code
stringlengths
1
13.8M
context("IData indexing operations") test_that("row-only indexing works correctly for Idata objects", { Xbnds <- data.frame(XLB=c(1,2,4),XUB=c(9,7,6),row.names=paste("Unit",1:3)) Ybnds <- data.frame(YLB=c(10,3,5),YUB=c(15,8,6),row.names=paste("Unit",1:3)) Allbnds <- cbind(Xbnds,Ybnds) Idt <- IData(Allbnds,VarNames = c("X","Y")) Idt2 <- IData(Allbnds[2,],VarNames = c("X","Y")) Idt13 <- IData(Allbnds[c(1,3),],VarNames = c("X","Y")) Idt31 <- IData(Allbnds[c(3,1),],VarNames = c("X","Y")) Idt23 <- IData(Allbnds[2:3,],VarNames = c("X","Y")) Idt32 <- IData(Allbnds[3:2,],VarNames = c("X","Y")) expect_identical(Idt[2,],Idt2) expect_identical(Idt[-c(1,3),],Idt2) expect_identical(Idt[c(1,3),],Idt13) expect_identical(Idt[-2,],Idt13) expect_identical(Idt[c(3,1),],Idt31) expect_identical(Idt[2:3,],Idt23) expect_identical(Idt[-1,],Idt23) expect_identical(Idt[3:2,],Idt32) } ) test_that("column-only indexing works correctly for Idata objects", { Lbnds <- data.frame(XLB=c(1,2,4),YLB=c(10,3,5),ZLB=c(8,5,4),row.names=paste("Unit",1:3)) Ubnds <- data.frame(XUB=c(9,7,6),YUB=c(15,8,6),ZUB=c(12,9,7),row.names=paste("Unit",1:3)) Idt <- IData(cbind(Lbnds,Ubnds),Seq="AllLb_AllUb",VarNames = c("X","Y","Z")) Idt2 <- IData(cbind(Lbnds[,2,drop=FALSE],Ubnds[,2,drop=FALSE]),Seq="AllLb_AllUb",VarNames = "Y") Idt13 <- IData(cbind(Lbnds[,c(1,3)],Ubnds[,c(1,3)]),Seq="AllLb_AllUb",VarNames = c("X","Z")) Idt31 <- IData(cbind(Lbnds[,c(3,1)],Ubnds[,c(3,1)]),Seq="AllLb_AllUb",VarNames = c("Z","X")) Idt23 <- IData(cbind(Lbnds[,2:3],Ubnds[,2:3]),Seq="AllLb_AllUb",VarNames = c("Y","Z")) Idt32 <- IData(cbind(Lbnds[,3:2],Ubnds[,3:2]),Seq="AllLb_AllUb",VarNames = c("Z","Y")) expect_identical(Idt[,2],Idt2) expect_identical(Idt[,-c(1,3)],Idt2) expect_identical(Idt[,c(1,3)],Idt13) expect_identical(Idt[,-2],Idt13) expect_identical(Idt[,c(3,1)],Idt31) expect_identical(Idt[,2:3],Idt23) expect_identical(Idt[,-1],Idt23) expect_identical(Idt[,3:2],Idt32) } ) test_that("indexing by both rows and columns works correctly for Idata objects", { Lbnds <- data.frame(XLB=c(1,2,4),YLB=c(10,3,5),ZLB=c(8,5,4),row.names=paste("Unit",1:3)) Ubnds <- data.frame(XUB=c(9,7,6),YUB=c(15,8,6),ZUB=c(12,9,7),row.names=paste("Unit",1:3)) Idt <- IData(cbind(Lbnds,Ubnds),Seq="AllLb_AllUb",VarNames = c("X","Y","Z")) Idtr2c3 <- IData(cbind(Lbnds[2,3,drop=FALSE],Ubnds[2,3,drop=FALSE]),Seq="AllLb_AllUb",VarNames = "Z") Idtr2c13 <- IData(cbind(Lbnds[2,c(1,3),drop=FALSE],Ubnds[2,c(1,3)]),Seq="AllLb_AllUb",VarNames = c("X","Z")) Idtr13c2 <- IData(cbind(Lbnds[c(1,3),2,drop=FALSE],Ubnds[c(1,3),2]),Seq="AllLb_AllUb",VarNames = "Y") Idtr13c21 <- IData(cbind(Lbnds[c(1,3),2:1],Ubnds[c(1,3),2:1]),Seq="AllLb_AllUb",VarNames = c("Y","X")) Idtr32c12 <- IData(cbind(Lbnds[3:2,1:2],Ubnds[3:2,1:2]),Seq="AllLb_AllUb",VarNames = c("X","Y")) expect_identical(Idt[2,3],Idtr2c3) expect_identical(Idt[-c(1,3),3],Idtr2c3) expect_identical(Idt[2,-(1:2)],Idtr2c3) expect_identical(Idt[-c(1,3),-c(1,2)],Idtr2c3) expect_identical(Idt[2,c(1,3)],Idtr2c13) expect_identical(Idt[-c(1,3),c(1,3)],Idtr2c13) expect_identical(Idt[2,-2],Idtr2c13) expect_identical(Idt[-c(1,3),-2],Idtr2c13) expect_identical(Idt[c(1,3),2],Idtr13c2) expect_identical(Idt[-2,2],Idtr13c2) expect_identical(Idt[c(1,3),-c(1,3)],Idtr13c2) expect_identical(Idt[-2,-c(1,3)],Idtr13c2) expect_identical(Idt[c(1,3),2:1],Idtr13c21) expect_identical(Idt[-2,2:1],Idtr13c21) expect_identical(Idt[3:2,1:2],Idtr32c12) expect_identical(Idt[3:2,-3],Idtr32c12) } )
rostdeviance <- function(object) { X <- object$X N <- dim(X)[1] K <- dim(X)[2] x.ch <- apply(X,1,toString) nx <- as.vector(table(x.ch)) lsat <- sum(nx*(log(nx/N))) npar.sat <- prod(apply(X, 2, max) + 1) - 1 rv <- rowSums(X, na.rm = TRUE) lmml <- sum(table(rv)*log(table(rv)/N))+object$loglik.cml npar.mml <- dim(object$W)[2] dev <- -2*(lmml - lsat) df.chi <- npar.sat - npar.mml p.value <- 1-pchisq(dev,df.chi) result <- list(value = dev, df = df.chi, p.value = p.value) return(result) }
dv_vs_idv <- function(xpdb, mapping = NULL, group = 'ID', type = 'pls', title = '@y vs. @x | @run', subtitle = 'Ofv: @ofv', caption = '@dir', tag = NULL, log = NULL, facets, .problem, quiet, ...) { check_xpdb(xpdb, check = 'data') if (missing(.problem)) .problem <- default_plot_problem(xpdb) check_problem(.problem, .subprob = NULL, .method = NULL) if (missing(quiet)) quiet <- xpdb$options$quiet if (missing(facets)) facets <- xpdb$xp_theme$facets xplot_scatter(xpdb = xpdb, group = group, quiet = quiet, opt = data_opt(.problem = .problem, filter = only_obs(xpdb, .problem, quiet)), mapping = aes_c(aes_string(x = xp_var(xpdb, .problem, type = 'idv')$col, y = xp_var(xpdb, .problem, type = 'dv')$col), mapping), type = type, facets = facets, xscale = check_scales('x', log), yscale = check_scales('y', log), title = title, subtitle = subtitle, caption = caption, tag = tag, plot_name = as.character(match.call()[[1]]), ...) } ipred_vs_idv <- function(xpdb, mapping = NULL, group = 'ID', type = 'pls', facets, title = '@y vs. @x | @run', subtitle = 'Ofv: @ofv, Eps shrink: @epsshk', caption = '@dir', tag = NULL, log = NULL, .problem, quiet, ...) { check_xpdb(xpdb, check = 'data') if (missing(.problem)) .problem <- default_plot_problem(xpdb) check_problem(.problem, .subprob = NULL, .method = NULL) if (missing(quiet)) quiet <- xpdb$options$quiet if (missing(facets)) facets <- xpdb$xp_theme$facets xplot_scatter(xpdb = xpdb, group = group, quiet = quiet, opt = data_opt(.problem = .problem, filter = only_obs(xpdb, .problem, quiet)), mapping = aes_c(aes_string(x = xp_var(xpdb, .problem, type = 'idv')$col, y = xp_var(xpdb, .problem, type = 'ipred')$col), mapping), type = type, facets = facets, xscale = check_scales('x', log), yscale = check_scales('y', log), title = title, subtitle = subtitle, caption = caption, tag = tag, plot_name = as.character(match.call()[[1]]), ...) } pred_vs_idv <- function(xpdb, mapping = NULL, group = 'ID', type = 'pls', facets, title = '@y vs. @x | @run', subtitle = 'Ofv: @ofv', caption = '@dir', tag = NULL, log = NULL, .problem, quiet, ...) { check_xpdb(xpdb, check = 'data') if (missing(.problem)) .problem <- default_plot_problem(xpdb) check_problem(.problem, .subprob = NULL, .method = NULL) if (missing(quiet)) quiet <- xpdb$options$quiet if (missing(facets)) facets <- xpdb$xp_theme$facets xplot_scatter(xpdb = xpdb, group = group, quiet = quiet, opt = data_opt(.problem = .problem, filter = only_obs(xpdb, .problem, quiet)), mapping = aes_c(aes_string(x = xp_var(xpdb, .problem, type = 'idv')$col, y = xp_var(xpdb, .problem, type = 'pred')$col), mapping), type = type, facets = facets, xscale = check_scales('x', log), yscale = check_scales('y', log), title = title, subtitle = subtitle, caption = caption, tag = tag, plot_name = as.character(match.call()[[1]]), ...) } dv_preds_vs_idv <- function(xpdb, mapping = NULL, group = 'ID', type = 'pls', facets, title = 'Observations, Individual and Population Predictions vs. @x | @run', subtitle = 'Ofv: @ofv, Eps shrink: @epsshk', caption = '@dir', tag = NULL, log = NULL, .problem, quiet, ...) { check_xpdb(xpdb, check = 'data') if (missing(.problem)) .problem <- default_plot_problem(xpdb) check_problem(.problem, .subprob = NULL, .method = NULL) if (missing(quiet)) quiet <- xpdb$options$quiet if (missing(facets)) facets <- add_facet_var(facets = xpdb$xp_theme$facets, variable = 'variable') xplot_scatter(xpdb = xpdb, group = group, quiet = quiet, opt = data_opt(.problem = .problem, tidy = TRUE, filter = only_obs(xpdb, .problem, quiet), value_col = xp_var(xpdb, .problem, type = c('dv', 'pred', 'ipred'))$col), mapping = aes_c(aes_string(x = xp_var(xpdb, .problem, type = 'idv')$col, y = 'value'), mapping), type = type, guide = FALSE, facets = facets, xscale = check_scales('x', log), yscale = check_scales('y', log), title = title, subtitle = subtitle, caption = caption, tag = tag, plot_name = as.character(match.call()[[1]]), ...) }
prepareFiles <- function(listOfFiles) { listOfFiles = gsub("^file://","", listOfFiles) listOfFiles = normalizePath(path.expand(listOfFiles)) return(listOfFiles) }
DNbuilder.core <- function(model, data, clevel, m.summary, covariate, DNtitle, DNxlab, DNylab, DNlimits) { mclass <- getclass.DN(model)$model.class mfamily <- getclass.DN(model)$model.family if (mclass %in% c("lm", "ols")){ mlinkF <- function(eta) eta } else{ mlinkF <- ifelse(mclass == "lrm", function(mu) plogis(mu), model$family$linkinv) } input.data <- NULL old.d <- NULL if (mclass %in% c("ols", "Glm", "lrm")){ model <- update(model, x=T, y=T) } allvars <- all.vars(model$terms) if (mclass %in% c("ols", "lrm", "Glm")){ terms <- model$Design$assume[model$Design$assume!="interaction"] names(terms) = model$Design$name[model$Design$assume!="interaction"] if (mclass %in% c("Glm")){ terms <- c(attr(attr(model$model, "terms"), "dataClasses")[1], terms) } else{ terms <- c(attr(model$terms,"dataClasses")[1], terms) } } if (mclass %in% c("lm", "glm", "gam", "Gam")){ if(length(attr(model$terms, "dataClasses")) == length(allvars)){ terms <- attr(model$terms, "dataClasses") names(terms) = allvars } else{ terms <- attr(model$terms, "dataClasses")[which(names(attr(model$terms, "dataClasses")) %in% allvars)] } } if (terms[[1]] == "logical") stop("Error in model syntax: logical form for response not supported") terms[terms %in% c("numeric", "asis", "polynomial", "integer", "double", "matrx") | grepl("nmatrix", terms, fixed = T) | grepl("spline", terms, fixed = T)] = "numeric" terms[terms %in% c("factor", "ordered", "logical", "category", "scored")] = "factor" resp <- terms[1] names(resp) <- allvars[1] if ("(weights)" %in% names(terms)){ preds <- as.list(terms[-c(1, length(terms))]) } else{ preds <- as.list(terms[-1]) } names(preds) <- allvars[-1] for (i in 1:length(preds)){ if (preds[[i]] == "numeric"){ i.dat <- which(names(preds[i]) == names(data)) preds[[i]] <- list(v.min = floor(min(na.omit(data[, as.numeric(i.dat)]))), v.max = ceiling(max(na.omit(data[, as.numeric(i.dat)]))), v.mean = zapsmall(mean(data[, as.numeric(i.dat)], na.rm=T), digits = 4) ) next } if (preds[[i]] == "factor"){ i.dat <- which(names(preds[i]) == names(data)) if (mclass %in% c("ols", "Glm", "lrm", "cph")){ preds[[i]] <- list(v.levels = model$Design$parms[[which(names(preds[i]) == names(model$Design$parms))]]) } else{ preds[[i]] <- list(v.levels = model$xlevels[[which(names(preds[i]) == names(model$xlevels))]]) } } } if (!is.null(DNlimits) & !length(DNlimits)==2) stop("A vector of 2 is required as 'DNlimits'") if (is.null(DNlimits)){ if ((mclass %in% c("glm") & mfamily %in% c("binomial", "quasibinomial")) | mclass == "lrm"){ limits0 <- c(0, 1) } else{ if (mclass %in% c("lm", "glm", "gam", "Gam")) { limits0 <- c(mean(model$model[,names(resp)]) - 3 * sd(model$model[,names(resp)]), mean(model$model[,names(resp)]) + 3 * sd(model$model[,names(resp)])) } if (mclass %in% c("ols", "lrm", "Glm")) { limits0 <- c(mean(model$y) - 3 * sd(model$y), mean(model$y) + 3 * sd(model$y)) } } if (mclass %in% c("glm", "Glm") & mfamily %in% c("poisson", "quasipoisson", "Gamma")){ limits0[1] <- 0 } } else{ limits0 <- DNlimits } neededVar <- c(names(resp), names(preds)) data <- data[, neededVar] input.data <- data[0, ] model <- update(model, data=data) wdir <- getwd() app.dir <- paste(wdir, "DynNomapp", sep="/") message(paste("creating new directory: ", app.dir, sep="")) dir.create(app.dir) setwd(app.dir) message(paste("Export dataset: ", app.dir, "/dataset.RData", sep="")) save(data, model, preds, resp, mlinkF, getpred.DN, getclass.DN, DNtitle, DNxlab, DNylab, DNlimits, limits0, terms, input.data, file = "data.RData") message(paste("Export functions: ", app.dir, "/functions.R", sep="")) dump(c("getpred.DN", "getclass.DN"), file="functions.R") if (!is.null(DNlimits)) { limits.bl <- paste("limits <- reactive({ DNlimits })") } else{ limits.bl <- paste("limits <- reactive({ if (input$limits) { limits <- c(input$lxlim, input$uxlim) } else { limits <- limits0 } })") } noSE.bl <- paste("by '", mclass, "'", sep="") p1title.bl <- paste(clevel * 100, "% ", "Confidence Interval for Response", sep = "") p1msg.bl <- paste("Confidence interval is not available as there is no standard errors available by '", mclass, "' ", sep="") if (m.summary == "formatted"){ if (mclass == "lm"){ sumtitle.bl <- paste("Linear Regression:", model$call[2], sep = " ") } if (mclass %in% c("glm")){ sumtitle.bl <- paste(mfamily, " regression (", model$family$link, "): ", model$formula[2], " ", model$formula[1], " ", model$formula[3], sep = "") } if (mclass %in% c("ols", "lrm", "Glm")){ sumtitle.bl <- paste("Linear Regression:", model$call[2], sep = " ") } } else{ sumtitle.bl = NULL } if (m.summary == "formatted"){ if (mclass %in% c("lm", "glm", "ols", "lrm", "Glm")){ sum.bi <- paste("stargazer(model, type = 'text', omit.stat = c('LL', 'ser', 'f'), ci = TRUE, ci.level = clevel, single.row = TRUE, title = '", sumtitle.bl,"')", sep="") } if (mclass == "gam"){ sum.bi <- paste("Msum <- list(summary(model)$formula, summary(model)$p.table, summary(model)$s.table) invisible(lapply(1:3, function(i){ cat(sep='', names(Msum)[i], '\n') ; print(Msum[[i]])}))") } if (mclass == "Gam"){ sum.bi <- paste("Msum <- list(model$formula, summary(model)$parametric.anova, summary(model)$anova) invisible(lapply(1:3, function(i){ cat(sep='', names(Msum)[i], '\n')) ; print(Msum[[i]])}))") }} if (m.summary == "raw"){ if (mclass %in% c("ols", "Glm", "lrm")){ sum.bi <- paste("print(model)") } else{ sum.bi <- paste("summary(model)") }} if (mclass %in% c("ols", "Glm", "lrm")){ datadist.bl <- paste("t.dist <- datadist(data) options(datadist = 't.dist')", sep="") } else{ datadist.bl <- "" } if (mclass %in% c("lm", "glm")){ library.bl <- "" } else{ if (mclass %in% c("ols", "Glm", "lrm")){ library.bl <- paste("library(rms)") } if (mclass %in% c("Gam")){ library.bl <- paste("library(gam)") } if (mclass %in% c("gam")){ library.bl <- paste("library(mgcv)") } } GLOBAL=paste("library(ggplot2) library(shiny) library(plotly) library(stargazer) library(compare) library(prediction) ", library.bl ," load('data.RData') source('functions.R') ", datadist.bl," m.summary <- '",m.summary,"' covariate <- '", covariate,"' clevel <- ", clevel," ", sep="") UI=paste("ui = bootstrapPage(fluidPage( titlePanel('", DNtitle,"'), sidebarLayout(sidebarPanel(uiOutput('manySliders'), uiOutput('setlimits'), actionButton('add', 'Predict'), br(), br(), helpText('Press Quit to exit the application'), actionButton('quit', 'Quit') ), mainPanel(tabsetPanel(id = 'tabs', tabPanel('Graphical Summary', plotlyOutput('plot')), tabPanel('Numerical Summary', verbatimTextOutput('data.pred')), tabPanel('Model Summary', verbatimTextOutput('summary')) ) ) )))", sep = "") SERVER=paste('server = function(input, output){ observe({if (input$quit == 1) stopApp()}) ', limits.bl, ' output$manySliders <- renderUI({ slide.bars <- list() for (j in 1:length(preds)){ if (terms[j+1] == "factor"){ slide.bars[[j]] <- list(selectInput(paste("pred", j, sep = ""), names(preds)[j], preds[[j]]$v.levels, multiple = FALSE)) } if (terms[j+1] == "numeric"){ if (covariate == "slider") { slide.bars[[j]] <- list(sliderInput(paste("pred", j, sep = ""), names(preds)[j], min = preds[[j]]$v.min, max = preds[[j]]$v.max, value = preds[[j]]$v.mean)) } if (covariate == "numeric") { slide.bars[[j]] <- list(numericInput(paste("pred", j, sep = ""), names(preds)[j], value = zapsmall(preds[[j]]$v.mean, digits = 4))) }}} do.call(tagList, slide.bars) }) output$setlimits <- renderUI({ if (is.null(DNlimits)){ setlim <- list(checkboxInput("limits", "Set x-axis ranges"), conditionalPanel(condition = "input.limits == true", numericInput("uxlim", "x-axis upper", zapsmall(limits0[2], digits = 2)), numericInput("lxlim", "x-axis lower", zapsmall(limits0[1], digits = 2)))) } else{ setlim <- NULL } setlim }) a <- 0 new.d <- reactive({ input$add input.v <- vector("list", length(preds)) for (i in 1:length(preds)) { input.v[[i]] <- isolate({ input[[paste("pred", i, sep = "")]] }) names(input.v)[i] <- names(preds)[i] } out <- data.frame(lapply(input.v, cbind)) if (a == 0) { input.data <<- rbind(input.data, out) } if (a > 0) { if (!isTRUE(compare(old.d, out))) { input.data <<- rbind(input.data, out) }} a <<- a + 1 out }) p1 <- NULL old.d <- NULL data2 <- reactive({ if (input$add == 0) return(NULL) if (input$add > 0) { if (!isTRUE(compare(old.d, new.d()))) { isolate({ mpred <- getpred.DN(model, new.d(), set.rms=T)$pred se.pred <- getpred.DN(model, new.d(), set.rms=T)$SEpred if (is.na(se.pred)) { lwb <- "No standard errors" upb <- "', noSE.bl,'" pred <- mlinkF(mpred) d.p <- data.frame(Prediction = zapsmall(pred, digits = 3), Lower.bound = lwb, Upper.bound = upb) } else { lwb <- sort(mlinkF(mpred + cbind(1, -1) * (qnorm(1 - (1 - clevel)/2) * se.pred)))[1] upb <- sort(mlinkF(mpred + cbind(1, -1) * (qnorm(1 - (1 - clevel)/2) * se.pred)))[2] pred <- mlinkF(mpred) d.p <- data.frame(Prediction = zapsmall(pred, digits = 3), Lower.bound = zapsmall(lwb, digits = 3), Upper.bound = zapsmall(upb, digits = 3)) } old.d <<- new.d() data.p <- cbind(d.p, counter = 1, count=0) p1 <<- rbind(p1, data.p) p1$counter <- seq(1, dim(p1)[1]) p1$count <- 0:(dim(p1)[1]-1) %% 11 + 1 p1 }) } else { p1$count <- seq(1, dim(p1)[1]) }} rownames(p1) <- c() p1 }) output$plot <- renderPlotly({ if (input$add == 0) return(NULL) if (is.null(new.d())) return(NULL) coll=c(" " lim <- limits() yli <- c(0 - 0.5, 10 + 0.5) dat2 <- data2() if (dim(data2())[1] > 11){ input.data = input.data[-c(1:(dim(input.data)[1]-11)),] dat2 <- data2()[-c(1:(dim(data2())[1]-11)),] yli <- c(dim(data2())[1] - 11.5, dim(data2())[1] - 0.5) } in.d <- input.data xx <- matrix(paste(names(in.d), ": ", t(in.d), sep = ""), ncol = dim(in.d)[1]) Covariates <- apply(xx, 2, paste, collapse = "<br />") p <- ggplot(data = dat2, aes(x = Prediction, y = counter - 1, text = Covariates, label = Prediction, label2 = Lower.bound, label3=Upper.bound)) + geom_point(size = 2, colour = coll[dat2$count], shape = 15) + ylim(yli[1], yli[2]) + coord_cartesian(xlim = lim) + labs(title = "', p1title.bl,'", x = "', DNxlab,'", y = "', DNylab,'") + theme_bw() + theme(axis.text.y = element_blank(), text = element_text(face = "bold", size = 10)) if (is.numeric(dat2$Upper.bound)){ p <- p + geom_errorbarh(xmax = dat2$Upper.bound, xmin = dat2$Lower.bound, size = 1.45, height = 0.4, colour = coll[dat2$count]) } else{ message("', p1msg.bl,'") } gp <- ggplotly(p, tooltip = c("text", "label", "label2", "label3")) gp$elementId <- NULL gp }) output$data.pred <- renderPrint({ if (input$add > 0) { if (nrow(data2()) > 0) { if (dim(input.data)[2] == 1) { in.d <- data.frame(input.data) names(in.d) <- names(terms)[2] data.p <- cbind(in.d, data2()[1:3]) } if (dim(input.data)[2] > 1) { data.p <- cbind(input.data, data2()[1:3]) }} stargazer(data.p, summary = FALSE, type = "text") } }) output$summary <- renderPrint({ ', sum.bi,' }) }', sep = "") output=list(ui=UI, server=SERVER, global=GLOBAL) text <- paste("This guide will describe how to deploy a shiny application using scripts generated by DNbuilder: 1. Run the shiny app by setting your working directory to the DynNomapp folder, and then run: shiny::runApp() If you are using the RStudio IDE, you can also run it by clicking the Run App button in the editor toolbar after open one of the R scripts. 2. You could modify codes to apply all the necessary changes. Run again to confirm that your application works perfectly. 3. Deploy the application by either clicking on the Publish button in the top right corner of the running app, or use the generated files and deploy it on your server if you host any. You can find a full guide of how to deploy an application on shinyapp.io server here: http://docs.rstudio.com/shinyapps.io/getting-started.html Please cite the package if using in publication.", sep="") message(paste("writing file: ", app.dir, "/README.txt", sep="")) writeLines(text, "README.txt") message(paste("writing file: ", app.dir, "/ui.R", sep="")) writeLines(output$ui, "ui.R") message(paste("writing file: ", app.dir, "/server.R", sep="")) writeLines(output$server, "server.R") message(paste("writing file: ", app.dir, "/global.R", sep="")) writeLines(output$global, "global.R") setwd(wdir) }
context("Exchange method updating objective") library("anticlust") test_that("computing distance objectives in specialized exchange method is equal to generic method", { for (M in 1:4) { for (K in 2:5) { for (i in 3:8) { N <- K * i features <- matrix(rnorm(N * M), ncol = M) distances <- as.matrix(dist(features)) clusters <- sample(rep(1:K, N/K)) objective <- diversity_objective_(clusters, distances) objective2 <- diversity_objective_(clusters, features) expect_equal(objective, objective2) to_swap <- sample(1:K, size = 2) swap1 <- which(clusters == to_swap[1])[1] swap2 <- which(clusters == to_swap[2])[1] selected <- selection_matrix_from_clusters(clusters) obj1 <- update_objective_distance(distances, selected, swap1, swap2, objective) obj2 <- update_objective_generic(distances, clusters, swap1, swap2, diversity_objective) expect_equal(obj1, obj2) } } } })
crop_row_finder <- function(picture_list, ratio, final_ratio, intensity) { best_image <- best_rotation(picture_list, ratio, intensity) crop_rows <- crop_lines(picture_list, final_ratio, best_image, intensity) return(crop_rows) }
context("allocationTable.R") if (file.exists("local-token.Rdata")){ load("local-token.Rdata") } else { url <- "https://redcap.notaplace.net/redcap/api/" token_case_01 <- "NOTaREALtoken1234567890123456789" token_case_20 <- token_case_01 } rcon <- redcapConnection(url, token_case_20) test_that( "Allocation Table can be generated", { expect_silent( allocationTable(rcon, random = "treatment", replicates = 8, block.size = 8, seed.dev = 10, seed.prod = 20, weights = c(Control = 1, Treatment = 1)) ) } ) test_that( "Allocation Table in offline style", { meta_data20 <- exportMetaData(rcon) write.csv(meta_data20, "MetaDataForAllocation.csv", na = "", row.names = FALSE) on.exit(file.remove("MetaDataForAllocation.csv")) expect_silent( allocationTable_offline("MetaDataForAllocation.csv", random = "treatment", replicates = 8, block.size = 8, seed.dev = 10, seed.prod = 20, weights = c(Control = 1, Treatment = 1)) ) } )
"volcano_arr"
organize_caes <- function(base){ if ('PP04B_CAES' %in% names(base)) { warning("Creando nueva variable PP04B_COD como copia de PP04B_CAES por compatibilidad.") base <- base %>% dplyr::mutate(PP04B_COD = dplyr::case_when(ANO4 %in% 2011:2015 ~ PP04B_CAES, TRUE~ PP04B_COD)) } warning("Convirtiendo PP04B_COD a character") base <- base %>% dplyr::mutate(PP04B_COD = as.character(PP04B_COD), PP04B_COD = dplyr::case_when(nchar(PP04B_COD) == 1 ~ paste0("0", PP04B_COD), nchar(PP04B_COD) == 2 ~ PP04B_COD, nchar(PP04B_COD) == 3 ~ paste0("0", PP04B_COD), nchar(PP04B_COD) == 4 ~ PP04B_COD), caes_version = dplyr::case_when(ANO4 >= 2011 ~ "1.0", ANO4 < 2011 ~ "0")) base <- base %>% dplyr::left_join(caes, by = c("PP04B_COD","caes_version")) if(any(base$ANO4 < 2011) & any(base$ANO4 >= 2011)){ warning("Para los datos anteriores a 2011 se aplico la clasificacion CAES v.0 y para los de 2011 en adelante la clasificacion CAES v.1.0") } return(base) }
predict_grp <- function(E_ini_fun,beta_fun,A_fun,correl_fun, tol=0.00000001) { n_fun <- length(A_fun) E_ini_fun <- as.matrix(E_ini_fun) if (correl_fun=="Comp"|correl_fun=="SC") { beta_fun <- diag(1,n_fun) } B_fun <- compute.B.from.beta(beta_fun) L_Phi_fun <- class_group(beta_fun) p_fun <- length(L_Phi_fun) grp_typ <- group_types(beta_fun) is.correl.authorized(correl_fun) is.beta.accurate(beta_fun,n_fun,correl_fun) if (length(E_ini_fun)!=n_fun) { stop("An enzyme are missing. A_fun and E_ini_fun have not the same length.") } eq_ingrp <- rep(NA,n_fun) eq_btwgrp <- rep(NA,p_fun) eq_total <- rep(NA,n_fun) eq_tau <- rep(NA,p_fun) Eq_btwgrp <- rep(NA,p_fun) E_fun <- rep(NA,n_fun) if (any(correl_fun==c("SC","RegPos","RegNeg"))) { for (q in 1:p_fun) { phi_q <- L_Phi_fun[[q]] which.typ.q <- search_group(q,grp_typ) if(names(which.typ.q)=="grp_pos") { eq_ingrp[phi_q] <- predict_th(A_fun[phi_q],"RegPos",B_fun[phi_q])$pred_e eq_tau[q] <- 1 E_fun[phi_q] <- Inf } if(names(which.typ.q)=="grp_single") { eq_ingrp[phi_q] <- 1 E_fun[phi_q] <- Inf } if(names(which.typ.q)=="grp_neg") { eq_values <- predict_eff(E_ini_fun[phi_q],B_fun[phi_q],A_fun[phi_q],"RegNeg") eq_ingrp[phi_q] <- eq_values$pred_e eq_tau[q] <- eq_values$pred_tau E_fun[phi_q] <- eq_values$pred_E } Eq_btwgrp[q] <- sum(E_fun[phi_q]) } A_app <- unlist(lapply(L_Phi_fun,apparent.activities.Aq,A_fun,B_fun,correl_fun)) if (length(grp_typ$grp_neg)==0) { eq_btwgrp <- predict_th(A_app,"SC")$pred_e } if (length(grp_typ$grp_neg)==p_fun) { eq_btwgrp <- Eq_btwgrp/sum(Eq_btwgrp) } if (length(grp_typ$grp_neg)>0 & length(grp_typ$grp_neg)<p_fun) { for (q in 1:p_fun) { which.typ.q <- search_group(q,grp_typ) if(names(which.typ.q)=="grp_neg") { eq_btwgrp[q] <- 0 } else { grp_pos_sgl <- c(grp_typ$grp_pos,grp_typ$grp_single) eq_btwgrp[grp_pos_sgl] <- predict_th(A_app[grp_pos_sgl],"SC")$pred_e } } } Etot_fun <- sum(E_fun) } if (any(correl_fun==c("Comp","CRPos","CRNeg"))) { for (q in 1:p_fun) { phi_q <- unlist(L_Phi_fun[[q]]) if (correl_fun=="Comp"|length(phi_q)==1) { eq_ingrp[phi_q] <- 1 } else { nb_not_single <- sum(length(grp_typ$grp_pos),length(grp_typ$grp_neg)) if (nb_not_single==1) { eq_values <- predict_eff(E_ini_fun[phi_q],B_fun[phi_q],A_fun[phi_q],correl_fun) eq_ingrp[phi_q] <- eq_values$pred_e eq_tau <- eq_values$pred_tau } } } A_app <- unlist(lapply(L_Phi_fun,apparent.activities.Aq,A_fun,B_fun,correl_fun,eiq_eff=eq_ingrp)) eq_btwgrp <- predict_th(A_app,"Comp")$pred_e } for (j in 1:n_fun){ eq_total[j] <- eq_ingrp[j]*eq_btwgrp[search_group(j,L_Phi_fun)] } if (any(correl_fun==c("Comp","CRPos","CRNeg"))) { Etot_fun <- sum(E_ini_fun) Eq_btwgrp <- eq_btwgrp*Etot_fun E_fun <- eq_total*Etot_fun } return(list(pred_eiq=eq_ingrp, pred_eq=eq_btwgrp, pred_ei=eq_total, pred_tau=eq_tau, pred_Ei=E_fun, pred_Eq=Eq_btwgrp, pred_Etot=Etot_fun)) }
"tgp.choose.as" <- function(out, as) { if(is.null(as) || as == "s2" || as == "ks2") { X <- out$XX if(is.null(as)) { criteria <- c(out$Zp.q, out$ZZ.q) name <- "quantile diff (error)" if(!is.null(out$Zp.q)) X <- rbind(out$X, X) } else if(as == "ks2") { criteria = c(out$Zp.ks2, out$ZZ.ks2) name <- "kriging var" if(!is.null(out$Zp.ks2)) X <- rbind(out$X, X) } else { if(is.matrix(out$Zp.s2)) criteria <- c(diag(out$Zp.s2), diag(out$ZZ.s2)) else criteria <- c(out$Zp.s2, out$ZZ.s2) name <- "pred var" if(!is.null(out$Zp.s2)) X <- rbind(out$X, X) } } else { X <- out$XX criteria <- out$ZZ.q name <- "ALM stats" if(as == "alc") { if(is.null(out$Ds2x)) cat("NOTICE: out$Ds2x is NULL, using ALM\n") else { criteria <- out$Ds2x; name <- "ALC stats" } } else if(as == "improv") { if(is.null(out$improv)) cat("NOTICE: out$improv is NULL, using ALM\n") else { criteria <- out$improv[,1]; name <- paste("Improv stats (g=", out$g[1], ")", sep="") } } else if(as != "alm") warning(paste("as criteria \"", as, "\" not recognized; defaulting to \"alm\"", sep="")) } if(is.null(criteria)) stop("no predictive data, so nothing to plot") return(list(X=X, criteria=criteria, name=name)) } "tgp.choose.center" <- function(out, center) { X <- out$XX if(center != "mean" && center != "med" && center != "km") { warning(paste("center = \"", center, "\" invalid, defaulting to \"mean\"\n", sep="")) center <- "mean" } if(center == "med") { name <- "median"; Z <- c(out$Zp.med, out$ZZ.med) if(!is.null(out$Zp.med)) X <- rbind(out$X, X) } else if(center == "km") { name <- "kriging mean"; Z <- c(out$Zp.km, out$ZZ.km) if(!is.null(out$Zp.km)) X <- rbind(out$X, X) } else { name <- "mean"; Z <- c(out$Zp.mean, out$ZZ.mean) if(!is.null(out$Zp.mean)) X <- rbind(out$X, X) } if(is.null(Z)) stop("no predictive data, so nothing to plot") return(list(X=X, Z=Z, name=name)) }
get.series.bacen<- function(x, from = "", to = ""){ if (missing(x)){ stop("Need to specify at least one serie.") } if (! is.numeric(x)){ stop("Argument x must be numeric.") } if (from == ""){ data_init = "01/01/1980" } else {data_init = from} if (to == ""){ data_end = format(Sys.Date(), "%d/%m/%Y") } else {data_end = to} inputs = as.character(x) len = seq_along(inputs) serie = mapply(paste0, "serie_", inputs, USE.NAMES = FALSE) for (i in len){ result = tryCatch({ RCurl::getURL(paste0('http://api.bcb.gov.br/dados/serie/bcdata.sgs.', inputs[i], '/dados?formato=csv&dataInicial=', data_init, '&dataFinal=', data_end), ssl.verifyhost=FALSE, ssl.verifypeer=FALSE, .opts = list(timeout = 1, maxredirs = 2)) }, error = function(e) { return(RCurl::getURL(paste0('http://api.bcb.gov.br/dados/serie/bcdata.sgs.', inputs[i], '/dados?formato=csv&dataInicial=', data_init, '&dataFinal=', data_end), ssl.verifyhost=FALSE, ssl.verifypeer=FALSE)) }) assign(serie[i], result) } sinal = tryCatch({ for (i in len){ texto = utils::read.csv2(textConnection(eval(as.symbol( serie[i]))), header=T) texto$data = gsub(' .*$','', eval(texto$data)) assign(serie[i], texto) }}, error = function(e){ return("error") }) if(sinal == "error"){ for(i in len){ texto=tryCatch({ k = paste0('http://api.bcb.gov.br/dados/serie/bcdata.sgs.', inputs[i], '/dados?formato=csv&dataInicial=', data_init, '&dataFinal=', data_end) dados = httr::GET(k) aux = content(dados,'raw') aux2=rawToChar(aux) DF <- data.frame(do.call(cbind, strsplit(aux2, "\r\n", fixed=TRUE))) names(DF) <-"mist" DF$mist <- as.character(DF$mist) DF$mist<- gsub(x = DF$mist,pattern = '"',replacement = "") DF$data <- gsub(x = DF$mist,pattern = ";.*",replacement = "") DF$valor <- gsub(x = DF$mist,pattern = ".*;",replacement = "") DF$valor <- gsub(x = DF$valor,pattern = ",",replacement = ".") DF <- DF[-1,-1] })} assign(serie[i], result) } if(sinal == "error"){ for (i in len){ texto$data = gsub(' .*$','', eval(texto$data)) assign(serie[i], texto) } } if(ncol(texto) == 1){ for (i in len){ texto = utils::read.csv(textConnection(eval(as.symbol( serie[i]))), header=T) texto$data = gsub(' .*$','', eval(texto$data)) assign(serie[i], texto) } } rm(texto) lista = list() ls_df = ls()[grepl('data.frame', sapply(ls(), function(x) class(get(x))))] for ( obj in ls_df ) { lista[obj]=list(get(obj)) } return(lista) }
multistageoptimum.search<-function (maseff=0.4, VGCAandE, VSCA=c(0,0,0,0), CostProd = c(0.5,1,1), CostTest = c(0.5,1,1), Nf = 10, Budget = 10021, N2grid = c(11, 1211, 30), N3grid = c(11, 211, 5), L2grid=c(1,3,1), L3grid=c(6,8,1), T2grid=c(1,1,1), T3grid=c(1,1,1),R2=1,R3=1, alg = Miwa(),detail=FALSE,fig=FALSE, alpha.nursery=1,cost.nursery=c(0,0) ,t2free= FALSE, parallel.search=FALSE ) { if (parallel.search) { no_cores <- detectCores() - 1 cl <- makeCluster(no_cores); clusterEvalQ(cl,{library(selectiongain);source("multistageoptimum.grid.R")}) } Vgca=VGCAandE Vsca=VSCA L2limit=L2grid L3limit=L3grid T2limit=T2grid T3limit=T3grid alpha.nur=alpha.nursery Cost.nur=cost.nursery dim=(T3limit[2]-T3limit[1]+1)/T3limit[3]*(T2limit[2]-T2limit[1]+1)/T2limit[3]*(L3limit[2]-L3limit[1]+1)/L3limit[3]*(L2limit[2]-L2limit[1]+1)/L2limit[3] gainmatrix=array(0,c(1,18)) colnames(gainmatrix)<-c("Nf","Nini","alpha.nur","N1","N2","N3","L2","L3","T2","T3","R2","R3","Bini","B1","B2","B3","Budget","Gain") if (alpha.nur == 1 ) { CostProdMod1<-CostProd[1]+Cost.nur[1] warning("No nursery is used as alpha.nursery is set to 1. Then cost of production in Nursery added to CostProd[1]") } else { CostProdMod1<-CostProd[1] } if (Budget< c(N2grid[1]*L2grid[1]*T2grid[1]+N3grid[1]*L3grid[1]*T3grid[1])) { warning("budget too small, try value => c(N2grid[1]*L2grid[1]*T2grid[1]+N3grid[1]*L3grid[1]*T3grid[1])") } if (Budget> c(N2grid[2]*L2grid[2]*T2grid[2]+N3grid[2]*L3grid[2]*T3grid[2])) { warning("budget too great, try value => c(N2grid[2]*L2grid[2]*T2grid[2]+N3grid[2]*L3grid[2]*T3grid[2])") } if (length(CostTest)!= 3) { stop( "dimension of CostTest has to be 3") } if (length(CostProd)!= 3) { stop( "dimension of CostProd has to be 3") } for (T3 in seq.int(T3limit[1],T3limit[2],T3limit[3])) { for (T2 in seq.int(T2limit[1],T2limit[2],T2limit[3])) { for (L3 in L3limit[1]:L3limit[2]) { for (L2 in L2limit[1]:L2limit[2]) { allocation = c(Nf,0,alpha.nur,0,0,0,L2,L3,T2,T3,R2,R3,0,0,0,0,0,0) gainmatrix=rbind(gainmatrix,allocation) } } } } theloop<-function(j,gainmatrix, N2grid= N2grid, N3grid= N3grid,maseff,t2free,CostTest=CostTest,CostProd=CostProd,Budget=Budget,Nf=Nf,alg=alg,cost.nursery=c(0,0) ) { i=j+1 Cost.nur=cost.nursery alpha.nur=gainmatrix[i,"alpha.nur"] L3=gainmatrix[i,"L3"] L2=gainmatrix[i,"L2"] T3=gainmatrix[i,"T3"] T2=gainmatrix[i,"T2"] R3=gainmatrix[i,"R3"] R2=gainmatrix[i,"R2"] N.fs=gainmatrix[i,"Nf"] L1=1 T1=1 R1=1 if (!is.na(maseff)) { corr.longin.mas.index = multistagecor(VGCAandE=Vgca,VSCA=Vsca,L=c(L1,L2,L3),Rep=c(R1,R2,R3),T=c(T1,T2,T3),index=FALSE,maseff=maseff) corr.matrix=corr.longin.mas.index CostTestloop=c(CostTest[1],CostTest[2]*L2*T2*R2,CostTest[3]*L3*T3*R3) if(t2free) { CostProdloop=c(CostProd[1],CostProd[2]*T2,CostProd[3]*(T3-T2)) }else { CostProdloop=c(CostProd[1],CostProd[2]*T2,CostProd[3]*T3) } result=multistageoptimum.grid(N.upper = c(100000,N2grid[2],N3grid[2]), N.lower = c(1,N2grid[1],N3grid[1]), Vg=Vgca[1],corr = corr.matrix, width = c(1,N2grid[3],N3grid[3]), Budget = Budget, CostProd =CostProdloop, CostTest = CostTestloop, Nf = Nf, detail = FALSE, alg = Miwa(),fig=FALSE ,alpha.nursery = alpha.nur,cost.nursery = Cost.nur ) gainmatrix[i,"Budget"]=Budget gainmatrix[i,"Nini"]= result[1] gainmatrix[i,"Bini"]= result[1]*(Cost.nur[1]+Cost.nur[2]) gainmatrix[i,"N1"]= result[2] gainmatrix[i,"B1"]= result[2]*(CostTest[1]+CostProdMod1) gainmatrix[i,"N2"]= result[3] gainmatrix[i,"N3"]= result[4] gainmatrix[i,"B2"]= result[3]*( (L2*T2*R2*CostTest[2])+(CostProd[2]*T2)) if(t2free) { gainmatrix[i,"B3"]= result[4]*( (L3*T3*R3*CostTest[3])+(CostProd[3]*(T3-T2))) }else { gainmatrix[i,"B3"]= result[4]*( (L3*T3*R3*CostTest[3])+(CostProd[3]*T3)) } gainmatrix[i,"Gain"]= result[5] }else { corr.longin.mas.index = multistagecor(VGCAandE=Vgca,VSCA=Vsca,L=c(L2,L3),Rep=c(R2,R3),T=c(T2,T3),index=FALSE,maseff=maseff) corr.matrix=corr.longin.mas.index CostTestloop=c(CostTest[2]*L2*T2*R2,CostTest[3]*L3*T3*R3) if(t2free) { CostProdloop=c(CostProd[1]+(CostProd[2]*T2),CostProd[3]*(T3-T2)) }else { CostProdloop=c(CostProd[1]+(CostProd[2]*T2),CostProd[3]*T3) } result=multistageoptimum.grid( N.upper = c(N2grid[2],N3grid[2]), N.lower = c(N2grid[1],N3grid[1]), Vg=Vgca[1],corr = corr.matrix, width = c(N2grid[3],N3grid[3]), Budget = Budget, CostProd =CostProdloop, CostTest = CostTestloop, Nf = Nf, detail = FALSE, alg = Miwa(),fig=FALSE ,alpha.nursery = alpha.nur,cost.nursery = Cost.nur ) gainmatrix[i,"Budget"]=Budget gainmatrix[i,"Nini"]= result[1] gainmatrix[i,"Bini"]= result[1]*(Cost.nur[1]+Cost.nur[2]) gainmatrix[i,"N2"]= result[2] gainmatrix[i,"N3"]= result[3] gainmatrix[i,"B2"]= result[2]*( (L2*T2*R2*CostTest[2])+(CostProdMod1+(CostProd[2]*T2))) if(t2free) { gainmatrix[i,"B3"]= result[3]*( (L3*T3*R3*CostTest[3])+(CostProd[3]*(T3-T2))) }else { gainmatrix[i,"B3"]= result[3]*( (L3*T3*R3*CostTest[3])+(CostProd[3]*T3)) } gainmatrix[i,"Gain"]= result[4] } gainmatrix[i,] } if (!parallel.search) { for (j in 1:dim ) { gainmatrix[j+1,]= theloop(j=j,gainmatrix,N2grid= N2grid, N3grid= N3grid,maseff,t2free,CostTest=CostTest,CostProd=CostProd,Budget=Budget,Nf=Nf,alg=alg,cost.nursery=cost.nursery) } }else if(parallel.search) { resulta<- parSapply(cl=cl, 1:dim, FUN=theloop,gainmatrix,N2grid= N2grid, N3grid= N3grid,maseff=maseff,t2free=t2free,CostTest=CostTest,CostProd=CostProd,Budget=Budget,Nf=Nf,alg=alg,cost.nursery=cost.nursery) gainmatrix[1:dim+1,]<-t(resulta) } Output=round( gainmatrix,digits=1) Output[,"Gain"]=round( gainmatrix[,"Gain"],digits=3) output=Output[2:c(dim+1),c("Nf", "Nini","N1", "N2", "N3","L2","L3","T2","T3","R2","R3","Bini","B1","B2","B3","Budget","Gain")] gainmax=max(output[,"Gain"]) gainlocation = which(output[,"Gain"]==gainmax,arr.ind =TRUE) if (fig==TRUE) { i=gainlocation[1] L3=gainmatrix[i,"L3"] L2=gainmatrix[i,"L2"] T3=gainmatrix[i,"T3"] T2=gainmatrix[i,"T2"] R3=gainmatrix[i,"R3"] R2=gainmatrix[i,"R2"] N.fs=gainmatrix[i,"Nf"] L1=1 T1=1 R1=1 corr.longin.mas.index = multistagecor(VGCAandE=Vgca,VSCA=Vsca,L=c(L1,L2,L3),Rep=c(R1,R2,R3),T=c(T1,T2,T3),index=FALSE,maseff=maseff) corr.matrix=corr.longin.mas.index CostTestloop=c(CostTest[1],CostTest[2]*L2*T2*R2,CostTest[3]*L3*T3*R3) if(t2free) { CostProdloop=c(CostProd[1],CostProd[2]*T2,CostProd[3]*(T3-T2)) }else { CostProdloop=c(CostProd[1],CostProd[2]*T2,CostProd[3]*T3) } result=multistageoptimum.grid( N.upper = c(100000,N2grid[2],N3grid[2]), N.lower = c(1,N2grid[1],N3grid[1]), Vg=Vgca[1],corr = corr.matrix, width = c(1,N2grid[3],N3grid[3]), Budget = Budget, CostProd =CostProdloop, CostTest = CostTestloop, Nf = Nf, detail = detail, alg = Miwa(),fig=TRUE ,alpha.nursery=alpha.nursery,cost.nursery=cost.nursery) } if (detail==TRUE) { output }else if (detail!=TRUE ) { output[gainlocation[1],] } }
