code
stringlengths 1
13.8M
|
---|
CE.ZINB.Init <-
function(data, init.locs, eps=0.01, rho=0.05, M=200, h=5, a=0.8, b=0.8, distyp = 1, penalty = "BIC", var.init = 100000, parallel=FALSE){
if(is.data.frame(data) == "FALSE"| is.null(dim(data)[2])) {
print("Error in data: dataframe only")
} else if(dim(data)[2] != 1) {
print("Error in data: single column dataframe only")
} else if(missing(init.locs)){
print("Error: Initial locations are not provided!!!")
} else {
if(distyp == 1 & penalty == "BIC"){
Melite <- M * rho
L <- length(data[, 1])
L0 <- 1
k <- length(init.locs)
r <- suppressWarnings(try(fitdistr(data[, 1], "negative binomial")[[1]][[1]], silent = T))
if(parallel == TRUE & .Platform$OS.type == "windows"){
cl <- makeCluster(parallel::detectCores(), type = "SOCK")
clusterExport(cl, c("ce.4betaZINB.BIC.Init", "betarand", "fun.alpha", "fun.beta", "BICzinb", "llhoodzinb", "loglikzinb", "betaIntEst"), envir = environment())
clusterExport(cl, c("data", "rho", "M", "h", "eps", "Melite", "L", "L0", "a", "init.locs", "r", "var.init"), envir = environment())
registerDoParallel(cl)
sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.4betaZINB.BIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, r, var.init)
stopCluster(cl)
} else if (parallel == TRUE & .Platform$OS.type == "unix"){
registerDoParallel(parallel::detectCores())
sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.4betaZINB.BIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, r, var.init)
} else sim <- foreach(k = k, .errorhandling = c('pass')) %do% ce.4betaZINB.BIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, r, var.init)
cpt.loci <- sim[[1]]$loci
return(list("No.BPs" = length(cpt.loci) - 2, "BP.Loc" = cpt.loci[2:(length(cpt.loci) - 1)], "BIC" = sim[[1]]$BIC, "ll" = sim[[1]]$LogLike))
} else if(distyp == 2 & penalty == "BIC"){
Melite <- M*rho
L <- length(data[, 1])
L0 <- 1
k <- length(init.locs)
r <- suppressWarnings(try(fitdistr(data[, 1], "negative binomial")[[1]][[1]], silent = T))
if(parallel == TRUE & .Platform$OS.type == "windows"){
cl <- makeCluster(parallel::detectCores(), type = "SOCK")
clusterExport(cl, c("ce.simNormalZINB.BIC.Init", "normrand", "BICzinb", "llhoodzinb", "loglikzinb"), envir = environment())
clusterExport(cl, c("data", "rho", "M", "h", "eps", "Melite", "L", "L0", "a", "b", "init.locs", "r", "var.init"), envir=environment())
registerDoParallel(cl)
sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.simNormalZINB.BIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, b, r, var.init)
stopCluster(cl)
} else if (parallel == TRUE & .Platform$OS.type == "unix"){
registerDoParallel(parallel::detectCores())
sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.simNormalZINB.BIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, b, r, var.init)
} else {
sim <- foreach(k = k, .errorhandling = c('pass')) %do% ce.simNormalZINB.BIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, b, r, var.init)
}
cpt.loci <- sim[[1]]$loci
return(list("No.BPs" = length(cpt.loci) - 2, "BP.Loc" = cpt.loci[2:(length(cpt.loci) - 1)], "BIC" = sim[[1]]$BIC, "ll" = sim[[1]]$LogLike))
} else if(distyp == 1 & penalty == "AIC"){
Melite <- M*rho
L <- length(data[, 1])
L0 <- 1
k <- length(init.locs)
r <- suppressWarnings(try(fitdistr(data[, 1], "negative binomial")[[1]][[1]], silent = T))
if(parallel == TRUE & .Platform$OS.type == "windows"){
cl <- makeCluster(parallel::detectCores(), type = "SOCK")
clusterExport(cl, c("ce.4betaZINB.AIC.Init", "betarand", "fun.alpha", "fun.beta", "AICzinb", "llhoodzinb", "loglikzinb", "betaIntEst"), envir = environment())
clusterExport(cl, c("data", "rho", "M", "h", "eps", "Melite", "L", "L0", "a", "init.locs", "r", "var.init"), envir = environment())
registerDoParallel(cl)
sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.4betaZINB.AIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, r, var.init)
stopCluster(cl)
} else if (parallel == TRUE & .Platform$OS.type == "unix"){
registerDoParallel(parallel::detectCores())
sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.4betaZINB.AIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, r, var.init)
} else sim <- foreach(k = k, .errorhandling = c('pass')) %do% ce.4betaZINB.AIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, r, var.init)
cpt.loci <- sim[[1]]$loci
return(list("No.BPs" = length(cpt.loci) - 2, "BP.Loc" = cpt.loci[2:(length(cpt.loci) - 1)], "AIC" = sim[[1]]$AIC, "ll" = sim[[1]]$LogLike))
} else if(distyp == 2 & penalty == "AIC"){
Melite <- M*rho
L <- length(data[, 1])
L0 <- 1
k <- length(init.locs)
r <- suppressWarnings(try(fitdistr(data[, 1], "negative binomial")[[1]][[1]], silent = T))
if(parallel == TRUE & .Platform$OS.type == "windows"){
cl <- makeCluster(parallel::detectCores(), type = "SOCK")
clusterExport(cl, c("ce.simNormalZINB.AIC.Init", "normrand", "AICzinb", "llhoodzinb", "loglikzinb"), envir = environment())
clusterExport(cl, c("data", "rho", "M", "h", "eps", "Melite", "L", "L0", "a", "b", "init.locs", "r", "var.init"), envir=environment())
registerDoParallel(cl)
sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.simNormalZINB.AIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, b, r, var.init)
stopCluster(cl)
} else if (parallel == TRUE & .Platform$OS.type == "unix"){
registerDoParallel(parallel::detectCores())
sim <- foreach(k = k, .errorhandling = c('pass')) %dopar% ce.simNormalZINB.AIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, b, r, var.init)
} else {
sim <- foreach(k = k, .errorhandling = c('pass')) %do% ce.simNormalZINB.AIC.Init(k, init.locs, data, h, L0, L, M, Melite, eps, a, b, r, var.init)
}
cpt.loci <- sim[[1]]$loci
return(list("No.BPs" = length(cpt.loci) - 2, "BP.Loc" = cpt.loci[2:(length(cpt.loci) - 1)], "AIC" = sim[[1]]$AIC, "ll" = sim[[1]]$LogLike))
}
}
}
|
extractSiteNames <- function (file) {
if (file.info(file)$size == 0) {
stop("Your file is empty. Please try again with a different file.")
} else {
RDatatmp <- n.readLines(file, n = 5, header = FALSE)
RDatatmp <- paste(RDatatmp[1:5], collapse = " ")
RDatatmp <- stri_split_fixed(RDatatmp, pattern = "Latitude", n = 2)[[1]][1]
}
}
|
clean_params <- function(parameters_df, warning = TRUE) {
if (min(parameters_df$priors) < 0)
stop("Negative alpha arguments for priors are not allowed")
if (min(parameters_df$param_value) < 0)
stop("Negative arguments for parameters not allowed")
for (j in unique(parameters_df$param_set)) {
A <- parameters_df$param_set == j
check <- sum(parameters_df$param_value[A])
if (!isTRUE(all.equal(check, 1))) {
if (warning)
message(paste0("Parameters in set ", j, " do not sum to 1. Using normalized parameters"))
parameters_df$param_value[A] <- parameters_df$param_value[A]/check
}
}
parameters_df
}
clean_param_vector <- function(model, parameters) {
model$parameters_df$param_value <- as.vector(parameters)
x <- clean_params(model$parameters_df, warning = FALSE)$param_value
names(x) <- model$parameters_df$param_names
x
}
|
expected <- eval(parse(text="structure(c(952L, 3622L, 202L, 406L), .Dim = c(2L, 2L), .Dimnames = list(c(\"subcohort\", \"cohort\"), c(\"1\", \"2\")))"));
test(id=0, code={
argv <- eval(parse(text="list(structure(c(952L, 3622L, 202L, 406L), .Dim = c(2L, 2L), .Dimnames = list(c(\"subcohort\", \"cohort\"), c(\"1\", \"2\"))), c(\"subcohort\", \"cohort\"), c(\"1\", \"2\"), FALSE, FALSE, NULL)"));
.Internal(prmatrix(argv[[1]], argv[[2]], argv[[3]], argv[[4]], argv[[5]], argv[[6]]));
}, o=expected);
|
ecparam <- function(p, a, b){
p <- gmp::as.bigz(p)
a <- gmp::as.bigz(a)
b <- gmp::as.bigz(b)
new("ECPARAM", p = p, a = a, b = b)
}
setGeneric("containsPoint",
function(curve, x, y) standardGeneric("containsPoint"))
setMethod("containsPoint", signature("ECPARAM", "bigz", "bigz"),
definition = function(curve, x, y){
term <- (y * y - (x * x * x + curve@a * x + curve@b)) %% curve@p
term == 0L
})
setMethod("containsPoint", signature("ECPARAM", "integer", "integer"),
definition = function(curve, x, y){
x <- gmp::as.bigz(x)
y <- gmp::as.bigz(y)
term <- (y * y - (x * x * x + curve@a * x + curve@b)) %% curve@p
term == 0L
})
setMethod("containsPoint", signature("ECPARAM", "character", "character"),
definition = function(curve, x, y){
x <- gmp::as.bigz(x)
y <- gmp::as.bigz(y)
term <- (y * y - (x * x * x + curve@a * x + curve@b)) %% curve@p
term == 0L
})
ecpoint <- function(ecparam = NULL, x, y, r = NULL){
x <- gmp::as.bigz(x)
y <- gmp::as.bigz(y)
r <- gmp::as.bigz(r)
if (!is.null(ecparam)){
checkpoint <- containsPoint(ecparam, x, y)
} else {
checkpoint <- TRUE
}
if (!checkpoint){
stop("Point (x, y) is not on elliptic curve.\n")
}
new("ECPOINT", ecparam = ecparam, x = x, y = y, r = r)
}
setGeneric("isNull", function(x) standardGeneric("isNull"))
setMethod("isNull", signature = "ECPOINT", function(x){
ans <- length(x@x) == 0L & length(x@y) == 0L
ans
}
)
setGeneric("doubleUp", function(ecp) standardGeneric("doubleUp"))
setMethod("doubleUp", signature = "ECPOINT", function(ecp){
if (isNull(ecp)){
return(ecpoint(NULL, NULL, NULL))
}
p <- ecp@ecparam@p
a <- ecp@ecparam@a
l <- ( (3 * ecp@x * ecp@x + a) *
inv.bigz(2 * ecp@y, p)) %% p
x3 <- (l * l - 2 * ecp@x ) %% p
y3 <- (l * (ecp@x - x3) - ecp@y) %% p
ans <- ecpoint(ecp@ecparam, x3, y3)
ans
})
setMethod("+", signature = c("ECPOINT", "ECPOINT"), function(e1, e2){
if (isNull(e2)){
return(e1)
}
if (isNull(e1)){
return(e2)
}
if (!identical(e1@ecparam, e2@ecparam)){
stop("EC parameters of operands not identical.\n")
}
p <- e1@ecparam@p
if (e1@x == e2@x){
check <- (e1@y + e2@y) %% p
if (check == 0L){
return(ecpoint(NULL, NULL, NULL))
} else {
return(doubleUp(e1))
}
}
l <- ( (e2@y - e1@y) * inv.bigz(e2@x - e1@x, p) ) %% p
x3 <- (l * l - e1@x - e2@x) %% p
y3 <- (l * (e1@x - x3) - e1@y) %% p
ecpoint(e1@ecparam, x3, y3)
})
setGeneric("leftmostBit", function(x) standardGeneric("leftmostBit"))
setMethod("leftmostBit", signature = "bigz", function(x){
if (x <= 0L){
stop("Negative 'bigz' integer provided.\n")
}
ans <- as.bigz(1L)
while (ans <= x){
ans <- 2L * ans
}
as.bigz(ans / 2L)
})
setGeneric("AND", function(x, y) standardGeneric("AND"))
setMethod("AND", signature = c("bigz", "bigz"), function(x, y){
b1 <- as.character(x, b = 2)
b1l <- nchar(b1)
b2 <- as.character(y, b = 2)
b2l <- nchar(b2)
n <- min(b1l, b2l)
b1num <- rev(as.numeric( (unlist(strsplit(b1, "")))))
b2num <- rev(as.numeric( (unlist(strsplit(b2, "")))))
ans <- rep(0, n)
for (i in 1:n){
ans[i] <- ifelse(b1num[i] + b2num[i] > 1, 1, 0)
}
ans <- rev(ans)
ans <- paste("0b", paste0(ans, collapse = ""), sep = "")
as.bigz(ans)
})
setMethod("*", signature = c("ECPOINT", "bigz"), function(e1, e2){
ecp <- e1
e <- e2
if (isNull(ecp)){
return(ecp)
}
if (length(ecp@r) > 0){
e <- e %% ecp@r
}
if ( e == 0L){
return(ecpoint(NULL, NULL, NULL))
}
if (e < 0L){
stop("Negative 'bigz' integer.\n")
}
e3 <- 3L * e
negpoint <- ecpoint(ecp@ecparam, ecp@x, -ecp@y, ecp@r)
i <- as.bigz(leftmostBit(e3) / 2L)
ans <- ecp
while (i > 1){
ans <- doubleUp(ans)
if ( (AND(e3, i) != 0L) && (AND(e, i) == 0L) ){
ans <- ans + ecp
}
if ( (AND(e3, i) == 0L) && (AND(e, i) != 0L) ){
ans <- ans + negpoint
}
i <- as.bigz(i / 2)
}
ans
})
setMethod("*", signature = c("bigz", "ECPOINT"), function(e1, e2){
e2 * e1
})
|
`%notin%` <- Negate(`%in%`)
simu_cov=function(ssObj, covObj, driftHR, HR, nsim, seed, path){
if (missing(ssObj)) stop("Please provide ssObj.")
if (missing(covObj)) {
message("No covObj is provided.")
covObj = NULL
}
if (missing(HR)){
HR = 1
message("HR values (HR) not provided. Default value 1 is used.")
}
if (missing(driftHR)){
driftHR = 1
message("driftHR values (driftHR) not provided. Default value 1 is used.")
}
if (missing(nsim)) {
message("Number of simulation is not provided. Default value 5 is used")
nsim = 5
}
dt0 <- ssObj
ssC <- sum(dt0[,'ext'] ==0 & dt0[,'trt'] ==0)
ssE <- sum(dt0[,'ext'] ==0 & dt0[,'trt'] ==1)
ssExt <- sum(dt0[,'ext'] ==1)
message(paste0("The sample size for internal control, internal treatment, and external control arms are ",
ssC, ", ", ssE, ", and ", ssExt,", respectively."))
if (missing(seed)){
message(paste0("Set seed to ",.Random.seed[1]))
seed = .Random.seed[1]
} else set.seed(seed)
seed_list <- array(seq(seed, length(driftHR) * length(HR) * nsim + seed, by = 1),
dim = c(nsim, length(HR), length(driftHR)))
flog.debug(cat("[simu_cov] seed_list:", seed_list, "\n"))
res_list <- sapply(1:length(driftHR), function(k){
dr <- driftHR[k]
sapply(1:length(HR), function(j) {
hr <- HR[j]
nsim_res <- lapply(seq(1, nsim, by = 1), function(i){
seed_i = seed_list[i, j, k]
message("-------------------
j, "of HR =", hr, ",
k, "of driftHR = ", dr, ", seed =", seed_i)
samp = set_n(ssC = ssC, ssE = ssE, ssExt = ssExt)
samp_cov = samp
if (!is.null(covObj)) {
samp_cov = add_cov(dt = samp, covObj = covObj, seed = seed_i)
}
flog.debug(cat("[simu_cov] seed_i:", seed_i, "\n"))
cbind("driftHR" = dr, "HR" = hr, samp_cov)
})
})
})
if (missing(path)) message("Simulated covariates are not saved.") else {
save(res_list, file = path)
message("Simulated covariates are saved as ", path)
}
res_list
}
|
"bacteria"
bacteria <- data.frame( count = c(680, 720, 775, 810,875,
2000, 2900, 3000, 5000,8000,
10000, 12000, 15000,
20000, 30000,
40000, 41000, 41000,
42000, 47000, 47000, 80500),
percentTime = c(0.12, 0.4, 0.7,0.75, 1,
12.5, 26, 27, 51, 73,
83.5, 84.5, 88.5,
91.5, 95.5,
98.3, 98.5, 98.75,
99, 99.25, 99.6, 99.85 )
)
|
library("enpls")
library("ggplot2")
data("logd1k")
x <- logd1k$x
y <- logd1k$y
head(x)[, 1:5]
head(y)
set.seed(42)
fit <- enspls.fit(x, y, ratio = 0.7, reptimes = 20, maxcomp = 3)
y.pred <- predict(fit, newx = x)
df <- data.frame(y, y.pred)
ggplot(df, aes_string(x = "y", y = "y.pred")) +
geom_abline(slope = 1, intercept = 0, colour = "darkgrey") +
geom_point(size = 3, shape = 1, alpha = 0.8) +
coord_fixed(ratio = 1) +
xlab("Observed Response") +
ylab("Predicted Response")
cv.fit <- cv.enspls(x, y,
nfolds = 5, ratio = 0.7,
reptimes = 10, maxcomp = 3, verbose = FALSE
)
cv.fit
plot(cv.fit)
fs <- enspls.fs(x, y, ratio = 0.7, reptimes = 20, maxcomp = 3)
print(fs, nvar = 10)
plot(fs, nvar = 10)
plot(fs, type = "boxplot", nvar = 10)
od <- enspls.od(x, y, ratio = 0.8, reptimes = 20, maxcomp = 3)
plot(od, prob = 0.05)
plot(od, criterion = "sd", sdtimes = 2)
x <- x[, -c(17, 52, 59)]
x.tr <- x[1:500, ]
y.tr <- y[1:500]
x.te <- list(
"test.1" = x[501:700, ],
"test.2" = x[701:800, ]
)
y.te <- list(
"test.1" = y[501:700],
"test.2" = y[701:800]
)
ad <- enspls.ad(x.tr, y.tr, x.te, y.te,
maxcomp = 3, space = "variable", method = "mc",
ratio = 0.8, reptimes = 50
)
plot(ad)
|
plotsignal <-
function(x, ind= NULL, popA=NULL, popB=NULL, xlab=NULL, ylab=NULL, ylim=NULL, main=NULL){
ctmp <- class(x)
if (is.null(ctmp)) stop("object has no class")
if (ctmp != "adsig") stop("object is not of class adsig")
if(is.null(ind)) stop("must provide name of individual to plot")
if(sum(match(x$individuals,ind), na.rm=TRUE) != 1) stop("individual not recognised")
if(sum(!is.na(match(x$individuals,popA))) != length(popA)) stop("individual in PopA not recognised")
if(sum(!is.na(match(x$individuals,popB))) != length(popB)) stop("individual in PopB not recognised")
if(is.null(ylab)) ylab <- "signal"
if(is.null(main)){ main <- paste("ID:", x$individuals[ind], ", Window size:" ,x$window.size,sep=" ")}
tempP <- t(x$signals)
if(is.null(x$gendist)){
loc <- 1:dim(tempP)[2]
if(is.null(xlab)) xlab <- "SNP number"}else{
loc <- x$gendist
if(is.null(xlab)) xlab <- "genetic distance"
}
if(!is.null(popA)){
Amin <- apply(tempP[popA,],c(2),FUN=min)
Amax <- apply(tempP[popA,],c(2),FUN=max) }
if(!is.null(popB)){
Bmin <- apply(tempP[popB,],c(2),FUN=min)
Bmax <- apply(tempP[popB,],c(2),FUN=max)}
if(is.null(ylim)){ ylim <- range(tempP, na.rm=TRUE)}
plot(loc,tempP[ind,], xlab=xlab, ylab=ylab,main=main, ylim=ylim,type="l",cex.main=1);abline(h=c(-1,0,1),lty=3,col=3);
abline(h=mean(tempP[ind,],),col=2)
if(!is.null(popB)){
polygon(c(loc,rev(loc)), c((Bmin), rev(Bmax)), col = "lightblue", border = NA)}
if(!is.null(popA)){
polygon(c(loc,rev(loc)), c((Amax), rev(Amin)), col = "lightgreen", border = NA)}
lines(loc,tempP[ind,],lwd=1,col=1)
}
|
expected <- eval(parse(text="c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE)"));
test(id=0, code={
argv <- eval(parse(text="list(c(2.00256647265648e-308, 2.22284878464869e-308, 2.22507363599982e-308, 2.2250738585072e-308, 2.22507408101459e-308, 2.22729893236571e-308, 2.44758124435792e-308, 1.61792382137608e+308, 1.79589544172745e+308, 1.797692955093e+308, 1.79769313486232e+308), 1)"));
do.call(`>=`, argv);
}, o=expected);
|
ForestFloorExport <- function(arbOut) {
.Deprecated("Export")
UseMethod("ForestFloorExport")
}
"ForestFloorExport.Rborist" <- function(arbOut) {
return (tryCatch(.Call("Export", arbOut), error = function(e) {stop(e)}))
}
|
ReportID <- NULL
StatusReport <- NULL
ws_data <- NULL
SearchedAlso <- NULL
SearchedWith <- NULL
. <- NULL
yadirGetWordStatReport <- function(
Phrases,
GeoID = 0,
Login = getOption("ryandexdirect.user"),
Token = NULL,
AgencyAccount = getOption("ryandexdirect.agency_account"),
TokenPath = yadirTokenPath()) {
start_time <- Sys.time()
Token <- tech_auth(login = Login, token = Token, AgencyAccount = AgencyAccount, TokenPath = TokenPath)
Phrases <- yadirToList(Phrases)
GeoID <- yadirToList(GeoID)
message('.Send report')
send_query <- list(method = "CreateNewWordstatReport",
param = list(Phrases = Phrases,
GeoID = GeoID),
locale = "ru",
token = Token) %>%
toJSON(auto_unbox = TRUE)
ans <- POST("https://api.direct.yandex.ru/v4/json/", body = send_query )
rep_id = content(ans, 'parsed')
if ( ! is.null( rep_id$error_str ) ) {
message(rep_id$error_detail)
stop(rep_id$error_str)
}
rep_status <- 'New'
while ( rep_status != 'Done' ) {
get_status <- list(method = "GetWordstatReportList",
locale = "ru",
token = Token) %>%
toJSON(auto_unbox = TRUE)
ans <- POST("https://api.direct.yandex.ru/v4/json/", body = get_status )
rep_status <- content(ans, 'parsed') %>%
tibble( report = .$data ) %>%
unnest_wider(report) %>%
filter(ReportID == rep_id) %>%
select(StatusReport) %>%
unlist()
Sys.sleep(1)
message(".Report status: ", rep_status)
}
message('.Get report')
get_query <- list(method = "GetWordstatReport",
param = unlist(rep_id),
locale = "ru",
token = Token) %>%
toJSON(auto_unbox = TRUE)
raw_data <- POST("https://api.direct.yandex.ru/v4/json/", body = get_query )
message('.Parse report')
SearchedAlso <- content(raw_data, 'parsed') %>%
tibble(ws_data = .$data) %>%
unnest_wider(ws_data) %>%
unnest_longer(GeoID) %>%
select(-SearchedWith, -".") %>%
unnest_longer(SearchedAlso) %>%
hoist(SearchedAlso,
Phrase = c("Phrase"),
Shows = c("Shows"))
SearchedWith <- content(raw_data, 'parsed') %>%
tibble(ws_data = .$data) %>%
unnest_wider(ws_data) %>%
unnest_longer(GeoID) %>%
select(-SearchedAlso, -".") %>%
unnest_longer(SearchedWith) %>%
hoist(SearchedWith,
Phrase = c("Phrase"),
Shows = c("Shows"))
report <- list(SearchedWith = SearchedWith,
SearchedAlso = SearchedAlso)
message('.Delete report')
get_query <- list(method = "GetWordstatReport",
param = unlist(rep_id),
locale = "ru",
token = Token) %>%
toJSON(auto_unbox = TRUE)
raw_data <- POST("https://api.direct.yandex.ru/v4/json/", body = get_query )
message("Success!")
stop_time <- Sys.time()
message(paste0("Duration: ", round(difftime(stop_time, start_time , units ="secs"),0), " sec."))
message("Request ID: ", ans$headers$requestid)
message("WordStat Report ID: ", rep_id)
message("Report SearchedAlso has ", nrow(SearchedAlso), " rows")
message("Report SearchedWith has ", nrow(SearchedWith), " rows")
message("For get report data x[['ReportName']]")
return(report)
}
|
trait.stat <- function(bcnt.otu, coefs) {
if (is.factor(coefs$TRAITVAL)) {
temp <- levels(coefs$TRAITVAL)
}
else {
if (is.character(coefs$TRAITVAL)) {
temp <- unique(coefs$TRAITVAL)
}
}
traitval.u <- character(0)
repeat{
w <- regexpr("[A-Za-z]+", temp)
if (sum(w!=-1) == 0) break
traitval.u <- c(traitval.u,substring(temp, w, w+attributes(w)$match.length-
1))
temp <- substring(temp, w+attributes(w)$match.length+1, nchar(temp))
}
traitval.u[traitval.u == ""] <- NA
traitval.u <- sort(unique(traitval.u))
if (!is.factor(bcnt.otu[,1])) {
bcnt.otu[,1] <- factor(bcnt.otu[,1])
}
bcnt.t <- merge(bcnt.otu, coefs, by.x = "OTU", by.y="TAXON", all.x = T)
matout <- matrix(NA, ncol = 3*length(traitval.u),
nrow = length(levels(bcnt.otu[,1])))
if (is.factor(coefs$TRAITVAL)) {
all.traits <- levels(bcnt.t$TRAITVAL)[bcnt.t$TRAITVAL]
}
else {
if (is.character(coefs$TRAITVAL)) {
all.traits <- bcnt.t$TRAITVAL
}
}
fsite <- names(bcnt.otu)[1]
fabund <- names(bcnt.otu)[3]
ftaxon <- names(bcnt.otu)[2]
for (i in 1:length(traitval.u)) {
incvec <- regexpr(traitval.u[i], all.traits) != -1
tr.rich <- tapply(bcnt.t$OTU[incvec], bcnt.t[incvec,fsite],
function(x) length(unique(x)))
tr.rich[is.na(tr.rich)] <- 0
matout[,(i-1)*3+1] <- tr.rich
trich <- tapply(bcnt.otu[, ftaxon], bcnt.otu[,fsite],
function(x) length(unique(x)))
matout[,(i-1)*3+2] <- tr.rich/trich
totabund <- tapply(bcnt.otu[,fabund], bcnt.otu[,fsite], sum)
tr.abund <- tapply(bcnt.t[incvec,fabund], bcnt.t[incvec,fsite], sum)
tr.abund[is.na(tr.abund)] <- 0
matout[, (i-1)*3+3] <- tr.abund/totabund
}
names0 <- paste(rep(traitval.u, times = rep(3, times = length(traitval.u))),
rep(c(".RICH", ".PTAX", ".PABN"), times = length(traitval.u)),
sep = "")
dfout <- data.frame(id = levels(bcnt.otu[,1]), matout)
names0 <- c(fsite, names0)
names(dfout) <- names0
return(dfout)
}
|
prl_ewa <- hBayesDM_model(
task_name = "prl",
model_name = "ewa",
model_type = "",
data_columns = c("subjID", "choice", "outcome"),
parameters = list(
"phi" = c(0, 0.5, 1),
"rho" = c(0, 0.1, 1),
"beta" = c(0, 1, 10)
),
regressors = list(
"ev_c" = 2,
"ev_nc" = 2,
"ew_c" = 2,
"ew_nc" = 2
),
postpreds = c("y_pred"),
preprocess_func = prl_preprocess_func)
|
makeDF <- function(rawdata, colSelect=NULL, showHidden, colNameOpt)
{
decode <- fromJSON(rawdata, simplifyVector=FALSE, simplifyDataFrame=FALSE)
if(length(decode$columnModel)==0){
stop('No columns exist in the result set. Be sure you are using the column name for colNameOpt="fieldname" and the column label for colNameOpt="caption" in the colSelect vector. See the documentation for more details.')
}
colModelNames = c()
colModelLabels = c()
colModelRNames = c()
for(i in 1:length(decode$columnModel)){
if(!is.null(decode$columnModel[[i]]$dataIndex)){
colModelNames = c(colModelNames, decode$columnModel[[i]]$dataIndex)
colModelRNames = c(colModelRNames, .getRNameFromName(decode$columnModel[[i]]$dataIndex, existing=colModelRNames))
}
if(!is.null(decode$columnModel[[i]]$header)){
colModelLabels = c(colModelLabels, decode$columnModel[[i]]$header)
}
}
colSelectVector <- NULL
if(!is.null(colSelect)){
colSelectVector <- strsplit(colSelect, ",")[[1]]
}
if(!is.null(colSelectVector) & length(colSelectVector)>0){
for(i in 1:length(colSelectVector)){
if(colSelectVector[[i]] != "*" & !(colSelectVector[[i]] %in% colModelNames) & !(colSelectVector[[i]] %in% colModelLabels) & !(colSelectVector[[i]] %in% colModelRNames)){
stop(paste('The column "',colSelectVector[[i]],'" specified in the colSelect variable does not exist in the result set. Be sure you are using the column name for colNameOpt="fieldname" and the column label for colNameOpt="caption". See the documentation for more details.',sep=''))
}
}
}
cnames <- NULL
hindex <- NULL
hide <- NULL
for(j in 1:length(decode$columnModel))
{
if (colNameOpt == "caption") {
cname <- decode$columnModel[[j]]$header
} else if (colNameOpt == "fieldname") {
cname <- decode$columnModel[[j]]$dataIndex
} else if (colNameOpt == "rname" ) {
cname <- .getRNameFromName(decode$columnModel[[j]]$dataIndex, existing=cnames)
} else {
stop("Invalid colNameOpt option. Valid values are caption, fieldname, and rname.")
}
cnames <- c(cnames, cname)
hindex <- c(hindex, decode$columnModel[[j]]$dataIndex)
colHidden <- decode$columnModel[[j]]$hidden
if(!is.null(colHidden)) {
if(colHidden & !is.null(colSelectVector)) {
colHidden <- !(decode$columnModel[[j]]$header %in% colSelectVector | decode$columnModel[[j]]$dataIndex %in% colSelectVector)
}
}
hide <- c(hide, colHidden)
}
refdf <- data.frame(cnames,hindex,hide)
if(length(decode$rows)<1){
tohide <- length(which(refdf$hide==TRUE))
totalcol <- length(refdf$cnames)
if(showHidden==FALSE){
emptydf <- as.data.frame(rep(list(num=double(0)), each=(totalcol-tohide)))
colnames(emptydf) <- refdf$cnames[refdf$hide==FALSE]
warning("Empty data frame was returned. Query may be too restrictive.", call.=FALSE)
return(emptydf)
} else {
emptydf <- as.data.frame(rep(list(num=double(0)), each=(totalcol)))
colnames(emptydf) <- refdf$cnames
warning("Empty data frame was returned. Query may be too restrictive.", call.=FALSE)
}
return(emptydf)
}
if(length(decode$rows)>0) {
hold.dat <- NULL
tmprow <- filterrow(decode$rows[[1]])
hold.dat<-listToMatrix(decode$rows, names(tmprow))
hold.dat <- as.data.frame(hold.dat,stringsAsFactors=FALSE)
names(hold.dat) <- names(tmprow)
}
oindex <- NULL
for(k in 1:length(cnames)){oindex <- rbind(oindex, which(names(hold.dat)==refdf$hindex[k]))}
refdf$oindex <- oindex
newdat <- as.data.frame(hold.dat[,refdf$oindex],stringsAsFactors=FALSE)
refdf$type <- NULL
for(p in 1:dim(refdf)[1]) {
ind <- which(refdf$hindex==decode$metaData$fields[[p]]$name)
refdf$type[ind] <- decode$metaData$fields[[p]]$type
}
if (showHidden==TRUE || is.null(decode$metaData$id)) {} else {
hide.ind <- which(refdf$hide==TRUE)
if(length(hide.ind)>0 ) {
if(length(hide.ind) == length(newdat)) {
stop("No visible columns selected. Use the showHidden=TRUE to see these columns.")
} else {
newdat <- newdat[,-hide.ind]
refdf <- refdf[-hide.ind,]
cnames <- cnames[-hide.ind]
}
}
}
if(is.null(dim(newdat))==FALSE)
{
for(j in 1:ncol(newdat))
{
mod <- refdf$type[j]
try(
if(mod=="date") { newdat[,j] <- .parseDate(newdat[,j])} else
if(mod=="string"){ suppressWarnings(mode(newdat[,j]) <- "character")} else
if(mod=="int"){ suppressWarnings(mode(newdat[,j]) <- "integer")} else
if(mod=="boolean"){suppressWarnings(mode(newdat[,j]) <- "logical")} else
if(mod=="float"){suppressWarnings(mode(newdat[,j]) <- "numeric")} else
{print("MetaData field type not recognized.")}
, silent=TRUE)
}
newdat <- as.data.frame(newdat, stringsAsFactors=FALSE); colnames(newdat)<-cnames
}
if(is.null(dim(newdat))==TRUE & length(newdat)>1)
{
mod <- refdf$type
try(
if(mod=="date"){ newdat <- .parseDate(newdat)}else
if(mod=="string"){suppressWarnings(mode(newdat) <- "character")} else
if(mod=="int"){ suppressWarnings(mode(newdat) <- "integer")} else
if(mod=="boolean"){suppressWarnings(mode(newdat) <- "logical")} else
if(mod=="float"){suppressWarnings(mode(newdat) <- "numeric")} else
{print("MetaData field type not recognized.")}
, silent=TRUE)
newdat <- as.data.frame(newdat, stringsAsFactors=FALSE); colnames(newdat)<-cnames[1]
}
return(newdat)
}
filterrow<-function(row)
{
filtered <- NULL
for (x in 1:length(row)) {
valname <- names(row[x])
if ((nchar(valname)>11) && (substr(valname,1,11) == as.character("_labkeyurl_"))) {
next
}
if (is.null(row[x][[valname]])) { row[x][[valname]]<-NA }
filtered <- c(filtered, row[x])
}
return(filtered)
}
.getRNameFromName <- function(lkname, existing=NULL)
{
rname <- gsub("::", "_", lkname)
rname <- tolower(chartr(" /", "__", rname))
if (length(existing)>0)
{
for (i in 1:99)
{
if(length(existing[rname == existing]) ==0)
{break;}
else
{rname<- c(paste0(rname, i))}
}
}
return (rname)
}
.parseDate <- function(s)
{
s <- as.character(s);
d <- tryCatch(as.POSIXct(s),error = function(e) NA);
t <- format(d, "%H-%M-%S")
if (all(t == "00-00-00", na.rm = TRUE)) {
d <- as.Date(d, tz = attr (d, which = "tzone"));
}
return(d);
}
convertFactorsToStrings <- function(df)
{
factors <- sapply(df, is.factor)
df[factors] <- lapply(df[factors], as.character)
return(df);
}
|
f.final.loglike <- function(data, pred, info, type = "EM"){
.prob <- pred/sum(pred)
.pos <- f.pos.match(data = data, info = info)
.prob <- .prob[.pos]
if(type == "full"){
.probsum <- f.groupsum(.prob, data$orig.lines)
.probnorm <- .prob/.probsum
.loglike <- sum(.probnorm * log(.prob))
}
if(type == "EM"){
.prob <- tapply(.prob, data$orig.lines, sum)
.loglike <- sum(log(.prob))
}
return(.loglike)
}
|
context("comb_SA")
test_that("Forward wrong input to EIG1", {
expect_error(comb_SA(1))
expect_error(comb_SA("abs"))
expect_error(comb_SA(list(a=1, b=2)))
expect_error(comb_SA(NULL))
expect_error(comb_SA(NA))
expect_error(comb_SA(Inf))
expect_error(comb_SA(-Inf))
})
test_that("Check for correct class type and accuracy, when only train set is used", {
set.seed(5)
obs <- rnorm(100)
preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]
train_p<-preds[1:80,]
data<-foreccomb(train_o, train_p)
result<-comb_SA(data)
expect_is(result, "foreccomb_res")
expect_length(result, 6)
expect_equal(as.vector(result$Accuracy_Train),
c(-1.002645, 1.434520, 1.190891, 150.254342, 361.450750, 0.125499, 1.034232),
tolerance = 1e-5,
check.attributes = FALSE)
})
test_that( "Check for correct class type and accuracy, when Forecast_Test is provided but not Actual_Test", {
set.seed(5)
obs <- rnorm(100)
preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]
train_p<-preds[1:80,]
test_p<-preds[81:100,]
data<-foreccomb(train_o, train_p, newpreds = test_p)
result<-comb_SA(data)
expect_is(result, "foreccomb_res")
expect_length(result, 7)
expect_equal(as.vector(result$Accuracy_Train),
c(-1.002645, 1.434520, 1.190891, 150.254342, 361.450750, 0.125499, 1.034232),
tolerance = 1e-5,
check.attributes = FALSE)
})
test_that( "Check for correct class type and accuracy, when test set is used", {
set.seed(5)
obs <- rnorm(100)
preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]
train_p<-preds[1:80,]
test_o<-obs[81:100]
test_p<-preds[81:100,]
data<-foreccomb(train_o, train_p, test_o, test_p)
result<-comb_SA(data)
expect_is(result, "foreccomb_res")
expect_length(result, 8)
expect_equal(as.vector(result$Accuracy_Test),
c(-0.919075, 1.354865, 1.093815, 614.620313, 647.850542),
tolerance = 1e-5,
check.attributes = FALSE)
})
test_that( "Check for correct combination, when test set is used with the predict function (simplified)", {
set.seed(5)
obs <- rnorm(100)
preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]
train_p<-preds[1:80,]
test_p<-preds[81:100,]
data<-foreccomb(train_o, train_p)
result<-comb_SA(data)
data2<-foreccomb(train_o, train_p, newpreds=test_p)
result2<-comb_SA(data2)
preds <- predict(result, test_p, simplify = TRUE)
expect_equal(as.vector(preds)[1:5],
result2$Forecasts_Test[1:5],
tolerance = 1e-5,
check.attributes = FALSE)
})
test_that( "Check for correct combination, when test set is used with the predict function (extend object)", {
set.seed(5)
obs <- rnorm(100)
preds <- matrix(rnorm(1000, 1), 100, 10)
train_o<-obs[1:80]
train_p<-preds[1:80,]
test_p<-preds[81:100,]
data<-foreccomb(train_o, train_p)
result<-comb_SA(data)
data2<-foreccomb(train_o, train_p, newpreds=test_p)
result2<-comb_SA(data2)
preds <- predict(result, test_p, simplify = FALSE)
expect_equal(as.vector(preds$Forecasts_Test)[1:5],
result2$Forecasts_Test[1:5],
tolerance = 1e-5,
check.attributes = FALSE)
})
|
simVARmodel <- function (numT, model, burnin = 0) {
varCoef <- model$Coef
noiseCov <- model$Sigma
dof <- model$dof
p <- length(varCoef$A)
K <- dim(varCoef$A[[1]])[1]
if (is.null(noiseCov)) {
noiseCov <- diag(1, K)
} else {
if ( length(noiseCov) == 1 ) {
noiseCov <- diag(noiseCov, K)
}
}
if (is.infinite(dof)) {
retTS <- MASS::mvrnorm(p + burnin + numT, rep(0, K), noiseCov)
} else {
retTS <- mvtnorm::rmvt(p + burnin + numT, df = dof, delta = rep(0, K), sigma = noiseCov)
}
for (j in (p+1):(p+burnin+numT)) {
retTS[j, ] = retTS[j, ] + t(varCoef$c)
for (k in 1:p) {
retTS[j, ] = retTS[j, ] + retTS[j - k, ] %*% t(varCoef$A[[k]])
}
}
colnames(retTS) <- paste("y", 1:K, sep = "")
return( retTS[(p + burnin + 1):(p + burnin + numT), , drop = FALSE] )
}
|
plot.csFSSgr <-
function (x, plotclust = TRUE, plotscale = TRUE, sollabels=FALSE, ...)
{
if (plotscale == TRUE) {
if (sollabels==FALSE)
plot(x$epscale[, 1], x$epscale[, 2], ...)
else {
plot(x$epscale[, 1], x$epscale[, 2], type="n", ...)
text(x$epscale[, 1], x$epscale[, 2], labels=as.character(x$epclust$labels))
}
}
if (plotclust == TRUE) {
plot(x$epclust, ...)
}
}
|
context("catalog_apply generic")
ctg <- random_2files_250points
opt_chunk_size(ctg) <- 151
opt_progress(ctg) <- FALSE
test_that("catalog_apply makes strict non-overlaping chunks", {
test <- function(cluster)
{
las <- readLAS(cluster)
if (is.empty(las)) return(NULL)
return(nrow(las@data))
}
req <- catalog_apply(ctg, test)
s1 <- do.call(sum, req)
s2 <- sum(ctg@data$Number.of.point.records)
expect_equal(length(req), 2L)
expect_equal(s1, s2)
skip_on_cran()
test <- function(cluster)
{
las <- readLAS(cluster)
if (is.empty(las)) return(NULL)
return(sum(las@data$ReturnNumber == 1))
}
req <- catalog_apply(ctg, test)
s1 <- do.call(sum, req)
s2 <- sum(ctg@data$Number.of.1st.return)
expect_equal(length(req), 2L)
expect_equal(s1, s2)
})
test_that("catalog_apply fixes chunk alignment", {
test <- function(cluster, res)
{
las <- readLAS(cluster)
if (is.empty(las)) return(NULL)
return(npoints(las))
}
res = 8
R0 <- list(381, 119)
R1 <- catalog_apply(ctg, test, res = res)
option <- list(raster_alignment = res)
expect_message(R2 <- catalog_apply(ctg, test, res = res, .options = option), "Chunk size changed to 152")
expect_equal(R0, R2)
expect_true(!identical(R0, R1))
})
test_that("catalog_apply fixes chunk alignment even by file", {
test <- function(cluster, res, align)
{
las <- readLAS(cluster)
if (is.empty(las)) return(NULL)
r = grid_metrics(las, ~max(Z), res, align)
return(r)
}
res = 8
sta = c(8,8)
opt_chunk_size(ctg) <- 0
las = readLAS(ctg)
R0 = grid_metrics(las, ~max(Z), res = res, start = sta)
R1 <- catalog_sapply(ctg, test, res = res, align = sta)
option <- list(raster_alignment = list(res = res, start = sta))
R2 <- catalog_sapply(ctg, test, res = res, align = sta, .options = option)
expect_equal(R0, R2)
expect_true(!identical(R0[], R1[]))
})
test_that("catalog_apply generates errors if function does not return NULL for empty chunks", {
test <- function(cluster)
{
las <- readLAS(cluster)
return(0)
}
expect_error(catalog_apply(ctg, test), "not return NULL for empty chunks")
})
test_that("catalog_apply use alternative directories", {
skip_on_cran()
test <- function(cluster)
{
las <- readLAS(cluster)
if (is.empty(las)) return(NULL)
return(0)
}
realdir <- paste0(dirname(ctg$filename[1]), "/")
falsedir <- "/home/user/data/"
ctg@data$filename <- paste0(falsedir,basename(ctg$filename))
expect_error(catalog_apply(ctg, test))
ctg@input_options$alt_dir = c(falsedir,realdir)
expect_error(catalog_apply(ctg, test), NA)
})
test_that("catalog_apply return a partial ouptut and generates logs", {
test <- function(cluster) {
if (raster::extent(cluster)@ymin > 80) stop("Test error")
return(data.frame(X = 1:3))
}
opt_chunk_size(ctg) <- 0
opt_wall_to_wall(ctg) <- FALSE
option <- list(automerge = TRUE)
expect_message(req1 <- catalog_apply(ctg, test), "chunk2.rds")
expect_message(req2 <- catalog_apply(ctg, test, .options = option), "Test error")
expect_is(req1, "list")
expect_equal(length(req1), 1L)
expect_is(req2, "data.frame")
expect_equal(nrow(req2), 3L)
})
test_that("catalog_apply can bypass errors", {
test <- function(cluster) {
if (raster::extent(cluster)@ymin > 80) stop("Test error")
return(data.frame(X = 1:3))
}
opt_chunk_size(ctg) <- 0
opt_wall_to_wall(ctg) <- FALSE
opt_stop_early(ctg) <- FALSE
expect_message(catalog_apply(ctg, test), NA)
})
test_that("User get a warning/error when using ORIGINALFILENAME", {
expect_message({opt_output_files(ctg) <- "{*}"}, "makes sense only when processing by file")
expect_message({opt_output_files(ctg) <- "{ID}"}, NA)
})
test_that("User get throw error if function does not return NULL for empty chun", {
test <- function(cluster) {
las <- readLAS(cluster)
return(nrow(las@data))
}
test2 <- function(cluster) {
stop("dummy error", call. = FALSE)
}
expect_error(catalog_apply(ctg, test), "User's function does not return NULL")
expect_error(catalog_apply(ctg, test2), "dummy error")
})
|
acf2incr <- function(acf) {
N <- length(acf)-1
if(N == 1) {
iacf <- 2*(acf[1]-acf[2])
} else {
iacf <- 2*acf[1:N] - acf[1:N+1] - acf[c(2, 1:(N-1))]
}
iacf
}
|
smape <- function(data, ...) {
UseMethod("smape")
}
smape <- new_numeric_metric(
smape,
direction = "minimize"
)
smape.data.frame <- function(data, truth, estimate, na_rm = TRUE, ...) {
metric_summarizer(
metric_nm = "smape",
metric_fn = smape_vec,
data = data,
truth = !!enquo(truth),
estimate = !!enquo(estimate),
na_rm = na_rm
)
}
smape_vec <- function(truth, estimate, na_rm = TRUE, ...) {
smape_impl <- function(truth, estimate) {
percent_scale <- 100
numer <- abs(estimate - truth)
denom <- (abs(truth) + abs(estimate)) / 2
mean(numer / denom) * percent_scale
}
metric_vec_template(
metric_impl = smape_impl,
truth = truth,
estimate = estimate,
na_rm = na_rm,
cls = "numeric"
)
}
|
HKSPOR <- function(X,Y,deg,K,constraint=1,EM=TRUE,TimeTrans_Prop=c(),plotG=TRUE){
if( (length(which(is.na(X))) != 0)){
Y = Y[-which(is.na(X))]
X = X[-which(is.na(X))]
warning("X contains missing data, these data have been deleted")
}
if( (length(which(is.na(Y))) != 0)){
X = X[-which(is.na(Y))]
Y = Y[-which(is.na(Y))]
warning("Y contains missing data, these data have been deleted")
}
if(length(which(X != X[order(X)])) > 0){
Y = Y[order(X)]
X = X[order(X)]
warning("X has been ordered")
}
if(length(X) != length(unique(X))){
duble_value = unique(X[which(duplicated(X)==TRUE)])
for(i in 1:length(duble_value)){
new_y = sum(Y[which(X == duble_value[i])])/length(which(X == duble_value[i]))
Y[which(X == duble_value[i])[1]] = new_y
Y = Y[-which(X == duble_value[i])[2:length(which(X == duble_value[i]))]]
X = X[-which(X == duble_value[i])[2:length(which(X == duble_value[i]))]]
warning("Duplicate data of X have been delated. Y becames the mean of these data")
}
}
if(length(X) < K*(deg+2) + K){
warning(paste("X must contain at least",K*(deg+2)+K,"observations to use this degree and this number of regimes"))
deg = floor((length(X)-(3*K))/K)
if(deg <= 0){
deg = 1
K = floor(length(X)/(deg+3))
warning(paste("The degree was reduced to 1 and the number of regimes to",K))
}
warning(paste("The degree was reduced to", deg))
}
if(length(X) < 3*K + K ){
stop(paste("X must contain at least", 3*K + K, "observations for a degree equal to 1 and a number", K, "of regime"))
}
if(K == 1){
nameMat = c()
for(i in 1:(deg+1)){
if((deg-i+1) == 0){
nameMat = c(nameMat,"1")
}else{
nameMat = c(nameMat,paste("X^",(deg-i+1),sep=""))
}
}
mat_param_i <- matrix(0,1,(deg+1),dimnames = list(c(),nameMat))
sigma2_i <- matrix(0,1,1)
VT_opt <- c()
obs_table <- data.frame()
for(i in 1:deg){
obs_table <- as.data.frame(t(rbind.data.frame(t(obs_table),X^i)))
}
lmR <- lm(Y ~ ., data = obs_table)
mat_param_i[1,] <- rev(lmR$coefficients)
sigma2_i[,1] <- sum((lmR$residuals)^2)/(length(Y)-(deg+1))
sortie <- cbind.data.frame(data.frame("TimeT" = c(X[1])),mat_param_i,"sigma2" = t(sigma2_i),row.names=c("1"))
}else{
if(length(X) >= ((deg+2)*K)){
if(length(TimeTrans_Prop) == (K-1)){
VT_opt <- TimeTrans_Prop
}else{
grid_TT <- .TimeT_grid_K_SPOR(X,deg,K)
T_estimation <- .TimeT_estimation_K_SPOR(X,Y,deg,grid_TT,1,K,constraint,EM)
VT_opt <- T_estimation$resFi[2:length(T_estimation$resFi)]
}
res_optim <- .Optimization_K_SPOR(X,Y,deg,VT_opt[order(VT_opt)],EM,constraint)
mat_param <- res_optim[[1]]
sigma2 <- res_optim[[2]]
sortie <- cbind.data.frame(data.frame("TimeT" = c(X[1],VT_opt[order(VT_opt)])),mat_param,"sigma2" = t(sigma2),row.names=as.factor(c(1:(length(VT_opt)+1))))
}else{
warning(paste("For K =", K, "X must have almost a size equal to",(deg+2)*K , sep=" "))
sortie <- c()
}
}
if((plotG == TRUE) && (length(sortie)!=0)){
nameMat = c()
for(i in 1:(deg+1)){
if((deg-i+1) == 0){
nameMat = c(nameMat,"1")
}else{
nameMat = c(nameMat,paste("X^",(deg-i+1),sep=""))
}
}
plot(X,Y,pch=20,cex.main = 3, cex.lab = 2,cex.axis = 2)
if(length(sortie$TimeT) == 1){
pred_y = 0
for(l in 1 :length(nameMat)){
pred_y = pred_y + sortie[1,which(names(sortie)==nameMat[l])]*seq(X[1],X[length(X)],length.out = min(10,length(X)))^(deg-l+1)
}
lines(seq(X[1],X[length(X)],length.out = min(10,length(X))),pred_y, lwd=3.5,lty=3)
}else{
abline(v=c(sortie$TimeT[-1]),lwd=3.5,lty=3)
Tt = sortie$TimeT[-1]
for(i in 1 : length(sortie$TimeT)){
if(i == 1){
pred_y = 0
for(l in 1 :length(nameMat)){
pred_y = pred_y + sortie[i,which(names(sortie)==nameMat[l])]*seq(X[1],Tt[i],length.out = min(10,length(X[which(X <= Tt[i])])))^(deg-l+1)
}
lines(seq(X[1],Tt[i],length.out = min(10,length(X[which(X <= Tt[i])]))), pred_y, lwd=3.5,lty=3)
}else if(i == length(sortie$TimeT)){
pred_y = 0
for(l in 1 :length(nameMat)){
pred_y = pred_y + sortie[i,which(names(sortie)==nameMat[l])]*seq(Tt[i-1],X[length(X)],length.out = min(10,length(X[which(X >= Tt[i-1])])))^(deg-l+1)
}
lines(seq(Tt[i-1],X[length(X)],length.out = min(10,length(X[which(X >= Tt[i-1])]))),pred_y, lwd=3.5,lty=3)
}else{
pred_y = 0
for(l in 1 :length(nameMat)){
pred_y = pred_y + sortie[i,which(names(sortie)==nameMat[l])]*seq(Tt[i-1],Tt[i],length.out = min(10,length(X[which( (X >= Tt[i-1]) & (X <= Tt[i]))])))^(deg-l+1)
}
lines(seq(Tt[i-1],Tt[i],length.out = min(10,length(X[which( (X >= Tt[i-1]) & (X <= Tt[i]))]))),pred_y, lwd=3.5,lty=3)
}
}
}
}
return(sortie)
}
|
ec.EG1 <- function(det1,det2,ymat,npl,befpn,ndet,drop1=NA,drop2=NA){
n<-npl[1];p<-npl[2];nlag<-npl[3]
begtrim <- befpn[1]; endtrim <- befpn[2]
nforecast<-befpn[3]; npred<-befpn[4]
twoqp1 <-ncol(det1); qp1<-twoqp1/2; q <-qp1-1
ntot <-nrow(det1); twop <-2*p; pp1<-p+1
boodet2<-anyNA(det2)
longdata <- as.matrix(ymat);
if(dim(longdata)[1]!=n){cat("wrong number of lines in ymat")}
ndet1<-ndet[1]; ndet2<-ndet[2];
mynames<-colnames(longdata[,pp1:twop])
ylev<-longdata[,pp1:twop]
yEG <- ylev[,1,drop=FALSE]
if(ndet1==1){ivec <- (1:qp1)}
if(ndet1==2){ivec <- (1:(2*qp1))}
if(anyNA(drop1)==F){ivec <-ivec[-drop1]}
if(ndet1==0){xEG <- as.matrix(ylev[,-1,drop=FALSE])
ivec<-NA}else{
xEG <- cbind(ylev[,-1,drop=FALSE],det1[1:n,ivec])}
init <- max(begtrim,nlag,2)
estsample <- (init+1):(n-endtrim)
yEGest <- yEG[estsample]
xEGest <- xEG[estsample,]
outEG <- mls(yEGest,xEGest)
afEG <- cbind(yEGest,outEG$fit)
vEG1step <- as.matrix(outEG$coeffs)
colnames(afEG)[2] <- paste0("fit EG1stage")
colnames(vEG1step) <- paste0("EG1st eq. ",colnames(yEG),sep="")
ibeta<-1:(p-1); beta <- matrix(c(1,-vEG1step[ibeta]))
longafEG <- cbind(yEG,xEG%*%vEG1step)
colnames(longafEG)[2] <- paste0("f+f EG1stage")
if(anyNA(ivec)==T){betad<-NA}else{
betad<-matrix(0,(twoqp1),1); betad[ivec]<--vEG1step[-ibeta]
rownames(betad)<-colnames(det1)}
ecmlong <- as.matrix(yEG-xEG%*%vEG1step)
colnames(ecmlong)<-"ecm_1";
Dy <- as.matrix(longdata[estsample,1:p])
eqnames <- paste("eq",colnames(Dy),sep=". ")
colnames(Dy) <- eqnames
rwsigma <- (colMeans(Dy^2))^.5
rwabsmean <- colMeans(abs(Dy))
xreg <- as.matrix(ecmlong[estsample])
colnames(xreg)<-"ecm_1"
if(nlag>1){xreg<-cbind(xreg,longdata[estsample,(twop+1):((nlag+1)*p)])}
iposini<- (p*(nlag-1))+1;
if(ndet2==0){ivec2 <- NA; iseldet12<-iposini}else{
if(ndet2==1){ivec2 <- (1:qp1)}
if(ndet2==2){ivec2 <- (1:(2*qp1))}
if(anyNA(drop2)==F){ivec2 <-ivec2[-drop2]}
xreg<-cbind(xreg,det1[estsample,ivec2])
iseldet12<-iposini+ivec2
colnames(xreg)[((nlag-1)*p+1+ivec2)]<-colnames(det1)[ivec2]
}
if(boodet2==F){xreg<-cbind(xreg,det2[estsample,])
det2col <-ncol(det2)}
outEC <- mls(Dy,xreg)
acoef <- t(outEC$coeffs)
wald <- Wald.mls(outEC)
DafEG2<-cbind(Dy,outEC$fit)
if(nlag>1){mPhi <- acoef[,2:iposini]
}else{mPhi<-matrix(0,p,p)}
alpha <- acoef[,1,drop=FALSE]
zeta<-matrix(0,p,(twoqp1))
colnames(zeta)<-colnames(det1)
rownames(zeta)<-rownames(acoef)
xi<-zeta;
if(anyNA(ivec2)==F){zeta[,ivec2]<-acoef[,iseldet12]}
if(ndet1==0&&ndet2!=0){xi<-zeta}
if(ndet1!=0&&ndet2==0){xi<-alpha%*%t(betad)}
if(ndet1!=0&&ndet2!=0){xi<-alpha%*%t(betad)+zeta}
if(boodet2==T){nu<-NA}else{
nu<-acoef[,((iseldet12[length(iseldet12)]+1):ncol(acoef))]}
out <-list();
out$ndet <- ndet; out$det1names<-colnames(det1)
out$det2names<-colnames(det2); out$drop1<-drop1
out$drop2 <- drop2; out$estsample <- estsample
out$npl<-npl; out$befpn<-befpn
out$beta <- beta; out$betad <- betad
out$vEG1step <- vEG1step
out$afEG <- afEG; out$longafEG <- longafEG
out$ecm <- ecmlong
out$alpha <- alpha; out$mPhi <- mPhi;
out$mPi <- alpha %*% t(beta)
out$acoef <- acoef; out$acoef_se <- t(outEC$semat)
out$acoef_t <- t(outEC$tmat)
out$acoef_pval <- t(outEC$pmat)
out$res <- outEC$residuals;out$DafEG2 <- DafEG2
out$Omega <- outEC$Omega
out$nu <-nu; out$zeta<-zeta; out$xi<-xi
out$wald<-wald;
out$rwsigma <- rwsigma
out$rwabsmean <- rwabsmean
