsize=diffsize)
invisible(result[1:2])
}
ss.aipe.crd.es.both.fixedwidth <- function(width, cluscost=0, indivcost=1, es, estype = 1, iccy, prtreat, r2between = 0, r2within = 0, numpredictor = 0, assurance=NULL, conf.level = 0.95, nrep = 1000, iccz = NULL, seed = 123321, multicore = FALSE, numProc=NULL, diffsize=NULL) {
suppressWarnings(result <- .findMinCostCRDES(width=width, cluscost=cluscost, indivcost=indivcost, es=es, estype = estype, iccy=iccy, prtreat=prtreat, r2between = r2between, r2within = r2within, numpredictor = numpredictor, assurance=assurance, conf.level = conf.level, nrep = nrep, iccz = iccz, seed = seed, multicore = multicore, numProc=numProc, diffsize=diffsize))
.reportCRD(result[1], result[2], result[4], cost=result[3], es=TRUE, estype=estype, assurance=assurance, diffsize=diffsize)
invisible(result[1:2])
} |
LoglikNormalCens <- function(x, data, lowerbound, vdelta){
if(x[2] > 0){
if(length(lowerbound[is.na(lowerbound)==FALSE])!=0){
loglik <- sum(log(dnorm(data[vdelta == 1], mean=x[1], sd=x[2]))) + sum(log(pnorm(data[vdelta == 0 & is.na(lowerbound)==TRUE], mean=x[1], sd=x[2]))) + sum(log(pnorm(data[vdelta == 0 & is.na(lowerbound)==FALSE], mean=x[1], sd=x[2])-pnorm(lowerbound[vdelta == 0 & is.na(lowerbound)==FALSE], mean=x[1], sd=x[2])))
}
if(length(lowerbound[is.na(lowerbound)==FALSE])==0){
loglik <- sum(log(dnorm(data[vdelta == 1], mean=x[1], sd=x[2]))) + sum(log(pnorm(data[vdelta == 0], mean=x[1], sd=x[2])))
}
}
if(x[2] <= 0){ loglik <- -Inf }
if(loglik == -Inf){loglik <- -100000}
return(loglik)
} |
Wave <- setClass("Wave", slots = list(
metadata = "list",
design = "data.frame",
samples = "character",
sampled_data = "data.frame",
data = "data.frame"
)) |
context("errcheck_stdat")
test_that("tests of errcheck_stdat",{
times<-1:10
dat<-"nonnumeric"
callfunc<-"notrealfunc"
expect_error(errcheck_stdat(times,dat,callfunc),
"Error in errcheck_stdat called by notrealfunc: dat must be numeric")
dat<-1
expect_error(errcheck_stdat(times,dat,callfunc),
"Error in errcheck_stdat called by notrealfunc: dat must be a matrix")
dat<-matrix(c(1,2,3),1,3)
expect_error(errcheck_stdat(times,dat,callfunc),
"Error in errcheck_stdat called by notrealfunc: dat must have at least two rows")
dat<-matrix(1,3,9)
expect_error(errcheck_stdat(times,dat,callfunc),
"Error in errcheck_stdat called by notrealfunc: second dimension of dat must equal length of times")
dat<-matrix(1,3,10)
dat[1,1]<-NaN
expect_error(errcheck_stdat(times,dat,callfunc),
"Error in errcheck_stdat called by notrealfunc: dat must not contain NAs, NaNs, Infs")
}) |
LogisticSigmoidLRCFitter <- setRefClass('LogisticSigmoidLRCFitter'
, contains = 'LightResponseCurveFitter'
)
LogisticSigmoidLRCFitter_predictGPP <- function(
Rg
, Amax
, alpha
) {
GPP <- Amax * tanh(alpha * Rg / Amax)
}
LogisticSigmoidLRCFitter$methods(predictGPP =
LogisticSigmoidLRCFitter_predictGPP)
LogisticSigmoidLRCFitter_computeGPPGradient <- function(
Rg
, Amax
, alpha
) {
.expr1 <- alpha * Rg
.expr2 <- .expr1 / Amax
.expr3 <- tanh(.expr2)
.expr8 <- cosh(.expr2)^2
.value <- Amax * .expr3
.grad <- array(0, c(length(.value), 2L), list(NULL, c("Amax", "alpha")))
.grad[, 1L] <- .expr3 - Amax * (.expr1 / Amax^2 / .expr8)
.grad[, 2L] <- Amax * (Rg / Amax / .expr8)
.grad
}
LogisticSigmoidLRCFitter$methods(computeGPPGradient =
LogisticSigmoidLRCFitter_computeGPPGradient) |
tilt_compensate <-
function(x,y,z,pitch,roll,declination = 0,angle = "degree"){
sinp = sin(pitch)
sinr = sin(roll)
cosp = cos(pitch)
cosr = cos(roll)
xh = x*cosp + y*sinr*sinp + z*cosr*sinp
yh = y*cosr - z*sinr
azimuth90 = atan(yh/xh)
heading_mag = azimuth90
category = rep(0,length(azimuth90))
for (i in 1:length(x)){
if (xh[i] < 0 ){
heading_mag[i] <- pi - azimuth90[i]
category[i] <- 1
}
if (xh[i] > 0 & yh[i] < 0 ){
heading_mag[i] <- -azimuth90[i]
category[i] <- 2
}
if (xh[i] > 0 & yh[i] > 0 ){
heading_mag[i] <- (2*pi) - azimuth90[i]
category[i] <- 3
}
if (xh[i] == 0 & yh[i] < 0 ){
heading_mag[i] <- pi/2
category[i] <- 4
}
if (xh[i] == 0 & yh[i] > 0 ){
heading_mag[i] <- (3*pi)/2
category[i] <- 5
}
}
if (angle == "degree"){ heading_geo <- (heading_mag + (declination*(pi/180))) %% (2*pi) }
if (angle == "radian"){ heading_geo <- (heading_mag + declination) %% (2*pi) }
tiltlist <- list("xh" = xh, "yh" = yh, "heading_mag" = heading_mag,"heading_geo" = heading_geo)
class(tiltlist) <- "tiltcompensate"
return(tiltlist)
} |
getAutoGridSize <-
function(nL) {
index10 = floor(log(nL, base=10))
if(nL/(10^index10) < 3) {
index10 = index10-1
}
grid.size = 10^(1:index10)
return(grid.size)
}
hardthres = function(v, low=0.9, high=1.1){
n = length(v)
for (i in 1:n){ if (v[i]>low && v[i]<high) v[i] = 1 }
v
}
comb = function(tau, cns1, cns2, low=0.9, high=1.1){
n = length(cns1)
if (n==1) return(tau)
code = rep("",n)
for (i in 1:n){
if (cns1[i]<low){
code[i] = "0"
}else if (cns1[i]>high){
code[i] = "2"
}else{
code[i] = "1"
}
if (cns2[i]<low){
code[i] = paste(code[i],"0",sep="")
}else if (cns2[i]>high){
code[i] = paste(code[i],"2",sep="")
}else{
code[i] = paste(code[i],"1",sep="")
}
}
removeid = c()
for (i in 2:n){
if (code[i]==code[i-1]){
removeid = c(removeid, i)
}
}
if (length(removeid)==0) return(tau)
return(tau[-removeid])
}
plotCN = function(n, tauhat, ascn, pos=NULL, gaincol="red", losscol="blue", neutralcol="green",xlab=NULL, ylab=NULL, pch=".",...){
tauhat = sort(unique(c(1,tauhat,n)))
ascn1 = ascn[1,]
ascn2 = ascn[2,]
if (is.null(pos)){
pos = 1:n
if (is.null(xlab)) xlab = "SNP
}else{
tauhat = pos[tauhat]
if (is.null(xlab)) xlab = "Position (bp)"
}
if (is.null(ylab)) ylab = "Allele-specific CN"
poscn1 = poscn2 = rep(1,n)
K = length(tauhat)-1
m = match(tauhat[1:K], pos)
if (K>1){
for (i in 1:(K-1)){
poscn1[m[i]:(m[i+1]-1)] = ascn1[i]
poscn2[m[i]:(m[i+1]-1)] = ascn2[i]
}
}
poscn1[m[K]:n] = ascn1[K]
poscn2[m[K]:n] = ascn2[K]
g1 = l1 = g2 = l2 = c()
if (K>1){
for (i in 1:(K-1)){
if (ascn1[i]>1){
g1 = c(g1, m[i]:(m[i+1]-1))
}else if (ascn1[i]<1){
l1 = c(l1, m[i]:(m[i+1]-1))
}
if (ascn2[i]>1){
g2 = c(g2, m[i]:(m[i+1]-1))
}else if (ascn2[i]<1){
l2 = c(l2, m[i]:(m[i+1]-1))
}
}
}
plot(pos, poscn1, col=neutralcol, ylim = c(0, max(c(ascn1,ascn2))+0.5),xlab=xlab, ylab=ylab, pch=pch, ...)
points(pos, poscn2, col=neutralcol, pch=pch, ...)
for (i in 1:K){
if (i==K){
ids = m[K]:n
}else{
ids = m[i]:(m[i+1]-1)
}
nids = length(ids)
if (ascn1[i]>1){
points(pos[ids], poscn1[ids], col=gaincol, pch=pch,...)
if (i>1 && ascn1[i-1]>1){
a = ascn1[i-1]
}else{
a = 1
}
points(c(pos[ids[1]], pos[ids[1]]), c(a, ascn1[i]), col=gaincol, type="l")
if (i<K-1 && ascn1[i+1]>1){
a = ascn1[i+1]
}else{
a = 1
}
points(c(pos[ids[nids]], pos[ids[nids]]), c(a, ascn1[i]), col=gaincol, type="l")
}else if (ascn1[i]<1){
points(pos[ids], poscn1[ids], col=losscol, pch=pch, ...)
if (i>1 && ascn1[i-1]<1){
a = ascn1[i-1]
}else{
a = 1
}
points(c(pos[ids[1]], pos[ids[1]]), c(a, ascn1[i]), col=losscol, type="l")
if (i<K-1 && ascn1[i+1]<1){
a = ascn1[i+1]
}else{
a = 1
}
points(c(pos[ids[nids]], pos[ids[nids]]), c(a, ascn1[i]), col=losscol, type="l")
}
if (ascn2[i]>1){
points(pos[ids], poscn2[ids], col=gaincol, pch=pch, ...)
if (i>1 && ascn2[i-1]>1){
a = ascn2[i-1]
}else{
a = 1
}
points(c(pos[ids[1]], pos[ids[1]]), c(a, ascn2[i]), col=gaincol, type="l")
if (i<K-1 && ascn2[i+1]>1){
a = ascn2[i+1]
}else{
a = 1
}
points(c(pos[ids[nids]], pos[ids[nids]]), c(a, ascn2[i]), col=gaincol, type="l")
}else if (ascn2[i]<1){
points(pos[ids], poscn2[ids], col=losscol, pch=pch, ...)
if (i>1 && ascn2[i-1]<1){
a = ascn2[i-1]
}else{
a = 1
}
points(c(pos[ids[1]], pos[ids[1]]), c(a, ascn2[i]), col=losscol, type="l")
if (i<K-1 && ascn2[i+1]<1){
a = ascn2[i+1]
}else{
a = 1
}
points(c(pos[ids[nids]], pos[ids[nids]]), c(a, ascn2[i]), col=losscol, type="l")
}
}
} |
set.objfn <- function(lprec, obj, indices)
{
if(missing(indices)) {
if(length(obj) != dim(lprec)[2])
stop("the length of ", sQuote("obj"), " is not equal to the number of ",
"decision variables in the model")
epsel <- .Call(RlpSolve_get_epsel, lprec)
indices <- which(abs(obj) > epsel)
obj <- obj[indices]
}
if(length(obj) != length(indices))
stop(sQuote("obj"), " and ", sQuote("indices"), " are not the same length")
.Call(RlpSolve_set_obj_fnex, lprec, as.double(obj), as.integer(indices))
invisible()
} |
linearRegCostFunction <- function(X, y, lambda) {
function(theta) {
m <- length(y)
J <- 0
h = X %*% theta
thetas <- theta[-1]
J <-
1 / (2 * m) * sum((h - y) ^ 2) + (lambda / (2 * m)) * sum(theta ^ 2)
J
}
}
linearRegGradFunction <- function(X, y, lambda) {
function(theta) {
m <- length(y)
grad <- rep(0,length(theta))
grad
}
} |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
fig.width = 7,
fig.asp = 0.7,
fig.align = 'center'
)
options(tibble.print_min = 5L, tibble.print_max = 5L)
library(aba)
library(dplyr, warn.conflicts = FALSE)
data <- adnimerge %>% dplyr::filter(VISCODE == 'bl')
model <- aba_model() %>%
set_data(data) %>%
set_groups(DX_bl %in% c('MCI','AD')) %>%
set_outcomes(ConvertedToAlzheimers, CSF_ABETA_STATUS_bl) %>%
set_predictors(
PLASMA_PTAU181_bl,
PLASMA_NFL_bl,
c(PLASMA_PTAU181_bl, PLASMA_NFL_bl)
) %>%
set_covariates(AGE, GENDER, EDUCATION) %>%
set_stats(stat_glm(std.beta=T))
print(model)
model <- model %>% fit()
model_summary <- model %>% summary()
print(model_summary)
model_summary %>% aba_plot_coef(coord_flip=T)
model_summary %>% aba_plot_metric()
model_summary %>% aba_plot_roc() |
p.seqdatebreaks <- function(x,periodicity){
a<-x
a<-seq.Date(from=x[[1]],to=x[[length(x)]],by = periodicity)
return(a)
} |
e2dist <- function(x, y=NULL){
if(is.null(dim(x)) && length(x) == 2)
x <- matrix(x, nrow=1)
if(ncol(x) != 2)
stop("Argument 'x' must be a 2-column matrix or data frame, or a length 2 vector.", call.=FALSE)
if(is.null(y)) {
y <- x
} else {
if(is.null(dim(y)) && length(y) == 2)
y <- matrix(y, nrow=1)
if(ncol(y) != 2)
stop("Argument 'y' must be a 2-column matrix or data frame, or a length 2 vector.", call.=FALSE)
}
i <- sort(rep(1:nrow(y), nrow(x)))
dvec <- sqrt((x[, 1] - y[i, 1])^2 + (x[, 2] - y[i, 2])^2)
matrix(dvec, nrow = nrow(x), ncol = nrow(y), byrow = FALSE)
} |
pat_createNew <- function(
id = NULL,
label = NULL,
pas = NULL,
startdate = NULL,
enddate = NULL,
timezone = NULL,
baseUrl = "https://api.thingspeak.com/channels/",
verbose = FALSE
) {
MazamaCoreUtils::stopIfNull(baseUrl)
MazamaCoreUtils::stopIfNull(pas)
if ( is.null(id) && is.null(label) ) {
stop(paste0("label or id must be provided"))
} else if ( is.null(id) && !is.null(label) ) {
if ( is.null(pas) )
stop(paste0("pas must be provided when loading by label"))
if ( !label %in% pas$label )
stop(sprintf("label '%s' is not found in the 'pas' object", label))
pattern <- paste0("^", label, "$")
deviceDeploymentID <- pas_getDeviceDeploymentIDs(pas, pattern = pattern)
if ( length(deviceDeploymentID) > 1 )
stop(sprintf("label '%s' matches more than one sensor", label))
} else {
deviceDeploymentID <- id
}
pas_single <-
pas %>%
dplyr::filter(is.na(.data$parentID)) %>%
dplyr::filter(.data$deviceDeploymentID == !!deviceDeploymentID)
if ( nrow(pas_single) > 1 ) {
stop(paste0("Multiple sensors share deviceDeploymentID: ",
deviceDeploymentID, "'"))
}
if ( is.null(timezone) ) {
timezone <-
pas_single %>%
dplyr::pull(.data$timezone)
}
if ( !is.null(startdate) && !is.null(enddate) ) {
dateRange <- MazamaCoreUtils::timeRange(
starttime = startdate,
endtime = enddate,
timezone = timezone,
unit = "min",
ceilingStart = FALSE,
ceilingEnd = FALSE
)
} else {
dateRange <- MazamaCoreUtils::dateRange(
startdate = startdate,
enddate = enddate,
timezone = timezone,
unit = "min",
ceilingStart = FALSE,
ceilingEnd = FALSE,
days = 7
)
}
dateSeq <- seq(dateRange[1], dateRange[2], by = lubridate::ddays(7))
if ( dateRange[2] > utils::tail(dateSeq, 1) ) {
dateSeq <- c(dateSeq, dateRange[2])
}
if ( verbose ) {
message(sprintf("Requesting data for %s from %s to %s",
id, dateSeq[1], dateSeq[2]))
}
pat_rawList <- pat_downloadParseRawData(
id = pas_single$deviceDeploymentID,
label = NULL,
pas = pas,
startdate = dateSeq[1],
enddate = dateSeq[2],
timezone = timezone,
baseUrl = baseUrl
)
if ( length(dateSeq) > 2 ) {
for ( i in 2:(length(dateSeq) - 1) ) {
if ( verbose ) {
message(sprintf("Requesting data for %s from %s to %s",
id, dateSeq[i], dateSeq[i+1]))
}
new_pat_rawList <- pat_downloadParseRawData(
id = pas_single$deviceDeploymentID,
label = NULL,
pas = pas,
startdate = dateSeq[i],
enddate = dateSeq[i + 1],
timezone = timezone,
baseUrl = baseUrl
)
pat_rawList$A_PRIMARY <-
dplyr::bind_rows(pat_rawList$A_PRIMARY, new_pat_rawList$A_PRIMARY) %>%
dplyr::distinct()
pat_rawList$A_SECONDARY <-
dplyr::bind_rows(pat_rawList$A_SECONDARY, new_pat_rawList$A_SECONDARY) %>%
dplyr::distinct()
pat_rawList$B_PRIMARY <-
dplyr::bind_rows(pat_rawList$B_PRIMARY, new_pat_rawList$B_PRIMARY) %>%
dplyr::distinct()
pat_rawList$B_SECONDARY <-
dplyr::bind_rows(pat_rawList$B_SECONDARY, new_pat_rawList$B_SECONDARY) %>%
dplyr::distinct()
}
}
if ( verbose ) {
message(sprintf("Download completed, merging/harmonizing data ..."))
