code
stringlengths 1
13.8M
|
---|
dist.SM<-function(x)
{
if(is.data.frame(x)) x<-as.matrix(x)
if(is.null(dim(x))){
dim(x)<-c(length(x),1)
}
nr=nrow(x)
t<-.C("fng3",as.double(x),as.integer(nrow(x)),as.integer(ncol(x)),wynik=double(nrow(x)*nrow(x)),PACKAGE="clusterSim")$wynik
wynik<-matrix(nrow=nr,ncol=nr,dimnames=names(x))
for (i in 1:nr)
for (j in 1:nr)
{
wynik[i,j]=t[(i-1)*nr+j]
wynik[j,i]=t[(j-1)*nr+i]
}
as.dist(wynik)
} |
print.labeling <-
structure(function(x, ...)
{
output2 <- x$att.dist
cat("-------------------------------------------\n")
cat("labeling for ACTCD\n")
cat(paste(paste("based on", x$label.method, "label method"),"\n"))
cat("-------------------------------------------\n")
cat("The distribution of attribute patterns:\n")
print(output2)
}, export = FALSE, S3class = "labeling", modifiers = "public") |
Soap.model2 <- lm(I(weight^(1/3)) ~ day, data = Soap)
msummary(Soap.model2) |
data_dir <- file.path("..", "testdata")
tempfile_nc <- function() {
tempfile_helper("selpoint_")
}
tempfile_csv <- function() {
tempfile_helper_csv("selpoint_")
}
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
selpoint("SIS", file_in, file_out, 6.2, 46.7)
file <- nc_open(file_out)
test_that("data is correct", {
actual <- ncvar_get(file)
expected_data <- c(250)
expected <- array(expected_data)
expect_equivalent(actual, expected)
})
test_that("attributes are correct", {
actual <- ncatt_get(file, "lon", "units")$value
expect_equal(actual, "degrees_east")
actual <- ncatt_get(file, "lon", "long_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "standard_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "axis")$value
expect_equal(actual, "X")
actual <- ncatt_get(file, "lat", "units")$value
expect_equal(actual, "degrees_north")
actual <- ncatt_get(file, "lat", "long_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "standard_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "axis")$value
expect_equal(actual, "Y")
actual <- ncatt_get(file, "time", "units")$value
expect_equal(actual, "hours since 1983-01-01 00:00:00")
actual <- ncatt_get(file, "time", "long_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "standard_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "calendar")$value
expect_equal(actual, "standard")
actual <- ncatt_get(file, "SIS", "standard_name")$value
expect_equal(actual, "SIS_standard")
actual <- ncatt_get(file, "SIS", "long_name")$value
expect_equal(actual, "Surface Incoming Shortwave Radiation")
actual <- ncatt_get(file, "SIS", "units")$value
expect_equal(actual, "W m-2")
actual <- ncatt_get(file, "SIS", "_FillValue")$value
expect_equal(actual, -999)
actual <- ncatt_get(file, "SIS", "cmsaf_info")$value
expect_equal(actual, "cmsafops::selpoint for variable SIS")
global_attr <- ncatt_get(file, 0)
expect_equal(length(global_attr), 1)
actual <- names(global_attr[1])
expect_equal(actual, "Info")
actual <- global_attr[[1]]
expect_equal(actual, "Created with the CM SAF R Toolbox.")
})
test_that("coordinates are correct", {
actual <- ncvar_get(file, "lon")
expect_identical(actual, array(6.0))
actual <- ncvar_get(file, "lat")
expect_identical(actual, array(46.5))
actual <- ncvar_get(file, "time")
cat(actual)
expect_equal(actual, array(c(149016)))
})
nc_close(file)
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
selpoint("SIS", file_in, file_out, 6.2, 46.7, nc34 = 4)
file <- nc_open(file_out)
test_that("data is correct in version 4", {
actual <- ncvar_get(file)
expected_data <- c(250)
expected <- array(expected_data)
expect_equivalent(actual, expected)
})
test_that("attributes are correct in version 4", {
actual <- ncatt_get(file, "lon", "units")$value
expect_equal(actual, "degrees_east")
actual <- ncatt_get(file, "lon", "long_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "standard_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "axis")$value
expect_equal(actual, "X")
actual <- ncatt_get(file, "lat", "units")$value
expect_equal(actual, "degrees_north")
actual <- ncatt_get(file, "lat", "long_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "standard_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "axis")$value
expect_equal(actual, "Y")
actual <- ncatt_get(file, "time", "units")$value
expect_equal(actual, "hours since 1983-01-01 00:00:00")
actual <- ncatt_get(file, "time", "long_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "standard_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "calendar")$value
expect_equal(actual, "standard")
global_attr <- ncatt_get(file, 0)
expect_equal(length(global_attr), 1)
actual <- names(global_attr[1])
expect_equal(actual, "Info")
actual <- global_attr[[1]]
expect_equal(actual, "Created with the CM SAF R Toolbox.")
})
test_that("coordinates are correct in version 4", {
actual <- ncvar_get(file, "lon")
expect_identical(actual, array(6.0))
actual <- ncvar_get(file, "lat")
expect_identical(actual, array(46.5))
actual <- ncvar_get(file, "time")
expect_equal(actual, array(c(149016)))
})
nc_close(file)
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
test_that("error is thrown if ncdf version is wrong", {
expect_error(
selpoint("SIS", file_in, file_out, 6.2, 46.7, nc34 = 7),
"nc version must be in c(3, 4), but was 7", fixed = TRUE
)
})
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
test_that("ncdf version NULL throws an error", {
expect_error(
selpoint("SIS", file_in, file_out, 6.2, 46.7, nc34 = NULL),
"nc_version must not be NULL"
)
})
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
test_that("warning is shown if var does not exist", {
expect_warning(
selpoint("lat", file_in, file_out, 6.2, 46.7),
"Variable 'lat' not found. Variable 'SIS' will be used instead."
)
})
file <- nc_open(file_out)
test_that("data is correct if non-existing variable is given", {
actual <- ncvar_get(file)
expected_data <- c(250)
expected <- array(expected_data)
expect_equivalent(actual, expected)
})
test_that("attributes are correct if non-existing variable is given", {
actual <- ncatt_get(file, "lon", "units")$value
expect_equal(actual, "degrees_east")
actual <- ncatt_get(file, "lon", "long_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "standard_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "axis")$value
expect_equal(actual, "X")
actual <- ncatt_get(file, "lat", "units")$value
expect_equal(actual, "degrees_north")
actual <- ncatt_get(file, "lat", "long_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "standard_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "axis")$value
expect_equal(actual, "Y")
actual <- ncatt_get(file, "time", "units")$value
expect_equal(actual, "hours since 1983-01-01 00:00:00")
actual <- ncatt_get(file, "time", "long_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "standard_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "calendar")$value
expect_equal(actual, "standard")
global_attr <- ncatt_get(file, 0)
expect_equal(length(global_attr), 1)
actual <- names(global_attr[1])
expect_equal(actual, "Info")
actual <- global_attr[[1]]
expect_equal(actual, "Created with the CM SAF R Toolbox.")
})
test_that("coordinates are correct if non-existing variable is given", {
actual <- ncvar_get(file, "lon")
expect_identical(actual, array(6.0))
actual <- ncvar_get(file, "lat")
expect_identical(actual, array(46.5))
actual <- ncvar_get(file, "time")
expect_equal(actual, array(c(149016)))
})
nc_close(file)
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
test_that("error is thrown if variable is NULL", {
expect_error(
selpoint(NULL, file_in, file_out, 6.2, 46.7),
"variable must not be NULL"
)
})
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
test_that("warning is shown if var is empty", {
expect_warning(
selpoint("", file_in, file_out, 6.2, 46.7),
"Variable '' not found. Variable 'SIS' will be used instead."
)
})
file <- nc_open(file_out)
test_that("data is correct", {
actual <- ncvar_get(file)
expected_data <- c(250)
expected <- array(expected_data)
expect_equivalent(actual, expected)
})
test_that("attributes are correct", {
actual <- ncatt_get(file, "lon", "units")$value
expect_equal(actual, "degrees_east")
actual <- ncatt_get(file, "lon", "long_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "standard_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "axis")$value
expect_equal(actual, "X")
actual <- ncatt_get(file, "lat", "units")$value
expect_equal(actual, "degrees_north")
actual <- ncatt_get(file, "lat", "long_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "standard_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "axis")$value
expect_equal(actual, "Y")
actual <- ncatt_get(file, "time", "units")$value
expect_equal(actual, "hours since 1983-01-01 00:00:00")
actual <- ncatt_get(file, "time", "long_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "standard_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "calendar")$value
expect_equal(actual, "standard")
global_attr <- ncatt_get(file, 0)
expect_equal(length(global_attr), 1)
actual <- names(global_attr[1])
expect_equal(actual, "Info")
actual <- global_attr[[1]]
expect_equal(actual, "Created with the CM SAF R Toolbox.")
})
test_that("coordinates are correct", {
actual <- ncvar_get(file, "lon")
expect_identical(actual, array(6.0))
actual <- ncvar_get(file, "lat")
expect_identical(actual, array(46.5))
actual <- ncvar_get(file, "time")
expect_equal(actual, array(c(149016)))
})
nc_close(file)
file_in <- file.path(data_dir, "xex_normal1.nc")
file_out <- tempfile_nc()
test_that("error is thrown if input file does not exist", {
expect_error(
selpoint("SIS", file_in, file_out, 6.2, 46.7),
"Input file does not exist")
})
file_in <- file.path(data_dir, NULL)
file_out <- tempfile_nc()
test_that("error is thrown if input filename is NULL", {
expect_error(
selpoint("SIS", file_in, file_out, 6.2, 46.7),
"Input filepath must be of length one and not NULL"
)
})
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
cat("test\n", file = file_out)
test_that("error is thrown if output file already exists", {
expect_error(
selpoint("SIS", file_in, file_out, 6.2, 46.7),
paste0("File '",
file_out,
"' already exists. Specify 'overwrite = TRUE' if you want to overwrite it."),
fixed = TRUE
)
expect_equal(readLines(con = file_out), "test")
})
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
cat("test\n", file = file_out)
test_that("no error is thrown if overwrite = TRUE", {
expect_error(
selpoint("SIS", file_in, file_out, 6.2, 46.7, overwrite = TRUE),
NA)
})
file <- nc_open(file_out)
test_that("data is correct", {
actual <- ncvar_get(file)
expected_data <- c(250)
expected <- array(expected_data)
expect_equivalent(actual, expected)
})
test_that("attributes are correct", {
actual <- ncatt_get(file, "lon", "units")$value
expect_equal(actual, "degrees_east")
actual <- ncatt_get(file, "lon", "long_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "standard_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "axis")$value
expect_equal(actual, "X")
actual <- ncatt_get(file, "lat", "units")$value
expect_equal(actual, "degrees_north")
actual <- ncatt_get(file, "lat", "long_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "standard_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "axis")$value
expect_equal(actual, "Y")
actual <- ncatt_get(file, "time", "units")$value
expect_equal(actual, "hours since 1983-01-01 00:00:00")
actual <- ncatt_get(file, "time", "long_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "standard_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "calendar")$value
expect_equal(actual, "standard")
global_attr <- ncatt_get(file, 0)
expect_equal(length(global_attr), 1)
actual <- names(global_attr[1])
expect_equal(actual, "Info")
actual <- global_attr[[1]]
expect_equal(actual, "Created with the CM SAF R Toolbox.")
})
test_that("coordinates are correct", {
actual <- ncvar_get(file, "lon")
expect_identical(actual, array(6.0))
actual <- ncvar_get(file, "lat")
expect_identical(actual, array(46.5))
actual <- ncvar_get(file, "time")
expect_equal(actual, array(c(149016)))
})
nc_close(file)
file_in <- file.path(data_dir, "ex_time_dim1.nc")
file_out <- tempfile_nc()
selpoint("SIS", file_in, file_out, 6.2, 46.7)
file <- nc_open(file_out)
test_that("data is correct", {
actual <- ncvar_get(file)
expected_data <- c(250, 253)
expected <- array(expected_data)
expect_equivalent(actual, expected)
})
test_that("attributes are correct", {
actual <- ncatt_get(file, "lon", "units")$value
expect_equal(actual, "degrees_east")
actual <- ncatt_get(file, "lon", "long_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "standard_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "axis")$value
expect_equal(actual, "X")
actual <- ncatt_get(file, "lat", "units")$value
expect_equal(actual, "degrees_north")
actual <- ncatt_get(file, "lat", "long_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "standard_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "axis")$value
expect_equal(actual, "Y")
actual <- ncatt_get(file, "time", "units")$value
expect_equal(actual, "hours since 1983-01-01 00:00:00")
actual <- ncatt_get(file, "time", "long_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "standard_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "calendar")$value
expect_equal(actual, "standard")
global_attr <- ncatt_get(file, 0)
expect_equal(length(global_attr), 1)
actual <- names(global_attr[1])
expect_equal(actual, "Info")
actual <- global_attr[[1]]
expect_equal(actual, "Created with the CM SAF R Toolbox.")
})
test_that("coordinates are correct", {
actual <- ncvar_get(file, "lon")
expect_identical(actual, array(6.0))
actual <- ncvar_get(file, "lat")
expect_identical(actual, array(46.5))
actual <- ncvar_get(file, "time")
expect_equal(actual, array(c(149016, 158544)))
})
nc_close(file)
file_in <- file.path(data_dir, "ex_additional_attr.nc")
file_out <- tempfile_nc()
selpoint("SIS", file_in, file_out, 6.2, 46.7)
file <- nc_open(file_out)
test_that("data is correct", {
actual <- ncvar_get(file)
expected_data <- c(250)
expected <- array(expected_data)
expect_equivalent(actual, expected)
})
test_that("attributes are correct", {
actual <- ncatt_get(file, "lon", "units")$value
expect_equal(actual, "degrees_east")
actual <- ncatt_get(file, "lon", "long_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "standard_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "axis")$value
expect_equal(actual, "X")
actual <- ncatt_get(file, "lat", "units")$value
expect_equal(actual, "degrees_north")
actual <- ncatt_get(file, "lat", "long_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "standard_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "axis")$value
expect_equal(actual, "Y")
actual <- ncatt_get(file, "time", "units")$value
expect_equal(actual, "hours since 1983-01-01 00:00:00")
actual <- ncatt_get(file, "time", "long_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "standard_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "calendar")$value
expect_equal(actual, "standard")
global_attr <- ncatt_get(file, 0)
expect_equal(length(global_attr), 2)
actual <- names(global_attr[1])
expect_equal(actual, "Info")
actual <- global_attr[[1]]
expect_equal(actual, "Created with the CM SAF R Toolbox.")
actual <- names(global_attr[2])
expect_equal(actual, "institution")
actual <- global_attr[[2]]
expect_equal(actual, "This is a test attribute.")
})
test_that("coordinates are correct", {
actual <- ncvar_get(file, "lon")
expect_identical(actual, array(6.0))
actual <- ncvar_get(file, "lat")
expect_identical(actual, array(46.5))
actual <- ncvar_get(file, "time")
expect_equal(actual, array(c(149016)))
})
nc_close(file)
file_in <- file.path(data_dir, "ex_v4_1.nc")
file_out <- tempfile_nc()
selpoint("SIS", file_in, file_out, 6.2, 46.7)
file <- nc_open(file_out)
test_that("data is correct", {
actual <- ncvar_get(file)
expected_data <- c(250)
expected <- array(expected_data)
expect_equivalent(actual, expected)
})
test_that("attributes are correct", {
actual <- ncatt_get(file, "lon", "units")$value
expect_equal(actual, "degrees_east")
actual <- ncatt_get(file, "lon", "long_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "standard_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "axis")$value
expect_equal(actual, "X")
actual <- ncatt_get(file, "lat", "units")$value
expect_equal(actual, "degrees_north")
actual <- ncatt_get(file, "lat", "long_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "standard_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "axis")$value
expect_equal(actual, "Y")
actual <- ncatt_get(file, "time", "units")$value
expect_equal(actual, "hours since 1983-01-01 00:00:00")
actual <- ncatt_get(file, "time", "long_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "standard_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "calendar")$value
expect_equal(actual, "standard")
global_attr <- ncatt_get(file, 0)
expect_equal(length(global_attr), 1)
actual <- names(global_attr[1])
expect_equal(actual, "Info")
actual <- global_attr[[1]]
expect_equal(actual, "Created with the CM SAF R Toolbox.")
})
test_that("coordinates are correct", {
actual <- ncvar_get(file, "lon")
expect_identical(actual, array(6.0))
actual <- ncvar_get(file, "lat")
expect_identical(actual, array(46.5))
actual <- ncvar_get(file, "time")
expect_equal(actual, array(c(149016)))
})
nc_close(file)
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
selpoint("SIS", file_in, file_out, 6.2, 46.7)
file <- nc_open(file_out)
test_that("data is correct", {
actual <- ncvar_get(file)
expected_data <- c(250)
expected <- array(expected_data)
expect_equivalent(actual, expected)
})
test_that("attributes are correct", {
actual <- ncatt_get(file, "lon", "units")$value
expect_equal(actual, "degrees_east")
actual <- ncatt_get(file, "lon", "long_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "standard_name")$value
expect_equal(actual, "longitude")
actual <- ncatt_get(file, "lon", "axis")$value
expect_equal(actual, "X")
actual <- ncatt_get(file, "lat", "units")$value
expect_equal(actual, "degrees_north")
actual <- ncatt_get(file, "lat", "long_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "standard_name")$value
expect_equal(actual, "latitude")
actual <- ncatt_get(file, "lat", "axis")$value
expect_equal(actual, "Y")
actual <- ncatt_get(file, "time", "units")$value
expect_equal(actual, "hours since 1983-01-01 00:00:00")
actual <- ncatt_get(file, "time", "long_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "standard_name")$value
expect_equal(actual, "time")
actual <- ncatt_get(file, "time", "calendar")$value
expect_equal(actual, "standard")
global_attr <- ncatt_get(file, 0)
expect_equal(length(global_attr), 1)
actual <- names(global_attr[1])
expect_equal(actual, "Info")
actual <- global_attr[[1]]
expect_equal(actual, "Created with the CM SAF R Toolbox.")
})
test_that("coordinates are correct", {
actual <- ncvar_get(file, "lon")
expect_identical(actual, array(6.0))
actual <- ncvar_get(file, "lat")
expect_identical(actual, array(46.5))
actual <- ncvar_get(file, "time")
expect_equal(actual, array(c(149016)))
})
nc_close(file)
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
test_that("ncdf version NULL throws an error", {
expect_error(
selpoint("SIS", file_in, file_out, 45, 46.7),
"Coordinates outside of the domain.")
})
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
test_that("ncdf version NULL throws an error", {
expect_error(
selpoint("SIS", file_in, file_out, 6.2, 7),
"Coordinates outside of the domain.")
})
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
test_that("ncdf version NULL throws an error", {
expect_error(
selpoint("SIS", file_in, file_out, 45, 6),
"Coordinates outside of the domain.")
})
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
test_that("format NULL throws an error", {
expect_error(
selpoint("SIS", file_in, file_out, 6.2, 46.7, format = NULL),
"format must not be NULL"
)
})
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_nc()
test_that("format NULL throws an error", {
expect_error(
selpoint("SIS", file_in, file_out, 6.2, 46.7, format = "pdf"),
"format must be either nc or csv, but was pdf"
)
})
file_in <- file.path(data_dir, "ex_normal1.nc")
file_out <- tempfile_csv()
selpoint("SIS", file_in, file_out, 6.2, 46.7, format = "csv")
test_that("data is correct", {
actual <- read.csv2(file_out, dec = ".")
expected_data <- data.frame("2000-01-01", 250)
expected <- expected_data
expect_equivalent(actual, expected)
}) |
summary.ergm <- function (object, ...,
correlation=FALSE, covariance=FALSE,
total.variation=TRUE)
{
myver <- packageVersion("ergm")
objver <- NVL(object$ergm_version, as.package_version("3.9.4"))
nextver <- as.package_version(paste(objver$major, objver$minor+1, sep="."))
if(objver < paste(myver$major, myver$minor, sep=".")){
warn(paste0("This object was fit with ", sQuote("ergm"), " version ", objver, " or earlier. Summarizing it with version ", nextver, " or later may return incorrect results or fail."))
}
if("digits" %in% names(list(...))) warn("summary.ergm() no lnger takes a digits= argument.")
control <- object$control
pseudolikelihood <- object$estimate=="MPLE"
independence <- NVL(object$MPLE_is_MLE, is.dyad.independent(object))
coef <- coef(object)
ans <- list(formula=object$formula,
call=object$call,
correlation=correlation,
offset = object$offset,
drop = NVL(object$drop, rep(0,length(object$offset))),
estimable = NVL(object$estimable, rep(TRUE,length(object$offset))),
covariance=covariance,
pseudolikelihood=pseudolikelihood,
independence=independence,
estimate=object$estimate,
estimate.desc=object$estimate.desc,
control=object$control)
asycov <- vcov(object, sources=if(total.variation) "all" else "model")
asyse <- sqrt(diag(asycov))
est.se <- sqrt(diag(vcov(object, sources="estimation")))
mod.se <- sqrt(diag(vcov(object, sources="model")))
tot.se <- sqrt(diag(vcov(object, sources="all")))
est.pct <- rep(NA,length(est.se))
if(any(!is.na(est.se))){
est.pct[!is.na(est.se)] <- ifelse(est.se[!is.na(est.se)]>0, round(100*(tot.se[!is.na(est.se)]-mod.se[!is.na(est.se)])/tot.se[!is.na(est.se)]), 0)
}
zval <- coef / asyse
pval <- 2 * pnorm(q=abs(zval), lower.tail=FALSE)
count <- 1
coefmat <- cbind(
`Estimate` = coef,
`Std. Error` = asyse,
`MCMC %` = est.pct,
`z value` = zval,
`Pr(>|z|)` = pval)
rownames(coefmat) <- param_names(object)
devtext <- "Deviance:"
if (object$estimate!="MPLE" || !independence || object$reference != as.formula(~Bernoulli)) {
if (pseudolikelihood) {
devtext <- "Pseudo-deviance:"
ans$message <- "\nWarning: The standard errors are based on naive pseudolikelihood and are suspect.\n"
}
else if(object$estimate == "MLE" && any(is.na(est.se) & !ans$offset & !ans$drop==0 & !ans$estimable) &&
(!independence || control$force.main) ) {
ans$message <- "\nWarning: The standard errors are suspect due to possible poor convergence.\n"
}
} else {
ans$message <- "\nFor this model, the pseudolikelihood is the same as the likelihood.\n"
}
mle.lik<-try(logLik(object,...), silent=TRUE)
if(inherits(mle.lik,"try-error")) ans$objname<-deparse(substitute(object))
else if(!is.na(mle.lik)){
null.lik<-try(logLikNull(object,...), silent=TRUE)
ans$null.lik.0 <- is.na(null.lik)
df <- length(coef)
dyads<- sum(as.rlebdm(object$constrained, object$constrained.obs, which="informative"))
rdf <- dyads - df
ans$devtable <- matrix(c(if(is.na(null.lik)) 0 else -2*null.lik, -2*mle.lik,
c(dyads, rdf)), 2,2, dimnames=list(c("Null","Residual"),
c("Resid. Dev", "Resid. Df")))
ans$devtext <- devtext
ans$aic <- AIC(object)
ans$bic <- BIC(object)
ans$mle.lik <- ERRVL(mle.lik, NA)
ans$null.lik <- ERRVL(null.lik, NA)
}else ans$devtable <- NA
ans$coefs <- as.data.frame(coefmat)[,-3]
ans$coefficients <- coefmat
ans$asycov <- asycov
ans$asyse <- asyse
class(ans) <- "summary.ergm"
ans
} |
macrocaic <- function(formula, data, phy, names.col, macroMethod = "RRD",
stand.contr = TRUE, robust=Inf, ref.var=NULL, node.depth=NULL,
macroMinSize=3, equal.branch.length=FALSE)
{
if(! missing(data)){
if(! inherits(data, 'comparative.data')){
if(missing(names.col)) stop('names column is missing')
names.col <- deparse(substitute(names.col))
data <- caicStyleArgs(data=data, phy=phy, names.col=names.col, warn.dropped=TRUE)
}
}
cdata <- data
phy <- data$phy
data <- data$data
if(! is.null(node.depth)){
if(node.depth%%1 != 0 || node.depth < 1) stop("node.depth must be a positive integer greater than 1.")
}
if(as.logical(equal.branch.length)) {
phy$edge.length <- rep(2, nrow(phy$edge))
} else {
if(is.null(phy$edge.length)) stop("The phylogeny does not contain branch lengths and macrocaic has not been set to use equal branch lengths.")
if(any(phy$edge.length < 0)) stop("The phylogeny contains negative branch lengths and macrocaic has not been set to use equal branch lengths.")
}
root <- length(phy$tip.label) + 1
unionData <- nrow(data)
crunch.brlen <- 0
resp.type <- match.arg(macroMethod, c("RRD", "PDI"))
formula <- update(formula, . ~ . - 1)
if(is.empty.model(formula)) stop("Macrocaic requires an explanatory variable to determine the direction of species richness contrasts.\nModels of the form nSpp ~ 1 are not meaningful.")
initMf <- model.frame(formula, data, na.action="na.pass")
initMfComplete <- complete.cases(initMf)
if(sum(initMfComplete) < 2 ) stop("Fewer than two taxa contain complete data for this analysis")
macroMf <- as.matrix(model.response(initMf))
colnames(macroMf) <- with(attributes(attr(initMf, "terms")), rownames(factors)[response])
if(any(is.na(macroMf))) stop("MacroCAIC analyses cannot have missing species richness values")
if(any(macroMf <= 0)) stop("Species richness values cannot be negative or zero")
if(any((macroMf %% 1) > 0)) stop("Non-integer species richness values present")
mf <- model.frame(formula, data, na.action=na.pass)
varClass <- attributes(attributes(mf)$terms)$dataClasses
termFactors <- attributes(attributes(mf)$terms)$factors
factorCols <- names(varClass)[varClass %in% c("ordered","factor")]
if(any(varClass %in% c("ordered","factor") & rowSums(termFactors) > 1)){
stop("Interactions using categorical variables not supported in macrocaic analyses")}
termClass <- apply(termFactors,2,function(X) unique(varClass[as.logical(X)]))
for(fact in factorCols){
currFact <- with(mf, get(fact))
lev <- levels(currFact)
ord <- is.ordered(currFact)
if(length(lev) > 2 & ! ord) stop("Unordered non-binary factor included in model formula.")
eval(parse(text=paste("mf$'", fact, "'<- as.numeric(currFact)", sep="")))
attr(mf, "dataClasses") <- rep("numeric", dim(termFactors)[2])
}
mr <- model.response(mf)
mr <- as.matrix(mr)
colnames(mr) <- as.character(formula[2])
md <- model.matrix(formula, mf)
if(! is.null(ref.var)){
ref.var <- deparse(substitute(ref.var))
if(is.na(match(ref.var, colnames(md)))) stop("Reference variable not found in the model predictors")
} else {
ref.var <- colnames(md)[1]
}
attrMD <- attributes(md)
md <- cbind(mr, md)
contr <- contrCalc(md, phy, ref.var, picMethod="crunch", crunch.brlen, macro=macroMethod)
mrC <- contr$contr[,1,drop=FALSE]
mdC <- contr$contr[,-1,drop=FALSE]
if(stand.contr){
notCateg <- ! termClass %in% c("factor","ordered")
mdC[,notCateg] <- mdC[,notCateg, drop=FALSE]/sqrt(contr$var.contr)
}
ContrObj <- list()
ContrObj$contr$response <- mrC
ContrObj$contr$explanatory <- mdC
ContrObj$nodalVals$response <- contr$nodVal[,1,drop=FALSE]
ContrObj$nodalVals$explanatory <- contr$nodVal[,-1,drop=FALSE]
ContrObj$contrVar <- contr$var.contr
ContrObj$nChild <- contr$nChild
attr(ContrObj, 'assign') <- attrMD$assign
if(! is.null(attrMD$contrasts)) attr(ContrObj, 'contrasts') <- attrMD$contrasts
validNodes <- with(ContrObj$contr, complete.cases(explanatory) & complete.cases(response))
validNodes[which(ContrObj$nodalVal$response < macroMinSize)] <- FALSE
if(! is.null(node.depth)){
validNodes[ContrObj$nodeDepth > node.depth] <- FALSE
}
ContrObj$validNodes <- validNodes
contrMD <- ContrObj$contr$explanatory[validNodes,,drop=FALSE]
contrRS <- ContrObj$contr$response[validNodes,,drop=FALSE]
attr(contrMD, 'assign') <- attr(ContrObj, 'assign')
if(! is.null(attr(ContrObj, 'contrasts'))) attr(contrMD, 'contrasts') <- attr(ContrObj, 'contrasts')
mod <- with(ContrObj$contr, lm.fit(contrMD, contrRS))
class(mod) <- "lm"
RET <- list(contrast.data=ContrObj, data=cdata, mod=mod)
class(RET) <- c("caic")
contrData <- with(ContrObj$contr, as.data.frame(cbind(response,explanatory)))
contrData <- contrData[validNodes, ,drop=FALSE]
RET$mod$call <- substitute(lm(FORM, data=contrData), list(FORM=formula))
RET$mod$terms <- attr(mf, "terms")
RET$mod$model <- contrData
attr(RET$mod$model, "terms") <- attr(mf, "terms")
stRes <- rstudent(mod)
SRallNodes <- rep(NA, length(RET$contrast.data$validNodes))
names(SRallNodes) <- names(RET$contrast.data$contrVar)
SRallNodes[match(names(stRes), names(SRallNodes))] <- stRes
RET$contrast.data$studentResid <- SRallNodes
attr(RET, "contr.method") <- "crunch"
attr(RET, "macro.method") <- macroMethod
attr(RET, "stand.contr") <- stand.contr
attr(RET, "robust") <- robust
if(any(stRes > robust)){
RET <- caic.robust(RET, robust)
}
return(RET)
} |
cloudml_train <- function(file = "train.R",
master_type = NULL,
flags = NULL,
region = NULL,
config = NULL,
collect = "ask",
dry_run = FALSE)
{
if (dry_run)
message("Dry running training job for CloudML...")
else
message("Submitting training job to CloudML...")
gcloud <- gcloud_config()
cloudml <- cloudml_config(config)
if (!is.null(master_type)) cloudml$trainingInput$masterType <- master_type
if (!is.null(cloudml$trainingInput$masterType) &&
!identical(cloudml$trainingInput$scaleTier, "CUSTOM"))
cloudml$trainingInput$scaleTier <- "CUSTOM"
if (length(cloudml) == 0L)
cloudml$trainingInput <- list(scaleTier = "BASIC")
custom_commands <- cloudml[["customCommands"]]
cloudml[["customCommands"]] <- NULL
application <- getwd()
entrypoint <- file
entrypoint <- gsub(paste0("^", getwd(), .Platform$file.sep), "", entrypoint)
id <- unique_job_name("cloudml")
deployment <- scope_deployment(
id = id,
application = application,
context = "cloudml",
overlay = flags,
entrypoint = entrypoint,
cloudml = cloudml,
gcloud = gcloud,
dry_run = dry_run
)
cloudml_file <- deployment$cloudml_file
storage <- gs_ensure_storage(gcloud)
if (is.null(region)) region <- gcloud_default_region()
job_yml <- file.path(deployment$directory, "job.yml")
yaml::write_yaml(list(
storage = storage,
custom_commands = custom_commands
), job_yml)
directory <- deployment$directory
scope_setup_py(directory)
setwd(dirname(directory))
cloudml_version <- cloudml$trainingInput$runtimeVersion %||% "1.9"
if (utils::compareVersion(cloudml_version, "1.4") < 0)
stop("CloudML version ", cloudml_version, " is unsupported, use 1.4 or newer.")
arguments <- (MLArgumentsBuilder(gcloud)
("jobs")
("submit")
("training")
(id)
("--job-dir=%s", file.path(storage, "staging"))
("--package-path=%s", basename(directory))
("--module-name=%s.cloudml.deploy", basename(directory))
("--runtime-version=%s", cloudml_version)
("--region=%s", region)
("--config=%s/%s", "cloudml-model", cloudml_file)
("--")
("Rscript"))
gcloud_exec(args = arguments(), echo = FALSE, dry_run = dry_run)
arguments <- (MLArgumentsBuilder(gcloud)
("jobs")
("describe")
(id))
output <- gcloud_exec(args = arguments(), echo = FALSE, dry_run = dry_run)
stdout <- output$stdout
stderr <- output$stderr
template <- c(
"Job '%1$s' successfully submitted.",
"%2$s",
"Check job status with: job_status(\"%1$s\")",
"",
"Collect job output with: job_collect(\"%1$s\")",
"",
"After collect, view with: view_run(\"runs/%1$s\")",
""
)
rendered <- sprintf(paste(template, collapse = "\n"), id, stderr)
message(rendered)
description <- yaml::yaml.load(stdout)
job <- cloudml_job("train", id, description)
register_job(job)
if (dry_run) collect <- FALSE
if (identical(collect, "ask")) {
if (interactive()) {
if (have_rstudio_terminal())
response <- readline("Monitor and collect job in RStudio Terminal? [Y/n]: ")
else
response <- readline("Wait and collect job when completed? [Y/n]: ")
collect <- !nzchar(response) || (tolower(response) == 'y')
} else {
collect <- FALSE
}
}
destination <- file.path(application, "runs")
if (collect) {
if (have_rstudio_terminal()) {
job_collect_async(
job,
gcloud,
destination = destination,
view = identical(rstudioapi::versionInfo()$mode, "desktop")
)
} else {
job_collect(
job,
destination = destination,
view = interactive()
)
}
}
invisible(job)
}
job_cancel <- function(job = "latest") {
gcloud <- gcloud_config()
job <- as.cloudml_job(job)
arguments <- (MLArgumentsBuilder(gcloud)
("jobs")
("cancel")
(job))
gcloud_exec(args = arguments(), echo = FALSE)
}
job_list <- function(filter = NULL,
limit = NULL,
page_size = NULL,
sort_by = NULL,
uri = FALSE)
{
gcloud <- gcloud_config()
arguments <- (
MLArgumentsBuilder(gcloud)
("jobs")
("list")
("--filter=%s", filter)
("--limit=%i", as.integer(limit))
("--page-size=%i", as.integer(page_size))
("--sort-by=%s", sort_by)
(if (uri) "--uri"))
output <- gcloud_exec(args = arguments(), echo = FALSE)
if (!uri) {
output_tmp <- tempfile()
writeLines(output$stdout, output_tmp)
jobs <- utils::read.table(output_tmp, header = TRUE, stringsAsFactors = FALSE)
jobs$CREATED <- as.POSIXct(jobs$CREATED, format = "%Y-%m-%dT%H:%M:%S", tz = "GMT")
output <- jobs
}
output
}
job_stream_logs <- function(job = "latest",
polling_interval = getOption("cloudml.stream_logs.polling", 5),
task_name = NULL,
allow_multiline_logs = FALSE)
{
gcloud <- gcloud_config()
job <- as.cloudml_job(job)
arguments <- (
MLArgumentsBuilder(gcloud)
("jobs")
("stream-logs")
(job$id)
("--polling-interval=%i", as.integer(polling_interval))
("--task-name=%s", task_name))
if (allow_multiline_logs)
arguments("--allow-multiline-logs")
gcloud_exec(args = arguments(), echo = TRUE)
invisible(NULL)
}
job_status <- function(job = "latest") {
gcloud <- gcloud_config()
job <- as.cloudml_job(job)
arguments <- (MLArgumentsBuilder(gcloud)
("jobs")
("describe")
(job))
output <- gcloud_exec(args = arguments(), echo = FALSE)
status <- yaml::yaml.load(paste(output$stdout, collapse = "\n"))
class(status) <- "cloudml_job_status"
attr(status, "messages") <- output$stderr
status
}
print.cloudml_job_status <- function(x, ...) {
x$trainingInput$args <- NULL
x$trainingInput$packageUris <- NULL
x$trainingInput$pythonModule <- NULL
str(x, give.attr = FALSE, no.list = TRUE)
trials_data <- job_trials(x)
if (!is.null(trials_data)) {
cat("\n")
cat("Hyperparameter Trials:\n")
print(trials_data)
}
cat(attr(x, "messages"), "\n")
}
job_trials <- function(x) {
UseMethod("job_trials")
}
job_trials_from_status <- function(status) {
if (is.null(status$trainingOutput) || is.null(status$trainingOutput$trials))
return(NULL)
df <- do.call("rbind", lapply(status$trainingOutput$trials, as.data.frame, stringsAsFactors = FALSE))
for(col in colnames(df)) {
is_numeric <- suppressWarnings(
!any(is.na( as.numeric(df[[col]])))
)
if (is_numeric) {
df[[col]] <- as.numeric(df[[col]])
}
}
df
}
job_trials.default <- function(x = NULL) {
if (is.null(x))
job_trials("latest")
else
stop("no applicable method for 'job_trials' to an object of class ",
class(x)[[1]])
}
job_trials.character <- function(x) {
status <- job_status(x)
job_trials_from_status(status)
}
job_trials.cloudml_job <- function(x) {
job_trials_from_status(x$description)
}
job_trials.cloudml_job_status <- function(x) {
job_trials_from_status(x)
}
job_validate_trials <- function(trials) {
if (!is.null(trials)) {
if (!is.numeric(trials) && !trials %in% c("best", "all"))
stop("The 'trials' parameter must be numeric, 'best' or 'all'.")
}
}
job_collect <- function(job = "latest",
trials = "best",
destination = "runs",
timeout = NULL,
view = interactive()) {
gcloud <- gcloud_config()
job <- as.cloudml_job(job)
id <- job$id
job_validate_trials(trials)
write_status <- function(status, time) {
fmt <- ">>> [state: %s; last updated %s]"
msg <- sprintf(fmt, status$state, time)
whitespace <- ""
width <- getOption("width")
if (nchar(msg) < width)
whitespace <- paste(rep("", width - nchar(msg)), collapse = " ")
output <- paste0("\r", msg, whitespace)
cat(output, sep = "")
}
status <- job_status(job)
time <- Sys.time()
if (status$state %in% c("SUCCEEDED", "FAILED")) {
return(job_download_multiple(
job,
trial = trials,
destination = destination,
view = view,
status = status)
)
}
fmt <- ">>> Job '%s' is currently running -- please wait...\n"
printf(fmt, id)
write_status(status, time)
start_time <- Sys.time()
repeat {
status <- job_status(job)
time <- Sys.time()
write_status(status, time)
if (status$state %in% c("SUCCEEDED", "FAILED")) {
printf("\n")
return(job_download_multiple(job,
trial = trials,
destination = destination,
view = view,
gcloud = gcloud,
status = status))
}
Sys.sleep(30)
if (!is.null(timeout) && time - start_time > timeout * 60)
stop("Giving up after ", timeout, " minutes with job in status ", status$state)
}
stop("failed to receive job outputs")
}
job_collect_async <- function(
job,
gcloud = NULL,
destination = "runs",
polling_interval = getOption("cloudml.stream_logs.polling", 5),
view = interactive()
) {
if (!have_rstudio_terminal())
stop("job_collect_async requires a version of RStudio with terminals (>= v1.1)")
gcloud <- gcloud_config()
job <- as.cloudml_job(job)
id <- job$id
log_arguments <- (MLArgumentsBuilder(gcloud)
("jobs")
("stream-logs")
(id)
("--polling-interval=%i", as.integer(polling_interval)))
gcloud_quoted <- gcloud_binary()
if (.Platform$OS.type == "windows")
gcloud_quoted <- shQuote(gcloud_quoted)
terminal_steps <- c(
paste(gcloud_quoted, paste(log_arguments(), collapse = " "))
)
destination <- normalizePath(destination, mustWork = FALSE)
if (!job_is_tuning(job)) {
terminal_steps <- c(terminal_steps, collect_job_step(destination, job$id))
if (view)
terminal_steps <- c(terminal_steps, view_job_step(destination, job$id))
}
else {
terminal_steps <- c(
terminal_steps,
paste("echo \"\""),
paste(
"echo \"To collect this job, run from R: job_collect('",
job$id,
"')\"",
sep = ""
)
)
}
gcloud_terminal(terminal_steps, clear = TRUE)
}
job_download <- function(job,
trial = "best",
destination = "runs",
view = interactive(),
gcloud) {
status <- job_status(job)
trial_paths <- job_status_trial_dir(status, destination, trial, job)
source <- trial_paths$source
destination <- trial_paths$destination
if (!is_gs_uri(source)) {
fmt <- "job directory '%s' is not a Google Storage URI"
stopf(fmt, source)
}
message(sprintf("Downloading job from %s...", source))
result <- gsutil_exec("ls", source)
if (result$status != 0) {
fmt <- "no directory at path '%s'"
stopf(fmt, source)
}
ensure_directory(destination)
gs_copy(source, destination, TRUE, echo = TRUE)
run_dir <- destination
as_date <- function(x) {
tryCatch(as.double(as.POSIXct(x,
tz = "GMT",
format = "%Y-%m-%dT%H:%M:%SZ")),
error = function(e) NULL)
}
properties <- list()
properties$cloudml_job <- status$jobId
properties$cloudml_state <- status$state
properties$cloudml_error <- status$errorMessage
properties$cloudml_created <- as_date(status$createTime)
properties$cloudml_start <- as_date(status$startTime)
properties$cloudml_end <- as_date(status$endTime)
properties$cloudml_ml_units <- status$trainingOutput$consumedMLUnits
properties$cloudml_master_type <- status$trainingInput$masterType
messages <- trimws(strsplit(attr(status, "messages"), "\n")[[1]])
messages <- messages[grepl("^https://.*$", messages)]
for (message in messages) {
if (startsWith(message, "https://console.cloud.google.com/ml/jobs/"))
properties$cloudml_console_url <- message
else if (startsWith(message, "https://console.cloud.google.com/logs"))
properties$cloudml_log_url <- message
}
tfruns::write_run_metadata("properties", properties, run_dir)
if (isTRUE(view) && trial != "all")
tfruns::view_run(run_dir)
else if (view == "save")
tfruns::save_run_view(run_dir, file.path(run_dir, "tfruns.d", "view.html"))
invisible(status)
}
job_list_trials <- function(status) {
as.numeric(sapply(status$trainingOutput$trials, function(e) e$trialId))
}
job_download_multiple <- function(job, trial, destination, view, gcloud, status) {
if (length(trial) <= 1 && trial != "all")
job_download(job, trial, destination, view, gcloud)
else {
if (identical(trial, "all")) trial <- job_list_trials(status)
lapply(trial, function(t) {
job_download(job, t, destination, FALSE, gcloud)
})
}
}
job_output_dir <- function(job) {
job <- as.cloudml_job(job)
storage <- dirname(job$description$trainingInput$jobDir)
output_path <- file.path(storage, "runs", job$id)
if (job_is_tuning(job) && !is.null(job$trainingOutput$finalMetric)) {
output_path <- file.path(output_path, job$trainingOutput$finalMetric$trainingStep)
}
output_path
}
job_status_trial_dir <- function(status, destination, trial, job) {
storage <- dirname(status$trainingInput$jobDir)
output_path <- list(
source = file.path(storage, "runs", status$jobId, "*", fsep = "/"),
destination = file.path(destination, status$jobId)
)
if (!is.null(trial) && job_is_tuning(job)) {
trial_digits_format <- paste0("%0", nchar(max(job_list_trials(status))), "d")
trial_parent <- file.path(storage, "runs", status$jobId)
if (trial == "best") {
if (job_status_is_tuning(status) && !is.null(status$trainingInput$hyperparameters$goal)) {
if (length(status$trainingOutput$trials) == 0) {
stop("Job contains no output trials.")
}
if (is.null(status$trainingOutput$trials[[1]]$finalMetric)) {
stop(
"Job is missing final metrics to retrieve best trial, ",
"consider using 'all' or an specific trial instead."
)
}
decreasing <- if (status$trainingInput$hyperparameters$goal == "MINIMIZE") FALSE else TRUE
ordered <- order(sapply(status$trainingOutput$trials, function(e) e$finalMetric$objectiveValue), decreasing = decreasing)
if (length(ordered) > 0) {
best_trial <- as.numeric(status$trainingOutput$trials[[ordered[[1]]]]$trialId)
output_path <- list(
source = file.path(trial_parent, best_trial, "*"),
destination = file.path(
destination,
paste(
status$jobId,
sprintf(trial_digits_format, best_trial),
sep = "-"
)
)
)
}
}
}
else if (is.numeric(trial)) {
output_path <- list(
source = file.path(trial_parent, trial, "*"),
destination = file.path(
destination,
paste(
status$jobId,
sprintf(trial_digits_format, trial),
sep = "-"
)
)
)
}
}
output_path
}
job_is_tuning <- function(job) {
!is.null(job$description$trainingInput$hyperparameters)
}
job_status_is_tuning <- function(status) {
identical(status$trainingOutput$isHyperparameterTuningJob, TRUE)
}
collect_job_step <- function(destination, jobId) {
r_job_step(paste0(
"cloudml::job_collect('",
jobId,
"', destination = '",
normalizePath(destination,
winslash = "/",
mustWork = FALSE),
"', view = 'save')"
))
}
view_job_step <- function(destination, jobId) {
r_job_step(paste0(
"utils::browseURL('",
file.path(normalizePath(destination, winslash = "/", mustWork = FALSE), jobId, "tfruns.d", "view.html"),
"')"
))
}
r_job_step <- function(command) {
paste(
paste0("\"", file.path(R.home("bin"), "Rscript"), "\""),
"-e",
paste0("\"", command ,"\"")
)
} |
geom_point_s <- function(mapping = NULL, data = NULL,
stat = "identity", position = "identity",
...,
nudge_x = 0,
nudge_y = 0,
arrow = NULL,
add.segments = TRUE,
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
if (!missing(nudge_x) || !missing(nudge_y)) {
if (!missing(position)) {
rlang::abort("You must specify either `position` or `nudge_x`/`nudge_y`.")
}
position <-
position_nudge_center(nudge_x, nudge_y,
kept.origin = ifelse(add.segments,
"original", "none"))
}
layer(
data = data,
mapping = mapping,
stat = stat,
geom = GeomPointS,
position = position,
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
add.segments = add.segments,
arrow = arrow,
na.rm = na.rm,
...
)
)
}
GeomPointS <-
ggplot2::ggproto("GeomPointS", Geom,
required_aes = c("x", "y"),
non_missing_aes = c("size", "shape", "colour"),
default_aes = ggplot2::aes(
shape = 19,
colour = "black",
size = 1.5,
fill = NA,
alpha = NA,
stroke = 0.5,
segment.linetype = 1,
segment.colour = "grey33",
segment.size = 0.5,
segment.alpha = 1
),
draw_panel = function(data,
panel_params,
coord,
na.rm = FALSE,
arrow = NULL,
add.segments = FALSE) {
if (is.character(data$shape)) {
data$shape <- ggplot2::translate_shape_string(data$shape)
}
if (nrow(data) == 0L) {
return(nullGrob())
}
add.segments <- add.segments && all(c("x_orig", "y_orig") %in% colnames(data))
coords <- coord$transform(data, panel_params)
if (add.segments) {
data_orig <- data.frame(x = data$x_orig, y = data$y_orig)
data_orig <- coord$transform(data_orig, panel_params)
}
if(add.segments) {
ggname("geom_point_s",
grid::grobTree(
grid::segmentsGrob(
x0 = data_orig$x,
y0 = data_orig$y,
x1 = coords$x,
y1 = coords$y,
arrow = arrow,
gp = grid::gpar(col = ggplot2::alpha(coords$segment.colour,
coords$segment.alpha))
),
grid::pointsGrob(
coords$x, coords$y,
pch = coords$shape,
gp = gpar(
col = alpha(coords$colour, coords$alpha),
fill = alpha(coords$fill, coords$alpha),
fontsize = coords$size * .pt + coords$stroke * .stroke / 2,
lwd = coords$stroke * .stroke / 2
)
)
)
)
} else {
ggname("geom_point_s",
grid::pointsGrob(
coords$x, coords$y,
pch = coords$shape,
gp = gpar(
col = alpha(coords$colour, coords$alpha),
fill = alpha(coords$fill, coords$alpha),
fontsize = coords$size * .pt + coords$stroke * .stroke / 2,
lwd = coords$stroke * .stroke / 2
)
)
)
}
},
draw_key = ggplot2::draw_key_point
)
translate_shape_string <- function(shape_string) {
if (nchar(shape_string[1]) <= 1) {
return(shape_string)
}
pch_table <- c(
"square open" = 0,
"circle open" = 1,
"triangle open" = 2,
"plus" = 3,
"cross" = 4,
"diamond open" = 5,
"triangle down open" = 6,
"square cross" = 7,
"asterisk" = 8,
"diamond plus" = 9,
"circle plus" = 10,
"star" = 11,
"square plus" = 12,
"circle cross" = 13,
"square triangle" = 14,
"triangle square" = 14,
"square" = 15,
"circle small" = 16,
"triangle" = 17,
"diamond" = 18,
"circle" = 19,
"bullet" = 20,
"circle filled" = 21,
"square filled" = 22,
"diamond filled" = 23,
"triangle filled" = 24,
"triangle down filled" = 25
)
shape_match <- charmatch(shape_string, names(pch_table))
invalid_strings <- is.na(shape_match)
nonunique_strings <- shape_match == 0
if (any(invalid_strings)) {
bad_string <- unique(shape_string[invalid_strings])
n_bad <- length(bad_string)
collapsed_names <- sprintf("\n* '%s'", bad_string[1:min(5, n_bad)])
more_problems <- if (n_bad > 5) {
sprintf("\n* ... and %d more problem%s", n_bad - 5, ifelse(n_bad > 6, "s", ""))
} else {
""
}
stop(paste("Can't find shape name:", collapsed_names, more_problems))
}
if (any(nonunique_strings)) {
bad_string <- unique(shape_string[nonunique_strings])
n_bad <- length(bad_string)
n_matches <- vapply(
bad_string[1:min(5, n_bad)],
function(shape_string) sum(grepl(paste0("^", shape_string), names(pch_table))),
integer(1)
)
collapsed_names <- sprintf(
"\n* '%s' partially matches %d shape names",
bad_string[1:min(5, n_bad)], n_matches
)
more_problems <- if (n_bad > 5) {
sprintf("\n* ... and %d more problem%s", n_bad - 5, ifelse(n_bad > 6, "s", ""))
} else {
""
}
stop(paste("Shape names must be unambiguous:", collapsed_names, more_problems))
}
unname(pch_table[shape_match])
} |
pair_extremes <- function(data,
col = NULL,
unequal_method = "middle",
num_pairings = 1,
balance = "mean",
order_by_aggregates = FALSE,
shuffle_members = FALSE,
shuffle_pairs = FALSE,
factor_name = ifelse(num_pairings == 1, ".pair", ".pairing"),
overwrite = FALSE) {
extreme_pairing_rearranger_(
data = data,
col = col,
unequal_method = unequal_method,
num_pairings = num_pairings,
balance = balance,
order_by_aggregates = order_by_aggregates,
shuffle_members = shuffle_members,
shuffle_pairs = shuffle_pairs,
factor_name = factor_name,
overwrite = overwrite
)
}
pair_extremes_vec <- function(data,
unequal_method = "middle",
num_pairings = 1,
balance = "mean",
order_by_aggregates = FALSE,
shuffle_members = FALSE,
shuffle_pairs = FALSE){
checkmate::assert(checkmate::check_vector(data, strict = TRUE),
checkmate::check_factor(data))
pair_extremes(
data = data,
unequal_method = unequal_method,
num_pairings = num_pairings,
balance = balance,
order_by_aggregates = order_by_aggregates,
shuffle_members = shuffle_members,
shuffle_pairs = shuffle_pairs,
factor_name = NULL,
overwrite = TRUE
)
} |
calc.outbreakP.statistic <- function(x) {
n <- length(x)
x <- c(0,x)
leftl <- numeric(n+1)
y <- numeric(n+1)
yhat <- numeric(n+1)
sumwy <- numeric(n+1)
sumwys <- numeric(n+1)
sumw <- numeric(n+1)
w <- numeric(n+1)
meanl <- numeric(n+1)
xbar <- 0
meanl[1] = -Inf
leftl[1] = 0
for (i in 1:n) {
yhat[i+1] <- x[i+1]
sumwy[i+1] <- x[i+1]
sumw[i+1] <- 1
meanl[i+1] <- x[i+1]
leftl[i+1] <- i
xbar=xbar+(x[i+1]-xbar)/i
while (meanl[i+1] <= meanl[ (leftl[i+1] - 1) + 1]) {
sumwy[i+1] = sumwy[i+1] + sumwy[(leftl[i+1] - 1)+1]
sumw[i+1] = sumw[i+1] + sumw[(leftl[i+1] - 1)+1]
meanl[i+1] = sumwy[i+1] / sumw[i+1]
leftl[i+1] = leftl[(leftl[i+1] - 1)+1]
}
for (j in leftl[i+1]:i) {
yhat[j+1] = meanl[i+1]
}
}
alarm.stat <- 1
for (j in seq_len(n)) {
div <- ifelse(yhat[j+1]==0 & xbar==0, 1, yhat[j+1]/xbar)
alarm.stat <- alarm.stat * (div)^x[j+1]
}
return(alarm.stat)
}
algo.outbreakP <- function(disProgObj, control = list(range = range, k=100, ret=c("cases","value"),maxUpperboundCases=1e5)) {
if(is.null(control[["k",exact=TRUE]]))
control$k <- 100
if(is.null(control[["maxUpperboundCases",exact=TRUE]]))
control$maxUpperboundCases <- 1e5
control$ret <- match.arg(control$ret, c("value","cases"))
alarm <- matrix(data = 0, nrow = length(control$range), ncol = 1)
upperbound <- matrix(data = 0, nrow = length(control$range), ncol = 1)
observed <- disProgObj$observed
count <- 1
for(i in control$range) {
statistic <- calc.outbreakP.statistic( observed[seq_len(i)] )
alarm[count] <- statistic > control$k
if (control$ret == "cases") {
if (i<=1) {
upperbound[count] <- ifelse(control$k>=1, NA, 0)
} else {
if (is.nan(statistic)) {
upperbound[count] <- NA
} else {
delta <- ifelse(alarm[count], -1, 1)
observedi <- observed[i]
foundNNBA <- FALSE
while ( ((delta == -1 & observedi > 0) | (delta == 1 & observedi < control$maxUpperboundCases)) & (!foundNNBA)) {
observedi <- observedi + delta
newObserved <- c(observed[seq_len(i-1)],observedi)
statistic <- calc.outbreakP.statistic( newObserved )
if (is.nan(statistic)) {
observedi <- control$maxUpperboundCases
} else {
foundNNBA <- (statistic > control$k) == ifelse(alarm[count],FALSE,TRUE)
}
}
upperbound[count] <- ifelse( foundNNBA, observedi + ifelse(alarm[count],1,0), NA)
}
}
} else {
upperbound[count] <- statistic
}
count <- count + 1
}
control$name <- paste("outbreakP(",control$k,")",sep="")
control$data <- paste(deparse(substitute(disProgObj)))
result <- list(alarm = alarm, upperbound = upperbound, disProgObj=disProgObj, control=control)
class(result) = "survRes"
return(result)
} |
ci.sc <- function(means=NULL, s.anova=NULL, c.weights=NULL, n=NULL, N=NULL,
Psi=NULL, ncp=NULL, conf.level=.95, alpha.lower=NULL, alpha.upper=NULL, df.error=NULL, ...)
{
if(!identical(sum(c.weights[c.weights>0]), 1)) stop("Please use fractions to specify the contrast weights")
if(!identical(round(sum(c.weights), 5), 0)) stop("The sum of the contrast weights ('c.weights') should equal zero.")
if(length(n)==1)
{
n <- rep(n, length(means))
}
if(length(n)!=length(c.weights)) stop("The lengths of 'n' and 'c.weights' differ, which should not be the case.")
part.of.se <- sqrt(sum((c.weights^2)/n))
if(!is.null(Psi))
{
if(!is.null(means)) stop("Since the contrast effect ('Psi') was specified, you should not specify the vector of means ('means').")
if(!is.null(ncp)) stop("Since the contrast effect ('Psi') was specified, you should not specify the noncentral parameter ('ncp').")
if(is.null(s.anova)) stop("You must specify the standard deviation of the errors (i.e., the square root of the error variance).")
if(is.null(n)) stop("You must specify the vector per group/level sample size ('n').")
if(is.null(c.weights)) stop("You must specify the vector of contrast weights ('c.weights').")
psi <- Psi/s.anova
lambda <- psi/part.of.se
}
if(!is.null(ncp))
{
if(!is.null(means)) stop("Since the noncentral parameter was specified directly, you should not specify the vector of means ('means').")
if(!is.null(Psi)) stop("Since the noncentral parameter was specified directly, you should not specify the the contrast effect ('Psi').")
if(is.null(s.anova)) stop("You must specify the standard deviation of the errors (i.e., the square root of the error variance).")
if(is.null(n)) stop("You must specify the vector per group/level sample size ('n').")
if(is.null(c.weights)) stop("You must specify the vector of contrast weights ('c.weights'.")
lambda <- ncp
}
if(!is.null(means))
{
Psi <- sum(c.weights*means)
psi <- Psi/s.anova
lambda <- psi/part.of.se
}
if(is.null(alpha.lower) & is.null(alpha.upper))
{
alpha.lower <- (1-conf.level)/2
alpha.upper <- (1-conf.level)/2
}
if(is.null(N)) stop("You must specify the total sample size ('N').")
if(is.null(df.error)) df.2 <- N - length(means)
if(!is.null(df.error)) df.2 <- df.error
Lims <- conf.limits.nct(ncp=lambda, df=df.2, conf.level = NULL, alpha.lower = alpha.lower,
alpha.upper = alpha.upper, sup.int.warns=TRUE, method = "all", ...)