out$EG1 <- outEG; out$EG2 <- outEC
return(out)
}
|
js <- '{"type":"Feature","properties":{"id":1.0},"geometry":null}'
sf <- geojson_sf(js)
expect_true(attr(sf$geometry, "n_empty") == 1)
expect_true(attributes(sf$geometry)[['class']][1] == "sfc_POINT")
js2 <- sf_geojson(sf, atomise = T)
expect_true(jsonify::validate_json(js2))
expect_true(gsub(" |\\r|\\n|\\t","",js) == js2)
wkt <- geojson_wkt(js)
expect_true(wkt[1, 'geometry'] == "POINT EMPTY")
js <- '{"type":"FeatureCollection","features":[
{"type":"Feature","properties":{"id":1.0},"geometry":{"type":"Point","coordinates":[0.0,0.0]}},
{"type":"Feature","properties":{"id":2.0},"geometry":null}]}'
sf <- geojson_sf(js)
expect_true(attr(sf$geometry, "n_empty") == 1)
expect_true(attributes(sf$geometry)[['class']][1] == "sfc_POINT")
js2 <- sf_geojson(sf)
expect_true(jsonify::validate_json(js2))
expect_true(gsub(" |\\r|\\n|\\t","",js) == js2)
wkt <- geojson_wkt(js)
expect_true(wkt[2, 'geometry'] == "POINT EMPTY")
js <- '{"type":"FeatureCollection","features":[
{"type":"Feature","properties":{"id":1.0},"geometry":{"type":"MultiPoint","coordinates":[[0.0,0.0],[1.0,1.0]]}},
{"type":"Feature","properties":{"id":2.0},"geometry":null}]}'
sf <- geojson_sf(js)
expect_true(attr(sf$geometry, "n_empty") == 1)
expect_true(attributes(sf$geometry)[['class']][1] == "sfc_MULTIPOINT")
js2 <- sf_geojson(sf)
expect_true(jsonify::validate_json(js2))
expect_true(gsub(" |\\r|\\n|\\t","",js) == js2)
wkt <- geojson_wkt(js)
expect_true(wkt[2, 'geometry'] == "POINT EMPTY")
js <- '{"type":"FeatureCollection","features":[
{"type":"Feature","properties":{"id":1.0},"geometry":{"type":"LineString","coordinates":[[0.0,0.0],[1.0,1.0]]}},
{"type":"Feature","properties":{"id":2.0},"geometry":null}]}'
sf <- geojson_sf(js)
expect_true(attr(sf$geometry, "n_empty") == 1)
expect_true(attributes(sf$geometry)[['class']][1] == "sfc_LINESTRING")
js2 <- sf_geojson(sf)
expect_true(jsonify::validate_json(js2))
expect_true(gsub(" |\\r|\\n|\\t","",js) == js2)
wkt <- geojson_wkt(js)
expect_true(wkt[2, 'geometry'] == "POINT EMPTY")
js <- '{"type":"FeatureCollection","features":[
{"type":"Feature","properties":{"id":1.0},"geometry":{"type":"MultiLineString","coordinates":[[[0.0,0.0],[1.0,1.0]]]}},
{"type":"Feature","properties":{"id":2.0},"geometry":null}]}'
sf <- geojson_sf(js)
expect_true(attr(sf$geometry, "n_empty") == 1)
expect_true(attributes(sf$geometry)[['class']][1] == "sfc_MULTILINESTRING")
js2 <- sf_geojson(sf)
expect_true(jsonify::validate_json(js2))
expect_true(gsub(" |\\r|\\n|\\t","",js) == js2)
wkt <- geojson_wkt(js)
expect_true(wkt[2, 'geometry'] == "POINT EMPTY")
js <- '{"type":"FeatureCollection","features":[
{"type":"Feature","properties":{"id":2.0},"geometry":null},
{"type":"Feature","properties":{"id":1.0},"geometry":{"type":"Polygon","coordinates":[[[0.0,0.0],[1.0,1.0],[2.0,2.0],[0.0,0.0]]]}},
{"type":"Feature","properties":{"id":2.0},"geometry":null}]}'
sf <- geojson_sf(js)
expect_true(attr(sf$geometry, "n_empty") == 2)
expect_true(attributes(sf$geometry)[['class']][1] == "sfc_GEOMETRY")
js2 <- sf_geojson(sf)
expect_true(jsonify::validate_json(js2))
expect_true(gsub(" |\\r|\\n|\\t","",js) == js2)
wkt <- geojson_wkt(js)
expect_true(wkt[1, 'geometry'] == "POINT EMPTY")
expect_true(wkt[3, 'geometry'] == "POINT EMPTY")
js <- '{"type":"FeatureCollection","features":[
{"type":"Feature","properties":{"id":1.0},"geometry":{"type":"MultiPolygon","coordinates":[[[[0.0,0.0],[1.0,1.0],[2.0,2.0],[0.0,0.0]]]]}},
{"type":"Feature","properties":{"id":2.0},"geometry":null}]}'
sf <- geojson_sf(js)
expect_true(attr(sf$geometry, "n_empty") == 1)
expect_true(attributes(sf$geometry)[['class']][1] == "sfc_MULTIPOLYGON")
js2 <- sf_geojson(sf)
expect_true(jsonify::validate_json(js2))
expect_true(gsub(" |\\r|\\n|\\t","",js) == js2)
wkt <- geojson_wkt(js)
expect_true(wkt[2, 'geometry'] == "POINT EMPTY")
js <- '{"type":"FeatureCollection","features":[
{"type":"Feature","properties":{"id":1.0},"geometry":{"type":"GeometryCollection","geometries": [
{"type": "Point","coordinates": [100.0,0.0]},
{"type": "LineString","coordinates": [[101.0,0.0],[102.0,1.0]]}]}},
{"type":"Feature","properties":{"id":2.0},"geometry":null}]}'
sf <- geojson_sf(js)
wkt <- geojson_wkt(js)
expect_true(wkt[2, 'geometry'] == "POINT EMPTY")
expect_true(attr(sf$geometry, "n_empty") == 1)
js2 <- sf_geojson(sf)
expect_true(jsonify::validate_json(js2))
expect_true(gsub(" |\\r|\\n|\\t","",js) == js2)
js <- '{"type":"FeatureCollection","features":[{"type":"Feature","properties":{"id":1.0},"geometry":{"type":"GeometryCollection","geometries": [{"type": null},{"type": "LineString","coordinates": [[101.0,0.0],[102.0,1.0]]}]}}]}'
expect_error(geojson_sf(js), "No 'type' member at object index 0 - invalid GeoJSON")
expect_error(geojson_wkt(js), "No 'type' member at object index 0 - invalid GeoJSON")
sf <- structure(list(geometry = structure(list(structure(list(structure(c(0, 0),
class = c("XY", "POINT", "sfg")), structure(c(1, 2, 3, 4), .Dim = c(2L,
2L), class = c("XY", "LINESTRING", "sfg")), structure(c(NA_real_,
NA_real_), class = c("XY", "POINT", "sfg")), structure(list(), class = c("XY",
"MULTIPOLYGON", "sfg"))), class = c("XY", "GEOMETRYCOLLECTION",
"sfg"))), class = c("sfc_GEOMETRYCOLLECTION", "sfc"), precision = 0, bbox = structure(c(xmin = 0,
ymin = 0, xmax = 2, ymax = 4), class = "bbox"), crs = structure(list(
epsg = NA_integer_, proj4string = NA_character_), class = "crs"), n_empty = 0L)), row.names = 1L, class = c("sf",
"data.frame"), sf_column = "geometry", agr = structure(integer(0), class = "factor", .Label = c("constant",
"aggregate", "identity"), .Names = character(0)))
js <- sf_geojson(sf)
expect_true(jsonify::validate_json(js))
expect_false(grepl("null", js))
js <- '{"type":"Feature","properties":{},"geometry":null}'
sf <- geojson_sf( js )
js2 <- sf_geojson( sf, simplify = F )
expect_true(jsonify::validate_json(js2))
js <- '{"type":"FeatureCollection","features":[{"type":"Feature","properties":{},"geometry":null}]}'
sf <- geojson_sf( js )
js2 <- sf_geojson( sf, simplify = T )
expect_true(jsonify::validate_json(js2))
js2 <- sf_geojson( sf, simplify = F )
expect_true(js2 == js)
expect_true(jsonify::validate_json(js2))
sf <- structure(list(geometry = structure(list(structure(c(NA_real_,
NA_real_), class = c("XY", "POINT", "sfg"))), class = c("sfc_POINT",
"sfc"), precision = 0, bbox = structure(c(xmin = NA_real_, ymin = NA_real_,
xmax = NA_real_, ymax = NA_real_), crs = structure(list(epsg = NA_integer_,
proj4string = NA_character_), class = "crs"), class = "bbox"), crs = structure(list(
epsg = NA_integer_, proj4string = NA_character_), class = "crs"), n_empty = 1L)), row.names = 1L, class = c("sf",
"data.frame"), sf_column = "geometry", agr = structure(integer(0), class = "factor", .Label = c("constant",
"aggregate", "identity"), .Names = character(0)))
expect_equal( as.character(sf_geojson( sf )), "null")
js <- sf_geojson( sf , simplify = FALSE )
expect_true( jsonify::validate_json( js ) )
expect_true(grepl("null",js))
|
"pmcode_91113"
|
print.DS_FB_obj <-
function(x, ...){
cat(paste0("\tPosterior Mean = ",round(x$post.vec[2],4), "\n"))
cat(paste0("\tPosterior Mode = ",round(x$post.vec[4],4), "\n"))
cat(paste0("\tLower Bound Credible Interval = ",round(x$interval[1],4), "\n"))
cat(paste0("\tUpper Bound Credible Interval = ",round(x$interval[2],4), "\n"))
cat(paste0("Use plot(x) to generate finite Bayes plot\n"))
}
|
marx <- function(y,x,p_max,sig_level,p_C,p_NC){
if (is.null(x)){
x <- "not"
}
print(match.call())
nargin <- length(as.list(match.call())) -1
if (nargin == 4){
p = 1
}
else{
p = 0
}
if (p == 1){
selection.lag(y,x,p_max)
p_pseudo <- readline(prompt = "Choose lag order for pseudo causal model: ")
p_pseudo <- as.numeric(p_pseudo)
pseudo <- arx.ls(y,x,p_pseudo)
Cov_pseudo <- pseudo[[4]]
U_pseudo <- pseudo[[5]]
test_cdf_pseudo <- cbind(U_pseudo, stats::pnorm(U_pseudo,0,Cov_pseudo))
kstest_results <- stats::ks.test(test_cdf_pseudo[,1],"pnorm",0,Cov_pseudo)
jarquebera <- tseries::jarque.bera.test(U_pseudo)
if (kstest_results$p.value < 0.05){
hh_pseudo = 1
}
else{
hh_pseudo = 0
}
if (jarquebera$p.value < 0.05){
jarque_check = 1
}
else{
jarque_check = 0
}
if (hh_pseudo == 0){
cat(' ', "\n")
cat(' ', "\n")
cat('THE KS-TEST FAILS TO REJECT THE NULL OF NORMALLY DISTRIBUTED RESIDUALS OF THE PURELY CAUSAL ARX MODEL', "\n")
cat('p-value:')
cat(kstest_results$p.value, "\n")
cat('WARNING: MIxED ARX MODEL MIGHT NOT BE IDENTIFIABLE!', "\n")
cat(' ', "\n")
cat(' ', "\n")
}
else{
cat(' ', "\n")
cat(' ', "\n")
cat('THE KS-TEST REJECTS THE NULL OF NORMALLY DISTRIBUTED RESIDUALS OF THE PURELY CAUSAL ARX MODEL', "\n")
cat('p-value:')
cat(kstest_results$p.value, "\n")
cat(' ', "\n")
cat(' ', "\n")
}
if (jarque_check == 0){
cat(' ', "\n")
cat(' ', "\n")
cat('THE JB-TEST FAILS TO REJECT THE NULL OF NORMALLY DISTRIBUTED RESIDUALS OF THE PURELY CAUSAL ARX MODEL', "\n")
cat('p-value:')
cat(jarquebera$p.value, "\n")
cat('WARNING: MIxED ARX MODEL MIGHT NOT BE IDENTIFIABLE!', "\n")
cat(' ', "\n")
cat(' ', "\n")
}
else{
cat(' ', "\n")
cat(' ', "\n")
cat('THE JB-TEST REJECTS THE NULL OF NORMALLY DISTRIBUTED RESIDUALS OF THE PURELY CAUSAL ARX MODEL', "\n")
cat('p-value:')
cat(jarquebera$p.value, "\n")
cat(' ', "\n")
cat(' ', "\n")
}
stats::qqnorm(U_pseudo, main="Normal Probability Plot of Residuals")
stats::qqline(U_pseudo)
selection.lag.lead_results <- selection.lag.lead(y,x,p_pseudo)
p_C <- selection.lag.lead_results[[1]]
p_NC <- selection.lag.lead_results[[2]]
}
marx.t_results <- marx.t(y,x,p_C,p_NC);
B_C <- marx.t_results[[1]]
B_NC <- marx.t_results[[2]]
B_x <- marx.t_results[[3]]
IC <- marx.t_results[[4]]
sig <- marx.t_results[[5]]
df <- marx.t_results[[6]]
inference_results <- inference(y,x,B_C,B_NC,B_x,IC,sig,df,sig_level)
BC <- inference_results[[1]]
BNC <- inference_results[[2]]
Bx <- inference_results[[3]]
ICC <- inference_results[[4]]
std_c <- inference_results[[5]]
std_nc <- inference_results[[6]]
std_x <- inference_results[[7]]
std_ic <- inference_results[[8]]
cat(' ', "\n")
cat(' ', "\n")
cat('Estimated Causal Parameters: ', "\n")
print(B_C)
cat(' ', "\n")
cat('Corresponding Standard Errors: ', "\n")
print(std_c)
cat(' ', "\n")
cat('Corresponding Confidence Intervals: ', "\n")
print(BC)
cat(' ', "\n")
cat(' ', "\n")
cat('Estimated Noncausal Parameters: ', "\n")
print(B_NC)
cat(' ', "\n")
cat('Corresponding Standard Errors: ', "\n")
print(std_nc)
cat(' ', "\n")
cat('Corresponding Confidence Intervals: ', "\n")
print(BNC)
cat(' ', "\n")
cat(' ', "\n")
cat('Estimated Parameters Exogenous Variables: ', "\n")
print(B_x)
cat(' ', "\n")
cat('Corresponding Standard Errors: ', "\n")
print(std_x)
cat(' ', "\n")
cat('Corresponding Confidence Intervals: ', "\n")
print(Bx)
cat(' ', "\n")
cat(' ', "\n")
cat('Estimated Intercept: ', "\n")
print(IC)
cat(' ', "\n")
cat('Corresponding Standard Errors: ', "\n")
print(std_ic)
cat(' ', "\n")
cat('Corresponding Confidence Intervals: ', "\n")
print(ICC)
cat(' ', "\n")
cat(' ', "\n")
cat('Estimated Distributional Parameters (df,sig): ', "\n")
print(c(df,sig))
cat(' ', "\n")
cat(' ', "\n")
}
regressor.matrix <- function(y,x,p){
if (is.null(x)){
x <- "not"
}
y <- fBasics::vec(y)
n <- length(y)
if (p==1){
k <-1
}
else{
k <- NCOL(y)
}
if (p > 0){
Z <- matlab::zeros(n,k*p)
for (i in 1:p){
Z[(1+i):n,((i-1)*k+1):(i*k)] <- y[1:(n-i)]
}
Z <- Z[(1+p):n,]
}
else{
Z <- matrix(,nrow=n,ncol=0)
}
if (x == "not" && length(x) == 1){
Z <- Z
}
if (NCOL(x) == 1 && x != "not"){
Z <- cbind(Z,x[(1+p):n])
}
else if (NCOL(x) > 1 && x != "not"){
Z <- cbind(Z,x[(1+p):n,])
}
return(matrix = Z)
}
arx.ls <- function(y,x,p){
if (is.null(x)){
x <- "not"
}
n <- length(y) - p
Y <- y[(p+1):length(y)]
int <- rep(1,(length(y)-p))
Z <- regressor.matrix(y,x,p)
Z <- cbind(int,Z)
df <- nrow(Z) - NCOL(Z)
B <- solve(t(Z) %*% Z) %*% (t(Z) %*% Y)
if (p > 0){
if (length(x) > 1){
rownames(B) <- c('int', paste('lag', 1:p), paste('exo', 1:NCOL(x)))
}
else{
rownames(B) <- c('int', paste('lag', 1:p))
}
}
else{
if (length(x) > 1){
rownames(B) <- c('int', paste('exo', 1:NCOL(x)))
}
else{
rownames(B) <- 'int'
}
}
FV <- Z %*% B
U <- Y - FV
sig <- (t(U) %*% U)
sig <- as.numeric(sig)
Cov <- (1/n)*sig
Cov <- as.numeric(Cov)
sigma2 <- sum((Y - Z %*% B)^2)/df
qz <- qr(Z)
vcov <- sigma2*chol2inv(qz$qr)
colnames(vcov) <- rownames(vcov) <- colnames(Z)
Loglik <- -(n/2)*(1 + log(2*pi)+log(Cov))
if (p == 0){
B_auto <- 0
}
else{
B_auto <- B[2:(p+1)]
}
if (length(x) > 1){
B_x <- B[(p+2):length(B)]
}
else{
B_x <- 0
}
return(list(coefficients = B, coef.auto = B_auto, coef.exo = B_x, mse = Cov, residuals = U, loglikelihood = Loglik, fitted.values = FV, df = df,vcov=vcov))
}
marx.t <- function(y,x,p_C,p_NC,params0){
nargin <- length(as.list(match.call())) - 1
if (is.null(x)){
x <- "not"
}
if (length(x) == 1){
numcol <- 0
}
else{
numcol <- NCOL(x)
}
if(numcol > 1){
x.rev <- matrix(data=NA,nrow=length(x[,1]),ncol=numcol)
for (i in 1:numcol){
x.rev[,i] <- rev(x[,i])
}
}
else{
x.rev <- matrix(data=NA,nrow=length(x),ncol=numcol)
x.rev <- rev(x)
}
if (nargin < 5){
y <- fBasics::vec(y)
z <- rev(y)
z <- fBasics::vec(z)
BC0 <- arx.ls(y,x,p_C)[[2]]
Bx0 <- arx.ls(y,x,p_C)[[3]]
BNC0 <- arx.ls(z,x.rev,p_NC)[[2]]
IC0 <- 0
df0 <- 20
sig0 <- 2
BC0 <- fBasics::vec(BC0)
BNC0 <- fBasics::vec(BNC0)
Bx0 <- fBasics::vec(Bx0)
if (length(x) > 1){
if (p_C > 0 && p_NC > 0){
params0 <- rbind(BC0,BNC0,Bx0,IC0,sig0,df0)
}
else if (p_NC > 0 && p_C == 0){
params0 <- rbind(BNC0,Bx0,IC0,sig0,df0)
}
else if (p_C > 0 && p_NC == 0){
params0 <- rbind(BC0,Bx0,IC0,sig0,df0)
}
else if (p_C == 0 && p_NC == 0){
params0 <- rbind(Bx0,IC0,sig0,df0)
}
}
else{
if (p_C > 0 && p_NC > 0){
params0 <- rbind(BC0,BNC0,IC0,sig0,df0)
}
else if (p_NC > 0 && p_C == 0){
params0 <- rbind(BNC0,IC0,sig0,df0)
}
else if (p_C > 0 && p_NC == 0){
params0 <- rbind(BC0,IC0,sig0,df0)
}
else if (p_C == 0 && p_NC == 0){
params0 <- rbind(IC0,sig0,df0)
}
}
}
optimization_results <- stats::optim(params0,ll.max,gr=NULL,y=fBasics::vec(y),p_C=p_C,p_NC=p_NC,x=x,method="BFGS",hessian=TRUE)
PARAMS <- optimization_results$par
if (length(x) > 1){
numcol <- NCOL(x)
if (p_C > 0 && p_NC > 0){
B_C <- PARAMS[1:p_C]
B_NC <- PARAMS[(p_C+1):(p_C + p_NC)]
B_x <- PARAMS[(p_C + p_NC + 1):(p_C + p_NC + numcol)]
IC <- PARAMS[(p_C + p_NC + numcol + 1)]
sig <- PARAMS[(p_C + p_NC + numcol + 2)]
df <- PARAMS[(p_C + p_NC + numcol + 3)]
}
else if (p_NC > 0 && p_C == 0){
B_C <- 0
B_NC <- PARAMS[1:p_NC]
B_x <- PARAMS[(p_NC + 1):(p_NC + numcol)]
IC <- PARAMS[(p_NC + numcol + 1)]
sig <- PARAMS[(p_NC + numcol + 2)]
df <- PARAMS[(p_NC + numcol + 3)]
}
else if (p_C > 0 && p_NC == 0){
B_NC <- 0
B_C <- PARAMS[1:p_C]
B_x <- PARAMS[(p_C + 1):(p_C + numcol)]
IC <- PARAMS[(p_C + numcol + 1)]
sig <- PARAMS[(p_C + numcol + 2)]
df <- PARAMS[(p_C + numcol + 3)]
}
else if (p_C == 0 && p_NC == 0){
B_NC <- 0
B_C <- 0
B_x <- PARAMS[(p_C + 3):(p_C + 2 + numcol)]
IC <- PARAMS[(p_C + numcol + 3)]
sig <- PARAMS[(p_C + numcol + 4)]
df <- PARAMS[(p_C + numcol + 5)]
}
}
else{
numcol <- 0
B_x <- 0
if (p_C > 0 && p_NC > 0){
B_C <- PARAMS[1:p_C]
B_NC <- PARAMS[(p_C+1):(p_C + p_NC)]
IC <- PARAMS[(p_C + p_NC + 1)]
sig <- PARAMS[(p_C + p_NC + 2)]
df <- PARAMS[(p_C + p_NC + 3)]
}
else if (p_NC > 0 && p_C == 0){
B_C <- 0
B_NC <- PARAMS[1:p_NC]
IC <- PARAMS[(p_NC + 1)]
sig <- PARAMS[(p_NC + 2)]
df <- PARAMS[(p_NC + 3)]
}
else if (p_C > 0 && p_NC == 0){
B_NC <- 0
B_C <- PARAMS[1:p_C]
IC <- PARAMS[(p_C + 1)]
sig <- PARAMS[(p_C + 2)]
df <- PARAMS[(p_C + 3)]
}
else if (p_C == 0 && p_NC == 0){
B_NC <- 0
B_C <- 0
IC <- PARAMS[1]
sig <- PARAMS[2]
df <- PARAMS[3]
}
}
ZC1 <- y[(p_C+1):length(y)]
ZC1 <- fBasics::vec(ZC1)
ZC2 <- regressor.matrix(y,"not",p_C)
if (p_C == 1){
ZC2 <- fBasics::vec(ZC2)
}
if (p_C > 0){
V <- ZC1 - ZC2 %*% B_C
}
else{
V <- ZC1
}
U <- rev(V)
U <- fBasics::vec(U)
ZNC1 <- U[(p_NC + 1):length(U)]
ZNC1 <- fBasics::vec(ZNC1)
ZNC2 <- regressor.matrix(U,"not",p_NC)
if(numcol > 1){
for (i in 1:numcol){
x[,i] <- rev(x[,i])
}
}
else{
x <- rev(x)
}
if(length(x) > 1){
if (numcol > 1 ){
x <- x[(p_NC +1):length(U),]
}
else{
x <- x[(p_NC +1):length(U)]
x <- fBasics::vec(x)
}
}
else{
x <- "not"
}
if (p_NC == 1){
ZNC2 <- fBasics::vec(ZNC2)
}
if (length(x) > 1){
if (p_NC > 0){
E <- rev(ZNC1 - (ZNC2 %*% B_NC) - IC - (x %*% B_x))
}
else{
E <- rev(ZNC1 - IC - (x %*% B_x))
}
}
else{
if (p_NC > 0){
E <- rev(ZNC1 - (ZNC2 %*% B_NC) - IC)
}
else{
E <- rev(ZNC1 - IC)
}
}
se <- sqrt(diag(solve(optimization_results$hessian)))
se.dist <- se[(length(se)-1):length(se)]
se.dist <- rev(se.dist)
return(list(coef.c = B_C, coef.nc = B_NC, coef.exo = B_x, coef.int = IC, scale = sig,df = df,residuals = E, se.dist = se.dist))
}
inference <- function(y,x,B_C,B_NC,B_x,IC,sig,df,sig_level){
if (is.null(x)){
x <- "not"
}
p_C = length(B_C)
p_NC = length(B_NC)
p_x = length(B_x)
if (length(B_C) == 1 && B_C == 0){
p_C = 0
}
if (length(B_NC) == 1 && B_NC == 0){
p_NC = 0
}
obser = length(y) - p_C - p_NC
regressor_C <- regressor.matrix(y,"not",p_C)
regressand_C <- fBasics::vec(y[(p_C+1):length(y)])
if (p_C == 1){
regressor_C <- fBasics::vec(regressor_C)
}
regressor_NC <- regressor.matrix(fBasics::vec(rev(y)),"not",p_NC)
if (p_NC > 1){
for(i in 1:NCOL(regressor_NC)){
regressor_NC[,i] <- fBasics::vec(rev(regressor_NC[,i]))
}
}
if (p_NC == 1){
regressor_NC <- fBasics::vec(rev(fBasics::vec(regressor_NC)))
}
regressand_NC <- fBasics::vec(y[1:(length(y)-p_NC)])
if (p_C > 0){
if (p_NC > 0){
U <- regressand_NC - regressor_NC %*% B_NC
}
else{
U <- regressand_NC
}
U_regressor_C <- regressor.matrix(U,"not",p_C)
Gam_C <- (t(U_regressor_C) %*% U_regressor_C)/obser
Cov_C <- (df+3)/(df+1)*sig^2*solve(Gam_C)
std_c <- matrix(data=NA,nrow=length(Cov_C[,1]), ncol=1)
BC <- matrix(data=NA,nrow=length(Cov_C[,1]), ncol=2)
for(i in 1:length(Cov_C[,1])){
std_c[i] = sqrt(Cov_C[i,i]/obser)
BC[i,] = c((B_C[i] - stats::qnorm(1-(sig_level/2))*std_c[i]),(B_C[i] + stats::qnorm(1-(sig_level/2))*std_c[i]))
}
}
else if (p_C == 0){
BC = 0
std_c = 0
}
if (p_NC > 0){
if (p_C > 0){
V <- regressand_C - regressor_C %*% B_C
}
else{
V <- regressand_C
}
V_regressor_NC <- regressor.matrix(fBasics::vec(rev(V)),"not",p_NC)
if (p_NC > 1){
for(i in 1:NCOL(V_regressor_NC)){
V_regressor_NC[,i] <- fBasics::vec(rev(V_regressor_NC[,i]))
}
}
if (p_NC == 1){
V_regressor_NC <- fBasics::vec(rev(fBasics::vec(V_regressor_NC)))
}
Gam_NC <- (1/obser)* (t(V_regressor_NC) %*% V_regressor_NC)
Cov_NC <- (df+3)/(df+1)*sig^2*solve(Gam_NC)
std_nc <- matrix(data=NA,nrow=length(Cov_NC[,1]), ncol=1)
BNC <- matrix(data=NA,nrow=length(Cov_NC[,1]), ncol=2)
for(i in 1:length(Cov_NC[,1])){
std_nc[i] = sqrt(Cov_NC[i,i]/obser)
BNC[i,] = c((B_NC[i] - stats::qnorm(1-(sig_level/2))*std_nc[i]),(B_NC[i] + stats::qnorm(1-(sig_level/2))*std_nc[i]))
}
}
else if (p_NC == 0){
BNC = 0
std_nc = 0
}
Cov_IC <- (df+3)/(df+1)*sig^2
std_ic <- sqrt(Cov_IC/obser)
BIC <- c((IC - stats::qnorm(1-(sig_level/2))*std_ic),(IC + stats::qnorm(1-(sig_level/2))*std_ic))
if (length(x) > 1){
Gam_x <- (1/obser) * (t(x) %*% x)
Cov_x <- (df+3)/(df+1)*sig^2*solve(Gam_x)
std_x <- matrix(data=NA,nrow=length(Cov_x[,1]), ncol=1)
Bx <- matrix(data=NA,nrow=length(Cov_x[,1]), ncol=2)
for(i in 1:length(Cov_x[,1])){
std_x[i] = sqrt(Cov_x[i,i]/obser)
Bx[i,] = c((B_x[i] - stats::qnorm(1-(sig_level/2))*std_x[i]),(B_x[i] + stats::qnorm(1-(sig_level/2))*std_x[i]))
}
}
else{
Bx <- 0
std_x <- 0
}
return(list(CI.c = BC, CI.nc = BNC, CI.exo = Bx, CI.int = BIC, se.c = std_c, se.nc = std_nc, se.exo = std_x, se.int = std_ic))
}
ll.max <- function(params,y,x,p_C,p_NC){
if (is.null(x)){
x <- "not"
}
y <- fBasics::vec(y)
if (length(x) > 1){
colnum <- NCOL(x)
if (p_C > 0 && p_NC > 0){
BC1 <- params[1:p_C]
BNC1 <- params[(p_C+1):(p_C + p_NC)]
Bx1 <- params[(p_C+ p_NC + 1):(p_C + p_NC + colnum)]
IC1 <- params[(p_C + p_NC + colnum + 1)]
sig1 <- params[(p_C + p_NC + colnum + 2)]
df1 <- params[(p_C + p_NC + colnum + 3)]
}
else if (p_NC > 0 && p_C == 0){
BC1 <- 0
BNC1 <- params[1:p_NC]
Bx1 <- params[(p_NC+1):(p_NC + colnum)]
IC1 <- params[(p_NC + colnum + 1)]
sig1 <- params[(p_NC + colnum + 2)]
df1 <- params[(p_NC + colnum + 3)]
}
else if (p_C > 0 && p_NC == 0){
BNC1 <- 0
BC1 <- params[1:p_C]
Bx1 <- params[(p_C + 1): (p_C + colnum)]
IC1 <- params[(p_C + colnum + 1)]
sig1 <- params[(p_C + colnum + 2)]
df1 <- params[(p_C + colnum + 3)]
}
else if (p_C == 0 && p_NC == 0){
BNC1 <- 0
BC1 <- 0
Bx1 <- params[(1:colnum)]
IC1 <- params[(colnum + 1)]
sig1 <- params[(colnum + 2)]
df1 <- params[(colnum + 3)]
}
}
else{
colnum <- 0
if (p_C > 0 && p_NC > 0){
BC1 <- params[1:p_C]
BNC1 <- params[(p_C+1):(p_C + p_NC)]
IC1 <- params[(p_C + p_NC + 1)]
sig1 <- params[(p_C + p_NC + 2)]
df1 <- params[(p_C + p_NC + 3)]
}
else if (p_NC > 0 && p_C == 0){
BC1 <- 0
BNC1 <- params[1:p_NC]
IC1 <- params[(p_NC + 1)]
sig1 <- params[(p_NC + 2)]
df1 <- params[(p_NC + 3)]
}
else if (p_C > 0 && p_NC == 0){
BNC1 <- 0
BC1 <- params[1:p_C]
IC1 <- params[(p_C + 1)]
sig1 <- params[(p_C + 2)]
df1 <- params[(p_C + 3)]
}
else if (p_C == 0 && p_NC == 0){
BNC1 <- 0
BC1 <- 0
IC1 <- params[1]
sig1 <- params[2]
df1 <- params[3]
}
}
ZC1 <- y[(p_C+1):length(y)]
ZC1 <- fBasics::vec(ZC1)
ZC2 <- regressor.matrix(y,"not",p_C)
if (p_C == 1){
ZC2 <- fBasics::vec(ZC2)
}
if (p_C > 0){
V <- ZC1 - (ZC2 %*% BC1)
}
else{
V <- ZC1
}
U <- rev(V)
U <- fBasics::vec(U)
ZNC1 <- U[(p_NC + 1):length(U)]
ZNC1 <- fBasics::vec(ZNC1)
ZNC2 <- regressor.matrix(U,"not",p_NC)
if(colnum > 1){
for (i in 1:colnum){
x[,i] <- rev(x[,i])
}
}
else{
x <- rev(x)
}
if (length(x) > 1){
if (colnum > 1){
x <- x[(p_NC +1):length(U),]
}
else{
x <- x[(p_NC + 1):length(U)]
x <- fBasics::vec(x)
}
}
else{
x = "not"
}
if (p_NC == 1){
ZNC2 <- fBasics::vec(ZNC2)
}
if (length(x) > 1){
if (p_NC > 0){
E <- rev(ZNC1 - (ZNC2 %*% BNC1) - IC1 - (x %*% Bx1))
}
else{
E <- rev(ZNC1 - IC1 - (x %*% Bx1))
}
}
else{
if (p_NC > 0){
E <- rev(ZNC1 - (ZNC2 %*% BNC1) - IC1)
}
else{
E <- rev(ZNC1 - IC1)
}
}
n <- length(E)
loglik_eval <- -(n*lgamma((df1+1)/2) - n*log(sqrt(df1*pi*sig1^2)) - n*lgamma(df1/2) - ((df1+1)/2)*log(1+(E/sig1)^2/df1) %*% matlab::ones(n,1))
return(neg.loglikelihood = loglik_eval)
}
selection.lag.lead <- function(y,x,p_pseudo){
if (is.null(x)){
x <- "not"
}
P_C <- seq(length=(p_pseudo+1), from=0, by=1)
P_C <- fBasics::vec(P_C)
P_NC <- rev(P_C)
P_NC <- fBasics::vec(P_NC)
n <- length(y) - p_pseudo
loglik <- c()
for (i in 1:(p_pseudo+1)){
marx.t_results <- marx.t(y,x,P_C[i],P_NC[i]);
sig <- marx.t_results[[5]]
df <- marx.t_results[[6]]
E <- marx.t_results[[7]]
loglik[i] <- (n*lgamma((df+1)/2) - n*log(sqrt(df*pi*sig^2)) - n*lgamma(df/2) - ((df+1)/2)*log(1+(E/sig)^2/df) %*% matlab::ones(n,1))
}
maxloglik <- which.max(loglik)
P = cbind(P_C,P_NC)
P = fBasics::vec(P[maxloglik,])
p_C <- P[1]
p_NC <- P[2]
return(list(p.C = p_C, p.NC = p_NC,loglikelihood = rev(loglik)))
}
selection.lag <- function(y,x,p_max){
if (is.null(x)){
x <- "not"
}
bic_results <- bic(y,x,p_max)
aic_results <- aic(y,x,p_max)
hq_results <- hq(y,x,p_max)
bic_vec <- bic_results[[2]]
colnames(bic_vec) <- paste('p =', 0:p_max)
aic_vec <- aic_results[[2]]
colnames(aic_vec) <- paste('p =', 0:p_max)
hq_vec <- hq_results[[2]]
colnames(hq_vec) <- paste('p =', 0:p_max)
cat('Order Selection Criteria Pseudo Causal Model:', "\n")
cat(' ', "\n")
cat('BAYESIAN INFORMATION CRITERION', "\n")
print(bic_vec)
cat(' ', "\n")
cat('Minimum value attained at p = ')
cat(which.min(bic_vec) -1)
cat(' ', "\n")
cat(' ', "\n")
cat('AKAIKE INFORMATION CRITERION', "\n")
print(aic_vec)
cat(' ', "\n")
cat('Minimum value attained at p = ')
cat(which.min(aic_vec) - 1)
cat(' ', "\n")
cat(' ', "\n")
cat('HANNAN-QUINN INFORMATION CRITERION', "\n")
print(hq_vec)
cat(' ', "\n")
cat('Minimum value attained at p = ')
cat(which.min(hq_vec) - 1)
cat(' ', "\n")
cat(' ', "\n")
return(list(bic = bic_vec, aic = aic_vec, hq = hq_vec))
}
bic <- function(y,x,p_max){
if (is.null(x)){
x <- "not"
}
y <- fBasics::vec(y)
if (length(x) > 1){
numcol <- NCOL(x)
}
else{
numcol = 0
}
crit <- matrix(data=NA, nrow=(p_max+1), ncol=1)
for (p in 0:p_max){
arx.ls_results <- arx.ls(fBasics::vec(y),x,p)
n <- length(arx.ls_results[[5]])
Cov <- arx.ls_results[[6]]
crit[(p+1)] <- -2*Cov/n + ((log(n))/n)*(p+1+numcol)
}
p_bic <- which.min(crit) - 1
crit <- t(crit)
colnames(crit) <- paste('p =', 0:p_max)
return(list(p = p_bic, values= crit))
}
aic <- function(y,x,p_max){
if (is.null(x)){
x <- "not"
}
y <- fBasics::vec(y)
if (length(x) > 1){
numcol <- NCOL(x)
}
else{
numcol = 0
}
crit <- matrix(data=NA, nrow=(p_max+1), ncol=1)
for (p in 0:p_max){
arx.ls_results <- arx.ls(fBasics::vec(y),x,p)
n <- length(arx.ls_results[[5]])
Cov <- arx.ls_results[[6]]
crit[(p+1)] <- -2*Cov/n + (2/n)*(p+1+numcol)
}
p_aic <- which.min(crit) - 1
crit <- t(crit)
colnames(crit) <- paste('p =', 0:p_max)
return(list(p = p_aic,values = crit))
}
hq <- function(y,x,p_max){
if (is.null(x)){
x <- "not"
}
y <- fBasics::vec(y)
if (length(x) > 1){
numcol <- NCOL(x)
}
else{
numcol = 0
}
crit <- matrix(data=NA, nrow=(p_max+1), ncol=1)
for (p in 0:p_max){
arx.ls_results <- arx.ls(fBasics::vec(y),x,p)
n <- length(arx.ls_results[[5]])
Cov <- arx.ls_results[[6]]
crit[(p+1)] <- -2*Cov/n + ((2*log(log(n)))/n)*(p+1+numcol)
}
p_hq <- which.min(crit) - 1
crit <- t(crit)
colnames(crit) <- paste('p =', 0:p_max)
return(list(p = p_hq, values = crit))
}
sim.marx <- function(dist.eps, dist.x, obs, c_par, nc_par, exo_par){
if (is.null(dist.x)){
exo_par = 0
dist.x = 0
}
if (length(dist.x) == 1){
exo_par = 0
}
M <- 5*obs + 300
M.star <- 500
if (dist.eps[1] == 't'){
eps <- as.numeric(dist.eps[3])*(stats::rt((3*(obs+200)), df = as.numeric(dist.eps[2]), ncp = 0))
} else if (dist.eps[1] == 'cauchy'){
eps <- stats::rcauchy((3*(obs+200)), location= as.numeric(dist.eps[2]), scale=as.numeric(dist.eps[3]))
} else if (dist.eps[1] == 'normal') {
eps <- stats::rnorm((3*(obs+200)), mean = as.numeric(dist.eps[2]), sd=as.numeric(dist.eps[3]))
} else if (dist.eps[1] == 'stable') {
eps <- stabledist::rstable((3*(obs+200)), alpha = as.numeric(dist.eps[2]), beta=as.numeric(dist.eps[3]), gamma=as.numeric(dist.eps[4]), delta=as.numeric(dist.eps[5]))
}
if (dist.x[1] == 't'){
x <- as.numeric(dist.x[3])*(stats::rt((3*(M+200)), df = as.numeric(dist.x[2]), ncp = 0))
} else if (dist.x[1] == 'cauchy'){
x <- stats::rcauchy((3*(M+200)), location= as.numeric(dist.x[2]), scale=as.numeric(dist.x[3]))
} else if (dist.x[1] == 'normal') {
x <- stats::rnorm((3*(M+200)), mean = as.numeric(dist.x[2]), sd=as.numeric(dist.x[3]))
} else if (dist.x[1] == 'stable') {
x <- stabledist::rstable((3*(M+200)), alpha = as.numeric(dist.x[2]), beta=as.numeric(dist.x[3]), gamma=as.numeric(dist.x[4]), delta=as.numeric(dist.x[5]))
}
eps <- eps[(2*(obs+200)):(3*(obs+200))]
r <- length(c_par)
s <- length(nc_par)
if (length(dist.x) != 1){
BC <- c(c_par, rep(0,M.star - length(c_par)))
Phi.matrix <- matrix(data=0, nrow=M.star, ncol=M.star)
Psi <- c()
Psi[1] <- 1
for (i in 1:M.star){
for (j in 1:i){
Phi.matrix[i,j] = Psi[i-j+1]*BC[j]
}
Psi[(i+1)] <- sum(Phi.matrix[i,])
}
MA_rep <- matrix(data=NA, nrow=(obs+200), ncol=M.star)
for (i in 1:(obs+200)){
for (j in 1:M.star){
MA_rep[i,j] <- Psi[j]*x[M-(j-1)-(i-1)]
}
}
exo_var <- c()
exo_var <- MA_rep[,1]
MA_rep <- rowSums(MA_rep)
}
else{
MA_rep <- matrix(data=0, nrow=(obs+200),ncol=M.star)
exo_var <- c()
}
u <- matrix(data=NA, nrow=(obs+100+s), ncol=1)
U.mat <- u[(201+obs):(200+obs+s)] <- rep(1,s)
for (i in (obs+200):1){
if (length(nc_par) == 1){
AR <- nc_par * U.mat
}
else{
AR <- sum(t(nc_par*U.mat))
}
if (i == (obs+200)){AR <- 0}
u[i] <- AR + eps[i]
if (s == 1){
U.mat <- u[i]
}
else{
U.mat <- c(u[i], t(U.mat[1:(length(U.mat)-1)]))
U.mat <- t(U.mat)
}
}
y <- matrix(data=0, nrow=(obs+r+200), ncol=1)
Y <- y[1:r] <- rep(0,r)
for (i in 1:(obs+200)){
if (r == 1){
AR2 <- c_par * Y
}
else{
AR2 <- sum(t(c_par*Y))
}
if (i == 1){AR2 <- 0}
y[i+r] <- AR2 + u[i] + exo_par * MA_rep[i+r]
if (r == 1){
Y <- y[i+r]
}
else{
Y <- c(y[i+r], t(Y[1:(length(Y)-1)]))
Y <- t(Y)
}
}
u <- u[1:obs]
y <- y[(101+r):(obs+100+r)]
exo_var <- exo_var[(101+r):(obs+100+r)]
return(list(y = y, x = exo_var))
}
companion.form <- function(pol){
r <- length(pol)
b <- cbind(diag((r-1)),rep(0,(r-1)))
C <- rbind(t(pol),b)
return(C)
}
compute.MA <- function(pol,M){
r <- length(pol)
str <- c(rep(0,(r-1)),1)
psi <- c(1)
for (j in 1:M){
psi[j+1] <- t(pol) %*% rev(str)
if (r > 1){
str <- c(str[2:length(str)],psi[j+1])
}
else{
str <- psi[j+1]
}
}
return(psi)
}
forecast.marx <- function(y,X,p_C,p_NC,X.for,h,M,N){
set.seed(9999)
if (missing(X) == TRUE){
X = NULL
}
if (missing(N) == TRUE){
N = 10000
}
object <- mixed(y,X,p_C,p_NC)
obs <- length(y)
if (missing(X.for) == TRUE && missing(M) == TRUE){
X.for = NULL
M = 50
}
else if(missing(X.for) == TRUE && missing(M) == FALSE){
X.for = NULL
M = M
}
else if(missing(X.for) == FALSE && missing(M) == TRUE){
if (NCOL(X.for) == 1){
if(is.null(X.for) == TRUE){
M = 50
}
else{
M = length(X.for)
}
}
else{
M = length(X.for[,1])
}
}
else if(missing(X.for) == FALSE && missing(M) == FALSE){
if (NCOL(X.for) == 1){
if(is.null(X.for) == TRUE){
M = M
}
else{
M = min(length(X.for), M)
}
}
else{
M = min(length(X.for[,1]),M)
}
}
coef.caus <- c()
if (object$order[1] == 0){
r = 1
coef.caus <- object$coefficients[(r+1)]
}
else{
r = object$order[1]
coef.caus <- object$coefficients[2:(r+1)]
}
coef.noncaus <- c()
if (object$order[2] == 0){
s = 1
coef.noncaus <- object$coefficients[(r+1+s)]
}
else{
s = object$order[2]
coef.noncaus <- object$coefficients[(r+2):(r+1+s)]
}
coef.exo <- c()
if (object$order[3] == 0){
q = 1
coef.exo <- object$coefficients[(r+1+s+q)]
}
else{
q = object$order[3]
coef.exo <- object$coefficients[(r+1+s+1):(r+s+1+q)]
}
hve <- c()
hve2 <- matrix(data=0, nrow=N,ncol=h)
for (iter in 1:N){
eps.sim <- object$coefficients["scale",]*stats::rt(M,object$coefficients["df",])
z2 <- c()
for (i in 1:M){
if(is.null(X.for) == TRUE){
z2[i] <- eps.sim[i]
}
else{
if(NCOL(X.for) > 1){
z2[i] <- eps.sim[i] + coef.exo %*% t(X.for[i,])
}
else{
z2[i] <- eps.sim[i] + coef.exo * X.for[i]
}
}
}
phi <- c(1,coef.caus)
u <- c()
for (i in (r+1):obs){
u[i] <- phi %*% y[i:(i-r)]
}
w <- c(u[(obs-s+1):obs],z2)
C <- matrix(data=0, nrow=(M+s), ncol=(M+s))
C[1,] <- compute.MA(coef.noncaus,(M+s-1))
if (s > 1){
for (i in 2:s){
C[i,] <- c(0, C[(i-1),1:(length(C[(i-1),])-1)])
}
}
for (i in (s+1):(M+s)){
C[i,] <- c(rep(0,(i-1)),1,rep(0,(M+s-i)))
}
D = solve(C)
e <- D %*% w
h1 <- c()
for (i in 1:s){
h1[i] <- metRology::dt.scaled(e[i], df=object$coefficients["df",], sd=object$coefficients["scale",])
}
hve[iter] = prod(h1)
for (j in 1:h){
mov.av <- C[1,1:(M-j+1)] %*% z2[j:M]
hve2[iter,j] <- mov.av * hve[iter]
}
}
y.star <- y[(obs-r+1):obs]
y.for <- c()
exp <- c()
for (j in 1:h){
exp[j] = ((1/N)*sum(hve2[,j]))/((1/N)*sum(hve))
if(length(coef.caus) == 1){
y.for[j] <- object$coefficients[1]/(1-sum(coef.noncaus)) + coef.caus * y.star + exp[j]
}
else{
y.for[j] <- object$coefficients[1]/(1-sum(coef.noncaus)) + t(coef.caus) %*% y.star + exp[j]
}
y.star <- c(y.for[j], y.star[1:(length(y.star)-1)])
}
return(y.for)
}
mixed.combine <- function(y,x,p_C,p_NC){
q <- NCOL(x)
if (is.null(x) == TRUE){
x <- "not"
q <- 0
}
sig_level = 0.05
est <- marx.t(y,x,p_C,p_NC)
residuals <- est$residuals
fitted.values <- y[(1+p_C):(length(y)-p_NC)] - residuals
inf <- inference(y,x,est$coef.c,est$coef.nc,est$coef.exo,est$coef.int,est$scale,est$df,sig_level)
coefficients <- c(est$coef.int,est$coef.c,est$coef.nc,est$coef.exo, est$df, est$scale)
coefficients <- fBasics::vec(coefficients)
if(length(x) > 1){
if (p_C > 0 && p_NC > 0){
rownames(coefficients) <- c('int', paste('lag', 1:p_C), paste('lead', 1:p_NC), paste('exo', 1:NCOL(x)), 'df', 'scale')
}
else if (p_C > 0 && p_NC == 0){
rownames(coefficients) <- c('int', paste('lag', 1:p_C), 'lead', paste('exo', 1:NCOL(x)), 'df', 'scale')
}
else if (p_C == 0 && p_NC > 0){
rownames(coefficients) <- c('int', 'lag', paste('lead', 1:p_NC), paste('exo', 1:NCOL(x)), 'df', 'scale')
}
else if (p_C == 0 && p_NC == 0){
rownames(coefficients) <- c('int', 'lag', 'lead', paste('exo', 1:NCOL(x)), 'df', 'scale')
}
}
else{
if (p_C > 0 && p_NC > 0){
rownames(coefficients) <- c('int', paste('lag', 1:p_C), paste('lead', 1:p_NC), 'exo', 'df', 'scale')
}
else if (p_C > 0 && p_NC == 0){
rownames(coefficients) <- c('int', paste('lag', 1:p_C), 'lead', 'exo', 'df', 'scale')
}
else if (p_C == 0 && p_NC > 0){
rownames(coefficients) <- c('int', 'lag', paste('lead', 1:p_NC), 'exo', 'df', 'scale')
}
else if (p_C == 0 && p_NC == 0){
rownames(coefficients) <- c('int', 'lag', 'lead', 'exo', 'df', 'scale')
}
}
se <- c(inf$se.int, inf$se.c, inf$se.nc, inf$se.exo, est$se.dist[1], est$se.dist[2])
if (length(x) > 1){
degree <- NROW(est$residuals) - (p_C + p_NC + NCOL(x) + 1)
}
else{
degree <- NROW(est$residuals) - (p_C + p_NC + 1)
}
return(list(coefficients = coefficients, se = se, df.residual = degree, residuals= residuals, fitted.values = fitted.values, order=c(p_C,p_NC,q)))
}
pseudo <- function(y,x,p){ UseMethod("pseudo")}
pseudo.default <- function(y,x,p){
if (is.null(x)){
x <- "not"
}
est <- arx.ls(y,x,p)
est$call <- match.call();
class(est) <- "pseudo"
est
}
print.pseudo <- function(x,...){
cat("Call:\n")
print(x$call)
cat("\n Coefficients:\n")
print(x$coefficients)
}
summary.pseudo <- function(object,...){
se <- sqrt(diag(object$vcov))
tval <- stats::coef(object) / se
TAB <- cbind(Estimate = stats::coef(object),
StdErr = se,
t.value = tval,
p.value = 2*stats::pt(-abs(tval),df=object$df))
colnames(TAB) <- c("Estimate", "Std.Err", "t value", "p value")
res <- list(call=object$call, coefficients = TAB)
class(res) <- "summary.pseudo"
res
}
pseudo <- function(y,x,p){ UseMethod("pseudo")}
pseudo.default <- function(y,x,p){
if (is.null(x)){
x <- "not"
}
est <- arx.ls(y,x,p)
est$call <- match.call();
class(est) <- "pseudo"
est
}
print.pseudo <- function(x,...){
cat("Call:\n")
print(x$call)
cat("\n Coefficients:\n")
print(x$coefficients)
}
summary.pseudo <- function(object,...){
se <- sqrt(diag(object$vcov))
tval <- stats::coef(object) / se
TAB <- cbind(Estimate = stats::coef(object),
StdErr = se,
t.value = tval,
p.value = 2*stats::pt(-abs(tval),df=object$df))
colnames(TAB) <- c("Estimate", "Std.Err", "t value", "p value")
res <- list(call=object$call, coefficients = TAB)
class(res) <- "summary.pseudo"
res
}
mixed <- function(y,x,p_C,p_NC){ UseMethod("mixed")}
mixed.default <- function(y,x,p_C,p_NC){
est <- mixed.combine(y,x,p_C,p_NC);
est$call <- match.call();
class(est) <- "mixed"
est
}
print.mixed <- function(x,...){
cat("Call:\n")
print(x$call)
cat("\n Coefficients:\n")
print(x$coefficients)
}
summary.mixed <- function(object,...){
tval <- stats::coef(object) / object$se
TAB <- cbind(Estimate = stats::coef(object),
StdErr = object$se,
t.value = tval,
p.value = 2*stats::pt(-abs(tval),df=object$df.residual))
colnames(TAB) <- c("Estimate", "Std.Err", "t value", "p value")
res <- list(call=object$call, coefficients = TAB)
class(res) <- "summary.mixed"
res
}
mixed <- function(y,x,p_C,p_NC){ UseMethod("mixed")}
mixed.default <- function(y,x,p_C,p_NC){
est <- mixed.combine(y,x,p_C,p_NC);
est$call <- match.call();
class(est) <- "mixed"
est
}
print.mixed <- function(x,...){
cat("Call:\n")
print(x$call)
cat("\n Coefficients:\n")
print(x$coefficients)
}
summary.mixed <- function(object,...){
tval <- stats::coef(object) / object$se
TAB <- cbind(Estimate = stats::coef(object),
StdErr = object$se,
t.value = tval,
p.value = 2*stats::pt(-abs(tval),df=object$df.residual))
colnames(TAB) <- c("Estimate", "Std.Err", "t value", "p value")
res <- list(call=object$call, coefficients = TAB)
class(res) <- "summary.mixed"
res
}
|
if (interactive()) savehistory();
library("aroma.affymetrix");
chipType <- "Mapping250K_Nsp";
cdf <- AffymetrixCdfFile$byChipType(chipType);
ugc <- AromaUnitGcContentFile$allocateFromCdf(cdf, tags="na28,h=500kb,HB20090602");
print(ugc);
csv <- AffymetrixNetAffxCsvFile$byChipType(chipType, tags=".na28");
colClasses <- c("^(probeSetID|%GC)$"="character");
data <- readDataFrame(csv, colClasses=colClasses);
units <- indexOf(cdf, names=data$probeSetID);
stopifnot(all(is.finite(units)));
values <- as.double(data[["%GC"]]);
ugc[units,1] <- values;
srcFileTags <- list();
srcFiles <- c(list(cdf), list(csv));
for (kk in seq_along(srcFiles)) {
srcFile <- srcFiles[[kk]];
tags <- list(
filename=getFilename(srcFile),
filesize=getFileSize(srcFile),
checksum=getChecksum(srcFile)
);
srcFileTags[[kk]] <- tags;
}
print(srcFileTags);
footer <- readFooter(ugc);
footer$createdOn <- format(Sys.time(), "%Y%m%d %H:%M:%S", usetz=TRUE);
footer$createdBy = list(
fullname = "Henrik Bengtsson",
email = sprintf("%s@%s", "henrik.bengtsson", "aroma-project.org")
);
names(srcFileTags) <- sprintf("srcFile%d", seq_along(srcFileTags));
footer$srcFiles <- srcFileTags;
footer$gcBinWidth <- as.integer(500e3);
writeFooter(ugc, footer);
print(ugc);
print(summary(ugc));
print(range(ugc[,1], na.rm=TRUE));
|
export.qm <- function(qmobject, file, style = c("R", "PQMethod")) {
style <- match.arg(style)
if (style=="R") capture.output(print(qmobject, length=max(qmobject$brief$nstat, qmobject$brief$nqsorts)), file=file)
else if (style=="PQMethod") {
pqmethod.output <- function(qmobject) {
cat(qmobject$brief$info, sep="\n")
cat("\n")
pqout <- as.list(rep(NA, 15))
cat("\n\nCorrelation Matrix Between Sorts", sep="\n")
print(round(cor(qmobject[[2]]), digits=4))
cat("\n\nUnrotated Factor Matrix", sep="\n")
print(principal(qmobject[[2]], nfactors=8, rotate="none")$loadings, cutoff=0)
cat("\n\nCumulative Communalities Matrix", sep="\n")
comm <- data.frame(matrix(as.numeric(NA), ncol=8,
nrow=length(qmobject[[2]])))
for (i in 1:8) {
comm[[i]] <- principal(qmobject[[2]], nfactors=i,
rotate="none")$communality
}
print(round(comm, digits=4))
cat("\n\nFactor Matrix and Defining Sorts", sep="\n")
fmx <- list(round(qmobject$loa, digits=4), qmobject$flagged)
names(fmx) <- c("Q-sort factor loadings", "Flagged Q-sorts")
print(fmx)
cat("\n\nFree Distribution Data Results -- not calculated", sep="\n")
cat("\n\nFactor Scores (z-scores)", sep="\n")
print(round(qmobject$zsc, digits=2))
cat("\n\nCorrelations Between Factor Scores", sep="\n")
print(round(qmobject$f_char[[2]], digits=4))
cat("\n\nFactor Scores ", sep="\n")
nfactors <- ncol(qmobject$zsc_n)
fsco <- as.list(1:nfactors)
zsc.df <- as.data.frame(qmobject$zsc)
for (i in 1:nfactors) {
names(fsco)[i] <- paste0("-- For Factor ", i)
fsco[[i]] <- round(zsc.df[order(zsc.df[i], decreasing=T), c(i, i)][1], digits=3)
}
print(fsco)
cat("\n\nDescending Array of Differences Between Factors ", sep="\n")
comparisons <- combn(nfactors, 2, simplify=F)
daf <- as.list(1:length(comparisons))
for (i in 1:length(comparisons)) {
names(daf)[i] <- paste(comparisons[[i]], collapse=" and ", sep="")
zsc <- zsc.df[comparisons[[i]]]
dif <- qmobject[[8]][c(names(qmobject[[8]])[grep(paste(paste(comparisons[[i]][1], comparisons[[i]][2], sep=".*"), paste(comparisons[[i]][2], comparisons[[i]][1], sep=".*"), sep="|"),names(qmobject[[8]]))],"dist.and.cons")]
dad <- cbind(zsc, dif)
daf[[i]] <- format(dad[order(dad[3], decreasing = T), ], digits=2)
}
print(daf)
cat("\n\nFactor Q-Sort Values for Each Statement", sep="\n")
print(qmobject$zsc_n)
cat("\n\nFactor Q-Sort Values for Statements sorted by Consensus vs. Disagreement (Variance across Factor Z-Scores)", sep="\n")
zsc.ord <- order(apply(zsc.df, 1, var))
print(qmobject$zsc_n[zsc.ord,])
cat("\n\nFactor Characteristics", sep="\n")
fch <- t(qmobject$f_char[[1]])
rownames(fch) <- c(
"Average reliability coefficient",
"Number of loading Q-sorts",
"Eigenvalues",
"Percentage of explained variance",
"Composite reliability",
"Standard error of factor scores")
print(round(fch, digits=2))
cat("\n\nStandard Errors for Differences in Factor Z-Scores", sep="\n")
print(qmobject$f_char[[3]])
cat("\n\nDistinguishing Statements ", sep="\n")
dc <- qmobject$qdc
dsf <- as.list(1:nfactors)
for (i in 1:nfactors) {
names(dsf)[i] <- paste0("for Factor ", i)
d <- grep(paste0("f",i, "|all"), dc$dist.and.cons)
dsf[[i]] <- cbind(round(zsc.df[d, ], digits=2),dc[d, c(1,1+(2*(1:length(comparisons))))])
}
print(dsf)
cat("\n\nConsensus Statements -- Those That Do Not Distinguish Between ANY Pair of Factors.", sep="\n")
dcon <- which(dc$dist.and.cons == "Consensus")
print(cbind(round(qmobject$zsc[dcon, ], digits=2),dc[dcon, c(1,1+(2*(1:length(comparisons))))]))
}
capture.output(pqmethod.output(qmobject), file=file)
}
}
|
dbSendQuery_MariaDBConnection_character <- function(conn, statement, params = NULL, ...) {
dbSend(conn, statement, params, is_statement = FALSE)
}
setMethod("dbSendQuery", c("MariaDBConnection", "character"), dbSendQuery_MariaDBConnection_character)
|
find.intersect <- function(d, r1, r2) {
beta <- (r1^2 + d^2 - r2^2) / (2 * r1 * d);
gamma <- (r2^2 + d^2 - r1^2) / (2 * r2 * d);
area <- r1^2 * (acos(beta) - 0.5 * sin(2 * acos(beta))) + r2^2 * (acos(gamma) - 0.5 * sin(2 * acos(gamma)));
return(area);
}
|
print.biprobit <- function(x,...) {
printCoefmat(x$coef,...)
return(invisible(x))
}
|
of_country_codes <- function(foptions = list()) {
url <- "http://openfisheries.org/api/landings/countries.json"
countries_call <- GET(url, foptions)
stop_for_status(countries_call)
countries<- content(countries_call)
countries <- data.frame(rbindlist(countries), stringsAsFactors = FALSE)
return(countries)
}
country_codes <- function() {
.Deprecated(new = "of_country_codes", package = "rfisheries", msg = "This function is deprecated, and will be removed in a future version. See ?of_country_codes")
}
|
GroupNumeric <- function(x, n = NULL, groupNames = NULL,
orderedFactor = FALSE,
style = "quantile", ...){
nNames <- length(groupNames)
if (nNames > 0){
if (is.null(n)){
n <- nNames
} else {
if (n != nNames){
stop("Length of groupNames is not equal to n")
}
}
} else {
if (is.null(n)){
stop("Either n or groupNames must be specified")
}
}
y <- classInt::classIntervals(x, n,
style = style, ...)
cutoffs <- y$brks
nGrps <- length(cutoffs) - 1
if ((nNames > 0) & (nGrps != n)){
errMsg <- paste("Internal classInt call with style = ",
style, "returned", nGrps,
"groups instead of", n,
"\n To see the resulting groups, rerun without groupNames")
stop(errMsg)
}
z <- cut(x, breaks = cutoffs, labels = groupNames,
include.lowest = TRUE,
ordered_result = orderedFactor)
return(z)
}
|
remove_nonstandard_aa <- function(df) {
seq_aa <- df[,2]
seq_name <- df[,1]
standard_aa_indices <-grepl('^[ARNDCEQGHILKMFPSTWYV]+$', seq_aa)
df[standard_aa_indices,]
}
|
"MCtest.fixed" <-
function(x,statistic,resample,Nmax=3619,extreme="geq",conf.level=.99,seed=1234325){
N<-Nmax
set.seed(seed)
t0<-statistic(x)
ti<-rep(NA,N)
for (i in 1:N){
ti[i]<-statistic(resample(x))
}
if (extreme=="leq") S<-length((1:N)[ti<=t0])
else if (extreme=="geq") S<-length((1:N)[ti>=t0])
p.value<-(S+1)/(N+1)
p.alpha<-1-conf.level
if (S==0){ ci.lower<-0 }
else { ci.lower<- qbeta(p.alpha/2,S,N-S+1) }
if (S==N){ ci.upper<-1 }
else{ ci.upper<-qbeta(1-p.alpha/2,S+1,N-S) }
pvalue.ci<-c(ci.lower,ci.upper)
attr(pvalue.ci,"conf.level")<-conf.level
out<-list(Ti=ti,type="fixed",parms=c(Nmax=N),T0=t0,p.value=p.value,p.value.ci=pvalue.ci)
class(out)<-"MCtest"
out
}
|
listdtr <- function(y, a, x, stage.x, seed = NULL,
kfolds = 5L, fold = NULL,
maxlen = 10L, zeta.choices = NULL, eta.choices = NULL)
{
if (!is.matrix(y)) {
y <- as.matrix(y)
}
if (!is.data.frame(a)) {
a <- as.data.frame(a)
}
if (!is.matrix(x)) {
x <- as.matrix(x)
}
if (is.null(colnames(x))) {
colnames(x) <- paste0("x", seq_len(ncol(x)))
}
stopifnot(nrow(y) == nrow(a) && nrow(y) == nrow(x))
n <- nrow(y)
stopifnot(ncol(y) == ncol(a))
n.stage <- ncol(y)
dtr <- vector("list", n.stage)
future.y <- double(n)
if (is.null(colnames(a))) {
colnames(a) <- paste0("a", 1L : n.stage)
}
a.mm <- lapply(1L : n.stage, function(j)
model.matrix(as.formula(sprintf("~ -1 + %s", colnames(a)[j])), a))
stage.a.mm <- rep.int(1L : n.stage, sapply(a.mm, ncol))
a.mm <- do.call("cbind", a.mm)
if (is.null(fold)) {
if (!is.null(seed)) {
set.seed(seed)
}
fold <- rep_len(1L : kfolds, n)[sample.int(n)]
}
for (i.stage in n.stage : 1L) {
current.x <- cbind(
x[, which(stage.x <= i.stage), drop = FALSE],
a.mm[, which(stage.a.mm < i.stage), drop = FALSE],
y[, seq_len(i.stage - 1L), drop = FALSE])
if (ncol(current.x) < 2L) {
current.x <- cbind(x = current.x, dummy_ = 0.0)
}
current.a <- a[, i.stage]
current.y <- y[, i.stage] + future.y
model <- krr(current.x, current.y, current.a)
options <- model$options
outcomes <- predict(model, current.x)
regrets <- get.regrets(outcomes)
obj <- build.rule.cv(current.x, regrets,
kfolds, fold, maxlen, zeta.choices, eta.choices)
dtr[[i.stage]] <- obj
future.y <- outcomes[cbind(1L : n, obj$action)]
}
class(dtr) <- "listdtr"
dtr
}
predict.listdtr <- function(object, xnew, stage, ...)