test_that("Glassdoor PAT", { if (!have_gd_pat()) { expect_error(gd_pat(error = TRUE)) } else { expect_silent(gd_pat(error = TRUE)) } expect_error(gd_pat(token = "", error = TRUE)) }) test_that("Glassdoor PID", { if (!have_gd_pid()) { expect_error(gd_pid(error = TRUE)) } else { expect_silent(gd_pid(error = TRUE)) } expect_error(gd_pid(token = "", error = TRUE)) })
staticmap_plotRasterBrick <- function( rasterBrick = NULL, grayscale = FALSE, ... ) { if ( is.null(rasterBrick) ) stop("Required parameter 'rasterBrick' is missing") argsList <- list(...) if ( is.null(argsList$interpolate) ) argsList$interpolate <- TRUE if ( !grayscale ) { argsList$x <- rasterBrick do.call(raster::plotRGB, argsList) } else { singleLayerMap <- raster::raster(rasterBrick, layer = 1) grayImageArray <- round(apply(raster::values(rasterBrick), 1, sum)/3) raster::setValues(singleLayerMap, grayImageArray) argsList$x <- singleLayerMap if ( is.null(argsList$col) ) { argsList$col <- grDevices::gray.colors(255, gamma = 1) } do.call(raster::plot, argsList) } }
carrierprobpheno <- function(method="data", fit=NULL, data, mode="dominant", q=0.02) { if(sum(is.na(data$mgene))==0) stop("Mutatioin carrier statuses are all known") if(method=="data"){ carrp <- data$mgene cfam.id <- data$famID[data$proband==1 & data$mgene==1] nfam.id <- data$famID[data$proband==1 & data$mgene==0] i.cfam <- is.element(data$famID,cfam.id) i.nfam <- is.element(data$famID,nfam.id) for(g in unique(data$relation)){ for(s in c(0,1)){ for(d in c(0,1)){ carrp[i.cfam & is.na(data$mgene) & data$relation==g & data$gender==s & data$status==d] <- mean(data$mgene[i.cfam & !is.na(data$mgene) & data$relation==g & data$gender==s & data$status==d]) carrp[i.nfam & is.na(data$mgene) & data$relation==g & data$gender==s & data$status==d] <- mean(data$mgene[i.nfam & !is.na(data$mgene) & data$relation==g & data$gender==s & data$status==d]) } } } } else if(method=="model"){ if(is.null(fit)) stop("fit should be specified.") theta <- fit$estimates base.dist <- attr(fit, "base.dist") agemin <- attr(fit, "agemin") nbase <- attr(fit, "nbase") cuts <- attr(fit, "cuts") formula <- attr(fit, "formula") gvar <- attr(fit, "gvar") Y <- attr(fit, "Y") X <- attr(fit, "X") var.names <- colnames(X) X0 <- X1 <- X X0[, gvar] <- 0 X1[, gvar] <- 1 xbeta <- c(X%*%theta[-c(1:nbase)]) xbeta0 <- c(X0%*%theta[-c(1:nbase)]) xbeta1 <- c(X1%*%theta[-c(1:nbase)]) time0 <- Y[,1] - agemin cuts0 <- cuts - agemin status <- Y[,2] parms <- exp(theta[1:nbase]) if(base.dist=="lognormal") parms[1] <- theta[1] p.geno <- data$carrp.geno if(is.null(p.geno)) { p.geno <- carrierprobgeno(data=data, method="mendelian", mode=mode, q=q)$carrp.geno data$carrp.geno <- p.geno } p1 <- cprob(theta, X1, time0, status, p=p.geno, base.dist=base.dist, cuts=cuts0, nbase=nbase) p0 <- cprob(theta, X0, time0, status, p=1-p.geno, base.dist=base.dist, cuts=cuts0, nbase=nbase) carrp <- p1/(p1+p0) carrp[!is.na(data$mgene)] <- data$mgene[!is.na(data$mgene)] } carrp[is.na(carrp)] <- 0 data$carrp.pheno <- carrp return(data) }
"bonapersona"
knitr::opts_chunk$set( comment = " collapse = TRUE ) library(cowsay) sort(names(animals)) cow <- animals[['cow']] cat(cow) say("why did the chicken cross the road", "chicken") say("boo!", "ghost") say("nope, don't do that", type = "warning") say('time') say("hello world", by = "cow") say("hello world", by = "cow", type = "warning") say("hello world", by = "cow", type = "string") library(jsonlite) library(multicolor) say(what = "fortune", by = "rabbit", what_color = " by_color = "red") not_on_windows <- c('shortcat','longcat','fish','signbunny','stretchycat', 'anxiouscat','longtailcat','grumpycat','mushroom') names_safe <- names(animals)[!names(animals) %in% not_on_windows] say(what = "fortune", by = sample(names_safe, 1), what_color = rgb(.1, .2, .3), by_color = sample(colors(), 5), type = "message") say(what = "fortune", by = sample(names_safe, 1), what_color = rgb(.1, .2, .3), by_color = sample(colors(), 5), type = "message") say(what = "foobar", by = "shark", what_color = "rainbow", by_color = c("rainbow", "rainbow", "rainbow")) library(crayon) say(what = "fortune", by = "egret", what_color = bgBlue$white$italic, by_color = bold$green)
GGMPF <- function(lambda, data, K, initial.selection="K-means", initialize, average=FALSE, asymmetric=TRUE, eps = 5e-2, maxiter=10, maxiter.AMA=5, local_appro=TRUE, trace = FALSE, penalty = "MCP", theta.fusion=TRUE){ lambda1 = lambda$lambda1 lambda2 = lambda$lambda2 lambda3 = lambda$lambda3 L1 = length(lambda1) L2 = length(lambda2) L3 = length(lambda3) L = L1+L2+L3 aBIC = rep(0,L) n_all = dim(data)[1] if(initial.selection=="K-means"){ out.initial = initialize_fuc(data,K) memb = out.initial$memb L.mat = matrix(0,n_all,K) for(jj in 1:n_all) L.mat[jj, memb[jj]]=1 out.initial$L.mat = L.mat } else if(initial.selection=="dbscan"){ out.initial = initialize_fuc.dbscan(data,K) memb = out.initial$memb L.mat = matrix(0,n_all,K) for(jj in 1:n_all) L.mat[jj, memb[jj]]=1 out.initial$L.mat = L.mat } else {out.initial = initialize} if(L == 3){ l=1 aBIC = rep(0,l) Mu_hat.list = list() Theta_hat.list = list() prob.list = list() L.mat.list = list() member.list = list() lam1 = lambda1;lam2 = lambda2;lam3 = lambda3; PP = FGGM.refit(data, K, lam1, lam2, lam3, initialization=FALSE, initialize=out.initial, average=average, asymmetric=asymmetric, local_appro=local_appro, penalty = penalty, theta.fusion=theta.fusion) mu_hat=PP$mu;Theta_hat=PP$Xi;L.mat = PP$L.mat0;group = PP$group;prob = PP$prob0;aBIC[l] = PP$bic; member = PP$member Mu_hat.list[[l]]=mu_hat; Theta_hat.list[[l]]=Theta_hat; prob.list[[l]]=prob; L.mat.list[[l]] = L.mat; member.list[[l]]=member } else { Mu_hat.list = list() Theta_hat.list = list() prob.list = list() L.mat.list = list() member.list = list() lam1 = median(lambda1);lam2 = median(lambda2) for (l in 1:L3) { lam3 = lambda3[l] PP = FGGM.refit(data, K, lam1, lam2, lam3, initialization=FALSE, initialize=out.initial, average=average, asymmetric=asymmetric, local_appro=local_appro, penalty = penalty, theta.fusion=theta.fusion) mu_hat=PP$mu;Theta_hat=PP$Xi;L.mat = PP$L.mat0;group = PP$group;prob = PP$prob0;aBIC[l] = PP$bic; member = PP$member Mu_hat.list[[l]]=mu_hat; Theta_hat.list[[l]]=Theta_hat; prob.list[[l]]=prob; L.mat.list[[l]] = L.mat; member.list[[l]]=member if(trace){ print(c(cat(paste(l,"lam1 lam2 lam3 ="),c(round(lam1,2),round(lam2,2),round(lam3,2)),":"),paste("K =",as.numeric(dim(Theta_hat)[3])))) } } aBIC[is.na(aBIC)] = 10^10 aBIC[aBIC==0] = abs(aBIC[aBIC!=0][1])*10 n_lam3 = which(aBIC[1:L3] == min(aBIC[1:L3]))[1];lam3 = lambda3[n_lam3] for (l2 in 1:L2) { lam2 = lambda2[l2];l = L3+l2 PP = FGGM.refit(data, K, lam1, lam2, lam3, initialization=FALSE, initialize=out.initial, average=average, asymmetric=asymmetric, local_appro=local_appro, penalty = penalty, theta.fusion=theta.fusion) mu_hat=PP$mu;Theta_hat=PP$Xi;L.mat = PP$L.mat0;group = PP$group;prob = PP$prob0;aBIC[l] = PP$bic; member = PP$member Mu_hat.list[[l]]=mu_hat; Theta_hat.list[[l]]=Theta_hat; prob.list[[l]]=prob; L.mat.list[[l]] = L.mat; member.list[[l]]=member if(trace){ print(c(cat(paste(l,"lam1 lam2 lam3 ="),c(round(lam1,2),round(lam2,2),round(lam3,2)),":"),paste("K =",as.numeric(dim(Theta_hat)[3])))) } } aBIC[is.na(aBIC)] = 10^10 n_lam2 = which(aBIC[(L3+1):(L3+L2)] == min(aBIC[(L3+1):(L3+L2)]))[1];lam2 = lambda2[n_lam2] for (l1 in 1:L1) { lam1 = lambda1[l1];l = L3+L2+l1 PP = FGGM.refit(data, K, lam1, lam2, lam3, initialization=F, initialize=out.initial, average=average, asymmetric=asymmetric, local_appro=local_appro, penalty = penalty, theta.fusion=theta.fusion) mu_hat=PP$mu;Theta_hat=PP$Xi;L.mat = PP$L.mat0;group = PP$group;prob = PP$prob0;aBIC[l] = PP$bic; member = PP$member Mu_hat.list[[l]]=mu_hat; Theta_hat.list[[l]]=Theta_hat; prob.list[[l]]=prob; L.mat.list[[l]] = L.mat; member.list[[l]]=member if(trace){ print(c(cat(paste(l,"lam1 lam2 lam3 ="),c(round(lam1,2),round(lam2,2),round(lam3,2)),":"),paste("K =",as.numeric(dim(Theta_hat)[3])))) } } aBIC[is.na(aBIC)] = 10^10 aBIC[aBIC==0] = abs(aBIC[aBIC!=0][1])*10 n_lam1 = which(aBIC[(L3+L2+1):(L3+L2+L1)] == min(aBIC[(L3+L2+1):(L3+L2+L1)]))[1];lam1 = lambda1[n_lam1] } K.list <- rep(1,length(Theta_hat.list)) for (l in 1:length(Theta_hat.list)) { K.list[l] <- as.numeric(dim(Theta_hat.list[[l]])[3]) } aBIC[which(K.list == 1)] <- 10^10 n_lam = which(aBIC == min(aBIC))[1] Opt_aBIC = min(aBIC) Opt_lambda = c(lam1,lam2,lam3) result = list(Opt_lambda=Opt_lambda,Mu_hat.list=Mu_hat.list,Theta_hat.list=Theta_hat.list,prob.list=prob.list,member.list=member.list,L.mat.list=L.mat.list,Opt_aBIC=Opt_aBIC,BIC=aBIC,Opt_num=n_lam) return(result) }
get_var_corr_<-function(df,subset_cols=NULL, drop_columns = c("character","factor"), ...){ UseMethod("get_var_corr_") } get_var_corr_.data.frame<-function(df,subset_cols=NULL, drop_columns = c("character","factor"), ...){ if(any(sapply(df,class) %in% drop_columns)){ df<- Filter(function(x) ! class(x) %in% drop_columns,df) warning("Columns with classes in drop_columns were dropped.") } to_use <- as.data.frame(t(combn(names(df),2)),stringsAsFactors= FALSE) compare_with<-to_use[[1]] other <- to_use[[2]] final_res <- Map(function(x,y) manymodelr::get_var_corr(df, comparison_var = x, other_vars = y, ...),compare_with,other) final_result<-do.call(rbind,final_res) final_result<-structure(final_result,row.names=1:nrow(final_result)) if(!is.null(subset_cols)){ final_result<-final_result[final_result$comparison_var %in% subset_cols[[1]] & final_result$other_var %in% subset_cols[[2]],] } final_result }
list_pop <- function() { avail_pop <- data.frame("pop_code" = c("ALL", "AFR", "YRI", "LWK", "GWD", "MSL", "ESN", "ASW", "ACB", "AMR", "MXL", "PUR", "CLM", "PEL", "EAS", "CHB", "JPT", "CHS", "CDX", "KHV", "EUR", "CEU", "TSI", "FIN", "GBR", "IBS", "SAS", "GIH", "PJL", "BEB", "STU", "ITU"), "super_pop_code" = c("ALL", rep("AFR", 8), rep("AMR", 5), rep("EAS", 6), rep("EUR", 6), rep("SAS", 6)), "pop_name" = c("ALL POPULATIONS", "AFRICAN", "Yoruba in Ibadan, Nigera", "Luhya in Webuye, Kenya", "Gambian in Western Gambia", "Mende in Sierra Leone", "Esan in Nigera", "Americans of African Ancestry in SW USA", "African Carribbeans in Barbados", "AD MIXED AMERICAN", "Mexican Ancestry from Los Angeles, USA", "Puerto Ricans from Puerto Rico", "Colombians from Medellin, Colombia", "Peruvians from Lima, Peru", "EAST ASIAN", "Han Chinese in Bejing, China", "Japanese in Tokyo, Japan", "Southern Han Chinese", "Chinese Dai in Xishuangbanna, China", "Kinh in Ho Chi Minh City, Vietnam", "EUROPEAN", "Utah Residents from North and West Europe", "Toscani in Italia", "Finnish in Finland", "British in England and Scotland", "Iberian population in Spain", "SOUTH ASIAN", "Gujarati Indian from Houston, Texas, USA", "Punjabi from Lahore, Pakistan", "Bengali from Bangladesh", "Sri Lankan Tamil from the UK", "Indian Telugu from the UK") ) return(avail_pop) }
library(qte) data(lalonde) dd1 <- ddid2(re ~ treat, t=1978, tmin1=1975, tname="year", data=lalonde.psid.panel, idname="id", se=FALSE, probs=seq(0.05, 0.95, 0.05)) summary(dd1)
cross.table<- function ( ..., null.tokens = TRUE, out.format = c('rdata','excel'), file.align = 'alignment') { out.format = match.arg(out.format) p1 = prepare.data (..., word.align = FALSE) len = p1 $ used p1 = unlist (p1, recursive = FALSE) if (null.tokens) { p1 = sapply(3 : length(p1), function(x) c('null', p1[[x]])); fg1 = "null" } else { p1 = sapply(3 : length(p1), function(x) p1[[x]]); fg1 = "nolink" } if (out.format == 'rdata') { readline(paste("If you want to build a gold standard, please enter '1|2' for Sure|Possible alignments. \nIf you want to construct an alignment matrix which is computed by another software, please enter '1' for alignments.\nNow, press 'Enter' to continue.",sep='')) mm = sapply (1 : len, function (x) {m = matrix (0, length (p1 [[x]]) + 1, length (p1 [[x + len]]) + 1); m [2 : nrow (m), 1] = p1 [[x]]; m [1, 2 : ncol(m)] = p1 [[x+len]]; m [1, 1] = ''; m}) fg = c() for(sn in 1 : len) { fg2 = mm [[sn]] fg2 = fix (fg2) fg[[sn]] = fg2 } save(fg, fg1, file = paste(file.align,'RData',sep='.')) print(paste(getwd(), '/', file.align,'.RData',' created',sep='')) } if (out.format == 'excel') { file_align = paste(file.align,'xlsx',sep='.') wb1 <- createWorkbook ("data") for (j in 1 : len) { m1 = matrix (0, length (p1 [[j]]) + 1, length (p1 [[j + len]]) + 1) m1 [2 : nrow (m1), 1] = p1 [[j]]; m1 [1, 2 : ncol (m1)] = p1 [[j + len]]; m1 [1, 1] = '' addWorksheet (wb1, as.character(j)) writeData (wb1, sheet =j, m1) saveWorkbook (wb1, file_align, overwrite = TRUE) } cat (paste("Now, please edit ","'", file.align,"'",".", "\nIf you want to build a gold standard, please enter 1|2 for Sure|Possible alignments.\nIf you want to construct an alignment matrix which is computed by another software, please enter '1' for alignments.\nImportant: In order to use the created excel file for evaluation function,\ndon't forget to use excel2rdata function to convert the excel file into required R format.\n(evaluation and excel2rdata are functions in the current package.)\n ",sep='')) print(paste(getwd(), '/', file.align,' created',sep='')) } }
test_that("add_stage", { pipeline <- add_stage("$match", list(flight=1545)) expect_s3_class(pipeline, "mongopipe") expect_equal(as.character(pipeline), "[{\"$match\":{\"flight\":1545}}]") }) test_that("match", { pipe_match <- match(mongopipe(), dest="ABQ") expect_snapshot_output(cat(pipe_match)) }) test_that("pipe", { pipe <- mongopipe() %>% match(faa="ABQ") %>% lookup(from = "test_flights", local_field = "faa", foreign_field = "dest") %>% unwind(field = "test_flights") expect_snapshot_output(cat(pipe)) pipe2 <- mongopipe() %>% match(tzone="America/New_York") %>% lookup(from = "test_flights", local_field = "faa", foreign_field = "dest") %>% field(min_distance = list("$min"="$test_flights.distance")) %>% match(min_distance=list("$ne"=NA)) %>% project("min_distance"=1, "faa"=1) %>% limit(3) expect_snapshot_output(cat(pipe2)) })
weight <- function(cons, inds, vars = NULL, iterations = 10) { if (!is.data.frame(cons)) { stop("cons is not a data frame") } if (!is.data.frame(inds)) { stop("inds is not a data frame") } if (!(is.atomic(vars) || is.list(vars))) { stop("vars is not a vector") } zones <- as.vector(unlist(cons[, 1])) cons <- cons[, -1] cons <- as.matrix(cons) cons[] <- as.numeric(cons[]) ids <- as.vector(unlist(inds[, 1])) inds <- inds[, 2:ncol(inds)] inds <- lapply(as.list(vars), function(x) { stats::model.matrix( ~ inds[[x]] - 1) }) for (i in seq_along(vars)) { colnames(inds[[i]]) <- gsub("inds\\[\\[x\\]\\]", "", colnames(inds[[i]])) } rm(i) ind_cat <- do.call(cbind, inds) stopifnot(all.equal(colnames(cons), colnames(ind_cat))) colnames(ind_cat) <- paste0(seq_along(colnames(ind_cat)), "_", colnames(ind_cat)) colnames(cons) <- colnames(ind_cat) if (!isTRUE(all.equal(colnames(ind_cat), colnames(cons)))) { stop("Column names don't match.\n Are the first columns in cons and inds a zone code/unique ID? Check the unique levels in inds and colnames in cons match EXACTLY. Unique levels identified by weight():\n\n", vapply(seq_along(colnames(ind_cat)), function(x) paste0(colnames(ind_cat)[x], " "), "") ) } weights <- apply(cons, 1, function(x) { ipfp::ipfp(x, t(ind_cat), x0 = rep(1, nrow(ind_cat)), maxit = iterations) }) if (!isTRUE(all.equal(sum(weights), (sum(cons) / length(vars))))) { stop("Weight populations don't match constraint populations. Usually this means the populations for each of your constraints are slightly different\n", "Sum of simulated population: ", sum(weights), "\n", "Sum of constraint population: ", (sum(cons) / length(vars))) } if (!isTRUE(colSums(weights) - (rowSums(cons) / length(vars))) < 1L) { stop("Simulated weights by zone differ from constraint weights by zone\n", "Sum of the differences between zones (should be <1): ", sum(colSums(weights) - (rowSums(cons) / length(vars))) ) } rownames(weights) <- ids colnames(weights) <- zones weights <- as.data.frame(weights) weights } extract <- function(weights, inds, id) { variables <- colnames(inds) variables <- variables[-grep(id, variables)] lapply(inds[, variables], function(x) { if (class(x) == "numeric" | class(x) == "integer") { stop("rakeR::extract() cannot work with numeric (i.e. integer or double) variables because by design it creates a new variable for each unique level in each variable\n Consider cut()ing your numeric data, extract() without your numeric data, or integerise() instead.") } }) levels <- lapply(as.list(variables), function(x) { sort(unique(as.character(inds[[x]]))) }) result <- lapply(variables, function(y) { lapply(as.list(sort(unique(as.character(inds[[y]])))), function(x) { match_id <- inds[[id]][inds[[y]] == x] matched_weights <- weights[row.names(weights) %in% match_id, ] matched_weights <- colSums(matched_weights) matched_weights }) }) result <- as.data.frame(result) colnames(result) <- unlist(levels) df <- data.frame( code = colnames(weights), total = colSums(weights), row.names = NULL, stringsAsFactors = FALSE ) stopifnot( all.equal(df[["code"]], row.names(result)) ) df <- cbind(df, result) row.names(df) <- NULL stopifnot( all.equal( sum(df[["total"]]), (sum(df[, 3:ncol(df)]) / length(variables))) ) df } extract_weights <- function(weights, inds, id) { .Deprecated("extract") variables <- colnames(inds) variables <- variables[-grep(id, variables)] lapply(inds[, variables], function(x) { if (class(x) == "numeric" | class(x) == "integer") { stop("rakeR::extract() cannot work with numeric (i.e. integer or double) variables because by design it creates a new variable for each unique level in each variable\n Consider cut()ing your numeric data, extract() without your numeric data, or integerise() instead.") } }) levels <- lapply(as.list(variables), function(x) { sort(unique(as.character(inds[[x]]))) }) result <- lapply(variables, function(y) { lapply(as.list(sort(unique(as.character(inds[[y]])))), function(x) { match_id <- inds[[id]][inds[[y]] == x] matched_weights <- weights[row.names(weights) %in% match_id, ] matched_weights <- colSums(matched_weights) matched_weights }) }) result <- as.data.frame(result) colnames(result) <- unlist(levels) df <- data.frame( code = colnames(weights), total = colSums(weights), row.names = NULL, stringsAsFactors = FALSE ) stopifnot( all.equal(df[["code"]], row.names(result)) ) df <- cbind(df, result) row.names(df) <- NULL stopifnot( all.equal( sum(df[["total"]]), (sum(df[, 3:ncol(df)]) / length(variables))) ) message("extract_weights() is deprecated. Please use extract()") df } integerise <- function(weights, inds, method = "trs", seed = 42) { set.seed(seed) if (!all.equal(nrow(weights), nrow(inds))) { stop("Number of observations in weights does not match inds") } if (!is.data.frame(inds)) { stop("inds is not a data frame") } if (!method == "trs") { stop("Currently this function only supports the truncate, replicate, sample method. Proportional probabilities may be added at a later date. For now use the default method (trs).") } weights <- as.matrix(weights) weights_vec <- as.vector(weights) weights_int <- floor(weights_vec) weights_dec <- weights_vec - weights_int deficit <- round(sum(weights_dec)) if (!sum(weights_dec %% 1) > 0) { message("weights already integers. Returning unmodified") return(weights) } topup <- wrswoR::sample_int_crank(n = length(weights), size = deficit, prob = weights_dec) weights_int[topup] <- weights_int[topup] + 1 dim(weights_int) <- dim(weights) dimnames(weights_int) <- dimnames(weights) weights_int <- apply(weights_int, 2, as.integer) weights_int <- as.data.frame(weights_int) weights_int <- as.matrix(weights_int) indices <- apply(weights_int, 2, function(x) { rep.int(seq_along(x), x) }) indices <- as.numeric(unlist(indices)) zone <- rep(colnames(weights), times = colSums(weights_int)) sim_df <- inds[indices, ] sim_df$zone <- zone if (!all.equal(sum(weights), nrow(sim_df))) { stop("Number of simulated observations does not match sum of weights.") } sim_df } rake <- function(cons, inds, vars, output = "fraction", iterations = 10, ...) { arguments <- list(...) out <- weight(cons, inds, vars, iterations) if (output == "fraction") { frac_out <- extract(weights = out, inds = inds, id = arguments[["id"]]) return(frac_out) } else if (output == "integer") { int_out <- integerise(out, inds, method = arguments[["method"]], seed = arguments[["seed"]]) return(int_out) } } simulate <- function(...) { .Deprecated(msg = "rakeR::simulate() is deprecated. Just use weight() %>% integerise() (or rake(output = \"integer\"))") }
ls7Search<-function(AppRoot,verbose=FALSE,precise=FALSE,...){ warning("Obsolete function, use lsSearch.") arg<-list(...) if((!"dates"%in%names(arg))& ((!"startDate"%in%names(arg)|(!"endDate"%in%names(arg)))) )stop("startDate and endDate, or dates argument need to be defined!") if("dates"%in%names(arg)){ stopifnot(class(arg$dates)=="Date") startDate<-min(arg$dates) endDate<-max(arg$dates) }else{ startDate<-arg$startDate endDate<-arg$endDate } stopifnot(class(startDate)=="Date") stopifnot(class(endDate)=="Date") AppRoot<-pathWinLx(AppRoot) if(!ls7IsMetaData()){ message("MetaData not loaded! loading...") ls7LoadMetadata(AppRoot=AppRoot,update=FALSE,...) } LS7MD<-getRGISToolsOpt("LS7METADATA") LS7MD<-LS7MD[as.Date(LS7MD$acquisitionDate)>=startDate& as.Date(LS7MD$acquisitionDate)<=endDate,] if("pathrow"%in%names(arg)){ stopifnot(class(arg$pathrow)=="list") LS7MD<-do.call(rbind,lapply(arg$pathrow,function(rp,LS7MD,verbose)return(genFilterDF(LS7MD,row=rp[2],path=rp[1],verbose=verbose)), LS7MD, verbose=verbose)) }else if("extent"%in%names(arg)){ stopifnot(class(extent(arg$extent))=="Extent") if(precise){ tiles<-unlist(apply(LS7MD[grepl("Corner",names(LS7MD))],1,tileIn,ext=extent(arg$extent))) LS7MD<-LS7MD[tiles,] }else{ pathrow<-names(ls7pr)[unlist(lapply(ls7pr,tileInExt,ext2=extent(arg$extent)))] pathrow<-as.data.frame(cbind(as.integer(substr(pathrow,1,3)),as.integer(substr(pathrow,4,6)))) pathrow = lapply(as.list(1:dim(pathrow)[1]), function(x) unname(pathrow[x[1],])) LS7MD<-do.call(rbind,lapply(pathrow, function(pr,LS7MD,verbose){pr=unlist(pr);return(genFilterDF(LS7MD,row=pr[2],path=pr[1],verbose=verbose))}, LS7MD=LS7MD, verbose=verbose)) } }else if("lonlat"%in%names(arg)){ stopifnot(class(arg$lonlat)=="numeric") stopifnot(length(arg$lonlat)==2) dat_sim <- data.frame(lat = arg$lonlat[2],long = arg$lonlat[1]) dat_sf <- st_transform(st_as_sf(dat_sim, coords = c("long", "lat"), crs = 4326), 3035) circle <- st_buffer(dat_sf, dist = 1) circle <- st_transform(circle, 4326) if(precise){ tiles<-unlist(apply(LS7MD[grepl("Corner",names(LS7MD))],1,tileIn,ext=extent(circle))) LS7MD<-LS7MD[tiles,] }else{ pathrow<-names(ls7pr)[unlist(lapply(ls7pr,tileInExt,ext2=extent(circle)))] pathrow<-as.data.frame(cbind(as.integer(substr(pathrow,1,3)),as.integer(substr(pathrow,4,6)))) pathrow = lapply(as.list(1:dim(pathrow)[1]), function(x) unname(pathrow[x[1],])) LS7MD<-do.call(rbind,lapply(pathrow, function(pr,LS7MD,verbose){pr=unlist(pr);return(genFilterDF(LS7MD,row=pr[2],path=pr[1],verbose=verbose))}, LS7MD=LS7MD, verbose=verbose)) } }else if("region"%in%names(arg)){ arg$region<-transform_multiple_proj(arg$region, proj4=st_crs(4326)) if(precise){ tiles<-unlist(apply(LS7MD[grepl("Corner",names(LS7MD))],1,tileIn,ext=extent(arg$region))) LS7MD<-LS7MD[tiles,] }else{ pathrow<-names(ls7pr)[unlist(lapply(ls7pr,tileInExt,ext2=extent(arg$region)))] pathrow<-as.data.frame(cbind(as.integer(substr(pathrow,1,3)),as.integer(substr(pathrow,4,6)))) pathrow = lapply(as.list(1:dim(pathrow)[1]), function(x) unname(pathrow[x[1],])) LS7MD<-do.call(rbind,lapply(pathrow, function(pr,LS7MD,verbose){pr=unlist(pr);return(genFilterDF(LS7MD,row=pr[2],path=pr[1],verbose=verbose))}, LS7MD=LS7MD, verbose=verbose)) } }else{ warning("Location not defined!") } if("cloudCover"%in%names(arg)){ LS7MD<-LS7MD[LS7MD$cloudCover>min(arg$cloudCover)&LS7MD$cloudCover<max(arg$cloudCover),] } arg<-arg[names(arg)[which(!names(arg)%in%c("pathrow","region","cloudCover"))]] if(length(arg)>0){ arg$df<-LS7MD LS7MD<-do.call(genFilterDF,arg) } LS7MD<-LS7MD[!duplicated(LS7MD[,c('sceneID')]),] if("dates"%in%names(arg)){ LS7MD<-LS7MD[as.Date(LS7MD$acquisitionDate)%in%arg$dates,] } class(LS7MD)<-"ls7res" return(LS7MD) }
context("public API") test_that("styler can style package", { capture_output(expect_false({ styled <- style_pkg(testthat_file("public-api", "xyzpackage")) any(styled$changed) })) }) test_that("styler can style package and exclude some directories", { capture_output( styled <- style_pkg(testthat_file("public-api", "xyzpackage"), exclude_dirs = "tests" ) ) expect_true(nrow(styled) == 1) expect_false(any(grepl("tests/testthat/test-package-xyz.R", styled$file))) }) test_that("styler can style package and exclude some sub-directories", { capture_output( styled <- style_pkg(testthat_file("public-api", "xyzpackage"), exclude_dirs = "tests/testthat" ) ) expect_true(nrow(styled) == 2) expect_true(any(grepl("tests/testthat.R", styled$file))) expect_false(any(grepl("tests/testthat/test-package-xyz.R", styled$file))) }) test_that("styler can style package and exclude some directories and files", { capture_output(expect_true({ styled <- style_pkg(testthat_file("public-api", "xyzpackage"), exclude_dirs = "tests", exclude_files = ".Rprofile" ) nrow(styled) == 1 })) capture_output(expect_true({ styled <- style_pkg(testthat_file("public-api", "xyzpackage"), exclude_dirs = "tests", exclude_files = "./.Rprofile" ) nrow(styled) == 1 })) }) test_that("styler can style directory", { capture_output(expect_false({ styled <- style_dir(testthat_file("public-api", "xyzdir")) any(styled$changed) })) }) test_that("styler can style directories and exclude", { capture_output(expect_true({ styled <- style_dir( testthat_file("public-api", "renvpkg"), exclude_dirs = "renv" ) nrow(styled) == 2 })) capture_output(expect_true({ styled <- style_dir( testthat_file("public-api", "renvpkg"), exclude_dirs = c("renv", "tests/testthat") ) nrow(styled) == 1 })) capture_output(expect_true({ styled <- style_dir( testthat_file("public-api", "renvpkg"), exclude_dirs = "./renv" ) nrow(styled) == 2 })) capture_output(expect_true({ styled <- style_dir( testthat_file("public-api", "renvpkg"), exclude_dirs = "./renv", recursive = FALSE ) nrow(styled) == 0 })) capture_output(expect_true({ styled <- style_dir( testthat_file("public-api", "renvpkg"), recursive = FALSE ) nrow(styled) == 0 })) }) test_that("styler can style files", { capture_output(expect_equivalent( { out <- style_file(c( testthat_file("public-api", "xyzfile", "random-script.R") ), strict = FALSE) out$changed }, rep(FALSE, 1) )) capture_output(expect_equivalent( { out <- style_file(c( testthat_file("public-api", "xyzfile", "random-script.R"), testthat_file("public-api", "xyzfile", "subfolder", "random-script.R") ), strict = FALSE) out$changed }, rep(FALSE, 2) )) }) test_that("styler does not return error when there is no file to style", { capture_output(expect_error(style_dir( testthat_file("public-api", "xyzemptydir"), strict = FALSE ), NA)) }) context("public API - Rmd in style_file()") test_that("styler can style Rmd file", { capture_output(expect_false({ out <- style_file( testthat_file("public-api", "xyzfile_rmd", "random.Rmd"), strict = FALSE ) out$changed })) capture_output(expect_warning( styled <- style_file(testthat_file("public-api", "xyzfile_rmd", "random2.Rmd"), strict = FALSE) )) expect_false(styled$changed) }) test_that("styler can style Rmarkdown file", { capture_output(expect_false({ out <- style_file( testthat_file("public-api", "xyzfile_rmd", "random.Rmarkdown"), strict = FALSE ) out$changed })) capture_output(expect_warning( styled <- style_file(testthat_file("public-api", "xyzfile_rmd", "random2.Rmarkdown"), strict = FALSE) )) expect_false(styled$changed) }) test_that("styler handles malformed Rmd file and invalid R code in chunk", { capture_output(expect_warning( style_file(testthat_file("public-api", "xyzfile_rmd", "random4.Rmd"), strict = FALSE), "3: " )) capture_output(expect_warning( style_file(testthat_file("public-api", "xyzfile_rmd", "random7.Rmd"), strict = FALSE), "Malformed file" )) }) context("messages are correct") test_that("messages (via cat()) of style_file are correct", { for (encoding in ls_testable_encodings()) { withr::with_options( list(cli.unicode = encoding == "utf8"), { output <- catch_style_file_output(file.path( "public-api", "xyzdir-dirty", "dirty-sample-with-scope-tokens.R" )) expect_known_value( output, testthat_file(paste0( "public-api/xyzdir-dirty/dirty-reference-with-scope-tokens-", encoding )), update = getOption("styler.test_dir_writable", TRUE) ) output <- catch_style_file_output(file.path( "public-api", "xyzdir-dirty", "clean-sample-with-scope-tokens.R" )) expect_known_value( output, testthat_file(paste0( "public-api/xyzdir-dirty/clean-reference-with-scope-tokens-", encoding )), update = getOption("styler.test_dir_writable", TRUE) ) output <- catch_style_file_output(file.path( "public-api", "xyzdir-dirty", "dirty-sample-with-scope-spaces.R" )) expect_known_value( output, testthat_file(paste0( "public-api/xyzdir-dirty/dirty-reference-with-scope-spaces-", encoding )), update = getOption("styler.test_dir_writable", TRUE) ) } ) } }) test_that("Messages can be suppressed", { withr::with_options( list(styler.quiet = TRUE), { output <- catch_style_file_output(file.path( "public-api", "xyzdir-dirty", "dirty-sample-with-scope-spaces.R" )) expect_equal(output, character(0)) } ) }) context("public API - Rmd in style_dir()") test_that("styler can style R, Rmd and Rmarkdown files via style_dir()", { msg <- capture_output( style_dir(testthat_file("public-api", "xyz-r-and-rmd-dir"), filetype = c("R", "Rmd", "Rmarkdown") ) ) expect_true(any(grepl("random-script-in-sub-dir.R", msg, fixed = TRUE))) expect_true(any(grepl("random-rmd-script.Rmd", msg, fixed = TRUE))) expect_true(any(grepl("random-rmd-script.Rmarkdown", msg, fixed = TRUE))) }) test_that("styler can style Rmd files only via style_dir()", { msg <- capture_output( style_dir(testthat_file("public-api", "xyz-r-and-rmd-dir"), filetype = "Rmd" ) ) expect_true(any(grepl("random-rmd-script.Rmd", msg, fixed = TRUE))) expect_false(any(grepl("random-script-in-sub-dir.R", msg, fixed = TRUE))) expect_false(any(grepl("random-rmd-script.Rmarkdown", msg, fixed = TRUE))) }) test_that("styler can style .r and .rmd files only via style_dir()", { msg <- capture_output( style_dir(testthat_file("public-api", "xyz-r-and-rmd-dir"), filetype = c(".r", ".rmd") ) ) expect_true(any(grepl("random-script-in-sub-dir.R", msg, fixed = TRUE))) expect_true(any(grepl("random-rmd-script.Rmd", msg, fixed = TRUE))) expect_false(any(grepl("random-rmd-script.Rmarkdown", msg, fixed = TRUE))) }) context("public API - Rmd in style_pkg()") test_that("styler can style R and Rmd files via style_pkg()", { msg <- capture_output( style_pkg(testthat_file("public-api", "xyzpackage-rmd"), filetype = c("R", "Rmd", "Rmarkdown") ) ) expect_true(any(grepl("hello-world.R", msg, fixed = TRUE))) expect_true(any(grepl("test-package-xyz.R", msg, fixed = TRUE))) expect_true(any(grepl("random.Rmd", msg, fixed = TRUE))) expect_true(any(grepl("random.Rmarkdown", msg, fixed = TRUE))) expect_true(any(grepl("README.Rmd", msg, fixed = TRUE))) expect_false(any(grepl("RcppExports.R", msg, fixed = TRUE))) }) test_that("styler can style Rmd files only via style_pkg()", { msg <- capture_output( style_pkg(testthat_file("public-api", "xyzpackage-rmd"), filetype = "Rmd" ) ) expect_false(any(grepl("hello-world.R", msg, fixed = TRUE))) expect_false(any(grepl("test-package-xyz.R", msg, fixed = TRUE))) expect_true(any(grepl("random.Rmd", msg, fixed = TRUE))) expect_false(any(grepl("random.Rmarkdown", msg, fixed = TRUE))) expect_true(any(grepl("README.Rmd", msg, fixed = TRUE))) expect_false(any(grepl("RcppExports.R", msg, fixed = TRUE))) }) test_that("styler can style Rmarkdown files only via style_pkg()", { msg <- capture_output( style_pkg(testthat_file("public-api", "xyzpackage-rmd"), filetype = "Rmarkdown" ) ) expect_false(any(grepl("hello-world.R", msg, fixed = TRUE))) expect_false(any(grepl("test-package-xyz.R", msg, fixed = TRUE))) expect_false(any(grepl("random.Rmd", msg, fixed = TRUE))) expect_true(any(grepl("random.Rmarkdown", msg, fixed = TRUE))) expect_false(any(grepl("README.Rmd", msg, fixed = TRUE))) expect_false(any(grepl("RcppExports.R", msg, fixed = TRUE))) }) test_that("insufficient R version returns error", { expect_error(stop_insufficient_r_version()) }) context("public API - Rnw in style_file()") test_that("styler can style Rnw file", { capture_output(expect_false({ out <- style_file( testthat_file("public-api", "xyzfile-rnw", "random.Rnw"), strict = FALSE ) out$changed })) capture_output(expect_warning( styled <- style_file(testthat_file("public-api", "xyzfile-rnw", "random2.Rnw"), strict = FALSE) )) expect_false(styled$changed) }) test_that("styler handles malformed Rnw file and invalid R code in chunk", { capture_output(expect_warning( style_file(testthat_file("public-api", "xyzfile-rnw", "random3.Rnw"), strict = FALSE) )) capture_output(expect_warning( style_file(testthat_file("public-api", "xyzfile-rnw", "random4.Rnw"), strict = FALSE) )) }) context("public API - Rnw in style_pkg()") test_that("styler can style R, Rmd and Rnw files via style_pkg()", { msg <- capture_output( style_pkg(testthat_file("public-api", "xyzpackage-rnw"), filetype = c("R", "Rmd", "Rnw") ) ) expect_true(any(grepl("hello-world.R", msg, fixed = TRUE))) expect_true(any(grepl("test-package-xyz.R", msg, fixed = TRUE))) expect_true(any(grepl("random.Rmd", msg, fixed = TRUE))) expect_true(any(grepl("random.Rnw", msg, fixed = TRUE))) expect_false(any(grepl("RcppExports.R", msg, fixed = TRUE))) }) test_that("styler can style Rnw files only via style_pkg()", { msg <- capture_output( style_pkg(testthat_file("public-api", "xyzpackage-rnw"), filetype = "Rnw" ) ) expect_false(any(grepl("hello-world.R", msg, fixed = TRUE))) expect_false(any(grepl("test-package-xyz.R", msg, fixed = TRUE))) expect_false(any(grepl("random.Rmd", msg, fixed = TRUE))) expect_true(any(grepl("random.Rnw", msg, fixed = TRUE))) expect_false(any(grepl("RcppExports.R", msg, fixed = TRUE))) }) test_that("dry run options work:", { local_test_setup() path <- test_path("public-api/dry/unstyled.R") expect_error(test_dry(path, style_file, styled = TRUE)) test_dry(path, style_file) path <- test_path("public-api/dry/styled.R") test_dry(path, style_file, styled = TRUE) test_dry(test_path("public-api/dry/unstyled.Rmd"), style_file, styled = FALSE) test_dry(test_path("public-api/dry/styled.Rmd"), style_file, styled = TRUE) test_dry(test_path("public-api/dry/unstyled.Rnw"), style_file, styled = FALSE) test_dry(test_path("public-api/dry/styled.Rnw"), style_file, styled = TRUE) }) test_that("base indention works", { n_spaces <- 5 text_in <- "x<- function() NULL" expect_equal( style_text(text_in, base_indention = n_spaces), construct_vertical(paste0(add_spaces(n_spaces), style_text(text_in))) ) text_in <- c( "x<- function()", '"here\nis"', "NULL", "1+ 1" ) text_out <- c( " x <- function() {", ' "here', 'is"', " }", " NULL", " 1 + 1" ) expect_equal( as.character(style_text(text_in, base_indention = n_spaces)), text_out ) }) test_that("scope can be specified as is", { capture_output(expect_false({ styled <- style_pkg(testthat_file("public-api", "xyzpackage"), scope = I("spaces")) any(styled$changed) })) file <- testthat_file("public-api", "xyzpackage", "R", "hello-world.R") capture_output(expect_false({ styled <- style_file(file, scope = I("line_breaks")) any(styled$changed) })) expect_equal( style_text(c("1+14;x=2"), scope = I(c("line_breaks", "tokens"))), construct_vertical(c("1+14", "x<-2")) ) }) test_that("Can properly determine style_after_saving", { withr::with_envvar(list(save_after_styling = TRUE), { expect_warning(op <- save_after_styling_is_active(), "is depreciated") expect_equal(op, TRUE) }) withr::with_envvar(list(save_after_styling = FALSE), { expect_warning(op <- save_after_styling_is_active(), "is depreciated") expect_equal(op, FALSE) }) withr::with_options(list(styler.save_after_styling = TRUE), { expect_silent(op <- save_after_styling_is_active()) expect_equal(op, TRUE) }) withr::with_options(list(styler.save_after_styling = TRUE), { withr::with_envvar(list(save_after_styling = FALSE), { expect_warning(op <- save_after_styling_is_active(), "is depreciated") expect_equal(op, TRUE) }) }) withr::with_options(list(styler.save_after_styling = FALSE), { expect_silent(op <- save_after_styling_is_active()) expect_equal(op, FALSE) }) })
