code
stringlengths
1
13.8M
summary.plmm <- function(object,...){ var.comp<-object$var.comp random<-deparse(object$call$random) names(var.comp)<-c(random, "idiosyncratic") result<-list( coefficients=object$coefficients, var.comp=var.comp, h.nonpar=object$h.nonpar, nonpar.df=object$model.df$nonpar, iter=object$iter, formula=object$formula, call=object$call ) class(result)<-"summary.plmm" return(result) }
estimateParameters.automap = function(object,...) { params = getIntamapParams(object$params, ...) debug.level = params$debug.level dots = list(...) observations = object$observations depVar = as.character(object$formulaString[[2]]) if ("model" %in% names(params)) { model = params$model } else { if (dim(coordinates(object$predictionLocations))[1] > 100000) model = c("Sph", "Exp", "Gau") else model = c("Sph", "Exp", "Gau", "Ste") } if (params$doAnisotropy) { object = estimateAnisotropy(object) if (object$anisPar$doRotation && all(as.character(object$formulaString[[3]])=="1")){ objTemp = object objTemp$observations=rotateAnisotropicData(objTemp$observations,objTemp$anisPar) afv = autofitVariogram(objTemp$formulaString, objTemp$observations, verbose = (debug.level >=2), model = model, ...) vario = afv$var_model ovar = var(observations[,depVar]@data) if ((vario$model[2] == "Gau" | (vario$model[2] == "Ste" && vario$kappa[2] > 2)) && vario$psill[1] <= ovar/1e5 ) vario$psill[1] = ovar/1e5 vario$anis1[2]=1/objTemp$anisPar$ratio vario$ang1[2]=90-objTemp$anisPar$direction if (vario$ang1[2] < 0) vario$ang1[2] = vario$ang1[2] + 180 object$variogramModel=vario } else { afv = autofitVariogram(object$formulaString,observations,verbose=(debug.level >=2),...) object$variogramModel = afv$var_model } } else { afv = autofitVariogram(object$formulaString,observations,verbose=(debug.level >=2),...) object$variogramModel = afv$var_model } if (debug.level >=2) print(object$variogramModel) object$sampleVariogram = afv$exp_var return(object) } spatialPredict.automap = function(object, nsim = 0, ...) { params = getIntamapParams(object$params, ...) nmax = params$nmax nmin = params$nmin omax = params$omax beta = params$beta maxdist = params$maxdist debug.level = params$debug.level if (is.null(maxdist)) maxdist = Inf if (! "variogramModel" %in% names(object)) object = estimateParameters(object,...) nPred = nrow(coordinates(object$predictionLocations)) if ("nclus" %in% names(params) && nsim == 0 && nPred >= 5000 ) nclus = params$nclus else nclus = 1 if (nclus > 1) { if (!suppressMessages(suppressWarnings(requireNamespace("doParallel")))) stop("nclus is > 1, but package doParallel is not available") cl <- makeCluster(nclus) registerDoParallel(cl, nclus) formulaString = object$formulaString observations = object$observations predictionLocations = object$predictionLocations variogramModel = object$variogramModel splt = sample(1:nclus, nPred, replace = TRUE) splt = rep(1:nclus, each = ceiling(nPred/nclus), length.out = nPred) newdlst = lapply(as.list(1:nclus), function(w) predictionLocations[splt == w,]) i = 1 pred <- foreach(i = 1:nclus, .combine = rbind) %dopar% { gstat::krige(formulaString, observations, newdlst[[i]], variogramModel, nsim=nsim, nmax = nmax, nmin = nmin, omax = omax, maxdist = maxdist, beta = beta, debug.level = debug.level) } stopCluster(cl) } else { pred = krige(object$formulaString, object$observations, object$predictionLocations, object$variogramModel, nmax = nmax, nmin = nmin, omax = omax, maxdist = maxdist, beta = beta, debug.level = debug.level) if (nsim >0) { pred2 = krige(object$formulaString,object$observations, object$predictionLocations, object$variogramModel, nsim=nsim, nmax = nmax, nmin = nmin, omax = omax, maxdist = maxdist, beta = beta, debug.level = debug.level) pred@data = cbind(pred2@data, pred@data) } } object$predictions = pred if ("MOK" %in% names(object$outputWhat) | "IWQSEL" %in% names(object$outputWhat)) object$predictions = unbiasedKrige(object, debug.level = debug.level,...)$predictions object } estimateParameters.yamamoto = function(object,...) { estimateParameters.automap(object,...) } spatialPredict.yamamoto = function(object, nsim = 0, ...) { params = getIntamapParams(object$params, ...) nmax = params$nmax nmin = params$nmin omax = params$omax beta = params$beta maxdist = params$maxdist debug.level = params$debug.level if (is.null(maxdist)) maxdist = Inf formulaString = object$formulaString if (!"variogramModel" %in% names(object)) { afv = autofitVariogram(object$formulaString,object$observations,object$predictionLocations) object$variogramModel = afv$var_model object$sampleVariogram = afv$exp_var } predictions = yamamotoKrige(formulaString,object$observations, object$predictionLocations,object$variogramModel, nsim=nsim, nmax = nmax, maxdist = maxdist, ...) object$predictions = predictions if ("MOK" %in% names(object$outputWhat) | "IWQSEL" %in% names(object$outputWhat)) object$predictions = unbiasedKrige(object,debug.level = debug.level,nsim = nsim, nmax = nmax, nmin = nmin, omax = omax, maxdist = maxdist, beta = beta, ...)$predictions object }
multinomial <- function(link="mlogit",base=1) { linktemp <- substitute(link) if (!is.character(linktemp)) { linktemp <- deparse(linktemp) if (linktemp == "link") { warning("use of multinomial(link=link) is deprecated\n", domain = NA) linktemp <- eval(link) if (!is.character(linktemp) || length(linktemp) !=1) stop("'link' is invalid", domain = NA) } } okLinks <- c("mlogit") if (linktemp %in% okLinks) { if(linktemp == "mlogit") stats <- mlogit() else stats <- make.link(linktemp) } else { if(is.character(link)) { stats <- make.link(link) linktemp <- link } else { if(inherits(link, "link-glm")) { stats <- link if (!is.null(stats$name)) linktemp <- stats$name } else { stop(gettextf("link \"%s\" not available for multinomial family; available links are %s", linktemp, paste(sQuote(okLinks), collapse = ", ")), domain = NA) } } } variance <- function(mu) { n <- length(mu) v <- diag(n)*outer(mu,1-mu) - (1-diag(n))*outer(mu,-mu) } validmu <- function(mu) { all(mu > 0) && all(mu < 1) } dev.resids <- function(y,mu,wt) { } initialize <- expression() structure(list(family = "multinomial", link = linktemp, linkfun = stats$linkfun, linkinv = stats$linkinv, variance = variance, dev.resids = dev.resids, mu.eta = stats$mu.eta, initialize = initialize, validmu = validmu, valideta = stats$valideta, base=base), class = "family") }
par(pty = "s") z = c(-0.5, -1, 4, -3, 0.5) v = c(-0.25, 0, 0, 0.4, 0.5) x = c(-1,1) plot(x,x, type = "n", xlab = "", ylab = "", axes = FALSE, bty = "n" ) verts = function(K, A, b){ nv = nrow(K) B = matrix(0,nv,2) for(i in 1:nv) B[i,] = solve(A[K[i,],],b[K[i,]]) B } M = 1000 A = cbind(1, -c(z,M,M,0,0)) b = c(v,2*M,-2*M,-1.2,1.2) K = list( K1 = cbind(c(1,5,6),c(5,6,1)), K2 = cbind(c(1,2,7),c(2,7,1)), K3 = cbind(c(3,1,4,8),c(1,4,8,3)), K4 = cbind(c(4,5,2,6),c(5,2,6,4)), K5 = cbind(c(3,5,9),c(5,9,3)), K6 = cbind(c(2,3,4),c(3,4,2))) for(i in 1:6){ B = verts(K[[i]], A, b) polygon(B[,2],B[,1], col = "skyblue") } Labels = list( expression(L[1]), expression(L[2]), expression(L[3]), expression(L[4]), expression(L[5])) loc.Labels = list(x = c(-1.004424, -1.01302343, 0.17934171, -0.08649861, 1.00436081), y = c(0.3205637, 0.91636306, 1.00753127, 1.02314035, 0.89690312)) for(i in 1:5) text(loc.Labels[[1]][i], loc.Labels[[2]][i], labels = Labels[[i]]) Labels = list( expression(P[1]), expression(P[2]), expression(P[3]), expression(P[4]), expression(P[6]), expression(P[5])) loc.Labels = list(x = c(-1.00289155, 1.02002596, 0.06291857, -0.53817104, 0.54508011, 0.05471212), y = c(0.11818783, -0.88815825, -0.92915311, 0.94752513, 0.98451957, 0.07552926)) loc.counts = list(x = c(-0.88573936, 0.82733333, 0.11516691, -0.40868114, 0.09882879, 0.34031147), y = c(0.12749720, -0.73885324, -0.64723638, 0.74507448, -0.03584664, 0.81743703)) for(i in 1:6){ text(loc.Labels[[1]][i], loc.Labels[[2]][i], labels = Labels[[i]]) text(loc.counts[[1]][i], loc.counts[[2]][i], labels = "3", col = 2) } loc.counts = list(x = c(0.2923439, -0.2889679, 0.06056319), y = c(-0.36331944, 0.04096497, 0.4360896)) for(i in 1:3) text(loc.counts[[1]][i], loc.counts[[2]][i], labels = "1", col = 2) loc.counts = list(x = c(0.5650635, -0.5907933, 0.0510295, -0.8496609, 0.5158996, 0.0536279, -0.09240575), y = c(-0.7865217, -0.4373644, -0.2191364, 0.4922822, 0.1549019, 0.8226151, 0.2862798)) for(i in 1:7) text(loc.counts[[1]][i], loc.counts[[2]][i], labels = "2", col = 2) x = c(-0.95, -0.6, 0.3, -0.2, 0.4) d = c(-0.07, 0.08, -.3, -0.3, 0.07) y = v + z*x + d for(i in 1:5) { abline(c(v[i], z[i]), col = 1) x0 = x[i] y0 = y[i] a = v[i] b = z[i] xhat = (y0*b - a*b + x0)/(1 + b^2) yhat = a + b*xhat arrows(xhat, yhat, x0, y0, length = .03, col = 1, lwd = 1.5) }
library("knitr") knitr::opts_chunk$set(fig.align="center", fig.width=6, fig.height=6) options(width=90) library(agridat) library(desplot) data(yates.oats) if(is.element("x",names(yates.oats))) yates.oats <- transform(yates.oats, col=x, row=y) desplot(yates.oats, block ~ col+row, col=nitro, text=gen, cex=1, out1=block, out2=gen, out2.gpar=list(col = "gray50", lwd = 1, lty = 1)) library(agridat) library(desplot) data(ryder.groundnut) gnut <- ryder.groundnut m1 <- lm(dry ~ block + gen, gnut) gnut$res <- resid(m1) desplot(gnut, res ~ col + row, text=gen, cex=1, main="ryder.groundnut residuals from RCB model")
getLastChildTaxon <- function(level = c("order","suborder","greatgroup")) { lvls <- c("order","suborder","greatgroup") level <- match.arg(level, lvls) level.idx <- match(level, lvls) ST_unique_list <- NULL load(system.file("data/ST_unique_list.rda", package = "SoilTaxonomy")[1]) suborders <- taxon_to_taxon_code(ST_unique_list[[level]]) ggposition <- relative_taxon_code_position(taxon_to_taxon_code(ST_unique_list[[lvls[level.idx + 1]]])) res <- lapply(suborders, function(so) { x <- ggposition[grep(paste0("^", so), names(ggposition))] names(x[which.max(x)]) }) codes <- taxon_to_taxon_code(as.character(res)) data.frame( key = names(res), taxon = taxon_code_to_taxon(as.character(res)), code = as.character(res), position = relative_taxon_code_position(codes), row.names = NULL ) }
waas <- function(.data, env, gen, rep, resp, block = NULL, mresp = NULL, wresp = NULL, prob = 0.05, naxis = NULL, ind_anova = FALSE, verbose = TRUE) { if(is.numeric(mresp)){ stop("Using a numeric vector in 'mresp' is deprecated as of metan 1.9.0. use 'h' or 'l' instead.\nOld code: 'mresp = c(100, 100, 0)'.\nNew code: 'mresp = c(\"h, h, l\")", call. = FALSE) } if(!missing(block)){ factors <- .data %>% select({{env}}, {{gen}}, {{rep}}, {{block}}) %>% mutate(across(everything(), as.factor)) } else{ factors <- .data %>% select({{env}}, {{gen}}, {{rep}}) %>% mutate(across(everything(), as.factor)) } vars <- .data %>% select({{resp}}, -names(factors)) vars %<>% select_numeric_cols() if(!missing(block)){ factors %<>% set_names("ENV", "GEN", "REP", "BLOCK") } else{ factors %<>% set_names("ENV", "GEN", "REP") } nvar <- ncol(vars) if (!is.null(naxis)) { if (length(naxis) != nvar) { warning("Invalid length in 'naxis'. Setting naxis = ", naxis[[1]], " to all the ", nvar, " variables.", call. = FALSE) naxis <- replicate(nvar, naxis[[1]]) } } if (is.null(mresp)) { mresp <- replicate(nvar, 100) minresp <- 100 - mresp } else { mresp <- unlist(strsplit(mresp, split="\\s*(\\s|,)\\s*")) %>% all_lower_case() if(!any(mresp %in% c("h", "l", "H", "L"))){ if(!mresp[[1]] %in% c("h", "l")){ stop("Argument 'mresp' must have only h or l.", call. = FALSE) } else{ warning("Argument 'mresp' must have only h or l. Setting mresp = ", mresp[[1]], " to all the ", nvar, " variables.", call. = FALSE) mresp <- replicate(nvar, mresp[[1]]) } } if (length(mresp) != nvar) { warning("Invalid length in 'mresp'. Setting mresp = ", mresp[[1]], " to all the ", nvar, " variables.", call. = FALSE) mresp <- replicate(nvar, mresp[[1]]) } mresp <- ifelse(mresp == "h", 100, 0) minresp <- 100 - mresp } if (is.null(wresp)) { PesoResp <- replicate(nvar, 50) PesoWAASB <- 100 - PesoResp } else { PesoResp <- wresp PesoWAASB <- 100 - PesoResp if (length(wresp) != nvar) { warning("Invalid length in 'wresp'. Setting wresp = ", wresp[[1]], " to all the ", nvar, " variables.", call. = FALSE) PesoResp <- replicate(nvar, wresp[[1]]) PesoWAASB <- 100 - PesoResp } if (min(wresp) < 0 | max(wresp) > 100) { stop("The range of the numeric vector 'wresp' must be equal between 0 and 100.") } } listres <- list() vin <- 0 for (var in 1:nvar) { data <- factors %>% mutate(Y = vars[[var]]) check_labels(data) if(has_na(data)){ data <- remove_rows_na(data) has_text_in_num(data) } Nenv <- length(unique(data$ENV)) Ngen <- length(unique(data$GEN)) minimo <- min(Nenv, Ngen) - 1 vin <- vin + 1 if(ind_anova == TRUE){ individual <- data %>% anova_ind(ENV, GEN, REP, Y) } else{ individual = NULL } if(missing(block)){ model <- performs_ammi(data, ENV, GEN, REP, Y, verbose = FALSE)[[1]] } else{ model <- performs_ammi(data, ENV, GEN, REP, Y, block = BLOCK, verbose = FALSE)[[1]] } PC <- model$PCA Escores <- model$model MeansGxE <- model$MeansGxE if (is.null(naxis)) { SigPC1 <- nrow(PC[which(PC[, 6] < prob), ]) } else { SigPC1 <- naxis[vin] } if (SigPC1 > minimo) { stop("The number of axis to be used must be lesser than or equal to ", minimo, " [min(GEN-1;ENV-1)]") } else { Pesos <- slice(model$PCA[7], 1:SigPC1) WAAS <- Escores %>% select(contains("PC")) %>% abs() %>% t() %>% as.data.frame() %>% slice(1:SigPC1) %>% mutate(Percent = Pesos$Proportion) WAASAbs <- mutate(Escores, WAAS = sapply(WAAS[, -ncol(WAAS)], weighted.mean, w = WAAS$Percent)) if (nvar > 1) { WAASAbs %<>% group_by(type) %>% mutate(PctResp = (mresp[vin] - minresp[vin])/(max(Y) - min(Y)) * (Y - max(Y)) + mresp[vin], PctWAAS = (0 - 100)/(max(WAAS) - min(WAAS)) * (WAAS - max(WAAS)) + 0, wRes = PesoResp[vin], wWAAS = PesoWAASB[vin], OrResp = rank(-Y), OrWAAS = rank(WAAS), OrPC1 = rank(abs(PC1)), WAASY = ((PctResp * wRes) + (PctWAAS * wWAAS))/(wRes + wWAAS), OrWAASY = rank(-WAASY)) %>% ungroup() } else { WAASAbs %<>% group_by(type) %>% mutate(PctResp = (mresp - minresp)/(max(Y) - min(Y)) * (Y - max(Y)) + mresp, PctWAAS = (0 - 100)/(max(WAAS) - min(WAAS)) * (WAAS - max(WAAS)) + 0, wRes = PesoResp, wWAAS = PesoWAASB, OrResp = rank(-Y), OrWAAS = rank(WAAS), OrPC1 = rank(abs(PC1)), WAASY = ((PctResp * wRes) + (PctWAAS * wWAAS))/(wRes + wWAAS), OrWAASY = rank(-WAASY)) %>% ungroup() } min_group <- Escores %>% group_by(type) %>% top_n(1, -Y) %>% select(type, Code, Y) %>% slice(1) %>% as.data.frame() max_group <- Escores %>% group_by(type) %>% top_n(1, Y) %>% select(type, Code, Y) %>% slice(1) %>% as.data.frame() min <- MeansGxE %>% top_n(1, -Y) %>% select(ENV, GEN, Y) %>% slice(1) max <- MeansGxE %>% top_n(1, Y) %>% select(ENV, GEN, Y) %>% slice(1) Details <- rbind(ge_details(data, ENV, GEN, Y), tribble(~Parameters, ~Y, "wresp", PesoResp[vin], "mresp", mresp[vin], "Ngen", Ngen, "Nenv", Nenv)) %>% rename(Values = Y) listres[[paste(names(vars[var]))]] <- structure(list(individual = individual[[1]], model = WAASAbs, MeansGxE = MeansGxE, PCA = as_tibble(PC, rownames = NA), ANOVA = model$ANOVA, Details = Details, augment = as_tibble(model$augment, rownames = NA), probint = model$probint), class = "waas") if (verbose == TRUE) { cat("variable", paste(names(vars[var])),"\n") cat("---------------------------------------------------------------------------\n") cat("AMMI analysis table\n") cat("---------------------------------------------------------------------------\n") print(as.data.frame(model$ANOVA), digits = 3, row.names = FALSE) cat("---------------------------------------------------------------------------\n\n") } } } if (verbose == TRUE) { if (length(which(unlist(lapply(listres, function(x) { x[["probint"]] })) > prob)) > 0) { cat("------------------------------------------------------------\n") cat("Variables with nonsignificant GxE interaction\n") cat(names(which(unlist(lapply(listres, function(x) { x[["probint"]] })) > prob)), "\n") cat("------------------------------------------------------------\n") } else { cat("All variables with significant (p < 0.05) genotype-vs-environment interaction\n") } cat("Done!\n") } invisible(structure(listres, class = "waas")) } plot.waas <- function(x, ...) { residual_plots(x, ...) } print.waas <- function(x, export = FALSE, file.name = NULL, digits = 4, ...) { if (!class(x) == "waas") { stop("The object must be of class 'waas'") } if (export == TRUE) { file.name <- ifelse(is.null(file.name) == TRUE, "waas print", file.name) sink(paste0(file.name, ".txt")) } opar <- options(pillar.sigfig = digits) on.exit(options(opar)) for (i in 1:length(x)) { var <- x[[i]] cat("Variable", names(x)[i], "\n") cat("---------------------------------------------------------------------------\n") cat("Individual analysis of variance\n") cat("---------------------------------------------------------------------------\n") print(var$individual$individual, ...) cat("---------------------------------------------------------------------------\n") cat("AMMI analysis table\n") cat("---------------------------------------------------------------------------\n") print(var$ANOVA, ...) cat("---------------------------------------------------------------------------\n") cat("Weighted average of the absolute scores\n") cat("---------------------------------------------------------------------------\n") print(var$model, ...) cat("---------------------------------------------------------------------------\n") cat("Some information regarding the analysis\n") cat("---------------------------------------------------------------------------\n") print(var$Details, ...) cat("\n\n\n") } if (export == TRUE) { sink() } } predict.waas <- function(object, naxis = 2, ...) { cal <- match.call() if (class(object) != "waas") { stop("The objectin must be an objectin of the class 'waas'") } if (length(object) != length(naxis)) { warning("Invalid length in 'naxis'. Setting 'mresp = ", naxis[[1]], "' to all the ", length(object), " variables.", call. = FALSE) naxis <- replicate(length(object), naxis[[1]]) } listres <- list() varin <- 1 for (var in 1:length(object)) { objectin <- object[[var]] MEDIAS <- objectin$MeansGxE %>% select(ENV, GEN, Y) Nenv <- length(unique(MEDIAS$ENV)) Ngen <- length(unique(MEDIAS$GEN)) minimo <- min(Nenv, Ngen) - 1 if (naxis[var] > minimo) { stop("The number of axis to be used must be lesser than or equal to min(GEN-1;ENV-1), in this case, ", minimo, ".", call. = FALSE) } else { if (naxis[var] == 0) { warning("Predicted values of AMMI0 model are in colum 'pred_ols'.", call. = FALSE) } ovmean <- mean(MEDIAS$Y) x1 <- model.matrix(~factor(MEDIAS$ENV) - 1) z1 <- model.matrix(~factor(MEDIAS$GEN) - 1) modelo1 <- lm(Y ~ ENV + GEN, data = MEDIAS) MEDIAS <- mutate(MEDIAS, res_ols = residuals(modelo1)) intmatrix <- t(matrix(MEDIAS$res_ols, Nenv, byrow = T)) s <- svd(intmatrix) U <- s$u[, 1:naxis[var]] LL <- s$d[1:naxis[var]] V <- s$v[, 1:naxis[var]] temp <- MEDIAS %>% add_cols(pred_ols = Y - res_ols, res_ammi = ((z1 %*% U) * (x1 %*% V)) %*% LL, pred_ammi = pred_ols + res_ammi) listres[[paste(names(object[var]))]] <- temp } } invisible(listres) }
is.empty.hypergraph <- function(h) { nrow(h$M)==0 || all(h$M==0) }
ChaoPD <- function(Ps, q = 1, PhyloTree, Normalize = TRUE, Prune = FALSE, CheckArguments = TRUE) { if (CheckArguments) CheckentropartArguments() if (inherits(PhyloTree, "phylog")) { hTree <- stats::hclust(PhyloTree$Wdist^2/2, "average") Tree <- ape::as.phylo.hclust(hTree) Tree$edge.length <- 2*Tree$edge.length } else { if (inherits(PhyloTree, "hclust")) { Tree <- ape::as.phylo.hclust(PhyloTree) Tree$edge.length <- 2*Tree$edge.length } else { if (inherits(PhyloTree, "phylo")) { Tree <- PhyloTree } else { if (inherits(PhyloTree, "PPtree")) { Tree <- PhyloTree$phyTree } else { stop("Tree must be an object of class phylo, phylog, hclust or PPtree") } } } } if (is.null(names(Ps))) stop("Ps must be named to match the tree's species") SpeciesNotFound <- setdiff(names(Ps), Tree$tip.label) if (length(SpeciesNotFound) > 0) { stop(paste("Species not found in the tree: ", SpeciesNotFound, collapse = "; ")) print(SpeciesNotFound) } SpeciesNotFound <- setdiff(Tree$tip.label, names(Ps)) if (length(SpeciesNotFound) > 0 ){ if (Prune) { Tree <- ape::drop.tip(Tree, SpeciesNotFound) } else { ExtraPs <- rep(0, length(SpeciesNotFound)) names(ExtraPs) <- SpeciesNotFound Ps <- c(Ps, ExtraPs) } } Lengths <- Tree$edge.length ltips <- lapply(Tree$edge[, 2], function(node) tips(Tree, node)) Branches <- unlist(lapply(ltips, function(VectorOfTips) sum(Ps[VectorOfTips]))) Tbar <- sum(Lengths*Branches) Lengths <- Lengths/Tbar Lengths <- Lengths[Branches != 0] Branches <- Branches[Branches != 0] if (q == 1) { PD <- prod(Branches^(-Lengths*Branches))*ifelse(Normalize, 1, Tbar) } else { PD <- (sum(Lengths*Branches^q))^(1/(1-q))*ifelse(Normalize, 1, Tbar) } names(PD) <- "None" return (PD) }
