code
stringlengths
1
13.8M
leave_var_out_formulas <- function(formula, data, full_model = TRUE, ...) { trms <- attr(model.frame(formula, data, ...), "terms") x_vars <- attr(trms, "term.labels") if (length(x_vars) < 2) { rlang::abort("There should be at least 2 predictors in the formula.") } y_vars <- as.character(formula[[2]]) form_terms <- purrr::map(x_vars, rm_vars, lst = x_vars) form <- purrr::map_chr(form_terms, ~ paste(y_vars, "~", paste(.x, collapse = " + "))) form <- purrr::map(form, as.formula) form <- purrr::map(form, rm_formula_env) names(form) <- x_vars if (full_model) { form$everything <- formula } form } rm_vars <- function(x, lst) { remaining_terms(x, lst) } remaining_terms <- function(x, lst) { has_x <- purrr::map_lgl(lst, ~ x %in% all_terms(.x)) is_x <- lst == x lst[!has_x & !is_x] } rm_formula_env <- function (x) { attr(x, ".Environment") <- rlang::base_env() x } all_terms <- function(x) { y <- paste("~", x) y <- as.formula(y) all.vars(y) }
multinom.spls.aux <- function(sXtrain, sXtrain.nosvd=NULL, Ytrain, lambda.ridge, lambda.l1, ncomp, sXtest, sXtest.nosvd=NULL, adapt=TRUE, maxIter=100, svd.decompose=TRUE, meanXtrain, sigma2train, center.X=TRUE, scale.X=FALSE, weighted.center=TRUE) { sXtrain <- as.matrix(sXtrain) ntrain <- nrow(sXtrain) p <- ncol(sXtrain) index.p <- c(1:p) Ytrain <- as.matrix(Ytrain) q <- ncol(Ytrain) one <- matrix(1,nrow=1,ncol=ntrain) ntest <- nrow(sXtest) r <- p G <- max(Ytrain) Z <- cbind(rep(1,ntrain),sXtrain) Zbloc <- matrix(0,nrow=ntrain*G,ncol=G*(r+1)) Zt <- cbind(rep(1,ntest),sXtest) Ztestbloc <- matrix(0,nrow=ntest*G,ncol=G*(r+1)) for (g in 1:G) { row <- (0:(ntrain-1))*G+g col <- (r+1)*(g-1)+1:(r+1) Zbloc[row,col] <- Z row <- (0:(ntest-1))*G+g Ztestbloc[row,col] <- Zt } rm(Z) Zt <- NULL fit <- mwirrls(Y=Ytrain, Z=Zbloc, Lambda=lambda.ridge, NbrIterMax=maxIter, WKernel=diag(rep(1,ntrain*G))) converged=fit$Cvg if (converged==0) { warning("Message from multinom.spls.aux : Ridge IRLS did not converge; try another lambda.ridge value") } if (ncomp==0) { BETA <- fit$Coefficients } if (ncomp!=0) { Eta <- Zbloc %*% fit$Coefficients if(svd.decompose) { p <- ncol(sXtrain.nosvd) r <- p sXtrain = sXtrain.nosvd sXtest = sXtest.nosvd Z <- cbind(rep(1,ntrain),sXtrain) Zbloc <- matrix(0,nrow=ntrain*G,ncol=G*(r+1)) Zt <- cbind(rep(1,ntest),sXtest) Ztestbloc <- matrix(0,nrow=ntest*G,ncol=G*(r+1)) for (g in 1:G) { row <- (0:(ntrain-1))*G+g col <- (r+1)*(g-1)+1:(r+1) Zbloc[row,col] <- Z row <- (0:(ntest-1))*G+g Ztestbloc[row,col] <- Zt } rm(Z) Zt <- NULL } mu <- rep(0, length(Eta)) V <- matrix(0, length(mu), length(mu)) Vinv <- matrix(0, length(mu), length(mu)) for (kk in 1:ntrain) { mu[G*(kk-1)+(1:G)] <- exp(Eta[G*(kk-1)+(1:G)])/(1+sum(exp(Eta[G*(kk-1)+(1:G)]))) Blocmu <- mu[G*(kk-1)+(1:G)] BlocV <- -Blocmu %*% t(Blocmu) BlocV <- BlocV + diag(Blocmu) V[G*(kk-1)+(1:G), G*(kk-1)+(1:G)] <- BlocV Vinv[G*(kk-1)+(1:G), G*(kk-1)+(1:G)] <- tryCatch(solve(BlocV), error = function(e) return(ginv(BlocV))) } Psi <- fit$Ybloc - mu col.intercept <- seq(from=1, to=G*(p+1), by=(p+1)) index <- 1:(G*(p+1)) Xbloc <- Zbloc[,-col.intercept] Cte <- Zbloc[,col.intercept] H <- t(Cte) %*% V %*% Cte VMeanPseudoVar <- solve(H, t(Cte) %*% (V %*% Eta + Psi)) VCtrPsi <- Psi VCtrEta <- Eta - Cte %*% VMeanPseudoVar VMeansXtrain <- solve(H, t(Cte) %*% V %*% Xbloc) VCtrsXtrain <- Xbloc - Cte %*% VMeansXtrain rm(H) pseudoVar = Eta + Vinv %*% Psi pseudoVar = pseudoVar - Cte %*% VMeanPseudoVar if(center.X && weighted.center) { sXtrain <- VCtrsXtrain } else { sXtrain <- Xbloc } resSPLS = spls.in(Xtrain=sXtrain, Ytrain=pseudoVar, ncomp=ncomp, weight.mat=V, lambda.l1=lambda.l1, adapt=adapt, center.X=FALSE, center.Y=FALSE, scale.X=FALSE, scale.Y=FALSE, weighted.center=FALSE) BETA <- matrix(0, nrow=G*(r+1), ncol=1) BETA[-col.intercept,] <- resSPLS$betahat BETA[col.intercept,] <- VMeanPseudoVar - VMeansXtrain %*% BETA[-col.intercept,] } hatYtest <- numeric(ntest) Eta.test <- matrix(0, nrow=G+1, ncol=1) proba.test <- matrix(0, nrow=ntest, ncol=G+1) Eta.test <- cbind(rep(0,ntest),matrix(Ztestbloc%*%BETA,nrow=ntest,byrow=TRUE)) proba.test <- t(apply(exp(Eta.test), 1, function(x) x/sum(x))) hatYtest <- as.matrix(apply(proba.test,1,which.max)-1) Beta <- t(matrix(BETA,nrow=G,byrow=TRUE)) Coefficients <- t(matrix(0, nrow=G, ncol=(p+1))) if(p > 1) { Coefficients[-1,] <- diag(c(1/sqrt(sigma2train))) %*% Beta[-1,] } else { Coefficients[-1,] <- (1/sqrt(sigma2train))%*%Beta[-1,] } Coefficients[1,] <- Beta[1,] - meanXtrain %*% Coefficients[-1,] result <- list(Coefficients=Coefficients, hatYtest=hatYtest, converged=converged, lenA=resSPLS$lenA) class(result) <- "multinom.spls.aux" return(result) }
SL.nnls <- function(Y, X, newX, family, obsWeights, ...) { .SL.require("nnls") fit.nnls <- nnls::nnls(sqrt(obsWeights)*as.matrix(X), sqrt(obsWeights)*Y) initCoef <- coef(fit.nnls) initCoef[is.na(initCoef)] <- 0 if (sum(initCoef) > 0) { coef <- initCoef/sum(initCoef) } else { warning("All algorithms have zero weight", call. = FALSE) coef <- initCoef } pred <- crossprod(t(as.matrix(newX)), coef) fit <- list(object = fit.nnls) class(fit) <- "SL.nnls" out <- list(pred = pred, fit = fit) return(out) } predict.SL.nnls <- function(object, newdata, ...) { initCoef <- coef(object$object) initCoef[is.na(initCoef)] <- 0 if (sum(initCoef) > 0) { coef <- initCoef/sum(initCoef) } else { warning("All algorithms have zero weight", call. = FALSE) coef <- initCoef } pred <- crossprod(t(as.matrix(newdata)), coef) return(pred) }
NULL .trinv = function(x) { .Call(R_trinv, x, 'U') } qr_R = function(x) { check.is.shaq(x) cp = cp.shaq(x) R = chol(cp) R } qr_Q = function(x, R) { check.is.shaq(x) if (missing(R)) R = qr_R(x) else check.is.matrix(R) Q.local = Data(x) %*% .trinv(R) shaq(Q.local, nrow(x), ncol(x), checks=FALSE) }
test_that("A Brainvoyager mesh can be written and re-read from a Brainvoyager SRF file.", { fsasc_surface_file = system.file("extdata", "lh.tinysurface.asc", package = "freesurferformats", mustWork = TRUE); orig_surf = read.fs.surface(fsasc_surface_file); bvsrf_file = tempfile(fileext = '.srf'); write.fs.surface.bvsrf(bvsrf_file, orig_surf$vertices, orig_surf$faces); surf = read.fs.surface.bvsrf(bvsrf_file); expect_true(is.fs.surface(surf)); known_vertex_count = 5L; known_face_count = 3L; expect_equal(nrow(orig_surf$vertices), known_vertex_count); expect_equal(nrow(orig_surf$faces), known_face_count); expect_equal(nrow(surf$vertices), known_vertex_count); expect_equal(ncol(surf$vertices), 3); expect_equal(typeof(surf$vertices), "double"); expect_equal(nrow(surf$faces), known_face_count); expect_equal(ncol(surf$faces), 3); expect_equal(typeof(surf$faces), "integer"); num_faces_with_index_zero = sum(surf$faces==0); expect_equal(num_faces_with_index_zero, 0); expect_equal(min(surf$faces), 1L); }) test_that("A bvsmp instance for writing Brainvoyager morph data can be created.", { data_length = 100L; morph_data = rnorm(data_length, 3.0, 1.0); bv = bvsmp(morph_data); expect_equal(bv$smp_version, 3L); expect_true(is.bvsmp(bv)); expect_equal(bv$num_mesh_vertices, data_length); expect_equal(bv$num_maps, 1L); expect_equal(length(bv$vertex_maps[[1]]$data), data_length); expect_equal(bv$vertex_maps[[1]]$data, morph_data, tolerance = 1e-5); }) test_that("Morphometry data can be written to and re-read from a Brainvoyager v3 SMP file.", { data_length = 100L; morph_data = rnorm(data_length, 3.0, 1.0); bvsmp_file = tempfile(fileext = '.smp'); write.fs.morph.smp(bvsmp_file, morph_data, smp_version = 3L); bvsmp = read.smp.brainvoyager(bvsmp_file); expect_equal(bvsmp$smp_version, 3L); expect_equal(bvsmp$num_mesh_vertices, 100L); morph_data_reread = read.fs.morph(bvsmp_file); expect_equal(length(morph_data_reread), data_length); expect_equal(morph_data_reread, morph_data, tolerance = 1e-3); }) test_that("Morphometry data can be written to and re-read from a Brainvoyager v2 SMP file.", { data_length = 100L; morph_data = rnorm(data_length, 3.0, 1.0); bvsmp_file = tempfile(fileext = '.smp'); write.fs.morph.smp(bvsmp_file, morph_data, smp_version = 2L); bvsmp = read.smp.brainvoyager(bvsmp_file); expect_equal(bvsmp$smp_version, 2L); expect_equal(bvsmp$num_mesh_vertices, 100L); morph_data_reread = read.fs.morph(bvsmp_file); expect_equal(length(morph_data_reread), data_length); expect_equal(morph_data_reread, morph_data, tolerance = 1e-3); }) test_that("Morphometry data can be read from Brainvoyager SMP files by map index and name.", { data_length = 100L; morph_data = rnorm(data_length, 3.0, 1.0); bvsmp_file = tempfile(fileext = '.smp'); write.fs.morph.smp(bvsmp_file, morph_data); morph_data_reread_by_index = read.fs.morph.bvsmp(bvsmp_file, map_index = 1L); morph_data_reread_by_name = read.fs.morph.bvsmp(bvsmp_file, map_index = "data"); expect_equal(length(morph_data_reread_by_index), data_length); expect_equal(morph_data_reread_by_index, morph_data, tolerance = 1e-3); expect_equal(length(morph_data_reread_by_name), data_length); expect_equal(morph_data_reread_by_name, morph_data, tolerance = 1e-3); expect_error(read.fs.morph.bvsmp(bvsmp_file, map_index = 3L)); })
lemna <- function(...) { UseMethod("lemna") } lemna.default <- function(init=c("BM"=0, "M_int"=0), times, param, envir, ode_mode=c("r", "c"), nout=2, ...) { ode_mode <- match.arg(ode_mode) init_missing <- setdiff(c("BM", "M_int"), names(init)) if(length(init_missing) > 0) { stop(paste("init vector elements missing:", paste(init_missing, collapse=","))) } if(length(init) != 2) { stop("init vector has invalid length") } if(length(times) < 2) { stop("times vector must have at least two elements") } else if(length(times) == 2) { times <- seq(min(times) ,max(times), 0.01) } param <- as.list(param) param_missing <- setdiff(names(param_defaults()), names(param)) if(length(param_missing) > 0) { stop(paste("model parameters missing:", paste(param_missing, collapse=","))) } envir_missing <- setdiff(c("conc","tmp","irr","P","N"), names(envir)) if(length(envir_missing) > 0) { stop(paste("environmental factor(s) missing:",paste(envir_missing,collapse=","))) } envir$conc <- prepare_envir("conc", envir) envir$tmp <- prepare_envir("tmp", envir) envir$irr <- prepare_envir("irr", envir) envir$P <- prepare_envir("P", envir) envir$N <- prepare_envir("N", envir) if(ode_mode == "r") { for(nm in names(envir)) { v <- envir[[nm]] if(is.function(v)) { param[[paste0("ts_",nm)]] <- v } else if(nrow(v)==1) { param[[paste0("ts_",nm)]] <- local({ c <- v[[1,2]]; function(t) c }) } else { param[[paste0("ts_",nm)]] <- approxfun(x=v[, 1], y=v[, 2], method="linear", f=0, rule=2, ties="ordered") } } rm(nm, v) out <- as.data.frame(ode(y=init, times=times, func=lemna_ode, parms=param, ...)) if(nout > 0) { out$C_int <- ifelse(out$BM <= 0, 0, out$M_int * param$r_FW_V / (out$BM * param$r_FW_DW)) } if(nout > 1) { out$FrondNo <- out$BM / param$r_DW_FN } if(nout > 2) { warning("additional outputs (nout > 2) only available for compiled ODE") } } else if(ode_mode == "c") { param_order <- names(param_new()) param <- unlist(param[param_order]) envir <- envir[c("conc","tmp","irr","P","N")] outnames <- c("C_int", "FrondNo", "f_loss", "f_photo", "fT_photo", "fI_photo", "fP_photo", "fN_photo", "fBM_photo", "fCint_photo", "C_int_unb", "C_ext", "Tmp", "Irr", "Phs", "Ntr", "dBM", "dM_int") fcontrol <- list(method="linear", rule=2, f=0, ties="ordered") out <- ode(y=init, times=times, parms=param, forcings=envir, dllname="lemna", initfunc="lemna_init", func="lemna_func", initforc="lemna_forc", fcontrol=fcontrol, nout=nout, outnames=outnames, ...) out <- as.data.frame(out) } else { stop("unknown ode mode") } class(out) <- c("lemna_result", class(out)) attr(out, "r_DW_FN") <- param[["r_DW_FN"]] attr(out, "exposure") <- envir$conc out } lemna.lemna_scenario <- function(x, init, times, param, envir, ...) { if("init" %in% names(x) & missing(init)) { init <- x$init } if("times" %in% names(x) & missing(times)) { times <- x$times } if("param" %in% names(x) & missing(param)) { param <- x$param } if("envir" %in% names(x) & missing(envir)) { envir <- x$envir } lemna.default(init=init, times=times, param=param, envir=envir, ...) } lemna_desolve <- function(...) { outnames <- c("C_int", "FrondNo", "f_loss", "f_photo", "fT_photo", "fI_photo", "fP_photo", "fN_photo", "fBM_photo", "fCint_photo", "C_int_unb", "C_ext", "Tmp", "Irr", "Phs", "Ntr", "dBM", "dM_int") ode(dllname="lemna", initfunc="lemna_init", func="lemna_func", initforc="lemna_forc", outnames=outnames, ...) } prepare_envir <- function(key, envir) { if(!(key %in% names(envir))) { stop(paste("environmental factor missing:", key)) } envir <- as.list(envir) data <- envir[[key]] if(is.function(data)) { return(data) } if(is.character(data)) { data <- read.csv(data, stringsAsFactors=FALSE) } if(is.numeric(data)) { if(length(data) > 1) { stop(paste("environmental factor", key, "has length > 1")) } data <- data.frame(t=0, V1=data) } if(is.data.frame(data)) { if(length(data) != 2) { stop(paste("environmental factor",key,"time series must have exactly two columns")) } } else { stop(paste("unknown data type for environmental factor", key)) } data }
FileFormat <- R6Class("FileFormat", inherit = ArrowObject, active = list( type = function() dataset___FileFormat__type_name(self) ) ) FileFormat$create <- function(format, schema = NULL, ...) { opt_names <- names(list(...)) if (format %in% c("csv", "text") || any(opt_names %in% c("delim", "delimiter"))) { CsvFileFormat$create(schema = schema, ...) } else if (format == c("tsv")) { CsvFileFormat$create(delimiter = "\t", schema = schema, ...) } else if (format == "parquet") { ParquetFileFormat$create(...) } else if (format %in% c("ipc", "arrow", "feather")) { dataset___IpcFileFormat__Make() } else { stop("Unsupported file format: ", format, call. = FALSE) } } as.character.FileFormat <- function(x, ...) { out <- x$type ifelse(out == "ipc", "feather", out) } ParquetFileFormat <- R6Class("ParquetFileFormat", inherit = FileFormat) ParquetFileFormat$create <- function(..., dict_columns = character(0)) { options <- ParquetFragmentScanOptions$create(...) dataset___ParquetFileFormat__Make(options, dict_columns) } IpcFileFormat <- R6Class("IpcFileFormat", inherit = FileFormat) CsvFileFormat <- R6Class("CsvFileFormat", inherit = FileFormat) CsvFileFormat$create <- function(..., opts = csv_file_format_parse_options(...), convert_options = csv_file_format_convert_opts(...), read_options = csv_file_format_read_opts(...)) { dataset___CsvFileFormat__Make(opts, convert_options, read_options) } csv_file_format_parse_options <- function(...) { opts <- list(...) convert_opts <- names(formals(CsvConvertOptions$create)) read_opts <- names(formals(CsvReadOptions$create)) opts[convert_opts] <- NULL opts[read_opts] <- NULL opts[["schema"]] <- NULL opt_names <- names(opts) unsup_readr_opts <- setdiff( names(formals(read_delim_arrow)), names(formals(readr_to_csv_parse_options)) ) is_unsup_opt <- opt_names %in% unsup_readr_opts unsup_opts <- opt_names[is_unsup_opt] if (length(unsup_opts)) { stop( "The following ", ngettext(length(unsup_opts), "option is ", "options are "), "supported in \"read_delim_arrow\" functions ", "but not yet supported here: ", oxford_paste(unsup_opts), call. = FALSE ) } arrow_opts <- names(formals(CsvParseOptions$create)) readr_opts <- names(formals(readr_to_csv_parse_options)) is_arrow_opt <- !is.na(pmatch(opt_names, arrow_opts)) is_readr_opt <- !is.na(pmatch(opt_names, readr_opts)) unrec_opts <- opt_names[!is_arrow_opt & !is_readr_opt] if (length(unrec_opts)) { stop( "Unrecognized ", ngettext(length(unrec_opts), "option", "options"), ": ", oxford_paste(unrec_opts), call. = FALSE ) } is_ambig_opt <- is.na(pmatch(opt_names, c(arrow_opts, readr_opts))) ambig_opts <- opt_names[is_ambig_opt] if (length(ambig_opts)) { stop("Ambiguous ", ngettext(length(ambig_opts), "option", "options"), ": ", oxford_paste(ambig_opts), ". Use full argument names", call. = FALSE ) } if (any(is_readr_opt)) { if (!all(is_readr_opt)) { stop("Use either Arrow parse options or readr parse options, not both", call. = FALSE ) } do.call(readr_to_csv_parse_options, opts) } else { do.call(CsvParseOptions$create, opts) } } csv_file_format_convert_opts <- function(...) { opts <- list(...) arrow_opts <- names(formals(CsvParseOptions$create)) readr_opts <- names(formals(readr_to_csv_parse_options)) read_opts <- names(formals(CsvReadOptions$create)) opts[arrow_opts] <- NULL opts[readr_opts] <- NULL opts[read_opts] <- NULL opts[["schema"]] <- NULL do.call(CsvConvertOptions$create, opts) } csv_file_format_read_opts <- function(schema = NULL, ...) { opts <- list(...) arrow_opts <- names(formals(CsvParseOptions$create)) readr_opts <- names(formals(readr_to_csv_parse_options)) convert_opts <- names(formals(CsvConvertOptions$create)) opts[arrow_opts] <- NULL opts[readr_opts] <- NULL opts[convert_opts] <- NULL if (!is.null(schema)) { opts[["column_names"]] <- names(schema) } do.call(CsvReadOptions$create, opts) } FragmentScanOptions <- R6Class("FragmentScanOptions", inherit = ArrowObject, active = list( type = function() dataset___FragmentScanOptions__type_name(self) ) ) FragmentScanOptions$create <- function(format, ...) { if (format %in% c("csv", "text", "tsv")) { CsvFragmentScanOptions$create(...) } else if (format == "parquet") { ParquetFragmentScanOptions$create(...) } else { stop("Unsupported file format: ", format, call. = FALSE) } } as.character.FragmentScanOptions <- function(x, ...) { x$type } CsvFragmentScanOptions <- R6Class("CsvFragmentScanOptions", inherit = FragmentScanOptions) CsvFragmentScanOptions$create <- function(..., convert_opts = csv_file_format_convert_opts(...), read_opts = csv_file_format_read_opts(...)) { dataset___CsvFragmentScanOptions__Make(convert_opts, read_opts) } ParquetFragmentScanOptions <- R6Class("ParquetFragmentScanOptions", inherit = FragmentScanOptions) ParquetFragmentScanOptions$create <- function(use_buffered_stream = FALSE, buffer_size = 8196, pre_buffer = TRUE) { dataset___ParquetFragmentScanOptions__Make(use_buffered_stream, buffer_size, pre_buffer) } FileWriteOptions <- R6Class("FileWriteOptions", inherit = ArrowObject, public = list( update = function(table, ...) { if (self$type == "parquet") { dataset___ParquetFileWriteOptions__update( self, ParquetWriterProperties$create(table, ...), ParquetArrowWriterProperties$create(...) ) } else if (self$type == "ipc") { args <- list(...) if (is.null(args$codec)) { dataset___IpcFileWriteOptions__update1( self, get_ipc_use_legacy_format(args$use_legacy_format), get_ipc_metadata_version(args$metadata_version) ) } else { dataset___IpcFileWriteOptions__update2( self, get_ipc_use_legacy_format(args$use_legacy_format), args$codec, get_ipc_metadata_version(args$metadata_version) ) } } else if (self$type == "csv") { dataset___CsvFileWriteOptions__update( self, CsvWriteOptions$create(...) ) } invisible(self) } ), active = list( type = function() dataset___FileWriteOptions__type_name(self) ) ) FileWriteOptions$create <- function(format, ...) { if (!inherits(format, "FileFormat")) { format <- FileFormat$create(format) } options <- dataset___FileFormat__DefaultWriteOptions(format) options$update(...) }
design_effect <- function(n, icc = 0.05) { 1 + (n - 1) * icc }
context("topTexts") test_that("topTexts", { load("data/test-k3i20b70s24601alpha0.33eta0.33.RData") M <- matrix(c( "I","H","E", "C","D","G", "A","B","B", "H","G","D", "B","A","A" ),5,3,byrow=TRUE) colnames(M) <- c("T1.culpa", "T2.ut", "T3.aliqua") M2 <- matrix(c( "I","G", "C","A", "A","B", "H","E", "F","D", "B","H", "D","C", "E","F", "G","I"),9,2,byrow=TRUE) colnames(M2) <- c("T1.culpa", "T3.aliqua") expect_equal(M,topTexts(ldaresult=result, ldaID=ldaID, limit = 5L, rel = TRUE, minlength=30L)) expect_equal(M2,topTexts(ldaresult=result, ldaID=ldaID, limit = 0L, rel = FALSE, select = c(1,3), minlength=1L)) })
create_build_directory <- function(appName, description, productName, semanticVersion, appPath, functionName){ }
"balancedtwostage" <- function(X,selection,m,n,PU,comment=TRUE,method=1) { N=dim(X)[1] p=dim(X)[2] str=cleanstrata(PU) M=max(PU) res1=balancedcluster(X,m,PU,method,comment) if(selection==2) { pik2=rep(n/N*M/m,times=N); if(n/N*M/m>1) stop("at the second stage, inclusion probabilities larger than 1"); } if(selection==1) { pik2=inclusionprobastrata(str,rep(n/m ,times=max(str))); if(max(pik2)>1) stop("at the second stage, inclusion probabilities larger than 1"); } liste=(res1[,1]==1) sf=rep(0,times=N) sf[liste]=balancedstratification(array(X[liste,]/res1[,2][liste],c(sum(as.integer(liste)),p)),cleanstrata(str[liste]),pik2[liste],comment,method) x=cbind(sf,res1[,2]*pik2,res1[,1],res1[,2],pik2) colnames(x)=c("second_stage","final_pik", "primary","pik_first_stage", "pik_second_stage") x }
print.info <- function(info, args.only = F){ .info <- unclass(info) .haplin.vers <- .info$misc$orig.call[[1]] if(args.only){ .names <- names(formals(eval(.haplin.vers))) for(i in 2:length(.info)){ .info[[i]] <- .info[[i]][is.element(names(.info[[i]]), .names)] } .ind <- sapply(.info, function(x) length(x) > 0) .info <- .info[.ind] } f.printlist(.info) return(invisible(.info)) }
stat.tauKrPartial <- function(X, Y, Z, omitDiag = TRUE) { Tauxyz <- 0 Txy <- tauSD(X, Y, NULL, omitDiag) Txz <- tauSD(X, Z, NULL, omitDiag) Tyz <- tauSD(Y, Z, NULL, omitDiag) if (is.nan(Txy$tau) || is.nan(Txz$tau) || is.nan(Tyz$tau)) { return(list(Tauxy = NA, Tauxz = NA, Tauyz = NA, Tauxyz = NA)) } else { Tauxyz <- (Txy$tau - (Txz$tau * Tyz$tau)) / (sqrt((1 - (Txz$tau^2))) * sqrt((1 - (Tyz$tau^2)))) return(list(Tauxy = Txy$tau, Tauxz = Txz$tau, Tauyz = Tyz$tau, Tauxyz = Tauxyz)) } }
library(h2o) h2oServer <- h2o.init(max_mem_size="60g", nthreads=-1) dx_train <- h2o.importFile(h2oServer, path = "train-1m.csv") dx_test <- h2o.importFile(h2oServer, path = "test.csv") Xnames <- names(dx_train)[which(names(dx_train)!="dep_delayed_15min")] system.time({ md <- h2o.glm(x = Xnames, y = "dep_delayed_15min", data = dx_train, family = "binomial", alpha = 1, lambda = 0) }) system.time({ phat <- h2o.predict(md, dx_test)[,"Y"] }) h2o.performance(phat, dx_test[,"dep_delayed_15min"])@model$auc
MC_Gauss<-function(compBdg,problem,delta=0.1,type="M",trmvrnorm=trmvrnorm_rej_cpp,typeReturn=0,verb=0,params=NULL){ sizeX<-length(problem$muEq) sizeY<-length(problem$muEmq) if(type=="M"){ upperTmvn = rep(problem$threshold,sizeX) lowerTmvn = rep(-Inf,sizeX) gg = function(x){return(max(x)>problem$threshold)} }else{ upperTmvn = rep(Inf,sizeX) lowerTmvn = rep(problem$threshold,sizeX) gg = function(x){return(min(x)<problem$threshold)} } if(verb>0) cat("Starting MC... \n") if(is.null(params)){ if(verb>1) cat("Initialize parameters... ") timeInPart1<-get_chronotime() simsX<-trmvrnorm(n = 1,mu = problem$muEq,sigma = problem$sigmaEq, upper = upperTmvn, lower = lowerTmvn, verb=(verb-1)) time1SimX<-(get_chronotime()-timeInPart1)*1e-9 ttX<-rep(0,20) ii<-seq(from=1,length.out=20,by=max(1,floor((compBdg*delta*0.4/time1SimX-20)/190))) for(i in seq(20)){ timeIn<-get_chronotime() temp<-trmvrnorm(n = ii[i],mu = problem$muEq,sigma = problem$sigmaEq,upper = upperTmvn,lower = lowerTmvn,verb=(verb-1)) ttX[i]<-(get_chronotime()-timeIn)*1e-9*1.03 simsX<-cbind(simsX,temp) } Cx0<-unname(lm(ttX~ii+0)$coefficients[1]) timeIn<-get_chronotime() muYcondX<- problem$muEmq + problem$wwCondQ%*%(simsX[,1]-problem$muEq) simsYcX<- mvrnormArma(n=1,mu = muYcondX,sigma=problem$sigmaCondQChol,chol=1) time1SimYcX<-(get_chronotime()-timeIn)*1e-9 tt<-rep(0,20) ii<-seq(from=1,length.out=20,by=max(1,floor((compBdg*delta*0.5/time1SimYcX-20)/190))) for(i in seq(20)){ timeIn<-get_chronotime() muYcondX<- problem$muEmq + problem$wwCondQ%*%(simsX[,1]-problem$muEq) temp<- mvrnormArma(n=ii[i],mu = muYcondX,sigma=problem$sigmaCondQChol,chol=1) tt[i]<-(get_chronotime()-timeIn)*1e-9*1.03 simsYcX<-cbind(simsYcX,temp) } lmmYcX<-lm(tt[2:20]~ii[2:20]) alpha<-unname(lmmYcX$coefficients[1]) beta0<-unname(lmmYcX$coefficients[2]) timeG=rep(NA,154) for(i in seq(154)){ iniT<-get_chronotime() gg(1) timeG[i]<-(get_chronotime()-iniT) } tEvalG<-quantile(sort(timeG)[-c(1,2,154,155)],probs = 0.99,names = F)*1e-9 C_adj<-compBdg*delta -time1SimX - sum(ttX) - sum(tt)-time1SimYcX - sum(timeG)*1e-9 if(verb>1){ cat("Time passed:",compBdg*delta-C_adj,"\n", "tEvalG:",tEvalG,"\n", "beta0: ",beta0,"\n", "Cx0: ",Cx0,"\n", "alpha: ",alpha,"\n") } n0<-ncol(simsX) }else{ if(verb>1) cat("Parameters already initialized. ") timeInPart1<-get_chronotime() Cx0<-params$Cx alpha<-params$alpha beta0<-params$beta tEvalG<-params$evalG } if(verb>1) cat("Done.\n") nStar<-round(compBdg/(Cx0+(beta0+tEvalG))) timePart1<-(get_chronotime()-timeInPart1)*1e-9 if(verb>1){ cat("Computational parameters: \n") cat("Cx0: ",Cx0,", beta0: ",beta0, ", nStar: ",nStar, "Time Part 1: ",timePart1,"(compBdg assigned: ",compBdg*delta,")\n") } simsYcondXfull<-matrix(0,nrow = sizeY,ncol = 1) if(is.null(params)){ if(nStar>n0){ simsXfull<-cbind(simsX,trmvrnorm(n = (nStar-n0),mu = problem$muEq,sigma = problem$sigmaEq,upper = upperTmvn,lower = lowerTmvn,verb=(verb-1))) }else{ simsXfull<-simsX nStar<-n0 } }else{ simsXfull<-trmvrnorm(n = nStar,mu = problem$muEq,sigma = problem$sigmaEq,upper = upperTmvn,lower = lowerTmvn,verb=(verb-1)) } estim<-0 expYcondXfull<-rep(0,nStar) gEval<-rep(0,nStar) for(j in seq(nStar)){ muYcondX<- problem$muEmq + problem$wwCondQ%*%(simsXfull[,j]-problem$muEq) simsYcondXfull[,1]<-mvrnormArma(n=1,mu = muYcondX,sigma=problem$sigmaCondQChol,chol=1) gEval[j]<-gg(simsYcondXfull[,1]) if(j%%100==0){ if((get_chronotime()-timeInPart1)*1e-9 >= compBdg*0.96) break } } nStar<-j gEval<-gEval[1:nStar] estim<-mean(gEval) timeTot<-(get_chronotime()-timeInPart1)*1e-9 if(verb>=1){ cat("MC computation finished.\n") cat("Total time: ",timeTot,"(compBdg: ",compBdg,")\n") } if(typeReturn==0){ return(estim) }else{ varHatG<-var(gEval)/nStar params<-list(n=nStar,Cx=Cx0,alpha=alpha,beta=beta0,evalG=tEvalG) results<-list(estim=estim,varEst=varHatG,params=params) results$times = list(part1=timePart1,total=timeTot) return(results) } return("fail") }
ISOElementSequence <- R6Class("ISOElementSequence", inherit = ISOAbstractObject, lock_objects = FALSE, private = list( xmlElement = "ElementSequence", xmlNamespacePrefix = "GCO" ), public = list( initialize = function(xml = NULL, ...){ super$initialize(xml = xml) if(is.null(xml)){ fields <- list(...) if(!is.null(names(fields))){ for(fieldName in names(fields)){ self[[fieldName]] <- fields[[fieldName]] } }else{ self[["_internal_"]] <- fields } } } ) )
compute_R2mtch <- function(dataPoints,reference,weights=NULL,nWeight = 100){ nObj <- nrow(dataPoints) if(is.null(weights)) { weights <- createWeightsSobol(nDim=nObj,nWeights = nWeight) } sumR2 <- 0 nWeight <- ncol(weights) nPoints <- ncol(dataPoints) for(weightIndex in 1:nWeight){ pointAchievementVector <- NULL for(pointIndex in 1:nPoints){ pointAchievementVector <- append(pointAchievementVector, gmtch(dataPoints[,pointIndex],reference,weights[,weightIndex]) ) } sumR2 <- sumR2+(max(pointAchievementVector)) } return(sumR2/nWeight) } compute_R2HV <- function(dataPoints,reference,weights=NULL,nPoints = 100){ nObj <- nrow(dataPoints) if(is.null(weights)) { weights <- createWeightsSobol(nDim=nObj,nWeights = nPoints) } sumR2 <- 0 nWeight <- ncol(weights) nPoints <- ncol(dataPoints) for(weightIndex in 1:nWeight){ pointAchievementBest <- -Inf for(pointIndex in 1:nPoints){ this.gmtch <- gmtch(dataPoints[,pointIndex],reference,weights[,weightIndex])^nObj if(pointAchievementBest< this.gmtch) pointAchievementBest <- this.gmtch } sumR2 <- sumR2+pointAchievementBest } return(sumR2/nWeight) } compute_R2HVC <- function(dataPoints,reference,weights=NULL,alpha=1,nWeight = 300,indexOfInterest = 1:ncol(dataPoints)){ nObj <- nrow(dataPoints) if(is.null(weights)) { weights <- createWeightsSobol(nDim=nObj,nWeights = nWeight) } sumR2 <- 0 R2contrib <- NULL log_R2 <- NULL logsd_R2 <- NULL skew_R2 <- NULL nWeight <- ncol(weights) nPoints <- ncol(dataPoints) for(sIndex in indexOfInterest){ sumR2 <- 0 minRset <- NULL for(weightIndex in 1:nWeight){ minimumStar <- Inf pointAchievementToBoundary <- gmtch(reference,dataPoints[,sIndex],weights[,weightIndex]) for(secondaryPointIndex in 1:nPoints){ if( secondaryPointIndex != sIndex){ new_g2tch <- g2tch_star(dataPoints[,secondaryPointIndex],dataPoints[,sIndex],weights[,weightIndex]) if(minimumStar > new_g2tch ){ minimumStar <- new_g2tch } } } minR <- min(c(minimumStar,pointAchievementToBoundary)) minR <- minR^alpha minRset <- append(minRset,minR) } skew_R2 <- append(skew_R2,skewness(log(minRset))) R2contrib <- append(R2contrib,mean(minRset)) log_R2 <- append(log_R2,mean(log(minRset))) logsd_R2 <- append(logsd_R2,stats::sd(log(minRset))) } return(list(R2=R2contrib,log_R2=log_R2,logsd_R2=logsd_R2,skew_R2=skew_R2)) } gmtch <- function(point, reference, weight){ nObj <- nrow(point) achievement_vector <- abs(point-reference)/weight return(min(achievement_vector)) } g2tch <- function(point, ref, weight){ nObj <- nrow(point) achievement_vector <- abs(point-ref)/weight return(max(achievement_vector)) } g2tch_star <- function(a, s, weight){ nObj <- nrow(a) achievement_vector <- (a-s)/weight return(max(achievement_vector)) } createWeights <- function(nDim,axisDivision = nDim+2,noZero=FALSE){ nRefPoint <- choose(nDim+axisDivision-1,axisDivision) referencePoint <- matrix(,nrow = nDim,ncol = nRefPoint) referenceCombination <- gtools::combinations(nDim,axisDivision,1:nDim,repeats.allowed = TRUE) for(objectiveIndex in 1:nDim){ this.objective <- as.integer(referenceCombination==objectiveIndex) this.objective <- matrix(this.objective,nrow = nRefPoint,ncol = axisDivision) for(referencePointIndex in 1:nRefPoint) referencePoint[objectiveIndex,referencePointIndex] <- sum(this.objective[referencePointIndex,]) } if(noZero){ if(axisDivision <= nDim){ stop('Number of axis division must be larger than problem dimension, otherwise no internal point will be created.') } removeCol <- NULL for(refIndex in 1:nRefPoint){ if(min(referencePoint[,refIndex])==0){ removeCol <- append(removeCol,refIndex) } } referencePoint <- referencePoint[,-removeCol] } nRefPoint <- ncol(referencePoint) for(refIndex in 1:nRefPoint){ referencePoint[,refIndex] <- referencePoint[,refIndex]/norm(referencePoint[,refIndex,drop=FALSE],'F') } return(referencePoint) } createWeightsSobol <- function(nWeights, nDim,seed=4177){ weights <- randtoolbox::sobol(nWeights, dim = nDim,scrambling=3,seed = seed) weights <- t(weights) for(pointIndex in 1:nWeights){ weights[,pointIndex] <- weights[,pointIndex]/norm(weights[,pointIndex,drop=FALSE],'F') } return(weights) }
test_that("mapkey", { m <- leaflet() %>% addMapkeyMarkers(data = breweries91, icon = makeMapkeyIcon(icon = "mapkey", iconSize = 30, boxShadow = FALSE, background = "transparent"), group = "mapkey", label = ~state, popup = ~village) expect_is(m, "leaflet") deps <- findDependencies(m) expect_equal(deps[[length(deps)]]$name, "lfx-mapkeyicon") iconSet = mapkeyIconList( red = makeMapkeyIcon(icon = "boundary_stone", color = " background = ' iconSize = 30, boxShadow = FALSE), blue = makeMapkeyIcon(icon = "traffic_signal", color = " iconSize = 12, boxShadow = FALSE, background = "transparent"), buddha = makeMapkeyIcon(icon = "buddhism", color = "red", iconSize = 12, boxShadow = FALSE, background = "transparent")) expect_is(iconSet, "leaflet_mapkey_icon_set") m <- leaflet() %>% addMapkeyMarkers(data = breweries91, icon = iconSet, group = "mapkey", label = ~state, popup = ~village) expect_is(m, "leaflet") m <- leaflet() %>% addMapkeyMarkers(data = breweries91, icon = iconSet, group = "mapkey", clusterOptions = markerClusterOptions(), label = ~state, popup = ~village) expect_is(m, "leaflet") deps <- findDependencies(m) expect_equal(deps[[length(deps) - 1]]$name, "lfx-mapkeyicon") expect_equal(deps[[length(deps)]]$name, "leaflet-markercluster") m <- mapkeyIcons() expect_is(m, "list") m <- leaflet() %>% addMapkeyMarkers(data = breweries91, icon = m) expect_is(m, "leaflet") cities <- structure(list( City = structure(1:6, .Label = c("Boston", "Hartford", "New York City", "Philadelphia", "Pittsburgh", "Providence"), class = "factor"), Lat = c(42.3601, 41.7627, 40.7127, 39.95, 40.4397, 41.8236), Long = c(-71.0589, -72.6743, -74.0059, -75.1667, -79.9764, -71.4222), Pop = c(645966L, 125017L, 8406000L, 1553000L, 305841L, 177994L)), class = "data.frame", row.names = c(NA, -6L)) icon.pop <- mapkeyIcons(color = ifelse(cities$Pop < 500000, "blue", "red"), iconSize = ifelse(cities$Pop < 500000, 20, 50)) m <- leaflet(cities) %>% addTiles() %>% addMapkeyMarkers(lng = ~Long, lat = ~Lat, label = ~City, icon = icon.pop) expect_is(m, "leaflet") cities$PopCat <- "blue" cities[cities$Pop > 500000,]$PopCat <- "red" iconSet = mapkeyIconList( blue = makeMapkeyIcon(icon = "traffic_signal", color = " iconSize = 12, boxShadow = FALSE, background = "transparent"), red = makeMapkeyIcon(icon = "buddhism", color = "red", iconSize = 12, boxShadow = FALSE, background = "transparent") ) m <- leaflet(cities) %>% addTiles() %>% addMapkeyMarkers(lng = ~Long, lat = ~Lat, label = ~City, labelOptions = rep(labelOptions(noHide = T), nrow(cities)), icon = ~iconSet[PopCat] ) expect_is(m, "leaflet") m <- leaflet(cities) %>% addTiles() %>% addMapkeyMarkers(lng = ~Long, lat = ~Lat, label = ~City, labelOptions = rep(labelOptions(noHide = T), nrow(cities)), icon = ~iconSet[as.factor(PopCat)]) m <- leaflet(cities) %>% addTiles() %>% addMapkeyMarkers(lng = ~Long, lat = ~Lat, label = ~City, clusterOptions = markerClusterOptions(), icon = ~iconSet[PopCat] ) expect_is(m, "leaflet") expect_error( leaflet(cities) %>% addTiles() %>% addMapkeyMarkers(lng = ~Long, lat = ~Lat, label = ~City, icon = ~iconSet[list()]) ) }) test_that("mapkey-error", { expect_error( mapkeyIconList( red = list(icon = "boundary_stone", color = " background = ' iconSize = 30, boxShadow = FALSE)) ) })
EE_SBM = function(A,B,K,fun = c("DPmatching", "EEpost"),rep = NULL,tau = NULL,d = NULL){ n = dim(A)[1] if(!isSymmetric(A)) stop("Error! A is not symmetric!"); if(!isSymmetric(B)) stop("Error! B is not symmetric!"); if(dim(A)[1] != dim(B)[1]) stop("Error! A and B have different sizes"); if(K %% 1 != 0) stop("Error! K is not an integer!"); if(K > n) stop("Error! More communities than nodes!"); est.SC.A = SCORE(A, K); est.SC.B = SCORE(B, K); temp = 1:K; perm = permn(1:K) all_matching = vector("list", K); matched = rep(0, length(perm)); conv = rep(0, length(perm)); if (fun == "DPmatching"){ for (i in 1: length(perm)){ matching = rep(NA, n); for (k in 1: K){ A_com = A[which(est.SC.A == k), which(est.SC.A == k)]; n.A = dim(A_com)[1]; temp1 = which(est.SC.A == k); temp2 = which(est.SC.B == unlist(perm[i])[k]); B_com = B[which(est.SC.B == unlist(perm[i])[k]), which(est.SC.B == unlist(perm[i])[k])]; n.B = dim(B_com)[1]; result = DPmatching(A_com, B_com); matching[temp1[which(!is.na(result$match), arr.ind = TRUE)]] = temp2[na.omit(result$match)]; matched[i] = matched[i] + length(which(!is.na(matched))); } all_matching[[i]] = matching; } } if (fun == "EEpost"){ if (is.null(rep)) stop("Error! Please input rep!"); if (rep %% 1 != 0) stop("Error! rep is not an integer!"); if (rep <= 0) stop("Error! rep is nonpositive!"); if (is.null(d)) stop("Error! Please input d!"); if (d %% 1 != 0) stop("Error! d is not an integer!"); if (d <= 0) stop("Error! d is nonpositive!"); if (is.null(tau)) tau = ceiling(rep/10); if(!is.null(tau)){ if (tau <= 0) stop("Error! tau is nonpositive!") } for (i in 1: length(perm)){ matching = rep(NA, n); for (k in 1: K){ A_com = A[which(est.SC.A == k), which(est.SC.A == k)]; n.A = dim(A_com)[1]; temp1 = which(est.SC.A == k); temp2 = which(est.SC.B == unlist(perm[i])[k]); B_com = B[which(est.SC.B == unlist(perm[i])[k]), which(est.SC.B == unlist(perm[i])[k])]; n.B = dim(B_com)[1]; result = EEpost(A = A_com, B = B_com, rep = rep, tau = tau, d = d); matching[temp1[which(!is.na(result$match), arr.ind = TRUE)]] = temp2[na.omit(result$match)]; conv[i] = conv[i] + result$converged.size; } all_matching[[i]] = matching; } } if (fun == "DPmatching") matching_old = all_matching[[which.max(matched)]]; if (fun == "EEpost") matching_old = all_matching[[which.max(conv)]]; result = EEpost(A = A, B = B, rep = rep, matching = matching_old); return(list(match = result$match, FLAG = result$FLAG)) }
print.AcrossTic <- function (x, ...) { cat ("AcrossTic object\n") if (x$X.supplied) { cat (paste0 ("Data is ", x$nrow.X, " x ", x$ncol.X, ", r = ", x$r, "\n")) } else { cat (paste0 ("Dist of size ", x$nrow.X, ", r = ", x$r, "\n")) } if (any (names (x) == "cross.count")) cat (paste0 ("Solution ", signif (x$total.dist, 4), ", cross-count ", signif (x$cross.count, 4), "\n")) else cat (paste0 ("Solution ", signif (x$total.dist, 4), "\n")) }
ordinalRR.control<-function (mu.mu.alpha = 0.8, tau.mu.alpha = 0.4, mu.tau.alpha = 4, tau.tau.alpha = 0.4, mu.lambda = 2, tau.lambda = 0.2, rjags.B = 10000L, rjags.Burn = 1000L, rjags.n.chains = 1L, rjags.n.adapt = 5000L,r.seed=10L,rjags.seed=10L) { if (!(is.numeric(mu.mu.alpha) && mu.mu.alpha > 0)) {stop("mu.mu.alpha>0")} if (!(is.numeric(tau.mu.alpha) && tau.mu.alpha > 0)) {stop("tau.mu.alpha>0")} if (!(is.numeric(mu.tau.alpha) && mu.tau.alpha > 0)) {stop("mu.tau.alpha>0")} if (!(is.numeric(tau.tau.alpha) && tau.tau.alpha > 0)) {stop("tau.tau.alpha>0")} if (!(is.numeric(mu.lambda) && mu.lambda > 0)) {stop("mu.lambda>0")} if (!(is.numeric(tau.lambda) && tau.lambda > 0)) {stop("tau.lambda>0")} if (!(is.numeric(rjags.B) && rjags.B >= 1)) {stop("rjags.B>=1")} if (!(is.numeric(rjags.Burn) && rjags.Burn > 0)) {stop("rjags.Burn>0")} if (!(is.numeric(rjags.n.chains) && rjags.n.chains == 1)) {stop("rjags.n.chains==1")} if (!(is.numeric(rjags.n.adapt) && rjags.n.adapt >= 1)) {stop("rjags.n.adapt>=1")} if (!(is.numeric(r.seed) && r.seed > 0)) {stop("r.seed>0")} if (!(is.numeric(rjags.seed) && rjags.seed > 0)) {stop("rjags.seed>0")} return(list(mu.mu.alpha = mu.mu.alpha, tau.mu.alpha = tau.mu.alpha, mu.tau.alpha = mu.tau.alpha, tau.tau.alpha = tau.tau.alpha, mu.lambda = mu.lambda, tau.lambda = tau.lambda, rjags.B = rjags.B, rjags.Burn = rjags.Burn, rjags.n.chains = rjags.n.chains, rjags.n.adapt = rjags.n.adapt,r.seed=r.seed,rjags.seed=rjags.seed)) } ordinalRR<-function (x, random = TRUE, control = ordinalRR.control()) { cl <- match.call(expand.dots = TRUE) cl[[1]] <- as.name("ordinalRR") if (!is.list(x)) {stop("x must be a list")} if (is.null(x$preprocess)) {stop("x must be from call .....")} if (!x$preprocess) {stop("x must be from call .....")} dat <- list() dat[[1]] = x$I dat[[2]] = x$J dat[[3]] = x$K dat[[4]] = x$H dat[[5]] = x$R if(random){ dat[[6]] = control$mu.mu.alpha dat[[7]] = control$tau.mu.alpha dat[[8]] = control$mu.tau.alpha dat[[9]] = control$tau.tau.alpha dat[[10]] = control$mu.lambda dat[[11]] = control$tau.lambda names(dat) <- c("I", "J", "K", "H", "R", "mu.mu.alpha", "tau.mu.alpha", "mu.tau.alpha", "tau.tau.alpha", "mu.lambda", "tau.lambda") }else{names(dat) <- c("I", "J", "K", "H", "R")} if (random) { modelString = " model{ for(j in 1:J){ alpha[j]~dlnorm(mu.alpha,tau.alpha) pi[j,1:H]~ddirch(lambda) for(h in 1:(H-1)){delta[j,h]<-qnorm(sum(pi[j,1:h]),0,1)} } for(i in 1:I){ X[i]~dnorm(0,1) for(j in 1:J){ p[i,j,1]<-1 for(h in 2:H){p[i,j,h]<-exp(sum(alpha[j]*(X[i]-delta[j,1:(h-1)])))} R[i,j,1:H]~dmulti(p[i,j,1:H]/sum(p[i,j,1:H]),K) } } mu.alpha ~dnorm( mu.mu.alpha, tau.mu.alpha) tau.alpha~dlnorm(mu.tau.alpha,tau.tau.alpha) for(h in 1:H){lambda[h]~dlnorm(mu.lambda,tau.lambda)} }" } else { modelString = " model{ for(j in 1:J){ alphainv[j]~dgamma(.001,.5) alpha[j]<-1/alphainv[j] pi[j,1:H]~ddirch(lambda) for(h in 1:(H-1)){delta[j,h]<-qnorm(sum(pi[j,1:h]),0,1)} } for(i in 1:I){ X[i]~dnorm(0,1) for(j in 1:J){ p[i,j,1]<-1 for(h in 2:H){p[i,j,h]<-exp(sum(alpha[j]*(X[i]-delta[j,1:(h-1)])))} R[i,j,1:H]~dmulti(p[i,j,1:H]/sum(p[i,j,1:H]),K) } } for(h in 1:H){lambda[h]<-1/2} }" } temp=textConnection(modelString) jfit = jags.model(temp, data = dat, n.chains = control$rjags.n.chains, n.adapt = control$rjags.n.adapt, inits=list(.RNG.name = "base::Mersenne-Twister",.RNG.seed=control$rjags.seed)) close(temp) update(jfit, control$rjags.Burn) obj <- NULL obj$dat=x obj$call <- cl obj$control <- control obj$random <- random if (random) { obj$post <- coda.samples(jfit, c("alpha", "delta", "mu.alpha", "tau.alpha", "lambda", "X"), n.iter = control$rjags.B) obj$x=obj$post[[1]][,1:x$I] obj$a=obj$post[[1]][,x$I+1:x$J] obj$d=obj$post[[1]][,x$I+x$J+1:((x$H-1)*x$J)] temp=seq(from=0,by=x$J,length=x$H-1) permute=NULL for(i in 1:x$J) permute=c(permute,temp+i) obj$d=obj$d[,permute] obj$lambda=obj$post[[1]][,x$I+x$J*x$H+1:x$H] hyper.a=obj$post[[1]][,x$I+(x$J+1)*x$H+1:2] obj$mu.a=hyper.a[,1] obj$sigma.a=1/sqrt(hyper.a[,2]) set.seed(control$r.seed) obj$dnew=cbind(rdelta(obj$lambda),rdelta(obj$lambda)) obj$anew=cbind(rlnorm(control$rjags.B,obj$mu.a,obj$sigma.a), rlnorm(control$rjags.B,obj$mu.a,obj$sigma.a)) } else { obj$post <- coda.samples(jfit, c("alpha","delta","X"),n.iter=control$rjags.B) obj$x=obj$post[[1]][,1:x$I] obj$a=obj$post[[1]][,x$I+1:x$J] obj$d=obj$post[[1]][,x$I+x$J+1:((x$H-1)*x$J)] temp=seq(from=0,by=x$J,length=x$H-1) permute=NULL for(i in 1:x$J) permute=c(permute,temp+i) obj$d=obj$d[,permute] } structure(obj, class = "ordinalRR") } preprocess<-function (x, J = 3, K = 2, H = 4) { if (!is.data.frame(x)) {stop("x must be a data frame.")} if (!(is.numeric(J) && J>=1)) {stop("Number of operators must be J>=1.")} if (!(is.numeric(K) && K>=1)) {stop("Number of repetitions must be K>=1.")} if (!(is.numeric(H) && H>=2)) {stop("Number of ordinal categories must be H>=2.")} if (J * K != ncol(x)){stop("The number of columns in x must be J*K.")} I = nrow(x) R = array(0, c(I, J, H)) for (i in 1:I) { for (j in 1:J) { for (k in 1:K) { if(!sum(x[i,(j - 1) * K + k]==1:H)){stop("Entries of x must be from {1,...,H}.")} R[i, j, x[i, (j - 1) * K + k]] = R[i, j, x[i,(j - 1) * K + k]] + 1 } } } list(I = I, J = J, K = K, H = H, x=x, R = R, preprocess = TRUE) } ordinalRR.sim=function(H=4L,I=30L,J=3L,K=2L,mu.a=2.6,sigma.a=.2,lambda=c(11,44,29,40),seed=10L) { set.seed(seed) dataset=matrix(0,nrow=I,ncol=J*K) a=rlnorm(J,mu.a,sigma.a) d=matrix(0,nrow=J,ncol=H-1) for(j in 1:J) { temp=rgamma(H,lambda) temp=temp/sum(temp) temp=cumsum(temp)[-H] d[j,]=qnorm(temp) } temp=paste("Simulated parameters for operator 1 are: alpha1=", round(a[1],2), " and delta1=(", sep="") for(j in 1:(H-2)) temp=paste(temp,round(d[1,j],2),",",sep="") temp=paste(temp,round(d[1,H-1],2),").",sep="") print(temp) x=rnorm(I) for(i in 1:I) for(j in 1:J) { p=1 for(h in 2:H) p=c(p,exp(sum(a[j]*(x[i]-d[j,1:(h-1)])))) p=p/sum(p) dataset[i,(j-1)*K+1:K]=sample(1:H,K,replace=TRUE,p) } preprocess(as.data.frame(dataset),J,K,H) } make.rater=function(alpha,cutpoints) { obj=list(alpha,cutpoints) names(obj)=c("alpha","cutpoints") structure(obj, class = "rater") } compute.q=function(rater,x) { if (class(rater) != "rater") stop("Object must be of class `rater'") a=rater$alpha d=rater$cutpoints H=length(d)+1 p=sapply(1:(H-1),function(h)a*(x-d[h])) if(is.vector(p)) p=matrix(p,nrow=1) p=t(apply(p,1,cumsum)) p=cbind(0,p) p=exp(p-apply(p,1,max)) p=p/as.vector(apply(p,1,sum)) p } plot.rater=function(x,y,plt.type=c("rater","measure"),m=0,lwd=1.2,...) { glen=10^3 if(plt.type=="rater") { if (class(x) != "rater") stop("Object x must be of class `rater'") alpha=rep(x$alpha,glen) cuts=x$cutpoints delta=matrix(rep(cuts,glen),nrow=glen,byrow=TRUE) xgrid=seq(-3,3,length=glen) p=computep(alpha,xgrid,delta) plot(0,.5,ylim=c(0,1),xlim=c(-3,3),xaxt="n",yaxt="n",type="n",...) box(lwd=lwd) axis(1,-3:3,lwd=lwd) axis(2,(0:4)/4,c("0","","0.5","","1"),lwd=lwd) for(i in 1:4) lines(xgrid,p[,i],lwd=lwd) abline(v=cuts,lty=2) } if(plt.type=="measure") { if (class(x) != "rater") stop("Object x must be of class `rater'") if (class(y) != "rater") stop("Object y must be of class `rater'") if (length(x$cutpoints)!=length(y$cutpoints)) stop("Rater must have same number of cutpoints.") H=length(x$cutpoints)+1 m=m+1 Bm=toeplitz(c(rep(1,m),rep(0,H-m))) xgrid=matrix(seq(-3,3,length=glen),ncol=1) alpha=rep(x$alpha,glen) delta=matrix(rep(x$cutpoints,glen),nrow=glen,byrow=TRUE) p1=computep(alpha,xgrid,delta) alpha=rep(y$alpha,glen) delta=matrix(rep(y$cutpoints,glen),nrow=glen,byrow=TRUE) p2=computep(alpha,xgrid,delta) repeat1=rowSums(p1%*%Bm*p1) repeat2=rowSums(p2%*%Bm*p2) rr=rowSums(p1%*%Bm*p2) prop=rr^2/(repeat1*repeat2) plot(0,.5,ylim=c(0,1),xlim=c(-3,3),xaxt="n",yaxt="n",type="n",...) box(lwd=lwd) axis(1,-3:3,lwd=lwd) axis(2,(0:4)/4,c("0","","0.5","","1"),lwd=lwd) lines(xgrid,rr,lwd=lwd) lines(xgrid,prop,lty=2,lwd=lwd) } } hist.ordinalRR=function(x,x.low=-4,x.high=4,col="grey",...) { if (class(x) != "ordinalRR") stop("Object must be of class `ordinalRR'") den=list() denmax=0 n<-x$dat$I+1 for(i in 1:n) { if(i<=x$dat$I) den[[i]]=density(x$x[,i],from=x.low,to=x.high) if(i>x$dat$I){den[[i]]=den[[i-1]]; den[[i]]$x=seq(x.low,x.high,length=10^3); den[[i]]$y=dnorm(den[[i]]$x)} denmax=max(c(denmax,den[[i]]$y)) } plot(den[[i]]$x,den[[i]]$y, type="n",xlim=c(x.low,x.high),ylim=c(0,denmax),col=col,...) if(length(col)==1)col<-rep(col,n) if(length(col)<n){ col<-c(col,rep("grey",n-length(col)+1)) warning("Color length mismatch, grey's added") } for(i in 1:(x$dat$I+1))lines(den[[i]]$x,den[[i]]$y,col=col[i]) } density.ordinalRR<-function(x,plt.type=c("repeat","rr","prop","all"),m=0,...){ if(class(x)!="ordinalRR")stop("error") I=ncol(x$x) J=ncol(x$a) B=nrow(x$a) if(missing(plt.type)){ plt.type="repeat" } final<-list() k1<-1 for(j1 in 1:(J-1)){ for(j2 in (j1+1):J){ RRavg=matrix(0,nrow=B,ncol=4) for(i in 1:I){ RRavg=RRavg+RR(x,j1,j2,i=i,m=m) } final[[k1]]<-RRavg/I k1<-k1+1 } } if(x$random) { RRnew=matrix(0,nrow=B,ncol=4) for(i in 1:I) RRnew=RRnew+RR(x,J+1,J+2,i=i,m=m) RRnew=RRnew/I } if(plt.type=="all")par(mfrow=c(3,1)) if(plt.type=="repeat"||plt.type=="all"){ temp<-list() temp[[1]]<-density(final[[1]][,1],from=0,to=1) ymax<-max(temp[[1]]$y) for(i in 2:J){ temp[[i]]<-density(final[[i-1]][,2],from=0,to=1) ymax=max(c(ymax,temp[[i]]$y)) } if(plt.type=="all") plot(temp[[1]]$x,temp[[1]]$y,ylim=c(0,ymax),xlab="Repeatability",ylab="",...) else plot(temp[[1]]$x,temp[[1]]$y,ylim=c(0,ymax),...) lapply(temp,function(i){lines(i,col="grey")}) if(x$random)lines(density(RRnew[,1],from=0,to=1),lwd=2) } if(plt.type=="rr"||plt.type=="all"){ temp<-list() temp[[1]]<-density(final[[1]][,3],from=0,to=1) ymax<-max(temp[[1]]$y) for(i in 2:(choose(J,2))){ temp[[i]]<-density(final[[i]][,3],from=0,to=1) ymax=max(c(ymax,temp[[i]]$y)) } if(plt.type=="all") plot(temp[[1]]$x,temp[[1]]$y,ylim=c(0,ymax),xlab="R&R",ylab="Density",...) else plot(temp[[1]]$x,temp[[1]]$y,ylim=c(0,ymax),...) lapply(temp,function(i){lines(i,col="grey")}) if(x$random)lines(density(RRnew[,3],from=0,to=1),lwd=2) } if(plt.type=="prop"||plt.type=="all"){ temp<-list() temp[[1]]<-density(final[[1]][,4],from=0,to=1) ymax<-max(temp[[1]]$y) for(i in 2:(choose(J,2))){ temp[[i]]<-density(final[[i]][,4],from=0,to=1) ymax=max(c(ymax,temp[[i]]$y)) } if(plt.type=="all") plot(temp[[1]]$x,temp[[1]]$y,ylim=c(0,ymax),xlab="Proportion",ylab="",...) else plot(temp[[1]]$x,temp[[1]]$y,ylim=c(0,ymax),...) lapply(temp,function(i){lines(i,col="grey")}) if(x$random)lines(density(RRnew[,4],from=0,to=1),lwd=2) } invisible(x) } print.ordinalRR<-function (x, ...){ if (class(x) != "ordinalRR") stop("Object must be of class `ordinalRR'.") if (!is.null(cl <- x$call)) { names(cl)[2] <- "" cat("Call:\n") dput(cl) } cat("\nData:", x$dat$I, "parts,", x$dat$J, "operators,", x$dat$K, "repetitions with", x$dat$H, "ordinal categories.\n") txt <- "fixed-effects"; if (x$random) {txt <- "random-effects"} cat("\nA single MCMC chain of the", txt, "ordinal model was fit:", x$control$rjags.Burn, "burn-in and", x$control$rjags.B, "retained.\n") invisible(x) } summary.ordinalRR<-function (object, decimals=1,...){ if (class(object) != "ordinalRR") stop("Object must be of class `ordinalRR'.") if (!is.null(cl <- object$call)) { names(cl)[2] <- "" cat("Call:\n") dput(cl) } cat("\nData:", object$dat$I, "parts,", object$dat$J, "operators,", object$dat$K, "repetitions with", object$dat$H, "ordinal categories.\n") txt <- "Fixed-effects"; if (object$random) {txt <- "Random-effects"} cat(txt, "model MCMC chain:", object$control$rjags.Burn, "burn-in and", object$control$rjags.B, "retained.\n") I=object$dat$I J=object$dat$J K=object$dat$K H=object$dat$H x=object$dat$x a=object$a d=object$d matches=rep(0,J) for(j in 1:J) for(k1 in 1:(K-1)) for(k2 in (k1+1):K) matches[j]=matches[j]+sum(x[,K*(j-1)+k1]==x[,K*(j-1)+k2]) matches=round(matches/(I*choose(K,2)),decimals+2) dat=cbind(apply(a,2,median),t(matrix(apply(d,2,median),H-1))) dat=cbind(1:dim(dat)[1],matches,round(dat,decimals)) dimnames(dat)[[2]]=c("Rater j","Repeatability","a_j",paste0("d_{j,",1:(H-1),"}")) cat("\nSimple repeatability and model parameter estimates by rater:\n") print(as.data.frame(dat),row.names=FALSE) matches=rep(0,choose(J,2)) r1=rep(0,choose(J,2)) r2=rep(0,choose(J,2)) b=0 for(j1 in 1:(J-1)) for(j2 in (j1+1):J) { b=b+1 r1[b]=j1 r2[b]=j2 for(k1 in 1:K) for(k2 in 1:K) matches[b]=matches[b]+sum(x[,K*(j1-1)+k1]==x[,K*(j2-1)+k2]) } matches=round(matches/(K^2*I),decimals+2) matches=cbind(r1,r2,matches) dimnames(matches)[[2]]=c("Rater j","Rater j\'","(R&R)_{j,j\'}") cat("\nSimple repeatability and reproducibility (R&R) point estimates for pairs of raters:\n") print(as.data.frame(matches),row.names=FALSE) invisible(object) } rdelta=function(lambda) { B=nrow(lambda) H=ncol(lambda) p=matrix(rgamma(B*H,lambda),nrow=B,ncol=H) p=p/apply(p,1,sum) delta=t(apply(p,1,cumsum))[,-H] delta[delta>1]=1 delta=qnorm(delta) delta } computep=function(a,x,d) { H=ncol(d)+1 p=sapply(1:(H-1),function(h)a*(x-d[,h])) if(is.vector(p)) p=matrix(p,nrow=1) p=t(apply(p,1,cumsum)) p=cbind(0,p) p=exp(p-apply(p,1,max)) p=p/as.vector(apply(p,1,sum)) p } RR=function(g,j1,j2,i=1,m=0) { if(class(g)!="ordinalRR"){stop("some error")} I=ncol(g$x) B=nrow(g$a) J=ncol(g$a) a=g$a d=g$d x=g$x H=ncol(d)/J+1 m=m+1 Bm=toeplitz(c(rep(1,m),rep(0,H-m))) if(j1>j2){temp=j1; j1=j2; j2=temp} same=0; if(j1==j2) same=1 if(j1>J){J=J+1; j1=J; d=cbind(d,g$dnew); a=cbind(a,g$anew)} if(same==1) j2=j1 if(j2>J){J=J+1; j2=J;} p1=computep(a[,j1],x[,i],d[,(j1-1)*(H-1)+1:(H-1)]) if(same==1){p2=p1} else {p2=computep(a[,j2],x[,i],d[,(j2-1)*(H-1)+1:(H-1)])} repeat1=rowSums(p1%*%Bm*p1) repeat2=rowSums(p2%*%Bm*p2) rr=rowSums(p1%*%Bm*p2) prop=rr^2/(repeat1*repeat2) cbind(repeat1,repeat2,rr,prop) }