{
stopifnot(stage >= 1L && stage <= length(object))
if (!is.matrix(xnew) || ncol(xnew) < 2L) {
xnew <- cbind(x = xnew, dummy_ = 0.0)
}
action <- apply.rule(object[[stage]], xnew, "label")
action
}
print.listdtr <- function(x, stages = NULL, digits = 3L, ...)
{
object <- x
if (is.null(stages)) {
stages <- seq_along(object)
}
for (i.stage in stages) {
cat(sprintf("===== Stage %d =====\n", i.stage))
show.rule(object[[i.stage]], digits)
}
invisible(object)
}
plot.listdtr <- function(x, stages = NULL, digits = 3L, ...)
{
object <- x
if (is.null(stages)) {
stages <- seq_along(object)
}
figures <- lapply(stages, function(i.stage)
draw.rule(object[[i.stage]], digits))
if (length(stages) <= 1L) {
print(figures[[1L]] + ggtitle("Stage 1"))
} else {
grid.newpage()
pushViewport(viewport(layout = grid.layout(1L, length(stages))))
for (i in seq_len(length(stages))) {
print(figures[[i]] + ggtitle(sprintf("Stage %d", stages[i])),
vp = viewport(layout.pos.row = 1L, layout.pos.col = i))
}
}
invisible(object)
}
|
construct_download_url <- function(url, format='csv', sheetid = NULL){
key <- stringr::str_extract(url, '[[:alnum:]_-]{30,}')
if(is.null(sheetid) & stringr::str_detect(url, 'gid=[[:digit:]]+')){
sheetid <- as.numeric(stringr::str_extract(stringr::str_extract(url,'gid=[[:digit:]]+'),'[[:digit:]]+'))
}
address <- paste0('https://docs.google.com/spreadsheets/export?id=',key,'&format=',format)
if(!is.null(sheetid)){
address <- paste0(address, '&gid=', sheetid)
}
return(address)
}
|
context("Test ALA data profiles")
test_that("show_all_profiles returns profiles", {
skip_on_cran()
profiles <- show_all_profiles()
expect_s3_class(profiles, "data.frame")
expect_equal(ncol(profiles), 4)
})
test_that("search_profile_attributes checks input", {
expect_error(search_profile_attributes(10))
expect_error(search_profile_attributes("invalid"))
})
test_that("search_profile_attributes returns dataframe", {
skip_on_cran()
atts <- search_profile_attributes(92)
expect_equal(ncol(atts), 2)
expect_s3_class(atts, "data.frame")
atts <- search_profile_attributes("ALA")
expect_equal(ncol(atts), 2)
expect_s3_class(atts, "data.frame")
atts <- search_profile_attributes("ALA General")
expect_equal(ncol(atts), 2)
expect_s3_class(atts, "data.frame")
})
|
gof.hergm <- function(object,
sample_size = 1000,
...)
{
network <- object$network
d <- network
directed <- is.directed(d)
n <- d$gal$n
indicator <- object$indicator
if (object$method == "bayes")
{
sample_size <- nrow(indicator)
}
else
{
object$sample_size <- sample_size
}
verbose <- object$verbose
observed.components <- silent(component.dist(d))
observed.component.number <- length(observed.components$csize)
observed.max.component.size <- max(observed.components$csize)
observed.distances <- geodist(d)
observed.distances <- observed.distances$gdist
observed.frequencies_distances <- table(observed.distances)
number <- length(observed.frequencies_distances) - 1 - (sum(observed.distances == Inf) > 0)
observed.distance.label <- rownames(observed.frequencies_distances)[2:(number+1)]
observed.distance <- observed.frequencies_distances[2:(number+1)]
observed.edges <- summary(d ~ edges)
if (directed == TRUE) {
observed.degree <- summary(d ~ odegree(1:n-1))
observed.star <- summary(d ~ ostar(2))
observed.triangle <- summary(d ~ ttriple)
} else {
observed.degree <- summary(d ~ degree(1:n-1))
observed.star <- summary(d ~ kstar(2))
observed.triangle <- summary(d ~ triangle)
}
object.hergm <- simulate.hergm(object, verbose=verbose, sample_size = sample_size)
output <- summary_sample_network(edgelists=object.hergm$edgelist, sample_size=sample_size, directed=directed, n)
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
par(mfrow = c(2, 3))
hist(output$max.component.size, 50, prob = T, xlim = c(0, max(abs(output$max.component.size))), main = "", xlab = "size of largest component", ylab = "", cex.lab=1.25)
abline(v = observed.max.component.size, col="red")
boxplot(output$distance[,1:(n-2)], main = "", xlab = "geodesic distances", ylab = "", cex.lab=1.25)
points(x = c(observed.distance[1:(n-2)]), col = "red", type = "b")
if (directed == TRUE) xlab <- "out-degrees"
else xlab <- "degrees"
boxplot(output$degree[,1:(n-1)], ylim = c(0,n-1), main = "", xlab = xlab, ylab = "", cex.lab=1.25)
points(x = c(observed.degree), col = "red", type = "b")
hist(output$edges, 50, prob = T, main = "", xlab = "number of edges", ylab = "", cex.lab=1.25)
abline(v = observed.edges, col="red")
if (directed == TRUE) xlab <- "number of 2-out-stars"
else xlab <- "number of 2-stars"
hist(output$star, 50, prob = T, main = "", xlab = xlab, ylab = "", cex.lab=1.25)
abline(v = observed.star, col="red")
if (directed == TRUE) xlab <- "number of transitive triples"
else xlab <- "number of triangles"
hist(output$triangle, 50, prob = T, main = "", xlab = xlab, ylab = "", cex.lab=1.25)
abline(v = observed.triangle, col="red")
output
}
|
rasterize_terrain = function(las, res = 1, algorithm = tin(), use_class = c(2L,9L), shape = "convex", ...)
{
UseMethod("rasterize_terrain", las)
}
rasterize_terrain.LAS = function(las, res = 1, algorithm = tin(), use_class = c(2L,9L), shape = "convex", ...)
{
if (is_a_number(res))
assert_all_are_non_negative(res)
else if (!raster_is_supported(res))
stop("'res' must be a number or a raster.", call. = FALSE)
assert_is_algorithm(algorithm)
assert_is_algorithm_spi(algorithm)
if (is.character(shape))
shape <- match.arg(shape, c("convex", "concave", "bbox"))
else if (!is(shape, "sfc_POLYGON") & !is(shape, "sfc_MULTIPOLYGON"))
stop("Argument 'shape' must be a string or a sfc", call. = FALSE)
if (!"Classification" %in% names(las)) stop("LAS object does not contain 'Classification' attribute", call. = FALSE)
if (any(as.integer(use_class) != use_class)) stop("'use_class' is not a vector of integers'", call. = FALSE)
use_class <- as.integer(use_class)
dots <- list(...)
Wdegenerated <- isTRUE(dots$Wdegenerated)
keep_lowest <- isTRUE(dots$keep_lowest)
force_crs <- isTRUE(dots$force_crs)
pkg <- if (is.null(dots$pkg)) getOption("lidR.raster.default") else dots$pkg
. <- Z <- Zref <- X <- Y <- Classification <- NULL
ground <- las@data[Classification %in% c(use_class), .(X,Y,Z)]
if (nrow(ground) == 0) stop("No ground points found. Impossible to compute a DTM.", call. = FALSE)
ground <- check_degenerated_points(ground, Wdegenerated)
layout <- if (!is_a_number(res)) raster_template(res) else raster_layout(las, res, format = "template")
layout <- raster_materialize(layout, values = 0, pkg = "stars")
sf::st_crs(layout) <- st_crs(las)
if (is.character(shape) && shape %in% c("convex", "concave"))
{
if (shape == "concave")
hull <- st_concave_hull(las, concavity = 10, length_threshold = 100)
else
hull <- st_convex_hull(las)
shape <- sf::st_buffer(hull, dist = raster_res(layout)[1])
}
if (is(shape, "sfc"))
layout <- layout[shape]
grid <- raster_as_dataframe(layout, xy = TRUE, na.rm = TRUE)
lidR.context <- "rasterize_terrain"
ground <- LAS(ground, las@header, crs = st_crs(las), check = FALSE, index = las@index)
Zg <- algorithm(ground, grid)
Zg[is.nan(Zg)] <- NA_real_
isna <- is.na(Zg)
nnas <- sum(isna)
if (nnas > 0)
{
nn <- knnidw(1, rmax = .Machine$double.xmax)
sub_grid <- data.frame(X = grid$X[isna], Y = grid$Y[isna])
znn <- nn(ground, sub_grid)
Zg[isna] <- znn
warning(glue::glue("Interpolation of {nnas} points failed because they are too far from ground points. Nearest neighbour was used but interpolation is weak for those points"), call. = FALSE)
}
fast_quantization(Zg, las[["Z scale factor"]], las[["Z offset"]])
cells <- get_group(layout, grid)
layout <- raster_layout(las, res)
layout <- raster_materialize(layout, pkg = pkg)
layout <- raster_set_values(layout, Zg, cells = cells)
if (keep_lowest)
{
res <- raster_res(layout)[1]
lasg <- filter_poi(las, Classification %in% c(use_class))
rmin <- template_metrics(lasg, ~list(Z = min(Z)), layout)
Z1 <- raster_values(layout)
Z2 <- raster_values(rmin)
Zg <- pmin(Z1, Z2, na.rm = TRUE)
layout <- raster_set_values(layout, Zg)
}
raster_names(layout) <- "Z"
return(layout)
}
rasterize_terrain.LAScluster = function(las, res = 1, algorithm = tin(), use_class = c(2L,9L), shape = "convex", ...)
{
x <- readLAS(las)
if (is.empty(x)) return(NULL)
if (is_raster(res)) res <- raster_crop(res, st_adjust_bbox(x, raster_res(res)))
dtm <- rasterize_terrain(x, res, algorithm, use_class = use_class, shape = shape, ...)
dtm <- raster_crop(dtm, st_bbox(las))
return(dtm)
}
rasterize_terrain.LAScatalog = function(las, res = 1, algorithm = tin(), use_class = c(2L,9L), shape = "convex", ...)
{
assert_is_algorithm(algorithm)
assert_is_algorithm_spi(algorithm)
if (is_a_number(res))
assert_all_are_non_negative(res)
else if (!raster_is_supported(res))
stop("'res' must be a number or a raster.", call. = FALSE)
if (!is_a_number(res)) las <- catalog_intersect(las, res)
opt_select(las) <- "xyzc"
opt_filter(las) <- paste("-keep_class", paste(use_class, collapse = " "), opt_filter(las))
alignment <- raster_alignment(res)
if (opt_chunk_size(las) > 0 && opt_chunk_size(las) < 2*alignment$res)
stop("The chunk size is too small. Process aborted.", call. = FALSE)
options <- list(need_buffer = TRUE, drop_null = TRUE, raster_alignment = alignment, automerge = TRUE)
output <- catalog_apply(las, rasterize_terrain, res = res, algorithm = algorithm, shape = shape, use_class = use_class, ..., .options = options)
return(output)
}
|
library(tabshiftr)
library(testthat)
library(checkmate)
context("clusters")
test_that("regular vertical clusters of otherwise tidy data", {
input <- tabs2shift$clusters_vertical
schema <- setCluster(id = "territories",
left = 1, top = c(3, 9)) %>%
setIDVar(name = "territories", columns = 1, rows = c(3, 9)) %>%
setIDVar(name = "year", columns = 2) %>%
setIDVar(name = "commodities", columns = 5) %>%
setObsVar(name = "harvested", columns = 6) %>%
setObsVar(name = "production", columns = 7)
.expect_valid_table(x = reorganise(input = input, schema = schema), units = 2)
})
test_that("regular vertical clusters with a listed observed variable", {
input <- tabs2shift$listed_column_wide
schema <- setCluster(id = "territories",
left = 1, top = c(2, 7)) %>%
setIDVar(name = "territories", columns = 1) %>%
setIDVar(name = "year", columns = 2) %>%
setIDVar(name = "commodities", columns = c(6, 7), rows = 1) %>%
setObsVar(name = "harvested", columns = c(6, 7),
key = 4, value = "harvested") %>%
setObsVar(name = "production", columns = c(6, 7),
key = 4, value = "production")
.expect_valid_table(x = reorganise(input = input, schema = schema), units = 2)
})
test_that("regular vertical clusters with a listed observed variable and an implicit variable", {
input <- tabs2shift$listed_column_wide
schema <- setCluster(id = "territories",
left = 1, top = c(2, 7)) %>%
setIDVar(name = "region", value = "group 1") %>%
setIDVar(name = "territories", columns = 1) %>%
setIDVar(name = "year", columns = 2) %>%
setIDVar(name = "commodities", columns = c(6, 7), rows = 1) %>%
setObsVar(name = "harvested", columns = c(6, 7),
key = 4, value = "harvested") %>%
setObsVar(name = "production", columns = c(6, 7),
key = 4, value = "production")
.expect_valid_table(x = reorganise(input = input, schema = schema), units = 2, groups = TRUE)
schema <- setCluster(id = "territories",
left = 1, top = c(2, 7)) %>%
setIDVar(name = "region", value = "group 1") %>%
setIDVar(name = "territories", columns = 1, rows = 1, relative = T) %>%
setIDVar(name = "year", columns = 2) %>%
setIDVar(name = "commodities", columns = c(6, 7), rows = 1) %>%
setObsVar(name = "harvested", columns = c(6, 7),
key = 4, value = "harvested") %>%
setObsVar(name = "production", columns = c(6, 7),
key = 4, value = "production")
.expect_valid_table(x = reorganise(input = input, schema = schema), units = 2, groups = TRUE)
schema <- setCluster(id = "territories",
left = 1, top = c(2, 7)) %>%
setFilter(rows = c(1, 4, 5, 9, 10)) %>%
setIDVar(name = "territories", value = "unit 1") %>%
setIDVar(name = "year", columns = 2) %>%
setIDVar(name = "commodities", columns = c(6, 7), rows = 1) %>%
setObsVar(name = "harvested", columns = c(6, 7),
key = 4, value = "harvested") %>%
setObsVar(name = "production", columns = c(6, 7),
key = 4, value = "production")
out <- reorganise(input = input, schema = schema)
expect_equal(out$territories, c("unit 1", "unit 1", "unit 1", "unit 1"))
expect_equal(out$year, c("year 2", "year 2", "year 2", "year 2"))
expect_equal(out$commodities, c("maize", "maize", "soybean", "soybean"))
expect_equal(out$harvested, c(1221, 2221, 1211, 2211))
expect_equal(out$production, c(1222, 2222, 1212, 2212))
})
test_that("regular horizontal clusters of otherwise tidy data", {
input <- tabs2shift$clusters_horizontal
schema <- setCluster(id = "territories",
left = c(1, 6), top = 2) %>%
setIDVar(name = "territories", columns = c(1, 6), rows = 2) %>%
setIDVar(name = "year", columns = c(2, 7)) %>%
setIDVar(name = "commodities", columns = c(1, 6)) %>%
setObsVar(name = "harvested", columns = c(3, 8)) %>%
setObsVar(name = "production", columns = c(4, 9))
.expect_valid_table(x = reorganise(input = input, schema = schema), units = 2)
})
test_that("clusters that are aggregated per observed variable", {
input <- tabs2shift$clusters_observed
schema <- setCluster(id = "observed",
left = 1, top = c(2, 12)) %>%
setIDVar(name = "territories", columns = 2) %>%
setIDVar(name = "year", columns = 3) %>%
setIDVar(name = "commodities", columns = 5) %>%
setObsVar(name = "harvested", columns = 7, key = "cluster", value = 1) %>%
setObsVar(name = "production", columns = 7, key = "cluster", value = 2)
.expect_valid_table(x = reorganise(input = input, schema = schema), units = 2)
})
test_that("clusters that are nested into groups", {
input <- tabs2shift$clusters_nested
schema <- setCluster(id = "territories",
group = "region", member = c(1, 1, 2),
left = 1, top = c(3, 8, 15)) %>%
setIDVar(name = "region", columns = 1, rows = c(2, 14)) %>%
setIDVar(name = "territories", columns = 1, rows = c(3, 8, 15)) %>%
setIDVar(name = "year", columns = 7) %>%
setIDVar(name = "commodities", columns = 2) %>%
setObsVar(name = "harvested", columns = 5) %>%
setObsVar(name = "production", columns = 6)
.expect_valid_table(x = reorganise(input = input, schema = schema), units = 3, groups = TRUE)
})
|
"ar_stl_wards"
|
NULL
kinesisvideomedia_get_media <- function(StreamName = NULL, StreamARN = NULL, StartSelector) {
op <- new_operation(
name = "GetMedia",
http_method = "POST",
http_path = "/getMedia",
paginator = list()
)
input <- .kinesisvideomedia$get_media_input(StreamName = StreamName, StreamARN = StreamARN, StartSelector = StartSelector)
output <- .kinesisvideomedia$get_media_output()
config <- get_config()
svc <- .kinesisvideomedia$service(config)
request <- new_request(svc, op, input, output)
response <- send_request(request)
return(response)
}
.kinesisvideomedia$operations$get_media <- kinesisvideomedia_get_media
|
check.value <-
function(value,type) {
if(type!="boolean" && type!="string" && type!="integer" && type!="str_int" && type!="vector") {
return()
}
if(is.vector(value)) {
if(type=="vector" && !is.list(value)) {
return(TRUE)
} else if(length(value)!=1) {
return(FALSE)
}else if (type=="boolean" && is.logical(value)) {
return(TRUE)
}else if((type=="string" || type=="str_int") && is.character(value)) {
return(TRUE)
}else if((type=="integer" || type=="str_int") && is.numeric(value) && as.integer(value)==value) {
return(TRUE)
}else{
return(FALSE)
}
}else if(type=="vector" && is.factor(value)) {
return(TRUE)
}else if(is.null(value)) {
return(TRUE)
}else{
return(FALSE)
}
}
|
.Random.seed <-
c(403L, 10L, -1419741262L, 331087533L, -819546521L, -496630386L,
-1809354136L, 700411499L, -1535916023L, -445270376L, 1177334214L,
1823269153L, 1621275059L, -676344542L, -668178668L, -79143017L,
-69091443L, -230079836L, 628608138L, -2014977291L, 325797199L,
-536292778L, 39678208L, 1458619459L, 534202337L, -2044418224L,
1932499374L, 1120114521L, -981721749L, -1444559654L, 1973865884L,
-11832929L, 1694290933L, -1569946996L, -1442740382L, -1064077507L,
301387703L, -1517167522L, -1757900392L, 1587705083L, -778977127L,
-1142443736L, -1982052394L, 636019793L, 1870761731L, 1623819922L,
-789674972L, 924142311L, -1220436163L, 1729994676L, 1312818202L,
-1610621083L, 656278015L, -1201517434L, -804630512L, -954690893L,
-139652783L, 1064497408L, -1523534882L, 455172137L, 1759442907L,
1106863338L, 1389281932L, 606625231L, -412610171L, 1152494140L,
1656475410L, 788313101L, 563412807L, -1529397970L, 589184136L,
-743626357L, 74035561L, -736773320L, 365520358L, 1693827457L,
-1456646893L, -1436609854L, -265732748L, 1602862455L, -2036087187L,
-126056188L, -1895474134L, -708152939L, 1014244911L, -1463712970L,
370195296L, 561594787L, 1011516097L, -45213008L, -1335257650L,
1075398969L, -2007112373L, -1571541254L, 1056464892L, 1389584447L,
-1409738475L, -658726356L, 1479405314L, 1267940317L, -206833961L,
-1874968130L, -312335368L, 426219483L, 1263790649L, 1238248328L,
1506302774L, 65489265L, -406232157L, 29962994L, 2141803076L,
-23364345L, 353240285L, -1957695020L, 942232826L, -409957307L,
-258270049L, -1495302618L, -1935770960L, 945710931L, -1129749903L,
1388785568L, -191985858L, -380563895L, 809134843L, -681567542L,
-770339796L, 910152751L, -1307247387L, 1272542620L, 1427240946L,
117662317L, -2107103321L, 114760142L, -645353688L, 1581131051L,
53020489L, -896349096L, -144754426L, 475907297L, 595158131L,
1477374178L, 946329684L, -2012611241L, 1189121357L, -1595584284L,
1766739146L, 286499125L, -274552945L, 5469334L, 773635136L, -1328747261L,
1675518241L, -1046975984L, 200405486L, -1152653927L, 584843819L,
364573466L, -2068559396L, -994279457L, 378865589L, 1019093324L,
-1042552926L, 1505464061L, 1047076855L, 1007118622L, 444421080L,
-971786949L, 953815769L, 570527336L, -1382641770L, 2093808401L,
-106605373L, -1041539886L, -607532700L, 2018389159L, 44438013L,
-1965540364L, 669021402L, 723047973L, -1433367745L, 1434020038L,
1790862672L, 554978675L, 221468561L, 63007168L, -1461359714L,
1560991081L, 682413467L, 1537478826L, 216182476L, -619737201L,
1098488773L, 2040446844L, 1116848082L, -270053555L, -1848857081L,
72183278L, 899504328L, 1319704523L, 453091881L, -304242568L,
-1638646362L, -1835472959L, 1051122771L, -2146323710L, -685107660L,
-1377823817L, -258010195L, -1729799996L, -1883824918L, -1513893035L,
-1808628497L, 1642334966L, -301287904L, -416371741L, -2052005759L,
383852272L, 1394036110L, -283057415L, 1303060619L, -1845221190L,
-1052632132L, 292397311L, -2004155307L, -2084827284L, -2057297982L,
768915485L, 12257431L, -928538260L, -377676876L, -1283788270L,
1925150688L, -760604212L, -1444063008L, -925395934L, 1208744744L,
230402572L, -1517235396L, 131180530L, 187458288L, -1205507516L,
142366296L, -1695074502L, 133314544L, 1476332220L, 1897932052L,
2126408898L, 156961888L, 1319001468L, -1041195056L, 1135905058L,
1124298408L, 125640588L, -959707972L, -70798542L, 43210304L,
211989684L, 2108148808L, 330075578L, 84982288L, -1669231380L,
691450196L, 1364400914L, 967165344L, -126668084L, -576992672L,
-1797806142L, 1360290600L, -823180884L, -1656081092L, 295256946L,
-244366032L, -1813782748L, -1806883528L, -631798054L, -1375774832L,
1570972412L, 1513274260L, 1296155714L, 806489344L, -1015152580L,
1383222608L, -1374112606L, -1817412792L, -584143092L, -699633956L,
378865490L, -1233238400L, 888139860L, -702397464L, -462869766L,
-1372058288L, 117200684L, -1078326412L, 1298170770L, 1529629280L,
989106060L, 363403104L, 168999906L, 1871088552L, 1234185420L,
-1197618692L, -648294478L, 472079856L, -2118861372L, -36048552L,
-1901558406L, 1744297392L, -1045986372L, 1369401428L, 1388404674L,
700028960L, 548204732L, -938534320L, 1317705698L, 507518568L,
-1293705652L, -810342148L, -1102598158L, 147760384L, 1254595444L,
-750217208L, -629888582L, 1353338320L, 1197970412L, -1049121900L,
-1577071662L, 2024140640L, -1540048564L, -1165614816L, 56471426L,
-1569337624L, 1400748268L, -1359184324L, -556670094L, -1355069840L,
730606628L, 1614995256L, 642515098L, 2015053520L, 668640444L,
1464388244L, -1099343230L, 1359564992L, -132553412L, -1391687536L,
-1494843870L, -1177323000L, -1966287604L, 2065949340L, 864605714L,
147501440L, -187063788L, -1322861016L, -1521139398L, -1493591088L,
983912044L, -993494220L, -977718638L, -362216096L, -269224628L,
-1175133216L, 1424301986L, 386178984L, -1867780212L, -1054098756L,
1005788018L, -1352826640L, 1903594564L, 1765043544L, 1357303866L,
1789068144L, 1917588540L, -801068268L, -1957655102L, -1794831136L,
786200444L, 104109776L, 1257298594L, 233051176L, 1610809612L,
451611580L, 1753040178L, -1234602048L, -209312204L, 1867426760L,
956064954L, -1026717808L, -227956244L, -2103208876L, 337517202L,
-1258968288L, 171549132L, 1720703968L, 1901762242L, -575465944L,
-229331284L, -1902459204L, -318914062L, 1951406384L, -16463708L,
-2109228360L, 1057120090L, 283704720L, 253390204L, -282488556L,
-94261950L, -84086016L, 803941308L, -786246832L, 320447778L,
-744249016L, -1969058804L, -2048213924L, 1557996754L, -1275780096L,
1480337236L, 248502760L, 371801082L, -1016821040L, 503219500L,
1004592372L, -862018670L, -1346392992L, 235026700L, -1342334240L,
1442194786L, 565458600L, -308412852L, 1895732092L, 44572466L,
1107714672L, -1494314684L, 1750697944L, -302463878L, 672737840L,
-2035274052L, 1986842452L, -1395016126L, -102137952L, -1942348612L,
2048430544L, -1681972894L, -1364170776L, 1593473996L, 1591713532L,
1025213426L, 1379243136L, -1535221516L, -694390648L, -1865912006L,
1256067920L, -1200136084L, -1473831788L, 164963666L, 1123923570L,
-1173638464L, 744937257L, 222451099L, 1900900972L, -1839536518L,
1957975983L, 389214905L, -1157030706L, -705481188L, -384299635L,
1169202167L, 1148329728L, 1479144798L, 1394564651L, 1327386925L,
-1013764710L, 1545534296L, -1386544447L, 988947827L, -922208620L,
-260160734L, -1758654921L, 2011831041L, -236953082L, -2055978940L,
969462133L, 1595847903L, -1810528200L, 292605974L, -72073181L,
415752165L, 1041639938L, 25196656L, -1545449959L, 1677234187L,
1320798972L, -123479254L, 1976536415L, 108463337L, 2037912574L,
-1973604372L, -868418755L, -505350393L, 197062384L, -27505010L,
2105428155L, -553648995L, -806473654L, 1750684264L, -788439471L,
2144412995L, 719524932L, 933926642L, 1516314311L, -284941167L,
1001249302L, -672036748L, -1209595L, -1895456433L, -1758829752L,
-218606874L, 1542112275L, -1583236235L, -577807534L, -34485344L,
-1541398903L, 1523083963L, -1714925300L, 643804314L, -1291832817L,
748639833L, -109810962L, -1428692612L, 1369674221L, 347037335L,
789444960L, -1430291138L, 1761979915L, 1220795021L, 1626068922L,
574399992L, -226459231L, 1620059987L, -851548556L, -1854396414L,
-1278127465L, 1463385185L, 165533862L, -385202012L, 736198997L,
1821843967L, -1080010600L, -1576745546L, 1004252739L, 158028677L,
-1830045662L, -1672070384L, 541857465L, 2029546347L, 1939751516L,
-82206838L, -1307488385L, -1533173047L, -876065954L, -359305204L,
1808900061L, -286872857L, -1026194672L, 264493614L, -1544716069L,
1133067709L, -1590932694L, 2140816328L, 1302085873L, 1302445667L,
1461291620L, -65443438L, 1411024487L, -616888783L, 762788726L,
1261785236L, -1312907611L, 1958218671L, 1481861224L, -981681082L,
1023179251L, -1684011691L, -1342681294L, -1460911360L, 1958619113L,
-1342408101L, 966567084L, -1003750726L, -190353297L, 1516211705L,
1838127246L, -990613156L, -1081407027L, -1030951625L, -378454080L,
918075550L, -1987682965L, 1988822253L, -1219840678L, -1348159976L,
1315496833L, -1207322317L, -639068332L, 559182178L, -1879574025L,
459651649L, -1290318138L, 195743748L, -186073163L, -1334120289L,
141339896L, 1231049942L, -1807743645L, -2086489819L, 703325890L,
-627301456L, -766083111L, -1817331381L, -1613742148L, 1223628778L,
-1313095649L, -615594327L, 1712036414L, -617939611L)
|
print.LM <-
function(x, ...){
a <- x[[1]]
b <- x[[2]]
cat('Sign test result: \n
No. of positive values: ',a,' \n
No. of negative values: ',b, "\n"
)
}
|
rpqueue <- function() {
newq <- new.env(parent = emptyenv())
newq$lhat <- rstack()
newq$l <- rstack()
newq$r <- rstack()
class(newq) <- "rpqueue"
return(newq)
}
|
test_that("brightness_pillars works", {
d <- 2:4
aaa <- array(seq_len(prod(d)), dim = d)
expect_equal(
ijtiff::ijtiff_img(brightness_pillars(aaa)),
ijtiff::ijtiff_img(apply_on_pillars(aaa, brightness_vec))
)
})
test_that("pillar-stats works", {
d <- 2:4
aaa <- array(seq_len(prod(d)), dim = d)
expect_equal(
ijtiff::ijtiff_img(mean_pillars(aaa)),
ijtiff::ijtiff_img(apply_on_pillars(aaa, mean))
)
expect_equal(
ijtiff::ijtiff_img(median_pillars(aaa)),
ijtiff::ijtiff_img(apply_on_pillars(aaa, median))
)
expect_equal(
ijtiff::ijtiff_img(var_pillars(aaa)),
ijtiff::ijtiff_img(apply_on_pillars(aaa, var))
)
d <- 2:5
aaaa <- array(sample.int(prod(d)), dim = d)
skip_if_not_installed("abind")
ans <- purrr::map(seq_len(dim(aaaa)[3]), ~ mean_pillars(aaaa[, , ., ])) %>%
purrr::reduce(~ abind::abind(.x, .y, along = 3)) %>%
structure(dimnames = NULL)
expect_equal(
ijtiff::ijtiff_img(mean_pillars(aaaa)),
ijtiff::ijtiff_img(ans)
)
ans <- purrr::map(seq_len(dim(aaaa)[3]), ~ median_pillars(aaaa[, , ., ])) %>%
purrr::reduce(~ abind::abind(.x, .y, along = 3)) %>%
structure(dimnames = NULL)
expect_equal(
ijtiff::ijtiff_img(median_pillars(aaaa)),
ijtiff::ijtiff_img(ans)
)
ans <- purrr::map(seq_len(dim(aaaa)[3]), ~ var_pillars(aaaa[, , ., ])) %>%
purrr::reduce(~ abind::abind(.x, .y, along = 3)) %>%
structure(dimnames = NULL)
expect_equal(
ijtiff::ijtiff_img(var_pillars(aaaa)),
ijtiff::ijtiff_img(ans)
)
ans <- purrr::map(
seq_len(dim(aaaa)[3]),
~ brightness_pillars(aaaa[, , ., ])
) %>%
purrr::reduce(~ abind::abind(.x, .y, along = 3)) %>%
structure(dimnames = NULL)
expect_equal(
ijtiff::ijtiff_img(brightness_pillars(aaaa)),
ijtiff::ijtiff_img(ans)
)
})
|
test_that("matsindf_apply() fails with an unexpected argument", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
expect_error(matsindf_apply(.dat = "a string", FUN = example_fun, a = 2, b = 2),
".dat must be a data frame or a list in matsindf_apply, was character")
})
test_that("matsindf_apply() works as expected for single values", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
expect_equal(example_fun(a = 2, b = 2), list(c = 4, d = 0))
expect_equal(matsindf_apply(FUN = example_fun, a = 2, b = 2), list(c = 4, d = 0))
})
test_that("matsindf_apply() works as expected for single matrices", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
a <- matrix(c(1,2,3,4), nrow = 2, ncol = 2, byrow = TRUE, dimnames = list(c("r1", "r2"), c("c1", "c2")))
b <- a
expected_list <- list(c = a + b, d = a - b)
expect_equal(example_fun(a, b), expected_list)
expect_equal(matsindf_apply(FUN = example_fun, a = a, b = b), expected_list)
})
test_that("matsindf_apply() works as expected for lists of single values", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
expect_equal(example_fun(a = list(2, 2), b = list(2, 2)), list(c = list(4, 4), d = list(0, 0)))
expect_equal(matsindf_apply(FUN = example_fun, a = list(2, 2, 2), b = list(2, 2, 2)),
data.frame(c = I(list(4, 4, 4)), d = I(list(0, 0, 0)), stringsAsFactors = FALSE),
ignore_attr = TRUE)
expect_equal(matsindf_apply(FUN = example_fun, a = list(2, 2), b = list(1, 2)),
data.frame(c = I(list(3, 4)), d = I(list(1, 0)), stringsAsFactors = FALSE),
ignore_attr = TRUE)
})
test_that("matsindf_apply() works as expected for lists of matrices", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
a <- matrix(c(1,2,3,4), nrow = 2, ncol = 2, byrow = TRUE, dimnames = list(c("r1", "r2"), c("c1", "c2")))
b <- a
c <- a + b
d <- a - b
a <- list(a, a)
b <- list(b, b)
DF_expected <- data.frame(c = I(list(c, c)), d = I(list(d, d)), stringsAsFactors = FALSE)
attr(DF_expected$c, which = "class") <- NULL
attr(DF_expected$d, which = "class") <- NULL
expect_equal(matsindf_apply(FUN = example_fun, a = a, b = b), DF_expected)
})
test_that("matsindf_apply() works as expected using .DF with single numbers", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
DF <- tibble::tibble(a = c(4, 4, 5), b = c(4, 4, 4))
expect_equal(matsindf_apply(DF, FUN = example_fun, a = "a", b = "b"),
tibble::tibble(a = c(4, 4, 5), b = c(4, 4, 4), c = c(8, 8, 9), d = c(0, 0, 1)))
})
test_that("matsindf_apply() works as expected using .DF with matrices", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
a <- matrix(c(1,2,3,4), nrow = 2, ncol = 2, byrow = TRUE, dimnames = list(c("r1", "r2"), c("c1", "c2")))
b <- a
c <- a + b
d <- a - b
DF <- data.frame(a = I(list(a, a)), b = I(list(b,b)), stringsAsFactors = FALSE)
result <- matsindf_apply(DF, FUN = example_fun, a = "a", b = "b")
expected <- dplyr::bind_cols(DF, data.frame(c = I(list(c, c)), d = I(list(d, d)), stringsAsFactors = FALSE))
expect_equal(result, expected, ignore_attr = TRUE)
result <- DF %>% matsindf_apply(FUN = example_fun, a = "a", b = "b")
expect_equal(result, expected, ignore_attr = TRUE)
})
test_that("matsindf_apply() fails as expected when not all same type for ...", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
expect_error(matsindf_apply(FUN = example_fun, a = "a", b = 2), 'argument "a" is missing, with no default')
})
test_that("matsindf_apply() fails as expected when wrong type of data is sent in ...", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
expect_error(matsindf_apply(FUN = example_fun, a = list("a"), b = list(2)), "non-numeric argument to binary operator")
})
test_that("matsindf_apply() fails gracefully when some of ... are NULL", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
expect_error(matsindf_apply(FUN = example_fun, a = 1, b = 2, c = NULL), "unused argument")
})
test_that("matsindf_apply() fails as expected when .DF argument is missing from a data frame", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
expect_error(matsindf_apply(FUN = example_fun, a = "a", b = "b"),
".dat was missing and all arguments were strings")
})
test_that("matsindf_apply() fails as expected when .DF argument is not a data frame or a list", {
expect_error(matsindf_apply(.DF = "string", FUN = example_fun, a = "a", b = "b"),
".dat was missing and all arguments were strings")
})
test_that("matsindf_apply_types() works as expected", {
expect_equal(matsindf_apply_types(a = 1, b = 2),
list(dots_present = TRUE, all_dots_num = TRUE, all_dots_mats = FALSE, all_dots_list = FALSE, all_dots_vect = FALSE, all_dots_char = FALSE))
expect_equal(matsindf_apply_types(a = matrix(c(1, 2)), b = matrix(c(2, 3)), c = matrix(c(3, 4))),
list(dots_present = TRUE, all_dots_num = FALSE, all_dots_mats = TRUE, all_dots_list = FALSE, all_dots_vect = FALSE, all_dots_char = FALSE))
expect_equal(matsindf_apply_types(a = list(1, 2), b = list(3, 4), c = list(5, 6)),
list(dots_present = TRUE, all_dots_num = FALSE, all_dots_mats = FALSE, all_dots_list = TRUE, all_dots_vect = TRUE, all_dots_char = FALSE))
expect_equal(matsindf_apply_types(a = "a", b = "b", c = "c"),
list(dots_present = TRUE, all_dots_num = FALSE, all_dots_mats = FALSE, all_dots_list = FALSE, all_dots_vect = FALSE, all_dots_char = TRUE))
expect_equal(matsindf_apply_types(),
list(dots_present = FALSE, all_dots_num = FALSE, all_dots_mats = FALSE, all_dots_list = FALSE, all_dots_vect = FALSE, all_dots_char = FALSE))
})
test_that("matsindf_apply() works with a NULL argument", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
a <- matrix(c(1,2,3,4), nrow = 2, ncol = 2, byrow = TRUE, dimnames = list(c("r1", "r2"), c("c1", "c2")))
b <- a
c <- a + b
d <- a - b
DF <- data.frame(a = I(list(a, a)), b = I(list(b,b)), stringsAsFactors = FALSE)
result <- matsindf_apply(DF, FUN = example_fun, a = "a", b = "b", z = NULL)
expected <- dplyr::bind_cols(DF, data.frame(c = I(list(c, c)), d = I(list(d, d)), stringsAsFactors = FALSE))
expect_equal(result, expected, ignore_attr = TRUE)
result <- DF %>% matsindf_apply(FUN = example_fun, a = "a", b = "b", z = NULL)
expect_equal(result, expected, ignore_attr = TRUE)
})
test_that("matsindf_apply() works when .DF is a list", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
expect_equal(matsindf_apply(list(a = 1, b = 2), FUN = example_fun, a = "a", b = "b"),
list(a = 1, b = 2, c = 3, d = -1))
})
test_that("matsindf_apply() works when .DF supplies some or all argument names", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
expect_equal(matsindf_apply(list(a = 1, b = 2), FUN = example_fun),
list(a = 1, b = 2, c = 3, d = -1))
expect_equal(matsindf_apply(list(a = 1, b = 2), FUN = example_fun, a = "a", b = "b"),
list(a = 1, b = 2, c = 3, d = -1))
expect_equal(matsindf_apply(list(a = 1, b = 2, z = 10), FUN = example_fun, a = "z", b = "b"),
list(a = 1, b = 2, z = 10, c = 12, d = 8))
expect_warning(res <- matsindf_apply(list(a = 1, b = 2, c = 10), FUN = example_fun, a = "c", b = "b"),
"name collision in matsindf_apply: c")
expect_equal(res, c(list(a = 1, b = 2, c = 10), list(c = 12, d = 8)))
})
test_that("matsindf_apply() works for single numbers in data frame columns", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
DF <- tibble::tibble(a = c(4, 4, 5), b = c(4, 4, 4))
expected <- DF
expected$c <- c(8, 8, 9)
expected$d <- c(0, 0, 1)
expect_equal(matsindf_apply(DF, FUN = example_fun, a = "a", b = "b"), expected)
expect_equal(matsindf_apply(DF, FUN = example_fun), expected)
})
test_that("override works() for single numbers supplied in a list", {
example_fun <- function(a, b){
return(list(c = matsbyname::sum_byname(a, b), d = matsbyname::difference_byname(a, b)))
}
expect_equal(matsindf_apply(list(a = 2, b = 1), FUN = example_fun, a = 10),
list(a = 10, b = 1, c = 11, d = 9))
})
test_that("matsindf_apply() works when an argument is missing", {
outer_fun <- function(.DF = NULL, a = "a", b = "b"){
inner_fun <- function(a_num, b_num = NULL){
return(list(c = matsbyname::sum_byname(a_num, b_num),
d = matsbyname::difference_byname(a_num, b_num)))
}
matsindf_apply(.DF, FUN = inner_fun, a_num = a, b_num = b)
}
expect_equal(outer_fun(a = 2, b = 2), list(c = 4, d = 0))
expect_equal(outer_fun(a = 2), list(c = 2, d = 2))
expect_error(outer_fun(b = 2),
'argument "a_num" is missing, with no default')
})
test_that("matsindf_apply() works with functions similar in form to those in `Recca`", {
find_matching_rownames <- function(.DF = NULL,
prefixes,
m = "m",
out_colname = "matching_rows") {
rowmatch_fun <- function(prefixes_arg, m_arg) {
out <- m_arg %>%
matsbyname::select_rows_byname(retain_pattern =
RCLabels::make_or_pattern(strings = prefixes_arg, pattern_type = "leading")) %>%
matsbyname::getrownames_byname()
if (!is.list(out)) {
out <- list(out)
}
out %>%
magrittr::set_names(out_colname)
}
matsindf_apply(.DF,
FUN = rowmatch_fun,
prefixes_arg = prefixes,
m_arg = m)
}
mat <- matrix(c(0, 1,
2, 3,
4, 5), nrow = 3, ncol = 2, byrow = TRUE, dimnames = list(c("ra1", "ra2", "b3"), c("c1", "c2")))
expect_error(find_matching_rownames(prefixes = "ra", m = mat), 'argument "prefixes_arg" is missing, with no default')
res2 <- find_matching_rownames(prefixes = list("ra"), m = list(mat))
expect_type(res2, type = "list")
expect_s3_class(res2, class = "data.frame")
expect_equal(res2[["matching_rows"]][[1]], c("ra1", "ra2"))
res3 <- find_matching_rownames(prefixes = list("ra", "ra"), m = list(mat, mat))
expect_type(res3, type = "list")
expect_s3_class(res3, class = "data.frame")
expect_equal(res3[["matching_rows"]][[1]], c("ra1", "ra2"))
expect_equal(res3[["matching_rows"]][[2]], c("ra1", "ra2"))
expect_equal(ncol(res3), 1)
df <- tibble::tibble(prefixes = list("ra", c("r", "b"), "b"), m = list(mat, mat, mat)) %>%
find_matching_rownames(prefixes = "prefixes")
expect_equal(df$matching_rows[[1]], c("ra1", "ra2"))
expect_equal(df$matching_rows[[2]], c("ra1", "ra2", "b3"))
expect_equal(df$matching_rows[[3]], "b3")
})
test_that("matsindf_apply() issues a warning when replacing a column", {
a <- matrix(c(1,2,3,4), nrow = 2, ncol = 2, byrow = TRUE, dimnames = list(c("r1", "r2"), c("c1", "c2")))
b <- 2 * a
DF <- data.frame(a = I(list(a, a)), b = I(list(b, b)), stringsAsFactors = FALSE)
replace_func <- function(a_mat, b_mat) {
a <- matsbyname::difference_byname(a_mat, b_mat)
d <- matsbyname::sum_byname(a_mat, b_mat)
list(a, d) %>%
magrittr::set_names(c(a_name, d_name))
}
a_name <- "a"
d_name <- "d"
expect_warning(
suppressMessages(
matsindf_apply(DF, FUN = replace_func, a_mat = "a", b_mat = "b")
),
"name collision in matsindf_apply: a"
)
})
|
pchc <- function(x, method = "pearson", alpha = 0.05, robust = FALSE, ini.stat = NULL, R = NULL,
restart = 10, score = "bic-g", blacklist = NULL, whitelist = NULL) {
runtime <- proc.time()
if ( robust ) {
dm <- dim(x)
n <- dm[1] ; p <- dm[2]
mod <- robustbase::covMcd( x, alpha = ceiling( 0.5 * (n + p + 1) )/n )
w <- sum( mod$mcd.wt )
d1 <- w / (w - 1)^2 * mod$mah[mod$mcd.wt == 1]
d0 <- w / (w + 1) * (w - p) / ( (w - 1) * p ) * mod$mah[mod$mcd.wt == 0]
ep1 <- which( d1 > qbeta(0.975, 0.5 * p, 0.5 * (w - p - 1) ) )
ep0 <- which( d0 > qf(0.975, p, w - p) )
poia <- c( which(mod$mcd.wt == 1)[ep1], which(mod$mcd.wt == 0)[ep0] )
x <- x[-poia, ]
n <- dim(x)[1]
}
if ( method == "cat" & !is.matrix(x) ) {
for ( i in 1:dim(x)[2] ) x[, i] <- as.numeric(x[, i]) - 1
x <- Rfast::data.frame.to_matrix(x, col.names = colnames(x) )
}
if ( method == "pearson" & is.null(ini.stat) & !is.null(R) ) {
ini.stat <- 0.5 * log( (1 + R)/( (1 - R) ) ) * sqrt(n - 3)
}
a <- Rfast::pc.skel(x, method = method, alpha = alpha, stat = ini.stat)
nama <- colnames(x)
if ( is.null(nama) ) nama <- paste("X", 1:dim(x)[2], sep = "")
colnames(x) <- nama
vale <- which(a$G == 1)
dag <- NULL
scoring <- NULL
if ( length(vale) > 0 ) {
x <- as.data.frame(x)
mhvale <- as.data.frame( which(a$G == 0, arr.ind = TRUE) )
mhvale[, 1] <- nama[ mhvale[, 1] ]
mhvale[, 2] <- nama[ mhvale[, 2] ]
colnames(mhvale) <- c("from", "to")
if ( !is.null(blacklist) ) {
colnames(blacklist) <- c("from", "to")
mhvale <- rbind(mhvale, blacklist)
}
if ( !is.null(whitelist) ) colnames(whitelist) <- c("from", "to")
if ( method == "cat" ) {
for ( i in 1:dim(x)[2] ) x[, i] <- as.factor(x[, i])
}
dag <- bnlearn::hc(x, blacklist = mhvale, whitelist = whitelist, score = score, restart = restart)
scoring <- bnlearn::score(x = dag, data = x, type = score )
}
runtime <- proc.time() - runtime
colnames(a$G) <- nama ; rownames(a$G) <- nama
list(ini = a, dag = dag, scoring = scoring, runtime = runtime[3])
}
|
RMBCaux=function(Y,K, thetaOld.alpha,thetaOld.mu,
thetaOld.sigma,max_iter,
niterFixedPoint,tolerance,cutoff=1-1e-3){
n=nrow(Y);
valLLK=rep(0,max_iter)
errkl=2*tolerance;
iter=1
thetaNew.alpha=0*thetaOld.alpha
thetaNew.mu=lapply(thetaOld.mu,FUN=function(x){0*x})
thetaNew.sigma=lapply(thetaOld.sigma,FUN=function(x){0*x})
outliersConGr=which(!is_in_gr(Y, cutoff=cutoff,thetaOld.mu,thetaOld.sigma));
while ((errkl>tolerance) & (iter<max_iter)){
OutliersNew=outliersConGr
Fji=matrix(0,nrow=K,ncol=n)
logFji=matrix(0,nrow=K,ncol=n);
alphaji=matrix(0,nrow=K,ncol=n)
w=matrix(0,nrow=K,ncol=n);
for (j in 1:K){
Fji[j,]=mvtnorm::dmvnorm(x=Y,mean=thetaOld.mu[[j]],sigma=as.matrix(thetaOld.sigma[[j]]));
logFji[j,]=mvtnorm::dmvnorm(x=Y,mean=thetaOld.mu[[j]],sigma=as.matrix(thetaOld.sigma[[j]]),log=TRUE);
}
for (i in 1:n){
for (j in 1:K){
alphaji[j,i]=Fji[j,i]*thetaOld.alpha[j]/sum(Fji[,i]*thetaOld.alpha)
}
if (sum(Fji[,i])<1e-16){
KKK=min(abs(logFji[,i]))
FjiNEW=exp(logFji[,i] + KKK);
alphaji[,i]=FjiNEW*thetaOld.alpha/sum(FjiNEW*thetaOld.alpha)
}
}
for (j in 1:K){
for (i in 1:n){
w[j,i]=alphaji[j,i]/sum(alphaji[j,])
}
}
for (j in 1:K){
thetaNew.alpha[j]=mean(alphaji[j,])
}
for (j in 1:K){
muIni=thetaOld.mu[[j]]
sigmaIni= thetaOld.sigma[[j]]
salW=weightedSestimator(Y,muIni,sigmaIni,max_iterFP=niterFixedPoint,
weights=alphaji[j,], fixed_alpha=thetaNew.alpha[j])
thetaNew.mu[[j]]=salW$mu
thetaNew.sigma[[j]]=salW$cov
}
relativeAlphaDiff=abs(thetaOld.alpha/thetaNew.alpha - 1)
maxErr=max(relativeAlphaDiff)
if(maxErr<(tolerance)){
errkl=sumkl(thetaNew.mu,thetaNew.sigma,thetaOld.mu,thetaOld.sigma)
}
thetaOld.alpha=thetaNew.alpha;
thetaOld.mu=thetaNew.mu
thetaOld.sigma= thetaNew.sigma
iter=iter+1
outliersConGr=which(!is_in_gr(Y, cutoff=cutoff,theta.mu=thetaNew.mu,theta.sigma=thetaNew.sigma));
nonoutliersConGr=which(is_in_gr(Y, cutoff=cutoff,theta.mu=thetaNew.mu,theta.sigma=thetaNew.sigma));
}
salqs=quad_disc(Y = Y,theta.alpha = thetaNew.alpha,
theta.mu = thetaNew.mu,theta.sigma = thetaNew.sigma)
clusterRMBC=apply(salqs,1,function(x) which(x==max(x))[1])
list(theta.mu=thetaNew.mu,theta.sigma=thetaNew.sigma,
theta.alpha= thetaNew.alpha,
outliers=outliersConGr,nonoutliers=nonoutliersConGr, cluster=clusterRMBC,iter=iter-1)
}
|
library(dplyr)
al <- matrix(c(
"A", "AT", "AT", "A",
"A", "AT", "A", "AT",
"A", "AT", "D", "I",
"A", "AT", "I", "D",
"AT", "A", "D", "I",
"AT", "A", "I", "D",
"D", "I", "AT", "A",
"D", "I", "A", "AT",
"I", "D", "AT", "A",
"I", "D", "A", "AT",
"I", "D", "AT", "AT",
"I", "D", "D", "I"
), nrow=4) %>% t
recode_indels_22(al[,1], al[,2], al[,3], al[,4]) %>% cbind(al, .)
recode_indels_21(al[,1], al[,2], al[,3]) %>% cbind(al, .)
recode_indels_12(al[,1], al[,3], al[,4]) %>% cbind(al, .)