}
pat <- pat_createPATimeseriesObject(pat_rawList)
pat <-
pat %>%
pat_distinct() %>%
pat_filterDatetime(
startdate = dateRange[1],
enddate = dateRange[2],
timezone = timezone
)
return(pat)
}
if ( FALSE ) {
library(AirSensor)
setArchiveBaseUrl("http://data.mazamascience.com/PurpleAir/v1")
pas <- pas_load()
id <- "0bf2ba90b55e7ce6_2025"
label <- NULL
startdate <- 20170930
enddate <- 20171102
timezone <- NULL
baseUrl <- "https://api.thingspeak.com/channels/"
verbose <- TRUE
pat <- pat_createNew(
id,
label,
pas,
startdate,
enddate,
timezone,
baseUrl,
verbose
)
id = NULL
label = NULL
pas = example_pas
startdate = NULL
enddate = NULL
timezone = NULL
baseUrl = "https://api.thingspeak.com/channels/"
verbose = FALSE
label = "Seattle"
pas = example_pas
startdate = 20180701
enddate = 20180901
} |
LKGridFindNmax<- function(n1, max.points, mean.neighbor, delta, gridList){
info<- summary( gridList)
deltaScaled<- delta/info$dx
if( !is.null( mean.neighbor) ){
max.points <- mean.neighbor*n1
}
if (is.null(max.points)) {
max.points <- n1 * ceiling(prod(deltaScaled*2 + 1 ) )
}
return( max.points )
} |
library(fields)
library(gganimate)
library(tidyverse)
piChar <- read.table("data/PI_og_100000.txt", stringsAsFactors=F, colClasses = c("character"))[1,1]
piVec <- as.numeric(strsplit(piChar, "")[[1]])
x <- y <- rep(NULL, length(piVec))
x[1] <- 0
y[1] <- 0
for (i in 2:length(piVec)){
x[i] <- x[(i-1)] + sin((pi*2)*(piVec[i]/10))
y[i] <- y[(i-1)] + cos((pi*2)*(piVec[i]/10))
}
rainbowColDark <- c("
rainbowColDark <- designer.colors(n=10, col=rainbowColDark)
Pi.frame <- data.frame(PI=piVec[-1], x=x[-length(x)], y=y[-length(y)],
ID=1:(length(x)-1), stringsAsFactors=F)
ggplot(Pi.frame[1:8000,], aes(x=x, y=y, group = "1")) +
geom_path(aes(color = ID), size=0.7) +
scale_colour_gradientn(colours = rainbowColDark) +
coord_fixed(ratio = 1) +
theme_bw() +
theme(panel.grid = element_blank(),
axis.ticks = element_blank(),
text = element_blank(),
title = element_blank(),
legend.position="none",
panel.border = element_blank(),
panel.background = element_blank())
piPlot <- ggplot(Pi.frame[1:1000,], aes(x=x, y=y, group = "1")) +
geom_path(aes(color = ID), size=0.7) +
scale_colour_gradientn(colours = rainbowColDark) +
coord_fixed(ratio = 1) +
theme_bw() +
theme(panel.grid = element_blank(),
axis.ticks = element_blank(),
text = element_blank(),
title = element_blank(),
legend.position="none",
panel.border = element_blank(),
panel.background = element_blank()) +
transition_reveal(id = "1", along = ID) +
view_follow()
animate(piPlot, nframes = 200, fps = 10, type = "cairo", rewind = TRUE)
times <- rep(100, nrow(Pi.frame))
times[1:24] <- c(50000, 40000, 30000, 30000, 30000, 30000, 20000, 20000, 20000, 10000, 10000, 10000, 10000, 10000, 5000, 5000, 5000, 5000, 1000, 1000, 1000, 500, 500, 500)
pi_slowdown <- Pi.frame %>%
mutate(show_time = ifelse(ID %in% 1:100, times, 1),
reveal_time = cumsum(show_time))
pi_pause <- Pi.frame %>%
mutate(show_time = ifelse(ID %in% c(500, 2000, 5000, 7000), 500, 1)) %>%
uncount(show_time) %>%
mutate(reveal_time = row_number())
pi_slow <- ggplot(pi_slowdown[1:nrow(pi_slowdown),], aes(x=x, y=y, group = "1")) +
geom_path(aes(color = ID), size=0.7) +
scale_colour_gradientn(colours = rainbowColDark) +
coord_fixed(ratio = 1) +
theme_bw() +
theme(panel.grid = element_blank(),
axis.ticks = element_blank(),
text = element_blank(),
title = element_blank(),
legend.position="none",
panel.border = element_blank(),
panel.background = element_blank()) +
transition_reveal(id = "1", along = reveal_time) +
view_follow()
animate(pi_slow, nframes = 200, fps = 10, type = "cairo", renderer = av_renderer())
anim_save("pi_slow.mp4")
pi_stop <- ggplot(pi_pause[1:nrow(pi_pause),], aes(x=x, y=y, group = "1")) +
geom_path(aes(color = ID), size=0.7) +
scale_colour_gradientn(colours = rainbowColDark) +
coord_fixed(ratio = 1) +
theme_bw() +
theme(panel.grid = element_blank(),
axis.ticks = element_blank(),
text = element_blank(),
title = element_blank(),
legend.position="none",
panel.border = element_blank(),
panel.background = element_blank()) +
transition_reveal(id = "1", along = reveal_time) +
view_follow()
animate(pi_stop, nframes = 400, fps = 10, type = "cairo", renderer = av_renderer())
anim_save("pi_pause.mp4") |
add_probs.glmerMod <- function(df, fit,
q, name = NULL, yhatName = "pred", comparison = "<",
type = "boot", includeRanef = TRUE,
nSims = 10000, ...){
if (!is.null(fit@optinfo$conv$lme4$code))
warning ("Coverage probabilities may be inaccurate if the model failed to converge")
if(fit@resp$family$family == "binomial")
stop("Prediction Intervals are not useful if the response is Bernoulli")
if (is.null(name) & (comparison == "<"))
name <- paste("prob_less_than", q, sep="")
if (is.null(name) & (comparison == ">"))
name <- paste("prob_greater_than", q, sep="")
if (is.null(name) & (comparison == "<="))
name <- paste("prob_less_than_or_equal_to", q, sep="")
if (is.null(name) & (comparison == ">="))
name <- paste("prob_greater_than_or_equal_to", q, sep="")
if (is.null(name) & (comparison == "="))
name <- paste("prob_equal_to", q, sep="")
if ((name %in% colnames(df))) {
warning ("These probabilitiess may have already been appended to your dataframe. Overwriting.")
}
if (type == "boot")
bootstrap_probs_glmermod(df, fit, q, name, includeRanef, nSims, yhatName, comparison)
else
stop("Incorrect type specified!")
}
bootstrap_probs_glmermod <- function(df, fit, q, name, includeRanef, nSims, yhatName, comparison) {
if (includeRanef) {
rform = NULL
} else {
rform = NA
}
gg <- simulate(fit, newdata = df, re.form = rform, nsim = nSims)
gg <- as.matrix(gg)
probs <- apply(gg, 1, FUN = calc_prob, quant = q, comparison = comparison)
out <- predict(fit, df, re.form = rform, type = "response")
if(is.null(df[[yhatName]]))
df[[yhatName]] <- out
df[[name]] <- probs
data.frame(df)
} |
negint2<-function(ux=0.5,fixedfu=1,type=2,u=c(0.5,0.5,1),ut=c(0.5,1.0,1.5),tfix=ut[length(ut)]+0.5,maxfu=10.0,tchange=c(0,0.5,1),ratec=c(0.15,0.15,0.15),eps=1.0e-03){
if (type==2){
amax=max(ux,ratec,fixedfu)+1
aseq=seq(0,fixedfu,by=1/amax*eps)
bseq=c(aseq,0)
cseq=unique(bseq[bseq<=fixedfu])
nc=length(cseq)
cseq0=c(0,cseq[-nc])
dseq=c((cseq+cseq0)/2,fixedfu)
nd=length(dseq)
ss=pwe(t=dseq,rate=ratec,tchange=tchange)$surv
temp=ux/(1+ux*dseq)^2
dtemp=cseq-cseq0
mt=sum(temp[-nd]*ss[-nd]*dtemp)
tt=sum(ss[-nd]*dtemp)
vt=2*sum(dseq[-nd]*ss[-nd]*dtemp)-tt^2
}
else if (type==3){
amax=max(ux,u,ut,tfix,maxfu)+1
aseq=seq(0,maxfu,by=1/amax*eps)
bseq=c(aseq,0)
cseq=unique(bseq[bseq<=maxfu])
nc=length(cseq)
cseq0=c(0,cseq[-nc])
dseq=c((cseq+cseq0)/2,maxfu)
nd=length(dseq)
ss=pwu(t=tfix-dseq,u=u,ut=ut)$dist
temp=ux/(1+ux*dseq)^2
dtemp=cseq-cseq0
mt=sum(temp[-nd]*ss[-nd]*dtemp)
tt=sum(ss[-nd]*dtemp)
vt=2*sum(dseq[-nd]*ss[-nd]*dtemp)-tt^2
}
else if (type==4){
amax=max(ux,u,ut,tfix,maxfu,ratec)+1
aseq=seq(0,maxfu,by=1/amax*eps)
bseq=c(aseq,0)
cseq=unique(bseq[bseq<=maxfu])
nc=length(cseq)
cseq0=c(0,cseq[-nc])
dseq=c((cseq+cseq0)/2,maxfu)
nd=length(dseq)
ss=pwu(t=tfix-dseq,u=u,ut=ut)$dist*pwe(t=dseq,rate=ratec,tchange=tchange)$surv
temp=ux/(1+ux*dseq)^2
dtemp=cseq-cseq0
mt=sum(temp[-nd]*ss[-nd]*dtemp)
tt=sum(ss[-nd]*dtemp)
vt=2*sum(dseq[-nd]*ss[-nd]*dtemp)-tt^2
}
list(mt=mt,tt=tt,vt=pmax(vt,0))
} |
context("sentensize")
o <- sapply(c('', 'neonira wrote package \twyz.code.rdoc'), sentensize, USE.NAMES = FALSE)
test_that("sentensize", {
expect_length(o[1], 1L)
expect_equal(o[1], '')
expect_length(o[2], 1L)
expect_equal(o[2], 'Neonira wrote package wyz.code.rdoc.')
expect_equal(sentensize('a simple', ' question\t', punctuationCharacter_s_1 = '?'), "A simple question?")
}) |
plotLinReg <- function(dat,indepVarLst=NULL,dependVar=NULL,cusTxt=NULL,regrLty=1,regrLwd=1,regrCol=1,confInt=0.95,
confCol=NULL,xLab=NULL,yLab=NULL,xLim=NULL,yLim=NULL,tit=NULL,nSignif=3,col=1,pch=1,silent=FALSE,callFrom=NULL) {
argNa <- c(deparse(substitute(dat)),deparse(substitute(indepVarLst)),deparse(substitute(dependVar)))
fxNa <- wrMisc::.composeCallName(callFrom,newNa="plotLinReg")
opar <- graphics::par(no.readonly=TRUE)
asNumDf <- function(x, colNa=c("x","y")) {
if(!is.data.frame(x)) x <- as.data.frame(x[,1:2], stringsAsFactors=FALSE)
if(length(colNa) !=2) stop(" argument 'colNa' must be of length=2")
chNum <- c(is.numeric(x[,1]), is.numeric(x[,2]))
if(any(!chNum)) for(i in which(!chNum)) {
num <- try(wrMisc::convToNum(x[,i], spaceRemove=TRUE, remove=NULL,silent=silent,callFrom=fxNa))
if("character" %in% class(num)) {
num <- as.numeric(as.character(as.factor(x[,i])))
warning(" Trouble converting column no ",i," to numeric (",wrMisc::pasteC(utils::head(x[,i])),", interpreted as ",wrMisc::pasteC(utils::head(num)),")") }
x[,i] <- num }
colnames(x) <- colNa
x }
extrFromList <- function(x,yy,zz,colNa=c("x","y")) {
if(all(is.integer(c(yy[1],zz[1])))) {
if(any(c(yy[1],zz[1]) <1) | length(x) < max(c(yy[1],zz[1]))) stop(" index values for list-elements of 'x' out of range")
} else {
msg <- "both arguments 'yy' and 'zz' must correspond to list-elements of 'x'"
if(length(yy) <1) stop(msg)
if(length(zz) <1) {
isBad <- TRUE
if(length(dim(x[[yy]])) >1) if(ncol(x[[yy]]) >1) { isBad <- FALSE
x <- as.data.frame(x[[yy]][,1:2],stringsAsFactors=FALSE) }
if(isBad) stop(msg)
} else {
chNa1 <- c(yy[1],zz[1]) %in% names(x)
if(!all(chNa1)) stop("Cannot find ",wrMisc::pasteC(c(yy[1],zz[1])[which(!chNa1)],quoteC="'")," in list 'x'")
x <- data.frame(x[[yy]], x[[zz]], stringsAsFactors=FALSE)}
}
colnames(x) <- colNa
x }
extrFromMatr <- function(x,yy,zz,name1=c("y","ordinate","dat","measure","pred","depend"),name2=c("x","abscissa","grp","grp2","dat2","obs","indep"),
colNa=c("x","y"),silent=silent,fxNa=fxNa) {
chColNa1 <- wrMisc::extrColsDeX(x,extrCol=list(if(is.null(zz)) name1 else zz), doExtractCols=FALSE,callFrom=fxNa,silent=silent)
chColNa2 <- wrMisc::extrColsDeX(x,extrCol=list(if(is.null(yy)) name2 else yy), doExtractCols=FALSE,callFrom=fxNa,silent=silent)
if(!all(chColNa1,chColNa2)) stop("Cannot find column-names to use from 'x'")
x <- data.frame(x[,if(length(chColNa2) >0) chColNa2[1] else { if(chColNa1[1]==2) 1 else chColNa1[1]+1}],x[,chColNa1[2]],stringsAsFactors=FALSE)
colnames(x) <- colNa
x }
msg <- df0<- NULL
if(length(dat) <1) {
msg <- c(" incomplete data, nothing to do")
} else {
if(all(!is.list(dat), length(dat) >2,length(indepVarLst) >2, length(dim(dat)) <1, length(dim(indepVarLst)) <1 )) {
if(length(dat)!=length(indepVarLst)) stop("length of 'dat' and 'indepVarLst' don't match !")
df0 <- data.frame(x=indepVarLst,y=dat,stringsAsFactors=FALSE)
argNa[4:5] <- argNa[2:1]
} else {
if(is.list(dat)) {
df0 <- extrFromList(dat,indepVarLst,dependVar)
argNa[4:5] <- argNa[2:3]
} else {
if(length(dim(dat)) >1) { if(ncol(dat) >1) {
df0 <- extrFromMatr(dat,indepVarLst,dependVar,silent,fxNa)
} else {
df0 <- data.frame(x=if(length(dim(indepVarLst)) >1) indepVarLst[,1] else indepVarLst, y=dat, stringsAsFactors=FALSE) }
argNa[4:5] <- argNa[2:3]
} else msg <- "unknown format of 'dat'" }}}
if(length(msg) >0 | length(df0) <1) message(fxNa,"can't plot",msg) else {
df0 <- asNumDf(df0)
lm0 <- stats::lm(y ~ x, data=df0)
if(length(lm0$coefficients) >2) message(fxNa," Bizzare : The regression model was expected as 2 coefficients, but has ",
length(lm0$coefficients)," coefficients ",wrMisc::pasteC(names(lm0$coefficients),quoteC="'"))
argNa[4:5] <- gsub("\"","",argNa[4:5])
if(is.null(xLab)) xLab <- if(argNa[4]=="NULL") "x" else argNa[4]
if(is.null(yLab)) yLab <- if(argNa[5]=="NULL" | argNa[5]==xLab) "y" else argNa[5]
graphics::plot(y ~ x, data=df0, las=1, xlab=xLab, ylab=yLab, pch=pch,col=col, main=tit)
graphics::abline(lm0, lty=regrLty, lwd=regrLwd, col=regrCol)
suplTx <- paste(c("; ",if(length(cusTxt) <1) paste("p.slope =",signif(stats::coef(summary(lm0))[2,"Pr(>|t|)"],2)) else cusTxt), collapse=" ")
graphics::mtext(paste("regression (rounded): y =",signif(stats::coef(lm0)[2],nSignif)," x +",signif(stats::coef(lm0)[1],nSignif),suplTx,
", r2=",signif(stats::cor(df0$y,df0$x)^2,nSignif)),cex=0.75,line=0.15)
if(length(confInt) >0) { ra <- c(range(df0$x,na.rm=TRUE), abs(mean(df0$x,na.rm=TRUE)))
newx <- seq(ra[1]-0.05*ra[3],ra[2]+0.05*ra[3],length.out=200)
if(length(confCol) <1) confCol <- grDevices::rgb(0.3,0.3,0.3,0.07)
confInterval <- stats::predict(lm0, newdata=data.frame(x=newx), interval="confidence", level=confInt)
graphics::polygon(cbind(x=c(newx,rev(newx)),y=c(confInterval[,"lwr"],confInterval[length(newx):1,"upr"])),col=confCol,border=NA)
graphics::points(y ~ x, df0, col=col)
graphics::mtext(paste(" confidence interval at ",100*confInt,"% shown"), line=-1.05,cex=0.65,adj=0,col=wrMisc::convColorToTransp(confCol,alph=240)) }
}
invisible(list(data=df0,linRegr=lm0,if(length(confInt) >0) confInterval=confInterval)) }
|
testthat::test_that("two_way_interaction_plot: lm model", {
model <- lm_model(
data = iris[1:4],
response_variable = "Sepal.Length",
predictor_variable = c(Sepal.Width, Petal.Width),
two_way_interaction_factor = c(Sepal.Width, Petal.Width)
)
plot <- two_way_interaction_plot(model)
testthat::expect_false(is.null(plot))
})
testthat::test_that("two_way_interaction_plot: lme4 model", {
model <- lme_model(
data = popular,
response_variable = popular,
random_effect_factors = sex,
non_random_effect_factors = c(extrav, sex, texp),
two_way_interaction_factor = c(sex, extrav),
id = class,
use_package = "lme4",
quite = TRUE
)
plot <- two_way_interaction_plot(model)
testthat::expect_false(is.null(plot))
})
testthat::test_that("two_way_interaction_plot: lmerTest model", {
model <- lme_model(
data = popular,
response_variable = popular,
random_effect_factors = sex,
non_random_effect_factors = c(extrav, sex, texp),
two_way_interaction_factor = c(sex, extrav),
id = class,
use_package = "lmerTest",
quite = TRUE
)
plot <- two_way_interaction_plot(model)
testthat::expect_false(is.null(plot))
})
testthat::test_that("two_way_interaction_plot: nlme model", {
model <- lme_model(
data = popular,
response_variable = popular,
random_effect_factors = sex,
non_random_effect_factors = c(extrav, sex, texp),
two_way_interaction_factor = c(sex, extrav),
id = class,
use_package = "nlme",
opt_control = "optim",
quite = TRUE
)
plot <- two_way_interaction_plot(model)
testthat::expect_false(is.null(plot))
}) |
context("Test the otp_connect function")
skip_if_no_otp <- function() {
if(!identical(Sys.getenv("OTP_ON_LOCALHOST"), "TRUE"))
skip("Not running test as the environment variable OTP_ON_LOCALHOST is not set to TRUE")
}
test_that("default object is created and make_url method works correctly", {
skip_if_no_otp()
otpcon <- otp_connect()
expect_s3_class(otpcon, "otpconnect")
expect_match(make_url(otpcon)$router, "http://localhost:8080/otp/routers/default")
expect_match(make_url(otpcon)$otp, "http://localhost:8080/otp")
})
test_that("correct message when /otp endpoint exists", {
skip_if_no_otp()
expect_message(otp_connect(), "http://localhost:8080/otp is running OTPv1")
})
test_that("correct error when /otp endpoint does not exist", {
skip_if_no_otp()
expect_error(otp_connect(hostname = "test"), "Unable to connect to OTP. Does http://test:8080/otp even exist?")
})
test_that("correct message when router exists", {
skip_if_no_otp()
expect_message(otp_connect(), "Router http://localhost:8080/otp/routers/default exists")
})
test_that("correct error when router does not exist", {
skip_if_no_otp()
expect_error(otp_connect(router = "test"), "Router http://localhost:8080/otp/routers/test does not exist")
}) |
std.data <- function(datain, cols){
dataout <- datain
changecols <- colnames(dataout) %in% cols
leavecols <- !changecols
options(warn = -1)
means <- sapply(dataout, mean, na.rm = TRUE)
sds <- sapply(dataout, sd, na.rm = TRUE)
options(warn = 1)
changed <- 0
for(i in 1:ncol(dataout)){
if(changecols[i]){
if(is.na(means[i]) | is.na(sds[i])){
str <- paste("Missing mean or sd for variable ", colnames(dataout)[i],
", it is not standardized.", sep="")
warning(str, call.=FALSE)
}
else{
dataout[[i]] <- (dataout[[i]] - means[i])/sds[i]
changed <- changed + 1
}
}
}
options(warn = 0)
cat("\nNumber of standardized columns: ", changed, "\n")
means <- means[changecols]
sds <- sds[changecols]
tab <- rbind(means, sds)
rownames(tab) <- c("mean","sd")
cat("\nUsed means and sd's: \n")
print(tab)
return(dataout)
} |
unitizer_sect("Basic Tests", {
library(utzflm, lib.loc=getOption('unitizer.tmp.lib.loc'))
x <- 1:10
y <- x ^ 2
res <- fastlm(x, y)
get_slope(res)
})
unitizer_sect("Advanced Tests", {
get_rsq(res)
}) |
str_contains <- function(x, pattern, ignore.case = FALSE, logic = NULL, switch = FALSE) {
if (switch && length(x) > 1) {
warning("`x` must be of length 1 when `switch = TRUE`. First element will be used.", call. = FALSE)
x <- x[1]
}
cnt <- c()
if (ignore.case) {
x <- tolower(x)
pattern <- tolower(pattern)
}
for (k in pattern) {
if (switch)
cnt <- c(cnt, !sjmisc::is_empty(grep(x, k, fixed = TRUE)))
else
cnt <- c(cnt, !sjmisc::is_empty(grep(k, x, fixed = TRUE)))
}
if (is.null(logic))
return(cnt)
else if (logic %in% c("or", "OR", "|"))
return(any(cnt))
else if (logic %in% c("and", "AND", "&"))
return(all(cnt))
else if (logic %in% c("not", "NOT", "!"))
