code
stringlengths
1
13.8M
test_that("import_pattern imports patterns of right length", { expect_equal( nchar(import_pattern("../rmd/sample_pattern.Rmd")), 53 ) }) test_that("import_pattern doesn't fail silently", { expect_error(import_pattern()) expect_error(import_pattern(53)) expect_error(import_pattern(iris)) expect_warning(import_pattern("../rmd/empty_file.Rmd")) })
penAFT.cv <- function(X, logY, delta, nlambda = 50, lambda.ratio.min = 0.1, lambda = NULL, penalty = NULL, alpha = 1, weight.set = NULL, groups = NULL, tol.abs = 1e-8, tol.rel = 2.5e-4, standardize = TRUE, nfolds = 5, cv.index = NULL, admm.max.iter = 1e4, quiet = TRUE) { p <- dim(X)[2] n <- dim(X)[1] gamma <- 0 if (length(logY) != n) { stop("Dimensions of X and logY do not match: see documentation") } if (length(delta) != n) { stop("Dimension of X and delta do not match: see documentation") } if (!any(delta==0 | delta==1)) { stop("delta must be a vector with elements in {0,1}: see documentation") } if (alpha > 1 | alpha < 0) { stop("alpha must be in [0,1]: see documentation.") } if (standardize) { X.fit <- (X - tcrossprod(rep(1, n), colMeans(X)))/(tcrossprod(rep(1, n), apply(X, 2, sd))) } if (!standardize) { X.fit <- X } if(!is.null(penalty)){ if(penalty != "EN" & penalty != "SG"){ stop("penalty must either be \"EN\" or \"SG\".") } } if (is.null(penalty)) { penalty <- "EN" } if (penalty == "EN") { if (is.null(weight.set)){ w <- rep(1, p) } else { if (is.null(weight.set$w)) { stop("Need to specify weight.set as a list with element w to use weighted elastic net") } else { w <- weight.set$w } } if (is.null(lambda)) { if (alpha != 0) { EN_TPcalc <- function(X.fit, logY, delta) { n <- length(logY) p <- dim(X.fit)[2] grad <- rep(0, dim(X.fit)[2]) grad2 <- rep(0, dim(X.fit)[2]) for (i in which(delta==1)) { t0 <- which(logY > logY[i]) if(length(t0) > 0){ grad <- grad + length(t0)*X.fit[i,] - colSums(X.fit[t0,,drop=FALSE]) } t1 <- which(logY == logY[i]) if(length(t1) > 0){ grad2 <- grad2 + colSums(abs(matrix(X.fit[i,], nrow=length(t1), ncol=p, byrow=TRUE) - X.fit[t1,,drop=FALSE])) } } return(abs(grad)/n^2 + grad2/n^2) } gradG <- EN_TPcalc(X.fit, logY, delta) wTemp <- w if(any(wTemp==0)){ wTemp[which(wTemp == 0)] <- Inf } lambda.max <- max(gradG/wTemp)/alpha + 1e-4 lambda.min <- lambda.ratio.min*lambda.max lambda <- 10^seq(log10(lambda.max), log10(lambda.min), length=nlambda) } else { lambda <- 10^seq(-4, 4, length=nlambda) warning("Setting alpha = 0 corresponds to a ridge-penalty: may need to check candidate tuning parameter values.") } } else { warning("It is recommended to let tuning parameters be chosen automatically: see documentation.") } getPath <- ADMM.ENpath(X.fit, logY, delta, admm.max.iter, lambda, alpha, w, tol.abs, tol.rel, gamma, quiet) eval.obj.inner <- function(logY, XB, delta){ out <- 0 n <- length(logY) E <- logY - XB for(i in which(delta==1)){ out <- out + sum(pmax(E - E[i], 0)) } return(out/n^2) } if(!is.null(cv.index)){ if(class(cv.index)!="list"){ stop("Input cv.index must be a list!") } else { nfolds <- length(cv.index) } } fold1 <- sample(rep(1:nfolds, length=length(which(delta==1)))) fold0 <- sample(rep(1:nfolds, length=length(which(delta==0)))) cv.index1 <- split(which(delta==1), fold1) cv.index0 <- split(which(delta==0), fold0) if(is.null(cv.index)){ cv.index <- list() for (ll in 1:nfolds) { cv.index[[ll]] <- c(cv.index1[[ll]],cv.index0[[ll]]) } } if(length(cv.index)!=nfolds){ stop("Input cv.index does not match nfolds") } preds <- matrix(Inf, nrow = n, ncol = length(lambda)) cv.err.obj <- matrix(Inf, nrow=nfolds, ncol=length(lambda)) for (k in 1:nfolds) { ntrain <- dim(X[-cv.index[[k]],])[1] ntest <- length(cv.index[[k]]) if (standardize) { X.train.fit <- (X[-cv.index[[k]], ] - tcrossprod(rep(1, ntrain), colMeans(X[-cv.index[[k]], ])))/(tcrossprod(rep(1, ntrain), apply(X[-cv.index[[k]], ], 2, sd))) X.test <- (X[cv.index[[k]], ] - tcrossprod(rep(1, ntest), colMeans(X[-cv.index[[k]], ])))/(tcrossprod(rep(1, ntest), apply(X[-cv.index[[k]], ], 2, sd))) } if (!standardize) { X.train.fit <- X[-cv.index[[k]], ] X.test <- X[cv.index[[k]], ] } logY.train <- logY[-cv.index[[k]]] logY.test <- logY[cv.index[[k]]] delta.train <- delta[-cv.index[[k]]] delta.test <- delta[cv.index[[k]]] cv.getPath <- ADMM.ENpath(X.train.fit, logY.train, delta.train, admm.max.iter, lambda, alpha, w, tol.abs, tol.rel, gamma, quiet) for (ll in 1:length(lambda)) { preds[cv.index[[k]],ll] <- X.test%*%cv.getPath$beta[,ll] cv.err.obj[k, ll] <- eval.obj.inner(logY.test, preds[cv.index[[k]],ll], delta.test) } cat("CV through: ", rep(" } cv.err.linPred <- rep(Inf, length(lambda)) for (ll in 1:length(lambda)) { cv.err.linPred[ll] <- eval.obj.inner(logY, preds[,ll], delta) } } else { if (penalty == "SG") { if (is.null(groups)) { stop("To use group-lasso penalty, must specify \"groups\"!") } if (alpha == 1) { stop("Penalty \"SG\" with alpha = 1 corresponds to \"EN\" and set alpha = 1; check documentation.") } G <- length(unique(groups)) if(is.null(weight.set)){ w <- rep(1, p) v <- rep(1, G) } else { if (is.null(weight.set$w)) { stop("Need to specify both w and v using weighted group lasso") } else { w <- weight.set$w } if (is.null(weight.set$v)) { stop("Need to specify both w and v using weighted group lasso") } else { v <- weight.set$v } } if (is.null(lambda)) { if (length(unique(logY)) == length(logY) && !any(w == 0) && !any(v == 0)) { getGrad <- function(X.fit, logY, delta) { n <- length(logY) p <- dim(X.fit)[2] grad <- rep(0, dim(X.fit)[2]) grad2 <- rep(0, dim(X.fit)[2]) for (i in which(delta==1)) { t0 <- which(logY > logY[i]) if(length(t0) > 0){ grad <- grad + length(t0)*X.fit[i,] - colSums(X.fit[t0,,drop=FALSE]) } t1 <- which(logY == logY[i]) if(length(t1) > 0){ grad2 <- grad2 + colSums(abs(matrix(X.fit[i,], nrow=length(t1), ncol=p, byrow=TRUE) - X.fit[t1,,drop=FALSE])) } } return(abs(grad)/n^2 + grad2/n^2) } grad <- getGrad(X.fit, logY, delta) lam.check <- 10^seq(-4, 4, length=500) check.array <- matrix(0, nrow=length(lam.check), ncol=G) for(j in 1:length(lam.check)){ for(k in 1:G){ t0 <- pmax(abs(grad[which(groups==k)]) - alpha*lam.check[j]*w[which(groups==k)], 0)*sign(grad[which(groups==k)]) check.array[j,k] <- sqrt(sum(t0^2)) < v[k]*(1-alpha)*lam.check[j] } } lambda.max <- lam.check[min(which(rowSums(check.array) == G))] + 1e-4 if (is.null(lambda.ratio.min)) { lambda.ratio.min <- 0.1 } lambda.min <- lambda.ratio.min*lambda.max lambda <- 10^seq(log10(lambda.max), log10(lambda.min), length=nlambda) } else { getGrad <- function(X.fit, logY, delta) { n <- length(logY) p <- dim(X.fit)[2] grad <- rep(0, dim(X.fit)[2]) grad2 <- rep(0, dim(X.fit)[2]) for (i in which(delta==1)) { t0 <- which(logY > logY[i]) if(length(t0) > 0){ grad <- grad + length(t0)*X.fit[i,] - colSums(X.fit[t0,,drop=FALSE]) } t1 <- which(logY == logY[i]) if(length(t1) > 0){ grad2 <- grad2 + colSums(abs(matrix(X.fit[i,], nrow=length(t1), ncol=p, byrow=TRUE) - X.fit[t1,,drop=FALSE])) } } return(abs(grad)/n^2 + grad2/n^2) } grad <- getGrad(X.fit, logY, delta) lam.check <- 10^seq(-4, 4, length=500) if(any(v == 0)){ check.array <- matrix(0, nrow=length(lam.check), ncol=G) for(j in 1:length(lam.check)){ for(k in (1:G)[-which(v == 0)]){ t0 <- pmax(abs(grad[which(groups==k)]) - alpha*lam.check[j]*w[which(groups==k)], 0)*sign(grad[which(groups==k)]) check.array[j,k] <- sqrt(sum(t0^2)) < v[k]*(1-alpha)*lam.check[j] } } check.array <- check.array[,-which(v == 0)] lambda.max <- 1.5*lam.check[min(which(rowSums(check.array) == length(which(v == 0))))] + 1e-4 } else { check.array <- matrix(0, nrow=length(lam.check), ncol=G) for(j in 1:length(lam.check)){ for(k in (1:G)){ t0 <- pmax(abs(grad[which(groups==k)]) - alpha*lam.check[j]*w[which(groups==k)], 0)*sign(grad[which(groups==k)]) check.array[j,k] <- sqrt(sum(t0^2)) < v[k]*(1-alpha)*lam.check[j] } } lambda.max <- 1.5*lam.check[min(which(rowSums(check.array) == G))] + 1e-4 } if (is.null(lambda.ratio.min)) { lambda.ratio.min <- 0.1 } lambda.min <- lambda.ratio.min*lambda.max lambda <- 10^seq(log10(lambda.max), log10(lambda.min), length=nlambda) lambda.max <- ADMM.SGpath.candidatelambda(X.fit, logY, delta, admm.max.iter, lambda, alpha, w, v, groups, tol.abs, tol.rel, gamma, quiet)$lambda.max if (is.null(lambda.ratio.min)) { lambda.ratio.min <- 0.1 } lambda.min <- lambda.ratio.min*lambda.max lambda <- 10^seq(log10(lambda.max), log10(lambda.min), length=nlambda) } } else { warning("It is recommended to let tuning parameters be chosen automatically: see documentation.") } getPath <- ADMM.SGpath(X.fit, logY, delta, admm.max.iter, lambda, alpha, w, v, groups, tol.abs, tol.rel, gamma, quiet) eval.obj.inner <- function(logY, XB, delta){ out <- 0 n <- length(logY) E <- logY - XB for(i in which(delta==1)){ out <- out + sum(pmax(E - E[i], 0)) } return(out/n^2) } fold1 <- sample(rep(1:nfolds, length=length(which(delta==1)))) fold0 <- sample(rep(1:nfolds, length=length(which(delta==0)))) cv.index1 <- split(which(delta==1), fold1) cv.index0 <- split(which(delta==0), fold0) if(is.null(cv.index)){ cv.index <- list() for (ll in 1:nfolds) { cv.index[[ll]] <- c(cv.index1[[ll]],cv.index0[[ll]]) } } preds <- matrix(Inf, nrow = n, ncol = length(lambda)) cv.err.obj <- matrix(Inf, nrow=nfolds, ncol=length(lambda)) for (k in 1:nfolds) { ntrain <- dim(X[-cv.index[[k]],])[1] ntest <- length(cv.index[[k]]) if (standardize) { X.train.fit <- (X[-cv.index[[k]], ] - tcrossprod(rep(1, ntrain), colMeans(X[-cv.index[[k]], ])))/(tcrossprod(rep(1, ntrain), apply(X[-cv.index[[k]], ], 2, sd))) X.test <- (X[cv.index[[k]], ] - tcrossprod(rep(1, ntest), colMeans(X[-cv.index[[k]], ])))/(tcrossprod(rep(1, ntest), apply(X[-cv.index[[k]], ], 2, sd))) } if (!standardize) { X.train.fit <- X[-cv.index[[k]], ] X.test <- X[cv.index[[k]], ] } logY.train <- logY[-cv.index[[k]]] logY.test <- logY[cv.index[[k]]] delta.train <- delta[-cv.index[[k]]] delta.test <- delta[cv.index[[k]]] cv.getPath <- ADMM.SGpath(X.train.fit, logY.train, delta.train, admm.max.iter, lambda, alpha, w, v, groups, tol.abs, tol.rel, gamma, quiet) for (ll in 1:length(lambda)) { preds[cv.index[[k]],ll] <- X.test%*%cv.getPath$beta[,ll] cv.err.obj[k, ll] <- eval.obj.inner(logY.test, preds[cv.index[[k]],ll], delta.test) } cat("CV through: ", rep(" } cv.err.linPred <- rep(Inf, length(lambda)) for (ll in 1:length(lambda)) { cv.err.linPred[ll] <- eval.obj.inner(logY, preds[,ll], delta) } } } getPath$standardize <- standardize getPath$X.mean <- colMeans(X) getPath$X.sd <- apply(X, 2, sd) getPath$alpha <- alpha if(penalty=="SG"){ getPath$groups <- groups } Result <- list("full.fit" = getPath, "cv.err.linPred" = cv.err.linPred, "cv.err.obj" = cv.err.obj, "cv.index" = cv.index, "lambda.min" = lambda[which.min(cv.err.linPred == min(cv.err.linPred))]) class(Result) <- "penAFT.cv" return(Result) }
require(OpenMx) if (mxOption(NULL, "Default optimizer") == "SLSQP") { mxOption(NULL, "Optimality tolerance", "6e-10") } set.seed(654684) data(demoOneFactor) manifests <- names(demoOneFactor) latents <- c("factor") nVar <- length(manifests) nFac <- length(latents) factorModel <- mxModel("One Factor ML", mxData(cov(demoOneFactor), type="cov", means=colMeans(demoOneFactor), numObs=500), mxMatrix("Full", 1, nVar, free=T, values=colMeans(demoOneFactor), name="M"), mxMatrix("Full", nVar, nFac, free=T, values=.2, ubound=1, name="A"), mxMatrix("Diag", nVar, nVar, free=T, values=1, lbound=.0001, ubound=10, name="D"), mxAlgebra(A%*%t(A) + D, name="C"), mxAlgebra(sqrt(diag2vec(C)),name="P"), mxFitFunctionML(),mxExpectationNormal("C", "M", dimnames=manifests), mxCI(c("P")) ) factorFitCI <- mxTryHard(factorModel, fit2beat=-2863, extraTries=3, intervals=TRUE) factorSummCI <- summary(factorFitCI) ( ci <- factorFitCI$output$confidenceIntervals ) omxCheckCloseEnough(ci[,'estimate'], c(0.4455, 0.54, 0.6115, 0.7302, 0.8186), 1e-3) omxCheckCloseEnough(ci[,'lbound'] - c(0.4174, 0.5082, 0.5755, 0.6872, 0.7704), rep(0,5), 4e-2) if (mxOption(NULL, "Default optimizer") != "NPSOL") { omxCheckCloseEnough(ci[,'ubound'], c(0.4747, 0.5754, 0.6516, 0.7781, 0.8723), 4e-2) } factorModelRaw <- mxModel(factorFitCI, mxData(demoOneFactor, type="raw"), mxFitFunctionML(), mxExpectationNormal("C", "M", dimnames=manifests), name = "One Factor FIML") factorFitRawCI <- mxRun(factorModelRaw, intervals=TRUE, suppressWarnings = TRUE) factorSummRawCI <- summary(factorFitRawCI) ci <- factorFitRawCI$output$confidenceIntervals omxCheckCloseEnough(ci[,'estimate'], c(0.4455, 0.54, 0.6115, 0.7302, 0.8186), 1e-3) omxCheckCloseEnough(ci[,'lbound'] - c(0.4193, 0.5082, 0.5755, 0.6872, 0.7704), rep(0,5), 1e-3) omxCheckCloseEnough(ci[,'ubound'], c(0.4747, 0.5754, 0.6516, 0.7781, 0.8723), 1e-3)
library(utzflm, lib.loc=getOption('unitizer.tmp.lib.loc')) dat <- data.frame(x=1:100, y=(1:100) ^ 2) res <- fastlm(dat$x, dat$y) res get_slope(res) get_rsq(res) fastlm(1:100, 1:10)
source("helper/helper.R") if (exists("file.mtime", envir = baseenv())) { f = get("file.mtime", envir = baseenv()) expect_same = makeCompareFun(f, backports:::file.mtime) expect_same(R.home()) expect_same(file.path(R.home(), "COPYING")) }
age_moto <- function (x, name = "age", a = 0.2, b = 17, agemin = 1, agemax = 50, k = 1, bystreet = FALSE, net, verbose = FALSE, namerows, time){ x[is.na(x)] <- 0 x <- as.numeric(x) if(length(k) > 1 & length(k) < length(x)){ stop("length of 'k' must be 1 ore equal to length of 'x'") } if(agemax < 1) stop("Agemax should be bigger than 1") if (bystreet == TRUE){ if(length(x) != length(a)){ stop("Lengths of veh and age must be the same") } d <- suca <- list() for (i in seq_along(x)) { suca[[i]] <- function (t) {1/(1 + exp(a[i]*(t+b[i])))+1/(1 + exp(a[i]*(t-b[i])))} anos <- seq(agemin,agemax) d[[i]] <- (-1)*diff(suca[[i]](anos)) d[[i]][length(d[[i]])+1] <- d[[i]][length(d[[i]])] d[[i]] <- d[[i]] + (1 - sum(d[[i]]))/length(d[[i]]) d[[i]] <- d[[i]]*x[i] } df <- as.data.frame(matrix(0,ncol=length(anos), nrow=1)) for (i in seq_along(x)) { df[i,] <- d[[i]] } df <- as.data.frame(cbind(as.data.frame(matrix(0,ncol=agemin-1, nrow=length(x))), df)) names(df) <- paste(name,seq(1,agemax),sep="_") df <- df*k if(verbose){ message(paste("Average age of",name, "is", round(sum(seq(1,agemax)*base::colSums(df)/sum(df)), 2), sep=" ")) message(paste("Number of",name, "is", round(sum(df, na.rm = T), 3), " [veh]", sep=" ")) cat("\n") } if(!missing(namerows)) { if(length(namerows) != nrow(df)) stop("length of namerows must be the length of number of rows of veh") row.names(df) <- namerows } df[is.na(df)] <- 0 if(!missing(net)){ netsf <- sf::st_as_sf(net) if(!missing(time)){ dfsf <- sf::st_sf(Vehicles(df*k, time = time), geometry = sf::st_geometry(netsf)) } else { dfsf <- sf::st_sf(Vehicles(df*k), geometry = sf::st_geometry(netsf)) } return(dfsf) } else { if(!missing(time)){ return(Vehicles(df*k, time = time)) } else { return(Vehicles(df*k)) } } } else { suca <- function (t) {1/(1 + exp(a*(t+b)))+1/(1 + exp(a*(t-b)))} anos <- seq(agemin,agemax) d <- (-1)*diff(suca(anos)) d[length(d)+1] <- d[length(d)] d <- d + (1 - sum(d))/length(d) df <- as.data.frame(as.matrix(x) %*%matrix(d,ncol=length(anos), nrow=1)) df <- as.data.frame(cbind(as.data.frame(matrix(0,ncol=agemin-1, nrow=length(x))), df)) names(df) <- paste(name,seq(1,agemax),sep="_") df <- df*k if(verbose){ message(paste("Average age of",name, "is", round(sum(seq(1,agemax)*base::colSums(df)/sum(df)), 2), sep=" ")) message(paste("Number of",name, "is", round(sum(df, na.rm = T)/1000, 2), "* 10^3 veh", sep=" ")) cat("\n") } if(!missing(namerows)) { if(length(namerows) != nrow(df)) stop("length of namerows must be the length of number of rows of veh") row.names(df) <- namerows } df[is.na(df)] <- 0 if(!missing(net)){ netsf <- sf::st_as_sf(net) if(!missing(time)){ dfsf <- sf::st_sf(Vehicles(df, time = time), geometry = sf::st_geometry(netsf)) } else { dfsf <- sf::st_sf(Vehicles(df), geometry = sf::st_geometry(netsf)) } return(dfsf) } else { if(!missing(time)){ return(Vehicles(df, time = time)) } else { return(Vehicles(df)) } } } }
cur_svy_env <- rlang::child_env(NULL) set_current_svy <- function(x) { stopifnot(inherits(x$full, "tbl_svy") || is_null(x$full)) stopifnot(is.list(x$split) || is_null(x$split)) old <- list(full = cur_svy_env$full, split = cur_svy_env$split) cur_svy_env$full <- x$full cur_svy_env$split <- x$split cur_svy_env$peel_groups <- NULL invisible(old) } peeled_cur_group_id <- function(svy, cur_group) { if (is.null(cur_svy_env$peel_groups)) { grp_names <- group_vars(svy) if (length(grp_names) == 0) { return(rep(1, nrow(svy))) } peel <- grp_names[length(grp_names)] peel_groups <- group_data(svy) peel_groups <- group_by_at(peel_groups, setdiff(grp_names, peel)) peel_groups <- summarize( peel_groups, grp_rows = list(unlist(.data[[".rows"]])), peel = list(data.frame(peel_name = .data[[peel]], .rows = .data[[".rows"]])) ) cur_svy_env$peel_groups <- peel_groups } else { peel_groups <- cur_svy_env$peel_groups } cur_group <- cur_group() cur_peel_group <- dplyr::inner_join( peel_groups, cur_group[, -ncol(cur_group)], by = names(cur_group[, -ncol(cur_group)]) ) cur_peel_all <- cur_peel_group$grp_rows[[1]] cur_group_pos <- equal_or_both_na( cur_peel_group$peel[[1]]$peel_name, cur_group[[ncol(cur_group)]] ) cur_peel_sel <- cur_peel_group$peel[[1]]$.rows[[which(cur_group_pos)]] out <- rep(NA_integer_, nrow(svy)) out[cur_peel_all] <- 0L out[cur_peel_sel] <- 1L out } split_context_unavailable <- function(reason) { structure(list(reason), class = "svy_split_context_unavailable") } split_for_context <- function(svy) { if (inherits(svy$variables, "tbl_lazy") && !is.null(groups(svy))) { return(split_context_unavailable("lazy")) } group_split(svy) } cur_svy <- function() { if (inherits(cur_svy_env$split, "svy_split_context_unavailable")) { if (cur_svy_env$split[[1]] == "lazy") rlang::abort("Grouped survey context unavailable for lazy tables.") } cur_svy_env$split[[dplyr::cur_group_id()]] %||% rlang::abort("Survey context not set") } cur_svy_full <- function() { cur_svy_env$full %||% rlang::abort("Survey context not set") } current_svy <- function() { warning("`current_svy()` is deprecated, use `cur_svy()` instead") cur_svy() } dplyr::n dplyr::cur_data dplyr::cur_group dplyr::cur_group_id dplyr::cur_column dplyr::across dplyr::c_across
bnd2gra <- function(map, npoints = 2) { if (! inherits(map, "bnd")) stop("argument 'map' is not an object of class 'bnd'") regions <- unique(names(map)) nRegions <- length(regions) retMatrix <- matrix(data=0, nrow=nRegions, ncol=nRegions, dimnames=list(regions, regions)) pointsMatrixToPointsCharVector <- function(pointsMatrix) { paste(pointsMatrix[, 1L], pointsMatrix[, 2L], sep="&") } nPairsProcessed <- 0L nPairs <- (nRegions * (nRegions - 1L)) / 2L nProgressIterations <- 10L progressIterations <- seq(from=0L, to=nPairs, length=nProgressIterations + 1L)[- 1L] cat("Start neighbor search ...\n") pointsMatrix <- NULL for (i in seq_len(nRegions - 1L)) { polyIndsRegion.i <- which(names(map) == regions[i]) if(length(polyIndsRegion.i)>1) { pointsMatrix <- map[polyIndsRegion.i[1]] for(k in 2:length(polyIndsRegion.i)) pointsMatrix[[1]] <- rbind(pointsMatrix[[1]], map[polyIndsRegion.i[k]][[1]]) } else { pointsMatrix <- map[polyIndsRegion.i] } pointsRegion.i <- sapply(X=pointsMatrix, FUN=pointsMatrixToPointsCharVector) for (j in (i + 1):nRegions) { polyIndsRegion.j <- which(names(map) == regions[j]) if(length(polyIndsRegion.j)>1) { pointsMatrix <- map[polyIndsRegion.j[1]] for(k in 2:length(polyIndsRegion.j)) pointsMatrix[[1]] <- rbind(pointsMatrix[[1]], map[polyIndsRegion.j[k]][[1]]) } else { pointsMatrix <- map[polyIndsRegion.j] } pointsRegion.j <- sapply(X=pointsMatrix, FUN=pointsMatrixToPointsCharVector) if (sum(pointsRegion.i %in% pointsRegion.j) >= npoints) { retMatrix[i, j] <- retMatrix[j, i] <- - 1L } nPairsProcessed <- nPairsProcessed + 1L if (nPairsProcessed %in% progressIterations) { percentageProcessed <- floor((nPairsProcessed * 100L) / nPairs) cat(paste("progress: ", percentageProcessed, "%\n", sep = "")) } } } cat("Neighbor search finished.\n") surrounding <- attr(map, "surrounding") whichPolygonsAreInner <- which(sapply(surrounding, length) > 0L) for(innerInd in whichPolygonsAreInner) { innerRegion <- names(map)[innerInd] outerRegion <- surrounding[[innerInd]] retMatrix[innerRegion, outerRegion] <- retMatrix[outerRegion, innerRegion] <- - 1L } diag(retMatrix) <- - rowSums(retMatrix) class(retMatrix) <- "gra" return(retMatrix) }
setClassUnion("nullOrLASOrDatatable", c("NULL", "LAS", "data.table"))
context("each_of") test_that("each_of", { done <- character() index <- integer() coll <- letters[1:10] do <- async(function() { dx <- when_all( .list = lapply(seq_along(coll), function(i) { force(i) delay(1/1000)$then(function(value) { done <<- c(done, coll[[i]]) index <<- c(index, i) }) }) )$then(function(value) { expect_identical(sort(index), seq_along(coll)) expect_identical(sort(done), sort(coll)) }) }) synchronise(do()) })
repeat_selfloops <- function(eventlog) { .N <- NULL case_classifier <- NULL resource_classifier <- NULL event_classifier <- NULL activity_group <- NULL nr_of_resources <- NULL t_length <- NULL eventlog %>% rework_base %>% rename("case_classifier" = !!case_id_(eventlog), "event_classifier" = !!activity_id_(eventlog), "resource_classifier" = !!resource_id_(eventlog)) %>% as.data.table %>% .[, trace_length := .N, by = .(case_classifier)] %>% .[, activity_frequency := .N, by = .(event_classifier)] %>% .[, .(t_length = .N, nr_of_resources = n_distinct(resource_classifier), resource_classifier = first(resource_classifier)), .(case_classifier, activity_group, event_classifier, trace_length, activity_frequency)] %>% .[nr_of_resources == 1 & t_length > 1] %>% .[, length := t_length -1] %>% .[, .(case_classifier, event_classifier, resource_classifier, trace_length, activity_frequency, length)] %>% as.data.frame -> r colnames(r)[colnames(r) == "case_classifier"] <- case_id(eventlog) colnames(r)[colnames(r) == "event_classifier"] <- activity_id(eventlog) colnames(r)[colnames(r) == "resource_classifier"] <- resource_id(eventlog) return(r) } repeat_selfloops_case <- function(eventlog) { absolute <- NULL cases <- eventlog[,case_id(eventlog)] %>% unique eventlog %>% repeat_selfloops %>% group_by(!!case_id_(eventlog), trace_length) %>% summarize(absolute = n()) %>% merge(cases, all.y = T) %>% mutate(absolute = ifelse(is.na(absolute), 0, absolute)) %>% mutate(relative = absolute/trace_length) %>% select(-trace_length) } repeat_selfloops_size_case <- function(eventlog) { eventlog %>% repeat_selfloops %>% group_by(!!case_id_(eventlog)) %>% grouped_summary_statistics("length", number_of_selfloops = n()) %>% select(!!case_id_(eventlog), number_of_selfloops, everything()) } repeat_selfloops_log <- function(eventlog) { absolute <- NULL eventlog %>% repeat_selfloops_case -> raw raw %>% pull(absolute) %>% summary_statistics -> output attr(output, "raw") <- raw return(output) } repeat_selfloops_size_log <- function(eventlog, raw = F) { eventlog %>% repeat_selfloops -> raw raw %>% pull(length) %>% summary_statistics -> output attr(output, "raw") <- raw return(output) } repeat_selfloops_activity <- function(eventlog) { absolute <- NULL relative <- NULL activities <- eventlog[,activity_id(eventlog)] %>% unique eventlog %>% repeat_selfloops() %>% group_by(!!activity_id_(eventlog)) %>% summarize(absolute = n(), activity_frequency = first(activity_frequency)) %>% mutate(relative = absolute/activity_frequency) %>% select(-activity_frequency) %>% merge(activities, all.y = T) %>% mutate(absolute = ifelse(is.na(absolute), 0, absolute), relative = ifelse(is.na(relative), 0, relative)) } repeat_selfloops_size_activity <- function(eventlog) { absolute_frequency <- NULL relative_frequency <- NULL activities <- eventlog %>% activities eventlog %>% repeat_selfloops() %>% group_by(!!activity_id_(eventlog)) %>% grouped_summary_statistics("length", number_of_selfloops = n()) %>% select(!!activity_id_(eventlog), number_of_selfloops, everything()) %>% merge(activities, . ) %>% rename(relative_activity_frequency = relative_frequency) %>% select(-absolute_frequency) } repeat_selfloops_resource <- function(eventlog) { absolute <- NULL resource <- NULL absolute_frequency <- NULL relative_frequency <- NULL resources <- resources(eventlog) eventlog %>% repeat_selfloops() %>% group_by(!!resource_id_(eventlog)) %>% summarize(absolute = n()) %>% merge(resources, all.y = TRUE) %>% mutate(absolute = ifelse(is.na(absolute), 0, absolute), relative = absolute/absolute_frequency) %>% select(-absolute_frequency, -relative_frequency) } repeat_selfloops_size_resource <- function(eventlog) { absolute_frequency <- NULL relative_frequency <- NULL resources <- eventlog %>% resources eventlog %>% repeat_selfloops() %>% group_by(!!resource_id_(eventlog)) %>% grouped_summary_statistics("length", number_of_selfloops = n()) %>% select(!!resource_id_(eventlog), number_of_selfloops, everything()) %>% merge(resources, . ) %>% rename(relative_activity_frequency = relative_frequency) %>% select(-absolute_frequency) } repeat_selfloops_resource_activity <- function(eventlog) { absolute <- NULL relative <- NULL absolute_frequency <- NULL relative_frequency <- NULL resources <- resources(eventlog) eventlog %>% repeat_selfloops() %>% group_by(!!activity_id_(eventlog), !!resource_id_(eventlog)) %>% summarize(absolute = n(), activity_frequency = first(activity_frequency)) %>% merge(resources) %>% mutate(relative_activity = absolute/activity_frequency, relative_resource = absolute/absolute_frequency) %>% select(-activity_frequency, -absolute_frequency, -relative_frequency) } repeat_selfloops_size_resource_activity <- function(eventlog) { absolute_frequency <- NULL relative_frequency <- NULL resources_activities <- eventlog %>% group_by(!!resource_id_(eventlog), !!activity_id_(eventlog)) %>% summarize(absolute_frequency = dplyr::n_distinct(!!activity_instance_id_(eventlog))) %>% ungroup() %>% mutate(relative_frequency = absolute_frequency/sum(absolute_frequency)) %>% select(-absolute_frequency) eventlog %>% repeat_selfloops() %>% group_by(!!resource_id_(eventlog), !!activity_id_(eventlog)) %>% grouped_summary_statistics("length", number_of_selfloops = n()) %>% select(!!activity_id_(eventlog), !!resource_id_(eventlog), number_of_selfloops, everything()) %>% merge(resources_activities, . ) }
zeroGrob <- function() .zeroGrob .zeroGrob <- grob(cl = "zeroGrob", name = "NULL") widthDetails.zeroGrob <- function(x) unit(0, "cm") heightDetails.zeroGrob <- function(x) unit(0, "cm") grobWidth.zeroGrob <- function(x) unit(0, "cm") grobHeight.zeroGrob <- function(x) unit(0, "cm") drawDetails.zeroGrob <- function(x, recording) {} is.zero <- function(x) is.null(x) || inherits(x, "zeroGrob")
generate_dataset <- function(type = c("splines", "polynomial"), num_samples = 100, num_genes = 100) { type <- match.arg(type) x <- seq(-1, 1, length.out = num_samples) switch( type, "polynomial"={ y <- stats::poly(x, 2) sd <- .012 * sqrt(num_genes) }, "splines"={ y <- splines::ns(x, df=3) sd <- .06 * sqrt(num_genes) }) expression <- sapply(seq_len(num_genes), function(g) { scale <- stats::rnorm(ncol(y), mean=0, sd=1) noise <- stats::rnorm(length(x), sd=sd) rowSums(sweep(y, 2, scale, "*")) + noise }) weighted_random_sample <- function(data, weights, n){ key <- stats::runif(length(data)) ^ (1 / weights) data[order(key, decreasing=TRUE)][seq_len(n)] } undetectable <- which(expression < 0) undetectable <- weighted_random_sample(undetectable, -expression[undetectable], round(length(undetectable)*.5)) expression <- expression + .5 expression[expression < 0 | seq_along(expression) %in% undetectable] <- 0 dimnames(expression) <- list(paste0("sample", seq_len(num_samples)), paste0("feature", seq_len(num_genes))) expression }
L.matrix <- function( n ) { if ( missing( n ) ) stop( "argument n is missing" ) if ( !is.numeric( n ) ) stop( "argument n is not numeric" ) if ( n != trunc( n ) ) stop( "argument n is not an integer" ) if ( n < 2 ) stop( "argument n is less than 2" ) u <- u.vectors( n ) E <- E.matrices( n ) k <- u$k I <- u$I p <- n * ( n + 1 ) / 2 nsq <- n * n L <- matrix( 0, nrow=p, ncol=nsq) for ( j in 1:n ) { for ( i in j:n ) { L <- L + I[,k[i,j]] %*% t( vec( E[[i]][[j]] ) ) } } return( L ) }
set.seed(123) Data <- data_frame( n = 1:10000, x = rcauchy(10000), running_mean = cumsum(x) / (1:length(x)) ) gf_line(running_mean ~ n, data = Data) %>% gf_labs(y = "running mean", title = "Sample from a Cauchy Distribution")