a <- extract_instruments(2)
b <- extract_outcome_data(a$SNP, 7)
ab <- harmonise_data(a,b)
mr(ab, method_list="mr_ivw")
a1 <- a
b1 <- b
a1$effect_allele.exposure[1] <- "GAAAA"
b1$other_allele.outcome[23] <- "GAAAA"
ab1 <- harmonise_data(a1,b1)
mr(ab1, method_list="mr_ivw")
a1 <- a
b1 <- b
a1$effect_allele.exposure[1] <- "GAAAA"
b1$other_allele.outcome[23] <- "I"
b1$effect_allele.outcome[23] <- "D"
ab1 <- harmonise_data(a1,b1)
mr(ab1, method_list="mr_ivw")
a1 <- a
b1 <- b
b1$other_allele.outcome <- NA
ab1 <- harmonise_data(a1,b1)
mr(ab1, method_list="mr_ivw")
a1 <- a
b1 <- b
a1$effect_allele.exposure[1] <- "GAAAA"
b1$other_allele.outcome[23] <- "I"
b1$effect_allele.outcome[23] <- "D"
b1$other_allele.outcome <- NA
ab1 <- harmonise_data(a1,b1)
mr(ab1, method_list="mr_ivw")
a1 <- a
b1 <- b
a1$effect_allele.exposure[1] <- "GAAAA"
b1$other_allele.outcome[23] <- "I"
b1$effect_allele.outcome[23] <- "D"
b1$other_allele.outcome <- NA
ab1 <- harmonise_data(a1,b1)
mr(ab1, method_list="mr_ivw")
x <- data.frame(
SNP=c("a","b", "c", "d", "e", "f"),
beta=1,
se=1,
effect_allele=c("D", "ACTG", "A", "G", "C", "TD"),
other_allele=c("I", "F", "T", "C", "G", "A"),
stringsAsFactors=FALSE
)
format_data(x)
|
MBSGSSS = function(Y, X, group_size, pi0 = 0.5, pi1 = 0.5, a1 = 1, a2 = 1,
c1 = 1, c2 = 1, pi_prior = TRUE, niter = 10000,burnin = 5000,d=3,num_update = 100, niter.update =100)
{
n = dim(Y)[1]
q = dim(Y)[2]
p = dim(X)[2]
if(p<n){
model <- lm(Y~X)
k <- mean(apply(model$residuals,2,var))}else{
var.res <- NULL
for(l in 1:q){
mydata <- data.frame(y=Y[,l],X)
min.model <- lm(y~-1,data=mydata)
formula.model <- formula(lm(y~0+.,data=mydata))
model <- stepAIC(min.model,direction='forward',scope=formula.model,steps=n-1,trace=FALSE)
var.res <- c(var.res,var(residuals(model)))
}
k <- mean(var.res)
}
Q = k*diag(q)
ngroup = length(group_size)
Sigma <- diag(q)
l = rep(0, ngroup)
b = vector(mode='list', length=ngroup)
beta = vector(mode='list', length=ngroup)
for(i in 1:ngroup){ beta[[i]]=matrix(1,ncol=q,nrow=group_size[i])
b[[i]]=matrix(1,ncol=q,nrow=group_size[i])}
Z = rep(0, ngroup)
m = dim(X)[2]
b_prob = rep(0.5, ngroup)
tau = rep(1, m)
tau_prob = rep(0.5, m)
s2 = 1
fit_for_t =MBSGSSS_EM_t(k,Y, X, group_size=group_size,num_update = num_update, niter=niter.update)
t = tail(fit_for_t$t_path, 1)
YtY = crossprod(Y, Y)
XtY = crossprod(X, Y)
XtX = crossprod(X, X)
XktY = vector(mode='list', length=ngroup)
XktXk = vector(mode='list', length=ngroup)
XktXmk = vector(mode='list', length=ngroup)
begin_idx = 1
for(i in 1:ngroup)
{
end_idx = begin_idx + group_size[i] - 1
Xk = X[,begin_idx:end_idx]
XktY[[i]] = crossprod(Xk, Y)
XktXk[[i]] = crossprod(Xk, Xk)
XktXmk[[i]] = crossprod(Xk, X[,-(begin_idx:end_idx)])
begin_idx = end_idx + 1
}
YtXi <- vector(mode='list', length=m)
XmitXi = array(0, dim=c(m,m-1))
XitXi = rep(0, m)
for(j in 1:m)
{
YtXi[[j]] = crossprod(Y, X[,j])
XmitXi[j,] = crossprod(X[,-j], X[,j])
XitXi[j] = crossprod(X[,j], X[,j])
}
coef = vector("list", length=q)
for(jj in 1:q){
coef[[jj]] <- array(0, dim=c(p, niter-burnin))
}
bprob = array(-1, dim=c(ngroup, niter-burnin))
tauprob = array(-1, dim=c(m, niter-burnin))
for (iter in 1:niter)
{
Z = rep(0, ngroup)
n_nzg = 0
n_nzt = 0
unif_samples = runif(m)
idx = 1
Sigma_inv <- solve(Sigma)
Beta <- do.call(rbind, beta)
matb <- do.call(rbind, b)
for(g in 1:ngroup)
{
for (j in 1:group_size[g])
{
M = Sigma_inv%*%(YtXi[[idx]]-t(Beta[-idx,])%*%matrix(XmitXi[idx,],ncol=1,nrow=m-1))%*%matrix(matb[idx,],nrow=1,ncol=q)
bsquare <- t(matrix(matb[idx,],ncol=q,nrow=1))%*%matrix(matb[idx,],ncol=q,nrow=1)
vgj_square = 1/(sum(diag(XitXi[idx]*Sigma_inv%*%bsquare))+1/s2)
ugj = sum(diag(M))*vgj_square
tau_prob[idx] = pi1/( pi1 + 2 * (1-pi1) * ((s2)^(-0.5))*(vgj_square)^(0.5)*
exp(pnorm(ugj/sqrt(vgj_square),log.p=TRUE) + ugj^2/(2*vgj_square)))
if(unif_samples[idx] < tau_prob[idx]) {
tau[idx] = 0
} else {
tau[idx] = rtruncnorm(1, mean=ugj, sd=sqrt(vgj_square), a=0)
n_nzt = n_nzt + 1
}
idx = idx + 1
}
}
begin_idx = 1
unif_samples_group = runif(ngroup)
for(g in 1:ngroup)
{
end_idx = begin_idx + group_size[g] - 1
Vg = diag(tau[begin_idx:end_idx])
Sig = solve(crossprod(Vg, XktXk[[g]]) %*% Vg + diag(group_size[g]))
dev = (Vg %*% (XktY[[g]] - XktXmk[[g]] %*% Beta[-c(begin_idx:end_idx),]))
num <- 0.5*sum(diag(solve(Sigma)%*%crossprod(dev,Sig)%*%dev))
exp.num <- exp(num)
if(exp.num == Inf) exp.num <- 1.797693e+307
b_prob[g] = pi0 / ( pi0 + (1-pi0) * det(Sig)^(q/2) * exp.num)
if(unif_samples_group[g] < b_prob[g]){
matb[begin_idx:end_idx,] = 0
b[[g]] = matrix(0,ncol=q,nrow=group_size[g])
Z[g] = 0}
else
{
matb[begin_idx:end_idx,] = matrix(rmnorm(1, mean=c(Sig%*%dev), varcov=kronecker(Sigma,Sig)),ncol=q,nrow=group_size[g],byrow = FALSE)
b[[g]] = matb[begin_idx:end_idx,]
Z[g] = 1
n_nzg = n_nzg + 1
}
Beta[begin_idx:end_idx,] = Vg %*% matb[begin_idx:end_idx,]
beta[[g]] <- Beta[begin_idx:end_idx,]
begin_idx = end_idx + 1
}
if(iter > burnin){
for(jj in 1:q){
coef[[jj]][,iter-burnin] <- Beta[,jj]
}
bprob[,iter-burnin] = b_prob
tauprob[,iter-burnin] = tau_prob
}
ddf <- d + n +sum(group_size*Z)
res <- Y-X%*%Beta
S <- t(res)%*%res+t(matb)%*%matb + Q
Sigma <- riwish(ddf, S)
if(pi_prior == TRUE) {
pi0 = rbeta(1, ngroup - n_nzg + a1, n_nzg + a2)
pi1 = rbeta(1, m - n_nzt + c1, n_nzt + c2)
}
s2 = rinvgamma(1, shape = 1 + n_nzt/2, scale = t + sum(tau)/2)
}
pos_mean = matrix(unlist(lapply(coef, FUN=function(x) apply(x, 1, mean))),ncol=q,nrow=p,byrow=FALSE)
pos_median = matrix(unlist(lapply(coef, FUN=function(x) apply(x, 1, median))),ncol=q,nrow=p,byrow=FALSE)
list(pos_mean = pos_mean, pos_median = pos_median, coef = coef)
}
|
validate_state <- function(state, .msg=interactive()) {
if (is.null(state)) return(NULL)
state <- tolower(str_trim(state))
if (grepl("^[[:digit:]]+$", state)) {
state <- sprintf("%02d", as.numeric(state))
if (state %in% fips_state_table$fips) {
return(state)
} else {
state_sub <- substr(state, 1, 2)
if (state_sub %in% fips_state_table$fips) {
message(sprintf("Using first two digits of %s - '%s' (%s) - for FIPS code.",
state, state_sub,
fips_state_table[fips_state_table$fips == state_sub, "name"]),
call.=FALSE)
return(state_sub)
} else {
stop(sprintf("'%s' is not a valid FIPS code or state name/abbreviation", state), call.=FALSE)
}
}
} else if (grepl("^[[:alpha:]]+", state)) {
if (nchar(state) == 2 && state %in% fips_state_table$abb) {
if (.msg)
message(sprintf("Using FIPS code '%s' for state '%s'",
fips_state_table[fips_state_table$abb == state, "fips"],
toupper(state)))
return(fips_state_table[fips_state_table$abb == state, "fips"])
} else if (nchar(state) > 2 && state %in% fips_state_table$name) {
if (.msg)
message(sprintf("Using FIPS code '%s' for state '%s'",
fips_state_table[fips_state_table$name == state, "fips"],
simpleCapSO(state)))
return(fips_state_table[fips_state_table$name == state, "fips"])
} else {
stop(sprintf("'%s' is not a valid FIPS code or state name/abbreviation", state), call.=FALSE)
}
} else {
stop(sprintf("'%s' is not a valid FIPS code or state name/abbreviation", state), call.=FALSE)
}
}
validate_county <- function(state, county, .msg = interactive()) {
if (is.null(state) || is.null(county)) return(NULL)
state <- validate_state(state)
county_table <- fips_codes[fips_codes$state_code == state, ]
if (grepl("^[[:digit:]]+$", county)) {
county <- sprintf("%03d", as.numeric(county))
if (county %in% county_table$county_code) {
return(county)
} else {
warning(sprintf("'%s' is not a current FIPS code for counties in %s", county, county_table$state_name[1]),
call. = FALSE)
return(county)
}
} else if ((grepl("^[[:alpha:]]+", county))) {
county_index <- grepl(sprintf("^%s", county), county_table$county, ignore.case = TRUE)
matching_counties <- county_table$county[county_index]
if (length(matching_counties) == 0) {
stop(sprintf("'%s' is not a valid name for counties in %s", county, county_table$state_name[1]),
call. = FALSE)
} else if (length(matching_counties) == 1) {
if (.msg)
message(sprintf("Using FIPS code '%s' for '%s'",
county_table[county_table$county == matching_counties, "county_code"],
matching_counties))
return(county_table[county_table$county == matching_counties, "county_code"])
} else if (length(matching_counties) > 1) {
ctys <- format_vec(matching_counties)
stop("Your county string matches ", ctys, " Please refine your selection.", call. = FALSE)
}
}
}
format_vec <- function(vec) {
out <- paste0(vec, ', ')
l <- length(out)
out[l - 1] <- paste0(out[l - 1], 'and ')
out[l] <- gsub(', ', '.', out[l])
return(paste0(out, collapse = ''))
}
simpleCapSO <- function(x) {
s <- strsplit(x, " ")[[1]]
paste0(toupper(substring(s, 1,1)), substring(s, 2),
collapse=" ")
}
print_api_call <- function(url) {
url <- gsub("&key.*", "", url)
message(paste("Census API call:", utils::URLdecode(url)))
}
|
icd9_sub_chapters <- list(
`Intestinal Infectious Diseases` = c(start = "001", end = "009"),
Tuberculosis = c(start = "010", end = "018"),
`Zoonotic Bacterial Diseases` = c(
start = "020",
end = "027"
),
`Other Bacterial Diseases` = c(start = "030", end = "041"), `Human Immunodeficiency Virus (Hiv) Infection` = c(
start = "042",
end = "042"
),
`Poliomyelitis And Other Non-Arthropod-Borne Viral Diseases And Prion Diseases Of Central Nervous System` = c(
start = "045",
end = "049"
), `Viral Diseases Generally Accompanied By Exanthem` = c(
start = "050",
end = "059"
), `Arthropod-Borne Viral Diseases` = c(
start = "060",
end = "066"
), `Other Diseases Due To Viruses And Chlamydiae` = c(
start = "070",
end = "079"
), `Rickettsioses And Other Arthropod-Borne Diseases` = c(
start = "080",
end = "088"
), `Syphilis And Other Venereal Diseases` = c(
start = "090",
end = "099"
), `Other Spirochetal Diseases` = c(
start = "100",
end = "104"
), Mycoses = c(start = "110", end = "118"), Helminthiases = c(
start = "120",
end = "129"
), `Other Infectious And Parasitic Diseases` = c(
start = "130",
end = "136"
), `Late Effects Of Infectious And Parasitic Diseases` = c(
start = "137",
end = "139"
), `Malignant Neoplasm Of Lip, Oral Cavity, And Pharynx` = c(
start = "140",
end = "149"
), `Malignant Neoplasm Of Digestive Organs And Peritoneum` = c(
start = "150",
end = "159"
), `Malignant Neoplasm Of Respiratory And Intrathoracic Organs` = c(
start = "160",
end = "165"
), `Malignant Neoplasm Of Bone, Connective Tissue, Skin, And Breast` = c(
start = "170",
end = "176"
), `Malignant Neoplasm Of Genitourinary Organs` = c(
start = "179",
end = "189"
), `Malignant Neoplasm Of Other And Unspecified Sites` = c(
start = "190",
end = "199"
), `Malignant Neoplasm Of Lymphatic And Hematopoietic Tissue` = c(
start = "200",
end = "208"
), `Neuroendocrine Tumors` = c(start = "209", end = "209"), `Benign Neoplasms` = c(start = "210", end = "229"), `Carcinoma In Situ` = c(
start = "230",
end = "234"
), `Neoplasms Of Uncertain Behavior` = c(
start = "235",
end = "238"
), `Neoplasms Of Unspecified Nature` = c(
start = "239",
end = "239"
), `Disorders Of Thyroid Gland` = c(
start = "240",
end = "246"
), `Diseases Of Other Endocrine Glands` = c(
start = "249",
end = "259"
), `Nutritional Deficiencies` = c(start = "260", end = "269"), `Other Metabolic And Immunity Disorders` = c(
start = "270",
end = "279"
),
`Diseases Of The Blood And Blood-Forming Organs` = c(start = "280", end = "289"),
`Organic Psychotic Conditions` = c(
start = "290",
end = "294"
), `Other Psychoses` = c(start = "295", end = "299"), `Neurotic Disorders, Personality Disorders, And Other Nonpsychotic Mental Disorders` = c(
start = "300",
end = "316"
), `Intellectual Disabilities` = c(
start = "317",
end = "319"
), `Inflammatory Diseases Of The Central Nervous System` = c(
start = "320",
end = "326"
), `Organic Sleep Disorders` = c(start = "327", end = "327"), `Hereditary And Degenerative Diseases Of The Central Nervous System` = c(
start = "330",
end = "337"
), Pain = c(start = "338", end = "338"), `Other Headache Syndromes` = c(
start = "339",
end = "339"
), `Other Disorders Of The Central Nervous System` = c(
start = "340",
end = "349"
), `Disorders Of The Peripheral Nervous System` = c(
start = "350",
end = "359"
), `Disorders Of The Eye And Adnexa` = c(
start = "360",
end = "379"
), `Diseases Of The Ear And Mastoid Process` = c(
start = "380",
end = "389"
), `Acute Rheumatic Fever` = c(start = "390", end = "392"), `Chronic Rheumatic Heart Disease` = c(start = "393", end = "398"), `Hypertensive Disease` = c(start = "401", end = "405"), `Ischemic Heart Disease` = c(
start = "410",
end = "414"
), `Diseases Of Pulmonary Circulation` = c(
start = "415",
end = "417"
), `Other Forms Of Heart Disease` = c(
start = "420",
end = "429"
), `Cerebrovascular Disease` = c(start = "430", end = "438"), `Diseases Of Arteries, Arterioles, And Capillaries` = c(
start = "440",
end = "449"
), `Diseases Of Veins And Lymphatics, And Other Diseases Of Circulatory System` = c(
start = "451",
end = "459"
), `Acute Respiratory Infections` = c(
start = "460",
end = "466"
), `Other Diseases Of The Upper Respiratory Tract` = c(
start = "470",
end = "478"
), `Pneumonia And Influenza` = c(start = "480", end = "488"), `Chronic Obstructive Pulmonary Disease And Allied Conditions` = c(
start = "490",
end = "496"
), `Pneumoconioses And Other Lung Diseases Due To External Agents` = c(
start = "500",
end = "508"
), `Other Diseases Of Respiratory System` = c(
start = "510",
end = "519"
), `Diseases Of Oral Cavity, Salivary Glands, And Jaws` = c(
start = "520",
end = "529"
), `Diseases Of Esophagus, Stomach, And Duodenum` = c(
start = "530",
end = "539"
), Appendicitis = c(start = "540", end = "543"), `Hernia Of Abdominal Cavity` = c(
start = "550",
end = "553"
), `Noninfectious Enteritis And Colitis` = c(
start = "555",
end = "558"
), `Other Diseases Of Intestines And Peritoneum` = c(
start = "560",
end = "569"
), `Other Diseases Of Digestive System` = c(
start = "570",
end = "579"
), `Nephritis, Nephrotic Syndrome, And Nephrosis` = c(
start = "580",
end = "589"
), `Other Diseases Of Urinary System` = c(
start = "590",
end = "599"
), `Diseases Of Male Genital Organs` = c(
start = "600",
end = "608"
), `Disorders Of Breast` = c(start = "610", end = "612"), `Inflammatory Disease Of Female Pelvic Organs` = c(
start = "614",
end = "616"
), `Other Disorders Of Female Genital Tract` = c(
start = "617",
end = "629"
), `Ectopic And Molar Pregnancy` = c(
start = "630",
end = "633"
), `Other Pregnancy With Abortive Outcome` = c(
start = "634",
end = "639"
), `Complications Mainly Related To Pregnancy` = c(
start = "640",
end = "649"
), `Normal Delivery, And Other Indications For Care In Pregnancy, Labor, And Delivery` = c(
start = "650",
end = "659"
), `Complications Occurring Mainly In The Course Of Labor And Delivery` = c(
start = "660",
end = "669"
), `Complications Of The Puerperium` = c(
start = "670",
end = "677"
), `Other Maternal And Fetal Complications` = c(
start = "678",
end = "679"
), `Infections Of Skin And Subcutaneous Tissue` = c(
start = "680",
end = "686"
), `Other Inflammatory Conditions Of Skin And Subcutaneous Tissue` = c(
start = "690",
end = "698"
), `Other Diseases Of Skin And Subcutaneous Tissue` = c(
start = "700",
end = "709"
), `Arthropathies And Related Disorders` = c(
start = "710",
end = "719"
), Dorsopathies = c(start = "720", end = "724"), `Rheumatism, Excluding The Back` = c(
start = "725",
end = "729"
), `Osteopathies, Chondropathies, And Acquired Musculoskeletal Deformities` = c(
start = "730",
end = "739"
),
`Congenital Anomalies` = c(start = "740", end = "759"),
`Maternal Causes Of Perinatal Morbidity And Mortality` = c(
start = "760",
end = "763"
), `Other Conditions Originating In The Perinatal Period` = c(
start = "764",
end = "779"
), Symptoms = c(start = "780", end = "789"), `Nonspecific Abnormal Findings` = c(
start = "790",
end = "796"
), `Ill-Defined And Unknown Causes Of Morbidity And Mortality` = c(
start = "797",
end = "799"
),
`Fracture Of Skull` = c(
start = "800",
end = "804"
), `Fracture Of Neck And Trunk` = c(
start = "805",
end = "809"
), `Fracture Of Upper Limb` = c(start = "810", end = "819"), `Fracture Of Lower Limb` = c(start = "820", end = "829"),
Dislocation = c(start = "830", end = "839"), `Sprains And Strains Of Joints And Adjacent Muscles` = c(
start = "840",
end = "848"
), `Intracranial Injury, Excluding Those With Skull Fracture` = c(
start = "850",
end = "854"
), `Internal Injury Of Thorax, Abdomen, And Pelvis` = c(
start = "860",
end = "869"
),
`Open Wound Of Head, Neck, And Trunk` = c(
start = "870",
end = "879"
), `Open Wound Of Upper Limb` = c(
start = "880",
end = "887"
), `Open Wound Of Lower Limb` = c(
start = "890",
end = "897"
), `Injury To Blood Vessels` = c(
start = "900",
end = "904"
), `Late Effects Of Injuries, Poisonings, Toxic Effects, And Other External Causes` = c(
start = "905",
end = "909"
), `Superficial Injury` = c(start = "910", end = "919"), `Contusion With Intact Skin Surface` = c(
start = "920",
end = "924"
), `Crushing Injury` = c(start = "925", end = "929"), `Effects Of Foreign Body Entering Through Orifice` = c(
start = "930",
end = "939"
), Burns = c(start = "940", end = "949"), `Injury To Nerves And Spinal Cord` = c(
start = "950",
end = "957"
), `Certain Traumatic Complications And Unspecified Injuries` = c(
start = "958",
end = "959"
), `Poisoning By Drugs, Medicinal And Biological Substances` = c(
start = "960",
end = "979"
), `Toxic Effects Of Substances Chiefly Nonmedicinal As To Source` = c(
start = "980",
end = "989"
), `Other And Unspecified Effects Of External Causes` = c(
start = "990",
end = "995"
), `Complications Of Surgical And Medical Care, Not Elsewhere Classified` = c(
start = "996",
end = "999"
), `Persons With Potential Healthhazards Related To Communicable Diseases` = c(
start = "V01",
end = "V06"
), `Persons With Need For Isolation, Other Potential Health Hazards And Prophylactic Measures` = c(
start = "V07",
end = "V09"
), `Persons With Potential Health Hazards Related To Personal And Family History` = c(
start = "V10",
end = "V19"
), `Persons Encountering Health Services In Circumstances Related To Reproduction And Development` = c(
start = "V20",
end = "V29"
), `Liveborn Infants According To Type Of Birth` = c(
start = "V30",
end = "V39"
), `Persons With A Condition Influencing Their Health Status` = c(
start = "V40",
end = "V49"
), `Persons Encountering Health Services For Specific Procedures And Aftercare` = c(
start = "V50",
end = "V59"
), `Persons Encountering Health Services In Other Circumstances` = c(
start = "V60",
end = "V69"
), `Persons Without Reported Diagnosis Encountered During Examination And Investigation Of Individuals And Populations` = c(
start = "V70",
end = "V82"
), Genetics = c(start = "V83", end = "V84"), `Body Mass Index` = c(
start = "V85",
end = "V85"
), `Estrogen Receptor Status` = c(
start = "V86",
end = "V86"
), `Other Specified Personal Exposures And History Presenting Hazards To Health` = c(
start = "V87",
end = "V87"
), `Acquired Absence Of Other Organs And Tissue` = c(
start = "V88",
end = "V88"
), `Other Suspected Conditions Not Found` = c(
start = "V89",
end = "V89"
), `Retained Foreign Body` = c(
start = "V90",
end = "V90"
), `Multiple Gestation Placenta Status` = c(
start = "V91",
end = "V91"
), `External Cause Status` = c(
start = "E000",
end = "E000"
), Activity = c(start = "E001", end = "E030"),
`Railway Accidents` = c(start = "E800", end = "E807"), `Motor Vehicle Traffic Accidents` = c(
start = "E810",
end = "E819"
), `Motor Vehicle Nontraffic Accidents` = c(
start = "E820",
end = "E825"
), `Other Road Vehicle Accidents` = c(
start = "E826",
end = "E829"
), `Water Transport Accidents` = c(
start = "E830",
end = "E838"
), `Air And Space Transport Accidents` = c(
start = "E840",
end = "E845"
), `Vehicle Accidents Not Elsewhere Classifiable` = c(
start = "E846",
end = "E848"
), `Place Of Occurrence` = c(
start = "E849",
end = "E849"
), `Accidental Poisoning By Drugs, Medicinal Substances, And Biologicals` = c(
start = "E850",
end = "E858"
), `Accidental Poisoning By Other Solid And Liquid Substances, Gases, And Vapors` = c(
start = "E860",
end = "E869"
), `Misadventures To Patients During Surgical And Medical Care` = c(
start = "E870",
end = "E876"
), `Surgical And Medical Procedures As The Cause Of Abnormal Reaction Of Patient Or Later Complication,Without Mention Of Misadventure At The Time Of Procedure` = c(
start = "E878",
end = "E879"
), `Accidental Falls` = c(start = "E880", end = "E888"), `Accidents Caused By Fire And Flames` = c(
start = "E890",
end = "E899"
), `Accidents Due To Natural And Environmental Factors` = c(
start = "E900",
end = "E909"
), `Accidents Caused By Submersion, Suffocation, And Foreign Bodies` = c(
start = "E910",
end = "E915"
), `Other Accidents` = c(start = "E916", end = "E928"), `Late Effects Of Accidental Injury` = c(
start = "E929",
end = "E929"
), `Drugs, Medicinal And Biological Substances Causing Adverse Effects In Therapeutic Use` = c(
start = "E930",
end = "E949"
), `Suicide And Self-Inflicted Injury` = c(
start = "E950",
end = "E959"
), `Homicide And Injury Purposely Inflicted By Other Persons` = c(
start = "E960",
end = "E969"
), `Legal Intervention` = c(start = "E970", end = "E978"), Terrorism = c(start = "E979", end = "E979"), `Injury Undetermined Whether Accidentally Or Purposely Inflicted` = c(
start = "E980",
end = "E989"
), `Injury Resulting From Operations Of War` = c(
start = "E990",
end = "E999"
)
)
|
water_vp_sat <- function(temperature,
over.ice = FALSE,
method = "tetens",
check.range = TRUE) {
method <- tolower(method)
if (length(method) > 1L) {
if (length(unique(method)) > 1L) {
stop("Only one method can be used per function call.")
} else {
method <- method[1L]
}
}
if (length(over.ice) == 1L && length(temperature > 1)) {
over.ice <- rep_len(over.ice, length(temperature))
}
if (any(temperature > 0 & over.ice)) {
warning("At temperature > 0 C, ice surface will be wet.")
}
if (method == "magnus") {
if (check.range &&
any(!is.na(temperature) & (temperature < -80 | temperature > 50))) {
warning("Out of bounds temperature value(s) set to NA, range: -80 C to +50 C.")
temperature <- ifelse(temperature < -80, NA_real_, temperature)
}
z <-
ifelse(over.ice,
611.21 * exp(22.587 * temperature / (273.86 + temperature)),
610.94 * exp(17.625 * temperature / (243.04 + temperature)))
} else if (method == "tetens") {
if (check.range && any(!is.na(temperature) & (temperature < -40))) {
warning("Out of bounds temperature value(s) set to NA, range: -40 C to +50 C.")
temperature <- ifelse(temperature < -40, NA_real_, temperature)
}
z <-
ifelse(over.ice,
610.78 * exp(21.875 * temperature / (265.5 + temperature)),
610.78 * exp(17.269 * temperature / (237.3 + temperature)))
} else if (method == "wexler") {
if (check.range && any(!is.na(temperature) & (temperature < -100 | temperature > 110))) {
warning("Out of bounds temperature value(s) set to NA, range: -100 C to +100 C")
temperature <-
ifelse(temperature < -100 | temperature > 110, NA_real_, temperature)
}
temperature.K <- temperature + 273.15
wexler.ice <- function(temperature.K) {
g <- c(-5.8666426e3, 2.232870244e1, 1.39387003e-2, -3.4262402e-5,
2.7040955e-8, 6.7063522e-1)
exp(sum(temperature.K^((0:4) - 1) * g[1:5]) + g[6] * log(temperature.K))
}
wexler.water <- function(temperature.K) {
g <- c(-2.8365744e3, -6.028076559e3, 1.954263612e1, -2.737830188e-2,
1.6261698e-5, 7.0229056e-10, -1.8680009e-13, 2.7150305)
exp(sum(temperature.K^((0:6) - 2) * g[1:7]) + g[8] * log(temperature.K))
}
z <-
ifelse(over.ice,
sapply(temperature.K, wexler.ice),
sapply(temperature.K, wexler.water))
} else if (method == "goff.gratch") {
if (check.range && any(temperature < -50)) {
warning("Out of bounds temperature value(s) set to NA, range: -50 C to +100 C")
temperature <- ifelse(temperature < -50, NA_real_, temperature)
}
temperature.K <- temperature + 273.15
z <-
ifelse(over.ice,
10^(-9.09718 * (273.16 / temperature.K - 1) -
3.56654 * log10(273.16 / temperature.K) +
0.876793 * (1 - temperature.K / 273.16) +
log10(6.1173) ),
10^(-7.90298 * (373.16 / temperature.K - 1) +
5.02808 * log10(373.16 / temperature.K) -
1.3816e-7 * (10^(11.344 * (1 - temperature.K / 373.16)) - 1) +
8.1328e-3 * (10^(-3.49149 * (373.16 / temperature.K - 1)) - 1) +
log10(1013.25)))
z <- z * 1e2
} else {
warning("Method '", method,
"' unavailable; use 'magnus', 'tetens', 'wexler' or 'goff.gratch'.")
z <- rep(NA_real_, length(temperature))
}
z
}
water_dp <- function(water.vp,
over.ice = FALSE,
method = "tetens",
check.range = TRUE) {
method <- tolower(method)
if (length(method) > 1L) {
if (length(unique(method)) > 1L) {
stop("Only one method can be used per function call.")
} else {
method <- method[1L]
}
}
if (length(over.ice) == 1L && length(water.vp > 1)) {
over.ice <- rep_len(over.ice, length(water.vp))
}
if (any(water.vp <= 0)) {
warning("Dew point is not defined for vapour pressure <= 0 Pa.")
water.vp <- ifelse(water.vp <= 0, NA_real_, water.vp)
}
if (method == "magnus") {
z <-
ifelse(over.ice,
273.86 * log(water.vp / 611.21) / (22.587 - log(water.vp / 611.21)),
243.04 * log(water.vp / 610.94) / (17.625 - log(water.vp / 610.94)))
if (check.range && any((!is.na(z)) & z < -80 | z > 50)) {
warning("Out of bounds temperature value(s) set to NA, range: -80 C to +50 C.")
z <- ifelse((!is.na(z)) & z < -80 | z > 50, NA_real_, z)
}
} else if (method == "tetens") {
z <-
ifelse(over.ice,
265.5 * log(water.vp / 610.78) / (21.875 - log(water.vp / 610.78)),
237.3 * log(water.vp / 610.78) / (17.269 - log(water.vp / 610.78)))
if (check.range && any((!is.na(z)) & z < -30)) {
warning("Out of bounds temperature value(s) set to NA, range: -30 C to +50 C.")
z <- ifelse((!is.na(z)) & z < -30 | z > 50, NA_real_, z)
}
} else if (method == "wexler") {
wexler.inv.ice <- function(water.vp) {
c <- c(2.1257969e2, -1.0264612e1, 1.4354796e-1)
d <- c(1, -8.2871619e-2, 2.3540411e-3, -2.4363951e-5)
sum(c * log(water.vp)^(0:2)) / sum(d * log(water.vp)^(0:3))
}
wexler.inv.water <- function(water.vp) {
c <- c(2.0798233e2, -2.0156028e1, 4.6778925e-1, -9.2288067e-6)
d <- c(1, -1.3319669e-1, 5.6577518e-3, -7.5172865e-5)
sum(c * log(water.vp)^(0:3)) / sum(d * log(water.vp)^(0:3))
}
z <-
ifelse(over.ice,
sapply(water.vp, wexler.inv.ice) - 273.15,
sapply(water.vp, wexler.inv.water) - 273.15)
if (check.range && any((!is.na(z)) & z < -100 | z > 100)) {
warning("Out of bounds temperature value(s) set to NA, -100 C to + 100 C.")
z <- ifelse((!is.na(z)) & z < -100 | z > 100, NA_real_, z)
}
} else {
warning("Method '", method,
"' unavailable; use 'magnus', 'tetens' or 'wexler'.")
z <- rep(NA_real_, length(water.vp))
}
method <- tolower(method)
if (any(z > 0) && over.ice) {
warning("At dew point temperature > 0 C, ice surface will be wet.")
}
z
}
water_fp <- function(water.vp,
over.ice = TRUE,
method = "tetens",
check.range = TRUE) {
water_dp(water.vp = water.vp,
over.ice = over.ice,
method = method,
check.range = check.range)
}
water_vp2mvc <- function(water.vp,
temperature) {
2.166 * water.vp / (temperature + 273.16)
}
water_mvc2vp <- function(water.mvc,
temperature) {
(temperature + 273.16) / 2.166 * water.mvc
}
water_vp2RH <- function(water.vp,
temperature,
over.ice = FALSE,
method = "tetens",
pc = TRUE,
check.range = TRUE) {
z <- water.vp / water_vp_sat(temperature,
over.ice = over.ice,
method = method,
check.range = check.range)
if (pc) {
z * 100
} else {
z
}
}
water_RH2vp <- function(relative.humidity,
temperature,
over.ice = FALSE,
method = "tetens",
pc = TRUE,
check.range = TRUE) {
if (pc) {
relative.humidity <- relative.humidity * 1e-2
}
relative.humidity * water_vp_sat(temperature,
over.ice = over.ice,
method = method,
check.range = check.range)
}
water_vp_sat_slope <- function(temperature,
over.ice = FALSE,
method = "tetens",
check.range = TRUE,
temperature.step = 0.1) {
vp_sat1 <- water_vp_sat(temperature + temperature.step / 2,
over.ice = over.ice,
method = method,
check.range = check.range)
vp_sat2 <- water_vp_sat(temperature - temperature.step / 2,
over.ice = over.ice,
method = method,
check.range = check.range)
(vp_sat1 - vp_sat2) / temperature.step
}
psychrometric_constant <- function(atmospheric.pressure = 101325) {
lambda <- 2.45
C.p <- 1.013e-3
epsilon <- 0.622
(C.p * atmospheric.pressure) / (epsilon * lambda)
}
|
print.errprof <- function(x, ...){
nms <- names(x)
attributes(x) <- NULL
names(x) <- nms
print(x)
}
|
weighted_posteriors <- function(..., prior_odds = NULL, missing = 0, verbose = TRUE) {
UseMethod("weighted_posteriors")
}
weighted_posteriors.data.frame <- function(..., prior_odds = NULL, missing = 0, verbose = TRUE) {
Mods <- list(...)
mnames <- sapply(match.call(expand.dots = FALSE)$`...`, .safe_deparse)
iterations <- min(sapply(Mods, nrow))
if (!is.null(prior_odds)) {
prior_odds <- c(1, prior_odds)
} else {
warning("'prior_odds = NULL'; Using uniform priors odds.\n",
"For weighted data frame, 'prior_odds' should be specified as a numeric vector.",
call. = FALSE
)
prior_odds <- rep(1, length(Mods))
}
Probs <- prior_odds / sum(prior_odds)
weighted_samps <- round(iterations * Probs)
res <- .weighted_posteriors(Mods, weighted_samps, missing)
attr(res, "weights") <- data.frame(Model = mnames, weights = weighted_samps)
return(res)
}
weighted_posteriors.stanreg <- function(...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,
effects = c("fixed", "random", "all"),
component = c("conditional", "zi", "zero_inflated", "all"),
parameters = NULL) {
Mods <- list(...)
effects <- match.arg(effects)
component <- match.arg(component)
BFMods <- bayesfactor_models(..., denominator = 1, verbose = verbose)
model_tab <- .get_model_table(BFMods, priorOdds = prior_odds)
postProbs <- model_tab$postProbs
iterations <- min(sapply(Mods, .total_samps))
weighted_samps <- round(iterations * postProbs)
params <- lapply(Mods, insight::get_parameters,
effects = effects,
component = component,
parameters = parameters
)
res <- .weighted_posteriors(params, weighted_samps, missing)
attr(res, "weights") <- data.frame(Model = BFMods$Model, weights = weighted_samps)
return(res)
}
weighted_posteriors.brmsfit <- weighted_posteriors.stanreg
weighted_posteriors.blavaan <- weighted_posteriors.stanreg
weighted_posteriors.BFBayesFactor <- function(...,
prior_odds = NULL,
missing = 0,
verbose = TRUE,
iterations = 4000) {
Mods <- c(...)
BFMods <- bayesfactor_models(Mods, verbose = verbose)
model_tab <- .get_model_table(BFMods, priorOdds = prior_odds, add_effects_table = FALSE)
postProbs <- model_tab$postProbs
weighted_samps <- round(iterations * postProbs)
intercept_only <- which(BFMods$Model == "1")
params <- vector(mode = "list", length = nrow(BFMods))
for (m in seq_along(params)) {
if (length(intercept_only) && m == intercept_only) {
params[[m]] <- data.frame(
mu = rep(NA, iterations),
sig2 = rep(NA, iterations),
g = rep(NA, iterations)
)
} else if (m == 1) {
params[[m]] <- BayesFactor::posterior(1 / Mods[1], iterations = iterations, progress = FALSE)
} else {
params[[m]] <- BayesFactor::posterior(
Mods[m - 1],
iterations = iterations, progress = FALSE
)
}
}
params <- lapply(params, data.frame)
res <- .weighted_posteriors(params, weighted_samps, missing)
attr(res, "weights") <- data.frame(Model = BFMods$Model, weights = weighted_samps)
return(res)
}
.weighted_posteriors <- function(params, weighted_samps, missing) {
par_names <- unique(unlist(sapply(params, colnames), recursive = TRUE))
params <- params[weighted_samps != 0]
weighted_samps <- weighted_samps[weighted_samps != 0]
for (m in seq_along(weighted_samps)) {
temp_params <- params[[m]]
i <- sample(nrow(temp_params), size = weighted_samps[m])
temp_params <- temp_params[i, , drop = FALSE]
missing_pars <- setdiff(par_names, colnames(temp_params))
temp_params[, missing_pars] <- missing
params[[m]] <- temp_params
}
do.call("rbind", params)
}
.total_samps <- function(mod) {
x <- insight::find_algorithm(mod)
if (is.null(x$iterations)) x$iterations <- x$sample
x$chains * (x$iterations - x$warmup)
}
|
str_extract_non_nums_no_ambigs <- function(string, num_pattern) {
stringi::stri_split_regex(string, num_pattern, omit_empty = TRUE)
}
str_extract_non_numerics <- function(string, decimals = FALSE,
leading_decimals = decimals, negs = FALSE,
sci = FALSE, commas = FALSE) {
checkmate::assert_character(string)
checkmate::assert_flag(decimals)
checkmate::assert_flag(leading_decimals)
checkmate::assert_flag(negs)
checkmate::assert_flag(sci)
checkmate::assert_flag(commas)
if (is_l0_char(string)) {
return(list())
}
num_pattern <- num_regex(
decimals = decimals, leading_decimals = leading_decimals,
negs = negs, sci = sci, commas = commas
)
ambig_pattern <- ambig_num_regex(
decimals = decimals,
leading_decimals = leading_decimals,
sci = sci, commas = commas
)
ambigs <- num_ambigs(string,
decimals = decimals,
leading_decimals = leading_decimals, sci = sci,
commas = commas
)
out <- vector(mode = "list", length = length(string))
if (any(ambigs)) {
ambig_warn(string, ambigs, ambig_regex = ambig_pattern)
out[ambigs] <- NA_character_
not_ambigs <- !ambigs
out[not_ambigs] <- str_extract_non_nums_no_ambigs(
string[not_ambigs],
num_pattern
)
} else {
out[] <- str_extract_non_nums_no_ambigs(string, num_pattern)
}
out
}
str_nth_non_numeric_no_ambigs <- function(string, num_pattern, n) {
if (length(string) == 0) {
return(character())
}
if (length(n) == 1 && n >= 0) {
out <- stringi::stri_split_regex(string, num_pattern,
n = n + 1,
omit_empty = TRUE, simplify = TRUE
)[, n]
out %T>% {
.[!str_length(.)] <- NA_character_
}
} else {
stringi::stri_split_regex(string, num_pattern, omit_empty = TRUE) %>%
chr_lst_nth_elems(n)
}
}
str_nth_non_numeric <- function(string, n, decimals = FALSE,
leading_decimals = decimals, negs = FALSE,
sci = FALSE, commas = FALSE) {
if (is_l0_char(string)) {
return(character())
}
verify_string_n(string, n)
checkmate::assert_flag(decimals)
checkmate::assert_flag(leading_decimals)
checkmate::assert_flag(negs)
checkmate::assert_flag(sci)
checkmate::assert_flag(commas)
num_pattern <- num_regex(
decimals = decimals, leading_decimals = leading_decimals,
negs = negs, sci = sci, commas = commas
)
ambig_pattern <- ambig_num_regex(
decimals = decimals,
leading_decimals = leading_decimals,
sci = sci, commas = commas
)
ambigs <- num_ambigs(string,
decimals = decimals,
leading_decimals = leading_decimals, sci = sci,
commas = commas
)
out <- character(length(string))
if (any(ambigs)) {
ambig_warn(string, ambigs, ambig_pattern)
out[ambigs] <- NA_character_
not_ambigs <- !ambigs
out[not_ambigs] <- str_nth_non_numeric_no_ambigs(
string[not_ambigs],
num_pattern, n
)
} else {
out[] <- str_nth_non_numeric_no_ambigs(string, num_pattern, n)
}
out
}
str_first_non_numeric <- function(string, decimals = FALSE,
leading_decimals = decimals, negs = FALSE,
sci = FALSE, commas = FALSE) {
str_nth_non_numeric(string,
n = 1,
decimals = decimals, leading_decimals = leading_decimals,
negs = negs, sci = sci, commas = commas
)
}
str_last_non_numeric <- function(string, decimals = FALSE,
leading_decimals = decimals, negs = FALSE,
sci = FALSE, commas = FALSE) {
str_nth_non_numeric(string,
n = -1,
decimals = decimals, leading_decimals = leading_decimals,
negs = negs, sci = sci, commas = commas
)
}
|
dendro_data <- function(model, ...) {
UseMethod("dendro_data", model)
}
dendro_data.default <- function(model, ...) {
x <- class(model)
stop(paste("No dendro_data method defined for class", x))
return(NULL)
}
is.dendro <- function(x) {
inherits(x, "dendro")
}
as.dendro <- function(segments, labels, leaf_labels = NULL, class) {
if (missing(class)) stop("Missing class in as.dendro")
x <- list(
segments = segments,
labels = labels,
leaf_labels = leaf_labels,
class = class
)
class(x) <- "dendro"
x
}
segment <- function(x) {
x$segments
}
label <- function(x) {
x$labels
}
leaf_label <- function(x) {
x$leaf_labels
}
|
Give_Sentences_PMC = function(PMCID,term){
check = getURL(paste("https://www.ncbi.nlm.nih.gov/pmc/articles/PMC", PMCID, "/", sep=""))
checkxml = htmlTreeParse(check,useInternalNodes = T)
check3 = lapply(getNodeSet(checkxml,"//p"),function(x){xmlValue(x)})
test = NULL; for (i in 1:length(check3)) {tempA = SentenceToken(check3[[i]]);tempB = regexpr(term,tempA); tempC = which(attr(tempB,"match.length") == nchar(term)); if ( length(tempC) != 0 ) tempD = tempA[tempC] else tempD = NULL; test = c(test,tempD)}; return(test)}
|
pgfIpolyaaeppli <-
function(s,params) {
k<-s[abs(s)>1]
if (length(k)>0)
warning("At least one element of the vector s are out of interval [-1,1]")
if (length(params)<2) stop("At least one value in params is missing")
if (length(params)>2) stop("The length of params is 2")
theta<-params[1]
p<-params[2]
if (theta<=0)
stop ("Parameter theta must be positive")
if ((p>=1)|(p<=0))
stop ("Parameter p belongs to the interval (0,1)")
(theta+log(s))/(theta+p*log(s))
}
|
"smaller.clade.spectrum" <-
function(tree) {
if (identical(tree,NULL)) {
stop("invalid tree","\n")
}
merge=tree$merge
spec <- matrix(0,nrow=nrow(merge),ncol=2)
spec[nrow(merge),]=c(2,1)
for (node in 2:nrow(merge)) {
if (merge[node,1]<0) {lc=1}
else {lc=spec[nrow(merge)-merge[node,1]+1, 1]}
if (merge[node,2]<0) {rc=1}
else {rc=spec[nrow(merge)-merge[node,2]+1, 1]}
spec[nrow(merge)-node+1,]=c(rc+lc, min(rc, lc))
}
spec
}
|
GQ=0
FccaXYdir <- function(Lx, Lp, LPhi, resp, l1, l2, cv=1) {
.Call('flars_FccaXYdir',Lx, Lp, LPhi, resp, l1, l2, cv=1, PACKAGE = 'flars')
}
FccaXYdir0 <- function(Lx, Lp, LPhi, resp, l1, l2, cv=1) {
.Call('flars_FccaXYdir0',Lx, Lp, LPhi, resp, l1, l2, cv=1, PACKAGE = 'flars')
}
cov.linear=function(hyper,Data,Data.new=NULL){
if(is.null(Data.new)) Data.new=Data
hyper=lapply(hyper,exp);n.hyper=length(hyper$linear.a)
cov.lin=xixj(Data.new,Data,hyper$linear.a)
return(cov.lin)
}
cov.pow.ex=function(hyper,Data,Data.new=NULL,gamma=1){
if(is.null(gamma)) gamma=1
hyper=lapply(hyper,exp);
datadim=dim(Data)
v.power=xixj_sta(Data,Data.new,hyper$pow.ex.w,power=gamma)
exp.v.power=hyper$pow.ex.v*exp(-v.power/2)
}
xixj=function(mat,mat.new=NULL,a=NULL){
mat=as.matrix(mat)
mdim=dim(mat)
if(is.null(mat.new)){
mat.new=mat
}
if(is.null(a)) a=rep(1,mdim[2])
if(length(a)<mdim[2]) {
a1=rep(1,mdim[2])
a1[1:length(a)]=a
a=a1;rm(a1)
warning('number of "a" is less than the number of columns, use 1 as the missing "a"')
}
if(length(a)>mdim[2]) {
a=a[1:mdim[2]]
warning('number of "a" is more than the number of columns, omit the extra "a"')
}
aa=matrix(rep(a,mdim[1]),ncol=mdim[2],byrow=T)
out=(aa*mat)%*%t(mat.new)
return(out)
}
xixj_sta=function(mat,mat.new=NULL,w=NULL,power=NULL){
mat=as.matrix(mat)
if(is.null(mat.new)) mat.new=mat
mdim=dim(mat);mdim.new=dim(mat.new)
cov.=matrix(sapply(1:mdim[1],function(i) matrix(rep(mat[i,],mdim.new[1]),nrow=mdim.new[1],byrow=T)-mat.new),ncol=mdim[1])
if(is.null(power)) power=1
cov.=((cov.)^2)^power;
if(is.null(w)) {
w=rep(1,mdim[2])
warning('missing "weight", use 1 instead')
}
if(length(w)==1&mdim[2]>1){
w=rep(w,mdim[2])
warning('only one "weight" found, applied to all columns')
}
if(length(w)>1&length(w)<mdim[2]){
w1=rep(1,mdim[2])
w1[1:length(w)]=w
w=w1;rm(w1)
warning('number of "weight" is less than the number of columns, use 1 as the missing "weight"')
}
if(length(w)>mdim[2]){
w=w[1:mdim[2]]
warning('number of "weight" is more than the number of columns, omit the extra "weight"')
}
wmat=matrix(rep(w,each=dim(cov.)[1]*dim(cov.)[2]/mdim[2]),ncol=dim(cov.)[2],byrow=T)
cov.=wmat*cov.
cov..=matrix(0,ncol=mdim[1],nrow=mdim.new[1])
if(mdim[2]>1){
for(i in 1:(mdim[2]-1)){
cov..=cov..+cov.[1:mdim.new[1],,drop=F];cov.=cov.[-(1:mdim.new[1]),,drop=F]}
cov.=cov..+cov.
}
return(cov.)