listShp <- function(printed = TRUE, admin_level = c("admin0", "admin1")){ admn_level <- NULL admin_level_numeric <- as.numeric(gsub('admin', '', admin_level)) if(exists('available_admin_stored', envir = .malariaAtlasHidden)){ available_admin <- .malariaAtlasHidden$available_admin_stored } else { available_admin <- NULL } if(!all(admin_level_numeric %in% available_admin$admn_level)){ URL_list <- c("admin0" = utils::URLencode("https://malariaatlas.org/geoserver/Explorer/ows?service=wfs&version=2.0.0&request=GetFeature&outputFormat=csv&TypeName=mapadmin_0_2018&PROPERTYNAME=iso,admn_level,name_0,id_0,type_0,source"), "admin1" = utils::URLencode("https://malariaatlas.org/geoserver/Explorer/ows?service=wfs&version=2.0.0&request=GetFeature&outputFormat=csv&TypeName=mapadmin_1_2018&PROPERTYNAME=iso,admn_level,name_0,id_0,type_0,name_1,id_1,type_1,source"), "admin2" = utils::URLencode("https://malariaatlas.org/geoserver/Explorer/ows?service=wfs&version=2.0.0&request=GetFeature&outputFormat=csv&TypeName=mapadmin_2_2018&PROPERTYNAME=iso,admn_level,name_0,id_0,type_0,name_1,id_1,type_1,name_2,id_2,type_2,source" ), "admin3" = utils::URLencode("https://malariaatlas.org/geoserver/Explorer/ows?service=wfs&version=2.0.0&request=GetFeature&outputFormat=csv&TypeName=mapadmin_3_2018&PROPERTYNAME=iso,admn_level,name_0,id_0,type_0,name_1,id_1,type_1,name_2,id_2,type_2,name_3,id_3,type_3,source")) use_URL_list <- URL_list[names(URL_list) %in% admin_level & !(0:3) %in% available_admin$admn_level] available_admin_new <- try(lapply(X = use_URL_list, FUN = utils::read.csv, encoding = "UTF-8")) if(inherits(available_admin_new, 'try-error')){ message(available_admin_new[1]) return(available_admin_new) } if(is.null(available_admin)){ available_admin <- suppressWarnings(dplyr::bind_rows(available_admin_new)) } else { available_admin <- suppressWarnings(dplyr::bind_rows(available_admin_new, available_admin)) } available_admin <- dplyr::select(available_admin, names(available_admin)[names(available_admin) %in% c("iso","admn_level","name_0","id_0", "type_0","name_1","id_1","type_1","name_2","id_2","type_2", "name_3","id_3","type_3","source")]) .malariaAtlasHidden$available_admin_stored <- available_admin } if(printed == TRUE){ message("Shapefiles Available to Download for: \n ",paste(sort(unique(available_admin$name_0[available_admin$admn_level==0])), collapse = " \n ")) } available_admin <- available_admin[,!names(available_admin)%in%c("FID","gid")] available_admin <- dplyr::filter(available_admin, admn_level %in% admin_level_numeric) return(invisible(available_admin)) }
get_result <- function(result, pvalueCutoff = 0.05){ result <- result@ScoreResult result <- result[result$p_value < pvalueCutoff,] return(result) }
prereg_knit_item_content <- function(x, section = NULL, headingLevel = 2) { rmdpartials::partial( input = system.file("partials", "_preregr_spec_full_partial.Rmd", package = "preregr") ); }
`symmsign.shape` <- function(X, init=NULL, steps=Inf, eps=1e-6, maxiter=100, na.action=na.fail) { X<-na.action(X) X<-as.matrix(X) n<-dim(X)[1] p<-dim(X)[2] if(p==1) return(diag(1)) if (is.null(init)) init<-covshape(X) else init<-to.shape(init) if(is.finite(steps)) maxiter<-Inf iter<-0 V<-init while(TRUE) { if(iter>=steps) return(V) if(iter>=maxiter) warning("maxiter reached") iter<-iter+1 sqrtV<-mat.sqrt(V) V.new<-sqrtV%*%SSCov(X%*%solve(sqrtV))%*%sqrtV V.new<-to.shape(V.new) if(all(is.infinite(steps),mat.norm(V.new-V)<eps)) return(V.new) V<-V.new } }
topSRBatsmenAcrossOversAllOppnAllMatches <- function(matches,t1) { team=ball=totalRuns=total=SRinPowerpPlay=SRinMiddleOvers=SRinDeathOvers=batsman=str_extract=runs=count=NULL ggplotly=NULL a <-filter(matches,team==t1) a1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 0.1, 5.9)) a2 <- select(a1,ball,totalRuns,batsman,date) a3 <- a2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRinPowerpPlay=runs/count*100) %>% arrange(desc(SRinPowerpPlay)) %>% select(batsman,SRinPowerpPlay) b1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 6.1, 15.9)) b2 <- select(b1,ball,totalRuns,batsman,date) b3 <- b2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRinMiddleOvers=runs/count*100) %>% arrange(desc(SRinMiddleOvers)) %>% select(batsman,SRinMiddleOvers) c1 <- a %>% filter(between(as.numeric(str_extract(ball, "\\d+(\\.\\d+)?$")), 16.1, 20.0)) c2 <- select(c1,ball,totalRuns,batsman,date) c3 <- c2 %>% group_by(batsman) %>% summarise(runs=sum(totalRuns),count=n(), SRinDeathOvers=runs/count*100) %>% arrange(desc(SRinDeathOvers)) %>% select(batsman,SRinDeathOvers) val=min(dim(a3)[1],dim(b3)[1],dim(c3)[1]) m=cbind(a3[1:val,],b3[1:val,],c3[1:val,]) m }
tokens_select <- function(x, pattern, selection = c("keep", "remove"), valuetype = c("glob", "regex", "fixed"), case_insensitive = TRUE, padding = FALSE, window = 0, min_nchar = NULL, max_nchar = NULL, startpos = 1L, endpos = -1L, verbose = quanteda_options("verbose")) { UseMethod("tokens_select") } tokens_select.default <- function(x, pattern = NULL, selection = c("keep", "remove"), valuetype = c("glob", "regex", "fixed"), case_insensitive = TRUE, padding = FALSE, window = 0, min_nchar = NULL, max_nchar = NULL, startpos = 1L, endpos = -1L, verbose = quanteda_options("verbose")) { check_class(class(x), "tokens_select") } tokens_select.tokens <- function(x, pattern = NULL, selection = c("keep", "remove"), valuetype = c("glob", "regex", "fixed"), case_insensitive = TRUE, padding = FALSE, window = 0, min_nchar = NULL, max_nchar = NULL, startpos = 1L, endpos = -1L, verbose = quanteda_options("verbose")) { x <- as.tokens(x) selection <- match.arg(selection) valuetype <- match.arg(valuetype) padding <- check_logical(padding) window <- check_integer(window, min_len = 1, max_len = 2, min = 0) startpos <- check_integer(startpos, max_len = Inf) endpos <- check_integer(endpos, max_len = Inf) verbose <- check_logical(verbose) attrs <- attributes(x) type <- types(x) if (is.null(pattern)) { if (selection == "keep") { ids <- as.list(seq_along(type)) } else { ids <- list() } } else { ids <- object2id(pattern, type, valuetype, case_insensitive, field_object(attrs, "concatenator")) } if (!is.null(min_nchar) | !is.null(max_nchar)) { len <- stri_length(type) is_short <- is_long <- rep(FALSE, length(len)) if (!is.null(min_nchar)) { min_nchar <- check_integer(min_nchar, min = 0) is_short <- len < min_nchar } if (!is.null(max_nchar)) { max_nchar <- check_integer(max_nchar, min = 0) is_long <- max_nchar < len } id_out <- which(is_short | is_long) if (length(id_out)) { if (selection == "keep") { if (all(lengths(ids) == 1)) { ids <- setdiff(ids, as.list(id_out)) } else { has_out <- unlist_integer(lapply(ids, function(x, y) length(intersect(x, y)) > 0, id_out)) ids <- ids[!has_out] } } else { ids <- union(ids, as.list(id_out)) } } } if (verbose) message_select(selection, length(ids), 0) if (length(window) == 1) window <- rep(window, 2) if (selection == "keep") { result <- qatd_cpp_tokens_select(x, type, ids, 1, padding, window[1], window[2], startpos, endpos) } else { result <- qatd_cpp_tokens_select(x, type, ids, 2, padding, window[1], window[2], startpos, endpos) } rebuild_tokens(result, attrs) } tokens_remove <- function(x, ...) { if ("selection" %in% names(list(...))) { stop("tokens_remove cannot include selection argument") } tokens_select(x, ..., selection = "remove") } tokens_keep <- function(x, ...) { if ("selection" %in% names(list(...))) { stop("tokens_keep cannot include selection argument") } tokens_select(x, ..., selection = "keep") }
conditionalReordering <- function(n, list.correlation.matrix, name, scenario.probability = NULL, region.boundaries = NULL, region.probability = NULL, keep.realized.scenario = F) { if (!is.character(name) || duplicated(name) || (length(name) < 2) || !all(name %in% c("market", "life", "health", "nonlife"))) { stop("Invalid name, see ?conditionalReordering.") } if (!is.list(list.correlation.matrix)) { stop("Invalid types, see ?conditionalReordering.") } if (length(list.correlation.matrix) < 1) { stop("Void list of correlation matrices, see ?conditionalReordering.") } if (!all(sapply(list.correlation.matrix, is.matrix))) { stop("Invalid types, see ?conditionalReordering.") } if (!all(sapply(list.correlation.matrix, function(corr) identical(nrow(corr), ncol(corr))))) { stop("Correlation matrix is not square, see ?conditionalReordering.") } if (!all(sapply(list.correlation.matrix, function(corr) nrow(corr) > 2))) { stop("Correlation matrix should be at least of dimension 2, see ?conditionalReordering.") } if (length(unique(sapply(list.correlation.matrix, function(corr) nrow(corr)))) != 1) { stop("Not all correlation matrices have the same dimensions, see ?conditionalReordering.") } if (any(sapply(list.correlation.matrix, function(corr) is.null(rownames(corr)) || is.null(colnames(corr))))) { stop("Correlation matrix has missing rownames or colnames, see ?conditionalReordering.") } if (any(sapply(list.correlation.matrix, function(corr) !identical(rownames(corr), colnames(corr))))) { stop("Correlation matrix has different rownames and colnames, see ?conditionalReordering.") } if (any(sapply(list.correlation.matrix, function(corr) duplicated(rownames(corr)) || duplicated(colnames(corr))))) { stop("Correlation matrix has different duplicated colnames or rownames, see ?conditionalReordering.") } if (any(sapply(list.correlation.matrix, function(corr) !all(colnames(corr) %in% c("market", "life", "health", "nonlife")) || !all(c("market", "life", "health", "nonlife") %in% colnames(corr))))) { stop("Correlation matrix has invalid names, see ?conditionalReordering.") } if (!all(sapply(list.correlation.matrix, function(corr) { identical(t(corr), corr)}))) { stop("all correlation matrix should be symmetric, see ?conditionalReordering.") } if (!all(sapply(list.correlation.matrix, function(corr) { all(eigen(removePerfectCorr(corr), symmetric = T, only.values = T)$values >= 0)}))) { stop("all correlation matrix should be positive semi-definite, see ?conditionalReordering.") } if (length(list.correlation.matrix) > 1) { if (is.null(region.probability) || is.null(scenario.probability) || is.null(region.boundaries)) { stop("Invalid types, see ?conditionalReordering.") } if (!is.numeric(region.probability) || !is.numeric(scenario.probability) || !is.matrix(region.boundaries) || !is.numeric(region.boundaries)) { stop("Invalid types, see ?conditionalReordering") } if (any(!is.finite(region.probability)) || any(!is.finite(scenario.probability)) || any(!is.finite(region.boundaries))) { stop("Non-finite values, see ?conditionalReordering.") } if (is.null(names(list.correlation.matrix)) || is.null(rownames(region.boundaries)) || is.null(colnames(region.boundaries))) { stop("Missing names, see ?conditionalReordering.") } if (!all(setdiff(names(list.correlation.matrix), "base") %in% rownames(region.boundaries)) || !all(rownames(region.boundaries) %in% setdiff(names(list.correlation.matrix), "base"))) { stop("Incompatible scenario names, see ?conditionalReordering.") } if (ncol(region.boundaries) != ncol(list.correlation.matrix[[1]])) { stop("Incompatible dimensions, see ?conditionalReordering.") } if (length(list.correlation.matrix) != (1+length(scenario.probability))) { stop("Incompatible dimensions, see ?conditionalReordering.") } if (length(list.correlation.matrix) != (1+length(region.probability))) { stop("Incompatible dimensions, see ?conditionalReordering.") } if (length(list.correlation.matrix) != (1+nrow(region.boundaries))) { stop("Incompatible dimensions, see ?conditionalReordering.") } if (any(scenario.probability <= 0 | scenario.probability >= 1)) { stop("scenario.probability should be in (0,1), see ?conditionalReordering.") } if (any(region.probability <= 0 | region.probability >= 1)) { stop("region.probability should be in (0,1), see ?conditionalReordering.") } if (sum(scenario.probability / region.probability) > 1) { stop("Invalid scenario.probability and/or region.probability, see ?conditionalReordering.") } if (any(region.boundaries < 0 | region.boundaries > 1)) { stop("region.boundaries should be in [0,1], see ?conditionalReordering.") } } index.name <- sapply(name, function(n) which(n == colnames(list.correlation.matrix[[1]]))) list.correlation.matrix <- lapply(list.correlation.matrix, function(corr) { return(corr[name ,name]) }) if (length(list.correlation.matrix) != 1) { if (nrow(region.boundaries) == 1) { region.col.names <- colnames(region.boundaries) region.row.names <- rownames(region.boundaries) region.boundaries <- region.boundaries[,index.name] region.boundaries <- matrix(region.boundaries, nrow = 1) colnames(region.boundaries) <- region.col.names rownames(region.boundaries) <- region.row.names } else { region.boundaries <- region.boundaries[,index.name] } } u <- data.table::data.table(MASS::mvrnorm(n = n, mu = rep(0, length(name)), Sigma = list.correlation.matrix$base)) names(u) <- colnames(list.correlation.matrix[[1]]) u[,names(u) :=lapply(.SD, function(x) stats::pnorm(x))] if (length(list.correlation.matrix) != 1) { normalized.probability <- scenario.probability / region.probability scenario.indicator <- u[, eval(parse(text = paste("list(as.numeric(", paste(sapply(1:nrow(region.boundaries), function(i) { paste(colnames(region.boundaries), region.boundaries[i,], sep = " <= ", collapse = " & ") }), collapse = "), as.numeric( "), "))", sep = "")), envir = .SD)] names(scenario.indicator) <- rownames(region.boundaries) names.regions <- rownames(region.boundaries) scenario.indicator[, eval(parse(text = paste("ind := ", paste(names.regions, 2^{0:(nrow(region.boundaries)-1)}, sep = "*", collapse = " + "), sep = "")), envir = .SD)] scenario.indicator[, eval(parse(text = paste("c('", paste("prob_", names.regions, sep = "", collapse = "', '"), "') := list(", paste(names.regions, "*normalized.probability[", 1:nrow(region.boundaries), "]", sep="", collapse = ", " ), ")", sep ="")), envir = .SD)] scenario.indicator[, eval(parse(text = paste("prob_base := 1-", paste("prob_", names.regions, sep = "", collapse = "-"), sep="")))] scenario.indicator[, eval(parse(text = paste("scenario.indicator[, scenario := sample(0:", nrow(region.boundaries), ", size = .N, replace = T, prob = c(", paste("prob_", c("base", names.regions), "[1]", sep ="", collapse = ", "), ")), by = 'ind']", sep = "")))] u[, scenario := scenario.indicator[,'scenario']] rm(scenario.indicator) gc() u[, eval(parse(text = paste("u[,c('", paste("c_", colnames(region.boundaries), sep = "", collapse = "', '"), paste("') := lapply(as.list(data.frame(matrix(MASS::mvrnorm(n = .N, mu = ", "rep(0,ncol(region.boundaries)), Sigma = list.correlation.matrix[[scenario[1] + 1]]), ", "ncol = ncol(region.boundaries)))), data.table::frank), by='scenario']", sep = ""), sep = "")), envir = .SD)] u[,eval(parse(text = paste("u[,c('", paste("ranks_", colnames(region.boundaries), sep = "", collapse = "', '"), "')", paste(" := if (scenario[1] == 0) {list(", paste(colnames(region.boundaries), collapse = ", "), ")} else { list(sort(", paste(colnames(region.boundaries), ")[c_", colnames(region.boundaries), "]", collapse = ", sort(", sep =""), ")}, by = 'scenario']", sep = ""), sep = "")), envir = .SD)] } else if (length(list.correlation.matrix) == 1) { names(u) <- paste("ranks_", names(u), sep = "") } if (!keep.realized.scenario) { return(u[, eval(parse(text = paste("c('", paste("ranks_", colnames(list.correlation.matrix[[1]]), sep = "", collapse = "', '"), "')", sep ="")), envir = .SD), with = F]) } else { return(u[, eval(parse(text = paste("c('", paste("ranks_", colnames(list.correlation.matrix[[1]]), sep = "", collapse = "', '"), "', 'scenario", "')", sep ="")), envir = .SD), with = F]) } }
ts.diag <- function(x, lag = 10, band = qnorm(0.975) / sqrt(length(x))) { Z <- (x - mean(x, na.rm = TRUE)) / sd(x, na.rm = TRUE) x_acf <- acf(x, plot = FALSE, lag.max = lag, na.action = na.pass) x_acf <- with(x_acf, data.frame(lag, acf)) g1 <- ggplot() + geom_col(data = data.frame(x = as.numeric(time(Z)), y = as.numeric(Z)), aes(x = x, y = y)) + geom_hline(yintercept = 0, linetype = "solid", color = "blue") + geom_hline(yintercept = c(-2, 2), linetype = "dashed", color = "blue") + geom_hline(yintercept = c(-3, 3), linetype = "dotted", color = "blue") + labs(x = "time(Z)", y = "Z", title = "Standardized Residuals") + theme_minimal() g2 <- ggplot(data = x_acf, mapping = aes(x = lag, y = acf)) + geom_segment(mapping = aes(xend = lag, yend = 0)) + geom_hline(yintercept = 0, linetype = "solid", color = "blue") + geom_hline(yintercept = c(-1 * band, band), linetype = "dashed", color = "blue") + scale_x_continuous(limits = c(0, lag), breaks = 0:lag) + labs(x = "Lag", y = "ACF", title = "ACF of Residuals") + theme_minimal() g3 <- Box.Ljung.Test(x, lag = lag) g <- g1 + g2 + g3 + plot_layout(nrow = 3, byrow = FALSE) return(g) }
sessionInfo() install.packages(c("tidyverse", "lme4", "nlme", "manipulate", "rstanarm", "simr", "TMB", "gapminder", "aods3", "emdbook", "AER", "arm", "rmarkdown", "ggeffects", "sjPlot", "bbmle", "MuMIn", "broom", "broom.mixed", "glmmTMB"), dependencies = TRUE)
as.objlist <- function(p) { objlist(value = 0, gradient = structure(rep(0, length(p)), names = names(p)), hessian = matrix(0, length(p), length(p), dimnames = list(names(p), names(p)))) } constraintExp2 <- function(p, mu, sigma = 1, k = 0.05, fixed=NULL) { kmin <- 1e-5 if(length(sigma) == 1) sigma <- structure(rep(sigma, length(mu)), names = names(mu)) if(length(k) == 1) k <- structure(rep(k, length(mu)), names = names(mu)) k <- sapply(k, function(ki){ if(ki < kmin){ kmin } else ki }) par.fixed <- intersect(names(mu), names(fixed)) sumOfFixed <- 0 if(!is.null(par.fixed)) sumOfFixed <- sum(0.5*(exp(k[par.fixed]*((fixed[par.fixed] - mu[par.fixed])/sigma[par.fixed])^2)-1)/(exp(k[par.fixed])-1)) par <- intersect(names(mu), names(p)) t <- p[par] mu <- mu[par] s <- sigma[par] k <- k[par] gr <- rep(0, length(t)); names(gr) <- names(t) hs <- matrix(0, length(t), length(t), dimnames = list(names(t), names(t))) val <- sum(0.5*(exp(k*((t-mu)/s)^2)-1)/(exp(k)-1)) + sumOfFixed gr <- (k*(t-mu)/(s^2)*exp(k*((t-mu)/s)^2)/(exp(k)-1)) diag(hs)[par] <- k/(s*s)*exp(k*((t-mu)/s)^2)/(exp(k)-1)*(1+2*k*(t-mu)/(s^2)) dP <- attr(p, "deriv") if(!is.null(dP)) { gr <- as.vector(gr%*%dP); names(gr) <- colnames(dP) hs <- t(dP)%*%hs%*%dP; colnames(hs) <- colnames(dP); rownames(hs) <- colnames(dP) } objlist(value=val,gradient=gr,hessian=hs) } normL2 <- function(data, x, errmodel = NULL, times = NULL, attr.name = "data") { timesD <- sort(unique(c(0, do.call(c, lapply(data, function(d) d$time))))) if (!is.null(times)) timesD <- sort(union(times, timesD)) x.conditions <- names(attr(x, "mappings")) data.conditions <- names(data) if (!all(data.conditions %in% x.conditions)) stop("The prediction function does not provide predictions for all conditions in the data.") e.conditions <- names(attr(errmodel, "mappings")) controls <- list(times = timesD, attr.name = attr.name, conditions = x.conditions) force(errmodel) myfn <- function(..., fixed = NULL, deriv=TRUE, conditions = controls$conditions, env = NULL) { arglist <- list(...) arglist <- arglist[match.fnargs(arglist, "pars")] pouter <- arglist[[1]] pars_out <- colnames(getDerivs(as.parvec(pouter))) template <- objlist( value = 0, gradient = structure(rep(0, length(pars_out)), names = pars_out), hessian = matrix(0, nrow = length(pars_out), ncol = length(pars_out), dimnames = list(pars_out, pars_out)) ) timesD <- controls$times attr.name <- controls$attr.name if (is.null(env)) env <- new.env() prediction <- x(times = timesD, pars = pouter, fixed = fixed, deriv = deriv, conditions = conditions) out.data <- lapply(conditions, function(cn) { err <- NULL if ((!is.null(errmodel) & is.null(e.conditions)) | (!is.null(e.conditions) && (cn %in% e.conditions))) { err <- errmodel(out = prediction[[cn]], pars = getParameters(prediction[[cn]]), conditions = cn) mywrss <- nll(res(data[[cn]], prediction[[cn]], err[[cn]])) } else { mywrss <- wrss(res(data[[cn]], prediction[[cn]])) } available <- intersect(pars_out, names(mywrss$gradient)) result <- template result$value <- mywrss$value if (deriv) { result$gradient[available] <- mywrss$gradient[available] result$hessian[available, available] <- mywrss$hessian[available, available] } else { result$gradient <- result$hessian <- NULL } return(result) }) out.data <- Reduce("+", out.data) out <- out.data attr(out, controls$attr.name) <- out.data$value if (!is.null(env)) { assign("prediction", prediction, envir = env) } attr(out, "env") <- env return(out) } class(myfn) <- c("objfn", "fn") attr(myfn, "conditions") <- data.conditions attr(myfn, "parameters") <- attr(x, "parameters") attr(myfn, "modelname") <- modelname(x, errmodel) return(myfn) } constraintL2 <- function(mu, sigma = 1, attr.name = "prior", condition = NULL) { estimateSigma <- ifelse(is.character(sigma), TRUE, FALSE) if (length(sigma) > 1 & length(sigma) < length(mu)) stop("sigma must either have length 1 or at least length equal to length of mu.") if (length(sigma) == 1) sigma <- structure(rep(sigma, length(mu)), names = names(mu)) if (is.null(names(sigma))) names(sigma) <- names(mu) if (!is.null(names(sigma)) & !all(names(mu) %in% names(sigma))) stop("Names of sigma and names of mu do not match.") sigma <- sigma[names(mu)] controls <- list(mu = mu, sigma = sigma, attr.name = attr.name) myfn <- function(..., fixed = NULL, deriv = TRUE, conditions = condition, env = NULL) { arglist <- list(...) arglist <- arglist[match.fnargs(arglist, "pars")] pouter <- arglist[[1]] mu <- controls$mu sigma <- controls$sigma attr.name <- controls$attr.name nmu <- length(mu) if (is.list(pouter) && !is.null(conditions)) { available <- intersect(names(pouter), conditions) defined <- ifelse(is.null(condition), TRUE, condition %in% conditions) if (length(available) == 0 | !defined) return() pouter <- pouter[intersect(available, condition)] } if (!is.list(pouter)) pouter <- list(pouter) outlist <- lapply(pouter, function(p) { pars <- c(p, fixed)[names(mu)] p1 <- setdiff(intersect(names(mu), names(p)), names(fixed)) if (estimateSigma) { sigmapars <- sigma sigma <- exp(c(p, fixed)[sigma]) names(sigma) <- names(mu) Jsigma <- do.call(cbind, lapply(unique(sigmapars), function(s) { (sigmapars == s)*sigma })) colnames(Jsigma) <- unique(sigmapars) rownames(Jsigma) <- names(sigma) p2 <- setdiff(intersect(unique(sigmapars), names(p)), names(fixed)) } val <- sum((pars - mu)^2/sigma^2) + estimateSigma * sum(log(sigma^2)) val.p <- 2*(pars - mu)/sigma^2 val.sigma <- -2*(pars-mu)^2/sigma^3 + 2/sigma val.p.p <- diag(2/sigma^2, nmu, nmu); colnames(val.p.p) <- rownames(val.p.p) <- names(mu) val.p.sigma <- diag(-4*(pars-mu)/sigma^3, nmu, nmu); colnames(val.p.sigma) <- rownames(val.p.sigma) <- names(mu) val.sigma.sigma <- diag(6*(pars-mu)^2/sigma^4 - 2/sigma^2, nmu, nmu); colnames(val.sigma.sigma) <- rownames(val.sigma.sigma) <- names(mu) if (estimateSigma) { val.sigma.sigma <- t(Jsigma) %*% val.sigma.sigma %*% Jsigma + diag((t(val.sigma) %*% Jsigma)[1,], ncol(Jsigma), ncol(Jsigma)) val.sigma <- (val.sigma %*% Jsigma)[1,] val.p.sigma <- (val.p.sigma %*% Jsigma) } gr <- hs <- NULL if (deriv) { gr <- rep(0, length(p)); names(gr) <- names(p) hs <- matrix(0, length(p), length(p), dimnames = list(names(p), names(p))) gr[p1] <- val.p[p1] hs[p1, p1] <- val.p.p[p1, p1] if (estimateSigma) { gr[p2] <- val.sigma[p2] hs[p1, p2] <- val.p.sigma[p1, p2] hs[p2, p1] <- t(val.p.sigma)[p2, p1] hs[p2, p2] <- val.sigma.sigma[p2, p2] } dP <- attr(p, "deriv") if (!is.null(dP)) { gr <- as.vector(gr %*% dP); names(gr) <- colnames(dP) hs <- t(dP) %*% hs %*% dP; colnames(hs) <- colnames(dP); rownames(hs) <- colnames(dP) } } objlist(value = val, gradient = gr, hessian = hs) }) out <- Reduce("+", outlist) attr(out, controls$attr.name) <- out$value attr(out, "env") <- env return(out) } class(myfn) <- c("objfn", "fn") attr(myfn, "conditions") <- condition attr(myfn, "parameters") <- names(mu) return(myfn) } datapointL2 <- function(name, time, value, sigma = 1, attr.name = "validation", condition) { controls <- list( mu = structure(name, names = value)[1], time = time[1], sigma = sigma[1], attr.name = attr.name ) myfn <- function(..., fixed = NULL, deriv=TRUE, conditions = NULL, env = NULL) { mu <- controls$mu time <- controls$time sigma <- controls$sigma attr.name <- controls$attr.name arglist <- list(...) arglist <- arglist[match.fnargs(arglist, "pars")] pouter <- arglist[[1]] if (!is.null(env)) { prediction <- as.list(env)$prediction } else { stop("No prediction available. Use the argument env to pass an environment that contains the prediction.") } if (!is.null(conditions) && !condition %in% conditions) return() if (is.null(conditions) && !condition %in% names(prediction)) stop("datapointL2 requests unavailable condition. Call the objective function explicitly stating the conditions argument.") datapar <- setdiff(names(mu), names(fixed)) parapar <- setdiff(names(pouter), c(datapar, names(fixed))) time.index <- which(prediction[[condition]][,"time"] == time) if (length(time.index) == 0) stop("datapointL2() requests time point for which no prediction is available. Please add missing time point by the times argument in normL2()") withDeriv <- !is.null(attr(prediction[[condition]], "deriv")) pred <- prediction[[condition]][time.index, ] deriv <- NULL if (withDeriv) deriv <- attr(prediction[[condition]], "deriv")[time.index, ] pred <- pred[mu] if (withDeriv) { mu.para <- intersect(paste(mu, parapar, sep = "."), names(deriv)) deriv <- deriv[mu.para] } res <- as.numeric(pred - c(fixed, pouter)[names(mu)]) val <- as.numeric((res/sigma) ^ 2) gr <- NULL hs <- NULL if (withDeriv) { dres.dp <- structure(rep(0, length(pouter)), names = names(pouter)) if (length(parapar) > 0) dres.dp[parapar] <- as.numeric(deriv) if (length(datapar) > 0) dres.dp[datapar] <- -1 gr <- 2*res*dres.dp/sigma ^ 2 hs <- 2*outer(dres.dp, dres.dp, "*")/sigma ^ 2; colnames(hs) <- rownames(hs) <- names(pouter) } out <- objlist(value = val, gradient = gr, hessian = hs) attr(out, controls$attr.name) <- out$value attr(out, "prediction") <- pred attr(out, "env") <- env return(out) } class(myfn) <- c("objfn", "fn") attr(myfn, "conditions") <- condition attr(myfn, "parameters") <- value[1] return(myfn) } priorL2 <- function(mu, lambda = "lambda", attr.name = "prior", condition = NULL) { controls <- list(mu = mu, lambda = lambda, attr.name = attr.name) myfn <- function(..., fixed = NULL, deriv=TRUE, conditions = condition, env = NULL) { arglist <- list(...) arglist <- arglist[match.fnargs(arglist, "pars")] pouter <- arglist[[1]] mu <- controls$mu lambda <- controls$lambda attr.name <- controls$attr.name if (is.list(pouter) && !is.null(conditions)) { available <- intersect(names(pouter), conditions) defined <- ifelse(is.null(condition), TRUE, condition %in% conditions) if (length(available) == 0 | !defined) return() pouter <- pouter[intersect(available, condition)] } if (!is.list(pouter)) pouter <- list(pouter) outlist <- lapply(pouter, function(p) { par.fixed <- intersect(names(mu), names(fixed)) sumOfFixed <- 0 if (!is.null(par.fixed)) sumOfFixed <- sum(exp(c(fixed, p)[lambda])*(fixed[par.fixed] - mu[par.fixed]) ^ 2) par <- intersect(names(mu), names(p)) par0 <- setdiff(par, lambda) val <- sum(exp(c(fixed, p)[lambda]) * (p[par] - mu[par]) ^ 2) + sumOfFixed gr <- hs <- NULL if (deriv) { gr <- rep(0, length(p)); names(gr) <- names(p) gr[par] <- 2*exp(c(fixed, p)[lambda])*(p[par] - mu[par]) if (lambda %in% names(p)) { gr[lambda] <- sum(exp(c(fixed, p)[lambda]) * (p[par0] - mu[par0]) ^ 2) + sum(exp(c(fixed, p)[lambda]) * (fixed[par.fixed] - mu[par.fixed]) ^ 2) } hs <- matrix(0, length(p), length(p), dimnames = list(names(p), names(p))) diag(hs)[par] <- 2*exp(c(fixed, p)[lambda]) if (lambda %in% names(p)) { hs[lambda, lambda] <- gr[lambda] hs[lambda, par0] <- hs[par0, lambda] <- gr[par0] } dP <- attr(p, "deriv") if (!is.null(dP)) { gr <- as.vector(gr %*% dP); names(gr) <- colnames(dP) hs <- t(dP) %*% hs %*% dP; colnames(hs) <- colnames(dP); rownames(hs) <- colnames(dP) } } objlist(value = val, gradient = gr, hessian = hs) }) out <- Reduce("+", outlist) attr(out, controls$attr.name) <- out$value attr(out, "env") <- env return(out) } class(myfn) <- c("objfn", "fn") attr(myfn, "conditions") <- condition attr(myfn, "parameters") <- names(mu) return(myfn) } wrss <- function(nout) { is.bloq <- nout$bloq nout.bloq <- nout[is.bloq, , drop = FALSE] nout <- nout[!is.bloq, , drop = FALSE] obj <- sum(nout$weighted.residual^2) grad <- NULL hessian <- NULL derivs <- attr(nout, "deriv") if (!is.null(derivs)) { derivs.bloq <- derivs[is.bloq, , drop = FALSE] derivs <- derivs[!is.bloq, , drop = FALSE] if (nrow(derivs) > 0) { nout$sigma[is.na(nout$sigma)] <- 1 sens <- as.matrix(derivs[, -(1:2), drop = FALSE]) res <- nout$residual sigma <- nout$sigma grad <- as.vector(2*matrix(res/sigma^2, nrow = 1) %*% sens) names(grad) <- colnames(sens) hessian <- 2*t(sens/sigma) %*% (sens/sigma) } if (nrow(derivs.bloq) > 0) { objvals.bloq <- -2*pnorm(-nout.bloq$weighted.residual, log.p = TRUE) obj.bloq <- sum(objvals.bloq) nout.bloq[is.na(nout.bloq$sigma)] <- 1 sens.bloq <- as.matrix(derivs.bloq[, -(1:2), drop = FALSE]) res <- nout.bloq$residual sigma <- nout.bloq$sigma LPhi <- pnorm(-nout.bloq$weighted.residual, log.p = TRUE) LG <- dnorm(-nout.bloq$weighted.residual, log = TRUE) G_divided_by_Phi <- exp(LG-LPhi) grad.bloq <- as.vector(matrix(2 * G_divided_by_Phi/(sigma), nrow = 1) %*% sens.bloq) names(grad.bloq) <- colnames(sens.bloq) X1 <- sens.bloq*(G_divided_by_Phi/(sigma))^2 X2 <- sens.bloq*(res*G_divided_by_Phi/(sigma^3)) hessian.bloq <- 2 * t(X1) %*% sens.bloq - 2 * t(X2) %*% sens.bloq obj <- obj + obj.bloq if (is.null(grad) & is.null(hessian)) { grad <- grad.bloq hessian <- hessian.bloq } else { grad <- grad + grad.bloq hessian <- hessian + hessian.bloq } } } objlist(value = obj, gradient = grad, hessian = hessian) } nll <- function(nout) { is.bloq <- nout$bloq nout.bloq <- nout[is.bloq, , drop = FALSE] nout <- nout[!is.bloq, , drop = FALSE] obj <- sum(nout$weighted.residual^2) + sum(log(2*pi*nout$sigma^2)) grad <- NULL hessian <- NULL derivs <- attr(nout, "deriv") derivs.err <- attr(nout, "deriv.err") if (!is.null(derivs) & !is.null(derivs.err)) { derivs.bloq <- derivs[is.bloq, , drop = FALSE] derivs.err.bloq <- derivs.err[is.bloq, , drop = FALSE] derivs <- derivs[!is.bloq, , drop = FALSE] derivs.err <- derivs.err[!is.bloq, , drop = FALSE] if (nrow(derivs) > 0 & nrow(derivs.err) > 0) { sens <- as.matrix(derivs[, -(1:2), drop = FALSE]) sens.err <- as.matrix(derivs.err[, -(1:2), drop = FALSE]) res <- nout$residual sigma <- nout$sigma grad <- as.vector(2*matrix(res/sigma^2, nrow = 1) %*% sens - 2*matrix(res^2/sigma^3, nrow = 1) %*% sens.err + 2*matrix(1/sigma, nrow = 1) %*% sens.err) names(grad) <- colnames(sens) X1 <- (1/sigma)*sens - (res/sigma^2)*sens.err X2 <- (res/sigma^2)*sens.err X3 <- (1/sigma)*sens.err hessian <- 2 * t(X1) %*% X1 } if (nrow(derivs.bloq) > 0 & nrow(derivs.err.bloq) > 0) { objvals.bloq <- -2*pnorm(-nout.bloq$weighted.residual, log.p = TRUE) obj.bloq <- sum(objvals.bloq) sens.bloq <- as.matrix(derivs.bloq[, -(1:2), drop = FALSE]) sens.err.bloq <- as.matrix(derivs.err.bloq[, -(1:2), drop = FALSE]) res <- nout.bloq$residual sigma <- nout.bloq$sigma LPhi <- pnorm(-nout.bloq$weighted.residual, log.p = TRUE) LG <- dnorm(-nout.bloq$weighted.residual, log = TRUE) G_divided_by_Phi <- exp(LG-LPhi) grad.bloq <- as.vector(matrix(2*G_divided_by_Phi/sigma, nrow = 1) %*% sens.bloq) - as.vector(matrix(2*G_divided_by_Phi*res/(sigma^2), nrow = 1) %*% sens.err.bloq) names(grad.bloq) <- colnames(sens.bloq) X <- -(1/sigma)*sens.bloq + (res/sigma^2)*sens.err.bloq X1 <- (2*G_divided_by_Phi^2)*X X2 <- (2*G_divided_by_Phi*res/(sigma))*X hessian.bloq <- t(X1) %*% X - t(X2) %*% X obj <- obj + obj.bloq if (is.null(grad) & is.null(hessian)) { grad <- grad.bloq hessian <- hessian.bloq } else { grad <- grad + grad.bloq hessian <- hessian + hessian.bloq } } } objlist(value = obj, gradient = grad, hessian = hessian) } "+.objlist" <- function(out1, out2) { if (is.null(out1)) return(out2) if (is.null(out2)) return(out1) allnames <- c(names(out1), names(out2)) what <- allnames[duplicated(allnames)] what.names <- what if (is.null(what)) { what <- 1:min(c(length(out1), length(out2))) what.names <- NULL } out12 <- lapply(what, function(w) { sub1 <- out1[[w]] sub2 <- out2[[w]] n <- names(sub1) dn <- dimnames(sub1) if (!is.null(n) && !is.null(sub1) %% !is.null(sub2)) { sub1[n] + sub2[n] } else if (!is.null(dn) && !is.null(sub1) && !is.null(sub2)) { matrix(sub1[dn[[1]], dn[[2]]] + sub2[dn[[1]], dn[[2]]], length(dn[[1]]), length(dn[[2]]), dimnames = list(dn[[1]], dn[[2]])) } else if (!is.null(sub1) && !is.null(sub2)) { sub1 + sub2 } else { NULL } }) names(out12) <- what.names out1.attributes <- attributes(out1)[sapply(attributes(out1), is.numeric)] out2.attributes <- attributes(out2)[sapply(attributes(out2), is.numeric)] attr.names <- union(names(out1.attributes), names(out2.attributes)) out12.attributes <- lapply(attr.names, function(n) { x1 <- ifelse(is.null(out1.attributes[[n]]), 0, out1.attributes[[n]]) x2 <- ifelse(is.null(out2.attributes[[n]]), 0, out2.attributes[[n]]) x1 + x2 }) attributes(out12)[attr.names] <- out12.attributes class(out12) <- "objlist" return(out12) } print.objfn <- function(x, ...) { parameters <- attr(x, "parameters") cat("Objective function:\n") str(args(x)) cat("\n") cat("... parameters:", paste0(parameters, collapse = ", "), "\n") }