plotKIN<- function(estObj, scaler = 1, alpha = 0.3, title = "", xlab = "x", ylab = "y"){ requireNamespace("maptools") if(!inherits(estObj$estObj, "estObj")) stop("estObj must be of class estObj created from estEllipse, estKIN, or estMCP functions!") if(!inherits(scaler, "numeric")) stop("scaler must be numeric!") if(!inherits(alpha, "numeric")) stop("alpha must be numeric!") if(alpha > 1 | alpha < 0) stop("alpha must be a numeric value between 0 and 1!") if(!inherits(title, "character")) stop("title must be a character!") if( !inherits(xlab, "character")) if(!inherits(xlab, "expression")) stop("xlab must be a character or an expression!") if(!inherits(ylab, "character")) if(!inherits(ylab, "expression")) stop("ylab must be a character or an expression!") ord<- unique(estObj$estObj[[1]]@data$ConfInt)[order(unique(estObj$estObj[[1]]@data$ConfInt), decreasing = TRUE)] xs<- numeric() ys<- numeric() df<- list() for(i in 1:length(estObj$estObj)){ xs<- c(xs, sp::bbox(estObj$estObj[[i]])[1, ]) ys<- c(ys, sp::bbox(estObj$estObj[[i]])[2, ]) for(j in 1:length(ord)){ estObj$estObj[[i]]@data$PlotOrder[estObj$estObj[[i]]@data$ConfInt==ord[j]]<- j } gdf<- ggplot2::fortify(estObj$estObj[[i]], region = "PlotOrder") gdf<- merge(gdf, estObj$estObj[[i]]@data, by.x = "id", by.y = "PlotOrder") gdf$Group_ConfInt<- paste(gdf$Group, gdf$ConfInt, sep = "_") df<- c(df, list(gdf)) } pts<- list() for(i in 1:length(estObj$estInput)){ pts<- c(pts, list(estObj$estInput[[i]]@data)) xs<- c(xs, estObj$estInput[[i]]@data[ , 3]) ys<- c(ys, estObj$estInput[[i]]@data[ , 4]) } kin.plot<- ggplot2::ggplot() + lapply(df, function(x) ggplot2::geom_polygon(data = x, alpha = alpha, ggplot2::aes_string(x = "long", y = "lat", fill = "Group_ConfInt", group = "group"))) + ggplot2::scale_fill_manual(values=getColors(length(df), length(ord))) + lapply(pts, function(x) ggplot2::geom_point(data = x, ggplot2::aes_string(x = names(x)[3], y = names(x)[4], colour = "Group", shape = "Group"))) + ggplot2::scale_color_manual(values = getColors(length(df), 1)) + ggplot2::coord_fixed(ratio = ((max(xs) + scaler) - (min(xs) - scaler))/((max(ys) + scaler) - (min(ys) - scaler)), xlim = c((min(xs) - scaler), (max(xs) + scaler)), ylim = c((min(ys) - scaler), (max(ys) + scaler))) + ggplot2::scale_x_continuous(breaks = seq(from = round((min(xs) - scaler)), to = round((max(xs) + scaler)), by = scaler)) + ggplot2::scale_y_continuous(breaks = seq(from = round((min(ys) - scaler)), to = round((max(ys) + scaler)), by = scaler)) + ggplot2::labs(title = title, x = xlab, y = ylab) + ggplot2::guides(colour = ggplot2::guide_legend(override.aes = list(alpha = alpha))) + ggplot2::theme_bw() + ggplot2::theme(panel.background = ggplot2::element_blank(), panel.grid.major = ggplot2::element_blank(), panel.grid.minor = ggplot2::element_blank(), panel.border= ggplot2::element_rect(fill = NA, color = "black"), plot.title = element_text(hjust = 0.5)) return(kin.plot) }
plot.fast <- function (x, choix = "ind", axes = c(1, 2), xlim = NULL, ylim = NULL, invisible = NULL, col.ind = "blue", col.var = "red", col.quali.sup = "darkred", col.ind.sup = "darkblue", col.quanti.sup = "black", label = "all", cex = 1, lab.grpe = TRUE, title = NULL, habillage = "none", palette = NULL, new.plot = TRUE, ...) { res.mca <- x if (!inherits(res.mca, "fast")) stop("non convenient data") if (is.null(palette)) palette(c("black", "red", "green3", "blue", "cyan", "magenta", "darkgray", "darkgoldenrod", "darkgreen", "violet", "turquoise", "orange", "lightpink", "lavender", "yellow", "lightgreen", "lightgrey", "lightblue", "darkkhaki", "darkmagenta", "darkolivegreen", "lightcyan", "darkorange", "darkorchid", "darkred", "darksalmon", "darkseagreen", "darkslateblue", "darkslategray", "darkslategrey", "darkturquoise", "darkviolet", "lightgray", "lightsalmon", "lightyellow", "maroon")) lab.ind <- lab.var <- lab.quali.sup <- lab.ind.sup <- FALSE if (length(label) == 1 && label == "all") lab.ind <- lab.var <- lab.quali.sup <- lab.ind.sup <- TRUE if ("ind" %in% label) lab.ind <- TRUE if ("var" %in% label) lab.var <- TRUE test.invisible <- vector(length = 5) if (!is.null(invisible)) { test.invisible[1] <- match("ind", invisible) test.invisible[2] <- match("var", invisible) } else test.invisible <- rep(NA, 5) coord.var <- res.mca$var$coord[, axes] coord.ind <- res.mca$ind$coord[, axes] if (is.null(xlim)) { xmin <- xmax <- 0 if (is.na(test.invisible[1])) xmin <- min(xmin, coord.ind[, 1]) if (is.na(test.invisible[1])) xmax <- max(xmax, coord.ind[, 1]) if (is.na(test.invisible[2])) xmin <- min(xmin, coord.var[, 1]) if (is.na(test.invisible[2])) xmax <- max(xmax, coord.var[, 1]) xlim <- c(xmin, xmax) * 1.2 } else { xmin = xlim[1] xmax = xlim[2] } if (is.null(ylim)) { ymin <- ymax <- 0 if (is.na(test.invisible[1])) ymin <- min(ymin, coord.ind[, 2]) if (is.na(test.invisible[1])) ymax <- max(ymax, coord.ind[, 2]) if (is.na(test.invisible[2])) ymin <- min(ymin, coord.var[, 2]) if (is.na(test.invisible[2])) ymax <- max(ymax, coord.var[, 2]) ylim <- c(ymin, ymax) * 1.2 } else { ymin = ylim[1] ymax = ylim[2] } if (habillage == "quali") { aux = 1 col.var = NULL for (j in res.mca$call$quali) { col.var <- c(col.var, rep(aux, nlevels(res.mca$call$X[, j]))) aux = aux + 1 } } if ((habillage != "none") & (habillage != "quali")) { if (!is.factor(res.mca$call$X[, habillage])) stop("The variable ", habillage, " is not qualitative") col.ind <- as.numeric(as.factor(res.mca$call$X[, habillage])) n.mod <- nlevels(as.factor(res.mca$call$X[, habillage])) } if (choix == "ind" | choix == "var") { sub.titre <- NULL titre = title if (is.null(title)) titre <- "SortingTask factor map" else sub.titre <- "SortingTask factor map" if (is.na(test.invisible[1]) | is.na(test.invisible[2]) | is.na(test.invisible[4]) | is.na(test.invisible[5])) { if (new.plot & (!nzchar(Sys.getenv("RSTUDIO_USER_IDENTITY")))) dev.new() plot(0, 0, main = titre, xlab = paste("Dim ", axes[1], " (", signif(res.mca$eig[axes[1], 2], 4), "%)", sep = ""), ylab = paste("Dim ", axes[2], " (", signif(res.mca$eig[axes[2], 2], 4), "%)", sep = ""), xlim = xlim, ylim = ylim, col = "white", asp = 1, cex = cex) if (!is.null(sub.titre)) title(sub = sub.titre, cex.sub = cex, font.sub = 2, col.sub = "steelblue4", adj = 0, line = 3.8) abline(v = 0, lty = 2, cex = cex) abline(h = 0, lty = 2, cex = cex) if (is.na(test.invisible[1])) { points(coord.ind, pch = 16, col = col.ind) if (lab.ind) text(coord.ind[, 1], y = coord.ind[, 2], labels = rownames(coord.ind), pos = 3, col = col.ind, cex = cex) } if (is.na(test.invisible[2])) { points(coord.var[, 1], y = coord.var[, 2], pch = 17, col = col.var, cex = cex) if (lab.var) text(coord.var[, 1], y = coord.var[, 2], labels = rownames(coord.var), pos = 3, col = col.var, cex = cex) if ((habillage != "none") & (habillage != "quali") & (is.na(test.invisible[1]) | is.na(test.invisible[2]))) legend("topleft", legend = levels(res.mca$call$X[, habillage]), text.col = 1:n.mod, cex = 0.8) } } } group = nrow(res.mca$group$coord) if (choix == "group") { if (new.plot & (!nzchar(Sys.getenv("RSTUDIO_USER_IDENTITY")))) dev.new() if (is.null(title)) title <- "Consumers representation" else sub.title <- "Consumers representation" coord.actif <- res.mca$group$coord[, axes] plot(coord.actif, xlab = paste("Dim ", axes[1], " (", signif(res.mca$eig[axes[1], 2], 4), "%)", sep = ""), ylab = paste("Dim ", axes[2], " (", signif(res.mca$eig[axes[2], 2], 4), "%)", sep = ""), xlim = c(0, 1), ylim = c(0, 1), pch = 17, cex = cex, main = title, cex.main = cex * 1.2, asp = 1) title(cex.sub = cex, font.sub = 2, col.sub = "steelblue4", adj = 0, line = 3.8) if (lab.grpe) text(coord.actif[, 1], y = coord.actif[, 2], labels = rownames(coord.actif), pos = 3) } }
get_y <- function(x, resp = NULL, sort = FALSE, warn = FALSE, ...) { stopifnot(is.brmsfit(x)) resp <- validate_resp(resp, x) sort <- as_one_logical(sort) warn <- as_one_logical(warn) args <- list(x, resp = resp, ...) args$re_formula <- NA args$check_response <- TRUE args$only_response <- TRUE args$internal <- TRUE sdata <- do_call(standata, args) if (warn) { if (any(paste0("cens", usc(resp)) %in% names(sdata))) { warning2("Results may not be meaningful for censored models.") } } Ynames <- paste0("Y", usc(resp)) if (length(Ynames) > 1L) { out <- do_call(cbind, sdata[Ynames]) colnames(out) <- resp } else { out <- sdata[[Ynames]] } old_order <- attr(sdata, "old_order") if (!is.null(old_order) && !sort) { stopifnot(length(old_order) == NROW(out)) out <- p(out, old_order) } out } data_response <- function(x, ...) { UseMethod("data_response") } data_response.mvbrmsterms <- function(x, basis = NULL, ...) { out <- list() for (i in seq_along(x$terms)) { bs <- basis$resps[[x$responses[i]]] c(out) <- data_response(x$terms[[i]], basis = bs, ...) } if (x$rescor) { out$nresp <- length(x$responses) out$nrescor <- out$nresp * (out$nresp - 1) / 2 } out } data_response.brmsterms <- function(x, data, check_response = TRUE, internal = FALSE, basis = NULL, ...) { data <- subset_data(data, x) N <- nrow(data) Y <- model.response(model.frame(x$respform, data, na.action = na.pass)) out <- list(N = N, Y = unname(Y)) if (is_binary(x$family) || is_categorical(x$family)) { out$Y <- as_factor(out$Y, levels = basis$resp_levels) out$Y <- as.numeric(out$Y) if (is_binary(x$family)) { out$Y <- out$Y - 1 } } if (is_ordinal(x$family) && is.ordered(out$Y)) { out$Y <- as.numeric(out$Y) } if (check_response) { family4error <- family_names(x$family) if (is.mixfamily(x$family)) { family4error <- paste0(family4error, collapse = ", ") family4error <- paste0("mixture(", family4error, ")") } if (!allow_factors(x$family) && !is.numeric(out$Y)) { stop2("Family '", family4error, "' requires numeric responses.") } if (is_binary(x$family)) { if (any(!out$Y %in% c(0, 1))) { stop2("Family '", family4error, "' requires responses ", "to contain only two different values.") } } if (is_ordinal(x$family)) { if (any(!is_wholenumber(out$Y)) || any(!out$Y > 0)) { stop2("Family '", family4error, "' requires either positive ", "integers or ordered factors as responses.") } } if (use_int(x$family)) { if (!all(is_wholenumber(out$Y))) { stop2("Family '", family4error, "' requires integer responses.") } } if (has_multicol(x$family)) { if (!is.matrix(out$Y)) { stop2("This model requires a response matrix.") } } if (is_dirichlet(x$family)) { if (!is_equal(rowSums(out$Y), rep(1, nrow(out$Y)))) { stop2("Response values in dirichlet models must sum to 1.") } } ybounds <- family_info(x$family, "ybounds") closed <- family_info(x$family, "closed") if (is.finite(ybounds[1])) { y_min <- min(out$Y, na.rm = TRUE) if (closed[1] && y_min < ybounds[1]) { stop2("Family '", family4error, "' requires response greater ", "than or equal to ", ybounds[1], ".") } else if (!closed[1] && y_min <= ybounds[1]) { stop2("Family '", family4error, "' requires response greater ", "than ", round(ybounds[1], 2), ".") } } if (is.finite(ybounds[2])) { y_max <- max(out$Y, na.rm = TRUE) if (closed[2] && y_max > ybounds[2]) { stop2("Family '", family4error, "' requires response smaller ", "than or equal to ", ybounds[2], ".") } else if (!closed[2] && y_max >= ybounds[2]) { stop2("Family '", family4error, "' requires response smaller ", "than ", round(ybounds[2], 2), ".") } } out$Y <- as.array(out$Y) } if (has_trials(x$family) || is.formula(x$adforms$trials)) { if (!length(x$adforms$trials)) { if (is_multinomial(x$family)) { stop2("Specifying 'trials' is required in multinomial models.") } trials <- round(max(out$Y, na.rm = TRUE)) if (isTRUE(is.finite(trials))) { message("Using the maximum response value as the number of trials.") warning2( "Using 'binomial' families without specifying 'trials' ", "on the left-hand side of the model formula is deprecated." ) } else if (!is.null(basis$trials)) { trials <- max(basis$trials) } else { stop2("Could not compute the number of trials.") } } else if (is.formula(x$adforms$trials)) { trials <- get_ad_values(x, "trials", "trials", data) if (!is.numeric(trials)) { stop2("Number of trials must be numeric.") } if (any(!is_wholenumber(trials) | trials < 0)) { stop2("Number of trials must be non-negative integers.") } } else { stop2("Argument 'trials' is misspecified.") } if (length(trials) == 1L) { trials <- rep(trials, nrow(data)) } if (check_response) { if (is_multinomial(x$family)) { if (!is_equal(rowSums(out$Y), trials)) { stop2("Number of trials does not match the number of events.") } } else if (has_trials(x$family)) { if (max(trials) == 1L && !internal) { message("Only 2 levels detected so that family 'bernoulli' ", "might be a more efficient choice.") } if (any(out$Y > trials)) { stop2("Number of trials is smaller than the number of events.") } } } out$trials <- as.array(trials) } if (has_cat(x$family)) { ncat <- length(get_cats(x$family)) if (min(ncat) < 2L) { stop2("At least two response categories are required.") } if (!has_multicol(x$family)) { if (ncat == 2L && !internal) { message("Only 2 levels detected so that family 'bernoulli' ", "might be a more efficient choice.") } if (check_response && any(out$Y > ncat)) { stop2("Number of categories is smaller than the response ", "variable would suggest.") } } out$ncat <- ncat } if (has_thres(x$family)) { thres <- family_info(x, "thres") if (has_thres_groups(x$family)) { groups <- get_thres_groups(x) out$ngrthres <- length(groups) grthres <- get_ad_values(x, "thres", "gr", data) grthres <- factor(rename(grthres), levels = groups) Jgrthres <- match(grthres, groups) nthres <- as.array(rep(NA, length(groups))) for (i in seq_along(groups)) { nthres[i] <- max(subset2(thres, group = groups[i])$thres) } if (check_response && any(out$Y > nthres[Jgrthres] + 1)) { stop2("Number of thresholds is smaller than required by the response.") } Kthres_cumsum <- cumsum(nthres) Kthres_start <- c(1, Kthres_cumsum[-length(nthres)] + 1) Kthres_end <- Kthres_cumsum Jthres <- cbind(Kthres_start, Kthres_end)[Jgrthres, , drop = FALSE] out$Jthres <- Jthres } else { nthres <- max(thres$thres) if (check_response && any(out$Y > nthres + 1)) { stop2("Number of thresholds is smaller than required by the response.") } } if (max(nthres) == 1L && !internal) { message("Only 2 levels detected so that family 'bernoulli' ", "might be a more efficient choice.") } out$nthres <- nthres } if (is.formula(x$adforms$cat)) { warning2("Addition argument 'cat' is deprecated. Use 'thres' instead. ", "See ?brmsformula for more details.") } if (is.formula(x$adforms$se)) { se <- get_ad_values(x, "se", "se", data) if (!is.numeric(se)) { stop2("Standard errors must be numeric.") } if (min(se) < 0) { stop2("Standard errors must be non-negative.") } out$se <- as.array(se) } if (is.formula(x$adforms$weights)) { weights <- get_ad_values(x, "weights", "weights", data) if (!is.numeric(weights)) { stop2("Weights must be numeric.") } if (min(weights) < 0) { stop2("Weights must be non-negative.") } if (get_ad_flag(x, "weights", "scale")) { weights <- weights / sum(weights) * length(weights) } out$weights <- as.array(weights) } if (is.formula(x$adforms$dec)) { dec <- get_ad_values(x, "dec", "dec", data) if (is.character(dec) || is.factor(dec)) { if (!all(unique(dec) %in% c("lower", "upper"))) { stop2("Decisions should be 'lower' or 'upper' ", "when supplied as characters or factors.") } dec <- ifelse(dec == "lower", 0, 1) } else { dec <- as.numeric(as.logical(dec)) } out$dec <- as.array(dec) } if (is.formula(x$adforms$rate)) { denom <- get_ad_values(x, "rate", "denom", data) if (!is.numeric(denom)) { stop2("Rate denomiators should be numeric.") } if (isTRUE(any(denom <= 0))) { stop2("Rate denomiators should be positive.") } out$denom <- as.array(denom) } if (is.formula(x$adforms$cens) && check_response) { cens <- get_ad_values(x, "cens", "cens", data) cens <- prepare_cens(cens) if (!all(is_wholenumber(cens) & cens %in% -1:2)) { stop2( "Invalid censoring data. Accepted values are ", "'left', 'none', 'right', and 'interval'\n", "(abbreviations are allowed) or -1, 0, 1, and 2.\n", "TRUE and FALSE are also accepted ", "and refer to 'right' and 'none' respectively." ) } out$cens <- as.array(cens) icens <- cens %in% 2 if (any(icens)) { y2 <- unname(get_ad_values(x, "cens", "y2", data)) if (is.null(y2)) { stop2("Argument 'y2' is required for interval censored data.") } if (anyNA(y2[icens])) { stop2("'y2' should not be NA for interval censored observations.") } if (any(out$Y[icens] >= y2[icens])) { stop2("Left censor points must be smaller than right ", "censor points for interval censored data.") } y2[!icens] <- 0 out$rcens <- as.array(y2) } } if (is.formula(x$adforms$trunc)) { lb <- as.numeric(get_ad_values(x, "trunc", "lb", data)) ub <- as.numeric(get_ad_values(x, "trunc", "ub", data)) if (any(lb >= ub)) { stop2("Truncation bounds are invalid: lb >= ub") } if (length(lb) == 1L) { lb <- rep(lb, N) } if (length(ub) == 1L) { ub <- rep(ub, N) } if (length(lb) != N || length(ub) != N) { stop2("Invalid truncation bounds.") } inv_bounds <- out$Y < lb | out$Y > ub if (check_response && isTRUE(any(inv_bounds))) { stop2("Some responses are outside of the truncation bounds.") } out$lb <- lb out$ub <- ub } if (is.formula(x$adforms$mi)) { sdy <- get_sdy(x, data) if (is.null(sdy)) { which_mi <- which(is.na(out$Y)) out$Jmi <- as.array(which_mi) out$Nmi <- length(out$Jmi) } else { if (length(sdy) == 1L) { sdy <- rep(sdy, length(out$Y)) } if (length(sdy) != length(out$Y)) { stop2("'sdy' must have the same length as the response.") } which_mi <- which(is.na(out$Y) | is.infinite(sdy)) out$Jme <- as.array(setdiff(seq_along(out$Y), which_mi)) out$Nme <- length(out$Jme) out$noise <- as.array(sdy) if (!internal) { out$noise[which_mi] <- Inf } } tbounds <- trunc_bounds(x, data, incl_family = TRUE) out$lbmi <- tbounds$lb out$ubmi <- tbounds$ub if (!internal) { out$Y[which_mi] <- Inf } } if (is.formula(x$adforms$vreal)) { vreal <- eval_rhs(x$adforms$vreal) vreal <- lapply(vreal$vars, eval2, data) names(vreal) <- paste0("vreal", seq_along(vreal)) for (i in seq_along(vreal)) { if (length(vreal[[i]]) == 1L) { vreal[[i]] <- rep(vreal[[i]], N) } vreal[[i]] <- as.array(as.numeric(vreal[[i]])) } c(out) <- vreal } if (is.formula(x$adforms$vint)) { vint <- eval_rhs(x$adforms$vint) vint <- lapply(vint$vars, eval2, data) names(vint) <- paste0("vint", seq_along(vint)) for (i in seq_along(vint)) { if (length(vint[[i]]) == 1L) { vint[[i]] <- rep(vint[[i]], N) } if (!all(is_wholenumber(vint[[i]]))) { stop2("'vint' requires whole numbers as input.") } vint[[i]] <- as.array(vint[[i]]) } c(out) <- vint } if (length(out)) { resp <- usc(combine_prefix(x)) out <- setNames(out, paste0(names(out), resp)) } out } data_mixture <- function(bterms, data2, prior) { stopifnot(is.brmsterms(bterms)) out <- list() if (is.mixfamily(bterms$family)) { families <- family_names(bterms$family) dp_classes <- dpar_class(names(c(bterms$dpars, bterms$fdpars))) if (!any(dp_classes %in% "theta")) { take <- find_rows(prior, class = "theta", resp = bterms$resp) theta_prior <- prior$prior[take] con_theta <- eval_dirichlet(theta_prior, length(families), data2) out$con_theta <- as.array(con_theta) p <- usc(combine_prefix(bterms)) names(out) <- paste0(names(out), p) } } out } data_bhaz <- function(bterms, data, data2, prior, basis = NULL) { out <- list() if (!is_cox(bterms$family)) { return(out) } y <- model.response(model.frame(bterms$respform, data, na.action = na.pass)) args <- bterms$family$bhaz bs <- basis$basis_matrix out$Zbhaz <- bhaz_basis_matrix(y, args, basis = bs) out$Zcbhaz <- bhaz_basis_matrix(y, args, integrate = TRUE, basis = bs) out$Kbhaz <- NCOL(out$Zbhaz) sbhaz_prior <- subset2(prior, class = "sbhaz", resp = bterms$resp) con_sbhaz <- eval_dirichlet(sbhaz_prior$prior, out$Kbhaz, data2) out$con_sbhaz <- as.array(con_sbhaz) out } bhaz_basis_matrix <- function(y, args = list(), integrate = FALSE, basis = NULL) { require_package("splines2") if (!is.null(basis)) { stopifnot(inherits(basis, "mSpline")) if (integrate) { class(basis) <- c("matrix", "iSpline") } return(predict(basis, y)) } stopifnot(is.list(args)) args$x <- y if (!is.null(args$intercept)) { args$intercept <- as_one_logical(args$intercept) } if (is.null(args$Boundary.knots)) { min_y <- min(y, na.rm = TRUE) max_y <- max(y, na.rm = TRUE) diff_y <- max_y - min_y lower_knot <- max(min_y - diff_y / 50, 0) upper_knot <- max_y + diff_y / 50 args$Boundary.knots <- c(lower_knot, upper_knot) } if (integrate) { out <- do_call(splines2::iSpline, args) } else { out <- do_call(splines2::mSpline, args) } out } extract_cat_names <- function(x, data) { stopifnot(is.brmsformula(x) || is.brmsterms(x)) respform <- validate_resp_formula(x$formula) mr <- model.response(model.frame(respform, data)) if (has_multicol(x)) { mr <- as.matrix(mr) out <- as.character(colnames(mr)) if (!length(out)) { out <- as.character(seq_cols(mr)) } } else { out <- levels(factor(mr)) } out } extract_thres_names <- function(x, data) { stopifnot(is.brmsformula(x) || is.brmsterms(x), has_thres(x)) if (is.null(x$adforms)) { x$adforms <- terms_ad(x$formula, x$family) } nthres <- get_ad_values(x, "thres", "thres", data) if (any(!is_wholenumber(nthres) | nthres < 1L)) { stop2("Number of thresholds must be a positive integer.") } grthres <- get_ad_values(x, "thres", "gr", data) if (!is.null(grthres)) { if (!is_like_factor(grthres)) { stop2("Variable 'gr' in 'thres' needs to be factor-like.") } grthres <- factor(grthres) group <- levels(grthres) if (!length(nthres)) { nthres <- rep(NA, length(group)) for (i in seq_along(group)) { take <- grthres %in% group[i] nthres[i] <- extract_nthres(x$formula, data[take, , drop = FALSE]) } } else if (length(nthres) == 1L) { nthres <- rep(nthres, length(group)) } else { for (i in seq_along(group)) { take <- grthres %in% group[i] if (length(unique(nthres[take])) > 1L) { stop2("Number of thresholds should be unique for each group.") } } nthres <- get_one_value_per_group(nthres, grthres) } group <- rep(rename(group), nthres) thres <- ulapply(unname(nthres), seq_len) } else { group <- "" if (!length(nthres)) { nthres <- extract_nthres(x$formula, data) } if (length(nthres) > 1L) { stop2("Number of thresholds needs to be a single value.") } thres <- seq_len(nthres) } data.frame(thres, group, stringsAsFactors = FALSE) } extract_nthres <- function(formula, data) { respform <- validate_resp_formula(formula) mr <- model.response(model.frame(respform, data)) if (is_like_factor(mr)) { out <- length(levels(factor(mr))) - 1 } else { out <- max(mr) - 1 } out }