return(!any(cnt))
return(cnt)
} |
.FCC <- function(hwsd) {
hwsd$PHASE <- as.integer(hwsd$PHASE)
hwsd$T_TEXTURE <- as.integer(hwsd$T_TEXTURE)
left <- substr(hwsd$SU_SYM74, 1, 1)
right <- substr(hwsd$SU_SYM74, 2, 1)
soil <- hwsd$SU_SYM74
fcc <- matrix(FALSE, nrow=length(soil), ncol=18)
colnames(fcc) <- c('g', 'd', 'e', 'a', 'h', 'i', 'x', 'v', 'k', 'b', 's', 'n', 'c', "'", '', '', '', '')
fcc[left == 'G' | left == 'W' | left=='O' | soil == 'Jt' | soil == 'Gt' | right == 'g' , 1] <- TRUE
fcc[left == 'X' | left == 'Y', 2] <- TRUE
fcc[left == 'Q'] <- TRUE
fcc[left == 'F' & right != 'h' & hwsd$T_TEXTURE == 1, 3] <- TRUE
fcc[hwsd$T_CEC_SOIL < 4] <- TRUE
fcc[soil == 'Gd' | soil == 'Bd' | soil == 'Wd' | soil == 'Fh' | soil == 'Ah', 4] <- TRUE
fcc[hwsd$T_PH_H2O < 5, 4] <- TRUE
fcc[grep(soil, 'Rd_Nd_Od_Jd_Gh_Th_Fh_Nh_Ah_Wh') == 1 | left == 'P' | left == 'U', 5] <- TRUE
fcc[(left == 'L' | left == 'B') & (right != 'k' & right != 'e' & right != 'v'), 5] <- TRUE
fcc[(left == 'F' | left == 'A') & hwsd$T_TEXTURE == 3, 6] <- TRUE
fcc[left == 'T', 7] <- TRUE
fcc[left == 'V' | (right == 'v' & soil != 'Tv'), 8] <- TRUE
fcc[soil == 'Qa' | soil == 'Qf' | left == 'F' | left == 'A' | left == 'N', 9] <- TRUE
fcc[hwsd$PHASE == 4 | hwsd$PHASE == 5, 10] <- TRUE
fcc[left == 'C' | left == 'E' | ((left=='X' | left=='Y') & right != 'l'), 10] <- TRUE
fcc[soil == "Bk" & hwsd$T_TEXTURE != 1, 10] <- TRUE
fcc[hwsd$T_PH_H2O > 7.3, 6] <- TRUE
fcc[left == "Z" | hwsd$PHASE == 10, 11] <- TRUE
fcc[hwsd$T_ECE > 4, 11] <- TRUE
fcc[left == "S" | right == "s" | hwsd$PHASE == 11, 12] <- TRUE
fcc[hwsd$T_ESP > 15, 12] <- TRUE
fcc[soil == "Jt" | soil == "Gt" | soil == "Hj" , 13] <- TRUE
fcc[hwsd$PHASE == 1, 16] <- TRUE
fcc[hwsd$T_GRAVEL > 15, 16] <- TRUE
fcc[left == "O" , 17] <- TRUE
fcc[hwsd$T_TEXTURE == 1, 18] <- TRUE
return(fcc)
}
.FCCagg <- function(hwsd) {
fcc <- .FCC(hwsd)
fcc <- hwsd$SHARE * fcc
fccagg <- vector()
for (i in 1:dim(fcc)[2]) {
j <- tapply( fcc[,i], INDEX=hwsd$MU_GLOBAL, FUN=sum )
fccagg <- cbind(fccagg, j)
}
return(fccagg)
} |
"HSImetadata" |
context("error_analysis")
test_that("fcuk::error_analysis works", {
expect_match(error_analysis("iri"),"iris")
expect_match(error_analysis("dplir"),"dplyr")
}) |
library(tibble)
smiths <- frame_data(
~subject, ~time, ~age, ~weight, ~height,
"John Smith", 1, 33, 90, 1.87,
"Mary Smith", 1, NA, NA, 1.54
)
devtools::use_data(smiths, overwrite = TRUE) |
get.dp.meta=function(dp.id){
dp.meta=rjson::fromJSON(file=paste0("http://data.neonscience.org/api/v0/products/", dp.id))$data
names(dp.meta)=unlist(lapply(names(dp.meta), function(x) .camel.to.dot(x)))
return(dp.meta)
} |
f_mactivate <-
function (U, W)
{
d <- ncol(U)
m <- ncol(W)
N <- nrow(U)
Xout <- matrix(0, N, m)
Cout <- .C("mactivate_a", as.integer(N), as.integer(d), as.integer(m),
as.double(as.vector(U)), as.double(as.vector(W)), Xout = as.double(as.vector(Xout)))
Xout <- Cout[["Xout"]]
dim(Xout) <- c(N, m)
colnames(Xout) <- colnames(W)
return(Xout)
} |
exp2flux <- function(model,expression,organism=NULL,typeID=NULL,missing="mean",scale=FALSE){
if(!is.null(organism) && !is.null(typeID)){
data <- try(kegg.gsets(species = organism, id.type = typeID))
data <- matrix(gsub("[[:digit:]]+$","",names(unlist(data$kg.sets))),dimnames = list(as.vector(unlist(data$kg.sets)),c()))
}
gpr.expression <- function(gpr,expression,missing){
gpr <- gsub("[()]","",gpr)
gpr <- gsub("[[:space:]]","",gpr)
complex <- lapply(gpr, function(gpr){unlist(strsplit(gpr,"or"))})
genes <- lapply(complex, function(complex){strsplit(complex,"and")})
genes[lengths(genes) == 0] <- NA
min.complex <- lapply(genes, function(gene){
lapply(gene, function(gene){
gene <- unlist(gene)
if(!is.null(organism) && !is.null(typeID)){
if(!all(gene%in%rownames(data))){
gene <- gene[gene%in%rownames(data)]
}} else {
gene <- gene[gene%in%rownames(expression@assayData$exprs)]
}
if (length(gene)==0){
minComplex <- 0
} else {
if(any(gene%in%rownames(expression@assayData$exprs))){
minComplex <- min(rowMeans(expression@assayData$exprs,na.rm = TRUE)[gene],na.rm = TRUE)
} else {
if(!is.null(organism) && !is.null(typeID)){
minComplex <- summary(rowMeans(expression@assayData$exprs,na.rm = TRUE)[names(data[data[,1]%in%names(sort(table(data[gene,]))[1]),])])[[match(missing,c("min","1q","median","mean","3q","max"))]]
} else {
minComplex <- 0
}
}
}
return(minComplex)
})
})
exp <- unlist(lapply(min.complex, function(min.complex){sum(unlist(min.complex),na.rm = TRUE)}))
exp[exp==0] <- summary(rowMeans(expression@assayData$exprs,na.rm = TRUE))[[match(missing,c("min","1q","median","mean","3q","max"))]]
return(exp)
}
exp <- gpr.expression(gpr = model@gpr,
expression = expression,
missing=missing)
if(scale==TRUE){
exp <- round((exp/max(exp,na.rm = TRUE)),6)*1000
}
lb <- model@lowbnd
ub <- model@uppbnd
model@lowbnd <- -1*exp
model@lowbnd[!model@react_rev] <- 0
model@uppbnd <- exp
model@lowbnd[model@react_id%in%findExchReact(model)@react_id] <- lb[model@react_id%in%findExchReact(model)@react_id]
model@uppbnd[model@react_id%in%findExchReact(model)@react_id] <- ub[model@react_id%in%findExchReact(model)@react_id]
return(model)
} |
"VSS.sim" <-
function(ncases=1000,nvariables=16,nfactors=4,meanloading=.5,dichot=FALSE,cut=0)
{
weight=sqrt(1-meanloading*meanloading)
theta=matrix(rnorm(ncases*nfactors),nrow=ncases,ncol=nvariables)
error=matrix(rnorm(ncases*nvariables),nrow=ncases,ncol=nvariables)
items=meanloading*theta+weight*error
if(dichot) {items <- (items[,1:nvariables] >= cut)
items <- items + 0}
return(items)
}
"VSS.simulate" <-
function(ncases=1000,nvariables=16,nfactors=4,meanloading=.5,dichot=FALSE,cut=0)
{
weight=sqrt(1-meanloading*meanloading)
theta=matrix(rnorm(ncases*nfactors),nrow=ncases,ncol=nvariables)
error=matrix(rnorm(ncases*nvariables),nrow=ncases,ncol=nvariables)
items=meanloading*theta+weight*error
if(dichot) {items <- (items[,1:nvariables] >= cut)
items <- items + 0}
return(items)
} |
getbynames <- function (x, e) {
x <- x [e]
if (length (x) > 0) {
if (is.character (e))
names (x) <- e
x [sapply (x, is.null)] <- NA
x
} else {
list ()
}
} |
getliststate <- function(lrank, socket = autosocket()){
request <- paste("getliststate&lrank=", lrank)
writeLines(request, socket, sep = "\n")
answerFromServer <- readLines(socket, n = 1)
if(length(answerFromServer) == 0){
warning("Empty answer from server")
return(NA)
}
resitem <- parser.socket(answerFromServer)
if(resitem[1] != "0"){
warning(paste("error code returned by server :", resitem[1]))
return(NA)
}
return(list(type = resitem[2],
name = substr(x = resitem[3], start = 2, stop = nchar(resitem[3]) - 1),
count = as.numeric(resitem[4]),
locus = as.logical(resitem[5])))
}
gls <- getliststate
gln <- function(lrank, ...) getliststate(lrank, ...)$name |
source_addin = function(file) in_root(sys.source(
pkg_file('scripts', file), envir = new.env(parent = globalenv()),
keep.source = FALSE
))
new_post_addin = function() source_addin('new_post.R')
update_meta_addin = function() source_addin('update_meta.R')
insert_image_addin = function() source_addin('insert_image.R')
touch_file_rstudio = function() {
ctx = rstudioapi::getSourceEditorContext()
if (!file.exists(ctx$path)) stop('The current document has not been saved yet.')
p = normalizePath(ctx$path); mtime = function() file.info(p)[, 'mtime']
m = mtime()
on.exit(if (!identical(m, m2 <- mtime())) message(
'The modification time of "', p, '" has been updated from ', m, ' to ', m2
), add = TRUE)
touch_file(p)
}
touch_file = function(path, time = Sys.time()) Sys.setFileTime(path, time)
quote_poem = function(x) {
x = paste(x, collapse = '\n')
if (grepl('^\\s*$', x)) return(x)
x = gsub(' *\n', ' \n', x)
x = gsub('( *\n){2,}', '\n\n> ', x)
paste('>', gsub(' *(\n*) *$', '\\1', x))
}
quote_poem_addin = function() {
ctx = rstudioapi::getSourceEditorContext()
sel = ctx$selection[[1]]
if (sel$text == '') {
message('Please select some text in the editor first.')
return()
}
rstudioapi::modifyRange(sel$range, quote_poem(sel$text))
} |
DataStringBinary <- function(dataString, qrInfo) {
.Deprecated("qr_code")
if (qrInfo$mode == "0100") {
tempBin <- intToBin(utf8ToInt(dataString))
tempBin <- unlist(
lapply(tempBin, str_pad, width = 8, side = "left", pad = "0")
)
tempBin <- paste(tempBin, collapse = "")
} else if (qrInfo$mode == "0010") {
map <- c(0:9, LETTERS, " ", "$", "%", "*", "+", "-", ".", "/", ":")
key <- seq_along(map) - 1
alpanumericTable <- data.frame(key, map)
dataStringTemp <- unlist(strsplit(dataString, split = ""))
dataStringValue <- sapply(
dataStringTemp,
function(x) {
alpanumericTable[map == x, 1]
}
)
index <- seq(1, nchar(dataString), 2)
if (nchar(dataString) %% 2 == 0) {
tempBin <- sapply(
index,
function(x) {
str_pad(
intToBin(dataStringValue[x] * 45 + dataStringValue[x + 1]),
11, side = "left", pad = "0"
)
}
)
} else {
tempBin <- c(
sapply(
index[1:(length(index) - 1)],
function(x) {
str_pad(
intToBin(dataStringValue[x] * 45 + dataStringValue[x + 1]),
11, side = "left", pad = "0"
)
}
),
str_pad(
intToBin(dataStringValue[index[length(index)]]), 6, side = "left",
pad = "0"
)
)
}
tempBin <- paste(tempBin, collapse = "")
}
charCount <- 0
if (qrInfo$Version <= 9) {
charCount <- ifelse(
qrInfo$mode == "0001", 10, ifelse(qrInfo$mode == "0010", 9, 8)
)
} else if (qrInfo$Version >= 27) {
charCount <- ifelse(
qrInfo$mode == "0001", 14, ifelse(qrInfo$mode == "0010", 13, 16)
)
} else {
charCount <- ifelse(
qrInfo$mode == "0001", 12, ifelse(qrInfo$mode == "0010", 11, 16)
)
}
tempBin <- paste0(
qrInfo$mode,
str_pad(intToBin(nchar(dataString)), charCount, side = "left", pad = "0"),
tempBin, collapse = ""
)
if (qrInfo$Dcword * 8 - nchar(tempBin) > 4) {
tempBin <- paste0(tempBin, paste(rep("0", 4), collapse = ""))
} else {
tempBin <- paste0(
tempBin, paste(
rep("0", qrInfo$Dcword * 8 - nchar(tempBin)), collapse = ""
)
)
}
padCount <- 8 - nchar(tempBin) %% 8
tempBin <- paste0(tempBin, paste(rep("0", padCount), collapse = ""))
padByte <- c("11101100", "00010001")
byteCount <- (qrInfo$Dcword * 8 - nchar(tempBin)) / 8
if (byteCount > 0) {
if (byteCount == 1) {
bytearray <- suppressWarnings(cbind(1, padByte[1]))
bytearray <- paste(bytearray[, 2], collapse = "")
} else {
bytearray <- suppressWarnings(cbind(c(1:byteCount), padByte))
bytearray <- paste(bytearray[, 2], collapse = "")
}
tempBin <- paste0(tempBin, bytearray, collapse = "")
}
index <- seq(1, nchar(tempBin), 8)
dataPoly <- sapply(
index,
function(x) {
strtoi(substr(tempBin, x, x + 7), base = 2)
}
)
return(dataPoly)
} |
.file.cnt <- 0
.prefix <- 'test'
if (exists('.test.mode') && .test.mode == 'regression') {
context("Regression Tests")
test_that_ref <- function(prefix, desc, code) {
.prefix <<- prefix
.file.cnt <<- 0
test_that(desc, code)
}
eq_ref <- function(x) {
filename <- sprintf('%s_%d.rds', .prefix, .file.cnt)
.file.cnt <<- .file.cnt + 1
expect_equal_to_reference(x, filename)
}
} else {
test_that_ref <- function(prefix, desc, code) {
cat(sprintf('*** %s ***\n', desc))
code
}
if (exists('.test.mode') && .test.mode == 'demo') {
eq_ref <- function(x) {
print(x)
l <- readline(prompt="Hit <RETURN> to continue, anything else to quit: ")
if (nchar(l) > 0) {
stop('', call.=FALSE, domain=NA)
}
}
} else {
eq_ref <- function(x) { print(x); expect_true(TRUE) }
}
}
data(iris)
if (!requireNamespace('ggplot2movies', quietly=TRUE)) {
install.packages('ggplot2movies')
}
data(movies, package='ggplot2movies')
data(Titanic)
data(occupationalStatus)
data(diamonds, package='ggplot2')
test_that_ref("1d_density", "1D density plot", {
eq_ref(plotluck(iris, Petal.Length~1))
})
test_that_ref("1d_scatter", "1D scatter num/fact", {
eq_ref(plotluck(iris, Petal.Length~1, opts=plotluck.options(min.points.density=1E20)))
eq_ref(plotluck(iris, Petal.Length~1, opts=plotluck.options(min.points.density=1E20, dedupe.scatter='jitter')))
})
test_that_ref("1d_bar", "1D bar", {
eq_ref(plotluck(movies, mpaa~1))
})
test_that_ref("1d_scaling", "log scaling", {
set.seed(0)
n <- 1000
m <- 100
df <- data.frame(a=rnorm(n, mean=m, sd=5),
b=c(10*m, rnorm(n-1, mean=m, sd=5)),
c=m*c(-2*m, rexp(n-1, 1)),
d=-m*rexp(n, 1))
eq_ref(plotluck(df, a~1))
eq_ref(plotluck(df, b~1))
eq_ref(plotluck(df, c~1))
eq_ref(plotluck(df, d~1))
})
test_that_ref("2d_scatter", "2D scatter", {
eq_ref(plotluck(iris, Petal.Length~Petal.Width))
eq_ref(plotluck(movies, votes~rating))
eq_ref(plotluck(movies, rating~votes,
opts=plotluck.options(min.points.hex=1E20)))
eq_ref(plotluck(movies, rating~votes,
opts=plotluck.options(min.points.hex=1E20, trans.log.thresh=100)))
})
test_that_ref("2d_density", "2D density", {
eq_ref(plotluck(movies, rating~1|mpaa))
eq_ref(plotluck(iris, Petal.Length~1|Species))
eq_ref(plotluck(iris, Petal.Length~Species,
opts=plotluck.options(min.points.violin=1E20)))
i2 <- iris
i2$Species <- as.ordered(i2$Species)
eq_ref(plotluck(i2, Petal.Length~1|Species))
eq_ref(plotluck(diamonds, price~cut))
})
test_that_ref("2d_box", "2D box/violin plot", {
eq_ref(plotluck(movies, rating~mpaa))
eq_ref(plotluck(movies, rating~mpaa, opts=plotluck.options(geom='box')))
eq_ref(plotluck(movies, rating~mpaa, opts=plotluck.options(min.points.violin=1E20)))
eq_ref(plotluck(movies, rating~mpaa, opts=plotluck.options(min.points.violin=1E20, dedupe.scatter='jitter')))
eq_ref(plotluck(movies, budget~Documentary))
})
test_that_ref("2d_id", "2D identity bar", {
df <- data.frame(f=factor(c('aaaaaaa','bbbbbbbbb','ccccccccc','dddddddd')), val=c(5,6,2,8))
eq_ref(plotluck(df, val~f))
})
test_that_ref("2d_spine", "2D spine", {
eq_ref(plotluck(as.data.frame(Titanic), Survived~Class, weights=Freq))
df <- as.data.frame(occupationalStatus)
df$origin <- ordered(df$origin)
df$destination <- ordered(df$destination)
eq_ref(plotluck(df, destination~origin, weights=Freq))
})
test_that_ref("3d_identity", "3D identity", {
df <- data.frame(f=factor(c('aaaaaaa','bbbbbbbbb','ccccccccc','dddddddd')),
f2=factor(c(1,1,2,2)), val=c(5,6,2,8))
eq_ref(plotluck(df, val~f|f2))
eq_ref(plotluck(df, val~f|f2, opts=plotluck.options(max.factor.levels.color=0)))
})
test_that_ref("3d_heat", "3D heat map", {
eq_ref(plotluck(diamonds, price~cut+color))
})
test_that_ref("3d_spine", "3D spine", {
eq_ref(plotluck(as.data.frame(Titanic), Survived~Class+Sex, weights=Freq))
})
test_that_ref("3d_scatter", "3D scatter", {
eq_ref(plotluck(movies, rating~length|mpaa))
eq_ref(plotluck(movies, rating~length|mpaa,
opts=plotluck.options(min.points.hex=1E20)))
eq_ref(plotluck(iris, Petal.Width~Petal.Length|Species))
})
test_that_ref("3d_density", "3D density", {
eq_ref(plotluck(diamonds, price~1|cut+color))
eq_ref(plotluck(diamonds, price~1|cut+color,
opts=plotluck.options(min.points.density=1E20)))
eq_ref(plotluck(diamonds, price~1|cut,
opts=plotluck.options(max.factor.levels.color=1E20)))
})
test_that_ref("3d_violin", "3D violin", {
eq_ref(plotluck(movies, rating~mpaa|Action))
eq_ref(plotluck(movies, rating~mpaa|Action,
opts=plotluck.options(max.factor.levels.color=0)))
eq_ref(plotluck(movies, rating~mpaa|Action,
opts=plotluck.options(min.points.violin=1E20)))
eq_ref(plotluck(movies, rating~mpaa|Action,
opts=plotluck.options(min.points.violin=1E20, dedupe.scatter='jitter')))
eq_ref(plotluck(movies, rating~mpaa|Action,
opts=plotluck.options(min.points.violin=1E20, max.factor.levels.color=0)))
})
test_that_ref("3d_spine", "3D spine", {
eq_ref(plotluck(as.data.frame(Titanic), Survived~Class+Sex, weights=Freq))
})
test_that_ref("missing", "missing values", {
set.seed(0)
df<-data.frame(f=factor(sample(c(letters[1:3], NA), 20, replace=TRUE)),
f2=factor(sample(c(1,2,3,NA), 20, replace=TRUE)),
v=runif(20),
v2=runif(20))
df$v2[c(1,5,6)] <- NA
eq_ref(plotluck(df, v~f))
eq_ref(plotluck(df, v~f, opts=plotluck.options(na.rm=TRUE)))
eq_ref(plotluck(df, v~f, opts=plotluck.options(min.points.violin=0)))
eq_ref(plotluck(df, v~f, opts=plotluck.options(min.points.violin=0, na.rm=TRUE)))
eq_ref(plotluck(df, f~v))
eq_ref(plotluck(df, v2~v|f))
eq_ref(plotluck(df, f2~f))
eq_ref(plotluck(df, f2~f, opts=plotluck.options(na.rm=TRUE)))
})
test_that_ref("2d_weight", "instance weights", {
set.seed(0)
df<-data.frame(f=factor(sample(letters[1:3], 20, replace=TRUE), exclude=FALSE),
v1=runif(20),
v2=runif(20))
df$w<-runif(20) + ifelse(df$v1>0.6, 3 * runif(20), ifelse(df$v1>0.3, 2*runif(20), 0))
eq_ref(plotluck(df, v1~v2))
eq_ref(plotluck(df, v1~v2, weights=w))
eq_ref(plotluck(df, v1~f, opts=plotluck.options(geom='violin')))
eq_ref(plotluck(df, v1~f, weights=w, opts=plotluck.options(geom='violin')))
eq_ref(plotluck(df, v1~f, opts=plotluck.options(geom='box')))
eq_ref(plotluck(df, v1~f, weights=w, opts=plotluck.options(geom='box')))
eq_ref(plotluck(df, v1~1, opts=plotluck.options(min.points.density=0)))
eq_ref(plotluck(df, v1~1, weights=w, opts=plotluck.options(min.points.density=0)))
eq_ref(plotluck(df, v1~1,
opts=plotluck.options(geom='histogram')))
eq_ref(plotluck(df, v1~1, weights=w,
opts=plotluck.options(geom='histogram')))
df<-expand.grid(1:5, 1:5)
df <- rbind(df, df, df)
df$v <- runif(75)
df$w<-runif(75) + ifelse(df$v>0.6, 10 * runif(75), ifelse(df$v>0.3, 5*runif(75), 0))
eq_ref(plotluck(df, v~Var1+Var2, opts=plotluck.options(geom='spine')))
eq_ref(plotluck(df, v~Var1+Var2, weights=w, opts=plotluck.options(geom='spine')))
})
test_that_ref("multi", "multiple plots", {
if (identical(Sys.getenv("NOT_CRAN"), "true")) {
eq_ref(plotluck(diamonds, .~1))
eq_ref(plotluck(diamonds, price~.))