addGlPolylines = function(map, data, color = cbind(0, 0.2, 1), opacity = 0.6, group = "glpolylines", popup = NULL, weight = 1, layerId = NULL, src = FALSE, ...) { if (isTRUE(src)) { m = addGlPolylinesSrc( map = map , data = data , color = color , opacity = opacity , group = group , popup = popup , weight = weight , layerId = layerId , ... ) return(m) } opacity = opacity[1] if (is.null(group)) group = deparse(substitute(data)) if (inherits(data, "Spatial")) data <- sf::st_as_sf(data) stopifnot(inherits(sf::st_geometry(data), c("sfc_LINESTRING", "sfc_MULTILINESTRING"))) if (inherits(sf::st_geometry(data), "sfc_MULTILINESTRING")) stop("Can only handle LINESTRINGs, please cast your MULTILINESTRING to LINESTRING using sf::st_cast", call. = FALSE) bounds = as.numeric(sf::st_bbox(data)) args <- list(...) palette = "viridis" if ("palette" %in% names(args)) { palette <- args$palette args$palette = NULL } color <- makeColorMatrix(color, data, palette = palette) if (ncol(color) != 3) stop("only 3 column color matrix supported so far") color = as.data.frame(color, stringsAsFactors = FALSE) colnames(color) = c("r", "g", "b") cols = jsonify::to_json(color, digits = 3) if (is.null(popup)) { geom = sf::st_geometry(data) data = sf::st_sf(id = 1:length(geom), geometry = geom) } else if (isTRUE(popup)) { data = data[, popup] } else { htmldeps <- htmltools::htmlDependencies(popup) if (length(htmldeps) != 0) { map$dependencies = c( map$dependencies, htmldeps ) } popup = makePopup(popup, data) popup = jsonify::to_json(popup) geom = sf::st_geometry(data) data = sf::st_sf(id = 1:length(geom), geometry = geom) } if (length(args) == 0) { geojsonsf_args = NULL } else { geojsonsf_args = try( match.arg( names(args) , names(as.list(args(geojsonsf::sf_geojson))) , several.ok = TRUE ) , silent = TRUE ) if (inherits(geojsonsf_args, "try-error")) geojsonsf_args = NULL if (identical(geojsonsf_args, "sf")) geojsonsf_args = NULL } data = do.call(geojsonsf::sf_geojson, c(list(data), args[geojsonsf_args])) map$dependencies = c( glifyDependencies() , map$dependencies ) map = leaflet::invokeMethod( map , leaflet::getMapData(map) , 'addGlifyPolylines' , data , cols , popup , opacity , group , weight , layerId ) leaflet::expandLimits( map, c(bounds[2], bounds[4]), c(bounds[1], bounds[3]) ) } addGlPolylinesSrc = function(map, data, color = cbind(0, 0.2, 1), opacity = 0.8, group = "glpolygons", popup = NULL, weight = 1, layerId = NULL, ...) { if (is.null(group)) group = deparse(substitute(data)) if (is.null(layerId)) layerId = paste0(group, "-lns") if (inherits(data, "Spatial")) data <- sf::st_as_sf(data) stopifnot(inherits(sf::st_geometry(data), c("sfc_LINESTRING", "sfc_MULTILINESTRING"))) if (inherits(sf::st_geometry(data), "sfc_MULTILINESTRING")) stop("Can only handle LINESTRINGs, please cast your MULTILINESTRING ", "to LINESTRING using e.g. sf::st_cast") bounds = as.numeric(sf::st_bbox(data)) dir_data = tempfile(pattern = "glify_polylines_dat") dir.create(dir_data) dir_color = tempfile(pattern = "glify_polylines_col") dir.create(dir_color) dir_popup = tempfile(pattern = "glify_polylines_pop") dir.create(dir_popup) dir_weight = tempfile(pattern = "glify_polylines_wgt") dir.create(dir_weight) data_orig <- data geom = sf::st_geometry(data) data = sf::st_sf(id = 1:length(geom), geometry = geom) ell_args <- list(...) fl_data = paste0(dir_data, "/", layerId, "_data.js") pre = paste0('var data = data || {}; data["', layerId, '"] = ') writeLines(pre, fl_data) jsonify_args = try( match.arg( names(ell_args) , names(as.list(args(geojsonsf::sf_geojson))) , several.ok = TRUE ) , silent = TRUE ) if (inherits(jsonify_args, "try-error")) jsonify_args = NULL if (identical(jsonify_args, "sf")) jsonify_args = NULL cat('[', do.call(geojsonsf::sf_geojson, c(list(data), ell_args[jsonify_args])), '];', file = fl_data, sep = "", append = TRUE) map$dependencies = c( map$dependencies, glifyDependenciesSrc(), glifyDataAttachmentSrc(fl_data, layerId) ) palette = "viridis" if ("palette" %in% names(ell_args)) { palette <- ell_args$palette } color <- makeColorMatrix(color, data_orig, palette = palette) if (ncol(color) != 3) stop("only 3 column color matrix supported so far") color = as.data.frame(color, stringsAsFactors = FALSE) colnames(color) = c("r", "g", "b") if (nrow(color) > 1) { fl_color = paste0(dir_color, "/", layerId, "_color.js") pre = paste0('var col = col || {}; col["', layerId, '"] = ') writeLines(pre, fl_color) cat('[', jsonify::to_json(color), '];', file = fl_color, append = TRUE) map$dependencies = c( map$dependencies, glifyColorAttachmentSrc(fl_color, layerId) ) color = NULL } if (!is.null(popup)) { htmldeps <- htmltools::htmlDependencies(popup) if (length(htmldeps) != 0) { map$dependencies = c( map$dependencies, htmldeps ) } popup = makePopup(popup, data_orig) fl_popup = paste0(dir_popup, "/", layerId, "_popup.js") pre = paste0('var popup = popup || {}; popup["', layerId, '"] = ') writeLines(pre, fl_popup) cat('[', jsonify::to_json(popup), '];', file = fl_popup, append = TRUE) map$dependencies = c( map$dependencies, glifyPopupAttachmentSrc(fl_popup, layerId) ) } if (length(unique(weight)) > 1) { fl_weight = paste0(dir_weight, "/", layerId, "_weight.js") pre = paste0('var wgt = wgt || {}; wgt["', layerId, '"] = ') writeLines(pre, fl_weight) cat('[', jsonify::to_json(weight), '];', file = fl_weight, append = TRUE) map$dependencies = c( map$dependencies, glifyRadiusAttachmentSrc(fl_weight, layerId) ) weight = NULL } map = leaflet::invokeMethod( map , leaflet::getMapData(map) , 'addGlifyPolylinesSrc' , color , weight , opacity , group , layerId ) leaflet::expandLimits( map, c(bounds[2], bounds[4]), c(bounds[1], bounds[3]) ) }
read_version <- function(path, version_flag = "--version") { if (!file.exists(path)) { return(NA_character_) } if (!file_test('-x', path)) { return(NA_character_) } info <- try(system2(path, args = version_flag, stderr = TRUE, stdout = TRUE, timeout = 20), silent = TRUE) if(inherits(info, "try-error")) { message(catch_error(path, version_flag)) info <- NA_character_ } info } catch_error <- function(path, version_flag){ cmd <- tempfile(fileext = ".sh") log <- tempfile(fileext = ".log") writeLines(text = paste(path, version_flag, ">", log, "2>&1"), cmd) Sys.chmod(cmd, mode = "755") suppressWarnings(try(system2(cmd, timeout = 20), silent = TRUE)) message("The following command failed: ", paste(path, version_flag)) message("with following log:") paste0(readLines(log), collapse = "\n") }
"aspect_conv"
n_offs<- function(df=NULL, N=NULL, Tier=NULL){ n<-.<-Date<-tier<-home<-visitor<-hgoal<-vgoal<-goaldif<-FT<-Season<-division<-result<-maxgoal<-mingoal<-absgoaldif<-NULL if(is.null(Tier)) df %>% dplyr::mutate(goaldif = hgoal-vgoal, result = ifelse(hgoal>vgoal, "H", ifelse(hgoal<vgoal, "A", "D"))) %>% dplyr::group_by(FT)%>% dplyr::tally() %>% dplyr::filter(n==N) %>% dplyr::select(FT) %>% dplyr::left_join(df) %>% dplyr::select(Date, Season, home, visitor, FT, division, tier, result)%>% dplyr::arrange(FT, Season) else { dfTier<-df %>% dplyr::mutate(goaldif = hgoal-vgoal, result = ifelse(hgoal>vgoal, "H", ifelse(hgoal<vgoal, "A", "D"))) %>% dplyr::filter(tier==Tier) dfTier %>% dplyr::group_by(FT)%>% dplyr::tally() %>% dplyr::filter(n==N) %>% dplyr::select(FT) %>% dplyr::left_join(dfTier) %>% dplyr::select(Date, Season, home, visitor, FT, division, tier, result)%>% dplyr::arrange(FT, Season) } }
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(`1` = c(2, 1, 4, 3), `2` = c(3, 1.5, 5, 4, 1.5), `3` = c(6.5, 1.5, 9, 8, 1.5, 6.5, 4, 4, 4), `4` = c(7, 1.5, 10, 9, 1.5, 7, 4, 4, 4, 7)), .Dim = 4L, .Dimnames = list(c(\"1\", \"2\", \"3\", \"4\"))), TRUE)")); .Internal(islistfactor(argv[[1]], argv[[2]])); }, o=expected);
'cssSpectrum' <- function(listOfFiles = NULL, optLogFilePath = NULL, beginTime = 0.0, centerTime = FALSE, endTime = 0.0, resolution = 40.0, fftLength = 0, windowShift = 5.0, window = 'BLACKMAN', numCeps = 0, toFile = TRUE, explicitExt = NULL, outputDirectory = NULL, forceToLog = useWrasspLogger, verbose = TRUE){ if (is.null(listOfFiles)) { stop(paste("listOfFiles is NULL! It has to be a string or vector of file", "paths (min length = 1) pointing to valid file(s) to perform", "the given analysis function.")) } if (is.null(optLogFilePath) && forceToLog){ stop("optLogFilePath is NULL! -> not logging!") }else{ if(forceToLog){ optLogFilePath = path.expand(optLogFilePath) } } if(!isAsspWindowType(window)){ stop("WindowFunction of type '", window,"' is not supported!") } if (!is.null(outputDirectory)) { outputDirectory = normalizePath(path.expand(outputDirectory)) finfo <- file.info(outputDirectory) if (is.na(finfo$isdir)) if (!dir.create(outputDirectory, recursive=TRUE)) stop('Unable to create output directory.') else if (!finfo$isdir) stop(paste(outputDirectory, 'exists but is not a directory.')) } listOfFiles <- prepareFiles(listOfFiles) if(length(listOfFiles)==1 | !verbose){ pb <- NULL }else{ if(toFile==FALSE){ stop("length(listOfFiles) is > 1 and ToFile=FALSE! ToFile=FALSE only permitted for single files.") } cat('\n INFO: applying cssSpectrum to', length(listOfFiles), 'files\n') pb <- utils::txtProgressBar(min = 0, max = length(listOfFiles), style = 3) } externalRes = invisible(.External("performAssp", listOfFiles, fname = "spectrum", beginTime = beginTime, centerTime = centerTime, endTime = endTime, spectrumType = 'CSS', resolution = resolution, fftLength = as.integer(fftLength), windowShift = windowShift, window = window, numCeps = as.integer(numCeps), toFile = toFile, explicitExt = explicitExt, progressBar = pb, outputDirectory = outputDirectory, PACKAGE = "wrassp")) if (forceToLog){ optionsGivenAsArgs = as.list(match.call(expand.dots = TRUE)) wrassp.logger(optionsGivenAsArgs[[1]], optionsGivenAsArgs[-1], optLogFilePath, listOfFiles) } if(!is.null(pb)){ close(pb) }else{ return(externalRes) } }
cluster_call <- function(pairs, fun, ...) { res <- clusterCall(pairs$cluster, function(name, fun, ...) { env <- reclin_env[[name]] pairs <- env$pairs x <- attr(pairs, "x") y <- attr(pairs, "y") fun(pairs, x, y, ...) }, pairs$name, fun, ...) if (all(sapply(res, function(x) is.null(x) || length(x) == 0))) invisible(res) else res }
gpLogLikeGradients <- function(model, X=model$X, M, X_u, gX_u.return=FALSE, gX.return=FALSE, g_beta.return=FALSE) { if (missing(X_u)) { X_u = list() if ("X_u" %in% names(model)) X_u = model$X_u if (missing(M) && (!"S" %in% names(model))) M = model$m } gX_u = list() gX = list() g_scaleBias = gpScaleBiasGradient(model) g_meanFunc = list() if ("meanFunction" %in% names(model) && length(model$meanFunction)>0) g_meanFunc = gpMeanFunctionGradient(model) if (model$approx == "ftc") { if (gX_u.return && gX.return) { gKX = kernGradX(model$kern, X, X) gKX = gKX*2 dgKX = kernDiagGradX(model$kern, X) for (i in 1:model$N) gKX[i, , i] = dgKX[i, ] gX = matrix(0, model$N, model$q) } g_param = matrix(0, 1, model$kern$nParams) g_beta = list() if ("beta" %in% names(model)) g_beta = 0 if ("S" %in% names(model)) { gK = localSCovarianceGradients(model) if (gX_u.return && gX.return) { counter = 0 for (i in 1:model$N) { counter = counter + 1 for (j in 1:model$q) gX[i, j] = gX[i, j] + t(gKX[, j, i,drop=FALSE]) %*% gK[, counter,drop=FALSE] } } g_param = g_param + kernGradient(model$kern, X, gK) } else { for (k in 1:model$d) { gK = localCovarianceGradients(model, M[, k], k) if (gX_u.return && gX.return) { ind = gpDataIndices(model, k) counter = 0 for (i in ind) { counter = counter + 1 for (j in 1:model$q) gX[i, j] = gX[i, j] + gKX[ind, j, i,drop=FALSE]%*%gK[, counter,drop=FALSE] } } if (model$isMissingData){ g_param = g_param + kernGradient(model$kern, X[model$indexPresent[[k]], ], gK) } else g_param = g_param + kernGradient(model$kern, X, gK) } if ("beta" %in% names(model) && model$optimiseBeta) { model$beta = as.matrix(model$beta) if (dim(model$beta)[1] == 1) g_beta = g_beta + sum(diag(gK)) else if (dim(model$beta)[2]==1 && dim(model$beta)[1]==model$N) g_beta = g_beta + diag(gK) else if (dim(model$beta)[2]==model$d && dim(model$beta)[1]==model$N) g_beta[, k] = diag(gK) else stop('Unusual dimensions for model$beta.') } } } else if (model$approx %in% c("dtc", "dtcvar", "fitc", "pitc")) { gK = gpCovGrads(model, M) gK_uu=gK$gK_uu; gK_uf=gK$gK_uf; gK_star=gK$g_Lambda; g_beta=gK$gBeta gParam_u = kernGradient(model$kern, X_u, gK_uu) gParam_uf = kernGradient(model$kern, X_u, X, gK_uf) g_param = gParam_u + gParam_uf gKX = kernGradX(model$kern, X_u, X_u) gKX = gKX*2 dgKX = kernDiagGradX(model$kern, X_u) for (i in 1:model$k) gKX[i, , i] = dgKX[i, ] if (!model$fixInducing || gX_u.return || gX.return || g_beta.return) { gX_u = matrix(0, model$k, model$q) for (i in 1:model$k) { for (j in 1:model$q) gX_u[i, j] = t(gKX[, j, i]) %*% gK_uu[, i,drop=FALSE] } gKX_uf = kernGradX(model$kern, X_u, X) for (i in 1:model$k) { for (j in 1:model$q) gX_u[i, j] = gX_u[i, j] + t(gKX_uf[, j, i]) %*% t(gK_uf[i, ,drop=FALSE]) } } if (gX_u.return && gX.return) { gX = matrix(0, model$N, model$q) gKX_uf = kernGradX(model$kern, X, X_u) for (i in 1:model$N) { for (j in 1:model$q) gX[i, j] = t(gKX_uf[, j, i,drop=FALSE]) %*% gK_uf[, i,drop=FALSE] } } } else stop("Unknown model approximation.") if (model$approx == "ftc") { } else if (model$approx == "dtc") { } else if (model$approx %in% c("fitc","dtcvar")) { if (gX_u.return && gX.return) { gKXdiag = kernDiagGradX(model$kern, X) for (i in 1:model$N) gX[i, ] = gX[i, ] + gKXdiag[i, ]%*%gK_star[i] } g_param = g_param + kernDiagGradient(model$kern, X, gK_star) } else if (model$approx == "pitc") { if (gX_u.return && gX.return) { startVal = 1 for (i in 1:length(model$blockEnd)) { endVal = model$blockEnd[i] ind = startVal:endVal gKXblock = kernGradX(model$kern, X[ind, ,drop=FALSE], X[ind, ,drop=FALSE]) gKXblock = gKXblock*2 dgKXblock = kernDiagGradX(model$kern, X[ind, ,drop=FALSE]) for (j in 1:length(ind)) gKXblock[j, , j] = dgKXblock[j, ] for (j in ind) { for (k in 1:model$q) { subInd = j - startVal + 1 gX[j, k] = gX[j, k] + t(gKXblock[, k, subInd,drop=FALSE]) %*% gK_star[[i]][, subInd,drop=FALSE] } } startVal = endVal + 1 } } for (i in 1:length(model$blockEnd)) { ind = gpBlockIndices(model, i) g_param = g_param + kernGradient(model$kern, X[ind, ,drop=FALSE], gK_star[[i]]) } } else stop("Unrecognised model approximation") if (!(gX_u.return && gX.return && g_beta.return)) { if ((!"optimiseBeta" %in% names(model) && model$approx!="ftc") || model$optimiseBeta) gParam = unlist(c(g_param, g_meanFunc, g_scaleBias, g_beta)) else gParam = unlist(c(g_param, g_meanFunc, g_scaleBias)) } else gParam = unlist(c(g_param, g_meanFunc, g_scaleBias)) if (!(gX_u.return || gX.return || g_beta.return)) gParam = c(gX_u, gParam) return (as.numeric(gParam)) }
feem <- function(x, ...) UseMethod('feem') feem.character <- feem.connection <- function(x, format, ...) { stopifnot(length(x) == 1) switch( match.arg(format, c('table', 'panorama')), table = read.matrix, panorama = read.panorama, )(x, ...) } feem.matrix <- function(x, emission, excitation, scale = 1, ...) { stopifnot( length(list(...)) == 0, is.numeric(x), length(emission) == nrow(x), length(excitation) == ncol(x) ) structure( x, emission = emission, excitation = excitation, scale = unname(scale), dimnames = list(emission = emission, excitation = excitation), class = 'feem' ) } feem.data.frame <- function( x, scale = 1, emission = 'emission', excitation = 'excitation', intensity = 'intensity', ... ) { stopifnot( length(list(...)) == 0, ncol(x) == 3, is.numeric(x[,emission]), is.numeric(x[,excitation]), is.numeric(x[,intensity]) ) ret <- reshape( x, direction = 'wide', v.names = intensity, idvar = emission, timevar = excitation ) feem(as.matrix(ret[,-1]), ret[,1], attr(ret, 'reshapeWide')$times) } as.data.frame.feem <- function(x, row.names = NULL, optional = FALSE, ...) data.frame( emission = attr(x, 'emission')[row(x)][!is.na(x)], excitation = attr(x, 'excitation')[col(x)][!is.na(x)], intensity = x[!is.na(x)], row.names = row.names, ... ) plot.feem <- function( x, xlab = quote(lambda[em]*', nm'), ylab = quote(lambda[ex]*', nm'), cuts = 128, col.regions = marine.colours(256), ... ) levelplot( x = intensity ~ emission + excitation, data = as.data.frame(x), xlab = xlab, ylab = ylab, cuts = cuts, col.regions = col.regions, ... ) `[.feem` <- function(x, i, j, drop = TRUE) { ret <- NextMethod() if (!is.matrix(ret)) return(ret) feem( ret, emission = attr(x, 'emission')[i], excitation = attr(x, 'excitation')[j], scale = attr(x, 'scale') ) } `[<-.feem` <- function(x, i, j, value) { if (inherits(value, 'feem')) { stopifnot( attr(x, 'emission')[i] == attr(value, 'emission'), attr(x, 'excitation')[j] == attr(value, 'excitation') ) if (attr(x, 'scale') != attr(value, 'scale')) warning( 'Assigning from FEEM with different scale: LHS(', attr(x, 'scale'), ') != RHS(', attr(value, 'scale'), ')' ) } NextMethod() }
put_object <- function( what, object, bucket, multipart = FALSE, acl = NULL, file, headers = list(), verbose = getOption("verbose", FALSE), show_progress = getOption("verbose", FALSE), partsize = 10e7, ... ) { if (missing(what) && missing(file)) stop("Either `what' or `file' must be specified") if (!missing(what) && !missing(file)) stop("`what' and `file' are mutually exclusive") if (!missing(what) && is.character(what) && length(what) == 1L && file.exists(what)) { warning("The use of first argument in `put_object()' as filename is was ambiguous and is deprecated, please use file=") file <- what } size <- NA if (!missing(file)) { if (inherits(file, "connection")) what <- file else { size <- file.size(file) what <- file(file, raw=TRUE) } } what.info <- if (inherits(what, "connection")) summary(what) else NULL if (missing(object) && inherits(what, "connection") && what.info$class == "file") { if (missing(bucket)) stop("`bucket' must be specified if `object' is missing") object <- what.info$description } else if (missing(object)) { stop("input is not a file connection, you must specify `object'") } else { if (missing(bucket)) { bucket <- get_bucketname(object) } object <- get_objectkey(object) } if (inherits(what, "connection")) { if (isOpen(what, "w") && !isOpen(what, "r")) stop("Input connection is already open for writing only, cannot use as input.") if (isOpen(what,"r") && what.info$text == "text") { if (multipart && (is.na(size) || size > partsize)) stop("Input connection is already open in text mode, multipart uploads are only possible in binary mode.") warning("Input connection is already open in text mode, have to fall back to reading lines which is inefficient and result will be platform-dependent.") con <- what what <- readLines(what) close(con) if (length(what)) what <- c(what, "") } } if (is.character(what)) { if (length(what) > 1) what <- paste(what, collapse=if (.Platform$OS.type == "unix") "\n" else "\r\n") what <- if (length(what)) charToRaw(what) else raw() } if (!(inherits(what, "connection") || is.raw(what))) stop("Invalid payload of `what' - must be a raw vector, character vector or a connection") if (is.na(size)) { if (inherits(what, "connection") && summary(what)$class == "file") { size <- file.size(summary(what)$description) } else if (is.raw(what)) { size <- length(what) } } if (multipart && !is.na(size) && size <= partsize) { if (verbose) message("Content too small, uploading as single part") multipart <- FALSE } if (!"x-amz-acl" %in% names(headers)) { if (!is.null(acl)) { acl <- match.arg(acl, c("private", "public-read", "public-read-write", "aws-exec-read", "authenticated-read", "bucket-owner-read", "bucket-owner-full-control")) headers <- c(headers, list(`x-amz-acl` = acl)) } else { headers <- c(headers, list(`x-amz-acl` = "private")) } } if (isTRUE(multipart)) { if (!is.finite(partsize)) stop("partsize must be finite for multipart uploads") if (is.raw(what)) { what <- rawConnection(what, "rb") } else if (!isOpen(what, "r")) { open(what, "rb") } on.exit(close(what)) if (isTRUE(verbose)) { message("Initializing multi-part upload") } initialize <- post_object(file = raw(0), object = object, bucket = bucket, query = list(uploads = ""), headers = headers, ...) id <- initialize[["UploadId"]] abort.upload <- function(id) delete_object(object = object, bucket = bucket, query = list(uploadId = id), ...) on.exit(abort.upload(id), TRUE) partlist <- list() i <- 0L n <- ceiling(size / partsize) repeat { i <- i + 1L if (verbose || show_progress) { if (is.na(n)) message("Uploading part ", i) else message("Uploading part ", i, " of ", n) } data <- readBin(what, raw(), n=partsize) if (length(data) == 0) break r <- s3HTTP(verb = "PUT", bucket = bucket, path = paste0('/', object), query = list(partNumber = i, uploadId = id), request_body = data, verbose = verbose, show_progress = show_progress, ...) if (inherits(r, "try-error")) { stop("Multi-part upload failed") } else { partlist[[i]] <- list(Part = list(PartNumber = list(i), ETag = list(attributes(r)[["etag"]]))) } } if (verbose || show_progress) { message("Completing multi-part upload") } finalize <- complete_parts(object = object, bucket = bucket, id = id, parts = partlist, ...) if (inherits(finalize, "try-error")) stop("complete_parts() failed with ", finalize) on.exit(NULL) close(what) return(TRUE) } if (!is.na(size) && size > partsize) message("File size is ", size, ", consider setting using multipart=TRUE") if (inherits(what, "connection")) { con <- what if (!isOpen(con, "r")) open(con, "rb") on.exit(close(con)) if (!is.na(size)) { what <- readBin(con, raw(), size) if (length(what) != size) stop("Failed to read input, expected ", size, ", got ", length(what)) } else { what <- raw() n <- if (is.finite(partsize)) partsize else 10e6 while (length(data <- readBin(con, raw(), partsize))) { if (length(what) == 0 && length(data) == partsize) message("Input is larger than partsize, consider using multipart=TRUE") what <- c(what, data) } } } r <- s3HTTP(verb = "PUT", bucket = bucket, path = paste0('/', object), headers = headers, request_body = what, verbose = verbose, show_progress = show_progress, ...) if (!length(r)) TRUE else structure(FALSE, response=r) } put_folder <- function(folder, bucket, ...) { if (!grepl("/$", folder)) { folder <- paste0(folder, "/") } put_object(raw(0), object = folder, bucket = bucket, ...) } post_object <- function(file, object, bucket, headers = list(), ...) { if (missing(object) && is.character(file)) { object <- basename(file) } else { if (missing(bucket)) { bucket <- get_bucketname(object) } object <- get_objectkey(object) } if (!"Content-Length" %in% names(headers)) { headers <- c(headers, list(`Content-Length` = formatSize(calculate_data_size(file)))) } r <- s3HTTP(verb = "POST", bucket = bucket, path = paste0("/", object), headers = headers, request_body = file, ...) structure(r, class = "s3_object") } list_parts <- function(object, bucket, id, ...) { if (missing(bucket)) { bucket <- get_bucketname(object) } object <- get_objectkey(object) get_object(object = object, bucket = bucket, query = list(uploadId = id), ...) } upload_part <- function(part, object, bucket, number, id, ...) { if (missing(bucket)) { bucket <- get_bucketname(object) } object <- get_objectkey(object) query <- list(partNumber = number, uploadId = id) put_object(file = part, object = object, bucket = bucket, query = query, multipart = FALSE, ...) } complete_parts <- function(object, bucket, id, parts, ...) { if (missing(bucket)) { bucket <- get_bucketname(object) } object <- get_objectkey(object) tmp <- tempfile() xml2::write_xml(xml2::as_xml_document(list(CompleteMultipartUpload = parts)), tmp, options = "no_declaration") post_object(file = tmp, object = object, bucket = bucket, query = list(uploadId = id), ...) } get_uploads <- function(bucket, ...){ r <- s3HTTP(verb = "GET", bucket = bucket, query = list(uploads = ""), ...) return(r) } calculate_data_size <- function(data) { post_size <- 0 if (is.character(data)) { if (file.exists(data)) { post_size <- file.size(data) } else { post_size <- nchar(data) } } else if (is.null(data)) { post_size <- 0 } else { post_size <- length((data)) } return(as.numeric(post_size)) } formatSize <- function(size) { format(size, scientific = FALSE) }
babsimHospital <- function(arrivalTimes = NULL, conf = list(), para = list(), ...) { RNGkind("Wich") conf$logLevel <- min(1, conf$logLevel) simRepeats <- conf$simRepeats Amnt_Normal_Beds <- conf$maxCapacity Amnt_Intensive_Care_Beds <- conf$maxCapacity Amnt_Intensive_Care_Beds_Ventilation <- conf$maxCapacity GammaShapeParameter <- para$GammaShapeParameter if (!"risk" %in% colnames(arrivalTimes)) { arrivalTimes$risk <- rep(1, length(arrivalTimes$time)) } P <- getMatrixP(para = para) calculateAllPMatrices <- function() { possibleRisks <- unique(arrivalTimes$risk) getSingleMatrix <- function(singleRisk) { updateMatrixP(P = P, u = list(k = singleRisk)) } possibleMatrices <- lapply(as.list(possibleRisks), getSingleMatrix) names(possibleMatrices) <- round(possibleRisks, 5) return(possibleMatrices) } Ps <- calculateAllPMatrices() DurationInfected2Hospital <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysInfectedToHospital, shift = 1.0, alpha = 0.95) DurationNormal2Healthy <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysNormalToHealthy, alpha = 0.95) DurationNormal2Intensive <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysNormalToIntensive, alpha = 0.95) DurationNormal2Ventilation <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysNormalToVentilation, alpha = 0.95) DurationNormal2Death <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysNormalToDeath, alpha = 0.95) DurationIntensive2Aftercare <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysIntensiveToAftercare, alpha = 0.95) DurationIntensive2Ventilation <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysIntensiveToVentilation, alpha = 0.95) DurationIntensive2Death <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysIntensiveToDeath, alpha = 0.95) DurationVentilation2IntensiveAfter <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysVentilationToIntensiveAfter, alpha = 0.95) DurationVentilation2Death <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysVentilationToDeath, alpha = 0.95) DurationIntensiveAfter2Aftercare <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysIntensiveAfterToAftercare, alpha = 0.95) DurationIntensiveAfter2Death <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysIntensiveAfterToDeath, alpha = 0.95) DurationAftercare2Healthy <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysAftercareToHealthy, alpha = 0.95) DurationIntensiveAfter2Healthy <- function() rtgamma(n = 1, shape = GammaShapeParameter, rate = 1 / para$AmntDaysIntensiveAfterToHealthy, alpha = 0.95) simFun <- function(i) { env <- simmer("Simulation", log_level = conf$logLevel) transferout <- trajectory("No Hospital") %>% log_("transferout", level = 1) %>% set_global("No Hospital Required", 1, mod = "+") healthy <- trajectory("healthy") %>% log_("healthy", level = 1) %>% set_global("Healed", 1, mod = "+") death <- trajectory("death") %>% log_("death", level = 1) %>% set_global("Dead", 1, mod = "+") aftercare <- trajectory("aftercare") %>% log_("aftercare", level = 1) %>% seize("bed", 1) %>% join( trajectory() %>% timeout(DurationAftercare2Healthy) %>% release_all("bed"), healthy ) intensiveAfter <- join( trajectory("intensiveAfter") %>% log_("intensiveAfter", level = 1) %>% seize("intensiveBed", 1) %>% branch(function() { r <- get_attribute(env, "risk") R <- Ps[[as.character(round(r, 5))]] p <- c( R[7, 8], R[7, 9], R[7, 10] ) getDecision(p) }, continue = FALSE, join( trajectory() %>% timeout(DurationIntensiveAfter2Death) %>% release_all("intensiveBed"), death ), join( trajectory() %>% timeout(DurationIntensiveAfter2Healthy) %>% release_all("intensiveBed"), healthy ) ) %>% timeout(DurationIntensiveAfter2Aftercare) %>% release_all("intensiveBed"), aftercare ) ventilation <- join( trajectory("Intensive Care Ventilation") %>% log_("ventilation", level = 1) %>% seize("intensiveBedVentilation", 1) %>% branch(function() { r <- get_attribute(env, "risk") R <- Ps[[as.character(round(r, 5))]] p <- c( R[6, 9], R[6, 7] ) getDecision(p) }, continue = FALSE, join( trajectory() %>% timeout(DurationVentilation2IntensiveAfter) %>% release_all("intensiveBedVentilation"), intensiveAfter ) ) %>% timeout(DurationVentilation2Death) %>% release_all("intensiveBedVentilation"), death ) intensive <- join( trajectory("Intensive Care") %>% log_("intensive", level = 1) %>% seize("intensiveBed", 1) %>% branch( function() { r <- get_attribute(env, "risk") R <- Ps[[as.character(round(r, 5))]] p <- c( R[5, 8], R[5, 6], R[5, 9] ) getDecision(p) }, continue = FALSE, join( trajectory() %>% timeout(DurationIntensive2Ventilation) %>% release_all("intensiveBed"), ventilation ), join( trajectory() %>% timeout(DurationIntensive2Death) %>% release_all("intensiveBed"), death ) ) %>% timeout(DurationIntensive2Aftercare) %>% release_all("intensiveBed"), aftercare ) normalStation <- trajectory("Normal Station") %>% log_("normalStation", level = 1) %>% seize("bed") %>% branch( function() { r <- get_attribute(env, "risk") R <- Ps[[as.character(round(r, 5))]] p <- c( R[4, 10], R[4, 5], R[4, 9], R[4, 6] ) getDecision(p) }, continue = FALSE, join( trajectory() %>% timeout(DurationNormal2Intensive) %>% release_all("bed"), intensive ), join( trajectory() %>% timeout(DurationNormal2Death) %>% release_all("bed"), death ), join( trajectory() %>% timeout(DurationNormal2Ventilation) %>% release_all("bed"), ventilation ) ) %>% join( trajectory() %>% timeout(DurationNormal2Healthy) %>% release_all("bed"), healthy ) hospital <- join( trajectory("hospital") %>% log_("hospital", level = 1) %>% branch( function() { r <- get_attribute(env, "risk") R <- Ps[[as.character(round(r, 5))]] p <- c( R[3, 4], R[3, 5], R[3, 6] ) getDecision(p) }, continue = FALSE, intensive, ventilation ), normalStation ) infected <- join( trajectory("New Infected") %>% log_("infected", level = 1) %>% timeout(DurationInfected2Hospital) %>% branch(function() { r <- get_attribute(env, "risk") R <- Ps[[as.character(round(r, 5))]] p <- c( R[1, 2], R[1, 3] ) getDecision(p) }, continue = FALSE, hospital ), transferout ) add_dataframe( env, name_prefix = "patient", trajectory = infected, data = arrivalTimes, mon = 1, col_time = "time", time = "absolute", col_attributes = c("risk") ) env %>% add_resource("bed", Amnt_Normal_Beds) %>% add_resource("intensiveBed", Amnt_Intensive_Care_Beds) %>% add_resource( "intensiveBedVentilation", Amnt_Intensive_Care_Beds_Ventilation ) %>% run() %>% wrap() } switch(Sys.info()[["sysname"]], Windows = { messagef("Windows detected. Turning off parallel processing.") conf$parallel <- FALSE }, Linux = { if (conf$verbosity > 1e3) { messagef("Linux detected. Parallel processing possible.") } }, Darwin = { if (conf$verbosity > 1e3) { messagef("Mac detected. Parallel processing possible.") } } ) if (conf$verbosity > 1e3) { messagef("simFun() uses the following %s arrival times:", length(arrivalTimes$time)) print(arrivalTimes$time) } if (conf$parallel) { nCores <- detectCores(logical = FALSE) mc.coresN = min(nCores - 1, round(conf$percCores * nCores)) mc.coresN = max(mc.coresN, 1) if (conf$verbosity > 1e2) { messagef("BEGIN: babsimHospital() calling parallel simFun() with %s cores: mc.coresN) } envs <- mclapply(1:simRepeats, simFun, mc.cores = getOption("mc.cores", mc.coresN)) } else { if (conf$verbosity > 1e2) { messagef("BEGIN: babsimHospital() calling sequential simFun(): } envs <- lapply(1:simRepeats, simFun) } if (conf$verbosity > 1e2) { printConf(conf) messagef("END: babsimHospital(): simFun: } return(envs) }
input_df1 <- suppressMessages(input_processing(RA_input[1:100, ], p_val_threshold = 0.05, pin_name_path = "Biogrid")) input_df2 <- suppressMessages(input_processing(RA_input[1:2, ], p_val_threshold = 0.05, pin_name_path = "Biogrid")) test_that("`active_snw_search()` returns list object", { skip_on_cran() expect_message(snw_list <- active_snw_search(input_for_search = input_df1), "Found [1-9]\\d* active subnetworks") expect_is(snw_list, "list") expect_is(snw_list[[1]], "character") expect_true(length(snw_list) > 0) unlink("active_snw_search", recursive = TRUE) expect_message(snw_list <- active_snw_search(input_for_search = input_df2, sig_gene_thr = 1), "Found 0 active subnetworks") expect_identical(snw_list, list()) unlink("active_snw_search", recursive = TRUE) dummy_dir <- file.path(tempdir(check = TRUE), "dummy_dir") dir.create(dummy_dir) expect_message(snw_list <- active_snw_search(input_for_search = input_df1, dir_for_parallel_run = dummy_dir), "Found [1-9]\\d* active subnetworks") expect_true(file.exists(file.path(dummy_dir, "active_snw_search/active_snws.txt"))) }) test_that("All search methods for `active_snw_search()` work", { skip_on_cran() expect_message(snw_list <- active_snw_search(input_for_search = input_df1, pin_name_path = "Biogrid", search_method = "GR"), "Found [1-9]\\d* active subnetworks") expect_is(snw_list, "list") expect_is(snw_list[[1]], "character") unlink("active_snw_search", recursive = TRUE) skip("will test SA and GA if we can create a suitable (faster and non-empty) test case") expect_message(snw_list <- active_snw_search(input_for_search = input_df1, pin_name_path = "Biogrid", search_method = "SA"), "Found [1-9]\\d* active subnetworks") expect_is(snw_list, "list") expect_is(snw_list[[1]], "character") unlink("active_snw_search", recursive = TRUE) expect_message(snw_list <- active_snw_search(input_for_search = input_df1, pin_name_path = "Biogrid", search_method = "GA"), "Found [1-9]\\d* active subnetworks") expect_is(snw_list, "list") expect_is(snw_list[[1]], "character") unlink("active_snw_search", recursive = TRUE) }) test_that("`active_snw_search()` arg checks work", { expect_error(snw_list <- active_snw_search(input_for_search = list()), "`input_for_search` should be data frame") invalid_input <- input_df2[, 3:4] cnames <- c("GENE", "P_VALUE") expect_error(snw_list <- active_snw_search(input_for_search = invalid_input), paste0("`input_for_search` should contain the columns ", paste(dQuote(cnames), collapse = ","))) expect_error(snw_list <- active_snw_search(input_for_search = input_df2, snws_file = "[/]"), "`snws_file` may be containing forbidden characters. Please change and try again") valid_mets <- c("GR", "SA", "GA") expect_error(active_snw_search(input_for_search = input_df2, search_method = "INVALID"), paste0("`search_method` should be one of ", paste(dQuote(valid_mets), collapse = ", "))) expect_error(active_snw_search(input_for_search = input_df2, silent_option = "WRONG"), "`silent_option` should be either TRUE or FALSE") expect_error(active_snw_search(input_for_search = input_df2, use_all_positives = "INVALID"), "`use_all_positives` should be either TRUE or FALSE") }) sample_path <- system.file("extdata/resultActiveSubnetworkSearch.txt", package = "pathfindR") example_snws_len <- 20 test_that("`filterActiveSnws()` returns list object", { skip_on_cran() tmp_filtered <- filterActiveSnws(active_snw_path = sample_path, sig_genes_vec = RA_input$Gene.symbol) expect_is(tmp_filtered, "list") expect_length(tmp_filtered, 2) expect_is(tmp_filtered$subnetworks, "list") expect_is(tmp_filtered$scores, "numeric") expect_is(tmp_filtered$subnetworks[[1]], "character") expect_true(length(tmp_filtered$subnetworks) <= example_snws_len) empty_path <- tempfile("empty", fileext = ".txt") file.create(empty_path) expect_null(suppressWarnings(filterActiveSnws(active_snw_path = empty_path, sig_genes_vec = RA_input$Gene.symbol))) }) test_that("`score_quan_thr` in `filterActiveSnws()` works", { skip_on_cran() tmp_filtered <- filterActiveSnws(active_snw_path = sample_path, sig_genes_vec = RA_input$Gene.symbol, score_quan_thr = -1, sig_gene_thr = 0) expect_length(tmp_filtered$subnetworks, example_snws_len) for (q_thr in seq(.1, 1, by = .1)) { tmp_filtered <- filterActiveSnws(active_snw_path = sample_path, sig_genes_vec = RA_input$Gene.symbol, score_quan_thr = q_thr, sig_gene_thr = 0) exp_len <- example_snws_len * (1 - q_thr) expect_length(tmp_filtered$subnetworks, as.integer(exp_len + .5)) } }) test_that("`sig_gene_thr` in `filterActiveSnws()` works", { skip_on_cran() tmp_filtered1 <- filterActiveSnws(active_snw_path = sample_path, sig_genes_vec = RA_input$Gene.symbol, sig_gene_thr = 0.02, score_quan_thr = -1) tmp_filtered2 <- filterActiveSnws(active_snw_path = sample_path, sig_genes_vec = RA_input$Gene.symbol, sig_gene_thr = 0.1, score_quan_thr = -1) expect_true(length(tmp_filtered2$subnetworks) < example_snws_len) expect_true(length(tmp_filtered1$subnetworks) > length(tmp_filtered2$subnetworks)) }) test_that("`filterActiveSnws()` arg checks work", { expect_error(filterActiveSnws(active_snw_path = "this/is/not/a/valid/path"), "The active subnetwork file does not exist! Check the `active_snw_path` argument") expect_error(filterActiveSnws(active_snw_path = sample_path, sig_genes_vec = list()), "`sig_genes_vec` should be a vector") expect_error(filterActiveSnws(active_snw_path = sample_path, sig_genes_vec = RA_input$Gene.symbol, score_quan_thr = "INVALID"), "`score_quan_thr` should be numeric") expect_error(filterActiveSnws(active_snw_path = sample_path, sig_genes_vec = RA_input$Gene.symbol, score_quan_thr = -2), "`score_quan_thr` should be in \\[0, 1\\] or -1 \\(if not filtering\\)") expect_error(filterActiveSnws(active_snw_path = sample_path, sig_genes_vec = RA_input$Gene.symbol, score_quan_thr = 2), "`score_quan_thr` should be in \\[0, 1\\] or -1 \\(if not filtering\\)") expect_error(filterActiveSnws(active_snw_path = sample_path, sig_genes_vec = RA_input$Gene.symbol, sig_gene_thr = "INVALID"), "`sig_gene_thr` should be numeric") expect_error(filterActiveSnws(active_snw_path = sample_path, sig_genes_vec = RA_input$Gene.symbol, sig_gene_thr = -1), "`sig_gene_thr` should be in \\[0, 1\\]") }) test_that("`visualize_active_subnetworks()` returns list of ggraph objects", { empty_path <- tempfile("empty", fileext = ".txt") file.create(empty_path) expect_null(visualize_active_subnetworks(active_snw_path = empty_path, genes_df = RA_input[1:5,])) skip_on_cran() input_df <- RA_input[1:10, ] g_list <- visualize_active_subnetworks(sample_path, input_df) expect_is(g_list, "list") expect_is(g_list[[1]], "ggraph") expect_true(length(g_list) <= example_snws_len) g_list <- visualize_active_subnetworks(sample_path, input_df, num_snws = 21) expect_is(g_list, "list") expect_is(g_list[[1]], "ggraph") expect_length(g_list, 3) })
"msfd" <- function(a,b,n) { if (missing(a)) messagena("a") if (missing(b)) messagena("b") if (missing(n)) messagena("n") nn <- length(a) m <- ncol(b) mdb <- nrow(b) mdc <- n c <- matrix(double(1),mdc,m) f.res <- .Fortran("msfzd", a=as.double(a), b=as.double(b), c=as.double(c), n=to.integer(n), nn=to.integer(nn), m=to.integer(m), mdb=to.integer(mdb), mdc=to.integer(mdc)) list(c=f.res$c) }
dae.specific.I <- function(zpre,zpost,mmat,factorno,componentname,effnames,effcodes,effnandc,comcodes,varcodes,cnames,cnamesie,emat,vmat,icol,iecol,gls,ctable) { nfactorcodes <- length(effcodes[[factorno]]) k <- 0 kie <- 0 if(any(!is.na(match(componentname,ctable$allindenv)))) { for ( i in 1:nfactorcodes) { for( j in 1:nfactorcodes) { if( i == j) { k <- k + 1 kie <- kie + 1 specificcomponentname <- paste(varcodes[[factorno]][k],componentname,sep=":") szpre <- zpre[[effnandc[[factorno]][i]]] szpost <- zpost[[effnandc[[factorno]][j]]] zaz <- szpre %*% t(szpost) emat[,icol] <- as.vector(mmat %*% zaz %*% mmat) if(gls) { vmat[,icol] <- as.vector(zaz) } cnames[icol] <- specificcomponentname icol <- icol + 1 } else { kie <- kie + 1 specificcomponentname <- paste(comcodes[[factorno]][kie],componentname,sep=":") cnamesie[iecol] <- specificcomponentname iecol <- iecol + 1 } } } } else { for ( i in 1:nfactorcodes) { for( j in 1:nfactorcodes) { k <- k + 1 specificcomponentname <- paste(comcodes[[factorno]][k],componentname,sep=":") szpre <- zpre[[effnandc[[factorno]][i]]] szpost <- zpost[[effnandc[[factorno]][j]]] zaz <- szpre %*% t(szpost) emat[,icol] <- as.vector(mmat %*% zaz %*% mmat) if(gls) { vmat[,icol] <- as.vector(zaz) } cnames[icol] <- specificcomponentname icol <- icol + 1 } } } daelist <- list(cnames=cnames,cnamesie=cnamesie,emat=emat,vmat=vmat,icol=icol,iecol=iecol) return(daelist) }
library("JointAI") test_that('extract_id works', { runs <- list(list(random = ~ 1 | id, ids = 'id'), list(random = ~ 0 | id, ids = 'id'), list(random = y ~ a + b + c, ids = NULL), list(random = y ~ time | id, ids = 'id'), list(random = ~ a | id/class, ids = c('id', 'class')), list(random = ~ a | id + class, ids = c('id', 'class')), list(random = ~(a | id) + (b | id2), ids = c('id', 'id2')) ) for (i in seq_along(runs)) { expect_equal(extract_id(runs[[i]]$random), runs[[i]]$ids) } expect_warning(extract_id(runs[[3]]$random), "could be identified") }) test_that('extract_id results in error', { err <- list( "text", NA, TRUE, mean ) for (i in seq_along(err)) { expect_error(extract_id(err[[i]])) } }) test_that('extract_id results in warning', { rd_warn <- list(~1, ~a + b + c, ~ NULL) for (i in seq_along(rd_warn)) { expect_warning(extract_id(rd_warn[[i]])) } }) test_that('extract_outcome works', { ys <- list(list(fixed = y ~ a + b, out = list(y = 'y')), list(fixed = y ~ 1, out = list(y = 'y')), list(fixed = Surv(a, b) ~ 1, out = list('Surv(a, b)' = c('a', 'b'))), list(fixed = Surv(a, b, d) ~ x + z, out = list('Surv(a, b, d)' = c('a', 'b', 'd'))), list(fixed = cbind(a, b, d) ~ x + z, out = list('cbind(a, b, d)' = c('a', 'b', 'd'))) ) for (i in seq_along(ys)) { expect_equal(extract_outcome(ys[[i]]$fixed), ys[[i]]$out) } })
set_node_attr_to_display <- function(graph, attr = NULL, nodes = NULL, default = "label") { time_function_start <- Sys.time() fcn_name <- get_calling_fcn() if (graph_object_valid(graph) == FALSE) { emit_error( fcn_name = fcn_name, reasons = "The graph object is not valid") } if (graph_contains_nodes(graph) == FALSE) { emit_error( fcn_name = fcn_name, reasons = "The graph contains no nodes") } attr <- rlang::enquo(attr) %>% rlang::get_expr() %>% as.character() if (length(attr) == 0) { attr <- NULL } ndf <- graph$nodes_df if (is.null(nodes)) { nodes <- get_node_ids(graph) } if (!any(nodes %in% ndf$id)) { emit_error( fcn_name = fcn_name, reasons = "One or more node ID values in `nodes` are not present in the graph") } if (!is.null(attr)) { if (!(attr %in% colnames(ndf))) { emit_error( fcn_name = fcn_name, reasons = "The node attribute given in `attr` is not in the graph's ndf") } } if (!("display" %in% colnames(ndf))) { ndf <- ndf %>% dplyr::mutate(display = as.character(default)) } if (!is.null(attr)) { attr_to_display <- dplyr::tibble( id = as.integer(nodes), display = as.character(attr)) } else if (is.null(attr)) { attr_to_display <- dplyr::tibble( id = as.integer(nodes), display = as.character("is_na")) } ndf <- ndf %>% dplyr::left_join(attr_to_display, by = "id") x_col <- which(grepl("\\.x$", colnames(ndf))) y_col <- which(grepl("\\.y$", colnames(ndf))) if (!is.null(attr)) { display_col <- dplyr::coalesce(ndf[, y_col], ndf[, x_col]) %>% as.data.frame(stringsAsFactors = FALSE) } else if (is.null(attr)) { display_col <- dplyr::coalesce(ndf[, y_col], ndf[, x_col]) display_col <- dplyr::case_when( display_col == "is_na" ~ as.character(NA), TRUE ~ display_col) %>% as.data.frame(stringsAsFactors = FALSE) } colnames(display_col)[1] <- "display" ndf <- ndf[-which(grepl("\\.x$", colnames(ndf)))] ndf <- ndf[-which(grepl("\\.y$", colnames(ndf)))] ndf <- dplyr::bind_cols(ndf, display_col) %>% dplyr::select( id, type, label, display, dplyr::everything()) graph$nodes_df <- ndf graph$graph_log <- add_action_to_log( graph_log = graph$graph_log, version_id = nrow(graph$graph_log) + 1, function_used = fcn_name, time_modified = time_function_start, duration = graph_function_duration(time_function_start), nodes = nrow(graph$nodes_df), edges = nrow(graph$edges_df)) if (graph$graph_info$write_backups) { save_graph_as_rds(graph = graph) } graph }
snof = function(name = NULL, id = NULL, par.len = NULL, par.id = "x", par.lower = NULL, par.upper = NULL, description = NULL, fn, vectorized = FALSE, noisy = FALSE, fn.mean = NULL, minimize = TRUE, constraint.fn = NULL, tags = character(0), global.opt.params = NULL, global.opt.value = NULL, local.opt.params = NULL, local.opt.values = NULL) { assertString(par.id, null.ok = TRUE) par.len = asCount(par.len) if (is.null(par.lower)) par.lower = -Inf if (is.null(par.upper)) par.upper = Inf assertNumeric(par.lower, min.len = 1L) assertNumeric(par.upper, min.len = 1L) makeSingleObjectiveFunction( name = name, id = id, description = description, fn = fn, has.simple.signature = TRUE, vectorized = vectorized, noisy = noisy, fn.mean = fn.mean, minimize = minimize, constraint.fn = constraint.fn, par.set = makeNumericParamSet( len = par.len, id = par.id, lower = par.lower, upper = par.upper, vector = TRUE ), tags = tags, global.opt.params = global.opt.params, global.opt.value = global.opt.value, local.opt.params = local.opt.params, local.opt.values = local.opt.values ) }
get_dataverse <- function(dataverse, key = Sys.getenv("DATAVERSE_KEY"), server = Sys.getenv("DATAVERSE_SERVER"), check = TRUE, ...) { if (isTRUE(check)) { dataverse <- dataverse_id(dataverse, key = key, server = server, ...) } u <- paste0(api_url(server), "dataverses/", dataverse) r <- httr::GET(u, httr::add_headers("X-Dataverse-key" = key), ...) httr::stop_for_status(r, task = httr::content(r)$message) out <- jsonlite::fromJSON(httr::content(r, as = "text", encoding = "UTF-8")) structure(out$data, class = "dataverse") } dataverse_contents <- function(dataverse, key = Sys.getenv("DATAVERSE_KEY"), server = Sys.getenv("DATAVERSE_SERVER"), ...) { dataverse <- dataverse_id(dataverse, key = key, server = server, ...) u <- paste0(api_url(server), "dataverses/", dataverse, "/contents") r <- httr::GET(u, httr::add_headers("X-Dataverse-key" = key), ...) httr::stop_for_status(r, task = httr::content(r)$message) out <- jsonlite::fromJSON(httr::content(r, as = "text", encoding = "UTF-8"), simplifyDataFrame = FALSE) structure(lapply(out$data, function(x) { `class<-`(x, if (x$type == "dataset") "dataverse_dataset" else "dataverse") })) }
fusedlasso2d <- function(y, X, dim1, dim2, gamma=0, approx=FALSE, maxsteps=2000, minlam=0, rtol=1e-7, btol=1e-7, eps=1e-4, verbose=FALSE) { if (missing(y)) stop("y is missing.") if (!is.numeric(y)) stop("y must be numeric.") if (length(y) == 0) stop("There must be at least one data point [must have length(y) > 1].") if (missing(X)) X = NULL if (missing(dim1) || missing(dim2)) { if (is.matrix(y) && is.null(X)) { dim1 = nrow(y) dim2 = ncol(y) } else { stop("Both dim1 and dim2 must be specified.") } } else if (dim1<0 || round(dim1)!=dim1 || dim2<0 || round(dim2)<0) { stop("Both dim1 and dim2 must be nonnegative integers.") } if (is.null(X) && length(y)!=dim1*dim2) { stop("Dimensions don't match [length(y) != dim1*dim2].") } if (!is.null(X) && ncol(X)!=dim1*dim2) { stop("Dimensions don't match [ncol(X) != dim1*dim2].") } D = getD2dSparse(dim1,dim2) out = fusedlasso(y,X,D,NULL,gamma,approx,maxsteps,minlam,rtol,btol,eps,verbose) out$call = match.call() return(out) }
matchDatasets = function(data1, data2, flank = 0){ { chr1 = data1[[1]]; chr2 = data2[[1]]; if(is.numeric(chr1) & is.numeric(chr2)){ chr1ind = chr1; chr2ind = chr2; } else { if(!is.factor(chr1)) chr1 = factor(chr1); if(is.factor(chr1)) levels(chr1) = gsub('^chr', '', levels(chr1)); if(!is.factor(chr2)) chr2 = factor(chr2); if(is.factor(chr2)) levels(chr2) = gsub('^chr', '', levels(chr2)); chrsame = (length(levels(chr1)) == length(levels(chr2))); if( chrsame ) chrsame = all(levels(chr1) == levels(chr2)); if( chrsame ){ chr1ind = as.integer(chr1); chr2ind = as.integer(chr2); } else { chrset = union(levels(chr1), levels(chr2)); as.numeric(chrset) chr1ind = as.integer(factor(chr1, levels = chrset)); chr2ind = as.integer(factor(chr2, levels = chrset)); rm(chrset); } rm(chrsame); } rm(chr1, chr2); } { stopifnot(all( data1[[2]] < 1e9 )); stopifnot(all( data1[[3]] < 1e9 )); stopifnot(all( data2[[2]] < 1e9 )); stopifnot(all( data2[[3]] < 1e9 )); data1l = chr1ind*1e9 + data1[[2]]; data1r = chr1ind*1e9 + data1[[3]]; data2l = chr2ind*1e9 + data2[[2]]; data2r = chr2ind*1e9 + data2[[3]]; rm(chr1ind, chr2ind); } { if( is.unsorted(data2l) ){ ord = order(data2l); data2l = data2l[ord]; data2r = data2r[ord]; data2 = data2[ord,]; rm(ord); } if(is.unsorted(data2r)) stop("Second data set must have non-overlapping regions."); keep = c(TRUE, (diff(data2l)>0) & (diff(data2r)>0)); if( !all(keep) ){ data2l = data2l[keep]; data2r = data2r[keep]; data2 = data2[keep,]; } rm(keep); } { data1c = data1l + data1r; if(is.unsorted(data1c)){ ord = order(data1c); data1l = data1l[ord]; data1r = data1r[ord]; data1 = data1[ord,]; rm(ord); } rm(data1c); } { ind1 = findInterval(data1l, data2r + (1 + flank)); ind2 = findInterval(data1r, data2l - flank); stopifnot(all(ind1 <= ind2)); index = integer(length(ind1)); set = which((ind2-ind1) == 1); index[set] = ind2[set]; rm(set); set = which((ind2-ind1)>1); if( length(set) > 0L ){ data1c = data1l[set] + data1r[set]; data2c = data2l + data2r; indL = findInterval(data1c, data2c); nudge = (2 * data1c > (data2c[indL] + data2c[indL+1L])); indClose = indL + nudge; message("Lower bound effect ", mean(indClose <= ind1[set])); message("Upper bound effect ", mean(indClose > ind2[set])); indClose = pmax(indClose, ind1[set] + 1L); indClose = pmin(indClose, ind2[set] ); index[set] = indClose; rm(data1c, data2c, indL, nudge, indClose); } rm(ind1, ind2, set); } result = list( data1 = data.frame( lapply(data1, `[`, which(index>0L)), stringsAsFactors = FALSE, check.rows = FALSE), data2 = data.frame( lapply(data2, `[`, index[index>0L]), stringsAsFactors = FALSE, check.rows = FALSE)); return(result); }
NULL model_grm_prob <- function(t, a, b, D=1.702, raw=FALSE){ b <- as.matrix(b) n_p <- length(t) n_i <- nrow(b) n_c <- ncol(b) if(raw) { p <- model_grm_prob_rawC(t, a, b, D) p <- aperm(array(unlist(p), dim=c(n_p, n_c+2, n_i)), c(1, 3, 2)) } else { p <- model_grm_probC(t, a, b, D) p <- aperm(array(unlist(p), dim=c(n_p, n_c+1, n_i)), c(1, 3, 2)) } p } model_grm_info <- function(t, a, b, D=1.702){ p <- p_ <- Rirt::model_grm_prob(t, a, b, D) p_[is.na(p_)] <- 0 p_ <- aperm(apply(p_, c(1, 2), function(x) rev(cumsum(c(0, rev(x))))), c(2, 3, 1)) n_c <- dim(p)[3] dv1_p_ <- aperm(p_ * (1 - p_), c(2, 3, 1)) * D * a dv2_p_ <- aperm((1 - 2 * p_) * p_ * (1 - p_), c(2, 3, 1)) * (D * a)^2 dv1_p <- dv1_p_[,1:n_c,,drop=FALSE] - dv1_p_[,-1,,drop=FALSE] dv1_p <- aperm(dv1_p, c(3, 1, 2)) dv2_p <- dv2_p_[,1:n_c,,drop=FALSE] - dv2_p_[,-1,,drop=FALSE] dv2_p <- aperm(dv2_p, c(3, 1, 2)) 1 / p * dv1_p^2 - dv2_p } model_grm_lh <- function(u, t, a, b, D=1.702, log=FALSE){ p <- model_grm_prob(t, a, b, D) ix <- model_polytomous_3dindex(u) lh <- array(p[ix], dim=dim(u)) if(log) lh <- log(lh) lh } model_grm_gendata <- function(n_p, n_i, n_c, t=NULL, a=NULL, b=NULL, D=1.702, t_dist=c(0, 1), a_dist=c(-.1, .2), b_dist=c(0, .8), t_bounds=c(-3, 3), a_bounds=c(.01, 2.5), b_bounds=c(-3, 3), missing=NULL, ...){ if(is.null(t)){ t <- rnorm(n_p, mean=t_dist[1], sd=t_dist[2]) t[t < t_bounds[1]] <- t_bounds[1] t[t > t_bounds[2]] <- t_bounds[2] } if(is.null(a)){ a <- rlnorm(n_i, meanlog=a_dist[1], sdlog=a_dist[2]) a[a < a_bounds[1]] <- a_bounds[1] a[a > a_bounds[2]] <- a_bounds[2] } if(is.null(b)) { b <- matrix(rnorm(n_i * (n_c - 1), mean=b_dist[1], sd=b_dist[2]), nrow=n_i) b <- t(apply(b, 1, sort)) b <- matrix(b, nrow=n_i, ncol=n_c-1) } if(length(t) == 1) t <- rep(t, n_p) if(length(a) == 1) a <- rep(a, n_i) if(length(t) != n_p) stop('wrong dimensions for t') if(length(a) != n_i) stop('wrong dimensions for a') if(any(dim(b) != c(n_i, n_c - 1))) stop('wrong dimensions for b') p <- model_grm_prob(t, a, b, D) u <- apply(p, 1:2, function(x) which.max(rmultinom(1, 1, x)[,1]) - 1) if(!is.null(missing)){ missing <- floor(ifelse(missing < 1, missing * n_p * n_i, missing)) idx <- sample(length(u), missing) u[cbind(ceiling(idx/n_i), (idx-1)%%n_i+1)] <- NA } list(u=u, t=t, a=a, b=b) } model_grm_rescale <- function(t, a, b, scale=c("t", "b"), mean=0, sd=1){ scale <- switch(match.arg(scale), "t"=t, "b"=b) slope <- sd / sd(scale) intercept <- mean - slope * mean(scale) t <- slope * t + intercept b <- slope * b + intercept a <- a / slope list(t=t, a=a, b=b) } model_grm_plot <- function(a, b, D=1.702, type=c('prob', 'info'), item_level=FALSE, total=FALSE, xaxis=seq(-6, 6, .1), raw=FALSE){ rs <- switch(match.arg(type), "prob"=model_grm_prob(xaxis, a, b, D, raw), "info"=model_grm_info(xaxis, a, b, D)) n_p <- dim(rs)[1] n_i <- dim(rs)[2] n_c <- dim(rs)[3] y <- NULL for(i in 1:n_i) y <- rbind(y, data.frame(theta=rep(xaxis, n_c), item=paste('Item', i), category=paste('Category', rep(1:n_c, each=n_p)), x=as.vector(rs[,i,]))) if(item_level) y <- rbind(y, cbind(aggregate(y$x, by=list(theta=y$theta, item=y$item), sum), category='Total')) if(total) y <- cbind(aggregate(y$x, by=list(theta=y$theta, category=y$category), sum), item='Total') y <- y[!is.na(y$x),] ggplot(y, aes_string(x="theta", y="x", color="category")) + geom_line() + facet_wrap(~item, scales='free') + xlab(expression(theta)) + ylab(type) + guides(color=FALSE) + theme_bw() + theme(legend.key=element_blank()) } model_grm_plot_loglh <- function(u, a, b, D=1.702, xaxis=seq(-6, 6, .1), verbose=FALSE){ n_p <- dim(u)[1] n_i <- dim(u)[2] n_t <- length(xaxis) rs <- array(NA, dim=c(n_p, n_t)) for(i in 1:n_t) rs[, i] <- rowSums(model_grm_lh(u, rep(xaxis[i], n_p), a, b, D, log=TRUE)) if(verbose) print(apply(rs, 1, function(x){xaxis[which.max(x)]})) rs <- data.frame(theta=rep(xaxis, each=n_p), people=rep(1:n_p, n_t), value=as.vector(rs)) rs$people <- factor(rs$people) ggplot(rs, aes_string(x="theta", y="value", color="people")) + geom_line() + xlab(expression(theta)) + ylab("Log-likelihood") + guides(color=FALSE) + theme_bw() }