head(Wetsuits, 3) dotPlot(~ Wetsuit, xlim = c(1.1, 1.8), cex = .25, data = Wetsuits) dotPlot(~ NoWetsuit, xlim = c(1.1, 1.8), cex = .25, data = Wetsuits)
.guessSeparator <- function(str){ SEPARATORS <- c(space = " " , equal = "=", semicolon = ";", coma = ",", colon = ":", tab = "\t") guess <- which.min( nchar(lapply(stringr::str_split(str,SEPARATORS), "[", i = 1))) separator <- SEPARATORS[guess] return(separator) } .parseNumericVector <- function(str) { vec <- as.numeric(unlist( stringr::str_split( stringr::str_squish(stringr::str_remove_all(str, "[\\(\\)\\[\\]\\{\\}]")), .guessSeparator(str)))) if (length(vec) == 1) vec <- rep(vec, 3) names(vec) <- c("x", "y", "z") return(vec) } readVoxelSpace <- function(f){ vox <- new(Class=("VoxelSpace")) conn <- file(f, open="r") firstLine <- readLines(conn, n=1) stopifnot( !is.na(stringr::str_match(stringr::str_trim(firstLine), "^VOXEL SPACE$"))) vox@file <- f parameters <- NULL nLineHeader <- 0 while ( TRUE ) { line <- stringr::str_squish(readLines(conn, n = 1)) nLineHeader <- nLineHeader + 1 if ( stringr::str_starts(line, " lineSplit <- stringr::str_squish(stringr::str_split(line, " lineParam <- vapply(lineSplit, function(p) unlist(stringr::str_split(p, ":")), character(2)) colnames(lineParam) <- as.character(lineParam[1,]) parameters <- c(parameters, lineParam[-1,]) } else { break } } close(conn) vox@header@nline <- as.integer(nLineHeader) columnNames <- unlist(stringr::str_split(line, " ")) vox@header@columnNames <- columnNames vox@header@mincorner <- .parseNumericVector(parameters["min_corner"]) vox@header@maxcorner <- .parseNumericVector(parameters["max_corner"]) vox@header@split <- .parseNumericVector(parameters["split"]) vox@header@resolution <- .parseNumericVector(parameters["res"]) vox@header@parameters <- parameters vox@voxels <- data.table::fread(f, header = TRUE, skip = nLineHeader) return (vox) } showVoxelSpace <- function(voxelSpace) { cat(class(voxelSpace)[1],'\n') cat(" file", voxelSpace@file, sep='\t', '\n') writeLines(paste0(" ", paste(names(voxelSpace@header@parameters), voxelSpace@header@parameters, sep='\t'))) cat(" output variables", paste(voxelSpace@header@columnNames, collapse=", "), '\n', sep='\t') show(voxelSpace@voxels) }
expected <- eval(parse(text="7L")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE), .Dim = c(101L, 3L), .Dimnames = list(NULL, c(\"t1\", \"10 * t1\", \"t1 - 4\")), .Tsp = c(1, 101, 1), class = c(\"mts\", \"ts\", \"matrix\")))")); do.call(`sum`, argv); }, o=expected);
NULL add_file_ref_class <- function(x) { class(x) <- "boxr_file_reference" x } add_folder_ref_class <- function(x) { class(x) <- "boxr_folder_reference" x } print.boxr_file_reference <- function(x, ...) { cat("\nbox.com remote file reference\n\n") cat(" name :", x$name, "\n") if(x$description != "") cat(" description :", x$description, "\n") cat(" file id :", x$id, "\n") cat(" version :", paste0("V", as.numeric(x$etag) + 1), "\n") cat(" size :", format_bytes(x$size), "\n") cat(" modified at :", as.character(as.POSIXct(gsub("T", " ", x$modified_at))), "\n" ) cat(" created at :", as.character(as.POSIXct(gsub("T", " ", x$modified_at))), "\n" ) cat(" uploaded by :", x$modified_by$login, "\n") cat(" owned by :", x$owned_by$login, "\n") shared_link <- x$shared_link if (is.null(shared_link)) shared_link <- "None" cat(" shared link :", shared_link, "\n\n") cat(" parent folder name : ", x$parent$name, "\n") cat(" parent folder id : ", x$parent$id, "\n") invisible(x) } print.boxr_folder_reference <- function(x, ...) { cat("\nbox.com remote folder reference\n\n") cat(" name :", x$name, "\n") cat(" dir id :", x$id, "\n") cat(" size :", format_bytes(x$size), "\n") cat(" modified at :", as.character(as.POSIXct(gsub("T", " ", x$modified_at))), "\n" ) cat(" created at :", as.character(as.POSIXct(gsub("T", " ", x$modified_at))), "\n" ) cat(" uploaded by :", x$modified_by$login, "\n") cat(" owned by :", x$owned_by$login, "\n") shared_link <- x$shared_link if (is.null(shared_link)) shared_link <- "None" cat(" shared link :", shared_link, "\n\n") cat(" parent folder name : ", x$parent$name, "\n") cat(" parent folder id : ", x$parent$id, "\n") invisible(x) } as.data.frame.boxr_object_list <- function(x, ...) { summarise_row <- function(x) { path <- paste0(unlist( lapply(x$path_collection$entries, function(x) x$name) ), collapse = "/") data.frame( name = x$name, type = x$type, id = x$id, size = x$size %|0|% NA_integer_, description = x$description, owner = x$owned_by$login, path = path, modified_at = box_datetime(x$modified_at), content_modified_at = box_datetime(x$content_modified_at) %|0|% as.POSIXct(NA), sha1 = x$sha1 %|0|% NA_character_, version = as.numeric(x$etag) + 1, version_no = as.numeric(x$etag) + 1, version_id = x$file_version$id %|0|% NA_character_, stringsAsFactors = FALSE ) } out <- data.frame(dplyr::bind_rows(lapply(x, summarise_row))) return(out) } print.boxr_object_list <- function(x, ...) { df <- as.data.frame.boxr_object_list(x) if (nrow(df) < 1) { cat("\nbox.com remote object list: Empty (no objects returned)") return(df) } df <- df[1:min(nrow(df), 10),] if (all(df$description == "")) df$description <- NULL if(!is.null(df$description)) df$description <- trunc_end(df$description) df$path <- trunc_start(df$path) df$size <- purrr::map_chr(df$size, purrr::possibly(format_bytes, NA)) cat(paste0("\nbox.com remote object list (", length(x), " objects)\n\n")) cat(paste0(" Summary of first ", nrow(df), ":\n\n")) print(df[, 1:5]) cat("\n\nUse as.data.frame() to extract full results.\n") invisible(x) } print.boxr_dir_wide_operation_result <- function(x, ...) { boxr_timediff <- function(x) paste0("took ", format(unclass(x), digits = 3), " ", attr(x, "units")) f <- x$file_list tdif <- boxr_timediff(x$end - x$start) cat("\nboxr", x$operation, "operation\n\n") cat(paste0( " User : ", getOption("boxr.username"), "\n", " Local dir : ", x$local_tld, "\n", " box.com folder : ", x$box_tld_id, "\n", " started at : ", x$start , " (", tdif, ")", "\n", "\n" )) summarise_ops(x$file_list, x$msg_list) cat("Use summary() to see individual file operations.") invisible(x) } summary.boxr_dir_wide_operation_result <- function(object, ...) { boxr_timediff <- function(x) paste0("took ", format(unclass(x), digits = 3), " ", attr(x, "units")) f <- object$file_list tdif <- boxr_timediff(object$end - object$start) cat("\nboxr", object$operation, "operation\n\n") cat(paste0( " User : ", getOption("boxr.username"), "\n", " Local dir : ", object$local_tld, "\n", " box.com folder : ", object$box_tld_id, "\n", " started at : ", object$start , " (", tdif, ")", "\n", "\n" )) if (!is.null(object$file_list[[17]]) && nrow(object$file_list[[17]]) > 0) object$file_list[[17]][,1] <- dir_id_tidy(object$file_list[[17]][,1]) print_df_summary(object$file_list, object$msg_list) invisible(object) } print.boxr_dir_comparison <- function(x, ...) { cat("\nboxr remote:local directory comparison\n\n") origin <- if (x$call_info$load == "up") "Local directory" else "box.com" destin <- if (x$call_info$load != "up") "Local directory" else "box.com" cat(paste0( " User : ", getOption("boxr.username"), "\n", " Local dir : ", x$call_info$local_dir, "\n", " box.com folder : ", x$call_info$dir_id, "\n", " Direction : ", x$call_info$load, "load", "\n", " Origin : ", origin, "\n", " Destination : ", destin, "\n", "\n" )) object_list <- x[names(x) != "call_info"] summarise_ops(object_list, x$call_info$msg) cat("Use summary() to see individual files.") invisible(x) } summary.boxr_dir_comparison <- function(object, ...) { cat("\nboxr remote:local directory comparison\n\n") origin <- if (object$call_info$load == "up") "Local directory" else "box.com" destin <- if (object$call_info$load != "up") "Local directory" else "box.com" cat(paste0( " User : ", getOption("boxr.username"), "\n", " Local dir : ", object$call_info$local_dir, "\n", " box.com folder : ", object$call_info$dir_id, "\n", " Direction : ", object$call_info$load, "load", "\n", " Origin : ", origin, "\n", " Destination : ", destin, "\n", "\n" )) if (!is.null(object$file_list[[17]]) && nrow(object$file_list[[17]]) > 0) object$file_list[[17]][,1] <- dir_id_tidy(object$file_list[[17]][,1]) object_list <- object[names(object) != "call_info"] print_df_summary(object_list, object$call_info$msg) invisible(object) } as_tibble.boxr_collab <- function(x, ...) { stack_row_tbl(x) } as.data.frame.boxr_collab <- function(x, ...) { stack_row_df(x) } print.boxr_collab <- function(x, ...) { print_dispatch(x, ...) } as_tibble.boxr_collab_list <- function(x, ...) { stack_rows_tbl(x) } as.data.frame.boxr_collab_list <- function(x, ...) { stack_rows_df(x) } print.boxr_collab_list <- function(x, ...) { print_dispatch(x, ...) } as_tibble.boxr_comment <- function(x, ...) { stack_row_tbl(x) } as.data.frame.boxr_comment <- function(x, ...) { stack_row_df(x) } print.boxr_comment<- function(x, ...) { print_dispatch(x, ...) } as.data.frame.boxr_comment_list <- function(x, ...) { stack_rows_df(x) } as_tibble.boxr_comment_list <- function(x, ...) { stack_rows_tbl(x) } print.boxr_comment_list <- function(x, ...) { print_dispatch(x, ...); } mutate_version_list <- function(x) { if (is_void(x)) { return(invisible(NULL)) } x[["modified_at"]] <- box_datetime(x[["modified_at"]]) x[["created_at"]] <- box_datetime(x[["created_at"]]) x <- x[order(x[["modified_at"]]), ] colnames(x)[colnames(x) == "id"] <- "version_id" x[["type"]] <- NULL col_names <- colnames(x) x[["version_no"]] <- seq_along(x$version_id) + 1L x <- x[ ,c("version_no", col_names)] rownames(x) <- NULL x } as.data.frame.boxr_version_list <- function(x, ...) { x <- stack_rows_df(x) x <- mutate_version_list(x) x } as_tibble.boxr_version_list <- function(x, ...) { x <- stack_rows_tbl(x) x <- mutate_version_list(x) x } print.boxr_version_list <- function(x, ...) { print_dispatch(x, ...); } grep_tense <- function(msg, n) { grepTense <- function(msg, n) { if(is.na(n) || is.null(n) || n > 1) { return(msg) } msg <- gsub("files", "file", msg) msg <- gsub("directories", "directory", msg) msg <- gsub("were", "was", msg) return(msg) } mapply(grepTense, msg, n) } summarise_ops <- function(file_list, msg_list) { op_summaries <- unlist(mapply( function(x, msg) { if (nrow(x) > 0L) paste(nrow(x), grep_tense(msg, nrow(x))) }, file_list, msg_list )) cat(paste0( paste(op_summaries[!is.null(op_summaries)], collapse = ", "), ".\n\n" )) } print_df_summary <- function(file_list, msg_list) { print_df <- function(x, msg) { if (nrow(x) > 0) { cat(nrow(x), msg, ":\n") print( format( data.frame( " " = x[,grepl("full_path",colnames(x))], check.names = FALSE ), justify = "left" ), row.names = FALSE ) cat("\n\n") } } dummy_var <- mapply(print_df, file_list, msg_list) } print_dispatch <- function(x, ...) { has_tibble <- requireNamespace("tibble", quietly = TRUE) print_tibble <- getOption("boxr.print_tibble") %||% FALSE if (has_tibble && print_tibble) { print_using_tibble(x, ...) } else { print_using_df(x, ...) } invisible(x) } print_using_df <- function(x, ...) { has_tibble <- requireNamespace("tibble", quietly = TRUE) df <- as.data.frame(x) cat("--- printing as data.frame ---\n") print(df, max = 10 * ncol(df), ...) cat("\n") if (has_tibble) { cat("Use `as.data.frame()` or `as_tibble()` to extract full results.\n") } else { cat("Use `as.data.frame()` to extract full results.\n") } invisible(x) } print_using_tibble <- function(x, ...) { tbl <- as_tibble(x) cat("--- printing as tibble ---\n") print(tbl, ...) cat("\n") cat("Use `as_tibble()` or `as.data.frame()` to extract full results.\n") invisible(x) }
context("mosaic") if(!any(grepl("R_CHECK_TIMINGS", names(Sys.getenv())))) { test_that("results are consistent with affinity()", { basis(c("CO2", "H2O", "NH3", "O2"), c(0, 0, 0, 0)) species(c("alanine", "glycine")) a25 <- affinity() m1_25 <- mosaic(list("NH3", "CO2")) expect_equal(a25$values, m1_25$A.species$values) m2_25 <- mosaic(list("NH3", "CO2"), blend = FALSE) expect_equal(a25$values, m2_25$A.species$values) a500 <- suppressWarnings(affinity(T=500)) m1_500 <- suppressWarnings(mosaic(list("NH3", "CO2"), T=500)) expect_equal(a500$values, m1_500$A.species$values) m2_500 <- suppressWarnings(mosaic(list("NH3", "CO2"), blend = FALSE, T=500)) expect_equal(a500$values, m2_500$A.species$values) }) test_that("blend=TRUE produces reasonable values", { basis(c("FeO", "SO4-2", "H2O", "H+", "e-")) basis("SO4-2", -6) basis("Eh", -0.15) species(c("hematite", "magnetite")) bases <- c("SO4-2", "HSO4-", "HS-", "H2S") pH <- c(0, 14, 29) m1 <- mosaic(bases, pH = pH, blend = FALSE) m2 <- mosaic(bases, pH = pH) expect_equivalent(m2$A.species$values[[1]], m1$A.species$values[[1]]) species(c("pyrrhotite", "pyrite")) m3 <- mosaic(bases, pH = pH, blend = FALSE) m4 <- mosaic(bases, pH = pH) expect_equal(sapply(m3$A.species$values, "[", 13), sapply(m4$A.species$values, "[", 13), tol=1e-1) expect_equal(sapply(m3$A.species$values, "[", 1), sapply(m4$A.species$values, "[", 1), tol=1e-7) expect_equal(sapply(m3$A.species$values, "[", 29), sapply(m4$A.species$values, "[", 29), tol=1e-13) }) test_that("mosaic() - equilibrate() produces equilibrium activities", { basis(c("CO2", "NH3", "O2", "H2O", "H+")) species(c("acetamide", "acetic acid", "acetate")) m <- mosaic(c("NH3", "NH4+"), pH = c(0, 14)) e <- equilibrate(m$A.species) s1 <- subcrt(c("acetic acid", "NH4+", "acetamide", "water", "H+"), c(-1, -1, 1, 1, 1), T = 25) logK1 <- s1$out$logK loga_acetic <- e$loga.equil[[2]] loga_NH4 <- m$E.bases[[1]]$loga.equil[[2]] loga_acetamide <- e$loga.equil[[1]] loga_H2O <- m$E.bases[[1]]$basis$logact[[4]] loga_Hplus <- - m$E.bases[[1]]$vals$pH logQ1 <- - loga_acetic - loga_NH4 + loga_acetamide + loga_H2O + loga_Hplus A1 <- logQ1 - logK1 expect_equivalent(A1, rep(0, length(A1))) }) test_that("mosaic() - solubility() produces equilibrium activities", { T <- 250 P <- 500 basis(c("Au", "Cl-", "H2S", "H2O", "oxygen", "H+")) species(c("Au(HS)2-", "AuHS", "AuOH", "AuCl2-")) basis("H2S", -2) basis("O2", -40) NaCl <- NaCl(T = T, P = P, m_tot = 1) basis("Cl-", log10(NaCl$m_Cl)) bases <- c("H2S", "HS-", "HSO4-", "SO4-2") m <- mosaic(bases, pH = c(2, 10), T = 250, P = 500, IS = NaCl$IS) s <- solubility(m$A.species) s1 <- subcrt(c("Au", "H2S", "oxygen", "Au(HS)2-", "H2O", "H+"), c(-1, -2, -0.25, 1, 0.5, 1), T = T, P = P, IS = NaCl$IS) logK1 <- s1$out$logK loga_Au <- m$A.bases$basis$logact[[1]] loga_H2S <- m$E.bases[[1]]$loga.equil[[1]] logf_O2 <- m$A.bases$basis$logact[[5]] loga_AuHS2minus <- s$loga.equil[[1]] loga_H2O <- m$A.bases$basis$logact[[4]] loga_Hplus <- - m$A.bases$vals$pH logQ1 <- - 1 * loga_Au - 2 * loga_H2S - 0.25 * logf_O2 + 1 * loga_AuHS2minus + 0.5 * loga_H2O + 1 * loga_Hplus A1 <- logQ1 - logK1 expect_equivalent(A1, rep(0, length(A1))) }) test_that("mosaic() - equilibrate() produces equilibrium activities that are consistent with stability differences of minerals and multiple groups of changing basis species", { basis(c("FeO", "SO4-2", "H2O", "H+", "e-", "CO3-2")) basis("SO4-2", -6) basis("CO3-2", 0) basis("pH", 6.3) species(c("pyrrhotite", "pyrite", "hematite", "magnetite", "siderite")) bases <- list(c("SO4-2", "HSO4-", "HS-", "H2S"), c("CO3-2", "HCO3-", "CO2")) m <- mosaic(bases, Eh = c(-0.5, 0)) s1 <- subcrt(c("pyrite", "CO2", "H2O", "H+", "e-", "siderite", "H2S"), c(-1, -1, -1, -2, -2, 1, 2), T = 25) logK <- s1$out$logK loga_pyrite <- loga_siderite <- loga_H2O <- 0 loga_Hplus <- m$A.bases[[1]]$basis$logact[[4]] loga_eminus <- - convert(m$A.bases[[1]]$vals$Eh, "pe") loga_H2S <- m$E.bases[[1]]$loga.equil[[4]] loga_CO2 <- m$E.bases[[2]]$loga.equil[[3]] logQ <- -1 * loga_pyrite - 1 * loga_CO2 - 1 * loga_H2O - 2 * loga_Hplus - 2 * loga_eminus + 1 * loga_siderite + 2 * loga_H2S A <- logQ - logK Adiff <- A - (m$A.species$values[[2]] - m$A.species$values[[5]]) expect_equivalent(Adiff, rep(0, length(Adiff))) }) }
library(kedd) kernel.fun(x = seq(-0.02,0.02,by=0.01), deriv.order = 1, kernel = "gaussian")$kx kernel.conv(x = seq(-0.02,0.02,by=0.01), deriv.order = 1, kernel = "gaussian")$kx plot(kernel.fun(deriv.order = 1, kernel = "gaussian")) plot(kernel.conv(deriv.order = 1, kernel = "gaussian")) plot(kernel.fun(deriv.order = 1, kernel = "gaussian"),main = "", sub = "") plot(kernel.conv(deriv.order = 1, kernel = "gaussian"),main = "", sub = "") fx <- function(x) 0.5 *(-4*x-6)* dnorm(x,-1.5,0.5) + 0.5 *(-4*x+6) * dnorm(x,1.5,0.5) kernels <- c("gaussian","biweight","triweight","tricube") plot(dkde(x = bimodal, deriv.order = 1, h = 0.6, kernel = kernels[1]),col = 1,ylim=c(-0.6,0.6) ,sub="", main="") for (i in 2:length(kernels))lines(dkde(x = bimodal, deriv.order = 1, h = 0.6, kernel = kernels[i] ), col = i) curve(fx,add=TRUE,lty=8) legend("topright", legend = c(TRUE,kernels), col = c("black",seq(kernels)),lty = c(8,rep(1,length(kernels))), inset = .015) h <- c(0.14,0.3,0.6,1.2) plot(dkde(x = bimodal, deriv.order = 1, h = h[1], kernel = kernels[1]),col = 1,ylim=c(-0.6,1) ,sub="", main="") for (i in 2:length(h))lines(dkde(x = bimodal, deriv.order = 1, h = h[i], kernel = kernels[1] ), col = i) curve(fx,add=TRUE,lty=8) legend("topright", legend = c("TRUE",paste("h =",bquote(.(h)))), col = c("black",seq(h)),lty = c(8,rep(1,length(h))), inset = .015) hatf <- dkde(bimodal, deriv.order = 0) hatf1 <- dkde(bimodal, deriv.order = 1) hatf2 <- dkde(bimodal, deriv.order = 2) hatf3 <- dkde(bimodal, deriv.order = 3) fx <- function(x) 0.5 * dnorm(x,-1.5,0.5) + 0.5 * dnorm(x,1.5,0.5) fx1 <- function(x) 0.5 *(-4*x-6)* dnorm(x,-1.5,0.5) + 0.5 *(-4*x+6) * dnorm(x,1.5,0.5) fx2 <- function(x) 0.5 * ((-4*x-6)^2 - 4) * dnorm(x,-1.5,0.5) + 0.5 * ((-4*x+6)^2 - 4) * dnorm(x,1.5,0.5) fx3 <- function(x) 0.5 * (-4*x-6) * ((-4*x-6)^2 - 12) * dnorm(x,-1.5,0.5) + 0.5 * (-4*x+6) * ((-4*x+6)^2 - 12) * dnorm(x,1.5,0.5) plot(hatf ,fx = fx) plot(hatf1,fx = fx1) plot(hatf2,fx = fx2) plot(hatf3,fx = fx3) plot(hatf,fx = fx,lwd=2,sub="",main="") plot(hatf1,fx = fx1,lwd=2,sub="",main="") plot(hatf2,fx = fx2,lwd=2,sub="",main="") plot(hatf3,fx = fx3,lwd=2,sub="",main="") h.amise(bimodal, deriv.order = 0) h.amise(bimodal, deriv.order = 1) h.amise(bimodal, deriv.order = 2) h.amise(bimodal, deriv.order = 3) kernels <- eval(formals(h.mlcv.default)$kernel) hmlcv <- numeric() for(i in 1:length(kernels)) hmlcv[i] <- h.mlcv(bimodal, kernel = kernels[i])$h data.frame(kernels,hmlcv) plot(h.mlcv(bimodal, kernel = kernels[1]), seq.bws = seq(0.1,1,length=50)) plot(h.mlcv(bimodal, kernel = kernels[2]), seq.bws = seq(0.1,1,length=50)) plot(h.mlcv(bimodal, kernel = kernels[1]), seq.bws = seq(0.1,1,length=50),sub="",main="") plot(h.mlcv(bimodal, kernel = kernels[2]), seq.bws = seq(0.1,1,length=50),sub="",main="") h.ucv(bimodal, deriv.order = 0) h.ucv(bimodal, deriv.order = 1) h.ucv(bimodal, deriv.order = 2) h.ucv(bimodal, deriv.order = 3) for (i in 0:3) plot(h.ucv(bimodal, deriv.order = i)) plot(h.ucv(bimodal, deriv.order = 0),sub="",main="") plot(h.ucv(bimodal, deriv.order = 1),sub="",main="") plot(h.ucv(bimodal, deriv.order = 2),sub="",main="") plot(h.ucv(bimodal, deriv.order = 3),sub="",main="") h.bcv(bimodal, whichbcv = 1, deriv.order = 0) h.bcv(bimodal, whichbcv = 2, deriv.order = 0) h.bcv(bimodal, whichbcv = 1, deriv.order = 1, lower=0.1, upper=0.8) h.bcv(bimodal, whichbcv = 2, deriv.order = 1, lower=0.1, upper=0.8) plot(h.bcv(bimodal, whichbcv = 2, deriv.order = 0)) lines(h.bcv(bimodal, whichbcv = 1, deriv.order = 0),col="red") legend("topright", c("BCV1","BCV2"),lty=1,col=c("red","black"), inset = .015) plot(h.bcv(bimodal, whichbcv = 2, deriv.order = 1),seq.bws = seq(0.1,0.8,length=50)) lines(h.bcv(bimodal, whichbcv = 1, deriv.order = 1),col="red") legend("topright", c("BCV1","BCV2"),lty=1,col=c("red","black"), inset = .015) plot(h.bcv(bimodal, whichbcv = 2, deriv.order = 0),sub="",main="") lines(h.bcv(bimodal, whichbcv = 1, deriv.order = 0),col="red") legend("topright", c("BCV1","BCV2"),lty=1,col=c("red","black"),inset = .015) plot(h.bcv(bimodal, whichbcv = 2, deriv.order = 1),seq.bws=seq(0.1,0.8,length=50),sub="",main="") lines(h.bcv(bimodal, whichbcv = 1, deriv.order = 1),col="red") legend("topright", c("BCV1","BCV2"),lty=1,col=c("red","black"),inset = .015) h.ccv(bimodal, deriv.order = 0, upper = 0.5) h.ccv(bimodal, deriv.order = 1, upper = 0.5) h.ccv(bimodal, deriv.order = 2, upper = 0.5) h.ccv(bimodal, deriv.order = 3, upper = 0.5) for (i in 0:3) plot(h.ccv(bimodal, deriv.order = i), seq.bws=seq(0.1,0.5,length=50)) plot(h.ccv(bimodal, deriv.order = 0),seq.bws=seq(0.1,0.5,length=50),sub="",main="") plot(h.ccv(bimodal, deriv.order = 1),seq.bws=seq(0.1,0.5,length=50),sub="",main="") plot(h.ccv(bimodal, deriv.order = 2),seq.bws=seq(0.1,0.5,length=50),sub="",main="") plot(h.ccv(bimodal, deriv.order = 3),seq.bws=seq(0.1,0.5,length=50),sub="",main="") h.mcv(bimodal, deriv.order = 0, upper = 0.5) h.mcv(bimodal, deriv.order = 1, upper = 0.5) h.mcv(bimodal, deriv.order = 2, upper = 0.5) h.mcv(bimodal, deriv.order = 3, upper = 0.5) for (i in 0:3) plot(h.mcv(bimodal, deriv.order = i), seq.bws=seq(0.1,0.5,length=50)) plot(h.mcv(bimodal, deriv.order = 0),seq.bws=seq(0.1,0.5,length=50),sub="",main="") plot(h.mcv(bimodal, deriv.order = 1),seq.bws=seq(0.1,0.5,length=50),sub="",main="") plot(h.mcv(bimodal, deriv.order = 2),seq.bws=seq(0.1,0.5,length=50),sub="",main="") plot(h.mcv(bimodal, deriv.order = 3),seq.bws=seq(0.1,0.5,length=50),sub="",main="") h.tcv(bimodal, deriv.order = 0) h.tcv(bimodal, deriv.order = 1) h.tcv(bimodal, deriv.order = 2) h.tcv(bimodal, deriv.order = 3) for (i in 0:3) plot(h.tcv(bimodal, deriv.order = i)) plot(h.tcv(bimodal, deriv.order = 0),seq.bws=seq(0.1,1.5,length=50),sub="",main="") plot(h.tcv(bimodal, deriv.order = 1),seq.bws=seq(0.3,1.5,length=50),sub="",main="") plot(h.tcv(bimodal, deriv.order = 2),seq.bws=seq(0.5,1.5,length=50),sub="",main="") plot(h.tcv(bimodal, deriv.order = 3),seq.bws=seq(0.5,1.5,length=50),sub="",main="")