eq_ref(plotluck(diamonds, .~price))
}
}) |
t_choose <- function(genes,exp,group_list,up_only = FALSE,down_only = FALSE,pvalue_cutoff = 0.05){
if(up_only&down_only)stop("please change neither up_only or down_only to FALSE")
genes = genes[genes %in% rownames(exp)]
exp_small = exp[genes,]
dat = data.frame(t(exp_small),check.names = FALSE)
dat$group_list = group_list
p_v <- sapply(1:(ncol(dat)-1), function(i){
stats::t.test(dat[,i] ~group_list)$p.value
})
names(p_v) = colnames(dat)[-ncol(dat)]
exp_genes = names(p_v[p_v < pvalue_cutoff])
if(up_only){
es_up <- sapply(1:(ncol(dat)-1), function(i){
tmp = stats::t.test(dat[,i] ~group_list)
k = tmp$estimate[2]-tmp$estimate[1] >0
return(k)
})
up_genes = names(p_v)[p_v < pvalue_cutoff & es_up]
return(up_genes)
}else if(down_only){
es_down <- sapply(1:(ncol(dat)-1), function(i){
tmp = stats::t.test(dat[,i] ~group_list)
k = tmp$estimate[2]-tmp$estimate[1] <0
return(k)
})
down_genes = names(p_v)[p_v <pvalue_cutoff & es_down]
return(down_genes)
}else{
return(exp_genes)
}
}
cor.full <- function(x){
ss = list()
p = list()
ss1 = utils::combn(colnames(x),2)
ss2 = apply(ss1, 2, paste,collapse =":")
for(i in (1:ncol(ss1))){
bt = x[,ss1[1,i]]
kt = x[,ss1[2,i]]
cot = stats::cor.test(bt,kt)
p[[i]] = c(cot$p.value,cot$estimate)
names(p[[i]]) = c("p.value","cor")
}
re = do.call(cbind,p)
colnames(re) = apply(ss1, 2, paste,collapse =":")
return(as.data.frame(t(re)))
}
cor.one <- function(x,var){
if(!(var %in% colnames(x))) stop(paste0(var," is not a colname of ",x,",please check it."))
if(!all(!duplicated(colnames(x)))) stop("unique colnames is required")
ss = list()
p = list()
ss1 = matrix(c(rep(var,times = (ncol(x)-1)),
setdiff(colnames(x),var)),
nrow = 2,byrow = TRUE)
ss2 = setdiff(colnames(x),var)
for(i in (1:ncol(ss1))){
bt = x[,ss1[1,i]]
kt = x[,ss1[2,i]]
cot = stats::cor.test(bt,kt)
p[[i]] = c(cot$p.value,cot$estimate)
names(p[[i]]) = c("p.value","cor")
}
re = do.call(cbind,p)
colnames(re) = ss2
return(as.data.frame(t(re)))
} |
result.extract.mask <- function(mask.grid, values){
germany.mask <- which(is.na(mask.grid$alt)==FALSE)
values.id.to.substitute <- germany.mask[which(is.na(values[germany.mask])==TRUE)]
values[values.id.to.substitute] <- rep(-9999, length(values[values.id.to.substitute]))
return(values)
} |
read_survey <- function(file_name,
strip_html = TRUE,
import_id = FALSE,
time_zone = NULL,
legacy = FALSE,
add_column_map = TRUE,
add_var_labels = TRUE,
col_types = NULL) {
if (import_id & legacy) {
rlang::warn(c("Using import IDs as column names is not supported for legacy response files.",
"Defaulting to user-defined variable names",
"Set import_id = FALSE in future."))
import_id = FALSE
}
assert_surveyFile_exists(file_name)
if(is.null(time_zone)){
time_zone <- "UTC"
}
if(legacy){
header_rows <- 1
} else {
header_rows <- 1:2
}
rawdata <- suppressMessages(
readr::read_csv(
file = file_name,
col_types = readr::cols(.default = readr::col_character()),
na = c("")
))
if (grepl(",$", readLines(file_name, n = 1))) {
rawdata <- rawdata[, 1:(ncol(rawdata) - 1)]
}
responsedata <-
dplyr::slice(rawdata, -header_rows)
responsedata <-
readr::type_convert(
responsedata,
locale = readr::locale(tz = time_zone),
col_types = col_types,
na = character()
)
colmapdata <-
dplyr::slice(rawdata, header_rows)
if(!legacy){
colmapdata <-
dplyr::mutate(colmapdata,
metadata_type = c("description", "JSON"))
col_map <-
tidyr::pivot_longer(colmapdata,
-metadata_type,
names_to = "qname")
col_map <-
tidyr::pivot_wider(col_map,
names_from = "metadata_type",
values_from = "value")
col_map <-
dplyr::mutate(col_map,
purrr::map_dfr(JSON, jsonlite::fromJSON),
.keep = "unused")
if(!assertthat::has_name(col_map, "choiceId")){
col_map$choiceId <- NA
}
} else {
col_map <-
pivot_longer(colmapdata,
tidyr::everything(),
names_to = "qname",
values_to = "description")
}
if (strip_html) {
col_map$description <- remove_html(col_map$description)
}
col_map <-
dplyr::mutate(col_map,
tibble::as_tibble(
stringr::str_split_fixed(description, "\\s-\\s", n = 2),
.name_repair = ~c("main", "sub")
),
.after = description
)
if (import_id) {
qid_names <-
tidyr::unite(col_map,
col = qidnames,
c(ImportId, choiceId),
sep = "_",
na.rm = TRUE)[["qidnames"]]
names(responsedata) <- qid_names
col_map$qname <- qid_names
}
if(add_var_labels){
responsedata <-
sjlabelled::set_label(responsedata, col_map$description)
}
if(add_column_map){
attr(responsedata, "column_map") <- col_map
}
return(responsedata)
} |
importSBML <- function(filename, times, meas_input) {
if (!base::require('rsbml', character.only = TRUE)) {
message('Please install rsbml from the Bioconducture repository')
stop('Bioconductor package rsbml not found.')
} else {
requireNamespace("rsbml")
model <- rsbml::rsbml_read(filename = filename, dom = TRUE)
if (missing(meas_input)) {
warning("No measurements given. Returned model can't directly be used with the algorithms. Use method 'setMeas' for adding them to the model.")
}
states <- model@model@species
parameter <- model@model@parameters
rules <- model@model@rules
reactions <- model@model@reactions
reacList <- list()
for (i in 1:length(reactions)) {
reacList[[i]] <- gsub(pattern = "expression", replacement = '', deparse(model@model@reactions[[i]]@kineticLaw@math, width.cutoff = 300))
}
stoichM <- rsbml::stoichiometryMatrix(object = model@model)
react <- c()
combieReact <- function(reactStrs, stMatrix) {
for (i in 1:nrow(stMatrix)) {
m <- which(stMatrix[i,] != 0)
if (length(m) > 0) {
react <- c(react, paste0(stMatrix[i, m], '*', reactStrs[m], collapse = ' + '))
}
}
return(react)
}
react <- combieReact(reacList, stoichM)
meas <- c()
if (length(rules) != 0) {
for (i in 1:length(rules)) {
meas[i] <- gsub(pattern = "expression", replacement = '', x = rules[[i]]@math)
}
}
reformatEqs <- function(reactions, states, measureRules) {
xStates <- paste('x', 1:length(states), sep = '')
for (i in 1:length(states)) {
regState <- paste0('\\b', states[i], '\\b')
reactions = unlist(lapply(X = reactions, FUN = function(x) gsub(pattern = regState, replacement = xStates[i], x = x)))
if (length(measureRules) != 0) {
measureRules = unlist(lapply(X = measureRules, FUN = function(x) gsub(pattern = regState, replacement = xStates[i], x = x)))
} else {
measureRules = paste0('x', 1:length(reactions))
warning('No measurement function found. Set it yourself. Model will use the identity of every state.')
}
}
res = list('reac' = reactions, 'meas' = measureRules)
return(res)
}
reactNames = rownames(stoichM[rowSums(abs(stoichM)) != 0,])
eqList <- reformatEqs(reactions = react, states = reactNames, measureRules = meas)
eqFuncList = writeDummy(eqList)
if (length(parameter) != 0) {
v <- c()
n <- c()
for (i in 1:length(parameter)) {
v[i] <- parameter[[i]]@value
n[i] <- parameter[[i]]@name
}
namedParaVec <- v
names(namedParaVec) <- tolower(n)
}
initToPara <- function(model, namedParaV) {
const <- c()
for (i in 1:length(model@model@species)) {
const[i] = model@model@species[[i]]@constant
}
constSpec <- model@model@species[[which(const, TRUE)]]
nV <- c()
namesV <- c()
for (i in 1:length(constSpec)) {
nV[i] = constSpec@initialAmount
namesV[i] = constSpec@id
}
names(nV) <- tolower(namesV)
namedParaV = c(namedParaV, nV)
return(namedParaV)
}
if (length(parameter) != 0) {
namedParaVec = initToPara(model, namedParaVec)
} else {
reactionsList <- model@model@reactions
reaction_anno <- c()
for (i in 1:length(reactionsList)) {
reaction <- reactionsList[[i]]
parametersList <- reaction@kineticLaw@parameters
values_vec <- c()
names_vec <- c()
for (j in 1:length(parametersList)) {
values_vec[j] = parametersList[[j]]@value
names_vec[j] = parametersList[[j]]@id
}
names(values_vec) <- names_vec
reaction_anno <- append(reaction_anno, values_vec)
}
parameters_vec <- reaction_anno[order(names(reaction_anno))]
namedParaVec <- parameters_vec[!duplicated(names(parameters_vec))]
constants <- model@model@species
const_idx <- which(rowSums(abs(stoichM)) == 0)
vec <- c()
names <- c()
for (i in 1:length(const_idx)) {
names[i] = tolower(constants[[const_idx[i]]]@id)
vec[i] = constants[[const_idx[i]]]@initialAmount
}
names(vec) <- names
namedParaVec <- append(namedParaVec,vec)
}
initVec <- model@model@species
if (length(initVec) != 0) {
v <- c()
n <- c()
for (i in 1:length(initVec)) {
v[i] <- initVec[[i]]@initialAmount
}
initState <- v
initState = initState[rowSums(abs(stoichM)) != 0]
}
if (missing(meas_input)) {
model <- odeModel(func = eqFuncList$reac, parms = namedParaVec, measFunc = eqFuncList$meas, y = initState, times = times)
} else {
model <- odeModel(func = eqFuncList$reac, parms = namedParaVec, measFunc = eqFuncList$meas, y = initState, times = times, meas = meas_input)
}
}
unloadNamespace('rsbml')
return(model)
} |
broyden <- function(Ffun, x0, J0 = NULL, ...,
maxiter = 100, tol = .Machine$double.eps^(1/2)) {
if (!is.numeric(x0))
stop("Argument 'x0' must be a numeric (row or column) vector.")
fun <- match.fun(Ffun)
F <- function(x) fun(x, ...)
y0 <- F(x0)
if (length(x0) != length(y0))
stop("Function 'F' must be 'square', i.e. from R^n to R^n .")
if (length(x0) == 1)
stop("Function 'F' must not be a univariate function.")
if (is.null(J0)) {
A0 <- jacobian(F, x0)
} else {
A0 <- J0
}
B0 <- inv(A0)
if (any(is.infinite(B0)))
B0 <- diag(length(x0))
xnew <- x0 - B0 %*% y0
ynew <- F(xnew)
k <- 1
while (k < maxiter) {
s <- xnew - x0
d <- ynew - y0
if (norm(s, "F") < tol || norm(as.matrix(ynew), "F") < tol) break
B0 <- B0 + (s - B0 %*% d) %*% t(s) %*% B0 / c(t(s) %*% B0 %*% d)
x0 <- xnew
xnew <- xnew - B0 %*% ynew
y0 <- ynew
ynew <- F(xnew)
k <- k + 1
}
if (k >= maxiter)
warning(paste("Not converged: Max number of iterations reached."))
fnew <- sqrt(sum(ynew^2))
return(list(zero = c(xnew), fnorm = fnew, niter = k))
} |
tcplRun <- function(asid = NULL, slvl, elvl, id = NULL, type = "mc",
mc.cores = NULL, outfile = NULL, runname = NULL) {
owarn <- getOption("warn")
options(warn = 1)
on.exit(options(warn = owarn))
user <- paste(Sys.info()[c("login", "user", "effective_user")],
collapse = ".")
stime <- Sys.time()
if (Sys.info()["sysname"] == "Windows") mc.cores <- 1
if (length(slvl) > 1 | !is.numeric(slvl)) {
stop("Invalid slvl - must be integer of length 1.")
}
if (is.null(elvl) | elvl < slvl) elvl <- slvl
if (length(elvl) > 1 | !is.numeric(elvl)) {
stop("Invalid elvl - must be integer of length 1.")
}
if (length(type) > 1 | !type %in% c("mc", "sc")) {
stop ("Invalid 'type' value.")
}
if (!is.null(asid)) id <- tcplLoadAcid("asid", asid)$acid
if (length(id) == 0) stop("No asid or id given.")
id <- unique(id)
if (!is.null(outfile)) {
cat("Writing output to:", outfile, "\n")
logcon <- file(outfile, open = "a")
sink(logcon, append = TRUE)
sink(logcon, append = TRUE, type="message")
on.exit(sink.reset(), add = TRUE)
on.exit(close.connection(logcon), add = TRUE)
on.exit(cat("Output appended to log file:", outfile, "\n"), add = TRUE)
cat("\n\n\n")
cat("RUNDATE -- ", format(stime, "%y%m%d; %H:%M"), "\n",
"USER -- ", user, "\n",
"TYPE -- ", type, "\n",
"LEVEL ", slvl, " TO ", "LEVEL ", elvl, "\n",
"RUN -- ", runname, "\n",
sep = "")
cat("\n\n")
}
if (is.null(mc.cores)) {
ncores <- min(length(id), detectCores() - 1)
} else {
ncores <- mc.cores
}
names(id) <- paste0("ACID", id)
res <- list()
if (type == "mc") {
if (slvl <= 1L) {
res$l1 <- .multProc(id = id, lvl = 1L, type = "mc", ncores = ncores)
res$l1_failed <- names(which(res$l1 != TRUE))
id <- id[which(res$l1[names(id)] == TRUE)]
if (length(id) == 0) {
warning("Pipeline stopped early at level 1; processing errors ",
"occured with all given acids by level 1.")
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (length(res$l1_failed) > 0) {
warning(length(res$l1_failed), " ids failed at level 1.")
}
}
if (elvl <= 1L) {
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (slvl <= 2L) {
res$l2 <- .multProc(id = id, lvl = 2L, type = "mc", ncores = ncores)
res$l2_failed <- names(which(res$l2 != TRUE))
id <- id[which(res$l2[names(id)] == TRUE)]
if (length(id) == 0) {
warning("Pipeline stopped early at level 2; processing errors ",
"occured with all given acids by level 2.")
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (length(res$l2_failed) > 0) {
warning(length(res$l2_failed), " ids failed at level 2.")
}
}
if (elvl == 2L) {
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (slvl <= 3L) {
res$l3 <- .multProc(id = id, lvl = 3L, type = "mc", ncores = ncores)
res$l3_failed <- names(which(res$l3 != TRUE))
id <- id[which(res$l3[names(id)] == TRUE)]
if (length(id) == 0) {
warning("Pipeline stopped early at level 3; processing errors ",
"occured with all given acids by level 3.")
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (length(res$l3_failed) > 0) {
warning(length(res$l3_failed), " ids failed at level 3.")
}
}
if (elvl == 3L) {
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (slvl < 4L | !is.null(asid)) id <- tcplLoadAeid("acid", id)$aeid
names(id) <- paste0("AEID", id)
if (is.null(mc.cores)) ncores <- min(length(id), detectCores() - 1)
if (slvl <= 4L) {
res$l4 <- .multProc(id = id, lvl = 4L, type = "mc", ncores = ncores)
res$l4_failed <- names(which(res$l4 != TRUE))
id <- id[which(res$l4[names(id)] == TRUE)]
if (length(id) == 0) {
warning("Pipeline stopped early at level 4; processing errors ",
"occured with all given acids by level 4.")
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (length(res$l4_failed) > 0) {
warning(length(res$l4_failed), " ids failed at level 4.")
}
}
if (elvl == 4L) {
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (slvl <= 5L) {
res$l5 <- .multProc(id = id, lvl = 5L, type = "mc", ncores = ncores)
res$l5_failed <- names(which(res$l5 != TRUE))
id <- id[which(res$l5[names(id)] == TRUE)]
if (length(id) == 0) {
warning("Pipeline stopped early at level 5; processing errors ",
"occured with all given acids by level 5.")
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (length(res$l5_failed) > 0) {
warning(length(res$l5_failed), " ids failed at level 5.")
}
}
if (elvl == 5L) {
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (slvl <= 6L) {
res$l6 <- .multProc(id = id, lvl = 6L, type = "mc", ncores = ncores)
res$l6_failed <- names(which(res$l6 != TRUE))
id <- id[which(res$l6[names(id)] == TRUE)]
if (length(id) == 0) {
warning("Pipeline stopped early at level 6; processing errors ",
"occured with all given acids by level 6.")
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (length(res$l6_failed) > 0) {
warning(length(res$l6_failed), " ids failed at level 6.")
}
}
if (elvl == 6L) {
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (type == "sc") {
if (slvl <= 1L) {
res$l1 <- .multProc(id = id, lvl = 1L, type = "sc", ncores = ncores)
res$l1_failed <- names(which(res$l1 != TRUE))
id <- id[which(res$l1[names(id)] == TRUE)]
if (length(id) == 0) {
warning("Pipeline stopped early at level 1; processing errors ",
"occured with all given acids by level 1.")
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (length(res$l1_failed) > 0) {
warning(length(res$l1_failed), " ids failed at level 1.")
}
}
if (elvl <= 1L) {
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (slvl < 2L | !is.null(asid)) id <- tcplLoadAeid("acid", id)$aeid
names(id) <- paste0("AEID", id)
if (is.null(mc.cores)) ncores <- min(length(id), detectCores() - 1)
if (slvl <= 2L) {
res$l2 <- .multProc(id = id, lvl = 2L, type = "sc", ncores = ncores)
res$l2_failed <- names(which(res$l2 != TRUE))
id <- id[which(res$l2[names(id)] == TRUE)]
if (length(id) == 0) {
warning("Pipeline stopped early at level 2; processing errors ",
"occured with all given acids by level 2.")
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
if (length(res$l2_failed) > 0) {
warning(length(res$l2_failed), " ids failed at level 2.")