local_disable_cache() test_that("nesting works", { expected <- read_utf8("test-nesting-expected.css") class(expected) <- c("css", "html", "character") attr(expected, "html") <- TRUE css <- sass(sass_file("test-nesting-input.scss")) expect_equal(css, expected) })
context ("Scenario of un wanted inputs") test_that("NA values are avoided",{ expect_that(NegLLCOMPBin(NA,4,0.1,.3), throws_error("NA or Infinite or NAN values in the Input")) }) test_that("Infinite values are avoided",{ expect_that(NegLLCOMPBin(Inf,4,0.1,.3), throws_error("NA or Infinite or NAN values in the Input")) }) test_that("NAN values are avoided",{ expect_that(NegLLCOMPBin(NaN,4,0.1,.3), throws_error("NA or Infinite or NAN values in the Input")) }) context("Binomial Random variable or frequency issues") test_that("Negativity Binomial random variable",{ expect_that(NegLLCOMPBin(-3,4,0.2,0.4), throws_error("Binomial random variable or frequency values cannot be negative")) }) test_that("Negativity frequency values",{ expect_that(NegLLCOMPBin(-13,4,0.2,0.4), throws_error("Binomial random variable or frequency values cannot be negative")) }) context("Probability value issues") test_that("Probability issues",{ expect_that(NegLLCOMPBin(3,5,3,0.4), throws_error("Probability value doesnot satisfy conditions")) }) test_that("Probability issues",{ expect_that(NegLLCOMPBin(3,5,-3,0.4), throws_error("Probability value doesnot satisfy conditions")) }) context("Checking outputs") test_that("Output value expected",{ expect_identical(round(NegLLCOMPBin(Chromosome_data$No.of.Asso,Chromosome_data$fre,0.7,1),4), 472.6649) }) test_that("Checking class of output",{ expect_that(NegLLCOMPBin(Chromosome_data$No.of.Asso,Chromosome_data$fre,0.7,1), is_a("numeric")) })
okcurobs <- function(SI=TRUE, localtime=TRUE) { path <- paste("http://www.mesonet.org/data/public/mesonet/current/", "current.csv.txt", sep="") curobs <- read.csv(file=path, colClasses=c("character", "character", "character", "numeric", "numeric", "integer", "integer", "integer", "integer", "integer", "integer", "integer", "integer", "integer", "integer", "character", "integer", "integer", "numeric", "integer", "integer", "numeric")) time.stitched <- paste(curobs$YR, sprintf("%02d", curobs$MO), sprintf("%02d", curobs$DA), sprintf("%02d", curobs$HR), sprintf("%02d", curobs$MI), "-0600", sep="") curobs$TIME <- as.POSIXct(time.stitched, format="%Y%m%d%H%M%z") if (localtime==TRUE) { curobs$TIME <- as.POSIXct(format(curobs$TIME, tz="America/Chicago"), tz="America/Chicago") } else { curobs$TIME <- as.POSIXct(format(curobs$TIME, tz="GMT"), tz="GMT") } if(SI==T) { curobs$TAIR <- round((5/9) * (curobs$TAIR - 32), 1) curobs$TDEW <- round((5/9) * (curobs$TDEW - 32), 1) curobs$CHIL <- round((5/9) * (curobs$CHIL - 32), 1) curobs$HEAT <- round((5/9) * (curobs$HEAT - 32), 1) curobs$TMAX <- round((5/9) * (curobs$TMAX - 32), 1) curobs$TMIN <- round((5/9) * (curobs$TMIN - 32), 1) curobs$WSPD <- round(curobs$WSPD * 0.44704, 1) curobs$WMAX <- round(curobs$WMAX * 0.44704, 1) curobs$RAIN <- round(curobs$RAIN * 25.4, 1) } return(curobs) }
to_hv_list <- function(path) { hvs = new("HypervolumeList") hvs@HVList = foreach(file = list.files(path), .combine = c) %do% { readRDS(file.path(path, file)) } return(hvs) }
postscript("normals.eps", paper = "letter", horizontal = FALSE) xVals <- seq(-5, 5, length = 1000) plot(xVals, dnorm(xVals), type = "l", lwd = 2) lines(xVals, dnorm(xVals, sd = 1.5), lwd = 2, lty = 2) lines(xVals, dnorm(xVals, sd = 2), lwd = 2, lty = 3) lines(xVals, dnorm(xVals, sd = 2.5), lwd = 2, lty = 4) legend(-4, .4, c("1", "1.5", "2", "2.5"), lty = 1 : 4, lwd = 2) dev.off()
ggplot_waterfall <- function(dtData, cXColumnName, cYColumnName, nArrowSize = 0.25, vcGroupingColumnNames = NULL) { NextY <- "" tail <- "" Change <- "" dtData <- copy(data.table(dtData)) dtData[ , NextY := c(tail(get(cYColumnName), -1), NA), unique(vcGroupingColumnNames) ] dtData[, Change := "+"] dtData[NextY > get(cYColumnName), Change := "-"] dtData[NextY == get(cYColumnName), Change := ""] ggplotWaterfall <- ggplot() + geom_segment( data = dtData[get(cYColumnName) != NextY], aes_string( x = cXColumnName, y = cYColumnName, xend = cXColumnName, yend = "NextY", color = "Change" ), arrow = arrow(length = unit(nArrowSize, "cm")) ) + geom_point( data = dtData[get(cYColumnName) == NextY], aes_string( x = cXColumnName, y = cYColumnName, color = "Change" ) ) + scale_color_manual( breaks = c("+", "-", ""), values = c("green", "red", "black") ) ggplotWaterfall }
ISOImageryMetadata <- R6Class("ISOImageryMetadata", inherit = ISOMetadata, private = list( document = TRUE, xmlElement = "MI_Metadata", xmlNamespacePrefix = "GMI" ), public = list( acquisitionInformation = list(), initialize = function(xml = NULL){ super$initialize(xml = xml) }, addAcquisitionInfo = function(acquisitionInfo){ if(!is(acquisitionInfo, "ISOImageryAcquisitionInformation")){ stop("The argument should be an object of class 'ISOImageryAcquisitionInformation") } return(self$addListElement("acquisitionInformation", acquisitionInfo)) }, delAcquisitionInfo = function(acquisitionInfo){ if(!is(acquisitionInfo, "ISOImageryAcquisitionInformation")){ stop("The argument should be an object of class 'ISOImageryAcquisitionInformation") } return(self$delListElement("acquisitionInformation", acquisitionInfo)) } ) )
library(vcfR) context("summary_tables functions") test_that("write.var.info works",{ data("chromR_example") setwd(tempdir()) write.var.info(chrom, file = "test_var_info.csv") expect_true(file.exists("test_var_info.csv")) unlink("test_var_info.csv") }) test_that("write.var.info works, mask == TRUE",{ data("chromR_example") setwd(tempdir()) write.var.info(chrom, file = "test_var_info.csv", mask = TRUE) expect_true(file.exists("test_var_info.csv")) unlink("test_var_info.csv") }) test_that("write.win.info works",{ data("chromR_example") myChrom <- proc.chromR(chrom, verbose = FALSE) setwd(tempdir()) write.win.info(myChrom, file = "test_win_info.csv") expect_true(file.exists("test_win_info.csv")) unlink("test_win_info.csv") })
model2grfun <- function(modelformula, pvec, funname = "mygr", filename = NULL) { pnames <- names(pvec) if (is.null(pnames)) stop("MUST have named parameters in pvec") if (is.character(modelformula)) { es <- modelformula } else { tstr <- as.character(modelformula) es <- paste(tstr[[2]], "~", tstr[[3]], "") } xx <- all.vars(parse(text = es)) rp <- match(pnames, xx) xx2 <- c(xx[rp], xx[-rp]) xxparm <- xx[rp] pstr <- "c(" npar <- length(xxparm) if (npar > 0) { for (i in 1:npar) { pstr <- paste(pstr, "\"", xxparm[i], "\"", sep = "") if (i < npar) pstr <- paste(pstr, ", ", sep = "") } } pstr <- paste(pstr, ")", sep = "") xxvars <- xx[-rp] nvar <- length(xxvars) vstr <- "" if (nvar > 0) { for (i in 1:nvar) { vstr <- paste(vstr, xxvars[i], " = NULL", sep = "") if (i < nvar) vstr <- paste(vstr, ", ", sep = "") } } ff <- vector("list", length(xx2)) names(ff) <- xx2 parts <- strsplit(as.character(es), "~")[[1]] if (length(parts) != 2) stop("Model expression is incorrect!") lhs <- parts[1] rhs <- parts[2] resexp <- paste(rhs, "-", lhs, collapse = " ") resval <- paste("resids<-as.numeric(eval(", resexp, "))", sep = "") resexp <- paste(rhs, "-", lhs, collapse = " ") jacexp <- deriv(parse(text = resexp), pnames) dvstr <- "" if (nvar > 0) { for (i in 1:nvar) { dvstr <- paste(dvstr, xxvars[i], sep = "") if (i < nvar) dvstr <- paste(dvstr, ", ", sep = "") } } jfstr <- paste("localdf<-data.frame(", dvstr, ");\n", sep = "") jfstr <- paste(jfstr, "jstruc<-with(localdf,eval(", jacexp, "))", sep = "") pparse <- "" for (i in 1:npar) { pparse <- paste(pparse, " ", pnames[[i]], "<-prm[[", i, "]]\n", sep = "") } mygstr <- paste(funname, "<-function(prm, ", vstr, ") {\n", pparse, "\n ", jfstr, " \n", "jacmat<-attr(jstruc,'gradient')\n ", resval, "\n", "grj<-as.vector(2.0*crossprod(jacmat, resids)) \n", "}", sep = "") if (!is.null(filename)) write(mygstr, file = filename) tparse <- try(parse(text = mygstr)) if (class(tparse) == "try-error") stop("Error in residual code string") eval(tparse) }
backval <- function(y, t, w, Tn, minT = 5, nptperyear, ...){ getBack <- function(y, index){ yi <- y[index] n <- length(yi) i_end <- ifelse(n <= 5, n, 5) return( median(sort(yi)[1:i_end]) ) } n <- length(y) i_lowT <- (Tn < minT) n_lowT <- length(which(i_lowT)) i_good <- w >= 1 i_margin <- w >= 0.5 if (n_lowT == 0){ back <- getBack(y, i_good) } else if (n - n_lowT < max(5, nptperyear/12*2)){ month <- month(t) i_summer <- month %in% c(6, 7, 8) I <- i_summer & i_good if (sum(I) < 5) I <- i_summer & i_margin back <- getBack(y, I) } else { i_goodT <- i_good & (!i_lowT) if (sum(i_goodT) < 5) { i_marginT <- i_margin & (!i_lowT) i_goodT <- i_marginT } back <- getBack(y, i_goodT) } return(back) }
sraMakeObject <- function (sradata, model, start, fixed, FUNtimeseries) { ans <- list() ans$data <- sradata ans$model <- model ans$start <- start ans$coefficients <- stats4::coef(model)[names(start)] sumcoef <- stats4::coef(stats4::summary(model)) ans$confint <- cbind(sumcoef[,1]-2*sumcoef[,2], sumcoef[,1]+2*sumcoef[,2]) ans$pred <- list() ans$residuals <- list() ans$vresiduals <- list() for (pop in split(ans$data, ans$data$rep)) { range <- 1:(nrow(pop) - 1) cc <- c(list(beta = (pop$sel[range] - pop$mean[range])/(pop$var[range]), delta = (pop$vsel[range] - pop$var[range])/pop$var[range])) cc <- c(cc, ans$coefficients, unlist(fixed)) cc$logvarME <- NULL ts <- do.call(what = FUNtimeseries, args = cc) r <- pop$rep[1] ans$pred[[as.character(r)]] <- list() ans$pred[[as.character(r)]]$Gen <- names(ts$mean) ans$pred[[as.character(r)]]$phen <- ts$mean ans$pred[[as.character(r)]]$var <- ts$varP ans$pred[[as.character(r)]]$varA <- ts$varA ans$residuals[[as.character(r)]] <- ans$data[ans$data[, "rep"] == as.character(r), "mean"] - ts$mean ans$vresiduals[[as.character(r)]] <- ans$data[ans$data[, "rep"] == as.character(r), "var"] - ts$varP } class(ans) <- c("srafit", "list") return(ans) }
run_ora <- function( object, categories, extra_annotations, overwrite, stringent_or_default, stringent_logfc_threshold, verbose, class_signature, global ) { if (global == TRUE) { stop( paste0( "Global ORA analyis is not supported anymore.", " Use 'global == FALSE'" ) ) } if (stringent_or_default == "stringent") { stop( paste0( "Stringent ORA analysis is not supported anymore.", " Use 'stringent_or_default == 'default''" ) ) } regulation <- c("UP", "DOWN", "FLAT", "DIFF") categories_acceptable <- c( "LRI", "LIGAND_COMPLEX", "RECEPTOR_COMPLEX", "ER_CELLTYPES", "EMITTER_CELLTYPE", "RECEIVER_CELLTYPE", "GO_TERMS", "KEGG_PWS" ) if (!all(categories %in% categories_acceptable)) { stop( paste0( "Accepted 'categories' for ORA are ", paste0( categories_acceptable, collapse = ", " ) ) ) } if (!is.null(extra_annotations)) { err_mess <- paste0( "'extra_annotations' must be a list of data.tables or data.frames ", "with exactly two columns each" ) if (!is.list(extra_annotations)) { stop(err_mess) } else if ( any( sapply( extra_annotations, function(i) { !(methods::is(i, "data.table") | methods::is(i, "data.frame")) || length(colnames(i)) != 2 } ) ) ) { stop(err_mess) } else { extra_annotations <- lapply( extra_annotations, setDT ) extra_base_categories <- sapply( extra_annotations, function(i) colnames(i)[[1]] ) extra_new_categories <- sapply( extra_annotations, function(i) colnames(i)[[2]] ) if (!all(extra_base_categories %in% categories_acceptable)) { stop( paste0( "Name of the first colum of each table in 'extra_annotations' ", "must be a standard ORA category." ) ) } else if (any(extra_new_categories %in% categories_acceptable)) { stop( paste0( "Name of the second colum of each table in 'extra_annotations' ", "must be different from standard ORA categories." ) ) } else { categories <- c(categories, extra_new_categories) names(extra_annotations) <- extra_new_categories } } } temp_param <- object@parameters condition_inputs <- list( is_cond = temp_param$conditional_analysis, cond1 = temp_param$seurat_condition_id$cond1_name, cond2 = temp_param$seurat_condition_id$cond2_name ) if (class_signature == "scDiffCom") { temp_by <- NULL } if (class_signature == "scDiffComCombined") { if (global) { temp_by <- NULL } else { temp_by <- "ID" } } if (temp_param$permutation_analysis & condition_inputs$is_cond) { logfc_threshold <- temp_param$threshold_logfc if (stringent_or_default == "default") { if (!global) { temp_ora <- object@ora_table } else { temp_ora <- object@ora_combined_default } categories_old <- names(temp_ora) if (is.null(categories_old)) { mes <- paste0( "Performing over-representation analysis on the categories: ", paste0(categories, collapse = ", "), "." ) if (verbose) message(mes) categories_to_run <- categories } else { if (overwrite) { mes <- paste0( "Performing over-representation analysis on the categories: ", paste0(categories, collapse = ", "), ".\n", "Erasing all previous ORA results: ", paste0(categories_old, collapse = ", "), "." ) if (verbose) message(mes) categories_to_run <- categories } else { categories_to_run <- setdiff(categories, categories_old) mes <- paste0( "Performing over-representation analysis on the categories: ", paste0(categories_to_run, collapse = ", "), ".\n", "Keeping previous ORA results: ", paste0(setdiff(categories_old, categories_to_run), collapse = ", "), "." ) if (verbose) message(mes) } } ora_default <- sapply( categories_to_run, function(category) { temp_dt <- object@cci_table_detected if (!(category %in% categories_acceptable)) { extra_annotation <- extra_annotations[[category]] } else { extra_annotation <- NULL } res <- temp_dt[ , build_ora_dt( cci_table_detected = .SD, logfc_threshold = logfc_threshold, regulation = regulation, category = category, extra_annotation = extra_annotation, species = temp_param$LRI_species, global = global ), by = temp_by ] }, USE.NAMES = TRUE, simplify = FALSE ) if (is.null(categories_old)) { res_ora <- ora_default } else { if (overwrite) { res_ora <- ora_default } else { res_ora <- c(temp_ora, ora_default) } } if (global) { if (class_signature == "scDiffComCombined") { object@ora_combined_default <- res_ora } else { stop( paste0( "No ORA global analysis allowed for object", " of class 'scDiffComCombined'" ) ) } } else { object@ora_table <- res_ora } } else if (stringent_or_default == "stringent") { if (is.null(stringent_logfc_threshold)) { if (verbose) { message( paste0( "Choose a non-NULL 'stringent_logfc_threshold' to", " perform stringent over-representation analysis." ) ) } } else { if(stringent_logfc_threshold > logfc_threshold) { if (!global) { temp_ora_stringent <- object@ora_stringent } else { temp_ora_stringent <- object@ora_combined_stringent } categories_old_stringent <- names(temp_ora_stringent) if (is.null(categories_old_stringent)) { mes <- paste0( "Performing stringent over-representation analysis ", "on the specified categories: ", paste0(categories, collapse = ", "), "." ) if (verbose) message(mes) categories_stringent_to_run <- categories } else { if (overwrite) { mes <- paste0( "Performing stringent over-representation analysis ", "on the specified categories: ", paste0(categories, collapse = ", "), ".\n", "Erasing all previous ORA results: ", paste0(categories_old_stringent, collapse = ", "), "." ) if (verbose) message(mes) categories_stringent_to_run <- categories } else { categories_stringent_to_run <- setdiff( categories, categories_old_stringent ) mes <- paste0( "Performing stringent over-representation analysis ", "on the specified categories: ", paste0(categories_stringent_to_run, collapse = ", "), ".\n", "Keeping previous ORA results: ", paste0( setdiff( categories_old_stringent, categories_stringent_to_run ), collapse = ", " ), "." ) if (verbose) message(mes) } } ora_stringent <- sapply( categories_stringent_to_run, function(category) { temp_dt <- object@cci_table_detected if (!(category %in% categories_acceptable)) { extra_annotation <- extra_annotation[[category]] } else { extra_annotation <- NULL } res <- temp_dt[ , build_ora_dt( cci_table_detected = .SD, logfc_threshold = stringent_logfc_threshold, regulation = regulation, category = category, extra_annotation = extra_annotation, species = temp_param$LRI_species, global = global ), by = temp_by ] }, USE.NAMES = TRUE, simplify = FALSE ) if (is.null(categories_old_stringent)) { res_ora_stringent <- ora_stringent } else { if (overwrite) { res_ora_stringent <- ora_stringent } else { res_ora_stringent <- c(temp_ora_stringent, ora_stringent) } } if (global == TRUE) { if (class_signature == "scDiffComCombined") { object@ora_combined_stringent <- res_ora_stringent } else { stop( paste0( "No ORA global analysis allowed for object of ", "class 'scDiffComCombined'" ) ) } } else { object@ora_stringent <- res_ora_stringent } } else { if (verbose) { message( paste0( "The supposedly 'stringent' logfc is actually less ", "'stringent' than the default parameter. Choose a higher value." ) ) } } } } else { stop("Can't recognize parameter 'stringent_or_default") } } else { if (verbose) { message( "No over-representation analysis available for the selected parameters." ) } } return(object) } build_ora_dt <- function( cci_table_detected, logfc_threshold, regulation, category, extra_annotation, species, global ) { ER_CELLTYPES <- LIGAND_COMPLEX <- RECEPTOR_COMPLEX <- ID <- LRI <- NULL cci_dt <- copy( cci_table_detected ) if (global & (category == "ER_CELLTYPES")) { cci_dt[, ER_CELLTYPES := paste(ID, ER_CELLTYPES, sep = "_")] } if (category == "LIGAND_COMPLEX") { cci_dt[, LIGAND_COMPLEX := gsub(":.*", "", LRI)] } if (category == "RECEPTOR_COMPLEX") { cci_dt[, RECEPTOR_COMPLEX := gsub(".*:", "", LRI)] } ora_tables <- lapply( X = regulation, FUN = function(reg) { if (category %in% c("GO_TERMS", "KEGG_PWS") | !is.null(extra_annotation)) { if (category == "GO_TERMS") { if (species == "mouse") { new_intersection_dt <- scDiffCom::LRI_mouse$LRI_curated_GO[ , c("LRI", "GO_ID", "GO_NAME") ] } if (species == "human") { new_intersection_dt <- scDiffCom::LRI_human$LRI_curated_GO[ , c("LRI", "GO_ID", "GO_NAME") ] } base_category <- "LRI" new_id <- "GO_ID" new_name <- "GO_NAME" new_category <- "GO_TERMS" } if (category == "KEGG_PWS") { if (species == "mouse") { new_intersection_dt <- scDiffCom::LRI_mouse$LRI_curated_KEGG } if (species == "human") { new_intersection_dt <- scDiffCom::LRI_human$LRI_curated_KEGG } base_category <- "LRI" new_id <- "KEGG_ID" new_name <- "KEGG_NAME" new_category <- "KEGG_PWS" } if (!is.null(extra_annotation)) { new_intersection_dt <- extra_annotation base_category <- colnames(extra_annotation)[[1]] new_id <- NULL new_name <- colnames(extra_annotation)[[2]] new_category <- colnames(extra_annotation)[[2]] } counts_dt <- extract_category_counts( cci_table_detected = cci_dt, category = base_category, reg = reg, logfc_threshold = logfc_threshold ) counts_dt <- extract_additional_category_counts( counts_dt = counts_dt, new_intersection_dt = new_intersection_dt, base_category = base_category, new_category = new_category, new_id = new_id, new_name = new_name ) } else { counts_dt <- extract_category_counts( cci_table_detected = cci_dt, category = category, reg = reg, logfc_threshold = logfc_threshold ) } counts_dt <- perform_ora_from_counts( counts_dt = counts_dt ) cols_to_rename <- colnames(counts_dt) cols_to_rename <- cols_to_rename[ !(cols_to_rename %in% c("VALUE", "VALUE_BIS", "CATEGORY")) ] setnames( x = counts_dt, old = cols_to_rename, new = paste0(cols_to_rename, "_", reg) ) return(counts_dt) } ) ora_full <- Reduce(merge, ora_tables) if (category == "GO_TERMS") { if (species == "mouse") { go_info <- scDiffCom::LRI_mouse$LRI_curated_GO } if (species == "human") { go_info <- scDiffCom::LRI_human$LRI_curated_GO } ora_full[ unique(go_info[, c("GO_ID", "LEVEL", "ASPECT")]), on = "VALUE_BIS==GO_ID", c("LEVEL", "ASPECT") := mget(c("i.LEVEL", "i.ASPECT")) ] } return(ora_full) } extract_category_counts <- function( cci_table_detected, category, reg, logfc_threshold ) { REGULATION <- COUNTS_VALUE_REGULATED <- COUNTS_VALUE_NOTREGULATED <- LOGFC <- NULL if (reg == "UP") { dt_regulated <- cci_table_detected[ REGULATION == "UP" & LOGFC >= logfc_threshold ] dt_notregulated <- cci_table_detected[ !(REGULATION == "UP" & LOGFC >= logfc_threshold) ] } else if (reg == "DOWN") { dt_regulated <- cci_table_detected[ REGULATION == "DOWN" & LOGFC <= -logfc_threshold ] dt_notregulated <- cci_table_detected[ !(REGULATION == "DOWN" & LOGFC <= -logfc_threshold) ] } else if (reg == "DIFF") { dt_regulated <- cci_table_detected[ REGULATION %in% c("UP", "DOWN") & abs(LOGFC) >= logfc_threshold ] dt_notregulated <- cci_table_detected[ !(REGULATION %in% c("UP", "DOWN") & abs(LOGFC) >= logfc_threshold) ] } else if (reg == "FLAT") { dt_regulated <- cci_table_detected[REGULATION == "FLAT"] dt_notregulated <- cci_table_detected[REGULATION != "FLAT"] } else { stop("Type of ORA not supported.") } dt_counts <- rbindlist( l = lapply( X = category, FUN = function(categ) { merge.data.table( x = dt_regulated[ , list( CATEGORY = categ, COUNTS_VALUE_REGULATED = .N ), by = list(VALUE = get(categ))], y = dt_notregulated[ , list( CATEGORY = categ, COUNTS_VALUE_NOTREGULATED = .N ), by = list(VALUE = get(categ))], by = c("VALUE", "CATEGORY"), all = TRUE ) } ), use.names = TRUE ) setnafill( x = dt_counts, type = "const", fill = 0, cols = c("COUNTS_VALUE_REGULATED", "COUNTS_VALUE_NOTREGULATED") ) COUNTS_REGULATED <- dt_regulated[, .N] COUNTS_NOTREGULATED <- dt_notregulated[, .N] dt_counts <- dt_counts[ , c( "COUNTS_NOTVALUE_REGULATED", "COUNTS_NOTVALUE_NOTREGULATED" ) := list( COUNTS_REGULATED - COUNTS_VALUE_REGULATED, COUNTS_NOTREGULATED - COUNTS_VALUE_NOTREGULATED ) ] return(dt_counts) } extract_additional_category_counts <- function( counts_dt, new_intersection_dt, base_category, new_category, new_id, new_name ) { CATEGORY <- COUNTS_VALUE_REGULATED <- COUNTS_NOTVALUE_REGULATED <- COUNTS_NOTVALUE_NOTREGULATED <- COUNTS_VALUE_NOTREGULATED <- COUNTS_VALUE_REGULATED_temp <- COUNTS_VALUE_NOTREGULATED_temp <- NULL if (!identical( class(counts_dt[["VALUE"]]), class(new_intersection_dt[[base_category]]) )) { stop( paste0( "First column of ", new_category, " (in 'extra_annotations') must be of the same type as column '", base_category, "'" ) ) } if (length( intersect( new_intersection_dt[[base_category]], counts_dt[["VALUE"]] ) ) == 0) { stop( "Can't find any matching term between first column of ", new_category, " and column '", base_category, "'" ) } counts_intersection_dt <- merge.data.table( new_intersection_dt, counts_dt, by.x = base_category, by.y = "VALUE" ) counts_intersection_dt[ , c( "COUNTS_VALUE_REGULATED_temp", "COUNTS_VALUE_NOTREGULATED_temp" ) := list( sum(COUNTS_VALUE_REGULATED), sum(COUNTS_VALUE_NOTREGULATED) ), by = new_name ] counts_intersection_dt[ , c( "COUNTS_NOTVALUE_REGULATED_temp", "COUNTS_NOTVALUE_NOTREGULATED_temp" ) := list( COUNTS_NOTVALUE_REGULATED + COUNTS_VALUE_REGULATED - COUNTS_VALUE_REGULATED_temp, COUNTS_NOTVALUE_NOTREGULATED + COUNTS_VALUE_NOTREGULATED - COUNTS_VALUE_NOTREGULATED_temp )] counts_intersection_dt[, CATEGORY := new_category] counts_intersection_dt[, c( "COUNTS_VALUE_REGULATED", "COUNTS_VALUE_NOTREGULATED", "COUNTS_NOTVALUE_REGULATED", "COUNTS_NOTVALUE_NOTREGULATED", base_category ) := NULL] counts_intersection_dt <- unique(counts_intersection_dt) if (is.null(new_id)) { col_new_id <- NULL } else { col_new_id <- "VALUE_BIS" } setnames( counts_intersection_dt, old = c( new_name, new_id, "COUNTS_VALUE_REGULATED_temp", "COUNTS_VALUE_NOTREGULATED_temp", "COUNTS_NOTVALUE_REGULATED_temp", "COUNTS_NOTVALUE_NOTREGULATED_temp" ), new = c( "VALUE", col_new_id, "COUNTS_VALUE_REGULATED", "COUNTS_VALUE_NOTREGULATED", "COUNTS_NOTVALUE_REGULATED", "COUNTS_NOTVALUE_NOTREGULATED" ) ) counts_intersection_dt } perform_ora_from_counts <- function( counts_dt ) { P_VALUE <- BH_P_VALUE <- OR <- COUNTS_VALUE_REGULATED <- COUNTS_VALUE_NOTREGULATED <-COUNTS_NOTVALUE_REGULATED <- COUNTS_NOTVALUE_NOTREGULATED <- ORA_SCORE <- i.BH_P_VALUE <- NULL counts_dt[, c("OR", "P_VALUE") := vfisher_2sided( COUNTS_VALUE_REGULATED, COUNTS_VALUE_NOTREGULATED, COUNTS_NOTVALUE_REGULATED, COUNTS_NOTVALUE_NOTREGULATED )] counts_dt[, c("KULC_DISTANCE", "IMBALANCE_RATIO") := list( kulc( COUNTS_VALUE_REGULATED, COUNTS_VALUE_NOTREGULATED, COUNTS_NOTVALUE_REGULATED, COUNTS_NOTVALUE_NOTREGULATED ), imbalance_ratio( COUNTS_VALUE_REGULATED, COUNTS_VALUE_NOTREGULATED, COUNTS_NOTVALUE_REGULATED, COUNTS_NOTVALUE_NOTREGULATED ) )] temp_bh_dt <- counts_dt[COUNTS_VALUE_REGULATED > 0] temp_bh_dt[, "BH_P_VALUE" := list(stats::p.adjust(P_VALUE, method = "BH"))] counts_dt[temp_bh_dt, on = "VALUE", "BH_P_VALUE" := i.BH_P_VALUE] counts_dt[, ORA_SCORE := ifelse( OR <= 1 | BH_P_VALUE >= 0.05, 0, ifelse( is.infinite(OR), Inf, -log10(BH_P_VALUE) * log2(OR) ) )] return(counts_dt) } clip_infinite_OR <- function( ORA_dt ) { OR <- COUNTS_VALUE_REGULATED <- COUNTS_NOTVALUE_NOTREGULATED <- COUNTS_VALUE_NOTREGULATED <- COUNTS_NOTVALUE_REGULATED <- NULL ORA_dt[, OR := ifelse( is.infinite(OR), (COUNTS_VALUE_REGULATED + 1) * (COUNTS_NOTVALUE_NOTREGULATED + 1) / ((COUNTS_VALUE_NOTREGULATED + 1) * (COUNTS_NOTVALUE_REGULATED + 1)), OR )] return(ORA_dt) } fisher_2sided <- function( COUNTS_VALUE_REGULATED, COUNTS_VALUE_NOTREGULATED, COUNTS_NOTVALUE_REGULATED, COUNTS_NOTVALUE_NOTREGULATED ) { m <- matrix( data = c( COUNTS_VALUE_REGULATED, COUNTS_VALUE_NOTREGULATED, COUNTS_NOTVALUE_REGULATED, COUNTS_NOTVALUE_NOTREGULATED ), nrow = 2, ncol = 2, byrow = TRUE ) test <- stats::fisher.test( x = m, alternative = "two.sided" ) res <- c(test$estimate, test$p.value) return(res) } vfisher_2sided <- function( COUNTS_VALUE_REGULATED, COUNTS_VALUE_NOTREGULATED, COUNTS_NOTVALUE_REGULATED, COUNTS_NOTVALUE_NOTREGULATED ) { v <- mapply( FUN = fisher_2sided, COUNTS_VALUE_REGULATED, COUNTS_VALUE_NOTREGULATED, COUNTS_NOTVALUE_REGULATED, COUNTS_NOTVALUE_NOTREGULATED ) l <- list(OR = v[1, ], P_VALUE = v[2, ]) return(l) } kulc <- function( COUNTS_VALUE_REGULATED, COUNTS_VALUE_NOTREGULATED, COUNTS_NOTVALUE_REGULATED, COUNTS_NOTVALUE_NOTREGULATED ) { P_AB <- COUNTS_VALUE_REGULATED / (COUNTS_VALUE_REGULATED + COUNTS_NOTVALUE_REGULATED) P_BA <- COUNTS_VALUE_REGULATED / (COUNTS_VALUE_REGULATED + COUNTS_VALUE_NOTREGULATED) avg <- (P_AB + P_BA) / 2 return(avg) } imbalance_ratio <- function( COUNTS_VALUE_REGULATED, COUNTS_VALUE_NOTREGULATED, COUNTS_NOTVALUE_REGULATED, COUNTS_NOTVALUE_NOTREGULATED ) { numerator <- abs(COUNTS_VALUE_NOTREGULATED - COUNTS_NOTVALUE_REGULATED) denominator <- (COUNTS_VALUE_REGULATED + COUNTS_VALUE_NOTREGULATED + COUNTS_NOTVALUE_REGULATED) return(numerator / denominator) } get_tables_ora <- function( object, categories, simplified, class_signature ) { if (!is.character(categories)) { stop("'categories' must be a character vector") } tables <- copy(object@ora_table) if (identical(tables, list())) { warning("The object does not contain ORA tables. Returning 'NULL'") return(NULL) } categories_in <- names(tables) if (identical(categories, "all")) { categories <- categories_in } if (!all(categories %in% categories_in)) { stop("All 'categories' must be present in the object.") } tables <- tables[categories] if (simplified) { if (class_signature == "scDiffComCombined") { first_col <- "ID" } else { first_col <- NULL } cols_to_keep <- c( first_col, "VALUE", "VALUE_BIS", "LEVEL", "ASPECT", as.vector(outer( c("OR_", "P_VALUE_", "BH_P_VALUE_", "ORA_SCORE_"), c("UP", "DOWN", "FLAT", "DIFF"), FUN = "paste0" )) ) tables <- lapply( tables, function(table) { cols_temp <- intersect(cols_to_keep, colnames(table)) res <- table[, cols_temp, with = FALSE] } ) } tables } plot_ora <- function( ora_dt, category, regulation, max_terms_show, GO_aspect, OR_threshold, bh_p_value_threshold ) { VALUE <- ASPECT <- LEVEL <- OR <- OR_UP <- OR_DOWN <- OR_FLAT <- BH_PVAL <- BH_P_VALUE_UP <- BH_P_VALUE_DOWN <- BH_P_VALUE_FLAT <- ORA_SCORE <- ORA_SCORE_UP <- ORA_SCORE_DOWN <- ORA_SCORE_FLAT <- NULL if (!requireNamespace("ggplot2", quietly = TRUE)) { stop( paste0( "Package \"ggplot2\" needed for this function to work.", "Please install it." ), call. = FALSE ) } if (OR_threshold < 1) { stop( "'OR_thtreshold' muste be bigger than 1" ) } if (bh_p_value_threshold > 0.05) { stop( "'bh_p_value_threshold' must be smaller than 0.05" ) } dt <- copy(ora_dt) if(regulation == "UP") { dt[, OR := OR_UP] dt[, BH_PVAL := BH_P_VALUE_UP] dt[, ORA_SCORE := ORA_SCORE_UP ] } else if(regulation == "DOWN") { dt[, OR := OR_DOWN] dt[, BH_PVAL := BH_P_VALUE_DOWN] dt[, ORA_SCORE := ORA_SCORE_DOWN ] } else if(regulation == "FLAT") { dt[, OR := OR_FLAT] dt[, BH_PVAL := BH_P_VALUE_FLAT] dt[, ORA_SCORE := ORA_SCORE_FLAT ] } else { stop("Can't find 'regulation' type") } if (category == "GO_TERMS") { dt <- dt[ ASPECT == GO_aspect ] dt[, VALUE := paste0( "(L", LEVEL, ") ", VALUE )] } dt <- dt[ OR > 1 & BH_PVAL <= 0.05 ] if (any(is.infinite(dt$OR))) { extra_label_annotation <- " (* : infinite odds ratios are normalized)" dt[ , VALUE := ifelse( is.infinite(OR), paste0("* ", VALUE), VALUE ) ] dt_finite <- dt[is.finite(OR)] if (nrow(dt_finite) > 0) { dt[ , OR := ifelse( is.infinite(OR), 1 + max(dt_finite$OR), OR ) ] } else { dt[, OR := 100] } dt[ , ORA_SCORE := -log10(BH_PVAL) * log2(OR) ] } else { extra_label_annotation <- NULL } dt <- dt[ OR > OR_threshold & BH_PVAL <= bh_p_value_threshold ][order(-ORA_SCORE)] n_row_tokeep <- min(max_terms_show, nrow(dt)) dt <- dt[1:n_row_tokeep] dt$VALUE <- sapply( dt$VALUE, function(i) { words <- strsplit(i, " ")[[1]] n_words <- length(words) if (n_words >= 5) { if (n_words%%2 == 0) { mid <- n_words/2 } else { mid <- (n_words+1)/2 } res <- paste0( paste0(words[1:mid], collapse = " "), "\n", paste0(words[(mid+1):length(words)], collapse = " ") ) } else { res <- i } res } ) category_label <- ifelse( category == "LRI", "Ligand-Receptor Interactions", ifelse( category == "LIGAND_COMPLEX", "Ligand Genes", ifelse( category == "RECEPTOR_COMPLEX", "Receptor Genes", ifelse( category == "ER_CELLTYPES", "Emitter-Receiver Cell Types", ifelse( category == "EMITTER_CELLTYPE", "Emitter Cell Types", ifelse( category == "RECEIVER_CELLTYPE", "Receiver Cell Types", ifelse( category == "GO_TERMS", ifelse( GO_aspect == "biological_process", "GO Biological Processes", ifelse( GO_aspect == "molecular_function", "GO Molecular Functions", "GO Cellular Components" ) ), ifelse( category == "KEGG_PWS", "KEGG Pathways", category ) ) ) ) ) ) ) ) ggplot2::ggplot( dt, ggplot2::aes( ORA_SCORE, stats::reorder(VALUE, ORA_SCORE) ) ) + ggplot2::geom_point( ggplot2::aes( size = -log10(BH_PVAL), color = log2(OR) ) ) + ggplot2::scale_color_gradient(low = "orange", high = "red") + ggplot2::xlab(paste0("ORA score ", regulation)) + ggplot2::ylab("") + ggplot2::labs( size = "-log10(Adj. P-Value)", color = "log2(Odds Ratio)", caption = extra_label_annotation ) + ggplot2::theme(text = ggplot2::element_text(size = 14)) + ggplot2::theme(legend.position = c(0.8, 0.3)) + ggplot2::theme(legend.title = ggplot2::element_text(size = 12)) + ggplot2::theme(legend.text = ggplot2::element_text(size = 12)) + ggplot2::theme(plot.title.position = "plot") + ggplot2::ggtitle( paste0( "Top ", n_row_tokeep, " ", regulation, " ", category_label ) ) }