dmap <- function(.d, .f, ...) { deprecate("dmap() is deprecated. Please use the new colwise family in dplyr.\n", "E.g., summarise_all(), mutate_all(), etc.") .f <- as_function(.f, ...) if (dplyr::is.grouped_df(.d)) { sliced_dmap(.d, .f, ...) } else { res <- .Call(map_impl, environment(), ".d", ".f", "list") dplyr::as_tibble(res) } } sliced_dmap <- function(.d, .f, ...) { if (length(.d) <= length(group_labels(.d))) { .d } else { set_sliced_env(.d, TRUE, "rows", "", environment(), ".d") slices <- subset_slices(.d) .Call(map_by_slice_impl, environment(), ".d", ".f", slices) } } dmap_at <- function(.d, .at, .f, ...) { deprecate("dmap_at() is deprecated. Please use the new colwise family in dplyr.\n", "E.g., summarise_at(), mutate_at(), etc.") sel <- inv_which(.d, .at) partial_dmap(.d, sel, .f, ...) } dmap_if <- function(.d, .p, .f, ...) { deprecate("dmap_if() is deprecated. Please use the new colwise family in dplyr.\n", "E.g., summarise_if(), mutate_if(), etc.") sel <- purrr::map_lgl(.d, .p) partial_dmap(.d, sel, .f, ...) } partial_dmap <- function(.d, .sel, .f, ...) { .f <- as_function(.f) subset <- dplyr::select(.d, !!dplyr::group_vars(.d), !!names(.d)[.sel]) set_sliced_env(.d, FALSE, "rows", "", environment(), "slices") slices <- subset_slices(subset) res <- .Call(map_by_slice_impl, environment(), "slices", ".f", slices) res <- dmap_recycle(res, .d) .d[.sel] <- res .d } dmap_recycle <- function(res, d) { if (dplyr::is.grouped_df(d)) { return(dmap_recycle_sliced(res, d)) } if (!nrow(res) %in% c(0, 1, nrow(d))) { stop("dmap() only recycles vectors of length 1", call. = TRUE) } res } dmap_recycle_sliced <- function(res, d) { if (nrow(res) == nrow(d)) { return(res) } if (nrow(group_labels(d)) == nrow(res)) { sizes <- group_sizes(d) indices <- purrr::map2(seq_len(nrow(res)), sizes, ~rep(.x, each = .y)) res <- res[purrr::flatten_int(indices), ] return(res) } stop("dmap() only recycles vectors of length 1") }
Resolvable <-function(n,mat) { B<-mat C<-B[n,] B<-B[-n,] a<-dim(B)[1] c<-dim(B)[2] e<-(c+1)/2 for (j in 1:a) {for (i in 1:c) {if (any (B[j,i]==C)) {B[j,i]<-0}}} X<-matrix(nrow=a, ncol=e) for (i in 1:a) {X[i,]<-B[i,][B[i,]>0]} v <- sort(unique(as.vector(X))) V<-length(v) T<-X[1,1] R<-length(which(T==X)) B<-dim(X)[1] K<-dim(X)[2] return(list(V=V,B=B,R=R,K=K,RBIB=X))}
"Bolus_1CPT"
head(iris) write.csv(iris, "./data/iris.csv", row.names=F) write.csv(iris, "./data/irisT.csv", row.names=T) read1 = read.csv(file="./data/iris.csv", header = TRUE,sep = ",") read1 read1 = read.csv(file="./data/dhiraj.csv", header = TRUE,sep = ",") head(read1) str(read1) class(read1) head(read1) read2 = read.table(file="./data/iris.csv", header = TRUE,sep = ",") str(read2); class(read2) head(read2) read3 = read.delim(file="./data/iris.csv", header = TRUE,sep = ",") str(read3) ; class(read3) head(read3) read4 = read.csv(file=file.choose()) str(read4) head(read4) read_web1 = read.csv('http://www.stats.ox.ac.uk/pub/datasets/csb/ch11b.dat') head(read_web1) library(data.table) read_web2 = fread("http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv") head(read_web2) class(read_web2) read_txt = read.table("https://s3.amazonaws.com/assets.datacamp.com/blog_assets/test.txt", header = FALSE) head(read_txt) library(gsheet) library(gsheet) url_gsheet = "https://docs.google.com/spreadsheets/d/1QogGSuEab5SZyZIw1Q8h-0yrBNs1Z_eEBJG7oRESW5k/edit df_gsheet = as.data.frame(gsheet2tbl(url_gsheet)) head(df_gsheet) url2 = "https://docs.google.com/spreadsheets/d/16KwkNnX6QAO23c03sCnzCElp3nRWfCp0g9tKCcKETsk/edit newdata = as.data.frame(gsheet2tbl(url2)) head(newdata) Sys.setenv(JAVA_HOME='C:\\Program Files\\Java\\jre1.8.0_191') library(xlsx) df_excel1 = read.xlsx( "./data/myexcel.xlsx", 1) df_excel1 df_excel2a = read.xlsx("./data/myexcel.xlsx", sheetName = "bowlers") df_excel2a df_excel2b = read.xlsx( "./data/myexcel.xlsx", sheetIndex = 2) df_excel2b
amh_eval_priors <- function( pars, prior ) { NP <- length(pars) priorval0 <- 0 eps <- 1E-100 for (pp in 1:NP){ pars_pp <- names(pars)[pp] prior_arg_pp <- prior[[pp]][[2]] prior_arg_pp[[1]] <- pars[pp] priorval_pp <- log( do.call( prior[[pp]][[1]], prior_arg_pp ) + eps ) priorval0 <- priorval0 + priorval_pp } return(priorval0) }
glm1 = function(y, X, lambda, family="negative.binomial", weights = rep(1, length(y)), b.init = NA, phi.init=NA, phi.method="ML", tol=c(1.e-8,.Machine$double.eps), n.iter=100, phi.iter=1) { counter = 1 zero.counter=0 family.old=family if (is.character(family)) { if (family == "negbinomial" || family == "negative.binomial") family = negative.binomial(1/tol[2]) else family = get(family, mode = "function", envir = parent.frame()) } if (is.function(family)) family = family() if(pmatch("Negative Binomial",family$family,nomatch=0)==0) is.nb=F else { is.nb=T if(is.na(phi.init)) { phi.init = family$var(1)-1 if(phi.init>2*tol[2]) phi.iter=n.iter*2 } } if (length(lambda) == 1) lambda = c( 0, rep(lambda, dim(X)[2]-1) ) likes = c() phis = c() mult = 0 if (any(is.na(b.init)) ) b.lasso = c( family$linkfun(mean(y)), rep(0, dim(X)[2] - 1)) if (any(is.na(b.init)) == FALSE) b.lasso = b.init is.in = abs(b.lasso) > tol[2] | lambda==0 sign.change = rep(-1, dim(X)[2]) is.different = is.in signs = sign(b.lasso) res = mu.update(b.lasso,y,X,weights,family,is.nb,phi.init,lambda,init=T,tol=tol) while(any(is.different == TRUE)) { likes = c(likes, res$like) phis = c(phis, res$phi) b.old = b.lasso phi.old = res$phi xw = t(as.vector(res$weii) * t(t(X[,is.in]))) xwx = solve(xw %*% X[,is.in] + diag( sum(is.in) )*min(tol[1]/100,sqrt(tol[2])) ) betaa = xwx %*% ( xw %*% res$z - as.matrix(lambda[is.in] * signs[is.in])) b.lasso[is.in] = betaa res = mu.update(b.lasso,y,X,weights,res$family,is.nb,phi.old,lambda,init=F,phi.step=F,phi.method,tol=tol) dev.change = (res$like - likes[length(likes)])/abs(likes[length(likes)]+0.1) half.step = 0 while(dev.change< (-tol[1]) & half.step<4) { b.lasso[is.in] = 0.5 * ( b.old[is.in] + b.lasso[is.in] ) half.step = half.step + 1 res = mu.update(b.lasso,y,X,weights,res$family,is.nb,phi.old,lambda,init=F,phi.step=F,phi.method,tol=tol) dev.change = (res$like - likes[length(likes)])/abs(likes[length(likes)]+0.1) } sign.change = rep(1,dim(X)[2]) sign.change[is.in] = signs[is.in]*sign(b.lasso[is.in]) sign.change[lambda==0] = 1 sign.change[sign.change == 0] = 1 if (any(sign.change != 1) == TRUE) { delta = b.lasso[is.in]-b.old[is.in] prop = min(abs(b.old[is.in]/delta)[sign.change[is.in] != 1]) b.lasso[is.in] = b.old[is.in] + prop*delta mult = 2 res = mu.update(b.lasso,y,X,weights,res$family,is.nb,phi.old,lambda,init=F,phi.step=F,phi.method,tol=tol) dev.change = (res$like - likes[length(likes)])/abs(likes[length(likes)]+0.1) } is.in[abs(b.lasso) < tol[2]] = FALSE b.lasso[is.in == FALSE] = 0 signs = sign(b.lasso) xw = t(as.vector(res$weii) * t(t(X))) score = t( t(xw) / as.vector(res$deriv) ) %*% (y - res$mu) score.lamb = lambda score.lamb[lambda == 0] = abs(score[lambda == 0]) + max(lambda) + 100000 viol = as.vector(abs(score))/as.vector(score.lamb) bigviol = max(viol) viol.out = (viol==bigviol & is.in == FALSE) if (any(sign.change != 1) == FALSE) { if ( any( viol.out ) & bigviol > (1+tol[1])) { { to.add = which(viol.out)[1] is.in[to.add] = TRUE signs[to.add] = sign(score[to.add]) mult = 1 } } } if(is.nb) { phi.step = counter%%phi.iter==0 res = mu.update(b.lasso,y,X,weights,res$family,is.nb,phi.old,lambda,init=F,phi.step=phi.step,phi.method,tol=tol) phis[length(phis)] = res$phi dev.change = (res$like - likes[length(likes)])/abs(likes[length(likes)]+0.1) } likes[length(likes)] = res$like diff = mult+abs(dev.change) is.different = rep(diff > tol[1], dim(X)[2]) mult = 0 if ( counter>n.iter) { is.different = FALSE warning('non-convergence!!!') counter = Inf } counter = counter + 1 df = sum(abs(b.lasso)>tol[2]) if(df==0) { zero.counter = zero.counter + 1 if(zero.counter>3) break is.in[sample(1:dim(X)[2],5)]=T } } likes = likes + sum(as.vector(lambda)*abs(b.lasso)) check = any( abs(score[is.in==F])>lambda[is.in==F]+tol[1] ) || any( abs( abs(score[is.in])-lambda[is.in] ) > tol[1] ) names(b.lasso) = dimnames(X)[[2]] dimnames(score)[[1]]=dimnames(X)[[2]] dimnames(res$mu)=dimnames(y) return(list(coefficients=b.lasso, fitted.values=res$mu, logLs = likes, phis=phis, phi=res$phi, score=score, counter = counter, check=check, family=res$family, weights=weights)) } mu.update = function(b.lasso, y, X, weights, family, is.nb, phi, lambda, init=F, phi.step=T, phi.method="ML",tol=c(1.e-8,.Machine$double.eps)) { eta = X %*% b.lasso mu = family$linkinv(eta) if(is.nb==F) phi = NA if (is.nb == T) { if(init == T) { disp = sum( (y - mu)^2/(mu ) ) / (length(y) - dim(X)[2]) if (is.na(phi)) { if (disp > 1) phi = 1 else phi <- tol[1] } } if(init == F) { if( phi.step==T ) { if (phi.method=="ML") { k <- 1/phi dl.dk = sum( - (y-mu)/(mu+k) + digamma(y+k) - log(mu+k) ) + length(y) * ( log(k) - digamma(k) ) dl.dphi = - k^2 * dl.dk like.num = dl.dphi d2l.dk2 = sum( (y-mu)/(mu+k)^2 + trigamma(y+k) - 1/(mu+k) ) + length(y) * ( 1/k - trigamma(k) ) d2l.dphi2 = 2*k^3*dl.dk + k^4 * d2l.dk2 like.den = d2l.dphi2 phi = phi + like.num/abs(like.den) } else { like.num = sum( (y - mu)^2/(mu + phi*mu^2) ) / (length(y) - dim(X)[2]) -1 like.den = - sum(mu^2*(y - mu)^2/(mu + phi*mu^2)^2) / (length(y) - dim(X)[2]) phi <- phi - like.num/like.den } } phi <- min(phi,1/tol[1]) } if(phi<=tol[1]) { phi = tol[1] family = poisson() } else { k = 1/phi family = negative.binomial(k) } } if( family$family=="binomial" || family$family=="poisson" || pmatch("Negative Binomial",family$family,nomatch=0)==1 ) dev = NA else dev = family$dev(y,mu,weights) like = -sum(family$aic(y,1,mu,weights,dev))/2 - sum(as.vector(lambda)*abs(b.lasso)) vari = family$variance(mu) deriv = family$mu.eta(eta) z = eta + (y - mu)/deriv weii = weights*deriv^2/vari return(list(eta=eta,mu=mu,like=like,vari=vari,deriv=deriv,z=z,weii=weii,phi=phi,family=family)) }
library(testthat) library(CVXR) test_check("CVXR", filter="^g04")
field_mask <- function(x) { stopifnot(is_dictionaryish(x)) explicit_mask <- imap(x, field_mask_impl_) as.character(glue_collapse(unname(unlist(explicit_mask)), ",")) } field_mask_impl_ <- function(x, y = "") { if (!is_list(x)) { return(y) } stopifnot(is_dictionaryish(x)) leafs <- !map_lgl(x, is_list) if (sum(leafs) <= 1) { leafs <- FALSE } names(x)[!leafs] <- glue(".{names(x)[!leafs]}") if (sum(leafs) > 1) { nm <- glue("({glue_collapse(names(x)[leafs], sep = ',')})") x <- list2(!!nm := NA, !!!x[!leafs]) } map2(x, glue("{y}{names(x)}"), field_mask_impl_) }
BertConfig <- function(vocab_size, hidden_size = 768L, num_hidden_layers = 12L, num_attention_heads = 12L, intermediate_size = 3072L, hidden_act = "gelu", hidden_dropout_prob = 0.1, attention_probs_dropout_prob = 0.1, max_position_embeddings = 512L, type_vocab_size = 16L, initializer_range = 0.02) { obj <- list( "vocab_size" = vocab_size, "hidden_size" = hidden_size, "num_hidden_layers" = num_hidden_layers, "num_attention_heads" = num_attention_heads, "hidden_act" = hidden_act, "intermediate_size" = intermediate_size, "hidden_dropout_prob" = hidden_dropout_prob, "attention_probs_dropout_prob" = attention_probs_dropout_prob, "max_position_embeddings" = max_position_embeddings, "type_vocab_size" = type_vocab_size, "initializer_range" = initializer_range ) class(obj) <- "BertConfig" return(obj) } bert_config_from_json_file <- function(json_file) { args <- jsonlite::fromJSON(json_file) return(do.call(BertConfig, args = args)) } BertModel <- function(config, is_training, input_ids, input_mask = NULL, token_type_ids = NULL, scope = NULL) { if (!is_training) { config$hidden_dropout_prob <- 0.0 config$attention_probs_dropout_prob <- 0.0 } input_shape <- get_shape_list(input_ids, expected_rank = 2L) batch_size <- input_shape[[1]] seq_length <- input_shape[[2]] if (is.null(input_mask)) { input_mask <- tensorflow::tf$ones( shape = tensorflow::shape(batch_size, seq_length), dtype = tensorflow::tf$int32 ) } if (is.null(token_type_ids)) { token_type_ids <- tensorflow::tf$zeros( shape = tensorflow::shape(batch_size, seq_length), dtype = tensorflow::tf$int32 ) } with(tensorflow::tf$variable_scope(scope, default_name = "bert"), { with(tensorflow::tf$variable_scope("embeddings"), { elup <- embedding_lookup( input_ids = input_ids, vocab_size = config$vocab_size, embedding_size = config$hidden_size, initializer_range = config$initializer_range, word_embedding_name = "word_embeddings" ) embedding_output <- elup[[1]] embedding_table <- elup[[2]] embedding_output <- embedding_postprocessor( input_tensor = embedding_output, use_token_type = TRUE, token_type_ids = token_type_ids, token_type_vocab_size = config$type_vocab_size, token_type_embedding_name = "token_type_embeddings", use_position_embeddings = TRUE, position_embedding_name = "position_embeddings", initializer_range = config$initializer_range, max_position_embeddings = config$max_position_embeddings, dropout_prob = config$hidden_dropout_prob ) }) with(tensorflow::tf$variable_scope("encoder"), { attention_mask <- create_attention_mask_from_input_mask( input_ids, input_mask ) all_encoder_layers <- transformer_model( input_tensor = embedding_output, attention_mask = attention_mask, hidden_size = config$hidden_size, num_hidden_layers = config$num_hidden_layers, num_attention_heads = config$num_attention_heads, intermediate_size = config$intermediate_size, intermediate_act_fn = get_activation(config$hidden_act), hidden_dropout_prob = config$hidden_dropout_prob, attention_probs_dropout_prob = config$attention_probs_dropout_prob, initializer_range = config$initializer_range, do_return_all_layers = TRUE ) }) attention_data <- all_encoder_layers$attention_data all_encoder_layers <- all_encoder_layers$final_outputs sequence_output <- all_encoder_layers[[length(all_encoder_layers)]] with(tensorflow::tf$variable_scope("pooler"), { first_token_tensor <- sequence_output[, 1, ] pooled_output <- tensorflow::tf$layers$dense( first_token_tensor, config$hidden_size, activation = tensorflow::tf$tanh, kernel_initializer = create_initializer(config$initializer_range) ) }) }) obj <- list( "embedding_output" = embedding_output, "embedding_table" = embedding_table, "all_encoder_layers" = all_encoder_layers, "attention_data" = attention_data, "sequence_output" = sequence_output, "pooled_output" = pooled_output ) class(obj) <- "BertModel" return(obj) } gelu <- function(x) { cdf <- 0.5 * (1.0 + tensorflow::tf$tanh( (sqrt(2 / pi) * (x + 0.044715 * tensorflow::tf$pow(x, 3))) ) ) return(x * cdf) } get_activation <- function(activation_string) { if (!is.character(activation_string)) { return(activation_string) } activation_string <- tolower(trimws(activation_string)) if (is.na(activation_string) | activation_string == "") { return(NA) } if (activation_string == "linear") { return(NA) } else if (activation_string == "relu") { return(tensorflow::tf$nn$relu) } else if (activation_string == "gelu") { return(gelu) } else if (activation_string == "tanh") { return(tensorflow::tf$tanh) } else { stop(paste("Unsupported activation", activation_string)) } } get_assignment_map_from_checkpoint <- function(tvars, init_checkpoint) { assignment_map <- list() initialized_variable_names <- list() name_to_variable <- list() for (var in tvars) { name <- var$name m <- stringr::str_match(string = name, pattern = "^(.*):\\d+$")[[2]] if (!is.na(m)) { name <- m } name_to_variable[[name]] <- var } just_names <- names(name_to_variable) init_vars <- tensorflow::tf$train$list_variables(init_checkpoint) assignment_map <- list() for (x in init_vars) { name <- x[[1]] if (name %in% just_names) { assignment_map[[name]] <- name initialized_variable_names[[name]] <- 1 initialized_variable_names[[paste0(name, ":0")]] <- 1 } } return(list( "assignment_map" = assignment_map, "initialized_variable_names" = initialized_variable_names )) } dropout <- function(input_tensor, dropout_prob = NULL) { if (is.null(dropout_prob) | dropout_prob == 0.0) { return(input_tensor) } output <- tensorflow::tf$nn$dropout(input_tensor, 1.0 - dropout_prob) return(output) } layer_norm <- function(input_tensor, name = NULL) { return(tensorflow::tf$contrib$layers$layer_norm( inputs = input_tensor, begin_norm_axis = -1L, begin_params_axis = -1L, scope = name )) } layer_norm_and_dropout <- function(input_tensor, dropout_prob = NULL, name = NULL) { output_tensor <- layer_norm(input_tensor, name) output_tensor <- dropout(output_tensor, dropout_prob) return(output_tensor) } create_initializer <- function(initializer_range = 0.02) { return( tensorflow::tf$truncated_normal_initializer(stddev = initializer_range) ) } embedding_lookup <- function(input_ids, vocab_size, embedding_size = 128L, initializer_range = 0.02, word_embedding_name = "word_embeddings") { if (input_ids$shape$ndims == 2L) { input_ids <- tensorflow::tf$expand_dims(input_ids, axis = c(-1L)) } else if (input_ids$shape$ndims < 2 | input_ids$shape$ndims > 3) { stop("input_id tensor has incorrect shape.") } embedding_table <- tensorflow::tf$get_variable( name = word_embedding_name, shape = tensorflow::shape(vocab_size, embedding_size), initializer = create_initializer(initializer_range) ) flat_input_ids <- tensorflow::tf$reshape(input_ids, shape = list(-1L)) output <- tensorflow::tf$gather(embedding_table, flat_input_ids) input_shape <- unlist(get_shape_list(input_ids)) num_dims <- length(input_shape) last_dim <- input_shape[num_dims][[1]] first_dims <- input_shape[-num_dims] target_shape <- unlist(list(first_dims, last_dim * embedding_size), recursive = FALSE ) output <- tensorflow::tf$reshape( output, target_shape ) return(list(output, embedding_table)) } embedding_postprocessor <- function( input_tensor, use_token_type = FALSE, token_type_ids = NULL, token_type_vocab_size = 16L, token_type_embedding_name = "token_type_embeddings", use_position_embeddings = TRUE, position_embedding_name = "position_embeddings", initializer_range = 0.02, max_position_embeddings = 512L, dropout_prob = 0.1) { input_shape <- get_shape_list(input_tensor, expected_rank = 3L) batch_size <- input_shape[[1]] seq_length <- input_shape[[2]] width <- input_shape[[3]] output <- input_tensor if (use_token_type) { if (is.null(token_type_ids)) { stop("`token_type_ids` must be specified if `use_token_type` is TRUE.") } token_type_table <- tensorflow::tf$get_variable( name = token_type_embedding_name, shape = tensorflow::shape(token_type_vocab_size, width), initializer = create_initializer(initializer_range) ) } flat_token_type_ids <- tensorflow::tf$reshape(token_type_ids, shape = list(-1L) ) one_hot_ids <- tensorflow::tf$one_hot(flat_token_type_ids, depth = token_type_vocab_size ) token_type_embeddings <- tensorflow::tf$matmul( one_hot_ids, token_type_table ) token_type_embeddings <- tensorflow::tf$reshape( token_type_embeddings, shape = list(batch_size, seq_length, width) ) output <- output + token_type_embeddings if (use_position_embeddings) { assert_op <- tensorflow::tf$assert_less_equal( seq_length, max_position_embeddings ) with(tensorflow::tf$control_dependencies(list(assert_op)), { full_position_embeddings <- tensorflow::tf$get_variable( name = position_embedding_name, shape = tensorflow::shape(max_position_embeddings, width), initializer = create_initializer(initializer_range) ) position_embeddings <- tensorflow::tf$slice( full_position_embeddings, begin = tensorflow::shape(0, 0), size = tensorflow::shape(seq_length, -1) ) num_dims <- length(output$shape$as_list()) position_broadcast_shape <- as.integer(c( rep.int(1, num_dims - 2), seq_length, width )) position_embeddings <- tensorflow::tf$reshape( position_embeddings, position_broadcast_shape ) output <- output + position_embeddings }) } output <- layer_norm_and_dropout(output, dropout_prob) return(output) } create_attention_mask_from_input_mask <- function(from_tensor, to_mask) { from_shape <- get_shape_list(from_tensor, expected_rank = list(2, 3)) batch_size <- from_shape[[1]] from_seq_length <- from_shape[[2]] to_shape <- get_shape_list(to_mask, expected_rank = 2) to_batch_size <- to_shape[[1]] to_seq_length <- to_shape[[2]] to_mask <- tensorflow::tf$cast( tensorflow::tf$reshape( to_mask, list(batch_size, 1L, to_seq_length) ), tensorflow::tf$float32 ) broadcast_ones <- tensorflow::tf$ones( shape = list(batch_size, from_seq_length, 1L), dtype = tensorflow::tf$float32 ) mask <- broadcast_ones * to_mask