ocsApiUserProvisioningManager <- R6Class("ocsApiUserProvisioningManager", inherit = ocsManager, public = list( initialize = function(url, user, pwd, logger = NULL, keyring_backend = 'env'){ super$initialize(url, user, pwd, logger, keyring_backend) }, addUser = function(userid, email = NULL, password = NULL, groups = NULL){ request <- "ocs/v1.php/cloud/users" post_req <- ocs4R::ocsRequest$new( type = "HTTP_POST", private$url, request, private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, content = list( userid = userid, email = email, password = password, groups = groups ), contentType = NULL, logger = self$loggerType ) post_req$execute() post_req_resp <- post_req$getResponse() added <- post_req_resp$ocs$meta$statuscode == 100 return(added) }, getUsers = function(){ get_users <- ocs4R::ocsRequest$new( type = "HTTP_GET", private$url, "ocs/v1.php/cloud/users", private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, logger = self$loggerType ) get_users$execute() get_users_resp <- get_users$getResponse() users <- unlist(get_users_resp$ocs$data$users) return(users) }, getUser = function(userid, pretty = FALSE){ get_user <- ocs4R::ocsRequest$new( type = "HTTP_GET", private$url, sprintf("ocs/v1.php/cloud/users/%s", userid), private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, logger = self$loggerType ) get_user$execute() get_user_resp <- get_user$getResponse() user <- get_user_resp$ocs$data class(user$enabled) <- "logical" class(user$two_factor_auth_enabled) <- "logical" if(pretty){ user <- as.data.frame(t(unlist(user))) row.names(user) <- 1 } return(user) }, editUser = function(userid, key, value){ allowedKeys <- c("email", "quota", "display", "password") if(!key %in% allowedKeys){ errMsg <- sprintf("Key should be among the following [%s]", paste(allowedKeys, collapse=",")) self$ERROR(errMsg) stop(errMs) } request <- sprintf("ocs/v1.php/cloud/users/%s", userid) put_req <- ocsRequest$new( type = "HTTP_PUT", private$url, request, private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, content = list(key = key, value = value), logger = self$loggerType ) put_req$execute() put_req_resp <- put_req$getResponse() edited <- FALSE if(is(put_req_resp, "list")) if(!is.null(put_req_resp$key) && !is.null(put_req_resp$value)){ if(put_req_resp$key == key && put_req_resp$value == value) edited <- TRUE } return(edited) }, editUserDisplayName = function(userid, displayName){ return(self$editUser(userid, key = "display", value = displayName)) }, editUserEmail = function(userid, email){ return(self$editUser(userid, key = "email", value = email)) }, editUserPassword = function(userid, password){ return(self$editUser(userid, key = "password", value = password)) }, editUserQuota = function(userid, quota){ return(self$editUser(userid, key = "quota", value = quota)) }, enableUser = function(userid){ request <- sprintf("ocs/v1.php/cloud/users/%s/enable", userid) put_req <- ocsRequest$new( type = "HTTP_PUT", private$url, request, private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, content = "", logger = self$loggerType ) put_req$execute() return(TRUE) }, disableUser = function(userid){ request <- sprintf("ocs/v1.php/cloud/users/%s/disable", userid) put_req <- ocsRequest$new( type = "HTTP_PUT", private$url, request, private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, content = "", logger = self$loggerType ) put_req$execute() return(TRUE) }, deleteUser = function(userid){ request <- sprintf("ocs/v1.php/cloud/users/%s", userid) delete_req <- ocsRequest$new( type = "HTTP_DELETE", private$url, request, private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, logger = self$loggerType ) delete_req$execute() return(TRUE) }, getUserGroups = function(userid){ get_usergroups <- ocs4R::ocsRequest$new( type = "HTTP_GET", private$url, sprintf("ocs/v1.php/cloud/users/%s/groups", userid), private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, logger = self$loggerType ) get_usergroups$execute() get_usergroups_resp <- get_usergroups$getResponse() usergroups <- unlist(get_usergroups_resp$ocs$data$groups) return(usergroups) }, addToGroup = function(userid, groupid){ request <- sprintf("ocs/v1.php/cloud/users/%s/groups", userid) post_req <- ocs4R::ocsRequest$new( type = "HTTP_POST", private$url, request, private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, content = list(groupid = groupid), contentType = NULL, logger = self$loggerType ) post_req$execute() post_req_resp <- post_req$getResponse() added <- post_req_resp$ocs$meta$statuscode == 100 return(added) }, removeFromGroup = function(userid, groupid){ request <- sprintf("ocs/v1.php/cloud/users/%s/groups", userid) delete_req <- ocsRequest$new( type = "HTTP_DELETE", private$url, request, private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, content = list(groupid = groupid), logger = self$loggerType ) delete_req$execute() return(TRUE) }, createSubadmin = function(){ stop("'createSubadmin' method not yet implemented") }, removeSubadmin = function(){ stop("'removeSubadmin' method not yet implemented") }, getSubadminGroups = function(){ stop("'getSubadminGroups' method not yet implemented") }, getGroups = function(search = NULL, limit = NULL, offset = NULL){ get_groups <- ocs4R::ocsRequest$new( type = "HTTP_GET", private$url, "ocs/v1.php/cloud/groups", private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, namedParams = list(search = search, limit = limit, offset = offset), logger = self$loggerType ) get_groups$execute() get_groups_resp <- get_groups$getResponse() groups <- unlist(get_groups_resp$ocs$data$groups) return(groups) }, addGroup = function(groupid){ request <- "ocs/v1.php/cloud/groups" post_req <- ocs4R::ocsRequest$new( type = "HTTP_POST", private$url, request, private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, content = list(groupid = groupid), contentType = NULL, logger = self$loggerType ) post_req$execute() post_req_resp <- post_req$getResponse() added <- post_req_resp$ocs$meta$statuscode == 100 return(added) }, getGroup = function(groupid){ get_group <- ocs4R::ocsRequest$new( type = "HTTP_GET", private$url, sprintf("ocs/v1.php/cloud/groups/%s", groupid), private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, logger = self$loggerType ) get_group$execute() get_group_resp <- get_group$getResponse() group <- list(id = groupid, users = unlist(get_group_resp$ocs$data$users)) return(group) }, deleteGroup = function(groupid){ request <- sprintf("ocs/v1.php/cloud/groups/%s", groupid) delete_req <- ocsRequest$new( type = "HTTP_DELETE", private$url, request, private$user, pwd = private$keyring_backend$get(service = private$keyring_service, username = paste0(private$user,"_pwd")), token = private$getToken(), cookies = private$cookies, logger = self$loggerType ) delete_req$execute() return(TRUE) }, getSubadmins = function(){ stop("'getSubadmins' method not yet implemented") } ) )
expected <- eval(parse(text="c(5.4278733372119e-07, 0.000257866433233453, NA)")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(5.4278733372119e-07, 0.000257866433233453, NA), .Names = c(\"x\", \"m\", \"Residuals\")), \"any\")")); .Internal(as.vector(argv[[1]], argv[[2]])); }, o=expected);
knitr::opts_chunk$set(collapse = TRUE, comment = " fig.width = 6, fig.height = 5) library(viridis) palette(viridis(3)) rm(list=ls()) graphics.off() set.seed(1) library(SIBER) data("demo.siber.data") siber.example <- createSiberObject(demo.siber.data) community.hulls.args <- list(col = 1, lty = 1, lwd = 1) group.ellipses.args <- list(n = 100, p.interval = 0.95, lty = 1, lwd = 2) group.hulls.args <- list(lty = 2, col = "grey20") par(mfrow=c(1,1)) plotSiberObject(siber.example, ax.pad = 2, hulls = F, community.hulls.args = community.hulls.args, ellipses = T, group.ellipses.args = group.ellipses.args, group.hulls = T, group.hulls.args = group.hulls.args, bty = "L", iso.order = c(1,2), xlab = expression({delta}^13*C~'\u2030'), ylab = expression({delta}^15*N~'\u2030') ) par(mfrow=c(1,1)) community.hulls.args <- list(col = 1, lty = 1, lwd = 1) group.ellipses.args <- list(n = 100, p.interval = 0.95, lty = 1, lwd = 2) group.hull.args <- list(lty = 2, col = "grey20") plotSiberObject(siber.example, ax.pad = 2, hulls = F, community.hulls.args, ellipses = F, group.ellipses.args, group.hulls = F, group.hull.args, bty = "L", iso.order = c(1,2), xlab=expression({delta}^13*C~'\u2030'), ylab=expression({delta}^15*N~'\u2030'), cex = 0.5 ) group.ML <- groupMetricsML(siber.example) print(group.ML) plotGroupEllipses(siber.example, n = 100, p.interval = 0.95, lty = 1, lwd = 2) plotGroupEllipses(siber.example, n = 100, p.interval = 0.95, ci.mean = T, lty = 1, lwd = 2) plotSiberObject(siber.example, ax.pad = 2, hulls = T, community.hulls.args, ellipses = F, group.ellipses.args, group.hulls = F, group.hull.args, bty = "L", iso.order = c(1,2), xlab=expression({delta}^13*C~'\u2030'), ylab=expression({delta}^15*N~'\u2030'), cex = 0.5 ) plotGroupEllipses(siber.example, n = 100, p.interval = 0.95, ci.mean = T, lty = 1, lwd = 2) community.ML <- communityMetricsML(siber.example) print(community.ML) parms <- list() parms$n.iter <- 2 * 10^4 parms$n.burnin <- 1 * 10^3 parms$n.thin <- 10 parms$n.chains <- 2 priors <- list() priors$R <- 1 * diag(2) priors$k <- 2 priors$tau.mu <- 1.0E-3 ellipses.posterior <- siberMVN(siber.example, parms, priors) SEA.B <- siberEllipses(ellipses.posterior) siberDensityPlot(SEA.B, xticklabels = colnames(group.ML), xlab = c("Community | Group"), ylab = expression("Standard Ellipse Area " ('\u2030' ^2) ), bty = "L", las = 1, main = "SIBER ellipses on each group" ) points(1:ncol(SEA.B), group.ML[3,], col="red", pch = "x", lwd = 2) cr.p <- c(0.95, 0.99) SEA.B.credibles <- lapply( as.data.frame(SEA.B), function(x,...){tmp<-hdrcde::hdr(x)$hdr}, prob = cr.p) SEA.B.modes <- lapply( as.data.frame(SEA.B), function(x,...){tmp<-hdrcde::hdr(x)$mode}, prob = cr.p, all.modes=T) mu.post <- extractPosteriorMeans(siber.example, ellipses.posterior) layman.B <- bayesianLayman(mu.post) siberDensityPlot(layman.B[[1]], xticklabels = colnames(layman.B[[1]]), bty="L", ylim = c(0,20)) comm1.layman.ml <- laymanMetrics(siber.example$ML.mu[[1]][1,1,], siber.example$ML.mu[[1]][1,2,] ) points(1:6, comm1.layman.ml$metrics, col = "red", pch = "x", lwd = 2) siberDensityPlot(layman.B[[2]], xticklabels = colnames(layman.B[[2]]), bty="L", ylim = c(0,20)) comm2.layman.ml <- laymanMetrics(siber.example$ML.mu[[2]][1,1,], siber.example$ML.mu[[2]][1,2,] ) points(1:6, comm2.layman.ml$metrics, col = "red", pch = "x", lwd = 2) par(mfrow=c(1,1)) siberDensityPlot(cbind(layman.B[[1]][,"TA"], layman.B[[2]][,"TA"]), xticklabels = c("Community 1", "Community 2"), bty="L", ylim = c(0,20), las = 1, ylab = "TA - Convex Hull Area", xlab = "")
buildModMedSemModel <- function(xvar, mvars, yvar, xmmod = NULL, mymod = NULL, cmvars = NULL, cyvars = NULL) { nm <- length(mvars); ncm <- length(cmvars); ncy <- length(cyvars); a1 <- NULL a2 <- 1:nm; b2 <- NULL b1 <- a2; c1 <- 1:length(cmvars); c2 <- 1:length(cyvars); h <- as.vector(outer(1:nm, 1:ncm, paste0)); a <- paste0("a",a1,a2) if (!is.null(xmmod)) { w1 <- paste0("w",a2) w2 <- paste0("im",a2) } b <- paste0("b",b1,b2) if(!is.null(mymod)) { v1 <- paste0("v",b2) v2 <- paste0("iy",a2) } c <- paste0("cp",a1,b2); d <- paste0("d",h); f <- paste0("f",c2,b2); model_cov1 <- " "; if (length(cmvars) > 1) { ha <- expand.grid(cmvars,cmvars); hb <- matrix(data=c(1:(ncm**2)),nrow=ncm,ncol=ncm); s <- as.vector(lower.tri(hb)); ha <- ha[s,]; model_cov1 <- paste0(ha[,1], " ~~ " , ha[,2], collapse = " \n "); } model_cov2 <- " "; vars <- c(mvars, cyvars); if (length(vars) > 1) { nmy <- nm + ncy; ha <- expand.grid(vars,vars); hb <- matrix(data=c(1:(nmy**2)),nrow=nmy,ncol=nmy); s <- as.vector(lower.tri(hb)); ha <- ha[s,]; model_cov2 <- paste0(ha[,1], " ~~ " , ha[,2], collapse = " \n "); } ind <- paste0("ind", a2 ); modmedx <- paste0("modmedx", a2 ); modmedm <- paste0("modmedm", a2 ); bw <- paste0("bw", a2 ); gw <- paste0("gw", a2 ); ratio <- paste0("ratio", a2) modela2 <- " "; modelb2 <- " "; modelw <- " "; modelw2 <- " "; modelv <- " "; modelv2 <- " " modeli1 <- " "; modeli3 <- " "; modeli5 <- " "; modeli2 <- " "; modeld <- " "; modelf <- " "; if(!is.null(xmmod)) { xmint <- paste0("xmInteraction",c(1:nm)); } if(!is.null(mymod)) { myint <- paste0("myInteraction",c(1:nm)); } modela1 <- paste0(mvars, " ~ " ,a,"*",xvar , collapse = " \n "); if(!is.null(xmmod)) { modelw <- paste0( mvars, " ~ " ,w1,"*",xmmod , collapse = " \n "); modelw2 <- paste0( mvars, " ~ " ,w2,"*",xmint , collapse = " \n "); } modelb1 <- paste0( yvar, " ~ " ,b,"*",mvars , collapse = " \n "); if(!is.null(mymod)) { modelv <- paste0( yvar, " ~ " ,v1,"*",mymod , collapse = " \n "); modelv2 <- paste0( yvar, " ~ " ,v2,"*",myint , collapse = " \n "); } modelc <- paste0( yvar, " ~ " ,c,"*",xvar , collapse = " \n "); if (!is.null(cmvars)) { modeld <- paste0( rep(mvars,ncm), " ~ " ,d,"*",rep(cmvars, each=nm) , collapse = " \n "); } if (!is.null(cyvars)) { modelf <- paste0( yvar, " ~ " ,f,"*",cyvars , collapse = " \n "); } modeli <- paste0(ind , " := " , a, " * ", b, collapse = " \n "); if(!is.null(xmmod)) { modeli1 <- paste0(modmedx , " := " , w2, " * ", b, collapse = " \n "); modeli3 <- paste0(bw , " := " , w1, " * ", b, collapse = " \n "); modeli5 <- paste0(gw , " := " , w1, " * ", w2, collapse = " \n "); } if(!is.null(mymod)) { modeli2 <- paste0(modmedm , " := " , v2, " * ", a, collapse = " \n "); } sumInd <- paste0(ind, collapse = " + ") modelt <- paste0("tot := " , sumInd); modelr <- paste0(ratio," := " , "(",ind, ")" ,"/" , "(",ind, "+", c, ")" , collapse = " \n "); modelrt <- paste0("ratio_tot := " , paste0("(",sumInd,")", "/" , "(",sumInd, "+", c,")")); model <- paste0(modela1," \n ",modela2," \n ", modelb1," \n ", modelb2," \n ", modelc, " \n ", modeld, " \n ", modelw, " \n ", modelw2, " \n ", modelv, " \n ", modelv2, " \n ", modelf, " \n ", model_cov1," \n ", model_cov2, " \n ", modeli, " \n ", modeli1, " \n ", modeli2, " \n ",modeli3, " \n ", modeli5, " \n ", modelt, " \n ", modelr, " \n ", modelrt); return(model) }
get_recent_lobbying_representation_filings <- function(page = 1, myAPI_Key){ API = 'congress' query <- "lobbying/latest.json" pp_query(query, API, page = page, myAPI_Key = myAPI_Key) }
HELP3 <- mutate( HELPrct, risklevel = derivedFactor( low = sexrisk < 5, medium = sexrisk < 10, high = sexrisk >= 10, .method = "first" ) ) gf_jitter(sexrisk ~ risklevel, data = HELP3, height = 0.2, width = 0.3, alpha = 0.4)
knitRev <- function(){ knitr::knit_engines$set(rb = function(options) { output <- doRev(paste(options$code, collapse = "\n")) return(knitr::engine_output(options, code = options$code, out = c(output))) }) }
object_format <- function(x) { UseMethod("object_format") } object_format.default <- function(x) { paste0("An object of class ", format_classes(x), " ", format_dim(x), ".") } format_classes <- function(x) { classes <- paste0("\\code{", class(x), "}") base_classes <- NULL if (length(classes) > 1L) { base_classes <- paste0( " (inherits from ", paste(classes[-1L], collapse = ", "), ")") } paste0(classes[[1L]], base_classes) } format_dim <- function(x) { if (length(dim(x)) == 2L) { paste0("with ", nrow(x), " rows and ", ncol(x), " columns") } else if (length(dim(x)) > 2L) { paste0("of dimension ", paste(dim(x), collapse = " x ")) } else { paste0("of length ", length(x)) } } call_to_format <- function(code, env = pkg_env()) { obj <- call_to_object(!!enexpr(code), env) object_format(obj$value) }
context("Cite") test_that("Cite", { ci <- Citation(suffix=list(Str("Suffix_1")), id="Citation_ID_1", prefix=list(Str("Prefix_1"))) cite <- Cite(list(ci), list(Str("some text"))) x <- pandocfilters:::test(list(Header(list(cite))), to="markdown") expect_that(x, equals("@Citation_ID_1 [Suffix\\_1]\n==========================")) cite <- Cite(list(ci), Str("some text")) x <- pandocfilters:::test(list(Header(list(cite))), to="markdown") expect_that(x, equals("@Citation_ID_1 [Suffix\\_1]\n==========================")) cite <- Cite(ci, Str("some text")) x <- pandocfilters:::test(list(Header(list(cite))), to="markdown") expect_that(x, equals("@Citation_ID_1 [Suffix\\_1]\n==========================")) x <- pandocfilters:::test(list(Header(cite)), to="markdown") expect_that(x, equals("@Citation_ID_1 [Suffix\\_1]\n==========================")) cite <- Cite(list(ci), list(Str("some text"))) x <- pandocfilters:::test(list(Plain(list(cite))), to="markdown") expect_that(x, equals("@Citation_ID_1 [Suffix\\_1]")) cite <- Cite(list(ci), Str("some text")) x <- pandocfilters:::test(list(Plain(list(cite))), to="markdown") expect_that(x, equals("@Citation_ID_1 [Suffix\\_1]")) cite <- Cite(ci, Str("some text")) x <- pandocfilters:::test(list(Plain(list(cite))), to="markdown") expect_that(x, equals("@Citation_ID_1 [Suffix\\_1]")) x <- pandocfilters:::test(list(Plain(cite)), to="markdown") expect_that(x, equals("@Citation_ID_1 [Suffix\\_1]")) } )
plotdiag.leverage <- function(forn, hilos=c(1,0), maintitle = "Put main title here", subtitle = "Put subtitle here", wmf = "Put_graph_title_here", Cairo=TRUE, printgraph = TRUE, subdiag=FALSE, subverb=FALSE, diagnose=FALSE, verbose=TRUE) { MC <- match.call() if(verbose) { print("", quote = FALSE) print("Running plot.diag.leverage", quote = FALSE) print("", quote = FALSE) print(date(), quote = FALSE) print("", quote = FALSE) print("Call:", quote = FALSE) print(MC) print("", quote = FALSE) } plotD1 <- function(data, xcol, ycol, cov2col, df3, highslows, mtitle, stitle, cap, horlabel, vertlabel, filewidth, fileheight, subdiag, subverb) { XVAR <- data[,xcol] YVAR <- data[,ycol] COV2 <- data[,cov2col] SD <- data$SD N <- data$N dfplot <- data.frame(COV2,XVAR,YVAR,SD,N) if(diagnose)Hmisc::prn(dfplot) upper <- dfplot$YVAR + dfplot$SD lower <- dfplot$YVAR - dfplot$SD dfplot <- data.frame(dfplot,upper,lower) out <- ggplot2::ggplot(data=dfplot, ggplot2::aes(x=XVAR, y=YVAR, group=COV2, color=COV2)) out <- out + ggplot2::geom_line() + ggplot2::geom_errorbar(ggplot2::aes(x=XVAR,ymin=lower,ymax=upper),width=0.2)+ ggplot2::theme(legend.position="none") highs <- highslows[1] if(diagnose) Hmisc::prn(df3) if(highs>0){ dim2 <- max(XVAR) for(ihigh in 1:highs){ out <- out + ggplot2::annotate("text", x=dim2+3,y=df3[ihigh,3],label=as.character(df3[ihigh,2])) } } out <- out + ggplot2::ggtitle(mtitle,subtitle=stitle) + ggplot2::xlab(horlabel) + ggplot2::ylab(vertlabel) + ggplot2::labs(caption=cap) if(diagnose) Hmisc::prn(as.character(out)) if(Cairo){ Cairo::CairoWin(width = 7, height = 7, pointsize = 12, record = getOption("graphics.record"), rescale = c("R", "fit", "fixed"), bg = "transparent", canvas = "white", gamma = getOption("gamma"), xpos = NA, ypos = NA, buffered = getOption("windowsBuffered"), restoreConsole = FALSE) } Hmisc::prn(out) if(printgraph){ filename <- paste(wmf,".wmf",sep="") ggplot2::ggsave(filename,width=filewidth, height=fileheight) grDevices::dev.off() } if(subverb) { print("", quote = F) print("Finished running plotD1", quote = F) print("", quote = F) print(date(), quote = F) print("", quote = F) } } prepstuff <- function(rightforn,gg){ df1 <- rightforn$Leverage SD <- 0 N <- 1 df2 <- data.frame(df1, SD, N) if(diagnose) Hmisc::prn(df2) if(diagnose) temphist <- search.history(rightforn) df2order <- df2[order(df2$m),] maxm <- max(df2[,1]) df3 <- df2[df2[,1]==maxm,,] df3 <- df3[ order(df3[,3],decreasing=TRUE) ,] print("", quote = F) print("Observation leverages in order of final value", quote=FALSE) print(utils::head(df3[,2:3],n=10L), quote=FALSE) print("", quote = F) cap2 <- paste("Average final leverage p/n =",round(min(df2[,1]) / maxm, 2), sep=" ") wmf2 <- paste(wmf,".wmf",sep="") if(grouped){ cap2 <- paste(cap2,paste("Subgroup",gg),sep=". ") wmf2 <- paste(wmf," Subgroup ",gg,".wmf",sep="") } plotD1(data=df2, xcol=1, ycol=3, cov2col=2, df3=df3, mtitle=maintitle, stitle=subtitle, highslows=hilos, horlabel="Subset size m", vertlabel="Leverage", cap=cap2, filewidth=5,fileheight=5, subdiag=subdiag,subverb=subverb) } grouped <- FALSE if(grouped){ nnames_forn <- length(forn) for(gg in 1:nnames_forn){ prepstuff(rightforn=forn[[gg]], gg) } } else{ prepstuff(rightforn=forn, gg="") } if(verbose) { print("", quote = FALSE) print("Finished running plot.diag.leverage", quote = FALSE) print("", quote = FALSE) print(date(), quote = FALSE) print("", quote = FALSE) } }
I.spline=function(time,xi1,xi3){ if(min(time)<xi1){warning("time should be larger than xi1")} if(max(time)>xi3){warning("time should be smaller than xi3")} D=(xi3-xi1)/2 xi2=xi1+D z1=(time-xi1)/D;z2=(time-xi2)/D;z3=(time-xi3)/D I1=(1-z2^4)*(time<xi2)+1*(time>=xi2) I2=( 7/8*z1^4-3*z1^3+3*z1^2 )*(time<xi2)+( 1-z3^4/8 )*(time>=xi2) I3=( -z1^4/2+z1^3 )*(time<xi2)+( 1/2+z2^4/2-z2^3+z2 )*(time>=xi2) I4=( z1^4/8 )*(time<xi2)+( 1/8-7/8*z2^4+1/2*z2^3+3/4*z2^2+1/2*z2 )*(time>=xi2) I5=z2^4*(time>=xi2) cbind(I1,I2,I3,I4,I5) }
spLines <- function(x, ..., attr=NULL, crs="") { x <- c(list(x), list(...)) x <- rapply(x, sp::Line, how='replace') x <- lapply(1:length(x), function(i) sp::Lines(x[[i]], as.character(i))) x <- sp::SpatialLines(x) if (!is.null(attr)) { if (nrow(attr) == length(x)) { x <- sp::SpatialLinesDataFrame(x, attr) } else { msg <- paste('number of rows in attr (', nrow(attr), ') does not match the number of lines (', length(x), ')', sep='') stop(msg) } } if (!is.na(crs)) { crs(x) <- crs } x } spPolygons <- function(x, ..., attr=NULL, crs="") { x <- c(list(x), list(...)) x <- rapply(x, sp::Polygon, how='replace') x <- lapply(1:length(x), function(i) { if (length(x[[i]]) == 1) { sp::Polygons(x[i], as.character(i)) } else { sp::Polygons(x[[i]], as.character(i)) } }) x <- sp::SpatialPolygons(x) if (!is.null(attr)) { if (nrow(attr) == length(x)) { x <- sp::SpatialPolygonsDataFrame(x, attr) } else { msg <- paste('number of rows in attr (', nrow(attr), ') does not match the number of polygons (', length(x), ')', sep='') stop(msg) } } if (!is.na(crs)) { crs(x) <- crs } x }
expected <- eval(parse(text="NULL")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(`1000/MPG.city` = c(40, 55.5555555555556, 50, 52.6315789473684, 45.4545454545455, 45.4545454545455, 52.6315789473684, 62.5, 52.6315789473684, 62.5, 62.5, 40, 40, 52.6315789473684, 47.6190476190476, 55.5555555555556, 66.6666666666667, 58.8235294117647, 58.8235294117647, 50, 43.4782608695652, 50, 34.4827586206897, 43.4782608695652, 45.4545454545455, 58.8235294117647, 47.6190476190476, 55.5555555555556, 34.4827586206897, 50, 32.258064516129, 43.4782608695652, 45.4545454545455, 45.4545454545455, 41.6666666666667, 66.6666666666667, 47.6190476190476, 55.5555555555556, 21.7391304347826, 33.3333333333333, 41.6666666666667, 23.8095238095238, 41.6666666666667, 34.4827586206897, 45.4545454545455, 38.4615384615385, 50, 58.8235294117647, 55.5555555555556, 55.5555555555556, 58.8235294117647, 55.5555555555556, 34.4827586206897, 35.7142857142857, 38.4615384615385, 55.5555555555556, 58.8235294117647, 50, 52.6315789473684, 43.4782608695652, 52.6315789473684, 34.4827586206897, 55.5555555555556, 34.4827586206897, 41.6666666666667, 58.8235294117647, 47.6190476190476, 41.6666666666667, 43.4782608695652, 55.5555555555556, 52.6315789473684, 43.4782608695652, 32.258064516129, 43.4782608695652, 52.6315789473684, 52.6315789473684, 52.6315789473684, 50, 35.7142857142857, 30.3030303030303, 40, 43.4782608695652, 25.6410256410256, 31.25, 40, 45.4545454545455, 55.5555555555556, 40, 58.8235294117647, 47.6190476190476, 55.5555555555556, 47.6190476190476, 50), Weight = c(2705L, 3560L, 3375L, 3405L, 3640L, 2880L, 3470L, 4105L, 3495L, 3620L, 3935L, 2490L, 2785L, 3240L, 3195L, 3715L, 4025L, 3910L, 3380L, 3515L, 3085L, 3570L, 2270L, 2670L, 2970L, 3705L, 3080L, 3805L, 2295L, 3490L, 1845L, 2530L, 2690L, 2850L, 2710L, 3735L, 3325L, 3950L, 1695L, 2475L, 2865L, 2350L, 3040L, 2345L, 2620L, 2285L, 2885L, 4000L, 3510L, 3515L, 3695L, 4055L, 2325L, 2440L, 2970L, 3735L, 2895L, 2920L, 3525L, 2450L, 3610L, 2295L, 3730L, 2545L, 3050L, 4100L, 3200L, 2910L, 2890L, 3715L, 3470L, 2640L, 2350L, 2575L, 3240L, 3450L, 3495L, 2775L, 2495L, 2045L, 2490L, 3085L, 1965L, 2055L, 2950L, 3030L, 3785L, 2240L, 3960L, 2985L, 2810L, 2985L, 3245L), Cylinders = structure(c(2L, 4L, 4L, 4L, 2L, 2L, 4L, 4L, 4L, 5L, 5L, 2L, 2L, 4L, 2L, 4L, 4L, 5L, 5L, 4L, 2L, 4L, 2L, 2L, 2L, 4L, 2L, 4L, 2L, 4L, 2L, 2L, 2L, 2L, 2L, 4L, 4L, 5L, 1L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 5L, 4L, 4L, 4L, 5L, 2L, 2L, 2L, 4L, 6L, 2L, 4L, 2L, 4L, 2L, 4L, 2L, 2L, 4L, 4L, 2L, 2L, 4L, 4L, 2L, 2L, 2L, 4L, 4L, 4L, 2L, 2L, 1L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 4L, 2L, 3L), .Label = c(\"3\", \"4\", \"5\", \"6\", \"8\", \"rotary\"), class = \"factor\"), Type = structure(c(4L, 3L, 1L, 3L, 3L, 3L, 2L, 2L, 3L, 2L, 3L, 1L, 1L, 5L, 3L, 6L, 6L, 2L, 5L, 2L, 1L, 2L, 4L, 4L, 1L, 6L, 3L, 5L, 4L, 2L, 4L, 4L, 1L, 5L, 5L, 6L, 3L, 2L, 4L, 5L, 5L, 4L, 1L, 4L, 4L, 5L, 3L, 3L, 3L, 3L, 3L, 2L, 4L, 4L, 1L, 6L, 5L, 1L, 3L, 5L, 3L, 4L, 3L, 4L, 1L, 6L, 3L, 1L, 3L, 6L, 2L, 5L, 4L, 1L, 5L, 3L, 2L, 1L, 4L, 4L, 4L, 1L, 4L, 4L, 5L, 3L, 6L, 4L, 6L, 1L, 5L, 1L, 3L), .Label = c(\"Compact\", \"Large\", \"Midsize\", \"Small\", \"Sporty\", \"Van\"), class = \"factor\"), EngineSize = c(1.8, 3.2, 2.8, 2.8, 3.5, 2.2, 3.8, 5.7, 3.8, 4.9, 4.6, 2.2, 2.2, 3.4, 2.2, 3.8, 4.3, 5, 5.7, 3.3, 3, 3.3, 1.5, 2.2, 2.5, 3, 2.5, 3, 1.5, 3.5, 1.3, 1.8, 2.3, 2.3, 2, 3, 3, 4.6, 1, 1.6, 2.3, 1.5, 2.2, 1.5, 1.8, 1.5, 2, 4.5, 3, 3, 3.8, 4.6, 1.6, 1.8, 2.5, 3, 1.3, 2.3, 3.2, 1.6, 3.8, 1.5, 3, 1.6, 2.4, 3, 3, 2.3, 2.2, 3.8, 3.8, 1.8, 1.6, 2, 3.4, 3.4, 3.8, 2.1, 1.9, 1.2, 1.8, 2.2, 1.3, 1.5, 2.2, 2.2, 2.4, 1.8, 2.5, 2, 2.8, 2.3, 2.4), DriveTrain = structure(c(2L, 2L, 2L, 2L, 3L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 2L, 1L, 3L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 1L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 1L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 3L, 2L, 3L, 2L, 3L, 2L, 2L, 2L, 1L, 3L, 3L, 3L, 2L, 3L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 3L, 2L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 1L, 2L, 2L, 2L, 2L, 3L, 2L), .Label = c(\"4WD\", \"Front\", \"Rear\"), class = \"factor\")), .Names = c(\"1000/MPG.city\", \"Weight\", \"Cylinders\", \"Type\", \"EngineSize\", \"DriveTrain\"), terms = quote(1000/MPG.city ~ Weight + Cylinders + Type + EngineSize + DriveTrain), row.names = c(NA, 93L), class = \"data.frame\"), \"na.action\")")); do.call(`attr`, argv); }, o=expected);