Result <- list(Lower.Conf.Limit.Standardized.Contrast = Lims$Lower.Limit*part.of.se, Standardized.contrast = psi,
Upper.Conf.Limit.Standardized.Contrast = Lims$Upper.Limit*part.of.se)
return(Result)
} |
doc <- '
Usage: install [ --install-program INSTALL ] [ --prefix PREFIX ]
Options:
--install-program INSTALL `install` program to use [Default: install]
--prefix PREFIX Installation prefix [Default: /usr]
'
ARGS <- docopt::docopt(doc, strip_names=TRUE)
system(paste(ARGS$`install-program`, "minionqc", paste0(ARGS$prefix, "/bin/"), sep=" ")) |
expected <- FALSE
test(id=0, code={
argv <- list(2L, TRUE, FALSE, FALSE)
do.call('switch', argv);
}, o = expected); |
carto.pal <- function(pal1, n1, pal2 = NULL, n2 = NULL, middle = FALSE,
transparency = FALSE){
alphainit <- 30
alpha <- "FF"
middlecol <- "
if(is.null(pal2) & is.null(n2)){
pal<-as.character(unlist(cartography.colors[[pal1]][n1]))
if(transparency == TRUE){
for ( i in 1:n1-1) {
alpha <- as.hexmode(floor(alphainit+(255-alphainit)/n1*i))
pal[i] <- paste(pal[i],alpha,sep="")
}
alpha <- as.hexmode(alphainit)
}
}
if(!is.null(pal2) & !is.null(n2)){
n <- max(n1,n2)
pal1 <- as.character(unlist(cartography.colors[[pal1]][n]))
pal2 <- as.character(unlist(cartography.colors[[pal2]][n]))
if(transparency==TRUE){
for ( i in 1:n-1) {
alpha <- as.hexmode(floor(alphainit+(255-alphainit)/n*i))
pal1[i] <- paste(pal1[i],alpha,sep="")
pal2[i] <- paste(pal2[i],alpha,sep="")
}
alpha <- as.hexmode(alphainit)
}
pal1 <- pal1[1:n1]
pal1 <- rev(pal1)
pal2 <- pal2[1:n2]
pal <- c(pal1,pal2)
if(middle){pal <- c(pal1,paste(middlecol,alpha,sep=""),pal2)}
}
return(pal)
}
carto.pal.info <- function(){
names(cartography.colors)
}
display.carto.pal<-function(name)
{
old.par <- par(no.readonly = TRUE)
par(mfrow=c(5,4))
par(mar=c(0.2, 0.2, 1, 0.2), xaxs='i', yaxs='i')
for ( i in 1:20) {
mypal <- carto.pal(name,i)
k<-length(mypal)
image(1:k, 1, as.matrix(1:k), col = mypal,
xlab = paste(k," classes",sep=""),
ylab = "", xaxt = "n", yaxt = "n",bty = "n")
if (i==1){cl <- "classe"}else{cl <- "classes"}
title(paste(i,cl,sep=" "))
}
par(old.par)
}
display.carto.all <- function(n = 10)
{
nbpal <- length(cartography.colors)
ncol <- 2
nrow <- round(nbpal/ncol+0.1)
old.par <- par(no.readonly = TRUE)
par(mfrow=c(nrow,ncol))
par(mar=c(0.2, 0.2, 1, 0.2), xaxs='i', yaxs='i')
for ( i in 1:nbpal) {
pal <- names(cartography.colors)[i]
mypal <- carto.pal(pal,n)
k<-length(mypal)
image(1:k, 1, as.matrix(1:k), col =mypal,
xlab = paste(k," classes",sep=""),
ylab = "", xaxt = "n", yaxt = "n",bty = "n")
title(names(cartography.colors)[i])
}
par(old.par)
} |
summary.trial.fi <- function(object,se=TRUE,N=TRUE,fittedmodel=NULL,...){
model <- object
avgp <- function(model,pdot,...){return(pdot)}
newdat <- model$data
newdat <- newdat[newdat$distance <= model$meta.data$width &
newdat$distance >= model$meta.data$left, ]
n <- length(newdat$distance)/2
timesdetected <- newdat$detected[newdat$observer == 1] +
newdat$detected[newdat$observer == 2]
n1 <- length(newdat$distance[newdat$observer == 1 & newdat$detected == 1])
n2 <- length(newdat$distance[newdat$observer == 2 & newdat$detected == 1])
n3 <- sum(timesdetected == 2)
newdat <- newdat[newdat$observer == 1 & newdat$detected == 1, ]
newdat$distance <- rep(0,length(newdat$distance))
pred.at0 <- predict(model$mr,newdat,type="response")
if(is.null(fittedmodel)){
Nhat <- model$Nhat
pdot <- model$fitted
}else{
pdot <- fittedmodel$fitted
Nhat <- fittedmodel$Nhat
}
average.p0.1 <- sum(avgp(model,pred.at0)/pdot)
ans <- list(n = n,
n1 = n1,
n2 = n2,
n3 = n3,
average.p0.1 = average.p0.1/Nhat,
cond.det.coef = coef(model),
aic = model$criterion)
if(N){
ans$average.p <- n1/Nhat
ans$Nhat <- Nhat
}
if(se){
if(N | is.null(fittedmodel)){
se.obj <- calc.se.Np(model, avgp, n, ans$average.p)
ans$average.p.se <- se.obj$average.p.se
ans$Nhat.se <- se.obj$Nhat.se
cvN <- se.obj$Nhat.se/Nhat
Nhatvar.list <- se.obj$Nhatvar.list
vcov <- se.obj$vcov
}
if(!is.null(fittedmodel)){
Nhat <- fittedmodel$Nhat
vcov <- solvecov(fittedmodel$hessian)$inv
Nhatvar.list <- DeltaMethod(fittedmodel$par,NCovered,vcov,.001,
model=fittedmodel,group=TRUE)
Nhatvar <- Nhatvar.list$variance + sum((1-fittedmodel$fitted)/
fittedmodel$fitted^2)
cvN <- sqrt(Nhatvar)/Nhat
}
if(is.null(fittedmodel)){
var.pbar.list <- prob.se(model,avgp,vcov,fittedmodel=NULL)
}else{
var.pbar.list <- prob.se(model,avgp,vcov,fittedmodel=fittedmodel)
}
covar <- t(Nhatvar.list$partial) %*% vcov %*% var.pbar.list$partial +
var.pbar.list$covar
var.pbar <- ans$average.p0.1^2*(cvN^2 + var.pbar.list$var/average.p0.1^2
- 2*covar/(average.p0.1*Nhat))
ans$average.p0.1.se <- sqrt(var.pbar)
}
class(ans) <- "summary.trial.fi"
ans$mono <- model$ds$aux$mono
ans$mono.strict <- model$ds$aux$mono.strict
return(ans)
} |
print.rwty.chain <- function(x, ...){
print(summary(x))
} |
.get_dot_data <- function(dat, dots, verbose = TRUE) {
if (!is.data.frame(dat) || length(dots) == 0) {
return(dat)
}
columns <- colnames(dat)
x <- unlist(lapply(dots, function(i) {
if (grepl("^contains\\(", i)) {
pattern <- gsub("contains\\(\"(.*)\"\\)", "\\1", i)
columns[string_contains(pattern, columns)]
} else if (grepl("^starts\\(", i) || grepl("^starts_with\\(", i)) {
pattern <- gsub("(.*)\\(\"(.*)\"\\)", "\\2", i)
columns[string_starts_with(pattern, columns)]
} else if (grepl("^ends\\(", i) || grepl("^ends_with\\(", i)) {
pattern <- gsub("(.*)\\(\"(.*)\"\\)", "\\2", i)
columns[string_ends_with(pattern, columns)]
} else if (grepl("^one_of\\(", i)) {
pattern <- gsub("(\"|\\s)", "", unlist(strsplit(gsub("one_of\\(\"(.*)\"\\)", "\\1", i), ",")))
columns[string_one_of(pattern, columns)]
} else if (grepl("^num_range\\(", i)) {
columns[match(.get_num_range(i), columns)]
} else if (grepl(":", i, fixed = TRUE)) {
tmp <- unlist(strsplit(i, ":", fixed = TRUE))
start <- if (.is_num_chr(tmp[1]))
as.numeric(tmp[1])
else
which(columns == tmp[1])
end <- if (.is_num_chr(tmp[2]))
as.numeric(tmp[2])
else
which(columns == tmp[2])
columns[start:end]
} else {
i
}
}))
x <- unlist(lapply(x, function(i) {
if (.is_num_chr(i))
columns[as.numeric(i)]
else if (.is_num_fac(i))
columns[as.numeric(as.character(i))]
else
i
}))
not_found <- setdiff(x, columns)
if (length(not_found) && isTRUE(verbose)) {
insight::print_color(sprintf(
"%i variables were not found in the dataset: %s\n",
length(not_found),
paste0(not_found, collapse = ", ")
),
color = "red")
}
dat[, intersect(x, columns), drop = FALSE]
}
.is_num_chr <- function(x) {
is.character(x) && !anyNA(suppressWarnings(as.numeric(stats::na.omit(x))))
}
.is_num_fac <- function(x) {
is.factor(x) && !anyNA(suppressWarnings(as.numeric(levels(x))))
}
.get_num_range <- function(i) {
r1 <- trimws(unlist(strsplit(gsub("num_range\\((.*)\\)", "\\1", i), ",")))
r2 <- gsub("\"", "", trimws(gsub("(.*)(=)(.*)", "\\3", r1)), fixed = TRUE)
es <- grepl("=", r1)
if (any(es)) {
names(r2)[es] <- trimws(gsub("(.*)(=)(.*)", "\\1", r1[es]))
}
args <- c("prefix", "range", "width")
if (is.null(names(r2))) {
names(r2) <- args[1:length(r2)]
}
na_names <- which(is.na(names(r2)))
if (length(na_names)) {
names(r2)[na_names] <- args[na_names]
}
if (length(r2) > 3) {
r2 <- r2[1:3]
}
from <- as.numeric(gsub("(\\d):(.*)", "\\1", r2["range"]))
to <- as.numeric(gsub("(.*):(\\d)", "\\2", r2["range"]))
width <- as.numeric(r2["width"])
if (is.na(width)) {
sprintf("%s%i", r2["prefix"], from:to)
} else {
sprintf("%s%.*i", r2["prefix"], width, from:to)
}
} |
sqrt_matrix <- function( V, tol = 1e-06 ){
if ( missing( V ) )
stop('`V` is missing!')
obj <- eigen( V )
eigenvals <- obj$values
eigenvecs <- obj$vectors
if ( any( eigenvals < -tol * abs( eigenvals[ 1L ] ) ) )
stop("'V' is not positive definite")
eigenvals[ eigenvals < 0 ] <- 0
V_sqrt <- eigenvecs %*% diag( sqrt( eigenvals ) )
return( V_sqrt )
} |
mmgroupedplot <- function(stat.data, map.data,
panel.types, panel.data,
map.link=NULL,
nPanels=length(panel.types),
grp.by, cat,
colors=brewer.pal(10, "Spectral"),
map.color='lightyellow',
map.all=FALSE,
print.file='no', print.res=NA,
panel.att=vector("list", nPanels),
plot.header=NA,
plot.header.size=NA,
plot.header.color=NA,
plot.footer=NA,
plot.footer.size=NA,
plot.footer.color=NA,
plot.width=7,
plot.height=7,
map.spacing=1,
plot.grp.spacing=1,
plot.panel.spacing=1,
plot.panel.margins=c(0,0,1,0)
){
dStats <- stat.data
dMap <- map.data
ncol <- length(unique(stat.data[, cat]))
colors <- colorRampPalette(colors)(ncol)
tPlot.header=plot.header
iPlot.header.size=plot.header.size
tPlot.header.color=plot.header.color
tPlot.footer=plot.footer
iPlot.footer.size=plot.footer.size
tPlot.footer.color=plot.footer.color
pps = plot.panel.spacing*.05
plot.atts <- list(
plot.grp.spacing=plot.grp.spacing*.05,
plot.pGrp.spacing=plot.grp.spacing*.05,
plot.panel.margins=plot.panel.margins,
grp.by=grp.by,
colors=colors,
map.color=map.color,
map.spacing=map.spacing*.025,
plot.width=plot.width,
plot.height=plot.height)
a <- vector("list", nPanels)
for(p in 1:nPanels) {
att.name <- paste(panel.types[p],'_att',sep='')
att.function <- paste(panel.types[p],'_att()',sep='')
if(exists(att.name)) a[[p]] <- eval(parse(text=att.function)) else a[[p]] <- eval(parse(text=standard_att))
}
a <- append(a, plot.atts)
for(j in 1:length(panel.types)) {
a[[j]] <- append(a[[j]], list(panel.data=unlist(panel.data[[j]])))
}
for(j in 1:length(panel.att)){
k <- unlist(panel.att[[j]][1], use.names=FALSE)
for(s in names(panel.att[[j]])[-1]){
w <- match(s, right(names(a[[k]]), nchar(s)))
if(is.na(w)) w <- match(paste('panel.',s,sep=''), names(a[[k]]))
if(!is.na(w)) a[[k]][[w]] <- unlist(panel.att[[j]][s], use.names=FALSE) else print(paste('attribute:',s,'is not recognized for panel',j))
if(!is.null(k)){
w <- match('left.margin', names(a[[k]]))
if(!is.na(w) & !is.na(a[[k]][[w]])) a[[k]]$panel.margins[4] <- a[[k]]$panel.margins[4] + a[[k]][[w]]
w <- match('right.margin', names(a[[k]]))
if(!is.na(w) & !is.na(a[[k]][[w]])) a[[k]]$panel.margins[2] <- a[[k]]$panel.margins[2] + a[[k]][[w]]
}
}
}
DF <- create_DF_cat(dStats, grp.by, cat)
a$median.row <- FALSE
a$two.ended.maps <- FALSE
a$m.pGrp <- (max(DF$pGrp)+1)/2
a$m.rank <- NA
DF.hold <- DF
if(any(panel.types=='map')){
w <- match(dMap[,map.link[2]], unique(DF[,map.link[1]]))
if(!map.all) mapDF <- dMap[!is.na(w),] else mapDF <- dMap
if(!'hole'%in%names(mapDF)) mapDF$hole <- 0
if(!'plug'%in%names(mapDF)) mapDF$plug <- 0
tmpDF <- unique(DF[,c('pGrp', 'pGrpOrd', map.link[1])])
w <- match(mapDF[,map.link[2]], tmpDF[,map.link[1]])
mapDF <- cbind(pGrp=DF[w,'pGrp'], mapDF)
mapDF <- cbind(pGrpOrd=DF$pGrpOrd[w], mapDF)
mapPanelWidth <- as.numeric(a[[which(panel.types=='map')]]$panel.width)
totalUnitWidth = pps * (length(all_atts(a,'panel.width'))+1) + sum(as.numeric(all_atts(a,'panel.width')))
mapPanelHeight <- max(DF$pGrpOrd[!is.na(DF$pGrpOrd)])+.5
totalUnitHeight = max(DF$pGrp[!is.na(DF$pGrp)]) * mapPanelHeight
ns <- max(unlist(lapply(all_atts(a, 'panel.header'), function(x) length(strsplit(x, '\n')[[1]]))))
adj.plot.height <- plot.height -
ns*.2 +
any(!is.na(all_atts(a, 'xaxis.title')))*.1 +
.2 + .5
plot.h2w.ratio <- (mapPanelHeight/totalUnitHeight * adj.plot.height) / (mapPanelWidth/totalUnitWidth * plot.width)
nYrows <- diff(range(mapDF$pGrpOrd[!is.na(mapDF$pGrpOrd)]) + c(-1,1) * .5)
nXcols <- nYrows/plot.h2w.ratio
limitingAxis <- ifelse(diff(range(mapDF$coordsy)) / diff(range(mapDF$coordsx)) >
plot.h2w.ratio, 'y','x')
if(limitingAxis=='y'){
redFact <- diff(range(mapDF$coordsy))/nYrows
mapDF$coordsy <- (mapDF$coordsy - median(range(mapDF$coordsy)))/diff(range(mapDF$coordsy))*nYrows
mapDF$coordsx <- (mapDF$coordsx - median(range(mapDF$coordsx)))/redFact
}
if(limitingAxis=='x'){
redFact <- diff(range(mapDF$coordsx))/nXcols
mapDF$coordsx <- (mapDF$coordsx - median(range(mapDF$coordsx)))/diff(range(mapDF$coordsx))*nXcols
mapDF$coordsy <- (mapDF$coordsy - median(range(mapDF$coordsy)))/redFact
}
a[[which(panel.types=='map')]]$bdrCoordsy <- c(-1,1) * nYrows/2
a[[which(panel.types=='map')]]$bdrCoordsx <- c(-1,1) * nXcols/2
rm(tmpDF, dMap)
}
plots <- vector("list", nPanels)
for(p in 1:nPanels){
if (panel.types[p]=='map'){
plots[[p]] <- CatMaps(plots[[p]], p, mapDF, a)
} else if(exists(as.character(paste(panel.types[p],'_build',sep='')))) {
plots[[p]] <- eval(parse(text=paste(panel.types[p],'_build(plots[[p]], p, DF, a)',sep='')))
} else {
stop(paste("unknown panel type -- '",panel.types[p],"'", sep=''))
}
DF <- DF.hold
}
lwidth <- pps
for(w in 1:length(all_atts(a,'panel.width'))) lwidth <- c(lwidth, all_atts(a,'panel.width')[w], pps)
lmLayout <- grid.layout(nrow = 1, ncol = length(lwidth),
widths = unit(lwidth, rep("null", length(lwidth))),
heights = unit(rep(1, length(lwidth)), rep("null", length(lwidth))))
plots$layout <- lmLayout
plots$plot.width <- plot.width
plots$plot.height <- plot.height
class(plots) <- "mm"
if(print.file=="no") print.file <- NULL
print(plots, name=print.file, res=print.res)
invisible(plots)
} |
set.seed(123)
pm <- cbind( c(.1, .001), c(.001, .05) )
g<-sample_correlated_sbm_pair(10, pref.matrix=pm, block.sizes=c(3,7), corr=0.5,permutation=1:10,directed=TRUE,loops=TRUE)
test_that("number of vertices", {
expect_equal(igraph::vcount(g$graph1),10)
expect_equal(igraph::vcount(g$graph2),10)
})
test_that("number of edges", {
expect_equal(igraph::ecount(g$graph1),2)
expect_equal(igraph::ecount(g$graph2),2)
})
test_that("degree of vertex in each graph", {
expect_equal(igraph::degree(g$graph1),c(0,0,0,1,1,2,0,0,0,0))
expect_equal(igraph::degree(g$graph2),c(0,0,0,1,1,1,0,0,0,1))
})
set.seed(123)
pm <- cbind( c(.1, .001), c(.001, .05) )
g1<-sample_correlated_sbm_pair_w_junk(10, pref.matrix=pm, block.sizes=c(3,7), corr=0.5,core.block.sizes=c(2,5),permutation=1:10,directed=TRUE,loops=TRUE)
test_that("number of vertices", {
expect_equal(igraph::vcount(g1$graph1),10)
expect_equal(igraph::vcount(g1$graph2),10)
})
test_that("number of edges", {
expect_equal(igraph::ecount(g1$graph1),2)
expect_equal(igraph::ecount(g1$graph2),1)
})
test_that("degree of vertex in each graph", {
expect_equal(igraph::degree(g1$graph1),c(0,0,1,0,1,0,0,0,0,2))
expect_equal(igraph::degree(g1$graph2),c(0,0,1,0,0,0,0,0,0,1))
}) |
`plot.cascadeKM` <-
function (x, min.g, max.g, grpmts.plot = TRUE, sortg = FALSE,
gridcol = NA, ...)
{
wrapres <- x
number <- (as.numeric(gsub(" groups", "", colnames(wrapres$results))))
if (missing(min.g))
min.g <- min(number)
if (missing(max.g))
max.g <- max(number)
if (min.g < 2)
min.g = 2
c.min <- which(number == min.g)
c.max <- which(number == max.g)
if (length(c.min) == 0) {
stop("min.g value given has not been calculated by 'cascadeKM'\n")
}
if (length(c.max) == 0) {
stop("max.g value given has not been calculated by 'cascadeKM'\n")
}
x <- wrapres$partition[, c.min:c.max]
w <- wrapres$results[2, c.min:c.max]
criterion <- wrapres$criterion
x <- pregraphKM(x)
if (sortg) {
x <- orderingKM(x)
}
main = (paste("K-means partitions comparison"))
xlab = ("Number of groups in each partition")
ylab = ("Objects")
nc = ncol(x)
colo <- (rainbow(max.g + 1))
if (grpmts.plot) {
def.par <- par(no.readonly = TRUE)
nf <- layout(matrix(c(1, 2), 1, 2), widths = c(3, 1),
TRUE)
par(mar = c(5, 5, 5, 1), bg = "white", col = "black")
image(1:nrow(x), 1:nc, x, col = colo, yaxt = "n", frame.plot = TRUE,
main = main, xlab = ylab, ylab = xlab, bg = NA)
grid(nx = nrow(x), ny = max.g - min.g + 1, col = gridcol)
box()
axis(2, seq(min.g - min.g + 1, max.g - min.g + 1, by = 1),
labels = seq(min.g, max.g, by = 1))
axis(1)
par(mar = c(5, 2, 5, 1))
par(bg = "white", fg = "black", col = "black")
plot(y = min.g:max.g, x = w[1:nc], type = "b", main = paste(criterion,
"\ncriterion", sep = ""), ylab = "", ylim = c(min.g -
0.5, max.g + 0.5), yaxs = "i", yaxt = "n", xlab = "Values")
grid(nx = NULL, ny = max.g - min.g + 1, col = gridcol)
box()
axis(2, seq(min.g, max.g, by = 1), labels = seq(min.g, max.g,
by = 1), col.axis = "black")
axis(1)
maxx = which.max(w[])
minx = which.min(w[])
tops <- which(w[c(2:nc)] - w[c(1:(nc - 1))] > 0) + 1
maxx.o <- NA
if (length(tops) != 0) {
if (length(which(tops > maxx)) != 0)
maxx.o <- tops[which(tops > maxx)]
}
tops <- which(w[c(2:nc)] - w[c(1:(nc - 1))] < 0) + 1
minx.o <- NA
if (length(tops) != 0) {
if (length(which(tops > minx)) != 0)
minx.o <- tops[which(tops > minx)]
}
if (tolower(criterion) == "calinski") {
if (!is.na(maxx.o[1]))
points(y = maxx.o + min.g - 1, x = w[maxx.o],
col = "orange", pch = 19)
points(y = maxx + min.g - 1, x = w[maxx], col = "red",
pch = 19)
}
else if (tolower(criterion) == "likelihood") {
if (!is.na(maxx.o[1])) {
points(y = maxx.o + min.g - 1, x = w[maxx.o],
col = "orange", pch = 19)
}
points(y = maxx + min.g - 1, x = w[maxx], col = "red",
pch = 19)
}
else if (tolower(criterion) == "ssi") {
if (!is.na(maxx.o[1])) {
points(y = maxx.o + min.g - 1, x = w[maxx.o],
col = "orange", pch = 19)
}
points(y = maxx + min.g - 1, x = w[maxx], col = "red",
pch = 19)
}
else {
cat("When using the", criterion, "criterion, no red marker is",
"used to indicate the best value.\n")
}
par(def.par)
}
else {
tops <- which(w[c(2:nc)] - w[c(1:(nc - 1))] > 0) + 1
if (length(tops) != 0) {
maxx <- which.max(w[c(2:nc)] - w[c(1:nc - 1)]) +
1
}
else {
maxx <- which.max(w[])
tops = 1
}
}
out <- list(x = x, best.grps = maxx)
if (grpmts.plot)
invisible(out)
else
out
} |
SAS.ED2.param.Args <- function(decomp_scheme=2,
kh_active_depth = -0.20,
decay_rate_fsc=11,
decay_rate_stsc=4.5,
decay_rate_ssc=0.2,
Lc=0.049787,
c2n_slow=10.0,
c2n_structural=150.0,
r_stsc=0.3,
rh_decay_low=0.24,
rh_decay_high=0.60,
rh_low_temp=18.0+273.15,
rh_high_temp=45.0+273.15,
rh_decay_dry=12.0,
rh_decay_wet=36.0,
rh_dry_smoist=0.48,
rh_wet_smoist=0.98,
resp_opt_water=0.8938,
resp_water_below_opt=5.0786,
resp_water_above_opt=4.5139,
resp_temperature_increase=0.0757,
rh_lloyd_1=308.56,
rh_lloyd_2=1/56.02,
rh_lloyd_3=227.15,
yrs.met=30,
sm_fire=0,
fire_intensity=0,
slxsand=0.33,
slxclay=0.33) {
return(
data.frame(
decomp_scheme = decomp_scheme,
kh_active_depth = kh_active_depth,
decay_rate_fsc = decay_rate_fsc,
decay_rate_stsc = decay_rate_stsc,
decay_rate_ssc = decay_rate_ssc,
Lc = Lc,
c2n_slow = c2n_slow,
c2n_structural = c2n_structural,
r_stsc = r_stsc,
rh_decay_low = rh_decay_low,
rh_decay_high = rh_decay_high,
rh_low_temp = rh_low_temp,
rh_high_temp = rh_high_temp,
rh_decay_dry = rh_decay_dry,
rh_decay_wet = rh_decay_wet,
rh_dry_smoist = rh_dry_smoist,
rh_wet_smoist = rh_wet_smoist,
resp_opt_water = resp_opt_water,
resp_water_below_opt = resp_water_below_opt,
resp_water_above_opt = resp_water_above_opt,
resp_temperature_increase = resp_temperature_increase,
rh_lloyd_1 = rh_lloyd_1,
rh_lloyd_2 = rh_lloyd_2,
rh_lloyd_3 = rh_lloyd_3,
yrs.met = yrs.met,
sm_fire = sm_fire,
fire_intensity = fire_intensity,
slxsand = slxsand,
slxclay = slxclay
)
)
}
calc.slmsts <- function(slxsand, slxclay){
(50.5 - 14.2*slxsand - 3.7*slxclay) / 100.
}
calc.slpots <- function(slxsand, slxclay){
-1. * (10.^(2.17 - 0.63*slxclay - 1.58*slxsand)) * 0.01
}
calc.slbs <- function(slxsand, slxclay){
3.10 + 15.7*slxclay - 0.3*slxsand
}
calc.soilcp <- function(slmsts, slpots, slbs){
soilcp_MPa = -3.1
wdns = 1.000e3
grav=9.80665
slmsts * (slpots / (soilcp_MPa * wdns / grav)) ^ (1./slbs)
}
smfire.neg <- function(slmsts, slpots, smfire, slbs){
grav=9.80665
soilfr <- slmsts*((slpots/(smfire * 1000/9.80665))^(1/slbs))
return(soilfr)
}
smfire.pos <- function(slmsts, soilcp, smfire){
soilfr <- soilcp + smfire * (slmsts - soilcp)
return(soilfr)
}
SAS.ED2 <- function(dir.analy, dir.histo, outdir, lat, lon, blckyr,
prefix, treefall, param.args = SAS.ED2.param.Args(), sufx =
"g01.h5") {
if(!param.args$decomp_scheme %in% 0:4) stop("Invalid decomp_scheme")
dir.create(outdir, recursive=T, showWarnings=F)
ann.files <- dir(dir.analy, "-Y-")
yrind <- which(strsplit(ann.files,"-")[[1]] == "Y")
yeara <- as.numeric(strsplit(ann.files,"-")[[1]][yrind+1])
yearz <- as.numeric(strsplit(ann.files,"-")[[length(ann.files)]][yrind+1])
yrs <- seq(yeara+1, yearz, by=blckyr)
nsteps <- length(yrs)
nc.temp <- ncdf4::nc_open(file.path(dir.analy, ann.files[1]))
slz <- ncdf4::ncvar_get(nc.temp, "SLZ")
ncdf4::nc_close(nc.temp)
dslz <- vector(length=length(slz))
dslz[length(dslz)] <- 0-slz[length(dslz)]
for(i in 1:(length(dslz)-1)){
dslz[i] <- slz[i+1] - slz[i]
}
nsoil=which(slz >= param.args$kh_active_depth-1e-3)
pss.big <- matrix(nrow=length(yrs),ncol=13)
colnames(pss.big) <- c("time","patch","trk","age","area","water","fsc","stsc","stsl",
"ssc","psc","msn","fsn")
soil.obj <- PEcAn.data.land::soil_params(sand = param.args$slxsand, clay = param.args$slxclay)
slmsts <- calc.slmsts(param.args$slxsand, param.args$slxclay)
slpots <- calc.slpots(param.args$slxsand, param.args$slxclay)
slbs <- calc.slbs(param.args$slxsand, param.args$slxclay)
soilcp <- calc.soilcp(slmsts, slpots, slbs)
soilfr=0
if(abs(param.args$sm_fire)>0){
if(param.args$sm_fire>0){
soilfr <- smfire.pos(slmsts, soilcp, smfire=param.args$sm_fire)
} else {
soilfr <- smfire.neg(slmsts, slpots, smfire=param.args$sm_fire, slbs)
}
}
month.begin = 1
month.end = 12
tempk.air <- tempk.soil <- moist.soil <- moist.soil.mx <- moist.soil.mn <- nfire <- vector()
for(y in yrs){
air.temp.tmp <- soil.temp.tmp <- soil.moist.tmp <- soil.mmax.tmp <- soil.mmin.tmp <- vector()
ind <- which(yrs == y)
for(m in month.begin:month.end){
year.now <-sprintf("%4.4i",y)
month.now <- sprintf("%2.2i",m)
day.now <- sprintf("%2.2i",0)
hour.now <- sprintf("%6.6i",0)
file.now <- paste(prefix,"-E-",year.now,"-",month.now,"-",day.now,"-"
,hour.now,"-",sufx,sep="")
now <- ncdf4::nc_open(file.path(dir.analy,file.now))
air.temp.tmp [m] <- ncdf4::ncvar_get(now, "MMEAN_ATM_TEMP_PY")
soil.temp.tmp [m] <- sum(ncdf4::ncvar_get(now, "MMEAN_SOIL_TEMP_PY")[nsoil]*dslz[nsoil]/sum(dslz[nsoil]))
soil.moist.tmp[m] <- sum(ncdf4::ncvar_get(now, "MMEAN_SOIL_WATER_PY")[nsoil]*dslz[nsoil]/sum(dslz[nsoil]))
soil.mmax.tmp [m] <- max(ncdf4::ncvar_get(now, "MMEAN_SOIL_WATER_PY"))
soil.mmin.tmp [m] <- min(ncdf4::ncvar_get(now, "MMEAN_SOIL_WATER_PY"))
ncdf4::nc_close(now)
}
tempk.air [ind] <- mean(air.temp.tmp)
tempk.soil [ind] <- mean(soil.temp.tmp)
moist.soil [ind] <- mean(soil.moist.tmp)
moist.soil.mx[ind] <- max(soil.mmax.tmp)
moist.soil.mn[ind] <- min(soil.mmin.tmp)
nfire [ind] <- length(which(soil.moist.tmp<soilfr))
}
soil_tempk <- mean(tempk.soil)
rel_soil_moist <- mean(moist.soil/slmsts)
pfire = sum(nfire)/(length(nfire)*12)
fire_return = ifelse(max(nfire)>0, length(nfire)/length(which(nfire>0)), 0)
cat(paste0("mean soil temp : ", round(soil_tempk, 2), "\n"))
cat(paste0("mean soil moist : ", round(rel_soil_moist, 3), "\n"))
cat(paste0("fire return interval (yrs) : ", fire_return), "\n")
fire_rate <- pfire * param.args$fire_intensity
disturb <- treefall + fire_rate
stand.age <- seq(yrs[1]-yeara,nrow(pss.big)*blckyr,by=blckyr)
area.dist <- vector(length=nrow(pss.big))
area.dist[1] <- sum(stats::dgeom(0:(stand.age[2]-1), disturb))
for(i in 2:(length(area.dist)-1)){
area.dist[i] <- sum(stats::dgeom((stand.age[i]):(stand.age[i+1]-1),disturb))
}
area.dist[length(area.dist)] <- 1 - sum(area.dist[1:(length(area.dist)-1)])
pss.big[,"area"] <- area.dist
cat(" - Reading analy files ...","\n")
for (y in yrs){
now <- ncdf4::nc_open(file.path(dir.analy,ann.files[y-yeara+1]))
ind <- which(yrs == y)
ipft <- ncdf4::ncvar_get(now,'PFT')
css.tmp <- matrix(nrow=length(ipft),ncol=10)
colnames(css.tmp) <- c("time", "patch", "cohort", "dbh", "hite", "pft", "n", "bdead", "balive", "Avgrg")
css.tmp[,"time" ] <- rep(yeara,length(ipft))
css.tmp[,"patch" ] <- rep(floor((y-yeara)/blckyr)+1,length(ipft))
css.tmp[,"cohort"] <- 1:length(ipft)
css.tmp[,"dbh" ] <- ncdf4::ncvar_get(now,'DBH')
css.tmp[,"hite" ] <- ncdf4::ncvar_get(now,'HITE')
css.tmp[,"pft" ] <- ipft
css.tmp[,"n" ] <- ncdf4::ncvar_get(now,'NPLANT')
css.tmp[,"bdead" ] <- ncdf4::ncvar_get(now,'BDEAD')
css.tmp[,"balive"] <- ncdf4::ncvar_get(now,'BALIVE')
css.tmp[,"Avgrg" ] <- rep(0,length(ipft))
if(y==yrs[1]){
css.big <- css.tmp
} else{
css.big <- rbind(css.big,css.tmp)
}
pss.big[ind,"time"] <- 1800
pss.big[ind,"patch"] <- floor((y-yeara)/blckyr)+1
pss.big[ind,"trk"] <- 1
pss.big[ind,"age"] <- y-yeara
pss.big[ind,"water"] <- 0.5
pss.big[ind,"fsc"] <- ncdf4::ncvar_get(now,"FAST_SOIL_C")
pss.big[ind,"stsc"] <- ncdf4::ncvar_get(now,"STRUCTURAL_SOIL_C")
pss.big[ind,"stsl"] <- ncdf4::ncvar_get(now,"STRUCTURAL_SOIL_L")
pss.big[ind,"ssc"] <- ncdf4::ncvar_get(now,"SLOW_SOIL_C")
pss.big[ind,"psc"] <- 0
pss.big[ind,"msn"] <- ncdf4::ncvar_get(now,"MINERALIZED_SOIL_N")
pss.big[ind,"fsn"] <- ncdf4::ncvar_get(now,"FAST_SOIL_N")
ncdf4::nc_close(now)
}
pss.big <- pss.big[stats::complete.cases(pss.big),]
fsc_in_y <- ssc_in_y <- ssl_in_y <- fsn_in_y <- pln_up_y <- vector()
fsc_in_m <- ssc_in_m <- ssl_in_m <- fsn_in_m <- pln_up_m <- vector()
mon.files <- dir(dir.histo, "-S-")
yeara <- as.numeric(strsplit(mon.files,"-")[[1]][yrind+1])
yearz <- as.numeric(strsplit(mon.files,"-")[[length(mon.files)-1]][yrind+1])
montha <- as.numeric(strsplit(mon.files,"-")[[1]][yrind+2])
monthz <- as.numeric(strsplit(mon.files,"-")[[length(mon.files)-1]][yrind+2])
cat(" - Processing History Files \n")
for (y in yrs){
dpm <- lubridate::days_in_month(1:12)
if(lubridate::leap_year(y)) dpm[2] <- dpm[2]+1
if (y == yrs[1]){
month.begin = montha
}else{
month.begin = 1
}
if (y == yrs[length(yrs)]){
month.end = monthz
}else{
month.end = 12
}
for(m in month.begin:month.end){
year.now <-sprintf("%4.4i",y)
month.now <- sprintf("%2.2i",m)
day.now <- sprintf("%2.2i",1)
hour.now <- sprintf("%6.6i",0)
file.now <- paste(prefix,"-S-",year.now,"-",month.now,"-",day.now,"-"
,hour.now,"-",sufx,sep="")
now <- ncdf4::nc_open(file.path(dir.histo,file.now))
fsc_in_m[m-month.begin+1] <- ncdf4::ncvar_get(now,"FSC_IN")*dpm[m]
ssc_in_m[m-month.begin+1] <- ncdf4::ncvar_get(now,"SSC_IN")*dpm[m]
ssl_in_m[m-month.begin+1] <- ncdf4::ncvar_get(now,"SSL_IN")*dpm[m]
fsn_in_m[m-month.begin+1] <- ncdf4::ncvar_get(now,"FSN_IN")*dpm[m]
pln_up_m[m-month.begin+1] <- ncdf4::ncvar_get(now,"TOTAL_PLANT_NITROGEN_UPTAKE")*dpm[m]
ncdf4::nc_close(now)
}
ind <- (y-yeara)/blckyr + 1
fsc_in_y[ind] <- sum(fsc_in_m,na.rm=TRUE)
ssc_in_y[ind] <- sum(ssc_in_m,na.rm=TRUE)
ssl_in_y[ind] <- sum(ssl_in_m,na.rm=TRUE)
fsn_in_y[ind] <- sum(fsn_in_m,na.rm=TRUE)
pln_up_y[ind] <- sum(pln_up_m,na.rm=TRUE)
}
fsc_loss <- param.args$decay_rate_fsc
ssc_loss <- param.args$decay_rate_ssc
ssl_loss <- param.args$decay_rate_stsc
if(param.args$decomp_scheme %in% c(0, 3)){
temperature_limitation = min(1,exp(param.args$resp_temperature_increase * (soil_tempk-318.15)))
} else if(param.args$decomp_scheme %in% c(1,4)){
lnexplloyd = param.args$rh_lloyd_1 * ( param.args$rh_lloyd_2 - 1. / (soil_tempk - param.args$rh_lloyd_3))
lnexplloyd = max(-38.,min(38,lnexplloyd))
temperature_limitation = min( 1.0, param.args$resp_temperature_increase * exp(lnexplloyd) )
} else if(param.args$decomp_scheme==2) {
lnexplow <- param.args$rh_decay_low * (param.args$rh_low_temp - soil_tempk)
lnexplow <- max(-38, min(38, lnexplow))
tlow_fun <- 1 + exp(lnexplow)
lnexphigh <- param.args$rh_decay_high*(soil_tempk - param.args$rh_high_temp)
lnexphigh <- max(-38, min(38, lnexphigh))
thigh_fun <- 1 + exp(lnexphigh)
temperature_limitation <- 1/(tlow_fun*thigh_fun)
}
if(param.args$decomp_scheme %in% c(0,1)){
if (rel_soil_moist <= param.args$resp_opt_water){
water_limitation = exp( (rel_soil_moist - param.args$resp_opt_water) * param.args$resp_water_below_opt)
} else {
water_limitation = exp( (param.args$resp_opt_water - rel_soil_moist) * param.args$resp_water_above_opt)
}
} else if(param.args$decomp_scheme==2){
lnexpdry <- param.args$rh_decay_dry * (param.args$rh_dry_smoist - rel_soil_moist)
lnexpdry <- max(-38, min(38, lnexpdry))
smdry_fun <- 1+exp(lnexpdry)
lnexpwet <- param.args$rh_decay_wet * (rel_soil_moist - param.args$rh_wet_smoist)
lnexpwet <- max(-38, min(38, lnexpwet))
smwet_fun <- 1+exp(lnexpwet)
water_limitation <- 1/(smdry_fun * smwet_fun)
} else {
water_limitation = rel_soil_moist * 4.0893 - rel_soil_moist**2 * 3.1681 - 0.3195897
}
A_decomp <- temperature_limitation * water_limitation
fsc_ss <- fsc_in_y[length(fsc_in_y)]/(fsc_loss * A_decomp)
ssl_ss <- ssl_in_y[length(ssl_in_y)]/(ssl_loss * A_decomp * param.args$Lc)
ssc_ss <- ((ssl_loss * A_decomp * param.args$Lc * ssl_ss)*(1 - param.args$r_stsc))/(ssc_loss * A_decomp )
fsn_ss <- fsn_in_y[length(fsn_in_y)]/(fsc_loss * A_decomp)
msn_loss <- pln_up_y[length(pln_up_y)] +
A_decomp*param.args$Lc*ssl_loss*ssl_in_y[length(ssl_in_y)]*
((1.0-param.args$r_stsc)/param.args$c2n_slow - 1.0/param.args$c2n_structural)
msn_med <- fsc_loss*A_decomp*fsn_in_y[length(fsn_in_y)]+ (ssc_loss * A_decomp)/param.args$c2n_slow
msn_ss <- msn_med/msn_loss
p.use <- 1
pss.big[,"patch"] <- 1:nrow(pss.big)
pss.big[,"area"] <- area.dist
pss.big[,"fsc"] <- rep(fsc_ss[p.use],nrow(pss.big))
pss.big[,"stsc"] <- rep(ssl_ss[p.use],nrow(pss.big))
pss.big[,"stsl"] <- rep(ssl_ss[p.use],nrow(pss.big))
pss.big[,"ssc"] <- rep(ssc_ss[p.use],nrow(pss.big))
pss.big[,"msn"] <- rep(msn_ss[p.use],nrow(pss.big))
pss.big[,"fsn"] <- rep(fsn_ss[p.use],nrow(pss.big))
file.prefix=paste0(prefix, "-lat", lat, "lon", lon)
utils::write.table(css.big,file=file.path(outdir,paste0(file.prefix,".css")),row.names=FALSE,append=FALSE,
col.names=TRUE,quote=FALSE)
utils::write.table(pss.big,file=file.path(outdir,paste0(file.prefix,".pss")),row.names=FALSE,append=FALSE,
col.names=TRUE,quote=FALSE)
}
|
getsyn <- function(matrix){
if(length(colnames(matrix))==0){colnames(matrix) <- 1:dim(matrix)[2]}
matrixone <- matrix
if(length(matrixone)==0){return(list(mono=as.matrix(NaN),syn=as.matrix(NaN),nonsyn=as.matrix(NaN),monoid=NaN,synid=NaN,nonsynid=NaN,Codons=as.list(NaN)))}
matrix <- codonise64(matrixone)
monoid <- NULL
synid <- NULL
nonsynid <- NULL
acc <- 1
Codons <- vector("list",dim(matrix)[2])
erg <- apply(matrix,2,function(vek){
uniquevek <- unique(vek)
size <- length(uniquevek)
if(size==1){
Codons[[acc]] <<- uniquevek
acc <<- acc + 1
return(1)
}
if(size>1){
Codons[[acc]] <<- uniquevek
acc <<- acc + 1
cc <- codontable()
id65 <- which(uniquevek==65)
if(length(id65)>0){vek <- uniquevek[-id65]}
tt <- unique(cc$Protein[1,vek])
size <- length(tt)
if(size==1){
return(2)
}
if(size>1){
return(3)
}
}
})
rm(matrix)
mono <- which(erg==1)
syn <- which(erg==2)
nonsyn <- which(erg==3)
if(length(mono)>0){
monoid <- c(3*mono-2,3*mono-1,3*mono)
monoid <- sort(monoid)
}
if(length(syn)>0){
synid <- c(3*syn-2,3*syn-1,3*syn)
synid <- sort(synid)
}
if(length(nonsyn)>0){
nonsynid <- c(3*nonsyn-2,3*nonsyn-1,3*nonsyn)
nonsynid <- sort(nonsynid)
}
monoid <- as.numeric(colnames(matrixone[,monoid]))
synid <- as.numeric(colnames(matrixone[,synid]))
nonsynid <- as.numeric(colnames(matrixone[,nonsynid]))
return(list(monoid=monoid,synid=synid,nonsynid=nonsynid,Codons=Codons))
} |
drive_mv <- function(file,
path = NULL,
name = NULL,
overwrite = NA,
verbose = deprecated()) {
warn_for_verbose(verbose)
file <- as_dribble(file)
file <- confirm_single_file(file)
if (is.null(path) && is.null(name)) {
drive_bullets(c(
"!" = "Nothing to be done."
))
return(invisible(file))
}
tmp <- rationalize_path_name(path, name)
path <- tmp$path
name <- tmp$name
params <- list()
parents_before <- pluck(file, "drive_resource", 1, "parents")
if (!is.null(path)) {
path <- as_parent(path)
if (!path$id %in% parents_before) {
params[["addParents"]] <- path$id
}
}
if (!is.null(name) && name != file$name) {
params[["name"]] <- name
}
if (length(params) == 0) {
drive_bullets(c(
"!" = "Nothing to be done."
))
return(invisible(file))
}
check_for_overwrite(
parent = params[["addParents"]] %||% parents_before[[1]],
name = params[["name"]] %||% file$name,
overwrite = overwrite
)
params[["fields"]] <- "*"
out <- drive_update_metadata(file, params)
actions <- c(
renamed = !identical(out$name, file$name),
moved = !is.null(params[["addParents"]])
)
action <- glue_collapse(names(actions)[actions], last = " and ")
drive_bullets(c(
"Original file:",
bulletize(gargle_map_cli(file)),
"Has been {action}:",
bulletize(gargle_map_cli(
drive_reveal_path(out, ancestors = path),
template = c(
id_string = "<id:\u00a0<<id>>>",
out = "{.drivepath <<path>>} {cli::col_grey('<<id_string>>')}"
)
))
))
invisible(out)
} |
options(tibble.print_min = 6)
options(tibble.print_max = 6)
library(nycflights13)
?flights
?airports
?airlines
?planes
?weather
library(tidyverse)
flights_base <-
flights %>%
select(year, month, day, carrier, tailnum, origin, dest)
flights_base
airlines
flights_base %>%
left_join(airlines)
airlines[airlines$carrier == "UA", "name"] <- "United broke my guitar"
flights_base %>%
left_join(airlines)
planes
flights_base %>%
left_join(planes)
flights_base %>%
left_join(planes) %>%
count(is.na(type))
flights_base %>%
left_join(planes, by = "tailnum")
airports
try(
flights_base %>%
left_join(airports)
)
flights_base %>%
left_join(airports, by = c("origin" = "faa"))
rm(airlines)
t1 <- tibble(a = 1, b = letters[1:3])
t1
t2 <- tibble(a = 1, c = 1:2)
t2
left_join(t1, t2)
airlines %>%
count(carrier)
airlines %>%
count(carrier) %>%
count(n)
planes %>%
count(tailnum) %>%
count(n)
planes %>%
dm::check_key(tailnum)
try(
planes %>%
dm::check_key(engines)
)
airports %>%
dm::check_key(faa)
try(
airports %>%
dm::check_key(name)
)
airports %>%
add_count(name) %>%
filter(n > 1) %>%
arrange(name)
rm(t1, t2)
library(dm)
dm_nycflights13(cycle = TRUE)
dm_nycflights13(cycle = TRUE) %>%
dm_draw()
dm_nycflights13(cycle = TRUE) %>%
dm_select_tbl(flights, airlines) %>%
dm_draw()
dm_nycflights13(cycle = TRUE) %>%
dm_select_tbl(airports, airlines) %>%
dm_draw()
try(
dm_nycflights13() %>%
dm_select_tbl(bogus)
)
dm_nycflights13() %>%
tbl("airlines")
dm_nycflights13() %>%
src_tbls()
x <- 1:5
y <- x + 1
z <- x * y
w <- map(z, ~ runif(.))
tibble(x, y, z, w)
tibble(x = 1:5) %>%
mutate(y = x + 1) %>%
mutate(z = x * y) %>%
mutate(w = map(z, ~ runif(.)))
dm_nycflights13()
(dm_nyc_filtered <-
dm_nycflights13() %>%
dm_filter(airlines, carrier == "AA"))
dm_nyc_filtered %>%
dm_apply_filters()
(dm_nyc_fail <-
dm_nycflights13() %>%
dm_filter(airports, origin == "EWR"))
try(
tbl(dm_nyc_fail, "flights")
)
tbl(dm_nyc_fail, "weather")
dm_nycflights13() %>%
dm_filter(flights, origin == "EWR") %>%
dm_apply_filters()
dm_nycflights13() %>%
dm_filter(airlines, name == "American Airlines Inc.") %>%
dm_filter(airports, name != "John F Kennedy Intl") %>%
dm_apply_filters()
aa_non_jfk_january <-
dm_nycflights13() %>%
dm_filter(airlines, name == "American Airlines Inc.") %>%
dm_filter(airports, name != "John F Kennedy Intl") %>%
dm_filter(flights, month == 1) %>%
dm_apply_filters()
aa_non_jfk_january
aa_non_jfk_january %>%
tbl("planes")
nycflights13_sqlite <-
dm_nycflights13() %>%
dm_select_tbl(-planes) %>%
dm_filter(flights, month == 1) %>%
dm_apply_filters() %>%
copy_dm_to(dbplyr::src_memdb(), ., unique_table_names = TRUE)
nycflights13_sqlite
nycflights13_sqlite %>%
dm_draw()
nycflights13_sqlite %>%
dm_get_tables() %>%
map(dbplyr::sql_render)
nycflights13_sqlite %>%
dm_filter(airlines, name == "American Airlines Inc.") %>%
dm_filter(airports, name != "John F Kennedy Intl") %>%
dm_filter(flights, day == 1) %>%
tbl("flights")
nycflights13_sqlite %>%
dm_filter(airlines, name == "American Airlines Inc.") %>%
dm_filter(airports, name != "John F Kennedy Intl") %>%
dm_filter(flights, day == 1) %>%
tbl("flights") %>%
dbplyr::sql_render()
dm_nycflights13() %>%
dm_join_to_tbl(airlines, flights, join = left_join)
dm_nycflights13() %>%
dm_join_to_tbl(flights, airlines, join = left_join)
nycflights13_sqlite %>%
dm_join_to_tbl(airlines, flights, join = left_join)
aa_non_jfk_january %>%
dm_join_to_tbl(flights, airlines, join = left_join)
try(
dm_nycflights13() %>%
dm_join_to_tbl(airports, airlines, join = left_join)
)
try(
dm_nycflights13() %>%
dm_join_to_tbl(flights, airports, airlines, join = left_join)
)
weather %>%
enum_pk_candidates()
weather %>%
enum_pk_candidates() %>%
count(candidate)
weather %>%
unite("slot_id", origin, year, month, day, hour, remove = FALSE) %>%
count(slot_id) %>%
filter(n > 1)
weather %>%
count(origin, time_hour) %>%
filter(n > 1)
weather %>%
count(origin, format(time_hour)) %>%
filter(n > 1)
weather %>%
count(origin, format(time_hour, tz = "UTC")) %>%
filter(n > 1)
weather_link <-
weather %>%
mutate(time_hour_fmt = format(time_hour, tz = "UTC")) %>%
unite("origin_slot_id", origin, time_hour_fmt, remove = FALSE)
flights_link <-
flights %>%
mutate(time_hour_fmt = format(time_hour, tz = "UTC")) %>%
unite("origin_slot_id", origin, time_hour_fmt, remove = FALSE)
nycflights13_dm <- as_dm(list(airlines = airlines, airports = airports, flights = flights_link, planes = planes, weather = weather_link))
airlines_global <- airlines
airports_global <- airports
planes_global <- planes
global <-
dm_from_src(src_df(env = .GlobalEnv))
global
global %>%
dm_rename_tbl(
airlines = airlines_global,
airports = airports_global,
planes = planes_global,
flights = flights_link,
weather = weather_link
) %>%
dm_select_tbl(airlines, airports, planes, flights, weather)
nycflights13_tbl <-
global %>%
dm_select_tbl(
airlines = airlines_global,
airports = airports_global,
planes = planes_global,
flights = flights_link,
weather = weather_link
)
nycflights13_tbl
nycflights13_tbl %>%
dm_draw()
nycflights13_pk <-
nycflights13_tbl %>%
dm_add_pk(weather, origin_slot_id) %>%
dm_add_pk(planes, tailnum) %>%
dm_add_pk(airports, faa) %>%
dm_add_pk(airlines, carrier)
nycflights13_pk %>%
dm_draw()
nycflights13_fk <-
nycflights13_pk %>%
dm_add_fk(flights, origin_slot_id, weather, check = FALSE) %>%
dm_add_fk(flights, tailnum, planes, check = FALSE) %>%
dm_add_fk(flights, origin, airports) %>%
dm_add_fk(flights, dest, airports, check = FALSE) %>%
dm_add_fk(flights, carrier, airlines)
nycflights13_fk %>%
dm_draw()
dm_get_available_colors()
nycflights13_fk %>%
dm_set_colors(airlines = , planes = , weather = , airports = "blue") %>%
dm_draw()
try({
dm_pq <-
dm_nycflights13() %>%
dm_select_tbl(-planes) %>%
dm_filter(flights, month == 1) %>%
copy_dm_to(src_postgres(), ., temporary = FALSE)
dm_from_pq <-
dm_learn_from_db(src_postgres())
}) |
mADCF <- function(x, lags, unbiased = FALSE, output = TRUE ) {
if ( !is.matrix(x) ) x <- as.matrix(x)
if ( (is.data.frame(x) ) | ( is.matrix(x) ) ) {
if ( dim(x)[2] == 1 ) stop( 'Only multivariate time series with dimension d>2.' )
if ( !is.ts(x) ) x <- as.ts(x)
}
if ( !is.numeric(x) ) stop( "'x' must be numeric." )
if ( !all( is.finite(x) ) ) stop( 'Missing or infitive values.' )
if ( missing(lags) ) stop( "'lags' is missing with no default." )
dm <- dim(x)
n <- dm[1] ; d <- dm[2]
if ( length(lags) == 1 ) {
if ( ( lags >= 0 ) && ( lags <= (n - 1) ) ) {
X <- x[(1 + lags):n, ]
Y <- x[1:(n - lags), ]
} else if ( ( lags >= (-n + 1) ) && ( lags < 0 ) ) {
X <- x[1:(n + lags), ]
Y <- x[(1 - lags):n, ]
} else {
stop( "lags must be in the range of -(n-1) and (n-1)" )
}
cross.adcf <- matrix(NA, d, d)
if ( unbiased ) {
for (i in 1:d) cross.adcf[i, ] <- dcov::mdcor(X[, i], Y, type = "U")
} else {
for (i in 1:d) cross.adcf[i, ] <- dcov::mdcor( X[, i], Y )
cross.adcf <- sqrt( cross.adcf )
}
if ( output ) {
cat( "Distance Correlation Matrix at lag: ", lags, "\n" )
print(cross.adcf)
}
} else if ( length(lags) > 1 ) {
len <- length(lags)
cross.adcf <- array( dim = c(d, d, len))
for ( j in 1:len ) {
cross <- matrix(NA, d, d)
lag <- lags[j]
if ( ( lag >= 0 ) && ( lag <= (n - 1) ) ) {
X <- x[(1 + lag):n, ]
Y <- x[1:(n - lag), ]
} else if ( ( lag >= (-n + 1) ) && ( lag < 0 ) ) {
X <- x[1:(n + lag), ]
Y <- x[(1 - lag):n, ]
} else {
stop( "lags must be in the range of -(n-1) and (n-1)" )
}
if ( unbiased ) {
for (i in 1:d) cross[i, ] <- dcov::mdcor(X[, i], Y, type = "U")
} else {
for (i in 1:d) cross[i, ] <- dcov::mdcor( X[, i], Y )
cross <- sqrt( cross )
}
cross.adcf[, , j] <- cross
}
dimnames(cross.adcf)[[ 3 ]] <- paste( "Distance Correlation Matrix at lag: ", lags)
if ( output ) print(cross.adcf)
}
mADCF <- cross.adcf
} |
library(boot)
diff.means <- function(d, f)
{ n <- nrow(d)
gp1 <- 1:table(as.numeric(d$series))[1]
m1 <- sum(d[gp1,1] * f[gp1])/sum(f[gp1])
m2 <- sum(d[-gp1,1] * f[-gp1])/sum(f[-gp1])
ss1 <- sum(d[gp1,1]^2 * f[gp1]) - (m1 * m1 * sum(f[gp1]))
ss2 <- sum(d[-gp1,1]^2 * f[-gp1]) - (m2 * m2 * sum(f[-gp1]))
c(m1 - m2, (ss1 + ss2)/(sum(f) - 2))
}
grav1 <- gravity[as.numeric(gravity[,2]) >= 7,]
boot(grav1, diff.means, R = 999, stype = "f", strata = grav1[,2])
nuke <- nuclear[, c(1, 2, 5, 7, 8, 10, 11)]
nuke.lm <- glm(log(cost) ~ date+log(cap)+ne+ct+log(cum.n)+pt, data = nuke)
nuke.diag <- glm.diag(nuke.lm)
nuke.res <- nuke.diag$res * nuke.diag$sd
nuke.res <- nuke.res - mean(nuke.res)
nuke.data <- data.frame(nuke, resid = nuke.res, fit = fitted(nuke.lm))
new.data <- data.frame(cost = 1, date = 73.00, cap = 886, ne = 0,
ct = 0, cum.n = 11, pt = 1)
new.fit <- predict(nuke.lm, new.data)
nuke.fun <- function(dat, inds, i.pred, fit.pred, x.pred)
{
lm.b <- glm(fit+resid[inds] ~ date+log(cap)+ne+ct+log(cum.n)+pt,
data = dat)
pred.b <- predict(lm.b, x.pred)
c(coef(lm.b), pred.b - (fit.pred + dat$resid[i.pred]))
}
nuke.boot <- boot(nuke.data, nuke.fun, R = 999, m = 1,
fit.pred = new.fit, x.pred = new.data)
mean(nuke.boot$t[, 8]^2)
new.fit - sort(nuke.boot$t[, 8])[c(975, 25)]
nuke.boot <- boot(nuke.data, nuke.fun, R = 999, m = 1,
fit.pred = new.fit, x.pred = new.data)
n <- 500000
p <- 10
X <- matrix(rnorm(n * p), n, p)
y <- rnorm(n) + X[,1]
fit <- lm(y ~ X) |
nyquistplot <- function(sys, w = seq(0, 100, length=10000), subtitle = "In(1) Out(1)"){
if (issiso(sys)) {
H <- nyquist(sys, w)
Real_Axis <- H$h.real
Imaginary_Axis <- H$h.imag
graphics::plot.default(Real_Axis, Imaginary_Axis, main="Nyquist Plot for the System", sub = subtitle, col="blue", type = "l", ylim=range( c(Imaginary_Axis, -Imaginary_Axis) ))
graphics::lines.default(Real_Axis, -Imaginary_Axis, col="blue", type = "l", lty =2)
graphics::grid(10,10)
}
if (ismimo(sys)) {
graphics::par(mfrow = c( nrow(sys[[4]]), ncol(sys[[4]]) ) )
for (i in 1:nrow(sys[[4]])) {
for (j in 1:ncol(sys[[4]])) {
nyquistplot(selectsys(sys,i,j), subtitle = paste("In -", i, "Out -", j))
}
}
}
} |
exp_clus_gpx<-function(AID, cn= "all", locs, cs, centroid_calc="mean", dir= NULL){
if(AID %in% cs$AID == FALSE){stop(paste("AID", AID, "not found", sep=" "))}
if(cn[1] == "all"){cn<-cs[which(cs$AID == AID),"clus_ID"]}
clus_sub<-cs[which(cs$AID == AID & cs$clus_ID %in% cn),]
if(length(cn[-which(cn %in% cs$clus_ID)])>0){stop(paste("Cluster(s)", paste(cn[-which(cn %in% cs$clus_ID)], collapse=","), "do not exist in cluster summary", sep=" "))}
out_all<- locs[which(locs$AID == AID),]
sites<-NA
for(p in 1:nrow(clus_sub)){
ind_clus<-out_all[which(out_all$clus_ID == clus_sub$clus_ID[p]),]
ind_clus<-ind_clus[which(!is.na(ind_clus$Lat)),]
ind_clus$AID2<-""
ind_clus<-ind_clus[,c("AID2", "AID", "clus_ID", "TelemDate", "Long", "Lat")]
clus_g_c<-clus_sub[which(clus_sub$clus_ID == cn[p]),]
if(centroid_calc=="median"){
spgeo<-sp::SpatialPointsDataFrame(matrix(c(clus_g_c$g_med_Long, clus_g_c$g_med_Lat), ncol=2), clus_g_c, proj4string=sp::CRS("+proj=longlat +datum=WGS84"))
} else {
spgeo<-sp::SpatialPointsDataFrame(matrix(c(clus_g_c$g_c_Long, clus_g_c$g_c_Lat), ncol=2), clus_g_c, proj4string=sp::CRS("+proj=longlat +datum=WGS84"))
}
aa<-ind_clus[1,]
aa$AID2<-"Centroid"
aa$TelemDate<-ind_clus$TelemDate[nrow(ind_clus)]+25200
aa$Lat<-spgeo$coords.x2
aa$Long<-spgeo$coords.x1
ind_clus<-rbind(ind_clus, aa)
ind_clus[which(ind_clus$AID2 == "Centroid"), "TelemDate"]<- NA
sites<-rbind(sites, ind_clus)
}
sites<-sites[-1,]
sites<-sites[order(sites$AID2,sites$TelemDate),]
ind_gpx<- sp::SpatialPointsDataFrame(matrix(c(sites$Long, sites$Lat), ncol=2), sites, proj4string=sp::CRS("+proj=longlat +datum=WGS84"))
ind_gpx@data$name<-paste(out_all$AID[1], sites$clus_ID, sites$AID2, ind_gpx@data$TelemDate, sep=" ")
rgdal::writeOGR(obj=ind_gpx["name"], layer="waypoints", driver="GPX", dsn= paste0(dir,"/",out_all$AID[1],".gpx") ,overwrite_layer=TRUE, dataset_options="GPS_USE_EXTENSIONS=yes")
} |
bayesmbc.MCMC.C<-function(G, start, prior, sample.size=NULL, interval=NULL){
Z<-start[["Z"]]
n<-dim(Z)[1]
d<-dim(Z)[2]
if(!all(dim(start[["Z"]])==c(n,d))) stop("Incorrect size for the starting latent positions.")
if(G > 0){
if(length(start[["Z.K"]])!=n) stop("Incorrect length for the vector of starting cluster assignments.")
if(length(start[["Z.pK"]])!=G) stop("Incorrect length for the vector of starting cluster probabilities.")
if(!all(dim(start[["Z.mean"]])==c(G,d))) stop("Incorrect size for the starting cluster means.")
if(length(start[["Z.var"]])!=G) stop("Incorrect size for the starting cluster variances.")
