code
stringlengths
1
13.8M
teamBowlersVsBatsmenAllOppnAllMatchesPlot <- function(bowlerDF,t1,t2,plot=1){ batsman=runsConceded=team=NULL ggplotly=NULL bwlr <- bowlerDF$bowler if(t2 != "India"){ plot.title <- paste(bwlr,"-Performance against",t2,"batsmen") print("aa") }else{ plot.title <- paste(bwlr,"-Performance against all batsmen") } if(plot == 1){ ggplot(data=bowlerDF,aes(x=batsman,y=runsConceded,fill=factor(batsman))) + facet_grid(. ~ bowler) + geom_bar(stat="identity") + xlab("Batsman") + ylab("Runs conceded") + ggtitle(bquote(atop(.(plot.title), atop(italic("Data source:http://cricsheet.org/"),"")))) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) } else if(plot == 2){ g <- ggplot(data=bowlerDF,aes(x=batsman,y=runsConceded,fill=factor(batsman))) + facet_grid(. ~ bowler) + geom_bar(stat="identity") + xlab("Batsman") + ylab("Runs conceded") + ggtitle(plot.title) + theme(axis.text.x = element_text(angle = 90, hjust = 1)) ggplotly(g,height=500) } }
.ctmfit <- function(object, parm, mltargs, reparm, min_update = length(coef(object)) * 2) { ctmobject <- object function(data, weights, control, ...) { mf <- model.frame(data, yxonly = TRUE) iy <- data[["yx", type = "index"]] mltargs$data <- mf ctmobject <- do.call("mlt", mltargs) thetastart <- coef(ctmobject, fixed = FALSE) function(subset = NULL, weights = NULL, info = NULL, model = FALSE, estfun = TRUE, object = FALSE) { if (model) return(list(object = ctmobject, iy = iy)) if (!is.null(iy)) { w <- libcoin::ctabs(iy, weights = weights, subset = subset)[-1L] subset <- NULL } else { if (is.null(weights) || length(weights) == 0) { w <- rep(1, nrow(mf)) } else { w <- weights } w[-subset] <- 0 } if (!is.null(info$coef)) { thetastart <- info$coef } else { thetastart <- coef(ctmobject, fixed = FALSE) } nw <- if (is.null(subset)) sum(w) else sum(w[subset]) if (nw > min_update) { umod <- suppressWarnings(try(update(ctmobject, weights = w, subset = subset, theta = thetastart), silent = TRUE)) if (inherits(umod, "try-error") || umod$convergence != 0) { umod <- suppressWarnings(try(update(ctmobject, weights = w, subset = subset), silent = TRUE)) if (inherits(umod, "try-error") || umod$convergence != 0) { mltargs$weights <- w umod <- try(do.call("mlt", mltargs)) } } } else { umod <- 0 class(umod) <- "try-error" } if (inherits(umod, "try-error")) { if (!estfun) return(list(coef = thetastart, objfun = NA, converged = FALSE)) umod <- ctmobject umod$weights <- w umod$subset <- subset coef(umod)[names(thetastart)] <- thetastart umod$convergence <- 0L } ret <- NULL if (estfun) { ret <- estfun(umod, parm = coef(umod, fixed = TRUE))[, parm, drop = FALSE] if (!is.null(subset)) { if (NROW(ret) == length(subset)) { tmp <- matrix(0, nrow = length(w), ncol = ncol(ret)) tmp[subset,] <- ret ret <- tmp } else { ret[-subset,] <- 0 } } if (!is.null(iy)) ret <- rbind(0, ret) if (!is.null(reparm)) ret <- ret %*% reparm } return(list(estfun = ret, coefficients = coef(umod, fixed = FALSE), objfun = -logLik(umod), object = if (object) umod else NULL, converged = isTRUE(all.equal(umod$convergence, 0)))) } } } trafotree <- function(object, parm = 1:length(coef(object)), reparm = NULL, min_update = length(coef(object)) * 2, mltargs = list(), ...) { if (inherits(object, "mlt")) { if (is.null(mltargs$scale)) mltargs$scale <- object$scale object <- object$model } mltargs$model <- object args <- list(...) args$ytrafo <- .ctmfit(object = object, parm = parm, mltargs = mltargs, reparm = reparm, min_update = min_update) args$update <- TRUE ret <- do.call("ctree", args) ret$model <- object ret$mltobj <- ret$trafo(model = TRUE, estfun = FALSE) ret$mltargs <- mltargs weights <- data_party(ret)[["(weights)"]] if (is.null(weights)) weights <- rep(1, nrow(data_party(ret))) nd <- predict(ret, type = "node") ret$models <- tapply(1:length(nd), factor(nd), function(i) ret$trafo(i, weights = weights, estfun = FALSE)) ret$coef <- do.call("rbind", lapply(ret$models, function(x) x$coef)) ret$logLik <- sapply(ret$models, function(x) -x$objfun) class(ret) <- c("trafotree", class(ret)) ret } traforest <- function(object, parm = 1:length(coef(object)), reparm = NULL, update = TRUE, min_update = length(coef(object)) * 2, mltargs = list(), ...) { if (inherits(object, "mlt")) object <- object$model mltargs$model <- object args <- list(...) args$ytrafo <- .ctmfit(object = object, parm = parm, mltargs = mltargs, reparm = reparm, min_update = min_update) args$update <- update ret <- do.call("cforest", args) ret$model <- object ret$mltargs <- mltargs ret$mltobj <- ret$trafo(model = TRUE, estfun = FALSE, object = TRUE) class(ret) <- c("traforest", class(ret)) ret }
`CONVERTSDR` <- function(strike, dip, rake) { DEG2RAD = pi/180; RAD2DEG = 180/pi; dipdir = strike + 90.; signforp = 1; phif = RPMG::fmod(dipdir, 360.); deltaf = dip; if (rake > 90.0) { tmprake = rake - 180.; signforp = -1.; } else if (rake < -90.0) { tmprake = rake + 180.; signforp = -1.; } else { tmprake = rake; signforp = 1.; } temp1 = tmprake * DEG2RAD; temp2 = dip * DEG2RAD; deltau = asin(-1*sin(temp1) * sin(temp2) ); tandy = tan(deltau) / tan(temp2) if(is.nan(tandy) ) tandy= 1 if( tandy<(-1) ) tandy= (-1) if( tandy>(1) ) tandy= (1) phiu = dipdir - 90. + asin( tandy) *RAD2DEG; deltau = deltau*RAD2DEG; phiu = RPMG::fmod(phiu+360., 360.); deltag = 90 - deltau; if (deltag < 0.) { phig = phiu; deltag = -deltag; } else if (deltag > 90.) { phig = phiu; deltag = 180. - deltag; } else { phig = phiu + 180.; } if(deltaf==90 & rake==90) { phig = 180 - phif } phig = RPMG::fmod(phig, 360.); deltav = 90 - deltaf; phiv = RPMG::fmod(phif + 180, 360.); U = TOCART.DIP(phiu, deltau); V = TOCART.DIP(phiv, deltav); V$x = signforp*V$x ; V$y = signforp*V$y; V$z = signforp*V$z; P = to.spherical( U$x+V$x, U$y+V$y, U$z+V$z) P$az = RPMG::fmod(P$az+ 360. , 360); P = REFLECT(P); x2 = -V$x; y2 = -V$y; z2 = -V$z; T = to.spherical( U$x+x2, U$y+y2, U$z+z2 ); T$az = RPMG::fmod( T$az , 360.); T = REFLECT(T); U = REFLECT(U); V = REFLECT(V); F = TOCART.DIP(phif, deltaf); G = TOCART.DIP(phig, deltag); M =list( az1=0, d1=0, az2=0, d2=0, uaz=0, ud=0, vaz=0, vd=0, paz=0, pd =0, taz=0, td=0) M$az1=F$az; M$d1=F$dip; M$az2=G$az; M$d2=G$dip ; M$uaz=U$az; M$ud=U$dip; M$vaz=V$az; M$vd=V$dip; M$paz=P$az; M$pd=P$dip; M$taz=T$az; M$td=T$dip ; mc = structure( list(strike=strike, dipdir=dipdir, dip=dip, rake=rake, F=F, G=G, U=U, V=V, P=P, T=T, M=M), class="MEC" ) return(mc); }
context("object validation") source(testthat::test_path("validate_helper.R")) expect_validate_err <- function(schema, ..., txt = schema) { schema %>% gqlr:::ObjectHelpers$new(source = txt) -> oh validate_schema(oh = oh) testthat::expect_true(oh$error_list$has_any_errors()) expect_error({ stop(format(oh$error_list)) }, ... ) } test_that("validate schema", { oh <- ObjectHelpers$new(dog_cat_schema) validate_schema(oh = oh) expect_true(oh$error_list$has_no_errors()) " interface BarretInterface { A: String A: String } " %>% expect_validate_err("3.1.3.1") " type Barret { __A: String } " %>% expect_validate_err("'__'") "interface BarretInterface { A: String B: String } type Barret implements BarretInterface { A: String C: Float } " %>% expect_validate_err("must implement all fields of interface") " interface BarretInterface { A(arg1: Int): String } type Barret implements BarretInterface { A(arg2: Int): String } " %>% expect_validate_err("must have at least the same argument names") " interface BarretInterface { A(arg1: Int): String } type Barret implements BarretInterface { A(arg1: Int, arg2: Float!): String } " %>% expect_validate_err("all additional arguments") " interface BarretInterface { A(arg1: Int): String } type Barret implements BarretInterface { A(arg1: Float): String } " %>% expect_validate_err("must input the same type") " scalar MyScalar type MyObject { fieldA: Int } union MyUnion = MyObject | MyScalar schema { query: MyObject } " %>% expect_validate_err("may not be member types of a Union") " type MyObject { fieldA: Int } schema { query: MyObject } " -> schema_txt schema <- gqlr_schema(schema_txt) my_obj <- schema$get_object("MyObject") my_obj$fields <- list() schema %>% expect_validate_err(txt = schema_txt, "must have at least one field") })
check_handler <- function(x){ if(!("neptune.new.handler.Handler" %in% class(x))) stop("x must be a neptune Handler") }
blm <- function(formula,data,na.action=na.omit, weights=NULL,strata=NULL,par.init=NULL,warn=FALSE,...){ na.lexpit <- function(f,data,FUN){ keep.data <- subset(data,select=all.vars(f)) keep.data <- FUN(keep.data) kept <- match(row.names(keep.data),row.names(data)) list(data = keep.data, kept = kept) } LL <- function(Y,p,w){ l <- w*(Y*logit(p)+log(1-p)) -sum(l) } warn.option <- getOption("warn") if(!warn) options("warn"=-1) data <- na.lexpit(formula,data,FUN=na.action) which.kept <- data$kept data <- data$data Y <- model.frame(formula,data)[,1] X <- model.matrix(formula,data) if(is.matrix(X)){ x.labels <- colnames(X) } else{ x.labels <- attr(terms(formula), "term.labels") } if(is.null(strata)){ strata <- rep(1,nrow(data)) } else{ strata <- strata[which.kept] } if(!class(strata)=="factor") strata <- factor(strata) if(is.null(weights)){ weights <- rep(1,nrow(X)) } else{ weights <- weights[which.kept] } w <- cbind(weights/mean(weights)) if(is.null(par.init)){ beta.init <- rep(0,ncol(X)) beta.init[1] <- sum(Y*w)/sum(w) } else{ beta.init <- par.init } fit <- blm.optim(Y,X,w,beta.init,...) beta <- fit$par if(!all(weights==1)){ if(nrow(data)>50000) vcov <- vcov.blm.big(formula, data, weights, beta) else vcov <- vcov.influence.blm.strata(formula, data, weights, strata, beta) } else{ if(nrow(data)>50000) vcov <- vcov.blm.big(formula, data, weights=NULL, beta) else vcov <- vcov.influence.blm(formula, data, beta) } names(beta) <- x.labels ll.null <- -LL(Y,sum(Y*w)/sum(w),cbind(weights)) options("warn"=warn.option) new("blm", coef = beta, vcov = vcov, formula= formula, df.residual = nrow(X)-ncol(X), data = data, which.kept = which.kept, y = Y, weights = as.numeric(weights), strata = strata, converged = fit$convergence==0, par.init = beta.init, loglik = -LL(Y,X%*%beta,cbind(weights)), loglik.null = ll.null, barrier.value = fit$barrier.value ) }
test_that("lookup_coords returns coords data", { kcmo <- lookup_coords("kansas city, mo") expect_gt(cor(kcmo$point, c(39.0997, 94.5786)), 0.9) tor <- lookup_coords("toronto canada") expect_gt(cor(tor$point, c(43.6532, 79.3832)), 0.9) x <- lookup_coords("usa") expect_equal(is.list(x), TRUE) expect_named(x) expect_true("box" %in% names(x)) x <- lookup_coords("world") expect_equal(is.list(x), TRUE) expect_named(x) expect_true("box" %in% names(x)) gmk <- Sys.getenv("GOOGLE_MAPS_KEY") if (!is.null(gmk) && !identical(gmk, "")) { x <- lookup_coords("New York, NY") expect_equal(is.list(x), TRUE) expect_named(x) expect_true("box" %in% names(x)) } Sys.setenv(GOOGLE_KEY = gmk) Sys.setenv(GOOGLE_MAPS_KEY = "") if (!is.null(gmk) && !identical(gmk, "")) { x <- lookup_coords("New York, NY") expect_equal(is.list(x), TRUE) expect_named(x) expect_true("box" %in% names(x)) } e <- names(Sys.getenv()) g <- grep("google|gmap", e, ignore.case = TRUE, value = TRUE) if (length(g) > 0) { ng <- as.list(rep("", length(g))) names(ng) <- g do.call(Sys.setenv, ng) } expect_error(lookup_coords("London, UK")) })
context("discrete, with delays") test_that("fib", { fib <- function(i, y, p) { y + yprev(i - 1L) } y0 <- 1 i <- 0:10 res <- difeq(y0, i, fib, NULL, n_history = 2, return_step = FALSE) expect_equal(res[1:11], c(1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144)) h <- attr(res, "history") expect_equal(attr(h, "n"), 1L) expect_equal(dim(h), c(2, 2)) res2 <- difeq(y0, i, fib, NULL, return_step = FALSE, n_history = 20) h2 <- attr(res2, "history") expect_equal(dim(h2), c(2, 11)) expect_equal(h2[, 10:11], h, check.attributes = FALSE) }) test_that("prev and output", { growth <- function(i, y, p) { ret <- y + p attr(ret, "output") <- yprev(i - 1L) ret } n <- 5 y0 <- runif(n) p <- runif(n) i <- 0:10 i2 <- seq(0, 10, by = 2) cmp <- t(y0 + outer(p, i)) cmp2 <- t(y0 + outer(p, i2)) res <- difeq(y0, i, growth, p, return_step = FALSE, n_out = 5, n_history = 2L, return_output_with_y = FALSE) expect_equal(res, cmp, check.attributes = FALSE) output <- attr(res, "output") expect_equal(output, rbind(y0, cmp[-nrow(cmp), ], deparse.level = 0)) res2 <- difeq(y0, i2, growth, p, return_step = FALSE, n_out = 5, n_history = 2L, return_output_with_y = FALSE) expect_equal(res2, cmp2, check.attributes = FALSE) output2 <- attr(res2, "output") expect_equal(output2, output[i2 + 1, ]) }) test_that("yprev permutations", { rhs <- function(i, y, p) { iprev <- i - 1 if (p == "one") { for (i in seq_along(y)) { y[i] <- y[i] + yprev(iprev, i) } } else if (p == "idx") { y <- y + yprev(iprev, seq_along(y)) } else { y <- y + yprev(iprev) } y } i <- seq(0:10) y0 <- runif(5) res1 <- difeq(y0, i, rhs, "one", return_initial = TRUE, n_history = 2L) res2 <- difeq(y0, i, rhs, "idx", return_initial = TRUE, n_history = 2L) res3 <- difeq(y0, i, rhs, "all", return_initial = TRUE, n_history = 2L) cmp <- matrix(y0, length(i), length(y0), byrow = TRUE) for (j in 2:length(i)) { cmp[j, ] <- cmp[j - 1, ] + cmp[max(1, j - 2), ] } expect_equal(res1[, -1], cmp, check.attributes = FALSE) expect_equal(res2, res1) expect_equal(res3, res1) }) test_that("yprev invalid input", { rhs <- function(i, y, p) { type <- p$type lag <- p$lag idx <- p$idx iprev <- if (is.numeric(lag)) i - lag else lag if (type == "one") { for (i in seq_along(idx)) { j <- idx[[i]] yp <- yprev(iprev, j) y[j] <- y[j] + yp } } else if (type == "idx") { yp <- yprev(iprev, idx) y[idx] <- y[idx] + yp } else { y <- y + yprev(iprev) } y } i <- seq(0:10) y0 <- runif(5) cmp <- matrix(y0, length(y0), length(i)) for (j in 2:length(i)) { cmp[, j] <- cmp[, j - 1] + cmp[, max(1, j - 2)] } cmp <- t(cmp) p <- list(lag = 1.0, idx = as.numeric(seq_along(y0)), type = "one") res1 <- difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE) expect_equal(res1[, -1], cmp, check.attributes = FALSE) p <- list(lag = 1.0, idx = as.numeric(seq_along(y0)), type = "idx") res1 <- difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE) expect_equal(res1[, -1], cmp, check.attributes = FALSE) p <- list(lag = 1.0, idx = as.numeric(seq_along(y0) + 1), type = "one") expect_error(difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE), "out of bounds") p <- list(lag = 1.0, idx = as.integer(seq_along(y0) + 1L), type = "one") expect_error(difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE), "out of bounds") p <- list(lag = 1.0, idx = "one", type = "one") expect_error(difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE), "Invalid type") p <- list(lag = 1.0, idx = c("one", "two"), type = "idx") expect_error(difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE), "Invalid type") p <- list(lag = - 1.0, type = "one", idx = 1L) expect_error(difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE), "did not find step") p <- list(lag = - 1.0, type = "idx", idx = 1L) expect_error(difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE), "did not find step") p <- list(lag = - 1.0, type = "all") expect_error(difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE), "did not find step") p <- list(lag = NULL, type = "all") expect_error(difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE), "Expected a scalar") p <- list(lag = c(1L, 2L), type = "all") expect_error(difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE), "Expected a scalar") p <- list(lag = "one", type = "all") expect_error(difeq(y0, i, rhs, p, n_history = 2L, return_initial = TRUE), "Expected an integer") }) test_that("integer lag", { growth <- function(i, y, p) { y + yprev(i - 1L) } i <- seq(0:10) y0 <- runif(5) p <- numeric(0) cmp <- matrix(y0, length(y0), length(i)) for (j in 2:length(i)) { cmp[, j] <- cmp[, j - 1] + cmp[, max(1, j - 2)] } cmp <- t(cmp) res <- difeq(y0, i, growth, p, n_history = 2L, return_history = FALSE, return_step = FALSE) expect_equal(res, cmp) res <- difeq(y0, i, "growth", p, n_history = 2L, dllname = "dde_growth_int", return_history = FALSE, return_step = FALSE) expect_equal(res, cmp) }) test_that("restart", { growth <- function(i, y, p) { ret <- y + p attr(ret, "output") <- yprev(i - 5L) ret } n <- 5L y0 <- runif(n) p <- runif(n) tt <- 0:50 tc <- 20 tt1 <- tt[tt <= tc] tt2 <- tt[tt >= tc] cmp <- y0 + outer(p, tt) res <- difeq(y0, tt, growth, p, n_out = n, n_history = 100L, restartable = FALSE) h <- attr(res, "history") expect_null(attr(res, "ptr")) expect_null(attr(res, "restart_data")) res1 <- difeq(y0, tt1, growth, p, n_out = n, n_history = 100L, restartable = TRUE) expect_is(attr(res1, "ptr"), "externalptr") expect_is(attr(res1, "restart_data"), "list") res2 <- difeq_continue(res1, tt2, copy = FALSE) h2 <- attr(res2, "history") expect_equal(h2, h) expect_equal(res2[1, ], res1[nrow(res1), ]) expect_equal(res, rbind(res1, res2[-1, ]), check.attributes = FALSE) }) test_that("change y on restart", { growth <- function(i, y, p) { ret <- y + p attr(ret, "output") <- yprev(i - 5L) ret } n <- 5L y0 <- runif(n) p <- runif(n) tt <- 0:50 tc <- 20 it2 <- tt >= tc tt1 <- tt[tt <= tc] tt2 <- tt[it2] i <- seq_len(n) + 1L j <- i + n res <- difeq(y0, tt, growth, p, n_out = n, n_history = 100L, restartable = FALSE) h <- attr(res, "history") res1 <- difeq(y0, tt1, growth, p, n_out = n, n_history = 100L, restartable = TRUE) y1 <- res1[nrow(res1), i] + 1 res2 <- difeq_continue(res1, tt2, y1, copy = FALSE) h2 <- attr(res2, "history") expect_equal(res2[, 1], res[it2, 1]) expect_equal(res2[, i], res[it2, i] + 1) expect_equal(res[-(1:5), j], res[seq_len(nrow(res) - 5), i]) })
context("test ar_tessellate function") data(ar_stl_wards, package = "areal") unproj <- sf::st_transform(ar_stl_wards, 4326) nonsf <- ar_stl_wards sf::st_geometry(nonsf) <- NULL out <- ar_tessellate(ar_stl_wards) test_that("errors with missing or non-sf data", { expect_error(ar_tessellate(), "An sf object must be specified for `.data`") expect_error(ar_tessellate(nonsf),"An sf object must be specified for `.data`") }) test_that("errors for invalid shape", { expect_error(ar_tessellate(ar_stl_wards, shape = "ham"), "The shape argument must be one of 'square' or 'hexagon'") }) test_that("errors for unprojected data", { expect_error(ar_tessellate(unproj), "Data must be projected in order to tessellate") }) test_that("outputs object of class sf", { expect_s3_class(out, "sf") })
predictdep <- function (knownvalues, dependence, smoothing = c("Uniform", "Beta"),nthreads=2) { smoothing <- match.arg(smoothing) NbKnownObs = dim(knownvalues)[1] SubSampSize = dim(dependence$cop)[1] knownvars = intersect(names(knownvalues), dependence$varnames) if (length(knownvars) == length(dependence$varnames)) return(knownvalues) knownvalues = knownvalues[knownvars] NbKnownDims = length(knownvars) rankknownvalues = knownvalues UnknwonVars = setdiff(dependence$varnames, knownvars) NbUnknwonDims = length(UnknwonVars) knowndims = match(knownvars, dependence$varnames) UnknwonDims = match(UnknwonVars, dependence$varnames) rankpredicted = numeric(NbUnknwonDims * NbKnownObs) for (var in knownvars) { numvar=pmatch(var,dependence$varnames) rankknownvalues[var] = dependence$FdR[[numvar]](unlist(knownvalues[var])) } rankknownvalues = as.numeric(t(as.matrix(rankknownvalues))) epsilon=1/(10*NbKnownObs) rankknownvalues=pmax(0,pmin(1-epsilon,rankknownvalues)) if (smoothing == "Uniform") { rankknownvalues = floor(rankknownvalues * SubSampSize) } else { rankknownvalues = rbinom(length(rankknownvalues), SubSampSize - 1, rankknownvalues) } US = runif(NbKnownObs) rankpredicted = .Call("InterTir", as.integer(NbKnownObs), as.integer(NbKnownDims), as.integer(NbUnknwonDims), as.integer(SubSampSize), as.double(US), as.double(dependence$cop), as.integer(rankknownvalues), as.integer(knowndims - 1), as.integer(UnknwonDims - 1), as.integer(nthreads)) + 1 if (smoothing == "Uniform") { rankpredicted = (rankpredicted + runif(NbKnownObs * NbUnknwonDims) - 1)/SubSampSize } else { rankpredicted = rbeta(NbKnownObs * NbUnknwonDims, rankpredicted, SubSampSize + 1 - rankpredicted) } rankpredicted = as.data.frame(matrix(data = rankpredicted, ncol = NbUnknwonDims, nrow = NbKnownObs, byrow = TRUE)) names(rankpredicted) = UnknwonVars PredictedValues = rankpredicted for (var in UnknwonVars) { numvar=pmatch(var,dependence$varnames) PredictedValues[var] = dependence$FdRinv[[numvar]](unlist(rankpredicted[var])) } pred = cbind(knownvalues, PredictedValues) return(pred) }
test_that("missing values in input are missing in output", { dt <- lazy_dt(tibble(x = c(NA, "a b")), "DT") step <- separate(dt, x, c("x", "y")) out <- collect(step) expect_equal( show_query(step), expr(copy(DT)[, `:=`(!!c("x", "y"), tstrsplit(x, split = "[^[:alnum:]]+"))]) ) expect_equal(out$x, c(NA, "a")) expect_equal(out$y, c(NA, "b")) }) test_that("convert produces integers etc", { dt <- lazy_dt(tibble(x = "1-1.5-FALSE"), "DT") step <- separate(dt, x, c("x", "y", "z"), "-", convert = TRUE) out <- collect(step) expect_equal( show_query(step), expr(copy(DT)[, `:=`(!!c("x", "y", "z"), tstrsplit(x, split = "-", type.convert = TRUE))]) ) expect_equal(out$x, 1L) expect_equal(out$y, 1.5) expect_equal(out$z, FALSE) }) test_that("overwrites existing columns", { dt <- lazy_dt(tibble(x = "a:b"), "DT") step <- dt %>% separate(x, c("x", "y")) out <- collect(step) expect_equal( show_query(step), expr(copy(DT)[, `:=`(!!c("x", "y"), tstrsplit(x, split = "[^[:alnum:]]+"))]) ) expect_equal(step$vars, c("x", "y")) expect_equal(out$x, "a") }) test_that("drops NA columns", { dt <- lazy_dt(tibble(x = c(NA, "a-b", "c-d")), "DT") step <- separate(dt, x, c(NA, "y"), "-") out <- collect(step) expect_equal(step$vars, "y") expect_equal(out$y, c(NA, "b", "d")) }) test_that("checks type of `into` and `sep`", { dt <- lazy_dt(tibble(x = "a:b"), "DT") expect_snapshot( separate(dt, x, "x", FALSE), error = TRUE ) expect_snapshot( separate(dt, x, FALSE), error = TRUE ) }) test_that("only copies when necessary", { dt <- tibble(x = paste(letters[1:3], letters[1:3], sep = "-"), y = 1:3) %>% lazy_dt("DT") step <- dt %>% filter(y < 4) %>% separate(x, into = c("left", "right"), sep = "-") expect_equal( show_query(step), expr(DT[y < 4][, `:=`(!!c("left", "right"), tstrsplit(x, split = "-"))][, .(y, left, right)]) ) })
"fitted.FitARMA" <- function (object, ...) { object$fits }
kz.ft <- function (x, m, ...) { data <- as.vector(x) dots <- list(...) if (hasArg("k")) { k <- dots$k } else { k <- 1 } if (hasArg("n")) { n <- dots$n } else { n <- 1 } if (hasArg("adpt")) { adpt <- dots$adpt } else { adpt <- FALSE } if (hasArg("phase")){ phase <- dots$phase } else { phase <- FALSE } N <- length(data) m <- round(m) if (hasArg("f")) { f <- mapply(FUN=min, dots$f, abs(1-dots$f)) delta <- (2*m*f - floor(2*m*f))/2 if (adpt & any(delta !=0)) { m <- adapt.m(f, m=m, N=N, k=k) } sc <- 1/((m-1)*k+1) } else { f <- seq(0, 1, length = n * m + 1)[-1] sc <- 1 if (!hasArg("phase")) { phase <- FALSE } } if (((m - 1) * k + 1) > length(data)) stop("invalid 'm' & 'k':(m-1)k+1 should be less equal length of data") if (hasArg("p")) { p <- dots$p } else { p <- sc } M <- (m - 1) * k + 1 L <- round(M * p) T <- floor((N - M)/L) + 1 kzft <- array(NA, dim = c(T, length(f))) omega <- 2 * pi * f s <- 0:(M - 1) coef <- kzft::coeff.kzft(m, k) coefft <- coef * exp((-(0+1i)) * s %o% omega) data[is.na(data)] <- 0 for (t in (1:T)) { tmpc <- coef tmpc[is.na(x[((t - 1) * L + 1):((t - 1) * L + M)])] <- 0 kzft[t, ] <- data[((t - 1) * L + 1):((t - 1) * L + M)] %*% (coefft / sum(tmpc)) } phsf <- (2*(m - round(2*m*f)/(2*f)) * f)*pi delta <- sign(phsf)*(1 - cos(phsf)) adset <- which(round(delta,10) != 0 & 2*m*f>=1 & dim(kzft)[1]>=(1/f)) if (length(adset) > 0 & phase & dim(kzft)[1]>6) { value <- rep(0,length(adset)) for (j in adset) { Mok <- ifelse(round(M*f[j]) == M*f[j], M, 2*M) KZFT <- array(NA, dim = c(min(Mok,T), 1)) DATA <- sin(2*f[j]*pi*(1:(2*Mok))) for (t in (1:min(Mok,T))) { KZFT[t, ] <- DATA[((t - 1) * L + 1):((t - 1) * L + M)] %*% coefft[,j] } a <- max(abs(KZFT)) b <- min(abs(KZFT)) ceta <- unique(Arg(KZFT[which(abs(KZFT)==b)])) for (u in 1:3) { ellipse <- fit.CE(KZFT[1:min(Mok,T),1], a0=a, b0=b, ceta=ceta) a <- ellipse$par[1] b <- ellipse$par[2] ceta <- ellipse$par[3] } value[j] <- ellipse$value d <- (a - b)/2 if (d < 0) { ceta <- pi/2 + ceta hash <- kzft[,j] * (cos(-ceta) + sin(-ceta)*1i) hash <- Re(hash)*(0.5/(0.5+abs(d))) + Im(hash)*(0.5/(0.5-abs(d)))*1i kzft[,j] <- hash * (cos(ceta) + sin(ceta)*1i) } } } kzftf <- colMeans(kzft) kzpv <- colMeans(abs(kzft)^2) * M kzp <- rep(0, n * m) plc <- mapply(FUN=max, 1, round(n * m * f)) plc <- mapply(FUN=min, round(n * m / 2), plc) kzp[plc] <- kzpv[1:length(f)] kzp <- kzp[1:round(n * m / 2)] frule <- seq(1/(n * m),1,1/(m * n)) frule <- frule[1:round(n * m/2)] if (length(f) >= length(frule)) { f <- "" } else { if (length(frule[which(kzp>0)])==length(f[order(f)])){ frule[which(kzp>0)] <- f[order(f)] } else { if (length(f)==1) browser() vfv <- round(n * m * f[order(f)])[1:(length(f)-1)] == round(n * m * f[order(f)])[2:length(f)] for (j in (1:(length(f)-1))) { if (vfv[j]) { lf <- length(frule) c(frule[1:which(kzp>0)[j]], frule[which(kzp>0)[j]], frule[(which(kzp>0)[j]+1):lf]) -> frule frule[which(kzp>0)[j]+(0:1)] <- f[order(f)][j:(j+1)] c(kzp[1:which(kzp>0)[j]], kzp[which(kzp>0)[j]], kzp[(which(kzp>0)[j]+1):lf]) -> kzp kzp[which(kzp>0)[j]+(0:1)] <- kzpv[order(f)][j:(j+1)] } else { frule[which(kzp>0)][j] <- f[order(f)][j] } } } } pars <- list(f=f, m=m, n=n, k=k, p=p, adpt=adpt, phase=phase, diff=delta) if (exists("value")) { pars$value <- value; pars$a <- a; pars$b <- b; pars$ceta <- ceta } lst <- list(tfmatrix = kzft, fft = kzftf, f=frule, pg = kzp, pars=pars) return(lst) } kz.ftc <- function (x, m, ...) { data <- as.vector(x) N <- length(data) dots <- list(...) if (hasArg("xt")) { xt <- dots$xt } else { xt <- 1:N } if (hasArg("k")) { k <- dots$k } else { k <- 1 } if (((m - 1) * k + 1) > length(data)) stop("invalid 'm' & 'k':(m-1)k+1 should be less equal length of data") if (hasArg("n")) { n <- dots$n } else { n <- 1 } if (hasArg("f")) { f <- dots$f sc <- 1/(m*k) } else { f <- seq(0, 1, length = n * m + 1)[-1] sc <- 1 } if (hasArg("p")) { p <- dots$p } else { p <- sc } M <- (m - 1) * k + 1 L <- round(M * p) T <- floor((N - M)/L) + 1 kzft <- array(NA, dim = c(T, n * length(f))) coef <- kzft::coeff.kzft(m, k) lbtw <- function(ip, coef) { if (floor(ip)==ceiling(ip)) return(coef[floor(ip)]) ip <- max(min(ip, length(coef)-1),0.00001) coef[floor(ip)+1]*(ceiling(ip)-ip)+coef[ceiling(ip)+1]*(ip-floor(ip)) } for (t in (1:T)) { sr <- which(xt > ((t - 1) * L ) & xt <= ((t - 1) * L + M )) st <- xt[sr] - (t - 1) * L cref <- unlist(sapply(st, FUN=lbtw, coef)) coefft <- exp(-(0+1i) * (st %o% (2 * pi * f))) * cref kzft[t, ] <- data[sr] %*% (coefft / sum(coef)) } kzftf <- colMeans(kzft) kzpv <- colMeans(abs(kzft)^2) * M kzp <- rep(0, n * m) kzp[ round(n * m * f) ] <- kzpv[1:length(f)] kzp <- kzp[1:round(n * m / 2)] frule <- seq(1/(n * m),1,1/(m * n)) frule <- frule[1:round(n * m/2)] lst <- list(tfmatrix = kzft, fft = kzftf, f=frule, pg = kzp) return(lst) } kz.rc2 <- function(ds, f=0.25, m=round(min(dim(ds)/2)), ...) { dots <- list(...) if (hasArg("k")) { k <- dots$k } else { k <- 1 } if (hasArg("edge")) { edge <- dots$edge } else { edge <- FALSE } if (hasArg("plot")) { plot <- dots$plot } else { plot <- FALSE } if (hasArg("angle")) {angle <- dots$angle} else { angle <- 0 } if (hasArg("compare")) {compare <- dots$compare} else { compare <- FALSE } if (hasArg("rlvl")) { rlvl <- dots$rlvl} else { rlvl <- 2 } if (hasArg("avg") ) { avg <- dots$avg } else { if (hasArg("angle")) { avg <- TRUE } else { avg <- FALSE } } agls <- angle%%180 agls <- ifelse(agls >= 180, agls%%180, agls) agls <- ifelse(agls <= -90, agls%%180, agls) agls <- ifelse(agls > 90, agls-180, agls) df <- a2d(ds) Ang <- abs(90*round(angle/90)) for (i in 1:length(agls)) { F1 <- efg(f[i], agls[i], Ang[i]) if (F1 > 0.5) { F1 <- (1 - F1) } xy <- getwave(df, Ang[i]*pi/180)[,1:4] wv <- split(xy$obs,xy$e) xy <- xy[order(xy$e),] rv <- list() for (j in 1:length(wv)) { rv[[j]] <- as.vector(rep(NA, length(wv[[j]]))) if (length(wv[[j]]) < ((m - 1) * k + 1)) next xr <- 2*Re(kz.ft(wv[[j]], m=m, f=F1, k=k, ...)$tf) rv[[j]][1:length(xr)] <- as.vector(xr) } drv <- unlist(rv) xy$xr <- drv if (sum(diff(xy$x)==-1) > sum(diff(xy$x)==1)) { scx = -1 } else { scx = 1} if (sum(diff(xy$y)==-1) > sum(diff(xy$y)==1)) { scy = -1 } else { scy = 1} mtxr <- df2mt(xy[,c(1,2,5)], scale=c(1,1)) if (avg) { xyz <- getwavf(xy[,c(1,2,5)], (agls[i]-90)*pi/180, f[i], rlvl) drv <- aggregate(xyz$xr, by=list(xyz$e), FUN=mean, na.rm=T) names(drv) <- c("e","avg") xyz <- merge(xyz, drv, all=TRUE) mtxr2 <- df2mt(xyz[,c(2,3,5)], scale=c(1,1)) } if (i==1) { if (avg) { ds2 <- mtxr2 } else { ds2 <- mtxr } } else { if (avg) { ds2 <- ds2 + mtxr2 } else { ds2 <- ds2 + mtxr } } } if (!edge) { M <- (m-1)*k dx <- dim(ds2)[1]-M dy <- dim(ds2)[2]-M ds2 <- ds2[(1:dx)+(1-scx)*M/2, (1:dy)+(1-scy)*M/2] } dx <- dim(ds2)[1] dy <- dim(ds2)[2] if (plot) { txt1 <- toString(paste(round(angle[i],2), enc2utf8("\xB0"), " ",sep="")) txt2 <- paste("f=", toString(paste(round(f,3))),sep="") if (compare) { dev.new(); graphics::image(x=1:dx, y=1:dy, z=ds[1:dx,1:dy]) graphics::box(); graphics::title("Signal") mtext(paste(txt2, ", d=", txt1, sep=""), cex=0.75, line=0.2) } dev.new(); graphics::image(x=1:dx, y=1:dy, z=ds2) graphics::box(); graphics::title("Reconstruction") mtext(paste(txt2, ", d=", txt1, sep=""), cex=0.75, line=0.2) } return(ds2) }
expected <- eval(parse(text="c(TRUE, TRUE)")); test(id=0, code={ argv <- eval(parse(text="list(c(30000L, 100000L), c(30000, 1e+05))")); do.call(`==`, argv); }, o=expected);
predict.pmtree <- function(object, newdata = NULL, type = "node", predict_args = list(), perm = NULL, ...) { if(is.numeric(perm)) perm <- names(object$data)[perm] node <- predict.party(object, newdata = newdata, type = "node", perm = perm, ...) if(type == "node") return(node) if(is.null(newdata)) newdata <- object$data if(type %in% c("pass", "coef")) { trdatnodes <- object$fitted["(fitted)"] unode <- sort(unique(node)) newdata$.node <- node newdata$.id <- seq_len(NROW(newdata)) prfun <- function(nd, type = "pass") { mod <- update(object$info$model, subset = (trdatnodes == nd), data = object$data) if(type == "coef") { data.frame(t(coef(mod)), .id = newdata$.id[newdata$.node == nd], check.names = FALSE) } else { args <- c(list(object = mod, newdata = newdata[newdata$.node == nd, ]), predict_args) pred <- do.call(predict, args = args) data.frame(pred, .id = newdata$.id[newdata$.node == nd]) } } pr <- lapply(unode, prfun, type = type) pr <- do.call(rbind, pr) pred <- pr[order(pr$.id), ] pred$.id <- NULL return(pred) } } objfun.pmtree <- function(x, newdata = NULL, weights = NULL, perm = NULL, sum = FALSE, ...) { which_node <- predict(x, type = "node", newdata = newdata, perm = perm, ...) if(!is.null(perm) & is.null(newdata)) newdata <- x$data tnodes <- unique(which_node) mods <- nodeapply(x, ids = tnodes, FUN = function(n) n$info$object) if(sum) { if(!is.null(weights) & is.null(newdata)) { newdata <- x$data } get_objfun_node_unordered <- function(nd) { wn <- (which_node == nd) & !is.na(which_node) sum(objfun(mods[[as.character(nd)]], newdata = newdata[wn, ], weights = weights[wn])) } return(sum(sapply(tnodes, get_objfun_node_unordered))) } else { if(is.null(newdata)) newdata <- x$data w_n_char <- as.character(which_node) get_objfun_node <- function(i) { objfun(mods[[w_n_char[i]]], newdata[i, ], weights = weights[i]) } return(sapply(seq_len(NROW(newdata)), get_objfun_node)) } } logLik.pmtree <- function(object, dfsplit = 0, newdata = NULL, weights = NULL, perm = NULL, ...) { dfs <- (length(object) - width(object)) * dfsplit df <- NULL if (is.null(newdata) && is.null(perm) && is.null(weights)) { ids <- nodeids(object, terminal = TRUE) info <- nodeapply(object, ids = ids, function(x) x$info) ll <- lapply(info, function(x) tryCatch(logLik(x$object), error = function(err) NA)) ndf <- sapply(ll, function(x) attr(x, "df")) if(!any(sapply(ndf, is.null))) df <- sum(ndf) + dfs } else { if(class(object$info$model)[1] == "lm") stop("logLik not yet implemented for lm. Try objfun(..., sum = TRUE).") ll <- objfun(x = object, newdata = newdata, weights = weights, perm = perm, sum = TRUE, ...) df <- NA } nobs <- ifelse(!is.null(weights), sum(weights), ifelse(is.null(newdata), object$nobs, nrow(newdata))) structure( sum(as.numeric(ll)), df = df, nobs = nobs, class = "logLik" ) } print.pmtree <- function(x, node = NULL, FUN = NULL, digits = getOption("digits") - 4L, footer = TRUE, ...) { digits <- max(c(0, digits)) title <- paste("Partitioned model:\n", paste(deparse(getCall(x$info$model)), sep = "\n", collapse = "\n"), "\nPartitioning variables:", deparse(x$info$zformula)) if(is.null(node)) { header_panel <- function(party) "" footer_panel <- if(footer) function(party) { n <- width(party) n <- format(c(length(party) - n, n)) info <- nodeapply(x, ids = nodeids(x, terminal = TRUE), FUN = function(n) c(length(info_node(n)$coefficients), info_node(n)$objfun)) k <- mean(sapply(info, "[", 1L)) of <- format(sum(sapply(info, "[", 2L)), digits = getOption("digits")) c("", paste("Number of inner nodes: ", n[1L]), paste("Number of terminal nodes:", n[2L]), paste("Number of parameters per node:", format(k, digits = getOption("digits"))), paste("Objective function: ", of, sep = ""), "") } else function (party) "" if(is.null(FUN)) { FUN <- function(x) c(sprintf(": n = %s", x$nobs), capture.output(print(x$coefficients))) } terminal_panel <- function(node) formatinfo_node(node, default = "*", prefix = NULL, FUN = FUN) print.party(x, terminal_panel = terminal_panel, header_panel = header_panel, footer_panel = footer_panel, ...) } else { node <- as.integer(node) info <- nodeapply(x, ids = node, FUN = function(n) info_node(n)[c("coefficients", "objfun", "criterion")]) for(i in seq_along(node)) { if(i == 1L) { cat(paste(title, "\n", collapse = "")) } else { cat("\n") } cat(sprintf("-- Node %i --\n", node[i])) cat("\nEstimated parameters:\n") print(info[[i]]$coefficients) cat(sprintf("\nObjective function:\n%s\n", format(info[[i]]$objfun))) cat("\nParameter instability tests:\n") print(info[[i]]$criterion) } } invisible(x) } summary.pmtree <- function(object, node = NULL, ...) { ids <- if(is.null(node)) nodeids(object, terminal = TRUE) else node info <- nodeapply(object, ids = ids, function(x) x$info) coefs <- sapply(info, function(x) x$coefficients) colnames(coefs) <- paste("node", colnames(coefs)) objfuns <- sapply(info, function(x) x$objfun) if(is.null(node)) { brobjf <- paste0("(", round(objfuns, 2), ")") sobjf <- paste(brobjf, collapse = " + ") objfs <- paste(sobjf, "=", round(sum(objfuns), 2)) } else { objfs <- objfuns names(objfs) <- paste("node", ids) } cl <- getCall(object$info$model) nobs <- sapply(info, function(x) x$nobs) nullnobs <- sapply(nobs, is.null) if(1 %in% ids & any(nullnobs)) nobs[nullnobs] <- object$nobs names(nobs) <- paste("node", ids) ret <- list(ids = ids, call = cl, coefs = coefs, objfs = objfs, nobs = nobs) class(ret) <- "summary.pmtree" return(ret) } print.summary.pmtree <- function(x, digits = 4, ...) { cat("Stratified model for node(s)", paste(x$ids, collapse = ", ")) cat("\n\nModel call:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"), "\n\n", sep = "") cat("Coefficients:\n") print(x$coefs, digits = digits) cat("\nNumber of obervations:\n") print(unlist(x$nobs)) cat("\nObjective function:\n") if(is.character(x$objfs)) cat(x$objfs) else { print(x$objfs) } } coef.pmtree <- function(object, node = NULL, ...) { ids <- if(is.null(node)) nodeids(object, terminal = TRUE) else node info <- nodeapply(object, ids = ids, function(x) x$info) t(sapply(info, function(x) x$coefficients)) }
prevsymbol_fn = function(genes, data, abs,filename, terms) {indices = NULL; for (i in 1:dim(genes)[1]){indices = c(indices,which(genes[i,1] == data[,2])) } data_theme <- data[indices,] prevsymbol = NULL;for (i in 1:dim(genes)[1]){ prevsymbol = c(prevsymbol, list(unlist(strsplit(as.character(data_theme[i,11]),"|",fixed=T)))) } result_genes_prevsymbol = NULL; for (i in 1:dim(genes)[1]){if ( !is.na(prevsymbol[[i]][1]) ) {for (j in 1:length(prevsymbol[[i]])) result_genes_prevsymbol = Give_Sentences(prevsymbol[[i]][j],abs) ; if (length(result_genes_prevsymbol) != 0) {print(c(i,j));write(paste(">>",data_theme[i,2],prevsymbol[[i]][j],sep=" "), file = paste(filename,"prevsymbol.txt",sep=""), append=T); for (k in 1:length(result_genes_prevsymbol)){for(l in 1: length(result_genes_prevsymbol[[k]])) {temp = result_genes_prevsymbol[[k]][l]; for(s in 1:length(terms)){temp1 = regexpr(terms[s],temp);if (temp1 != -1) write(c(attr(result_genes_prevsymbol,"PMID")[k],temp), file = paste(filename,"prevsymbol.txt",sep=""),append=T)} }}} }} }
HierarchicalBetaCreate <- function(n, priorParameters, hyperPriorParameters, alphaPrior, maxT, gammaPrior, mhStepSize, num_sticks) { mdobj_beta <- BetaMixtureCreate(priorParameters, mhStepSize = mhStepSize, maxT = maxT, hyperPriorParameters = hyperPriorParameters) class(mdobj_beta) <- c("hierarchical", "beta", "nonconjugate") gammaParam <- rgamma(1, gammaPrior[1], gammaPrior[2]) theta_k <- PriorDraw.beta(mdobj_beta, num_sticks) beta_k <- StickBreaking(gammaParam, num_sticks) mdobj_beta$theta_k <- theta_k mdobj_beta$beta_k <- beta_k mdobj_beta$gamma <- gammaParam mdobj_list <- vector("list", n) for (i in seq_len(n)) { mdobj_beta$alpha <- rgamma(1, alphaPrior[1], alphaPrior[2]) mdobj_beta$pi_k <- draw_gj(mdobj_beta$alpha, beta_k) mdobj_list[[i]] <- mdobj_beta } return(mdobj_list) }
testthat::test_that("ClassWeightedVoting: initialize function works", { cutoff <- 0.5 weights <- c(0.6, 0.5) testthat::expect_is(ClassWeightedVoting$new(cutoff = cutoff, weights = weights), "ClassWeightedVoting") }) testthat::test_that("ClassWeightedVoting: getWeights function works", { cutoff <- 0.5 weights <- c(0.6, 0.5) testthat::expect_equal(ClassWeightedVoting$new(cutoff = cutoff, weights = weights)$getWeights(), weights) }) testthat::test_that("ClassWeightedVoting: setWeights function works", { cutoff <- 0.5 weights <- c(0.6, 0.5) testthat::expect_silent(ClassWeightedVoting$new(cutoff = cutoff, weights = weights)$setWeights(weights = weights)) }) testthat::test_that("ClassWeightedVoting: setWeights function checks parameter type", { cutoff <- 0.5 weights <- c(0.6, 0.5) testthat::expect_message(ClassWeightedVoting$new(cutoff = cutoff, weights = weights)$setWeights(weights = NULL), "[ClassWeightedVoting][WARNING] Weights values not changed due to inconsistency error", fixed = TRUE) }) testthat::test_that("ClassWeightedVoting: execute function works", { cutoff <- 0.5 weights <- c(0.6, 0.5) voting <- ClassWeightedVoting$new(cutoff = cutoff, weights = weights) predictions <- readRDS(file.path("resourceFiles", "testVotings", "predictions.rds")) predictions$add(prediction = predictions$get(1)) verbose <- TRUE testthat::expect_message(voting$execute(predictions = predictions, verbose = verbose), "[ClassWeightedVoting][WARNING] Weight values are missing or incorrect. Assuming default model performance values", fixed = TRUE) testthat::expect_message(voting$execute(predictions = predictions, verbose = verbose), "[ClassWeightedVoting][INFO] Performing voting with '~0.5486, ~0.3824, ~0.3854, ~0.5486' weights and cutoff of 0.5", fixed = TRUE) }) testthat::test_that("ClassWeightedVoting: execute function checks parameter type", { cutoff <- 0.5 weights <- c(0.6, 0.5) voting <- ClassWeightedVoting$new(cutoff = cutoff, weights = weights) testthat::expect_error(voting$execute(predictions = NULL, verbose = FALSE), "[ClassWeightedVoting][FATAL] Predictions parameter must be defined as 'ClusterPrediction' type. Aborting...", fixed = TRUE) predictions <- ClusterPredictions$new(class.values = c(1, 0, 1, 1), positive.class = 1) testthat::expect_error(voting$execute(predictions = predictions, verbose = FALSE), "[ClassWeightedVoting][FATAL] Cluster predictions were not computed. Aborting...", fixed = TRUE) })
ci.mean1 <- function(alpha, m, sd, n) { df <- n - 1 tcrit <- qt(1 - alpha/2, df) se <- sd/sqrt(n) ll <- m - tcrit*se ul <- m + tcrit*se out <- t(c(m, se, ll, ul)) colnames(out) <- c("Estimate", "SE", "LL", "UL") return(out) } ci.stdmean1 <- function(alpha, m, sd, n, h) { z <- qnorm(1 - alpha/2) df <- n - 1 adj <- 1 - 3/(4*df - 1) est <- (m - h)/sd estu <- adj*est se <- sqrt(est^2/(2*df) + 1/df) ll <- est - z*se ul <- est + z*se out <- t(c(estu, se, ll, ul)) colnames(out) <- c("Estimate", "SE", "LL", "UL") return(out) } ci.mean2 <- function(alpha, m1, m2, sd1, sd2, n1, n2) { df1 <- n1 + n2 - 2 est <- m1 - m2 v1 <- sd1^2 v2 <- sd2^2 vp <- ((n1 - 1)*v1 + (n2 - 1)*v2)/df1 se1 <- sqrt(vp/n1 + vp/n2) t1 <- est/se1 p1 <- 2*(1 - pt(abs(t1),df1)) tcrit1 <- qt(1 - alpha/2, df1) ll1 <- est - tcrit1*se1 ul1 <- est + tcrit1*se1 se2 <- sqrt(v1/n1 + v2/n2) t2 <- est/se2 df2 <- (se2^4)/(v1^2/(n1^3 - n1^2) + v2^2/(n2^3 - n2^2)) p2 <- 2*(1 - pt(abs(t2),df2)) tcrit2 <- qt(1 - alpha/2, df2) ll2 <- est - tcrit2*se2 ul2 <- est + tcrit2*se2 out1 <- t(c(est, se1, t1, df1, p1, ll1, ul1)) out2 <- t(c(est, se2, t2, df2, p2, ll2, ul2)) out <- rbind(out1, out2) colnames(out) <- c("Estimate", "SE", "t", "df", "p", "LL", "UL") rownames(out) <- c("Equal Variances Assumed:", "Equal Variances Not Assumed:") return(out) } ci.lc.mean.bs <- function(alpha, m, sd, n, v) { est <- t(v)%*%m k <- length(m) df1 <- sum(n) - k v1 <- sum((n - 1)*sd^2)/df1 se1 <- sqrt(v1*t(v)%*%solve(diag(n))%*%v) t1 <- est/se1 p1 <- 2*(1 - pt(abs(t1),df1)) tcrit1 <- qt(1 - alpha/2, df1) ll1 <- est - tcrit1*se1 ul1 <- est + tcrit1*se1 v2 <- diag(sd^2)%*%(solve(diag(n))) se2 <- sqrt(t(v)%*%v2%*%v) t2 <- est/se2 df2 <- (se2^4)/sum(((v^4)*(sd^4)/(n^2*(n - 1)))) p2 <- 2*(1 - pt(abs(t2),df2)) tcrit2 <- qt(1 - alpha/2, df2) ll2 <- est - tcrit2*se2 ul2 <- est + tcrit2*se2 out1 <- t(c(est, se1, t1, df1, p1, ll1, ul1)) out2 <- t(c(est, se2, t2, df2, p2, ll2, ul2)) out <- rbind(out1, out2) colnames(out) <- c("Estimate", "SE", "t", "df", "p", "LL", "UL") rownames(out) <- c("Equal Variances Assumed:", "Equal Variances Not Assumed:") return(out) } ci.tukey <-function(alpha, m, sd, n) { a <- length(m) v1 <- sd^2/n v2 <- sd^4/(n^2*(n - 1)) mean <- outer(m, m, '-') diff <- (-1)*mean[lower.tri(mean)] v1 <- outer(v1, v1, "+") v2 <- outer(v2, v2, "+") df = v1^2/v2 df <- df[lower.tri(df)] SE <- sqrt(v1[lower.tri(v1)]) t <- diff/SE q <- qtukey(p = 1 - alpha, nmeans = a, df = df)/sqrt(2) p <- 1 - ptukey(sqrt(2)*abs(t), nmeans = a, df = df) p <- round(p*1000)/1000 LL <- diff - q*SE UL <- diff + q*SE pair <- t(combn(seq(1:a), 2)) out <- cbind(pair, diff, SE, t, df, p, LL, UL) rownames(out) <- rep("", a*(a - 1)/2) return(out) } ci.ratio.mean2 <- function(alpha, y1, y2){ n1 <- length(y1) n2 <- length(y2) m1 <- mean(y1) m2 <- mean(y2) v1 <- var(y1) v2 <- var(y2) var <- v1/(n1*m1^2) + v2/(n2*m2^2) df <- var^2/(v1^2/(m1^4*(n1^3 - n1^2)) + v2^2/(m2^4*(n2^3 - n2^2))) tcrit <- qt(1 - alpha/2, df) est <- log(m1/m2) se <- sqrt(var) ll <- exp(est - tcrit*se) ul <- exp(est + tcrit*se) out <- t(c(m1, m2, exp(est), ll, ul)) colnames(out) <- c("Mean1", "Mean2", "Mean1/Mean2", "LL", "UL") return(out) } ci.stdmean2 <- function(alpha, m1, m2, sd1, sd2, n1, n2) { z <- qnorm(1 - alpha/2) v1 <- sd1^2 v2 <- sd2^2 df1 <- n1 - 1 df2 <- n2 - 1 df3 <- n1 + n2 - 2 adj1 <- 1 - 3/(4*df1 - 1) adj2 <- 1 - 3/(4*df2 - 1) adj3 <- 1 - 3/(4*df3 - 1) s <- sqrt((v1 + v2)/2) sp <- sqrt((df1*v1 + df2*v2)/df3) est1 <- (m1 - m2)/s est1u <- adj3*est1 se1 <- sqrt(est1^2*(v1^2/df1 + v2^2/df2)/(8*s^4) + (v1/df1 + v2/df2)/s^2) ll1 <- est1 - z*se1 ul1 <- est1 + z*se1 est2 <- (m1 - m2)/sp est2u <- adj3*est2 se2 <- sqrt(est2^2*(1/df1 + 1/df2)/8 + (v1/n1 + v2/n2)/sp^2) ll2 <- est2 - z*se2 ul2 <- est2 + z*se2 est3 <- (m1 - m2)/sd1 est3u <- adj1*est3 se3 <- sqrt(est3^2/(2*df1) + 1/df1 + v2/(df2*v1)) ll3 <- est3 - z*se3 ul3 <- est3 + z*se3 est4 <- (m1 - m2)/sd2 est4u <- adj2*est4 se4 <- sqrt(est4^2/(2*df2) + 1/df2 + v1/(df1*v2)) ll4 <- est4 - z*se4 ul4 <- est4 + z*se4 out1 <- t(c(est1u, se1, ll1, ul1)) out2 <- t(c(est2u, se2, ll2, ul2)) out3 <- t(c(est3u, se3, ll3, ul3)) out4 <- t(c(est4u, se4, ll4, ul4)) out <- rbind(out1, out2, out3, out4) colnames(out) <- c("Estimate", "SE", "LL", "UL") rownames1 <- c("Unweighted standardizer:", "Weighted standardizer:") rownames2 <- c("Group 1 standardizer:", "Group 2 standardizer:") rownames(out) <- c(rownames1, rownames2) return(out) } ci.stdmean.strat <- function(alpha, m1, m2, sd1, sd2, n1, n2, p1) { z <- qnorm(1 - alpha/2) v1 <- sd1^2 v2 <- sd2^2 df1 <- n1 - 1 df2 <- n2 - 1 df3 <- n1 + n2 - 2 adj1 <- 1 - 3/(4*df1 - 1) adj2 <- 1 - 3/(4*df2 - 1) adj3 <- 1 - 3/(4*df3 - 1) s <- sqrt(p1*v1 + (1 - p1)*v2) est1 <- (m1 - m2)/s est1u <- adj3*est1 se1 <- sqrt(est1^2*(1/df1 + 1/df2)/8 + (v1/n1 + v2/n2)/s^2) ll1 <- est1 - z*se1 ul1 <- est1 + z*se1 est3 <- (m1 - m2)/sd1 est3u <- adj1*est3 se3 <- sqrt(est3^2/(2*df1) + 1/df1 + v2/(df2*v1)) ll3 <- est3 - z*se3 ul3 <- est3 + z*se3 est4 <- (m1 - m2)/sd2 est4u <- adj2*est3 se4 <- sqrt(est4^2/(2*df2) + 1/df2 + v1/(df1*v2)) ll4 <- est4 - z*se4 ul4 <- est4 + z*se4 out1 <- t(c(est1u, se1, ll1, ul1)) out3 <- t(c(est3u, se3, ll3, ul3)) out4 <- t(c(est4u, se4, ll4, ul4)) out <- rbind(out1, out3, out4) colnames(out) <- c("Estimate", "SE", "LL", "UL") rownames1 <- c("Weighted standardizer:") rownames2 <- c("Group 1 standardizer:", "Group 2 standardizer:") rownames(out) <- c(rownames1, rownames2) return(out) } ci.lc.stdmean.bs <- function(alpha, m, sd, n, v) { z <- qnorm(1 - alpha/2) var <- sd^2 a <- length(m) s <- sqrt(sum(var)/a) df <- sum(n) - a adj <- 1 - 3/(4*df - 1) sp <- sqrt(sum((n - 1)*var)/df) est1 <- (t(v)%*%m)/s est2 <- (t(v)%*%m)/sp est1u <- adj*est1 est2u <- adj*est2 a1 <- est1^2/(2*a^2*s^4) a2 <- a1*sum((var^2/(n - 1))) a3 <- sum((v^2*var/(n - 1)))/s^2 se1 <- sqrt(a2 + a3) ll1 <- est1 - z*se1 ul1 <- est1 + z*se1 a1 <- est2^2/(2*a^2) a2 <- a1*sum(1/(n - 1)) a3 <- sum((v^2*var/n))/sp^2 se2 <- sqrt(a2 + a3) ll2 <- est2 - z*se2 ul2 <- est2 + z*se2 out1 <- t(c(est1u, se1, ll1, ul1)) out2 <- t(c(est2u, se2, ll2, ul2)) out <- rbind(out1, out2) colnames(out) <- c("Estimate", "SE", "LL", "UL") rownames(out) <- c("Unweighted standardizer:", "Weighted standardizer:") return(out) } ci.mean.ps <- function(alpha, m1, m2, sd1, sd2, cor, n) { df <- n - 1 tcrit <- qt(1 - alpha/2, df) vd <- sd1^2 + sd2^2 - 2*cor*sd1*sd2 est <- m1 - m2 se <- sqrt(vd/n) t <- est/se p <- 2*(1 - pt(abs(t), df)) ll <- est - tcrit*se ul <- est + tcrit*se out <- t(c(est, se, t, df, p, ll, ul)) colnames(out) <- c("Estimate", "SE", "t", "df", "p","LL", "UL") return(out) } ci.ratio.mean.ps <- function(alpha, y1, y2){ n <- length(y1) m1 <- mean(y1) m2 <- mean(y2) v1 <- var(y1) v2 <- var(y2) cor <- cor(y1,y2) var <- (v1/m1^2 + v2/m2^2 - 2*cor*sqrt(v1*v2)/(m1*m2))/n df <- n - 1 tcrit <- qt(1 - alpha/2, df) est <- log(m1/m2) se <- sqrt(var) ll <- exp(est - tcrit*se) ul <- exp(est + tcrit*se) out <- t(c(m1, m2, exp(est), ll, ul)) colnames(out) <- c("Mean1", "Mean2", "Mean1/Mean2", "LL", "UL") return(out) } ci.stdmean.ps <- function(alpha, m1, m2, sd1, sd2, cor, n) { z <- qnorm(1 - alpha/2) s <- sqrt((sd1^2 + sd2^2)/2) df <- n - 1 v1 <- sd1^2 v2 <- sd2^2 adj1 <- sqrt((n - 2)/df) adj2 <- 1 - 3/(4*df - 1) vd <- v1 + v2 - 2*cor*sd1*sd2 est1 <- (m1 - m2)/s est1u <- adj1*est1 se1 <- sqrt(est1^2*(v1^2 + v2^2 + 2*cor^2*v1*v2)/(8*df*s^4) + vd/(df*s^2)) ll1 <- est1 - z*se1 ul1 <- est1 + z*se1 est3 <- (m1 - m2)/sd1 est3u <- adj2*est3 se3 <- sqrt(est3^2/(2*df) + vd/(df*v1)) ll3 <- est3 - z*se3 ul3 <- est3 + z*se3 est4 <- (m1 - m2)/sd2 est4u <- adj2*est4 se4 <- sqrt(est4^2/(2*df) + vd/(df*v2)) ll4 <- est4 - z*se4 ul4 <- est4 + z*se4 out1 <- t(c(est1u, se1, ll1, ul1)) out3 <- t(c(est3u, se3, ll3, ul3)) out4 <- t(c(est4u, se4, ll4, ul4)) out <- rbind(out1, out3, out4) colnames(out) <- c("Estimate", "SE", "LL", "UL") rownames1 <- c("Unweighted standardizer:") rownames2 <- c("Measurement 1 standardizer:", "Measurement 2 standardizer:") rownames(out) <- c(rownames1, rownames2) return(out) } ci.lc.stdmean.ws <- function(alpha, m, sd, cor, n, q) { z <- qnorm(1 - alpha/2) a <- length(m) df <- n - 1 adj <- sqrt((n - 2)/df) s <- sqrt(sum(sd^2)/a) est <- (t(q)%*%m)/s estu <- adj*est v1 <- est^2/(2*a^2*s^4*df) v2 <- sum(sd^4) v3 <- cor^2*t(sd^2)%*%sd^2 v4 <- sum(q^2*sd^2) v5 <- cor*t(q*sd)%*%(q*sd) se <- sqrt(v1*(v2 + v3) + (v4 - v5)/(df*s^2)) ll <- est - z*se ul <- est + z*se out <- t(c(estu, se, ll, ul)) colnames(out) <- c("Estimate", "SE", "LL", "UL") return(out) } ci.mad1 <- function(alpha, y) { n <- length(y) z <- qnorm(1 - alpha/2) c <- n/(n - 1) median <- median(y) mad <- mean(abs(y - median)) skw <- (mean(y) - median)/mad kur <- (sd(y)/mad)^2 se <- sqrt((skw^2 + kur - 1)/n) ll <- exp(log(c*mad) - z*se) ul <- exp(log(c*mad) + z*se) out <- t(c(c*mad, ll, ul)) colnames(out) <- c("MAD", "LL", "UL") return(out) } ci.ratio.mad2 <- function(alpha, y1, y2) { z <- qnorm(1 - alpha/2) n1 <- length(y1) c1 <- n1/(n1 - 1) n2 <- length(y2) c2 <- n2/(n2 - 1) median1 <- median(y1) median2 <- median(y2) mad1 <- mean(abs(y1 - median1)) skw1 <- (mean(y1) - median1)/mad1 kur1 <- (sd(y1)/mad1)^2 var1 <- (skw1^2 + kur1 - 1)/n1 mad2 <- mean(abs(y2 - median2)) skw2 <- (mean(y2) - median2)/mad2 kur2 <- (sd(y2)/mad2)^2 var2 <- (skw2^2 + kur2 - 1)/n2 se <- sqrt(var1 + var2) c <- c1/c2 est <- mad1/mad2 ll <- exp(log(c*est) - z*se) ul <- exp(log(c*est) + z*se) out <- t(c(c1*mad1, c2*mad2, c*est, ll, ul)) colnames(out) <- c("MAD1", "MAD2", "MAD1/MAD2", "LL", "UL") return(out) } ci.ratio.mad.ps <- function(alpha, y1, y2) { z <- qnorm(1 - alpha/2) n <- length(y1); c <- n/(n - 1) median1 <- median(y1); median2 <- median(y2); mad1 <- mean(abs(y1 - median1)) skw1 <- (mean(y1) - median1)/mad1 kur1 <- (sd(y1)/mad1)^2 var1 <- (skw1^2 + kur1 - 1)/n mad2 <- mean(abs(y2 - median2)) skw2 <- (mean(y2) - median2)/mad2 kur2 <- (sd(y2)/mad2)^2 var2 <- (skw2^2 + kur2 - 1)/n d1 <- abs(y1 - median1); d2 <- abs(y2 - median2) cor <- cor(d1, d2) se <- sqrt(var1 + var2 - 2*cor*sqrt(var1*var2)) est <- mad1/mad2 ll <- exp(log(est) - z*se) ul <- exp(log(est) + z*se) out <- t(c(c*mad1, c*mad2, est, ll, ul)) colnames(out) <- c("MAD1", "MAD2", "MAD1/MAD2", "LL", "UL") return(out) } ci.cod1 <-function(alpha, y) { z = qnorm(1 - alpha/2) n = length(y) c = n/(n - 1) a1 = round((n + 1)/2 - sqrt(n)) b1 = n - a1 + 1 med = median(y) m = mean(y) v = var(y) tau = mean(abs(y - med)) del = (m - med)/tau gam = v/tau^2 cod = tau/med y = sort(y) vareta = ((log(y[a1]) - log(y[b1]))/4)^2 se1 = sqrt(vareta) vartau = (gam + del^2 - 1)/n se2 = sqrt(vartau) cov = del*se1/sqrt(n) k = sqrt(vareta + vartau - 2*cov)/(se1 + se2) a2 = round((n + 1)/2 - k*z*sqrt(n/4)) b2 = n - a2 + 1 L2 = log(y[a2]) U2 = log(y[b2]) L1 = log(c*tau) - k*z*se2 U1 = log(c*tau) + k*z*se2 LL = exp(L1 - U2) UL = exp(U1 - L2) out = t(c(cod, LL, UL)) colnames(out) = c("COD", "LL", "UL") return(out) } ci.median1 <- function(alpha, y) { n <- length(y) y <- sort(y) z <- qnorm(1 - alpha/2) median <- median(y) c1 <- round((n - z*sqrt(n))/2) if (c1 < 1) {c1 = 1} ll <- y[c1] ul <- y[n - c1 + 1] a <- round((n + 1)/2 - sqrt(n)) if (a < 1) {a = 1} ll1 <- y[a] ul1 <- y[n - a + 1] p <- pbinom(a - 1, size = n, prob = .5) z0 <- qnorm(1 - p) se <- (ul1 - ll1)/(2*z0) out <- t(c(median, se, ll, ul)) colnames(out) <- c("Median", "SE", "LL", "UL") return(out) } ci.median2 <- function(alpha, y1, y2) { z <- qnorm(1 - alpha/2) n1 <- length(y1) y1 <- sort(y1) n2 <- length(y2) y2 <- sort(y2) median1 <- median(y1) median2 <- median(y2) a1 <- round(n1/2 - sqrt(n1)) if (a1 < 1) {a1 = 1} l1 <- y1[a1] u1 <- y1[n1 - a1 + 1] p <- pbinom(a1 - 1, size = n1, prob = .5) z0 <- qnorm(1 - p) se1 <- (u1 - l1)/(2*z0) a2 <- round(n2/2 - sqrt(n2)) if (a2 < 1) {a2 = 1} l2 <- y2[a2] u2 <- y2[n2 - a2 + 1] p <- pbinom(a2 - 1, size = n2, prob = .5) z0 <- qnorm(1 - p) se2 <- (u2 - l2)/(2*z0) diff <- median1 - median2 se <- sqrt(se1^2 + se2^2) ll <- diff - z*se ul <- diff + z*se out <- t(c(median1, median2, diff, se, ll, ul)) colnames(out) <- c("Median1", "Median2", "Median1-Median2", "SE", "LL", "UL") return(out) } ci.ratio.median2 <- function(alpha, y1, y2) { z <- qnorm(1 - alpha/2) n1 <- length(y1) y1 <- sort(y1) n2 <- length(y2) y2 <- sort(y2) median1 <- median(y1) median2 <- median(y2) a1 <- round(n1/2 - sqrt(n1)) if (a1 < 1) {a1 = 1} l1 <- log(y1[a1]) u1 <- log((y1[n1 - a1 + 1])) p <- pbinom(a1 - 1, size = n1, prob = .5) z0 <- qnorm(1 - p) se1 <- (u1 - l1)/(2*z0) a2 <- round(n2/2 - sqrt(n2)) if (a2 < 1) {a2 = 1} l2 <- log(y2[a2]) u2 <- log((y2[n2 - a2 + 1])) p <- pbinom(a2 - 1, size = n2, prob = .5) z0 <- qnorm(1 - p) se2 <- (u2 - l2)/(2*z0) se <- sqrt(se1^2 + se2^2) diff <- log(median1) - log(median2) ll <- exp(diff - z*se) ul <- exp(diff + z*se) out <- t(c(median1, median2, exp(diff), ll, ul)) colnames(out) <- c("Median1", "Median2", "Median1/Median2", "LL", "UL") return(out) } ci.lc.median.bs <- function(alpha, m, se, v) { est <- t(v)%*%m se <- sqrt(t(v)%*%diag(se^2)%*%v) zcrit <- qnorm(1 - alpha/2) ll <- est - zcrit*se ul <- est + zcrit*se out <- t(c(est, se, ll, ul)) colnames(out) <- c("Estimate", "SE", "LL", "UL") return(out) } ci.median.ps <- function(alpha, y1, y2) { z <- qnorm(1 - alpha/2) n <- length(y1) median1 <- median(y1) median2 <- median(y2) a1 <- (y1 < median1) a2 <- (y2 < median2) a3 <- a1 + a2 a4 <- sum(a3 == 2) a <- round(n/2 - sqrt(n)) if (a < 1) {a = 1} p <- pbinom(a - 1, size = n, prob = .5) z0 <- qnorm(1 - p) y1 <- sort(y1) y2 <- sort(y2) L1 <- y1[a] U1 <- y1[n - a + 1] se1 <- (U1 - L1)/(2*z0) L2 <- y2[a] U2 <- y2[n - a + 1] se2 <- (U2 - L2)/(2*z0) if (n/2 == trunc(n/2)) { p00 <- (sum(a4) + .25)/(n + 1) } else { p00 <- (sum(a4) + .25)/n } cov <- (4*p00 - 1)*se1*se2 diff <- median1 - median2 se <- sqrt(se1^2 + se2^2 - 2*cov) ll <- diff - z*se ul <- diff + z*se out <- t(c(median1, median2, diff, se, ll, ul, se1, se2, cov)) colnames(out) <- c("Median1", "Median2", "Median1-Median2", "SE", "LL", "UL", "SE1", "SE2", "cov") return(out) } ci.ratio.median.ps <- function(alpha, y1, y2) { z <- qnorm(1 - alpha/2) n <- length(y1) med1 <- median(y1) med2 <- median(y2) a1 <- (y1 < med1) a2 <- (y2 < med2) a3 <- a1 + a2 f00 <- sum(a3 == 2) if (n/2 == trunc(n/2)) { p00 <- (f00 + .25)/(n + 1) } else { p00 <- (f00 + .25)/n } o1 <- round(n/2 - sqrt(n)) if (o1 < 1) {o1 = 1} o2 <- n - o1 + 1 p <- pbinom(o1 - 1, size = n, prob = .5) z0 <- qnorm(1 - p) y1 <- sort(y1) y2 <- sort(y2) l1 <- log(y1[o1]) u1 <- log(y1[o2]) se1 <- (u1 - l1)/(2*z0) l2 <- log(y2[o1]) u2 <- log(y2[o2]) se2 <- (u2 - l2)/(2*z0) cov <- (4*p00 - 1)*se1*se2 logratio <- log(med1/med2) se <- sqrt(se1^2 + se2^2 - 2*cov) ll <- exp(logratio - z*se) ul <- exp(logratio + z*se) out <- t(c(med1, med2, exp(logratio), ll, ul)) colnames(out) <- c("Median1", "Median2", "Median1/Median2", "LL", "UL") return(out) } ci.mann <- function(alpha, y1, y2){ z <- qnorm(1 - .05/2) y <- c(y1,y2) n1 <- length(y1) n2 <- length(y2) n <- n1 + n2 r <- rank(y) r1 <- r[1:n1] r2 <- r[(n1 + 1):n] m1 <- mean(r1) m2 <- mean(r2) seq1 <- seq(1,n1,1) seq2 <- seq(1,n2,1) a1 <- sum((r1 - seq1)^2) a2 <- sum((r2 - seq2)^2) v1 <- (a1 - n1*(m1 - (n1 + 1)/2)^2)/((n1 - 1)*n^2) v2 <- (a2 - n2*(m2 - (n2 + 1)/2)^2)/((n2 - 1)*n^2) u <- sum(r2) - n2*(n2 + 1)/2 est <- u/(n1*n2) se <- sqrt((n2*v1 + n1*v2)/(n1*n2)) ll <- est - z*se ul <- est + z*se if (ul > 1) {ul = 1} if (ll < 0) {ll = 0} out <- t(c(est, se, ll, ul)) colnames(out) <- c("Estimate", "SE", "LL", "UL") return(out) } ci.random.anova1 <- function(alpha, m, sd, n) { z <- qnorm(1 - alpha/2) a <- length(m) t <- qt(1 - alpha/2, a - 1) nt <- n*a dfe <- nt - a dfb <- a - 1 v <- sd^2 grandmean <- sum(n*m)/nt SSe <- sum((n - 1)*v) MSe <- SSe/dfe SSb <- sum(n*(m - grandmean)^2) MSb <- SSb/dfb F <- MSb/MSe varb <- (MSb - MSe)/n osqr <- (MSb - MSe)/(MSb + (n - 1)*MSe) se.mean <- sqrt(MSb/(a*n)) se.vare <- sqrt(2*MSe^2/((dfb + 1)*(n - 1))) se.varb <- sqrt(2*(MSe^2/((dfb + 1)*(n - 1)) + MSb^2/dfb)/n^2) LL.m <- grandmean - t*se.mean UL.m <- grandmean + t*se.mean LL.e <- sqrt(exp(log(MSe) - z*se.vare/MSe)) UL.e <- sqrt(exp(log(MSe) + z*se.vare/MSe)) LL.b <- sqrt(exp(log(varb) - z*se.varb/MSb)) UL.b <- sqrt(exp(log(varb) + z*se.varb/MSb)) F1 <- qf(1 - alpha/2, dfb, dfe) F2 <- qf(alpha/2, dfb, dfe) LL.o <- (F/F1 - 1)/(n + F/F1 - 1) UL.o <- (F/F2 - 1)/(n + F/F2 - 1) out1 <- t(c(grandmean, LL.m, UL.m)) out2 <- t(c(sqrt(MSe), LL.e, UL.e)) out3 <- t(c(sqrt(varb), LL.b, UL.b)) out4 <- t(c(osqr, LL.o, UL.o)) out <- rbind(out1, out2, out3, out4) rownames(out) <- c("Grand mean", "Within SD:", "Between SD:", "Omega-squared:") colnames(out) = c("Estimate", "LL", "UL") return(out) } ci.cronbach <- function(alpha, rel, a, n) { df1 = n - 1 df2 = n*(a - 1) f1 = qf(1 - alpha/2, df1, df2) f2 = qf(1 - alpha/2, df2, df1) f0 <- 1/(1 - rel) ll <- 1 - f1/f0 ul <- 1 - 1/(f0*f2) out <- t(c(ll, ul)) colnames(out) = c("LL", "UL") return(out) } size.ci.mean1 <- function(alpha, var, w) { z <- qnorm(1 - alpha/2) n <- ceiling(4*var*(z/w)^2 + z^2/2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.ci.mean2 <- function(alpha, var, w, R) { z <- qnorm(1 - alpha/2) n1 <- ceiling(4*var*(1 + 1/R)*(z/w)^2 + z^2/4) n2 <- ceiling(R*n1) out <- t(c(n1, n2)) colnames(out) <- c("n1", "n2") return(out) } size.ci.stdmean2 <- function(alpha, d, w, R) { z <- qnorm(1 - alpha/2) n1 <- ceiling((d^2*(1 + R)/(2*R) + 4*(1 + R)/R)*(z/w)^2) n2 <- ceiling(R*n1) out <- t(c(n1, n2)) colnames(out) <- c("n1", "n2") return(out) } size.ci.ratio.mean2 <- function(alpha, var, m1, m2, r, R) { z <- qnorm(1 - alpha/2) n1 <- ceiling(4*var*(1 + 1/R)*(1/m1^2 + 1/m2^2)*(z/log(r))^2 + z^2/4) n2 <- ceiling(R*n1) out <- t(c(n1, n2)) colnames(out) <- c("n1", "n2") return(out) } size.ci.lc.mean.bs <- function(alpha, var, w, v) { z <- qnorm(1 - alpha/2) m <- length(v) - sum(v == 0) n <- ceiling(4*var*(t(v)%*%v)*(z/w)^2 + z^2/(2*m)) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size per group" return(out) } size.ci.lc.stdmean.bs <- function(alpha, d, w, v) { z <- qnorm(1 - alpha/2) a <- length(v) n <- ceiling((2*d^2/a + 4*(t(v)%*%v))*(z/w)^2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size per group" return(out) } size.ci.mean.ps <- function(alpha, var, cor, w) { z <- qnorm(1 - alpha/2) n <- ceiling(8*(1 - cor)*var*(z/w)^2 + z^2/2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.ci.stdmean.ps <- function(alpha, d, cor, w) { z <- qnorm(1 - alpha/2) n <- ceiling(4*(d^2*(1 + cor^2)/4 + 2*(1 - cor))*(z/w)^2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.ci.ratio.mean.ps <- function(alpha, var, m1, m2, cor, r) { z <- qnorm(1 - alpha/2) n <- ceiling(8*var*(1/m1^2 + 1/m2^2 - 2*cor/(m1*m2))*(z/log(r))^2 + z^2/2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.ci.lc.mean.ws <- function(alpha, var, cor, w, q) { z <- qnorm(1 - alpha/2) k <- length(q) n <- ceiling(4*(1 - cor)*var*(t(q)%*%q)*(z/w)^2 + z^2/2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.ci.lc.stdmean.ws <- function(alpha, d, cor, w, q) { z <- qnorm(1 - alpha/2) a <- length(q) n <- ceiling(4*(d^2*(1 + (a - 1)*cor^2)/(2*a) + (1 - cor)*(t(q)%*%q))*(z/w)^2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.ci.cronbach <- function(alpha, rel, a, w) { z <- qnorm(1 - alpha/2) n0 <- ceiling((8*a/(a - 1))*(1 - rel)^2*(z/w)^2 + 2) df1 = n0 - 1 df2 = n0*(a - 1) f1 = qf(1 - alpha/2, df1, df2) f2 = qf(1 - alpha/2, df2, df1) f0 <- 1/(1 - rel) ll <- 1 - f1/f0 ul <- 1 - 1/(f0*f2) w0 <- ul - ll n <- ceiling((n0 - 2)*(w0/w)^2 + 2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.ci.second <- function(n0, w0, w) { n <- ceiling(((w0/w)^2 - 1)*n0) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.test.mean1 <- function(alpha, pow, var, es) { za <- qnorm(1 - alpha/2) zb <- qnorm(pow) n <- ceiling(var*(za + zb)^2/es^2 + za^2/2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.test.mean2 <- function(alpha, pow, var, es, R) { za <- qnorm(1 - alpha/2) zb <- qnorm(pow) n1 <- ceiling(var*(1 + 1/R)*(za + zb)^2/es^2 + za^2/4) n2 <- ceiling(R*n1) out <- t(c(n1, n2)) colnames(out) <- c("n1", "n2") return(out) } size.test.lc.mean.bs <- function(alpha, pow, var, es, v) { za <- qnorm(1 - alpha/2) zb <- qnorm(pow) m <- length(v) - sum(v == 0) n <- ceiling(var*(t(v)%*%v)*(za + zb)^2/es^2 + za^2/(2*m)) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size per group" return(out) } size.equiv.mean2 <- function(alpha, pow, var, es, h) { za <- qnorm(1 - alpha) zb <- qnorm(1 - (1 - pow)/2) n <- ceiling(var*2*(za + zb)^2/(abs(h) - abs(es))^2 + za^2/4) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size per group" return(out) } size.supinf.mean2 <- function(alpha, pow, var, es, h) { za <- qnorm(1 - alpha/2) zb <- qnorm(pow) n <- ceiling(var*2*(za + zb)^2/(es - h)^2 + za^2/4) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.test.mean.ps <- function(alpha, pow, var, es, cor) { za <- qnorm(1 - alpha/2) zb <- qnorm(pow) n <- ceiling(2*var*(1 - cor)*(za + zb)^2/es^2 + za^2/2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.test.lc.mean.ws <- function(alpha, pow, var, es, cor, q) { za <- qnorm(1 - alpha/2) zb <- qnorm(pow) n <- ceiling(var*(1 - cor)*(t(q)%*%q)*(za + zb)^2/es^2 + za^2/2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.equiv.mean.ps <- function(alpha, pow, var, es, cor, h) { za <- qnorm(1 - alpha) zb <- qnorm(1 - (1 - pow)/2) n <- ceiling(2*var*(1 - cor)*(za + zb)^2/(h - abs(es))^2 + za^2/2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.supinf.mean.ps <- function(alpha, pow, var, es, cor, h) { za <- qnorm(1 - alpha/2) zb <- qnorm(pow) n <- ceiling(2*var*(1 - cor)*(za + zb)^2/(es - h)^2 + za^2/2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.test.mann <- function(alpha, pow, p) { za <- qnorm(1 - alpha/2) zb <- qnorm(pow) es <- p - .5; n <- ceiling((za + zb)^2/(6*es^2)) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size per group" return(out) } size.test.sign1 <- function(alpha, pow, p) { za <- qnorm(1 - alpha/2) zb <- qnorm(pow) es <- p - .5; n <- ceiling(p*(1 - p)*(za + zb)^2/es^2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.test.sign.ps <- function(alpha, pow, p) { za <- qnorm(1 - alpha/2) zb <- qnorm(pow) es <- p - .5; n <- ceiling(p*(1 - p)*(za + zb)^2/es^2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } size.test.cronbach <- function(alpha, pow, rel, a, h) { za <- qnorm(1 - alpha/2) zb <- qnorm(pow) e <- (1 - rel)/(1 - h) n <- ceiling((2*a/(a - 1))*(za + zb)^2/log(e)^2 + 2) out <- matrix(n, nrow = 1, ncol = 1) colnames(out) <- "Sample size" return(out) } pi.score1 <- function(alpha, m, sd, n) { df <- n - 1 tcrit <- qt(1 - alpha/2, df) se <- sqrt(sd^2 + sd^2/n) ll <- m - tcrit*se ul <- m + tcrit*se out <- t(c(m, df, ll, ul)) colnames(out) <- c("Predicted", "df", "LL", "UL") return(out) } pi.score2 <- function(alpha, m1, m2, sd1, sd2, n1, n2) { df1 <- n1 + n2 - 2 est <- m1 - m2 vp <- ((n1 - 1)*sd1^2 + (n2 - 1)*sd2^2)/df1 se1 <- sqrt(2*vp + vp/n1 + vp/n2) tcrit1 <- qt(1 - alpha/2, df1) ll1 <- est - tcrit1*se1 ul1 <- est + tcrit1*se1 se2 <- sqrt(sd1^2 + sd2^2 + sd1^1/n1 + sd2^2/n2) c1 <- sd1^2 + sd1^2/n1 c2 <- sd2^2 + sd2^2/n2 df2 <- 1/((1/(n1 - 1))*(c1/(c1 + c2))^2 + (1/(n2 - 1))*(c2/(c1 + c2))^2) tcrit2 <- qt(1 - alpha/2, df2) ll2 <- est - tcrit2*se2 ul2 <- est + tcrit2*se2 out1 <- t(c(est, df1, ll1, ul1)) out2 <- t(c(est, df2, ll2, ul2)) out <- rbind(out1, out2) colnames(out) <- c("Predicted", "df", "LL", "UL") rownames(out) <- c("Equal Variances Assumed:", "Equal Variances Not Assumed:") return(out) } random.sample <- function(popsize, samsize) { out <- sort(sample(popsize, samsize, replace = FALSE, prob = NULL)) return(out) } randomize <- function(n) { k <- length(n) out <- sample(rep(1:k, n)) return(out) } random.y <- function(n, m, sd, min, max, dec) { y <- sd*rnorm(n, 0, 1) + m y1 <- 1 - as.integer(y < min) y <- y*y1 + (1 - y1)*1 y2 <- 1 - as.integer(y > max) y = y*y2 + (1 - y2)*max out <- round(y, dec) return(out) } ci.var.upper <- function(alpha, var, n) { chi <- qchisq(alpha, (n - 1)) ul <- (n - 1)*var/chi out <- matrix(ul, nrow = 1, ncol = 1) colnames(out) <- "UL" return(out) } etasqr.adj <- function(etasqr, dfeffect, dferror) { adj <- 1 - (dferror + dfeffect)*(1 - etasqr)/dferror out <- matrix(adj, nrow = 1, ncol = 1) colnames(out) <- "Adjusted eta-squared" return(out) } test.anova1.bs <- function(m, sd, n) { a <- length(m) nt <- sum(n) dfe <- nt - a dfa <- a - 1 v <- sd^2 grandmean <- sum(n*m)/nt SSe <- sum((n - 1)*v) MSe <- SSe/dfe SSa <- sum(n*(m - grandmean)^2) MSa <- SSa/dfa F <- MSa/MSe p <- 1 - pf(F, dfa, dfe) etasqr <- SSa/(SSa + SSe) adjetasqr <- 1 - (dfa + dfe)*(1 - etasqr)/dfe out <- t(c(F, dfa, dfe, p, etasqr, adjetasqr)) colnames(out) <- c("F", "dfA", "dfE", "p", "eta-squared", "adj eta-squared") return(out) }