header.textile <- function(caption = NULL, caption.level = NULL, frame = NULL, width = 0) { if (!is.null(frame)) { frame <- switch(frame, topbot = "border-top:1px solid black;border-bottom:1px solid black", sides = "border-left:1px solid black;border-right:1px solid black", all = "border:1px solid black", none = "") } if (width != 0) { width <- paste("width:", width, "%", sep = "") } else { width <- "" } listarg <- c(frame, width) listarg <- listarg[listarg != ""] if (length(listarg) != 0) { res <- paste("table{", paste(listarg, collapse = ";"), "}.\n", sep = "") } else res <- "" if (!is.null(caption)) { if (!is.null(caption.level)) { if (is.numeric(caption.level) & caption.level > 0) { lev <- paste("h", caption.level, ".", sep = "") ; res <- paste(lev, " ", caption, "\n\n", sep = "") } else if (caption.level == "s") res <- paste(beauty.textile(caption, "s"), "\n\n", sep = "") else if (caption.level == "e") res <- paste(beauty.textile(caption, "e"), "\n\n", sep = "") else if (caption.level == "m") res <- paste(beauty.textile(caption, "m"), "\n\n", sep = "") } else { res <- paste(caption, "\n\n", res, sep = "") } } return(res) } beauty.textile <- function(x, beauti = c("e", "m", "s")) { x[is.na(x)] <- "NA" if (beauti == "s") { y <- as.logical((regexpr("^ *$", x)+1)/2) | as.logical((regexpr("\\*.*\\*", x)+1)/2) if (length(x[!y]) != 0) x[!y] <- sub("(^ *)([:alpha]*)", "\\1\\*\\2", sub("([:alpha:]*)( *$)", "\\1\\*\\2", x[!y])) } if (beauti == "e") { y <- as.logical((regexpr("^ *$", x)+1)/2) | as.logical((regexpr("/.*/", x)+1)/2) if (length(x[!y]) != 0) x[!y] <-sub("(^ *)([:alpha]*)", "\\1/\\2", sub("([:alpha:]*)( *$)", "\\1/\\2", x[!y])) } if (beauti == "m") { y <- as.logical((regexpr("^ *$", x)+1)/2) | as.logical((regexpr("<code>.*</code>", x)+1)/2) if (length(x[!y]) != 0) x[!y] <-sub("(^ *)([:alpha]*)", "\\1<code>\\2", sub("([:alpha:]*)( *$)", "\\1</code>\\2", x[!y])) } return(x) } vsep.textile <- function (align = NULL, valign = NULL, style = NULL) { if (is.null(align) & is.null(valign) & is.null(style)) { res <- "" } else { if (is.null(align)) align <- "" if (is.null(valign)) valign <- "" if (is.null(style)) style <- "" align[align == "l"] <- "<" align[align == "c"] <- "=" align[align == "r"] <- ">" valign[valign == "top"] <- "^" valign[valign == "middle"] <- "-" valign[valign == "bottom"] <- "~" style[style == "s"] <- "{font-weight:bold}" style[style == "e"] <- "{font-style:italic}" style[style == "m"] <- "{font-family:Monospace}" res <- paste.matrix(align, valign, style, sep = "") } return(res) } escape.textile <- function(x) { xx <- gsub("\\|", "\\\\|", x) xx } show.textile.table <- function(x, include.rownames = FALSE, include.colnames = FALSE, rownames = NULL, colnames = NULL, format = "f", digits = 2, decimal.mark = ".", na.print = "", caption = NULL, caption.level = NULL, width = 0, frame = NULL, grid = NULL, valign = NULL, header = FALSE, footer = FALSE, align = NULL, col.width = 1, style = NULL, lgroup = NULL, n.lgroup = NULL, lalign = "c", lvalign = "middle", lstyle = "h", rgroup = NULL, n.rgroup = NULL, ralign = "c", rvalign = "middle", rstyle = "h", tgroup = NULL, n.tgroup = NULL, talign = "c", tvalign = "middle", tstyle = "h", bgroup = NULL, n.bgroup = NULL, balign = "c", bvalign = "middle", bstyle = "h", ...) { x <- escape.textile(tocharac(x, include.rownames, include.colnames, rownames, colnames, format, digits, decimal.mark, na.print)) nrowx <- nrow(x) ncolx <- ncol(x) line_separator <- FALSE vsep = matrix("|", nrow(x), ncol(x)) if (!is.null(style)) { style <- expand(style, nrowx, ncolx) vsep[style == "h"] <- "|_" style[!(style %in% c("s", "e", "m"))] <- "" style[style == "s"] <- "*" style[style == "e"] <- "_" style[style == "m"] <- "<code>" } else { style <- "" style <- expand(style, nrowx, ncolx) } if (include.rownames & include.colnames) { style[1, 1] <- "" } vsep <- cbind(vsep, rep("|", nrowx)) before_cell_content <- after_cell_content <- style before_cell_content <- paste.matrix(" ", before_cell_content, sep = "", transpose.vector = TRUE) after_cell_content <- paste.matrix(after_cell_content, " ", sep = "", transpose.vector = TRUE) after_cell_content[after_cell_content == "<code> "] <- "</code> " if (is.logical(header) & header) header <- 1 if (header > 0) { vsep[1:min(c(header, nrowx)), -ncol(vsep)] <- "|_" } if (is.logical(footer) & footer) footer <- 1 if (footer > 0) { vsep[nrow(x):(nrow(x)+1-min(c(footer, nrowx))), -ncol(vsep)] <- "|_" } if (!is.null(align)) { align <- expand(align, nrow(x), ncolx) } else { align <- expand("", nrow(x), ncolx) } if (!is.null(valign)) { valign <- expand(valign, nrow(x), ncolx) } else { valign <- expand("", nrow(x), ncolx) } after_vsep <- paste.matrix(vsep.textile(align, valign), ".", sep = "", transpose.vector = TRUE) if (include.rownames & include.colnames) after_vsep[1, 1] <- "" results <- print.character.matrix(x, line_separator = line_separator, vsep = vsep, after_vsep = after_vsep, before_cell_content = before_cell_content, after_cell_content = after_cell_content, print = FALSE) if (include.rownames & include.colnames) results[1] <- sub("^ +", "", substr(results[1], 5, nchar(results[1]))) if (!is.null(lgroup)) { if (!is.list(lgroup)) lgroup <- list(lgroup) n.lgroup <- groups(lgroup, n.lgroup, nrowx-include.colnames)[[2]] } if (!is.null(rgroup)) { if (!is.list(rgroup)) rgroup <- list(rgroup) n.rgroup <- groups(rgroup, n.rgroup, nrowx-include.colnames)[[2]] } if (!is.null(tgroup)) { if (!is.list(tgroup)) tgroup <- list(tgroup) n.tgroup <- groups(tgroup, n.tgroup, ncolx-include.rownames)[[2]] } if (!is.null(bgroup)) { if (!is.list(bgroup)) bgroup <- list(bgroup) n.bgroup <- groups(bgroup, n.bgroup, ncolx-include.rownames)[[2]] } if (!is.null(lgroup)) { lh <- "" if (lstyle == "h") { lstyle <- NULL lh <- "_" } for (i in 1:length(lgroup)) { pos.lgroup <- ngroups(lgroup[[i]], n.lgroup[[i]], n = nrowx) results[pos.lgroup[, 2]+include.colnames] <- paste(paste(paste("|", lh, "/", pos.lgroup[, 3], vsep.textile(align = lalign, valign = lvalign, style = lstyle), sep = ""), pos.lgroup[, 1], sep = ". "), results[pos.lgroup[, 2]+include.colnames], sep = " ") } } if (!is.null(rgroup)) { rh <- "" if (rstyle == "h") { rstyle <- NULL rh <- "_" } for (i in 1:length(rgroup)) { pos.rgroup <- ngroups(rgroup[[i]], n.rgroup[[i]], n = nrowx) results[pos.rgroup[, 2]+include.colnames] <- paste(results[pos.rgroup[, 2]+include.colnames], paste(paste(rh, "/", pos.rgroup[, 3], vsep.textile(align = ralign, valign = rvalign, style = rstyle), sep = ""), pos.rgroup[, 1], sep = ". "), " |", sep = "") } } if (!is.null(tgroup)) { th <- "" if (tstyle == "h") { tstyle <- NULL th <- "_" } for (i in 1:length(tgroup)) { pos.tgroup <- ngroups(tgroup[[i]], n.tgroup[[i]], n = ncolx) results <- c(paste(paste(paste("|", th, "\\", pos.tgroup[, 3], vsep.textile(align = talign, valign = tvalign, style = tstyle), sep = ""), ". ", pos.tgroup[, 1], sep = "", collapse = " "), "|"), results) } } if (!is.null(bgroup)) { bh <- "" if (bstyle == "h") { bstyle <- NULL bh <- "_" } for (i in 1:length(bgroup)) { pos.bgroup <- ngroups(bgroup[[i]], n.bgroup[[i]], n = ncolx) results <- c(results, paste(paste(paste("|", th, "\\", pos.tgroup[, 3], vsep.textile(align = talign, valign = tvalign, style = tstyle), sep = ""), ". ", pos.tgroup[, 1], sep = "", collapse = " "), "|")) } } topleftrow <- 0 + include.colnames + length(tgroup) topleftcol <- 0 + include.rownames + length(lgroup) topleft <- "" if (topleftrow > 0 & topleftcol > 0) topleft <- paste("|/", topleftrow, "\\", topleftcol, ". ", sep = "") bottomleftrow <- 0 + length(bgroup) bottomleftcol <- 0 + include.rownames + length(lgroup) bottomleft <- "" if (bottomleftrow > 0 & bottomleftcol > 0) bottomleft <- paste("|/", bottomleftrow, "\\", bottomleftcol, ". ", sep = "") toprightrow <- 0 + include.colnames + length(tgroup) toprightcol <- 0 + length(rgroup) topright <- "" if (toprightrow > 0 & toprightcol > 0) topright <- paste("/", toprightrow, "\\", toprightcol, ". |", sep = "") bottomrightrow <- 0 + length(bgroup) bottomrightcol <- 0 + length(rgroup) bottomright <- "" if (bottomrightrow > 0 & bottomrightcol > 0) bottomright <- paste("/", bottomrightrow, "\\", bottomrightcol, ". |", sep = "") results[1] <- paste(topleft, results[1], sep = "") results[1] <- paste(results[1], topright, sep = "") results[length(results)] <- paste(bottomleft, results[length(results)], sep = "") results[length(results)] <- paste(results[length(results)], bottomright, sep = "") cat(header.textile(caption = caption, caption.level = caption.level, frame = frame, width = width)) cat(results, sep = "\n") } show.textile.list <- function(x, caption = NULL, caption.level = NULL, list.type = "bullet", ...) { if (list.type == "bullet") mark <- rep("*", length(x)) if (list.type == "number") mark <- rep(" if (list.type == "none") mark <- rep("", length(x)) if (list.type == "label") { if (is.null(names(x))) { namesx <- paste("[[ ", 1:length(x), " ]]", sep = "") } else { namesx <- names(x) } mark <- paste("- ", namesx, " := ", sep = "") } charac.x <- vector("character", length(x)) for (i in 1:length(x)) { if (is.null(x[[i]])) next tmp <- x[[i]] if (list.type == "label") tmp <- sub("^\t*", "", tmp) tmp <- sub("(^.*)", paste(mark[i], "\\1", sep = ""), gsub('\t|(*COMMIT)(*FAIL)', mark[i], tmp, perl = TRUE)) charac.x[i] <- sub(paste('(^\\', mark[i], '+)(.*)', sep = ""), '\\1 \\2', tmp) } cat(header.asciidoc(caption = caption, caption.level = caption.level)) cat(charac.x, sep = "\n") }
sqlp_base <- function(blk=NULL, At=NULL, C=NULL, b=NULL, OPTIONS=NULL, X0=NULL, y0=NULL, Z0=NULL){ if((is.null(blk) | is.null(At) | is.null(C) | is.null(b))){ stop("Error: Improper input methods") } b <- as.matrix(b) idxdenAl <- numeric(0) idxdenAq <- numeric(0) nnzschur_qblk <- numeric(0) nnzschur <- numeric(0) nzlistschur <- numeric(0) schurfun <- numeric(0) schurfun_par <- numeric(0) diagR <- numeric(0) diagRold <- numeric(0) exist_analytic_term <- numeric(0) existlowrank <- numeric(0) matfct_options <- numeric(0) matfct_options_old <- numeric(0) nnzmat <- numeric(0) nnzmatold <- numeric(0) numpertdiashschur <- numeric(0) printlevel <- numeric(0) smallblkdim <- numeric(0) solve_ok <- numeric(0) spdensity <- numeric(0) use_LU <- numeric(0) isemptyAtb <- 0 if(is.null(At) & is.null(b)){ b <- 0 At <- ops(ops(blk, "identity"), "*", -1) numblk <- nrow(blk) blk[[numblk+1, 1]] <- "l" blk[[numblk+1, 2]] <- 1 At[[numblk+1,1]] <- 1 C[[numblk+1,1]] <- 0 isemptyAtb <- 1 } par <- list(vers = 0, gam = 0, predcorr = 1, expon = 1, gaptol = 1e-8, inftol = 1e-8, steptol = 1e-6, maxit = 100, printlevel = 3, stoplevel = 1, scale_data = 0, spdensity = 0.4, rmdepconstr = 0, smallblkdim = 50, parbarrier = c(), schurfun = matrix(list(),nrow=nrow(blk),ncol=1), schurfun_par = matrix(list(),nrow=nrow(blk),ncol=1), blkdim = c(), ublksize = c(), depconstr = c(), AAt = c(), normAAt = c(), numcolAt = c(), permA = c(), permZ = c(), isspA = c(), nzlist = c(), nzlistAsum = c(), isspAy = c(), nzlistAy = c(), iter = c(), obj = c(), relgap = c(), pinfeas = c(), dinfeas = c(), rp = c(), y = c(), dy = c(), normX = c(), ZpATynorm = c()) parbarrier <- matrix(list(),nrow=nrow(blk),ncol=1) for(p in 1:nrow(blk)){ pblk <- blk[[p,1]] if(pblk == "s" | pblk == "q"){ parbarrier[[p,1]] <- matrix(0, nrow=1, ncol=length(blk[[p,2]])) }else if(pblk == "l" | pblk == "u"){ parbarrier[[p,1]] <- matrix(0, nrow=1, ncol=sum(blk[[p,2]])) } } parbarrier_0 <- parbarrier if(!is.null(OPTIONS) | length(OPTIONS) > 0){ if(!is.null(OPTIONS$vers)) par$vers <- OPTIONS$vers if(!is.null(OPTIONS$predcorr)) par$predcorr <- OPTIONS$predcorr if(!is.null(OPTIONS$gam)) par$gam <- OPTIONS$gam if(!is.null(OPTIONS$expon)) par$expon <- OPTIONS$expon if(!is.null(OPTIONS$gaptol)) par$gaptol <- OPTIONS$gaptol if(!is.null(OPTIONS$inftol)) par$inftol <- OPTIONS$inftol if(!is.null(OPTIONS$steptol)) par$steptol <- OPTIONS$steptol if(!is.null(OPTIONS$maxit)) par$maxit <- OPTIONS$maxit if(!is.null(OPTIONS$printlevel)) par$printlevel <- OPTIONS$printlevel if(!is.null(OPTIONS$stoplevel)) par$stoplevel <- OPTIONS$stoplevel if(!is.null(OPTIONS$scale_data)) par$scale_data <- OPTIONS$scale_data if(!is.null(OPTIONS$spdensity)) par$spedensity <- OPTIONS$spdensity if(!is.null(OPTIONS$rmdepconstr)) par$rmdepconstr <- OPTIONS$rmdepconstr if(!is.null(OPTIONS$smallblkdim)) par$smallblkdim <- OPTIONS$smallblkdim if(!is.null(OPTIONS$parbarrier)){ parbarrier <- OPTIONS$parbarrier if(is.null(parbarrier)) parbarrier <- parbarrier_0 if(!is.list(parbarrier)){ tmp <- parbarrier parbarrier <- matrix(list(),1,1) parbarrier[[1]] <- tmp } if(max(dim(as.matrix(parbarrier))) < nrow(blk)){ len <- max(dim(as.matrix(parbarrier))) parbarrier_1 <- matrix(list(),nrow(blk),1) for(i in 1:len){ parbarrier_1[[i]] <- parbarrier[[i]] } for(i in (len+1):nrow(blk)){ parbarrier_1[[i]] <- parbarrier_0[[i]] } parbarrier <- parbarrier_1 } } } if(ncol(blk) > 2){ par$smallblkdim <- 0 } out <- validate(blk,At,C,b,par,parbarrier) blk <- out$blk At <- out$At C <- out$C b <- out$b blkdim <- out$dim numblk <- out$nnblk parbarrier <- out$parbarrier out <- convertcmpsdp(blk, At, C, b) blk <- out$bblk At <- out$AAt C <- out$CC b <- out$bb iscmp <- out$iscmp if(is.null(X0) | is.null(y0) | is.null(Z0)){ out <- infeaspt(blk, At, C, b) X0 <- out$X0 y0 <- out$y0 Z0 <- out$Z0 par$startpoint <- 1 }else{ par$startpoint <- 2 out <- validate_startpoint(blk, X0,Z0,par$spdensity,iscmp) X0 <- out$X Z0 <- out$Z } user_supplied_schurfun <- 0 for(p in 1:nrow(blk)){ if(!is.null(par$schurfun[[p]])){ user_supplied_schurfun <- 1 } } if(user_supplied_schurfun == 0){ out <- detect_ublk(blk,At,C,parbarrier,X0,Z0) blk2 <- out$blk2 At2 <- out$At2 C2 <- out$C2 ublkinfo <- out$ublkinfo parbarrier2 <- out$parbarrier2 X02 <- out$X2 Z02 <- out$Z2 }else{ blk2 <- blk At2 <- At C2 <- C parbarrier2 <- parbarrier X02 <- X0 Z02 <- Z0 ublkinfo <- matrix(list(), nrow(blk3), 1) } ublksize <- blkdim[4] for(p in 1:nrow(ublkinfo)){ if(!is.null(ublkinfo[[p,1]])){ ublksize <- ublksize + max(dim(ublkinfo[[p,1]])) } } if(user_supplied_schurfun == 0){ out <- detect_lblk(blk2,At2,C2,b,parbarrier2,X02,Z02) blk3 <- as.matrix(out$blk) At3 <- as.matrix(out$At) C3 <- as.matrix(out$C) diagblkinfo <- out$diagblkinfo diagblkchange <- out$blockchange parbarrier3 <- as.matrix(out$parbarrier) X03 <- as.matrix(out$X) Z03 <- as.matrix(out$Z) }else{ blk3 <- blk2 At3 <- At2 C3 <- C2 parbarrier3 <- parbarrier2 X03 <- X02 Z03 <- Z02 diagblkchange <- 0 diagblkinfo <- matrix(list(), nrow(blk3), 1) } exist_analytic_term <- 0 for(p in 1:nrow(blk3)){ idx <- which(parbarrier3[[p,1]] > 0) if(length(idx) > 0){ exist_analytic_term <- 1 } } if(par$vers == 0){ if(blkdim[1]){ par$vers <- 1 }else{ par$vers <- 2 } } par$blkdim <- blkdim par$ublksize <- ublksize out <- sqlp_main(blk3, At3, C3, b, par, parbarrier3, X03, y0, Z03) obj <- out$obj X3 <- out$X y <- out$y Z3 <- out$Z info <- out$info runhist <- out$runhist pobj <- info$obj[1] dobj <- info$obj[2] if(any(diagblkchange == 1)){ X2 <- matrix(list(),nrow(blk),1) Z2 <- matrix(list(),nrow(blk),1) count <- 0 for(p in 1:nrow(blk)){ n <- sum(blk[[p,2]]) blkno <- diagblkinfo[[p,1]] idxdiag <- diagblkinfo[[p,2]] idxnondiag <- diagblkinfo[[p,3]] if(length(idxdiag) > 0){ len <- length(idxdiag) Xtmp <- rbind(cbind(idxdiag,idxdiag,X3[[nrow(X3)]][count+c(1:len)])) Ztmp <- rbind(cbind(idxdiag,idxdiag,Z3[[nrow(Z3)]][count+c(1:len)])) if(length(idxnondiag) > 0){ tmp <- which(X3[[blkno]] != 0, arr.ind=TRUE) ii <- tmp[,1] jj <- tmp[,2] vv <- X3[[blkno]][ which(X3[[blkno]] != 0)] Xtmp <- rbind(Xtmp,cbind(idxnondiag[ii],idxnondiag[jj],vv)) tmp <- which(Z3[[blkno]] != 0, arr.ind=TRUE) ii <- tmp[,1] jj <- tmp[,2] vv <- Z3[[blkno]][ which(Z3[[blkno]] != 0)] Ztmp <- rbind(Ztmp,cbind(idxnondiag[ii],idxnondiag[jj],vv)) } X2[[p]] <- matrix(0,n,n) for(i in 1:nrow(Xtmp)){ X2[[p]][Xtmp[i,1],Xtmp[i,2]] <- Xtmp[i,3] } Z2[[p]] <- matrix(0,n,n) for(i in 1:nrow(Ztmp)){ Z2[[p]][Ztmp[i,1],Ztmp[i,2]] <- Ztmp[i,3] } count <- count + len }else{ X2[[p]] <- X3[[blkno]] Z2[[p]] <- Z3[[blkno]] } } }else{ X2 <- X3 Z2 <- Z3 } numblk <- nrow(blk) numblknew <- numblk X <- matrix(list(),numblk,1) Z <- matrix(list(),numblk,1) for(p in 1:numblk){ n <- blk[[p,2]] if(is.null(ublkinfo[[p,1]])){ X[[p]] <- X2[[p]] Z[[p]] <- Z2[[p]] }else{ Xtmp <- matrix(0,n,1) Ztmp <- matrix(0,n,1) Xtmp[ublkinfo[[p,1]]] <- pmax(0,X2[[p]]) Xtmp[ublkinfo[[p,2]]] <- pmax(0,-X2[[p]]) Ztmp[ublkinfo[[p,1]]] <- pmax(0,Z2[[p]]) Ztmp[ublkinfo[[p,2]]] <- pmax(0,-Z2[[p]]) if(!is.null(ublkinfo[[p,3]])){ numblknew <- numblknew + 1 Xtmp[ublkinfo[[p,3]]] <- X2[[numblknew]] Ztmp[ublkinfo[[p,3]]] <- Z2[[numblknew]] } X[[p]] <- Xtmp Z[[p]] <- Ztmp } } output <- list(X=X, y=y, Z=Z, pobj=pobj, dobj=dobj) return(output) }
propTestMdd <- function (n.or.n1, n2 = n.or.n1, p0.or.p2 = 0.5, alpha = 0.05, power = 0.95, sample.type = "one.sample", alternative = "two.sided", two.sided.direction = "greater", approx = TRUE, correct = sample.type == "two.sample", warn = TRUE, return.exact.list = TRUE, tol = 1e-07, maxiter = 1000) { sample.type <- match.arg(sample.type, c("one.sample", "two.sample")) alternative <- match.arg(alternative, c("two.sided", "less", "greater")) two.sided.direction <- match.arg(two.sided.direction, c("greater", "less")) if (!is.vector(n.or.n1, mode = "numeric") || !is.vector(p0.or.p2, mode = "numeric") || !is.vector(alpha, mode = "numeric") || !is.vector(power, mode = "numeric")) stop("'n.or.n1', 'p0.or.p2', 'alpha', and 'power' must be numeric vectors.") if (!all(is.finite(n.or.n1)) || !all(is.finite(p0.or.p2)) || !all(is.finite(alpha)) || !all(is.finite(power))) stop(paste("Missing (NA), Infinite (Inf, -Inf), and", "Undefined (Nan) values are not allowed in", "'n.or.n1', 'p0.or.p2', 'alpha', or 'power'")) if (any(n.or.n1 < 2)) stop("All values of 'n.or.n1' must be greater than or equal to 2") if (!approx && !all(n.or.n1 == trunc(n.or.n1))) stop("When approx=FALSE, all values of 'n.or.n1' must be integers") if (any(p0.or.p2 <= 0) || any(p0.or.p2 >= 1)) stop("All values of 'p0.or.p2' must be greater than 0 and less than 1") if (any(alpha <= 0) || any(alpha >= 1)) stop("All values of 'alpha' must be greater than 0 and less than 1") if (any(power < alpha) || any(power >= 1)) stop(paste("All values of 'power' must be greater than or equal to", "the corresponding elements of 'alpha', and less than 1")) if (sample.type == "two.sample" && !missing(n2)) { if (!is.vector(n2, mode = "numeric")) stop("'n2' must be a numeric vector") if (!all(is.finite(n2))) stop(paste("Missing (NA), Infinite (Inf, -Inf), and", "Undefined (Nan) values are not allowed in 'n2'")) if (any(n2 < 2)) stop("All values of 'n2' must be greater than or equal to 2") if (!approx) stop(paste("Minimal detectable difference based on exact method", "not available for two-sample test")) } arg.mat <- cbind.no.warn(n.or.n1 = as.vector(n.or.n1), n2 = as.vector(n2), p0.or.p2 = as.vector(p0.or.p2), alpha = as.vector(alpha), power = as.vector(power)) for (i in c("n.or.n1", "n2", "p0.or.p2", "alpha", "power")) assign(i, arg.mat[, i]) N <- nrow(arg.mat) p.or.p1 <- numeric(N) index.0 <- power == alpha p.or.p1[index.0] <- p0.or.p2[index.0] extreme <- switch(alternative, less = .Machine$double.eps, greater = 1 - .Machine$double.eps, two.sided = ifelse(two.sided.direction == "less", .Machine$double.eps, 1 - .Machine$double.eps)) extreme <- rep(extreme, N) power.extreme <- propTestPower(n.or.n1 = n.or.n1, p.or.p1 = extreme, n2 = n2, p0.or.p2 = p0.or.p2, alpha = alpha, sample.type = sample.type, alternative = alternative, approx = approx, correct = correct, warn = FALSE, return.exact.list = FALSE) index.Inf <- power.extreme < power | is.na(power.extreme) if (any(index.Inf)) { p.or.p1[index.Inf] <- NA string <- ifelse(sample.type == "one.sample", "'n', 'p0', 'alpha', and 'power'", "'n1', 'n2', 'p2', 'alpha', and 'power'") warning(paste("Elements with a missing value (NA) indicate", "no attainable minimal detectable difference for the", "given values of", string)) } index.equal <- power.extreme == power p.or.p1[index.equal] <- extreme[index.equal] if (extreme[1] == .Machine$double.eps) { lower <- extreme upper <- p0.or.p2 f.lower <- power - power.extreme f.upper <- power - alpha } else { lower <- p0.or.p2 upper <- extreme f.lower <- power - alpha f.upper <- power - power.extreme } fcn.for.root <- function(p.or.p1, n.or.n1, n2, p0.or.p2, alpha, power, sample.type, alternative, approx, correct) { power - propTestPower(n.or.n1 = n.or.n1, p.or.p1 = p.or.p1, n2 = n2, p0.or.p2 = p0.or.p2, alpha = alpha, sample.type = sample.type, alternative = alternative, approx = approx, correct = correct, warn = FALSE, return.exact.list = FALSE) } for (i in (1:N)[!index.0 & !index.Inf & !index.equal]) { lower.i <- lower[i] upper.i <- upper[i] f.lower.i <- f.lower[i] f.upper.i <- f.upper[i] n.or.n1.i <- n.or.n1[i] p0.or.p2.i <- p0.or.p2[i] alpha.i <- alpha[i] power.i <- power[i] n2.i <- n2[i] p.or.p1[i] <- uniroot(fcn.for.root, lower = lower[i], upper = upper.i, tol = tol, maxiter = maxiter, f.lower = f.lower.i, f.upper = f.upper.i, n.or.n1 = n.or.n1.i, n2 = n2.i, p0.or.p2 = p0.or.p2.i, alpha = alpha.i, power = power.i, sample.type = sample.type, alternative = alternative, approx = approx, correct = correct)$root } ret.val <- p.or.p1 - p0.or.p2 names(ret.val) <- NULL if (approx && warn) { na.index <- is.na(p.or.p1) if (!all(na.index)) { if (sample.type == "one.sample" && any(index <- pmin(n.or.n1[!na.index] * p.or.p1[!na.index], n.or.n1[!na.index] * (1 - p.or.p1)[!na.index]) < 5)) warning(paste("The sample size 'n' is too small,", "relative to the computed value of 'p', for the normal", "approximation to work well for the following", "element indices:\n\t", paste((1:N)[!na.index][index], collapse = " "), "\n\t")) if (sample.type == "two.sample" && any(index <- pmin(n.or.n1[!na.index] * p.or.p1[!na.index], n.or.n1[!na.index] * (1 - p.or.p1)[!na.index], n2[!na.index] * p0.or.p2[!na.index], n2[!na.index] * (1 - p0.or.p2)[!na.index]) < 5)) warning(paste("The sample sizes 'n1' and 'n2' are", "too small, relative to the computed value of", "'p1' and the given value of 'p2', for the normal", "approximation to work well for the following", "element indices:\n\t", paste((1:N)[!na.index][index], collapse = " "), "\n\t")) } } if (!approx && return.exact.list) { N <- length(p.or.p1) switch(alternative, less = { N.vars <- 3 list.names <- c("power", "alpha", "q.critical.lower") }, greater = { N.vars <- 3 list.names <- c("power", "alpha", "q.critical.upper") }, two.sided = { N.vars <- 4 list.names <- c("power", "alpha", "q.critical.lower", "q.critical.upper") }) dum.list <- lapply(rep(N, N.vars), function(i) { x <- rep(NA, i) mode(x) <- "numeric" x }) names(dum.list) <- list.names na.index <- is.na(p.or.p1) if (!all(na.index)) { power.list <- propTestPower(n.or.n1 = n.or.n1[!na.index], p.or.p1 = p.or.p1[!na.index], n2 = n2[!na.index], p0.or.p2 = p0.or.p2[!na.index], alpha = alpha[!na.index], sample.type = sample.type, alternative = alternative, approx = FALSE, warn = FALSE, return.exact.list = TRUE) dum.list <- lapply(1:N.vars, function(i, index, main.list, sub.list) { main.list[[i]][index] <- sub.list[[i]] main.list[[i]] }, index = !na.index, main.list = dum.list, sub.list = power.list) names(dum.list) <- list.names } ret.val <- c(list(delta = ret.val), dum.list) } ret.val }
test_that("defensive programming", { expect_error(capture_warnings( quilt_form( input_data = qdat, question_type = "dropdown" ) )) expect_error(capture_warnings( quilt_form( input_data = qdat, question_type = "select" ) )) expect_error(capture_warnings( quilt_form( input_data = qdat, question_type = "multiselect" ) )) expect_error(capture_warnings( quilt_form( input_data = qdat, question_type = "singleanswer" ) )) expect_error(capture_warnings( quilt_form( input_data = qdat, question_type = "multianswer" ) )) expect_error(capture_warnings( quilt_form( input_data = qdat, question_type = "rankorder" ) )) expect_error(capture_warnings( quilt_form( input_data = qdat, question_type = "singleline" ) )) expect_error(capture_warnings( quilt_form( input_data = qdat, question_type = "form" ) )) expect_error(capture_warnings( quilt_form( input_data = qdat, question_type = "essay" ) )) }) test_that("defensive programming", { expect_error(capture_warnings( quilt_form( input_data = qdat, filename = "qualtrics_survey.txt" ) )) }) test_that("defensive programming", { expect_error(capture_warnings( quilt_form( question_type = "multianswer", filename = "qualtrics_survey.txt" ) )) }) test_that("quilted form is of class character", { input_data <- pbreak(qdat, 1) quilted_form <- formpaste(input_data, "[[Question:MC:Dropdown]]") expect_true(is.character(quilted_form)) }) test_that("quilted form is of length nrow page-breaked data", { input_data <- pbreak(qdat, 3) quilted_form <- formpaste(input_data, "[[Question:MC:Dropdown]]") expect_true(length(quilted_form) == nrow(input_data)) }) test_that("ID appended when null", { input_data = qdat[,-3] input_data <- addformIDs(input_data) IDs <- input_data$id expect_true(length(IDs) == nrow(input_data)) expect_type(input_data$id, "character") expect_equal(input_data$id[1], "[[ID:1]]") }) test_that("page breaks returned correctly", { input_data <- pbreak(qdat, 1) expect_true(nrow(input_data) == nrow(qdat) + nrow(qdat)) input_data <- pbreak(qdat, 2) expect_true(nrow(input_data) == nrow(qdat) + 1/2*nrow(qdat)) input_data <- pbreak(qdat, 3) expect_true(nrow(input_data) == round(nrow(qdat) + 1/3*nrow(qdat))) }) test_that("page break rows of correct length", { page_break_every = 1 input_data <- pbreak(qdat, page_break_every) expect_true(length(input_data$response_type[input_data$prompt=="[[PageBreak]]\n"]) == 1/page_break_every*nrow(qdat)) page_break_every = 2 input_data <- pbreak(qdat, page_break_every) expect_true(length(input_data$response_type[input_data$prompt=="[[PageBreak]]\n"]) == 1/page_break_every*nrow(qdat)) page_break_every = 3 input_data <- pbreak(qdat, page_break_every) expect_true(length(input_data$response_type[input_data$prompt=="[[PageBreak]]\n"]) == round(1/page_break_every*nrow(qdat))) })
mediation <- function(pheno, predictor, region, pos, order, gbasis, covariate, base="bspline", family="gaussian") { predictor[is.na(predictor)] = 0 region[is.na(region)] = 0 covariate[is.na(covariate)] = 0 idx = is.na(pheno) pheno = pheno[!idx] region = region[!idx,] covariate = covariate[!idx,] dqr = qr(region) index = dqr$pivot[1:dqr$rank] region = region[, index] pos = pos[index] nsample = nrow(region) nsnp = ncol(region) if(max(pos) > 1) pos = (pos - min(pos)) / (max(pos) - min(pos)) betabasis = create.bspline.basis(norder = 1, nbasis = 1) if (base == "bspline"){ regionbasis = create.bspline.basis(norder = order, nbasis = gbasis) } else if (base == "fspline"){ regionbasis = create.fourier.basis(c(0,1), nbasis = gbasis) }else { } region = as.matrix(region) B = eval.basis(pos, regionbasis) to_mul = ginv(t(B) %*% B) %*% t(B) U = region %*% t( to_mul ) J = inprod(regionbasis, betabasis) UJ = matrix( U %*% J, ncol = ncol(J) ) region_transformed = as.vector(UJ) covariate = as.matrix(covariate) predictor = as.matrix(predictor) interaction = as.vector(predictor)*region_transformed if (family=="gaussian") { coef2_all = summary(lm(region_transformed ~ covariate + predictor))$coefficients alpha_cov = coef2_all[c(1:(dim(covariate)[2]+1)),1] coef2_all_nocov = coef2_all[-c(1:(dim(covariate)[2]+1)), ] alpha_predictor = coef2_all_nocov[1] pval2 = coef2_all_nocov[4] pval <- list() test_part = cbind(predictor, region_transformed, interaction) untest_part = covariate fit = glm(pheno ~ untest_part + test_part, family="gaussian") pval$TE = anova(fit, test = "F")[3,6] test_part = cbind(predictor, interaction) untest_part = cbind(covariate, region_transformed) fit = glm(pheno ~ untest_part + test_part, family="gaussian") pval$DE = anova(fit, test = "F")[3,6] test_part = cbind(region_transformed, interaction) untest_part = cbind(covariate, predictor) fit = glm(pheno ~ untest_part + test_part, family="gaussian") pval$IE = anova(fit, test = "F")[3,6] } if (family=="binomial") { region_transformed_c = region_transformed[which(pheno==0)] covariate_c = covariate[which(pheno==0),] covariate_cdqr = qr(covariate_c) covariate_cindex = covariate_cdqr$pivot[1:covariate_cdqr$rank] covariate_c = covariate_c[, covariate_cindex] diff = colnames(covariate)[!(colnames(covariate)%in%colnames(covariate_c))] predictor_c = as.vector(predictor)[which(pheno==0)] coef2_all = summary(lm(region_transformed_c ~ covariate_c + predictor_c))$coefficients alpha_cov = coef2_all[c(1:(dim(covariate_c)[2]+1)),1] coef2_all_nocov = coef2_all[-c(1:(dim(covariate_c)[2]+1)), ] alpha_predictor = coef2_all_nocov[1] pval2 = coef2_all_nocov[4] pval <- list() test_part = cbind(predictor, region_transformed, interaction) untest_part = covariate fit = glm(pheno ~ untest_part + test_part, family="binomial") pval$TE = anova(fit, test = "Rao")[3,6] test_part = cbind(predictor, interaction) untest_part = cbind(covariate, region_transformed) fit = glm(pheno ~ untest_part + test_part, family="binomial") pval$DE = anova(fit, test = "Rao")[3,6] test_part = cbind(region_transformed, interaction) untest_part = cbind(covariate, predictor) fit = glm(pheno ~ untest_part + test_part, family="binomial") pval$IE = anova(fit, test = "Rao")[3,6] } return(list(pval=pval, pval_MX=pval2)) }
`shade.col` <- function(n, acol=c(1,0,0), bcol=c(1,1,1) ) { if(missing(acol)) { acol=c(1,0,0) } if(missing(bcol)) { bcol=c(1,1,1) } if ((n <- as.integer(n[1])) > 0) { r1 = acol[1]; g1 = acol[2]; b1 = acol[3]; wr1 = bcol[1]; wg1 = bcol[2]; wb1 = bcol[3]; dr1 = wr1-r1 dg1 = wg1-g1 db1 = wb1-b1 hr1 = (wr1-r1)/n hg1 = (wg1-g1)/n hb1 = (wb1-b1)/n nr1 = seq(from=r1, length.out=n, by=hr1) nb1 = seq(from=b1, length.out=n, by=hb1) ng1 = seq(from=g1, length.out=n, by=hg1) COL = rgb(red=nr1, green=ng1, blue=nb1) } return(COL) }
print.roben=function(x, digits = max(3, getOption("digits") - 3),...){ cat("\nCall: ", deparse(x$call), "\n") cat("\nCoefficients:\n") print(x$coefficient, digits) cat("Class:\n") print(class(x)) } print.GxESelection=function(x, digits = max(3, getOption("digits") - 3),...){ cat("\nMethod:\n") print(x$method) cat("\n") print(x$summary) } print.roben.pred=function(x, digits = max(3, getOption("digits") - 3),...){ cat("\nPMSE:\n") print(x$error, digits) cat("\npredicted ", length(x$y.pred), " y (list component y.pred)", sep = "") }
polysFast <- function(x, M, w, ML=FALSE) { M <- as.numeric(as.factor(M)) uM <- sort(unique(M)) mapTheta <- function(v) { vv <- cumsum(c(v[1],exp(v[-1]))) c(NA,-Inf,vv,Inf) } theta0 <- sapply(uM[-length(uM)],function(z) qnorm(weighted.mean(M<=z, w)) ) if(ML) { temp = w/sum(w) temp2 = fixxFast(x, temp) temp3 = sum(temp*dnorm(temp2,log=TRUE)) bob <- suppressWarnings(bobyqa(par=c(atanh(cor(x,M)),imapThetaFast2(theta0)), fn=optFFast, x=temp2, w=temp, M=M, temp3 = temp3)) return( tanh(bob$par[1])) } else { temp = w/sum(w) temp2 = fixxFast(x, temp) temp3 = sum(temp*dnorm(temp2,log=TRUE)) values = mainF(x, M, w, theta0) opt <- suppressWarnings(optimize(optFcFast, interval=unlist(values[1]), x=temp2, w=temp, theta0=(imapThetaFast2(theta0)), M=M, temp3= temp3)) return( tanh(opt$minimum) ) } }