annoSegments <- function(x0, y0, x1, y1, plot, default.units = "native", linecolor = "black", lwd = 1, lty = 1, lineend = "butt", linejoin = "mitre", arrow = NULL, params = NULL, ...) { segmentsInternal <- parseParams( params = params, defaultArgs = formals(eval(match.call()[[1]])), declaredArgs = lapply(match.call()[-1], eval.parent, n = 2), class = "segmentsInternal" ) segmentsInternal$gp <- gpar( col = segmentsInternal$linecolor, lwd = segmentsInternal$lwd, lty = segmentsInternal$lty, lineend = segmentsInternal$lineend, linejoin = segmentsInternal$linejoin ) segmentsInternal$gp <- setGP( gpList = segmentsInternal$gp, params = segmentsInternal, ... ) segments <- structure(list( x0 = segmentsInternal$x0, y0 = segmentsInternal$y0, x1 = segmentsInternal$x1, y1 = segmentsInternal$y1, arrow = segmentsInternal$arrow, grobs = NULL, gp = segmentsInternal$gp ), class = "segmentsInternal" ) check_page(error = "Cannot annotate segment without a `plotgardener` page.") if (is.null(segmentsInternal$plot)) { stop("argument \"plot\" is missing, with no default.", call. = FALSE ) } if (is.null(segments$x0)) stop("argument \"x0\" is missing, ", "with no default.", call. = FALSE) if (is.null(segments$y0)) stop("argument \"y0\" is missing, ", "with no default.", call. = FALSE) if (is.null(segments$x1)) stop("argument \"x1\" is missing, ", "with no default.", call. = FALSE) if (is.null(segments$y1)) stop("argument \"y1\" is missing, ", "with no default.", call. = FALSE) page_height <- get("page_height", envir = pgEnv) page_units <- get("page_units", envir = pgEnv) segments$x0 <- misc_defaultUnits(value = segments$x0, name = "x0", default.units = segmentsInternal$default.units) segments$y0 <- misc_defaultUnits(value = segments$y0, name = "y0", default.units = segmentsInternal$default.units, funName = "annoSegments", yBelow = FALSE) segments$x1 <- misc_defaultUnits(value = segments$x1, name = "x1", default.units = segmentsInternal$default.units) segments$y1 <- misc_defaultUnits(value = segments$y1, name = "y1", default.units = segmentsInternal$default.units, funName = "annoSegments", yBelow = FALSE) plotVP <- getAnnoViewport(plot = segmentsInternal$plot) plotVP_bottomLeft <- vp_bottomLeft(viewport = plotVP) seekViewport(plotVP$name) new_x0 <- convertX(segments$x0, unitTo = page_units, valueOnly = TRUE) new_x1 <- convertX(segments$x1, unitTo = page_units, valueOnly = TRUE) new_y0 <- convertY(segments$y0, unitTo = page_units, valueOnly = TRUE) new_y1 <- convertY(segments$y1, unitTo = page_units, valueOnly = TRUE) seekViewport(name = "page") new_x0 <- as.numeric(plotVP_bottomLeft[[1]]) + new_x0 new_x1 <- as.numeric(plotVP_bottomLeft[[1]]) + new_x1 new_y0 <- as.numeric(plotVP_bottomLeft[[2]]) + new_y0 new_y1 <- as.numeric(plotVP_bottomLeft[[2]]) + new_y1 name <- paste0( "segments", length(grep( pattern = "segments", x = grid.ls( print = FALSE, recursive = FALSE ) )) + 1 ) segments <- grid.segments( x0 = unit(new_x0, page_units), y0 = unit(new_y0, page_units), x1 = unit(new_x1, page_units), y1 = unit(new_y1, page_units), arrow = segments$arrow, gp = segments$gp, name = name ) segments$grobs <- segments message("segments[", segments$name, "]") invisible(segments) }
LKrigUnrollZGrid<- function( grid.list, ZGrid=NULL){ if( is.null(ZGrid)){ return(ZGrid) } if( is.list( ZGrid) ){ if( any(grid.list[[1]] != ZGrid[[1]]) |any(grid.list[[2]] != ZGrid[[2]]) ){ stop("grid list does not match grid for covariates") } ZGrid<- ZGrid$z } Zdim<- dim( ZGrid) nx<- length( grid.list[[1]]) ny<- length( grid.list[[2]]) if( (Zdim[1] != nx) | (Zdim[2] != ny) ){ stop( "Dimension of ZGrid does not match dimensions of location grid list.") } return( matrix( c(ZGrid), nrow= Zdim[1]*Zdim[2] )) }
plot.sum.intsearch <-function(x,type="summary",startN=21,...){ if(type=="summary"){ summary.int <- x summary.int$info$log_lambda <- log(summary.int$info$lambda) breaks <- do.breaks(range(summary.int$info$deviance), 20) n_init <- 21 summary.int$info$cols <- level.colors(summary.int$info$deviance,at=breaks, col.regions = gray.colors) n.features <- summary.int$info$n.features print(my.plot <- xyplot(log_lambda ~ alpha, data = summary.int$info, groups = summary.int$info$cols, cex = 1, cex.axis=1.5, col = "black", jitter.y=T, amount=0.01, ylab=list(expression(paste("log ",lambda)),cex=1.5), xlab=list(expression(alpha),cex=1.5), panel = function(x, y, groups, ..., subscripts) { fill <- groups[subscripts] panel.grid(h = -1, v = -1) panel.abline(h = log(summary.int$opt.lambda), v = summary.int$opt.alpha, col="red", lty = 1, lwd=2 ) panel.xyplot(x, y, pch = rep(c(22,21),c(n_init,nrow(summary.int$info)-n_init)), fill = fill, ...) ; ltext(x=x, y=y, labels=n.features, pos=ifelse(y<0.1,3,4), offset=1.5, cex=1,col=1) }, legend = list(top = list(fun = draw.colorkey, args = list(key = list(space = "top", col = gray.colors, at = breaks), draw = FALSE))), main="Cross-validated partial log likelihood deviance", scales=list(cex=1) )) } if(type=="points"){ summary.int <- x niter<- nrow(summary.int$info) - startN iter<-c(rep(0,startN), c(1:niter)) plot(summary.int$info$alpha, iter, xlab=expression(alpha), ylab="Iteration", pch=20,cex=1.5,cex.axis=1.5) grid(NA, niter+1, lwd=2) abline(v=summary.int$opt.alpha, col="red") } }
setClass("OCvar", slots=c(n="numeric", k="numeric", type="character", paccept="numeric"), contains="VIRTUAL", validity=function(object){ if(any(is.na(object@n)) | any(is.na(object@k)) ) return("Missing values in 'n' or 'k'") if (length(object@n) != 1 | length(object@k) != 1) return("n and k must be of length 1.") if (any(object@n <= 0)) return("Sample size 'n' must be greater than 0.") if (any(object@k <= 0)) return("Cut-off 'k' must be greater than 0.") return(TRUE) }) setClass("OCnormal", slots=c(pd="numeric", s.type="character"), contains="OCvar", prototype=prototype("OCvar",type="normal",pd=seq(0,1,by=0.01),s.type="known"), validity=function(object){ if ([email protected] != "known" & [email protected] != "unknown") return("s.type must be either 'known' or 'unknown'.") if (any(is.na(object@pd))) return("Missing values in 'pd' not allowed") if (any(object@pd < 0.) | any(object@pd > 1.) ) return("Proportion defectives must be in the range [0,1]") }) OCvar <- function(n, k, type=c("normal"), ...){ type <- match.arg(type) OCtype <- paste("OC",type,sep="") obj <- new(OCtype, n=n, k=k, type=type, ...) OCtype <- getFromNamespace(paste("calc.",OCtype,sep=""), ns="AcceptanceSampling") if (type =="normal") obj@paccept <- OCtype(n=obj@n, k=obj@k, pd=obj@pd, [email protected]) obj } calc.OCnormal <- function(n,k,pd,s.type) { if (s.type=="known"){ pa <- 1-pnorm( (k+qnorm(pd))*sqrt(n)) } if (s.type=="unknown"){ pa <- 1- pt(k*sqrt(n), df=n-1, ncp=-qnorm(pd)*sqrt(n)) } return(pa) } OCvar.show.default <- function(object){ if(length(object@n)==0){ x <- matrix(rep(NA,3), ncol=1) } else x <- rbind(object@n, object@k) dimnames(x) <- list(c("Sample size", "Constant k"), paste("Sample", 1:ncol(x))) show(x) } OCvar.show.prob <- function(object) { if (object@type=="normal") { x <- cbind(object@pd, object@paccept) colnames(x) <- c("Prop. defective","P(accept)") } else stop("No full print method defined for this type") rownames(x) <- rep("", length(object@paccept)) show(x) } setMethod("show", "OCvar", function(object){ cat(paste("Acceptance Sampling Plan (",object@type,")\n",sep="")) cat(paste("Standard deviation assumed to be ",[email protected],"\n\n",sep="")) OCvar.show.default(object) }) setMethod("summary", "OCvar", function(object, full=FALSE){ show(object) if (full){ cat("\nDetailed acceptance probabilities:\n\n") OCvar.show.prob(object) } }) setMethod("plot", signature(x="OCnormal", y="missing"), function(x, y, type="o", ylim=c(0,1),...){ plot(x@pd, x@paccept, type=type, xlab="Proportion defective", ylab="P(accept)", ylim=ylim, ...) }) setMethod("plot", signature(x="numeric", y="OCnormal"), function(x, y, type="o", ylim=c(0,1),...){ plot(x, y@paccept, type=type, ylab="P(accept)", ylim=ylim, ...) }) assess.OCvar <- function(object, PRP, CRP){ planOK <- TRUE if (missing(PRP)) PRP <- rep(NA,3) else if (!missing(PRP)){ if( !check.quality(PRP[1], type=object@type) | !check.paccept(PRP[2]) ) stop("Quality and/or desired P(accept) out of bounds") calc.pa <- getFromNamespace(paste("calc.OC",object@type,sep=""), ns="AcceptanceSampling") pa <- switch(object@type, normal=calc.pa(n=object@n, k=object@k, [email protected], pd=PRP[1])) PRP <- c(PRP, pa) if (pa >= PRP[2]) planOK <- TRUE else planOK <- FALSE } if (missing(CRP)) CRP <- rep(NA,3) else if (!missing(CRP)){ if( !check.quality(CRP[1], type=object@type) | !check.paccept(CRP[2]) ) stop("Quality and/or desired P(accept) out of bound") calc.pa <- getFromNamespace(paste("calc.OC",object@type,sep=""), ns="AcceptanceSampling") pa <- switch(object@type, normal=calc.pa(n=object@n, k=object@k, [email protected], pd=CRP[1])) CRP <- c(CRP, pa) if (pa <= CRP[2]) planOK <- planOK & TRUE else planOK <- planOK & FALSE } return(list(OK=planOK, PRP=PRP, CRP=CRP)) } setMethod("assess", signature(object="OCvar"), function(object, PRP, CRP, print) { if(!hasArg(PRP) & !hasArg(CRP)) stop("At least one risk point, PRP or CRP, must be specified") else if(CRP[1] <= PRP[1]) stop("Consumer Risk Point quality must be greater than Producer Risk Point quality") plan <- assess.OCvar(object, PRP, CRP) if (print) { show(object) cat(paste("\nPlan", ifelse(plan$OK, "CAN","CANNOT"), "meet desired risk point(s):\n\n")) if(hasArg(PRP) & hasArg(CRP)) RP <- cbind(PRP=plan$PRP, CRP=plan$CRP) else if (hasArg(PRP)) RP <- cbind(PRP=plan$PRP) else if (hasArg(CRP)) RP <- cbind(CRP=plan$CRP) rownames(RP) <- c(" Quality", " RP P(accept)", "Plan P(accept)") show(t(RP)) } return(invisible(c(list(n=object@n, k=object@k, [email protected]), plan))) })
NULL set_palette <- function(p, palette){ p + .ggcolor(palette)+ .ggfill(palette) } change_palette <- function(p, palette){ set_palette(p, palette) } color_palette <- function(palette = NULL, ...) { brewerpal <- .brewerpal() ggscipal <- .ggscipal() res <- NULL if (is.null(palette)) palette <- "" if (length(palette) == 1) { if (palette %in% brewerpal) ggplot2::scale_color_brewer(..., palette = palette) else if (palette %in% ggscipal) .scale_color_ggsci(palette = palette) else if (palette == "grey") ggplot2::scale_color_grey(..., start = 0.8, end = 0.2) else if (palette == "hue") ggplot2::scale_color_hue(...) else if(.is_color(palette)) ggplot2::scale_color_manual(..., values = palette) } else if (palette[1] != "") ggplot2::scale_color_manual(..., values = palette) } fill_palette <- function(palette = NULL, ...){ brewerpal <- .brewerpal() ggscipal <- .ggscipal() res <- NULL if (is.null(palette)) palette <- "" if (length(palette) == 1) { if (palette %in% brewerpal) ggplot2::scale_fill_brewer(..., palette = palette) else if (palette %in% ggscipal) .scale_fill_ggsci(palette = palette) else if (palette == "grey") ggplot2::scale_fill_grey(..., start = 0.8, end = 0.2) else if (palette == "hue") ggplot2::scale_fill_hue(...) else if(.is_color(palette)) ggplot2::scale_fill_manual(..., values = palette) } else if (palette[1] != "") ggplot2::scale_fill_manual(..., values = palette) }
svg.box <- function(x = NULL, ranges = NULL, sides = 1:6, grid.lwd = 1, tick.axes = c(2,3,2), tick.labels = c(2,3,2), tick.lwd = 1, tick.num = 10, tick.label.size = 'auto', tick.label.opacity = 1, axis.label = c('x', 'y', 'z'), axis.label.opacity = 1, axis.label.size = 'auto', grid.opacity = 0.1, axis.col = rgb(0.5,0.5,0.5), grid.col = rgb(0.8,0.8,0.8), text.col = 'black', z.index=0, lim.exact=FALSE, name = NULL, file=NULL){ if('svg' == getOption("svgviewr_glo_type")){ if(is.null(file)){ if(is.null(getOption("svg_glo_con"))) stop("svg.new has not been called yet.") file <- getOption("svg_glo_con") } } if(is.null(ranges)) ranges <- svg_ranges(x) ranges_list <- svg_box_lim(ranges, tick.num, lim.exact=lim.exact) xlim <- ranges_list$xlim ylim <- ranges_list$ylim zlim <- ranges_list$zlim lim <- ranges_list$lim max_diff <- ranges_list$max_diff med_diff <- ranges_list$med_diff grid_by <- ranges_list$grid_by polygons <- svg_axis_polygons(xlim, ylim, zlim, sides) if(grid.lwd > 0){ svg_grids <- svg_axis_grids(polygons, grid_by) grids <- svg_grids$grid grids_type <- svg_grids$type } if('svg' == getOption("svgviewr_glo_type")){ if(tick.label.size == 'auto') tick.label.size <- 0.13 if(axis.label.size == 'auto') axis.label.size <- 0.14 }else{ if(tick.label.size == 'auto') tick.label.size <- 0.02 if(axis.label.size == 'auto') axis.label.size <- 0.02 } tick_len <- max_diff*0.03 ticks <- svg_axis_ticks(xlim, ylim, zlim, grid_by, tick.label.size, tick_len, tick.axes, tick.labels) ticks$axislabels <- as.list(axis.label) if(getOption("svgviewr_glo_type") == 'svg'){ for(i in 1:length(polygons)){ svg.lines(file=file, x=polygons[[i]], col='black', opacity=0.4, layer='Grid border', z.index=z.index) } if(grid.lwd > 0) for(grid in grids) svg.lines(file=file, x=grid, col='black', lwd=grid.lwd, opacity=grid.opacity, layer='Grid', z.index=z.index) if(tick.lwd > 0){ for(i in 1:length(ticks$ticks)){ svg.lines(file=file, x=ticks$ticks[[i]], col='black', opacity=0.5, layer='Ticks', z.index=z.index) } } if(tick.label.size > 0){ for(i in 1:length(ticks$ticklabels)){ svg.text(file=file, x=ticks$ticklabelspos[[i]], labels=ticks$ticklabels[[i]], col=text.col, opacity=tick.label.opacity, font.size=max_diff*tick.label.size, layer='Tick labels', z.index=z.index) } } if(axis.label.size > 0){ for(i in 1:length(ticks$axislabels)){ svg.text(file=file, x=ticks$axislabelspos[[i]], labels=ticks$axislabels[[i]], col=text.col, opacity=axis.label.opacity, font.size=max_diff*axis.label.size, layer='Axis labels', z.index=z.index) } } }else{ env <- as.environment(getOption("svgviewr_glo_env")) if(is.null(name)){ shape_name <- 'frame.panel' }else{ shape_name <- name } for(i in 1:length(polygons)){ svgviewr_env$svg$line[[length(svgviewr_env$svg$line)+1]] <- list('type'='line', 'name'=shape_name, 'x'=t(polygons[[i]]), col=setNames(webColor(axis.col), NULL), lwd=grid.lwd, 'depthTest'=TRUE) } if(is.null(name)){ shape_name <- 'frame.grid' }else{ shape_name <- name } if(grid.lwd > 0){ grids_in <- grids[grids_type == 'in'] for(grid in grids_in) svgviewr_env$svg$line[[length(svgviewr_env$svg$line)+1]] <- list('type'='line', 'name'=shape_name, 'x'=t(grid), 'col'=setNames(webColor(grid.col), NULL), 'lwd'=grid.lwd, 'depthTest'=TRUE) } if(is.null(name)){ shape_name <- 'frame.tick' }else{ shape_name <- name } if(tick.lwd > 0){ for(i in 1:length(ticks$ticks)){ svgviewr_env$svg$line[[length(svgviewr_env$svg$line)+1]] <- list('type'='line', 'name'=shape_name, 'x'=t(ticks$ticks[[i]]), 'col'=setNames(webColor(axis.col), NULL), 'lwd'=grid.lwd, 'depthTest'=TRUE) } } if(is.null(name)){ shape_name <- 'frame.ticklabel' }else{ shape_name <- name } if(tick.label.size > 0){ for(i in 1:length(ticks$ticklabels)){ svg.text(labels=ticks$ticklabels[[i]], name=shape_name, x=ticks$ticklabelspos[[i]], col=setNames(webColor(text.col), NULL), size=max_diff*tick.label.size) } } if(is.null(name)){ shape_name <- 'frame.axislabel' }else{ shape_name <- name } if(axis.label.size > 0){ for(i in 1:length(ticks$axislabels)){ svg.text(labels=ticks$axislabels[[i]], name=shape_name, x=ticks$axislabelspos[[i]], col=setNames(webColor(text.col), NULL), size=max_diff*axis.label.size) } } } list('lim'=lim) }
card_corners <- function(layout, footer = NULL, header = NULL, border_radius) { no_footer <- is_na(footer) no_header <- is_na(header) css_corners <- css_corner_function(border_radius) if(layout == "image-only") { body_corners <- c( image = css_corners(tl = no_header, tr = no_header, bl = no_footer, br = no_footer), label = css_corners() ) } if(layout == "label-only") { body_corners <- c( image = css_corners(), label = css_corners(tl = no_header, tr = no_header, bl = no_footer, br = no_footer) ) } if(layout == "label-below") { body_corners <- c( image = css_corners(tl = no_header, tr = no_header), label = css_corners(bl = no_footer, br = no_footer) ) } if(layout == "label-above") { body_corners <- c( image = css_corners(bl = no_footer, br = no_footer), label = css_corners(tl = no_header, tr = no_header) ) } if(layout == "label-left") { body_corners <- c( image = css_corners(tr = no_header, br = no_footer), label = css_corners(tl = no_header, bl = no_footer) ) } if(layout == "label-right") { body_corners <- c( image = css_corners(tl = no_header, bl = no_footer), label = css_corners(tr = no_header, br = no_footer) ) } if(layout == "inset-top") { body_corners <- c( image = css_corners(tl = no_header, tr = no_header, bl = no_footer, br = no_footer), label = css_corners(tl = no_header, tr = no_header) ) } if(layout == "inset-bottom") { body_corners <- c( image = css_corners(tl = no_header, tr = no_header, bl = no_footer, br = no_footer), label = css_corners(bl = no_footer, br = no_footer) ) } corners <- c(body_corners, footer = css_corners(bl = TRUE, br = TRUE), header = css_corners(tl = TRUE, tr = TRUE), card = css_corners(tl = TRUE, tr = TRUE, bl = TRUE, br = TRUE), core = css_corners(tl = no_header, tr = no_header, bl = no_footer, br = no_footer) ) return(corners) } css_corner_function <- function(border_radius) { function(tl = FALSE, tr = FALSE, bl = FALSE, br = FALSE, size = border_radius) { cnr <- function(exists, sz) ifelse(exists, sz, "0") paste( "border-radius:", cnr(tl, size), cnr(tr, size), cnr(br, size), cnr(bl, size), ";" ) } }
hedrick <- function(x){ somme <- colSums(x) M <- matrix(data=0,nrow=length(somme),ncol=length(somme)) rownames(M) <- dimnames(x)[[2]] colnames(M) <- dimnames(x)[[2]] for(i in 1:length(somme)){ for(j in 1:length(somme)){ M[i,j] <- (sum((x[,i]/somme[i])*(x[,j]/somme[j])))/ (0.5*(sum((x[,i]/somme[i])^2+(x[,j]/somme[j])^2))) } } M }
rmdzero<-function(x,est=onestep,grp=NA,nboot=500,...){ if(!is.list(x) && !is.matrix(x))stop("Data must be stored in a matrix or in list mode.") if(is.list(x)){ mat<-matrix(0,length(x[[1]]),length(x)) for (j in 1:length(x))mat[,j]<-x[[j]] } if(is.matrix(x))mat<-x if(!is.na(grp[1])){ mat<-mat[,grp] } mat<-elimna(mat) J<-ncol(mat) jp<-0 Jall<-(J^2-J)/2 dif<-matrix(NA,nrow=nrow(mat),ncol=Jall) ic<-0 for(j in 1:J){ for(k in 1:J){ if(j<k){ ic<-ic+1 dif[,ic]<-mat[,j]-mat[,k] }}} dif<-as.matrix(dif) data <- matrix(sample(nrow(mat), size = nrow(mat) * nboot, replace = T), nrow = nboot) bvec <- matrix(NA, ncol = ncol(dif), nrow = nboot) for(j in 1:ncol(dif)) { temp <- dif[, j] bvec[, j] <- apply(data, 1, rmanogsub, temp, est) } center<-apply(dif,2,est,...) bcen<-apply(bvec,2,mean) cmat<-var(bvec-bcen+center) zvec<-rep(0,Jall) m1<-rbind(bvec,zvec) bplus<-nboot+1 discen<-mahalanobis(m1,center,cmat) sig.level<-sum(discen[bplus]<=discen[1:nboot])/nboot list(discen = discen, p.value=sig.level,center=center) }
test_that("size of each `.f` result must be 1", { expect_error( slide_vec(1:2, ~c(.x, 1)), "In iteration 1, the result of `.f` had size 2, not 1" ) }) test_that("size of each `.f` result must be 1", { expect_error( slide_dbl(1:2, ~c(.x, 1)), "In iteration 1, the result of `.f` had size 2, not 1" ) }) test_that("inner type is allowed to be different", { expect_equal( slide_vec(1:2, ~if (.x == 1L) {list(1)} else {list("hi")}, .ptype = list()), list(1, "hi") ) }) test_that("inner type can be restricted with list_of", { expect_error( slide_vec(1:2, ~if (.x == 1L) {list_of(1)} else {list_of("hi")}, .ptype = list_of(.ptype = double())), class = "vctrs_error_incompatible_type" ) }) test_that("inner type can be restricted", { expect_error( slide_dbl(1:2, ~if (.x == 1L) {1} else {"x"}), class = "vctrs_error_incompatible_type" ) }) test_that(".ptype is respected", { expect_equal(slide_vec(1, ~.x), 1) expect_equal(slide_vec(1, ~.x, .ptype = int()), 1L) expect_error(slide_vec(1, ~.x + .5, .ptype = integer()), class = "vctrs_error_cast_lossy") }) test_that("`.ptype = NULL` results in 'guessed' .ptype", { expect_equal( slide_vec(1, ~.x, .ptype = NULL), slide_vec(1, ~.x, .ptype = dbl()) ) }) test_that("`.ptype = NULL` fails if no common type is found", { expect_error( slide_vec(1:2, ~ifelse(.x == 1L, "hello", 1), .ptype = NULL), class = "vctrs_error_incompatible_type" ) }) test_that("`.ptype = NULL` validates that element lengths are 1", { expect_error( slide_vec(1:2, ~if(.x == 1L) {1:2} else {1}, .ptype = NULL), "In iteration 1, the result of `.f` had size 2, not 1." ) }) test_that("`.ptype = NULL` returns `NULL` with size 0 `.x`", { expect_equal(slide_vec(integer(), ~.x, .ptype = NULL), NULL) }) test_that("`.ptype = NULL` is size stable ( expect_length(slide_vec(1:4, ~.x, .step = 2), 4) expect_length(slide_vec(1:4, ~1, .before = 1, .complete = TRUE), 4) }) test_that(".ptypes with a vec_proxy() are restored to original type", { expect_s3_class( slide_vec(Sys.Date() + 1:5, ~.x, .ptype = as.POSIXlt(Sys.Date())), "POSIXlt" ) }) test_that("can return a matrix and rowwise bind the results together", { mat <- matrix(1, ncol = 2) expect_equal( slide_vec(1:5, ~mat, .ptype = mat), rbind(mat, mat, mat, mat, mat) ) }) test_that("`slide_vec()` falls back to `c()` method as required", { local_c_foobar() expect_identical(slide_vec(1:3, ~foobar(.x), .ptype = foobar(integer())), foobar(1:3)) expect_condition(slide_vec(1:3, ~foobar(.x), .ptype = foobar(integer())), class = "slider_c_foobar") expect_identical(slide_vec(1:3, ~foobar(.x)), foobar(1:3)) expect_condition(slide_vec(1:3, ~foobar(.x)), class = "slider_c_foobar") }) test_that(".step produces typed `NA` values", { expect_identical(slide_int(1:3, identity, .step = 2), c(1L, NA, 3L)) expect_identical(slide_dbl(1:3, identity, .step = 2), c(1, NA, 3)) expect_identical(slide_chr(c("a", "b", "c"), identity, .step = 2), c("a", NA, "c")) expect_identical(slide_vec(1:3, identity, .step = 2), c(1L, NA, 3L)) expect_identical(slide_vec(1:3, identity, .step = 2, .ptype = integer()), c(1L, NA, 3L)) }) test_that(".complete produces typed `NA` values", { expect_identical(slide_int(1:3, ~1L, .before = 1, .complete = TRUE), c(NA, 1L, 1L)) expect_identical(slide_dbl(1:3, ~1, .before = 1, .complete = TRUE), c(NA, 1, 1)) expect_identical(slide_chr(1:3, ~"1", .before = 1, .complete = TRUE), c(NA, "1", "1")) expect_identical(slide_vec(1:3, ~1, .before = 1, .complete = TRUE), c(NA, 1, 1)) expect_identical(slide_vec(1:3, ~1, .before = 1, .complete = TRUE, .ptype = integer()), c(NA, 1L, 1L)) }) test_that("names exist on inner sliced elements", { names <- letters[1:5] x <- set_names(1:5, names) exp <- set_names(as.list(names), names) expect_equal(slide_vec(x, ~list(names(.x))), exp) }) test_that("names can be placed on atomics", { names <- letters[1:5] x <- set_names(1:5, names) expect_equal(names(slide_vec(x, ~.x)), names) expect_equal(names(slide_vec(x, ~.x, .ptype = int())), names) expect_equal(names(slide_vec(x, ~.x, .ptype = dbl())), names) expect_equal(names(slide_int(x, ~.x)), names) expect_equal(names(slide_dbl(x, ~.x)), names) }) test_that("names from `.x` are kept, and new names from `.f` results are dropped", { x <- set_names(1, "x") expect_identical(slide_vec(x, ~c(y = 2), .ptype = NULL), c(x = 2)) expect_identical(slide_vec(1, ~c(y = 2), .ptype = NULL), 2) expect_identical(slide_dbl(x, ~c(y = 2)), c(x = 2)) expect_identical(slide_dbl(1, ~c(y = 2)), 2) }) test_that("names can be placed on data frames", { names <- letters[1:2] x <- set_names(1:2, names) out <- slide_vec(x, ~data.frame(x = .x)) expect_equal(rownames(out), names) out <- slide_vec(x, ~data.frame(x = .x), .ptype = data.frame(x = int())) expect_equal(rownames(out), names) }) test_that("names can be placed on arrays", { names <- letters[1:2] x <- set_names(1:2, names) out <- slide_vec(x, ~array(.x, c(1, 1)), .ptype = array(int(), dim = c(0, 1))) expect_equal(rownames(out), names) }) test_that("names can be placed correctly on proxied objects", { names <- letters[1:2] x <- set_names(1:2, names) datetime_lt <- as.POSIXlt(new_datetime(0)) out <- slide_vec(x, ~datetime_lt, .ptype = datetime_lt) expect_equal(names(out), names) }) test_that("slide_int() works", { expect_equal(slide_int(1L, ~.x), 1L) }) test_that("slide_int() can coerce", { expect_equal(slide_int(1, ~.x), 1L) }) test_that("slide_dbl() works", { expect_equal(slide_dbl(1, ~.x), 1) }) test_that("slide_dbl() can coerce", { expect_equal(slide_dbl(1L, ~.x), 1) }) test_that("slide_chr() works", { expect_equal(slide_chr("x", ~.x), "x") }) test_that("slide_chr() cannot coerce", { expect_error(slide_chr(1, ~.x), class = "vctrs_error_incompatible_type") }) test_that("slide_lgl() works", { expect_equal(slide_lgl(TRUE, ~.x), TRUE) }) test_that("slide_lgl() can coerce", { expect_equal(slide_lgl(1, ~.x), TRUE) }) test_that("slide_dfr() works", { expect_identical( slide_dfr( 1:2, ~new_data_frame(list(x = list(.x))), .before = 1 ), data_frame( x = list(1L, 1:2) ) ) }) test_that("slide_dfc() works", { x <- 1:2 fn <- function(x) { if (length(x) == 1) { data.frame(x1 = x) } else { data.frame(x2 = x) } } expect_identical( slide_dfc(1:2, fn, .before = 1), data.frame( x1 = c(1L, 1L), x2 = 1:2 ) ) })
hist.CTLobject <- function(x, phenocol = 1, ...) { if(missing(x)) stop("argument 'x' which expects a 'CTLobject' object is missing, with no default") namez <- NULL plot(c(0, 1.0), c(0, length(unlist(x[[phenocol[1]]]$perms))/5), type='n', main = "CTL scores permutations", ylab = "Frequency", xlab = "Difference in correlation^2") for(pheno in phenocol) { if(is.null(x[[pheno]]$perms)) stop(paste("Permutations not found for phenocol=", pheno)) sorted <- sort(unlist(x[[pheno]]$perms)) hist(sorted, breaks = seq(0,1.0,0.01), add = TRUE, col = pheno, ...) namez <- c(namez,ctl.name(x[[pheno]])) } legend("topright", legend = namez, col = phenocol, lwd = 6) }
setGeneric("as.matrix", package = "base") as.matrix.crossdist <- function(x, ...) { x <- cbind(x) class(x) <- c("matrix", "array") x } as.matrix.pairdist <- function(x, ...) { x <- cbind(x) class(x) <- c("matrix", "array") x } as.data.frame.crossdist <- function(x, ...) { as.data.frame(as.matrix(x, ...), ...) } as.data.frame.pairdist <- function(x, ...) { as.data.frame(as.matrix(x, ...), ...) }
.addNode <- function(ID,parentID,data=NULL,ccstat=NULL){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") ind <- length(tempenv$private$IDs) + 1 parent <- match(parentID,tempenv$private$IDs) if (is.na(parent)){ stop("Error: parent not found") } tempenv$private$IDs[ind] <- ID tempenv$private$ps[ind] <- parent tempenv$private$os[[parent]] <- c(tempenv$private$os[[parent]],ind) tempenv$private$os[[ind]] <- vector("numeric",length=0) tempenv$private$data[[ind]] <- data if (!is.null(ccstat)) tempenv$private$Naff <- tempenv$private$Naff + ccstat } .addPed <- function(ped,ORs){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") tempenv$private$Naff <- sum(ped[,6] == 2) SNPnames <- paste(rep(ORs[,1],rep(2,length(ORs[,1]))),rep(c(".1",".2"),length(ORs[,1])),sep="") RiskAlleles <- rep(ORs[,2],rep(2,length(ORs[,2]))) temp <- t(apply(ped[,SNPnames],1,function(x) x == RiskAlleles)) temp[ped[,SNPnames] == 0] <- NA RAcounts <- sapply(ORs[,1],function(x) temp[,paste(x,".1",sep="")] + temp[,paste(x,".2",sep="")]) seen_founders <- ped[ped[,3] == 0 & ped[,4] == 0,2] couples <- unique(ped[!ped[,2] %in% seen_founders,3:4],MARGIN=1) coup_f1 <- couples[,1] %in% seen_founders coup_f2 <- couples[,2] %in% seen_founders leaves <- ped[,2][!(ped[,2] %in% c(couples[,1],couples[,2]))] if (any(!coup_f1 & !coup_f2)) stop("Error: Cannot handle non-founder non-founder matings") if (sum(coup_f1 & coup_f2) > 1) stop("Error: Cannot handle multiple founder-founder matings") if (sum(coup_f1 & coup_f2) > 1) stop("Error: Cannot handle multiple founder-founder matings") if (any(duplicated(couples[,1])) | any(duplicated(couples[,2]))) stop("Error: cannot handle half-siblings") coup_founders <- sapply(1:length(coup_f1),function(i )paste(couples[i,2 - coup_f1[i]])) coup_nonfounders <- sapply(1:length(coup_f1),function(i )paste(couples[i,2 - !coup_f1[i]])) coup_ids <- paste(coup_nonfounders,coup_founders,sep="-") parentage <- apply(ped,1,function(x) coup_ids[x[3] == couples[,1] & x[4] == couples[,2]]) parentage <- sapply(parentage,function(x) ifelse(length(x) == 0,NA,x)) coup_parentage <- parentage[coup_nonfounders] tempenv$public$addRoot(coup_ids[coup_f1 & coup_f2],RAcounts[as.character(couples[coup_f1 & coup_f2,]),]) toAdd <- which(coup_parentage %in% tempenv$private$IDs & !(coup_ids %in% tempenv$private$IDs)) while (length(toAdd) > 0){ sapply(toAdd,function(i) tempenv$public$addNode(coup_ids[i],coup_parentage[i], RAcounts[c(coup_nonfounders[i] ,coup_founders[i]),])) toAdd <- which(coup_parentage %in% tempenv$private$IDs & !(coup_ids %in% tempenv$private$IDs)) } toAdd <- which(parentage %in% tempenv$private$IDs & !(names(parentage) %in% tempenv$private$IDs) & !(names(parentage) %in% c(couples[,1],couples[,2]))) while (length(toAdd) > 0){ sapply(toAdd,function(i) tempenv$public$addNode(names(parentage)[i],parentage[i],RAcounts[i,])) toAdd <- which(parentage %in% tempenv$private$IDs & !(names(parentage) %in% tempenv$private$IDs) & !(names(parentage) %in% c(couples[,1],couples[,2]))) } } .addRoot <- function(ID,data=NULL,ccstat=NULL){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") ind <- length(tempenv$private$IDs) + 1 tempenv$private$ps[ind] <- NA tempenv$private$IDs[ind] <- ID tempenv$private$os[[ind]] <- vector("numeric",length=0) tempenv$private$data[[ind]] <- data if (!is.null(ccstat)) tempenv$private$Naff <- tempenv$private$Naff + ccstat } .calcAlpha <- function(ORs,i=1,progress=FALSE){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") if (progress & i %% floor(length(tempenv$private$IDs)/5) == 0){ cat('.') } freqs <- ORs[,5] if (length(tempenv$private$os[[i]]) == 0){ tempenv$private$alpha[[i]] <- tempenv$private$Ls[[i]] } else { for (j in tempenv$private$os[[i]]) tempenv$public$calcAlpha(ORs,j, progress=progress) tempalpha <- tempenv$private$Ls[[i]] hw_freqs <- cbind((1 - freqs)^2,2*freqs*(1 - freqs),freqs^2) for (a in 0:2){ for (b in 0:2){ Mtrans <- sapply(0:2,function(c) .getTrans(c(a,b),c)) for (child in tempenv$private$os[[i]]){ if (length(tempenv$private$os[[child]]) == 0){ temp <- apply(Mtrans* tempenv$private$alpha[[child]],2,sum) tempalpha[a+1,b+1,] <- tempalpha[a+1,b+1,] * temp } else { temp <- sapply(1:length(hw_freqs[,1]),function(k) sum(Mtrans %*% t(hw_freqs[k,]) * tempenv$private$alpha[[child]][,,k])) tempalpha[a+1,b+1,] <- tempalpha[a+1,b+1,] * temp } } } } tempenv$private$alpha[[i]] <- tempalpha } } .calcBeta <- function(ORs,i=1,progress=FALSE){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") if (progress & i %% floor(length(tempenv$private$IDs)/5) == 0){ cat('.') } freqs <- ORs[,5] tempbeta <- tempenv$private$Ls[[i]]*0 hw_freqs <- cbind((1 - freqs)^2,2*freqs*(1 - freqs),freqs^2) parent <- tempenv$private$ps[i] if (i == 1){ for (a in 0:2){ for (b in 0:2){ tempbeta[a+1,b+1,] <- hw_freqs[,a+1]*hw_freqs[,b+1] } } } else if (length(tempenv$private$os[[i]]) > 0){ tempenv$private$betap[[i]] <- array(dim=c(3,3,3,3,length(hw_freqs[,1]))) for (a in 0:2){ for (b in 0:2){ tempbeta_ab <- 0 for (c in 0:2){ for (d in 0:2){ tempbeta_abcd <- tempenv$private$beta[[parent]][c+1,d+1,]*tempenv$private$Ls[[parent]][c+1,d+1,]*.getTrans(c(c,d),a) * hw_freqs[,b+1] Mtrans <- sapply(0:2,function(e) .getTrans(c(c,d),e)) for (sib in setdiff(tempenv$private$os[[parent]],i)){ if (length(tempenv$private$os[[sib]]) == 0){ temp <- apply(Mtrans*tempenv$private$alpha[[sib]],2,sum) tempbeta_abcd <- tempbeta_abcd * temp } else { temp <- sapply(1:length(hw_freqs[,1]),function(k) sum(Mtrans %*% t(hw_freqs[k,]) * tempenv$private$alpha[[sib]][,,k])) tempbeta_abcd <- tempbeta_abcd * temp } } tempenv$private$betap[[i]][a+1,b+1,c+1,d+1,] <- tempbeta_abcd tempbeta_ab <- tempbeta_ab + tempbeta_abcd } } tempbeta[a+1,b+1,] <- tempbeta_ab } } } else { tempenv$private$betap[[i]] <- array(dim=c(3,3,3,length(hw_freqs[,1]))) for (a in 0:2){ tempbeta_ab <- 0 for (c in 0:2){ for (d in 0:2){ tempbeta_abcd <- tempenv$private$beta[[parent]][c+1,d+1,]*tempenv$private$Ls[[parent]][c+1,d+1,]*.getTrans(c(c,d),a) Mtrans <- sapply(0:2,function(e) .getTrans(c(c,d),e)) for (sib in setdiff(tempenv$private$os[[parent]],i)){ if (length(tempenv$private$os[[sib]]) == 0){ temp <- apply(Mtrans*tempenv$private$alpha[[sib]],2,sum) tempbeta_abcd <- tempbeta_abcd * temp } else { temp <- sapply(1:length(hw_freqs[,1]),function(k) sum(Mtrans %*% t(hw_freqs[k,]) * tempenv$private$alpha[[sib]][,,k])) tempbeta_abcd <- tempbeta_abcd * temp } } tempenv$private$betap[[i]][a+1,c+1,d+1,] <- tempbeta_abcd tempbeta_ab <- tempbeta_ab + tempbeta_abcd } } tempbeta[a+1,] <- tempbeta_ab } } tempenv$private$beta[[i]] <- tempbeta if (length(tempenv$private$os[[i]]) > 0){ for (i in tempenv$private$os[[i]]){ tempenv$public$calcBeta(ORs,i,progress) } } } .calcLikelihoods <- function(data){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") tempenv$private$Ls <- lapply(tempenv$private$data,.getLikelihood) } .calcParams <- function(ORs,progress=TRUE){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") cat("Running Inside-Outside Algorithm\n") cat("Calculating likelihoods.....") tempenv$public$calcLikelihoods() cat("done\nCalculating inside parameters") tempenv$public$calcAlpha(ORs,progress=progress) cat("done\nCalculating outside parameters") tempenv$public$calcBeta(ORs,progress=progress) cat("done\nCalculating posteriors.....") tempenv$public$calcPost() cat("done\n") } .calcPost <- function(i=1){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") if (i == 1){ unnorm <- tempenv$private$beta[[i]]*tempenv$private$alpha[[i]] Pds <- apply(unnorm,3,sum) tempenv$private$post[[i]] <- unnorm/rep(Pds,rep(9,length(Pds))) } else { tempenv$private$condpost[[i]] <- tempenv$private$betap[[i]]*0 if (length(tempenv$private$os[[i]]) == 0){ unnorm <- tempenv$private$beta[[i]]*tempenv$private$alpha[[i]] Pds <- apply(unnorm,2,sum) tempenv$private$post[[i]] <- unnorm/rep(Pds,rep(3,length(Pds))) for (c in 0:2){ for (d in 0:2){ unnorm <- tempenv$private$betap[[i]][,c+1,d+1,]*tempenv$private$alpha[[i]] Pds <- apply(unnorm,2,sum) tempenv$private$condpost[[i]][,c+1,d+1,] <- unnorm/rep(Pds,rep(3,length(Pds))) } } } else { unnorm <- tempenv$private$beta[[i]]*tempenv$private$alpha[[i]] Pds <- apply(unnorm,3,sum) tempenv$private$post[[i]] <- unnorm/rep(Pds,rep(9,length(Pds))) for (c in 0:2){ for (d in 0:2){ unnorm <- tempenv$private$betap[[i]][,,c+1,d+1,]* tempenv$private$alpha[[i]] Pds <- apply(unnorm,3,sum) tempenv$private$condpost[[i]][,,c+1,d+1,] <- unnorm/rep(Pds,rep(9,length(Pds))) } } } } for (child in tempenv$private$os[[i]]) tempenv$public$calcPost(child) } .getCoupleLikelihood <- function(a){ out <- array(dim=c(3,3,length(a[1,]))) L0_nf <- (a[1,] == 0) L0_nf[is.na(a[1,])] <- 1 L1_nf <- (a[1,] == 1) L1_nf[is.na(a[1,])] <- 1 L2_nf <- (a[1,] == 2) L2_nf[is.na(a[1,])] <- 1 L0_f <- (a[2,] == 0) L0_f[is.na(a[2,])] <- 1 L1_f <- (a[2,] == 1) L1_f[is.na(a[2,])] <- 1 L2_f <- (a[2,] == 2) L2_f[is.na(a[2,])] <- 1 out[1,1,] <- L0_nf * L0_f out[1,2,] <- L0_nf * L1_f out[1,3,] <- L0_nf * L2_f out[2,1,] <- L1_nf * L0_f out[2,2,] <- L1_nf * L1_f out[2,3,] <- L1_nf * L2_f out[3,1,] <- L2_nf * L0_f out[3,2,] <- L2_nf * L1_f out[3,3,] <- L2_nf * L2_f return(out) } .getData <- function(){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") return(tempenv$private) } .getLikelihood <- function(a){ if (is.array(a)){ return(.getCoupleLikelihood(a)) } else { return(.getSingleLikelihood(a)) } } .getMaxDepth <- function(ID=NULL,depth=0){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") temp <- depth if (tempenv$public$getNNodes() == 0) return(0) if (is.null(ID)){ for (x in tempenv$public$getRoot()){ temp <- c(temp,tempenv$public$getMaxDepth(x,depth=depth+1)) } } else { for (x in tempenv$public$getOffspring(ID)){ temp <- c(temp,tempenv$public$getMaxDepth(x,depth=depth+1)) } } return(max(temp)) } .getNinds <- function(){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") return(sum(sapply(tempenv$private$os,length) != 0)*2 + sum(sapply(tempenv$private$os,length) == 0)) } .getNNodes <- function(){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") return(length(tempenv$private$IDs)) } .getOffspring <- function(ID){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") tempenv$private$IDs[tempenv$private$os[[which(tempenv$private$IDs == ID)]]] } .getPrevs <- function(ORs = NULL,K = NULL,overwrite=FALSE,iter=1000){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") progress=TRUE if (tempenv$public$getNNodes() < 5) progress=FALSE if (tempenv$public$getNNodes() == 0) stop("Error: Cannot perform sampling on an empty tree") if (!is.null(K)) tempenv$private$K <- K if (overwrite | length(tempenv$private$Ls) == 0 | length(tempenv$private$alpha) == 0 | length(tempenv$private$beta) == 0 | length(tempenv$private$betap) == 0){ if (is.null(ORs)) stop('Error: Need to provide OR object to fit model parameters') tempenv$public$calcParams(ORs,progress) } if (overwrite | length(tempenv$private$simVars) == 0){ cat("Sampling variants from posterior") tempenv$public$sampleVariants(iter= iter,report=T) cat('done\n') } if (overwrite | length(tempenv$private$simCases) == 0){ if (is.null(ORs)) stop('Error: Need to provide odds ratio object ORs to sample cases') if (is.null(K)) stop('Error: Need to provide prevalence value K to sample cases') cat('Sampling cases given sampled variants') tempenv$public$sampleCases(ORs,K,report=T,iter=iter) cat('done\n') } output <- list() output$samples <- tempenv$private$simCases output$K <- tempenv$private$K output$Ncases <- tempenv$private$Naff output$N <- tempenv$public$getNinds() class(output) <- "MangroveSample" return(output) } .getRoot <- function(){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") tempenv$private$IDs[which(is.na(tempenv$private$ps))] } .getSingleLikelihood <- function(a){ L0 <- (a == 0) L0[is.na(a)] <- 1 L1 <- (a == 1) L1[is.na(a)] <- 1 L2 <- (a == 2) L2[is.na(a)] <- 1 return(rbind(L0,L1,L2)) } .getTrans <- function(a,b,f=NULL){ mendT <- array(NA,c(3,3,3)) mendT[c(3,6,7,8,9,10,18,19,20,21,22,25)] <- 0 mendT[c(5,23)] <- 0.25 mendT[c(2,4,11,13,14,15,17,24,26)] <- 0.5 mendT[c(1,12,16,27)] <- 1 if (length(b) > 1 & is.null(f)) stop("Error: Need to supply f for couple->couple trans") if (length(b) == 1 & !is.null(f)) stop("Error: f supplied but only one b state given") if (length(b) == 1) return(mendT[a[1]+1,a[2]+1,b+1]) else return(mendT[a[1]+1,a[2]+1,b[1]+1]*dbinom(b[2],2,f)) } .getVarExp_loci <- function(K,OR1,OR2,f){ meanor <- (1-f)^2 + 2*f*(1-f)*OR1 + f^2*OR2 P_aa <- applyORs(1/meanor,K) P_Aa <- applyORs(OR1/meanor,K) P_AA <- applyORs(OR2/meanor,K) T <- qnorm(1 - K) mu_aa <- T - qnorm(1 - P_aa) mu_Aa <- T - qnorm(1 - P_Aa) mu_AA <- T - qnorm(1 - P_AA) Vstar <- mu_aa^2*(1-f)^2 + mu_Aa^2*2*f*(1-f) + mu_AA^2*f^2 return(Vstar) } .onLoad <- function (libname, pkgname) { op <- options() op.utils <- list(help.try.all.packages = FALSE, internet.info = 2, pkgType = .Platform$pkgType, str = list(strict.width = "no", digits.d = 3, vec.len = 4), demo.ask = "default", example.ask = "default", menu.graphics = TRUE, mailer = "mailto") extra <- if (.Platform$OS.type == "windows") { list(unzip = "internal", editor = if (length(grep("Rgui", commandArgs(), TRUE))) "internal" else "notepad", repos = c(CRAN = "@CRAN@", CRANextra = "http://www.stats.ox.ac.uk/pub/RWin")) } else list(unzip = Sys.getenv("R_UNZIPCMD"), editor = Sys.getenv("EDITOR"), repos = c(CRAN = "@CRAN@")) op.utils <- c(op.utils, extra) toset <- !