timestamp <- Sys.time() library(caret) library(plyr) library(recipes) library(dplyr) model <- "rvmRadial" library(caret) library(plyr) library(recipes) library(dplyr) set.seed(1) training <- SLC14_1(30) testing <- SLC14_1(100) trainX <- training[, -ncol(training)] trainY <- training$y rec_reg <- recipe(y ~ ., data = training) %>% step_center(all_predictors()) %>% step_scale(all_predictors()) testX <- trainX[, -ncol(training)] testY <- trainX$y rctrl1 <- trainControl(method = "cv", number = 3, returnResamp = "all") rctrl2 <- trainControl(method = "LOOCV") rctrl3 <- trainControl(method = "none") rctrlR <- trainControl(method = "cv", number = 3, returnResamp = "all", search = "random") set.seed(849) test_reg_cv_model <- train(trainX, trainY, method = "rvmRadial", trControl = rctrl1, preProc = c("center", "scale")) test_reg_pred <- predict(test_reg_cv_model, testX) set.seed(849) test_reg_cv_form <- train(y ~ ., data = training, method = "rvmRadial", trControl = rctrl1, preProc = c("center", "scale")) test_reg_pred_form <- predict(test_reg_cv_form, testX) set.seed(849) test_reg_rand <- train(trainX, trainY, method = "rvmRadial", trControl = rctrlR, tuneLength = 4, preProc = c("center", "scale")) set.seed(849) test_reg_loo_model <- train(trainX, trainY, method = "rvmRadial", trControl = rctrl2, preProc = c("center", "scale")) set.seed(849) test_reg_none_model <- train(trainX, trainY, method = "rvmRadial", trControl = rctrl3, tuneLength = 1, preProc = c("center", "scale")) test_reg_none_pred <- predict(test_reg_none_model, testX) set.seed(849) test_reg_rec <- train(x = rec_reg, data = training, method = "rvmRadial", trControl = rctrl1) if( !isTRUE( all.equal(test_reg_cv_model$results, test_reg_rec$results)) ) stop("CV weights not giving the same results") test_reg_imp_rec <- varImp(test_reg_rec) test_reg_pred_rec <- predict(test_reg_rec, testing[, -ncol(testing)]) test_reg_predictors1 <- predictors(test_reg_cv_model) test_reg_predictors2 <- predictors(test_reg_cv_model$finalModel) tests <- grep("test_", ls(), fixed = TRUE, value = TRUE) sInfo <- sessionInfo() timestamp_end <- Sys.time() save(list = c(tests, "sInfo", "timestamp", "timestamp_end"), file = file.path(getwd(), paste(model, ".RData", sep = ""))) if(!interactive()) q("no")
NULL qgh = function(p, A, B, g, h, c=0.8){ z2gh(stats::qnorm(p), A, B, g, h, c) }
context("mice.impute.2l.bin") data("toenail2") data <- tidyr::complete(toenail2, patientID, visit) %>% tidyr::fill(treatment) %>% dplyr::select(-time) %>% dplyr::mutate(patientID = as.integer(patientID)) summary(data) pred <- make.predictorMatrix(data) pred["outcome", "patientID"] <- -2 test_that("mice::mice.impute.2l.bin() accepts factor outcome", { expect_silent(imp <- mice(data, method = "2l.bin", print = FALSE, pred = pred, m = 1, maxit = 1)) expect_false(anyNA(complete(imp))) }) data("toenail") data <- tidyr::complete(toenail, ID, visit) %>% tidyr::fill(treatment) %>% dplyr::select(-month) summary(data) pred <- make.predictorMatrix(data) pred["outcome", "ID"] <- -2 test_that("mice::mice.impute.2l.bin() accepts 0/1 outcome", { expect_silent(imp <- mice(data, method = "2l.bin", print = FALSE, pred = pred, m = 1, maxit = 1)) expect_false(anyNA(complete(imp))) })
range_autofit <- function(ss, sheet = NULL, range = NULL, dimension = c("columns", "rows")) { ssid <- as_sheets_id(ss) maybe_sheet(sheet) check_range(range) x <- gs4_get(ssid) range_spec <- as_range_spec( range, sheet = sheet, sheets_df = x$sheets, nr_df = x$named_ranges ) range_spec$sheet_name <- range_spec$sheet_name %||% first_visible_name(x$sheets) s <- lookup_sheet(range_spec$sheet_name, sheets_df = x$sheets) if (is.null(range)) { dimension <- match.arg(dimension) resize_req <- list(bureq_auto_resize_dimensions( sheetId = s$id, dimension = toupper(dimension) )) } else { resize_req <- prepare_auto_resize_request(s$id, range_spec) } resize_dim <- pluck( resize_req, 1, "autoResizeDimensions", "dimensions", "dimension" ) gs4_bullets(c( v = "Editing {.s_sheet {x$name}}.", v = "Resizing one or more {tolower(resize_dim)} in \\ {.w_sheet {range_spec$sheet_name}}." )) req <- request_generate( "sheets.spreadsheets.batchUpdate", params = list( spreadsheetId = ssid, requests = resize_req ) ) resp_raw <- request_make(req) gargle::response_process(resp_raw) invisible(ssid) } force_cell_limits <- function(x) { if (!is.null(x$cell_limits)) { return(x) } if (is.null(x$cell_range)) { x$cell_limits <- cell_limits() } else { x$cell_limits <- limits_from_range(x$cell_range) } x } check_only_one_dimension <- function(x) { limits <- x$cell_limits if (is.na(limits$ul[1]) && is.na(limits$lr[1])) { return(invisible(x)) } if (is.na(limits$ul[2]) && is.na(limits$lr[2])) { return(invisible(x)) } gs4_abort(" The {.arg range} must target only columns or only rows, but not both.") } determine_dimension <- function(x) { limits <- x$cell_limits if (notNA(limits$ul[1]) || notNA(limits$lr[1])) { "ROWS" } else { "COLUMNS" } } prepare_auto_resize_request <- function(sheet_id, range_spec) { range_spec <- force_cell_limits(range_spec) check_only_one_dimension(range_spec) dimension <- determine_dimension(range_spec) element <- if (dimension == "ROWS") 1L else 2L list(bureq_auto_resize_dimensions( sheetId = sheet_id, dimension = dimension, start = pluck(range_spec, "cell_limits", "ul", element), end = pluck(range_spec, "cell_limits", "lr", element) )) }
NULL setClass( Class = 'TextGrid', contains = c('list'), slots = c(startTime = 'numeric', endTime = 'numeric') )
`phmclust` <- function(x, K, method = "separate", Sdist = "weibull", cutpoint = NULL, EMstart = NA, EMoption = "classification", EMstop = 0.01, maxiter = 100) { if (is.data.frame(x)) x <- as.matrix(x) if (is.vector(x)) stop("x must be a data frame or a matrix with more than 1 columns!") if (is.null(cutpoint)) cutpoint <- max(x, na.rm = TRUE) pvisit.est <- (any(is.na(x)) | any(x==0)) n <- nrow(x) p <- ncol(x) d0 <- s.check(x=x,K=K,n=n,EMstart=EMstart,EMoption=EMoption,method=method,Sdist=Sdist) x <- d0$x if (is.vector(d0$EMstart)) { EMstart <- d0$EMstart[1:(dim(x)[1])] } else { EMstart <- t(apply(d0$EMstart, 1, function(z) z/sum(z))) } method <- d0$method likelihood <- numeric(maxiter) iter <- 0 ConvergEM <- FALSE if (EMoption == "classification") { while (ConvergEM == FALSE) { iter <- iter + 1 d1 <- Eclass(x, EMstart, K = K, method = method, Sdist = Sdist, p, cutpoint = cutpoint) d2 <- Mclass(x, d1$shape,d1$scale,d1$prior,K=K) likelihood[iter+1] <- d2$lik.tot if ((iter >= maxiter) || (abs(likelihood[iter+1]-likelihood[iter]) < EMstop)) { ConvergEM <- TRUE } else { EMstart <- d2$newgr } } postmat <- NULL newgr <- d2$newgr } if (EMoption == "maximization") { while (ConvergEM == FALSE) { iter <- iter + 1 d1 <- Emax(x, EMstart, K=K, method=method, Sdist=Sdist,p, cutpoint = cutpoint) d2 <- Mmax(x, d1$shape,d1$scale,d1$prior,K=K) likelihood[iter+1] <- d2$lik.tot if ((iter >= maxiter) || (abs(likelihood[iter+1]-likelihood[iter]) < EMstop)) { ConvergEM <- TRUE } else { EMstart <- d2$postmat } } postmat <- d2$postmat newgr <- apply(postmat, 1, function(y){ind <-(1:K)[y==max(y)]}) } if (EMoption == "randomization") { while (ConvergEM == FALSE) { iter <- iter + 1 d1 <- Eclass(x, EMstart, K=K, method=method, Sdist=Sdist,p, cutpoint = cutpoint) d2 <- Mrandom(x, d1$shape,d1$scale,d1$prior,K=K) likelihood[iter+1] <- d2$lik.tot if ((iter >= maxiter) || (abs(likelihood[iter+1]-likelihood[iter]) < EMstop)) { ConvergEM <- TRUE } else { EMstart <- d2$newgr } } postmat <- d2$postmat newgr <- d2$newgr } if (iter >= maxiter) warning("EM did not converge! Maximum iteration limit reached!") if (pvisit.est) { anzpar <- d1$anzpar + K*p } else { anzpar <- d1$anzpar } likconv <- likelihood[2:(iter+1)] aic <- -2*(likelihood[iter+1]-anzpar) bic <- (-2*likelihood[iter+1])+anzpar*log(n) clmean.l <- by(x,newgr,function(y) { apply(y,2,function(z) mean(z[z>0])) }) clmean <- matrix(unlist(clmean.l),nrow=K,byrow=TRUE) nobs.cl <- table(newgr) se.clmean <- apply(x, 2, function(z1) { Smat <- tapply(z1, newgr, function(z2) { if (!is.null(z2[z2 > 0])) { sd(z2[z2>0], na.rm = TRUE) } else { return(NA) } }) nobsmat <- tapply(z1, newgr, function(z3) { if (!is.null(z3[z3 > 0])) { length(z3[z3>0]) } else { return(NA) } }) Smat/sqrt(nobsmat) }) colnames(clmean) <- colnames(se.clmean) <- colnames(x) rownames(clmean) <- rownames(se.clmean) <- paste("Cluster",1:K) clmed.l <- by(x,newgr,function(y) { apply(y,2, function(z) median(z[z>0])) }) clmed <- matrix(unlist(clmed.l),nrow=K,byrow=TRUE) colnames(clmed) <- colnames(x) rownames(clmed) <- paste("Cluster",1:K) if (is.null(colnames(x))) { colnames(d1$scale) <- paste("V",1:dim(d1$scale)[2],sep="") colnames(d1$shape) <- paste("V",1:dim(d1$shape)[2],sep="") } else { colnames(d1$scale) <- colnames(d1$shape) <- colnames(x) } rownames(d1$shape) <- rownames(d1$scale) <- paste("Cluster", 1:K, sep="") pvisit <- d1$prior se.pvisit <- apply(pvisit,2, function(z) sqrt(z*(1-z)/nobs.cl)) colnames(pvisit) <- colnames(se.pvisit) <- colnames(x) rownames(pvisit) <- rownames(se.pvisit) <- paste("Cluster",1:K) result <- list(K=K, iter=iter, method=method, Sdist=Sdist, likelihood=likconv, pvisit = pvisit, se.pvisit = se.pvisit, shape = d1$shape, scale = d1$scale, group = newgr, posteriors = postmat, npar = anzpar, aic = aic, bic = bic, clmean = clmean, se.clmean = se.clmean, clmed = clmed) class(result) <- "mws" result }
page <- function(x, method = c("dput", "print"), ...) { local.file.show <- function(file, title = subx, delete.file = TRUE, pager = getOption("pager"), ...) file.show(file, title = title, delete.file = delete.file, pager = pager) local.dput <- function(x, file, title, delete.file, pager, ...) dput(x, file, ...) local.print <- function(x, title, delete.file, pager, ...) print(x, ...) if(is.character(x) && length(x) == 1L) { subx <- x parent <- parent.frame() if(exists(subx, envir = parent)) x <- get(subx, envir = parent) else stop(gettextf("no object named '%s' to show", x), domain = NA) } else { subx <- deparse(substitute(x)) } file <- tempfile("Rpage.") if(match.arg(method) == "dput") local.dput(x, file, ...) else { sink(file) local.print(x, ...) sink() } local.file.show(file, ...) }
strip_params <- function(params_raw, unique=FALSE){ params_strip <- sapply(strsplit(params_raw,'[', fixed=T),'[',1) if(unique) return( unique(params_strip) ) params_strip } which_params <- function(param, params_raw){ params_strip <- strip_params(params_raw) if( ! param %in% params_strip ){ return(NULL) } which(params_strip == param) } param_names <- function(mcmc_list, simplify=FALSE){ raw <- colnames(mcmc_list[[1]]) if(!simplify) return(raw) strip_params(raw, unique=T) } match_params <- function(params, params_raw){ unlist(lapply(params, function(x){ if(x %in% params_raw) return(x) if(!x %in% strip_params(params_raw)) return(NULL) params_raw[which_params(x, params_raw)] })) } select_cols <- function(mcmc_list, col_inds){ out <- lapply(1:length(mcmc_list), FUN=function(x){ mcmc_element <- mcmc_list[[x]][,col_inds,drop=FALSE] attr(mcmc_element,'mcpar') <- attr(mcmc_list[[x]], 'mcpar') class(mcmc_element) <- 'mcmc' mcmc_element }) class(out) <- 'mcmc.list' out } mcmc_to_mat <- function(samples, param){ psamples <- select_cols(samples, param) n_chain <- length(samples) n_iter <- nrow(samples[[1]]) matrix(unlist(psamples), nrow=n_iter, ncol=n_chain) }
GEO <- function(level){ x <- NULL if(level==1){ x1 <- github.cssegisanddata.covid19(country = "Georgia") x2 <- ourworldindata.org(id = "GEO") x <- full_join(x1, x2, by = "date") } return(x) }
library(checkmate) library(testthat) context("gs_square") test_that("output is valid geometry", { coords <- data.frame(x = c(40, 70, 70, 50), y = c(40, 40, 60, 70), fid = 1) output <- gs_square(anchor = coords) expect_class(output, classes = "geom") expect_true(output@type == "polygon") expect_data_frame(output@point, any.missing = FALSE, nrows = 5, ncols = 3) })
library(testthat) library(tryCatchLog) context("test_user_defined_conditions.R") source("init_unit_test.R") source("disable_logging_output.R") udc1 <- tryCatchLog:::condition("my_condition_class", "message1") udc2 <- tryCatchLog:::condition("my_other_condition_class") test_that("Correct return value if a custom condition is thrown but not logged", { expect_null(signalCondition(udc1)) expect_true(tryCatchLog( { signalCondition(udc1) TRUE })) }) test_that("user-defined conditions are not logged by default", { expect_silent(tryCatchLog(signalCondition(udc1))) last.result <- last.tryCatchLog.result() expect_equal(NROW(last.result), 0) expect_silent(tryCatchLog(signalCondition(udc2))) last.result <- last.tryCatchLog.result() expect_equal(NROW(last.result), 0) }) test_that("user-defined conditions are catched but not logged by default", { catched <- NA tryCatchLog(signalCondition(udc1), condition = function(c) catched <<- c) last.result <- last.tryCatchLog.result() expect_equal(NROW(last.result), 0) expect_equal(class(catched), c("my_condition_class", "condition")) }) test_that("user-defined conditions work within stacked tryCatchLog expressions", { catched <- NA expect_silent(tryCatchLog(tryCatchLog(signalCondition(udc1)), condition = function(c) catched <<- c)) last.result <- last.tryCatchLog.result() expect_equal(NROW(last.result), 0) expect_equal(class(catched), c("my_condition_class", "condition")) catched <- NA expect_silent(tryCatchLog(tryCatchLog(signalCondition(udc1), condition = function(c) catched <<- c))) last.result <- last.tryCatchLog.result() expect_equal(NROW(last.result), 0) expect_equal(class(catched), c("my_condition_class", "condition")) catched_inner <- NA catched_outer <- NA expect_silent(tryCatchLog( tryCatchLog(signalCondition(udc1), condition = function(c) catched_inner <<- c) , condition = function(c) catched_outer <<- c)) last.result <- last.tryCatchLog.result() expect_equal(NROW(last.result), 0) expect_equal(class(catched_inner), c("my_condition_class", "condition")) expect_true(is.na(catched_outer)) expect_silent(tryCatchLog(tryCatchLog(signalCondition(udc1)))) last.result <- last.tryCatchLog.result() expect_equal(NROW(last.result), 0) expect_equal(class(catched), c("my_condition_class", "condition")) })
op.orig <- options(width = 79, useFancyQuotes = FALSE, prompt="> " , continue=" " ) Sys.setenv(LANGUAGE = "en") if(.Platform$OS.type != "windows") Sys.setlocale("LC_MESSAGES","C") PCversion <- packageDescription('pcalg')$Version library(pcalg) stopifnot(require(Rgraphviz)) library(graph) showF <- function(f, width = 50) { nam <- deparse(substitute(f)) stopifnot(is.function(f)) ll <- capture.output(str(removeSource(f), width=width)) ll[1] <- sub("function *", nam, ll[1]) writeLines(ll) } data("gmG", package = "pcalg") suffStat <- list(C = cor(gmG8$x), n = nrow(gmG8$x)) varNames <- gmG8$g@nodes skel.gmG8 <- skeleton(suffStat, indepTest = gaussCItest, labels = varNames, alpha = 0.01) pc.gmG8 <- pc(suffStat, indepTest = gaussCItest, labels = varNames, alpha = 0.01) stopifnot(require(Rgraphviz)) par(mfrow = c(1,3)) plot(gmG8$g, main = ""); box(col="gray") plot(skel.gmG8, main = ""); box(col="gray") plot(pc.gmG8, main = ""); box(col="gray") data("gmL") suffStat <- list(C = cor(gmL$x), n = nrow(gmL$x)) fci.gmL <- fci(suffStat, indepTest=gaussCItest, alpha = 0.9999, labels = c("2","3","4","5")) stopifnot(require(Rgraphviz)) par(mfrow = c(1,2)) plot(gmL$g) ; box(col="gray") plot(fci.gmL); box(col="gray") suffStat <- list(C = cor(gmL$x), n = nrow(gmL$x)) fciPlus.gmL <- fciPlus(suffStat, indepTest=gaussCItest, alpha = 0.9999, labels = c("2","3","4","5")) showF(ges) score <- new("GaussL0penObsScore", gmG8$x) ges.fit <- ges(score) par(mfrow=1:2) plot(gmG8$g, main = "") ; box(col="gray") plot(ges.fit$essgraph, main = ""); box(col="gray") data(gmInt) n.tot <- length(gmInt$target.index) n.obs <- sum(gmInt$target.index == 1) n3 <- sum(gmInt$target.index == 2) n5 <- sum(gmInt$target.index == 3) showF(gies, width = 60) score <- new("GaussL0penIntScore", gmInt$x, targets = gmInt$targets, target.index = gmInt$target.index) gies.fit <- gies(score) simy.fit <- simy(score) par(mfrow = c(1,3)) plot(gmInt$g, main = "") ; box(col="gray") plot(gies.fit$essgraph, main = "") ; box(col="gray") plot(simy.fit$essgraph, main = "") ; box(col="gray") score <- new("GaussL0penObsScore", gmG8$x) suffStat <- list(C = cor(gmG8$x), n = nrow(gmG8$x)) skel.fit <- skeleton(suffStat = suffStat, indepTest = gaussCItest, alpha = 0.01, p = ncol(gmG8$x)) skel <- as(skel.fit@graph, "matrix") ges.fit <- ges(score, fixedGaps = !skel) score <- new("GaussL0penObsScore", gmG8$x) library(huge) huge.path <- huge(gmG8$x, verbose = FALSE) huge.fit <- huge.select(huge.path, verbose = FALSE) cig <- as.matrix(huge.fit$refit) ges.fit <- ges(score, fixedGaps = !cig, adaptive = "vstructures") set.seed(1234) n <- 500 eps1 <- sign(rnorm(n)) * sqrt(abs(rnorm(n))) eps2 <- runif(n) - 0.5 x2 <- 3 + eps2 x1 <- 0.9*x2 + 7 + eps1 X <- cbind(x1,x2) res <- lingam(X) res showF(addBgKnowledge) amat <- matrix(c(0,1,0, 1,0,1, 0,1,0), 3,3) colnames(amat) <- rownames(amat) <- letters[1:3] bg <- addBgKnowledge(gInput = amat, x = "a", y = "b") par(mfrow = c(1,2)) plot(as(t(amat), "graphNEL")); box(col="gray") plot(as(t( bg ), "graphNEL")); box(col="gray") showF(ida) set.seed(123) p <- 7 myDAG <- randomDAG(p, prob = 0.2) myCPDAG <- dag2cpdag(myDAG) n <- 10000 dat <- rmvDAG(n, myDAG) suffStat <- list(C = cor(dat), n = n) pc.fit <- pc(suffStat, indepTest = gaussCItest, p=p, alpha = 0.01) (l.ida.cpdag <- ida(2,5, cov(dat), myCPDAG, method = "local", type = "cpdag")) (g.ida.cpdag <- ida(2,5, cov(dat), myCPDAG, method = "global", type = "cpdag")) if (require(Rgraphviz)) { par(mfrow = c(1,2)) plot(myDAG, main = "True DAG"); box(col="gray") plot(pc.fit, main = "Estimated CPDAG"); box(col="gray") } p <- 6 V <- as.character(1:p) edL <- list( "1" = list(edges=c(3,4), weights=c(1.1,0.3)), "2" = list(edges=c(6), weights=c(0.4)), "3" = list(edges=c(2,4,6),weights=c(0.6,0.8,0.9)), "4" = list(edges=c(2),weights=c(0.5)), "5" = list(edges=c(1,4),weights=c(0.2,0.7)), "6" = NULL) myDAG <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed") myCPDAG <- dag2cpdag(myDAG) covTrue <- trueCov(myDAG) (resExactDAG <- jointIda(x.pos = c(1,2), y.pos = 6, mcov = covTrue, graphEst = myDAG, technique = "RRC")) (resExactCPDAG <- jointIda(x.pos = c(1,2), y.pos = 6, mcov = covTrue, graphEst = myCPDAG, technique = "RRC")) par(mfrow = c(1,2)) plot(myDAG) ; box(col="gray") plot(myCPDAG); box(col="gray") showF(backdoor) p <- 6 amat <- t(matrix(c(0,0,1,1,0,1, 0,0,1,1,0,1, 0,0,0,0,1,0, 0,0,0,0,1,1, 0,0,0,0,0,0, 0,0,0,0,0,0), 6,6)) V <- as.character(1:6) colnames(amat) <- rownames(amat) <- V edL <- vector("list",length=6) names(edL) <- V edL[[1]] <- list(edges=c(3,4,6),weights=c(1,1,1)) edL[[2]] <- list(edges=c(3,4,6),weights=c(1,1,1)) edL[[3]] <- list(edges=5,weights=c(1)) edL[[4]] <- list(edges=c(5,6),weights=c(1,1)) g <- new("graphNEL", nodes=V, edgeL=edL, edgemode="directed") cov.mat <- trueCov(g) myCPDAG <- dag2cpdag(g) true.amat <- as(myCPDAG, "matrix") par(mfrow = c(1,2)) plot(g, main = ""); box(col="gray") plot(myCPDAG, main = ""); box(col="gray") backdoor(true.amat, 6, 3, type="cpdag") showF(gac) mFig1 <- matrix(c(0,1,1,0,0,0, 1,0,1,1,1,0, 0,0,0,0,0,1, 0,1,1,0,1,1, 0,1,0,1,0,1, 0,0,0,0,0,0), 6,6) type <- "cpdag" x <- 3; y <- 6 gac(mFig1, x,y, z=c(2,4), type) mFig3a <- matrix(c(0,1,0,0, 0,0,1,1, 0,0,0,1, 0,0,1,0), 4,4) type <- "pdag" x <- 2; y <- 4 str( gac(mFig3a,x,y, z=NULL, type) ) if (require(Rgraphviz)) { colnames(mFig1) <- rownames(mFig1) <- as.character(1:6) g1 <- as(t(mFig1), "graphNEL") colnames(mFig3a) <- rownames(mFig3a) <- as.character(1:4) g2 <- as(t(mFig3a), "graphNEL") par(mfrow = c(1,2)) plot(g1, main = "(a)"); box(col="gray") plot(g2, main = "(b)"); box(col="gray") } showF(adjustment) n <- 100; d <- 3; s <- 2 myWgtFun <- function(m,mu,sd) { rnorm(m,mu,sd) } set.seed(42) dag1 <- randDAG(n=n, d=d, method = "er", DAG = TRUE) dag2 <- randDAG(n=n, d=d, method = "power", DAG = TRUE) w1 <- wgtMatrix(dag1) deg1 <- apply(w1 + t(w1), 2, function(x) sum(x != 0)) max1 <- max(deg1) mean1 <- mean(deg1) w2 <- wgtMatrix(dag2) deg2 <- apply(w2 + t(w2), 2, function(x) sum(x != 0)) max2 <- max(deg2) mean2 <- mean(deg2) n <- 100; d <- 3; s <- 2 myWgtFun <- function(m,mu,sd) { rnorm(m,mu,sd) } set.seed(42) dag1 <- randDAG(n=n, d=d, method = "er", DAG = TRUE, weighted = TRUE, wFUN = list(myWgtFun, 0, s)) dag2 <- randDAG(n=n, d=d, method = "power", DAG = TRUE, weighted = TRUE, wFUN = list(myWgtFun, 0, s)) as(pc.gmG8, "amat") m1 <- matrix(c(0,1,0,1,0,0, 0,0,1,0,1,0, 0,0,0,0,0,1, 0,0,0,0,0,0, 0,0,0,0,0,0, 0,0,0,0,0,0), 6,6) str( gac(m1, x=1,y=3, z=NULL, type = "dag") ) n <- nrow (gmG8$x) V <- colnames(gmG8$x) amat <- wgtMatrix(gmG8$g) amat[amat != 0] <- 1 if(requireNamespace("dagitty")) { dagitty_dag1 <- pcalg2dagitty(amat,V,type="dag") dagitty::is.dagitty(dagitty_dag1) } set.seed(42) p <- 4 myDAG <- randomDAG(p, prob = 0.4) myCPDAG <- dag2cpdag(myDAG) suffStat <- list(C = cov2cor(trueCov(myDAG)), n = 10^9) fci.fit <- fci(suffStat, indepTest=gaussCItest, alpha = 0.9999, p=p, doPdsep = FALSE) if (require(Rgraphviz)) { par(mfrow = c(1,2)) plot(myCPDAG); box(col="gray") plot(fci.fit); box(col="gray") } data(gmG) n <- nrow (gmG8$ x) V <- colnames(gmG8$ x) pc.fit <- pc(suffStat = list(C = cor(gmG8$x), n = n), indepTest = gaussCItest, alpha=0.01, labels = V, verbose = FALSE) if (require(igraph)) { par(mfrow = c(1,1)) iplotPC(pc.fit) } as(pc.fit, "amat") as(fci.fit, "amat") showEdgeList(pc.fit) possible_p <- c(seq(5,10,by=1)) possible_neighb_size <- c(1:3) num_settings <-10 num_rep <- 2 pb <- seq(0,1,by=0.5) revealEdge <- function(c,d,s) { if (!anyNA(s)) { for (i in 1:nrow(s)) { c[s[i,1], s[i,2]] <- d[s[i,1], s[i,2]] c[s[i,2], s[i,1]] <- d[s[i,2], s[i,1]] } } c } resFin <- vector("list", num_settings) for(r in 1:num_settings) { set.seed(r) p <- sample(possible_p,1) neigh <- sample(possible_neighb_size,1) prob <- round(neigh/(p-1),3) resFin[[r]] <- vector("list", num_rep) for (i in 1:num_rep){ isEmpty <- 1 while(isEmpty){ g <- randomDAG(p, prob) cpdag <- dag2cpdag(g) cpdag.amat <- t(as(cpdag,"matrix")) dag.amat <- t(as(g,"matrix")) dag.amat[dag.amat != 0] <- 1 if (sum(dag.amat)!= 0){ isEmpty <- 0 } } y <- NULL while(is.null(y)){ x <- sample(p,1) skeleton <- cpdag.amat + t(cpdag.amat) skeleton[skeleton == 2] <- 1 connectt <- possDe(skeleton,x, type = "pdag") if (length(connectt) != 1) { pa.x <- which(dag.amat[x,]==1 & dag.amat[,x]==0) pos.y <- setdiff(setdiff(connectt, pa.x), x) if (length(pos.y)==1){ y <- pos.y[1] } else if (length(pos.y) > 0) { y <- sample(pos.y, 1) } } } true_effect <- causalEffect(g,y,x) nData <- 200 dat <- rmvDAG(nData, g) pdag.amat <- adjust_set <- result_adjust_set <- ida_effects <- vector("list", length(pb)) for (j in 1:length(pb)){ tmp <- ( (cpdag.amat + t(cpdag.amat))==2 ) & lower.tri(cpdag.amat) ude <- which(tmp, arr.ind = TRUE) nbg <- round(pb[j] * nrow(ude)) sele <- if (nbg>0) ude[sample(nrow(ude), nbg),,drop=FALSE] else NA pdag.amat[[j]] <- revealEdge(cpdag.amat, dag.amat, sele) pdag.amat[[j]] <- addBgKnowledge(pdag.amat[[j]], checkInput = FALSE) if(requireNamespace("dagitty")) { adjust <- adjustment(pdag.amat[[j]],amat.type="pdag",x,y, set.type="canonical") } else { adjust <- NULL } adjust_set[[j]] <- if (length(adjust) > 0) adjust$'1' else NA result_adjust_set[[j]] <- length(adjust) > 0 pdag.g <- as(t(pdag.amat[[j]]), "graphNEL") ida_effects[[j]] <- ida(x,y,cov(dat), graphEst = pdag.g, method = "local", type = "pdag") if (j == 1){ time.taken.ida <- system.time(ida(x,y,cov(dat), graphEst = pdag.g, method = "local", type = "cpdag")) time.taken.bida <- system.time(ida(x,y,cov(dat), graphEst = pdag.g, method = "local", type = "pdag")) } } resFin[[r]][[i]] <- list(seed=r, p=p, prob=prob, neigh=neigh, pb=pb, i=i, nData=nData, dag.amat=dag.amat, pdag.amat=pdag.amat, x=x, y=y, adjust_set = adjust_set, result_adjust_set = result_adjust_set, true_effect = true_effect, ida_effects = ida_effects, time.taken.ida = time.taken.ida, time.taken.bida = time.taken.bida) } } nn <- sum(sapply(resFin, length)) nBG <- length(pb) x <- rep(NA, nn*nBG) df1 <- data.frame(setting=x, g=x, p=x, neigh=x, pb=x, resAdj = x, idaNum = x, idaRange = x, timeIda = x, timeBida = x, trueEff = x) ii <- 0 for (i1 in 1:length(resFin)) { nLE <- length(resFin[[i1]]) for (i2 in 1:nLE) { for (i3 in 1:nBG) { ii <- ii + 1 df1[ii,"setting"] <- i1 df1[ii,"g"] <- i2 df1[ii,"p"] <- resFin[[i1]][[i2]]$p df1[ii,"neigh"] <- resFin[[i1]][[i2]]$neigh df1[ii,"pb"] <- resFin[[i1]][[i2]]$pb[i3] df1[ii,"resAdj"] <- resFin[[i1]][[i2]]$result_adjust_set[[i3]] df1[ii,"idaNum"] <- length(unique(resFin[[i1]][[i2]]$ida_effects[[i3]])) df1[ii,"idaRange"] <- diff(range(resFin[[i1]][[i2]]$ida_effects[[i3]])) df1[ii,"timeIda"] <- resFin[[i1]][[i2]]$time.taken.ida[[1]] df1[ii,"timeBida"] <- resFin[[i1]][[i2]]$time.taken.bida[[1]] df1[ii,"trueEff"] <- resFin[[i1]][[i2]]$true_effect } } } tm1 <- tapply(X=df1$resAdj, INDEX=as.factor(df1$pb), FUN = mean) ts1 <- tapply(X=df1$resAdj, INDEX=as.factor(df1$pb), FUN = function(x) sd(x)/sqrt(length(x))) dfNZ <- subset(df1, subset = (trueEff!=0) ) tm <- c(tm1,tapply(X=dfNZ$resAdj, INDEX=as.factor(dfNZ$pb), FUN = mean)) ts <- c(ts1,tapply(X=dfNZ$resAdj, INDEX=as.factor(dfNZ$pb), FUN = function(x) sd(x)/sqrt(length(x)))) dfID <- data.frame(pb = as.factor(names(tm)), fit = tm, se = ts, TrueEffect = as.factor(c(rep("All", length(tm)/2), rep("Non-zero", length(tm)/2)))) if(require(ggplot2)) { k <- ggplot(dfID, aes(pb, fit, ymin = fit-se, ymax = fit+se, col = TrueEffect)) k + geom_pointrange() + xlab("Proportion of background knowledge") + ylab("Fraction of identifiable effects via adjustment") + theme(legend.position = c(0.9,0.1), axis.text=element_text(size = 14), axis.title = element_text(size = 14), legend.text=element_text(size = 14), legend.title=element_text(size = 14)) } nn <- length(pb) idx <- rep(seq(1,nrow(df1), by = nn), each = nn) nmbIda <- df1$idaNum[idx] dfNU2 <- df1[nmbIda > 1,] bnTmp <- cut(x=dfNU2$idaNum, breaks = c(0,1,2,3,4,1e9), labels = c("1", "2", "3", "4", "5+")) dfNU2$idaNumF <- factor(bnTmp, levels = levels(bnTmp)[5:1]) df3 <- dfNU2[,c("pb", "idaNumF")] df3$idx <- 1:nrow(df3) df3N <- aggregate(idx ~ pb + idaNumF, data = df3, FUN = length) df3N$idaNumF <- droplevels(df3N$idaNumF) ggplot(df3N, aes(x = pb, y=idx, fill = idaNumF)) + geom_bar(stat = "identity") + ylab("Number of simulation settings") + xlab("Proportion of background knowledge")+ theme(axis.text = element_text(size = 14), axis.title= element_text(size = 14), legend.text= element_text(size = 14), legend.title=element_text(size = 14)) + guides(fill=guide_legend(title="
`chisqInd` <- function(data,n.cat,compPval=TRUE,asMatrix=TRUE){ comp.out<-computeContCells(data,check=FALSE,n.cat=n.cat) tmp<-comp.out$mat.exp tmp[tmp==0]<-1 mat<-(comp.out$mat.obs-comp.out$mat.exp)^2/tmp out<-rowSums(mat) if(compPval) return(compChisqPval(data,out,n.cat,asMatrix=asMatrix)) if(!asMatrix) return(out) mat<-matrix(0,nrow(data),nrow(data)) mat[lower.tri(mat)]<-out if(!is.null(rownames(data))) colnames(mat)<-rownames(mat)<-rownames(data) return(mat) }
NULL library(abind) library(RSQLite) library(DBI) library(sn) library(VGAM) library(evd) library(foreach) library(parallel) library(doParallel) defineSHAPE <- function(shape_allow_backMutations = TRUE, shape_collapseString = "__:__", shape_constDist = "exp", shape_const_relativeFitness = TRUE, shape_const_hoodDepth = "limited", shape_const_focal_popValue = 1e5, shape_const_mutProb = 1e-3, shape_const_distParameters = 20, shape_const_distAsS = FALSE, shape_const_RMF_initiDistance = 5, shape_const_RMF_theta = 0.35, shape_const_numInteractions = 4, shape_const_fixedFrame = NULL, shape_const_birthProb = 1, shape_const_deathProb = 1, shape_const_ancestFitness = 0, shape_const_estProp = 1e-3, shape_const_hoodThresh = 1e3, shape_const_distType = "bottleneck", shape_const_growthForm = "logistic", shape_const_growthRate = 2, shape_const_growthGenerations = NULL, shape_db_splitTables = TRUE, shape_death_byDensity = TRUE, shape_death_densityCorrelation = 4, shape_death_densityCap = NULL, shape_envString = "shapeEnvir", shape_externalSelfing = FALSE, shape_external_stopFile = "someNamed.file", shape_finalDir = NULL, shape_genomeLength = 1e2, shape_includeDrift = TRUE, shape_init_distPars = c("factor"= 100, "random"= 1), shape_maxReplicates = 30, shape_maxRows = 2.5e7, shape_muts_onlyBirths = FALSE, shape_nextID = 0, shape_numGenerations = 100, shape_objectStrings = c("popDemographics" = "popDemo", "repeatability" = "evoRepeat"), shape_postDir = NULL, shape_recycle_repStart = 1, shape_results_removeSteps = TRUE, shape_run_isRecycling = c("Landscape" = TRUE, "Steps" = FALSE, "Parameters"=TRUE, "Neighbourhood"=FALSE), shape_save_batchBase = "yourJob", shape_save_batchSet = 1, shape_save_batchJob = 1, shape_scaleGrowth_byDeaths = TRUE, shape_sepString = "_", shape_sepLines = "__and__", shape_serverFarm = FALSE, shape_simModel = "HoC", shape_size_timeStep = 1, shape_stringsAsFactors = FALSE, shape_string_lineDescent = "_->_", shape_string_tableNames = "numMutations", shape_thisRep = 1, shape_tmpGenoTable = NULL, shape_tmp_selfScript = "~/random_nullFile.txt", shape_use_sigFig = 4, shape_toggle_forceCompletion = FALSE, shape_track_asWhole = FALSE, shape_track_distSize = NULL, shape_workDir = NULL){ options( sapply(ls(),function(envirParms){ eval(as.name(envirParms)) },simplify=FALSE) ) if(is.null(getOption("shape_workDir"))){ options("shape_workDir" = gsub('\\','/',tempdir(),fixed=TRUE)) } if(!grepl("/$",getOption("shape_workDir"))){ options("shape_workDir" = paste(getOption("shape_workDir"),'/',sep="")) } if(is.null(getOption("shape_death_densityCap"))){ options("shape_death_densityCap" = getOption("shape_const_focal_popValue")) } if(!any(getOption("shape_run_isRecycling"))){ options("shape_maxReplicates" = getOption("shape_thisRep")) } options("shape_save_batchString" = name_batchString(funcBase = getOption("shape_save_batchBase"), func_setID = getOption("shape_save_batchSet"), func_jobID = getOption("shape_save_batchJob"), func_sepString = getOption("shape_sepString"))) options("shape_outDir" = paste(getOption("shape_workDir"), getOption("shape_save_batchString"), "/",sep="")) if(is.null(getOption("shape_postDir"))){ options("shape_postDir" = paste(getOption("shape_workDir"), "postAnal/",sep="")) } for(thisArgument in c("shape_outDir","shape_postDir")){ func_tmpValue <- getOption(thisArgument) if(!grepl("/$",func_tmpValue)){ options(setNames(list(paste(gsub("[\\]+$","",func_tmpValue),"/",sep="")), thisArgument)) } if(!dir.exists(getOption(thisArgument))){ dir.create(getOption(thisArgument),recursive = TRUE) } } if(is.null(getOption("shape_finalDir"))){ options("shape_finalDir" = getOption("shape_outDir")) } options("shape_processedData_filePattern" = paste("processed_runData_from_", getOption("shape_save_batchBase"), sep="")) options("shape_processedData_fileName" = paste(getOption("shape_outDir"), "processed_runData_from_", getOption("shape_save_batchString"), "_", getOption("shape_thisRep"), ".RData",sep="")) options("shape_procExp_filenames" = c("fileList"= paste(getOption("shape_postDir"), "allFiles_from_", getOption("shape_save_batchBase"), ".RData",sep=""), "parameters"= paste(getOption("shape_postDir"), "jobParameters_from_", getOption("shape_save_batchBase"), ".RData",sep=""), "popDemographics"= paste(getOption("shape_postDir"), "popDemographics_from_", getOption("shape_save_batchBase"), ".RData",sep=""), "repeatability"= paste(getOption("shape_postDir"), "repeatabilityData_from_", getOption("shape_save_batchBase"), ".RData",sep=""))) options( list("shape_max_numMutations" = 1, "shape_popMat_colnames" = c("numMuts","genotypeID","popSize","fitness"), "shape_reportMat_colnames" = c("numMuts","genotypeID","popSize","fitness","births","deaths","mutants","progenitor"), "shape_processedObjects" = c("runDemographics","info_estLines"), "shape_const_siteStates" = c(0,1), "shape_init_distSteps" = compute_distGrowth(func_distFactor = if(getOption("shape_const_growthForm") == "logistic"){ getOption("shape_init_distPars") }else{ 0 }, func_growthType = getOption("shape_const_growthForm"), func_distType = getOption("shape_const_distType"), func_growthRate = getOption("shape_const_growthRate"), func_popSize = getOption("shape_const_focal_popValue"), func_focalSize = getOption("shape_const_focal_popValue"), func_manualGenerations = if(getOption("shape_const_growthForm") == "constant"){ getOption("shape_numGenerations") } else { getOption("shape_const_growthGenerations") }, func_stepDivs = getOption("shape_size_timeStep")), "shape_saveParameters" = list("Population"= c("shape_const_focal_popValue", "shape_genomeLength", "shape_const_mutProb", "shape_muts_onlyBirths", "shape_numGenerations", "shape_size_timeStep", "shape_const_deathProb", "shape_death_byDensity", "shape_death_densityCorrelation", "shape_death_densityCap", "shape_const_ancestFitness", "shape_const_estProp"), "Growth_Disturbance"= c("shape_const_distType", "shape_const_growthGenerations", "shape_init_distPars", "shape_track_distSize", "shape_const_growthForm", "shape_const_growthRate", "shape_scaleGrowth_byDeaths", "shape_includeDrift"), "FitnessLandscape"= c("shape_simModel", "shape_max_numMutations", "shape_const_relativeFitness", "shape_allow_backMutations", "shape_const_distAsS"), "NK_modelElements" = c("shape_const_numInteractions", "shape_const_NK_interactionMat", "shape_const_siteBystate_fitnessMat"), "RMF_modelElements" = c("shape_const_RMF_theta", "shape_const_RMF_indWeight", "shape_const_RMF_initiDistance", "shape_const_RMF_globalOptima"), "Fixed_Landscape"=c("shape_const_fixedFrame"), "DFE"= c("shape_constDist", "shape_const_distParameters"), "DataManagement" = c("shape_sepString", "shape_collapseString", "shape_string_tableNames", "shape_db_splitTables", "shape_maxRows", "shape_thisRep", "shape_maxReplicates", "shape_save_batchBase", "shape_save_batchSet", "shape_save_batchJob", "shape_save_batchString", "shape_save_batchIndex", "shape_fileName_dataBase"))) ) invisible( NULL ) } buildPedigree <- function(func_focalID){ return( sapply(as.character(func_focalID),function(thisID){ list() },simplify=FALSE) ) } findParent <- function(func_focalGenotype, func_startStep, func_stepMatrix, func_progenitorList, func_demoArray, func_pedigreeAll, func_lineString = getOption("shape_string_lineDescent")){ func_missingSteps <- rownames(func_stepMatrix)[which(func_stepMatrix[,"popSize"] == 0)] func_missingSteps <- as.numeric(nameTable_step(func_missingSteps,funcSplit = TRUE)) func_missingSteps <- func_missingSteps[which(func_missingSteps < func_startStep)] if(length(func_missingSteps) == 0){ return( func_focalGenotype ) } else { func_fociParents <- unlist(lapply(names(func_progenitorList),function(thisProgenitor){ if(is.element(max(func_missingSteps+1), func_progenitorList[[thisProgenitor]])){ return( thisProgenitor ) } else { return( NULL ) } })) return( paste(unlist(lapply(func_fociParents,function(thisProgenitor){ findParent(func_focalGenotype = as.numeric(thisProgenitor), func_startStep = max(func_missingSteps), func_stepMatrix = func_demoArray[,, thisProgenitor], func_progenitorList = func_pedigreeAll[[thisProgenitor]], func_demoArray = func_demoArray, func_pedigreeAll = func_pedigreeAll) })), func_focalGenotype, sep= func_lineString) ) } } extract_popDemographics <- function(func_stepsCon, func_estValue, func_landscapeCon, func_hoodCon, func_size_timeStep){ func_allTables <- unlist(RSQLite::dbListTables(func_stepsCon)) func_allTables <- func_allTables[order(as.numeric(nameTable_step(func_allTables,funcSplit = TRUE)), decreasing = FALSE)] tmpReturn <- list("demoMat"= matrix(-1,nrow = length(func_allTables), ncol = 8, dimnames = list(func_allTables,c("minFit","meanFit","maxFit","sdFit","numLines","numEstablished","numMutants","popSize"))), "transitionMat" = matrix(-1,ncol=5,dimnames=list(NULL,c("Step","genotypeID","numMuts","fitness","transitionGens"))), "vec_estLineages" = 0, "vec_final_estLineages" = 0, "Hists" = vector(mode="list",length=length(func_allTables))) names(tmpReturn[["Hists"]]) <- func_allTables for(thisStep in func_allTables){ tmpData <- dbGetQuery(func_stepsCon, paste("SELECT numMuts, genotypeID, popSize, fitness, mutants FROM ",thisStep,sep="")) tmpData[which(tmpData[,"popSize"] <= 0),"popSize"] <- 1e-1 tmp_estLineages <- querryEstablished(func_inMatrix = tmpData, func_estProp = func_estValue) if(nrow(tmp_estLineages) > 0){ tmpReturn[["vec_estLineages"]] <- unique(c(tmpReturn[["vec_estLineages"]], tmp_estLineages$genotypeID)) if(thisStep == func_allTables[length(func_allTables)]){ tmpReturn$vec_final_estLineages <- tmp_estLineages$genotypeID } } tmp_maxLine <- tmpData[which(tmpData$popSize == max(tmpData$popSize)),] tmp_transRow <- which(tmpReturn[["transitionMat"]][,"Step"] == max(tmpReturn[["transitionMat"]][,"Step"])) if(any(!is.element(tmp_maxLine$genotypeID,tmpReturn[["transitionMat"]][tmp_transRow,"genotypeID"]))){ tmpReturn[["transitionMat"]] <- rbind(tmpReturn[["transitionMat"]], matrix(c(rep(as.numeric(nameTable_step(thisStep,funcSplit = TRUE)),nrow(tmp_maxLine)), tmp_maxLine$genotypeID, tmp_maxLine$numMuts, tmp_maxLine$fitness, rep(as.numeric(nameTable_step(thisStep,funcSplit = TRUE)) * func_size_timeStep - ifelse(tmpReturn[["transitionMat"]][nrow(tmpReturn[["transitionMat"]]),"Step"] != -1,tmpReturn[["transitionMat"]][nrow(tmpReturn[["transitionMat"]]),"Step"],0)* func_size_timeStep, nrow(tmp_maxLine)) ), nrow=nrow(tmp_maxLine))) } tmpReturn[["demoMat"]][thisStep,] <- c(min(tmpData$fitness), weighted.mean(tmpData$fitness,tmpData$popSize), max(tmpData$fitness), if(nrow(tmpData) == 1){ 0 } else { sd(tmpData[,"fitness"]* tmpData[,"popSize"]/sum(tmpData[,"popSize"])) }, nrow(tmpData), nrow(tmp_estLineages), sum(tmpData$mutants), sum(tmpData$popSize)) tmp_fitHist <- hist(tmpData$fitness,plot=FALSE) tmp_fitHist$counts <- log10(if(length(tmp_fitHist$counts) > 1){ sapply(1:length(tmp_fitHist$counts),function(x){ if(x == 1){ sum(tmpData$popSize[intersect(which(tmpData$fitness >= tmp_fitHist$breaks[x]), which(tmpData$fitness <= tmp_fitHist$breaks[x+1]))]) } else { sum(tmpData$popSize[intersect(which(tmpData$fitness > tmp_fitHist$breaks[x]), which(tmpData$fitness <= tmp_fitHist$breaks[x+1]))]) } }) } else { sum(tmpData$popSize) }) tmp_sizeHist <- hist(log10(tmpData$popSize),plot = FALSE) tmp_sizeHist$counts <- log2(tmp_sizeHist$counts) tmp_fitHist$counts[which(tmp_sizeHist$counts == "-Inf")] <- -1 tmp_sizeHist$counts[which(tmp_sizeHist$counts == "-Inf")] <- -1 tmpReturn[["Hists"]][[thisStep]] <- list("fitness"= tmp_fitHist, "lines"= tmp_sizeHist) } tmpReturn[["transitionMat"]] <- matrix(tmpReturn[["transitionMat"]][-1,],ncol=ncol(tmpReturn[["transitionMat"]]), dimnames= dimnames(tmpReturn[["transitionMat"]])) return( tmpReturn ) } extractInfo_focalID <- function(func_focalID, func_estValue, func_stepsCon, func_landscapeCon,func_hoodCon, func_refMatrix, func_subNaming, func_genomeLength = getOption("shape_genomeLength"), func_max_numMutations = getOption("shape_max_numMutations"), func_allow_backMutations = getOption("shape_allow_backMutations"), func_descentSep = getOption("shape_string_lineDescent"), func_hoodExplore = getOption("shape_const_hoodDepth"), func_stringSep = getOption("shape_sepString")){ func_allTables <- unlist(RSQLite::dbListTables(func_stepsCon)) func_allTables <- func_allTables[order(as.numeric(nameTable_step(func_allTables,funcSplit = TRUE)), decreasing = TRUE)] func_focalID <- func_focalID[order(func_focalID)] func_lineageDemographics <- array(-1,dim=c(length(func_allTables),5,length(func_focalID)), dimnames=list(func_allTables,c("Step","popSize","isEstablished","births","mutsIn"),as.character(func_focalID))) func_pedigreeFrame <- buildPedigree(func_focalID[order(func_focalID)]) for(thisTable in func_allTables){ tmpIndex <- which(func_allTables == thisTable) tmpData <- dbGetQuery(func_stepsCon, paste("SELECT * FROM ",thisTable," WHERE genotypeID IN (", paste(unique(names(func_pedigreeFrame)),collapse=","), ")",sep="")) tmp_estLines <- querryEstablished(func_inMatrix = tmpData, func_estProp = func_estValue) for(func_thisMatrix in unique(names(func_pedigreeFrame))){ func_dataRow <- which(tmpData[,"genotypeID"] == func_thisMatrix) if(!is.element(func_thisMatrix, dimnames(func_lineageDemographics)[[3]])){ func_lineageDemographics <- abind(func_lineageDemographics, array(-1,dim=c(length(func_allTables),5,length(func_thisMatrix)), dimnames=list(func_allTables,c("Step","popSize","isEstablished","births","mutsIn"), func_thisMatrix)) ) } if(length(func_dataRow) > 0){ func_tmpSum <- sum(unlist(lapply(strsplit(tmpData[func_dataRow,"progenitor"], getOption("shape_collapseString"))[[1]],function(x){ as.numeric(strsplit(x,func_stringSep)[[1]][2]) })),na.rm=TRUE) func_lineageDemographics[thisTable,,as.character(func_thisMatrix)] <- c(as.numeric(nameTable_step(thisTable,funcSplit = TRUE)), tmpData[func_dataRow,"popSize"], is.element(func_thisMatrix, tmp_estLines[,"genotypeID"]), tmpData[func_dataRow,"births"] - func_tmpSum, func_tmpSum) } else { func_lineageDemographics[thisTable,,as.character(func_thisMatrix)] <- c(as.numeric(nameTable_step(thisTable,funcSplit = TRUE)), rep(0,4)) } if(length(func_dataRow) > 0){ if(!is.element(tmpData[func_dataRow,"progenitor"],c("","WT"))){ func_tmpParents <- unlist(lapply(strsplit(tmpData[func_dataRow,"progenitor"], getOption("shape_collapseString"))[[1]],function(x){ tmpReturn <- as.numeric(strsplit(x,func_stringSep)[[1]][1]) if(is.na(tmpReturn) || is.null(tmpReturn)){ return( NULL ) } else { return( tmpReturn ) } })) func_missingParents <- func_tmpParents[which(!is.element(func_tmpParents, names(func_pedigreeFrame)))] if(length(func_missingParents) > 0){ func_pedigreeFrame <- c(func_pedigreeFrame, buildPedigree(func_focalID = func_missingParents)) } } } } tmpData <- dbGetQuery(func_stepsCon, paste("SELECT * FROM ",thisTable," WHERE genotypeID IN (", paste(unique(names(func_pedigreeFrame)),collapse=","), ")",sep="")) for(func_thisID in unique(names(func_pedigreeFrame))){ func_dataRow <- which(tmpData[,"genotypeID"] == as.numeric(func_thisID)) if (length(func_dataRow) > 0 && !is.element(tmpData[func_dataRow,"progenitor"],c("","WT"))){ func_tmpParents <- unlist(lapply(strsplit(tmpData[func_dataRow,"progenitor"], getOption("shape_collapseString"))[[1]],function(x){ tmpReturn <- as.numeric(strsplit(x,func_stringSep)[[1]][1]) if(is.na(tmpReturn) || is.null(tmpReturn)){ return( NULL ) } else { return( tmpReturn ) } })) for(func_thisParent in as.character(func_tmpParents)){ func_recordStep <- as.numeric(nameTable_step(thisTable,funcSplit = TRUE)) if(is.element(func_thisParent,names(func_pedigreeFrame[[func_thisID]]))){ func_pedigreeFrame[[func_thisID]][[func_thisParent]] <- c(func_pedigreeFrame[[func_thisID]][[func_thisParent]], func_recordStep) } else { func_pedigreeFrame[[func_thisID]][[func_thisParent]] <- func_recordStep } } } } } func_startGenotypes <- unname(unlist(dbGetQuery(func_stepsCon, paste("SELECT genotypeID FROM ",nameTable_step(0),sep="")))) func_endFoci <- intersect(func_focalID, unname(unlist(dbGetQuery(func_stepsCon, paste("SELECT genotypeID FROM ", func_allTables[1],sep=""))))) func_nonEndFoci <- setdiff(func_focalID, c(func_startGenotypes, func_endFoci)) func_endLineages <- list() for(thisFoci in func_endFoci){ func_endLineages[[as.character(thisFoci)]] <- findParent(func_focalGenotype = thisFoci, func_startStep = as.numeric(nameTable_step(rownames(func_lineageDemographics)[which(func_lineageDemographics[,"popSize",as.character(thisFoci)] > 0)[1]],funcSplit = TRUE)), func_stepMatrix = func_lineageDemographics[,,as.character(thisFoci)], func_progenitorList = func_pedigreeFrame[[as.character(thisFoci)]], func_demoArray = func_lineageDemographics, func_pedigreeAll = func_pedigreeFrame) } func_nonendLineages <- list() if(length(func_nonEndFoci) > 0){ for(thisFoci in func_nonEndFoci){ func_nonendLineages[[as.character(thisFoci)]] <- findParent(func_focalGenotype = thisFoci, func_startStep = as.numeric(nameTable_step(rownames(func_lineageDemographics)[which(func_lineageDemographics[,"popSize",as.character(thisFoci)] > 0)[1]],funcSplit = TRUE)), func_stepMatrix = func_lineageDemographics[,,as.character(thisFoci)], func_progenitorList = func_pedigreeFrame[[as.character(thisFoci)]], func_demoArray = func_lineageDemographics, func_pedigreeAll = func_pedigreeFrame) } } func_landTables <- RSQLite::dbListTables(func_landscapeCon) func_uniqueTransitions <- unique(unlist(lapply(strsplit(as.character(unique(unlist(c(func_endLineages, func_nonendLineages)))), func_descentSep),function(thisLineage){ if(length(thisLineage) > 1){ return( paste(thisLineage[-length(thisLineage)], thisLineage[-1],sep= func_descentSep) ) } else { NULL } }))) func_uniquetransitionIDs <- unique(unlist(strsplit(as.character(unique(unlist(c(func_endLineages, func_nonendLineages)))), func_descentSep))) func_refInfo <- matrix(c(as.numeric(func_uniquetransitionIDs),rep(-1,length(func_uniquetransitionIDs) *2)), ncol=3,dimnames=list(func_uniquetransitionIDs,c("genotypeID","numMuts","fitness"))) if(!is.null(func_refMatrix)){ func_tmpIDs <- intersect(unique(func_refMatrix[,"genotypeID"]), as.numeric(func_uniquetransitionIDs)) func_refInfo[as.character(func_tmpIDs),c("numMuts","fitness")] <- func_refMatrix[unlist(lapply(func_tmpIDs,function(x){ which(func_refMatrix[,"genotypeID"] == x)[1] })), c("numMuts","fitness")] } func_missIDs <- unname(unlist(apply(func_refInfo,MARGIN=1,function(thisLine){ if(any(thisLine[c("genotypeID","numMuts","fitness")] == -1)){ return( thisLine["genotypeID"] ) } else { return( NULL ) } }))) if(length(func_missIDs) > 0){ func_updateInformation <- dbGetQuery(func_landscapeCon, paste("SELECT genotypeID,binaryString,fitness FROM ", func_landTables, ' WHERE genotypeID IN(', paste(func_missIDs,collapse=","), ')', collapse=" UNION ")) func_updateInformation[,"binaryString"] <- unlist(lapply(strsplit(func_updateInformation[,"binaryString"],func_stringSep),length)) colnames(func_updateInformation)[which(colnames(func_updateInformation) == "binaryString")] <- "numMuts" for(thisCol in c("numMuts","fitness")){ func_refInfo[as.character(func_missIDs[order(func_missIDs)]),thisCol] <- func_updateInformation[order(func_updateInformation[,"genotypeID"]), thisCol] } } func_hoodTables <- RSQLite::dbListTables(func_hoodCon) func_rankMat <- if(is.null(func_uniqueTransitions)){ NULL } else { t(sapply(func_uniqueTransitions,function(thisTransition){ tmp_transitionInfo = func_refInfo[strsplit(thisTransition, func_descentSep)[[1]],] tmp_mutsRange <- max(0,(tmp_transitionInfo[1,"numMuts"] - if(func_allow_backMutations){ func_max_numMutations }else{ 0 })): min(func_genomeLength ,(tmp_transitionInfo[1,"numMuts"] + (func_max_numMutations))) tmp_parent_binaryString <- retrieve_binaryString(func_genotypeID = tmp_transitionInfo[1,"genotypeID"], func_numMuts = tmp_transitionInfo[1,"numMuts"], func_subNaming = func_subNaming, func_landscapeCon = func_landscapeCon)[1,"binaryString"] tmp_parentalHood <- unique(c(tmp_parent_binaryString, if(is.element(nameTable_neighbourhood(tmp_transitionInfo[1,"genotypeID"]), func_hoodTables)){ dbGetQuery(func_hoodCon,paste("SELECT * FROM ",nameTable_neighbourhood(tmp_transitionInfo[1,"genotypeID"]),sep=""))$neighbours } else { defineNeighbours(func_tmpGenotype = tmp_parent_binaryString, func_tmpDirection = func_allow_backMutations) })) tmp_tmpStrings <- gsub("[[:space:]]","",paste("\'", tmp_parentalHood,"\'",collapse=',')) tmp_querryTables <- func_landTables[unique(unlist(lapply(nameTable(tmp_mutsRange),function(tmpTable){ which(grepl(tmpTable, func_landTables)) })))] tmp_hoodFit <- unlist(lapply(tmp_querryTables,function(thisTable){ unlist(dbGetQuery(func_landscapeCon, paste('SELECT fitness FROM ', thisTable, ' WHERE binaryString IN (', tmp_tmpStrings, ')', sep=""))) }), use.names=FALSE) tmp_hoodFit <- tmp_hoodFit[order(tmp_hoodFit, decreasing = TRUE)] tmp_childRank <- which(tmp_hoodFit == tmp_transitionInfo[2,"fitness"])[1] tmp_altPaths <- if(is.element(tmp_transitionInfo[1,"fitness"], tmp_hoodFit)){ which(tmp_hoodFit == tmp_transitionInfo[1,"fitness"])[1] - 1 } else { 0 } return( c("absRank"= tmp_childRank, "hoodSize"=length(tmp_parentalHood), "hoodMin"=min(tmp_hoodFit), "hoodMax"=max(tmp_hoodFit), "progenitor_numMuts"= tmp_transitionInfo[1,"numMuts"], "progenitor_fitness"= tmp_transitionInfo[1,"fitness"], "offspring_numMuts"= tmp_transitionInfo[2,"numMuts"], "offspring_fitness"= tmp_transitionInfo[2,"fitness"], "progenitorID"=tmp_transitionInfo[1,"genotypeID"], "offspringID"=tmp_transitionInfo[2,"genotypeID"], "num_altPaths"= tmp_altPaths, "relFit_altPaths" = if(tmp_altPaths > 0 && tmp_altPaths >= tmp_childRank){ calc_relativeFitness(tmp_hoodFit[1:tmp_altPaths])[tmp_childRank] } else { 0 }, "prop_maxFit" = if(tmp_altPaths > 0 && tmp_altPaths >= tmp_childRank){ (tmp_altPaths - (tmp_childRank -1)) / tmp_altPaths } else { 0 }) ) })) } return( list("lineDemo"=func_lineageDemographics, "linePedigree"=func_pedigreeFrame, "landscapeTopology"=func_rankMat, "end_Lines_of_Descent"=func_endLineages, "transition_Lines_of_Descent"=func_nonendLineages) ) } runProcessing <- function(func_saveFile, func_subNaming, func_stepsCon, func_landscapeCon, func_hoodCon, func_estProp, func_size_timeStep, func_processObjects = getOption("shape_processedObjects"), func_hoodPriority = getOption("shape_const_hoodDepth")){ if(file.exists(func_saveFile)){ return( paste("Found a pre-processed file of same expected name: ", func_saveFile," did not perform processing of run",sep="") ) } else { runDemographics <- extract_popDemographics(func_stepsCon = func_stepsCon, func_estValue = func_estProp, func_landscapeCon = func_landscapeCon, func_hoodCon = func_hoodCon, func_size_timeStep = func_size_timeStep) info_estLines <- extractInfo_focalID(func_focalID = runDemographics[["vec_estLineages"]], func_estValue = func_estProp, func_stepsCon = func_stepsCon, func_landscapeCon = func_landscapeCon, func_hoodCon = func_hoodCon, func_refMatrix = runDemographics[["transitionMat"]], func_subNaming = func_subNaming, func_descentSep = getOption("shape_string_lineDescent"), func_hoodExplore = func_hoodPriority) save(list= func_processObjects, file= func_saveFile) if(file.exists(func_saveFile)){ return( paste("Processing completed for :", func_saveFile,sep="") ) } else { return( paste("Save of :", func_saveFile,", failed as file does not exist.",sep="") ) } } } growthFunction <- function(func_inSize, func_inFitness, func_bProb, func_dProb, func_deathDen_logical = FALSE, func_deathDen_max = NULL, func_deathDen_power = 4,func_sizeStep, func_growthForm = c("logistic","exponential","constant","poisson"), func_carryingCapacity = NULL, func_basalRate = NULL, func_deathScale = FALSE, func_drift = TRUE, func_roundValues = FALSE, func_inIDs = NULL){ func_growthForm <- func_growthForm[1] if(!is.element(func_growthForm[1], eval(as.list(args(growthFunction))$func_growthForm))){ stop(paste("Incorrect growth form was passed as being ", func_growthForm," please review",sep="")) } if(all(func_inSize == 0)){ return( func_inSize ) } else if( any(is.element(func_inSize,c("NaN","-Inf","Inf"))) ){ stop("One of the population elements had NaN, or Inf size, please review") } func_tmpDeaths <- deathFunction(func_inSize = func_inSize, func_inProb = func_dProb * func_sizeStep, func_roundValues = func_roundValues, func_depDensity = func_deathDen_logical, func_densityMax = func_deathDen_max, func_densityPower = func_deathDen_power) func_tmpBirths <- birthFunction(func_inSize = func_inSize, func_inFitness = func_inFitness, func_bProb = func_bProb, func_sizeStep = func_sizeStep, func_growthForm = func_growthForm, func_deaths = func_tmpDeaths, func_carryingCapacity = func_carryingCapacity, func_basalRate = func_basalRate, func_deathScale = func_deathScale, func_drift = func_drift, func_roundValues = func_roundValues) return( matrix(c(func_tmpBirths,func_tmpDeaths),ncol=2, dimnames=list(func_inIDs,c("births","deaths"))) ) } birthFunction <- function(func_inSize, func_inFitness, func_bProb, func_sizeStep, func_growthForm = c("logistic","exponential","constant","poisson"), func_deaths = NULL, func_carryingCapacity = NULL, func_basalRate = NULL, func_deathScale = FALSE, func_drift = TRUE, func_roundValues = TRUE){ func_numBirths <- if(func_growthForm == "exponential"){ tmpBirths <- expGrowth(func_rate= func_inFitness * func_bProb * if(!is.null(func_basalRate)){func_basalRate}else{2}, func_step= func_sizeStep, func_startPop= func_inSize) - (func_inSize - if(func_deathScale){func_deaths}else{0}) if(func_drift){ tmpUpdate <- which(tmpBirths %%1 != 0) tmpBirths[tmpUpdate] <- addDrift(tmpBirths[tmpUpdate], func_integerValues = func_roundValues) } tmpBirths } else if (func_growthForm == "logistic"){ func_densityTerm <- (logisticMap(func_rate= func_inFitness * func_bProb * func_sizeStep * if(!is.null(func_basalRate)){func_basalRate}else{2}, func_startPop= sum(func_inSize), func_maxPop= func_carryingCapacity)/sum(func_inSize)) - 1 tmpBirths <- (func_inSize * func_densityTerm) + if(func_deathScale && !all(func_deaths == 0)){ birthFunction(func_inSize = func_inSize, func_inFitness = func_inFitness, func_bProb = func_bProb, func_sizeStep = func_sizeStep, func_growthForm = "constant", func_deaths = func_deaths, func_carryingCapacity = func_carryingCapacity, func_basalRate = func_basalRate, func_deathScale = FALSE, func_drift = FALSE, func_roundValues = func_roundValues) }else{ 0 } if(func_drift){ tmpUpdate <- which(tmpBirths %%1 != 0) tmpBirths[tmpUpdate] <- addDrift(tmpBirths[tmpUpdate], func_integerValues = func_roundValues) } tmpBirths } else if (func_growthForm == "poisson"){ unlist(lapply(func_inSize * func_inFitness * func_bProb * func_sizeStep,function(thisLineage){ rpois(1,thisLineage) })) } else if(func_growthForm == "constant"){ tmpBirths <- unlist(lapply(func_inSize * calc_relativeFitness(func_fitVector = func_inFitness) * func_bProb * func_sizeStep, function(thisLineage){ if(func_drift){ addDrift(thisLineage, func_integerValues = func_roundValues) } else { thisLineage } })) if(sum(tmpBirths) != 0){ tmpBirths <- tmpBirths/sum(tmpBirths) * sum(func_deaths) } tmpBirths } if(func_roundValues){ tmpUpdate <- which(func_numBirths %%1 != 0) if(length(tmpUpdate) > 0){ func_numBirths[tmpUpdate] <- unlist(lapply(func_numBirths[tmpUpdate], function(thisValue){ if(sign(thisValue) == 1){ floor(thisValue) + rbinom(1,1, thisValue %%1) } else { ceiling(thisValue) - rbinom(1,1, thisValue %%1) } })) } } if(func_growthForm == "logistic"){ if((sum(func_inSize, func_numBirths) - if(func_deathScale){sum(func_deaths)}else{0}) > func_carryingCapacity && !all(func_numBirths == 0)){ func_numBirths <- adjustBirths(func_adjVector= func_numBirths, func_sumTotal= func_carryingCapacity - sum(func_inSize) + if(func_deathScale){sum(func_deaths)}else{0}, func_roundValues = func_roundValues) } } else if(func_growthForm == "constant"){ if(sum(func_numBirths) != sum(func_deaths) && !all(func_numBirths == 0)){ func_numBirths <- adjustBirths(func_adjVector= func_numBirths, func_sumTotal= sum(func_deaths), func_roundValues = func_roundValues) } } return( func_numBirths ) } deathFunction <- function(func_inSize, func_inProb = 0, func_roundValues = TRUE, func_depDensity = FALSE, func_densityMax = NULL, func_densityPower = 4){ func_tmpReturn <- if(func_depDensity && !is.null(func_densityMax)){ func_inSize * func_inProb * (sum(func_inSize)/func_densityMax)^ func_densityPower } else { func_inSize * func_inProb } if(func_roundValues && any(func_tmpReturn %% 1 != 0)){ func_tmpUpdates <- which(func_tmpReturn %% 1 != 0) func_tmpReturn[func_tmpUpdates] <- unlist(lapply(func_tmpReturn[func_tmpUpdates],function(thisPop){ floor(thisPop) + rbinom(1, size = 1, prob = thisPop %% 1) })) } return( func_tmpReturn ) } mutationFunction <- function(func_inSize, func_inProb = 0){ func_tmpReturn <- func_inSize * func_inProb func_tmpUpdates <- which(func_tmpReturn %% 1 != 0) func_tmpReturn[func_tmpUpdates] <- unlist(lapply(func_tmpReturn[func_tmpUpdates],function(thisPop){ floor(thisPop) + rbinom(1, size = 1, prob = thisPop %% 1) })) return( func_tmpReturn ) } addDrift <- function(func_inVector, func_integerValues = TRUE){ func_integerValues = TRUE sign(func_inVector) * unlist(lapply(abs(func_inVector),function(thisValue){ if(func_integerValues){ rpois(1,thisValue) } else { func_tmpShape <- thisValue func_tmpRate <- 1 + (1.6/func_tmpShape) rgamma(1, func_tmpShape * func_tmpRate, func_tmpRate) } })) } logisticGrowth <- function(func_rate, func_step, func_startPop = NULL, func_maxPop = NULL, func_midAdjust = 0, func_basalExponent = exp(1)){ return( func_maxPop / (1+ (((func_maxPop - func_startPop)/(func_startPop)) * func_basalExponent^(-func_rate * (func_step - func_midAdjust))) ) ) } logisticMap <- function(func_rate, func_startPop, func_maxPop){ func_startPop + func_rate * (func_startPop * ((func_maxPop-func_startPop)/func_maxPop)) } expGrowth <- function(func_rate, func_step,func_startPop = NULL, func_endPop = NULL){ func_tmpRate <- (func_rate ^ func_step) if(is.null(func_endPop) && !is.null(func_startPop)){ if(any(func_tmpRate < 1)){ func_tmpRate[which(func_tmpRate < 1)] <- 1 } return( func_startPop * func_tmpRate ) } else if(!is.null(func_endPop) && is.null(func_startPop)){ return( func_endPop/func_tmpRate ) } else { stop(paste("Not certain which value you wanted calculated since you defined a starting pop of ",func_startPop," and final pop of ",func_endPop," please review",sep="")) } } adjustBirths <- function(func_adjVector, func_sumTotal, func_roundValues = getOption("shape_track_asWhole")){ if(sum(func_adjVector) != func_sumTotal){ func_adjVector <- func_adjVector/sum(func_adjVector) * sum(func_sumTotal) } if(func_roundValues && any(func_adjVector %% 1 != 0)){ func_tmpUpdates <- which(func_adjVector %% 1 != 0) func_adjVector[func_tmpUpdates] <- unlist(lapply(func_adjVector[func_tmpUpdates],function(thisPop){ floor(thisPop) + rbinom(1, size = 1, prob = thisPop %% 1) })) } if(abs(diff(c(sum(func_adjVector), func_sumTotal))) >= 1){ func_adjustments <- func_sumTotal - sum(func_adjVector) func_tmpAdjustable <- which(abs(func_adjVector) >= 1) func_proposedAdjustments <- NULL func_tmpCounter <- 0 while(sum(func_proposedAdjustments) != abs(func_adjustments) && func_adjustments >= 1 && func_tmpCounter < 100){ func_proposedAdjustments <- table(sample(func_tmpAdjustable, abs(func_adjustments), replace=TRUE, prob = abs(func_adjVector[func_tmpAdjustable]/sum(func_adjVector[func_tmpAdjustable])))) func_proposedAdjustments <- sapply(names(func_proposedAdjustments) ,function(thisNamed){ return( min(func_adjVector[as.numeric(thisNamed)], func_proposedAdjustments[thisNamed]) ) }) if(length(func_proposedAdjustments) == 0){ func_proposedAdjustments <- NULL } func_tmpCounter <- func_tmpCounter + 1 } if(func_tmpCounter >= 100){ stop("While adjustingBirths and trying to aportion the adjustments got stuck in a loop for 100 replicates, please review...") } if(!is.null(func_proposedAdjustments)){ func_adjVector[as.numeric(names(func_proposedAdjustments))] <- func_adjVector[as.numeric(names(func_proposedAdjustments))] + if(func_adjustments > 0){ as.vector(func_proposedAdjustments) } else { - as.vector(func_proposedAdjustments) } } } return( func_adjVector ) } fitnessLandscape <- function(tmpGenotypes, tmp_focalFitness, landscapeModel = "HoC", tmp_ancestralFitness = getOption("shape_const_ancestFitness"), tmp_weightsRMF = getOption("shape_const_RMF_theta"), tmp_optimaRMF = getOption("shape_const_RMF_globalOptima"), tmp_correlationsNK = getOption("shape_const_NK_interactionMat"), tmp_const_numInteractionsNK = getOption("shape_const_numInteractions"), tmp_NK_ancestDep = getOption("shape_const_DepbySite_ancestFitness"), relativeFitness = TRUE, func_genomeLength = getOption("shape_genomeLength"), func_distribution = getOption("shape_constDist"), func_distParameters = getOption("shape_const_distParameters"), func_distAsS = getOption("shape_const_distAsS"), func_sepString = getOption("shape_sepString")){ if(landscapeModel != "Fixed"){ tmp_genotypeList <- lapply(strsplit(tmpGenotypes,func_sepString),as.numeric) } if(!is.na(tmp_optimaRMF) && is.character(tmp_optimaRMF)){ tmp_optimaRMF <- as.numeric(strsplit(tmp_optimaRMF,func_sepString)[[1]]) } fitnessVec <- if(landscapeModel == "HoC"){ tmpReturn <- fitnessDist(length(tmp_genotypeList), tmpDistribution = func_distribution, tmpParameters = func_distParameters) if(func_distAsS){ tmpReturn <- tmpReturn - 1 } tmpReturn } else if(landscapeModel == "Additive") { as.vector(sapply(tmp_genotypeList,function(thisGenotype){ sum(c(tmp_ancestralFitness, tmp_focalFitness[setdiff(thisGenotype,1:nrow(tmp_focalFitness)),"0"], tmp_focalFitness[thisGenotype,"1"])) })) } else if(landscapeModel == "NK") { if(!is.matrix(tmp_focalFitness) || ncol(tmp_focalFitness) != length(getOption("shape_const_siteStates")) || nrow(tmp_focalFitness) != func_genomeLength || !all(is.element(getOption("shape_const_siteStates"),colnames(tmp_focalFitness))) ){ stop("The number of states, and/or the shape of the tmp_focalFitness passed to a call for fitnessLandscape function, is not correct please review") } if(tmp_const_numInteractionsNK != 0){ if(!is.matrix(tmp_correlationsNK) || ncol(tmp_correlationsNK) != tmp_const_numInteractionsNK || nrow(tmp_correlationsNK) != func_genomeLength){ stop("The shape of the tmp_correlationsNK passed to a call for fitnessLandscape function, is not a matrix and or does not have as many columns as suggested by tmp_const_numInteractionsNK, please review") } } else if(tmp_const_numInteractionsNK == 0 && !is.null(tmp_correlationsNK)){ stop("The tmp_correlationsNK object should have been passed as null since there are no reported NK correlations, please review") } as.vector(sapply(tmp_genotypeList,function(thisGenotype){ tmp_indFitness <- tmp_focalFitness[,"0"] tmp_indFitness[thisGenotype] <- tmp_focalFitness[thisGenotype,"1"] tmp_depFitness <- tmp_NK_ancestDep tmp_mutCorrelates <- unique(which(apply(tmp_correlationsNK,MARGIN=1,function(theseSites){ any(is.element(thisGenotype,theseSites)) }))) for(thisSite in union(thisGenotype,tmp_mutCorrelates)){ tmp_depFitness[thisSite] <- mean(tmp_indFitness[c(thisSite, tmp_correlationsNK[thisSite,])]) } return( mean(tmp_depFitness) ) })) } else if(landscapeModel == "RMF"){ if(length(tmp_weightsRMF) != 1){ stop("The vector of weights passed to RMF fitnessLandscape model is not length 1, please review.") } tmp_randomTerm <- fitnessDist(length(tmp_genotypeList), tmpDistribution = func_distribution, tmpParameters = func_distParameters) if(func_distAsS){ tmp_randomTerm <- tmp_randomTerm - 1 } as.vector( -tmp_weightsRMF * unlist(lapply(tmp_genotypeList,function(thisGenotype){ tmpOverlap <-is.element(thisGenotype, tmp_optimaRMF) length(tmp_optimaRMF) - length(which(tmpOverlap)) + length(which(! tmpOverlap)) })) + tmp_randomTerm ) } else if (landscapeModel == "Fixed"){ if(all(is.element(tmpGenotypes,names(tmp_focalFitness)))){ tmp_focalFitness[tmpGenotypes] } else { stop("There was a problem trying to use the Fixed fitness landscape model, review input make certain all possible genotypes are declared.") Sys.sleep(20) } } if(relativeFitness){ fitnessVec <- calc_relativeFitness(fitnessVec, func_ancestFit = tmp_ancestralFitness) } return( round(fitnessVec,4) ) } fitnessDist <- function(tmpDraws, tmpDistribution, tmpParameters){ if(tmpDistribution == "Fixed"){ return( sample(if(length(tmpParameters) == 2){ rep(tmpParameters[2],2) } else { tmpParameters[2: length(tmpParameters)]}, tmpDraws, replace = as.logical(tmpParameters[1])) ) }else if(tmpDistribution == "Gamma"){ return( rgamma(tmpDraws, shape = tmpParameters[1], rate = tmpParameters[2]) ) } else if(tmpDistribution == "Uniform") { return( runif(tmpDraws, min = tmpParameters[1], max = tmpParameters[2]) ) } else if(tmpDistribution == "Normal") { return( rnorm(tmpDraws, mean = tmpParameters[1], sd = tmpParameters[2]) ) } else if(tmpDistribution == "Chi2") { return( rchisq(tmpDraws, df = tmpParameters[1], ncp = tmpParameters[2]) ) } else if(tmpDistribution == "beta") { return( rbeta(tmpDraws, shape1 = tmpParameters[1] , shape2 = tmpParameters[2]) ) } else if(tmpDistribution == "exp") { return( rexp(tmpDraws, rate = tmpParameters[1]) ) } else if(tmpDistribution == "evd") { return( evd::rgev(tmpDraws, loc = tmpParameters[1], scale = tmpParameters[2], shape = tmpParameters[3]) ) } else if(tmpDistribution == "rweibull") { return( evd::rrweibull(tmpDraws, loc = tmpParameters[1], scale = tmpParameters[2], shape = tmpParameters[3]) ) } else if(tmpDistribution == "frechet") { return( VGAM::rfrechet(tmpDraws, location = tmpParameters[1], scale = tmpParameters[2], shape = tmpParameters[3]) ) } else if(tmpDistribution == "skewNorm") { tmpReturn <- sn::rsn(tmpDraws, xi = tmpParameters[1], omega = tmpParameters[2], alpha = tmpParameters[3], tau = tmpParameters[4]) tmpReturn[which(tmpReturn < 0)] <- 0 return( as.vector(tmpReturn) ) } } createGenotypes <- function(tmp_focalGenotype, tmp_focalFitness, maxHamming, tmp_landModel = "HoC", tmp_sepString = getOption("shape_sepString"), tmpDirection = getOption("shape_allow_backMutations"), tmp_relativeFitness = getOption("shape_const_relativeFitness"), tmp_currNeighbours = NULL, tmp_genCon, tmp_tableSplit = getOption("shape_db_splitTables"), tmp_maxRows = getOption("shape_maxRows"), tmp_genomeLength = getOption("shape_genomeLength"), tmp_distAsS = getOption("shape_const_distAsS"), ...){ if(is.null(tmp_currNeighbours)){ tmp_currNeighbours <- defineNeighbours(func_tmpGenotype = tmp_focalGenotype, func_tmpDirection = tmpDirection)} tmp_numMuts <- length(strsplit(tmp_focalGenotype, tmp_sepString)[[1]]) tmp_mutsRange <- max(0,(tmp_numMuts - if(tmpDirection){ maxHamming }else{ 0 })): min(tmp_genomeLength ,(tmp_numMuts + (maxHamming))) if(!tmpDirection && maxHamming <= 1){ tmp_mutsRange <- tmp_mutsRange[-which(tmp_mutsRange == tmp_numMuts)] } tmp_dbTables <- RSQLite::dbListTables(tmp_genCon) tmp_found_neededNeighbours <- find_neededNeighbours(tmp_possibleNeighbours = tmp_currNeighbours, tmp_focal_numMuts = tmp_numMuts, tmpRange_numMuts = tmp_mutsRange, tmp_refTables = tmp_dbTables, tmp_genCon = tmp_genCon) if(length(tmp_found_neededNeighbours) != 0){ neighbourMuts <- lapply(tmp_mutsRange,function(x){ return( tmp_found_neededNeighbours[which(sapply(strsplit(tmp_found_neededNeighbours, tmp_sepString),length) == x)] ) }) names(neighbourMuts) <- sapply(tmp_mutsRange,nameTable, "func_subNaming"=tmp_tableSplit) for(thisTable in names(neighbourMuts)[which(lapply(neighbourMuts,length) > 0)]){ options("shape_tmpGenoTable" = create_genotypeFrame(tmpID = getOption("shape_nextID"): (getOption("shape_nextID") + length(neighbourMuts[[thisTable]]) - 1), tmpStrings = neighbourMuts[[thisTable]], tmpFitnesses = fitnessLandscape(tmpGenotypes = neighbourMuts[[thisTable]], tmp_focalFitness = tmp_focalFitness, landscapeModel = tmp_landModel, relativeFitness = tmp_relativeFitness, func_distAsS = tmp_distAsS))) options(shape_nextID = getOption("shape_nextID") + length(neighbourMuts[[thisTable]])) if(!any(grepl(thisTable, tmp_dbTables)) || !tmp_tableSplit){ dbWriteTable(tmp_genCon, name = ifelse(tmp_tableSplit, paste(thisTable,1,sep=""), thisTable), value = getOption("shape_tmpGenoTable"), append=TRUE) } else { tmp_similarTables <- tmp_dbTables[which(grepl(thisTable, tmp_dbTables))] tmpOldest <- tmp_similarTables[which.max(sapply(tmp_similarTables,function(x){ as.numeric(strsplit(x,tmp_sepString)[[1]][3]) }))] if(nrow(dbGetQuery(tmp_genCon,paste("SELECT genotypeID FROM ", tmpOldest,sep=""))) < tmp_maxRows){ dbWriteTable(tmp_genCon, name = tmpOldest, value = getOption("shape_tmpGenoTable"), append=TRUE) } else { dbWriteTable(tmp_genCon, name = paste(paste(strsplit(tmpOldest,tmp_sepString)[[1]][-3],collapse=tmp_sepString),as.numeric(strsplit(tmpOldest,tmp_sepString)[[1]][3])+1,sep=tmp_sepString), value = getOption("shape_tmpGenoTable")) } } } tmp_neededTables <- tmp_dbTables[which(grepl(nameTable(tmp_numMuts, func_subNaming=tmp_tableSplit), tmp_dbTables))] tmp_ancestFind <- 0 tmp_ancestTable <- tmp_dbTables[which(grepl(nameTable(0, func_subNaming=tmp_tableSplit), tmp_dbTables))] names(tmp_ancestFind) <- tmp_ancestTable if(tmp_focalGenotype != ""){ tmp_ancestFind <- sapply(tmp_neededTables, function(thisTable){ as.vector(unlist(dbGetQuery(tmp_genCon, paste("SELECT genotypeID FROM ",thisTable,' WHERE binaryString = "', tmp_focalGenotype,'"',sep="")))) },simplify=FALSE) tmp_ancestTable <- names(tmp_ancestFind)[which(sapply(tmp_ancestFind,length) == 1)] } dbExecute(tmp_genCon, paste("UPDATE ", tmp_ancestTable ,' SET isExplored = 1 WHERE genotypeID = ', tmp_ancestFind[tmp_ancestTable],sep=""), synchronous = NULL) } invisible( NULL ) } find_neededNeighbours <- function(tmp_possibleNeighbours, tmp_focal_numMuts, tmp_refTables, maxHamming = getOption("shape_max_numMutations"), tmp_tableSplit = getOption("shape_db_splitTables"), tmp_genomeLength = getOption("shape_genomeLength"), tmpDirection = getOption("shape_allow_backMutations"), tmpRange_numMuts = NULL, tmp_genCon){ if(is.null(tmp_refTables)){ tmp_refTables <- RSQLite::dbListTables(tmp_genCon) } tmp_neededTables <- NULL if(is.null(tmpRange_numMuts)){ tmpRange_numMuts <- max(0,(tmp_focal_numMuts - if(tmpDirection){ maxHamming }else{ 0 })): min(tmp_genomeLength,(tmp_focal_numMuts + maxHamming)) tmp_neededTables <- tmp_refTables[unlist(lapply(tmpRange_numMuts[-which(tmpRange_numMuts == tmp_focal_numMuts)],function(x){ which(grepl(nameTable(x, func_subNaming=tmp_tableSplit), tmp_refTables)) }))] } else { tmp_neededTables <- tmp_refTables[unlist(lapply(tmpRange_numMuts,function(x){ which(grepl(nameTable(x, func_subNaming=tmp_tableSplit), tmp_refTables)) }))] } if(length(tmp_neededTables) == 0){ return( unlist(tmp_possibleNeighbours) ) } else { tmp_binaryStrings <- gsub("[[:space:]]","",paste("\'", tmp_possibleNeighbours,"\'",collapse=',')) return ( setdiff(tmp_possibleNeighbours, unlist(dbGetQuery(tmp_genCon, paste('SELECT binaryString FROM ', tmp_neededTables, ' WHERE binaryString IN (', tmp_binaryStrings,')', collapse=" UNION ")) )) ) } } defineNeighbours <- function(func_tmpGenotype, func_tmpDirection, func_maxHamming = getOption("shape_max_numMutations"), func_sepString = getOption("shape_sepString"), func_genomeLength = getOption("shape_genomeLength")){ func_tmpGenotype <- as.numeric(strsplit(func_tmpGenotype, func_sepString)[[1]]) return( if(length(func_tmpGenotype) == 0){ as.character(seq(1, func_genomeLength)) } else if(length(func_tmpGenotype) > 0 && !func_tmpDirection){ unlist(lapply(seq(1, func_genomeLength)[-func_tmpGenotype],function(thisPos){ paste(c(func_tmpGenotype,thisPos)[order(c(func_tmpGenotype,thisPos))],collapse= func_sepString) })) } else if(length(func_tmpGenotype) > 0 && func_tmpDirection){ c(unlist(lapply(seq(1, func_genomeLength)[-func_tmpGenotype],function(thisPos){ paste(c(func_tmpGenotype,thisPos)[order(c(func_tmpGenotype,thisPos))],collapse= func_sepString) })), unlist(lapply(1:length(func_tmpGenotype),function(thisPos){ paste(c(func_tmpGenotype[-thisPos])[order(c(func_tmpGenotype[-thisPos]))],collapse= func_sepString) })) ) } ) } create_genotypeFrame <- function(tmpID, tmpStrings,tmpFitnesses){ if(length(tmpStrings) != length(tmpFitnesses)){ stop("There was a problem trying to create a genotype data frame, as a result of the number of genotypes and fitnesses passed do not match") } return( data.frame("genotypeID"=tmpID,"binaryString"= tmpStrings, "fitness"= tmpFitnesses, "isExplored"= 0, stringsAsFactors=FALSE) ) } nameTable <- function(func_tmpMutations, func_tmpIndex = NULL, func_baseString = getOption("shape_string_tableNames"), func_sepString = getOption("shape_sepString"), func_splitName = FALSE, func_subNaming = getOption("shape_db_splitTables")){ if(func_splitName){ return( as.vector(unlist(lapply(func_tmpMutations, function(x) { strsplit(x, func_sepString)[[1]][2] }))) ) } if(func_subNaming){ if(!is.null(func_tmpIndex)){ return( paste(func_baseString,func_tmpMutations,paste(func_tmpIndex,collapse=func_sepString),sep=func_sepString) ) } else { return( paste(func_baseString,func_tmpMutations,"",sep=func_sepString) ) } } else { return( paste(func_baseString,func_tmpMutations,sep=func_sepString) ) } } nameTable_step <- function(func_Index, funcSplit = FALSE, func_sepString = getOption("shape_sepString")){ if(funcSplit){ return( unlist(lapply(strsplit(func_Index,func_sepString),function(x){ x[2] })) ) } else { return( paste("Step",func_Index,sep=func_sepString) ) } } nameTable_neighbourhood <- function(func_Index, funcSplit = FALSE, func_sepString = getOption("shape_sepString")){ if(funcSplit){ return( unlist(lapply(strsplit(func_Index,func_sepString),function(x){ x[2] })) ) } else { return( paste("genotypeID",func_Index,sep=func_sepString) ) } } reset_shapeDB <- function(func_conName, func_existingCon = NULL, func_type = "connect"){ if(func_type == "connect"){ if(!is.null(func_existingCon)){ RSQLite::dbDisconnect(func_existingCon) } return( RSQLite::dbConnect(RSQLite::SQLite(), func_conName) ) } else { return( RSQLite::dbDisconnect(func_conName) ) } } reportPopulations <- function(func_numMuts, func_genotypeID, func_popSizes, func_fitnesses, func_births, func_deaths, func_mutants, func_progenitor, func_reportMat_colnames = getOption("shape_reportMat_colnames")){ length_allInputs <- c(length(func_numMuts), length(func_genotypeID), length(func_popSizes), length(func_fitnesses), length(func_births), length(func_deaths), length(func_mutants), length(func_progenitor)) if( all(sapply(length_allInputs[-1],function(tmpLengths){ length_allInputs[1] == tmpLengths })) ){ if(length(length_allInputs) != length(func_reportMat_colnames)){ stop("Trying to create population matrix with insufficient number of elements passed, please review") return( NULL ) } else { tmpReturn <- data.frame(func_numMuts, func_genotypeID, func_popSizes, func_fitnesses, func_births, func_deaths, func_mutants, func_progenitor,stringsAsFactors=FALSE) dimnames(tmpReturn) <- list(rep(func_genotypeID,max(length_allInputs)/length(func_genotypeID)), func_reportMat_colnames) return( tmpReturn ) } } else { stop("Trying to create population matrix with vectors of information that are not all the same size, please review") return( NULL ) } } retrieve_binaryString <- function(func_genotypeID, func_numMuts = NULL, func_subNaming, func_landscapeCon){ tmp_refTables <- RSQLite::dbListTables(func_landscapeCon) if(!is.null(func_numMuts)){ tmp_refTables <- tmp_refTables[which(grepl(nameTable(func_numMuts, func_subNaming = func_subNaming), tmp_refTables))] } func_tmpReturn <- dbGetQuery(func_landscapeCon, paste("SELECT binaryString,isExplored FROM ", tmp_refTables, ' WHERE genotypeID IN(', paste(func_genotypeID,collapse=","), ')', collapse=" UNION ")) if(nrow(func_tmpReturn) == 0){ func_tmpReturn <- dbGetQuery(func_landscapeCon, paste("SELECT binaryString,isExplored FROM ", RSQLite::dbListTables(func_landscapeCon), ' WHERE genotypeID IN(', paste(func_genotypeID,collapse=","), ')', collapse=" UNION ")) } if(nrow(func_tmpReturn) == 0){ stopError(paste("Problem finding the binaryString information for: ",func_genotypeID," please review",sep="")) } else { return( func_tmpReturn ) } } compute_distGrowth <- function(func_distFactor, func_growthType, func_distType, func_growthRate, func_popSize, func_focalSize, func_manualGenerations = NULL, func_stepDivs){ if(is.element(func_growthType, c("poisson","constant"))){ return( c("factor"=0, "popLost"= 0, "stepReq"= if(is.null(func_manualGenerations )){ 1e12 } else { ceiling(func_manualGenerations/func_stepDivs) }) ) } func_tmpFactor <- as.vector(if(func_growthType == "logistic"){ if(func_distType == "bottleneck"){ func_distFactor["factor"] } else if(func_distType == "random") { rnorm(1,mean= func_distFactor["factor"],sd= func_distFactor["random"]) } else { stop(paste('There was a problem with the definition of <func_distType> = ', func_distType, ' please review',sep="")) } } else if (func_growthType == "exponential") { (sum(func_popSize)/func_focalSize) }) if(func_tmpFactor < 1){ func_tmpFactor <- 1 } func_growthSteps <- if(is.null(func_manualGenerations)){ log(if(func_tmpFactor <= 0){ 100 } else { func_tmpFactor }, base = func_growthRate) } else { round(func_manualGenerations,0) } func_growthSteps <- ceiling(func_growthSteps/func_stepDivs) return( c("factor" = func_tmpFactor, "popLost" = 0, "stepReq" = as.vector(func_growthSteps)) ) } lossSampling <- function(func_inPopulation, func_dilutionFactor){ return( apply(cbind(func_inPopulation, func_dilutionFactor),MARGIN=1,function(thisPop){ min(thisPop[1],rpois(1, lambda = thisPop[1] * thisPop[2])) }) ) } name_batchString <- function(funcBase, func_setID = NULL, func_jobID = NULL, func_repID = NULL, funcSplit = FALSE, func_sepString = getOption("shape_sepString")){ if(!funcSplit){ return( unname(apply(cbind(funcBase, func_setID, func_jobID, func_repID),MARGIN=1,function(thisInfo){ paste(paste(thisInfo,collapse=func_sepString,sep=""),sep="") })) ) } else { if(!all(is.logical(c(func_setID, func_jobID, func_repID)))){ stop(print("Problem splitting the batchString of ",paste(funcBase,collapse=" ")," missing logicals.",sep="")) } func_tmpReturn <- matrix(sapply(strsplit(funcBase,func_sepString),function(thisSplit){ tmp_returnString <- thisSplit[1] thisSplit <- thisSplit[-1] for(func_tmpIndex in c(func_setID, func_jobID, func_repID)[which(c(func_setID, func_jobID, func_repID))]){ if(func_tmpIndex){ tmp_returnString <- c(tmp_returnString,thisSplit[1]) thisSplit <- thisSplit[-1] } else { tmp_returnString <- c(tmp_returnString,NA) } } return( tmp_returnString ) }), ncol = length(funcBase)) dimnames(func_tmpReturn) <- list(c("base", if(!is.null(func_setID)){if(as.logical(func_setID)){"setID"}else{NULL}}else{NULL}, if(!is.null(func_jobID)){if(as.logical(func_jobID)){"jobID"}else{NULL}}else{NULL}, if(!is.null(func_repID)){if(as.logical(func_repID)){"repID"}else{NULL}}else{NULL}), funcBase) return( func_tmpReturn ) } } calc_relativeFitness <- function(func_fitVector, func_ancestFit = NULL, func_weights = NULL, func_absDistance = (getOption("shape_simModel") == "RMF")){ if(!is.null(func_ancestFit)){ if(func_ancestFit == 0){ func_absDistance <- TRUE } } if( (!is.null(func_ancestFit) && func_absDistance) ){ return( unlist(lapply(1 + (func_fitVector - func_ancestFit),function(func_thisFitness){ max(0, func_thisFitness) })) ) } else if(!is.null(func_ancestFit) && func_ancestFit != 0){ return( unlist(lapply(sign(func_ancestFit) *func_fitVector/func_ancestFit, function(func_thisFitness){ max(0, func_thisFitness) })) ) } else { return( unlist(lapply(1 + (func_fitVector - if(is.null(func_weights)){mean(func_fitVector)}else{weighted.mean(func_fitVector,func_weights)}), function(func_thisFitness){ max(0, func_thisFitness) })) ) } } querryEstablished <- function(func_inMatrix, func_sizeCol = "popSize", func_fitCol = "fitness", func_estProp = 0.01){ if(is.numeric(func_estProp)){ if(func_estProp <= 1){ return( func_inMatrix[which(func_inMatrix[, func_sizeCol] >= (func_estProp * sum(func_inMatrix[, func_sizeCol]))),] ) } else { return( func_inMatrix[which(func_inMatrix[, func_sizeCol] >= floor(func_estProp)) ,] ) } } else if(func_estProp == "Desai") { return( func_inMatrix[which(apply(func_inMatrix[, c(func_sizeCol, func_fitCol)],MARGIN=1,function(thisRow){ thisRow[func_sizeCol] >= 1/log(thisRow[func_fitCol]) })),] ) } else { return( func_inMatrix[eval(parse(text= func_estProp)),] ) } } stopError <- function(func_message){ stop(func_message) traceback() Sys.sleep(5) } trimQuotes <- function(funcIn){ substr(funcIn,2,nchar(funcIn)-1) } addQuotes <- function(funcIn){ paste('"',funcIn,'"',sep="") } name_subScript <- function(inVar){ paste("SHAPE_submit_",inVar,".sh",sep="") } name_batchSubmit <- function(inVar){ paste("submit_jobBatch_",inVar,".sh",sep="") } name_bodyScript <- function(inVar){ paste("SHAPE_body_",inVar,".r",sep="") } name_parameterScript <- function(inVar){ paste("SHAPE_parameters_",inVar,".r",sep="") } nameEnviron <- function(func_Index, funcSplit = FALSE, funcBase = getOption("shape_envString")){ if(funcSplit){ return( unlist(lapply(strsplit(func_Index,"_e_"),function(x){ x[2] })) ) } else { return( paste(funcBase,func_Index,sep="_e_") ) } } nameObject <- function(func_inString, func_inPrefix, func_splitStr = FALSE){ if(func_splitStr){ unlist(lapply(strsplit(func_inString, func_inPrefix),function(x){ x[length(x)] })) } else { paste(func_inPrefix, func_inString,sep="") } } set_siteByState_fitnessMat <- function(func_simModel = getOption("shape_simModel"), func_const_fixedFrame = getOption("shape_const_fixedFrame"), func_const_siteStates = getOption("shape_const_siteStates")){ func_tmpReturn <- if(is.element(func_simModel,c("NK","Additive"))){ sapply(func_const_siteStates,function(thisState){ return( if(thisState == "0" && getOption("shape_const_relativeFitness")){ rep(if(func_simModel == "NK"){ getOption("shape_const_ancestFitness") } else if(func_simModel == "Additive"){ 0 }, getOption("shape_genomeLength")) } else { tmpReturn <- fitnessDist(getOption("shape_genomeLength"), tmpDistribution = getOption("shape_constDist"), tmpParameters = getOption("shape_const_distParameters")) if(getOption("shape_const_distAsS")){ tmpReturn <- tmpReturn - 1 } tmpReturn } ) }) } else if(func_simModel == "Fixed") { func_tmpFileName <- paste(getOption("shape_workDir"),func_const_fixedFrame,sep="") if(file.exists(func_tmpFileName)){ func_tmpLandscape <- read.csv(func_tmpFileName, header=TRUE, stringsAsFactors = FALSE) options("shape_const_fixedFrame"= func_tmpLandscape) } else { stopError(paste("Could not find the fixed fitness landscape file: ",func_tmpFileName," please review",sep="")) } if(all(is.element(colnames(func_tmpLandscape),c("binaryString","fitness")))){ tmpReturn <- func_tmpLandscape[,"fitness"] names(tmpReturn) <- unlist(lapply(strsplit(func_tmpLandscape[,"binaryString"],""),function(x){ if(any(x == "1")){ paste(which(x == "1"),sep="",collapse=getOption("shape_sepString")) } else { "" } })) tmpReturn } else { stopError("Fixed fitness landscape matrix information does not contain the two column names binaryString and fitness") } } else { NULL } if(is.element(func_simModel,c("NK","Additive"))){ if(!is.matrix(func_tmpReturn)){ if(length(func_tmpReturn) != 2){ stopError(paste("There was a problem trying to create the <shape_const_siteBystate_fitnessMat> matrix, it's length was ", length(func_tmpReturn), "please review", sep="")) } else { func_tmpReturn <- matrix(func_tmpReturn, nrow=1, ncol= length(func_const_siteStates)) } } colnames(func_tmpReturn) <- func_const_siteStates } return( func_tmpReturn ) } set_DepbySite_ancestFitness <- function(func_simModel = getOption("shape_simModel"), func_const_siteBystate_fitnessMat = getOption("shape_const_siteBystate_fitnessMat"), func_const_NK_interactionMat = getOption("shape_const_NK_interactionMat")){ func_tmpReturn <- if(func_simModel == "NK"){ sapply(1:nrow(func_const_siteBystate_fitnessMat),function(thisSite){ mean(func_const_siteBystate_fitnessMat[c(thisSite, func_const_NK_interactionMat[thisSite,]),"0"]) }) } else { NA } return( func_tmpReturn ) } set_RMF_indWeight <- function(func_simModel = getOption("shape_simModel"), func_numDraws = 1e8, func_distType = getOption("shape_constDist"), func_distParms = getOption("shape_const_distParameters"), func_const_RMF_theta = getOption("shape_const_RMF_theta")){ func_tmpReturn <- if(func_simModel == "RMF"){ func_const_RMF_theta * sqrt(var(fitnessDist(func_numDraws, tmpDistribution = func_distType, tmpParameters = func_distParms))) } else { NA } return( func_tmpReturn ) } set_const_NK_interactionsMat <- function(func_simModel = getOption("shape_simModel"), func_genomeLength = getOption("shape_genomeLength"), func_numInteractions = getOption("shape_const_numInteractions")){ func_tmpReturn <- if(func_simModel != "NK" || func_numInteractions == 0){ NULL } else if(func_simModel == "NK" && func_numInteractions == 1){ as.matrix(sapply(1:func_genomeLength,function(thisSite){ sample((1:func_genomeLength)[-thisSite], func_numInteractions, replace=FALSE) }),ncol=1) } else { t(sapply(1:func_genomeLength,function(thisSite){ sample((1:func_genomeLength)[-thisSite], func_numInteractions, replace=FALSE) })) } return( func_tmpReturn ) } set_const_RMF_globalOptima <- function(func_simModel = getOption("shape_simModel"), func_genomeLength = getOption("shape_genomeLength"), func_initDistance = getOption("shape_const_RMF_initiDistance"), func_sepString = getOption("shape_sepString")){ func_tmpReturn <- if(func_simModel == "RMF"){ tmpReturn <- if(func_initDistance == 0){ "" } else { sample(1: func_genomeLength, func_initDistance,replace=FALSE) } paste(tmpReturn[order(tmpReturn,decreasing=FALSE)],collapse= func_sepString) } else { NA } return( func_tmpReturn ) } runReplicate <- function(func_inputFrames, func_currStep, func_stepCounter, func_growthModel = getOption("shape_const_growthForm"), func_growthRate = getOption("shape_const_growthRate"), func_landscapeModel = getOption("shape_simModel"), func_fileName_dataBase = getOption("shape_fileName_dataBase")){ workFrame <- func_inputFrames[[nameTable_step(func_currStep-1)]] if(func_stepCounter > getOption("shape_track_distSize")[nrow(getOption("shape_track_distSize")),"stepReq"]){ currLineages <- unname(which(workFrame[,"popSize"] >= 0.5)) if(length(currLineages) == 0){ print(paste("All lineages have died as of timeStep ", func_currStep,sep="")) return( func_inputFrames ) } workFrame <- reportPopulations(func_numMuts= workFrame[currLineages,"numMuts"], func_genotypeID= workFrame[currLineages,"genotypeID"], func_popSizes= workFrame[currLineages,"popSize"], func_fitnesses= workFrame[currLineages,"fitness"], func_births=workFrame[currLineages,"births"], func_deaths=workFrame[currLineages,"deaths"], func_mutants=workFrame[currLineages,"mutants"], func_progenitor=workFrame[currLineages,"progenitor"]) tmp_lossFactors <- compute_distGrowth(func_distFactor = if(func_growthModel == "logistic"){ getOption("shape_init_distPars") }else{ 0 }, func_growthType = func_growthModel, func_distType = getOption("shape_const_distType"), func_growthRate = func_growthRate, func_popSize = workFrame[,"popSize"], func_focalSize = getOption("shape_const_focal_popValue"), func_manualGenerations = if(func_growthModel == "constant"){ getOption("shape_numGenerations") } else { getOption("shape_const_growthGenerations") }, func_stepDivs = getOption("shape_size_timeStep")) if(tmp_lossFactors["factor"] > 1){ tmp_sampledPop <- lossSampling(func_inPopulation = workFrame[,"popSize"], func_dilutionFactor = 1/if(tmp_lossFactors["factor"] == 0){1}else{tmp_lossFactors["factor"]}) tmp_lossFactors["popLost"] <- sum(workFrame[,"popSize"] - tmp_sampledPop) tmp_lossFactors["factor"] <- sum(workFrame[,"popSize"])/sum(tmp_sampledPop) workFrame[,"popSize"] <- tmp_sampledPop options("shape_track_distSize" = rbind(getOption("shape_track_distSize"), c("Step"= func_currStep, tmp_lossFactors))) } func_stepCounter <- 1 options("shape_counter_logSteps" = func_stepCounter) } currLineages <- as.vector(which(workFrame[,"popSize"] >= 0.5, useNames=FALSE)) if(length(currLineages) == 0){ print(paste("All lineages have died as of timeStep ", func_currStep,sep="")) return( func_inputFrames ) } workFrame <- reportPopulations(func_numMuts= workFrame[currLineages,"numMuts"], func_genotypeID= workFrame[currLineages,"genotypeID"], func_popSizes= workFrame[currLineages,"popSize"], func_fitnesses= workFrame[currLineages,"fitness"], func_births=workFrame[currLineages,"births"], func_deaths=workFrame[currLineages,"deaths"], func_mutants=workFrame[currLineages,"mutants"], func_progenitor=workFrame[currLineages,"progenitor"]) num_birthDeaths <- growthFunction(func_inSize = workFrame[,"popSize"], func_inFitness = workFrame[,"fitness"], func_bProb = getOption("shape_const_birthProb"), func_dProb = getOption("shape_const_deathProb"), func_deathDen_logical = getOption("shape_death_byDensity"), func_deathDen_max = getOption("shape_death_densityCap"), func_deathDen_power = getOption("shape_death_densityCorrelation"), func_sizeStep = getOption("shape_size_timeStep"), func_growthForm = func_growthModel, func_carryingCapacity = getOption("shape_const_focal_popValue"), func_basalRate = func_growthRate, func_deathScale = getOption("shape_scaleGrowth_byDeaths"), func_drift = getOption("shape_includeDrift"), func_roundValues = getOption("shape_track_asWhole"), func_inIDs = rownames(workFrame)) tmpUpdates <- which(num_birthDeaths[,"births"] < 0) if(length(tmpUpdates) > 0){ num_birthDeaths[tmpUpdates,"deaths"] <- num_birthDeaths[tmpUpdates,"deaths"] - num_birthDeaths[tmpUpdates,"births"] num_birthDeaths[tmpUpdates,"births"] <- 0 } tmp_mutableLineages <- if(!getOption("shape_allow_backMutations") && is.element(getOption("shape_genomeLength"),workFrame[,"numMuts"])){ rownames(num_birthDeaths)[which(workFrame[rownames(num_birthDeaths),"numMuts"] != getOption("shape_genomeLength"))] } else { rownames(num_birthDeaths) } tmp_mutableLineages <- tmp_mutableLineages[which(workFrame[tmp_mutableLineages,"popSize"] + num_birthDeaths[tmp_mutableLineages,"births"] - num_birthDeaths[tmp_mutableLineages,"deaths"] >= 1)] proposedMutants <- mutationFunction(func_inSize = unlist(lapply(num_birthDeaths[tmp_mutableLineages,"births"] * func_growthRate/ (func_growthRate - 1),function(x){ max(0,x) })), func_inProb = getOption("shape_const_mutProb")) + if(getOption("shape_muts_onlyBirths")){ 0 } else { mutationFunction(func_inSize = unlist(lapply(workFrame[tmp_mutableLineages,"popSize"] - num_birthDeaths[tmp_mutableLineages,"deaths"] - num_birthDeaths[tmp_mutableLineages,"births"] * 1/(func_growthRate - 1), function(x){ max(0,x) })), func_inProb = getOption("shape_const_mutProb") * getOption("shape_size_timeStep")) } names(proposedMutants) <- tmp_mutableLineages num_birthDeaths <- cbind(num_birthDeaths, "mutants"= as.vector(sapply(rownames(workFrame),function(x){ if(is.element(x,names(proposedMutants))){ return( min(proposedMutants[x], workFrame[x,"popSize"] + num_birthDeaths[x,"births"] - num_birthDeaths[x,"deaths"]) ) } else { 0 } }))) all_newMutants <- NULL if(sum(num_birthDeaths[,"mutants"]) > 0){ for(thisLineage in rownames(num_birthDeaths)[which(num_birthDeaths[,"mutants"] > 0)] ){ connections_dataBase <- sapply(names(func_fileName_dataBase),function(x){ reset_shapeDB(paste(getOption("shape_outDir"), func_fileName_dataBase[[x]],sep=""), func_type = "connect") }) this_focalGenotype <- retrieve_binaryString(func_genotypeID = as.numeric(thisLineage), func_numMuts = workFrame[thisLineage,"numMuts"], func_subNaming = getOption("shape_db_splitTables"), func_landscapeCon = connections_dataBase$genotypeSpace) if(length(this_focalGenotype) == 0 || nrow(this_focalGenotype) != 1){ print(paste("Safety net for mis-classified genotypeID has been used for ", this_focalGenotype," on step ",func_currStep,sep="")) tmp_mutSearch <- sapply(nameTable(RSQLite::dbListTables(connections_dataBase$genotypeSpace), func_splitName = TRUE), function(this_numMuts){ return( nrow(retrieve_binaryString(func_genotypeID = as.numeric(thisLineage), func_numMuts = as.numeric(this_numMuts), func_subNaming = getOption("shape_db_splitTables"), func_landscapeCon = connections_dataBase$genotypeSpace)) ) }) if(length(which(tmp_mutSearch == 1)) == 1){ workFrame[thisLineage,"numMuts"] <- as.numeric(names(tmp_mutSearch)[which(tmp_mutSearch == 1)]) this_focalGenotype <- retrieve_binaryString(func_genotypeID = as.numeric(thisLineage), func_numMuts = workFrame[thisLineage,"numMuts"], func_subNaming = getOption("shape_db_splitTables"), func_landscapeCon = connections_dataBase$genotypeSpace) } else { stop(paste("There was a problem while trying to define a unique table containing ",thisLineage," during ",func_currStep," please review",sep="")) } } tmp_allNeighbours <- NULL if(is.element(nameTable_neighbourhood(thisLineage),RSQLite::dbListTables(connections_dataBase$nearestNeighbours))){ tmp_allNeighbours <- dbGetQuery(connections_dataBase$nearestNeighbours, paste("SELECT * FROM ",nameTable_neighbourhood(thisLineage),sep=""))$neighbours } else { tmp_allNeighbours <- defineNeighbours(func_tmpGenotype = this_focalGenotype[1,"binaryString"], func_tmpDirection = getOption("shape_allow_backMutations")) if(workFrame[thisLineage,"popSize"] >= getOption("shape_const_hoodThresh")){ dbWriteTable(connections_dataBase$nearestNeighbours, nameTable_neighbourhood(thisLineage), data.frame("neighbours"=tmp_allNeighbours)) } } if(!as.logical(this_focalGenotype[1,"isExplored"])){ createGenotypes(tmp_focalGenotype = this_focalGenotype[1,"binaryString"], tmp_focalFitness = if(is.element(func_landscapeModel,c("NK","Additive"))){ getOption("shape_const_siteBystate_fitnessMat") } else { workFrame[thisLineage,"fitness"] }, maxHamming = getOption("shape_max_numMutations"), tmp_landModel = func_landscapeModel, tmp_relativeFitness = getOption("shape_const_relativeFitness"), tmpDistribution = getOption("shape_constDist"), tmpParameters = getOption("shape_const_distParameters"), tmp_currNeighbours = tmp_allNeighbours, tmp_genCon = connections_dataBase$genotypeSpace, tmp_tableSplit = getOption("shape_db_splitTables"), tmp_maxRows = getOption("shape_maxRows"), tmp_distAsS = getOption("shape_const_distAsS")) } newMutants <- table(sample(tmp_allNeighbours, num_birthDeaths[thisLineage,"mutants"], replace = TRUE)) tmp_numMuts <- unlist(lapply(strsplit(names(newMutants),getOption("shape_sepString")),length)) tmp_dbTables <- RSQLite::dbListTables(connections_dataBase$genotypeSpace) tmp_dbTables <- tmp_dbTables[unique(unlist(lapply(nameTable(unique(tmp_numMuts)),function(thisString){ which(grepl(thisString,tmp_dbTables)) })))] tmp_newStrings <- gsub("[[:space:]]","",paste("\'", names(newMutants),"\'",collapse=',')) tmp_infoAdd <- as.matrix(dbGetQuery(connections_dataBase$genotypeSpace, paste("SELECT genotypeID,fitness,binaryString FROM ", tmp_dbTables, ' WHERE binaryString IN (', tmp_newStrings, ')', collapse=" UNION "))) if(!all(is.element(names(newMutants),tmp_infoAdd[,"binaryString"]))){ createGenotypes(tmp_focalGenotype = this_focalGenotype[1,"binaryString"], tmp_focalFitness = if(is.element(func_landscapeModel,c("NK","Additive"))){ getOption("shape_const_siteBystate_fitnessMat") } else { workFrame[thisLineage,"fitness"] }, maxHamming = getOption("shape_max_numMutations"), tmp_landModel = func_landscapeModel, tmp_relativeFitness = getOption("shape_const_relativeFitness"), tmpDistribution = getOption("shape_constDist"), tmpParameters = getOption("shape_const_distParameters"), tmp_currNeighbours = tmp_allNeighbours, tmp_genCon = connections_dataBase$genotypeSpace, tmp_tableSplit = getOption("shape_db_splitTables"), tmp_distAsS = getOption("shape_const_distAsS")) tmp_infoAdd <- as.matrix(dbGetQuery(connections_dataBase$genotypeSpace, paste("SELECT genotypeID,fitness,binaryString FROM ", tmp_dbTables, ' WHERE binaryString IN (', tmp_newStrings, ')', collapse=" UNION "))) } for(thisConnection in connections_dataBase){ dbDisconnect(thisConnection) } tmp_newOrder <- unlist(lapply(names(newMutants),function(x){ which(tmp_infoAdd[,"binaryString"] == x) })) newMutants <- cbind(tmp_numMuts, tmp_infoAdd[tmp_newOrder,"genotypeID"], newMutants, tmp_infoAdd[tmp_newOrder,"fitness"]) colnames(newMutants) <- getOption("shape_popMat_colnames") rownames(newMutants) <- as.character(newMutants[,"genotypeID"]) all_newMutants <- rbind(all_newMutants, cbind(newMutants, "progenitor"= unlist(lapply(newMutants[,"popSize"],function(thisSize){ paste(thisLineage,thisSize,sep=getOption("shape_sepString")) })) ) ) } } tmp_stepChanges <- data.frame(cbind(workFrame[rownames(num_birthDeaths), getOption("shape_popMat_colnames")], num_birthDeaths, "progenitor"="",stringsAsFactors=FALSE) ,stringsAsFactors=FALSE) if(!is.null(all_newMutants)){ all_newMutants[,"genotypeID"] <- gsub("[[:space:]]","",all_newMutants[,"genotypeID"]) tmp_repIDs <- table(all_newMutants[,"genotypeID"]) tmp_repIDs <- names(which(tmp_repIDs > 1)) if(length(tmp_repIDs) > 0){ tmp_removeRows <- NULL for(thisID in tmp_repIDs){ tmpRows <- as.vector(which(all_newMutants[,"genotypeID"] == thisID)) all_newMutants[tmpRows[1],"popSize"] <- as.character(sum(as.numeric(all_newMutants[tmpRows,"popSize"]))) all_newMutants[tmpRows[1],"progenitor"] <- paste(all_newMutants[tmpRows,"progenitor"],collapse= getOption("shape_collapseString")) tmp_removeRows <- c(tmp_removeRows, tmpRows[-1]) } if(!is.null(tmp_removeRows)){ all_newMutants <- matrix(all_newMutants[-tmp_removeRows,],ncol=ncol(all_newMutants), dimnames=list(rownames(all_newMutants[-tmp_removeRows]),colnames(all_newMutants))) } } all_newMutants <- data.frame(all_newMutants,stringsAsFactors=FALSE) for(thisCol in getOption("shape_popMat_colnames")){ all_newMutants[, thisCol] <- as.numeric(all_newMutants[, thisCol]) } tmpTypes <- is.element(all_newMutants[,"genotypeID"], tmp_stepChanges[,"genotypeID"]) tmpExisting <- if(any(tmpTypes)){ unlist(lapply(all_newMutants[which(tmpTypes),"genotypeID"], function(x){ which(tmp_stepChanges[,"genotypeID"] == x) })) } else { NULL } if(!is.null(tmpExisting)){ tmp_stepChanges[tmpExisting,"births"] <- apply(cbind(tmp_stepChanges[tmpExisting,"births"], all_newMutants[which(tmpTypes),"popSize"]),MARGIN=1,sum) tmp_stepChanges[tmpExisting,"progenitor"] <- apply(cbind(tmp_stepChanges[tmpExisting,"progenitor"], all_newMutants[which(tmpTypes),"progenitor"]), MARGIN = 1, function(x){ paste(x,collapse=getOption("shape_collapseString")) }) all_newMutants <- all_newMutants[-which(tmpTypes),] } tmp_stepChanges <- rbind(tmp_stepChanges, reportPopulations(func_numMuts= all_newMutants[,"numMuts"], func_genotypeID= all_newMutants[,"genotypeID"], func_popSizes= all_newMutants[,"popSize"], func_fitnesses= all_newMutants[,"fitness"], func_births= all_newMutants[,"popSize"], func_deaths= rep(0,nrow(all_newMutants)), func_mutants= rep(0,nrow(all_newMutants)), func_progenitor= all_newMutants[,"progenitor"])) } tmp_stepChanges[rownames(num_birthDeaths),"popSize"] <- tmp_stepChanges[rownames(num_birthDeaths),"popSize"] + tmp_stepChanges[rownames(num_birthDeaths),"births"] - tmp_stepChanges[rownames(num_birthDeaths),"deaths"] - tmp_stepChanges[rownames(num_birthDeaths),"mutants"] connections_dataBase <- sapply(names(func_fileName_dataBase),function(x){ reset_shapeDB(paste(getOption("shape_outDir"), func_fileName_dataBase[[x]],sep=""), func_type = "connect") }) tmp_returnMatrix <- setNames(list(reportPopulations(func_numMuts= tmp_stepChanges[,"numMuts"], func_genotypeID= tmp_stepChanges[,"genotypeID"], func_popSizes= tmp_stepChanges[,"popSize"], func_fitnesses= tmp_stepChanges[,"fitness"], func_births= tmp_stepChanges[,"births"], func_deaths= tmp_stepChanges[,"deaths"], func_mutants= tmp_stepChanges[,"mutants"], func_progenitor= tmp_stepChanges[,"progenitor"])), nameTable_step(func_currStep)) dbWriteTable(connections_dataBase$timeStep_States, name = names(tmp_returnMatrix), value = tmp_returnMatrix[[1]]) for(thisConnection in connections_dataBase){ dbDisconnect(thisConnection) } return( c(func_inputFrames[[length(func_inputFrames)]], tmp_returnMatrix) ) } runSHAPE <- function(loop_thisRep = getOption("shape_thisRep"), workingReplicates = seq(getOption("shape_thisRep"),getOption("shape_maxReplicates"),by=1), tmpEnvir_recycleParms = new.env()){ if(length(which(grepl("^shape_",names(options())))) < length(as.list(args(defineSHAPE))) - 1){ print("Doesn't look like expected options have been set for SHAPE,\n either run defineSHAPE() before trying again or doing the same prior to setting options manually.") invisible( NULL ) } for(loop_thisRep in workingReplicates){ options("shape_thisRep"=loop_thisRep) options("shape_processedData_fileName" = paste(getOption("shape_outDir"), "processed_runData_from_", getOption("shape_save_batchString"), "_", getOption("shape_thisRep"), ".RData",sep="")) options("shape_save_batchIndex" = sapply(c("Landscape", "Steps", "Parameters", "Neighbourhood"),function(thisIndex){ paste(getOption("shape_save_batchString"), thisIndex, if(getOption("shape_run_isRecycling")[thisIndex]){ getOption("shape_recycle_repStart") } else { getOption("shape_thisRep") },sep=getOption("shape_sepString")) })) save_fileName <- paste(paste(getOption("shape_save_batchIndex")["Parameters"],sep=getOption("shape_sepString")),".RData",sep="") options("shape_fileName_dataBase" = list("genotypeSpace"=paste(getOption("shape_save_batchIndex")["Landscape"],".sqlite",sep=""), "timeStep_States"=paste(getOption("shape_save_batchIndex")["Steps"],".sqlite",sep=""), "nearestNeighbours"=paste(getOption("shape_save_batchIndex")["Neighbourhood"],".sqlite",sep=""))) if(getOption("shape_run_isRecycling")["Landscape"] && c(getOption("shape_thisRep") > getOption("shape_recycle_repStart") || file.exists(paste(getOption("shape_outDir"), paste(getOption("shape_save_batchString"), "Parameters", getOption("shape_recycle_repStart"), sep = getOption("shape_sepString")), ".RData",sep=""))) ){ tmp_realReplicate <- getOption("shape_thisRep") tmp_realDist <- getOption("shape_track_distSize") tmp_real_batchStrings <- getOption("shape_save_batchIndex") tmp_realNames <- getOption("shape_fileName_dataBase") tmp_tryFile <- paste(getOption("shape_outDir"), paste(getOption("shape_save_batchString"), "Parameters", getOption("shape_recycle_repStart"), sep=getOption("shape_sepString")), ".RData",sep="") if(file.exists(tmp_tryFile)){ load(tmp_tryFile, envir= tmpEnvir_recycleParms ) } else { stop("There was a problem trying to load the seed runs' parameters during call to recycle Landscape. Please review") } loadSet <- if(!getOption("shape_run_isRecycling")["Parameters"]){ c("FitnessLandscape","DFE","NK_modelElements", "RMF_modelElements") } else { names(getOption("shape_saveParameters")) } for(thisSet in loadSet){ for(thisNamed in names(tmpEnvir_recycleParms$runParameters[[thisSet]])){ options(setNames(list(tmpEnvir_recycleParms$runParameters[[thisSet]][[thisNamed]]),thisNamed)) } } options(list("shape_thisRep" = tmp_realReplicate, "shape_track_distSize" = tmp_realDist, "shape_save_batchIndex" = tmp_real_batchStrings, "shape_fileName_dataBase" = tmp_realNames)) rm(list=ls(, envir = tmpEnvir_recycleParms), envir = tmpEnvir_recycleParms) } else { options("shape_const_numInteractions" = min(getOption("shape_const_numInteractions"),getOption("shape_genomeLength") - 1)) options("shape_const_NK_interactionMat" = set_const_NK_interactionsMat()) options("shape_const_siteBystate_fitnessMat" = set_siteByState_fitnessMat()) options("shape_const_DepbySite_ancestFitness" = set_DepbySite_ancestFitness()) options("shape_const_RMF_indWeight" = set_RMF_indWeight()) options("shape_const_RMF_globalOptima" = set_const_RMF_globalOptima()) } startTime <- proc.time() connections_dataBase <- sapply(names(getOption("shape_fileName_dataBase")),function(x){ reset_shapeDB(paste(getOption("shape_outDir"), getOption("shape_fileName_dataBase")[[x]],sep=""), func_type = "connect") }) if(!getOption("shape_run_isRecycling")["Landscape"] || c(getOption("shape_thisRep") == getOption("shape_recycle_repStart") && length(RSQLite::dbListTables(connections_dataBase$genotypeSpace)) == 0) ){ options("shape_tmpGenoTable" = create_genotypeFrame(getOption("shape_nextID"), "", if(getOption("shape_const_relativeFitness")){ calc_relativeFitness(getOption("shape_const_ancestFitness")) } else { getOption("shape_const_ancestFitness") })) dbWriteTable(connections_dataBase$genotypeSpace, name = if(getOption("shape_db_splitTables")){ nameTable(0,1) }else{ nameTable(0) }, value = getOption("shape_tmpGenoTable")) } current_workMatrix <- NULL if(!getOption("shape_run_isRecycling")["Steps"] || getOption("shape_thisRep") == getOption("shape_recycle_repStart")){ current_workMatrix <- setNames(list(reportPopulations(func_numMuts = 0, func_genotypeID = 0, func_popSizes = getOption("shape_const_focal_popValue")/ if(getOption("shape_const_growthForm") == "logistic"){ getOption("shape_init_distSteps")["factor"] }else{ 1 }, func_fitnesses = if(getOption("shape_const_relativeFitness")){ calc_relativeFitness(getOption("shape_const_ancestFitness")) } else { getOption("shape_const_ancestFitness") }, func_births = getOption("shape_const_focal_popValue")/ if(getOption("shape_const_growthForm") == "logistic"){ getOption("shape_init_distSteps")["factor"] }else{ 1 }, func_deaths = 0, func_mutants = 0, func_progenitor = "WT")), paste("Step",0,sep=getOption("shape_sepString"))) dbWriteTable(connections_dataBase$timeStep_States, name = names(current_workMatrix), value = current_workMatrix[[1]], overwrite = TRUE) } options("shape_track_distSize" = rbind(c("Step"=0,getOption("shape_init_distSteps")))) if(!getOption("shape_run_isRecycling")["Landscape"] || c(getOption("shape_thisRep") == getOption("shape_recycle_repStart") && !file.exists(paste(getOption("shape_outDir"), save_fileName,sep=""))) ){ if(getOption("shape_simModel") == "RMF"){ options("shape_const_ancestFitness" = fitnessLandscape("", getOption("shape_const_ancestFitness"), landscapeModel = getOption("shape_simModel"), relativeFitness = FALSE, func_distribution = "Uniform", func_distParameters = c(0,0), func_distAsS = FALSE)) } } runTime <- 0 if(!getOption("shape_run_isRecycling")["Parameters"] || c(getOption("shape_thisRep") == getOption("shape_recycle_repStart") && !file.exists(paste(getOption("shape_outDir"),getOption("shape_save_batchIndex")["Parameters"],".RData",sep=""))) ){ runParameters <- sapply(getOption("shape_saveParameters"), function(x){ sapply(x,function(y){ getOption(y) },simplify=FALSE) },simplify=FALSE) shape_fileName_dataBase <- getOption("shape_fileName_dataBase") save(runParameters, runTime, connections_dataBase, shape_fileName_dataBase, file=paste(getOption("shape_outDir"), save_fileName,sep="")) } else if(getOption("shape_run_isRecycling")["Parameters"] && file.exists(paste(getOption("shape_outDir"),getOption("shape_save_batchIndex")["Parameters"],".RData",sep="")) ){ tmp_realReplicate <- getOption("shape_thisRep") tmp_realDist <- getOption("shape_track_distSize") tmp_real_batchStrings <- getOption("shape_save_batchIndex") tmp_realNames <- getOption("shape_fileName_dataBase") tmp_loadFile <- paste(getOption("shape_outDir"), paste(getOption("shape_save_batchString"), "Parameters", getOption("shape_recycle_repStart"), sep=getOption("shape_sepString")), ".RData", sep="") if(file.exists(tmp_loadFile)){ load(tmp_loadFile, envir= tmpEnvir_recycleParms ) } else { stop("There was a problem trying to load the seed runs' parameters during call to recycle Landscape. Please review") } loadSet <- if(!getOption("shape_run_isRecycling")["Parameters"]){ c("FitnessLandscape","DFE","NK_modelElements", "RMF_modelElements") } else { names(getOption("shape_saveParameters")) } for(thisSet in loadSet){ for(thisNamed in names(tmpEnvir_recycleParms$runParameters[[thisSet]])){ options(setNames(list(tmpEnvir_recycleParms$runParameters[[thisSet]][[thisNamed]]), thisNamed)) } } options(list("shape_thisRep" = tmp_realReplicate, "shape_track_distSize" = tmp_realDist, "shape_save_batchIndex" = tmp_real_batchStrings, "shape_fileName_dataBase" = tmp_realNames)) rm(list=ls(, envir = tmpEnvir_recycleParms), envir = tmpEnvir_recycleParms) } options("shape_nextID" = max(unlist(lapply(RSQLite::dbListTables(connections_dataBase$genotypeSpace), function(thisTable){ dbGetQuery(connections_dataBase$genotypeSpace, paste("SELECT MAX(genotypeID) FROM ", thisTable,sep="")) }))) + 1) for(thisConnection in connections_dataBase){ dbDisconnect(thisConnection) } startingStep <- 1 options("shape_counter_logSteps" = startingStep) for(thisStep in startingStep:(getOption("shape_numGenerations") / getOption("shape_size_timeStep"))){ if(thisStep %% 100 == 0){ print(paste("We're now on thisStep: ",thisStep,sep="")) print( proc.time() - startTime ) } if(!is.element(nameTable_step(thisStep - 1),names(current_workMatrix))){ connections_dataBase <- sapply(names(getOption("shape_fileName_dataBase")),function(x){ reset_shapeDB(paste(getOption("shape_outDir"), getOption("shape_fileName_dataBase")[[x]],sep=""), func_type = "connect") }) current_workMatrix <- c(current_workMatrix, setNames(list(dbReadTable(connections_dataBase$timeStep_States, nameTable_step(thisStep - 1))), nameTable_step(thisStep - 1))) for(thisConnection in connections_dataBase){ dbDisconnect(thisConnection) } } current_workMatrix <- runReplicate(func_inputFrames = current_workMatrix, func_currStep = thisStep, func_stepCounter = getOption("shape_counter_logSteps")) options("shape_counter_logSteps" = getOption("shape_counter_logSteps") + 1) } runTime <- proc.time() - startTime if(!getOption("shape_run_isRecycling")["Parameters"] || getOption("shape_thisRep") == getOption("shape_recycle_repStart")){ runParameters <- sapply(getOption("shape_saveParameters"), function(x){ sapply(x,function(y){ getOption(y) },simplify=FALSE) },simplify="list") shape_fileName_dataBase <- getOption("shape_fileName_dataBase") save(runParameters, runTime, connections_dataBase, shape_fileName_dataBase, file=paste(getOption("shape_outDir"), save_fileName,sep="")) } connections_dataBase <- sapply(names(getOption("shape_fileName_dataBase")),function(x){ reset_shapeDB(paste(getOption("shape_outDir"), getOption("shape_fileName_dataBase")[[x]],sep=""), func_type = "connect") }) tmpTables <- RSQLite::dbListTables(connections_dataBase$timeStep_States) all_lastGenotypes <- dbReadTable(connections_dataBase$timeStep_States, RSQLite::dbListTables(connections_dataBase$timeStep_States)[which.max(as.numeric(nameTable_step(tmpTables, funcSplit = TRUE)))]) establishedGenotypes <- querryEstablished(func_inMatrix= all_lastGenotypes, func_estProp = getOption("shape_const_estProp")) if(nrow(establishedGenotypes) > 0){ for(thisGenotype in 1:nrow(establishedGenotypes)){ tmp_genotypeInfo <- retrieve_binaryString(func_genotypeID = establishedGenotypes[thisGenotype,"genotypeID"], func_numMuts = establishedGenotypes[thisGenotype,"numMuts"], func_subNaming = getOption("shape_db_splitTables"), func_landscapeCon = connections_dataBase$genotypeSpace) if(!as.logical(tmp_genotypeInfo[1,"isExplored"])){ createGenotypes(tmp_focalGenotype = tmp_genotypeInfo[1,"binaryString"], tmp_focalFitness= if(is.element(getOption("shape_simModel"),c("NK","Additive"))){ getOption("shape_const_siteBystate_fitnessMat") } else { establishedGenotypes[thisGenotype,"fitness"] }, maxHamming = getOption("shape_max_numMutations"), tmp_landModel = getOption("shape_simModel"), tmp_relativeFitness = getOption("shape_const_relativeFitness"), tmpDistribution = getOption("shape_constDist"), tmpParameters = getOption("shape_const_distParameters"), tmp_genCon = connections_dataBase$genotypeSpace, tmp_tableSplit = getOption("shape_db_splitTables"), tmp_distAsS = getOption("shape_const_distAsS")) } } } for(thisConnection in connections_dataBase){ dbDisconnect(thisConnection) } if(getOption("shape_toggle_forceCompletion") && thisStep != (getOption("shape_numGenerations") / getOption("shape_size_timeStep"))){ stopError("There was a problem and the main body run did not complete, please review") } else if(thisStep == (getOption("shape_numGenerations") / getOption("shape_size_timeStep"))) { print("Simulations completed without crashing ") } else { print("Simulation code reached end of loop ") } connections_dataBase <- sapply(names(getOption("shape_fileName_dataBase")),function(x){ reset_shapeDB(paste(getOption("shape_outDir"), getOption("shape_fileName_dataBase")[[x]], sep=""), func_type = "connect") }) tmpReport <- runProcessing(func_saveFile = getOption("shape_processedData_fileName"), func_subNaming = getOption("shape_db_splitTables"), func_stepsCon = connections_dataBase[["timeStep_States"]], func_landscapeCon = connections_dataBase[["genotypeSpace"]], func_hoodCon = connections_dataBase[["nearestNeighbours"]], func_estProp = getOption("shape_const_estProp"), func_size_timeStep = getOption("shape_size_timeStep"), func_processObjects = getOption("shape_processedObjects"), func_hoodPriority = getOption("shape_const_hoodDepth")) print( tmpReport ) if(getOption("shape_results_removeSteps") && grepl("Processing completed", tmpReport) && file.exists(getOption("shape_processedData_fileName"))){ dbDisconnect(connections_dataBase[["timeStep_States"]]) connections_dataBase[["timeStep_States"]] <- NULL file.remove(paste(getOption("shape_outDir"), getOption("shape_fileName_dataBase")[["timeStep_States"]], sep="")) } for(thisConnection in connections_dataBase){ dbDisconnect(thisConnection) } if(!getOption("shape_run_isRecycling")["Neighbourhood"]){ file.remove(paste(getOption("shape_outDir"), getOption("shape_fileName_dataBase")[["nearestNeighbours"]], sep="")) } if(getOption("shape_thisRep") < getOption("shape_maxReplicates") && getOption("shape_externalSelfing")){ if(!file.exists(getOption("shape_tmp_selfScript"))){ stopError("There was a problem while trying to self, as the template did not exist. Please review") } else { tmp_nextRep <- getOption("shape_thisRep") + 1 tmp_jobName <- name_batchString(funcBase = getOption("shape_save_batchString"), func_repID = tmp_nextRep) tmpScript <- readLines(getOption("shape_tmp_selfScript")) tmpScript <- updateLines(func_inLines = tmpScript, func_searchPattern = list("rep"=c("shape_thisRep=","shape_thisRep=([[:digit:]])+")), func_values = list("rep"=paste("shape_thisRep=",tmp_nextRep,sep=""))) writeLines(tmpScript, con = getOption("shape_tmp_selfScript")) Sys.chmod(getOption("shape_tmp_selfScript"), mode="0777") } tmp_stopFile <- paste(getOption("shape_finalDir"),getOption("shape_external_stopFile"), sep="") if(file.exists(tmp_stopFile)){ file.remove(tmp_stopFile) } } if(getOption("shape_serverFarm") && !getOption("shape_externalSelfing")) { if(getOption("shape_thisRep") %% 20 == 0){ system(paste("cd ",getOption("shape_outDir")," ; cp *.RData *.sqlite *.Rout *.o ",getOption("shape_finalDir"),sep="")) } } } invisible( NULL ) } shapeExperiment <- function(func_filepath_toDesign, func_templateDir, func_maxGrouped_perShell = 2, func_filePath_R = NULL, func_baseCall = "CMD BATCH", func_rArgs = '"--args shape_thisRep=1 shape_outDir=\'fake_serverPath/fakeDir/\'"', func_remoteLocation = "$TMPDISK", func_submitArgs = c("number_ofCores"='-c 1', "memory"='--mem=8192', "jobName"='-J fakeJob', "wallTime"='-t 14-00:00:00', "fileOut"='-o fakeOut'), func_processingCores = 1, func_suppressOld_summaryFiles = FALSE){ if(!file.exists(func_filepath_toDesign)){ stopError(paste("Could not find the experimental design file at: ",func_filepath_toDesign,sep="")) } if(is.null(func_filePath_R)){ func_tmpVersion <- strsplit(version[['version.string']], "[[:space:]]+")[[1]][3] func_filePath_R <- if(grepl("^window",Sys.info()["sysname"],ignore.case=TRUE)){ paste("C:/Program Files/R/R-",func_tmpVersion,"/bin/R",sep="") } else { "/usr/bin/R" } } inputReference <- list("shape_serverFarm", "shape_results_removeSteps", "shape_externalSelfing", "shape_toggle_forceCompletion", "shape_workDir", "shape_postDir", "shape_save_batchBase", "shape_save_batchJob", "shape_maxReplicates", "uniqueReplicates", "shape_const_distType", "shape_init_distPars", "shape_const_growthGenerations", "shape_numGenerations", "shape_size_timeStep", "shape_genomeLength", "shape_const_focal_popValue", "shape_const_birthProb", "shape_const_growthRate", "shape_const_deathProb", "shape_death_byDensity", "shape_death_densityCorrelation", "shape_death_densityCap", "shape_scaleGrowth_byDeaths", "shape_const_mutProb", "shape_muts_onlyBirths", "shape_allow_backMutations", "shape_const_growthForm", "shape_simModel", "shape_const_ancestFitness", "shape_constDist", "shape_const_distParameters", "shape_const_distAsS", "shape_const_RMF_initiDistance", "shape_const_RMF_theta", "shape_const_numInteractions", "shape_const_fixedFrame", "shape_includeDrift", "shape_track_asWhole", "shape_const_estProp", "shape_const_hoodThresh") notExpanded_reference <- c("shape_serverFarm", "shape_results_removeSteps", "shape_externalSelfing", "shape_toggle_forceCompletion", "shape_workDir", "shape_save_batchBase", "shape_maxReplicates", "uniqueReplicates") comboReference <- c("shape_simModel", "shape_const_ancestFitness", "shape_constDist", "shape_const_distParameters", "shape_const_distAsS") conditionReference <- list("RMF"=c("shape_const_RMF_theta", "shape_const_RMF_initiDistance"), "NK"=c("shape_const_numInteractions"), "Fixed"=c("shape_const_fixedFrame")) fileName_templates <- c("body"="SHAPE_runBody.v.", "serverSubmit"="SHAPE_serverTemplate.v.", "localSubmit"="SHAPE_localTemplate.v.", "parameter_output" = "SHAPE_parameters.v.") allFiles <- list.files(path = func_templateDir, recursive = FALSE) for(thisFile in names(fileName_templates)){ tmpFile <- allFiles[which(grepl(fileName_templates[thisFile], allFiles,fixed=TRUE))] if(length(tmpFile) == 1){ fileName_templates[thisFile] <- paste(func_templateDir,tmpFile,sep="") if(thisFile == "functions"){ source(fileName_templates[thisFile]) } } else { stopError(paste("Could not find a unique file like ",fileName_templates[thisFile], " in ",func_templateDir," please review and ensure the template exists",sep="")) } } inputParms <- readLines(func_filepath_toDesign) inputParms <- inputParms[intersect(intersect(which(!grepl(" which(!grepl("[[:space:]]",substr(inputParms, sapply(nchar(inputParms),function(x){ min(1,x) }), sapply(nchar(inputParms),function(x){ min(1,x) })) ))), which(nchar(inputParms) > 0))] inputParms <- lapply(strsplit(inputParms," <-"),function(x){ return( c(x[1], if(!is.element(x[1],c("shape_const_distParameters","shape_init_distPars"))){ tmpReturn <- unlist(strsplit(x[2],',',fixed=TRUE)) tmpReplace <- suppressWarnings(as.numeric(tmpReturn)) tmpReturn[which(!is.na(tmpReplace))] <- tmpReplace[which(!is.na(tmpReplace))] tmpSpaces <- gregexpr("[[:space:]]",tmpReturn) for(thisItem in 1:length(tmpSpaces)){ if(tmpSpaces[[thisItem]][1] != -1){ tmpStart <- if(tmpSpaces[[thisItem]][1] == 1){ tmpMax <- which(diff(tmpSpaces[[thisItem]]) != 1) if(length(tmpMax) == 0){ tmpMax <- 0 } else { tmpMax <- tmpSpaces[[thisItem]][max(tmpMax)] - 1 } 2+tmpMax } else { 1 } tmpEnd <- if(tmpSpaces[[thisItem]][length(tmpSpaces[[thisItem]])] == nchar(tmpReturn[thisItem])){ tmpMax <- which(diff(tmpSpaces[[thisItem]]) != 1) if(length(tmpMax) == 0){ tmpMax <- nchar(tmpReturn[thisItem]) } else { tmpMax <- tmpSpaces[[thisItem]][max(tmpMax)+1] } tmpMax -1 } else { nchar(tmpReturn[thisItem]) } tmpReturn[thisItem] <- substr(tmpReturn[thisItem],tmpStart,tmpEnd) } } tmpReturn } else { tmpReturn <- unlist(strsplit(gsub("[[:space:]]","",x[2]),'c(',fixed=TRUE)) tmpReturn <- tmpReturn[which(nchar(tmpReturn) > 0)] unlist(lapply(tmpReturn,function(x){ paste('c(', if(substr(x,nchar(x),nchar(x)) == ','){ substr(x,1,nchar(x)-1) } else { x }, sep="") })) } )) }) names(inputParms) <- unlist(lapply(inputParms,function(x){x[1]})) for(thisList in 1:length(inputParms)){ inputParms[[thisList]] <- inputParms[[thisList]][-1] } if(is.null(inputParms$shape_death_densityCap) || inputParms$shape_death_densityCap == "NULL"){ inputParms$shape_death_densityCap <- inputParms$shape_const_focal_popValue } if(is.null(inputParms[["shape_workDir"]]) || inputParms[["shape_workDir"]] == "NULL"){ inputParms[["shape_workDir"]] <- paste('"',gsub('\\','/',tempdir(),fixed=TRUE),'"',sep="") } for(thisObject in c("shape_workDir")){ tmpString <- inputParms[[thisObject]] if(!grepl('/\"$',tmpString)){ inputParms[[thisObject]] <- paste(substr(tmpString,1,nchar(tmpString)-1), "/", substr(tmpString,nchar(tmpString),nchar(tmpString)), sep="") } } tmpDir <- paste(trimQuotes(inputParms[["shape_workDir"]]),collapse="") if(!dir.exists(tmpDir)){ dir.create(tmpDir, recursive = TRUE) } parameterCombos <- shapeCombinations(func_inLines = inputParms, func_comboRef = comboReference, func_indepRef = notExpanded_reference, func_condRef = conditionReference) write.table(parameterCombos, file = paste(tmpDir,trimQuotes(inputParms$shape_save_batchBase),"_parameterCombos.table",sep=""), append = as.numeric(parameterCombos[1,"shape_save_batchJob"]) != 1, quote = FALSE, row.names = FALSE, qmethod = "double", sep = "\t", dec =".", fileEncoding = "cp1252") tmp_newDirs <- paste(tmpDir, name_batchString(funcBase = trimQuotes(inputParms$shape_save_batchBase), func_setID = unlist(lapply(1:as.numeric(inputParms$uniqueReplicates),rep,"times"=nrow(parameterCombos))), func_jobID = parameterCombos$shape_save_batchJob, func_sepString = getOption("shape_sepString")), sep="") for(thisDir in tmp_newDirs){ if(!dir.exists(thisDir)){ dir.create(thisDir, recursive = TRUE) } } for(thisTemplate in names(fileName_templates)){ if (thisTemplate == "parameter_output") { writeParameters(func_infile = fileName_templates[thisTemplate], func_inParms = inputParms, func_inCombos = parameterCombos, func_outDir = tmpDir, func_bodyScript = fileName_templates["body"], func_ExternalStopper = getOption("shape_external_stopFile")) } else if(as.logical(inputParms$shape_serverFarm) && thisTemplate == "serverSubmit" || !as.logical(inputParms$shape_serverFarm) && thisTemplate == "localSubmit") { write_subScript(func_subScipt = fileName_templates[thisTemplate], func_outDir = tmpDir, func_inCombos = parameterCombos, func_inParms = inputParms, func_maxJobs= func_maxGrouped_perShell, func_appLocation = func_filePath_R, func_remoteLocation = func_remoteLocation, func_commonArgs = func_baseCall, func_submitArgs = func_submitArgs, func_passedArgs = func_rArgs) } } func_processingScript <- paste(trimQuotes(inputParms[["shape_workDir"]]),"summariseExperiment_", trimQuotes(inputParms[["shape_save_batchBase"]]),".r",sep="") cat(c("library(rSHAPE)", paste("defineSHAPE(shape_save_batchSet = ",if(!is.null(inputParms$uniqueReplicates)){1}else{NULL},",\n ", "shape_save_batchJob = ",if(!is.null(inputParms$shape_save_batchJob)){1}else{NULL},",\n ", 'shape_sepString = "',getOption("shape_sepString"),'",\n ', 'shape_sepLines = "',getOption("shape_sepLines"),'",\n ', "shape_workDir = ",inputParms[["shape_workDir"]],",\n ", 'shape_postDir = "',paste(trimQuotes(inputParms[["shape_workDir"]]), trimQuotes(inputParms[["shape_postDir"]]), sep=""),'",\n ', "shape_save_batchBase = ",inputParms$shape_save_batchBase,",\n ", 'shape_string_lineDescent = "',getOption("shape_string_lineDescent"),'")', sep=""), paste("summariseExperiment(func_numCores = ",func_processingCores,", ", "func_suppressOld = ",func_suppressOld_summaryFiles, ")",sep=""), 'q(save="no")'), file = func_processingScript, sep = "\n", append = FALSE) func_processing_subScript <- paste(trimQuotes(inputParms[["shape_workDir"]]),"summariseExperiment_", trimQuotes(inputParms[["shape_save_batchBase"]]),".sh",sep="") cat(c(" paste(func_filePath_R, func_baseCall, func_processingScript, paste(func_processingScript,".Rout",sep=""), sep=" ")), file = func_processing_subScript, sep = "\n", append = FALSE) Sys.chmod(list.files(path=tmpDir,pattern='.sh',recursive=TRUE,full.names=TRUE), mode="0777") fileName_farmingImage <- paste(trimQuotes(inputParms$shape_save_batchBase),"_shapeExperiment_image.RData",sep="") save.image(paste(tmpDir,fileName_farmingImage,sep="")) return( "Function completed to end, experiment is likely built!" ) } write_subScript <- function(func_subScipt, func_outDir, func_inCombos, func_inParms, func_maxJobs, func_appLocation, func_commonArgs, func_submitArgs, func_remoteLocation, func_passedArgs, func_externalStopper = getOption("shape_external_stopFile"), func_sepString = getOption("shape_sepString")){ func_submitLines <- readLines(func_subScipt,warn=FALSE) if(as.logical(func_inParms$shape_externalSelfing)){ func_tmpLine <- which(grepl(" func_submitLines <- c(func_submitLines[1:func_tmpLine], paste('echo "" > fake_workDir/',func_externalStopper,sep=""), func_submitLines[(func_tmpLine+1):length(func_submitLines)], paste('if ! [ -e "fake_workDir/',func_externalStopper,'" ]',sep=""), 'then', ' fake_workDir/fakeSubmit', 'fi') } func_submitLines <- gsub("fake_appPath",func_appLocation,func_submitLines) func_submitLines <- gsub("fake_commandArgs",func_commonArgs,func_submitLines) func_submitLines <- gsub("fake_passedArgs",func_passedArgs,func_submitLines) if(as.logical(func_inParms$shape_serverFarm)){ func_tmpLine <- which(grepl("fake_subMit_command",func_submitLines)) func_submitLines <- c(func_submitLines[1:(func_tmpLine-1)], paste(" func_submitLines[(func_tmpLine+1):length(func_submitLines)]) func_submitLines <- gsub("fake_serverPath",func_remoteLocation,func_submitLines) } func_tmpCounter <- 0 func_jobBatch <- 1 func_masterCon <- file(description = paste(func_outDir,name_batchSubmit(func_jobBatch),sep=""), open = "w") for(thisCombo in 1:nrow(func_inCombos)){ for(shape_thisRep in 1:as.numeric(func_inParms$uniqueReplicates)){ tmp_jobString <- name_batchString(funcBase = trimQuotes(func_inParms$shape_save_batchBase), func_setID = shape_thisRep, func_jobID = func_inCombos[thisCombo,"shape_save_batchJob"], func_sepString = func_sepString) tmp_jobDir <- paste(func_outDir, tmp_jobString, "/",sep="") tmpSubmit_fileName <- name_subScript(tmp_jobString) tmp_submit <- gsub("fake_workDir",tmp_jobDir,func_submitLines) tmp_submit <- gsub("fake_tmpScript.r",name_bodyScript(tmp_jobString),tmp_submit) if(as.logical(func_inParms$shape_serverFarm)){ tmp_submit <- gsub("fakeOut",paste(tmp_jobString,".o",sep=""),tmp_submit) tmp_submit <- gsub("fakeJob",tmp_jobString,tmp_submit) tmp_submit <- gsub("fakeDir",tmp_jobString,tmp_submit) } else { tmp_submit <- gsub("fake_serverPath/fakeDir/",tmp_jobDir,tmp_submit) } if(as.logical(func_inParms$shape_externalSelfing)){ tmp_submit <- gsub("fakeSubmit",tmpSubmit_fileName,tmp_submit) } writeLines(tmp_submit, con = paste(tmp_jobDir,tmpSubmit_fileName,sep="")) func_tmpCounter <- func_tmpCounter + 1 if(as.logical(func_inParms$shape_serverFarm)){ if(func_tmpCounter > func_maxJobs){ func_tmpCounter <- func_tmpCounter - (func_maxJobs + 1) func_jobBatch <- func_jobBatch + 1 close(func_masterCon) func_masterCon <- file(description = paste(func_outDir,name_batchSubmit(func_jobBatch),sep=""), open = "w") } } else { if(func_tmpCounter > ceiling((nrow(func_inCombos) * as.numeric(func_inParms$uniqueReplicates))/func_maxJobs)){ func_tmpCounter <- 0 func_jobBatch <- func_jobBatch + 1 close(func_masterCon) func_masterCon <- file(description = paste(func_outDir,name_batchSubmit(func_jobBatch),sep=""), open = "w") } } tmp_masterSubmit <- paste(if(as.logical(func_inParms$shape_serverFarm)){"sbatch "}else{NULL}, tmp_jobDir,tmpSubmit_fileName,sep="") writeLines(tmp_masterSubmit, con = func_masterCon, sep="\n") } } close(func_masterCon) return( "Done writting out submission scripts" ) } writeParameters <- function(func_infile, func_inParms, func_inCombos, func_outDir, func_bodyScript, func_ExternalStopper, func_sepString = getOption("shape_sepString")){ func_parmLines <- readLines(func_infile, warn=FALSE) func_bodyLines <- readLines(func_bodyScript, warn=FALSE) func_constParms <- c("shape_serverFarm","shape_results_removeSteps","shape_externalSelfing","shape_toggle_forceCompletion", "shape_save_batchBase", "shape_maxReplicates","shape_workDir") func_parmLines <- updateLines(func_inLines = func_parmLines, func_searchPattern = sapply(names(func_inParms[func_constParms]),paste," <-","sep"=""), func_values = func_inParms[func_constParms]) for(thisCombo in 1:nrow(func_inCombos)){ tmp_parmLines <- updateLines(func_inLines = func_parmLines, func_searchPattern = sapply(colnames(func_inCombos),paste," <-","sep"=""), func_values = func_inCombos[thisCombo,colnames(func_inCombos)]) for(shape_thisRep in 1:as.numeric(func_inParms$uniqueReplicates)){ tmp_jobString <- name_batchString(funcBase = trimQuotes(func_inParms$shape_save_batchBase), func_setID = shape_thisRep, func_jobID = func_inCombos[thisCombo,"shape_save_batchJob"], func_sepString = func_sepString) tmp_jobDir <- paste(func_outDir, tmp_jobString, "/",sep="") tmpParm_fileName <- name_parameterScript(tmp_jobString) tmpBody_fileName <- name_bodyScript(tmp_jobString) tmp_bodyLines <- updateLines(func_inLines =func_bodyLines, func_searchPattern = list("source"="sourceParms <-"), func_values = list("source"= addQuotes(paste(tmp_jobDir,tmpParm_fileName,sep="")))) tmp_jobParms <- updateLines(func_inLines =tmp_parmLines, func_searchPattern = list("shape_save_batchSet"="shape_save_batchSet <-", "shape_save_batchJob"="shape_save_batchJob <-"), func_values = list("shape_save_batchSet"= shape_thisRep, "shape_save_batchJob"=func_inCombos[thisCombo,"shape_save_batchJob"])) writeLines(tmp_bodyLines, con = paste(tmp_jobDir,tmpBody_fileName,sep="")) writeLines(tmp_jobParms, con = paste(tmp_jobDir,tmpParm_fileName,sep="")) } } return( "Have written out all job's parameters and body scripts" ) } updateLines <- function(func_inLines,func_searchPattern, func_values){ if(!all(is.element(names(func_searchPattern),names(func_values)))){ stopError("There were not similar searchPattern and values passed to updateLines, please review") } func_updateLines <- NULL for(thisUpdate in names(func_searchPattern)){ func_updateLines <- func_inLines func_tmpLine <- which(grepl(func_searchPattern[[thisUpdate]][1],func_updateLines))[1] if(length(func_searchPattern[[thisUpdate]]) == 1){ func_updateLines[func_tmpLine] <- paste(func_searchPattern[[thisUpdate]],func_values[[thisUpdate]][1],sep=" ") } else if(length(func_searchPattern[[thisUpdate]]) == 2){ func_updateLines[func_tmpLine] <- sub(func_searchPattern[[thisUpdate]][2],func_values[[thisUpdate]][1],func_updateLines[func_tmpLine]) } else if(length(func_searchPattern[[thisUpdate]]) == 3){ func_tmpPositions <- list(regexpr(func_searchPattern[[thisUpdate]][2],func_updateLines[func_tmpLine],fixed=TRUE), gregexpr(func_searchPattern[[thisUpdate]][3],func_updateLines[func_tmpLine])) func_tmpPositions <- lapply(func_tmpPositions,function(x){ matrix(c(unlist(x),attr(if(is.list(x)){x[[1]]}else{x},"match.length")),nrow=2, byrow = TRUE,dimnames=list(c("location","length"),NULL)) }) if(!all(sapply(func_tmpPositions,function(x){ any(x["location",] > 0) }))){ stopError(paste("Could not find the proper replacement positions for ",thisUpdate," please review",sep="")) } func_usePosition <- which(func_tmpPositions[[2]]["location",] > func_tmpPositions[[1]]["location",1])[1] func_tmpPositions <- func_tmpPositions[[2]][,func_usePosition] func_updateLines[func_tmpLine] <- paste(substr(func_updateLines[func_tmpLine],1,func_tmpPositions[1]-1), func_values[[thisUpdate]], substr(func_updateLines[func_tmpLine],sum(func_tmpPositions),nchar(func_updateLines[func_tmpLine])), sep="") } func_inLines <- func_updateLines } return( func_inLines ) } shapeCombinations <- function(func_inLines, func_comboRef, func_indepRef, func_condRef){ func_parmGrid <- expand.grid(func_inLines[setdiff(names(func_inLines),c(func_comboRef, func_indepRef, unname(unlist(func_condRef)), "shape_save_batchJob"))], stringsAsFactors=FALSE, KEEP.OUT.ATTRS = FALSE) func_tmpLengths <- sapply(func_inLines[func_comboRef],length) if(!all(max(func_tmpLengths) == func_tmpLengths)){ func_tmpUpdate <- which(func_tmpLengths != max(func_tmpLengths)) for(thisUpdate in func_tmpUpdate){ func_inLines[func_comboRef[thisUpdate]] <- list(unname(unlist(rep(func_inLines[func_comboRef[thisUpdate]],max(func_tmpLengths))))[1:max(func_tmpLengths)]) } } func_comboAdd <- matrix(unlist(func_inLines[func_comboRef]),nrow=max(func_tmpLengths),dimnames=list(NULL,func_comboRef)) for(thisCond in names(func_condRef)){ func_startCols <- colnames(func_comboAdd) func_tmpLines <- which(grepl(thisCond,func_comboAdd[,"shape_simModel"])) func_condAdd <- as.matrix(expand.grid(func_inLines[func_condRef[[thisCond]]], stringsAsFactors=FALSE, KEEP.OUT.ATTRS = FALSE)) for(thisAddition in 1:ncol(func_condAdd)){ func_comboAdd <- cbind(func_comboAdd,func_condAdd[1,thisAddition]) } colnames(func_comboAdd)[(ncol(func_comboAdd)-(ncol(func_condAdd)-1)):ncol(func_comboAdd)] <- colnames(func_condAdd) if(length(func_tmpLines) > 0){ if(nrow(func_condAdd) > 1){ for(thisRow in 2:nrow(func_condAdd)){ for(thisUnique in func_tmpLines){ func_comboAdd <- rbind(func_comboAdd, c(unlist(func_comboAdd[thisUnique,func_startCols]),unlist(func_condAdd[thisRow,]))) } } } } } func_tmpNew1 <- NULL for(thisRow in 1:nrow(func_comboAdd)){ func_tmpNew1 <- rbind(func_tmpNew1,matrix(rep(func_comboAdd[thisRow,],nrow(func_parmGrid)), nrow=nrow(func_parmGrid), byrow = TRUE, dimnames=list(NULL,colnames(func_comboAdd)))) } func_tmpNew2 <- NULL for(thisAddition in 1:nrow(func_comboAdd)){ func_tmpNew2 <- rbind(func_tmpNew2,func_parmGrid) } func_parmGrid <- cbind(func_tmpNew2,func_tmpNew1,stringsAsFactors=FALSE) func_parmGrid <- unique(func_parmGrid) func_parmGrid <- cbind(func_parmGrid,as.numeric(func_inLines$shape_save_batchJob): (nrow(func_parmGrid)+(as.numeric(func_inLines$shape_save_batchJob)-1)), stringsAsFactors=FALSE) colnames(func_parmGrid)[ncol(func_parmGrid)] <- "shape_save_batchJob" return( func_parmGrid ) } summariseExperiment <- function(func_processingTypes = c("fileList", "parameters", "popDemographics","repeatability"), func_numCores = 1, func_suppressOld = FALSE){ func_processingOptions <- getOption("shape_procExp_filenames") func_processingTypes <- func_processingTypes[which(is.element(func_processingTypes, names(func_processingOptions)))] if(length(func_processingTypes) == 0 ){ return("No valid func_processingTypes strings passed, not trying to run experiment processing.") } if(func_suppressOld){ func_tmpRemove <- func_processingOptions[which(file.exists(func_processingOptions))] if(length(func_tmpRemove) > 0){ file.remove(func_tmpRemove) } } func_useCluster <- parallel::makeCluster(func_numCores, type="PSOCK") doParallel::registerDoParallel(func_useCluster) funcSave_jobExpression <- name_batchString(funcBase = getOption("shape_save_batchBase"), func_setID = if(!is.null(getOption("shape_save_batchSet"))){ paste('[^',getOption("shape_sepString"),']+',sep="") }else{ NULL }, func_jobID = if(!is.null(getOption("shape_save_batchJob"))){ paste('[^',getOption("shape_sepString"),']+',sep="") }else{ NULL }, func_sepString = getOption("shape_sepString")) if(is.element("fileList",names(func_processingOptions)) && !file.exists(func_processingOptions["fileList"])){ summarise_experimentFiles() } if(is.element("parameters",names(func_processingOptions)) && !file.exists(func_processingOptions["parameters"])){ summarise_experimentParameters() } if(is.element("popDemographics",names(func_processingOptions)) && !file.exists(func_processingOptions["popDemographics"])){ summarise_popDemographics(funcSave_jobExpression = funcSave_jobExpression) } if(is.element("repeatability",names(func_processingOptions)) && !file.exists(func_processingOptions["repeatability"])){ summarise_evolRepeatability(funcSave_jobExpression = funcSave_jobExpression) } stopCluster(func_useCluster) func_existingOutput <- file.exists(func_processingOptions[func_processingTypes]) return( ifelse(all(func_existingOutput), "Reached end of summariseExperiment, output summaries found.", "Missing at least one of the requested summary outputs from summariseExperiment.") ) } summarise_experimentFiles <- function(func_experimentDir = getOption("shape_workDir"), func_saveFile = getOption("shape_procExp_filenames")["fileList"], func_search_filePattern = getOption("shape_processedData_filePattern"), func_sepString = getOption("shape_sepString")){ all_proccessedFiles <- list.files(path= func_experimentDir, pattern= func_search_filePattern, recursive = TRUE, full.names=TRUE) all_jobInfo <- name_batchString(funcBase = paste(getOption("shape_save_batchBase"), unlist(lapply(strsplit(all_proccessedFiles, func_search_filePattern),function(thisFile){ gsub('.RData',"",thisFile[2],fixed=TRUE) })), sep=""), func_setID = !is.null(getOption("shape_save_batchSet")), func_jobID = !is.null(getOption("shape_save_batchJob")), func_repID = TRUE, funcSplit = TRUE, func_sepString = func_sepString) all_uniqueJobs <- name_batchString(funcBase = getOption("shape_save_batchBase"), func_setID = paste('[^',func_sepString,']+',sep=""), func_jobID = unique(all_jobInfo["jobID",]), func_sepString = func_sepString) all_dividedFiles <- sapply(all_uniqueJobs,function(x){ return( all_proccessedFiles[which(grepl(paste(x,"(.+)",sep=func_sepString), all_proccessedFiles))] ) },simplify=FALSE) if(length(all_proccessedFiles) != length(unlist(all_dividedFiles))){ stopError(" There was a problem when dividing the all_proccessedFiles into divdedFiles, please review") } save(all_proccessedFiles, all_jobInfo, all_dividedFiles, file= func_saveFile) invisible( NULL ) } summarise_experimentParameters <- function(func_workEnvir = new.env(), func_saveFile = getOption("shape_procExp_filenames")["parameters"], func_experimentDir = getOption("shape_workDir"), func_refFile = getOption("shape_procExp_filenames")["fileList"]){ if(!file.exists(func_refFile)){ stopError("Did not find the reference file needed for summarise_experimentParameters") } load(func_refFile, envir = func_workEnvir) func_tmpDirs <- list.dirs(path=func_experimentDir,full.names=FALSE,recursive=FALSE) func_tmpDirs <- unique(unlist(lapply(names(func_workEnvir$all_dividedFiles), function(thisName){ return( func_tmpDirs[which(grepl(thisName,func_tmpDirs))] ) }))) all_parmInfo <- NULL tmp_chunkSize <- 100 tmp_numChunks <- ceiling(length(func_tmpDirs)/tmp_chunkSize) for(thisChunk in 1:tmp_numChunks){ tmpAdd <- NULL for(thisJob in func_tmpDirs[(1+((thisChunk - 1)*tmp_chunkSize)):min((thisChunk*tmp_chunkSize),length(func_tmpDirs))]){ tmp_parmFile <- list.files(path=paste(func_experimentDir,thisJob,"/",sep=""), pattern = "Parameters") if(length(tmp_parmFile) == 1){ load(paste(func_experimentDir,thisJob,"/",tmp_parmFile,sep=""),envir= func_workEnvir) } else { stopError(paste("Could not find the parameters files to load for ",thisJob,sep="")) } tmp_parmsRef <- c(func_workEnvir$runParameters$Population, func_workEnvir$runParameters$Growth_Disturbance[which(!is.element(names(func_workEnvir$runParameters$Growth_Disturbance), c("shape_const_growthGenerations", "shape_init_distPars", "shape_track_distSize")))], "distFactor"= unname(func_workEnvir$runParameters$Growth_Disturbance$shape_init_distPars["factor"]), "distSpread"= unname(func_workEnvir$runParameters$Growth_Disturbance$shape_init_distPars["random"]), "mean_realisedDilution"=mean(func_workEnvir$runParameters$Growth_Disturbance$shape_track_distSize[,"factor"]), func_workEnvir$runParameters$FitnessLandscape, func_workEnvir$runParameters$DFE, "db_splitTables"= func_workEnvir$runParameters$DataManagement$shape_db_splitTables) tmp_parmsRef$shape_const_distParameters <- paste(tmp_parmsRef$shape_const_distParameters,collapse=",") rm(list=c("runParameters"), envir = func_workEnvir) tmpReturn <- data.frame("jobName"=thisJob, "jobSet"= if(!is.null(getOption("shape_save_batchSet"))){ tmpNames <- names(func_workEnvir$all_dividedFiles)[sapply(names(func_workEnvir$all_dividedFiles),grepl,"x"=thisJob)] tmpNames[which.max(nchar(tmpNames))] } else { thisJob }, t(unlist(tmp_parmsRef)), stringsAsFactors = FALSE) for(thisCol in names(tmp_parmsRef)){ mode(tmpReturn[,thisCol]) <- mode(tmp_parmsRef[[thisCol]]) } tmpAdd <- rbind(tmpAdd, tmpReturn) } all_parmInfo <- rbind(all_parmInfo, tmpAdd) } save(all_parmInfo, file= func_saveFile) invisible( NULL ) } summarise_popDemographics <- function(funcSave_jobExpression, func_saveFile = getOption("shape_procExp_filenames")["popDemographics"], func_experimentDir = getOption("shape_workDir"), func_saveDir = getOption("shape_postDir"), func_refFile = getOption("shape_procExp_filenames")[c("fileList","parameters")], func_workEnvir = new.env(), func_objPrefix = "popDemo_"){ print("Starting popDemographics") if(any(!file.exists(func_refFile))){ stopError("Did not find the reference file needed for summarise_experimentParameters") } for(thisFile in func_refFile){ load(thisFile, envir = func_workEnvir) } all_popSets <- sapply(unique(func_workEnvir$all_parmInfo$jobSet), function(thisSet){ tmp_thisName <- nameObject(func_inString = thisSet, func_inPrefix = func_objPrefix) return( list("objName"=tmp_thisName, "saveFile"= paste(sub(funcSave_jobExpression,"", sub(getOption("shape_save_batchBase"), tmp_thisName, func_saveFile), fixed=TRUE),sep=""), "setJobs" = unique(func_workEnvir$all_parmInfo$jobName[which(func_workEnvir$all_parmInfo$jobSet == thisSet)])) ) }, simplify = FALSE) tmp_missingSets <- names(all_popSets)[unlist(lapply(all_popSets,function(thisSet){ !file.exists(paste(func_saveDir,thisSet[["saveFile"]],sep="")) }))] thisCheck <- NULL tmpCheck <- foreach(thisCheck = tmp_missingSets, .combine="c", .packages = c("rSHAPE", "DBI","RSQLite")) %dopar% { tmpList <- vector(mode="list", length=length(all_popSets[[thisCheck]][["setJobs"]])) names(tmpList) <- all_popSets[[thisCheck]][["setJobs"]] for(thisJob in all_popSets[[thisCheck]][["setJobs"]]){ tmpJobs <- func_workEnvir$all_dividedFiles[[thisCheck]][which(grepl(thisJob, func_workEnvir$all_dividedFiles[[thisCheck]]))] if(length(tmpJobs) > 0){ tmp_replicateInfo <- NULL tmp_chunkSize <- 100 tmp_numChunks <- ceiling(length(tmpJobs)/tmp_chunkSize) for(thisChunk in 1:tmp_numChunks){ tmpAdd <- NULL for(thisFile in tmpJobs[(1+((thisChunk - 1)*tmp_chunkSize)):min((thisChunk*tmp_chunkSize),length(tmpJobs))]){ load(thisFile, envir = func_workEnvir) tmpAdd <- c(tmpAdd, list("popDemographics"= func_workEnvir$runDemographics$demoMat)) rm(list=c("info_estLines","runDemographics" ), envir = func_workEnvir) gc() } tmp_replicateInfo <- c(tmp_replicateInfo, tmpAdd) rm(tmpAdd) gc() } tmp_all_popDemos <- array(sapply(tmp_replicateInfo,function(x){ x }), dim=c(dim(tmp_replicateInfo[[1]]),length(tmp_replicateInfo)), dimnames = list(rownames(tmp_replicateInfo[[1]]), colnames(tmp_replicateInfo[[1]]), NULL)) tmp_all_popDemos <- matrix(apply(tmp_all_popDemos,MARGIN=2,function(thisCol){ c(apply(thisCol,MARGIN=1,mean),apply(thisCol,MARGIN=1,sd)) }),nrow=nrow(tmp_all_popDemos),ncol=ncol(tmp_all_popDemos)*2, dimnames=list(rownames(tmp_all_popDemos), unlist(lapply(colnames(tmp_all_popDemos),function(x){ return(c(x,paste("sd",x,sep="_")))}))) ) tmpList[[thisJob]] <- tmp_all_popDemos rm(tmp_all_popDemos, tmp_replicateInfo) gc() } } assign(all_popSets[[thisCheck]][["objName"]], tmpList, pos= func_workEnvir) save(list = all_popSets[[thisCheck]][["objName"]], file= all_popSets[[thisCheck]][["saveFile"]], envir = func_workEnvir) rm(list= all_popSets[[thisCheck]][["objName"]], envir = func_workEnvir) rm(tmpList) gc() return( nameObject(func_inString = all_popSets[[thisCheck]][["objName"]], func_inPrefix = func_objPrefix, func_splitStr = TRUE) ) } tmp_checkCompleted <- sapply(tmp_missingSets,is.element,"set"=tmpCheck) if(all(tmp_checkCompleted)){ save(all_popSets, file= func_saveFile) } else { stop(paste("There was a problem with the sets of: ",paste(names(tmp_checkCompleted)[which(!tmp_checkCompleted)],collapse=" ",sep=" "),sep="")) } invisible( NULL ) } summarise_evolRepeatability <- function(funcSave_jobExpression, func_saveFile = getOption("shape_procExp_filenames")["repeatability"], func_experimentDir = getOption("shape_workDir"), func_saveDir = getOption("shape_postDir"), func_refFile = getOption("shape_procExp_filenames")[c("fileList","parameters")], func_workEnvir = new.env(), func_objPrefix = "Repeat_", func_sepString = getOption("shape_sepString"), func_string_line_ofDescent = getOption("shape_string_lineDescent"), func_processedPattern = getOption("shape_processedData_filePattern"), func_sepLines = getOption("shape_sepLines")){ print("Starting repeatability") if(any(!file.exists(func_refFile))){ stopError("Did not find the reference file needed for summarise_experimentParameters") } for(thisFile in func_refFile){ load(thisFile, envir = func_workEnvir) } all_repSets <- sapply(unique(func_workEnvir$all_parmInfo$jobSet), function(thisSet){ tmp_thisName <- nameObject(func_inString = thisSet, func_inPrefix = func_objPrefix) return( list("objName"=tmp_thisName, "saveFile"= paste(sub(funcSave_jobExpression,"", sub(getOption("shape_save_batchBase"), tmp_thisName, func_saveFile), fixed=TRUE),sep=""), "setJobs" = unique(func_workEnvir$all_parmInfo$jobName[which(func_workEnvir$all_parmInfo$jobSet == thisSet)])) ) }, simplify = FALSE) tmp_missingSets <- names(all_repSets)[unlist(lapply(all_repSets,function(thisSet){ !file.exists(paste(getOption("shape_postDir"),thisSet[["saveFile"]],sep="")) }))] tmpCheck <- foreach(thisSet = tmp_missingSets, .combine="c", .packages = c("rSHAPE", "DBI","RSQLite")) %dopar% { tmp_foreachString <- "_foreach_" tmpList <- vector(mode="list",length=length(all_repSets[[thisSet]][["setJobs"]])) names(tmpList) <- all_repSets[[thisSet]][["setJobs"]] for(thisJob in all_repSets[[thisSet]][["setJobs"]]){ load(paste(func_experimentDir, thisJob,"/",thisJob,"_Parameters_1.RData",sep=""), envir = func_workEnvir) connections_dataBase <- list("genotypeSpace" = reset_shapeDB(paste(func_experimentDir,thisJob,"/", func_workEnvir$runParameters$DataManagement$shape_fileName_dataBase[["genotypeSpace"]], sep=""), func_type = "connect")) func_landscapeCon <- connections_dataBase$genotypeSpace func_landTables <- RSQLite::dbListTables(func_landscapeCon) allow_backMutations <- func_workEnvir$runParameters$FitnessLandscape$shape_allow_backMutations genomeLength <- func_workEnvir$runParameters$Population$shape_genomeLength db_splitTables <- func_workEnvir$runParameters$DataManagement$shape_db_splitTables tmpJobs <- func_workEnvir$all_dividedFiles[[thisSet]][which(grepl(thisJob, func_workEnvir$all_dividedFiles[[thisSet]]))] tmp_replicateInfo <- NULL if(length(tmpJobs) > 0){ tmp_replicateInfo <- NULL tmp_chunkSize <- 100 tmp_numChunks <- ceiling(length(tmpJobs)/tmp_chunkSize) for(thisChunk in 1:tmp_numChunks){ tmpAdd <- NULL for(thisFile in tmpJobs[(1+((thisChunk - 1)*tmp_chunkSize)):min((thisChunk*tmp_chunkSize),length(tmpJobs))]){ tmp_fileString <- nameEnviron(strsplit(strsplit(thisFile,"/")[[1]][length(strsplit(thisFile,"/")[[1]])],".",fixed=TRUE)[[1]][1], funcBase = tmp_foreachString) assign(tmp_fileString, new.env(), envir = func_workEnvir) load(thisFile, envir = func_workEnvir[[tmp_fileString]]) tmpEstablished <- func_workEnvir[[tmp_fileString]]$runDemographics$vec_estLineages lineDemo_maxStep <- which.max(as.numeric(nameTable_step(rownames(func_workEnvir[[tmp_fileString]]$info_estLines$lineDemo), funcSplit = TRUE, func_sepString = func_sepString))) tmp_final_estLineage <- data.frame("genotypeID"=tmpEstablished[which(func_workEnvir[[tmp_fileString]]$info_estLines$lineDemo[lineDemo_maxStep,"isEstablished",as.character(tmpEstablished)] == 1)]) tmp_final_estLineage$binaryString <- rep("",nrow(tmp_final_estLineage)) tmp_final_estLineage[,"binaryString"] <- unlist(lapply(tmp_final_estLineage[,"genotypeID"],function(x){ retrieve_binaryString(func_genotypeID = x, func_landscapeCon = func_landscapeCon, func_subNaming = db_splitTables)[,"binaryString"] })) tmp_transitionMat <- func_workEnvir[[tmp_fileString]]$runDemographics$transitionMat tmp_final_domLineage <- cbind("popSize"= func_workEnvir[[tmp_fileString]]$info_estLines$lineDemo[lineDemo_maxStep,"popSize",as.character(tmp_transitionMat[,"genotypeID"])], matrix(tmp_transitionMat[,c("Step","fitness","genotypeID")], nrow=nrow(tmp_transitionMat), dimnames = list(NULL,c("Step","fitness","genotypeID")))) tmp_maxSized = which(tmp_final_domLineage[,"popSize"] == max(tmp_final_domLineage[,"popSize"])) tmp_final_domLineage <- if(length(tmp_maxSized) != 1){ tmpReturn <- which(tmp_final_domLineage[tmp_maxSized,"Step"]==max(tmp_final_domLineage[tmp_maxSized,"Step"])) if(length(tmpReturn) > 1){ tmpReturn <- tmpReturn[which(tmp_final_domLineage[tmp_maxSized[tmpReturn],"fitness"]==max(tmp_final_domLineage[tmp_maxSized[tmpReturn],"fitness"]))][1] } tmp_final_domLineage[tmp_maxSized[tmpReturn],"genotypeID"] } else { tmp_final_domLineage[tmp_maxSized,"genotypeID"] } tmp_final_domLineage <- c("genotypeID"=unname(tmp_final_domLineage), "binaryString"="") tmp_final_domLineage["binaryString"] <- tmp_final_estLineage[which(tmp_final_estLineage[,"genotypeID"] == tmp_final_domLineage["genotypeID"]),"binaryString"] tmp_line_of_descent <- as.character(func_workEnvir[[tmp_fileString]]$info_estLines$end_Lines_of_Descent[[tmp_final_domLineage["genotypeID"]]]) tmp_dom_transitions <- strsplit(tmp_line_of_descent,func_string_line_ofDescent)[[1]] tmp_firstTransition <- if(length(tmp_dom_transitions) == 1){ paste(rep(tmp_dom_transitions[1],2),collapse=func_string_line_ofDescent) } else { paste(tmp_dom_transitions[1:2],collapse=func_string_line_ofDescent) } tmp_final_domLineage <- c(tmp_final_domLineage, "line_ofDescent"= paste(tmp_line_of_descent,collapse= func_sepLines), "firstStep"=tmp_firstTransition) tmp_initialEst <- dimnames(func_workEnvir[[tmp_fileString]]$info_estLines$lineDemo)[[3]] tmp_initialEst <- unique(c(tmp_initialEst[which.max(func_workEnvir[[tmp_fileString]]$info_estLines$lineDemo[nameTable_step(0, func_sepString = func_sepString), "popSize", tmp_initialEst])], tmp_initialEst[which(func_workEnvir[[tmp_fileString]]$info_estLines$lineDemo[nameTable_step(0, func_sepString = func_sepString), "isEstablished", tmp_initialEst] == 1)])) tmp_returnMat <- NULL if(any(!is.element(tmp_transitionMat[,"genotypeID"],as.numeric(tmp_initialEst))) && length(tmp_initialEst) > 0){ tmp_landscapeTopology <- func_workEnvir[[tmp_fileString]]$info_estLines$landscapeTopology tmpSteps <- strsplit(rownames(tmp_landscapeTopology),func_string_line_ofDescent) tmp_minRow <- min(which(!is.element(tmp_transitionMat[,"genotypeID"],as.numeric(tmp_initialEst)))) for(thisRow in tmp_minRow:nrow(tmp_transitionMat)){ tmpID <- tmp_transitionMat[thisRow, ] tmp_possProgenitors <- which(sapply(tmpSteps,function(x){ as.numeric(x[2]) == tmpID["genotypeID"] })) if (length(tmp_possProgenitors) == 0){ next } tmp_possProgenitors <- matrix(tmp_landscapeTopology[tmp_possProgenitors,], nrow = length(tmp_possProgenitors), dimnames=list(rownames(tmp_landscapeTopology)[tmp_possProgenitors], colnames(tmp_landscapeTopology))) tmp_possProgenitors <- cbind(tmp_possProgenitors, t(sapply(strsplit(rownames(tmp_possProgenitors), func_string_line_ofDescent), function(x){ x <- as.numeric(x) return( c("progenitorID"=x[1], "offspringID"=x[2]) ) }))) tmp_returnMat <- rbind(tmp_returnMat, data.frame("progenitor_genotypeID"= tmp_possProgenitors[,"progenitorID"], "offspring_genotypeID"= tmp_possProgenitors[,"offspringID"], "progenitor_fitness"= tmp_possProgenitors[,"progenitor_fitness"], "offspring_fitness"= tmp_possProgenitors[,"offspring_fitness"], "absRank" = tmp_possProgenitors[,"absRank"], "hoodSize" = tmp_possProgenitors[,"hoodSize"], "hoodMin"= tmp_possProgenitors[,"hoodMin"], "hoodMax"= tmp_possProgenitors[,"hoodMax"], "num_altPaths"= tmp_possProgenitors[,"num_altPaths"], "relFit_altPaths" = tmp_possProgenitors[,"relFit_altPaths"], "prop_maxFit" = tmp_possProgenitors[,"prop_maxFit"], "progenitor_numMuts"= tmp_possProgenitors[,"progenitor_numMuts"], "offspring_numMuts"= tmp_possProgenitors[,"offspring_numMuts"], "transition"=rownames(tmp_possProgenitors), "transitionStep"= tmpID["Step"], row.names = rownames(tmp_possProgenitors), stringsAsFactors = FALSE) ) } tmp_checkCols <- which(colnames(tmp_returnMat) != "transitionStep") tmpDuplicated <- duplicated(tmp_returnMat[,tmp_checkCols]) if(any(tmpDuplicated)){ tmp_workMat <- matrix(gsub("[[:space:]]","",as.character(unname(unlist(tmp_returnMat[,tmp_checkCols])))), ncol = ncol(tmp_returnMat[,tmp_checkCols])) tmpDuplicated <- lapply(which(tmpDuplicated),function(tmpRow){ which(apply(tmp_workMat,MARGIN=1,function(x){ all(x == tmp_workMat[tmpRow,tmp_checkCols]) })) }) tmp_removeRows <- NULL for(thisSet in unique(tmpDuplicated)){ tmp_returnMat[thisSet[1],"transitionStep"] <- paste(tmp_returnMat[thisSet,"transitionStep"],collapse= func_sepString) tmp_removeRows <- c(tmp_removeRows,thisSet[-1]) } if(!is.null(tmp_removeRows)){ tmp_returnMat <- tmp_returnMat[-tmp_removeRows,] } } } else { tmp_returnMat <- data.frame("progenitor_genotypeID"= tmp_transitionMat[1,"genotypeID"], "offspring_genotypeID"= NA, "progenitor_fitness"=tmp_transitionMat[1,"fitness"], "offspring_fitness"= NA, "absRank" = NA, "hoodSize" = NA, "hoodMin"= NA, "hoodMax"= NA, "num_altPaths"= NA, "relFit_altPaths" = NA, "prop_maxFit" = NA, "progenitor_numMuts"= tmp_transitionMat[1,"numMuts"], "offspring_numMuts"= NA, "transition"=paste(tmp_transitionMat[1,"genotypeID"]), "transitionStep"=0, stringsAsFactors = FALSE) } tmpReturn <- list(list("final_estLineages"= tmp_final_estLineage, "final_domLineage"= tmp_final_domLineage, "transitions"= tmp_returnMat)) names(tmpReturn)[length(tmpReturn)] <- nameEnviron(func_Index = tmp_fileString, funcSplit = TRUE, funcBase = tmp_foreachString) tmpAdd <- c(tmpAdd, tmpReturn) rm(list=c(tmp_fileString),pos= func_workEnvir) } tmp_replicateInfo <- c(tmp_replicateInfo, tmpAdd) rm(tmpAdd) gc() } } tmpList[[thisJob]] <- tmp_replicateInfo for(thisConnection in connections_dataBase){ RSQLite::dbDisconnect(thisConnection) } rm(tmp_replicateInfo, connections_dataBase,func_landscapeCon, allow_backMutations, genomeLength,db_splitTables,func_landTables) } assign(all_repSets[[thisSet]][["objName"]], tmpList, pos= func_workEnvir) save(list = all_repSets[[thisSet]][["objName"]], file= all_repSets[[thisSet]][["saveFile"]], envir = func_workEnvir) rm(list= all_repSets[[thisSet]][["objName"]], envir = func_workEnvir) gc() return( nameObject(func_inString = all_repSets[[thisSet]][["objName"]], func_inPrefix = func_objPrefix, func_splitStr = TRUE) ) } tmp_checkCompleted <- sapply(tmp_missingSets,is.element,"set"=tmpCheck) if(all(tmp_checkCompleted)){ save(all_repSets,file= func_saveFile) } else { stop(paste("There was a problem with the sets of: ", paste(names(tmp_checkCompleted)[which(!tmp_checkCompleted)],collapse=" ",sep=" "), sep="")) } invisible( NULL ) }
test_that("envelope print() output", { msg <- envelope() %>% subject("Test message") expect_output(print(msg), "Date: +.*\nSubject: +Test message") }) test_that("class envelope", { object <- envelope() expect_equal(class(object), "envelope") }) test_that("recipient address", { recipient <- envelope(to = "[email protected]") expect_equal(recipient$headers$To$values, address("[email protected]")) }) test_that("sender address", { sender <- envelope(from = "[email protected]") expect_equal(sender$headers$From$values, address("[email protected]")) }) test_that("maximum one sender address", { expect_error(envelope(from = c("[email protected]", "[email protected]"))) expect_error(envelope() %>% from(c("[email protected]", "[email protected]"))) }) test_that("cc", { cc <- envelope(cc = "[email protected]") expect_equal(cc$headers$Cc$values, address("[email protected]")) }) test_that("bcc", { bcc <- envelope(bcc = "[email protected]") expect_equal(bcc$headers$Bcc$values, address("[email protected]")) }) test_that("reply to", { reply <- envelope(reply = "[email protected]") expect_equal(reply$header[["Reply-To"]]$values, address("[email protected]")) }) test_that("subject", { subject <- envelope(subject = "Email Subject") expect_equal(subject$header$Subject$values, "Email Subject") }) test_that("body text", { email_text <- envelope(text = "foo") expect_equal(email_text$parts[[1]]$content, "foo") }) test_that("body html", { html <- envelope(html = "<p>foo</p>") expect_match(html$parts[[1]]$content, "<body><p>foo</p></body>") }) test_that("append another body", { msg <- envelope() %>% text("Hello!") %>% html("<p>Goodbye!</p>") expect_equal(length(msg$parts), 2) }) test_that("parts are not nested", { msg <- envelope() %>% text("Hello!") %>% html(HTMLPATH) %>% attachment(JPGPATH) expect_false(is.nested(msg$parts)) }) test_that("not splitting addresses", { msg <- envelope( to = c("Durrell, Gerald <[email protected]>", "Jones, Bob <[email protected]>"), cc = c("Durrell, Gerald <[email protected]>", "Jones, Bob <[email protected]>"), bcc = c("Durrell, Gerald <[email protected]>", "Jones, Bob <[email protected]>"), split = FALSE ) expect_match(headers(msg), 'To:[[:space:]]+"Durrell, Gerald" <[email protected]>,\r\n[[:space:]]+"Jones, Bob" <[email protected]>') expect_match(headers(msg), 'Cc:[[:space:]]+"Durrell, Gerald" <[email protected]>,\r\n[[:space:]]+"Jones, Bob" <[email protected]>') expect_match(headers(msg), 'Bcc:[[:space:]]+"Durrell, Gerald" <[email protected]>,\r\n[[:space:]]+"Jones, Bob" <[email protected]>') })
hgm.so3nc<-hgm.tk.so3nc hgm.ncso3<-hgm.tk.so3nc hgm.normalizingConstantOfFisherDistributionOnSO3<-hgm.tk.so3nc hgm.pwishart<-hgm.tk.pwishart hgm.ncorthant<-hgm.ko.ncorthant hgm.normalizingConstantOfOrthant<-hgm.ko.ncorthant hgm.Rhgm<-hgm.se.hgm hgm.Rhgm.demo1<-hgm.se.demo1 hgm.ncBingham<-hgm.se.hgm.Bingham hgm.normalizingConstantOfBinghamDistribution<-hgm.se.hgm.Bingham hgm.p2wishart<-hgm.tk.p2wishart
"cochran.test" <- function(object,data,inlying=FALSE) { DNAME <- deparse(substitute(object)) if (is.vector(object)) { by.factor <- as.factor(1:length(data)) vars <- object names(vars) <- levels(by.factor) k <- length(data) df <- mean(data) } else { if (missing(data)) data <- environment(object) bn<-as.character(attr(terms(object),"variables")[-1]) by.factor<-as.factor(data[[bn[2]]]) vars <- tapply(data[[bn[1]]],by.factor,var) names(vars) <- levels(by.factor) k <- nlevels(by.factor) df <- length(data[[bn[1]]])/k } if (inlying) { value <- min(vars)/sum(vars) group <- levels(by.factor)[which(vars == min(vars))] method <- "Cochran test for inlying variance" alt <- paste("Group",group,"has inlying variance") pval <- pcochran(value,df,k) } else { value <- max(vars)/sum(vars) group <- levels(by.factor)[which(vars == max(vars))] method <- "Cochran test for outlying variance" alt <- paste("Group",group,"has outlying variance") pval <- 1-pcochran(value,df,k) } RVAL <- list(statistic = c(C = value), parameter = c(df = df, k = k), alternative = alt, p.value = pval, method = method, estimate = vars, data.name = DNAME) class(RVAL) <- "htest" return(RVAL) }