}
ind_fv_gen=function(effect_sample_size=10,num_fv=3,nsample=80,seed=NULL){
if(is.null(seed)) seed=sample(seq(1,1e4),size=1)
set.seed(seed)
x=matrix(rnorm(nsample*num_fv*effect_sample_size),ncol=effect_sample_size*num_fv)
idx_factor=rep(rep(1:num_fv,each=nsample),effect_sample_size)
x=lapply(split(x,idx_factor),function(i) matrix(i,ncol=effect_sample_size))
for(i in 2:num_fv){
a=do.call('cbind',x[1:(i-1)])
b=x[[i]]
out=resid(lm(b~a))
x[[i]]=out
}
return(x)
}
mat2fd=function(mat,fdList=NULL){
fl=list(time=seq(0,1,len=ncol(mat)),nbasis=min(as.integer(ncol(mat)/5),23),norder=6,bSpline=TRUE,Pen=c(0,0),lambda=1e-4)
nbasis=c(fdList$nbasis,fl$nbasis)[1]
norder=c(fdList$norder,fl$norder)[1]
lambda=c(fdList$lambda,fl$norder)[1]
bSpline=c(fdList$bSpline,fl$bSpline)[1]
time=list(a=fdList$time,b=fl$time)
time=time[[which(unlist(lapply(time,is.null))^2==0)[1]]]
if(1-bSpline) fl$Pen=c(c(0,(2*pi/diff(range(time)))^2,0))
Pen=list(a=fdList$Pen,b=fl$Pen)
Pen=Pen[[which(unlist(lapply(Pen,is.null))^2==0)[1]]]
if(bSpline) basis=create.bspline.basis(range(time),nbasis,norder)
if(1-bSpline) basis=create.fourier.basis(range(time),nbasis,diff(range(time)))
Par=vec2Lfd(Pen,range(time))
matfd=smooth.basisPar(time,t(mat),basis,Lfdobj=Par,lambda)$fd
return(matfd)
}
add_shape=function(mat,vec){
dim_vec=length(vec)
if(nrow(mat)==dim_vec & nrow(mat)!=ncol(mat)) mat=t(mat)
mat=apply(mat,1,function(iii) return(iii+vec))
if(nrow(mat)==dim_vec & nrow(mat)!=ncol(mat)) mat=t(mat)
return(mat)
}
f_var_from_f_independent=function(f_independent,weight,intercept=NULL, slope=NULL){
fi=f_independent
nf=length(fi)
ni=ns=0
if(!is.null(intercept)) ni=length(intercept)
if(!is.null(slope)) ns=length(slope)
if(is.null(intercept)) intercept=0
if(is.null(slope)) slope=0
z=vector('list',length=nrow(weight))
weight=split(weight,rep(1:nrow(weight),ncol(weight)))
for(i in seq_along(z)){
z0=lapply(1:nf,function(k)
fi[[k]]*weight[[i]][k]*matrix(slope[[sample(ns,1)]],ncol=ncol(fi[[k]]),nrow=nrow(fi[[k]]),byrow = T)+matrix(intercept[[sample(ni,1)]],ncol=ncol(fi[[k]]),nrow=nrow(fi[[k]]),byrow = T))
z[[i]]=Reduce('+',z0)
}
return(z)
}
rmse=function(t,a){
y = sqrt(mean((a-t)^2,na.rm = T))
return(y)
}
getL=function(dimension,order){
l=matrix(0,nrow=dimension-order,ncol=dimension)
for(i in 1:nrow(l))
l[i,i+0:order]=(c(-1,1,0)+(order-1)*c(0,1,-1))[1:(order+1)]
return(l)
}
get2L=function(dimension,DelT){
l=matrix(0,nrow = dimension-2,ncol=dimension)
for(i in 1:nrow(l)){
l[i,i+0:2]=2/c((DelT[i]+DelT[i+1])*DelT[i],-DelT[i]*DelT[i+1],(DelT[i]+DelT[i+1])*DelT[i+1])
}
return(l)
}
cp=function(mat1,mat2=NULL){
if(is.data.frame(mat1)) mat1=data.matrix(mat1)
if(is.data.frame(mat2)) mat2=data.matrix(mat2)
return(crossprod(mat1,mat2))
}
tcp=function(mat1,mat2=NULL){
if(is.data.frame(mat1)) mat1=data.matrix(mat1)
if(is.data.frame(mat2)) mat2=data.matrix(mat2)
return(tcrossprod(mat1,mat2))
}
GenWeight=function(nx,seed,avoid){
a=rnorm(nx)
a[avoid]=rnorm(length(avoid),sd = 1e-1)
a=nx*a/sum(abs(a))
return(abs(a))
}
plot_fm=function(f_var,dim=NULL){
nfm=length(f_var)
if(is.null(dim)) par(mfrow=c(((nfm/2)%%1!=0)+as.integer(nfm/2),2))
if(!is.null(dim)) par(mfrow=c(dim[1],dim[2]))
for(i in 1:nfm){
fv=f_var[[i]]
plot(-100,-100,xlim=c(0,ncol(fv)),ylim=range(fv),
main=substitute( paste("x"[{x000}],"(t)",sep=''), list(x000=i) ),
ylab='',xlab='index')
for(ii in 1:nrow(fv)) lines(1:ncol(fv),fv[ii,],col=col1(1.2*nrow(fv))[ii])
}
par(mfrow=c(1,1))
}
col1 <- colorRampPalette(c("
"
ran_fv_gen=function(effect_sample_size=10,num_fv=3,nsample=80,seed=NULL){
if(is.null(seed)) seed=sample(seq(1,1e4),size=1)
set.seed(seed)
x=matrix(rnorm(nsample*num_fv*effect_sample_size),ncol=effect_sample_size*num_fv)
idx_factor=rep(rep(1:num_fv,each=nsample),effect_sample_size)
x=lapply(split(x,idx_factor),function(i) matrix(i,ncol=effect_sample_size))
return(x)
}
data_generation=function(seed,nsamples=80,hyper=NULL,var_type=c('f','m'),cor_type=1:6,uncorr=TRUE,nVar=8){
set.seed(seed)
var_type=var_type[1]
cor_type=cor_type[1]
data.gen=T
if(is.null(hyper))
hp <- list('pow.ex.w'=log(50),'linear.a'=log(2),'pow.ex.v'=log(20),'vv'=log(0.5))
if(!is.null(hyper)) hp=hyper
if(data.gen){
if(uncorr==T)
x=ind_fv_gen(effect_sample_size=10,num_fv=nVar,nsample=nsamples,seed=seed)
if(uncorr==F)
x=ran_fv_gen(effect_sample_size=10,num_fv=nVar,nsample=nsamples,seed=seed)
effect_sample_size=10;num_fv=nVar;nsample=nsamples
G=cov.pow.ex(hp,seq(0,1,len=10))+cov.linear(hp,seq(0,1,len=10))
G2=chol(G)
x=lapply(x,'%*%',G2)
f=lapply(x,function(i){
mat2fd(i,fdList=list(nbasis=2*effect_sample_size,norder=min(effect_sample_size-1,6),lambda=1e-7))
})
ntime=100
fm0=lapply(f,function(i) t(eval.fd(seq(0,1,len=ntime),i)))
err_range=diff(apply(sapply(fm0,range),1,mean))/20
fm0=lapply(fm0,function(i) i+eval.fd(seq(0,1,len=ntime),mat2fd(t(rnorm(50,sd=err_range)),list(lambda=1e-3)))[,1])
shape0=list(s1=sin(seq(0,pi,len=ntime)),
s2=pnorm(seq(0.6,1.2,len=ntime),mean=.8,sd=0.01)+0.2*exp(seq(-1,2.5,len=ntime)),
s3=cos(seq(0,1.5,len=ntime))^2,
s4=sin(cos(seq(0,3,len=ntime))),
s5=cos(sin(seq(-2,3,len=ntime))),
s6=seq(-2,3,len=ntime)^3-cos(seq(-2,3,len=ntime)^2)^3,
s7=cos(sqrt(exp(seq(-2,3,len=ntime)))),
s8=sin(sqrt(exp(seq(-2,3,len=ntime)))))
shape=lapply(shape0,function(i)return(i*err_range*nsample/diff(range(i))))
fm=fm0
for(i in seq_along(fm)) fm[[i]]=add_shape(fm[[i]],shape[[sample(seq_along(shape0),1)]])
b1=princomp(x[[1]], cor=F)$loadings[,1]
b1=mat2fd(t(as.matrix(b1)),fdList=list(nbasis=5,norder=4,lambda=0))
bm=eval.fd(seq(0,1,len=ntime),b1)
b1const=(max(fm[[1]]%*%bm)-min(fm[[1]]%*%bm))
y01=fm[[1]]%*%bm/b1const
y1=y01
b2=princomp(x[[2]], cor=F)$loadings[,1]
p=dnorm((rnorm(2*ntime)))
idx=sort(sample(1:(2*ntime),10,prob=p/sum(p)))
time2=seq(0,1,len=2*ntime)[idx]
time2=(time2-(min(time2)))/max(time2)
b2=mat2fd(t(as.matrix(b2)),fdList=list(time=time2,nbasis=7,norder=4,lambda=0))
bm=eval.fd(seq(min(time2),max(time2),len=ntime),b2)
b2const=(max(fm[[2]]%*%bm)-min(fm[[2]]%*%bm))
y02=fm[[2]]%*%bm/b2const
y2=y02
noise=rnorm(nsample,mean=0,sd=0.5)
b3=princomp(x[[3]], cor=F)$loadings[,1]
b3=mat2fd(t(as.matrix(b3)),fdList=list(nbasis=5,norder=4,lambda=0))
bm=eval.fd(seq(0,1,len=ntime),b3)
b3const=(max(fm[[3]]%*%bm)-min(fm[[3]]%*%bm))
y03=fm[[3]]%*%bm/b3const
y3=y03
mu=sample(c(0,5,10,20,100),size = 1)
noise=mu+noise*0.1
}
BetaT=list(b1=b1,b2=b2,b3=b3)
bConst=c(b1const=b1const,b2const=b2const,b3const=b3const)
if(var_type=='f'){
if(cor_type==1){
fsm=fm
y=y1+y2+y3+noise
}
if(cor_type==2){
fmm=list('vector',8)
fmm[c(1:3,5:8)]=fm[c(1:3,5:8)]
GenWeight=function(nx,seed,avoid){
a=rnorm(nx)
a[avoid]=rnorm(length(avoid),sd = 1e-1)
a=nx*a/sum(abs(a))
return(abs(a))
}
w1=w2=w3=rep(0,8)
w1[c(1,4)]=GenWeight(2,2,c(1,2))
w=t(as.matrix(w1))
z=f_var_from_f_independent(f_independent=fm,weight=w,intercept = shape0,slope = shape0)
fmm[c(4)]=z
fsm=fmm
y=y1+y2+y3+noise
}
if(cor_type==3){
fmm=list('vector',8)
fmm[c(1:3,7,8)]=fm[c(1:3,7,8)]
GenWeight=function(nx,seed,avoid){
a=rnorm(nx)
a[avoid]=rnorm(length(avoid),sd = 1e-1)
a=nx*a/sum(abs(a))
return(abs(a))
}
w1=w2=w3=rep(0,8)
w1[c(1,4)]=GenWeight(2,2,c(1,2))
w2[c(2,5)]=GenWeight(2,3,c(1,2))
w3[c(3,6)]=GenWeight(2,4,c(1,2))
w=rbind(w1,w2,w3)
z=f_var_from_f_independent(f_independent=fm,weight=w,intercept = shape0,slope = shape0)
fmm[c(4:6)]=z
fsm=fmm
y=y1+y2+y3+noise
}
if(cor_type==4){
fmm=list('vector',8)
fmm[c(1:3,6:8)]=fm[c(1:3,6:8)]
GenWeight=function(nx,seed,avoid){
a=rnorm(nx)
a[avoid]=rnorm(length(avoid),sd = 1e-1)
a=nx*a/sum(abs(a))
return(abs(a))
}
w1=w2=rep(0,8)
w1[c(1,4)]=c(0.2,0.8)
w2[c(1,5)]=c(0.2,0.8)
w=rbind(w1,w2)
z=f_var_from_f_independent(f_independent=fm,weight=w,intercept = shape0,slope = shape0)
fmm[c(4,5)]=z
fsm=fmm
y=y1+y2+y3+noise
}
beta_xs=NULL
}
if(var_type=='m'){
xs=x[-8]
xsMat=matrix(0,ncol=5,nrow=nsamples)
xsMat=apply(xsMat,2,rnorm,n=nsamples)
if(uncorr==F){
a=do.call(cbind,xs)
b=xsMat[,1]
xsMat[,1]=resid(lm(b~a))
for(i in 2:ncol(xsMat)){
a=cbind(do.call('cbind',xs),xsMat[,1:(i-1)])
b=xsMat[,i]
out=resid(lm(b~a))
xsMat[,i]=out
}
}
xsMat=scale(xsMat)
beta_xs=1/apply(apply(xsMat,2,range),2,diff)
beta_xs[4:5]=0
y_xs=xsMat%*%beta_xs
xsList=lapply(split(xsMat,rep(1:ncol(xsMat),each=nrow(xsMat))),as.matrix)
y=y1+y2+y3+y_xs
if(cor_type==1){
fsm=fm
fsm=fsm[-8]
fsm=c(fsm,xsList)
y=y+noise
}
if(cor_type==2){
fmm=list('vector',8)
fmm[c(1:8)]=fm[1:8]
GenWeight=function(nx,seed,avoid){
a=rnorm(nx)
a[avoid]=rnorm(length(avoid),sd = 1e-1)
a=nx*a/sum(abs(a))
return(abs(a))
}
w1=w2=rep(0,8)
w1[c(1,7,5)]=c(0.2,-0.01,0.3)
w2[c(1,7,4)]=c(0.2,-0.01,0.3)
w=rbind(w1,w2)
z=f_var_from_f_independent(f_independent=fm,weight=w,intercept = shape0,slope = shape0)
fmm[c(4,5)]=z
fsm=fmm
fsm=fsm[-8]
fsm=c(fsm,xsList)
y=y+noise
}
if(cor_type==3){
fsm=fm
fsm=fsm[-8]
fsm=c(fsm,xsList)
fsm[[11]]=0.2*xsList[[1]]+0.8*xsList[[4]]
fsm[[12]]=0.2*xsList[[1]]+0.8*xsList[[5]]
y=y+noise
}
if(cor_type==4){
fmm=list('vector',8)
fmm[c(1:8)]=fm[1:8]
GenWeight=function(nx,seed,avoid){
a=rnorm(nx)
a[avoid]=rnorm(length(avoid),sd = 1e-1)
a=nx*a/sum(abs(a))
return(abs(a))
}
w1=w2=rep(0,8)
w1[c(1,7,5)]=c(0.2,-0.01,0.3)
w2[c(1,7,4)]=c(0.2,-0.01,0.3)
w=rbind(w1,w2)
z=f_var_from_f_independent(f_independent=fm,weight=w,intercept = shape0,slope = shape0)
fmm[c(4,5)]=z
fsm=fmm
fsm=fsm[-8]
fsm=c(fsm,xsList)
fsm[[11]]=0.2*xsList[[1]]+0.8*xsList[[4]]
fsm[[12]]=0.2*xsList[[1]]+0.8*xsList[[5]]
y=y+noise
}
if(cor_type==5){
fmm=list('vector',8)
fmm[c(1:8)]=fm[1:8]
GenWeight=function(nx,seed,avoid){
a=rnorm(nx)
a[avoid]=rnorm(length(avoid),sd = 1e-1)
a=nx*a/sum(abs(a))
return(abs(a))
}
w1=w2=rep(0,8)
w1[c(1,7,5)]=c(0.2,-0.01,0.3)
w2[c(1,7,4)]=c(0.2,-0.01,0.3)
w=rbind(w1,w2)
z=f_var_from_f_independent(f_independent=fm,weight=w,intercept = shape0,slope = shape0)
fmm[c(4,5)]=z
fsm=fmm
fsm=fsm[-8]
fsm=c(fsm,xsList)
fsm[[11]]=0.2*xsList[[1]]+0.8*xsList[[4]]
fsm[[12]]=0.2*xsList[[1]]+0.8*xsList[[5]]
fsm[[6]]=apply(fsm[[6]],2,function(i6) i6+xsList[[1]])
y=y+noise
}
if(cor_type==6){
fmm=list('vector',8)
fmm[c(1:8)]=fm[1:8]
GenWeight=function(nx,seed,avoid){
a=rnorm(nx)
a[avoid]=rnorm(length(avoid),sd = 1e-1)
a=nx*a/sum(abs(a))
return(abs(a))
}
w1=w2=rep(0,8)
w1[c(1,2,8,4)]=c(0.8,0,1.2,0.5)
w=rbind(w1,w2)
z=f_var_from_f_independent(f_independent=fm,weight=w,intercept = shape0,slope = shape0)
fmm[c(4,5)]=z
fsm=fmm
fsm=fsm[-8]
fsm=c(fsm,xsList)
fsm[[11]]=0.2*xsList[[1]]+0.8*xsList[[4]]
fsm[[12]]=0.2*xsList[[1]]+0.8*xsList[[5]]
fsm[[6]]=apply(fsm[[6]],2,function(i6) i6+0.2*xsList[[1]])
y=y+noise
}
}
BetaT$S=beta_xs
return(list(x=fsm,y=y,BetaT=BetaT,bConst=bConst,noise=noise,mu=mu))
}
fccaGen=function(xL,yVec,type=c('dir','cor','a','all'),method=c('basis','gq','raw'),GCV=TRUE,control=list()){
if(!is.list(xL)) xL=list(xL)
if(is.list(xL)) xL=lapply(xL,as.matrix)
nList=length(xL)
ndimL=sapply(xL,ncol)
idxFD=seq_along(xL)[ndimL>1]
if(length(idxFD)==0){
x=sapply(xL,as.matrix)
type=type[1]
xc=crossprod(x)
xy=t(x)%*%yVec
Beta=as.matrix(rep(NA,length(yVec)))
try(Beta<-solve(xc,xy),T)
if(type=='dir' | type=='a'){
return(Beta)
}
if(type=='cor')
return(cor(x%*%Beta,yVec))
if(type=='all'){
return(list('corr'=cor(x%*%Beta,yVec),'a'=Beta,'PureScalar'=1,'TraceHat'=dim(x)))
}
}
method=method[1]
gqWeight=NULL
pL=phiL=vector('list',length=nList)
if(method=='basis'){
con=list(nbasis=18,norder=6,pen1=10^(seq((-20),5,len=41)),pen2=0.01,t=seq(0,1,len=max(sapply(xL,ncol),na.rm = T)))
con[(namc <- names(control))] <- control
nbasis=con$nbasis;norder=con$norder;pen1=con$pen1
pen2=con$pen2;t=con$t
if(!is.list(t)){
tRange=range(t)
t=lapply(xL,function(i){
if(ncol(i)==length(t)){
return(t)
}
if(ncol(i)!=length(t) & ncol(i)>1){
return(seq(tRange[1],tRange[2],len=ncol(i)))
}
if(ncol(i)==1){
return((tRange[1]+tRange[2])/2)
}
})
}
if(is.list(t)){
if(length(t)!=nList)
t=lapply(xL,function(i)return(t[[1]]))
}
if(length(nbasis)!=length(norder)){
nbasis=nbasis[1]
norder=norder[1]
warning('length of nbasis is different from length of norder')
}
if(length(nbasis)!=nList)
nbasis=rep(nbasis[1],nList)
if(length(norder)!=nList)
norder=rep(norder[1],nList)
for(iL in idxFD){
tRange=range(t[[iL]])
nb=nbasis[iL];no=norder[iL]
tiL=t[[iL]]
spline=create.bspline.basis(tRange,nbasis = nb,norder = no)
MS=eval.basis(tiL,spline,0)
MS2=eval.basis(tiL,spline,2)
pL[[iL]]=crossprod(MS2)
phiL[[iL]]=MS/(ncol(xL[[iL]]))
}
}
if(method=='gq'){
con=list(nP=18,pen1=10^(seq((-20),5,len=21)),pen2=0.01,t=seq(-1,1,len=max(sapply(xL,ncol),na.rm = T)))
con[(namc <- names(control))] <- control
t=con$t;nP=con$nP;pen1=con$pen1;pen2=con$pen2
if(!is.list(t)){
tRange=range(t)
t=lapply(xL,function(i){
if(ncol(i)==length(t)){
return(t)
}
if(ncol(i)!=length(t) & ncol(i)>1){
return(seq(tRange[1],tRange[2],len=ncol(i)))
}
if(ncol(i)==1){
return((tRange[1]+tRange[2])/2)
}
})
}
if(is.list(t)){
if(length(t)!=nList)
t=lapply(xL,function(i)return(t[[1]]))
}
if(GQ==0){
.GlobalEnv$modelChronic <- readRDS(
file.path(system.file('inst/extdata',package='flars'), 'GQ.rds'))
}
gqWeight=data.matrix(GQ[GQ$n==nP,c(1,2)])
gqWeight2=data.matrix(GQ[GQ$n==(nP-2),c(1,2)])
xi=as.numeric(gqWeight[,1])
wi=as.matrix(gqWeight[,2])
wi=wi[order(xi)]
xi=sort(xi)
xi2=as.numeric(gqWeight2[,1])
wi2=as.matrix(gqWeight2[,2])
wi2=wi2[order(xi2)]
xi2=sort(xi2)
idxL=vector('list',length=length(idxFD))
xL0=xL
for(iL in idxFD){
dimFx=dim(xL[[iL]])
ncols=dimFx[2]
nrows=dimFx[1]
zi=t[[iL]]
idx=as.numeric(sapply(xi,function(i) which.min(abs(zi-i))))
idxL[[iL]]=idx
xGQ=xL[[iL]][,idx]
xL[[iL]]=xGQ
pL[[iL]]=t(get2L(ncol(xL[[iL]]),diff(xi)))%*%diag(wi2)%*%get2L(ncol(xL[[iL]]),diff(xi))
phiL[[iL]]=diag(wi)
}
}
if(method=='raw'){
con=list(pen1=10^(seq((-10),-5,len=21)),pen2=0.01,t=seq(0,1,len=max(sapply(xL,ncol),na.rm = T)))
con[(namc <- names(control))] <- control
t=con$t;pen1=con$pen1;pen2=con$pen2
if(!is.list(t)){
tRange=range(t)
t=lapply(xL,function(i){
if(ncol(i)==length(t)){
return(t)
}
if(ncol(i)!=length(t) & ncol(i)>1){
return(seq(tRange[1],tRange[2],len=ncol(i)))
}
if(ncol(i)==1){
return((tRange[1]+tRange[2])/2)
}
})
}
if(is.list(t)){
if(length(t)!=nList)
t=lapply(xL,function(i)return(t[[1]]))
}
for(iL in idxFD){
pL[[iL]]=crossprod(get2L(ncol(xL[[iL]]),diff(t[[iL]])))
phiL[[iL]]=diag(1,ncol(xL[[iL]]))/(ncol(xL[[iL]]))
}
}
if(length(idxFD)<nList){
pL[-idxFD]=lapply(pL[-idxFD],function(i) i=matrix(0))
phiL[-idxFD]=lapply(phiL[-idxFD],function(i) i=matrix(1))
}
type=type[1]
GCV=1
if(type!='all')
B=FccaXYdir(xL,pL,phiL,yVec,pen1,pen2,cv=GCV)
if(type=='all'){
B_all=FccaXYdir0(xL,pL,phiL,yVec,pen1,pen2,cv=GCV)
B=B_all$betahat
B_K=B_all$K
B_S=B_all$S
B_lam1=B_all$lambda1
B_lam2=B_all$lambda2
GCV_mat=B_all$GCV_mat
TrHat=B_all$HatMatTrace
}
idxB=unlist(sapply(1:nList,function(ii)rep(ii,len=ncol(phiL[[ii]]))))
if(method!='gq'){
BL=split(B,idxB)
out=unlist(mapply('%*%',phiL,BL,SIMPLIFY = F))
}
if(method=='gq'){
BL=split(B,idxB)
out=mapply('%*%',phiL,BL,SIMPLIFY = F)
outBL=lapply(ndimL,function(i)rep(0,i))
for(iL in idxFD){
outBL[[iL]][idxL[[iL]]]=out[[iL]]
}
outBL[-idxFD]=BL[-idxFD]
out=unlist(outBL)
xL=xL0
}
if(type=='cor'){
corr=cor(yVec,drop(do.call(cbind,xL)%*%out))
out=abs(corr)
return(out)
}
if(type=='a'){
a=out/(sd(yVec)*abs(cor(yVec,do.call(cbind,xL)%*%out)))
out=a
return(out)
}
if(type=='dir'){
return(out)
}
if(type=='all'){
corr=abs(cor(yVec,do.call(cbind,xL)%*%out))
a=out/(sd(yVec)*corr)
return(list('corr'=corr,'a'=a,'K'=B_K,'gq'=gqWeight,
'phiL'=phiL,'S'=B_S,'lam1'=B_lam1,'lam2'=B_lam2,
'GCV_mat'=GCV_mat,'TraceHat'=TrHat))
}
}
flars=function(x,y,method=c('basis','gq','raw'),max_selection,cv=c('gcv'),normalize=c('trace','rank','norm','raw'),lasso=TRUE,check=1,select=TRUE,VarThreshold=0.1,SignThreshold=0.8,control=list()){
x=lapply(x,scale)
xMean=lapply(x,function(i)attr(i,"scaled:center"))
xSD=lapply(x,function(i)attr(i,"scaled:scale"))
x=lapply(x,function(i){
da=i
attr(da,"scaled:center")=NULL
attr(da,"scaled:scale")=NULL
da
})
yMean=mean(y)
ySD=sd(y)
y=as.numeric(scale(y))
nx=length(x)
nsample=nrow(x[[1]])
max_iter=max_selection
alpha0=p2_norm0=NULL
r=as.matrix(y)
cv=cv[1]
beta0=rep(0,ncol(do.call('cbind',x)))
beta=betaM=NULL
gamma0=mapply(function(a,b)as.matrix(rep(0,each=b)),rep(0,length(x)),sapply(x,ncol),SIMPLIFY = F)
betaGQ=NULL
A=A0=NULL
method.=method
if(cv=='gcv'){
GCV=T
cor1=sapply(x,function(ixL) fccaGen(xL = ixL,yVec=r[,1],type='cor',method=method.,GCV=T,control=control))
}
idx1=as.numeric(which.max(cor1))
A0=c(A0,idx1);A=as.numeric(na.omit(A0[A0>0]))
iter=1
varSplit=NULL
MaxIter=min(max_iter,length(x))
p0=NULL
dfIter=NULL
corIter=NULL
SignCheckF0=NULL
Checked=F
cat('iter ')
while(iter <=MaxIter){
cat(iter,' ')
GCV0=1
gamma_all=fccaGen(x[A],r[,iter,drop=F],type='all',method=method.,GCV=GCV0,control=control)
gamma=split(gamma_all$a,unlist(mapply(rep,1:length(x[A]),each=sapply(x[A],ncol))))
gamma2=gamma0
gamma2[A]=gamma
gamma2=as.matrix(unlist(gamma2))
S0=gamma_all$S
S0_norm=1
p2=do.call('cbind',x)%*%gamma2*S0_norm
p2_norm=1/sd(p2)
p2=p2*p2_norm
if(cv=='gcv'){
GCV=T
cor2=sapply(x[-A],function(ixL) fccaGen(xL = ixL,yVec=r[,iter],type='all',method=method.,GCV=T,control=control),simplify = F)
}
S=lapply(cor2,function(i)i$S)
SidxNull=sapply(S,is.null)
if(sum(unlist(SidxNull))!=0)
S[SidxNull]=lapply(x[-A][SidxNull],function(i)tcrossprod(i)/drop(crossprod(i)))
normalize=normalize[1]
S_norm=sapply(S,function(i){
if(normalize=='trace'){
if(!is.null(i)) return(1/sum(diag(i)))
}
if(normalize=='rank'){
if(!is.null(i)) return(1/rankMatrix(i))
}
if(normalize=='norm'){
if(!is.null(i)) return(1/(sqrt(sum(diag(crossprod(i))))) )
}
if(normalize=='raw'){
if(!is.null(i)) return(1)
}
})
pBar=tcrossprod(p2)/drop(crossprod(p2))
pk_norm=1
if(normalize=='trace') pk_norm=1/sum(diag(pBar))
if(normalize=='rank') pk_norm=1/rankMatrix(pBar)
if(normalize=='norm') pk_norm=1/(sqrt(sum(diag(cp(pBar)))))
if(normalize=='raw') pk_norm==1
SBar=mapply('*',S,S_norm,SIMPLIFY = F)
pBar=pBar*pk_norm
MatAlpha=matrix(0,ncol=2,nrow=length(x))
colnames(MatAlpha)=c('plus','minus')
MatAlpha[A,]=1e5
Plus=Minus=rep(NA,length(cor2))
aa=bb=cc=vector('list',length(cor2))
try(aa<-lapply(SBar,function(i){
cp(p2,i-pBar)%*%p2
}),T)
try(bb<-lapply(SBar,function(i){
-2*cp(r[,iter],i-pBar)%*%p2
}),T)
try(cc<-lapply(SBar,function(i){
cp(r[,iter],i-pBar)%*%r[,iter]
}),T)
aa=unlist(aa)
bb=unlist(bb)
cc=unlist(cc)
bb2ac=bb^2-4*aa*cc
bb2ac[bb2ac<0]=NA
try(Plus<-(-bb+sqrt(bb2ac))/(2*aa),T)
try(Minus<-(-bb-sqrt(bb2ac))/(2*aa),T)
MatAlpha[-A,1]=unlist(Plus)
MatAlpha[-A,2]=unlist(Minus)
MatAlpha[MatAlpha<0]=NA
alpha0=c(alpha0,as.vector(MatAlpha)[which.min(as.vector(MatAlpha))])
ols=0
if(alpha0[iter]==1e5){
idx2=NA
m0=lm(r[,iter]~0+p2)
alpha0[iter]=m0$coefficients
ols=1
}
if(alpha0[iter]!=1e5 & ols==0){
idx2=c(which(MatAlpha[,1]==alpha0[iter]),which(MatAlpha[,2]==alpha0[iter]))
}
A0=c(A0,idx2)
A=as.numeric(na.omit(A0[A0>0]))
beta=cbind(beta,as.vector(gamma2)*alpha0[iter]*p2_norm)
p2_norm0=c(p2_norm0,p2_norm)
p0=cbind(p0,p2)
if(rmse(r[,iter],do.call(cbind,x)%*%beta[,iter,drop=F])>rmse(r[,iter],-do.call(cbind,x)%*%beta[,iter,drop=F])){
alpha0[iter]=alpha0[iter]
beta[,iter]=-beta[,iter]
}
if(iter==1)
betaM=cbind(betaM,beta[,iter])
if(iter>1)
betaM=cbind(betaM,betaM[,iter-1]+beta[,iter])
Checked==F
if(lasso==T){
if(check==1){
betaL=split(betaM[,iter],unlist(mapply(rep,seq_along(x),each=sapply(x,ncol))))
xSplit=mapply('%*%',x,betaL)
tmpVar=apply(xSplit,2,var)
varSplit=cbind(varSplit,tmpVar)
VarIdx=as.logical(apply(varSplit,1,function(i){
tail(i,1)<max(i[max(1,tail(which(i==0),1)):(length(i)-1)]) & tail(i,n = 1)>0 & tail(i,n = 1)<VarThreshold
}))
if(length(which(VarIdx==TRUE))>0){
Checked=T
RmIdx=which.min(tmpVar[VarIdx])
RmIdx=which(VarIdx==TRUE)[RmIdx]
RmIdxBeta=sum(sapply(betaL[1:RmIdx],length))-rev(seq_along(betaL[[RmIdx]]))+1
betaM[RmIdxBeta,iter]=0
A0[which(A0==RmIdx)]=A0[which(A0==RmIdx)]*(-1)-iter*0.0001
A=as.numeric(na.omit(A0[A0>0]))
}
}
if(check==2){
betaL=split(betaM[,iter],unlist(mapply(rep,seq_along(x),each=sapply(x,ncol))))
if(iter>2){
SignCheckF=mapply(crossprod,lapply(betaL,sign),lapply(betaL0,sign))/sapply(betaL,function(iBetaL) length(iBetaL[iBetaL!=0]))
SignCheckF0=cbind(SignCheckF0,as.numeric(SignCheckF))
SignCheckIdx=which(SignCheckF<=SignThreshold & SignCheckF!=0)
if(length(SignCheckIdx)>0){
SignCheckIdx=SignCheckIdx[which.min(SignCheckF[SignCheckIdx])]
A0[which(A0==SignCheckIdx)]=A0[which(A0==SignCheckIdx)]*(-1)-iter*0.0001
A=as.numeric(na.omit(A0[A0>0]))
BetaIdxL=split(1:nrow(betaM),unlist(mapply(rep,seq_along(x),each=sapply(x,ncol))))
RmIdxBeta=unlist(BetaIdxL[SignCheckIdx])
betaM[RmIdxBeta,iter]=0
}
}
betaL0=betaL
}
}
r=cbind(r,y-do.call(cbind,x)%*%betaM[,iter,drop=F])
if(Checked & !select){
r[,ncol(r)]=r[,1]
}
if(is.null(gamma_all$S)){
gamma_all$S=tcrossprod(do.call(cbind,x[A]))
}
dfIter=c(dfIter,list(diag(1,nsample)-gamma_all$S))
iter=iter+1
corIter=c(corIter,cor(r[,iter],p2))
p3=p2
}
betaM0=betaM
Mu=Beta=NULL
for(colI in 1:ncol(betaM0)){
bb=betaM0[,colI,drop=F]
b1=unlist(xMean)
b2=bb/unlist(xSD)
y1=yMean
y2=ySD
Mu=c(Mu,y1-y2*sum(b1*b2))
Beta=cbind(Beta,y2*b2)
}
betaOLSdir=fccaGen(x,y,type='all')
Sigma2Bar=var(y-do.call(cbind,x)%*%betaOLSdir$a)
dfIterS=vector('list',length(dfIter))
dfIterS[[1]]=dfIter[[1]]
for(iDF in 2:length(dfIter)){
dfIterS[[iDF]]=dfIter[[iDF]]%*%dfIterS[[iDF-1]]
}
dfIterS=lapply(dfIterS,function(iDFS) diag(1,nsample)-iDFS)
dfIterS=sapply(dfIterS,function(iDFS) sum(diag(iDFS)))
RSS=apply(do.call(cbind,x)%*%betaM0,2,function(cpI) sqrt(crossprod(y-cpI)))
dfIterS=dfIterS[seq_along(RSS)]
R2=1-RSS^2/crossprod(scale(y))
R2Adj=1-(1-R2)*(nsample-1)/(nsample-dfIterS-1)
Cp=RSS/Sigma2Bar-nsample+2*dfIterS
CpTrue=NULL
aicTrue=NULL
aic=2*RSS/(2*Sigma2Bar)+2*nsample*(log(sqrt(Sigma2Bar))+log(2*pi))+dfIterS
bicTrue=NULL
bic=2*RSS/(2*Sigma2Bar)+2*nsample*(log(sqrt(Sigma2Bar))+log(2*pi))+dfIterS*log(nsample)
StopStat=list(RSS=RSS,R2=R2,R2Adj=R2Adj,Cp=Cp,aic=aic,bic=bic,corIter=corIter)
CD=abs(StopStat$corIter[-length(StopStat$corIter)]*alpha0[-1])
out=list(Mu=Mu,
Beta=Beta,
alpha=alpha0,
p2_norm=p2_norm0[1:(iter-1)],
AllIndex=A0,
index=A,
CD=CD,
method=method,
resid=r,
RowMeans=xMean,
RowSds=xSD,
yMean=yMean,
ySD=ySD,
p0=p0,
cor1=cor1,
lasso=lasso,
df=dfIterS,
Sigma2Bar=Sigma2Bar,
StopStat=StopStat,
varSplit=varSplit,
SignCheckF=SignCheckF0
)
class(out)='flars'
return(out)
}
predict.flars=function(object,newdata,...){
if (!inherits(object, "flars")) stop("Not a legitimate 'flars' object")
xL=newdata
if(!is.list(xL)) xL=list(xL)
if(is.list(xL)) xL=lapply(xL,as.matrix)
nList=length(xL)
ndimL=sapply(xL,ncol)
idxFD=seq_along(xL)[ndimL>1]
if(length(idxFD)==0){
x=sapply(xL,as.matrix)
mu=object$Mu
Beta=object$Beta
yhattmp=matrix(rep(mu,each=nrow(x)),nrow=nrow(x),byrow = F)+x%*%Beta
}
if(length(idxFD)>0){
mu=object$Mu
Beta=object$Beta
yhattmp=matrix(rep(mu,each=nrow(xL[[1]])),nrow=nrow(xL[[1]]),byrow = F)+do.call(cbind,xL)%*%Beta
}
return(yhattmp)
}
flars_TrainTest=function(seed=1,nsamples=120,nTrain=80,var_type=c('f','m'),VarThreshold0=0.1,SignThreshold0=0.8,cor_type=1:5,lasso=TRUE,check=1,uncorr=T,nVar=8,Discrete_Norm_ID=1:12,NoRaw_max=12,raw_max=9,hyper=NULL,RealX=NULL,RealY=NULL,dataL=NULL,nCor=0,control=list()){
selection=Discrete_Norm_ID
var_type=var_type[1]
cor_type=cor_type[1]
if(is.null(dataL) & is.null(RealX) & is.null(RealY)){
dataL=data_generation(seed = seed,nsamples = nsamples,hyper = hyper,var_type =var_type,cor_type = cor_type,uncorr = uncorr,nVar = nVar)
}
fsm=dataL$x
y=dataL$y
TrainIdx=seq(nTrain)
TestIdx=seq(nsamples)[-TrainIdx]
fsmTrain=lapply(fsm,function(fsmI) fsmI[TrainIdx,,drop=F])
fsmTest=lapply(fsm,function(fsmI) fsmI[TestIdx,,drop=F])
yTrain=y[TrainIdx]
yTest=y[TestIdx]
noise=dataL$noise
if(!is.null(RealX) & !is.null(RealY)){
fsm=RealX
y=RealY
}
out=vector('list',length = 12)
if(nCor<=1){
iSam='seed'
if(1%in%selection){
test_Basis_Norm=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[1],max_selection = NoRaw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[2],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_Basis_Norm
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_Basis_Norm$yhat=cbind(yTest,yhattmp)
out[[1]]=test_Basis_Norm
cat(iSam,'.1',' ',sep = '')
}
if(2%in%selection){
test_Basis_Rank=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[1],max_selection = NoRaw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[4],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_Basis_Rank
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_Basis_Rank$yhat=cbind(yTest,yhattmp)
out[[2]]=test_Basis_Rank
cat(iSam,'.2',' ',sep = '')
}
if(3%in%selection){
test_Basis_Trace=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[1],max_selection = NoRaw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[1],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_Basis_Trace
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_Basis_Trace$yhat=cbind(yTest,yhattmp)
out[[3]]=test_Basis_Trace
cat(iSam,'.3',' ',sep = '')
}
if(4%in%selection){
test_Basis_Raw=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[1],max_selection = NoRaw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[3],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_Basis_Raw
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_Basis_Raw$yhat=cbind(yTest,yhattmp)
out[[4]]=test_Basis_Raw
cat(iSam,'.4',' ',sep = '')
}
if(5%in%selection){
test_GQ_Norm=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[2],max_selection = NoRaw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[2],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_GQ_Norm
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_GQ_Norm$yhat=cbind(yTest,yhattmp)
out[[5]]=test_GQ_Norm
cat(iSam,'.5',' ',sep = '')
}
if(6%in%selection){
test_GQ_Rank=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[2],max_selection = NoRaw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[4],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_GQ_Rank
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_GQ_Rank$yhat=cbind(yTest,yhattmp)
out[[6]]=test_GQ_Rank
cat(iSam,'.6',' ',sep = '')
}
if(7%in%selection){
test_GQ_Trace=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[2],max_selection = NoRaw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[1],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_GQ_Trace
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_GQ_Trace$yhat=cbind(yTest,yhattmp)
out[[7]]=test_GQ_Trace
cat(iSam,'.7',' ',sep = '')
}
if(8%in%selection){
test_GQ_Raw=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[2],max_selection = NoRaw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[3],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_GQ_Raw
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_GQ_Raw$yhat=cbind(yTest,yhattmp)
out[[8]]=test_GQ_Raw
cat(iSam,'.8',' ',sep = '')
}
if(9%in%selection){
test_Raw_Norm=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[3],max_selection = raw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[2],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_Raw_Norm
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_Raw_Norm$yhat=cbind(yTest,yhattmp)
out[[9]]=test_Raw_Norm
cat(iSam,'.9',' ',sep = '')
}
if(10%in%selection){
test_Raw_Rank=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[3],max_selection = raw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[4],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_Raw_Rank
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_Raw_Rank$yhat=cbind(yTest,yhattmp)
out[[10]]=test_Raw_Rank
cat(iSam,'.A',' ',sep = '')
}
if(11%in%selection){
test_Raw_Trace=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[3],max_selection = raw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[1],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_Raw_Trace
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_Raw_Trace$yhat=cbind(yTest,yhattmp)
out[[11]]=test_Raw_Trace
cat(iSam,'.B',' ',sep = '')
}
if(12%in%selection){
test_Raw_Raw=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[3],max_selection = raw_max,lasso=lasso,normalize = c('trace','norm','raw','rank')[3],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
test=test_Raw_Raw
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test_Raw_Raw$yhat=cbind(yTest,yhattmp)
out[[12]]=test_Raw_Raw
cat(iSam,'.C',' ',sep = '')
}
}
if(nCor>1){
SelectionIdx=cbind(rep(1:3,each=4),rep(1:4,3))
CatIdx=c(1:9,'A','B','C')
res=mclapply(selection,function(iSam){
methodIdx=SelectionIdx[iSam,1]
normIdx=SelectionIdx[iSam,2]
if(methodIdx<3) No_Max=NoRaw_max
if(methodIdx==3) No_Max=raw_max
test=flars(fsmTrain,yTrain,method = c('basis','gq','raw')[methodIdx],max_selection = No_Max,lasso=lasso,normalize = c('trace','norm','raw','rank')[normIdx],check=check,VarThreshold=VarThreshold0,SignThreshold=SignThreshold0,control=control)
mu=test$Mu
Beta=test$Beta
yhattmp=matrix(rep(mu,each=length(TestIdx)),nrow=length(TestIdx),byrow = F)+do.call(cbind,fsmTest)%*%Beta
test$yhat=cbind(yTest,yhattmp)
cat('seed.',CatIdx[iSam],sep = '')
return(test)
},mc.cores = nCor,mc.set.seed=F)
out[selection]=res
}
names(dataL$x)=paste0('x',seq_along(dataL$x))
out$dataL=dataL
names(out)=c('out_Basis_Norm','out_Basis_Rank','out_Basis_Trace','out_Basis_Raw','out_GQ_Norm','out_GQ_Rank','out_GQ_Trace','out_GQ_Raw','out_Raw_Norm','out_Raw_Rank','out_Raw_Trace','out_Raw_Raw','dataL')
return(out)
}
fccaXXcv=function(xL1,xL2,method=c('basis','gq','raw'),centre = TRUE,tol=1e-7,Control1=list(),Control2=list(),alpha=10^seq(-6,1,len=10)){
out=rep(0,length(alpha))
for(i in seq_along(alpha)){
Control1$pen1=c(Control1$pen1,alpha[i])[1]
Control2$pen1=c(Control2$pen1,alpha[i])[1]
Control2$pen2=Control2$pen2=0
cvL1=cvL2=rep(0,nrow(xL1[[1]]))
for(j in 1:nrow(xL1[[1]])){
cvL1[j]= cvL2[j] =0
xL1nI=lapply(xL1,function(ii) ii[-j,])
xL2nI=lapply(xL2,function(ii) ii[-j,])
xL1I=lapply(xL1,function(ii) ii[j,,drop=F])
xL2I=lapply(xL2,function(ii) ii[j,,drop=F])
tmp=fccaXX(xL1nI,xL2nI,method=method,centre = centre,control1=Control1,tol = tol,control2=Control2)
tmp
try(cvL1[j]<-Reduce('+',mapply('%*%',xL1I,lapply(tmp$coef1,function(ii) ii[,1,drop=F] ))),T)
try(cvL2[j]<-Reduce('+',mapply('%*%',xL2I,lapply(tmp$coef2,function(ii) ii[,1,drop=F] ))),T)
if(sum(c(cvL1[j], cvL2[j])%in%0)>0)
break
}
if(length(cvL1)!=nrow(xL1[[1]]))
out[i]=NA
if(length(cvL1)==nrow(xL1[[1]]))
out[i]=suppressWarnings(cor(cvL1,cvL2))
Control1$pen1=Control2$pen1=NULL
}
idx_na=which(is.na(out))
outcome=list(cor=out[-idx_na],alpha=alpha[-idx_na])
return(outcome)
}
fccaPre=function(xL,centre=TRUE,method=c('basis','gq','raw'),control=list()){
if(!is.list(xL)) xL=list(xL)
if(is.list(xL)) xL=lapply(xL,as.matrix)
nList=length(xL)
ndimL=sapply(xL,ncol)
idxFD=seq_along(xL)[ndimL>1]
if(centre){
xL=lapply(xL,scale)
xMean=lapply(xL,function(i)attr(i,"scaled:center"))
xSD=lapply(xL,function(i)attr(i,"scaled:scale"))
xL=lapply(xL,function(i){
da=i
attr(da,"scaled:center")=NULL
attr(da,"scaled:scale")=NULL
da
})
}
method=method[1]
gqWeight=NULL
pL=phiL=vector('list',length=nList)
if(method=='basis'){
con=list(nbasis=35,norder=6,pen1=10^(seq((-20),5,len=41)),pen2=0.01,t=seq(0,1,len=max(sapply(xL,ncol),na.rm = T)))
con[(namc <- names(control))] <- control
nbasis=con$nbasis;norder=con$norder;pen1=con$pen1
pen2=con$pen2;t=con$t
if(!is.list(t)){
tRange=range(t)
t=lapply(xL,function(i){
if(ncol(i)==length(t)){
return(t)
}
if(ncol(i)!=length(t) & ncol(i)>1){
return(seq(tRange[1],tRange[2],len=ncol(i)))
}
if(ncol(i)==1){
return((tRange[1]+tRange[2])/2)
}
})
}
if(is.list(t)){
if(length(t)!=nList)
t=lapply(xL,function(i)return(t[[1]]))
}
if(length(nbasis)!=length(norder)){
nbasis=nbasis[1]
norder=norder[1]
warning('length of nbasis is different from length of norder')
}
if(length(nbasis)!=nList)
nbasis=rep(nbasis[1],nList)
if(length(norder)!=nList)
norder=rep(norder[1],nList)
for(iL in idxFD){
tRange=range(t[[iL]])
nb=nbasis[iL];no=norder[iL]
tiL=t[[iL]]
spline=create.bspline.basis(tRange,nbasis = nb,norder = no)
MS=eval.basis(tiL,spline,0)
MS2=eval.basis(tiL,spline,2)
pL[[iL]]=crossprod(MS2)
phiL[[iL]]=MS/(ncol(xL[[iL]]))
}
}
if(method=='gq'){
con=list(nP=18,pen1=10^(seq((-20),5,len=21)),pen2=0.01,t=seq(-1,1,len=max(sapply(xL,ncol),na.rm = T)))
con[(namc <- names(control))] <- control
t=con$t;nP=con$nP;pen1=con$pen1;pen2=con$pen2
if(!is.list(t)){
tRange=range(t)
t=lapply(xL,function(i){
if(ncol(i)==length(t)){
return(t)
}
if(ncol(i)!=length(t) & ncol(i)>1){
return(seq(tRange[1],tRange[2],len=ncol(i)))
}
if(ncol(i)==1){
return((tRange[1]+tRange[2])/2)
}
})
}
if(is.list(t)){
if(length(t)!=nList)
t=lapply(xL,function(i)return(t[[1]]))
}
if(GQ==0){
.GlobalEnv$modelChronic <- readRDS(
file.path(system.file('inst/extdata',package='flars'), 'GQ.rds'))
}
gqWeight=data.matrix(GQ[GQ$n==nP,c(1,2)])
gqWeight2=data.matrix(GQ[GQ$n==(nP-2),c(1,2)])
xi=as.numeric(gqWeight[,1])
wi=as.matrix(gqWeight[,2])
wi2=as.matrix(gqWeight2[,2])
for(iL in idxFD){
dimFx=dim(xL[[iL]])
ncols=dimFx[2]
nrows=dimFx[1]
zi=t[[iL]]
idx=as.numeric(sapply(xi,function(i) which.min(abs(zi-i))))
xGQ=t(apply(xL[[iL]][,sort(idx)],1,function(i)i*(wi[order(idx)])))
xL[[iL]]=xGQ
pL[[iL]]=t(get2L(ncol(xL[[iL]]),diff(sort(xi))))%*%diag(wi2[,1])%*%get2L(ncol(xL[[iL]]),diff(sort(xi)))
phiL[[iL]]=diag(wi[,1])
}
}
if(method=='raw'){
con=list(pen1=10^(seq((-10),-5,len=21)),pen2=0.01,t=seq(-1,1,len=max(sapply(xL,ncol),na.rm = T)))
con[(namc <- names(control))] <- control
t=con$t;pen1=con$pen1;pen2=con$pen2
if(!is.list(t)){
tRange=range(t)
t=lapply(xL,function(i){
if(ncol(i)==length(t)){
return(t)
}
if(ncol(i)!=length(t) & ncol(i)>1){
return(seq(tRange[1],tRange[2],len=ncol(i)))
}
if(ncol(i)==1){
return((tRange[1]+tRange[2])/2)
}
})
}
if(is.list(t)){
if(length(t)!=nList)
t=lapply(xL,function(i)return(t[[1]]))
}
for(iL in idxFD){
pL[[iL]]=crossprod(get2L(ncol(xL[[iL]]),diff(t[[iL]])))
phiL[[iL]]=diag(1,ncol(xL[[iL]]))/(ncol(xL[[iL]]))
}
}
if(length(idxFD)<nList){
pL[-idxFD]=lapply(pL[-idxFD],function(i) i=matrix(0))
phiL[-idxFD]=lapply(phiL[-idxFD],function(i) i=matrix(1))
}
W=phiL;W2=pL
v=do.call(cbind,mapply('%*%',xL,W,SIMPLIFY = F))
vv=crossprod(v)
Pen=matrix(0,ncol=ncol(vv),nrow=nrow(vv))
DimPhL=sapply(phiL,ncol)
DimP1=DimPhL[1]
DimPhL=DimPhL-DimP1
for(i in seq_along(phiL)){
Pen[1:(DimPhL[i]+DimP1)+DimP1*(i-1)+sum(DimPhL[1:(i-1)]),
1:(DimPhL[i]+DimP1)+DimP1*(i-1)+sum(DimPhL[1:(i-1)])]=pen1[1]*W2[[i]]+pen2[1]*crossprod(W[[i]])
}
P=vv+Pen
output=list(P=P,Xv=v,W=W,W2=W2)
return(output)
}
fccaXX=function(xL1,xL2,centre=TRUE,method=c('basis','gq','raw'),control1=list(),control2=list(),tol=1e-7){
pre1=fccaPre(xL1,centre=centre,method = method[1],control = control1)
pre2=fccaPre(xL2,centre=centre,method = method[1],control = control2)
M1=ginv(pre1$P)%*%crossprod(pre1$Xv,pre2$Xv)%*%ginv(pre2$P)%*%crossprod(pre2$Xv,pre1$Xv)
M2=ginv(pre2$P)%*%crossprod(pre2$Xv,pre1$Xv)%*%ginv(pre1$P)%*%crossprod(pre1$Xv,pre2$Xv)
out1=eigen(M1)
out2=eigen(M2)
rho=rho1=Re(out1$values)
rho2=Re(out2$values)
if(rho1[1]-rho2[1]>1e-7) warning("eigenvalues don't match")
idx=rho>tol
rho=rho[idx]
a=Re(out1$vectors)[,idx,drop=F]
b=Re(out2$vectors)[,idx,drop=F]
if(length(idx)==0){
rho=0
coef1=coef2=1
}
if(length(idx)!=0){
aDim=c(0,cumsum(sapply(pre1$W,ncol)))
coef1=vector('list',length = length(xL1))
for(i in seq_along(xL1)){
coef1[[i]]=pre1$W[[i]]%*%a[(1+aDim[i]):aDim[i+1],]
}
bDim=c(0,cumsum(sapply(pre2$W,ncol)))
coef2=vector('list',length = length(xL2))
for(i in seq_along(xL2)){
coef2[[i]]=pre2$W[[i]]%*%b[(1+bDim[i]):bDim[i+1],]
}
}
out=list(corr=rho,coef1=coef1,coef2=coef2,corr2=rho2)
return(out)
}
|
state_shapepull = function() {
temp <- tempfile()
temp2 <- tempfile()
download.file("https://s3.amazonaws.com/data.edbuild.org/public/Processed+Data/State+Shapes/US_States_Viz_2020_high_res.zip", temp)
unzip(zipfile = temp, exdir = temp2)
filename <- list.files(temp2, full.names = TRUE)
shp_file <- filename %>%
subset(grepl("*.shp$", filename))
dataset <- sf::st_read(shp_file, stringsAsFactors = FALSE) %>%
dplyr::mutate(FIPSn = as.character(FIPSn),
FIPSn = stringr::str_pad(FIPSn, width = 2, pad = "0")) %>%
sf::st_transform(4269)
message("NOTE::This shapefile has been simplified to make analysis quicker. For final vizualizations, please use the unsimplified shapefiles available through NCES.")
return(dataset)
}
|
test_that("exprs() without arguments creates an empty named list", {
expect_identical(exprs(), named_list())
})
test_that("exprs() captures arguments forwarded with `...`", {
wrapper <- function(...) exprs(...)
expect_identical(wrapper(a = 1, foo = bar), list(a = 1, foo = quote(bar)))
})
test_that("exprs() captures empty arguments", {
expect_identical(exprs(, , .ignore_empty = "none"), set_names(list(missing_arg(), missing_arg()), c("", "")))
})
test_that("dots are always named", {
expect_named(dots_list("foo"), "")
expect_named(dots_splice("foo", list("bar")), c("", ""))
expect_named(exprs(foo, bar), c("", ""))
})
test_that("dots can be spliced", {
spliced_dots <- dots_values(!!! list(letters))
expect_identical(spliced_dots, list(splice(list(letters))))
expect_identical(flatten(dots_values(!!! list(letters))), list(letters))
expect_identical(list2(!!! list(letters)), list(letters))
wrapper <- function(...) list2(...)
expect_identical(wrapper(!!! list(letters)), list(letters))
})
test_that("interpolation by value does not guard formulas", {
expect_identical(dots_values(~1), list(~1))
})
test_that("dots names can be unquoted", {
expect_identical(dots_values(!! paste0("foo", "bar") := 10), list(foobar = 10))
})
test_that("can take forced dots with `allowForced = FALSE`", {
fn <- function(...) {
force(..1)
captureDots()
}
expect_identical(fn(a = letters), pairlist(a = list(expr = letters, env = empty_env())))
})
test_that("captured dots are only named if names were supplied", {
fn <- function(...) captureDots()
expect_null(names(fn(1, 2)))
expect_identical(names(fn(a = 1, 2)), c("a", ""))
})
test_that("dots_values() handles forced dots", {
fn <- function(...) {
force(..1)
dots_values(...)
}
expect_identical(fn("foo"), list("foo"))
expect_identical(lapply(1:2, function(...) dots_values(...)), list(list(1L), list(2L)))
expect_identical(lapply(1:2, dots_values), list(list(1L), list(2L)))
})
test_that("empty arguments trigger meaningful error", {
expect_error(list2(1, , 3), "Argument 2 is empty")
expect_error(dots_list(1, , 3), "Argument 2 is empty")
})
test_that("cleans empty arguments", {
expect_identical(dots_list(1, ), named_list(1))
expect_identical(list2(1, ), list(1))
expect_identical(exprs(1, ), named_list(1))
expect_identical(dots_list(, 1, , .ignore_empty = "all"), named_list(1))
})
test_that("doesn't clean named empty argument arguments", {
expect_error(dots_list(1, a = ), "Argument 2 is empty")
expect_identical(exprs(1, a = ), alist(1, a = ))
expect_identical(exprs(1, a = , b = , , .ignore_empty = "all"), alist(1, a = , b = ))
})
test_that("capturing dots by value only unquote-splices at top-level", {
expect_identical_(dots_list(!!! list(quote(!!! a))), named_list(quote(!!! a)))
expect_identical_(dots_list(!!! exprs(!!! 1:3)), named_list(1L, 2L, 3L))
})
test_that("can't unquote when capturing dots by value", {
expect_identical(dots_list(!!! list(!!! TRUE)), named_list(FALSE))
})
test_that("can splice NULL value", {
expect_identical(dots_list(!!! NULL), named_list())
expect_identical(dots_list(1, !!! NULL, 3), named_list(1, 3))
})
test_that("dots_splice() flattens lists", {
expect_identical(dots_splice(list("a", list("b"), "c"), "d", list("e")), named_list("a", list("b"), "c", "d", "e"))
expect_identical(dots_splice(list("a"), !!! list("b"), list("c"), "d"), named_list("a", "b", "c", "d"))
expect_identical(dots_splice(list("a"), splice(list("b")), list("c"), "d"), named_list("a", "b", "c", "d"))
})
test_that("dots_splice() doesn't squash S3 objects", {
s <- structure(list(v1 = 1, v2 = 2), class = "foo")
expect_identical(dots_splice(s, s), named_list(s, s))
})
test_that("dots_split() splits named and unnamed dots", {
dots <- dots_split(1, 2)
expect_identical(dots$named, list())
expect_identical(dots$unnamed, list(1, 2))
dots <- dots_split(a = 1, 2)
expect_identical(dots$named, list(a = 1))
expect_identical(dots$unnamed, list(2))
dots <- dots_split(a = 1, b = 2)
expect_identical(dots$named, list(a = 1, b = 2))
expect_identical(dots$unnamed, list())
})
test_that("dots_split() handles empty dots", {
dots <- dots_split()
expect_identical(dots$named, list())
expect_identical(dots$unnamed, list())
})
test_that("dots_split() fails if .n_unnamed doesn't match", {
expect_error(dots_split(1, 2, .n_unnamed = 1), "Expected 1 unnamed")
expect_error(dots_split(1, 2, .n_unnamed = 0:1), "Expected 0 or 1 unnamed")
dots <- dots_split(a = 1, 2, .n_unnamed = 1)
expect_identical(dots$named, list(a = 1))
expect_identical(dots$unnamed, list(2))
})
test_that("can splice NULL and atomic vectors", {
expect_identical(list2(!!!letters), as.list(letters))
expect_identical(list2(!!!NULL), list())
})
test_that("can unquote quosures in LHS", {
quo <- quo(foo)
expect_identical(list2(!!quo := NULL), list(foo = NULL))
expect_identical(exprs(!!quo := bar), exprs(foo = bar))
})
test_that("can preserve empty arguments", {
list3 <- function(...) unname(dots_list(..., .preserve_empty = TRUE))
expect_identical(list3(, ), list(missing_arg()))
expect_identical(list3(, , .ignore_empty = "none"), list(missing_arg(), missing_arg()))
expect_identical(list3(, , .ignore_empty = "all"), list())
})
test_that("forced symbolic objects are not evaluated", {
x <- list(quote(`_foo`))
expect_identical_(lapply(x, list2), list(x))
expect_identical_(list2(!!!x), x)
x <- unname(exprs(stop("tilt")))
expect_identical_(lapply(x, list2), list(x))
})
test_that("dots collectors do not warn by default with bare `<-` arguments", {
expect_no_warning(list2(a <- 1))
expect_no_warning(dots_list(a <- 1))
expect_no_warning(exprs(a <- 1))
expect_no_warning(quos(a <- 1))
myexprs <- function(...) enexprs(...)
myquos <- function(...) enexprs(...)
expect_no_warning(myexprs(a <- 1))
expect_no_warning(myquos(a <- 1))
})
test_that("dots collectors can elect to warn with bare `<-` arguments", {
expect_warning(dots_list(a <- 1, .check_assign = TRUE), "`<-` as argument")
myexprs <- function(...) enexprs(..., .check_assign = TRUE)
myquos <- function(...) enexprs(..., .check_assign = TRUE)
expect_warning(myexprs(TRUE, a <- 1), "`<-` as argument")
expect_warning(myquos(TRUE, a <- 1), "`<-` as argument")
})
test_that("dots collectors never warn for <- when option is set", {
local_options(rlang_dots_disable_assign_warning = TRUE)
expect_no_warning(list2(a <- 1))
myexprs <- function(...) enexprs(..., .check_assign = TRUE)
myquos <- function(...) enquos(..., .check_assign = TRUE)
expect_no_warning(myexprs(a <- 1))
expect_no_warning(myquos(a <- 1))
})
test_that("`.homonyms` is matched exactly", {
expect_error(dots_list(.homonyms = "k"), "must be one of")
})
test_that("`.homonyms = 'first'` matches first homonym", {
list_first <- function(...) {
dots_list(..., .homonyms = "first")
}
out <- list_first(1, 2)
expect_identical(out, named_list(1, 2))
out <- list_first(a = 1, b = 2, 3, 4)
expect_identical(out, list(a = 1, b = 2, 3, 4))
out <- list_first(a = 1, b = 2, a = 3, a = 4, 5, 6)
expect_identical(out, list(a = 1, b = 2, 5, 6))
})
test_that("`.homonyms = 'last'` matches last homonym", {
list_last <- function(...) {
dots_list(..., .homonyms = "last")
}
out <- list_last(1, 2)
expect_identical(out, named_list(1, 2))
out <- list_last(a = 1, b = 2, 3, 4)
expect_identical(out, list(a = 1, b = 2, 3, 4))
out <- list_last(a = 1, b = 2, a = 3, a = 4, 5, 6)
expect_identical(out, list(b = 2, a = 4, 5, 6))
})
test_that("`.homonyms` = 'error' fails with homonyms", {
list_error <- function(...) {
dots_list(..., .homonyms = "error")
}
expect_identical(list_error(1, 2), named_list(1, 2))
expect_identical(list_error(a = 1, b = 2), list(a = 1, b = 2))
expect_snapshot({
(expect_error(list_error(1, a = 2, a = 3)))
(expect_error(list_error(1, a = 2, b = 3, 4, b = 5, b = 6, 7, a = 8)))
(expect_error(list_error(1, a = 2, b = 3, 4, b = 5, b = 6, 7, a = 8)))
})
})
test_that("`.homonyms` works with spliced arguments", {
args <- list(a = 1, b = 2, a = 3, a = 4, 5, 6)
expect_identical(dots_list(!!!args, .homonyms = "first"), list(a = 1, b = 2, 5, 6))
myexprs <- function(...) enexprs(..., .homonyms = "last")
expect_identical(myexprs(!!!args), list(b = 2, a = 4, 5, 6))
myquos <- function(...) enquos(..., .homonyms = "first")
expect_identical(myquos(!!!args), quos_list(a = quo(1), b = quo(2), quo(5), quo(6)))
})
test_that("can mix `!!!` and splice boxes", {
expect_identical(list2(1L, !!!(2:3), splice(list(4L))), as.list(1:4))
})
test_that("list2() and dots_values() support splice boxes", {
expect_identical(list2(1, splice(c("foo", "bar")), 3), list(1, "foo", "bar", 3))
expect_identical(dots_values(1, splice(c("foo", "bar")), 3), list(1, splice(list("foo", "bar")), 3))
})
test_that("dots_values() doesn't splice", {
expect_identical_(dots_values(!!!c(1:3)), list(splice(as.list(1:3))))
expect_identical_(dots_values(!!!list("foo", "bar")), list(splice(list("foo", "bar"))))
})
test_that("!!! does not evaluate multiple times (
foo <- function() x <<- x + 1
x <- 0
list2(!!!list(foo()))
expect_identical(x, 1)
x <- 0
exprs(!!!list(foo()))
expect_identical(x, 1)
x <- 0
quos(!!!list(foo()))
expect_identical(x, 1)
})
test_that("dots_list() optionally auto-names arguments (
expect_identical(
dots_list(.named = TRUE),
named(list())
)
expect_identical(
dots_list(1, letters, .named = TRUE),
list(`1` = 1, letters = letters)
)
expect_identical(
dots_list(1, foo = letters, .named = TRUE),
list(`1` = 1, foo = letters)
)
expect_identical(
dots_list(!!!list(a = 1:3, 1:3), .named = TRUE),
list(a = 1:3, `<int>` = 1:3)
)
expect_identical(
dots_list(!!!list(1:3, 1:3), .named = TRUE),
list(`<int>` = 1:3, `<int>` = 1:3)
)
})
test_that("`.ignore_empty` is matched", {
expect_snapshot({
(expect_error(dots_list(.ignore_empty = "t")))
foo <- function() dots_list(.ignore_empty = "t")
(expect_error(foo()))
})
})
test_that("`.named` can be `NULL` (default names) or `FALSE` (minimal names)", {
expect_equal(
dots_list(.named = FALSE),
set_names(list(), "")
)
expect_equal(
exprs(.named = FALSE),
set_names(list(), "")
)
expect_equal(
dots_list(.named = NULL),
list()
)
expect_equal(
exprs(.named = NULL),
list()
)
})
|
do.sir <- function(X, response, ndim=2, h=max(2, round(nrow(X)/5)),
preprocess=c("center","scale","cscale","decorrelate","whiten")){
aux.typecheck(X)
n = nrow(X)
p = ncol(X)
response = as.double(response)
if ((any(is.infinite(response)))||(!is.vector(response))||(any(is.na(response)))){
stop("* do.sir : 'response' should be a vector containing no NA values.")