(names(op.utils) %in% names(op)) if (any(toset)) options(op.utils[toset]) } .printSummary <- function(){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") cat("A mangrove tree\n") cat("Number of nodes: ") cat(tempenv$public$getNNodes()) cat("\n") cat("Max depth: ") cat(tempenv$public$getMaxDepth()) cat("\n") if (length(tempenv$private$data) > 0){ cat("Genotype data: loaded\n") } else { cat("Genotype data: Not loaded\n") } if (length(tempenv$private$Ls) > 0 & length(tempenv$private$alpha) > 0 & length(tempenv$private$beta) > 0 & length(tempenv$private$betap)){ cat("Model parameters: calculated\n") } else { cat("Model parameters: not calculated\n") } if (length(tempenv$private$simVars) > 0 | length(tempenv$private$simCases)){ cat("Sampling: performed\n") } else { cat("Sampling: not performed\n") } } .printTree <- function(ID=NULL,depth=0){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") if (tempenv$public$getNNodes() == 0){ cat("The tree is empty\n") return(0) } if (is.null(ID)){ tempenv$public$printTree(tempenv$public$getRoot(),depth=depth+1) } else { cat(paste(rep("-",depth),collapse="")) cat(paste(ID,"\n",sep="")) for (x in tempenv$public$getOffspring(ID)){ tempenv$public$printTree(x,depth=depth+1) } } } .sampleCases <- function(ORs,K,report=FALSE,iter=1000){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") mix2founder <- c(1,2,3,1,2,3,1,2,3) mix2nfounder <- c(1,1,1,2,2,2,3,3,3) N <- sum(sapply(tempenv$private$Ls,function(x) length(dim(x))-1)) iters <- iter out <- matrix(NA,ncol=N,nrow=iters) pos <- 1 meanOR <- prod(ORs[,6]) for (node in 1:length(tempenv$private$IDs)){ if (report & (node %% floor(N/5)) == 0) cat(".") if (length(dim(tempenv$private$Ls[[node]])) == 3){ k1 <- apply(tempenv$private$simVars[,node,],1,function(i) prod((mix2founder[i] == 1) + (mix2founder[i] == 2)*ORs[,3] + (mix2founder[i] == 3)*ORs[,4])) k2 <- apply(tempenv$private$simVars[,node,],1,function(i) prod((mix2nfounder[i] == 1) + (mix2nfounder[i] == 2)*ORs[,3] + (mix2nfounder[i] == 3)*ORs[,4])) out[,pos] <- k1 out[,pos + 1] <- k2 pos <- pos + 2 } else { k <- apply(tempenv$private$simVars[,node,],1,function(i) prod((i == 1) + (i == 2)*ORs[,3] + (i == 3)*ORs[,4])) out[,pos] <- k pos <- pos + 1 } } preodds <- K/(1 - K) postodds <- preodds*out/meanOR post <- postodds/(1 + postodds) tempenv$private$simCases <- apply(post > runif(post),1,sum) } .sampleVariant <- function(variant,i=1,p=NULL,parentsamples=NULL,iter=1000){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") transM <- cbind(rep(0:2,3),rep(0:2,c(3,3,3))) parents_nz <- (1:9)[parentsamples != 0] parent_counts <- parentsamples[parentsamples != 0] if (i == 1) { if (all(is.na(as.vector(tempenv$private$post[[1]][,,variant])))){ stop(paste("Impossible genetic structure for variant number ",variant,". Likely a Mendelian error.",sep="")) } outtemp <- rmultinom(1,iter,as.vector(tempenv$private$post[[1]][,,variant])) tempenv$private$simVars[,1,variant] <- rep(1:9, outtemp) } else if (length(tempenv$private$os[[i]]) == 0){ for (x in 1:length(parents_nz)){ if (all(is.na(as.vector(tempenv$private$post[[1]][,,variant])))){ stop(paste("Impossible genetic structure for variant number ",variant," . Likely a Mendelian error.",sep="")) } temp_sample <- rmultinom(1,parent_counts[x], tempenv$private$condpost[[i]][,transM[parents_nz[x],1]+1,transM[parents_nz[x],2]+1,variant]) temp_sample_data <- rep(1:3,temp_sample) if (length(temp_sample_data) > 1) tempenv$private$simVars[tempenv$private$simVars[,p,variant] == parents_nz[x],i,variant] <- sample(temp_sample_data) else tempenv$private$simVars[tempenv$private$simVars[,p,variant] == parents_nz[x],i,variant] <- temp_sample_data } } else { outtemp <- parentsamples*0 for (x in 1:length(parents_nz)){ temp_sample <- rmultinom(1:9,parent_counts[x],tempenv$private$condpost[[i]][,,transM[parents_nz[x],1]+1,transM[parents_nz[x],2]+1,variant]) temp_sample_data <- rep(1:9,temp_sample) if (length(temp_sample_data) > 1) tempenv$private$simVars[tempenv$private$simVars[,p,variant] == parents_nz[x],i,variant] <- sample(temp_sample_data) else tempenv$private$simVars[tempenv$private$simVars[,p,variant] == parents_nz[x],i,variant] <- temp_sample_data outtemp <- outtemp + temp_sample } } for (child in tempenv$private$os[[i]]) tempenv$public$sampleVariant(variant,child,i,outtemp,iter) } .sampleVariants <- function(iter=1000,report=FALSE){ tempenv <- parent.env(environment()) if (identical(globalenv(), tempenv)) stop("Error: Attempted to write to global environment") tempenv$private$simVars <- array(dim=c(iter,length(tempenv$private$IDs),length(tempenv$private$Ls[[1]][1,1,]))) for (i in 1:length(tempenv$private$Ls[[1]][1,1,])){ if (report & i %% (max(floor(length(tempenv$private$Ls[[1]][1,1,])/5),1)) == 0) cat('.') tempenv$public$sampleVariant(i,iter=iter) } }
get_distance <- function(target, out, overwrite = FALSE){ if(!check_running()) stop("There is no valid GRASS session. Program halted.") flags <- "quiet" if(overwrite) flags <- c(flags, "overwrite") execGRASS( "r.grow.distance", flags = flags, parameters = list( input = target, distance = basename(out), metric = "euclidean" ) ) invisible() }
call( x = 1, kdd = 2, xy = 2, n = 33, ) call( x = 1, kdd = 2, xy = 2, n = 33 ) call( x = 1, kdd = 2, xy = 2, n = 33, ) call( x = 1, kdd = 2, xy = 2, n = 33, ) call( x = 1, kdd = 2, xy = 2, n = 33, ) call( x = 1, kdd = 2, xy = 2, n = 33, ) call( x = 1, kdd = 2, xy = 22, n = 33, ) call( x = 1, d = 2, xy = 22, n = 33, ) call( x = 1, kdd = 2, k = "abc", xy = 2, n = 33, z = "333" ) call( x = 1, xy = 2, n = 33, z = "333" ) call( x = 1, n = 33, z = "333", xy = 2, ) call( k = ff("pk"), k = 3, b = f(-g), 22 + 1, 44, 323 ) call( k = ff("pk"), k = 3, b = f(-g), 22 + 1, 44, 323, ) call( k = ff("pk"), k = 3, b = f(-g), 22 + 1, 44 ) call( 44, k = ff("pk"), k = 3, b = f(-g), 22 + 1, ) call( k = ff("pk"), k = 3, 44, b = f(-g), 22 + 1, ) fell( x = 1, y = 23, zz = NULL ) fell( x = 1, y = 23, zz = NULL ) call( a = 2, bb = 3, ) call( a = 2, x = 111, bb = 3, ) call( a = 2, x = 111, bb = 3, ) call( a = 2, x = 111, bb = 3, ) call( a = 2, x = 111, bb = 3 ) call( a = 2, x = 111, bb = 3, ) call( a = 2, x = 111, bb = 3, ) call( x = 95232, y = f(), ) ca( x = 23200, y2 = "hi", m = c(rm.na = 7) ) ca( x = 23200, y2 = "hi", m = c(rm.na = 7) ) fell( x = 8, annoying = 3, y = 23, zz = NULL, finally = "stuff" ) gell( p = 2, g = gg(x), n = 3 * 3, 31, fds = -1, gz = f / 3 + 1, ) xgle( 1212, 232, f(n = 2), 1, 2, "kFlya" ) call( x = 2, y = "another", y = "hhjkjkbew", x = 3 ) call( k = ff("pk"), k = 3, b = f(-g), 22 + 1, 44, 323 )
ARestimate <- function (pd.cond, portf.uncond, rating.type = 'RATING') { if (class(pd.cond) == 'function') { pd.cond <- pd.cond(portf.uncond) } else { pd.cond <- pd.cond } portf.size <- ifelse(rating.type == 'RATING', sum(portf.uncond), length(portf.uncond)); portf.grades <- length(portf.uncond) if (rating.type == 'RATING') { portf.uncondP <- portf.uncond / portf.size } else { portf.uncondP <- rep(1 / portf.size, portf.size) } pd.uncond <- sum(pd.cond * portf.uncondP) ar.1int <- c(0, cumsum(pd.cond * portf.uncondP)[- portf.grades]) ar.1 <- 2 * sum((1 - pd.cond) * portf.uncondP * ar.1int) ar.2 <- sum(pd.cond * (1 - pd.cond) * portf.uncondP * portf.uncondP) ar.total <- (1 / (pd.uncond * (1 - pd.uncond))) * (ar.1 + ar.2) - 1 return(list('AR' = ar.total, 'CT' = pd.uncond)) } ARConfIntEst <- function(pd.cond, portf.uncond, rating.type = 'RATING', iter = 1000) { portf.rating.num <- length(portf.uncond) BootAR <- function() { if (rating.type == 'RATING') { subsample <- sample.int(portf.rating.num, size = sum(portf.uncond), replace = TRUE) portf.uncond.new <- tabulate(subsample, nbins = portf.rating.num) pd.cond.new <- pd.cond } else { subsample <- sample.int(portf.rating.num, size = portf.rating.num, replace = TRUE) portf.uncond.new <- portf.uncond[subsample] pd.cond.new <- pd.cond[subsample] } return(ARestimate(pd.cond.new, portf.uncond.new, rating.type)$AR) } ar.dist <- replicate(iter, BootAR()) return(sd(ar.dist)) } QMMPDlinkFunc <- function(x, alpha, betta, calib.curve) { if (calib.curve == 'logit') { rez <- 1 / (1 + exp(-alpha - betta * x)) } else { rez <- 1 / (1 + exp(-alpha - betta * qnorm(x))) } return(rez) } QMMGetRLogitPD <- function (alpha, betta, portf.uncond, portf.condND = NULL, rating.type = 'RATING', calib.curve) { if (is.null(portf.condND)) { portf.condND <- portf.uncond } if (rating.type == 'RATING') { portf.cum <- cumsum(portf.condND) portf.condNDist <- (portf.cum + c(0, portf.cum[-length(portf.cum)])) / (2 * sum(portf.condND)) } else { portf.condNDist <- ecdf(portf.condND)(portf.condND) portf.condNDist[length(portf.condNDist)] <- (1 + portf.condNDist[length(portf.condNDist) - 1]) / 2 } rez <- list() if (calib.curve == 'logit') { rez$PD <- QMMPDlinkFunc(portf.condND, alpha, betta, calib.curve) } else { rez$PD <- QMMPDlinkFunc(portf.condNDist, alpha, betta, calib.curve) } rez$condNDist <- portf.condNDist return(rez) } QMMakeTargetFunc <- function(pd.uncond.new, pd.cond.old, portf.uncond, portf.condND = NULL, AR.target = NULL, rating.type = 'RATING', calib.curve) { if (is.null(AR.target)) { AR.target <- ARestimate(pd.cond.old, portf.uncond, rating.type)$AR } CT.target <- pd.uncond.new f <- function(x) { y <- numeric(2) pd.cond.cur <- QMMGetRLogitPD(x[1], x[2], portf.uncond, portf.condND, rating.type, calib.curve)$PD cur <- ARestimate(pd.cond.cur, portf.uncond, rating.type) y[1] <- cur$AR - AR.target y[2] <- cur$CT - CT.target return(y) } } QMMRecalibrate <- function(pd.uncond.new, pd.cond.old, portf.uncond, portf.condND = NULL, AR.target = NULL, rating.type = 'RATING', calib.curve = 'robust.logit') { if (rating.type == 'RATING' & calib.curve =='logit') { stop("Simple logit calibration curve is applicable only for rating.type = \'SCORE\'") } optimfun <- QMMakeTargetFunc(pd.uncond.new, pd.cond.old, portf.uncond, portf.condND, AR.target, rating.type, calib.curve) params <- nleqslv::nleqslv(c(0,0), optimfun) calib.new <- QMMGetRLogitPD(params$x[1], params$x[2], portf.uncond, portf.condND, rating.type, calib.curve) ar.sdev <- ARConfIntEst(pd.cond.old, portf.uncond, rating.type) AR.bc <- ARestimate(pd.cond.old, portf.uncond, rating.type) AR.ac <- ARestimate(calib.new$PD, portf.uncond, rating.type) optimfun.sd.minus <- QMMakeTargetFunc(pd.uncond.new, pd.cond.old, portf.uncond, portf.condND, AR.ac$AR - ar.sdev, rating.type, calib.curve) optimfun.sd.plus <- QMMakeTargetFunc(pd.uncond.new, pd.cond.old, portf.uncond, portf.condND, AR.ac$AR + ar.sdev, rating.type, calib.curve) params.sd.minus <- nleqslv::nleqslv(c(0,0), optimfun.sd.minus) params.sd.plus <- nleqslv::nleqslv(c(0,0), optimfun.sd.plus) calib.sd.minus <- QMMGetRLogitPD(params.sd.minus$x[1], params.sd.minus$x[2], portf.uncond, portf.condND, rating.type, calib.curve) calib.sd.plus <- QMMGetRLogitPD(params.sd.plus$x[1], params.sd.plus$x[2], portf.uncond, portf.condND, rating.type, calib.curve) rez <- list() rez$alpha <- params$x[1] rez$beta <- params$x[2] rez$CT.ac <- AR.ac$CT rez$AR.ac <- AR.ac$AR rez$CT.bc <- AR.bc$CT rez$AR.bc <- AR.bc$AR rez$AR.sdev <- ar.sdev rez$condPD.ac <- calib.new$PD rez$condPD.bc <- pd.cond.old rez$condPD.ac.upper <- calib.sd.plus$PD rez$condPD.ac.lower <- calib.sd.minus$PD rez$portf.cumdist <- calib.new$condNDist rez$portf.uncond <- portf.uncond rez$rating.type <- rating.type return(rez) } QMMPlot <- function(x) { if (x$rating.type == 'RATING') { portf <- x$portf.cumdist } else { portf <- x$portf.uncond } plot(x = portf, y = x$condPD.ac, main = "PD New vs Old", xlab = "Score (Rating)", ylab = "PD", type = "l", lwd = 3, col = "red") lines(x = portf, y = x$condPD.bc, lwd = 2, col = "black") lines(x = portf, y = x$condPD.ac.upper, lwd = 2, lty = "dashed", col = "blue") lines(x = portf, y = x$condPD.ac.lower, lwd = 2, lty = "dashed", col = "green") legend(x = "topright", legend = c("PD after Calibration", "PD before Calibration", "PD Upper Bound", "PD Lower Bound"), pch = c(16, 16, 16, 16), col = c("red", "black", "blue", "green")) }
test_that("Studentized Range distribution", { dist <- dist_studentized_range(6, 5, 1) expect_equal(format(dist), "StudentizedRange(6, 5, 1)") expect_equal(quantile(dist, 0.1), stats::qtukey(0.1, 6, 5, 1)) expect_equal(quantile(dist, 0.5), stats::qtukey(0.5, 6, 5, 1)) expect_equal(cdf(dist, 0), stats::ptukey(0, 6, 5, 1)) expect_equal(cdf(dist, 3), stats::ptukey(3, 6, 5, 1)) expect_equal(cdf(dist, quantile(dist, 0.4246)), 0.4246, tolerance = 1e-3) })
summary.cmfitlist = function(object, ..., coefs = TRUE) { if (coefs) { estimates = ldply(object, function(l) cbind(l$n.seasons, rbind(ldply(l$estimates)))) names(estimates)[1] = "n.seasons" estimates$parameter[is.na(estimates$parameter)] = "meanhazard" values = ldply(object, function(x) x$AIC) %>% rename(c(V1 = "AIC")) return(list(estimates = estimates, AICtable = values)) } summarize_listOfFits(object, lrt = TRUE, print = FALSE) } print.cmfitlist = function(x, ...) { print(summary(x, ...)) }
square_root <- function(vec, parallel = FALSE) { n_cores <- translate_parallel(parallel) RcppParallel::setThreadOptions(n_cores) on.exit(RcppParallel::setThreadOptions(RcppParallel::defaultNumThreads())) square_root_(vec) }
test_that("get_centroid works correctly for coord pairs", { expect_equal( get_centroid( lat = c(42.35375, 42.36645), lng = c(-71.06750, -71.05030) ), c( "lat" = 42.3601, "lng" = -71.0589 ) ) expect_equal( get_centroid( lat = c(42.35375, 42.36645), lng = c(-71.06750, -71.05030) ), rad_to_deg(get_centroid( lat = deg_to_rad(c(42.35375, 42.36645)), lng = deg_to_rad(c(-71.06750, -71.05030)), coord.unit = "radians" )) ) }) test_that("get_centroid returns early for single coordinates", { expect_equal( get_centroid(lat = 42, lng = -71), c("lat" = 42, "lng" = -71) ) }) test_that("get_centroid requires full coord pairs", { expect_error(get_centroid( lat = c(42.35375), lng = c(-71.06750, -71.05030) )) })
ne_coastline <- function(scale = 110, returnclass = c('sp','sf')) { returnclass <- match.arg(returnclass) if ( scale == 10 ) { check_rnaturalearthhires() } else { check_rnaturalearthdata() } scale <- check_scale(scale) sldf <- NULL if ( scale==110 ) { sldf <- rnaturalearthdata::coastline110 } else if ( scale==50 ) { sldf <- rnaturalearthdata::coastline50 } else if ( scale==10 ) { sldf <- rnaturalearthhires::coastline10 } ne_as_sf(sldf, returnclass) }
fa <- function(...){ msg(glue(crayon::red(cli::symbol$warning), " A rewrite of the icons package has introduced breaking changes.")) msg(glue(crayon::blue(cli::symbol$info), " Refer to the NEWS (https://pkg.mitchelloharawild.com/icons/news/) to read the changes.")) abort("Update to the new interface for the icons package.") } ii <- fa ai <- fa
District.getByZip <- function (zip5, zip4=NULL) { if (length(zip4)==0) { District.getByZip.basic1 <- function (.zip5) { request <- "District.getByZip?" inputs <- paste("&zip5=",.zip5,sep="") pvs.url <- paste("http://api.votesmart.org/",request,"key=",get('pvs.key',envir=.GlobalEnv),inputs,sep="") output.base <- xmlRoot(xmlTreeParse(pvs.url, useInternalNodes=TRUE)) districts <- removeChildren(output.base, kids=list(1,2)) electionDistricts <- districts[["electionDistricts"]] districts <- removeChildren(districts, kids=list("electionDistricts")) output.districts <- data.frame(t(xmlSApply(districts, function(x) xmlSApply(x, xmlValue))), row.names=NULL) output.districts$Type <- "district" output.electionDistricts <- data.frame(t(xmlSApply(electionDistricts, function(x) xmlSApply(x, xmlValue))), row.names=NULL) output.electionDistricts$Type <- "electionDistrict" output <- rbind(output.districts, output.electionDistricts) output$zip5 <- .zip5 output } output.list <- lapply(zip5, FUN= function (s) { District.getByZip.basic1(.zip5=s) } ) output.list <- redlist(output.list) output <- dfList(output.list) } else { District.getByZip.basic2 <- function (.zip5, .zip4) { pvs.url <- paste("http://api.votesmart.org/",request,"key=",get('pvs.key',envir=.GlobalEnv),inputs,sep="") request <- "District.getByZip?" inputs <- paste("&zip5=",.zip5, "&zip4=", .zip4, sep="") output.base <- xmlRoot(xmlTreeParse(pvs.url, useInternalNodes=TRUE)) districts <- removeChildren(output.base, kids=list(1,2)) electionDistricts <- districts[["electionDistricts"]] districts <- removeChildren(districts, kids=list("electionDistricts")) output.districts <- data.frame(t(xmlSApply(districts, function(x) xmlSApply(x, xmlValue))), row.names=NULL) output.districts$Type <- "district" output.electionDistricts <- data.frame(t(xmlSApply(electionDistricts, function(x) xmlSApply(x, xmlValue))), row.names=NULL) output.electionDistricts$Type <- "electionDistrict" output <- rbind(output.districts, output.electionDistricts) output$zip5 <- .zip5 output$zip4. <- .zip4 output } output.list <- lapply(zip5, FUN= function (s) { lapply(zip4, FUN= function (c) { District.getByZip.basic2( .zip5=s, .zip4=c) } ) } ) output.list <- redlist(output.list) output <- dfList(output.list) } output }
context("mass-rlm") skip_on_cran() skip_if_not_installed("modeltests") library(modeltests) skip_if_not_installed("MASS") library(MASS) fit <- rlm(stack.loss ~ ., stackloss) test_that("MASS::rlm tidier arguments", { check_arguments(tidy.rlm) check_arguments(glance.rlm) check_arguments(augment.rlm) }) test_that("tidy.rlm", { td2 <- tidy(fit, conf.int = TRUE) check_tidy_output(td2) expect_false(NA %in% td2$conf.low) expect_false(NA %in% td2$conf.high) }) test_that("glance.rlm", { gl <- glance(fit) check_glance_outputs(gl) check_dims(gl, 1, 7) }) test_that("augment.rlm", { skip_on_os("linux") check_augment_function( aug = augment.rlm, model = fit, data = stackloss, newdata = stackloss ) })
context("stat_density_2d") test_that("uses scale limits, not data limits", { base <- ggplot(mtcars, aes(wt, mpg)) + stat_density_2d() + scale_x_continuous(limits = c(1, 6)) + scale_y_continuous(limits = c(5, 40)) ret <- layer_data(base) expect_true(min(ret$x) < 1.2) expect_true(max(ret$x) > 5.8) expect_true(min(ret$y) < 8) expect_true(max(ret$y) > 35) })
setMethod('writeRaster', signature(x='RasterLayer', filename='character'), function(x, filename, format, ...) { if (!hasValues(x)) { warning('all cell values are NA') } filename <- trim(filename) if (filename == '') { stop('provide a filename') } filename <- .fullFilename(filename, expand=TRUE) if (!file.exists(dirname(filename))) { stop("Attempting to write a file to a path that does not exist:\n ", dirname(filename)) } filetype <- .filetype(format=format, filename=filename) filename <- .getExtension(filename, filetype) if (filetype == 'KML') { KML(x, filename, ...) return(invisible(x)) } verylarge <- ncell(x) > 1000000000 if (! inMemory(x) | verylarge ) { if ( toupper(x@file@name) == toupper(filename) ) { stop('filenames of source and target should be different') } tr <- blockSize(x) pb <- pbCreate(tr$n, ...) r <- writeStart(x, filename=filename, format=filetype, ...) for (i in 1:tr$n) { v <- getValues(x, row=tr$row[i], nrows=tr$nrows[i]) r <- writeValues(r, v, tr$row[i]) pbStep(pb, i) } if (isTRUE(any(is.factor(x)))) { levels(r) <- levels(x) } r <- writeStop(r) pbClose(pb) return(invisible(r)) } if (.isNativeDriver(filetype)) { out <- raster(x) names(out) <- names(x) try( out@history <- x@history, silent=TRUE) levels(out) <- levels(x) out@legend@colortable <- colortable(x) dots <- list(...) if (is.integer(x[1]) & is.null(dots$dataype)) { out <- .startRasterWriting(out, filename, format=filetype, dataytpe="INT4S", ...) } else { out <- .startRasterWriting(out, filename, format=filetype, ...) } out <- writeValues(out, x@data@values, 1) return( .stopRasterWriting(out) ) } else if (filetype=='ascii') { x <- .writeAscii(x, filename=filename,...) } else if (filetype=='CDF') { x <- .startWriteCDF(x, filename=filename, ...) x <- .writeValuesCDF(x, x@data@values) return( .stopWriteCDF(x) ) } else { x <- .writeGDALall(x, filename=filename, format=filetype, ...) } return(invisible(x)) } ) setMethod('writeRaster', signature(x='RasterStackBrick', filename='character'), function(x, filename, format, bylayer=FALSE, suffix='numbers', ...) { if (!hasValues(x)) { warning('all cell values are NA') } filename <- trim(filename) if (bylayer) { nl <- nlayers(x) if (length(filename) > 1) { if (length(filename) != nlayers(x) ) { stop('the number of filenames is > 1 but not equal to the number of layers') } filename <- .fullFilename(filename, expand=TRUE) filetype <- .filetype(format, filename=filename[1]) filename <- .getExtension(filename, filetype) } else { if (filename == '') { stop('provide a filename') } filename <- .fullFilename(filename, expand=TRUE) filetype <- .filetype(format, filename=filename) filename <- .getExtension(filename, filetype) ext <- extension(filename) filename <- extension(filename, '') if (suffix[1] == 'numbers') { filename <- paste(filename, '_', 1:nl, ext, sep='') } else if (suffix[1] == 'names') { filename <- paste(filename, '_', names(x), ext, sep='') } else if (length(suffix) == nl) { filename <- paste(filename, '_', suffix, ext, sep='') } else { stop('invalid "suffix" argument') } } if (filetype == 'KML') { layers <- lapply(1:nl, function(i) KML(x[[i]], filename=filename[i], ...)) return(invisible(x)) } if (inherits(x, 'RasterBrick')) { x <- stack(x) } layers <- lapply(1:nl, function(i) writeRaster(x[[i]], filename=filename[i], format=filetype, ...)) return(invisible(stack(layers))) } if (filename == '') { stop('provide a filename') } filename <- .fullFilename(filename, expand=TRUE) filetype <- .filetype(format, filename=filename) filename <- .getExtension(filename, filetype) if (filetype == "ascii") { stop('this file format does not support multi-layer files') } if (filetype == 'KML') { KML(x, filename, ...) return(invisible(x)) } verylarge <- (ncell(x) * nlayers(x)) > 1000000000 if (.isNativeDriver(filetype)) { if (! filetype %in% c("raster", "BIL", "BSQ", "BIP") ) { stop('this file format does not support multi-band files') } out <- brick(x, values=FALSE) names(out) <- names(x) z <- getZ(x) if (!is.null(z)) { out <- setZ(out, z) } out <- writeStart(out, filename, format=filetype, ...) if (inMemory(x) & (!verylarge)) { out <- writeValues(out, values(x), 1) } else { tr <- blockSize(x) pb <- pbCreate(tr$n, ...) for (i in 1:tr$n) { out <- writeValues(out, getValues(x, tr$row[i], tr$nrows[i]), tr$row[i]) pbStep(pb, i) } pbClose(pb) } out <- .stopRasterWriting(out) return( invisible(out) ) } if ( inMemory(x) & (!verylarge)) { if (filetype=='CDF') { b <- brick(x, values=FALSE) b@z <- x@z b <- .startWriteCDF(b, filename=filename, ...) b <- .writeValuesBrickCDF(b, values(x)) x <- .stopWriteCDF(b) } else { x <- .writeGDALall(x, filename=filename, format=filetype, ...) } return(invisible(x)) } else { if ( toupper(filename(x)) == toupper(filename) ) { stop('filenames of source and destination should be different') } b <- brick(x, values=FALSE) if (filetype=='CDF') { b@z <- x@z } tr <- blockSize(b) pb <- pbCreate(tr$n, ...) x <- readStart(x, ...) b <- writeStart(b, filename=filename, format=filetype, ...) for (i in 1:tr$n) { v <- getValues(x, row=tr$row[i], nrows=tr$nrows[i]) b <- writeValues(b, v, tr$row[i]) pbStep(pb, i) } b <- writeStop(b) x <- readStop(x) pbClose(pb) return(invisible(b)) } } )
OneComp_Volume_Clearance_HalfLife<-function(Cl1,t_alpha, Cl1.sd=NA,t_alpha.sd=NA,covar=c(Cl1talpha=NA),...){ if(is.na(covar[1])) covar<-0 Cl1.var = (Cl1.sd)^2 t_alpha.var = (t_alpha.sd)^2 V1<-(Cl1*t_alpha)/log(2) Vdss<-V1 sigma2<-matrix(as.numeric(c(Cl1.var,covar[1],covar[1],t_alpha.var)), 2,2,byrow=T) V1_deriv<-as.matrix(attr(eval(stats::deriv(~(Cl1*t_alpha)/log(2), c("Cl1","t_alpha"))),"gradient")) V1.sd<-sqrt(V1_deriv %*% sigma2 %*% t(V1_deriv)) Vdss.sd<-V1.sd k10<-log(2)/t_alpha k10_deriv<-as.matrix(attr(eval(stats::deriv(~log(2)/t_alpha,"t_alpha")), "gradient")) k10.sd<-sqrt(k10_deriv * t_alpha.var *k10_deriv) true_A<-log(2)/(Cl1*t_alpha) true_A_deriv<-as.matrix(attr(eval(stats::deriv(~log(2)/(Cl1*t_alpha), c("Cl1","t_alpha"))),"gradient")) true_A.sd<-sqrt(true_A_deriv %*% sigma2 %*% t(true_A_deriv)) frac_A<-1 frac_A.sd<-ifelse(is.na(Cl1.sd),NA,0) alpha<-k10 alpha.sd<-k10.sd if(is.na(t_alpha[1])){ param=rep(NA,8) sd=rep(NA,8) } else{ param = c(Cl1,t_alpha,V1,k10,Vdss,true_A,frac_A,alpha) sd = c(Cl1.sd,t_alpha.sd,V1.sd,k10.sd,Vdss.sd,true_A.sd,frac_A.sd,alpha.sd) } result = data.frame(Parameter=c("Cl1","t_alpha","V1","k10","Vdss", "True_A","Frac_A","alpha"), Estimate=param, Std.err=sd) row.names(result) <- c("Cl1","t_alpha","V1","k10","Vdss", "True_A","Frac_A","alpha") result<-result[c("Vdss","V1","Cl1","k10","alpha", "t_alpha","True_A","Frac_A"),] return(result) }
test_that("predicates match definitions", { expect_true(is_character(letters, 26)) expect_false(is_character(letters, 1)) expect_false(is_list(letters, 26)) expect_true(is_list(mtcars, 11)) expect_false(is_list(mtcars, 0)) expect_false(is_double(mtcars, 11)) expect_true(is_complex(cpl(1, 2), n = 2)) expect_false(is_complex(cpl(1, 2), n = 3)) expect_false(is_scalar_complex(cpl(1, 2))) expect_false(is_bare_complex(structure(cpl(1, 2), class = "foo"))) }) test_that("can bypass string serialisation", { bar <- chr(list("cafe", string(c(0x63, 0x61, 0x66, 0xE9)))) Encoding(bar) <- "latin1" bytes <- list(bytes(c(0x63, 0x61, 0x66, 0x65)), bytes(c(0x63, 0x61, 0x66, 0xE9))) expect_identical(map(bar, charToRaw), bytes) expect_identical(Encoding(bar[[2]]), "latin1") }) test_that("is_integerish() heeds type requirement", { for (n in 0:2) { expect_true(is_integerish(integer(n))) expect_true(is_integerish(double(n))) expect_false(is_integerish(double(n + 1) + .000001)) } types <- c("logical", "complex", "character", "expression", "list", "raw") for (type in types) { expect_false(is_integerish(vector(type))) } }) test_that("is_integerish() heeds length requirement", { for (n in 0:2) { expect_true(is_integerish(double(n), n = n)) expect_false(is_integerish(double(n), n = n + 1)) } }) test_that("non finite double values are integerish", { expect_true(is_integerish(dbl(1, Inf, -Inf, NaN), finite = NULL)) expect_true(is_integerish(dbl(1, NA))) expect_true(is_integerish(int(1, NA))) }) test_that("is_finite handles numeric types", { expect_true(is_finite(1L)) expect_false(is_finite(na_int)) expect_true(is_finite(1)) expect_false(is_finite(na_dbl)) expect_false(is_finite(Inf)) expect_false(is_finite(-Inf)) expect_false(is_finite(NaN)) expect_false(is_finite(c(1, 2, NaN))) expect_error(expect_false(is_finite(NA)), "expected a numeric vector") expect_true(is_finite(0i)) expect_false(is_finite(complex(real = NA))) expect_false(is_finite(complex(imaginary = Inf))) }) test_that("check finiteness", { expect_true( is_double(dbl(1, 2), finite = TRUE)) expect_true( is_complex(cpl(1, 2), finite = TRUE)) expect_true(is_integerish(dbl(1, 2), finite = TRUE)) expect_false( is_double(dbl(1, 2), finite = FALSE)) expect_false( is_complex(cpl(1, 2), finite = FALSE)) expect_false(is_integerish(dbl(1, 2), finite = FALSE)) expect_false( is_double(dbl(1, Inf), finite = TRUE)) expect_false( is_complex(cpl(1, Inf), finite = TRUE)) expect_false(is_integerish(dbl(1, Inf), finite = TRUE)) expect_true( is_double(dbl(1, Inf), finite = FALSE)) expect_true( is_complex(cpl(1, Inf), finite = FALSE)) expect_true(is_integerish(dbl(1, Inf), finite = FALSE)) expect_true( is_double(dbl(-Inf, Inf), finite = FALSE)) expect_true( is_complex(cpl(-Inf, Inf), finite = FALSE)) expect_true(is_integerish(dbl(-Inf, Inf), finite = FALSE)) }) test_that("scalar predicates heed type and length", { expect_true_false <- function(pred, pass, fail_len, fail_type) { expect_true(pred(pass)) expect_false(pred(fail_len)) expect_false(pred(fail_type)) } expect_true_false(is_scalar_list, list(1), list(1, 2), logical(1)) expect_true_false(is_scalar_atomic, logical(1), logical(2), list(1)) expect_true_false(is_scalar_vector, list(1), list(1, 2), quote(x)) expect_true_false(is_scalar_vector, logical(1), logical(2), function() {}) expect_true_false(is_scalar_integer, integer(1), integer(2), double(1)) expect_true_false(is_scalar_double, double(1), double(2), integer(1)) expect_true_false(is_scalar_character, character(1), character(2), logical(1)) expect_true_false(is_string, character(1), character(2), logical(1)) expect_true_false(is_scalar_logical, logical(1), logical(2), character(1)) expect_true_false(is_scalar_raw, raw(1), raw(2), NULL) expect_true_false(is_scalar_bytes, raw(1), raw(2), NULL) }) test_that("is_integerish() supports large numbers ( expect_true(is_integerish(1e10)) expect_true(is_integerish(2^52)) expect_false(is_integerish(2^52 + 1)) expect_false(is_integerish(2^50 - 0.1)) expect_false(is_integerish(2^49 - 0.05)) expect_false(is_integerish(2^40 - 0.0001)) }) test_that("is_string() matches on string", { expect_true(is_string("foo")) expect_true(is_string("foo", "foo")) expect_false(is_string("foo", "bar")) expect_false(is_string(NA, NA)) expect_true(is_string("foo", c("foo", "bar"))) expect_true(is_string("foo", c("bar", "foo"))) expect_false(is_string("foo", c("bar", "baz"))) }) test_that("is_string2() matches on `empty`", { expect_snapshot({ (expect_error(is_string2("foo", empty = 1))) (expect_error(is_string2("foo", empty = NA))) (expect_error(is_string2("foo", "foo", empty = TRUE))) }) expect_true(is_string2("foo", empty = NULL)) expect_true(is_string2("foo", empty = FALSE)) expect_false(is_string2("foo", empty = TRUE)) expect_true(is_string2("", empty = NULL)) expect_true(is_string2("", empty = TRUE)) expect_false(is_string2("", empty = FALSE)) }) test_that("is_bool() checks for single `TRUE` or `FALSE`", { expect_true(is_bool(TRUE)) expect_true(is_bool(FALSE)) expect_false(is_bool(NA)) expect_false(is_bool(c(TRUE, FALSE))) }) test_that("is_character2() matches empty and missing values", { expect_true(is_character2("", empty = TRUE, missing = TRUE)) expect_true(is_character2(na_chr, empty = TRUE, missing = TRUE)) expect_false(is_character2(c("foo", ""), empty = FALSE)) expect_true(is_character2(c("foo", ""), empty = TRUE)) expect_true(is_character2(c("", ""), empty = TRUE)) expect_true(is_character2(c("foo", "foo"), empty = FALSE)) expect_false(is_character2(c("foo", NA), missing = FALSE)) expect_true(is_character2(c("foo", NA), missing = TRUE)) expect_true(is_character2(chr(NA, NA), missing = TRUE)) expect_true(is_character2(c("foo", "foo"), missing = FALSE)) expect_true(is_character2(c("foo", "foo"), empty = FALSE, missing = FALSE)) expect_true(is_character2(c("foo", "foo"), empty = FALSE, missing = TRUE)) expect_true(is_character2(chr(NA, NA), empty = FALSE, missing = TRUE)) expect_true(is_character2(c("foo", "foo"), empty = TRUE, missing = FALSE)) expect_true(is_character2(c("", ""), empty = TRUE, missing = FALSE)) })
MatrixPaste = function(x, sep="_", forceCharacter=FALSE, stringEmpty = " "){ if(is.null(x)) return(stringEmpty) if(NCOL(x)==0) return(rep(stringEmpty,NROW(x))) if(NCOL(x)<=1){ if(forceCharacter) return(as.character(as.vector(x))) return(as.vector(x)) } apply(x , 1 , paste , collapse = sep ) } MatrixPaste1 = function(x,stringEmpty = "1") MatrixPaste(x,stringEmpty = stringEmpty)
reSurv <- function(time1, time2, id, event, status, origin = 0) { warning("'reSurv()' is being deprecated in Version 1.1.7. Output is prepared by 'Recur()'.\n See '?Recur()' for details.\n") nArg <- length(match.call()) - 1 if (nArg >= 5) return(Recur(time1 %2% time2, id, event, status)) if (nArg < 5) return(Recur(time1, time2, id, event, origin = origin)) } is.reReg <- function(x) inherits(x, "reReg")