uclust <- function(md = NULL, data = NULL, alpha = 0.05, rep = 15) { if (is.null(md)) { if (is.null(data)) { stop("No data provided") } md <- as.matrix(dist(data) ^ 2) } if (sum("matrix" %in% class(md)) == 0) { stop("md is not of class matrix") } n <- dim(md)[1] is.h <- suppressMessages(is_homo(rep = rep, md)) ResultadoTesteIsHomo <- is.h if (is.h$p.MaxTest < alpha) { bootB <- is.h$bootB bootB1 <- is.h$bootB1 oBn <- rep_optimBn(md, bootB = bootB, rep = rep) maxBn <- -oBn$minFobj n1 <- length(oBn$grupo1) is.group <- t.Bnbonf(maxBn, n, n1, alpha, bootB = bootB, bootB1 = bootB1) if (is.group$significant == TRUE) { clust <- oBn$grupo1 p <- is.group$p.value } else { n2 <- n - n1 minsize <- (n1 == floor(n / 2) || n2 == floor(n / 2)) oBn1 <- maxBnsize1(md) maxBn1 <- oBn1$maxBn if (minsize == TRUE) { clust <- oBn1$grupo1 is.group <- t.Bnbonf(maxBn1, n, 1, alpha, bootB = bootB, bootB1 = bootB1) p <- is.group$p.value n1 <- 1 } while (minsize == FALSE && is.group$significant == FALSE) { n1m <- min(n1, n2) n1_min <- n1m + 1 n1_max <- n - n1_min oBn <- rep_optimBn_restrict(md, n1_max, n1_min, rep = rep) maxBn <- -oBn$minFobj maxBnmax <- max(maxBn1, maxBn) if (maxBnmax == maxBn1) { n1 <- 1 is.group <- t.Bnbonf(maxBnmax, n, n1, alpha, bootB = bootB, bootB1 = bootB1) if (is.group$significant == FALSE) { n1 <- n1_min } } else { n1 <- length(oBn$grupo1) is.group <- t.Bnbonf(maxBnmax, n, n1, alpha, bootB = bootB, bootB1 = bootB1) } n2 <- n - n1 minsize <- (n1 == floor(n / 2) || n2 == floor(n / 2)) if (is.group$significant == TRUE) { clust <- oBn$grupo1 p <- is.group$p.value } if (minsize == TRUE && is.group$significant == FALSE) { clust <- oBn1$grupo1 is.group <- t.Bnbonf(maxBn1, n, 1, alpha, bootB = bootB, bootB1 = bootB1) p <- is.group$p.value n1 <- 1 } } } alpha_correct <- alpha / (2 ^ (n - 1) - 1) } else { clust <- 1:n p <- is.h$p.MaxTest n1 <- n alpha_correct <- alpha } if (n1 != n) { if (is.group$significant == FALSE) { n1 <- length(is.h$group1) ishomo <- FALSE p <- is.h$p.MaxTest alpha_correct <- alpha bn <- Bn(c(length(is.h$group1), length(is.h$group2)), md[c(is.h$group1, is.h$group2), c(is.h$group1, is.h$group2)]) varBn <- (bn / is.h$minFobj) ^ 2 clust <- is.h$group1 } else { ord <- c(clust, (1:n)[-clust]) bn <- Bn(c(n1, (n - n1)), md[ord, ord]) varBn <- is.group$varBn ishomo <- FALSE } if (n < 25) { message( paste( "\t U-Statstics Significance Clustering \n\nmax(stdBn) =", round(-ResultadoTesteIsHomo$minFobj, digits = 4), "\t homogeneity p-value = ", round(ResultadoTesteIsHomo$p.MaxTest, digits = 4), "\t alpha = ", alpha, "\nReject H0: Significant partition found \nGroup 1:", paste(clust, collapse = " "), "\nGroup 2:", paste(c(1:n)[-clust], collapse = " ") ) ) } else { message( paste( "\t U-Statstics Significance Clustering \n\nmax(stdBn) =", round(-ResultadoTesteIsHomo$minFobj, digits = 4), "\t homogeneity p-value = ", round(ResultadoTesteIsHomo$p.MaxTest, digits = 4), "\t alpha = ", alpha, "\nReject H0: Significant partition found: \nGroup 1 of size", n1, "\nGroup 2 of size", n - n1 ) ) } } else { n1 <- length(is.h$group1) ishomo <- TRUE bn <- Bn(c(length(is.h$group1), length(is.h$group2)), md[c(is.h$group1, is.h$group2), c(is.h$group1, is.h$group2)]) varBn <- (bn / is.h$minFobj) ^ 2 message( paste( "\t U-Statstics Significance Clustering \n\nmax(stdBn) =", round(-ResultadoTesteIsHomo$minFobj, digits = 4), "\t homogeneity p-value = ", round(ResultadoTesteIsHomo$p.MaxTest, digits = 4), "\t alpha = ", alpha, "\nAccept H0: the sample is homogeneous." ) ) } clust2 <- c(1:n)[-clust] ans <- list(clust, clust2, p, alpha_correct, n1, ishomo, bn, varBn, ResultadoTesteIsHomo) names(ans) <- c("cluster1", "cluster2", "p.value", "alpha_corrected", "n1", "ishomo", "Bn", "varBn", "ishomoResult") invisible(return(ans)) } objBn <- function(assign, mdm) { n <- length(assign) n1 <- sum(assign == 0) n2 <- n - n1 if (n1 == 0 | n2 == 0) { return(Inf) } else { vaux1 <- which(assign == assign[1]) vaux2 <- c(1:n)[-vaux1] n1 <- length(vaux1) n2 <- n - n1 m <- mdm[c(vaux1, vaux2), c(vaux1, vaux2)] Bns <- Bn(c(n1, n2), m) return(-Bns) } } optimBn <- function(md, itmax = 200, centers = -1, bootB = -1) { n <- dim(md)[1] it <- 1 ass <- vector() ass_old <- rep(2, n) ASS <- matrix(ncol = n, nrow = itmax) Fobj <- vector() if (centers == -1) { centers <- sample(n, 2) } for (i in 1:n) { ass[i] <- (md[i, centers[1]]) > (md[i, centers[2]]) } ass ASS[1, ] <- ass while (it < itmax && !prod(ass == ass_old)) { ass_old <- ass ord <- sample(n, n) for (i in ord) { ass[i] <- 0 f0 <- objBn(ass, md) ass[i] <- 1 f1 <- objBn(ass, md) if (f0 < f1) { ass[i] <- 0 } } Fobj[it] <- objBn(ass, md) it <- it + 1 ASS[it, ] <- ass } ans <- list(which(ass == ass[1]), Fobj, it - 1, ASS[1:(it + 1), ], bootB) names(ans) <- c("grupo1", "Fobj", "numIt", "history", "bootB") ans } rep_optimBn <- function(mdm, rep = 15, bootB = -1) { ans <- optimBn(mdm, bootB = bootB) Fobj <- vector() n <- dim(mdm)[1] grupo1 <- list() Fobj[1] <- ans$Fobj[length(ans$Fobj)] grupo1[[1]] <- ans$grupo1 bootB <- ans$bootB for (i in 2:rep) { ans <- optimBn(mdm, bootB = bootB) Fobj[i] <- ans$Fobj[length(ans$Fobj)] grupo1[[i]] <- ans$grupo1 } minFobj <- min(Fobj) g1 <- grupo1[[which(Fobj == min(Fobj))[1]]] g2 <- (1:n)[-g1] ans <- list(minFobj, g1, g2, Fobj, bootB) names(ans) <- list("minFobj", "grupo1", "grupo2", "Fobj", "bootB") return(ans) } maxBnsize1 <- function(mdm) { n <- dim(mdm)[1] vecBn <- vector() for (i in 1:n) { vecBn[i] <- Bn(c(1, n - 1), mdm[c(i, c(1:n)[-i]), c(i, c(1:n)[-i])]) } maxBn <- max(vecBn) ans <- list(maxBn, which(vecBn == maxBn)) names(ans) <- c("maxBn", "grupo1") return(ans) } optimBn_restrict <- function(md, n1_max, n1_min, itmax = 200) { if (n1_max < n1_min) { print("ERROR: n1_max must be larger than n1_min") } else { n <- dim(md)[1] it <- 1 ass_old <- rep(2, n) ASS <- matrix(ncol = n, nrow = (itmax + 1)) Fobj <- vector() ass <- rep(0, n) ass[sample(n, floor(n / 2))] <- 1 ASS[1, ] <- ass if (n1_max == n1_min) { count <- 0 while (it < itmax && count < max(n / 2, 10)) { ass_old <- ass ord <- sample(n, n) for (i in ord) { v <- (1:n)[-i] j <- sample(v, 1) f0 <- objBn(ass, md) temp_ass <- ass ass[j] <- ass[i] ass[i] <- temp_ass[j] if (sum(ass) <= n1_max && sum(ass) >= n1_min) { f1 <- objBn(ass, md) } else { f1 <- Inf } if (f0 < f1) { ass <- temp_ass } } Fobj[it] <- objBn(ass, md) it <- it + 1 ASS[it, ] <- ass if (prod(ass == ass_old)) { count <- count + 1 } else{ count <- 0 } } } else { while (it < itmax) { ass_old <- ass ord <- sample(n, n) for (i in ord) { ass[i] <- 0 if (sum(ass) <= n1_max && sum(ass) >= n1_min) { f0 <- objBn(ass, md) } else { f0 <- Inf } ass[i] <- 1 if (sum(ass) <= n1_max && sum(ass) >= n1_min) { f1 <- objBn(ass, md) } else { f1 <- Inf } if (f0 < f1) { ass[i] <- 0 } } Fobj[it] <- objBn(ass, md) it <- it + 1 ASS[it, ] <- ass } } ans <- list(which(ass == ass[1]), Fobj, it - 1, ASS[1:(it + 1), ]) names(ans) <- c("grupo1", "Fobj", "numIt", "history") ans } } rep_optimBn_restrict <- function(mdm, n1_max, n1_min, rep = 15) { ans <- optimBn_restrict(mdm, n1_max, n1_min) Fobj <- vector() n <- dim(mdm)[1] grupo1 <- list() Fobj[1] <- ans$Fobj[length(ans$Fobj)] grupo1[[1]] <- ans$grupo1 for (i in 2:rep) { ans <- optimBn_restrict(mdm, n1_max, n1_min) Fobj[i] <- ans$Fobj[length(ans$Fobj)] grupo1[[i]] <- ans$grupo1 } minFobj <- min(Fobj) g1 <- grupo1[[which(Fobj == min(Fobj))[1]]] g2 <- (1:n)[-g1] ans <- list(minFobj, g1, g2, Fobj) names(ans) <- list("minFobj", "grupo1", "grupo2", "Fobj") return(ans) } t.Bnbonf <- function(Bn, n, n1, alpha, bootB = -1, bootB1 = -1, md = 1, std = FALSE) { if (std == FALSE) { Cn <- vector() numB <- 2000 if (n1 == 1 || n1 == (n - 1)) { if (bootB1 == -1) { bootB1 <- boot_sigma1(c(1, (n - 1)), md) } varBn <- bootB1 } else { if (bootB == -1) { bootB <- boot_sigma(c(floor(n / 2), (n - floor(n / 2))), numB, md) } n1b <- floor(n / 2) n2 <- n - n1b Cnd <- (((n1b * n2) / (n * (n - 1)) ^ 2) * (2 * n ^ 2 - 6 * n + 4) / ((n1b - 1) * (n2 - 1))) n1b <- n1 n2 <- n - n1b Cnn <- (((n1b * n2) / (n * (n - 1)) ^ 2) * (2 * n ^ 2 - 6 * n + 4) / ((n1b - 1) * (n2 - 1))) varBn <- Cnn * bootB / Cnd } p <- pnorm(Bn / sqrt(varBn), lower.tail = FALSE) } else { p <- pnorm(Bn, lower.tail = FALSE) } significant <- (p < (alpha / (2 ^ (n - 1) - 1))) ans <- list(p, significant, varBn) names(ans) <- c("p.value", "significant", "varBn") return(ans) }
data_transpose <- function(data, verbose = TRUE, ...) { if (length(unique(sapply(data, class))) > 1) { if (verbose) { warning("Your data contains mixed types of data. After transposition, all will be transformed into characters.") } } new <- as.data.frame(t(data)) colnames(new) <- rownames(data) rownames(new) <- colnames(data) new }
`evaluate_smooth` <- function(object, ...) { UseMethod("evaluate_smooth") } `evaluate_smooth.gam` <- function(object, smooth, n = 100, newdata = NULL, unconditional = FALSE, overall_uncertainty = TRUE, dist = 0.1, ...) { if (length(smooth) > 1L) { message("Supplied more than 1 'smooth'; using only the first") smooth <- smooth[1L] } smooth_ids <- which_smooth(object, smooth) if (identical(length(smooth_ids), 0L)) { stop("Requested smooth '", smooth, "' not found", call. = FALSE) } smooth_labels <- select_smooth(object, smooth) SMOOTHS <- get_smooths_by_id(object, smooth_ids) if (inherits(SMOOTHS[[1]], "random.effect")) { evaluated <- evaluate_re_smooth(SMOOTHS, model = object, newdata = newdata, unconditional = unconditional) } else if (inherits(SMOOTHS[[1]], "fs.interaction")) { evaluated <- evaluate_fs_smooth(SMOOTHS, n = n, model = object, newdata = newdata, unconditional = unconditional) } else if (smooth_dim(SMOOTHS[[1]]) == 1L) { evaluated <- evaluate_1d_smooth(SMOOTHS, n = n, model = object, newdata = newdata, overall_uncertainty = overall_uncertainty, unconditional = unconditional) } else if (smooth_dim(SMOOTHS[[1]]) == 2L) { evaluated <- evaluate_2d_smooth(SMOOTHS, n = n, model = object, newdata = newdata, overall_uncertainty = overall_uncertainty, unconditional = unconditional, dist = dist) } else { stop("Only univariate and bivariate smooths are currently supported.") } evaluated } `evaluate_smooth.gamm` <- function(object, ...) { evaluate_smooth(object[["gam"]], ...) } `evaluate_smooth.list` <- function(object, ...) { if (! is_gamm4(object)) { stop("`object` does not appear to a `gamm4` model object", call. = FALSE) } evaluate_smooth(object[["gam"]], ...) } `evaluate_re_smooth` <- function(object, model = NULL, newdata = NULL, unconditional = FALSE) { is.by <- vapply(object, FUN = is_by_smooth, FUN.VALUE = logical(1L)) by_var <- unique(vapply(object, FUN = by_variable, FUN.VALUE = character(1))) if (!is.null(newdata)) { stop("Not yet implemented: user-supplied data in 're' smooth") } smooth_var <- unique(unlist(lapply(object, FUN = smooth_variable))) smooth_labels <- vapply(object, FUN = smooth_label, FUN.VALUE = character(1)) var_types <- attr(terms(model), "dataClasses")[smooth_var] levs <- if (all(var_types %in% c("factor", "ordered"))) { levels(interaction(model[["model"]][smooth_var], drop = FALSE)) } else { take <- smooth_var[which(var_types %in% c("factor", "ordered"))] levels(interaction(model[["model"]][take])) } is.factor.by <- vapply(object, FUN = is_factor_by_smooth, FUN.VALUE = logical(1L)) evaluated <- vector("list", length(object)) for (i in seq_along(evaluated)) { start <- object[[i]][["first.para"]] end <- object[[i]][["last.para"]] para_seq <- seq(from = start, to = end, by = 1L) coefs <- coef(model)[para_seq] se <- diag(vcov(model, unconditional = unconditional))[para_seq] evaluated[[i]] <- tibble(smooth = rep(smooth_labels[i], length(coefs)), ..var = levs, est = coefs, se = se) } evaluated <- do.call("rbind", evaluated) if (any(is.factor.by)) { na_by <- by_var == "NA" evaluated <- add_by_var_info_to_smooth(evaluated, by_name = by_var, by_data = model[["model"]][[by_var[!na_by]]], n = length(levs)) } else { evaluated <- add_missing_by_info_to_smooth(evaluated) } names(evaluated)[3] <- paste(smooth_var, collapse = ", ") class(evaluated) <- c("evaluated_re_smooth", "evaluated_smooth", class(evaluated)) evaluated } `evaluate_1d_smooth` <- function(object, n = NULL, model = NULL, newdata = NULL, unconditional = FALSE, overall_uncertainty = TRUE) { is.by <- vapply(object, FUN = is_by_smooth, FUN.VALUE = logical(1L)) if (length(object) > 1L) { if (!all(is.by)) { vars <- vapply(object, smooth_variable, character(1L)) if (length(unique(vars)) > 1L) { stop(by_smooth_failure(object)) } } } by_var <- unique(vapply(object, FUN = by_variable, FUN.VALUE = character(1))) smooth_var <- unique(vapply(object, FUN = smooth_variable, FUN.VALUE = character(1))) newx <- if (is.null(newdata)) { setNames(datagen(object[[1]], n = n, data = model[["model"]])[, "x", drop = FALSE], smooth_var) } else if (is.data.frame(newdata)) { if (!smooth_var %in% names(newdata)) { stop(paste("Variable", smooth_var, "not found in 'newdata'.")) } newdata[, smooth_var, drop = FALSE] } else if (is.numeric(newdata)) { setNames(data.frame(newdata), smooth_var) } else { stop("'newdata', if supplied, must be a numeric vector or a data frame.") } is.factor.by <- vapply(object, FUN = is_factor_by_smooth, FUN.VALUE = logical(1L)) is.continuous.by <- vapply(object, FUN = is_continuous_by_smooth, FUN.VALUE = logical(1L)) if (any(is.by)) { na_by <- by_var == "NA" if (any(is.factor.by)) { if (any(na_by)) { onewx <- cbind(newx, .by_var = NA) } levs <- levels(model[["model"]][[by_var[!na_by]]]) newx <- cbind(newx, .by_var = rep(levs, each = n)) if (any(na_by)) { levs <- c("NA", levs) newx <- rbind(onewx, newx) newx[[".by_var"]] <- factor(newx[[".by_var"]], levels = levs[-1L]) } else { newx[[".by_var"]] <- factor(newx[[".by_var"]], levels = levs) } } else { if (any(na_by)) { onewx <- cbind(newx, .ba_var = NA) } newx <- cbind(newx, .by_var = mean(model[["model"]][[by_var[!na_by]]])) if (any(na_by)) { newx <- rbind(onewx, newx) } } names(newx)[NCOL(newx)] <- by_var[!na_by] } evaluated <- vector("list", length(object)) for (i in seq_along(evaluated)) { ind <- seq_len(NROW(newx)) if (any(is.by)) { if (is.factor.by[[i]]) { ind <- newx[, by_var[!na_by]] == levs[i] ind[is.na(ind)] <- FALSE } else { is_na <- is.na(newx[, by_var[!na_by]]) if (any(is_na)) { ind <- is_na } } } evaluated[[i]] <- spline_values(object[[i]], newdata = newx[ind, , drop = FALSE], unconditional = unconditional, model = model, overall_uncertainty = overall_uncertainty, term = smooth_var) } evaluated <- do.call("bind_rows", evaluated) if (any(is.factor.by)) { evaluated <- add_by_var_info_to_smooth(evaluated, by_name = by_var, by_data = model[["model"]][[by_var[!na_by]]], n = n) } else { evaluated <- add_missing_by_info_to_smooth(evaluated) } names(evaluated)[3] <- smooth_var class(evaluated) <- c("evaluated_1d_smooth", "evaluated_smooth", class(evaluated)) evaluated } `evaluate_2d_smooth` <- function(object, n = NULL, model = NULL, newdata = NULL, unconditional = FALSE, overall_uncertainty = TRUE, dist = 0.1) { is.by <- vapply(object, FUN = is_by_smooth, FUN.VALUE = logical(1L)) if (length(object) > 1L) { if (!all(is.by)) { vars <- vapply(object, smooth_variable, character(2L)) if (length(unique(as.vector(vars))) > 2L) { stop(by_smooth_failure(object)) } } } by_var <- unique(vapply(object, FUN = by_variable, FUN.VALUE = character(1))) smooth_var <- unique(vapply(object, FUN = smooth_variable, FUN.VALUE = character(2L))[,1]) newx <- if (is.null(newdata)) { setNames(datagen(object[[1]], n = n, data = model[["model"]])[, c("x1", "x2"), drop = FALSE], smooth_var) } else if (is.data.frame(newdata)) { if (!all(smooth_var %in% names(newdata))) { stop(paste("Variable", smooth_var, "not found in 'newdata'.")) } newdata[, smooth_var, drop = FALSE] } else if (is.numeric(newdata)) { setNames(data.frame(newdata), smooth_var) } else { stop("'newdata', if supplied, must be a numeric vector or a data frame.") } is.factor.by <- vapply(object, FUN = is_factor_by_smooth, FUN.VALUE = logical(1L)) is.continuous.by <- vapply(object, FUN = is_continuous_by_smooth, FUN.VALUE = logical(1L)) if (any(is.by)) { na_by <- by_var == "NA" if (any(is.factor.by)) { if (any(na_by)) { onewx <- cbind(newx, .by_var = NA) } levs <- levels(model[["model"]][[by_var[!na_by]]]) newx <- cbind(newx, .by_var = rep(levs, each = n*n)) if (any(na_by)) { levs <- c("NA", levs) newx <- rbind(onewx, newx) newx[[".by_var"]] <- factor(newx[[".by_var"]], levels = levs[-1L]) } else { newx[[".by_var"]] <- factor(newx[[".by_var"]], levels = levs) } } else { if (any(na_by)) { onewx <- cbind(newx, .ba_var = NA) } newx <- cbind(newx, .by_var = mean(model[["model"]][[by_var[!na_by]]])) if (any(na_by)) { newx <- rbind(onewx, newx) } } names(newx)[NCOL(newx)] <- by_var[!na_by] } evaluated <- vector("list", length(object)) for (i in seq_along(evaluated)) { ind <- seq_len(NROW(newx)) if (any(is.by)) { if (is.factor.by[[i]]) { ind <- newx[, by_var[!na_by]] == levs[i] ind[is.na(ind)] <- FALSE } else { is_na <- is.na(newx[, by_var[!na_by]]) if (any(is_na)) { ind <- is_na } } } evaluated[[i]] <- spline_values(object[[i]], newdata = newx[ind, , drop = FALSE], unconditional = unconditional, model = model, overall_uncertainty = overall_uncertainty, term = smooth_var) } evaluated <- do.call("rbind", evaluated) if (any(is.factor.by)) { evaluated <- add_by_var_info_to_smooth(evaluated, by_name = by_var, by_data = model[["model"]][[by_var[!na_by]]], n = n*n) } else { evaluated <- add_missing_by_info_to_smooth(evaluated) } if (dist > 0) { ind <- mgcv::exclude.too.far(newx[, smooth_var[1L]], newx[, smooth_var[2L]], model[["model"]][, smooth_var[1L]], model[["model"]][, smooth_var[2L]], dist = dist) if (any(ind)) { evaluated[ind, c("est", "se")] <- NA } } names(evaluated)[3:4] <- smooth_var class(evaluated) <- c("evaluated_2d_smooth", "evaluated_smooth", class(evaluated)) evaluated } `evaluate_fs_smooth` <- function(object, n = NULL, model = NULL, newdata = NULL, unconditional = FALSE, overall_uncertainty = TRUE) { is.by <- vapply(object, FUN = is_by_smooth, FUN.VALUE = logical(1L)) if (length(object) > 1L) { if (!all(is.by)) { vars <- vapply(object, smooth_variable, character(1L)) if (length(unique(vars)) > 1L) { stop(by_smooth_failure(object)) } } } by_var <- unique(vapply(object, FUN = by_variable, FUN.VALUE = character(1))) smooth_var <- unique(vapply(object, FUN = smooth_variable, FUN.VALUE = character(2L))) smooth_fac <- unique(vapply(object, FUN = smooth_factor_variable, FUN.VALUE = character(1L))) smooth_var <- smooth_var[smooth_var != smooth_fac] newx <- if (is.null(newdata)) { datagen(object[[1]], n = n, data = model[["model"]])[, c(smooth_var, smooth_fac), drop = FALSE] } else if (is.data.frame(newdata)) { if (!smooth_var %in% names(newdata)) { stop(paste("Variable", smooth_var, "not found in 'newdata'.")) } newdata[, c(smooth_var, smooth_fac), drop = FALSE] } else { stop("'newdata', if supplied, must be a data frame.") } n <- nrow(newx) is.factor.by <- vapply(object, FUN = is_factor_by_smooth, FUN.VALUE = logical(1L)) is.continuous.by <- vapply(object, FUN = is_continuous_by_smooth, FUN.VALUE = logical(1L)) if (any(is.by)) { na_by <- by_var == "NA" if (any(is.factor.by)) { if (any(na_by)) { onewx <- cbind(newx, .by_var = NA) } levs <- levels(model[["model"]][[by_var[!na_by]]]) newx <- cbind(newx, .by_var = rep(levs, each = n)) if (any(na_by)) { levs <- c("NA", levs) newx <- rbind(onewx, newx) newx[[".by_var"]] <- factor(newx[[".by_var"]], levels = levs[-1L]) } else { newx[[".by_var"]] <- factor(newx[[".by_var"]], levels = levs) } } else { if (any(na_by)) { onewx <- cbind(newx, .ba_var = NA) } newx <- cbind(newx, .by_var = mean(model[["model"]][[by_var[!na_by]]])) if (any(na_by)) { newx <- rbind(onewx, newx) } } names(newx)[NCOL(newx)] <- by_var[!na_by] } evaluated <- vector("list", length(object)) for (i in seq_along(evaluated)) { ind <- seq_len(NROW(newx)) if (any(is.by)) { if (is.factor.by[[i]]) { ind <- newx[, by_var[!na_by]] == levs[i] ind[is.na(ind)] <- FALSE } else { is_na <- is.na(newx[, by_var[!na_by]]) if (any(is_na)) { ind <- is_na } } } evaluated[[i]] <- spline_values(object[[i]], newdata = newx[ind, , drop = FALSE], unconditional = unconditional, model = model, overall_uncertainty = overall_uncertainty, term = smooth_var) } evaluated <- do.call("rbind", evaluated) if (any(is.factor.by)) { evaluated <- add_by_var_info_to_smooth(evaluated, by_name = by_var, by_data = model[["model"]][[by_var[!na_by]]], n = n) } else { evaluated <- add_missing_by_info_to_smooth(evaluated) } names(evaluated)[3L] <- smooth_var names(evaluated)[4L] <- smooth_fac class(evaluated) <- c("evaluated_fs_smooth", "evaluated_smooth", class(evaluated)) evaluated } `evaluate_parametric_term` <- function(object, ...) { UseMethod("evaluate_parametric_term") } `evaluate_parametric_term.gam` <- function(object, term, unconditional = FALSE, ...) { tt <- object$pterms tt <- delete.response(tt) vars <- parametric_terms(object) mgcv_names <- names(vars) if (length(term) > 1L) { term <- term[1L] warning(sprintf("More than one `term` requested; using the first <%s>", term)) } if (isFALSE(term %in% vars)) { stop(sprintf("Term is not in the parametric part of model: <%s>", term)) } mf <- model.frame(object) is_fac <- is_factor_term(tt, term) ind <- match(term, vars) if (is_fac) { ord <- attr(tt, "order")[match(term, attr(tt, "term.labels"))] if (ord > 1) { stop("Interaction terms are not currently supported.") } newd <- unique(mf[, term, drop = FALSE]) other_vars <- setdiff(names(mf), term) other_data <- as_tibble(lapply(mf[other_vars], value_closest_to_median)) pred_data <- exec(expand_grid, !!!list(newd, other_data)) evaluated <- as.data.frame(predict(object, newdata = pred_data, type = 'terms', terms = term, se = TRUE, unconditional = unconditional, newdata.guaranteed = FALSE)) evaluated <- setNames(evaluated, c("partial", "se")) evaluated <- as_tibble(evaluated) nr <- NROW(evaluated) newd <- setNames(newd, "value") evaluated <- bind_cols(term = rep(term, nr), type = rep("factor", nr), newd, evaluated) } else { evaluated <- as.data.frame(predict(object, newdata = mf, type = 'terms', terms = mgcv_names[ind], se = TRUE, unconditional = unconditional)) evaluated <- setNames(evaluated, c("partial", "se")) evaluated <- as_tibble(evaluated) nr <- NROW(evaluated) evaluated <- bind_cols(term = rep(term, nr), type = rep("numeric", nr), value = mf[[term]], evaluated) } class(evaluated) <- c("evaluated_parametric_term", class(evaluated)) evaluated } `spline_values` <- function(smooth, newdata, model, unconditional, overall_uncertainty = TRUE, term) { X <- PredictMat(smooth, newdata) start <- smooth[["first.para"]] end <- smooth[["last.para"]] para.seq <- start:end coefs <- coef(model)[para.seq] fit <- drop(X %*% coefs) label <- smooth_label(smooth) V <- get_vcov(model, unconditional = unconditional) column_means <- model[["cmX"]] lcms <- length(column_means) nc <- ncol(V) meanL1 <- smooth[["meanL1"]] if (isTRUE(overall_uncertainty) && attr(smooth, "nCons") > 0L) { if (lcms < nc) { column_means <- c(column_means, rep(0, nc - lcms)) } Xcm <- matrix(column_means, nrow = nrow(X), ncol = nc, byrow = TRUE) if (!is.null(meanL1)) { Xcm <- Xcm / meanL1 } Xcm[, para.seq] <- X rs <- rowSums((Xcm %*% V) * Xcm) } else { rs <- rowSums((X %*% V[para.seq, para.seq]) * X) } se.fit <- sqrt(pmax(0, rs)) d <- smooth_dim(smooth) out <- if (d == 1L) { if (is_fs_smooth(smooth)) { tibble(smooth = rep(label, nrow(X)), x = newdata[, 1L], f = newdata[, 2L], est = fit, se = se.fit) } else { tibble(smooth = rep(label, nrow(X)), x = newdata[, 1L], est = fit, se = se.fit) } } else { tibble(smooth = rep(label, nrow(X)), x1 = newdata[, 1L], x2 = newdata[, 2L], est = fit, se = se.fit) } out }
context("download_smap") test_that("invalid output directories cause errors", { skip_on_cran() files <- find_smap(id = "SPL3SMP", dates = "2015-03-31", version = 5) expect_error(download_smap(files[1, ], dir = 1234)) }) test_that("non-existent directories are created", { skip_on_cran() files <- find_smap(id = "SPL3SMP", dates = "2015-03-31", version = 5) dir_name <- "silly_nonexistent_directory" downloads <- download_smap(files, directory = dir_name) expect_true(dir.exists(dir_name)) unlink(dir_name, recursive = TRUE) }) test_that("valid user-specified directories contain downloads", { skip_on_cran() available_data <- find_smap(id = "SPL3SMP", date = "2015-10-01", version = 5) user_specified_path <- file.path('data', 'SMAP') downloads <- download_smap(available_data, directory = user_specified_path) expect_true( file.exists( file.path(user_specified_path, "SMAP_L3_SM_P_20151001_R16010_001.h5") ) ) expect_true( file.exists( file.path(user_specified_path, "SMAP_L3_SM_P_20151001_R16010_001.h5.iso.xml") ) ) expect_true( file.exists( file.path(user_specified_path, "SMAP_L3_SM_P_20151001_R16010_001.qa") ) ) unlink('data', recursive = TRUE, force = TRUE) }) test_that("the downloaded data is of the data frame class", { skip_on_cran() files <- find_smap(id = "SPL3SMP", dates = "2015-03-31", version = 5) downloads <- download_smap(files[1, ]) expect_that(downloads, is_a("data.frame")) }) test_that("Two SPL4CMDL data files are downloaded (h5 and xml)", { skip_on_cran() files <- find_smap(id = "SPL4CMDL", dates = "2015-05-01", version = 4) downloads <- download_smap(files[1, ]) file_prefix <- downloads$name downloaded_files <- list.files(downloads$local_dir) relevant_files <- grepl(file_prefix, downloaded_files) number_of_downloaded_files <- sum(relevant_files) expect_equal(2, number_of_downloaded_files) relevant_filenames <- downloaded_files[relevant_files] extensions <- gsub(".*\\.", "", relevant_filenames) expect_equal(extensions, c('h5', 'xml')) }) test_that("setting overwrite = FALSE prevents data from being overwritten", { skip_on_cran() get_last_modified <- function(downloads) { path <- file.path(downloads$local_dir, paste0(downloads$name, '.h5')) time <- file.info(path)$mtime as.numeric(time) } files <- find_smap(id = "SPL3SMP", date = "2015-03-31", version = 5) downloads <- download_smap(files) modified1 <- get_last_modified(downloads) Sys.sleep(1) downloads <- download_smap(files, overwrite = FALSE) modified2 <- get_last_modified(downloads) expect_equal(modified1, modified2) }) test_that("setting overwrite = TRUE ensures data overwrite", { skip_on_cran() get_last_modified <- function(downloads) { path <- file.path(downloads$local_dir, paste0(downloads$name, '.h5')) time <- file.info(path)$mtime as.numeric(time) } files <- find_smap(id = "SPL3SMP", date = "2015-03-31", version = 5) downloads <- download_smap(files, overwrite = TRUE) modified1 <- get_last_modified(downloads) Sys.sleep(1) downloads <- download_smap(files, overwrite = TRUE) modified2 <- get_last_modified(downloads) expect_gt(modified2[1], modified1[1]) }) test_that('input data.frames with NA values raise errors', { skip_on_cran() expect_warning(df_w_na <- find_smap(id = "SPL2SMP_E", dates = '2015-05-13', version = 2)) expect_error(download_smap(df_w_na)) }) test_that('verbose = TRUE prints output', { skip_on_cran() files <- find_smap(id = "SPL3SMP", dates = "2015-03-31", version = 5) downloads <- expect_message(download_smap(files[1, ], verbose = TRUE)) }) test_that('verbose = FALSE suppresses output', { skip_on_cran() files <- find_smap(id = "SPL3SMP", dates = "2015-03-31", version = 5) downloads <- expect_silent(download_smap(files[1, ], verbose = FALSE)) })
lncPath2Table <- function(Result){ gs.name <- vector(); GSSize <- vector(); Obs.ES <- vector(); Obs.ES.norm <- vector(); P_Val <- vector(); FDR <- vector(); for( i in 1:length(Result)){ gs.name <- c(gs.name, Result[[i]]$gs.name); GSSize <- c(GSSize, Result[[i]]$GSSize); Obs.ES <- c(Obs.ES, Result[[i]]$Obs.ES); Obs.ES.norm <- c(Obs.ES.norm, Result[[i]]$Obs.ES.norm); P_Val <- c(P_Val, Result[[i]]$P_Val); FDR <- c(FDR, Result[[i]]$FDR); } Table <- as.data.frame(cbind(gs.name, GSSize, Obs.ES, Obs.ES.norm, P_Val, FDR)); names(Table) <- c("Gene Set Name", "Gene Set Size", "Enrichment Scores", "Normalized Enrichment Scores", "P Value", "False Discovery Rate"); Table <- Table[order(Table[["False Discovery Rate"]], decreasing = FALSE),]; return(Table); } geneSetDetail <- function(Result, Name){ GSInfo <- Result[[Name]]; kk <- 1 N <- length(GSInfo$geneSymbols); gene.number <- vector(length = GSInfo$GSSize, mode = "character") gene.names <- vector(length = GSInfo$GSSize, mode = "character") gene.list.loc <- vector(length = GSInfo$GSSize, mode = "numeric") core.enrichment <- vector(length = GSInfo$GSSize, mode = "character") gene.s2n <- vector(length = GSInfo$GSSize, mode = "numeric") gene.RES <- vector(length = GSInfo$GSSize, mode = "numeric") if (GSInfo$Obs.ES >= 0) { set.k <- seq(1, N, 1) } else { set.k <- seq(N, 1, -1) } for (k in set.k) { if (GSInfo$Obs.indicator[k] == 1) { gene.number[kk] <- kk gene.names[kk] <- GSInfo$geneSymbols[k]; gene.list.loc[kk] <- k gene.s2n[kk] <- signif(GSInfo$Obs.s2n[k], digits = 3) gene.RES[kk] <- signif(GSInfo$Obs.RES[k], digits = 3) if (GSInfo$Obs.ES >= 0) { core.enrichment[kk] <- ifelse(gene.list.loc[kk] <= GSInfo$Obs.arg.ES, "YES", "NO") } else { core.enrichment[kk] <- ifelse(gene.list.loc[kk] > GSInfo$Obs.arg.ES, "YES", "NO") } kk <- kk + 1 } } gene.report <- data.frame(cbind(gene.number, gene.names, gene.list.loc, gene.s2n, gene.RES, core.enrichment)) names(gene.report) <- c(" return(gene.report); } drawAHeatMap <- function(Result, Name, PCExpr, Labels){ GSInfo <- Result[[Name]]; GSP <- geneSetDetail(Result, Name); Symbols <- GSP[["GENE"]]; Expr <- PCExpr[match(Symbols, row.names(PCExpr))[!is.na(match(Symbols, row.names(PCExpr)))],]; lncPath.HeatMapPlot(as.matrix(Expr), col.labels = Labels, col.classes = c("N", "T"), row.names = row.names(Expr), col.names = names(Expr), main = "HeatMap for genes in gene set"); } printSignifResult <- function(Result, Threshold = 0.01, Path = ".", HeatPlot = FALSE, PCExpr = "", Labels = "", Top = 0){ if(Top >0){ Table <- lncPath2Table(Result); for(i in 1:Top){ GSP <- geneSetDetail(Result, Table[["Gene Set Name"]][i]); write.csv(GSP, file = paste(Path, "/", gsub(" ", "_", Table[["Gene Set Name"]][i]), ".csv", sep = ""), row.names = FALSE); pdf(file = paste(Path, "/", gsub(" ", "_", Table[["Gene Set Name"]][i]), ".pdf", sep = "")); plotRunningES(Result, Table[["Gene Set Name"]][i]); dev.off(); if(HeatPlot == TRUE){ pdf(file = paste(Path, "/", gsub(" ", "_", Table[["Gene Set Name"]][i]), "HeatMap.pdf", sep = "")); drawAHeatMap(Result, Table[["Gene Set Name"]][i], PCExpr, Labels); dev.off(); } } }else{ for(i in 1:length(Result)){ if(Result[[i]]$FDR <= Threshold){ GSP <- geneSetDetail(Result, Result[[i]]$gs.name); write.csv(GSP, file = paste(Path, "/", gsub(" ", "_", Result[[i]]$gs.name), ".csv", sep = ""), row.names = FALSE); pdf(file = paste(Path, "/", gsub(" ", "_", Result[[i]]$gs.name), ".pdf", sep = "")); plotRunningES(Result, Result[[i]]$gs.name); dev.off(); if(HeatPlot == TRUE){ pdf(file = paste(Path, "/", gsub(" ", "_", Result[[i]]$gs.name), "HeatMap.pdf", sep = "")); drawAHeatMap(Result, Result[[i]]$gs.name, PCExpr, Labels); dev.off(); } } } } } plotRunningES<-function(Result, Name){ GSInfo <- Result[[Name]]; N <- length(GSInfo$geneSymbols); WalkScore <- as.data.frame(cbind(GSInfo$geneSymbols,GSInfo$Obs.s2n)); gs.name <- GSInfo$gs.name; Obs.ES <- GSInfo$Obs.ES; Obs.RES <- GSInfo$Obs.RES; Obs.indicator <- GSInfo$Obs.indicator; Obs.arg.ES <- GSInfo$Obs.arg.ES obs.s2n <- as.numeric(WalkScore[[2]]); obs.s2n <- sort(obs.s2n, decreasing=T); ind <- 1:N; min.RES <- min(Obs.RES) max.RES <- max(Obs.RES) if (max.RES < 0.3) max.RES <- 0.3 if (min.RES > -0.3) min.RES <- -0.3 delta <- (max.RES - min.RES)*0.50 min.plot <- min.RES - 2*delta max.plot <- max.RES; max.corr <- max(obs.s2n); min.corr <- min(obs.s2n); Obs.correl.vector.norm <- (obs.s2n - min.corr)/(max.corr - min.corr)*1.25*delta + min.plot zero.corr.line <- (- min.corr/(max.corr - min.corr))*1.25*delta + min.plot col <- ifelse(Obs.ES > 0, 2, 4) sub.string <- paste("Number of genes: ", N, " (in list), ", gs.name, " (in gene set)", sep = "", collapse=""); main.string <- gs.name; plot(ind, Obs.RES, main = main.string, sub = sub.string, xlab = "Gene List Index", ylab = "Running Enrichment Score (RES)", xlim=c(1, N), ylim=c(min.plot, max.plot), type = "l", lwd = 2, cex = 1, col = col); for (k in seq(1, N, 20)) { lines(c(k, k), c(zero.corr.line, Obs.correl.vector.norm[k]), lwd = 1, cex = 1, col = colors()[12]) } lines(c(1, N), c(0, 0), lwd = 1, lty = 2, cex = 1, col = 1) lines(c(Obs.arg.ES, Obs.arg.ES), c(min.plot, max.plot), lwd = 1, lty = 3, cex = 1, col = col) for (k in 1:N) { if (Obs.indicator[k] == 1) { lines(c(k, k), c(min.plot + 1.25*delta, min.plot + 1.75*delta), lwd = 1, lty = 1, cex = 1, col = 1) } } lines(ind, Obs.correl.vector.norm, type = "l", lwd = 1, cex = 1, col = 1) lines(c(1, N), c(zero.corr.line, zero.corr.line), lwd = 1, lty = 1, cex = 1, col = 1) temp <- order(abs(obs.s2n), decreasing=T); arg.correl <- temp[N] adjx <- ifelse(Obs.ES > 0, 0, 1) leg.txt <- paste("Peak at ", Obs.arg.ES, sep="", collapse="") text(x=Obs.arg.ES, y=min.plot + 1.8*delta, adj = c(adjx, 0), labels=leg.txt, cex = 1.0) }
bootstrapLRT <- function (h0 = NULL, h1 = NULL, R = 1000L, type = "bollen.stine", verbose = FALSE, return.LRT = FALSE, double.bootstrap = "no", double.bootstrap.R = 500L, double.bootstrap.alpha = 0.05, warn = -1L, parallel = c("no", "multicore", "snow"), ncpus = 1L, cl = NULL, iseed = NULL) { type <- tolower(type) stopifnot(inherits(h0, "lavaan"), inherits(h1, "lavaan"), type %in% c("bollen.stine", "parametric", "yuan", "nonparametric", "ordinary"), double.bootstrap %in% c("no", "FDB", "standard")) if(type == "nonparametric") type <- "ordinary" if(h0@[email protected]) { stop("lavaan ERROR: this function is not (yet) available if conditional.x = TRUE") } old_options <- options(); options(warn = warn) LRT <- rep(as.numeric(NA), R) if((h1@optim$fx - h0@optim$fx) > sqrt(.Machine$double.eps)) { cat(" ... h0@optim$fx = ", h0@optim$fx, "h1@optim$fx = ", h1@optim$fx, "h0 should not be better!\n") options(old_options) return(NULL) } LRT.original <- abs(anova(h0, h1)$`Chisq diff`[2L]) if(double.bootstrap == "FDB") { LRT.2 <- numeric(R) } else if(double.bootstrap == "standard") { plugin.pvalues <- numeric(R) } if(missing(parallel)) parallel <- "no" parallel <- match.arg(parallel) have_mc <- have_snow <- FALSE if(parallel != "no" && ncpus > 1L) { if(parallel == "multicore") have_mc <- .Platform$OS.type != "windows" else if(parallel == "snow") have_snow <- TRUE if(!have_mc && !have_snow) ncpus <- 1L loadNamespace("parallel") } data <- h0@Data if(type == "bollen.stine" || type == "parametric" || type == "yuan") { Sigma.hat <- computeSigmaHat(lavmodel = h0@Model) Mu.hat <- computeMuHat(lavmodel = h0@Model) } if(type == "bollen.stine" || type == "yuan") { if(h0@Options$missing != "listwise") stop("lavaan ERROR: bollen.stine/yuan bootstrap not available for missing data") dataX <- vector("list", length=data@ngroups) } else { dataX <- data@X } lavdata <- h0@Data lavoptions <- h0@Options if(type == "bollen.stine") { for(g in 1:h0@Data@ngroups) { sigma.sqrt <- lav_matrix_symmetric_sqrt( Sigma.hat[[g]]) S.inv.sqrt <- lav_matrix_symmetric_sqrt(h0@SampleStats@icov[[g]]) X <- scale(data@X[[g]], center = TRUE, scale = FALSE) X <- X %*% S.inv.sqrt %*% sigma.sqrt if (h0@Model@meanstructure) X <- scale(X, center = (-1 * Mu.hat[[g]]), scale = FALSE) dataX[[g]] <- X } } if(type == "yuan") { g.a <- function(a, Sigmahat, Sigmahat.inv, S, tau.hat, p){ S.a <- a*S + (1-a)*Sigmahat tmp.term <- S.a %*% Sigmahat.inv res1 <- (sum(diag(tmp.term)) - log(det(tmp.term)) - p) - tau.hat res <- res1*res1 attr(res, "gradient") <- sum(diag((S - Sigmahat) %*% (Sigmahat.inv - chol2inv(chol(S.a))))) res } for(g in 1:h0@Data@ngroups) { S <- h0@SampleStats@cov[[g]] ghat <- h0@test[[1]]$stat.group[[g]] df <- h0@test[[1]]$df Sigmahat <- Sigma.hat[[g]] Sigmahat.inv <- inv.chol(Sigmahat) nmv <- nrow(Sigmahat) n <- data@nobs[[g]] tau.hat <- (ghat - df)/(n-1) if (tau.hat >= 0){ a <- optimize(g.a, c(0,1), Sigmahat, Sigmahat.inv, S, tau.hat, nmv)$minimum S.a <- a*S + (1-a)*Sigmahat } else { S.a <- Sigmahat } S.a.sqrt <- lav_matrix_symmetric_sqrt(S.a) S.inv.sqrt <- lav_matrix_symmetric_sqrt(h0@SampleStats@icov[[g]]) X <- data@X[[g]] X <- X %*% S.inv.sqrt %*% S.a.sqrt dataX[[g]] <- X } } fn <- function(b) { if (type == "bollen.stine" || type == "ordinary" || type == "yuan") { BOOT.idx <- vector("list", length = lavdata@ngroups) for(g in 1:lavdata@ngroups) { stopifnot(lavdata@nobs[[g]] > 1L) boot.idx <- sample(x=lavdata@nobs[[g]], size=lavdata@nobs[[g]], replace=TRUE) BOOT.idx[[g]] <- boot.idx dataX[[g]] <- dataX[[g]][boot.idx,,drop=FALSE] } newData <- lav_data_update(lavdata = lavdata, newX = dataX, BOOT.idx = BOOT.idx, lavoptions = lavoptions) } else { for(g in 1:lavdata@ngroups) { dataX[[g]] <- MASS::mvrnorm(n = lavdata@nobs[[g]], Sigma = Sigma.hat[[g]], mu = Mu.hat[[g]]) } newData <- lav_data_update(lavdata = lavdata, newX = dataX, lavoptions = lavoptions) } if (verbose) cat(" ... bootstrap draw number: ", b, "\n") bootSampleStats <- try(lav_samplestats_from_data( lavdata = newData, lavoptions = lavoptions), silent = TRUE) if (inherits(bootSampleStats, "try-error")) { if (verbose) cat(" FAILED: creating h0@SampleStats statistics\n") options(old_options) return(NULL) } if (verbose) cat(" ... ... model h0: ") h0@Options$verbose <- FALSE h0@Options$se <- "none" h0@Options$test <- "standard" h0@Options$baseline <- FALSE h0@Options$h1 <- FALSE fit.h0 <- lavaan(slotOptions = h0@Options, slotParTable = h0@ParTable, slotSampleStats = bootSampleStats, slotData = data) if (!fit.h0@optim$converged) { if (verbose) cat(" FAILED: no convergence\n") options(old_options) return(NULL) } if (verbose) cat(" ok -- niter = ", fit.h0@optim$iterations, " fx = ", fit.h0@optim$fx, "\n") if (verbose) cat(" ... ... model h1: ") h1@Options$verbose <- FALSE h1@Options$se <- "none" h1@Options$test <- "standard" h1@Options$baseline <- FALSE h1@Options$h1 <- FALSE fit.h1 <- lavaan(slotOptions = h1@Options, slotParTable = h1@ParTable, slotSampleStats = bootSampleStats, slotData = data) if (!fit.h1@optim$converged) { if (verbose) cat(" FAILED: no convergence -- niter = ", fit.h1@optim$iterations, " fx = ", fit.h1@optim$fx,"\n") options(old_options) return(NULL) } if (verbose) cat(" ok -- niter = ", fit.h1@optim$iterations, " fx = ", fit.h1@optim$fx, "\n") if((fit.h1@optim$fx - fit.h0@optim$fx) > sqrt(.Machine$double.eps)) { if (verbose) cat(" ... ... LRT = <NA> h0 > h1, delta = ", fit.h1@optim$fx - fit.h0@optim$fx, "\n") options(old_options) return(NULL) } else { lrt.boot <- abs(anova(fit.h1, fit.h0)$`Chisq diff`[2L]) if (verbose) cat(" ... ... LRT = ", lrt.boot, "\n") } if (double.bootstrap == "standard") { if (verbose) cat(" ... ... calibrating p.value - ") plugin.pvalue <- bootstrapLRT(h0 = fit.h0, h1 = fit.h1, R = double.bootstrap.R, type = type, verbose = FALSE, return.LRT = FALSE, warn = warn, parallel = parallel, ncpus = ncpus, cl = cl, double.bootstrap = "no") if (verbose) cat(sprintf("%5.3f", plugin.pvalue), "\n") attr(lrt.boot, "plugin.pvalue") <- plugin.pvalue } else if (double.bootstrap == "FDB") { plugin.pvalue <- bootstrapLRT(h0 = fit.h0, h1 = fit.h1, R = 1L, type = type, verbose = FALSE, warn = warn, return.LRT = TRUE, parallel = parallel, ncpus = ncpus, cl = cl, double.bootstrap = "no") LRT.2 <- attr(plugin.pvalue, "LRT") if (verbose) cat(" ... ... LRT2 = ", LRT.2, "\n") attr(lrt.boot, "LRT.2") <- LRT.2 } lrt.boot } RR <- sum(R) res <- if (ncpus > 1L && (have_mc || have_snow)) { if (have_mc) { parallel::mclapply(seq_len(RR), fn, mc.cores = ncpus) } else if (have_snow) { if (is.null(cl)) { cl <- parallel::makePSOCKcluster(rep("localhost", ncpus)) if (RNGkind()[1L] == "L'Ecuyer-CMRG") parallel::clusterSetRNGStream(cl, iseed = iseed) res <- parallel::parLapply(cl, seq_len(RR), fn) parallel::stopCluster(cl) res } else parallel::parLapply(cl, seq_len(RR), fn) } } else lapply(seq_len(RR), fn) error.idx <- integer(0) for (b in seq_len(RR)) { if (!is.null(res[[b]])) { LRT[b] <- res[[b]] if (double.bootstrap == "standard") { plugin.pvalues[b] <- attr(res[[b]], "plugin.pvalue") } else if (double.bootstrap == "FDB") { LRT.2[b] <- attr(res[[b]], "LRT.2") } } else { error.idx <- c(error.idx, b) } } if (length(error.idx) > 0L) { warning("lavaan WARNING: only ", (R - length(error.idx)), " bootstrap draws were successful") LRT <- LRT[-error.idx] if(length(LRT) == 0) LRT <- as.numeric(NA) if (double.bootstrap == "standard") { plugin.pvalues <- plugin.pvalues[-error.idx] attr(LRT, "error.idx") <- error.idx } if (double.bootstrap == "FDB") { LRT.2 <- LRT.2[-error.idx] attr(LRT.2, "error.idx") <- error.idx } } else { if (verbose) cat("Number of successful bootstrap draws:", (R - length(error.idx)), "\n") } pvalue <- sum(LRT > LRT.original) / length(LRT) if (return.LRT) { attr(pvalue, "LRT.original") <- LRT.original attr(pvalue, "LRT") <- LRT } if (double.bootstrap == "FDB") { Q <- (1 - pvalue) lrt.q <- quantile(LRT.2, Q, na.rm = TRUE) adj.pvalue <- sum(LRT > lrt.q) / length(LRT) attr(pvalue, "lrt.q") <- lrt.q attr(pvalue, "adj.pvalue") <- adj.pvalue if (return.LRT) { attr(pvalue, "LRT.original") <- LRT.original attr(pvalue, "LRT") <- LRT attr(pvalue, "LRT2") <- LRT.2 } } else if (double.bootstrap == "standard") { adj.alpha <- quantile(plugin.pvalues, double.bootstrap.alpha, na.rm=TRUE) attr(pvalue, "adj.alpha") <- adj.alpha adj.pvalue <- sum(plugin.pvalues < pvalue) / length(plugin.pvalues) attr(pvalue, "plugin.pvalues") <- plugin.pvalues attr(pvalue, "adj.pvalue") <- adj.pvalue } options(old_options) pvalue }
rstudent.loop2r <- function(model,...) { g <- model n <- length(g$x) wr1<- g$x-g$pred.x wr2<- g$y-g$pred.y var.x <- crossprod(wr1-mean(wr1))/(n-3) var.y <- crossprod(wr2-mean(wr2))/(n-3) Xmat <- cbind(rep(1,n),sin(g$period.time),cos(g$period.time)) hX <- Xmat%*%solve(crossprod(Xmat))%*%t(Xmat) Ind <- (g$period.time > 0) & (g$period.time < pi) if (model$classical==FALSE) Ymat <- cbind(rep(1,n),sin(g$period.time)^g$values["m"],cos(g$period.time)^g$values["n"],Ind*sin(g$period.time)^g$values["m"]) else direc <- sign(cos(g$period.time)) Ymat <- cbind(rep(1,n),sin(g$period.time)^g$values["m"],direc*abs(cos(g$period.time))^g$values["n"],Ind*sin(g$period.time)^g$values["m"]) hY <- Ymat%*%solve(crossprod(Ymat))%*%t(Ymat) r.Ta <- wr1/sqrt(1-diag(hX)) r.Tb <- wr2/sqrt(1-diag(hY)) wr1 <- r.Ta-mean(r.Ta) wr2 <- r.Tb-mean(r.Tb) data.frame("input"=wr1,"output"=wr2) }
fssum <- function(fslist, weight=NULL){ dtype = check_list_summaries("fssum", fslist) if ((length(weight)<1)&&(is.null(weight))){ nn = length(fslist) weight = rep(1/nn, nn) } if (length(weight)!=length(fslist)){ stop("* fssum : length of 'fslist' should match to that of 'weight'.") } output = switch(dtype, "landscape" = fssum_land(fslist, weight), "silhouette" = fssum_sils(fslist, weight)) return(output) } fssum_land <- function(dlist, weight){ mainout = adjust_list_landscapes(dlist, as.list=FALSE) maincom = compute_slicewsum(mainout$array3d, weight) output = list() output$lambda = maincom output$tseq = as.vector(mainout$tseq) output$dimension = dlist[[1]]$dimension class(output) = "landscape" return(output) } fssum_sils <- function(slist, weight){ mainout = adjust_list_silhouette(slist, as.list=FALSE) dat.tseq = mainout$tseq dat.func = mainout$array vec.output = rep(0,length(dat.tseq)) for (i in 1:length(weight)){ vec.output = vec.output + (weight[i])*as.vector(dat.func[,i]) } output = list() output$lambda = vec.output output$tseq = dat.tseq output$dimension = slist[[1]]$dimension class(output) = "silhouette" return(output) }
reg.aic <- function(fit, w){ return(2 * (fit$rank + 1) - 2* (0.5 * (sum(log(w)) - length(w) * (log(2 * pi) + 1 - log(length(w)) + log(sum(w * fit$residuals^2)))))) }
"getDiffTheta" <- function(th, mod) { modellist <- mod@modellist modeldiff <- mod@modeldiffs parorder <- list() if(length(modeldiff$change) != 0) { thA <- getDiffThetaChange(th, mod) th <- thA$th mod@parorderchange <- thA$parorder } if(length(modeldiff$free)!=0 || length(modeldiff$add) !=0) for(diff in append(mod@modeldiffs$free, mod@modeldiffs$add)){ j <- diff$dataset[1] fixed <- modellist[[j]]@fvecind prel <- modellist[[j]]@pvecind model <- modellist[[diff$dataset[1]]] removepar <- sort(append(fixed[[diff$what]],prel[[diff$what]])) if(length(diff$ind) == 2) { whichfree <- diff$ind[2] if(diff$ind[1] > 1) { slW<-slot(model, diff$what) whichfree <- whichfree + sum(unlist(lapply(slW, length))[1:(diff$ind[1]-1)]) } partmp <- slot(model, diff$what)[[diff$ind[1]]][diff$ind[2]] } else { partmp <- slot(model, diff$what)[diff$ind] whichfree <- diff$ind } if(diff$what %in% model@positivepar) partmp <- log(partmp) else { if(length(model@clinde$po$name) > 0) for(i in 1:length(model@clinde[[diff$what]])) parapp <- log(parapp[i]) if(length(model@chinde[[diff$what]]) > 0) for(i in 1:length(model@chinde[[diff$what]])) parapp <- log(parapp[i]) } removepar <- which(whichfree %in% removepar) if(length(removepar)>0) partmp <- partmp[-removepar] if(length(partmp) > 0) ind <- (length(th) + 1):(length(th) + length(partmp)) else ind <- vector() parorder[[length(parorder)+1]] <- list(name=diff$what, ind=ind, rm=removepar, dataset=diff$dataset, indm=diff$ind) th <- append(th, partmp) } if(length(modeldiff$rel)!=0) for(diff in modeldiff$rel) { removepar <- if(diff$fix) 1:length(diff$start) else vector() if(length(removepar)>0) partmp <- diff$start[-removepar] ind <- if(length(partmp) > 0) (length(th) + 1):(length(th) + length(partmp)) else vector() parorder[[length(parorder)+1]] <- list(name=diff$what1, ind=ind, rm=removepar, dataset=diff$dataset1, indm=diff$ind1) th <- append(th, partmp) } if(length(modeldiff$dscal) != 0) { for(i in 1:length(modeldiff$dscal)) { j <- modeldiff$dscal[[i]]$to if(length(modellist[[j]]@drel) != 0){ fixed <- modellist[[j]]@fvecind prel <- modellist[[j]]@pvecind removepar <- sort(append(fixed[["drel"]], prel[["drel"]])) parapp <- if(length(removepar)!=0) unlist(slot(modellist[[j]], "drel"))[-removepar] else unlist(slot(modellist[[j]], "drel")) if(length(parapp) != 0) ind <- (length(th) + 1):(length(th) + length(parapp)) else ind <- vector() parorder[[length(parorder)+1]] <- list(name="drel", ind=ind, rm=removepar, dataset=j, indm=(1:length(modellist[[j]]@drel))) th <- append(th, parapp) } } } mod@parorderdiff <- parorder list(theta = th, mod = mod) }
library(checkargs) context("isNumberOrInfScalar") test_that("isNumberOrInfScalar works for all arguments", { expect_identical(isNumberOrInfScalar(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNumberOrInfScalar(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_error(isNumberOrInfScalar(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isNumberOrInfScalar(0, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isNumberOrInfScalar(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isNumberOrInfScalar(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNumberOrInfScalar(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isNumberOrInfScalar("", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar("X", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNumberOrInfScalar(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) })
NULL .iotdataplane$delete_thing_shadow_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(thingName = structure(logical(0), tags = list(location = "uri", locationName = "thingName", type = "string")), shadowName = structure(logical(0), tags = list(location = "querystring", locationName = "name", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotdataplane$delete_thing_shadow_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(payload = structure(logical(0), tags = list(type = "blob"))), tags = list(type = "structure", payload = "payload")) return(populate(args, shape)) } .iotdataplane$get_thing_shadow_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(thingName = structure(logical(0), tags = list(location = "uri", locationName = "thingName", type = "string")), shadowName = structure(logical(0), tags = list(location = "querystring", locationName = "name", type = "string"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotdataplane$get_thing_shadow_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(payload = structure(logical(0), tags = list(type = "blob"))), tags = list(type = "structure", payload = "payload")) return(populate(args, shape)) } .iotdataplane$list_named_shadows_for_thing_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(thingName = structure(logical(0), tags = list(location = "uri", locationName = "thingName", type = "string")), nextToken = structure(logical(0), tags = list(location = "querystring", locationName = "nextToken", type = "string")), pageSize = structure(logical(0), tags = list(location = "querystring", locationName = "pageSize", type = "integer"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotdataplane$list_named_shadows_for_thing_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(results = structure(list(structure(logical(0), tags = list(type = "string"))), tags = list(type = "list")), nextToken = structure(logical(0), tags = list(type = "string")), timestamp = structure(logical(0), tags = list(type = "long"))), tags = list(type = "structure")) return(populate(args, shape)) } .iotdataplane$publish_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(topic = structure(logical(0), tags = list(location = "uri", locationName = "topic", type = "string")), qos = structure(logical(0), tags = list(location = "querystring", locationName = "qos", type = "integer")), payload = structure(logical(0), tags = list(type = "blob"))), tags = list(type = "structure", payload = "payload")) return(populate(args, shape)) } .iotdataplane$publish_output <- function(...) { list() } .iotdataplane$update_thing_shadow_input <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(thingName = structure(logical(0), tags = list(location = "uri", locationName = "thingName", type = "string")), shadowName = structure(logical(0), tags = list(location = "querystring", locationName = "name", type = "string")), payload = structure(logical(0), tags = list(type = "blob"))), tags = list(type = "structure", payload = "payload")) return(populate(args, shape)) } .iotdataplane$update_thing_shadow_output <- function(...) { args <- c(as.list(environment()), list(...)) shape <- structure(list(payload = structure(logical(0), tags = list(type = "blob"))), tags = list(type = "structure", payload = "payload")) return(populate(args, shape)) }
laTeXEscapeString <-function (nameString) { return(gsub("\\^","\\\textasciicircum{}", gsub("~","\\\\textasciitilde{}", gsub("\\}","\\\\\\}", gsub("\\{","\\\\\\{", gsub("_","\\\\_", gsub(" gsub("\\$", "\\\\\\$", gsub("&","\\\\&", gsub("%","\\\\%", gsub("\\\\","\\textbackslash{}", nameString ) ) ) ) ) ) ) ) ) ) ) }
ExpNumViz <- function (data, target = NULL, type = 1, nlim = 3, fname = NULL, col = NULL, Page = NULL, sample = NULL, scatter = FALSE, gtitle = NULL, theme = "Default"){ if (!is.data.frame(data)) stop("data must be a numeric vector or data.frame") xx <- as.data.frame(data) num_var <- names(xx)[sapply(xx, is.numeric)] wrap_40 <- wrap_format(40) if (length(num_var) == 0) stop("there is no numeric variable in the data frame") if (length(num_var) > 0){ if (length(num_var) == 1) { xx1 <- as.data.frame(xx[, num_var]); names(xx1) <- num_var } else { xx1 <- xx[, num_var] } num_var <- num_var[sapply(xx1, function(x) { length(unique(na.omit(x))) >= nlim })] } if (!is.null(sample)) { if (sample > length(num_var)) stop("Sample number is greater than counts of variables") num_var <- num_var[srswor(sample, length(num_var)) == 1] } if (isTRUE(scatter)) { if (length(num_var) < 2) stop("Input data has less than 2 variables") plot_comb <- combn(num_var, 2) } if (is.null(target)) { if (isTRUE(scatter)) { fill_1 <- scolorsel(col, nlevel = 1) if (length(fill_1) > 1) stop("length of colour input must be 1") plot_l <- lapply(c(1:ncol(plot_comb)), function(x) { xi <- plot_comb[, x][1] yi <- plot_comb[, x][2] xd <- na.omit(subset(xx, select = c(xi, yi))) names(xd) <- c("XX", "YY") p <- ggplot(xd, aes(x = XX, y = YY)) + geom_point(colour = fill_1, size = 2) + xlab(xi) + ylab(yi) + ggtitle(wrap_40(paste(gtitle, " ", xi, " vs ", yi))) + smtheme(theme) return(p) }) } else { plot_l <- lapply(num_var, function(j) { x <- na.omit(subset(xx, select = j)) y <- xx[, j] p <- ggplot(data = x, aes_string(x = names(x))) + geom_line (stat = "density", size = 1, alpha = 1) + xlab (paste0( (colnames(x)), "\n", "Skewness: ", round(ExpSkew(y, type = "moment"), 2), " Kurtosis: ", round(ExpKurtosis(y, type = "excess"), 2))) + smtheme(theme) return(p) }) } } else { if (isTRUE(scatter)) { target1 <- xx[, target] nlevel <- length(unique(target1)) fill_1 <- scolorsel(col, nlevel) if (length(unique(na.omit(target1))) <= 20) { plot_l <- lapply(c(1:ncol(plot_comb)), function(x){ xi <- plot_comb[, x][1] yi <- plot_comb[, x][2] xd <- na.omit(subset(xx, select = c(xi, yi, target))) names(xd) <- c("XX", "YY", "ZZ") xd$ZZ <- as.factor(paste0(xd$ZZ)) p <- ggplot(xd, aes(x = XX, y = YY)) + geom_point(size = 2, aes(color = ZZ)) + scale_color_manual(name = target, values = fill_1) + xlab(xi) + ylab(yi) + ggtitle(wrap_40(paste(gtitle, " ", xi, " vs ", yi))) + smtheme(theme) return(p) } ) } else stop("If scatter option is TRUE then 'target should be categorical' else 'change scatter = FALSE' ") } else { target1 <- xx[, target] if (is.numeric(target1) & length(unique(na.omit(target1))) >= 6) { if (is.null(col)) col <- " if (length(col) > 1) stop("defined more than one colour") num_var1 <- num_var[!num_var %in% target] comma <- NULL plot_l <- lapply(num_var1, function(j) { x <- na.omit(subset(xx, select = c(j, target))) ggplot(x, aes_string(x = names(x)[2], y = names(x)[1])) + geom_point(colour = col, size = 2) + scale_x_continuous(labels = comma) + scale_y_continuous(labels = comma) + smtheme(theme) }) } else { target1 <- as.factor(as.character(paste0(target1))) plot_l <- lapply(num_var, function(j) { mdat <- subset(xx, select = c(target, j)) names(mdat) <- c("GP", "NV") if (type == 1) { mdat$GP <- as.character(paste0(mdat$GP)) if (anyNA(mdat$GP)) { mdat$GP <- addNA(mdat$GP) } mdat1 <- mdat mdat1$GP <- "All" gdata <- rbind(mdat, mdat1) } if (type == 2) { gdata <- mdat gdata$GP <- as.character(paste0(gdata$GP)) if (anyNA(gdata$GP)) { gdata$GP <- addNA(mdat$GP) } } if (type == 3) { gdata <- mdat gdata$GP <- "ALL" } nlevel <- length(unique(gdata$GP)) fill_1 <- scolorsel(col, nlevel) if ( !is.null(col)) { if (length(col) != nlevel) message("Insufficient values in colour, number of colours should be equal to number of categories") } gg1 <- ggplot(gdata, aes(y = NV, x = GP)) + geom_boxplot(fill = fill_1) + xlab(target) + ylab(j) + ggtitle(wrap_40(paste(gtitle, " ", j, " vs ", target))) + scale_x_discrete(labels = wrap_format(8)) + theme(axis.text.x = element_text(angle = 0, vjust = 0.5, size = 8, colour = "grey20"), plot.title = element_text(hjust = 0.5, face = "bold", colour = " return(gg1) }) } } } if (!is.null(fname)) { swritepdf(fname, plot_l, Page) } else { if (!is.null(Page)) { pn <- length(plot_l) nc <- Page[2] nr <- Page[1] if ( (nc * nr) > pn + 3) stop("reduce the matrix dimension from Page(r,c)") gspl <- split(plot_l, (seq_along(plot_l) - 1) %/% pn) gplt <- lapply(gspl, function(g) marrangeGrob(grobs = g, nrow = nr, ncol = nc)) return(gplt) } else { return(plot_l) } } } globalVariables(c("comma", "XX", "YY", "ZZ", "GP", "NV"))
library("dtangle") .runThisTest <- Sys.getenv("RunAllRRTests") == "yes" if (.runThisTest) { Y <- matrix(c(1, 0, 1, 0, 0, 1, 0, 1), byrow = TRUE, nrow = 4) pure_samples <- list(1, 3) ml <- find_markers(Y = Y, pure_samples = pure_samples, gamma = 1)$L test_that("baseline exprs are computed as expected", { bes <- baseline_exprs(Y = Y, pure_samples = pure_samples, markers = ml) expect_equal(bes[[1]][[1]], 1) expect_equal(bes[[2]][[1]], 1) bes <- baseline_exprs(Y = 5 * Y, pure_samples = pure_samples, markers = ml) expect_equal(bes[[1]][[1]], 5) expect_equal(bes[[2]][[1]], 5) }) }
require(geometa, quietly = TRUE) require(testthat) context("ISOMaintenanceInformation") test_that("encoding",{ testthat::skip_on_cran() md <- ISOMaintenanceInformation$new() md$setMaintenanceFrequency("daily") xml <- md$encode() expect_is(xml, "XMLInternalNode") md2 <- ISOMaintenanceInformation$new(xml = xml) xml2 <- md2$encode() expect_true(ISOAbstractObject$compare(md, md2)) })
options( width=150, max.print=1000000 ) library(samon, lib.loc="../../samlib") data("samonPANSS1") print(samonPANSS1) samonResults <- samon( mat = samonPANSS1, Npart = 10, InitialSigmaH = 10.0, HighSigmaH = 50.0, InitialSigmaF = 8.0, HighSigmaF = 50.0, SAconvg = 1E-6, FAconvg = 1E-6, FRconvg = 1E-6 ) print(samonResults$HM) print(samonResults$FM)
plot_ClaDS_phylo=function(phylo,rates,rates2=NULL,same.scale=T,main=NULL,lwd=2,log=T,show.tip.label= F, ...){ Colors = colorRampPalette(c("steelblue2","paleturquoise3","palegreen2","yellow2","salmon1","darkorange", "red","red4"))( 100 ) if(is.null(rates2)){ if(log) rates=log(rates) if(isTRUE(all.equal(rep(as.numeric(rates[1]),length(rates)),as.numeric(rates)))){ col=rep(1,length(rates)) plot(phylo, edge.color = Colors[col], show.tip.label = show.tip.label ,main=main,edge.width =lwd, ...) if(log){ image.plot(z = c(exp(rates[1]),2*exp(rates[1])),col = Colors, horizontal=T,legend.only = T) }else{ image.plot(z = c(rates[1],2*rates[1]),col = Colors, horizontal=T,legend.only = T) } }else{ col = round( (rates - min(rates)) / diff(range(rates))*99 )+1 plot(phylo, edge.color = Colors[col], show.tip.label = show.tip.label ,main=main,edge.width =lwd, ...) if(log){ min=min(rates) max=max(rates) m10=floor(min/log(10)) M10=ceiling(max/log(10)) if((M10-m10)<4){ ticks=c(1,2,5) }else{ ticks=1 } ticks=as.vector(sapply(m10:M10,function(k){return(ticks*10^k)})) lt=length(ticks[ticks>exp(min) & ticks<exp(max)]) if(lt<4){ticks=c(round(exp(min),max(0,-1*m10+(lt<2))),ticks,round(exp(max),max(0,-1*M10+1+(lt<2))))} image.plot(z = c(min,max),col = Colors, horizontal=T,legend.only = T,axis.args=list( at=log(ticks), labels=ticks)) }else{ image.plot(z = as.matrix(rates),col = Colors, horizontal=T,legend.only = T) } } }else{ if(log){ rates=log(rates) rates2=log(rates2) } if(same.scale){ min=min(min(rates),min(rates2)) max=max(max(rates),max(rates2)) par(mfrow=c(1,2)) col = round(( (rates - min) / (max-min))*99 )+1 plot(phylo, edge.color = Colors[col], show.tip.label = show.tip.label ,edge.width =lwd, ...) col = round(( (rates2 - min) / (max-min))*99 )+1 plot(phylo, edge.color = Colors[col], show.tip.label = show.tip.label ,edge.width =lwd, ...) par(mfrow=c(1,1)) if(log){ m10=floor(min/log(10)) M10=ceiling(max/log(10)) if((M10-m10)<4){ ticks=c(1,2,5) }else{ ticks=1 } ticks=as.vector(sapply(m10:M10,function(k){return(ticks*10^k)})) lt=length(ticks[ticks>exp(min) & ticks<exp(max)]) if(lt<4){ticks=c(round(exp(min),max(0,-1*m10+(lt<2))),ticks,round(exp(max),max(0,-1*M10+1+(lt<2))))} image.plot(z = c(min,max),col = Colors, horizontal=T,legend.only = T,axis.args=list( at=log(ticks), labels=ticks)) }else{ image.plot(z = c(min,max),col = Colors, horizontal=T,legend.only = T) } }else{ par(mfrow=c(1,2)) if(isTRUE(all.equal(rep(rates[1],length(rates)),rates))){ col=rep(1,length(rates)) plot(phylo, edge.color = Colors[col], show.tip.label = show.tip.label ,edge.width =lwd, ...) if(log){ image.plot(z = c(exp(rates[1]),2*exp(rates[1])),col = Colors, horizontal=T,legend.only = T) }else{ image.plot(z = c(rates[1],2*rates[1]),col = Colors, horizontal=T,legend.only = T) } }else{ col = round(( (rates - min(rates)) / (max(rates)-min(rates)))*99 )+1 plot(phylo, edge.color = Colors[col], show.tip.label = show.tip.label ,edge.width =lwd, ...) if(log){ min=min(rates) max=max(rates) m10=floor(min/log(10)) M10=ceiling(max/log(10)) if((M10-m10)<4){ ticks=c(1,2,5) }else{ ticks=1 } ticks=as.vector(sapply(m10:M10,function(k){return(ticks*10^k)})) lt=length(ticks[ticks>exp(min) & ticks<exp(max)]) if(lt<4){ticks=c(round(exp(min),max(0,-1*m10+(lt<2))),ticks,round(exp(max),max(0,-1*M10+1+(lt<2))))} image.plot(z = c(min,max),col = Colors, horizontal=T,legend.only = T,axis.args=list( at=log(ticks), labels=ticks)) }else{ image.plot(z = as.matrix(rates),col = Colors, horizontal=T,legend.only = T) } } if(isTRUE(all.equal(rep(rates2[1],length(rates2)),rates2))){ col=rep(1,length(rates2)) plot(phylo, edge.color = Colors[col], show.tip.label = show.tip.label ,edge.width =lwd, ...) if(log){ image.plot(z = c(exp(rates2[1]),2*exp(rates2[1])),col = Colors, horizontal=T,legend.only = T) }else{ image.plot(z = c(rates2[1],2*rates2[1]),col = Colors, horizontal=T,legend.only = T) } }else{ col = round(( (rates2 - min(rates2)) / (max(rates2)-min(rates2)))*99 )+1 plot(phylo, edge.color = Colors[col], show.tip.label = show.tip.label ,edge.width =lwd, ...) if(log){ min=min(rates2) max=max(rates2) m10=floor(min/log(10)) M10=ceiling(max/log(10)) if((M10-m10)<4){ ticks=c(1,2,5) }else{ ticks=1 } ticks=as.vector(sapply(m10:M10,function(k){return(ticks*10^k)})) lt=length(ticks[ticks>exp(min) & ticks<exp(max)]) if(lt<4){ticks=c(round(exp(min),max(0,-1*m10+(lt<2))),ticks,round(exp(max),max(0,-1*M10+1+(lt<2))))} image.plot(z = c(min,max),col = Colors, horizontal=T,legend.only = T,axis.args=list( at=log(ticks), labels=ticks)) }else{ image.plot(z = as.matrix(rates2),col = Colors, horizontal=T,legend.only = T) } } } par(mfrow=c(1,1)) } }