"quarice" <- function(f, para, xmax=NULL, paracheck=TRUE) { if(! check.fs(f)) return() if(paracheck == TRUE) { if(! are.parrice.valid(para)) return() } V <- para$para[1] A <- para$para[2] if(V == 0) { ray <- vec2par(c(0,A), type="ray") return(quaray(f,para=ray,paracheck=paracheck)) } SNR <- V/A if(SNR > 52) { xbar <- A * SNR xvar <- A^2; nor <- vec2par(c(xbar,sqrt(xvar)), type="nor") return(quanor(f,para=nor,paracheck=paracheck)) } else if(SNR > 24) { L05 <- LaguerreHalf(-V^2/(2*A^2)) xbar <- A * sqrt(pi/2) * L05 xvar <- 2*A^2 + V^2 - A^2 * (pi/2) * L05^2 nor <- vec2par(c(xbar,sqrt(xvar)), type="nor") return(quanor(f,para=nor,paracheck=paracheck)) } if(is.null(xmax)) { for(ord in (1:10)) { test.xmax <- 10^ord*(V+A) val <- pdfrice(test.xmax, para) if(val <= 100*.Machine$double.eps) { xmax <- test.xmax break } ifelse(is.finite(val), xmax <- test.xmax, break) } } Fmax <- cdfrice(xmax, para) x <- sapply(1:length(f), function(i) { Fx <- f[i] if(Fx == 0) return(0) if(Fx == 1 | Fx >= Fmax) return(xmax) rt.tmp <- NULL try(rt.tmp <- uniroot(function(X,...) return(Fx - cdfrice(X,...)), c(0,xmax), para=para)$root, silent=FALSE) ifelse(is.null(rt.tmp), return(NA), return(rt.tmp)) }) names(x) <- NULL return(x) }
`cm.compact` <- function(n0,n1,M){ K<-n1+n0-M lowest<- max(0,n1-K) highest<-min(n1,M) gvals<-lowest:highest ng<-length(gvals) for (g in 1:ng){ if (g==1){ cmout<-chooseMatrix(M,gvals[g]) weight<-rep(dhyper(gvals[g],M,K,n1)/choose(M,gvals[g]),dim(cmout)[1]) } else{ cm.temp<-chooseMatrix(M,gvals[g]) weight<-c(weight, rep(dhyper(gvals[g],M,K,n1)/choose(M,gvals[g]),dim(cm.temp)[1]) ) cmout<-rbind(cmout,cm.temp) } } out<-list(weight=weight,cm=cmout) out }
ll<- function(params, data_u, A_u) { data_u<- as.matrix(data_u) hv_sig<- A_u %*% (params^2) sig<- matrix(0, ncol(data_u), ncol(data_u)) sig[lower.tri(sig, diag=TRUE)]<- hv_sig sig[upper.tri(sig)]<- t(sig)[upper.tri(sig)] mu<- -diag(sig)/2 ll<- -sum(mvtnorm::dmvnorm(data_u, mean = mu, sigma = sig, log = TRUE)) return(ll) } llmle2<- function(params, data, obj, subsets, k_ratio, h1, Ubar) { sig<- ArgumentD(c(sum(h1),sum(h1))) sig<- for_u_in_U(obj=sig, obj2=obj, subsets=subsets, k_ratio=k_ratio, h1=h1, depParams=params, Ubar=Ubar) mu<- -diag(sig)/2 ll<- -sum(mvtnorm::dmvnorm(data, mean = mu, sigma = sig, log = TRUE)) return(ll) } llmleave<- function(params, data, Lambda ) { d<- ncol(data) m<- crossprod(t(Lambda), params^2) lambd<- matrix(m, ncol = d, nrow = d, byrow=TRUE)/4 M<- diag(d) - tcrossprod(rep(1,d), rep(1,d))/d sig<- -crossprod(t(crossprod(t(M), lambd)), M) ed<- rep(1,d)/d gmm<- as.vector(crossprod(t(crossprod(ed, lambd)), ed)) mu<- -as.vector(crossprod(t(lambd), ed)) + gmm*ed*d ll<- -sum(mvtnorm::dmvnorm(data, mean = mu, sigma = sig+10^(-7)*diag(d), log = TRUE)) return(ll) } ll_EngHitz<- function(params, data, MA, Uc, obj) { obj<- setParams(obj, params) nvars<- colnames(data) u<- nvars[1] nvars_u<- base::setdiff(nvars, u) vv<- rep(1, ncol(data)) names(vv)<- nvars data1<- log(data[,nvars_u]/data[,u]) ff<- - (-2*sum(log(data[,u])) - sum(log(data[,nvars_u])) - ll(params, data1, MA) - nrow(data)*log(stdf(obj, vv, Ubar=Uc))) return(ff) }
.Random.seed <- c(403L, 128L, -864733335L, 1107972764L, -1297845673L, -2119422051L, 2087331776L, 1396422983L, 884474761L, -1286070025L, 1464279785L, -980831509L, -1293355262L, -1072555261L, 652700135L, -1975764076L, -797878953L, 1308251934L, -1205500787L, -577669718L, -1828487013L, -1260899181L, 228258545L, 652425111L, 1823899603L, -530228386L, 1662519181L, 76341365L, 2083213784L, 1926489344L, -89662044L, -391418152L, -875112255L, -722261348L, -1875635590L, 1412634328L, 1411309954L, -2016866010L, 1871842379L, 1679543416L, 1536060312L, -950724867L, 1888141506L, -1391938532L, 1361352362L, -1525572310L, -290844343L, -1303078981L, 891832085L, -1449051312L, 1647017291L, 2061545013L, -366330595L, -1361474169L, 1546569205L, -1253231874L, -697674601L, 478294032L, 746962301L, -1228172791L, 1547467805L, -568339793L, 1174844542L, 1896217173L, -466228221L, -953474952L, -40381223L, 1047539683L, 83070370L, 1254398119L, 750931711L, 552642164L, -1319412143L, 368546308L, -52353665L, 67250819L, -535380610L, 724016907L, -27336332L, -1963997073L, 909775028L, -1832628922L, -1077386804L, 1131036916L, -508209244L, 650589732L, 1414416628L, 78238114L, -281948880L, 1113802144L, -1912891393L, -2006208738L, -204789872L, 1201835147L, 2124727676L, 1161880116L, 779937169L, -506602131L, 843407723L, 347974790L, -1999538761L, -2082207843L, 1758385702L, 1243568814L, -1156841838L, 751277070L, -121749250L, -1685160675L, -1055928527L, 109084660L, -852176380L, -183686495L, -2098730429L, 1606702921L, 1469436785L, 1431876709L, 1270716251L, 1796417516L, 407869472L, 1177088835L, 1503823321L, 1835553999L, -2110033514L, 582099657L, -340319941L, -1501832918L, 349549742L, -1092761127L, -1932261257L, -1963421634L, 1093045184L, -1789159163L, -1497467101L, 745027028L, 1950928865L, 1992502129L, 1779830713L, 1618777479L, 971758021L, 769171653L, -996187369L, 31762567L, 496575162L, -1235585263L, -1309643684L, 567942528L, 1232346072L, -1300279665L, 734048523L, 1808044533L, -232522377L, 2014764989L, 1872174426L, -1075817598L, -805142628L, -10772900L, 1530239796L, -1317488415L, -309146076L, -2123078799L, 81183309L, 2137886841L, 70450481L, -1860324263L, -268470119L, -973580343L, 1820743129L, -947509115L, -1585116432L, 1319468284L, -252164339L, 1661383811L, 1754261775L, 1380016864L, 1833192232L, 9604867L, -1102820605L, -375202227L, -566100931L, -1986701175L, -240714152L, 568426986L, 1759341677L, 269537303L, 923402887L, 269766018L, 1495619908L, 1314420793L, -449071962L, 1377030990L, 1034086037L, 234220538L, -519532334L, -794288635L, -922453868L, 1059050588L, -27759384L, 1687458169L, -1584551000L, 874762836L, -388958648L, -230164720L, -813913634L, -1178855560L, -1563434119L, -1320454683L, -550605283L, -1933132517L, -305553408L, 1631464272L, 40591348L, -1969514169L, 370424458L, -1970328567L, -323494694L, -1322069875L, -1258895632L, 83401729L, -1384064719L, 511206831L, -544238242L, 1500022834L, -982210412L, 737103827L, 1364763381L, -1863456307L, -2027326864L, -777618182L, -1945888548L, 1089546895L, -78145852L, -912468960L, -1672148289L, 1217428591L, 922855067L, 1476816458L, -743523402L, 938058139L, -1335983829L, -1071802737L, 498646009L, 270041219L, 1132716870L, -1674887995L, 844658239L, 268256152L, -685710415L, -1940072012L, -436885233L, 1176872301L, -269258922L, 1534453723L, -705570811L, 2126189175L, 1876221661L, -1169664187L, 184994344L, 1633194081L, -728402694L, 1195240510L, 1087244038L, -72678248L, -542331939L, 1438978699L, 1033086309L, 550060465L, -46690467L, -1257300029L, -309993745L, 1049763918L, -728843563L, 1985104228L, -827542993L, -157423673L, -1079006611L, 651121972L, -2135729216L, 2064247277L, 966787212L, 563975005L, 554007840L, 18798313L, 502130048L, -790085600L, -774989936L, -1322946285L, 1107935428L, 244854338L, -2091615140L, -658393722L, -257836556L, 2008892237L, -980777453L, -1992691018L, 130299435L, -1896681339L, -1436922583L, 1778498284L, -1690752337L, -921556337L, 1974753856L, 1473347720L, 821960633L, 1894607534L, -723132831L, -1780816986L, 667916875L, -115025350L, 392573663L, -1444730171L, 1903192073L, 16185572L, 1019284702L, 1748761498L, -533774701L, -155387676L, 548966621L, -46112424L, -222748538L, 390543658L, 388930897L, -134674698L, -1220359144L, 746352925L, -1499544847L, -724043157L, -888064114L, 700507754L, 320801506L, 1222562792L, -632915110L, 1373953152L, -1604209232L, 963273753L, -1062798681L, 596267780L, -1539052860L, -2138022547L, 1922823523L, 779149782L, -1439427102L, 1732120013L, 1787361343L, -1567292704L, 2142384810L, 1052916875L, -344414264L, -336760499L, -1743933154L, -2111534165L, 1729078649L, -664736082L, 1707220311L, -111176171L, 152995207L, 1009202619L, -209577098L, 1573304396L, 1365812296L, -1152825613L, -582544690L, 1449720278L, 228241434L, -1935085346L, -320784174L, 1482822349L, -1889799379L, 2101916707L, 254876471L, -554589588L, -2057978167L, 1234810013L, 121255610L, 488412805L, -1720439177L, -1326503572L, -1896206937L, 809012399L, 333480422L, -814481653L, 1721812214L, 1827718820L, -940965777L, -146606293L, 144815514L, 834980695L, -126408418L, -2038145934L, -980541837L, 886573970L, 657443071L, -767647740L, -991164128L, 582922760L, 1606979125L, -1184162834L, -335847274L, 743134277L, -1386691225L, 1492151831L, 533868658L, 1763564321L, 1926330333L, 955524305L, 1538704988L, 1904258619L, 1020773560L, -1196880119L, 866017305L, -1928786736L, 2029831817L, -1896011321L, 2046089977L, 461324840L, -1595630127L, -611679982L, 258719075L, -409727301L, -431446134L, -301608983L, -1466160558L, -210030675L, -1136268280L, 1220663694L, 1652393129L, 769676196L, -660969468L, 1564690746L, -1175698285L, 551510684L, -1781044503L, 827470664L, 1384697037L, 1539054204L, 485257335L, -1273874136L, -1751598545L, -376421875L, 1139690075L, -869226324L, -256800548L, 306359969L, 515516510L, 1571003609L, 1956047124L, -701150482L, 1506360487L, 1006612756L, -1451185807L, 1270796610L, -2043245963L, -33341106L, -520662310L, 29623802L, 225194960L, 1331812174L, 100102633L, -383882580L, -1350722208L, -390540855L, 1134236348L, 875199697L, -729403108L, 719561650L, -1867713881L, 881906988L, -1779434453L, 711916772L, -1313933377L, -2113157281L, 5851031L, 1622882378L, 470425209L, -487761220L, 879458875L, -552258262L, -1292311181L, 110482122L, -155857797L, -1082016663L, 1706857809L, 1138377536L, 1241588806L, 1497314067L, -30550403L, -1215541423L, -1880718340L, 1320737831L, 1876997639L, -2013904808L, -825267993L, -1390286272L, 1196610435L, 1811235948L, 1181736825L, -1455955218L, -1064364338L, -283782518L, 853812238L, 337333068L, 1452018392L, 1393166159L, -7864745L, -1453577807L, -1686167855L, -1806564453L, 842508487L, -215476390L, 1236872627L, 1499459394L, -1423253439L, 420583021L, -197941443L, 1201112581L, 1061464162L, -1990413730L, 2063169185L, -1706879782L, 1354324146L, -1308275352L, -462025875L, 117288613L, -7422309L, 137129725L, 852048849L, -1687204710L, 1375411937L, 983455959L, 945142395L, -1614107787L, 410804220L, 775680104L, 1480086242L, -832679710L, -1554883369L, 645537497L, 1269239810L, 631367262L, 137941088L, 1187921445L, -1522569499L, -448168603L, -875851446L, -1898838814L, -1838625871L, -1630148372L, 767772067L, -716606086L, 1766726959L, -1900687800L, -206478342L, 1368769082L, 697365764L, -1975944511L, 1794815779L, 381942983L, -1146190309L, -2037500805L, -734003301L, 780840901L, 466120302L, -1377953957L, -1725215446L, -783716831L, 410781898L, 374383273L, 79670399L, -1433591362L, -488330602L, 1663140293L, -1480494412L, -1917457110L, 1113675201L, -1770424268L, 186868708L, 614666579L, 567871559L, -1883764559L, -1297866644L, -25742133L, -1997570894L, -1369377032L, 1257088781L, 1699343360L, -1081910176L, -761726106L, -482371942L, 1550633580L, 1774650704L, -1398830910L, 568136695L, 1498063393L, 1398930244L, -2144527413L, -1103953434L, -1616588986L, 455082460L, -1662859771L, -170177449L, 1776016314L, -1887271115L, 455524848L, 1959473653L, 574796374L, 1536534830L, -426022425L, 1906468965L, -1775791474L, 1629408134L, 1778649652L, 2107785624L, 1686801817L, -224933247L, -942142513L, -244129449L, 1276929664L, 1015819641L, 304954981L, 687726441L, -173723481L, 1773972183L, 1268382174L, -477612174L, -1287771012L, 1033792559L, 1382739468L )
NULL dmatnorm <- function( A, M, U, V, tol = .Machine$double.eps^0.5, log = TRUE ) { n <- nrow(A) p <- ncol(A) if (is.data.frame(A)) A <- as.matrix(A) if (sum(dim(A) == dim(M)) != 2) stop("M must have same dimensions as A.") check_matnorm(s = 1, M, U, V, tol) log.dens <- (-n * p / 2) * log(2 * pi) - p / 2 * log(det(U)) - n / 2 * log(det(V)) + -1 / 2 * tr(solve(U) %*% (A - M) %*% solve(V) %*% t(A - M)) if (log) { return(log.dens) } else { return(exp(log.dens)) } } logdet <- function(x) { 2 * sum(log(diag(chol(x)))) } dmatnorm.logdet <- function(A, M, U, V, tol = .Machine$double.eps^0.5, log = TRUE) { n <- nrow(A) p <- ncol(A) if (is.data.frame(A)) A <- as.matrix(A) if (sum(dim(A) == dim(M)) != 2) stop("M must have same dimensions as A.") check_matnorm(s = 1, M, U, V, tol) log.dens <- (-n * p / 2) * log(2 * pi) - p / 2 * logdet(U) -n / 2 * logdet(V) + -1 / 2 * tr(solve(U) %*% (A - M) %*% solve(V) %*% t(A - M)) if (log) { return(log.dens) } else { return(exp(log.dens)) } } pmatnorm <- function( Lower = -Inf, Upper = Inf, M, U, V, tol = .Machine$double.eps^0.5, keepAttr = TRUE, algorithm = mvtnorm::GenzBretz(), ... ) { if (utils::packageVersion("mvtnorm") < "1.1-2") { warning("New argument added to `mvtnorm v. 1.1-2`. Please upgrade to avoid error when passing `keepAttr`.") } n <- nrow(M) p <- ncol(M) check_matnorm(s = 1, M, U, V, tol) if (is.matrix(Lower)) { lower <- vec(Lower) } else { if (is.vector(Lower) & Lower == -Inf) { lower <- -Inf } else { stop("The lower limit must be a numeric matrix or -Inf.") } } if (is.matrix(Upper)) { upper <- vec(Upper) } else { if (is.vector(Upper) & Upper == Inf) { upper <- Inf } else { stop("The upper limit must be a numeric matrix or Inf.") } } prob <- mvtnorm::pmvnorm( lower, upper, mean = vec(M), corr = NULL, sigma = kronecker(U, V), algorithm = algorithm, ..., keepAttr = keepAttr ) warning("The covariance matrix is standardized. ") return(prob) } rmatnorm <- function( s = 1, M, U, V, tol = .Machine$double.eps^0.5, method = "chol" ) { if (utils::packageVersion("mvtnorm") < "1.1-2") { warning("New argument added to `mvtnorm v. 1.1-2`. Please upgrade to avoid error.") } M <- as.matrix(M) U <- as.matrix(U) V <- as.matrix(V) n <- nrow(M) p <- ncol(M) check_matnorm(s, M, U, V, tol) if (utils::packageVersion("matrixNormal") <= "0.0.5") { warning("The construction of sigma has been found to be incorrect. Please upgrade to new version.") } Sigma <- kronecker(V, U) vec.X <- mvtnorm::rmvnorm(1, vec(M), Sigma, method = method, checkSymmetry = FALSE) X <- matrix(vec.X, nrow = n, ncol = p, dimnames = list(rownames(U), colnames(V)) ) return(X) } check_matnorm <- function(s, M, U, V, tol) { if (!(s > 0)) stop("s must be > 0. s = ", s, call. = FALSE) if (anyNA(M)) { stop("M contains missing values.", call. = FALSE) } if (anyNA(U)) { stop("U contains missing values.") } if (anyNA(V)) { stop("V contains missing values.") } if (nrow(M) != nrow(U)) { stop("The mean matrix M has different sample size than the scale sample size matrix U. M has ", dim(M)[[1]], "rows, and U has ", dim(U)[[1]], ".") } if (ncol(M) != nrow(V)) { stop("The mean matrix M has different number of parameters than scale parameter matrix V: M -- ", dim(M)[2], "; V -- ", dim(V)[1], ".") } if (!is.positive.definite(U, tol)) { stop("U is not positive definite. Calculation may not be accurate. Possibly raise tolerance.") } if (!is.positive.definite(V, tol)) { stop("V is not positive definite. Calculation may not be accurate. Possibly raise tolerance.") } return(invisible()) }
Test.intersection.ellipse <- function(mean.1, M.1, mean.2, M.2){ A.inv <- solve(M.1) B.inv <- solve(M.2) K <- function(s){ 1 - t(mean.2 - mean.1) %*% solve(A.inv / (1 - s) + B.inv / s) %*% (mean.2 - mean.1) } Ks <- stats::optimize(K, c(0.00001, 0.99999))$objective if (Ks < 0){ Ind.Overlap <- 0 } else { Ind.Overlap <- 1} return(Ind.Overlap == 1) }
library(gWidgets2) WizardPage <- setRefClass("WizardPage", fields=list( wizard="ANY", prev_button="ANY", next_button="ANY", widgets="list" ), methods=list( initialize=function(wizard=NULL, ...) { initFields(wizard=wizard) callSuper(...) }, can_next=function() { "Return logical if we can go to next page" TRUE }, can_prev=function() { "Return logical if we can go to previous" TRUE }, make_page=function(content_area) { "Add content here" }, update_page=function() { "Called by change handlers in widgets" wizard$update_page() }, get_values=function() { "Return values in a named list" sapply(widgets, svalue, simplify=FALSE) } )) Wizard <- setRefClass("Wizard", fields=list( pages="list", cur_page="ANY", main_window="ANY", nb="ANY" ), methods=list( initialize=function(title="", ...) { initFields(pages=list(), main_window=gwindow(title, visible=FALSE) ) g <- ggroup(cont=main_window) g$set_borderwidth(10) nb <<- gstackwidget(cont=g) callSuper(...) }, no_pages=function() length(pages), add_page=function(page, title="") { page$wizard <- .self pages <<- c(pages, page) box <- ggroup(cont=nb, label=title, horizontal=FALSE) content_area <- ggroup(container=box, expand=TRUE, fill=TRUE, horizontal=FALSE) page$make_page(content_area) button_area <- ggroup(cont=box, horizontal=TRUE) addSpring(button_area) page$prev_button <- gbutton("previous", cont=button_area, handler=function(h,...) { h$action$prev_page() }, action=.self) page$next_button <- gbutton("next", cont=button_area, handler=function(h,...) { h$action$next_page() }, action=.self) }, prev_page=function() { cur_page_no <- Filter(function(i) identical(pages[[i]], cur_page), seq_along(pages)) if(cur_page_no > 1) { .nb <- nb svalue(.nb) <- cur_page_no - 1 cur_page <<- pages[[cur_page_no - 1]] update_page() } }, next_page = function() { cur_page_no <- Filter(function(i) identical(pages[[i]], cur_page), seq_along(pages)) if(cur_page_no < length(pages)) { .nb <- nb svalue(.nb) <- cur_page_no + 1 cur_page <<- pages[[cur_page_no + 1]] update_page() } else { call_finalizer() } }, call_finalizer=function() { "replace me in subclass, or make configurable..." print("Tada, all done") print(get_values()) close_ui() }, update_page=function() { "Update buttons" p_b <- cur_page$prev_button; n_b <- cur_page$next_button enabled(p_b) <- cur_page$can_prev() enabled(n_b) <- cur_page$can_next() }, make_ui=function() { .nb <- nb svalue(.nb) <- 1 cur_page <<- pages[[1]] update_page() .main_window <- main_window visible(.main_window) <- TRUE }, close_ui=function() { dispose(main_window) }, get_values=function() { "Return values from page" out <- sapply(pages, function(page) page$get_values(), simplify=FALSE) unlist(out, recursive=FALSE) } )) wizard <- Wizard$new(title="test") page1 <- setRefClass("Page1", contains="WizardPage", methods=list( can_next = function() { with(widgets, nchar(svalue(ed1)) > 0 && nchar(svalue(ed2)) > 0 ) }, can_prev=function() FALSE, make_page=function(content_area) { lyt <- gformlayout(cont=content_area) widgets$ed1 <<- gedit("", initial.msg="Enter some text", cont=lyt, label="Area 1") widgets$ed2 <<- gedit("", initial.msg="and some more...", cont=lyt, label="And 2") sapply(widgets, function(obj) addHandlerKeystroke(obj, handler=function(h,...) h$action$update_page(), action=.self)) } ))$new() page2 <- setRefClass("Page2", contains="WizardPage", methods=list( can_next = function() { with(widgets, svalue(cb) ) }, can_prev=function() TRUE, make_page=function(content_area) { lyt <- gformlayout(cont=content_area) widgets$rb <<- gradio(state.name[1:4], cont=lyt, label="radio group") widgets$cb <<- gcheckbox("all ready?", checked=FALSE, cont=lyt, label="checkbox") sapply(widgets, function(obj) addHandlerChanged(obj, handler=function(h,...) h$action$update_page(), action=.self)) } ))$new() wizard$add_page(page1, "Page 1") wizard$add_page(page2, "Page 2") wizard$make_ui()
context(" Complex mutations") test_that("Mutating a subset of rows works.", { expected <- data.table::copy(state)[grepl("^N", region) & grepl("^N", name), abb := paste("N", abb, sep = "-")] ans <- data.table::copy(state) %>% start_expr %>% mutate(abb = paste("N", abb, sep = "-")) %>% where(grepl("^N", region) & grepl("^N", name)) %>% end_expr expect_identical(ans, expected) ans <- data.table::copy(state) %>% start_expr %>% mutate(abb = paste("N", abb, sep = "-")) %>% where(grepl("^N", region), grepl("^N", name)) %>% end_expr expect_identical(ans, expected) ans <- data.table::copy(state) %>% where(grepl("^N", region), grepl("^N", name)) %>% mutate(abb = paste("N", abb, sep = "-")) expect_identical(ans, expected) }) test_that("Mutating by group works.", { expected <- data.table::copy(state)[, abb := paste(.GRP, abb, sep = "-"), by = .(region, division)] ans <- data.table::copy(state) %>% start_expr %>% mutate(abb = paste(.GRP, abb, sep = "-")) %>% group_by(region, division) %>% end_expr expect_identical(ans, expected) ans <- data.table::copy(state) %>% group_by(region, division) %>% mutate(abb = paste(.GRP, abb, sep = "-")) expect_identical(ans, expected) }) test_that("Mutating subset by group works.", { expected <- data.table::copy(state)[area > 50000, abb := paste(.GRP, abb, sep = "-"), by = .(region, division)] ans <- state %>% start_expr %>% mutate(abb = paste(.GRP, abb, sep = "-")) %>% where(area > 50000) %>% group_by(region, division) %>% end_expr(.by_ref = FALSE) expect_identical(ans, expected) expect_false(identical(ans, state)) ans <- data.table::copy(state) %>% group_by(region, division) %>% where(area > 50000) %>% mutate(abb = paste(.GRP, abb, sep = "-")) expect_identical(ans, expected) expect_false(identical(ans, state)) expected <- data.table::copy(state)[area > 50000, abb := paste(.GRP, abb, sep = "-"), by = .(region, division) ][area <= 50000, abb := paste(0, abb, sep = "-")] ans <- state %>% start_expr %>% mutate(abb = paste(.GRP, abb, sep = "-")) %>% where(area > 50000) %>% group_by(region, division) %>% chain(.by_ref = FALSE) %>% mutate(abb = paste(0, abb, sep = "-")) %>% where(area <= 50000) %>% end_expr expect_identical(ans, expected) expect_false(identical(ans, state)) ans <- data.table::copy(state) %>% group_by(region, division) %>% where(area > 50000) %>% mutate(abb = paste(.GRP, abb, sep = "-")) %>% where(area <= 50000) %>% mutate(abb = paste(0, abb, sep = "-")) expect_identical(ans, expected) expect_false(identical(ans, state)) })
"coef.HOF" <- function ( object, model, ... ) { maxNrofParameters <- 5 out <- sapply(object$models, function(x) c(x$par, rep(NA, maxNrofParameters - length(x$par)))) rownames(out) <- letters[1:maxNrofParameters] if (!missing(model)) { out <- out[,model] } out } "deviance.HOF" <- function (object, model, ...) { out <- sapply(object$models, function(x) x$deviance) if (!missing(model)) out <- out[model] out } "fitted.HOF" <- function (object, model, ...) { out <- sapply(object$models, function(x) x$fitted) if(!missing(model)) out <- out[,model] out } "predict.HOF" <- function (object, model, newdata, ...) { if(missing(model)) model <- pick.model(object, ...) p <- coef(object, model, ...) xrange <- object$range if (missing(newdata)) x <- object$x else x <- newdata fv <- HOF.fun(x=x, model=as.character(model), p=as.numeric(p), M=1, xrange) fv }
GetProductsLogistic.AC = function(params) { if (params$trace) cat(as.character(Sys.time()), "GetProductsLogistic.AC\n\n") readTime = 0 readSize = 0 p = 0 n = 0 pi = c() allproducts = rep(list(list()), params$numDataPartners) allhalfshare = rep(list(list()), params$numDataPartners) alltags = rep(list(list()), params$numDataPartners) products = NULL halfshare = NULL tags = NULL allcolmin = allcolrange = allcolsum = allcolnames = NULL colmin = colrange = colsum = colnames = NULL party = NULL for (id in 1:params$numDataPartners) { readTime = readTime - proc.time()[3] load(file.path(params$readPathDP[id], "products.rdata")) load(file.path(params$readPathDP[id], "halfshare.rdata")) load(file.path(params$readPathDP[id], "colstats.rdata")) readSize = readSize + sum(file.size(file.path(params$readPathDP[id], c("products.rdata", "halfshare.rdata", "colstats.rdata")))) readTime = readTime + proc.time()[3] allproducts[[id]] = products allhalfshare[[id]] = halfshare alltags[[id]] = tags allcolmin = c(allcolmin, colmin) allcolrange = c(allcolrange, colrange) allcolsum = c(allcolsum, colsum) allcolnames = c(allcolnames, colnames) party = c(party, rep(paste0("dp", id), length(colnames))) p = p + ncol(halfshare) pi = c(pi, ncol(halfshare)) if (id == 1) n = nrow(halfshare) } M = matrix(0, p, p) colnames(M) = allcolnames rownames(M) = allcolnames offset1 = 1 params$pi = rep(0, params$numDataPartners) for (id1 in 1:params$numDataPartners) { p1 = ncol(allhalfshare[[id1]]) params$pi[id1] = p1 offset2 = offset1 for (id2 in id1:params$numDataPartners) { p2 = ncol(allhalfshare[[id2]]) if (id1 == id2) { M[offset1:(offset1 + p1 - 1), offset2:(offset2 + p2 - 1)] = allproducts[[id1]][[id2]] } else { temp = allproducts[[id1]][[id2]] + allproducts[[id2]][[id1]] + t(allhalfshare[[id1]]) %*% allhalfshare[[id2]] M[offset1:(offset1 + p1 - 1), offset2:(offset2 + p2 - 1)] = temp M[offset2:(offset2 + p2 - 1), offset1:(offset1 + p1 - 1)] = t(temp) } offset2 = offset2 + p2 } offset1 = offset1 + p1 } params$halfshare = allhalfshare params$sts = M[2:p, 2:p, drop = FALSE] params$sty = M[2:p, 1, drop = FALSE] params$yty = M[1, 1] params$meansy = allcolsum[1] / n params$means = allcolsum[-1] / n params$n = n params$p = p params$pi = pi params$colmin = allcolmin[-1] params$colrange = allcolrange[-1] params$colsum = allcolsum[-1] params$colnames = allcolnames[-1] params$party = party[-1] params$tags = alltags params = AddToLog(params, "GetProductsLogistic.AC", readTime, readSize, 0, 0) return(params) } CheckColinearityLogistic.AC = function(params) { if (params$trace) cat(as.character(Sys.time()), "CheckColinearityLogistic.AC\n\n") sts = params$sts sty = params$sty nrow = nrow(sts) indicies = c(1) for (i in 2:nrow) { tempIndicies = c(indicies, i) if (rcond(sts[tempIndicies, tempIndicies]) > 10^8 * .Machine$double.eps) { indicies = c(indicies, i) } } sts = sts[indicies, indicies, drop = FALSE] sty = sty[indicies, drop = FALSE] params$sts = sts params$sty = sty params$colmin = params$colmin[indicies] params$colrange = params$colrange[indicies] params$colsum = params$colsum[indicies] params$fullindicies = indicies params$p = params$p - 1 indicies = indicies + 1 params$indicies = rep(list(list()), params$numDataPartners) tags = rep(list(list()), params$numDataPartners) min = 1 for (id in 1:params$numDataPartners) { max = min + params$pi[id] - 1 idx = indicies[which(min <= indicies & indicies <= max)] - min + 1 params$indicies[[id]] = idx if (id == 1) { idx = (idx - 1)[-1] } temp = params$tags[[id]] temp = temp[idx] tags[[id]] = temp min = max + 1 } params$errorMessage = "" if ((length(unique(tags[[1]])) == 1) | (length(unique(tags[[1]])) >= 2 & !("numeric" %in% names(tags[[1]])))) { params$failed = TRUE params$errorMessage = "Data Partner 1 must have no covariates or at least 2 covariates at least one of which is continuous.\n" } for (id in 2:params$numDataPartners) { if (length(unique(tags[[id]])) < 2) { params$failed = TRUE params$errorMessage = paste0(params$errorMessage, paste("After removing colinear covariates, Data Partner", id, "has 1 or fewer covariates.\n")) } else if (!("numeric" %in% names(tags[[id]]))) { params$failed = TRUE params$errorMessage = paste0(params$errorMessage, paste("After removing colinear covariates, Data Partner", id, "has no continuous covariates.\n")) } } indicies = params$indicies params$pReduct = c() for (id in 1:params$numDataPartners) { params$pReduct = c(params$pReduct, length(indicies[[id]])) } for (id in 1:params$numDataPartners) { params$halfshare[[id]] = params$halfshare[[id]][, indicies[[id]], drop = FALSE] } writeTime = proc.time()[3] save(indicies, file = file.path(params$writePath, "indicies.rdata")) writeSize = file.size(file.path(params$writePath, "indicies.rdata")) writeTime = proc.time()[3] - writeTime params = AddToLog(params, "CheckColinearityLogistic.AC", 0, 0, writeTime, writeSize) return(params) } ComputeInitialBetasLogistic.AC = function(params) { if (params$trace) cat(as.character(Sys.time()), "ComputeInitialBetasLogistic.AC\n\n") writeTime = 0 writeSize = 0 colsumS = (params$colsum - params$n * params$colmin) / params$colran beta = 4 * solve(params$sts) %*% (params$sty - 0.5 * colsumS) u = sum(runif(length(beta), min = 1, max = 5) * abs(beta)) params$u = u start = 1 for (id in 1:params$numDataPartners) { end = start + length(params$indicies[[id]]) - 1 betas = beta[start:end] writeTime = writeTime - proc.time()[3] save(u, betas, file = file.path(params$writePath, paste0("u_beta_", id, ".rdata"))) writeSize = writeSize + file.size(file.path(params$writePath, paste0("u_beta_", id, ".rdata"))) writeTime = writeTime + proc.time()[3] start = end + 1 } params = AddToLog(params, "ComputeInitialBetasLogistic.AC", 0, 0, writeTime, writeSize) return(params) } UpdateParamsLogistic.DP = function(params) { if (params$trace) cat(as.character(Sys.time()), "UpdateParamsLogistic.DP\n\n") indicies = NULL u = NULL betas = NULL readTime = proc.time()[3] load(file.path(params$readPathAC, "indicies.rdata")) filename = paste0("u_beta_", params$dataPartnerID, ".rdata") load(file.path(params$readPathAC, filename)) readSize = file.size(file.path(params$readPathAC, "indicies.rdata")) + file.size(file.path(params$readPathAC, filename)) readTime = proc.time()[3] - readTime params$u = u params$betas = betas params$indicies = indicies params = AddToLog(params, "UpdateParamsLogistic.DP", readTime, readSize, 0, 0) return(params) } UpdateDataLogistic.DP = function(params, data) { if (params$trace) cat(as.character(Sys.time()), "UpdateDataLogistic.DP\n\n") if (params$dataPartnerID == 1) { data$Y = data$X[, 1, drop = FALSE] } idx = params$indicies[[params$dataPartnerID]] data$X = data$X[, idx, drop = FALSE] data$colmin = data$colmin[idx] data$colmax = data$colmax[idx] data$colsum = data$colsum[idx] data$colrange = data$colrange[idx] return(data) } ComputeSbetaLogistic.DP = function(params, data) { if (params$trace) cat(as.character(Sys.time()), "ComputeSbetaLogistic.DP\n\n") set.seed(params$seed + params$algIterationCounter, kind = "Mersenne-Twister") V = matrix(rnorm(params$n, mean = runif(n = 1, min = -1, max = 1), sd = 10), ncol = 1) Vsum = 0 for (id in 1:params$numDataPartners) { set.seed(params$seeds[id] + params$algIterationCounter, kind = "Mersenne-Twister") Vsum = Vsum + matrix(rnorm(params$n, mean = runif(n = 1, min = -1, max = 1), sd = 10), ncol = 1) } Sbeta = (data$X %*% params$betas + params$u) / (2 * params$u) + V - params$scaler / sum(params$scalers) * Vsum writeTime = proc.time()[3] save(Sbeta, file = file.path(params$writePath, "sbeta.rdata")) writeSize = file.size(file.path(params$writePath, "sbeta.rdata")) writeTime = proc.time()[3] - writeTime params = AddToLog(params, "ComputeSbetaLogistic.DP", 0, 0, writeTime, writeSize) return(params) } ComputeWeightsLogistic.AC = function(params) { if (params$trace) cat(as.character(Sys.time()), "ComputeWeightsLogistic.AC\n\n") Sbeta = 0 readTime = 0 readSize = 0 sbeta = 0 for (id in 1:params$numDataPartners) { readTime = readTime - proc.time()[3] load(file.path(params$readPathDP[id], "sbeta.rdata")) readSize = readSize + file.size(file.path(params$readPathDP[id], "sbeta.rdata")) readTime = readTime + proc.time()[3] sbeta = sbeta + Sbeta } sbeta = 2 * params$u * sbeta - params$numDataPartners * params$u pi_ = 1 / (1 + exp(-sbeta)) params$pi_ = pi_ writeTime = proc.time()[3] save(pi_, file = file.path(params$writePath, "pi.rdata")) writeSize = file.size(file.path(params$writePath, "pi.rdata")) writeTime = proc.time()[3] - writeTime params = AddToLog(params, "ComptueWeightsLogistic.AC", readTime, readSize, writeTime, writeSize) return(params) } ComputeStWSLogistic.DP = function(params, data) { if (params$trace) cat(as.character(Sys.time()), "ComputeStWSLogistic.DP\n\n") pi_ = NULL readTime = proc.time()[3] load(file.path(params$readPathAC, "pi.rdata")) readSize = file.size(file.path(params$readPathAC, "pi.rdata")) readTime = proc.time()[3] - readTime params$pi_ = pi_ W = pi_ * (1 - pi_) C = rep(list(list()), params$numDataPartners) idx = params$indicies[[params$dataPartnerID]] set.seed(params$seed, kind = "Mersenne-Twister") halfshare = matrix(rnorm(params$n * params$p, sd = 20), nrow = params$n, ncol = params$p)[, idx, drop = FALSE] for (id in 1:params$numDataPartners) { if (id < params$dataPartnerID) { set.seed(params$seeds[id], kind = "Mersenne-Twister") idx = params$indicies[[id]] halfshareDP = matrix(rnorm(params$n * params$ps[id], sd = 20), nrow = params$n, ncol = params$ps[id])[, idx, drop = FALSE] C[[id]] = params$scaler / (params$scaler + params$scalers[id]) * t(halfshareDP) %*% MultiplyDiagonalWTimesX(W, halfshare) + t(halfshareDP) %*% MultiplyDiagonalWTimesX(W, data$X - halfshare) } else if (id == params$dataPartnerID) { C[[id]] = t(data$X) %*% MultiplyDiagonalWTimesX(W, data$X) } else { set.seed(params$seeds[id], kind = "Mersenne-Twister") idx = params$indicies[[id]] halfshareDP = matrix(rnorm(params$n * params$ps[id], sd = 20), nrow = params$n, ncol = params$ps[id])[, idx, drop = FALSE] C[[id]] = params$scaler / (params$scaler + params$scalers[id]) * t(halfshare) %*% MultiplyDiagonalWTimesX(W, halfshareDP) + t(data$X - halfshare) %*% MultiplyDiagonalWTimesX(W, halfshareDP) } } writeTime = proc.time()[3] save(C, file = file.path(params$writePath, "stwsshare.rdata")) writeSize = file.size(file.path(params$writePath, "stwsshare.rdata")) writeTime = proc.time()[3] - writeTime params = AddToLog(params, "ComputeStWSLogistic.DP", readTime, readSize, writeTime, writeSize) return(params) } ComputeStWSLogistic.AC = function(params) { if (params$trace) cat(as.character(Sys.time()), "ComputeStWSLogistic.AC\n\n") readTime = 0 readSize = 0 C = NULL W = params$pi_ * (1 - params$pi_) StWS = matrix(0, sum(params$pReduct), sum(params$pReduct)) for (id1 in 1:params$numDataPartners) { end = sum(params$pReduct[1:id1]) start = end - params$pReduct[id1] + 1 idx1 = start:end readTime = readTime - proc.time()[3] load(file.path(params$readPathDP[id1], "stwsshare.rdata")) readSize = readSize + file.size(file.path(params$readPathDP[id1], "stwsshare.rdata")) readTime = readTime + proc.time()[3] for (id2 in 1:params$numDataPartners) { end = sum(params$pReduct[1:id2]) start = end - params$pReduct[id2] + 1 idx2 = start:end if (id1 < id2) { StWS[idx1, idx2] = StWS[idx1, idx2] + C[[id2]] StWS[idx2, idx1] = StWS[idx2, idx1] + t(C[[id2]]) } else if (id1 == id2) { StWS[idx1, idx1] = C[[id1]] } else { StWS[idx2, idx1] = StWS[idx2, idx1] + C[[id2]] StWS[idx1, idx2] = StWS[idx1, idx2] + t(C[[id2]]) } } if (id1 < params$numDataPartners) { for (id2 in (id1 + 1):params$numDataPartners) { end = sum(params$pReduct[1:id2]) start = end - params$pReduct[id2] + 1 idx2 = start:end temp = t(params$halfshare[[id1]]) %*% MultiplyDiagonalWTimesX(W, params$halfshare[[id2]]) StWS[idx1, idx2] = StWS[idx1, idx2] + temp StWS[idx2, idx1] = StWS[idx2, idx1] + t(temp) } } } I = NULL tryCatch({I = solve(StWS)}, error = function(err) { I = NULL } ) if (is.null(I)) { params$failed = TRUE params$singularMatrix = TRUE params$errorMessage = paste0("The matrix t(X)*W*X is not invertible.\n", " This may be due to one of two possible problems.\n", " 1. Poor random initialization of the security matrices.\n", " 2. Near multicollinearity in the data\n", "SOLUTIONS: \n", " 1. Rerun the data analysis.\n", " 2. If the problem persists, check the variables for\n", " duplicates for both parties and / or reduce the\n", " number of variables used. Once this is done,\n", " rerun the data analysis.") params = AddToLog(params, "ComputeStWSLogistic.AC", readTime, readSize, 0, 0) return(params) } params$I = I halfshare = params$halfshare[[1]] for (id in 2:params$numDataPartners) { halfshare = cbind(halfshare, params$halfshare[[id]]) } IDt = I %*% (params$sty - t(halfshare) %*% params$pi_) Itemp = I IDttemp = IDt writeTime = 0 writeSize = 0 start = 1 stop = params$pReduct[1] for (id in 1:params$numDataPartners) { I = Itemp[start:stop, , drop = FALSE] IDt = IDttemp[start:stop, , drop = FALSE] writeTime = writeTime - proc.time()[3] save(I, IDt, file = file.path(params$writePath, paste0("ID", id, ".rdata"))) writeSize = writeSize + file.size(file.path(params$writePath, paste0("ID", id, ".rdata"))) writeTime = writeTime + proc.time()[3] start = stop + 1 stop = stop + params$pReduct[id + 1] } params = AddToLog(params, "ComputeStWSLogistic.AC", readTime, readSize, writeTime, writeSize) return(params) } UpdateBetaLogistic.DP = function(params) { if (params$trace) cat(as.character(Sys.time()), "UpdateBetaLogistic.DP\n\n") I = IDt = NULL readTime = proc.time()[3] load(file.path(params$readPathAC, paste0("ID", params$dataPartnerID, ".rdata"))) readSize = file.size(file.path(params$readPathAC, paste0("ID", params$dataPartnerID, ".rdata"))) readTime = proc.time()[3] - readTime id = 1 set.seed(params$seeds[id], kind = "Mersenne-Twister") idx = params$indicies[[id]] halfshareDP = matrix(rnorm(params$n * params$ps[id], sd = 20), nrow = params$n, ncol = params$ps[id])[, idx, drop = FALSE] for (id in 2:params$numDataPartners) { set.seed(params$seeds[id], kind = "Mersenne-Twister") idx = params$indicies[[id]] halfshareDP = cbind(halfshareDP, matrix(rnorm(params$n * params$ps[id], sd = 20), nrow = params$n, ncol = params$ps[id])[, idx, drop = FALSE]) } D0 = t(halfshareDP) %*% params$pi_ deltaBeta = IDt - I %*% D0 params$betas = params$betas + deltaBeta maxdifference = max(abs(deltaBeta) / (abs(params$betas) + .1)) utemp = sum(runif(length(deltaBeta), min = 1, max = 5) * abs(params$betas)) writeTime = proc.time()[3] save(utemp, maxdifference, file = file.path(params$writePath, "u_converge.rdata")) writeSize = file.size(file.path(params$writePath, "u_converge.rdata")) writeTime = proc.time()[3] - writeTime params = AddToLog(params, "UpdateBetaLogistic.DP", readTime, readSize, writeTime, writeSize) return(params) } ComputeConvergeStatusLogistic.AC = function(params) { if (params$trace) cat(as.character(Sys.time()), "ComputeConvergeStatusLogistic.AC\n\n") readTime = 0 readSize = 0 u = 0 converged = TRUE utemp = NULL maxdifference = NULL for (id in 1:params$numDataPartners) { readTime = readTime - proc.time()[3] load(file.path(params$readPathDP[id], "u_converge.rdata")) readSize = readSize + file.size(file.path(params$readPathDP[id], "u_converge.rdata")) readTime = readTime + proc.time()[3] u = u + utemp converged = converged && (maxdifference < params$cutoff) } maxIterExceeded = params$algIterationCounter >= params$maxIterations params$maxIterExceeded = maxIterExceeded params$u = u params$converged = converged writeTime = proc.time()[3] save(u, converged, maxIterExceeded, file = file.path(params$writePath, "u_converge.rdata")) writeSize = file.size(file.path(params$writePath, "u_converge.rdata")) writeTime = proc.time()[3] - writeTime params = AddToLog(params, "ComputeConvergeStatusLogistic.AC", readTime, readSize, writeTime, writeSize) return(params) } GetConvergeStatusLogistic.DP = function(params) { converged = NULL if (params$trace) cat(as.character(Sys.time()), "GetconvergeStatusLogistic.DP\n\n") u = converge = maxIterExceeded = NULL readTime = proc.time()[3] load(file.path(params$readPathAC, "u_converge.rdata")) readSize = file.size(file.path(params$readPathAC, "u_converge.rdata")) readTime = proc.time()[3] - readTime params$u = u params$converged = converged params$maxIterExceeded = maxIterExceeded params = AddToLog(params, "GetConvergeStatusLogistic.DP", readTime, readSize, 0, 0) return(params) } SendFinalBetasLogistic.DP = function(params) { if (params$trace) cat(as.character(Sys.time()), "SendFinalBetasLogistic.DP\n\n") betas = params$betas writeTime = proc.time()[3] save(betas, file = file.path(params$writePath, "finalbetas.rdata")) writeSize = file.size(file.path(params$writePath, "finalbetas.rdata")) writeTime = proc.time()[3] - writeTime params = AddToLog(params, "SendFinalBetasLogistic.DP", 0, 0, writeTime, writeSize) return(params) } ComputeFinalSBetaLogistic.AC = function(params) { if (params$trace) cat(as.character(Sys.time()), "ComputeFinalSBetaLogistic.AC\n\n") Sbeta = 0 readTime = 0 readSize = 0 sbeta = 0 for (id in 1:params$numDataPartners) { readTime = readTime - proc.time()[3] load(file.path(params$readPathDP[id], "sbeta.rdata")) readSize = readSize + file.size(file.path(params$readPathDP[id], "sbeta.rdata")) readTime = readTime + proc.time()[3] sbeta = sbeta + Sbeta } sbeta = 2 * params$u * sbeta - params$numDataPartners * params$u writeTime = proc.time()[3] save(sbeta, file = file.path(params$writePath, "sbeta.rdata")) writeSize = file.size(file.path(params$writePath, "sbeta.rdata")) writeTime = proc.time()[3] - writeTime params = AddToLog(params, "ComputeFinalSBetaLogistic.AC", readTime, readSize, writeTime, writeSize) return(params) } ComputeResultsLogistic.DP = function(params, data) { if (params$trace) cat(as.character(Sys.time()), "ComputeResultsLogistic.DP\n\n") sbeta = NULL readTime = proc.time()[3] load(file.path(params$readPathAC, "sbeta.rdata")) readSize = file.size(file.path(params$readPathAC, "sbeta.rdata")) readTime = proc.time()[3] - readTime n = params$n ct = sum(data$Y) params$FinalFitted = sbeta resdev = -2 * (sum(data$Y * sbeta) - sum(log(1 + exp(sbeta)))) nulldev = -2 * (ct * log(ct / n) + (n - ct) * log(1 - ct / n)) hoslem = HoslemInternal(params, data) ROC = RocInternal(params, data) writeTime = proc.time()[3] save(resdev, nulldev, hoslem, ROC, file = file.path(params$writePath, "logisticstats.rdata")) writeSize = file.size(file.path(params$writePath, "logisticstats.rdata")) writeTime = proc.time()[3] - writeTime params = AddToLog(params, "ComputeResultsLogistic.DP", readTime, readSize, writeTime, writeSize) return(params) } ComputeResultsLogistic.AC = function(params) { if (params$trace) cat(as.character(Sys.time()), "ComputeResultsLogistic.AC\n\n") nulldev = NULL resdev = NULL hoslem = NULL ROC = NULL readTime = proc.time()[3] load(file.path(params$readPathDP[1], "logisticstats.rdata")) readSize = file.size(file.path(params$readPathDP[1], "logisticstats.rdata")) readTime = proc.time()[3] - readTime coefficients = c() p = 0 betas = NULL for (id in 1:params$numDataPartners) { readTime = readTime - proc.time()[3] load(file.path(params$readPathDP[id], "finalbetas.rdata")) readSize = readSize + file.size(file.path(params$readPathDP[id], "finalbetas.rdata")) readTime = readTime + proc.time()[3] coefficients = c(coefficients, betas) p = p + length(params$indicies[[id]]) } coefficients[2:p] = coefficients[2:p] / params$colran[2:p] coefficients[1] = coefficients[1] - sum(coefficients[2:p] * params$colmin[2:p]) serror = rep(0, p) serror[2:p] = sqrt(diag(params$I)[2:p]) / params$colran[2:p] d1 = diag(c(1, params$colmin[-1] / params$colran[-1])) temp = d1 %*% params$I %*% d1 serror[1] = sqrt(temp[1, 1] - 2 * sum(temp[1, 2:p]) + sum(temp[2:p, 2:p])) stats = params$stats stats$failed = FALSE stats$converged = params$converged stats$party = params$party stats$coefficients = rep(NA, params$p) stats$secoef = rep(NA, params$p) stats$tvals = rep(NA, params$p) stats$pvals = rep(NA, params$p) stats$n = params$n stats$nulldev = nulldev stats$resdev = resdev stats$aic = resdev + 2 * sum(params$pReduct) stats$bic = resdev + sum(params$pReduct) * log(params$n) stats$nulldev_df = params$n - 1 stats$resdev_df = params$n - sum(params$pReduct) stats$coefficients[params$fullindicies] = coefficients stats$secoef[params$fullindicies] = serror tvals = coefficients / serror pvals = 2 * pnorm(abs(tvals), lower.tail = FALSE) stats$tvals[params$fullindicies] = tvals stats$pvals[params$fullindicies] = pvals stats$hoslem = hoslem stats$ROC = ROC stats$iter = params$algIterationCounter - 1 names(stats$coefficients) = params$colnames names(stats$party) = params$colnames names(stats$secoef) = params$colnames names(stats$tvals) = params$colnames names(stats$pvals) = params$colnames writeTime = proc.time()[3] save(stats, file = file.path(params$writePath, "stats.rdata")) writeSize = file.size(file.path(params$writePath, "stats.rdata")) writeTime = proc.time()[3] - writeTime params$stats = stats params = AddToLog(params, "ComputeResultsLogistic.AC", readTime, readSize, writeTime, writeSize) return(params)} GetResultsLogistic.DP = function(params, data) { if (params$trace) cat(as.character(Sys.time()), "GetResultsLogistic.DP\n\n") stats = NULL readTime = proc.time()[3] load(file.path(params$readPathAC, "stats.rdata")) readSize = file.size(file.path(params$readPathAC, "stats.rdata")) readTime = proc.time()[3] - readTime if (params$dataPartnerID == 1) { stats$Y = data$Y stats$FinalFitted = params$FinalFitted } params$stats = stats params = AddToLog(params, "GetResultsLogistic.DP", readTime, readSize, 0, 0) return(params) } DataPartnerKLogistic = function(data, yname = NULL, numDataPartners = NULL, dataPartnerID = NULL, monitorFolder = NULL, sleepTime = 10, maxWaitingTime = 24 * 60 * 60, popmednet = TRUE, trace = FALSE, verbose = TRUE) { params = PrepareParams.kp("logistic", dataPartnerID, numDataPartners, ac = FALSE, popmednet = popmednet, trace = trace, verbose = verbose) if (params$failed) { warning(params$errorMessage) return(invisible(NULL)) } params = InitializeLog.kp(params) params = InitializeStamps.kp(params) params = InitializeTrackingTable.kp(params) Header(params) params = PrepareFolder.ACDP(params, monitorFolder) if (params$failed) { warning(params$errorMessage) return(invisible(NULL)) } if (dataPartnerID == 1) { data = PrepareDataLinLog.DP1(params, data, yname) params = AddToLog(params, "PrepareParamsLinLog.DP1", 0, 0, 0, 0) } else { data = PrepareDataLinLog.DPk(params, data) params = AddToLog(params, "PrepareParamsLinLog.DPk", 0, 0, 0, 0) } params = AddToLog(params, "PrepareParamsLinear.DP", 0, 0, 0, 0) if (data$failed) { params$errorMessage = paste("Error processing data for data partner", params$dataPartnerID, "\n") MakeErrorMessage(params$writePath, params$errorMessage) files = "errorMessage.rdata" params = SendPauseContinue.kp(params, filesAC = files, from = "AC", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime, waitForTurn = TRUE) params$errorMessage = ReadErrorMessage(params$readPathAC) warning(params$errorMessage) params = SendPauseQuit.kp(params, sleepTime = sleepTime, waitForTurn = TRUE) return(params$stats) } params = SendBasicInfo.DP(params, data) files = "n_analysis.rdata" params = SendPauseContinue.kp(params, filesAC = files, from = "AC", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime, waitForTurn = TRUE) possibleError = ReceivedError.kp(params, from = "AC") if (possibleError$error) { params$errorMessage = possibleError$message warning(possibleError$message) params = SendPauseQuit.kp(params, sleepTime = sleepTime, waitForTurn = TRUE) return(params$stats) } params = PrepareParamsLinear.DP(params, data) files = "p_scaler_seed.rdata" params = SendPauseContinue.kp(params, filesDP = files, from = "DP", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime, waitForTurn = TRUE) params = PrepareSharesLinear.DP(params, data) files = c("products.rdata", "halfshare.rdata", "colstats.rdata") params = SendPauseContinue.kp(params, filesAC = files, from = "AC", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime, waitForTurn = TRUE) possibleError = ReceivedError.kp(params, from = "AC") if (possibleError$error) { params$errorMessage = possibleError$message warning(possibleError$message) params = SendPauseQuit.kp(params, sleepTime = sleepTime, waitForTurn = TRUE) return(params$stats) } params = UpdateParamsLogistic.DP(params) data = UpdateDataLogistic.DP(params, data) params = AddToLog(params, "UpdateDataLogistic.DP", 0, 0, 0, 0) params$algIterationCounter = 1 while (!params$converged && !params$maxIterExceeded) { BeginningIteration(params) params = ComputeSbetaLogistic.DP(params, data) files = "Sbeta.rdata" params = SendPauseContinue.kp(params, filesAC = files, from = "AC", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime, waitForTurn = TRUE) params = ComputeStWSLogistic.DP(params, data) files = "stwsshare.rdata" params = SendPauseContinue.kp(params, filesAC = files, from = "AC", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime, waitForTurn = TRUE) possibleError = ReceivedError.kp(params, from = "AC") if (possibleError$error) { params$errorMessage = possibleError$message warning(possibleError$message) params = SendPauseQuit.kp(params, sleepTime = sleepTime, waitForTurn = TRUE) return(params$stats) } params = UpdateBetaLogistic.DP(params) files = "u_converge.rdata" params = SendPauseContinue.kp(params, filesAC = files, from = "AC", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime, waitForTurn = TRUE) params = GetConvergeStatusLogistic.DP(params) EndingIteration(params) params$algIterationCounter = params$algIterationCounter + 1 } params = ComputeSbetaLogistic.DP(params, data) params = SendFinalBetasLogistic.DP(params) files = c("sbeta.rdata", "finalbetas.rdata") params = SendPauseContinue.kp(params, filesAC = files, from = "AC", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime, waitForTurn = TRUE) if (dataPartnerID == 1) { params = ComputeResultsLogistic.DP(params, data) files = "logisticstats.rdata" params = SendPauseContinue.kp(params, filesAC = files, from = "AC", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) } params = GetResultsLogistic.DP(params, data) params = SendPauseQuit.kp(params, sleepTime = sleepTime, waitForTurn = TRUE) return(params$stats) } AnalysisCenterKLogistic = function(numDataPartners = NULL, monitorFolder = NULL, msreqid = "v_default_0_000", cutoff = 1E-8, maxIterations = 25, sleepTime = 10, maxWaitingTime = 24 * 60 * 60, popmednet = TRUE, trace = FALSE, verbose = TRUE) { filesList = rep(list(list()), numDataPartners) params = PrepareParams.kp("logistic", 0, numDataPartners, msreqid, cutoff, maxIterations, ac = TRUE, popmednet = popmednet, trace = trace, verbose = verbose) if (params$failed) { warning(params$errorMessage) return(invisible(NULL)) } params = InitializeLog.kp(params) params = InitializeStamps.kp(params) params = InitializeTrackingTable.kp(params) Header(params) params = PrepareFolder.ACDP(params, monitorFolder) if (params$failed) { warning(params$errorMessage) return(invisible(NULL)) } params = PauseContinue.kp(params, from = "DP", maxWaitingTime = maxWaitingTime) possibleError = ReceivedError.kp(params, from = "DP") if (possibleError$error) { params$errorMessage = possibleError$message warning(possibleError$message) MakeErrorMessage(params$writePath, possibleError$message) files = "errorMessage.rdata" params = SendPauseContinue.kp(params, filesDP = files, from = "DP", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) params = SendPauseQuit.kp(params, sleepTime = sleepTime, job_failed = TRUE) SummarizeLog.kp(params) return(params$stats) } params = CheckAgreement.AC(params) if (params$failed) { MakeErrorMessage(params$writePath, params$errorMessage) files = "errorMessage.rdata" warning(params$errorMessage) params = SendPauseContinue.kp(params, filesDP = files, from = "DP", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) params = SendPauseQuit.kp(params, sleepTime = sleepTime, job_failed = TRUE) SummarizeLog.kp(params) return(params$stats) } files = "empty.rdata" params = SendPauseContinue.kp(params, filesDP = files, from = "DP", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) params = GetProductsLogistic.AC(params) params = CheckColinearityLogistic.AC(params) if (params$failed) { MakeErrorMessage(params$writePath, params$errorMessage) files = "errorMessage.rdata" warning(params$errorMessage) params = SendPauseContinue.kp(params, filesDP = files, from = "DP", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) params = SendPauseQuit.kp(params, sleepTime = sleepTime, job_failed = TRUE) SummarizeLog.kp(params) return(params$stats) } params = ComputeInitialBetasLogistic.AC(params) for (id in 1:numDataPartners) { filesList[[id]] = c(paste0("u_beta_", id, ".rdata"), "indicies.rdata") } params = SendPauseContinue.kp(params, filesDP = filesList, from = "DP", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) params$algIterationCounter = 1 while (!params$converged && !params$maxIterExceeded) { BeginningIteration(params) params = ComputeWeightsLogistic.AC(params) files = "pi.rdata" params = SendPauseContinue.kp(params, filesDP = files, from = "DP", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) params = ComputeStWSLogistic.AC(params) if (params$failed) { MakeErrorMessage(params$writePath, params$errorMessage) files = "errorMessage.rdata" warning(params$errorMessage) params = SendPauseContinue.kp(params, filesDP = files, from = "DP", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) params = SendPauseQuit.kp(params, sleepTime = sleepTime, job_failed = TRUE) SummarizeLog.kp(params) return(params$stats) } for (id in 1:numDataPartners) { filesList[[id]] = paste0("id", id, ".rdata") } params = SendPauseContinue.kp(params, filesDP = filesList, from = "DP", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) params = ComputeConvergeStatusLogistic.AC(params) files = "u_converge.rdata" params = SendPauseContinue.kp(params, filesDP = files, from = "DP", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) EndingIteration(params) params$algIterationCounter = params$algIterationCounter + 1 } params = ComputeFinalSBetaLogistic.AC(params) filesList = rep(list(list()), numDataPartners) filesList[[1]] = "sbeta.rdata" params = SendPauseContinue.kp(params, filesDP = filesList, from = "DP1", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) params = ComputeResultsLogistic.AC(params) files = "stats.rdata" params = SendPauseContinue.kp(params, filesDP = files, from = "DP", sleepTime = sleepTime, maxWaitingTime = maxWaitingTime) params = SendPauseQuit.kp(params, sleepTime = sleepTime) SummarizeLog.kp(params) return(params$stats) }