}
RESERVED<-1
Cret <- .C("MBC_MCMC_wrapper",
sample.size=as.integer(sample.size),
interval=as.integer(interval),
n=as.integer(n),
d=as.integer(d),
G=as.integer(G),
lpZ.mcmc=double(sample.size+RESERVED),
lpLV.mcmc=double(sample.size+RESERVED),
Z=as.double(Z),
Z.pK=if(G > 0) as.double(start[["Z.pK"]]) else double(0),
Z.mean=if(G > 0) as.double(start[["Z.mean"]]) else double(0),
Z.var=as.double(start[["Z.var"]]),
Z.K=if(G > 0) as.integer(start[["Z.K"]]) else integer(0),
prior.Z.var=as.double(prior[["Z.var"]]),
prior.Z.mean.var=if(G > 0) as.double(prior[["Z.mean.var"]]) else double(0),
prior.Z.pK=if(G > 0) as.double(prior[["Z.pK"]]) else double(0),
prior.Z.var.df=as.double(prior[["Z.var.df"]]),
K.mcmc = if(G > 0) integer(n*(sample.size+RESERVED)) else integer(0),
Z.pK.mcmc = if(G > 0) double(G*(sample.size+RESERVED)) else double(0),
mu.mcmc = double(d*G*(sample.size+RESERVED)),
Z.var.mcmc = double(max(G,1)*(sample.size+RESERVED)),
PACKAGE="latentnet")
sample<-list(
lpZ=Cret[["llike.mcmc"]],
Z.K = if(G>0) matrix(Cret[["K.mcmc"]],ncol=n),
Z.mean = if(G>0) array(Cret[["mu.mcmc"]],dim=c((sample.size+RESERVED),G,d)),
Z.var = if(d>0) matrix(Cret[["Z.var.mcmc"]],ncol=max(G,1)),
Z.pK = if(G>0) matrix(Cret[["Z.pK.mcmc"]],ncol=G)
)
class(sample)<-"ergmm.par.list"
mcmc.mle<-sample[[1]]
sample<-del.iteration(sample,1)
out<-list(sample=sample,
mcmc.mle=mcmc.mle)
out
} |
esAssign <- function(esDf, refDf, RELEVANTINFO_ES = NULL, RELEVANTVN_ES = NULL, RELEVANTVN_REF = NULL, singlePerson = NULL, prompted = NULL, promptTimeframe = 30, midnightPrompt = FALSE, dstDates = NULL) {
if(!is.data.frame(esDf) | !is.data.frame(refDf)) {
stop("Arguments 'esDf' and 'refDf' both must be of type data.frame.")
}
SETUPLISTCheck(RELEVANTINFO_ES=RELEVANTINFO_ES,
RELEVANTVN_ES=RELEVANTVN_ES,
RELEVANTVN_REF=RELEVANTVN_REF)
refDfPlausible <- try(refPlausible(refDf, RELEVANTVN_REF=RELEVANTVN_REF))
if(inherits(refDfPlausible, "try-error")) {
} else {
cat("- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\n")
message("Range of ESM periods (in days) across all participants in the current reference dataset.")
print(summary(refDfPlausible[,"ESM_PERIODDAYS"]))
cat("- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -\n\n\n")
}
if(is.null(singlePerson)) {
assignAll <- TRUE
selectedPerson_s <- 1:nrow(refDf)
compDates <- compareDates(esDf = esDf, refDf = refDf, assignAll = assignAll,
singlePerson = singlePerson, RELEVANTVN_ES = RELEVANTVN_ES, RELEVANTVN_REF = RELEVANTVN_REF)
if(compDates == "DatesEqual") {
} else if(compDates == "refDateGreater") {
warning("Maximum start date in the reference dataset exceeds the maximum date in the current raw ESM dataset. Is the current ESM dataset most up to date?")
} else if(compDates == "refDateLess") {
warning("Maximum start date in the ESM dataset exceeds the maximum date in the current reference dataset. Is the current reference dataset most up to date?")
}
} else if(!is.null(singlePerson) & is.character(singlePerson) & all(refDf[,RELEVANTVN_REF[["REF_ID"]]] == singlePerson)) {
stop("Entered person ID is not found in person dataset (argument 'refDf'). Please check.")
} else if(!is.null(singlePerson) &
is.character(singlePerson) &
any(refDf[,RELEVANTVN_REF[["REF_ID"]]] == singlePerson)) {
assignAll <- FALSE
isSingle <- length(which(refDf[,RELEVANTVN_REF[["REF_ID"]]] == singlePerson)) == 1
if(!isSingle) {
multLines <- which(refDf[,RELEVANTVN_REF[["REF_ID"]]] == singlePerson)
stop(paste0("Person ID was registered ", length(multLines), " times."))
cat("See lines [", multLines, "] of person dataset.\n")
} else {
selectedPerson_s <- which(refDf[,RELEVANTVN_REF[["REF_ID"]]] == singlePerson)
compDates <- compareDates(esDf = esDf, refDf = refDf, assignAll = assignAll,
singlePerson = singlePerson, RELEVANTVN_ES = RELEVANTVN_ES, RELEVANTVN_REF = RELEVANTVN_REF)
if(compDates == "DatesEqual") {
} else if(compDates == "refDateGreater") {
warning("Maximum start date in the reference dataset exceeds the maximum date in the current raw ESM dataset. Is the current ESM dataset most up to date?")
} else if(compDates == "refDateLess") {
warning("Maximum start date in the ESM dataset exceeds the maximum date in the current reference dataset. Is the current reference dataset most up to date?")
}
}
}
if(is.null(prompted)) {prompted <- is.null(prompted)}
if(is.null(promptTimeframe) | is.na(promptTimeframe) | !(is.integer(promptTimeframe) | is.numeric(promptTimeframe))) {
stop("The argument promptTimeframe must be present. It must be numeric, without decimals. It denotes the time in minutes, within which an ESM questionnaire must have been started in order to be included in the analyses. Per default it is set to 30 minutes.")
}
if(promptTimeframe %% 1 != 0) {
promptTimeframe <- as.integer(promptTimeframe)
warning(paste("The argument promptTimeframe was not of type integer. It has been truncated to", promptTimeframe))
}
if(promptTimeframe == 0) {
stop("The argument promptTimeframe must be present. It must be numeric, without decimals. It denotes the time in minutes, within which an ESM questionnaire must have been started in order to be included in the analyses. It must not be 0 minutes. Per default it is set to 30 minutes.")
}
if(promptTimeframe < 30) {
warning("The argument promptTimeframe has been set to less than 30 minutes. This might lead to the unintended exclusion of the last ESM questionnaire of a participant.")
}
if(is.null(dstDates)) {
} else if(any(!is.vector(dstDates), !is.character(dstDates))) {
stop("Argument 'dstDates' (Daylight saving date(s)) must either be NULL or it must consist of at least one date of the form ymd, i.e. 'yyyy-mm-dd' (e.g. '2007-10-28').")
} else {
ds_ymd <- tryCatch({lubridate::ymd(dstDates)}, warning = function(w) {"warning_DSD"})
dsDate <- tryCatch({as.Date(ds_ymd)}, error = function(e) {"error_DSD"})
if(any(any(as.character(ds_ymd)=="warning_DSD")|
any(as.character(dsDate)=="error_DSD"))) {
stop("Argument 'dstDates' (Daylight saving date(s)) must either be NULL or it must consist of at least one date of the form ymd, i.e. 'yyyy-mm-dd' (e.g. '2007-10-28').")
}
}
registerInfo <- as.character(unlist(RELEVANTVN_ES))
esDfOrd <- orderByTimeAndPhone(esDf, RELEVANTVN_ES = RELEVANTVN_ES)
esDfOrdReg <- esDfOrd[,registerInfo]
ID <- Lines <- c()
CV_ES <- CV_ESDAY <- CV_ESWEEKDAY <- c()
ES_MULT <- PROMPT <- PROMPTEND <- ST <- STDATE <- LAG_MINS <- TFRAME <- DST <- QWST <- c()
esOptDf_colNames <- c(RELEVANTVN_REF[["REF_ID"]], "CV_ES", RELEVANTVN_REF[["REF_START_DATE"]], RELEVANTVN_REF[["REF_START_TIME"]], "PROMPT")
esOptDf <- setNames(data.frame(matrix(ncol=5, nrow=0)), esOptDf_colNames)
avrgCompletionRate <- c()
for(i in selectedPerson_s ) {
person_i <- as.character(refDf[,RELEVANTVN_REF[["REF_ID"]]] [i])
cat(paste(person_i, "\nNo.", i, "of", length(selectedPerson_s)), "\n")
span_s <- lubridate::interval(lubridate::ymd_hms(paste(refDf[i,RELEVANTVN_REF[["REF_START_DATE"]]], refDf[i,RELEVANTVN_REF[["REF_START_TIME"]]])),
lubridate::ymd_hms(esDfOrdReg[,RELEVANTVN_ES[["ES_START_DATETIME"]]]))
dur_s <- as.numeric(lubridate::as.duration(span_s))
span_e <- lubridate::interval(lubridate::ymd_hms(esDfOrdReg[,RELEVANTVN_ES[["ES_START_DATETIME"]]]),
lubridate::ymd_hms(paste(refDf[i,RELEVANTVN_REF[["REF_END_DATE"]]], refDf[i,RELEVANTVN_REF[["REF_END_TIME"]]])) + lubridate::minutes(x=promptTimeframe))
dur_e <- as.numeric(lubridate::as.duration(span_e))
lines <- which(dur_s >= 0 & dur_e >= 0 & esDfOrdReg[,RELEVANTVN_ES[["ES_IMEI"]]] == refDf[i,RELEVANTVN_REF[["REF_IMEI"]]])
LinesValid <- lines
if(length(LinesValid) == 0) {
warning(paste("No valid lines in raw ESM dataset found for >>", refDf[i,RELEVANTVN_REF[["REF_ID"]]], "<<. Possible reasons: Information in reference dataset is wrong (especially IMEI and/or start date/end date) or raw ESM dataset has not been updated yet."))
next
}
if(prompted == TRUE) {
df_timeTemp <- data.frame(row.names = 1:length(LinesValid))
df_timeTemp[,RELEVANTVN_ES[["ES_SVY_NAME"]]] <-
esDfOrdReg[LinesValid,RELEVANTVN_ES[["ES_SVY_NAME"]]]
df_timeTemp[,RELEVANTVN_ES[["ES_START_DATETIME"]]] <-
esDfOrdReg[LinesValid,RELEVANTVN_ES[["ES_START_DATETIME"]]]
stTimes <- paste0("stTime", 1:RELEVANTINFO_ES[["MAXPROMPT"]])
esmUnitSecs <- as.numeric(lubridate::hms(refDf [i,RELEVANTVN_REF[["REF_ST"]]]))
esmUnitCheck <- c(TRUE, (esmUnitSecs[1] < esmUnitSecs)[2:length(esmUnitSecs)])
for(st_i in 1:length(stTimes)) {
df_timeTemp[, stTimes[st_i]] <-
paste(esDfOrdReg[LinesValid,RELEVANTVN_ES[["ES_START_DATE"]]],
refDf [i,RELEVANTVN_REF[["REF_ST"]][st_i]])
}
df_timeTemp[,RELEVANTVN_ES[["ES_END_DATETIME"]]] <-
esDfOrdReg[LinesValid,RELEVANTVN_ES[["ES_END_DATETIME"]]]
if(midnightPrompt) {
time_temp <- findMin2(df_timeTemp, RELEVANTVN_ES=RELEVANTVN_ES, RELEVANTINFO_ES=RELEVANTINFO_ES)
} else {
time_temp <- findMin1(df_timeTemp, RELEVANTVN_ES=RELEVANTVN_ES, RELEVANTINFO_ES=RELEVANTINFO_ES)
}
qwst <- apply(time_temp, MARGIN = 1, function(x) var(x[1:2]) == 0)
qwstTemp <- ifelse(qwst == TRUE, 1, 0)
if(!is.null(dstDates)) {
dst_temp <- daylightSaving(refDf[i,RELEVANTVN_REF[["REF_START_DATE"]]], refDf[i,RELEVANTVN_REF[["REF_END_DATE"]]], dstDates)
dstVec_temp <- rep(0, times = length(LinesValid))
if(!all(is.na(dst_temp))) {
idxDST <- which(
lubridate::ymd(esDfOrdReg[LinesValid,RELEVANTVN_ES[["ES_START_DATE"]]]) >=
lubridate::ymd(dst_temp[[2]]))
dstVec_temp[idxDST] <- 1
}
} else {
dstVec_temp <- rep(NA, times = length(LinesValid))
}
tframe_temp <- ifelse(time_temp $ absStart1 <= promptTimeframe * 60, 1, 0)
stStart1_temp <- time_temp[,"PROMPT"]
stEnd1_temp <- time_temp[,"PROMPTEND"]
cvOverall_temp <- overallCounter(stStart1_temp, esDfOrdReg[LinesValid,RELEVANTVN_ES[["ES_START_DATE"]]], RELEVANTINFO_ES=RELEVANTINFO_ES)
day_temp <- dayCounter(esDfOrdReg[LinesValid,RELEVANTVN_ES[["ES_START_DATE"]]])
esMult_temp <- ifelse((duplicated(cvOverall_temp) & duplicated(day_temp))==TRUE, 1, 0)
stVec_temp <- as.character(refDf[i , RELEVANTVN_REF[["REF_ST"]]] [stStart1_temp])
cv_esunitDiff <- c(1, diff(time_temp$PROMPT))
cv_esunitDiffNeg <- unique(c(which(cv_esunitDiff < 0)-1, length(time_temp$PROMPT)))
if(all(cv_esunitDiffNeg==FALSE)) {
cv_esunit <- rep(1, times=length(cv_esunitDiffNeg))
} else {
cv_esunitDiffStart <- c(1, (cv_esunitDiffNeg[-length(cv_esunitDiffNeg)] + 1))
cv_esunitDf <- data.frame(cv_esunitDiffStart, cv_esunitDiffNeg)
unit <- 1
cv_esunit <- rep(0, times=length(cv_esunitDiffNeg))
for(esUnit in 1:nrow(cv_esunitDf)) {
cv_esunit[cv_esunitDf[esUnit,1]:cv_esunitDf[esUnit,2]] <- unit
unit <- unit + 1
}
}
esOptDf_temp <- esOptimum(
person_i, refDf, RELEVANTVN_REF[["REF_ID"]],
RELEVANTVN_REF[["REF_START_DATE"]], RELEVANTVN_REF[["REF_START_TIME"]],
RELEVANTVN_REF[["REF_END_DATE"]], RELEVANTVN_REF[["REF_END_TIME"]],
RELEVANTINFO_ES[["MAXPROMPT"]], RELEVANTVN_REF[["REF_ST"]])
names(esOptDf_temp)
duplOut <- which(esMult_temp == 1)
if(is.integer0(duplOut)) {
stStart1_tempFac <-
factor(stStart1_temp, levels = c(1:RELEVANTINFO_ES[["MAXPROMPT"]]))
} else {
stStart1_tempFac <-
factor(stStart1_temp[-duplOut], levels = c(1:RELEVANTINFO_ES[["MAXPROMPT"]]))
}
tblActual_i <- table(stStart1_tempFac)
actual_i <- as.numeric(tblActual_i)
tblOptim_i <- table(esOptDf_temp[,"PROMPT"])
optim_i <- as.numeric(tblOptim_i)
efficiency_temp0 <- actual_i / optim_i * 100
efficiency_temp <- data.frame(rbind(round(efficiency_temp0, digits = 2)))
avrgCompletionRate <- c(avrgCompletionRate, efficiency_temp0, mean(efficiency_temp0))
colnames(efficiency_temp) <- 1:RELEVANTINFO_ES[["MAXPROMPT"]]
rownames(efficiency_temp) <- "%"
cat("Event sampling period - completion rates per prompt\n")
print(efficiency_temp)
cat("------------------------------------------------\n\n")
ID <- c(ID, rep(as.character(refDf[i,RELEVANTVN_REF[["REF_ID"]]]), times=length(LinesValid)))
Lines <- c(Lines, LinesValid)
CV_ES <- c(CV_ES, cvOverall_temp)
if(midnightPrompt) {
CV_ESDAY <- c(CV_ESDAY, cv_esunit)
} else {
CV_ESDAY <- c(CV_ESDAY, day_temp $ esDay)
}
CV_ESWEEKDAY <- c(CV_ESWEEKDAY, day_temp $ weekDay)
ES_MULT <- c(ES_MULT, esMult_temp)
PROMPT <- c(PROMPT, stStart1_temp)
PROMPTEND <- c(PROMPTEND, stEnd1_temp)
ST <- c(ST, stVec_temp)
if(midnightPrompt == TRUE) {
STDATE <- c(STDATE, time_temp $ midnightDate)
}
startLag_temp <- with(time_temp, ifelse(lag_ba0 == 0, -absStart1, absStart1))
LAG_MINS <- c(LAG_MINS, round(startLag_temp/60, digits=0))
TFRAME <- c(TFRAME, tframe_temp)
DST <- c(DST, dstVec_temp)
QWST <- c(QWST, qwstTemp)
esOptDf <- rbind(esOptDf, esOptDf_temp)
} else {
day_temp <- dayCounter(esDfOrdReg[LinesValid,RELEVANTVN_ES[["ES_START_DATE"]]])
ID <- c(ID, rep(as.character(refDf[i,RELEVANTVN_REF[["REF_ID"]]]), times=length(LinesValid)))
Lines <- c(Lines, LinesValid)
CV_ES <- c(CV_ES, 1:length(LinesValid))
CV_ESDAY <- c(CV_ESDAY, day_temp $ esDay)
CV_ESWEEKDAY <- c(CV_ESWEEKDAY, day_temp $ weekDay)
}
}
if(any(is.na(match(refDf[,RELEVANTVN_REF[["REF_ID"]]], unique(ID)))) & assignAll==TRUE) {
warning("Some person IDs couldn't be assigned. Is the current ES dataset most up to date and/or are the prompteduled dates of ALL persons correct?")
idx_notAssigned <- which(is.na(match(refDf[,RELEVANTVN_REF[["REF_ID"]]], unique(ID))))
cat("The following person(s) couldn't be assigned to the current ES dataset:\n")
print(refDf[idx_notAssigned,RELEVANTVN_REF[["REF_ID"]]])
}
if(prompted == TRUE) {
if(midnightPrompt == TRUE) {
esDfOut <- data.frame(ID, CV_ES, CV_ESDAY, CV_ESWEEKDAY, esDfOrd [Lines,], PROMPT, PROMPTEND, ES_MULT, ST, STDATE, LAG_MINS, TFRAME, DST, QWST)
} else {
esDfOut <- data.frame(ID, CV_ES, CV_ESDAY, CV_ESWEEKDAY, esDfOrd [Lines,], PROMPT, PROMPTEND, ES_MULT, ST, LAG_MINS, TFRAME, DST, QWST)
}
esDfOut1 <- cumsumReset(esDfOut, "ES_MULT")
vecES <- seq(1, nrow(esDfOrdReg))
vecLines <- sort(Lines)
idx_vec <- !(vecES %in% vecLines)
lnna <- vecES [idx_vec]
ESrate <- data.frame(ID=unique(ID), matrix(avrgCompletionRate, nrow=length(unique(ID)), byrow=TRUE))
colnames(ESrate)[2:ncol(ESrate)] <- c(paste0("PROMPT", 1:RELEVANTINFO_ES[["MAXPROMPT"]]), "MEAN")
cat("!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!\n")
cat("Output dataset no.4 (ESrate) is preliminary, since some of the current ESM questionnaires later might either be removed (see function intolerable) or be shifted to a neighboring prompt index (see functions suggestShift and makeShift).\n")
cat("!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!-!\n")
list(ES = esDfOut1, ESopt = esOptDf, ESout = esDfOrd [lnna, ], ESrate = ESrate)
} else {
esDfOut <- data.frame(ID, CV_ES, CV_ESDAY, CV_ESWEEKDAY, esDfOrd[Lines,])
vecES <- seq(1, nrow(esDfOrdReg))
vecLines <- sort(Lines)
idx_vec <- !(vecES %in% vecLines)
lnna <- vecES[idx_vec]
list(ES = esDfOut, ESout = esDfOrd [lnna, ])
}
} |
library( systemfit )
options( digits = 3 )
data( "Kmenta" )
useMatrix <- FALSE
demand <- consump ~ price + income
supply <- consump ~ price + farmPrice + trend
inst <- ~ income + farmPrice + trend
inst1 <- ~ income + farmPrice
instlist <- list( inst1, inst )
system <- list( demand = demand, supply = supply )
restrm <- matrix(0,1,7)
restrm[1,3] <- 1
restrm[1,7] <- -1
restrict <- "demand_income - supply_trend = 0"
restr2m <- matrix(0,2,7)
restr2m[1,3] <- 1
restr2m[1,7] <- -1
restr2m[2,2] <- -1
restr2m[2,5] <- 1
restr2q <- c( 0, 0.5 )
restrict2 <- c( "demand_income - supply_trend = 0",
"- demand_price + supply_price = 0.5" )
tc <- matrix(0,7,6)
tc[1,1] <- 1
tc[2,2] <- 1
tc[3,3] <- 1
tc[4,4] <- 1
tc[5,5] <- 1
tc[6,6] <- 1
tc[7,3] <- 1
restr3m <- matrix(0,1,6)
restr3m[1,2] <- -1
restr3m[1,5] <- 1
restr3q <- c( 0.5 )
restrict3 <- "- C2 + C5 = 0.5"
fit3sls <- list()
formulas <- c( "GLS", "IV", "Schmidt", "GMM", "EViews" )
for( i in seq( along = formulas ) ) {
fit3sls[[ i ]] <- list()
print( "***************************************************" )
print( paste( "3SLS formula:", formulas[ i ] ) )
print( "************* 3SLS *********************************" )
fit3sls[[ i ]]$e1 <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, method3sls = formulas[ i ], useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e1 ) )
print( "********************* 3SLS EViews-like *****************" )
fit3sls[[ i ]]$e1e <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", method3sls = formulas[ i ],
useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e1e, useDfSys = TRUE ) )
print( "********************* 3SLS with methodResidCov = Theil *****************" )
fit3sls[[ i ]]$e1c <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "Theil", method3sls = formulas[ i ],
x = TRUE, useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e1c, useDfSys = TRUE ) )
print( "*************** W3SLS with methodResidCov = Theil *****************" )
fit3sls[[ i ]]$e1wc <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "Theil", method3sls = formulas[ i ],
residCovWeighted = TRUE, useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e1wc, useDfSys = TRUE ) )
print( "*************** 3SLS with restriction *****************" )
fit3sls[[ i ]]$e2 <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.matrix = restrm, method3sls = formulas[ i ],
x = TRUE, useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e2 ) )
fit3sls[[ i ]]$e2Sym <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.matrix = restrict, method3sls = formulas[ i ],
x = TRUE, useMatrix = useMatrix )
print( all.equal( fit3sls[[ i ]]$e2, fit3sls[[ i ]]$e2Sym ) )
print( "************** 3SLS with restriction (EViews-like) *****************" )
fit3sls[[ i ]]$e2e <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", restrict.matrix = restrm,
method3sls = formulas[ i ], useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e2e, useDfSys = TRUE ) )
print( nobs( fit3sls[[i]]$e2e ))
print( "*************** W3SLS with restriction *****************" )
fit3sls[[ i ]]$e2w <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.matrix = restrm, method3sls = formulas[ i ],
residCovWeighted = TRUE, useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e2w ) )
print( "*************** 3SLS with restriction via restrict.regMat ********************" )
fit3sls[[ i ]]$e3 <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.regMat = tc, method3sls = formulas[ i ],
useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e3 ) )
print( "*************** 3SLS with restriction via restrict.regMat (EViews-like) *******" )
fit3sls[[ i ]]$e3e <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", restrict.regMat = tc,
method3sls = formulas[ i ], x = TRUE,
useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e3e, useDfSys = TRUE ) )
print( "**** W3SLS with restriction via restrict.regMat (EViews-like) ****" )
fit3sls[[ i ]]$e3we <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", restrict.regMat = tc,
method3sls = formulas[ i ], residCovWeighted = TRUE,
useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e3we, useDfSys = TRUE ) )
print( "*************** 3SLS with 2 restrictions **********************" )
fit3sls[[ i ]]$e4 <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.matrix = restr2m, restrict.rhs = restr2q,
method3sls = formulas[ i ], x = TRUE,
useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e4 ) )
fit3sls[[ i ]]$e4Sym <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.matrix = restrict2, method3sls = formulas[ i ],
x = TRUE, useMatrix = useMatrix )
print( all.equal( fit3sls[[ i ]]$e4, fit3sls[[ i ]]$e4Sym ) )
print( "*************** 3SLS with 2 restrictions (EViews-like) ************" )
fit3sls[[ i ]]$e4e <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", restrict.matrix = restr2m,
restrict.rhs = restr2q, method3sls = formulas[ i ],
useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e4e, useDfSys = TRUE ) )
print( "********** W3SLS with 2 (symbolic) restrictions ***************" )
fit3sls[[ i ]]$e4wSym <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.matrix = restrict2, method3sls = formulas[ i ],
residCovWeighted = TRUE, useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e4wSym ) )
print( "*************** 3SLS with 2 restrictions via R and restrict.regMat **********" )
fit3sls[[ i ]]$e5 <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.regMat = tc, restrict.matrix = restr3m,
restrict.rhs = restr3q, method3sls = formulas[ i ],
useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e5 ) )
fit3sls[[ i ]]$e5Sym <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.regMat = tc, restrict.matrix = restrict3,
method3sls = formulas[ i ], useMatrix = useMatrix )
print( all.equal( fit3sls[[ i ]]$e5, fit3sls[[ i ]]$e5Sym ) )
print( "******** 3SLS with 2 restrictions via R and restrict.regMat (EViews-like)*****" )
fit3sls[[ i ]]$e5e <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.regMat = tc, methodResidCov = "noDfCor",
restrict.matrix = restr3m, restrict.rhs = restr3q,
method3sls = formulas[ i ], x = TRUE,
useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e5e, useDfSys = TRUE ) )
print( "*** W3SLS with 2 restrictions via R and restrict.regMat (EViews-like) ***" )
fit3sls[[ i ]]$e5we <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.regMat = tc, methodResidCov = "noDfCor",
restrict.matrix = restr3m, restrict.rhs = restr3q, method3sls = formulas[ i ],
residCovWeighted = TRUE, useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$e5we, useDfSys = TRUE ) )
fit3sls[[ i ]]$S1 <- systemfit(
list( farmPrice ~ consump - 1, price ~ consump + trend ), "3SLS",
data = Kmenta, inst = ~ trend + income, useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$S1 ) )
fit3sls[[ i ]]$S2 <- systemfit(
list( consump ~ farmPrice - 1, consump ~ trend - 1 ), "3SLS",
data = Kmenta, inst = ~ price + income, useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$S2 ) )
fit3sls[[ i ]]$S3 <- systemfit(
list( consump ~ trend - 1, farmPrice ~ trend - 1 ), "3SLS",
data = Kmenta, inst = instlist, useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$S3 ) )
fit3sls[[ i ]]$S4 <- systemfit(
list( consump ~ farmPrice - 1, price ~ trend - 1 ), "3SLS",
data = Kmenta, inst = ~ farmPrice + trend + income,
restrict.matrix = matrix( c( 1, -1 ), nrow = 1 ), useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$S4 ) )
fit3sls[[ i ]]$S5 <- systemfit(
list( consump ~ 1, price ~ 1 ), "3SLS",
data = Kmenta, inst = ~ income, useMatrix = useMatrix )
print( summary( fit3sls[[ i ]]$S5 ) )
}
fit3slsi <- list()
formulas <- c( "GLS", "IV", "Schmidt", "GMM", "EViews" )
for( i in seq( along = formulas ) ) {
fit3slsi[[ i ]] <- list()
print( "***************************************************" )
print( paste( "3SLS formula:", formulas[ i ] ) )
print( "************* 3SLS *********************************" )
fit3slsi[[ i ]]$e1 <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, method3sls = formulas[ i ], maxiter = 100,
useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e1 ) )
print( "********************* iterated 3SLS EViews-like ****************" )
fit3slsi[[ i ]]$e1e <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", method3sls = formulas[ i ],
maxiter = 100, useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e1e, useDfSys = TRUE ) )
print( "************** iterated 3SLS with methodResidCov = Theil **************" )
fit3slsi[[ i ]]$e1c <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "Theil", method3sls = formulas[ i ],
maxiter = 100, x = TRUE, useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e1c, useDfSys = TRUE ) )
print( "**************** iterated W3SLS EViews-like ****************" )
fit3slsi[[ i ]]$e1we <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", method3sls = formulas[ i ],
maxiter = 100, residCovWeighted = TRUE, useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e1we, useDfSys = TRUE ) )
print( "******* iterated 3SLS with restriction *****************" )
fit3slsi[[ i ]]$e2 <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.matrix = restrm, method3sls = formulas[ i ],
maxiter = 100, x = TRUE, useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e2 ) )
print( "********* iterated 3SLS with restriction (EViews-like) *********" )
fit3slsi[[ i ]]$e2e <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", restrict.matrix = restrm,
method3sls = formulas[ i ], maxiter = 100, useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e2e, useDfSys = TRUE ) )
print( "******** iterated W3SLS with restriction (EViews-like) *********" )
fit3slsi[[ i ]]$e2we <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", restrict.matrix = restrm,
method3sls = formulas[ i ], maxiter = 100, residCovWeighted = TRUE,
useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e2we, useDfSys = TRUE ) )
print( "********* iterated 3SLS with restriction via restrict.regMat *****************" )
fit3slsi[[ i ]]$e3 <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.regMat = tc, method3sls = formulas[ i ],
maxiter = 100, useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e3 ) )
print( "********* iterated 3SLS with restriction via restrict.regMat (EViews-like) ***" )
fit3slsi[[ i ]]$e3e <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", restrict.regMat = tc,
method3sls = formulas[ i ], maxiter = 100, x = TRUE,
useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e3e, useDfSys = TRUE ) )
print( "***** iterated W3SLS with restriction via restrict.regMat ********" )
fit3slsi[[ i ]]$e3w <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.regMat = tc, method3sls = formulas[ i ], maxiter = 100,
residCovWeighted = TRUE, x = TRUE, useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e3w ) )
print( "******** iterated 3SLS with 2 restrictions *********************" )
fit3slsi[[ i ]]$e4 <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.matrix = restr2m, restrict.rhs = restr2q,
method3sls = formulas[ i ], maxiter = 100, x = TRUE,
useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e4 ) )
print( "********* iterated 3SLS with 2 restrictions (EViews-like) *******" )
fit3slsi[[ i ]]$e4e <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", restrict.matrix = restr2m,
restrict.rhs = restr2q, method3sls = formulas[ i ], maxiter = 100,
useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e4e, useDfSys = TRUE ) )
print( "******** iterated W3SLS with 2 restrictions (EViews-like) *******" )
fit3slsi[[ i ]]$e4we <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, methodResidCov = "noDfCor", restrict.matrix = restr2m,
restrict.rhs = restr2q, method3sls = formulas[ i ], maxiter = 100,
residCovWeighted = TRUE, useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e4we, useDfSys = TRUE ) )
print( "******** iterated 3SLS with 2 restrictions via R and restrict.regMat *********" )
fit3slsi[[ i ]]$e5 <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.regMat = tc, restrict.matrix = restr3m,
restrict.rhs = restr3q, method3sls = formulas[ i ], maxiter = 100,
useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e5 ) )
print( "*** iterated 3SLS with 2 restrictions via R and restrict.regMat (EViews-like)**" )
fit3slsi[[ i ]]$e5e <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.regMat = tc, methodResidCov = "noDfCor",
restrict.matrix = restr3m, restrict.rhs = restr3q,
method3sls = formulas[ i ], maxiter = 100, useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e5e, useDfSys = TRUE ) )
print( "** iterated W3SLS with 2 restrictions via R and restrict.regMat ***" )
fit3slsi[[ i ]]$e5w <- systemfit( system, "3SLS", data = Kmenta,
inst = inst, restrict.regMat = tc, restrict.matrix = restr3m,
restrict.rhs = restr3q, method3sls = formulas[ i ], maxiter = 100,
residCovWeighted = TRUE, x = TRUE,
useMatrix = useMatrix )
print( summary( fit3slsi[[ i ]]$e5w ) )
}
fit3slsd <- list()
formulas <- c( "GLS", "IV", "Schmidt", "GMM", "EViews" )
for( i in seq( along = formulas ) ) {
fit3slsd[[ i ]] <- list()
print( "***************************************************" )
print( paste( "3SLS formula:", formulas[ i ] ) )
print( "************* 3SLS with different instruments **************" )
fit3slsd[[ i ]]$e1 <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, method3sls = formulas[ i ], useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e1 ) )
print( "******* 3SLS with different instruments (EViews-like) **********" )
fit3slsd[[ i ]]$e1e <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, methodResidCov = "noDfCor", method3sls = formulas[ i ],
useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e1e, useDfSys = TRUE ) )
print( "**** 3SLS with different instruments and methodResidCov = Theil ***" )
fit3slsd[[ i ]]$e1c <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, methodResidCov = "Theil", method3sls = formulas[ i ],
x = TRUE, useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e1c, useDfSys = TRUE ) )
print( "************* W3SLS with different instruments **************" )
fit3slsd[[ i ]]$e1w <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, method3sls = formulas[ i ], residCovWeighted = TRUE,
useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e1w ) )
print( "******* 3SLS with different instruments and restriction ********" )
fit3slsd[[ i ]]$e2 <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, restrict.matrix = restrm, method3sls = formulas[ i ],
x = TRUE, useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e2 ) )
print( "** 3SLS with different instruments and restriction (EViews-like) *" )
fit3slsd[[ i ]]$e2e <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, methodResidCov = "noDfCor", restrict.matrix = restrm,
method3sls = formulas[ i ], useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e2e, useDfSys = TRUE ) )
print( "** W3SLS with different instruments and restriction (EViews-like) *" )
fit3slsd[[ i ]]$e2we <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, methodResidCov = "noDfCor", restrict.matrix = restrm,
method3sls = formulas[ i ], residCovWeighted = TRUE,
useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e2we, useDfSys = TRUE ) )
print( "** 3SLS with different instruments and restriction via restrict.regMat *******" )
fit3slsd[[ i ]]$e3 <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, restrict.regMat = tc, method3sls = formulas[ i ],
useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e3 ) )
print( "3SLS with different instruments with restriction via restrict.regMat (EViews-like)" )
fit3slsd[[ i ]]$e3e <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, methodResidCov = "noDfCor", restrict.regMat = tc,
method3sls = formulas[ i ], x = TRUE,
useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e3e, useDfSys = TRUE ) )
print( "** W3SLS with different instr. and restr. via restrict.regMat ****" )
fit3slsd[[ i ]]$e3w <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, restrict.regMat = tc, method3sls = formulas[ i ],
residCovWeighted = TRUE, x = TRUE,
useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e3w ) )
print( "****** 3SLS with different instruments and 2 restrictions *********" )
fit3slsd[[ i ]]$e4 <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, restrict.matrix = restr2m, restrict.rhs = restr2q,
method3sls = formulas[ i ], x = TRUE,
useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e4 ) )
print( "** 3SLS with different instruments and 2 restrictions (EViews-like) *" )
fit3slsd[[ i ]]$e4e <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, methodResidCov = "noDfCor", restrict.matrix = restr2m,
restrict.rhs = restr2q, method3sls = formulas[ i ],
useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e4e, useDfSys = TRUE ) )
print( "**** W3SLS with different instruments and 2 restrictions *********" )
fit3slsd[[ i ]]$e4w <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, restrict.matrix = restr2m, restrict.rhs = restr2q,
method3sls = formulas[ i ], residCovWeighted = TRUE,
useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e4w ) )
print( " 3SLS with different instruments with 2 restrictions via R and restrict.regMat" )
fit3slsd[[ i ]]$e5 <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, restrict.regMat = tc, restrict.matrix = restr3m,
restrict.rhs = restr3q, method3sls = formulas[ i ],
useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e5 ) )
print( "3SLS with diff. instruments and 2 restr. via R and restrict.regMat (EViews-like)" )
fit3slsd[[ i ]]$e5e <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, restrict.regMat = tc, methodResidCov = "noDfCor",
restrict.matrix = restr3m, restrict.rhs = restr3q,
method3sls = formulas[ i ], x = TRUE,
useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e5e, useDfSys = TRUE ) )
print( "W3SLS with diff. instr. and 2 restr. via R and restrict.regMat (EViews-like)" )
fit3slsd[[ i ]]$e5we <- systemfit( system, "3SLS", data = Kmenta,
inst = instlist, restrict.regMat = tc, methodResidCov = "noDfCor",
restrict.matrix = restr3m, restrict.rhs = restr3q, method3sls = formulas[ i ],
residCovWeighted = TRUE, useMatrix = useMatrix )
print( summary( fit3slsd[[ i ]]$e5we, useDfSys = TRUE ) )
}
print( summary( fit3sls[[ 2 ]]$e1c, equations = FALSE ) )
print( summary( fit3sls[[ 3 ]]$e2e ), residCov = FALSE )
print( summary( fit3sls[[ 4 ]]$e3, useDfSys = FALSE ), residCov = FALSE )
print( summary( fit3sls[[ 5 ]]$e4e, equations = FALSE ),
equations = FALSE )
print( summary( fit3sls[[ 1 ]]$e4wSym, residCov = FALSE ),
equations = FALSE )
print( summary( fit3sls[[ 2 ]]$e5, residCov = FALSE ), residCov = TRUE )
print( summary( fit3slsi[[ 3 ]]$e3e, residCov = FALSE,
equations = FALSE ) )
print( summary( fit3slsi[[ 4 ]]$e1we ), equations = FALSE, residCov = FALSE )
print( summary( fit3slsd[[ 5 ]]$e4, residCov = FALSE ) )
print( summary( fit3slsd[[ 1 ]]$e2we, equations = FALSE ) )
print( residuals( fit3sls[[ 1 ]]$e1c ) )
print( residuals( fit3sls[[ 1 ]]$e1c$eq[[ 1 ]] ) )
print( residuals( fit3sls[[ 4 ]]$e1wc ) )
print( residuals( fit3sls[[ 4 ]]$e1wc$eq[[ 1 ]] ) )
print( residuals( fit3sls[[ 2 ]]$e2e ) )
print( residuals( fit3sls[[ 2 ]]$e2e$eq[[ 2 ]] ) )
print( residuals( fit3sls[[ 3 ]]$e3 ) )
print( residuals( fit3sls[[ 3 ]]$e3$eq[[ 1 ]] ) )
print( residuals( fit3sls[[ 4 ]]$e4e ) )
print( residuals( fit3sls[[ 4 ]]$e4e$eq[[ 2 ]] ) )
print( residuals( fit3sls[[ 5 ]]$e5 ) )
print( residuals( fit3sls[[ 5 ]]$e5$eq[[ 1 ]] ) )
print( residuals( fit3slsi[[ 2 ]]$e3e ) )
print( residuals( fit3slsi[[ 2 ]]$e3e$eq[[ 1 ]] ) )
print( residuals( fit3slsi[[ 1 ]]$e2we ) )
print( residuals( fit3slsi[[ 1 ]]$e2we$eq[[ 1 ]] ) )
print( residuals( fit3slsd[[ 3 ]]$e4 ) )
print( residuals( fit3slsd[[ 3 ]]$e4$eq[[ 2 ]] ) )
print( residuals( fit3slsd[[ 5 ]]$e5we ) )
print( residuals( fit3slsd[[ 5 ]]$e5we$eq[[ 2 ]] ) )
print( round( coef( fit3sls[[ 3 ]]$e1c ), digits = 6 ) )
print( round( coef( fit3sls[[ 4 ]]$e1c$eq[[ 2 ]] ), digits = 6 ) )
print( round( coef( fit3slsi[[ 4 ]]$e2 ), digits = 6 ) )
print( round( coef( fit3slsi[[ 5 ]]$e2$eq[[ 1 ]] ), digits = 6 ) )
print( round( coef( fit3sls[[ 2 ]]$e2w ), digits = 6 ) )
print( round( coef( fit3sls[[ 3 ]]$e2w$eq[[ 1 ]] ), digits = 6 ) )
print( round( coef( fit3slsd[[ 5 ]]$e3e ), digits = 6 ) )
print( round( coef( fit3slsd[[ 5 ]]$e3e, modified.regMat = TRUE ), digits = 6 ) )
print( round( coef( fit3slsd[[ 1 ]]$e3e$eq[[ 2 ]] ), digits = 6 ) )
print( round( coef( fit3slsd[[ 4 ]]$e3w ), digits = 6 ) )
print( round( coef( fit3slsd[[ 4 ]]$e3w, modified.regMat = TRUE ), digits = 6 ) )
print( round( coef( fit3slsd[[ 5 ]]$e3w$eq[[ 2 ]] ), digits = 6 ) )
print( round( coef( fit3sls[[ 1 ]]$e4 ), digits = 6 ) )
print( round( coef( fit3sls[[ 2 ]]$e4$eq[[ 1 ]] ), digits = 6 ) )
print( round( coef( fit3slsi[[ 2 ]]$e4we ), digits = 6 ) )
print( round( coef( fit3slsi[[ 1 ]]$e4we$eq[[ 1 ]] ), digits = 6 ) )
print( round( coef( fit3slsi[[ 2 ]]$e5e ), digits = 6 ) )
print( round( coef( fit3slsi[[ 2 ]]$e5e, modified.regMat = TRUE ), digits = 6 ) )
print( round( coef( fit3slsi[[ 3 ]]$e5e$eq[[ 2 ]] ), digits = 6 ) )
print( round( coef( summary( fit3sls[[ 3 ]]$e1c, useDfSys = FALSE ) ),
digits = 6 ) )
print( round( coef( summary( fit3sls[[ 4 ]]$e1c$eq[[ 2 ]], useDfSys = FALSE ) ),
digits = 6 ) )
print( round( coef( summary( fit3slsd[[ 2 ]]$e1w, useDfSys = FALSE ) ),
digits = 6 ) )
print( round( coef( summary( fit3slsd[[ 3 ]]$e1w$eq[[ 2 ]], useDfSys = FALSE ) ),
digits = 6 ) )
print( round( coef( summary( fit3slsi[[ 4 ]]$e2 ) ), digits = 6 ) )
print( round( coef( summary( fit3slsi[[ 5 ]]$e2$eq[[ 1 ]] ) ), digits = 6 ) )
print( round( coef( summary( fit3slsd[[ 5 ]]$e3e, useDfSys = FALSE ) ),
digits = 6 ) )
print( round( coef( summary( fit3slsd[[ 5 ]]$e3e, useDfSys = FALSE ),
modified.regMat = TRUE ), digits = 6 ) )
print( round( coef( summary( fit3slsd[[ 1 ]]$e3e$eq[[ 2 ]], useDfSys = FALSE ) ),
digits = 6 ) )
print( round( coef( summary( fit3slsi[[ 4 ]]$e3w, useDfSys = FALSE ) ),
digits = 6 ) )
print( round( coef( summary( fit3slsi[[ 4 ]]$e3w, useDfSys = FALSE ),
modified.regMat = TRUE ), digits = 6 ) )
print( round( coef( summary( fit3slsi[[ 5 ]]$e3w$eq[[ 2 ]], useDfSys = FALSE ) ),
digits = 6 ) )
print( round( coef( summary( fit3sls[[ 1 ]]$e4 ) ), digits = 6 ) )
print( round( coef( summary( fit3sls[[ 2 ]]$e4$eq[[ 1 ]] ) ), digits = 6 ) )
print( round( coef( summary( fit3slsi[[ 2 ]]$e5e ) ), digits = 6 ) )
print( round( coef( summary( fit3slsi[[ 2 ]]$e5e ), modified.regMat = TRUE ),
digits = 6 ) )
print( round( coef( summary( fit3slsi[[ 3 ]]$e5e$eq[[ 2 ]] ) ), digits = 6 ) )
print( round( coef( summary( fit3sls[[ 2 ]]$e5we ) ), digits = 6 ) )
print( round( coef( summary( fit3sls[[ 2 ]]$e5we ), modified.regMat = TRUE ),
digits = 6 ) )
print( round( coef( summary( fit3sls[[ 3 ]]$e5we$eq[[ 2 ]] ) ), digits = 6 ) )
print( round( vcov( fit3sls[[ 3 ]]$e1c ), digits = 5 ) )
print( round( vcov( fit3sls[[ 4 ]]$e1c$eq[[ 2 ]] ), digits = 5 ) )
print( round( vcov( fit3sls[[ 4 ]]$e2 ), digits = 5 ) )
print( round( vcov( fit3sls[[ 5 ]]$e2$eq[[ 1 ]] ), digits = 5 ) )
print( round( vcov( fit3sls[[ 5 ]]$e3e ), digits = 5 ) )
print( round( vcov( fit3sls[[ 5 ]]$e3e, modified.regMat = TRUE ), digits = 5 ) )
print( round( vcov( fit3sls[[ 1 ]]$e3e$eq[[ 2 ]] ), digits = 5 ) )
print( round( vcov( fit3sls[[ 1 ]]$e4 ), digits = 5 ) )
print( round( vcov( fit3sls[[ 2 ]]$e4$eq[[ 1 ]] ), digits = 5 ) )
print( round( vcov( fit3sls[[ 3 ]]$e4wSym ), digits = 5 ) )
print( round( vcov( fit3sls[[ 4 ]]$e4wSym$eq[[ 1 ]] ), digits = 5 ) )
print( round( vcov( fit3sls[[ 2 ]]$e5e ), digits = 5 ) )
print( round( vcov( fit3sls[[ 2 ]]$e5e, modified.regMat = TRUE ), digits = 5 ) )
print( round( vcov( fit3sls[[ 3 ]]$e5e$eq[[ 2 ]] ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 4 ]]$e1e ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 3 ]]$e1e$eq[[ 1 ]] ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 5 ]]$e1we ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 1 ]]$e1we$eq[[ 2 ]] ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 5 ]]$e2e ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 4 ]]$e2e$eq[[ 2 ]] ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 1 ]]$e3 ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 1 ]]$e3, modified.regMat = TRUE ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 5 ]]$e3$eq[[ 1 ]] ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 2 ]]$e4e ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 1 ]]$e4e$eq[[ 2 ]] ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 3 ]]$e5 ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 3 ]]$e5, modified.regMat = TRUE ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 2 ]]$e5$eq[[ 1 ]] ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 5 ]]$e5w ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 5 ]]$e5w, modified.regMat = TRUE ), digits = 5 ) )
print( round( vcov( fit3slsi[[ 4 ]]$e5w$eq[[ 1 ]] ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 5 ]]$e1c ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 2 ]]$e1c$eq[[ 2 ]] ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 1 ]]$e2 ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 3 ]]$e2$eq[[ 1 ]] ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 5 ]]$e2we ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 3 ]]$e2we$eq[[ 1 ]] ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 2 ]]$e3 ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 2 ]]$e3, modified.regMat = TRUE ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 4 ]]$e3$eq[[ 2 ]] ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 3 ]]$e4 ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 5 ]]$e4$eq[[ 1 ]] ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 4 ]]$e5e ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 4 ]]$e5e, modified.regMat = TRUE ), digits = 5 ) )
print( round( vcov( fit3slsd[[ 1 ]]$e5e$eq[[ 2 ]] ), digits = 5 ) )
print( confint( fit3sls[[ 1 ]]$e1c, useDfSys = TRUE ) )
print( confint( fit3sls[[ 1 ]]$e1c$eq[[ 1 ]], level = 0.9, useDfSys = TRUE ) )
print( confint( fit3sls[[ 2 ]]$e2e, level = 0.9, useDfSys = TRUE ) )
print( confint( fit3sls[[ 2 ]]$e2e$eq[[ 2 ]], level = 0.99, useDfSys = TRUE ) )
print( confint( fit3sls[[ 3 ]]$e3, level = 0.99 ) )
print( confint( fit3sls[[ 3 ]]$e3$eq[[ 1 ]], level = 0.5 ) )
print( confint( fit3sls[[ 5 ]]$e3we, level = 0.99 ) )
print( confint( fit3sls[[ 5 ]]$e3we$eq[[ 1 ]], level = 0.5 ) )
print( confint( fit3sls[[ 4 ]]$e4e, level = 0.5, useDfSys = TRUE ) )
print( confint( fit3sls[[ 4 ]]$e4e$eq[[ 2 ]], level = 0.25, useDfSys = TRUE ) )
print( confint( fit3sls[[ 5 ]]$e5, level = 0.25 ) )
print( confint( fit3sls[[ 5 ]]$e5$eq[[ 1 ]], level = 0.975 ) )
print( confint( fit3slsi[[ 2 ]]$e3e, level = 0.975, useDfSys = TRUE ) )
print( confint( fit3slsi[[ 2 ]]$e3e$eq[[ 1 ]], level = 0.999, useDfSys = TRUE ) )
print( confint( fit3slsi[[ 1 ]]$e5w, level = 0.975, useDfSys = TRUE ) )
print( confint( fit3slsi[[ 1 ]]$e5w$eq[[ 1 ]], level = 0.999, useDfSys = TRUE ) )
print( confint( fit3slsd[[ 3 ]]$e4, level = 0.999 ) )
print( confint( fit3slsd[[ 3 ]]$e4$eq[[ 2 ]] ) )
print( confint( fit3slsd[[ 2 ]]$e4w, level = 0.999 ) )
print( confint( fit3slsd[[ 2 ]]$e4w$eq[[ 2 ]] ) )
print( fitted( fit3sls[[ 2 ]]$e1c ) )
print( fitted( fit3sls[[ 2 ]]$e1c$eq[[ 1 ]] ) )
print( fitted( fit3sls[[ 1 ]]$e1wc ) )
print( fitted( fit3sls[[ 1 ]]$e1wc$eq[[ 1 ]] ) )
print( fitted( fit3sls[[ 3 ]]$e2e ) )
print( fitted( fit3sls[[ 3 ]]$e2e$eq[[ 2 ]] ) )
print( fitted( fit3sls[[ 4 ]]$e3 ) )
print( fitted( fit3sls[[ 4 ]]$e3$eq[[ 1 ]] ) )
print( fitted( fit3sls[[ 5 ]]$e4e ) )
print( fitted( fit3sls[[ 5 ]]$e4e$eq[[ 2 ]] ) )
print( fitted( fit3sls[[ 1 ]]$e5 ) )
print( fitted( fit3sls[[ 1 ]]$e5$eq[[ 1 ]] ) )
print( fitted( fit3slsi[[ 3 ]]$e3e ) )
print( fitted( fit3slsi[[ 3 ]]$e3e$eq[[ 1 ]] ) )
print( fitted( fit3slsd[[ 4 ]]$e4 ) )
print( fitted( fit3slsd[[ 4 ]]$e4$eq[[ 2 ]] ) )
print( fitted( fit3slsd[[ 2 ]]$e3w ) )
print( fitted( fit3slsd[[ 2 ]]$e3w$eq[[ 2 ]] ) )
predictData <- Kmenta
predictData$consump <- NULL
predictData$price <- Kmenta$price * 0.9
predictData$income <- Kmenta$income * 1.1
print( predict( fit3sls[[ 2 ]]$e1c, se.fit = TRUE, interval = "prediction",
useDfSys = TRUE ) )
print( predict( fit3sls[[ 2 ]]$e1c$eq[[ 1 ]], se.fit = TRUE, interval = "prediction",
useDfSys = TRUE ) )
print( predict( fit3sls[[ 3 ]]$e2e, se.pred = TRUE, interval = "confidence",
level = 0.999, newdata = predictData, useDfSys = TRUE ) )
print( predict( fit3sls[[ 3 ]]$e2e$eq[[ 2 ]], se.pred = TRUE, interval = "confidence",
level = 0.999, newdata = predictData, useDfSys = TRUE ) )
print( predict( fit3sls[[ 5 ]]$e2w, se.pred = TRUE, interval = "confidence",
level = 0.999, newdata = predictData, useDfSys = TRUE ) )
print( predict( fit3sls[[ 5 ]]$e2w$eq[[ 2 ]], se.pred = TRUE, interval = "confidence",
level = 0.999, newdata = predictData, useDfSys = TRUE ) )
print( predict( fit3sls[[ 4 ]]$e3, se.pred = TRUE, interval = "prediction",
level = 0.975 ) )
print( predict( fit3sls[[ 4 ]]$e3$eq[[ 1 ]], se.pred = TRUE, interval = "prediction",
level = 0.975 ) )
print( predict( fit3sls[[ 5 ]]$e4e, se.fit = TRUE, interval = "confidence",
level = 0.25, useDfSys = TRUE ) )
print( predict( fit3sls[[ 5 ]]$e4e$eq[[ 2 ]], se.fit = TRUE, interval = "confidence",
level = 0.25, useDfSys = TRUE ) )
print( predict( fit3sls[[ 1 ]]$e5, se.fit = TRUE, se.pred = TRUE,
interval = "prediction", level = 0.5, newdata = predictData ) )
print( predict( fit3sls[[ 1 ]]$e5$eq[[ 1 ]], se.fit = TRUE, se.pred = TRUE,
interval = "prediction", level = 0.5, newdata = predictData ) )
print( predict( fit3slsi[[ 3 ]]$e3e, se.fit = TRUE, se.pred = TRUE,
interval = "confidence", level = 0.99, useDfSys = TRUE ) )
print( predict( fit3slsi[[ 3 ]]$e3e$eq[[ 1 ]], se.fit = TRUE, se.pred = TRUE,
interval = "confidence", level = 0.99, useDfSys = TRUE ) )