}
ndim = as.integer(ndim)
if (!check_ndim(ndim,p)){stop("* do.sir : 'ndim' is a positive integer in [1,
h = as.integer(h)
if (!is.factor(response)){
if (!check_NumMM(h,2,ceiling(n/2),compact=TRUE)){stop("* do.save : the number of slices should be in [2,n/2].")}
}
if (missing(preprocess)){
algpreprocess = "center"
} else {
algpreprocess = match.arg(preprocess)
}
tmplist = aux.preprocess.hidden(X,type=algpreprocess,algtype="linear")
trfinfo = tmplist$info
pX = tmplist$pX
if (!is.factor(response)){
label = as.integer(sir_makelabel(response, h))
} else {
label = as.integer(response)
}
ulabel = unique(label)
nlabel = length(ulabel)
class_mean = array(0,c(nlabel,p))
class_count = rep(0,nlabel)
for (i in 1:nlabel){
idxclass = which(label==ulabel[i])
class_mean[i,] = as.vector(colMeans(pX[idxclass,]) )
class_count[i] = length(idxclass)
}
all_mean = as.vector(colMeans(pX))
mat_Sigma = aux_scatter(pX, all_mean)/n
mat_Gamma = array(0,c(p,p))
for (i in 1:nlabel){
vecdiff = (as.vector(class_mean[i,])-(all_mean))
mat_Gamma = mat_Gamma + outer(vecdiff,vecdiff)*as.double(class_count[i])/n
}
costInv = aux.bicgstab(mat_Sigma, mat_Gamma, verbose=FALSE)$x
projection = aux.adjprojection(RSpectra::eigs(costInv, ndim)$vectors)
projection = matrix(as.double(projection), nrow=p)
result = list()
result$Y = pX%*%projection
result$trfinfo = trfinfo
result$projection = projection
return(result)
}
sir_makelabel <- function(responsevec, h){
n = length(responsevec)
output = rep(0,n)
hn = floor(n/h)
startidx = 1
currentlabel = 1
orderlabel = order(responsevec)
for (i in 1:(h-1)){
idxorders = orderlabel[startidx:(startidx+hn-1)]
output[idxorders] = currentlabel
startidx = startidx + hn
currentlabel = currentlabel + 1
}
idxorders = orderlabel[startidx:n]
output[idxorders] = currentlabel
return(output)
}
|
ena.set <- function(x) {
newset = list()
class(newset) <- c("ena.set", class(newset))
x.is.set <- T
if("ENAdata" %in% class(x)) {
x <- list(enadata = x);
x.is.set <- F
}
code.columns <- apply(x$enadata$adjacency.matrix, 2, paste, collapse = " & ")
newset$connection.counts <- x$enadata$adjacency.vectors;
colnames(newset$connection.counts) <- code.columns
for (i in seq(ncol(newset$connection.counts))) {
set(newset$connection.counts, j = i,
value = as.ena.co.occurrence(newset$connection.counts[[i]]))
}
if (grepl(x = x$enadata$model, pattern = "Traj", ignore.case = T)) {
newset$meta.data <- data.table::copy(x$enadata$trajectories$units)
newset$meta.data[, ENA_UNIT := apply(x$enadata$trajectories$units, 1,
paste, collapse = ".")]
newset$trajectories <- cbind(newset$meta.data, x$enadata$trajectories$step)
for (i in seq(ncol(newset$trajectories))) {
set(newset$trajectories, j = i,
value = as.ena.metadata(newset$trajectories[[i]]))
}
}
else {
newset$meta.data <- x$enadata$metadata
}
if (!is.null(newset$meta.data) && ncol(newset$meta.data) > 0) {
for (i in seq(ncol(newset$meta.data))) {
set(newset$meta.data, j = i,
value = as.ena.metadata(newset$meta.data[[i]]))
}
}
if (x.is.set) {
newset$line.weights <- as.data.table(cbind(x$enadata$metadata, x$line.weights))
to_cols <- names(which(!find_meta_cols(newset$line.weights)))
for(col in to_cols) {
set(x = newset$line.weights, j = col, value = as.ena.co.occurrence(newset$line.weights[[col]]))
}
class(newset$line.weights) <- c("ena.line.weights", class(newset$line.weights))
newset$points <- cbind(x$enadata$metadata, x$points.rotated)
to_cols <- names(which(!find_meta_cols(newset$points)))
for(col in to_cols) {
set(x = newset$points, j = col, value = as.ena.dimension(newset$points[[col]]))
}
newset$points <- as.ena.matrix(newset$points, "ena.points")
newset$rotation.matrix <- x$rotation.set$rotation
}
newset$connection.counts <- cbind(newset$meta.data, newset$connection.counts)
class(newset$connection.counts) <- c("ena.connections",
class(newset$connection.counts))
newset$model <- list(
model.type = x$enadata$model,
raw.input = x$enadata$raw,
row.connection.counts = x$enadata$accumulated.adjacency.vectors[,
unique(names(x$enadata$accumulated.adjacency.vectors)), with = F],
unit.labels = x$enadata$unit.names
)
cols <- grep("adjacency.code", colnames(newset$model$row.connection.counts))
colnames(newset$model$row.connection.counts)[cols] <- code.columns
for(i in cols) {
set(newset$model$row.connection.counts, j = i,
value = as.ena.co.occurrence(newset$model$row.connection.counts[[i]]))
}
for (i in which(colnames(newset$model$row.connection.counts)
%in% colnames(newset$meta.data))
) {
set(newset$model$row.connection.counts, j = i,
value = as.ena.metadata(newset$model$row.connection.counts[[i]]))
}
for (i in which(colnames(newset$model$row.connection.counts) %in%
x$enadata$codes)
) {
set(newset$model$row.connection.counts, j = i,
value = as.ena.code(newset$model$row.connection.counts[[i]]))
}
class(newset$model$row.connection.counts) <- c("row.connections",
class(newset$model$row.connection.counts))
if (x.is.set) {
newset$model$centroids <- x$centroids
newset$model$correlations <- x$correlations
newset$model$function.call <- x$function.call
newset$model$function.params <- x$function.params
newset$model$points.for.projection <- cbind(x$enadata$metadata,
x$points.normed.centered)
newset$model$variance <- x$variance
names(newset$model$variance) <- colnames(newset$rotation.matrix)
}
newset$rotation <- list(
adjacency.key = as.data.table(x$enadata$adjacency.matrix),
codes = x$enadata$codes
)
class(newset$rotation) <- c("ena.rotation.set", class(newset$rotation))
for (i in seq(ncol(newset$rotation$adjacency.key))) {
set(newset$rotation$adjacency.key, j = i,
value = as.ena.codes(newset$rotation$adjacency.key[[i]]))
}
if(x.is.set) {
newset$rotation$eigenvalues = x$rotation.set$eigenvalues
newset$rotation$nodes = x$node.positions
newset$rotation$rotation.matrix = x$rotation.set$rotation
}
newset$`_function.call` <- sys.calls()[[1]]
back.frame <- sapply(sys.frames(), function(f) {
"window.size.back" %in% ls(envir = f) })
if (any(back.frame)) {
call.frame <- sys.frame(which(back.frame))
newset$`_function.params` <- mget(ls(envir = call.frame),
envir = call.frame)
} else {
newset$`_function.params` <- list()
}
return(newset);
}
|
get.slepians<-function(npoints=900, nwin=5, npi=3)
{
if(missing(npoints)) npoints=900
if(missing(nwin)) nwin=5
if(missing(npi)) npi=3
tapers = vector(length=nwin*npoints)
ary = .C("CALL_slepian", PACKAGE = "RSEIS",
as.integer(npoints), as.integer(nwin), as.double(npi), as.double(tapers) )
kout = ary[[4]]
mout = matrix( kout, ncol=nwin)
invisible(mout)
}
|
library(plotly)
nPatients <- 50
nVisits <- 10
d <- data.frame(
perc = rnorm(n = nPatients * nVisits, mean = 50, sd = 10),
patient = rep(seq(nPatients), each = nVisits),
visit = rep(seq(nVisits), nPatients)
)
hd <- highlight_key(d, ~patient)
p <- plot_ly(hd, x = ~visit, y = ~perc, color = I("black"),
text = ~paste("Patient:", patient)) %>%
group_by(patient) %>%
add_trace(mode = "markers+lines")
layout(p, title = "Click on a marker to highlight that patient")
p %>%
layout(title = "Click and drag to select patient") %>%
highlight("plotly_selecting")
p %>%
layout(title = "Click and drag to select patient", dragmode = "lasso") %>%
highlight("plotly_selecting")
p %>%
highlight(on = "plotly_hover", off = "plotly_doubleclick") %>%
layout(dragmode = "zoom")
p %>%
layout(title = "Shift the key to accumulate selections") %>%
highlight("plotly_hover")
highlight(p, dynamic = TRUE)
colors <- RColorBrewer::brewer.pal(4, "Dark2")
highlight(p, color = colors, dynamic = TRUE)
|
"catdata"
|
knitr::opts_chunk$set(message=FALSE,warning = FALSE, comment = NA)
old.hooks <- fansi::set_knit_hooks(knitr::knit_hooks)
library(psycModel)
library(dplyr)
iris %>% head()
iris %>% select(1:3) %>% head(1)
iris %>% select(Sepal.Length:Petal.Length) %>% head(1)
iris %>% select(c(1, 3:4)) %>% head(1)
iris %>% select(Sepal.Length, Petal.Length:Petal.Width) %>% head(1)
iris %>% select(1:5, -3) %>% head(1)
iris %>% select(Sepal.Length:Species, -Petal.Length) %>% head(1)
iris %>% select(everything()) %>% head(1)
iris %>% select(c(everything(),-Sepal.Width)) %>% head(1)
iris %>% select(starts_with('Sepal')) %>% head(1)
iris %>% select(ends_with('Width')) %>% head(1)
iris %>% select(contains('Sepal')) %>% head(1)
iris %>% select(contains('Width')) %>% head(1)
iris %>% select(contains('.')) %>% head(1)
iris %>% select(where(is.numeric)) %>% head(1)
set.seed(1)
test_data = data.frame(y = rnorm(n = 100,mean = 2,sd = 3),
x1 = rnorm(n = 100,mean = 1.5, sd = 4),
x2 = rnorm(n = 100,mean = 1.7, sd = 4),
x3 = rnorm(n = 100,mean = 1.5, sd = 4),
x4 = rnorm(n = 100,mean = 2, sd = 4),
x5 = rnorm(n = 100,mean = 1.5, sd = 4))
model1 = lm(data = test_data, formula = y ~ x1 + x2 + x3 + x4 + x5)
model2 = lm_model(data = test_data,
response_variable = y,
predictor_variable = c(everything(),-y))
model3 = lm_model(data = test_data,
response_variable = y,
predictor_variable = everything())
|
test_that("dai_sync calls out input errors", {
skip_on_cran()
skip_on_ci()
expect_error(dai_sync(file = mtcars), "Invalid file input.")
expect_error(dai_sync(file = as.matrix(mtcars)), "Invalid file input.")
expect_error(dai_sync(file = TRUE), "Invalid file input.")
expect_error(dai_sync(file = 123), "Invalid file input.")
expect_error(dai_sync(file = c("foo.pdf", "bar.pdf")), "Invalid file input.")
expect_error(dai_sync(file = "foo.txt"), "Unsupported file format. See documentation for details.")
expect_error(dai_sync(file = "foo.docx"), "Unsupported file format. See documentation for details.")
expect_error(dai_sync(file = "foo.mp4"), "Unsupported file format. See documentation for details.")
expect_error(dai_sync(file = "foo"), "Unsupported file format. See documentation for details.")
expect_error(dai_sync(file = "foo.pdf"), "Input file not a real pdf. Is the file in your working directory?")
expect_error(dai_sync(file = "foo.png", proj_id = 012345), "Invalid proj_id.")
expect_error(dai_sync(file = "foo.png", proj_id = c("Project1", "Project2")), "Invalid proj_id.")
expect_error(dai_sync(file = "foo.png", proj_id = "abc", proc_id = 123), "Invalid proc_id.")
expect_error(dai_sync(file = "foo.png", proj_id = "abc", proc_id = "abc", loc = "USA"), "Invalid location parameter.")
})
test_that("dai_sync informs about unsuccessful requests", {
skip_on_cran()
skip_on_ci()
skip_if_offline()
file <- testthat::test_path("examples", "image.jpg")
response <- dai_sync(file, token = NULL)
expect_equal(response[["status_code"]], 401)
})
test_that("dai_sync gets text from an example file", {
skip_on_cran()
skip_on_ci()
skip_if_offline()
image <- testthat::test_path("examples", "image.jpg")
response <- dai_sync(image)
expect_equal(response[["status_code"]], 200)
parsed <- httr::content(response)
expect_type(parsed[["document"]][["text"]], "character")
})
test_that("dai_async calls out input errors", {
skip_on_cran()
skip_on_ci()
expect_error(dai_async(files = mtcars), "Invalid files parameter.")
expect_error(dai_async(files = as.matrix(mtcars)), "Invalid files parameter.")
expect_error(dai_async(files = TRUE), "Invalid files parameter.")
expect_error(dai_async(files = 123), "Invalid files parameter.")
expect_error(dai_async(files = "foo.png"), "Files contain unsupported file types. Only .pdf, .gif, and .tiff accepted.")
expect_error(dai_async(files = "foo.pdf", dest_folder = c("folder1", "folder2")), "Invalid dest_folder parameter.")
expect_error(dai_async(files = "foo.pdf", dest_folder = 12345), "Invalid dest_folder parameter.")
expect_error(dai_async(files = "foo.pdf", bucket = c("bucket1", "bucket2")), "Invalid bucket parameter.")
expect_error(dai_async(files = "foo.pdf", bucket = 12345), "Invalid bucket parameter.")
expect_error(dai_async(files = "foo.pdf", bucket = "abc", proj_id = c("project1", "project2")), "Invalid proj_id parameter.")
expect_error(dai_async(files = "foo.pdf", bucket = "abc", proj_id = 12345), "Invalid proj_id parameter.")
expect_error(dai_async(files = "foo.pdf", bucket = "abc", proj_id = "abc", proc_id = "def", skip_rev = TRUE), "Invalid skip_rev parameter.")
expect_error(dai_async(files = "foo.pdf", bucket = "abc", proj_id = "abc", proc_id = "def", loc = "USA"), "Invalid loc parameter.")
} )
test_that("dai_async informs about unsuccessful requests", {
skip_on_cran()
skip_on_ci()
skip_if_offline()
response <- dai_async("foo.pdf", token = NULL)
expect_equal(response[["status_code"]], 401)
})
test_that("dai_async sends succesful requests with input in different formats", {
skip_on_cran()
skip_on_ci()
skip_if_offline()
response <- dai_async("foo.pdf")
expect_equal(response[["status_code"]], 200)
response <- dai_async("foo.gif")
expect_equal(response[["status_code"]], 200)
response <- dai_async("foo.tiff")
expect_equal(response[["status_code"]], 200)
response <- dai_async("foo.pdf", dest_folder = "folder/")
expect_equal(response[["status_code"]], 200)
response <- dai_async("foo.pdf", bucket = "gs://bucket")
expect_equal(response[["status_code"]], 200)
response <- dai_async("foo.pdf", bucket = "bucket/")
expect_equal(response[["status_code"]], 200)
response <- dai_async(c("foo.pdf", "bar.pdf"))
expect_equal(response[["status_code"]], 200)
})
test_that("dai_status calls out input errors", {
skip_on_cran()
skip_on_ci()
expect_error(dai_status(123), "Input is not a valid HTTP response.")
expect_error(dai_status(mtcars), "Input is not a valid HTTP response.")
expect_error(dai_status(as.matrix(mtcars)), "Input is not a valid HTTP response.")
expect_error(dai_status("string"), "Input is not a valid HTTP response.")
expect_error(dai_status(c("string", "vector")), "Input is not a valid HTTP response.")
expect_error(dai_status(list("a", "list")), "Input is not a valid HTTP response.?")
wrong <- dai_user()
expect_error(dai_status(response = wrong), "Input does not contain a processing job id. Make sure it is from dai_async.")
} )
test_that("dai_status calls out input errors", {
skip_on_cran()
skip_on_ci()
resp <- dai_async("foo.pdf")
expect_error(dai_status(response = resp, loc = 123), "Invalid location parameter.")
expect_error(dai_status(response = resp, loc = "USA"), "Invalid location parameter.")
} )
test_that("dai_sync_tab calls out input errors", {
skip_on_cran()
skip_on_ci()
expect_error(dai_sync_tab(file = mtcars), "Invalid file input.")
expect_error(dai_sync_tab(file = as.matrix(mtcars)), "Invalid file input.")
expect_error(dai_sync_tab(file = TRUE), "Invalid file input.")
expect_error(dai_sync_tab(file = 123), "Invalid file input.")
expect_error(dai_sync_tab(file = c("foo.png", "bar.png"), "Invalid file input."))
expect_error(dai_sync_tab(file = list("foo.png", "bar.png"), "Invalid file input."))
expect_error(dai_sync_tab(file = "foo.csv"), "Unsupported file format. See documentation for details.")
expect_error(dai_sync_tab(file = "bar.doc"), "Unsupported file format. See documentation for details.")
expect_error(dai_sync_tab(file = "foobar.txt"), "Unsupported file format. See documentation for details.")
expect_error(dai_sync_tab(file = "barfoo.avi"), "Unsupported file format. See documentation for details.")
expect_error(dai_sync_tab(file = "fake.pdf"), "Input file not a real pdf. Is the file in your working directory?")
expect_error(dai_sync_tab(file = "foo.png", proj_id = mtcars), "Invalid proj_id.")
expect_error(dai_sync_tab(file = "foo.png", proj_id = as.matrix(mtcars)), "Invalid proj_id.")
expect_error(dai_sync_tab(file = "foo.png", proj_id = TRUE), "Invalid proj_id.")
expect_error(dai_sync_tab(file = "foo.png", proj_id = 123), "Invalid proj_id.")
expect_error(dai_sync_tab(file = "foo.png", proj_id = c("abc", "def")), "Invalid proj_id.")
expect_error(dai_sync_tab(file = "foo.png", proj_id = list("abc", "def")), "Invalid proj_id.")
expect_error(dai_sync_tab(file = "foo.png", proj_id = "abc", loc = 123), "Invalid location parameter.")
expect_error(dai_sync_tab(file = "foo.png", proj_id = "abc", loc = "USA"), "Invalid location parameter.")
})
test_that("dai_sync_tab informs about unsuccessful requests", {
skip_on_cran()
skip_if_offline()
file <- testthat::test_path("examples", "image.jpg")
response <- dai_sync_tab(file, proj_id = "abc", token = NULL)
expect_equal(response[["status_code"]], 403)
})
test_that("dai_sync_tab sends succesful requests with jpgs and pdfs", {
skip_on_cran()
skip_on_ci()
skip_if_offline()
file1 <- testthat::test_path("examples", "image.jpg")
file2 <- testthat::test_path("examples", "sample.pdf")
response <- dai_sync_tab(file1)
expect_equal(response[["status_code"]], 200)
response <- dai_sync_tab(file2)
expect_equal(response[["status_code"]], 200)
})
test_that("dai_async_tab calls out input errors", {
skip_on_cran()
skip_on_ci()
expect_error(dai_async_tab(files = mtcars), "Invalid files parameter.")
expect_error(dai_async_tab(files = as.matrix(mtcars)), "Invalid files parameter.")
expect_error(dai_async_tab(files = TRUE), "Invalid files parameter.")
expect_error(dai_async_tab(files = 123), "Invalid files parameter.")
expect_error(dai_async_tab(files = "foo.png"), "Input file type not supported.")
expect_error(dai_async_tab(files = "foo.pdf", filetype = mtcars, "Invalid filetype parameter."))
expect_error(dai_async_tab(files = "foo.pdf", filetype = as.matrix(mtcars), "Invalid filetype parameter."))
expect_error(dai_async_tab(files = "foo.pdf", filetype = TRUE, "Invalid filetype parameter."))
expect_error(dai_async_tab(files = "foo.pdf", filetype = 123, "Invalid filetype parameter."))
expect_error(dai_async_tab(files = "foo.pdf", filetype = c("gif", "pdf"), "Invalid filetype parameter."))
expect_error(dai_async_tab(files = "foo.pdf", filetype = list("gif", "pdf"), "Invalid filetype parameter."))
expect_error(dai_async_tab(files = "foo.pdf", filetype = "gif", "Mismatch between filetype parameter and actual format of files."))
expect_error(dai_async_tab(files = "foo.gif", filetype = "tiff", "Mismatch between filetype parameter and actual format of files."))
expect_error(dai_async_tab(files = "foo.pdf", dest_folder = c("folder1", "folder2")), "Invalid dest_folder parameter.")
expect_error(dai_async_tab(files = "foo.pdf", dest_folder = 12345), "Invalid dest_folder parameter.")
expect_error(dai_async_tab(files = "foo.pdf", bucket = c("bucket1", "bucket2")), "Invalid bucket parameter.")
expect_error(dai_async_tab(files = "foo.pdf", bucket = 12345), "Invalid bucket parameter.")
expect_error(dai_async_tab(files = "foo.pdf", bucket = "abc", proj_id = c("project1", "project2")), "Invalid proj_id parameter.")
expect_error(dai_async_tab(files = "foo.pdf", bucket = "abc", proj_id = 12345), "Invalid proj_id parameter.")
expect_error(dai_async_tab(files = "foo.pdf", bucket = "abc", proj_id = "abc", loc = 123), "Invalid loc parameter.")
expect_error(dai_async_tab(files = "foo.pdf", bucket = "abc", proj_id = "abc", loc = "usa"), "Invalid loc parameter.")
expect_error(dai_async_tab(files = "foo.pdf", bucket = "abc", proj_id = "abc", pps = "five"), "Invalid pps parameter.")
expect_error(dai_async_tab(files = "foo.pdf", bucket = "abc", proj_id = "abc", pps = 200), "Invalid pps parameter.")
expect_error(dai_async_tab(files = "foo.pdf", bucket = "abc", proj_id = "abc", pps = 0), "Invalid pps parameter.")
expect_error(dai_async_tab(files = "foo.pdf", bucket = "abc", proj_id = "abc", pps = 10-50), "Invalid pps parameter.")
} )
test_that("dai_async_tab sends succesful requests with input in different formats", {
skip_on_cran()
skip_on_ci()
skip_if_offline()
response <- dai_async_tab("foo.pdf")
expect_equal(response[[1]][["status_code"]], 200)
response <- dai_async_tab("foo.gif", filetype = "gif")
expect_equal(response[[1]][["status_code"]], 200)
response <- dai_async_tab("foo.tiff", filetype = "tiff")
expect_equal(response[[1]][["status_code"]], 200)
response <- dai_async_tab("foo.pdf", dest_folder = "folder/")
expect_equal(response[[1]][["status_code"]], 200)
response <- dai_async_tab("foo.pdf", bucket = "gs://bucket")
expect_equal(response[[1]][["status_code"]], 200)
response <- dai_async_tab("foo.pdf", bucket = "bucket/")
expect_equal(response[[1]][["status_code"]], 200)
response <- dai_async_tab(c("foo.pdf", "bar.pdf"))
expect_equal(response[[1]][["status_code"]], 200)
})
|
tsum.test <- function (mean.x, s.x = NULL, n.x = NULL, mean.y = NULL, s.y = NULL, n.y = NULL, alternative = c("two.sided", "less", "greater"), mu = 0, var.equal = FALSE, conf.level = 0.95, ... )
{
alternative <- match.arg(alternative)
if (!missing(mu) && (length(mu) != 1 || is.na(mu)))
stop("'mu' must be a single number")
if (!missing(conf.level) && (length(conf.level) != 1 ||
!is.finite(conf.level) ||
conf.level < 0 || conf.level > 1))
stop("'conf.level' must be a single number between 0 and 1")
if ( (!is.null(mean.y) || !is.null(s.y) || !is.null(n.y) ) &&
( is.null(s.x) || is.null(n.x) ) )
stop("You must enter summarized values for both samples (x and y)")
if (!is.null(mean.x) && is.null(mean.y) && is.null(n.x) &&
is.null(s.x))
stop("You must enter the value for both s.x and n.x")
if (is.null(n.x) && !is.null(mean.x) && !is.null(s.x) &&
is.null(mean.y))
stop("You must enter the value for n.x")
if (is.null(s.x) && !is.null(mean.x) && !is.null(n.x) &&
is.null(mean.y))
stop("You must enter the value for s.x")
if (is.null(n.y) && !is.null(mean.x) && !is.null(mean.y) &&
!is.null(s.y) && !is.null(s.x) && !is.null(n.x))
stop("You must enter the value for n.y")
if (is.null(n.y) && is.null(n.x) && !is.null(mean.x) && !is.null(mean.y) &&
!is.null(s.y) && !is.null(s.x))
stop("You must enter the value for both n.x and n.y")
if (is.null(s.x) && is.null(s.y) && !is.null(mean.x) && !is.null(mean.y) &&
!is.null(n.x) && !is.null(n.y))
stop("You must enter the value for both s.x and s.y")
if (!is.null(s.x) && is.null(s.y) && !is.null(mean.x) &&
!is.null(mean.y) && !is.null(n.x) && !is.null(n.y))
stop("You must enter the value for s.y")
if (is.null(n.y) && is.null(s.y) && !is.null(mean.x) && !is.null(mean.y) &&
!is.null(s.x) && !is.null(n.x))
stop("You must enter the value for both s.y and n.y")
if ( (!is.null(mean.y) && !is.null(s.y) && !is.null(n.y)) &&
(is.null(mean.x) || is.null(s.x) || is.null(n.x)) )
stop("You must enter values for mean.x, s.x, and n.x")
if (!is.null(mean.y)) {
dname <- "User input summarized values for x and y"
yok <- !is.na(mean.y)
xok <- !is.na(mean.x)
mean.y <- mean.y[yok]
}
else {
dname <- "User input summarized values for x"
xok <- !is.na(mean.x)
yok <- NULL
}
mean.x <- mean.x[xok]
nx <- n.x
mx <- mean.x
vx <- s.x^2
if (is.null(mean.y)) {
if (nx < 2)
stop("not enough 'x' observations")
df <- nx - 1
stderr <- sqrt(vx/nx)
if (stderr < 10 * .Machine$double.eps * abs(mx))
stop("data are essentially constant")
tstat <- (mx - mu)/stderr
method <- "One Sample t-test"
estimate <- setNames(mx, "mean of x")
}
else {
ny <- n.y
if (nx < 1 || (!var.equal && nx < 2))
stop("not enough 'x' observations")
if (ny < 1 || (!var.equal && ny < 2))
stop("not enough 'y' observations")
if (var.equal && nx + ny < 3)
stop("not enough observations")
my <- mean.y
vy <- s.y^2
method <- paste(if (!var.equal)
"Welch", "Two Sample t-test")
estimate <- c(mx, my)
names(estimate) <- c("mean of x", "mean of y")
if (var.equal) {
df <- nx + ny - 2
v <- 0
if (nx > 1)
v <- v + (nx - 1) * vx
if (ny > 1)
v <- v + (ny - 1) * vy
v <- v/df
stderr <- sqrt(v * (1/nx + 1/ny))
}
else {
stderrx <- sqrt(vx/nx)
stderry <- sqrt(vy/ny)
stderr <- sqrt(stderrx^2 + stderry^2)
df <- stderr^4/(stderrx^4/(nx - 1) + stderry^4/(ny - 1))
}
if (stderr < 10 * .Machine$double.eps * max(abs(mx), abs(my)))
stop("data are essentially constant")
tstat <- (mx - my - mu)/stderr
}
if (alternative == "less") {
pval <- pt(tstat, df)
cint <- c(-Inf, tstat + qt(conf.level, df))
}
else if (alternative == "greater") {
pval <- pt(tstat, df, lower.tail = FALSE)
cint <- c(tstat - qt(conf.level, df), Inf)
}
else {
pval <- 2 * pt(-abs(tstat), df)
alpha <- 1 - conf.level
cint <- qt(1 - alpha/2, df)
cint <- tstat + c(-cint, cint)
}
cint <- mu + cint * stderr
names(tstat) <- "t"
names(df) <- "df"
names(mu) <- if (!is.null(mean.y)){
"difference in means"
} else {
"mean"
}
attr(cint, "conf.level") <- conf.level
rval <- list(statistic = tstat, parameter = df, p.value = pval,
conf.int = cint, estimate = estimate, null.value = mu,
alternative = alternative, method = method, data.name = dname)
class(rval) <- "htest"
return(rval)
}
|
odds.indo2dec <- function (x) {
dec <- x
dec[] <- NA_real_
dec[which(x <= -1)] <- -1 / x[which(x <= -1)] + 1
dec[which(x >= 1)] <- x[which(x >= 1)] + 1
dec
}
|
jNormalVaR <-
function(s,alpha){
mu <- mean(s)
vo <- sd(s)
object <- mu + vo * jNormInv(alpha)
return(-object)
}
|
GVECM_Xt <- function(data,p,type="const",ic="AIC",weight.matrix){
ID<-NULL
type=type
ic=ic
idCol=which(colnames(data) == "ID")
timeCol=which(colnames(data)=="Time")
dat1=data[,-timeCol]
endo.no=ncol(dat1)-1
N=length(unique(dat1[,idCol]))
weight.matrix=weight.matrix
p=p
FLag=p+1
myout= GVECMest(data,p,FLag,lag.max=NULL, ic,type = "const",weight.matrix=weight.matrix)
pmatrix=myout$lagmatrix[,2]
p=min(pmatrix)
cat("\n","Number of lag for eventual Xt is", p, "\n")
GO.tmp=NULL
G1=NULL
G2=NULL
RESID=NULL
if (p==1) {
if (is.list(weight.matrix)) {
AVG=matrix(rep(0,N^2),N,N)
for (i in 1:length(weight.matrix)){
AVG=AVG+as.matrix(weight.matrix[[i]])
}
weight.matrix=AVG/(length(weight.matrix)-1)
} else {weight.matrix=as.matrix(weight.matrix)}
for (jj in 1:N) {
rsd_tmp=resid(myout$gvecm[[jj]])
diff_jj=max(pmatrix)-(pmatrix[jj])
if (diff_jj==0) { rsd_tmp1=rsd_tmp} else {rsd_tmp1=rsd_tmp[-(1:diff_jj),]}
RESID=cbind(RESID,rsd_tmp1)
endo_lagk0=NULL
endo_lagk1=NULL
endo_lagk2=NULL
for (k in 1:endo.no) {
coeff=coef(myout$gvecm[[jj]])[[k]]
exo_no=myout$exoLag*endo.no
coeff_EXO=coeff[(which(rownames(coeff)=="const")+1):nrow(coeff),]
coeff_EXO_LAG0=coeff_EXO[1:endo.no,1]
exo_lagi0=NULL;exo_lagk1=NULL
for (i in 1:endo.no)
{
exo_lagi0=rbind(exo_lagi0,coeff_EXO_LAG0[i]*as.matrix(weight.matrix)[,jj])
}
endo_lagk0=cbind(endo_lagk0,c(exo_lagi0))
coeff_EXO_LAG=coeff_EXO[-(1:endo.no),1]
coeff.ENDO=coeff[1:(pmatrix[jj]*endo.no),1]
coeff.ENDO.LAG1=coeff.ENDO[1:endo.no]
coeff_EXO_LAG1=coeff_EXO_LAG[1:endo.no]
endo_lagi1=NULL
for (i in 1:endo.no)
{
endo_lagi1=rbind(endo_lagi1,coeff_EXO_LAG1[i]*as.matrix(weight.matrix)[,jj])
}
tmp.lagi1=matrix(0,endo.no,N)
tmp.lagi1[,jj]=coeff.ENDO.LAG1
tmp1=tmp.lagi1+endo_lagi1
endo_lagk1=cbind(endo_lagk1,c(tmp1))
}
GO.tmp=cbind(GO.tmp,endo_lagk0)
G1=cbind(G1,endo_lagk1)
}
G0=diag(1,endo.no*N)-GO.tmp
invGO=solve(G0)
F1=invGO%*%G1
newRESID=t(invGO%*%t(RESID))
varnames=colnames(dat1)[-1]
NAME=myout$NAMES
dataNT=vnames=NULL
for (j in 1:N) {
dat=subset(dat1,ID==NAME[j])
vnames=c(vnames,paste(NAME[j],varnames,sep="."))
colnames(dat)=NULL
datz=as.matrix(dat[,-1])
dataNT=cbind(dataNT,datz)
}
colnames(dataNT)=vnames
colnames(newRESID)=vnames
results <-list(lagmatrix=myout$lagmatrix,G0=G0,G1=G1,F1=F1,RESID=RESID,newRESID=newRESID)
} else if (p>=2) {
if (is.list(weight.matrix)) {
AVG=matrix(rep(0,N^2),N,N)
for (i in 1:length(weight.matrix)){
AVG=AVG+as.matrix(weight.matrix[[i]])
}
weight.matrix=AVG/(length(weight.matrix)-1)
} else {weight.matrix=as.matrix(weight.matrix)}
for (jj in 1:N) {
rsd_tmp=resid(myout$gvecm[[jj]])
diff_jj=max(pmatrix)-(pmatrix[jj])
if (diff_jj==0) {rsd_tmp1=rsd_tmp } else {rsd_tmp1=rsd_tmp[-(1:diff_jj),]}
RESID=cbind(RESID,rsd_tmp1)
endo_lagk0=endo_lagk1=endo_lagk2=NULL
for (k in 1:endo.no) {
coeff=coef(myout$gvecm[[jj]])[[k]]
exo_no=myout$exoLag*endo.no
coeff_EXO=coeff[(which(rownames(coeff)=="const")+1):nrow(coeff),]
coeff_EXO_LAG0=coeff_EXO[1:endo.no,1]
exo_lagi0=NULL
exo_lagk1=NULL
for (i in 1:endo.no)
{
exo_lagi0=rbind(exo_lagi0,coeff_EXO_LAG0[i]*as.matrix(weight.matrix)[,jj])
}
endo_lagk0=cbind(endo_lagk0,c(exo_lagi0))
coeff_EXO_LAG=coeff_EXO[-(1:endo.no),1]
coeff.ENDO=coeff[1:(pmatrix[jj]*endo.no),1]
coeff.ENDO.LAG1=coeff.ENDO[1:endo.no]
coeff_EXO_LAG1=coeff_EXO_LAG[1:endo.no]
endo_lagi1=NULL
for (i in 1:endo.no) {
endo_lagi1=rbind(endo_lagi1,coeff_EXO_LAG1[i]*as.matrix(weight.matrix)[,jj])
}
tmp.lagi1=matrix(0,endo.no,N)
tmp.lagi1[,jj]=coeff.ENDO.LAG1
tmp1=tmp.lagi1+endo_lagi1
endo_lagk1=cbind(endo_lagk1,c(tmp1))
coeff.ENDO.LAG2=coeff.ENDO[(endo.no+1):(endo.no*p)]
coeff_EXO_LAG2=coeff_EXO_LAG[(endo.no+1):(endo.no*p)]
endo_lagi2=NULL
for (i in 1:endo.no) {
endo_lagi2=rbind(endo_lagi2,coeff_EXO_LAG2[i]*as.matrix(weight.matrix)[,jj])
}
tmp.lagi2=matrix(0,endo.no,N)
tmp.lagi2[,jj]=coeff.ENDO.LAG2
tmp2=tmp.lagi2+endo_lagi2
endo_lagk2=cbind(endo_lagk2,c(tmp2))
}
GO.tmp=cbind(GO.tmp,endo_lagk0)
G1=cbind(G1,endo_lagk1)
G2=cbind(G2,endo_lagk2)
}
G0=diag(1,endo.no*N)-GO.tmp
invGO=solve(G0)
F1=invGO%*%G1
F2=invGO%*%G2
newRESID=t(invGO %*% t(RESID))
varnames=colnames(dat1)[-1]
NAME=myout$NAMES
dataNT=NULL;vnames=NULL
for (j in 1:N) {
dat=subset(dat1,ID==NAME[j])
vnames=c(vnames,paste(NAME[j],varnames,sep="."))
colnames(dat)=NULL
datz=as.matrix(dat[,-1])
dataNT=cbind(dataNT,datz)
}
colnames(dataNT)=vnames
colnames(newRESID)=vnames
results <-list(G0=G0,G1=G1,G2=G2, F1=F1,F2=F2,lagmatrix=myout$lagmatrix,RESID=RESID,newRESID=newRESID)
}
return(results)
}
.GVARfilter <- function(X, p, Bcoef, exogen = NULL, postpad = c("none", "constant", "zero", "NA"))
{
X = as.matrix(X)
if(any(is.na(X))) stop("\nvarxfilter:-->error: NAs in X.\n")
if(ncol(X) < 2) stop("\nvarxfilter:-->error: The matrix 'X' should contain at least two variables.\n")
if(is.null(colnames(X))) colnames(X) = paste("X", 1:ncol(X), sep = "")
colnames(X) = make.names(colnames(X))
postpad = tolower(postpad[1])
if(any(colnames(Bcoef)=="const")){
constant = TRUE
ic = 1
} else{
constant = FALSE
ic = 0
}
obs = dim(X)[1]
K = dim(X)[2]
xsample = obs - p
Xlags = embed(X, dimension = p + 1)[, -(1:K)]
temp1 = NULL
for (i in 1:p) {
temp = paste(colnames(X), ".l", i, sep = "")
temp1 = c(temp1, temp)
}
colnames(Xlags) = temp1
Xend = X[-c(1:p), ]
if(constant){
rhs = cbind( Xlags, rep(1, xsample))
colnames(rhs) <- c(colnames(Xlags), "const")
} else{
rhs = Xlags
colnames(rhs) <- colnames(Xlags)
}
if( !(is.null(exogen)) ) {
exogen = as.matrix(exogen)
if (!identical(nrow(exogen), nrow(X))) {
stop("\nvarxfit:-->error: Different row size of X and exogen.\n")
}
XK = dim(exogen)[2]
if (is.null(colnames(exogen))) colnames(exogen) = paste("exo", 1:ncol(exogen), sep = "")
colnames(exogen) = make.names(colnames(exogen))
tmp = colnames(rhs)
rhs = cbind(rhs, exogen[-c(1:p), ])
colnames(rhs) = c(tmp, colnames(exogen))
} else{
XK = 0
}
datamat = as.matrix(rhs)
colnames(datamat) = colnames(rhs)
xfitted = t( Bcoef %*% t( datamat ) )
xresiduals = tail(X, obs - p) - xfitted
if(postpad!="none"){
if(postpad == "constant"){
xfitted = t( Bcoef %*% t( rbind(matrix(c(rep(0, p*K), if(constant) 1 else NULL, if(XK>0) rep(0, XK) else NULL), nrow = p, ncol=dim(Bcoef)[2], byrow = TRUE), datamat ) ) )
xresiduals = X - xfitted
} else if(postpad == "zero"){
xfitted = t( Bcoef %*% t( rbind(matrix(rep(0, dim(Bcoef)[2]), nrow = p, ncol=dim(Bcoef)[2], byrow = TRUE), datamat ) ) )
xresiduals = X - xfitted
} else if(postpad == "NA"){
xfitted = t( Bcoef %*% t( rbind(matrix(rep(NA, dim(Bcoef)[2]), nrow = p, ncol=dim(Bcoef)[2], byrow = TRUE), datamat ) ) )
xresiduals = X - xfitted
} else{
xfitted = t( Bcoef %*% t( datamat ) )
xresiduals = tail(X, obs - p) - xfitted
}
}
ans = list( Bcoef = Bcoef, xfitted = xfitted, xresiduals = xresiduals, lag = p, constant = constant)
return( ans )
}
|
context("Testing rcmvtruncnorm")
d <- 5
rho <- 0.9
Sigma <- matrix(0, nrow = d, ncol = d)
Sigma <- 0.9^abs(row(Sigma) - col(Sigma))
test_that("The number of samples is a positive integer.", {
expect_error(
rcmvtruncnorm(n = -2,
mean = rep(1, d),
sigma = Sigma,
lower = rep(-10, d),
upper = rep(10, d),
dependent.ind = c(2, 3, 5),
given.ind = c(1, 4), X.given = c(1, -1)
)
)
expect_error(
rcmvtruncnorm(n = 0,
mean = rep(1, d),
sigma = Sigma,
lower = rep(-10, d),
upper = rep(10, d),
dependent.ind = c(2, 3, 5),
given.ind = c(1, 4), X.given = c(1, -1)
)
)
})
test_that("The burn-in value should be non-negative.", {
expect_error(
rcmvtruncnorm(2,
mean = rep(1, d),
sigma = Sigma,
lower = rep(-10, d),
upper = rep(10, d),
dependent.ind = c(2, 3, 5),
given.ind = c(1, 4), X.given = c(1, -1),
burn = -2L
)
)
set.seed(1203)
B <- rcmvtruncnorm(1,
mean = rep(1, d),
sigma = Sigma,
lower = rep(-10, d),
upper = rep(10, d),
dependent.ind = c(2, 3, 5),
given.ind = c(1, 4), X.given = c(1, -1),
burn = 0L
)
expect_equal(round(B[1], 7), 0.1516405)
})
|
AtmosphericEmissivity <- function (airtemp, cloudiness, vp=NULL, opt="linear")
{
if (opt == "Brutsaert") {
if(is.null(vp)){ print("To use Brutsaert's 1975 Clear-Sky Emissivity eqn, enter vapor pressure in kPa")
} else return((1.24*((vp*10)/(T+273.2))^(1/7)) * (1 - 0.84 * cloudiness) +
0.84 * cloudiness)
} else {
return((0.72 + 0.005 * airtemp) * (1 - 0.84 * cloudiness) +
0.84 * cloudiness)
}
}
|
scam <- function(formula, family=gaussian(), data=list(), gamma=1, sp=NULL,
weights=NULL, offset=NULL, optimizer="bfgs", optim.method=c("Nelder-Mead","fd"),
scale=0, knots=NULL, not.exp=FALSE, start=NULL, etastart=NULL, mustart=NULL, control=list(),
AR1.rho=0, AR.start=NULL,drop.unused.levels=TRUE)
{
control <- do.call("scam.control",control)
gp <- interpret.gam(formula)
cl <- match.call()
mf <- match.call(expand.dots=FALSE)
mf$formula <- gp$fake.formula
mf$family <- mf$control<-mf$scale<-mf$knots<-mf$sp<-mf$min.sp<-mf$H<-mf$select <- mf$drop.intercept <-
mf$gamma<-mf$method<-mf$fit<-mf$paraPen<-mf$G<-mf$optimizer <- mf$optim.method <- mf$not.exp <- mf$in.out <- mf$AR1.rho <- mf$AR1.start <- mf$start <- mf$etastart <- mf$mustart <-mf$devtol.fit <- mf$steptol.fit <- mf$del <- mf$...<-NULL
mf$drop.unused.levels <- drop.unused.levels
mf[[1]] <- quote(stats::model.frame)
pmf <- mf
mf <- eval(mf, parent.frame())
if (nrow(mf)<2) stop("Not enough (non-NA) data to do anything meaningful")
terms <- attr(mf,"terms")
vars <- all.vars1(gp$fake.formula[-2])
inp <- parse(text = paste("list(", paste(vars, collapse = ","),")"))
if (!is.list(data)&&!is.data.frame(data)) data <- as.data.frame(data)
dl <- eval(inp, data, parent.frame())
names(dl) <- vars
var.summary <- variable.summary(gp$pf,dl,nrow(mf))
rm(dl)
if (is.list(formula)) {
environment(formula) <- environment(formula[[1]])
pterms <- list()
tlab <- rep("",0)
for (i in 1:length(formula)) {
pmf$formula <- gp[[i]]$pf
pterms[[i]] <- attr(eval(pmf, parent.frame()),"terms")
tlabi <- attr(pterms[[i]],"term.labels")
if (i>1&&length(tlabi)>0) tlabi <- paste(tlabi,i-1,sep=".")
tlab <- c(tlab,tlabi)
}
attr(pterms,"term.labels") <- tlab
} else {
pmf$formula <- gp$pf
pmf <- eval(pmf, parent.frame())
pterms <- attr(pmf,"terms")
}
if (is.character(family)) family <- eval(parse(text=family))
if (is.function(family)) family <- family()
if (is.null(family$family)) stop("family not recognized")
if (family$family[1]=="gaussian" && family$link=="identity") am <- TRUE
else am <- FALSE
if (AR1.rho!=0&&!is.null(mf$"(AR.start)")) if (!is.logical(mf$"(AR.start)")) stop("AR.start must be logical")
if (AR1.rho!=0 && !am) stop("residual autocorrelation, AR1, is currently available only for the Gaussian identity link model.")
if (!control$keepData) rm(data)
G <- do.call("gam.setup",list(formula=gp,pterms=pterms,
data=mf,knots=knots,sp=sp, absorb.cons=TRUE,sparse.cons=0))
G$var.summary <- var.summary
G$family <- family
if ((is.list(formula)&&(is.null(family$nlp)||family$nlp!=gp$nlp))||
(!is.list(formula)&&!is.null(family$npl)&&(family$npl>1))) stop("incorrect number of linear predictors for family")
G$terms<-terms;
G$mf<-mf;G$cl<-cl;
G$am <- am
G$AR1.rho <- AR1.rho; G$AR.start <- AR.start
if (is.null(G$offset)) G$offset<-rep(0,G$n)
G$min.edf <- G$nsdf
if (G$m) for (i in 1:G$m) G$min.edf<-G$min.edf+G$smooth[[i]]$null.space.dim
G$formula <- formula
G$pred.formula <- gp$pred.formula
environment(G$formula)<-environment(formula)
if (ncol(G$X)>nrow(G$X)) stop("Model has more coefficients than data")
n.terms <- length(G$smooth)
n <- nrow(G$X)
intercept <- G$intercept
G$offset <- as.vector(model.offset(mf))
if (is.null(G$offset))
G$offset <- rep.int(0, n)
weights <- G$w
fam.name <- G$family[1]
if (scale == 0)
{ if (fam.name == "binomial" || fam.name == "poisson")
sig2 <- 1
else sig2 <- -1
}
else { sig2 <- scale }
if (sig2 > 0) scale.known <- TRUE else scale.known <- FALSE
Q <- penalty_pident(G)
if (!is.null(sp)) {
neg <- FALSE
if (length(sp)!= length(G$off)) {
warning("Supplied smoothing parameter vector is too short - ignored.")
sp <- NULL
} else if (sum(is.na(sp))) {
warning("NA's in supplied smoothing parameter vector - ignoring.")
sp <- NULL
} else {
good <- sp < 0
if (sum(good) > 0) {
warning("Supplied smoothing parameter vector has negative values - ignored.")