"ecld.quartic_SN0_atm_ki" <- function() { eq_RN0 <- function(ki, Q=sqrt(240)) { kQ = abs(ki/Q) L1 = Q*ecld.ogf_star_analytic(ecld(1), kQ) L4 = ecld.ogf_star_analytic(ecld(4),ki) L1-L4 } rs <- uniroot(eq_RN0, lower=-30, upper=0) return(rs$root) } "ecld.quartic_SN0_rho_stdev" <- function() { -ecld.quartic_SN0_atm_ki()/sqrt(120) } "ecld.quartic_SN0_skew" <- function() { atm_ki <- ecld.quartic_SN0_atm_ki() X = sqrt(abs(atm_ki)) Z = abs(atm_ki/sqrt(240)) sqrt(pi)*exp(Z^2-X) * (1+X-exp(X)*ecd.erfc(Z)) } "ecld.quartic_SN0_max_RNV" <- function(sigma=0) { find_mu_p_ratio <- function(mu_p_ratio) { find_Q_SN0 <- function(Q, ki) { ki1 <- ki/Q - mu_p_ratio*sqrt(120)/Q Lc1 <- ecld.ogf_star_analytic(ecld(1), ki1) Lc <- ecld.ogf_star_analytic(ecld(4), ki) ecd.mp2f(Q*Lc1 - Lc) } find_skew <- function(ki, Q=sqrt(240)) { X = sqrt(abs(ki)) Z = abs(ki/Q - mu_p_ratio*sqrt(120)/Q) sqrt(pi)*exp(Z^2-X) * (1+X-exp(X)*ecd.erfc(Z)) } atm_ki <- uniroot(find_skew, lower=-4, upper=-0.1)$root Q <- uniroot(find_Q_SN0, ki=atm_ki, lower=0.1, upper=100)$root (Q-sqrt(240))*1000 } if (sigma==0) { R <- uniroot(find_mu_p_ratio, lower=0.29, upper=0.3)$root return (R) } stop("ERROR!") }
theme_ipsum_ps <- function( base_family="IBMPlexSans", base_size = 11.5, plot_title_family="IBMPlexSans-Bold", plot_title_size = 18, plot_title_face="plain", plot_title_margin = 10, subtitle_family=if (.Platform$OS.type == "windows") "IBMPlexSans" else "IBMPlexSans-Light", subtitle_size = 13, subtitle_face = "plain", subtitle_margin = 15, strip_text_family = "IBMPlexSans-Medium", strip_text_size = 12, strip_text_face = "plain", caption_family=if (.Platform$OS.type == "windows") "IBMPlexSans" else "IBMPlexSans-Thin", caption_size = 9, caption_face = "plain", caption_margin = 10, axis_text_size = 9, axis_title_family = base_family, axis_title_size = 9, axis_title_face = "plain", axis_title_just = "rt", plot_margin = margin(30, 30, 30, 30), grid_col = " axis_col = " ret <- ggplot2::theme_minimal(base_family=base_family, base_size=base_size) ret <- ret + theme(legend.background=element_blank()) ret <- ret + theme(legend.key=element_blank()) if (inherits(grid, "character") | grid == TRUE) { ret <- ret + theme(panel.grid=element_line(color=grid_col, size=0.2)) ret <- ret + theme(panel.grid.major=element_line(color=grid_col, size=0.2)) ret <- ret + theme(panel.grid.minor=element_line(color=grid_col, size=0.15)) if (inherits(grid, "character")) { if (regexpr("X", grid)[1] < 0) ret <- ret + theme(panel.grid.major.x=element_blank()) if (regexpr("Y", grid)[1] < 0) ret <- ret + theme(panel.grid.major.y=element_blank()) if (regexpr("x", grid)[1] < 0) ret <- ret + theme(panel.grid.minor.x=element_blank()) if (regexpr("y", grid)[1] < 0) ret <- ret + theme(panel.grid.minor.y=element_blank()) } } else { ret <- ret + theme(panel.grid=element_blank()) } if (inherits(axis, "character") | axis == TRUE) { ret <- ret + theme(axis.line=element_line(color=axis_col, size=0.15)) if (inherits(axis, "character")) { axis <- tolower(axis) if (regexpr("x", axis)[1] < 0) { ret <- ret + theme(axis.line.x=element_blank()) } else { ret <- ret + theme(axis.line.x=element_line(color=axis_col, size=0.15)) } if (regexpr("y", axis)[1] < 0) { ret <- ret + theme(axis.line.y=element_blank()) } else { ret <- ret + theme(axis.line.y=element_line(color=axis_col, size=0.15)) } } else { ret <- ret + theme(axis.line.x=element_line(color=axis_col, size=0.15)) ret <- ret + theme(axis.line.y=element_line(color=axis_col, size=0.15)) } } else { ret <- ret + theme(axis.line=element_blank()) } if (!ticks) { ret <- ret + theme(axis.ticks = element_blank()) ret <- ret + theme(axis.ticks.x = element_blank()) ret <- ret + theme(axis.ticks.y = element_blank()) } else { ret <- ret + theme(axis.ticks = element_line(size=0.15)) ret <- ret + theme(axis.ticks.x = element_line(size=0.15)) ret <- ret + theme(axis.ticks.y = element_line(size=0.15)) ret <- ret + theme(axis.ticks.length = grid::unit(5, "pt")) } xj <- switch(tolower(substr(axis_title_just, 1, 1)), b=0, l=0, m=0.5, c=0.5, r=1, t=1) yj <- switch(tolower(substr(axis_title_just, 2, 2)), b=0, l=0, m=0.5, c=0.5, r=1, t=1) ret <- ret + theme(axis.text.x=element_text(size=axis_text_size, margin=margin(t=0))) ret <- ret + theme(axis.text.y=element_text(size=axis_text_size, margin=margin(r=0))) ret <- ret + theme(axis.title=element_text(size=axis_title_size, family=axis_title_family)) ret <- ret + theme(axis.title.x=element_text(hjust=xj, size=axis_title_size, family=axis_title_family, face=axis_title_face)) ret <- ret + theme(axis.title.y=element_text(hjust=yj, size=axis_title_size, family=axis_title_family, face=axis_title_face)) ret <- ret + theme(axis.title.y.right=element_text(hjust=yj, size=axis_title_size, angle=90, family=axis_title_family, face=axis_title_face)) ret <- ret + theme(strip.text=element_text(hjust=0, size=strip_text_size, face=strip_text_face, family=strip_text_family)) ret <- ret + theme(panel.spacing=grid::unit(2, "lines")) ret <- ret + theme(plot.title=element_text(hjust=0, size=plot_title_size, margin=margin(b=plot_title_margin), family=plot_title_family, face=plot_title_face)) ret <- ret + theme(plot.subtitle=element_text(hjust=0, size=subtitle_size, margin=margin(b=subtitle_margin), family=subtitle_family, face=subtitle_face)) ret <- ret + theme(plot.caption=element_text(hjust=1, size=caption_size, margin=margin(t=caption_margin), family=caption_family, face=caption_face)) ret <- ret + theme(plot.margin=plot_margin) ret } import_plex_sans <- function() { ps_font_dir <- system.file("fonts", "plex-sans", package="hrbrthemes") suppressWarnings(suppressMessages(extrafont::font_import(ps_font_dir, prompt=FALSE))) message( sprintf( "You will likely need to install these fonts on your system as well.\n\nYou can find them in [%s]", ps_font_dir) ) } font_ps <- "IBMPlexSans" font_ps_light <- "IBMPlexSans-Light"
library("surveillance") options(SweaveHooks=list(fig=function() par(mar=c(4,4,2,0)+.5))) options(width=70) set.seed(247) dir.create("plots", showWarnings=FALSE) getOption("SweaveHooks")[["fig"]]() data(shadar) plot(shadar,main="Number of salmonella hadar cases in Germany 2001-2006") simData <- sim.pointSource(length=300,K=0.5,r=0.6,p=0.95) getOption("SweaveHooks")[["fig"]]() plot(simData) getOption("SweaveHooks")[["fig"]]() survObj <- algo.glrnb(shadar,control=list(range=105:295,alpha=0)) plot(survObj,startyear=2003) control=list(range=105:295,alpha=NULL) surv <- algo.glrnb(shadar,control=control) surv$control$alpha control=list(range=105:295,mu0=list(S=2,trend=F,refit=T)) surv <- algo.glrnb(disProgObj=shadar,control=control) getOption("SweaveHooks")[["fig"]]() plot(shadar) with(surv$control,lines(mu0~range,lty=2,lwd=4,col=4)) estimateGLRNbHook coef(surv$control$mu0Model$fitted[[1]]) control=list(range=105:295,alpha=0) surv <- algo.glrnb(disProgObj=shadar,control=control) table(surv$alarm) num <- rep(NA) for (i in 1:6){ num[i] <- table(algo.glrnb(disProgObj=shadar,control=c(control,c.ARL=i))$alarm)[2] } control=list(range=105:295,ret="cases",alpha=0) surv2 <- algo.glrnb(disProgObj=shadar,control=control) getOption("SweaveHooks")[["fig"]]() plot(surv2,startyear=2003) control=list(range=105:295,ret="cases",dir="dec",alpha=0) surv3 <- algo.glrnb(disProgObj=shadar,control=control) getOption("SweaveHooks")[["fig"]]() plot(surv3,startyear=2003)
dtt_decade <- function(x, ...) { UseMethod("dtt_decade") } dtt_decade.Date <- function(x, ...) { chk_unused(...) year <- dtt_year(x) year <- year / 10 year <- floor(year) year <- year * 10 year <- as.integer(year) year }
regspmplot <- function(y, X, group, plot, namey, nameX, col, cex, pch, labeladd, legend, xlim, ylim, tag, datatooltip, databrush, subsize, selstep, selunit, trace=FALSE, ...) { if(missing(y) | !(inherits(y, "data.frame") | inherits(y, "matrix") | inherits(y, "fsreda") | inherits(y, "sregeda") | inherits(y, "mmregeda"))) stop("Function defined only for monitoring type output from forward search or a data matrix.") if(inherits(y, "fsreda") || inherits(y, "sregeda") || inherits(y, "mmregeda")) { outStr <- list(RES=out$RES, Un=out$Un, y=out$y, X=out$X, class=getMatlabClass(class(out))) if(!is.null(out$Un)) outStr$Un <- out$Un if(!is.null(out$Bols)) outStr$Bols <- out$Bols if(!is.null(out$bdp)) outStr$bdp <- out$bdp if(!is.null(out$eff)) outStr$eff <- out$eff if(!is.null(out$Weights)) outStr$Weights <- out$Weights if(is.null(outStr$RES) || is.null(outStr$y) || is.null(outStr$X)) stop("One or more required arguments are missing.") } else { if(is.vector(y) || nrow(y) == 1 || ncol(y) == 1) { y <- as.vector(y) if(missing(X)) stop("If 'y' is a vector, a predictor data matrix X must be provided.") X <- as.data.frame(X) outStr <- list(y=y, X=X) } else stop("'y' must be a vector or can be coerced to a vector and a predictor data matrix X must be provided.") } control = list(...) if(!missing(group)) { if(length(group) != length(outStr$y)) stop("Parameter 'group', if provided must be the same length as 'y'") control$group <- group } if(!missing(plot)) control$plo <- plot if(!missing(namey)) { if(length(which(names(control) == "plo")) == 0) control$plo <- list() control$plo$namey <- as.character(namey) } if(!missing(nameX)) { if(length(which(names(control) == "plo")) == 0) control$plo <- list() control$plo$nameX <- as.character(nameX) } if(!missing(col)) { if(length(which(names(control) == "plo")) == 0) control$plo <- list() control$plo$clr <- paste(mapColor(col), collapse="") } if(!missing(cex)) { if(length(which(names(control) == "plo")) == 0) control$plo <- list() control$plo$siz <- 6 control$plo$siz <- cex * control$plo$siz } if(!missing(pch)) { if(length(which(names(control) == "plo")) == 0) control$plo <- list() control$plo$sym <- map_pch(pch) } if(!missing(labeladd)) { if(length(which(names(control) == "plo")) == 0) control$plo <- list() control$plo$labeladd <- if(is.logical(labeladd) && labeladd | is.character(labeladd) & labeladd =="1" | is.numeric(labeladd) & labeladd != 0) "1" else "" } if(!missing(legend)) { if(length(which(names(control) == "plo")) == 0) control$plo <- list() control$plo$doleg <- if(is.logical(legend) && legend | is.character(legend) & legend =="on" | is.numeric(legend) & legend != 0) "on" else "off" } if(!missing(xlim)) { if(length(which(names(control) == "plo")) == 0) control$plo <- list() control$plo$xlimx <- xlim } if(!missing(ylim)) { if(length(which(names(control) == "plo")) == 0) control$plo <- list() control$plo$ylimy <- ylim } if(length(which(names(control) == "plo")) > 0) { if(is.logical(control$plo)) control$plo <- if(plot) 1 else 0 else if(is.list(control$plo)) { if("namey" %in% names(control$plo) && length(control$plo$namey) != 1) stop("'namey' can be only a simple string!") if("nameX" %in% names(control$plo) && length(control$plo$nameX) != ncol(outStr$X)) stop(paste("'nameX' must be of vector of ", ncol(outStr$X), "strings!")) if("xlimx" %in% names(control$plo)) { if(length(control$plo$xlimx) != 2) stop(paste0("'xlim' must be of vector of 2 numbers!")) else control$plo$xlimx <- as.numeric(control$plo$xlimx) } if("ylimy" %in% names(control$plo)) { if(length(control$plo$ylimy) != 2) stop(paste0("'xlimy' must be of vector of 2 numbers!")) else control$plo$ylimy <- as.numeric(control$plo$ylimy) } if("doleg" %in% names(control$plo) && length(control$plo$doleg) != 1) stop("'legend' can be one of 'on' (default) or 'off'!") } } if(!missing(datatooltip)) { if(is.logical(datatooltip)) { if(datatooltip) control$datatooltip <- 1 }else if(is.list(datatooltip)) control$datatooltip <- datatooltip else stop(paste("Wrong argument 'datatooltip':", datatooltip)) } if(!missing(databrush)) { if(is.logical(databrush)) { if(databrush) control$databrush <- 1 }else if(is.list(databrush)) control$databrush <- databrush } if(!missing(selunit)) control$selunit <- selunit if(!missing(selstep)) { if(!is.numeric(selstep)) stop("'selstep' must be a numeric vector!") control$selstep <- selstep } if(!missing(subsize)) control$subsize <- subsize if(!missing(tag)) control$tag <- as.character(tag) if(trace) { cat("\nOptional parameters to regspmplot(): \n") print(control) } parlist <- c(.jarray(as.matrix(outStr$y), dispatch=TRUE), .jarray(as.matrix(outStr$X), dispatch=TRUE)) paramNames = names(control) if (length(paramNames) > 0) { for (i in 1:length(paramNames)) { paramName = paramNames[i]; paramValue = control[[i]]; matlabValue = rType2MatlabType(paramName, paramValue) parlist = c(parlist, .jnew("java/lang/String", paramName), matlabValue) } } matlabParams <- parlist out <- callFsdaFunction("yXplot", "[Ljava/lang/Object;", 1, parlist) ans = list() freeMatlabResources(out) return(invisible(ans)) }
checkStrictOrder <- function(dat,invertCount=TRUE){ testO <- array(NA,dim=c(nrow(dat),ncol(dat)-1,2)) testId <- matrix(NA,nrow=nrow(dat),ncol=ncol(dat)-1) for(i in 1:(ncol(dat)-1)) { testO[,i,1] <- dat[,i] > dat[,i+1] testO[,i,2] <- dat[,i] < dat[,i+1] testId[,i] <- dat[,i] == dat[,i+1] } if(invertCount) {testO <- !testO; testId <- !testId} out <- cbind(up=rowSums(testO[,,2],na.rm=TRUE),down=rowSums(testO[,,1],na.rm=TRUE),eq=rowSums(testId,na.rm=TRUE)) rownames(out) <- rownames(dat) out } .firstMin <- function(x,positionOnly=FALSE) { minPos <- which.min(x) if(positionOnly) minPos else x[minPos] } .medianSpecGrp <- function(x,grpNum,grpVal,sumMeth="median",callFrom=NULL){ fxNa <- .composeCallName(callFrom,newNa=".medianSpecGrp") msg1 <- c("argument ","'grpVal' should be numeric; ", "'grpNum' should be of length 1 and may be numeric or names of 'x'") if(sum(is.na(x))==length(x)) { message(fxNa,"argument 'x' seems all empty or NA, nothing to do") } else { if(length(grpVal) != 1) stop(fxNa,msg1[c(1:2)]) if(any(sum(is.na(x))==length(x),sum(is.na(grpNum)) >0,is.na(grpVal))) stop(msg1[c(1:2,1,3)]) if(length(grep("^[[:digit:]]+$",grpNum)) <1) grpNum <- match(grpNum,names(x)) grpNum <- convToNum(grpNum,remove=NULL) grpNum <- grpNum[grpNum <= length(x)] msg2 <- "'grpNum' should be either numeric for positions in 'x' or character for names of 'x'" if(length(grpNum) <1) stop(fxNa,msg1[1],msg2) grp1ini <- if(length(grpNum) >1) { if(identical(sumMeth,"median")) stats::median(x[grpNum],na.rm=TRUE) else mean(x[grpNum],na.rm=TRUE) } else x[grpNum] x <- if(all(c(grpVal,grp1ini) !=0)) grpVal*x/grp1ini else x + grpVal - grp1ini } x } .scaleSpecGrp <- function(x,grp1Num,grp1Val,grp2Num=NULL,grp2Val=NULL,sumMeth="mean",callFrom=NULL){ fxNa <- .composeCallName(callFrom,newNa=".scaleSpecGrp") msg1 <- c("argument ","'grp1Val'"," and ","'grp2Val'"," should be numeric of length 1; ", "'grp1Num'","'grp2Num'"," may be numeric or names of 'x'"," .. ignoring") if(sum(is.na(x))==length(x)) { message(fxNa,"argument 'x' seems all empty or NA, nothing to do") } else { if(any(sum(is.na(x))==length(x),sum(is.na(grp1Num)) >0,is.na(grp1Val))) stop(msg1[c(1:2,5,6,8)]) if(length(grp1Val) !=1) stop(msg1[c(1:2,5)]) if(length(grep("^[[:digit:]]+$",grp1Num)) <1) grp1Num <- match(grp1Num,names(x)) grp1Num <- convToNum(grp1Num,remove=NULL) grp1Num <- grp1Num[grp1Num <= length(x)] if(length(grp1Num) <1) stop(fxNa,"Can't find positions/matches for 'grp1Num' in 'x' !") grp1ini <- if(length(grp1Num) >1) { if(identical(sumMeth,"median")) stats::median(x[grp1Num],na.rm=TRUE) else mean(x[grp1Num],na.rm=TRUE) } else x[grp1Num] if(identical(grp1Val,grp2Val)) {grp2Num <- NULL; message(" grp1Val and grp2Val should be different ! ignoring grp2Val")} if(length(grp2Num) >0 & length(grp2Val) !=1) {grp2Num <- NULL; message(fxNa,paste(msg1[c(1,4,5,9)]))} if(length(grp2Num) >0) { if(any(sum(is.na(grp2Num)) >0,is.na(grp2Val))) stop(msg1[c(1:2,1,3)]) grp2ini <- if(length(grp2Num) >1) { if(identical(sumMeth,"median")) stats::median(x[grp2Num],na.rm=TRUE) else mean(x[grp2Num],na.rm=TRUE) } else x[grp2Num] if(length(grep("^[[:digit:]]+$",grp2Num)) <1) grp2Num <- match(grp2Num,names(x)) grp2Num <- convToNum(grp2Num,remove=NULL) grp2Num <- grp2Num[grp2Num <= length(x)] msg2 <- c("'grp2Num' should be either numeric for positions in 'x' or character for names of 'x'"," ... ignoring") if(length(grp2Num) <1) {grp2Num <- NULL; message(fxNa,msg1[1],msg2)} } if(length(grp2Num) <1) { x <- if(all(c(grp1Val,grp1ini) !=0)) grp1Val*x/grp1ini else x + grp1Val - grp1ini } else { x <- x - grp1ini x <- grp1Val + x*(grp2Val-grp1Val)/grp2ini } } x }
setGeneric("calculateWeights", function(comparisonMatrix) standardGeneric("calculateWeights")) setMethod( f="calculateWeights", signature(comparisonMatrix="PairwiseComparisonMatrix"), definition=function(comparisonMatrix) { weightsCount = nrow(comparisonMatrix@values) weights = vector(mode = "numeric", length = weightsCount) for(i in 1:weightsCount){ weights[i] = prod(comparisonMatrix@values[i,])^(1/weightsCount) } sumWeights = sum(weights) weights = weights/sumWeights rNames = c() for (i in 1:length(weights)){ rNames = append(rNames, paste("w_", comparisonMatrix@variableNames[i], sep = "")) } names(weights) = rNames return (new("Weights", weights = weights)) } ) setMethod( f="calculateWeights", signature(comparisonMatrix="FuzzyPairwiseComparisonMatrix"), definition=function(comparisonMatrix) { p = nrow(comparisonMatrix@fnMin) wMin = c() wModal = c() wMax = c() for(i in 1:p){ limits = .weightsLimits(comparisonMatrix,i) wMin = append(wMin, limits[1]) wMax = append(wMax, limits[2]) sum = 0 for(k in 1:p){ sum = sum + prod(comparisonMatrix@fnModal[k,])^(1/p) } wM = ((prod(comparisonMatrix@fnModal[i,])^(1/p)) / sum) wModal = append(wModal, wM) } return (new("FuzzyWeights", fnMin = wMin, fnModal = wModal, fnMax = wMax)) } ) setGeneric("calculateWeights_old_methods", function(comparisonMatrix, type = "Chang") standardGeneric("calculateWeights_old_methods")) setMethod( f="calculateWeights_old_methods", signature(comparisonMatrix = "FuzzyPairwiseComparisonMatrix"), definition=function(comparisonMatrix, type) { if(typeof(type) != "character"){ stop("Variable type must be character!") } if(type == "Chang"){ return(.weights_Chang(comparisonMatrix)) }else if (type == "Tesfamariam"){ return(.weights_Tesfamariam(comparisonMatrix)) }else if (type == "Wang"){ return(.weights_Wang(comparisonMatrix)) }else{ stop("Method name not recognized. Can not calculate the weights!") } } ) setGeneric("calculate_weighting_vector", function(fuzzyWeights) standardGeneric("calculate_weighting_vector")) setMethod( f="calculate_weighting_vector", signature(fuzzyWeights = "FuzzyWeights"), definition=function(fuzzyWeights) { return(.weighting_vector(fuzzyWeights)) } )
formatR <- function (r, digits = 2) { return(ufs::noZero(round(r, digits = digits))); }
readUCSCtable <- function(fiName, exportFileNa=NULL, gtf=NA, simplifyCols=c("gene_id","chr","start","end","strand","frame"), silent=FALSE, callFrom=NULL) { fxNa <- wrMisc::.composeCallName(callFrom, newNa="readUCSCtable") if(length(fiName) >1) fiName <- fiName[1] else {if(length(fiName) < 1) stop(" argument 'fiName' seems empty")} chFi <- file.exists(fiName) if(!chFi) stop(" file '",fiName,"' not found ! (maybe you are not pointing to the correct direcory ?)") chPa1 <- try(find.package("utils"), silent=TRUE) chPa2 <- try(find.package("R.utils"), silent=TRUE) if("try-error" %in% class(chPa1)) stop(fxNa,"package 'utils' not found ! Please install first ..") if(is.na(gtf)) { gtfColNa <- c(" "cdsStartStat","cdsEndStat","exonFrame"," "nCount","acc","status","ensGene","ensTrans") tmp <- try(utils::read.table(fiName, header=FALSE, stringsAsFactors=FALSE, nrows=7)) if("try-error" %in% class(tmp)) { gtf <- length(grep("\\.gtf$|\\.gtf\\.gz$", tolower(basename(fiName)))) >0 if(!silent) message(fxNa," Quick guess by file-name if compressed file '",basename(fiName),"' is gtf : ",gtf) } else { gtf <- sum(gtfColNa %in% tmp[1,], na.rm=TRUE) <7 if(!silent) message(fxNa," File '",basename(fiName),"' is gtf : ",gtf) } } if("try-error" %in% class(chPa2)) { if(!silent) message(fxNa," package 'R.utils' not available, assuming by file-extension if file is gz-compressed") chGz <- length(grep("\\.gz$", tolower(fiName))) >0 } else chGz <- R.utils::isGzipped(fiName) ensG1 <- try(utils::read.table(fiName, header=!gtf, stringsAsFactors=FALSE)) if("try-error" %in% class(chFi)) { errMsg <- "' - please check format or see if file is readable" if(chGz) { if("try-error" %in% class(chPa2)) stop(fxNa," Package 'R.utils' for decompressing .gz not found ! Please install first or decompress file ",fiName," manually ..") file.copy(fiName, file.path(tempdir(),basename(fiName))) tmp <- try(R.utils::gunzip(file.path(tempdir(),basename(fiName))), silent=TRUE) if("try-error" %in% class(tmp)) stop(" Failed to decompress file ", fiName) if(!silent) message(fxNa," try reading decompressed file using readVarColumns() ...") ensG1 <- try(wrMisc::readVarColumns(file.path(tempdir(),basename(fiName), header=!gtf, silent=silent, callFrom=fxNa), silent=TRUE, callFrom=fxNa)) if("try-error" %in% class(ensG1)) stop("Can't read file '",fiName,errMsg) rmFi <- file.path(tempdir(), c(basename(fiName), sub("\\.gz$","",basename(fiName)))) sapply(rmFi,function(x) if(file.exists(x)) file.remove(x)) } else ensG1 <- try(wrMisc::readVarColumns(fiName, header=!gtf, silent=silent, callFrom=fxNa), silent=TRUE) if("try-error" %in% class(ensG1)) stop(" Could not succed to read file '",basename(fiName),errMsg) } if(gtf) { colnames(ensG1) <- c("chr","source","type","start","end","score","strand","frame","features")[1:ncol(ensG1)] chTId <- base::grep("; transcript_id [[:alpha:]]+[[:digit:]]+" , as.character(ensG1[1:30,9]), fixed=FALSE, perl=FALSE) chGId <- base::grep("^gene_id [[:alpha:]]+[[:digit:]]+", as.character(ensG1[1:30,9]), fixed=FALSE, perl=FALSE) chId <- base::grep("transcript_id [[:punct:]]{0,1}ENS[[:upper:]]+[[:digit:]][[:print:]]+", as.character(ensG1[1:30,9]), fixed=FALSE, perl=FALSE) if(length(chTId) >0 & length(chGId) >0) { newC <- matrix(unlist( strsplit( sub("^gene_id ","",as.character(ensG1[,9]), fixed=FALSE, perl=FALSE),"; transcript_id ", fixed=FALSE, perl=FALSE)), byrow=TRUE, ncol=2, dimnames=list(NULL,c("gene_id","transcript_id"))) newC <- sub("; $","", newC) ensG1 <- cbind(ensG1[,-9], newC) } } chG <- colnames(ensG1) %in% simplifyCols[1] if(!any(chG)) { NAcol <- colnames(ensG1) %in% "NA" | is.na(colnames(ensG1)) if(any(NAcol)) { chGeId <- which.max(apply(utils::head(ensG1),2, function(x) sum(x==simplifyCols[1]))) if(length(chGeId) >0 & chGeId[1] +1 %in% which(NAcol)) colnames(ensG1)[chGeId[1] +1] <- simplifyCols[1] else { if(!silent) message(fxNa," failed to locate column to use as '",simplifyCols[1],"'")} } } if(length(simplifyCols) >5) { simplifyCols <- simplifyCols[which(simplifyCols %in% colnames(ensG1))] if(length(simplifyCols) <6 & !silent) message(fxNa," Cannot find sufficient column-names given in argument 'simplifyCols', ignoring ..") } if(length(simplifyCols) >5) { iniDim <- dim(ensG1) ensG1 <- matrix(unlist(by(ensG1[,simplifyCols[1:6]], ensG1[,simplifyCols[1]], function(x) { if(length(dim(x)) <2) x <- matrix(x, ncol=6, dimnames=list(NULL,simplifyCols[1:6])) c(x[1,1], x[1,2], min(x[,3],na.rm=TRUE), max(x[,4],na.rm=TRUE), x[1,5], x[1,6])} )), byrow=TRUE, ncol=6, dimnames=list(NULL,simplifyCols)) if(!silent) message(fxNa," simplifed from ",iniDim[1]," to ",nrow(ensG1)," non-redundant ",simplifyCols[1]) if(length(exportFileNa) >0) { exportFileNa <- gsub("\\\\", "/", exportFileNa) forFile <- unique(sub("\\.[[:digit:]]+$", "", ensG1[,"gene_id"], fixed=FALSE, perl=FALSE)) msg <- c("' for conversion on https://www.uniprot.org/uploadlists") if(!silent) message(fxNa," Write to file : ",paste(utils::head(forFile,4),collapse=", ")," ...") if(!silent) if(file.exists(exportFileNa[1])) message(fxNa," Beware, file '",exportFileNa[1],"' will be overwritten !") else message(fxNa, " Exporting file '",exportFileNa,msg[1]) tmp <- try(cat(forFile, file=exportFileNa[1], sep="\n"), silent=TRUE) if("try-error" %in% class(tmp)) warning(fxNa," Beware: Did not succed to write results to file")} } ensG1 }
analyse_randomKde2d_smart <- function(nfields=100, nstars, maxX, maxY, nKde=50, showStats=FALSE, returnStats=TRUE, smartTableDB) { smartTable <- dbReadTable(smartTableDB, "smartTable") res <- subset(smartTable, smartTable$nstar==nstars) if(length(res$mean)!=0) { retStat <- data.frame(mean=mean(res$mean), sd=mean(res$sd)) } else { retStat <- analyse_randomKde2d(nfields, nstars, maxX, maxY, nKde, showStats, returnStats) dbWriteTable(smartTableDB, "smartTable", data.frame(nstar=nstars, mean=retStat$mean, sd=retStat$sd), append=TRUE, row.names = F) } return(retStat) }
get_dfcrm <- function(parent_selector_factory = NULL, skeleton, target, ...) { x <- list( parent_selector_factory = parent_selector_factory, skeleton = skeleton, target = target, extra_args = list(...) ) class(x) <- c('dfcrm_selector_factory', 'tox_selector_factory', 'selector_factory') return(x) } dfcrm_selector <- function(parent_selector = NULL, outcomes, skeleton, target, ...) { if(is.character(outcomes)) { df <- parse_phase1_outcomes(outcomes, as_list = FALSE) } else if(is.data.frame(outcomes)) { df <- spruce_outcomes_df(outcomes) } else { stop('outcomes should be a character string or a data-frame.') } if(nrow(df) > 0) { if(max(df$dose) > length(skeleton)) { stop('dfcrm_selector - maximum dose given exceeds number of doses.') } x <- crm(prior = skeleton, target = target, tox = df$tox %>% as.integer(), level = df$dose, var.est = TRUE, ...) } else { x <- list( level = integer(length = 0), tox = integer(length = 0), mtd = 1, ptox = skeleton) } l <- list( parent = parent_selector, cohort = df$cohort, outcomes = outcomes, skeleton = skeleton, target = target, dfcrm_fit = x ) class(l) = c('dfcrm_selector', 'tox_selector', 'selector') l } fit.dfcrm_selector_factory <- function(selector_factory, outcomes, ...) { if(is.null(selector_factory$parent)) { parent <- NULL } else { parent <- selector_factory$parent %>% fit(outcomes, ...) } args <- list( parent = parent, outcomes = outcomes, skeleton = selector_factory$skeleton, target = selector_factory$target ) args <- append(args, selector_factory$extra_args) do.call(dfcrm_selector, args = args) } tox_target.dfcrm_selector <- function(x, ...) { return(x$target) } num_patients.dfcrm_selector <- function(x, ...) { return(length(x$dfcrm_fit$level)) } cohort.dfcrm_selector <- function(x, ...) { return(x$cohort) } doses_given.dfcrm_selector <- function(x, ...) { return(x$dfcrm_fit$level) } tox.dfcrm_selector <- function(x, ...) { return(x$dfcrm_fit$tox) } num_doses.dfcrm_selector <- function(x, ...) { return(length(x$skeleton)) } recommended_dose.dfcrm_selector <- function(x, ...) { if(!is.null(x$parent)) { parent_dose <- recommended_dose(x$parent) parent_cont <- continue(x$parent) if(parent_cont & !is.na(parent_dose)) { return(parent_dose) } } return(as.integer(x$dfcrm_fit$mtd)) } continue.dfcrm_selector <- function(x, ...) { return(TRUE) } mean_prob_tox.dfcrm_selector <- function(x, ...) { return(x$dfcrm_fit$ptox) } median_prob_tox.dfcrm_selector <- function(x, ...) { return(prob_tox_quantile(x, p = 0.5)) } prob_tox_quantile.dfcrm_selector <- function(x, p, ...) { if(num_patients(x) <= 0) { return(as.numeric(rep(NA, num_doses(x)))) } else { beta_hat <- x$dfcrm_fit$estimate beta_var <- x$dfcrm_fit$post.var beta_q <- qnorm(p = 1 - p, mean = beta_hat, sd = sqrt(beta_var)) if(x$dfcrm_fit$model == 'empiric') { return(x$skeleton ^ exp(beta_q)) } else if(x$dfcrm_fit$model == 'logistic') { alpha <- x$dfcrm_fit$intcpt dose_scaled <- x$dfcrm_fit$dosescaled inv.logit(alpha + exp(beta_hat) * dose_scaled) } else { stop(paste0("Don't know what to do with dfcrm model '", x$dfcrm_fit$model, "'")) } } } prob_tox_exceeds.dfcrm_selector <- function(x, threshold, ...) { if(num_patients(x) <= 0) { return(as.numeric(rep(NA, num_doses(x)))) } else { beta_hat <- x$dfcrm_fit$estimate beta_var <- x$dfcrm_fit$post.var if(x$dfcrm_fit$model == 'empiric') { return(pnorm(q = log(log(threshold) / log(x$skeleton)), mean = beta_hat, sd = sqrt(beta_var))) } else if(x$dfcrm_fit$model == 'logistic') { alpha <- x$dfcrm_fit$intcpt dose_scaled <- x$dfcrm_fit$dosescaled pnorm(log((logit(threshold) - alpha) / dose_scaled), mean = beta_hat, sd = sqrt(beta_var)) } else { stop(paste0("Don't know what to do with dfcrm model '", x$dfcrm_fit$model, "'")) } } } supports_sampling.dfcrm_selector <- function(x, ...) { return(TRUE) } prob_tox_samples.dfcrm_selector <- function(x, tall = FALSE, num_samples = 4000,...) { df <- get_posterior_prob_tox_sample(x, iter = num_samples) if(tall) { dose <- prob_tox <- .draw <- NULL df %>% gather(dose, prob_tox, -.draw) } else { return(df) } } summary.dfcrm_selector <- function(object, ...) { Dose <- N <- Tox <- EmpiricToxRate <- Skeleton <- NULL summary.selector(object) %>% mutate(Skeleton = c(NA, object$skeleton)) %>% select(Dose, N, Tox, EmpiricToxRate, Skeleton, everything()) }
"_PACKAGE" C.NA.int <- -999 C.NA.double <- -999 library("deSolve") init.streambugs.C <- function(sys.def) { if ( !exists("streambugs.debug") ) streambugs.debug <- 0 c_streambugs_init_debug(streambugs.debug) ninp <- length(sys.def$inp) if ( !is.list(sys.def$inp) ) ninp <- 0 c_streambugs_create_input_structure(ninp) if ( ninp > 0 ) { for ( i in 1:ninp ) { n <- nrow(sys.def$inp[[i]]) x <- sys.def$inp[[i]][,1] y <- sys.def$inp[[i]][,2] c_streambugs_create_input(i, n, x, y) } } nind <- nrow(sys.def$par.global$inpinds) inds <- as.integer(sys.def$par.global$inpinds) inds <- ifelse(is.na(inds),C.NA.int,inds) npar <- length(sys.def$par.global$parvals) nams <- names(sys.def$par.global$parvals) vals <- as.double(sys.def$par.global$parvals) vals <- ifelse(is.na(vals),C.NA.double,vals) c_streambugs_create_parglobal(nind, inds, npar, vals, nams) ntrait <- length(sys.def$par.global.envtraits) if ( !is.list(sys.def$par.global.envtraits) ) ntrait <- 0 c_streambugs_create_parglobalenvtraits_structure(ntrait) if ( ntrait > 0 ) { for ( i in 1:ntrait ) { name <- names(sys.def$par.global.envtraits)[i] nind <- nrow(sys.def$par.global.envtraits[[i]]$inpinds) inds <- as.integer(sys.def$par.global.envtraits[[i]]$inpinds) inds <- ifelse(is.na(inds),C.NA.int,inds) npar <- length(sys.def$par.global.envtraits[[i]]$parvals) nams <- names(sys.def$par.global.envtraits[[i]]$parvals) vals <- as.double(sys.def$par.global.envtraits[[i]]$parvals) vals <- ifelse(is.na(vals),C.NA.double,vals) c_streambugs_create_parglobalenvtrait(i, name, nind, inds, npar, vals, nams) } } nind <- nrow(sys.def$par.envcond.reach$inpinds) inds <- as.integer(sys.def$par.envcond.reach$inpinds) inds <- ifelse(is.na(inds),C.NA.int,inds) npar <- ncol(sys.def$par.envcond.reach$parvals) nrow <- nrow(sys.def$par.envcond.reach$parvals) nams <- colnames(sys.def$par.envcond.reach$parvals) vals <- as.double(sys.def$par.envcond.reach$parvals) vals <- ifelse(is.na(vals),C.NA.double,vals) c_streambugs_create_parenvcondreach(nind, inds, npar, nrow, vals, nams) nind <- nrow(sys.def$par.envcond.habitat$inpinds) inds <- as.integer(sys.def$par.envcond.habitat$inpinds) inds <- ifelse(is.na(inds),C.NA.int,inds) npar <- ncol(sys.def$par.envcond.habitat$parvals) nrow <- nrow(sys.def$par.envcond.habitat$parvals) nams <- colnames(sys.def$par.envcond.habitat$parvals) vals <- as.double(sys.def$par.envcond.habitat$parvals) vals <- ifelse(is.na(vals),C.NA.double,vals) c_streambugs_create_parenvcondhabitat(nind, inds, npar, nrow, vals, nams) ngroup <- length(sys.def$par.envcond.habitat.group) if ( !is.list(sys.def$par.envcond.habitat.group) ) ngroup <- 0 c_streambugs_create_parenvcondhabitatgroups_structure(ngroup) if ( ngroup > 0 ) { for ( i in 1:ngroup ) { name <- names(sys.def$par.envcond.habitat.group)[i] nind <- nrow(sys.def$par.envcond.habitat.group[[i]]$inpinds) inds <- as.integer(sys.def$par.envcond.habitat.group[[i]]$inpinds) inds <- ifelse(is.na(inds),C.NA.int,inds) npar <- ncol(sys.def$par.envcond.habitat.group[[i]]$parvals) nrow <- nrow(sys.def$par.envcond.habitat.group[[i]]$parvals) nams <- colnames(sys.def$par.envcond.habitat.group[[i]]$parvals) vals <- as.double(sys.def$par.envcond.habitat.group[[i]]$parvals) vals <- ifelse(is.na(vals),C.NA.double,vals) c_streambugs_create_parenvcondhabitatgroup(i, name, nind, inds, npar, nrow, vals, nams) } } nind <- nrow(sys.def$par.initcond$inpinds) inds <- as.integer(sys.def$par.initcond$inpinds) inds <- ifelse(is.na(inds),C.NA.int,inds) npar <- ncol(sys.def$par.initcond$parvals) nrow <- nrow(sys.def$par.initcond$parvals) nams <- colnames(sys.def$par.initcond$parvals) vals <- as.double(sys.def$par.initcond$parvals) vals <- ifelse(is.na(vals),C.NA.double,vals) c_streambugs_create_parinitcond(nind, inds, npar, nrow, vals, nams) nind <- nrow(sys.def$par.input$inpinds) inds <- as.integer(sys.def$par.input$inpinds) inds <- ifelse(is.na(inds),C.NA.int,inds) npar <- ncol(sys.def$par.input$parvals) nrow <- nrow(sys.def$par.input$parvals) nams <- colnames(sys.def$par.input$parvals) vals <- as.double(sys.def$par.input$parvals) vals <- ifelse(is.na(vals),C.NA.double,vals) c_streambugs_create_parinput(nind, inds, npar, nrow, vals, nams) nind <- nrow(sys.def$par.taxaprop.direct$inpinds) inds <- as.integer(sys.def$par.taxaprop.direct$inpinds) inds <- ifelse(is.na(inds),C.NA.int,inds) npar <- ncol(sys.def$par.taxaprop.direct$parvals) nrow <- nrow(sys.def$par.taxaprop.direct$parvals) nams <- colnames(sys.def$par.taxaprop.direct$parvals) vals <- as.double(sys.def$par.taxaprop.direct$parvals) vals <- ifelse(is.na(vals),C.NA.double,vals) c_streambugs_create_partaxapropdirect(nind, inds, npar, nrow, vals, nams) ntrait <- length(sys.def$par.taxaprop.traits) if ( !is.list(sys.def$par.taxaprop.traits) ) ntrait <- 0 c_streambugs_create_partaxaproptraits_structure(ntrait) if ( ntrait > 0 ) { for ( i in 1:ntrait ) { name <- names(sys.def$par.taxaprop.traits)[i] nind <- nrow(sys.def$par.taxaprop.traits[[i]]$inpinds) inds <- as.integer(sys.def$par.taxaprop.traits[[i]]$inpinds) inds <- ifelse(is.na(inds),C.NA.int,inds) npar <- ncol(sys.def$par.taxaprop.traits[[i]]$parvals) nrow <- nrow(sys.def$par.taxaprop.traits[[i]]$parvals) nams <- colnames(sys.def$par.taxaprop.traits[[i]]$parvals) vals <- as.double(sys.def$par.taxaprop.traits[[i]]$parvals) vals <- ifelse(is.na(vals),C.NA.double,vals) c_streambugs_create_partaxaproptrait(i, name, nind, inds, npar, nrow, vals, nams) } } ny <- length(sys.def$y.names$y.names) c_streambugs_create_processes_structure(ny) for ( i in 1:ny ) { if ( length(sys.def$par.proc.taxon[[i]]) > 0 ) { for ( j in 1:length(sys.def$par.proc.taxon[[i]]) ) { procname <- names(sys.def$par.proc.taxon[[i]])[j] ninp <- nrow(sys.def$par.proc.taxon[[i]][[j]]$inpinds) inpinds <- as.integer(sys.def$par.proc.taxon[[i]][[j]]$inpinds) inpinds <- ifelse(is.na(inpinds),C.NA.int,inpinds) npar <- length(sys.def$par.proc.taxon[[i]][[j]]$parvals) parnames <- names(sys.def$par.proc.taxon[[i]][[j]]$parvals) parvals <- as.double(sys.def$par.proc.taxon[[i]][[j]]$parvals) parvals <- ifelse(is.na(parvals),C.NA.double,parvals) nstoich <- ncol(sys.def$par.proc.taxon[[i]][[j]]$stoich) stoichnames <- colnames(sys.def$par.proc.taxon[[i]][[j]]$stoich) stoichinds <- sys.def$par.proc.taxon[[i]][[j]]$stoich[1,] stoichvals <- sys.def$par.proc.taxon[[i]][[j]]$stoich[2,] c_streambugs_create_proctaxon(i, j, procname, ninp, inpinds, npar, parnames, parvals, nstoich, stoichnames, stoichinds, stoichvals) } } } for ( i in 1:ny ) { if ( length(sys.def$par.proc.web[[i]]) > 0 ) { for ( j in 1:length(sys.def$par.proc.web[[i]]) ) { procname <- names(sys.def$par.proc.web[[i]])[j] ninp <- nrow(sys.def$par.proc.web[[i]][[j]]$inpinds) inpinds <- as.integer(sys.def$par.proc.web[[i]][[j]]$inpinds) inpinds <- ifelse(is.na(inpinds),C.NA.int,inpinds) npar <- length(sys.def$par.proc.web[[i]][[j]]$parvals) parnames <- names(sys.def$par.proc.web[[i]][[j]]$parvals) parvals <- as.double(sys.def$par.proc.web[[i]][[j]]$parvals) parvals <- ifelse(is.na(parvals),C.NA.double,parvals) c_streambugs_create_procweb(i, j, procname, ninp, inpinds, npar, parnames, parvals) for ( k in 1:length(sys.def$par.proc.web[[i]][[j]]$taxa2) ) { procname <- names(sys.def$par.proc.web[[i]][[j]]$taxa2)[k] ninp <- nrow(sys.def$par.proc.web[[i]][[j]]$taxa2[[k]]$inpinds) inpinds <- as.integer(sys.def$par.proc.web[[i]][[j]]$taxa2[[k]]$inpinds) inpinds <- ifelse(is.na(inpinds),C.NA.int,inpinds) npar <- length(sys.def$par.proc.web[[i]][[j]]$taxa2[[k]]$parvals) parnames <- names(sys.def$par.proc.web[[i]][[j]]$taxa2[[k]]$parvals) parvals <- as.double(sys.def$par.proc.web[[i]][[j]]$taxa2[[k]]$parvals) parvals <- ifelse(is.na(parvals),C.NA.double,parvals) nstoich <- ncol(sys.def$par.proc.web[[i]][[j]]$taxa2[[k]]$stoich) stoichnames <- colnames(sys.def$par.proc.web[[i]][[j]]$taxa2[[k]]$stoich) stoichinds <- sys.def$par.proc.web[[i]][[j]]$taxa2[[k]]$stoich[1,] stoichvals <- sys.def$par.proc.web[[i]][[j]]$taxa2[[k]]$stoich[2,] c_streambugs_create_procwebtaxon(i, j, k, procname, ninp, inpinds, npar, parnames, parvals, nstoich, stoichnames, stoichinds, stoichvals) } } } } nreach <- length(sys.def$y.names$ind.fA) c_streambugs_create_fA_structure(nreach) for ( i in 1:nreach ) { nreachind <- length(sys.def$y.names$indfA[[i]]$ind.reach) reachind <- sys.def$y.names$indfA[[i]]$ind.reach nfsthabind <- length(sys.def$y.names$indfA[[i]]$ind.1sthab) fsthabind <- sys.def$y.names$indfA[[i]]$ind.1sthab c_streambugs_create_fA(i, nreachind, reachind, nfsthabind, fsthabind) } return() } free.streambugs.C <- function() { c_streambugs_delete_inputs() c_streambugs_delete_parglobal() c_streambugs_delete_parglobalenvtraits() c_streambugs_delete_parenvcondreach() c_streambugs_delete_parenvcondhabitat() c_streambugs_delete_parenvcondhabitatgroup() c_streambugs_delete_parinitcond() c_streambugs_delete_parinput() c_streambugs_delete_partaxapropdirect() c_streambugs_delete_partaxaproptraits() c_streambugs_delete_processes() c_streambugs_delete_fA() } run.streambugs <- function(y.names,times,par,inp=NA,C=FALSE, file.def=NA,file.res=NA,file.add=NA, return.res.add = FALSE,tout.add=NA, verbose=TRUE, method="lsoda",rtol=1e-4,atol=1e-4,...) { ptm <- proc.time() if ( !is.list(y.names) ) y.names <- decode.statevarnames(y.names) sys.def <- streambugs.get.sys.def(y.names=y.names,par=par,inp=inp) if ( !is.na(file.def) ) streambugs.write.sys.def(sys.def=sys.def,file=file.def) sys.def <- streambugs.updatepar(sys.def,times[1]) w <- sys.def$par.envcond.reach$parvals[,"w"] fA <- sys.def$par.envcond.habitat$parvals[,"fA"] D.ini <- sys.def$par.initcond$parvals[,"Dini"] y.ini <- D.ini * w * fA names(y.ini) <- y.names$y.names if ( verbose ) { cat("streambugs\n") cat("----------\n") cat("number of state variables: ",length(y.ini),"\n",sep="") cat("number of inputs: ",if(is.list(inp)) length(inp) else 0,"\n",sep="") cat("number of parameters: ",length(par),"\n",sep="") } if ( !C ) { if ( verbose ) cat("running R version of streambugs ...\n") res <-ode(y = y.ini, times = times, func = rhs.streambugs, parms = sys.def, method = method, rtol = rtol, atol = atol, ...) } else { if ( verbose ) cat("running C version of streambugs ...\n") init.streambugs.C(sys.def = sys.def) res <- ode(y = y.ini, times = times, func = "streambugs_rhs", parms = 0, dllname = "streambugs", initfunc = "streambugs_rhs_init", nout = 1, method = method, rtol = rtol, atol = atol, ...) free.streambugs.C() } res <- res[,1:(1+length(y.ini))] if ( verbose ) { cat("simulation completed\n") print(proc.time()-ptm) } if ( !is.na(file.res) ) write.table(res,file.res,col.names=T,row.names=F,sep="\t") if(length(times) > nrow(res)) warning("unrecoverable error occurred, res not complete") class(res)="streambugs" if ( !is.na(file.add) | return.res.add ) { res.add <- calculate.additional.output(res=res,par=par,inp=inp,file.add=file.add,tout.add=tout.add) if(return.res.add) return(list(res.add=res.add,res=res)) } return(list(res=res)) }
label_short <- function(x, width = 10) { tibble(id = as.character(x)) %>% left_join(dynbenchmark::labels, "id") %>% mutate(short = ifelse(is.na(short), label_capitalise(id), short)) %>% mutate(short = label_wrap(short, width = width)) %>% pull(short) %>% set_names(names(x)) } label_wrap <- function(x, width = 10, collapse = "\n") { strwrap(x, width, simplify = FALSE) %>% map_chr(paste0, collapse = collapse) } label_long <- function(x) { tibble(id = as.character(x)) %>% left_join(dynbenchmark::labels, "id") %>% mutate( long = ifelse( is.na(long), id %>% label_n %>% label_perc %>% label_capitalise, long ) ) %>% pull(long) %>% set_names(names(x)) } label_n <- function(x) { x %>% gsub("^n_", " } label_perc <- function(x) { x %>% gsub("_perc$", "_%", .) } label_capitalise <- function(x) { capitalise <- function(string) { capped <- grep("^[A-Z]", string, invert = TRUE) substr(string[capped], 1, 1) <- toupper(substr(string[capped], 1, 1)) string } x %>% str_replace_all("_", " ") %>% capitalise() } label_facet <- function(label_func = label_long, ...) { function(df) { mutate_all(df, label_func, ...) } } label_extrema <- function(x) { ifelse(x %in% c(0, min(x), max(x)), x, "") } label_pvalue <- function(p_values, cutoffs = c(0.1, 0.01, 1e-5)) { requireNamespace("glue") breaks <- c(Inf, cutoffs, -Inf) labels <- rev(c("NS", map_chr(seq_len(length(cutoffs)), ~glue::glue_collapse(rep("*", .))))) p_values %>% cut(breaks, labels) %>% as.character() } label_metric <- function(metric_id, format = get_default_metric_format(), parse = FALSE) { if (length(metric_id) > 1) {stop("Needs only one metric_id")} if (metric_id %in% dyneval::metrics$metric_id) { if (!format %in% colnames(dyneval::metrics)) stop(format, " not found in dyneval::metrics") label <- dyneval::metrics[[format]][match(metric_id, dyneval::metrics$metric_id)] } else { label <- label_long(metric_id) } if (parse) { label <- gsub(" ", " ~~ ", label) label <- parse(text = label) } if (format == "latex") { label <- paste0("$", label, "$") } label } label_metrics <- function(metric_ids, ...) { map(metric_ids, label_metric, ...) } get_default_metric_format <- function() { case_when( identical(knitr::opts_knit$get("rmarkdown.pandoc.to"), "latex") ~ "latex", identical(knitr::opts_knit$get("rmarkdown.pandoc.to"), "html") ~ "html", identical(knitr::opts_knit$get("out.format"), "markdown") ~ "html", TRUE ~ "plotmath" ) } limits_metric <- function(metric_id) { if (metric_id %in% dyneval::metrics$metric_id) { extract_row_to_list(dyneval::metrics, which(metric_id == !!metric_id))[c("worst", "perfect")] %>% unlist() } else { c(worst = 0, perfect = 1) } } label_time <- function(time) { case_when( time < 1e-5 ~ "0s", time < 1 ~ "<1s", time < 60 ~ paste0(floor(time), "s"), time < 3600 ~ paste0(floor(time / 60), "m"), time < 3600 * 24 ~ paste0(floor(time / 3600), "h"), time < 3600 * 24 * 7 ~ paste0(floor(time / 3600 / 24), "d"), !is.na(time) ~ ">7d", TRUE ~ NA_character_ ) } label_memory <- function(x, include_mb = FALSE) { if (include_mb) { case_when( x < 1e6 ~ "<1MB", x < 1e9 ~ paste0(round(x / 1e6), "MB"), x < 1e12 ~ paste0(round(x / 1e9), "GB"), !is.na(x) ~ ">1TB", TRUE ~ NA_character_ ) } else { case_when( x < 1e9 ~ "<1GB", x < 1e12 ~ paste0(round(x / 1e9), "GB"), !is.na(x) ~ ">1TB", TRUE ~ NA_character_ ) } } label_thousands <- function(x) { map_chr(x, function(x) { if (is.na(x)) { NA } else if (x < 10^3) { as.character(round(x)) } else if (x < 10^6) { paste0(round(x/10^3), "k") } else { paste0(round(x/10^6), "M") } }) } tag_first <- function(x, tag) { y <- x$assemble$plots[[1]] if ("ggassemble" %in% class(y)) { x$assemble$plots[[1]] <- tag_first(x$assemble$plots[[1]], tag = tag) } else { x$assemble$plots[[1]] <- x$assemble$plots[[1]] + labs(tag = tag) } x } label_vector <- function(x) { if (length(x) == 0) { "" } else if (length(x) == 1) { x } else { glue::glue_collapse(x, sep = ", ", last = " and ") } } label_method <- function(method_ids) { methods <- load_methods() methods$name[match(method_ids, methods$id)] }
library(knitr) library(rgl) opts_chunk$set(out.extra='style="display:block; margin: auto"', fig.align="center", tidy=FALSE) knit_hooks$set(webgl = hook_webgl) if (!requireNamespace("rmarkdown", quietly = TRUE) || !rmarkdown::pandoc_available("1.14")) { warning(call. = FALSE, "These vignettes assume rmarkdown and pandoc version 1.14. These were not found. Older versions will not work.") knitr::knit_exit() } library(mgcViz) n <- 1e3 dat <- data.frame("x1" = rnorm(n), "x2" = rnorm(n), "x3" = rnorm(n)) dat$y <- with(dat, sin(x1) + 0.5*x2^2 + 0.2*x3 + pmax(x2, 0.2) * rnorm(n)) b <- gam(y ~ s(x1) + s(x2) + x3, data = dat, method = "REML") b <- getViz(b) o <- plot( sm(b, 1) ) o + l_fitLine(colour = "red") + l_rug(mapping = aes(x=x, y=y), alpha = 0.8) + l_ciLine(mul = 5, colour = "blue", linetype = 2) + l_points(shape = 19, size = 1, alpha = 0.1) + theme_classic() listLayers(o) b <- gam(y ~ s(x1, x2) + x3, data = dat, method = "REML") b <- getViz(b) plot(sm(b, 1)) + l_fitRaster() + l_fitContour() + l_points() gridPrint(plot(sm(b, 1)) + l_fitRaster() + l_fitContour() + labs(title = NULL) + guides(fill=FALSE), plot(pterm(b, 1)) + l_ciPoly() + l_fitLine(), ncol = 2) b <- getGam(b) class(b) dat <- gamSim(1,n=1e3,dist="normal",scale=2) dat$fac <- as.factor( sample(letters[1:6], nrow(dat), replace = TRUE) ) b <- gam(y~s(x0)+s(x1, x2)+s(x3)+fac, data=dat) b <- getViz(b) print(plot(b, allTerms = T), pages = 1) pl <- plot(b, allTerms = T) + l_points() + l_fitLine(linetype = 3) + l_fitContour() + l_ciLine(colour = 2) + l_ciBar() + l_fitPoints(size = 1, col = 2) + theme_get() + labs(title = NULL) pl$empty print(pl, pages = 1) plot(b, select = 1) plot(b, select = 1) + l_dens(type = "cond") + l_fitLine() + l_ciLine() plot(b, allTerms = TRUE, select = 4) + geom_hline(yintercept = 0) library(mgcViz) library(rgl) n <- 500 x <- rnorm(n); y <- rnorm(n); z <- rnorm(n) ob <- (x-z)^2 + (y-z)^2 + rnorm(n) b <- gam(ob ~ s(x, y, z)) b <- getViz(b) plotRGL(sm(b, 1), fix = c("z" = 0), residuals = TRUE) aspect3d(1, 2, 1) set.seed(0) n.samp <- 400 dat <- gamSim(1,n = n.samp, dist = "binary", scale = .33) p <- binomial()$linkinv(dat$f) n <- sample(c(1, 3), n.samp, replace = TRUE) dat$y <- rbinom(n, n, p) dat$n <- n lr.fit <- gam(y/n ~ s(x0) + s(x1) + s(x2) + s(x3), family = binomial, data = dat, weights = n, method = "REML") lr.fit <- getViz(lr.fit) qq(lr.fit, method = "simul1", a.qqpoi = list("shape" = 1), a.ablin = list("linetype" = 2)) qq(lr.fit, rep = 20, showReps = T, CI = "none", a.qqpoi = list("shape" = 19), a.replin = list("alpha" = 0.2)) set.seed(0) n.samp <- 20000 dat <- gamSim(1,n=n.samp,dist="binary",scale=.33) p <- binomial()$linkinv(dat$f) n <- sample(c(1,3),n.samp,replace=TRUE) dat$y <- rbinom(n,n,p) dat$n <- n lr.fit <- bam(y/n ~ s(x0) + s(x1) + s(x2) + s(x3) , family = binomial, data = dat, weights = n, method = "fREML", discrete = TRUE) lr.fit <- getViz(lr.fit) o <- qq(lr.fit, rep = 10, method = "simul1", CI = "normal", showReps = TRUE, a.replin = list(alpha = 0.1), discrete = TRUE) o o <- qq(lr.fit, rep = 10, method = "simul1", CI = "normal", showReps = TRUE, ngr = 1e2, a.replin = list(alpha = 0.1), a.qqpoi = list(shape = 19)) o gridPrint(o, zoom(o, xlim = c(2, 2.5), ylim = c(2, 2.5)), ncol = 2) set.seed(0) dat <- gamSim(1, n = 200) b <- gam(y ~ s(x0) + s(x1) + s(x2) + s(x3), data = dat) b <- getViz(b) check(b, a.qq = list(method = "tnorm", a.cipoly = list(fill = "light blue")), a.respoi = list(size = 0.5), a.hist = list(bins = 10)) set.seed(4124) n <- 5e3 x <- rnorm(n); y <- rnorm(n); z <- as.factor( sample(letters[1:6], n, replace = TRUE) ) ob <- (x)^2 + (y)^2 + (0.2*abs(x) + 1) * rnorm(n) b <- gam(ob ~ s(x) + s(y) + z) b <- getViz(b) ck1 <- check1D(b, "x") ck2 <- check1D(b, "z") gridPrint(ck1, ck2, ncol = 2) gridPrint(ck1 + l_dens(type = "cond", alpha = 0.8) + l_rug(alpha = 0.2), ck2 + l_points() + l_rug(alpha = 0.2), layout_matrix = matrix(c(1, 1, 1, 2, 2), 1, 5)) ck1 + l_densCheck() b <- getViz(b, nsim = 50) gridPrint(check1D(b, "x") + l_gridCheck1D(gridFun = sd, showReps = TRUE), check1D(b, "z") + l_gridCheck1D(gridFun = sd, showReps = TRUE), ncol = 2) set.seed(566) n <- 5e3 X <- data.frame("x1"=rnorm(n, 0.5, 0.5), "x2"=rnorm(n, 1.5, 1), "fac"=as.factor( sample(letters[1:6], n, replace = TRUE) )) X$y <- (1-X$x1)^2 + 100*(X$x2 - X$x1^2)^2 + rnorm(n, 0, 2) b <- gam(y ~ te(x1, x2, k = 5), data = X) b <- getViz(b, nsim = 50) ck1 <- check2D(b, x1 = "x1", x2 = "x2") ck2 <- check2D(b, x1 = X$fac, x2 = "x2") + labs(x = "fac") ck1 + l_gridCheck2D(gridFun = mean) ck2 + l_gridCheck2D(gridFun = mean) ck1 + l_gridCheck2D(bw = c(0.05, 0.1)) + xlim(-1, 1) + ylim(0, 3) listLayers( ck1 ) set.seed(4124) n <- 5e3 dat <- data.frame("x1" = rnorm(n), "x2" = rnorm(n)) dat$y <- (dat$x1)^2 + (dat$x2)^2 + (1*abs(dat$x1) + 1) * rnorm(n) b <- gam(y ~ s(x1) + s(x2), data = dat) b <- getViz(b) ck <- check2D(b, x1 = "x1", x2 = "x2", type = "tnormal") glyFun <- function(.d){ .r <- .d$z .qq <- as.data.frame( density(.r)[c("x", "y")], n = 100 ) .qq$colour <- rep(ifelse(length(.r)>50, "black", "red"), nrow(.qq)) return( .qq ) } ck + l_glyphs2D(glyFun = glyFun, ggLay = "geom_path", n = c(8, 8), mapping = aes(x=gx, y=gy, group = gid, colour = I(colour)), height=1.5, width = 1) glyFun <- function(.d){ n <- nrow(.d) px <- qnorm( (1:n - 0.5)/(n) ) py <- sort( .d$z ) clr <- if(n > 50) { "black" } else { "red" } clr <- rep(clr, n) return( data.frame("x" = px, "y" = py - px, "colour" = clr)) } ck + l_glyphs2D(glyFun = glyFun, ggLay = "geom_point", n = c(10, 10), mapping = aes(x=gx, y=gy, group = gid, colour = I(colour)), height=2, width = 1, size = 0.2) set.seed(6898) dat <- gamSim(1,n=500,dist="normal",scale=20) dat$fac <- as.factor( sample(c("A1", "A2", "A3"), nrow(dat), replace = TRUE) ) bs <- "cr"; k <- 12 b <- gam(y ~ s(x2,bs=bs,by = fac), data=dat) b <- getViz(b) plotDiff(s1 = sm(b, 1), s2 = sm(b, 2)) + l_ciPoly() + l_fitLine() + geom_hline(yintercept = 0, linetype = 2) n <- 1e3 x <- rnorm(n); y <- rnorm(n); z <- rnorm(n); z2 <- rnorm(n) ob <- (x-z)^2 + (y-z)^2 + z2^3 + rnorm(n) b <- gam(ob ~ s(x, y, z, z2)) v <- getViz(b) pl <- plotSlice(x = sm(v, 1), fix = list("z" = seq(-2, 2, length.out = 3), "x" = c(-1, 0, 1))) pl + l_fitRaster() + l_fitContour() + l_points() + l_rug()
gh_search_packages <- function(regex, ignore.case = TRUE) { package_list <- get_package_list() ind <- grepl(regex, package_list$title, ignore.case = ignore.case) as.data.frame(package_list[ind, ], stringsAsFactors= FALSE) }
cophyloplot <- function(x, y, assoc = NULL, use.edge.length = FALSE, space = 0, length.line = 1, gap = 2, type = "phylogram", rotate = FALSE, col = par("fg"), lwd = par("lwd"), lty = par("lty"), show.tip.label = TRUE, font = 3, ...) { if (is.null(assoc)) { assoc <- matrix(ncol = 2) print("No association matrix specified. Links will be omitted.") } if (rotate == TRUE) { cat("\n Click on a node to rotate (right click to exit)\n\n") repeat { res <- plotCophylo2(x, y, assoc = assoc, use.edge.length = use.edge.length, space = space, length.line = length.line, gap = gap, type = type, return = TRUE, col = col, lwd=lwd, lty=lty, show.tip.label = show.tip.label, font = font) click <- identify(res$c[, 1], res$c[, 2], n = 1) if (click < length(res$a[, 1]) + 1) { if (click > res$N.tip.x) x <- rotate(x, click) } else if (click < length(res$c[, 1]) + 1) { if (click > length(res$a[, 1]) + res$N.tip.y) y <- rotate(y, click - length(res$a[, 1])) } } on.exit(cat("done\n")) } else plotCophylo2(x, y, assoc = assoc, use.edge.length = use.edge.length, space = space, length.line = length.line, gap = gap, type = type, return = FALSE, col = col, lwd=lwd, lty=lty, show.tip.label = show.tip.label, font = font) } plotCophylo2 <- function(x, y, assoc = assoc, use.edge.length = use.edge.length, space = space, length.line = length.line, gap = gap, type = type, return = return, col = col, lwd=lwd, lty=lty, show.tip.label = show.tip.label, font = font, ...) { res <- list() left <- max(nchar(x$tip.label, type = "width")) + length.line right <- max(nchar(y$tip.label, type = "width")) + length.line space.min <- left + right + gap * 2 if ((space <= 0) || (space < space.min)) space <- space.min N.tip.x <- Ntip(x) N.tip.y <- Ntip(y) res$N.tip.x <- N.tip.x res$N.tip.y <- N.tip.y a <- plotPhyloCoor(x, use.edge.length = use.edge.length, type = type) res$a <- a b <- plotPhyloCoor(y, use.edge.length = use.edge.length, direction = "leftwards", type = type) a[, 2] <- a[, 2] - min(a[, 2]) b[, 2] <- b[, 2] - min(b[, 2]) res$b <- b b2 <- b b2[, 1] <- b[1:nrow(b), 1] * (max(a[, 1])/max(b[, 1])) + space + max(a[, 1]) b2[, 2] <- b[1:nrow(b), 2] * (max(a[, 2])/max(b[, 2])) res$b2 <- b2 c <- matrix(ncol = 2, nrow = nrow(a) + nrow(b)) c[1:nrow(a), ] <- a[1:nrow(a), ] c[nrow(a) + 1:nrow(b), 1] <- b2[, 1] c[nrow(a) + 1:nrow(b), 2] <- b2[, 2] res$c <- c plot(c, type = "n", xlim = NULL, ylim = NULL, log = "", main = NULL, sub = NULL, xlab = NULL, ylab = NULL, ann = FALSE, axes = FALSE, frame.plot = FALSE) if (type == "cladogram") { for (i in 1:(nrow(a) - 1)) segments(a[x$edge[i, 1], 1], a[x$edge[i, 1], 2], a[x$edge[i, 2], 1], a[x$edge[i, 2], 2], col="red") for (i in 1:(nrow(b) - 1)) segments(b2[y$edge[i, 1], 1], b2[y$edge[i, 1], 2], b2[y$edge[i, 2], 1], b2[y$edge[i, 2], 2]) } if (type == "phylogram") { for (i in (N.tip.x + 1):nrow(a)) { l <- length(x$edge[x$edge[, 1] == i, ][, 1]) for (j in 1:l) { segments(a[x$edge[x$edge[, 1] == i, ][1, 1], 1], a[x$edge[x$edge[, 1] == i, 2], 2][1], a[x$edge[x$edge[, 1] == i, ][1, 1], 1], a[x$edge[x$edge[, 1] == i, 2], 2][j]) segments(a[x$edge[x$edge[, 1] == i, ][1, 1], 1], a[x$edge[x$edge[, 1] == i, 2], 2][j], a[x$edge[x$edge[, 1] == i, 2], 1][j], a[x$edge[x$edge[, 1] == i, 2], 2][j]) } } for (i in (N.tip.y + 1):nrow(b)) { l <- length(y$edge[y$edge[, 1] == i, ][, 1]) for (j in 1:l) { segments(b2[y$edge[y$edge[, 1] == i, ][1, 1], 1], b2[y$edge[y$edge[, 1] == i, 2], 2][1], b2[y$edge[y$edge[, 1] == i, ][1, 1], 1], b2[y$edge[y$edge[, 1] == i, 2], 2][j]) segments(b2[y$edge[y$edge[, 1] == i, ][1, 1], 1], b2[y$edge[y$edge[, 1] == i, 2], 2][j], b2[y$edge[y$edge[, 1] == i, 2], 1][j], b2[y$edge[y$edge[, 1] == i, 2], 2][j]) } } } if (show.tip.label) { text(a[1:N.tip.x, ], cex = 0, font = font, pos = 4, labels = x$tip.label) text(b2[1:N.tip.y, ], cex = 1, font = font, pos = 2, labels = y$tip.label) } lsa <- 1:N.tip.x lsb <- 1:N.tip.y decx <- array(nrow(assoc)) decy <- array(nrow(assoc)) if (length(col)==1) colors<-c(rep(col, nrow(assoc))) else if (length(col)>=nrow(assoc)) colors<-col else colors<-c(rep(col, as.integer(nrow(assoc)/length(col))+1)) if (length(lwd)==1) lwidths<-c(rep(lwd, nrow(assoc))) else if (length(lwd)>=nrow(assoc)) lwidths<-lwd else lwidths<-c(rep(lwd, as.integer(nrow(assoc)/length(lwd))+1)) if (length(lty) == 1) ltype <- c(rep(lty, nrow(assoc))) else if (length(lty) >= nrow(assoc)) ltype <- lty else ltype <- c(rep(lty, as.integer(nrow(assoc)/length(lty))+1)) for (i in 1:nrow(assoc)) { if (show.tip.label) { decx[i] <- strwidth(x$tip.label[lsa[x$tip.label == assoc[i, 1]]]) decy[i] <- strwidth(y$tip.label[lsb[y$tip.label == assoc[i, 2]]]) } else { decx[i] <- decy[i] <- 0 } if (length.line) { segments(a[lsa[x$tip.label == assoc[i, 1]], 1] + decx[i] + gap, a[lsa[x$tip.label == assoc[i, 1]], 2], a[lsa[x$tip.label == assoc[i, 1]], 1] + gap + left, a[lsa[x$tip.label == assoc[i, 1]], 2], col = colors[i], lwd = lwidths[i], lty = ltype[i]) segments(b2[lsb[y$tip.label == assoc[i, 2]], 1] - (decy[i] + gap), b2[lsb[y$tip.label == assoc[i, 2]], 2], b2[lsb[y$tip.label == assoc[i, 2]], 1] - (gap + right), b2[lsb[y$tip.label == assoc[i, 2]], 2], col = colors[i], lwd = lwidths[i], lty = ltype[i]) } segments(a[lsa[x$tip.label == assoc[i, 1]], 1] + gap + left, a[lsa[x$tip.label == assoc[i, 1]], 2], b2[lsb[y$tip.label == assoc[i, 2]], 1] - (gap + right), b2[lsb[y$tip.label == assoc[i, 2]], 2], col = colors[i], lwd = lwidths[i], lty = ltype[i]) } if (return == TRUE) return(res) }