library("testthat") library("recommenderlab") set.seed(1234) context("dissimilarity") db <- matrix( as.numeric(sample( c(NA, 0:5), 100, replace = TRUE, prob = c(.7, rep(.3 / 6, 6)) )), nrow = 10, ncol = 10, dimnames = list( users = paste('u', 1:10, sep = ''), items = paste('i', 1:10, sep = '') ) ) x <- as(db, "realRatingMatrix") s <- similarity(x) expect_is(s, "dist") expect_equal(attr(s, "Size"), nrow(x)) s <- similarity(x, x) expect_is(s, "crossdist") expect_equal(dim(s), c(nrow(x), nrow(x))) s <- similarity(x, which = "items") expect_is(s, "dist") expect_equal(attr(s, "Size"), ncol(x)) s <- similarity(x, x, which = "items") expect_is(s, "crossdist") expect_equal(dim(s), c(ncol(x), ncol(x))) s_cd <- similarity(x, x, min_matching = 2, min_predictive = 1) s_d <- similarity(x, min_matching = 2, min_predictive = 1) expect_equivalent(as.vector(s_cd[lower.tri(s_cd)]), as.vector(s_d)) similarity( x, x, which = "items", min_matching = 0, min_predictive = 0 ) similarity( x, x, which = "items", min_matching = 2, min_predictive = 0 ) similarity( x, x, which = "items", min_matching = 2, min_predictive = 1 ) compn <- function(x, n = 3) round(as.vector(x), n) x <- rbind(c(1, -1), c(-1, 1)) x rating <- as(matrix(x, ncol = 2), "realRatingMatrix") rating ibcf <- Recommender( rating, method = 'IBCF', parameter = list( method = 'cosine', k = 1 ) ) res <- -1 expect_equal(as(ibcf@model$sim, "matrix")[1, 2], res) expect_equal(compn(dissimilarity(rating, method = "cosine", which = "items")), 1 - res) expect_equal(compn(similarity(rating, method = "cosine", which = "items")), res) res <- -1 expect_equal(compn(dissimilarity(rating, method = "cosine")), 1 - res) expect_equal(compn(similarity(rating, method = "cosine")), res) expect_equal(compn(dissimilarity(rating, method = "pearson")), 1) expect_equal(compn(dissimilarity(rating, method = "pearson", which = "items")), 1) expect_equal(compn(dissimilarity(rating, method = "karypis", which = "items")), 1) expect_equal(compn(dissimilarity(rating, method = "conditional", which = "items")), 0) x <- rbind(c(1, 0), c(0, 1), c(1, 1), c(1, 0)) x rating <- as(matrix(x, ncol = 2), "binaryRatingMatrix") rating ibcf <- Recommender( rating, method = 'IBCF', parameter = list( method = 'cosine', k = 1 ) ) res <- 0.408 expect_equal(compn(as(ibcf@model$sim, "matrix")[1, 2]), res) expect_equal(compn(dissimilarity(rating, method = "cosine", which = "items")), 1 - res) expect_equal(compn(similarity(rating, method = "cosine", which = "items")), res) res <- c(1.000, 0.293, 0.000, 0.293, 1.000, 0.293) expect_equal(compn(dissimilarity(rating, method = "cosine")), res) expect_equal(compn(similarity(rating, method = "cosine")), 1 - res) res <- c(1.0, 0.5, 0.0, 0.5, 1.0, 0.5) expect_equal(compn(dissimilarity(rating, method = "jaccard")), res) expect_equal(compn(dissimilarity(rating, method = "jaccard", which = "items")), 0.75) expect_equal(compn(dissimilarity(rating, method = "karypis", which = "items")), 0.826) expect_equal(compn(dissimilarity(rating, method = "conditional", which = "items")), 0.667)
ls8Search<-function(AppRoot,verbose=FALSE,precise=FALSE,...){ warning("Obsolete function, use lsSearch.") arg<-list(...) if((!"dates"%in%names(arg))& ((!"startDate"%in%names(arg)|(!"endDate"%in%names(arg)))) )stop("startDate and endDate, or dates argument need to be defined!") if("dates"%in%names(arg)){ stopifnot(class(arg$dates)=="Date") startDate<-min(arg$dates) endDate<-max(arg$dates) }else{ startDate<-arg$startDate endDate<-arg$endDate } stopifnot(class(startDate)=="Date") stopifnot(class(endDate)=="Date") if(endDate<as.Date("2011-03-13")) stop("There is no Landsat-8 Images before 13-03-2013.") if(startDate<as.Date("2011-03-13")) warning("There is no Landsat-8 Images before 13-03-2013.") AppRoot<-pathWinLx(AppRoot) if(!ls8IsMetaData()){ message("MetaData not loaded! loading...") ls8LoadMetadata(AppRoot=AppRoot,update=FALSE,...) } LS8MD<-getRGISToolsOpt("LS8METADATA") LS8MD<-LS8MD[as.Date(LS8MD$acquisitionDate)>=startDate& as.Date(LS8MD$acquisitionDate)<=endDate,] if("pathrow"%in%names(arg)){ stopifnot(class(arg$pathrow)=="list") LS8MD<-do.call(rbind,lapply(arg$pathrow,function(rp,LS8MD,verbose)return(genFilterDF(LS8MD,row=rp[2],path=rp[1],verbose=verbose)), LS8MD, verbose=verbose)) }else if("extent"%in%names(arg)){ if(precise){ stopifnot(class(extent(arg$extent))=="Extent") ext<-extent(arg$extent) tiles<-unlist(apply(LS8MD[grepl("Corner",names(LS8MD))],1,tileIn,ext)) LS8MD<-LS8MD[tiles,] }else{ pathrow<-names(ls8pr)[unlist(lapply(ls8pr,tileInExt,ext2=extent(arg$extent)))] pathrow<-as.data.frame(cbind(as.integer(substr(pathrow,1,3)),as.integer(substr(pathrow,4,6)))) pathrow = lapply(as.list(1:dim(pathrow)[1]), function(x) pathrow[x[1],]) LS8MD<-do.call(rbind,lapply(pathrow,function(rp,LS8MD,verbose){rp=unlist(rp);return(genFilterDF(LS8MD,row=rp[2],path=rp[1],verbose=verbose))}, LS8MD=LS8MD, verbose=verbose)) } }else if("lonlat"%in%names(arg)){ stopifnot(class(arg$lonlat)=="numeric") stopifnot(length(arg$lonlat)==2) dat_sim <- data.frame(lat = arg$lonlat[2],long = arg$lonlat[1]) dat_sf <- st_transform(st_as_sf(dat_sim, coords = c("long", "lat"), crs = 4326), 3035) circle <- st_buffer(dat_sf, dist = 1) circle <- st_transform(circle, 4326) if(precise){ tiles<-unlist(apply(LS8MD[grepl("Corner",names(LS8MD))],1,tileIn,ext=extent(circle))) LS8MD<-LS8MD[tiles,] }else{ pathrow<-names(ls8pr)[unlist(lapply(ls8pr,tileInExt,ext2=extent(circle)))] pathrow<-as.data.frame(cbind(as.integer(substr(pathrow,1,3)),as.integer(substr(pathrow,4,6)))) pathrow = lapply(as.list(1:dim(pathrow)[1]), function(x) unname(pathrow[x[1],])) LS8MD<-do.call(rbind,lapply(pathrow, function(pr,LS8MD,verbose){pr=unlist(pr);return(genFilterDF(LS8MD,row=pr[2],path=pr[1],verbose=verbose))}, LS8MD=LS8MD, verbose=verbose)) } }else if("region"%in%names(arg)){ arg$region<-transform_multiple_proj(arg$region, proj4=st_crs(4326)) if(precise){ tiles<-unlist(apply(LS8MD[grepl("Corner",names(LS8MD))],1,tileIn,ext=extent(arg$region))) LS8MD<-LS8MD[tiles,] }else{ pathrow<-names(ls8pr)[unlist(lapply(ls8pr,tileInExt,ext2=extent(arg$region)))] pathrow<-as.data.frame(cbind(as.integer(substr(pathrow,1,3)),as.integer(substr(pathrow,4,6)))) pathrow = lapply(as.list(1:dim(pathrow)[1]), function(x) unname(pathrow[x[1],])) LS8MD<-do.call(rbind,lapply(pathrow, function(pr,LS8MD,verbose){pr=unlist(pr);return(genFilterDF(LS8MD,row=pr[2],path=pr[1],verbose=verbose))}, LS8MD=LS8MD, verbose=verbose)) } }else{ warning("Location not defined!") } if("cloudCover"%in%names(arg)){ LS8MD<-LS8MD[LS8MD$cloudCover>min(arg$cloudCover)&LS8MD$cloudCover<max(arg$cloudCover),] } arg<-arg[names(arg)[which(!names(arg)%in%c("pathrow","region","cloudCover"))]] if(length(arg)>0){ arg$df<-LS8MD LS8MD<-do.call(genFilterDF,arg) } LS8MD<-LS8MD[!duplicated(LS8MD[,c('sceneID')]),] if("dates"%in%names(arg)){ LS8MD<-LS8MD[as.Date(LS8MD$acquisitionDate)%in%arg$dates,] } class(LS8MD)<-"ls8res" return(LS8MD) } tileIn<-function(dv,ext){ lat<-unlist(dv[grepl("Latitude",names(dv))]) lon<-unlist(dv[grepl("Longitude",names(dv))]) sps<-extent(min(lon),max(lon),min(lat),max(lat)) return(!is.null(raster::intersect(sps,ext))) } tileInExt<-function(ext1,ext2){ return(!is.null(raster::intersect(ext1,ext2))) }
file.copy( system.file("its-example.osm.pbf", package = "osmextract"), file.path(tempdir(), "its-example.osm.pbf") ) test_that("oe_get_network: simplest examples work", { expect_error(oe_get_network("ITS Leeds", quiet = TRUE, download_directory = tempdir()), NA) }) test_that("oe_get_network: options in ... work correctly", { expect_warning(oe_get_network("ITS Leeds", layer = "points", quiet = TRUE, download_directory = tempdir())) expect_message(oe_get_network("ITS Leeds", quiet = TRUE, download_directory = tempdir()), NA) driving_network_with_area_tag = oe_get_network( "ITS Leeds", mode = "driving", extra_tags = "area", quiet = TRUE, download_directory = tempdir() ) expect_true("area" %in% colnames(driving_network_with_area_tag)) expect_error(oe_get_network( place = "ITS Leeds", quiet = TRUE, vectortranslate_options = c("-where", "ABC"), download_directory = tempdir() )) walking_network_27700 = oe_get_network( "ITS Leeds", mode = "walking", vectortranslate_options = c("-t_srs", "EPSG:27700"), quiet = TRUE, download_directory = tempdir() ) expect_true(sf::st_crs(walking_network_27700) == sf::st_crs(27700)) }) file.remove(list.files(tempdir(), pattern = "its-example", full.names = TRUE))
genDichoMatrix<-function(items=100, model="4PL", aPrior=c("norm",1,0.2),bPrior=c("norm",0,1),cPrior=c("unif",0,0.25),dPrior=c("unif",0.75,1), seed=1){ testB<-switch(bPrior[1],norm=1,unif=2) if (is.null(testB)) stop("Prior distribution for item difficulties must be either 'norm' or 'unif'",call.=FALSE) testA<-switch(aPrior[1],norm=1,lnorm=2,unif=3) if (is.null(testA)) stop("Prior distribution for item discriminations must be either 'norm', 'lnorm' or 'unif'",call.=FALSE) testC<-switch(cPrior[1],beta=1,unif=2) if (is.null(testC)) stop("Prior distribution for item lower asymptotes must be either 'beta' or 'unif'",call.=FALSE) testD<-switch(dPrior[1],beta=1,unif=2) if (is.null(testD)) stop("Prior distribution for item upper asymptotes must be either 'beta' or 'unif'",call.=FALSE) set.seed(seed) b<-switch(bPrior[1],norm=rnorm(items,as.numeric(bPrior[2]),as.numeric(bPrior[3])),unif=runif(items,as.numeric(bPrior[2]),as.numeric(bPrior[3]))) if (model!="1PL") a<-switch(aPrior[1],norm=rnorm(items,as.numeric(aPrior[2]),as.numeric(aPrior[3])),lnorm=rlnorm(items,as.numeric(aPrior[2]),as.numeric(aPrior[3])),unif=runif(items,as.numeric(aPrior[2]),as.numeric(aPrior[3]))) else a<-rep(1,items) if (model=="3PL" | model=="4PL") c<-switch(cPrior[1],beta=rbeta(items,as.numeric(cPrior[2]),as.numeric(cPrior[3])),unif=runif(items,as.numeric(cPrior[2]),as.numeric(cPrior[3]))) else c<-rep(0,items) if (model=="4PL") d<-switch(dPrior[1],beta=rbeta(items,as.numeric(dPrior[2]),as.numeric(dPrior[3])),unif=runif(items,as.numeric(dPrior[2]),as.numeric(dPrior[3]))) else d<-rep(1,items) RES<-data.frame(a,b,c,d) return(RES)}
tabPanel('Line Chart - II', value = 'tab_gline2', fluidPage( fluidRow( column(12, align = 'left', h4('Line Plot - II') ) ), hr(), fluidRow( column(12, tabsetPanel(type = 'tabs', tabPanel('Variables', fluidRow( column(2, selectInput('gline2_select_x', 'Variable: ', choices = "", selected = ""), selectInput('gline2_group', 'Group: ', choices = "", selected = ""), textInput(inputId = "gline2_title", label = "Title: ", value = "title"), textInput(inputId = "gline2_xlabel", label = "X Axes Label: ", value = "label") ), column(2, selectInput('gline2_y', 'Columns: ', choices = "", selected = ""), textInput(inputId = "gline2_subtitle", label = "Subtitle: ", value = "subtitle"), textInput(inputId = "gline2_ylabel", label = "Y Axes Label: ", value = "label") ), column(8, plotOutput('gline2_plot_1', height = '600px') ) ) ), tabPanel('Aesthetics', fluidRow( column(2, br(), column(12, actionButton('gline2_col_yes', 'Color', width = '120px') ), column(12, br(), br(), actionButton('gline2_ltype_yes', 'Line Type', width = '120px') ), column(12, br(), br(), actionButton('gline2_size_yes', 'Size', width = '120px') ) ), column(2, column(12, uiOutput('gline2_col_ui') ), column(12, uiOutput('gline2_ltype_ui') ), column(12, uiOutput('gline2_size_ui') ) ), column(8, plotOutput('gline2_plot_2', height = '600px') ) ) ), tabPanel('Axis Range', fluidRow( column(2, uiOutput('ui_gline2yrange_min'), selectInput('gline2_remx', 'Remove X Axis Label', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE") ), column(2, uiOutput('ui_gline2yrange_max'), selectInput('gline2_remy', 'Remove Y Axis Label', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE") ), column(8, plotOutput('gline2_plot_3', height = '600px') ) ) ), tabPanel('Annotations', fluidRow( column(2, selectInput('gline2_text', 'Add Text', choices = c("TRUE" = TRUE, "FALSE" = FALSE), selected = "FALSE"), numericInput( inputId = "gline2_text_x_loc", label = "X Intercept: ", value = 1, step = 1), numericInput( inputId = "gline2_text_y_loc", label = "Y Intercept: ", value = 1, step = 1 ) ), column(2, textInput(inputId = "gline2_plottext", label = "Text:", value = ""), textInput( inputId = "gline2_textcolor", label = "Text Color: ", value = "black" ), numericInput( inputId = "gline2_textsize", label = "Text Size: ", value = 10, min = 1, step = 1 ) ), column(8, plotOutput('gline2_plot_4', height = '600px') ) ) ), tabPanel('Others', column(4, tabsetPanel(type = 'tabs', tabPanel('Color', fluidRow( column(6, textInput(inputId = "gline2_title_col", label = "Title:", value = "black"), textInput(inputId = "gline2_sub_col", label = "Subtitle:", value = "black"), textInput(inputId = "gline2_xlab_col", label = "X Axis Label:", value = "black"), textInput(inputId = "gline2_ylab_col", label = "Y Axis Label:", value = "black") ) ) ), tabPanel('Font Family', fluidRow( column(6, textInput(inputId = "gline2_title_fam", label = "Title:", value = "Times"), textInput(inputId = "gline2_sub_fam", label = "Subtitle:", value = "Times"), textInput(inputId = "gline2_xlab_fam", label = "X Axis Label:", value = "Times"), textInput(inputId = "gline2_ylab_fam", label = "Y Axis Label:", value = "Times") ) ) ), tabPanel('Font Face', fluidRow( column(6, selectInput('gline2_title_font', 'Title:', choices = c(plain = 'plain', bold = 'bold', italic = 'italic', bold_italic = 'bold.italic'), selected = "plain"), selectInput('gline2_subtitle_font', 'Subtitle:', choices = c(plain = 'plain', bold = 'bold', italic = 'italic', bold_italic = 'bold.italic'), selected = "plain"), selectInput('gline2_xlab_font', 'X Axis Label:', choices = c(plain = 'plain', bold = 'bold', italic = 'italic', bold_italic = 'bold.italic'), selected = "plain"), selectInput('gline2_ylab_font', 'Y Axis Label:', choices = c(plain = 'plain', bold = 'bold', italic = 'italic', bold_italic = 'bold.italic'), selected = "plain") ) ) ), tabPanel('Font Size', fluidRow( column(6, numericInput(inputId = "gline2_title_size", label = "Title:", min = 1, step = 0.1, value = 1), numericInput(inputId = "gline2_sub_size", label = "Subtitle:", min = 1, step = 0.1, value = 1), numericInput(inputId = "gline2_xlab_size", label = "X Axis Label:", min = 1, step = 0.1, value = 1), numericInput(inputId = "gline2_ylab_size", label = "Y Axis Label:", min = 1, step = 0.1, value = 1) ) ) ), tabPanel('Horizontal', fluidRow( column(6, numericInput(inputId = "gline2_title_hjust", label = "Title:", min = 0, step = 0.1, value = 0.5, max = 1), numericInput(inputId = "gline2_sub_hjust", label = "Subtitle:", min = 0, step = 0.1, value = 0.5, max = 1), numericInput(inputId = "gline2_xlab_hjust", label = "X Axis Label:", min = 0, step = 0.1, value = 0.5, max = 1), numericInput(inputId = "gline2_ylab_hjust", label = "Y Axis Label:", min = 0, step = 0.1, value = 0.5, max = 1) ) ) ), tabPanel('Vertical', fluidRow( column(6, numericInput(inputId = "gline2_title_vjust", label = "Title:", min = 0, step = 0.1, value = 0.5, max = 1), numericInput(inputId = "gline2_sub_vjust", label = "Subtitle:", min = 0, step = 0.1, value = 0.5, max = 1), numericInput(inputId = "gline2_xlab_vjust", label = "X Axis Label:", min = 0, step = 0.1, value = 0.5, max = 1), numericInput(inputId = "gline2_ylab_vjust", label = "Y Axis Label:", min = 0, step = 0.1, value = 0.5, max = 1) ) ) ) ) ), column(8, plotOutput('gline2_plot_5', height = '600px') ) ), tabPanel('Theme', column(2, selectInput(inputId = 'gline2_theme', label = 'Theme', choices = list("Classic Dark", "Default", "Light", "Minimal", "Dark", "Classic", "Empty"), selected = "Default") ), column(2), column(8, align = 'center', plotOutput('gline2_plot_6', height = '600px') ) ), tabPanel('Plot', column(12, align = 'center', plotOutput('gline2_plot_7', height = '600px') ) ) ) ) ) ) )
pkgload::unload("devtools") devtools::load_all("~/rrr/usethis") attachNamespace("devtools") library(testthat) x <- create_from_github( "r-lib/gh", destdir = "~/tmp", fork = TRUE, open = FALSE, protocol = "https" ) local_project(x) (r <- git_remotes()) use_git_remote("upstream", sub("r-lib", "r-pkgs", r$upstream), overwrite = TRUE) (r <- git_remotes()) expect_equal(r$origin, "https://github.com/jennybc/gh.git") expect_equal(r$upstream, "https://github.com/r-pkgs/gh.git") check_pr_readiness() err <- rlang::last_error() expect_s3_class(err, class = "usethis_error_bad_github_config") withr::deferred_run() fs::dir_delete(x)
BIFIE.univar.test <- function( BIFIE.method, wald_test=TRUE ) { s1 <- Sys.time() cl <- match.call() res5 <- BIFIE.method if (res5$group=="one"){ stop("This function can only be applied with a grouping variable.\n")} if (BIFIE.method$RR < 2){ wald_test <- FALSE } mean1M <- res5$output$mean1M sd1M <- res5$output$sd1M sumweightM <- res5$output$sumweightM GG <- res5$GG group_values <- ( res5$stat$groupval )[1:GG] if( res5$group=="pseudogroup" ){ is_pseudogroup <- TRUE } else { is_pseudogroup <- FALSE } if ( is.null( group_values) ){ group_values <- 1:GG } mean1repM <- res5$output$mean1repM sd1repM <- res5$output$sd1repM sumweightrepM <- res5$output$sumweightrepM fayfac <- res5$fayfac VV <- res5$VV vars <- res5$vars RR <- res5$RR if (RR==1){ RR <- 0 } group <- res5$group N <- res5$N Nimp <- res5$Nimp res <- bifie_test_univar( mean1M, sd1M, sumweightM, GG, group_values, mean1repM, sd1repM, sumweightrepM, fayfac ) dfr <- data.frame( "var"=vars, "group"=group ) dfr$eta2 <- res$eta2L$pars^2 dfr$eta <- res$eta2L$pars dfr$eta_SE <- res$eta2L$pars_se dfr$fmi <- res$eta2L$pars_fmi dfr$df <- rubin_calc_df( res$eta2L, Nimp ) dfr$VarMI <- res$eta2L$pars_varBetween dfr$VarRep <- res$eta2L$pars_varWithin if (BIFIE.method$NMI ){ res1 <- BIFIE_NMI_inference_parameters( parsM=res$eta2M, parsrepM=res$eta2repM, fayfac=fayfac, RR=RR, Nimp=Nimp, Nimp_NMI=BIFIE.method$Nimp_NMI, comp_cov=FALSE ) dfr$eta <- res1$pars dfr$eta_SE <- res1$pars_se dfr$df <- res1$df dfr$eta_fmi <- res1$pars_fmi dfr$eta_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr$eta_VarRep <- res1$pars_varWithin } if (RR==0){ dfr$df <- dfr$SE <- dfr$fmi <- dfr$VarMI <- dfr$VarRep <- NULL } stat.eta2 <- dfr group_values_matrix <- res$group_values_matrix ZZ <- nrow(group_values_matrix) dfr <- data.frame( "var"=rep(vars,each=ZZ) ) g2 <- group_values_matrix[ rep(1:ZZ, VV),, drop=FALSE] g2 <- data.frame(g2) colnames(g2) <- c("groupval1", "groupval2") dfr$group <- group dfr <- cbind( dfr, g2 ) r5 <- res5$stat h1 <- NULL h4 <- h3 <- h2 <- NULL for (kk in 1:2){ group_values_matrix[,kk] <- match( group_values_matrix[,kk], group_values ) } for (vv in 1:VV){ h1 <- c(h1, r5[ (vv-1)*GG + group_values_matrix[,1], "M" ] ) h2 <- c(h2, r5[ (vv-1)*GG + group_values_matrix[,2], "M" ] ) h3 <- c(h3, r5[ (vv-1)*GG + group_values_matrix[,1], "SD" ] ) h4 <- c(h4, r5[ (vv-1)*GG + group_values_matrix[,2], "SD" ] ) } dfr$M1 <- h1 dfr$M2 <- h2 dfr$SD <- sqrt( ( h3^2 + h4^2 ) / 2 ) dfr$d <- res$dstatL$pars dfr$d_SE <- res$dstatL$pars_se dfr$d_t <- dfr$d / dfr$d_SE dfr$d_df <- rubin_calc_df( res$dstatL, Nimp ) dfr$d_p <- stats::pt( - abs(dfr$d_t ), df=dfr$d_df)*2 dfr$d_fmi <- res$dstatL$pars_fmi dfr$d_VarMI <- res$dstatL$pars_varBetween dfr$d_VarRep <- res$dstatL$pars_varWithin if ( BIFIE.method$NMI ){ res1 <- BIFIE_NMI_inference_parameters( parsM=res$dstatM, parsrepM=res$dstatrepM, fayfac=fayfac, RR=RR, Nimp=BIFIE.method$Nimp, Nimp_NMI=BIFIE.method$Nimp_NMI, comp_cov=FALSE ) dfr$d <- res1$pars dfr$d_SE <- res1$pars_se dfr$d_t <- round( dfr$d / dfr$d_SE, 2 ) dfr$d_df <- res1$df dfr$d_p <- stats::pt( - abs( dfr$d_t ), df=dfr$d_df) * 2 dfr$d_fmi <- res1$pars_fmi dfr$d_VarMI <- res1$pars_varBetween1 + res1$pars_varBetween2 dfr$d_VarRep <- res1$pars_varWithin } if ( ( ! res5$se ) & ( RR==0 ) ){ dfr$d_SE <- dfr$d_fmi <- dfr$d_VarMI <- dfr$d_VarRep <- NULL } if ( is_pseudogroup ){ stat <- res5$stat[ 1:GG, ] stat$pseudogroup <- 1:GG ind1 <- grep( "groupvar", colnames(stat) ) ind2 <- grep( "groupval", colnames(stat) ) groupvar_pseudo <- apply( stat[, ind1 ], 1, FUN=function(hh){ paste0( hh, collapse=" groupval_pseudo <- apply( stat[, ind2 ], 1, FUN=function(hh){ paste0( hh, collapse=" dfr$group <- groupvar_pseudo[1] dfr$groupval1 <- groupval_pseudo[ dfr$groupval1 ] dfr$groupval2 <- groupval_pseudo[ dfr$groupval2 ] } stat.dstat <- dfr dfr <- NULL for (vv in 1:VV){ Cdes <- matrix( 0, nrow=GG-1, ncol=GG*VV ) indvec <- 1:(GG-1) for (zz in indvec ){ Cdes[ zz, c(zz + (vv-1)*GG,zz+1 + (vv-1)*GG ) ] <- c(1,-1) } rdes <- rep(0,GG-1) if ( wald_test ){ wres5 <- BIFIE.waldtest( res5, Cdes=Cdes, rdes=rdes ) dfr <- rbind( dfr, wres5$stat.D ) } } if ( wald_test ){ dfr <- data.frame( "variable"=vars, "group"=group, dfr ) stat.F <- dfr } else { stat.F <- NA } parnames <- NULL s2 <- Sys.time() timediff <- c( s1, s2 ) res1 <- list( "stat.F"=stat.F, "stat.eta"=stat.eta2, "stat.dstat"=stat.dstat, "timediff"=timediff, "N"=N, "Nimp"=Nimp, "RR"=RR, "fayfac"=fayfac, "NMI"=BIFIE.method$NMI, "Nimp_NMI"=BIFIE.method$Nimp_NMI, "GG"=GG, "parnames"=parnames, "CALL"=cl, wald_test=wald_test ) class(res1) <- "BIFIE.univar.test" return(res1) } summary.BIFIE.univar.test <- function( object, digits=4, ... ) { BIFIE.summary(object) if ( object$wald_test ){ cat("F Test (ANOVA) \n") obji <- object$stat.F print.object.summary( obji, digits=digits ) } cat("\nEta Squared \n") obji <- object$stat.eta print.object.summary( obji, digits=digits ) cat("\nCohen's d Statistic \n") obji <- object$stat.dstat print.object.summary( obji, digits=digits ) }
test_that("vmap", { expect_equal(vmap(c(1, 1, 2, 2, 3), "a", "b", "c"), c("a", "a", "b", "b", "c")) expect_equal(vmap(c("a", "b", "a", "c"), a = 1, b = 2, c = 3), c(1, 2, 1, 3)) expect_equal(vmap(c("a", "b", "a", "c", "d"), a = 1, b = 2, c = 3, 0), c(1, 2, 1, 3, 0)) expect_equal(vmap(c("a", "b", "a", "c"), a = 1, b = 2, c = 3, SIMPLIFY = FALSE), list(1, 2, 1, 3)) }) test_that("qrank", { n <- 100 x <- rnorm(n) expect_equal(qrank(x), rank(x) / length(x)) expect_equal(qrank(-x), rank(-x) / length(x)) x <- rnorm(n) x[sample(1:n, 10, replace = FALSE)] <- NA expect_equal(qrank(x), rank(x) / length(x)) expect_equal(qrank(-x), rank(-x) / length(x)) expect_equal(qrank(x, na.last = FALSE), rank(x, na.last = FALSE) / length(x)) expect_equal(qrank(-x, na.last = FALSE), rank(-x, na.last = FALSE) / length(x)) }) test_that("normalize", { n <- 100 x <- rnorm(n) expect_equal(normalize(x), (x - min(x)) / (max(x) - min(x))) expect_equal(normalize(x, 0.5, 0.8), 0.5 + 0.3 * normalize(x)) expect_error(normalize(x, 0.5, 0.1)) x <- rnorm(n) x <- x - min(x, na.rm = TRUE) + 1 x[sample(1:n, 10, replace = FALSE)] <- NA expect_error(normalize(x), "missing value") expect_equal(normalize(x, na.rm = TRUE), (x - min(x, na.rm = TRUE)) / (max(x, na.rm = TRUE) - min(x, na.rm = TRUE))) expect_equal(normalize(c(NA, NA, NA), na.rm = TRUE), c(0, 0, 0)) }) test_that("proportion", { n <- 100 x <- rbinom(n, 100, 0.8) expect_equal(proportion(x), x / max(abs(x))) x <- rnorm(n) expect_equal(proportion(x), x / max(abs(x))) })
test_that("extract works like R", { skip_if_not(check_tf_version()) source("helpers.R") a <- randn(10) b <- randn(10, 1) c <- randn(10, 5) d <- randn(2, 2, 2) check_expr(a[1:6], "a") check_expr(b[1:6], "b") check_expr(c[1:6], "c") check_expr(d[1:6], "d") check_expr(b[1:6, ], "b") check_expr(b[1:6, 1], "b") check_expr(c[1:6, ], "c") check_expr(c[1:6, 1], "c") check_expr(d[1:2, , ], "d") check_expr(d[1:2, 1, , drop = FALSE], "d") check_expr(a[3:1], "a") check_expr(d[2:1, , 1:2], "d") check_expr(a[c(TRUE, FALSE, TRUE)], "a") check_expr(d[2:1, , c(TRUE, FALSE), drop = FALSE], "d") check_expr(d[, , 2:1], "d") check_expr(d[, 2:1, ], "d") check_expr(d[2:1, , ], "d") check_expr(d[, , 1, drop = FALSE], "d") check_expr(d[, 1, , drop = FALSE], "d") check_expr(d[1, , , drop = FALSE], "d") check_expr(a[], "a") check_expr(b[], "b") check_expr(c[], "c") check_expr(d[], "d") check_expr(a[-1], "a") check_expr(b[-1:-3, ], "b") check_expr(c[-1:-4, ], "c") check_expr(d[-1:-2, -1, , drop = FALSE], "d") }) test_that("replace works like R", { skip_if_not(check_tf_version()) source("helpers.R") x <- randn(10) check_expr({ x[1:6] <- seq_len(6) x }) x <- randn(10, 1) check_expr({ x[1:6] <- seq_len(6) x }) x <- randn(10, 5) check_expr({ x[1:6] <- seq_len(6) x }) x <- randn(2, 2, 2) check_expr({ x[1:6] <- seq_len(6) x }) x <- randn(10, 1) check_expr({ x[1:6, 1] <- seq_len(6 * 1) x }) x <- randn(10, 5) check_expr({ x[1:6, 1] <- seq_len(6 * 1) x }) x <- randn(2, 2, 2) check_expr({ x[1:2, 1, ] <- seq_len(2 * 1 * 2) x }) x <- randn(10, 1) check_expr({ x[1:6, ] <- seq_len(6) x }) x <- randn(10, 5) check_expr({ x[1:6, ] <- seq_len(6 * 5) x }) x <- randn(10, 2, 2) check_expr({ x[1:2, , ] <- seq_len(2 * 2 * 2) x }) x <- randn(10) check_expr({ x[3:1] <- seq_len(3) x }) x <- randn(10, 2, 2) check_expr({ x[2:1, , 1:2] <- seq_len(2 * 2 * 2) x }) x <- randn(10) check_expr({ x[c(TRUE, FALSE, TRUE)] <- seq_len(7) x }) x <- randn(10, 2, 2) check_expr({ x[2:1, , c(TRUE, FALSE)] <- seq_len(4) x }) x <- randn(10, 2, 2) check_expr({ x[, , 1:2] <- seq_len(10 * 2 * 2) x }) x <- randn(10, 2, 2) check_expr({ x[, 1:2, ] <- seq_len(10 * 2 * 2) x }) x <- randn(10, 2, 2) check_expr({ x[1:2, , ] <- seq_len(2 * 2 * 2) x }) x <- randn(10, 2, 2) check_expr({ x[1, , ] <- seq_len(1 * 2 * 2) x }) x <- randn(10, 2, 2) check_expr({ x[, 1, ] <- seq_len(10 * 1 * 2) x }) x <- randn(10, 2, 2) check_expr({ x[, , 1] <- seq_len(10 * 2 * 1) x }) x <- randn(10) check_expr({ x[] <- seq_len(10) x }) x <- randn(10, 1) check_expr({ x[] <- seq_len(10) x }) x <- randn(10, 5) check_expr({ x[] <- seq_len(10 * 5) x }) x <- randn(2, 2, 2) check_expr({ x[] <- seq_len(2 * 2 * 2) x }) x <- randn(10) check_expr({ x[-1] <- seq_len(9) x }) x <- randn(10, 1) check_expr({ x[-1:-3, ] <- seq_len(7 * 1) x }) x <- randn(10, 5) check_expr({ x[-1:-4, ] <- seq_len(6 * 5) x }) x <- randn(2, 2, 2) check_expr({ x[-1, -1, ] <- seq_len(1 * 1 * 2) x }) x <- randn(10) check_expr({ x[1:3] <- 1 x }) x <- randn(10, 1) check_expr({ x[1:3, 1] <- 1 x }) x <- randn(10, 5) check_expr({ x[1:3, ] <- 1 x }) x <- randn(2, 2, 2) check_expr({ x[1:2, , ] <- 1 x }) x <- randn(10) check_expr({ x[1:4] <- seq_len(2) x }) x <- randn(10, 1) check_expr({ x[1:4, 1] <- seq_len(2) x }) x <- randn(10, 5) check_expr({ x[1:9, ] <- seq_len(3) x }) x <- randn(2, 2, 2) check_expr({ x[1:2, , 1] <- seq_len(2) x }) x <- randn(10, 1) ga_x <- as_data(x) x[1:6, ] <- x[6:1, ] ga_x[1:6, ] <- ga_x[6:1, ] greta_out <- as.vector(grab(ga_x)) compare_op(x, greta_out) }) test_that("rep works like R", { skip_if_not(check_tf_version()) source("helpers.R") a <- randn(10) b <- randn(10, 1) c <- randn(10, 5) d <- randn(10, 2, 2) rep_times <- function(x) { rep(x, times = 3) } check_op(rep_times, a) check_op(rep_times, b) check_op(rep_times, c) check_op(rep_times, d) rep_length <- function(x) { rep(x, length.out = 3) } check_op(rep_length, a) check_op(rep_length, b) check_op(rep_length, c) check_op(rep_length, d) rep_times_each <- function(x) { rep(x, times = 3, each = 3) } check_op(rep_times_each, a) check_op(rep_times_each, b) check_op(rep_times_each, c) check_op(rep_times_each, d) rep_length_each <- function(x) { rep(x, length = 30, each = 3) } check_op(rep_length_each, a) check_op(rep_length_each, b) check_op(rep_length_each, c) check_op(rep_length_each, d) }) test_that("rbind, cbind and c work like R", { skip_if_not(check_tf_version()) source("helpers.R") a <- randn(5, 1) b <- randn(1, 5) d <- randn(5, 5) check_op(rbind, a, a) check_op(rbind, b, d) check_op(rbind, d, b) check_op(cbind, b, b) check_op(cbind, a, d) check_op(cbind, d, d) check_op(c, a, d) check_op(c, b, a) check_op(c, d, b) check_op(c, a) check_op(c, b) check_op(c, d) }) test_that("abind works like R", { skip_if_not(check_tf_version()) source("helpers.R") a <- randn(5, 1, 3) b <- randn(1, 1, 3) c <- randn(5, 1, 1) check_op(abind, a, b, other_args = list(along = 1)) check_op(abind, a, c) check_op(abind, a, a, other_args = list(along = 0)) check_op(abind, a, a, other_args = list(along = 4)) }) test_that("abind errors informatively", { skip_if_not(check_tf_version()) source("helpers.R") a <- ones(5, 1, 3) b <- ones(1, 1, 3) c <- ones(5, 1, 1) expect_snapshot_error( abind(a, b) ) expect_snapshot_error( abind(a, c, along = 5) ) }) test_that("rbind and cbind can prepend R arrays to greta arrays", { skip_if_not(check_tf_version()) source("helpers.R") a <- randn(5, 1) b <- ones(5, 1) z <- rbind(a, b) expect_s3_class(z, "greta_array") expect_identical(dim(z), c(10L, 1L)) z <- rbind(b, a) expect_s3_class(z, "greta_array") expect_identical(dim(z), c(10L, 1L)) z <- cbind(a, b) expect_s3_class(z, "greta_array") expect_identical(dim(z), c(5L, 2L)) z <- cbind(b, a) expect_s3_class(z, "greta_array") expect_identical(dim(z), c(5L, 2L)) }) test_that("assign errors on variable greta arrays", { skip_if_not(check_tf_version()) source("helpers.R") z <- normal(0, 1, dim = 5) expect_snapshot_error( z[1] <- 3 ) }) test_that("rbind and cbind give informative error messages", { skip_if_not(check_tf_version()) source("helpers.R") a <- as_data(randn(5, 1)) b <- as_data(randn(1, 5)) expect_snapshot_error( rbind(a, b) ) expect_snapshot_error( cbind(a, b) ) }) test_that("replacement gives informative error messages", { skip_if_not(check_tf_version()) source("helpers.R") x <- ones(2, 2, 2) expect_snapshot_error( x[1:2, , 1] <- seq_len(3) ) expect_snapshot_error( x[1, 1, 3] <- 1 ) x <- ones(2) expect_snapshot_error( x[3] <- 1 ) }) test_that("extraction gives informative error messages", { skip_if_not(check_tf_version()) source("helpers.R") x <- ones(2, 2, 2) expect_snapshot_error( x[1, 1, 3] ) x <- ones(2) expect_snapshot_error( x[3] ) }) test_that("stochastic and operation greta arrays can be extracted", { skip_if_not(check_tf_version()) source("helpers.R") a <- normal(0, 1, dim = c(3, 4)) a_sub <- a[1:2, 2:3] expect_identical(dim(a_sub), c(2L, 2L)) b <- a * 2 b_sub <- b[1:2, ] expect_identical(dim(b_sub), c(2L, 4L)) }) test_that("extract, replace, combine work in models", { skip_if_not(check_tf_version()) source("helpers.R") a <- normal(0, 1, dim = c(3, 4)) a_sub <- a[1:2, 2:3] m_a <- model(a_sub) expect_ok(draws_a <- mcmc(m_a, warmup = 3, n_samples = 3, verbose = FALSE)) b <- ones(4, 3) x <- normal(0, 1, dim = 4) b[, 2] <- x m_b <- model(b) expect_ok(draws_b <- mcmc(m_b, warmup = 3, n_samples = 3, verbose = FALSE)) d <- c( normal(0, 1, dim = 2), lognormal(0, 1, dim = 3) ) m_d <- model(d) expect_ok(draws_d <- mcmc(m_d, warmup = 3, n_samples = 3, verbose = FALSE)) }) test_that("length and dim work", { skip_if_not(check_tf_version()) source("helpers.R") ga_data <- as_data(matrix(1:9, nrow = 3)) ga_stochastic <- normal(0, 1, dim = c(3, 3)) ga_operation <- ga_data * ga_stochastic expect_identical(length(ga_data), 9L) expect_identical(length(ga_stochastic), 9L) expect_identical(length(ga_operation), 9L) expect_identical(dim(ga_data), c(3L, 3L)) expect_identical(dim(ga_stochastic), c(3L, 3L)) expect_identical(dim(ga_operation), c(3L, 3L)) }) test_that("dim<- works", { skip_if_not(check_tf_version()) source("helpers.R") x <- randn(3, 4, 2) new_dim <- c(2, 2, 6) check_op(`dim<-`, x, other_args = list(value = new_dim)) new_dim <- c(12, 2) check_op(`dim<-`, x, other_args = list(value = new_dim)) new_dim <- NULL check_op(`dim<-`, x, other_args = list(value = new_dim)) }) test_that("greta_array() reshapes array-like greta arrays like array", { skip_if_not(check_tf_version()) source("helpers.R") x_ <- randu(3, 4, 2) x <- as_data(x_) new_dim <- c(12, 2) y_ <- as_data(array(x_, dim = new_dim)) y <- greta_array(x, dim = new_dim) compare_op(calculate(y)[[1]], calculate(y_)[[1]]) x <- abs(x) y_ <- as_data(array(x_, dim = new_dim)) y <- greta_array(x, dim = new_dim) compare_op(calculate(y)[[1]], calculate(y_)[[1]]) x <- variable(dim = dim(x)) y_ <- as_data(array(x_, dim = new_dim)) y <- greta_array(x, dim = new_dim) compare_op(calculate(y, values = list(x = x_))[[1]], calculate(y_)[[1]]) }) test_that("greta_array() reshapes scalar greta arrays like array", { skip_if_not(check_tf_version()) source("helpers.R") x_ <- randu(1) x <- as_data(x_) new_dim <- c(12, 2) y_ <- as_data(array(x_, dim = new_dim)) y <- greta_array(x, dim = new_dim) compare_op(calculate(y)[[1]], calculate(y_)[[1]]) x <- abs(x) y_ <- as_data(array(x_, dim = new_dim)) y <- greta_array(x, dim = new_dim) compare_op(calculate(y)[[1]], calculate(y_)[[1]]) x <- variable(dim = dim(x)) y_ <- as_data(array(x_, dim = new_dim)) y <- greta_array(x, dim = new_dim) compare_op(calculate(y, values = list(x = x_))[[1]], calculate(y_)[[1]]) }) test_that("dim<- errors as expected", { skip_if_not(check_tf_version()) source("helpers.R") x <- zeros(3, 4) expect_snapshot_error( dim(x) <- pi[0] ) expect_snapshot_error( dim(x) <- c(1, NA) ) expect_snapshot_error( dim(x) <- c(1, -1) ) expect_snapshot_error( dim(x) <- 13 ) }) test_that("dim<- works in a model", { skip_if_not(check_tf_version()) source("helpers.R") y <- rnorm(5) x1 <- greta_array(1:12, c(3, 4)) dim(x1) <- NULL x2 <- greta_array(1:12, c(3, 4)) dim(x2) <- 12 x3 <- greta_array(1:12, c(3, 4)) dim(x3) <- c(6, 2) z <- x1[6, ] * x2[7, ] * x3[5, 2] distribution(y) <- normal(z, lognormal(0, 1)) expect_ok(m <- model(z)) expect_ok(mcmc(m, warmup = 0, n_samples = 2)) }) test_that("c handles NULLs and lists", { skip_if_not(check_tf_version()) source("helpers.R") x <- normal(0, 1) y <- as_data(3:1) z <- c(x, NULL, y) expect_s3_class(z, "greta_array") expect_identical(dim(z), c(4L, 1L)) z <- c(x, NULL) expect_s3_class(z, "greta_array") expect_identical(dim(z), c(1L, 1L)) z <- c(x, 0, FALSE) expect_s3_class(z, "greta_array") expect_identical(dim(z), c(3L, 1L)) z <- c(x, mean) expect_true(is.list(z)) expect_s3_class(z[[1]], "greta_array") expect_identical(dim(z[[1]]), c(1L, 1L)) z <- c(x, NULL, mean) expect_true(is.list(z)) expect_s3_class(z[[1]], "greta_array") expect_identical(dim(z[[1]]), c(1L, 1L)) })
scaling.BW <- function (S1, S2, method = 0, pa = 0) { if (is.data.frame(S2)) S2 <- as.matrix(S2) if (is.data.frame(S1)) S1 <- as.matrix(S1) if (is.null(S1) | is.null(S2)) stop("supply both 'S1' and 'S2'") if (!is.matrix(S1) | !is.matrix(S2)) stop("'S1' and 'S2' must be matrices or data frames") if (!all.equal(dim(S1), dim(S2))) stop("'S1' and 'S2' must be square matrices of the same dimensions") p <- dim(S1)[1] M <- minv(S2, method = 0, pa = 0) %*% S1 trM <- sum(diag(M)) k <- trM / p return(k) }
mbscore <- function(x,lambda,subset=NULL,tol=1e-8,...){ beta <- scores <- scorevar.mod <- scorevar.sand <- p.model <- p.sand <- matrix(NA,ncol(x),ncol(x)) if(is.null(subset)) subset <- matrix(TRUE,ncol(x),ncol(x)) for(i in 1:ncol(x)){ mod <- lassoscore(x[,i],x[,-i],lambda=lambda,subset=which(subset[-i,i]),tol=tol,...) scores[-i,i] <- mod$scores p.model[-i,i] <- mod$p.model p.sand[-i,i] <- mod$p.sand scorevar.mod[-i,i] <- mod$scorevar.model scorevar.sand[-i,i] <- mod$scorevar.sand beta[-i,i] <- mod$fit$beta } re <- list("scores"=scores, "p.model" = p.model, "p.sand" = p.sand, "scorevar.mod" = scorevar.mod, "scorevar.sand" = scorevar.sand, "beta" = beta) re$lambda <- lambda class(re) <- "mbscore" return(re) } qqpval <- function(p, cone=TRUE, log=TRUE, add=FALSE,col=1,pch=1,...){ if(length(col)==1) col <- rep(col,length(p)) if(length(pch)==1) pch <- rep(pch,length(p)) stopifnot(length(col) == length(p) & length(pch) == length(p)) col <- col[0< p & p < 1] pch <- pch[0 < p & p <1] p <- p[ 0< p & p < 1] oo <- order(p,decreasing=log) p <- p[oo] col <- col[oo] pch <- pch[oo] if(log) p <- -log10(p) N <- length(p) if(log){ Ep <- sort(-log10(ppoints(N))) cone.lower <- -log10(qbeta(0.025, 1:N, N:1)) cone.upper <- -log10(qbeta(0.975, 1:N, N:1)) cone.x <- sort(-log10(ppoints(N))) } else { Ep <- sort(ppoints(N)) cone.lower <- sort(qbeta(0.025, 1:N, N:1)) cone.upper <- sort(qbeta(0.975, 1:N, N:1)) cone.x <- rev(sort(ppoints(N))) } if(add){ points(y=p, x=Ep,col=col,pch=pch,...) } else{ if(log){ plot(y=p,x=Ep,type="n", xlab = "Expected p-value, -log10", ylab = "Observed p-value, -log10",ylim=range(c(p,cone.upper,cone.lower)),...) } else { plot(y=p,x=Ep,type="n", xlab = "Expected p-value", ylab = "Observed p-value",...) } abline(0,1) polygon(y=c(rev(cone.lower),cone.upper),x=c(cone.x,rev(cone.x)), col=1,lty=2,density=0) points(y=p, x=Ep,col=col,pch=pch,...) } } glassoscore <- function(x,lambda,subset=NULL,penalize.diagonal=FALSE,tol=1e-8){ if(!is.matrix(x)) stop("x must be a matrix") if(lambda[1] < 0 | length(lambda) > 1) stop("lambda must be a non-negative scalor") n <- nrow(x) d <- ncol(x) x <- scale(x)*sqrt((n-1)/n) s <- var(x)*((n-1)/n) if(is.null(subset)) subset <- matrix(TRUE,d,d) stopifnot(all(dim(subset)==dim(s)) & is.logical(subset)) mod0 <- glasso(s,lambda,thr=tol,penalize.diagonal=penalize.diagonal) scores <- matrix(0,d,d) scorevars.sand <- scorevars.model <- matrix(0,d,d) lambdamat <- matrix(lambda,d,d) diag(lambdamat) <- 0 wh <- which(mod0$wi !=0) adj <- cbind(floor((wh-0.1)/d)+1,(wh-1)%%d+1) wh <- wh[adj[,1] <= adj[,2]] adj <- adj[adj[,1] <= adj[,2],] U0 <- with(mod0,{ w[adj[,1],adj[,1]]*w[adj[,2],adj[,2]] + w[adj[,2],adj[,1]]*w[adj[,1],adj[,2]] }) Ui0 <- solve(U0) V0 <- with(mod0, var(x[,adj[,1]]*x[,adj[,2]]))*((n-1)/n) sand0 <- V0%*%Ui0%*%V0 for(i in 1:(d-1)){ for(j in (i+1):d){ if(subset[i,j] | subset[j,i]){ if(mod0$wi[i,j] ==0){ mod <- mod0 } else { mod <- glasso(s,rho=lambda,zero=c(i,j),thr=tol,start="warm",w.init=mod0$w, wi.init=mod0$wi,penalize.diagonal=penalize.diagonal) } scores[i,j] <- with(mod,sqrt(n)*(w[i,j]-s[i,j])) wh <- c((i-1)*d+j,which(mod$wi !=0)) adj <- cbind(floor((wh-0.1)/d)+1,(wh-1)%%d+1) wh <- wh[adj[,1] <= adj[,2]] adj <- adj[adj[,1] <= adj[,2],] if(mod0$wi[i,j] ==0){ Ua <- with(mod,{ w[adj[1,1],adj[,1]]*w[adj[1,2],adj[,2]] + w[adj[1,2],adj[,1]]*w[adj[1,1],adj[,2]] }) V <- with(mod, var(x[,adj[,1]]*x[,adj[,2]]))*((n-1)/n) scorevars.sand[i,j] <- (V[1,1] + t(Ua[-1])%*%sand0%*%Ua[-1] - 2*t(Ua[-1] )%*%(Ui0)%*%V[-1,1]) scorevars.model[i,j] <- Ua[1] - t(Ua[-1])%*%Ui0%*%Ua[-1] } else { U <- with(mod,{ w[adj[,1],adj[,1]]*w[adj[,2],adj[,2]] + w[adj[,2],adj[,1]]*w[adj[,1],adj[,2]] }) V <- with(mod, var(x[,adj[,1]]*x[,adj[,2]]))*((n-1)/n) Ui <- solve(U[-1,-1]) scorevars.sand[i,j] <- V[1,1] + t(U[-1,1])%*%Ui%*%(V[-1,-1]%*%Ui%*%U[-1,1] - 2*V[-1,1]) scorevars.model[i,j] <- U[1,1] - t(U[-1,1])%*%Ui%*%U[-1,1] } } } } scores <- as.matrix(forceSymmetric(scores)) scorevars.sand <- as.matrix(forceSymmetric(scorevars.sand)) scorevars.model <- as.matrix(forceSymmetric(scorevars.model)) mod0$p.sand <- pchisq(scores^2/scorevars.sand,1,lower.tail=FALSE) mod0$p.model <- pchisq(scores^2/scorevars.model,1,lower.tail=FALSE) mod0$scores <- scores mod0$scorevar.sand <- scorevars.sand mod0$scorevar.model <- scorevars.model mod0$lambda <- lambda class(mod0) <- "glassoscore" return(mod0) } print.glassoscore <- function(x,...){ cat("An object of class `glassoscore' \n") cat("lambda = ", x$lambda[1]) } print.mbscore <- function(x,...){ cat("An object of class `mbscore' \n") cat("lambda = ", x$lambda[1]) } plot.glassoscore <- function(x,cone=TRUE, log=TRUE, add=FALSE,...){ qqpval(x$p.sand[upper.tri(x$p.sand)],cone,log,add, main = "QQ-plot of p-values",...) qqpval(x$p.model[upper.tri(x$p.sand)],add=TRUE,col=2,...) legend("topleft",legend=c("sandwich","model-based"),col=c(1,2),pch=1) } plot.mbscore <- function(x,cone=TRUE, log=TRUE, add=FALSE,...){ qqpval(x$p.sand[upper.tri(x$p.sand)],cone,log,add, main = "QQ-plot of p-values",...) qqpval(x$p.model[upper.tri(x$p.sand)],add=TRUE,col=2,...) legend("topleft",legend=c("sandwich","model-based"),col=c(1,2),pch=1) } lassoscore <- function(y,X, lambda=0, family=c("gaussian","binomial","poisson"), tol = .Machine$double.eps, maxit=1000, resvar = NULL, verbose=FALSE, subset = NULL){ family = match.arg(family) family.obj <- get(family,mode="function",envir=parent.frame())() if(!(family %in% c("gaussian","binomial","poisson"))) stop("family not supported!") X <- scale(X)*sqrt(nrow(X)/(nrow(X)-1)) if(family=="gaussian") y <- scale(y,scale=FALSE) out0 <- glmnet(y=y,x=X, family=family, lambda=lambda, thresh = tol, maxit=maxit,standardize=FALSE) out0$r <- as.vector(family.obj$linkinv(as.vector(out0$a0 + X%*%out0$beta))-y) out0$v <- family.obj$var(family.obj$linkinv(as.vector(out0$a0 + X%*%out0$beta))) if(family =="gaussian" & !is.numeric(resvar)){ resvar <- sum(out0$r^2)/(length(y)-sum(out0$beta !=0)) } else if(family !="gaussian"){ resvar <- 1 } out0$n <- nrow(X) out0$beta <- as.vector(out0$beta) wh <- as.vector(out0$beta != 0) if(is.null(subset)){ subset <- 1:ncol(X) } if(verbose){ cat("\nProgress:\n") pb <- txtProgressBar(min = 0, max = length(subset), style = 3) pb.i <- 0 } scores <- scorevar.sand.cons <- scorevar.model.cons <- scorevar.sand <- scorevar.model <- numeric(ncol(X)) scores[-subset] <- NA for(i in subset){ if(out0$beta[i] != 0){ out <- glmnet(y=y,x=X[,-i], family=family, lambda=lambda, thresh = tol, maxit=maxit,standardize=FALSE) out$r <- as.vector(family.obj$linkinv(out$a0 +as.vector(X[,-i]%*%out$beta))-y) out$v <- family.obj$var(family.obj$linkinv(out$a0 +as.vector(X[,-i]%*%out$beta))) out$n <- nrow(X) out$beta <- as.vector(out$beta) Xs <- X[,-i,drop=FALSE][,as.vector(out$beta !=0),drop=FALSE] } else { out <- out0 Xs <- X[,as.vector(out$beta !=0),drop=FALSE] } xx <- X[,i,drop=FALSE] scores[i] <- sum(out$r*X[,i])/sqrt(out$n) scorevar.model.cons[i] <- with(out, resvar*(crossprod(xx*sqrt(v))/n)) scorevar.sand.cons[i] <- with(out, var(xx*r)*(n-1)/n) if(ncol(Xs) == 0){ scorevar.sand[i] <- scorevar.sand.cons[i] scorevar.model[i] <- scorevar.model.cons[i] } else if(nrow(Xs) > ncol(Xs) & ncol(Xs) >0){ Ui <- with(out, solve(crossprod(Xs*sqrt(v))/n)) V <- with(out, var(r*Xs)*(n-1)) Va <- with(out,cov(r*Xs,r*xx)*(n-1)) Ua <- with(out, crossprod(Xs,v*xx)/n) va <- with(out, var(xx*r)*(n-1)) scorevar.sand[i] <- (va + t(Ua)%*%(Ui)%*%(V%*%Ui%*%Ua - 2*Va))/with(out,n-sum(beta !=0)) scorevar.model[i] <- with(out, resvar*(crossprod(xx*sqrt(v))/n - t(Ua)%*%Ui%*%Ua) ) } if(verbose){ pb.i <- pb.i+1 setTxtProgressBar(pb, pb.i) } } re <- list( "fit"=out0, "scores" = scores, "scorevar.model.cons" = scorevar.model.cons, "scorevar.sand.cons" = scorevar.model.cons, "scorevar.model" = scorevar.model, "scorevar.sand" = scorevar.sand, "p.model.cons" = pchisq(scores^2/scorevar.model.cons,df=1,lower.tail=FALSE), "p.sand.cons" = pchisq(scores^2/scorevar.sand.cons,df=1,lower.tail=FALSE), "p.model" = pchisq(scores^2/scorevar.model,df=1,lower.tail=FALSE), "p.sand" = pchisq(scores^2/scorevar.sand,df=1,lower.tail=FALSE), "lambda" = lambda) class(re) <- "lassoscore" if(verbose) close(pb) return(re) } print.lassoscore <- function(x,...){ cat("An object of class `lassoscore'\nbased on n =",x$fit$n, " observations on d =",x$fit$dim[1], " features, using lambda = ",x$lambda,fill=TRUE) } summary.lassoscore <- function(object,...){ cat("An object of class `lassoscore'\nbased on n =",object$fit$n, " observations on d =",object$fit$dim[1], " features, with",sum(object$fit$beta !=0),"non-zero coefficients in regression of `y' on `X'",fill=TRUE) cat("\nModel-based p-values:\n") print(summary(object$p.model)) cat("\nSandwich p-values:\n") print(summary(object$p.sand)) } plot.lassoscore <- function(x, type=c("all","model","sand","model.cons","sand.cons"),cone=TRUE, log=TRUE, add=FALSE,...){ type <- match.arg(type,choices = c("all","model","sand","model.cons","sand.cons")) switch(type, sand = qqpval(x$p.sand,cone,log,add, main = "QQ-plot of p-values",...), model = qqpval(x$p.model,cone,log,add,main = "QQ-plot of p-values",...), sand.cons = qqpval(x$p.sand.cons,cone,log,add,main = "QQ-plot of p-values",...), model.cons = qqpval(x$p.model.cons,cone,log,add,main = "QQ-plot of p-values",...), all = { qqpval(x$p.model,cone,log,main = "QQ-plot of p-values",pch=16,col=" qqpval(x$p.sand,cone,log,add=TRUE,col=" qqpval(x$p.model.cons,cone,log,add=TRUE,col=" qqpval(x$p.sand.cons,cone,log,add=TRUE,col=" legend("topleft",col=c(" ) }
library(checkargs) context("isNonZeroNumberOrNanOrInfVectorOrNull") test_that("isNonZeroNumberOrNanOrInfVectorOrNull works for all arguments", { expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(NULL, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(TRUE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(FALSE, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(NA, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(0, stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(-1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(-0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(0.1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(1, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(NaN, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(-Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(Inf, stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull("", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull("X", stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(TRUE, FALSE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(FALSE, TRUE), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(NA, NA), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(0, 0), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(-1, -2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(-0.1, -0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(0.1, 0.2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(1, 2), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(NaN, NaN), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(-Inf, -Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(Inf, Inf), stopIfNot = FALSE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c("", "X"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c("X", "Y"), stopIfNot = FALSE, message = NULL, argumentName = NULL), FALSE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(NULL, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull(TRUE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull(FALSE, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull(NA, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull(0, stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(-1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(-0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(0.1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(1, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(NaN, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(-Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(Inf, stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull("", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull("X", stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull(c(TRUE, FALSE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull(c(FALSE, TRUE), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull(c(NA, NA), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull(c(0, 0), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(-1, -2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(-0.1, -0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(0.1, 0.2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(1, 2), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(NaN, NaN), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(-Inf, -Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_identical(isNonZeroNumberOrNanOrInfVectorOrNull(c(Inf, Inf), stopIfNot = TRUE, message = NULL, argumentName = NULL), TRUE) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull(c("", "X"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) expect_error(isNonZeroNumberOrNanOrInfVectorOrNull(c("X", "Y"), stopIfNot = TRUE, message = NULL, argumentName = NULL)) })
library(msme) library(MASS) data(medpar) denom <- rep(1:5, each=299, times=1)*100 oset <- rep(1:5, each=299, times=1)*100 loset <- log(oset) glm.poi <- glm(los ~ hmo + white, family = "poisson", data = medpar) ml.poi <- ml_glm(los ~ hmo + white, family = "poisson", link = "log", data = medpar) ml.poi glm.poi summary(ml.poi) summary(glm.poi) glm.rpoi <- glm(los ~ hmo + white + offset(loset), family = poisson, data = medpar) ml.rpoi <- ml_glm(los ~ hmo + white, family = "poisson", link = "log", offset = loset, data = medpar) ml.rpoi glm.rpoi summary(ml.rpoi) summary(glm.rpoi) glm.ipoi <- glm(los ~ hmo + white, family = poisson(link=identity), data = medpar) ml.ipoi <- ml_glm(los ~ hmo + white, family = "poisson", link = "identity", data = medpar) glm.ipoi ml.ipoi summary(glm.ipoi) summary(ml.ipoi) glm.logit <- glm(died ~ hmo + white, family = "binomial", data = medpar) ml.logit <- ml_glm(died ~ hmo + white, data = medpar, family = "bernoulli", link = "logit1") ml.logit glm.logit summary(ml.logit) summary(glm.logit) ml.probit <- ml_glm(died ~ hmo + white, family = "bernoulli", link = "probit1", data = medpar) glm.probit <- glm(died ~ hmo + white, family = binomial(link=probit), data = medpar) ml.probit glm.probit summary(ml.probit) summary(glm.probit) ml.cloglog <- ml_glm(died ~ hmo + white, family = "bernoulli", link = "cloglog1", data = medpar, verbose = 1) glm.cloglog <- glm(died ~ hmo + white, family = binomial(link=cloglog), data = medpar) ml.cloglog glm.cloglog summary(ml.cloglog) summary(glm.cloglog)
print.quantileDA<-function(x,...) { out=x message("") message("Results of the quantile classifier") message("") cat(paste("Minimum misclassification rates attained at theta = ",out$theta.choice,sep=""),"\n") cat(paste("Miclassification rate in the training set: ", round(out$me.train,2),sep=""),"\n") cat(paste("Miclassification rate in the test set: ",round(out$me.test,2),sep=""),"\n") }
plot.hydra <- function(x,labels=NULL,node.col=1,pch=NULL,graph.adj=NULL,crop.disc=TRUE,shrink.disc=FALSE, disc.col = "grey90", rotation = 0, mark.center=0, mark.angles=0, mildify = 3,cex=1.0,...) { hydra <- x if(shrink.disc) c.radius <- max(hydra$r) else c.radius <- 1.0 c.radius <- c.radius + 0.03*cex rotation.rad <- rotation/180 * pi x.nodes <- hydra$r*cos(hydra$theta + rotation.rad) y.nodes <- hydra$r*sin(hydra$theta + rotation.rad) if(crop.disc) plot(x.nodes,y.nodes,type="n",asp=1, xlab="",ylab="",axes=FALSE,...) else plot(x.nodes,y.nodes,type="n",asp=1, xlab="",ylab="",axes=FALSE,xlim=c(-1,1)*c.radius,ylim=c(-1,1)*c.radius,...) symbols(0,0,circles=c.radius,fg="white",bg=disc.col,inches=FALSE, add=TRUE) if(mark.center != 0.0) { lines(mark.center*c.radius*c(-1,1),c(0,0),...) lines(c(0,0),mark.center*c.radius*c(-1,1),...) } if(!is.null(graph.adj)) { edgelist <- which(graph.adj != 0,arr.ind=TRUE) t <- seq(from=0,to=1,length=100) for(i in 1:nrow(edgelist)) { r <- hydra$r[edgelist[i,]] / mildify dir <- hydra$directional[edgelist[i,],] X <- poincare.to.hyper(r,dir) x0 <- apply(X,1,function(x) {1 + sum(x^2)}) l.prod <- x0[1]*x0[2] - sum(X[1,] * X[2,]) dist <- acosh(max(1,l.prod)) aux <- (X[2,] - X[1,] * l.prod) / sqrt(l.prod^2 - 1) geodesic <- hyper.to.poincare(outer(cosh(t*dist),X[1,]) + outer(sinh(t*dist),aux)) lines(geodesic$r* cos(geodesic$theta + rotation.rad) * mildify ,geodesic$r* sin(geodesic$theta + rotation.rad) * mildify,lty="dotted",col="black",...) } } symbols(x.nodes,y.nodes,circles=rep(0.03*cex,length(hydra$r)),fg=disc.col,bg=disc.col,inches=FALSE, add=TRUE) if(!is.null(labels)) text(x.nodes,y.nodes,labels,col=node.col,cex=cex,...) if(is.null(labels) && is.null(pch)) pch <- 21 if(!is.null(pch)) points(x.nodes,y.nodes,col=node.col,pch=pch,cex=cex,...) if(mark.angles != 0) segments((1-mark.angles)*c.radius*cos(hydra$theta + rotation.rad),(1-mark.angles)*c.radius*sin(hydra$theta + rotation.rad),(1+mark.angles)*c.radius*cos(hydra$theta + rotation.rad),(1+mark.angles)*c.radius*sin(hydra$theta + rotation.rad),col=node.col,...) }
.tabulateGeomorphRecords <- function(x) { vars <- c('series', 'n') if( any( isFALSE(x$hillpos) | isFALSE(x$geomcomp) | isFALSE(x$terrace) | isFALSE(x$flats) | isFALSE(x$shape_across) | isFALSE(x$shape_down) ) ) { return(NULL) } m1 <- merge(x$hillpos[, vars], x$geomcomp[, vars], by = 'series', all.x = TRUE, all.y = TRUE, sort = FALSE) names(m1)[2:3] <- c('hillpos.records', 'geomcomp.records') m2 <- merge(m1, x$terrace[, vars], by = 'series', all.x = TRUE, all.y = TRUE, sort = FALSE) names(m2)[4] <- 'terrace.records' m3 <- merge(m2, x$flats[, vars], by = 'series', all.x = TRUE, all.y = TRUE, sort = FALSE) names(m3)[5] <- 'flats.records' m4 <- lapply(m3, function(i) { ifelse(is.na(i), 0, i) }) m5 <- as.data.frame(m4, stringsAsFactors = FALSE) return(m5) } fetchOSD <- function(soils, colorState='moist', extended=FALSE) { if( !requireNamespace('jsonlite', quietly=TRUE)) stop('please install the `jsonlite` package', call.=FALSE) if(extended) { url <- 'https://casoilresource.lawr.ucdavis.edu/api/soil-series.php?q=all&s=' } else { url <- 'https://casoilresource.lawr.ucdavis.edu/api/soil-series.php?q=site_hz&s=' } final.url <- paste(url, URLencode(paste(soils, collapse=',')), sep='') if(nchar(final.url) > 2048) { stop('URL too long, consider splitting input vector of soil series with `makeChunks()` and iterating over chunks', call. = FALSE) } res <- try(jsonlite::fromJSON(final.url)) if(class(res) == 'try-error'){ message('error') return(NULL) } s <- res$site h <- res$hz if( (is.logical(s) & length(s) == 1) | (is.logical(h) & length(h) == 1)) { message('query returned no data') return(NULL) } if(colorState == 'moist') { h$soil_color <- with(h, munsell2rgb(matrix_wet_color_hue, matrix_wet_color_value, matrix_wet_color_chroma)) h <- with(h, data.frame( id = series, top, bottom, hzname, soil_color, hue = matrix_wet_color_hue, value = matrix_wet_color_value, chroma = matrix_wet_color_chroma, dry_hue = matrix_dry_color_hue, dry_value = matrix_dry_color_value, dry_chroma = matrix_dry_color_chroma, texture_class = texture_class, cf_class = cf_class, pH = ph, pH_class = ph_class, distinctness = distinctness, topography = topography, dry_color_estimated = as.logical(dry_color_estimated), moist_color_estimated = as.logical(moist_color_estimated), narrative = narrative, stringsAsFactors = FALSE ) ) } if(colorState == 'dry') { h$soil_color <- with(h, munsell2rgb(matrix_dry_color_hue, matrix_dry_color_value, matrix_dry_color_chroma)) h <- with(h, data.frame( id = series, top, bottom, hzname, soil_color, hue = matrix_dry_color_hue, value = matrix_dry_color_value, chroma = matrix_dry_color_chroma, moist_hue = matrix_wet_color_hue, moist_value = matrix_wet_color_value, moist_chroma = matrix_wet_color_chroma, texture_class = texture_class, cf_class = cf_class, pH = ph, pH_class = ph_class, distinctness = distinctness, topography = topography, dry_color_estimated = as.logical(dry_color_estimated), moist_color_estimated = as.logical(moist_color_estimated), narrative = narrative, stringsAsFactors = FALSE ) ) } depths(h) <- id ~ top + bottom textures <- SoilTextureLevels(which = 'names') pH_classes <- c('ultra acid', 'extremely acid', 'very strongly acid', 'strongly acid', 'moderately acid', 'slightly acid', 'neutral', 'slightly alkaline', 'mildly alkaline', 'moderately alkaline', 'strongly alkaline', 'very strongly alkaline') h$texture_class <- factor(h$texture_class, levels=textures, ordered = TRUE) h$pH_class <- factor(h$pH_class, levels=pH_classes, ordered = TRUE) s$id <- s$seriesname s$seriesname <- NULL site(h) <- s metadata(h)$origin <- 'OSD via Soilweb / fetchOSD' hzdesgnname(h) <- "hzname" hztexclname(h) <- "texture_class" if(extended) { pIDs <- profile_id(h) missing.series <- unique( as.vector( unlist( lapply(res, function(i) { if(inherits(i, 'data.frame')) { setdiff(unique(i[['series']]), pIDs) } }) ) ) ) if(length(missing.series) > 0) { msg <- sprintf("%s missing from SPC, see ?fetchOSD for suggestions", paste(missing.series, collapse = ',')) warning(msg, call. = FALSE) } if(inherits(res$climate, 'data.frame')) { annual.data <- res$climate[grep('ppt|pet', res$climate$climate_var, invert = TRUE), ] monthly.data <- res$climate[grep('ppt|pet', res$climate$climate_var), ] monthly.data$month <- factor(as.numeric(gsub('ppt|pet', '', monthly.data$climate_var))) monthly.data$variable <- gsub('[0-9]', '', monthly.data$climate_var) monthly.data$variable <- factor(monthly.data$variable, levels = c('pet', 'ppt'), labels=c('Potential ET (mm)', 'Precipitation (mm)')) } else { annual.data <- FALSE monthly.data <- FALSE } if(inherits(res$pmkind, 'data.frame')) { names(res$pmkind) <- c('series', 'pmkind', 'n', 'total', 'P') } if(inherits(res$pmorigin, 'data.frame')) { names(res$pmorigin) <- c('series', 'pmorigin', 'n', 'total', 'P') } if(inherits(res$competing, 'data.frame')) { names(res$competing) <- c('series', 'competing', 'family') } data.list <- list( SPC=h, competing=res$competing, geog_assoc_soils=res$geog_assoc_soils, geomcomp=res$geomcomp, hillpos=res$hillpos, mtnpos=res$mtnpos, terrace=res$terrace, flats=res$flats, shape_across=res$shape_across, shape_down=res$shape_down, pmkind=res$pmkind, pmorigin=res$pmorigin, mlra=res$mlra, climate.annual=annual.data, climate.monthly=monthly.data, NCCPI = res$nccpi, soilweb.metadata=res$metadata ) return(data.list) } else { return(h) } }
vt.default <- function(x , ... ) t(x) vt.ff <- function(x , ... ){ if (symmetric(x)) return(x) d <- dim(x) if (is.null(d) ) stop("not an array") if (length(d)!=2) warning("not a matrix") vw <- vw(x) if (is.null(vw)){ do <- dimorder(x) dn <- dimnames(x) dim(x) <- rev(d) dimorder(x) <- rev(do) dimnames(x) <- rev(dn) }else{ vw(x) <- NULL d <- dim(x) do <- dimorder(x) dn <- dimnames(x) dim(x) <- d[2:1] dimorder(x) <- rev(do) dimnames(x) <- rev(dn) vw(x) <- vw[,ncol(vw):1,drop=FALSE] } x } t.ff <- function(x){ if (symmetric(x)) return(x) clone(vt(x), dimorder=rev(dimorder(x))) }
redis_connect <- function(config) { if (config$scheme == "redis") { ptr <- redis_connect_tcp(config$host, config$port, config$timeout) } else { ptr <- redis_connect_unix(config$path, config$timeout) } if (!is.null(config$password)) { redis_command(ptr, c("AUTH", config$password)) } if (!is.null(config$db)) { redis_command(ptr, c("SELECT", config$db)) } ptr } redis_connect_tcp <- function(host, port, timeout = NULL) { .Call(Credux_redis_connect, host, as.integer(port), as.integer(timeout)) } redis_connect_unix <- function(path, timeout = NULL) { .Call(Credux_redis_connect_unix, path, as.integer(timeout)) } redis_command <- function(ptr, command) { .Call(Credux_redis_command, ptr, command) } redis_pipeline <- function(ptr, list) { .Call(Credux_redis_pipeline, ptr, drop_null(list)) } redis_subscribe <- function(ptr, channel, pattern, callback, envir) { assert_character(channel) if (length(channel) == 0L) { stop("At least one channel must be given") } assert_scalar_logical(pattern) assert_is(callback, "function") assert_is(envir, "environment") on.exit(.Call(Credux_redis_unsubscribe, ptr, channel, pattern)) .Call(Credux_redis_subscribe, ptr, channel, pattern, callback, envir) invisible() } drop_null <- function(x) { x[!vapply(x, is.null, logical(1))] }