print( predict( fit3slsi[[ 1 ]]$e5w, se.fit = TRUE, se.pred = TRUE,
interval = "prediction", level = 0.5, newdata = predictData ) )
print( predict( fit3slsi[[ 1 ]]$e5w$eq[[ 1 ]], se.fit = TRUE, se.pred = TRUE,
interval = "prediction", level = 0.5, newdata = predictData ) )
print( predict( fit3slsd[[ 4 ]]$e4, se.fit = TRUE, interval = "prediction",
level = 0.9, newdata = predictData ) )
print( predict( fit3slsd[[ 4 ]]$e4$eq[[ 2 ]], se.fit = TRUE, interval = "prediction",
level = 0.9, newdata = predictData ) )
print( predict( fit3slsd[[ 2 ]]$e3w, se.fit = TRUE, se.pred = TRUE,
interval = "confidence", level = 0.99, useDfSys = TRUE ) )
print( predict( fit3slsd[[ 2 ]]$e3w$eq[[ 1 ]], se.fit = TRUE, se.pred = TRUE,
interval = "confidence", level = 0.99, useDfSys = TRUE ) )
smallData <- data.frame( price = 130, income = 150, farmPrice = 120,
trend = 25 )
print( predict( fit3sls[[ 3 ]]$e1c, newdata = smallData ) )
print( predict( fit3sls[[ 3 ]]$e1c$eq[[ 1 ]], newdata = smallData ) )
print( predict( fit3sls[[ 4 ]]$e2e, se.fit = TRUE, level = 0.9,
newdata = smallData ) )
print( predict( fit3sls[[ 5 ]]$e2e$eq[[ 1 ]], se.pred = TRUE, level = 0.99,
newdata = smallData ) )
print( predict( fit3sls[[ 1]]$e3, interval = "prediction", level = 0.975,
newdata = smallData ) )
print( predict( fit3sls[[ 1 ]]$e3$eq[[ 1 ]], interval = "confidence", level = 0.8,
newdata = smallData ) )
print( predict( fit3sls[[ 4]]$e3we, interval = "prediction", level = 0.975,
newdata = smallData ) )
print( predict( fit3sls[[ 4 ]]$e3we$eq[[ 1 ]], interval = "confidence", level = 0.8,
newdata = smallData ) )
print( predict( fit3sls[[ 2 ]]$e4e, se.fit = TRUE, interval = "confidence",
level = 0.999, newdata = smallData ) )
print( predict( fit3sls[[ 2 ]]$e4e$eq[[ 2 ]], se.pred = TRUE, interval = "prediction",
level = 0.75, newdata = smallData ) )
print( predict( fit3sls[[ 3 ]]$e5, se.fit = TRUE, interval = "prediction",
newdata = smallData ) )
print( predict( fit3sls[[ 3 ]]$e5$eq[[ 1 ]], se.pred = TRUE, interval = "confidence",
newdata = smallData ) )
print( predict( fit3slsi[[ 4 ]]$e3e, se.fit = TRUE, se.pred = TRUE,
interval = "prediction", level = 0.5, newdata = smallData ) )
print( predict( fit3slsd[[ 5 ]]$e4$eq[[ 1 ]], se.fit = TRUE, se.pred = TRUE,
interval = "confidence", level = 0.25, newdata = smallData ) )
print( predict( fit3slsd[[ 2 ]]$e2we, se.fit = TRUE, se.pred = TRUE,
interval = "prediction", level = 0.5, newdata = smallData ) )
print( predict( fit3slsi[[ 3 ]]$e4we$eq[[ 1 ]], se.fit = TRUE, se.pred = TRUE,
interval = "confidence", level = 0.25, newdata = smallData ) )
print( correlation.systemfit( fit3sls[[ 1 ]]$e1c, 2, 1 ) )
print( correlation.systemfit( fit3sls[[ 2 ]]$e2e, 1, 2 ) )
print( correlation.systemfit( fit3sls[[ 5 ]]$e2w, 2, 1 ) )
print( correlation.systemfit( fit3sls[[ 3 ]]$e3, 2, 1 ) )
print( correlation.systemfit( fit3sls[[ 4 ]]$e4e, 1, 2 ) )
print( correlation.systemfit( fit3sls[[ 5 ]]$e5, 2, 1 ) )
print( correlation.systemfit( fit3slsi[[ 2 ]]$e3e, 1, 2 ) )
print( correlation.systemfit( fit3slsi[[ 4 ]]$e5w, 1, 2 ) )
print( correlation.systemfit( fit3slsd[[ 3 ]]$e4, 2, 1 ) )
print( logLik( fit3sls[[ 1 ]]$e1c ) )
print( logLik( fit3sls[[ 1 ]]$e1c, residCovDiag = TRUE ) )
print( logLik( fit3sls[[ 2 ]]$e2e ) )
print( logLik( fit3sls[[ 2 ]]$e2e, residCovDiag = TRUE ) )
print( logLik( fit3sls[[ 3 ]]$e3 ) )
print( logLik( fit3sls[[ 3 ]]$e3, residCovDiag = TRUE ) )
print( logLik( fit3sls[[ 4 ]]$e4e ) )
print( logLik( fit3sls[[ 4 ]]$e4e, residCovDiag = TRUE ) )
print( logLik( fit3sls[[ 2 ]]$e4wSym ) )
print( logLik( fit3sls[[ 2 ]]$e4wSym, residCovDiag = TRUE ) )
print( logLik( fit3sls[[ 5 ]]$e5 ) )
print( logLik( fit3sls[[ 5 ]]$e5, residCovDiag = TRUE ) )
print( logLik( fit3slsi[[ 2 ]]$e3e ) )
print( logLik( fit3slsi[[ 2 ]]$e3e, residCovDiag = TRUE ) )
print( logLik( fit3slsi[[ 1 ]]$e1we ) )
print( logLik( fit3slsi[[ 1 ]]$e1we, residCovDiag = TRUE ) )
print( logLik( fit3slsd[[ 3 ]]$e4 ) )
print( logLik( fit3slsd[[ 3 ]]$e4, residCovDiag = TRUE ) )
print( logLik( fit3slsd[[ 5 ]]$e2we ) )
print( logLik( fit3slsd[[ 5 ]]$e2we, residCovDiag = TRUE ) )
print( linearHypothesis( fit3sls[[ 1 ]]$e1, restrm ) )
linearHypothesis( fit3sls[[ 1 ]]$e1, restrict )
print( linearHypothesis( fit3sls[[ 2 ]]$e1e, restrm ) )
linearHypothesis( fit3sls[[ 2 ]]$e1e, restrict )
print( linearHypothesis( fit3sls[[ 3 ]]$e1c, restrm ) )
linearHypothesis( fit3sls[[ 3 ]]$e1c, restrict )
print( linearHypothesis( fit3slsi[[ 4 ]]$e1, restrm ) )
linearHypothesis( fit3slsi[[ 4 ]]$e1, restrict )
print( linearHypothesis( fit3slsd[[ 5 ]]$e1e, restrm ) )
linearHypothesis( fit3slsd[[ 5 ]]$e1e, restrict )
print( linearHypothesis( fit3slsd[[ 2 ]]$e1w, restrm ) )
linearHypothesis( fit3slsd[[ 2 ]]$e1w, restrict )
restrOnly2m <- matrix(0,1,7)
restrOnly2q <- 0.5
restrOnly2m[1,2] <- -1
restrOnly2m[1,5] <- 1
restrictOnly2 <- "- demand_price + supply_price = 0.5"
print( linearHypothesis( fit3sls[[ 5 ]]$e1c, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3sls[[ 5 ]]$e1c, restrictOnly2 )
print( linearHypothesis( fit3slsi[[ 1 ]]$e1e, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3slsi[[ 1 ]]$e1e, restrictOnly2 )
print( linearHypothesis( fit3slsi[[ 3 ]]$e1we, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3slsi[[ 3 ]]$e1we, restrictOnly2 )
print( linearHypothesis( fit3slsd[[ 2 ]]$e1, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3slsd[[ 2 ]]$e1, restrictOnly2 )
print( linearHypothesis( fit3sls[[ 4 ]]$e2, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3sls[[ 4 ]]$e2, restrictOnly2 )
print( linearHypothesis( fit3sls[[ 4 ]]$e3, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3sls[[ 4 ]]$e3, restrictOnly2 )
print( linearHypothesis( fit3sls[[ 1 ]]$e2w, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3sls[[ 1 ]]$e2w, restrictOnly2 )
print( linearHypothesis( fit3sls[[ 1 ]]$e3we, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3sls[[ 1 ]]$e3we, restrictOnly2 )
print( linearHypothesis( fit3slsi[[ 5 ]]$e2e, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3slsi[[ 5 ]]$e2e, restrictOnly2 )
print( linearHypothesis( fit3slsi[[ 5 ]]$e3e, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3slsi[[ 5 ]]$e3e, restrictOnly2 )
print( linearHypothesis( fit3slsd[[ 1 ]]$e2, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3slsd[[ 1 ]]$e2, restrictOnly2 )
print( linearHypothesis( fit3slsd[[ 1 ]]$e3, restrOnly2m, restrOnly2q ) )
linearHypothesis( fit3slsd[[ 1 ]]$e3, restrictOnly2 )
print( linearHypothesis( fit3sls[[ 2 ]]$e1e, restr2m, restr2q ) )
linearHypothesis( fit3sls[[ 2 ]]$e1e, restrict2 )
print( linearHypothesis( fit3slsi[[ 3 ]]$e1, restr2m, restr2q ) )
linearHypothesis( fit3slsi[[ 3 ]]$e1, restrict2 )
print( linearHypothesis( fit3slsd[[ 4 ]]$e1e, restr2m, restr2q ) )
linearHypothesis( fit3slsd[[ 4 ]]$e1e, restrict2 )
print( linearHypothesis( fit3slsd[[ 5 ]]$e1w, restr2m, restr2q ) )
linearHypothesis( fit3slsd[[ 5 ]]$e1w, restrict2 )
print( linearHypothesis( fit3sls[[ 1 ]]$e1, restrm, test = "Chisq" ) )
linearHypothesis( fit3sls[[ 1 ]]$e1, restrict, test = "Chisq" )
print( linearHypothesis( fit3sls[[ 2 ]]$e1e, restrm, test = "Chisq" ) )
linearHypothesis( fit3sls[[ 2 ]]$e1e, restrict, test = "Chisq" )
print( linearHypothesis( fit3sls[[ 3 ]]$e1c, restrm, test = "Chisq" ) )
linearHypothesis( fit3sls[[ 3 ]]$e1c, restrict, test = "Chisq" )
print( linearHypothesis( fit3slsi[[ 4 ]]$e1, restrm, test = "Chisq" ) )
linearHypothesis( fit3slsi[[ 4 ]]$e1, restrict, test = "Chisq" )
print( linearHypothesis( fit3slsi[[ 2 ]]$e1we, restrm, test = "Chisq" ) )
linearHypothesis( fit3slsi[[ 2 ]]$e1we, restrict, test = "Chisq" )
print( linearHypothesis( fit3slsd[[ 5 ]]$e1e, restrm, test = "Chisq" ) )
linearHypothesis( fit3slsd[[ 5 ]]$e1e, restrict, test = "Chisq" )
print( linearHypothesis( fit3sls[[ 5 ]]$e1c, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3sls[[ 5 ]]$e1c, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3sls[[ 3 ]]$e1wc, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3sls[[ 3 ]]$e1wc, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3slsi[[ 1 ]]$e1e, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3slsi[[ 1 ]]$e1e, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3slsd[[ 2 ]]$e1, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3slsd[[ 2 ]]$e1, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3sls[[ 4 ]]$e2, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3sls[[ 4 ]]$e2, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3sls[[ 4 ]]$e3, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3sls[[ 4 ]]$e3, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3slsi[[ 5 ]]$e2e, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3slsi[[ 5 ]]$e2e, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3slsi[[ 5 ]]$e3e, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3slsi[[ 5 ]]$e3e, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3slsd[[ 1 ]]$e2, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3slsd[[ 1 ]]$e2, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3slsd[[ 1 ]]$e3, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3slsd[[ 1 ]]$e3, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3slsd[[ 2 ]]$e2we, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3slsd[[ 2 ]]$e2we, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3slsd[[ 3 ]]$e3w, restrOnly2m, restrOnly2q, test = "Chisq" ) )
linearHypothesis( fit3slsd[[ 3 ]]$e3w, restrictOnly2, test = "Chisq" )
print( linearHypothesis( fit3sls[[ 2 ]]$e1e, restr2m, restr2q, test = "Chisq" ) )
linearHypothesis( fit3sls[[ 2 ]]$e1e, restrict2, test = "Chisq" )
print( linearHypothesis( fit3sls[[ 5 ]]$e1wc, restr2m, restr2q, test = "Chisq" ) )
linearHypothesis( fit3sls[[ 5 ]]$e1wc, restrict2, test = "Chisq" )
print( linearHypothesis( fit3slsi[[ 3 ]]$e1, restr2m, restr2q, test = "Chisq" ) )
linearHypothesis( fit3slsi[[ 3 ]]$e1, restrict2, test = "Chisq" )
print( linearHypothesis( fit3slsd[[ 4 ]]$e1e, restr2m, restr2q, test = "Chisq" ) )
linearHypothesis( fit3slsd[[ 4 ]]$e1e, restrict2, test = "Chisq" )
print( mf <- model.frame( fit3sls[[ 3 ]]$e1c ) )
print( mf1 <- model.frame( fit3sls[[ 3 ]]$e1c$eq[[ 1 ]] ) )
print( attributes( mf1 )$terms )
print( mf2 <- model.frame( fit3sls[[ 3 ]]$e1c$eq[[ 2 ]] ) )
print( attributes( mf2 )$terms )
print( all.equal( mf, model.frame( fit3sls[[ 3 ]]$e1wc ) ) )
print( all.equal( mf2, model.frame( fit3sls[[ 3 ]]$e1wc$eq[[ 2 ]] ) ) )
print( all.equal( mf, model.frame( fit3sls[[ 4 ]]$e2e ) ) )
print( all.equal( mf2, model.frame( fit3sls[[ 4 ]]$e2e$eq[[ 2 ]] ) ) )
print( all.equal( mf, model.frame( fit3sls[[ 5 ]]$e3 ) ) )
print( all.equal( mf1, model.frame( fit3sls[[ 5 ]]$e3$eq[[ 1 ]] ) ) )
print( all.equal( mf, model.frame( fit3sls[[ 1 ]]$e4e ) ) )
print( all.equal( mf2, model.frame( fit3sls[[ 1 ]]$e4e$eq[[ 2 ]] ) ) )
print( all.equal( mf, model.frame( fit3sls[[ 2 ]]$e5 ) ) )
print( all.equal( mf1, model.frame( fit3sls[[ 3 ]]$e5$eq[[ 1 ]] ) ) )
print( all.equal( mf, model.frame( fit3slsi[[ 4 ]]$e3e ) ) )
print( all.equal( mf1, model.frame( fit3slsi[[ 4 ]]$e3e$eq[[ 1 ]] ) ) )
print( all.equal( mf, model.frame( fit3slsd[[ 5 ]]$e4 ) ) )
print( all.equal( mf2, model.frame( fit3slsd[[ 5 ]]$e4$eq[[ 2 ]] ) ) )
fit3sls[[ 3 ]]$e1c$eq[[ 1 ]]$modelInst
fit3sls[[ 3 ]]$e1c$eq[[ 2 ]]$modelInst
fit3sls[[ 1 ]]$e3$eq[[ 1 ]]$modelInst
fit3sls[[ 1 ]]$e3$eq[[ 2 ]]$modelInst
fit3slsd[[ 5 ]]$e4$eq[[ 1 ]]$modelInst
fit3slsd[[ 5 ]]$e4$eq[[ 2 ]]$modelInst
print( !is.null( fit3sls[[ 4 ]]$e1c$eq[[ 1 ]]$x ) )
print( mm <- model.matrix( fit3sls[[ 4 ]]$e1c ) )
print( mm1 <- model.matrix( fit3sls[[ 4 ]]$e1c$eq[[ 1 ]] ) )
print( mm2 <- model.matrix( fit3sls[[ 4 ]]$e1c$eq[[ 2 ]] ) )
print( all.equal( mm, model.matrix( fit3sls[[ 4 ]]$e1wc ) ) )
print( all.equal( mm1, model.matrix( fit3sls[[ 4 ]]$e1wc$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3sls[[ 4 ]]$e1wc$eq[[ 2 ]] ) ) )
print( !is.null( fit3sls[[ 4 ]]$e1wc$eq[[ 1 ]]$x ) )
print( !is.null( fit3sls[[ 5 ]]$e2$eq[[ 1 ]]$x ) )
print( all.equal( mm, model.matrix( fit3sls[[ 5 ]]$e2 ) ) )
print( all.equal( mm1, model.matrix( fit3sls[[ 5 ]]$e2$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3sls[[ 5 ]]$e2$eq[[ 2 ]] ) ) )
print( all.equal( mm, model.matrix( fit3sls[[ 5 ]]$e2e ) ) )
print( all.equal( mm1, model.matrix( fit3sls[[ 5 ]]$e2e$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3sls[[ 5 ]]$e2e$eq[[ 2 ]] ) ) )
print( !is.null( fit3sls[[ 5 ]]$e1wc$e2e[[ 1 ]]$x ) )
print( !is.null( fit3sls[[ 1 ]]$e3e$eq[[ 1 ]]$x ) )
print( all.equal( mm, model.matrix( fit3sls[[ 1 ]]$e3e ) ) )
print( all.equal( mm1, model.matrix( fit3sls[[ 1 ]]$e3e$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3sls[[ 1 ]]$e3e$eq[[ 2 ]] ) ) )
print( all.equal( mm, model.matrix( fit3sls[[ 1 ]]$e3 ) ) )
print( all.equal( mm1, model.matrix( fit3sls[[ 1 ]]$e3$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3sls[[ 1 ]]$e3$eq[[ 2 ]] ) ) )
print( !is.null( fit3sls[[ 1 ]]$e3$eq[[ 1 ]]$x ) )
print( !is.null( fit3slsi[[ 2 ]]$e4$eq[[ 1 ]]$x ) )
print( all.equal( mm, model.matrix( fit3slsi[[ 2 ]]$e4 ) ) )
print( all.equal( mm1, model.matrix( fit3slsi[[ 2 ]]$e4$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3slsi[[ 2 ]]$e4$eq[[ 2 ]] ) ) )
print( all.equal( mm, model.matrix( fit3slsi[[ 2 ]]$e4we ) ) )
print( all.equal( mm1, model.matrix( fit3slsi[[ 2 ]]$e4we$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3slsi[[ 2 ]]$e4we$eq[[ 2 ]] ) ) )
print( !is.null( fit3slsi[[ 2 ]]$e1wc$e4we[[ 1 ]]$x ) )
print( !is.null( fit3slsi[[ 5 ]]$e5w$eq[[ 1 ]]$x ) )
print( all.equal( mm, model.matrix( fit3slsi[[ 5 ]]$e5w ) ) )
print( all.equal( mm1, model.matrix( fit3slsi[[ 5 ]]$e5w$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3slsi[[ 5 ]]$e5w$eq[[ 2 ]] ) ) )
print( all.equal( mm, model.matrix( fit3slsi[[ 5 ]]$e5 ) ) )
print( all.equal( mm1, model.matrix( fit3slsi[[ 5 ]]$e5$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3slsi[[ 5 ]]$e5$eq[[ 2 ]] ) ) )
print( !is.null( fit3slsi[[ 5 ]]$e5$eq[[ 1 ]]$x ) )
print( !is.null( fit3slsd[[ 3 ]]$e5e$eq[[ 1 ]]$x ) )
print( all.equal( mm, model.matrix( fit3slsd[[ 3 ]]$e5e ) ) )
print( all.equal( mm1, model.matrix( fit3slsd[[ 3 ]]$e5e$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3slsd[[ 3 ]]$e5e$eq[[ 2 ]] ) ) )
print( all.equal( mm, model.matrix( fit3slsd[[ 3 ]]$e5we ) ) )
print( all.equal( mm1, model.matrix( fit3slsd[[ 3 ]]$e5we$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3slsd[[ 3 ]]$e5we$eq[[ 2 ]] ) ) )
print( !is.null( fit3sls[[ 3 ]]$e5we$eq[[ 1 ]]$x ) )
print( !is.null( fit3slsd[[ 2 ]]$e3w$eq[[ 1 ]]$x ) )
print( all.equal( mm, model.matrix( fit3slsd[[ 2 ]]$e3w ) ) )
print( all.equal( mm1, model.matrix( fit3slsd[[ 2 ]]$e3w$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3slsd[[ 2 ]]$e3w$eq[[ 2 ]] ) ) )
print( all.equal( mm, model.matrix( fit3slsd[[ 2 ]]$e3 ) ) )
print( all.equal( mm1, model.matrix( fit3slsd[[ 2 ]]$e3$eq[[ 1 ]] ) ) )
print( all.equal( mm2, model.matrix( fit3slsd[[ 2 ]]$e3$eq[[ 2 ]] ) ) )
print( !is.null( fit3slsd[[ 2 ]]$e3$eq[[ 1 ]]$x ) )
model.matrix( fit3sls[[ 1 ]]$e1c, which = "z" )
model.matrix( fit3sls[[ 3 ]]$e1c$eq[[ 1 ]], which = "z" )
model.matrix( fit3sls[[ 4 ]]$e1c$eq[[ 2 ]], which = "z" )
model.matrix( fit3slsd[[ 1 ]]$e3w, which = "xHat" )
model.matrix( fit3slsd[[ 3 ]]$e3w$eq[[ 1 ]], which = "xHat" )
model.matrix( fit3slsd[[ 4 ]]$e3w$eq[[ 2 ]], which = "xHat" )
formula( fit3sls[[ 2 ]]$e1c )
formula( fit3sls[[ 2 ]]$e1c$eq[[ 1 ]] )
formula( fit3sls[[ 3 ]]$e2e )
formula( fit3sls[[ 3 ]]$e2e$eq[[ 2 ]] )
formula( fit3sls[[ 4 ]]$e3 )
formula( fit3sls[[ 4 ]]$e3$eq[[ 1 ]] )
formula( fit3sls[[ 5 ]]$e4e )
formula( fit3sls[[ 5 ]]$e4e$eq[[ 2 ]] )
formula( fit3sls[[ 1 ]]$e5 )
formula( fit3sls[[ 1 ]]$e5$eq[[ 1 ]] )
formula( fit3slsi[[ 3 ]]$e3e )
formula( fit3slsi[[ 3 ]]$e3e$eq[[ 1 ]] )
formula( fit3slsd[[ 4 ]]$e4 )
formula( fit3slsd[[ 4 ]]$e4$eq[[ 2 ]] )
formula( fit3slsd[[ 2 ]]$e1w )
formula( fit3slsd[[ 2 ]]$e1w$eq[[ 1 ]] )
terms( fit3sls[[ 2 ]]$e1c )
terms( fit3sls[[ 2 ]]$e1c$eq[[ 1 ]] )
terms( fit3sls[[ 3 ]]$e2e )
terms( fit3sls[[ 3 ]]$e2e$eq[[ 2 ]] )
terms( fit3sls[[ 4 ]]$e3 )
terms( fit3sls[[ 4 ]]$e3$eq[[ 1 ]] )
terms( fit3sls[[ 5 ]]$e4e )
terms( fit3sls[[ 5 ]]$e4e$eq[[ 2 ]] )
terms( fit3sls[[ 1 ]]$e5 )
terms( fit3sls[[ 1 ]]$e5$eq[[ 1 ]] )
terms( fit3sls[[ 2 ]]$e4wSym )
terms( fit3sls[[ 2 ]]$e4wSym$eq[[ 1 ]] )
terms( fit3slsi[[ 3 ]]$e3e )
terms( fit3slsi[[ 3 ]]$e3e$eq[[ 1 ]] )
terms( fit3slsd[[ 4 ]]$e4 )
terms( fit3slsd[[ 4 ]]$e4$eq[[ 2 ]] )
terms( fit3slsd[[ 5 ]]$e5we )
terms( fit3slsd[[ 5 ]]$e5we$eq[[ 2 ]] )
fit3sls[[ 2 ]]$e1c$eq[[ 1 ]]$termsInst
fit3sls[[ 3 ]]$e2e$eq[[ 2 ]]$termsInst
fit3sls[[ 4 ]]$e3$eq[[ 1 ]]$termsInst
fit3sls[[ 5 ]]$e4e$eq[[ 2 ]]$termsInst
fit3sls[[ 1 ]]$e5$eq[[ 1 ]]$termsInst
fit3sls[[ 2 ]]$e4wSym$eq[[ 1 ]]$termsInst
fit3slsi[[ 3 ]]$e3e$eq[[ 1 ]]$termsInst
fit3slsd[[ 4 ]]$e4$eq[[ 2 ]]$termsInst
fit3slsd[[ 5 ]]$e5we$eq[[ 2 ]]$termsInst
library( "sandwich" )
estfun( fit3sls[[ 1 ]]$e1 )
round( colSums( estfun( fit3sls[[ 1 ]]$e1 ) ), digits = 7 )
estfun( fit3sls[[ 2 ]]$e1e )
round( colSums( estfun( fit3sls[[ 2 ]]$e1e ) ), digits = 7 )
estfun( fit3sls[[ 3 ]]$e1c )
round( colSums( estfun( fit3sls[[ 3 ]]$e1c ) ), digits = 7 )
estfun( fit3sls[[ 4 ]]$e1wc )
round( colSums( estfun( fit3sls[[ 5 ]]$e1wc ) ), digits = 7 )
round( colSums( estfun( fit3sls[[ 5 ]]$e1wc, residFit = FALSE ) ), digits = 7 )
round( colSums( estfun( fit3sls[[ 4 ]]$e1wc ) ), digits = 7 )
round( colSums( estfun( fit3sls[[ 4 ]]$e1wc, residFit = FALSE ) ), digits = 7 )
round( colSums( estfun( fit3sls[[ 3 ]]$e1wc ) ), digits = 7 )
round( colSums( estfun( fit3sls[[ 3 ]]$e1wc, residFit = FALSE ) ), digits = 7 )
round( colSums( estfun( fit3sls[[ 2 ]]$e1wc ) ), digits = 7 )
round( colSums( estfun( fit3sls[[ 2 ]]$e1wc, residFit = FALSE ) ), digits = 7 )
round( colSums( estfun( fit3sls[[ 1 ]]$e1wc ) ), digits = 7 )
round( colSums( estfun( fit3sls[[ 1 ]]$e1wc, residFit = FALSE ) ), digits = 7 )
estfun( fit3slsd[[ 5 ]]$e1w )
estfun( fit3slsd[[ 5 ]]$e1w, residFit = FALSE )
round( colSums( estfun( fit3slsd[[ 5 ]]$e1w ) ), digits = 7 )
round( colSums( estfun( fit3slsd[[ 5 ]]$e1w, residFit = FALSE ) ), digits = 7 )
round( colSums( estfun( fit3slsd[[ 4 ]]$e1w ) ), digits = 7 )
round( colSums( estfun( fit3slsd[[ 4 ]]$e1w, residFit = FALSE ) ), digits = 7 )
round( colSums( estfun( fit3slsd[[ 3 ]]$e1w ) ), digits = 7 )
round( colSums( estfun( fit3slsd[[ 3 ]]$e1w, residFit = FALSE ) ), digits = 7 )
round( colSums( estfun( fit3slsd[[ 2 ]]$e1w ) ), digits = 7 )
round( colSums( estfun( fit3slsd[[ 2 ]]$e1w, residFit = FALSE ) ), digits = 7 )
round( colSums( estfun( fit3slsd[[ 1 ]]$e1w ) ), digits = 7 )
round( colSums( estfun( fit3slsd[[ 1 ]]$e1w, residFit = FALSE ) ), digits = 7 )
bread( fit3sls[[ 1 ]]$e1 )
bread( fit3sls[[ 2 ]]$e1e )
bread( fit3sls[[ 3 ]]$e1c )
bread( fit3sls[[ 4 ]]$e1wc )
bread( fit3slsd[[ 5 ]]$e1w )
bread( fit3slsd[[ 4 ]]$e1w )
bread( fit3slsd[[ 3 ]]$e1w )
bread( fit3slsd[[ 2 ]]$e1w )
bread( fit3slsd[[ 1 ]]$e1w ) |
gridBy <-
function(lim = c(0, 1), by = (lim[2] - lim[1]) / 10) {
gridlist <- list()
for (idx in 1:(length(lim)/2)) {
if (length(by) == 1) {
gridlist[[idx]] <- seq(lim[2 * idx - 1], lim[2 * idx], by = by)
} else {
gridlist[[idx]] <- seq(lim[2 * idx - 1], lim[2 * idx], by = by[idx])
}
}
grid <- as.matrix(expand.grid(gridlist))
colnames(grid) <- NULL
dim <- sapply(gridlist, length)
out <- list("dim" = dim, "lim" = lim, "grid" = grid)
return(out)
} |
Gibbs_method = function(y, rho = NULL, n_rho = NULL, rho_ratio = NULL, Theta=NULL, ncores = 4, chain = 1, max.elongation = 10, em.tol=0.001)
{
p <- ncol(y)
n <- nrow(y)
lower.upper = lower.upper(y)
if(is.null(rho))
{
if(is.null(n_rho)) n_rho = 10
cr = cor(y, method="spearman") - diag(p)
cr[is.na(cr)] <- 0
rho_max = max(max(cr),-min(cr))
if(rho_max == 0)
{
ty <- npn(y, npn.func= "shrinkage")
cr = cor(ty, method="spearman") - diag(p)
rho_max = max(max(cr),-min(cr))
}
if(rho_max >= .7) rho_max = .7
rho_min = rho_ratio * rho_max
rho = exp(seq(log(rho_max), log(rho_min), length = n_rho))
rm(cr, rho_max, rho_min, rho_ratio)
}
Gibbs.method <- calculate_EM_Gibbs(chain, y, rho = rho[chain], Theta=Theta, lower.upper = lower.upper, em.tol = em.tol, em.iter = max.elongation, gibbs.iter = 500, mc.iter = 1000, ncores = ncores)
invisible(return(Gibbs.method))
} |
idb1 <- function(country, year, variables = c('AGE', 'AREA_KM2', 'NAME', 'POP'),
start_age = NULL, end_age = NULL, sex = NULL, api_key = NULL) {
.Deprecated("get_idb")
if (Sys.getenv('IDB_API') != '') {
api_key <- Sys.getenv('IDB_API')
} else if (is.null(api_key)) {
if (Sys.getenv("CENSUS_API_KEY") != '') {
api_key <- Sys.getenv("CENSUS_API_KEY")
} else {
stop('A Census API key is required. Obtain one at https://api.census.gov/data/key_signup.html, and then supply the key to the `idb_api_key` function to use it throughout your idbr session.')
}
}
if (length(country) > 1) {
multi <- purrr::map_df(country, ~{
idb1(country = .x, year = year, variables = variables,
start_age = start_age, end_age = end_age, sex = sex,
api_key = api_key)
})
return(multi)
}
if (nchar(country) > 2) {
country <- countrycode::countrycode(country, 'country.name', 'fips')
}
if (!(country %in% valid_countries)) {
stop(paste0('The FIPS code ', country, ' is not available in the Census IDB.'))
}
variables <- paste(variables, sep = '', collapse = ',')
if (length(year) == 1) {
url <- paste0(
'https://api.census.gov/data/timeseries/idb/1year?get=',
variables,
'&FIPS=',
country,
'&time=',
as.character(year),
'&key=',
api_key
)
if (!is.null(start_age) & !is.null(end_age)) {
url <- paste0(url, '&AGE=', as.character(start_age), ':', as.character(end_age))
} else if (!is.null(start_age) & is.null(end_age)) {
url <- paste0(url, '&AGE=', as.character(start_age), ':100')
} else if (is.null(start_age) & !is.null(end_age)) {
url <- paste0(url, '&AGE=0:', as.character(end_age))
}
if (!is.null(sex)) {
if (sex == 'both') sex <- 0
if (sex == 'male') sex <- 1
if (sex == 'female') sex <- 2
url <- paste0(url, '&SEX=', as.character(sex))
}
return(load_data(url))
} else if (length(year) > 1) {
dfs <- lapply(year, function(x) {
url <- paste0(
'https://api.census.gov/data/timeseries/idb/1year?get=',
variables,
'&FIPS=',
country,
'&time=',
as.character(x),
'&key=',
api_key
)
if (!is.null(start_age) & !is.null(end_age)) {
url <- paste0(url, '&AGE=', as.character(start_age), ':', as.character(end_age))
} else if (!is.null(start_age) & is.null(end_age)) {
url <- paste0(url, '&AGE=', as.character(start_age), ':100')
} else if (is.null(start_age) & !is.null(end_age)) {
url <- paste0(url, '&AGE=0:', as.character(end_age))
}
if (!is.null(sex)) {
if (sex == 'both') sex <- 0
if (sex == 'male') sex <- 1
if (sex == 'female') sex <- 2
url <- paste0(url, '&SEX=', as.character(sex))
}
load_data(url)
})
return(dplyr::bind_rows(dfs))
}
}
idb5 <- function(country, year, variables = NULL, concept = NULL, country_name = FALSE, api_key = NULL) {
.Deprecated("get_idb")
if (Sys.getenv('IDB_API') != '') {
api_key <- Sys.getenv('IDB_API')
} else if (is.null(api_key)) {
if (Sys.getenv("CENSUS_API_KEY") != '') {
api_key <- Sys.getenv("CENSUS_API_KEY")
} else {
stop('A Census API key is required. Obtain one at https://api.census.gov/data/key_signup.html, and then supply the key to the `idb_api_key` function to use it throughout your idbr session.')
}
}
suppressWarnings(if (country == 'all') {
country <- valid_countries
} else {
country <- purrr::map_chr(country, function(x) {
if (nchar(x) > 2) {
return(countrycode::countrycode(x, 'country.name', 'fips'))
} else {
return(x)
}
})
})
if (any(is.na(!match(country, valid_countries))) == TRUE) {
nomatch <- country[is.na(!match(country, valid_countries))]
country <- country[!country %in% nomatch]
warning(paste0('The FIPS codes ', paste(nomatch, sep = ' ', collapse = ', '),
' are not available in the Census IDB, and have been removed from your query.'))
}
if (length(variables) > 50) {
stop("Requests are limited to 50 variables. Consider using `idb_variables()` to identify which variables to select, or `idb_concepts()` to identify a concept by which you can subset.", call. = FALSE)
}
if (!is.null(variables)) {
if (!is.null(concept)) {
concept <- NULL
warning('concept cannot be used with variables; using the specified variables instead.', call. = FALSE)
}
variables <- paste(variables, sep = '', collapse = ',')
} else if (is.null(variables) & is.null(concept)) {
stop("Requests are limited to 50 variables. Consider using `idb_variables()` to identify which variables to select, or `idb_concepts()` to identify a concept by which you can subset.", call. = FALSE)
} else if (is.null(variables) & !is.null(concept)) {
sub <- variables5[variables5$Concept == concept, ]
vars <- unique(sub$Name)
variables <- paste(vars, sep = '', collapse = ',')
}
if (country_name == TRUE) variables <- paste0(variables, ',NAME')
if (length(country) == 1 & length(year) == 1) {
url <- paste0(
'https://api.census.gov/data/timeseries/idb/5year?get=',
variables,
'&FIPS=',
country,
'&time=',
as.character(year),
'&key=',
api_key
)
return(load_data(url))
} else if (length(country) > 1 & length(year) == 1) {
dfs <- lapply(country, function(x) {
url <- paste0(
'https://api.census.gov/data/timeseries/idb/5year?get=',
variables,
'&FIPS=',
x,
'&time=',
as.character(year),
'&key=',
api_key
)
load_data(url)
})
return(dplyr::bind_rows(dfs))
} else if (length(country) == 1 & length(year) > 1) {
dfs <- lapply(year, function(x) {
url <- paste0(
'https://api.census.gov/data/timeseries/idb/5year?get=',
variables,
'&FIPS=',
country,
'&time=',
as.character(x),
'&key=',
api_key
)
load_data(url)
})
return(dplyr::bind_rows(dfs))
} else if (length(country) > 1 & length(year) > 1) {
full <- lapply(country, function(x) {
dfs <- lapply(year, function(y) {
url <- paste0(
'https://api.census.gov/data/timeseries/idb/5year?get=',
variables,
'&FIPS=',
x,
'&time=',
as.character(y),
'&key=',
api_key
)
load_data(url)
})
dplyr::bind_rows(dfs)
})
return(dplyr::bind_rows(full))
}
}
idb_api_key <- function(api_key) {
Sys.setenv(IDB_API = api_key)
} |
aformat <- function( md5hash = NULL) {
elements <- strsplit(md5hash, "/")[[1]]
stopifnot( length(elements) >= 3 | length(elements) == 1)
if (length(elements) == 1) {
tags <- getTagsLocal(md5hash, tag = "")
} else {
tags <- getTagsRemote(tail(elements,1), repo = elements[2],
subdir = ifelse(length(elements) > 3, paste(elements[3:(length(elements)-1)], collapse="/"), "/"),
user = elements[1], tag = "")
}
return(gsub(grep(tags, pattern="^format:", value = TRUE), pattern="^format:", replacement=""))
} |
library(shiny)
library(shiny.i18n)
i18n <- Translator$new(translation_json_path = "../data/translation.json")
i18n$set_translation_language("pl")
ui <- shinyUI(fluidPage(
titlePanel(i18n$t("Hello Shiny!")),
sidebarLayout(
sidebarPanel(
sliderInput("bins",
i18n$t("Number of bins:"),
min = 1,
max = 50,
value = 30)
),
mainPanel(
plotOutput("distPlot"),
p(i18n$t("This is description of the plot."))
)
)
))
server <- function(input, output) {
output$distPlot <- renderPlot({
x <- faithful[, 2]
bins <- seq(min(x), max(x), length.out = input$bins + 1)
hist(x, breaks = bins,
col = "darkgray", border = "white",
main = i18n$t("Histogram of x"), ylab = i18n$t("Frequency"))
})
}
shinyApp(ui = ui, server = server) |
dateRefill.fromFileToExcel <-
function(inPath, sheet, dateCol.index, outPath, fixedCol.index, uninterpolatedCol.index, uninterpolatedCol.newValue)
{
if(!requireNamespace("openxlsx",quietly = TRUE)){
install.packages("openxlsx"); requireNamespace("openxlsx", quietly = TRUE)
}else{
requireNamespace("openxlsx", quietly = TRUE)
}
if(!requireNamespace("zoo", quietly = TRUE)){
install.packages("zoo"); requireNamespace("zoo", quietly = TRUE)
}else{
requireNamespace("zoo", quietly = TRUE)
}
if(!requireNamespace("Hmisc",quietly = TRUE)){
install.packages("Hmisc"); requireNamespace("Hmisc", quietly = TRUE)
}else{
requireNamespace("Hmisc", quietly = TRUE)
}
if(!requireNamespace("magrittr",quietly = TRUE)){
install.packages("magrittr"); requireNamespace("magrittr", quietly = TRUE)
}else{
requireNamespace("magrittr", quietly = TRUE)
}
data <- openxlsx::read.xlsx(inPath, sheet)
data[,dateCol.index] <- zoo::as.Date(data[,dateCol.index], origin = "1899-12-30")
colNameVector <- colnames(data)
colnames(data)[dateCol.index] <- "Date"
data$Date <- as.POSIXlt(data$Date)
year.list <- levels(factor(data$Date$year + 1900))
data <- data[order(data$Date, decreasing = FALSE),]
final.data <- data.frame(data[,1:length(colNameVector)])
final.data[,] <- NA
final.data$Date <- as.POSIXlt(final.data$Date)
year <- substr(data[1, dateCol.index],1,4)
origin <- paste(year, "-01-01", sep = "")
origin <- zoo::as.Date(origin)
diff <- zoo::as.Date(data[1, dateCol.index])-origin
daySum <- sprintf("%s-01-01", year.list) %>%
zoo::as.Date()
daySum <- mapply(Hmisc::yearDays, daySum) %>%
sum()
daySum <- magrittr::subtract(daySum, diff) %>%
as.numeric()
final.data[1:daySum,] <- NA
final.data[, dateCol.index] <- seq(data[1, dateCol.index], by = "1 days", length.out = daySum)
colnames(data) <- names(final.data)
my.index <- match(data$Date, as.POSIXlt(final.data$Date))
final.data[my.index,] <- data[,]
final.data <- head(final.data, which(final.data$Date == data$Date[length(data$Date)]))
final.data[which(is.na(final.data[, fixedCol.index[1]])), fixedCol.index] <- data[1, fixedCol.index]
final.data[which(is.na(final.data[, uninterpolatedCol.index[1]])), uninterpolatedCol.index] <- uninterpolatedCol.newValue
final.data$Date <- zoo::as.Date(final.data$Date)
colnames(final.data) <- colNameVector
openxlsx::write.xlsx(final.data, file = outPath)
}
dateRefill.fromData <-
function(data, dateCol.index, fixedCol.index, uninterpolatedCol.index, uninterpolatedCol.newValue)
{
if(!requireNamespace("zoo", quietly = TRUE)){
install.packages("zoo"); requireNamespace("zoo", quietly = TRUE)
}else{
requireNamespace("zoo", quietly = TRUE)
}
if(!requireNamespace("Hmisc",quietly = TRUE)){
install.packages("Hmisc"); requireNamespace("Hmisc", quietly = TRUE)
}else{
requireNamespace("Hmisc", quietly = TRUE)
}
if(!requireNamespace("magrittr",quietly = TRUE)){
install.packages("magrittr"); requireNamespace("magrittr", quietly = TRUE)
}else{
requireNamespace("magrittr", quietly = TRUE)
}
data <- data.frame(data)
data[,dateCol.index] <- zoo::as.Date(data[,dateCol.index], origin = "1899-12-30")
colNameVector <- colnames(data)
colnames(data)[dateCol.index] <- "Date"
data$Date <- as.POSIXlt(data$Date)
year.list <- levels(factor(data$Date$year + 1900))
data <- data[order(data$Date, decreasing = FALSE),]
final.data <- data.frame(data[,1:length(colNameVector)])
final.data[,] <- NA
final.data$Date <- as.POSIXlt(final.data$Date)
year <- substr(data[1, dateCol.index],1,4)
origin <- paste(year, "-01-01", sep = "")
origin <- zoo::as.Date(origin)
diff <- zoo::as.Date(data[1, dateCol.index])-origin
daySum <- sprintf("%s-01-01", year.list) %>%
zoo::as.Date()
daySum <- mapply(Hmisc::yearDays, daySum) %>%
sum()
daySum <- magrittr::subtract(daySum, diff) %>%
as.numeric()
final.data[1:daySum,] <- NA
final.data[, dateCol.index] <- seq(data[1, dateCol.index], by = "1 days", length.out = daySum)
colnames(data) <- names(final.data)
my.index <- match(data$Date, as.POSIXlt(final.data$Date))
final.data[my.index,] <- data[,]
final.data <- head(final.data, which(final.data$Date == data$Date[length(data$Date)]))
final.data[which(is.na(final.data[, fixedCol.index[1]])), fixedCol.index] <- data[1, fixedCol.index]
final.data[which(is.na(final.data[, uninterpolatedCol.index[1]])), uninterpolatedCol.index] <- uninterpolatedCol.newValue
final.data$Date <- zoo::as.Date(final.data$Date)
colnames(final.data) <- colNameVector
return(final.data)
} |
gcloud_version <- function() {
out <- gcloud_exec("version", echo = FALSE)
version <- strsplit(unlist(strsplit(out$stdout, "\r?\n")),
" (?=[^ ]+$)", perl = TRUE)
v_numbers <- lapply(version, function(x) numeric_version(x[2]))
names(v_numbers) <- sapply(version, function(x) x[1])
v_numbers
} |
context("compile reactions")
params <- c(
"a" = 1,
"b" = 2,
"c" = 3,
"d" = 4.5321
)
state <- c(
"a_very_long_state_name_value_is_just_to_try_and_see_if_it_works" = 12.34,
"short_one" = 7,
"x" = 1,
"y" = 0,
"z" = 0
)
reactions <- list(
reaction("a", c(x = +1, y = +1), "react1"),
reaction("b", c(x = +1, y = -1), "react2"),
reaction("c", c(x = +1, z = +1), "react3"),
reaction("d", c(x = +1, z = -1), "react4"),
reaction("a_very_long_state_name_value_is_just_to_try_and_see_if_it_works", c(x = +1), "react5"),
reaction("short_one", c(x = -1, y = +1), "react6"),
reaction("x", c(x = -1, y = -1), "react7"),
reaction("y", c(x = -1, z = +1), "react8"),
reaction("z", c(x = -1, z = -1), "react9"),
reaction(
propensity = "a * b * c * d / a_very_long_state_name_value_is_just_to_try_and_see_if_it_works / short_one",
effect = c(x = -1),
name = "react10"
),
reaction(
propensity = "buf1 = a + 1; buf2 = buf1 + 1; buf3 = buf2 + 1; buf4 = buf3 + 1; buf4 + 1",
effect = c(y = +1, z = +1),
name = "react11"
),
reaction(
propensity = ~ (a * b + c) / d,
effect = c(y = +1, z = -1),
name = "react12"
)
)
test_that("compilation works", {
comp_reac <- compile_reactions(
reactions = reactions,
state_ids = names(state),
params = params,
hardcode_params = FALSE
)
nu <- comp_reac$state_change
expect_equal(nrow(nu), length(state))
expect_equal(ncol(nu), length(reactions))
expected_p <- reactions %>% map_int(~length(.$effect)) %>% cumsum %>% c(0, .)
expect_equal(nu@p, expected_p)
expected_i <- reactions %>% map(~names(.$effect)) %>% unlist() %>% match(names(state)) - 1
expect_equal(nu@i, expected_i)
expected_x <- reactions %>% map(~.$effect) %>% unlist() %>% unname()
expect_equal(expected_x, nu@x)
expected_reac_ids <- map_chr(reactions, "name")
expect_equal(comp_reac$reaction_ids, expected_reac_ids)
expect_equal(comp_reac$buffer_ids, paste0("buf", 1:4))
expect_equal(comp_reac$buffer_size, 4)
expect_equal(comp_reac$hardcode_params, FALSE)
out <- test_propensity_calculation(
comp_reac,
params,
state,
0
)
expected_prop <- with(as.list(c(params, state)), c(
params,
state,
a * b * c * d / a_very_long_state_name_value_is_just_to_try_and_see_if_it_works / short_one,
a + 5,
(a * b + c) / d
)) %>%
unname()
expect_equal(out$propensity, expected_prop, tolerance = .001)
expect_equal(out$buffer, 2:5, tolerance = .001)
})
test_that("compilation works when params are hardcoded", {
comp_reac <- compile_reactions(
reactions = reactions,
state_ids = names(state),
params = params,
hardcode_params = TRUE
)
out <- test_propensity_calculation(
comp_reac,
params,
state,
0
)
expected_prop <- with(as.list(c(params, state)), c(
params,
state,
a * b * c * d / a_very_long_state_name_value_is_just_to_try_and_see_if_it_works / short_one,
a + 5,
(a * b + c) / d
)) %>%
unname()
expect_equal(out$propensity, expected_prop, tolerance = .001)
expect_equal(out$buffer, 2:5, tolerance = .001)
}) |
expected <- eval(parse(text="structure(c(\"a\", \"2\", \"3.14159265358979+2i\"), .Names = c(\"a\", \"b\", \"c\"))"));
test(id=0, code={
argv <- eval(parse(text="list(structure(list(a = \"a\", b = 2, c = 3.14159265358979+2i), .Names = c(\"a\", \"b\", \"c\")), TRUE, TRUE)"));
.Internal(unlist(argv[[1]], argv[[2]], argv[[3]]));
}, o=expected); |
test_that("/events API get's datetime", {
piwik_pro_credentials <- get_test_credentials()
skip_if_missing_credentials(piwik_pro_credentials)
skip_if_not_installed("piwikproRTests")
skip_on_cran()
piwikproRTests::datetime_for_events_api(piwik_pro_credentials)
})
test_that("/sessions API get's datetime", {
piwik_pro_credentials <- get_test_credentials()
skip_if_missing_credentials(piwik_pro_credentials)
skip_if_not_installed("piwikproRTests")
skip_on_cran()
piwikproRTests::datetime_for_sessions_api(piwik_pro_credentials)
})
test_that("/query API get's date", {
piwik_pro_credentials <- get_test_credentials()
skip_if_missing_credentials(piwik_pro_credentials)
skip_if_not_installed("piwikproRTests")
skip_on_cran()
piwikproRTests::no_datetime_for_query_api(piwik_pro_credentials)
})
test_that("/events API can use fetch_by_day=TRUE ", {
piwik_pro_credentials <- get_test_credentials()
skip_if_missing_credentials(piwik_pro_credentials)
skip_if_not_installed("piwikproRTests")
skip_on_cran()
piwikproRTests::fetch_by_day_for_events_api(piwik_pro_credentials)
})
test_that("/sessions API can use fetch_by_day=TRUE ", {
piwik_pro_credentials <- get_test_credentials()
skip_if_missing_credentials(piwik_pro_credentials)
skip_if_not_installed("piwikproRTests")
skip_on_cran()
piwikproRTests::fetch_by_day_for_sessions_api(piwik_pro_credentials)
}) |
.VCFconnection <- function(file)
{
file <- path.expand(file)
remote <- grepl("^(ht|f)tp(s|):", file)
GZ <- grepl("\\.gz$", file, ignore.case = TRUE)
if (GZ) {
file <- if (remote) url(file) else gzfile(file)
file <- gzcon(file)
}
x <- readChar(file, 16L, TRUE)
if (!identical(x, "
stop("file apparently not in VCF format")
file
}
.getMETAvcf <- function(file)
{
f <- .VCFconnection(file)
HEADER <- character(0)
skip <- 0L
repeat {
x <- scan(file, "", sep = "\n", n = 1L, skip = skip, quiet = TRUE)
if (substr(x, 1, 6) == "
skip <- skip + 1L
HEADER <- c(HEADER, x)
}
HEADER <- paste(paste0(HEADER, "\n"), collapse = "")
j <- nchar(HEADER, "bytes") + 1L + nchar(x, "bytes")
list(HEADER = HEADER, LABELS = x, position = j)
}
VCFheader <- function(file) .getMETAvcf(file)$HEADER
VCFlabels <- function(file) strsplit(.getMETAvcf(file)$LABELS, "\t")[[1]][-(1:9)]
VCFloci <- function(file, what = "all", chunk.size = 1e9, quiet = FALSE)
{
meta <- .getMETAvcf(file)
f <- .VCFconnection(file)
GZ <- if (inherits(f, "connection")) TRUE else FALSE
FIELDS <- c("CHROM", "POS", "ID", "REF", "ALT",
"QUAL", "FILTER", "INFO", "FORMAT")
what <- if (identical(what, "all")) 1:9 else match(what, FIELDS)
obj <- vector("list", 9L)
if (GZ) open(f) else {
sz <- file.info(file)$size
if (is.na(sz))
stop(paste("cannot find information on file", sQuote(file)))
left.to.scan <- sz
}
if (!quiet) cat("Scanning file", file, "\n")
scanned <- 0
ncycle <- 0L
FROM <- integer()
TO <- integer()
CHUNK.SIZES <- numeric()
repeat {
if (!GZ) {
if (left.to.scan > chunk.size) {
left.to.scan <- left.to.scan - chunk.size
} else {
chunk.size <- left.to.scan
left.to.scan <- 0L
}
Y <- .Call(read_bin_pegas, file, chunk.size, scanned)
} else {
Y <- readBin(f, "raw", chunk.size)
if (!length(Y)) break
}
nY <- length(Y)
scanned <- scanned + nY
if (!quiet) {
if (GZ) cat("\r", scanned/1e6, "Mb")
else cat("\r", scanned/1e6, "/", sz/1e6, "Mb")
}
ncycle <- ncycle + 1L
if (ncycle == 1) {
skip <- meta$position - 3L
nCol <- length(gregexpr("\t", meta$LABELS)[[1]]) + 1L
} else skip <- 0L
hop <- 2L * nCol - 1L
EOL <- .Call(findEOL_C, Y, skip, hop)
ck <- nY
if (exists("trail", inherits = FALSE)) {
x <- c(trail, Y[1:EOL[1L]])
for (i in what) {
tmp <-
if (i %in% c(2, 6)) .Call(extract_POS, x, c(0L, length(trail)), i - 1L)
else .Call(extract_REF, x, c(0L, length(trail)), i - 1L)
obj[[i]] <- c(obj[[i]], tmp)
}
ck <- ck + length(trail)
rm(trail)
extra.locus <- 1L
} else extra.locus <- 0L
nEOL <- length(EOL)
if (EOL[nEOL] != nY) {
trail <- Y[(EOL[nEOL] + 1L):nY]
ck <- ck - length(trail)
}
from <- if (ncycle == 1) 1L else TO[ncycle - 1L] + 1L
to <- from + nEOL - 2L + extra.locus
FROM <- c(FROM, from)
TO <- c(TO, to)
CHUNK.SIZES <- c(CHUNK.SIZES, ck)
for (i in what) {
tmp <-
if (i %in% c(2, 6)) .Call(extract_POS, Y, EOL, i - 1L)
else .Call(extract_REF, Y, EOL, i - 1L)
obj[[i]] <- c(obj[[i]], tmp)
}
if (!GZ && !left.to.scan) break
}
if (GZ) close(f)
else if (!quiet) cat("\r", scanned/1e6, "/", sz/1e6, "Mb")
if (!quiet) cat("\nDone.\n")
assign(file, data.frame(FROM = FROM, TO = TO, CHUNK.SIZES = CHUNK.SIZES),
envir = .cacheVCF)
names(obj) <- FIELDS
obj <- obj[!sapply(obj, is.null)]
obj <- as.data.frame(obj, stringsAsFactors = FALSE)
class(obj) <- c("VCFinfo", "data.frame")
obj
}
print.VCFinfo <- function(x, ...)
{
n <- length(x[[1]])
if (n < 10) print(as.data.frame(x)) else {
x <- x[c(1:5, (n - 4):n), , drop = FALSE]
x <- apply(x, 2, as.character)
x <- as.data.frame(x, stringsAsFactors = FALSE)
x[5:6, ] <- ""
row.names(x) <- c(1:4, "....", ".....", (n - 3):n)
print(x)
}
}
is.snp.VCFinfo <- function(x)
{
REF <- x$REF
if (is.null(REF)) stop("no REF allele(s)")
ALT <- x$ALT
if (is.null(ALT)) stop("no ALT allele(s)")
nchar(REF) == 1 & nchar(ALT) == 1
}
rangePOS <- function(x, from, to)
{
POS <- x$POS
if (is.null(POS)) stop("no POS(isition)")
which(from <= POS & POS <= to)
}
selectQUAL <- function(x, threshold = 20)
{
QUAL <- x$QUAL
if (is.null(QUAL)) stop("no QUAL(ility)")
which(QUAL >= threshold)
}
getINFO <- function(x, what = "DP", as.is = FALSE)
{
INFO <- x$INFO
if (is.null(INFO)) stop("no INFO")
regexp <- paste0("^.*", what, "=")
tmp <- gsub(regexp, "", INFO)
tmp <- gsub(";.+$", "", tmp)
if (!as.is) {
op <- options(warn = -1)
on.exit(options(op))
if (!all(is.na(as.numeric(tmp[1:10]))))
tmp <- as.numeric(tmp)
}
tmp
} |
tmGetViewports <- function(vp, fontsize.title, fontsize.labels, fontsize.legend,
position.legend, type, aspRatio, title.legend, catLabels) {
if (is.null(vp)) {
grid.newpage()
} else {
if (is.character(vp))
seekViewport(vp)
else pushViewport(vp)
}
width <- convertWidth(unit(1,"npc"), "inches",valueOnly = TRUE)
height <- convertHeight(unit(1,"npc"), "inches",valueOnly = TRUE)
plotMargin <- unit(0.5,"cm")
fsTitle <- fontsize.title
fsData <- 12
fsLegend <- fontsize.legend
titleSpace <- convertHeight(unit(1.5* (fsTitle/get.gpar()$fontsize),
"lines"), "inches")
if (position.legend == "bottom") {
legHeight <- unit(fsLegend * 0.03 + 0.4, "inches")
legWidth <- unit(0, "npc")
vpLeg <- viewport(name = "legenda",
x = plotMargin,
y = 0.5 * plotMargin + legHeight*0.3,
width = unit(1, "npc") - 2 * plotMargin,
height = legHeight*0.7,
gp=gpar(fontsize=fsLegend),
just = c("left", "bottom"))
vpLegTitle <- viewport(name = "legenda_title",
x = plotMargin,
y = 0.5 * plotMargin,
width = unit(1, "npc") - 2 * plotMargin,
height = legHeight*0.3,
gp=gpar(fontsize=fsLegend),
just = c("left", "bottom"))
} else if (position.legend == "right") {
scale <- fsLegend / get.gpar()$fontsize
maxStringWidth <- max(convertWidth(stringWidth(title.legend), "inches",
valueOnly=TRUE)*scale+.5, 1)
if (type %in% c("categorical", "index")) {
maxStringWidth <- max(maxStringWidth,
convertWidth(stringWidth(catLabels),
"inches",
valueOnly=TRUE)*scale+.75)
}
legWidth <- unit(maxStringWidth, "inches")
legHeight <- unit(0, "npc")
vpLeg <- viewport(name = "legenda",
x = unit(1, "npc") - plotMargin - legWidth,
y = 0.5 * plotMargin,
width = legWidth,
height = unit(1, "npc") - plotMargin - titleSpace,
gp=gpar(fontsize=fsLegend),
just = c("left", "bottom"))
vpLegTitle <- viewport(name = "legenda_title",
x = unit(1, "npc") - plotMargin - legWidth,
y = unit(1, "npc") - 0.5 * plotMargin - titleSpace,
width = legWidth,
height = titleSpace,
gp=gpar(fontsize=fsLegend),
just = c("left", "bottom"))
} else {
legWidth <- unit(0, "npc")
legHeight <- unit(0, "npc")
vpLeg <- NA
vpLegTitle <- NA
}
vpDat <- viewport(name = "data",
x = plotMargin,
y = legHeight + 0.5*plotMargin,
width = unit(1, "npc") - 2 * plotMargin - legWidth,
height = unit(1,"npc") -
legHeight - plotMargin - titleSpace,
gp=gpar(fontsize=fsData),
just = c("left", "bottom"))
vpDatTitle <- viewport(name = "data_title",
x = plotMargin,
y = unit(1, "npc") - .5*plotMargin - titleSpace,
width = unit(1, "npc") - 2 * plotMargin - legWidth,
height = titleSpace,
gp=gpar(fontsize=fsTitle),
just = c("left", "bottom"))
pushViewport(vpDat)
datWidth <- convertWidth(unit(1,"npc"), "inches", valueOnly=TRUE)
datHeight <- convertHeight(unit(1,"npc"), "inches", valueOnly=TRUE)
aspWindow <- datWidth / datHeight
if (!is.na(aspRatio)) {
if (aspRatio < aspWindow) {
datWidth <- datHeight * aspRatio
} else if (aspRatio > aspWindow) {
datHeight <- datWidth / aspRatio
}
} else {
aspRatio <- datWidth / datHeight
}
vpDatAsp <- viewport(name = "data_asp",
x = unit(0.5, "npc"),
y = unit(0.5, "npc"),
width = unit(datWidth, "inches"),
height = unit(datHeight,"inches"),
gp=gpar(fontsize=fsData),
just = c("centre", "centre"))
upViewport()
vpCoorY <- ((convertY(vpDat$y, unitTo="inch", valueOnly=TRUE) +
convertHeight(vpDat$height, unitTo="inch", valueOnly=TRUE)/2) + c(-1, 1) * (datHeight/2)) / height
vpCoorX <- ((convertX(vpDat$x, unitTo="inch", valueOnly=TRUE) +
convertWidth(vpDat$width, unitTo="inch", valueOnly=TRUE)/2) + c(-1, 1) * (datWidth/2)) / width
list(vpDat=vpDat, vpDatAsp=vpDatAsp, vpDatTitle=vpDatTitle, vpLeg=vpLeg, vpLegTitle=vpLegTitle, datWidth=datWidth, datHeight=datHeight, aspRatio=aspRatio, vpCoorX=vpCoorX, vpCoorY=vpCoorY)
} |
summary.polywog <- function(object, level = .95, prop0 = FALSE, ...)