return(mask) } transpose_for_scores <- function(input_tensor, batch_size, num_attention_heads, seq_length, width) { output_tensor <- tensorflow::tf$reshape( input_tensor, list( batch_size, as.integer(seq_length), as.integer(num_attention_heads), as.integer(width) ) ) output_tensor <- tensorflow::tf$transpose(output_tensor, perm = list(0L, 2L, 1L, 3L) ) return(output_tensor) } attention_layer <- function(from_tensor, to_tensor, attention_mask = NULL, num_attention_heads = 1L, size_per_head = 512L, query_act = NULL, key_act = NULL, value_act = NULL, attention_probs_dropout_prob = 0.0, initializer_range = 0.02, do_return_2d_tensor = FALSE, batch_size = NULL, from_seq_length = NULL, to_seq_length = NULL) { from_shape <- get_shape_list(from_tensor, expected_rank = c(2L, 3L)) to_shape <- get_shape_list(to_tensor, expected_rank = c(2L, 3L)) if (length(from_shape) != length(to_shape)) { stop("The rank of from_tensor must match the rank of to_tensor.") } if (length(from_shape) == 3) { batch_size <- from_shape[[1]] from_seq_length <- from_shape[[2]] to_seq_length <- to_shape[[2]] } else if ( is.null(batch_size) | is.null(from_seq_length) | is.null(to_seq_length) ) { stop(paste( "When passing in rank 2 tensors to attention_layer, the values", "for batch_size, from_seq_length, and to_seq_length", "must all be specified." )) } from_tensor_2d <- reshape_to_matrix(from_tensor) to_tensor_2d <- reshape_to_matrix(to_tensor) query_layer <- tensorflow::tf$layers$dense( from_tensor_2d, num_attention_heads * size_per_head, activation = query_act, name = "query", kernel_initializer = create_initializer(initializer_range) ) key_layer <- tensorflow::tf$layers$dense( to_tensor_2d, num_attention_heads * size_per_head, activation = key_act, name = "key", kernel_initializer = create_initializer(initializer_range) ) value_layer <- tensorflow::tf$layers$dense( to_tensor_2d, num_attention_heads * size_per_head, activation = value_act, name = "value", kernel_initializer = create_initializer(initializer_range) ) query_layer <- transpose_for_scores( query_layer, batch_size, num_attention_heads, from_seq_length, size_per_head ) key_layer <- transpose_for_scores( key_layer, batch_size, num_attention_heads, to_seq_length, size_per_head ) attention_scores <- tensorflow::tf$matmul(query_layer, key_layer, transpose_b = TRUE ) attention_scores <- tensorflow::tf$multiply( attention_scores, 1.0 / sqrt(size_per_head) ) if (!is.null(attention_mask)) { attention_mask <- tensorflow::tf$expand_dims(attention_mask, axis = list(1L) ) adder <- (1.0 - tensorflow::tf$cast( attention_mask, tensorflow::tf$float32 )) * (-10000.0) attention_scores <- attention_scores + adder } attention_probs <- tensorflow::tf$nn$softmax(attention_scores) attention_probs <- dropout(attention_probs, attention_probs_dropout_prob) value_layer <- transpose_for_scores( input_tensor = value_layer, batch_size = batch_size, num_attention_heads = num_attention_heads, seq_length = to_seq_length, width = size_per_head ) context_layer <- tensorflow::tf$matmul(attention_probs, value_layer) context_layer <- tensorflow::tf$transpose(context_layer, perm = list(0L, 2L, 1L, 3L) ) if (do_return_2d_tensor) { context_layer <- tensorflow::tf$reshape( context_layer, list( batch_size * from_seq_length, as.integer(num_attention_heads * size_per_head) ) ) } else { context_layer <- tensorflow::tf$reshape( context_layer, list( batch_size, as.integer(from_seq_length), as.integer(num_attention_heads), as.integer(size_per_head) ) ) } to_return <- list( "context_layer" = context_layer, "attention_data" = attention_probs ) return(to_return) } transformer_model <- function(input_tensor, attention_mask = NULL, hidden_size = 768L, num_hidden_layers = 12L, num_attention_heads = 12L, intermediate_size = 3072L, intermediate_act_fn = gelu, hidden_dropout_prob = 0.1, attention_probs_dropout_prob = 0.1, initializer_range = 0.02, do_return_all_layers = FALSE) { if (hidden_size %% num_attention_heads != 0) { stop(paste( "The hidden size:", hidden_size, "is not a multiple of the number of attention heads:", num_attention_heads )) } attention_head_size <- hidden_size %/% num_attention_heads input_shape <- get_shape_list(input_tensor, expected_rank = 3L) batch_size <- input_shape[[1]] seq_length <- input_shape[[2]] input_width <- input_shape[[3]] if (input_width != hidden_size) { stop(paste( "The width of the input tensor:", input_width, "is not equal to the hidden size:", hidden_size )) } prev_output <- reshape_to_matrix(input_tensor) all_attn_data <- vector(mode = "list", length = num_hidden_layers) all_layer_outputs <- vector(mode = "list", length = num_hidden_layers) for (layer_idx in 1:num_hidden_layers) { python_index <- layer_idx - 1 scope_name <- paste0("layer_", python_index) with(tensorflow::tf$variable_scope(scope_name), { layer_input <- prev_output with(tensorflow::tf$variable_scope("attention"), { with(tensorflow::tf$variable_scope("self"), { attention_output <- attention_layer( from_tensor = layer_input, to_tensor = layer_input, attention_mask = attention_mask, num_attention_heads = num_attention_heads, size_per_head = attention_head_size, attention_probs_dropout_prob = attention_probs_dropout_prob, initializer_range = initializer_range, do_return_2d_tensor = TRUE, batch_size = batch_size, from_seq_length = seq_length, to_seq_length = seq_length ) }) attention_data <- attention_output$attention_data attention_output <- attention_output$context_layer with(tensorflow::tf$variable_scope("output"), { attention_output <- tensorflow::tf$layers$dense( attention_output, hidden_size, kernel_initializer = create_initializer(initializer_range) ) attention_output <- dropout(attention_output, hidden_dropout_prob) attention_output <- layer_norm(attention_output + layer_input) }) }) with(tensorflow::tf$variable_scope("intermediate"), { intermediate_output <- tensorflow::tf$layers$dense( attention_output, intermediate_size, activation = intermediate_act_fn, kernel_initializer = create_initializer(initializer_range) ) }) with(tensorflow::tf$variable_scope("output"), { layer_output <- tensorflow::tf$layers$dense( intermediate_output, hidden_size, kernel_initializer = create_initializer(initializer_range) ) layer_output <- dropout(layer_output, hidden_dropout_prob) layer_output <- layer_norm(layer_output + attention_output) prev_output <- layer_output all_layer_outputs[[layer_idx]] <- layer_output all_attn_data[[layer_idx]] <- attention_data }) }) } if (do_return_all_layers) { final_outputs <- purrr::map( all_layer_outputs, reshape_from_matrix, input_shape ) to_return <- list( "final_outputs" = final_outputs, "attention_data" = all_attn_data ) return(to_return) } else { final_output <- reshape_from_matrix(prev_output, input_shape) return(final_output) } } get_shape_list <- function(tensor, expected_rank = NULL, name = NULL) { if (is.null(name)) { name <- tensor$name } if (!is.null(expected_rank)) { assert_rank(tensor, expected_rank, name) } shape <- tensor$shape$as_list() shape <- as.list(shape) non_static_indexes <- c() for (index in seq_along(shape)) { dim <- shape[index] if (dim == "NULL") { non_static_indexes <- c(non_static_indexes, index) } } if (length(non_static_indexes) == 0) { return(shape) } dyn_shape <- tensorflow::tf$shape(tensor) for (index in non_static_indexes) { shape[[index]] <- dyn_shape[index] } return(shape) } reshape_to_matrix <- function(input_tensor) { ndims <- input_tensor$shape$ndims if (ndims == 2) { return(input_tensor) } if (ndims < 2) { stop(paste( "Input tensor must have at least rank 2. Shape =", input_tensor$shape )) } input_shape <- input_tensor$shape$as_list() width <- input_shape[[ndims]] output_tensor <- tensorflow::tf$reshape(input_tensor, list(-1L, width)) return(output_tensor) } reshape_from_matrix <- function(output_tensor, orig_shape_list) { output_shape <- get_shape_list(output_tensor) num_dims <- length(orig_shape_list) width <- orig_shape_list[num_dims] orig_dims <- orig_shape_list[-num_dims] if (length(output_shape) != 2) { stop("tensor is not rank 2") } if (output_shape[[2]] != width) { stop("width is not consistent") } if (length(orig_shape_list) == 2) { return(output_tensor) } return(tensorflow::tf$reshape( output_tensor, orig_shape_list )) } assert_rank <- function(tensor, expected_rank, name = NULL) { if (is.null(name)) { name <- tensor$name } actual_rank <- tensor$shape$ndims if (!actual_rank %in% expected_rank) { stop(paste0( "For the tensor ", name, ", the actual rank ", actual_rank, " (shape = ", tensor$shape, ") is not equal to the expected rank ", expected_rank, "." )) } return(TRUE) }
html_element <- function(x, css, xpath) { UseMethod("html_element") } html_elements <- function(x, css, xpath) { UseMethod("html_elements") } html_elements.default <- function(x, css, xpath) { xml2::xml_find_all(x, make_selector(css, xpath)) } html_element.default <- function(x, css, xpath) { xml2::xml_find_first(x, make_selector(css, xpath)) } make_selector <- function(css, xpath) { if (missing(css) && missing(xpath)) stop("Please supply one of css or xpath", call. = FALSE) if (!missing(css) && !missing(xpath)) stop("Please supply css or xpath, not both", call. = FALSE) if (!missing(css)) { if (!is.character(css) && length(css) == 1) stop("`css` must be a string") selectr::css_to_xpath(css, prefix = ".//") } else { if (!is.character(xpath) && length(xpath) == 1) stop("`xpath` must be a string") xpath } }
within.imputationList <- function (data, expr, ...) { res <- data imp <- res$imputations M <- length(imp) for (ii in 1:M){ parent <- parent.frame() data <- imp[[ii]] e <- evalq(environment(), data, parent) eval(substitute(expr), e) l <- as.list(e) l <- l[!sapply(l, is.null)] nD <- length(del <- setdiff(names(data), (nl <- names(l)))) data[nl] <- l if (nD) data[del] <- if (nD==1) NULL else vector("list", nD) imp[[ii]] <- data } res$imputations <- imp return(res) }
MeasureSurvUnoAUC = R6Class("MeasureSurvUnoAUC", inherit = MeasureSurvAUC, public = list( initialize = function(integrated = TRUE, times) { ps = ps( integrated = p_lgl(default = TRUE), times = p_uty() ) ps$values$integrated = TRUE super$initialize( param_set = ps, id = "surv.uno_auc", properties = c("requires_task", "requires_train_set"), man = "mlr3proba::mlr_measures_surv.uno_auc" ) } ), private = list( .score = function(prediction, task, train_set, ...) { ps = self$param_set$values if (!ps$integrated) { msg = "If `integrated=FALSE` then `times` should be a scalar numeric." assert_numeric(ps$times, len = 1, .var.name = msg) } else { if (!is.null(ps$times) && length(ps$times) == 1) { ps$integrated = FALSE } } super$.score( prediction = prediction, task = task, train_set = train_set, FUN = survAUC::AUC.uno, ...) } ) )
peakDrawing <- function(vecIP, vecControl, lineIP, lineControl, lineFC, lineAverage, posInf = 1, posSup = NULL, add = 10, title = ""){ vecINPUT = vecControl lineINPUT = lineControl if(is.null(posSup)){ posSup = length(vecIP) } xlabels = "chromosomal location" par(mfrow = c(2,2)) if((posInf-add > 0) & (posSup+add <= length(vecIP))){ plot(vecIP, type = "h", xlab = xlabels, ylab = "T1: IP signal", main = paste(title, "\nIP sample (T1)"), col = "red", xlim = c(posInf-add,posSup+add), ylim = c(0, max(vecIP, vecINPUT, na.rm = T))) abline(v = posInf, lty = "dashed", col = "blue") abline(v = posSup, lty = "dashed", col = "blue") abline(h = lineIP, col = "red") vecLogFC = log2((vecIP + 1)/(vecINPUT + 1)) plot(vecLogFC, type = "l", xlab = xlabels, ylab = "T3: log2FC", main = paste(title, "\nlog2FC (T3)"), col = "orange", xlim = c(posInf-add,posSup+add), ylim = c(min(vecLogFC, na.rm = T), max(vecLogFC, na.rm = T))) abline(v = posInf, lty = "dashed", col = "blue") abline(v = posSup, lty = "dashed", col = "blue") abline(h = lineFC, col = "red") plot(vecINPUT, type = "h", xlab = xlabels, ylab = "T2: control signal", main = paste(title, "\ncontrol sample (T2)"), col = "blue", xlim = c(posInf-add,posSup+add), ylim = c(0, max(vecIP, vecINPUT, na.rm = T))) abline(v = posInf, lty = "dashed", col = "blue") abline(v = posSup, lty = "dashed", col = "blue") abline(h = lineINPUT, col = "red") averageLog = (log2(vecIP + 1) + log2(vecINPUT + 1))/2 plot(averageLog, type = "l", xlab = xlabels, ylab = "T4: (log2(IP) + log2(control)) / 2", main = paste(title, "\naverage log2 signals (T4)"), col = "purple", xlim = c(posInf-add,posSup+add), ylim = c(min(averageLog, na.rm = T), max(averageLog, na.rm = T))) abline(v = posInf, lty = "dashed", col = "blue") abline(v = posSup, lty = "dashed", col = "blue") abline(h = lineAverage, col = "red") }else{ print("!! peakDrawing() error !! check the values of genomic positions") } }
pivot_wider.dtplyr_step <- function(data, id_cols = NULL, names_from = name, names_prefix = "", names_sep = "_", names_glue = NULL, names_sort = FALSE, names_repair = "check_unique", values_from = value, values_fill = NULL, values_fn = NULL, ...) { sim_data <- simulate_vars(data) names_from <- names(tidyselect::eval_select(enquo(names_from), sim_data)) values_from <- names(tidyselect::eval_select(enquo(values_from), sim_data)) id_cols <- enquo(id_cols) if (quo_is_null(id_cols)) { sim_vars <- names(sim_data) id_cols <- sim_vars[!sim_vars %in% c(names_from, values_from)] } else { id_cols <- names(tidyselect::eval_select(id_cols, sim_data)) } if (length(names_from) > 1) { new_vars <- mutate(shallow_dt(data), .names_from = paste(!!!syms(names_from), sep = names_sep)) new_vars <- unique(pull(new_vars, .names_from)) } else { new_vars <- unique(pull(data, !!sym(names_from))) new_vars <- as.character(new_vars) } if (!is.null(names_glue)) { glue_df <- as.data.table(distinct(ungroup(data), !!!syms(names_from))) glue_df <- vctrs::vec_rep(glue_df, length(values_from)) glue_df$.value <- vctrs::vec_rep_each(values_from, length(new_vars)) glue_vars <- as.character(glue::glue_data(glue_df, names_glue)) } if (length(values_from) > 1) { new_vars <- lapply(values_from, function(.x) paste(.x, new_vars, sep = names_sep)) new_vars <- unlist(new_vars) } no_id <- length(id_cols) == 0 if (no_id) { lhs <- "..." new_vars <- c(".", new_vars) } else { lhs <- call_reduce(syms(id_cols), "+") } rhs <- call_reduce(syms(names_from), "+") vars <- c(id_cols, new_vars) args <- list( formula = call2("~", lhs, rhs), value.var = values_from, fun.aggregate = values_fn, sep = names_sep, fill = values_fill ) args <- args[!vapply(args, is.null, lgl(1))] if (names_sep == "_") { args$sep <- NULL } out <- step_call(data, "dcast", args = args, vars = vars) if (no_id && names_sort) { new_vars <- new_vars[new_vars != "."] cols_sorted <- sort(new_vars) out <- select(out, !!!syms(cols_sorted)) } else if (no_id) { new_vars <- new_vars[new_vars != "."] out <- select(out, -.) } if (!is.null(names_glue)) { out <- step_setnames(out, new_vars, glue_vars, in_place = FALSE) new_vars <- glue_vars } else if (nchar(names_prefix) > 0) { new_names <- paste0(names_prefix, new_vars) out <- step_setnames(out, new_vars, new_names, in_place = FALSE) new_vars <- new_names } if (names_sort && !no_id) { cols_sorted <- c(id_cols, sort(new_vars)) out <- step_colorder(out, cols_sorted) } out <- step_repair(out, repair = names_repair) out } globalVariables(c(".", ".names_from", "name", "value", "pivot_wider")) pivot_wider.data.table <- function(data, id_cols = NULL, names_from = name, names_prefix = "", names_sep = "_", names_glue = NULL, names_sort = FALSE, names_repair = "check_unique", values_from = value, values_fill = NULL, values_fn = NULL, ...) { data <- lazy_dt(data) pivot_wider( data, id_cols = {{ id_cols }}, names_from = {{ names_from }}, names_prefix = names_prefix, names_sep = names_sep, names_glue = names_glue, names_sort = names_sort, names_repair = names_repair, values_from = {{ values_from }}, values_fn = values_fn ) } step_repair <- function(data, repair = "check_unique", in_place = TRUE) { sim_data <- simulate_vars(data) data_names <- names(sim_data) repaired_names <- vctrs::vec_as_names(data_names, repair = repair) if (any(data_names != repaired_names)) { data <- step_setnames(data, seq_along(data_names), repaired_names, in_place = in_place) } data } shallow_dt <- function(x) { filter(x, TRUE) } call_reduce <- function(x, fun) { Reduce(function(x, y) call2(fun, x, y), x) }
cdbRemoveDB <- function(cdb){ fname <- deparse(match.call()[[1]]) cdb <- cdb$checkCdb(cdb,fname) if( cdb$error == ""){ adrString <- paste(cdb$baseUrl(cdb), cdb$removeDBName, sep="") res <- getURL(utils::URLencode(adrString), customrequest = "DELETE", curl = cdb$curl, .opts = cdb$opts(cdb), .encoding = cdb$serverEnc ) cdb$removeDBName <- "" return(cdb$checkRes(cdb,res)) }else{ stop(cdb$error) } }
as.data.frame.survTP <- function(x, ..., package="TPmsm") { if ( missing(x) ) stop("Argument 'x' is missing, with no default") if ( !is.survTP(x) ) stop("Argument 'x' must be of class 'survTP'") package <- match.arg(arg=package, choices=c("TPmsm", "p3state.msm", "etm"), several.ok=FALSE) func <- switch(package, "TPmsm"=OutTPmsm, "p3state.msm"=Outp3state, "etm"=Outetm) return( func(x[[1]], 1:4) ) }
downsample <- function(target, distanceMat, cutoff) { localDensity <- function(distanceMat, epsilon) { apply(distanceMat, 1, function(x) mean(x < epsilon)) } ldens <- localDensity(distanceMat, cutoff) scalefactor <- sum(1/ldens)/length(ldens) prob <- (1/ldens)/length(ldens) * target/scalefactor prob[prob > 0.99999] <- 0.99999 P <- rbinom(length(ldens), 1, prob) P == 1 } createGraph <- function(DV, Q) { M <- as.matrix(DV@distance) U <- M[upper.tri(M)] if (missing(Q)) Q <- quantile(M, 0.1) selU <- U < Q M <- 0*M M <- sweep(M, 2, 1:ncol(M), "+") cols <- M[upper.tri(M)][selU] M <- 0*M M <- sweep(M, 1, 1:ncol(M), "+") rows <- M[upper.tri(M)][selU] daft <- data.frame(A = colnames(M)[cols], B = colnames(M)[rows], weight = 1-U[selU]) myg <- graph_from_data_frame(daft, directed=FALSE) myg <- set_vertex_attr(myg, "size", value=3) myg <- set_vertex_attr(myg, "label", value="") V <- vertex_attr(myg) syms <- c("square", "circle")[1 + (symv(DV) %% 2)] names(syms) <- names(symv(DV)) myg <- set_vertex_attr(myg, "color", value=colv(DV)[V$name]) myg <- set_vertex_attr(myg, "shape", value=syms[V$name]) layouts <- list(nicely = layout_nicely(myg)) if (!is.null(MV <- DV@view[["mds"]])) { V <- igraph::vertex_attr(myg) layouts[["mds"]] <- MV[V$name,] } if (!is.null(TV <- DV@view[["tsne"]])) { Y <- TV$Y rownames(Y) <- labels(DV@distance) V <- igraph::vertex_attr(myg) layouts[["tsne"]] <- Y[V$name,] } list(graph = myg, layouts = layouts) }
estimate<-EstMLEGrassiaIIBin(Chromosome_data$No.of.Asso,Chromosome_data$fre,0.1,0.5) context("Checking outputs") test_that("estimate method",{ expect_identical(estimate@method, "BFGS") }) test_that("estimate method",{ expect_identical(estimate@optimizer, "optim") }) test_that("minimized negative ll value",{ expect_identical(round(estimate@min,4), 436.8255) }) test_that("Checking class of output",{ expect_that(estimate, is_a("mle2")) })
check_design_rule <- function(string, sep_in = NULL, transliterations = NULL, sep_out = NULL, prefix = "", postfix = "", unique_sep = NULL, empty_fill = NULL, parsing_option = 1){ test_c <- function(string, case){ to_any_case(string = string, case = case, sep_in = sep_in, transliterations = transliterations, sep_out = sep_out, prefix = prefix, postfix = postfix, unique_sep = unique_sep, empty_fill = empty_fill, parsing_option = parsing_option) } all( test_c(string, case = "snake") == test_c(test_c(string, case = "snake"), case = "snake"), test_c(string, case = "snake") == test_c(test_c(string, case = "small_camel"), case = "snake"), test_c(string, case = "snake") == test_c(test_c(string, case = "big_camel"), case = "snake"), test_c(string, case = "snake") == test_c(test_c(string, case = "screaming_snake"), case = "snake"), test_c(string, case = "small_camel") == test_c(test_c(string, case = "snake"), case = "small_camel"), test_c(string, case = "small_camel") == test_c(test_c(string, case = "small_camel"), case = "small_camel"), test_c(string, case = "small_camel") == test_c(test_c(string, case = "big_camel"), case = "small_camel"), test_c(string, case = "small_camel") == test_c(test_c(string, case = "screaming_snake"), case = "small_camel"), test_c(string, case = "big_camel") == test_c(test_c(string, case = "snake"), case = "big_camel"), test_c(string, case = "big_camel") == test_c(test_c(string, case = "small_camel"), case = "big_camel"), test_c(string, case = "big_camel") == test_c(test_c(string, case = "big_camel"), case = "big_camel"), test_c(string, case = "big_camel") == test_c(test_c(string, case = "screaming_snake"), case = "big_camel"), test_c(string, case = "screaming_snake") == test_c(test_c(string, case = "snake"), case = "screaming_snake"), test_c(string, case = "screaming_snake") == test_c(test_c(string, case = "small_camel"), case = "screaming_snake"), test_c(string, case = "screaming_snake") == test_c(test_c(string, case = "big_camel"), case = "screaming_snake"), test_c(string, case = "screaming_snake") == test_c(test_c(string, case = "screaming_snake"), case = "screaming_snake") ) }