NULL setClass( Class = "RLum.Results", slots = list(data = "list"), contains = "RLum", prototype = list (data = list()) ) setAs("list", "RLum.Results", function(from,to){ new(to, originator = "coercion", data = from) }) setAs("RLum.Results", "list", function(from){ from@data }) setMethod("show", signature(object = "RLum.Results"), function(object) { temp.names <- names(object@data) if (length(object) > 0) { temp.type <- sapply(1:length(object@data), function(x) { paste("\t .. $", temp.names[x], " : ", is(object@data[[x]])[1], sep = "") }) } else{ temp.type <- paste0("\t .. $", temp.names, " : ", is(object@data)[1]) } temp.type <- paste(temp.type, collapse = "\n") cat("\n [RLum.Results-class]") cat("\n\t originator: ", object@originator, "()", sep = "") cat("\n\t data:", length(object@data)) cat("\n", temp.type) cat("\n\t additional info elements: ", length(object@info),"\n") }) setMethod("set_RLum", signature = signature("RLum.Results"), function(class, originator, .uid, .pid, data = list(), info = list()) { newRLumReuslts <- new("RLum.Results") newRLumReuslts@originator <- originator newRLumReuslts@data <- data newRLumReuslts@info <- info [email protected] <- .uid [email protected] <- .pid return(newRLumReuslts) }) setMethod( "get_RLum", signature = signature("RLum.Results"), definition = function(object, data.object, info.object = NULL, drop = TRUE) { if (!is.null(info.object)) { if (info.object %in% names(object@info)) { unlist(object@info[info.object]) } else { if (length(object@info) == 0) { warning("[get_RLum] This RLum.Results object has no info objects! NULL returned!)", call. = FALSE) } else { warning(paste0( "[get_RLum] Invalid info.object name. Valid names are: ", paste(names(object@info), collapse = ", ") ), call. = FALSE) } return(NULL) } } else{ if (!missing(data.object)) { if (is(data.object, "character")) { if (all(data.object %in% names(object@data))) { if (length(data.object) > 1) { temp.return <- sapply(data.object, function(x) { object@data[[x]] }) } else{ temp.return <- list(data.object = object@data[[data.object]]) } } else { stop(paste0("[get_RLum()] data.object(s) unknown, valid names are: ", paste(names(object@data), collapse = ", ")), call. = FALSE) } } else if (is(data.object, "numeric")) { if (max(data.object) > length(object@data)) { stop("[get_RLum] 'data.object' index out of bounds!") } else if (length(data.object) > 1) { temp.return <- lapply(data.object, function(x) { object@data[[x]] }) } else { temp.return <- list(object@data[[data.object]]) } names(temp.return) <- names(object@data)[data.object] } else{ stop("[get_RLum] 'data.object' has to be of type character or numeric!", call. = FALSE) } } else{ temp.return <- object@data[1] } if (drop) { return(temp.return[[1]]) } else{ return(set_RLum( "RLum.Results", originator = object@originator, data = temp.return )) } } } ) setMethod("length_RLum", "RLum.Results", function(object){ length(object@data) }) setMethod("names_RLum", "RLum.Results", function(object){ names(object@data) })
check_dbplyr <- function() { check_pkg("dbplyr", "communicate with database backends", install = FALSE) } wrap_dbplyr_obj <- function(obj_name) { `UQ<-` <- NULL obj <- getExportedValue("dbplyr", obj_name) obj_sym <- sym(obj_name) dbplyr_sym <- call("::", quote(dbplyr), obj_sym) dplyr_sym <- call("::", quote(dplyr), obj_sym) if (is.function(obj)) { args <- formals() pass_on <- map(set_names(names(args)), sym) dbplyr_call <- expr((!!dbplyr_sym)(!!!pass_on)) dplyr_call <- expr((!!dplyr_sym)(!!!pass_on)) } else { args <- list() dbplyr_call <- dbplyr_sym dplyr_call <- dplyr_sym } body <- expr({ if (utils::packageVersion("dplyr") > "0.5.0") { dplyr::check_dbplyr() !!dbplyr_call } else { !!dplyr_call } }) wrapper <- new_function(args, body, caller_env()) expr(!!obj_sym <- !!get_expr(wrapper)) } utils::globalVariables("!<-") sql <- function(...) { check_dbplyr() dbplyr::sql(...) } ident <- function(...) { check_dbplyr() dbplyr::ident(...) }
flip_img <- function(img, x = FALSE, y = FALSE, z = FALSE, ...){ img = check_nifti(img, ...) d = dim(img) ndim = length(d) if (ndim == 2) { if (z) { stop("Cannot flip z- 2D Image!") } if (x) { img = copyNIfTIHeader(img = img, img[nrow(img):1,]) } if (y) { img = copyNIfTIHeader(img = img, img[,ncol(img):1]) } } if (ndim == 3) { if (x){ for (i in seq(d[3])){ x = img[,,i] x = x[nrow(x):1,] [email protected][,,i] = x } } if (y){ for (i in seq(d[3])){ x = img[,,i] x = x[,ncol(x):1] [email protected][,,i] = x } } if (z){ for (i in seq(d[1])){ x = img[i,,] x = x[,ncol(x):1] [email protected][i,,] = x } } } return(img) }
quickmatch <- function(distances, treatments, treatment_constraints = NULL, size_constraint = NULL, target = NULL, caliper = NULL, ...) { dots <- eval(substitute(alist(...))) if (!distances::is.distances(distances)) { dist_call <- dots[names(dots) %in% names(formals(distances::distances))] dist_call$data <- distances distances <- do.call(distances::distances, dist_call) } ensure_distances(distances) num_observations <- length(distances) treatments <- coerce_treatments(treatments, num_observations, FALSE) if (is.null(treatment_constraints)) { treatment_constraints <- rep(1L, nlevels(treatments)) names(treatment_constraints) <- levels(treatments) } treatment_constraints <- coerce_treatment_constraints(treatment_constraints, levels(treatments)) size_constraint <- coerce_size_constraint(size_constraint, sum(treatment_constraints), num_observations) target <- coerce_target(target, treatments, FALSE) ensure_caliper(caliper) sc_call <- dots[names(dots) %in% names(formals(scclust::sc_clustering))] if (!is.null(sc_call$type_labels)) { stop("`type_labels` is ignored, please use the `treatments` parameter instead.") } if (!is.null(sc_call$type_constraints)) { stop("`type_constraints` is ignored, please use the `treatment_constraints` parameter instead.") } if (!is.null(sc_call$primary_data_points)) { stop("`primary_data_points` is ignored, please use the `target` parameter instead.") } if (is.null(sc_call$seed_method)) { sc_call$seed_method <- "inwards_updating" } if (is.null(sc_call$primary_unassigned_method)) { sc_call$primary_unassigned_method <- "closest_seed" } if (is.null(sc_call$secondary_unassigned_method)) { secondary_unassigned_method_default <- TRUE sc_call$secondary_unassigned_method <- "closest_seed" } else { secondary_unassigned_method_default <- FALSE } if (is.null(sc_call$primary_radius)) { sc_call$primary_radius <- "seed_radius" } if (is.null(sc_call$secondary_radius)) { if (is.null(caliper)) { sc_call$secondary_radius <- "estimated_radius" } else { sc_call$secondary_radius <- "seed_radius" } } if (is.null(sc_call$seed_radius) && !is.null(caliper)) { if (sc_call$primary_unassigned_method %in% c("ignore", "closest_seed")) { sc_call$seed_radius <- as.numeric(caliper) / 2.0 if (sc_call$secondary_unassigned_method == "closest_assigned") { warning("Caliper is not properly enforced when `secondary_unassigned_method`==\"closest_assigned\".") } } else if (sc_call$primary_unassigned_method %in% c("any_neighbor", "closest_assigned")) { sc_call$seed_radius <- as.numeric(caliper) / 4.0 warning("Caliper might perform poorly unless `primary_unassigned_method`==\"closest_seed\".") } if (sc_call$primary_radius != "seed_radius") { warning("Caliper is not properly enforced unless `primary_radius`==\"seed_radius\".") } if (sc_call$secondary_radius != "seed_radius") { warning("Caliper is not properly enforced unless `secondary_radius`==\"seed_radius\".") } } else if (!is.null(sc_call$seed_radius) && !is.null(caliper)) { warning("`caliper` is ignored when `seed_radius` is specified.") } sc_call$distances <- distances sc_call$size_constraint <- size_constraint sc_call$type_labels <- treatments sc_call$type_constraints <- treatment_constraints sc_call$primary_data_points <- target out_matching <- tryCatch({ do.call(scclust::sc_clustering, sc_call) }, error = function(x) { if (grepl("\\(scclust:src/nng_clustering.c:[0-9]+\\) Infeasible radius constraint.", x$message)) { if (secondary_unassigned_method_default) { new_warning("Most seeds are at zero distance to their neighbors in the clustering NNG. This typically happens with discrete low-dimensional covariates. Consider using exact matching with such data. Running with `secondary_unassigned_method == \"ignore\"`.", level = -5) sc_call$secondary_unassigned_method <- "ignore" do.call(scclust::sc_clustering, sc_call) } else { new_error("** Error in scclust: ", x$message, "\n ** Explanation of error: Most seeds are at zero distance to their neighbors in the clustering NNG. This typically happens with discrete low-dimensional covariates. Consider using exact matching with such data.", level = -5) } } else { new_error("** Error in scclust: ", x$message, level = -5) } }) class(out_matching) <- c("qm_matching", class(out_matching)) out_matching }
swe.gu19 <- function(data, region.gu19, n0=NA ,n1=NA, n2=NA){ if(!inherits(data,"data.frame")) stop("swe.gu19: data must be given as data.frame") if(!any((is.element(colnames(data), c("hs","date"))))) stop("swe.gu19: data must contain at least two columns named 'hs' and 'date'") Hobs <- data$hs if(any(is.na(Hobs))) stop("swe.gu19: snow depth data must not be NA") if(!all(Hobs >= 0)) stop("swe.gu19: snow depth data must not be negative") if(!is.numeric(Hobs)) stop("swe.gu19: snow depth data must be numeric") if(!inherits(data$date,"character")) stop("swe.gu19: date column must be of class character") if(missing(region.gu19)) stop("swe.gu19: region.gu19 must be given") if (!is.element(region.gu19,c("italy","southwest","central","southeast","myregion"))) stop("swe.gu19: region.gu19 must be one of 'italy','southwest','central','southeast','myregion'") guyennet.coeff <- list("italy" = c(n0=294, n1=-8.3e-1, n2=7.7e-3), "southwest" = c(n0=285.9, n1=1.3e-1, n2=-0.1e-3), "central" = c(n0=288.9, n1=-9.3e-1, n2=8.2e-3), "southeast" = c(n0=332.5, n1=-16.8e-1, n2=13.5e-3), "myregion" = c(n0=n0, n1=n1, n2=n2)) month <- as.numeric( format(as.POSIXct(data$date), "%m")) yday <- as.POSIXlt(data$date, format="%Y-%m-%d")$yday + 1 dos <- ifelse( month>8 & month<=12, yday-243, yday+122 ) doy <- dos - 122 d <- data$date doys <- c() for(i in 1:nrow(data)){ m <- as.numeric( format(as.POSIXct(d[i]), "%m")) yd <- as.POSIXlt(d[i], format="%Y-%m-%d")$yday + 1 if(m %in% c(10,11,12)){ doy <- yd-366 } else if (m>=7 & m<=9) { doy <- NA } else { doy <- yd } doys <- c(doys,doy) } if(region.gu19 == "myregion" & any(is.na(c(n0,n1,n2)))){ stop("swe.gu19: at least one of the coefficients n0, n1, n2 is NULL") } n0 <- guyennet.coeff[[region.gu19]][1] n1 <- guyennet.coeff[[region.gu19]][2] n2 <- guyennet.coeff[[region.gu19]][3] rho <- n0 + n1*(doys + 61) + n2*(doys + 61)^2 swe <- rho*data$hs return(swe) }
ARI.F <- function(VC,U, t_norm = c("minimum","product")) { if (missing(VC)) stop("The hard partitions VC must be given") if (missing(U)) stop("The fuzzy partitions U must be given") if (is.null(VC)) stop("The hard partitions VC is empty") if (is.null(U)) stop("The fuzzy partitions U is empty") VC <- as.numeric(VC) U <- as.matrix(U) partHard=matrix(0,nrow=length(VC),ncol=length(unique(VC))) for (i in 1:length(VC)) { partHard[i, VC[i]]=1 } U = as.matrix(U) t_norm <- match.arg(t_norm, choices = eval(formals(ARI.F)$t_norm)) out = partition_comp(HardClust = partHard,Fuzzy = U, t_norm = t_norm) return(out$adjRand.F) }
context("CSVY imports/exports") require("datasets") tmp <- tempfile(fileext = ".csvy") test_that("Export to CSVY", { suppressWarnings(expect_true(file.exists(export(iris, tmp)))) }) test_that("Import from CSVY", { suppressWarnings(d <- import(tmp)) expect_true(inherits(d, "data.frame")) }) unlink(tmp)
soboljansen <- function(model = NULL, X1, X2, nboot = 0, conf = 0.95, ...) { if ((ncol(X1) != ncol(X2)) | (nrow(X1) != nrow(X2))) stop("The samples X1 and X2 must have the same dimensions") p <- ncol(X1) X <- rbind(X1, X2) for (i in 1:p) { Xb <- X1 Xb[,i] <- X2[,i] X <- rbind(X, Xb) } x <- list(model = model, X1 = X1, X2 = X2, nboot = nboot, conf = conf, X = X, call = match.call()) class(x) <- "soboljansen" if (!is.null(x$model)) { response(x, other_types_allowed = TRUE, ...) tell(x) } return(x) } estim.soboljansen <- function(data, i = NULL) { if(is(data,"matrix")){ if(is.null(i)) i <- 1:nrow(data) d <- as.matrix(data[i, ]) n <- nrow(d) V <- var(d[, 1]) VCE <- V - (colSums((d[,2] - d[, - c(1, 2)])^2) / (2 * n - 1)) VCE.compl <- (colSums((d[,1] - d[, - c(1, 2)])^2) / (2 * n - 1)) return(c(V, VCE, VCE.compl)) } else if(is(data,"array")){ if(is.null(i)) i <- 1:dim(data)[1] n <- length(i) p <- dim(data)[2] - 2 one_dim3 <- function(d_array){ V <- apply(d_array, 3, function(d_matrix){ var(d_matrix[, 1]) }) SumSq <- apply(d_array, 3, function(d_matrix){ matrix(c( colSums((d_matrix[, 2] - d_matrix[, -c(1, 2), drop = FALSE])^2) / (2 * n - 1), colSums((d_matrix[, 1] - d_matrix[, -c(1, 2), drop = FALSE])^2) / (2 * n - 1)), ncol = 2) }) V_rep <- matrix(rep(V, each = p), ncol = dim(d_array)[3], dimnames = list(NULL, dimnames(d_array)[[3]])) VCE <- V_rep - SumSq[1:p, , drop = FALSE] VCE.compl <- SumSq[(p + 1):(2 * p), , drop = FALSE] return(rbind(V, VCE, VCE.compl, deparse.level = 0)) } if(length(dim(data)) == 3){ d <- data[i, , , drop = FALSE] return(one_dim3(d)) } else if(length(dim(data)) == 4){ d <- data[i, , , , drop = FALSE] all_dim3 <- sapply(1:dim(data)[4], function(i){ one_dim3(array(data[ , , , i], dim = dim(data)[1:3], dimnames = dimnames(data)[1:3])) }, simplify = "array") dimnames(all_dim3)[[3]] <- dimnames(data)[[4]] return(all_dim3) } } } tell.soboljansen <- function(x, y = NULL, return.var = NULL, ...) { id <- deparse(substitute(x)) if (! is.null(y)) { x$y <- y } else if (is.null(x$y)) { stop("y not found") } p <- ncol(x$X1) n <- nrow(x$X1) if(is(x$y,"numeric")){ data <- matrix(x$y, nrow = n) if (x$nboot == 0){ V <- data.frame(original = estim.soboljansen(data)) } else{ V.boot <- boot(data, estim.soboljansen, R = x$nboot) V <- bootstats(V.boot, x$conf, "basic") } rownames(V) <- c("global", colnames(x$X1), paste("-", colnames(x$X1), sep = "")) if (x$nboot == 0) { S <- V[2:(p + 1), 1, drop = FALSE] / V[1,1] T <- V[(p + 2):(2 * p + 1), 1, drop = FALSE] / V[1,1] rownames(T) <- colnames(x$X1) } else { S.boot <- V.boot S.boot$t0 <- V.boot$t0[2:(p + 1)] / V.boot$t0[1] S.boot$t <- V.boot$t[,2:(p + 1)] / V.boot$t[,1] S <- bootstats(S.boot, x$conf, "basic") T.boot <- V.boot T.boot$t0 <- V.boot$t0[(p + 2):(2 * p + 1)] / V.boot$t0[1] T.boot$t <- V.boot$t[,(p + 2):(2 * p + 1)] / V.boot$t[,1] T <- bootstats(T.boot, x$conf, "basic") rownames(S) <- colnames(x$X1) rownames(T) <- colnames(x$X1) } } else if(is(x$y,"matrix")){ data <- array(x$y, dim = c(n, nrow(x$y) / n, ncol(x$y)), dimnames = list(NULL, NULL, colnames(x$y))) if(x$nboot == 0){ V <- estim.soboljansen(data) rownames(V) <- c("global", colnames(x$X1), paste("-", colnames(x$X1), sep = "")) V_global <- matrix(rep(V[1, ], p), nrow = p, byrow = TRUE) S <- V[2:(p + 1), , drop = FALSE] / V_global T <- V[(p + 2):(2 * p + 1), , drop = FALSE] / V_global rownames(T) <- colnames(x$X1) } else{ V.boot <- lapply(1:ncol(x$y), function(col_idx){ boot(as.matrix(data[, , col_idx]), estim.soboljansen, R = x$nboot) }) V <- sapply(1:length(V.boot), function(col_idx){ as.matrix(bootstats(V.boot[[col_idx]], x$conf, "basic")) }, simplify = "array") dimnames(V) <- list( c("global", colnames(x$X1), paste("-", colnames(x$X1), sep = "")), dimnames(V)[[2]], colnames(x$y)) S <- sapply(1:length(V.boot), function(col_idx){ S.boot_col <- V.boot[[col_idx]] S.boot_col$t0 <- V.boot[[col_idx]]$t0[2:(p + 1)] / V.boot[[col_idx]]$t0[1] S.boot_col$t <- V.boot[[col_idx]]$t[, 2:(p + 1)] / V.boot[[col_idx]]$t[, 1] as.matrix(bootstats(S.boot_col, x$conf, "basic")) }, simplify = "array") T <- sapply(1:length(V.boot), function(col_idx){ T.boot_col <- V.boot[[col_idx]] T.boot_col$t0 <- V.boot[[col_idx]]$t0[(p + 2):(2 * p + 1)] / V.boot[[col_idx]]$t0[1] T.boot_col$t <- V.boot[[col_idx]]$t[, (p + 2):(2 * p + 1)] / V.boot[[col_idx]]$t[, 1] as.matrix(bootstats(T.boot_col, x$conf, "basic")) }, simplify = "array") dimnames(S) <- dimnames(T) <- list(colnames(x$X1), dimnames(V)[[2]], colnames(x$y)) } } else if(is(x$y,"array")){ data <- array(x$y, dim = c(n, dim(x$y)[1] / n, dim(x$y)[2:3]), dimnames = list(NULL, NULL, dimnames(x$y)[[2]], dimnames(x$y)[[3]])) if(x$nboot == 0){ V <- estim.soboljansen(data) dimnames(V)[[1]] <- c("global", colnames(x$X1), paste("-", colnames(x$X1), sep = "")) V_global <- array(rep(V[1, , ], each = p), dim = c(p, dim(x$y)[2:3])) S <- V[2:(p + 1), , , drop = FALSE] / V_global T <- V[(p + 2):(2 * p + 1), , , drop = FALSE] / V_global dimnames(T)[[1]] <- colnames(x$X1) } else{ V.boot <- lapply(1:dim(x$y)[[3]], function(dim3_idx){ lapply(1:dim(x$y)[[2]], function(dim2_idx){ boot(as.matrix(data[, , dim2_idx, dim3_idx]), estim.soboljansen, R = x$nboot) }) }) V <- sapply(1:dim(x$y)[[3]], function(dim3_idx){ sapply(1:dim(x$y)[[2]], function(dim2_idx){ as.matrix(bootstats(V.boot[[dim3_idx]][[dim2_idx]], x$conf, "basic")) }, simplify = "array") }, simplify = "array") dimnames(V) <- list(c("global", colnames(x$X1), paste("-", colnames(x$X1), sep = "")), dimnames(V)[[2]], dimnames(x$y)[[2]], dimnames(x$y)[[3]]) S <- sapply(1:dim(x$y)[[3]], function(dim3_idx){ sapply(1:dim(x$y)[[2]], function(dim2_idx){ S.boot_dim2 <- V.boot[[dim3_idx]][[dim2_idx]] S.boot_dim2$t0 <- V.boot[[dim3_idx]][[dim2_idx]]$t0[2:(p + 1)] / V.boot[[dim3_idx]][[dim2_idx]]$t0[1] S.boot_dim2$t <- V.boot[[dim3_idx]][[dim2_idx]]$t[, 2:(p + 1)] / V.boot[[dim3_idx]][[dim2_idx]]$t[, 1] as.matrix(bootstats(S.boot_dim2, x$conf, "basic")) }, simplify = "array") }, simplify = "array") T <- sapply(1:dim(x$y)[[3]], function(dim3_idx){ sapply(1:dim(x$y)[[2]], function(dim2_idx){ T.boot_dim2 <- V.boot[[dim3_idx]][[dim2_idx]] T.boot_dim2$t0 <- V.boot[[dim3_idx]][[dim2_idx]]$t0[(p + 2):(2 * p + 1)] / V.boot[[dim3_idx]][[dim2_idx]]$t0[1] T.boot_dim2$t <- V.boot[[dim3_idx]][[dim2_idx]]$t[, (p + 2):(2 * p + 1)] / V.boot[[dim3_idx]][[dim2_idx]]$t[, 1] as.matrix(bootstats(T.boot_dim2, x$conf, "basic")) }, simplify = "array") }, simplify = "array") dimnames(S) <- dimnames(T) <- list(colnames(x$X1), dimnames(V)[[2]], dimnames(x$y)[[2]], dimnames(x$y)[[3]]) } } x$V <- V x$S <- S x$T <- T for (i in return.var) { x[[i]] <- get(i) } assign(id, x, parent.frame()) } print.soboljansen <- function(x, ...) { cat("\nCall:\n", deparse(x$call), "\n", sep = "") if (!is.null(x$y)) { if (is(x$y,"numeric")) { cat("\nModel runs:", length(x$y), "\n") } else if (is(x$y,"matrix")) { cat("\nModel runs:", nrow(x$y), "\n") } else if (is(x$y,"array")) { cat("\nModel runs:", dim(x$y)[1], "\n") } cat("\nFirst order indices:\n") print(x$S) cat("\nTotal indices:\n") print(x$T) } else { cat("\n(empty)\n") } } plot.soboljansen <- function(x, ylim = c(0, 1), y_col = NULL, y_dim3 = NULL, ...) { if (!is.null(x$y)) { p <- ncol(x$X1) pch = c(21, 24) if(is(x$y,"numeric")){ nodeplot(x$S, xlim = c(1, p + 1), ylim = ylim, pch = pch[1]) nodeplot(x$T, xlim = c(1, p + 1), ylim = ylim, labels = FALSE, pch = pch[2], at = (1:p)+.3, add = TRUE) } else if(is(x$y,"matrix") | is(x$y,"array")){ if(is.null(y_col)) y_col <- 1 if(is(x$y,"matrix") && !is.null(y_dim3)){ y_dim3 <- NULL warning("Argument \"y_dim3\" is ignored since the model output is ", "a matrix") } if(is(x$y,"array") && !is(x$y,"matrix") && is.null(y_dim3)) y_dim3 <- 1 nodeplot(x$S, xlim = c(1, p + 1), ylim = ylim, pch = pch[1], y_col = y_col, y_dim3 = y_dim3) nodeplot(x$T, xlim = c(1, p + 1), ylim = ylim, labels = FALSE, pch = pch[2], at = (1:p)+.3, add = TRUE, y_col = y_col, y_dim3 = y_dim3) } legend(x = "topright", legend = c("main effect", "total effect"), pch = pch) } } ggplot.soboljansen <- function(x, ylim = c(0, 1), y_col = NULL, y_dim3 = NULL, ...) { if (!is.null(x$y)) { p <- ncol(x$X1) pch = c(21, 24) if(is(x$y,"numeric")){ nodeggplot(listx = list(x$S,x$T), xname = c("Main effet","Total effect"), ylim = ylim, pch = pch) } else if(is(x$y,"matrix") | is(x$y,"array")){ if(is.null(y_col)) y_col <- 1 if(is(x$y,"matrix") && !is.null(y_dim3)){ y_dim3 <- NULL warning("Argument \"y_dim3\" is ignored since the model output is ", "a matrix") } if(is(x$y,"array") && !is(x$y,"matrix") && is.null(y_dim3)) y_dim3 <- 1 nodeggplot(listx = list(x$S, x$T), xname = c("Main effet", "Total effect"), ylim = ylim, pch = pch, y_col = y_col, y_dim3 = y_dim3) } } } plotMultOut.soboljansen <- function(x, ylim = c(0, 1), ...) { if (!is.null(x$y)) { p <- ncol(x$X1) if (!x$ubiquitous){ stop("Cannot plot functional indices since ubiquitous option was not activated") }else{ if (x$Tot == T) par(mfrow=c(2,1)) plot(0,ylim=ylim,xlim=c(1,x$q),main="First order Sobol indices",ylab="",xlab="",type="n") for (i in 1:p) lines(x$Sfct[,i],col=i) legend(x = "topright", legend = dimnames(x$X1)[[2]], lty=1, col=1:p, cex=0.6) if (x$Tot == T){ plot(0,ylim=ylim,xlim=c(1,x$q),main="Total Sobol indices",ylab="",xlab="",type="n") for (i in 1:p) lines(x$Tfct[,i],col=i) legend(x = "topright", legend = dimnames(x$X1)[[2]], lty=1, col=1:p, cex=0.6) } } } }
getCoords <- function(image) { .plotImage <- function(image, ...) { ncols <- ncol(image) nrows <- nrow(image) suppressWarnings(plot(0, type='n', xlim=c(0, ncols), ylim=c(0, nrows), ...)) suppressWarnings(rasterImage(image, xleft=0, ybottom=0, xright=ncols, ytop=nrows, ...)) } .binaryConvert <- function(img) { grey.image <- 0.2126*img[,,1] + 0.7152*img[,,2] + 0.0722*img[,,3] binary <- round(grey.image, 0) rev.binary <- ifelse(binary==1, 0, 1) return(rev.binary) } image.target <- readJPEG(image) image.target <- .binaryConvert(image.target) image.width <- dim(image.target)[2] image.height <- dim(image.target)[1] .plotImage(image.target, main='Click the bottomright margin of the rectangle you want to crop') vertices <- locator() x.cuts <- c(0,round(vertices$x)) y.cuts <- c(0, image.height-round(vertices$y)) cropped <- image.target[y.cuts[1]:y.cuts[2], x.cuts[1]:x.cuts[2]] cropped.binary <- round(cropped) cropped.height <- dim(cropped.binary)[1] .plotImage(cropped.binary, interpolate=FALSE) vertices <- locator() col.cut <- sort(round(c(vertices$x[1],vertices$x[2]))) row.cut <- sort(cropped.height - round(c(vertices$y[1], vertices$y[2]))) neg.pos.col <- which(col.cut<0) if (length(neg.pos.col)!=0) col.cut[neg.pos.col] <- 0 neg.pos.row <- which(row.cut<0) if (length(neg.pos.row)!=0) row.cut[neg.pos.row] <- 0 coords <- c(col.cut, row.cut) names(coords) <- c('x1', 'x2', 'y1', 'y2') final.crop <- cropped.binary[coords['y1']:coords['y2'], coords['x1']:coords['x2']] .plotImage(final.crop, interpolate=FALSE, main='Make sure you have enough space on the right of the number for 4 digits \n and also enough space on the left for string shift \n which only occurs if Exposure is not close to the left margin!') abline(v=seq(0, 300, 10), col='blue') abline(h=0:100, col='blue') return(coords) }
status_check <- function(req, as = "parsed", ...) { if (status_code(req) %in% c("200", "201", "202", "204")) { res <- content(req, as = as, ...) if (!is.null(res)) { attr(res, "response") <- req } return(res) } else if (status_code(req) %in% c("401", "403", "404", "503")) { msg <- content(req, as = as, ...)$message stop(paste0("HTTP Status ", status_code(req), ": ", msg), call. = FALSE) } else { if ("message" %in% names(content(req, as = as, ...))) { msg <- content(req, as = as, ...)$message } else { msg <- NULL } if (is.null(msg)) { if (status_code(req) %in% names(.sb_api_status_code)) { msg <- .sb_api_status_code[[status_code(req)]] } if (is.null(msg)) { print(content(req, as = as, ...)) stop(paste("Error of unknown type occured", status_code(req))) } else { stop(paste0("HTTP Status ", status_code(req), ": ", msg), call. = FALSE) } } else { stop(paste0("HTTP Status ", status_code(req), ": ", msg), call. = FALSE) } } } handle_url2 <- function(handle = NULL, url = NULL, ...) { if (is.null(url) && is.null(handle)) { stop("Must specify at least one of url or handle") } if (is.null(handle)) handle <- handle_find(url) if (is.null(url)) url <- handle$url new <- eval(parse(text = "httr:::named(list(...))")) if (length(new) > 0 || eval(parse(text = "httr:::is.url(url)"))) { old <- httr::parse_url(url) url <- build_url2(modifyList(old, new)) } list(handle = handle, url = url) } build_url2 <- function(url) { stopifnot(eval(parse(text = "httr:::is.url(url)"))) scheme <- url$scheme hostname <- url$hostname if (!is.null(url$port)) { port <- paste0(":", url$port) } else { port <- NULL } path <- url$path if (!is.null(url$params)) { params <- paste0(";", url$params) } else { params <- NULL } if (is.list(url$query)) { url$query <- eval(parse(text = "httr:::compact(url$query)")) names <- curl_escape(names(url$query)) values <- as.character(url$query) query <- paste0(names, "=", values, collapse = "&") } else { query <- url$query } if (!is.null(query)) { stopifnot(is.character(query), length(query) == 1) query <- paste0("?", query) } if (is.null(url$username) && !is.null(url$password)) { stop("Cannot set password without username") } paste0(scheme, "://", url$username, if (!is.null(url$password)) { ":" }, url$password, if (!is.null(url$username)) { "@" }, hostname, port, "/", path, params, query, if (!is.null(url$fragment)) { " }, url$fragment) } GET2 <- function(url = NULL, config = list(), ..., handle = NULL) { hu <- handle_url2(handle, url, ...) req <- eval(parse(text = 'httr:::request_build("GET", hu$url, config, ...)')) return(eval(parse(text = "httr:::request_perform(req, hu$handle$handle)"))) } POST2 <- function(url = NULL, config = list(), ..., body = NULL, encode = c("json", "form", "multipart"), multipart = TRUE, handle = NULL) { if (!missing(multipart)) { warning("multipart is deprecated, please use encode argument instead", call. = FALSE ) encode <- ifelse(multipart, "multipart", "form") } encode <- match.arg(encode) hu <- handle_url2(handle, url, ...) req <- eval(parse(text = 'httr:::request_build("POST", hu$url, httr:::body_config(body, encode), config, ...)')) return(eval(parse(text = "httr:::request_perform(req, hu$handle$handle)"))) }
context("Climate data") test_that("data.frame input of climate data is processed correctly", { df <- data.frame( year = rep(1950:2009, each = 12), month = rep(1:12, 60), temp = rep(-10 * cos(seq(0, 2*pi, length.out = 12)), 60), prec = rep(seq(100, 220, length.out = 12), 60) ) dfw <- rbind(df, data.frame( year = 2010, month = 1, temp = -10, prec = 100 )) dfp1 <- data.frame(cbind(1950:2009, matrix(df$prec, ncol = 12, byrow = TRUE))) dfp2 <- data.frame(cbind(1950:2009, matrix(df$temp, ncol = 12, byrow = TRUE))) dfpw <- rbind(dfp2, c(2008, rep(1, 12))) expect_that(as_tcclimate(df), is_a("data.frame")) expect_that(as_tcclimate(df)$temp, equals(rep(-10 * cos(seq(0, 2*pi, length.out = 12)), 60))) expect_that(as_tcclimate(dfw), throws_error()) expect_that(as_tcclimate(dfp1), is_a("data.frame")) expect_that(as_tcclimate(dfp2)[,3], equals(rep(-10 * cos(seq(0, 2*pi, length.out = 12)), 60))) expect_that(as_tcclimate(list(dfp1, dfp2)), is_a("data.frame")) expect_that(as_tcclimate(dfpw), throws_error()) expect_that(as_tcclimate(list(dfp1, dfpw)), throws_error()) })
context("calcFE") library(testthat) ped <- data.frame( id = c("A", "B", "C", "D", "E", "F", "G"), sire = c(NA, NA, "A", "A", NA, "D", "D"), dam = c(NA, NA, "B", "B", NA, "E", "E"), stringsAsFactors = FALSE ) ped["gen"] <- findGeneration(ped$id, ped$sire, ped$dam) ped$population <- getGVPopulation(ped, NULL) pedFactors <- data.frame( id = c("A", "B", "C", "D", "E", "F", "G"), sire = c(NA, NA, "A", "A", NA, "D", "D"), dam = c(NA, NA, "B", "B", NA, "E", "E"), stringsAsFactors = TRUE ) pedFactors["gen"] <- findGeneration(pedFactors$id, pedFactors$sire, pedFactors$dam) pedFactors$population <- getGVPopulation(pedFactors, NULL) fe <- calcFE(ped) feFactors <- calcFE(pedFactors) test_that("calcFE correctly calculates the number of founder equivalents in the pedigree", { expect_equal(fe, feFactors) expect_equal(fe, 2.9090909091) })
summarize_ads <- function(ma_obj){ ma_metric <- attributes(ma_obj)$ma_metric ma_methods <- attributes(ma_obj)$ma_methods is_r <- any(ma_metric %in% c("r_as_r", "d_as_r")) is_d <- any(ma_metric %in% c("r_as_d", "d_as_d")) if((is_r | is_d) & (any(ma_methods == "ic") | any(ma_methods == "ad"))){ pairwise_ads <- attributes(ma_obj)$inputs$pairwise_ads[1] if(any(ma_methods == "ad")){ ad_x <- lapply(ma_obj$ad, function(x) attributes(x$ad$ad_x)[["summary"]]) ad_y <- lapply(ma_obj$ad, function(x) attributes(x$ad$ad_y)[["summary"]]) }else{ ad_x <- lapply(ma_obj$ad, function(x) attributes(x$ic$ad_x_tsa)[["summary"]]) ad_y <- lapply(ma_obj$ad, function(x) attributes(x$ic$ad_y_tsa)[["summary"]]) } if("pair_id" %in% colnames(ma_obj)){ pair_id <- ma_obj$pair_id }else{ pair_id <- NULL } if("construct_x" %in% colnames(ma_obj)){ construct_x <- ma_obj$construct_x }else{ construct_x <- NULL } if("construct_y" %in% colnames(ma_obj)){ construct_y <- ma_obj$construct_y }else if("group_contrast" %in% colnames(ma_obj)){ construct_y <- ma_obj$construct_y }else{ construct_y <- NULL } names(ad_x) <- construct_x names(ad_y) <- construct_y ad_list <- append(ad_x, ad_y) if(pairwise_ads){ pair_names <- paste0("Pair ID = ", pair_id) construct_vec <- c(paste0("X = ", construct_x), paste0("Y = ", construct_y)) names(ad_list) <- paste0(c(pair_names, pair_names), ": ", construct_vec) construct_pair <- paste0(paste0("X = ", c(construct_x, construct_x), "; Y = ", c(construct_y, construct_y))) var_names <- c(construct_x, construct_y) }else{ construct_vec <- c(construct_x, construct_y) dups <- duplicated(construct_vec) ad_list[dups] <- NULL names(ad_list) <- construct_vec[!dups] construct_pair <- NULL var_names <- names(ad_list) } ad_mat <- NULL if(pairwise_ads) .construct_pair <- paste0(c(pair_names, pair_names), ": ", construct_pair) for(i in 1:length(ad_list)){ ad_list[[i]] <- ad_list[[i]][,c("k_total", "N_total", "mean", "sd", "sd_res")] ad_list[[i]] <- data.frame(Variable = var_names[i], Artifact = rownames(ad_list[[i]]), ad_list[[i]], stringsAsFactors = FALSE) if(pairwise_ads) ad_list[[i]] <- data.frame(Construct_Pair = .construct_pair[i], ad_list[[i]], stringsAsFactors = FALSE) ad_mat <- rbind(ad_mat, ad_list[[i]]) } rownames(ad_mat) <- 1:nrow(ad_mat) ad_mat <- add_column(ad_mat, Artifact_Description = recode(ad_mat$Artifact, `qxa_irr` = "Unrestricted reliability index (indirect RR)", `qxa_drr` = "Unrestricted reliability index (direct RR)", `qxi_irr` = "Restricted reliability index (indirect RR)", `qxi_drr` = "Restricted reliability index (direct RR)", `rxxa_irr` = "Unrestricted reliability coefficient (indirect RR)", `rxxa_drr` = "Unrestricted reliability coefficient (direct RR)", `rxxi_irr` = "Restricted reliability coefficient (indirect RR)", `rxxi_drr` = "Restricted reliability coefficient (direct RR)", `ux` = "Observed-score u ratio", `ut` = "True-score u ratio"), .after = "Artifact") ad_mat[ad_mat$mean != 1 & ad_mat$sd != 0,] }else{ NULL } }