{
ans <- list()
cf <- coef(object)
se <- sqrt(diag(vcov(object)))
ans$coefficients <- cbind("Estimate" = cf, "Std. Error" = se)
if (!is.null(object$boot.matrix)) {
q <- 0.5 - (level/2)
interval <- apply(object$boot.matrix, 1, quantile, probs = c(q, 1-q))
p0 <- rowMeans(object$boot.matrix == 0)
ans$coefficients <- cbind(ans$coefficients, t(interval),
"Prop. 0" = if (prop0) p0)
}
ans$call <- object$call
ans$degree <- object$degree
ans$family <- object$family
ans$method <- object$method
ans$penwt.method <- object$penwt.method
ans$nobs <- object$nobs
ans$nboot <-
if (!is.null(object$boot.matrix)) ncol(object$boot.matrix) else 0
ans$lambda <- object$lambda
class(ans) <- "summary.polywog"
return(ans)
}
print.summary.polywog <- function(x, digits = max(3, getOption("digits") - 3),
...)
{
cat("\nCall:\n", paste(deparse(x$call), sep = "\n", collapse = "\n"),
"\n\n", sep = "")
cat("Coefficients:\n")
printCoefmat(coef(x), digits = digits, ...)
cat("\nRegularization method:",
switch(x$method, alasso = "Adaptive LASSO", scad = "SCAD"))
if (x$method == "alasso") {
pname <- switch(x$penwt.method,
lm = "inverse linear model coefficients",
glm = "inverse logistic regression coefficients")
cat("\nAdaptive weights:", pname)
}
cat("\nNumber of observations:", x$nobs)
cat("\nPolynomial expansion degree:", x$degree)
cat("\nModel family:", x$family)
cat("\nBootstrap iterations:", x$nboot)
cat("\nPenalization parameter (lambda):", format(x$lambda, digits = digits))
cat("\n\n")
invisible(x)
} |
library(tiledb)
array_name <- "quickstart_sparse_enc"
uri <- file.path(getOption("TileDB_Data_Path", "."), array_name)
encryption_key <- "0123456789abcdeF0123456789abcdeF"
create_array <- function(array_name) {
if (tiledb_object_type(array_name) == "ARRAY") {
message("Array already exists, removing to create new one.")
tiledb_vfs_remove_dir(array_name)
}
dom <- tiledb_domain(dims = c(tiledb_dim("rows", c(1L, 4L), 4L, "INT32"),
tiledb_dim("cols", c(1L, 4L), 4L, "INT32")))
schema <- tiledb_array_schema(dom, attrs=c(tiledb_attr("a", type = "INT32")), sparse = TRUE)
invisible( tiledb_array_create(array_name, schema, encryption_key) )
}
write_array <- function(array_name) {
I <- c(1, 2, 2)
J <- c(1, 4, 3)
data <- c(1L, 2L, 3L)
A <- tiledb_array(uri = array_name, encryption_key = encryption_key)
A[I, J] <- data
}
read_array <- function(array_name) {
A <- tiledb_array(uri = array_name, as.data.frame=TRUE, encryption_key = encryption_key)
A[1:2, 2:4]
}
read_via_query_object <- function(array_name) {
arr <- tiledb_array(uri, encryption_key = encryption_key)
qry <- tiledb_query(arr, "READ")
rows <- integer(8)
cols <- integer(8)
values <- integer(8)
tiledb_query_set_buffer(qry, "rows", rows)
tiledb_query_set_buffer(qry, "cols", cols)
tiledb_query_set_buffer(qry, "a", values)
tiledb_query_submit(qry)
tiledb_query_finalize(qry)
stopifnot(tiledb_query_status(qry)=="COMPLETE")
n <- tiledb_query_result_buffer_elements(qry, "a")
print(data.frame(rows=rows,cols=cols,a=values)[1:n,])
}
create_array(uri)
write_array(uri)
read_array(uri)
read_via_query_object(uri) |
summary.estLCCRcon <-
function(object, ...){
cat("\nEstimation of latent class models for capture-recapture data\n")
cat("\n")
cat("Call:\n")
print(object$call)
cat("\nAvailable objects:\n")
print(names(object))
cat("\n")
print(c(LogLik=object$lk,np=object$np,AIC=object$AIC,BIC=object$BIC))
cat("\nPopulation size:\n")
if(object$se_out){
Tab = cbind("est."=object$N,"s.e."=object$seN)
rownames(Tab) = "N"
print(Tab)
}else{
print(c(Nh = object$N))
}
if(object$H>1){
if(object$se_out){
cat("\nParameters affecting the class weights:\n")
tt = object$be/object$sebe
pv = 2*(1-pnorm(abs(tt)))
Tab = cbind("est."=object$be,"s.e."=object$sebe,"t-test"=tt,"p-value"=pv)
print(Tab)
}else{
print(object$be)
}
}
cat("\nParameters affecting the conditional capture probabilities given the latent class:\n")
if(object$se_out){
tt = object$la/object$sela
pv = 2*(1-pnorm(abs(tt)))
Tab = cbind("est."=object$la,"s.e."=object$sela,"t-test"=tt,"p-value"=pv)
print(Tab)
}else{
print(object$la)
}
} |
rda.tune <- function(x, ina, nfolds = 10, gam = seq(0, 1, by = 0.1), del = seq(0, 1, by = 0.1),
ncores = 1, folds = NULL, stratified = TRUE, seed = FALSE) {
ina <- as.numeric(ina)
n <- dim(x)[1]
nc <- max(ina)
D <- dim(x)[2]
sk <- array( dim = c(D, D, nc) )
lg <- length(gam) ; ld <- length(del)
if ( is.null(folds) ) folds <- Compositional::makefolds(ina, nfolds = nfolds,
stratified = stratified, seed = seed)
nfolds <- length(folds)
if (ncores > 1) {
runtime <- proc.time()
group <- matrix(nrow = length(gam), ncol = length(del) )
cl <- parallel::makePSOCKcluster(ncores)
doParallel::registerDoParallel(cl)
if ( is.null(folds) ) folds <- Compositional::makefolds(ina, nfolds = nfolds,
stratified = stratified, seed = seed)
ww <- foreach(vim = 1:nfolds, .combine = cbind, .export = c("mahala", "rowMaxs"), .packages = "Rfast") %dopar% {
test <- x[ folds[[ vim ]], , drop = FALSE]
id <- ina[ folds[[ vim ]] ]
train <- x[ -folds[[ vim ]], , drop = FALSE]
ida <- ina[ -folds[[ vim ]] ]
na <- tabulate(ida)
ci <- 2 * log(na / sum(na) )
mesi <- rowsum(train, ida) / na
na <- rep(na - 1, each = D^2)
for (m in 1:nc) sk[ , , m] <- Rfast::cova( train[ida == m, ] )
s <- na * sk
Sp <- colSums( aperm(s) ) / (sum(na) - nc)
sp <- diag( sum( diag( Sp ) ) / D, D )
gr <- matrix(nrow = length( folds[[ vim ]] ), ncol = nc)
for ( k1 in 1:length(gam) ) {
Sa <- gam[k1] * Sp + (1 - gam[k1]) * sp
for ( k2 in 1:length(del) ) {
for (j in 1:nc) {
Ska <- del[k2] * sk[, , j] + (1 - del[k2]) * Sa
gr[, j] <- ci[j] - log( det( Ska ) ) - Rfast::mahala( test, mesi[j, ], Ska )
}
g <- Rfast::rowMaxs(gr)
group[k1, k2] <- mean( g == id )
}
}
return( as.vector( group ) )
}
stopCluster(cl)
per <- array( dim = c( lg, ld, nfolds ) )
for ( i in 1:nfolds ) per[, , i] <- matrix( ww[, i], nrow = lg )
runtime <- proc.time() - runtime
} else {
runtime <- proc.time()
per <- array( dim = c( lg, ld, nfolds ) )
for (vim in 1:nfolds) {
test <- x[ folds[[ vim ]], , drop = FALSE ]
id <- ina[ folds[[ vim ]] ]
train <- x[ -folds[[ vim ]], , drop = FALSE]
ida <- ina[ -folds[[ vim ]] ]
na <- tabulate(ida)
ci <- 2 * log(na / sum(na) )
mesi <- rowsum(train, ida) / na
na <- rep(na - 1, each = D^2)
for (m in 1:nc) sk[ , , m] <- Rfast::cova( train[ida == m, ] )
s <- na * sk
Sp <- colSums( aperm(s) ) / (sum(na) - nc)
sp <- diag( sum( diag( Sp ) ) / D, D )
gr <- matrix(nrow = length( folds[[ vim ]] ), ncol = nc)
for ( k1 in 1:length(gam) ) {
Sa <- gam[k1] * Sp + (1 - gam[k1]) * sp
for ( k2 in 1:length(del) ) {
for (j in 1:nc) {
Ska <- del[k2] * sk[, , j] + (1 - del[k2]) * Sa
gr[, j] <- ci[j] - log( det( Ska ) ) - Rfast::mahala( test, mesi[j, ], Ska )
}
g <- Rfast::rowMaxs(gr)
per[k1, k2, vim] <- mean( g == id )
}
}
}
runtime <- proc.time() - runtime
}
percent <- t( colMeans( aperm(per) ) )
su <- apply(per, 1:2, sd)
dimnames(percent) <- dimnames(su) <- list(gamma = gam, delta = del)
confa <- as.vector( which(percent == max( percent ), arr.ind = TRUE )[1, ] )
result <- cbind( max(percent), gam[ confa[1] ], del[ confa[2] ] )
colnames(result) <- c('optimal', 'best gamma', 'best delta')
list(per = per, percent = percent, se = su, result = result, runtime = runtime)
} |
icmis <- function(subject, testtime, result, data, sensitivity, specificity,
formula = NULL, negpred = 1, time.varying = F,
betai = NULL, initsurv = 0.5, param = 1, ...){
id <- eval(substitute(subject), data, parent.frame())
time <- eval(substitute(testtime), data, parent.frame())
result <- eval(substitute(result), data, parent.frame())
ord <- order(id, time)
if (is.unsorted(ord)) {
id <- id[ord]
time <- time[ord]
result <- result[ord]
data <- data[ord, ]
}
utime <- sort(unique(time))
stopifnot(is.numeric(sensitivity), is.numeric(specificity),
is.numeric(negpred), is.logical(time.varying), is.numeric(initsurv))
stopifnot(length(sensitivity) == 1, sensitivity >= 0, sensitivity <= 1,
length(specificity) == 1, specificity >= 0, specificity <= 1,
length(negpred) == 1, negpred >= 0, negpred <= 1)
stopifnot(length(initsurv) == 1, initsurv > 0, initsurv < 1)
if (!all(result %in% c(0, 1))) stop("result must be 0 or 1")
if (any(is.na(time))) stop("Missing value found in testtime")
if (any(tapply(time, id, anyDuplicated)))
stop("existing duplicated visit times for some subjects")
if (!all(utime >= 0 & utime < Inf))
stop("existing negative or infinite visit times")
stopifnot(length(param) == 1, param %in% c(1, 2, 3))
if (param == 3 && time.varying)
stop("parameterization 3 is not available for time varying model")
if (any(time == 0 & result == 1)) {
pre_ids <- id[time == 0 & result == 1]
stop(sprintf(
"Existing baseline prevalent subjects: %s; need to remove them",
paste(pre_ids, collapse = ","))
)
}
if (length(utime) > sqrt(length(time))) {
warning(paste0(
"There are too many distinct testtime values, consider",
" rounding testtime, e.g. to year or month"
))
}
conv_msg <- paste0(
"Model not converged, code: %s, refer to optim function for details. ",
"Try to increase maxit in function argument, ",
"e.g. using control = list(maxit = 500), and/or",
" use different parameterization by changing param argument."
)
timen0 <- (time != 0)
Dm <- dmat(id[timen0], time[timen0], result[timen0], sensitivity,
specificity, negpred)
J <- ncol(Dm) - 1
nsub <- nrow(Dm)
if (param == 1) {
lami <- rep(-log(initsurv)/J, J)
tosurv <- function(x) exp(-cumsum(x))
lowlam <- rep(0, J)
surv95 <- function(lam, covm) {
A <- matrix(0, nrow = J, ncol = J)
idx <- cbind(
unlist(sapply(1:J, function(i) rep(i, i))),
unlist(sapply(1:J, function(i) 1:i))
)
A[idx] <- 1
covmt <- A %*% covm %*% t(A)
lam_sd <- sqrt(diag(covmt))
low95 <- exp(-(cumsum(lam) + 1.96 * lam_sd))
high95 <- exp(-(cumsum(lam) - 1.96 * lam_sd))
data.frame(
time = utime[utime!=0],
surv = tosurv(lam),
low95 = low95,
high95 = high95)
}
} else if (param == 2) {
lami <- log(rep(-log(initsurv)/J, J))
tosurv <- function(x) exp(-cumsum(exp(x)))
surv95 <- function(lam, covm) {
A <- matrix(0, nrow = J, ncol = J)
idx <- cbind(
unlist(sapply(1:J, function(i) rep(i, i))),
unlist(sapply(1:J, function(i) 1:i))
)
A[idx] <- exp(lam[idx[, 2]])
covmt <- A %*% covm %*% t(A)
lam_sd <- sqrt(diag(covmt))
low95 <- exp(-(cumsum(exp(lam)) + 1.96 * lam_sd))
high95 <- exp(-(cumsum(exp(lam)) - 1.96 * lam_sd))
data.frame(
time = utime[utime!=0],
surv = tosurv(lam),
low95 = low95,
high95 = high95)
}
} else if (param == 3) {
lami <- log(-log(seq(1, initsurv, length.out = J + 1)[-1]))
lami <- c(lami[1], diff(lami))
tosurv <- function(x) exp(-exp(cumsum(x)))
lowlam <- c(-Inf, rep(0, J - 1))
surv95 <- function(lam, covm) {
A <- matrix(0, nrow = J, ncol = J)
idx <- cbind(
unlist(sapply(1:J, function(i) rep(i, i))),
unlist(sapply(1:J, function(i) 1:i))
)
A[idx] <- 1
covmt <- A %*% covm %*% t(A)
lam_sd <- sqrt(diag(covmt))
low95 <- exp(-exp((cumsum(lam) + 1.96 * lam_sd)))
high95 <- exp(-exp((cumsum(lam) - 1.96 * lam_sd)))
data.frame(
time = utime[utime!=0],
surv = tosurv(lam),
low95 = low95,
high95 = high95)
}
}
output <- function(q) {
loglik <- -q$value
cov_all <- as.matrix(solve(q$hessian))
lam <- q$par[1:J]
survival <- surv95(lam, cov_all[1:J, 1:J])
if (!is.null(formula)) {
cov <- cov_all[-(1:J), -(1:J), drop = FALSE]
rownames(cov) <- colnames(cov) <- beta.nm
beta.fit <- q$par[-(1:J)]
beta.sd <- sqrt(diag(cov))
beta.z <- beta.fit/beta.sd
p.value <- 2*(1-pnorm(abs(beta.z)))
coef <- data.frame(coefficient = beta.fit, SE = beta.sd, z = beta.z,
p.value = p.value)
} else {
cov <- NA
coef <- NA
}
list(loglik = loglik, coefficient = coef, survival = survival, beta.cov = cov,
nsub = nsub)
}
if (is.null(formula)) {
if (param == 1) {
q <- optim(lami, loglikA0, gradlikA0, lower = lowlam, Dm = Dm,
method = "L-BFGS-B", hessian = T, ...)
} else if (param == 2) {
q <- optim(lami, loglikB0, gradlikB0, Dm = Dm, method = "BFGS",
hessian = T, ...)
} else if (param == 3) {
q <- optim(lami, loglikC0, gradlikC0, lower = lowlam, Dm = Dm,
method = "L-BFGS-B", hessian = T, ...)
}
if (q$convergence != 0) stop(sprintf(conv_msg, q$convergence))
return(output(q))
}
Xmat <- model.matrix(formula, data = data)[, -1, drop = F]
if (nrow(Xmat) < nrow(data)) stop("missing values in used covariates")
beta.nm <- colnames(Xmat)
nbeta <- ncol(Xmat)
if (is.null(betai)) {
parmi <- c(lami, rep(0, nbeta))
} else {
if (length(betai) != nbeta) stop("length of betai does match number of beta")
parmi <- c(lami, betai)
}
if (!time.varying) {
uid <- getrids(id, nsub)
Xmat <- Xmat[uid, , drop = F]
if (param == 1) {
q <- optim(parmi, loglikA, gradlikA, lower = c(lowlam, rep(-Inf, nbeta)),
Dm = Dm, Xmat = Xmat, method = "L-BFGS-B", hessian = T, ...)
} else if (param == 2) {
q <- optim(parmi, loglikB, gradlikB, Dm = Dm, Xmat = Xmat, method = "BFGS",
hessian = T, ...)
} else if (param == 3) {
q <- optim(parmi, loglikC, gradlikC, lower = c(lowlam, rep(-Inf, nbeta)),
Dm = Dm, Xmat = Xmat, method = "L-BFGS-B", hessian = T, ...)
}
if (q$convergence != 0) stop(sprintf(conv_msg, q$convergence))
return(output(q))
}
if (length(unique(id)) != length(unique(id[time==0])))
stop("some subject(s) miss baseline information (time=0)
for time-varying model")
TXmat <- timeMat(nsub, J+1, time, utime, Xmat)
if (param == 1) {
q <- optim(parmi, loglikTA, gradlikTA, lower = c(lowlam, rep(-Inf, nbeta)),
Dm = Dm, TXmat = TXmat, method = "L-BFGS-B", hessian = T, ...)
} else if (param == 2) {
q <- optim(parmi, loglikTB, gradlikTB, Dm = Dm, TXmat = TXmat, method = "BFGS",
hessian = T, ...)
}
if (q$convergence != 0) stop(sprintf(conv_msg, q$convergence))
return(output(q))
}
plot_surv <- function(obj) {
surv <- obj$survival
surv <- rbind(c(0, 1, 1, 1), surv)
plot(surv$time, surv$surv, type = "s", col = "red", xlab = "time",
ylab = "Survival")
lines(surv$time, surv$low95, type = "s", lty = 2)
lines(surv$time, surv$high95, type = "s", lty = 2)
} |
summary.shrinklm <- function (object, correlation = FALSE,
symbolic.cor = FALSE, ...) {
z <- object
p <- z$rank
rdf <- z$df.residual
if (p == 0) {
r <- z$residuals
n <- length(r)
w <- z$weights
if (is.null(w)) {
rss <- sum(r^2)
}
else {
rss <- sum(w * r^2)
r <- sqrt(w) * r
}
resvar <- rss/rdf
ans <- z[c("call", "terms", if (!is.null(z$weights)) "weights")]
class(ans) <- "summary.lm"
ans$aliased <- is.na(coef(z))
ans$residuals <- r
ans$df <- c(0L, n, length(ans$aliased))
ans$coefficients <- matrix(NA, 0L, 4L)
dimnames(ans$coefficients) <-
list(NULL, c("Estimate", "Std. Error", "t value", "Pr(>|t|)"))
ans$sigma <- sqrt(resvar)
ans$r.squared <- ans$adj.r.squared <- 0
return(ans)
}
if (is.null(z$terms))
stop("invalid 'lm' object: no 'terms' component")
if (!inherits(z, "lm"))
warning("calling summary.lm(<fake-lm-object>) ...")
if (is.na(z$df.residual))
warning(paste("residual degrees of freedom in object",
"suggest this is not an \"lm\" fit"))
r <- z$residuals
f <- z$fitted.values
w <- z$weights
n <- length(r)
if (is.null(w)) {
mss <- if (attr(z$terms, "intercept"))
sum( (f - mean(f))^2 )
else sum(f^2)
rss <- sum(r^2)
}
else {
mss <- if (attr(z$terms, "intercept")) {
m <- sum(w * f/sum(w))
sum(w * (f - m)^2)
}
else sum(w * f^2)
rss <- sum(w * r^2)
r <- sqrt(w) * r
}
resvar <- rss/rdf
if (is.finite(resvar) && resvar < (mean(f)^2 + var(f)) *
1e-30)
warning("essentially perfect fit: summary may be unreliable")
p1 <- (abs(z$svd$d) >= 1e-14)
R <- z$svd$v[, p1, drop = FALSE] %*% (
(z$svd$d[p1]^2 / (z$svd$d[p1]^2 + z$lambda0)^2) *
t(z$svd$v[, p1, drop = FALSE])
)
se <- if (nrow(R) < length(z$coefficients)) {
m_u <- colMeans(z$svd$u[, p1, drop = FALSE])
se_const <- sqrt(resvar * (1 + sum(m_u^2 * z$svd$d[p1]^4 /
(z$svd$d[p1]^2 + z$lambda0)^2)))
c(sqrt(diag(R) * resvar), se_const)
} else {
sqrt(diag(R) * resvar)
}
est <- z$coefficients
tval <- est/se
ans <- z[c("call", "terms", if (!is.null(z$weights)) "weights")]
ans$residuals <- r
ans$coefficients <-
cbind(Estimate = est, `Std. Error` = se, `t value` = tval,
`Pr(>|t|)` = 2 * pt(abs(tval), rdf, lower.tail = FALSE))
ans$aliased <- is.na(coef(z))
ans$sigma <- sqrt(resvar)
ans$df <- c(p, rdf, p)
if (p != attr(z$terms, "intercept")) {
df.int <- if (attr(z$terms, "intercept"))
1L
else 0L
ans$r.squared <- mss/(mss + rss)
ans$adj.r.squared <- 1 - (1 - ans$r.squared) * ((n - df.int) / rdf)
ans$fstatistic <- c(value = (mss/(n - rdf - df.int)) / resvar,
numdf = n - rdf - df.int, dendf = rdf)
}
else ans$r.squared <- ans$adj.r.squared <- 0
ans$cov.unscaled <- R
dimnames(ans$cov.unscaled) <-
list(dimnames(ans$coefficients)[[1]][1:nrow(R)],
dimnames(ans$coefficients)[[1]][1:nrow(R)])
if (correlation) {
ans$correlation <- (R * resvar)/outer(se, se)
dimnames(ans$correlation) <- dimnames(ans$cov.unscaled)
ans$symbolic.cor <- symbolic.cor
}
if (!is.null(z$na.action))
ans$na.action <- z$na.action
class(ans) <- "summary.lm"
ans
} |
context("ct_get_reset_time")
test_that("same test, different iteration", {
expect_is(ct_get_reset_time(), "POSIXct")
}) |
process_repeated_flag <- function(flag, val, narg) {
if (is.matrix(val)) {
m <- t(val)
} else {
if (narg == 1) {
m <- matrix(val, nrow = 1)
} else {
m <- matrix(val, ncol = 1)
}
}
as.vector(rbind(flag, m))
}
process_args <- function(args, formalsTable) {
ft <- formalsTable
opts <- lapply(names(args), function(nm) {
flag <- ft[ft$arg == nm, "flag"]
narg <- ft[ft$arg == nm, "narg"]
repeatable <- ft[ft$arg == nm, "repeatable"]
val <- args[[nm]]
if (repeatable) {
process_repeated_flag(flag, val = val, narg = narg)
} else {
if (narg == 0) {
if (val) flag else NULL
} else {
c(flag, val)
}
}
})
opts <- c(character(0), unlist(opts))
opts <- Filter(nchar, opts)
opts
} |
.simulate.synlik <- function(object,
nsim,
seed = NULL,
param = object@param,
stats = FALSE,
clean = TRUE,
verbose = TRUE,
...)
{
if(!is(object, "synlik")) stop("object has to be of class \"synlik\" ")
if( !class(object)[[1]] != "synlik" ) object <- as(object, "synlik")
if(is.null(seed) == FALSE) set.seed(seed)
simulator <- object@simulator
summaries <- object@summaries
extraArgs <- object@extraArgs
simul <- simulator(param = param, nsim = nsim, extraArgs = extraArgs, ...)
if( stats == TRUE ) {
if(!is.null(summaries) ) simul <- summaries(x = simul, extraArgs = extraArgs, ...)
if( clean ) simul <- .clean(X = simul, verbose = verbose)$cleanX
}
return( simul )
}
setMethod("simulate",
signature = signature(object = "synlik"),
definition = .simulate.synlik) |
remove_noise_from_bams = function(
bams,
genes,
expression,
noise.thresholds,
destination.files = base::paste0(base::basename(bams), ".noisefiltered.bam"),
filter.by = c("gene", "exon"),
make.index = FALSE,
unique.only = TRUE,
mapq.unique = 255,
...
){
if(base::is.matrix(expression)){
expression.matrix <- expression
}else if(base::is.list(expression) &
identical(names(expression)[1], "expression.matrix")){
expression.matrix <- expression$expression.matrix
}else{
stop("Please provide an expression.matrix or an expression.summary list")
}
if(base::length(noise.thresholds) == 1){
base::message("noise.thresholds only has 1 value, using a fixed threshold...")
noise.thresholds <- base::rep(noise.thresholds, base::ncol(expression.matrix))
}else if(base::length(noise.thresholds) != base::ncol(expression.matrix)){
base::stop("noise.thresholds needs to be length 1 or ncol(expression.matrix)")
}
base::message("Denoising ", base::length(bams), " BAM files...")
genes.sub <- filter_genes_transcript(
genes = genes,
expression.matrix = expression.matrix,
noise.thresholds = noise.thresholds,
filter.by = filter.by
)
bam.indexes <- base::paste(bams, ".bai", sep="")
for(j in base::seq_len(base::length(bam.indexes))){
bam.index <- bam.indexes[j]
if(!base::file.exists(bam.index)){
if(make.index){
base::message("Creating BAM index for ", bams[j])
bams[j] <- Rsamtools::sortBam(bams[j], destination=base::paste0(bams[j], ".sorted"))
bam.index <- Rsamtools::indexBam(bams[j])
}else{
stop("BAM index not found. It can be generated by setting make.index = TRUE")
}
}
}
gr <- GenomicRanges::GRanges(seqnames = genes.sub$seqid,
ranges = IRanges::IRanges(start=genes.sub$start,
end=genes.sub$end))
params <- Rsamtools::ScanBamParam(which = gr,
what = Rsamtools::scanBamWhat(),
mapqFilter = ifelse(unique.only, mapq.unique, 0))
for(j in base::seq_len(base::length(bams))){
base::message(" denoising BAM file ", j, " of ", base::length(bams))
Rsamtools::filterBam(file = bams[j],
destination = destination.files[j],
indexDestination = make.index,
param = params)
}
return(base::invisible(NULL))
} |
context(".findLocalMaximaLogical")
s <- createMassSpectrum(mass=1:5, intensity=c(1, 2, 1, 2, 1))
test_that(".findLocalMaximaLogical throws errors", {
expect_error(MALDIquant:::.findLocalMaximaLogical(s, halfWindowSize=0),
"too small")
expect_error(MALDIquant:::.findLocalMaximaLogical(s, halfWindowSize=3),
"too large")
})
test_that(".findLocalMaxima(Logical) shows warnings", {
expect_warning(MALDIquant:::.findLocalMaximaLogical(
createMassSpectrum(mass=double(), intensity=double()),
"empty"))
expect_warning(MALDIquant:::.findLocalMaxima(
createMassSpectrum(mass=double(), intensity=double()),
"empty"))
})
test_that(".findLocalMaximaLogical works with different window sizes", {
expect_identical(suppressWarnings(MALDIquant:::.findLocalMaximaLogical(
createMassSpectrum(mass=double(), intensity=double()),
halfWindowSize=1)), logical())
expect_identical(MALDIquant:::.findLocalMaximaLogical(s, halfWindowSize=1),
c(FALSE, TRUE, FALSE, TRUE, FALSE))
expect_identical(MALDIquant:::.findLocalMaximaLogical(s, halfWindowSize=2),
c(FALSE, TRUE, FALSE, FALSE, FALSE))
})
test_that(".findLocalMaxima returns matrix", {
m <- matrix(ncol=2, dimnames=list(list(), list("mass", "intensity")))
expect_equal(suppressWarnings(MALDIquant:::.findLocalMaxima(
createMassSpectrum(mass=double(), intensity=double()),
halfWindowSize=1)), m)
m <- matrix(c(2, 2, 4, 2), ncol=2, byrow=TRUE,
dimnames=list(list(), list("mass", "intensity")))
expect_identical(MALDIquant:::.findLocalMaxima(s, halfWindowSize=1), m)
}) |
posterior_predictive <- function(simmr_out,
group = 1,
prob = 0.5,
plot_ppc = TRUE) {
UseMethod("posterior_predictive")
}
posterior_predictive.simmr_output <- function(simmr_out,
group = 1,
prob = 0.5,
plot_ppc = TRUE) {
assert_int(group, lower = 1, upper = simmr_out$input$n_groups)
model_string_old <- simmr_out$output[[group]]$model$model()
copy_lines <- model_string_old[6]
copy_lines <- sub("y\\[i", "y_pred\\[i", copy_lines)
model_string_new <- c(model_string_old[1:6], copy_lines, model_string_old[7:length(model_string_old)])
output <- R2jags::jags(
data = simmr_out$output[[group]]$model$data(),
parameters.to.save = c("y_pred"),
model.file = textConnection(paste0(model_string_new, collapse = "\n")),
n.chains = simmr_out$output[[group]]$BUGSoutput$n.chains,
n.iter = simmr_out$output[[group]]$BUGSoutput$n.iter,
n.burnin = simmr_out$output[[group]]$BUGSoutput$n.burnin,
n.thin = simmr_out$output[[group]]$BUGSoutput$n.thin
)
y_post_pred <- output$BUGSoutput$sims.list$y_pred
low_prob <- 0.5 - prob / 2
high_prob <- 0.5 + prob / 2
y_post_pred_ci <- apply(y_post_pred,
2:3,
"quantile",
prob = c(low_prob, high_prob)
)
y_post_pred_out <- data.frame(
interval = matrix(y_post_pred_ci,
ncol = simmr_out$input$n_tracers,
byrow = TRUE
),
data = as.vector(simmr_out$input$mixtures[simmr_out$input$group_int == group, ])
)
y_post_pred_out$outside <- y_post_pred_out[, 3] > y_post_pred_out[, 2] |
y_post_pred_out[, 3] < y_post_pred_out[, 1]
prop_outside <- mean(y_post_pred_out$outside)
if (plot_ppc) {
y_rep <- y_post_pred
dim(y_rep) <- c(dim(y_post_pred)[1], dim(y_post_pred)[2] * dim(y_post_pred)[3])
curr_rows <- which(simmr_out$input$group_int == group)
curr_mix <- simmr_out$input$mixtures[curr_rows, , drop = FALSE]
g <- ppc_intervals(
y = as.vector(curr_mix),
yrep = y_rep,
x = rep(1:nrow(curr_mix), simmr_out$input$n_tracers),
prob = prob,
fatten = 1
) + ggplot2::ylab("Tracer value") +
ggplot2::xlab("Observation") +
ggplot2::ggtitle(paste0(prob * 100, "% posterior predictive")) +
ggplot2::theme_bw() +
ggplot2::scale_x_continuous(breaks = 1:simmr_out$input$n_obs)
print(g)
}
invisible(list(
table = y_post_pred_out,
prop_outside = prop_outside
))
} |
context("NMscanData")
fix.time <- function(x){
meta.x <- attr(x,"NMdata")
meta.x$details$time.NMscanData <- NULL
meta.x$details$file.lst <- NULL
meta.x$details$file.mod <- NULL
meta.x$details$file.input <- NULL
meta.x$details$mtime.input <- NULL
meta.x$details$mtime.lst <- NULL
meta.x$details$mtime.mod <- NULL
meta.x$datafile$path <- NULL
meta.x$datafile$path.rds <- NULL
meta.x$tables$file <- NULL
meta.x$tables$file.mtime <- NULL
setattr(x,"NMdata",meta.x)
}
NMdataConf(reset=TRUE)
test_that("basic",{
fileRef <- "testReference/NMscanData1.rds"
resRef <- if(file.exists(fileRef)) readRDS(fileRef) else NULL
file.lst <- "testData/nonmem/xgxr001.lst"
res <- NMscanData(file=file.lst, quiet=T, order.columns = F, merge.by.row=FALSE, check.time = FALSE)
fix.time(res)
expect_equal_to_reference(res,fileRef,version=2)
})
test_that("Modifications to column names in $INPUT",{
fileRef <- "testReference/NMscanData2.rds"
file.lst <- "testData/nonmem/xgxr002.lst"
res1 <- NMscanData(file=file.lst, check.time = FALSE, merge.by.row=FALSE)
res <- list(
NMinfo(res1,"input.colnames"),
NMinfo(res1,"columns"),
colnames(res1)
)
expect_equal_to_reference(res,fileRef,version=2)
})
test_that("No translation of column names in $INPUT",{
fileRef <- "testReference/NMscanData2b.rds"
file.lst <- "testData/nonmem/xgxr002.lst"
res1 <- NMscanData(file=file.lst, check.time = FALSE, merge.by.row=FALSE, translate.input = T)
res2 <- NMscanData(file=file.lst, check.time = FALSE, merge.by.row=FALSE, translate.input = F)
dt.cnames <- data.table(colnames(res1),colnames(res2))
expect_equal_to_reference(dt.cnames,fileRef,version=2)
})
test_that("Multiple output table formats",{
NMdataConf(reset=TRUE)
fileRef <- "testReference/NMscanData3.rds"
file.lst <- "testData/nonmem/xgxr003.lst"
res <- NMscanData(file=file.lst, check.time = FALSE, merge.by.row=FALSE)
fix.time(res)
expect_equal_to_reference(res,fileRef,version=2)
})
test_that("Interpret IGNORE statement",{
NMdataConf(reset=TRUE)
fileRef <- "testReference/NMscanData4.rds"
file.lst <- "testData/nonmem/xgxr004.lst"
res <- NMscanData(file=file.lst,merge.by.row=FALSE,check.time = FALSE)
fix.time(res)
expect_equal_to_reference(res,fileRef,version=2)
})
test_that("List of ACCEPT statements and vs separate statements",{
NMdataConf(reset=T)
NMdataConf(as.fun="data.table")
file1.lst <- "testData/nonmem/xgxr006.lst"
file2.lst <- "testData/nonmem/xgxr007.lst"
NMreadSection(file1.lst,section="PROBLEM")
NMreadSection(file2.lst,section="PROBLEM")
res1 <- NMscanData(file=file1.lst,merge.by.row=FALSE,col.model=NULL,check.time = FALSE)
res2 <- NMscanData(file=file2.lst,merge.by.row=FALSE,col.model=NULL,check.time = FALSE)
setattr(res1,"NMdata",NULL)
setattr(res2,"NMdata",NULL)
expect_identical(res1,res2)
})
test_that("merge by filters or not",{
file1.lst <- "testData/nonmem/xgxr006.lst"
file2.lst <- "testData/nonmem/xgxr008.lst"
res1 <- NMscanData(file=file1.lst,merge.by.row=FALSE,col.model=NULL,check.time = FALSE)
res2 <- NMscanData(file=file2.lst,merge.by.row=FALSE,col.model=NULL,check.time = FALSE)
setnames(res2,"EFF0","eff0",skip_absent=T)
setcolorder(res1,colnames(res2))
setattr(res1,"NMdata",NULL)
setattr(res2,"NMdata",NULL)
expect_equal(res1,res2)
})
test_that("Only a firstonly without ID but with ROW",{
NMdataConf(reset=TRUE)
fileRef <- "testReference/NMscanData11.rds"
file.lst <- "testData/nonmem/xgxr011.lst"
expect_error(
expect_warning(
NMscanData(file=file.lst,merge.by.row=FALSE,col.row="ROW",check.time = FALSE)
)
)
res1 <-
expect_warning(
NMscanData(file=file.lst,merge.by.row=TRUE,col.row="ROW",check.time = FALSE)
)
fix.time(res1)
expect_equal_to_reference(res1,fileRef,version=2)
})
test_that("Only a firstonly, no ID, no ROW",{
fileRef <- "testReference/NMscanData12.rds"
file.lst <- "testData/nonmem/xgxr012.lst"
expect_error(
expect_warning(
res1 <- NMscanData(file=file.lst,check.time = FALSE)
)
)
})
test_that("FO and row-level output. No ID, no row.",{
fileRef <- "testReference/NMscanData13.rds"
file.lst <- "testData/nonmem/xgxr013.lst"
NMreadSection(file.lst,section="PROBLEM")
NMreadSection(file.lst,section="TABLE")
res1 <- expect_warning(
NMscanData(file=file.lst,check.time = FALSE)
)
fix.time(res1)
expect_equal_to_reference(
res1,fileRef,version=2
)
res2 <- expect_warning(
NMscanData(file=file.lst,check.time = FALSE,merge.by.row=T)
)
res2 <- expect_warning(
NMscanData(file=file.lst,check.time = FALSE,use.input=F)
)
})
test_that("FO and row-level output. No ID, no row. cbind.by.filters=T",{
fileRef <- "testReference/NMscanData14.rds"
file.lst <- "testData/nonmem/xgxr013.lst"
NMreadSection(file.lst,section="PROBLEM")
res1 <- expect_warning(
NMscanData(file=file.lst,merge.by.row=FALSE,check.time = FALSE)
)
fix.time(res1)
summary(res1)$variables
summary(res1)$tables
summary(res1)
expect_equal_to_reference(
res1,fileRef,version=2
)
})
test_that("Only a firstonly without ID but with ROW",{
fileRef <- "testReference/NMscanData15.rds"
file.lst <- "testData/nonmem/xgxr011.lst"
NMreadSection(file.lst,section="DATA")
NMreadSection(file.lst,section="TABLE")
res1 <- expect_error(
NMscanData(file=file.lst,merge.by.row=FALSE,check.time = FALSE)
)
})
test_that("Only a firstonly without ID but with ROW. Using merge.by.row=TRUE.",{
fileRef <- "testReference/NMscanData15b.rds"
file.lst <- "testData/nonmem/xgxr011.lst"
NMreadSection(file.lst,section="DATA")
NMreadSection(file.lst,section="TABLE")
res1 <- expect_warning(
NMscanData(file=file.lst,col.row="ROW",merge.by.row=TRUE,check.time = FALSE)
)
fix.time(res1)
expect_equal_to_reference(
res1,fileRef,version=2
)
})
test_that("recoverRows without a row identifier",{
fileRef <- "testReference/NMscanData16.rds"
file.lst <- "testData/nonmem/xgxr004.lst"
NMreadSection(file.lst,section="DATA")
NMreadSection(file.lst,section="TABLE")
res1 <- NMscanData(file=file.lst,merge.by.row=FALSE,recover.rows = T,as.fun="data.table",check.time = FALSE)
dim(res1)
res1[,table(nmout,DOSE)]
fix.time(res1)
expect_equal_to_reference(
res1,fileRef,version=2
)
})
test_that("use as.fun to get a data.frame",{
fileRef <- "testReference/NMscanData17.rds"
file.lst <- "testData/nonmem/xgxr004.lst"
NMreadSection(file.lst,section="DATA")
NMreadSection(file.lst,section="TABLE")
res1 <- NMscanData(file=file.lst,merge.by.row=FALSE,recover.rows = T,as.fun=as.data.frame,check.time = FALSE)
dim(res1)
class(res1)
with(res1,table(nmout,DOSE))
fix.time(res1)
expect_equal_to_reference(
res1,fileRef,version=2
)
})
test_that("use as.fun to get a tibble",{
fileRef <- "testReference/NMscanData18.rds"
file.lst <- "testData/nonmem/xgxr004.lst"
NMreadSection(file.lst,section="DATA")
NMreadSection(file.lst,section="TABLE")
res1 <- NMscanData(file=file.lst,merge.by.row=FALSE,recover.rows = T,as.fun=tibble::as_tibble,check.time = FALSE)
dim(res1)
class(res1)
fix.time(res1)
expect_equal_to_reference(
res1,fileRef,version=2
)
})
test_that("dir structure with input.txt/output.txt",{
NMdataConf(reset=TRUE)
NMdataConf(as.fun="data.table")
NMdataConf(file.mod=identity)
NMdataConf(modelname=function(file) basename(dirname(normalizePath(file))))
filedir.lst <- "testData/nonmem/xgxr001dir/output.txt"
res1dir <- NMscanData(filedir.lst,check.time = FALSE,merge.by.row=F)
expect_equal(NMinfo(res1dir,"details")$model,"xgxr001dir")
umod <- unique(res1dir[,model])
expect_equal(length(umod),1)
expect_equal(umod,"xgxr001dir")
})
test_that("input.txt/output.txt - unset modelname",{
NMdataConf(reset=TRUE)
NMdataConf(as.fun="data.table")
NMdataConf(file.mod=identity)
NMdataConf(modelname=function(file) basename(dirname(normalizePath(file))))
filedir.lst <- "testData/nonmem/xgxr001dir/output.txt"
res1dir <- NMscanData(filedir.lst,check.time = FALSE,merge.by.row=T)
NMdataConf(file.mod="default")
NMdataConf(modelname=NULL)
file.lst <- "testData/nonmem/xgxr001.lst"
res1 <- NMscanData(file=file.lst,check.time = FALSE)
els.details <- c("call","model","file.lst","file.mod")
for(elem in els.details){
attributes(res1)$NMdata$details[elem] <- NULL
attributes(res1dir)$NMdata$details[elem] <- NULL
}
attributes(res1)$NMdata$datafile$DATA <- NULL
attributes(res1dir)$NMdata$datafile$DATA <- NULL
attributes(res1)$NMdata$datafile$string <- NULL
attributes(res1dir)$NMdata$datafile$string <- NULL
fix.time(res1)
fix.time(res1dir)
cols.differ <- c("TVKA","TVCL","TVV3","TVQ","KA","CL","V3","Q","V2","IPRED","PRED","RES","WRES")
res1[,(cols.differ):=NULL]
res1dir[,(cols.differ):=NULL]
expect_equal(res1[,!("model")],res1dir[,!("model")])
NMdataConf(as.fun=NULL)
})
test_that("output.txt, file.mod=identity - NMinfo file.mod=output.txt?",{
NMdataConf(reset=TRUE)
NMdataConf(as.fun="data.table")
NMdataConf(file.mod=identity)
NMdataConf(modelname=function(file) basename(dirname(normalizePath(file))))
filedir.lst <- "testData/nonmem/xgxr001dir/output.txt"
res1 <- NMscanData(filedir.lst,check.time = FALSE,merge.by.row=F)
expect_equal(basename(NMinfo(res1,"details")$file.lst),"output.txt")
})
test_that("Duplicate columns in input data",{
NMdataConf(reset=TRUE)
fileRef <- "testReference/NMscanData20.rds"
file.lst <- "testData/nonmem/xgxr015.lst"
res <- expect_warning(
NMscanData(file=file.lst,merge.by.row=FALSE,check.time = FALSE)
)
fix.time(res)
expect_equal_to_reference(res,fileRef,version=2)
})
test_that("Modifying row identifier",{
NMdataConf(reset=TRUE)
file.lst <- "testData/nonmem/xgxr016.lst"
res <-
expect_error(
NMscanData(file=file.lst,merge.by.row=TRUE,check.time = FALSE)
)
})
test_that("merge.by.row=ifAvailable when available",{
fileRef <- "testReference/NMscanData21.rds"
file.lst <- system.file("examples/nonmem/xgxr001.lst" ,package="NMdata")
res1 <- NMscanData(file=file.lst,merge.by.row="ifAvailable",check.time=FALSE)
unNMdata(res1)
expect_equal_to_reference(res1,fileRef,version=2)
})
test_that("merge.by.row=ifAvailable when not available",{
fileRef <- "testReference/NMscanData22.rds"
file.lst <- "testData/nonmem/xgxr004.lst"
res1 <- NMscanData(file=file.lst,merge.by.row="ifAvailable",recover.rows = T,as.fun="data.table",check.time = FALSE)
dim(res1)
res1[,table(nmout,DOSE)]
fix.time(res1)
expect_equal_to_reference(
res1,fileRef,version=2
)
})
test_that(" col.row does not exist, but merge.by.row==TRUE",{
fileRef <- "testReference/NMscanData22b.rds"
NMdataConf(reset=T)
NMdataConf(check.time=F)
file.lst <- system.file("examples/nonmem/xgxr001.lst" ,package="NMdata")
res1 <-
expect_warning(
NMscanData(file=file.lst,col.row="NONEXIST",merge.by.row=TRUE)
)
fix.time(res1)
expect_equal_to_reference(res1,fileRef)
})
test_that("col.row is NULL, but merge.by.row==TRUE",{
file.lst <- system.file("examples/nonmem/xgxr001.lst" ,package="NMdata")
expect_error(
res1=NMscanData(file=file.lst,col.row=NULL,merge.by.row=TRUE)
)
})
test_that("A filter without operator",{
fileRef <- "testReference/NMscanData23.rds"
file.lst <- "testData/nonmem/xgxr010.lst"
res1 <- NMscanData(file=file.lst,merge.by.row="ifAvailable",as.fun="data.table",check.time = FALSE)
res1[,.N,by=.(DOSE)]
fix.time(res1)
expect_equal_to_reference(
res1,fileRef,version=2
)
})
test_that("Including a redundant output table",{
NMdataConf(reset=T)
NMdataConf(as.fun="data.table")
fileRef <- "testReference/NMscanData24.rds"
file.lst <- "testData/nonmem/xgxr019.lst"
res1 <- NMscanData(file=file.lst,merge.by.row="ifAvailable",as.fun="data.table",check.time = FALSE)
fix.time(res1)
expect_equal_to_reference(
res1,fileRef,version=2
)
}
)
test_that("redundant output",{
NMdataConf(reset=T)
NMdataConf(as.fun="data.table")
NMdataConf(file.mod=function(x)sub("\\.lst$",".ctl",x))
NMdataConf(check.time=FALSE)
fileRef <- "testReference/NMscanData25.rds"
file.lst <- "testData/nonmem/estim_debug.ctl"
res1 <- expect_warning(NMscanData(file=file.lst))
fix.time(res1)
expect_equal_to_reference(
res1,fileRef,version=2
)
}
)
if(FALSE){
test_that("check time warning",{
NMdataConf(reset=T)
fileRef <- "testReference/NMscanData26.rds"
dir.test <- "testData/nonmem/check.time"
if(dir.exists(dir.test)) unlink(dir.test,recursive=TRUE)
dir.create(dir.test)
file.copy("testData/nonmem/xgxr001.lst",dir.test)
file.copy("testData/nonmem/xgxr001_res.txt",dir.test)
file.copy("testData/nonmem/xgxr001.mod",dir.test)
file.lst <- file.path(dir.test,"xgxr001.lst")
file.mod <- fnExtension(file.lst,".mod")
data.new <- sub("../data","../../data",NMreadSection(file.mod,section="data"))
NMwriteSection(file.mod,section="data",newlines=data.new)
res1 <- expect_warning(
NMscanData(file=file.lst, quiet=F, order.columns = F, merge.by.row=FALSE)
)
expect_equal_to_reference(unNMdata(res1),fileRef)
})
}
test_that("$INPUT copy",{
NMdataConf(reset=T)
NMdataConf(check.time=FALSE)
file.lst.1 <- "testData/nonmem/xgxr022.lst"
res.1 <- NMscanData(file.lst.1)
NMinfo(res.1,"input.colnames")
NMinfo(res.1,"columns")
file.lst.2 <- "testData/nonmem/xgxr001.lst"
res.2 <- NMscanData(file.lst.2)
expect_equal(ncol(res.1)-ncol(res.2),1)
expect_equal(setdiff(colnames(res.1),colnames(res.2)),c("COMP","EFF0"))
cols.1 <- NMinfo(res.1,"columns")
cols.2 <- NMinfo(res.2,"columns")
expect_equal(setdiff(cols.1$variable,cols.2$variable),c("COMP","EFF0"))
expect_equal(setdiff(cols.2$variable,cols.1$variable),c("eff0"))
})
test_that("only firstonly. Has col.id, no col.row.",{
NMdataConf(reset=T)
NMdataConf(check.time=FALSE)
fileRef <- "testReference/NMscanData27.rds"
file.lst <- "testData/nonmem/xgxr023.lst"
res <- NMscanData(file.lst,quiet=F)
res <- fix.time(res)
expect_equal_to_reference(res,fileRef)
}) |
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
library(abstr)
library(abstr)
library(tmap)
tm_shape(montlake_zones) + tm_polygons(col = "grey") +
tm_shape(montlake_buildings) + tm_polygons(col = "blue") +
tm_style("classic")
head(montlake_od)
set.seed(42)
montlake_od_minimal = subset(montlake_od, o_id == "373" |o_id == "402" | o_id == "281" | o_id == "588" | o_id == "301" | o_id == "314")
output_sf = ab_scenario(
od = montlake_od_minimal,
zones = montlake_zones,
zones_d = NULL,
origin_buildings = montlake_buildings,
destination_buildings = montlake_buildings,
pop_var = 3,
time_fun = ab_time_normal,
output = "sf",
modes = c("Walk", "Bike", "Drive", "Transit")
)
tm_shape(output_sf) + tmap::tm_lines(col = "mode", lwd = .8, lwd.legeld.col = "black") +
tm_shape(montlake_zones) + tmap::tm_borders(lwd = 1.2, col = "gray") +
tm_text("id", size = 0.6) +
tm_style("cobalt")
output_json = ab_json(output_sf, time_fun = ab_time_normal, scenario_name = "Montlake Example")
ab_save(output_json, f = "montlake_scenarios.json")
file.remove("montlake_scenarios.json") |
context("Geometric operators work with appropriate data")
if (has_internet() && identical(Sys.getenv("NOT_CRAN"), "true")) {
local <- bcdc_query_geodata("regional-districts-legally-defined-administrative-areas-of-bc") %>%
filter(ADMIN_AREA_NAME == "Cariboo Regional District") %>%
collect()
}
test_that("bcdc_check_geom_size outputs message with low threshold",{
skip_on_cran()
skip_if_net_down()
withr::local_options(list(bcdata.max_geom_pred_size = 1))
expect_message(bcdc_check_geom_size(local))
expect_false(bcdc_check_geom_size(local))
})
test_that("bcdc_check_geom_size is silent with high threshold",{
skip_on_cran()
skip_if_net_down()
withr::local_options(list(bcdata.max_geom_pred_size = 1E10))
expect_true(bcdc_check_geom_size(local))
})
test_that("WITHIN works",{
skip_on_cran()
skip_if_net_down()
remote <- suppressWarnings(
bcdc_query_geodata("bc-airports") %>%
filter(WITHIN(local)) %>%
collect()
)
expect_is(remote, "sf")
expect_equal(attr(remote, "sf_column"), "geometry")
})
test_that("INTERSECTS works",{
skip_on_cran()
skip_if_net_down()
remote <- suppressWarnings(
bcdc_query_geodata("bc-parks-ecological-reserves-and-protected-areas") %>%
filter(FEATURE_LENGTH_M <= 1000, INTERSECTS(local)) %>%
collect()
)
expect_is(remote, "sf")
expect_equal(attr(remote, "sf_column"), "geometry")
})
test_that("RELATE works", {
skip("RELATE not supported. https://github.com/bcgov/bcdata/pull/154")
skip_on_cran()
skip_if_net_down()
remote <- suppressWarnings(
bcdc_query_geodata("bc-parks-ecological-reserves-and-protected-areas") %>%
filter(RELATE(local, "*********")) %>%
collect()
)
expect_is(remote, "sf")
expect_equal(attr(remote, "sf_column"), "geometry")
})
test_that("DWITHIN works", {
skip_on_cran()
skip_if_net_down()
remote <- suppressWarnings(
bcdc_query_geodata("bc-parks-ecological-reserves-and-protected-areas") %>%
filter(DWITHIN(local, 100, "meters")) %>%
collect()
)
expect_is(remote, "sf")
expect_equal(attr(remote, "sf_column"), "geometry")
})
test_that("BEYOND works", {
skip("BEYOND currently not supported")
skip_on_cran()
skip_if_net_down()
remote <- suppressWarnings(
bcdc_query_geodata("bc-parks-ecological-reserves-and-protected-areas") %>%
filter(BEYOND(local, 100, "meters")) %>%
collect()
)
expect_is(remote, "sf")
expect_equal(attr(remote, "sf_column"), "geometry")
})
test_that("BBOX works with an sf bbox", {
skip_on_cran()
skip_if_net_down()
remote <- suppressWarnings(
bcdc_query_geodata("bc-parks-ecological-reserves-and-protected-areas") %>%
filter(FEATURE_LENGTH_M <= 1000, BBOX(sf::st_bbox(local))) %>%
collect()
)
expect_is(remote, "sf")
expect_equal(attr(remote, "sf_column"), "geometry")
})
test_that("BBOX works with an sf object", {
skip_on_cran()
skip_if_net_down()
remote <- suppressWarnings(
bcdc_query_geodata("bc-parks-ecological-reserves-and-protected-areas") %>%
filter(FEATURE_LENGTH_M <= 1000, BBOX(local)) %>%
collect()
)
expect_is(remote, "sf")
expect_equal(attr(remote, "sf_column"), "geometry")
})
test_that("Other predicates work with an sf bbox", {
skip_on_cran()
skip_if_net_down()
remote <- suppressWarnings(
bcdc_query_geodata("bc-parks-ecological-reserves-and-protected-areas") %>%
filter(FEATURE_LENGTH_M <= 1000, INTERSECTS(sf::st_bbox(local))) %>%
collect()
)
expect_is(remote, "sf")
expect_equal(attr(remote, "sf_column"), "geometry")
}) |
check_formula <- function(formula)
{
lf <- lhs(formula)
lhC <-as.character(lf)
if(is.null(lf))
{
}else if(any(lhC == "."))
{
lhs(formula) <- quote(NULL)
}
rh <- rhs(formula)
rhC <-as.character(rh)
if(is.null(rh))
{
rhs(formula) <- quote(.)
}else if(any(rhC == "."))
{
if(is.null(lhs(formula)))
{
formula <- ~.
}else{
rhs(formula) <- quote(.)
}
}
if(!is.null(lhs(formula)))
{
lhV <- lhs.vars(formula)
if(is.null(attr(lhV,"term.labels"))){
check <- NA
for(i in lhV)
{
check <- (substring(i,1,2) == "I(")
if(check)
{
stop(paste0("The left hand of the formula does not accept the following format: I(expression). Check the following entries: \n", i), call. = FALSE)
}
}
}else{
stop(paste0("The left hand of the formula does not accept the following format: I(expression). Check the following entries: \n", i), call. = FALSE)
}
}
if(rhs(formula) != ".")
{
rhV <- rhs.vars(formula)
check <- NA
for(i in rhV)
{
nch <- nchar(i)
check <- (substring(i,1,2) == "I(" & substring(i,nch,nch) == ")")
if(!check)
{
stop(paste0("The right and of the formula requires the following format: I(expression). Check the following entries: \n", i), call. = FALSE)
}
}
}
getsVars <- lhs.vars(formula)
getsTransf <- formula
lhs(getsTransf) <- quote(NULL)
return(list(formula = formula,
getsVars = getsVars,
getsTransf = getsTransf))
}
check_formula_names <- function(formula)
{
lf <- lhs(formula)
lhC <-as.character(lf)
if(is.null(lf))
{
}else if(any(lhC == "."))
{
lhs(formula) <- quote(NULL)
}
rh <- rhs(formula)
rhC <-as.character(rh)
if(is.null(rh))
{
rhs(formula) <- quote(.)
}else if(any(rhC == "."))
{
}
getsVars <- NULL
getsTransf <- "."
if(!is.null(lhs(formula)) | !rhs(formula) == ".")
{
if(!is.null(lhs(formula)))
{
lhV <- lhs.vars(formula)
if(is.null(attr(lhV,"term.labels"))){
check <- NA
for(i in lhV)
{
check <- (substring(i,1,2) == "I(")
if(check)
{
stop(paste0("The left hand of the formula does not accept the following format: I(expression). Check the following entries: \n", i), call. = FALSE)
}
}
}else{
stop(paste0("The left hand of the formula does not accept the following format: I(expression). Check the following entries: \n", i), call. = FALSE)
}
}
if(!is.null(rhs(formula)))
{
rhV <- lhs.vars(formula)
check <- NA
for(i in rhV)
{
check <- (substring(i,1,2) == "I(")
if(check)
{
stop(paste0("The right hand of the formula does not accept the following format: I(expression). Check the following entries: \n", i), call. = FALSE)
}
}
}
getsVars <- lhs.vars(formula)
getsTransf <- rhs.vars(formula)
}
return(list(formula = formula,
getsVars = getsVars,
getsTransf = getsTransf))
}
check_formula_add <- function(formula, from)
{
lf <- lhs(formula)
lhC <-as.character(lf)
if(!is.null(lf))
{
if(any(lhC == "."))
{
lhs(formula) <- quote(NULL)
}
}
rh <- rhs(formula)
rhC <-as.character(rh)
if(is.null(rh))
{
rhs(formula) <- quote(.)
warning("Right side of formula does no allow 'NULL'. The original data are returned.")
}else if(any(rhC == "."))
{
warning("Right side of formula does no allow '.'. The original data are returned.")
if(is.null(lhs(formula)))
{
formula <- ~.
}else{
rhs(formula) <- quote(.)
}
}
if(!is.null(lhs(formula)))
{
lhV <- lhs.vars(formula)
if(is.null(attr(lhV,"term.labels"))){
check <- NA
for(i in lhV)
{
check <- (substring(i,1,2) == "I(")
if(check)
{
stop(paste0("The left hand of the formula does not accept the following format: I(expression). Check the following entries: \n", i), call. = FALSE)
}
}
}else{
stop(paste0("The left hand of the formula does not accept the following format: I(expression). Check the following entries: \n", i), call. = FALSE)
}
}
count <- 0
if(rhs(formula) != ".")