setGeneric("buildPairwiseComparisonMatrix", function(listOfMatrices) standardGeneric("buildPairwiseComparisonMatrix")) setMethod( f="buildPairwiseComparisonMatrix", signature(listOfMatrices = "list"), definition=function(listOfMatrices) { number = length(listOfMatrices) size = nrow(listOfMatrices[[1]]@values) for(i in 1:number){ if (class(listOfMatrices[[i]]) != "PairwiseComparisonMatrix"){ stop(paste0("Element on position ", i, " is not of class PairwiseComparisonMatrix. Its type is ", class(listOfMatrices[[i]]), ".")) } if (dim(listOfMatrices[[1]]@values)[1] != dim(listOfMatrices[[i]]@values)[1] && dim(listOfMatrices[[1]]@values)[2] != dim(listOfMatrices[[i]]@values)[2]){ stop(paste0("PairwiseComparisonMatrices do not have the same sizes: [", dim(listOfMatrices[[1]]@values)[1], ",", dim(listOfMatrices[[1]]@values)[2], "] != [", dim(listOfMatrices[[i]]@values)[1], ",", dim(listOfMatrices[[1]]@values)[2], "].")) } } resultMatrix = listOfMatrices[[1]]@values for (i in 1:size){ for (j in 1:size){ vector = c() for (k in 1:number){ vector = c(vector, listOfMatrices[[k]]@values[i, j]) } resultMatrix[i, j] = prod(vector)^(1/number) } } textMatrix = .textMatrixRepresentation(resultMatrix) return(new("PairwiseComparisonMatrix", valuesChar = textMatrix, values = resultMatrix, variableNames = listOfMatrices[[1]]@variableNames)) } )
waterfall <- function(xgb_model, new_observation, data, type = "binary", option = "interactions", baseline = 0){ Feature <- intercept <- NULL col_names <- colnames(new_observation) trees = xgb.model.dt.tree(col_names, model = xgb_model) if (option == "interactions") { tree_list = getStatsForTreesInter(trees, type, base_score = .5) } if (option == "variables") { tree_list = getStatsForTrees(trees, type, base_score = .5) } explainer = buildExplainerFromTreeList(tree_list,names(table(rbindlist(tree_list)[,Feature]))) new_observation_DM <- slice(xgb.DMatrix(t(new_observation)), as.integer(1)) breakdown = explainPredictions(xgb_model, explainer, new_observation_DM) df <- as.data.frame(breakdown) for (i in colnames(data)) { indexVariable <- grepl(i, colnames(df)) & !(grepl("\\:", colnames(df))) if (length(which(indexVariable)) > 1) { df[, i] = sum(df[, indexVariable]) new_observation[i] <- as.data.frame(data)[, i] ix <- which(names(new_observation) %in% names(df[, indexVariable])) new_observation <- new_observation[-ix] df <- df[, !(indexVariable)] } if (length(which(indexVariable)) == 1) { new_observation[i] <- as.data.frame(data)[, i] if (i != colnames(df)[indexVariable]) { df[, i] <- df[, indexVariable] df <- df[, !(indexVariable)] } } indexInter <- grepl(i, colnames(df)) & (grepl("\\:", colnames(df))) if (length(which(indexInter)) > 1) { indexInter1 <- grepl(i, colnames(df)) & (grepl("\\:", colnames(df))) & (unlist(lapply(gregexpr(pattern = i, colnames(df)), `[[`, 1)) < unlist(lapply(gregexpr(pattern = ":", colnames(df)), `[[`, 1))) child <- map(strsplit(colnames(df[, indexInter1, drop = FALSE]), "[:]"), 2) colnames(df)[indexInter1] <- paste(i, child, sep = ":") indexInter2 <- grepl(i, colnames(df)) & (grepl("\\:", colnames(df)))& (!(unlist(lapply(gregexpr(pattern = i, colnames(df)), `[[`, 1)) < unlist(lapply(gregexpr(pattern = ":", colnames(df)), `[[`, 1)))) parent <- map(strsplit(colnames(df[, indexInter2, drop = FALSE]), "[:]"), 1) colnames(df)[indexInter2] <- paste(parent, i, sep = ":") } } prefixes = unique(gsub("\\.+[1-9]", "", colnames(df[, grepl("\\:", colnames(df))]))) interactions <- sapply(prefixes, function(x)sum(df[, startsWith(colnames(df), x)])) single <- as.vector(t(df[, !grepl("\\:", colnames(df))])) names(single) <- colnames(df[, !grepl("\\:", colnames(df))]) breakdown <- c(interactions, single) ilabels <- grep(names(breakdown), pattern = ":", value = TRUE) for (interact in ilabels) { vars <- strsplit(interact, split = ":")[[1]] new_observation[interact] <- paste0(new_observation[vars],collapse = ":") } breakdown <- data.table(t(breakdown)) df_intercept <- breakdown[,intercept] breakdown <- breakdown[,`:=`(intercept = NULL, Leaf = NULL)] df <- data.frame( variable = paste(colnames(breakdown), "=", sapply(new_observation[colnames(breakdown)], as.character)), contribution = as.numeric(breakdown), variable_name = colnames(breakdown), variable_value = sapply(new_observation[colnames(breakdown)], as.character) )[as.numeric(breakdown) != 0, ] df <- df[order(abs(df[, 2]), decreasing = TRUE), ] broken_sorted <- as.data.frame(df) if (tolower(baseline) == "intercept"){ baseline <- df_intercept }else{ broken_sorted <- rbind( data.frame(variable = "intercept", contribution = df_intercept - baseline, variable_name = "intercept", variable_value = 1), broken_sorted) } create.broken(broken_sorted, baseline) } create.broken <- function(broken_intercept, baseline = 0) { broken_cumm <- data.frame(broken_intercept, cumulative = cumsum(as.numeric(broken_intercept$contribution)), sign = factor(sign(as.numeric(broken_intercept$contribution)), levels = c(-1, 0, 1)), position = length(broken_intercept$variable) - seq_along(broken_intercept$variable) + 2, label = rep("xgboost", nrow(broken_intercept))) broken_cumm <- rbind(broken_cumm, data.frame(variable = "prediction", contribution = sum(broken_cumm$contribution), variable_name = "", variable_value = "", cumulative = sum(broken_cumm$contribution), sign = "X", position = 1, label = "xgboost")) attr(broken_cumm, "baseline") <- baseline class(broken_cumm) <- c("break_down", "data.frame") broken_cumm } getStatsForTreesInter = function(trees,type = "binary", base_score = 0.5) { leaf <- Feature <- H <- Cover <- Yes <- No <- ID <- weight <- Quality <- previous_weight <- G <- parentsCover <- name_pair <- childsGain <- uplift_weight <- parentsGain <- parentsName <- NULL treeList = copy(trees) treeList[, leaf := Feature == 'Leaf'] treeList[, H := Cover] non.leaves = which(treeList[, leaf] == F) j = 0 for (i in rev(non.leaves)) { left = treeList[i, Yes] right = treeList[i, No] treeList[i, H := treeList[ID == left, H] + treeList[ID == right, H]] j = j + 1 } if (type == 'regression') { base_weight = base_score } else{ base_weight = log(base_score / (1 - base_score)) } treeList[leaf == T, weight := base_weight + Quality] treeList[, previous_weight := base_weight] treeList[1, previous_weight := 0] treeList[leaf == T, G := -weight * H] treeList = split(treeList, as.factor(treeList$Tree)) num_treeList = length(treeList) treenums = as.character(0:(num_treeList - 1)) for (tree in treeList) { num_nodes = nrow(tree) non_leaf_rows = rev(which(tree[, leaf] == F)) for (r in non_leaf_rows) { left = tree[r, Yes] right = tree[r, No] leftG = tree[ID == left, G] rightG = tree[ID == right, G] tree[r, G := leftG + rightG] w = tree[r, -G / H] tree[r, weight := w] tree[ID == left, previous_weight := w] tree[ID == right, previous_weight := w] if (tree[ID == left, leaf] == F) { tree[ID == left, `:=`(parentsGain = tree[r, Quality], parentsName = tree[r, Feature])] tree[ID == left, parentsCover := tree[r, Cover]] name_pair4 = paste(tree[r, Feature], tree[ID == left, Feature], sep = ":") tree[ID == left, name_pair := name_pair4] tree[ID == left, childsGain := Quality] } if (tree[ID == right, leaf] == F) { tree[ID == right, `:=`(parentsGain = tree[r, Quality], parentsName = tree[r, Feature])] tree[ID == right, parentsCover := tree[r, Cover]] name_pair1 = paste(tree[r, Feature], tree[ID == right, Feature], sep = ":") tree[ID == right, name_pair := name_pair1] tree[ID == right, childsGain := Quality] } } tree[, uplift_weight := weight - previous_weight] tree[, interaction := ((parentsGain < childsGain) & (Feature != parentsName))] tree[interaction == TRUE, Feature := name_pair] } return (treeList) } getStatsForTrees = function(trees, nodes.train,type = "binary", base_score = 0.5) { leaf <- Feature <- H <- Cover <- Yes <- No <- ID <- weight <- Quality <- previous_weight <- G <- uplift_weight <- NULL tree_list = copy(trees) tree_list[, leaf := Feature == 'Leaf'] tree_list[, H := Cover] non.leaves = which(tree_list[, leaf] == F) for (i in rev(non.leaves)) { left = tree_list[i, Yes] right = tree_list[i, No] tree_list[i, H := tree_list[ID == left, H] + tree_list[ID == right, H]] } if (type == 'regression') { base_weight = base_score } else{ base_weight = log(base_score / (1 - base_score)) } tree_list[leaf == T, weight := base_weight + Quality] tree_list[, previous_weight := base_weight] tree_list[1, previous_weight := 0] tree_list[leaf == T, G := -weight * H] tree_list = split(tree_list, as.factor(tree_list$Tree)) num_tree_list = length(tree_list) treenums = as.character(0:(num_tree_list - 1)) for (tree in tree_list) { num_nodes = nrow(tree) non_leaf_rows = rev(which(tree[, leaf] == F)) for (r in non_leaf_rows) { left = tree[r, Yes] right = tree[r, No] leftG = tree[ID == left, G] rightG = tree[ID == right, G] tree[r, G := leftG + rightG] w = tree[r, -G / H] tree[r, weight := w] tree[ID == left, previous_weight := w] tree[ID == right, previous_weight := w] } tree[, uplift_weight := weight - previous_weight] } return (tree_list) } buildExplainerFromTreeList = function(tree_list, col_names) { tree_list_breakdown <- vector("list", length(col_names) + 3) names(tree_list_breakdown) = c(col_names, 'intercept', 'leaf', 'tree') num_trees = length(tree_list) for (x in 1:num_trees) { tree = tree_list[[x]] tree_breakdown = getTreeBreakdown(tree, col_names) tree_breakdown$tree = x - 1 tree_list_breakdown = rbindlist(append(list(tree_list_breakdown), list(tree_breakdown))) } return (tree_list_breakdown) } getTreeBreakdown = function(tree, col_names) { Node <- NULL tree_breakdown <- vector("list", length(col_names) + 2) names(tree_breakdown) = c(col_names, 'intercept', 'leaf') leaves = tree[leaf == T, Node] for (leaf in leaves) { leaf_breakdown = getLeafBreakdown(tree, leaf, col_names) leaf_breakdown$leaf = leaf tree_breakdown = rbindlist(append(list(tree_breakdown), list(leaf_breakdown))) } return (tree_breakdown) } getLeafBreakdown = function(tree, leaf, col_names) { Node <- Feature <- . <- uplift_weight <- NULL impacts = as.list(rep(0, length(col_names))) names(impacts) = col_names path = findPath(tree, leaf) reduced_tree = tree[Node %in% path, .(Feature, uplift_weight)] impacts$intercept = reduced_tree[1, uplift_weight] reduced_tree[, uplift_weight := shift(uplift_weight, type = 'lead')] tmp = reduced_tree[, .(sum = sum(uplift_weight)), by = Feature] tmp = tmp[-nrow(tmp)] impacts[tmp[, Feature]] = tmp[, sum] return (impacts) } findPath = function(tree, currentnode, path = c()) { Node <- Yes <- No <- ID <- NULL while (currentnode > 0) { path = c(path, currentnode) currentlabel = tree[Node == currentnode, ID] currentnode = c(tree[Yes == currentlabel, Node], tree[No == currentlabel, Node]) } return (sort(c(path, 0))) } explainPredictions = function(xgb_model, explainer , data) { tree <- NULL nodes = predict(xgb_model, data, predleaf = TRUE) colnames = names(explainer)[1:(ncol(explainer) - 2)] preds_breakdown = data.table(matrix(0, nrow = nrow(nodes), ncol = length(colnames))) setnames(preds_breakdown, colnames) num_trees = ncol(nodes) for (x in 1:num_trees) { nodes_for_tree = nodes[, x] tree_breakdown = explainer[tree == x - 1] preds_breakdown_for_tree = tree_breakdown[match(nodes_for_tree, tree_breakdown$leaf), ] preds_breakdown = preds_breakdown + preds_breakdown_for_tree[, colnames, with = FALSE] } return (preds_breakdown) }
msr.4thcorner <- function(x, listwORorthobasis, phyloORorthobasis, nrepet = x$npermut, method = c("pair", "triplet", "singleton"), ...){ appel <- as.list(x$call) L <- eval.parent(appel$tabL) R <- eval.parent(appel$tabR) if(any(!apply(R, 2, is.numeric))) stop("Not implemented: table R contains non-numeric variables") Q <- eval.parent(appel$tabQ) if(any(!apply(Q, 2, is.numeric))) stop("Not implemented: table Q contains non-numeric variables") if(missing(listwORorthobasis)){ Rmsr <- replicate(nrepet, R[sample(nrow(R)),, drop = FALSE], simplify = FALSE) } else { Rmsr <- msr(R, listwORorthobasis, nrepet = nrepet, method = method, simplify = FALSE, ...) } if(missing(phyloORorthobasis)){ Qmsr <- replicate(nrepet, Q[sample(nrow(Q)),, drop = FALSE], simplify = FALSE) } else { if (inherits(phyloORorthobasis, "phylo")) phyloORorthobasis <- me.phylo(phyloORorthobasis) Qmsr <- msr(Q, phyloORorthobasis, nrepet = nrepet, method = method, simplify = FALSE, ...) } func.4th <- as.character(appel[[1]]) if(func.4th == "fourthcorner") elems <- c("tabD", "tabD2", "tabG") else stop(paste("Not yet implemented for", func.4th)) test.Rrand <- lapply(Rmsr, function(x) do.call(func.4th, list(tabR = as.data.frame(x), tabL = L, tabQ = Q , modeltype = 2, nrepet = 0))) test.Qrand <- lapply(Qmsr, function(x) do.call(func.4th, list(tabR = R, tabL = L, tabQ = as.data.frame(x) , modeltype = 2, nrepet = 0))) res.R <- vector(mode = "list", length = length(elems)) for(i in 1:length(elems)) res.R[[i]] <- matrix(NA, nrepet, length(test.Rrand[[1]][[elems[i]]]$obs)) names(res.R) <- elems res.Q <- res.R for(i in 1:nrepet){ for(j in elems){ res.R[[j]][i,] <- test.Rrand[[i]][[j]]$obs res.Q[[j]][i,] <- test.Qrand[[i]][[j]]$obs } } fc.R <- fc.Q <- x for(j in elems){ if(inherits(x[[j]], "krandtest")){ output <- ifelse(inherits(x[[j]], "lightkrandtest"), "light", "full") fc.R[[j]] <- as.krandtest(sim = res.R[[j]], obs = x[[j]]$obs, alter = x[[j]]$alter, call = match.call(), names = x[[j]]$names, p.adjust.method = x[[j]]$adj.method, output = output) fc.Q[[j]] <- as.krandtest(sim = res.Q[[j]], obs = x[[j]]$obs, alter = x[[j]]$alter, call = match.call(), names = x[[j]]$names, p.adjust.method = x[[j]]$adj.method, output = output) fc.Q[[j]]$statnames <- fc.R[[j]]$statnames <- x[[j]]$statnames } } res <- combine.4thcorner(fc.R, fc.Q) res$call <- match.call() res$npermut <- nrepet res$model <- "msr" return(res) }
get_oc_BOIN <- function (target, p.true, ncohort, cohortsize, n.earlystop = 100, startdose = 1, p.saf = 0.6 * target, p.tox = 1.4 * target, cutoff.eli = 0.95, extrasafe = FALSE, offset = 0.05, ntrial, seed = 100) { if (target < 0.05) { stop("The target is too low! \n") return() } if (target > 0.6) { stop("The target is too high! \n") return() } if ((target - p.saf) < (0.1 * target)) { stop("The probability deemed safe cannot be higher than or too close to the target! \n") return() } if ((p.tox - target) < (0.1 * target)) { stop("The probability deemed toxic cannot be lower than or too close to the target! \n") return() } if (offset >= 0.5) { stop("The offset is too large! \n") return() } if (n.earlystop <= 6) { warning("The value of n.earlystop is too low to ensure good operating characteristics. Recommend n.earlystop = 9 to 18 \n") return() } set.seed(seed) ndose = length(p.true) npts = ncohort * cohortsize Y = matrix(rep(0, ndose * ntrial), ncol = ndose) N = matrix(rep(0, ndose * ntrial), ncol = ndose) dselect = rep(0, ntrial) temp = get_boundary_BOIN(target, ncohort, cohortsize, n.earlystop, p.saf, p.tox, cutoff.eli, extrasafe, print = FALSE) b.e = temp[2, ] b.d = temp[3, ] b.elim = temp[4, ] for (trial in 1:ntrial) { y <- rep(0, ndose) n <- rep(0, ndose) earlystop = 0 d = startdose elimi = rep(0, ndose) while(sum(n)<cohortsize*ncohort){ y[d] = y[d] + sum(runif(cohortsize) < p.true[d]) n[d] = n[d] + cohortsize if (n[d] >= n.earlystop) break if (!is.na(b.elim[n[d]])) { if (y[d] >= b.elim[n[d]]) { elimi[d:ndose] = 1 if (d == 1) { earlystop = 1 break } } if (extrasafe) { if (d == 1 && n[1] >= 3) { if (1 - pbeta(target, y[1] + 1, n[1] - y[1] + 1) > cutoff.eli - offset) { earlystop = 1 break } } } } if (y[d] <= b.e[n[d]] && d != ndose) { if (elimi[d + 1] == 0&&n[d]>=2) d = d + 1 else d=d } else if (y[d] >= b.d[n[d]] && d != 1) { d = d - 1 } else { d = d } } Y[trial, ] = y N[trial, ] = n if (earlystop == 1) { dselect[trial] = 99 } else { dselect[trial] = select_mtd_BOIN(target, n, y, cutoff.eli, extrasafe, offset, print = FALSE) } } selpercent = rep(0, ndose) nptsdose = apply(N, 2, mean) ntoxdose = apply(Y, 2, mean) for (i in 1:ndose) { selpercent[i] = sum(dselect == i)/ntrial * 100 } message("selection percentage at each dose level (%):\n") message(formatC(selpercent, digits = 1, format = "f"), sep = " ", "\n") message("number of patients treated at each dose level:\n") message(formatC(nptsdose, digits = 1, format = "f"), sep = " ", "\n") message("number of toxicity observed at each dose level:\n") message(formatC(ntoxdose, digits = 1, format = "f"), sep = " ", "\n") message("average number of toxicities:", formatC(sum(Y)/ntrial, digits = 1, format = "f"), "\n") message("average number of patients:", formatC(sum(N)/ntrial, digits = 1, format = "f"), "\n") message("percentage of early stopping due to toxicity:", formatC(sum(dselect == 99)/ntrial * 100, digits = 1, format = "f"), "% \n") if (length(which(p.true == target)) > 0) { if (which(p.true==target)==1){underdosing60 =underdosing80 =0} if (which(p.true==target)==2){underdosing60=mean(N[,1] > 0.6*npts)*100;underdosing80=mean(N[,1] > 0.8*npts)*100} if (which(p.true==target)>=3){ if(dim(N)[1]>1){ underdosing60=mean(rowSums(N[,1:(which(p.true==target)-1)])> 0.6*npts)* 100;underdosing80=mean(rowSums(N[,1:(which(p.true==target)-1)])> 0.8*npts)* 100; }else{ underdosing60=mean(sum(N[,1:(which(p.true==target)-1)])> 0.6*npts)* 100;underdosing80=mean(sum(N[,1:(which(p.true==target)-1)])> 0.8*npts)* 100; } } if (which(p.true == target) == ndose - 1) { overdosing60 = mean(N[, p.true > target] > 0.6 * npts) * 100 overdosing80 = mean(N[, p.true > target] > 0.8 * npts) * 100 } else { if(ntrial==1){ overdosing60 = mean(sum(N[, p.true > target]) > 0.6 * npts) * 100 overdosing80 = mean(sum(N[, p.true > target]) > 0.8 * npts) * 100 }else{ overdosing60 = mean(rowSums(N[, p.true > target]) > 0.6 * npts) * 100 overdosing80 = mean(rowSums(N[, p.true > target]) > 0.8 * npts) * 100 } } message("risk of poor allocation:", formatC(mean(N[, p.true == target] < npts/ndose) * 100, digits = 1, format = "f"), "% \n") message("risk of overdosing (>60% of patients treated above the MTD):", formatC(overdosing60, digits = 1, format = "f"), "% \n") message("risk of overdosing (>80% of patients treated above the MTD):", formatC(overdosing80, digits = 1, format = "f"), "% \n") message("risk of underdosing (>60% of patients treated under the MTD):", formatC(underdosing60, digits = 1, format = "f"), "% \n") message("risk of underdosing (>80% of patients treated under the MTD):", formatC(underdosing80, digits = 1, format = "f"), "% \n") } if (length(which(p.true == target)) > 0) { list(target = target, p.true = p.true, ncohort = ncohort, cohortsize = cohortsize, startdose = startdose, p.saf = p.saf, p.tox = p.tox, cutoff.eli = cutoff.eli, extrasafe = extrasafe, offset = offset, ntrial = ntrial, dose = 1:ndose, selpercent = selpercent, nptsdose = nptsdose, ntoxdose = ntoxdose, totaltox = sum(Y)/ntrial, totaln = sum(N)/ntrial, pctearlystop = sum(dselect == 99)/ntrial * 100, overdose60 = overdosing60, overdose80 = overdosing80, underdose60 = underdosing60, underdose80=underdosing80) } else { list(target = target, p.true = p.true, ncohort = ncohort, cohortsize = cohortsize, startdose = startdose, p.saf = p.saf, p.tox = p.tox, cutoff.eli = cutoff.eli, extrasafe = extrasafe, offset = offset, ntrial = ntrial, dose = 1:ndose, selpercent = selpercent, nptsdose = nptsdose, ntoxdose = ntoxdose, totaltox = sum(Y)/ntrial, totaln = sum(N)/ntrial, pctearlystop = sum(dselect == 99)/ntrial * 100,overdose60 = overdosing60, overdose80 = overdosing80, underdose60 = underdosing60, underdose80=underdosing80) } }
sdiag <- function(x){ if(length(x)<2L) matrix(x) else diag(x) }
X = gen_data(n = 300, types = rep("tru", 5))$X start_time = proc.time() R_nc_org = latentcor(X = X, types = "tru", method = "original")$R proc.time() - start_time start_time = proc.time() R_nc_approx = latentcor(X = X, types = "tru", method = "approx")$R proc.time() - start_time Heatmap_R_nc_approx = latentcor(X = X, types = "tru", method = "approx", showplot = TRUE)$plotR X = gen_data()$X R_nc_org = latentcor(X = X, types = c("ter", "con"), method = "original")$R R_nc_approx = latentcor(X = X, types = c("ter", "con"), method = "approx")$R
slidify_vec <- function(.x, .f, ..., .period = 1, .align = c("center", "left", "right"), .partial = FALSE) { if (!is.numeric(.x)) rlang::abort("Non-numeric data detected. 'x' must be numeric.") roll_to_slide( .slider_fun = slider::slide_vec, .x = .x, .period = .period, .f = .f, ..., .align = .align, .partial = .partial ) } roll_to_slide <- function(.slider_fun, ..., .period = 1, .align = c("center", "left", "right"), .partial = FALSE) { .align <- .align[1] if (.align == "center") { split_period <- (.period - 1) / 2 before <- floor(split_period) after <- ceiling(split_period) } else if (.align == "left") { before <- 0 after <- .period - 1 } else { before <- .period - 1 after <- 0 } vec <- .slider_fun( ..., .before = before, .after = after, .step = 1L, .complete = FALSE ) if (!.partial) { if (before > 0) vec[1:before] <- NA if (after > 0) vec[(length(vec) - after + 1):length(vec)] <- NA } return(vec) }
vcov.diffIRT = function (object, ...) { if (is.null(object$hessian)) stop("to obtain the covariance matrix of the parameter estimates, you should re-fit the model using 'se = TRUE'.\n") covmat <- solve(object$hessian) covmat }
genweibulldata <- function(sample_size, scale1, hazard_ratio, common_shape, censor_value) { scale2 <- exp(log(scale1) - (1/common_shape) * log(hazard_ratio)) time1 <- stats::rweibull(sample_size, shape = common_shape, scale = scale1) time2 <- stats::rweibull(sample_size, shape = common_shape, scale = scale2) if (!is.null(censor_value) == TRUE) { test1 <- (time1 > censor_value) test2 <- (time2 > censor_value) status1 <- rep(1, sample_size) status2 <- rep(1, sample_size) time1[test1] <- censor_value time2[test2] <- censor_value status1[test1] <- 0 status2[test2] <- 0 } if (is.null(censor_value) == TRUE) { status1 <- rep(1, sample_size) status2 <- rep(1, sample_size) } subjid <- seq(from = 1, to = 2 * sample_size) trt <- c(rep(0, sample_size), rep(1, sample_size)) time <- c(time1, time2) status <- c(status1, status2) gendata <- data.frame(subjid, trt, time, status) colnames(gendata) <- c("id", "treatment", "event_time", "status") return(gendata) } weibullloglike <- function(params, randdata, histdata, a0) { beta0 <- params[1] beta1 <- params[2] v <- params[3] b_i <- exp((-1 * beta0/v) + (-1 * beta1/v) * randdata$treatment) ll_r <- randdata$status * stats::dweibull(randdata$event_time, shape = v, scale = b_i, log = TRUE) + (1 - randdata$status) * stats::pweibull(randdata$event_time, shape = v, scale = b_i, log.p = TRUE, lower.tail = FALSE) bh_i <- exp(-1 * beta0/v) ll_h <- histdata$status * stats::dweibull(histdata$event_time, shape = v, scale = bh_i, log = TRUE) + (1 - histdata$status) * stats::pweibull(histdata$event_time, shape = v, scale = bh_i, log.p = TRUE, lower.tail = FALSE) ll <- sum(ll_r) + a0 * sum(ll_h) return(-ll) } weibullloglikenohist <- function(params, randdata) { beta0 <- params[1] beta1 <- params[2] v <- params[3] b_i <- exp((-1 * beta0/v) + (-1 * beta1/v) * randdata$treatment) ll_r <- randdata$status * stats::dweibull(randdata$event_time, shape = v, scale = b_i, log = TRUE) + (1 - randdata$status) * stats::pweibull(randdata$event_time, shape = v, scale = b_i, log.p = TRUE, lower.tail = FALSE) return(sum(-ll_r)) } weibulltrialsimulator <- function(sample_size_val, histdata, scale1_val, hazard_ratio_val, common_shape_val, censor_value, a0_val, alpha) { sampleranddata <- genweibulldata(sample_size = sample_size_val, scale1 = scale1_val, hazard_ratio = hazard_ratio_val, common_shape = common_shape_val, censor_value = censor_value) if (sum(sampleranddata$event_time == censor_value) == dim(sampleranddata)[1]) { stop("Simulated trial data must have at least one observation that is not right censored.") } initializemodel <- survival::survreg(survival::Surv(event_time, status) ~ treatment, dist = "weibull", data = sampleranddata) initialbeta0 <- -1 * initializemodel$coefficients[1]/initializemodel$scale initialbeta1 <- -1 * initializemodel$coefficients[2]/initializemodel$scale initialv <- 1/initializemodel$scale fitmod <- stats::optim(c(initialbeta0, initialbeta1, initialv), weibullloglike, randdata = sampleranddata, histdata = histdata, a0 = a0_val, method = "Nelder-Mead", hessian = TRUE) modparm <- fitmod$par covarmat <- solve(fitmod$hessian) weibullloghazard_ratio <- modparm[2] weibullhazard_ratio <- exp(weibullloghazard_ratio) lower_weibullhazard_ratio <- exp(weibullloghazard_ratio - stats::qnorm(1 - alpha/2) * sqrt(covarmat[2, 2])) upper_weibullhazard_ratio <- exp(weibullloghazard_ratio + stats::qnorm(1 - alpha/2) * sqrt(covarmat[2, 2])) reject <- ifelse(((lower_weibullhazard_ratio > 1) | (upper_weibullhazard_ratio < 1)), 1, 0) output <- c(weibullhazard_ratio, covarmat[2, 2], reject) names(output) <- c("hazard_ratio", "loghazard_ratio_var", "reject") return(output) } weibulltrialsimulatornohist <- function(sample_size_val, scale1_val, hazard_ratio_val, common_shape_val, censor_value, alpha) { sampleranddata <- genweibulldata(sample_size = sample_size_val, scale1 = scale1_val, hazard_ratio = hazard_ratio_val, common_shape = common_shape_val, censor_value = censor_value) if (sum(sampleranddata$event_time == censor_value) == dim(sampleranddata)[1]) { stop("Simulated trial data must have at least one observation that is not right censored.") } initializemodel <- survival::survreg(survival::Surv(event_time, status) ~ treatment, dist = "weibull", data = sampleranddata) initialbeta0 <- -1 * initializemodel$coefficients[1]/initializemodel$scale initialbeta1 <- -1 * initializemodel$coefficients[2]/initializemodel$scale initialv <- 1/initializemodel$scale fitmod <- stats::optim(c(initialbeta0, initialbeta1, initialv), weibullloglikenohist, randdata = sampleranddata, method = "Nelder-Mead", hessian = TRUE) modparm <- fitmod$par covarmat <- solve(fitmod$hessian) weibullloghazard_ratio <- modparm[2] weibullhazard_ratio <- exp(weibullloghazard_ratio) lower_weibullhazard_ratio <- exp(weibullloghazard_ratio - stats::qnorm(1 - alpha/2) * sqrt(covarmat[2, 2])) upper_weibullhazard_ratio <- exp(weibullloghazard_ratio + stats::qnorm(1 - alpha/2) * sqrt(covarmat[2, 2])) reject <- ifelse(((lower_weibullhazard_ratio > 1) | (upper_weibullhazard_ratio < 1)), 1, 0) output <- c(weibullhazard_ratio, covarmat[2, 2], reject) names(output) <- c("hazard_ratio", "loghazard_ratio_var", "reject") return(output) } weibull_sim <- function(trial_reps=100, subj_per_arm, a0_vals, effect_vals, rand_control_diff, hist_control_data, censor_value, alpha=0.05, get_var=FALSE, get_bias=FALSE, get_mse=FALSE, quietly=TRUE) { histdata = hist_control_data hist_model <- survival::survreg(survival::Surv(event_time, status) ~ 1, dist = "weibull", data = histdata) bparm_histc <- exp(hist_model$coefficients) aparm_histc <- 1/hist_model$scale len_val <- length(rand_control_diff) * length(effect_vals) * length(a0_vals) * length(subj_per_arm) power_results <- array(rep(0, len_val), c(length(subj_per_arm), length(a0_vals), length(effect_vals), length(rand_control_diff))) est_results <- array(rep(0, len_val), c(length(subj_per_arm), length(a0_vals), length(effect_vals), length(rand_control_diff))) if (get_mse == TRUE) { mse_results <- array(rep(0, len_val), c(length(subj_per_arm), length(a0_vals), length(effect_vals), length(rand_control_diff))) } if (get_bias == TRUE) { bias_results <- array(rep(0, len_val), c(length(subj_per_arm), length(a0_vals), length(effect_vals), length(rand_control_diff))) } if (get_var == TRUE) { var_results <- array(rep(0, len_val), c(length(subj_per_arm), length(a0_vals), length(effect_vals), length(rand_control_diff))) } for (diffs in 1:length(rand_control_diff)) { bparm_randc <- exp(log(bparm_histc) - (1/aparm_histc) * log(rand_control_diff[diffs])) for (effvals in 1:length(effect_vals)) { for (a0vals in 1:length(a0_vals)) { for (sizes in 1:length(subj_per_arm)) { if (!quietly){ cat("\r", c(subj_per_arm[sizes], a0_vals[a0vals], effect_vals[effvals], rand_control_diff[diffs])) } collect <- matrix(rep(0, 3 * trial_reps), ncol = 3) for (k in 1:trial_reps) { collect[k, ] <- weibulltrialsimulator(sample_size_val = subj_per_arm[sizes], histdata, scale1_val = bparm_randc, hazard_ratio_val = effect_vals[effvals], common_shape_val = aparm_histc, censor_value = censor_value, a0_val = a0_vals[a0vals], alpha = alpha) } colnames(collect) <- c("hazard_ratio", "log_hazard_ratio_var", "reject") power_results[sizes, a0vals, effvals, diffs] <- mean(collect[, 3]) est_results[sizes, a0vals, effvals, diffs] <- mean(collect[, 1]) if (get_bias == TRUE) { bias_results[sizes, a0vals, effvals, diffs] <- mean(collect[, 1] - effect_vals[effvals]) } if (get_var == TRUE) { var_results[sizes, a0vals, effvals, diffs] <- mean((collect[, 1]*sqrt(collect[, 2]))^2) } if (get_mse == TRUE) { mse_results[sizes, a0vals, effvals, diffs] <- mean((collect[, 1] - effect_vals[effvals])^2) } if (!quietly){ cat("\r", " ") } } } } } cat("\n") if (get_bias == FALSE & get_var == FALSE & get_mse == FALSE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results) names(output) <- c("power", "est") } if (get_bias == FALSE & get_var == FALSE & get_mse == TRUE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(mse_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(mse_results)[[1]] <- as.character(subj_per_arm) } dimnames(mse_results)[[2]] <- as.character(a0_vals) dimnames(mse_results)[[3]] <- as.character(effect_vals) dimnames(mse_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, mse_results) names(output) <- c("power", "est", "mse") } if (get_bias == TRUE & get_var == FALSE & get_mse == FALSE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(bias_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(bias_results)[[1]] <- as.character(subj_per_arm) } dimnames(bias_results)[[2]] <- as.character(a0_vals) dimnames(bias_results)[[3]] <- as.character(effect_vals) dimnames(bias_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, bias_results) names(output) <- c("power", "est", "bias") } if (get_bias == TRUE & get_var == FALSE & get_mse == TRUE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(bias_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(bias_results)[[1]] <- as.character(subj_per_arm) } dimnames(bias_results)[[2]] <- as.character(a0_vals) dimnames(bias_results)[[3]] <- as.character(effect_vals) dimnames(bias_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(mse_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(mse_results)[[1]] <- as.character(subj_per_arm) } dimnames(mse_results)[[2]] <- as.character(a0_vals) dimnames(mse_results)[[3]] <- as.character(effect_vals) dimnames(mse_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, bias_results, mse_results) names(output) <- c("power", "est", "bias", "mse") } if (get_bias == FALSE & get_var == TRUE & get_mse == FALSE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(var_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(var_results)[[1]] <- as.character(subj_per_arm) } dimnames(var_results)[[2]] <- as.character(a0_vals) dimnames(var_results)[[3]] <- as.character(effect_vals) dimnames(var_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, var_results) names(output) <- c("power", "est", "var") } if (get_bias == FALSE & get_var == TRUE & get_mse == TRUE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(var_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(var_results)[[1]] <- as.character(subj_per_arm) } dimnames(var_results)[[2]] <- as.character(a0_vals) dimnames(var_results)[[3]] <- as.character(effect_vals) dimnames(var_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(mse_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(mse_results)[[1]] <- as.character(subj_per_arm) } dimnames(mse_results)[[2]] <- as.character(a0_vals) dimnames(mse_results)[[3]] <- as.character(effect_vals) dimnames(mse_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, var_results, mse_results) names(output) <- c("power", "est", "var", "mse") } if (get_bias == TRUE & get_var == TRUE & get_mse == FALSE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(var_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(var_results)[[1]] <- as.character(subj_per_arm) } dimnames(var_results)[[2]] <- as.character(a0_vals) dimnames(var_results)[[3]] <- as.character(effect_vals) dimnames(var_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(bias_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(bias_results)[[1]] <- as.character(subj_per_arm) } dimnames(bias_results)[[2]] <- as.character(a0_vals) dimnames(bias_results)[[3]] <- as.character(effect_vals) dimnames(bias_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, var_results, bias_results) names(output) <- c("power", "est", "var", "bias") } if (get_bias == TRUE & get_var == TRUE & get_mse == TRUE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(bias_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(bias_results)[[1]] <- as.character(subj_per_arm) } dimnames(bias_results)[[2]] <- as.character(a0_vals) dimnames(bias_results)[[3]] <- as.character(effect_vals) dimnames(bias_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(var_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(var_results)[[1]] <- as.character(subj_per_arm) } dimnames(var_results)[[2]] <- as.character(a0_vals) dimnames(var_results)[[3]] <- as.character(effect_vals) dimnames(var_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(mse_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(mse_results)[[1]] <- as.character(subj_per_arm) } dimnames(mse_results)[[2]] <- as.character(a0_vals) dimnames(mse_results)[[3]] <- as.character(effect_vals) dimnames(mse_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, var_results, bias_results, mse_results) names(output) <- c("power", "est", "var", "bias", "mse") } class_out <- list(data = output, subj_per_arm = subj_per_arm, a0_vals = a0_vals, effect_vals = effect_vals, rand_control_diff = rand_control_diff, objtype = 'historic') class(class_out) <- append("bayes_ctd_array", class(class_out)) return(class_out) } simple_weibull_sim <- function(trial_reps=100, subj_per_arm, effect_vals, scale1_value, common_shape_value, censor_value, alpha=0.05, get_var=FALSE, get_bias=FALSE, get_mse=FALSE, quietly=TRUE) { rand_control_diff <- 1 a0_vals <- 0 len_val <- length(rand_control_diff) * length(effect_vals) * length(a0_vals) * length(subj_per_arm) power_results <- array(rep(0, len_val), c(length(subj_per_arm), length(a0_vals), length(effect_vals), length(rand_control_diff))) est_results <- array(rep(0, len_val), c(length(subj_per_arm), length(a0_vals), length(effect_vals), length(rand_control_diff))) if (get_mse == TRUE) { mse_results <- array(rep(0, len_val), c(length(subj_per_arm), length(a0_vals), length(effect_vals), length(rand_control_diff))) } if (get_bias == TRUE) { bias_results <- array(rep(0, len_val), c(length(subj_per_arm), length(a0_vals), length(effect_vals), length(rand_control_diff))) } if (get_var == TRUE) { var_results <- array(rep(0, len_val), c(length(subj_per_arm), length(a0_vals), length(effect_vals), length(rand_control_diff))) } for (diffs in 1:length(rand_control_diff)) { for (effvals in 1:length(effect_vals)) { for (a0vals in 1:length(a0_vals)) { for (sizes in 1:length(subj_per_arm)) { if (!quietly){ cat("\r", c(subj_per_arm[sizes], a0_vals[a0vals], effect_vals[effvals], rand_control_diff[diffs])) } collect <- matrix(rep(0, 3 * trial_reps), ncol = 3) for (k in 1:trial_reps) { collect[k, ] <- weibulltrialsimulatornohist(sample_size_val = subj_per_arm[sizes], scale1_val = scale1_value, hazard_ratio_val = effect_vals[effvals], common_shape_val = common_shape_value, censor_value = censor_value, alpha = alpha) } colnames(collect) <- c("hazard_ratio", "log_hazard_ratio_var", "reject") power_results[sizes, a0vals, effvals, diffs] <- mean(collect[, 3]) est_results[sizes, a0vals, effvals, diffs] <- mean(collect[, 1]) if (get_bias == TRUE) { bias_results[sizes, a0vals, effvals, diffs] <- mean(collect[, 1] - effect_vals[effvals]) } if (get_var == TRUE) { var_results[sizes, a0vals, effvals, diffs] <- mean((collect[, 1]*sqrt(collect[, 2]))^2) } if (get_mse == TRUE) { mse_results[sizes, a0vals, effvals, diffs] <- mean((collect[, 1] - effect_vals[effvals])^2) } if (!quietly){ cat("\r", " ") } } } } } cat("\n") if (get_bias == FALSE & get_var == FALSE & get_mse == FALSE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results) names(output) <- c("power", "est") } if (get_bias == FALSE & get_var == FALSE & get_mse == TRUE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(mse_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(mse_results)[[1]] <- as.character(subj_per_arm) } dimnames(mse_results)[[2]] <- as.character(a0_vals) dimnames(mse_results)[[3]] <- as.character(effect_vals) dimnames(mse_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, mse_results) names(output) <- c("power", "est", "mse") } if (get_bias == TRUE & get_var == FALSE & get_mse == FALSE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(bias_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(bias_results)[[1]] <- as.character(subj_per_arm) } dimnames(bias_results)[[2]] <- as.character(a0_vals) dimnames(bias_results)[[3]] <- as.character(effect_vals) dimnames(bias_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, bias_results) names(output) <- c("power", "est", "bias") } if (get_bias == TRUE & get_var == FALSE & get_mse == TRUE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(bias_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(bias_results)[[1]] <- as.character(subj_per_arm) } dimnames(bias_results)[[2]] <- as.character(a0_vals) dimnames(bias_results)[[3]] <- as.character(effect_vals) dimnames(bias_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(mse_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(mse_results)[[1]] <- as.character(subj_per_arm) } dimnames(mse_results)[[2]] <- as.character(a0_vals) dimnames(mse_results)[[3]] <- as.character(effect_vals) dimnames(mse_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, bias_results, mse_results) names(output) <- c("power", "est", "bias", "mse") } if (get_bias == FALSE & get_var == TRUE & get_mse == FALSE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(var_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(var_results)[[1]] <- as.character(subj_per_arm) } dimnames(var_results)[[2]] <- as.character(a0_vals) dimnames(var_results)[[3]] <- as.character(effect_vals) dimnames(var_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, var_results) names(output) <- c("power", "est", "var") } if (get_bias == FALSE & get_var == TRUE & get_mse == TRUE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(var_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(var_results)[[1]] <- as.character(subj_per_arm) } dimnames(var_results)[[2]] <- as.character(a0_vals) dimnames(var_results)[[3]] <- as.character(effect_vals) dimnames(var_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(mse_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(mse_results)[[1]] <- as.character(subj_per_arm) } dimnames(mse_results)[[2]] <- as.character(a0_vals) dimnames(mse_results)[[3]] <- as.character(effect_vals) dimnames(mse_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, var_results, mse_results) names(output) <- c("power", "est", "var", "mse") } if (get_bias == TRUE & get_var == TRUE & get_mse == FALSE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(var_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(var_results)[[1]] <- as.character(subj_per_arm) } dimnames(var_results)[[2]] <- as.character(a0_vals) dimnames(var_results)[[3]] <- as.character(effect_vals) dimnames(var_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(bias_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(bias_results)[[1]] <- as.character(subj_per_arm) } dimnames(bias_results)[[2]] <- as.character(a0_vals) dimnames(bias_results)[[3]] <- as.character(effect_vals) dimnames(bias_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, var_results, bias_results) names(output) <- c("power", "est", "var", "bias") } if (get_bias == TRUE & get_var == TRUE & get_mse == TRUE) { if (length(subj_per_arm) == 1) { dimnames(power_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(power_results)[[1]] <- as.character(subj_per_arm) } dimnames(power_results)[[2]] <- as.character(a0_vals) dimnames(power_results)[[3]] <- as.character(effect_vals) dimnames(power_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(est_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(est_results)[[1]] <- as.character(subj_per_arm) } dimnames(est_results)[[2]] <- as.character(a0_vals) dimnames(est_results)[[3]] <- as.character(effect_vals) dimnames(est_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(bias_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(bias_results)[[1]] <- as.character(subj_per_arm) } dimnames(bias_results)[[2]] <- as.character(a0_vals) dimnames(bias_results)[[3]] <- as.character(effect_vals) dimnames(bias_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(var_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(var_results)[[1]] <- as.character(subj_per_arm) } dimnames(var_results)[[2]] <- as.character(a0_vals) dimnames(var_results)[[3]] <- as.character(effect_vals) dimnames(var_results)[[4]] <- as.character(rand_control_diff) if (length(subj_per_arm) == 1) { dimnames(mse_results)[[1]] <- list(as.character(subj_per_arm)) } if (length(subj_per_arm) > 1) { dimnames(mse_results)[[1]] <- as.character(subj_per_arm) } dimnames(mse_results)[[2]] <- as.character(a0_vals) dimnames(mse_results)[[3]] <- as.character(effect_vals) dimnames(mse_results)[[4]] <- as.character(rand_control_diff) output <- list(power_results, est_results, var_results, bias_results, mse_results) names(output) <- c("power", "est", "var", "bias", "mse") } class_out <- list(data = output, subj_per_arm = subj_per_arm, a0_vals = 0, effect_vals = effect_vals, rand_control_diff = 1, objtype = 'simple') class(class_out) <- append("bayes_ctd_array", class(class_out)) return(class_out) }
library(sclr) mf_one <- model.frame(status ~ logHI, one_titre_data) x_one <- model.matrix(mf_one, data = one_titre_data) y_one <- model.response(mf_one) test_that("sclr_fit can be used directly", { fit_one <- sclr_fit(y_one, x_one) expect_named( fit_one, c("parameters", "covariance_mat", "algorithm", "algorithm_return") ) }) test_that("error with unknown algorithm", { expect_error( sclr_fit(y_one, x_one, algorithm = "unknown"), "`algorithm` should be in:" ) }) test_that("Parameter matrix initalisation and resetting works", { init_mat <- get_init_pars_mat( y_one, x_one, conventional_names = FALSE, seed = 1 ) init_mat2 <- get_init_pars_mat( y_one, x_one, conventional_names = FALSE, seed = 1 ) init_mat3 <- get_init_pars_mat( y_one, x_one, conventional_names = FALSE ) expect_equal(init_mat, init_mat2) expect_true(all(init_mat2 != init_mat3)) expect_true(all(guess_again(init_mat) != guess_again(init_mat))) }) test_that("Algorithms work", { x_coeffs_one <- get_x_coeffs(x_one) pars_mat_one <- get_init_pars_mat(y_one, x_one, FALSE) nr <- newton_raphson( y_one, x_one, pars_mat_one, x_coeffs_one, max_iter = 1e4, tol = 10^(-7), seed = 20191101 ) ga <- gradient_ascent( y_one, x_one, pars_mat_one, x_coeffs_one, max_iter = 1e4, tol = 10^(-7), seed = 20191101 ) nms <- c("init_mat", "found", "cov", "last_iter") expect_named(nr, nms) expect_named(ga, nms) }) test_that("Warning when doesn't converge", { ss <- sclr_ideal_data(n = 50, seed = 20191101) x_ss <- model.matrix(status ~ logHI, ss) y_ss <- model.response(model.frame(status ~ logHI, ss)) x_coeffs_ss <- get_x_coeffs(x_ss) expect_warning( sclr_fit( y_ss, x_ss, nr_iter = 100, algorithm = "newton-raphson", n_conv = 3, seed = 20191101 ), regexp = "newton-raphson only converged 1 time\\(s\\) out of 3" ) expect_warning( sclr_fit( y_ss, x_ss, nr_iter = 5, algorithm = "newton-raphson", n_conv = 3, seed = 20191101 ), regexp = paste0( "newton-raphson did not converge,", " check for boundary with check_baseline" ) ) }) test_that("fallback works", { l1 <- sclr_ideal_data(theta = 1e6, n = 50, seed = 20191102) x_l1 <- model.matrix(status ~ logHI, l1) y_l1 <- model.response(model.frame(status ~ logHI, l1)) fit_ga <- suppressWarnings(sclr_fit( y_l1, x_l1, algorithm = c("newton-raphson", "gradient-ascent"), n_conv = 3, seed = 20191101 )) expect_named( fit_ga, c("parameters", "covariance_mat", "algorithm", "algorithm_return") ) expect_equal(fit_ga$algorithm, "gradient-ascent") expect_true(!is.null(fit_ga$parameters)) expect_true(!is.null(fit_ga$covariance_mat)) })
library(hgu133plus2.db) library(tissuesGeneExpression) data(tissuesGeneExpression) map <- mapIds(hgu133plus2.db, keytype="PROBEID", column="SYMBOL", keys=rownames(e), mutliVals = first) o <- order(tissue) tissue <- tissue[o] e <- e[,o] rownames(e) <- map colnames(e) <- paste(tissue, unlist( sapply(table(tissue), function(n) 1:n)), sep="_") ind <- which(!is.na(map) & !duplicated(map)) set.seed(1994) e <- e[sample(ind, 500), ] tissue_gene_expression <- list(x = t(e), y = factor(tissue)) save(tissue_gene_expression, file="data/tissue_gene_expression.rda", compress = "xz") if(FALSE){ library(caret) ind <- which(matrixStats::colSds(tissue_gene_expression$x) > 0.5) tissue_gene_expression$x <- with(tissue_gene_expression, sweep(x, 1, rowMeans(x))) fit <- train(tissue_gene_expression$x[,ind], tissue_gene_expression$y, method = "knn", tuneGrid = data.frame(k=seq(1,7,2))) plot(fit) }
expected <- eval(parse(text="list()")); test(id=0, code={ argv <- eval(parse(text="list(list(list(2, 2, 6), list(2, 2, 0)), value = 0)")); do.call(`length<-`, argv); }, o=expected);