pvalue.systematic <- function( design, statistic, save="no", limit, data=read.table(file.choose(new=FALSE)), starts=file.choose(new=FALSE), assignments=file.choose(new=FALSE) ){ statAB<-function(A,B) { return(mean(A,na.rm=TRUE)-mean(B,na.rm=TRUE)) } statBA<-function(A,B) { return(mean(B,na.rm=TRUE)-mean(A,na.rm=TRUE)) } statabsAB<-function(A,B) { return(abs(mean(A,na.rm=TRUE)-mean(B,na.rm=TRUE))) } statPAPB<-function(A1,B1,A2,B2) { return(mean(c(mean(A1,na.rm=TRUE),mean(A2,na.rm=TRUE)),na.rm=TRUE)-mean(c(mean(B1,na.rm=TRUE),mean(B2,na.rm=TRUE)),na.rm=TRUE)) } statPBPA<-function(A1,B1,A2,B2) { return(mean(c(mean(B1,na.rm=TRUE),mean(B2,na.rm=TRUE)),na.rm=TRUE)-mean(c(mean(A1,na.rm=TRUE),mean(A2,na.rm=TRUE)),na.rm=TRUE)) } statabsPAPB<-function(A1,B1,A2,B2) { return(abs(mean(c(mean(A1,na.rm=TRUE),mean(A2,na.rm=TRUE)),na.rm=TRUE)-mean(c(mean(B1,na.rm=TRUE),mean(B2,na.rm=TRUE)),na.rm=TRUE))) } if(design=="CRD"){ observed.a<-data[,2][data[,1]=="A"] observed.b<-data[,2][data[,1]=="B"] MT<-nrow(data) quantity<-choose(MT,MT/2) if(MT<=22){ if(save=="yes"){ file<-file.choose(new=FALSE) } observed<-data[,2] scores.a<-combn(observed,MT/2) distribution<-numeric(ncol(scores.a)) if(statistic %in% c("A-B","B-A","|A-B|")){ mean.a<-numeric(ncol(scores.a)) for(it in 1:ncol(scores.a)){ mean.a[it]<-mean(scores.a[,it],na.rm=TRUE) } mean.b<-rev(mean.a) if(statistic=="A-B"){ for(it in 1:length(mean.a)){ distribution[it]<-mean.a[it]-mean.b[it] } observed.statistic<-statAB(observed.a,observed.b) } else if(statistic=="B-A"){ for(it in 1:length(mean.a)){ distribution[it]<-mean.b[it]-mean.a[it] } observed.statistic<-statBA(observed.a,observed.b) } else if(statistic=="|A-B|"){ for(it in 1:length(mean.a)){ distribution[it]<-abs(mean.a[it]-mean.b[it]) } observed.statistic<-statabsAB(observed.a,observed.b) } } else{ scores.b<-rev(scores.a) dim(scores.b)<-c(MT/2,ncol(scores.a)) for(it in 1:ncol(scores.a)){ A<-scores.a[,it] B<-scores.b[,it] distribution[it]<-eval(parse(text=statistic)) } A<-observed.a B<-observed.b observed.statistic<-eval(parse(text=statistic)) } if(is.na(observed.statistic)) stop("Test statistic cannot be calculated. Please check the data.") distribution<-sort(distribution) test<-is.na(distribution)|(distribution>=observed.statistic) p.value<-sum(test)/quantity if(save=="yes"|save=="check"){ write.table(distribution,file=file,col.names=FALSE,row.names=FALSE) } return(p.value) } if(MT>22){ fileCRD<-tempfile(pattern="CRDassignments",tmpdir=tempdir()) file.a<-tempfile(pattern="ascores",tmpdir=tempdir()) file.b<-tempfile(pattern="bscores",tmpdir=tempdir()) if(save=="yes"){ file<-file.choose(new=FALSE) } N<-c(rep("A",MT/2),rep("B",MT/2)) assignment<-matrix(0,ncol=MT) assignment<-rbind(sample(N,MT,replace=FALSE)) write.table(assignment,file=fileCRD,append=TRUE,col.names=FALSE,row.names=FALSE) assignments<-read.table(fileCRD) assignment<-as.vector(assignment) score.a<-data[,2][assignment=="A"] score.a<-t(as.matrix(score.a)) write.table(score.a,file=file.a,append=TRUE,col.names=FALSE,row.names=FALSE) scores.a<-read.table(file.a) score.b<-data[,2][assignment=="B"] score.b<-t(as.matrix(score.b)) write.table(score.b,file=file.b,append=TRUE,col.names=FALSE,row.names=FALSE) scores.b<-read.table(file.b) repeat{ assignment<-matrix(0,ncol=MT) assignment<-rbind(sample(N,MT,replace=FALSE)) copy<-numeric() for(itr in 1:nrow(assignments)){ copy2<-numeric(MT) for(it in 1:MT){ copy2[it]<-assignment[1,it]==assignments[itr,it] } copy<-c(copy,prod(copy2)) } if(sum(copy)==0){ write.table(assignment,file=fileCRD,append=TRUE,col.names=FALSE,row.names=FALSE) assignments<-read.table(fileCRD) assignment<-as.vector(assignment) score.a<-data[,2][assignment=="A"] score.a<-t(as.matrix(score.a)) write.table(score.a,file=file.a,append=TRUE,col.names=FALSE,row.names=FALSE) scores.a<-read.table(file.a) score.b<-data[,2][assignment=="B"] score.b<-t(as.matrix(score.b)) write.table(score.b,file=file.b,append=TRUE,col.names=FALSE,row.names=FALSE) scores.b<-read.table(file.b) } if(nrow(assignments)==quantity)break } scores.a<-as.matrix(scores.a) scores.b<-as.matrix(scores.b) distribution<-numeric(quantity) if(statistic=="A-B"){ for(it in 1:quantity){ distribution[it]<-statAB(scores.a[it,],scores.b[it,]) } observed.statistic<-statAB(observed.a,observed.b) } else if(statistic=="B-A"){ for(it in 1:quantity){ distribution[it]<-statBA(scores.a[it,],scores.b[it,]) } observed.statistic<-statBA(observed.a,observed.b) } else if(statistic=="|A-B|"){ for(it in 1:quantity){ distribution[it]<-statabsAB(scores.a[it,],scores.b[it,]) } observed.statistic<-statabsAB(observed.a,observed.b) } else{ for(it in 1:quantity){ A<-scores.a[it,] B<-scores.b[it,] distribution[it]<-eval(parse(text=statistic)) } A<-observed.a B<-observed.b observed.statistic<-eval(parse(text=statistic)) } unlink(fileCRD,recursive=FALSE) unlink(file.a,recursive=FALSE) unlink(file.b,recursive=FALSE) if(is.na(observed.statistic)) stop("Test statistic cannot be calculated. Please check the data.") distribution<-sort(distribution) test<-is.na(distribution)|(distribution>=observed.statistic) p.value<-sum(test)/quantity if(save=="yes"|save=="check"){ write.table(distribution,file=file,col.names=FALSE,row.names=FALSE) } return(p.value) } } if(design=="RBD"){ observed.a<-data[,2][data[,1]=="A"] observed.b<-data[,2][data[,1]=="B"] MT<-nrow(data) quantity<-2^(MT/2) if(save=="yes"){ file<-file.choose(new=FALSE) } observed1<-rbind(observed.a,observed.b) observed2<-rbind(observed.b,observed.a) scores.a<-numeric() for(it in 1:(MT/2)){ scores.a<-cbind(scores.a,cbind(rep(cbind(rep(observed1[,it],rep(2^it/2,2))),2^(MT/2)/2^it))) } scores.b<-numeric() for(it in 1:(MT/2)){ scores.b<-cbind(scores.b,cbind(rep(cbind(rep(observed2[,it],rep(2^it/2,2))),2^(MT/2)/2^it))) } distribution<-numeric(quantity) if(statistic=="A-B"){ for(it in 1:quantity){ distribution[it]<-statAB(scores.a[it,],scores.b[it,]) } observed.statistic<-statAB(observed.a,observed.b) } else if(statistic=="B-A"){ for(it in 1:quantity){ distribution[it]<-statBA(scores.a[it,],scores.b[it,]) } observed.statistic<-statBA(observed.a,observed.b) } else if(statistic=="|A-B|"){ for(it in 1:quantity){ distribution[it]<-statabsAB(scores.a[it,],scores.b[it,]) } observed.statistic<-statabsAB(observed.a,observed.b) } else{ for(it in 1:quantity){ A<-scores.a[it,] B<-scores.b[it,] distribution[it]<-eval(parse(text=statistic)) } A<-observed.a B<-observed.b observed.statistic<-eval(parse(text=statistic)) } if(is.na(observed.statistic)) stop("Test statistic cannot be calculated. Please check the data.") distribution<-sort(distribution) test<-is.na(distribution)|(distribution>=observed.statistic) p.value<-sum(test)/quantity if(save=="yes"|save=="check"){ write.table(distribution,file=file,col.names=FALSE,row.names=FALSE) } return(p.value) } if(design=="ATD"){ observed.a<-data[,2][data[,1]=="A"] observed.b<-data[,2][data[,1]=="B"] MT<-nrow(data) quantityCRD<-choose(MT,MT/2) if(MT<=20){ if(save=="yes"){ file<-file.choose(new=FALSE) } index<-1:MT index.a<-matrix(combn(index,(MT/2)),ncol=quantityCRD) index.b<-matrix(index.a[,ncol(index.a):1],ncol=quantityCRD) if(MT/2<=limit){ stop<-1:ncol(index.a) } if(MT/2>limit){ dist.a<-numeric() for(it in 2:nrow(index.a)){ dist.a<-rbind(dist.a,index.a[it,]-index.a[it-1,]) } dist.b<-numeric() for(it in 2:nrow(index.b)){ dist.b<-rbind(dist.b,index.b[it,]-index.b[it-1,]) } dist.check.a<-dist.a==1 dist.check.b<-dist.b==1 sum.a<-numeric() for(itr in limit:nrow(dist.check.a)){ sum.a2<-0 for(itr2 in 1:limit){ sum.a2<-sum.a2+dist.check.a[itr-itr2+1,] } sum.a<-rbind(sum.a,sum.a2) } sum.b<-numeric() for(itr in limit:nrow(dist.check.b)){ sum.b2<-0 for(itr2 in 1:limit){ sum.b2<-sum.b2 + dist.check.b[itr-itr2+1,] } sum.b<-rbind(sum.b,sum.b2) } sum.a.check<-sum.a==limit sum.b.check<-sum.b==limit sum.rows.a<-numeric(ncol(sum.a.check)) for(it in 1:ncol(sum.a.check)){ sum.rows.a[it]<-sum(sum.a.check[,it]) } sum.rows.b<-numeric(ncol(sum.b.check)) for(it in 1:ncol(sum.b.check)){ sum.rows.b[it]<-sum(sum.b.check[,it]) } check.stop<-sum.rows.a+sum.rows.b!=0 stop<-order(check.stop)[1:sum(check.stop==F)] } indexes.a<-numeric() for(it in 1:length(stop)){ indexes.a<-rbind(indexes.a,index.a[,stop[it]]) } indexes.b<-numeric() for(it in 1:length(stop)){ indexes.b<-rbind(indexes.b,index.b[,stop[it]]) } scores.a<-numeric() for(it in 1:ncol(indexes.a)){ scores.a<-cbind(scores.a,data[,2][indexes.a[,it]]) } scores.b<-numeric() for(it in 1:ncol(indexes.b)){ scores.b<-cbind(scores.b,data[,2][indexes.b[,it]]) } quantity<-nrow(scores.a) distribution<-numeric(quantity) if(statistic=="A-B"){ for(it in 1:quantity){ distribution[it]<-statAB(scores.a[it,],scores.b[it,]) } observed.statistic<-statAB(observed.a,observed.b) } else if(statistic=="B-A"){ for(it in 1:quantity){ distribution[it]<-statBA(scores.a[it,],scores.b[it,]) } observed.statistic<-statBA(observed.a,observed.b) } else if(statistic=="|A-B|"){ for(it in 1:quantity){ distribution[it]<-statabsAB(scores.a[it,],scores.b[it,]) } observed.statistic<-statabsAB(observed.a,observed.b) } else{ for(it in 1:quantity){ A<-scores.a[it,] B<-scores.b[it,] distribution[it]<-eval(parse(text=statistic)) } A<-observed.a B<-observed.b observed.statistic<-eval(parse(text=statistic)) } if(is.na(observed.statistic)) stop("Test statistic cannot be calculated. Please check the data.") distribution<-sort(distribution) test<-is.na(distribution)|(distribution>=observed.statistic) p.value<-sum(test)/quantity if(save=="yes"|save=="check"){ write.table(distribution,file=file,row.names=FALSE,col.names=FALSE) } return(p.value) } if(MT>20){ fileCRD<-tempfile(pattern="CRDassignments",tmpdir=tempdir()) file.a<-tempfile(pattern="ascores",tmpdir=tempdir()) file.b<-tempfile(pattern="bscores",tmpdir=tempdir()) if(save=="yes"){ file<-file.choose(new=FALSE) } N<-c(rep(0,MT/2),rep(1,MT/2)) assignment<-matrix(0,ncol=MT) assignment<-rbind(rep(c(0,1),MT/2)) write.table(assignment,file=fileCRD,append=TRUE,col.names=FALSE,row.names=FALSE) CRD<-read.table(fileCRD) for(it in 1:(length(assignment))){ if(assignment[,it]==0){ assignment[,it]<-"A" } else{ assignment[,it]<-"B" } } assignment<-as.vector(assignment) score.a<-data[,2][assignment=="A"] score.a<-t(as.matrix(score.a)) write.table(score.a,file=file.a,append=TRUE,col.names=FALSE,row.names=FALSE) scores.a<-read.table(file.a) score.b<-data[,2][assignment=="B"] score.b<-t(as.matrix(score.b)) write.table(score.b,file=file.b,append=TRUE,col.names=FALSE,row.names=FALSE) scores.b<-read.table(file.b) repeat{ assignment<-matrix(0,ncol=MT) assignment<-rbind(sample(N,MT,replace=FALSE)) copy<-numeric() for(itr in 1:nrow(CRD)){ copy2<-numeric(MT) for(it in 1:MT){ copy2[it]<-assignment[1,it]==CRD[itr,it] } copy<-c(copy,prod(copy2)) } if(sum(copy)==0){ write.table(assignment,file=fileCRD,append=TRUE,col.names=FALSE,row.names=FALSE) CRD<-read.table(fileCRD) check<-numeric() for(itr in 1:(MT-limit)){ check2<-0 for(it in itr:(itr+limit)){ check2<-check2+assignment[,it] } check<-cbind(check,check2) } if(sum(check==(limit+1)|check==0)==0){ for(it in 1:(length(assignment))){ if(assignment[,it]==0){ assignment[,it]<-"A" } else{ assignment[,it]<-"B" } } assignment<-as.vector(assignment) score.a<-data[,2][assignment=="A"] score.a<-t(as.matrix(score.a)) write.table(score.a,file=file.a,append=TRUE,col.names=FALSE,row.names=FALSE) scores.a<-read.table(file.a) score.b<-data[,2][assignment=="B"] score.b<-t(as.matrix(score.b)) write.table(score.b,file=file.b,append=TRUE,col.names=FALSE,row.names=FALSE) scores.b<-read.table(file.b) } } if(nrow(CRD)==quantityCRD)break } unlink(fileCRD,recursive=FALSE) unlink(file.a,recursive=FALSE) unlink(file.b,recursive=FALSE) scores.a<-as.matrix(scores.a) scores.b<-as.matrix(scores.b) quantity<-nrow(scores.a) distribution<-numeric(quantity) if(statistic=="A-B"){ for(it in 1:quantity){ distribution[it]<-statAB(scores.a[it,],scores.b[it,]) } observed.statistic<-statAB(observed.a,observed.b) } else if(statistic=="B-A"){ for(it in 1:quantity){ distribution[it]<-statBA(scores.a[it,],scores.b[it,]) } observed.statistic<-statBA(observed.a,observed.b) } else if(statistic=="|A-B|"){ for(it in 1:quantity){ distribution[it]<-statabsAB(scores.a[it,],scores.b[it,]) } observed.statistic<-statabsAB(observed.a,observed.b) } else{ for(it in 1:quantity){ A<-scores.a[it,] B<-scores.b[it,] distribution[it]<-eval(parse(text=statistic)) } A<-observed.a B<-observed.b observed.statistic<-eval(parse(text=statistic)) } if(is.na(observed.statistic)) stop("Test statistic cannot be calculated. Please check the data.") distribution<-sort(distribution) test<-is.na(distribution)|(distribution>=observed.statistic) p.value<-sum(test)/quantity if(save=="yes"|save=="check"){ write.table(distribution,file=file,col.names=FALSE,row.names=FALSE) } return(p.value) } } if(design=="AB"){ observed.a<-data[,2][data[,1]=="A"] observed.b<-data[,2][data[,1]=="B"] observed<-data[,2] MT<-nrow(data) quantity<-choose(MT-2*limit+1,1) if(save=="yes"){ file<-file.choose(new=FALSE) } index.a<-limit:(MT-limit) scores.a<-list() for(it in 1:quantity){ scores.a[[it]]<-c(observed[1:index.a[it]]) } scores.b<-list() for(it in 1:quantity){ scores.b[[it]]<-c(observed[(index.a[it]+1):MT]) } distribution<-numeric(quantity) if(statistic=="A-B"){ for(it in 1:quantity){ distribution[it]<-statAB(scores.a[[it]],scores.b[[it]]) } observed.statistic<-statAB(observed.a,observed.b) } else if(statistic=="B-A"){ for(it in 1:quantity){ distribution[it]<-statBA(scores.a[[it]],scores.b[[it]]) } observed.statistic<-statBA(observed.a,observed.b) } else if(statistic=="|A-B|"){ for(it in 1:quantity){ distribution[it]<-statabsAB(scores.a[[it]],scores.b[[it]]) } observed.statistic<-statabsAB(observed.a,observed.b) } else{ for(it in 1:quantity){ A<-scores.a[[it]] B<-scores.b[[it]] distribution[it]<-eval(parse(text=statistic)) } A<-observed.a B<-observed.b observed.statistic<-eval(parse(text=statistic)) } if(is.na(observed.statistic)) stop("Test statistic cannot be calculated. Please check the data.") distribution<-sort(distribution) test<-is.na(distribution)|(distribution>=observed.statistic) p.value<-sum(test)/quantity if(save=="yes"|save=="check"){ write.table(distribution,file=file,col.names=FALSE,row.names=FALSE,append=FALSE) } return(p.value) } if(design=="ABA"){ observed.a1<-data[,2][data[,1]=="A1"] observed.b1<-data[,2][data[,1]=="B1"] observed.a2<-data[,2][data[,1]=="A2"] observed.a<-c(observed.a1,observed.a2) observed<-data[,2] MT<-nrow(data) quantity<-choose(MT-3*limit+2,2) if(save=="yes"){ file<-file.choose(new=FALSE) } index1<-1:(MT-3*limit+1) index2<-rev(index1) index.a<-numeric() for(it in 1:length(index1)){ index.a<-c(index.a,(rep((limit-1+index1[it]),index2[it]))) } scores.a1<-list() for(it in 1:quantity){ scores.a1[[it]]<-c(observed[1:(index.a[it])]) } index.b<-numeric() for(itr in index1){ for(it in itr:(MT-3*limit+1)){ index.b<-c(index.b,2*limit-1+it) } } scores.b1<-list() for(it in 1:quantity){ scores.b1[[it]]<-c(observed[(index.a[it]+1):(index.b[it])]) } scores.a2<-list() for(it in 1:quantity){ scores.a2[[it]]<-c(observed[(index.b[it]+1):(MT)]) } scores.a<-list() for(it in 1:quantity){ scores.a[[it]]<-c(scores.a1[[it]],scores.a2[[it]]) } distribution<-numeric(quantity) if(statistic=="A-B"){ for(it in 1:quantity){ distribution[it]<-statAB(scores.a[[it]],scores.b1[[it]]) } observed.statistic<-statAB(observed.a,observed.b1) } else if(statistic=="B-A"){ for(it in 1:quantity){ distribution[it]<-statBA(scores.a[[it]],scores.b1[[it]]) } observed.statistic<-statBA(observed.a,observed.b1) } else if(statistic=="|A-B|"){ for(it in 1:quantity){ distribution[it]<-statabsAB(scores.a[[it]],scores.b1[[it]]) } observed.statistic<-statabsAB(observed.a,observed.b1) } else if(statistic=="PA-PB"){ for(it in 1:quantity){ distribution[it]<-statPAPB(scores.a1[[it]],scores.b1[[it]],scores.a2[[it]],NA) } observed.statistic<-statPAPB(observed.a1,observed.b1,observed.a2,NA) } else if(statistic=="PB-PA"){ for(it in 1:quantity){ distribution[it]<-statPBPA(scores.a1[[it]],scores.b1[[it]],scores.a2[[it]],NA) } observed.statistic<-statPBPA(observed.a1,observed.b1,observed.a2,NA) } else if(statistic=="|PA-PB|"){ for(it in 1:quantity){ distribution[it]<-statabsPAPB(scores.a1[[it]],scores.b1[[it]],scores.a2[[it]],NA) } observed.statistic<-statabsPAPB(observed.a1,observed.b1,observed.a2,NA) } else{ for(it in 1:quantity){ A1<-scores.a1[[it]] B1<-scores.b1[[it]] A2<-scores.a2[[it]] A<-scores.a[[it]] B<-scores.b1[[it]] distribution[it]<-eval(parse(text=statistic)) } A1<-observed.a1 B1<-observed.b1 A2<-observed.a2 A<-observed.a B<-observed.b1 observed.statistic<-eval(parse(text=statistic)) } if(is.na(observed.statistic)) stop("Test statistic cannot be calculated. Please check the data.") distribution<-sort(distribution) test<-is.na(distribution)|(distribution>=observed.statistic) p.value<-sum(test)/quantity if(save=="yes"|save=="check"){ write.table(distribution,file=file,col.names=FALSE,row.names=FALSE,append=FALSE) } return(p.value) } if(design=="ABAB"){ observed.a1<-data[,2][data[,1]=="A1"] observed.b1<-data[,2][data[,1]=="B1"] observed.a2<-data[,2][data[,1]=="A2"] observed.b2<-data[,2][data[,1]=="B2"] observed.a<-c(observed.a1,observed.a2) observed.b<-c(observed.b1,observed.b2) observed<-data[,2] MT<-nrow(data) quantity<-choose(MT-4*limit+3,3) if(save=="yes"){ file<-file.choose(new=FALSE) } index1<-1:(MT-4*limit+1) index2<-rev(cumsum(index1)) index.a1<-numeric() for(it in 1:length(index1)){ index.a1<-c(index.a1,(rep((limit+index1[it]-1),index2[it]))) } scores.a1<-list() for(it in 1:quantity){ scores.a1[[it]]<-c(observed[1:(index.a1[it])]) } index.b1<-numeric() for(itr in index1){ for(it in (itr-1):(MT-4*limit)){ index.b1<-c(index.b1,rep((2*limit+it),(MT-4*limit+1-it))) } } scores.b1<-list() for(it in 1:quantity){ scores.b1[[it]]<-c(observed[(1+index.a1[it]):index.b1[it]]) } indexa2<-numeric() for(it in 1:length(index1)){ indexa2<-c(indexa2,(index1[it]:length(index1))) } index.a2<-numeric() for(it in 1:length(indexa2)){ index.a2<-c(index.a2,(4*limit-limit-1+(indexa2[it]:length(index1)))) } scores.a2<-list() for(it in 1:quantity){ scores.a2[[it]]<-c(observed[(1+index.b1[it]):index.a2[it]]) } scores.b2<-list() for(it in 1:quantity){ scores.b2[[it]]<-c(observed[(1+index.a2[it]):MT]) } scores.a<-list() for(it in 1:quantity){ scores.a[[it]]<-c(scores.a1[[it]],scores.a2[[it]]) } scores.b<-list() for(it in 1:quantity){ scores.b[[it]]<-c(scores.b1[[it]],scores.b2[[it]]) } distribution<-numeric(quantity) if(statistic=="A-B"){ for(it in 1:quantity){ distribution[it]<-statAB(scores.a[[it]],scores.b[[it]]) } observed.statistic<-statAB(observed.a,observed.b) } else if(statistic=="B-A"){ for(it in 1:quantity){ distribution[it]<-statBA(scores.a[[it]],scores.b[[it]]) } observed.statistic<-statBA(observed.a,observed.b) } else if(statistic=="|A-B|"){ for(it in 1:quantity){ distribution[it]<-statabsAB(scores.a[[it]],scores.b[[it]]) } observed.statistic<-statabsAB(observed.a,observed.b) } else if(statistic=="PA-PB"){ for(it in 1:quantity){ distribution[it]<-statPAPB(scores.a1[[it]],scores.b1[[it]],scores.a2[[it]],scores.b2[[it]]) } observed.statistic<-statPAPB(observed.a1,observed.b1,observed.a2,observed.b2) } else if(statistic=="PB-PA"){ for(it in 1:quantity){ distribution[it]<-statPBPA(scores.a1[[it]],scores.b1[[it]],scores.a2[[it]],scores.b2[[it]]) } observed.statistic<-statPBPA(observed.a1,observed.b1,observed.a2,observed.b2) } else if(statistic=="|PA-PB|"){ for(it in 1:quantity){ distribution[it]<-statabsPAPB(scores.a1[[it]],scores.b1[[it]],scores.a2[[it]],scores.b2[[it]]) } observed.statistic<-statabsPAPB(observed.a1,observed.b1,observed.a2,observed.b2) } else{ for(it in 1:quantity){ A1<-scores.a1[[it]] B1<-scores.b1[[it]] A2<-scores.a2[[it]] B2<-scores.b2[[it]] A<-scores.a[[it]] B<-scores.b[[it]] distribution[it]<-eval(parse(text=statistic)) } A1<-observed.a1 B1<-observed.b1 A2<-observed.a2 B2<-observed.b2 A<-observed.a B<-observed.b observed.statistic<-eval(parse(text=statistic)) } if(is.na(observed.statistic)) stop("Test statistic cannot be calculated. Please check the data.") distribution<-sort(distribution) test<-is.na(distribution)|(distribution>=observed.statistic) p.value<-sum(test)/quantity if(save=="yes"|save=="check"){ write.table(distribution,file=file,col.names=FALSE,row.names=FALSE,append=FALSE) } return(p.value) } if(design=="MBD"){ N<-ncol(data)/2 MT<-nrow(data) readLines(con=starts,n=N)->startpoints limits<-strsplit(startpoints,"\\s") limits<-lapply(limits,function(x){x[x!=""]}) number<-numeric(N) for(it in 1:N){ number[it]<-length(limits[[it]]) } coord<-list() for(itr in 1:length(number)){ cor<-numeric() for(it in 1:number[itr]){ cor<-c(cor,paste(itr,it,sep="")) } coord[[itr]]<-cor } startpt<-numeric(N) for(it in 1:N){ if(number[it]!=1){ startpt[it]<-sample(coord[[it]],1) } else{ startpt[it]<-coord[[it]] } } fileSTARTPTS<-tempfile(pattern="startpoints",tmpdir=tempdir()) startpt1<-rbind(startpt) write.table(startpt1,file=fileSTARTPTS,append=TRUE,col.names=FALSE,row.names=FALSE) startpts<-read.table(fileSTARTPTS) repeat{ startpt<-numeric(N) for(it in 1:N){ if(number[it]!=1){ startpt[it]<-sample(coord[[it]],1) } else{ startpt[it]<-coord[[it]] } } copy<-numeric() for(itr in 1:nrow(startpts)){ copy2<-numeric(N) for(it in 1:N){ copy2[it]<-startpt[it]==startpts[itr,it] } copy<-c(copy,prod(copy2)) } if(sum(copy)==0){ startpt1<-rbind(startpt) write.table(startpt1,file=fileSTARTPTS,append=TRUE,col.names=FALSE,row.names=FALSE) startpts<-read.table(fileSTARTPTS) } if(nrow(startpts)==prod(number))break } fileCOMBSTARTPOINTS<-tempfile(pattern="combstartpoints",tmpdir=tempdir()) combstartpts1<-sample(startpts[1,],replace=FALSE) write.table(combstartpts1,file=fileCOMBSTARTPOINTS,append=TRUE,col.names=FALSE,row.names=FALSE) combstartpts<-read.table(fileCOMBSTARTPOINTS) for(iter in 1:nrow(startpts)){ repeat{ combstartpts1<-sample(startpts[iter,],replace=FALSE) copy<-numeric() for(itr in 1:nrow(combstartpts)){ copy2<-numeric(N) for(it in 1:N){ copy2[it]<-combstartpts1[it]==combstartpts[itr,it] } copy<-c(copy,prod(copy2)) } if(sum(copy)==0){ write.table(combstartpts1,file=fileCOMBSTARTPOINTS,append=TRUE,col.names=FALSE,row.names=FALSE) combstartpts<-read.table(fileCOMBSTARTPOINTS) } if(nrow(combstartpts)==iter*factorial(N))break } } for(itrow in 1:nrow(combstartpts)){ for(itcol in 1:ncol(combstartpts)){ for(it in 1:N){ for(itr in 1:number[it]){ if(combstartpts[itrow,itcol]==coord[[it]][itr]){combstartpts[itrow,itcol]<-limits[[it]][itr]} } } } } fileASSIGNMENTS<-tempfile(pattern="assignments",tmpdir=tempdir()) write.table(combstartpts,file=fileASSIGNMENTS,col.names=FALSE,row.names=FALSE) assignments<-read.table(fileASSIGNMENTS) unlink(fileSTARTPTS,recursive=FALSE) unlink(fileCOMBSTARTPOINTS,recursive=FALSE) unlink(fileASSIGNMENTS,recursive=FALSE) observed.a<-list() for(it in 1:N){ observed.a[[it]]<-data[,it*2][data[,(it*2)-1]=="A"] } observed.b<-list() for(it in 1:N){ observed.b[[it]]<-data[,it*2][data[,(it*2)-1]=="B"] } differences<-numeric(N) if(statistic=="A-B"){ for(it in 1:N){ differences[it]<-statAB(observed.a[[it]],observed.b[[it]]) } } else if(statistic=="B-A"){ for(it in 1:N){ differences[it]<-statBA(observed.a[[it]],observed.b[[it]]) } } else if(statistic=="|A-B|"){ for(it in 1:N){ differences[it]<-statabsAB(observed.a[[it]],observed.b[[it]]) } } else{ for(it in 1:N){ A<-observed.a[[it]] B<-observed.b[[it]] differences[it]<-eval(parse(text=statistic)) } } observed.statistic<-mean(differences,na.rm=TRUE) scores.a<-list() for(iter in 1:nrow(assignments)){ ascores<-list() for(it in 1:N){ ascores[[it]]<-data[1:(assignments[iter,it]-1),it*2] } scores.a[[iter]]<-ascores } scores.b<-list() for(iter in 1:nrow(assignments)){ bscores<-list() for(it in 1:N){ bscores[[it]]<-data[assignments[iter,it]:MT,it*2] } scores.b[[iter]]<-bscores } differs<-list() if(statistic=="A-B"){ for(iter in 1:nrow(assignments)){ differ<-numeric(N) for(it in 1:N){ differ[it]<-statAB(scores.a[[iter]][[it]],scores.b[[iter]][[it]]) } differs[[iter]]<-differ } } else if(statistic=="B-A"){ for(iter in 1:nrow(assignments)){ differ<-numeric(N) for(it in 1:N){ differ[it]<-statBA(scores.a[[iter]][[it]],scores.b[[iter]][[it]]) } differs[[iter]]<-differ } } else if(statistic=="|A-B|"){ for(iter in 1:nrow(assignments)){ differ<-numeric(N) for(it in 1:N){ differ[it]<-statabsAB(scores.a[[iter]][[it]],scores.b[[iter]][[it]]) } differs[[iter]]<-differ } } else{ for(iter in 1:nrow(assignments)){ differ<-numeric(N) for(it in 1:N){ A<-scores.a[[iter]][[it]] B<-scores.b[[iter]][[it]] differ[it]<-eval(parse(text=statistic)) } differs[[iter]]<-differ } } distribution<-numeric(nrow(assignments)) for(it in 1:nrow(assignments)){ distribution[it]<-mean(differs[[it]],na.rm=TRUE) } if(is.na(observed.statistic)) stop("Test statistic cannot be calculated. Please check the data.") distribution<-sort(distribution) test<-is.na(distribution)|(distribution>=observed.statistic) p.value<-sum(test)/nrow(assignments) if(save=="yes"){ fileSAVE<-file.choose(new=FALSE) } if(save=="yes"|save=="check"){ write.table(distribution,file=fileSAVE,col.names=FALSE,row.names=FALSE,append=FALSE) } return(p.value) } if(design=="Custom"){ if(save=="yes"){ file<-file.choose(new=FALSE) } observed<-data[,2] observed.a<-data[,2][data[,1]=="A"] observed.b<-data[,2][data[,1]=="B"] assignments<-read.table(assignments) quantity<-nrow(assignments) scores.a<-list() for(it in 1:quantity) scores.a[[it]]<-c(observed[assignments[it,]=="A"]) scores.b<-list() for(it in 1:quantity) scores.b[[it]]<-c(observed[assignments[it,]=="B"]) distribution<-numeric(quantity) if(statistic=="A-B"){ for(it in 1:quantity) distribution[it]<-statAB(scores.a[[it]],scores.b[[it]]) observed.statistic<-statAB(observed.a,observed.b) } else if(statistic=="B-A"){ for(it in 1:quantity) distribution[it]<-statBA(scores.a[[it]],scores.b[[it]]) observed.statistic<-statBA(observed.a,observed.b) } else if(statistic=="|A-B|"){ for(it in 1:quantity) distribution[it]<-statabsAB(scores.a[[it]],scores.b[[it]]) observed.statistic<-statabsAB(observed.a,observed.b) } else{ for(it in 1:quantity){ A<-scores.a[[it]] B<-scores.b[[it]] distribution[it]<-eval(parse(text=statistic)) } A<-observed.a B<-observed.b observed.statistic<-eval(parse(text=statistic)) } if(is.na(observed.statistic)) stop("Test statistic cannot be calculated. Please check the data.") distribution<-sort(distribution) test<-is.na(distribution)|(distribution>=observed.statistic) p.value<-sum(test)/quantity if(save=="yes") write.table(distribution,file=file,col.names=FALSE,row.names=FALSE,append=FALSE) return(p.value) } }
independence_table <- function(x, frequency = c("absolute", "relative")) { if (!is.array(x)) stop("Need array of absolute frequencies!") frequency <- match.arg(frequency) n <- sum(x) x <- x / n d <- dim(x) margins <- lapply(1:length(d), function(i) apply(x, i, sum)) tab <- array(apply(expand.grid(margins), 1, prod), d, dimnames = dimnames(x)) if (frequency == "relative") tab else tab * n } mar_table <- function(x) { if(!is.matrix(x)) stop("Function only defined for 2-way tables.") tab <- rbind(cbind(x, TOTAL = rowSums(x)), TOTAL = c(colSums(x), sum(x))) names(dimnames(tab)) <- names(dimnames(x)) tab } table2d_summary <- function(object, margins = TRUE, percentages = FALSE, conditionals = c("none", "row", "column"), chisq.test = TRUE, ... ) { ret <- list() if (chisq.test) ret$chisq <- summary.table(object, ...) if(is.matrix(object)) { conditionals <- match.arg(conditionals) tab <- array(0, c(dim(object) + margins, 1 + percentages + (conditionals != "none"))) tab[,,1] <- if(margins) mar_table(object) else object if(percentages) { tmp <- prop.table(object) tab[,,2] <- 100 * if(margins) mar_table(tmp) else tmp } if(conditionals != "none") { tmp <- prop.table(object, margin = 1 + (conditionals == "column")) tab[,,2 + percentages] <- 100 * if(margins) mar_table(tmp) else tmp } dimnames(tab) <- c(dimnames(if(margins) mar_table(object) else object), list(c("freq", if(percentages) "%", switch(conditionals, row = "row%", column = "col%") ) ) ) if(conditionals == "row") tab[dim(tab)[1],,2 + percentages] <- NA if(conditionals == "column") tab[,dim(tab)[2],2 + percentages] <- NA ret$table <- tab } class(ret) <- "table2d_summary" ret } print.table2d_summary <- function (x, digits = max(1, getOption("digits") - 3), ...) { if (!is.null(x$table)) if(dim(x$table)[3] == 1) print(x$table[,,1], digits = digits, ...) else print(ftable(aperm(x$table, c(1,3,2))), 2, digits = digits, ...) cat("\n") if (!is.null(x$chisq)) print.summary.table(x$chisq, digits, ...) invisible(x) }
FRCSnumStarts<-function(p,gamma=0.99,eps=0.5){ if(p>25) stop("p too large.") if(gamma>=1) stop("gamma should be smaller than 1.") if(gamma<=0) stop("gamma should be larger than 0.") if(eps>0.5) stop("eps should be smaller than 1/2.") if(eps<=0) stop("eps should be larger than 0.") ns0<-ceiling(log(1-gamma)/log(1-(1-(eps))^(p+1))) ord<-10^floor(log10(ns0)) max(100,ceiling(ns0/ord)*ord) } FastRCS<-function(x,y,nSamp=NULL,alpha=0.5,seed=1,intercept=1){ k1<-25;k0<-25;J<-3; m1<-"seed should be an integer in [0,2**31]." if(!is.null(seed)){ if(!is.finite(seed)) stop(m1) if(!is.numeric(seed)) stop(m1) if(seed<0) stop(m1) if(is.na(as.integer(seed))) stop(m1) } seed<-as.integer(seed)+1 x<-data.matrix(x) y<-data.matrix(y) na.x<-complete.cases(cbind(x,y)) if(!is.numeric(alpha)) stop("alpha should be numeric") if(alpha<0.5 | alpha>=1)stop("alpha should be in (0.5,1(.") if(sum(na.x)!=nrow(x)) stop("Your data contains NA.") if(nrow(x)<(5*ncol(x))) stop("n<5p. You need more observations") if(intercept){ cx<-cbind(1,x) } else { cx<-x } n<-nrow(cx) if(nrow(unique(cbind(x,y)))<n) stop("Your dataset contains duplicated rows. Please remove them.") p<-ncol(cx) if(p<2) stop("Univariate RCS is not implemented.") if(p>25) stop("FastRCS only works for dimensions <=25.") if(is.null(nSamp)) nSamp<-FRCSnumStarts(p,eps=(1-alpha)) h1<-min(n-1,quanf(n=n,p=p,alpha=alpha)) h0<-quanf(n=n,p=p,alpha=0.5); Dp<-rep(1.00,n); k0<-max(k0,p+2); k1<-max(k1,p+2); objfunC<-1e3; n1<-rep(0,h0); n2<-rep(0,h1) icandid<-1:n-1 ni<-length(icandid) fitd<-.C("fastrcs", as.integer(nrow(cx)), as.integer(ncol(cx)), as.integer(k0), as.single(cx), as.single(y), as.integer(k1), as.single(Dp), as.integer(nSamp), as.integer(J), as.single(objfunC), as.integer(seed), as.integer(icandid), as.integer(ni), as.integer(n1), as.integer(n2), as.integer(h0), as.integer(h1), PACKAGE="FastRCS") outd<-as.numeric(fitd[[7]]) if(is.nan(outd)[1]) stop("too many singular subsets encoutered!") best<-fitd[[15]] weit<-as.numeric((1:n)%in%best) rawC<-lm(y~x,weights=weit) weit<-as.numeric(abs(rawC$resid)/quantile(abs(rawC$resid),h1/n)/qnorm(1-alpha/2)<=sqrt(qchisq(0.975,df=1))) FinalFit<-lm(y~x,weights=weit); FinalFit$scale<-sqrt(sum(FinalFit$resid[weit==1]**2)/FinalFit$df) A1<-list(alpha=alpha,nSamp=nSamp,obj=as.numeric(fitd[[10]]),rawBest=fitd[[14]],rawDist=fitd[[7]], best=which(weit==1),coefficients=FinalFit$coef,fitted.values=FinalFit$fitted.values,residuals=FinalFit$residuals, rank=FinalFit$rank,weights=FinalFit$weights,df.residual=FinalFit$df.residual,scale=FinalFit$scale) class(A1) <-"FastRCS" return(A1) } quanf<-function(n,p,alpha) return(floor(2*floor((n+p+1)/2)-n+2*(n-floor((n+p+1)/2))*alpha)) plot.FastRCS<-function(x,col="black",pch=16,...){ plot(abs(x$resid)/x$scale,col=col,pch=pch,ylab="Robust standardized residuals",xlab="Index") abline(h=sqrt(qchisq(0.975,df=1)),col="red",lty=2) }
plot.dccm <-function(x, resno=NULL, sse=NULL, colorkey=TRUE, at=c(-1, -0.75, -0.5, -0.25, 0.25, 0.5, 0.75, 1), main="Residue Cross Correlation", helix.col = "gray20", sheet.col = "gray80", inner.box=TRUE, outer.box=FALSE, xlab="Residue No.", ylab="Residue No.", margin.segments=NULL, segment.col=vmd_colors(), segment.min=1, ...) { requireNamespace("lattice", quietly = TRUE) colnames(x) = NULL; rownames(x)=NULL if(!is.null(resno)) { if(is.pdb(resno)) { ca.inds <- atom.select(resno, "calpha", verbose = FALSE) resno <- resno$atom$resno[ca.inds$atom] } if(length(resno) != nrow(x)) { warning("Length of input 'resno' does not equal the length of input 'x'; Ignoring 'resno'") resno=NULL } } scales <- NULL dots <- list(...) if('scales' %in% names(dots)) { scales <- dots$scales } if(!"at" %in% names(scales)) { xy.at <- pretty(1:ncol(x)) xy.at <- xy.at[xy.at <= ncol(x)] xy.at[1] <- 1 if(is.null(resno)) { scales$at <- xy.at scales$labels <- xy.at } else { labs <- resno[xy.at] labs[is.na(labs)] <- "" scales$at <- xy.at scales$labels <- labs } } dots$scales <- scales draw.segment <- function(start, length, xymin, xymax, fill.col="gray", side=1) { if(side==1) { grid.rect(x=unit(start-0.5, "native"), y=0, gp = gpar(fill=fill.col, col=NA), just=c("left","bottom"), width=unit(length-0.5, "native"), height=xymin, vp=vpPath("plot_01.toplevel.vp","plot_01.panel.1.1.vp")) } if(side==2) { grid.rect(x=0, y=unit(start-0.5, "native"), gp = gpar(fill=fill.col, col=NA), just=c("left","bottom"), width=xymin, height=unit(length-0.5, "native"), vp=vpPath("plot_01.toplevel.vp","plot_01.panel.1.1.vp")) } if(side==3) { grid.rect(x=unit(start-0.5, "native"), y=xymax, gp = gpar(fill=fill.col,col=NA), just=c("left","bottom"), width=unit(length-0.5, "native"), height=unit(1, "npc"), vp=vpPath("plot_01.toplevel.vp","plot_01.panel.1.1.vp")) } if(side==4) { grid.rect(x=xymax, y=unit(start-0.5, "native"), gp = gpar(fill=fill.col,col=NA), just=c("left","bottom"), width=unit(1, "npc"), height=unit(length-0.5, "native"), vp=vpPath("plot_01.toplevel.vp","plot_01.panel.1.1.vp")) } } p1 <- do.call(lattice::contourplot, c(list(x, region = TRUE, labels=FALSE, col="gray40", at=at, xlab=xlab, ylab=ylab, colorkey=colorkey, main=main), dots)) if(is.pdb(sse)) { sse <- pdb2sse(sse) sse <- bounds.sse(unname(sse)) } if(length(sse$helix$start)==0 && length(sse$sheet$start)==0) sse <- NULL xymin=0; xymax=1 if (is.null(sse) && is.null(margin.segments)) { print(p1) } else { xlim <- p1$x.limits ylim <- p1$y.limits uni <- 1/(max(xlim)-min(xlim)) pad=0.02 padref <- pad/uni if(!is.null(sse)) { xymax <- 1-(pad) p1$x.limits[2]=xlim[2]+padref p1$y.limits[2]=ylim[2]+padref } if(!is.null(margin.segments)) { xymin = pad p1$x.limits[1]=xlim[1]-padref p1$y.limits[1]=ylim[1]-padref grps <- table(margin.segments) grps = names( grps[grps > segment.min] ) store.grps <- NULL; for(i in 1:length(grps)) { store.grps <- rbind(store.grps, cbind( bounds(which(margin.segments == grps[i])), "grp"=as.numeric(grps[i])) ) } if(is.null(segment.col)) { segment.col <- (store.grps[,"grp"]) } else { segment.col <- segment.col[(store.grps[,"grp"])] } } print(p1) if(!is.null(sse)) { if(length(sse$helix$start) > 0) { if( is.null(sse$helix$length) ) { sse$helix$length <- (sse$helix$end+1)-sse$helix$start } draw.segment(sse$helix$start, sse$helix$length, xymin=xymin, xymax=xymax, fill.col=helix.col, side=3) draw.segment(sse$helix$start, sse$helix$length, xymin=xymin, xymax=xymax, fill.col=helix.col, side=4) } if(length(sse$sheet$start) > 0) { if( is.null(sse$sheet$length) ) { sse$sheet$length <- (sse$sheet$end+1)-sse$sheet$start } draw.segment(sse$sheet$start, sse$sheet$length, xymin=xymin, xymax=xymax, fill.col=sheet.col, side=3) draw.segment(sse$sheet$start, sse$sheet$length, xymin=xymin, xymax=xymax, fill.col=sheet.col, side=4) } } if(!is.null(margin.segments)) { draw.segment(store.grps[,"start"], store.grps[,"length"], xymin=xymin, xymax=xymax, fill.col=segment.col, side=1) draw.segment(store.grps[,"start"], store.grps[,"length"], xymin=xymin, xymax=xymax, fill.col=segment.col, side=2) } if(!outer.box) { grid.rect(x=0, y=0, gp = gpar(fill=NA,col="white"), just=c("left","bottom"), width=1,height=1, vp=vpPath("plot_01.toplevel.vp","plot_01.panel.1.1.vp")) } if(inner.box) { grid.rect(x=xymin, y=xymin, gp = gpar(fill=NA,col="black"), just=c("left","bottom"), width=xymax, height=xymax, vp=vpPath("plot_01.toplevel.vp","plot_01.panel.1.1.vp")) } } }
memesSujets <- function(matDon,matPond){ nbPond <- nrow(matPond) i <- 1 nbSujets <- nrow(matDon) nbVar <- ncol(matDon) - 2 somme <- rep(0, nbSujets) while (i <= nbPond){ matDonMemes <- t(apply(matDon, MARGIN=1, FUN=appliquePonder, c(1, 1, matPond[i, 1:nbVar]))) matDonMemes <- cbind(matDonMemes[,1:2], score=round(apply(matDonMemes[,3:ncol(matDonMemes)], MARGIN=1, FUN=sum), 7)) matDonMemes <- repereRisque(matDonMemes, matPond[i, "seuil"]) somme <- somme + matDonMemes[,"risque"] i <- i + 1 } Memes <- length(which(somme!=0 && somme!=nbPond)) == 0 return(Memes) }
plot.Brq <- function (x, plottype = c("hist", "trace", "ACF", "traceACF", "histACF", "tracehist", "traceACFhist"), Coefficients = 1, breaks = 30, lwd = 1, col1 = 0, col2 = 1, col3 = 1, col4 = 1, ...) { call <- match.call() mf <- match.call(expand.dots = FALSE) mf$drop.unused.levels <- FALSE Betas=as.matrix(x$beta[, Coefficients]) k = ncol(as.matrix( Betas)) if (k == 2) par(mfrow = c(1, 2)) if (k == 3) par(mfrow = c(1, 3)) if (k == 4) par(mfrow = c(2, 2)) if (k > 4 & k <= 12) par(mfrow = c(ceiling(k/3), 3)) if (k > 12) par(mfrow = c(ceiling(k/3), 3)) plottype <- match.arg(plottype) switch(plottype, trace = for (i in 1:k) { ts.plot(Betas[, i], xlab = "iterations", ylab = "", main = noquote(names(coef(x)))[i], col = col4) }, ACF = for (i in 1:k) { acf(Betas[, i], main = noquote(names(coef(x)))[i], col = col3) }, traceACF = { par(mfrow = c(k, 2)) for (i in 1:k) { ts.plot(Betas[, i], xlab = "iterations", ylab = "", main = noquote(names(coef(x)))[i], col = col4) acf(Betas[, i], main = noquote(names(coef(x)))[i], col = col3) } }, histACF = { par(mfrow = c(k, 2)) for (i in 1:k) { hist(Betas[, i], breaks = breaks, prob = TRUE, main = "", xlab = noquote(names(coef(x)))[i], col = col1) lines(density(Betas[, i], adjust = 2), lty = "dotted", col = col2, lwd = lwd) acf(Betas[, i], main = noquote(names(coef(x)))[i], col = col3) } }, tracehist = { par(mfrow = c(k, 2)) for (i in 1:k) { ts.plot(Betas[, i], xlab = "iterations", ylab = "", main = noquote(names(coef(x)))[i], col = col4) hist(Betas[, i], breaks = breaks, prob = TRUE, main = "", xlab = noquote(names(coef(x)))[i], col = col1) lines(density(Betas[, i], adjust = 2), lty = "dotted", col = col2, lwd = lwd) } }, traceACFhist = { par(mfrow = c(k, 3)) for (i in 1:k) { ts.plot(Betas[, i], xlab = "iterations", ylab = "", main = noquote(names(coef(x)))[i], col = col4) hist(Betas[, i], breaks = breaks, prob = TRUE, main = "", xlab = noquote(names(coef(x)))[i], col = col1) lines(density(Betas[, i], adjust = 2), lty = "dotted", col = col2, lwd = lwd) acf(Betas[, i], main = noquote(names(coef(x)))[i], col = col3) } }, hist = for (i in 1:k) { hist(Betas[, i], breaks = breaks, prob = TRUE, main = "", xlab = noquote(names(coef(x)))[i], col = col1) lines(density(Betas[, i], adjust = 2), lty = "dotted", col = col2, lwd = lwd) }) }
morans.w <- function(pop1, pop2, allele.column, ref.pop=NA) { pop <- rbind(pop1,pop2) ri <- .subset2(pop1,allele.column*2+1) rj <- .subset2(pop2,allele.column*2+2) var.p <- sapply(seq(1:length(ref.pop)),function(x){rowMeans(names(ref.pop[x])==data.frame(ri,rj))}) var.p <-rowMeans((t(var.p)-colMeans(var.p))^2) return(sum(var.p)) }