NOT_CRAN <- identical(tolower(Sys.getenv("NOT_CRAN")), "true") knitr::opts_chunk$set( collapse = TRUE, comment = " fig.width = 8, fig.height = 5, purl = NOT_CRAN, eval = NOT_CRAN ) library(sf) library(raster) library(viridis) library(leri) roi <- st_read(system.file("shape/nc.shp", package="sf")) roi roi <- st_union(roi) roi leri_raster <- get_leri(date = "2018-08-13", product = "8 day ac") leri_raster plot(leri_raster, col = cividis(255)) roi_reprojected <- st_transform(roi, crs = projection(leri_raster)) plot(leri_raster, col = cividis(255)) plot(roi_reprojected, add = TRUE) roi_sp <- as(roi_reprojected, 'Spatial') cropped_leri <- crop(leri_raster, roi_sp) masked_leri <- mask(cropped_leri, roi_sp) plot(masked_leri, col = cividis(255)) plot(roi_sp, add = TRUE)
equal.ordered.cov <- function( power = NULL, sig.level = NULL, pi = NULL, kappa = NULL, N = NULL, r2dw = NULL, r2yw = NULL){ G <- (0.5-(pi/2))*(0.5+(pi/2)) S <- 1-r2yw^2 T <- 1-r2dw^2 if (!is.null(power) && !is.null(N)){ beta <- 1 - power M <- qnorm(1-(sig.level/2)) + qnorm(1-beta) numer <- 2*M*sqrt(S) denom <- sqrt(N*pi^2 - 4*M^2*T*G) upper.effect <- numer/denom return(upper.effect) } if (!is.null(power) && !is.null(kappa)){ beta <- 1 - power M <- qnorm(1-(sig.level/2)) + qnorm(1-beta) numer <- 4*M^2*(kappa^2*T*G + S) denom <- kappa^2*pi^2 upper.N <- numer/denom return(upper.N) } if (!is.null(N) && !is.null(kappa)){ c.val <- qnorm(1-(sig.level/2)) effect.bound <- (0.5*kappa*pi*sqrt(N))/sqrt(S + kappa^2*T*G) power <- pnorm(-c.val + effect.bound) + pnorm(-c.val - effect.bound) return(power) } }
context("Filename tagging") test_that("Tagging yields a character vector", { expect_true(is.character(tag("data.csv", "qc"))); expect_true(is.character(tag(filename("data", ext="tsv")))); }); test_that("Tagging a character vector or a filename gives same results", { x <- "data.txt"; expect_that(tag(x, "qc"), equals(tag(as.filename(x), "qc"))); });
anova(concrete.lm1, concrete.lm0) anova(concrete.lm2, concrete.lm0) anova(concrete.lm3, concrete.lm0) anova(concrete.lm4, concrete.lm0)
SE.xts <-function(x, se.fun, myfun, myfun.IF, prewhiten = FALSE, cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, d.GLM.EN = 5, ...){ if (is.vector(x) || is.null(ncol(x)) || ncol(x) == 1) { x <- as.numeric(x) return(se.fun(x = x, myfun = myfun, myfun.IF = myfun.IF, prewhiten = prewhiten, cleanOutliers = cleanOutliers, fitting.method = fitting.method, freq.include = freq.include, freq.par = freq.par, d.GLM.EN = d.GLM.EN, ...)) } else{ x <- coredata(x) return(apply(x, 2, se.fun, myfun = myfun, myfun.IF = myfun.IF, prewhiten = prewhiten, cleanOutliers = cleanOutliers, fitting.method = fitting.method, freq.include = freq.include, freq.par = freq.par, d.GLM.EN = d.GLM.EN, ...)) } } SE.IF.iid <- function(x, myfun.IF, ...){ N <- length(x) x.IF <- myfun.IF(x, ...) x.IF.2 <- x.IF^2 fit.out <- mean(x.IF.2) return(sqrt(fit.out/N)) } SE.BOOT.iid <- function(x, myfun, prewhiten = FALSE, nsim = 100, ...){ res <- boot(data = x, statistic = function(x,i, ...) myfun(x[i], ...), R = nsim, ... = ...) return(sd(res$t)) } SE.BOOT.cor <- function(x, myfun, myfun.IF, prewhiten = FALSE, nsim = 1000, sim = "fixed", l = round(length(x)/5), ...){ res = tsboot(tseries = x, statistic = function(x, ...) myfun(x, ...), R = nsim, sim = sim, l = l, ...) return(sd(res$t)) } SE.IF.cor <- function(x, myfun.IF, d.GLM.EN = 5, alpha.EN = 0.5, keep = 1, standardize = FALSE, prewhiten = FALSE, cleanOutliers = FALSE, fitting.method = c("Exponential", "Gamma")[1], freq.include = c("All", "Decimate", "Truncate")[1], freq.par = 0.5, return.coef = FALSE, ...){ data.IF <- myfun.IF(x, prewhiten = FALSE, cleanOutliers = cleanOutliers, ...) if(prewhiten){ ar.coeffs <- as.numeric(arima(x = data.IF, order = c(1,0,0), include.mean = TRUE)$coef[1]) data.IF <- as.numeric(arima(x = data.IF, order = c(1,0,0), include.mean = TRUE)$res) } else{ ar.coeffs <- NULL } fit.out <- SE.GLMEN(data.IF, standardize = standardize, d = d.GLM.EN, alpha.EN = alpha.EN, keep = keep, fitting.method = fitting.method, freq.include = freq.include, freq.par = freq.par, prewhiten = prewhiten, ar.coeffs = ar.coeffs, return.coef = return.coef, ...) if(return.coef){ coeffs <- fit.out[[2]] fit.out <- fit.out[[1]] return(list(se = sqrt(fit.out), coef = coeffs)) } return(sqrt(fit.out)) } sd.xts <- xts:::sd.xts
context("Instants") test_that("is.instant/is.timepoint works as expected", { expect_false(is.instant(234)) expect_true(is.instant(as.POSIXct("2008-08-03 13:01:59", tz = "UTC"))) expect_true(is.instant(as.POSIXlt("2008-08-03 13:01:59", tz = "UTC"))) expect_true(is.instant(Sys.Date())) expect_false(is.instant(minutes(1))) expect_true(is.timespan(interval( as.POSIXct("2008-08-03 13:01:59", tz = "UTC"), as.POSIXct("2009-08-03 13:01:59", tz = "UTC")))) }) test_that("now() handles time zone input correctly", { nt <- now("UTC") st <- Sys.time() expect_identical( floor_date(nt, "minute"), floor_date(as.POSIXct(format(as.POSIXct(st), tz = "UTC"), tz = "UTC"), "minute") ) }) test_that("make_datetime returns same values as ISOdatetime", { set.seed(1000) N <- 1e4 y <- as.integer(runif(N, 1800, 2200)) m <- as.integer(runif(N, 1, 12)) d <- as.integer(runif(N, 1, 28)) H <- as.integer(runif(N, 0, 23)) M <- as.integer(runif(N, 0, 59)) S <- runif(N, 0, 59) out1 <- ISOdatetime(y, m, d, H, M, S, tz = "UTC") out2 <- make_datetime(y, m, d, H, M, S) expect_equal(out1, out2) S <- as.integer(runif(N, 0, 59)) out1 <- ISOdatetime(y, m, d, H, M, S, tz = "UTC") out2 <- make_datetime(y, m, d, H, M, S) expect_equal(out1, out2) out3 <- make_date(y, m, d) expect_equal(as.Date(out1), out3) }) test_that("make_datetime replicates as expected", { expect_equal(make_datetime(year = 1999, month = c(11, 12), day = 22, sec = c(10, 11)), as.POSIXct(c("1999-11-22 00:00:10 UTC", "1999-12-22 00:00:11 UTC"), tz = "UTC")) expect_equal(make_datetime(year = c(1999, 2000, 3000), month = c(11, 12), day = 22, sec = c(10, 11, 13, 13)), ymd_hms(c("1999-11-22 00:00:10", "2000-12-22 00:00:11", "3000-11-22 00:00:13", "1999-12-22 00:00:13"), tz = "UTC")) expect_equal(make_datetime(year = c(1999, 2000, 3000), month = c(11, 12), day = 22, sec = c(10, 11, 13, 13), tz = "America/New_York"), ymd_hms(c("1999-11-22 00:00:10", "2000-12-22 00:00:11", "3000-11-22 00:00:13", "1999-12-22 00:00:13"), tz = "America/New_York")) }) test_that("make_datetime propagates NAs as expected", { expect_equal(make_datetime(year = 1999, month = c(11, NA), day = 22, sec = c(10, 11, NA)), as.POSIXct(c("1999-11-22 00:00:10 UTC", NA, NA), tz = "UTC")) })
f.optimal_h = function(x,type){ k = kernel("daniell", 0) spectrumh0 = spectrum(x, kernel= k, taper=0.5, plot = FALSE) len = length(x) h = seq(from = 2,to = min(round(0.3*len),200), by = 1) error = h for(i in 1:length(h)){ if(type == "daniell" || type == "modified.daniell"){ k = f.kernel_addon(type, h[i], steep= FALSE, y = NULL) }else{ k = f.kernel_addon(type = type, h[i], steep = FALSE, y = NULL) } k$coef[1] = 0 spectrumsmoothed = spectrum(x,kernel= k, taper=0.5, plot = FALSE) error[i] = f.stuetzle(spectrumsmooth = spectrumsmoothed,spectrumh0 = spectrumh0) } h_opt = which(error == min(error)) return(h_opt) }
test_that( "test is_false with a logical input returns true when false", { x <- c(TRUE, FALSE, NA) expected <- c(FALSE, TRUE, FALSE) actual <- assertive.base::is_false(x) expect_equal(strip_attributes(actual), expected) expect_named(actual) expect_equal(cause(actual), noquote(c("true", "", "missing"))) } ) test_that( "test is_na with a logical input returns true when NA", { x <- c(TRUE, FALSE, NA) expected <- c(FALSE, FALSE, TRUE) actual <- is_na(x) expect_equal(strip_attributes(actual), expected) expect_named(actual) expect_equal(cause(actual), noquote(c("true", "false", ""))) } ) test_that( "test is_na with a character input and no coercion returns true when not NA", { x <- c("T", "F", "0", "1", "a", "NA", NA) expected <- rep.int(c(FALSE, TRUE), c(6, 1)) actual <- is_na(x, coerce_to_logical = FALSE) expect_equal(strip_attributes(actual), expected) expect_named(actual) expect_equal( cause(actual), noquote(rep.int(c("not missing", ""), c(6, 1))) ) } ) test_that( "test is_na with a character input and coercion returns true when not 'T' or 'F'", { x <- c("T", "F", "0", "1", "a", "NA", NA) expected <- rep.int(c(FALSE, TRUE), c(2, 5)) expect_warning( actual <- is_na(x, coerce_to_logical = TRUE), "Coercing x to class .logical.\\." ) expect_equal(strip_attributes(actual), expected) expect_named(actual) expect_equal( cause(actual), noquote(rep.int(c("true", "false", ""), c(1, 1, 5))) ) } ) test_that( "test is_na with a complex input and no coercion returns true when not NA", { x <- c(0, 1, 1i, 1 + 1i, NA) expected <- rep.int(c(FALSE, TRUE), c(4, 1)) actual <- is_na(x, coerce_to_logical = FALSE) expect_equal(strip_attributes(actual), expected) expect_named(actual) expect_equal( cause(actual), noquote(rep.int(c("not missing", ""), c(4, 1))) ) } ) test_that( "test is_na with a complex input and coercion returns true when not NA", { x <- c(0, 1, 1i, 1 + 1i, NA) expected <- rep.int(c(FALSE, TRUE), c(4, 1)) expect_warning( actual <- is_na(x, coerce_to_logical = TRUE), "Coercing x to class .logical.\\." ) expect_equal(strip_attributes(actual), expected) expect_named(actual) expect_equal( cause(actual), noquote(rep.int(c("false", "true", ""), c(1, 3, 1))) ) } ) test_that( "test is_na with a list input and no coercion returns true when elements contain a single NA", { x <- list(NA, TRUE, FALSE, c(TRUE, FALSE, NA)) expected <- rep.int(c(TRUE, FALSE), c(1, 3)) actual <- is_na(x, coerce_to_logical = FALSE) expect_equal(strip_attributes(actual), expected) expect_named(actual) expect_equal( cause(actual), noquote(rep.int(c("", "not missing"), c(1, 3))) ) } ) test_that( "test is_na with a list input and coercion throw an error", { x <- list(NA, TRUE, FALSE, c(TRUE, FALSE, NA)) expect_error( is_na(x, coerce_to_logical = TRUE), "x cannot be coerced to any of these types: .logical.\\." ) } ) test_that( "test is_not_false with a logical input returns true when not false", { x <- c(TRUE, FALSE, NA) expected <- c(TRUE, FALSE, TRUE) actual <- is_not_false(x) expect_equal(strip_attributes(actual), expected) expect_named(actual) expect_equal(cause(actual), noquote(c("", "false", ""))) } ) test_that( "test is_not_na with a logical input returns true when not NA", { x <- c(TRUE, FALSE, NA) expected <- c(TRUE, TRUE, FALSE) actual <- is_not_na(x) expect_equal(strip_attributes(actual), expected) expect_named(actual) expect_equal(cause(actual), noquote(c("", "", "missing"))) } ) test_that( "test is_not_true with a logical input returns true when not true", { x <- c(TRUE, FALSE, NA) expected <- c(FALSE, TRUE, TRUE) actual <- is_not_true(x) expect_equal(strip_attributes(actual), expected) expect_named(actual) expect_equal(cause(actual), noquote(c("true", "", ""))) } ) test_that( "test is_true with a logical input returns true when true", { x <- c(TRUE, FALSE, NA) expected <- c(TRUE, FALSE, FALSE) actual <- assertive.base::is_true(x) expect_equal(strip_attributes(actual), expected) expect_named(actual) expect_equal(cause(actual), noquote(c("", "false", "missing"))) } )
context("PointMassPrior") test_that("single point prior", { dist <- Normal(two_armed = FALSE) prior <- PointMassPrior(.0, 1.0) expect_equal( bounds(prior), c(0, 0), tolerance = sqrt(.Machine$double.eps), scale = 1) expect_equal( adoptr::expectation(prior, function(x) x), 0, tolerance = sqrt(.Machine$double.eps), scale = 1) expect_equal( adoptr::expectation(prior, function(x) x + 1), 1, tolerance = sqrt(.Machine$double.eps), scale = 1) n1 <- 20 expect_gt( predictive_pdf(dist, prior, 0, n1), predictive_pdf(dist, prior, .1, n1)) expect_gt( predictive_pdf(dist, prior, 0, n1), predictive_pdf(dist, prior, -.1, n1)) expect_equal( stats::integrate( function(z1) predictive_pdf(dist, prior, z1, n1), qnorm(.0005), qnorm(.9995), abs.tol = .0001)$value, 1, tolerance = .001, scale = 1) expect_equal( stats::integrate( function(z1) z1 * predictive_pdf(dist, prior, z1, n1), qnorm(.0005), qnorm(.9995), abs.tol = .0001)$value, 0, tolerance = .001, scale = 1) cprior <- condition(prior, c(-1 , 1)) expect_equal( cprior@theta, .0, tolerance = sqrt(.Machine$double.eps), scale = 1) expect_equal( cprior@mass, 1.0, tolerance = sqrt(.Machine$double.eps), scale = 1) delta <- .3 z1 <- .3*sqrt(20) post <- posterior(dist, prior, z1, n1) expect_equal( post@theta, .0, tolerance = sqrt(.Machine$double.eps), scale = 1) expect_equal( post@mass, 1.0, tolerance = sqrt(.Machine$double.eps), scale = 1) }) test_that("multiple points prior", { dist <- Normal(two_armed = FALSE) prior <- PointMassPrior(c(.0, .5), c(.5, .5)) expect_equal( bounds(prior), c(0, .5), tolerance = sqrt(.Machine$double.eps), scale = 1) expect_equal( adoptr::expectation(prior, function(x) x), .25, tolerance = sqrt(.Machine$double.eps), scale = 1) expect_equal( adoptr::expectation(prior, function(x) x + 1), 1.25, tolerance = sqrt(.Machine$double.eps), scale = 1) n1 <- 20 expect_gt( predictive_pdf(dist, prior, 0, n1), predictive_pdf(dist, prior, -.1, n1)) expect_gt( predictive_pdf(dist, prior, 0.5*sqrt(n1), n1), predictive_pdf(dist, prior, .6*sqrt(n1), n1)) expect_equal( stats::integrate( function(z1) predictive_pdf(dist, prior, z1, n1), qnorm(.0005), qnorm(.9995, mean = .5*sqrt(n1)), abs.tol = .0001)$value, 1, tolerance = .001, scale = 1) expect_gt( stats::integrate( function(z1) z1 * predictive_pdf(dist, prior, z1, n1), qnorm(.0005), qnorm(.9995, mean = .5*sqrt(n1)), abs.tol = .0001)$value, 0) cprior <- condition(prior, c(0 , .1)) expect_equal( cprior@theta, .0, tolerance = sqrt(.Machine$double.eps), scale = 1) expect_equal( cprior@mass, 1.0, tolerance = sqrt(.Machine$double.eps), scale = 1) delta <- .3 z1 <- .3*sqrt(20) post <- posterior(dist, prior, z1, n1) expect_equal( post@theta, c(.0, .5), tolerance = sqrt(.Machine$double.eps), scale = 1) expect_gt( post@mass[2], post@mass[1]) expect_true(is(posterior(Normal(), PointMassPrior(c(0, .5), c(.5, .5)), -.1, 84), "PointMassPrior")) }) test_that("errors are defined correctly", { expect_error( PointMassPrior(theta = .3, mass = .9)) prior <- PointMassPrior(c(.5, 1.5), rep(.5,2)) expect_error( condition(prior, 1)) expect_error( condition(prior, c(0, Inf))) expect_error( condition(prior, c(1, 0))) expect_equal( condition(prior, c(0, 1))@mass, 1, tolerance = sqrt(.Machine$double.eps), scale = 1) }) test_that("show method", { expect_equal( capture.output(show(PointMassPrior(.3, 1))), "PointMass<0.30> " ) expect_equal( capture.output(show(PointMassPrior(c(.0, .3), c(.25, .75)))), "PointMass<Pr[0.00]=0.25;Pr[0.30]=0.75> " ) })
plot_NR <- function(subnic,sig=NULL, sig_thres=0.05, xlab=NULL, ylab=NULL, main=NA, col.axis="azure3", lty.axis=2, lwd.axis=2, border.E="black", col.E=" lty.E=1, lwd.E=1, pch.NR.pos=21, cex.NR.pos=1, col.NR.pos= " col.NR.pt="black", col.NR.lab="black", cex.NR.lab= NA, fac.NR.lab=1.2, col.arrow="black", angle.arrow=20, lwd.arrow=2, length.arrow=0.1,font.sp=2, leg=T, posi.leg="topleft", bty.leg="n", ...){ eig <- round(subnic$eig/sum(subnic$eig) * 100, 2) ar_sub <- subarea(subnic) E <- ar_sub$E if(is.null(sig)){ li <- subnic$li }else{ li <- subnic$li[which(round(sig,2)<=sig_thres),] } sp <- rownames(li) if(pch.NR.pos<21|pch.NR.pos>25){ col.NR.pt <- col.NR.pos } if(is.null(xlab)){ xlab=paste(paste("OMI1",eig[1], sep=" "),"%",sep="")} if(is.null(ylab)){ ylab=paste(paste("OMI2",eig[2], sep=" "),"%",sep="")} plot(subnic$ls, main=main, xlab= xlab, ylab= ylab, type="n",...) polygon(E$x, E$y, border=border.E, col=col.E, lty=lty.E, lwd=lwd.E) M <- dim(li)[1] abline(h=0, lty=lty.axis, lwd=lwd.axis, col=col.axis) abline(v=0, lty=lty.axis, lwd=lwd.axis, col=col.axis) arrows(rep(0,M),rep(0,M),li[,1], li[,2], angle=angle.arrow, col=col.arrow,lwd=lwd.arrow, length=length.arrow) points(li[,1], li[,2], col=col.NR.pt, bg=col.NR.pos, pch=pch.NR.pos, cex=cex.NR.pos) if(!is.na(cex.NR.lab)){ text(li[,1]*fac.NR.lab, li[,2]*fac.NR.lab, sp, col=col.NR.lab, font=font.sp, cex=cex.NR.lab) } if(isTRUE(leg)){ filli <- c(col.E, NA) borderi <- c(border.E, NA) col.leg <- c(NA, col.NR.pt) col.bg <- c(NA, col.NR.pos) pch.leg <- c(NA,pch.NR.pos) posi.cex <-c(NA,cex.NR.pos) tex.leg <- c("E","NR position") if(anyNA(col.NR.pos)){ pch.leg[2] <- NA col.leg[2] <- NA col.NR.pt[2] <- NA tex.leg[2] <- NA } lty.leg <- c(0,0) lwd.leg <- c(0,0) if(lty.E>1){ pch.leg[1] <- NA lty.leg[1] <- lty.E lwd.leg[1] <- lwd.E } legend(posi.leg, legend=tex.leg,fill =filli, border=borderi, pch=pch.leg, col=col.leg, pt.cex = posi.cex, pt.bg=col.bg,lty=lty.leg,pt.lwd=c(NA,1), lwd=lwd.leg, bty=bty.leg,...) } }
predictboth <- function(x, u=NULL, result, np=FALSE){ K <- length(result$param$pi) out <- matrix(log(result$param$pi), nrow(x), K, byrow = TRUE) if(!np){ for (k in 1:K){ for (j in 1:ncol(x)){ obs <- which(!is.na(x[,j])) if (is.factor(x[,j])){ out[obs,k] <- out[obs,k] + log(result$param$alpha[[j]][k,x[obs,j]]) }else{ out[obs,k] <- out[obs,k] + dnorm(x[obs,j], result$param$alpha[[j]][k,1], sqrt(result$param$alpha[[j]][k,2]), log = TRUE) } } } }else{ all.weights <- unlist(result$param$weights) for (k in 1:K){ for (j in 1:ncol(x)){ who <- which(!is.na(x[,j])) if (is.factor(x[,j])){ alpha <- rep(0, nlevels(x[,j])) for (h in 1:nlevels(x[,j])){ alpha[h] <- sum(result$param$weights[which(x[,j]==h), k]) } alpha <- alpha / sum(alpha) out[who,k] <- out[who,k] + log(alpha[x[who,j]]) }else{ se <- seq(min(na.omit(x[,j])) - 5 * result$param$band, max(na.omit(x[,j]))+ 5 * result$param$band, length.out = 1000) size <- (max(se) - min(se)) / length(se) out[,k] <- out[,k] + as.numeric(obj3Cpp(se, xj=x[who,j], weightsR=result$param$weights[who,k], band=result$param$band)) * size } } } } ztest <- unlist(apply(out, 1, which.max)) yhat <- result$param$beta[ztest] if (is.null(u)==FALSE){ u <- as.matrix(u) yhat <- as.matrix(u) %*% result$param$beta[1:ncol(u)] + result$param$beta[ncol(u) + ztest] } list(zhat = ztest, yhat = as.numeric(yhat)) }
logLaplace <- function (formula, data) { formula <- as.formula(formula) X <- model.matrix(formula, data) y <- data$freq fit <- glm (formula, data, family = poisson()) W <- diag (fit$fitted.values) maxloglik <- sum(y * log(fit$fitted.values)) fisherMatrix <- t(X) %*% W %*% X J <- dim(X)[2] value <- maxloglik + 0.5 * J * log (2*pi) - 0.5 * log(det(fisherMatrix)) return(value) }
html_entities <- jsonlite::fromJSON("https://www.w3.org/TR/html5/entities.json") %>% lapply(magrittr::extract2, "characters") %>% list2env() usethis::use_data(html_entities, internal = TRUE)
iidATE <- function(estimator, object.event, object.treatment, object.censor, mydata, contrasts, times, cause, iid.GFORMULA, iid.IPTW, iid.AIPTW, Y.tau, F1.ctf.tau, iW.IPTW, iW.IPTW2, iW.IPCW, iW.IPCW2, augTerm, F1.tau, F1.jump, S.jump, G.jump, dM.jump, index.obsSINDEXjumpC, eventVar.time, time.jumpC, beforeEvent.jumpC, beforeTau.nJumpC, n.obs, n.times, product.limit, ...){ n.contrasts <- length(contrasts) grid <- expand.grid(tau = 1:n.times, contrast = 1:n.contrasts) n.grid <- NROW(grid) tol <- 1e-12 if(attr(estimator,"integral")){ ls.F1tau_F1t <- lapply(1:n.times, function(iT){-colCenter_cpp(F1.jump, center = F1.tau[,iT])}) SG <- S.jump*G.jump SGG <- SG*G.jump SSG <- SG*S.jump iSG <- matrix(0, nrow = NROW(SG), ncol = NCOL(SG)) iSGG <- matrix(0, nrow = NROW(SG), ncol = NCOL(SG)) iSSG <- matrix(0, nrow = NROW(SG), ncol = NCOL(SG)) index.beforeEvent.jumpC <- which(beforeEvent.jumpC) if(length(index.beforeEvent.jumpC)>0){ iSG[index.beforeEvent.jumpC] <- 1/SG[index.beforeEvent.jumpC] iSGG[index.beforeEvent.jumpC] <- 1/SGG[index.beforeEvent.jumpC] iSSG[index.beforeEvent.jumpC] <- 1/SSG[index.beforeEvent.jumpC] } dM_SG <- dM.jump * iSG dM_SGG <- dM.jump * iSGG dM_SSG <- dM.jump * iSSG ls.F1tau_F1t_SG <- lapply(1:n.times, function(iT){ls.F1tau_F1t[[iT]]*iSG}) ls.F1tau_F1t_dM_SGG <- lapply(1:n.times, function(iT){ls.F1tau_F1t[[iT]]*dM_SGG}) ls.F1tau_F1t_dM_SSG <- lapply(1:n.times, function(iT){ls.F1tau_F1t[[iT]]*dM_SSG}) } test.IPTW <- attr(estimator,"IPTW") test.IPCW <- attr(estimator,"IPCW") any.IPTW <- "IPTW" %in% attr(estimator,"full") any.IPTW.IPCW <- "IPTW,IPCW" %in% attr(estimator,"full") any.AIPTW <- "AIPTW" %in% attr(estimator,"full") any.AIPTW.AIPCW <- "AIPTW,AIPCW" %in% attr(estimator,"full") if(test.IPTW){ for(iC in 1:n.contrasts){ factor <- TRUE attr(factor,"factor") <- list() if(any.IPTW.IPCW){ attr(factor,"factor") <- c(attr(factor,"factor"), list(IPTW = colMultiply_cpp(Y.tau * iW.IPCW, scale = -iW.IPTW2[,iC])) ) }else if(any.IPTW){ attr(factor,"factor") <- c(attr(factor,"factor"), list(IPTW = colMultiply_cpp(Y.tau, scale = -iW.IPTW2[,iC])) ) } if(any.AIPTW.AIPCW){ attr(factor,"factor") <- c(attr(factor,"factor"), list(AIPTW = colMultiply_cpp(Y.tau * iW.IPCW - F1.ctf.tau[[iC]], scale = -iW.IPTW2[,iC])) ) }else if(any.AIPTW){ attr(factor,"factor") <- c(attr(factor,"factor"), list(AIPTW = colMultiply_cpp(Y.tau - F1.ctf.tau[[iC]], scale = -iW.IPTW2[,iC])) ) } term.treatment <- attr(predictRisk(object.treatment, newdata = mydata, average.iid = factor, level = contrasts[iC]), "average.iid") if(any.IPTW || any.IPTW.IPCW){ iid.IPTW[[iC]] <- iid.IPTW[[iC]] + term.treatment[["IPTW"]] } if(any.AIPTW || any.AIPTW.AIPCW){ iid.AIPTW[[iC]] <- iid.AIPTW[[iC]] + term.treatment[["AIPTW"]] } } } if(test.IPCW){ factor <- TRUE for(iTime in 1:n.times){ attr(factor, "factor") <- lapply(1:n.contrasts, function(iC){cbind(-iW.IPTW[,iC]*iW.IPCW2[,iTime]*Y.tau[,iTime])}) term.censoring <- attr(predictRisk(object.censor, newdata = mydata, times = c(0,time.jumpC)[index.obsSINDEXjumpC[,iTime]+1], diag = TRUE, product.limit = product.limit, average.iid = factor),"average.iid") for(iC in 1:n.contrasts){ if(any.IPTW || any.IPTW.IPCW){ iid.IPTW[[iC]][,iTime] <- iid.IPTW[[iC]][,iTime] - term.censoring[[iC]] } if(any.AIPTW || any.AIPTW.AIPCW){ iid.AIPTW[[iC]][,iTime] <- iid.AIPTW[[iC]][,iTime] - term.censoring[[iC]] } } } } if(attr(estimator,"integral")){ int.IFF1_tau <- cbind(0,rowCumSum(dM_SG)) factor <- TRUE attr(factor,"factor") <- lapply(1:n.contrasts, function(iC){ matrix(NA, nrow = n.obs, ncol = n.times) }) for(iTau in 1:n.times){ index.col <- prodlim::sindex(jump.times = c(0,time.jumpC), eval.times = pmin(mydata[[eventVar.time]],times[iTau])) for(iC in 1:n.contrasts){ attr(factor,"factor")[[iC]][,iTau] <- cbind(iW.IPTW[,iC] * int.IFF1_tau[(1:n.obs) + (index.col-1) * n.obs]) } } term.intF1_tau <- attr(predictRisk(object.event, newdata = mydata, times = times, cause = cause, average.iid = factor, product.limit = product.limit),"average.iid") for(iC in 1:n.contrasts){ iid.AIPTW[[iC]] <- iid.AIPTW[[iC]] + term.intF1_tau[[iC]] } factor <- TRUE attr(factor, "factor") <- lapply(1:n.contrasts, function(iC){ -colMultiply_cpp(dM_SG*beforeEvent.jumpC, scale = iW.IPTW[,iC]) }) integrand.F1t <- attr(predictRisk(object.event, newdata = mydata, times = time.jumpC, cause = cause, average.iid = factor, product.limit = product.limit), "average.iid") for(iC in 1:n.contrasts){ iid.AIPTW[[iC]] <- iid.AIPTW[[iC]] + subsetIndex(rowCumSum(integrand.F1t[[iC]]), index = beforeTau.nJumpC, default = 0, col = TRUE) } for(iC in 1:n.contrasts){ factor <- TRUE attr(factor,"factor") <- list(AIPTW = colMultiply_cpp(augTerm, scale = -iW.IPTW2[,iC])) term.treatment <- attr(predictRisk(object.treatment, newdata = mydata, average.iid = factor, level = contrasts[iC]), "average.iid") iid.AIPTW[[iC]] <- iid.AIPTW[[iC]] + term.treatment[["AIPTW"]] } factor <- TRUE attr(factor,"factor") <- lapply(1:n.grid, function(iGrid){ iTau <- grid[iGrid,"tau"] iC <- grid[iGrid,"contrast"] return(-colMultiply_cpp(ls.F1tau_F1t_dM_SSG[[iTau]]*beforeEvent.jumpC, scale = iW.IPTW[,iC])) }) integrand.St <- attr(predictRisk(object.event, type = "survival", newdata = mydata, times = time.jumpC-tol, cause = cause, average.iid = factor, product.limit = product.limit), "average.iid") for(iGrid in 1:n.grid){ iTau <- grid[iGrid,"tau"] iC <- grid[iGrid,"contrast"] if(beforeTau.nJumpC[iTau]>0){ iid.AIPTW[[iC]][,iTau] <- iid.AIPTW[[iC]][,iTau] + rowSums(integrand.St[[iGrid]][,1:beforeTau.nJumpC[iTau],drop=FALSE]) } } factor <- TRUE attr(factor,"factor") <- lapply(1:n.grid, function(iGrid){ iTau <- grid[iGrid,"tau"] iC <- grid[iGrid,"contrast"] return(-colMultiply_cpp(ls.F1tau_F1t_dM_SGG[[iTau]]*beforeEvent.jumpC, scale = iW.IPTW[,iC])) }) integrand.G1 <- predictCox(object.censor, newdata = mydata, times = time.jumpC - tol, average.iid = factor)$survival.average.iid factor <- TRUE attr(factor,"factor") <- lapply(1:n.grid, function(iGrid){ iTau <- grid[iGrid,"tau"] iC <- grid[iGrid,"contrast"] return(-colMultiply_cpp(ls.F1tau_F1t_SG[[iTau]]*beforeEvent.jumpC, scale = iW.IPTW[,iC])) }) integrand.G2 <- predictCox(object.censor, newdata = mydata, times = time.jumpC, type = "hazard", average.iid = factor)$hazard.average.iid for(iGrid in 1:n.grid){ iTau <- grid[iGrid,"tau"] iC <- grid[iGrid,"contrast"] if(beforeTau.nJumpC[iTau]>0){ iid.AIPTW[[iC]][,iTau] <- iid.AIPTW[[iC]][,iTau] + rowSums(integrand.G1[[iGrid]][,1:beforeTau.nJumpC[iTau],drop=FALSE] + integrand.G2[[iGrid]][,1:beforeTau.nJumpC[iTau],drop=FALSE]) } } } out <- list() if(attr(estimator,"export.GFORMULA")){ out <- c(out, list(GFORMULA = iid.GFORMULA)) } if(attr(estimator,"export.IPTW")){ out <- c(out, list(IPTW = iid.IPTW)) } if(attr(estimator,"export.AIPTW")){ out <- c(out, list(AIPTW = iid.AIPTW)) } return(out) } iidATE2 <- function(estimator, contrasts, iid.GFORMULA, iid.IPTW, iid.AIPTW, Y.tau, F1.ctf.tau, iW.IPTW, iW.IPTW2, iW.IPCW, iW.IPCW2, augTerm, F1.tau, F1.jump, S.jump, G.jump, dM.jump, iid.nuisance.outcome, iid.nuisance.treatment, iid.nuisance.censoring, iid.nuisance.censoring.diag, iid.nuisance.survival, iid.nuisance.martingale, index.obsSINDEXjumpC, index.obsSINDEXjumpC.int, n.obs, n.times, n.jumps, method.iid, ...){ n.contrasts <- length(contrasts) tol <- 1e-12 if(attr(estimator,"integral")){ SG <- S.jump*G.jump dM_SG <- dM.jump/SG ls.F1tau_F1t <- lapply(1:n.times, function(iT){-colCenter_cpp(F1.jump, center = F1.tau[,iT])}) } test.IPTW <- attr(estimator,"IPTW") test.IPCW <- attr(estimator,"IPCW") any.IPTW <- "IPTW" %in% attr(estimator,"full") any.IPTW.IPCW <- "IPTW,IPCW" %in% attr(estimator,"full") any.AIPTW <- "AIPTW" %in% attr(estimator,"full") any.AIPTW.AIPCW <- "AIPTW,AIPCW" %in% attr(estimator,"full") if(test.IPTW){ for(iC in 1:n.contrasts){ for(iTau in 1:n.times){ if(any.IPTW || any.IPTW.IPCW){ if(any.IPTW){ iFactor <- - Y.tau[,iTau] * iW.IPTW2[,iC] }else if(any.IPTW.IPCW){ iFactor <- - Y.tau[,iTau] * iW.IPCW[,iTau] * iW.IPTW2[,iC] } iid.IPTW[[iC]][,iTau] <- iid.IPTW[[iC]][,iTau] + rowMeans(rowMultiply_cpp(iid.nuisance.treatment[[iC]], scale = iFactor)) } if(any.AIPTW || any.AIPTW.AIPCW){ if(any.AIPTW){ iFactor <- - (Y.tau[,iTau] - F1.ctf.tau[[iC]][,iTau]) * iW.IPTW2[,iC] }else if(any.AIPTW.AIPCW){ iFactor <- - (Y.tau[,iTau] * iW.IPCW[,iTau] - F1.ctf.tau[[iC]][,iTau]) * iW.IPTW2[,iC] } iid.AIPTW[[iC]][,iTau] <- iid.AIPTW[[iC]][,iTau] + rowMeans(rowMultiply_cpp(iid.nuisance.treatment[[iC]], scale = iFactor)) } } } } if(test.IPCW){ for(iTau in 1:n.times){ for(iC in 1:n.contrasts){ if(any.IPTW || any.IPTW.IPCW){ iid.IPTW[[iC]][,iTau] <- iid.IPTW[[iC]][,iTau] + rowMeans(rowMultiply_cpp(iid.nuisance.censoring.diag[[iTau]][,1,], -iW.IPCW2[,iTau]*Y.tau[,iTau]*iW.IPTW[,iC])) } if(any.AIPTW || any.AIPTW.AIPCW){ iid.AIPTW[[iC]][,iTau] <- iid.AIPTW[[iC]][,iTau] + rowMeans(rowMultiply_cpp(iid.nuisance.censoring.diag[[iTau]][,1,], -iW.IPCW2[,iTau]*Y.tau[,iTau]*iW.IPTW[,iC])) } } } } if(attr(estimator,"integral")){ for(iTau in 1:n.times){ integral.F1tau <- calcItermOut(factor = dM_SG, iid = iid.nuisance.outcome[,iTau,,drop=FALSE], indexJump = index.obsSINDEXjumpC.int[,iTau], n = n.obs) integral.F1t <- calcItermIn(factor = -dM_SG, iid = iid.nuisance.outcome[, n.times+(1:n.jumps),,drop=FALSE], indexJump = index.obsSINDEXjumpC.int[,iTau], n = n.obs) for(iC in 1:n.contrasts){ iid.AIPTW[[iC]][,iTau] <- iid.AIPTW[[iC]][,iTau] + rowMeans(rowMultiply_cpp(integral.F1tau + integral.F1t, scale = iW.IPTW[,iC])) } } for(iTau in 1:n.times){ for(iC in 1:n.contrasts){ iid.AIPTW[[iC]][,iTau] <- iid.AIPTW[[iC]][,iTau] + rowMeans(rowMultiply_cpp(iid.nuisance.treatment[[iC]], scale = - augTerm[,iTau] * iW.IPTW2[,iC])) } } for(iTau in 1:n.times){ integral.Surv <- calcItermIn(factor = -ls.F1tau_F1t[[iTau]]*dM_SG/S.jump, iid = iid.nuisance.survival, indexJump = index.obsSINDEXjumpC.int[,iTau], n = n.obs) for(iC in 1:n.contrasts){ iid.AIPTW[[iC]][,iTau] <- iid.AIPTW[[iC]][,iTau] + rowMeans(rowMultiply_cpp(integral.Surv, scale = iW.IPTW[,iC])) } } for(iTau in 1:n.times){ integral.G <- calcItermIn(factor = -ls.F1tau_F1t[[iTau]]*dM_SG/G.jump, iid = iid.nuisance.censoring, indexJump = index.obsSINDEXjumpC.int[,iTau], n = n.obs) integral.dLambda <- calcItermIn(factor = -ls.F1tau_F1t[[iTau]]/SG, iid = iid.nuisance.martingale, indexJump = index.obsSINDEXjumpC.int[,iTau], n = n.obs) for(iC in 1:n.contrasts){ iid.AIPTW[[iC]][,iTau] <- iid.AIPTW[[iC]][,iTau] + rowMeans(rowMultiply_cpp(integral.G + integral.dLambda, scale = iW.IPTW[,iC])) } } } out <- list() if(attr(estimator,"export.GFORMULA")){ out <- c(out, list(GFORMULA = iid.GFORMULA)) } if(attr(estimator,"export.IPTW")){ out <- c(out, list(IPTW = iid.IPTW)) } if(attr(estimator,"export.AIPTW")){ out <- c(out, list(AIPTW = iid.AIPTW)) } return(out) } calcItermOut <- function(factor, iid, indexJump, n){ ls.I <- lapply(1:n, function(iObs){ iIID <- iid[,1,iObs] iFactor <- factor[iObs,1:indexJump[iObs]] if(indexJump[iObs]==0){ return(rep(0,n)) }else { return(iIID*sum(iFactor)) } }) return(do.call(cbind,ls.I)) } calcItermIn <- function(factor, iid, indexJump, n){ ls.I <- lapply(1:n, function(iObs){ iIID <- iid[,1:indexJump[iObs],iObs] iFactor <- factor[iObs,1:indexJump[iObs]] if(indexJump[iObs]==0){ return(rep(0,n)) }else if(indexJump[iObs]==1){ return(iIID*iFactor) }else{ return(rowSums(rowMultiply_cpp(iIID, iFactor))) } }) return(do.call(cbind,ls.I)) }
expected <- eval(parse(text="c(1, 42, 43, 83, 84, 124, 125, 166)")); test(id=0, code={ argv <- eval(parse(text="list(c(1, 42, 83, 124, 166, 43, 84, 125), FALSE)")); .Internal(`qsort`(argv[[1]], argv[[2]])); }, o=expected);
test_that("ungrouped data collected first", { out <- memdb_frame(x = 1:2) %>% do(head(.)) expect_equal(out, tibble(x = 1:2)) }) test_that("named argument become list columns", { mf <- memdb_frame( g = rep(1:3, 1:3), x = 1:6 ) %>% group_by(g) out <- mf %>% do(nrow = nrow(.), ncol = ncol(.)) expect_equal(out$nrow, list(1, 2, 3)) expect_equal(out$ncol, list(2, 2, 2)) }) test_that("unnamed results bound together by row", { mf <- memdb_frame( g = c(1, 1, 2, 2), x = c(3, 9, 4, 9) ) %>% group_by(g) first <- mf %>% do(head(., 1)) expect_equal_tbl(first, tibble(g = c(1, 2), x = c(3, 4))) }) test_that("Results respect select", { mf <- memdb_frame( g = c(1, 1, 2, 2), x = c(3, 9, 4, 9), y = 1:4, z = 4:1 ) %>% group_by(g) expect_message(out <- mf %>% select(x) %>% do(ncol = ncol(.))) expect_equal(out$g, c(1, 2)) expect_equal(out$ncol, list(2L, 2L)) }) test_that("results independent of chunk_size", { mf <- memdb_frame( g = rep(1:3, 1:3), x = 1:6 ) %>% group_by(g) nrows <- function(group, n) { unlist(do(group, nrow = nrow(.), .chunk_size = n)$nrow) } expect_equal(nrows(mf, 1), c(1, 2, 3)) expect_equal(nrows(mf, 2), c(1, 2, 3)) expect_equal(nrows(mf, 10), c(1, 2, 3)) })
print.classified_image <- function(x, digits = NULL, quote = TRUE, na.print = NULL, print.gap = NULL, right = FALSE, max = NULL, useSource = TRUE, ...){ for (item in seq(1, length(x)- 1)){ cat('\nCategory name: "', names(x)[item], '"\n') cat('Colour (as RGB [0:255] values): (', round(x[[item]]$colour[1,1]*255), ', ', round(x[[item]]$colour[2,1]*255), ', ', round(x[[item]]$colour[3,1]*255), ')\n', sep = '') cat(x$summary[[item]], '\n') } cat(x$summary[[length(x)]], '\n') }
[ { "title": "Subjective Ways of Cutting a Continuous Variables", "href": "http://freakonometrics.hypotheses.org/18160" }, { "title": "Blogging about R – presentation and audio", "href": "https://www.r-statistics.com/2010/07/blogging-about-r-presentation-and-audio/" }, { "title": "Opening Up Access to Data: Why APIs May Not Be Enough…", "href": "https://blog.ouseful.info/2014/08/11/opening-up-access-to-data-why-apis-may-not-be-enough/" }, { "title": "Googling Bayes’ pictures", "href": "https://statisfaction.wordpress.com/2011/09/29/googling-bayes-pictures/" }, { "title": "Creating Interactive Plots with R and Highcharts", "href": "https://www.rstudio.com/rviews/2016/10/19/creating-interactive-plots-with-r-and-highcharts/" }, { "title": "Data Mining the California Solar Statistics with R: Part V", "href": "http://www.beyondmaxwell.com/?p=223" }, { "title": "Using R — .Call(“hello”)", "href": "http://mazamascience.com/WorkingWithData/?p=1099" }, { "title": "Example 2015.1: Time to refinance?", "href": "https://feedproxy.google.com/~r/SASandR/~3/VC8dyPiL-hg/example-20151-time-to-refinance.html" }, { "title": "sab-R-metrics: Kernel Density Smoothing", "href": "http://princeofslides.blogspot.com/2011/05/sab-r-metrics-kernel-density-smoothing.html" }, { "title": "It’s a Batsman’s World (Cup)", "href": "https://feedproxy.google.com/~r/graphoftheweek/fzVA/~3/nkyFklCnBF8/its-batsmans-world-cup.html" }, { "title": "Area Plots with Intensity Coloring ~ el nino SST anomalies w/ ggplot2", "href": "https://probabilitynotes.wordpress.com/2010/07/10/area-plots-with-intensity-coloring-el-nino-sst-anomalies-w-ggplot2/" }, { "title": "An easy way to manage your genome-wide-association data: GenABEL package.", "href": "http://www.milanor.net/blog/an-easy-way-to-manage-your-genome-wide-association-data-genabel-package/" }, { "title": "Comparing performance in R, foreach/doSNOW, SAS, and NumPY (MKL)", "href": "http://statsadventure.blogspot.com/2012/06/comparing-performance-in-r.html" }, { "title": "Making inferences about unusual population quantities.", "href": "http://biostatmatt.com/archives/2604" }, { "title": "New visualization of the distribution of p-values using d3.js", "href": "http://rpsychologist.com/new-d3-js-visualization-p-curve-distribution" }, { "title": "%EXPORT_TO_R SAS Macro Code", "href": "http://econometricsense.blogspot.com/2011/05/exporttor-sas-macro-code.html" }, { "title": "Improving R Data Visualisations Through Design", "href": "http://spatial.ly/2014/11/r-visualisations-design/" }, { "title": "R style tip: prefer functions that return data frames", "href": "http://www.win-vector.com/blog/2014/06/r-style-tip-prefer-functions-that-return-data-frames/?utm_source=rss&utm_medium=rss&utm_campaign=r-style-tip-prefer-functions-that-return-data-frames" }, { "title": "Simulation and resampling", "href": "https://quantsignals.wordpress.com/2012/06/20/simulation-and-resampling/" }, { "title": "nnet2sas() supports centering and scaling", "href": "https://heuristically.wordpress.com/2012/10/04/nnet2sas-supports-centering-and-scaling/" }, { "title": "Loading Historical Stock Data", "href": "https://systematicinvestor.wordpress.com/2013/06/01/loading-historical-stock-data/" }, { "title": "Bayesian statistics and clinical trial conclusions: Why the OPTIMSE study should be considered positive", "href": "http://www.datasurg.net/2015/02/16/bayesian-statistics-and-clinical-trial-conclusions-why-the-optimse-study-should-be-considered-positive/" }, { "title": "A first lambda function with C++11 and Rcpp", "href": "http://gallery.rcpp.org/articles/simple-lambda-func-c++11/" }, { "title": "Passing arguments to an R script from command lines", "href": "http://tuxette.nathalievilla.org/?p=1696" }, { "title": "R jobs (May 19th 2014)", "href": "https://www.r-bloggers.com/r-jobs-may-19th-2014/" }, { "title": "A different way to view probability densities", "href": "http://www.statisticsblog.com/2010/06/a-different-way-to-view-probability-densities/" }, { "title": "PLS Path Modeling with R", "href": "https://gastonsanchez.wordpress.com/2013/01/04/pls-path-modeling-with-r/" }, { "title": "Machine Learning Ex 5.1 – Regularized Linear Regression", "href": "https://web.archive.org/web/http://ygc.name/2011/10/25/machine-learning-5-1-regularized-linear-regression/" }, { "title": "Descriptive Analytics – Part 0 : data exploration", "href": "http://r-exercises.com/2016/10/19/descriptive-analytics-part-0-data-exploration/" }, { "title": "Recology is 1 yr old…", "href": "https://r-ecology.blogspot.com/2011/12/recology-is-1-yr-old.html" }, { "title": "Experimenting With iGraph – and a Hint Towards Ways of Measuring Engagement?", "href": "https://blog.ouseful.info/2012/01/27/experimenting-with-igraph-and-a-hint-towards-ways-of-measuring-engagement/" }, { "title": "How Fantasy Football is Like Stock Picking (Including a Shiny App)", "href": "http://fantasyfootballanalytics.net/2015/03/fantasy-football-is-like-stock-picking.html" }, { "title": "Get those plots", "href": "http://dancingeconomist.blogspot.com/2011/08/get-those-plots.html" }, { "title": "project euler – Problem 31", "href": "https://web.archive.org/web/http://ygc.name/2011/11/08/project-euler-problem-31/" }, { "title": "The R Journal, Volume 8/1, August 2016 – is online!", "href": "https://www.r-bloggers.com/the-r-journal-volume-81-august-2016-is-online/" }, { "title": "How to write the first for loop in R", "href": "http://datascienceplus.com/how-to-write-the-loop-in-r/" }, { "title": "\"R\" : Identifying peaks", "href": "http://nir-quimiometria.blogspot.com/2012/12/r-identifying-peaks.html" }, { "title": "R package building automation", "href": "http://mkao006.blogspot.com/2013/02/r-package-building-automation.html" }, { "title": "Running R on the iPad", "href": "http://blog.revolutionanalytics.com/2010/09/running-r-on-the-ipad.html" }, { "title": "Example 9.17: (much) better pairs plots", "href": "https://feedproxy.google.com/~r/SASandR/~3/pU_HNl9T2cY/example-917-much-better-pairs-plots.html" }, { "title": "Showing explained variance from multilevel models", "href": "https://feedproxy.google.com/~r/danielmarcelino/~3/fUqV2TtdOmw/" }, { "title": "“R for Developers” free web-book: leave your opinion", "href": "http://www.milanor.net/blog/r-for-developers-free-web-book-leave-your-opinion/" }, { "title": "Simple example:How to use foreach and doSNOW packages for parallel computation.", "href": "http://mockquant.blogspot.com/2011/02/simple-examplehow-to-use-foreach-and.html" }, { "title": "xts object – subscript out of bounds", "href": "http://www.copula.de/2013/02/xts-object-subscription-out-of-bounds.html" }, { "title": "Job Search Part 4: Timing Beveridge Curve Movements During A Recession", "href": "http://dancingeconomist.blogspot.com/2011/04/job-search-part-4-timing-beveridge.html" }, { "title": "How to install R packages on an off-line SQL Server 2016 instance", "href": "http://blog.revolutionanalytics.com/2016/05/minicran-sql-server.html" }, { "title": "What can be in an R data.frame column?", "href": "http://www.win-vector.com/blog/2015/04/what-can-be-in-an-r-data-frame-column/" }, { "title": "Flowers/Fractals", "href": "http://ww1.danielmarcelino.com/flowersfractals/" }, { "title": "The Gambling Machine Puzzle", "href": "https://bayesianbiologist.com/2013/03/09/the-gambling-machine-puzzle/" }, { "title": "A terrible 2000 words", "href": "http://val-systems.blogspot.com/2012/03/terrible-2000-words.html" } ]
decompLines <- function(VL, debug = 0) { comp <- getComp(VL, debug = debug) lineNames <- names(VL) if (is.null(lineNames)) lineNames <- paste("Line", 1:length(VL), sep = "_") if (debug >= 4L) { cat("\n\n\n==================== Raw lines:\n\n") print(VL) } nameComp <- function(cvec) { names(cvec) <- rep(NA_character_, length(cvec)) names(cvec)[grepl("[@A-Ia-i]{1}", cvec)] <- "SQZ" names(cvec)[grepl("[%J-Rj-r]{1}", cvec)] <- "DIF" names(cvec)[grepl("[S-Zs]{1}", cvec)] <- "DUP" names(cvec)[!grepl("[@%A-Za-rs]", cvec)] <- "NUM" cvec } VL <- gsub(",", ".", VL) VL <- gsub("\\s+\\${2}.*$", "", VL) VL <- gsub("(\\+|-){1}([0-9]+)", " \\1\\2", VL) VL <- str_trim(VL, side = "both") VL <- str_replace_all(VL, "([@%A-Za-rs])", " \\1") lineList <- as.list(VL) names(lineList) <- lineNames FUN <- function(x) { unlist(strsplit(x, "\\s+")) } lineList <- lapply(lineList, FUN) lineList <- lapply(lineList, nameComp) if (debug >= 4L) { cat("\n\n\n==================== Lines after preliminary processing:\n\n") print(lineList) DF1 <- lengths(lineList) DF2 <- cumsum(lengths(lineList)) } if ("SQZ" %in% comp) lineList <- lapply(lineList, unSQZ) if (debug >= 4L) { DF3 <- lengths(lineList) DF4 <- cumsum(lengths(lineList)) } if ("DUP" %in% comp) lineList <- lapply(lineList, insertDUPs, debug = debug) if (debug >= 4L) { DF5 <- lengths(lineList) DF6 <- cumsum(lengths(lineList)) } if ("DIF" %in% comp) lineList <- lapply(names(lineList), deDIF, lineList = lineList, debug = debug) if (debug >= 4L) { DF7 <- lengths(lineList) DF8 <- cumsum(lengths(lineList)) } names(lineList) <- lineNames if (("DIF" %in% comp) & (length(lineList) > 1)) lineList <- yValueCheck(lineList, debug = debug) if (debug >= 4L) { DF9 <- lengths(lineList) DF10 <- cumsum(lengths(lineList)) } if (!is.numeric(lineList)) lineList <- lapply(lineList, as.numeric) if (debug >= 4L) { DF11 <- lengths(lineList) DF12 <- cumsum(lengths(lineList)) DF13 <- cumsum(lengths(lineList) - 1) } if (debug >= 4L) { cat("\n\n\n==================== Lines after full processing to numeric:\n\n") print(lineList) } lineList }
library(oce) data(sealevel) rms <- function(x) sqrt(mean(x^2, na.rm=TRUE)) standard <- c("Z0", "SA", "SSA", "MSM", "MM", "MSF", "MF", "ALP1", "2Q1", "SIG1", "Q1", "RHO1", "O1", "TAU1", "BET1", "NO1", "CHI1", "PI1", "P1", "S1", "K1", "PSI1", "PHI1", "THE1", "J1", "SO1", "OO1", "UPS1", "OQ2", "EPS2", "2N2", "MU2", "N2", "NU2", "GAM2", "H1", "M2", "H2", "MKS2", "LDA2", "L2", "T2", "S2", "R2", "K2", "MSN2", "ETA2", "MO3", "M3", "SO3", "MK3", "SK3", "MN4", "M4", "SN4", "MS4", "MK4", "S4", "SK4", "2MK5", "2SK5", "2MN6", "M6", "2MS6", "2MK6", "2SM6", "MSK6", "3MK7", "M8") unresolvable <- c("SA", "PI1", "S1", "PSI1", "GAM2", "H1", "H2", "T2", "R2") resolvable <- standard[!(standard %in% unresolvable)] test_that("invalid constituent name is detected", { expect_error(m <- tidem(sealevel, constituents="unknown"), "'unknown' is not a known tidal constituent") expect_silent(m <- tidem(sealevel, constituents=c("M2", "S2"))) expect_output(summary(m, constituent="M2"), "Call:") expect_output( expect_warning( summary(m, constituent=c("M2", "unknown")), "the following constituents are not handled: 'unknown'"), "Call:") expect_warning( expect_error( summary(m, constituent="unknown"), "no known constituents were provided"), "the following constituents are not handled: 'unknown'") }) test_that("tidemAstron() agrees with T_TIDE", { ctime <- numberAsPOSIXct(721574.000000, "matlab") a <- tidemAstron(ctime) expect_equal(a$astro, c(-0.02166309284298506554, 0.39911836945395862131, 0.37745527661097355576, 0.47352449224491977020, 0.34168253766652512127, 0.78477994483145496751)) expect_equal(a$ader, c(0.96613680796658762961, 0.03660110133318876524, 0.00273790929977641003, 0.00030945458977503856, 0.00014709398916752078, 0.00000013079800385981)) }) test_that("tidemVuf() agrees with T_TIDE", { t <- numberAsPOSIXct(721574, "matlab") latitude <- 69.45 j <- c(5, 6, 8, 9, 11, 13, 16, 21, 25, 28, 29, 35, 40, 42, 48, 54, 57, 61, 68, 69, 72, 74, 79, 82, 84, 86, 89, 96, 99, 103, 106, 110, 113, 120, 125, 138, 19, 59) a <- tidemVuf(t, j, latitude) expect_equal(a$v, c(-0.07440612279096114889, 0.04332618568597013109, -0.63970152519195266905, -0.52196921671502138906, -0.59637533950598253796, -0.67078146229694368685, -0.29813860059806529534, -0.37254472338902644424, -0.44695084617998759313, 0.42569201551889079838, 0.35128589272792964948, -0.01224624858097911329, -0.08665237137194026218, 0.03107993710499101780, -0.04332618568597013109, -0.61773230847693127998, 0.00000000000000000000, 0.68050443043098596263, -0.71410764798291381794, -0.56498927852895519663, -0.41587090907499657533, -0.37254472338902644424, -0.01224624858097911329, -0.08665237137194026218, 0.03107993710499101780, -0.04332618568597013109, 0.00000000000000000000, -0.45919709476096670642, -0.37254472338902644424, -0.05557243426694924437, -0.12997855705791039327, -0.08665237137194026218, -0.04332618568597013109, -0.50252328044693683751, -0.17330474274388052436, -0.21663092842985065545, -0.62745527661097355576, 0.75491055322194711152)) expect_equal(a$u, c(0.00000000000000000000, 0.00000000000000000000, -0.03573008103828116677, -0.04105661783571373097, -0.03475014441038941360, -0.02928112201045270438, 0.07260401446848122053, 0.02260949305395914405, 0.04956689861642670641, 0.09891859169703924592, 0.10028458991622789254, -0.00902641325023753431, 0.00128510133444835950, 0.00461061249607315829, 0.00541437304622621740, 0.00274046290575439633, -0.00026092506352816142, 0.09392399576847017262, -0.02386674896422648698, 0.00729820833418420335, 0.02802386610018536145, 0.02234856799043098349, 0.01002498554229937569, 0.01082874609245243480, 0.00434968743254499687, 0.00515344798269805598, -0.00052185012705632285, 0.03343823914641157885, 0.02208764292690282294, 0.01543935858852559309, 0.01624311913867865220, 0.01056782102892427425, 0.00489252291916989455, 0.03885261219263779625, 0.02165749218490486960, 0.02707186523113108700, 0.00157989768140298702, 0.04412567730772318231)) expect_equal(a$f, c(1.00000000000000000000, 1.00000000000000000000, 0.92726669518607429676, 0.91876560270792528851, 0.91361514379815111919, 0.90841044913845236941, 1.31039292751104730073, 0.94730126197164676860, 0.92467374922680412030, 0.87279495125656747501, 0.78090694856929177003, 1.02141844783349333703, 1.02063321935769968363, 1.02290604140805219124, 1.02102357214471095581, 0.81679072125951690531, 0.99893775156306297003, 0.82805626744653082483, 0.92750848175292388564, 1.03180699580911316993, 0.96721691839548340486, 0.94629499268680894453, 1.04441118036685498538, 1.04248913487514571763, 1.02181946106443310995, 1.01993899145112432159, 0.99787663149786776096, 0.98755127305895584744, 0.94528979230994603089, 1.06636843416604021328, 1.06440598041227074688, 1.04138175242110064822, 1.01885556285168443758, 1.00831312849471199655, 1.08678359633272991758, 1.10963166967591941869, 1.00475518907274086189, 0.86273520229848033036)) }) test_that("tidem constituents match previous versions", { expect_output(m <- tidem(sealevel), "the tidal record is too short to fit for constituents") nameExpected <- c("Z0", "SSA", "MSM", "MM", "MSF", "MF", "ALP1", "2Q1", "SIG1", "Q1", "RHO1", "O1", "TAU1", "BET1", "NO1", "CHI1", "P1", "K1", "PHI1", "THE1", "J1", "SO1", "OO1", "UPS1", "OQ2", "EPS2", "2N2", "MU2", "N2", "NU2", "M2", "MKS2", "LDA2", "L2", "S2", "K2", "MSN2", "ETA2", "MO3", "M3", "SO3", "MK3", "SK3", "MN4", "M4", "SN4", "MS4", "MK4", "S4", "SK4", "2MK5", "2SK5", "2MN6", "M6", "2MS6", "2MK6", "2SM6", "MSK6", "3MK7", "M8") expect_equal(m[["name"]], nameExpected) amplitudeExpected <- c(0.981726026948275, 0.0231120676250417, 0.00140006225693582, 0.00663853819693045, 0.00745395229071014, 0.0108423130558645, 0.00446157918446234, 0.00281566910578963, 0.00500528298165795, 0.00225633758542224, 0.00687335963931585, 0.0445580351701794, 0.00752399221873183, 0.00196300749657538, 0.00597938799085181, 0.00203819136867481, 0.0284640561578009, 0.0999180418904084, 0.00178914911263196, 0.00362251100068132, 0.00537919967694433, 0.00160359553803719, 0.00379934676589881, 0.00171255305464996, 0.00216847454896681, 0.00571278901124493, 0.0187693769736588, 0.016022726878358, 0.137842580014825, 0.0256601572406377, 0.603079326697343, 0.00133915747473446, 0.00876240589152753, 0.0217222462387855, 0.125778285527591, 0.0349926762754095, 0.00220982903284968, 0.00083893864415224, 0.00130054650555345, 0.00140741431875248, 0.0010408092076497, 0.00255136537688709, 0.0030861879324414, 0.0163623512074873, 0.0375601328413247, 0.00436099955739125, 0.0186294733631031, 0.00453447632254121, 0.00359043859975019, 0.000797758792921601, 0.00214528113087127, 0.00101597759514933, 0.00359973331843245, 0.00534334123140572, 0.00273724213778086, 0.00103718497501477, 0.000957878360945973, 0.000475127236372995, 0.00114864012363512, 0.000342820770777957) expect_equal(m[["amplitude"]], amplitudeExpected) phaseExpected <- c(0, 206.139498607823, 272.254674100838, 198.978271969872, 217.9167254883, 340.144074327625, 267.62317978639, 207.078413795351, 101.464421527257, 65.5357202442784, 342.302188914025, 96.2458456476212, 238.605269178581, 236.76128576666, 129.983948949739, 324.497774422381, 119.927278917839, 120.487940952987, 233.836931342051, 62.979342886154, 147.439067140747, 284.820518391198, 120.570371868767, 187.212410971879, 13.0043721493048, 331.840534847604, 310.626542816525, 333.717321201237, 330.236927471862, 328.051268922409, 350.368725117048, 328.535205043259, 3.00739883479745, 342.78169723488, 24.0579944118162, 19.431341600067, 268.869845196679, 43.2013207892101, 197.315487664139, 240.016324425789, 260.382546065061, 298.590107017218, 83.2822727979654, 220.098055909548, 270.047584648956, 2.35078120331345, 48.4371100114011, 53.3159599661074, 208.043855367935, 193.84737099018, 21.3566757362311, 236.164405145889, 114.684391797473, 118.84782486352, 161.303558539216, 169.886911046411, 233.604836704444, 283.264844300455, 107.186639217795, 8.34416515384646) expect_equal(m[["phase"]], phaseExpected) expect_equal(fivenum(predict(m)), c(0.02920363602, 0.59938759547, 0.97986651174, 1.38237184987, 1.93382321126)) }) test_that("prediction works with newdata and without newdata", { expect_output( m <- tidem(sealevel), "the tidal record is too short to fit for constituents") p1 <- predict(m) p2 <- predict(m, newdata=sealevel[["time"]]) expect_equal(p1, p2) }) test_that("tailoring of constituents", { tide3 <- tidem(sealevel, constituents = c("M2", "K2")) expect_equal(tide3[["data"]]$name, c("M2", "K2")) expect_output(tide5 <- tidem(sealevel, constituents = c("standard", "-M2")), "the tidal record is too short to fit for constituents") expect_equal(tide5[["data"]]$name, resolvable[resolvable != "M2"]) }) test_that("Foreman (1977 App 7.3) and T-TIDE (Pawlowciz 2002 Table 1) test", { foreman <- read.table("tide_foreman.dat.gz", header=TRUE, stringsAsFactors=FALSE) ttide <- read.table("tide_ttide.dat.gz", skip=9, header=TRUE, stringsAsFactors=FALSE) ttide$name <- gsub("^MS$", "M8", gsub("^UPSI$", "UPS1", ttide$name)) expect_equal(ttide$name, foreman$name) expect_equal(ttide$frequency, foreman$frequency, tolerance=3e-5) data("sealevelTuktoyaktuk") expect_output( m <- tidem(sealevelTuktoyaktuk, constituents=c("standard", "M10"), infer=list(name=c("P1", "K2"), from=c("K1", "S2"), amp=c(0.33093, 0.27215), phase=c(-7.07, -22.40))), "the tidal record is too short to fit for constituents") expect_equal(foreman$name, ttide$name) expect_equal(foreman$freq, ttide$frequency, tolerance=3e-5) expect_equal(foreman$name, m@data$name) expect_equal(foreman$frequency, m@data$freq, tolerance=1e-7) expect_equal(0.33093, m[["amplitude"]][which(m[["name"]]=="P1")]/m[["amplitude"]][which(m[["name"]]=="K1")]) expect_equal(m[["phase"]][which(m[["name"]]=="P1")], m[["phase"]][which(m[["name"]]=="K1")]-(-7.07)) expect_equal(0.27215, m[["amplitude"]][which(m[["name"]]=="K2")]/m[["amplitude"]][which(m[["name"]]=="S2")]) expect_equal(m[["phase"]][which(m[["name"]]=="K2")], m[["phase"]][which(m[["name"]]=="S2")]-(-22.40)) expect_equal(sum(abs(ttide$amplitude - round(m[["amplitude"]], 4))), 0) expect_equal(sum(abs(ttide$phase - round(m[["phase"]], 2))), 0) expect_lt(max(abs(foreman$A - ttide$amplitude)), 0.000201) expect_lt(max(abs(foreman$G - ttide$phase)), 0.121) } )