LRFN.plot <- function(M, Left.fun = NULL, Right.fun = NULL, ...) { if ( messages(M) != 1 ) { return( messages(M) ) } m = M[1] m_l = M[2] m_r = M[3] x <- NULL if ( M[4] == 0 ) { y = function(x) Left.fun((m-x)/m_l) * (x<=m) + Right.fun((x-m)/m_r) * (m<x) } else if ( M[4] == 1 ) { y = function(x) Right.fun((m-x)/m_l) * (x<=m) + Left.fun((x-m)/m_r) * (m<x) } else if ( M[4] == 0.5 ) { y = function(x) Left.fun((m-x)/m_l) * (x<=m) + Left.fun((x-m)/m_r) * (m<x) } else { return( noquote( paste0("The fourth element of each LR fuzzy number must be 0 or 0.5 or 1!" ) ) ) } return(curve(y(x) * (0<=y(x) & y(x)<=1), ...) ) }
adj.cssls <- function(CtC, CtA, Pset=NULL){ K = matrix(0, nrow(CtA), ncol(CtA)); if ( is.null(Pset) || length(Pset)==0 || all(Pset) ){ K = ginv(CtC) %*% CtA; }else{ lVar = nrow(Pset); pRHS = ncol(Pset); codedPset = as.numeric(2.^(seq(lVar-1,0,-1)) %*% Pset); sortedPset = sort(codedPset) sortedEset = order(codedPset) breaks = diff(sortedPset); breakIdx = c(0, which(breaks > 0 ), pRHS); for( k in seq(1,length(breakIdx)-1) ){ cols2solve = sortedEset[ seq(breakIdx[k]+1, breakIdx[k+1])]; vars = Pset[,sortedEset[breakIdx[k]+1]]; K[vars,cols2solve] = ginv(CtC[vars,vars]) %*% CtA[vars,cols2solve]; } } K }
wr <- function(formula, data=NULL, expand=TRUE){ if(is.null(data))data <- parent.frame() else if(!is.data.frame(data)&&!is.environment(data)) data <- if(expand||inherits(data,"tccov"))as.data.frame(data) else as.data.frame(data$ccov) mt <- terms(formula) mf <- model.frame(mt,data=data,na.action=NULL) list(response=model.response(mf,"numeric"), design=model.matrix(mt,mf))} capply <- function(x, index, fcn=sum){ ans <- NULL for(i in split(x,index))ans <- c(ans,fcn(i)) ans} mexp <- function(x, t=1, type="spectral decomposition", n=20, k=3){ if(!is.matrix(x))stop("x must be a matrix") if(dim(x)[1]!=dim(x)[2])stop("x must be a square matrix") type <- match.arg(type,c("spectral decomposition","series approximation")) if(type=="spectral decomposition"){ z <- eigen(t*x,symmetric=FALSE) p <- z$vectors%*%diag(exp(z$values))%*%solve(z$vectors)} else { xx <- x*t/2^k p <- diag(dim(x)[2]) q <- p for(r in 1:n){ q <- xx%*%q/r p <- p+q} for(i in 1:k) p <- p%*%p} p} "%^%" <- function(x, p){ if(!is.matrix(x))stop("x must be a matrix") if(dim(x)[1]!=dim(x)[2])stop("x must be a square matrix") z <- eigen(x,symmetric=FALSE) z$vectors%*%diag(z$values^p)%*%solve(z$vectors)} contr.mean <- function(n, contrasts=TRUE){ if(length(n) <= 1){ if(is.numeric(n)&&length(n)==1&&n>1)levels <- 1:n else stop("Not enough degrees of freedom to define contrasts")} else levels <- n lenglev <- length(levels) if(contrasts){ cont <- array(0,c(lenglev,lenglev-1), list(levels,levels[1:(lenglev-1)])) cont[col(cont)==row(cont)] <- 1 cont[lenglev,] <- -1} else { cont <- array(0,c(lenglev,lenglev),list(levels,levels)) cont[col(cont) == row(cont)] <- 1} cont}
get_sig_rec_similarity <- function(Signature, nmf_matrix) { stopifnot(inherits(Signature, "Signature"), is.matrix(nmf_matrix)) flag_rss <- TRUE has_cn <- any(grepl("^CN[^C]", colnames(nmf_matrix)) | startsWith(colnames(nmf_matrix), "copynumber")) raw_catalog <- t(nmf_matrix) if (has_cn) { if (!is.null(Signature$Raw$W)) { rec_catalog <- Signature$Raw$W %*% Signature$Raw$H } else { warning("Cannot calculate reconstructed profile without raw W and H for CN 'W'/'M' method.") return(invisible(NULL)) } } else { rec_catalog <- Signature$Signature.norm %*% Signature$Exposure } cross_samps <- intersect(colnames(raw_catalog), colnames(rec_catalog)) cross_comps <- intersect(rownames(raw_catalog), rownames(rec_catalog)) if (length(cross_samps) != ncol(rec_catalog)) { message("Filter out some samples because of no raw catalog available.") } raw_catalog <- raw_catalog[cross_comps, cross_samps, drop = FALSE] rec_catalog <- rec_catalog[cross_comps, cross_samps, drop = FALSE] sim <- purrr::map2_dbl( as.data.frame(raw_catalog), as.data.frame(rec_catalog), cosineVector ) if (flag_rss) { get_rss <- function(x, y) { sum((x - y)^2) } get_unexplained_variance <- function(x, y) { get_rss(x, y) / sum(x^2) } rss <- purrr::map2_dbl( as.data.frame(raw_catalog), as.data.frame(rec_catalog), get_rss ) unexplained_variance <- purrr::map2_dbl( as.data.frame(raw_catalog), as.data.frame(rec_catalog), get_unexplained_variance ) } else { rss <- NULL unexplained_variance <- NULL } data.table::data.table( sample = cross_samps, similarity = sim, rss = rss, unexplained_variance = unexplained_variance ) }
library(tidyquant) context("Testing tq_mutate()") AAPL <- tq_get("AAPL", get = "stock.prices", from = "2010-01-01", to = "2015-01-01") test1 <- AAPL %>% tq_mutate(close, MACD) %>% tq_mutate(high:close, BBands) %>% tq_mutate(open:close, OpCl) test1.1 <- AAPL %>% tq_mutate(close, rollapply, width = 7, FUN = mean) %>% tq_mutate(open, SMA, n = 3) %>% tq_mutate(close, rollapply, width = 9, FUN = mean) %>% tq_mutate(open, SMA, n = 5) %>% tq_mutate(high:close, BBands, n = 20) %>% tq_mutate(high:close, BBands, n = 50) test1.1_names <- c("symbol", "date", "open", "high", "low", "close", "volume", "adjusted", "rollapply", "SMA", "rollapply..1", "SMA..1", "dn", "mavg", "up", "pctB", "dn..1", "mavg..1", "up..1", "pctB..1") grouped_df <- tibble(symbol = c("FB", "AMZN")) %>% tq_get( get = "stock.prices", from = "2015-01-01", to = "2016-01-01" ) %>% group_by(symbol) test1.2a <- mutate(grouped_df, V1 = runSD(adjusted)) test1.2b <- tq_mutate(grouped_df, adjusted, runSD, col_rename = "V1") test2 <- AAPL %>% tq_mutate_xy(x = close, mutate_fun = MACD) %>% tq_mutate_xy(x = open, y = close, mutate_fun = Delt, k = 1:4) time_index <- seq(from = as.POSIXct("2012-05-15 07:00"), to = as.POSIXct("2012-05-17 18:00"), by = "hour") set.seed(1) value <- rnorm(n = length(time_index)) hourly_data <- xts(value, order.by = time_index) test3 <- hourly_data %>% timetk::tk_tbl(preserve_index = T, silent = T) %>% tq_mutate_xy(x = value, mutate_fun = MACD) test4 <- tibble(time_index, value) %>% tq_mutate_xy(x = value, mutate_fun = MACD) test5 <- c("AAPL", "FB") %>% tq_get(from = "2016-01-01", to = "2017-01-01") %>% group_by(symbol) my_lm_fun <- function(data) { coef(lm(close ~ open, data = as.data.frame(data))) } test5 <- test5 %>% tq_mutate(mutate_fun = rollapply, width = 90, FUN = my_lm_fun, by.column = FALSE, col_rename = c("coef.0", "coef.1")) test_that("Test 1 returns tibble with correct rows and columns.", { expect_is(test1, "tbl") expect_equal(nrow(test1), 1258) expect_equal(ncol(test1), 15) }) test_that("Test 1.1 returns correct column names", { expect_equal(colnames(test1.1), test1.1_names) }) test_that("Test 1.2 grouped data frames are same with mutate and tq_mutate", { expect_equal(test1.2a, test1.2b) }) test_that("Test 2 returns tibble with correct rows and columns.", { expect_is(test2, "tbl") expect_equal(nrow(test2), 1258) expect_equal(ncol(test2), 14) }) test_that("Test 3 returns tibble with correct rows and columns.", { expect_is(test3, "tbl") expect_equal(nrow(test3), 60) expect_equal(ncol(test3), 4) }) test_that("Test 5 returns tibble with correct rows and columns.", { expect_is(test5, "tbl") expect_equal(nrow(test5), 504) expect_equal(ncol(test5), 10) }) test_that("Test error on incompatible structures.", { expect_error( AAPL %>% tq_mutate(select = NULL, mutate_fun = to.period, period = "months"), "Could not join. Incompatible structures." ) expect_error( AAPL %>% tq_mutate_xy(x = close, mutate_fun = to.period, period = "months"), "Could not join. Incompatible structures." ) }) test_that("Test error on invalid data inputs.", { a <- seq(1:100) expect_error( seq(1:100) %>% tq_mutate(select = NULL, mutate_fun = to.monthly) ) expect_error( seq(1:100) %>% tq_mutate_xy(x = a, mutate_fun = to.monthly) ) expect_error( tibble(a = seq(1:100)) %>% tq_mutate(select = NULL, mutate_fun = to.monthly), "No date or POSIXct column found in `data`." ) expect_error( tibble(a = seq(1:100)) %>% tq_mutate_xy(x = a, mutate_fun = to.monthly), "No date or POSIXct column found in `data`." ) }) test_that("Test error on invalid select, x and y inputs.", { expect_error( {select <- "err" AAPL %>% tq_mutate_(select = select, mutate_fun = "to.monthly")} ) expect_error( {x <- "err" AAPL %>% tq_mutate_xy_(x = x, y = "close", mutate_fun = "Delt", k = 1)}, paste0("x = err not a valid name.") ) expect_error( {y <- "err" AAPL %>% tq_mutate_xy_(x = "open", y = y, mutate_fun = "Delt", k = 1)}, paste0("y = err not a valid name.") ) }) test_that("Test error on invalid mutate_fun, x and y inputs.", { expect_error( {mutate_fun <- "err" AAPL %>% tq_mutate_(select = "close", mutate_fun = mutate_fun)}, paste0("fun = err not a valid option.") ) })
updateDefaults <- function(gg, defaults, linetypes = linetypes) { for (i in c('rect', 'line', 'text')) { if (i %in% c('rect', 'line') && !is.null(gg$theme[[i]]['linetype']) && is.numeric(gg$theme[[i]][['linetype']])) { gg$theme[[i]]['linetype'] <- linetypes[(gg$theme[[i]][['linetype']] + 1)] } ThemeClass <- class(gg$theme[[i]])[1] DefaultClasses <- sapply(defaults, class) DefaultClasses <- DefaultClasses[DefaultClasses == ThemeClass] DefaultClasses <- names(DefaultClasses) if (length(DefaultClasses) > 0) { for (j in DefaultClasses) { gg$theme[[i]][which(gg$theme[[i]][names(default[[j]])] == '')] <- NULL default[[j]][names(gg$theme[[i]])] <- lapply(gg$theme[[i]][names(gg$theme[[i]])], unname) } } } LegendPosition <- NULL if (length(gg$theme$legend.position) > 1) { LegendPosition <- gg$theme$legend.position gg$theme$legend.position <- 'XY' gg$theme$legend.position.x <- LegendPosition[1] gg$theme$legend.position.y <- LegendPosition[2] } ThemeOptions <- unlist(gg$theme) NamesThemes <- names(ThemeOptions) NamesDefaults <- names(unlist(defaults)) CommonNames <- NamesThemes[NamesThemes %in% NamesDefaults] CommonNames <- CommonNames[!CommonNames %in% c('legend.position.x', 'legend.position.y')] for (i in CommonNames) { anchor <- gsub(pattern = '\\.[a-z]*$', '', i) element <- gsub(pattern = '^.*\\.', '', i) if (i == 'legend.position' || i == 'legend.direction') { if (!is.null(LegendPosition) && i == 'legend.position') { defaults['legend.position'] <- 'XY' defaults['legend.position.x'] <- LegendPosition[1] defaults['legend.position.y'] <- LegendPosition[2] } else { defaults[i] <- gg$theme[i] } } else { if (class(gg[['theme']][[anchor]][[element]]) == 'rel') { if (!is.null(gg$theme$text$size)) { text_size <- gg$theme$text$size } else { text_size <- 10 } defaults[[anchor]][[element]] <- as.numeric(gg[['theme']][[anchor]][[element]]) * text_size } else { if (element == 'linetype' && is.numeric(gg[['theme']][[anchor]][[element]])) { defaults[[anchor]][[element]] <- linetypes[gg[['theme']][[anchor]][[element]] + 1] } else { defaults[[anchor]][[element]] <- gg[['theme']][[anchor]][[element]] } } } } defaults <- rapply(defaults, function(x) { gsub('grey', 'gray', x) }, how = 'list') return(defaults) }
ksTest <- function (x, ...) { UseMethod("ksTest") } ksTest.default <- function(x,y,...,alternative=c("two.sided","less","greater"), exact=NULL) { stats::ks.test(x,y,...,alternative=alternative,exact=exact) } ksTest.formula <- function(x,data=NULL,...,alternative=c("two.sided","less","greater"),exact=NULL) { tmp <- iHndlFormula(x,data,expNumR=1,expNumE=1,expNumEFacts=1) if (tmp$vnum!=2) STOP("Formula for `ksTest' must contain 1 response (LHS) and 1 explanatory (RHS) variable.") if (!tmp$metExpNumR) STOP("LHS of formula must contain only one variable.") if (!tmp$Rclass %in% c("numeric","integer")) STOP("LHS variable must be numeric.") if (!tmp$metExpNumE) STOP("RHS of formula must contain only one variable.") if (!tmp$metExpNumEFacts) STOP("RHS Variable must be a factor.") if (length(levels(tmp$mf[,tmp$EFactPos]))!=2) STOP("`ksTest` only works if the RHS variable has two levels.") DF.split <- split(tmp$mf[,tmp$Rpos],tmp$mf[,tmp$EFactPos]) ksTest.default(DF.split[[1]],DF.split[[2]],...,alternative=alternative,exact=exact) }
context("Sample CPA") test_that("sample_cpa returns correct shape", { input_df <- tibble::tibble( option_name = c("A", "B", "C"), sum_clicks = c(1000, 1000, 1000), sum_conversions = c(100, 120, 110), sum_cost = c(10, 50, 30), ) n_options <- length(unique(input_df$option_name)) n_samples <- 150 expected_col_names <- c(colnames(input_df), "beta_params", "gamma_params", "samples") output <- sample_cpa(input_df, priors = list(), n_samples = n_samples) expect_true(is.data.frame(output)) expect_true(all(c("option_name", "samples") %in% colnames(output))) expect_length(output$samples, n_options) purrr::walk(output$samples, ~ expect_length(.x, n_samples)) expect_equal(colnames(output), expected_col_names) })
context("addlog and subtractlog") test_that("addlog works", { a <- 50 b <- 60 d <- 2 expect_equal(addlog(a,b), log(exp(a)+exp(b))) expect_equal(addlog(b,a), log(exp(a)+exp(b))) expect_equal(addlog(a,d), log(exp(a)+exp(d))) expect_equal(addlog(d,a), log(exp(a)+exp(d))) expect_equal(addlog(b,d), log(exp(b)+exp(d))) expect_equal(addlog(d,b), log(exp(b)+exp(d))) expect_equal(addlog(a,a+300), a+300); expect_equal(addlog(a,a-300), a); expect_equal(addlog(a+300,a), a+300); expect_equal(addlog(a-300,a), a); }) test_that("subtractlog works", { a <- 60 b <- 50 d <- 2 e <- 5 expect_equal(subtractlog(a,b), log(exp(a)-exp(b))) expect_equal(subtractlog(a,d), log(exp(a)-exp(d))) expect_equal(subtractlog(b,d), log(exp(b)-exp(d))) expect_equal(subtractlog(e,d), log(exp(e)-exp(d))) expect_equal(subtractlog(e,d), log(exp(e)-exp(d))) expect_equal(subtractlog(a+300,a), 360); expect_equal(subtractlog(a,a-300), a); expect_equal(subtractlog(0.0, -a), log(1.0-exp(-a))); expect_equal(subtractlog(0.0, -b), log(1.0-exp(-b))); expect_equal(subtractlog(0.0, -d), log(1.0-exp(-d))); })
ops <- list( "+", "=", "==", "!=", "<=", ">=", "<-", "<<-", "<", ">", "->", "->>", "%%", "/", "^", "*", "**", "|", "||", "&", "&&", rex("%", except_any_of("%"), "%")) commented_code_linter <- function(source_file) { res <- re_matches(source_file$file_lines, rex(some_of(" capture(name = "code", anything, or(some_of("{}[]"), or(ops), group(graphs, "(", anything, ")"), group("!", alphas) ), anything ) ), global = FALSE, locations = TRUE) line_numbers <- rownames(na.omit(res)) lapply(line_numbers, function(line_number) { line <- source_file$file_lines[as.numeric(line_number)] is_parsable <- parsable(substr(line, res[line_number, "code.start"], res[line_number, "code.end"])) if (is_parsable) { Lint( filename = source_file$filename, line_number = line_number, column_number = res[line_number, "code.start"], type = "style", message = "Commented code should be removed.", line = line, linter = "commented_code_linter", ranges = list(c(res[line_number, "code.start"], res[line_number, "code.end"])) ) } }) } parsable <- function(x) { if (is.null(x)) { return(FALSE) } res <- try_silently(parse(text = x)) !inherits(res, "try-error") } todo_comment_linter <- function(todo=c("todo", "fixme")) { function(source_file) { tokens <- with_id(source_file, ids_with_token(source_file, "COMMENT")) are_todo <- re_matches(tokens[["text"]], rex(one_or_more(" tokens <- tokens[are_todo, ] lapply( split(tokens, seq_len(nrow(tokens))), function(token) { Lint( filename = source_file[["filename"]], line_number = token[["line1"]], column_number = token[["col1"]], type = "style", message = "TODO comments should be removed.", line = source_file[["lines"]][[as.character(token[["line1"]])]], ranges = list(c(token[["col1"]], token[["col2"]])), linter = "todo_comment_linter" ) } ) } }
"drmPNsplit" <- function(parmVec, sep) { lenPV <- length(parmVec) parmVecA <- rep(0, lenPV) parmVecB <- rep(0, lenPV) splitList <- strsplit(parmVec, sep, fixed = TRUE) for (i in 1:lenPV) { parmVecA[i] <- splitList[[i]][1] lenSL <- length(splitList[[i]]) parmVecB[i] <- paste(splitList[[i]][2:lenSL], collapse = "") } return(list(parmVec, parmVecA, parmVecB)) }
coefficients.plmm <- function(object,...){object$coefficients}
get_item_parameter_estimates <- function(decoder, model_type = 2){ all_decoder_weights <- keras::get_weights(decoder) weights_length <- length(all_decoder_weights) estimates <- c() if (model_type == 1){ estimates[1] <- all_decoder_weights[weights_length] } else{ estimates[1] <- all_decoder_weights[weights_length] estimates[2] <- all_decoder_weights[weights_length - 1] } estimates } get_ability_parameter_estimates <- function(encoder, responses){ encoded_responses <- encoder(responses) estimates_variances <- c() ability_parameter_estimates <- encoded_responses[[1]] ability_parameter_log_variance <- encoded_responses[[2]] if (ability_parameter_estimates$shape == ability_parameter_log_variance$shape){ estimates_variances[[1]] <- ability_parameter_estimates$numpy() estimates_variances[[2]] <- exp(ability_parameter_log_variance$numpy()) } else{ b <- tfprobability::tfb_fill_triangular(upper=FALSE) log_cholesky <- b$forward(ability_parameter_log_variance) cholesky <- tensorflow::tf$linalg$expm(log_cholesky) cov_matrices <- tensorflow::tf$matmul(cholesky, tensorflow::tf$transpose(cholesky, c(0L, 2L, 1L))) estimates_variances[[1]] <- ability_parameter_estimates$numpy() estimates_variances[[2]] <- cov_matrices } estimates_variances }
DupRm <- function(strings.vec){ str_dupRm.vec <- gsub("([[:graph:]])\\1+", "\\1", strings.vec) return(str_dupRm.vec) }
data(tacks) x <- tacks$x k <- tacks$k f <- Bmix(x,k,verb = 5) plot(f, xlab = "", main = "Beckett-Diaconis Tacky Mixture") abline(v = c(0.4385, 0.6013, 0.8144),col = 2)
mstep1 <- function(Y, Tau, Pi, mu, g) { for(i in 1:g) { Pi[i]<-sum(Tau[,i])/nrow(Y) mu[,i]<-apply(Y*Tau[,i],2,sum)/sum(Tau[,i]) } return(list(Pi, mu)) }
library(ggplot2) sales salesg = sales ggplot(data = salesg)+ aes(x=sdate,y=pies) + geom_point() + labs( title ='Sales data of Pies', x='Date', y='Sales') salesg g1= ggplot(data = salesg, aes(x=sdate,y=pies)) g2= g1+ geom_point() g3= g2 + labs( title ='Sales data of Pies', x='Date', y='Sales') g3 g1= ggplot(data = salesg, aes(x=sdate,y=pies)) g2= geom_point() g3= labs( title ='Sales data of Pies', x='Date', y='Sales') g=g1+g2+g3 g g2b = geom_point(pch=17, color='blue', size=2) g3b = geom_smooth(method='lm', color='red', linetype=3) gA = g1 + g2b + g3b gA names(salesg) f1 = ggplot(salesg, aes(x=sdate, y=pies, shape=daywk, col=daywk)) f2 = geom_point(size=3) f= f1+f2 f
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(integer(0))")); do.call(`is.object`, argv); }, o=expected);
appendLevels <- function(...){ unique(unlist(lapply(list(...), function(x){ if (is.factor(x)) levels(x) else x }))) } recodeLevels.factor <- function(x, lev){ m <- match(levels(x), lev) a <- attributes(x) a$levels <- lev attributes(x) <- NULL x <- m[x] attributes(x) <- a x } recodeLevels.ff <- function(x, lev){ stopifnot(is.factor(x)) m <- match(levels(x), lev) rc <- ramclass(x) levels(x) <- NULL i1 <- i2 <- NULL ffvecapply({ i <- hi(i1,i2) x[i] <- m[x[i]] },X=x) levels(x) <- lev virtual(x)$ramclass <- rc x } sortLevels.factor <- function(x){ l <- levels(x) o <- order(l) if (identical(o, seq_along(o))) x else recodeLevels.factor(x, l[o]) } sortLevels.ff <- function(x){ l <- levels(x) o <- order(l) if (identical(o, seq_along(o))) x else recodeLevels.ff(x, l[o]) } sortLevels.ffdf <- function(x){ for (i in seq_len(ncol(x))){ y <- x[[i]] if (is.factor(y)) x[[i]] <- sortLevels.ff(y) } x }
getLoglikeSF <- function(beta, gamma1, alpha1, H01, Sig, sigma, Z, X1, Y, X2, survtime, cmprsk, mdata, mdataS, xsmatrix, wsmatrix, method, Posbi, Pscov) { n <- nrow(X2) p1a <- ncol(Z) CUH01 <- rep(0, n) HAZ01 <- rep(0, n) CumuH01 <- cumsum(H01[, 3]) getHazardSF(CumuH01, survtime, cmprsk, H01, CUH01, HAZ01) if (method == "standard") { status = getloglikeCstandardSF(beta, gamma1, alpha1, Sig, sigma, Z, X1, Y, X2, survtime, cmprsk, mdata, mdataS, xsmatrix, wsmatrix, CUH01, HAZ01) } else { status = getloglikeCpseudoSF(beta, gamma1, alpha1, Sig, sigma, Z, X1, Y, X2, survtime, cmprsk, mdata, mdataS, xsmatrix, wsmatrix, CUH01, HAZ01, Posbi, Pscov) } return(status) }
"predict.fitEmax"<- function(object,dosevec,clev=0.9,int=1,dref=0, xvec=NULL, ...){ if(missing(dosevec))stop('dosevec must be specified') modType<-object$modType binary<-object$binary pboAdj<-object$pboAdj parmstot<-object$fit$estimate vc<-object$fit$vc nprot<-max(as.numeric(object$prot)) prot<-as.numeric(object$prot) nbase<-object$nbase if(nbase && is.null(xvec))xvec<-object$xbase[prot==int,] if(! int%in%(c(1:nprot)))stop('The intercept specification is invalid') clev<- 0.5+clev/2 if(all(pboAdj)){ parmstot<-c(parmstot,rep(0,nprot)) }else if(any(pboAdj)){ indp<-which(!pboAdj) parmhold<-numeric(modType+nprot-1) parmhold[1:(modType-1)]<-parmstot[1:(modType-1)] parmhold[modType+indp-1]<-parmstot[modType+sum(!pboAdj)-1] parmstot<-parmhold } nparm<-length(parmstot) nsub<-nparm-nprot-nbase if(! nsub%in%c(2,3) )stop('parm has invalid length') parms<-parmstot[c(1:nsub,nsub+int)] if(nbase>0)parms<-c(parms,parmstot[c((1+nparm-nbase):nparm)]) if(any(pboAdj)){ if(modType==3){ tmpcov<-diag(2+nprot) diag(tmpcov)<-0 if(all(pboAdj)){ tmpcov[1:2,1:2]<-vc }else{ tmpcov[c(1:2,2+indp),c(1:2,2+indp)]<-vc } vc<-tmpcov }else{ tmpcov<-diag(3+nprot) diag(tmpcov)<-0 if(all(pboAdj)){ tmpcov[1:3,1:3]<-vc }else{ tmpcov[c(1:3,3+indp),c(1:3,3+indp)]<-vc } vc<-tmpcov } } if(!nbase){ vc<-vc[c(1:nsub,nsub+int),c(1:nsub,nsub+int)] }else vc<-vc[c(1:nsub,nsub+int,(1+nparm-nbase):nparm), c(1:nsub,nsub+int,(1+nparm-nbase):nparm)] mout<-SeEmax(list(parms,vc),dosevec,modType=nsub+1,dref=dref, nbase=nbase,x=xvec, binary=binary, clev=clev) return(mout) }
est.gamma <- function(t){ ll.gamma <-function(gamma.par) { gamma.par <- mpfr(gamma.par, 99) y=log(prod((gamma.par^(gamma.par)*t^(gamma.par-1)*exp(-(gamma.par*t)))/(gamma(gamma.par)))) return(asNumeric(y)) } ll.gamma.opt = NULL ll.gamma.opt = optimize(f = ll.gamma, interval = c(0.1, 4), maximum=TRUE) outlist = list(gamma.par=ll.gamma.opt$maximum, ll.gamma.max=ll.gamma.opt$objective) class(outlist) = "est.gamma" return(outlist) }
hex2ucp <- function(x) { x <- as.character(Unicode::as.u_char(x)) x <- ifelse(x == "<NA>", NA_character_, x) x } int2ucp <- function(x) { x <- as.integer(x) hex2ucp(x) } str2ucp <- function(x) { sapply(x, function(s) int2ucp(utf8ToInt(s)), USE.NAMES = FALSE) } name2ucp <- function(x, type = c("exact", "grep"), ...) { as.character(Unicode::u_char_from_name(toupper(x), type = type, ...)) } is_ucp <- function(x) { grepl("^U\\+[1-9A-F]*[0-9A-F]{4}$", x) } block2ucp <- function(x, omit_unnamed = TRUE) { stopifnot(length(x) == 1L) r <- Unicode::u_blocks(x)[[1]] ucp <- as.character(Unicode::as.u_char(r)) if (omit_unnamed) { n <- Unicode::u_char_name(ucp) ucp <- ucp[which(!is.na(n) & n != "")] } ucp } range2ucp <- function(x, omit_unnamed = TRUE) { r <- Unicode::as.u_char_range(x) ucp <- as.character(Unicode::as.u_char(r)) if (omit_unnamed) { n <- Unicode::u_char_name(ucp) ucp <- ucp[which(!is.na(n) & n != "")] } ucp }
create_site_model_parameters_xml <- function( inference_model ) { id <- inference_model$site_model$id testit::assert(beautier::is_id(id)) gcc <- inference_model$site_model$gamma_site_model$gamma_cat_count mutation_rate_parameter <- paste0("<parameter ", "id=\"mutationRate.s:", id, "\" " ) if (inference_model$beauti_options$beast2_version == "2.6") { mutation_rate_parameter <- paste0(mutation_rate_parameter, "spec=\"parameter.RealParameter\" " ) } mutation_rate_parameter <- paste0(mutation_rate_parameter, "estimate=\"false\" name=\"mutationRate\">1.0</parameter>" ) gamma_shape_parameter <- NULL if (gcc < 2) { gamma_shape_parameter <- paste0( "<parameter ", "id=\"gammaShape.s:", id, "\" " ) if (inference_model$beauti_options$beast2_version == "2.6") { gamma_shape_parameter <- paste0(gamma_shape_parameter, "spec=\"parameter.RealParameter\" " ) } gamma_shape_parameter <- paste0(gamma_shape_parameter, "estimate=\"false\" name=\"shape\">1.0</parameter>" ) } proportion_invariant_parameter <- paste0( "<parameter id=\"proportionInvariant.s:", id, "\" ") if (inference_model$beauti_options$beast2_version == "2.6") { proportion_invariant_parameter <- paste0(proportion_invariant_parameter, "spec=\"parameter.RealParameter\" " ) } proportion_invariant_parameter <- paste0( proportion_invariant_parameter, "estimate=\"false\" lower=\"0.0\" ", "name=\"proportionInvariant\" upper=\"1.0\">", inference_model$site_model$gamma_site_model$prop_invariant, "</parameter>" ) text <- mutation_rate_parameter if (!is.null(gamma_shape_parameter)) { text <- c(text, gamma_shape_parameter) } text <- c( text, paste0(proportion_invariant_parameter) ) if (inference_model$beauti_options$beast2_version == "2.6") { text <- rep(text, each = 2) text[seq(2, length(text), by = 2)] <- " " } text }
tbr_misc <- function(.tbl, x, tcolumn, unit = "years", n, func, ...) { col_name <- as.character(substitute(func)) .tbl <- .tbl %>% arrange(!! rlang::enquo(tcolumn)) %>% mutate(!! col_name := purrr::map(row_number(), ~func_window(x = !! rlang::enquo(x), tcolumn = !! rlang::enquo(tcolumn), unit = unit, n = n, i = .x, func = func))) %>% tidyr::unnest(!! col_name) .tbl <- tibble::as_tibble(.tbl) return(.tbl) } func_window <- function(x, tcolumn, unit = "years", n, i, func, ...) { u <- (c("years", "months", "weeks", "days", "hours", "minutes", "seconds")) if (!unit %in% u) { stop("unit must be one of ", paste(u, collapse = ", ")) } window <- open_window(x, tcolumn, unit = unit, n, i) date_window <- open_window(tcolumn, tcolumn, unit = unit, n, i) results <- tibble::tibble(results = func(window, ...), min_date = min(date_window), max_date = max(date_window)) return(results) }
setOldClass("tbl_impala") intersect.tbl_impala <- function(x, y, copy = FALSE, ...) { stop("Impala does not support intersect operations.", call. = FALSE) } setdiff.tbl_impala <- function(x, y, copy = FALSE, ...) { stop("Impala does not support setdiff operations.", call. = FALSE) } compute.tbl_impala <- function(x, name, temporary = TRUE, unique_indexes = NULL, indexes = NULL, analyze = FALSE, external = FALSE, overwrite = FALSE, force = FALSE, field_terminator = NULL, line_terminator = NULL, file_format = NULL, ...) { assert_that( is.string(name), is.flag(temporary), is.flag(external), is.flag(overwrite), is.flag(force), is.flag(analyze), is_string_or_null(file_format), is_nchar_one_string_or_null(field_terminator), is_nchar_one_string_or_null(line_terminator) ) if (temporary) { stop( "Impala does not support temporary tables. Set temporary = FALSE in compute().", call. = FALSE ) } vars <- op_vars(x) assert_that(all(unlist(indexes) %in% vars)) assert_that(all(unlist(unique_indexes) %in% vars)) x_aliased <- select(x, !!! syms(vars)) sql <- db_sql_render(x$src$con, x_aliased$ops) name <- db_save_query( con = x$src$con, sql = sql, name = name, temporary = FALSE, analyze = analyze, external = external, overwrite = overwrite, force = force, field_terminator = field_terminator, line_terminator = field_terminator, file_format = file_format, ... ) tbl(x$src, name) %>% group_by(!!! syms(op_grps(x))) } collect.tbl_impala <- function(x, ..., n = Inf, warn_incomplete = TRUE) { NextMethod("collect") } collapse.tbl_impala <- function(x, vars = NULL, ...) { NextMethod("collapse") } impala_unnest <- function(data, col, ...) { res <- data if (!inherits(res, "tbl_impala")) { stop("data argument must be a tbl_impala", call. = FALSE) } if (!"vars" %in% names(res$ops$x) || all(is.na(attr(res$ops$x$vars, "complex_type")))) { stop("data argument must contain complex columns", call. = FALSE) } if (is.null(attr(res$ops$x$vars, "complex_type"))) { stop("impala_unnest() can only be applied once to a tbl_impala", call. = FALSE) } if (!"x" %in% names(res$ops$x) || !inherits(res$ops$x$x, "ident")) { stop("impala_unnest() must be applied to a tbl_impala before any other operations", call. = FALSE) } col <- enexpr(col) colname <- as.character(col) if (length(colname) != 1) { stop("impala_unnest() can unnest only one column") } colindex <- which(res$ops$x$vars == colname) if (length(colindex) != 1) { stop("Column ", colname, " not found", call. = FALSE) } coltype <- attr(res$ops$x$vars, "complex_type")[colindex] tablename <- as.character(res$ops$x$x) if (identical(coltype, "array")) { quoted_tablename <- impala_escape_ident(res$src$con, tablename, "`") res$ops$x$x <- ident_q( paste0(quoted_tablename, ", ", quoted_tablename, ".`", colname,"`") ) res$ops$x$vars <- c( setdiff(res$ops$x$vars, colname), paste0(colname, ".item"), paste0(colname, ".pos") ) res$ops <- res$ops$x item_name_before <- paste0(colname, ".item") item_name_after <- paste0(colname, "_item") pos_name_before <- paste0(colname, ".pos") pos_name_after <- paste0(colname, "_pos") rename_complex_cols <- vars_rename( colnames(res), !!item_name_after := !!item_name_before, !!pos_name_after := !!pos_name_before ) res <- select(res, rename_complex_cols) } else if (identical(coltype, "map")) { quoted_tablename <- impala_escape_ident(res$src$con, tablename, "`") res$ops$x$x <- ident_q( paste0(quoted_tablename, ", ", quoted_tablename, ".`", colname,"`") ) res$ops$x$vars <- c( setdiff(res$ops$x$vars, colname), paste0(colname, ".key"), paste0(colname, ".value") ) res$ops <- res$ops$x key_name_before <- paste0(colname, ".key") key_name_after <- paste0(colname, "_key") value_name_before <- paste0(colname, ".value") value_name_after <- paste0(colname, "_value") rename_complex_cols <- vars_rename( colnames(res), !!key_name_after := !!key_name_before, !!value_name_after := !!value_name_before ) res <- select(res, rename_complex_cols) } else if (identical(coltype, "struct")) { sql <- paste0("DESCRIBE ", tablename, ".", colname) structcolnames <- dbGetQuery(res$src, sql)$name othercolnames <- setdiff(res$ops$x$vars, colname) col_names_before <- c( othercolnames, paste(colname, structcolnames, sep = ".") ) col_names_after <- c( othercolnames, paste(colname, structcolnames, sep = "_") ) res$ops$x$vars <- col_names_before res$ops <- res$ops$x rename_complex_cols <- col_names_before names(rename_complex_cols) <- col_names_after res <- select(res, !!rename_complex_cols) } else { stop("Column ", colname, " must be of type ARRAY, MAP, or STRUCT", call. = FALSE) } res }