}
}
if (elvl == 2L) {
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
ttime <- round(difftime(Sys.time(), stime, units = "min"), 2)
ttime <- paste(unclass(ttime), units(ttime))
cat("\n\nTotal processing time:", ttime, "\n\n")
return(res)
}
} |
.construct_s <- function(spikes, ids, time_interval, beg, end, corr_breaks,
layout, filename) {
spikes_range <- range(unlist(spikes))
if (is.null(end)) {
end <- spikes_range[2]
} else {
spikes <- lapply(spikes,
function(x, max) {
x_high <- which(x > max)
if (any(x_high))
x[1:x_high[1] - 1]
else
x
},
max = end)
}
if (is.null(beg)) {
beg <- spikes_range[1]
} else {
spikes <- lapply(spikes,
function(x, min) {
x_low <- which(x < min)
if (any(x_low))
x <- x[- x_low]
x
},
min = beg)
}
empty_index <- which(sapply(spikes, length) == 0)
if (any(empty_index)) {
spikes <- spikes[- empty_index]
}
if (!is.null(ids)) {
spikes <- .filter_channel_names(spikes, ids)
}
channels <- names(spikes)
keep <- match(channels, rownames(layout$pos))
layout$pos <- layout$pos[keep, ]
rec_time <- c(beg, end)
nspikes <- sapply(spikes, length)
if (length(nspikes) == 0) {
meanfiringrate <- nspikes
} else {
meanfiringrate <- nspikes / (end - beg)
}
rates <- .make_spikes_to_frate(spikes, time_interval = time_interval,
beg = beg, end = end)
unit_offsets <- NULL
.check_spikes_monotonic(spikes)
res <- list(channels = names(spikes), spikes = spikes, nspikes = nspikes,
NCells = length(spikes), meanfiringrate = meanfiringrate,
file = filename, layout = layout, rates = rates,
unit_offsets = unit_offsets,
rec_time = rec_time)
class(res) <- "spike.list"
if (length(corr_breaks) == 1) {
res$corr <- NULL
} else {
res$corr <- .corr_index(res, corr_breaks)
}
res
}
calculate_isis <- function(s) {
s$isis <- lapply(s$spikes, diff)
s$mean_isis <- lapply(s$isis, mean)
s$sd_isis <- lapply(s$isis, sd)
return(s)
}
.plot_isis_by_plate <- function(s) {
isis_all <- unlist(s$isis)
hist(isis_all, main = "Histogram of ISIs by Plate", xlab = "ISI length")
hist(log10(isis_all), main = "Histogram of log(ISIs) by Plate",
xlab = "log10(ISI length)")
}
.spike_summary_by_electrode <- function(s) {
s <- calculate_isis(s)
electrodes <- .get_all_electrodes(s)
sum <- matrix(data = NA, nrow = length(electrodes), ncol = 4)
colnames(sum) <- c("nspikes", "meanfiringrate", "meanisis", "sdisis")
rownames(sum) <- electrodes
df <- cbind(s$nspikes, s$meanfiringrate, s$mean_isis, s$sd_isis)
active_electrodes <- rownames(df)
for (i in active_electrodes) {
sum[i, ] <- unlist(df[i, ])
}
sum
}
.spike_summary_by_well <- function(s) {
plate <- get_plateinfo(s$layout$array)
wells <- sort(plate$wells)
s$isis <- lapply(s$spikes, diff)
start_pos <- 1
sum <- matrix(data = NA, nrow = length(wells), ncol = start_pos + 11)
colnames(sum) <- c("treatment", "nae", "nspikes_by_well",
"meanfiringrate_by_well",
"meanfiringrate_by_all_electrodes",
"meanfiringrate_by_active_electordes",
"sdfiringrate_by_active_electordes",
"meanisis", "sdisis","mutual_info","entropy","STTC")
rownames(sum) <- wells
nelectrodes <- plate$n_elec_r * plate$n_elec_c
if (!is.null(s$goodwells)) {
for (j in 1:length(s$goodwells)) {
icurrentwell <- (s$goodwells[j] == s$cw)
incurrentwell <- which(icurrentwell)
treatment <- s$treatment[s$goodwells[j]]
if (length(incurrentwell) > 0) {
well <- strsplit(s$channels[incurrentwell], "_")[[1]][1]
treatment <- s$treatment[well][[1]]
}
sum[s$goodwells[j], start_pos] <- treatment
sum[s$goodwells[j], start_pos + 1] <- length(incurrentwell)
sum[s$goodwells[j], start_pos + 2] <- sum(s$nspikes[icurrentwell])
sum[s$goodwells[j], start_pos + 3] <- sum(s$meanfiringrate[icurrentwell])
sum[s$goodwells[j], start_pos + 4] <-
sum(s$meanfiringrate[icurrentwell]) / nelectrodes
sum[s$goodwells[j], start_pos + 5] <- mean(s$meanfiringrate[icurrentwell])
sum[s$goodwells[j], start_pos + 6] <- sd(s$meanfiringrate[icurrentwell])
isis_all <- unlist(s$isis[icurrentwell])
sum[s$goodwells[j], start_pos + 7] <- mean(isis_all)
sum[s$goodwells[j], start_pos + 8] <- sd(isis_all)
sum[s$goodwells[j], start_pos + 9] <- Reduce(c,s$mutual_inf)[well]
sum[s$goodwells[j], start_pos + 10] <- Reduce(c,s$entropy)[well]
sum[s$goodwells[j], start_pos + 11] <- unlist(s$mean_sttc)[well]
}
}
sum
}
.get_div <- function(s) {
div <- NA
if(length(s$div>0)){
div<-s$div
} else {
t1 <- strsplit(s$file, split = "_", fixed = TRUE)
for (i in t1[[1]]) {
i <- toupper(i)
if (nchar(i) > 2 && substr(i, 1, 3) == "DIV") {
if (nchar(i) > 5) {
i <- unlist(strsplit(i, split = ".", fixed = T))[1]
}
div <- as.numeric(substr(i, 4, nchar(i)))
}
}
}
if (is.na(div)){ div <- 1}
div
}
compute_mean_firingrate_by_well <- function(s) {
df1 <- aggregate(s$meanfiringrate, by = list(s$cw), FUN = mean, na.rm = T)
df2 <- aggregate(s$meanfiringrate, by = list(s$cw), FUN = sum, na.rm = T)
df <- cbind(df1, df2[, 2], .get_div(s))
names(df) <- c("well", "meanfiringrate", "meanfiringrate_per_well", "div")
rownames(df) <- t(df["well"])
df
}
.plot_isis_by_electrode <- function(s) {
wells <- unique(s$cw)
if (length(wells) > 0) {
for (well in wells) {
active_electrodes <- which(s$cw == well &
as.vector(unlist(lapply(s$isis, length))) > 0)
if (length(active_electrodes) > 0) {
df <- list()
for (i in 1:length(active_electrodes)) {
df[[i]] <- cbind(s$isis[[active_electrodes[i]]],
names(s$isis)[active_electrodes[i]])
}
df <- do.call("rbind", df)
colnames(df) <- c("isis", "electrode")
plateinfo <- get_plateinfo(s$layout$array)
d1 <- expand.grid(col = 1:plateinfo$n_elec_c,
row = 1:plateinfo$n_elec_r)
all_electrodes <- sort(paste(well, "_",
d1[, "row"], d1[, "col"],
sep = ""))
layout_electrodes <- c(plateinfo$n_elec_r, plateinfo$n_elec_c)
df <- data.frame(df)
df$isis <- as.numeric(as.vector(df$isis))
df$electrode <- as.character(as.vector(df$electrode))
p1 <- histogram(~ isis | factor(electrode, levels = all_electrodes),
data = df, breaks = 10,
main = paste("ISIs histogram plot for ", well, sep = ""),
layout = layout_electrodes,
drop.unused.levels = FALSE)
print(p1)
p2 <- histogram(~ log(isis) | factor(electrode,
levels = all_electrodes),
data = df, breaks = 10,
main = paste("log(ISIs) histogram plot for ", well, sep = ""),
layout = layout_electrodes,
drop.unused.levels = FALSE)
print(p2)
}
}
p2
}
}
.plot_mean_firingrate_by_electrode <- function(s) {
wells <- unique(s$cw)
if (length(wells) > 0) {
for (well in wells) {
active_electrodes <- which(s$cw == well)
df <- list()
for (i in active_electrodes) {
df[[i]] <- cbind(s$rates$times,
s$rates$rates[, i],
names(s$nspikes)[i])
}
df <- do.call("rbind", df)
maxy <- max(df[, 2])
colnames(df) <- c("time", "meanfiringrate", "electrode")
plateinfo <- get_plateinfo(s$layout$array)
if (any(grep("^Axion", s$layout$array))) {
d1 <- expand.grid(col = 1:plateinfo$n_elec_c,
row = 1:plateinfo$n_elec_r)
all_electrodes <- sort(paste(well, "_", d1[, "row"],
d1[, "col"], sep = ""))
layout_electrodes <- c(plateinfo$n_elec_r, plateinfo$n_elec_c)
} else {
all_electrodes <- as.factor(names(s$spikes)[active_electrodes])
layout_electrodes <- c(0, length(all_electrodes))
}
df <- data.frame(df)
p1 <- xyplot(meanfiringrate ~ time | factor(electrode,
levels = all_electrodes),
data = df,
main = paste("Mean Firing Rate per Second for Well ",
well, ". Maximum firing rate:", maxy, " Hz", sep = ""),
layout = layout_electrodes, type = "h",
scales = list(
x = list(draw = FALSE),
y = list(draw = FALSE)),
drop.unused.levels = FALSE)
print(p1)
}
p1
}
}
plot_mean_firingrate_by_eletrode_by_div <- function(s) {
electrode_stats <- lapply(s, function(d) {
cbind(d$meanfiringrate, d$cw, .get_div(d))
})
electrode_stats_all <- do.call("rbind", electrode_stats)
electrode_names <- row.names(electrode_stats_all)
electrode_stats_all <- suppressWarnings(data.frame(cbind(electrode_names,
electrode_stats_all[, 1:3])))
names(electrode_stats_all) <- c("electrode", "meanfiringrate", "well", "div")
electrode_stats_all$div <- as.numeric(as.vector(electrode_stats_all$div))
electrode_stats_all$meanfiringrate <- as.numeric(
as.vector(electrode_stats_all$meanfiringrate))
electrode_stats_all$electrode <- as.character(
as.vector(electrode_stats_all$electrode))
wells <- unique(electrode_stats_all$well)
if (length(wells) > 0) {
for (active_well in wells) {
df <- electrode_stats_all[which(electrode_stats_all$well ==
active_well), ]
layout_info <- .get_electrode_layout(s[[1]], active_well)
maxy <- max(df$meanfiringrate)
p1 <- xyplot(meanfiringrate ~ div | factor(electrode,
levels = layout_info$electrodes),
data = df,
main = paste("Mean Firing Rate across DIV's for ",
active_well, ". Maximum firing rate:", round(maxy, 2), " Hz", sep = ""),
layout = layout_info$layout,
drop.unused.levels = FALSE)
print(p1)
}
}
}
plot_mean_firingrate_by_well_by_div <- function(s) {
well_stats <- lapply(s, function(d) {
d$well_stats
})
well_stats_all <- do.call("rbind", well_stats)
plateinfo <- get_plateinfo(s[[1]]$layout$array)
wells <- plateinfo$wells
names(wells) <- wells
wells_layout <- plateinfo$layout
p1 <- xyplot(meanfiringrate ~ div | factor(well, levels = wells),
data = well_stats_all,
main = "Mean Firing Rate across DIV's (Hz/electrode)",
layout = wells_layout,
drop.unused.levels = FALSE)
print(p1)
p2 <- xyplot(meanfiringrate_per_well ~ div | factor(well, levels = wells),
data = well_stats_all,
main = "Mean Firing Rate across DIV's (Hz/well)",
layout = wells_layout,
drop.unused.levels = FALSE)
print(p2)
}
plot_plate_summary_for_spikes <- function(s, outputdir) {
for (i in 1:length(s)) {
basename <- get_file_basename(s[[i]]$file)
spike_plot_path <- paste(outputdir, "/", basename,
"_spike_plot.pdf", sep = "")
pdf(file = spike_plot_path)
p <- .plot_mealayout(s[[i]]$layout, use_names = T, cex = 0.48)
title(main = paste(paste("Electrode Layout"),
paste("file= ", strsplit(basename(s[[i]]$file),
".RData")[[1]][1], sep = ""), sep = "\n"))
p <- .plot_meanfiringrate(s[[i]], main = "Mean Firing Rate by Plate (Hz)")
p <- .plot_isis_by_plate(s[[i]])
p <- .channel_plot_by_well(s[[i]], resp = "meanfiringrate",
resp_label = "Mean Firing Rate (Hz)")
p <- .plot_mean_firingrate_by_electrode(s[[i]])
p <- .plot_isis_by_electrode(s[[i]])
dev.off()
}
}
write_plate_summary_for_spikes <- function(s, outputdir) {
csvwell <- paste(outputdir, "/",
get_project_plate_name(s[[1]]$file),
"_well_spikes.csv", sep = "")
for (i in 1:length(s)) {
div <- .get_div(s[[i]])
basename <- get_file_basename(s[[i]]$file)
csvfile <- paste(outputdir, "/", basename, "_spikes.csv", sep = "")
df <- .spike_summary_by_electrode(s[[i]])
df2 <- .spike_summary_by_well(s[[i]])
write.table(paste("recording time (s): [",
paste(s[[i]]$rec_time[1],
round(s[[i]]$rec_time[2]), sep = " ,"),
"]", sep = ""), csvfile, sep = ",", append = FALSE,
row.names = FALSE, col.names = FALSE)
write.table(" ", csvfile, sep = ",", append = TRUE,
row.names = FALSE, col.names = FALSE)
write.table("Spike statistics for wells", csvfile, sep = ",",
append = TRUE, row.names = FALSE, col.names = FALSE)
df2 <- cbind(rownames(df2), df2)
suppressWarnings(write.table(df2,
csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = TRUE))
suppressWarnings(write.table(cbind(df2, div),
csvwell, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE))
write.table(" ", csvfile, sep = ",", append = TRUE,
row.names = FALSE, col.names = FALSE)
write.table("Spike statistics for electrodes",
csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = FALSE)
df <- cbind(rownames(df), df)
colnames(df)[1] <- "electrode"
suppressWarnings(write.table(df,
csvfile, sep = ",", append = TRUE, row.names = FALSE, col.names = TRUE))
}
}
.check_spikes_monotonic <- function(spikes) {
results <- sapply(spikes, function(x) {
any(diff(x) < 0)
})
if (any(results)) {
stop(paste("Spikes are not ordered in increasing time",
paste(which(results), collapse = " "), "\n"))
}
}
.make_spikes_to_frate <- function(spikes,
time_interval=1,
frate_min=0,
frate_max=20,
clip=FALSE,
beg=NULL,
end=NULL
) {
nspikes <- lapply(spikes, length)
nelectrodes <- length(nspikes)
spikes_range <- range(unlist(spikes))
if (is.null(beg)) beg <- spikes_range[1]
if (is.null(end)) end <- spikes_range[2]
time_breaks <- seq(from = beg, to = end, by = time_interval)
if (time_breaks[length(time_breaks)] <= end) {
time_breaks <- c(time_breaks,
time_breaks[length(time_breaks)] + time_interval)
}
nbins <- length(time_breaks) - 1
rates = frate_counts(spikes, time_breaks[1], time_breaks[nbins], time_interval, nbins)
if (nelectrodes > 0) {
if (clip)
rates <- pmin(pmax(rates, frate_min), frate_max)
av_rate <- apply(rates, 1, mean)
} else {
av_rate <- rep(NA, nbins)
}
res <- list(rates = rates,
times = time_breaks[- length(time_breaks)],
av_rate = av_rate,
time_interval = time_interval)
res
}
.plot_meanfiringrate <- function(s, beg, end, main=NULL, lwd=0.2, ...) {
if (missing(beg)) beg <- s$rates$times[1]
if (missing(end)) end <- s$rates$times[length(s$rates$times)]
if (is.null(main))
main <- basename(s$file)
plot(s$rates$times, s$rates$av_rate, type = "h", xlab = "time (s)",
xlim = c(beg, end), bty = "n", lwd = lwd,
ylab = "mean firing rate (Hz)", main = main, ...)
}
.plot_mealayout <- function(x, use_names=TRUE, ...) {
plateinfo = get_plateinfo(x$array)
rows <- plateinfo$n_well_r
columns <- plateinfo$n_well_c
row_names <- chartr("123456789", "ABCDEFGHI", 1:rows)
pos <- x$pos
electrodes_only <- sub('^[^_]+_', '', rownames(x$pos))
p<-plot(NA, xaxs="i",
asp=1,
xlim = x$xlim, ylim = x$ylim,
bty = "n",
xlab = "Plate layout", ylab = "", type = "n",xaxt="n",yaxt="n",cex.lab=1.4)
if (use_names)
text(pos[, 1], pos[, 2], electrodes_only, ...)
else
text(pos[, 1], pos[, 2], ...)
axis(3,at=seq( x$xlim[1]+x$xlim[2]/(columns*4), x$xlim[2]-x$xlim[2]/(columns*1.5),length.out = columns),labels=c(1:columns),cex.axis=1.4,line=-2,tick = F)
axis(2,at=seq( x$ylim[2]-x$ylim[2]/(rows*1.5), x$ylim[1]+x$ylim[2]/(rows*3),length.out = rows),labels=chartr("123456789", "ABCDEFGHI", 1:rows),las=1,cex.axis=1.4,tick = F)
if (any(grep('^Axion', x$array))) {
abline(h=seq( max(x$pos[,"y"])+200, x$ylim[1]-200,length.out = rows+1),
v=seq( x$xlim[2]-100, x$xlim[1]-100,length.out = columns+1),
col=c("grey"))
}
}
.summary_spike_list <- function(object, ...) {
cat(paste("Spike data:", object$file, "\n"))
cat(paste("NCells", object$NCells, "\n"))
cat(sprintf("Time (s) [%.3f %.3f]\n", object$rec_time[1], object$rec_time[2]))
}
.print_spike_list <- function(x) {
cat("MEA spikes\n")
cat(basename(x$file), "\n")
cat("nchannels ", x$NCells, "\n")
}
isi <- function(train) {
isi <- NA
if (length(train) > 1) {
isi <- diff(train)
}
isi
}
.spike_simulation <- function(s1,
elec_min_rate= (1 / 60),
elec_max_rate=25,
well_min_rate=15) {
dt <- 1
current_electrode_rate <- s1$meanfiringrate
rec_start <- s1$rec_time[1]
rec_end <- s1$rec_time[2]
spikes <- list()
for (electrode in 1:length(s1$spikes)) {
rate <- current_electrode_rate[electrode] * dt / 1000.0
timepoints <- seq(rec_start, rec_end, by = 0.001)
spikes[[electrode]] <- timepoints[which(rate > runif(length(timepoints)))]
}
names(spikes) <- names(s1$spikes)
temp_s <- .construct_s(spikes, NULL, time_interval = 1, beg = NULL,
end = NULL, corr_breaks = 0,
s1$layout, filename = s1$file)
low <- which(temp_s$meanfiringrate < elec_min_rate)
high <- which(temp_s$meanfiringrate > elec_max_rate)
extremes <- c(low, high)
bad_ids <- names(extremes)
bad_ids <- c("-", bad_ids)
s2 <- remove_spikes(temp_s, bad_ids)
s2$treatment <- s1$treatment
s2$size <- s1$size
s2$units <- s1$units
s2$dose <- s1$dose
s2$well <- s1$well
s2 <- get_num_ae(s2)
low <- which(s2$nae < well_min_rate)
bad_wells <- names(low)
bad_wells <- c("-", bad_wells)
s <- remove_spikes(s2, bad_wells)
s$goodwells <- names(which(s2$nae >= well_min_rate))
s$treatment <- s1$treatment
names(s$treatment) <- s1$well
s$size <- s1$size
names(s$size) <- s1$well
s$units <- s1$units
names(s$units) <- s1$well
s$dose <- s1$dose
names(s$dose) <- s1$well
s$well <- s1$well
s <- get_num_ae(s)
s$timepoint <- s1$timepoint
if (s$nspikes[1] > 0) {
s$allb <- lapply(s$spikes, mi_find_bursts, s$parameters$mi_par)
s$bs <- calc_burst_summary(s)
}
s <- calculate_isis(s)
s$well_stats <- compute_mean_firingrate_by_well(s)
s
} |
TileBM <- function(BestMatches, Lines, Columns){
BestMatches=as.matrix(unname(BestMatches))
if(ncol(as.matrix(BestMatches))==3){
BestMatches=cbind(as.numeric(BestMatches[,1]),as.numeric(BestMatches[,2]),as.numeric(BestMatches[,3]))
TiledBestMatches <- rbind(BestMatches, cbind(BestMatches[,1], (BestMatches[,2]+Lines), BestMatches[,3]), cbind(BestMatches[,1:2],(BestMatches[,3]+Columns)), cbind(BestMatches[,1],(BestMatches[,2]+Lines),(BestMatches[,3]+Columns)))
}else{
if (ncol(as.matrix(BestMatches))==2){
BestMatches=cbind(1:length(BestMatches[,1]),BestMatches)
BestMatches=cbind(as.numeric(BestMatches[,1]),as.numeric(BestMatches[,2]),as.numeric(BestMatches[,3]))
TiledBestMatches <- rbind(BestMatches, cbind(BestMatches[,1], (BestMatches[,2]+Lines), BestMatches[,3]), cbind(BestMatches[,1:2],(BestMatches[,3]+Columns)), cbind(BestMatches[,1],(BestMatches[,2]+Lines),(BestMatches[,3]+Columns)))
}
else{
stop('Error: Number of Rows is not 2 or 3, nothing could be done')
}
}
return(TiledBestMatches = TiledBestMatches)
} |
`print.check` <- function(x, ...)