{
rhV <- rhs.vars(formula)
check <- rep(NA,length(rhV))
for(i in rhV)
{
count <- count + 1
nch <- nchar(i)
check[count] <- (substring(i,1,2) == "C(")
if(check[count])
{
rhV[count] <- paste("constant(","x=",substring(i,3,nch-1), ",nr=",nrow(from),")" ,sep = "")
}
}
if(is.null(lhs(formula)))
{
colNames <- colnames(from)
getsVars <- colNames
formula <- as.formula(paste("~", paste(rhV,collapse="+"),sep = ""))
}else{
colNames <- (lhs.vars(formula))
getsVars <- lhs.vars(formula)
formula <- as.formula(paste("~", paste(rhV,collapse="+"),sep = ""))
}
count <- length(rhV)
err <- NULL
if(count == 1)
{
formula1 <- terms(formula, data = from)
env <- environment(formula)
vars <- attr(formula1, "variables")
err <- try(eval(vars, from, env), silent = TRUE)
if(class(err) == "try-error")
{
formula <- lh_formula_internal(Lnames = colNames, rhs_vars = rhV)
}
}
}
getsTransf <- formula
lhs(getsTransf) <- quote(NULL)
if(is.list(err))
{
if(any(check))
{
model_frame <- matrix(err[[1]], ncol = length(getsVars), nrow = nrow(from), byrow = FALSE)
}else{
model_frame <- matrix(err[[1]], ncol = 1, nrow = nrow(from), byrow = FALSE)
}
}else{
whc <- getsVars
if(is.null(getsVars))
{
whc <- colnames(from)
}
model_frame <- model.frame(formula = getsTransf, data = from[whc],
drop.unused.levels = FALSE, na.action = NULL)
}
return(list(formula = formula,
getsVars = getsVars,
getsTransf = getsTransf,
model_frame = model_frame))
}
check_formula_transf <- function(formula, from)
{
lf <- lhs(formula)
lhC <-as.character(lf)
if(!is.null(lf))
{
if(any(lhC == "."))
{
lhs(formula) <- quote(NULL)
}
}
rh <- rhs(formula)
rhC <-as.character(rh)
if(is.null(rh))
{
rhs(formula) <- quote(.)
warning("Right side of formula does no allow 'NULL'. The original data are returned.")
}else if(any(rhC == "."))
{
warning("Right side of formula does no allow '.'. The original data are returned.")
if(is.null(lhs(formula)))
{
formula <- ~.
}else{
rhs(formula) <- quote(.)
}
}
if(!is.null(lhs(formula)))
{
lhV <- lhs.vars(formula)
if(is.null(attr(lhV,"term.labels"))){
check <- NA
for(i in lhV)
{
check <- (substring(i,1,2) == "I(")
if(check)
{
stop(paste0("The left hand of the formula does not accept the following format: I(expression). Check the following entries: \n", i), call. = FALSE)
}
}
}else{
stop(paste0("The left hand of the formula does not accept the following format: I(expression). Check the following entries: \n", i), call. = FALSE)
}
}
count <- 0
if(rhs(formula) != ".")
{
rhV <- rhs.vars(formula)
check <- rep(NA,length(rhV))
for(i in rhV)
{
count <- count + 1
nch <- nchar(i)
check[count] <- (substring(i,1,2) == "C(")
if(check[count])
{
rhV[count] <- paste("constant(","x=",substring(i,3,nch-1), ",nr=",nrow(from),")" ,sep = "")
}
}
if(is.null(lhs(formula)))
{
colNames <- colnames(from)
getsVars <- colNames
formula <- as.formula(paste("~", paste(rhV,collapse="+"),sep = ""))
}else{
colNames <- (lhs.vars(formula))
getsVars <- lhs.vars(formula)
formula <- as.formula(paste("~", paste(rhV,collapse="+"),sep = ""))
}
count <- length(rhV)
err <- NULL
if(count == 1)
{
formula1 <- terms(formula, data = from)
env <- environment(formula)
vars <- attr(formula1, "variables")
err <- try(eval(vars, from, env), silent = TRUE)
if(class(err) == "try-error")
{
formula <- lh_formula_internal(Lnames = colNames, rhs_vars = rhV)
}
}
}
getsTransf <- formula
lhs(getsTransf) <- quote(NULL)
if(is.list(err))
{
model_frame <- matrix(err[[1]], ncol = length(getsVars), nrow = nrow(from), byrow = FALSE)
}else{
whc <- getsVars
if(is.null(getsVars))
{
whc <- colnames(from)
}
model_frame <- model.frame(formula = getsTransf, data = from[whc],
drop.unused.levels = FALSE, na.action = NULL)
}
return(list(formula = formula,
getsVars = getsVars,
getsTransf = getsTransf,
model_frame = model_frame))
}
lh_formula_internal <- function(Lnames, rhs_vars)
{
lh <- paste(Lnames, collapse = "+")
ncfunc <- nchar(rhs_vars)
if(substring(rhs_vars,1,2) == "I(")
{
if(substring(rhs_vars,ncfunc-1,ncfunc-1) == ")")
{
func <- substring(rhs_vars, 3,ncfunc-1)
temp <- grep("\\(",unlist(strsplit(func, "")))[1]
subL <- substring(func, 1,temp)
subR <- substring(func, temp+1,nchar(func))
rh <- paste0("I(",subL,Lnames,",",subR,")", collapse = "+")
}else{
func <- substring(rhs_vars, 3, ncfunc-1)
rh <- paste0("I(",func,"(",Lnames,"))", collapse = "+")
}
}else{
if(substring(rhs_vars,ncfunc,ncfunc) == ")")
{
func <- rhs_vars
temp <- grep("\\(",unlist(strsplit(func, "")))[1]
subL <- substring(func, 1,temp)
subR <- substring(func, temp+1,nchar(func))
rh <- paste0(subL,Lnames,",",subR, collapse = "+")
}else{
func <- substring(rhs_vars, 1, ncfunc-2)
rh <- paste0(func,"(",Lnames,")", collapse = "+")
}
}
formula <- as.formula(paste(lh,rh,sep = "~"))
return(formula)
}
constant <- function(x, nr,...)
{
if((length(x)==1))
{
x <- rep(x, nr)
}
return(x)
} |
testthat::test_that("tab_xl creates an Excel file", {
tabs <-
purrr::pmap(
tibble::tribble(
~row_var, ~col_vars , ~pct , ~filter , ~subtext ,
"race" , "marital" , "row", NULL , "Source: GSS 2000-2014",
"relig" , c("race", "age"), "row", "year %in% 2000:2010", "Source: GSS 2000-2010",
NA_character_, "race" , "no" , NULL , "Source: GSS 2000-2014",
),
.f = tab_many,
data = forcats::gss_cat, color = "auto", chi2 = TRUE)
test_path <- file.path(tempdir(), "tab_xl_test.xlsx")
tabs %>%
tab_xl(path = test_path, sheets = "unique",
replace = TRUE, open = FALSE) %>%
testthat::expect_invisible()
testthat::expect_true(file.exists(test_path))
file.remove(test_path)
})
testthat::test_that("tab_xl work with after_ci", {
tabs <-tab(forcats::gss_cat, race, marital, pct = "row", color = "after_ci")
test_path <- file.path(tempdir(), "tab_xl_test.xlsx")
tabs %>%
tab_xl(path = test_path, sheets = "unique",
replace = TRUE, open = FALSE) %>%
testthat::expect_invisible()
testthat::expect_true(file.exists(test_path))
file.remove(test_path)
}) |
IniListDims <- function(dims, lenlist) {
indices <- as.list(rep(1, lenlist))
for (jdim in 1:min(length(dims), lenlist)) {
indices[[jdim]] <- 1:dims[jdim]
}
indices
} |
opt.survSplinePH <-
function (thetas) {
thetas <- relist(thetas, skeleton = list.thetas)
gammas <- thetas$gammas
alpha <- thetas$alpha
Dalpha <- thetas$Dalpha
gammas.bs <- thetas$gammas.bs
eta.tw1 <- if (!is.null(W1)) as.vector(W1 %*% gammas) else rep(0, n)
eta.tw2 <- as.vector(W2 %*% gammas.bs)
eta.t <- switch(parameterization,
"value" = eta.tw2 + eta.tw1 + c(WintF.vl %*% alpha) * Y,
"slope" = eta.tw2 + eta.tw1 + c(WintF.sl %*% Dalpha) * Y.deriv,
"both" = eta.tw2 + eta.tw1 + c(WintF.vl %*% alpha) * Y +
c(WintF.sl %*% Dalpha) * Y.deriv)
eta.s <- switch(parameterization,
"value" = c(Ws.intF.vl %*% alpha) * Ys,
"slope" = c(Ws.intF.sl %*% Dalpha) * Ys.deriv,
"both" = c(Ws.intF.vl %*% alpha) * Ys +
c(Ws.intF.sl %*% Dalpha) * Ys.deriv)
eta.ws <- as.vector(W2s %*% gammas.bs)
log.hazard <- eta.t
log.survival <- - exp(eta.tw1) * P * rowsum(wk * exp(eta.ws + eta.s),
id.GK, reorder = FALSE)
dimnames(log.survival) <- NULL
log.p.tb <- rowsum(d * log.hazard + log.survival, idT, reorder = FALSE)
p.bytn <- p.byt * log.p.tb
-sum(p.bytn %*% wGH, na.rm = TRUE)
} |
NULL
cor_gather <- function(data, drop.na = TRUE){
rowname <- column <- NULL
if(inherits(data, "cor_mat")){
cor.value <- data
p.value <- data %>% cor_get_pval()
}
else if(inherits(data, "cor_mat_tri")){
cor.value <- data %>% as_numeric_triangle()
p.value <- data %>%
cor_get_pval() %>%
as_numeric_triangle()
}
else if(inherits(data, "rcorr")){
cor.value <- data$r %>% as_tibble(rownames = "rowname")
p.value <- data$P %>% as_tibble(rownames = "rowname")
}
else {
cor.value <- data %>% as_tibble(rownames = "rowname")
p.value <- NULL
}
cor.value <- cor.value %>%
keep_only_tbl_df_classes() %>%
gather(key = "column", value = "cor", -rowname)
if(!is.null(p.value)){
p.value <- p.value %>%
keep_only_tbl_df_classes() %>%
gather(key = "column", value = "p", -rowname)
cor.value <- cor.value %>%
left_join(p.value, by = c("rowname", "column"))
colnames(cor.value) <- c("var1", "var2", "cor", "p")
}
else{
colnames(cor.value) <- c("var1", "var2", "cor")
}
if(drop.na)
cor.value <- cor.value %>% drop_na()
cor.value
}
cor_spread <- function(data, value = "cor"){
if(!(all(c("var1", "var2", value) %in% colnames(data)))){
stop("The input data should contains the columns: var1, var2 and cor")
}
var1 <- var2 <- cor <- p <- NULL
row.vars <- data %>% pull(var1) %>% unique()
col.vars <- data %>% pull(var2) %>% unique()
res <- data %>%
keep_only_tbl_df_classes() %>%
select(var1, var2, !!value) %>%
spread(key = "var2", value = value) %>%
rename(rowname = var1) %>%
respect_variables_order(row.vars = row.vars, col.vars = col.vars)
colnames(res)[1] <- "rowname"
res
}
respect_variables_order <- function(data, vars, row.vars = vars, col.vars = vars){
data %>% subset_matrix(row.vars = row.vars, col.vars = col.vars)
} |
`elassens` <-
function(A,k,l){
rank <- dim(A)[1]
ea <- eigen.analysis(A)
lambda <- ea$lambda1
s <- ea$sensitivities
skl <- s[k,l]
d2 <- secder(A,k,l)
delta.kl <- matrix(0,nrow=rank,ncol=rank)
delta.kl[k,l] <- 1
es <- (A/lambda) * d2 - (A/lambda^2) * s*skl + delta.kl * s/lambda
return(round(es,4))
} |
MOs <- subset(microorganisms, !is.na(mo) & nchar(mo) > 3)
expect_identical(as.character(MOs$mo), as.character(as.mo(MOs$mo)))
expect_identical(
as.character(as.mo(c("E. coli", "H. influenzae"))),
c("B_ESCHR_COLI", "B_HMPHL_INFL"))
expect_equal(as.character(as.mo("Escherichia coli")), "B_ESCHR_COLI")
expect_equal(as.character(as.mo("Escherichia coli")), "B_ESCHR_COLI")
expect_equal(as.character(as.mo(112283007)), "B_ESCHR_COLI")
expect_equal(as.character(as.mo("Escherichia species")), "B_ESCHR")
expect_equal(as.character(as.mo("Escherichia")), "B_ESCHR")
expect_equal(as.character(as.mo("Esch spp.")), "B_ESCHR")
expect_equal(as.character(as.mo(" B_ESCHR_COLI ")), "B_ESCHR_COLI")
expect_equal(as.character(as.mo("e coli")), "B_ESCHR_COLI")
expect_equal(as.character(as.mo("klpn")), "B_KLBSL_PNMN")
expect_equal(as.character(as.mo("Klebsiella")), "B_KLBSL")
expect_equal(as.character(as.mo("K. pneu rhino")), "B_KLBSL_PNMN_RHNS")
expect_equal(as.character(as.mo("Bartonella")), "B_BRTNL")
expect_equal(as.character(as.mo("C. difficile")), "B_CRDDS_DFFC")
expect_equal(as.character(as.mo("L. pneumophila")), "B_LGNLL_PNMP")
expect_equal(as.character(as.mo("Strepto")), "B_STRPT")
expect_equal(as.character(as.mo("Streptococcus")), "B_STRPT")
expect_equal(as.character(as.mo("Estreptococos grupo B")), "B_STRPT_GRPB")
expect_equal(as.character(as.mo("Group B Streptococci")), "B_STRPT_GRPB")
expect_equal(as.character(as.mo(c("mycobacterie", "mycobakterium"))), c("B_MYCBC", "B_MYCBC"))
expect_equal(as.character(as.mo(c("GAS", "GBS", "a MGS", "haemoly strep"))), c("B_STRPT_GRPA", "B_STRPT_GRPB", "B_STRPT_MILL", "B_STRPT_HAEM"))
expect_equal(as.character(as.mo("S. pyo")), "B_STRPT_PYGN")
expect_equal(as.character(as.mo("bctfgr")), "B_BCTRD_FRGL")
expect_equal(as.character(as.mo("MRSE")), "B_STPHY_EPDR")
expect_equal(as.character(as.mo("VRE")), "B_ENTRC")
expect_equal(as.character(as.mo("MRPA")), "B_PSDMN_AERG")
expect_equal(as.character(as.mo("PISP")), "B_STRPT_PNMN")
expect_equal(as.character(as.mo("PRSP")), "B_STRPT_PNMN")
expect_equal(as.character(as.mo("VISP")), "B_STRPT_PNMN")
expect_equal(as.character(as.mo("VRSP")), "B_STRPT_PNMN")
expect_equal(as.character(as.mo("CNS")), "B_STPHY_CONS")
expect_equal(as.character(as.mo("CoNS")), "B_STPHY_CONS")
expect_equal(as.character(as.mo("CPS")), "B_STPHY_COPS")
expect_equal(as.character(as.mo("CoPS")), "B_STPHY_COPS")
expect_equal(as.character(as.mo("VGS")), "B_STRPT_VIRI")
expect_equal(as.character(as.mo("streptococcus milleri")), "B_STRPT_MILL")
expect_equal(as.character(as.mo(c("Gram negative", "Gram positive"))), c("B_GRAMN", "B_GRAMP"))
expect_identical(
suppressWarnings(as.character(
as.mo(c("stau",
"STAU",
"staaur",
"S. aureus",
"S aureus",
"Sthafilokkockus aureeuzz",
"Staphylococcus aureus",
"MRSA",
"VISA")))),
rep("B_STPHY_AURS", 9))
expect_identical(
as.character(
as.mo(c("EHEC", "EPEC", "EIEC", "STEC", "ATEC", "UPEC"))),
rep("B_ESCHR_COLI", 6))
expect_identical(
as.character(
as.mo(c("parnod",
"P. nodosa",
"P nodosa",
"Paraburkholderia nodosa"))),
rep("B_PRBRK_NODS", 4))
expect_identical(as.character(as.mo(c("", " ", NA, NaN))), rep(NA_character_, 4))
expect_identical(as.character(as.mo(" ")), NA_character_)
expect_warning(as.mo("ab"))
expect_equal(suppressWarnings(as.character(as.mo(c("Qq species", "", "CRSM", "K. pneu rhino", "esco")))),
c("UNKNOWN", NA_character_, "B_STNTR_MLTP", "B_KLBSL_PNMN_RHNS", "B_ESCHR_COLI"))
expect_identical(as.character(as.mo("S. epidermidis", Becker = FALSE)), "B_STPHY_EPDR")
expect_identical(as.character(as.mo("S. epidermidis", Becker = TRUE)), "B_STPHY_CONS")
expect_identical(as.character(as.mo("STAEPI", Becker = TRUE)), "B_STPHY_CONS")
expect_identical(as.character(as.mo("Sta intermedius", Becker = FALSE)), "B_STPHY_INTR")
expect_identical(as.character(as.mo("Sta intermedius", Becker = TRUE)), "B_STPHY_COPS")
expect_identical(as.character(as.mo("STAINT", Becker = TRUE)), "B_STPHY_COPS")
expect_identical(as.character(as.mo("STAAUR", Becker = FALSE)), "B_STPHY_AURS")
expect_identical(as.character(as.mo("STAAUR", Becker = TRUE)), "B_STPHY_AURS")
expect_identical(as.character(as.mo("STAAUR", Becker = "all")), "B_STPHY_COPS")
expect_identical(as.character(as.mo("S. pyogenes", Lancefield = FALSE)), "B_STRPT_PYGN")
expect_identical(as.character(as.mo("S. pyogenes", Lancefield = TRUE)), "B_STRPT_GRPA")
expect_identical(as.character(as.mo("STCPYO", Lancefield = TRUE)), "B_STRPT_GRPA")
expect_identical(as.character(as.mo("S. agalactiae", Lancefield = FALSE)), "B_STRPT_AGLC")
expect_identical(as.character(as.mo("S. agalactiae", Lancefield = TRUE)), "B_STRPT_GRPB")
expect_identical(as.character(suppressWarnings(as.mo("estreptococos grupo B"))), "B_STRPT_GRPB")
expect_identical(as.character(as.mo("S. equisimilis", Lancefield = FALSE)), "B_STRPT_DYSG_EQSM")
expect_identical(as.character(as.mo("S. equisimilis", Lancefield = TRUE)), "B_STRPT_GRPC")
expect_identical(as.character(as.mo("E. faecium", Lancefield = FALSE)), "B_ENTRC_FACM")
expect_identical(as.character(as.mo("E. faecium", Lancefield = TRUE)), "B_ENTRC_FACM")
expect_identical(as.character(as.mo("E. faecium", Lancefield = "all")), "B_STRPT_GRPD")
expect_identical(as.character(as.mo("S. anginosus", Lancefield = FALSE)), "B_STRPT_ANGN")
expect_identical(as.character(as.mo("S. anginosus", Lancefield = TRUE)), "B_STRPT_GRPF")
expect_identical(as.character(as.mo("S. sanguinis", Lancefield = FALSE)), "B_STRPT_SNGN")
expect_identical(as.character(as.mo("S. sanguinis", Lancefield = TRUE)), "B_STRPT_GRPH")
expect_identical(as.character(as.mo("S. salivarius", Lancefield = FALSE)), "B_STRPT_SLVR")
expect_identical(as.character(as.mo("S. salivarius", Lancefield = TRUE)), "B_STRPT_GRPK")
if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0")) {
expect_identical(
example_isolates[1:10, ] %>%
left_join_microorganisms() %>%
select(genus) %>%
as.mo() %>%
as.character(),
c("B_ESCHR", "B_ESCHR", "B_STPHY", "B_STPHY", "B_STPHY",
"B_STPHY", "B_STPHY", "B_STPHY", "B_STPHY", "B_STPHY"))
expect_identical(
example_isolates[1:10, ] %>%
pull(mo),
example_isolates[1:10, ] %>%
left_join_microorganisms() %>%
select(genus, species) %>%
as.mo())
expect_error(example_isolates %>% select(1:3) %>% as.mo())
expect_equal(nrow(example_isolates %>% mutate(mo = as.mo(mo))),
2000)
expect_true(example_isolates %>% pull(mo) %>% is.mo())
}
expect_warning(as.mo(c("INVALID", "Yeah, unknown")))
expect_stdout(print(as.mo(c("B_ESCHR_COLI", NA))))
expect_equal(nrow(data.frame(test = as.mo("B_ESCHR_COLI"))),
1)
expect_equal(as.character(suppressWarnings(as.mo(""))),
NA_character_)
expect_equal(as.character(as.mo("Gomphosphaeria aponina delicatula")), "B_GMPHS_APNN_DLCT")
expect_equal(as.character(as.mo("Gomphosphaeria apo del")), "B_GMPHS_APNN_DLCT")
expect_equal(as.character(as.mo("G apo deli")), "B_GMPHS_APNN_DLCT")
expect_equal(as.character(as.mo("Gomphosphaeria aponina")), "B_GMPHS_APNN")
expect_equal(as.character(as.mo("Gomphosphaeria species")), "B_GMPHS")
expect_equal(as.character(as.mo("Gomphosphaeria")), "B_GMPHS")
expect_equal(as.character(as.mo(" B_GMPHS_APNN ")), "B_GMPHS_APNN")
expect_equal(as.character(as.mo("g aponina")), "B_GMPHS_APNN")
expect_equal(suppressMessages(as.character(as.mo("Escherichia blattae"))), "B_SHMWL_BLTT")
print(mo_renamed())
expect_equal(suppressMessages(as.character(as.mo(c("E. coli", "Chlamydo psittaci")))), c("B_ESCHR_COLI", "B_CHLMY_PSTT"))
expect_equal(suppressMessages(as.character(as.mo("staaur extratest", allow_uncertain = TRUE))), "B_STPHY_AURS")
expect_equal(suppressWarnings(as.character(as.mo("staaur extratest", allow_uncertain = FALSE))), "UNKNOWN")
expect_message(as.mo("e coli extra_text", allow_uncertain = TRUE))
expect_equal(suppressMessages(as.character(as.mo("unexisting aureus", allow_uncertain = 3))), "B_STPHY_AURS")
expect_equal(suppressMessages(as.character(as.mo("unexisting staphy", allow_uncertain = 3))), "B_STPHY_COPS")
expect_equal(suppressMessages(as.character(as.mo(c("s aure THISISATEST", "Staphylococcus aureus unexisting"), allow_uncertain = 3))), c("B_STPHY_AURS_AURS", "B_STPHY_AURS_AURS"))
expect_equal(as.character(as.mo("TestingOwnID",
reference_df = data.frame(mycol = "TestingOwnID", mo = "B_ESCHR_COLI"))),
"B_ESCHR_COLI")
expect_equal(as.character(as.mo(c("TestingOwnID", "E. coli"),
reference_df = data.frame(mycol = "TestingOwnID", mo = "B_ESCHR_COLI"))),
c("B_ESCHR_COLI", "B_ESCHR_COLI"))
expect_warning(as.mo("TestingOwnID", reference_df = NULL))
expect_error(as.mo("E. coli", reference_df = data.frame(mycol = "TestingOwnID")))
expect_identical(as.character(as.mo(c("B_ESCHR_COL", "ESCCOL"))),
c("B_ESCHR_COLI", "B_ESCHR_COLI"))
expect_equal(as.character(as.mo(
c("PRTMIR", "bclcer", "B_ESCHR_COLI"))),
c("B_PROTS_MRBL", "B_BCLLS_CERS", "B_ESCHR_COLI"))
expect_equal(as.character(suppressMessages(as.mo(
c("Microbacterium paraoxidans",
"Streptococcus suis (bovis gr)",
"Raoultella (here some text) terrigena")))),
c("B_MCRBC_PRXY", "B_STRPT_SUIS", "B_RLTLL_TRRG"))
expect_stdout(print(mo_uncertainties()))
x <- as.mo("S. aur")
expect_stdout(print(mo_uncertainties()))
expect_equal(suppressMessages(as.mo(c("Salmonella Goettingen", "Salmonella Typhimurium", "Salmonella Group A"))),
as.mo(c("Salmonella enterica", "Salmonella enterica", "Salmonella")))
expect_equal(as.character(as.mo("Virus")), NA_character_)
expect_equal(length(summary(example_isolates$mo)), 6)
expect_equal(as.character(as.mo(c("xxx", "na", "nan"), debug = TRUE)),
rep(NA_character_, 3))
expect_equal(as.character(as.mo("con")), "UNKNOWN")
expect_equal(as.character(as.mo("xxx")), NA_character_)
expect_equal(as.character(as.mo(c("xxx", "con", "eco"))), c(NA_character_, "UNKNOWN", "B_ESCHR_COLI"))
expect_equal(as.character(as.mo(c("other", "none", "unknown"))),
rep("UNKNOWN", 3))
expect_null(mo_failures())
expect_error(translate_allow_uncertain(5))
expect_stdout(print(suppressMessages(suppressWarnings(as.mo("kshgcjkhsdgkshjdfsfvsdfv", debug = TRUE, allow_uncertain = 3)))))
expect_equal(as.character(as.mo(c("meningococ", "gonococ", "pneumococ"))),
c("B_NESSR_MNNG", "B_NESSR_GNRR", "B_STRPT_PNMN"))
expect_equal(suppressWarnings(as.character(as.mo(c("yeasts", "fungi")))),
c("F_YEAST", "F_FUNGUS"))
if (AMR:::pkg_is_available("dplyr", min_version = "1.0.0")) {
expect_stdout(print(tibble(mo = as.mo("B_ESCHR_COLI"))))
}
x <- example_isolates$mo
expect_inherits(x[1], "mo")
expect_inherits(x[[1]], "mo")
expect_inherits(c(x[1], x[9]), "mo")
expect_warning(x[1] <- "invalid code")
expect_warning(x[[1]] <- "invalid code")
expect_warning(c(x[1], "test"))
expect_equal(as.character(as.mo(c("E. coli", "E. coli ignorethis"), ignore_pattern = "this")),
c("B_ESCHR_COLI", NA))
if (AMR:::pkg_is_available("cleaner")) {
expect_inherits(cleaner::freq(example_isolates$mo), "freq")
} |
DPMGibbsN_parallel <- function (Ncpus, type_connec,
z, hyperG0, a=0.0001, b=0.0001, N, doPlot=TRUE,
nbclust_init=30, plotevery=N/10,
diagVar=TRUE, use_variance_hyperprior=TRUE, verbose=TRUE, monitorfile="",
...){
dpmclus <- NULL
if(!requireNamespace("itertools", quietly=TRUE)){
stop("Package 'itertools' is not available.\n -> Try running 'install.packages(\"itertools\")'\n or use non parallel version of the function: 'DPMGibbsN'")
}else{
requireNamespace("itertools", quietly=TRUE)
}
if(!requireNamespace("doParallel", quietly=TRUE)){
stop("Package 'doParallel' is not available.\n -> Try running 'install.packages(\"doParallel\")'\n or use non parallel version of the function: 'DPMGibbsN'")
}else{
requireNamespace("doParallel", quietly=TRUE)
cl <- parallel::makeCluster(Ncpus, type = type_connec, outfile=monitorfile)
doParallel::registerDoParallel(cl)
if(doPlot){requireNamespace("ggplot2", quietly=TRUE)}
p <- dim(z)[1]
n <- dim(z)[2]
U_xi <- matrix(0, nrow=p, ncol=n)
U_psi <- matrix(0, nrow=p, ncol=n)
U_Sigma = array(0, dim=c(p, p, n))
U_df = rep(10,n)
U_B = array(0, dim=c(2, 2, n))
U_nu <- rep(p,n)
if(Ncpus<2){
warning("Only 1 core specified\n=> non-parallel version of the algorithm would be more efficient")
}
p <- nrow(z)
n <- ncol(z)
U_mu <- matrix(0, nrow=p, ncol=n)
U_Sigma = array(0, dim=c(p, p, n))
listU_mu<-list()
listU_Sigma<-list()
par_ind <- list()
temp_ind <- 0
if(Ncpus>1){
nb_simult <- floor(n%/%(Ncpus))
for(i in 1:(Ncpus-1)){
par_ind[[i]] <- temp_ind + 1:nb_simult
temp_ind <- temp_ind + nb_simult
}
par_ind[[Ncpus]] <- (temp_ind+1):n
}
else{
cat("Only 1 core specified\n=> non-parallel version of the algorithm would be more efficient",
file=monitorfile, append = TRUE)
nb_simult <- n
par_ind[[Ncpus]] <- (temp_ind+1):n
}
U_SS <- list()
U_SS_list <- list()
c_list <- list()
weights_list <- list()
logposterior_list <- list()
m <- numeric(n)
c <-numeric(n)
i <- 1
if(n<nbclust_init){
for (k in 1:n){
c[k] <- k
U_SS[[k]] <- update_SS(z=z[, k, drop=FALSE], S=hyperG0, hyperprior = NULL)
NiW <- rNiW(U_SS[[k]], diagVar=diagVar)
U_mu[, k] <- NiW[["mu"]]
U_SS[[k]][["mu"]] <- NiW[["mu"]]
U_Sigma[, , k] <- NiW[["S"]]
U_SS[[k]][["S"]] <- NiW[["S"]]
m[k] <- m[k]+1
U_SS[[k]][["weight"]] <- 1/n
}
} else{
c <- sample(x=1:nbclust_init, size=n, replace=TRUE)
for (k in unique(c)){
obs_k <- which(c==k)
U_SS[[k]] <- update_SS(z=z[, obs_k,drop=FALSE], S=hyperG0)
NiW <- rNiW(U_SS[[k]], diagVar=diagVar)
U_mu[, k] <- NiW[["mu"]]
U_SS[[k]][["mu"]] <- NiW[["mu"]]
U_Sigma[, , k] <- NiW[["S"]]
U_SS[[k]][["S"]] <- NiW[["S"]]
m[k] <- length(obs_k)
U_SS[[k]][["weight"]] <- m[k]/n
}
}
listU_mu[[i]]<-U_mu
listU_Sigma[[i]]<-U_Sigma
alpha <- c(log(n))
U_SS_list[[i]] <- U_SS
c_list[[i]] <- c
weights_list[[i]] <- numeric(length(m))
weights_list[[i]][unique(c)] <- table(c)/length(c)
logposterior_list[[i]] <- logposterior_DPMG(z, mu=U_mu, Sigma=U_Sigma,
hyper=hyperG0, c=c, m=m, alpha=alpha[i], n=n, a=a, b=b, diagVar)
if(verbose){
cat(i, "/", N, " samplings:\n", sep="")
cat(" logposterior = ", sum(logposterior_list[[i]]), "\n", sep="")
cl2print <- unique(c)
cat(" ",length(cl2print), "clusters:", cl2print[order(cl2print)], "\n\n")
}
if(doPlot){
plot_DPM(z=z, U_mu=U_mu, U_Sigma=U_Sigma,
m=m, c=c, i=i, alpha=alpha[length(alpha)], U_SS=U_SS, ...)
}else if(verbose){
cl2print <- unique(c)
cat(length(cl2print), "clusters:", cl2print[order(cl2print)], "\n\n")
}
for(i in 2:N){
nbClust <- length(unique(c))
alpha <- c(alpha,
sample_alpha(alpha_old=alpha[i-1], n=n,
K=nbClust, a=a, b=b)
)
slice <- sliceSampler_N_parallel(Ncpus=Ncpus, c=c, m=m, alpha=alpha[i],
z=z, hyperG0=hyperG0,
U_mu=U_mu, U_Sigma=U_Sigma, diagVar=diagVar)
m <- slice[["m"]]
c <- slice[["c"]]
weights_list[[i]] <- slice[["weights"]]
U_mu<-slice[["U_mu"]]
U_Sigma<-slice[["U_Sigma"]]
fullCl <- which(m!=0)
for(j in fullCl){
obs_j <- which(c==j)
if(use_variance_hyperprior){
U_SS[[j]] <- update_SS(z=z[, obs_j,drop=FALSE], S=hyperG0, hyperprior = list("Sigma"=U_Sigma[,,j]))
}else{
U_SS[[j]] <- update_SS(z=z[, obs_j,drop=FALSE], S=hyperG0)
}
NiW <- rNiW(U_SS[[j]], diagVar=diagVar)
U_mu[, j] <- NiW[["mu"]]
U_SS[[j]][["mu"]] <- NiW[["mu"]]
U_Sigma[, , j] <- NiW[["S"]]
U_SS[[j]][["S"]] <- NiW[["S"]]
U_SS[[j]][["weight"]] <- weights_list[[i]][j]
}
listU_mu[[i]]<-U_mu
listU_Sigma[[i]]<-U_Sigma
U_SS_list[[i]] <- U_SS[which(m!=0)]
c_list[[i]] <- c
logposterior_list[[i]] <- logposterior_DPMG(z, mu=U_mu, Sigma=U_Sigma,
hyper=hyperG0, c=c, m=m, alpha=alpha[i], n=n, a=a, b=b, diagVar)
if(verbose){
cat(i, "/", N, " samplings:\n", sep="")
cat(" logposterior = ", sum(logposterior_list[[i]]) , "\n", sep="")
cl2print <- unique(c)
cat(" ",length(cl2print), "clusters:", cl2print[order(cl2print)], "\n\n")
}
if(doPlot && i/plotevery==floor(i/plotevery)){
plot_DPM(z=z, U_mu=U_mu, U_Sigma=U_Sigma,
m=m, c=c, i=i, alpha=alpha[length(alpha)], U_SS=U_SS, ...)
}
}
parallel::stopCluster(cl)
dpmclus <- list("mcmc_partitions" = c_list,
"alpha"=alpha,
"listU_mu"=listU_mu,
"listU_Sigma"=listU_Sigma,
"U_SS_list"=U_SS_list,
"weights_list"=weights_list,
"logposterior_list"=logposterior_list,
"data"=z,
"nb_mcmcit"=N,
"clust_distrib"="gaussian",
"hyperG0"=hyperG0)
class(dpmclus) <- "DPMMclust"
}
return(dpmclus)
} |
setGeneric( "descriptor", function(object, ...){
standardGeneric( "descriptor" )
} )
setMethod( "descriptor", "Message", function(object, ...){
.Call( "Message__descriptor", object@pointer, PACKAGE = "RProtoBuf" )
} )
setGeneric( "fileDescriptor", function(object, ...){
standardGeneric( "fileDescriptor" )
} )
setMethod( "fileDescriptor", "Message", function(object, ...){
.Call( "Message__fileDescriptor", object@pointer, PACKAGE = "RProtoBuf" )
} )
setMethod( "fileDescriptor", "Descriptor", function(object, ...){
.Call( "Descriptor__fileDescriptor", object@pointer, PACKAGE = "RProtoBuf" )
} )
setMethod( "fileDescriptor", "EnumDescriptor", function(object, ...){
.Call( "EnumDescriptor__fileDescriptor", object@pointer, PACKAGE = "RProtoBuf" )
} )
setMethod( "fileDescriptor", "FieldDescriptor", function(object, ...){
.Call( "FieldDescriptor__fileDescriptor", object@pointer, PACKAGE = "RProtoBuf" )
} )
setMethod( "fileDescriptor", "ServiceDescriptor", function(object, ...){
.Call( "ServiceDescriptor__fileDescriptor", object@pointer, PACKAGE = "RProtoBuf" )
} )
setMethod( "fileDescriptor", "MethodDescriptor", function(object, ...){
.Call( "MethodDescriptor__fileDescriptor", object@pointer, PACKAGE = "RProtoBuf" )
} ) |
context("random matrix")
n=10
a=Matrix::Matrix(0, n, n)
set.seed(7)
ij=sample(1:(n*n), 5*n)
a[ij]=runif(ij)
diag(a)=0
diag(a)=-Matrix::rowSums(a)
a[1,1]=a[1,1]-1
am=Rmumps$new(a)
b=as.double(a%*%(1:n))
x=am$solve(b)
test_that("first solving", {
expect_equal(x, 1:n)
})
bb=2*b
xx=solve(am, bb)
test_that("second solving", {
expect_equal(xx, 2*(1:n))
})
bt=as.double(Matrix::crossprod(a, 1:n))
xt=solvet(am, bt)
test_that("solving transposed system", {
expect_equal(xt, 1:n)
})
asy=a+Matrix::t(a)
bsy=as.double(asy%*%(1:n))
asl=asy
asl[row(asy)>col(asy)]=0.
ams=Rmumps$new(asl, sym=1)
xsy=solve(ams, bsy)
test_that("solving symmetric-1 system", {
expect_equal(xsy, 1:n)
})
ams=Rmumps$new(asl, sym=2)
xsy=solve(ams, bsy)
test_that("solving symmetric-2 system", {
expect_equal(xsy, 1:n)
})
a=as(a, "dgTMatrix")
ai=Rmumps$new(a@i, a@j, a@x, ncol(a))
ai$set_permutation(RMUMPS_PERM_SCOTCH)
xi=solve(ai, b)
test_that("testing a from i,j,v", {
expect_equal(xi, 1:n)
})
rm(ai)
if (getRversion() >= "3.4.0") {
asl=as.simple_triplet_matrix(a)
ai=Rmumps$new(asl)
xi=solve(ai, b)
test_that("testing matrix from slam::simple_triplet_matrix", {
expect_equal(xi, 1:n)
})
code='
NumericVector solve_ptr(List a, NumericVector b) {
IntegerVector ir=a["i"], jc=a["j"];
NumericVector v=a["v"];
int n=a["nrow"], nz=v.size();
Rmumps rmu((int *) ir.begin(), (int *) jc.begin(), (double *) v.begin(), n, nz, 0);
rmu.set_permutation(RMUMPS_PERM_SCOTCH);
rmu.solveptr((double *) b.begin(), n, 1);
return(b);
}
'
if (FALSE && Sys.info()[["sysname"]] != "Darwin" && .Platform$r_arch != "i386") {
rso=paste0("rmumps", .Platform$dynlib.ext)
rso_path=file.path(path.package("rmumps"), "libs", .Platform$r_arch, rso)
cat("rso_path=", rso_path, "\n")
if (!file.exists(rso_path))
rso_path=file.path(path.package("rmumps"), "src", rso)
Sys.setenv(PKG_LIBS=rso_path)
cppFunction(code=code, depends="rmumps", verbose=TRUE)
xe=as.double(1:n)
b0=slam::tcrossprod_simple_triplet_matrix(asl, t(xe))
x=solve_ptr(asl, b0)
test_that("testing solveptr() within Rcpp code", {
expect_lt(diff(range(x-xe)), 1e-14)
})
}
rm(asl)
asl=slam::as.simple_triplet_matrix(a)
eye=solve(ai, asl)
test_that("testing solve() on slam::simple_triplet_matrix", {
expect_equal(eye, diag(n), tol=1e-14)
})
rm(ai, asl)
}
rm(am)
a=as(diag(n), "dgCMatrix")
a@p[2L]=0L
am=Rmumps$new(a)
test_that("singular matrix", {
expect_error(solve(am, b), "rmumps: job=6, info\\[1\\]=-10*")
})
vkeep=am$get_keep()
sizeint=Rcpp::evalCpp("sizeof(int)")
test_that("int size", {
expect_equal(vkeep[34], sizeint)
expect_equal(vkeep[10], 8/sizeint)
})
rm(a, asy, am)
gc() |
`print.rda_pertables` <-
function (x, ...)
{
n <- x$simulation$rda.quant[, -3]
cat("\n")
cat("Confidence intervals of R-squared and pseudo-F values for RDA under different taxonomic scenarios",
"\n\n")
print(n)
} |
rm(list=ls())
setwd("C:/Users/Tom/Documents/Kaggle/Facebook/Exploratory analysis")
library(data.table)
library(bit64)
library(ggplot2)
library(plotly)
library(viridis)
library(ggvis)
targetDate <- "23-05-2016"
dayHourOffset <- 0
sampleSize <- NA
train <- readRDS("../Data/train.rds")
if(!is.na(sampleSize)){
train <- train[sample(1:nrow(train), sampleSize)]
}
train <- train[order(time)]
summaryFilePath <- paste0("../Feature engineering/", targetDate,
"/test summary features.rds")
placeSummary <- readRDS(summaryFilePath)
train[,totalDay := floor((time + dayHourOffset)/(1440))]
train[,week := floor(time/(1440*7))]
train[,matchIds := match(place_id, placeSummary$place_id)]
train[,count := placeSummary[matchIds,count]]
train[,xVar := abs(x-placeSummary[matchIds,medX])]
train[,yVar := abs(y-placeSummary[matchIds,medY])]
train <- train[count>=20,]
train[,accuracyGroup := cut_number(accuracy, 30)]
train[,timeGroup := cut_number(time, 6)]
accSummary <- train[, list(.N,
meanXVar = mean(xVar),
medianXVar = median(xVar),
meanYVar = mean(yVar),
medianYVar = median(yVar)),
by=accuracyGroup]
accSummary <- accSummary[order(accuracyGroup),]
xVarMax <- max(accSummary$medianXVar[1:(nrow(accSummary)-1)])
p <- ggplot(accSummary, aes(x=accuracyGroup, y=medianXVar)) +
geom_point() +
ylim(c(NA,xVarMax))
print(p)
yVarMax <- max(accSummary$medianYVar[1:(nrow(accSummary)-1)])
q <- ggplot(accSummary, aes(x=accuracyGroup, y=medianYVar)) +
geom_point() +
ylim(c(NA,yVarMax))
print(q)
accTimeSummary <- train[, list(.N, as.numeric(median(accuracy))),
by=list(accuracyGroup, timeGroup)]
accTimeSummary <- train[, list(meanXVar = mean(xVar),
medianXVar = median(xVar),
meanYVar = mean(yVar),
medianYVar = median(yVar),
count = length(x)),
by=list(accuracyGroup, timeGroup)]
accTimeSummary <- accTimeSummary[order(accuracyGroup),]
r <- ggplot(accTimeSummary, aes(x=accuracyGroup, y=meanXVar,
shape=timeGroup, col=timeGroup)) +
geom_point() +
theme(axis.text.x=element_text(angle = -90, hjust = 0))
print(r) |
library(RProtoBuf)
serialize_pb(c(1,2,pi, NA,NaN,Inf,-Inf), "double.msg")
serialize_pb(c(1L, 2L, NA), "integer.msg")
serialize_pb(c(TRUE, FALSE, NA), "logical.msg")
serialize_pb(c("foo", "bar", NA), "character.msg")
serialize_pb(charToRaw("This is a test"), "raw.msg")
serialize_pb(list(foo=c(1,2,pi), bar=TRUE, baz="blabla", zoo=NULL), "list.msg")
serialize_pb(iris[1:3,], "dataframe.msg") |
library(fpp)
plot(a10)
tute1 = read.csv('tute1.csv')
head(tute1)
tail(tute1)
tute1[,2]
tute1[,"Sales"]
tute1[5,]
tute1[1:10,3:4]
tute1[1:20,]
tute1 <- ts(tute1[,-1], start=1981, frequency=4)
plot(tute1)
seasonplot(tute1[,"Sales"])
seasonplot(tute1[,"AdBudget"])
seasonplot(tute1[,"GDP"])
monthplot(tute1[,"Sales"])
monthplot(tute1[,"GDP"])
monthplot(tute1[,"AdBudget"])
plot(Sales ~ AdBudget, data=tute1)
plot(Sales ~ GDP, data=tute1)
pairs(as.data.frame(tute1))
summary(tute1)
hist(tute1[,"Sales"])
hist(tute1[,"AdBudget"])
boxplot(tute1[,"Sales"])
boxplot(as.data.frame(tute1))
cor.test(tute1[,"Sales"],tute1[,"AdBudget"])
par(mfrow=c(2,2))
str(hsales) ;head(hsales)
plot(hsales,xlab="Year",ylab="Monthly housing sales (millions)")
str(ustreas)
plot(ustreas,xlab="Day",ylab="US treasury bill contracts")
str(elec)
plot(elec,xlab="Year",ylab="Australian monthly electricity production")
str(dj)
plot(diff(dj),xlab="Day",ylab="Daily change in Dow Jones index")
fit <- stl(elecequip, s.window=5)
plot(elecequip, col="gray",
main="Electrical equipment manufacturing",
ylab="New orders index", xlab="")
lines(fit$time.series[,2],col="red",ylab="Trend")
plot(fit)
monthplot(fit$time.series[,"seasonal"], main="", ylab="Seasonal")
plot(elecequip, col="grey",
main="Electrical equipment manufacturing",
xlab="", ylab="New orders index")
lines(seasadj(fit),col="red",ylab="Seasonally adjusted")
ma(elecsales, order=5)
str(ausbeer)
beer2 <- window(ausbeer,start=1992)
ma4 <- ma(beer2, order=4, centre=FALSE)
ma4
ma2x4 <- ma(beer2, order=4, centre=TRUE)
ma2x4
plot(elecequip, ylab="New orders index", col="gray",
main="Electrical equipment manufacturing (Euro area)")
lines(ma(elecequip, order=12), col="red")
fit <- stl(elecequip, t.window=15, s.window="periodic", robust=TRUE)
plot(fit)
x = data1
x
fit <- decompose(x, type="multiplicative")
plot(fit)
fit <- stl(elecequip, t.window=15, s.window="periodic", robust=TRUE)
eeadj <- seasadj(fit)
plot(naive(eeadj), xlab="New orders index",
main="Naive forecasts of seasonally adjusted data")
fcast <- forecast(fit, method="naive")
plot(fcast, ylab="New orders index") |
collapse_occurrences <- function(parsedSource,
collapseBy = "stanzaId",
columns = NULL,
logical = FALSE) {
if (!("rock_parsedSource" %in% class(parsedSource))) {
stop("As argument `parsedSource`, you must specify a parsed source, ",
"as provided by the `rock::parse_source` function!");
}
if (is.null(columns)) {
columns <-
unlist(parsedSource$convenience$codingLeaves);
}
if (!(all(columns %in% names(parsedSource$sourceDf)))) {
missingCols <-
columns[which(!(columns %in% names(parsedSource$sourceDf)))];
stop("Not all columns specified in the `columns` argument exist in ",
"the `sourceDf` in the `parsedSource` object you provided.\n\n",
"Specifically, these columns were missing: ",
vecTxtQ(missingCols), "\n\nAll existing columns are ",
vecTxtQ(names(parsedSource$sourceDf)), ").");
}
if (!(collapseBy %in% names(parsedSource$sourceDf))) {
stop("The columns specified in the `collapseBy` argument does not exist in ",
"the `sourceDf` in the `parsedSource` object you provided!");
}
sourceDf <-
parsedSource$sourceDf[, c(collapseBy,
columns),
drop=FALSE];
if (logical) {
res <-
stats::aggregate(sourceDf[, columns],
sourceDf[, collapseBy, drop=FALSE],
function(x) {
if (sum(x) == 0) {
return(0);
} else {
return(1);
}
});
} else {
res <-
stats::aggregate(sourceDf[, columns],
sourceDf[, collapseBy, drop=FALSE],
sum);
}
names(res)[1] <-
collapseBy;
return(res);
} |
marginal.lkl.pb <-
function(dat ,
Nsim=10e+3 ,
displ=TRUE, Hpar = get("pb.Hpar") ,
Nsim.min=Nsim,
precision=0,
show.progress = floor(seq(1, Nsim, length.out = 20 ) )
)
{
marginal.lkl(dat=dat,
likelihood=dpairbeta,
prior=prior.pb,
Nsim=Nsim,
displ=displ,
Hpar=Hpar,
Nsim.min=Nsim.min,
precision=precision,
show.progress=show.progress
)
} |
.units <- list(
short=list(
IEC=list(
print = c("B", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"),
check = c("b", "kib", "mib", "gib", "tib", "pib", "eib", "zib", "yib")
),
SI=list(
print = c("B", "KB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB"),
check = c("b", "kb", "mb", "gb", "tb", "pb", "eb", "zb", "yb")
)
),
long=list(
IEC=list(
print = c("bytes", "kibibytes", "mebibytes", "gibibytes", "tebibytes", "pebibytes", "exbibytes", "zebibytes", "yobibytes"),
check = c("bytes", "kibibytes", "mebibytes", "gibibytes", "tebibytes", "pebibytes", "exbibytes", "zebibytes", "yobibytes")
),
SI=list(
print = c("bytes", "kilobytes", "megabytes", "gigabytes", "terabytes", "petabytes", "exabytes", "zettabytes", "yottabytes"),
check = c("bytes", "kilobytes", "megabytes", "gigabytes", "terabytes", "petabytes", "exabytes", "zettabytes", "yottabytes")
)
)
)
.units_bits <- list(
short=list(
IEC=list(
print = c("b", "Kib", "Mib", "Gib", "Tib", "Pib", "Eib", "Zib", "Yib"),
check = c("b", "kib", "mib", "gib", "tib", "pib", "eib", "zib", "yib")
),
SI=list(
print = c("b", "Kb", "Mb", "Gb", "Tb", "Pb", "Eb", "Zb", "Yb"),
check = c("b", "kb", "mb", "gb", "tb", "pb", "eb", "zb", "yb")
)
),
long=list(
IEC=list(
print = c("bits", "kibibits", "mebibits", "gibibits", "tebibits", "pebibits", "exbibits", "zebibits", "yobibits"),
check = c("bits", "kibibits", "mebibits", "gibibits", "tebibits", "pebibits", "exbibits", "zebibits", "yobibits")
),
SI=list(
print = c("bits", "kilobits", "megabits", "gigabits", "terabits", "petabits", "exabits", "zettabits", "yottabits"),
check = c("bits", "kilobits", "megabits", "gigabits", "terabits", "petabits", "exabits", "zettabits", "yottabits")
)
)
)
.numbers <- data.frame(
name=c("Thousand", "Million", "Billion", "Trillion", "Quadrillion", "Quintillion", "Sextillion", "Septillion", "Octillion", "Nonillion", "Decillion", "Undecillion", "Duodecillion", "Tredecillion", "Quattuordecillion", "Quindecillion", "Sexdecillion", "Septendecillion", "Octodecillion", "Novemdecillion", "Vigintillion", "Googol", "Centillion"),
shorthand=c("k", "m", "b", "t", "q", "qt", "sx", "sp", "ot", "n", "d", "u", "dd", "td", "qtd", "qd", "sxd", "spd", "otd", "nd", "vg", "g", "ct"),
exponent=c(3, 6, 9, 12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 100, 303),
stringsAsFactors=FALSE
) |
test_that("aggregation functions warn if na.rm = FALSE", {
local_con(simulate_dbi())
sql_mean <- sql_aggregate("MEAN")
expect_warning(sql_mean("x"), "Missing values")
expect_warning(sql_mean("x", na.rm = TRUE), NA)
})
test_that("missing window functions create a warning", {
local_con(simulate_dbi())
sim_scalar <- sql_translator()
sim_agg <- sql_translator(`+` = sql_infix("+"))
sim_win <- sql_translator()
expect_warning(
sql_variant(sim_scalar, sim_agg, sim_win),
"Translator is missing"
)
})
test_that("missing aggregate functions filled in", {
local_con(simulate_dbi())
sim_scalar <- sql_translator()
sim_agg <- sql_translator()
sim_win <- sql_translator(mean = function() {})
trans <- sql_variant(sim_scalar, sim_agg, sim_win)
expect_error(trans$aggregate$mean(), "only available in a window")
})
test_that("output of print method for sql_variant is correct", {
sim_trans <- sql_translator(`+` = sql_infix("+"))
expect_snapshot(sql_variant(sim_trans, sim_trans, sim_trans))
})
test_that("win_rank() is accepted by the sql_translator", {
expect_snapshot(
sql_variant(
sql_translator(
test = win_rank("test")
)
)
)
})
test_that("can translate infix expression without parantheses", {
expect_equal(translate_sql(!!expr(2 - 1) * x), sql("(2.0 - 1.0) * `x`"))
expect_equal(translate_sql(!!expr(2 / 1) * x), sql("(2.0 / 1.0) * `x`"))
expect_equal(translate_sql(!!expr(2 * 1) - x), sql("(2.0 * 1.0) - `x`"))
})
test_that("unary minus works with expressions", {
expect_equal(translate_sql(-!!expr(x+2)), sql("-(`x` + 2.0)"))
expect_equal(translate_sql(--x), sql("-(-`x`)"))
})
test_that("pad = FALSE works", {
local_con(simulate_dbi())
subset <- sql_infix(".", pad = FALSE)
expect_equal(subset(ident("df"), ident("x")), sql("`df`.`x`"))
})
test_that("sql_prefix checks arguments", {
local_con(simulate_dbi())
sin_db <- sql_prefix("SIN", 1)
expect_snapshot(error = TRUE, sin_db(sin(1, 2)))
expect_snapshot(error = TRUE, sin_db(sin(a = 1)))
}) |
devtools::load_all()
library(googledrive)
library(tidyverse)
googlesheets4:::gs4_auth_testing()
ss <- test_sheet_create("googlesheets4-col-types")
gs4_browse(ss)
df <- tibble(
A = list(1, "Missing", 3),
B = list(1, "NA", 3),
C = c(1, NA, 3),
D = 1:3
)
sheet_add(ss, sheet = "NAs")
sheet_write(df, ss, sheet = "NAs") |
righttri <- function (a = NULL, b = NULL, c = NULL) {
checks <- c(a, b, c)
if (length(checks) < 2) {
stop("There are not at least 2 sides. Try again with at least 2 sides.")
} else {
if (any(checks == 0)) {
stop("Either a, b, or c is 0. Neither a nor b nor c can be 0. Try again.")
} else {
if (missing(c)) {
csquared <- a ^ 2 + b ^ 2
c <- sqrt(csquared)
} else if (missing(a)) {
asquared <- c ^ 2 - b ^ 2
a <- sqrt(asquared)
} else if (missing(b)) {
bsquared <- c ^ 2 - a ^ 2
b <- sqrt(bsquared)
}
csquared <- a ^ 2 + b ^ 2
c <- sqrt(csquared)
a1 <- a
b1 <- b
if (a <= b & b < c) {
a <- a
b <- b
} else {
a <- switch("a", a = b1)
b <- switch("b", b = a1)
}
triarea <- 0.5 * a * b
altitude <- (a * b) / c
R <- c / 2
r <- (a + b - c) / 2
s <- (a + b + c) / 2
Aanglerad <- atan(a / b)
Aangle <- Aanglerad * (180 / pi)
Banglerad <- atan(b / a)
Bangle <- Banglerad * (180 / pi)
Cangle <- 180 - Aangle - Bangle
check1a <- s == 2 * R + r
check1b <- a ^ 2 + b ^ 2 + c ^ 2 == 8 * R ^ 2
check2 <- sin(Aangle * pi / 180) ^ 2 + sin(Bangle * pi / 180) ^ 2 + sin(Cangle * pi / 180) ^ 2 == 2
check3 <- triarea == r * (2 * R + r)
check4 <- r == s - c
check5 <- altitude == (a * b) / c
check6 <- c == 2 * R
check7 <- Aangle + Bangle + Cangle == 180
checked <- c(check1a, check1b, check2, check3, check4, check5, check6, check7)
if (all(checked) == FALSE) {
cat("This is not a right triangle so the Pythagorean theorem will not work.\n")
} else {
return(list(a = a, b = b, c = c, Aangle = Aangle, Bangle = Bangle, Cangle = Cangle))
}
}
}
} |
SparseMatrixVectorAllocator <- function(benchmarkParameters, index) {
kernelParameters <- list()
kernelParameters$A <- get(benchmarkParameters$matrixObjectName)
if (nrow(kernelParameters$A) != benchmarkParameters$numberOfRows[index]) {
warning("Actual number of rows in sparse matrix does not match expected number of rows in numberOfRows")
} else if (ncol(kernelParameters$A) != benchmarkParameters$numberOfColumns[index]) {
warning("Actual number of columns in sparse matrix does not match expected number of columns in numberOfColumns")
}
s <- ncol(kernelParameters$A)
kernelParameters$x <- matrix(stats::rnorm(s), nrow=s, ncol=1)
return (kernelParameters)
}
SparseMatrixVectorMicrobenchmark <- function(benchmarkParameters, kernelParameters) {
timings <- system.time({b <- kernelParameters$A %*% kernelParameters$x})
return (timings)
}
SparseCholeskyAllocator <- function(benchmarkParameters, index) {
kernelParameters <- list()
kernelParameters$A <- get(benchmarkParameters$matrixObjectName)
if (nrow(kernelParameters$A) != benchmarkParameters$numberOfRows[index]) {
warning("Actual number of rows in sparse matrix does not match expected number of rows in numberOfRows")
} else if (ncol(kernelParameters$A) != benchmarkParameters$numberOfColumns[index]) {
warning("Actual number of columns in sparse matrix does not match expected number of columns in numberOfColumns")
}
return (kernelParameters)
}
SparseCholeskyMicrobenchmark <- function(benchmarkParameters, kernelParameters) {
timings <- system.time({b <- Matrix::Cholesky(kernelParameters$A)})
return (timings)
}
SparseLuAllocator <- function(benchmarkParameters, index) {
kernelParameters <- list()
kernelParameters$A <- get(benchmarkParameters$matrixObjectName)
kernelParameters$A@factors <- list()
if (nrow(kernelParameters$A) != benchmarkParameters$numberOfRows[index]) {
warning("Actual number of rows in sparse matrix does not match expected number of rows in numberOfRows")
} else if (ncol(kernelParameters$A) != benchmarkParameters$numberOfColumns[index]) {
warning("Actual number of columns in sparse matrix does not match expected number of columns in numberOfColumns")
}
return (kernelParameters)
}
SparseLuMicrobenchmark <- function(benchmarkParameters, kernelParameters) {
timings <- system.time({b <- Matrix::lu(kernelParameters$A)})
return (timings)
}
SparseQrAllocator <- function(benchmarkParameters, index) {
kernelParameters <- list()
kernelParameters$A <- get(benchmarkParameters$matrixObjectName)
if (nrow(kernelParameters$A) != benchmarkParameters$numberOfRows[index]) {
warning("Actual number of rows in sparse matrix does not match expected number of rows in numberOfRows")
} else if (ncol(kernelParameters$A) != benchmarkParameters$numberOfColumns[index]) {
warning("Actual number of columns in sparse matrix does not match expected number of columns in numberOfColumns")
}
return (kernelParameters)
}
SparseQrMicrobenchmark <- function(benchmarkParameters, kernelParameters) {
timings <- system.time({b <- Matrix::qr(kernelParameters$A)})
return (timings)
} |
tuneMultiCritRandom = function(learner, task, resampling, measures, par.set, control, opt.path, show.info, resample.fun) {
vals = sampleValues(n = control$extra.args$maxit, par = par.set, trafo = FALSE)
evalOptimizationStatesTune(learner, task, resampling, measures, par.set, control, opt.path,
show.info, vals, dobs = seq_along(vals), eols = NA_integer_, remove.nas = TRUE,
resample.fun = resample.fun)
makeTuneMultiCritResultFromOptPath(learner, par.set, measures, resampling, control, opt.path)
} |
bayessurvreg1.writeHeaders <- function(dir, prior, store, nX, X, names.random, ncluster, nrandom,
rnamesX, unique.cluster, nBetaBlocks, nbBlocks)
{
FILES <- dir(dir)
sink(paste(dir, "/iteration.sim", sep = ""), append = FALSE)
cat("iteration", "\n"); sink()
sink(paste(dir, "/loglik.sim", sep = ""), append = FALSE)
cat("loglik", "randomloglik", "\n", sep = " "); sink()
sink(paste(dir, "/mweight.sim", sep = ""), append = FALSE)
cat(paste("w", 1:prior$kmax, sep = ""), "\n", sep = " "); sink()
sink(paste(dir, "/mmean.sim", sep = ""), append = FALSE)
cat(paste("mu", 1:prior$kmax, sep = ""), "\n", sep = " "); sink()
sink(paste(dir, "/mvariance.sim", sep = ""), append = FALSE)
cat(paste("sigma2", 1:prior$kmax, sep = ""), "\n", sep = " "); sink()
sink(paste(dir, "/mixmoment.sim", sep = ""), append = FALSE)
cat(" k", " Intercept", " Scale", "\n", sep = " "); sink()
if (nX){ sink(paste(dir, "/beta.sim", sep = ""), append = FALSE)
cat(colnames(X), "\n", sep = " "); sink() }
else
if ("beta.sim" %in% FILES) file.remove(paste(dir, "/beta.sim", sep = ""))
if (store$b){ sink(paste(dir, "/b.sim", sep = ""), append = FALSE)
cat(paste(rep(names.random, ncluster), ".", rep(unique.cluster, rep(nrandom, ncluster)), sep = ""),
"\n", sep = " "); sink() }
else
if ("b.sim" %in% FILES) file.remove(paste(dir, "/b.sim", sep = ""))
if (nrandom){ sink(paste(dir, "/D.sim", sep = ""), append = FALSE)
D <- diag(nrandom)
rows <- row(D)[lower.tri(row(D), diag = TRUE)]
cols <- col(D)[lower.tri(col(D), diag = TRUE)]
cat("det", paste("D.", rows, ".", cols, sep = ""), "\n", sep = " "); sink() }
else
if ("D.sim" %in% FILES) file.remove(paste(dir, "/D.sim", sep = ""))
if (store$y){sink(paste(dir, "/Y.sim", sep = ""), append = FALSE)
cat(paste("Y", rnamesX, sep = ""), "\n", sep = " "); sink() }
else
if ("Y.sim" %in% FILES) file.remove(paste(dir, "/Y.sim", sep = ""))
if (store$r){sink(paste(dir, "/r.sim", sep = ""), append = FALSE)
cat(paste("r", rnamesX, sep = ""), "\n", sep = " "); sink() }
else
if ("r.sim" %in% FILES) file.remove(paste(dir, "/r.sim", sep = ""))
sink(paste(dir, "/otherp.sim", sep = ""), append = FALSE)
cat("eta", "\n", sep = " "); sink()
sink(paste(dir, "/MHinfo.sim", sep = ""), append = FALSE)
cat("accept.spl.comb", "split", "accept.birth.death", "birth ", sep = " ")
if (nX > 0) cat(paste("beta.block.", 1:nBetaBlocks, sep = ""), " ", sep = " ")
cat("\n", sep = " ");
sink()
if (store$MHb & nrandom > 0){
sink(paste(dir, "/MHbinfo.sim", sep = ""), append = FALSE)
cat(paste("b.block.", rep(1:nbBlocks, ncluster), ".", rep(unique.cluster, rep(nbBlocks, ncluster)), "", sep = ""), sep = " ")
cat("\n", sep = " ");
sink()
}
else
if ("MHbinfo.sim" %in% FILES) file.remove(paste(dir, "/MHbinfo.sim", sep = ""))
if (store$u){ sink(paste(dir, "/u.sim", sep = ""), append = FALSE)
headeru <- paste(" u.", rep(1:prior$kmax, rep(3, prior$kmax)), ".", rep(1:3, prior$kmax), sep = "")
headeru[1] <- " mood"; headeru[2] <- " u.0.0"; headeru[3] <- " u.0.0"
cat(headeru, "\n", sep = " ");
sink()
}
else
if ("u.sim" %in% FILES) file.remove(paste(dir, "/u.sim", sep = ""))
if (store$regresres){sink(paste(dir, "/regresres.sim", sep = ""), append = FALSE)
cat(paste("res", rnamesX, sep = ""), "\n", sep = " "); sink() }
else
if ("regresres.sim" %in% FILES) file.remove(paste(dir, "/regresres.sim", sep = ""))
} |
multisub <- function(pattern, replacement, x, ...) {
if (length(pattern) != length(replacement)) {
stop("The pattern and replacement vectors should have the same length.")