"f.fb.neglog.deriv" <- function(t, mu, tau, c1) { .expr3 <- (sqrt((2 * pi))) * t .expr4 <- t^2 .expr7 <- (.expr4 * (tau^2)) + t .expr9 <- .expr3 * (sqrt(.expr7)) .expr10 <- c1/.expr9 .expr12 <- c1 - (mu * t) .expr13 <- .expr12^2 .expr15 <- 2 * .expr7 .expr17 <- exp((( - .expr13)/.expr15)) .expr18 <- .expr10 * .expr17 .expr22 <- 2 * (t * .expr12) .expr23 <- .expr22/.expr15 .expr24 <- .expr17 * .expr23 .expr25 <- .expr10 * .expr24 .expr37 <- .expr18^2 .expr42 <- .expr4 * (2 * tau) .expr43 <- 2 * .expr42 .expr44 <- .expr13 * .expr43 .expr45 <- .expr15^2 .expr46 <- .expr44/.expr45 .expr47 <- .expr17 * .expr46 .expr54 <- .expr7^-0.5 .expr57 <- .expr3 * (0.5 * (.expr42 * .expr54)) .expr58 <- c1 * .expr57 .expr59 <- .expr9^2 .expr60 <- .expr58/.expr59 .expr66 <- (.expr10 * .expr47) - (.expr60 * .expr17) .expr70 <- - ((((.expr10 * ((.expr47 * .expr23) - (.expr17 * ((.expr22 * .expr43)/.expr45)))) - (.expr60 * .expr24))/.expr18) - (( .expr25 * .expr66)/.expr37)) .expr71 <- 1/.expr9 .expr76 <- 2 * .expr12 .expr77 <- .expr76/.expr15 .expr78 <- .expr17 * .expr77 .expr86 <- (.expr71 * .expr17) - (.expr10 * .expr78) .expr90 <- - ((((.expr71 * .expr24) + (.expr10 * ((.expr17 * ((2 * t)/ .expr15)) - (.expr78 * .expr23))))/.expr18) - ((.expr25 * .expr86)/.expr37)) .expr94 <- .expr4 * 2 .expr107 <- .expr60 * .expr47 .expr150 <- - (((((.expr71 * .expr47) + (.expr10 * ((.expr17 * (( .expr76 * .expr43)/.expr45)) - (.expr78 * .expr46)))) - ((( .expr57/.expr59) * .expr17) - (.expr60 * .expr78)))/.expr18) - ( (.expr66 * .expr86)/.expr37)) .expr153 <- .expr71 * .expr78 .value <- - (log(.expr18)) .grad <- array(0, c(length(.value), 3), list(NULL, c("mu", "tau", "c1") )) .hess <- array(0, c(length(.value), 3, 3), list(NULL, c("mu", "tau", "c1"), c("mu", "tau", "c1"))) .grad[, "mu"] <- - (.expr25/.expr18) .grad[, "tau"] <- - (.expr66/.expr18) .grad[, "c1"] <- - (.expr86/.expr18) .hess[, "mu", "mu"] <- - (((.expr10 * ((.expr24 * .expr23) - (.expr17 * ( (2 * (t * t))/.expr15))))/.expr18) - ((.expr25 * .expr25)/ .expr37)) .hess[, "tau", "mu"] <- .expr70 .hess[, "c1", "mu"] <- .expr90 .hess[, "mu", "tau"] <- .expr70 .hess[, "tau", "tau"] <- - (((((.expr10 * ((.expr47 * .expr46) + ( .expr17 * (((.expr13 * (2 * .expr94))/.expr45) - ((.expr44 * (2 * (.expr43 * .expr15)))/(.expr45^2)))))) - .expr107) - (((((c1 * ( .expr3 * (0.5 * ((.expr94 * .expr54) + (.expr42 * (-0.5 * ( .expr42 * (.expr7^-1.5))))))))/.expr59) - ((.expr58 * (2 * ( .expr57 * .expr9)))/(.expr59^2))) * .expr17) + .expr107))/ .expr18) - ((.expr66 * .expr66)/.expr37)) .hess[, "c1", "tau"] <- .expr150 .hess[, "mu", "c1"] <- .expr90 .hess[, "tau", "c1"] <- .expr150 .hess[, "c1", "c1"] <- ((.expr153 + (.expr153 + (.expr10 * ((.expr17 * ( 2/.expr15)) - (.expr78 * .expr77)))))/.expr18) + ((.expr86 * .expr86)/.expr37) attr(.value, "gradient") <- .grad attr(.value, "hessian") <- .hess .value }
mmer.diallel <- function(formula, Block = NULL, Env = NULL, fct = "GRIFFING2", data, type = "all"){ if(type != "all" & type != "environment"){ print("The argument type only accepts 'all' or 'environment' values") stop() } cl <- match.call() mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "Block", "Env", "data"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- quote(stats::model.frame) mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") Y <- model.response(mf, "numeric") mlm <- is.matrix(Y) ny <- if (mlm) nrow(Y) else length(Y) bName <- deparse(substitute(Block)) Block <- model.extract(mf, "Block") eName <- deparse(substitute(Env)) Env <- model.extract(mf, "Env") pars <- attr(mt, "term.labels") if(missing(data) == T){ Par1 <- mf[,2] Par2 <- mf[,3] } else { Par1 <- data[[pars[1]]] Par2 <- data[[pars[2]]] } if(!is.null(Env)){ cond <- tapply(Y, list(Env, Par1, Par2), length) cond[is.na(cond)] <- 1 withRep <- any(cond > 1) if(!is.null(Block)){ df <- data.frame(Y, Env, Block, Par1, Par2) } else { df <- data.frame(Y, Env, Par1, Par2) } } else { cond <- tapply(Y, list(Par1, Par2), length) cond[is.na(cond)] <- 1 withRep <- any(cond > 1) if(!is.null(Block)){ df <- data.frame(Y, Block, Par1, Par2) } else { df <- data.frame(Y, Par1, Par2) }} df$dr <- ifelse(as.character(df$Par1) < as.character(df$Par2), -1, ifelse(as.character(df$Par1) == as.character(df$Par2), 0, 1)) df$combination <- factor(ifelse(as.character(df$Par1) <= as.character(df$Par2), paste(df$Par1, df$Par2, sep =""), paste(df$Par2, df$Par1, sep =""))) df$selfs <- ifelse(as.character(df$Par1) == as.character(df$Par2), 1, 0) df$crosses <- ifelse(as.character(df$Par1) == as.character(df$Par2), 0, 1) if(!is.null(Env) & type == "environment"){ if(fct == "HAYMAN1"){ formFix <- Y ~ GCA(Par1, Par2) + tSCA(Par1, Par2) + RGCA(Par1, Par2) + RSCA(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + RGCA(Par1:Env, Par2:Env, type = "random") + RSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "GCA:Env", "tSCA:Env", "RGCA:Env", "RSCA:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + RGCA(Par1:Env, Par2:Env, type = "random") + RSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA:Env", "tSCA:Env", "RGCA:Env", "RSCA:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + RGCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA:Env", "tSCA:Env", "RGCA:Env", "RSCA:Env") } }else if(fct == "HAYMAN2"){ print("Yet to be implemented. Sorry!") stop() }else if(fct == "GRIFFING1"){ formFix <- Y ~ GCA(Par1, Par2) + tSCA(Par1, Par2) + REC(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "GCA:Env", "tSCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA:Env", "tSCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA:Env", "tSCA:Env", "REC:Env") } } else if(fct == "GRIFFING3"){ formFix <- Y ~ GCA(Par1, Par2) + SCA.G3(Par1, Par2) + REC.G3(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "GCA:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA:Env", "SCA:Env", "REC:Env") } } else if(fct == "GRIFFING2"){ formFix <- Y ~ GCA(Par1, Par2) + tSCA(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "GCA:Env", "tSCA:Env","Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA:Env", "tSCA:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + GCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA:Env", "tSCA:Env") } } else if(fct == "GRIFFING4"){ formFix <- Y ~ GCA(Par1, Par2) + SCA.G3(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "GCA:Env", "SCA:Env","Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA:Env", "SCA:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + GCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA:Env", "SCA:Env") } }else if(fct == "GE2r"){ formFix <- Y ~ H.BAR(Par1, Par2) + VEi(Par1, Par2) + Hi(Par1, Par2) + SCA(Par1, Par2) + REC(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + crosses:Env + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + crosses:Env + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + crosses:Env + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env", "REC:Env") } } else if(fct == "GE2"){ formFix <- Y ~ H.BAR(Par1, Par2) + VEi(Par1, Par2) + Hi(Par1, Par2) + SCA(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + crosses:Env + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + crosses:Env + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + crosses:Env + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env") } } else if(fct == "GE3r"){ formFix <- Y ~ H.BAR(Par1, Par2) + SP(Par1, Par2) + GCAC(Par1, Par2) + SCA(Par1, Par2) + REC(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + crosses:Env + SP(Par1:Env, Par2:Env, type = "random") + GCAC(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + crosses:Env + SP(Par1:Env, Par2:Env, type = "random") + GCAC(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + crosses:Env + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env", "REC:Env") } } else if(fct == "GE3"){ formFix <- Y ~ H.BAR(Par1, Par2) + SP(Par1, Par2) + GCAC(Par1, Par2) + SCA(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + crosses:Env + SP(Par1:Env, Par2:Env, type = "random") + GCAC(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + crosses:Env + SP(Par1:Env, Par2:Env, type = "random") + GCAC(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + crosses:Env + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env") }} }else if(!is.null(Env) & type == "all"){ if(fct == "HAYMAN1"){ formFix <- Y ~ 1 if(!is.null(Block)){ form <- ~ Env + Env:Block + GCA(Par1, Par2, type = "random") + tSCA(Par1, Par2, type = "random") + RGCA(Par1, Par2, type = "random") + RSCA(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + RGCA(Par1:Env, Par2:Env, type = "random") + RSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "GCA", "tSCA", "RGCA", "RSCA", "GCA:Env", "tSCA:Env", "RGCA:Env", "RSCA:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + GCA(Par1, Par2, type = "random") + tSCA(Par1, Par2, type = "random") + RGCA(Par1, Par2, type = "random") + RSCA(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + RGCA(Par1:Env, Par2:Env, type = "random") + RSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA", "tSCA", "RGCA", "RSCA", "GCA:Env", "tSCA:Env", "RGCA:Env", "RSCA:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + GCA(Par1, Par2, type = "random") + tSCA(Par1, Par2, type = "random") + RGCA(Par1, Par2, type = "random") + RSCA(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + RGCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA", "tSCA", "RGCA", "RSCA", "GCA:Env", "tSCA:Env", "RGCA:Env", "RSCA:Env") } }else if(fct == "HAYMAN2"){ print("Yet to be implemented. Sorry!") stop() }else if(fct == "GRIFFING1"){ formFix <- Y ~ 1 if(!is.null(Block)){ form <- ~ Env + Env:Block + GCA(Par1, Par2, type = "random") + tSCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "GCA", "tSCA", "REC", "GCA:Env", "tSCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + GCA(Par1, Par2, type = "random") + tSCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA", "tSCA", "REC", "GCA:Env", "tSCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + GCA(Par1, Par2, type = "random") + tSCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA", "tSCA", "REC", "GCA:Env", "tSCA:Env", "REC:Env") } }else if(fct == "GRIFFING3"){ formFix <- Y ~ 1 if(!is.null(Block)){ form <- ~ Env + Env:Block + GCA(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "GCA", "SCA", "REC", "GCA:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + GCA(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA", "SCA", "REC", "GCA:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + GCA(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA", "SCA", "REC", "GCA:Env", "tSCA:Env", "REC:Env") } } else if(fct == "GRIFFING2"){ formFix <- Y ~ 1 if(!is.null(Block)){ form <- ~ Env + Env:Block + GCA(Par1, Par2, type = "random") + tSCA(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "GCA", "tSCA", "GCA:Env", "tSCA:Env","Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + GCA(Par1:Env, Par2:Env, type = "random") + GCA(Par1, Par2, type = "random") + tSCA(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA", "tSCA", "GCA:Env", "tSCA:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + GCA(Par1, Par2, type = "random") + tSCA(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA", "tSCA", "GCA:Env", "tSCA:Env") } } else if(fct == "GRIFFING4"){ formFix <- Y ~ 1 if(!is.null(Block)){ form <- ~ Env + Env:Block + GCA(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "GCA", "SCA", "GCA:Env", "tSCA:Env","Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + GCA(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") + tSCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA", "SCA", "GCA:Env", "tSCA:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + GCA(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + GCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "GCA", "SCA", "GCA:Env", "tSCA:Env") } } else if(fct == "GE2r"){ formFix <- Y ~ H.BAR(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + crosses:Env + VEi(Par1, Par2, type = "random") + Hi(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "VEi", "Hi", "SCA", "REC", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + crosses:Env + VEi(Par1, Par2, type = "random") + Hi(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env","VEi", "Hi", "SCA", "REC", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + crosses:Env + VEi(Par1, Par2, type = "random") + Hi(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "VEi", "Hi", "SCA", "REC", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env", "REC:Env") } } else if(fct == "GE2"){ formFix <- Y ~ H.BAR(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + crosses:Env + VEi(Par1, Par2, type = "random") + Hi(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "VEi", "Hi", "SCA", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + crosses:Env + VEi(Par1, Par2, type = "random") + Hi(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env","VEi", "Hi", "SCA", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + crosses:Env + VEi(Par1, Par2, type = "random") + Hi(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "VEi", "Hi", "SCA", "H:BAR:Env", "VEi:Env", "Hi:Env", "SCA:Env") } } else if(fct == "GE3r"){ formFix <- Y ~ H.BAR(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + SP(Par1, Par2, type = "random") + GCAC(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + crosses:Env + SP(Par1:Env, Par2:Env, type = "random") + GCAC(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "SP", "GCAC", "SCA", "REC", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + SP(Par1, Par2, type = "random") + GCAC(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + crosses:Env + SP(Par1:Env, Par2:Env, type = "random") + GCAC(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") + REC(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "SP", "GCAC", "SCA", "REC", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env", "REC:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + SP(Par1, Par2, type = "random") + GCAC(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + REC(Par1, Par2, type = "random") + crosses:Env + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "SP", "GCAC", "SCA", "REC", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env", "REC:Env") } } else if(fct == "GE3"){ formFix <- Y ~ H.BAR(Par1, Par2) if(!is.null(Block)){ form <- ~ Env + Env:Block + SP(Par1, Par2, type = "random") + GCAC(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + crosses:Env + SP(Par1:Env, Par2:Env, type = "random") + GCAC(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "Env:Block", "SP", "GCAC", "SCA", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ Env + SP(Par1, Par2, type = "random") + GCAC(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + crosses:Env + SP(Par1:Env, Par2:Env, type = "random") + GCAC(Par1:Env, Par2:Env, type = "random") + SCA(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "SP", "GCAC", "SCA", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ Env + SP(Par1, Par2, type = "random") + GCAC(Par1, Par2, type = "random") + SCA(Par1, Par2, type = "random") + crosses:Env + VEi(Par1:Env, Par2:Env, type = "random") + Hi(Par1:Env, Par2:Env, type = "random") rnam <- c("Env", "SP", "GCAC", "SCA", "H:BAR:Env", "Selfs:Env", "GCAC:Env", "SCA:Env") }} } else { if(fct == "HAYMAN1"){ formFix <- Y ~ 1 if(!is.null(Block)){ form <- ~ Block + overlay(Par1, Par2) + overlay(Par1, Par2):dr + combination + combination:dr rnam <- c("Block", "GCA", "RGCA", "tSCA", "RSCA", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ overlay(Par1, Par2) + overlay(Par1, Par2):dr + combination + combination:dr rnam <- c("GCA", "RGCA", "tSCA", "RSCA", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ overlay(Par1, Par2) + overlay(Par1, Par2):dr + combination rnam <- c("GCA", "RGCA", "tSCA", "RSCA") } }else if(fct == "HAYMAN2"){ formFix <- Y ~ 1 if(!is.null(Block)){ form <- ~ Block + crosses + overlay(Par1, Par2) + overlay(Par1, Par2):dr + overlay(Par1, Par2):selfs + combination + combination:dr rnam <- c("Block", "MDD", "GCA", "RGCA", "DD", "SCA", "RSCA", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ crosses + overlay(Par1, Par2) + overlay(Par1, Par2):dr + overlay(Par1, Par2):selfs + combination + combination:dr rnam <- c("MDD", "GCA", "RGCA", "DD", "SCA", "RSCA", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ crosses + overlay(Par1, Par2) + overlay(Par1, Par2):dr + overlay(Par1, Par2):selfs + combination rnam <- c("MDD", "GCA", "RGCA", "DD", "SCA", "RSCA") } }else if(fct == "GRIFFING1"){ formFix <- Y ~ 1 if(!is.null(Block)){ form <- ~ Block + overlay(Par1, Par2) + combination + combination:dr rnam <- c("Block", "GCA", "tSCA", "REC", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ overlay(Par1, Par2) + combination + combination:dr rnam <- c("GCA", "tSCA", "REC", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ overlay(Par1, Par2) + combination rnam <- c("GCA", "tSCA", "REC") } }else if(fct == "GRIFFING3"){ formFix <- Y ~ 1 if(!is.null(Block)){ form <- ~ Block + overlay(Par1, Par2) + combination + combination:dr rnam <- c("Block", "GCA", "SCA", "REC", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ overlay(Par1, Par2) + combination + combination:dr rnam <- c("GCA", "SCA", "REC", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ overlay(Par1, Par2) + combination rnam <- c("GCA", "SCA", "REC") } } else if(fct == "GRIFFING2"){ formFix <- Y ~ 1 if(!is.null(Block)){ form <- ~ Block + overlay(Par1, Par2) + combination rnam <- c("Block", "GCA", "tSCA", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ overlay(Par1, Par2) + combination rnam <- c("GCA", "tSCA", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ overlay(Par1, Par2) rnam <- c("GCA", "tSCA") } } else if(fct == "GRIFFING4"){ formFix <- Y ~ 1 if(!is.null(Block)){ form <- ~ Block + overlay(Par1, Par2) + combination rnam <- c("Block", "GCA", "SCA", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ overlay(Par1, Par2) + combination rnam <- c("GCA", "SCA", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ overlay(Par1, Par2) rnam <- c("GCA", "SCA") } } else if(fct == "GE2r"){ formFix <- Y ~ crosses if(!is.null(Block)){ form <- ~ Block + overlay(Par1, Par2) + overlay(Par1, Par2):crosses + combination:crosses + combination:crosses:dr rnam <- c("Block", "Variety", "h.i", "SCA", "Reciprocals", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ overlay(Par1, Par2) + overlay(Par1, Par2):crosses + combination:crosses + combination:crosses:dr rnam <- c("Variety", "h.i", "SCA", "Reciprocals", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ overlay(Par1, Par2) + overlay(Par1, Par2):crosses + combination:crosses rnam <- c("Variety", "h.i", "SCA", "Reciprocals") } } else if(fct == "GE2"){ formFix <- Y ~ crosses if(!is.null(Block)){ form <- ~ Block + overlay(Par1, Par2) + overlay(Par1, Par2):crosses + combination:crosses rnam <- c("Block", "Variety", "h.i", "SCA", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ overlay(Par1, Par2) + overlay(Par1, Par2):crosses + combination:crosses rnam <- c("Variety", "h.i", "SCA", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ overlay(Par1, Par2) + overlay(Par1, Par2):crosses rnam <- c("Variety", "h.i", "SCA") } } else if(fct == "GE3r"){ formFix <- Y ~ crosses if(!is.null(Block)){ form <- ~ Block + overlay(Par1, Par2):crosses + Par1:selfs + combination:crosses + combination:crosses:dr rnam <- c("Block", "GCAC", "Selfed par.", "SCA", "Reciprocals", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ overlay(Par1, Par2):crosses + Par1:selfs + combination:crosses + combination:crosses:dr rnam <- c("GCAC", "Selfed par.", "SCA", "Reciprocals", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ overlay(Par1, Par2):crosses + Par1:selfs + combination:crosses rnam <- c("GCAC", "Selfed par.", "SCA", "Reciprocals") } } else if(fct == "GE3"){ formFix <- Y ~ crosses if(!is.null(Block)){ form <- ~ Block + overlay(Par1, Par2):crosses + Par1:selfs + combination:crosses rnam <- c("Block", "GCAC", "Selfed par.", "SCA", "Residuals") } else if(is.null(Block) & withRep == T){ form <- ~ overlay(Par1, Par2):crosses + Par1:selfs + combination:crosses rnam <- c("GCAC", "Selfed par.", "SCA", "Residuals") } else if(is.null(Block) & withRep == F){ form <- ~ overlay(Par1, Par2):crosses + Par1:selfs rnam <- c("GCAC", "Selfed par.", "SCA") } } } modh <- sommer::mmer(formFix, random = form, verbose = F, data = df) vc <- summary(modh)$varcomp[,-c(3:4)] beta <- summary(modh)$beta row.names(vc) <- rnam returnList <- list(mod = modh, beta = beta, varcomp = vc) return(returnList) }
pp_complete <- function(D, year.range = NULL, Instrument.set = NULL, Target.set = NULL) { if (!is.null(year.range)) { if (sum(which(!(unique(D$Year) %in% seq(year.range[1], year.range[2])))) > 0) { stop("The original object contains years outside the range provided.") } } else { year.range <- range(D$Year) } if (!is.null(Instrument.set)) { if (sum(which(!(which(unique(D$Instrument) %in% Instrument.set)))) > 0) { stop("The original object contains instruments that are not present in the full set of instruments provided.") } } else { Instrument.set <- levels(D$Instrument) } if (!is.null(Target.set)) { if (sum(which(!(which(unique(D$Target) %in% Target.set)))) > 0) { stop("The original object contains targets that are not present in the full set of targets provided.") } } else { Target.set <- levels(D$Target) } Original <- D Full <- expand.grid(Country = levels(Original$Country), Sector = levels(Original$Sector), Year = as.integer(seq(year.range[1], year.range[2])), Instrument = Instrument.set, Target = Target.set) %>% as_tibble() D <- suppressWarnings(dplyr::left_join(Full, Original, by = c("Country", "Sector", "Year", "Instrument", "Target"))) %>% dplyr::mutate(covered = ifelse(is.na(covered), 0, covered)) %>% dplyr::mutate(Instrument = factor(Instrument, levels = Instrument.set)) %>% dplyr::mutate(Target= factor(Target, levels = Target.set)) message(paste("The original size of the data frame was ", dim(Original)[1], " observations.", sep = "")) message(paste("The size of the transformed data frame is now ", dim(D)[1], " observations.", sep = "")) message(paste(" Country: ", length(levels(Original$Country)), " -> ", length(levels(D$Country)), sep = "")) message(paste(" Year: ", length(unique(Original$Year)), " -> ", length(unique(D$Year)), sep = "")) message(paste(" Instrument: ", length(levels(Original$Instrument)), " -> ", length(levels(D$Instrument)), sep = "")) message(paste(" Target: ", length(levels(Original$Target)), " -> ", length(levels(D$Target)), sep = "")) return(D) }