{
print(x$n)
} |
design_array<-function(Xrow=NULL,Xcol=NULL,Xdyad=NULL,intercept=TRUE,n=NULL)
{
if(is.null(n))
{
if(is.matrix(Xrow)){ n<-nrow(Xrow) }
if(is.matrix(Xcol)){ n<-nrow(Xcol) }
if(is.matrix(Xdyad)){ n<-nrow(Xdyad) }
if(is.array(Xdyad)){ n<-dim(Xdyad)[1] }
if(is.null(n)){ cat("Error: n must be specified") }
}
pr<-length(Xrow)/n
pc<-length(Xcol)/n
pd<-length(Xdyad)/n^2
X<-array(dim=c(n,n,pr+pc+pd))
dnX<-NULL
if(pr>0)
{
Xrow<-as.matrix(Xrow)
Xrowa<-array(dim=c(n,n,pr))
for( j in 1:pr ){ Xrowa[,,j]<-matrix( Xrow[,j], n,n) }
X[,,1:pr]<- Xrowa
dnX<-c(dnX,paste0(colnames(Xrow),rep(".row" ,pr)))
}
if(pc>0)
{
Xcol<-as.matrix(Xcol)
Xcola<-array(dim=c(n,n,pc))
for( j in 1:pc ){ Xcola[,,j]<-t(matrix( Xcol[,j], n,n)) }
X[,,pr+1:pc]<- Xcola
dnX<-c(dnX,paste0(colnames(Xcol),rep(".col" ,pc)))
}
if(pd>0)
{
if(pd==1){ Xdyad<-array(Xdyad,dim=c(n,n,pd)) }
X[,,pr+pc+1:pd]<-Xdyad
dnX<-c(dnX,paste0(dimnames(Xdyad)[[3]],rep(".dyad",pd)))
}
if(!any(apply(X,3,function(x){var(c(x),na.rm=TRUE)})==0) & intercept)
{
X1<-array(dim=c(0,0,1)+dim(X))
X1[,,1]<-1 ; X1[,,-1]<-X
X<-X1
dnX<-c("intercept",dnX)
}
if(dim(X)[[3]]>1) { dimnames(X)[[3]]<- dnX }
if(dim(X)[[3]]==1){ dimnames(X)[[3]]<- list(dnX) }
if( sum(is.na(X)) > sum( is.na(apply(X,3,diag)) ) )
{
cat("WARNING: replacing NAs in design matrix with zeros","\n")
}
X[is.na(X)]<-0
X<-precomputeX(X)
X
} |
row_waerden <- function(x, g) {
force(x)
force(g)
if(is.vector(x))
x <- matrix(x, nrow=1)
if(is.data.frame(x) && all(sapply(x, is.numeric)))
x <- data.matrix(x)
assert_numeric_mat_or_vec(x)
assert_vec_length(g, ncol(x))
bad <- is.na(g)
if(any(bad)) {
warning(sum(bad), ' columns dropped due to missing group information')
x <- x[,!bad, drop=FALSE]
g <- g[!bad]
}
g <- as.character(g)
r <- matrixStats::rowRanks(x, ties.method="average")
n <- rep.int(ncol(x), nrow(x)) - matrixStats::rowCounts(is.na(x))
z <- stats::qnorm(r/(n+1))
z <- matrix(z, nrow=nrow(x), ncol=ncol(x))
nPerGroup <- matrix(numeric(), nrow=nrow(z), ncol=length(unique(g)))
sPerGroup <- nPerGroup
for(i in seq_along(unique(g))) {
tmpx <- z[,g==unique(g)[i], drop=FALSE]
nPerGroup[,i] <- rep.int(ncol(tmpx), nrow(tmpx)) - matrixStats::rowCounts(is.na(tmpx))
sPerGroup[,i] <- rowSums(tmpx, na.rm=TRUE)
}
nGroups <- matrixStats::rowCounts(nPerGroup!=0)
s2 <- rowSums(z^2, na.rm=TRUE) / (n - 1)
stat <- rowSums(sPerGroup^2 / nPerGroup) / s2
df <- nGroups - 1
p <- stats::pchisq(stat, df, lower.tail = FALSE)
w1 <- n < 2
showWarning(w1, 'had less than 2 total observations')
w2 <- !w1 & nGroups < 2
showWarning(w2, 'had less than 2 groups with enough observations')
w3 <- !w1 & !w2 & s2==0
showWarning(w3, 'were essentially constant')
stat[w1 | w2 | w3] <- NA
p[w1 | w2 | w3] <- NA
rnames <- rownames(x)
if(!is.null(rnames)) rnames <- make.unique(rnames)
data.frame(obs.tot=n, obs.groups=nGroups, df=df, statistic=stat, pvalue=p,
row.names=rnames
)
}
col_waerden <- function(x, g) {
row_waerden(t(x), g)
} |
context("Features: MISC - Basic")
test_that("Non-Cellmapping Objects", {
set.seed(2015*03*26)
X = t(replicate(n = 2000, expr = runif(n = 5, min = -10, max = 10)))
y = apply(X, 1, function(x) sum(x^2))
feat.object = createFeatureObject(X = X, y = y)
features = calculateFeatureSet(feat.object, "basic")
expect_identical(length(features), 15L)
expect_list(features)
expect_identical(as.character(sapply(features, class)),
c("integer", "integer", rep("numeric", 6L), rep("integer", 4L),
"logical", "integer", "numeric"))
expect_identical(features$basic.dim, 5L)
expect_identical(features$basic.observations, 2000L)
expect_true(features$basic.lower_min >= -10)
expect_true(features$basic.lower_max >= -10)
expect_true(features$basic.lower_min <= features$basic.lower_max)
expect_true(features$basic.upper_min <= 10)
expect_true(features$basic.upper_max <= 10)
expect_true(features$basic.upper_min <= features$basic.upper_max)
expect_true(features$basic.lower_min <= features$basic.upper_min)
expect_true(features$basic.lower_max <= features$basic.upper_max)
expect_identical(features$basic.blocks_min, 1L)
expect_identical(features$basic.blocks_max, 1L)
expect_identical(features$basic.cells_total, 1L)
expect_identical(features$basic.cells_filled, 1L)
expect_identical(features$basic.minimize_fun, TRUE)
expect_identical(features$basic.costs_fun_evals, 0L)
expect_true( testNumber(features$basic.costs_runtime, lower = 0) )
})
test_that("Cellmapping Objects", {
set.seed(2015*03*26)
X = t(replicate(n = 2000, expr = runif(n = 5, min = -10, max = 10)))
y = apply(X, 1, function(x) sum(x^2))
feat.object = createFeatureObject(X = X, y = y, blocks = c(2, 3, 4, 3, 5))
features = calculateFeatureSet(feat.object, "basic")
expect_equal(length(features), 15L)
expect_list(features)
expect_equal(as.character(sapply(features, class)),
c("integer", "integer", rep("numeric", 6L), rep("integer", 4L),
"logical", "integer", "numeric"))
expect_identical(features$basic.dim, 5L)
expect_identical(features$basic.observations, 2000L)
expect_true(features$basic.lower_min >= -10)
expect_true(features$basic.lower_max >= -10)
expect_true(features$basic.lower_min <= features$basic.lower_max)
expect_true(features$basic.upper_min <= 10)
expect_true(features$basic.upper_max <= 10)
expect_true(features$basic.upper_min <= features$basic.upper_max)
expect_true(features$basic.lower_min <= features$basic.upper_min)
expect_true(features$basic.lower_max <= features$basic.upper_max)
expect_identical(features$basic.blocks_min, 2L)
expect_identical(features$basic.blocks_max, 5L)
expect_identical(features$basic.cells_total, as.integer(2 * 3 * 4 * 3 * 5))
expect_true( testNumber(features$basic.cells_filled,
lower = 1, upper = features$basic.cells_total) )
})
test_that("Test Basic Features", {
set.seed(2015*03*26)
X = t(replicate(n = 2000, expr = runif(n = 5L, min = -10, max = 10)))
y = apply(X, 1, function(x) sum(x^2))
feat.object1 = createFeatureObject(X = X, y = y)
feat.object2 = createFeatureObject(X = X, y = y, minimize = FALSE)
feat.object3 = createFeatureObject(X = X, y = y, blocks = 3L)
feat.object4 = createFeatureObject(X = X, y = y, blocks = 3L, minimize = FALSE)
features1 = calculateFeatureSet(feat.object1, "basic")
features2 = calculateFeatureSet(feat.object2, "basic")
features3 = calculateFeatureSet(feat.object3, "basic")
features4 = calculateFeatureSet(feat.object4, "basic")
expect_equal(length(features1), 15L)
expect_equal(length(features2), 15L)
expect_equal(length(features3), 15L)
expect_equal(length(features4), 15L)
expect_list(features1)
expect_list(features2)
expect_list(features3)
expect_list(features4)
expect_equal(as.character(sapply(features1, class)),
c("integer", "integer", rep("numeric", 6L), rep("integer", 4L),
"logical", "integer", "numeric"))
expect_equal(as.character(sapply(features2, class)),
c("integer", "integer", rep("numeric", 6L), rep("integer", 4L),
"logical", "integer", "numeric"))
expect_equal(as.character(sapply(features3, class)),
c("integer", "integer", rep("numeric", 6L), rep("integer", 4L),
"logical", "integer", "numeric"))
expect_equal(as.character(sapply(features4, class)),
c("integer", "integer", rep("numeric", 6L), rep("integer", 4L),
"logical", "integer", "numeric"))
expect_true(features1$basic.minimize_fun)
expect_true(!features2$basic.minimize_fun)
expect_true(features3$basic.minimize_fun)
expect_true(!features4$basic.minimize_fun)
}) |
ipwCoxInd<-function(data,indA,indX,indStatus,indTime,ties="breslow",confidence=0.95){
dat=data
n=nrow(dat)
dat$id=1:n
dat$A=dat[,indA]
dat$time=dat[,indTime]
dat$status=dat[,indStatus]
nX=length(indX)+1
covX0=dat[,indX]
A=dat$A
psmd=glm(A~.,family="binomial",data=as.data.frame(cbind(A,covX0)))
psfit=predict(psmd, type = "response")
dat$wt=dat$A/psfit+(1-dat$A)/(1-psfit)
prevA=mean(dat$A)
dat$swt=prevA*dat$A/psfit+(1-prevA)*(1-dat$A)/(1-psfit)
fit <- coxph(Surv(time, status) ~ A+cluster(id), weights=dat$wt,data=dat, ties=ties)
logHR=fit$coefficients
fits <- coxph(Surv(time, status) ~ A+cluster(id), weights=dat$swt,data=dat, ties=ties)
logHRs=fits$coefficients
eventid=which(dat$status==1)
covX=as.matrix(cbind(rep(1,n),covX0))
dgvec=-dat$A*(1-psfit)/psfit+(1-dat$A)*psfit/(1-psfit)
dgvecS=-prevA*dat$A*(1-psfit)/psfit+(1-prevA)*(1-dat$A)*psfit/(1-psfit)
WdevR=t(diag(dgvec)%*%covX)
WdevRS=t(diag(dgvecS)%*%covX)
WfS=dat$A/psfit-(1-dat$A)/(1-psfit)
A11x=rep(0,n)
A12x=matrix(0,nX,n)
A11xS=rep(0,n)
A12xS=matrix(0,nX,n)
A13xS=rep(0,n)
for (x in eventid){
idrs=which(dat$time>=dat$time[x])
s0x=sum(dat$wt[idrs]*exp(dat$A[idrs]*logHR))
s1x=sum(dat$wt[idrs]*exp(dat$A[idrs]*logHR)*dat$A[idrs])
A11x[x]=dat$wt[x]*(s1x/s0x-s1x^2/(s0x^2))
A12a=(dat$A[x]-s1x/s0x)*WdevR[,x]
s0xS=sum(dat$swt[idrs]*exp(dat$A[idrs]*logHRs))
s1xS=sum(dat$swt[idrs]*exp(dat$A[idrs]*logHRs)*dat$A[idrs])
A11xS[x]=dat$swt[x]*(s1xS/s0xS-s1xS^2/(s0xS^2))
A12aS=(dat$A[x]-s1xS/s0xS)*WdevRS[,x]
A13aS=(dat$A[x]-s1xS/s0xS)*WfS[x]
if (length(idrs)==1){
A12c=(WdevR[,idrs]*exp(dat$A[idrs]*logHR))*s1x
A12d=WdevR[,idrs]*(exp(dat$A[idrs]*logHR)*dat$A[idrs])
A12cS=(WdevRS[,idrs]*exp(dat$A[idrs]*logHRs))*s1xS
A12dS=WdevRS[,idrs]*(exp(dat$A[idrs]*logHRs)*dat$A[idrs])
A13cS=(WfS[idrs]*exp(dat$A[idrs]*logHRs))*s1xS
A13dS=WfS[idrs]*(exp(dat$A[idrs]*logHRs)*dat$A[idrs])
} else{
A12c=(WdevR[,idrs]%*%exp(dat$A[idrs]*logHR))*s1x
A12d=WdevR[,idrs]%*%(exp(dat$A[idrs]*logHR)*dat$A[idrs])
A12cS=(WdevRS[,idrs]%*%exp(dat$A[idrs]*logHRs))*s1xS
A12dS=WdevRS[,idrs]%*%(exp(dat$A[idrs]*logHRs)*dat$A[idrs])
A13cS=(WfS[idrs]%*%exp(dat$A[idrs]*logHRs))*s1xS
A13dS=WfS[idrs]%*%(exp(dat$A[idrs]*logHRs)*dat$A[idrs])
}
A12b=dat$wt[x]*(A12d/s0x-A12c/(s0x^2))
A12x[,x]=-(A12a-A12b)
A12bS=dat$swt[x]*(A12dS/s0xS-A12cS/(s0xS^2))
A12xS[,x]=-(A12aS-A12bS)
A13bS=dat$swt[x]*(A13dS/s0xS-A13cS/(s0xS^2))
A13xS[x]=-(A13aS-A13bS)
}
A11A12=c(sum(A11x),apply(A12x,1,sum))
A11A12A13s=c(sum(A11xS),apply(A12xS,1,sum),sum(A13xS))
sumsquare<-function(u){
u%*%t(u)
}
A22mat=apply(covX,1,sumsquare)%*%(psfit*(1-psfit))
A22=matrix(apply(A22mat,1,sum),nX,nX)
AA=as.matrix(rbind(A11A12,cbind(0,A22)))
invAA=solve(AA)
AAs=as.matrix(rbind(A11A12A13s,cbind(0,A22,0),c(rep(0,nX+1),n)))
invAAs=solve(AAs)
eventPa=subset(dat,dat$status==1)
eventimes=unique(eventPa$time)
RScol5=eventimes
RScol3=rep(0,length(eventimes))
RScol4=RScol3
RScol1=RScol3
RScol2=RScol3
RScol5s=eventimes
RScol3s=rep(0,length(eventimes))
RScol4s=RScol3s
RScol1s=RScol3s
RScol2s=RScol3s
for (i in 1:length(eventimes)){
idc=which(dat$time==eventimes[i]&dat$status==1)
RD1=dat[idc,]
RScol1[i]=sum(RD1$wt*RD1$A)
RScol2[i]=sum(RD1$wt)
RSind=which(dat$time>=eventimes[i])
RS1=dat[RSind,]
RScol3[i]=sum(RS1$wt*RS1$A)
RScol4[i]=sum(RS1$wt*(1-RS1$A))
RScol1s[i]=sum(RD1$swt*RD1$A)
RScol2s[i]=sum(RD1$swt)
RScol3s[i]=sum(RS1$swt*RS1$A)
RScol4s[i]=sum(RS1$swt*(1-RS1$A))
}
risksetFull=data.frame(sumAiWi=RScol1,sumWi=RScol2,sumW1=RScol3,sumW0=RScol4,time=RScol5)
risksetFulls=data.frame(sumAiWi=RScol1s,sumWi=RScol2s,sumW1=RScol3s,sumW0=RScol4s,time=RScol5s)
indevent=which(dat$status==1)
gg=rep(0,nrow(dat))
ggS=gg
HRest=exp(logHR)
HRests=exp(logHRs)
for (i in indevent){
ind1=which(risksetFull$time==dat$time[i])
vv=(risksetFull$sumW1*HRest)/(risksetFull$sumW1*HRest+risksetFull$sumW0)
gg[i]=dat$wt[i]*(dat$A[i]- vv[ind1])
ind1=which(risksetFulls$time==dat$time[i])
vv=(risksetFulls$sumW1*HRests)/(risksetFulls$sumW1*HRests+risksetFulls$sumW0)
ggS[i]=dat$swt[i]*(dat$A[i]- vv[ind1])
}
rs11=rep(0,nrow(dat))
rs12=rs11
rs11s=rep(0,nrow(dat))
rs12s=rs11s
for (i in 1:nrow(dat)){
ind2=which(risksetFull$time<=dat$time[i])
rsred=risksetFull[ind2,]
rs11[i]=dat$wt[i]*dat$A[i]*exp(log(HRest)*dat$A[i])*sum(rsred$sumWi/(rsred$sumW1*HRest+rsred$sumW0))
rs12[i]=dat$wt[i]*exp(log(HRest)*dat$A[i])*sum(rsred$sumWi*(rsred$sumW1*HRest)/((rsred$sumW1*HRest+rsred$sumW0)^2))
ind2=which(risksetFulls$time<=dat$time[i])
rsred=risksetFulls[ind2,]
rs11s[i]=dat$swt[i]*dat$A[i]*exp(log(HRests)*dat$A[i])*sum(rsred$sumWi/(rsred$sumW1*HRests+rsred$sumW0))
rs12s[i]=dat$swt[i]*exp(log(HRests)*dat$A[i])*sum(rsred$sumWi*(rsred$sumW1*HRests)/((rsred$sumW1*HRests+rsred$sumW0)^2))
}
eta=gg-rs11+rs12
etaS=ggS-rs11s+rs12s
covX=as.matrix(cbind(rep(1,n),covX0))
matpi=diag(dat$A-psfit)%*%covX
bbmat=cbind(eta,matpi)
bbmatS=cbind(etaS,matpi,dat$A-prevA)
sumsquare<-function(u){
u%*%t(u)
}
oot=apply(bbmat,1,sumsquare)
BB=matrix(apply(oot,1,sum),nX+1,nX+1)
propVar=invAA%*%BB%*%t(invAA)
proposeStdErr=(diag(propVar)^0.5)[1]
ootS=apply(bbmatS,1,sumsquare)
BBs=matrix(apply(ootS,1,sum),nX+2,nX+2)
propVarS=invAAs%*%BBs%*%t(invAAs)
proposeStdErrS=(diag(propVarS)^0.5)[1]
lowProp=logHR-qnorm(1-(1-confidence)/2)*proposeStdErr
upProp=logHR+qnorm(1-(1-confidence)/2)*proposeStdErr
lowPropS=logHRs-qnorm(1-(1-confidence)/2)*proposeStdErrS
upPropS=logHRs+qnorm(1-(1-confidence)/2)*proposeStdErrS
mtd=c("conventional weights","stabilized weights")
est=c(logHR,logHRs)
hrest=exp(est)
se=c(proposeStdErr,proposeStdErrS)
low=exp(c(lowProp,lowPropS))
up=exp(c(upProp,upPropS))
output=cbind(est,se,hrest,low,up)
colnames(output)=c("log HR Estimate","Standard Error","HR Estimate",
paste("HR ", confidence*100,"% CI", "-low", sep =""),
paste("HR ", confidence*100,"% CI", "-up", sep =""))
rownames(output)=mtd
output
}
|
fit.mpt.old <- function(data, model.filename, restrictions.filename = NULL, n.optim = 5, fia = NULL, ci = 95, starting.values = NULL, output = c("standard", "fia", "full"), reparam.ineq = TRUE, sort.param = TRUE, model.type = c("easy", "eqn", "eqn2"), multicore = c("none", "individual", "n.optim"), sfInit = FALSE, nCPU = 2){
if (multicore[1] != "none" & sfInit) {
eval(call("require", package = "snowfall", character.only = TRUE))
sfInit( parallel=TRUE, cpus=nCPU )
} else if (multicore[1] != "none") {
if (!eval(call("require", package = "snowfall", character.only = TRUE))) stop("multicore needs snowfall")
}
llk.tree <- function(Q, unlist.tree, data, param.names, length.param.names){
Q[Q > 1] <- 1
Q[Q < 0] <- 0
for (i in 1:length.param.names) assign(param.names[i],Q[i], envir = tmpllk.env)
tree.eval <- vapply(unlist.tree, eval, envir = tmpllk.env, 0)
if (any(tree.eval < 0)) stop(paste("Model not constructed well. Branch (i.e., line) ", which(tree.eval < 0), " produces probabilities < 0!", sep = ""))
llk <- data * log(tree.eval)
llk[data == 0] <- 0
llk <- sum(llk)
if (is.na(llk)) llk <- -1e10
if (llk == -Inf) llk <- -1e10
return(-llk)
}
sat_model <- function(tree, data){
temp.branch <- sapply(tree,length)
NNN <- rep(.DF.N.get(data,tree)[[2]], temp.branch)
temp <- data * log(data/NNN)
temp[data == 0] <- 0
llk <- sum(temp)
return(-llk)
}
optim.tree <- function(data, tree, llk.tree, param.names, n.params, n.optim, method = "L-BFGS-B", start.params) {
mpt.optim <- function(x, start.params, llk.tree, tree, data, param.names, n.params, method) {
if (is.null(start.params)) start.params <- c(0.05, 0.95)
if (length(start.params) == 2) start.params <- runif(n.params, start.params[1], start.params[2])
optim(start.params, llk.tree, unlist.tree = tree, data = data, param.names = param.names, length.param.names = n.params, method = method, lower = 0, upper = 1, hessian = TRUE)
}
if (multicore[1] == "n.optim") {
out <- snowfall::sfLapply(1:n.optim, mpt.optim, start.params = start.params, llk.tree = llk.tree, tree = tree, data = data, param.names = param.names, n.params = n.params, method = method)
} else out <- lapply(1:n.optim, mpt.optim, start.params = start.params, llk.tree = llk.tree, tree = tree, data = data, param.names = param.names, n.params = n.params, method = method)
return(out)
}
optim.mpt <- function(data, n.data, tree, llk.tree, param.names, n.params, n.optim, start.params) {
minim <- vector("list", n.data)
data.new <- lapply(1:n.data, function(x, data) data[x,], data = data)
llks <- array(NA, dim=c(n.data, n.optim))
if (multicore[1] == "individual") {
optim.runs <- snowfall::sfLapply(data.new, optim.tree, tree = unlist(tree), llk.tree = llk.tree, param.names = param.names, n.params = n.params, n.optim = n.optim, start.params = start.params)
} else optim.runs <- lapply(data.new, optim.tree, tree = unlist(tree), llk.tree = llk.tree, param.names = param.names, n.params = n.params, n.optim = n.optim, start.params = start.params)
for (c.outer in 1:n.data) {
least.llk <- 1e10
for (c in 1: n.optim) {
llks[c.outer, c] <- -(optim.runs[[c.outer]][[c]][["value"]])
if (optim.runs[[c.outer]][[c]]["value"] < least.llk) {
minim[[c.outer]] <- optim.runs[[c.outer]][[c]]
least.llk <- optim.runs[[c.outer]][[c]][["value"]]
}
}
}
return(list(minim = minim, optim.runs = optim.runs, llks = llks))
}
get.goodness.of.fit <- function(minim, tree, data, dgf, n.params, n.data) {
Log.Likelihood <- sapply(minim, function(x) x$value)
G.Squared <- sapply(1:n.data, function(x, data, Log.Likelihood) as.numeric(2*(Log.Likelihood[x]-sat_model(tree, data[x,]))), data = data, Log.Likelihood = Log.Likelihood)