neg <- TRUE
}
}
if (neg) sp <- NULL
}
env <- new.env()
assign("dbeta.start",rep(0,0),envir=env)
assign("sp.last",rep(0,0),envir=env)
nvars <- NCOL(G$X)
if (!is.null(start)) {
if (length(start) != nvars)
stop(gettextf("Length of start should equal %d and correspond to initial coefs.",nvars))
else assign("start",start,envir=env)
} else{
assign("start",rep(0,0),envir=env)
}
q.f <- rep(0,n.terms)
if (n.terms >0) for (i in 1:n.terms)
q.f[i] <- ncol(G$smooth[[i]]$S[[1]]) + 1
G$S <- Q$S
G$q.f <- q.f
G$q0 <- G$off[1]-1
G$p.ident <- Q$p.ident
G$n.terms <- n.terms
G$weights <- weights
G$sig2 <- sig2
G$scale.known <- scale.known
G$not.exp <- not.exp
object <- list()
if (is.null(sp)) {
y <- G$y; family <- G$family
nobs <- NROW(y)
eval(family$initialize)
G$y <- y
def.sp <- initial.sp.scam(G, Q,q.f=q.f,n.terms=n.terms,family=family,
intercept=intercept,offset=G$offset, env=env,
weights=weights, control=control)
rho <- log(def.sp+1e-4)
if (!is.null(start))
assign("start",start,envir=env)
ptm <- proc.time()
re <- estimate.scam(G=G,optimizer=optimizer,optim.method=optim.method,
rho=rho, gamma=gamma, env=env,control=control)
CPU.time <- proc.time()-ptm
best <- re
object$gcv.ubre <- re$gcv.ubre
object$dgcv.ubre <- re$dgcv.ubre
best$p.ident <- Q$p.ident
best$S <- Q$S
object$optimizer <- optimizer
object$edf1 <- re$edf1
object$termcode <- re$termcode
if (optimizer == "bfgs")
{ object$check.grad <- re$check.grad
object$dgcv.ubre.check <- re$dgcv.ubre.check
}
} else {
best <- scam.fit(G=G, sp=sp,gamma=gamma,env=env, control=control)
object$optimizer <- "NA"
}
best$n.smooth <- object$n.smooth <- n.terms
best$formula <- object$formula <- formula
best$family <- object$family <- G$family
best$smooth <- object$smooth <- G$smooth
best$model <- object$model <- G$mf
object$R <- best$R
if (is.null(object$R)){
rr <- scam.fit(G=G, sp=best$sp, gamma=gamma,env=env, control=control)
object$R <- rr$R }
object$sp <- best$sp
names(object$sp) <- names(G$sp)
if (sum(is.na(names(object$sp)))!=0){
if (n.terms >0) for (i in 1:n.terms) names(object$sp)[i] <- object$smooth[[i]]$label
}
object$conv <- best$conv
post <- scam.fit.post(G, object=best)
object$edf <- best$edf
object$edf1 <- post$edf1
object$trA <- best$trA
names(object$edf) <- G$term.names
names(object$edf1) <- G$term.names
object$aic <- post$aic
object$null.deviance <- post$null.dev
object$deviance <- post$deviance
object$residuals <- post$residuals
object$df.residual <- nrow(G$X) - sum(post$edf)
object$rank <- post$rank
object$var.summary <- G$var.summary
object$cmX <- G$cmX
object$model<-G$mf
object$full.sp <- G$full.sp
if (!is.null(object$full.sp)) names(object$full.sp) <- names(G$full.sp)
object$na.action <- attr(G$mf,"na.action")
object$df.null <- post$df.null
object$Ve <- post$Ve
object$Vp <- post$Vb
object$Ve.t <- post$Ve.t
object$Vp.t <- post$Vb.t
object$sig2 <- post$sig2
object$coefficients <- best$beta
object$coefficients.t <- best$beta.t
object$beta <- best$beta
object$beta.t <- best$beta.t
object$pterms <- G$pterms
object$terms <- G$terms
object$assign <- G$assign
object$contrasts <- G$contrasts
object$xlevels <- G$xlevels
object$nsdf <- G$nsdf
object$y <- G$y
if (control$keepData) object$data <- data
object$control <- control
object$offset <- G$offset
object$not.exp <- G$not.exp
object$scale.estimated <- !scale.known
object$prior.weights <-weights
object$weights <- best$w
object$fitted.values <- post$mu
object$linear.predictors <- post$eta
object$call <- cl
object$p.ident <- Q$p.ident
object$intercept <- G$intercept
object$min.edf <- G$min.edf
object$gamma <- gamma
object$iter <- best$iter
if (is.null(sp))
object$CPU.time <- CPU.time
else
object$CPU.time <- NULL
object$AR1.rho <- AR1.rho
if (is.null(sp))
{ if (optimizer == "bfgs")
{
object$bfgs.info <- list()
object$bfgs.info$conv <- re$conv.bfgs
object$bfgs.info$iter <- re$iterations
object$bfgs.info$grad <- re$dgcv.ubre
object$bfgs.info$score.hist <- re$score.hist
}
else if (optimizer == "nlm.fd" || optimizer == "nlm")
{ object$nlm.info <- list()
object$nlm.info$conv <- re$conv
object$nlm.info$iter <- re$iterations
object$nlm.info$grad <- re$dgcv.ubre
}
else if (optimizer=="optim")
{ object$optim.info <- list()
object$optim.info$conv <- re$conv
object$optim.info$iter <- re$iterations
object$optim.method <- re$optim.method
}
else if (optimizer=="efs")
{ object$efs.info <- list()
object$efs.info$conv <- re$conv
object$efs.info$iter <- re$iterations
object$efs.info$score.hist <- re$score.hist
}
}
if (scale.known)
object$method <- "UBRE"
else object$method <- "GCV"
if (G$nsdf > 0)
term.names <- colnames(G$X)[1:G$nsdf]
else term.names <- array("", 0)
if (n.terms >0)
for (i in 1:n.terms)
{ k <- 1
for (j in G$smooth[[i]]$first.para:G$smooth[[i]]$last.para)
{ term.names[j] <- paste(G$smooth[[i]]$label, ".",
as.character(k), sep = "")
k <- k + 1
}
}
names(object$coefficients) <- term.names
names(object$coefficients.t) <- term.names
ynames <- if (is.matrix(G$y))
rownames(G$y)
else names(G$y)
names(object$residuals) <- ynames
class(object) <- c("scam","glm","lm")
rm(G)
dev <- object$deviance
if (AR1.rho!=0){
object$std.rsd <- AR.resid(object$residuals,AR1.rho,object$model$"(AR.start)")
dev <- sum(object$std.rsd^2)
object$deviance <- sum(object$residuals^2)
}
object$aic <- object$family$aic(object$y,1,object$fitted.values,object$prior.weights,dev)
object$aic <- object$aic -
2 * (length(object$y) - sum(sum(object$model[["(AR.start)"]])))*log(1/sqrt(1-AR1.rho^2)) +
2*sum(object$edf)
object
}
scam.control <- function (maxit = 200, maxHalf=30, devtol.fit=1e-7, steptol.fit=1e-7,
keepData=FALSE,efs.lspmax=15,efs.tol=.1, nlm=list(),optim=list(),bfgs=list(),
trace =FALSE, print.warn=FALSE)
{ if (!is.numeric(devtol.fit) || devtol.fit <= 0)
stop("value of devtol.fit must be > 0")
if (!is.numeric(steptol.fit) || devtol.fit <= 0)
stop("value of steptol.fit must be > 0")
if (!is.numeric(maxit) || maxit <= 0)
stop("maximum number of iterations must be > 0")
if (!is.numeric(maxHalf) || maxHalf <= 0)
stop("maximum number of step halving must be > 0")
if (!is.logical(trace)) stop("trace must be logical")
if (!is.logical(print.warn)) stop("print.warn must be logical")
if (is.null(nlm$ndigit)||nlm$ndigit<2) nlm$ndigit <- max(2,ceiling(-log10(1e-7)))
nlm$ndigit <- round(nlm$ndigit)
ndigit <- floor(-log10(.Machine$double.eps))
if (nlm$ndigit>ndigit) nlm$ndigit <- ndigit
if (is.null(nlm$gradtol)) nlm$gradtol <- 1e-6
nlm$gradtol <- abs(nlm$gradtol)
if (is.null(nlm$stepmax)||nlm$stepmax==0) nlm$stepmax <- 2
nlm$stepmax <- abs(nlm$stepmax)
if (is.null(nlm$steptol)) nlm$steptol <- 1e-4
nlm$steptol <- abs(nlm$steptol)
if (is.null(nlm$iterlim)) nlm$iterlim <- 200
nlm$iterlim <- abs(nlm$iterlim)
if (is.null(nlm$check.analyticals)) nlm$check.analyticals <- FALSE
nlm$check.analyticals <- as.logical(nlm$check.analyticals)
if (is.null(bfgs$check.analytical)) bfgs$check.analytical <- FALSE
if (is.null(bfgs$del)) bfgs$del <- 1e-4
if (is.null(bfgs$steptol.bfgs)) bfgs$steptol.bfgs <- 1e-7
if (is.null(bfgs$gradtol.bfgs)) bfgs$gradtol.bfgs <- 1e-06
if (is.null(bfgs$maxNstep)) bfgs$maxNstep <- 5
if (is.null(bfgs$maxHalf)) bfgs$maxHalf <- maxHalf
if (is.null(optim$factr)) optim$factr <- 1e7
optim$factr <- abs(optim$factr)
if (efs.tol<=0) efs.tol <- .1
list(maxit=maxit, devtol.fit=devtol.fit, steptol.fit=steptol.fit, keepData=as.logical(keepData[1]), nlm=nlm, optim=optim,bfgs=bfgs,efs.lspmax=efs.lspmax,efs.tol=efs.tol,trace = trace, print.warn=print.warn)
}
initial.sp.scam <- function(G,Q,q.f,n.terms,family,intercept,offset, env= env,
weights, control=control)
{
control$devtol.fit <- 1e-4
control$steptol.fit <- 1e-4
b <- scam.fit(G=G,sp=rep(0.05,length(G$off)), env=env, control=control)
H <- crossprod(b$wX1) - b$E
n.p <- length(Q$S)
def.sp <- array(0,n.p)
j <- 1
if (n.terms >0) for (i in 1:n.terms){
for (kk in 1:length(G$smooth[[i]]$S)){
start <- G$off[j]
finish <- start + ncol(G$smooth[[i]]$S[[kk]])-1
Hi.norm <- sum(H[start:finish,start:finish]*H[start:finish,start:finish])
Si.norm <- sum(G$smooth[[i]]$S[[kk]]*G$smooth[[i]]$S[[kk]])
def.sp[j] <- (Hi.norm/Si.norm)^0.5
j <- j+1
}
}
env <- new.env()
assign("start",rep(0,0),envir=env)
assign("dbeta.start",rep(0,0),envir=env)
assign("sp.last",rep(0,0),envir=env)
def.sp
}
penalty_pident <- function(object)
{
n.terms <- length(object$smooth)
q <- ncol(object$X)
cons.terms <- rep(0,n.terms)
if (n.terms>0) for (i in 1:n.terms){
if (!is.null(object$smooth[[i]]$p.ident))
cons.terms[i] <- 1
}
p.ident <- rep(FALSE,q)
off.terms <- rep(0,n.terms)
off <- object$off
if (n.terms ==length(off))
off.terms <- off
else
{ off.terms[1] <- off[1]
k <- 1
l <- 1
while (l<length(off))
{ if (off[l]!=off[l+1])
{ off.terms[k+1] <- off[l+1]
k <- k+1; l <- l+1
}
else l <- l+1
}
}
if (n.terms>0) for (i in 1:n.terms){
if (cons.terms[i]==1)
p.ident[off.terms[i]:(off.terms[i]+ncol(object$smooth[[i]]$S[[1]])-1)] <-
object$smooth[[i]]$p.ident
}
S <- list()
j <- 1
if (n.terms>0) for(i in 1:n.terms){
for (kk in 1:length(object$smooth[[i]]$S)){
S[[j]] <- matrix(0,q,q)
S[[j]][off.terms[i]:(off.terms[i]+ncol(object$smooth[[i]]$S[[kk]])-1),
off.terms[i]:(off.terms[i]+ncol(object$smooth[[i]]$S[[kk]])-1)] <- object$smooth[[i]]$S[[kk]]
j <- j+1
}
}
object$S <- S
object$p.ident <- p.ident
object
}
scam.fit <- function(G,sp, gamma=1, etastart=NULL, mustart=NULL, env=env,
null.coef=rep(0,ncol(G$X)), control=scam.control())
{ y <- G$y; X <- G$X; S <- G$S; not.exp <- G$not.exp;
AR1.rho <- G$AR1.rho
attr(X,"dimnames") <- NULL
q0 <- G$q0; q.f <- G$q.f
p.ident <- G$p.ident; n.terms <- G$n.terms
family <- G$family; intercept <- G$intercept; offset <- G$offset;
weights <- G$weights;
n <- nobs <- NROW(y)
q <- ncol(X)
dg <- fix.family.link(family)
dv <- fix.family.var(family)
nvars <- NCOL(X)
EMPTY <- nvars == 0
variance <- family$variance
linkinv <- family$linkinv
if (!is.function(variance) || !is.function(linkinv))
stop("'family' argument seems not to be a valid family object")
dev.resids <- family$dev.resids
aic <- family$aic
mu.eta <- family$mu.eta
mu.eta <- family$mu.eta
if (AR1.rho!=0) {
ld <- 1/sqrt(1-AR1.rho^2)
sd <- -AR1.rho*ld
row <- c(1,rep(1:nobs,rep(2,nobs))[-c(1,2*nobs)])
weight.r <- c(1,rep(c(sd,ld),nobs-1))
end <- c(1,1:(nobs-1)*2+1)
if (!is.null(G$mf$"(AR.start)")) {
ii <- which(G$mf$"(AR.start)"==TRUE)
if (length(ii)>0) {
if (ii[1]==1) ii <- ii[-1]
weight.r[ii*2-2] <- 0
weight.r[ii*2-1] <- 1
}
}
X <- rwMatrix(end,row,weight.r,X)
y <- rwMatrix(end,row,weight.r,y)
}
if (!is.function(variance) || !is.function(linkinv))
stop("illegal `family' argument")
valideta <- family$valideta
if (is.null(valideta))
valideta <- function(eta) TRUE
validmu <- family$validmu
if (is.null(validmu))
validmu <- function(mu) TRUE
if (is.null(mustart)) {
eval(family$initialize)
}
else {
mukeep <- mustart
eval(family$initialize)
mustart <- mukeep
}
if (family$family=="gaussian"&&family$link=="identity") strictly.additive <- TRUE else
strictly.additive <- FALSE
if (EMPTY) {
eta <- rep.int(0, nobs) + offset
if (!valideta(eta))
stop("Invalid linear predictor values in empty model")
mu <- linkinv(eta)
if (AR1.rho!=0) {
mu <- rwMatrix(end,row,weight.r,mu)
}
if (!validmu(mu))
stop("Invalid fitted means in empty model")
dev <- sum(dev.resids(y, mu, weights))
w <- (weights * mu.eta(eta)^2)/variance(mu)
residuals <- (y - mu)/mu.eta(eta)
good <- rep(TRUE, length(residuals))
boundary <- conv <- TRUE
coef <- numeric(0)
iter <- 0
V <- variance(mu)
alpha <- dev
trA <- 0
GCV <- nobs * alpha/(nobs - gamma * trA)^2
UBRE <- alpha/nobs + 2 * gamma* trA*scale/n - scale
scale.est <- alpha/(nobs - trA)
aic.model <- aic(y, n, mu, weights, dev) + 2 * trA
}
else {
eta <- if (!is.null(etastart))
etastart
else family$linkfun(mustart)
mu <- as.numeric(linkinv(eta))
S.t <- matrix(0,q,q)
n.pen <- length(S)
if (length(sp)!=n.pen) stop (paste("length of sp has to be equal to", n.pen))
if (n.pen>0) for (j in 1:n.pen) S.t <- S.t + sp[j]*S[[j]]
er <- eigen(S.t,symmetric=TRUE); er$values[er$values<0] <- 0
rS <- crossprod(sqrt(sqrt(er$values))*t(er$vectors))
iv <- (1:q)[p.ident]
beta0 <- get("start",envir=env)
dbeta0 <- get("dbeta.start",envir=env)
sp.old <- get("sp.last",envir=env)
if (length(beta0)==0) {
M <- list(X=X,p=rep(0.1,q),C=matrix(0,0,0),sp=sp,y=eta-offset,w=y*0+1)
M$Ain <- matrix(0,q,q); diag(M$Ain) <- rep(1,q);
M$bin <- rep(-1e+12,q); M$bin[iv] <- 1e-12
M$off <- rep(0,n.pen); M$S <- list()
if (n.pen>0) for (j in 1:n.pen) {M$S[[j]] <- matrix(0,q,q); M$S[[j]] <- S[[j]]}
beta.t <- pcls(M)
beta <- beta.t
beta[iv] <- log(beta.t[iv])
}
else {
beta <- beta0
beta.t <- beta
beta.t[iv] <- if (!not.exp) exp(beta[iv]) else notExp(beta[iv])
}
eta <- as.numeric(X%*%beta.t + as.numeric(offset))
mu <- linkinv(eta)
ii <- 0
while (!(validmu(mu) && valideta(eta))) {
ii <- ii + 1
if (ii>20) stop("Can't find valid starting values: please specify some")
beta <- beta * .9 + null.coef * .1
beta.t <- beta
beta.t[iv] <- if (!not.exp) exp(beta[iv]) else notExp(beta[iv])
eta <- as.numeric(X%*%beta.t + offset)
mu <- linkinv(eta)
}
betaold <- null.coef <- beta
betaold.t <- beta
betaold.t[iv] <- if (!not.exp) exp(betaold[iv]) else notExp(betaold[iv])
etaold <- as.numeric(X%*%betaold.t + offset)
old.pdev <- sum(dev.resids(y,linkinv(etaold),weights)) + sum((rS%*%betaold)^2)
pdev.plot <- 0
E <- matrix(0,q,q)
Cdiag <- rep(1,q); C1diag <- rep(0,q)
boundary <- conv <- FALSE
old.warn <- getOption("warn")
if (!control$print.warn) curr.warn <- -1 else curr.warn <- old.warn
for (iter in 1:control$maxit) {
good <- weights > 0
var.val <- variance(mu)
varmu <- var.val[good]
if (any(is.na(varmu)))
stop("NAs in V(mu)")
if (any(varmu == 0))
stop("0s in V(mu)")
mu.eta.val <- mu.eta(eta)
if (any(is.na(mu.eta.val[good])))
stop("NAs in d(mu)/d(eta)")
good <- (weights > 0) & (mu.eta.val != 0)
if (all(!good)) {
conv <- FALSE
warning("No observations informative at iteration ",
iter)
break
}
if (!not.exp) {
Cdiag[iv] <- C1diag[iv] <- beta.t[iv]
} else {
Cdiag[iv] <- DnotExp(beta[iv]); C1diag[iv] <- D2notExp(beta[iv])
}
tX1 <- Cdiag*t(X)
g.deriv <- 1/mu.eta(eta)
w1 <- weights/(variance(mu)*g.deriv^2)
y.mu <- y - mu
alpha <- 1+ y.mu*(dv$dvar(mu)/variance(mu)+dg$d2link(mu)/g.deriv)
w <- w1*alpha
diag(E) <- drop((C1diag*t(X))%*%(w1*g.deriv*y.mu))
abs.w <- abs(w)
I.minus <- rep(0,nobs)
z1 <- g.deriv*y.mu/alpha
iin <- w < 0; I.minus[iin] <- 1;z1[iin] <- -z1[iin]
wX11 <- rbind(sqrt(abs.w)[1:nobs]*t(tX1),rS)
illcond <- FALSE
Q <- qr(wX11,LAPACK=TRUE)
R <- qr.R(Q)
rp <- 1:ncol(R)
rp[Q$pivot] <- rp
if (Rrank(R)==ncol(R)) {
R.inv <- backsolve(R,diag(ncol(R)))[rp,]
tR.inv <- t(R.inv)
} else {
R <- R[,rp]
svd.r <- svd(R)
d.inv <- rep(0,q)
good1 <- svd.r$d >= max(svd.r$d)*.Machine$double.eps^.5
d.inv[good1] <- 1/svd.r$d[good1]
if (sum(!good1)>0) illcond <- TRUE
R <- svd.r$d*t(svd.r$v)
Q <- qr.qy(Q,rbind(svd.r$u,matrix(0,nobs,q)))
tR.inv <- d.inv*t(svd.r$v)
R.inv <- t(tR.inv)
}
QtQRER <- tR.inv%*%(diag(E)*R.inv)
if (sum(I.minus)>0) {
if (is.qr(Q)) {
QtQRER <- QtQRER + 2*crossprod(I.minus*qr.Q(Q)[1:nobs,])
} else {
QtQRER <- QtQRER + 2*crossprod(I.minus*Q[1:nobs,])
}
}
ei <- eigen(QtQRER,symmetric=TRUE)
d <- ei$values
ok1 <- sum(d>1) > 0
if (ok1 == TRUE) {
eta.t <- drop(t(beta)%*%tX1)
wX11 <- rbind(sqrt(w1)[1:nobs]*t(tX1),rS)
z<-g.deriv*y.mu+eta.t
wz<-w1^.5*z
wz.aug<-c(wz,rep(0,nrow(rS)))
Q <- qr(wX11,LAPACK=TRUE)
R <- qr.R(Q)
rp <- 1:ncol(R)
rp[Q$pivot] <- rp
if (Rrank(R)==ncol(R)) {
beta <- backsolve(R,qr.qty(Q,wz.aug)[1:q])[rp]
} else {
R <- R[,rp]
s1 <- svd(R)
d.inv1 <- rep(0,q)
good1 <- s1$d >= max(s1$d)*.Machine$double.eps^.5
d.inv1[good1] <- 1/s1$d[good1]
beta <- s1$v%*%((d.inv1*t(s1$u))%*%qr.qty(Q,wz.aug)[1:q])
}
}
else {
Id.inv.r<-1/(1-d)^.5
iin <- (1-d) < .Machine$double.eps
Id.inv.r[iin] <- 0
eidrop <- t(Id.inv.r*t(ei$vectors))
wz1<-sqrt(abs.w)*z1
if (is.qr(Q)) {
beta <- R.inv%*%(eidrop%*%(t(eidrop)%*%qr.qty(Q,c(wz1,rep(0,nrow(rS))))[1:nrow(eidrop)]))
} else {
beta <- R.inv%*%(eidrop%*%(t(eidrop)%*%(t(Q[1:nobs,])%*%wz1)[1:nrow(eidrop)]))
}
beta <- betaold +
drop(beta - R.inv%*%(eidrop%*%(t(eidrop)%*%(tR.inv%*%(S.t%*%betaold)))))
}
beta.t <- beta
beta.t[iv] <- if (!not.exp) exp(beta[iv]) else notExp(beta[iv])
if (any(!is.finite(beta))) {
conv <- FALSE
warning(gettextf("Non-finite coefficients at iteration %d",
iter))
break
}
options(warn = curr.warn)
if (any(!is.finite(beta.t))) {
conv <- FALSE
warning(gettextf("Non-finite exponentiated coefficients at iteration %d",
iter))
}
eta <- drop(as.numeric(X%*%beta.t + offset))
mu <- linkinv(eta)
dev <- sum(dev.resids(y,mu,weights))
penalty <- sum((rS%*%beta)^2)
if (control$trace)
message(gettextf("Deviance = %s Iterations - %d", dev, iter, domain = "R-scam"))
boundary <- FALSE
if (!is.finite(dev)) {
if (is.null(betaold)) {
if (is.null(null.coef))
stop("no valid set of coefficients has been found:please supply starting values",
call. = FALSE)
betaold <- null.coef
}
warning("Step size truncated due to divergence",
call. = FALSE)
ii <- 0
while (!is.finite(dev)) {
if (ii > control$maxit)
stop("inner loop 1; can't correct step size")
ii <- ii + 1
beta <- (beta + c(betaold))/2
beta.t <- beta
beta.t[iv] <- if (!not.exp) exp(beta[iv]) else notExp(beta[iv])
eta <- as.numeric(X%*%beta.t + offset)
mu <- linkinv(eta)
dev <- sum(dev.resids(y, mu, weights))
}
boundary <- TRUE
penalty <- sum((rS%*%beta)^2)
if (control$trace)
cat("Step halved: new deviance =", dev, "\n")
}
if (!(valideta(eta) && validmu(mu))) {
warning("Step size truncated: out of bounds",
call. = FALSE)
ii <- 0
while (!(valideta(eta) && validmu(mu))) {
if (ii > control$maxit)
stop("inner loop 2; can't correct step size")
ii <- ii + 1
beta <- (beta + c(betaold))/2
beta.t <- beta
beta.t[iv] <- if (!not.exp) exp(beta[iv]) else notExp(beta[iv])
eta <- as.numeric(X%*%beta.t + offset)
mu <- linkinv(eta)
}
boundary <- TRUE
penalty <- sum((rS%*%beta)^2)
dev <- sum(dev.resids(y, mu, weights))
if (control$trace)
cat("Step halved: new deviance =", dev, "\n")
}
options(warn = old.warn)
pdev <- dev + penalty
if (control$trace)
message(gettextf("penalized deviance = %s", pdev, domain = "R-scam"))
div.thresh <- 10*(.1 +abs(old.pdev))*.Machine$double.eps^.5
if (pdev-old.pdev>div.thresh) {
ii <- 0
while (pdev -old.pdev > div.thresh){
if (ii > 100)
stop("inner loop 3; can't correct step size")
ii <- ii + 1
beta <- (beta + c(betaold))/2
beta.t <- beta
beta.t[iv] <- if (!not.exp) exp(beta[iv]) else notExp(beta[iv])
eta <- as.numeric(X%*%beta.t + offset)
mu <- linkinv(eta)
dev <- sum(dev.resids(y, mu, weights))
pdev <- dev + sum((rS%*%beta)^2)
if (control$trace)
message(gettextf("Step halved: new penalized deviance = %g", pdev, "\n"))
}
}
Dp.g <- -drop(tX1%*%(w1*g.deriv*(y-mu)))+S.t%*%beta
Dp.gnorm <- max(abs(Dp.g))
pdev.plot[iter] <- pdev
if (abs(pdev - old.pdev)/(.1 + abs(pdev)) < control$devtol.fit) {
if (Dp.gnorm > control$devtol.fit*max(abs(beta+c(betaold)))/2) {
old.pdev <- pdev
betaold <- beta
}
else {
conv <- TRUE
beta <- beta
break
}
}
else {
old.pdev <- pdev
betaold <- beta
}
}
if (!not.exp) {
Cdiag[iv] <- C1diag[iv] <- beta.t[iv]
} else {
Cdiag[iv] <- DnotExp(beta[iv]); C1diag[iv] <- D2notExp(beta[iv])
}
X1 <- t(Cdiag*t(X))
g.deriv <- 1/ mu.eta(eta)
w1 <- weights/(variance(mu)*g.deriv^2)
alpha <- 1+(y-mu)*(dv$dvar(mu)/variance(mu)+dg$d2link(mu)/g.deriv)
w <- w1*alpha
diag(E) <- drop((C1diag*t(X))%*%(w1*g.deriv*(y-mu)))
abs.w <- abs(w)
I.minus <- rep(0,nobs)
I.minus[w<0] <- 1
wX1 <- sqrt(abs.w)[1:nobs]*X1
wX11 <- rbind(wX1,rS)
illcond <- FALSE
Q <- qr(wX11,LAPACK=TRUE)
R <- qr.R(Q)
rp <- 1:ncol(R)
rp[Q$pivot] <- rp
R.out <- R[,rp]
rank <- Rrank(R)
if (rank==ncol(R)) {
R.inv <- backsolve(R,diag(ncol(R)))[rp,]
tR.inv <- t(R.inv)
} else {
R <- R[,rp]
svd.r <- svd(R)
d.inv <- rep(0,q)
good1 <- svd.r$d >= max(svd.r$d)*.Machine$double.eps^.5
d.inv[good1] <- 1/svd.r$d[good1]
if (sum(!good1)>0) illcond <- TRUE
R <- svd.r$d*t(svd.r$v)
Q <- qr.qy(Q,rbind(svd.r$u,matrix(0,nobs,q)))
tR.inv <- d.inv*t(svd.r$v)
R.inv <- t(tR.inv)
}
QtQRER <- tR.inv%*%(diag(E)*R.inv)
if (sum(I.minus)>0) {
if (is.qr(Q)) {
QtQRER <- QtQRER + 2*crossprod(I.minus*qr.Q(Q)[1:nobs,])
} else {
QtQRER <- QtQRER + 2*crossprod(I.minus*Q[1:nobs,])
}
}
ei <- eigen(QtQRER,symmetric=TRUE)
d <- ei$values
ok1 <- sum(d>1)>0
if (ok1) {
wX1<-sqrt(w1)[1:nobs]*X1
wX11<-rbind(wX1,rS)
Q <- qr(wX11,LAPACK=TRUE)
R <- qr.R(Q)
rp <- 1:ncol(R)
rp[Q$pivot] <- rp
R.out <- R[,rp]
rank <- Rrank(R)
if (rank==ncol(R)) {
P <- backsolve(R,diag(ncol(R)))[rp,]
K <- qr.Q(Q)[1:nobs,]
} else {
R <- R[,rp]
s1 <- svd(R)
d.inv1 <- rep(0,q)
good1 <- s1$d >= max(s1$d)*.Machine$double.eps^.5
d.inv1[good1] <- 1/s1$d[good1]
P <- t(d.inv1*t(s1$v))
K <- qr.qy(Q,rbind(s1$u,matrix(0,nobs,q)))[1:nobs,]
}
}
else {
Id.inv.r<-1/(1-d)^.5
ii <- (1-d) < .Machine$double.eps
Id.inv.r[ii] <- 0
eidrop <- t(Id.inv.r*t(ei$vectors))
P <- R.inv%*%eidrop
if (is.qr(Q)) {
K <- qr.qy(Q,rbind(eidrop,matrix(0,nobs,q)))[1:nobs,]
} else {
K <- Q[1:nobs,]%*%eidrop
}
}
Dp.g <- -t(X1)%*%(w1*g.deriv*(y-mu))+S.t%*%beta
Dp.gnorm<-max(abs(Dp.g))
I.plus <- rep(1,nobs)
I.plus[w<0] <- -1
L <- c(1/alpha)
KtILQ1R <- crossprod(L*I.plus*K,wX1)
edf <- rowSums(P*t(KtILQ1R))
trA <- sum(edf)
wXC1 <- sqrt(abs.w)[1:nobs]*t(C1diag*t(X))
KtILQ1R <- if (!not.exp) KtILQ1R else crossprod(L*I.plus*K,wXC1)
KtIQ1R <- if (!not.exp) crossprod(I.plus*K,wX1)
else crossprod(I.plus*K,wXC1)
C2diag <- rep(0,q)
C2diag[iv] <- if (!not.exp) C1diag[iv] else D3notExp(beta[iv])
XC2 <- t(C2diag*t(X))
XC1 <- t(C1diag*t(X))
dlink.mu <- 1/mu.eta(eta); Var<- variance(mu)
link <- family$linkfun(mu); d2link.mu <- dg$d2link(mu)
dvar.mu <- dv$dvar(mu); d2var.mu <- dv$d2var(mu)
d3link.mu <- dg$d3link(mu)
z <- g.deriv*(y-mu)+X1%*%beta
scale.est <- dev/(nobs-trA)
residuals <- rep.int(NA, nobs)
residuals <- (y-mu)*g.deriv
dbeta.rho <- matrix(0,q,n.pen)
if (n.pen>0) for (j in 1:n.pen) {
dbeta.rho[,j] <- - sp[j]*P%*%(t(P)%*%(S[[j]]%*%beta))
}
aic.model <- aic(y, n, mu, weights, dev) + 2 * sum(edf)
if (AR1.rho!=0) {
df <- 1
aic.model <- aic.model - 2*(n-df)*log(ld)
}
assign("start",beta,envir=env)
assign("dbeta.start",dbeta.rho,envir=env)
assign("sp.last",sp,envir=env)
}
list(L=L,C1diag=C1diag,E=E,iter=iter, old.beta=betaold, gcv=dev*nobs/(nobs-gamma *trA)^2, sp=sp,
mu=mu,X=G$X,y=drop(G$y), X1=X1,beta=beta,beta.t=beta.t,iv=iv,S=S,S.t=S.t,rS=rS,
P=P,K=K, C2diag=C2diag, KtILQ1R= KtILQ1R, KtIQ1R=KtIQ1R,
dlink.mu=dlink.mu,Var=Var, abs.w=drop(abs.w),
link=link,w=as.numeric(w),w1=drop(w1),d2link.mu=d2link.mu,wX1=wX1,I.plus=I.plus,
dvar.mu=dvar.mu,d2var.mu=d2var.mu,deviance=dev,scale.est=scale.est,
ok1=ok1,alpha=as.numeric(alpha),d3link.mu=d3link.mu,eta=eta,iter=iter,
Dp.gnorm=Dp.gnorm, Dp.g=Dp.g,d=d, conv=conv, illcond=illcond,R=R.out, edf=edf,trA=trA,
residuals=residuals,z=z,dbeta.rho=dbeta.rho, aic=aic.model,rank=rank)
}
scam.fit.post<- function(G, object)
{
y <- G$y; X <- G$X;
sig2 <- G$sig2; offset <- G$offset; intercept <- G$intercept;
weights <- G$weights; scale.known <- G$scale.known; not.exp <- G$not.exp
n <- nobs <- NROW(y)
q <- ncol(X)
if (G$AR1.rho!=0) {
ld <- 1/sqrt(1-G$AR1.rho^2)
sd <- -G$AR1.rho*ld
row <- c(1,rep(1:nobs,rep(2,nobs))[-c(1,2*nobs)])
weight.r <- c(1,rep(c(sd,ld),nobs-1))
end <- c(1,1:(nobs-1)*2+1)
if (!is.null(G$AR.start)) {
ii <- which(G$AR.start==TRUE)
if (length(ii)>0) {
if (ii[1]==1) ii <- ii[-1]
weight.r[ii*2-2] <- 0
weight.r[ii*2-1] <- 1
}
}
X <- rwMatrix(end,row,weight.r,X)
y <- rwMatrix(end,row,weight.r,y)
}
linkinv <- object$family$linkinv
dev.resids <- object$family$dev.resids
dg <- fix.family.link(object$family)
dv <- fix.family.var(object$family)
eta <- as.numeric(X%*%object$beta.t + offset)
mu <- linkinv(eta)
dev <- sum(dev.resids(y,mu,weights))
wtdmu <- if (intercept) sum(weights * G$y)/sum(weights)
else linkinv(offset)
null.dev <- sum(dev.resids(G$y, wtdmu, weights))
n.ok <- nobs - sum(weights == 0)
nulldf <- n.ok - as.integer(intercept)
Cdiag <- rep(1,q); C1diag <- rep(0,q)
iv <- object$iv
if (!not.exp) {
Cdiag[iv] <- C1diag[iv] <- object$beta.t[iv]
} else {
Cdiag[iv] <- DnotExp(object$beta[iv]); C1diag[iv] <- D2notExp(object$beta[iv])
}
X1 <- t(Cdiag*t(X))
g.deriv <- 1/object$family$mu.eta(eta)
w1 <- weights/(object$family$variance(mu)*g.deriv^2)
alpha <- 1+(y-mu)*(dv$dvar(mu)/object$family$variance(mu)+dg$d2link(mu)/g.deriv)
w <- w1*alpha
E <- matrix(0,q,q)
diag(E) <- drop((C1diag*t(X))%*%(w1*g.deriv*(y-mu)))
abs.w <- abs(w)
I.minus <- rep(0,nobs)
I.minus[w<0] <- 1
wX1 <- sqrt(abs.w)[1:nobs]*X1
wX11 <- rbind(wX1,object$rS)
illcond <- FALSE
Q <- qr(wX11,LAPACK=TRUE)
R <- qr.R(Q)
rp <- 1:ncol(R)
rp[Q$pivot] <- rp
R.out <- R[,rp]
rank <- Rrank(R)
if (rank==ncol(R)) {
R.inv <- backsolve(R,diag(ncol(R)))[rp,]
tR.inv <- t(R.inv)
} else {
R <- R[,rp]
svd.r <- svd(R)
d.inv <- rep(0,q)
good <- svd.r$d >= max(svd.r$d)*.Machine$double.eps^.5
d.inv[good] <- 1/svd.r$d[good]
if (sum(!good)>0) illcond <- TRUE
R <- svd.r$d*t(svd.r$v)
Q <- qr.qy(Q,rbind(svd.r$u,matrix(0,nobs,q)))
tR.inv <- d.inv*t(svd.r$v)
R.inv <- t(tR.inv)
}
QtQRER <- tR.inv%*%(diag(E)*R.inv)
if (sum(I.minus)>0) {
if (is.qr(Q)) {
QtQRER <- QtQRER + 2*crossprod(I.minus*qr.Q(Q)[1:nobs,])
} else {
QtQRER <- QtQRER + 2*crossprod(I.minus*Q[1:nobs,])
}
}
ei <- eigen(QtQRER,symmetric=TRUE)
d <- ei$values
ok1 <- sum(d>1)>0
if (ok1) {
wX1<-sqrt(w1)[1:nobs]*X1
wX11<-rbind(wX1,object$rS)
Q <- qr(wX11,LAPACK=TRUE)
R <- qr.R(Q)
rp <- 1:ncol(R)
rp[Q$pivot] <- rp
R.out <- R[,rp]
rank <- Rrank(R)
if (rank==ncol(R)) {
P <- backsolve(R,diag(ncol(R)))[rp,]
K <- qr.Q(Q)[1:nobs,]
} else {
R <- R[,rp]
s1 <- svd(R)
d.inv1 <- rep(0,q)
good1 <- s1$d >= max(s1$d)*.Machine$double.eps^.5
d.inv1[good1] <- 1/s1$d[good1]
P <- t(d.inv1*t(s1$v))
K <- qr.qy(Q,rbind(s1$u,matrix(0,nobs,q)))[1:nobs,]
}
}
else {
Id.inv.r<-1/(1-d)^.5
ii <- (1-d) < .Machine$double.eps
Id.inv.r[ii] <- 0
eidrop <- t(Id.inv.r*t(ei$vectors))
P <- R.inv%*%eidrop
if (is.qr(Q)) {
K <- qr.qy(Q,rbind(eidrop,matrix(0,nobs,q)))[1:nobs,]
} else {
K <- Q[1:nobs,]%*%eidrop
}
}
I.plus <- rep(1,nobs)
I.plus[w<0] <- -1
L <- c(1/alpha)
KtILQ1R <- crossprod(L*I.plus*K,wX1)
F <- P%*%(KtILQ1R)
edf <- diag(F)
edf1 <- 2*edf - rowSums(t(F)*F)
trA <- sum(edf)
if (!scale.known) sig2 <- dev/(nobs-trA)
Vb <- tcrossprod(P) * sig2
Ve <- crossprod(K%*%t(P)) *sig2
df.p <- rep(1,q)
df.p[object$iv] <- object$beta.t[object$iv]
Vb.t <- t(df.p*t(df.p*Vb))
Ve.t <- t(df.p*t(df.p*Ve))
eta <- as.numeric(G$X%*%object$beta.t + offset)
mu <- linkinv(eta)
residuals <- rep.int(NA, nobs)
g.deriv <- 1/object$family$mu.eta(eta)
residuals <- (G$y-mu)*g.deriv
aic.model <- object$family$aic(y, n, mu, weights, dev) + 2 * sum(edf)
if (G$AR1.rho!=0) {
df <- 1
aic.model <- aic.model - 2*(n-df)*log(1/sqrt(1-G$AR1.rho^2))
}
list (null.dev=null.dev, df.null=nulldf,Vb=Vb,Vb.t=Vb.t,Ve=Ve,Ve.t=Ve.t,rank=rank,
sig2=sig2,edf=edf,edf1=edf1,trA=trA, deviance=dev,residuals=residuals, aic=aic.model, mu=mu, eta=eta)
}
notExp <- function(x){
f <- x
ind <- x > 1
f[ind] <- exp(1)*(x[ind]^2+1)/2
ind <- (x <= 1)&(x > -1)
f[ind] <- exp(x[ind])
ind <- (x <= -1)
f[ind] <- exp(1)*(x[ind]^2+1)/2; f[ind]<-1/f[ind]
f
}
DnotExp <- function(x) {
f <- x
ind <- x > 1
f[ind] <- exp(1)*x[ind]
ind <- (x <= 1)&(x > -1)
f[ind] <- exp(x[ind])
ind <- (x <= -1)
f[ind] <- -4*x[ind]/exp(1)/(x[ind]^2+1)^2
f
}
D2notExp <- function(x) {
f <- x
ind <- x > 1
f[ind] <- exp(1)
ind <- (x <= 1)&(x > -1)
f[ind] <- exp(x[ind])
ind <- (x <= -1)
f[ind] <- (12*x[ind]^2-4)/exp(1)/(x[ind]^2+1)^3
f
}
D3notExp <- function(x) {
f <- x
ind <- x > 1
f[ind] <- 0
ind <- (x <= 1)&(x > -1)
f[ind] <- exp(x[ind])
ind <- (x <= -1)
f[ind] <- 48*x[ind]*(1-x[ind]^2)/exp(1)/(x[ind]^2+1)^4
f
}
logLik.scam <- function (object,...)
{
sc.p <- as.numeric(object$scale.estimated)
p <- sum(object$edf) + sc.p
val <- p - object$aic/2
np <- length(object$coefficients) + sc.p
if (p > np) p <- np
attr(val, "df") <- p
class(val) <- "logLik"
val
}
formula.scam <- function(x, ...)
{ x$formula
}
gam.setup <- function(formula,pterms,
data=stop("No data supplied to gam.setup"),knots=NULL,sp=NULL,
min.sp=NULL,H=NULL,absorb.cons=TRUE,sparse.cons=0,select=FALSE,idLinksBases=TRUE,
scale.penalty=TRUE,paraPen=NULL,gamm.call=FALSE,drop.intercept=FALSE,
diagonal.penalty=FALSE,apply.by=TRUE,list.call=FALSE,modCon=0)
{
if (inherits(formula,"split.gam.formula")) split <- formula else
if (inherits(formula,"formula")) split <- interpret.gam(formula)
else stop("First argument is no sort of formula!")
if (length(split$smooth.spec)==0) {
if (split$pfok==0) stop("You've got no model....")
m <- 0
} else m <- length(split$smooth.spec)
G <- list(m=m,min.sp=min.sp,H=H,pearson.extra=0,
dev.extra=0,n.true=-1,pterms=pterms)
if (is.null(attr(data,"terms")))
mf <- model.frame(split$pf,data,drop.unused.levels=FALSE)
else mf <- data
G$intercept <- attr(attr(mf,"terms"),"intercept")>0
if (list.call) {
offi <- attr(pterms,"offset")
if (!is.null(offi)) {
G$offset <- mf[[names(attr(pterms,"dataClasses"))[offi]]]
}
} else G$offset <- model.offset(mf)
if (!is.null(G$offset)) G$offset <- as.numeric(G$offset)
if (drop.intercept) attr(pterms,"intercept") <- 1
X <- model.matrix(pterms,mf)
if (drop.intercept) {
xat <- attributes(X);ind <- xat$assign>0
X <- X[,ind,drop=FALSE]
xat$assign <- xat$assign[ind];xat$dimnames[[2]]<-xat$dimnames[[2]][ind];
xat$dim[2] <- xat$dim[2]-1;attributes(X) <- xat
G$intercept <- FALSE
}
rownames(X) <- NULL
G$nsdf <- ncol(X)
G$contrasts <- attr(X,"contrasts")
G$xlevels <- .getXlevels(pterms,mf)
G$assign <- attr(X,"assign")
PP <- parametricPenalty(pterms,G$assign,paraPen,sp)
if (!is.null(PP)) {
ind <- 1:length(PP$sp)
if (!is.null(sp)) sp <- sp[-ind]
if (!is.null(min.sp)) {
PP$min.sp <- min.sp[ind]
min.sp <- min.sp[-ind]
}
}
G$smooth <- list()
G$S <- list()
if (gamm.call) {
if (m>0) for (i in 1:m) attr(split$smooth.spec[[i]],"gamm") <- TRUE
}
if (m>0 && idLinksBases) {
id.list <- list()
for (i in 1:m) if (!is.null(split$smooth.spec[[i]]$id)) {
id <- as.character(split$smooth.spec[[i]]$id)
if (length(id.list)&&id%in%names(id.list)) {
ni <- length(id.list[[id]]$sm.i)
id.list[[id]]$sm.i[ni+1] <- i
base.i <- id.list[[id]]$sm.i[1]
split$smooth.spec[[i]] <- clone.smooth.spec(split$smooth.spec[[base.i]],
split$smooth.spec[[i]])
temp.term <- split$smooth.spec[[i]]$term
for (j in 1:length(temp.term)) id.list[[id]]$data[[j]] <- cbind(id.list[[id]]$data[[j]],
get.var(temp.term[j],data,vecMat=FALSE))
} else {
id.list[[id]] <- list(sm.i=i)
id.list[[id]]$data <- list()
term <- split$smooth.spec[[i]]$term
for (j in 1:length(term)) id.list[[id]]$data[[j]] <- get.var(term[j],data,vecMat=FALSE)
}
}
}
G$off<-array(0,0)
first.para<-G$nsdf+1
sm <- list()
newm <- 0
if (m>0) for (i in 1:m) {
id <- split$smooth.spec[[i]]$id
if (is.null(id)||!idLinksBases) {
sml <- smoothCon(split$smooth.spec[[i]],data,knots,absorb.cons,scale.penalty=scale.penalty,
null.space.penalty=select,sparse.cons=sparse.cons,
diagonal.penalty=diagonal.penalty,apply.by=apply.by,modCon=modCon)
} else {
names(id.list[[id]]$data) <- split$smooth.spec[[i]]$term
sml <- smoothCon(split$smooth.spec[[i]],id.list[[id]]$data,knots,
absorb.cons,n=nrow(data),dataX=data,scale.penalty=scale.penalty,
null.space.penalty=select,sparse.cons=sparse.cons,
diagonal.penalty=diagonal.penalty,apply.by=apply.by,modCon=modCon)
}
for (j in 1:length(sml)) {
newm <- newm + 1
sm[[newm]] <- sml[[j]]
}
}
G$m <- m <- newm
if (m>0) {
sm <- gam.side(sm,X,tol=.Machine$double.eps^.5)
if (!apply.by) for (i in 1:length(sm)) {
if (!is.null(sm[[i]]$X0)) {
ind <- attr(sm[[i]],"del.index")
sm[[i]]$X <- if (is.null(ind)) sm[[i]]$X0 else sm[[i]]$X0[,-ind,drop=FALSE]
}
}
}
idx <- list()
L <- matrix(0,0,0)
lsp.names <- sp.names <- rep("",0)
if (m>0) for (i in 1:m) {
id <- sm[[i]]$id
length.S <- length(sm[[i]]$S)
if (is.null(sm[[i]]$L)) Li <- diag(length.S) else Li <- sm[[i]]$L
if (length.S > 0) {
if (length.S == 1) lspn <- sm[[i]]$label else {
Sname <- names(sm[[i]]$S)
lspn <- if (is.null(Sname)) paste(sm[[i]]$label,1:length.S,sep="") else
paste(sm[[i]]$label,Sname,sep="")
}
spn <- lspn[1:ncol(Li)]
}
if (is.null(id)||is.null(idx[[id]])) {
if (!is.null(id)) {
idx[[id]]$c <- ncol(L)+1
idx[[id]]$nc <- ncol(Li)
}
L <- rbind(cbind(L,matrix(0,nrow(L),ncol(Li))),
cbind(matrix(0,nrow(Li),ncol(L)),Li))
if (length.S > 0) {
sp.names <- c(sp.names,spn)
lsp.names <- c(lsp.names,lspn)
}
} else {
L0 <- matrix(0,nrow(Li),ncol(L))
if (ncol(Li)>idx[[id]]$nc) {
stop("Later terms sharing an `id' can not have more smoothing parameters than the first such term")
}
L0[,idx[[id]]$c:(idx[[id]]$c+ncol(Li)-1)] <- Li
L <- rbind(L,L0)
if (length.S > 0) {
lsp.names <- c(lsp.names,lspn)
}
}
}
Xp <- NULL
if (m>0) for (i in 1:m) {
n.para<-ncol(sm[[i]]$X)
sm[[i]]$first.para<-first.para
first.para<-first.para+n.para
sm[[i]]$last.para<-first.para-1
Xoff <- attr(sm[[i]]$X,"offset")
if (!is.null(Xoff)) {
if (is.null(G$offset)) G$offset <- Xoff
else G$offset <- G$offset + Xoff
}
if (is.null(sm[[i]]$Xp)) {
if (!is.null(Xp)) Xp <- cbind2(Xp,sm[[i]]$X)
} else {
if (is.null(Xp)) Xp <- X
Xp <- cbind2(Xp,sm[[i]]$Xp);sm[[i]]$Xp <- NULL
}
X <- cbind2(X,sm[[i]]$X);sm[[i]]$X<-NULL
G$smooth[[i]] <- sm[[i]]
}
if (is.null(Xp)) {
G$cmX <- colMeans(X)
} else {
G$cmX <- colMeans(Xp)
qrx <- qr(Xp,LAPACK=TRUE)
R <- qr.R(qrx)
p <- ncol(R)
rank <- Rrank(R)
QtX <- qr.qty(qrx,X)[1:rank,]
if (rank<p) {
R <- R[1:rank,]
qrr <- qr(t(R),tol=0)
R <- qr.R(qrr)
G$P <- forwardsolve(t(R),QtX)
} else {
G$P <- backsolve(R,QtX)
}
if (rank<p) {
G$P <- qr.qy(qrr,rbind(G$P,matrix(0,p-rank,p)))
}
G$P[qrx$pivot,] <- G$P
}
G$X <- X;rm(X)
n.p <- ncol(G$X)
if (!is.null(sp)) {
ok <- TRUE
if (length(sp) < ncol(L)) {
warning("Supplied smoothing parameter vector is too short - ignored.")
ok <- FALSE
}
if (sum(is.na(sp))) {
warning("NA's in supplied smoothing parameter vector - ignoring.")
ok <- FALSE
}
} else ok <- FALSE
G$sp <- if (ok) sp[1:ncol(L)] else rep(-1,ncol(L))
names(G$sp) <- sp.names
k <- 1
if (m>0) for (i in 1:m) {
id <- sm[[i]]$id
if (is.null(sm[[i]]$L)) Li <- diag(length(sm[[i]]$S)) else Li <- sm[[i]]$L
if (is.null(id)) {
spi <- sm[[i]]$sp
if (!is.null(spi)) {
if (length(spi)!=ncol(Li)) stop("incorrect number of smoothing parameters supplied for a smooth term")
G$sp[k:(k+ncol(Li)-1)] <- spi
}
k <- k + ncol(Li)
} else {
spi <- sm[[i]]$sp
if (is.null(idx[[id]]$sp.done)) {
if (!is.null(spi)) {
if (length(spi)!=ncol(Li)) stop("incorrect number of smoothing parameters supplied for a smooth term")
G$sp[idx[[id]]$c:(idx[[id]]$c+idx[[id]]$nc-1)] <- spi
}
idx[[id]]$sp.done <- TRUE
k <- k + idx[[id]]$nc
}
}
}
k <- 1
if (length(idx)) for (i in 1:length(idx)) idx[[i]]$sp.done <- FALSE
if (m>0) for (i in 1:m) {
id <- sm[[i]]$id
if (!is.null(id)) {
if (idx[[id]]$nc>0) {
G$smooth[[i]]$sp <- G$sp[idx[[id]]$c:(idx[[id]]$c+idx[[id]]$nc-1)]
}
if (!idx[[id]]$sp.done) {
idx[[id]]$sp.done <- TRUE
k <- k + idx[[id]]$nc
}
} else {
if (is.null(sm[[i]]$L)) nc <- length(sm[[i]]$S) else nc <- ncol(sm[[i]]$L)
if (nc>0) G$smooth[[i]]$sp <- G$sp[k:(k+nc-1)]
k <- k + nc
}
}
if (!is.null(min.sp)) {
if (length(min.sp)<nrow(L)) stop("length of min.sp is wrong.")
min.sp <- min.sp[1:nrow(L)]
if (sum(is.na(min.sp))) stop("NA's in min.sp.")
if (sum(min.sp<0)) stop("elements of min.sp must be non negative.")
}
k.sp <- 0
G$rank <- array(0,0)
if (m>0) for (i in 1:m) {
sm<-G$smooth[[i]]
if (length(sm$S)>0)
for (j in 1:length(sm$S)) {
k.sp <- k.sp+1
G$off[k.sp] <- sm$first.para
G$S[[k.sp]] <- sm$S[[j]]
G$rank[k.sp]<-sm$rank[j]
if (!is.null(min.sp)) {
if (is.null(H)) H<-matrix(0,n.p,n.p)
H[sm$first.para:sm$last.para,sm$first.para:sm$last.para] <-
H[sm$first.para:sm$last.para,sm$first.para:sm$last.para]+min.sp[k.sp]*sm$S[[j]]
}
}
}
if (!is.null(PP)) {
L <- rbind(cbind(L,matrix(0,nrow(L),ncol(PP$L))),
cbind(matrix(0,nrow(PP$L),ncol(L)),PP$L))
G$off <- c(PP$off,G$off)
G$S <- c(PP$S,G$S)
G$rank <- c(PP$rank,G$rank)
G$sp <- c(PP$sp,G$sp)
lsp.names <- c(PP$full.sp.names,lsp.names)
G$n.paraPen <- length(PP$off)
if (!is.null(PP$min.sp)) {
if (is.null(H)) H <- matrix(0,n.p,n.p)
for (i in 1:length(PP$S)) {
ind <- PP$off[i]:(PP$off[i]+ncol(PP$S[[i]])-1)
H[ind,ind] <- H[ind,ind] + PP$min.sp[i] * PP$S[[i]]
}
}
} else G$n.paraPen <- 0
fix.ind <- G$sp>=0
if (sum(fix.ind)) {
lsp0 <- G$sp[fix.ind]
ind <- lsp0==0
ef0 <- indi <- (1:length(ind))[ind]
if (length(indi)>0) for (i in 1:length(indi)) {
ii <- G$off[i]:(G$off[i]+ncol(G$S[[i]])-1)
ef0[i] <- norm(G$X[,ii],type="F")^2/norm(G$S[[i]],type="F")*.Machine$double.eps*.1
}
lsp0[!ind] <- log(lsp0[!ind])
lsp0[ind] <- log(ef0)
lsp0 <- as.numeric(L[,fix.ind,drop=FALSE]%*%lsp0)
L <- L[,!fix.ind,drop=FALSE]
G$sp <- G$sp[!fix.ind]
} else {lsp0 <- rep(0,nrow(L))}
G$H <- H
if (ncol(L)==nrow(L)&&!sum(L!=diag(ncol(L)))) L <- NULL
G$L <- L;G$lsp0 <- lsp0
names(G$lsp0) <- lsp.names
if (absorb.cons==FALSE) {
G$C <- matrix(0,0,n.p)
if (m>0) {
for (i in 1:m) {
if (is.null(G$smooth[[i]]$C)) n.con<-0
else n.con<- nrow(G$smooth[[i]]$C)
C <- matrix(0,n.con,n.p)
C[,G$smooth[[i]]$first.para:G$smooth[[i]]$last.para]<-G$smooth[[i]]$C
G$C <- rbind(G$C,C)
G$smooth[[i]]$C <- NULL
}
rm(C)
}
}
G$y <- data[[split$response]]
G$n <- nrow(data)
if (is.null(data$"(weights)")) G$w <- rep(1,G$n)
else G$w <- data$"(weights)"
if (G$nsdf > 0) term.names <- colnames(G$X)[1:G$nsdf] else term.names<-array("",0)
n.smooth <- length(G$smooth)
if (n.smooth)
for (i in 1:n.smooth) {
k <- 1
jj <- G$smooth[[i]]$first.para:G$smooth[[i]]$last.para
if (G$smooth[[i]]$df > 0) for (j in jj) {
term.names[j] <- paste(G$smooth[[i]]$label,".",as.character(k),sep="")
k <- k+1
}
if (!is.null(G$smooth[[i]]$g.index)) {
if (is.null(G$g.index)) G$g.index <- rep(FALSE,n.p)
G$g.index[jj] <- G$smooth[[i]]$g.index
}
}
G$term.names <- term.names
G$pP <- PP
G
}
clone.smooth.spec <- function(specb,spec) {
if (specb$dim!=spec$dim) stop("`id' linked smooths must have same number of arguments")
if (inherits(specb,c("tensor.smooth.spec","t2.smooth.spec"))) {
specb$term <- spec$term
specb$label <- spec$label
specb$by <- spec$by
k <- 1
for (i in 1:length(specb$margin)) {
if (is.null(spec$margin)) {
for (j in 1:length(specb$margin[[i]]$term)) {
specb$margin[[i]]$term[j] <- spec$term[k]
k <- k + 1
}
specb$margin[[i]]$label <- ""
} else {
specb$margin[[i]]$term <- spec$margin[[i]]$term
specb$margin[[i]]$label <- spec$margin[[i]]$label
specb$margin[[i]]$xt <- spec$margin[[i]]$xt
}
}
} else {
specb$term <- spec$term
specb$label <- spec$label
specb$by <- spec$by
specb$xt <- spec$xt
}
specb
}
all.vars1 <- function(form) {
vars <- all.vars(form)
vn <- all.names(form)
vn <- vn[vn%in%c(vars,"$","[[")]
if ("[["%in%vn) stop("can't handle [[ in formula")
ii <- which(vn%in%"$")
if (length(ii)) {
vn1 <- if (ii[1]>1) vn[1:(ii[1]-1)]
go <- TRUE
k <- 1
while (go) {
n <- 2;
while(k<length(ii) && ii[k]==ii[k+1]-1) { k <- k + 1;n <- n + 1 }
vn1 <- c(vn1,paste(vn[ii[k]+1:n],collapse="$"))
if (k==length(ii)) {
go <- FALSE
ind <- if (ii[k]+n<length(vn)) (ii[k]+n+1):length(vn) else rep(0,0)
} else {
k <- k + 1
ind <- if (ii[k-1]+n<ii[k]-1) (ii[k-1]+n+1):(ii[k]-1) else rep(0,0)
}
vn1 <- c(vn1,vn[ind])
}
} else vn1 <- vn
vn1
}
variable.summary <- function(pf,dl,n) {
v.n <- length(dl)
v.name <- v.name1 <- names(dl)
if (v.n)
{ k <- 0
for (i in 1:v.n) if (length(dl[[i]])>=n) {
k <- k+1
v.name[k] <- v.name1[i]
}
if (k>0) v.name <- v.name[1:k] else v.name <- rep("",k)
}
p.name <- all.vars(pf[-2])
vs <- list()
v.n <- length(v.name)
if (v.n>0) for (i in 1:v.n) {
if (v.name[i]%in%p.name) para <- TRUE else para <- FALSE
if (para&&is.matrix(dl[[v.name[i]]])&&ncol(dl[[v.name[i]]])>1) {
x <- matrix(apply(dl[[v.name[i]]],2,quantile,probs=0.5,type=3,na.rm=TRUE),1,ncol(dl[[v.name[i]]]))
} else {
x <- dl[[v.name[i]]]
if (is.character(x)) x <- as.factor(x)
if (is.factor(x)) {
x <- x[!is.na(x)]
lx <- levels(x)
freq <- tabulate(x)
ii <- min((1:length(lx))[freq==max(freq)])
x <- factor(lx[ii],levels=lx)
} else {
x <- as.numeric(x)
x <- c(min(x,na.rm=TRUE),as.numeric(quantile(x,probs=.5,type=3,na.rm=TRUE)) ,max(x,na.rm=TRUE))
}
}
vs[[v.name[i]]] <- x
}
vs
}
parametricPenalty <- function(pterms,assign,paraPen,sp0) {
S <- list()
off <- rep(0,0)
rank <- rep(0,0)
sp <- rep(0,0)
full.sp.names <- rep("",0)
L <- matrix(0,0,0)
k <- 0
tind <- unique(assign)
n.t <- length(tind)
if (n.t>0) for (j in 1:n.t) if (tind[j]>0) {
term.label <- attr(pterms[tind[j]],"term.label")
P <- paraPen[[term.label]]
if (!is.null(P)) {
ind <- (1:length(assign))[assign==tind[j]]
Li <- P$L;P$L <- NULL
spi <- P$sp;P$sp <- NULL
ranki <- P$rank;P$rank <- NULL
np <- length(P)
if (!is.null(ranki)&&length(ranki)!=np) stop("`rank' has wrong length in `paraPen'")
if (np) for (i in 1:np) {
k <- k + 1
S[[k]] <- P[[i]]
off[k] <- min(ind)
if ( ncol(P[[i]])!=nrow(P[[i]])||nrow(P[[i]])!=length(ind)) stop(" a parametric penalty has wrong dimension")
if (is.null(ranki)) {
ev <- eigen(S[[k]],symmetric=TRUE,only.values=TRUE)$values
rank[k] <- sum(ev>max(ev)*.Machine$double.eps*10)
} else rank[k] <- ranki[i]
}
if (np) {
if (is.null(Li)) Li <- diag(np)
if (nrow(Li)!=np) stop("L has wrong dimension in `paraPen'")
L <- rbind(cbind(L,matrix(0,nrow(L),ncol(Li))),
cbind(matrix(0,nrow(Li),ncol(L)),Li))
ind <- (length(sp)+1):(length(sp)+ncol(Li))
ind2 <- (length(sp)+1):(length(sp)+nrow(Li))
if (is.null(spi)) {
sp[ind] <- -1
} else {
if (length(spi)!=ncol(Li)) stop("`sp' dimension wrong in `paraPen'")
sp[ind] <- spi
}
if (length(ind)>1) names(sp)[ind] <- paste(term.label,ind-ind[1]+1,sep="")
else names(sp)[ind] <- term.label
if (length(ind2)>1) full.sp.names[ind2] <- paste(term.label,ind2-ind2[1]+1,sep="")
else full.sp.names[ind2] <- term.label
}
}
}
if (k==0) return(NULL)
if (!is.null(sp0)) {
if (length(sp0)<length(sp)) stop("`sp' too short")
sp0 <- sp0[1:length(sp)]
sp[sp<0] <- sp0[sp<0]
}
list(S=S,off=off,sp=sp,L=L,rank=rank,full.sp.names=full.sp.names)
}
rwMatrix <- function(stop,row,weight,X,trans=FALSE) {
if (is.matrix(X)) { n <- nrow(X);p<-ncol(X);ok <- TRUE} else { n<- length(X);p<-1;ok<-FALSE}
stop <- stop - 1;row <- row - 1
oo <-.C(C_rwMatrix,as.integer(stop),as.integer(row),as.double(weight),X=as.double(X),
as.integer(n),as.integer(p),trans=as.integer(trans),work=as.double(rep(0,n*p)))
if (ok) return(matrix(oo$X,n,p)) else
return(oo$X)
}
AR.resid <- function(rsd,rho=0,AR.start=NULL) {
if (rho==0) return(rsd)
ld <- 1/sqrt(1-rho^2)
sd <- -rho*ld
N <- length(rsd)
ar.row <- c(1,rep(1:N,rep(2,N))[-c(1,2*N)])
ar.weight <- c(1,rep(c(sd,ld),N-1))
ar.stop <- c(1,1:(N-1)*2+1)
if (!is.null(AR.start)) {
ii <- which(AR.start==TRUE)
if (length(ii)>0) {
if (ii[1]==1) ii <- ii[-1]
ar.weight[ii*2-2] <- 0
ar.weight[ii*2-1] <- 1
}
}
rwMatrix(ar.stop,ar.row,ar.weight,rsd)
}
print.scam.version <- function()
{ library(help=scam)$info[[1]] -> version
version <- version[pmatch("Version",version)]
um <- strsplit(version," ")[[1]]
version <- um[nchar(um)>0][2]
hello <- paste("This is scam ",version,".",sep="")
packageStartupMessage(hello)
}
.onAttach <- function(...) {
print.scam.version()
}
|
print.lmpermutation_table<-function(x, digits = 4, na.print = "", ...){
cat(attr(x,"heading"), sep = "\n\n")
cat(attr(x,"type"), sep = "\n\n")
if(is.data.frame(x)){
print(as.matrix(x), digits = digits, na.print = na.print, ...)
}else{
print.listof(x, digits = digits, ...)
}
}
|
plotpostpairs <- function(mat){
df <- reshape2::melt(mat)
a <- ggplot2::aes(.data$Var2, .data$Var1, fill=.data$value)
p <- ggplot2::ggplot(df, a) + ggplot2::geom_raster() +
ggplot2::scale_x_continuous(expand = c(0, 0)) +
ggplot2::scale_y_continuous(expand = c(0, 0)) +
ggplot2::theme(panel.grid.minor=ggplot2::element_blank(),
panel.grid.major=ggplot2::element_blank())
p
}
blocktrace <- function(postz, burnin){
df <- reshape2::melt(postz[,burnin])
names(df) <- c("Node", "Iteration", "Block")
df$Block <- factor(df$Block)
df$Iteration <- df$Iteration + min(burnin)
a <- ggplot2::aes(.data$Iteration, .data$Node, fill=.data$Block)
p <- ggplot2::ggplot(df, a) + ggplot2::geom_raster() +
ggplot2::scale_x_continuous(expand = c(0, 0)) +
ggplot2::scale_y_continuous(expand = c(0, 0)) +
ggplot2::theme(panel.grid.minor=ggplot2::element_blank(),
panel.grid.major=ggplot2::element_blank())
p
}
numblockstrace <- function(postk, burnin){
ggplot2::ggplot(data=data.frame(Iteration=burnin, K=postk[burnin]), ggplot2::aes(x=.data$Iteration, y=.data$K)) + ggplot2::geom_line()
}
paramtrace <- function(theta, range, burnin){
if(missing(range))
range <- 1:dim(theta)[2]
if(missing(burnin))
burnin <- 1:dim(theta)[3]
dimtheta <- dim(theta)[1]
thetas <- theta[,range,burnin,drop=FALSE]
ps <- list()
length(ps) <- dimtheta
for(k in 1:dimtheta){
df <- data.frame(burnin, cbind(t(thetas[k,,])))
names(df) <- c("burnin", range-1)
mf <- reshape2::melt(df, id="burnin")
names(mf) <- c("Iteration", "Theta", "Value")
ps[[k]] <- ggplot(mf, aes(x=.data$Iteration, y=.data$Value, col=.data$Theta)) +
geom_line() +
ggplot2::scale_color_manual(values = c("black", scales::hue_pal()(length(range)-1)))
}
ps
}
postpairs <- function(postz){
N <- nrow(postz)
P <- matrix(0,N,N)
for(i in 2:N)
for(j in 1:(i-1))
P[j,i] <- P[i,j] <- mean(postz[i,] == postz[j,])
P
}
modeblocks <- function(postz)
blocks(apply(postz, 1, function(x) which.max(tabulate(x, max(postz)))))
eval_plots <- function(output, burnin, theta_index){
if(missing(burnin))
burnin <- 1:output$nsteps
nb <- numblockstrace(output$postk, burnin)
pp <- postpairs(output$postz[,burnin])
pp_plot <- plotpostpairs(pp) + ggplot2::xlab("Node") + ggplot2::ylab("Node") + ggplot2::scale_fill_continuous(name = "Probability")
ind <- order(colSums(pp))
pp_sorted <- plotpostpairs(pp[ind,ind]) + ggplot2::xlab("Node") + ggplot2::ylab("Node") + ggplot2::scale_fill_continuous(name = "Probability")
bt <- blocktrace(output$postz, burnin)
bt_sorted <- blocktrace(output$postz[ind,], burnin)
pt <- paramtrace(output$postt, theta_index, burnin)
pt_sorted <- paramtrace(output$postt, theta_index, burnin)
list(
num_blocks_trace = nb
,
post_pairs = pp_plot
,
post_pairs_sorted = pp_sorted
,
blocks_trace = bt
,
param_trace = pt
,
param_trace_sorted = pt_sorted
,
blocks_trace_sorted = bt_sorted
,
pp=pp
,
sortind = ind
)
}
|
test_that("shiny.js version was replaced", {
jsFiles <- system.file(
file.path("www", "shared", c("shiny.js", "shiny.min.js")),
package = "shiny"
)
lapply(jsFiles, function(jsFile) {
jsFileContent <- paste(suppressWarnings(readLines(jsFile)), collapse = "\n")
expect_false(grepl("\\{\\{\\sVERSION\\s\\}\\}", jsFileContent))
})
})
|
cut.data.frame <- function(x, breaks, labels = NULL, include.lowest = FALSE, right = TRUE,
dig.lab = 3L, ordered_result = FALSE, cutcol = NULL, ...) {
p <- ncol(x)
colnum <- which(sapply(x, is.numeric))
if (!is.null(cutcol)) {
if (any(!(cutcol %in% 1:p)))
stop("cutcol: some column numbers are wrong.")
notnum <- setdiff(cutcol, colnum)
if (length(notnum) > 0) {
warning("Non-numeric columns cannot be divided into intervals.")
cutcol <- intersect(cutcol, colnum)
}
} else {
cutcol <- colnum
}
if (is.list(breaks)){
if ((!is.null(labels))&(!is.list(labels)))
stop("If breaks is a list, labels must also be a list.")
if ((!is.null(cutcol))&(length(breaks) != length(cutcol)))
stop("If breaks is a list, its length must be equal to the number of columns to be changed.")
if ((!is.null(labels))&(length(labels) != length(cutcol)))
stop("If labels is a list, its length must be equal to the number of columns to be changed.")
if (!all(sapply(breaks[cutcol], is.numeric))) {
stop("breaks must be either numeric or a list of numeric vector")
}
nbr <- sapply(breaks, length)
if (any(nbr != 1)) {
if (any(nbr <= 2))
stop("invalid number of intervals")
}
} else {
if (!is.numeric(breaks))
stop("breaks must be either numeric or a list of numeric vector")
if ((!is.null(labels))&(!is.character(labels)))
stop("labels: wrong value.")
brk <- breaks
breaks <- list()
for (j in 1:p)
breaks[[j]] <- brk
if (!is.null(labels)) {
lab <- labels
labels <- list()
for (j in 1:p)
labels[[j]] <- lab
}
}
for (j in cutcol) {
if (is.numeric(x[, j])) {
x[, j] <- cut(x[, j], breaks = breaks[[j]], ordered_result = TRUE)
}
}
return(x)
}
|
pcfcross.inhom <-
function(X, i, j, lambdaI=NULL, lambdaJ=NULL, ...,
r=NULL, breaks=NULL,
kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction = c("isotropic", "Ripley", "translate"),
sigma=NULL, varcov=NULL)
{
verifyclass(X, "ppp")
stopifnot(is.multitype(X))
if(missing(correction))
correction <- NULL
marx <- marks(X)
if(missing(i))
i <- levels(marx)[1]
if(missing(j))
j <- levels(marx)[2]
I <- (marx == i)
J <- (marx == j)
Iname <- paste("points with mark i =", i)
Jname <- paste("points with mark j =", j)
g <- pcfmulti.inhom(X, I, J, lambdaI, lambdaJ, ...,
r=r,breaks=breaks,
kernel=kernel, bw=bw, stoyan=stoyan,
correction=correction,
sigma=sigma, varcov=varcov,
Iname=Iname, Jname=Jname)
iname <- make.parseable(paste(i))
jname <- make.parseable(paste(j))
result <-
rebadge.fv(g,
substitute(g[inhom,i,j](r),
list(i=iname,j=jname)),
c("g", paste0("list", paren(paste("inhom", i, j, sep=",")))),
new.yexp=substitute(g[list(inhom,i,j)](r),
list(i=iname,j=jname)))
attr(result, "dangerous") <- attr(g, "dangerous")
return(result)
}
pcfdot.inhom <-
function(X, i, lambdaI=NULL, lambdadot=NULL, ...,
r=NULL, breaks=NULL,
kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction = c("isotropic", "Ripley", "translate"),
sigma=NULL, varcov=NULL)
{
verifyclass(X, "ppp")
stopifnot(is.multitype(X))
if(missing(correction))
correction <- NULL
marx <- marks(X)
if(missing(i))
i <- levels(marx)[1]
I <- (marx == i)
J <- rep.int(TRUE, X$n)
Iname <- paste("points with mark i =", i)
Jname <- paste("points")
g <- pcfmulti.inhom(X, I, J, lambdaI, lambdadot, ...,
r=r,breaks=breaks,
kernel=kernel, bw=bw, stoyan=stoyan,
correction=correction,
sigma=sigma, varcov=varcov,
Iname=Iname, Jname=Jname)
iname <- make.parseable(paste(i))
result <-
rebadge.fv(g,
substitute(g[inhom, i ~ dot](r), list(i=iname)),
c("g", paste0("list(inhom,", iname, "~symbol(\"\\267\"))")),
new.yexp=substitute(g[list(inhom, i ~ symbol("\267"))](r),
list(i=iname)))
if(!is.null(dang <- attr(g, "dangerous"))) {
dang[dang == "lambdaJ"] <- "lambdadot"
dang[dang == "lambdaIJ"] <- "lambdaIdot"
attr(result, "dangerous") <- dang
}
return(result)
}
pcfmulti.inhom <- function(X, I, J, lambdaI=NULL, lambdaJ=NULL, ...,
r=NULL, breaks=NULL,
kernel="epanechnikov", bw=NULL, stoyan=0.15,
correction=c("translate", "Ripley"),
sigma=NULL, varcov=NULL,
Iname="points satisfying condition I",
Jname="points satisfying condition J")
{
verifyclass(X, "ppp")
win <- X$window
areaW <- area(win)
npts <- npoints(X)
correction.given <- !missing(correction) && !is.null(correction)
if(is.null(correction))
correction <- c("translate", "Ripley")
correction <- pickoption("correction", correction,
c(isotropic="isotropic",
Ripley="isotropic",
trans="translate",
translate="translate",
translation="translate",
best="best"),
multi=TRUE)
correction <- implemented.for.K(correction, win$type, correction.given)
if(is.null(bw) && kernel=="epanechnikov") {
h <- stoyan /sqrt(npts/areaW)
hmax <- h
bw <- h/sqrt(5)
} else if(is.numeric(bw)) {
hmax <- 3 * bw
} else {
hmax <- 2 * stoyan /sqrt(npts/areaW)
}
if(!is.logical(I) || !is.logical(J))
stop("I and J must be logical vectors")
if(length(I) != npts || length(J) != npts)
stop(paste("The length of I and J must equal",
"the number of points in the pattern"))
nI <- sum(I)
nJ <- sum(J)
if(nI == 0) stop(paste("There are no", Iname))
if(nJ == 0) stop(paste("There are no", Jname))
XI <- X[I]
XJ <- X[J]
dangerous <- c("lambdaI", "lambdaJ")
dangerI <- dangerJ <- TRUE
if(is.null(lambdaI)) {
dangerI <- FALSE
lambdaI <- density(XI, ..., sigma=sigma, varcov=varcov,
at="points", leaveoneout=TRUE)
} else {
if(is.vector(lambdaI))
check.nvector(lambdaI, nI)
else if(is.im(lambdaI))
lambdaI <- safelookup(lambdaI, XI)
else if(is.function(lambdaI))
lambdaI <- lambdaI(XI$x, XI$y)
else stop(paste(sQuote("lambdaI"),
"should be a vector, a pixel image, or a function"))
}
if(is.null(lambdaJ)) {
dangerJ <- FALSE
lambdaJ <- density(XJ, ..., sigma=sigma, varcov=varcov,
at="points", leaveoneout=TRUE)
} else {
if(is.vector(lambdaJ))
check.nvector(lambdaJ, nJ)
else if(is.im(lambdaJ))
lambdaJ <- safelookup(lambdaJ, XJ)
else if(is.function(lambdaJ))
lambdaJ <- lambdaJ(XJ$x, XJ$y)
else stop(paste(sQuote("lambdaJ"),
"should be a vector, a pixel image, or a function"))
}
danger <- dangerI || dangerJ
rmaxdefault <- rmax.rule("K", win, npts/areaW)
breaks <- handle.r.b.args(r, breaks, win, rmaxdefault=rmaxdefault)
if(!(breaks$even))
stop("r values must be evenly spaced")
r <- breaks$r
rmax <- breaks$max
alim <- c(0, min(rmax, rmaxdefault))
df <- data.frame(r=r, theo=rep.int(1,length(r)))
fname <- c("g", "list(inhom,I,J)")
out <- fv(df, "r",
quote(g[inhom,I,J](r)), "theo", ,
alim,
c("r", makefvlabel(NULL, NULL, fname, "pois")),
c("distance argument r", "theoretical Poisson %s"),
fname=fname,
yexp=quote(g[list(inhom,I,J)](r)))
denargs <- resolve.defaults(list(kernel=kernel, bw=bw),
list(...),
list(n=length(r), from=0, to=rmax))
close <- crosspairs(XI, XJ, rmax+hmax, what="ijd")
orig <- seq_len(npts)
imap <- orig[I]
jmap <- orig[J]
iX <- imap[close$i]
jX <- jmap[close$j]
if(any(I & J)) {
ok <- (iX != jX)
if(!all(ok)) {
close$i <- close$i[ok]
close$j <- close$j[ok]
close$d <- close$d[ok]
}
}
dclose <- close$d
icloseI <- close$i
jcloseJ <- close$j
weight <- 1/(lambdaI[icloseI] * lambdaJ[jcloseJ])
if(any(correction=="translate")) {
edgewt <- edge.Trans(XI[icloseI], XJ[jcloseJ], paired=TRUE)
gT <- sewpcf(dclose, edgewt * weight, denargs, areaW)$g
out <- bind.fv(out,
data.frame(trans=gT),
makefvlabel(NULL, "hat", fname, "Trans"),
"translation-corrected estimate of %s",
"trans")
}
if(any(correction=="isotropic")) {
edgewt <- edge.Ripley(XI[icloseI], matrix(dclose, ncol=1))
gR <- sewpcf(dclose, edgewt * weight, denargs, areaW)$g
out <- bind.fv(out,
data.frame(iso=gR),
makefvlabel(NULL, "hat", fname, "Ripley"),
"isotropic-corrected estimate of %s",
"iso")
}
if(is.null(out)) {
warning("Nothing computed - no edge corrections chosen")
return(NULL)
}
corrxns <- rev(setdiff(names(out), "r"))
formula(out) <- . ~ r
fvnames(out, ".") <- corrxns
unitname(out) <- unitname(X)
if(danger)
attr(out, "dangerous") <- dangerous
return(out)
}
|
na_kalman <- function(x, model = "StructTS", smooth = TRUE, nit = -1, maxgap = Inf, ...) {
data <- x
if (!is.null(dim(data)[2]) && dim(data)[2] > 1) {
for (i in 1:dim(data)[2]) {
if (!anyNA(data[, i])) {
next
}
withCallingHandlers(data[, i] <- na_kalman(data[, i], model, smooth, nit, maxgap,...),
warning = function(cond) { warning( paste("imputeTS - warning for column", i, "of the dataset: \n ", cond), call. = FALSE)
invokeRestart("muffleWarning")},
error = function(cond2) { warning( paste("imputeTS - warning for column", i, "of the dataset: \n ", cond2), call. = FALSE)}
)
}
return(data)
}
else {
missindx <- is.na(data)
if (!anyNA(data)) {
return(x)
}
if (any(class(data) == "tbl")) {
data <- as.vector(as.data.frame(data)[, 1])
}
if (sum(!missindx) < 3) {
warning("No imputation performed: Input data needs at least 3 non-NA data points for applying na_kalman")
return(x)
}
if (!is.null(dim(data)[2]) && !dim(data)[2] == 1) {
warning("No imputation performed: Wrong input type for parameter x")
return(x)
}
if (!is.null(dim(data)[2])) {
data <- data[, 1]
}
if (!is.numeric(data)) {
warning("No imputation performed: Input x is not numeric")
return(x)
}
if (!is.logical(smooth)) {
stop("No imputation performed: Parameter smooth must be of type logical ( TRUE / FALSE)")
}
data[1:length(data)] <- as.numeric(data)
if (is.character(model) && model == "StructTS" && length(unique(as.vector(data)))==2) {
return(na_interpolation(x))
}
if (model[1] == "auto.arima") {
mod <- forecast::auto.arima(data, ...)$model
}
else if (model[1] == "StructTS") {
if (is.na(data[1])) {
data[1] <- data[which.min(is.na(data))]
}
mod <- stats::StructTS(data, ...)$model0
}
else {
mod <- model
if (length(mod) < 7) {
stop("No imputation performed: Parameter model has either to be \"StructTS\"/\"auto.arima\" or a user supplied model in
form of a list with at least components T, Z, h , V, a, P, Pn specified")
}
if (is.null(mod$Z)) {
stop("No imputation performed: Something is wrong with the user supplied model. Either choose \"auto.arima\" or \"StructTS\"
or supply a state space model with at least components T, Z, h , V, a, P, Pn as specified
under Details on help page for KalmanLike")
}
}
if (smooth == TRUE) {
kal <- stats::KalmanSmooth(data, mod, nit)
erg <- kal$smooth
}
else {
kal <- stats::KalmanRun(data, mod, nit)
erg <- kal$states
}
if (dim(erg)[2] != length(mod$Z)) {
stop("No imputation performed: Error with number of components $Z")
}
karima <- erg[missindx, , drop = FALSE] %*% as.matrix(mod$Z)
data[missindx] <- karima
if (is.finite(maxgap) && maxgap >= 0) {
rlencoding <- rle(is.na(x))
rlencoding$values[rlencoding$lengths <= maxgap] <- FALSE
en <- inverse.rle(rlencoding)
data[en == TRUE] <- NA
}
if (!is.null(dim(x)[2])) {
x[, 1] <- data
return(x)
}
return(data)
}
}
|
df <- data.frame(
contract = 1:10,
x_attribute = c(0.92, 0.79, 1.00, 0.39, 0.68, 0.55, 0.73, 0.76, 1.00, 0.74),
y_attribute = c(0.52, 0.19, 0.62, 1.00, 0.55, 0.52, 0.53, 0.46, 0.61, 0.84)
)
psc3 <- df %>%
dplyr::mutate(x_SAVF_score = SAVF_score(x_attribute, 0, 1, .653),
y_SAVF_score = SAVF_score(y_attribute, 0, 1, .7))
test_that("kraljic_matrix creates a plot", {
expect_true(kraljic_matrix(psc3, x_SAVF_score, y_SAVF_score) %>% ggplot2::is.ggplot())
})
|
NULL
neuralNet <- setRefClass(
"NeuralNetwork",
fields = list(eta = "numeric", layers = "vector")
)
neuralNet$methods(
initialize = function(input, ...) {
layers <<- vector("list", ...length())
for (i in 1:...length()) {
l <- ...elt(i)
switch (class(l),
"PerceptronLayer" = {
layers[[i]] <<- perceptronLayer(l$n, input)
input <- l$n
},
"McCullochPittsLayer" = {
layers[[i]] <<- mcCullochPittsLayer(l$n, input)
input <- l$n
},
stop("argument in ... is not a layer!")