context("Scoring a DSM object") library(wordspace) library(Matrix) expect_matrix_equal <- function(x, y, tol=1e-6, note="", note1=note, note2=note) { name.x <- deparse(substitute(x)) name.y <- deparse(substitute(y)) expect_equal(dim(x), dim(y), label=sprintf("dim(%s)%s", name.x, note1), expected.label=sprintf("dim(%s)%s", name.y, note2)) x <- as.matrix(x) y <- as.matrix(y) expect_equivalent(x, y, tolerance=tol, label=paste0(name.x, note1), expected.label=paste0(name.y, note2)) } M <- DSM_HieroglyphsMatrix M.dsm <- dsm(M, raw.freq=TRUE) f1 <- rowSums(M) f2 <- colSums(M) N <- sum(M) M.exp <- outer(f1, f2) / N test_that("marginal and expected frequencies are correct", { expect_equivalent(f1, M.dsm$rows$f) expect_equivalent(f2, M.dsm$cols$f) expect_matrix_equal(N, M.dsm$globals$N) }) f <- M f.dsm <- dsm.score(M.dsm, score="frequency", matrix.only=TRUE) MI <- pmax(log2(M / M.exp), 0) MI.dsm <- dsm.score(M.dsm, score="MI", matrix.only=TRUE) t <- ifelse(M >= M.exp, (M - M.exp) / sqrt(M), 0) t.dsm <- dsm.score(M.dsm, score="t-score", matrix.only=TRUE) tsqrt.dsm <- dsm.score(M.dsm, score="t-score", transform="root", matrix.only=TRUE) tlog.dsm <- dsm.score(M.dsm, score="t-score", transform="log", matrix.only=TRUE) test_that("simple AMs and transformations are correct", { expect_matrix_equal(f, f.dsm) expect_matrix_equal(MI, MI.dsm) expect_matrix_equal(t, t.dsm) expect_matrix_equal(sqrt(t), tsqrt.dsm) expect_matrix_equal(log(t+1), tlog.dsm) }) M.R1 <- outer(f1, rep(1, ncol(M))) M.R2 <- N - M.R1 M.C1 <- outer(rep(1, nrow(M)), f2) M.C2 <- N - M.C1 M.O11 <- M M.O12 <- M.R1 - M.O11 M.O21 <- M.C1 - M.O11 M.O22 <- M.C2 - M.O12 M.E11 <- M.R1 * M.C1 / N M.E12 <- M.R1 * M.C2 / N M.E21 <- M.R2 * M.C1 / N M.E22 <- M.R2 * M.C2 / N G2 <- 2 * ( ifelse(M.O11 > 0, M.O11 * log(M.O11 / M.E11), 0) + ifelse(M.O12 > 0, M.O12 * log(M.O12 / M.E12), 0) + ifelse(M.O21 > 0, M.O21 * log(M.O21 / M.E21), 0) + ifelse(M.O22 > 0, M.O22 * log(M.O22 / M.E22), 0) ) G2.sparse <- ifelse(M.O11 > M.E11, G2, 0) G2 <- ifelse(M.O11 >= M.E11, G2, -G2) G2.sparse.dsm <- dsm.score(M.dsm, score="log-likelihood", matrix.only=TRUE) G2.dsm <- dsm.score(M.dsm, score="log-likelihood", sparse=FALSE, negative.ok=TRUE, matrix.only=TRUE) X2 <- N * (abs(M.O11 * M.O22 - M.O12 * M.O21) - N / 2) ^ 2 / (M.R1 * M.R2 * M.C1 * M.C2) X2.sparse <- ifelse(M.O11 > M.E11, X2, 0) X2 <- ifelse(M.O11 >= M.E11, X2, -X2) X2.sparse.dsm <- dsm.score(M.dsm, score="chi-squared", matrix.only=TRUE) X2.dsm <- dsm.score(M.dsm, score="chi-squared", sparse=FALSE, negative.ok=TRUE, matrix.only=TRUE) test_that("complex AMs are correct", { expect_matrix_equal(G2.sparse, G2.sparse.dsm) expect_matrix_equal(G2, G2.dsm) expect_matrix_equal(X2.sparse, X2.sparse.dsm) expect_matrix_equal(X2, X2.dsm) }) S <- as(M, "sparseMatrix") stopifnot(dsm.is.canonical(S)$canonical && dsm.is.canonical(S)$sparse) S.dsm <- dsm(S, raw.freq=TRUE) f.sparse <- dsm.score(S.dsm, score="frequency", matrix.only=TRUE) MI.sparse <- dsm.score(S.dsm, score="MI", matrix.only=TRUE) t.sparse <- dsm.score(S.dsm, score="t-score", matrix.only=TRUE) tsqrt.sparse <- dsm.score(S.dsm, score="t-score", transform="root", matrix.only=TRUE) tlog.sparse <- dsm.score(S.dsm, score="t-score", transform="log", matrix.only=TRUE) G2.sparse.Sdsm <- dsm.score(S.dsm, score="log-likelihood", matrix.only=TRUE) X2.sparse.Sdsm <- dsm.score(S.dsm, score="chi-squared", matrix.only=TRUE) test_that("sparse AMs are identical on sparse matrix", { expect_is(f.sparse, "sparseMatrix") expect_matrix_equal(as.matrix(f.sparse), f.dsm) expect_is(MI.sparse, "sparseMatrix") expect_matrix_equal(as.matrix(MI.sparse), MI.dsm) expect_is(t.sparse, "sparseMatrix") expect_matrix_equal(as.matrix(t.sparse), t.dsm) expect_is(tsqrt.sparse, "sparseMatrix") expect_matrix_equal(as.matrix(tsqrt.sparse), tsqrt.dsm) expect_is(tlog.sparse, "sparseMatrix") expect_matrix_equal(as.matrix(tlog.sparse), tlog.dsm) expect_is(G2.sparse.Sdsm, "sparseMatrix") expect_matrix_equal(as.matrix(G2.sparse.Sdsm), G2.sparse) expect_is(X2.sparse.Sdsm, "sparseMatrix") expect_matrix_equal(as.matrix(X2.sparse.Sdsm), X2.sparse) }) G2.nz.dsm <- dsm.score(M.dsm, score="log-likelihood", sparse=FALSE, negative.ok="nonzero", matrix.only=TRUE) X2.nz.dsm <- dsm.score(M.dsm, score="chi-squared", sparse=FALSE, negative.ok="nonzero", matrix.only=TRUE) G2.nz <- ifelse(M.O11 > 0, G2, 0) G2.nz.Sdsm <- dsm.score(S.dsm, score="log-likelihood", sparse=FALSE, negative.ok="nonzero", matrix.only=TRUE) X2.nz <- ifelse(M.O11 > 0, X2, 0) X2.nz.Sdsm <- dsm.score(S.dsm, score="chi-squared", sparse=FALSE, negative.ok="nonzero", matrix.only=TRUE) test_that("pseudo-sparse AMs are computed correctly", { expect_matrix_equal(G2.nz.dsm, G2) expect_matrix_equal(X2.nz.dsm, X2) expect_matrix_equal(as.matrix(G2.nz.Sdsm), G2.nz) expect_matrix_equal(as.matrix(X2.nz.Sdsm), X2.nz) }) tsqrt.std <- scale(sqrt(t)) tsqrt.std.dsm <- dsm.score(M.dsm, score="t-score", transform="root", scale="standardize", matrix.only=TRUE) test_that("column standardization works", { expect_equivalent(apply(tsqrt.std.dsm, 2, mean), rep(0, ncol(M))) expect_equivalent(apply(tsqrt.std.dsm, 2, sd), rep(1, ncol(M))) expect_matrix_equal(tsqrt.std.dsm, tsqrt.std) }) tsqrt.scale <- scale(sqrt(t), center=FALSE) tsqrt.scale.dsm <- dsm.score(M.dsm, score="t-score", transform="root", scale="scale", matrix.only=TRUE) rms <- function (x) sqrt(sum(x * x) / (length(x) - 1)) test_that("column scaling works", { expect_equivalent(apply(tsqrt.scale.dsm, 2, rms), rep(1, ncol(M))) expect_matrix_equal(tsqrt.scale.dsm, tsqrt.scale) }) tsqrt.scale.sparse <- dsm.score(S.dsm, score="t-score", transform="root", scale="scale", matrix.only=TRUE) test_that("column scaling works for sparse matrix, too", { expect_equivalent(apply(tsqrt.scale.sparse, 2, rms), rep(1, ncol(M))) expect_matrix_equal(as.matrix(tsqrt.scale.sparse), tsqrt.scale) }) tsqrt.norm <- sqrt(t) / rowSums(abs(sqrt(t))) tsqrt.norm.dsm <- dsm.score(M.dsm, score="t-score", transform="root", normalize=TRUE, method="manhattan", matrix.only=TRUE) tsqrt.norm.sparse <- dsm.score(S.dsm, score="t-score", transform="root", normalize=TRUE, method="manhattan", matrix.only=TRUE) test_that("row normalization works", { expect_matrix_equal(tsqrt.norm.dsm, tsqrt.norm) expect_matrix_equal(as.matrix(tsqrt.norm.sparse), tsqrt.norm) }) my.MI <- function (O11, E11, ...) log2(O11 / E11) my.tscore <- function (O, E, ...) (O - E) / sqrt(O) my.tscore.disc <- function (O, E, ...) (O - E) / sqrt(O + 1) my.Dice <- function (O11, R1, C1, ...) 2 * O11 / (R1 + C1) my.ll <- function (O, E, ...) { ll <- 2 * (ifelse(O > 0, O * log(O / E), 0) - (O - E)) ifelse(O >= E, ll, -ll) } my.G2 <- function (O11, O12, O21, O22, E11, E12, E21, E22, ...) { ll <- ifelse(O11 > 0, O11 * log(O11 / E11), 0) + ifelse(O12 > 0, O12 * log(O12 / E12), 0) + ifelse(O21 > 0, O21 * log(O21 / E21), 0) + ifelse(O22 > 0, O22 * log(O22 / E22), 0) ifelse(O11 >= E11, 2 * ll, -2 * ll) } my.tfidf <- function (O11, cols, ..., K=7) O11 * log(1 / cols$df) TT <- DSM_TermTerm TT$cols <- transform(TT$cols, df=((nnzero + 1) / (nrow(TT) + 1))) TC <- DSM_TermContext TC$cols <- transform(TC$cols, df=((nnzero + 1) / (nrow(TC) + 1))) test.AM <- function(model, AM.name, AM.fun, transform="none", sparse=TRUE, negative.ok=!sparse, force.dense=FALSE) { built.in <- dsm.score(model, AM.name, transform=transform, sparse=sparse, negative.ok=negative.ok, matrix.only=TRUE) user.defined <- dsm.score(model, AM.fun, transform=transform, sparse=sparse, negative.ok=negative.ok, matrix.only=TRUE, batchsize=10) if (force.dense) built.in <- as.matrix(built.in) label <- sprintf(" (%s%s%s)", if (transform == "none") "" else paste0(transform, " "), AM.name, if (sparse) if (negative.ok == "nonzero") ", pseudo-sparse" else ", sparse" else "") expect_equal(class(user.defined), class(built.in)) expect_matrix_equal(user.defined, built.in, note2=label) } test_that("user-defined AM match built-in AM (dense matrix, sparse AM)", { test.AM(TT, "MI", my.MI) test.AM(TT, "t-score", my.tscore) test.AM(TT, "Dice", my.Dice) test.AM(TT, "simple-ll", my.ll) test.AM(TT, "log-likelihood", my.G2) test.AM(TT, "tf.idf", my.tfidf) test.AM(TT, "simple-ll", my.ll, transform="log") test.AM(TT, "simple-ll", my.ll, transform="root") test.AM(TT, "simple-ll", my.ll, transform="sigmoid") }) test_that("user-defined AM match built-in AM (dense matrix, dense AM)", { test.AM(TT, "MI", my.MI, sparse=FALSE) test.AM(TT, "t-score", my.tscore.disc, sparse=FALSE) test.AM(TT, "Dice", my.Dice, sparse=FALSE) test.AM(TT, "simple-ll", my.ll, sparse=FALSE) test.AM(TT, "log-likelihood", my.G2, sparse=FALSE) test.AM(TT, "tf.idf", my.tfidf, sparse=FALSE) test.AM(TT, "simple-ll", my.ll, transform="log", sparse=FALSE) test.AM(TT, "simple-ll", my.ll, transform="root", sparse=FALSE) test.AM(TT, "simple-ll", my.ll, transform="sigmoid", sparse=FALSE) }) test_that("user-defined AM match built-in AM (sparse matrix, sparse AM)", { test.AM(TC, "MI", my.MI) test.AM(TC, "t-score", my.tscore) test.AM(TC, "Dice", my.Dice) test.AM(TC, "simple-ll", my.ll) test.AM(TT, "log-likelihood", my.G2) test.AM(TC, "tf.idf", my.tfidf) test.AM(TC, "simple-ll", my.ll, transform="log") test.AM(TC, "simple-ll", my.ll, transform="root") test.AM(TC, "simple-ll", my.ll, transform="sigmoid") }) test_that("user-defined AM match built-in AM (sparse matrix, dense AM)", { test.AM(TC, "MI", my.MI, sparse=FALSE) test.AM(TC, "t-score", my.tscore.disc, sparse=FALSE) test.AM(TC, "Dice", my.Dice, sparse=FALSE, force.dense=TRUE) test.AM(TC, "simple-ll", my.ll, sparse=FALSE) test.AM(TT, "log-likelihood", my.G2, sparse=FALSE) test.AM(TC, "tf.idf", my.tfidf, sparse=FALSE, force.dense=TRUE) test.AM(TC, "simple-ll", my.ll, transform="log", sparse=FALSE) test.AM(TC, "simple-ll", my.ll, transform="root", sparse=FALSE) test.AM(TC, "simple-ll", my.ll, transform="sigmoid", sparse=FALSE) }) test_that("user-defined AM match built-in AM (sparse matrix, quasi-sparse AM)", { test.AM(TC, "MI", my.MI, sparse=FALSE, negative.ok="nonzero") test.AM(TC, "t-score", my.tscore.disc, sparse=FALSE, negative.ok="nonzero") test.AM(TC, "Dice", my.Dice, sparse=FALSE, negative.ok="nonzero") test.AM(TC, "simple-ll", my.ll, sparse=FALSE, negative.ok="nonzero") test.AM(TT, "log-likelihood", my.G2, sparse=FALSE, negative.ok="nonzero") test.AM(TC, "tf.idf", my.tfidf, sparse=FALSE, negative.ok="nonzero") test.AM(TC, "simple-ll", my.ll, transform="log", sparse=FALSE, negative.ok="nonzero") test.AM(TC, "simple-ll", my.ll, transform="root", sparse=FALSE, negative.ok="nonzero") test.AM(TC, "simple-ll", my.ll, transform="sigmoid", sparse=FALSE, negative.ok="nonzero") })
'dss222'
user_agent <- "RAQSAPI library for R" server <- "AQSDatamartAPI" checkaqsparams <- function(...) { errmessage <- vector() error <- FALSE ellipsis_args <- list(...) names(ellipsis_args) <- names(match.call(expand.dots = FALSE)$...) if ("parameter" %in% names(ellipsis_args)) { if (nchar(ellipsis_args$parameter) != 5 | !is.character(ellipsis_args$parameter) | !str_detect(ellipsis_args$parameter, "^[:digit:]+$") ) { error <- TRUE errmessage %<>% c('x' = "parameter must be a 5 digit number (represented as a character string)" ) } } if ("stateFIPS" %in% names(ellipsis_args)) { if (nchar(ellipsis_args$stateFIPS) != 2 | !is.character(ellipsis_args$stateFIPS) ) { error <- TRUE errmessage %<>% c('x' = "stateFIPS must be a two digit number (represented as a character string), please pad stateFIPS less than 2 digits with leading zeros" ) } } if ("countycode" %in% names(ellipsis_args)) { if (nchar(ellipsis_args$countycode) != 3 | !is.character(ellipsis_args$countycode)) { error <- TRUE errmessage %<>% c('x' = "countycode must be a three digit number (represented as a character string), please pad countycode less than three digits with leading zeros" ) } } if ("sitenum" %in% names(ellipsis_args)) { if (nchar(ellipsis_args$sitenum) != 4 | !is.character(ellipsis_args$sitenum)) { error <- TRUE errmessage %<>% c('x' = "sitenum must be a four digit number (represented as a character string), please pad sitenum less than four digits with leading zeros" ) } } if ("MA_code" %in% names(ellipsis_args)) { if ((nchar(ellipsis_args$MA_code) != 4 | nchar(ellipsis_args$MA_code) != 3) | !is.character(ellipsis_args$MA_code)) { error <- TRUE errmessage %<>% c('x' = "MA_code must be a three or four digit number (represented as a character string), please pad MA_code less than three or four digits with leading zeros" ) } } if ("pqao_code" %in% names(ellipsis_args)) { if ((nchar(ellipsis_args$pqao_code) != 4 | nchar(ellipsis_args$pqao_code) != 3) | !is.character(ellipsis_args$pqao_code)) { error <- TRUE errmessage %<>% c('x' = "pqao_code must be a three or four digit number (represented as a character string), please pad pqao_code less than three or four digits with leading zeros" ) } } if ("cbsa_code" %in% names(ellipsis_args)) { if (nchar(ellipsis_args$cbsa_code) != 5 | !is.character(ellipsis_args$cbsa_code)) { error <- TRUE errmessage %<>% c('x' = "cbsa_code must be a five digit number (represented as a character string), please pad cbsa_code less than five digits with leading zeros" ) } } if ("POC" %in% names(ellipsis_args)) { if (nchar(ellipsis_args$POC) != 1 | !is.character(ellipsis_args$POC)) { error <- TRUE errmessage %<>% c('x' = "POC must be a single digit number (represented as a character string)" ) } } if ("bdate" %in% names(ellipsis_args)) { if (!is.Date(ellipsis_args$bdate)) { error <- TRUE errmessage %<>% c('x' = "bdate must be an R date object") } } if ("edate" %in% names(ellipsis_args)) { if (!is.Date(ellipsis_args$edate)) { error <- TRUE errmessage %<>% c('x' = "edate must be an R date object") } } if ("cbdate" %in% names(ellipsis_args)) { if (!is.Date(ellipsis_args$cbdate) & !is.null(ellipsis_args$cbdate)) { error <- TRUE errmessage %<>% c('x' = "cbdate must be an R date object") } } if ("cedate" %in% names(ellipsis_args)) { if (!is.Date(ellipsis_args$cedate) & !is.null(ellipsis_args$cedate)) { error <- TRUE errmessage %<>% c('x' = "cedate must be an R date object") } } if ("email" %in% names(ellipsis_args)) { if (!isValidEmail(ellipsis_args$email)) { error <- TRUE errmessage %<>% c('x' = "invalid email address entered") } } if ("minlat" %in% names(ellipsis_args)) { if ((!between(as.double(ellipsis_args$minlat), -90, 90)) | !is.character(ellipsis_args$minlat)) { error <- TRUE errmessage %<>% c('x' = "minlat must be a numeric (expressed as a string) between -90 and 90" ) } } if ("maxlat" %in% names(ellipsis_args)) { if ((!between(as.double(ellipsis_args$maxlat), -90, 90)) | !is.character(ellipsis_args$minlat)) { error <- TRUE errmessage %<>% c('x' = "maxlat must be a numeric (expressed as a string) between -90 and 90" ) } } if ("minlon" %in% names(ellipsis_args)) { if ((!between(as.double(ellipsis_args$minlon), -180, 180)) | !is.character(ellipsis_args$minlon) ) { error <- TRUE errmessage %<>% c('x' = "minlon must be a numeric (expressed as a string) between -180 and 180" ) } } if ("maxlon" %in% names(ellipsis_args)) { if ((!between(as.double(ellipsis_args$maxlon), -180, 180)) | !is.character(ellipsis_args$maxlon) ) { error <- TRUE errmessage %<>% c('x' = "maxlon must be a numeric (expressed as a string) between -180 and 180" ) } } if ("duration" %in% names(ellipsis_args)) { if (nchar(ellipsis_args$duration) != 1 | !is.character(ellipsis_args$duration) & ellipsis_args$duration %in% 1:9 | ellipsis_args$duration %in% LETTERS[1:26] ) { error <- TRUE errmessage %<>% c('x' = "duration must be a character from '1' to '9' or 'A' to 'Z' (represented as a character string)" ) } } if ("return_header" %in% names(ellipsis_args)) { if (!is.logical(ellipsis_args$return_header)) { error <- TRUE errmessage %<>% c('x' = "return_header must be of type logical") } } if (error) { callingfunction <- rlang::call_name(sys.call(sys.parent(2))) if (is.null(callingfunction)) callingfunction <- "Unknown Environment" callingfunction <- glue(" in: {callingfunction}") c('i' = callingfunction, errmessage) %>% abort } } format_variables_for_api <- function(x, separator="&") { if (length(x) == 0) { return("") } x[vapply(x, is.null, FUN.VALUE = NA)] <- NULL x[vapply(x, is.na, FUN.VALUE = NA)] <- NULL x <- purrr::map_chr(x, as.character) stringr::str_c(names(x), "=", x, collapse = separator) %>% return() } format_multiple_params_for_api <- function(x, separator=",") { if (length(x) == 0) { return("") } x[vapply(x, is.null, FUN.VALUE = NA)] <- NULL x[vapply(x, is.na, FUN.VALUE = NA)] <- NULL x <- purrr::map_chr(x, as.character) paste0(x, collapse = separator) } aqs_ratelimit <- function(waittime=5L) { Sys.sleep(waittime) } aqs <- function(service, filter = NA, user = NA, user_key = NA, variables = NULL, AQS_domain = "aqs.epa.gov") { if (is.null(getOption("aqs_username")) | is.null(getOption("aqs_key"))) {stop("please enter user credentials before using RAQSAPI functions,\n please refer to \'?aqs_credentials()\' for useage infomation \n")} user_agent <- glue("User:{user} via RAQSAPI library for R") %>% httr::user_agent() if (rlang::is_empty(service) & rlang::is_empty(filter)) { path <- glue::glue("/data/api/") }else if (rlang::is_empty(service)) { path <- glue::glue("/data/api/") }else if (rlang::is_empty(filter)) { path <- glue::glue("/data/api/{service}") }else { path <- glue::glue("/data/api/{service}/{filter}") } query <- c(email = I(user), key = I(user_key), variables, recursive = TRUE) %>% as.list query <- query[!is.na(query)] url <- httr::modify_url(scheme = "https", hostname = AQS_domain, url = path, query = query ) AQSresult <- httr::GET(url, user_agent ) aqs_ratelimit() if (httr::http_type(AQSresult) != "application/json") { stop("API did not return json", call. = TRUE) } out <- jsonlite::fromJSON(httr::content(AQSresult, "text"), simplifyDataFrame = TRUE) if ("Header" %in% names(out)) {out$Header %<>% tibble::as_tibble()} if ("Data" %in% names(out)) {out$Data %<>% tibble::as_tibble()} if ("Error" %in% names(out)) {out$Error %<>% tibble::as_tibble()} if (httr::http_error(AQSresult)) { print("RAQSAPI has encountered an error") stop(httr::message_for_status(AQSresult), call. = FALSE ) } out <- structure(.Data = out, class = "AQS_DATAMART_APIv2") out$Data %<>% as_tibble out$Header %<>% as_tibble out$Data$datetime <- NULL if (all(c("date_local", "time_local") %in% colnames(out$Data))) { out$Data %<>% dplyr::mutate(datetime = glue("{date_local} {time_local}")) out$Data %<>% dplyr::mutate(datetime = ymd_hm(.data$`datetime`)) out$Data %<>% dplyr::arrange(.data$datetime) out$Data %<>% dplyr::select(-.data$datetime) } return(out) } isValidEmail <- function(email) { grepl("\\<[A-Z0-9._%+-]+@[A-Z0-9.-]+\\.[A-Z]{2,}\\>", as.character(email), ignore.case = TRUE) } aqs_services_by_site <- function(parameter, bdate, edate, stateFIPS, countycode, sitenum, duration = NA_character_, service, cbdate = NA_Date_, cedate = NA_Date_, AQS_domain = "aqs.epa.gov") { aqs(service = service, filter = "bySite", user = getOption("aqs_username"), user_key = getOption("aqs_key"), variables = list(param = format_multiple_params_for_api(parameter), bdate = format(bdate, format = "%Y%m%d"), edate = format(edate, format = "%Y%m%d"), state = stateFIPS, county = countycode, site = sitenum, duration = duration, cbdate = cbdate, cedate = cedate ), AQS_domain = AQS_domain ) } aqs_services_by_county <- function(parameter, bdate, edate, stateFIPS, countycode, service, duration = NA_character_, cbdate = NA_Date_, cedate = NA_Date_, AQS_domain = "aqs.epa.gov") { aqs(service = service, filter = "byCounty", user = getOption("aqs_username"), user_key = getOption("aqs_key"), variables = list(param = format_multiple_params_for_api(parameter), bdate = format(bdate, format = "%Y%m%d"), edate = format(edate, format = "%Y%m%d"), state = stateFIPS, county = countycode, duration = duration, cbdate = cbdate, cedate = cedate ), AQS_domain = AQS_domain ) } aqs_services_by_state <- function(parameter, bdate, edate, stateFIPS, duration = NA_character_, service, cbdate = NA_Date_, cedate = NA_Date_, AQS_domain = "aqs.epa.gov") { aqs(service = service, filter = "byState", user = getOption("aqs_username"), user_key = getOption("aqs_key"), variables = list(param = format_multiple_params_for_api(parameter), bdate = format(bdate, format = "%Y%m%d"), edate = format(edate, format = "%Y%m%d"), state = stateFIPS, duration = duration, cbdate = cbdate, cedate = cedate ), AQS_domain = AQS_domain ) } aqs_services_by_box <- function(parameter, bdate, edate, minlat, maxlat, minlon, maxlon, duration = NA_character_, service, cbdate = NA_Date_, cedate = NA_Date_, AQS_domain = "aqs.epa.gov") { aqs(service = service, filter = "byBox", user = getOption("aqs_username"), user_key = getOption("aqs_key"), variables = list(param = format_multiple_params_for_api(parameter), bdate = format(bdate, format = "%Y%m%d"), edate = format(edate, format = "%Y%m%d"), minlon = minlon, maxlon = maxlon, minlat = minlat, maxlat = maxlat, duration = duration, cbdate = cbdate, cedate = cedate ), AQS_domain = AQS_domain ) } aqs_services_by_cbsa <- function(parameter, bdate, edate, cbsa_code, duration = NA_character_, service, cbdate = NA_Date_, cedate = NA_Date_, AQS_domain = "aqs.epa.gov") { aqs(service = service, filter = "byCBSA", user = getOption("aqs_username"), user_key = getOption("aqs_key"), variables = list(param = format_multiple_params_for_api(parameter), bdate = format(bdate, format = "%Y%m%d"), edate = format(edate, format = "%Y%m%d"), cbsa = cbsa_code, duration = duration, cbdate = cbdate, cedate = cedate ), AQS_domain = AQS_domain ) } aqs_services_by_pqao <- function(parameter, bdate, edate, pqao_code, service, cbdate = NA_Date_, cedate = NA_Date_, AQS_domain = "aqs.epa.gov") { aqs(service = service, filter = "byPQAO", user = getOption("aqs_username"), user_key = getOption("aqs_key"), variables = list(param = format_multiple_params_for_api(parameter), bdate = format(bdate, format = "%Y%m%d"), edate = format(edate, format = "%Y%m%d"), pqao = pqao_code, cbdate = cbdate, cedate = cedate ), AQS_domain = AQS_domain ) } aqs_services_by_MA <- function(parameter, bdate, edate, MA_code, service, cbdate = NA_Date_, cedate = NA_Date_, AQS_domain = "aqs.epa.gov") { aqs(service = service, filter = "byMA", user = getOption("aqs_username"), user_key = getOption("aqs_key"), variables = list(param = format_multiple_params_for_api(parameter), bdate = format(bdate, format = "%Y%m%d"), edate = format(edate, format = "%Y%m%d"), agency = MA_code, cbdate = cbdate, cedate = cedate ), AQS_domain = AQS_domain ) } aqs_metadata_service <- function(filter, service = NA_character_, AQS_domain = "aqs.epa.gov") { aqs(service = "metaData", filter = filter, user = getOption("aqs_username"), user_key = getOption("aqs_key"), variables = list(service = service), AQS_domain = AQS_domain ) } renameaqsvariables <- function(aqsobject, name1, name2) { if (is.null(aqsobject)) { return(aqsobject) } else if (class(aqsobject) == "AQS_DATAMART_APIv2") { aqsobject$Data %<>% dplyr::rename(!!name1 := 1) aqsobject$Data %<>% dplyr::rename(!!name2 := 2) } else if (all(class(aqsobject[[1]]) == "AQS_DATAMART_APIv2")) { aqsobject %<>% lapply("[[", "Data") %>% dplyr::rename(!!name1 := 1) aqsobject %<>% lapply("[[", "Data") %>% dplyr::rename(!!name2 := 2) } return(aqsobject) } aqsmultiyearparams <- function(parameter, bdate, edate, service, ...) { ellipsis_args <- list(...) if (bdate > edate) { return(rlang::abort(message = "bdate > edate")) } else if (year(bdate) == year(edate)) { bdatevector <- bdate edatevector <- edate } else if (year(bdate) < year(edate)) { bdatevector <- c(bdate, seq.Date(from = ymd( glue("{year(bdate) + 1}-1-1") ), to = edate, by = "year") ) if (month(edate) != 12 && day(edate) != 31) { edatevector <- c(seq.Date(from = ymd(glue("{year(bdate)}-12-31" ) ), to = edate, by = "year"), edate) } else { edatevector <- seq.Date(from = ymd(glue("{year(bdate)}-12-31")), to = edate, by = "year") } } if (length(bdatevector) > length(edatevector)) { edatevector %<>% c(ymd(tail(edatevector, n = 1)) + years(1)) } params <- tibble(parameter = format_multiple_params_for_api(parameter), bdate = bdatevector, edate = edatevector, stateFIPS = ellipsis_args$stateFIPS, countycode = ellipsis_args$countycode, sitenum = ellipsis_args$sitenum, service = service, cbdate = ellipsis_args$cbdate, cedate = ellipsis_args$cedate, minlat = ellipsis_args$minlat, maxlat = ellipsis_args$maxlat, minlon = ellipsis_args$minlon, maxlon = ellipsis_args$maxlon, cbsa_code = ellipsis_args$cbsa_code, pqao_code = ellipsis_args$pqao_code, MA_code = ellipsis_args$MA_code, filter = ellipsis_args$filter, AQS_domain = ellipsis_args$AQS_domain ) params %>% dplyr::select_if(function(x) {!all(is.na(x))}) %>% return() }
dynSurv <- function(object, newdata, newSurvData = NULL, u = NULL, horizon = NULL, type = "first-order", M = 200, scale = 2, ci, progress = TRUE) { if (!inherits(object, "mjoint")) { stop("Use only with 'mjoint' model objects.\n") } if (type != "first-order" && type != "simulated") { stop("order must be specified as either 'first-order' or 'simulated") } data.t <- process_newdata(newdata = newdata, object = object, tobs = NULL, newSurvData = newSurvData) if (!is.null(u) && !is.null(horizon)) { stop("Cannot specify 'u' and 'horizon' times simultaneously") } if (is.null(u)) { if (is.null(horizon)) { u <- object$dmats$t$tj if (length(u) > 1) { u <- c(data.t$tobs, u[u > data.t$tobs]) } } else { u <- horizon + data.t$tobs } } else { if (any(u <= data.t$tobs)) { stop("Landmark time(s) must be greater than last observation time") } } b.hat <- b_mode(data = data.t, theta = object$coefficients) if (b.hat$convergence != 0) { stop("Optimisation failed") } if (type == "first-order") { b.hat <- b.hat$par S.t <- S(b = b.hat, data = data.t, theta = object$coefficients) S.u <- vector(length = length(u)) for (i in 1:length(u)) { data.u <- process_newdata(newdata = newdata, object = object, tobs = u[i], newSurvData = newSurvData) S.u[i] <- S(b = b.hat, data = data.u, theta = object$coefficients) } pred <- data.frame("u" = u, "surv" = S.u / S.t) } if (type == "simulated") { if (progress) { cat("\n") pb <- utils::txtProgressBar(min = 0, max = M, style = 3) } if (missing(ci)) { ci <- 0.95 } else { if (!is.numeric(ci) || (ci < 0) || (ci > 1)) { stop("ci argument has been misspecified.\n") } } alpha <- (1 - ci) / 2 b.curr <- delta.prop <- b.hat$par sigma.prop <- -solve(b.hat$hessian) * scale accept <- 0 surv <- matrix(nrow = length(u), ncol = M) for (m in 1:M) { theta.samp <- thetaDraw(object) mh_sim <- b_metropolis(theta.samp, delta.prop, sigma.prop, b.curr, data.t) b.curr <- mh_sim$b.curr accept <- accept + mh_sim$accept S.t <- S(b = b.curr, data = data.t, theta = theta.samp) S.u <- vector(length = length(u)) for (i in 1:length(u)) { data.u <- process_newdata(newdata = newdata, object = object, tobs = u[i], newSurvData = newSurvData) S.u[i] <- S(b = b.curr, data = data.u, theta = theta.samp) } surv[, m] <- S.u / S.t if (progress) { utils::setTxtProgressBar(pb, m) } } if (progress) { close(pb) } surv.mean <- apply(surv, 1, mean) surv.med <- apply(surv, 1, median) surv.low <- apply(surv, 1, quantile, prob = alpha) surv.upp <- apply(surv, 1, quantile, prob = 1 - alpha) pred <- data.frame("u" = u, "mean" = surv.mean, "median" = surv.med, "lower" = surv.low, "upper" = surv.upp) } out <- list("pred" = pred, "fit" = object, "newdata" = newdata, "newSurvData" = newSurvData, "u" = u, "data.t" = data.t, "type" = type, "horizon" = horizon, "b.hat" = b.hat) if (type == "simulated") { out$M <- ifelse(type == "simulated", M, NULL) out$accept <- ifelse(type == "simulated", accept / M, NULL) } class(out) <- "dynSurv" return(out) }
initiate.startValues_AFT <- function(Formula, data, model, nChain=1, beta1=NULL, beta2=NULL, beta3=NULL, beta=NULL, gamma=NULL, theta=NULL, y1=NULL, y2=NULL, y=NULL, LN.mu=NULL, LN.sigSq=NULL, DPM.class1=NULL, DPM.class2=NULL, DPM.class3=NULL, DPM.class=NULL, DPM.mu1=NULL, DPM.mu2=NULL, DPM.mu3=NULL, DPM.mu=NULL, DPM.zeta1=NULL, DPM.zeta2=NULL, DPM.zeta3=NULL, DPM.zeta=NULL, DPM.tau=NULL) { ret <- vector("list", nChain) chain = 1 while(chain <= nChain){ if(length(Formula)[2]==1) { cat(paste("Start values are initiated for univariate ", model, " model...", sep = ""), cat("\n")) LT <- model.part(Formula, data=data, lhs=1) y.mat <- model.part(Formula, data=data, lhs=2) Y <- cbind(y.mat, LT) Xmat <- model.frame(formula(Formula, lhs=0, rhs=1), data=data) p <- ncol(Xmat) n <- nrow(Xmat) if(!is.null(beta1)) stop(paste("'beta1' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(beta2)) stop(paste("'beta2' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(beta3)) stop(paste("'beta3' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(gamma)) stop(paste("'gamma' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(theta)) stop(paste("'theta' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(y1)) stop(paste("'y1' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(y2)) stop(paste("'y2' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(DPM.class1)) stop(paste("'DPM.class1' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(DPM.class2)) stop(paste("'DPM.class2' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(DPM.class3)) stop(paste("'DPM.class3' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(DPM.mu1)) stop(paste("'DPM.mu1' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(DPM.mu2)) stop(paste("'DPM.mu2' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(DPM.mu3)) stop(paste("'DPM.mu3' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(DPM.zeta1)) stop(paste("'DPM.zeta1' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(DPM.zeta2)) stop(paste("'DPM.zeta2' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(DPM.zeta3)) stop(paste("'DPM.zeta3' is for semi-competing risks models so it must be specified as NULL for univariate ", model, " model.", sep = "")) if(!is.null(beta)){ if(length(beta) != p) stop(paste("Length of starting value for beta must be", p)) } if(is.null(beta)) beta <- runif(p, -0.1, 0.1) if(!is.null(y)){ if(length(y) != n) stop("Length of starting value for y must be n") } if(is.null(y)) { y <- log(Y[,1]) y[y == -Inf] <- 0 } if(model == "LN") { if(!is.null(LN.mu)){ if(length(LN.mu) != 1) stop("Length of starting value for LN.mu must be 1 for univariate survival analysis") } if(is.null(LN.mu)) LN.mu <- runif(1, -0.1, 0.1) if(!is.null(LN.sigSq)){ if(length(LN.sigSq) != 1) stop("Length of starting value for LN.sigSq must be 1 for univariate survival analysis") } if(is.null(LN.sigSq)) LN.sigSq <- runif(1, 0.5, 1.5) } if(model == "DPM") { if(!is.null(DPM.class)){ if(length(DPM.class) != n) stop(paste("Length of starting value for DPM.class must be", n)) } if(is.null(DPM.class)) DPM.class <- sample(1:2, size=n, replace=TRUE) if(!is.null(DPM.tau)){ if(length(DPM.tau) != 1) stop("Length of starting value for DPM.tau must be 1 for univariate survival analysis") } if(is.null(DPM.tau)) DPM.tau <- c(0.5) if(!is.null(DPM.zeta)){ if(length(DPM.zeta) != n) stop(paste("Length of starting value for DPM.zeta must be", n)) } if(is.null(DPM.zeta)) DPM.zeta <- rep(1/0.01, n) if(!is.null(DPM.mu)){ if(length(DPM.mu) != n) stop(paste("Length of starting value for DPM.mu must be", n)) } if(is.null(DPM.mu)) DPM.mu <- rep(1, n) } start.common <- list(beta=beta, y=y) start.LN <- list(LN.mu=LN.mu, LN.sigSq=LN.sigSq) start.DPM <- list(DPM.class=DPM.class, DPM.mu=DPM.mu, DPM.zeta=DPM.zeta, DPM.tau=DPM.tau) if(model == "LN"){ value <- list(common=start.common, LN=start.LN) } if(model == "DPM"){ value <- list(common=start.common, DPM=start.DPM) } } if(length(Formula)[2]==3) { cat(paste("Start values are initiated for semi-competing risks ", model[1], " model...", sep = ""), cat("\n")) LT <- model.part(Formula, data=data, lhs=1) y1.mat <- model.part(Formula, data=data, lhs=2) y2.mat <- model.part(Formula, data=data, lhs=3) Y <- cbind(y1.mat, y2.mat, LT) Xmat1 <- model.frame(formula(Formula, lhs=0, rhs=1), data=data) Xmat2 <- model.frame(formula(Formula, lhs=0, rhs=2), data=data) Xmat3 <- model.frame(formula(Formula, lhs=0, rhs=3), data=data) p1 <- ncol(Xmat1) p2 <- ncol(Xmat2) p3 <- ncol(Xmat3) n <- nrow(Xmat1) if(!is.null(beta)) stop(paste("'beta' is for univariate models so it must be specified as NULL for semi-competing risks ", model, " model.", sep = "")) if(!is.null(y)) stop(paste("'y' is for univariate models so it must be specified as NULL for semi-competing risks ", model, " model.", sep = "")) if(!is.null(DPM.class)) stop(paste("'DPM.class' is for univariate models so it must be specified as NULL for semi-competing risks ", model, " model.", sep = "")) if(!is.null(DPM.mu)) stop(paste("'DPM.mu' is for univariate models so it must be specified as NULL for semi-competing risks ", model, " model.", sep = "")) if(!is.null(DPM.zeta)) stop(paste("'DPM.zeta' is for univariate models so it must be specified as NULL for semi-competing risks ", model, " model.", sep = "")) if(!is.null(beta1)){ if(length(beta1) != p1) stop(paste("Length of starting value for beta1 must be", p1)) } if(is.null(beta1)) beta1 <- runif(p1, -0.1, 0.1) if(!is.null(beta2)){ if(length(beta2) != p2) stop(paste("Length of starting value for beta2 must be", p2)) } if(is.null(beta2)) beta2 <- runif(p2, -0.1, 0.1) if(!is.null(beta3)){ if(length(beta3) != p3) stop(paste("Length of starting value for beta3 must be", p3)) } if(is.null(beta3)) beta3 <- runif(p3, -0.1, 0.1) if(!is.null(theta)){ if(length(theta) != 1) stop("Length of starting value for theta must be 1") } if(is.null(theta)) theta <- runif(1, 0.1, 1.1) if(!is.null(gamma)){ if(length(gamma) != n) stop("Length of starting value for gamma must be n") } if(is.null(gamma)) gamma <- rnorm(n, 0, sqrt(theta)) if(!is.null(y1)){ if(length(y1) != n) stop("Length of starting value for y1 must be n") } if(is.null(y1)) { y1 <- log(Y[,1]) y1[y1 == -Inf] <- 0 } if(!is.null(y2)){ if(length(y2) != n) stop("Length of starting value for y2 must be n") } if(is.null(y2)) { y2 <- log(Y[,3]) y2[y2 == -Inf] <- 0 } if(model == "LN") { if(!is.null(LN.mu)){ if(length(LN.mu) != 3) stop("Length of starting value for LN.mu must be 3 for semi-competing risks analysis") } if(is.null(LN.mu)) LN.mu <- runif(3, -0.1, 0.1) if(!is.null(LN.sigSq)){ if(length(LN.sigSq) != 3) stop("Length of starting value for LN.sigSq must be 3 for semi-competing risks analysis") } if(is.null(LN.sigSq)) LN.sigSq <- runif(3, 0.5, 1.5) } if(model == "DPM") { if(!is.null(DPM.class1)){ if(length(DPM.class1) != n) stop(paste("Length of starting value for DPM.class1 must be", n)) } if(is.null(DPM.class1)) DPM.class1 <- sample(1:2, size=n, replace=TRUE) if(!is.null(DPM.class2)){ if(length(DPM.class2) != n) stop(paste("Length of starting value for DPM.class2 must be", n)) } if(is.null(DPM.class2)) DPM.class2 <- sample(1:2, size=n, replace=TRUE) if(!is.null(DPM.class3)){ if(length(DPM.class3) != n) stop(paste("Length of starting value for DPM.class3 must be", n)) } if(is.null(DPM.class3)) DPM.class3 <- sample(1:2, size=n, replace=TRUE) if(!is.null(DPM.tau)){ if(length(DPM.tau) != 3) stop("Length of starting value for DPM.tau must be 3 for semi-competing risks analysis") } if(is.null(DPM.tau)) DPM.tau <- c(0.5, 0.5, 0.5) if(!is.null(DPM.zeta1)){ if(length(DPM.zeta1) != n) stop(paste("Length of starting value for DPM.zeta1 must be", n)) } if(is.null(DPM.zeta1)) DPM.zeta1 <- rep(1/0.01, n) if(!is.null(DPM.zeta2)){ if(length(DPM.zeta2) != n) stop(paste("Length of starting value for DPM.zeta2 must be", n)) } if(is.null(DPM.zeta2)) DPM.zeta2 <- rep(1/0.01, n) if(!is.null(DPM.zeta3)){ if(length(DPM.zeta3) != n) stop(paste("Length of starting value for DPM.zeta3 must be", n)) } if(is.null(DPM.zeta3)) DPM.zeta3 <- rep(1/0.01, n) if(!is.null(DPM.mu1)){ if(length(DPM.mu1) != n) stop(paste("Length of starting value for DPM.mu1 must be", n)) } if(is.null(DPM.mu1)) DPM.mu1 <- rep(1, n) if(!is.null(DPM.mu2)){ if(length(DPM.mu2) != n) stop(paste("Length of starting value for DPM.mu2 must be", n)) } if(is.null(DPM.mu2)) DPM.mu2 <- rep(1, n) if(!is.null(DPM.mu3)){ if(length(DPM.mu3) != n) stop(paste("Length of starting value for DPM.mu3 must be", n)) } if(is.null(DPM.mu3)) DPM.mu3 <- rep(1, n) } start.common <- list(beta1=beta1, beta2=beta2, beta3=beta3, gamma=gamma, theta=theta, y1=y1, y2=y2) start.LN <- list(LN.mu=LN.mu, LN.sigSq=LN.sigSq) start.DPM <- list(DPM.class1=DPM.class1, DPM.class2=DPM.class2, DPM.class3=DPM.class3, DPM.mu1=DPM.mu1, DPM.mu2=DPM.mu2, DPM.mu3=DPM.mu3, DPM.zeta1=DPM.zeta1, DPM.zeta2=DPM.zeta2, DPM.zeta3=DPM.zeta3, DPM.tau=DPM.tau) if(model == "LN"){ value <- list(common=start.common, LN=start.LN) } if(model == "DPM"){ value <- list(common=start.common, DPM=start.DPM) } } ret[[chain]] <- value chain = chain + 1 } return(ret) }
varcub00 <-function(m,pai,csi){ (m-1)*(pai*csi*(1-csi)+(1-pai)*(((m+1)/12) + pai*(m-1)*(csi-1/2)^2 )) }
ym3 <- function(n,t){ if(n<7 || n%%2==0){ cat("Enter v >=7 and odd\n") } else{ v<-n b<-v r<-((v+1)/2)-1-t k<-r m<-(v-1)/2 l<-c() l[1]<-v-6-(m-4+t) for(i in 2:(t+2)){ l[i]<-0 } if(m>3 && m>(t+2)){ for(i in (t+3):m){ l[i]<-l[i-1]+1 } } cat("Following is a Youden - ",m,"Square\n") mat<-circulant(n) print.matrix <- function(m){ write.table(format(m, justify="centre"), row.names=F, col.names=F, quote=F,sep=" ") } print.matrix(mat[(t+1):(((v+1)/2)-1),]) cat("\n") cat("The incomplete columns of this Youden - ",m,"square gives the PBIB design with the following parameters:\n") cat("v = ",v," b = ",b," r =",r," k = ",k,"\n") for(i in 1:m){ cat("lambda_",i," = ",l[i]," ") } cat("\n") } }
require(OpenMx) options(mxCondenseMatrixSlots=TRUE) require(mvtnorm) set.seed(476) A <- matrix(0,1000,1000) A[lower.tri(A)] <- runif(499500, -0.025, 0.025) A <- A + t(A) diag(A) <- runif(1000,0.95,1.05) y <- t(rmvnorm(1,sigma=A*0.5)) y <- y + rnorm(1000,sd=sqrt(0.5)) x <- rnorm(1000) dat <- cbind(y,x) colnames(dat) <- c("y","x") ge <- mxExpectationGREML(V="V",yvars="y", Xvars="x", addOnes=T) gff <- mxFitFunctionGREML() mxdat <- mxData(observed = dat, type="raw", sort=FALSE) testmod <- mxModel( "GREML_1GRM_1trait", mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "ve", lbound = 0.0001, name = "Ve"), mxMatrix(type = "Full", nrow = 1, ncol=1, free=T, values = var(y)/2, labels = "va", name = "Va"), mxMatrix("Iden",nrow=1000,name="I"), mxMatrix("Symm",nrow=1000,free=F,values=A,name="A"), mxAlgebra((A%x%Va) + (I%x%Ve), name="V"), mxAlgebra(Va/(Va+Ve), name="h2"), mxCI("h2"), mxdat, ge, gff ) testrun <- mxRun(testmod,intervals = T) summary(testrun) scm <- chol2inv(chol(testrun$output$hessian/2)) pointest <- testrun$output$estimate h2se <- sqrt( (pointest[2]/(pointest[1]+pointest[2]))^2 * ( (scm[2,2]/pointest[2]^2) - (2*scm[1,2]/pointest[1]/(pointest[1]+pointest[2])) + (sum(scm)*(pointest[1]+pointest[2])^-2) )) mxEval(h2,testrun,T)[1,1] + 2*c(-h2se,h2se) testrun$output$confidenceIntervals
Sys.setenv("RSTUDIO_PANDOC"="C:/Program Files/RStudio/bin/pandoc") commit_memo <- "'pnadc'" github_password <- readLines( file.path( path.expand( "~" ) , "github password.txt" ) ) source( file.path( path.expand( "~" ) , "Github\\asdfree\\vignetterator\\descriptive_statistics_blocks.R" ) ) source( file.path( path.expand( "~" ) , "Github\\asdfree\\vignetterator\\measures_of_uncertainty_blocks.R" ) ) source( file.path( path.expand( "~" ) , "Github\\asdfree\\vignetterator\\tests_of_association_blocks.R" ) ) needs_travis_build_status_line <- "[![Build Status](https://travis-ci.org/asdfree/chapter_tag.svg?branch=master)](https://travis-ci.org/asdfree/chapter_tag) [![Build status](https://ci.appveyor.com/api/projects/status/github/asdfree/chapter_tag?svg=TRUE)](https://ci.appveyor.com/project/ajdamico/chapter_tag)" needs_catalog_block <- '`lodown` also provides a catalog of available microdata extracts with the `get_catalog()` function. After requesting the CHAPTER_TAG catalog, you could pass a subsetted catalog through the `lodown()` function in order to download and import specific extracts (rather than all available extracts).\n\n```{r eval = FALSE , results = "hide" }\nlibrary(lodown)\n needs_dplyr_block <- ' readme_md_text <- " pull_chunk <- function( text_file , code_chunk ){ metadata_lines <- readLines( text_file ) start_line <- grep( paste0( "~~~\\{(.*)" , code_chunk , "(.*)\\}(.*)" ) , metadata_lines ) + 1 if( length( start_line ) == 0 ) return( "" ) end_lines <- grep( "~~~" , metadata_lines ) end_line <- min( end_lines[ end_lines >= start_line ] ) - 1 metadata_lines[ start_line:end_line ] } pull_line <- function( text_file , code_line ){ this_line <- grep( paste0( "^" , code_line , ":" ) , readLines( text_file ) , value = TRUE ) if( length( this_line ) == 0 ) "" else as.character( gsub( paste0( code_line , ":( +)?" ) , "" , this_line ) ) } book_folder <- "C:/Users/anthonyd/Documents/Github/asdfree/" sub_lines <- c( "chapter_title" , "lodown_password_parameters" , "get_catalog_password_parameters" , "authorship_line" , "table_structure" , "generalizable_population" , "publication_period" , "administrative_organization" , "catalog_subset_description" , "catalog_subset" , "sql_tablename" , "income_variable_description" , "income_variable" , "ratio_estimation_numerator" , "ratio_estimation_denominator" , "group_by_variable" , "categorical_variable" , "linear_variable" , "binary_variable" , "subset_definition_description" , "subset_definition" , "linear_narm" , "categorical_narm" , "ratio_narm" , "binary_narm" ) sub_chunks <- c( "analysis_examples_loading_block" , "analysis_examples_survey_design" , "variable_recoding_block" , "replication_example_block" , "dataset_introduction" , "convey_block" , "replacement_block" ) needs_this_block <- c( "needs_catalog_block" , "needs_srvyr_block" , "needs_dplyr_block" , "needs_travis_build_status_line" ) library(bookdown) library(rmarkdown) library(stringr) metafiles <- sort( list.files( paste0( book_folder , 'metadata/' ) , full.names = TRUE ) ) full_text <- lapply( metafiles , readLines ) chapter_tag <- gsub( "\\.txt" , "" , basename( metafiles ) ) for( this_line in sub_lines ){ assign( this_line , sapply( metafiles , function( fn ) pull_line( fn , this_line ) ) ) } for( this_chunk in sub_chunks ){ assign( this_chunk , sapply( metafiles , function( fn ) pull_chunk( fn , this_chunk ) ) ) } fixed_chapters <- 6 rmds_to_clear <- paste0( str_pad( ( fixed_chapters + 1 ):99 , 2 , pad = '0' ) , "\\-" , collapse = "|" ) file.remove( grep( rmds_to_clear , list.files( book_folder , full.names = TRUE ) , value = TRUE ) ) for ( i in seq_along( chapter_tag ) ){ this_rmd <- paste0( book_folder , str_pad( fixed_chapters + i , 2 , pad = '0' ) , "-" , chapter_tag[ i ] , ".Rmd" ) rmd_lines <- readLines( paste0( book_folder , "skeleton/skeleton.Rmd" ) ) is_survey <- any( grepl( "library(survey)" , full_text[[i]] , fixed = TRUE ) ) is_mi <- any( grepl( "library(mitools)" , full_text[[i]] , fixed = TRUE ) ) is_db <- any( grepl( "library(DBI)" , full_text[[i]] , fixed = TRUE ) ) needs_srvyr_block <- paste0( ' rmd_lines <- gsub( "kind_of_analysis_examples" , if( is_survey ) "the `survey` library" else if( is_db ) "SQL and `RSQLite`" else "base R" , rmd_lines ) for( this_block in needs_this_block ){ rmd_lines <- gsub( this_block , if( any( grepl( paste0( "^" , this_block , ": yes" ) , tolower( full_text[[i]] ) ) ) ) get( this_block ) else "" , rmd_lines ) } if( any( grepl( "^needs_travis_build_status_line: yes" , tolower( full_text[[i]] ) ) ) ) { readme_md_text <- c( readme_md_text , paste0( chapter_tag[ i ] , ": " , gsub( "chapter_tag" , chapter_tag[ i ] , needs_travis_build_status_line ) , '\n' ) ) } if( !is_survey ) rmd_lines <- gsub( "tbl_initiation_line" , if( is_db ) "library(dbplyr)\ndplyr_db <- dplyr::src_sqlite( dbdir )\nchapter_tag_tbl <- tbl( dplyr_db , 'sql_tablename' )" else "chapter_tag_tbl <- tbl_df( chapter_tag_df )" , rmd_lines ) construct_a_this_line <- paste0( if( is_survey ) "Construct a " else if( is_db ) "Connect to a " , if( is_mi ) "multiply-imputed, " , if( is_db ) "database" , if( is_survey & is_db ) "-backed " , if( is_survey ) "complex sample survey design" , if( !is_survey & !is_db ) "Load a data frame" , ":" ) rmd_lines <- gsub( "^construct_a_what_line" , construct_a_this_line , rmd_lines ) unweighted_counts_block <- if( is_survey ){ if( is_mi ){ 'Count the unweighted number of records in the survey sample, overall and by groups:\n```{r eval = FALSE , results = "hide" }\nMIcombine( with( chapter_tag_design , svyby( ~ one , ~ one , unwtd.count ) ) )\n\nMIcombine( with( chapter_tag_design , svyby( ~ one , ~ group_by_variable , unwtd.count ) ) )\n```' } else { 'Count the unweighted number of records in the survey sample, overall and by groups:\n```{r eval = FALSE , results = "hide" }\nsum( weights( chapter_tag_design , "sampling" ) != 0 )\n\nsvyby( ~ one , ~ group_by_variable , chapter_tag_design , unwtd.count )\n```' } } else if( is_db ){ 'Count the unweighted number of records in the SQL table, overall and by groups:\n```{r eval = FALSE , results = "hide" }\ndbGetQuery( db , "SELECT COUNT(*) FROM sql_tablename" )\n\ndbGetQuery( db ,\n\t"SELECT\n\t\tgroup_by_variable ,\n\t\tCOUNT(*) \n\tFROM sql_tablename\n\tGROUP BY group_by_variable"\n)\n```' } else { 'Count the unweighted number of records in the table, overall and by groups:\n```{r eval = FALSE , results = "hide" }\nnrow( chapter_tag_df )\n\ntable( chapter_tag_df[ , "group_by_variable" ] , useNA = "always" )\n```' } rmd_lines <- gsub( "^unweighted_counts_block$" , unweighted_counts_block , rmd_lines ) if( is_survey ){ weighted_counts_block <- if( is_mi ){ 'Count the weighted size of the generalizable population, overall and by groups:\n```{r eval = FALSE , results = "hide" }\nMIcombine( with( chapter_tag_design , svytotal( ~ one ) ) )\n\nMIcombine( with( chapter_tag_design ,\n\tsvyby( ~ one , ~ group_by_variable , svytotal )\n) )\n```' } else { 'Count the weighted size of the generalizable population, overall and by groups:\n```{r eval = FALSE , results = "hide" }\nsvytotal( ~ one , chapter_tag_design )\n\nsvyby( ~ one , ~ group_by_variable , chapter_tag_design , svytotal )\n```' } rmd_lines <- gsub( "^survey_only_weighted_counts_block$" , paste0( ' } else { rmd_lines <- gsub( "^survey_only_(.*)" , "" , rmd_lines ) } descriptive_statistics_block <- if( is_survey ) { if( is_mi ) mi_descriptive_block else survey_descriptive_block } else if( is_db ) db_descriptive_block else base_descriptive_block rmd_lines <- gsub( "^descriptive_statistics_block$" , descriptive_statistics_block , rmd_lines ) measures_of_uncertainty_block <- if( is_survey ) { if( is_mi ) mi_measures_of_uncertainty_block else survey_measures_of_uncertainty_block } else if( is_db ) db_measures_of_uncertainty_block else base_measures_of_uncertainty_block rmd_lines <- gsub( "^measures_of_uncertainty_block$" , measures_of_uncertainty_block , rmd_lines ) tests_of_association_block <- if( is_survey ) { if( is_mi ) mi_tests_of_association_block else survey_tests_of_association_block } else if( is_db ) db_tests_of_association_block else base_tests_of_association_block rmd_lines <- gsub( "^tests_of_association_block$" , tests_of_association_block , rmd_lines ) subsetting_block <- if( is_survey ){ if( is_mi ){ 'Restrict the survey design to subset_definition_description:\n```{r eval = FALSE , results = "hide" }\nsub_chapter_tag_design <- subset( chapter_tag_design , subset_definition )\n```\nCalculate the mean (average) of this subset:\n```{r eval = FALSE , results = "hide" }\nMIcombine( with( sub_chapter_tag_design , svymean( ~ linear_variable linear_narm ) ) )\n```' } else { 'Restrict the survey design to subset_definition_description:\n```{r eval = FALSE , results = "hide" }\nsub_chapter_tag_design <- subset( chapter_tag_design , subset_definition )\n```\nCalculate the mean (average) of this subset:\n```{r eval = FALSE , results = "hide" }\nsvymean( ~ linear_variable , sub_chapter_tag_design linear_narm )\n```' } } else if( is_db ){ 'Limit your SQL analysis to subset_definition_description with `WHERE`:\n```{r eval = FALSE , results = "hide" }\ndbGetQuery( db ,\n\t"SELECT\n\t\tAVG( linear_variable )\n\tFROM sql_tablename\n\tWHERE subset_definition"\n)\n```' } else { 'Limit your `data.frame` to subset_definition_description:\n```{r eval = FALSE , results = "hide" }\nsub_chapter_tag_df <- subset( chapter_tag_df , subset_definition )\n```\nCalculate the mean (average) of this subset:\n```{r eval = FALSE , results = "hide" }\nmean( sub_chapter_tag_df[ , "linear_variable" ] linear_narm )\n```' } rmd_lines <- gsub( "^subsetting_block$" , subsetting_block , rmd_lines ) for( this_chunk in sub_chunks ){ rmd_lines <- gsub( this_chunk , paste( get( this_chunk )[[i]] , collapse = "\n" ) , rmd_lines ) } for( this_line in c( sub_lines , "chapter_tag" ) ){ rmd_lines <- gsub( this_line , get( this_line )[ i ] , rmd_lines ) rmd_lines <- gsub( toupper( this_line ) , toupper( get( this_line )[ i ] ) , rmd_lines ) } rmd_lines <- gsub( "\\\\\\\\n" , '\n' , rmd_lines ) rmd_lines <- gsub( "\\\\\\\\t" , '\t' , rmd_lines ) rmd_lines <- paste( rmd_lines , collapse = "\n" ) while( grepl( "\n\n\n" , rmd_lines ) ) rmd_lines <- gsub( "\n\n\n" , "\n\n" , rmd_lines ) while( grepl( "\n\t\n\t\n" , rmd_lines ) ) rmd_lines <- gsub( "\n\t\n\t\n" , "\n\t\n" , rmd_lines ) while( grepl( " " , rmd_lines ) ) rmd_lines <- gsub( " " , " " , rmd_lines ) rmd_lines <- gsub( "\t0.5 , na.rm = TRUE" , "\t0.5 ,\n\tna.rm = TRUE" , rmd_lines ) rmd_lines <- gsub( "\tkeep.var = TRUE , na.rm = TRUE" , "\tkeep.var = TRUE ,\n\tna.rm = TRUE" , rmd_lines ) rmd_lines <- gsub( "\t\tsvymean , na.rm = TRUE" , "\t\tsvymean ,\n\t\tna.rm = TRUE" , rmd_lines ) rmd_lines <- gsub( "\tsvymean , na.rm = TRUE" , "\tsvymean ,\n\tna.rm = TRUE" , rmd_lines ) rmd_lines <- gsub( "\tmean , na.rm = TRUE" , "\tmean ,\n\tna.rm = TRUE" , rmd_lines ) rmd_lines <- gsub( "\tvar , na.rm = TRUE" , "\tvar ,\n\tna.rm = TRUE" , rmd_lines ) rmd_lines <- gsub( "\tsum , na.rm = TRUE" , "\tsum ,\n\tna.rm = TRUE" , rmd_lines ) rmd_lines <- gsub( "\n\t([a-z]+)_design , na\\.rm = TRUE\n" , "\n\t\\1_design ,\n\tna.rm = TRUE\n" , rmd_lines ) if( length( replacement_block[[i]] ) > 1 ){ for( this_replacement in seq( 2 , length( replacement_block[[i]] ) , by = 2 ) ) rmd_lines <- gsub( replacement_block[[i]][ this_replacement - 1 ] , replacement_block[[i]][ this_replacement ] , rmd_lines , fixed = TRUE ) } writeLines( rmd_lines , this_rmd ) } setwd( book_folder ) clean_site() render_site(output_format = 'bookdown::gitbook', encoding = 'UTF-8') html_files <- grep( "html$" , list.files( file.path( path.expand( "~" ) , "Github\\asdfree\\docs" ) , full.names = TRUE , recursive = FALSE ) , value = TRUE ) for( this_metafile in metafiles ){ chapter_tag <- gsub( "\\.txt$" , "" , basename( this_metafile ) ) link_line <- paste0( '"link": "https://github.com/ajdamico/asdfree/edit/master/' , stringr::str_pad( fixed_chapters + which( this_metafile == metafiles ) , pad = '0' , width = 2 ) , '-' , chapter_tag , '.Rmd",' ) html_file <- html_files[ grep( paste0( '-' , chapter_tag , '.html$' ) , html_files ) ] html_lines <- readLines( html_file ) html_lines <- gsub( link_line , paste0( '"link": "https://github.com/ajdamico/asdfree/edit/master/metadata/' , chapter_tag , '.txt",' ) , html_lines , fixed = TRUE ) writeLines( html_lines , html_file ) } datasets_path <- normalizePath( file.path( path.expand( "~" ) , "Github/datasets/" ) , winslash = '/' ) file.remove( list.files( datasets_path , recursive = TRUE , full.names = TRUE , include.dirs = TRUE ) ) travis_ymls <- grep( "\\.travis\\.yml$" , list.files( file.path( path.expand( "~" ) , "Github/datasets/" ) , recursive = TRUE , full.names = TRUE , include.dirs = TRUE , all.files = TRUE ) , value = TRUE ) file.remove( travis_ymls ) repo_files <- list.files( normalizePath( file.path( path.expand( "~" ) , "Github/asdfree/repo/" ) , winslash = '/' ) , recursive = TRUE , full.names = TRUE , all.files = TRUE ) rmd_files <- grep( "\\.Rmd$" , list.files( file.path( path.expand( "~" ) , "Github/asdfree/" ) , full.names = TRUE ) , value = TRUE ) ci_rmd_files <- sapply( rmd_files , function( w ) any( grepl( "travis|appveyor" , readLines( w ) ) & grepl( "Build Status" , readLines( w ) ) ) ) ci_rmd_files <- names( ci_rmd_files[ ci_rmd_files ] ) for( this_ci_file in ci_rmd_files ){ chapter_tag <- gsub( "(.*)-(.*)\\.Rmd" , "\\2" , basename( this_ci_file ) ) if( dir.exists( paste0( "C:/Users/AnthonyD/Documents/Github/datasets/" , chapter_tag ) ) ){ system( paste0( "powershell git -C 'C:/Users/AnthonyD/Documents/Github/datasets/" , chapter_tag , "' pull" ) ) } else { system( paste0( "powershell git clone https://ajdamico:" , github_password , "@github.com/asdfree/" , chapter_tag , "/ 'C:/Users/AnthonyD/Documents/Github/datasets/" , chapter_tag , "'" ) ) } this_metadata_file <- gsub( paste0( "/([0-9]+)-" , chapter_tag , ".Rmd$" ) , paste0( "/metadata/" , chapter_tag , ".txt" ) , this_ci_file ) needed_libraries <- paste( gsub( "^(dependencies: )?library\\(|\\)" , "" , unique( grep( "^(dependencies: )?library\\(" , c( if( file.exists( this_metadata_file ) ) readLines( this_metadata_file ) , readLines( this_ci_file ) ) , value = TRUE ) ) ) , collapse = ", " ) lodown_r_file_edit <- system( paste0( "powershell git --git-dir='C:/Users/AnthonyD/Documents/Github/lodown/.git' log -n 1 -- R/" , chapter_tag , ".R" ) , intern = TRUE ) lodown_file_commit <- grep( "commit" , lodown_r_file_edit , value = TRUE ) lodown_file_commit <- if( length( lodown_file_commit > 0 ) ) paste( "ajdamico/lodown" , lodown_file_commit ) else "" asdfree_r_file_edit <- system( paste0( "powershell git --git-dir='C:/Users/AnthonyD/Documents/Github/asdfree/.git' log -n 1 -- " , basename( this_ci_file ) ) , intern = TRUE ) asdfree_file_commit <- grep( "commit" , asdfree_r_file_edit , value = TRUE ) asdfree_file_commit <- if( length( asdfree_file_commit > 0 ) ) paste( "ajdamico/asdfree" , asdfree_file_commit ) else "" this_repo_path <- normalizePath( file.path( datasets_path , chapter_tag ) , winslash = '/' , mustWork = FALSE ) copied_files <- gsub( normalizePath( file.path( path.expand( "~" ) , "Github/asdfree/repo/" ) , winslash = '/' ) , this_repo_path , repo_files ) this_repo_dirs <- unique( dirname( copied_files ) ) lapply( this_repo_dirs , dir.create , showWarnings = FALSE ) file.copy( repo_files , copied_files , overwrite = TRUE ) if( file.exists( this_metadata_file ) ){ for( this_file in copied_files ){ these_lines <- readLines( this_file ) sample_setup_breaks <- pull_line( this_metadata_file , "sample_setup_breaks" ) needs_7za_install <- pull_line( this_metadata_file , "needs_7za_install" ) if( basename( this_file ) == '.travis.yml' ) if( needs_7za_install == 'yes' ) these_lines <- gsub( " if( basename( this_file ) == 'DESCRIPTION' ) { if( grepl( 'archive' , needed_libraries ) ) { these_lines <- gsub( "desc_remotes_line" , "Remotes: ajdamico/lodown, jimhester/archive" , these_lines ) } else { these_lines <- gsub( "desc_remotes_line" , "Remotes: ajdamico/lodown" , these_lines ) } } if( grepl( 'setup\\.R$' , this_file ) ){ environment_variables <- pull_chunk( this_metadata_file , "environment_variables_block" ) these_lines <- c( these_lines , environment_variables ) msrb <- pull_chunk( this_metadata_file , "machine_specific_replacements_block" ) msrb <- gsub( "CHAPTER_TAG" , toupper( chapter_tag ) , msrb ) if( identical( msrb , '' ) ) msrb <- c("machine_specific_replacements <- ", "\tlist( ", "\t\t", "\t\t eval( parse( text = msrb ) ) sample_setup_block <- pull_chunk( this_metadata_file , "sample_setup_block" ) broken_sample_test_condition <- pull_line( this_metadata_file , "broken_sample_test_condition" ) if( !identical( sample_setup_block , '' ) ){ sample_setup_block <- gsub( "CHAPTER_TAG" , toupper( chapter_tag ) , sample_setup_block ) for ( this_replacement in machine_specific_replacements ) sample_setup_block <- gsub( this_replacement[ 1 ] , this_replacement[ 2 ] , sample_setup_block , fixed = TRUE ) these_lines <- c( these_lines , sample_setup_block ) } these_lines <- c( these_lines , lodown::syntaxtractor( chapter_tag , replacements = machine_specific_replacements , setup_rmd = identical( sample_setup_block , '' ) , sample_setup_breaks = if( !identical( sample_setup_breaks , '' ) ) sample_setup_breaks , broken_sample_test_condition = if( !identical( broken_sample_test_condition , '' ) ) broken_sample_test_condition ) ) } if( sample_setup_breaks != '' ){ if( basename( this_file ) == 'appveyor.yml' ){ these_lines <- gsub( " paste0( " matrix:\n" , paste0( " - this_sample_break: " , seq( as.integer( sample_setup_breaks ) ) , collapse = "\n" ) , collapse = "\n" ) , these_lines ) } if( basename( this_file ) == '.travis.yml' ){ these_lines <- gsub( " paste0( "env:\n" , paste0( " - this_sample_break=" , seq( as.integer( sample_setup_breaks ) ) , collapse = "\n" ) , collapse = "\n" ) , these_lines ) } } these_lines <- gsub( "sample_setup_breaks" , sample_setup_breaks , these_lines ) these_lines <- gsub( "chapter_tag" , chapter_tag , these_lines ) these_lines <- gsub( "CHAPTER_TAG" , toupper( chapter_tag ) , these_lines ) these_lines <- gsub( "needed_libraries" , needed_libraries , these_lines ) these_lines <- gsub( "asdfree_file_commit" , asdfree_file_commit , these_lines ) these_lines <- gsub( "lodown_file_commit" , lodown_file_commit , these_lines ) writeLines( these_lines , this_file ) } } else { readme_md_text <- sort( c( readme_md_text , paste0( chapter_tag , ": [![Build Status](https://travis-ci.org/asdfree/" , chapter_tag , ".svg?branch=master)](https://travis-ci.org/asdfree/" , chapter_tag , ") [![Build status](https://ci.appveyor.com/api/projects/status/github/asdfree/" , chapter_tag , "?svg=TRUE)](https://ci.appveyor.com/project/ajdamico/" , chapter_tag , ")\n" ) ) ) if( chapter_tag == "lavaanex" ){ needed_libraries <- paste( needed_libraries , "memisc" , sep = ", " ) machine_specific_replacements <- list( c( 'path.expand( \"~\" ) , \"CHAPTER_TAG\"' , 'getwd()' ) , c( "hello" , "howdy" ) , c( '"[email protected]"' , 'Sys.getenv( "my_email_address" )' ) ) } else { machine_specific_replacements <- list( c( 'path.expand( \"~\" ) , \"CHAPTER_TAG\"' , 'getwd()' ) , c( "hello" , "howdy" ) ) } setup_fn <- grep( "setup\\.R$" , copied_files , value = TRUE ) these_lines <- c( readLines( setup_fn ) , lodown::syntaxtractor( chapter_tag , replacements = machine_specific_replacements , test_rmd = FALSE ) ) writeLines( these_lines , setup_fn ) for( this_copied_file in copied_files ){ these_lines <- readLines( this_copied_file ) these_lines <- these_lines[ !grepl( "^install\\.packages" , these_lines ) ] these_lines <- gsub( "chapter_tag" , chapter_tag , these_lines ) these_lines <- gsub( "CHAPTER_TAG" , toupper( chapter_tag ) , these_lines ) these_lines <- gsub( "needed_libraries" , needed_libraries , these_lines ) these_lines <- gsub( "asdfree_file_commit" , asdfree_file_commit , these_lines ) these_lines <- gsub( "lodown_file_commit" , lodown_file_commit , these_lines ) these_lines <- gsub( "desc_remotes_line" , "Remotes: ajdamico/lodown" , these_lines ) writeLines( these_lines , this_copied_file ) } } system( paste0( "powershell git -C 'C:/Users/AnthonyD/Documents/Github/datasets/" , chapter_tag , "' add -u" ) ) system( paste0( "powershell git -C 'C:/Users/AnthonyD/Documents/Github/datasets/" , chapter_tag , "' add ." ) ) system( paste0( "powershell git -C 'C:/Users/AnthonyD/Documents/Github/datasets/" , chapter_tag , "' commit -m " , commit_memo ) ) system( paste0( "powershell git -C 'C:/Users/AnthonyD/Documents/Github/datasets/" , chapter_tag , "' push origin master" ) ) } writeLines( readme_md_text , file.path( path.expand( "~" ) , "Github/asdfree/README.md" ) ) system( paste0( "powershell git -C 'C:/Users/AnthonyD/Documents/Github/asdfree' add -u" ) ) system( paste0( "powershell git -C 'C:/Users/AnthonyD/Documents/Github/asdfree' add ." ) ) system( paste0( "powershell git -C 'C:/Users/AnthonyD/Documents/Github/asdfree' commit -m " , commit_memo ) ) system( "powershell git -C 'C:/Users/AnthonyD/Documents/Github/asdfree' push origin master" )
context("crowding distance") test_that("crowding distance computation works well", { x = t(matrix(c( 1, 4, 2, 3, 2.5, 2.5, 4, 2 ), byrow = TRUE, ncol = 2L)) fns = c(computeCrowdingDistance, computeCrowdingDistanceR) for (fn in fns) { cds = fn(x) expect_true(is.numeric(cds)) expect_true(is.infinite(cds[1])) expect_true(is.infinite(cds[4])) expect_equal(cds[2], 3) expect_equal(cds[3], 3) } })