setClass( "equation_directional", contains = "equation_basic", representation( separation_subset = "vector" ), prototype( separation_subset = NULL ) ) setMethod( "initialize", "equation_directional", function(.Object, specification, data, name, prefix, separation_subset) { .Object <- callNextMethod(.Object, specification, data, name, prefix) .Object@separation_subset <- separation_subset .Object } )
ssp.plot <- function(block, pplot, splot, ssplot, Y) { name.y <- paste(deparse(substitute(Y))) name.r <- paste(deparse(substitute(block))) name.p <- paste(deparse(substitute(pplot))) name.sp <- paste(deparse(substitute(splot))) name.ssp <- paste(deparse(substitute(ssplot))) block<-as.factor(block) pplot<-as.factor(pplot) splot<-as.factor(splot) ssplot<-as.factor(ssplot) cat("\nANALYSIS SPLIT-SPLIT PLOT: ", name.y, "\nClass level information\n\n") nrep <- length(unique(block)) np <- length(unique(pplot)) nsp <- length(unique(splot)) nssp<- length(unique(ssplot)) cat(name.p, "\t: ",unique(as.character(pplot)),"\n") cat(name.sp, "\t: ",unique(as.character(splot)),"\n") cat(name.ssp,"\t: ",unique(as.character(ssplot)),"\n") cat(name.r, "\t: ",unique(as.character(block)),"\n") cat("\nNumber of observations: ", length(Y), "\n\n") model<- aov(Y ~ block*pplot*splot*ssplot) B<-suppressWarnings(anova(model)) W<-NULL W<-B[c(1,2,16,3,7,16,4,9,10,14,16),] for (j in 1:2){ W[3,j]<-B[5,j] W[6,j]<-B[6,j]+B[11,j] W[11,j]<-B[8,j]+B[12,j]+B[13,j]+B[15,j] } W[,3]<-W[,2]/W[,1] W[2,4]<-W[2,3]/W[3,3] W[4:5,4]<-W[4:5,3]/W[6,3] W[7:10,4]<-W[7:10,3]/W[11,3] W[2,5]<-1-pf(W[2,4],W[2,1],W[3,1]) W[4:5,5]<-1-pf(W[4:5,4],W[4:5,1],W[6,1]) W[7:10,5]<-1-pf(W[7:10,4],W[7:10,1],W[11,1]) N<-NULL N[1]<- name.r N[2]<- name.p N[3]<- "Ea" N[4]<- name.sp N[5]<- paste(name.p,":",name.sp,sep="") N[6]<- "Eb" N[7]<- name.ssp N[8]<- paste(name.ssp,":",name.p,sep="") N[9]<- paste(name.ssp,":",name.sp,sep="") N[10]<-paste(name.ssp,":",name.p,":",name.sp,sep="") N[11]<- "Ec" rownames(W)<-N attributes(W)$heading[2]<-paste("Response:",name.y) print(W) medy <- mean(Y,na.rm=TRUE) gl.a<-W[3,1]; Ea<-W[3,3] gl.b<-W[6,1]; Eb<-W[6,3] gl.c<-W[11,1]; Ec<-W[11,3] cat("\ncv(a) =",round(sqrt(Ea)*100/medy,1),"%,", "cv(b) =",round(sqrt(Eb)*100/medy,1),"%,", "cv(c) =",round(sqrt(Ec)*100/medy,1),"%,","Mean =", medy,"\n\n") output<-list(ANOVA=W, gl.a=gl.a,gl.b=gl.b,gl.c=gl.c,Ea=Ea,Eb=Eb,Ec=Ec) invisible(output) }
interval_labels <- function(cuts, digits = NULL, right_closed = TRUE) { if (is.numeric(cuts)) { if (is.null(digits)) { cuts <- scales::comma(cuts) } else cuts <- scales::comma(cuts, accuracy = 10 ^ -digits) labels <- vector("character", 0) cuts_no <- length(cuts) sign1 <- ifelse(right_closed == TRUE, "\u2264", "<") sign2 <- ifelse(right_closed == TRUE, ">", "\u2265") if (cuts_no == 2) { labels <- c("Feature") } else if (cuts_no == 3) { labels <- c(paste0(sign1, cuts[2]), paste0(sign2, cuts[2])) } else if (cuts_no > 3) { for (i in 2:(length(cuts) - 2)) { temp <- paste0(cuts[i], "\u2013", cuts[i + 1]) labels <- c(labels, temp) } labels <- c(paste0(sign1, cuts[2]), labels, paste0(sign2, cuts[length(cuts) - 1])) } } else { right_closed <- ifelse(stringr::str_sub(cuts[1], -1L, -1L) == "]", TRUE, FALSE) labels <- stringr::str_replace_all(stringr::str_replace_all(cuts, ", ", "\u2013"), "\\[|\\]|\\)|\\(", "") sign1 <- ifelse(right_closed == TRUE, "\u2264", "<") sign2 <- ifelse(right_closed == TRUE, ">", "\u2265") labels[1] <- glue::glue("{sign1}{stringr::word(labels[2], sep = '\u2013')}") if (stringr::str_detect(tidyr::replace_na(labels[length(labels)], "NA"), "NA")) { labels[length(labels) - 1] <- glue::glue("{sign2}{stringr::word(labels[length(labels) - 1], 1, sep = '\u2013')}") } else { labels[length(labels)] <- glue::glue("{sign2}{stringr::word(labels[length(labels)], 1, sep = '\u2013')}") } } return(labels) } sv_interval_labels_num <- function(cuts, format = NULL, right_closed = TRUE) { if (is.null(format)) { cuts <- scales::number(cuts, big.mark = ",") } else cuts <- format(cuts) labels <- vector("character", 0) cuts_no <- length(cuts) sign1 <- ifelse(right_closed == TRUE, "\u2264", "<") sign2 <- ifelse(right_closed == TRUE, ">", "\u2265") if (cuts_no == 2) { labels <- c("Feature") } else if (cuts_no == 3) { labels <- c(paste0(sign1, cuts[2]), paste0(sign2, cuts[2])) } else if (cuts_no > 3) { for (i in 2:(length(cuts) - 2)) { temp <- paste0(cuts[i], "\u2013", cuts[i + 1]) labels <- c(labels, temp) } labels <- c(paste0(sign1, cuts[2]), labels, paste0(sign2, cuts[length(cuts) - 1])) } return(labels) } sv_interval_labels_chr <- function(cuts) { right_closed <- ifelse(stringr::str_sub(cuts[1], -1L, -1L) == "]", TRUE, FALSE) labels <- stringr::str_replace_all(stringr::str_replace_all(cuts, ", ", "\u2013"), "\\[|\\]|\\)|\\(", "") sign1 <- ifelse(right_closed == TRUE, "\u2264", "<") sign2 <- ifelse(right_closed == TRUE, ">", "\u2265") labels[1] <- glue::glue("{sign1}{stringr::word(labels[2], sep = '\u2013')}") if (stringr::str_detect(tidyr::replace_na(labels[length(labels)], "NA"), "NA")) { labels[length(labels) - 1] <- glue::glue("{sign2}{stringr::word(labels[length(labels) - 1], 1, sep = '\u2013')}") } else { labels[length(labels)] <- glue::glue("{sign2}{stringr::word(labels[length(labels)], 1, sep = '\u2013')}") } return(labels) }
meanValue <- function() { showPANmnvl <- function() { refreshDataSetsList(outp = FALSE) createSubPanR4C1() createTITLE(labTitle = "MEAN VALUE") if (is.null(KTSEnv$dSList$gaps) == FALSE) { createGapRb() } createTsRb() createEntry(labTitle = "Period(in lags)", textVariableName = "period") createEntry(labTitle = "Number of periods around", textVariableName = "perWindow") createEntry(labTitle = "Maximum number of iterations", textVariableName = "maxniter") createEntry(labTitle = "Minimum number of observations (one side)", textVariableName = "mininumNObs") createEntry(labTitle = "Statistic", textVariableName = "mediaona", defaultVal = "median") createOK(labTitle = "RUN", action = mnvlOnOk) tcltk::tkpack(KTSEnv$subPanR4C1, expand = TRUE, fill = "both") } mnvlOnOk <- function() { selTsName <- verifyCharEntry(tcltk::tclvalue(KTSEnv$selTsP), noValid = NA) statistic <- verifyCharEntry(tcltk::tclvalue(KTSEnv$mediaona)) lPeriod <- verifyIntEntry(tcltk::tclvalue(KTSEnv$period), noValid = NA) nPeriods <- verifyIntEntry(tcltk::tclvalue(KTSEnv$perWindow), noValid = NA) maxIter <- verifyIntEntry(tcltk::tclvalue(KTSEnv$maxniter), noValid = NA) minPoints <- verifyIntEntry(tcltk::tclvalue(KTSEnv$mininumNObs), noValid = NA) if (is.na(selTsName)) { tcltk::tkmessageBox(message = "Choose a time series", icon = "warning") } else if (is.na(lPeriod)) { tcltk::tkmessageBox(message = paste("Enter the period", "of the phenomenon in gaps"), icon = "warning") } else if (is.na(nPeriods)) { tcltk::tkmessageBox(message = paste("Enter the number of", "periods to use around the gap"), icon = "warning") } else if (lPeriod == 0) { tcltk::tkmessageBox(message = paste("The period length must be,", "at least, 1 (lag)"), icon = "warning") } else if (nPeriods < 2) { tcltk::tkmessageBox(message = paste("The number of periods must be at", "least 2 (one at each side)"), icon = "warning") } else if (is.na(maxIter)) { tcltk::tkmessageBox(message = paste("Enter the maximum number of times", "the process will be applied"), icon = "warning") } else if (is.na(statistic)) { tcltk::tkmessageBox(message = paste("Enter the statistic:", "median or mean"), icon = "warning") } else if (statistic != "mean" & statistic != "median") { tcltk::tkmessageBox(message = paste("The statistic can be", "median or mean"), icon = "warning") } else { if (is.na(minPoints)) { minPoints <- 0 } if (nPeriods%%2 == 1) { nPeriods <- nPeriods + 1 } halfNPeriods <- nPeriods/2 selTs <- get(selTsName, envir = KTSEnv) gapToUse <- gapForSelMethod(selTsName, selTs) selGap <- gapToUse$selGap selGapName <- gapToUse$selGapName nasInSelTs <- which(is.na(selTs$value)) tmComptibility <- areTsGapTimeCompatible(selTs, selGap) if (length(nasInSelTs) == 0) { tcltk::tkmessageBox(message = paste("The selected time", "series contains no NAs"), icon = "warning") } else if (length(selGap$gaps) == 0) { tcltk::tkmessageBox(message = "The gap set is empty", icon = "warning") } else if (length(setdiff(union(selGap$gaps, nasInSelTs), nasInSelTs)) != 0) { tcltk::tkmessageBox(message = paste("Some NAs in the gap set do", "not exist in the time series.", "Check that the selected gap set", "comes from the selected", "time series"), icon = "warning") } else if (tmComptibility[1] == FALSE) { tcltk::tkmessageBox(message = paste("The initial date of the time", "series and the one stored", "in the gap set do not match"), icon = "warning") } else if (tmComptibility[2] == FALSE) { tcltk::tkmessageBox(message = paste("The sampling period of the", "time series and the one stored", "in the gap set do not match"), icon = "warning") } else if (tmComptibility[3] == FALSE) { tcltk::tkmessageBox(message = paste("The time series is shorter", "than some indices stored", "in the set of gaps"), icon = "warning") } else if (minPoints > halfNPeriods) { tcltk::tkmessageBox(message = paste("The minimum number of", "observations must not excede", "half the number of periods"), icon = "warning") } else { getCentrVal <- function(NAInd, TSV, widthAround, lPeriod, minPoints, statistic = "mean") { lTS <- length(TSV) eqP <- seq(NAInd - widthAround, NAInd + widthAround, lPeriod) eqP <- eqP[eqP > 0 & eqP <= lTS] anaobi1 <- is.finite(TSV[eqP[which(eqP < NAInd)]]) anaobi2 <- is.finite(TSV[eqP[which(eqP >NAInd)]]) pointsBefore <- which(anaobi1) pointsAfter <- which(anaobi2) pointsBefore <- length(pointsBefore) pointsAfter <- length(pointsAfter) if (pointsBefore < minPoints | pointsAfter < minPoints) { res <- NA }else if (statistic == "mean") { res <- mean(TSV[eqP], na.rm = TRUE) }else{ res <- stats::median(TSV[eqP], na.rm = TRUE) } res } getValsOneIte <- function(gaps,TSVI, widthAround, lPeriod, minPoints, statistic = "mean"){ replacements <- sapply(gaps, FUN = getCentrVal, minPoints = minPoints, TSV = TSVI, widthAround = widthAround, lPeriod = lPeriod, statistic = statistic) replacements[which(is.finite(replacements) == FALSE)] <- NA replacements } fillGapsMV <- function(gaps, TS, maxIter, widthAround, lPeriod, minPoints,statistic = "mean") { cont <- 1 remainingGaps <- length(gaps) while (cont <= maxIter & length(gaps) != 0) { replacements <- getValsOneIte(gaps = gaps, TSVI = TS$value, widthAround = widthAround, lPeriod = lPeriod, minPoints = minPoints, statistic = statistic) TS$value[gaps] <- replacements gapsNow <- intersect(which(is.na(TS$value)),gaps) remainingGaps <- c(remainingGaps, length(gapsNow)) gaps <- gapsNow cont <- cont + 1 rm(replacements) } resultMV <- list(filled = TS, gaps = gaps, iterations = cont, advances = remainingGaps) rownames(resultMV$filled) <- NULL resultMV } widthAround <- halfNPeriods * lPeriod resMeVal <- fillGapsMV(gaps = selGap$gaps, TS = selTs, maxIter = maxIter, widthAround = widthAround, lPeriod = lPeriod, minPoints = minPoints, statistic = statistic) filledTS <- resMeVal$filled assign(paste0(selTsName, "_", selGapName, "_mvl"), filledTS, envir = KTSEnv) gapsAfterFill <- getGapsAfterFill(filledTS, selGap, envir = environment(mnvlOnOk)) remainingNAsInGap <- gapsAfterFill$remainingNAsInGap filledNasTable <- gapsAfterFill$filledNasTable sampPerSec <- diff(as.numeric(selTs$time[1:2])) txtParam <- c(paste("Period(sec):", lPeriod * sampPerSec), paste("Periods around:",nPeriods), paste("Minimum number of observations to each side:", minPoints), paste("NAs to fill per iteration:", paste(resMeVal$advances, collapse = ","))) writeMethodTitle("MEAN/MEDIAN VALUE") tcltk::tkinsert(KTSEnv$txtWidget, "end", paste(txtParam, collapse = "\n")) tcltk::tkinsert(KTSEnv$txtWidget, "end", "\n") writeMethodSummary(filledNasTable, remainingNAsInGap, selTsName, selGapName, selGap) endingLines() cleanEnvir() refreshDataSetsList(outp = FALSE) showPANmnvl() } } } cleanEnvir() refreshDataSetsList(outp = FALSE) checkIfAnyTs(action = "showPANmnvl", envirName = environment(showPANmnvl)) }
es_stats <- function(index=NULL, type=NULL, metric=NULL, raw=FALSE, callopts=list(), verbose=TRUE, ...) { es_GET('_stats', index, type, metric, NULL, 'elastic_stats', raw, callopts, ...) }
package.env <- NULL .onLoad <- function(libname, pkgname) { if (Sys.info()["sysname"] == "Darwin") { Sys.setenv("VECLIB_MAXIMUM_THREADS" = "1") } op <- options() op.rMVP <- list( rMVP.OutputLog2File = TRUE ) toset <- !(names(op.rMVP) %in% names(op)) if (any(toset)) { options(op.rMVP[toset]) } package.env <<- new.env() return(invisible()) } .onAttach <- function(...){ packageStartupMessage("Full description, Bug report, Suggestion and the latest version:") packageStartupMessage("https://github.com/xiaolei-lab/rMVP") }
library(miRetrieve) library(testthat) df_snp <- data.frame("SNP" = c("rs4544 rs3655 test", "test test", "rs3655"), "PMID" = seq(1:3)) df_snp_extract <- extract_snp(df_snp, col.abstract = SNP) df_snp_extract_i <- extract_snp(df_snp, col.abstract = SNP, indicate = TRUE) df_snp_extract_d <- extract_snp(df_snp, col.abstract = SNP, discard = TRUE) test_that("Tests that SNPs are correctly recognized in data.frames", { expect_gte(ncol(df_snp_extract), ncol(df_snp)) expect_gte(ncol(df_snp_extract_i), ncol(df_snp_extract)) expect_lte(nrow(df_snp_extract_d), nrow(df_snp)) }) df_snp_count <- count_snp(df_snp_extract_d) test_that("Tests that SNPs are counted", { expect_equal(typeof(df_snp_count), "list") expect_equal(ncol(df_snp_count), 2) }) top_snp <- get_snp(df_snp_extract_d, top = 1) test_that("Tests that SNPs are extracted from data.frame", { expect_equal(typeof(top_snp), "character") expect_equal(length(top_snp), 1) }) df_snp_subset <- subset_snp(df_snp_extract, top_snp) test_that("Tests that SNPs are extracted from data.frame", { expect_equal(nrow(df_snp_subset), 2) expect_equal(length(unique(df_snp_subset[["SNPs"]])), 1) })
"schaper2019"
"diccionario_aglomerados"
NULL rows_insert <- function(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE) { lifecycle::signal_stage("experimental", "rows_insert()") UseMethod("rows_insert") } rows_insert.data.frame <- function(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE) { check_dots_empty() key <- rows_check_key(by, x, y) y <- auto_copy(x, y, copy = copy) rows_df_in_place(in_place) rows_check_key_df(x, key, df_name = "x") rows_check_key_df(y, key, df_name = "y") idx <- vctrs::vec_match(y[key], x[key]) bad <- which(!is.na(idx)) if (has_length(bad)) { abort("Attempting to insert duplicate rows.") } rows_bind(x, y) } rows_update <- function(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE) { lifecycle::signal_stage("experimental", "rows_update()") UseMethod("rows_update", x) } rows_update.data.frame <- function(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE) { check_dots_empty() key <- rows_check_key(by, x, y) y <- auto_copy(x, y, copy = copy) rows_df_in_place(in_place) rows_check_key_df(x, key, df_name = "x") rows_check_key_df(y, key, df_name = "y") idx <- vctrs::vec_match(y[key], x[key]) bad <- which(is.na(idx)) if (has_length(bad)) { abort("Attempting to update missing rows.") } x[idx, names(y)] <- y x } rows_patch <- function(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE) { lifecycle::signal_stage("experimental", "rows_patch()") UseMethod("rows_patch", x) } rows_patch.data.frame <- function(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE) { check_dots_empty() key <- rows_check_key(by, x, y) y <- auto_copy(x, y, copy = copy) rows_df_in_place(in_place) rows_check_key_df(x, key, df_name = "x") rows_check_key_df(y, key, df_name = "y") idx <- vctrs::vec_match(y[key], x[key]) bad <- which(is.na(idx)) if (has_length(bad)) { abort("Can't patch missing row.") } new_data <- map2(x[idx, names(y)], y, coalesce) x[idx, names(y)] <- new_data x } rows_upsert <- function(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE) { lifecycle::signal_stage("experimental", "rows_upsert()") UseMethod("rows_upsert", x) } rows_upsert.data.frame <- function(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE) { check_dots_empty() key <- rows_check_key(by, x, y) y <- auto_copy(x, y, copy = copy) rows_df_in_place(in_place) rows_check_key_df(x, key, df_name = "x") rows_check_key_df(y, key, df_name = "y") idx <- vctrs::vec_match(y[key], x[key]) new <- is.na(idx) idx_existing <- idx[!new] idx_new <- idx[new] x[idx_existing, names(y)] <- vec_slice(y, !new) rows_bind(x, vec_slice(y, new)) } rows_delete <- function(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE) { lifecycle::signal_stage("experimental", "rows_delete()") UseMethod("rows_delete", x) } rows_delete.data.frame <- function(x, y, by = NULL, ..., copy = FALSE, in_place = FALSE) { check_dots_empty() key <- rows_check_key(by, x, y) y <- auto_copy(x, y, copy = copy) rows_df_in_place(in_place) rows_check_key_df(x, key, df_name = "x") rows_check_key_df(y, key, df_name = "y") extra_cols <- setdiff(names(y), key) if (has_length(extra_cols)) { bullets <- glue("Ignoring extra columns: ", commas(tick_if_needed(extra_cols))) inform(bullets, class = c("dplyr_message_delete_extra_cols", "dplyr_message")) } idx <- vctrs::vec_match(y[key], x[key]) bad <- which(is.na(idx)) if (has_length(bad)) { abort("Can't delete missing row.") } dplyr_row_slice(x, -idx) } rows_check_key <- function(by, x, y, error_call = caller_env()) { if (is.null(by)) { by <- names(y)[[1]] msg <- glue("Matching, by = \"{by}\"") inform(msg, class = c("dplyr_message_matching_by", "dplyr_message")) } if (!is.character(by) || length(by) == 0) { abort("`by` must be a character vector.", call = error_call) } if (any(names2(by) != "")) { abort("`by` must be unnamed.", call = error_call) } bad <- setdiff(colnames(y), colnames(x)) if (has_length(bad)) { abort("All columns in `y` must exist in `x`.", call = error_call) } by } rows_check_key_df <- function(df, by, df_name, error_call = caller_env()) { y_miss <- setdiff(by, colnames(df)) if (length(y_miss) > 0) { msg <- glue("All `by` columns must exist in `{df_name}`.") abort(msg, call = error_call) } if (vctrs::vec_duplicate_any(df[by])) { msg <- glue("`{df_name}` key values must be unique.") abort(msg, call = error_call) } } rows_df_in_place <- function(in_place, error_call = caller_env()) { if (is_true(in_place)) { msg <- "Data frames only support `in_place = FALSE`." abort(msg, call = error_call) } } rows_bind <- function(x, y) { dplyr_reconstruct(vctrs::vec_rbind(x, y), x) }