mdes.ira1r1 <- function(power=.80, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n){ user.parms <- as.list(match.call()) .error.handler(user.parms) df <- n-g1-2 SSE <- sqrt((1-r21)/(p*(1-p)*n)) mdes <- .mdes.fun(power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed) .summ.mdes(effect = "main", power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed, mdes = mdes) mdes.out <- list(fun = "mdes.ira1r1", parms = list(power=power, alpha=alpha, two.tailed=two.tailed, p=p, r21=r21, g1=g1, n=n), df = df, ncp = mdes[1]/SSE, mdes = mdes) class(mdes.out) <- c("main", "mdes") return(invisible(mdes.out)) } mdes.ira <- mdes.ira1r1 power.ira1r1 <- function(es=.25, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n){ user.parms <- as.list(match.call()) .error.handler(user.parms) df <- n-g1-2 SSE <- sqrt((1-r21)/(p*(1-p)*n)) power <- .power.fun(es = es, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed) .summ.power(power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed, es = es) power.out <- list(fun = "power.ira1r1", parms = list(es=es, alpha=alpha, two.tailed=two.tailed, p=p, r21=r21, g1=g1, n=n), df = df, ncp = es/SSE, power = power) class(power.out) <- c("main", "power") return(invisible(power.out)) } power.ira <- power.ira1r1 mrss.ira1r1 <- function(es=.25, power=.80, alpha=.05, two.tailed=TRUE, n0=10, tol=.10, p=.50, g1=0, r21=0){ user.parms <- as.list(match.call()) .error.handler(user.parms) i <- 0 conv <- FALSE while(i<=100 & conv==FALSE){ df <- n0-g1-2 if(df<= 0 | is.infinite(df)){break} T1 <- ifelse(two.tailed==TRUE,abs(qt(alpha/2,df)),abs(qt(alpha,df))) T2 <- abs(qt(power,df)) M <- ifelse(power>=.5,T1+T2,T1-T2) n1 <- (M/es)^2 * ((1-r21)/(p*(1-p))) if(abs(n1-n0)<tol){conv <- TRUE} n0 <- (n1+n0)/2 i <- i+1 } n <- round(ifelse(df>0,round(n0),NA)) n.out <- list(fun = "mrss.ira1r1", parms = list(es=es, power=power, alpha=alpha, two.tailed=two.tailed, n0=n0, tol=tol, p=p, r21=r21, g1=g1), df=df, ncp = M, n = n) class(n.out) <- c("main", "mrss") cat("n =", n, "\n") return(invisible(n.out)) } mrss.ira <- mrss.ira1r1 mdes.bira2f1 <- function(power=.80, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n, J){ user.parms <- as.list(match.call()) .error.handler(user.parms) df <- J * (n - 2) - g1 SSE <- sqrt((1-r21)/(p*(1-p)*J*n)) mdes <- .mdes.fun(power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed) .summ.mdes(effect = "main", power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed, mdes = mdes) mdes.out <- list(fun = "mdes.bira2f1", parms = list(power=power, alpha=alpha, two.tailed=two.tailed, p=p, r21=r21, g1=g1, n=n, J=J), df = df, ncp = mdes[1]/SSE, mdes = mdes) class(mdes.out) <- c("main", "mdes") return(invisible(mdes.out)) } power.bira2f1 <- function(es=.25, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n, J){ user.parms <- as.list(match.call()) .error.handler(user.parms) df <- J * (n - 2) - g1 SSE <- sqrt((1-r21)/(p*(1-p)*J*n)) power <- .power.fun(es = es, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed) .summ.power(power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed, es = es) power.out <- list(fun = "power.bira2f1", parms = list(es=es, alpha=alpha, two.tailed=two.tailed, p=p, r21=r21, g1=g1, n=n, J=J), df = df, ncp = es/SSE, power = power) class(power.out) <- c("main", "power") return(invisible(power.out)) } mrss.bira2f1 <- function(es=.25, power=.80, alpha=.05, two.tailed=TRUE, J, n0=10, tol=.10, p=.50, g1=0, r21=0){ user.parms <- as.list(match.call()) .error.handler(user.parms) i <- 0 conv <- FALSE while(i<=100 & conv==FALSE){ df <- J*(n0-2)-g1 if(df<= 0 | is.infinite(df)){break} T1 <- ifelse(two.tailed==TRUE,abs(qt(alpha/2,df)),abs(qt(alpha,df))) T2 <- abs(qt(power,df)) M <- ifelse(power>=.5,T1+T2,T1-T2) n1 <- (M/es)^2 * ((1-r21)/(p*(1-p)*J)) if(abs(n1-n0)<tol){conv <- TRUE} n0 <- (n1+n0)/2 i <- i+1 } n <- ifelse(df>0,round(n0),NA) mrss.out <- list(fun = "mrss.bira2f1", parms = list(es=es, power=power, alpha=alpha, two.tailed=two.tailed, J=J, n0=n0, tol=tol, p=p, r21=r21, g1=g1), df = df, ncp = M, n = n) class(mrss.out) <- c("main", "mrss") cat("n =", n, "(per block)\n") return(invisible(mrss.out)) } mdes.bira2c1 <- function(power=.80, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n, J){ user.parms <- as.list(match.call()) .error.handler(user.parms) df <- J * (n - 1) - g1 - 1 SSE <- sqrt((1-r21)/(p*(1-p)*J*n)) mdes <- .mdes.fun(power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed) .summ.mdes(effect = "main", power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed, mdes = mdes) mdes.out <- list(fun = "mdes.bira2c1", parms = list(power=power, alpha=alpha, two.tailed=two.tailed, p=p, r21=r21, g1=g1, n=n, J=J), df = df, ncp = mdes[1]/SSE, mdes = mdes) class(mdes.out) <- c("main", "mdes") return(invisible(mdes.out)) } power.bira2c1 <- function(es=.25, alpha=.05, two.tailed=TRUE, p=.50, g1=0, r21=0, n, J){ user.parms <- as.list(match.call()) .error.handler(user.parms) df <- J * (n - 1) - g1 - 1 SSE <- sqrt((1-r21)/(p*(1-p)*J*n)) power <- .power.fun(es = es, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed) .summ.power(power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed, es = es) power.out <- list(fun = "power.bira2c1", parms = list(es=es, alpha=alpha, two.tailed=two.tailed, p=p, r21=r21, g1=g1, n=n, J=J), df = df, ncp = es/SSE, power = power) class(power.out) <- c("main", "power") return(invisible(power.out)) } mrss.bira2c1 <- function(es=.25, power=.80, alpha=.05, two.tailed=TRUE, J, n0=10, tol=.10, p=.50, g1=0, r21=0){ user.parms <- as.list(match.call()) .error.handler(user.parms) i <- 0 conv <- FALSE while(i<=100 & conv==FALSE){ df <- J*(n0-1)-g1-1 if(df<= 0 | is.infinite(df)){break} T1 <- ifelse(two.tailed==TRUE,abs(qt(alpha/2,df)),abs(qt(alpha,df))) T2 <- abs(qt(power,df)) M <- ifelse(power>=.5,T1+T2,T1-T2) n1 <- (M/es)^2 * ((1-r21)/(p*(1-p)*J)) if(abs(n1-n0)<tol){conv <- TRUE} n0 <- (n1+n0)/2 i <- i+1 } n <- ifelse(df>0,round(n0),NA) mrss.out <- list(fun = "mrss.bira2c1", parms = list(es=es, power=power, alpha=alpha, two.tailed=two.tailed, J=J, n0=n0, tol=tol, p=p, r21=r21, g1=g1), df = df, ncp = M, n = n) class(mrss.out) <- c("main", "mrss") cat("n =", n, "(per block)\n") return(invisible(mrss.out)) } mdes.ira_pn <- function(power=.80, alpha=.05, two.tailed=TRUE, df=NULL, ratio_tc_var=1, rho_ic=.20, p=.50, r21=0, n, ic_size=1){ user.parms <- as.list(match.call()) .error.handler(user.parms) if(!is.null(df) & ratio_tc_var != 1) warning("'ratio_tc_var' argment is ignored", call. = FALSE) if(is.null(df)) { it <- n * p / ic_size nc <- n * (1 - p) vt_vc_ratio <- ratio_tc_var*(1 / ic_size + rho_ic / (1 - rho_ic)) df <- (nc-1)*(it-1)*(it + nc*vt_vc_ratio)^2 / ((it-1)*it^2 + (nc-1)*nc^2 * vt_vc_ratio^2) } deff_rand_ic <- 1 + rho_ic * (1 - p) * (ic_size - 1) / (1 - p*rho_ic) SSE <- sqrt(((1 - r21) / (n * p * (1 - p))) * ((1 - p * rho_ic) / (1 - rho_ic)) * deff_rand_ic ) mdes <- .mdes.fun(power = power, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed) cat(ifelse(ic_size == 1,"Fixed", "Random"), "intervention cluster effects\n") .summ.mdes(effect = "main", power = power, alpha = alpha, sse = SSE, df = round(df,3), two.tailed = two.tailed, mdes = mdes) mdes.out <- list(fun = "mdes.ira_pn", parms = list(power=power, alpha=alpha, two.tailed=two.tailed, ratio_tc_var=ratio_tc_var, rho_ic = rho_ic, r21=r21, p=p, n=n, ic_size = ic_size), df = df, ncp = mdes[1]/SSE, mdes = mdes) class(mdes.out) <- c("main", "mdes") return(invisible(mdes.out)) } power.ira_pn <- function(es=.25,alpha=.05, two.tailed=TRUE, df=NULL, ratio_tc_var=1, rho_ic=.20, p=.50, r21=0, n, ic_size=1){ user.parms <- as.list(match.call()) .error.handler(user.parms) if(!is.null(df) & ratio_tc_var != 1) warning("'ratio_tc_var' argment is ignored for z-test", call. = FALSE) if(is.null(df)) { it <- n * p / ic_size nc <- n * (1 - p) vt_vc_ratio <- ratio_tc_var*(1 / ic_size + rho_ic / (1 - rho_ic)) df <- (nc-1)*(it-1)*(it + nc*vt_vc_ratio)^2 / ((it-1)*it^2 + (nc-1)*nc^2 * vt_vc_ratio^2) } deff_rand_ic <- 1 + rho_ic * (1 - p) * (ic_size - 1) / (1 - p*rho_ic) SSE <- sqrt(((1 - r21) / (n * p * (1 - p))) * ((1 - p * rho_ic) / (1 - rho_ic)) * deff_rand_ic) power <- .power.fun(es = es, alpha = alpha, sse = SSE, df = df, two.tailed = two.tailed) cat(ifelse(ic_size == 1,"Fixed", "Random"), "intervention cluster effects\n") .summ.power(power = power, alpha = alpha, sse = SSE, df = round(df,3), two.tailed = two.tailed, es = es) power.out <- list(fun = "power.ira_pn", parms = list(es=es, alpha=alpha, two.tailed=two.tailed, df=df, ratio_tc_var=ratio_tc_var, rho_ic = rho_ic, r21=r21, p=p, n=n, ic_size = ic_size), df = df, ncp = es/SSE, power = power) class(power.out) <- c("main", "power") return(invisible(power.out)) } mrss.ira_pn <- function(es=.25, power=.80, alpha=.05, two.tailed=TRUE, ratio_tc_var=1, z.test=FALSE, rho_ic=.20, p=.50, r21=0, ic_size=1, n0=500, tol=.10){ user.parms <- as.list(match.call()) .error.handler(user.parms) if(isTRUE(z.test) & ratio_tc_var != 1) warning("'ratio_tc_var' argment is ignored for z-test", call. = FALSE) i <- 0 conv <- FALSE while(i<=100 & conv==FALSE){ it <- n0 * p / ic_size nc <- n0 * (1 - p) vt_vc_ratio <- ratio_tc_var*(1 / ic_size + rho_ic / (1 - rho_ic)) df <- (nc-1)*(it-1)*(it + nc*vt_vc_ratio)^2 / ((it-1)*it^2 + (nc-1)*nc^2 * vt_vc_ratio^2) if(df <= 0) stop("Increase 'n0'", call. = FALSE) if(df <= 0 | is.infinite(df)){break} if(z.test) df <- Inf T1 <- ifelse(two.tailed==TRUE,abs(qt(alpha/2,df)),abs(qt(alpha,df))) T2 <- abs(qt(power,df)) M <- ifelse(power>=.5,T1+T2,T1-T2) deff_rand_ic <- 1 + rho_ic * (1 - p) * (ic_size - 1) / (1 - p*rho_ic) VAR <- ((1 - r21) / (p * (1 - p))) * ((1 - p * rho_ic) / (1 - rho_ic)) * deff_rand_ic n1 <- (M/es)^2 * VAR if(abs(n1-n0)<tol){conv <- TRUE} n0 <- (n1+n0)/2 i <- i+1 } n <- round(ifelse(df>0,round(n0),NA)) J <- round(ifelse(df>0,round(it),NA)) n.out <- list(fun = "mrss.ira_pn", parms = list(es=es, power=power, alpha=alpha, two.tailed=two.tailed, ratio_tc_var=ratio_tc_var, z.test=z.test, rho_ic = rho_ic, r21=r21, p=p, ic_size = ic_size, n0=n0, tol=tol), df=df, ncp = M, n = n) class(n.out) <- c("main", "mrss") cat("n =", n, "(total)\n") return(invisible(n.out)) }
keyword_cloud = function(tibble_graph,group_no = NULL,top = 50,max_size = 20){ if(is.null(group_no)) tibble_graph %>% as_tibble() %>% top_n(top,freq) %>% mutate(group = as.factor(group)) %>% ggplot(aes(label = name,size = freq,colour = group,x=group)) + geom_text_wordcloud_area() + scale_size_area(max_size = max_size) + scale_x_discrete(breaks = NULL,name = "") + theme_minimal() else{ tibble_graph %>% as_tibble() %>% filter(group == group_no) %>% top_n(top,freq) %>% ggplot(aes(label = name,size = freq)) + geom_text_wordcloud_area() + scale_size_area(max_size = max_size) + theme_minimal() } }
context("test-show_colors") test_that("show_colors retuns gglot", { x <- show_colors(labels = TRUE) expect_equal(is(x), "gg") expect_equal(length(x$layers), 3) })
print.ergmm.model<-function(x,...){ cat("Exponential Random Graph Mixed Model definition\n") cat("Formula: ") print(x[["formula"]]) if(!is.null(x[["response"]]) && mode(x[["response"]])=="character") cat("Attribute of interest:",x[["response"]],"\n") cat("Family:",x[["family"]],"\n") cat("Terms:\n") if(length(x[["coef.names"]])){ cat("- fixed effects:\n") cat(paste(" - ",x[["coef.names"]],sep="",collapse="\n"),"\n") } if(x[["d"]]>0){ cat("- latent space of",x[["d"]],"dimensions") if(x[["G"]]>0){ cat(" in",x[["G"]],"clusters\n") }else cat("\n") } if(x[["sender"]]) cat("- random sender effects\n") if(x[["receiver"]]) cat("- random receiver effects\n") if(x[["sociality"]]) cat("- random sociality effects\n") if(x[["dispersion"]]) cat("- dispersion parameter\n") }
scacum <- structure(function ( x, sc.c = NA, rf.t = NA ) { csn. <- FALSE if(is.data.frame(x)){ csnu <- cClass(x, 'numeric') csn <- c(cClass(x, 'integer'), cClass(x, 'factor')) csn. <- length(csn)!=0 csn.. <- csn[!csn%in%'csx'] cd <- x x <- x[,'x'] names(x) <- cd[,'year']} if(is.null(names(x))) stop('NULL labels in x', call. = FALSE) xcum <- cumsum(x) if(is.na(rf.t)) rf.t <- max(as.numeric(names(x))) inc <- 0 if(!is.na(sc.c)) inc <- sc.c - xcum[as.character(rf.t)] csx <- xcum + inc if(any(csx < 0,na.rm = TRUE)) csx <- xcum xd <- data.frame(x,csx) if(csn.&& length(csnu) > 1){ xd <- cd[,csnu] xd[,'csx'] <- csx } if(csn.) xd <- cbind(xd,cd[,csn..]) return(xd) } , ex=function() { x <- c(0.79,0.32,0.53,0.43,0.18) names(x) <- 1948:1952 scacum(x,sc.c = 4,rf.t = 1951) max(cumsum(x)) scacum(x,NA,1951) })
prscoring <- function(data, id, block, item, choice, ..., wide = FALSE) { get_checks(data, id, block, item, choice, nonbibd = TRUE) out <- lapply(unique(data[[id]]), function(x) { B <- get_prscores( get_M(data[data[[id]] == x, ], "b", block, item, choice), ... ) W <- get_prscores( get_M(data[data[[id]] == x, ], "w", block, item, choice), ... ) rowMeans(cbind(scale(B), scale(W) * -1)) }) out <- do.call(rbind, out) out <- dplyr::as_tibble(cbind(id = unique(data[[id]]), out)) colnames(out)[1] <- id if (!wide) { out <- out %>% tidyr::gather(!!sym(item), "pagerank", -!!sym(id)) %>% dplyr::arrange(id) } return(out) }
library(oce) file <- file("tide3.dat.gz", "r") nc <- 146 name <- kmpr <- vector("character", nc) freq <- ikmpr <- df <- d1 <- d2 <- d3 <- d4 <- d5 <- d6 <- semi <- isat <- nsat <- ishallow <- nshallow <- doodsonamp <- doodsonspecies <- vector("numeric", nc) doodsonamp <- rep(NA, nc) doodsonspecies <- rep(NA, nc) ishallow <- NA ic <- 1 while (TRUE) { items <- scan(file, "character", nlines=1, quiet=TRUE) nitems <- length(items) if (nitems == 0) break if (nitems != 2 && nitems != 3) stop("wrong number of entries on line", ic) name[ic] <- gsub(" ", "", items[1]) freq[ic] <- as.numeric(items[2]) kmpr[ic] <- if (nitems == 2) "" else gsub(" ", "", items[3]) ic <- ic + 1 } for (ic in 1:nc) { if (kmpr[ic] != "") { ikmpr[ic] <- which(name == kmpr[ic]) df[ic] <- freq[ic] - freq[ikmpr[ic]] } } df[1] <- 0 get.satellite <- function(x, o) { ldel <- as.numeric(substr(x,o+01,o+03)) mdel <- as.numeric(substr(x,o+04,o+06)) ndel <- as.numeric(substr(x,o+07,o+09)) ph <- as.numeric(substr(x,o+10,o+13)) ee <- as.numeric(substr(x,o+14,o+20)) ir <- as.numeric(substr(x,o+22,o+22)) c(ldel, mdel, ndel, ph, ee, ir) } scan(file, "character", nlines=3, quiet=TRUE) ns <- 162 deldood <- matrix(NA, ns, 3) phcorr <- matrix(NA, ns, 1) amprat <- matrix(NA, ns, 1) ilatfac <- matrix(NA, ns, 1) iconst <- matrix(NA, ns, 1) this.sat <- 1 while (TRUE) { x <- readLines(file, n=1) nx <- nchar(x) if (this.sat > ns || nx < 10) break kon <- gsub(" ", "", substr(x, 7, 11)) which.constituent <- which(name == kon) d1[which.constituent] <- ii <- as.numeric(substr(x, 13, 15)) d2[which.constituent] <- jj <- as.numeric(substr(x, 16, 18)) d3[which.constituent] <- kk <- as.numeric(substr(x, 19, 21)) d4[which.constituent] <- ll <- as.numeric(substr(x, 22, 24)) d5[which.constituent] <- mm <- as.numeric(substr(x, 25, 27)) d6[which.constituent] <- nn <- as.numeric(substr(x, 28, 30)) semi[which.constituent] <- as.numeric(substr(x, 31, 35)) nj <- as.numeric(substr(x, 36, 39)) nsat[which.constituent] <- nj if (nj > 0) { is <- 1 while (is <= nj) { xs <- readLines(file, n=1) nxs <- nchar(xs) if (nxs != 31 && nxs != 33 && nxs != 39 && nxs != 54 && nxs != 56 && nxs != 77 && nxs != 79) { cat("GOT BAD LINE AS FOLLOWS:\n12345678901234567890123456789012345678901234567890\n",xs,"\n",sep="") stop("need 31, 33, 39, 54, 56, 77 or 79 chars, but got ", nxs) } s <- get.satellite(xs, 11) deldood[this.sat, 1:3] <- s[1:3] phcorr[this.sat] <- s[4] amprat[this.sat] <- s[5] ilatfac[this.sat] <- s[6] iconst[this.sat] <- which.constituent this.sat <- this.sat + 1 is <- is + 1 if (nxs > 50) { s <- get.satellite(xs, 34) deldood[this.sat, 1:3] <- s[1:3] phcorr[this.sat] <- s[4] amprat[this.sat] <- s[5] ilatfac[this.sat] <- s[6] iconst[this.sat] <- which.constituent this.sat <- this.sat + 1 is <- is + 1 } if (nxs > 70) { s <- get.satellite(xs, 57) deldood[this.sat, 1:3] <- s[1:3] phcorr[this.sat] <- s[4] amprat[this.sat] <- s[5] ilatfac[this.sat] <- s[6] iconst[this.sat] <- which.constituent this.sat <- this.sat + 1 is <- is + 1 } } } } if ((this.sat - 1) != ns) stop("failed to read all ", ns, " satellite entries. Only got ", this.sat) sat <- list(deldood=deldood, phcorr=phcorr, amprat=amprat, ilatfac=ilatfac, iconst=iconst) num.shallow <- 251 iconst <- vector("numeric", num.shallow) coef <- vector("numeric", num.shallow) iname <- vector("numeric", num.shallow) this.shallow <- 1 while(TRUE) { x <- readLines(file, n=1) nx <- nchar(x) if (nx < 10) break kon <- gsub(" ", "", substr(x, 7, 11)) which.constituent <- which(name == kon) nj <- as.numeric(substr(x, 12, 12)) nshallow[which.constituent] <- nj if (nj > 0) { for (j in 1:nj) { o <- 15 + (j-1)*15 iconst[this.shallow] <- which.constituent coef[this.shallow] <- as.numeric(substr(x, o, o+4)) konco <- gsub(" ", "", substr(x, o+5, o+9)) iname[this.shallow] <- which(name == konco) ishallow[which.constituent] <- this.shallow - j + 1 this.shallow <- this.shallow + 1 } } } close(file) shallow <- data.frame(iconst=iconst, coef=coef, iname=iname) efile <- file("t_equilib.dat.gz", "r") edat <- readLines(efile) ne <- length(edat) for (i in 10:ne) { kon <- gsub(" ", "", substr(edat[i], 1, 4)) which.constituent <- which(name == kon) if (length(which.constituent) < 1) stop("cannot understand equilibirum constituent", kon) species <- as.numeric(substr(edat[i], 8, 8)) A <- as.numeric(substr(edat[i], 9, 15)) B <- as.numeric(substr(edat[i], 16, 21)) if (A != 0) { doodsonamp[which.constituent] <- A / 1e5 doodsonspecies[which.constituent] <- species } else { doodsonamp[which.constituent] <- B / 1e5 doodsonspecies[which.constituent] <- -species } } close(efile) const <- data.frame(name=name, freq=freq, kmpr=kmpr, ikmpr=ikmpr, df=df, d1=d1,d2=d2,d3=d3,d4=d4,d5=d5,d6=d6, semi=semi, nsat=nsat, ishallow=ishallow, nshallow=nshallow, doodsonamp=doodsonamp, doodsonspecies=doodsonspecies, stringsAsFactors=FALSE) tidedata <- list(const=const, sat=sat, shallow=shallow) test_that("deldood", { expect_equal(sum(nsat), ns) expect_equal(sat$deldood[1,], c(-1, 0, 0)) expect_equal(sat$deldood[2,], c( 0, -1, 0)) expect_equal(sat$deldood[3,], c(-2, -2, 0)) }) test_that("constituents were read correctly", { expect_equal(name[1], "Z0") expect_equal(name[2], "SA") expect_equal(kmpr[2], "SSA") i <- which(name == "M2") expect_equal(freq[i], 1/12.4206011981605) }) test_that("shallow constitutents", { shallow <- data.frame(iconst=iconst, coef=coef, iname=iname) expect_equal(tidedata$shallow$iconst[1:5], c(26,26,27,27,30)) expect_equal(tidedata$shallow$coef[1:5], c(2, -1, 1, -1, 2)) expect_equal(tidedata$shallow$iname[1:5], c(19, 13, 57, 13, 48)) expect_equal(df[48], 0.08051140070000) expect_equal(ishallow[143:146], c(242, 245, 246, 248)) expect_equal(nshallow[143:146], c(3, 1, 2, 4)) }) test_that("doodson", { expect_equal(tidedata$const$doodsonspecies[c(2,3,10)], c(0,0,-1)) expect_equal(tidedata$const$doodsonamp[c(2,3,10)], c(0.01160000000000,0.07299000000000,0.01153000000000)) }) test_that("ancillary code", { t <- as.POSIXct("2008-01-22 18:50:24", tz="GMT") a <- tidemAstron(t) expect_equal(a$astro, c(1.28861316428, 0.33390620851, 0.83751937277, 0.14234854462, 0.08559663825, 0.78633079279), tolerance=1e-8) expect_equal(a$ader, c(0.96613680803, 0.03660110127, 0.00273790931, 0.00030945407, 0.00014709388, 0.00000013082), tolerance=1e-8) vuf <- tidemVuf(t, 48) expect_equal(vuf$v, c(0.57722632857477), tolerance=1e-8) expect_equal(vuf$u, c(0), tolerance=1e-8) expect_equal(vuf$f, c(1), tolerance=1e-8) vuf <- tidemVuf(t, c(48, 49), 45) expect_equal(vuf$v, c(0.57722632857477,0.62841490855698), tolerance=1e-8) expect_equal(vuf$u, c(0.00295677805220,0.00180270946435), tolerance=1e-8) expect_equal(vuf$f, c(0.96893771510868,0.98142639461951), tolerance=1e-8) })
context("test-check-all.R") library("tibble") syn <- attempt_instantiate() attempt_login(syn) annots <- tribble( ~key, ~value, ~columnType, "assay", "rnaSeq", "STRING", "fileFormat", "fastq", "STRING", "fileFormat", "txt", "STRING", "fileFormat", "csv", "STRING", "species", "Human", "STRING" ) test_that("check_all() returns a list of check conditions", { skip_if_not(logged_in(syn = syn)) data <- tibble::tibble( metadataType = c( "manifest", "individual", "biospecimen", "assay" ), name = c("file1", "file2", "file3", "file4"), species = "human", assay = "rnaSeq", file_data = c( list(data.frame(a = c(TRUE, FALSE), b = c(1, 3))), list(data.frame(a = c(TRUE, FALSE), b = c(1, 3))), list(data.frame(a = c(TRUE, FALSE), b = c(1, 3))), list(data.frame(a = c(TRUE, FALSE), b = c(1, 3))) ) ) res <- check_all(data, annots, syn) expect_equal(class(res), "list") expect_true(all(unlist( purrr::map( res, function(x) { inherits(x, "check_fail") | inherits(x, "check_pass") | inherits(x, "check_warn") } ) ))) }) test_that("check_all() returns NULL for checks with missing data", { skip_if_not(logged_in(syn = syn)) data1 <- tibble::tibble( metadataType = c( "manifest", "individual", "biospecimen", "assay" ), name = c(NA, NA, NA, NA), species = "human", assay = "rnaSeq", file_data = c( list(NULL), list(NULL), list(NULL), list(NULL) ) ) data2 <- tibble::tibble( metadataType = c( "manifest", "individual", "biospecimen", "assay" ), name = c("file1", NA, NA, NA), species = "human", assay = "rnaSeq", file_data = c( list(data.frame(a = c(TRUE, FALSE), b = c(1, 3))), list(NULL), list(NULL), list(NULL) ) ) data3 <- tibble::tibble( metadataType = c( "manifest", "individual", "biospecimen", "assay" ), name = c(NA, "file2", NA, "file4"), species = "human", assay = "rnaSeq", file_data = c( list(NULL), list(data.frame(a = c(TRUE, FALSE), b = c(1, 3))), list(NULL), list(data.frame(a = c(TRUE, FALSE), b = c(1, 3))) ) ) data4 <- tibble::tibble( metadataType = c( "manifest", "individual", "biospecimen", "assay" ), name = c("file1", "file2", "file3", NA), species = "human", assay = "rnaSeq", file_data = c( list(data.frame(a = c(TRUE, FALSE), b = c(1, 3))), list(data.frame(a = c(TRUE, FALSE), b = c(1, 3))), list(data.frame(a = c(TRUE, FALSE), b = c(1, 3))), list(NULL) ) ) res1 <- check_all(data1, annots, syn) res2 <- check_all(data2, annots, syn) res3 <- check_all(data3, annots, syn) res4 <- check_all(data4, annots, syn) expect_true(all(purrr::map_lgl(res1, ~ is.null(.x)))) expect_true(sum(purrr::map_lgl(res2, ~ !is.null(.x))) < length(res2)) expect_true(sum(purrr::map_lgl(res3, ~ !is.null(.x))) < length(res3)) expect_true(sum(purrr::map_lgl(res4, ~ !is.null(.x))) < length(res4)) }) test_that("check_all() returns expected conditions", { skip_if_not(logged_in(syn = syn)) data <- tibble::tibble( metadataType = c( "manifest", "individual", "biospecimen", "assay" ), name = c("file1", "file2", "file3", "file4"), species = "human", assay = "rnaSeq", file_data = c( list(data.frame( path = c("file1", "file2", "file3", "file4", NA, NA, NA), individualID = c(NA, NA, NA, NA, "a", "b", "c"), specimenID = c(NA, NA, NA, NA, NA, "1", "3"), stringsAsFactors = FALSE )), list(data.frame( individualID = c("a", "b"), age = c(27, 32), stringsAsFactors = FALSE )), list(data.frame( individualID = c("a", "b"), specimenID = c("1", "3"), fileFormat = c("xlsx", "tex"), stringsAsFactors = FALSE )), list(data.frame( specimenID = c("1", "3"), assay = c("rnaSeq", "rnaSeq"), stringsAsFactors = FALSE )) ) ) res <- check_all(data, annots, syn) expect_true(inherits(res$meta_files_in_manifest, "check_pass")) expect_equal( res$individual_ids_indiv_manifest$data$`Missing from individual`[1], "c" ) expect_equal(res$annotation_values_biosp$data$fileFormat, c("xlsx", "tex")) }) test_that("check_all() throws error if not exactly 1 metadata type each", { skip_if_not(logged_in(syn = syn)) data1 <- tibble::tibble( metadataType = c( "manifest", "individual", "assay" ) ) data2 <- tibble::tibble( metadataType = c( "manifest", "individual", "assay", "assay" ) ) expect_error(check_all(data1, annots, syn)) expect_error(check_all(data2, annots, syn)) }) test_that("check_all runs check_ages_over_90 for human data", { skip_if_not(logged_in(syn = syn)) data_human <- tibble::tibble( metadataType = c( "manifest", "individual", "biospecimen", "assay" ), name = c("file1", "file2", "file3", "file4"), species = "human", assay = "rnaSeq", file_data = c( list(data.frame(a = 1)), list(data.frame(ageDeath = 95)), list(data.frame(a = 1)), list(data.frame(a = 1)) ) ) data_animal <- data_human data_animal$species <- "mouse or other animal model" data_has_na <- data_human data_has_na$species <- c(NA, "human", "human", NA) res1 <- check_all(data_human, annots, syn) res2 <- check_all(data_animal, annots, syn) res3 <- check_all(data_has_na, annots, syn) expect_true(inherits(res1$ages_over_90, "check_warn")) expect_null(res2$ages_over_90) expect_true(inherits(res3$ages_over_90, "check_warn")) }) test_that("check_all catches duplicate file paths in manifest", { skip_if_not(logged_in(syn = syn)) data <- tibble::tibble( metadataType = c( "manifest", "individual", "biospecimen", "assay" ), name = c("file1", "file2", "file3", "file4"), species = "human", assay = "rnaSeq", file_data = c( list(data.frame(path = c("/file.txt", "/file.txt"))), list(data.frame(a = 1)), list(data.frame(a = 1)), list(data.frame(a = 1)) ) ) res1 <- check_all(data, annots, syn) expect_true(inherits(res1$duplicate_file_paths, "check_fail")) })
seg.lm.fit.boot <- function(y, XREG, Z, PSI, w, offs, opz, n.boot=10, size.boot=NULL, jt=FALSE, nonParam=TRUE, random=FALSE, break.boot=n.boot){ extract.psi<-function(lista){ dev.values<-lista[[1]][-1] psi.values<-lista[[2]][-1] dev.ok<-min(dev.values) id.dev.ok<-which.min(dev.values) if(is.list(psi.values)) psi.values<-matrix(unlist(psi.values), nrow=length(dev.values), byrow=TRUE) if(!is.matrix(psi.values)) psi.values<-matrix(psi.values) psi.ok<-psi.values[id.dev.ok,] r<-list(SumSquares.no.gap=dev.ok, psi=psi.ok) r } visualBoot<-opz$visualBoot opz.boot<-opz opz.boot$pow=c(1,1) opz1<-opz opz1$it.max <-1 n<-length(y) o0<-try(suppressWarnings(seg.lm.fit(y, XREG, Z, PSI, w, offs, opz, return.all.sol=FALSE)), silent=TRUE) rangeZ <- apply(Z, 2, range) if(!is.list(o0)) { o0<- suppressWarnings(seg.lm.fit(y, XREG, Z, PSI, w, offs, opz, return.all.sol=TRUE)) o0<-extract.psi(o0) ss00<-opz$dev0 if(!nonParam) {warning("using nonparametric boot");nonParam<-TRUE} } if(is.list(o0)){ est.psi00<-est.psi0<-o0$psi ss00<-o0$SumSquares.no.gap if(!nonParam) fitted.ok<-fitted(o0) } else { if(!nonParam) stop("the first fit failed and I cannot extract fitted values for the semipar boot") if(random) { est.psi00<-est.psi0<-apply(rangeZ,2,function(r)runif(1,r[1],r[2])) PSI1 <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0)) o0<-try(suppressWarnings(seg.lm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE) ss00<-o0$SumSquares.no.gap } else { est.psi00<-est.psi0<-apply(PSI,2,mean) ss00<-opz$dev0 } } n.intDev0<-nchar(strsplit(as.character(ss00),"\\.")[[1]][1]) all.est.psi.boot<-all.selected.psi<-all.est.psi<-matrix(NA, nrow=n.boot, ncol=length(est.psi0)) all.ss<-all.selected.ss<-rep(NA, n.boot) if(is.null(size.boot)) size.boot<-n Z.orig<-Z count.random<-0 id.uguali<-0 k.psi.change<- 1 alpha<-.1 for(k in seq(n.boot)){ n.boot.rev<- 3 diff.selected.ss <- rev(diff(na.omit(all.selected.ss))) if(length(diff.selected.ss)>=(n.boot.rev-1) && all(round(diff.selected.ss[1:(n.boot.rev-1)],6)==0)){ qpsi<-sapply(1:ncol(Z),function(i)mean(est.psi0[i]>=Z[,i])) qpsi<-ifelse(abs(qpsi-.5)<.1, alpha, qpsi) alpha<-1-alpha est.psi0<-sapply(1:ncol(Z),function(i)quantile(Z[,i],probs=1-qpsi[i],names=FALSE)) } PSI <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0)) if(jt) Z<-apply(Z.orig,2,jitter) if(nonParam){ id<-sample(n, size=size.boot, replace=TRUE) o.boot<-try(suppressWarnings(seg.lm.fit(y[id], XREG[id,,drop=FALSE], Z[id,,drop=FALSE], PSI[id,,drop=FALSE], w[id], offs[id], opz.boot)), silent=TRUE) } else { yy<-fitted.ok+sample(residuals(o0),size=n, replace=TRUE) o.boot<-try(suppressWarnings(seg.lm.fit(yy, XREG, Z.orig, PSI, weights, offs, opz.boot)), silent=TRUE) } if(is.list(o.boot)){ all.est.psi.boot[k,]<-est.psi.boot<-o.boot$psi } else { est.psi.boot<-apply(rangeZ,2,function(r)runif(1,r[1],r[2])) } PSI <- matrix(rep(est.psi.boot, rep(nrow(Z), length(est.psi.boot))), ncol = length(est.psi.boot)) opz$h<-max(opz$h*.9, .2) opz$it.max<-opz$it.max+1 o<-try(suppressWarnings(seg.lm.fit(y, XREG, Z.orig, PSI, w, offs, opz, return.all.sol=TRUE)), silent=TRUE) if(!is.list(o) && random){ est.psi0<-apply(rangeZ,2,function(r)runif(1,r[1],r[2])) PSI1 <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0)) o<-try(suppressWarnings(seg.lm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE) count.random<-count.random+1 } if(is.list(o)){ if(!"coefficients"%in%names(o$obj)) o<-extract.psi(o) all.est.psi[k,]<-o$psi all.ss[k]<-o$SumSquares.no.gap if(o$SumSquares.no.gap<=ifelse(is.list(o0), o0$SumSquares.no.gap, 10^12)) {o0<-o; k.psi.change<- k} est.psi0<-o0$psi all.selected.psi[k,] <- est.psi0 all.selected.ss[k]<-o0$SumSquares.no.gap } if(visualBoot) { flush.console() cat(paste("boot sample = ", sprintf("%2.0f",k), " opt.dev = ", sprintf(paste("%", n.intDev0+6, ".5f",sep=""), o0$SumSquares.no.gap), " n.psi = ",formatC(length(unlist(est.psi0)),digits=0,format="f"), " est.psi = ",paste(formatC(unlist(est.psi0),digits=3,format="f"), collapse=" "), sep=""), "\n") } asss<-na.omit(all.selected.ss) if(length(asss)>break.boot){ if(all(rev(round(diff(asss),6))[1:(break.boot-1)]==0)) break } } all.selected.psi<-rbind(est.psi00,all.selected.psi) all.selected.ss<-c(ss00, all.selected.ss) ris<-list(all.selected.psi=drop(all.selected.psi),all.selected.ss=all.selected.ss, all.psi=all.est.psi, all.ss=all.ss) if(is.null(o0$obj)){ PSI1 <- matrix(rep(est.psi0, rep(nrow(Z), length(est.psi0))), ncol = length(est.psi0)) o0<-try(suppressWarnings(seg.lm.fit(y, XREG, Z, PSI1, w, offs, opz1)), silent=TRUE) } if(!is.list(o0)) return(0) o0$boot.restart<-ris rm(.Random.seed, envir=globalenv()) return(o0) }
sc_triangle <- function(x, ...) { UseMethod("sc_triangle") } sc_triangle.default <- function(x, ...) { sc_triangle(silicate::TRI0(x), ...) } sc_triangle.TRI0 <- function(x, ...) { obj <- sc_object(x) topol <- obj$topology_ for (i in seq_along(topol)) { topol[[i]][["object_"]] <- as.character(i) } do.call(rbind, topol) } sc_triangle.TRI <- function(x, ...) { x[["triangle"]] } sc_triangle.mesh3d <- function(x, ...) { tri <- x[["it"]] if (is.null(tri)) stop("no triangles in this model") tibble::tibble(.vx0 = tri[1L, ], .vx1 = tri[2L, ], .vx2 = tri[3L, ]) }
NULL NULL NULL tensor.in <- function(X1,X2){ l <- lapply(1:ncol(X1),function(i) {X1[,i]*X2}) do.call(cbind, l) } tensor.prod.X <- function (X) { m <- length(X) if(m>1){ T <- tensor.in(X[[1]],X[[2]]) if(m>2){ for (j in 3:m){ T <- tensor.in(T,X[[m]]) } } }else{ T <- X[[1]] } T } tensor.prod.S <- function (S) { m <- length(S) I <- vector("list", m) for (i in 1:m) { n <- ncol(S[[i]]) I[[i]] <- diag(n) } TS <- vector("list", m) if (m == 1) TS[[1]] <- S[[1]] else for (i in 1:m) { if (i == 1) M0 <- S[[1]] else M0 <- I[[1]] for (j in 2:m) { if (i == j) M1 <- S[[i]] else M1 <- I[[j]] M0 <- M0 %x% M1 } TS[[i]] <- if (ncol(M0) == nrow(M0)) (M0 + t(M0))/2 else M0 } TS } crs <- function(x, knots=NULL,df=10, intercept=TRUE) { n <- length(x) if (is.null(knots)) { if (is.null(df)) {df <- 10} if(df<3) {stop("Number of knots should be at least 3, 1 interior plus 2 boundaries")} if(n<2) {stop("Please specify at least 2 values or specify at least 3 knots via knots=...")} knots <- stats::quantile(unique(x),seq(0,1,length=df)) } k <- length(knots) if (k<3) {stop("Please specify at least 3 knots, 1 interior plus 2 boundaries")} knots <- sort(knots) h <- diff(knots) F.P <- crs.FP(knots,h) F.mat <- F.P$F.mat F.mat1 <- rbind(rep(0,k),F.mat) F.mat2 <- rbind(F.mat,rep(0,k)) P.mat <- F.P$P.mat condition.min <- rep(0,n) condition.min[x<min(knots)] <- 1 condition.max <- rep(0,n) condition.max[x>max(knots)] <- 1 x.min <- x[condition.min==1] x.max <- x[condition.max==1] len.min <- length(x.min) len.max <- length(x.max) x[condition.min==1] <- min(knots) x[condition.max==1] <- max(knots) condition <- matrix(0,nrow=n,ncol=k-1) for (l in 1:(k-1)){ condition[(x >= knots[l]) & (x < knots[l+1]),l] <- 1 } a.minus <- sapply(1:(k-1),function(l) (knots[l+1]-x)/h[l]) a.plus <- sapply(1:(k-1),function(l) (x-knots[l])/h[l]) c.minus <- 1/6*sapply(1:(k-1),function(l) (knots[l+1]-x)^3/h[l] - h[l]*(knots[l+1]-x)) c.plus <- 1/6*sapply(1:(k-1),function(l) (x-knots[l])^3/h[l] - h[l]*(x-knots[l])) a.minus <- a.minus*condition a.plus <- a.plus*condition c.minus <- c.minus*condition c.plus <- c.plus*condition Ident <- diag(k-1) Mat_j <- cbind(Ident,rep(0,k-1)) Mat_j_1 <- cbind(rep(0,k-1),Ident) b <- c.minus%mult%F.mat1 + c.plus%mult%F.mat2 + a.minus%mult%Mat_j + a.plus%mult%Mat_j_1 if(any(x == max(knots))) b[x == max(knots), k] <- 1 if (sum(condition.min)>0){ v1 <- (x.min-min(knots)) v2 <- -h[1]/6*F.mat[1,] - 1/h[1]*c(1,rep(0,k-1)) + 1/h[1]*c(0,1,rep(0,k-2)) b[condition.min==1,] <- b[condition.min==1,] + matrix(v1*rep(v2,each=len.min),nrow=len.min,ncol=k) } if (sum(condition.max)>0){ v1 <- (x.max-max(knots)) v2 <- h[k-1]/6*F.mat[k-2,] - 1/h[k-1]*c(rep(0,k-2),1,0) + 1/h[k-1]*c(rep(0,k-1),1) b[condition.max==1,] <- b[condition.max==1,] + matrix(v1*rep(v2,each=len.max),nrow=len.max,ncol=k) } if(intercept == FALSE) { return(list(bs=b[,-1],pen=P.mat[-1,-1],knots=knots)) } else { return(list(bs=b,pen=P.mat,knots=knots)) } } crs.FP <- function(knots,h){ k <- length(knots) if (k<3) {stop("Please specify at least 3 knots, 1 interior plus 2 boundaries")} B <- matrix(0,nrow=k-2,ncol=k-2) D <- matrix(0,nrow=k-2,ncol=k) for (i in 1:(k-2)){ D[i,i] <- 1/h[i] D[i,i+1] <- -1/h[i]-1/h[i+1] D[i,i+2] <- 1/h[i+1] B[i,i] <- (h[i]+h[i+1])/3 if(i<(k-2)){ B[i,i+1] <- B[i+1,i] <- h[i+1]/6 } } F.mat <- chol2inv(chol(B))%mult%D P.mat <- D%cross%F.mat P.mat <- (P.mat+t(P.mat))*0.5 return(list(F.mat=F.mat,P.mat=P.mat)) } smf <- function(..., knots=NULL,df=NULL,by=NULL,same.rho=FALSE){ by <- substitute(by) if(!is.character(by)) by <- deparse(by) smooth.spec(..., knots=knots,df=df,by=by,option="smf",same.rho=same.rho) } tensor <- function(..., knots=NULL,df=NULL,by=NULL,same.rho=FALSE){ by <- substitute(by) if(!is.character(by)) by <- deparse(by) smooth.spec(..., knots=knots,df=df,by=by,option="tensor",same.rho=same.rho) } tint <- function(..., knots=NULL,df=NULL,by=NULL,same.rho=FALSE){ by <- substitute(by) if(!is.character(by)) by <- deparse(by) smooth.spec(..., knots=knots,df=df,by=by,option="tint",same.rho=same.rho) } rd <- function(...){ smooth.spec(...,option="rd") } smooth.spec <- function(..., knots=NULL,df=NULL,by=NULL,option=NULL,same.rho=FALSE){ if (is.null(option)) { option <- "smf" }else{ if (!option %in% c("tensor","smf","tint","rd")) stop("option must be : smf, tensor, tint or rd") } if (option!="smf") { df.def <- 5 }else{ df.def <- 10 } vars <- as.list(substitute(list(...)))[-1] dim <- length(vars) name <- paste0(option,"(",paste(vars,collapse=","),")") term <- deparse(vars[[1]], backtick = TRUE) if (dim > 1) { for (i in 2:dim) term[i] <- deparse(vars[[i]], backtick = TRUE) } for (i in 1:dim) term[i] <- attr(stats::terms(stats::reformulate(term[i])), "term.labels") if (option=="rd"){ spec <- list(term=term,dim=dim,knots=NULL,df=NULL,by=NULL,same.rho=NULL,name=name) class(spec) <- paste(option,".smooth.spec",sep="") return(spec) } if (is.null(knots)) { if (is.null(df)) { df <- rep(df.def,dim) }else{ if (length(df)!=dim){ df <- rep(df.def,dim) warning("wrong df length, df put to ",df.def," for each covariate") } } }else{ if(!is.list(knots)) { if(dim>1) stop("knots must be a list argument") knots <- list(knots) } if (length(knots)!=dim){ df <- rep(df.def,dim) knots <- NULL warning("wrong list of knots, df put to ",df.def," for each covariate and quantiles used") }else{ df.temp <- sapply(knots,FUN=length) if (is.null(df)) { df <- df.temp }else{ if (any(df!=df.temp)){ df <- df.temp if (all(df>2)) warning("wrong df, df put to ",df.temp) } } } } spec <- list(term=term,dim=dim,knots=knots,df=df,by=by,same.rho=same.rho,name=name) class(spec) <- paste(option,".smooth.spec",sep="") spec } smooth.cons <- function(term, knots, df, by=NULL, option, data.spec, same.rho=FALSE, name){ if (option=="rd"){ dim <- 1 pen <- vector("list", dim) X <- stats::model.matrix(stats::as.formula(paste0("~",paste(term,collapse=":"),"-1")),data=data.spec) n.col <- dim(X)[2] pen[[1]] <- diag(n.col) colnames(X) <- rep(paste(name,".",1:n.col,sep="")) lambda.name <- rep(name) res <- list(X=X,pen=pen,term=term,dim=dim,lambda.name=lambda.name) return(res) } centering <- TRUE dim <- length(term) if(!is.character(by)) by <- deparse(by) by.var <- eval(parse(text=by),envir=as.environment(data.spec)) if (!is.null(by.var)){ if(!is.factor(by.var)) centering <- FALSE } all.df <- if(!is.null(knots)){sapply(knots,length)}else{df} all.df <- all.df+rep(if(option=="smf" & centering){-1}else{0},dim) sum.df <- sum(all.df) Base <- vector("list", dim) bs <- vector("list", dim) pen <- vector("list", dim) Z.smf <- vector("list", dim) Z.tint <- vector("list", dim) if (option=="smf") sum.temp <- 1 if (!is.null(knots) & is.null(names(knots))) names(knots) <- term if (is.null(names(df))) names(df) <- term knots2 <- vector("list", dim) names(knots2) <- term for (i in 1:dim){ Base[[i]] <- crs(eval(parse(text=term[i]),envir=as.environment(data.spec)),knots=knots[[term[i]]],df=df[[term[i]]],intercept=TRUE) bs[[i]] <- Base[[i]]$bs knots2[[i]] <- Base[[i]]$knots if (option=="smf") { if (centering) { contr.smf <- constraint(bs[[i]],Base[[i]]$pen) bs[[i]] <- contr.smf$X pen[[i]] <- matrix(0,nrow=sum.df,ncol=sum.df) pen[[i]][(sum.temp:(sum.temp+all.df[i]-1)),(sum.temp:(sum.temp+all.df[i]-1))] <- contr.smf$S sum.temp <- sum.temp+all.df[i] Z.smf[[i]] <- contr.smf$Z }else{ pen[[i]] <- matrix(0,nrow=sum.df,ncol=sum.df) pen[[i]][(sum.temp:(sum.temp+all.df[i]-1)),(sum.temp:(sum.temp+all.df[i]-1))] <- Base[[i]]$pen sum.temp <- sum.temp+all.df[i] Z.smf[[i]] <- NULL } }else{ if (option=="tint") { contr.tint <- constraint(bs[[i]],Base[[i]]$pen) bs[[i]] <- contr.tint$X pen[[i]] <- contr.tint$S Z.tint[[i]] <- contr.tint$Z }else{ pen[[i]] <- Base[[i]]$pen Z.smf <- NULL } } } if (option=="smf") { X <- bs[[1]] Z.tensor <- NULL Z.tint <- NULL } if (option=="tensor") { if (centering) { contr.tensor <- constraint(tensor.prod.X(bs),tensor.prod.S(pen)) X <- contr.tensor$X pen <- contr.tensor$S Z.tensor <- contr.tensor$Z Z.smf <- NULL Z.tint <- NULL }else{ X <- tensor.prod.X(bs) pen <- tensor.prod.S(pen) Z.tensor <- NULL Z.smf <- NULL Z.tint <- NULL } } if (option=="tint") { X <- tensor.prod.X(bs) pen <- tensor.prod.S(pen) Z.smf <- NULL Z.tensor <- NULL } n.col <- NCOL(X) if (!is.null(by.var)){ if (is.factor(by.var)){ lev <- levels(by.var) n.lev <- length(lev) dum = stats::model.matrix(~by.var-1) colnames(dum) <- gsub("by.var",by,colnames(dum)) if (is.ordered(by.var)) { ind.level <- 1 position.factor <- (1:n.lev)[-ind.level] n.lev <- n.lev - 1 }else{ position.factor <- 1:n.lev } dim.pen2 <- n.col*n.lev X <- do.call(cbind,lapply(position.factor,function(i) X*dum[,i])) colnames(X) <- sapply(position.factor,function(i) rep(paste(name,":",colnames(dum)[i],".",1:n.col,sep=""))) dim2 <- dim*n.lev pen2 <- vector("list", dim2) pen.same <- vector("list", dim) for (i in 1:dim){ pen.same[[i]] <- matrix(0,nrow=dim.pen2,ncol=dim.pen2) for (j in (n.lev*(i-1)+1):(n.lev*i)){ pen2[[j]] <- matrix(0,nrow=dim.pen2,ncol=dim.pen2) k <- j - n.lev*(i-1) position <- (1+n.col*(k-1)):(n.col*k) pen2[[j]][position,position] <- pen[[i]] pen.same[[i]] <- pen.same[[i]] + pen2[[j]] } } if (same.rho) { pen <- pen.same if (dim==1){ lambda.name <- paste(name,":",by,sep="") }else{ lambda.name <- rep(paste(name,":",by,".",1:dim,sep="")) } }else{ pen <- pen2 if (dim==1){ lambda.name <- sapply(position.factor,function(i) paste(name,":",colnames(dum)[i],sep="")) }else{ lambda.name <- c(sapply(1:dim,function(j) sapply(position.factor,function(i) paste(name,":",colnames(dum)[i],".",j,sep="")))) } } }else{ X <- X*by.var colnames(X) <- paste(name,":",by,".",1:n.col,sep="") if (dim==1){ lambda.name <- paste(name,":",by,sep="") }else{ lambda.name <- paste(name,":",by,".",1:dim,sep="") } } }else{ colnames(X) <- paste(name,".",1:n.col,sep="") if (dim==1){ lambda.name <- name }else{ lambda.name <- paste(name,".",1:dim,sep="") } } list(X=X,pen=pen,term=term,knots=knots2,dim=dim,all.df=all.df,sum.df=sum.df,Z.tensor=Z.tensor,Z.smf=Z.smf,Z.tint=Z.tint,lambda.name=lambda.name) } constraint <- function(X,S,Z=NULL){ if (is.null(Z)){ C <- colSums2(X) qrc <- qr(C) Z <- qr.Q(qrc,complete=TRUE)[,2:length(C)] } XZ <- X%mult%Z if(is.list(S)){ length.S <- length(S) SZ <- lapply(1:length.S,function(i) Z%cross%S[[i]]%mult%Z) }else{ SZ <- Z%cross%S%mult%Z } list(X=XZ,S=SZ,Z=Z) } smooth.cons.integral <- function(term, knots, df, by=NULL, option, data.spec, Z.smf, Z.tensor, Z.tint, name){ if (option=="rd"){ dim <- length(term) X <- stats::model.matrix(stats::as.formula(paste0("~",paste(term,collapse=":"),"-1")),data=data.spec) n.col <- dim(X)[2] colnames(X) <- rep(paste(name,".",1:n.col,sep="")) return(X) } centering <- TRUE dim <- length(term) if(!is.character(by)) by <- deparse(by) by.var <- eval(parse(text=by),envir=as.environment(data.spec)) if (!is.null(by.var)){ if(!is.factor(by.var)) centering <- FALSE } if (!is.null(knots) & is.null(names(knots))) names(knots) <- term if (is.null(names(df))) names(df) <- term Base <- vector("list",dim) bs <- vector("list", dim) for (i in 1:dim){ Base[[i]] <- crs(eval(parse(text=term[i]),envir=as.environment(data.spec)),knots=knots[[term[i]]],df=df[[term[i]]],intercept=TRUE) bs[[i]] <- Base[[i]]$bs if (option=="smf") { if (centering) bs[[i]] <- bs[[i]]%mult%Z.smf[[i]] } if (option=="tint") { bs[[i]] <- bs[[i]]%mult%Z.tint[[i]] } } if (option=="smf") { X <- bs[[1]] } if (option=="tensor") { X <- tensor.prod.X(bs) if (centering) X <- X%mult%Z.tensor } if (option=="tint") { X <- tensor.prod.X(bs) } n.col <- NCOL(X) if (!is.null(by.var)){ if (is.factor(by.var)){ lev <- levels(by.var) n.lev <- length(lev) dum = stats::model.matrix(~by.var-1) colnames(dum) <- gsub("by.var",by,colnames(dum)) if (is.ordered(by.var)) { ind.level <- 1 position.factor <- (1:n.lev)[-ind.level] n.lev <- n.lev - 1 }else{ position.factor <- 1:n.lev } X <- do.call(cbind,lapply(position.factor,function(i) X*dum[,i])) colnames(X) <- sapply(position.factor,function(i) rep(paste(name,":",colnames(dum)[i],".",1:n.col,sep=""))) }else{ X <- X*by.var colnames(X) <- rep(paste(name,":",by,".",1:n.col,sep="")) lambda.name <- rep(paste(name,":",by,".",1:dim,sep="")) } }else{ colnames(X) <- rep(paste(name,".",1:n.col,sep="")) lambda.name <- rep(paste(name,".",1:dim,sep="")) } return(X) } instr <- function(str1,str2,startpos=1,n=1){ aa=unlist(strsplit(substring(str1,startpos),str2)) if(length(aa) < n+1 ) return(0); return(sum(nchar(aa[1:n])) + startpos+(n-1)*nchar(str2) ) } model.cons <- function(formula,lambda,data.spec,t1,t1.name,t0,t0.name,event,event.name,expected,expected.name,type,n.legendre,cl,beta.ini){ formula <- stats::as.formula(formula) Terms <- stats::terms(formula) tmp <- attr(Terms, "term.labels") if(attr(Terms, "intercept")==0){ intercept <- "-1" }else{ intercept <- "" } ind.smf <- grep("^smf\\(", tmp) ind.tensor <- grep("^tensor\\(", tmp) ind.tint <- grep("^tint\\(", tmp) ind.rd <- grep("^rd\\(", tmp) Ad <- tmp[ind.smf] Tens <- tmp[ind.tensor] Tint <- tmp[ind.tint] Rd <- tmp[ind.rd] smooth.smf <- FALSE smooth.tensor <- FALSE smooth.tint <- FALSE smooth.rd <- FALSE length.Ad <- length(Ad) length.Tens <- length(Tens) length.Tint <- length(Tint) length.Rd <- length(Rd) if (length.Ad!=0) smooth.smf <- TRUE if (length.Tens!=0) smooth.tensor <- TRUE if (length.Tint!=0) smooth.tint <- TRUE if (length.Rd!=0) smooth.rd <- TRUE if (smooth.smf | smooth.tensor | smooth.tint | smooth.rd){ Para <- tmp[-c(ind.smf,ind.tensor,ind.tint,ind.rd)] }else{ Para <- tmp } if (length(Para)==0){ formula.para <- stats::as.formula("~1") }else{ formula.para <- stats::as.formula(paste("~",paste(Para,collapse="+"),intercept,sep="")) } X.para <- stats::model.matrix(formula.para,data=data.spec) df.para <- NCOL(X.para) X.smf <- NULL X.tensor <- NULL X.tint <- NULL X.rd <- NULL Z.smf <- NULL Z.tensor <- NULL Z.tint <- NULL S.smf <- NULL S.tensor <- NULL S.tint <- NULL S.rd <- NULL if (smooth.smf){ X.smf <- vector("list",length.Ad) S.smf <- vector("list",length.Ad) Z.smf <- vector("list",length.Ad) list.smf <- vector("list",length.Ad) dim.smf <- vector(length=length.Ad) df.smf <- vector(length=length.Ad) smooth.name.smf <- vector(length=length.Ad) lambda.name.smf <- vector("list",length.Ad) for (i in 1:length.Ad){ list.smf[[i]] <- eval(parse(text=Ad[i])) if(list.smf[[i]]$dim>1) stop("smf calls must contain only one covariate") temp <- smooth.cons(list.smf[[i]]$term,list.smf[[i]]$knots,list.smf[[i]]$df,list.smf[[i]]$by,option="smf",data.spec,list.smf[[i]]$same.rho,list.smf[[i]]$name) X.smf[[i]] <- temp$X S.smf[[i]] <- temp$pen Z.smf[[i]] <- temp$Z.smf list.smf[[i]]$knots <- temp$knots dim.smf[i] <- length(temp$pen) df.smf[i] <- NCOL(temp$X) smooth.name.smf[i] <- list.smf[[i]]$name lambda.name.smf[[i]] <- temp$lambda.name } X.smf <- do.call(cbind, X.smf) } if (smooth.tensor){ X.tensor <- vector("list",length.Tens) S.tensor <- vector("list",length.Tens) Z.tensor <- vector("list",length.Tens) list.tensor <- vector("list",length.Tens) dim.tensor <- vector(length=length.Tens) df.tensor <- vector(length=length.Tens) smooth.name.tensor <- vector(length=length.Tens) lambda.name.tensor <- vector("list",length.Tens) for (i in 1:length.Tens){ list.tensor[[i]] <- eval(parse(text=Tens[i])) temp <- smooth.cons(list.tensor[[i]]$term,list.tensor[[i]]$knots,list.tensor[[i]]$df,list.tensor[[i]]$by,option="tensor",data.spec,list.tensor[[i]]$same.rho,list.tensor[[i]]$name) dim.tensor[i] <- length(temp$pen) df.tensor[i] <- NCOL(temp$X) X.tensor[[i]] <- temp$X S.tensor[[i]] <- temp$pen Z.tensor[[i]] <- temp$Z.tensor list.tensor[[i]]$knots <- temp$knots smooth.name.tensor[i] <- list.tensor[[i]]$name lambda.name.tensor[[i]] <- temp$lambda.name } X.tensor <- do.call(cbind, X.tensor) } if (smooth.tint){ X.tint <- vector("list",length.Tint) S.tint <- vector("list",length.Tint) Z.tint <- vector("list",length.Tint) list.tint <- vector("list",length.Tint) dim.tint <- vector(length=length.Tint) df.tint <- vector(length=length.Tint) smooth.name.tint <- vector(length=length.Tint) lambda.name.tint <- vector("list",length.Tint) for (i in 1:length.Tint){ list.tint[[i]] <- eval(parse(text=Tint[i])) temp <- smooth.cons(list.tint[[i]]$term,list.tint[[i]]$knots,list.tint[[i]]$df,list.tint[[i]]$by,option="tint",data.spec,list.tint[[i]]$same.rho,list.tint[[i]]$name) dim.tint[i] <- length(temp$pen) df.tint[i] <- NCOL(temp$X) X.tint[[i]] <- temp$X S.tint[[i]] <- temp$pen Z.tint[[i]] <- temp$Z.tint list.tint[[i]]$knots <- temp$knots smooth.name.tint[i] <- list.tint[[i]]$name lambda.name.tint[[i]] <- temp$lambda.name } X.tint <- do.call(cbind, X.tint) } if (smooth.rd){ X.rd <- vector("list",length.Rd) S.rd <- vector("list",length.Rd) Z.rd <- vector("list",length.Rd) list.rd <- vector("list",length.Rd) dim.rd <- vector(length=length.Rd) df.rd <- vector(length=length.Rd) smooth.name.rd <- vector(length=length.Rd) lambda.name.rd <- vector("list",length.Rd) for (i in 1:length.Rd){ list.rd[[i]] <- eval(parse(text=Rd[i])) temp <- smooth.cons(list.rd[[i]]$term,list.rd[[i]]$knots,list.rd[[i]]$df,list.rd[[i]]$by,option="rd",data.spec,list.rd[[i]]$same.rho,list.rd[[i]]$name) X.rd[[i]] <- temp$X S.rd[[i]] <- temp$pen dim.rd[i] <- length(temp$pen) df.rd[i] <- NCOL(temp$X) smooth.name.rd[i] <- list.rd[[i]]$name lambda.name.rd[[i]] <- temp$lambda.name } X.rd <- do.call(cbind, X.rd) } X.smooth <- cbind(X.smf,X.tensor,X.tint,X.rd) X <- cbind(X.para,X.smooth) df.tot <- NCOL(X) if (!smooth.smf){ dim.smf <- 0 df.smf <- 0 list.smf <- NULL lambda.name.smf <- NULL smooth.name.smf <- NULL } if (!smooth.tensor){ dim.tensor <- 0 df.tensor <- 0 list.tensor <- NULL lambda.name.tensor <- NULL smooth.name.tensor <- NULL } if (!smooth.tint){ dim.tint <- 0 df.tint <- 0 list.tint <- NULL lambda.name.tint <- NULL smooth.name.tint <- NULL } if (!smooth.rd){ dim.rd <- 0 df.rd <- 0 list.rd <- NULL lambda.name.rd <- NULL smooth.name.rd <- NULL } sum.df.smf <- sum(df.smf) sum.df.tensor <- sum(df.tensor) sum.df.tint <- sum(df.tint) sum.df.rd <- sum(df.rd) sum.dim.smf <- sum(dim.smf) sum.dim.tensor <- sum(dim.tensor) sum.dim.tint <- sum(dim.tint) sum.dim.rd <- sum(dim.rd) df.smooth <- sum.df.smf+sum.df.tensor+sum.df.tint+sum.df.rd nb.smooth <- sum.dim.smf+sum.dim.tensor+sum.dim.tint+sum.dim.rd name.smooth <- c(unlist(lambda.name.smf),unlist(lambda.name.tensor),unlist(lambda.name.tint),unlist(lambda.name.rd)) S <- matrix(0,nrow=df.tot,ncol=df.tot) S.F <- matrix(0,nrow=df.tot,ncol=df.tot) S.pen <- lapply(1:nb.smooth, function(i) matrix(0,nrow=df.tot,ncol=df.tot)) S.list <- lapply(1:nb.smooth, function(i) matrix(0,nrow=df.tot,ncol=df.tot)) S.F.list <- lapply(1:nb.smooth, function(i) matrix(0,nrow=df.tot,ncol=df.tot)) if (smooth.smf | smooth.tensor | smooth.tint | smooth.rd){ pen <- lapply(1:nb.smooth, function(i) matrix(0,nrow=df.smooth,ncol=df.smooth)) if (smooth.smf){ for (i in 1:length.Ad){ df.plus <- if(i==1){0}else{cumsum(df.smf)[i-1]} dim.plus <- if(i==1){0}else{cumsum(dim.smf)[i-1]} position.smf <- (1+df.plus):(df.smf[i]+df.plus) for (j in 1:dim.smf[i]){ pen[[j+dim.plus]][position.smf,position.smf] <- S.smf[[i]][[j]] } } } if (smooth.tensor){ for (i in 1:length.Tens){ df.plus <- if(i==1){0}else{cumsum(df.tensor)[i-1]} dim.plus <- if(i==1){0}else{cumsum(dim.tensor)[i-1]} position.temp <- sum.df.smf+df.plus position.tensor <- (position.temp+1):(position.temp+df.tensor[i]) for (j in 1:dim.tensor[i]){ pen[[j+sum.dim.smf+dim.plus]][position.tensor,position.tensor] <- S.tensor[[i]][[j]] } } } if (smooth.tint){ for (i in 1:length.Tint){ df.plus <- if(i==1){0}else{cumsum(df.tint)[i-1]} dim.plus <- if(i==1){0}else{cumsum(dim.tint)[i-1]} position.temp <- sum.df.smf+sum.df.tensor+df.plus position.tint <- (position.temp+1):(position.temp+df.tint[i]) for (j in 1:dim.tint[i]){ pen[[j+sum.dim.smf+sum.dim.tensor+dim.plus]][position.tint,position.tint] <- S.tint[[i]][[j]] } } } if (smooth.rd){ for (i in 1:length.Rd){ df.plus <- if(i==1){0}else{cumsum(df.rd)[i-1]} dim.plus <- if(i==1){0}else{cumsum(dim.rd)[i-1]} position.temp <- sum.df.smf+sum.df.tensor+sum.df.tint+df.plus position.rd <- (position.temp+1):(position.temp+df.rd[i]) for (j in 1:dim.rd[i]){ pen[[j+sum.dim.smf+sum.dim.tensor+sum.dim.tint+dim.plus]][position.rd,position.rd] <- S.rd[[i]][[j]] } } } if (is.null(lambda)) {lambda <- rep(0,nb.smooth)} if (length(lambda)!=nb.smooth) { if (length(lambda)==1) { warning("lambda is of length 1. All smoothing parameters (",nb.smooth,") are set to ",lambda) lambda <- rep(lambda,nb.smooth) }else{ stop("lambda should be of length ",nb.smooth) } } names(lambda) <- name.smooth norm.X <- norm(X,type="I")^2 S.scale <- rep(0,nb.smooth) for (i in 1:nb.smooth){ S.scale[i] <- norm.X/norm(pen[[i]],type="I") pen[[i]] <- S.scale[i]*pen[[i]] S.pen[[i]][(df.para+1):df.tot,(df.para+1):df.tot] <- pen[[i]] S.list[[i]] <- lambda[i]*S.pen[[i]] S.F.list[[i]] <- S.pen[[i]]/norm(S.pen[[i]],type="F") S <- S+S.list[[i]] S.F <- S.F+S.F.list[[i]] } eigen.F <- eigen(S.F,symmetric=TRUE) U.F <- eigen.F$vectors vp.F <- eigen.F$values tol.S.F <- .Machine$double.eps^0.8 * max(vp.F) pos.S.F.eigen <- vp.F[vp.F >= tol.S.F] rank.S <- length(pos.S.F.eigen) } else { nb.smooth <- 0 S.scale <- 0 S.pen <- NULL rank.S <- NULL U.F <- NULL } leg <- statmod::gauss.quad(n=n.legendre,kind="legendre") X.func <- function(t1,t1.name,data,formula,Z.smf,Z.tensor,Z.tint,list.smf,list.tensor,list.tint,list.rd){ data.t <- data data.t[,t1.name] <- t1 design.matrix(formula,data.spec=data.t,Z.smf=Z.smf,Z.tensor=Z.tensor,Z.tint=Z.tint,list.smf=list.smf,list.tensor=list.tensor,list.tint=list.tint,list.rd=list.rd) } tm <- 0.5*(t1-t0) X.GL <- lapply(1:n.legendre, function(i) X.func(tm*leg$nodes[i]+(t0+t1)/2,t1.name,data.spec,formula,Z.smf,Z.tensor,Z.tint,list.smf,list.tensor,list.tint,list.rd)) return(list(cl=cl,type=type,n.legendre=n.legendre,t0=t0,t0.name=t0.name,t1=t1,t1.name=t1.name,tm=tm,event=event,event.name=event.name,expected=expected,expected.name=expected.name, n=dim(X)[1],p=dim(X)[2],X.para=X.para,X.smooth=X.smooth,X=X,leg=leg,X.GL=X.GL,S=S,S.scale=S.scale,rank.S=rank.S,S.F=S.F,U.F=U.F, S.smf=S.smf,S.tensor=S.tensor,S.tint=S.tint,S.rd=S.rd,smooth.name.smf=smooth.name.smf,smooth.name.tensor=smooth.name.tensor,smooth.name.tint=smooth.name.tint,smooth.name.rd=smooth.name.rd, S.pen=S.pen,S.list=S.list,S.F.list=S.F.list,lambda=lambda,df.para=df.para,df.smooth=df.smooth,df.tot=df.tot, list.smf=list.smf,list.tensor=list.tensor,list.tint=list.tint,list.rd=list.rd,nb.smooth=nb.smooth,Z.smf=Z.smf,Z.tensor=Z.tensor,Z.tint=Z.tint,beta.ini=beta.ini)) } design.matrix <- function(formula,data.spec,Z.smf,Z.tensor,Z.tint,list.smf,list.tensor,list.tint,list.rd){ formula <- stats::as.formula(formula) Terms <- stats::terms(formula) tmp <- attr(Terms, "term.labels") if(attr(Terms, "intercept")==0){ intercept <- "-1" }else{ intercept <- "" } ind.smf <- grep("^smf\\(", tmp) ind.tensor <- grep("^tensor\\(", tmp) ind.tint <- grep("^tint\\(", tmp) ind.rd <- grep("^rd\\(", tmp) Ad <- tmp[ind.smf] Tens <- tmp[ind.tensor] Tint <- tmp[ind.tint] Rd <- tmp[ind.rd] smooth.smf <- FALSE smooth.tensor <- FALSE smooth.tint <- FALSE smooth.rd <- FALSE length.Ad <- length(Ad) length.Tens <- length(Tens) length.Tint <- length(Tint) length.Rd <- length(Rd) if (length.Ad!