)
}
},
compute = function(input) {
for (layer in layers) {
input <- layer$output(input)
}
input
},
train = function (ins, outs, epochs = 1, tax = .01, maxErr = 0) {
nLayers <- length(layers)
r <- nrow(ins)
for (epoch in 1:epochs) {
ch <- vector("list", nLayers)
ch[[1]] <- vector("list", layers[[1]]$n)
for (neu in 1:layers[[1]]$n) {
ch[[1]][[neu]] <- list(
"ws" = vector("numeric", length(ins[1,])),
"b" = vector("numeric", 1)
)
}
if (nLayers > 1) {
for (l in 2:nLayers) {
ch[[l]] <- vector("list", layers[[l]]$n)
for (ne in 1:layers[[l]]$n) {
ch[[l]][[ne]] <- list(
"ws" = vector("numeric", layers[[l-1]]$n),
"b" = vector("numeric", 1)
)
}
}
}
for (i in 1:r) {
inputs <- vector("list", nLayers + 1)
inputs[[1]] <- ins[i,]
for (l in 1:nLayers) {
inputs[[l+1]] <- layers[[l]]$output(inputs[[l]])
}
cost <- sum(outs[i,] - inputs[[nLayers+1]])
li <- nLayers
newErr <- cost
for (l in rev(layers)) {
err <- newErr
newErr <- vector("numeric", length(inputs[[li]]))
ni <- 1
for (neu in l$neurons) {
d <- neu$ws*inputs[[li]]*err[[ni]]*tax
db <- err[[ni]]*tax
ch[[li]][[ni]][["ws"]] <- ch[[li]][[ni]][["ws"]] + d
ch[[li]][[ni]][["b"]] <- ch[[li]][[ni]][["b"]] + db
newErr <- newErr + err[[ni]]*neu$ws
ni <- ni + 1
}
li <- li - 1
}
}
li <- 1
for (l in layers) {
ni <- 1
for (neu in l$neurons) {
wsChange <- ch[[li]][[ni]]$ws/r
bChange <- ch[[li]][[ni]]$b/r
neu$ws <- neu$ws + unlist(wsChange, use.names = F)
neu$bias <- neu$bias - unlist(bChange, use.names = F)
ni <- ni + 1
}
li <- li + 1
}
}
},
validationScore = function(ins, outs) {
corrects <- 0
for (i in 1:nrow(ins)) {
corrects <- corrects + as.integer(compute(ins[i,]) == outs[i,])
}
corrects/nrow(ins)
}
)
|
NULL
format_engr <- function(x, sigdig = NULL, ambig_0_adj = FALSE) {
if (!is.data.frame(x)) {
warning("Argument must be a data frame.")
return(x)
} else {
x <- as.data.frame(x)
}
if (is.null(sigdig)) {
sigdig <- 4L
} else if (any(sigdig < 0)) {
warning("Significant digits must be 0 or positive integers.")
return(x)
} else {
sigdig <- as.integer(sigdig)
}
var_name_list <- rlang::syms(names(x))
double_TF <- purrr::map(x, rlang::is_double) %>% unlist()
integer_TF <- purrr::map(x, rlang::is_integer) %>% unlist()
ordered_TF <- purrr::map(x, is.ordered) %>% unlist()
factor_TF <- purrr::map(x, is.factor) %>% unlist()
charac_TF <- purrr::map(x, rlang::is_character) %>% unlist()
date_TF <- purrr::map(x, lubridate::is.Date) %>% unlist()
yes_double <- double_TF & !ordered_TF & !integer_TF &
!factor_TF & !charac_TF & !date_TF
yes_integer <- integer_TF & !double_TF & !ordered_TF &
!factor_TF & !charac_TF & !date_TF
yes_others <- !yes_double & !yes_integer
if (!any(yes_double)) {
warning("No columns are of type double")
return(x)
}
double_col <- x[, yes_double, drop = FALSE]
integer_col <- x[, yes_integer, drop = FALSE]
all_other_col <- x[, yes_others, drop = FALSE]
m_double_col <- ncol(double_col)
if (length(sigdig) == 1) {
sigdig <- rep(sigdig, m_double_col)
}
if (length(sigdig) != m_double_col) {
warning(paste(
"Incorrect length sigdif vector. Applies only to numeric class 'double'."
))
return(x)
}
numeric_engr <- double_col[, sigdig != 0, drop = FALSE]
sigdig_engr <- sigdig[sigdig > 0]
m_numeric_engr <- ncol(numeric_engr)
numeric_as_is <- double_col[, sigdig == 0, drop = FALSE]
numeric_as_is <- dplyr::bind_cols(numeric_as_is, integer_col)
m_numeric_as_is <- ncol(numeric_as_is)
obs_add <- function(x) {
x <- dplyr::mutate(x, observ_index = dplyr::row_number())
}
numeric_as_is <- obs_add(numeric_as_is)
numeric_engr <- obs_add(numeric_engr)
all_other_col <- obs_add(all_other_col)
if (m_numeric_engr > 0) {
numeric_engr <- format(numeric_engr, scientific = TRUE) %>%
tidyr::gather(var, value, 1:m_numeric_engr) %>%
dplyr::mutate(observ_index = as.double(observ_index)) %>%
mutate(value = ifelse(
is.na(value),
NA_character_,
as.character(value)
)) %>%
tidyr::separate(value, c("num", "pow"), "e",
remove = FALSE, fill = "right"
) %>%
mutate(num = str_trim(num, side = "both")) %>%
mutate(pow = str_trim(pow, side = "both")) %>%
mutate(num = ifelse(!is.na(num), as.numeric(num), NA)) %>%
mutate(pow = ifelse(!is.na(pow), as.numeric(pow), NA))
numeric_engr <- numeric_engr %>%
dplyr::mutate(dig = rep(sigdig_engr, each = max(observ_index)))
numeric_engr <- numeric_engr %>%
mutate(div = pow %% 3) %>%
mutate(num = num * 10^div) %>%
mutate(pow = round(pow - div, 0))
collect <- numeric_engr[FALSE, ]
collect$num_str <- character()
for (jj in unique(sigdig_engr)) {
numeric_string <- numeric_engr %>%
filter(dig == jj) %>%
mutate(num_str = formatC(
signif(num, digits = jj),
digits = jj,
format = "fg",
flag = "
)) %>%
mutate(num_str = str_replace(num_str, "\\.$", ""))
sel <- stringr::str_detect(numeric_string$num_str, "\\.")
sel <- !sel & str_detect(numeric_string$num_str, "0$")
if (any(sel) & !is.null(ambig_0_adj)) {
if (ambig_0_adj) {
numeric_string$pow[sel] <- numeric_string$pow[sel] + 3
temp_num <- as.numeric(numeric_string$num_str[sel]) / 1000
numeric_string$num_str[sel] <- formatC(
signif(temp_num, digits = jj),
digits = jj,
format = "fg",
flag = "
)
}
}
collect <- rbind(collect, numeric_string)
}
numeric_engr <- collect
numeric_engr <- numeric_engr %>%
mutate(output = dplyr::if_else(
pow == 0,
"$nn$",
paste("${nn}\\times 10^{pp}$")
))
numeric_engr <- numeric_engr %>%
mutate(output = stringr::str_replace(output, "nn", num_str)) %>%
mutate(output = stringr::str_replace(output, "pp", as.character(pow)))
numeric_engr <- numeric_engr %>%
dplyr::select(observ_index, var, output) %>%
tidyr::spread(var, output)
}
if (m_numeric_as_is > 0) {
observ_index <- numeric_as_is %>% select(observ_index)
num_col <- numeric_as_is %>% select(-observ_index)
for (jj in 1:m_numeric_as_is) {
num_col[, jj] <- str_c("$", num_col[, jj], "$")
}
numeric_as_is <- bind_cols(num_col, observ_index)
}
x <- dplyr::left_join(all_other_col, numeric_as_is, by = "observ_index")
x <- dplyr::left_join(x, numeric_engr, by = "observ_index")
x <- dplyr::select(x, !!!var_name_list)
}
"format_engr"
|
geom_spatial_segment <- function(mapping = NULL, data = NULL,
...,
crs = NULL,
detail = waiver(),
great_circle = TRUE,
wrap_dateline = TRUE,
arrow = NULL,
lineend = "butt",
linejoin = "round",
na.rm = FALSE,
show.legend = NA,
inherit.aes = TRUE) {
ggplot2::layer(
data = data,
mapping = mapping,
stat = StatSpatialSegment,
geom = ggplot2::GeomPath,
position = "identity",
show.legend = show.legend,
inherit.aes = inherit.aes,
params = list(
crs = crs,
detail = detail,
great_circle = great_circle,
wrap_dateline = wrap_dateline,
arrow = arrow,
lineend = lineend,
linejoin = linejoin,
na.rm = na.rm,
...
)
)
}
StatSpatialSegment <- ggplot2::ggproto(
"StatSpatialSegment", StatSpatialRect,
required_aes = c("x", "y", "xend", "yend"),
compute_panel = function(self, data, scales, crs, crs_dest, detail = waiver(),
great_circle = TRUE, wrap_dateline = TRUE) {
if(is.null(crs)) {
message("Assuming `crs = 4326` in stat_spatial_segment()")
crs <- sf::st_crs(4326)
} else {
crs <- sf::st_crs(crs)
}
if (inherits(detail, "waiver")) {
if (great_circle) {
detail <- 100
} else {
detail <- NULL
}
}
if (nrow(data) == 0) {
return(data.frame())
}
geometry <- spatial_segment_geometry(
data, crs, crs_dest, detail,
great_circle, wrap_dateline
)
geometry_df <- lapply(seq_along(geometry), function(i) {
geom <- geometry[[i]]
if (inherits(geom, "MULTILINESTRING")) {
df <- sf::st_coordinates(geom)
colnames(df) <- c("x", "y", "l1", "l2")
df <- tibble::as_tibble(df)
df$group <- paste(i, df$l1, sep = ".")
df$l1 <- NULL
df$l2 <- NULL
} else if (inherits(geom, "LINESTRING")) {
df <- unclass(geom)
colnames(df) <- c("x", "y")
df <- tibble::as_tibble(df)
df$group <- paste0(i, ".1")
} else {
bad_class <- paste0("`", class(geom), "`", collapse = " / ")
stop(glue::glue("Unrecognized geometry in stat_spatial_segment(): {bad_class}"))
}
df
})
geometry_nrow <- vapply(geometry_df, nrow, integer(1))
data_indices <- lapply(seq_len(nrow(data)), function(i) rep(i, geometry_nrow[i]))
data$xend <- NULL
data$yend <- NULL
data <- data[unlist(data_indices), , drop = FALSE]
data$group <- NA
data[c("x", "y", "group")] <- do.call(rbind, geometry_df)
data
}
)
spatial_segment_geometry <- function(data, crs, crs_dest, detail = NULL,
great_circle = TRUE, wrap_dateline = TRUE) {
if (great_circle) {
if (is.null(detail)) {
warning(
"Ignoring `detail = NULL` because `great_circle = TRUE` in stat_spatial_segment()",
call. = FALSE
)
detail <- 100
}
data[c("x", "y")] <- xy_transform(
data$x, data$y,
from = crs,
to = 4326
)
data[c("xend", "yend")] <- xy_transform(
data$xend, data$yend,
from = crs,
to = 4326
)
crs <- sf::st_crs(4326)
}
geometry <- lapply(seq_len(nrow(data)), function(i) {
geom <- sf::st_linestring(
matrix(
c(data$x[i], data$y[i], data$xend[i], data$yend[i]),
byrow = TRUE,
ncol = 2
)
)
length <- sf::st_length(geom)
if (!is.null(detail) && (length > 0)) {
if (great_circle) {
geom_sfc <- sf::st_sfc(geom, crs = crs)
geom_sfc <- lwgeom::st_geod_segmentize(
geom_sfc,
lwgeom::st_geod_length(geom_sfc) / detail
)
if (wrap_dateline) {
geom_sfc <- sf::st_wrap_dateline(geom_sfc)
}
geom <- geom_sfc[[1]]
} else {
dfMaxLength <- length / detail
geom <- sf::st_segmentize(geom, dfMaxLength)
}
}
geom
})
geometry <- do.call(sf::st_sfc, c(geometry, list(crs = crs)))
sf::st_transform(geometry, crs = crs_dest)
}
|
context("Testing add_grouping")
id <- "a"
cell_ids <- c("truth", "universally", "acknowledged", "that", "a", "single")
cell_info <- tibble(
cell_id = cell_ids,
info1 = c("man", "in", "possession", "of", "a", "good"),
info2 = c("fortune", "must", "be", "in", "want", "of"),
info3 = 1:6
)
wrapper1 <- wrap_data(id, cell_ids) %>% add_grouping(cell_info$info1)
wrapper2 <- wrap_data(id, cell_ids) %>% add_grouping(unique(cell_info$info1), cell_info$info1)
wrapper3 <- wrap_data(id, cell_ids) %>% add_grouping(tibble(cell_id = cell_ids, group_id = cell_info$info1))
wrapper4 <- wrap_data(id, cell_ids) %>% add_prior_information(groups_id = tibble(cell_id = cell_ids, group_id = cell_info$info1))
wrapper5 <- wrap_data(id, cell_ids, cell_info)
test_that("Testing add_grouping", {
for (wrapper in list(wrapper1, wrapper2, wrapper3)) {
expect_true(is_wrapper_with_grouping(wrapper))
expect_true(all(c("grouping", "group_ids") %in% names(wrapper)))
expect_true(all(wrapper$group_ids %in% wrapper$grouping))
expect_equal(length(wrapper$grouping), length(wrapper$cell_ids))
expect_equal(names(wrapper$grouping), wrapper$cell_ids)
}
})
test_that("Testing get_grouping", {
for (wrapper in list(wrapper1, wrapper2, wrapper3, wrapper4)) {
expect_equal(get_grouping(wrapper), wrapper1$grouping)
expect_equal(names(get_grouping(wrapper)), wrapper$cell_ids)
}
expect_error(get_grouping(wrapper5))
expect_equal(get_grouping(wrapper5, "info1"), wrapper3$grouping)
expect_equal(names(get_grouping(wrapper5, "info1")), wrapper5$cell_ids)
})
milestone_network <- tibble(from = c("A", "B"), to = c("B", "C"), directed = TRUE, length = 1)
progressions <- tibble(cell_id = cell_ids, from = c(rep("A", 3), rep("B", 3)), to = c(rep("B", 3), rep("C", 3)), percentage = c(0, 0.5, 1, 0, 0.5, 1))
trajectory <- wrap_data(id, cell_ids) %>% add_trajectory(milestone_network = milestone_network, progressions = progressions)
test_that("Testing group_onto_trajectory_edges", {
grouping <- group_onto_trajectory_edges(trajectory)
expect_equal(length(grouping), length(cell_ids))
expect_equal(names(grouping), cell_ids)
expect_equal(grouping %>% unname(), c("A->B", "A->B", "A->B", "B->C", "B->C", "B->C"))
})
|
calculate_resampling_indices_EKF_interp_joint <- function(env_obj) {
if (env_obj$do_trunc_adjust) {
trunc_adjustment <- matrix(NA, ncol=env_obj$nstates, nrow=env_obj$npart)
}
for (s in env_obj$sharks_with_obs) {
tmp_mat <- matrix(1, ncol=env_obj$yobs_sharks[ s ] + (env_obj$nstates > 1) + (env_obj$interact==TRUE), nrow=env_obj$npart)
colnames(tmp_mat) <- paste("t",1:ncol(tmp_mat))
colnames(tmp_mat)[ 1:env_obj$yobs_sharks[ s ] ] <- paste("y", 1:env_obj$yobs_sharks[ s ], sep="_")
if (env_obj$nstates > 1) {
colnames(tmp_mat)[ env_obj$yobs_sharks[ s ] + 1] <- "trans"
if (env_obj$interact==TRUE) {
colnames(tmp_mat)[ env_obj$yobs_sharks[ s ] + 2] <- "interact"
}
}
env_obj$densities_components[[ s ]] <- rep(list(tmp_mat), env_obj$nstates)
prev_region <- env_obj$Xpart_history[env_obj$i-1,"region",,s]
prev_z <- env_obj$lambda_matrix[,env_obj$i-1,s]
if (env_obj$nstates > 1) {
for (k in 1:env_obj$nstates) {
for (p in 1:env_obj$npart) {
env_obj$densities_components[[ s ]][[ k ]][p,"trans"] <- env_obj$transition_mat[[ s ]][[ p ]]$mat[[ prev_region[ p ] ]][ prev_z[ p ],k]
}
env_obj$densities_components[[ s ]][[ k ]][,"trans"] <- env_obj$densities_components[[ s ]][[ k ]][,"trans"] * env_obj$state_favor[ k ]
if (env_obj$interact & k < env_obj$nstates) {
env_obj$densities_components[[ s ]][[ k ]][,"interact"] <- env_obj$interact_intensity_draw[,k,env_obj$i,s]
}
}
}
for (y in 1:env_obj$yobs_sharks[ s ]) {
for (k in 1:env_obj$nstates) {
for (p in 1:env_obj$npart) {
env_obj$densities_components[[ s ]][[ k ]][p,y] <- pmax(1e-50, mvtnorm::dmvnorm(x=env_obj$ynext[ which(rownames(env_obj$ynext)==s)[ y ],c("X","Y")], mean=env_obj$MuY[[ s ]][,y,k,p], sigma=env_obj$SigY[[ s ]][,,y,k,p]))
}
env_obj$densities_components[[ s ]][[ k ]] <- keep_finite(env_obj$densities_components[[ s ]][[ k ]])
}
if (env_obj$do_trunc_adjust) {
for (k in 1:env_obj$nstates) {
for (p in 1:env_obj$npart) {
trunc_adjustment[p,k] <- fraction_inside(mu=env_obj$MuY[[ s ]][,y,k,p], cmat=env_obj$SigY[[ s ]][,,y,k,p], nsim=500, obj=env_obj)
}
trunc_adjustment[,k] <- pmax(1e-3, trunc_adjustment[,k])
env_obj$densities_components[[ s ]][[ k ]][,y] <- env_obj$densities_components[[ s ]][[ k ]][,y] / trunc_adjustment[,k]
}
}
}
}
env_obj$densities_bystate <- lapply(env_obj$densities_components[ env_obj$sharks_with_obs ], function(x) sapply(x, function(y) pmax(1e-50, apply(y, 1, prod))))
env_obj$densities_bystate <- lapply(env_obj$densities_bystate, function(x) matrix(x, nrow=env_obj$npart))
if (env_obj$nstates > 1) { env_obj$densities_bystate <- lapply(env_obj$densities_bystate, function(x) t(apply(x, 1, function(x) pmax(1e-50, x*env_obj$state_favor)))) }
names(env_obj$densities_bystate) <- env_obj$sharks_with_obs
env_obj$densities <- sapply(env_obj$densities_bystate, function(x) rowSums(x[,drop=FALSE]))
colnames(env_obj$densities) <- env_obj$sharks_with_obs
na_dens <- apply(env_obj$densities, 1, function(x) any(is.na(x)))
if (any(na_dens)) {
print(env_obj$densities[ na_dens,])
for (s in env_obj$sharks_with_obs) {
for (k in 1:env_obj$nstates) {
print(env_obj$densities_components[[ s ]][[ k ]][ na_dens,])
}
}
}
rs <- rowSums(env_obj$densities, na.rm=TRUE)
if (any(is.na(env_obj$densities))) { print(env_obj$densities); print(env_obj$densities_components[[ s ]]) }
if (all(rs==0)) { rs <- rep(1, env_obj$npart) }
eff_size <- eff_ss(p=rowSums(pmax(env_obj$densities, 1e-15, na.rm=TRUE)))
env_obj$eff_size_hist[env_obj$i, s] <- eff_size
print(paste("Effective size is", round(eff_size, 1)))
if (eff_size >= env_obj$npart * env_obj$neff_sample) {
swo <- env_obj$sharks_with_obs[ env_obj$shark_final_obs[ env_obj$sharks_with_obs ] == env_obj$i]
env_obj$densities <- env_obj$densities[ swo ]
}
env_obj$sharks_to_resample <- colnames(env_obj$densities)
nsharks_resample <- length(env_obj$sharks_to_resample)
env_obj$indices <- matrix(1, ncol=nsharks_resample, nrow=env_obj$npart)
colnames(env_obj$indices) <- env_obj$sharks_to_resample
if (nsharks_resample > 0) {
print("resampling...")
if (env_obj$nsharks > 1) {
print(env_obj$sharks_to_resample)
}
iter <- 0
if (env_obj$interact) { dens_prob <- apply(env_obj$densities, 1, prod) }
if (env_obj$lowvarsample==TRUE) {
while(any(apply(env_obj$indices, 2, function(y) length(unique(y))) ==1) & iter < 100) {
if (env_obj$interact) {
env_obj$indices <- matrix(low_var_sample(wts=dens_prob, M=env_obj$npart), ncol=length(env_obj$sharks_with_obs), nrow=env_obj$npart)
}
else {
env_obj$indices <- apply(env_obj$densities, 2, function(y) low_var_sample(wts=y, M=env_obj$npart))
}
iter <- iter + 1
}
}
else {
while(any(apply(env_obj$indices, 2, function(y) length(unique(y))) ==1) & iter < 100) {
if (env_obj$interact) {
env_obj$indices <- matrix(sample(x=1:env_obj$npart, size=env_obj$npart, prob=dens_prob, replace=TRUE), ncol=length(env_obj$sharks_with_obs), nrow=env_obj$npart)
}
else {
env_obj$indices <- apply(env_obj$densities, 2, function(y) sample(x=1:env_obj$npart, size=env_obj$npart, prob=y, replace=TRUE))
}
iter <- iter + 1
}
}
colnames(env_obj$indices) <- env_obj$sharks_to_resample
env_obj$resample_history[env_obj$i, env_obj$sharks_to_resample] <- apply(env_obj$indices, 2, function(x) length(unique(x))/env_obj$npart )
}
else{
print("not resampling since effective size is above threshold")
}
invisible(NULL)
}
|
context("PipeOpSpatialSign")
test_that("PipeOpSpatialSign - general functionality", {
task = mlr_tasks$get("iris")
op = PipeOpSpatialSign$new()
expect_pipeop(op)
expect_datapreproc_pipeop_class(PipeOpSpatialSign, task = task)
result = train_pipeop(op, inputs = list(task))
expect_task(result[[1]])
result = predict_pipeop(op, inputs = list(task))
expect_task(result[[1]])
})
test_that("PipeOpSpatialSign - receive expected result", {
task = mlr_tasks$get("iris")
op = PipeOpSpatialSign$new(param_vals = list(norm = 2, length = 1L))
result = train_pipeop(op, inputs = list(task))
t = apply(result[[1]]$data()[, 2:5], MARGIN = 1, function(x) {
expect_equal(sqrt(sum(x^2)), 1)
})
result = op$predict(list(task))
t = apply(result[[1]]$data()[, 2:5], MARGIN = 1, function(x) {
expect_equal(sqrt(sum(x^2)), 1)
})
task = mlr_tasks$get("iris")
op = PipeOpSpatialSign$new(param_vals = list(norm = 2, length = 2))
result = train_pipeop(op, inputs = list(task))
t = apply(result[[1]]$data()[, 2:5], MARGIN = 1, function(x) {
expect_equal(sqrt(sum(x^2)), 2)
})
result = op$predict(list(task))
t = apply(result[[1]]$data()[, 2:5], MARGIN = 1, function(x) {
expect_equal(sqrt(sum(x^2)), 2)
})
task = mlr_tasks$get("iris")
op = PipeOpSpatialSign$new(param_vals = list(norm = 1, length = 1L))
result = train_pipeop(op, inputs = list(task))
t = apply(result[[1]]$data()[, 2:5], MARGIN = 1, function(x) {
expect_equal(sum(abs(x)), 1)
})
result = op$predict(list(task))
t = apply(result[[1]]$data()[, 2:5], MARGIN = 1, function(x) {
expect_equal(sum(abs(x)), 1)
})
task = mlr_tasks$get("iris")
op = PipeOpSpatialSign$new(param_vals = list(norm = Inf, length = 1L))
result = train_pipeop(op, inputs = list(task))
t = apply(result[[1]]$data()[, 2:5], MARGIN = 1, function(x) {
expect_equal(max(abs(x)), 1)
})
result = op$predict(list(task))
t = apply(result[[1]]$data()[, 2:5], MARGIN = 1, function(x) {
expect_equal(max(abs(x)), 1)
})
})
|
knitr::opts_chunk$set(
collapse = TRUE,
comment = "
)
suppressPackageStartupMessages({
library(ipfr)
library(dplyr)
})
set.seed(42)
mtx <- matrix(data = runif(9), nrow = 3, ncol = 3)
row_targets <- c(3, 4, 5)
column_targets <- c(5, 4, 3)
mtx
result <- ipu_matrix(mtx, row_targets, column_targets)
result
rowSums(result)
colSums(result)
survey <- tibble(
size = c(1, 2, 1, 1),
autos = c(0, 2, 2, 1),
weight = 1
)
survey
targets <- list()
targets$size <- tibble(
`1` = 75,
`2` = 25
)
targets$autos <- tibble(
`0` = 25,
`1` = 50,
`2` = 25
)
targets
result <- ipu(survey, targets)
names(result)
result$weight_tbl
result$weight_dist
result$primary_comp
result <- setup_arizona()
hh_seed <- result$hh_seed
hh_targets <- result$hh_targets
per_seed <- result$per_seed
per_targets <- result$per_targets
result <- ipu(hh_seed, hh_targets, per_seed, per_targets, max_iterations = 30)
result$weight_tbl
result$primary_comp
result$secondary_comp
new_hh_seed <- hh_seed %>%
mutate(geo_tract = 1)
new_hh_seed <- bind_rows(
new_hh_seed,
new_hh_seed %>%
mutate(geo_tract = 2, id = id + 8)
)
new_hh_seed$geo_region <- 1
new_hh_seed
new_hh_targets <- hh_targets
new_hh_targets$hhtype <- bind_rows(hh_targets$hhtype, hh_targets$hhtype)
new_hh_targets$hhtype <- new_hh_targets$hhtype %>%
mutate(geo_tract = c(1, 2))
new_hh_targets$hhtype
new_per_seed <- bind_rows(
per_seed,
per_seed %>%
mutate(id = id + 8)
)
new_per_seed
new_per_targets <- per_targets
new_per_targets$pertype <- per_targets$pertype %>%
mutate_all(list(~. * 2)) %>%
mutate(geo_region = 1)
new_per_targets$pertype
result <- ipu(
new_hh_seed, new_hh_targets,
new_per_seed, new_per_targets,
max_iterations = 30
)
result$primary_comp
result$secondary_comp
set.seed(42)
synthesize(result$weight_tbl, group_by = "geo_tract") %>%
head()
set.seed(42)
result$weight_tbl %>%
group_by(geo_tract) %>%
synthesize() %>%
head()
|
quickTSPlot <- function(TS, ci = 0.95){
value <- Lag <- ACF <- NULL
if(class(TS)[1] %in% c("data.frame", "data.table") ) n <- nrow(TS)
else n <- length(TS)
dta <- data.frame(time = c(1:n), value = TS)
p1 <- ggplot(dta, aes(x = time, y = value)) + geom_line() + theme_light() +
labs(x = 'Time',
y = 'Value',
title = 'Timeseries plot')
p2 <- ggplot(dta[dta[, 2] != 0, ], aes(x=value, after_stat(density))) +
geom_histogram() + theme_light() +
labs(x = 'Nonzero values',
y = 'Density',
title = 'Empirical density function')
acf0 <- acf(TS, plot = FALSE)
acf1 <- data.frame(Lag = acf0$lag, ACF = acf0$acf)
clim <- qnorm((1 + ci)/2)/sqrt(acf0$n.used)
p3 <- ggplot(data = acf1, aes(x = Lag, y = ACF)) +
geom_hline(aes(yintercept = clim), linetype = 2) +
geom_hline(aes(yintercept = -clim), linetype = 2) +
geom_hline(aes(yintercept = 0)) +
geom_segment(mapping = aes(xend = Lag, yend = 0)) +
labs(title = 'Autocorrelation function') + theme_light()
ggdraw() +
draw_plot(p1, x = 0, y = .5, width = 1, height = 0.5) +
draw_plot(p2, x = 0, y = 0, width = .5, height = .5) +
draw_plot(p3, x = .5, y = 0, width = .5, height = .5)
}
|
spatialPIC <-
function(
L,
R,
y,
xcov,
IC,
scale.designX,
scaled,
area,
binary,
I,
C,
nn,
order,
knots,
grids,
a_eta,
b_eta,
a_ga,
b_ga,
a_lamb,
b_lamb,
beta_iter,
phi_iter,
beta_cand,
beta_sig0,
x_user,
total,
burnin,
thin,
conf.int,
seed){
Ispline<-function(x,order,knots){
k=order+1
m=length(knots)
n=m-2+k
t=c(rep(1,k)*knots[1], knots[2:(m-1)], rep(1,k)*knots[m])
yy1=array(rep(0,(n+k-1)*length(x)),dim=c(n+k-1, length(x)))
for (l in k:n){
yy1[l,]=(x>=t[l] & x<t[l+1])/(t[l+1]-t[l])
}
yytem1=yy1
for (ii in 1:order){
yytem2=array(rep(0,(n+k-1-ii)*length(x)),dim=c(n+k-1-ii, length(x)))
for (i in (k-ii):n){
yytem2[i,]=(ii+1)*((x-t[i])*yytem1[i,]+(t[i+ii+1]-x)*yytem1[i+1,])/(t[i+ii+1]-t[i])/ii
}
yytem1=yytem2
}
index=rep(0,length(x))
for (i in 1:length(x)){
index[i]=sum(t<=x[i])
}
yy=array(rep(0,(n-1)*length(x)),dim=c(n-1,length(x)))
if (order==1){
for (i in 2:n){
yy[i-1,]=(i<index-order+1)+(i==index)*(t[i+order+1]-t[i])*yytem2[i,]/(order+1)
}
}else{
for (j in 1:length(x)){
for (i in 2:n){
if (i<(index[j]-order+1)){
yy[i-1,j]=1
}else if ((i<=index[j]) && (i>=(index[j]-order+1))){
yy[i-1,j]=(t[(i+order+1):(index[j]+order+1)]-t[i:index[j]])%*%yytem2[i:index[j],j]/(order+1)
}else{
yy[i-1,j]=0
}
}
}
}
return(yy)
}
Mspline<-function(x,order,knots){
k1=order
m=length(knots)
n1=m-2+k1
t1=c(rep(1,k1)*knots[1], knots[2:(m-1)], rep(1,k1)*knots[m])
tem1=array(rep(0,(n1+k1-1)*length(x)),dim=c(n1+k1-1, length(x)))
for (l in k1:n1){
tem1[l,]=(x>=t1[l] & x<t1[l+1])/(t1[l+1]-t1[l])
}
if (order==1){
mbases=tem1
}else{
mbases=tem1
for (ii in 1:(order-1)){
tem=array(rep(0,(n1+k1-1-ii)*length(x)),dim=c(n1+k1-1-ii, length(x)))
for (i in (k1-ii):n1){
tem[i,]=(ii+1)*((x-t1[i])*mbases[i,]+(t1[i+ii+1]-x)*mbases[i+1,])/(t1[i+ii+1]-t1[i])/ii
}
mbases=tem
}
}
return(mbases)
}
poissrndpositive<-function(lambda){
q=200
t=seq(0,q,1)
p=dpois(t,lambda)
pp=cumsum(p[2:(q+1)])/(1-p[1])
u=runif(1)
while(u>pp[q]){
q=q+1
pp[q]=pp[q-1]+dpois(q,lambda)/(1-p[1])
}
ll=sum(u>pp)+1
}
set.seed(seed)
L=matrix(L,ncol=1)
R=matrix(R,ncol=1)
y=matrix(y,ncol=1)
xcov=as.matrix(xcov)
IC=matrix(IC,ncol=1)
p=ncol(xcov)
if (scale.designX==TRUE){
mean_X<-apply(xcov,2,mean)
sd_X<-apply(xcov,2,sd)
for (r in 1:p){
if (scaled[r]==1) xcov[,r]<-(xcov[,r]-mean_X[r])/sd_X[r]
}
}
n1=sum(IC==0)
n2=sum(IC==1)
N=n1+n2
t<-rep(0,N)
for (i in 1:N) {t[i]=ifelse(IC[i]==0,L[i],0)}
K=length(knots)-2+order
kgrids=length(grids)
bmsT=Mspline(t[1:n1],order,knots)
bisT=Ispline(t[1:n1],order,knots)
bisL=Ispline(L[(n1+1):N],order,knots)
bisR=Ispline(R[(n1+1):N],order,knots)
bisg=Ispline(grids,order,knots)
eta=rgamma(1,a_eta,rate=b_eta)
lamb=rgamma(1,a_lamb,rate=b_lamb)
gamcoef=matrix(rgamma(K, 1, rate=1),ncol=K)
phicoef<-matrix(rep(0,I),ncol=1)
phicoef2<-matrix(rep(0,N),ncol=1)
for (j in 1:N){
phicoef2[j]<-phicoef[area[j]]
}
beta=matrix(rep(0,p),p,1)
beta_original=matrix(rep(0,p),ncol=1)
u=array(rep(0,n1*K),dim=c(n1,K))
for (i in 1:n1){
u[i,]=rmultinom(1,1,gamcoef*t(bmsT[,i]))
}
lambdatT=t(gamcoef%*%bmsT)
LambdatT=t(gamcoef%*%bisT)
LambdatL=t(gamcoef%*%bisL)
LambdatR=t(gamcoef%*%bisR)
Lambdatg=t(gamcoef%*%bisg)
parbeta=array(rep(0,total*p),dim=c(total,p))
parbeta_original=array(rep(0,total*p),dim=c(total,p))
pareta=array(rep(0,total),dim=c(total,1))
parlamb=array(rep(0,total),dim=c(total,1))
parphi=array(rep(0,total*I),dim=c(total,I))
pargam=array(rep(0,total*K),dim=c(total,K))
parsurv0=array(rep(0,total*kgrids),dim=c(total,kgrids))
parlambdatT=array(rep(0,total*n1),dim=c(total,n1))
parLambdatT=array(rep(0,total*n1),dim=c(total,n1))
parLambdatL=array(rep(0,total*n2),dim=c(total,n2))
parLambdatR=array(rep(0,total*n2),dim=c(total,n2))
pardev=array(rep(0,total),dim=c(total,1))
parfinv_exact=array(rep(0,total*n1),dim=c(total,n1))
parfinv_IC=array(rep(0,total*n2),dim=c(total,n2))
if (is.null(x_user)){parsurv=parsurv0} else {
G<-length(x_user)/p
parsurv=array(rep(0,total*kgrids*G),dim=c(total,kgrids*G))}
iter=1
while (iter<total+1)
{
z=array(rep(0,n2),dim=c(n2,1)); w=z
zz=array(rep(0,n2*K),dim=c(n2,K)); ww=zz
for (j in 1:n2){
if (y[n1+j]==0){
templam1=LambdatR[j]*exp(xcov[(n1+j),]%*%beta+phicoef[area[n1+j]])
z[j]=poissrndpositive(templam1)
zz[j,]=rmultinom(1,z[j],gamcoef*t(bisR[,j]))
} else if (y[n1+j]==1){
templam1=(LambdatR[j]-LambdatL[j])*exp(xcov[(n1+j),]%*%beta+phicoef[area[n1+j]])
w[j]=poissrndpositive(templam1)
ww[j,]=rmultinom(1,w[j],gamcoef*t(bisR[,j]-bisL[,j]))
}
}
te1=z*(y[(n1+1):N]==0)+w*(y[(n1+1):N]==1)
te2=(LambdatR*(y[(n1+1):N]==0)+LambdatR*(y[(n1+1):N]==1)+LambdatL*(y[(n1+1):N]==2))
te3=LambdatT
for (r in 1:p){
if (binary[r]==0){
beta1<-beta2<-beta
if (iter<beta_iter) sd_cand<-beta_cand[r] else sd_cand<-sd(parbeta[1:(iter-1),r])
xt<-beta[r]
yt<-rnorm(1,xt,sd_cand)
beta1[r]<-yt
beta2[r]<-xt
log_f1<-sum(yt*xcov[1:n1,r]-te3*exp(xcov[1:n1,]%*%beta1+phicoef2[1:n1]))+sum(yt*xcov[(n1+1):N,r]*te1)-sum(exp(xcov[(n1+1):N,]%*%beta1+phicoef2[(n1+1):N])*te2)-0.5*(yt^2)/(beta_sig0^2)
log_f2<-sum(xt*xcov[1:n1,r]-te3*exp(xcov[1:n1,]%*%beta2+phicoef2[1:n1]))+sum(xt*xcov[(n1+1):N,r]*te1)-sum(exp(xcov[(n1+1):N,]%*%beta2+phicoef2[(n1+1):N])*te2)-0.5*(xt^2)/(beta_sig0^2)
num<-log_f1
den<-log_f2
if (log(runif(1))<(num-den)) beta[r]<-yt else beta[r]<-xt
}
if (binary[r]==1 & p>1){
te4=sum(xcov[1:n1,r])+sum(xcov[(n1+1):N,r]*te1)
te5=sum(te3*exp(as.matrix(xcov[1:n1,-r])%*%as.matrix(beta[-r])+phicoef2[1:n1])*xcov[1:n1,r])+sum(te2*exp(as.matrix(xcov[(n1+1):N,-r])%*%as.matrix(beta[-r])+phicoef2[(n1+1):N])*xcov[(n1+1):N,r])
beta[r]<-log(rgamma(1,a_ga+te4,rate=b_ga+te5))
}
if (binary[r]==1 & p==1){
te4=sum(xcov[1:n1,r])+sum(xcov[(n1+1):N,r]*te1)
te5=sum(te3*exp(phicoef2[1:n1])*xcov[1:n1,r])+sum(te2*exp(phicoef2[(n1+1):N])*xcov[(n1+1):N,r])
beta[r]<-log(rgamma(1,a_ga+te4,rate=b_ga+te5))
}
}
if (scale.designX==TRUE){
for (r in 1:p) beta_original[r]<-ifelse(scaled[r]==1,beta[r]/sd_X[r],beta[r])
}
if (scale.designX==FALSE) beta_original<-beta
for (l in 1:K){
tempa=1+sum(u[,l])+sum(zz[,l]*(y[(n1+1):N]==0)+ww[,l]*(y[(n1+1):N]==1))
tempb=eta+sum(bisT[l,]*exp(xcov[1:n1,]%*%beta+phicoef2[1:n1]))+sum(((bisR[l,])*(y[(n1+1):N]==0)+(bisR[l,])*(y[(n1+1):N]==1)
+(bisL[l,])*(y[(n1+1):N]==2))*exp(xcov[(n1+1):N,]%*%beta+phicoef2[(n1+1):N]))
gamcoef[l]=rgamma(1,tempa,rate=tempb)
}
lambdatT=t(gamcoef%*%bmsT)
LambdatT=t(gamcoef%*%bisT)
LambdatL=t(gamcoef%*%bisL)
LambdatR=t(gamcoef%*%bisR)
u=array(rep(0,n1*K),dim=c(n1,K))
for (i in 1:n1){
u[i,]=rmultinom(1,1,gamcoef*t(bmsT[,i]))
}
eta=rgamma(1,a_eta+K, rate=b_eta+sum(gamcoef))
phi1<-array(rep(0,N),dim=c(N,1))
phi2<-array(rep(0,N),dim=c(N,1))
for (i in 1:I){
phi1<-phi2<-phicoef2
if (iter<phi_iter) sd_cand<-sqrt(1/nn[i]) else sd_cand<-sd(parphi[1:(iter-1),i])
xt<-phicoef[i]
yt<-rnorm(1,xt,sd_cand)
phi1[area==i]<-yt
phi2[area==i]<-xt
log_f1<-sum(phi1[1:n1])-sum(te3*exp(xcov[1:n1,]%*%beta+phi1[1:n1]))+sum(phi1[(n1+1):N]*te1)-sum((exp(xcov[(n1+1):N,]%*%beta+phi1[(n1+1):N]))*te2)-0.5*nn[i]*lamb*(yt-C[i,]%*%phicoef/nn[i])^2
log_f2<-sum(phi2[1:n1])-sum(te3*exp(xcov[1:n1,]%*%beta+phi2[1:n1]))+sum(phi2[(n1+1):N]*te1)-sum((exp(xcov[(n1+1):N,]%*%beta+phi2[(n1+1):N]))*te2)-0.5*nn[i]*lamb*(xt-C[i,]%*%phicoef/nn[i])^2
num<-log_f1
den<-log_f2
if (log(runif(1))<(num-den)) phicoef[i]<-yt else phicoef[i]<-xt
phicoef<-phicoef-mean(phicoef)
phicoef2[area==i]<-phicoef[i]
}
A<-matrix(rep(0,I*I),nrow=I,byrow=TRUE)
for (i in 1:I){
for (j in 1:I){
A[i,j]<-(phicoef[i]-phicoef[j])^2*C[i,j]*as.numeric(i < j)
}
}
lamb<-rgamma(1,0.5*(I-1)+a_lamb,rate=0.5*sum(A)+b_lamb)
f_iter_exact<-lambdatT*exp(xcov[1:n1,]%*%beta+phicoef2[1:n1])*exp(-LambdatT*exp(xcov[1:n1,]%*%beta+phicoef2[1:n1]))
FL<-1-exp(-LambdatL*exp(xcov[(n1+1):N,]%*%beta+phicoef2[(n1+1):N]))
FR<-1-exp(-LambdatR*exp(xcov[(n1+1):N,]%*%beta+phicoef2[(n1+1):N]))
f_iter_IC<-(FR^(y[(n1+1):N]==0))*((FR-FL)^(y[(n1+1):N]==1))*((1-FL)^(y[(n1+1):N]==2))
finv_iter_exact<-1/f_iter_exact
finv_iter_IC<-1/f_iter_IC
loglike<-sum(log(f_iter_exact))+sum(log(FR^(y[(n1+1):N]==0))+log((FR-FL)^(y[(n1+1):N]==1))+log((1-FL)^(y[(n1+1):N]==2)))
dev<--2*loglike
parbeta[iter,]=beta
parbeta_original[iter,]=beta_original
pareta[iter]=eta
parlamb[iter]=lamb
parphi[iter,]=phicoef
pargam[iter,]=gamcoef
ttt=gamcoef%*%bisg
if (scale.designX==FALSE) {parsurv0[iter,]<-exp(-ttt)}
if (scale.designX==TRUE) {parsurv0[iter,]<-exp(-ttt*exp(-sum((beta*mean_X/sd_X)[scaled==1])))}
parlambdatT[iter,]=lambdatT
parLambdatT[iter,]=LambdatT
parLambdatL[iter,]=LambdatL
parLambdatR[iter,]=LambdatR
pardev[iter]=dev
parfinv_exact[iter,]=finv_iter_exact
parfinv_IC[iter,]=finv_iter_IC
if (is.null(x_user)){parsurv[iter,]=parsurv0[iter,]} else {
A<-matrix(x_user,byrow=TRUE,ncol=p)
if (scale.designX==TRUE){
for (r in 1:p){
if (scaled[r]==1) A[,r]<-(A[,r]-mean_X[r])/sd_X[r]}
}
B<-exp(A%*%beta)
for (g in 1:G){
parsurv[iter,((g-1)*kgrids+1):(g*kgrids)]=exp(-ttt*B[g,1])}
}
iter=iter+1
if (iter%%100==0) print(iter)
}
wbeta=as.matrix(parbeta_original[seq((burnin+thin),total,by=thin),],ncol=p)
wparsurv0=as.matrix(parsurv0[seq((burnin+thin),total,by=thin),],ncol=kgrids)
wparsurv=as.matrix(parsurv[seq((burnin+thin),total,by=thin),],ncol=kgrids*G)
coef<-apply(wbeta,2,mean)
coef_ssd<-apply(wbeta,2,sd)
coef_ci<-array(rep(0,p*2),dim=c(p,2))
S0_m<-apply(wparsurv0,2,mean)
S_m<- apply(wparsurv,2,mean)
colnames(coef_ci)<-c(paste(100*(1-conf.int)/2,"%CI"),paste(100*(0.5+conf.int/2),"%CI"))
for (r in 1:p) coef_ci[r,]<-quantile(wbeta[,r],c((1-conf.int)/2,0.5+conf.int/2))
CPO_exact=1/apply(parfinv_exact[seq((burnin+thin),total,by=thin),],2,mean)
CPO_IC=1/apply(parfinv_IC[seq((burnin+thin),total,by=thin),],2,mean)
NLLK_exact=-sum(log(CPO_exact))
NLLK_IC=-sum(log(CPO_IC))
NLLK=NLLK_exact+NLLK_IC
LambdatL_m<-apply(parLambdatL[seq((burnin+thin),total,by=thin),],2,mean)
LambdatR_m<-apply(parLambdatR[seq((burnin+thin),total,by=thin),],2,mean)
beta_m<-apply(as.matrix(parbeta[seq((burnin+thin),total,by=thin),]),2,mean)
phicoef_m<-apply(parphi[seq((burnin+thin),total,by=thin),],2,mean)
phicoef2_m<-array(rep(0,N),dim=c(N,1))
for (j in 1:N){
phicoef2_m[j]<-phicoef_m[area[j]]
}
FL_m<-1-exp(-LambdatL_m*exp(as.matrix(xcov[(n1+1):N,])%*%as.matrix(beta_m)+phicoef2_m[(n1+1):N]))
FR_m<-1-exp(-LambdatR_m*exp(as.matrix(xcov[(n1+1):N,])%*%as.matrix(beta_m)+phicoef2_m[(n1+1):N]))
loglike_m_IC<-sum(log(FR_m^(y[(n1+1):N]==0))+log((FR_m-FL_m)^(y[(n1+1):N]==1))+log((1-FL_m)^(y[(n1+1):N]==2)))
D_thetabar_IC<--2*loglike_m_IC
lambdatT_m<-apply(parlambdatT[seq((burnin+thin),total,by=thin),],2,mean)
LambdatT_m<-apply(parLambdatT[seq((burnin+thin),total,by=thin),],2,mean)
loglike_m_exact<-sum(log(lambdatT_m)+as.matrix(xcov[1:n1,])%*%as.matrix(beta_m)+phicoef2_m[1:n1]-LambdatT_m*exp(as.matrix(xcov[1:n1,])%*%as.matrix(beta_m)+phicoef2_m[1:n1]))
D_thetabar_exact<--2*loglike_m_exact
D_bar=mean(pardev[seq((burnin+thin),total,by=thin)])
D_thetabar=D_thetabar_IC+D_thetabar_exact
DIC=2*D_bar-D_thetabar
est<-list(
N=nrow(xcov),
nameX=colnames(xcov),
parbeta=parbeta_original,
parsurv0=parsurv0,
parsurv=parsurv,
parphi=parphi,
parlamb=parlamb,
coef = coef,
coef_ssd = coef_ssd,
coef_ci = coef_ci,
S0_m = S0_m,
S_m = S_m,
grids=grids,
DIC = DIC,
NLLK = NLLK
)
est
}
|
treemapClinData <- function(...){
plotCountClinData(..., typePlot = "treemap")
}
|
PLSR1BinFit <- function(Y, X, S=2, tolerance=0.000005, maxiter=100, show=FALSE,
penalization=0, cte =TRUE, Algorithm=2, OptimMethod="CG"){
I1=dim(X)[1]
J=dim(X)[2]
I2=dim(Y)[1]
K=dim(Y)[2]
I=I2
T=matrix(0, I1, S)
U=matrix(0, I1, S)
W=matrix(0, J, S)
C=matrix(0, K, S)
P=matrix(0, J, S)
Q=matrix(0, K, S)
freq=matrix(1,I,1)
w=matrix(0,J,1)
if (Algorithm==1){
t0=matrix(1, nrow=I, ncol=1)
fit=RidgeBinaryLogistic(Y, t0, penalization=penalization, cte=FALSE)
c0=fit$beta[1]
for (j in 1:J){
x=as.matrix(X[,j])
fit=RidgeBinaryLogistic(Y, x, cte=TRUE)
w[j]=fit$beta[2]
}
w=w/sqrt(sum(w^2))
t=X %*% w
T[,1]=t
W[,1]=w
p=t(X) %*% t/ sum(t^2)
P[,1]=p
X1=X-t %*% t(p)
for (i in 2:S){
for (j in 1:J){
x=as.matrix(cbind(T[,1:(i-1)],X[,j]))
fit=RidgeBinaryLogistic(Y, x, cte=TRUE)
w[j]=fit$beta[(i+1)]
}
w=w/sqrt(sum(w^2))
t=X1 %*% w
T[,i]=t
W[,i]=w
p=t(X) %*% t/ sum(t^2)
P[,i]=p
X1=X1-t %*% t(p)
}
fit=RidgeBinaryLogistic(Y, T, penalization=penalization, cte=cte)
}
if (Algorithm==2){
t0=matrix(1, nrow=I, ncol=1)
fit=RidgeBinaryLogistic(Y, t0, penalization=penalization, cte=FALSE)
q0=fit$beta[1]
for (i in 1:S){
error=1
iter=0
u= Y
while ((error>tolerance) & (iter<maxiter)){
iter=iter+1
w=(t(X) %*% u)/sum(u^2)
w=w/sqrt(sum(w^2))
t=X %*% w
TT=cbind(t0, t)
q=fit$beta[2]
Q=c(q0, q)
CostBinPLS1B(q , Y=Y, U=TT, Q=Q)
resbipB <- optimr(q, fn=CostBinPLS1B, gr=grBinPLS1B, method=OptimMethod, Y=Y, U=TT, Q=Q)
q=resbipB$par
Q=c(c0, q)
grBinPLS1A(u, Y=Y, U=TT, Q=Q)
parA <- optimr(u, fn=CostBinPLS1A, gr=grBinPLS1A, method=OptimMethod, Y=Y, U=TT, Q=Q)
newu=matrix(parA$par, ncol=1)
error=sum((u-newu)^2)
u=newu
if (show) print(c(i, iter, error))
}
T[,i]=t
U[,i]=u
W[,i]=w
C[,i]=c
Q[,i]=q
p=t(X) %*% t/ sum(t^2)
P[,i]=p
X=X-t %*% t(p)
}
fit=RidgeBinaryLogistic(Y, T, penalization=penalization, cte=TRUE)
}
result=list(T=T, W=W, P=P, U=U, C=C, Q=Q, fit=fit)
return(result)
}
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.