replay_html_dm_draw <- function(x, ...) { unclass(x) } pkgdown_print_grViz <- function(x, ...) { structure(DiagrammeRsvg::export_svg(x), class = "dm_draw") } register_pkgdown_methods <- function() { if (Sys.getenv("IN_PKGDOWN") == "") { return() } check_suggested(c("DiagrammeR", "DiagrammeRsvg"), use = TRUE, message = "DiagrammeR and DiagrammeRsvg packages needed for this function to work. Please install it." ) s3_register("downlit::replay_html", "dm_draw", replay_html_dm_draw) s3_register("pkgdown::pkgdown_print", "grViz", pkgdown_print_grViz) }
hilight_source = function(x, format, options) { if ((format %in% c('latex', 'html')) && options$highlight) { res = if (options$engine == 'R') { opts = opts_knit$get('highr.opts') highr::hilight(x, format, prompt = options$prompt, markup = opts$markup) } else { res = try(highr::hi_andre(x, options$engine, format)) if (inherits(res, 'try-error')) { if (format == 'html') highr:::escape_html(x) else highr:::escape_latex(x) } else { highlight_header() n = length(res) if (res[n] == '\\normalsize') res = res[-n] res } } if (format == 'latex' && is.character(tld <- opts_knit$get('latex.tilde'))) { res = gsub('\\hlopt{~}', tld, res, fixed = TRUE) } res } else if (options$prompt) { if (options$engine == 'R' && isFALSE(options$tidy) && isFALSE(options$eval)) x = vapply(xfun::split_source(x), one_string, character(1)) line_prompt(x) } else x } highlight_header = function() { set_header(highlight.extra = paste(c( sprintf('\\let\\hl%s\\hlstd', c('esc', 'pps', 'lin')), sprintf('\\let\\hl%s\\hlcom', c('slc', 'ppc')) ), collapse = ' ')) } w3c.colors = c( aqua = ' gray = ' navy = ' silver = ' ) css.parse.color = function(txt, default = ' txt = gsub('\\s+', '', tolower(txt)) if (is.hex(txt)) return(txt) rgb = function(...) grDevices::rgb(..., maxColorValue = 255) if (!grepl('[^a-z]', txt) && txt %in% names(w3c.colors)) return(w3c.colors[txt]) if (!grepl('[^a-z0-9]', txt)) { R.colors = colors() res = R.colors %in% txt if (any(res)) { return(rgb(t(col2rgb(R.colors[res])))) } } if (grepl('rgb', txt)) { p = try_silent(parse(text = txt)) if (!inherits(p, 'try-error')) { res = try_silent(eval(p)) if (!inherits(res, 'try-error')) return(res) } } default } is.hex = function(x) grepl('^ css.parser = function(file, lines = read_utf8(file)) { rx = '^\\.(.*?) *\\{.*$' dec.lines = grep(rx, lines) dec.names = sub(rx, '\\1', lines[dec.lines]) if (any(grepl('[0-9]', dec.names))) warning('use of numbers in style names') end.lines = grep('^\\s*\\}', lines) dec.close = end.lines[vapply(dec.lines, function(x) which.min(end.lines < x), integer(1))] pos = matrix(c(dec.lines, dec.close), ncol = 2) styles = apply(pos, 1, function(x) { data = lines[(x[1] + 1):(x[2] - 1)] settings.rx = '^\\s*(.*?)\\s*:\\s*(.*?)\\s*;\\s*$' settings = sub(settings.rx, '\\1', data, perl = TRUE) contents = sub(settings.rx, '\\2', data, perl = TRUE) out = list() for (i in seq_along(settings)) { setting = settings[i] content = contents[i] out[[setting]] = switch( setting, color = css.parse.color(content, ' background = css.parse.color(content, ' content ) } out }) names(styles) = dec.names styles } styler_assistant_latex = function(x) { styles = sapply(x, function(item) { settings = names(item) has = function(s, value) { s %in% settings && grepl(value, item[[s]]) } start = end = '' if ('color' %in% settings) { start = paste0(start, '\\textcolor[rgb]{', col2latexrgb(item[['color']]), '}{') end = paste0(end, '}') } if (has('font-weight', 'bold')) { start = paste0(start, '\\textbf{') end = paste0('}', end) } if (has('font-style', 'italic')) { start = paste0(start, '\\textit{') end = paste0('}', end) } sprintf('%s }) res = sprintf('\\newcommand{\\hl%s}[1]{%s}%%', names(x), styles) c(res, '\\let\\hlipl\\hlkwb') } col2latexrgb = function(hex) { outdec = options(OutDec = '.'); on.exit(options(outdec)) col = col2rgb(hex)[, 1] / 255 paste(round(col, 3), collapse = ',') }
read_geno_csv <- function(file.in, ploidy, filter.non.conforming = TRUE, elim.redundant = TRUE, verbose = TRUE) { dat <- read.csv(file = file.in, header = TRUE, stringsAsFactors = FALSE) return(table_to_mappoly(dat, ploidy, filter.non.conforming = TRUE, elim.redundant = TRUE, verbose = TRUE)) } table_to_mappoly <- function(dat, ploidy, filter.non.conforming = TRUE, elim.redundant = TRUE, verbose = TRUE){ ploidy <- ploidy dat = dat[which(!is.na(dat[,2,drop = TRUE]) & !is.na(dat[,3,drop = TRUE])),] n.ind <- ncol(dat) - 5 n.mrk <- nrow(dat) mrk.names <- dat[,1,drop = TRUE] ind.names <- colnames(dat)[-c(1:5)] dosage.p1 <- as.integer(dat[,2,drop = TRUE]) dosage.p2 <- as.integer(dat[,3,drop = TRUE]) dp <- abs(abs(dosage.p1-(ploidy/2))-(ploidy/2)) dq <- abs(abs(dosage.p2-(ploidy/2))-(ploidy/2)) id <- dp+dq != 0 chrom <- as.character(dat[,4,drop = TRUE]) sequencepos <- as.numeric(dat[,5,drop = TRUE]) names(sequencepos) <- names(chrom) <- names(dosage.p2) <- names(dosage.p1) <- mrk.names nphen <- 0 phen <- NULL if (verbose){ cat("Reading the following data:") cat("\n Ploidy level:", ploidy) cat("\n No. individuals: ", n.ind) cat("\n No. markers: ", n.mrk) cat("\n No. informative markers: ", sum(id), " (", round(100*sum(id)/n.mrk,1), "%)", sep = "") if (all(unique(nphen) != 0)) cat("\n This dataset contains phenotypic information.") if (length(sequence) > 1) cat("\n This dataset contains chromosome information.") cat("\n ...") } geno.dose <- as.matrix(dat[,-c(1:5),drop = TRUE]) dimnames(geno.dose) <- list(mrk.names, ind.names) geno.dose[is.na(geno.dose)] <- ploidy + 1 if (verbose) cat("\n Done with reading.\n") geno.dose <- geno.dose[id,] res <- structure(list(ploidy = ploidy, n.ind = n.ind, n.mrk = sum(id), ind.names = ind.names, mrk.names = mrk.names[id], dosage.p1 = dosage.p1[id], dosage.p2 = dosage.p2[id], chrom = chrom[id], genome.pos = sequencepos[id], seq.ref = NULL, seq.alt = NULL, all.mrk.depth = NULL, prob.thres = NULL, geno.dose = geno.dose, nphen = nphen, phen = phen, kept = NULL, elim.correspondence = NULL), class = "mappoly.data") if(filter.non.conforming){ if (verbose) cat(" Filtering non-conforming markers.\n ...") res <- filter_non_conforming_classes(res) Ds <- array(NA, dim = c(ploidy+1, ploidy+1, ploidy+1)) for(i in 0:ploidy) for(j in 0:ploidy) Ds[i+1,j+1,] <- segreg_poly(ploidy = ploidy, dP = i, dQ = j) Dpop <- cbind(res$dosage.p1, res$dosage.p2) M <- t(apply(Dpop, 1, function(x) Ds[x[1]+1, x[2]+1,])) dimnames(M) <- list(res$mrk.names, c(0:ploidy)) M <- cbind(M, res$geno.dose) res$chisq.pval <- apply(M, 1, mrk_chisq_test, ploidy = ploidy) if (verbose) cat("\n Done with filtering.\n") } if (elim.redundant){ seqred = make_seq_mappoly(res, arg = 'all', data.name = res) redun = elim_redundant(seqred, data = res) if (nrow(redun$elim.correspondence) < 1) return(res) res$kept = redun$kept res$elim.correspondence = redun$elim.correspondence mrks.rem = match(res$elim.correspondence$elim, res$mrk.names) res$elim.correspondence$chrom = res$chrom[c(mrks.rem)] res$elim.correspondence$genome.pos = res$genome.pos[c(mrks.rem)] res$elim.correspondence$seq.ref = NA res$elim.correspondence$seq.alt = NA res$elim.correspondence$all.mrk.depth = NA res$n.mrk = length(res$kept) res$mrk.names = res$mrk.names[-c(mrks.rem)] res$geno.dose = res$geno.dose[-c(mrks.rem),] res$dosage.p1 = res$dosage.p1[-c(mrks.rem)] res$dosage.p2 = res$dosage.p2[-c(mrks.rem)] res$chrom = res$chrom[-c(mrks.rem)] res$genome.pos = res$genome.pos[-c(mrks.rem)] res$chisq.pval = res$chisq.pval[-c(mrks.rem)] } return(res) }
ui.modules_ccle_drug_response_diff <- function(id) { ns <- NS(id) fluidPage( fluidRow( column(3, wellPanel( selectizeInput( inputId = ns("ccle_search"), label = "Input a gene or list (as signature)", choices = NULL, multiple = TRUE, width = "100%", options = list( create = TRUE, maxOptions = 5, placeholder = "Enter a gene symbol, e.g. TP53", plugins = list("restore_on_backspace") ) ), materialSwitch(ns("pdist_show_p_value"), "Show P value", inline = TRUE), colourpicker::colourInput(inputId = ns("high_col"), "High group color", " colourpicker::colourInput(inputId = ns("low_col"), "Low group color", " selectInput( inputId = ns("tissue"), label = "Filter Tissue", choices = ccle_drug_related_tissues, selected = "lung", multiple = TRUE ), sliderTextInput( inputId = ns("alpha"), label = "Choose a transparent value", choices = seq( from = 0, to = 1, by = 0.1 ), selected = "0.5", grid = TRUE ), tags$hr(style = "border:none; border-top:2px solid shinyWidgets::actionBttn( inputId = ns("search_bttn"), label = "Go!", style = "gradient", icon = icon("search"), color = "primary", block = TRUE, size = "sm" ) ), wellPanel( numericInput(inputId = ns("height"), label = "Height", value = 8), numericInput(inputId = ns("width"), label = "Width", value = 12), prettyRadioButtons( inputId = ns("device"), label = "Choose plot format", choices = c("pdf", "png"), selected = "pdf", inline = TRUE, icon = icon("check"), animation = "jelly", fill = TRUE ), downloadBttn( outputId = ns("download"), style = "gradient", color = "default", block = TRUE, size = "sm" ) ) ), column(9, plotOutput(ns("gene_ccle_drug_response_diff"), height = "600px"), h5("Method:"), p("Analyze difference of drug response (IC50 value (uM)) between gene (or signature) high and low expression."), p("When there are multiple genes, geometrical mean of expression of these genes are used as a signature."), p("NOTEs: You can select multiple tissues, even ALL for all tissues. In this case 'number_of_cell_lines' indicates sample size for each gene-drug group instead of gene-drug-tissue group."), tags$br(), DT::DTOutput(outputId = ns("tbl")), shinyjs::hidden( wellPanel( id = ns("save_csv"), downloadButton(ns("downloadTable"), "Save as csv") ) ) ) ) ) } server.modules_ccle_drug_response_diff <- function(input, output, session) { ns <- session$ns profile_choices <- reactive({ switch("mRNA", mRNA = list(all = pancan_identifiers$gene, default = "TP53"), protein = list(all = UCSCXenaShiny:::.all_ccle_proteins, default = "p53_Caution"), cnv = list(all = pancan_identifiers$gene, default = "TP53"), list(all = "NONE", default = "NONE") ) }) observe({ updateSelectizeInput( session, "ccle_search", choices = profile_choices()$all, selected = profile_choices()$default, server = TRUE ) }) colors <- reactive({ c(input$high_col, input$low_col) }) plot_func <- eventReactive(input$search_bttn, { if (nchar(input$ccle_search[1]) >= 1) { p <- vis_gene_drug_response_diff( Gene = input$ccle_search, values = colors(), tissue = input$tissue, Method = "wilcox.test", Show.P.label = input$pdist_show_p_value, alpha = input$alpha ) } return(p) }) output$gene_ccle_drug_response_diff <- renderPlot({ plot_func() }) output$download <- downloadHandler( filename = function() { paste0(input$ccle_search, "_ccle_target_response_diff.", input$device) }, content = function(file) { p <- plot_func() if (input$device == "pdf") { pdf(file, width = input$width, height = input$height) print(p) dev.off() } else { png(file, width = input$width, height = input$height, res = 600, units = "in") print(p) dev.off() } } ) output$downloadTable <- downloadHandler( filename = function() { paste0(input$ccle_search, "_ccle_target_response_diff.csv") }, content = function(file) { write.csv(plot_func()$data, file, row.names = FALSE) } ) observeEvent(input$search_bttn, { if (nchar(input$ccle_search[1]) >= 1) { shinyjs::show(id = "save_csv") } else { shinyjs::hide(id = "save_csv") } }) output$tbl <- renderDT( plot_func()$data, options = list(lengthChange = FALSE) ) }
canvas_stripes <- function(colors, n = 300, H = 1, burnin = 1) { if (burnin < 1) { stop("'burnin' must be a value >= 1") } mat <- matrix(NA, nrow = n, ncol = n) for (i in 1:nrow(mat)) { t <- 1:(n + burnin) x <- stats::rnorm(n = length(t) - 1, sd = sqrt(H)) x <- c(0, cumsum(x)) mat[i, ] <- rev(x[-(1:burnin)]) } canvas <- .unraster(mat, names = c("x", "y", "z")) artwork <- ggplot2::ggplot(data = canvas, ggplot2::aes(x = x, y = y, fill = z)) + ggplot2::geom_raster(interpolate = TRUE) + ggplot2::scale_fill_gradientn(colours = colors) artwork <- theme_canvas(artwork) return(artwork) }
predict.zlm <- function (object, newdata = NULL, se.fit = FALSE, ...) { if (!is(object, "zlm")) { stop("you need to provide a zlm object") return() } betas = object$coefficients[-1, drop = FALSE] alpha = object$coefficients[[1]] if (is.null(newdata)) { newX <- as.matrix(object$model[, -1, drop = FALSE]) } else { newX = as.matrix(newdata) if (!is.numeric(newX)) stop("newdata must be numeric!") if (is.vector(newdata)) newX = matrix(newdata, 1) if (ncol(newX) != length(betas)) { if (ncol(newX) == length(betas) + 1) { newX = newX[, -1, drop = FALSE] } else { stop("newdata must be a matrix or data.frame with ", length(betas), " columns.") } } } if (!se.fit) return(as.vector(newX %*% betas) + alpha) yXdata <- as.matrix(object$model) oldXraw <- yXdata[, -1, drop = FALSE] if (!is.null(colnames(newX)) && !is.null(colnames(oldXraw))) { if (all(colnames(oldXraw) %in% colnames(newX)) && !all(colnames(oldXraw) == colnames(newX))) { warning("argument newdata had to be reordered according to its column names. Consider submitting the columns of newdata in the right order.") newX = newX[, colnames(oldXraw), drop = FALSE] } } yraw <- yXdata[, 1, drop = TRUE] N <- length(yraw) k <- ncol(oldXraw) oldXmeans <- colMeans(oldXraw) oldXdm <- oldXraw - matrix(oldXmeans, N, k, byrow = TRUE) newXdm <- newX - matrix(oldXmeans, nrow(newX), k, byrow = TRUE) xtxinv = chol2inv(chol(crossprod(oldXdm))) xtxinv_xf = tcrossprod(xtxinv, newXdm) xf_xx_xf = unlist(lapply(1:nrow(newXdm), function(x) { crossprod(newXdm[x, ], xtxinv_xf[, x])[[1L]] })) bvar = object$coef2moments[-1] - object$coefficients[-1]^2 bvar_factor = bvar[[1L]]/xtxinv[[1L]] yty = as.vector(crossprod(yraw) - N * mean(yraw)^2) r2 = 1 - object$olsres$ymy/yty if (object$gprior.info$gtype == "hyper") { f21a = object$gprior.info$hyper.parameter f21_recover = exp((object$marg.lik) + (N - 1)/2 * log(yty) + log((k + f21a - 2)/(f21a - 2))) res_scale = yty/(N - 3)/(N - 1 - k - f21a) * ((N - 3) * (1 - r2) - (k + f21a - 2)/f21_recover) svar_woscale = res_scale/N + bvar_factor * xf_xx_xf } else { sf = object$gprior.info$shrinkage.moments[[1]] res_scale = (1 - sf * r2) * yty/(N - 3) svar_woscale = res_scale/N + bvar_factor * xf_xx_xf } reslist = list() reslist$fit <- as.vector(newX %*% betas) + alpha reslist$std.err <- sqrt(svar_woscale + res_scale) reslist$se.fit <- sqrt(svar_woscale) reslist$residual.scale <- sqrt(res_scale) return(reslist) }
set.seed(123) xu <- stats::rnorm(500) xm <- matrix(stats::rnorm(1000), ncol = 2) index <- seq(Sys.Date(), Sys.Date() + 499, "day") prob <- exp_decay(xu, 0.001) xu_vec <- xu xu_mat <- as.matrix(xu) xu_ts <- stats::as.ts(xu) xu_xts <- xts::xts(xu, index) xu_df <- as.data.frame(xu) xu_tbl <- tibble::tibble(index = index, x = xu) xm_vec <- xm xm_mat <- as.matrix(xm) xm_ts <- stats::as.ts(xm) xm_xts <- xts::xts(xm, index) xm_df <- as.data.frame(xm) xm_tbl <- tibble::tibble(index = index, x = xm) bootstrap_dbl <- bootstrap_scenarios(xu_vec, prob, 5) test_that("works on doubles", { expect_type(bootstrap_dbl, "list") expect_s3_class(bootstrap_dbl, "tbl_df") expect_equal(ncol(bootstrap_dbl), 1L) expect_equal(nrow(bootstrap_dbl), 5L) }) bootstrap_matu <- bootstrap_scenarios(xu_mat, prob, 5) test_that("works on univariate matrices", { expect_type(bootstrap_matu, "list") expect_s3_class(bootstrap_matu, "tbl_df") expect_equal(ncol(bootstrap_matu), 1L) expect_equal(nrow(bootstrap_matu), 5L) }) bootstrap_matm <- bootstrap_scenarios(xm_mat, prob, 5) test_that("works on multivariate matrices", { expect_type(bootstrap_matm, "list") expect_s3_class(bootstrap_matm, "tbl_df") expect_equal(ncol(bootstrap_matm), 2L) expect_equal(nrow(bootstrap_matm), 5L) }) bootstrap_tsu <- bootstrap_scenarios(xu_ts, prob, 5) test_that("works on univariate ts", { expect_type(bootstrap_tsu, "list") expect_s3_class(bootstrap_tsu, "tbl_df") expect_equal(ncol(bootstrap_tsu), 1L) expect_equal(nrow(bootstrap_tsu), 5L) }) bootstrap_tsm <- bootstrap_scenarios(xm_ts, prob, 5) test_that("works on multivariate ts", { expect_type(bootstrap_tsm, "list") expect_s3_class(bootstrap_tsm, "tbl_df") expect_equal(ncol(bootstrap_tsm), 2L) expect_equal(nrow(bootstrap_tsm), 5L) }) bootstrap_xtsu <- bootstrap_scenarios(xu_xts, prob, 5) test_that("works on univariate xts", { expect_type(bootstrap_xtsu, "list") expect_s3_class(bootstrap_xtsu, "tbl_df") expect_equal(ncol(bootstrap_xtsu), 1L) expect_equal(nrow(bootstrap_xtsu), 5L) }) bootstrap_xtsm <- bootstrap_scenarios(xm_xts, prob, 5) test_that("works on multivariate xts", { expect_type(bootstrap_xtsm, "list") expect_s3_class(bootstrap_xtsm, "tbl_df") expect_equal(ncol(bootstrap_xtsm), 2L) expect_equal(nrow(bootstrap_xtsm), 5L) }) bootstrap_dfu <- bootstrap_scenarios(xu_df, prob, 5) test_that("works on univariate data.frames", { expect_type(bootstrap_dfu, "list") expect_s3_class(bootstrap_dfu, "tbl_df") expect_equal(ncol(bootstrap_dfu), 1L) expect_equal(nrow(bootstrap_dfu), 5L) }) bootstrap_dfm <- bootstrap_scenarios(xm_df, prob, 5) test_that("works on multivariate data.frames", { expect_type(bootstrap_dfm, "list") expect_s3_class(bootstrap_dfm, "tbl_df") expect_equal(ncol(bootstrap_dfm), 2L) expect_equal(nrow(bootstrap_dfm), 5L) }) bootstrap_tblu <- bootstrap_scenarios(xu_tbl, prob, 5) test_that("works on univariate on tibbles", { expect_type(bootstrap_tblu, "list") expect_s3_class(bootstrap_tblu, "tbl_df") expect_equal(ncol(bootstrap_tblu), 1L) expect_equal(nrow(bootstrap_tblu), 5L) }) bootstrap_tblm <- bootstrap_scenarios(xm_tbl, prob, 5) test_that("works on multivariate tibbles", { expect_type(bootstrap_tblm, "list") expect_s3_class(bootstrap_tblm, "tbl_df") expect_equal(ncol(bootstrap_tblm), 2L) expect_equal(nrow(bootstrap_tblm), 5L) })
plot.pplace <- function(x,type="precise",simplify=FALSE,main="",N=NULL,transfo=NULL,legend=TRUE,stl=FALSE,asb=FALSE,edge.width=1,max_width=10,cex.number=0.5,cex.text=0.8,transp=80,add=FALSE,color=NULL,discrete_col=FALSE,pch=16,run_id=NULL,...){ if(!is.null(run_id)){ x <- sub_pplace(x,run_id=run_id) } if(is.null(N)){ x$multiclass$N <- 1 } if(!is.null(N)){ x$multiclass$N <- N } if(simplify){ x$placement_positions <- x$placement_positions[order(x$placement_positions$ml_ratio,decreasing=TRUE),] x$placement_positions <- x$placement_positions[match(unique(x$placement_positions$placement_id),x$placement_positions$placement_id),] x$placement_positions$ml_ratio <- 1 } if(is.null(color)) color <- c("blue","green","yellow","red") if(type!="precise"){ placement_N <- aggregate(x$multiclass$N,list(x$multiclass$placement_id),sum) br_sum <- aggregate(placement_N[match(x$placement_positions$placement_id,placement_N[,1]),2]*x$placement_positions$ml_ratio,list(branch=x$placement_positions$location),sum) if(type=="number"){ plot(x$arbre,edge.width=edge.width,show.tip.label=stl,no.margin=TRUE,...) text(0,0,main,cex=cex.text,pos=4) edgelabels(round(br_sum[,2]),br_sum[,1],cex=cex.number) if(asb) add.scale.bar() } if(type=="fattree"){ vwidth <- rep(0.1,nrow(x$arbre$edge)) vwidth[br_sum[,1]] <- ceiling(max_width*br_sum[,2]/max(br_sum[,2])) plot(x$arbre,edge.width=vwidth,show.tip.label=stl,no.margin=TRUE,...) text(0,0,main,cex=cex.text,pos=4) if(asb) add.scale.bar() } if(type=="color"){ col_palette=rgb(colorRamp(color)(seq(0,1,length=100)), maxColorValue = 255) vcol <- rep(paste0(" coln <- ceiling(100*br_sum[,2]/max(br_sum[,2])) coln[coln>100] <- 100 vcol[br_sum[,1]] <- col_palette[coln] if(!legend){ plot(x$arbre,edge.color=vcol,edge.width=edge.width,show.tip.label=stl,no.margin=TRUE,...) text(0,0,main,cex=cex.text,pos=4) if(asb) add.scale.bar() } if(legend){ layout(matrix(c(rep(1,6),2),ncol=1)) plot(x$arbre,edge.color=vcol,edge.width=edge.width,show.tip.label=stl,no.margin=TRUE,...) text(0,0,main,cex=cex.text,pos=4) if(asb) add.scale.bar() par(mar=c(3,15,3,15)) image(1:length(col_palette),1:1,matrix(1:length(col_palette),ncol=1),col=col_palette,xaxt="n",yaxt="n",xlab="",ylab="") axis(3,at=c(1,length(col_palette)),labels=c(0,round(max(br_sum[,2]),0))) text(0,0,main,cex=cex.text,pos=4) } } } if(type=="precise"){ col_palette <- rgb(colorRamp(color)(seq(0,1,length=1000)), maxColorValue = 255) if(discrete_col){ col_palette <- rep(NA,1000) color <- col2rgb(color) color <- apply(color,2,function(X){rgb(X[1],X[2],X[3], maxColorValue=255)}) pos_col <- round(seq(1,1000,length.out=length(color)+1)) for(i in 1:length(color)){ col_palette[pos_col[i]:pos_col[i+1]] <- color[i] } } vcol <- col_palette[ceiling((x$placement_positions$pendant_bl/max(x$placement_positions$pendant_bl))*1000)] placement_N <- aggregate(x$multiclass$N,list(x$multiclass$placement_id),sum) cex_placement <- placement_N[match(x$placement_positions$placement_id,placement_N[,1]),2]*x$placement_positions$ml_ratio cex_placement[is.na(cex_placement)] <- 0 if(!is.null(transfo)) cex_placement <- transfo(cex_placement) if(legend & !add){ layout(matrix(c(rep(3,6),1,rep(3,6),2),ncol=2)) par(mar=c(3,7,3,3.5)) image(1:length(col_palette),1:1,matrix(1:length(col_palette),ncol=1),col=col_palette,xaxt="n",yaxt="n",xlab="",ylab="",main="pendant branch length",cex.main=1,font.main=1) axis(3,at=c(1,length(col_palette)),labels=c(0,round(max(x$placement_positions$pendant_bl),2))) par(mar=c(1,3.5,1,7)) plot.new() cex_legend <- seq(0,ceiling(max(cex_placement)),length.out=5) points(seq(0.1,0.9,by=0.2),y=rep(0.3,5),pch=16,cex=cex_legend) text(seq(0.1,0.9,by=0.2),y=rep(0.5,5),cex_legend,pos=3) text(0.5,0.9,"placement size",cex=1) } if(!add){ plot(x$arbre,edge.color="black",edge.width=edge.width,show.tip.label=stl,no.margin=TRUE,...) text(0,0,main,cex=cex.text,pos=4) } if(asb) add.scale.bar() pos_phylo <- get_edge() xpos <- pos_phylo[x$placement_positions$location,1] + x$placement_positions$distal_bl ypos <- pos_phylo[x$placement_positions$location,2] order_ploting <- order(cex_placement,decreasing=TRUE) points(xpos[order_ploting],ypos[order_ploting],col=paste(vcol[order_ploting],transp,sep=""),cex=cex_placement[order_ploting],pch=pch) if(add) warnings("Placement dots color may not be accurate. It is highly recommanded to use a single color when using the 'add' option. Placement dot size will be comparable between plots only if the same value is used in the 'transfo' option.") } } plot.jplace <- function(x,...){ if(ncol(x$placement_positions)==7) colnames(x$placement_positions) <- c("placement_id","location","ml_ratio","log_like","distal_bl","pendant_bl","tax_id") if(ncol(x$placement_positions)==6) colnames(x$placement_positions) <- c("placement_id","location","ml_ratio","log_like","distal_bl","pendant_bl") plot.pplace(x,...) }
test_that("plotLearnerPrediction", { requirePackagesOrSkip("clusterSim", default.method = "load") gs = 10 plotLearnerPrediction("classif.rpart", multiclass.task, gridsize = gs) suppressMessages(ggsave(tempfile(fileext = ".png"))) plotLearnerPrediction("classif.rpart", multiclass.task, gridsize = gs, err.mark = "none") suppressMessages(ggsave(tempfile(fileext = ".png"))) plotLearnerPrediction("classif.rpart", binaryclass.task, gridsize = gs) suppressMessages(ggsave(tempfile(fileext = ".png"))) plotLearnerPrediction("classif.rpart", binaryclass.task, gridsize = gs, err.mark = "none") suppressMessages(ggsave(tempfile(fileext = ".png"))) plotLearnerPrediction("regr.rpart", regr.task, gridsize = gs) suppressMessages(ggsave(tempfile(fileext = ".png"))) plotLearnerPrediction("regr.lm", regr.task, features = getTaskFeatureNames(regr.task)[1], gridsize = gs) suppressMessages(ggsave(tempfile(fileext = ".png"))) plotLearnerPrediction("cluster.kmeans", noclass.task, gridsize = gs) suppressMessages(ggsave(tempfile(fileext = ".png"))) lrn = makeLearner("classif.rpart") plotLearnerPrediction(lrn, multiclass.task) dir = tempdir() path = file.path(dir, "test.svg") suppressMessages(ggsave(path)) doc = XML::xmlParse(path) testDocForStrings(doc, getLearnerShortName(lrn)) plotLearnerPrediction(lrn, multiclass.task, pretty.names = FALSE) dir = tempdir() path = file.path(dir, "test.svg") suppressMessages(ggsave(path)) doc = XML::xmlParse(path) testDocForStrings(doc, getLearnerId(lrn)) })
args <- commandArgs(TRUE) chooseCRANmirror(ind = args[2]) number.defaults = as.numeric(args[3]) defauls = if(number.defaults>0){ args[4:(3+number.defaults)] } additional = if((length(args)-3-number.defaults)>0){ args[(4+number.defaults):length(args)]} setRepositories(FALSE,defauls,additional) install.packages(args[1],dependencies = TRUE,verbose=FALSE)
choose.auc.intervals <- function(time.conc, time.dosing, options=list(), single.dose.aucs=NULL) { single.dose.aucs <- PKNCA.choose.option(name="single.dose.aucs", value=single.dose.aucs, options=options) if (any(is.na(time.conc))) stop("time.conc may not have any NA values") if (any(is.na(time.dosing))) stop("time.dosing may not have any NA values") if (length(unique(time.dosing)) == 1) { ret <- check.interval.specification(single.dose.aucs) ret$start <- ret$start + unique(time.dosing) ret$end <- ret$end + unique(time.dosing) } else { time.dosing <- sort(time.dosing) time.conc <- sort(time.conc) mask_dose_conc <- time.dosing %in% time.conc idx.paired.dose <- seq_len(length(time.dosing)-1)[ mask_dose_conc[-1] & mask_dose_conc[-length(mask_dose_conc)] ] ret <- check.interval.specification(data.frame(start=0, end=1, auclast=TRUE))[-1,] for (n in idx.paired.dose) { if (any(time.dosing[n] < time.conc & time.conc < time.dosing[n+1])) { ret <- rbind( ret, check.interval.specification( data.frame( start=time.dosing[n], end=time.dosing[n+1], auclast=TRUE, cmax=TRUE, tmax=TRUE ) ) ) } } tau <- find.tau(time.dosing) if (!is.na(tau)) { if ((max(time.dosing) + tau) %in% time.conc) { ret <- rbind( ret, check.interval.specification( data.frame( start=max(time.dosing), end=max(time.dosing) + tau, cmax=TRUE, tmax=TRUE, auclast=TRUE, stringsAsFactors=FALSE ) ) ) } if ((max(time.dosing) + tau) < max(time.conc)) { ret <- rbind( ret, check.interval.specification( data.frame( start=max(time.dosing), end=Inf, half.life=TRUE ) ) ) } } } ret } find.tau <- function(x, na.action=stats::na.omit, options=list(), tau.choices=NULL) { tau.choices <- PKNCA.choose.option(name="tau.choices", value=tau.choices, options=options) ret <- NA x <- na.action(x) if (length(unique(x)) == 1) { ret <- 0 } else if (identical(tau.choices, NA)) { all_deltas <- sort(unique( as.vector(sapply(x, FUN=function(x, y) x - y, y=x)) )) tau.choices <- all_deltas[all_deltas > 0] } if (is.na(ret) & length(x) > 1) { delta_1 <- x[2] - x[1] if (all((x[-1] - x[-length(x)]) == delta_1)) { ret <- delta_1 } else { tau.choices <- tau.choices[tau.choices < (max(x) - min(x))] tau.choices <- sort(tau.choices) i <- 0 while (is.na(ret) & i < length(tau.choices)) { i <- i+1 tau <- tau.choices[i] dose_before <- ((x - tau < 0) | ((x - tau) %in% x)) dose_after <- ((x + tau > max(x)) | ((x + tau) %in% x)) if (all(dose_before & dose_after)) { ret <- tau } } } } ret }
getExtraPackages = function(mode) { switch(mode, MODE_MPI = "Rmpi", MODE_BATCHJOBS = "BatchJobs", MODE_BATCHTOOLS = "batchtools", character(0L) ) }