df <- dgf - n.params
p.value <- pchisq(G.Squared,df,lower.tail=FALSE)
data.frame(Log.Likelihood = -Log.Likelihood, G.Squared, df, p.value)
}
get.information.criteria <- function(minim, G.Squared, n.params, n_items, fia = NULL) {
AIC <- G.Squared + 2*n.params
BIC <- G.Squared + n.params*log(n_items)
if (!is.null(fia)) {
FIA <- (G.Squared/2) + fia[,1]
ic <- data.frame(FIA, AIC, BIC)
} else ic <- data.frame(AIC, BIC)
rownames(ic) <- NULL
ic
}
get.model.info <- function(minim, n.params, dgf) {
rank_hessian <- sapply(minim, function(x) qr(x$hessian)$rank)
return(data.frame(rank.hessian = rank_hessian, n.parameters = n.params, n.independent.categories = dgf))
}
get.parameter.table.multi <- function(minim, param.names, n.params, n.data, use.restrictions, inv.hess.list, ci, orig.params){
var.params <- sapply(inv.hess.list, function(x) tryCatch(diag(x), error = function(e) rep(NA, n.params)))
rownames(var.params) <- param.names
confidence.interval <- qnorm(1-((100-ci)/2)/100)*sqrt(var.params)
estimates <- sapply(minim, function(x) x$par)
upper.conf <- estimates + confidence.interval
lower.conf <- estimates - confidence.interval
if(!use.restrictions) {
params <- 1:n.params
names(params) <- param.names
tmp.values <- NULL
for (counter.n in 1:n.data) {
tmp.values <- c(tmp.values, estimates[, counter.n], lower.conf[, counter.n], upper.conf[, counter.n])
}
parameter_array <- array(tmp.values, dim = c(n.params, 3, n.data))
dimnames(parameter_array) <- list(param.names, c("estimates", "lower.conf", "upper.conf"), paste("dataset:", 1:n.data))
mean.df = data.frame(estimates = apply(parameter_array, c(1,2), mean)[,1], lower.conf = NA, upper.conf = NA)
rownames(mean.df) <- param.names
}
if(use.restrictions) {
used.rows <- param.names %in% orig.params
params <- 1:length(orig.params)
parameter.names.all <- param.names[used.rows]
restricted <- rep("", sum(used.rows))
for (c in 1:length(restrictions)) {
parameter.names.all <- c(parameter.names.all, restrictions[[c]][1])
restricted <- c(restricted, restrictions[[c]][3])
}
names(params) <- parameter.names.all
pnames <- parameter.names.all
tmp.values <- NULL
for (counter.n in 1:n.data) {
parameter_table.indiv.tmp <- data.frame(param.names, estimates = estimates[, counter.n], lower.conf =lower.conf[, counter.n], upper.conf = upper.conf[, counter.n], restricted.parameter = 0)
parameter_table <- parameter_table.indiv.tmp[parameter_table.indiv.tmp$param.names %in% orig.params,]
for (c in 1:length(restrictions)) {
if (restrictions[[c]][3] == "=" & sum(grepl("[[:alpha:]]", restrictions[[c]][2]))) {
parameter_table <- rbind(parameter_table, data.frame(param.names = restrictions[[c]][1], parameter_table[parameter_table$param.names == restrictions[[c]][2], 2:4], restricted.parameter = 1))
}
if (restrictions[[c]][3] == "=" & sum(grepl("^[[:digit:]]\\.?[[:digit:]]*", restrictions[[c]][2]))) {
parameter_table <- rbind(parameter_table, data.frame(param.names = restrictions[[c]][1], estimates = as.numeric(restrictions[[c]][2]), lower.conf = NA, upper.conf = NA, restricted.parameter = 1))
}
if (restrictions[[c]][3] == "<") {
tmp.vars <- .find.MPT.params(parse(text = restrictions[[c]][2])[1])
new.param <- prod(parameter_table.indiv.tmp[parameter_table.indiv.tmp$param.names %in% tmp.vars,2])
var.tmp <- var.params[rownames(var.params) %in% tmp.vars, counter.n]
length.var.tmp <- length(var.tmp)
var.bound.tmp <- rep(NA,length.var.tmp)
for (j in 1:length.var.tmp) var.bound.tmp[j] <- 2*var.tmp[j] + sum(2^(length.var.tmp-1)*(var.tmp[-j]))
ineq.ci <- qnorm(1-((100-ci)/2)/100)*sqrt(min(var.bound.tmp))
parameter_table <- rbind(parameter_table, data.frame(param.names = restrictions[[c]][1], estimates = new.param, lower.conf = new.param - ineq.ci, upper.conf = new.param + ineq.ci, restricted.parameter = 2))
}
}
rownames(parameter_table) <- parameter_table$param.names
parameter_table <- parameter_table[,-1]
if (sort.param) parameter_table <- parameter_table[order(names(params)),]
tmp.values <- c(tmp.values, as.vector(as.matrix(parameter_table)))
}
if (sort.param) {
order.new <- order(pnames)
pnames <- pnames[order.new]
restricted <- restricted[order.new]
}
parameter_array <- array(tmp.values, dim = c(length(orig.params), 4, n.data))
dimnames(parameter_array) <- list(pnames, c("estimates", "lower.conf", "upper.conf", "restricted.parameter"), paste("dataset:", 1:n.data))
mean.df = data.frame(apply(parameter_array, c(1,2), mean)[,1], lower.conf = NA, upper.conf = NA, restricted = restricted)
rownames(mean.df) <- pnames
colnames(mean.df) <- c("estimates", "lower.conf", "upper.conf", "restricted.parameter")
}
return(list(individual = parameter_array, mean = mean.df))
}
get.parameter.table.single <- function(minim, parameter.names, n.params, use.restrictions, inv.hess, ci, sort.param, orig.params){
var.params <- tryCatch(diag(inv.hess), error = function(e) rep(NA, n.params))
names(var.params) <- parameter.names
confidence.interval <- tryCatch(qnorm(1-((100-ci)/2)/100)*sqrt(var.params), error = function(e) rep(NA, n.params))
estimates <- minim$par
upper.conf <- estimates + confidence.interval
lower.conf <- estimates - confidence.interval
param.names <- parameter.names
if(!use.restrictions) parameter_table <- data.frame(estimates, lower.conf, upper.conf)
if(use.restrictions) {
parameter_table.tmp <- data.frame(parameter.names, estimates, lower.conf, upper.conf, restricted.parameter = "")
parameter_table <- parameter_table.tmp[parameter_table.tmp$parameter.names %in% orig.params,]
for (c in 1:length(restrictions)) {
if (restrictions[[c]][3] == "=" & sum(grepl("[[:alpha:]]", restrictions[[c]][2]))) {
parameter_table <- rbind(parameter_table, data.frame(parameter.names = restrictions[[c]][1], parameter_table[parameter_table$parameter.names == restrictions[[c]][2], 2:4], restricted.parameter = restrictions[[c]][2]))
}
if (restrictions[[c]][3] == "=" & sum(grepl("^[[:digit:]]\\.?[[:digit:]]*", restrictions[[c]][2]))) {
parameter_table <- rbind(parameter_table, data.frame(parameter.names = restrictions[[c]][1], estimates = as.numeric(restrictions[[c]][2]), lower.conf = NA, upper.conf = NA, restricted.parameter = restrictions[[c]][2]))
}
if (restrictions[[c]][3] == "<") {
tmp.vars <- .find.MPT.params(parse(text = restrictions[[c]][2])[1])
new.param <- prod(parameter_table.tmp[parameter_table.tmp$parameter.names %in% tmp.vars,2])
var.tmp <- var.params[names(var.params) %in% tmp.vars]
length.var.tmp <- length(var.tmp)
var.bound.tmp <- rep(NA,length.var.tmp)
for (j in 1:length.var.tmp) var.bound.tmp[j] <- 2*var.tmp[j] + sum(2^(length.var.tmp-1)*(var.tmp[-j]))
ineq.ci <- qnorm(1-((100-ci)/2)/100)*sqrt(min(var.bound.tmp))
parameter_table <- rbind(parameter_table, data.frame(parameter.names = restrictions[[c]][1], estimates = new.param, lower.conf = new.param - ineq.ci, upper.conf = new.param + ineq.ci, restricted.parameter = "<"))
}
}
param.names <- as.character(parameter_table[,1])
parameter_table <- parameter_table[,2:5]
}
if (sort.param) {
parameter_table <- parameter_table[order(param.names),]
param.names <- param.names[order(param.names)]
}
rownames(parameter_table) <- param.names
return(parameter_table)
}
get.predicted.values <- function (minim, tree, data, df.n, param.names, length.param.names, n.data) {
predictions <- matrix(NA, n.data, length(data[1,]))
predict.env <- new.env()
temp.branch <- sapply(tree,length)
for (c in 1:n.data){
for (i in 1:length.param.names) assign(param.names[i],minim[[c]][["par"]][i], envir = predict.env)
tree.eval <- sapply(unlist(tree), eval, envir = predict.env)
frequencies <- rep(df.n[[c]][[2]], temp.branch)
predictions[c,] <- tree.eval * frequencies
}
return(predictions)
}
tree <- .get.mpt.model(model.filename, model.type)
if(is.null(data)) stop("Model seems to be constructed well (i.e., all probabilities sum to 1), but data is NULL.")
if(is.vector(data)) {
data <- array(data, dim = c(1, length(data)))
multiFit <- FALSE
} else
if(dim(data)[1] == 1) {
if (is.data.frame(data)) data <- as.matrix(data)
data <- array(data, dim = c(1,length(data)))
multiFit <- FALSE
} else
if(is.matrix(data) | is.data.frame(data)) {
if (is.data.frame(data)) data <- as.matrix(data)
multiFit <- TRUE
} else stop("data is neither vector, nor matrix, nor data.frame!")
if (sum(sapply(tree, length)) != length(data[1,])) stop(paste("Size of data does not correspond to size of model (i.e., model needs ", sum(sapply(tree, length)), " datapoints, data gives ", length(data[1,]), " datapoints).", sep = ""))
if (ci != 95) message(paste("Confidence intervals represent ", ci, "% intervals.", sep = ""))
orig.params <- NULL
use.restrictions <- FALSE
if (!is.null(restrictions.filename)) {
use.restrictions <- TRUE
restrictions <- .read.MPT.restrictions(restrictions.filename)
orig.tree <- tree
orig.params <- .find.MPT.params(tree)
if (!reparam.ineq) {
res.no.ineq <- restrictions
for (res in 1:length(restrictions)) if (restrictions[[res]][3] == "<") res.no.ineq[[1]] <- NULL
if (length(res.no.ineq) == 0) use.restrictions <- FALSE
else restrictions <- res.no.ineq
}
if (use.restrictions) tree <- .apply.MPT.restrictions(tree, restrictions)
}
param.names <- .find.MPT.params(tree)
n.params <- length(param.names)
if (!is.null(starting.values)) {
if (length(starting.values) != 2) {
n.optim <- 1
if (length(starting.values) != n.params) stop("length(starting.values) does not match number of parameters.\nUse check.mpt() to find number and order of parameters!")
}
}
if (n.optim != 1) message(paste("Presenting the best result out of ", n.optim, " minimization runs.", sep =""))
df.n <- apply(data, 1, .DF.N.get, tree = tree)
n_items <- sapply(df.n, function (x) sum(x[[2]]))
dgf <- df.n[[1]][[1]]
n.data <- dim(data)[1]
data.smaller.5 <- t(apply(data, 1, function(x) x < 5))
if (any(data.smaller.5)) warning(paste("Categories have n < 5! Do NOT trust these CIs. Dataset:", paste((1:n.data)[apply(data.smaller.5, 1, any)], collapse = " "), sep = ""))
tmpllk.env <- new.env()
t0 <- Sys.time()
print(paste("Model fitting begins at ", t0, sep = ""))
flush.console()
res.optim <- optim.mpt(data, n.data, tree, llk.tree, param.names, n.params, n.optim, starting.values)
t1 <- Sys.time()
print(paste("Model fitting stopped at ", t1, sep = ""))
print(t1-t0)
minim <- res.optim$minim
optim.runs <- res.optim$optim.runs
llks <- res.optim$llks
if (!is.null(fia)) {
if (multiFit) {
data.new <- rbind(data, apply(data,2,sum))
fia.tmp <- get.mpt.fia(data.new, model.filename, restrictions.filename, fia, model.type)
fia.df <- fia.tmp[-dim(fia.tmp)[1],]
fia.agg.tmp <- fia.tmp[dim(fia.tmp)[1],]
} else {
fia.df <- get.mpt.fia(data, model.filename, restrictions.filename, fia, model.type)
}
}
inv.hess.list <- lapply(minim, function(x) tryCatch(solve(x$hessian), error = function(e) NA))
goodness.of.fit <- get.goodness.of.fit(minim,tree, data, dgf, n.params, n.data)
if (is.null(fia)) information.criteria <- get.information.criteria(minim, goodness.of.fit$G.Squared, n.params, n_items)
else information.criteria <- get.information.criteria(minim, goodness.of.fit$G.Squared, n.params, n_items, fia.df)
model.info <- get.model.info(minim, n.params, dgf)
if (n.optim > 1) summary.llks <- t(apply(llks, 1, summary))
if (multiFit) {
fia.agg <- NULL
data.pooled <- apply(data,2,sum)
data.pooled <- matrix(data.pooled, 1, length(data.pooled))
res.optim.pooled <- optim.mpt(data.pooled, 1, tree, llk.tree, param.names, n.params, n.optim, starting.values)
inv.hessian <- tryCatch(solve(res.optim.pooled[["minim"]][[1]][["hessian"]]), error = function(e) NA)
if (!is.null(fia)) fia.agg <- fia.agg.tmp
summed.goodness.of.fit <- data.frame(t(apply(goodness.of.fit, 2, sum)))
summed.goodness.of.fit[1,4] <- pchisq(summed.goodness.of.fit[1,2], summed.goodness.of.fit[1,3], lower.tail = FALSE)
goodness.of.fit <- list(individual = goodness.of.fit, sum = summed.goodness.of.fit, aggregated = get.goodness.of.fit(res.optim.pooled[["minim"]], tree, data.pooled, dgf, n.params, 1))
information.criteria <- list(individual = information.criteria, sum = data.frame(t(apply(information.criteria, 2, sum))), aggregated = get.information.criteria(res.optim.pooled$minim, goodness.of.fit[["aggregated"]][["G.Squared"]], n.params, sum(n_items), fia.agg))
model.info <- list(individual = model.info, aggregated = get.model.info(res.optim.pooled$minim, n.params, dgf))
parameters <- c(get.parameter.table.multi(minim, param.names, n.params, n.data, use.restrictions, inv.hess.list, ci, orig.params), aggregated = list(get.parameter.table.single(res.optim.pooled[["minim"]][[1]], param.names, n.params, use.restrictions, inv.hessian, ci, sort.param = sort.param, orig.params)))
if (n.optim > 1) summary.llks <- list(individual = summary.llks, aggregated = summary(res.optim.pooled[["llks"]][[1]]))
if (output[1] == "full") optim.runs <- c(individual = list(optim.runs), aggregated = res.optim.pooled$optim.runs)
for (c.n in 1:n.data) {
if (minim[[c.n]][["counts"]][1] < 10) warning(paste("Number of iterations run by the optimization routine for individual ", c.n, " is low (i.e., < 10) indicating local minima. Try n.optim >= 5.", sep = ""))
if (minim[[c.n]][["convergence"]] != 0) warning(paste("Optimization routine for individual ", c.n, " did not converge succesfully. Error code: ", minim[[c.n]][["convergence"]], ". Use output = 'full' for more information.", sep =""))
}
} else {
parameters <- get.parameter.table.single(minim[[1]], param.names, n.params, use.restrictions, inv.hess.list[[1]], ci, sort.param = sort.param, orig.params)
if (minim[[1]][["counts"]][1] < 10) warning("Number of iterations run by the optimization routine is low (i.e., < 10) indicating local minima. Try n.optim >= 5.")
if (minim[[1]][["convergence"]] != 0) warning(paste("Optimization routine did not converge succesfully. Error code is, ", minim[[1]][["convergence"]], ". Use output = 'full' for more information.", sep =""))
}
predictions <- get.predicted.values(minim, tree, data, df.n, param.names, n.params, n.data)
data <- list(observed = data, predicted = predictions)
if (multiFit) if (!is.null(fia.agg)) fia.df <- list(individual = fia.df, aggregated = fia.agg)
outlist <- list(goodness.of.fit = goodness.of.fit, information.criteria = information.criteria, model.info = model.info, parameters = parameters, data = data)
if (n.optim > 1) outlist <- c(outlist, summary.llks = list(summary.llks))
if (output[1] == "fia" | (output[1] == "full" & !is.null(fia))) outlist <- c(outlist, FIA = list(fia.df))
if (output[1] == "full") outlist <- c(outlist, optim.runs = list(optim.runs))
if (multicore[1] != "none" & sfInit) snowfall::sfStop()
return(outlist)
} |
test_that("check length of output",{
skip_on_cran()
local_edition(3)
expect_equal(length(RLumModel:::.set_pars("Bailey2001")), 12)
expect_equal(length(RLumModel:::.set_pars("Bailey2002")), 12)
expect_equal(length(RLumModel:::.set_pars("Bailey2004")), 12)
expect_equal(length(RLumModel:::.set_pars("Pagonis2007")), 12)
expect_equal(length(RLumModel:::.set_pars("Pagonis2008")), 12)
expect_equal(length(RLumModel:::.set_pars("Friedrich2017")), 12)
expect_equal(length(RLumModel:::.set_pars("customized")), 5)
})
test_that("check class of output",{
skip_on_cran()
local_edition(3)
expect_equal(class(RLumModel:::.set_pars("Bailey2001")), "list")
expect_equal(class(RLumModel:::.set_pars("Bailey2002")), "list")
expect_equal(class(RLumModel:::.set_pars("Bailey2004")), "list")
expect_equal(class(RLumModel:::.set_pars("Pagonis2007")), "list")
expect_equal(class(RLumModel:::.set_pars("Pagonis2008")), "list")
expect_equal(class(RLumModel:::.set_pars("Friedrich2017")), "list")
expect_equal(class(RLumModel:::.set_pars("customized")), "list")
}) |
epval_Chen2014 <- function(sam1, sam2, eq.cov = TRUE, n.iter = 1000, cov1.est, cov2.est, bandwidth1, bandwidth2, cv.fold = 5, norm = "F", seeds){
if(missing(seeds)){
seeds <- NULL
}else{
if(length(seeds) != n.iter){
seeds <- NULL
cat("The length of seeds does not match the specified n.iter.\n")
cat("Seeds for each permutation/resampling iteration are assigned randomly.\n")
}
}
if(eq.cov){
out <- epval_Chen2014_samecov(sam1, sam2, n.iter, seeds)
}else{
sam.cov1 <- cov(sam1)
sam.cov2 <- cov(sam2)
p <- dim(sam1)[2]
if(missing(bandwidth1)) bandwidth1 <- seq(from = 0, to = p, by = floor(p/50))
if(missing(bandwidth2)) bandwidth2 <- seq(from = 0, to = p, by = floor(p/50))
if(any(bandwidth1 < 0)){
cat("Negative values specified in bandwidth1 are removed.\n")
bandwidth1 <- bandwidth1[bandwidth1 < 0]
}
if(any(bandwidth2 < 0)){
cat("Negative values specified in bandwidth2 are removed.\n")
bandwidth2 <- bandwidth2[bandwidth2 < 0]
}
if(any(bandwidth1 != floor(bandwidth1))){
cat("Non-integers specified in bandwidth1 are converted to their integer parts.")