}
res <- x
for (i in 1:length(pattern)) {
res <- gsub(pattern[i], replacement[i], res, ...)
}
return(res)
} |
ardec.periodic <-
function(x,per,tol=0.95){
fit=ardec.lm(x)
comp=ardec(x,fit$coefficients)
if(any(comp$period > (per-tol) & comp$period < (per+tol))) {
candidates=which(comp$period > (per-tol) & comp$period < (per+tol))
lper=candidates[which.max(comp$modulus[candidates])]
l=comp$period[lper]
m=comp$modulus[lper]
gt=Re(comp$comps[lper,]+comp$comps[lper+1,]) }
return(list(period=l,modulus=m,component=gt))
} |
backward_linkages <- function ( Im ) {
Im <- mutate (Im, across(where(is.factor), as.character))
total_row <- data.frame (
name = "backward linkages"
)
names(total_row)[1] <- names(Im[1])
total_row <- cbind ( total_row,
t(colSums(Im[,2:ncol(Im)]))
)
total_row
} |
library(urca)
data(Raotbl3)
attach(Raotbl3)
lc <- ts(lc, start=c(1966,4), end=c(1991,2),
frequency=4)
lc.ct <- ur.pp(lc, type='Z-tau', model='trend',
lags='long')
lc.co <- ur.pp(lc, type='Z-tau', model='constant',
lags='long')
lc2 <- diff(lc)
lc2.ct <- ur.pp(lc2, type='Z-tau', model='trend',
lags='long') |
library(qtl)
data(hyper)
write.cross(hyper, "tidy", "hyper_tidy")
x <- read.cross("tidy", "", genfile="hyper_tidy_gen.csv",
mapfile="hyper_tidy_map.csv", phefile="hyper_tidy_phe.csv",
genotypes=c("BB", "BA", "AA"))
comparecrosses(x, hyper) |
context("test star_schema")
test_that("star_schema works", {
st <- star_schema(mrs_age_test, dm_mrs_age)
expect_equal(nrow(st$fact$mrs_age), nrow(mrs_age_test))
expect_equal(nrow(st$dimension$when), 4)
expect_equal(nrow(st$dimension$when_available), 6)
expect_equal(nrow(st$dimension$where), 3)
expect_equal(nrow(st$dimension$who), 5)
}) |
NULL
col_vals_regex <- function(x,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
segments = NULL,
actions = NULL,
step_id = NULL,
label = NULL,
brief = NULL,
active = TRUE) {
columns_expr <-
rlang::as_label(rlang::quo(!!enquo(columns))) %>%
gsub("^\"|\"$", "", .)
columns <- rlang::enquo(columns)
columns <- resolve_columns(x = x, var_expr = columns, preconditions)
segments_list <-
resolve_segments(
x = x,
seg_expr = segments,
preconditions = preconditions
)
if (is_a_table_object(x)) {
secret_agent <-
create_agent(x, label = "::QUIET::") %>%
col_vals_regex(
columns = columns,
regex = regex,
na_pass = na_pass,
preconditions = preconditions,
segments = segments,
label = label,
brief = brief,
actions = prime_actions(actions),
active = active
) %>%
interrogate()
return(x)
}
agent <- x
if (is.null(brief)) {
brief <-
generate_autobriefs(
agent = agent,
columns = columns,
preconditions = preconditions,
values = regex,
assertion_type = "col_vals_regex"
)
}
step_id <- normalize_step_id(step_id, columns, agent)
i_o <- get_next_validation_set_row(agent)
check_step_id_duplicates(step_id, agent)
for (i in seq_along(columns)) {
for (j in seq_along(segments_list)) {
seg_col <- names(segments_list[j])
seg_val <- unname(unlist(segments_list[j]))
agent <-
create_validation_step(
agent = agent,
assertion_type = "col_vals_regex",
i_o = i_o,
columns_expr = columns_expr,
column = columns[i],
values = regex,
na_pass = na_pass,
preconditions = preconditions,
seg_expr = segments,
seg_col = seg_col,
seg_val = seg_val,
actions = covert_actions(actions, agent),
step_id = step_id[i],
label = label,
brief = brief[i],
active = active
)
}
}
agent
}
expect_col_vals_regex <- function(object,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
threshold = 1) {
fn_name <- "expect_col_vals_regex"
vs <-
create_agent(tbl = object, label = "::QUIET::") %>%
col_vals_regex(
columns = {{ columns }},
regex = {{ regex }},
na_pass = na_pass,
preconditions = {{ preconditions }},
actions = action_levels(notify_at = threshold)
) %>%
interrogate() %>%
.$validation_set
x <- vs$notify
threshold_type <- get_threshold_type(threshold = threshold)
if (threshold_type == "proportional") {
failed_amount <- vs$f_failed
} else {
failed_amount <- vs$n_failed
}
if (length(x) > 1 && any(x)) {
fail_idx <- which(x)[1]
failed_amount <- failed_amount[fail_idx]
x <- TRUE
} else {
x <- any(x)
fail_idx <- 1
}
if (inherits(vs$capture_stack[[1]]$warning, "simpleWarning")) {
warning(conditionMessage(vs$capture_stack[[1]]$warning))
}
if (inherits(vs$capture_stack[[1]]$error, "simpleError")) {
stop(conditionMessage(vs$capture_stack[[1]]$error))
}
act <- testthat::quasi_label(enquo(x), arg = "object")
column_text <- prep_column_text(vs$column[[fail_idx]])
values_text <-
prep_values_text(values = vs$values[[fail_idx]], limit = 3, lang = "en")
testthat::expect(
ok = identical(!as.vector(act$val), TRUE),
failure_message = glue::glue(
failure_message_gluestring(
fn_name = fn_name, lang = "en"
)
)
)
act$val <- object
invisible(act$val)
}
test_col_vals_regex <- function(object,
columns,
regex,
na_pass = FALSE,
preconditions = NULL,
threshold = 1) {
vs <-
create_agent(tbl = object, label = "::QUIET::") %>%
col_vals_regex(
columns = {{ columns }},
regex = {{ regex }},
na_pass = na_pass,
preconditions = {{ preconditions }},
actions = action_levels(notify_at = threshold)
) %>%
interrogate() %>%
.$validation_set
if (inherits(vs$capture_stack[[1]]$warning, "simpleWarning")) {
warning(conditionMessage(vs$capture_stack[[1]]$warning))
}
if (inherits(vs$capture_stack[[1]]$error, "simpleError")) {
stop(conditionMessage(vs$capture_stack[[1]]$error))
}
all(!vs$notify)
} |
splineAnalyze <- function(Y,map,smoothness=100,s2=NA,mean=NA,plotRaw=FALSE,plotWindows=FALSE, method=3){
roots <- function(data){
data1 <- c(NA,data[1:{length(data)-1}])
data2 <- data
posneg <- which(data1>0 & data2<0) - 0.5
negpos <- which(data1<0 & data2>0) -0.5
zero <- which(data == 0)
roots <- sort(c(posneg,negpos,zero))
return(roots)
}
rawData <- data.frame(Pos=map,Y=Y)
data <- rawData[which(is.na(rawData$Y)==FALSE),]
pspline <- smooth.Pspline(data[,1],data[,2],norder=2,method=method)
predict <- predict(pspline,seq(0,max(pspline$x),by=smoothness))
psplinederiv <- predict(pspline,seq(0,max(pspline$x),by=smoothness),nderiv=2)
psplineInflection <- roots(psplinederiv)*smoothness
print(paste("Total number of windows = ", length(psplineInflection) + 1))
print(" ---- Computing window statistics ----")
if(is.na(s2)) s2 <- var(Y)
if(is.na(mean)) mean <- mean(Y,na.rm=TRUE)
cat(1, "of", length(psplineInflection)+1, "\r")
Distinct <- data.frame(WindowStart=rep(NA,length(psplineInflection)+1),WindowStop=NA,SNPcount=NA,MeanY=NA, Wstat=NA)
Distinct$WindowStart[1] <- min(pspline$x)
Distinct$WindowStop[1] <- psplineInflection[1]
Distinct$SNPcount[1] <- length(which(data[,1] <= psplineInflection[1]))
Distinct$MeanY[1] <- mean(data[which(data[,1] <= psplineInflection[1]),2],na.rm=TRUE)
Distinct$Wstat[1] <- {mean(data[which(data[,1] <= psplineInflection[1]),2],na.rm=TRUE)-mean}/
sqrt(s2/length(which(data[,1] <= psplineInflection[1])))
for(i in 2:length(psplineInflection)){
cat(i, "of", length(psplineInflection)+1, "\r")
Distinct$WindowStart[i] <- psplineInflection[i-1]
Distinct$WindowStop[i] <- psplineInflection[i]
Distinct$SNPcount[i] <- length(which(data[,1] >= psplineInflection[i-1] & data[,1]
<= psplineInflection[i]))
Distinct$MeanY[i] <- mean(data[which(data[,1] >= psplineInflection[i-1] & data[,1]
<= psplineInflection[i]),2],na.rm=TRUE)
Distinct$Wstat[i] <- {mean(data[which(data[,1] >= psplineInflection[i-1] & data[,1]
<= psplineInflection[i]),2],na.rm=TRUE) - mean}/ sqrt(s2/length(which(data[,1]
>= psplineInflection[i-1] & data[,1] <= psplineInflection[i])))
}
i <- i+1
cat(i, "of", length(psplineInflection)+1, "\r")
Distinct$WindowStart[i] <- psplineInflection[i-1]
Distinct$WindowStop[i] <- max(data$Pos)
Distinct$SNPcount[i] <- length(which(data[,1] >= psplineInflection[i-1] ))
Distinct$MeanY[i] <- mean(data[which(data[,1] >= psplineInflection[i-1]),2],na.rm=TRUE)
Distinct$Wstat[i] <- {mean(data[which(data[,1] >= psplineInflection[i-1]),2],na.rm=TRUE) - mean}/
sqrt(s2/length(which(data[,1] >= psplineInflection[i-1])))
print(" ---- done ---- ")
if(plotRaw==TRUE & plotWindows==TRUE) par(mfrow=c(2,1))
if(plotRaw==TRUE){
plot(data,xlab="Position (bp)",ylab="Raw values")
lines(seq(0,max(pspline$x),by=smoothness),predict,col="red")
}
if(plotWindows==TRUE){
plot((Distinct$WindowStop-Distinct$WindowStart)/2+Distinct$WindowStart,Distinct$Wstat,xlab="Position (bp)", ylab="Spline Wstat",pch=19)
}
return(list(rawSpline=pspline,breaks=psplineInflection,windowData=Distinct))
} |
get_usage_logs <- function(startDate = Sys.Date()-91,
endDate = Sys.Date()-1,
login = NA,
ip = NA ,
rsid = NA,
eventType = NA,
event = NA,
limit = 100,
page = 0,
company_id = Sys.getenv("AW_COMPANY_ID")
)
{
vars <- tibble::tibble(login, ip, rsid, eventType, event, limit, page)
prequery <- list(dplyr::select_if(vars, ~ !any(is.na(.))))
query_param <- stringr::str_remove_all(stringr::str_replace_all(stringr::str_remove_all(paste(prequery, collapse = ''), '\\"'), ', ', '&'), 'list\\(| |\\)')
date_range <- make_startDate_endDate(startDate, endDate)
urlstructure <- glue::glue('auditlogs/usage?startDate={date_range[[1]]}&endDate={date_range[[2]]}&{query_param}')
res <- aw_call_api(req_path = urlstructure[1], company_id = company_id)
res <- jsonlite::fromJSON(res)
res <- res$content
res
} |
cmd.help <- function(){
cat("\nUsage: time.tabix.r -G genome -R region -C [cov|config]file\n")
cat(" [Options]\n")
cat("\n
cat(" -G Genome name, currently supported: mm9, hg19, rn4, sacCer3(ensembl only)\n")
cat(" -R Genomic regions to plot: tss, tes, genebody, exon, cgi or *.bed\n")
cat(" -C Tabix file\n")
cat("
cat(" -E Gene list to subset regions\n")
cat(" -T Image title\n")
cat("
cat(" -F Further information can be provided to subset regions:\n")
cat(" for genebody: chipseq(default), rnaseq.\n")
cat(" for exon: canonical(default), variant, promoter, polyA,\n")
cat(" altAcceptor, altDonor, altBoth.\n")
cat(" for cgi: ProximalPromoter(default), Promoter1k, Promoter3k,\n")
cat(" Genebody, Genedesert, OtherIntergenic, Pericentromere.\n")
cat(" -D Gene database: refseq(default), ensembl\n")
cat(" -I Shall interval be larger than flanking in plot?(0 or 1, default=automatic)\n")
cat(" -L Flanking region size\n")
cat(" -N Flanking region factor(will override flanking size)\n")
cat(" -S Randomly sample the regions for plot, must be:(0, 1]\n")
cat(" -P
cat("
cat(" -GO Gene order algorithm used in heatmaps: total(default), hc, max,\n")
cat(" prod, diff, pca and none(according to gene list supplied)\n")
cat(" -CS Chunk size for loading genes in batch(default=100)\n")
cat(" -FL Fragment length used to calculate physical coverage(default=150)\n")
cat(" -MQ Mapping quality cutoff to filter reads(default=20)\n")
cat(" -SE Shall standard errors be plotted?(0 or 1)\n")
cat(" -RB The fraction of extreme values to be trimmed on both ends\n")
cat(" default=0, 0.05 means 5% of extreme values will be trimmed\n")
cat(" -FC Flooding fraction:[0, 1), default=0.02\n")
cat(" -FI Forbid image output if set to 1(default=0)\n")
cat(" -MW Moving window width to smooth avg. profiles, must be integer\n")
cat(" 1=no(default); 3=slightly; 5=somewhat; 9=quite; 13=super.\n")
cat(" -H Opacity of shaded area, suggested value:[0, 0.5]\n")
cat(" default=0, i.e. no shading, just curves\n")
cat("\n")
}
args <- commandArgs(T)
progpath <- Sys.getenv('NGSPLOT')
if(progpath == "") {
stop("Set environment variable NGSPLOT before run the program. \
See README for details.\n")
}
source(file.path(progpath, 'lib', 'parse.args.r'))
args.tbl <- parseArgs(args, c('-G', '-C', '-R'))
if(is.null(args.tbl)){
cmd.help()
stop('Error in parsing command line arguments. Stop.\n')
}
if(!suppressMessages(require(ShortRead, warn.conflicts=F))) {
source("http://bioconductor.org/biocLite.R")
biocLite(ShortRead)
if(!suppressMessages(require(ShortRead, warn.conflicts=F))) {
stop('Loading package ShortRead failed!')
}
}
if(!suppressMessages(require(rtracklayer, warn.conflicts=F))) {
source("http://bioconductor.org/biocLite.R")
biocLite(rtracklayer)
if(!suppressMessages(require(rtracklayer, warn.conflicts=F))) {
stop('Loading package rtracklayer failed!')
}
}
if(!suppressMessages(require(BSgenome, warn.conflicts=F))) {
source("http://bioconductor.org/biocLite.R")
biocLite(BSgenome)
if(!suppressMessages(require(BSgenome, warn.conflicts=F))) {
stop('Loading package BSgenome failed!')
}
}
if(!suppressMessages(require(doMC, warn.conflicts=F))) {
install.packages('doMC')
if(!suppressMessages(require(doMC, warn.conflicts=F))) {
stop('Loading package doMC failed!')
}
}
if(!suppressMessages(require(caTools, warn.conflicts=F))) {
install.packages('caTools')
if(!suppressMessages(require(caTools, warn.conflicts=F))) {
stop('Loading package caTools failed!')
}
}
if(!suppressMessages(require(utils, warn.conflicts=F))) {
install.packages('utils')
if(!suppressMessages(require(utils, warn.conflicts=F))) {
stop('Loading package utils failed!')
}
}
default.tbl <- read.delim(file.path(progpath, 'database', 'default.tbl'))
dbfile.tbl <- read.delim(file.path(progpath, 'database', 'dbfile.tbl'))
argvar.list <- setupVars(args.tbl, default.tbl)
genome <- argvar.list$genome
reg2plot <- argvar.list$reg2plot
bed.file <- argvar.list$bed.file
oname <- argvar.list$oname
fi_tag <- argvar.list$fi_tag
lgint <- argvar.list$lgint
flanksize <- argvar.list$flanksize
flankfactor <- argvar.list$flankfactor
samprate <- argvar.list$samprate
shade.alp <- argvar.list$shade.alp
mw <- argvar.list$mw
cores.number <- argvar.list$cores.number
se <- argvar.list$se
robust <- argvar.list$robust
flood.frac <- argvar.list$flood.frac
go.algo <- argvar.list$go.algo
gcs <- argvar.list$gcs
fraglen <- argvar.list$fraglen
map.qual <- argvar.list$map.qual
bufsize <- argvar.list$bufsize
ctg.tbl <- ConfigTbl(args.tbl, fraglen)
if(cores.number == 0){
registerDoMC()
} else {
registerDoMC(cores.number)
}
source(file.path(progpath, 'lib', 'genedb.r'))
plotvar.list <- SetupPlotCoord(args.tbl, ctg.tbl, default.tbl, dbfile.tbl,
progpath, genome, reg2plot, lgint, flanksize,
bed.file, samprate)
coord.list <- plotvar.list$coord.list
rnaseq.gb <- plotvar.list$rnaseq.gb
lgint <- plotvar.list$lgint
reg.list <- plotvar.list$reg.list
uniq.reg <- plotvar.list$uniq.reg
pint <- plotvar.list$pint
exonmodel <- plotvar.list$exonmodel
source(file.path(progpath, 'lib', 'plotlib.r'))
pts.list <- SetPtsSpline(pint, lgint)
pts <- pts.list$pts
m.pts <- pts.list$m.pts
f.pts <- pts.list$f.pts
regcovMat <- CreatePlotMat(pts, ctg.tbl)
confiMat <- CreateConfiMat(se, pts, ctg.tbl)
enrichList <- vector('list', nrow(ctg.tbl))
source(file.path(progpath, 'lib', 'coverage.r'))
bfl.res <- bamFileList(ctg.tbl)
bam.pair <- bfl.res$bbp
bam.list <- bfl.res$bam.list
seqnamesBW <- function(bam.list) {
sn.list <- lapply(bam.list, function(t) {
seqnames(seqinfo(BigWigFile(t)))
})
names(sn.list) <- bam.list
sn.list
}
sn.list <- seqnamesBW(bam.list)
covBW <- function(bw.file, sn.inbam, granges, fraglen,
map.qual=20, bowtie=F) {
g.start <- start(ranges(granges))
g.end <- end(ranges(granges))
gb.len <- g.end - g.start + 1
chr.name <- seqnames(granges)
inbam.mask <- as.vector(seqnames(granges)) %in% sn.inbam
if(!any(inbam.mask)) {
return(genZeroList(length(granges), gb.len))
}
rec.in.ranges <- import(bw.file, which=granges[inbam.mask],
asRangedData=F)
lapply(1:length(granges), function(i) {
v <- Rle(0, gb.len[i])
if(!inbam.mask[i] || length(rec.in.ranges) == 0) {
return(v)
}
rec.in.chrom <- rec.in.ranges[as.vector(seqnames(rec.in.ranges) == as.character(chr.name[i]))]
if(length(rec.in.chrom) == 0) {
return(v)
}
rec.in.gene <- rec.in.chrom[end(ranges(rec.in.chrom)) >= g.start[i] &
start(ranges(rec.in.chrom)) <= g.end[i]]
if(length(rec.in.gene) == 0) {
return(v)
}
r.starts <- start(ranges(rec.in.gene))
r.ends <- end(ranges(rec.in.gene))
s.starts <- r.starts - g.start[i] + 1
s.ends <- r.ends - g.start[i] + 1
s.starts[s.starts <= 1] <- 1
s.ends[s.ends >= gb.len[i]] <- gb.len[i]
for(j in 1:length(s.starts)) {
v[s.starts[j]:s.ends[j]] <- score(rec.in.gene)[j]
}
v
})
}
extrCov3SecBW <- function(bw.file, sn.inbam, v.chrom, v.start, v.end, v.fls,
bufsize, m.pts, f.pts, v.strand, fraglen, map.qual,
bowtie) {
interflank.gr <- GRanges(seqnames=v.chrom, ranges=IRanges(
start=v.start - v.fls,
end=v.end + v.fls))
interflank.cov <- covBW(bw.file, sn.inbam, interflank.gr, fraglen,
map.qual, bowtie)
SplineRev3Sec(interflank.cov, v.fls, list(l=f.pts, m=m.pts, r=f.pts),
v.strand)
}
extrCovMidpBW <- function(bw.file, sn.inbam, v.chrom, v.midp, flanksize,
bufsize, pts, v.strand, fraglen, map.qual, bowtie) {
granges <- GRanges(seqnames=v.chrom, ranges=IRanges(
start=v.midp - flanksize,
end=v.midp + flanksize))
cov.list <- covBW(bw.file, sn.inbam, granges, fraglen, map.qual, bowtie)
cov.mat <- matrix(nrow=length(cov.list), ncol=pts)
for(i in 1:length(cov.list)) {
if(is.null(cov.list[[i]])) {
cov.mat[i, ] <- vector('integer', length=pts)
} else {
cov.mat[i, ] <- spline(1:length(cov.list[[i]]), cov.list[[i]],
n=pts)$y
if(v.strand[i] == '-') {
cov.mat[i, ] <- rev(cov.mat[i, ])
}
}
}
cov.mat
}
doCovBW <- function(coord.mat, chr.tag, reg2plot, pint, bw.file, sn.inbam,
flanksize, flankfactor, bufsize, fraglen, map.qual, m.pts,
f.pts, bowtie, exonranges.list=NULL) {
v.chrom <- coord.mat$chrom
if(!chr.tag) {
v.chrom <- sub('chr', '', v.chrom)
}
v.chrom <- as.factor(v.chrom)
v.strand <- as.factor(coord.mat$strand)
if(!pint) {
if(!is.null(exonranges.list)) {
if(flankfactor > 0) {
v.fls <- sapply(exonranges.list, function(t) {
sum(end(t) - start(t) + 1)
})
} else {
v.fls <- rep(flanksize, length=nrow(coord.mat))
}
} else {
v.start <- coord.mat$start
v.end <- coord.mat$end
if(flankfactor > 0) {
v.fls <- round((v.end - v.start + 1) * flankfactor)
} else {
v.fls <- rep(flanksize, length=nrow(coord.mat))
}
extrCov3SecBW(bw.file, sn.inbam, v.chrom, v.start, v.end, v.fls,
bufsize, m.pts, f.pts, v.strand, fraglen, map.qual,
bowtie)
}
} else {
v.midp <- vector('integer', length=nrow(coord.mat))
for(r in 1:nrow(coord.mat)) {
if(reg2plot == 'tss' && v.strand[r] == '+' ||
reg2plot == 'tes' && v.strand[r] == '-') {
v.midp[r] <- coord.mat$start[r]
} else {
v.midp[r] <- coord.mat$end[r]
}
}
extrCovMidpBW(bw.file, sn.inbam, v.chrom, v.midp, flanksize, bufsize,
m.pts + f.pts*2, v.strand, fraglen, map.qual, bowtie)
}
}
covMatrixBW <- function(bw.file, libsize, sn.inbam, chr.tag, coord,
chkidx.list, rnaseq.gb, exonmodel, reg2plot, pint,
flanksize, flankfactor, bufsize, fraglen, map.qual,
m.pts, f.pts, is.bowtie, spit.dot=T) {
result.matrix <- foreach(chk=chkidx.list, .combine='rbind',
.multicombine=T) %dopar% {
if(spit.dot) {
cat(".")
}
i <- chk[1]:chk[2]
if(rnaseq.gb) {
exonranges.list <- unlist(exonmodel[coord[i, ]$tid])
} else {
exonranges.list <- NULL
}
doCovBW(coord[i, ], chr.tag, reg2plot, pint, bw.file, sn.inbam,
flanksize, flankfactor, bufsize, fraglen, map.qual,
m.pts, f.pts, is.bowtie, exonranges.list)
}
result.matrix[result.matrix < 0] <- 0
result.matrix
}
res.time <- system.time(for(r in 1:nrow(ctg.tbl)) {
reg <- ctg.tbl$glist[r]
chkidx.list <- chunkIndex(nrow(coord.list[[reg]]), gcs)
bam.files <- unlist(strsplit(ctg.tbl$cov[r], ':'))
sn.inbam <- sn.list[[bam.files[1]]]
chr.tag <- chrTag(sn.inbam)
is.bowtie <- F
if(class(chr.tag) == 'character') {
stop(sprintf("Read %s error: %s", bam.files[1], chr.tag))
}
result.matrix <- covMatrixBW(bam.files[1], libsize, sn.inbam, chr.tag,
coord.list[[reg]], chkidx.list, rnaseq.gb,
exonmodel, reg2plot, pint, flanksize,
flankfactor, bufsize, fraglen, map.qual, m.pts,
f.pts, is.bowtie, spit.dot=F)
if(bam.pair) {
pseudo.rpm <- 1e-9
sn.inbam <- sn.list[[bam.files[2]]]
chr.tag <- chrTag(sn.inbam)
is.bowtie <- F
if(class(chr.tag) == 'character') {
stop(sprintf("Read %s error: %s", bam.files[2], chr.tag))
}
bkg.matrix <- covMatrixBW(bam.files[2], libsize, sn.inbam, chr.tag,
coord.list[[reg]], chkidx.list, rnaseq.gb,
exonmodel, reg2plot, pint, flanksize,
flankfactor, bufsize, fraglen, map.qual, m.pts,
f.pts, is.bowtie, spit.dot=F)
result.matrix <- log2((result.matrix + pseudo.rpm) /
(bkg.matrix + pseudo.rpm))
}
if(nrow(result.matrix) > 1 && se){
confiMat[, r] <- apply(result.matrix, 2, function(x) CalcSem(x, robust))
}
enrichList[[r]] <- result.matrix
regcovMat[, r] <- apply(result.matrix, 2, function(x) mean(x, trim=robust,
na.rm=T))
})
print(res.time) |
saveFunction = function(reg, fun, more.args) {
fun = checkUserFunction(fun)
fun.id = digest(list(fun, more.args))
save2(file = getFunFilePath(reg, fun.id), fun = fun, more.args = more.args)
return(fun.id)
} |
freqFunPara <- function(data, n.boot, estimates, interval, omega.freq.method,
item.dropped, alpha.int.analytic, omega.int.analytic,
pairwise, callback = function(){}) {
p <- ncol(data)
n <- nrow(data)
probs <- c((1 - interval) / 2, interval + (1 - interval) / 2)
if (pairwise) {
cc <- cov(data, use = "pairwise.complete.obs")
} else{
cc <- cov(data)
}
res <- list()
res$covsamp <- NULL
boot_cov <- NULL
if (("alpha" %in% estimates & !alpha.int.analytic) |
"lambda2" %in% estimates | "lambda4" %in% estimates | "lambda6" %in% estimates |
"glb" %in% estimates | ("omega" %in% estimates & omega.freq.method == "pfa")) {
boot_cov <- array(0, c(n.boot, p, p))
for (i in 1:n.boot) {
boot_data <- MASS::mvrnorm(n, colMeans(data, na.rm = TRUE), cc)
boot_cov[i, , ] <- cov(boot_data)
callback()
}
res$covsamp <- boot_cov
}
if (item.dropped) {
Ctmp <- array(0, c(p, p - 1, p - 1))
for (i in 1:p) {
Ctmp[i, , ] <- cc[-i, -i]
}
}
if ("alpha" %in% estimates) {
res$est$freq_alpha <- applyalpha(cc)
if (alpha.int.analytic) {
int <- ciAlpha(1 - interval, n, cc)
res$conf$low$freq_alpha <- int[1]
res$conf$up$freq_alpha <- int[2]
} else {
alpha_obj <- apply(boot_cov, 1, applyalpha, callback)
if (length(unique(round(alpha_obj, 4))) == 1) {
res$conf$low$freq_alpha <- 1
res$conf$up$freq_alpha <- 1
} else {
res$conf$low$freq_alpha <- quantile(alpha_obj, probs = probs[1], na.rm = TRUE)
res$conf$up$freq_alpha <- quantile(alpha_obj, probs = probs[2], na.rm = TRUE)
}
res$boot$alpha <- alpha_obj
}
if (item.dropped){
res$ifitem$alpha <- apply(Ctmp, 1, applyalpha)
}
}
if ("lambda2" %in% estimates) {
res$est$freq_lambda2 <- applylambda2(cc)
lambda2_obj <- apply(boot_cov, 1, applylambda2, callback)
if (length(unique(round(lambda2_obj, 4))) == 1) {
res$conf$low$freq_lambda2 <- NA
res$conf$up$freq_lambda2 <- NA
} else {
res$conf$low$freq_lambda2 <- quantile(lambda2_obj, probs = probs[1], na.rm = TRUE)
res$conf$up$freq_lambda2 <- quantile(lambda2_obj, probs = probs[2], na.rm = TRUE)
}
res$boot$lambda2 <- lambda2_obj
if (item.dropped) {
res$ifitem$lambda2 <- apply(Ctmp, 1, applylambda2)
}
}
if ("lambda4" %in% estimates) {
res$est$freq_lambda4 <- applylambda4NoCpp(cc)
lambda4_obj <- apply(boot_cov, 1, applylambda4NoCpp, callback)
if (length(unique(round(lambda4_obj, 4))) == 1) {
res$conf$low$freq_lambda4 <- NA
res$conf$up$freq_lambda4 <- NA
} else {
res$conf$low$freq_lambda4 <- quantile(lambda4_obj, probs = probs[1], na.rm = TRUE)
res$conf$up$freq_lambda4 <- quantile(lambda4_obj, probs = probs[2], na.rm = TRUE)
}
res$boot$lambda4 <- lambda4_obj
if (item.dropped) {
res$ifitem$lambda4 <- apply(Ctmp, 1, applylambda4NoCpp)
}
}
if ("lambda6" %in% estimates) {
res$est$freq_lambda6 <- applylambda6(cc)
lambda6_obj <- apply(boot_cov, 1, applylambda6, callback)
if (length(unique(round(lambda6_obj, 4))) == 1) {
res$conf$low$freq_lambda6 <- NA
res$conf$up$freq_lambda6 <- NA
} else {
res$conf$low$freq_lambda6 <- quantile(lambda6_obj, probs = probs[1], na.rm = TRUE)
res$conf$up$freq_lambda6 <- quantile(lambda6_obj, probs = probs[2], na.rm = TRUE)
}
res$boot$lambda6 <- lambda6_obj
if (item.dropped) {
res$ifitem$lambda6 <- apply(Ctmp, 1, applylambda6)
}
}
if ("glb" %in% estimates) {
res$est$freq_glb <- glbOnArrayCustom(cc)
glb_obj <- glbOnArrayCustom(boot_cov, callback)
if (length(unique(round(glb_obj, 4))) == 1) {
res$conf$low$freq_glb <- NA
res$conf$up$freq_glb <- NA
} else {
res$conf$low$freq_glb <- quantile(glb_obj, probs = probs[1], na.rm = TRUE)
res$conf$up$freq_glb <- quantile(glb_obj, probs = probs[2], na.rm = TRUE)
}
res$boot$glb <- glb_obj
if (item.dropped) {
res$ifitem$glb <- glbOnArrayCustom(Ctmp)
}
}
if ("omega" %in% estimates) {
if (omega.freq.method == "cfa") {
out <- omegaFreqData(data, interval, omega.int.analytic, pairwise, n.boot, parametric= TRUE, callback)
res$fit.object <- out$fit.object
if (is.null(res$fit.object)) {
if (is.null(boot_cov)) {
boot_cov <- array(0, c(n.boot, p, p))
for (i in 1:n.boot) {
boot_data<- MASS::mvrnorm(n, colMeans(data, na.rm = TRUE), cc)
boot_cov[i, , ] <- cov(boot_data)
callback()
}
}
res$est$freq_omega <- applyomegaPFA(cc)
omega_obj <- apply(boot_cov, 1, applyomegaPFA)
if (length(unique(round(omega_obj, 4))) == 1) {
res$conf$low$freq_omega <- NA
res$conf$up$freq_omega <- NA
}
else {
res$conf$low$freq_omega <- quantile(omega_obj, probs = probs[1], na.rm = TRUE)
res$conf$up$freq_omega <- quantile(omega_obj, probs = probs[2], na.rm = TRUE)
}
res$boot$omega <- omega_obj
res$omega.error <- TRUE
res$omega.pfa <- TRUE
if (item.dropped) {
res$ifitem$omega <- apply(Ctmp, 1, applyomegaPFA)
}
} else {
res$est$freq_omega <- out$omega
res$loadings <- out$loadings
res$resid_var <- out$errors
res$conf$low$freq_omega <- out$omega_low
res$conf$up$freq_omega <- out$omega_up
res$omega_fit <- out$indices
res$boot$omega <- out$omega_boot
if (item.dropped) {
res$ifitem$omega <- numeric(p)
for (i in 1:p) {
dtmp <- data[, -i]
res$ifitem$omega[i] <- applyomegaCFAData(dtmp, interval = interval, pairwise = pairwise)
}
if (any(is.na(res$ifitem$omega))) {
res$ifitem$omega <- apply(Ctmp, 1, applyomegaPFA)
res$omega.item.error <- TRUE
}
}
}
} else if (omega.freq.method == "pfa") {
res$est$freq_omega <- applyomegaPFA(cc)
omega_obj <- apply(boot_cov, 1, applyomegaPFA, callback)
res$omega.pfa <- TRUE
if (length(unique(round(omega_obj, 4))) == 1) {
res$conf$low$freq_omega <- NA
res$conf$up$freq_omega <- NA
} else {
res$conf$low$freq_omega <- quantile(omega_obj, probs = probs[1], na.rm = TRUE)
res$conf$up$freq_omega <- quantile(omega_obj, probs = probs[2], na.rm = TRUE)
}
res$boot$omega <- omega_obj
if (item.dropped) {
res$ifitem$omega <- apply(Ctmp, 1, applyomegaPFA)
}
}
}
return(res)
} |
tables_tab <- argonTabItem(
tabName = "tables",
radioButtons(
inputId = "cardWrap",
inline = TRUE,
label = "Enable card wrap?",
choices = c("Enable", "Disable"),
selected = "Enable"
),
uiOutput("argonTable")
) |
"extract.tsd" <-
function(e, n, series=NULL, components=NULL, ...) {
if (missing(n)) n <- length(e$ts)
ns <- length(e$ts)
if (is.null(series)) {
if (n > ns) {
warning(paste("Only", ns, "series exist in the object. Extract all series."))
n <- ns
}
series <- 1:n
} else {
if (is.character(series)) {
names <- e$ts
series <- pmatch(series, names, nomatch=0)
} else {
if (sum(series) > 0) series <- match(series, 1:ns, nomatch=0) else series <- c(1:ns)[match(-1:-ns, series, nomatch=0) == 0]
}
series <- series[series != 0]
if (length(series) < 1)
stop("series argument is invalid, or series does not exist in this object")
}
if (length(series) == 1) {
if (ns == 1) {
if (is.null(components)) res <- e$series else {
if (is.character(components)) {
names <- dimnames(e$series)[[2]]
comp <- pmatch(components, names, nomatch=0)
} else {
if (sum(components) > 0) comp <- match(components, 1:ncol(e$series), nomatch=0) else comp <- c(1:ncol(e$series))[match(-1:-ncol(e$series), components, nomatch=0) == 0]
}
comp <- comp[comp != 0]
if (length(comp) < 1)
stop("No such components in the series")
res <- e$series[, comp]
}
} else {
if (is.null(components)) res <- e$series[[series]] else {
if (is.character(components)) {
names <- dimnames(e$series[[series]])[[2]]
comp <- pmatch(components, names, nomatch=0)
} else {
if (sum(components) > 0) comp <- match(components, 1:ncol(e$series[[series]]), nomatch=0) else comp <- c(1:ncol(e$series[[series]]))[match(-1:-ncol(e$series[[series]]), components, nomatch=0) == 0]
}
comp <- comp[comp != 0]
if (length(comp) < 1)
stop("No such components in the series")
res <- e$series[[series]][, comp]
}
}
} else {
res <- NULL
for (i in series) {
if (is.null(components)) ser <- e$series[[i]] else {
if (is.character(components)) {
names <- dimnames(e$series[[i]])[[2]]
comp <- pmatch(components, names, nomatch=0)
} else {
if (sum(components) > 0) comp <- match(components, 1:ncol(e$series[[i]]), nomatch=0) else comp <- c(1:ncol(e$series[[i]]))[match(-1:-ncol(e$series[[i]]), components, nomatch=0) == 0]
}
comp <- comp[comp != 0]
if (length(comp) > 0) {
ser <- e$series[[i]][, comp]
names <- dimnames(e$series[[i]])[[2]]
names <- names[comp]
if (is.null(res)) {
res <- ser
cnames <- paste(e$ts[i], ".", names, sep="")
} else {
res <- cbind(res, ser)
cnames <- c(cnames, paste(e$ts[i], ".", names, sep=""))
}
}
}
}
if (is.null(res))
stop("nothing to extract!")
dimnames(res)[[2]] <- cnames
}
res <- as.ts(res)
attr(res, "units") <- e$units
res
} |
setClass("tskrrTuneHeterogeneous",
contains = c("tskrrTune", "tskrrHeterogeneous"))
validTskrrTuneHeterogeneous <- function(object){
lossval <- object@loss_values
lgrid <- object@lambda_grid
excl <- object@exclusion
onedim <- object@onedim
if(!onedim && any(names(lgrid) != c("k","g")))
return("lambda grid should be a list with two elements named k and g (in that order) for heterogeneous networks")
else if(onedim && any(names(lgrid) != "k") && length(lgrid) > 1)
return("in a one-dimensional search there should only be a single element named k in the lambda grid.")
if(nrow(lossval) != length(lgrid$k))
return(paste("Loss values should have",length(lgrid$k),"rows to match the lambda grid."))
if(!onedim && ncol(lossval) != length(lgrid$g))
return(paste("Loss values should have",length(lgrid$g),"columns to match the lambda grid."))
else if(onedim && ncol(lossval) != 1)
return(paste("Loss values should have one column in case of one-dimensional search."))
exclmatch <- match(excl, c("interaction","row","column","both"),
nomatch = 0L)
if(exclmatch == 0)
return("exclusion should be one of 'interaction', 'row', 'column' or 'both'")
if(object@replaceby0 && excl != "interaction")
return("replaceby0 can only be used with interaction exclusion")
else
return(TRUE)
}
setValidity("tskrrTuneHeterogeneous", validTskrrTuneHeterogeneous) |
sha1_hash <- function(key, string, method = "HMAC-SHA1") {
if (is.character(string)) {
string <- charToRaw(paste(string, collapse = "\n"))
}
if (is.character(key)) {
key <- charToRaw(paste(key, collapse = "\n"))
}
if (!method %in% c("HMAC-SHA1", "RSA-SHA1")) {
stop(paste0("Unsupported hashing method: ", method), call. = FALSE)
}
if (method == "HMAC-SHA1") {
hash <- openssl::sha1(string, key = key)
} else {
hash <- openssl::signature_create(string, openssl::sha1, key = key)
}
openssl::base64_encode(hash)
}
hmac_sha1 <- function(key, string) {
sha1_hash(key, string, "HMAC-SHA1")
} |
`%<-%` <- function(x, value) {
target <- substitute(x)
expr <- substitute(value)
envir <- parent.frame(1)
futureAssignInternal(target, expr, envir = envir, substitute = FALSE)
}
`%->%` <- function(value, x) {
target <- substitute(x)
expr <- substitute(value)
envir <- parent.frame(1)
futureAssignInternal(target, expr, envir = envir, substitute = FALSE)
}
futureAssignInternal <- function(target, expr, envir = parent.frame(), substitute = FALSE) {
target <- parse_env_subset(target, envir = envir, substitute = substitute)
assign.env <- target$envir
name <- target$name
if (inherits(target$envir, "listenv")) {
n <- length(target$exists)
if (n == 0L) {
stop("Cannot future assign to an empty set")
} else if (n > 1L) {
stop("Cannot future assign to more than one element")
}
if (target$exists) {
name <- get_variable(target$envir, target$idx, mustExist = TRUE, create = FALSE)
} else {
if (!is.na(name) && nzchar(name)) {
name <- get_variable(target$envir, name, mustExist = FALSE, create = TRUE)
} else if (all(is.finite(target$idx))) {
name <- get_variable(target$envir, target$idx, mustExist = FALSE, create = TRUE)
} else if (all(is.na(target$idx))) {
stop("subscript out of bounds")
} else {
stop("INTERNAL ERROR: Zero length variable name and unknown index.")
}
}
}
futureAssign(name, expr, envir = envir, assign.env = assign.env, substitute = FALSE)
} |
`.colorselection` <-
function (type = "cloud", index, cols, numpoints, labels, numlabels)
{
if (type == "bar") {
if (length(cols) == length(labels)) {
rcol <- (col2rgb(cols[index])/255)[1]
gcol <- (col2rgb(cols[index])/255)[2]
bcol <- (col2rgb(cols[index])/255)[3]
}
else if (length(cols) == 1) {
rcol <- (col2rgb(cols[1])/255)[1]
gcol <- (col2rgb(cols[1])/255)[2]
bcol <- (col2rgb(cols[1])/255)[3]
}
else {
rcol <- (col2rgb("black")/255)[1]
gcol <- (col2rgb("black")/255)[2]
bcol <- (col2rgb("black")/255)[3]
}
}
else {
if (!length(cols)) {
rcol <- (col2rgb(rainbow(numpoints)[index])/255)[1]
gcol <- (col2rgb(rainbow(numpoints)[index])/255)[2]
bcol <- (col2rgb(rainbow(numpoints)[index])/255)[3]
}
else if ((length(cols) == 1) || ((length(cols) < numpoints) &&
!length(labels))) {
rcol <- (col2rgb(cols[1])/255)[1]
gcol <- (col2rgb(cols[1])/255)[2]
bcol <- (col2rgb(cols[1])/255)[3]
}
else if (length(labels) && (length(cols) == length(unique(labels))) &&
(type != "mesh")) {
rcol <- (col2rgb(cols[numlabels[index]])/255)[1]
gcol <- (col2rgb(cols[numlabels[index]])/255)[2]
bcol <- (col2rgb(cols[numlabels[index]])/255)[3]
}
else {
rcol <- (col2rgb(cols[index])/255)[1]
gcol <- (col2rgb(cols[index])/255)[2]
bcol <- (col2rgb(cols[index])/255)[3]
}
}
return(list(rcol = rcol, gcol = gcol, bcol = bcol))
}
`.lbar` <-
function (data, row.labels = rownames(data), col.labels = colnames(data),
filename = "out.m", space = 0.5, cols = rainbow(length(as.matrix(data))),
rcols = NULL, ccols = NULL, origin = c(0, 0, 0), scalefac = 4, autoscale = TRUE,
ignore_zeros = TRUE, lab.axis = c("X-axis", "Y-axis", "Z-axis"), col.axis = "black",
showaxis = TRUE, col.lab = "black", col.bg = "white", cex.lab = 1,
cex.rowlab = 1, cex.collab = 1, ambientlight = 0.5, htmlout = NULL,
hwidth = 1200, hheight = 800, showlegend = TRUE)
{
data <- as.matrix(data)
curdir <- NULL
if (!exists(".vrmlgenEnv")) {
write("Graphics3D[\n{\n", file = filename, append = FALSE)
bg_rcol <- (col2rgb(col.bg)/255)[1]
bg_gcol <- (col2rgb(col.bg)/255)[2]
bg_bcol <- (col2rgb(col.bg)/255)[3]
write(paste("Background {\n\t skyColor [\n\t\t ", bg_rcol,
bg_gcol, bg_bcol, " \n\t]\n}", sep = " "), file = filename,
append = TRUE)
}
else {
vrmlgenEnv <- get(".vrmlgenEnv",envir=.GlobalEnv)
filename <- vrmlgenEnv$filename
htmlout <- vrmlgenEnv$html
hheight <- vrmlgenEnv$hheight
hwidth <- vrmlgenEnv$hwidth
curdir <- getwd()
setwd(vrmlgenEnv$VRMLDir)
}
if(autoscale)
data <- scalefac * (data/max(data))
if (!is.null(col.labels) && showlegend)
col.labels <- sapply(strsplit(col.labels, " "), function(x) paste(x,
collapse = "\n"))
if (!is.null(row.labels) && showlegend)
row.labels <- sapply(strsplit(row.labels, " "), function(x) paste(x,
collapse = "\n"))
blength <- scalefac/(nrow(data) * (1 + space))
bwidth <- scalefac/(ncol(data) * (1 + space))
if (showaxis) {
axis3d(lab.axis, filename, type = "lg3d", col.lab, col.axis,
cex.lab, local_scale = scalefac, global_scale = 1)
}
if (!is.null(row.labels) && showlegend) {
for (j in 1:length(row.labels)) {
colsel <- .colorselection(type = "bar", j, rcols,
1, row.labels, "")
rcol <- colsel$rcol
gcol <- colsel$gcol
bcol <- colsel$bcol
cur_xwidth <- j/nrow(data) * scalefac - blength/2
write(paste("RGBColor[", rcol, ",", gcol, ",", bcol,
"], Text [ \"", row.labels[j], "\", {", cur_xwidth,
",", -0.4, ",", scalefac + 0.2, "}],\n", sep = ""),
file = filename, append = TRUE)
}
}
if (!is.null(col.labels) && showlegend) {
for (j in 1:length(col.labels)) {
colsel <- .colorselection(type = "bar", j, ccols,
1, col.labels, "")
rcol <- colsel$rcol
gcol <- colsel$gcol
bcol <- colsel$bcol
cur_ywidth <- j/ncol(data) * scalefac - bwidth/2
write(paste("RGBColor[", rcol, ",", gcol, ",", bcol,
"], Text [ \"", col.labels[j], "\", {", -0.4,
",", cur_ywidth, ",", scalefac + 0.2, "}],\n",
sep = ""), file = filename, append = TRUE)
}
}
rcol <- NULL
gcol <- NULL
bcol <- NULL
if (length(cols) >= (ncol(data) * nrow(data))) {
rcol <- sapply(cols, function(x) (col2rgb(x)/255)[1])
gcol <- sapply(cols, function(x) (col2rgb(x)/255)[2])
bcol <- sapply(cols, function(x) (col2rgb(x)/255)[3])
}
else {
if (length(cols) >= 1) {
rcol <- (col2rgb(cols[1])/255)[1]
gcol <- (col2rgb(cols[1])/255)[2]
bcol <- (col2rgb(cols[1])/255)[3]
}
else {
rcol <- (col2rgb("lightblue")/255)[1]
gcol <- (col2rgb("lightblue")/255)[2]
bcol <- (col2rgb("lightblue")/255)[3]
}
}
bwidth <- bwidth/2
for (k in 1:ncol(data)) {
for (j in 1:nrow(data)) {
x <- j/nrow(data) * scalefac
y <- k/ncol(data) * scalefac
z <- data[j, k]
if(ignore_zeros && (z == 0))
next
if (!is.null(ccols)) {
rcol <- (col2rgb(ccols[k])/255)[1]
gcol <- (col2rgb(ccols[k])/255)[2]
bcol <- (col2rgb(ccols[k])/255)[3]
}
else if (!is.null(rcols)) {
rcol <- (col2rgb(rcols[j])/255)[1]
gcol <- (col2rgb(rcols[j])/255)[2]
bcol <- (col2rgb(rcols[j])/255)[3]
}
else {
if(length(rcol) > 1)
{
rcol <- rcol[(k - 1) * ncol(data) +
j]
gcol <- gcol[(k - 1) * ncol(data) +
j]
bcol <- bcol[(k - 1) * ncol(data) +
j]
}
}
write(paste("SurfaceColor[RGBColor[", rcol, ",",
gcol, ",", bcol, "]], Cuboid[{", origin[1] +
x - bwidth, ",", origin[2] + y - bwidth, ",",
origin[3], "},{", origin[1] + x + bwidth, ",",
origin[2] + y + bwidth, ",", origin[3] + z, "}],",
sep = ""), file = filename, append = TRUE)
}
}
write(paste("\n}, Boxed -> False, Axes -> False, AmbientLight->GrayLevel[",
ambientlight, "], TextStyle -> {FontFamily -> \"TimesRoman\", FontSlant ->\"Italic\", FontSize -> ",
14 * cex.lab, "}, Lighting -> True, BoxRatios -> Automatic, PlotRange -> All ]\n",
sep = ""), file = filename, append = TRUE)
if (!exists(".vrmlgenEnv")) {
if (!is.null(htmlout)) {
cat("<HTML>", file = htmlout, append = FALSE)
cat("<HEAD><TITLE>VRMLGen-visualization</TITLE></HEAD><BODY>",
file = htmlout, append = TRUE)
cat(paste("<APPLET ARCHIVE=\"live.jar\" CODE=\"Live.class\" WIDTH=",
hwidth, " HEIGHT=", hheight, " ALIGN=LEFT>",
sep = ""), file = htmlout, append = TRUE)
coln <- col2rgb(col.bg)
cat(paste("<PARAM NAME=\"BGCOLOR\" VALUE=\"", rgb(red = coln[1,
]/255, green = coln[2, ]/255, blue = coln[3,
]/255), "\">", sep = ""), file = htmlout, append = TRUE)
cat("<PARAM NAME=\"MAGNIFICATION\" VALUE=1.0>", file = htmlout,
append = TRUE)
cat(paste("<PARAM NAME=\"INPUT_FILE\" VALUE=\"",
filename, "\">", sep = ""), file = htmlout, append = TRUE)
cat("</APPLET>", file = htmlout, append = TRUE)
cat("</HTML>", file = htmlout, append = TRUE)
}
datadir <- system.file("extdata", package = "vrmlgen")
curdir <- getwd()
if (data.class(result<-try(file.copy(file.path(datadir, "live.jar"), file.path(curdir, "live.jar")), TRUE))=="try-error")
{
warning("\nCannot copy file live.jar from vrlmgen-folder to current directory. You might need to copy the file manually.")
}
cat(paste("\nOutput file \"", filename, "\" was generated in folder ",
getwd(), ".\n", sep = ""))
}
else {
setwd(curdir)
}
}
`.lcloud` <-
function (x, y = NULL, z = NULL, labels = rownames(data), metalabels = NULL,
hyperlinks = NULL, filename = "out.m", pointstyle = c("s",
"b", "t"), cols = rainbow(length(unique(labels))), scalefac = 4,
autoscale = "independent", lab.axis = c("X-axis", "Y-axis",
"Z-axis"), col.axis = "black", showaxis = TRUE, col.lab = "black",
col.metalab = "black", col.bg = "white", cex.lab = 1, ambientlight = 0.5,
htmlout = NULL, hwidth = 1200, hheight = 800, showlegend = TRUE)
{
xyz_parse <- xyz.coords(x, y, z)
data <- cbind(xyz_parse$x, xyz_parse$y, xyz_parse$z)
if (ncol(data) != 3) {
stop("Data matrix does not have 3 columns!")