ablrtest <- function(z, H, A, r){ if(!(class(z)=="ca.jo")){ stop("\nPlease, provide object of class 'ca.jo' as 'z'.\n") } r <- as.integer(r) A <- as.matrix(A) H <- as.matrix(H) if(!(nrow(A)==z@P)){ stop("\nRow number of 'A' is unequal to VAR order.\n") } if(r >= z@P || r<1){ stop("\nCount of cointegrating relationships is out of allowable range.\n") } if(z@ecdet == "none"){ P <- z@P }else{ P <- z@P + 1 } if(!(nrow(H)==P)){ stop("\nRow number of 'H' is unequal to VAR order.\n") } type <- "Estimation and testing under linear restrictions on alpha and beta" N <- nrow(z@Z0) B <- qr.Q(qr(A), complete=TRUE)[,-c(1:ncol(A))] M00 <- crossprod(z@Z0)/N M11 <- crossprod(z@Z1)/N MKK <- crossprod(z@ZK)/N M01 <- crossprod(z@Z0, z@Z1)/N M0K <- crossprod(z@Z0, z@ZK)/N MK0 <- crossprod(z@ZK, z@Z0)/N M10 <- crossprod(z@Z1, z@Z0)/N M1K <- crossprod(z@Z1, z@ZK)/N MK1 <- crossprod(z@ZK, z@Z1)/N M11inv <- solve(M11) S00 <- M00 - M01%*%M11inv%*%M10 S0K <- M0K - M01%*%M11inv%*%M1K SK0 <- MK0 - MK1%*%M11inv%*%M10 SKK <- MKK - MK1%*%M11inv%*%M1K Sab <- t(A)%*%S00%*%B Skb <- t(S0K)%*%B Sbb <- t(B)%*%S00%*%B Sbbinv <- solve(Sbb) RA <- z@R0%*%A - z@R0%*%B%*%Sbbinv%*%t(Sab) RK <- z@RK - z@R0%*%B%*%Sbbinv%*%t(Skb) Saa.b <- crossprod(RA, RA)/N Sak.b <- crossprod(RA, RK)/N Ska.b <- crossprod(RK, RA)/N Skk.b <- crossprod(RK, RK)/N Ctemp <- chol(t(H)%*%Skk.b%*%H, pivot=TRUE) pivot <- attr(Ctemp, "pivot") oo <- order(pivot) C <- t(Ctemp[,oo]) Cinv <- solve(C) Saa.binv <- solve(Saa.b) valeigen <- eigen(Cinv%*%t(H)%*%Ska.b%*%Saa.binv%*%Sak.b%*%H%*%t(Cinv)) lambda.res <- valeigen$values e <- valeigen$vector V <- H%*%t(Cinv)%*%e Vorg <- V idx <- 1:r V <- sapply(idx, function(x) V[ , x] / V[1,x]) PHI <- solve(t(A)%*%A)%*%Sak.b%*%Vorg ALPHA <- as.matrix(A%*%PHI) ALPHAorg <- ALPHA ALPHA <- sapply(idx, function(x) ALPHA[ , x] * Vorg[1,x]) PI <- ALPHA %*% t(V) GAMMA <- M01%*%M11inv - PI%*%MK1%*%M11inv DELTA.bb <- Sbb DELTA.ab <- Sab - t(A)%*%ALPHA%*%t(V)%*%Skb DELTA.aa.b <- Saa.b - t(A)%*%ALPHA%*%t(ALPHA)%*%A lambda <- z@lambda teststat <- N*sum(log((1-lambda.res[1:r])/(1-lambda[1:r]))) df <- r*(z@P - ncol(A)) + r*(z@P - ncol(H)) pval <- c(1-pchisq(teststat, df), df) new("cajo.test", Z0=z@Z0, Z1=z@Z1, ZK=z@ZK, ecdet=z@ecdet, H=H, A=A, B=B, type=type, teststat=teststat, pval=pval, lambda=lambda.res, Vorg=Vorg, V=V, W=ALPHA, PI=PI, DELTA=NULL, DELTA.bb=DELTA.bb, DELTA.ab=DELTA.ab, DELTA.aa.b=DELTA.aa.b, GAMMA=GAMMA, test.name="Johansen-Procedure") }
getD3dSparse <- function (dim1, dim2, dim3) { D1 = bandSparse(dim1 * dim2 * dim3, m = dim1 * dim2 * dim3, k = c(0, 1), diagonals = list(rep(-1, dim1 * dim2 * dim3), rep(1, dim1 * dim2 * dim3 - 1))) D2 = bandSparse(dim1 * dim2 * dim3 , m = dim1 * dim2 * dim3, k = c(0, dim1), diagonals = list(rep(-1, dim1 * dim2 * dim3), rep(1, dim1 * dim2 * dim3 - 1))) D3 = bandSparse(dim1 * dim2 * dim3 , m = dim1 * dim2 * dim3, k = c(0, dim1 * dim2), diagonals = list(rep(-1, dim1 * dim2 * dim3), rep(1, dim1 * dim2 * dim3 - 1))) D <- rbind(D1, D2, D3) D1 <- D[-c(which(rowSums(D) != 0)),] return(D1) }
tenant <- Sys.getenv("AZ_TEST_TENANT_ID") app <- Sys.getenv("AZ_TEST_NATIVE_APP_ID") site_url <- Sys.getenv("AZ_TEST_SHAREPOINT_SITE_URL") site_id <- Sys.getenv("AZ_TEST_SHAREPOINT_SITE_ID") if(tenant == "" || app == "" || site_url == "" || site_id == "") skip("SharePoint tests skipped: Microsoft Graph credentials not set") if(!interactive()) skip("Planner tests skipped: must be in interactive session") tok <- get_test_token(tenant, app, c("Group.ReadWrite.All", "Directory.Read.All", "Sites.ReadWrite.All", "Sites.Manage.All")) if(is.null(tok)) skip("Planner tests skipped: no access to tenant") site <- try(call_graph_endpoint(tok, file.path("sites", site_id)), silent=TRUE) if(inherits(site, "try-error")) skip("Planner tests skipped: service not available") site <- ms_site$new(tok, tenant, site) test_that("Planner methods work", { expect_is(site, "ms_site") grp <- site$get_group() plans <- grp$list_plans() expect_is(plans, "list") expect_true(all(sapply(plans, inherits, "ms_plan"))) plan_title <- plans[[1]]$properties$title expect_error(lstpager <- grp$list_plans(filter=sprintf("title eq '%s'", filter_esc(plan_title)), n=NULL)) plan1 <- grp$get_plan(plan_title=plan_title) expect_is(plan1, "ms_plan") bkts <- plan1$list_buckets() expect_is(bkts, "list") expect_true(all(sapply(bkts, inherits, "ms_plan_bucket"))) tasks <- plan1$list_tasks() expect_is(tasks, "list") expect_true(all(sapply(tasks, inherits, "ms_plan_task"))) })
tuv_batch=function(df, inputMode=0, outputMode=2, nStreams=-2){ df=data.frame(df) df$date=format(as.Date(df[,1]), "%Y%m%d") df$timeStamp=as.character(format(df[,1], "%H:%M:%S")) df$time=hour(df[,1])+minute(df[,1])/60+second(df[,1])/3600 if(outputMode==2|outputMode==4){ allpara=c(280, 420, 140, 0, 0, 0, 300, 0.1, 0, 0, 0.00, 4.00, 5.00, 0.235, 0.990, 1.000, 1.0, 1.0, 1.0) }else{ allpara=c(280, 420, 140, 0, 0, 0, 300, 0.1, 0, 0, 0.00, 4.00, 5.00, 0.235, 0.990, 1.000, 1.0, 1.0, 0.0) } names(allpara)=c("wStart", "wStop", "wIntervals", "latitude", "longitude", "zenith", "ozone", "albedo", "gAltitude", "mAltitude", "taucld", "zbase", "ztop", "tauaer", "ssaaer", "alpha", "dirsun", "difdn", "difup") if(any(!allpara%in%names(df))){ for(i in names(allpara)[!names(allpara)%in%names(df)]){ eval(parse(text=paste0("df$'", i, "'=allpara[['", i, "']]"))) } } df$"inputMode"=inputMode df$"outputMode"=outputMode df$"nStreams"=nStreams print("Running TUV on the inputs:") progress_bar = txtProgressBar(min=0, max=nrow(df)+1, style = 3, char="=") wStart=df$wStart[1] wStop=df$wStop[1] wIntervals=df$wIntervals[1] inputMode=df$inputMode[1] latitude=df$latitude[1] longitude=df$longitude[1] date=df$date[1] timeStamp=df$timeStamp[1] zenith=df$zenith[1] ozone=df$ozone[1] albedo=df$albedo[1] gAltitude=df$gAltitude[1] mAltitude=df$mAltitude[1] taucld=df$taucld[1] zbase=df$zbase[1] ztop=df$ztop[1] tauaer=df$tauaer[1] ssaaer=df$ssaaer[1] alpha=df$alpha[1] time=df$time[1] outputMode=df$outputMode[1] nStreams=df$nStreams[1] dirsun=df$dirsun[1] difdn=df$difdn[1] difup=df$difup[1] final_df=tuv_core(wStart=wStart, wStop=wStop, wIntervals=wIntervals, inputMode=inputMode, latitude=latitude, longitude=longitude, date=date, timeStamp=timeStamp, zenith=zenith, ozone=ozone, albedo=albedo, gAltitude=gAltitude, mAltitude=mAltitude, taucld=taucld, zbase=zbase, ztop=ztop, tauaer=tauaer, ssaaer=ssaaer, alpha=alpha, time=time, outputMode=outputMode, nStreams=nStreams, dirsun=dirsun, difdn=difdn, difup=difup) setTxtProgressBar(progress_bar, value = 1) if(nrow(df)>1){ for(i in 2:nrow(df)){ wStart=df$wStart[i] wStop=df$wStop[i] wIntervals=df$wIntervals[i] inputMode=df$inputMode[i] latitude=df$latitude[i] longitude=df$longitude[i] date=df$date[i] timeStamp=df$timeStamp[i] zenith=df$zenith[i] ozone=df$ozone[i] albedo=df$albedo[i] gAltitude=df$gAltitude[i] mAltitude=df$mAltitude[i] taucld=df$taucld[i] zbase=df$zbase[i] ztop=df$ztop[i] tauaer=df$tauaer[i] ssaaer=df$ssaaer[i] alpha=df$alpha[i] time=df$time[i] outputMode=df$outputMode[i] nStreams=df$nStreams[i] dirsun=df$dirsun[i] difdn=df$difdn[i] difup=df$difup[i] final_df_sub=tuv_core(wStart=wStart, wStop=wStop, wIntervals=wIntervals, inputMode=inputMode, latitude=latitude, longitude=longitude, date=date, timeStamp=timeStamp, zenith=zenith, ozone=ozone, albedo=albedo, gAltitude=gAltitude, mAltitude=mAltitude, taucld=taucld, zbase=zbase, ztop=ztop, tauaer=tauaer, ssaaer=ssaaer, alpha=alpha, time=time, outputMode=outputMode, nStreams=nStreams, dirsun=dirsun, difdn=difdn, difup=difup) final_df=rbind(final_df, final_df_sub) setTxtProgressBar(progress_bar, value = i) } } if(outputMode==2){ info=rep("1/sec",nrow(final_df)) final_df2=cbind(info,final_df) final_df3=cbind(df[,1],final_df2) names(final_df3)[c(1,2)]=c(names(df)[1],"PHOTOLYSIS RATES") }else if(outputMode==3){ info=rep("W m-2",nrow(final_df)) final_df2=cbind(info,final_df) final_df3=cbind(df[,1],final_df2) names(final_df3)[c(1,2)]=c(names(df)[1],"WEIGHTED IRRADIANCES") }else if(outputMode==4){ info=rep("photons/sec/nm/cm2",nrow(final_df)) final_df2=cbind(info,final_df) final_df3=cbind(rep(df[,1], each=140),final_df2) names(final_df3)[c(1,2)]=c(names(df)[1],"ACTINIC FLUX") }else if(outputMode==5){ info=rep("W m-2 nm-1",nrow(final_df)) final_df2=cbind(info,final_df) final_df3=cbind(rep(df[,1], each=140),final_df2) names(final_df3)[c(1,2)]=c(names(df)[1],"SPECTRAL IRRADIANCE") } setTxtProgressBar(progress_bar, value = nrow(df)+1) close(progress_bar) return(final_df3) }
cor_test <- function(..., formula = NULL, iter = 5e3){ Y_groups <- list(...) groups <- length(Y_groups) if(is.null(formula)){ formula <- ~ 1 } model_matrices <- lapply(seq_len(groups) , function(x) { model.matrix(formula, Y_groups[[x]]) }) correlate <- remove_predictors_helper(Y_groups = Y_groups, formula) YXlist <- lapply(1:length(model_matrices),function(g){ list(as.matrix(correlate[[g]]),as.matrix(model_matrices[[g]])) }) numG <- length(YXlist) P <- ncol(YXlist[[1]][[1]]) K <- ncol(YXlist[[1]][[2]]) numcorr <- numG*P*(P-1)/2 ngroups <- unlist(lapply(1:numG,function(g){nrow(YXlist[[g]][[1]])})) Ntot <- max(ngroups) Ygroups <- array(0,dim=c(numG,Ntot,P)) Xgroups <- array(0,dim=c(numG,Ntot,K)) XtXi <- array(0,dim=c(numG,K,K)) BHat <- array(0,dim=c(numG,K,P)) sdHat <- matrix(0,nrow=numG,ncol=P) CHat <- array(0,dim=c(numG,P,P)) SumSq <- array(0,dim=c(numG,P,P)) SumSqInv <- array(0,dim=c(numG,P,P)) for(g in 1:numG){ Y_g <- scale(YXlist[[g]][[1]]) X_g <- YXlist[[g]][[2]] Ygroups[g,1:ngroups[g],] <- Y_g tableX <- apply(X_g,2,table) catX <- unlist(lapply(1:length(tableX),function(xcol){ length(tableX[[xcol]]) })) if(sum(catX>1)){ X_g[1:ngroups[g],which(catX>1)] <- apply(as.matrix(X_g[1:ngroups[g],which(catX>1)]),2,scale) } Xgroups[g,1:ngroups[g],] <- X_g XtXi[g,,] <- solve(t(X_g)%*%X_g) BHat[g,,] <- XtXi[g,,]%*%t(X_g)%*%Y_g SumSq[g,,] <- t(Y_g - X_g%*%BHat[g,,])%*%(Y_g - X_g%*%BHat[g,,]) SumSqInv[g,,] <- solve(SumSq[g,,]) Sigma_g <- SumSq[g,,]/ngroups[g] sdHat[g,] <- sqrt(diag(Sigma_g)) CHat[g,,] <- diag(1/sdHat[g,])%*%Sigma_g%*%diag(1/sdHat[g,]) } samsize0 <- iter res <-.Fortran("estimate_postmeancov_fisherz", postZmean=matrix(0,numcorr,1), postZcov=matrix(0,numcorr,numcorr), P=as.integer(P), numcorr=as.integer(numcorr), K=as.integer(K), numG=as.integer(numG), BHat=BHat, sdHat=sdHat, CHat=CHat, XtXi=XtXi, samsize0=as.integer(samsize0), Njs=as.integer(ngroups), Ygroups=Ygroups, Xgroups=Xgroups, Ntot=as.integer(Ntot), C_quantiles=array(0,dim=c(numG,P,P,3)), sigma_quantiles=array(0,dim=c(numG,P,3)), B_quantiles=array(0,dim=c(numG,K,P,3)), BDrawsStore=array(0,dim=c(samsize0,numG,K,P)), sigmaDrawsStore=array(0,dim=c(samsize0,numG,P)), CDrawsStore=array(0,dim=c(samsize0,numG,P,P)), seed=as.integer( sample.int(1e6,1) )) varnames <- lapply(1:numG,function(g){ names(correlate[[g]]) }) corrnames <- lapply(1:numG,function(g){ matrix(unlist(lapply(1:P,function(p2){ unlist(lapply(1:P,function(p1){ if(numG==1){ paste0(varnames[[g]][p1],"_with_",varnames[[g]][p2]) }else{ paste0(varnames[[g]][p1],"_with_",varnames[[g]][p2],"_in_g",as.character(g)) } })) })),nrow=P) }) FmeansCovCorr <- lapply(1:numG,function(g){ Fdraws_g <- FisherZ(t(matrix(unlist(lapply(1:samsize0,function(s){ res$CDrawsStore[s,g,,][lower.tri(diag(P))] })),ncol=samsize0))) mean_g <- apply(Fdraws_g,2,mean) names(mean_g) <- corrnames[[g]][lower.tri(diag(P))] covm_g <- cov(Fdraws_g) return(list(mean_g,covm_g)) }) meansCovCorr <- lapply(1:numG,function(g){ matcor_g <- unlist(lapply(1:(P-1),function(p2){ unlist(lapply((p2+1):P,function(p1){ mean(res$CDrawsStore[,g,p1,p2]) })) })) names(matcor_g) <- corrnames[[g]][lower.tri(diag(P))] return(matcor_g) }) meanN <- unlist(lapply(1:numG,function(g){ FmeansCovCorr[[g]][[1]] })) covmN <- matrix(0,nrow=numcorr,ncol=numcorr) numcorrg <- numcorr/numG corrdraws <- lapply(1:numG,function(g){ array_g <- res$CDrawsStore[,g,,] dimnames(array_g) <- list(NULL,varnames[[g]],varnames[[g]]) return(array_g) }) for(g in 1:numG){ covmN[(g-1)*numcorrg+1:numcorrg,(g-1)*numcorrg+1:numcorrg] <- FmeansCovCorr[[g]][[2]] } postestimates_correlations <- Reduce(rbind, lapply(1:numG,function(g){ means <- meansCovCorr[[g]] medians <- res$C_quantiles[g,,,2][lower.tri(diag(P))] lb <- res$C_quantiles[g,,,1][lower.tri(diag(P))] ub <- res$C_quantiles[g,,,3][lower.tri(diag(P))] return(cbind(means,medians,lb,ub)) })) colnames(postestimates_correlations) <- c("mean","median","2.5%","97.5%") cor_out <- list(meanF=meanN,covmF=covmN,correstimates=postestimates_correlations, corrdraws=corrdraws,corrnames=corrnames,variables=varnames) class(cor_out) <- "cor_test" return(cor_out) } remove_predictors_helper <- function(Y_groups, formula){ groups <- length(Y_groups) mm_terms <- attr(terms(formula), "term.labels") if(length(mm_terms) == 0){ Y_groups } else { lapply(seq_len(groups), function(x){ factor_pred <- which(paste0("as.factor(", colnames(Y_groups[[x]]), ")") %in% mm_terms) cont_pred <- which(colnames(Y_groups[[x]]) %in% mm_terms) Y_groups[[x]][,-c(factor_pred, cont_pred)] }) } } FisherZ <- function(r){.5*log((1+r)/(1-r))} BF.cor_test <- function(x, hypothesis = NULL, prior.hyp = NULL, complement = TRUE, ...){ bayesfactor <- "Bayes factors based on joint uniform priors" testedparameter <- "correlation coefficients" P <- dim(x$corrdraws[[1]])[2] numG <- length(x$corrdraws) numcorrgroup <- P*(P-1)/2 get_est <- get_estimates(x) corrmeanN <- get_est$estimate corrcovmN <- get_est$Sigma[[1]] drawsJU <- draw_ju_r(P,samsize=50000,Fisher=1) relcomp0 <- approxfun(density(drawsJU[,1]))(0) corr_names <- rownames(x$correstimates) numcorr <- length(corrmeanN) relfit <- matrix(c(dnorm(0,mean=corrmeanN,sd=sqrt(diag(corrcovmN))), pnorm(0,mean=corrmeanN,sd=sqrt(diag(corrcovmN))), 1-pnorm(0,mean=corrmeanN,sd=sqrt(diag(corrcovmN)))),ncol=3) relcomp <- matrix(c(rep(relcomp0,numcorr),rep(.5,numcorr*2)),ncol=3) colnames(relcomp) <- colnames(relfit) <- c("p(=0)","Pr(<0)","Pr(>0)") BFtu_exploratory <- relfit / relcomp row.names(BFtu_exploratory) <- rownames(x$correstimates) colnames(BFtu_exploratory) <- c("Pr(=0)","Pr(<0)","Pr(>0)") PHP_exploratory <- round(BFtu_exploratory / apply(BFtu_exploratory,1,sum),3) postestimates <- x$correstimates if(!is.null(hypothesis)){ params_in_hyp1 <- params_in_hyp(hypothesis) corr_names <- unlist(lapply(1:length(x$corrnames),function(g){ c(x$corrnames[[g]][lower.tri(x$corrnames[[g]])], t(x$corrnames[[g]])[lower.tri(x$corrnames[[g]])]) })) parse_hyp <- parse_hypothesis(corr_names,hypothesis) parse_hyp$hyp_mat <- do.call(rbind, parse_hyp$hyp_mat) if(nrow(parse_hyp$hyp_mat)==1){ select1 <- rep(1:numcorrgroup,numG) + rep((0:(numG-1))*2*numcorrgroup,each=numcorrgroup) select2 <- rep(numcorrgroup+1:numcorrgroup,numG) + rep((0:(numG-1))*2*numcorrgroup,each=numcorrgroup) parse_hyp$hyp_mat <- t(as.matrix(c(parse_hyp$hyp_mat[,select1] + parse_hyp$hyp_mat[,select2],parse_hyp$hyp_mat[,numcorrgroup*2*numG+1]))) }else{ select1 <- rep(1:numcorrgroup,numG) + rep((0:(numG-1))*2*numcorrgroup,each=numcorrgroup) select2 <- rep(numcorrgroup+1:numcorrgroup,numG) + rep((0:(numG-1))*2*numcorrgroup,each=numcorrgroup) parse_hyp$hyp_mat <- cbind(parse_hyp$hyp_mat[,select1] + parse_hyp$hyp_mat[,select2],parse_hyp$hyp_mat[,numcorrgroup*2*numG+1]) } RrList <- make_RrList2(parse_hyp) RrE <- RrList[[1]] RrO <- RrList[[2]] numhyp <- length(RrE) relfit <- t(matrix(unlist(lapply(1:numhyp,function(h){ Gaussian_measures(corrmeanN,corrcovmN,RrE1=RrE[[h]],RrO1=RrO[[h]]) })),nrow=2)) relcomp <- t(matrix(unlist(lapply(1:numhyp,function(h){ jointuniform_measures(P,numcorrgroup,numG,RrE1=RrE[[h]],RrO1=RrO[[h]],Fisher=1) })),nrow=2)) row.names(relfit) <- row.names(relcomp) <- parse_hyp$original_hypothesis if(complement == TRUE){ relfit <- Gaussian_prob_Hc(corrmeanN,corrcovmN,relfit,RrO) relcomp <- jointuniform_prob_Hc(P,numcorrgroup,numG,relcomp,RrO) } hypothesisshort <- unlist(lapply(1:nrow(relfit),function(h) paste0("H",as.character(h)))) row.names(relfit) <- row.names(relfit) <- hypothesisshort BFtu_confirmatory <- c(apply(relfit / relcomp, 1, prod)) if(is.null(prior.hyp)){ priorprobs <- rep(1/length(BFtu_confirmatory),length(BFtu_confirmatory)) }else{ if(!is.numeric(prior.hyp) || length(prior.hyp)!=length(BFtu_confirmatory)){ warning(paste0("Argument 'prior.hyp' should be numeric and of length ",as.character(length(BFtu_confirmatory)),". Equal prior probabilities are used.")) priorprobs <- rep(1/length(BFtu_confirmatory),length(BFtu_confirmatory)) }else{ priorprobs <- prior.hyp } } names(priorprobs) <- names(BFtu_confirmatory) PHP_confirmatory <- BFtu_confirmatory*priorprobs / sum(BFtu_confirmatory*priorprobs) BFtable <- cbind(relcomp,relfit,relfit[,1]/relcomp[,1],relfit[,2]/relcomp[,2], apply(relfit,1,prod)/apply(relcomp,1,prod),PHP_confirmatory) row.names(BFtable) <- names(BFtu_confirmatory) colnames(BFtable) <- c("complex=","complex>","fit=","fit>","BF=","BF>","BF","PHP") BFmatrix_confirmatory <- matrix(rep(BFtu_confirmatory,length(BFtu_confirmatory)),ncol=length(BFtu_confirmatory))/ t(matrix(rep(BFtu_confirmatory,length(BFtu_confirmatory)),ncol=length(BFtu_confirmatory))) diag(BFmatrix_confirmatory) <- 1 row.names(BFmatrix_confirmatory) <- colnames(BFmatrix_confirmatory) <- names(BFtu_confirmatory) if(nrow(relfit)==length(parse_hyp$original_hypothesis)){ hypotheses <- parse_hyp$original_hypothesis }else{ hypotheses <- c(parse_hyp$original_hypothesis,"complement") } }else{ BFtu_confirmatory <- PHP_confirmatory <- BFmatrix_confirmatory <- relfit <- relcomp <- hypotheses <- BFtable <- priorprobs <- NULL } BFcorr_out <- list( BFtu_exploratory=BFtu_exploratory, PHP_exploratory=PHP_exploratory, BFtu_confirmatory=BFtu_confirmatory, PHP_confirmatory=PHP_confirmatory, BFmatrix_confirmatory=BFmatrix_confirmatory, BFtable_confirmatory=BFtable, prior.hyp=priorprobs, hypotheses=hypotheses, estimates=postestimates, model=x, bayesfactor=bayesfactor, parameter=testedparameter, call=match.call()) class(BFcorr_out) <- "BF" return(BFcorr_out) }
wrap_html <- function(x, opts_list, type = "html", class = NULL){ span_string <- stringr::str_c(names(opts_list), opts_list, sep = ":") %>% stringr::str_c(collapse = ";") span_style_string <- if (nzchar(span_string)) { glue::glue('style="{span_string}"') } span_class_string <- if (!is.null(class) && any(!is.na(class)) && any(nzchar(class))) { class <- class[!is.na(class) & nzchar(class)] class <- paste(class, collapse = " ") glue::glue('class="{class}"') } span_attributes <- paste(c("", span_class_string, span_style_string), collapse = " ") x <- glue::glue("<span{span_attributes}>{x}</span>") return(x) }
phyloseq_to_metagenomeSeq = function(physeq, ...){ if( !taxa_are_rows(physeq) ){ physeq <- t(physeq)} countData = round(as(otu_table(physeq), "matrix"), digits=0) if(!is.null(sample_data(physeq,FALSE))){ ADF = AnnotatedDataFrame(data.frame(sample_data(physeq))) } else { ADF = NULL } if(!is.null(tax_table(physeq,FALSE))){ TDF = AnnotatedDataFrame(data.frame(OTUname = taxa_names(physeq), data.frame(tax_table(physeq)),row.names = taxa_names(physeq))) } else { TDF = AnnotatedDataFrame(data.frame(OTUname = taxa_names(physeq), row.names = taxa_names(physeq))) } if(requireNamespace("metagenomeSeq")){ mrobj = metagenomeSeq::newMRexperiment(counts = countData, phenoData = ADF, featureData = TDF,...) if (sum(colSums(countData > 0) > 1) < ncol(countData)) { p = suppressMessages(metagenomeSeq::cumNormStat(mrobj)) } else { p = suppressMessages(metagenomeSeq::cumNormStatFast(mrobj)) } mrobj = metagenomeSeq::cumNorm(mrobj, p = p) return(mrobj) } }
cluster_execute <- function(first, main, last, cluster_config, keep_errors = TRUE, keep_extra = FALSE, update_switch = FALSE) { oldwd <- getwd() on.exit(setwd(oldwd)) handle_errors(keep_errors, "is.boolean") handle_errors(keep_extra, "is.boolean") handle_errors(update_switch, "is.boolean") ..first <- first ..main <- main ..last <- last ..cfg <- cluster_config rm(first) rm(main) rm(last) rm(cluster_config) if (Sys.getenv("sim_run")=="") { eval(..first) ..env <- environment() ..count <- 0 ..sim_var <- NA for (obj_name in ls(..env)) { if ("sim_obj" %in% class(get(x=obj_name, envir=..env))) { ..sim_var <- obj_name ..count <- ..count + 1 } } if (is.na(..sim_var)) { stop("A simulation object must be created in the `first` block") } if (..count>1) { stop(paste("Multiple simulation objects were detected; only one may be", "created in the `first` block")) } rm(..count) rm(..env) assign(x=..sim_var, value=eval(as.name(..sim_var)), envir=parent.frame(n=2)) eval(..main) assign(x=..sim_var, value=eval(as.name(..sim_var)), envir=parent.frame(n=2)) eval(..last) assign(x=..sim_var, value=eval(as.name(..sim_var)), envir=parent.frame(n=2)) } else { ..path_sim_obj <- "sim.rds" ..path_sim_res <- "sim_results" if (!(Sys.getenv("sim_run") %in% c("first", "main", "last"))) { stop(paste("The 'sim_run' environment variable must equal either", "'first', 'main', or 'last'.")) } } if (Sys.getenv("sim_run")=="first") { if (!is.null(..cfg$dir) && !dir.exists(..cfg$dir)) { stop(paste("Directory", ..cfg$dir, "does not exist.")) } test_file <- paste0(..path_sim_obj, '.test') tryCatch( expr = { saveRDS(list(a=123,b=456), file=test_file) }, error = function(e) { stop(paste0("Directory ", ..cfg$dir, " is not writable.")) } ) tryCatch( expr = { x <- readRDS(file=test_file) }, error = function(e) { stop(paste0("Directory ", ..cfg$dir, " is not readable.")) } ) tryCatch( expr = { unlink(test_file) }, error = function(e) { stop(paste0("Files cannot be deleted from directory ", ..cfg$dir, ".")) } ) if (!is.null(..cfg$dir)) setwd(..cfg$dir) if (dir.exists(..path_sim_res)) { unlink(..path_sim_res, recursive=TRUE) } dir.create(..path_sim_res) ..start_time <- Sys.time() eval(..first) ..env <- environment() ..count <- 0 ..sim_var <- NA for (obj_name in ls(..env)) { if ("sim_obj" %in% class(get(x=obj_name, envir=..env))) { ..sim_var <- obj_name ..count <- ..count + 1 } } if (is.na(..sim_var)) { if (update_switch) { stop("A simulation object must be read in the `first` block") } else { stop("A simulation object must be created in the `first` block") } } if (..count>1) { stop(paste("Multiple simulation objects were detected; only one may be", "read in the `first` block")) } rm(..count) rm(..env) ..sim <- eval(as.name(..sim_var)) ..sim$internals$sim_var <- ..sim_var ..sim$vars$start_time <- ..start_time ..sim$config$parallel <- "cluster" saveRDS(..sim, file=..path_sim_obj) } else if (Sys.getenv("sim_run") %in% c("main","last")) { if (!is.null(..cfg$dir)) setwd(..cfg$dir) tryCatch( ..sim <- readRDS(..path_sim_obj), warning = function(w) { stop(paste( "Simulation object was not found. Make sure your 'first' function", "is not producing errors and returns a valid simulation object, and", "that your shell commands are correct and properly sequenced.")) } ) handle_errors(..sim, "is.sim_obj") } if (Sys.getenv("sim_run")=="main") { err_reps <- list.files(path = ..path_sim_res, pattern = "e_*") if (!(length(err_reps) > 0 & ..sim$config$stop_at_error)){ if (is.null(..cfg$tid_var) && is.null(..cfg$js)) { stop("You must specify either 'js' or 'tid_var' in cluster_config.") } if (!is.null(..cfg$tid_var) && !is.null(..cfg$js)) { warning(paste0("Both 'js' and 'tid_var' were specified in cluster_conf", "ig; js will be ignored.")) } if (!is.null(..cfg$tid_var)) { tid_var <- ..cfg$tid_var } else if (!is.null(..cfg$js)) { ..cfg$js <- tolower(..cfg$js) if (!(..cfg$js %in% (js_support())$js_code)) { stop(paste("cluster_config variable 'js' is invalid; for a list of", "supported job schedulers, run js_support()")) } tid_var <- dplyr::case_when( ..cfg$js=="slurm" ~ "SLURM_ARRAY_TASK_ID", ..cfg$js=="ge" ~ "SGE_TASK_ID" ) } tid <- as.numeric(Sys.getenv(tid_var)) if (is.na(tid)) { stop("Task ID is missing.") } add_to_tid <- as.numeric(Sys.getenv("sim_add_to_tid")) if (!is.na(add_to_tid)) { tid <- tid + add_to_tid } if (tid<1 || tid>..sim$vars$num_sim_total) { stop(paste( "Task ID is invalid; must be an integer between 1 and", ..sim$vars$num_sim_total )) } else { if (update_switch) { tid <- tid + ..sim$internals$num_sim_cuml } ..sim$internals$tid <- tid rm(tid) rm(add_to_tid) for (pkg in ..sim$config$packages) { do.call("library", list(pkg)) } assign(..sim$internals$sim_var, ..sim) eval(..main) assign("..sim", eval(as.name(..sim$internals$sim_var))) } fmt <- paste0("%0", nchar(..sim$vars$num_sim_total), "d") if (..sim$vars$run_state=="run, no errors") { saveRDS( list( "results" = ..sim$results, "results_complex" = ..sim$results_complex ), paste0(..path_sim_res, "/r_", sprintf(fmt, ..sim$internals$tid), ".rds") ) } else if (..sim$vars$run_state=="run, all errors") { saveRDS( ..sim$errors, paste0(..path_sim_res, "/e_", sprintf(fmt, ..sim$internals$tid), ".rds") ) } if (!is.character(..sim$warnings)) { saveRDS( ..sim$warnings, paste0(..path_sim_res, "/w_", sprintf(fmt, ..sim$internals$tid), ".rds") ) } } } if (Sys.getenv("sim_run")=="last") { err_reps <- list.files(path = ..path_sim_res, pattern = "e_*") if (length(err_reps) > 0 & ..sim$config$stop_at_error){ unlink(paste0(..path_sim_res, "/r_*")) } else { files <- dir(paste0(..path_sim_res)) results_df <- NULL results_complex <- list() errors_df <- NULL warnings_df <- NULL num_new <- 0 for (file in files) { if (substr(file,1,1)=="r") { r <- readRDS(paste0(..path_sim_res, "/", file)) if (is.null(results_df)) { results_df <- r$results } else { results_df[nrow(results_df)+1,] <- r$results } if (!is.na(r$results_complex)) { results_complex[[length(results_complex)+1]] <- r$results_complex[[1]] } num_new <- num_new + 1 } else if (substr(file,1,1)=="e") { e <- readRDS(paste0(..path_sim_res, "/", file)) if (class(e)=="data.frame") { if (is.null(errors_df)) { errors_df <- e } else { errors_df[nrow(errors_df)+1,] <- e } } num_new <- num_new + 1 } else if (substr(file,1,1) == "w") { w <- readRDS(paste0(..path_sim_res, "/", file)) if (class(w)=="data.frame") { if (is.null(warnings_df)) { warnings_df <- w } else { warnings_df[nrow(warnings_df)+1,] <- w } } } } if (identical(results_complex,list())) { results_complex <- NA } if (update_switch) { if (!is.character(..sim$results)) { results_df <- rbind(..sim$results, results_df) results_df <- results_df[order(results_df$sim_uid),] } if (!is.na(results_complex)) { results_complex <- c(..sim$results_complex, results_complex) } if (!is.character(..sim$errors)) { errors_df <- rbind(..sim$errors, errors_df) errors_df <- errors_df[order(errors_df$sim_uid),] } if (!is.character(..sim$warnings)) { warnings_df <- rbind(..sim$warnings, warnings_df) warnings_df <- warnings_df[order(warnings_df$sim_uid),] } } if (!is.null(warnings_df)) { ..sim$warnings <- warnings_df } else { ..sim$warnings <- "No warnings" } if (!is.null(results_df) && !is.null(errors_df)) { ..sim$results <- results_df ..sim$results_complex <- results_complex ..sim$errors <- errors_df ..sim$vars$run_state <- "run, some errors" } else if (!is.null(results_df)) { ..sim$results <- results_df ..sim$results_complex <- results_complex ..sim$errors <- "No errors" ..sim$vars$run_state <- "run, no errors" } else if (!is.null(errors_df)) { ..sim$results <- "Errors detected in 100% of simulation replicates" ..sim$errors <- errors_df ..sim$vars$run_state <- "run, all errors" } else { stop("An unknown error occurred.") } levels_grid_big <- create_levels_grid_big(..sim) if (update_switch) { prev_levels_grid_big <- ..sim$internals$levels_grid_big extra_run <- dplyr::anti_join( prev_levels_grid_big[,-which(names(prev_levels_grid_big) %in% c("sim_uid", "level_id")),drop=F], levels_grid_big[,-which(names(levels_grid_big) %in% c("sim_uid", "level_id")),drop=F], by=names(prev_levels_grid_big[,-which(names(prev_levels_grid_big) %in% c("sim_uid", "level_id")), drop=F]) ) if (!keep_extra & nrow(extra_run) > 0){ if (!is.character(..sim$results)){ ..sim$results <- dplyr::anti_join(..sim$results, extra_run, by = names(extra_run)) } if (!is.character(..sim$errors)){ ..sim$errors <- dplyr::anti_join(..sim$errors, extra_run, by = names(extra_run)) } if (!is.character(..sim$warnings)){ ..sim$warnings <- dplyr::anti_join(..sim$warnings, extra_run, by = names(extra_run)) } } } ..sim$internals$levels_prev <- ..sim$internals$levels_shallow ..sim$internals$num_sim_prev <- ..sim$config$num_sim ..sim$internals$levels_grid_big <- levels_grid_big if (update_switch) { ..sim$internals$update_sim <- TRUE ..sim$internals$num_sim_cuml <- ..sim$internals$num_sim_cuml + num_new } else { ..sim$internals$num_sim_cuml <- ..sim$internals$num_sim_cuml + ..sim$vars$num_sim_total } for (i in 1:5){ x <- unlink(..path_sim_res, recursive=TRUE) if (x == 0){ break } Sys.sleep(0.2) } saveRDS(..sim, file=..path_sim_obj) for (pkg in ..sim$config$packages) { do.call("library", list(pkg)) } assign(..sim$internals$sim_var, ..sim) eval(..last) assign("..sim", eval(as.name(..sim$internals$sim_var))) ..sim$vars$end_time <- Sys.time() ..sim$vars$total_runtime <- as.numeric( difftime(..sim$vars$end_time, ..sim$vars$start_time), units = "secs" ) saveRDS(..sim, file=..path_sim_obj) } } }