=0) smooth.smf <- TRUE if (length.Tens!=0) smooth.tensor <- TRUE if (length.Tint!=0) smooth.tint <- TRUE if (length.Rd!=0) smooth.rd <- TRUE if (smooth.smf | smooth.tensor | smooth.tint | smooth.rd){ Para <- tmp[-c(ind.smf,ind.tensor,ind.tint,ind.rd)] }else{ Para <- tmp } if (length(Para)==0){ formula.para <- stats::as.formula("~1") }else{ formula.para <- stats::as.formula(paste("~",paste(Para,collapse="+"),intercept,sep="")) } X.para <- stats::model.matrix(formula.para,data=data.spec) df.para <- NCOL(X.para) X.smf <- NULL X.tensor <- NULL X.tint <- NULL X.rd <- NULL if (smooth.smf){ X.smf <- vector("list",length.Ad) for (i in 1:length.Ad){ X.smf[[i]] <- smooth.cons.integral(list.smf[[i]]$term,list.smf[[i]]$knots,list.smf[[i]]$df,list.smf[[i]]$by,option="smf",data.spec,Z.smf=Z.smf[[i]],Z.tensor=NULL,Z.tint=NULL,list.smf[[i]]$name) } X.smf <- do.call(cbind, X.smf) } if (smooth.tensor){ X.tensor <- vector("list",length.Tens) for (i in 1:length.Tens){ X.tensor[[i]] <- smooth.cons.integral(list.tensor[[i]]$term,list.tensor[[i]]$knots,list.tensor[[i]]$df,list.tensor[[i]]$by,option="tensor",data.spec,Z.smf=NULL,Z.tensor=Z.tensor[[i]],Z.tint=NULL,list.tensor[[i]]$name) } X.tensor <- do.call(cbind, X.tensor) } if (smooth.tint){ X.tint <- vector("list",length.Tint) for (i in 1:length.Tint){ X.tint[[i]] <- smooth.cons.integral(list.tint[[i]]$term,list.tint[[i]]$knots,list.tint[[i]]$df,list.tint[[i]]$by,option="tint",data.spec,Z.smf=NULL,Z.tensor=NULL,Z.tint=Z.tint[[i]],list.tint[[i]]$name) } X.tint <- do.call(cbind, X.tint) } if (smooth.rd){ X.rd <- vector("list",length.Rd) for (i in 1:length.Rd){ X.rd[[i]] <- smooth.cons.integral(list.rd[[i]]$term,list.rd[[i]]$knots,list.rd[[i]]$df,list.rd[[i]]$by,option="rd",data.spec,Z.smf=NULL,Z.tensor=NULL,Z.tint=NULL,list.rd[[i]]$name) } X.rd <- do.call(cbind, X.rd) } X.smooth <- cbind(X.smf,X.tensor,X.tint,X.rd) X <- cbind(X.para,X.smooth) return(X) } repam <- function(build){ coef.name <- colnames(build$X) X.ini <- build$X S.pen.ini <- build$S.pen build$X <- build$X%mult%build$U.F colnames(build$X) <- coef.name if (!is.null(build$beta.ini)) build$beta.ini <- t(build$U.F)%vec%build$beta.ini build$S.pen <- lapply(1:build$nb.smooth,function(i) build$U.F%cross%build$S.pen[[i]]%mult%build$U.F) build$S.pen <- lapply(1:build$nb.smooth,function(i) 0.5*(t(build$S.pen[[i]])+build$S.pen[[i]])) build$S.list <- lapply(1:build$nb.smooth,function(i) build$lambda[i]*build$S.pen[[i]]) build$S <- Reduce("+",build$S.list) build$X.GL <- lapply(1:build$n.legendre, function(i) build$X.GL[[i]]%mult%build$U.F) return(list(build=build,X.ini=X.ini,S.pen.ini=S.pen.ini)) } inv.repam <- function(model,X.ini,S.pen.ini){ U <- model$U.F T.U <- t(U) coef.name <- colnames(model$X) model$coefficients <- U%vec%model$coefficients model$X <- X.ini model$S.pen <- S.pen.ini model$S.list <- lapply(1:model$nb.smooth,function(i) model$lambda[i]*model$S.pen[[i]]) model$S <- Reduce("+",model$S.list) model$grad.unpen.beta <- U%vec%model$grad.unpen.beta model$grad.beta <- U%vec%model$grad.beta model$Hess.unpen.beta <- U%mult%model$Hess.unpen.beta%mult%T.U model$Hess.unpen.beta <- 0.5*(model$Hess.unpen.beta + t(model$Hess.unpen.beta)) model$Hess.beta <- model$Hess.unpen.beta - model$S model$Ve <- U%mult%model$Ve%mult%T.U model$Ve <- 0.5*(model$Ve + t(model$Ve)) model$Vp <- U%mult%model$Vp%mult%T.U model$Vp <- 0.5*(model$Vp + t(model$Vp)) model$edf <- rowSums(-model$Vp*(model$Hess.beta + model$S)) model$edf1 <- 2*model$edf - rowSums(t(model$Vp%mult%model$Hess.unpen.beta)*(model$Vp%mult%model$Hess.unpen.beta)) rownames(model$Vp) <- colnames(model$Vp) <- rownames(model$Ve) <- colnames(model$Ve) <- rownames(model$Hess.unpen.beta) <- colnames(model$Hess.unpen.beta) <- rownames(model$Hess.beta) <- colnames(model$Hess.beta) <- names(model$edf) <- names(model$edf1) <- colnames(model$X) <- names(model$grad.beta) <- names(model$grad.unpen.beta) <- names(model$coefficients) <- coef.name optim.rho <- !is.null(model$optim.rho) if (optim.rho){ rownames(model$Hess.rho) <- colnames(model$Hess.rho) <- names(model$grad.rho) <- names(model$lambda) model$deriv.rho.inv.Hess.beta <- lapply(1:model$nb.smooth,function(i) U%mult%model$deriv.rho.inv.Hess.beta[[i]]%mult%T.U) model$deriv.rho.beta <- model$deriv.rho.beta%mult%T.U } return(model) } cor.var <- function(model){ model$deriv.R1 <- deriv_R(model$deriv.rho.inv.Hess.beta,model$p,chol(model$Vp)) eigen.cor <- eigen(model$Hess.rho,symmetric=TRUE) U.cor <- eigen.cor$vectors vp.cor <- eigen.cor$values ind <- vp.cor <= 0 vp.cor[ind] <- 0;vp.cor <- 1/sqrt(vp.cor+1/10) rV <- (vp.cor*t(U.cor)) inv.Hess.rho <- crossprod(rV) V.second <- matrix(0,model$p,model$p) for (l in 1:model$nb.smooth){ for (k in 1:model$nb.smooth){ prod.temp <- (model$deriv.R1[[k]]%cross%model$deriv.R1[[l]])*inv.Hess.rho[k,l] V.second <- V.second + prod.temp } } model$V.second <- V.second Vc.approx <- model$Vp + crossprod(rV%mult%model$deriv.rho.beta) Vc <- Vc.approx + V.second coef.name <- colnames(model$X) rownames(Vc.approx) <- colnames(Vc.approx) <- rownames(Vc) <- colnames(Vc) <- coef.name model$Vc.approx <- Vc.approx model$Vc <- Vc model$edf2 <- rowSums(-model$Hess.unpen*model$Vc) if (sum(model$edf2) >= sum(model$edf1)) model$edf2 <- model$edf1 model$aic2 <- -2*model$ll.unpen + 2*sum(model$edf2) model } survPen <- function(formula,data,t1,t0=NULL,event,expected=NULL,lambda=NULL,rho.ini=NULL,max.it.beta=200,max.it.rho=30,beta.ini=NULL,detail.rho=FALSE,detail.beta=FALSE,n.legendre=20,method="LAML",tol.beta=1e-04,tol.rho=1e-04,step.max=5){ cl <- match.call() if (missing(formula) | missing(data) | missing(t1) | missing(event)) stop("Must have at least a formula, data, t1 and event arguments") formula <- stats::as.formula(formula) if (!(method %in% c("LAML","LCV"))) stop("method should be LAML or LCV") data <- as.data.frame(unclass(data),stringsAsFactors=TRUE) factor.term <- names(data)[sapply(data,is.factor)] for (factor.name in names(data)[names(data)%in%factor.term]){ data[,factor.name]<-factor(data[,factor.name]) } factor.structure <- lapply(as.data.frame(data[,names(data)%in%factor.term]),attributes) names(factor.structure) <- factor.term t1.name <- deparse(substitute(t1)) t1 <- eval(substitute(t1), data) t1 <- as.numeric(t1) n <- length(t1) t0.name <- deparse(substitute(t0)) t0 <- eval(substitute(t0), data) event.name <- deparse(substitute(event)) event <- eval(substitute(event), data) expected.name <- deparse(substitute(expected)) expected <- eval(substitute(expected), data) if (is.null(expected)){ type <- "overall" expected <- rep(0,n) }else{ type <- "net" expected <- as.numeric(expected) } if (is.null(t0)){ t0 <- rep(0,n) }else{ t0 <- as.numeric(t0) } if (length(t0) == 1) t0 <- rep(t0,n) if (is.null(event)){ event <- rep(1,n) }else{ event <- as.numeric(event) } if (any(t0>t1)) stop("some t0 values are superior to t1 values") if (length(t0) != n) stop("t0 and t1 are different lengths") if (length(event) != n) stop("event and t1 are different lengths") if (length(expected) != n) stop("expected and t1 are different lengths") build <- model.cons(formula,lambda,data,t1,t1.name,t0,t0.name,event,event.name,expected,expected.name,type,n.legendre,cl,beta.ini) if (is.null(lambda)){ nb.smooth <- build$nb.smooth if(nb.smooth!=0){ if (is.null(rho.ini)) rho.ini <- rep(-1,nb.smooth) if (length(rho.ini)!=nb.smooth){ if (length(rho.ini)==1){ rho.ini <- rep(rho.ini,nb.smooth) }else{ stop("number of initial log smoothing parameters incorrect") } } param <- repam(build) build <- param$build X.ini <- param$X.ini S.pen.ini <- param$S.pen.ini beta.ini <- build$beta.ini model <- NR.rho(build,rho.ini=rho.ini,data=data,formula=formula,max.it.beta=max.it.beta,max.it.rho=max.it.rho,beta.ini=beta.ini, detail.rho=detail.rho,detail.beta=detail.beta,nb.smooth=nb.smooth,tol.beta=tol.beta,tol.rho=tol.rho,step.max=step.max,method=method) model <- inv.repam(model, X.ini, S.pen.ini) if (model$method=="LAML") model <- cor.var(model) model$factor.structure <- factor.structure model$converged <- !(model$Hess.beta.modif | model$Hess.rho.modif) return(model) }else{ build$lambda <- 0 model <- survPen.fit(build,data=data,formula=formula,max.it.beta=max.it.beta,beta.ini=beta.ini,detail.beta=detail.beta,method=method,tol.beta=tol.beta) model$factor.structure <- factor.structure model$converged <- !(model$Hess.beta.modif) return(model) } }else{ param <- repam(build) build <- param$build X.ini <- param$X.ini S.pen.ini <- param$S.pen.ini beta.ini <- build$beta.ini model <- survPen.fit(build,data=data,formula=formula,max.it.beta=max.it.beta,beta.ini=beta.ini,detail.beta=detail.beta,method=method,tol.beta=tol.beta) model <- inv.repam(model, X.ini, S.pen.ini) model$factor.structure <- factor.structure model$converged <- !(model$Hess.beta.modif) return(model) } } survPen.fit <- function(build,data,formula,max.it.beta=200,beta.ini=NULL,detail.beta=FALSE,method="LAML",tol.beta=1e-04) { formula <- stats::as.formula(formula) cl <- build$cl n <- build$n X <- build$X S <- build$S S.smf <- build$S.smf S.tensor <- build$S.tensor S.tint <- build$S.tint S.rd <- build$S.rd smooth.name.smf <- build$smooth.name.smf smooth.name.tensor <- build$smooth.name.tensor smooth.name.tint <- build$smooth.name.tint smooth.name.rd <- build$smooth.name.rd S.scale <- build$S.scale lambda <- build$lambda rank.S <- build$rank.S S.list <- build$S.list S.F <- build$S.F S.F.list <- build$S.F.list U.F <- build$U.F p <- build$p df.para <- build$df.para df.smooth <- build$df.smooth list.smf <- build$list.smf list.tensor <- build$list.tensor list.tint <- build$list.tint list.rd <- build$list.rd nb.smooth <- build$nb.smooth t0 <- build$t0 t1 <- build$t1 tm <- build$tm event <- build$event expected <- build$expected type <- build$type Z.smf <- build$Z.smf Z.tensor <- build$Z.tensor Z.tint <- build$Z.tint leg <- build$leg n.legendre <- build$n.legendre X.GL <- build$X.GL if (is.null(beta.ini)) {beta.ini=c(log(sum(event)/sum(t1)),rep(0,df.para+df.smooth-1))} if (any(sapply(list.smf,`[`,"by")!="NULL") | any(sapply(list.tensor,`[`,"by")!="NULL") | any(sapply(list.tint,`[`,"by")!="NULL") ){ beta.ini=rep(0,df.para+df.smooth) } Algo.optim <- NR.beta(build,beta.ini,detail.beta=detail.beta,max.it.beta=max.it.beta,tol.beta=tol.beta) beta <- Algo.optim$beta names(beta) <- colnames(X) ll.unpen <- Algo.optim$ll.unpen ll.pen <- Algo.optim$ll.pen haz.GL <- Algo.optim$haz.GL iter.beta <- Algo.optim$iter.beta pred1=X%vec%beta ft1=exp(pred1) deriv.list <- lapply(1:n.legendre, function(i) X.GL[[i]]*haz.GL[[i]]*tm*leg$weights[i]) deriv.2.list <- lapply(1:n.legendre, function(i) X.GL[[i]]%cross%(deriv.list[[i]])) f.first <- Reduce("+",deriv.list) if (type=="net"){ grad.unpen.beta <- colSums2(-f.first + X*event*ft1/(ft1+expected)) }else{ grad.unpen.beta <- colSums2(-f.first + X*event) } grad.beta <- grad.unpen.beta-S%vec%beta f.second <- Reduce("+",deriv.2.list) if (type=="net"){ Hess.unpen.beta <- -f.second + X%cross%(X*event*expected*ft1/(ft1+expected)^2) }else{ Hess.unpen.beta <- -f.second } neg.Hess.beta <- -Hess.unpen.beta + S R <- try(chol(neg.Hess.beta),silent=TRUE) Hess.beta.modif <- FALSE if(inherits(R,"try-error")) { Hess.beta.modif <- TRUE eigen.temp <- eigen(neg.Hess.beta,symmetric=TRUE) U.temp <- eigen.temp$vectors vp.temp <- eigen.temp$values vp.temp[which(vp.temp<1e-7)] <- 1e-7 R <- try(chol(U.temp%mult%diag(vp.temp)%mult%t(U.temp)),silent=TRUE) warning("beta Hessian was perturbed at convergence") } neg.Hess.beta <- crossprod(R) Vp <- chol2inv(R) Ve <- -Vp%mult%Hess.unpen.beta%mult%Vp rownames(Ve) <- colnames(Ve) <- rownames(Vp) <- colnames(Vp) <- colnames(X) if(nb.smooth!=0){ edf <- rowSums(-Hess.unpen.beta*Vp) edf1 <- 2*edf - rowSums(t(Vp%mult%Hess.unpen.beta)*(Vp%mult%Hess.unpen.beta)) LCV <- -ll.unpen+sum(edf) if(method=="LCV"){ criterion.val <- LCV } if (sum(lambda)<.Machine$double.eps) { log.abs.S <- 0 M.p <- 0 sub.S <- S[1:rank.S,1:rank.S] }else{ M.p <- p-rank.S sub.S <- S[1:rank.S,1:rank.S] qr.S <- qr(sub.S) log.abs.S <- sum(log(abs(diag(qr.S$qr)))) } log.det.Hess.beta <- as.numeric(2*determinant(R,logarithm=TRUE)$modulus) LAML <- -(ll.pen+0.5*log.abs.S-0.5*log.det.Hess.beta+0.5*M.p*log(2*pi)) if(method=="LAML"){ criterion.val <- LAML } if (sum(lambda)>.Machine$double.eps) { S.beta <- lapply(1:nb.smooth,function(i) S.list[[i]]%vec%beta) deriv.rho.beta <- matrix(0,nrow=nb.smooth,ncol=p) GL.temp <- vector("list",nb.smooth) for (i in 1:nb.smooth){ deriv.rho.beta[i,] <- (-Vp)%vec%S.beta[[i]] GL.temp[[i]] <- lapply(1:n.legendre, function(j) (X.GL[[j]]%vec%deriv.rho.beta[i,])*haz.GL[[j]]) } if (type=="net"){ temp.deriv3 <- (X*ft1*(-ft1+expected)/(ft1+expected)^3) temp.deriv4 <- (X*ft1*(ft1^2-4*expected*ft1+expected^2)/(ft1+expected)^4) }else{ temp.deriv3 <- temp.deriv4 <- matrix(0) } if(method=="LCV"){ mat.temp <- -Vp + Ve temp.LAML <- vector("list", 0) temp.LAML2 <- vector("list", 0) inverse.new.S <- matrix(0) minus.eigen.inv.Hess.beta <- 0 Hess.LCV1 <- matrix(0,nb.smooth,nb.smooth) } if(method=="LAML"){ mat.temp <- matrix(0) eigen.mat.temp <- 0 deriv.mat.temp <- vector("list",0) deriv.rho.Ve <- vector("list",0) inverse.new.S <- try(solve.default(sub.S),silent=TRUE) if(inherits(inverse.new.S,"try-error")){ cat("\n","LU decomposition failed to invert penalty matrix, trying QR","\n", "set detail.rho=TRUE for details","\n") inverse.new.S <- try(qr.solve(qr.S)) } if(inherits(inverse.new.S,"try-error")){ cat("\n","LU and QR decompositions failed to invert penalty matrix, trying Cholesky","\n", "set detail.rho=TRUE for details","\n") inverse.new.S <- chol2inv(chol(sub.S)) } temp.LAML <- lapply(1:nb.smooth,function(i) S.list[[i]][1:rank.S,1:rank.S]) temp.LAML2 <- lapply(1:nb.smooth,function(i) -inverse.new.S%mult%temp.LAML[[i]]%mult%inverse.new.S) } grad.list <- grad_rho(X.GL, GL.temp, haz.GL, deriv.rho.beta, leg$weights, tm, nb.smooth, p, n.legendre, S.list, temp.LAML, Vp, S.beta, beta, inverse.new.S, X, temp.deriv3, event, expected, type, Ve, mat.temp, method) grad.rho <- grad.list$grad_rho if (method == "LCV") grad.rho <- grad.rho + deriv.rho.beta%vec%(-grad.unpen.beta) deriv.rho.inv.Hess.beta <- grad.list$deriv_rho_inv_Hess_beta deriv.rho.Hess.unpen.beta <- grad.list$deriv_rho_Hess_unpen_beta deriv2.rho.beta <- lapply(1:nb.smooth, function(i) matrix(0,nrow=nb.smooth,ncol=p)) for (j in 1:nb.smooth){ for (j2 in 1:nb.smooth){ deriv2.rho.beta[[j2]][j,] <- deriv.rho.inv.Hess.beta[[j2]]%vec%S.beta[[j]] - Vp%vec%(S.list[[j]]%vec%deriv.rho.beta[j2,]) if (j==j2){ deriv2.rho.beta[[j2]][j,] <- deriv2.rho.beta[[j2]][j,] - Vp%mult%S.beta[[j2]] } } } if (method=="LCV"){ for (j2 in 1:nb.smooth){ Hess.LCV1[,j2] <- deriv2.rho.beta[[j2]]%vec%(-grad.unpen.beta)+deriv.rho.beta%vec%(-Hess.unpen.beta%vec%deriv.rho.beta[j2,]) } deriv.rho.Ve <- lapply(1:nb.smooth, function(j2) -( (deriv.rho.inv.Hess.beta[[j2]]%mult%Hess.unpen.beta - Vp%mult%deriv.rho.Hess.unpen.beta[[j2]] )%mult%(-Vp) - Vp%mult%Hess.unpen.beta%mult%deriv.rho.inv.Hess.beta[[j2]]) ) deriv.mat.temp <- lapply(1:nb.smooth, function(j2) deriv.rho.Ve[[j2]]+deriv.rho.inv.Hess.beta[[j2]] ) eigen2 <- eigen(mat.temp,symmetric=TRUE) eigen.mat.temp <- eigen2$values } if(method=="LAML"){ eigen2 <- eigen(Vp,symmetric=TRUE) minus.eigen.inv.Hess.beta <- eigen2$values } Q <- eigen2$vectors X.Q <- X%mult%Q X.GL.Q <- lapply(1:n.legendre, function(i) X.GL[[i]]%mult%Q) Hess.rho <- Hess_rho(X.GL, X.GL.Q, GL.temp, haz.GL, deriv2.rho.beta, deriv.rho.beta, leg$weights, tm, nb.smooth, p, n.legendre, deriv.rho.inv.Hess.beta, deriv.rho.Hess.unpen.beta, S.list, minus.eigen.inv.Hess.beta, temp.LAML, temp.LAML2, Vp, S.beta, beta, inverse.new.S, X, X.Q, temp.deriv3, temp.deriv4, event, expected, type, Ve, deriv.rho.Ve, mat.temp, deriv.mat.temp, eigen.mat.temp, method) if(method=="LCV") Hess.rho <- Hess.rho + Hess.LCV1 }else{ grad.rho <- Hess.rho <- deriv.rho.beta <- deriv.rho.inv.Hess.beta <- NULL } }else{ edf <- edf1 <- p LCV <- LAML <- criterion.val <- grad.rho <- Hess.rho <- deriv.rho.beta <- deriv.rho.inv.Hess.beta <- NULL } optim.rho <- iter.rho <- edf2 <- aic2 <- inv.Hess.rho <- Hess.rho.modif <- Vc.approx <- Vc <- NULL res <- list(call=cl,formula=formula,t0.name=build$t0.name,t1.name=build$t1.name,event.name=build$event.name,expected.name=build$expected.name, haz=ft1,coefficients=beta,type=type,df.para=df.para,df.smooth=df.smooth,p=p,edf=edf,edf1=edf1,edf2=edf2,aic=2*sum(edf)-2*ll.unpen,aic2=aic2,iter.beta=iter.beta,X=X,S=S,S.scale=S.scale, S.list=S.list,S.smf=S.smf,S.tensor=S.tensor,S.tint=S.tint,S.rd=S.rd,smooth.name.smf=smooth.name.smf,smooth.name.tensor=smooth.name.tensor,smooth.name.tint=smooth.name.tint,smooth.name.rd=smooth.name.rd, S.pen=build$S.pen,grad.unpen.beta=grad.unpen.beta,grad.beta=grad.beta,Hess.unpen.beta=Hess.unpen.beta,Hess.beta=-neg.Hess.beta, Hess.beta.modif=Hess.beta.modif,ll.unpen=ll.unpen,ll.pen=ll.pen,deriv.rho.beta=deriv.rho.beta,deriv.rho.inv.Hess.beta=deriv.rho.inv.Hess.beta,lambda=lambda, nb.smooth=nb.smooth,iter.rho=iter.rho,optim.rho=optim.rho,method=method,criterion.val=criterion.val,LCV=LCV,LAML=LAML,grad.rho=grad.rho,Hess.rho=Hess.rho,inv.Hess.rho=inv.Hess.rho, Hess.rho.modif=Hess.rho.modif,Ve=Ve,Vp=Vp,Vc=Vc,Vc.approx=Vc.approx,Z.smf=Z.smf,Z.tensor=Z.tensor,Z.tint=Z.tint, list.smf=list.smf,list.tensor=list.tensor,list.tint=list.tint,list.rd=list.rd,U.F=U.F) class(res) <- "survPen" res } predict.survPen <- function(object,newdata,newdata.ref=NULL,n.legendre=50,conf.int=0.95,do.surv=TRUE,type="standard",exclude.random=FALSE,get.deriv.H=FALSE,...){ if (!inherits(object,"survPen")) stop("object is not of class survPen") factor.structure <- object$factor.structure for (factor.name in names(newdata)[names(newdata)%in%names(factor.structure)]){ newdata[,factor.name] <- factor(newdata[,factor.name], levels=factor.structure[[factor.name]]$levels,ordered=factor.structure[[factor.name]]$class[1]=="ordered") } qt.norm <- stats::qnorm(1-(1-conf.int)/2) t1 <- newdata[,object$t1.name] t0 <- rep(0,length(t1)) tm <- (t1-t0)/2 myMat <- design.matrix(object$formula,data.spec=newdata,Z.smf=object$Z.smf,Z.tensor=object$Z.tensor,Z.tint=object$Z.tint,list.smf=object$list.smf,list.tensor=object$list.tensor,list.tint=object$list.tint,list.rd=object$list.rd) if (type=="lpmatrix") return(myMat) beta <- object$coefficients if (exclude.random){ vec.name <- names(beta) pos.rd <- which(substr(vec.name,1,3)=="rd(") if (length(pos.rd)!=0){ beta[pos.rd] <- 0 } } if (type=="HR"){ myMat.ref <- design.matrix(object$formula,data.spec=newdata.ref,Z.smf=object$Z.smf,Z.tensor=object$Z.tensor,Z.tint=object$Z.tint,list.smf=object$list.smf,list.tensor=object$list.tensor,list.tint=object$list.tint,list.rd=object$list.rd) X <- myMat - myMat.ref log.haz.ratio <- as.vector(X%vec%beta) haz.ratio <- exp(log.haz.ratio) if (!is.null(object$Vp)){ std<-sqrt(rowSums((X%mult%object$Vp)*X)) haz.ratio.inf <- as.vector(exp(log.haz.ratio-qt.norm*std)) haz.ratio.sup <- as.vector(exp(log.haz.ratio+qt.norm*std)) }else{ haz.ratio.inf <- NULL haz.ratio.sup <- NULL } return(list(HR=haz.ratio,HR.inf=haz.ratio.inf,HR.sup=haz.ratio.sup)) } pred.haz <- myMat%vec%beta haz <- exp(pred.haz) if (do.surv){ leg <- statmod::gauss.quad(n=n.legendre,kind="legendre") X.func <- function(t1,data,object){ data.t <- data data.t[,object$t1.name] <- t1 design.matrix(object$formula,data.spec=data.t,Z.smf=object$Z.smf,Z.tensor=object$Z.tensor,Z.tint=object$Z.tint,list.smf=object$list.smf,list.tensor=object$list.tensor,list.tint=object$list.tint,list.rd=object$list.rd) } X.GL <- lapply(1:n.legendre, function(i) X.func(tm*leg$nodes[i]+(t0+t1)/2,newdata,object)) cumul.haz <- lapply(1:n.legendre, function(i) (exp((X.GL[[i]]%vec%beta)))*leg$weights[i]) cumul.haz <- tm*Reduce("+",cumul.haz) surv=exp(-cumul.haz) }else{ surv=NULL } if (!is.null(object$Vp)){ std <- sqrt(rowSums((myMat%mult%object$Vp)*myMat)) haz.inf <- as.vector(exp(pred.haz-qt.norm*std)) haz.sup <- as.vector(exp(pred.haz+qt.norm*std)) if (do.surv){ cumul.haz[cumul.haz==0] <- 1e-16 deriv.cumul.haz <- lapply(1:n.legendre, function(i) X.GL[[i]]*(exp((X.GL[[i]]%vec%beta)))*leg$weights[i]) deriv.cumul.haz <- tm*Reduce("+",deriv.cumul.haz) log.cumul.haz <- log(cumul.haz) deriv.log.cumul.haz <- deriv.cumul.haz/cumul.haz std.log.cumul <- sqrt(rowSums((deriv.log.cumul.haz%mult%object$Vp)*deriv.log.cumul.haz)) surv.inf=exp(-exp(log.cumul.haz+qt.norm*std.log.cumul)) surv.sup=exp(-exp(log.cumul.haz-qt.norm*std.log.cumul)) }else{ surv.inf=NULL surv.sup=NULL deriv.cumul.haz=NULL } }else{ haz.inf=NULL haz.sup=NULL surv.inf=NULL surv.sup=NULL } if (!get.deriv.H) deriv.cumul.haz <- NULL res<-list(haz=haz,haz.inf=haz.inf,haz.sup=haz.sup, surv=surv,surv.inf=surv.inf,surv.sup=surv.sup,deriv.H=deriv.cumul.haz) class(res) <- "predict.survPen" res } summary.survPen <- function(object,...){ if (!inherits(object,"survPen")) stop("object is not of class survPen") if (object$nb.smooth==0){ if(object$type=="net"){ type <- "excess hazard model" }else{ type <- "hazard model" } SE.rho <- NULL TAB.random <- NULL random <- FALSE edf.per.smooth <- NULL }else{ if(object$type=="net"){ type <- "penalized excess hazard model" }else{ type <- "penalized hazard model" } edf.smooth <- object$edf[(object$df.para+1):length(object$edf)] name.edf <- names(edf.smooth) list.name <- sapply(1:length(name.edf),function(i) substr(name.edf[i],1,instr(name.edf[i],"\\.")-1)) list.name <- factor(list.name,levels=unique(list.name)) edf.per.smooth <- tapply(edf.smooth, list.name, sum) if (is.null(object$optim.rho)){ SE.rho <- NULL TAB.random <- NULL random <- FALSE }else{ if (object$nb.smooth==1){ SE.rho <- sqrt(object$inv.Hess.rho) }else{ SE.rho <- sqrt(diag(object$inv.Hess.rho)) } random <- any(substr(names(object$lambda),1,2)=="rd") if (random){ TAB.random <- cbind(Estimate = -0.5*log(object$lambda)-0.5*log(object$S.scale),`Std. Error` = 0.5*SE.rho) colnames(TAB.random) <- c("Estimate","Std. Error") TAB.random <- TAB.random[substr(rownames(TAB.random),1,2)=="rd",,drop=FALSE] }else{ TAB.random <- NULL } } } if (object$p==1){ SE <- sqrt(object$Vp) }else{ SE <- sqrt(diag(object$Vp)) } len <- object$df.para zvalue <- object$coefficients[1:len]/SE[1:len] pvalue <- 2 * stats::pnorm(-abs(zvalue)) TAB <- cbind(Estimate = object$coefficients[1:len], `Std. Error` = SE[1:len], `z value` = zvalue, `Pr(>|z|)` = pvalue) attrs <- attributes(object$lambda) res <- list(type = type, call=object$call, formula=object$formula, coefficients=TAB, edf.per.smooth=edf.per.smooth, random=random, random.effects=TAB.random, likelihood = object$ll.unpen, penalized.likelihood = object$ll.pen, nb.smooth = object$nb.smooth, smoothing.parameter = object$lambda, parameters = object$p, edf = sum(object$edf), method = object$method, criterion.val = object$criterion.val, converged = object$converged) attributes(res$smoothing.parameter) <- attrs res <- c(res) class(res) <- "summary.survPen" res } print.summary.survPen <- function(x, digits = max(3, getOption("digits") - 2), signif.stars = getOption("show.signif.stars"), ...) { cat(paste(noquote(x$type),"\n","\n")) cat("Call:\n") print(x$call) cat("\nParametric coefficients:\n") stats::printCoefmat(x$coefficients, P.value=TRUE, has.Pvalue=TRUE, digits = digits, signif.stars = signif.stars, na.print = "NA", ...) if (x$random){ cat("\nRandom effects (log(sd)):\n") print(x$random.effects) } if (substr(x$type,1,9)=="penalized"){ cat("\n") cat(paste0("log-likelihood = ",signif(x$likelihood,digits),","," penalized log-likelihood = ",signif(x$penalized.likelihood,digits))) cat("\n") cat(paste0("Number of parameters = ",x$parameters,","," effective degrees of freedom = ",signif(x$edf,digits))) cat("\n") cat(paste(x$method,"=",signif(x$criterion.val,digits)),"\n","\n") cat("Smoothing parameter(s):\n") print(signif(x$smoothing.parameter,digits)) cat("\n") cat("edf of smooth terms:\n") print(signif(x$edf.per.smooth,digits)) }else{ cat("\n") cat(paste("likelihood =",signif(x$likelihood,digits))) cat("\n") cat(paste("Number of parameters =",x$parameters)) } cat("\n") cat(paste("converged=",x$converged)) invisible(x) cat("\n") } NR.beta <- function(build,beta.ini,detail.beta,max.it.beta=200,tol.beta=1e-04){ type <- build$type X <- build$X X.GL <- build$X.GL event <- build$event expected <- build$expected leg <- build$leg n.legendre <- build$n.legendre t1 <- build$t1 t0 <- build$t0 tm <- build$tm S <- build$S p <- build$p k=1 ll.pen=100 ll.pen.old=1 if (length(beta.ini)==1) beta.ini <- rep(beta.ini,p) if (length(beta.ini)!=p) stop("message NR.beta: the length of beta.ini does not equal the number of regression parameters") betaold <- beta.ini beta1 <- betaold if (detail.beta){ cat("---------------------------------------------------------------------------------------","\n", "Beginning regression parameter estimation","\n","\n") } while(abs(ll.pen-ll.pen.old)>tol.beta|any(abs((beta1-betaold)/betaold)>tol.beta)) { if(k > max.it.beta) { stop("message NR.beta: Ran out of iterations (", k, "), and did not converge ") } if(k>=2) { ll.pen.old <- ll.pen betaold <- beta1 } predold=X%vec%betaold ftold=exp(predold) haz.GL.old <- lapply(1:n.legendre, function(i) exp(X.GL[[i]]%vec%betaold)) deriv.list <- lapply(1:n.legendre, function(i) X.GL[[i]]*haz.GL.old[[i]]*leg$weights[i]*tm) f.first <- Reduce("+",deriv.list) if (type=="net"){ grad.unpen.beta <- colSums2(-f.first + (event*X*ftold)/(ftold+expected)) }else{ grad.unpen.beta <- colSums2(-f.first + event*X) } grad <- grad.unpen.beta-S%vec%betaold deriv.2.list <- lapply(1:n.legendre, function(i) X.GL[[i]]%cross%(deriv.list[[i]])) f.second <- Reduce("+",deriv.2.list) if (type=="net"){ Hess.unpen <- -f.second + X%cross%(event*X*expected*ftold/(ftold+expected)^2) }else{ Hess.unpen <- -f.second } Hess <- Hess.unpen-S neg.Hess <- -Hess R <- try(chol(neg.Hess),silent=TRUE) if(inherits(R,"try-error")) { u=0.001 cpt.while <- 0 while(inherits(R,"try-error")) { if(cpt.while > 100) { stop("message NR.beta: did not succeed in inverting Hessian at iteration ", k) } R <- try(chol(neg.Hess+u*diag(p)),silent=TRUE) u <- 5*u cpt.while <- cpt.while+1 } if (detail.beta) {cat("beta Hessian perturbation, ", cpt.while, "iterations","\n","\n")} } Vp <- chol2inv(R) integral <- lapply(1:n.legendre, function(i) haz.GL.old[[i]]*leg$weights[i]) integral <- tm*Reduce("+",integral) if (type=="net"){ ll.unpenold <- sum(-integral + event*log(ftold+expected)) }else{ ll.unpenold <- sum(-integral + event*predold) } ll.pen.old <- ll.unpenold-0.5*sum(betaold*(S%vec%betaold)) if (is.nan(ll.pen.old)) stop("message NR.beta: convergence issues, cannot evaluate log-likelihood") pas <- Vp%vec%grad beta1 <- betaold+pas pred1 <- X%vec%beta1 ft1=exp(pred1) haz.GL <- lapply(1:n.legendre, function(i) exp(X.GL[[i]]%vec%beta1)) integral <- lapply(1:n.legendre, function(i) haz.GL[[i]]*leg$weights[i]) integral <- tm*Reduce("+",integral) if (type=="net"){ ll.unpen <- sum(-integral + event*log(ft1+expected)) }else{ ll.unpen <- sum(-integral + event*pred1) } ll.pen <- ll.unpen - 0.5*sum(beta1*(S%vec%beta1)) if (is.nan(ll.pen)) {ll.pen <- ll.pen.old - 1} if (ll.pen < ll.pen.old - 1e-03){ cpt.beta <- 1 while (ll.pen < ll.pen.old - 1e-03){ if(cpt.beta>52) stop("message NR.beta: step has been divided by two 52 times in a row, Log-likelihood could not be optimized") cpt.beta <- cpt.beta + 1 pas <- 0.5*pas beta1 <- betaold+pas pred1 <- X%vec%beta1 ft1=exp(pred1) haz.GL <- lapply(1:n.legendre, function(i) exp(X.GL[[i]]%vec%beta1)) integral <- lapply(1:n.legendre, function(i) haz.GL[[i]]*leg$weights[i]) integral <- tm*Reduce("+",integral) if (type=="net"){ ll.unpen <- sum(-integral + event*log(ft1+expected)) }else{ ll.unpen <- sum(-integral + event*pred1) } ll.pen <- ll.unpen - 0.5*sum(beta1*(S%vec%beta1)) if (is.nan(ll.pen)) {ll.pen <- ll.pen.old - 1} } } if (detail.beta){ cat("iter beta: ",k,"\n", "betaold= ", round(betaold,4),"\n", "beta= ", round(beta1,4),"\n", "abs((beta-betaold)/betaold)= ", round(abs((beta1-betaold)/betaold),5),"\n", "ll.pen.old= ", round(ll.pen.old,4),"\n", "ll.pen= ", round(ll.pen,4),"\n", "ll.pen-ll.pen.old= ", round(ll.pen-ll.pen.old,5),"\n", "\n" ) } k=k+1 } if (detail.beta) { cat("\n", "Beta optimization ok, ", k-1, "iterations","\n", "--------------------------------------------------------------------------------------","\n") } list(beta=beta1,ll.unpen=ll.unpen,ll.pen=ll.pen,haz.GL=haz.GL,iter.beta=k-1) } NR.rho <- function(build,rho.ini,data,formula,max.it.beta=200,max.it.rho=30,beta.ini=NULL,detail.rho=FALSE,detail.beta=FALSE,nb.smooth,tol.beta=1e-04,tol.rho=1e-04,step.max=5,method="LAML"){ df.tot <- build$df.tot iter.beta <- NULL k.rho=1 val=1 val.old=100 rho <- rho.ini rho.old <- rho.ini grad <- rep(1,length(rho)) if (detail.rho){ cat( "_______________________________________________________________________________________","\n","\n", "Beginning smoothing parameter estimation via ",method," optimization","\n", "______________________________________________________________________________________","\n","\n") } while(abs(val-val.old)>tol.rho|any(abs(grad)>tol.rho)) { if(k.rho > max.it.rho) { stop("message NR.rho: Ran out of iterations (", k.rho, "), and did not converge ") } if(k.rho>=2) { val.old <- val rho.old <- rho } if(k.rho==1) { lambda=exp(rho.old) name.lambda <- names(build$lambda) build$lambda <- lambda names(build$lambda) <- name.lambda build$S <- matrix(0,df.tot,df.tot) for (i in 1:nb.smooth){ build$S.list[[i]] <- lambda[i]*build$S.pen[[i]] build$S <- build$S+build$S.list[[i]] } if (detail.rho){ cat( "--------------------","\n", " Initial calculation","\n", "-------------------","\n","\n" ) } model <- survPen.fit(build,data=data,formula=formula,max.it.beta=max.it.beta,beta.ini=beta.ini,detail.beta=detail.beta,method=method,tol.beta=tol.beta) beta1 <- model$coefficients iter.beta <- c(iter.beta,model$iter.beta) } val.old=model$criterion.val grad <- model$grad.rho Hess <- model$Hess.rho R <- try(chol(Hess),silent=TRUE) if(inherits(R,"try-error")) { u=0.001 cpt.while <- 0 while(inherits(R,"try-error")) { if(cpt.while > 100) { stop("message NR.rho : did not succeed in inverting Hessian at iteration ", k.rho) } R <- try(chol(Hess+u*diag(nb.smooth)),silent=TRUE) u <- 5*u cpt.while <- cpt.while+1 } if (detail.rho) {cat(method," Hessian perturbation, ", cpt.while, "iterations","\n","\n")} } inv.Hess <- chol2inv(R) pas <- -inv.Hess%vec%grad norm.pas <- max(abs(pas)) if (norm.pas>step.max){ if (detail.rho) { cat("\n","\n","new step = ", signif(pas,3),"\n") } pas <- (step.max/norm.pas)*pas if (detail.rho) { cat("new step corrected = ", signif(pas,3),"\n","\n") } } rho <- rho.old+pas lambda=exp(rho) name.lambda <- names(build$lambda) build$lambda <- lambda names(build$lambda) <- name.lambda build$S <- matrix(0,df.tot,df.tot) for (i in 1:nb.smooth){ build$S.list[[i]] <- lambda[i]*build$S.pen[[i]] build$S <- build$S+build$S.list[[i]] } if (detail.rho){ cat( "\n","Smoothing parameter selection, iteration ",k.rho,"\n","\n" ) } model <- survPen.fit(build,data=data,formula=formula,max.it.beta=max.it.beta,beta.ini=beta1,detail.beta=detail.beta,method=method,tol.beta=tol.beta) beta1 <- model$coefficients val <- model$criterion.val if (is.nan(val)) {val <- val.old+1} if (val>val.old+1e-03){ cpt.rho <- 1 while (val>val.old+1e-03){ if (detail.rho) { cat("---------------------------------------------------------------------------------------","\n", "val= ", val," et val.old= ", val.old,"\n", method," is not optimized at iteration ", k.rho,"\n", "Step is divided by 10","\n", "--------------------------------------------------------------------------------------","\n","\n") } if(cpt.rho>16) stop("message NR.rho: step has been divided by ten 16 times in a row, ",method," could not be optimized") cpt.rho <- cpt.rho+1 pas <- 0.1*pas rho <- rho.old+pas lambda=exp(rho) name.lambda <- names(build$lambda) build$lambda <- lambda names(build$lambda) <- name.lambda build$S <- matrix(0,df.tot,df.tot) for (i in 1:nb.smooth){ build$S.list[[i]] <- lambda[i]*build$S.pen[[i]] build$S <- build$S+build$S.list[[i]] } model <- survPen.fit(build,data=data,formula=formula,max.it.beta=max.it.beta,beta.ini=beta1,detail.beta=detail.beta,method=method,tol.beta=tol.beta) beta1 <- model$coefficients val <- model$criterion.val if (is.nan(val)) {val <- val.old+1} } } iter.beta <- c(iter.beta,model$iter.beta) beta1 <- model$coefficients val <- model$criterion.val grad <- model$grad.rho Hess <- model$Hess.rho if (detail.rho){ cat("_______________________________________________________________________________________","\n", "\n","iter ",method,": ",k.rho,"\n", "rho.old= ", round(rho.old,4),"\n", "rho= ", round(rho,4),"\n", "val.old= ", round(val.old,4),"\n", "val= ", round(val,4),"\n", "val-val.old= ", round(val-val.old,5),"\n", "gradient= ", signif(grad,2),"\n", "\n" ) cat("_______________________________________________________________________________________","\n","\n","\n","\n") } k.rho=k.rho+1 } if (detail.rho) { cat("Smoothing parameter(s) selection via ",method," ok, ", k.rho-1, "iterations","\n", "______________________________________________________________________________________","\n") } Hess.rho.modif <- FALSE R <- try(chol(Hess),silent=TRUE) if(inherits(R,"try-error")) { Hess.rho.modif <- TRUE eigen.temp <- eigen(Hess,symmetric=TRUE) U.temp <- eigen.temp$vectors vp.temp <- eigen.temp$values vp.temp[which(vp.temp<1e-7)] <- 1e-7 R <- try(chol(U.temp%mult%diag(vp.temp)%mult%t(U.temp)),silent=TRUE) warning("message NR.rho: rho Hessian was perturbed at convergence") } model$inv.Hess.rho <- chol2inv(R) model$Hess.rho <- crossprod(R) model$Hess.rho.modif <- Hess.rho.modif model$iter.rho <- k.rho-1 model$iter.beta <- iter.beta model$optim.rho <- 1 model }
satinPalette <- function(zmin, zmax, col.sep = 0.1, scheme = "default", visu = FALSE) { if (missing(scheme)) scheme <- "default" if (length(scheme) > 1) { cols <- scheme } else { if (scheme != "default") stop ("scheme must be either 'default' or a vector of valid color names") if (scheme == "default") cols <- c("purple", "blue", "darkblue", "cyan", "green", "darkgreen", "yellow", "orange", "red", "darkred") } fpal <- colorRampPalette(colors = cols) breaks <- seq(zmin, zmax, by = col.sep) if ( breaks[length(breaks)] < zmax ) breaks <- c(breaks, zmax) nbcols = length(breaks) - 1 ans <- list(palette = fpal(nbcols), breaks = breaks) if (visu == TRUE){ nb <- length(breaks) xl <- breaks[1:(nb-1)] xr <- breaks[2:nb] xlims <- range(breaks) plot(breaks, rep(0.5, nb), ylim = c(0, 1), bty = "n", xaxt = "n", yaxt = "n", xlab = "", ylab = "", type = "n" ) rect(xl, 0, xr, 1, col = fpal(nbcols), border = "white") axis(1, at = breaks, breaks, line = -0.7) } ans }
sens_factor <- function(data, .name, prefix = "sens_facet_", digits = 2) { ux <- sort(unique(data[[.name]])) new_col <- paste0(prefix,.name) mutate( data, !!new_col := factor( .data[[.name]], ux, paste0(.name, " ", signif(ux,digits)) ) ) } sens_plot <- function(data,...) UseMethod("sens_plot") sens_plot.sens_each <- function(data, dv_name, logy = FALSE, ncol = NULL, lwd = 0.8, digits = 3, plot_ref = TRUE, xlab = "time", ylab = dv_name[1], grid = FALSE, ...) { pars <- unique(data[["p_name"]]) npar <- length(unique(pars)) group <- sym("p_value") x <- sym("time") y <- sym(dv_name) data <- as_tibble(data) data <- select_sens(data, dv_name = dv_name) if(!isTRUE(grid)) { data <- group_by(data, .data[["p_name"]]) data <- mutate(data, .col = match(!!group, unique(!!group))) data <- mutate(data, .col = (.data[[".col"]] - 1)/max(.data[[".col"]]-1)) data <- ungroup(data) p <- ggplot(data=data, aes(!!x,!!y, group=!!group, col = .col)) p <- p + theme_bw() + theme(legend.position = "top") + facet_wrap(~ p_name, scales = "free_y", ncol = ncol) + xlab(xlab) + ylab(ylab) + scale_color_viridis_c( name = NULL, breaks = c(0,0.5,1), labels = c("low", "mid", "hi") ) if(isTRUE(logy)) { p <- p + scale_y_log10() } p <- p + geom_line(lwd = lwd) if(isTRUE(plot_ref)) { p <- p + geom_line( aes(.data[["time"]], .data[["ref_value"]]), lty = 2, lwd = lwd * 1.1, col = "black" ) } return(p) } sp <- split(data,data[["p_name"]]) plots <- lapply(sp, function(chunk) { chunk[["p_value"]] <- signif(chunk[["p_value"]],digits) chunk[["p_value"]] <- factor(chunk[["p_value"]]) p <- ggplot(data=chunk, aes(!!x,!!sym(y),group=!!group,col=!!group)) p <- p + geom_line(lwd=lwd) + theme_bw() + xlab(xlab) + ylab(ylab) + facet_wrap(~ p_name, scales = "free_y", ncol = ncol) + theme(legend.position = "top") + scale_color_discrete(name = "") if(isTRUE(logy)) { p <- p + scale_y_log10() } if(isTRUE(plot_ref)) { p <- p + geom_line( aes(.data[["time"]],.data[["ref_value"]]), col="black", lty = 2, lwd = lwd * 1.1 ) } p }) if(isTRUE(grid)) { plots$ncol <- ncol return(do.call(wrap_plots, plots)) } return(plots) } sens_plot.sens_grid <- function(data, dv_name, digits = 2, ncol = NULL, lwd = 0.8, logy = FALSE, plot_ref = TRUE, ...) { pars <- names(attr(data, "pars")) npar <- length(pars) if(npar > 3) { stop( "found more than 3 parameters in this `sens_grid` object; ", "please construct your own `ggplot` call to plot these data ", "or select 3 or fewer parameters for sensitivity analysis", call. = FALSE ) } data <- select_sens(data, dv_name = dv_name) group <- sym(pars[1]) tcol <- "time" if(exists("TIME", data)) tcol <- "TIME" x <- sym(tcol) y <- sym(dv_name) formula <- NULL data[[as_string(group)]] <- signif(data[[as_string(group)]],3) if(npar==2) { formula <- as.formula(paste0("~sens_facet_",pars[2])) data <- sens_factor(data, pars[2], digits = digits) } if(npar==3) { formula <- as.formula(paste0("sens_facet_", pars[3], "~sens_facet_", pars[2])) data <- sens_factor(data, pars[2], digits = digits) data <- sens_factor(data, pars[3], digits = digits) } p <- ggplot(data = data, aes(!!x, !!y, group=!!group, col=factor(!!group))) p <- p + geom_line(lwd=lwd) + scale_color_discrete(name = pars[1]) p <- p + theme_bw() + theme(legend.position = "top") if(npar==2) p <- p + facet_wrap(formula, ncol = ncol) if(npar==3) p <- p + facet_grid(formula) if(isTRUE(logy)) p <- p + scale_y_log10() if(isTRUE(plot_ref)) { p <- p + geom_line( aes(.data[["time"]],.data[["ref_value"]]), col = "black", lty = 2, lwd = lwd ) } p } sens_plot.sens_each_data <- function(data, ...) { stop( "there is no plotting method for objects of this class. ", "Use 'as_tibble' to coerce to a data frame and then plot with ggplot2." ) }
PosteriorDraw <- function(mdObj, x, n = 1, ...){ UseMethod("PosteriorDraw", mdObj) } PosteriorDraw.nonconjugate <- function(mdObj, x, n = 1, ...) { if (missing(...)) { start_pos <- PenalisedLikelihood(mdObj, x) } else { start_pos <- list(...)$start_pos } mh_result <- MetropolisHastings(mdObj, x, start_pos, no_draws = n) theta <- vector("list", length(mh_result$parameter_samples)) for (i in seq_along(mh_result$parameter_samples)) { theta[[i]] <- array(mh_result$parameter_samples[[i]], dim = c(dim(mh_result$parameter_sample[[i]])[1:2], n)) } return(theta) }
read.prmtop <- function(file) { cl <- match.call() if(missing(file)) { stop("read.pdb: please specify a PDB 'file' for reading") } if(!file.exists(file)) { stop("No input PDB file found: check filename") } prmtop <- .read_prmtop(file) if(!is.null(prmtop$error)) stop(paste("Could not read", file)) else class(prmtop) <- c("amber", "prmtop") prmtop$call <- cl return(prmtop) }
dr.seas <- function(TS, Qdr=0.2, WinSize=30, IntEventDur=10, EventDur=15, Season=c(4:9)) { res <- dr.events(TS, Qdr, WinSize, IntEventDur, EventDur) if (is.na(res$DroughtEvents[1,1])) { output <- data.frame(StartDay=NA, MidDay=NA, EndDay=NA, Duration=NA, Severity=NA) } else { DroughtEvents <- res[[1]] DroughtPDS <- res[[2]] DroughtEvents$StartMonth <- as.numeric(format(DroughtEvents$Start, "%m")) DroughtEvents$StartDay <- as.numeric(format(DroughtEvents$Start, "%j")) DroughtEvents$EndDay <- as.numeric(format(DroughtEvents$End, "%j")) DroughtEvents$MidDay <- NA DroughtEvents.season <- DroughtEvents[DroughtEvents$StartMonth %in% Season,] EventList <- unique(DroughtEvents.season$Event) PDS.season <- DroughtPDS[DroughtPDS$Event %in% EventList,] if (length(EventList) > 0) { for (i in 1:length(EventList)) { MidPoint <- as.numeric(0.5*DroughtEvents.season$Severity[i]) temp <- PDS.season[PDS.season$Event %in% EventList[i],] HaveMid <- FALSE j <- 1 mDef <- 0 while (HaveMid == FALSE) { mDef <- mDef + (temp$Def[j]) if (mDef >= MidPoint) { HaveMid <- TRUE DroughtEvents.season$MidDay[i] <- as.numeric(format(temp$Date[j], "%j")) } j <- j + 1 } } } output <- data.frame(StartDay=DroughtEvents.season$StartDay, MidDay=DroughtEvents.season$MidDay, EndDay=DroughtEvents.season$EndDay, Duration=DroughtEvents.season$Duration, Severity=DroughtEvents.season$Severity) for (k in 1:5) { attr(output[,k], "times") <- DroughtEvents.season$Start } attr(output[,5], "dimnames") <- NULL } return(output) }
nTTP.array <- function(wm, toxmax) { n.tox.grade <- ncol(wm) n.tox.type <- nrow(wm) nTTP <- array(NA, c(rep(n.tox.grade, n.tox.type))) capacity <- n.tox.grade^n.tox.type for(tt in 1 : capacity) { index <- vec2array(tt, dim = c(rep(n.tox.grade, n.tox.type))) nTTP[tt] <- sqrt(sum(wm[t(rbind(1 : n.tox.type, index))]^2)) / toxmax } return(nTTP) }
equ4 <- function(temp,rate, augment=F, return_fit=F){ try_test <- try({ R<-0.001987 fit = minpack.lm::nlsLM(rate ~ a*exp(-b/(R*(temp+273.15)))-c*exp(-d/(R*(temp+273.15))), start = list(a=1.43e10, b=12.3,c=2.13e16,d=21), control = minpack.lm::nls.lm.control(maxiter = 10^20)) output <- broom::tidy(fit) a <- output$estimate[output$term=="a"] b <- output$estimate[output$term=="b"] c <- output$estimate[output$term=="c"] d <- output$estimate[output$term=="d"] f_equ= function(t){a*exp(-b/(R*t))-c*exp(-d/(R*t))} }) output <- temperatureresponse::amend_output(output, fit, f_equ, temp, rate, try_test, augment, return_fit) output$model <- "equ04" print("equ04") return(output) }
context("if_na.vector") suppressWarnings(RNGversion("3.5.0")) a = 1:4 b = a expect_identical(if_na(a, 2), b) a[1] = NA b[1] = 2 expect_identical(if_na(a, 2), b) a[1] = NA val_lab(a) = c(one = 1) b = a b[1] = 2 expect_identical(if_na(a, c(two = 2)), b) expect_identical(if_na(a, 2, label = "Hard to say"), add_val_lab(b, c("Hard to say" = 2))) a2 = a if_na(a2, label = "Hard to say") = 2 expect_identical(a2, add_val_lab(b, c("Hard to say" = 2))) expect_error(if_na(a, 1:4, label = "Error")) a = 1:4 b = a a[1] = NA b[1] = 2 a[3] = NA b[3] = 2 expect_identical(if_na(a, 2), b) expect_identical(a %if_na% 2, b) b[1] = 4 b[3] = 2 expect_identical(if_na(a, 4:1), as.integer(b)) expect_identical(a %if_na% 4:1, as.integer(b)) expect_error(if_na(a, 1:2)) expect_error(if_na(a, t(1:2))) expect_identical(if_na(numeric(0), 1),numeric(0)) context("if_na.data.frame") a = data.frame(a = 1:4, b = 5:8, d = 10:13) val_lab(a$a) = c('aaa' = 1) b = a expect_identical(if_na(a, 2), b) a[1,1] = NA b[1,1] = 2 expect_equal(if_na(a, 2), b) a[4,1] = NA b[4,1] = 2 expect_equal(if_na(a, 2), b) b[1,1] = 4 b[4,1] = 1 expect_equal(if_na(a, c(4:2,1.0)), b) a[1,3] = NA b[1,3] = 4 expect_equal(if_na(a, c(4:2,1.0)), b) b[1,1] = 3 b[4,1] = 3 b[1,3] = 1 context("if_na.matrix") a = as.matrix(data.frame(a = 1:4, b = 5:8, d = 10:13)) b = a expect_identical(if_na(a, 2), b) a[1,1] = NA b[1,1] = 2 expect_identical(if_na(a, 2), b) a[4,1] = NA b[4,1] = 2 expect_identical(if_na(a, 2), b) b[1,1] = 4 b[4,1] = 1 expect_equal(if_na(a, rep(4:1, 3)), b) a[1,3] = NA b[1,3] = 4 expect_equal(if_na(a, rep(4:1, 3)), b) context("if_na list") a = 1:4 b = 4:1 ab = list(a,b) val_lab(ab) = c("a"=1, "b" = 2) expect_identical(if_na(ab, 42), ab) ab[[1]][1] = NA ab[[2]][4] = NA ab_no_na = ab ab_no_na[[1]][1] = 42 ab_no_na[[2]][4] = 42 expect_identical(if_na(ab, 42), ab_no_na) ab_no_na[[1]][1] = 42 ab_no_na[[2]][4] = 42 expect_error(if_na(ab, list(42,43))) context("if_na help") a = c(NA, 2, 3, 4, NA) if_na(a) = 1 expect_identical(a, c(1, 2, 3, 4, 1)) a = c(NA, 2, 3, 4, NA) if_na(a) = 1:5 expect_equal(a, 1:5) set.seed(123) group = sample(1:3, 30, replace = TRUE) param = runif(30) param[sample(30, 10)] = NA df = data.frame(group, param) context("if_na add_val_lab") set.seed(123) x1 = runif(30) x2 = runif(30) x3 = runif(30) x1[sample(30, 10)] = NA x2[sample(30, 10)] = NA x3[sample(30, 10)] = NA df = data.frame(x1, x2, x3) df_test = df if_na(df) = c("h/s" = 99) df_test = within(df_test, { x1[is.na(x1)] = 99 x2[is.na(x2)] = 99 x3[is.na(x3)] = 99 }) expect_identical(df, df_test) context("if_na factor") fac = factor(c("a","b",NA)) expect_identical(if_na(fac, "c"), factor(c("a","b","c"))) expect_identical(if_na(fac, "a"), factor(c("a","b","a"))) context("if_na POSIXct") ct = c(as.POSIXct("2016-09-24"), NA) expect_equal(if_na(ct, "2016-09-25"), as.POSIXct(c("2016-09-24", "2016-09-25"))) ct = c(as.Date("2016-09-24"), NA) expect_equal(if_na(ct, "2016-09-25"), as.Date(c("2016-09-24", "2016-09-25")))
observe({ inFile <- input$file n <- length(inFile$name) names <- inFile$name if (is.null(inFile)) return(NULL) splits <- list() for (i in 1:n) { splits <- base::sub("/tmp/Rtmp[[:alnum:]]{6}/", "", inFile[i, "datapath"]) filenames <- list.files(temp) oldpath <- file.path(temp, splits[i]) base::file.rename(oldpath[i], file.path(temp, "local_tempdir", inFile[i, "name"])) base::unlink(dirname(oldpath[i]), recursive = TRUE) } uploaded_local <- as.data.frame(list.files(file.path(temp, "local_tempdir"))) names(uploaded_local) <- "Available Files" Shared.data$local_files <- uploaded_local }) output$dtfiles <- DT::renderDT({Shared.data$local_files}, selection = 'single', options = list(ordering = F, dom = 'tp')) observe({ Shared.data$selected_row <- as.character(Shared.data$local_files[input$dtfiles_rows_selected,]) }) observeEvent(input$complete_ingest_lcl, { tryCatch({ local_dirname <- auto.name.directory(format_name = input$InputFormatName, site_id = inputsList$siteID) dir.create(file.path(PEcAn_path, local_dirname)) path_to_local_tempdir <- file.path(local_tempdir) list_of_local_files <- list.files(path_to_local_tempdir) n <- length(list_of_local_files) for (i in 1:n){ base::file.copy(file.path(path_to_local_tempdir, list_of_local_files[i]), file.path(PEcAn_path, local_dirname, list_of_local_files[i])) } show("local_path_out") output$LocaldbfilesPath <- renderText({paste0(PEcAn_path, local_dirname)}) }, error = function(e){ toastr_error(title = "Error in Select Local Files", conditionMessage(e)) }, warning = function(e){ toastr_warning(title = "Warning in Select Local Files", conditionMessage(e)) } ) }) observeEvent(input$nextFromLocal, { show("input_record_box") hide("nextFromLocal_div") })