}
numlabels <- NULL
if (length(labels)) {
lab <- unique(unlist(labels))
numlabels <- apply(as.matrix(labels), 1, function(x) match(x,
as.matrix(lab)))
}
curdir <- NULL
if (!exists(".vrmlgenEnv")) {
write("Graphics3D[\n{\n", file = filename, append = FALSE)
bg_rcol <- (col2rgb(col.bg)/255)[1]
bg_gcol <- (col2rgb(col.bg)/255)[2]
bg_bcol <- (col2rgb(col.bg)/255)[3]
write(paste("Background {\n\t skyColor [\n\t\t ", bg_rcol,
bg_gcol, bg_bcol, " \n\t]\n}, \n", sep = " "), file = filename,
append = TRUE)
}
else {
vrmlgenEnv <- get(".vrmlgenEnv",envir=.GlobalEnv)
filename <- vrmlgenEnv$filename
htmlout <- vrmlgenEnv$html
hheight <- vrmlgenEnv$hheight
hwidth <- vrmlgenEnv$hwidth
curdir <- getwd()
setwd(vrmlgenEnv$VRMLDir)
}
scaledat <- function(data) {
diff <- max(data) - min(data)
if (diff == 0)
return(data)
else return(scalefac * (data - min(data))/(diff))
}
if (autoscale == "independent")
data <- apply(data, 2, scaledat)
else if (autoscale == "equidist")
data <- scalefac * (data/max(data))
if (length(labels) && showlegend) {
cur_height <- scalefac + 1 + cex.lab/5
for (j in 1:length(unique(labels))) {
.lg3dtext(0, 0, cur_height, unique(labels)[j], filename,
cols[unique(numlabels)[j]], 1, "Arial", "Plain",
NULL)
cur_height <- cur_height + 0.4
}
}
lab_rcol <- NULL
lab_gcol <- NULL
lab_bcol <- NULL
ax_rcol <- NULL
ax_gcol <- NULL
ax_bcol <- NULL
if (showaxis) {
axis3d(lab.axis, filename, type = "lg3d", col.lab, col.axis,
cex.lab, local_scale = scalefac, global_scale = 1)
}
if ((length(metalabels) == 0) && (length(hyperlinks) >= 1)) {
metalabels <- rep(" ", length(hyperlinks))
}
for (j in 1:nrow(data)) {
x <- data[j, 1]
y <- data[j, 2]
z <- data[j, 3]
colsel <- .colorselection(type = "cloud", j, cols, nrow(data),
labels, numlabels)
rcol <- colsel$rcol
gcol <- colsel$gcol
bcol <- colsel$bcol
if (length(pointstyle) == 1) {
.lg3dpoints(x, y, z, filename, rcol, gcol, bcol,
pointstyle, hyperlinks = NULL, local_scale = 1)
}
else if (length(pointstyle) >= length(unique(numlabels))) {
if (length(labels)) {
stylevec <- c("s", "b", "t")
curstyle <- stylevec[numlabels[j]]
.lg3dpoints(x, y, z, filename, rcol, gcol, bcol,
curstyle, hyperlinks = NULL, local_scale = 1)
}
else {
.lg3dpoints(x, y, z, filename, rcol, gcol, bcol,
pointstyle[1], hyperlinks = NULL, local_scale = 1)
}
}
else {
.lg3dpoints(x, y, z, filename, rcol, gcol, bcol,
pointstyle[1], hyperlinks = NULL, local_scale = 1)
}
if (length(metalabels) >= j) {
frcol <- (col2rgb(col.metalab)/255)[1]
fgcol <- (col2rgb(col.metalab)/255)[2]
fbcol <- (col2rgb(col.metalab)/255)[3]
write(paste("Text[StyleForm[\"", metalabels[j], "\",FontFamily -> \"Arial\", FontWeight->\"Bold\", FontColor -> RGBColor[",
frcol, ",", fgcol, ",", fbcol, "], FontSize->9,",
sep = ""), file = filename, append = TRUE)
if (length(hyperlinks) >= j) {
write(paste("URL -> \"", hyperlinks[j], ",target=_blank\",",
sep = ""), file = filename, append = TRUE)
}
write(paste("],{", x, ",", y, ",", z, "}],", sep = ""),
file = filename, append = TRUE)
}
}
if (!exists(".vrmlgenEnv")) {
write(paste("\n}, Boxed -> False, Axes -> False, AmbientLight->GrayLevel[",
ambientlight, "], TextStyle -> {FontFamily -> \"TimesRoman\", FontSlant ->\"Italic\", FontSize -> ",
14 * cex.lab, "}, Lighting -> True, BoxRatios -> Automatic, PlotRange -> All ]\n",
sep = ""), file = filename, append = TRUE)
if (!is.null(htmlout)) {
cat("<HTML>", file = htmlout, append = FALSE)
cat("<HEAD><TITLE>VRMLGen-visualization</TITLE></HEAD><BODY>",
file = htmlout, append = TRUE)
cat(paste("<APPLET ARCHIVE=\"live.jar\" CODE=\"Live.class\" WIDTH=",
hwidth, " HEIGHT=", hheight, " ALIGN=LEFT>",
sep = ""), file = htmlout, append = TRUE)
coln <- col2rgb(col.bg)
cat(paste("<PARAM NAME=\"BGCOLOR\" VALUE=\"", rgb(red = coln[1,
]/255, green = coln[2, ]/255, blue = coln[3,
]/255), "\">", sep = ""), file = htmlout, append = TRUE)
cat("<PARAM NAME=\"MAGNIFICATION\" VALUE=1.0>", file = htmlout,
append = TRUE)
cat(paste("<PARAM NAME=\"INPUT_FILE\" VALUE=\"",
filename, "\">", sep = ""), file = htmlout, append = TRUE)
cat("</APPLET></BODY>", file = htmlout, append = TRUE)
cat("</HTML>", file = htmlout, append = TRUE)
}
datadir <- system.file("extdata", package = "vrmlgen")
curdir <- getwd()
if (data.class(result<-try(file.copy(file.path(datadir, "live.jar"), file.path(curdir, "live.jar")), TRUE))=="try-error")
{
warning("\nCannot copy file live.jar from vrlmgen-folder to current directory. You might need to copy the file manually.")
}
cat(paste("\nOutput file \"", filename, "\" was generated in folder ",
getwd(), ".\n", sep = ""))
}
else {
setwd(curdir)
}
}
`.lg3dpoints` <-
function (x, y, z, filename, rcol, gcol, bcol, pointstyle, hyperlinks = NULL,
global_scale = 1, local_scale = 1)
{
if (pointstyle == "s") {
for (i in 1:length(x))
write(paste("PointSize[", 0.02 *
local_scale, "], RGBColor[", rcol, ",",
gcol, ",", bcol, "], Point[{", x[i],
",", y[i], ",", z[i],
"}],", sep = ""), file = filename, append = TRUE)
}
else if (pointstyle == "t") {
for (i in 1:length(x))
write(paste("{ SurfaceColor[RGBColor[",
rcol, ",", gcol, ",", bcol, "]], Polygon[{{", local_scale *
x[i], ", ", local_scale * y[i], ",", local_scale *
(z[i] + 0.06415), "}, {", local_scale * global_scale *
(x[i] + 0.09072222), ",", local_scale * global_scale *
y[i], ",", local_scale * global_scale * (z[i] -
0.096225), "}, {", local_scale * global_scale *
x[i] - 0.09072222, ",", local_scale * global_scale *
y[i] + 0.15713333, ",", local_scale * global_scale *
z[i] - 0.096225, "}}], Polygon[{{", local_scale *
global_scale * x[i], ",", local_scale * global_scale *
y[i], ",", local_scale * global_scale * (z[i] +
0.06415), "}, {", local_scale * global_scale *
(x[i] - 0.09072222), ",", local_scale * global_scale *
(y[i] + 0.15713333), ",", local_scale * global_scale *
(z[i] - 0.096225), "}, {", local_scale * global_scale *
(x[i] - 0.09072222), ",", local_scale * global_scale *
(y[i] - 0.15713333), ",", local_scale * global_scale *
(z[i] - 0.096225), "}}], Polygon[{{", local_scale *
global_scale * x[i], ",", local_scale * global_scale *
y[i], ",", local_scale * global_scale * (z[i] +
0.06415), "}, {", local_scale * global_scale *
(x[i] - 0.09072222), ",", local_scale * global_scale *
(y[i] - 0.15713333), ",", local_scale * global_scale *
(z[i] - 0.096225), "}, {", local_scale * global_scale *
(x[i] + 0.09072222), ",", local_scale * global_scale *
y[i], ",", local_scale * global_scale * (z[i] -
0.096225), "}}], Polygon[{{", local_scale * global_scale *
(x[i] + 0.09072222), ",", local_scale * global_scale *
y[i], ",", local_scale * global_scale * (z[i] -
0.096225), "}, {", local_scale * global_scale *
(x[i] - 0.09072222), ",", local_scale * global_scale *
(y[i] - 0.15713333), ",", local_scale * global_scale *
(z[i] - 0.096225), "}, {", local_scale * global_scale *
(x[i] - 0.09072222), ",", local_scale * global_scale *
(y[i] + 0.15713333), ",", local_scale * global_scale *
(z[i] - 0.096225), "}}] },\n", sep = ""), file = filename,
append = TRUE)
}
else {
for (i in 1:length(x))
write(paste("SurfaceColor[RGBColor[",
rcol, ",", gcol, ",", bcol, "]], Cuboid[{", local_scale *
(x[i] - 0.04), ",", local_scale * (y[i] - 0.04),
",", local_scale * (z[i] - 0.04), "},{", local_scale *
global_scale * (x[i] + 0.04), ",", local_scale *
global_scale * (y[i] + 0.04), ",", local_scale *
global_scale * (z[i] + 0.04), "}],", sep = ""),
file = filename, append = TRUE)
}
if (!is.null(hyperlinks)) {
for (i in 1:length(hyperlinks))
write(paste("Text[StyleForm[\" \", URL -> \"",
hyperlinks, "\"], {", local_scale * x[i], ",", local_scale *
y[i], ",", local_scale * z[i], "}],", sep = ""),
file = filename, append = TRUE)
}
}
`.lg3dtext` <-
function (x, y, z, text, filename, col, scale, fontfamily, fontweight,
hyperlink)
{
rcol <- (col2rgb(col)/255)[1]
gcol <- (col2rgb(col)/255)[2]
bcol <- (col2rgb(col)/255)[3]
if (is.null(hyperlink)) {
for (i in 1:length(x))
write(paste("RGBColor[", rcol,
",", gcol, ",", bcol, "], Text [StyleForm[\"", text[i],
"\", FontFamily -> \"", fontfamily, "\", FontSize-> ",
14 * scale, ", FontWeight->\"", fontweight, "\"], {",
x[i], ",", y[i], ",", z[i], "}],\n", sep = ""), file = filename,
append = TRUE)
}
else {
for (i in 1:length(x))
write(paste("RGBColor[", rcol,
",", gcol, ",", bcol, "], Text [StyleForm[\"", text[i],
"\", FontFamily -> \"", fontfamily, "\", FontSize-> ",
14 * scale, ", URL -> \"", hyperlink, "\", FontWeight->\"",
fontweight, "\"], {", x[i], ",", y[i], ",", z[i],
"}],\n", sep = ""), file = filename, append = TRUE)
}
}
`.lmesh` <-
function (xfun = "sin(v)*cos(u)", yfun = "sin(v)*sin(u)", zfun = "cos(v)",
param1 = "u", param2 = "v", range1 = c(0, 2 * pi), range2 = c(0,
pi), size1 = 30, size2 = 30, filename = "out.m", cols = "red",
scalefac = 4, autoscale = "independent", lab.axis = c("X-axis",
"Y-axis", "Z-axis"), col.axis = "black", showaxis = TRUE,
col.lab = "black", col.bg = "white", cex.lab = 1, ambientlight = 0.5,
htmlout = NULL, hwidth = 1200, hheight = 800)
{
if (is.null(xfun) || is.null(yfun) || is.null(zfun)) {
stop("Either the paramater infile or data or the parameters xfun, yfun and zfun have to be specified.")
}
if (is.null(param1) || is.null(param2)) {
stop("The parameter names param1 and param2 have not been specified")
}
x <- NULL
y <- NULL
z <- NULL
smin <- range1[1]
smax <- range1[2]
tmin <- range2[1]
tmax <- range2[2]
sn <- size1
tn <- size2
ds <- (smax - smin)/sn
dt <- (tmax - tmin)/tn
for (i in seq(smin, (smax - ds/2), ds)) {
for (j in seq(tmin, (tmax - dt/2), dt)) {
eval(parse(text = paste(param1, " <- ", i)))
eval(parse(text = paste(param2, " <- ", j)))
x <- c(x, eval(parse(text = xfun)))
y <- c(y, eval(parse(text = yfun)))
z <- c(z, eval(parse(text = zfun)))
eval(parse(text = paste(param1, " <- ", param1, " + ds")))
x <- c(x, eval(parse(text = xfun)))
y <- c(y, eval(parse(text = yfun)))
z <- c(z, eval(parse(text = zfun)))
eval(parse(text = paste(param2, " <- ", param2, " + dt")))
x <- c(x, eval(parse(text = xfun)))
y <- c(y, eval(parse(text = yfun)))
z <- c(z, eval(parse(text = zfun)))
eval(parse(text = paste(param1, " <- ", param1, " - ds")))
x <- c(x, eval(parse(text = xfun)))
y <- c(y, eval(parse(text = yfun)))
z <- c(z, eval(parse(text = zfun)))
}
}
data <- as.matrix(cbind(x, y, z))
if (ncol(data) != 3) {
stop("Data matrix does not have 3 columns!")
}
curdir <- NULL
if (!exists(".vrmlgenEnv")) {
write("Graphics3D[\n{\n", file = filename, append = FALSE)
bg_rcol <- (col2rgb(col.bg)/255)[1]
bg_gcol <- (col2rgb(col.bg)/255)[2]
bg_bcol <- (col2rgb(col.bg)/255)[3]
write(paste("Background {\n\t skyColor [\n\t\t ", bg_rcol,
bg_gcol, bg_bcol, " \n\t]\n}", sep = " "), file = filename,
append = TRUE)
}
else {
vrmlgenEnv <- get(".vrmlgenEnv",envir=.GlobalEnv)
filename <- vrmlgenEnv$filename
htmlout <- vrmlgenEnv$html
hheight <- vrmlgenEnv$hheight
hwidth <- vrmlgenEnv$hwidth
curdir <- getwd()
setwd(vrmlgenEnv$VRMLDir)
}
scaledat <- function(data) {
diff <- max(data) - min(data)
if (diff == 0)
return(data)
else return(scalefac * (data - min(data))/(diff))
}
if (autoscale == "independent")
data <- apply(data, 2, scaledat)
else if (autoscale == "equidist")
data <- scalefac * (data/max(data))
else if (autoscale == "equicenter")
data <- scalefac/2 * data/max(data) + scalefac/2
lab_rcol <- NULL
lab_gcol <- NULL
lab_bcol <- NULL
ax_rcol <- NULL
ax_gcol <- NULL
ax_bcol <- NULL
if (showaxis) {
axis3d(lab.axis, filename, type = "lg3d", col.lab, col.axis,
cex.lab, local_scale = scalefac, global_scale = 1)
}
for (j in 1:nrow(data)) {
x <- data[j, 1]
y <- data[j, 2]
z <- data[j, 3]
colsel <- .colorselection(type = "mesh", j, cols, nrow(data),"", "")
rcol <- colsel$rcol
gcol <- colsel$gcol
bcol <- colsel$bcol
if (j%%4 == 1)
write(paste(" SurfaceColor[RGBColor[", rcol, ",",
gcol, ",", bcol, "]], Polygon[{{", x, ",", y,
",", z, "},", sep = ""), file = filename, append = TRUE)
else if (j%%4 == 0)
write(paste(" {", x, ",", y, ",", z, "}}],", sep = ""),
file = filename, append = TRUE)
else write(paste(" {", x, ",", y, ",", z, "},", sep = ""),
file = filename, append = TRUE)
}
write(paste("\n}, Boxed -> False, Axes -> False, AmbientLight->GrayLevel[",
ambientlight, "], TextStyle -> {FontFamily -> \"TimesRoman\", FontSlant ->\"Italic\", FontSize -> ",
14 * cex.lab, "}, Lighting -> True, BoxRatios -> Automatic, PlotRange -> All ]\n",
sep = ""), file = filename, append = TRUE)
if (!exists(".vrmlgenEnv")) {
if (!is.null(htmlout)) {
cat("<HTML>", file = htmlout, append = FALSE)
cat("<HEAD><TITLE>VRMLGen-visualization</TITLE></HEAD><BODY>",
file = htmlout, append = TRUE)
cat(paste("<APPLET ARCHIVE=\"live.jar\" CODE=\"Live.class\" WIDTH=",
hwidth, " HEIGHT=", hheight, " ALIGN=LEFT>",
sep = ""), file = htmlout, append = TRUE)
coln <- col2rgb(col.bg)
cat(paste("<PARAM NAME=\"BGCOLOR\" VALUE=\"", rgb(red = coln[1,
]/255, green = coln[2, ]/255, blue = coln[3,
]/255), "\">", sep = ""), file = htmlout, append = TRUE)
cat("<PARAM NAME=\"MAGNIFICATION\" VALUE=1.0>", file = htmlout,
append = TRUE)
cat(paste("<PARAM NAME=\"INPUT_FILE\" VALUE=\"",
filename, "\">", sep = ""), file = htmlout, append = TRUE)
cat("</APPLET>", file = htmlout, append = TRUE)
cat("</HTML>", file = htmlout, append = TRUE)
}
datadir <- system.file("extdata", package = "vrmlgen")
curdir <- getwd()
if (data.class(result<-try(file.copy(file.path(datadir, "live.jar"), file.path(curdir, "live.jar")), TRUE))=="try-error")
{
warning("\nCannot copy file live.jar from vrlmgen-folder to current directory. You might need to copy the file manually.")
}
cat(paste("\nOutput file \"", filename, "\" was generated in folder ",
getwd(), ".\n", sep = ""))
}
else {
setwd(curdir)
}
}
`.multquaternion` <-
function (q1, q2)
{
tmp <- numeric(4)
tmp[1] = q2[4] * q1[1] + q2[1] * q1[4] + q2[2] * q1[3] -
q2[3] * q1[2]
tmp[2] = q2[4] * q1[2] + q2[2] * q1[4] + q2[3] * q1[1] -
q2[1] * q1[3]
tmp[3] = q2[4] * q1[3] + q2[3] * q1[4] + q2[1] * q1[2] -
q2[2] * q1[1]
tmp[4] = q2[4] * q1[4] - q2[1] * q1[1] - q2[2] * q1[2] -
q2[3] * q1[3]
return(tmp)
}
`.quaternion2rot` <-
function (quat)
{
res <- numeric(4)
res[4] = acos(quat[4]) * 2
for (i in 1:3) res[i] = quat[i]/sin(res[4]/2)
return(res)
}
`.rot2quaternion` <-
function (rot = c(1, 0, 0, pi))
{
res <- numeric(4)
for (i in 1:3) res[i] <- rot[i] * sin(rot[4]/2)
res[4] <- cos(rot[4]/2)
return(res)
}
`.vbar` <-
function (data, row.labels = rownames(data), col.labels = colnames(data),
metalabels = NULL, filename = "out.wrl", space = 0.5, cols = rainbow(length(as.matrix(data))),
rcols = NULL, ccols = NULL, origin = c(0, 0, 0), scalefac = 4, autoscale = TRUE,
ignore_zeros = TRUE, lab.axis = c("X-axis", "Y-axis", "Z-axis"), lab.vertical = FALSE,
col.axis = "black", showaxis = TRUE, col.lab = "black", col.bg = "white",
cex.lab = 1, cex.rowlab = 1, cex.collab = 1, navigation = "EXAMINE",
fov = 0.785, pos = rep(scalefac + 4, 3), dir = c(0.19, 0.45,
0.87, 2.45), transparency = 0, htmlout = NULL, hwidth = 1200,
hheight = 800, showlegend = TRUE)
{
data <- as.matrix(data)
scale <- 1
curdir <- NULL
if (!exists(".vrmlgenEnv")) {
write("
write(paste("\nViewpoint {\n\tfieldOfView", fov, "\n\tposition",
pos[1], pos[2], pos[3], "\n\torientation", dir[1],
dir[2], dir[3], dir[4], "\n\tjump TRUE\n\tdescription \"viewpoint1\"\n}\n",
sep = " "), file = filename, append = TRUE)
write(paste("\nNavigationInfo { type \"", navigation,
"\" }\n", sep = ""), file = filename, append = TRUE)
bg_rcol <- (col2rgb(col.bg)/255)[1]
bg_gcol <- (col2rgb(col.bg)/255)[2]
bg_bcol <- (col2rgb(col.bg)/255)[3]
write(paste("Background {\n\t skyColor [\n\t\t ", bg_rcol,
bg_gcol, bg_bcol, " \n\t]\n}", sep = " "), file = filename,
append = TRUE)
}
else {
vrmlgenEnv <- get(".vrmlgenEnv",envir=.GlobalEnv)
filename <- vrmlgenEnv$filename
htmlout <- vrmlgenEnv$html
hheight <- vrmlgenEnv$hheight
hwidth <- vrmlgenEnv$hwidth
scale <- vrmlgenEnv$scale
curdir <- getwd()
setwd(vrmlgenEnv$VRMLDir)
}
if(autoscale)
data <- scale * scalefac * (data/max(data))
popuptext <- TRUE
if (is.null(metalabels)) {
popuptext <- FALSE
}
if (popuptext)
write(paste("\n\nPROTO PopupText [\n\teventIn MFString showThis\n\texposedField SFNode fontStyle FontStyle {\n\t\t\t\tjustify [ \"MIDDLE\", \"MIDDLE\" ] }\n\texposedField SFNode appearance Appearance { material Material { } } \n\tfield SFString default \"\" \n\tfield MFString stringlist [ \"\" ] \n",
paste(paste("eventIn SFBool over", 0:(length(metalabels) -
1), "\n\t", sep = "", collapse = ""), sep = "",
collapse = ""), "\t] { \nGroup { children [ \n\tDEF POPIT Script { \n\t\tfield SFString defstring IS default \n\t\tfield MFString list IS stringlist \n\t\tfield MFString strout [ \"\" ] ",
paste(paste("\n eventIn SFBool over", 0:(length(metalabels) -
1), " IS over", 0:(length(metalabels) - 1), sep = "",
collapse = "")), "\n\t\teventOut MFString string_changed \n\t\turl [ \"javascript: \n\t\tfunction evtnum(num, value) \n\t\t{ \n\t\tif (value && (num < list.length)) \n\t\t\tstrout[0] = list[num]; \n\t\telse \n\t\t\tstrout[0] = defstring; \n\t\tstring_changed = strout; \n\t\t} \n \n\t",
paste(paste("\tfunction over", 0:(length(metalabels) -
1), "(v, t) { evtnum(", 0:(length(metalabels) -
1), ", v); } \n", sep = "", collapse = "")),
"\t\", \n\t\t\"Popup.class\"] \n\t} \n\t \n\tTransform { \n\ttranslation 0 0 ",
scale * scalefac, " \n\trotation 0.28108 0.67860 0.67860 2.59356\n\t \n\tchildren Shape { \n\t\tappearance IS appearance \n\tgeometry DEF POPUP Text { \n\t\tstring \"\" \n\t\tset_string IS showThis \n\t\tfontStyle IS fontStyle \n\t\t} \n\t} \n\t} \n] } \nROUTE POPIT.string_changed TO POPUP.set_string \n} \n \n \nGroup { \nchildren DEF POP PopupText { \n\t\t
paste(paste("\"", metalabels[1:(length(metalabels) -
1)], "\",", sep = "", collapse = " ")), "\"",
metalabels[length(metalabels)], "\" ] \n\t} \n} \n\n",
sep = "", collapse = ""), file = filename, append = TRUE)
if (showaxis) {
axis3d(lab.axis, filename, type = "vrml", col.lab, col.axis,
cex.lab, local_scale = scalefac, global_scale = 1)
}
blength <- scale * scalefac/(nrow(data) * (1 + space))
bwidth <- scale * scalefac/(ncol(data) * (1 + space))
rot_vec <- c(0, 0.70711, 0.70711, 3.14159)
if (lab.vertical)
rot_vec <- c(0.57735, 0.57735, 0.57735, 4.18879)
if (!is.null(row.labels) && showlegend) {
for (j in 1:length(row.labels)) {
colsel <- .colorselection(type = "bar", j, rcols,
1, row.labels, "")
rcol <- colsel$rcol
gcol <- colsel$gcol
bcol <- colsel$bcol
cur_xwidth <- j/nrow(data) * scale * scalefac - blength/2
write(paste("Transform {\n\ttranslation ", cur_xwidth,
-0.4, scale * scalefac + 0.2, "\n\tscale ", cex.rowlab *
0.28, cex.rowlab * 0.28, cex.rowlab * 0.28,
"\n\trotation ", rot_vec[1], rot_vec[2], rot_vec[3],
rot_vec[4], "\n\tchildren Shape {\n\t\tappearance Appearance { material Material {diffuseColor ",
rcol, " ", gcol, " ", bcol, " } }\n\t\tgeometry Text { string \"",
row.labels[j], "\" }\n\t}\n}", sep = " "), file = filename,
append = TRUE)
}
}
rot_vec <- c(0.57735, 0.57735, 0.57735, 2.0944)
if (lab.vertical)
rot_vec <- c(0.707107, 0, 0.707107, 3.14159)
if (!is.null(col.labels) && showlegend) {
for (j in 1:length(col.labels)) {
colsel <- .colorselection(type = "bar", j, ccols,
1, col.labels, "")
rcol <- colsel$rcol
gcol <- colsel$gcol
bcol <- colsel$bcol
cur_ywidth <- j/ncol(data) * scale * scalefac - bwidth/2
write(paste("Transform {\n\ttranslation ", -0.4,
cur_ywidth, scale * scalefac + 0.2, "\n\tscale ",
cex.collab * 0.28, cex.collab * 0.28, cex.collab *
0.28, "\n\trotation ", rot_vec[1], rot_vec[2],
rot_vec[3], rot_vec[4], "\n\tchildren Shape {\n\t\tappearance Appearance { material Material {diffuseColor ",
rcol, " ", gcol, " ", bcol, " } }\n\t\tgeometry Text { string \"",
col.labels[j], "\" }\n\t}\n}", sep = " "), file = filename,
append = TRUE)
}
}
popup_txt_str <- ""
popup_txt_str2 <- ""
rcol <- NULL
gcol <- NULL
bcol <- NULL
if (length(cols) >= (ncol(data) * nrow(data))) {
rcol <- sapply(cols, function(x) (col2rgb(x)/255)[1])
gcol <- sapply(cols, function(x) (col2rgb(x)/255)[2])
bcol <- sapply(cols, function(x) (col2rgb(x)/255)[3])
}
else {
if (length(cols) >= 1) {
rcol <- (col2rgb(cols[1])/255)[1]
gcol <- (col2rgb(cols[1])/255)[2]
bcol <- (col2rgb(cols[1])/255)[3]
}
else {
rcol <- (col2rgb("lightblue")/255)[1]
gcol <- (col2rgb("lightblue")/255)[2]
bcol <- (col2rgb("lightblue")/255)[3]
}
}
counter <- 0
for (j in 1:nrow(data)) {
for (k in 1:ncol(data)) {
x <- j/nrow(data) * scale * scalefac
y <- k/ncol(data) * scale * scalefac
z <- data[j, k]
if(ignore_zeros && (z == 0))
next
counter <- counter + 1
if (!is.null(ccols)) {
rcol <- (col2rgb(ccols[k])/255)[1]
gcol <- (col2rgb(ccols[k])/255)[2]
bcol <- (col2rgb(ccols[k])/255)[3]
}
else if (!is.null(rcols)) {
rcol <- (col2rgb(rcols[j])/255)[1]
gcol <- (col2rgb(rcols[j])/255)[2]
bcol <- (col2rgb(rcols[j])/255)[3]
}
else {
if(length(rcol) > 1)
{
rcol <- rcol[(k - 1) * ncol(data) +
j]
gcol <- gcol[(k - 1) * ncol(data) +
j]
bcol <- bcol[(k - 1) * ncol(data) +
j]
}
}
if (popuptext) {
popup_txt_str <- paste("Group {\n children [\n DEF Schalter",
(k - 1) * ncol(data) + j - 1, " TouchSensor { }",
sep = "", collapse = "")
popup_txt_str2 <- "\n]\n}"
}
write(paste(popup_txt_str, "Transform {\n\ttranslation ",
origin[1] + x, origin[2] + y, origin[3] + z/2,
"\n\tchildren Shape {\n\t\tappearance Appearance { material Material { diffuseColor ",
rcol, gcol, bcol, " } }\n\tgeometry Box { size ",
blength, bwidth, z, "}\n\t\t}\n}", popup_txt_str2,
sep = " "), file = filename, append = TRUE)
}
}
write("\n", file = filename, append = TRUE)
if (popuptext)
write(paste("ROUTE Schalter", 0:(length(metalabels) -
1), ".isOver TO POP.over", 0:(length(metalabels) -
1), "\n", sep = "", collapse = ""), file = filename,
append = TRUE)
if (!exists(".vrmlgenEnv")) {
if (!is.null(htmlout)) {
cat("<HTML>", file = htmlout, append = FALSE)
cat("<HEAD><TITLE>VRMLGen-visualization</TITLE></HEAD><BODY><br>",
file = htmlout, append = FALSE)
cat(paste("<object type=\"x-world/x-vrml\" data=\"",
filename, "\" ", sep = ""), file = htmlout, append = TRUE)
cat(paste("width=\"", hwidth, "\" height=\"", hheight,
"\"><br>", sep = ""), file = htmlout, append = TRUE)
cat(paste("<param name=\"src\" value=\"", filename, "\"><br>",
sep = ""), file = htmlout, append = TRUE)
cat("Your browser cannot display VRML files.<br>Please INSTALL a VRML-plugin or open the file in an external VRML-viewer.</object><br>",
file = htmlout, append = TRUE)
cat("</BODY></HTML>", file = htmlout, append = TRUE)
}
cat(paste("\nOutput file \"", filename, "\" was generated in folder ",
getwd(), ".\n", sep = ""))
}
else {
setwd(curdir)
}
}
`.vcloud` <-
function (x, y = NULL, z = NULL, labels = rownames(data), metalabels = NULL,
hyperlinks = NULL, filename = "out.wrl", pointstyle = c("s",
"b", "c"), cols = rainbow(length(unique(labels))), showdensity = FALSE,
scalefac = 4, autoscale = "independent", lab.axis = c("X-axis",
"Y-axis", "Z-axis"), col.axis = "black", showaxis = TRUE,
col.lab = "black", col.bg = "white", cex.lab = 1, navigation = "EXAMINE",
transparency = 0, fov = 0.785, pos = rep(scalefac + 4, 3),
dir = c(0.19, 0.45, 0.87, 2.45), htmlout = NULL, hwidth = 1200,
hheight = 800, showlegend = TRUE)
{
xyz_parse <- xyz.coords(x, y, z)
data <- cbind(xyz_parse$x, xyz_parse$y, xyz_parse$z)
if (ncol(data) != 3) {
stop("Data matrix does not have 3 columns!")
}
numlabels <- NULL
if (length(labels)) {
lab <- unique(unlist(labels))
numlabels <- apply(as.matrix(labels), 1, function(x) match(x,
as.matrix(lab)))
}
curdir <- NULL
scale <- 1
if (!exists(".vrmlgenEnv")) {
write("
write(paste("\nViewpoint {\n\tfieldOfView", fov, "\n\tposition",
pos[1], pos[2], pos[3], "\n\torientation", dir[1],
dir[2], dir[3], dir[4], "\n\tjump TRUE\n\tdescription \"viewpoint1\"\n}\n",
sep = " "), file = filename, append = TRUE)
write(paste("\nNavigationInfo { type \"", navigation,
"\" }\n", sep = ""), file = filename, append = TRUE)
bg_rcol <- (col2rgb(col.bg)/255)[1]
bg_gcol <- (col2rgb(col.bg)/255)[2]
bg_bcol <- (col2rgb(col.bg)/255)[3]
write(paste("Background {\n\t skyColor [\n\t\t ", bg_rcol,
bg_gcol, bg_bcol, " \n\t]\n}", sep = " "), file = filename,
append = TRUE)
}
else {
vrmlgenEnv <- get(".vrmlgenEnv",envir=.GlobalEnv)
filename <- vrmlgenEnv$filename
htmlout <- vrmlgenEnv$html
VRMLDir <- vrmlgenEnv$VRMLDir
hheight <- vrmlgenEnv$hheight
hwidth <- vrmlgenEnv$hwidth
scale <- vrmlgenEnv$scale
curdir <- getwd()
setwd(vrmlgenEnv$VRMLDir)
}
scaledat <- function(data) {
diff <- max(data) - min(data)
if (diff == 0)
return(data)
else return(scale * scalefac * (data - min(data))/(diff))
}
if (autoscale == "independent")
data <- apply(data, 2, scaledat)
else if (autoscale == "equidist")
data <- scale * scalefac * (data/max(data))
popuptext <- TRUE
if (is.null(metalabels)) {
popuptext <- FALSE
}
if (popuptext)
write(paste("\n\nPROTO PopupText [\n\teventIn MFString showThis\n\texposedField SFNode fontStyle FontStyle {\n\t\t\t\tjustify [ \"MIDDLE\", \"MIDDLE\" ] }\n\texposedField SFNode appearance Appearance { material Material { } } \n\tfield SFString default \"\" \n\tfield MFString stringlist [ \"\" ] \n",
paste(paste("eventIn SFBool over", 0:(nrow(data) -
1), "\n\t", sep = "", collapse = ""), sep = "",
collapse = ""), "\t] { \nGroup { children [ \n\tDEF POPIT Script { \n\t\tfield SFString defstring IS default \n\t\tfield MFString list IS stringlist \n\t\tfield MFString strout [ \"\" ] ",
paste(paste("\n eventIn SFBool over", 0:(nrow(data) -
1), " IS over", 0:(nrow(data) - 1), sep = "",
collapse = "")), "\n\t\teventOut MFString string_changed \n\t\turl [ \"javascript: \n\t\tfunction evtnum(num, value) \n\t\t{ \n\t\tif (value && (num < list.length)) \n\t\t\tstrout[0] = list[num]; \n\t\telse \n\t\t\tstrout[0] = defstring; \n\t\tstring_changed = strout; \n\t\t} \n \n\t",
paste(paste("\tfunction over", 0:(nrow(data) - 1),
"(v, t) { evtnum(", 0:(nrow(data) - 1), ", v); } \n",
sep = "", collapse = "")), "\t\", \n\t\t\"Popup.class\"] \n\t} \n\t \n\tTransform { \n\ttranslation 0 0 ",
scale * scalefac, " \n\trotation 0.28108 0.67860 0.67860 2.59356\n\t \n\tchildren Shape { \n\t\tappearance IS appearance \n\tgeometry DEF POPUP Text { \n\t\tstring \"\" \n\t\tset_string IS showThis \n\t\tfontStyle IS fontStyle \n\t\t} \n\t} \n\t} \n] } \nROUTE POPIT.string_changed TO POPUP.set_string \n} \n \n \nGroup { \nchildren DEF POP PopupText { \n\t\t
paste(paste("\"", metalabels[1:(nrow(data) - 1)],
"\",", sep = "", collapse = " ")), "\"", metalabels[nrow(data)],
"\" ] \n\t} \n} \n\n"), file = filename, append = TRUE)
if (length(labels) && showlegend) {
cur_height <- scale * scalefac + 1.2
for (j in 1:length(unique(labels))) {
.vrmltext(0, 0, cur_height, unique(labels)[j], filename,
cols[unique(numlabels)[j]], 1, c(0.28108, 0.6786,
0.6786, 2.59356), "SANS", "NONE", NULL)
cur_height <- cur_height + 0.4
}
}
if (showaxis) {
axis3d(lab.axis, filename, type = "vrml", col.lab, col.axis,
cex.lab, local_scale = scalefac, global_scale = 1)
}
popup_txt_str <- ""
popup_txt_str2 <- ""
hyperlink <- NULL
for (j in 1:nrow(data)) {
x <- data[j, 1]
y <- data[j, 2]
z <- data[j, 3]
colsel <- .colorselection(type = "cloud", j, cols, nrow(data),
labels, numlabels)
rcol <- colsel$rcol
gcol <- colsel$gcol
bcol <- colsel$bcol
if (popuptext) {
popup_txt_str <- paste("Group {\n children [\n DEF Schalter",
j - 1, " TouchSensor { }", sep = "", collapse = "")
popup_txt_str2 <- "\n]\n}"
}
if (!is.null(hyperlinks)) {
hyperlink <- hyperlinks[j]
}
if (length(pointstyle) == 1) {
write(popup_txt_str, file = filename, append = TRUE)
.vrmlpoints(x, y, z, filename, rcol, gcol, bcol,
pointstyle, hyperlinks = hyperlink, global_scale = 1,
local_scale = 1, transparency)
write(popup_txt_str2, file = filename, append = TRUE)
}
else if (length(pointstyle) >= length(unique(numlabels))) {
if (length(labels)) {
stylevec <- c("s", "b", "c")
curstyle <- stylevec[numlabels[j]]
write(popup_txt_str, file = filename, append = TRUE)
.vrmlpoints(x, y, z, filename, rcol, gcol, bcol,
curstyle, hyperlinks = hyperlink, global_scale = 1,
local_scale = 1, transparency)
write(popup_txt_str2, file = filename, append = TRUE)
}
else {
popup_txt_str <- ""
popup_txt_str2 <- ""
write(popup_txt_str, file = filename, append = TRUE)
.vrmlpoints(x, y, z, filename, rcol, gcol, bcol,
pointstyle[1], hyperlinks = hyperlink, global_scale = 1,
local_scale = 1, transparency)
write(popup_txt_str2, file = filename, append = TRUE)
}
}
else {
write(popup_txt_str, file = filename, append = TRUE)
.vrmlpoints(x, y, z, filename, rcol, gcol, bcol,
pointstyle[1], hyperlinks = hyperlink, global_scale = 1,
local_scale = 1, transparency)
write(popup_txt_str2, file = filename, append = TRUE)
}
}
write("\n", file = filename, append = TRUE)
if (popuptext)
write(paste("ROUTE Schalter", 0:(nrow(data) - 1), ".isOver TO POP.over",
0:(nrow(data) - 1), "\n", sep = "", collapse = ""),
file = filename, append = TRUE)
if (showdensity)
est <- .vdense(data, filename)
if (!exists(".vrmlgenEnv")) {
if (!is.null(htmlout)) {
cat("<HTML>", file = htmlout, append = FALSE)
cat("<HEAD><TITLE>VRMLGen-visualization</TITLE></HEAD><BODY><br>",
file = htmlout, append = FALSE)
cat(paste("<object type=\"x-world/x-vrml\" data=\"",
filename, "\" ", sep = ""), file = htmlout, append = TRUE)
cat(paste("width=\"", hwidth, "\" height=\"", hheight,
"\"><br>", sep = ""), file = htmlout, append = TRUE)
cat(paste("<param name=\"src\" value=\"", filename, "\"><br>",
sep = ""), file = htmlout, append = TRUE)
cat("Your browser cannot display VRML files.<br>Please INSTALL a VRML-plugin or open the file in an external VRML-viewer.</object><br>",
file = htmlout, append = TRUE)
cat("</BODY></HTML>", file = htmlout, append = TRUE)
}
cat(paste("\nOutput file \"", filename, "\" was generated in folder ",
getwd(), ".\n", sep = ""))
}
else {
setwd(curdir)
}
}
`.vdense` <-
function (x, filename)
{
nobs <- nrow(x)
ndim <- ncol(x)
weights <- rep(1, nobs)
nbins <- round((nobs > 500) * 8 * log(nobs)/ndim)
if (nbins > 0) {
breaks <- cbind(seq(min(x[, 1]), max(x[, 1]), length = nbins +
1), seq(min(x[, 2]), max(x[, 2]), length = nbins +
1))
f1 <- cut(x[, 1], breaks = breaks[, 1])
f2 <- cut(x[, 2], breaks = breaks[, 2])
f3 <- cut(x[, 3], breaks = breaks[, 3])
freq <- table(f1, f2, f3)
dimnames(freq) <- NULL
midpoints <- (breaks[-1, ] + breaks[-(nbins + 1), ])/2
z1 <- midpoints[, 1]
z2 <- midpoints[, 2]
z3 <- midpoints[, 3]
X <- as.matrix(expand.grid(z1, z2, z3))
X.f <- as.vector(freq)
id <- (X.f > 0)
X <- X[id, ]
dimnames(X) <- list(NULL, dimnames(x)[[2]])
X.f <- X.f[id]
bins <- list(x = X, x.freq = X.f, midpoints = midpoints,
breaks = breaks, table.freq = freq)
x <- bins$x
weights <- bins$x.freq
nx <- length(bins$x.freq)
}
else nx <- nobs
h <- .hnorm(x, weights)
rawdata <- list(nbins = nbins, x = x, nobs = nobs, ndim = ndim)
est <- .vdensecalc(x, h = h, weights = weights, rawdata = rawdata,
filename = filename)
return(TRUE)
}
`.vdensecalc` <-
function (x, h = .hnorm(x, weights), eval.points = NULL, weights = rep(1,
length(x)), rawdata = list(), eval.type = "grid", filename = "test.wrl")
{
xlim <- range(x[, 1])
ylim <- range(x[, 2])
zlim <- range(x[, 3])
ngrid <- 20
if (eval.type != "points") {
evp <- cbind(seq(xlim[1], xlim[2], length = ngrid), seq(ylim[1],
ylim[2], length = ngrid), seq(zlim[1], zlim[2], length = ngrid))
eval.points <- evp
}
h.weights <- rep(1, nrow(x))
n <- nrow(x)
nnew <- nrow(eval.points)
hmult <- 1
result <- list(eval.points = eval.points, h = h * hmult,
h.weights = h.weights, weights = weights)
Wh <- matrix(rep(h.weights, nnew), ncol = n, byrow = TRUE)
W1 <- matrix(rep(eval.points[, 1], rep(n, nnew)), ncol = n,
byrow = TRUE)
W1 <- W1 - matrix(rep(x[, 1], nnew), ncol = n, byrow = TRUE)
W1 <- exp(-0.5 * (W1/(hmult * h[1] * Wh))^2)/Wh
W2 <- matrix(rep(eval.points[, 2], rep(n, nnew)), ncol = n,
byrow = TRUE)
W2 <- W2 - matrix(rep(x[, 2], nnew), ncol = n, byrow = TRUE)
W2 <- exp(-0.5 * (W2/(hmult * h[2] * Wh))^2)/Wh
W3 <- matrix(rep(eval.points[, 3], rep(n, nnew)), ncol = n,
byrow = TRUE)
W3 <- W3 - matrix(rep(x[, 3], nnew), ncol = n, byrow = TRUE)
W3 <- exp(-0.5 * (W3/(hmult * h[3] * Wh))^2)/Wh
if (eval.type == "points") {
est <- as.vector(((W1 * W2 * W3) %*% weights)/(sum(weights) *
(2 * pi)^1.5 * h[1] * h[2] * h[3] * hmult^3))
return(est)
}
est <- .vdensecalc(x, h, x, eval.type = "points", weights = weights,
filename = filename)
props <- c(75, 50, 25)
cols <- topo.colors(length(props))
alpha <- seq(1, 0.5, length = length(props))
levels <- quantile(est, props/100)
est <- apply(W3, 1, function(x) (W1 %*% (weights * x * t(W2)))/(sum(weights) *
(2 * pi)^1.5 * h[1] * h[2] * h[3] * hmult^3))
est <- array(c(est), dim = rep(ngrid, 3))
struct <- NULL
if (require(misc3d)) {
struct <- contour3d(est, levels, eval.points[, 1], eval.points[,
2], eval.points[, 3], engine = "none")
} else {
stop("In order to draw contour surfaces, please first install the misc3d package!")
}
for (i in 1:length(props)) {
if (length(props) > 1)
strct <- struct[[i]]
else strct <- struct
trngs.x <- c(t(cbind(strct$v1[, 1], strct$v2[, 1], strct$v3[,
1])))
trngs.y <- c(t(cbind(strct$v1[, 2], strct$v2[, 2], strct$v3[,
2])))
trngs.z <- c(t(cbind(strct$v1[, 3], strct$v2[, 3], strct$v3[,
3])))
a <- list(x = trngs.x, y = trngs.y, z = trngs.z)
rcol <- (col2rgb(cols[i])/255)[1]
gcol <- (col2rgb(cols[i])/255)[2]
bcol <- (col2rgb(cols[i])/255)[3]
for (j in seq(1, length(trngs.x), 3)) {
write(paste("\n Shape { \n\tappearance Appearance {\n\t\t material Material {\n\t\tdiffuseColor ",
rcol, " ", gcol, " ", bcol, "\n\t\ttransparency ",
alpha[i], " \n\t}\n\t}\t\n \n\t geometry IndexedFaceSet {\n\t \t\tsolid TRUE \t \n\t\tcoord Coordinate {\n\t\t\t point [\n\t\t\t ",
trngs.x[j], trngs.y[j], trngs.z[j], " \n\t\t\t ",
trngs.x[j + 1], trngs.y[j + 1], trngs.z[j + 1],
" \n\t\t\t ", trngs.x[j + 2], trngs.y[j + 2],
trngs.z[j + 2], " \n\t\t ]\n\t }\n\t coordIndex [\t0 1 2\t] \n\t}\t \n }\n ",
sep = " "), file = filename, append = TRUE)
}
}
return(est)
}
`.hnorm` <-
function (x, weights = NA)
{
if (all(is.na(weights)))
weights <- rep(1, nrow(x))
ndim <- ncol(as.matrix(x))
if (ndim != 3)
stop("only data with 3 dimensions is allowed.")
n <- sum(weights)
sd <- sqrt(apply(x, 2, function(x, w) {
sum(w * (x - sum(x * w)/sum(w))^2)/(sum(w) - 1)
}, w = weights))
hh <- sd * (4/(5 * n))^(1/7)
hh
}
`.vmesh` <-
function (infile = NULL, x = NULL, y = NULL, z = NULL, edges = NULL,
xfun = "sin(v)*cos(u)", yfun = "sin(v)*sin(u)", zfun = "cos(v)",
param1 = "u", param2 = "v", range1 = c(0, 2 * pi), range2 = c(0,
pi), size1 = 30, size2 = 30, write_obj = FALSE, filename = "out.wrl",
cols = "red", scalefac = 4, autoscale = ifelse(is.null(infile),
"independent", "equicenter"), lab.axis = c("X-axis",
"Y-axis", "Z-axis"), col.axis = "black", showaxis = TRUE,
col.lab = "black", col.bg = "white", cex.lab = 1, navigation = "EXAMINE",
transparency = 0, fov = 0.785, pos = rep(scalefac + 4, 3),
dir = c(0.19, 0.45, 0.87, 2.45), htmlout = NULL, hwidth = 1200,
hheight = 800)
{
if (write_obj) {
if (is.null(x) && is.null(edges)) {
stop("\nThe generation of obj-files is currently only supported, when using vertex-coordinates (x, y, z-parameters) and polygonal face indices (edges-parameter) as input.")
}
write("
append = FALSE)
xyz_parse <- xyz.coords(x, y, z)
write(paste("v", xyz_parse$x, xyz_parse$y, xyz_parse$z,
sep = " "), file = filename, append = TRUE)
write("\n", file = filename, append = TRUE)
for (i in 1:nrow(edges)) {
write(paste("f", paste(edges[i, ], collapse = " "),
sep = " "), file = filename, append = TRUE)
}
cat(paste("\nOutput file \"", filename, "\" was generated in folder ",
getwd(), ".\n", sep = ""))
}
else {
if (!is.null(infile)) {
obj <- strsplit(readLines(infile), "\t")
faces <- which(as.numeric(lapply(obj, function(x) grep("^f",
x[1]))) == 1)
nodes <- which(as.numeric(lapply(obj, function(x) grep("^v ",
x[1]))) == 1)
tmpmat <- lapply(obj[nodes], function(x) strsplit(x,
" ")[[1]])
redmat <- t(sapply(tmpmat, function(x) as.numeric(x[2:length(x)])))
data <- redmat[, which(apply(redmat, 2, function(x) !any(is.na(x))))]
edges_lst <- lapply(obj[faces], function(x) strsplit(x,
" ")[[1]])
edges_filt1 <- lapply(edges_lst, function(y) as.numeric(sapply(y[2:length(y)],
function(x) strsplit(x, "/")[[1]][1])))
edges_filt <- lapply(edges_filt1, function(x) x[which(!is.na(x))])
filter <- sapply(edges_filt, length) > 4
filt <- edges_filt[filter]
reduced_lst <- NULL
if (length(filt) > 0) {
for (j in 1:length(filt)) {
reduced_lst <- c(reduced_lst, list(filt[[j]][1:4]))
for (k in seq(4, length(filt[[j]]), 3)) {
if (!is.na(filt[[j]][k + 2])) {
reduced_lst <- c(reduced_lst, list(c(filt[[j]][k:(k +
2)], filt[[j]][1])))
}
else if (!is.na(filt[[j]][k + 1])) {
reduced_lst <- c(reduced_lst, list(c(filt[[j]][k:(k +
1)], filt[[j]][1], 0)))
break
}
else {
break
}
}
}
}
comb_lst <- c(edges_filt[!filter], reduced_lst)
filtless <- which(sapply(comb_lst, length) < 4)
comb_lst[filtless] <- lapply(comb_lst[filtless],
function(x) c(x, 0))
all(sapply(comb_lst, length) == 4)
edges <- t(sapply(comb_lst, rbind)) - 1
}
else if (is.null(x)) {
if (is.null(xfun) || is.null(yfun) || is.null(zfun)) {
stop("Either the paramater infile or data or the parameters xfun, yfun and zfun have to be specified.")
}
if (is.null(param1) || is.null(param2)) {
stop("The parameter names param1 and param2 have not been specified")
}
x <- NULL
y <- NULL
z <- NULL
smin <- range1[1]
smax <- range1[2]
tmin <- range2[1]
tmax <- range2[2]
sn <- size1
tn <- size2
ds <- (smax - smin)/sn
dt <- (tmax - tmin)/tn
for (i in seq(smin, (smax - ds/2), ds)) {
for (j in seq(tmin, (tmax - dt/2), dt)) {
eval(parse(text = paste(param1, " <- ", i)))
eval(parse(text = paste(param2, " <- ", j)))
x <- c(x, eval(parse(text = xfun)))
y <- c(y, eval(parse(text = yfun)))
z <- c(z, eval(parse(text = zfun)))
eval(parse(text = paste(param1, " <- ", param1,
" + ds")))
x <- c(x, eval(parse(text = xfun)))
y <- c(y, eval(parse(text = yfun)))
z <- c(z, eval(parse(text = zfun)))
eval(parse(text = paste(param2, " <- ", param2,
" + dt")))
x <- c(x, eval(parse(text = xfun)))
y <- c(y, eval(parse(text = yfun)))
z <- c(z, eval(parse(text = zfun)))
eval(parse(text = paste(param1, " <- ", param1,
" - ds")))
x <- c(x, eval(parse(text = xfun)))
y <- c(y, eval(parse(text = yfun)))
z <- c(z, eval(parse(text = zfun)))
}
}
data <- as.matrix(cbind(x, y, z))
}
else {
xyz_parse <- xyz.coords(x, y, z)
data <- cbind(xyz_parse$x, xyz_parse$y, xyz_parse$z)
}
if (ncol(data) != 3) {
stop("Data matrix does not have 3 columns!")
}
scale <- 1
curdir <- NULL
if (!exists(".vrmlgenEnv")) {
write("
write(paste("\nViewpoint {\n\tfieldOfView", fov,
"\n\tposition", pos[1], pos[2], pos[3], "\n\torientation",
dir[1], dir[2], dir[3], dir[4], "\n\tjump TRUE\n\tdescription \"viewpoint1\"\n}\n",
sep = " "), file = filename, append = TRUE)
write(paste("\nNavigationInfo { type \"", navigation,
"\" }\n", sep = ""), file = filename, append = TRUE)
bg_rcol <- (col2rgb(col.bg)/255)[1]
bg_gcol <- (col2rgb(col.bg)/255)[2]
bg_bcol <- (col2rgb(col.bg)/255)[3]
write(paste("Background {\n\t skyColor [\n\t\t ",
bg_rcol, bg_gcol, bg_bcol, " \n\t]\n}", sep = " "),
file = filename, append = TRUE)
}
else {
vrmlgenEnv <- get(".vrmlgenEnv",envir=.GlobalEnv)
filename <- vrmlgenEnv$filename
htmlout <- vrmlgenEnv$html
hheight <- vrmlgenEnv$hheight
hwidth <- vrmlgenEnv$hwidth
scale <- vrmlgenEnv$scale
curdir <- getwd()
setwd(vrmlgenEnv$VRMLDir)
}
scaledat <- function(data) {
diff <- max(data) - min(data)
if (diff == 0)
return(data)
else return(scale * scalefac * (data - min(data))/(diff))
}
if (autoscale == "independent")
data <- apply(data, 2, scaledat)
else if (autoscale == "equidist")
data <- scale * scalefac * (data/max(data))
else if (autoscale == "equicenter")
data <- scale * scalefac/2 * data/max(data) + scalefac/2
if (showaxis) {
axis3d(lab.axis, filename, type = "vrml", col.lab,
col.axis, cex.lab, local_scale = scalefac, global_scale = 1)
}
write(paste("Transform {\nscale 1.0 1.0 1.0\n\tchildren [\n\t\tShape {\n\t\t\tappearance Appearance{ material Material{ transparency ",transparency,"}}\n",
sep = " "), file = filename, append = TRUE)
write(paste("\n\t\t\tgeometry IndexedFaceSet {\n\t\t\tcoord DEF\n\tVertexArray Coordinate{\n\tpoint [\n",
sep = " "), file = filename, append = TRUE)
for (j in 1:nrow(data)) {
write(paste(paste(data[j, ], collapse = " "), ",\n",
sep = ""), file = filename, append = TRUE)
}
write("]\n}\n", file = filename, append = TRUE)
write("coordIndex [\n", file = filename, append = TRUE)
mat <- NULL
if (!is.null(edges)) {
mat <- edges
while (ncol(mat) < 4) {
mat <- cbind(mat, rep(-1, nrow(mat)))
}
}
else {
mat <- matrix(1:nrow(data), ncol = 4, byrow = TRUE) -
1
}
for (j in 1:nrow(mat)) {
write(paste(paste(mat[j, ], collapse = " "), "-1",
sep = " "), file = filename, append = TRUE)
}
write(paste("]\n solid FALSE\n colorPerVertex TRUE\n color \nDEF VertexColorArray Color{\ncolor [",
sep = ""), file = filename, append = TRUE)
if (!length(cols) || (is.null(cols))) {
cols <- rainbow(nrow(data))
mat <- sapply(cols, function(x) (col2rgb(x)/255))
for (j in 1:nrow(data)) {
write(paste(mat[1, j], mat[2, j], mat[3, j],
",\n", collapse = " "), file = filename, append = TRUE)
}
}
else if ((length(cols) == 1) || (length(cols) < nrow(data))) {
rcol <- (col2rgb(cols[1])/255)[1]
gcol <- (col2rgb(cols[1])/255)[2]
bcol <- (col2rgb(cols[1])/255)[3]
for (j in 1:nrow(data)) {
write(paste(rcol, gcol, bcol, ",\n", collapse = " "),
file = filename, append = TRUE)
}
}
else {
mat <- sapply(cols, function(x) (col2rgb(x)/255))
for (j in 1:nrow(data)) {
write(paste(mat[1, j], mat[2, j], mat[3, j],
",\n", collapse = " "), file = filename, append = TRUE)
}
}
write(paste("]\n}\n}\n}\n]\n}", sep = ""), file = filename,
append = TRUE)
if (!exists(".vrmlgenEnv")) {
if (!is.null(htmlout)) {
cat("<HTML>", file = htmlout, append = FALSE)
cat("<HEAD><TITLE>VRMLGen-visualization</TITLE></HEAD><BODY><br>",
file = htmlout, append = FALSE)
cat(paste("<object type=\"x-world/x-vrml\" data=\"",
filename, "\" ", sep = ""), file = htmlout,
append = TRUE)
cat(paste("width=\"", hwidth, "\" height=\"",
hheight, "\"><br>", sep = ""), file = htmlout,
append = TRUE)
cat(paste("<param name=\"src\" value=\"", filename,
"\"><br>", sep = ""), file = htmlout, append = TRUE)
cat("Your browser cannot display VRML files.<br>Please INSTALL a VRML-plugin or open the file in an external VRML-viewer.</object><br>",
file = htmlout, append = TRUE)
cat("</BODY></HTML>", file = htmlout, append = TRUE)
}
cat(paste("\nOutput file \"", filename, "\" was generated in folder ",
getwd(), ".\n", sep = ""))
}
else {
setwd(curdir)
}
}
}
`.vrmlpoints` <-
function (x, y, z, filename, rcol, gcol, bcol, pointstyle, hyperlinks = NULL,
global_scale = 1, local_scale = 1, transparency = 0)
{
hyperlinks_start <- rep("", length(x))
hyperlinks_end <- rep("", length(x))
if (!is.null(hyperlinks)) {
hyperlinks_start <- paste("\n\tchildren Anchor { url \"",
hyperlinks, "\"", sep = "")
hyperlinks_end <- rep("}", length(x))
}
if (pointstyle == "s") {
for (i in 1:length(x))
write(paste("\nTransform {\n\ttranslation ",
x[i] * global_scale, y[i] * global_scale, z[i] *
global_scale, hyperlinks_start[i], "\n\tchildren Shape {\n\t\tappearance Appearance { material Material { diffuseColor",
rcol, gcol, bcol, "transparency", transparency, "} }\n\tgeometry Sphere { radius ",
0.08 * local_scale, "}\n\t\t}", hyperlinks_end[i],
"\n}", sep = " "), file = filename, append = TRUE)
}
else if (pointstyle == "c") {
for (i in 1:length(x))
write(paste("\nTransform {\n\trotation 1 0 0 1.5708\n\ttranslation ",
x[i] * global_scale, y[i] * global_scale, z[i] *
global_scale, hyperlinks_start[i], "\n\tchildren Shape {\n\t\tappearance Appearance { material Material { diffuseColor",
rcol, gcol, bcol, "transparency", transparency, "} }\n\tgeometry Cone { bottomRadius ",
0.08 * local_scale, "height", 0.08 * local_scale,
"\n\t\tside TRUE}\n\t\t}", hyperlinks_end[i], "\n}",
sep = " "), file = filename, append = TRUE)
}
else {
for (i in 1:length(x))
write(paste("\nTransform {\n\ttranslation ",
x[i] * global_scale, y[i] * global_scale, z[i] *
global_scale, hyperlinks_start[i], "\n\tchildren Shape {\n\t\tappearance Appearance { material Material { diffuseColor",
rcol, gcol, bcol, "transparency", transparency, "} }\n\tgeometry Box { size ",
0.08 * local_scale, 0.08 * local_scale, 0.08 * local_scale,
"}\n\t\t}", hyperlinks_end[i], "\n}", sep = " "),
file = filename, append = TRUE)
}
}
`.vrmltext` <-
function (x, y, z, text, filename, col, scale, rot, fontfamily,
fontweight, hyperlink)
{
rcol <- (col2rgb(col)/255)[1]
gcol <- (col2rgb(col)/255)[2]
bcol <- (col2rgb(col)/255)[3]
if (is.null(hyperlink)) {
for (i in 1:length(x))
write(paste("Transform {\n\ttranslation ",
x[i], y[i], z[i], "\n\tscale ", 0.28, 0.28, 0.28,
"\n\trotation ", rot[1], rot[2], rot[3], rot[4],
"\n\tchildren Shape {\n\t\tappearance Appearance { material Material {diffuseColor ",
rcol, gcol, bcol, " } }\n\tgeometry Text { string \"",
text[i], "\"\nfontStyle FontStyle {\nsize ", scale,
"\nfamily [\"", fontfamily, "\"]\njustify \"MIDDLE\"\n style \"",
fontweight, "\" }\n }\n\t}\n}", sep = " "), file = filename,
append = TRUE)
}
else {
for (i in 1:length(x))
write(paste("Transform {\n\ttranslation ",
x[i], y[i], z[i], "\n\tscale ", 0.28, 0.28, 0.28,
"\n\trotation ", rot[1], rot[2], rot[3], rot[4],
"\n\tchildren Anchor { url \"", hyperlink, "\" \n\tchildren Shape {\n\t\tappearance Appearance { material Material {diffuseColor ",
rcol, gcol, bcol, " } }\n\tgeometry Text { string \"",
text[i], "\"\nfontStyle FontStyle {\nsize ", scale,
"\nfamily [\"SANS\"]\njustify \"MIDDLE\"\n style \"",
fontweight, "\" }\n }\n\t}\n}\n}", sep = " "), file = filename,
append = TRUE)
}
} |