bandwidth1 <- floor(bandwidth1)
}
if(any(bandwidth2 != floor(bandwidth2))){
cat("Non-integers specified in bandwidth2 are converted to their integer parts.")
bandwidth2 <- floor(bandwidth2)
}
if(missing(cov1.est)){
output.opt.bw1 <- TRUE
if(length(bandwidth1) > 1){
optim.bandwidth1 <- best.band(sam1, bandwidth1, cv.fold, norm)
}
if(length(bandwidth1) == 1){
optim.bandwidth1 <- bandwidth1
}
if(optim.bandwidth1 > 0){
cov1.est <- sam.cov1
cov1.est[abs(row(cov1.est) - col(cov1.est)) > optim.bandwidth1] <- 0
}
if(optim.bandwidth1 == 0){
cov1.est <- diag(diag(sam.cov1))
}
eigen1 <- eigen(cov1.est)
eigen1.vectors <- eigen1$vectors
eigen1.values <- eigen1$values
eigen1.values[eigen1.values <= 0] <- 0.001
cov1.est <- eigen1.vectors %*% diag(eigen1.values) %*% t(eigen1.vectors)
}else{
output.opt.bw1 <- FALSE
}
if(missing(cov2.est)){
output.opt.bw2 <- TRUE
if(length(bandwidth2) > 1){
optim.bandwidth2 <- best.band(sam2, bandwidth2, cv.fold, norm)
}
if(length(bandwidth2) == 1){
optim.bandwidth2 <- bandwidth2
}
if(optim.bandwidth2 > 0){
cov2.est <- sam.cov2
cov2.est[abs(row(cov2.est) - col(cov2.est)) > optim.bandwidth2] <- 0
}
if(optim.bandwidth2 == 0){
cov2.est <- diag(diag(sam.cov2))
}
eigen2 <- eigen(cov2.est)
eigen2.vectors <- eigen2$vectors
eigen2.values <- eigen2$values
eigen2.values[eigen2.values <= 0] <- 0.001
cov2.est <- eigen2.vectors %*% diag(eigen2.values) %*% t(eigen2.vectors)
}else{
output.opt.bw2 <- FALSE
}
out <- epval_Chen2014_diffcov(sam1, sam2, n.iter, sam.cov1, sam.cov2, cov1.est, cov2.est, cv.fold, norm, seeds, optim.bandwidth1, optim.bandwidth2, output.opt.bw1, output.opt.bw2)
}
return(out)
} |
column_result <- function(x) {
structure(x, class = unique(c("rhub_column_result", class(x))))
}
`[.rhub_column_result` <- function(x, i) {
column_result(NextMethod("["))
}
pillar_shaft.rhub_column_result <- function(x, ...) {
cx <- lapply(x, color_column_result)
new_pillar_shaft_simple(cx, ...)
}
color_column_result <- function(x) {
if (is.null(x)) return("in-progress")
E <- if (n <- length(x$errors)) status_style_error(strrep("E", n))
W <- if (n <- length(x$warnings)) status_style_error(strrep("W", n))
N <- if (n <- length(x$notes)) status_style_note(strrep("N", n))
switch(
x$status,
"parseerror" = status_style_error("parseerror"),
"preperror" = status_style_error("preperror"),
"aborted" = status_style_aborted("aborted"),
"ok" = status_style_ok("ok"),
paste0(E, W, N))
}
type_sum.rhub_column_result <- function(x) {
"rhub::result"
} |
eqearth_get_ext <- function(ext, npoints=15) {
if(base::missing(ext)) ext
bckg <- sp::Polygons(list(sp::Polygon(cbind(c(rep(ext[1], npoints),
rep(ext[2], npoints)),
c(seq(ext[3], ext[4], length.out=npoints),
seq(ext[4], ext[3], length.out=npoints))))), ID = as.character(1))
Sl1 <- sp::SpatialPolygons(list(bckg))
raster::crs(Sl1) <- sp::CRS("+init=epsg:4326")
PROJ <- sp::CRS(paste0("+proj=eqearth +lon_0=", mean(c(ext[2], ext[1])),
" +x_0=", mean(c(ext[2], ext[1])),
" +ellps=WGS84 +datum=WGS84 +units=m +no_defs")
)
bckg.eqearth <- sp::spTransform(Sl1, PROJ)
ext <- raster::extent(bckg.eqearth)
ext[1:2] <- ext[1:2] + c(-0.1, 0.02)*diff(ext[1:2])
ext[3:4] <- ext[3:4] + c(-0.1, 0.02)*diff(ext[3:4])
ext
}
plot_map_eqearth <- function(dat, ext=raster::extent(dat), zlim=range(raster::values(dat), na.rm=TRUE), col=viridis::viridis(20), brks.pos=c(0,1), brks.lab=brks.pos, npoints=15, nlines=9, title='', colour_scale=TRUE, top_layer=NA, top_layer.col='ghostwhite', site_xy=NA, dim=NA) {
if(base::missing(dat)) dat
slss <- rgdal::projInfo(type = "proj")
p1 = rgeos::readWKT("POLYGON((0 0,3 0,3 3,0 3,0 0))")
utils::data(M1, package='crestr', envir = environment())
M1 <- raster::crop(M1, ext)
PROJ <- sp::CRS(paste0("+proj=eqearth +lon_0=",mean(ext[1:2]),
" +x_0=",mean(ext[1:2]),
" +ellps=WGS84 +datum=WGS84 +units=m +no_defs")
)
M2 <- sp::spTransform(M1, PROJ)
if (class(dat) == 'RasterLayer') dat <- raster::projectRaster(from=dat, crs=PROJ)
if ('Raster' %in% methods::is(top_layer)) top_layer <- raster::projectRaster(from=top_layer, crs=PROJ)
ll=list()
idx=1
for(i in seq(ext[1], ext[2], length.out=nlines)){
ll[[idx]] <- sp::Lines(list(sp::Line(cbind(rep(i,npoints), seq(ext[3], ext[4], length.out=npoints)))), ID = as.character(i))
idx = idx +1
}
Sl1 <- sp::SpatialLines(ll)
raster::crs(Sl1) <- sp::CRS("+init=epsg:4326")
verticals.eqearth <- sp::spTransform(Sl1, raster::crs(PROJ))
verticals.eqearth.x <- unlist(lapply(sp::coordinates(verticals.eqearth), function(x) return(x[[1]][1,1])))
ll=list()
idx=1
for(i in seq(ext[3], ext[4], length.out=nlines)){
ll[[idx]] <- sp::Lines(list(sp::Line(cbind(seq(ext[1], ext[2], length.out=npoints), rep(i, npoints)))), ID = as.character(i))
idx = idx +1
}
Sl1 <- sp::SpatialLines(ll)
raster::crs(Sl1) <- sp::CRS("+init=epsg:4326")
horizontals.eqearth <- sp::spTransform(Sl1, raster::crs(PROJ))
horizontals.eqearth.xy <- t(data.frame(lapply(sp::coordinates(horizontals.eqearth), function(x) return(x[[1]][1,]))))
horizontals.eqearth.y <- unlist(lapply(sp::coordinates(horizontals.eqearth), function(x) return(x[[1]][1,2])))
if (length(site_xy) == 2) {
Sl1 <- sp::SpatialPoints(matrix(site_xy, ncol=2))
raster::crs(Sl1) <- sp::CRS("+init=epsg:4326")
XY <- sp::spTransform(Sl1, raster::crs(PROJ))
}
bckg <- sp::Polygons(list(sp::Polygon(cbind(c(rep(ext[1], npoints),
rep(ext[2], npoints)),
c(seq(ext[3], ext[4], length.out=npoints),
seq(ext[4], ext[3], length.out=npoints))))), ID = as.character(1))
Sl1 <- sp::SpatialPolygons(list(bckg))
raster::crs(Sl1) <- sp::CRS("+init=epsg:4326")
bckg.eqearth <- sp::spTransform(Sl1, raster::crs(PROJ))
if (class(dat) == 'RasterLayer') dat <- raster::mask(dat, bckg.eqearth)
ext <- raster::extent(bckg.eqearth)
ext_factor_x <- max(graphics::strwidth(paste0(' ', round(as.numeric(names(horizontals.eqearth)),2)), units='inches', cex=6/8))
ext_factor_y <- max(graphics::strheight(paste0('\n', round(as.numeric(names(verticals.eqearth)),2)), units='inches', cex=6/8))
if(is.na(dim)[1]) dim <- grDevices::dev.size('in')
ext[1:2] <- ext[1:2] + (ext[2]-ext[1])/dim[1] * c(-ext_factor_x, 0.05)
ext[3:4] <- ext[3:4] + (ext[4]-ext[3])/dim[2] * c(-ext_factor_y, 0.05)
if(colour_scale) {
xlab <- c(-0.2,1.2)
xlab <- xlab + diff(xlab)/dim[1] * c(-ext_factor_x, 0.05)
plot(NA, NA, type='n', xlab='', ylab='', main='', axes=FALSE, frame=FALSE, xlim=xlab, ylim=c(-0.05,1), xaxs='i', yaxs='i')
brks2 <- (brks.pos - brks.pos[1]) / diff(range(brks.pos))
for(i in 1:length(col)) {
graphics::rect((i-1)/length(col), 0, i/length(col), 0.3, lwd=0.3, border=col[i], col=col[i])
}
cex <- 1
while(graphics::strwidth(title, font=2, cex=cex) >= 1.4) cex <- cex - 0.05
cont <- TRUE
res <- 1
while(cont) {
brks2.pos <- brks.pos[c(TRUE, rep(FALSE, res-1))]
brks2.lab <- brks.lab[c(TRUE, rep(FALSE, res-1))]
sizes <- graphics::strwidth(paste(' ',brks2.lab,' ', sep=''), cex=min(cex, 6/8))
x1 = (brks2.pos - brks.pos[1]) / diff(range(brks.pos)) + sizes/2 ; x1 = x1[1:(length(x1)-1)]
x2 = (brks2.pos - brks.pos[1]) / diff(range(brks.pos)) - sizes/2 ; x2 = x2[2:length(x2)]
if(min(x2-x1) <= 0) {
res <- res + 1
} else {
cont <- FALSE
}
}
for(i in 1:length(brks2.pos)) {
graphics::text((brks2.pos[i] - brks2.pos[1])/diff(range(brks.pos)), 0.35, brks2.lab[i] , cex=min(cex, 6/8), adj=c(0.5,0))
}
graphics::rect(0,0,1,0.3, lwd=0.5)
graphics::text(0.5, 0.85, title, font=2, cex=cex, adj=c(0.5,1))
}
plot(0, 0, type='n',
xlim=c(ext[1], ext[2]), ylim=c(ext[3], ext[4]),
main='', ylab='', xlab='', xaxs='i', yaxs='i',
asp=1, frame=FALSE, axes=FALSE) ; {
sp::plot(bckg.eqearth, col='grey80', border=NA, cex=0.2, add=TRUE)
sp::plot(horizontals.eqearth,col='white',lwd=0.5, add=TRUE )
sp::plot(verticals.eqearth,col='white',lwd=0.5, add=TRUE )
sp::plot(M2, col='black', border=NA, add=TRUE)
if (class(dat) == 'RasterLayer') {
raster::image(dat, colNa='black', add=TRUE, interpolate=FALSE, zlim=zlim, col=col)
sp::plot(M2, border='black', lwd=0.5, add=TRUE)
}
if ('Raster' %in% methods::is(top_layer)) {
raster::image(top_layer, add=TRUE, col=top_layer.col)
}
if(length(site_xy) == 2) {
sp::plot(XY, col='white', bg='red', cex=2, lwd=2, pch=23, add=TRUE)
}
labels.lon <- rep(FALSE, length(verticals.eqearth.x))
for(v in 1:length(verticals.eqearth.x)) {
overlap <- FALSE
if(v > 1 ) {
if (labels.lon[v-1]) {
d1 <- graphics::strwidth(paste0('\n ', round(as.numeric(names(verticals.eqearth))[v-1],2), ' '), cex=6/8)
d2 <- graphics::strwidth(paste0('\n ', round(as.numeric(names(verticals.eqearth))[v],2), ' '), cex=6/8)
if (verticals.eqearth.x[v-1] + d1 / 2 >= verticals.eqearth.x[v] - d2 / 2) {
overlap <- TRUE
}
}
}
if (!overlap){
graphics::text(verticals.eqearth.x[v], min(horizontals.eqearth.xy[,2]),
paste0('\n', round(as.numeric(names(verticals.eqearth))[v],2)),
cex=6/8, adj=c(0.5,0.7)
)
labels.lon[v] <- TRUE
}
}
labels.lat <- rep(FALSE, length(horizontals.eqearth.xy))
for(h in nrow(horizontals.eqearth.xy):1) {
overlap <- FALSE
if(h < nrow(horizontals.eqearth.xy)) {
if (labels.lat[h+1]) {
d1 <- graphics::strheight(paste0('', round(as.numeric(names(horizontals.eqearth))[h+1],2), ' '), cex=6/8)
d2 <- graphics::strheight(paste0('', round(as.numeric(names(horizontals.eqearth))[h],2), ' '), cex=6/8)
if (horizontals.eqearth.y[h+1] - d1 / 2 <= horizontals.eqearth.y[h] + d2 / 2) {
overlap <- TRUE
}
}
}
if (!overlap){
graphics::text(horizontals.eqearth.xy[h, 1], horizontals.eqearth.xy[h, 2],
paste0(round(as.numeric(names(horizontals.eqearth))[h], 2),' '),
cex=6/8, adj=c(1,0.4)
)
labels.lat[h] <- TRUE
}
}
sp::plot(bckg.eqearth, col=NA, border='black', cex=0.2, add=TRUE)
}
invisible(ext)
} |
convert <- function(in_file, out_file, in_opts=list(), out_opts=list()) {
if (missing(out_file)) {
stop("'outfile' is missing with no default")
}
invisible(do.call("export", c(list(file = out_file, x = do.call("import", c(list(file=in_file), in_opts))), out_opts)))
} |
make_legend_ggplot <- function(dat, legend_pos) {
legend_just <- NULL
legend_dir <- NULL
n_lines <- num_lines(dat)
if (n_lines == 1) {
legend_pos <- "none"
} else if (any(is.na(legend_pos))) {
legend_pos <- "none"
} else if (is.logical(legend_pos)) {
if (isTRUE(legend_pos)) {
legend_pos <- "bottom"
} else {
legend_pos <- c(1, 0)
legend_just <- legend_pos
}
} else if (is.character(legend_pos)) {
pos_choices <- c("left", "right", "bottom", "top")
legend_pos <- pos_choices[pmatch(legend_pos, pos_choices)]
legend_just <- "center"
} else if (is.numeric(legend_pos) &
length(legend_pos) == 2) {
legend_just <- legend_pos
} else {
legend_pos <- c(1, 0)
legend_just <- legend_pos
}
list(legend.direction = legend_dir,
legend.justification = legend_just,
legend.position = legend_pos)
} |
require(OpenMx)
v <- 1:3
omxCheckError(mxFactor(v, levels=1:3, exclude=3), "Factor levels and exclude vector are not disjoint; both contain '3'")
v <- 1:4
omxCheckError(mxFactor(v, levels=1:3), "The following values are not mapped to factor levels and not excluded: '4'")
cf <- omxCheckError(mxFactor(sample(1:2, 10, replace=TRUE), levels=1:2,
labels=c("incorrect", "incorrect")),
"Duplicate labels and collapse=TRUE not specified: 'incorrect'")
cf <- mxFactor(sample(1:2, 10, replace=TRUE), levels=1:2,
labels=c("incorrect", "incorrect"), collapse=TRUE)
omxCheckEquals(length(levels(cf)), 1)
omxCheckEquals(levels(cf), 'incorrect')
omxCheckTrue(all(cf == "incorrect"))
foo <- data.frame(x=c(1:3),y=c(4:6),z=c(7:9))
foo <- mxFactor(foo, c(1:9), labels=c(1,1,1,2,2,2,3,3,3), collapse=TRUE)
omxCheckTrue(all(foo == matrix(kronecker(1:3, rep(1,3)),3,3)))
v <- sample.int(50, 200, replace=TRUE)
vl <- v %% 11
mask <- !duplicated(v)
v2 <- mxFactor(v, levels=v[mask], labels=vl[mask], collapse = TRUE)
omxCheckTrue(all(v2 == vl))
nthresh1 <- 1
nthresh2 <- 12
cnames <- c("t1neur1", "t1mddd4l", "t2neur1", "t2mddd4l")
data <- suppressWarnings(try(read.table("data/mddndzf.dat", na.string=".", col.names=cnames)))
if (is(data, "try-error")) data <- read.table("models/passing/data/mddndzf.dat", na.string=".", col.names=cnames)
data[,c(1,3)] <- mxFactor(data[,c(1,3)], c(0 : nthresh2))
data[,c(2,4)] <- mxFactor(data[,c(2,4)], c(0 : nthresh1))
diff <- nthresh2 - nthresh1
nvar <- 4
Mx1Threshold <- rbind(
c(-1.9209, 0.3935, -1.9209, 0.3935),
c(-0.5880, 0 , -0.5880, 0 ),
c(-0.0612, 0 , -0.0612, 0 ),
c( 0.3239, 0 , 0.3239, 0 ),
c( 0.6936, 0 , 0.6936, 0 ),
c( 0.8856, 0 , 0.8856, 0 ),
c( 1.0995, 0 , 1.0995, 0 ),
c( 1.3637, 0 , 1.3637, 0 ),
c( 1.5031, 0 , 1.5031, 0 ),
c( 1.7498, 0 , 1.7498, 0 ),
c( 2.0733, 0 , 2.0733, 0 ),
c( 2.3768, 0 , 2.3768, 0 ))
Mx1R <- rbind(
c(1.0000, 0.2955, 0.1268, 0.0760),
c(0.2955, 1.0000, -0.0011, 0.1869),
c(0.1268, -0.0011, 1.0000, 0.4377),
c(0.0760, 0.1869, 0.4377, 1.0000))
nameList <- names(data)
model <- mxModel()
model <- mxModel(model, mxMatrix("Stand", name = "R",
nrow = nvar, ncol = nvar, free=TRUE))
model <- mxModel(model, mxMatrix("Zero", name = "M", nrow = 1, ncol = nvar, free=FALSE))
model <- mxModel(model, mxMatrix("Full",
name="thresh",
values=cbind(
seq(-1.9, 1.9, length.out=nthresh2),
c(rep(1, nthresh1), rep(0, diff)),
seq(-1.9, 1.9, length.out=nthresh2),
c(rep(1, nthresh1), rep(0, diff))
),
free = c(rep(c( rep(TRUE, nthresh2),
rep(TRUE, nthresh1), rep(FALSE, diff)
), 2)),
labels = rep(c(paste("neur", 1:nthresh2, sep=""),
paste("mddd4l", 1:nthresh1, sep=""), rep(NA, diff))
)))
objective <- mxExpectationNormal(covariance="R", means="M", dimnames=nameList, thresholds="thresh")
dataMatrix <- mxData(data, type='raw')
model <- mxModel(model, objective, dataMatrix, mxFitFunctionML())
modelOut <- mxRun(model)
estimates <- modelOut$output$estimate
omxCheckCloseEnough(mxEval(thresh, modelOut)[,1], Mx1Threshold[,1], 0.03)
omxCheckCloseEnough(mxEval(thresh, modelOut)[1,2], Mx1Threshold[1,2], 0.01)
omxCheckCloseEnough(mxEval(R, modelOut), Mx1R, 0.01)
omxCheckCloseEnough(modelOut$output$Minus2LogLikelihood, 4081.48, 0.08) |
sample <- function(x, size, replace = FALSE, prob = NULL)
{
if(length(x) == 1L && is.numeric(x) && is.finite(x) && x >= 1) {
if(missing(size)) size <- x
sample.int(x, size, replace, prob)
} else {
if(missing(size)) size <- length(x)
x[sample.int(length(x), size, replace, prob)]
}
}
sample.int <- function(n, size = n, replace = FALSE, prob = NULL)
{
if (!replace && is.null(prob) && n > 1e7 && size <= n/2)
.Internal(sample2(n, size))
else .Internal(sample(n, size, replace, prob))
} |