"testRetest" <- function(t1,t2=NULL,keys=NULL,id="id",time= "time",select=NULL,check.keys=TRUE,warnings=TRUE,lmer=TRUE,sort=TRUE) { cl <- match.call() x <- t1 y <- t2 if(NCOL(x) ==1) {just.test <-TRUE } else {just.test <- FALSE} keys.orig <- keys if(is.null(y)) {n.times <- table(x[time]) if(id %in% colnames(x)) { if(sort) x <- psychTools::dfOrder(x,c(time,id),) } y <- x[x[,time] == names(n.times)[2],] x <- x[x[,time] == names(n.times)[1],] } else { if(sort) {x <- psychTools::dfOrder(x,c(time,id),) y <- psychTools::dfOrder(y,c(time,id),) }} if(NROW(x) != NROW(y) ) {warning("The number of subjects in x do not match those in y") not.missing.x <- x[,id] %in% y[,id] not.missing.y <- y[,id] %in% x[,id] missing.idx <- x[!not.missing.x,id] missing.idy <- y[!not.missing.y,id] cat("\nThe non-matched subjects were\n",missing.idx, missing.idy,"\n I have deleted them") x <- x[not.missing.x,] y <- y[not.missing.y,] } n.obs <- NROW(x) if(!just.test) { if(!is.null(select)) {items <- select x <- x[select] y <- y[select] } if(is.null(keys)){ items <- colnames(x) [!colnames(x) %in% c(id,time)]} else {items <- keys } n.items <- length(items) if(is.character(items)) { temp <- rep(1,n.items) temp [strtrim(items,1)=="-"] <- -1 if(any( temp < 0) ) {items <- sub("-","",items) } } else {temp <- sign(items) items <- colnames(x)[abs(items)] } if(any( !(items %in% colnames(x)) )) { cat("\nVariable names in keys are incorrectly specified. Offending items are ", items[which(!(items %in% colnames(x)))],"\n") stop("I am stopping because of improper input in the scoring keys. See the list above for the bad item(s). ")} x <- x[,items,drop=FALSE] y <- y[,items,drop=FALSE] if(NCOL(x) > 1) {mean.x <- colMeans(x,na.rm=TRUE) mean.y <- colMeans(y,na.rm=TRUE) } min.item <- min(x[items],na.rm=TRUE) max.item <- max(x[items],na.rm=TRUE) miny.item <- min(y[items],na.rm=TRUE) maxy.item <- max(y[items],na.rm=TRUE) if(any(temp < 0)) { x[items[temp <0]] <- max.item- x[items[temp < 0]] + min.item y[items[temp <0]] <- maxy.item- y[items[temp < 0]] + miny.item } select <- items if(any(colnames(x[select]) !=colnames(y[select]))) {stop("Variable names must match across tests")} p1 <- pca(x) p2 <- pca(y) keys <- rep(1,n.items) if((any(p1$loadings < 0)) | (any(p2$loadings < 0))) {if (check.keys) {if(warnings) message("Some items were negatively correlated with total scale and were automatically reversed.\n This is indicated by a negative sign for the variable name.") keys[p1$loadings < 0] <- -1 } else { if(is.null(keys) && warnings ) {message("Some items were negatively correlated with the total scale and probably \nshould be reversed. \nTo do this, run the function again with the 'check.keys=TRUE' option") if(warnings) cat("Some items (",rownames(p1$loadings)[(p1$loadings < 0)],") were negatively correlated with the total scale and \nprobably should be reversed. \nTo do this, run the function again with the 'check.keys=TRUE' option") }} } if(any(keys < 0)) { newx <- t(t(x[select]) * keys + (keys < 0)* (max.item + min.item) ) newy <- t(t(y[select]) * keys + (keys < 0)* (maxy.item + miny.item)) } else { newx <- x[select] newy <- y[select] } xscore <- rowMeans(newx,na.rm=TRUE) yscore <- rowMeans(newy,na.rm=TRUE) r12 <- cor(xscore,yscore,use="pairwise") x.alpha <- alpha.1(cov(newx,use="pairwise")) y.alpha <- alpha.1(cov(newy,use="pairwise")) xy.alpha <- rbind(unlist(x.alpha),unlist(y.alpha)) rownames(xy.alpha) <- c("x","y") colnames(xy.alpha) <- c("raw G3","std G3","G6","av.r","S/N","se","lower","upper","var.r") dxy <- dist(newx,newy) rqq <- dxy$rqq rii <- rep(NA,n.items) for (j in (1:n.items)) { if(!(( is.na(sd(x[,items[j]],na.rm=TRUE))) | (is.na(sd(y[,items[j]],na.rm=TRUE))))) { rii[j] <- cor(x[,items[j]],y[,items[j]],use="pairwise")} } n.obs <- min(NROW(newx),NROW(newy)) xy.df <- data.frame(id = rep(1:n.obs,2), time=c(rep(1,n.obs), rep(2,n.obs)), rbind(newx,newy),row.names=1:(2*n.obs)) } else { xy.df <- data.frame(id=rep(1:n.obs,2),time=c(time=c(rep(1,n.obs), rep(2,n.obs))),rbind(x,y)[,1],row.names=1:(2*n.obs)) no.items <- TRUE } if(!just.test) { if(lmer) {ml <- mlr1(xy.df)} else {ml <- list(n.obs=n.obs,n.items=n.items)} if(is.null(keys.orig)) keys.orig <- rep(1,n.items) item.stats <- data.frame(rii=rii,p1=unclass(p1$loadings),p2=unclass(p2$loadings),mean1 = mean.x, mean2=mean.y, keys=keys,keys.orig=keys.orig) colnames(item.stats)[2:3] <- c("PC1", "PC2") key <- rownames(item.stats) key[item.stats$keys < 0] <- paste0("-", key[item.stats$keys < 0]) scores <- data.frame(pca1 = p1$scores,pca2 = p2$scores,t1scores =xscore, t2scores = yscore,rqq=rqq,dxy=dxy$dxy,t1sd=dxy$sdx,t2sd=dxy$sdy) result <- list(r12=r12,alpha=xy.alpha,rqq=rqq,dxy=dxy,item.stats=item.stats, scores=scores,xy.df=xy.df,key=key,ml=ml,Call=cl) } else { if(just.test) {r12 = cor(x,y,use="pairwise") ml <- mlr2(xy.df) result <- list(r12 =r12,ml=ml, Call=cl)} } class(result) <- c("psych", "testRetest") return(result) } alpha.1 <- function(C,R=NULL) { n <- dim(C)[2] alpha.raw <- (1- tr(C)/sum(C))*(n/(n-1)) if(is.null(R)) R <- cov2cor(C) sumR <- sum(R) alpha.std <- (1- n/sumR)*(n/(n-1)) smc.R <- smc(R) G6 <- (1- (n-sum(smc.R))/sumR) av.r <- (sumR-n)/(n*(n-1)) R.adj <- R diag(R.adj) <- NA var.r <- var(as.vector(R.adj),na.rm=TRUE) mod1 <- matrix(av.r,n,n) Res1 <- R - mod1 GF1 = 1- sum(Res1^2)/sum(R^2) Rd <- R - diag(R) diag(Res1) <- 0 GF1.off <- 1 - sum(Res1^2)/sum(Rd^2) sn <- n*av.r/(1-av.r) Q = (2 * n^2/((n - 1)^2 * (sum(C)^3))) * (sum(C) * (tr(C%*%C) + (tr(C))^2) - 2 * (tr(C) * sum(C%*%C))) result <- list(raw=alpha.raw,std=alpha.std,G6=G6,av.r=av.r,sn=sn,Q=Q,GF1,GF1.off,var.r = var.r) return(result) } print.psych.testRetest<- function(x,digits=2,short=FALSE,...) { cat("\nTest Retest reliability ") cat("\nCall: ") print(x$Call) cat('\nNumber of subjects = ',x$ml$n.obs, " Number of items = ", x$ml$n.items) if(x$ml$n.items > 1) { cat("\n Correlation of scale scores over time" , round(x$r12,digits)) cat("\n Alpha reliability statistics for time 1 and time 2 \n") rownames(x$alpha) <- c("Time 1", "Time 2") print( round(x$alpha,digits)) meanrii <- mean(x$item.stats$rii,na.rm=TRUE) meanrqq <- mean(x$rqq,na.rm = TRUE) sdrqq <- sd(x$rqq,na.rm = TRUE) meandqq <- mean(x$dxy$dxy,na.rm=TRUE) cat("\n Mean between person, across item reliability = ",round(meanrii,digits)) cat("\n Mean within person, across item reliability = ",round(meanrqq,digits)) cat( "\nwith standard deviation of " ,round(sdrqq,digits) ,"\n") cat("\n Mean within person, across item d2 = ",round(meandqq,digits)) temp <- x x <- x$ml if(!is.null(x$R1F)) cat("\nR1F = ",round(x$R1F,digits) , "Reliability of average of all items for one time (Random time effects)") if(!is.null(x$RkF)) cat("\nRkF = ",round(x$RkF,digits) , "Reliability of average of all items and both times (Fixed time effects)") if(!is.null(x$R1R)) cat("\nR1R = ",round(x$R1R,digits),"Generalizability of a single time point across all items (Random time effects)") if(!is.null(x$R2R)) cat("\nRkR = ",round(x$RkR,digits),"Generalizability of average time points across all items (Fixed time effects)") if(!is.null(x$Rc)) cat("\nRc = ",round(x$Rc,digits),"Generalizability of change (fixed time points, fixed items) ") if(!is.null(x$RkRn) ) cat("\nRkRn = ",round(x$RkRn,digits),"Generalizability of between person differences averaged over time (time nested within people)") if(!is.null(x$Rcn)) cat("\nRcn = ",round(x$Rcn,digits),"Generalizability of within person variations averaged over items (time nested within people)") x <- temp if(!is.null(x$ml$components)) {cat("\nMultilevel components of variance\n") print(round(x$ml$components,digits))} if(!short) { cat("\n With Item statistics \n") print(round(x$item.stats[-7],digits)) } else {cat("\n To see the item.stats, print with short=FALSE. \nTo see the subject reliabilities and differences, examine the 'scores' object.") } } else { cat("\nTest Retest Reliability of two tests", print(round(x$r12,digits))) cat("\nMultilevel components of variance\n") print(round(x$ml$components,digits)) } } mlr1 <- function(x,na.action= "na.omit" ) { long <- NULL id <- "id" time <- "time" n.obs <- NROW(x)/2 items <- colnames(x) [!colnames(x) %in% c("id","time")] n.items <- length(items) n.time <- 2 long <- data.frame(id = rep(1:n.obs,2), time=rep(1:2,each = n.obs),stack(x[items])) colnames(long)[4] <- "items" mod.lmer <- lme4::lmer(values ~ 1 + (1 | id) + (1 | time) + (1 | items) + (1 | id:time)+ (1 | id:items)+ (1 | items :time), data=long,na.action=na.action) vc <- lme4::VarCorr(mod.lmer) MS_id <- vc$id[1,1] MS_time <- vc$time[1,1] MS_items <- vc$items[1,1] MS_pxt <- vc[["id:time"]][[1]] MS_pxitem <- vc[["id:items"]][[1]] MS_txitem <- vc[["items:time"]][[1]] error <- MS_resid <- (attributes(vc)$sc)^2 s.lmer <- s.aov <- summary(mod.lmer) MS.df <- data.frame(variance= c(MS_id, MS_time ,MS_items, MS_pxt, MS_pxitem, MS_txitem, MS_resid,NA)) rownames(MS.df) <- c("ID","Time","Items","ID x time", "ID x items", "time x items", "Residual","Total") MS.df["Total",] <- sum(MS.df[1:7,1],na.rm=TRUE) MS.df["Percent"] <- MS.df/MS.df["Total",1] lmer.MS <- MS.df R1f <- (MS_id + MS_pxitem/n.items)/((MS_id + MS_pxitem/n.items + error/( n.items))) Rkf <- (MS_id + MS_pxitem/n.items)/((MS_id + MS_pxitem/n.items + error/(n.time * n.items))) R1r <- (MS_id + MS_pxitem/n.items)/((MS_id + MS_pxitem/n.items + MS_time + MS_pxt + error/( n.items))) Rkr <- (MS_id + MS_pxitem/n.items)/((MS_id + MS_pxitem/n.items + MS_time/n.time + MS_pxt/n.time + error/( n.time * n.items))) Rc <- (MS_pxt)/(MS_pxt + error/n.items) result <- list(n.obs = n.obs, n.items=n.items, components = MS.df,R1F= R1f,RkF =Rkf,R1R = R1r,RkR = Rkr,Rc=Rc) return(result) } mlr2 <- function(x,na.action=na.omit) { long <- x n.obs <- NROW(long) /2 n.items <- 1 mod.lmer <- lme4::lmer(values ~ 1 + (1 | id) + (1 | time) , data=long,na.action=na.action) vc <- lme4::VarCorr(mod.lmer) MS_id <- vc$id[1,1] error <- MS_resid <- (attributes(vc)$sc)^2 MS.df <- data.frame(variance= c(MS_id, MS_resid,NA)) rownames(MS.df) <- c("ID","Residual","Total") MS.df["Total",] <- sum(MS.df[1:2,1],na.rm=TRUE) MS.df["Percent"] <- MS.df/MS.df["Total",1] Rxx <- MS_id/MS.df["Total",1] result <- list(n.obs=n.obs,n.items=n.items,components = MS.df) } dist <- function(x,y) { x.level <- rowMeans(x,na.rm=TRUE) y.level <- rowMeans(y,na.rm=TRUE) n.obs <- NROW(x) sdxi <- apply(x,1,function(xx) sd(xx,na.rm=TRUE)) sdyi <- apply(y,1,function(xx) sd(xx,na.rm=TRUE)) dxy <- rowMeans((x - y)^2,na.rm=TRUE) rxy <- rep(NA,n.obs) tx <- t(x) ty <- t(y) for(i in 1:n.obs) { if(!( (is.na(sdxi[i])) | (sdxi[i]==0) | (is.na(sdyi[i]) | sdyi[i]==0) ) ) { rxy[i] <- cor(tx[,i],ty[,i],use="pairwise")} } dist.df <- data.frame(x.level=x.level,y.level=y.level,sdx=sdxi,sdy = sdyi,dxy=dxy,rqq=rxy) return(dist.df) }
library(testthat) library(rpivotTable) test_check("rpivotTable")
`plot.aspect` <- function(x, plot.type = "regplot", plot.var = c(1,2), xlab, ylab, main, type, ...) { var1 <- plot.var[1] if (is.numeric(var1)) var1 <- colnames(x$data)[var1] var2 <- plot.var[2] if (is.numeric(var2)) var2 <- colnames(x$data)[var2] tab <- table(x$data[,var1], x$data[,var2]) n <- dim(tab)[1] m <- dim(tab)[2] if (plot.type == "regplot") { if (missing(xlab)) xlab1 = var1 else xlab1 <- xlab if (missing(ylab)) ylab1 = var2 else ylab1 <- ylab if (missing(main)) main1 <- "Unscaled Solution" else main1 <- main if (missing(main)) main2 <- "Scaled Solution" else main2 <- main if (missing(type)) type <- "b" tau <- sum(tab) pr <- tab/tau r <- rowSums(pr) c <- colSums(pr) xave <- as.vector(as.matrix(pr)%*%1:m)/r yave <- as.vector(1:n%*%as.matrix(pr))/c z <- c(1:n,1:m) dev.new() plot(z, z, type = "n", xlab = paste(xlab1," categories"), ylab = paste(ylab1, " categories"), main = main1, xaxt = "n", yaxt = "n", xlim = c(1,n), ylim = c(1,m),...) axis(1, at = 1:n, labels = rownames(tab)) axis(2, at = 1:m, labels = colnames(tab)) points(1:n, xave, type = type, col = "RED") points(yave, 1:m, type= type, col = "BLUE") abline(v=1:n, h=1:m, col = "lightgray", lty = 2 ) for (i in 1:n) text(rep((1:n)[i],m),1:m,as.character(tab[i,]),cex=.8, col = "lightgray") xa <- as.vector(x$catscores[[plot.var[1]]]) names(xa) <- rownames(x$catscores[[plot.var[1]]]) ya <- as.vector(x$catscores[[plot.var[2]]]) names(ya) <- rownames(x$catscores[[plot.var[2]]]) xave <- as.vector(as.matrix(pr)%*%ya)/r yave <- as.vector(xa%*%as.matrix(pr))/c z <- c(xa,ya) dev.new() plot(z, z, type = "n", xlab = paste(xlab1," scores"), ylab = paste(ylab1," scores"),main = main2, xlim = range(xa), ylim = range(ya),...) points(xa[order(xa)], xave[order(xa)], type = type, col = "RED") points(yave[order(ya)], ya[order(ya)], type = type, col = "BLUE") abline(v = xa, h = ya, col = "lightgray", lty = 2) for (i in 1:n) text(rep(xa[i],m),ya,as.character(tab[i,]),cex=.8, col = "lightgray") axis(3, at = xa[order(xa)], labels = names(xa[order(xa)]), cex.axis = 0.6, col.axis = "lightgray", padj = 1) axis(4, at = ya[order(ya)], labels = names(ya[order(ya)]), cex.axis = 0.6, col.axis = "lightgray", padj = -1) } if (plot.type == "transplot") { if (missing(type)) type <- "b" if (missing(xlab)) xlab <- "categories" if (missing(ylab)) ylab <- "scores" for (i in 1:dim(x$data)[2]) { if (((i-1) %% 4) == 0) { dev.new() par(mfrow = c(2, 2)) } if (missing(main)) main1 <- paste("Transformation Plot", colnames(x$data)[i]) else main1 <- main xa <- x$catscores[[i]] n <- length(xa) plot(1:n, xa, type = type, xlab = xlab, ylab = ylab, main = main1, xaxt = "n", pch = 1, ...) axis(1, at = 1:n, labels = rownames(xa)) abline(v = 1:n, col = "lightgray", lty = 2) } } }
setClass("dvinecopula2", contains = "tscopula", slots = list( name = "character", modelspec = "list", pars = "list" )) dvinecopula2 <- function(family = "gauss", rotation = 0, kpacf = "kpacf_arma", pars = list(ar = 0.1, ma = 0.1), maxlag = Inf, negtau = "none") { if (class(family) != "character") stop("copula family must be specified by name") if (is.null(names(pars))) stop("parameters should be named (p1 and p2 for exp/power)") fam <- tolower(family) if (fam %in% c("gauss", "frank", "t")) negtau <- "none" modelspec <- list(family = fam, rotation = rotation, kpacf = kpacf, maxlag = maxlag, npar = length(unlist(pars)), negtau = negtau) new("dvinecopula2", name = paste("type2-d-vine"), modelspec = modelspec, pars = pars ) } kpacf_arma <- function(k, theta){ if (is.list(theta)) theta <- unlist(theta) ar <- numeric() ma <- numeric() nm <- substring(names(theta), 1, 2) if ("ar" %in% nm) ar <- theta[nm == "ar"] if ("ma" %in% nm) ma <- theta[nm == "ma"] if ((non_stat(ar)) | (non_invert(ma))) return(rep(NA, k)) pacf <- ARMAacf(ar = ar, ma = ma, lag.max = k, pacf = TRUE) (2/pi)*asin(pacf) } acf2pacf <- function(rho){ FitAR::PacfDL(c(1,rho))$Pacf } pacf2acf <- function(alpha){ arcoef <- FitAR::PacfToAR(alpha) rho <- stats::ARMAacf(ar = arcoef, lag.max = length(alpha)) as.numeric(rho[-1]) } kpacf_arfima <- function(k, theta){ if (is.list(theta)) theta <- unlist(theta) ar <- numeric() ma <- numeric() nm <- substring(names(theta), 1, 2) if ("ar" %in% nm) ar <- theta[nm == "ar"] if ("ma" %in% nm) ma <- theta[nm == "ma"] if ("d" %in% nm) d <- theta[nm == "d"] if ((non_stat(ar)) | (non_invert(ma)) | (d <= -0.5) | (d >= 0.5)) return(rep(NA, k)) acvf <- arfima::tacvfARFIMA(phi = ar, theta = -ma, dfrac = d, maxlag = k) acf <- acvf[-1]/acvf[1] pacf <- acf2pacf(acf) (2/pi)*asin(pacf) } kpacf_fbn <- function(k, theta){ if (is.list(theta)) theta <- unlist(theta) if ((theta <= 0) | (theta >= 1)) return(rep(NA, k)) acf <- (((1:k) + 1)^{2 * theta[1]} + abs((1:k) - 1)^{2 * theta[1]} - 2 * (1:k)^{2 * theta[1]})/2 pacf <- acf2pacf(acf) return((2/pi)*asin(pacf)) } setMethod("coef", c(object = "dvinecopula2"), function(object) { if (length(object@pars) == 1) { return(object@pars[[1]]) } else { return(unlist(object@pars)) } }) setMethod("show", c(object = "dvinecopula2"), function(object) { cat("object class: ", is(object)[[1]], "\n", sep = "") cat("name: ", object@name, "\n", sep = "") famname <- object@modelspec$family if (object@modelspec$rotation !=0) famname <- paste(famname, "with rotation", object@modelspec$rotation) cat("copula family: ", famname, "\n", sep = "") if (object@modelspec$negtau != "none") cat("negative tau treatment: ", object@modelspec$negtau, "\n", sep = "") kpacf <- object@modelspec$kpacf if (object@modelspec$maxlag != Inf) kpacf <- paste(kpacf, "with max lag", object@modelspec$maxlag) cat("KPACF: ", kpacf,"\n", sep = "") cat("parameters: \n") print(coef(object)) }) dvinecopula2_objective <- function(theta, modelspec, u) { n <- length(u) kpacf <- eval(parse(text = modelspec$kpacf)) tauvals <- kpacf((n-1), theta) if (is.na(sum(tauvals))) return(NA) k <- 1 largetau <- (abs(tauvals) > .Machine$double.eps) if (sum(largetau) > 0) k <- max((1:(n-1))[largetau]) k <- min(k, modelspec$maxlag) pc_list <- vector("list", k) for (i in 1:k) { fam <- tolower(modelspec$family) rot <- modelspec$rotation if (tauvals[i] < 0){ if (modelspec$negtau == "right") rot <- rot + 90 if (modelspec$negtau == "left") rot <- (rot + 270) %% 360 if (modelspec$negtau %in% c("gauss","frank")){ fam <- modelspec$negtau rot <- 0 } if ((modelspec$negtau == "none") & (fam %in% c("gumbel", "joe", "clayton"))) return(NA) } coppars <- ktau_to_par( family = fam, tau = tauvals[i] ) if (is.na(coppars)) return(NA) if (fam == "t") coppars <- c(coppars, theta["nu"]) pc_list[[i]] <- tryCatch(rvinecopulib::bicop_dist( family = fam, rotation = rot, parameters = coppars ), error = function(e) { return(NA) } ) if (is.na(pc_list[[i]][[1]])) { return(NA) } } v <- cbind(u[1:(n - 1)], u[2:n]) LL <- 0 for (j in 1:k) { LL <- LL + sum(log(rvinecopulib::dbicop(u = v, family = pc_list[[j]]))) if (j == k) { return(-LL) } n <- dim(v)[1] v <- cbind( rvinecopulib::hbicop(v[(1:(n - 1)), ], cond_var = 2, family = pc_list[[j]]), rvinecopulib::hbicop(v[(2:n), ], cond_var = 1, family = pc_list[[j]]) ) } } ktau_to_par <- function(family, tau){ if (family == "t") family <- "gauss" rvinecopulib::ktau_to_par(family, tau) } setMethod("sim", c(object = "dvinecopula2"), function(object, n = 1000) { pc_list <- mklist_dvine2(object, n-1, truncate = TRUE, tol = 1/3) simdvine(pc_list, n, innov = NA, start = NA) }) mklist_dvine2 <- function(x, maxlag, truncate, tol = 1){ k <- min(maxlag, x@modelspec$maxlag) kpacf <- eval(parse(text = x@modelspec$kpacf)) tauvals <- kpacf(k, x@pars) if (truncate) k <- max(c(1, which(abs(tauvals) > .Machine$double.eps^tol))) pc_list <- vector("list", k) for (i in 1:k) { fam <- tolower(x@modelspec$family) rot <- x@modelspec$rotation if (tauvals[i] < 0){ if (x@modelspec$negtau == "right") rot <- rot + 90 if (x@modelspec$negtau == "left") rot <- (rot + 270) %% 360 if (x@modelspec$negtau %in% c("gauss","frank")){ fam <- x@modelspec$negtau rot <- 0 } } coppars <- ktau_to_par( family = fam, tau = tauvals[i] ) if (fam == "t") coppars <- c(coppars, x@pars$nu) pc_list[[i]] <- rvinecopulib::bicop_dist( family = fam, rotation = rot, parameters = coppars) } pc_list } resid_dvinecopula2 <- function(object, data = NA, trace = FALSE){ n <- length(data) pc_list <- mklist_dvine2(object, n-1, truncate = TRUE, tol = 1/3) k <- length(pc_list) if (trace) target <- rep(0.5, n) else target <- data res <- rep(NA, n) res[1] <- target[1] if (k >1){ for (i in 2:k){ pcs <- lapply(1:(i-1), function(j) { replicate(i - j, pc_list[[j]], simplify = FALSE) }) vc_short <- rvinecopulib::vinecop_dist(pcs, rvinecopulib::dvine_structure(i:1)) vals <- c(data[1:(i-1)], target[i]) res[i] <- rvinecopulib::rosenblatt(t(vals), vc_short)[i] } } pcs <- lapply(1:k, function(j) { replicate(k + 1 - j, pc_list[[j]], simplify = FALSE) }) vc_short <- rvinecopulib::vinecop_dist(pcs, rvinecopulib::dvine_structure((k + 1):1)) for (i in ((k+1):n)){ vals <- c(data[(i-k):(i-1)], target[i]) res[i] <- rvinecopulib::rosenblatt(t(vals), vc_short)[k+1] } qnorm(res) } setMethod("kendall", c(object = "dvinecopula2"), function(object, lagmax = 20) { kpacf <- eval(parse(text = object@modelspec$kpacf)) kpacf(lagmax, object@pars) } ) glag_for_dvinecopula2 <- function(copula, data, lagmax, glagplot = FALSE) { if (glagplot) lagmax <- min(lagmax, 9) pc_list <- mklist_dvine2(copula, lagmax, truncate = FALSE) k <- length(pc_list) n <- length(data) data <- cbind(as.numeric(data[1:(n - 1)]), as.numeric(data[2:n])) if (glagplot){ output <- vector(mode = "list", length = k) output[[1]] <- data } else{ output <- rep(NA, k) output[1] <- cor(data, method = "kendall")[1, 2] } if (k >1){ for (i in 1:(k - 1)) { n <- dim(data)[1] data <- cbind(rvinecopulib::hbicop(data[(1:(n - 1)), ], pc_list[[i]], cond_var = 2), rvinecopulib::hbicop(data[(2:n), ], pc_list[[i]], cond_var = 1)) if (glagplot) output[[i+1]] <- data else output[i+1] <- cor(data, method = "kendall")[1, 2] } } output }
"wffc" <- structure(list(length = c(180, 182, 185, 189, 193, 195, 195, 197, 198, 209, 210, 215, 215, 218, 218, 219, 228, 228, 241, 303, 182, 182, 195, 206, 212, 214, 217, 224, 224, 229, 231, 234, 252, 255, 292, 294, 294, 335, 355, 393, 200, 205, 210, 238, 182, 182, 186, 201, 205, 208, 209, 216, 218, 221, 222, 223, 224, 225, 226, 228, 228, 229, 230, 233, 257, 260, 271, 274, 274, 316, 316, 320, 324, 325, 337, 350, 181, 188, 190, 194, 198, 200, 212, 212, 229, 231, 238, 240, 252, 180, 203, 205, 240, 260, 180, 180, 181, 181, 182, 190, 191, 191, 192, 194, 195, 196, 197, 200, 203, 212, 213, 215, 225, 248, 250, 251, 305, 181, 183, 183, 185, 193, 195, 195, 205, 206, 210, 210, 221, 226, 231, 248, 251, 251, 257, 267, 277, 280, 283, 285, 300, 320, 333, 340, 376, 223, 225, 230, 237, 249, 253, 264, 275, 310, 181, 181, 182, 184, 184, 185, 185, 186, 186, 188, 195, 195, 212, 214, 215, 235, 281, 312, 190, 201, 204, 210, 210, 222, 245, 251, 283, 180, 180, 180, 180, 180, 185, 190, 195, 195, 195, 200, 205, 210, 210, 215, 215, 220, 220, 220, 230, 230, 255, 280, 280, 180, 180, 181, 182, 183, 185, 189, 195, 199, 203, 205, 210, 211, 214, 215, 215, 220, 221, 223, 226, 229, 238, 220, 306, 309, 348, 180, 180, 210, 210, 220, 304, 353, 180, 183, 183, 185, 185, 187, 187, 201, 202, 230, 296, 194, 208, 213, 213, 219, 221, 222, 225, 228, 230, 232, 258, 273, 292, 305, 306, 180, 185, 187, 187, 189, 191, 192, 201, 203, 206, 219, 232, 252, 258, 271, 316, 180, 188, 190, 192, 195, 210, 223, 226, 226, 231, 247, 284, 319, 194, 197, 215, 217, 223, 264, 275, 333, 334, 182, 186, 197, 205, 207, 207, 210, 261, 271, 180, 183, 192, 194, 205, 206, 215, 218, 225, 225, 230, 247, 338, 180, 180, 180, 180, 185, 190, 190, 190, 195, 205, 210, 215, 215, 220, 220, 220, 220, 220, 225, 254, 260, 280, 290, 295, 295, 300, 300, 330, 187, 190, 192, 194, 218, 225, 269, 270, 271, 314, 183, 183, 185, 190, 190, 195, 204, 205, 205, 205, 205, 213, 215, 215, 220, 235, 237, 301, 325, 185, 204, 207, 212, 221, 181, 190, 191, 192, 192, 204, 215, 220, 227, 240, 240, 245, 246, 285, 302, 302, 310, 330, 390, 190, 268, 181, 181, 182, 183, 185, 201, 219, 221, 222, 236, 244, 295, 315, 329, 420, 180, 181, 182, 185, 200, 200, 210, 215, 217, 220, 220, 225, 235, 245, 260, 270, 375, 375, 380, 445, 180, 181, 185, 190, 195, 201, 208, 208, 212, 215, 215, 220, 229, 231, 255, 300, 325, 189, 191, 211, 222, 226, 313, 322, 181, 182, 183, 185, 185, 185, 190, 193, 196, 198, 200, 200, 200, 205, 205, 210, 210, 211, 215, 220, 229, 182, 182, 190, 190, 190, 192, 217, 218, 220, 224, 242, 264, 270, 290, 440, 181, 185, 196, 214, 210, 222, 240, 255, 300, 310, 415, 180, 184, 194, 195, 204, 215, 231, 263, 378, 185, 190, 205, 213, 215, 248, 255, 195, 195, 226, 250, 183, 188, 190, 196, 214, 280, 340, 352, 180, 183, 190, 194, 202, 205, 212, 213, 218, 220, 197, 198, 180, 180, 180, 190, 200, 210, 210, 250, 260, 182, 182, 186, 186, 186, 190, 192, 195, 196, 202, 205, 207, 211, 214, 215, 218, 220, 223, 234, 235, 235, 235, 236, 237, 241, 241, 243, 246, 247, 248, 251, 252, 253, 262, 277, 180, 185, 185, 185, 190, 190, 200, 205, 214, 215, 215, 235, 240, 260, 264, 266, 270, 287, 186, 186, 186, 186, 188, 188, 189, 189, 192, 193, 193, 194, 198, 200, 200, 207, 210, 213, 222, 224, 241, 246, 256, 260, 265, 266, 272, 276, 382, 195, 222, 252, 280, 181, 182, 183, 185, 185, 188, 190, 193, 194, 201, 204, 210, 229, 232, 234, 238, 254, 299, 301, 181, 191, 194, 196, 212, 229, 242, 245, 250, 255, 261, 261, 266, 293, 297, 303, 180, 181, 181, 182, 184, 185, 191, 191, 193, 201, 205, 207, 210, 213, 215, 221, 221, 225, 236, 261, 276, 290, 356, 180, 182, 190, 191, 192, 203, 207, 213, 214, 215, 220, 223, 233, 240, 241, 247, 255, 260, 263, 264, 265, 285, 333, 181, 181, 208, 221, 238, 264, 268, 275, 275, 301, 353, 180, 185, 185, 195, 195, 195, 195, 199, 200, 200, 200, 201, 205, 210, 210, 223, 223, 235, 240, 252, 262, 265, 285, 290, 295, 330, 410, 181, 181, 183, 184, 185, 185, 185, 207, 221, 223, 231, 234, 234, 266, 273, 277, 282, 392, 180, 187, 190, 195, 195, 195, 197, 200, 213, 215, 220, 222, 249, 257, 258, 268, 270, 282, 310, 181, 181, 182, 184, 185, 193, 194, 195, 198, 200, 204, 206, 208, 211, 219, 231, 234, 239, 239, 240, 246, 257, 258, 260, 265, 270, 280, 302, 327, 345, 455, 195, 239, 251, 262, 298, 307, 181, 192, 198, 198, 200, 201, 201, 203, 205, 207, 222, 225, 228, 228, 239, 242, 254, 255, 256, 256, 282, 283, 290, 185, 195, 202, 202, 245, 255, 265, 290, 295, 335, 393, 182, 200, 220, 227, 245, 250, 295, 185, 195, 200, 201, 201, 210, 229, 259, 267, 270, 273, 275, 283, 180, 180, 202, 217, 225, 251, 277, 201, 217, 257, 258, 276, 279, 321, 324, 329, 352, 180, 181, 183, 196, 198, 212, 228, 235, 235, 186, 190, 252, 180, 180, 181, 186, 188, 188, 188, 190, 190, 192, 195, 196, 200, 205, 207, 216, 218, 218, 225, 227, 230, 244, 246, 251, 255, 262, 291, 315, 180, 185, 185, 190, 195, 195, 195, 195, 195, 200, 200, 220, 231, 240, 244, 247, 257, 264, 337, 181, 181, 183, 184, 190, 194, 195, 195, 207, 212, 215, 231, 233, 237, 238, 245, 251, 251, 252, 262, 272, 280, 285, 292, 294, 295, 191, 201, 221, 233, 235, 242, 246, 248, 282, 284, 424, 494, 185, 195, 227, 235, 248, 257, 320, 185, 200, 203, 215, 235, 248, 250, 180, 180, 185, 185, 192, 194, 201, 210, 213, 221, 292, 180, 180, 182, 189, 180, 182, 186, 194, 195, 195, 198, 200, 201, 205, 217, 225, 181, 191, 206, 210, 249, 324, 190, 192, 348, 180, 180, 182, 192, 195, 195, 195, 202, 212, 220, 240, 246, 247, 250, 265, 265, 265, 270, 270, 272, 273, 313, 180, 189, 191, 192, 196, 208, 211, 227, 228, 229, 230, 230, 233, 241, 245, 252, 254, 256, 258, 262, 267, 276, 295, 362, 229, 246, 196, 212, 225, 228, 230, 235, 251, 260, 261, 270, 289, 310, 345, 180, 184, 185, 188, 195, 200, 210, 211, 235, 242, 245, 245, 246, 250, 264, 268, 180, 182, 183, 202, 215, 190, 200, 210, 330, 325, 356, 185, 245, 256, 262, 291, 342, 181, 182, 188, 191, 191, 193, 235, 248, 250, 251, 265, 275, 328, 180, 187, 187, 195, 195, 200, 205, 235, 250, 275, 286, 379, 192, 185, 188, 195, 221, 226, 236, 181, 183, 186, 187, 192, 194, 197, 203, 204, 205, 207, 209, 210, 257, 274, 300, 181, 182, 185, 202, 211, 195, 180, 180, 184, 187, 187, 189, 192, 193, 194, 196, 196, 197, 197, 198, 200, 204, 205, 207, 207, 208, 213, 220, 223, 225, 228, 230, 233, 234, 236, 237, 238, 242, 258, 265, 291, 292, 293, 180, 200, 205, 205, 210, 210, 210, 214, 220, 220, 225, 250, 270, 290, 300, 180, 181, 181, 185, 189, 190, 191, 192, 201, 210, 212, 218, 224, 226, 231, 262, 185, 185, 190, 196, 200, 205, 205, 210, 218, 226, 226, 230, 230, 230, 230, 240, 240, 240, 243, 245, 248, 250, 250, 250, 250, 255, 255, 260, 265, 270, 300, 300, 320, 320, 180, 180, 183, 185, 196, 198, 198, 201, 201, 203, 205, 206, 208, 208, 210, 214, 215, 215, 216, 221, 222, 234, 238, 238, 253, 253, 259, 261, 276, 180, 180, 180, 180, 181, 185, 185, 190, 198, 200, 210, 210, 212, 215, 218, 220, 220, 222, 228, 230, 230, 232, 239, 239, 240, 290, 290, 295, 185, 190, 195, 195, 212, 216, 218, 218, 222, 233, 235, 240, 242, 245, 246, 250, 251, 255, 255, 257, 280, 295, 328, 359, 180, 195, 210, 220, 220, 223, 230, 230, 240, 242, 249, 258, 263, 267, 287, 337, 181, 190, 195, 195, 198, 210, 212, 214, 220, 222, 223, 224, 244, 250, 275, 283, 284, 319, 438, 180, 180, 182, 185, 189, 192, 192, 194, 198, 202, 208, 210, 215, 215, 225, 228, 232, 238, 243, 256, 262, 273, 180, 180, 180, 180, 180, 185, 185, 185, 186, 190, 190, 192, 193, 194, 195, 198, 201, 208, 210, 210, 215, 216, 216, 235, 235, 240, 245, 245, 290, 180, 181, 182, 183, 196, 200, 208, 210, 210, 237, 243, 264, 180, 180, 187, 188, 202, 207, 210, 222, 225, 244, 185, 192, 193, 201, 205, 225, 245, 255, 255, 258, 180, 180, 180, 180, 180, 182, 183, 183, 186, 189, 197, 200, 200, 205, 210, 216, 219, 220, 222, 225, 226, 226, 236, 257, 258, 258, 280, 290, 190, 246, 185, 197, 198, 208, 228, 243, 243, 297, 298, 300, 315, 340, 345, 345, 183, 189, 305, 396, 180, 180, 182, 182, 185, 186, 188, 188, 192, 192, 193, 197, 201, 213, 221, 222, 224, 224, 225, 226, 231, 232, 237, 247, 262, 265, 315, 180, 180, 180, 180, 180, 181, 190, 190, 192, 192, 195, 200, 200, 210, 210, 210, 210, 212, 215, 220, 220, 230, 230, 231, 240, 320, 180, 183, 183, 188, 193, 200, 200, 204, 204, 206, 208, 209, 211, 213, 215, 218, 223, 224, 225, 227, 260, 180, 180, 180, 182, 187, 190, 192, 195, 197, 200, 205, 206, 209, 211, 211, 214, 225, 230, 230, 232, 233, 233, 233, 237, 247, 247, 252, 290, 180, 196, 211, 221, 222, 226, 365, 190, 192, 195, 200, 200, 204, 210, 212, 219, 220, 222, 225, 227, 227, 227, 228, 229, 232, 235, 239, 240, 244, 245, 252, 254, 257, 258, 270, 281, 281, 290, 190, 212, 240, 243, 252, 282, 358, 185, 194, 200, 210, 221, 223, 228, 230, 232, 250, 255, 257, 258, 262, 299, 314, 180, 193, 198, 198, 199, 205, 208, 224, 232, 232, 234, 237, 241, 245, 282, 292, 295, 356, 370, 180, 186, 191, 196, 196, 213, 216, 225, 240, 183, 188, 192, 213, 223, 252, 185, 190, 195, 198, 200, 203, 205, 212, 225, 264, 182, 183, 189, 192, 195, 197, 219, 224, 226, 242, 244, 244, 249, 270, 272, 274, 285, 308, 208, 222, 235, 281, 180, 180, 180, 180, 181, 183, 202, 210, 220, 224, 229, 229, 239, 248, 265, 286, 292, 245, 265, 180, 180, 193, 204, 207, 230, 260, 262, 274, 401, 180, 190, 201, 210, 218, 220, 221, 225, 225, 233, 243, 244, 253, 254, 345, 194, 195, 196, 214, 215, 226, 241, 248, 256, 304, 218, 195, 180, 180, 180, 183, 184, 185, 185, 188, 193, 199, 218, 221, 246, 260, 262, 290, 290, 305, 331, 332, 345, 180, 185, 191, 196, 200, 222, 224, 242, 242, 261, 515, 180, 181, 232, 232, 251, 252, 265, 185, 194, 202, 210, 235, 241, 243, 244, 250, 283, 285, 287, 395, 191, 213, 214, 214, 214, 258, 262, 287, 301, 425, 214, 218, 190, 195, 198, 210, 214, 216, 223, 224, 230, 236, 240, 284, 298, 300, 180, 188, 192, 195, 198, 202, 204, 218, 218, 227, 230, 235, 245, 254, 256, 263, 266, 275, 285, 301, 302, 392, 180, 180, 180, 190, 199, 204, 205, 210, 212, 214, 214, 217, 218, 220, 224, 225, 230, 230, 230, 239, 240, 241, 248, 250, 252, 265, 275, 279, 290, 293, 310, 315, 180, 208, 210, 245, 180, 195, 199, 210, 210, 215, 217, 220, 250, 265, 275, 275, 180, 185, 210, 215, 261, 207, 210, 226, 227, 236, 237, 245, 246, 263, 269, 294, 308, 329, 182, 184, 189, 190, 192, 194, 195, 215, 216, 220, 220, 225, 231, 232, 238, 246, 248, 259, 277, 279, 307, 323, 180, 183, 191, 196, 197, 198, 202, 202, 204, 206, 211, 226, 243, 256, 258, 260, 265, 265, 281, 282, 294, 295, 180, 270, 274, 280, 330, 330, 350, 180, 180, 180, 180, 181, 190, 190, 195, 200, 202, 203, 203, 206, 207, 208, 216, 218, 219, 220, 220, 230, 234, 235, 236, 258, 262, 263, 272, 274, 280, 280, 281, 294, 308, 323, 329, 333, 180, 182, 184, 190, 215, 215, 215, 227, 231, 235, 240, 242, 250, 260, 280, 288, 345, 180, 180, 182, 184, 195, 195, 198, 207, 212, 220, 220, 230, 246, 247, 248, 248, 250, 255, 255, 262, 273, 281, 284, 290, 290, 300, 327, 345, 181, 205, 206, 210, 219, 230, 260, 265, 290, 300, 300, 180, 205, 207, 227, 227, 240, 250, 279, 310, 180, 197, 198, 235, 240, 260, 285, 182, 182, 187, 192, 195, 200, 215, 216, 220, 228, 248, 254, 263, 270, 300, 301, 303, 303, 320, 394, 181, 182, 190, 194, 195, 220, 238, 240, 265, 280, 332, 180, 185, 185, 190, 194, 201, 215, 218, 231, 286, 180, 185, 190, 190, 195, 200, 220, 230, 240, 265, 280, 300, 302, 340, 181, 181, 187, 188, 197, 197, 198, 203, 205, 212, 222, 222, 230, 236, 237, 238, 263, 266, 183, 249, 252, 264, 302, 180, 180, 181, 182, 183, 192, 192, 199, 201, 202, 202, 203, 211, 212, 213, 214, 215, 221, 222, 224, 227, 230, 234, 259, 264, 277, 280, 281, 294, 315, 195, 230, 230, 240, 255, 265, 298, 180, 180, 187, 189, 189, 206, 228, 242, 245, 255, 281, 282, 285, 297, 304, 180, 180, 185, 190, 200, 240, 320, 186, 200, 210, 260, 302, 180, 195, 247, 251, 254, 263, 278, 296, 310, 318, 426, 180, 180, 182, 193, 201, 204, 247, 301, 317, 182, 270, 273, 285, 182, 200, 208, 212, 213, 216, 229, 231, 243, 260, 345, 183, 207, 215, 337, 180, 212, 180, 220, 265, 290, 199, 185, 263, 180, 180, 182, 183, 185, 185, 190, 190, 211, 214, 232, 232, 234, 247, 249, 251, 263, 309, 186, 196, 201, 241, 256, 290, 294, 331, 185, 180, 182, 203, 203, 208, 211, 223, 223, 226, 233, 234, 244, 254, 190, 190, 210, 210, 226, 232, 430, 182, 185, 274, 180, 180, 195, 220, 230, 250, 265, 300, 300, 320, 325, 350, 245, 254, 300, 303, 342, 560, 182, 185, 192, 195, 199, 205, 217, 223, 224, 227, 230, 240, 245, 246, 258, 265, 273, 285, 295, 305, 312, 330, 336, 343, 193, 198, 200, 225, 228, 238, 244, 284, 290, 297, 302, 182, 186, 189, 194, 233, 250, 251, 294, 307, 335, 180, 182, 202, 217, 470, 180, 187, 198, 239, 240, 274, 331, 335, 340, 359, 360, 365, 365, 367, 182, 216, 332, 215, 268, 365, 435, 181, 189, 208, 212, 334, 191, 201, 209, 211, 250, 394, 425, 457, 488, 498, 188, 189, 190, 200, 215, 220, 228, 314, 325, 335, 355, 378, 420, 488, 185, 185, 195, 204, 208, 210, 220, 220, 225, 225, 230, 245, 342, 355, 390, 432, 478, 481, 510, 181, 184, 195, 225, 225, 226, 235, 242, 244, 338, 342, 388, 540, 193, 206, 214, 215, 296, 310, 460, 181, 216, 331, 333, 445, 500, 580, 185, 186, 212, 222, 232, 246, 272, 340, 343, 348, 372, 385, 395, 402, 435, 445, 477, 518, 181, 182, 185, 185, 192, 195, 196, 198, 202, 213, 220, 225, 227, 230, 232, 232, 291, 294, 314, 325, 330, 338, 340, 360, 490, 181, 181, 181, 182, 184, 194, 197, 207, 215, 220, 226, 230, 230, 309, 314, 338, 395, 477, 180, 182, 182, 182, 185, 185, 190, 193, 196, 197, 198, 199, 206, 207, 221, 222, 222, 223, 225, 225, 226, 232, 246, 252, 312, 181, 181, 185, 185, 187, 201, 205, 210, 215, 216, 225, 181, 182, 182, 193, 193, 198, 201, 201, 205, 206, 208, 212, 218, 230, 275, 325, 335, 336, 339, 368, 432, 436, 503, 535, 195, 196, 198, 208, 210, 210, 212, 217, 365, 364, 376, 463, 586, 600, 613, 195, 225, 460, 460, 480, 555, 560, 180, 181, 184, 191, 195, 196, 197, 208, 447, 451, 489, 181, 181, 181, 182, 182, 193, 194, 202, 202, 203, 205, 210, 220, 228, 228, 243, 245, 248, 450, 181, 181, 186, 186, 188, 196, 196, 197, 198, 200, 202, 205, 211, 211, 212, 215, 221, 225, 226, 227, 230, 235, 243, 281, 336, 498, 195, 200, 214, 203, 207, 218, 223, 236, 190, 198, 200, 200, 205, 208, 210, 210, 215, 216, 225, 225, 227, 230, 237, 240, 248, 310, 315, 315, 370, 370, 390, 405, 420, 420, 478, 499, 212, 254, 222, 300, 522, 185, 192, 193, 215, 230, 332, 393, 560, 582, 582, 181, 181, 182, 189, 193, 195, 196, 214, 215, 362, 181, 187, 201, 210, 211, 230, 231, 239, 240, 246, 258, 339, 370, 388, 419, 471, 556, 570, 183, 190, 190, 190, 196, 210, 210, 210, 211, 268, 328, 331, 495, 181, 181, 185, 198, 198, 205, 210, 215, 215, 225, 227, 228, 230, 230, 235, 245, 310, 513, 186, 193, 194, 196, 196, 203, 205, 210, 210, 212, 214, 215, 221, 224, 227, 228, 248, 254, 310, 335, 347, 380, 396, 520, 202, 210, 212, 217, 228, 240, 247, 259, 285, 293, 312, 315, 325, 352, 363, 371, 382, 427, 453, 510, 192, 217, 219, 243, 369, 374, 360, 382, 202, 250, 335, 360, 370, 401, 402, 450, 580, 180, 180, 181, 182, 182, 182, 182, 183, 184, 184, 187, 188, 188, 190, 192, 196, 196, 198, 200, 200, 202, 203, 205, 210, 215, 220, 220, 230, 245, 360, 480, 185, 195, 240, 240, 245, 335, 423, 432, 443, 482, 494, 506, 510, 190, 198, 200, 215, 228, 230, 232, 390, 181, 182, 185, 185, 186, 187, 188, 190, 190, 190, 191, 192, 195, 196, 205, 217, 218, 222, 222, 225, 227, 228, 229, 235, 239, 250, 395, 409, 410, 190, 193, 217, 225, 378, 410, 181, 185, 185, 189, 192, 194, 195, 201, 210, 210, 212, 219, 220, 222, 230, 340, 180, 186, 193, 199, 225, 260, 181, 182, 183, 183, 186, 188, 189, 196, 197, 198, 207, 214, 216, 260, 350, 370, 370, 404, 437, 503, 195, 195, 195, 195, 200, 200, 210, 210, 215, 230, 230, 235, 245, 323, 325, 330, 335, 345, 395, 495, 500, 560, 182, 200, 220, 223, 186, 187, 193, 193, 203, 206, 208, 210, 214, 216, 226, 255, 195, 181, 185, 186, 186, 188, 192, 193, 193, 194, 197, 202, 212, 214, 214, 216, 218, 219, 220, 222, 223, 225, 227, 229, 309, 313, 334, 343, 419, 181, 181, 193, 194, 198, 190, 200, 200, 220, 240, 250, 320, 330, 380, 470, 500, 181, 189, 190, 199, 200, 202, 215, 216, 219, 239, 325, 332, 333, 356, 369, 376, 379, 440, 452, 525, 200, 202, 204, 204, 205, 219, 220, 304, 316, 320, 324, 333, 340, 340, 342, 342, 344, 365, 453, 466, 506, 181, 182, 185, 196, 197, 198, 199, 212, 242, 327, 335, 342, 402, 403, 431, 185, 195, 195, 195, 195, 200, 200, 205, 215, 220, 225, 225, 235, 290, 308, 330, 355, 400, 420, 430, 450, 180, 182, 191, 191, 193, 194, 195, 195, 195, 210, 212, 213, 225, 227, 230, 298, 311, 314, 332, 335, 350, 375, 396, 413, 417, 460, 475, 510, 180, 185, 186, 186, 190, 195, 203, 207, 210, 210, 218, 219, 225, 226, 326, 344, 345, 410, 420, 465, 190, 210, 220, 272, 272, 272, 272, 272, 350, 430, 435, 465, 486, 195, 345, 402, 414, 445, 182, 208, 213, 214, 221, 226, 415, 180, 182, 182, 183, 185, 190, 195, 205, 215, 220, 225, 225, 235, 250, 290, 310, 331, 335, 375, 485, 189, 200, 210, 216, 222, 226, 321, 490, 180, 183, 186, 200, 202, 206, 214, 222, 255, 316, 385, 474, 181, 181, 183, 183, 184, 185, 186, 187, 188, 189, 191, 192, 195, 199, 209, 210, 210, 210, 213, 215, 419, 185, 185, 190, 195, 198, 200, 204, 205, 205, 208, 208, 215, 222, 314, 445, 180, 181, 185, 185, 186, 186, 190, 194, 194, 196, 201, 207, 218, 220, 222, 233, 235, 305, 325, 325, 360, 390, 180, 187, 191, 208, 214, 218, 223, 227, 243, 268, 302, 337, 365, 377, 380, 386, 415, 420, 420, 422, 475, 480, 518, 540, 185, 190, 200, 207, 208, 212, 215, 222, 225, 230, 235, 344, 360, 370, 380, 390, 392, 485, 188, 189, 195, 196, 215, 217, 223, 227, 352, 424, 180, 181, 182, 185, 186, 186, 191, 192, 193, 194, 195, 200, 200, 200, 208, 210, 210, 218, 220, 222, 233, 245, 181, 202, 325, 380, 181, 181, 186, 189, 189, 189, 191, 194, 195, 195, 197, 197, 199, 204, 206, 206, 208, 209, 209, 210, 210, 214, 215, 216, 235, 347, 389, 420, 437, 491, 181, 182, 183, 184, 185, 186, 186, 191, 192, 193, 194, 198, 200, 202, 203, 205, 208, 212, 228, 235, 294, 180, 215, 293, 190, 214, 245, 305, 309, 343, 358, 363, 433, 437, 181, 181, 183, 185, 185, 190, 195, 197, 202, 203, 215, 215, 232, 315, 185, 465, 475, 190, 190, 190, 195, 205, 210, 210, 210, 215, 225, 245, 245, 250, 350, 390, 501, 182, 183, 188, 188, 189, 192, 193, 195, 200, 202, 202, 205, 207, 207, 217, 217, 221, 222, 223, 235, 318, 332, 335, 340, 370, 413, 446, 450, 475, 515, 185, 192, 193, 195, 195, 195, 195, 205, 205, 210, 210, 210, 210, 212, 213, 214, 218, 218, 228, 259, 458, 180, 195, 205, 205, 230, 305, 320, 325, 330, 390, 425, 490, 186, 189, 194, 202, 205, 224, 228, 180, 181, 181, 182, 185, 185, 195, 197, 203, 221, 223, 305, 181, 181, 185, 186, 188, 192, 192, 193, 195, 202, 205, 208, 212, 223, 244, 324, 335, 335, 356, 375, 381, 388, 413, 424, 180, 181, 184, 188, 190, 210, 215, 226, 323, 180, 183, 200, 204, 209, 215, 311, 326, 391, 428, 180, 180, 180, 183, 185, 185, 189, 192, 193, 195, 197, 200, 201, 202, 202, 203, 205, 208, 210, 214, 218, 220, 221, 225, 229, 251, 350, 440, 198, 215, 227, 246, 307, 334, 427, 430, 432, 445, 465, 492, 181, 181, 182, 184, 185, 186, 190, 190, 192, 193, 198, 199, 200, 201, 209, 218, 221, 224, 224, 227, 232, 236, 321, 338, 339, 345, 351, 353, 430, 180, 181, 184, 185, 190, 194, 195, 211, 213, 222, 230, 230, 372, 460, 475, 180, 181, 185, 200, 205, 215, 370, 234, 532, 624, 528, 312, 202, 195, 253, 615, 235, 210, 572, 215, 194, 203, 203, 200, 198, 495, 520, 205, 220, 220, 486, 190, 225, 219, 391, 376, 425, 220, 580, 510, 225, 210, 193, 395, 580, 420, 560, 425, 440, 284, 429, 530, 688, 197, 224, 225, 510, 487, 379, 568, 462, 572, 206, 186, 216, 208, 200, 396, 194, 503, 237, 231, 201, 183, 388, 438, 417, 413, 450, 592, 185, 228, 478, 205, 205, 437, 480, 184, 225, 203, 485, 574, 496, 424, 544, 335, 405, 514, 207, 408, 230, 186, 216, 202, 467, 193, 187, 435, 508, 187, 590, 198, 222, 571, 285, 568, 228, 285, 435, 499, 399, 508, 390, 209, 225, 450, 541, 362, 415, 238, 610, 214, 500, 388, 215, 356, 432, 518, 412, 689, 212, 205, 202, 485, 610, 195, 220, 627, 549, 525, 273, 190, 197, 242, 193, 215, 484, 436, 442, 431, 211, 267, 365, 250, 186, 211, 430, 365, 186, 208, 189, 208, 389, 211, 241, 196, 504, 421, 242, 320, 402, 501, 211, 195, 652, 550, 198, 202, 215, 198, 568, 210, 585, 225, 570, 230, 575, 200, 191, 615, 223, 418, 210, 521, 380, 560, 224, 620, 232, 236, 180, 230, 220, 238, 194, 183, 222, 181, 182, 552, 191, 208, 430, 225, 226, 206, 212, 197, 212, 205, 195, 400, 375, 235, 186, 535, 391, 385, 375, 213, 212, 410, 211, 404, 227, 213, 194, 221, 400, 575, 180, 200, 205, 585, 391, 486, 250, 222, 213, 365, 206, 221, 206, 207, 180, 458, 216, 457, 211, 226, 211, 197, 443, 188, 215, 211, 185, 203, 590, 229, 439, 423, 291, 565, 470, 312, 455, 441, 441, 254, 406, 340, 498, 498, 475, 574, 435, 205, 425, 425, 486, 443, 482, 505, 495, 470, 545, 385, 444, 477, 265, 391, 457, 429, 430, 450, 480, 450, 441, 270, 545, 505, 450, 481, 524, 480, 293, 439, 252, 471, 467, 476, 511, 473, 535, 462, 604, 426, 443, 421, 470, 515, 501, 476, 487, 493, 580, 490, 410, 383, 510, 470, 510, 455, 234, 492, 490, 572, 400, 490, 435, 490, 466, 195, 184, 431, 235, 415, 444, 405, 430, 500, 465, 548, 461, 475, 427, 400, 510, 328, 231, 461, 430, 505, 263, 411, 450, 490, 455, 242, 395, 530, 444, 550, 440, 565, 490, 565, 490, 525, 475, 517, 510, 480, 470, 510, 470, 474, 399, 292, 533, 406, 455, 512, 287, 530, 411, 450, 395, 477, 493, 396, 414, 518, 520, 590, 594, 439, 407, 417, 361, 528, 498, 390, 470, 432, 505, 475, 445, 510, 410, 375, 435, 190, 480, 475, 204, 414, 442, 441, 276, 347, 450, 340, 260, 431, 467, 457, 414, 412, 535, 563, 454, 393, 447, 189, 461, 428, 425, 439, 314, 420, 290, 455, 400, 405, 372, 430, 538, 530, 274), water = structure(c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5), .Label = c("Waihou", "Waimakariri", "Whanganui", "Otamangakau", "Rotoaira"), class = "factor"), session = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6), sector = c(4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3), beatboat = c(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 15, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 19, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, 13, 13, 13, 13, 14, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 18, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 1, 1, 1, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 19, 19, 19, 19, 19, 19, 19, 1, 1, 3, 3, 5, 5, 6, 6, 7, 8, 8, 8, 8, 9, 10, 11, 11, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 14, 14, 14, 14, 15, 15, 15, 15, 15, 15, 16, 16, 16, 17, 17, 19, 19, 19, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 5, 5, 5, 5, 5, 6, 6, 7, 7, 9, 9, 10, 10, 11, 11, 12, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 15, 15, 15, 15, 15, 16, 16, 16, 16, 16, 17, 17, 17, 17, 18, 18, 1, 2, 3, 3, 3, 3, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 7, 8, 8, 9, 9, 9, 9, 11, 11, 11, 11, 11, 12, 13, 13, 15, 15, 16, 16, 16, 16, 16, 17, 18, 18, 18, 18, 18, 18, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 10, 11, 11, 11, 12, 13, 13, 13, 13, 14, 14, 14, 15, 15, 15, 16, 16, 17, 17, 1, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 7, 7, 7, 7, 7, 7, 8, 9, 10, 10, 11, 11, 11, 12, 13, 13, 13, 13, 13, 13, 13, 14, 14, 14, 14, 14, 14, 15, 15, 15, 16, 16, 17, 17, 17, 17, 18, 19, 19, 19, 19, 1, 1, 2, 3, 3, 5, 5, 8, 8, 8, 9, 10, 11, 11, 12, 12, 12, 13, 13, 14, 14, 14, 15, 15, 15, 15, 15, 16, 17, 17, 1, 1, 1, 2, 3, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 9, 10, 10, 10, 11, 11, 12, 12, 13, 14, 14, 14, 14, 14, 14, 15, 15, 17, 17, 17, 17, 17, 17, 18, 18, 19, 19, 19, 19, 1, 2, 2, 2, 3, 3, 3, 3, 4, 4, 5, 5, 5, 8, 8, 9, 9, 9, 10, 11, 11, 11, 12, 12, 13, 13, 14, 14, 15, 16, 16, 16, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 19, 19, 1, 1, 1, 3, 3, 3, 4, 4, 5, 6, 7, 7, 9, 9, 9, 9, 9, 9, 10, 11, 12, 12, 13, 14, 15, 15, 16, 17, 17, 17, 17, 17, 17, 17, 18, 18, 18, 19, 19, 19, 19, 2, 2, 4, 5, 5, 7, 7, 8, 8, 8, 8, 9, 9, 9, 9, 10, 13, 14, 14, 14, 14, 15, 15, 15, 15, 17, 18, 18, 19, 19, 19), comid = c(42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 74, 74, 74, 74, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 90, 90, 90, 90, 90, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 88, 88, 88, 88, 88, 88, 88, 88, 88, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 30, 30, 30, 30, 30, 30, 30, 30, 30, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 92, 92, 92, 92, 73, 73, 73, 73, 73, 73, 73, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 69, 54, 54, 54, 54, 54, 54, 54, 54, 54, 51, 51, 51, 51, 51, 51, 51, 51, 51, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 89, 89, 89, 89, 89, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 95, 94, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 65, 65, 65, 65, 65, 65, 65, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 77, 77, 91, 91, 17, 17, 17, 17, 17, 17, 17, 28, 28, 28, 28, 28, 28, 28, 28, 28, 4, 4, 4, 4, 4, 4, 4, 85, 85, 85, 85, 8, 8, 8, 8, 8, 8, 8, 8, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 62, 62, 39, 39, 39, 39, 39, 39, 39, 39, 39, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 98, 98, 98, 98, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 81, 81, 81, 81, 81, 81, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 68, 68, 68, 68, 68, 68, 68, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 60, 60, 60, 60, 60, 60, 60, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 64, 64, 64, 64, 64, 64, 64, 64, 64, 96, 96, 96, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 59, 59, 59, 59, 59, 59, 59, 84, 84, 84, 84, 84, 84, 84, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 67, 67, 67, 67, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 66, 66, 66, 66, 66, 66, 78, 78, 78, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 43, 43, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 48, 48, 48, 48, 48, 86, 86, 86, 86, 76, 76, 83, 83, 83, 83, 83, 83, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 97, 71, 71, 71, 71, 71, 71, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 87, 87, 87, 87, 87, 49, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 92, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 68, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 29, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 30, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 58, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 79, 79, 79, 79, 79, 79, 79, 79, 79, 79, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 63, 98, 98, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 74, 74, 74, 74, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 59, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 89, 89, 89, 89, 89, 89, 89, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 69, 69, 69, 69, 69, 69, 69, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 71, 71, 71, 71, 71, 71, 71, 71, 71, 17, 17, 17, 17, 17, 17, 83, 83, 83, 83, 83, 83, 83, 83, 83, 83, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 91, 91, 91, 91, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 75, 75, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 99, 65, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 95, 95, 95, 95, 95, 95, 95, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 20, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 77, 77, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 35, 35, 35, 35, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 61, 73, 73, 73, 73, 73, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 47, 47, 47, 47, 47, 47, 47, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 55, 55, 55, 55, 55, 55, 55, 55, 55, 46, 46, 46, 46, 46, 46, 46, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 96, 96, 96, 96, 96, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 67, 67, 67, 67, 67, 67, 67, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 64, 64, 64, 64, 64, 64, 64, 82, 82, 82, 82, 82, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 40, 40, 40, 40, 40, 40, 40, 40, 40, 57, 57, 57, 57, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 34, 85, 85, 85, 85, 76, 76, 37, 37, 37, 37, 62, 97, 97, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 8, 8, 8, 8, 8, 8, 8, 8, 49, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 94, 94, 94, 94, 94, 94, 94, 66, 66, 66, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 33, 86, 86, 86, 86, 86, 86, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 48, 48, 48, 48, 48, 44, 44, 44, 44, 44, 44, 44, 75, 75, 75, 75, 75, 75, 75, 97, 97, 97, 85, 85, 85, 85, 83, 83, 83, 83, 83, 37, 37, 37, 37, 37, 37, 37, 37, 37, 37, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 22, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 39, 76, 76, 76, 76, 76, 76, 76, 96, 59, 59, 59, 59, 59, 59, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 67, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 82, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 64, 64, 64, 64, 64, 64, 64, 64, 64, 33, 33, 33, 33, 33, 33, 20, 20, 20, 20, 20, 20, 20, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 52, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 65, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 66, 66, 66, 77, 77, 77, 77, 77, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 44, 79, 79, 63, 63, 63, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19, 90, 90, 90, 90, 90, 90, 90, 90, 90, 90, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 55, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 46, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 53, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 26, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 42, 61, 61, 61, 61, 61, 61, 81, 81, 29, 29, 29, 29, 29, 29, 29, 29, 29, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 38, 41, 41, 41, 41, 41, 41, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 30, 30, 30, 30, 30, 30, 30, 30, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 35, 92, 92, 92, 92, 92, 92, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 71, 62, 62, 62, 62, 62, 62, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 17, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 12, 91, 91, 91, 91, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 49, 87, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 34, 34, 34, 34, 34, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 28, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 40, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 54, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 57, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 84, 89, 89, 89, 89, 89, 69, 69, 69, 69, 69, 69, 69, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 94, 94, 94, 94, 94, 94, 94, 94, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 14, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 56, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 43, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 48, 86, 86, 86, 86, 86, 86, 86, 86, 86, 86, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 16, 95, 95, 95, 95, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 24, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 27, 98, 98, 98, 70, 70, 70, 70, 70, 70, 70, 70, 70, 70, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 88, 74, 74, 74, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 45, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 73, 73, 73, 73, 73, 73, 73, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 47, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 58, 58, 58, 58, 58, 58, 58, 58, 58, 50, 50, 50, 50, 50, 50, 50, 50, 50, 50, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 31, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 60, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 32, 68, 68, 68, 68, 68, 68, 68, 66, 66, 16, 16, 78, 78, 77, 77, 33, 48, 48, 48, 48, 56, 65, 86, 86, 20, 20, 20, 20, 20, 1, 1, 1, 1, 1, 15, 15, 15, 15, 5, 5, 5, 5, 5, 5, 14, 14, 14, 52, 52, 43, 43, 43, 58, 58, 58, 58, 30, 30, 30, 30, 30, 30, 35, 35, 35, 35, 35, 35, 35, 35, 35, 31, 31, 31, 60, 60, 60, 60, 60, 38, 38, 81, 81, 32, 32, 68, 68, 21, 21, 29, 29, 47, 47, 47, 47, 61, 61, 61, 9, 9, 9, 9, 9, 9, 9, 9, 41, 41, 41, 41, 41, 73, 73, 73, 73, 23, 23, 75, 22, 62, 62, 62, 62, 62, 62, 39, 39, 8, 8, 8, 8, 8, 8, 93, 76, 87, 87, 4, 4, 4, 4, 80, 80, 80, 80, 80, 85, 17, 17, 12, 12, 37, 37, 37, 37, 37, 34, 49, 49, 49, 49, 49, 49, 3, 3, 3, 26, 26, 74, 74, 74, 74, 74, 42, 42, 42, 42, 13, 13, 13, 13, 88, 25, 25, 25, 25, 63, 63, 63, 63, 79, 79, 19, 19, 19, 27, 24, 24, 24, 24, 46, 46, 46, 72, 72, 72, 70, 70, 55, 55, 54, 84, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 36, 36, 36, 36, 36, 36, 36, 10, 10, 10, 6, 6, 6, 6, 6, 6, 82, 69, 57, 57, 59, 59, 59, 96, 2, 2, 2, 2, 2, 2, 2, 18, 18, 18, 18, 18, 18, 67, 67, 67, 64, 64, 11, 11, 11, 11, 51, 89, 89, 89, 89, 43, 43, 48, 5, 5, 20, 20, 66, 66, 66, 1, 14, 15, 15, 78, 78, 78, 44, 44, 77, 77, 77, 16, 16, 16, 16, 16, 33, 65, 65, 34, 34, 34, 39, 12, 12, 85, 93, 93, 80, 80, 80, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 91, 37, 49, 49, 49, 62, 62, 76, 76, 22, 17, 17, 17, 17, 17, 17, 87, 87, 28, 28, 28, 28, 28, 28, 75, 75, 8, 8, 8, 8, 50, 61, 61, 61, 30, 30, 30, 30, 32, 32, 81, 81, 81, 9, 9, 73, 73, 73, 60, 68, 68, 68, 47, 47, 29, 29, 92, 92, 35, 21, 21, 21, 23, 23, 23, 23, 23, 23, 23, 23, 23, 23, 41, 41, 41, 31, 31, 10, 10, 10, 40, 40, 40, 57, 57, 6, 96, 69, 69, 64, 64, 64, 64, 64, 64, 36, 51, 7, 7, 67, 59, 18, 18, 82, 11, 11, 11, 11, 11, 11, 11, 54, 54, 54, 2, 2, 2, 2, 24, 24, 53, 46, 46, 19, 19, 13, 13, 13, 13, 27, 27, 27, 27, 90, 79, 3, 3, 3, 3, 26, 26, 26, 26, 42, 74, 74, 72, 72, 72), iname = c("BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "MichaelHeckler", "MichaelHeckler", "MichaelHeckler", "MichaelHeckler", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "JamieHarries", "JamieHarries", "JamieHarries", "JamieHarries", "JamieHarries", "JamieHarries", "JamieHarries", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "KimTribe", "KimTribe", "KimTribe", "KimTribe", "KimTribe", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "SabahudinPehadzicBIHI", "MarinkoPuskaric", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "RobertVanRensburg", "RobertVanRensburg", "MisakoIshimura", "MisakoIshimura", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "AntonioRodrigues", "AntonioRodrigues", "AntonioRodrigues", "AntonioRodrigues", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "TorbjornEriksson", "TorbjornEriksson", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "YoshikoIzumiya", "YoshikoIzumiya", "YoshikoIzumiya", "YoshikoIzumiya", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "StephenVarga", "StephenVarga", "StephenVarga", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "TakashiKawahara", "TakashiKawahara", "TakashiKawahara", "TakashiKawahara", "TakashiKawahara", "TakashiKawahara", "DavidEricDavies", "DavidEricDavies", "DavidEricDavies", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "HowardCroston", "HowardCroston", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "RickyLehman", "RickyLehman", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "JohnBeaven", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "JanKwisthout", "JanKwisthout", "JanKwisthout", "JanKwisthout", "JanKwisthout", "GaryGlenYoung", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "BoskoBarisic", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "YoshikoIzumiya", "YoshikoIzumiya", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "MichaelHeckler", "MichaelHeckler", "MichaelHeckler", "MichaelHeckler", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "KimTribe", "KimTribe", "KimTribe", "KimTribe", "KimTribe", "KimTribe", "KimTribe", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "MisakoIshimura", "MisakoIshimura", "MisakoIshimura", "MisakoIshimura", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "BrianJeremiah", "BrianJeremiah", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "DionDavies", "JohnTrench", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "SabahudinPehadzicBIHI", "SabahudinPehadzicBIHI", "SabahudinPehadzicBIHI", "SabahudinPehadzicBIHI", "SabahudinPehadzicBIHI", "SabahudinPehadzicBIHI", "SabahudinPehadzicBIHI", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "RobertVanRensburg", "RobertVanRensburg", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "JamieHarries", "JamieHarries", "JamieHarries", "JamieHarries", "JamieHarries", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "MarkYelland", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "StephenVarga", "StephenVarga", "StephenVarga", "StephenVarga", "StephenVarga", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AntonioRodrigues", "AntonioRodrigues", "AntonioRodrigues", "AntonioRodrigues", "RickyLehman", "RickyLehman", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "TorbjornEriksson", "JohnBeaven", "JohnBeaven", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "GaryGlenYoung", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "MarinkoPuskaric", "MarinkoPuskaric", "MarinkoPuskaric", "MarinkoPuskaric", "MarinkoPuskaric", "MarinkoPuskaric", "MarinkoPuskaric", "TakashiKawahara", "TakashiKawahara", "TakashiKawahara", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "BrianJeremiah", "BrianJeremiah", "BrianJeremiah", "BrianJeremiah", "BrianJeremiah", "BrianJeremiah", "BrianJeremiah", "JohnBeaven", "JohnBeaven", "JohnBeaven", "AntonioRodrigues", "AntonioRodrigues", "AntonioRodrigues", "AntonioRodrigues", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "PeterDindic", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "PavelMachan", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "StanislawGuzdek", "RickyLehman", "RickyLehman", "RickyLehman", "RickyLehman", "RickyLehman", "RickyLehman", "RickyLehman", "StephenVarga", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "ScottTucker", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "ToddOishi", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "SimonGrootemaat", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "MichalBenatinsky", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JarkkoSuominen", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "JohnTrench", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "TakashiKawahara", "TakashiKawahara", "TakashiKawahara", "RobertVanRensburg", "RobertVanRensburg", "RobertVanRensburg", "RobertVanRensburg", "RobertVanRensburg", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "EricLelouvrier", "BoskoBarisic", "BoskoBarisic", "JohnBuckley", "JohnBuckley", "JohnBuckley", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "LloydStruther", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "AndreSteenkamp", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "CraigColtman", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "AndrewDixon", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "PauloMorais", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "MarkYelland", "MarkYelland", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GianlucaMazzocco", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "GeorgeDaniel", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "StefanFlorea", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "JohnFoxton", "TorbjornEriksson", "TorbjornEriksson", "TorbjornEriksson", "TorbjornEriksson", "TorbjornEriksson", "TorbjornEriksson", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "JanBartko", "MisakoIshimura", "MisakoIshimura", "MisakoIshimura", "MisakoIshimura", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "JanKwisthout", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "PeterBienek", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "NunoDuarte", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "BretBishop", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "AlessandroSgrani", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "MiroslavKaticic", "KimTribe", "KimTribe", "KimTribe", "KimTribe", "KimTribe", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "TimRolston", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "MarinkoPuskaric", "MarinkoPuskaric", "MarinkoPuskaric", "MarinkoPuskaric", "MarinkoPuskaric", "MarinkoPuskaric", "MarinkoPuskaric", "MarinkoPuskaric", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "PeterElberse", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "HowardCroston", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "HelderRodrigues", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "SabahudinPehadzicBIHI", "SabahudinPehadzicBIHI", "SabahudinPehadzicBIHI", "SabahudinPehadzicBIHI", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "YoshikoIzumiya", "YoshikoIzumiya", "YoshikoIzumiya", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "StanislawMankou", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "HansBock", "MichaelHeckler", "MichaelHeckler", "MichaelHeckler", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "YannCaleri", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "JamieHarries", "JamieHarries", "JamieHarries", "JamieHarries", "JamieHarries", "JamieHarries", "JamieHarries", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "IvicaMagdic", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "CraigFarrar", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "MiroslavAntal", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "ReneKoops", "TakashiKawahara", "TakashiKawahara", "DonaldThom", "DonaldThom", "DavidEricDavies", "DavidEricDavies", "RobertVanRensburg", "RobertVanRensburg", "MichalBenatinsky", "JoeRiley", "JoeRiley", "JoeRiley", "JoeRiley", "PeterElberse", "JohnTrench", "HelderRodrigues", "HelderRodrigues", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "JoshStephens", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "MartinDroz", "AaronWest", "AaronWest", "AaronWest", "AaronWest", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucjanBurda", "LucaPapandrea", "LucaPapandrea", "LucaPapandrea", "JarkkoSuominen", "JarkkoSuominen", "HowardCroston", "HowardCroston", "HowardCroston", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VilleAnttiJaakkola", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "WilliamKavenagh", "TerenceCourtoreille", "TerenceCourtoreille", "TerenceCourtoreille", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "SeiichiKomatsuzawa", "GeorgeDaniel", "GeorgeDaniel", "MarkYelland", "MarkYelland", "MiroslavAntal", "MiroslavAntal", "ReneKoops", "ReneKoops", "CraigFarrar", "CraigFarrar", "GianlucaMazzocco", "GianlucaMazzocco", "MikeTinnion", "MikeTinnion", "MikeTinnion", "MikeTinnion", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "TomasAdam", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JoseDias", "JamieHarries", "JamieHarries", "JamieHarries", "JamieHarries", "ChristopheIdre", "ChristopheIdre", "BrianJeremiah", "PavelMachan", "TorbjornEriksson", "TorbjornEriksson", "TorbjornEriksson", "TorbjornEriksson", "TorbjornEriksson", "TorbjornEriksson", "StanislawGuzdek", "StanislawGuzdek", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "AidenHodgins", "RickyLehman", "JanKwisthout", "JanKwisthout", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "RandyTaylor", "RandyTaylor", "RandyTaylor", "RandyTaylor", "RandyTaylor", "AntonioRodrigues", "JohnBell", "JohnBell", "JanBartko", "JanBartko", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "ValerioSantiAmantini", "AnthonyNaranja", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "JohnNishi", "JohnNishi", "MichaelHeckler", "MichaelHeckler", "MichaelHeckler", "MichaelHeckler", "MichaelHeckler", "BorisDzurek", "BorisDzurek", "BorisDzurek", "BorisDzurek", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "HansBock", "OlliToivonen", "OlliToivonen", "OlliToivonen", "OlliToivonen", "JohnBuckley", "JohnBuckley", "JohnBuckley", "JohnBuckley", "BoskoBarisic", "BoskoBarisic", "LloydStruther", "LloydStruther", "LloydStruther", "MarekWalczyk", "LanceEgan", "LanceEgan", "LanceEgan", "LanceEgan", "AndrewDixon", "AndrewDixon", "AndrewDixon", "ThibaultGuilpain", "ThibaultGuilpain", "ThibaultGuilpain", "StanislawMankou", "StanislawMankou", "CraigColtman", "CraigColtman", "NunoDuarte", "MiroslavKaticic", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "SimonRobinson", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "DamienWalsh", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "DesArmstrong", "SimonGrootemaat", "TimRolston", "AlessandroSgrani", "AlessandroSgrani", "ScottTucker", "ScottTucker", "ScottTucker", "StephenVarga", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "KiyoshiNakagawa", "ToddOishi", "ToddOishi", "ToddOishi", "JouniNeste", "JouniNeste", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "BretBishop", "KimTribe", "KimTribe", "KimTribe", "KimTribe", "HowardCroston", "HowardCroston", "JoeRiley", "LucjanBurda", "LucjanBurda", "JoshStephens", "JoshStephens", "TakashiKawahara", "TakashiKawahara", "TakashiKawahara", "MartinDroz", "LucaPapandrea", "AaronWest", "AaronWest", "DavidEricDavies", "DavidEricDavies", "DavidEricDavies", "EricLelouvrier", "EricLelouvrier", "RobertVanRensburg", "RobertVanRensburg", "RobertVanRensburg", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "DonaldThom", "MichalBenatinsky", "JohnTrench", "JohnTrench", "AnthonyNaranja", "AnthonyNaranja", "AnthonyNaranja", "StanislawGuzdek", "JanBartko", "JanBartko", "AntonioRodrigues", "AidenHodgins", "AidenHodgins", "RandyTaylor", "RandyTaylor", "RandyTaylor", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "JohnHorsey", "MisakoIshimura", "ValerioSantiAmantini", "GaryGlenYoung", "GaryGlenYoung", "GaryGlenYoung", "TorbjornEriksson", "TorbjornEriksson", "RickyLehman", "RickyLehman", "PavelMachan", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JohnBell", "JanKwisthout", "JanKwisthout", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BertrandJacquemin", "BrianJeremiah", "BrianJeremiah", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "JannePirkkalainen", "IvicaMagdic", "ArturTrzaskos", "ArturTrzaskos", "ArturTrzaskos", "VernBarby", "VernBarby", "VernBarby", "VernBarby", "MiroslavAntal", "MiroslavAntal", "MarkYelland", "MarkYelland", "MarkYelland", "TomasAdam", "TomasAdam", "JamieHarries", "JamieHarries", "JamieHarries", "SeiichiKomatsuzawa", "ReneKoops", "ReneKoops", "ReneKoops", "MikeTinnion", "MikeTinnion", "GianlucaMazzocco", "GianlucaMazzocco", "StefanFlorea", "StefanFlorea", "WilliamKavenagh", "CraigFarrar", "CraigFarrar", "CraigFarrar", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "ChristopheIdre", "JoseDias", "JoseDias", "JoseDias", "TerenceCourtoreille", "TerenceCourtoreille", "PiotrKonieczny", "PiotrKonieczny", "PiotrKonieczny", "PeterBienek", "PeterBienek", "PeterBienek", "AlessandroSgrani", "AlessandroSgrani", "DesArmstrong", "StephenVarga", "TimRolston", "TimRolston", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "JouniNeste", "DamienWalsh", "BretBishop", "SimonRobinson", "SimonRobinson", "ToddOishi", "ScottTucker", "KiyoshiNakagawa", "KiyoshiNakagawa", "SimonGrootemaat", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "AntoninPesek", "NunoDuarte", "NunoDuarte", "NunoDuarte", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "JulienDaguillanes", "LanceEgan", "LanceEgan", "PauloMorais", "AndrewDixon", "AndrewDixon", "LloydStruther", "LloydStruther", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "SandroSoldarini", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "MarekWalczyk", "AndreSteenkamp", "BoskoBarisic", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "TomasStarychfojtu", "JohnNishi", "JohnNishi", "JohnNishi", "JohnNishi", "BorisDzurek", "MichaelHeckler", "MichaelHeckler", "ThibaultGuilpain", "ThibaultGuilpain", "ThibaultGuilpain"), country = c("SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "WAL", "WAL", "WAL", "WAL", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "RSA", "RSA", "RSA", "RSA", "RSA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "ROM", "ROM", "ROM", "ROM", "WAL", "WAL", "WAL", "WAL", "WAL", "WAL", "WAL", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "WAL", "WAL", "WAL", "WAL", "WAL", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "NDI", "CRO", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "RSA", "RSA", "JPN", "JPN", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "POR", "POR", "POR", "POR", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "SWE", "SWE", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "JPN", "JPN", "JPN", "JPN", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "MAL", "MAL", "MAL", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "WAL", "WAL", "WAL", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "ENG", "ENG", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "AUS", "AUS", "AUS", "AUS", "AUS", "POR", "POR", "POR", "POR", "AUS", "AUS", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "CAN", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "NED", "NED", "NED", "NED", "NED", "RSA", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "ROM", "ROM", "ROM", "ROM", "ROM", "ROM", "ROM", "ROM", "ROM", "ROM", "ROM", "ROM", "ROM", "ROM", "ROM", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "JPN", "JPN", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "WAL", "WAL", "WAL", "WAL", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "WAL", "WAL", "WAL", "WAL", "WAL", "WAL", "WAL", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "JPN", "JPN", "JPN", "JPN", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "WAL", "WAL", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "WAL", "IRE", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "NDI", "NDI", "NDI", "NDI", "NDI", "NDI", "NDI", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "RSA", "RSA", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "IRE", "IRE", "IRE", "IRE", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "WAL", "WAL", "WAL", "WAL", "WAL", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "MAL", "MAL", "MAL", "MAL", "MAL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "NED", "NED", "NED", "NED", "NED", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "ITA", "ITA", "ITA", "ITA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "POR", "POR", "POR", "POR", "AUS", "AUS", "ITA", "ITA", "ITA", "ITA", "SWE", "CAN", "CAN", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "RSA", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "JPN", "JPN", "JPN", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "POR", "POR", "POR", "POR", "POR", "POR", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "AUS", "AUS", "AUS", "AUS", "AUS", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "WAL", "WAL", "WAL", "WAL", "WAL", "WAL", "WAL", "CAN", "CAN", "CAN", "POR", "POR", "POR", "POR", "CRO", "CRO", "CRO", "CRO", "CRO", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "MAL", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "JPN", "JPN", "JPN", "RSA", "RSA", "RSA", "RSA", "RSA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "CRO", "CRO", "IRE", "IRE", "IRE", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "POL", "POL", "POL", "POL", "POL", "POL", "RSA", "RSA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "POR", "POR", "POR", "POR", "POR", "POR", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "ROM", "ROM", "ROM", "ROM", "ROM", "ROM", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "SWE", "SWE", "SWE", "SWE", "SWE", "SWE", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "JPN", "JPN", "JPN", "JPN", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "NED", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "USA", "USA", "USA", "USA", "USA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "WAL", "WAL", "WAL", "WAL", "WAL", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "POR", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "NDI", "NDI", "NDI", "NDI", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "USA", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "POL", "JPN", "JPN", "JPN", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "BUL", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "WAL", "WAL", "WAL", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "ITA", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "WAL", "WAL", "WAL", "WAL", "WAL", "WAL", "WAL", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CRO", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "CAN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "SVK", "NED", "NED", "NED", "NED", "NED", "NED", "NED", "JPN", "JPN", "CAN", "CAN", "WAL", "WAL", "RSA", "RSA", "SVK", "AUS", "AUS", "AUS", "AUS", "NED", "IRE", "POR", "POR", "USA", "USA", "USA", "USA", "USA", "CZE", "CZE", "CZE", "CZE", "CZE", "NZL", "NZL", "NZL", "NZL", "POL", "POL", "POL", "POL", "POL", "POL", "ITA", "ITA", "ITA", "FIN", "FIN", "ENG", "ENG", "ENG", "FIN", "FIN", "FIN", "FIN", "AUS", "AUS", "AUS", "AUS", "AUS", "AUS", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "CAN", "CAN", "CAN", "JPN", "JPN", "JPN", "JPN", "JPN", "USA", "USA", "RSA", "RSA", "SVK", "SVK", "NED", "NED", "NZL", "NZL", "ITA", "ITA", "ENG", "ENG", "ENG", "ENG", "POL", "POL", "POL", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "POR", "POR", "POR", "POR", "POR", "WAL", "WAL", "WAL", "WAL", "FRA", "FRA", "WAL", "CZE", "SWE", "SWE", "SWE", "SWE", "SWE", "SWE", "POL", "POL", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "IRE", "AUS", "NED", "NED", "ENG", "ENG", "ENG", "ENG", "CAN", "CAN", "CAN", "CAN", "CAN", "POR", "NZL", "NZL", "SVK", "SVK", "ITA", "ITA", "ITA", "ITA", "ITA", "USA", "RSA", "RSA", "RSA", "RSA", "RSA", "RSA", "CZE", "CZE", "CZE", "CAN", "CAN", "WAL", "WAL", "WAL", "WAL", "WAL", "SVK", "SVK", "SVK", "SVK", "ITA", "ITA", "ITA", "ITA", "NED", "FIN", "FIN", "FIN", "FIN", "IRE", "IRE", "IRE", "IRE", "CRO", "CRO", "NZL", "NZL", "NZL", "POL", "USA", "USA", "USA", "USA", "ENG", "ENG", "ENG", "FRA", "FRA", "FRA", "BUL", "BUL", "AUS", "AUS", "POR", "CRO", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "IRE", "POL", "POL", "POL", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NED", "RSA", "ITA", "ITA", "AUS", "AUS", "AUS", "MAL", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "JPN", "JPN", "JPN", "JPN", "JPN", "JPN", "CAN", "CAN", "CAN", "FIN", "FIN", "CZE", "CZE", "CZE", "CZE", "USA", "WAL", "WAL", "WAL", "WAL", "ENG", "ENG", "AUS", "POL", "POL", "USA", "USA", "JPN", "JPN", "JPN", "CZE", "ITA", "NZL", "NZL", "WAL", "WAL", "WAL", "FRA", "FRA", "RSA", "RSA", "RSA", "CAN", "CAN", "CAN", "CAN", "CAN", "SVK", "IRE", "IRE", "USA", "USA", "USA", "POL", "SVK", "SVK", "POR", "IRE", "IRE", "CAN", "CAN", "CAN", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "ENG", "JPN", "ITA", "RSA", "RSA", "RSA", "SWE", "SWE", "AUS", "AUS", "CZE", "NZL", "NZL", "NZL", "NZL", "NZL", "NZL", "NED", "NED", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "WAL", "WAL", "FIN", "FIN", "FIN", "FIN", "CRO", "POL", "POL", "POL", "AUS", "AUS", "AUS", "AUS", "SVK", "SVK", "RSA", "RSA", "RSA", "CZE", "CZE", "WAL", "WAL", "WAL", "JPN", "NED", "NED", "NED", "ENG", "ENG", "ITA", "ITA", "ROM", "ROM", "IRE", "NZL", "NZL", "NZL", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "FRA", "POR", "POR", "POR", "CAN", "CAN", "POL", "POL", "POL", "SVK", "SVK", "SVK", "ITA", "ITA", "NZL", "MAL", "RSA", "RSA", "FIN", "FIN", "FIN", "FIN", "FIN", "FIN", "IRE", "USA", "ENG", "ENG", "CAN", "AUS", "JPN", "JPN", "NED", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "CZE", "POR", "POR", "POR", "FRA", "FRA", "FRA", "FRA", "USA", "USA", "POR", "ENG", "ENG", "NZL", "NZL", "ITA", "ITA", "ITA", "ITA", "POL", "POL", "POL", "POL", "RSA", "CRO", "CZE", "CZE", "CZE", "CZE", "CAN", "CAN", "CAN", "CAN", "SVK", "WAL", "WAL", "FRA", "FRA", "FRA")), .Names = c("length", "water", "session", "sector", "beatboat", "comid", "iname", "country" ), row.names = c(NA, 4267), class = "data.frame")
tabPanel( title = tagList( icon("globe-asia"), i18n$t("感染状況マップ") ), fluidRow( column( width = 5, tags$div( fluidRow( column( width = 6, switchInput( inputId = "switchMapVersion", value = T, onLabel = i18n$t("シンプル"), onStatus = "danger", offStatus = "danger", offLabel = i18n$t("詳細"), label = i18n$t("表示モード"), inline = T, size = "small", width = "300px", labelWidth = "200px", handleWidth = "100px" ), ), column( width = 6, uiOutput("echartsMapPlaySetting") ), ), style = "margin-top:10px;" ), uiOutput("comfirmedMapWrapper") %>% withSpinner(proxy.height = "550px"), uiOutput("selectMapBottomButton"), progressBar( id = "activePatients", value = TOTAL_JAPAN - DEATH_JAPAN - 40 - sum(mhlwSummary[日付 == max(日付)]$退院者), total = TOTAL_JAPAN - DEATH_JAPAN - 40, title = tagList( icon("procedures"), i18n$t("現在患者数") ), striped = T, status = "danger", display_pct = T ), progressBar( id = "vaccine_complete_ratio", value = global_value_for_display[key == "vaccine_complete"]$value, total = sum(prefecture_master$人口), title = tagList( icon("syringe"), i18n$t("2回目接種済率") ), striped = TRUE, status = "success", display_pct = TRUE ), helpText( sprintf( i18n$t("2021/2/17 接種開始日から %s 日を経ち、2回目接種完了率は %s。直近7日の2回目まで完了した平均毎日の接種完了人数は %s です。"), as.numeric(Sys.Date() - as.Date("2021-02-17")), paste0(round(global_value_for_display[key == "vaccine_complete"]$value / sum(prefecture_master$人口) * 100, 2), "%"), prettyNum(global_value_for_display[key == "average_7_vaccine"]$value, big.mark = ","), round((75729685 - global_value_for_display[key == "vaccine_complete"]$value) / global_value_for_display[key == "average_7_vaccine"]$value) ) ), bsTooltip( id = "activePatients", placement = "right", title = i18n$t("分母には死亡者、チャーター便で帰国したクルーズ船の乗客40名は含まれていません。") ), progressBar( id = "activeRegions", value = mhlwSummary[日付 == max(日付) & 分類 == 0 & 都道府県名 != "伊客船" & 入院中 == 0, .N], total = 47, title = tagList( icon("shield-alt"), i18n$t("感染者ゼロの都道府県") ), striped = T, status = "success", display_pct = T ), tags$small(i18n$t("回復者数は厚労省発表の数値を使用しているため、メディアの速報より1日遅れる可能性があります。")), bsTooltip( id = "activeRegions", placement = "top", title = i18n$t("回復者数は厚労省発表の数値を使用しているため、メディアの速報より1日遅れる可能性があります。") ), uiOutput("saveArea"), ), column( width = 7, boxPad( fluidRow( column( width = 11, radioGroupButtons( inputId = "switchTableVersion", label = NULL, justified = T, choiceNames = c( paste(icon("procedures"), i18n$t("感染")), paste(icon("vials"), i18n$t("検査")), paste(icon("hospital"), i18n$t("回復・死亡")) ), choiceValues = c("confirmed", "test", "discharged"), status = "danger" ) ), column( width = 1, tags$span( dropdownButton( tags$h4(icon("eye"), i18n$t("表示設定")), tags$hr(), materialSwitch( inputId = "tableShowSetting", label = tagList(icon("object-group"), i18n$t("グルーピング表示")), status = "danger", value = FALSE ), circle = F, right = T, inline = T, status = "danger", icon = icon("gear"), size = "sm", width = "300px", tooltip = tooltipOptions(title = i18n$t("表示設定"), placement = "top") ), style = "float:right;" ) ) ), uiOutput("summaryTable") %>% withSpinner() ) ) ) )
contour.wblr<-function(x, ...) { plot_contour(x,CL=seq(.1,.9,by=.1), ...) }
find.pK <- function(sweep.stats) { '%ni%' <- Negate('%in%') if ("AUC" %ni% colnames(sweep.stats) == TRUE) { bc.mvn <- as.data.frame(matrix(0L, nrow=length(unique(sweep.stats$pK)), ncol=5)) colnames(bc.mvn) <- c("ParamID","pK","MeanBC","VarBC","BCmetric") bc.mvn$pK <- unique(sweep.stats$pK) bc.mvn$ParamID <- 1:nrow(bc.mvn) x <- 0 for (i in unique(bc.mvn$pK)) { x <- x + 1 ind <- which(sweep.stats$pK == i) bc.mvn$MeanBC[x] <- mean(sweep.stats[ind, "BCreal"]) bc.mvn$VarBC[x] <- sd(sweep.stats[ind, "BCreal"])^2 bc.mvn$BCmetric[x] <- mean(sweep.stats[ind, "BCreal"])/(sd(sweep.stats[ind, "BCreal"])^2) } par(mar=rep(1,4)) x <- plot(x=bc.mvn$ParamID, y=bc.mvn$BCmetric, pch=16, col=" x <- lines(x=bc.mvn$ParamID, y=bc.mvn$BCmetric, col=" print(x) return(bc.mvn) } if ("AUC" %in% colnames(sweep.stats) == TRUE) { bc.mvn <- as.data.frame(matrix(0L, nrow=length(unique(sweep.stats$pK)), ncol=6)) colnames(bc.mvn) <- c("ParamID","pK","MeanAUC","MeanBC","VarBC","BCmetric") bc.mvn$pK <- unique(sweep.stats$pK) bc.mvn$ParamID <- 1:nrow(bc.mvn) x <- 0 for (i in unique(bc.mvn$pK)) { x <- x + 1 ind <- which(sweep.stats$pK == i) bc.mvn$MeanAUC[x] <- mean(sweep.stats[ind, "AUC"]) bc.mvn$MeanBC[x] <- mean(sweep.stats[ind, "BCreal"]) bc.mvn$VarBC[x] <- sd(sweep.stats[ind, "BCreal"])^2 bc.mvn$BCmetric[x] <- mean(sweep.stats[ind, "BCreal"])/(sd(sweep.stats[ind, "BCreal"])^2) } par(mar=rep(1,4)) x <- plot(x=bc.mvn$ParamID, y=bc.mvn$MeanAUC, pch=18, col="black", cex=0.75,xlab=NA, ylab = NA) x <- lines(x=bc.mvn$ParamID, y=bc.mvn$MeanAUC, col="black", lty=2) par(new=TRUE) x <- plot(x=bc.mvn$ParamID, y=bc.mvn$BCmetric, pch=16, col=" axis(side=4) x <- lines(x=bc.mvn$ParamID, y=bc.mvn$BCmetric, col=" print(x) return(bc.mvn) } }
make.lim <- function(int=TRUE, list=NULL, length=10) { lims <- list() if(int){ message("Please provide some information, see http://chrisbcole.me/mineR for details. Enter -9 to stop entering at any time.") i = 1 while(i < length){ lims[[i]] <- as.integer(readline(prompt = paste0("For terms with ", i, " words, type how many matches are required: "))) if(is.na(lims[[i]])) stop("Please enter a number.") if(lims[[i]] == -9) { lims[[i]] <- NULL break } if(lims[[i]] > i) { message(" \n Number of terms to match exceeds number of words in term. Please try again or -9 to exit. \n") i = i-1 } i = i+1 } message("Thanks! Your input has been saved under lims, which will be used by mineR by default.") } else if(!int){ lims <- list message("Your list of constraints has been changed and saved under lims") } return(lims) }
library(hamcrest) expected <- c(0x1.3e0a7a7f4456ep+5 + 0x1.04c516cc104b8p-3i, -0x1.440abb7bce593p+5 + -0x1.e105f3d23e2e8p-4i, 0x1.2f56b89f3b516p+5 + 0x1.b8083354b2e7p-4i, -0x1.08a240f74c482p+5 + -0x1.8e9b4746a604p-4i, 0x1.06a449b533823p+5 + 0x1.64c9a6e54e744p-4i, -0x1.de658ef32b326p+4 + -0x1.3a9de2df0cc88p-4i, 0x1.422b0a57541f9p+5 + 0x1.1022a2a81d88dp-4i, -0x1.6e71052c8811p+4 + -0x1.cac543930ec52p-5i, 0x1.1c634c4624be6p+3 + 0x1.74d15a55ed4efp-5i, -0x1.1d0747d3064e5p+5 + -0x1.1e7f40b06eb2cp-5i, 0x1.4abf00a27cb64p+4 + 0x1.8fc98b0be48bap-6i, -0x1.2a69ce809a8a3p+5 + -0x1.c45f280ca10aep-7i, 0x1.68490deab4443p+5 + 0x1.a2e3c16fcfffep-9i, -0x1.5008780a6af34p+5 + 0x1.e60f78bdbe44dp-8i, 0x1.e9f78cb7f5e35p+5 + -0x1.2745816ca8088p-6i, -0x1.6d11ee6bffd33p+5 + 0x1.d4bc8ba5f612cp-6i, 0x1.e20fbc6634672p+4 + -0x1.40de94e829a34p-5i, -0x1.8bfe0da67755fp+5 + 0x1.970dd365e4f5cp-5i, 0x1.210455517a4b2p+5 + -0x1.ecd63b3729a35p-5i, -0x1.68df38f5ff99bp+5 + 0x1.2111102112905p-4i, 0x1.b4f8e0672501ep+5 + -0x1.4b6dfaf0f35cp-4i, -0x1.5adaa3ba37cb9p+4 + 0x1.75772a2c0db68p-4i, 0x1.a02e3f06944bp+4 + -0x1.9f21ff1ab88fp-4i, -0x1.57808fc7a70ddp+5 + 0x1.c863f2dbaaa6p-4i, 0x1.d3a8a16ce9bdap+5 + -0x1.f132990ccde74p-4i, -0x1.06a9e8def4278p+6 + 0x1.0cc1d136b351cp-3i, 0x1.4f1d755bbdb5dp+5 + -0x1.20a66fbc6dcf5p-3i, -0x1.9850993fd35dep+5 + 0x1.3442217cbc71cp-3i, 0x1.5700cc09fc436p+5 + -0x1.478ff24945404p-3i, -0x1.1cc109b862c61p+5 + 0x1.5a8b01a0925adp-3i, 0x1.37e520cfa0c88p+5 + -0x1.6d2e83e97fa73p-3i, -0x1.ffd2b8a3afd12p+4 + 0x1.7f75c3a95e80bp-3i, 0x1.2d181edc11cd9p+5 + -0x1.915c22b483316p-3i, -0x1.275c59ad17f2cp+4 + 0x1.a2dd1b58efd16p-3i, 0x1.6e4c7c455600bp+4 + -0x1.b3f44182cee7fp-3i, -0x1.ced1153e315e7p+4 + 0x1.c49d43da75fd3p-3i, 0x1.adb3da35d475dp+4 + -0x1.d4d3ecdba72dcp-3i, -0x1.28465149f8c41p+5 + 0x1.e49423e5ca1eep-3i, 0x1.3c7ad98894902p+5 + -0x1.f3d9ee44d9d5ap-3i, -0x1.926424e14cc6p+5 + 0x1.0150b81960ca2p-2i, 0x1.1f0cfd84c0dabp+5 + -0x1.087376e875c57p-2i, -0x1.8877696713e22p+4 + 0x1.0f53660cdee77p-2i, 0x1.663147661139p+5 + -0x1.15eec8e4e5e7dp-2i, -0x1.5a7f677f15cd6p+5 + 0x1.1c43f42040834p-2i, 0x1.4990bb236f2c7p+5 + -0x1.22514e2c0504dp-2i, -0x1.005ed80b7b489p+5 + 0x1.28154f9a245ep-2i, 0x1.1e57913965436p+5 + -0x1.2d8e83844e4c6p-2i, -0x1.9ddd45bbb2432p+5 + 0x1.32bb87ea26a74p-2i, 0x1.3e3472d4debf8p+4 + -0x1.379b0e0ab541bp-2i, -0x1.4ca7ec5fd0208p+4 + 0x1.3c2bdab8f837fp-2i, 0x1.4306dccc60071p+5 + -0x1.406cc6ab8453bp-2i, -0x1.3d81ff61157b6p+5 + 0x1.445cbec71f44p-2i, 0x1.c38dd32cf0e9p+3 + -0x1.47fac4643fe2cp-2i, -0x1.ec0fa041854c3p+4 + 0x1.4b45ed8f651e6p-2i, 0x1.1db181ab40e55p+6 + -0x1.4e3d6544300dfp-2i, -0x1.11b0cada59e11p+5 + 0x1.50e06ba335e0ap-2i, 0x1.fcae71fb086c4p+2 + -0x1.532e56227937ep-2i, -0x1.184890705c7d4p+5 + 0x1.55268fb87f6f1p-2i, 0x1.9131fb56968f5p+5 + -0x1.56c89901f8a4ep-2i, -0x1.8b16787ea61b4p+5 + 0x1.58140861edbc7p-2i, 0x1.ec321c6bc6e78p+4 + -0x1.59088a1c6fb62p-2i, -0x1.46ecabddea68bp+5 + 0x1.59a5e06bbf4b6p-2i, 0x1.09320999ec0ecp+5 + -0x1.59ebe38fe796ap-2i, -0x1.037654b486bfap+5 + 0x1.59da81d8c9832p-2i, 0x1.7bc39be3624a7p+5 + -0x1.5971bfaa932bcp-2i, -0x1.418d877e82d5ep+5 + 0x1.58b1b77ca478ap-2i, 0x1.5085c2592f17cp+5 + -0x1.579a99d2df33p-2i, -0x1.b567825743cfp+4 + 0x1.562cad3164cf7p-2i, 0x1.156d4b89678fcp+5 + -0x1.54684e0ac68ap-2i, -0x1.12d9c8c3a2cfdp+5 + 0x1.524deea8a952cp-2i, 0x1.47b45665a8e59p+5 + -0x1.4fde170ee6da9p-2i, -0x1.8cdc54670a218p+3 + 0x1.4d1964d93081bp-2i, 0x1.2be8cb30ffe1bp+5 + -0x1.4a008b133d60ep-2i, -0x1.c5abd47b45772p+4 + 0x1.4694520b8eee4p-2i, 0x1.8794ed938029ap+5 + -0x1.42d59720d5581p-2i, -0x1.b4fc86c733aa7p+4 + 0x1.3ec54c8a02d8fp-2i, 0x1.6cc58224b2fb7p+5 + -0x1.3a64791919b58p-2i, -0x1.35aeaf6d8fb9ep+5 + 0x1.35b437f8c61fp-2i, 0x1.b52d8657fc138p+4 + -0x1.30b5b864d457fp-2i, -0x1.3ad9c24f2dcf9p+5 + 0x1.2b6a3d5d9426dp-2i, 0x1.246c85e0c72f6p+5 + -0x1.25d31d563f01ep-2i, -0x1.50c235e17cc59p+5 + 0x1.1ff1c1de7375ep-2i, 0x1.51255c710d2eep+5 + -0x1.19c7a746dc9c6p-2i, -0x1.a9685ad12102ap+4 + 0x1.13565c411d336p-2i, 0x1.0bfbdc8995e3ep+5 + -0x1.0c9f817b1531bp-2i, -0x1.29c64134c4b13p+5 + 0x1.05a4c9359cefdp-2i, 0x1.0c24d7349d19ap+5 + -0x1.fccfedad9e75p-3i, -0x1.f87e910b8fdf3p+3 + 0x1.edd5bceffca1dp-3i, 0x1.5e9daf7b63d69p+5 + -0x1.de5ec8dee3617p-3i, -0x1.bd6a5746af916p+5 + 0x1.ce6ef9ac106c6p-3i, 0x1.6bf71747d60cdp+5 + -0x1.be0a5611c15dp-3i, -0x1.84217f41ddc61p+5 + 0x1.ad35024e4b18dp-3i, 0x1.bc9ed06f76126p+4 + -0x1.9bf33f183d4fcp-3i, -0x1.7323b47ffcc77p+4 + 0x1.8a49688b55bd4p-3i, 0x1.09ab20b813ccdp+5 + -0x1.783bf50e84bfp-3i, -0x1.e17945b92c6c8p+5 + 0x1.65cf74335134cp-3i, 0x1.eda2de79fd944p+4 + -0x1.53088d8edde7p-3i, -0x1.c1eff71e81e58p+3 + 0x1.3febff8cde435p-3i, 0x1.901d600fe0ac9p+4 + -0x1.2c7e9e3cc6f4p-3i, -0x1.631a4308b199p+4 + 0x1.18c55219854c4p-3i, 0x1.62fdc00783b22p+4 + -0x1.04c516cc10522p-3i, -0x1.4da1cac88a608p+3 + 0x1.e105f3d23ea6ep-4i, 0x1.5485a42d45f42p+5 + -0x1.b8083354b33e7p-4i, -0x1.a5ddd212ab558p+5 + 0x1.8e9b4746a6ep-4i, 0x1.364c4cf569bc3p+5 + -0x1.64c9a6e54e8bfp-4i, -0x1.a8dec08e41e64p+5 + 0x1.3a9de2df0c85cp-4i, 0x1.d64634c48137ep+4 + -0x1.1022a2a81d6e1p-4i, -0x1.91b7fa2eb439bp+5 + 0x1.cac543930edbep-5i, 0x1.7ddeb319f1c6cp+5 + -0x1.74d15a55eeb84p-5i, -0x1.6b0de972070e7p+5 + 0x1.1e7f40b0700b8p-5i, 0x1.2fd4bb20aa8dap+5 + -0x1.8fc98b0be5e08p-6i, -0x1.a14cd893b7a53p+5 + 0x1.c45f280ca15ep-7i, 0x1.9ccc7e3a96caep+5 + -0x1.a2e3c16fcb5cp-9i, -0x1.fbd830e6fd814p+4 + -0x1.e60f78bdbc5p-8i, 0x1.4d00e63252a0ap+4 + 0x1.2745816ca6c88p-6i, -0x1.2e897dcc498b9p+5 + -0x1.d4bc8ba5f5088p-6i, 0x1.ec446af6e927cp+4 + 0x1.40de94e8288ap-5i, -0x1.58136b242c35ep+4 + -0x1.970dd365e450cp-5i, 0x1.0bcedfb714163p+5 + 0x1.ecd63b372886cp-5i, -0x1.5cd9cd0bfa776p+5 + -0x1.21111021126c6p-4i, 0x1.653003066adeep+5 + 0x1.4b6dfaf0f3bfep-4i, -0x1.141157a249e64p+4 + -0x1.75772a2c0d9d6p-4i, 0x1.d16bfee1438p+4 + 0x1.9f21ff1ab8656p-4i, -0x1.bf32203e38acfp+5 + -0x1.c863f2dba9abap-4i, 0x1.39f6a3f6654dep+5 + 0x1.f132990ccd498p-4i, -0x1.02c92368c4bf1p+5 + -0x1.0cc1d136b34e8p-3i, 0x1.709e48470a4f8p+4 + 0x1.20a66fbc6de2p-3i, -0x1.f3bbb4cc492eap+4 + -0x1.3442217cbc979p-3i, 0x1.1ac0ac3aa4685p+5 + 0x1.478ff2494500dp-3i, -0x1.af3bd0ffb220dp+4 + -0x1.5a8b01a092232p-3i, 0x1.4422f72e18cc3p+5 + 0x1.6d2e83e97f8aep-3i, -0x1.836a8c0ac680bp+5 + -0x1.7f75c3a95e48bp-3i, 0x1.0c5728ca921b6p+5 + 0x1.915c22b483214p-3i, -0x1.f04fe7424906bp+4 + -0x1.a2dd1b58efacap-3i, 0x1.a0589582a020bp+4 + 0x1.b3f44182cede4p-3i, -0x1.b1462cb6581e8p+4 + -0x1.c49d43da76176p-3i, 0x1.59ab4199fd93ap+4 + 0x1.d4d3ecdba705ep-3i, -0x1.3d474b717b1d3p+5 + -0x1.e49423e5c9ee3p-3i, 0x1.ea1ea729690fbp+4 + 0x1.f3d9ee44d958ep-3i, -0x1.f9ca706b9ed7p+4 + -0x1.0150b81960b4ap-2i, 0x1.233743fdc4488p+6 + 0x1.087376e875cefp-2i, -0x1.19eaaf670f9e9p+5 + -0x1.0f53660cdeecep-2i, 0x1.58caea64685dbp+4 + 0x1.15eec8e4e5f7bp-2i, -0x1.3da76c76bd777p+4 + -0x1.1c43f4204061cp-2i, 0x1.98822d8d3b679p+4 + 0x1.22514e2c04d61p-2i, -0x1.59a05b9491da8p+5 + -0x1.28154f9a2449bp-2i, 0x1.4d85c112cbb25p+5 + 0x1.2d8e83844e34ep-2i, -0x1.79b65430a3d79p+5 + -0x1.32bb87ea26a77p-2i, 0x1.0e5aec260e8c2p+5 + 0x1.379b0e0ab53ep-2i, -0x1.04336cfff8145p+5 + -0x1.3c2bdab8f82dp-2i, 0x1.62743ae8526aep+4 + 0x1.406cc6ab84522p-2i, -0x1.0f680b0843e0dp+5 + -0x1.445cbec71f1ep-2i, 0x1.ffd2cf71c2388p+4 + 0x1.47fac4643fcb6p-2i, -0x1.c1698d7369eb2p+4 + -0x1.4b45ed8f64ebp-2i, 0x1.de33217c94422p+4 + 0x1.4e3d65442ffc8p-2i, -0x1.33f8ba226dabbp+5 + -0x1.50e06ba335f9ep-2i, 0x1.802812d1b780cp+5 + 0x1.532e56227931cp-2i, -0x1.4318d58f8547cp+5 + -0x1.55268fb87f6e2p-2i, 0x1.9de5c699e074dp+5 + 0x1.56c89901f8654p-2i, -0x1.53ac6004894a8p+4 + -0x1.58140861ed868p-2i, 0x1.c6561717fe1dfp+4 + 0x1.59088a1c6fa67p-2i, -0x1.395d4ab7ec9dp+5 + -0x1.59a5e06bbf41bp-2i, 0x1.827954ca42b58p+4 + 0x1.59ebe38fe7a5dp-2i, -0x1.cbfdfe4eb79dap+5 + -0x1.59da81d8c966cp-2i, 0x1.635a0e1300a89p+5 + 0x1.5971bfaa93157p-2i, -0x1.99fcb8c0825b3p+5 + -0x1.58b1b77ca46b2p-2i, 0x1.f33e92670ad94p+4 + 0x1.579a99d2df07cp-2i, -0x1.65f1cf2733c2p+5 + -0x1.562cad3164c44p-2i, 0x1.1cfe6701cee4ep+5 + 0x1.54684e0ac65e9p-2i, -0x1.2089e50058706p+5 + -0x1.524deea8a945bp-2i, 0x1.be5fe4818c0e6p+4 + 0x1.4fde170ee6ee5p-2i, -0x1.06ba496827356p+5 + -0x1.4d1964d93074ap-2i, 0x1.8d2528f44d9b4p+5 + 0x1.4a008b133d5p-2i, -0x1.c390535c8074fp+4 + -0x1.4694520b8eadap-2i, 0x1.0a760d5894feap+5 + 0x1.42d59720d533bp-2i, -0x1.27b13fb06c171p+5 + -0x1.3ec54c8a02cd2p-2i, 0x1.8f5ae7270706ap+5 + 0x1.3a64791919b2cp-2i, -0x1.b314ed9e9a53cp+5 + -0x1.35b437f8c6323p-2i, 0x1.99ac286c43403p+5 + 0x1.30b5b864d43e4p-2i, -0x1.3e17ca3920132p+5 + -0x1.2b6a3d5d940b9p-2i, 0x1.6dd3a8decdc02p+5 + 0x1.25d31d563ee74p-2i, -0x1.7aa115995f9b5p+5 + -0x1.1ff1c1de734d2p-2i, 0x1.a2c710deaa31ap+5 + 0x1.19c7a746dc8cp-2i, -0x1.2274fdc4b4bd2p+5 + -0x1.13565c411d176p-2i, 0x1.46a35ebeb48bep+4 + 0x1.0c9f817b152ccp-2i, -0x1.454384becba6ap+5 + -0x1.05a4c9359cf9ep-2i, 0x1.3a7b6b9373eaep+5 + 0x1.fccfedad9e3e9p-3i, -0x1.37241b7e6baa2p+5 + -0x1.edd5bceffc6d9p-3i, 0x1.d8628e4ebd2aep+5 + 0x1.de5ec8dee2dadp-3i, -0x1.8e29f5ce946b3p+5 + -0x1.ce6ef9ac1037p-3i, 0x1.08b1a76596241p+5 + 0x1.be0a5611c1692p-3i, -0x1.ac02af8109866p+5 + -0x1.ad35024e4b1e6p-3i, 0x1.9abfcb17832e3p+5 + 0x1.9bf33f183d70cp-3i, -0x1.540ada560b8f5p+5 + -0x1.8a49688b55588p-3i, 0x1.6a859d72986d8p+5 + 0x1.783bf50e846aep-3i, -0x1.80917c9403eb6p+5 + -0x1.65cf743351052p-3i, 0x1.0a69d076ed7e9p+5 + 0x1.53088d8eddc2bp-3i, -0x1.c8a986025f114p+4 + -0x1.3febff8cde52ap-3i, 0x1.2a40867f1299cp+5 + 0x1.2c7e9e3cc6c9p-3i, -0x1.ea1c0301d54cbp+3 + -0x1.18c55219853e4p-3i ) assertThat(stats:::fft(inverse=TRUE,z=c(0+0i, -0.026464810582916-0.396427714874034i, -0.028222323270186+0.441792055088923i, 0.600131073825881-0.190585110446351i, -0.417743312320867+0.217275404387287i, 0.137737994599904+0.38254431774271i, 0.207483155817089-0.335392772868322i, -0.038051352553862-0.326043681440722i, 0.538264973159457+0.202644898827273i, 0.469194063004193-0.301084080589482i, 0.418403874146942+0.63085065772235i, -0.200666185671905+0.664622470616715i, 0.111731284439878-0.677258207358522i, -0.141165511939018-0.44762982911044i, 1.30520543299793+0.1090483741253i, -0.344563244035388+0.064327090649793i, -0.0260586718185722+0.0230176654121559i, -0.322251612110856-0.090515006153901i, 0.326064363002709+0.741950457593737i, 0.589151616978916-0.673589475484917i, 0.640165086899924-0.44757583612989i, -0.877864097580919+0.354151840891694i, -0.17379262749062-0.410026964872639i, -0.480906134606651+0.197730766397825i, -0.197515453547727+0.514948314052644i, -0.487210113615893+0.674052927271129i, -0.462199361575885+0.216554969919127i, 0.100152760608002+0.298930267969328i, 0.488627301906609+0.239595612282971i, 0.561989623087212+0.052742196966128i, 1.11077126149174+0.03834087734641i, 0.054902945259696+0.641299270444349i, 0.240068680839615-0.19911657359075i, 0.610760945129458-0.175720481127229i, 0.571273469809736+0.436178332423554i, -0.360193577503248+0.063055349998628i, -0.358692047329879+0.619807673000307i, 0.626915312474487+0.459049653123622i, -0.867927632641154-0.075482553852973i, -0.084958247272812+0.410146779399985i, -0.361188868571845+0.470475984734662i, 0.263612413908934+0.1499635317914i, -0.8537557474917-1.31631046434687i, 0.37171163344298+0.164952424188131i, -0.106764369650074+0.221612783182605i, 0.484653373100542-0.964046013714323i, -0.811483353541734-0.561520831932708i, -1.22420051083004+1.07278383626633i, 1.23701927419687+0.46589892238444i, 0.002950354610172-0.551849836918361i, 0.12245572983699-0.672211187596642i, -0.15328146029697+1.57867330255886i, -0.531275406426444-0.50074364778289i, 0.490804224199969+0.24846280889692i, -1.02507672713753-0.32640031507618i, -0.11060229753364+0.635042488192128i, 0.776004711048576-0.144452018200291i, 0.184226587770951+0.803024294262923i, 0.404892491770574+0.330542332570912i, 0.417588327041871+0.828576122529115i, 0.503619452101261-0.462796407821273i, -1.29987958851933+0.05769580775788i, -0.184442011767332-0.126779590657692i, 0.501813074293413-0.79447365148006i, -0.521749227246804+0.48455782117017i, -0.734401073337973-0.080492214515501i, 0.900504592404853+0.352270955226813i, 0.943216217460486+0.128254071072833i, 0.505059747840383+0.833568668929631i, 0.545397779107476-0.100692762669272i, -0.102037507718455-0.540429086767423i, 0.457208466319646-0.423635267107562i, -1.36985736228749+0.48257469685382i, 1.02389570187393-0.05077279861022i, -0.244412311622217+0.594422126947255i, -0.713855291312084+0.485738403766214i, -0.823818555184761-0.74003274910767i, 0.7983660215085-0.096608887563268i, -0.113032109790349+0.910680264966514i, -0.611968766968461-0.399287282887729i, -0.274066125028322-0.006470465183757i, -0.195851320168394+0.25446523332802i, 0.251788165582682+0.681929485608914i, 0.34204755930203+1.1075063694659i, 0.08474096601301+1.56579689168615i, 0.906257228395766+0.438180612992073i, -0.478617176005439+0.096411911242666i, 0.518820093840973-0.715668524392385i, -1.58783295478389-0.47683175246056i, 0.423055831005869-0.29942707013305i, 0.030578939287039+0.561817154584025i, 0.727199693004515-0.739317119507838i, -0.651224324476472-0.183704212969572i, 0.06689299650915-1.10077848749808i, -0.861597187183488-0.449648303768461i, -0.821278791689935-0.708314304650526i, -0.816435488919613+0.129389593495371i, -0.629547587913145-0.467471550654385i, 0.483467082443256-0.453368338736509i, 1.18700657465229+0i, 36.95629+0i, 0.874091626934088+0.127329042532476i, 0.483467082443257+0.453368338736509i, -0.629547587913146+0.467471550654385i, -0.816435488919613-0.129389593495371i, -0.821278791689936+0.708314304650526i, -0.861597187183488+0.449648303768461i, 0.06689299650915+1.10077848749808i, -0.651224324476472+0.183704212969572i, 0.727199693004515+0.739317119507838i, 0.030578939287039-0.561817154584025i, 0.423055831005869+0.29942707013305i, -1.58783295478389+0.47683175246056i, 0.518820093840973+0.715668524392384i, -0.478617176005439-0.096411911242666i, 0.906257228395766-0.438180612992073i, 0.08474096601301-1.56579689168615i, 0.34204755930203-1.1075063694659i, 0.251788165582682-0.681929485608914i, -0.195851320168394-0.25446523332802i, -0.274066125028322+0.006470465183757i, -0.611968766968461+0.399287282887729i, -0.113032109790349-0.910680264966514i, 0.798366021508499+0.096608887563268i, -0.823818555184761+0.74003274910767i, -0.713855291312084-0.485738403766214i, -0.244412311622217-0.594422126947255i, 1.02389570187393+0.05077279861022i, -1.3698573622875-0.48257469685382i, 0.457208466319646+0.423635267107562i, -0.102037507718455+0.540429086767423i, 0.545397779107476+0.100692762669272i, 0.505059747840383-0.833568668929631i, 0.943216217460486-0.128254071072833i, 0.900504592404854-0.352270955226813i, -0.734401073337974+0.080492214515501i, -0.521749227246804-0.48455782117017i, 0.501813074293413+0.794473651480061i, -0.184442011767332+0.126779590657692i, -1.29987958851933-0.05769580775788i, 0.503619452101262+0.462796407821274i, 0.417588327041871-0.828576122529115i, 0.404892491770574-0.330542332570912i, 0.184226587770951-0.803024294262923i, 0.776004711048576+0.144452018200291i, -0.11060229753364-0.635042488192128i, -1.02507672713753+0.32640031507618i, 0.490804224199969-0.248462808896921i, -0.531275406426444+0.50074364778289i, -0.15328146029697-1.57867330255886i, 0.12245572983699+0.672211187596642i, 0.002950354610172+0.55184983691836i, 1.23701927419687-0.46589892238444i, -1.22420051083004-1.07278383626633i, -0.811483353541734+0.561520831932708i, 0.484653373100542+0.964046013714323i, -0.106764369650074-0.221612783182605i, 0.37171163344298-0.164952424188131i, -0.8537557474917+1.31631046434687i, 0.263612413908934-0.1499635317914i, -0.361188868571845-0.470475984734662i, -0.084958247272812-0.410146779399985i, -0.867927632641154+0.075482553852973i, 0.626915312474488-0.459049653123622i, -0.358692047329879-0.619807673000308i, -0.360193577503248-0.063055349998628i, 0.571273469809736-0.436178332423554i, 0.610760945129458+0.175720481127229i, 0.240068680839615+0.19911657359075i, 0.054902945259696-0.641299270444349i, 1.11077126149174-0.03834087734641i, 0.561989623087212-0.052742196966128i, 0.488627301906609-0.239595612282971i, 0.100152760608002-0.298930267969328i, -0.462199361575885-0.216554969919127i, -0.487210113615893-0.67405292727113i, -0.197515453547727-0.514948314052644i, -0.480906134606651-0.197730766397825i, -0.17379262749062+0.410026964872639i, -0.877864097580919-0.354151840891694i, 0.640165086899921+0.447575836129888i, 0.589151616978916+0.673589475484917i, 0.326064363002709-0.741950457593738i, -0.322251612110856+0.090515006153901i, -0.0260586718185722-0.0230176654121559i, -0.344563244035388-0.064327090649793i, 1.30520543299793-0.1090483741253i, -0.141165511939018+0.44762982911044i, 0.111731284439878+0.677258207358522i, -0.200666185671905-0.664622470616715i, 0.418403874146942-0.63085065772235i, 0.469194063004193+0.301084080589482i, 0.538264973159457-0.202644898827272i, -0.038051352553862+0.326043681440722i, 0.207483155817089+0.335392772868322i, 0.137737994599904-0.38254431774271i, -0.417743312320867-0.217275404387287i, 0.600131073825881+0.190585110446351i, -0.028222323270186-0.441792055088923i, -0.026464810582916+0.396427714874034i )) , identicalTo( expected, tol = 1e-6 ) )
fix0106 <- function (x, alpha = 4, beta = 4, mu = 0, sigma = 1, eta = 0, kappa = 1) { eps <- (x - mu)/sigma ((eps/(2 * beta + eps^2)) * dnorm(x, mean = eta, sd = kappa)) }
merge_forests <- function(forest_list, compute.oob.predictions = TRUE) { validate_forest_list(forest_list) first_forest <- forest_list[[1]] big_forest <- merge(forest_list) class(big_forest) <- class(first_forest) for (name in names(first_forest)) { if (!startsWith(name, "_") && name != "predictions" && name != "debiased.error" && name != "excess.error") { big_forest[[name]] <- first_forest[[name]] } } if (compute.oob.predictions) { oob.pred <- predict(big_forest) big_forest[["predictions"]] <- oob.pred$predictions big_forest[["debiased.error"]] <- oob.pred$debiased.error big_forest[["excess.error"]] <- oob.pred$excess.error } big_forest } validate_forest_list <- function(forest_list) { if (length(forest_list) == 0) { stop("Length of argument 'forest_list' must be positive.") } first_forest <- forest_list[[1]] if (!methods::is(first_forest, "grf")) { stop("Argument 'forest_list' must be a list of grf objects. Be sure to use 'list(forest1, forest2), not 'c(forest1, forest2)'.") } classes <- unique(sapply(forest_list, class)[1, ]) if (length(classes) > 1) { stop(paste( "All forests in 'forest_list' must be of the same type, but we found:", paste(classes, collapse = ", ") )) } n.cols <- unique(lapply(forest_list, function(x) {ncol(x$X.orig)})) n.obs <- unique(lapply(forest_list, function(x) {nrow(x$X.orig)})) if (length(n.cols) != 1 || length(n.obs) != 1) { stop("All forests in 'forest_list' must be trained on the same data.") } }
dropImageDimension <- function(img, onlylast=TRUE, warn=TRUE) { dim_ <- dim_(img) imgdim <- dim(img) ndim <- length(imgdim) + 1 dim_[seq(2, ndim)] <- imgdim if (ndim +1 <= length(dim_)) { dim_[seq(ndim+1, length(dim_))] <- 1 } pdim <- pixdim(img) no.data <- dim_ <= 1 no.data <- no.data | pdim == 0 no.data[1] <- FALSE if (onlylast) { maxdim <- max(which(! no.data)) no.data[seq(maxdim)] <- FALSE } else { no.data[1] <- FALSE } ndim <- sum(! no.data) - 1 dim_[1] <- ndim pdim <- pdim[! no.data] pdim <- c(pdim, rep(1, 8 - length(pdim))) dim_ <- dim_[! no.data] dim_ <- c(dim_, rep(1, 8 - length(dim_))) pixdim(img) <- pdim dim_(img) <- dim_ if (length(imgdim) > ndim) { if (onlylast) { cs <- cumsum(rev(no.data[1 + seq(length(imgdim))])) dropcols <- cs == seq(length(imgdim)) dropcols <- rev(dropcols) dropcols <- which(dropcols) D <- adrop([email protected], drop = dropcols) } else { D <- drop([email protected]) } } else { return(img) } checkdim = dim_(img) checkdim[checkdim < 1] = 1 dim_(img) <- checkdim if (ndim >= 3) { [email protected] <- D return(img) } else { if (warn) { warning("Dropping under 3 dimensions - returning non-nifti object array.") } return(D) } } drop_img_dim <- function(img, onlylast=TRUE, warn=TRUE) { dropImageDimension(img=img, onlylast=onlylast, warn=warn) }
`ll.jRCI.b1.A` = function(par, yi, ind.lst, X, twosex, sex=NULL, ni, ni0, xs, iphi, theta) { if(twosex){ zeroes = c(0, 0) seq = 1:4 logL = ll.aRC(par0=c(par[3], 0), ni[sex == 1], ni0[sex == 1], xs[sex == 1], theta) logL = logL + ll.aRC(par0=c(par[4], 0), ni[sex == -1], ni0[sex == -1], xs[sex == -1], theta) }else{ zeroes = 0 seq = 1:2 logL = ll.aRC(par0=c(par[2], 0), ni, ni0, xs, theta) } logL = logL + ll.tRCI.A(par0=c(par[seq], zeroes, par[-seq]), yi=yi, ind.lst=ind.lst, X=X, twosex=twosex, iphi=iphi) return(logL) }
pattLrep.fit<-function(obj, nitems, tpoints=1, formel=~1,elim=~1,resptype="ratingT", obj.names=NULL, undec=TRUE, ia=FALSE, iaT=FALSE, NItest=FALSE, pr.it=FALSE) { if (tpoints<2) stop("no of timepoints incorrectly specified! if tpoints==1 use pattL.fit") call<-match.call() ENV<-new.env() ENV$pr.it<-pr.it ENV$resptype<-"ratingT" nobj<-nitems * tpoints opt<-options() options("warn"=-1) if(is.character(obj)){ datafile <- obj if(file.access(datafile, mode=0) == 0){ dat<-as.matrix(read.table(datafile,header=TRUE)) } else { stop("\ninput data file does not exist!\n") } } else if(is.data.frame(obj)){ dat<-as.matrix(obj) dat<-apply(dat,2,as.numeric) } else { stop("first argument must be either datafilename or dataframe") } varnames<-colnames(dat) if (ncol(dat)>nobj) { formel.names<-attr(terms(as.formula(formel)),"term.labels") formel.names<-unique(unlist(strsplit(formel.names,":"))) elim.names<-attr(terms(as.formula(elim)),"term.labels") elim.names<-unique(unlist(strsplit(elim.names,":"))) covnames<-unique(c(formel.names,elim.names)) covs<-as.data.frame(dat[,covnames]) } else { covs<-NULL } idx<-apply(dat[,1:nobj],1,function(x) sum(!is.na(x))>1) dat<-dat[idx,] dat<-as.data.frame(dat[,1:nobj]) if(!is.null(covs)){ covs<-as.data.frame(covs[idx,]) colnames(covs)<-covnames NAs<-which(!complete.cases(covs)) if (length(NAs)>0){ cat("\tsubject covariates: NAs in lines",NAs," - removed from data\n") notNAs<-which(complete.cases(covs)) dat<-dat[notNAs,] covs<-covs[notNAs,,drop=FALSE] } } if (is.null(obj.names)) ENV$obj.names<-varnames[1:nobj] else ENV$obj.names<-obj.names[1:nobj] if(NItest) if(!any(is.na(dat))) stop("Test for ignorable missing cannot be performed - no NA values!") datrng<-range(dat,na.rm=TRUE) Y <- Lpatternmat(datrng,nitems) np<-nrow(Y) npp<-np YL<-Y for (t in 1:(tpoints-1)){ YL<-do.call("rbind", lapply(1:np, function(i) YL) ) YR<-expand.mat(Y,rep(npp,np)) YL<-cbind(YL,YR) npp<-npp*np } ENV$Y<-YL rm(Y,YL) dat.t<-as.data.frame(diffsred(dat[,1:nitems],nitems)) for (t in 2:tpoints){ from<-nitems*(t-1)+1 to<-from+nitems-1 dat.t<-cbind(dat.t,as.data.frame(diffsred(dat[,from:to],nitems))) } dat<-dat.t rm(dat.t) ncomp<-choose(nitems,2) if(undec){ ENV$U <- apply(ENV$Y[,1:ncomp],1,function(x) sum(x==0)) for (t in 2:tpoints){ from<-ncomp*(t-1)+1 to<-from+ncomp-1 ENV$U <- cbind(ENV$U,apply(ENV$Y[,from:to],1,function(x) sum(x==0))) } } ENV$undec<-undec ENV$NItest<-NItest if(ENV$NItest) { if(formel!="~1" || elim != "~1"){ covs<-NULL formel<-~1 elim<-~1 cat("\ncurrently no covariates fitted if NItest==TRUE !!\n") } } ENV$ia<-ia ilabels<-NULL XI<-NULL if (ia) { XI<-NULL ilabels<-NULL for (t in 1:tpoints){ from<-ncomp*(t-1)+1 to<-from+ncomp-1 depL<-dependencies(nitems,ENV$Y[,from:to]) XI<-cbind(XI,depL$d) ilabels<-c(ilabels,depL$label.intpars) } npars.ia<-length(ilabels) ilabels<-paste(rep(paste("T",1:tpoints,":",sep=""), rep(npars.ia/tpoints,tpoints)),ilabels,sep="") } else { ENV$ilabels<-NULL npars.ia<-0 } ENV$XI<-XI rm(XI) ENV$ilabels<-ilabels ENV$iaT<-iaT if (iaT) { npars.iaT<-ncomp*(tpoints-1) ENV$XIT<-do.call("cbind", lapply(1:npars.iaT,function(i) ENV$Y[,i]*ENV$Y[,i+ncomp])) ENV$iTlabels<-paste(paste("Comp",1:ncomp,sep=""), paste("IT",rep(1:(tpoints-1),rep(ncomp,tpoints-1)),rep(2:(tpoints),rep(ncomp,tpoints-1)),sep=""), sep=":") } else { ENV$iTlabels<-NULL npars.iaT<-0 } ncomp<-choose(nitems,2) X<- -(ENV$Y[,1:ncomp] %*% pcdesign(nitems))[,-nitems] for (t in 2:tpoints){ from<-ncomp*(t-1)+1 to<-from+ncomp-1 X<-cbind(X,-(ENV$Y[,from:to] %*% pcdesign(nitems))[,-nitems] ) } cList<-splitCovs(dat,covs,formel,elim,ENV) partsList<-gen.partsList(nobj,cList,ENV) rm(cList) npar <- tpoints*(nitems-1) * ENV$ncovpar + ENV$undec*tpoints + npars.ia + npars.iaT if (ENV$NItest) npar<-tpoints*(nitems-1)*2 + ENV$undec*tpoints + npars.ia + npars.iaT lambda<-rep(0,npar) ENV$iter<-0 nobj<-tpoints*(nitems-1) result<-nlm(loglik,lambda,X,nobj,partsList,ENV,hessian=TRUE, iterlim=1000) if (pr.it) cat("\n") options(opt) ENV$nobj<-nobj ENV$nitems<-nitems ENV$tpoints<-tpoints envList<-mget(ls(ENV),envir=ENV) outputobj<-list(coefficients=result$estimate, ll=ENV$ll, fl=ENV$fl, call=call, result=result, envList=envList, partsList=partsList) class(outputobj) <- c("pattMod") outputobj }
frm_em_calc_update_observed_likelihood <- function(like_obs, post_miss, dmod, mm, ind_resp, ind_miss ) { ind_resp_mm <- ind_resp[[mm]] if ( length(ind_resp_mm) > 0 ){ like_obs[ind_resp_mm] <- like_obs[ind_resp_mm] * dmod$like[ind_resp_mm] } ind_miss_mm <- ind_miss[[mm]] if ( length(ind_miss_mm) > 0 ){ post_miss[ind_miss_mm] <- post_miss[ind_miss_mm] * dmod$post[ind_miss_mm] } res <- list( like_obs=like_obs, post_miss=post_miss) return(res) }