summary_patristic_matrix_array <- function(patristic_matrix_array, fn = stats::median) { return(apply(patristic_matrix_array, MARGIN = c(1, 2), fn, na.rm = TRUE)) } datelife_result_study_index <- function(datelife_result, cache = "opentree_chronograms") { if ("opentree_chronograms" %in% cache) { utils::data("opentree_chronograms") cache <- get("opentree_chronograms") } return(which(names(cache$trees) %in% names(datelife_result))) } get_subset_array_dispatch <- function(study_element, taxa, phy = NULL, phy4 = NULL, dating_method = "PATHd8") { if (class(study_element) == "array") { return(patristic_matrix_array_subset_both(study_element, taxa, phy, phy4, dating_method)) } else { return(phylo_subset_both(reference_tree = study_element, taxa = taxa, phy = phy, phy4 = phy4, dating_method = dating_method)) } } results_list_process <- function(results_list, taxa = NULL, partial = FALSE) { if (is.null(taxa)) { taxa <- unique(unname(unlist(lapply(final_matrices, rownames)))) } patristic.matrices <- lapply(results_list, "[[", "patristic_matrix_array") final_matrices <- patristic.matrices[!is.na(patristic.matrices)] if (length(final_matrices) > 0) { if (!partial) { final_matrices <- final_matrices[sapply(final_matrices, patristic_matrix_taxa_all_matching, taxa = taxa)] } to.delete <- c() for (i in sequence(length(final_matrices))) { if (all(is.na(final_matrices[[i]]))) { to.delete <- c(to.delete, i) } } if (length(to.delete) > 0) { final_matrices <- final_matrices[-to.delete] } } return(final_matrices) } patristic_matrix_taxa_all_matching <- function(patristic_matrix, taxa) { return(sum(!(taxa %in% rownames(patristic_matrix))) == 0) } patristic_matrix_array_subset_both <- function(patristic_matrix_array, taxa, phy = NULL, phy4 = NULL, dating_method = "PATHd8") { if (is.null(phy)) { return(patristic_matrix_array_subset(patristic_matrix_array = patristic_matrix_array, taxa = taxa, phy4 = phy4)) } else { return(patristic_matrix_array_congruify(patristic_matrix_array = patristic_matrix_array, taxa = taxa, phy = phy, dating_method)) } } patristic_matrix_array_subset <- function(patristic_matrix_array, taxa, phy4 = NULL) { patristic_matrix_array <- patristic_matrix_array[rownames(patristic_matrix_array) %in% taxa, colnames(patristic_matrix_array) %in% taxa, ] problem <- "none" final.size <- sum(rownames(patristic_matrix_array) %in% taxa) if (final.size < length(taxa)) { problem <- "missing some taxa on chronogram, so this is probably an underestimate" if (final.size < 2) { problem <- "insufficient coverage" patristic_matrix_array <- NA } } if (!is.null(phy4)) { if (length(phylobase::descendants(phy4, phylobase::MRCA(phy4, taxa), type = "tips")) > taxa) { problem <- "set of taxa not a clade, so this is probably an overestimate" } } return(list(patristic_matrix_array = patristic_matrix_array, problem = problem)) } patristic_matrix_array_congruify <- function(patristic_matrix_array, taxa, phy = NULL, dating_method = "PATHd8") { patristic_matrix_array <- patristic_matrix_array[rownames(patristic_matrix_array) %in% taxa, colnames(patristic_matrix_array) %in% taxa, ] problem <- "none" final.size <- sum(rownames(patristic_matrix_array) %in% taxa) if (final.size < length(taxa)) { problem <- "missing some taxa on chronogram, so this is probably an underestimate" if (final.size < 3) { problem <- "insufficient coverage" patristic_matrix_array <- NA return(list(patristic_matrix_array = patristic_matrix_array, problem = problem)) } } patristic_matrix_list <- patristic_matrix_array_split(patristic_matrix_array) patristic_matrix_array <- patristic_matrix_list_to_array(lapply(patristic_matrix_list, patristic_matrix_array_phylo_congruify, target_tree = phy, scale = dating_method)) return(list(patristic_matrix_array = patristic_matrix_array, problem = problem)) } patristic_matrix_array_split <- function(patristic_matrix_array) { asub_for_lapply <- function(idx, x, dims = 3) { return(abind::asub(x, idx, dims)) } return(lapply(sequence(dim(patristic_matrix_array)[3]), asub_for_lapply, patristic_matrix_array)) } patristic_matrix_list_to_array <- function(patristic_matrix_list, pad = TRUE) { all_taxa <- sort(unique(unname(unlist(lapply(patristic_matrix_list, rownames))))) if (pad) { patristic_matrix_list <- lapply(patristic_matrix_list, patristic_matrix_pad, all_taxa = all_taxa) } original.size <- length(patristic_matrix_list) patristic_matrix_list <- lapply(patristic_matrix_list, patristic_matrix_name_reorder) if (length(patristic_matrix_list) < 1) { stop(paste0("The patristic matrices you are trying to bind are too few; input was ", original.size, " and current length is ", length(patristic_matrix_list))) } standard.rownames <- rownames(patristic_matrix_list[[1]]) standard.colnames <- colnames(patristic_matrix_list[[1]]) matching.names <- sapply(patristic_matrix_list, patristic_matrix_name_order_test, standard.rownames, standard.colnames) if (sum(matching.names) != length(matching.names)) { stop("The patristic matrices you are trying to bind do not have the same taxa") } return(abind::abind(patristic_matrix_list, along = 3)) } patristic_matrix_pad <- function(patristic_matrix, all_taxa) { number.missing <- length(all_taxa) - dim(patristic_matrix)[1] final_matrix <- patristic_matrix if (number.missing > 0) { final_matrix <- rbind(patristic_matrix, matrix(nrow = number.missing, ncol = dim(patristic_matrix)[2])) final_matrix <- cbind(final_matrix, matrix(ncol = number.missing, nrow = dim(final_matrix)[1])) rownames(final_matrix) <- c(rownames(patristic_matrix), all_taxa[-which(all_taxa %in% rownames(patristic_matrix))]) colnames(final_matrix) <- c(colnames(patristic_matrix), all_taxa[-which(all_taxa %in% colnames(patristic_matrix))]) } return(patristic_matrix_name_reorder(final_matrix)) } patristic_matrix_name_reorder <- function(patristic_matrix) { return(patristic_matrix[order(rownames(patristic_matrix)), order(colnames(patristic_matrix))]) } patristic_matrix_name_order_test <- function(patristic_matrix, standard.rownames, standard.colnames) { if (compare::compare(rownames(patristic_matrix), standard.rownames)$result != TRUE) { return(FALSE) } if (compare::compare(colnames(patristic_matrix), standard.colnames)$result != TRUE) { return(FALSE) } return(TRUE) } patristic_matrix_array_phylo_congruify <- function(patristic_matrix, target_tree, dating_method = "PATHd8", attempt_fix = TRUE) { result_matrix <- matrix(nrow = dim(patristic_matrix)[1], ncol = dim(patristic_matrix)[2]) if (is.null(target_tree$edge.length)) { target_tree$edge.length <- numeric(nrow(target_tree$edge)) } try(result_matrix <- phylo_to_patristic_matrix(congruify_and_check( reference = patristic_matrix_to_phylo(patristic_matrix), target = target_tree, scale = dating_method, attempt_fix = attempt_fix ))) return(result_matrix) } phylo_to_patristic_matrix <- function(phy, test = TRUE, tol = 0.01, option = 2) { patristic_matrix <- NA if (class(phy) == "phylo") { if (test) { if (!ape::is.ultrametric(phy, tol = tol, option = option)) { stop("Currently, datelife require that chronograms are ultrametric.") } } patristic_matrix <- stats::cophenetic(phy) } return(patristic_matrix) } phylo_subset_both <- function(reference_tree, taxa, phy = NULL, phy4 = NULL, dating_method = "PATHd8") { congruify <- FALSE if (inherits(phy, "phylo")) { congruify <- TRUE } else { congruify <- FALSE } if (congruify) { return(phylo_get_subset_array_congruify(reference_tree = reference_tree, taxa = taxa, phy = phy, dating_method = dating_method)) } else { return(phylo_get_subset_array(reference_tree = reference_tree, taxa = taxa, phy4 = phy4, dating_method = dating_method)) } } phylo_get_subset_array <- function(reference_tree, taxa, phy4 = NULL, dating_method = "PATHd8") { final.size <- sum(reference_tree$tip.label %in% taxa) if (final.size >= 2) { reference_tree <- phylo_prune_missing_taxa(reference_tree, taxa) } problem <- "none" patristic_matrix_array <- NA if (final.size < length(taxa)) { problem <- "Missing some taxa on chronogram, so this is probably an underestimate." if (final.size < 2) { problem <- "Insufficient species to get an MRCA (either 1 or 0)." patristic_matrix_array <- NA } } if (final.size >= 2) { patristic_matrix_array <- phylo_to_patristic_matrix(reference_tree) } if (!is.null(phy4)) { if (length(phylobase::descendants(phy4, phylobase::MRCA(phy4, taxa), type = "tips")) > taxa) { problem <- "'input' of taxa are not a clade, so this is probably an overestimate." } } return(list(patristic_matrix_array = patristic_matrix_array, problem = problem)) } phylo_get_subset_array_congruify <- function(reference_tree, taxa, phy = NULL, dating_method = "PATHd8") { final.size <- sum(reference_tree$tip.label %in% taxa) if (final.size >= 2) { reference_tree <- phylo_prune_missing_taxa(reference_tree, taxa) } problem.new <- "none" patristic_matrix_array.new <- NA if (final.size < length(taxa)) { problem.new <- "missing some taxa on chronogram, so this is probably an underestimate" if (final.size < 3) { problem.new <- "insufficient coverage" patristic_matrix_array.new <- NA return(list(patristic_matrix_array = patristic_matrix_array.new, problem = problem.new)) } } if (final.size >= 3) { patristic_matrix_array.new <- phylo_congruify(reference_tree, target_tree = phy, dating_method = dating_method) } return(list(patristic_matrix_array = patristic_matrix_array.new, problem = problem.new)) } phylo_prune_missing_taxa <- function(phy, taxa) { return(ape::drop.tip(phy, tip = phy$tip.label[-(which(phy$tip.label %in% taxa))])) } phylo_congruify <- function(reference_tree, target_tree, dating_method = "PATHd8", attempt_fix = TRUE) { result_matrix <- matrix(nrow = ape::Ntip(reference_tree), ncol = ape::Ntip(reference_tree)) if (is.null(target_tree$edge.length)) { target_tree$edge.length <- numeric(nrow(target_tree$edge)) } try(result_matrix <- phylo_to_patristic_matrix(congruify_and_check(reference = reference_tree, target = target_tree, scale = dating_method, attempt_fix = attempt_fix))) return(result_matrix) } congruify_and_check <- function(reference, target, taxonomy = NULL, tol = 0.01, option = 2, scale = "pathd8", attempt_fix = TRUE) { if (!ape::is.ultrametric(reference, tol = tol, option = option)) { return(NA) } new.tree <- phylo_tiplabel_underscore_to_space(suppressWarnings(geiger::congruify.phylo( phylo_tiplabel_space_to_underscore(reference), phylo_tiplabel_space_to_underscore(target), taxonomy = taxonomy, tol = tol, scale = scale )$phy)) if (anyNA(new.tree$edge.length) & attempt_fix) { message("Congruification resulted in NA edge lengths. Resolving polytomies and making up starting branch lengths") new.tree <- phylo_tiplabel_underscore_to_space(geiger::congruify.phylo( phylo_tiplabel_space_to_underscore(reference), phylo_tiplabel_space_to_underscore( ape::compute.brlen(ape::multi2di(target)) ), taxonomy, tol, scale, ncores = 1 )$phy) if (anyNA(new.tree$edge.length)) { message("There are still NAs in edge lengths; returning NA") new.tree <- NA } } new.tree$edge.length[which(new.tree$edge.length < 0)] <- 0 return(new.tree) } phylo_tiplabel_space_to_underscore <- function(phy) { phy$tip.label <- gsub(" ", "_", phy$tip.label) return(phy) } phylo_tiplabel_underscore_to_space <- function(phy) { phy$tip.label <- gsub("_", " ", phy$tip.label) return(phy) }
filter.P<-function(data,P.low=0,P.up=90) { if(!is.data.frame(data)) stop("Invalid input parameter specification: check data") if(!is.numeric(c(P.low,P.up)) || (P.low<0 || P.up>90) || P.low>P.up) stop("Invalid input parameter(s) specification: check value(s) of P.low/P.up") if(!("P"%in%names(data))) stop("Error: data does not contain column named P") data[data$P>=P.low & data$P<=P.up,] }
makeRegrTask = function(id = deparse(substitute(data)), data, target, weights = NULL, blocking = NULL, coordinates = NULL, fixup.data = "warn", check.data = TRUE) { assertString(id) assertDataFrame(data) assertString(target) assertChoice(fixup.data, choices = c("no", "quiet", "warn")) assertFlag(check.data) if (fixup.data != "no") { if (is.integer(data[[target]])) { data[[target]] = as.double(data[[target]]) } } task = makeSupervisedTask("regr", data, target, weights, blocking, coordinates, fixup.data = fixup.data, check.data = check.data) if (check.data) { assertNumeric(data[[target]], any.missing = FALSE, finite = TRUE, .var.name = target) } task$task.desc = makeRegrTaskDesc(id, data, target, weights, blocking, coordinates) addClasses(task, "RegrTask") } makeRegrTaskDesc = function(id, data, target, weights, blocking, coordinates) { addClasses(makeTaskDescInternal("regr", id, data, target, weights, blocking, coordinates), c("RegrTaskDesc", "SupervisedTaskDesc")) }
ff_glimpse <- function(.data, dependent=NULL, explanatory=NULL, digits = 1, levels_cut = 5){ if(is.null(dependent) && is.null(explanatory)){ df.in = .data } else { df.in = .data %>% dplyr::select(dependent, explanatory) } df.in %>% dplyr::select_if(is.numeric) -> df.numeric if(dim(df.numeric)[2]!=0){ df.numeric %>% missing_glimpse(digits=digits) -> df.numeric.out1 df.numeric %>% purrr::map_df(function(x){ mean = mean(x, na.rm = TRUE) sd = sd(x, na.rm = TRUE) min = min(x, na.rm = TRUE) quartile_25 = quantile(x, probs = 0.25, na.rm = TRUE) median = median(x, na.rm = TRUE) quartile_75 = quantile(x, probs = 0.75, na.rm = TRUE) max = max(x, na.rm = TRUE) df.out = data.frame(mean, sd, min, quartile_25, median, quartile_75, max) %>% dplyr::mutate_all(round_tidy, digits=digits) }) -> df.numeric.out2 df.numeric.out = data.frame(df.numeric.out1, df.numeric.out2) }else{ df.numeric.out = df.numeric } df.in %>% dplyr::select_if(Negate(is.numeric)) -> df.factors if(dim(df.factors)[2]!=0){ df.factors %>% missing_glimpse(digits=digits) -> df.factors.out1 fac2char = function(., cut = levels_cut) { length(levels(.)) > cut } df.factors %>% dplyr::mutate_if(fac2char, as.character) -> df.factors df.factors %>% purrr::map_df(function(x){ levels_n = length(levels(as.factor(x))) levels = ifelse(is.factor(x), forcats::fct_explicit_na(x) %>% levels() %>% paste0("\"", ., "\"", collapse = ", "), "-") levels_count = ifelse(is.factor(x), summary(x) %>% paste(collapse = ", "), "-") levels_percent = ifelse(is.factor(x), summary(x) %>% prop.table() %>% {. * 100} %>% format(digits = 2) %>% paste(collapse=", "), "-") df.out = tibble::tibble(levels_n, levels, levels_count, levels_percent) %>% data.frame() }) -> df.factors.out2 df.factors.out = data.frame(df.factors.out1, df.factors.out2) }else{ df.factors.out = df.factors } return( list( Continuous = df.numeric.out, Categorical = df.factors.out) ) } finalfit_glimpse <- ff_glimpse
capture_first_df <- structure(function ( ..., nomatch.error=getOption("nc.nomatch.error", TRUE), engine=getOption("nc.engine", "PCRE") ){ all.arg.list <- list(...) subject <- all.arg.list[[1]] if(!is.data.frame(subject)){ stop("subject must be a data.frame with character columns to match") } col.pattern.list <- all.arg.list[-1] if(length(col.pattern.list)==0){ stop( "no patterns specified in ...; ", "must specify subjectColName=list(groupName=pattern, etc), etc") } valid.name <- names(col.pattern.list) %in% names(subject) invalid.vec <- names(col.pattern.list)[!valid.name] if(is.null(names(col.pattern.list)) || length(invalid.vec)){ stop("named args (", paste(invalid.vec, collapse=", "), ") not found in subject column names (", paste(names(subject), collapse=", "), "); each pattern in ... must be named using a column name of subject") } if(names(all.arg.list)[[1]] != ""){ stop("first argument (subject data.frame) should not be named") } name.tab <- table(names(col.pattern.list)) if(any(bad <- 1 < name.tab)){ stop( "each argument / subject column name should be unique, problems: ", paste(names(name.tab)[bad], collapse=", ")) } out <- data.table(subject) name.group.used <- FALSE for(col.name in names(col.pattern.list)){ subject.vec <- out[[col.name]] col.arg.list <- c(list(subject.vec), col.pattern.list[[col.name]]) maybe.rep <- c("engine", "nomatch.error") to.rep <- maybe.rep[!maybe.rep %in% names(col.arg.list)] col.arg.list[to.rep] <- lapply(to.rep, get, environment()) tryCatch({ m <- do.call(capture_first_vec, col.arg.list) }, error=function(e){ stop("problem for subject column ", col.name, ": ", e) }) new.bad <- names(m) %in% names(out) if(any(new.bad)){ stop( "capture group names (", paste(names(m), collapse=", "), ") must not conflict with existing column names (", paste(names(out), collapse=", "), ")") } out <- cbind(out, m, stringsAsFactors=FALSE) } out }, ex=function(){ (sacct.df <- data.frame( JobID = c( "13937810_25", "13937810_25.batch", "13937810_25.extern", "14022192_[1-3]", "14022204_[4]"), Elapsed = c( "07:04:42", "07:04:42", "07:04:49", "00:00:00", "00:00:00"), stringsAsFactors=FALSE)) int.pattern <- list("[0-9]+", as.integer) end.pattern <- list( "-", task.end=int.pattern) nc::capture_first_df(sacct.df, JobID=list( end.pattern, nomatch.error=FALSE)) range.pattern <- list( "[[]", task.start=int.pattern, end.pattern, "?", "[]]") nc::capture_first_df(sacct.df, JobID=list( range.pattern, nomatch.error=FALSE)) task.pattern <- list( "_", list( task.id=int.pattern, "|", range.pattern)) nc::capture_first_df(sacct.df, JobID=task.pattern) type.pattern <- list( "[.]", type=".*") nc::capture_first_df(sacct.df, JobID=list( type.pattern, nomatch.error=FALSE)) task.type.pattern <- list( task.pattern, type.pattern, "?") nc::capture_first_df(sacct.df, JobID=task.type.pattern) (task.df <- nc::capture_first_df( sacct.df, JobID=list( job=int.pattern, task.type.pattern), Elapsed=list( hours=int.pattern, ":", minutes=int.pattern, ":", seconds=int.pattern))) str(task.df) })
retrieveText <- function(job.file, api.key) { jobs <- read.csv(job.file) untranscribed.inds <- which(jobs$TRANSCRIPT == 'queued' | jobs$TRANSCRIPT == '' | is.na(jobs$TRANSCRIPT) | is.null(jobs$TRANSCRIPT)) for(ind in untranscribed.inds){ ID <- jobs$JOBID[ind] text <- getRequestResults(ID, api.key = api.key) jobs$TRANSCRIPT[ind] <- text } write.csv(jobs, file = job.file, row.names = FALSE) return(jobs) }
expected <- eval(parse(text="logical(0)")); test(id=0, code={ argv <- eval(parse(text="list(integer(0))")); do.call(`is.na`, argv); }, o=expected);
countpattern2<-function (x) { intpatt<-apply(as.matrix(x),1,bin2int) intpatt<-intpatt+1 pat<-tabulate(intpatt,nbins=2^ncol(as.matrix(x))) pat }
DSC_Hierarchical <- function(k=NULL, h=NULL, method = "complete", min_weight=NULL, description=NULL) { hierarchical <- hierarchical$new( k=k, h=h, method=method, min_weight=min_weight) if(is.null(description)) description <- paste("Hierarchical (", method, ")", sep='') l <- list(description = description, RObj = hierarchical) class(l) <- c("DSC_Hierarchical","DSC_Macro","DSC_R","DSC") l } .centroids <- function(centers, weights, assignment){ macroID <- unique(assignment) macroID <- macroID[!is.na(macroID)] assignment[is.na(assignment)] <- -1 cs <- t(sapply(macroID, FUN= function(i) { take <- assignment==i colSums(centers[take, ,drop=FALSE] * matrix(weights[take], nrow=sum(take), ncol=ncol(centers))) / sum(weights[take]) })) if(ncol(centers) == 1) cs <- t(cs) rownames(cs) <- NULL colnames(cs) <- colnames(centers) cs <- data.frame(cs) ws <- sapply(macroID, FUN = function(i) sum(weights[assignment==i], na.rm=TRUE)) list(centers=cs, weights=ws) } hierarchical <- setRefClass("hierarchical", fields = list( data = "data.frame", dataWeights = "numeric", d = "matrix", method = "character", k = "ANY", h = "ANY", assignment = "numeric", details = "ANY", centers = "data.frame", weights = "numeric", min_weight = "numeric" ), methods = list( initialize = function( k=NULL, h=NULL, method = "complete", min_weight = NULL ) { if(is.null(k) && is.null(h)) stop("Either h or k needs to be specified.") if(!is.null(k) && !is.null(h)) stop("Only h or k can be specified.") if(is.null(min_weight)) min_weight <<- 0 else min_weight <<- as.numeric(min_weight) data <<- data.frame() dataWeights <<- numeric() weights <<- numeric() centers <<- data.frame() method <<- method k <<- k h <<- h .self } ), ) hierarchical$methods( cluster = function(x, weight = rep(1,nrow(x)), ...) { if(min_weight>0) { x <- x[weight>min_weight,] weight <- weight[weight>min_weight] } data <<- x dataWeights <<- weight if((!is.null(k) && nrow(data) <=k) || nrow(data)<2) { centers <<- x weights <<- weight }else{ hierarchical <- hclust(d=dist(x), method = method) details <<- hierarchical if(is.null(k) || k < length(unlist(hierarchical['height']))) assignment <<- cutree(hierarchical, k = k, h = h) else assignment <<- 1 centroids <- .centroids(x, weight, assignment) centers <<- centroids$centers weights <<- centroids$weights } }, get_microclusters = function(...) { .nodots(...); data }, get_microweights = function(...) { .nodots(...); dataWeights }, get_macroclusters = function(...) { .nodots(...); centers }, get_macroweights = function(...) { .nodots(...); weights }, microToMacro = function(micro=NULL, ...){ .nodots(...); if(is.null(micro)) micro <- 1:nrow(data) structure(assignment[micro], names=micro) } ) DSC_registry$set_entry(name = "DSC_Hierarchical", DSC_Micro = FALSE, DSC_Macro = TRUE, description = "Hierarchical reclustering")
evepan <- function(c = 0, mu = 0, r = 5^0.5, side_censored = "left") { if (any(r <= 0)) { stop("Range must be strictly positive") } if (any(!(side_censored %in% c("left", "right")))) { stop("side_censored must either be 'left' or 'right'") } setsign <- ifelse(side_censored == "left", 1, -1) alpha <- setsign * (c - mu)/r ev <- setsign * r/16 * (1 - alpha)^3 * (3 + alpha) + c ifelse(abs(alpha) <= 1, ev, ifelse(alpha < -1, mu, c)) }
data_rename <- function(data, pattern = NULL, replacement = NULL, safe = TRUE, ...) { if (is.null(replacement) && is.null(pattern)) { names(data) <- c(1:ncol(data)) return(data) } else if (is.null(replacement) && !is.null(pattern)) { names(data) <- pattern return(data) } else if (!is.null(replacement) && is.null(pattern)) { names(data) <- replacement return(data) } if (length(pattern) != length(replacement)) { stop("The 'replacement' names must be of the same length than the variable names.") } for (i in 1:length(pattern)) { data <- .data_rename(data, pattern[i], replacement[i], safe) } data } .data_rename <- function(data, pattern, replacement, safe = TRUE) { if (isFALSE(safe) & !pattern %in% names(data)) { stop(paste0("Variable '", pattern, "' is not in your dataframe :/")) } names(data) <- replace(names(data), names(data) == pattern, replacement) data } data_rename_rows <- function(data, rows = NULL) { row.names(data) <- rows data }
mygllm <- function(y,s,X,maxit=1000, tol=0.00001, E=rep(1,length(s))) { out <- .C(".mygllm_sym", as.integer(y), as.integer(s-1), X=as.double(cbind(X,rep(0,nrow(X)))), as.integer(maxit), as.double(tol), estimate=as.double(E), length(s),length(y),ncol(X), PACKAGE="RecordLinkage") return(out$estimate) }
"mu_cnb" <- function(D, r1, r2, lambda){ if (missing(D) || missing(r1) || missing(r2) || missing(lambda)) stop("Need to specify a full set of arguments: D, r1, r2, lambda.") if (!is.numeric(D) || length(D)!=1 || !D%%1==0 || D<=0) stop("D needs to be a positive integer.") if (!is.numeric(r1) || length(r1)!=1 || r1<=0) stop("r1 needs to be a positive value.") if (!is.numeric(r2) || length(r2)!=1 || r2<=0) stop("r2 needs to be a positive value.") if (!is.numeric(lambda) || length(lambda)!=1 || lambda<=0) stop("lambda needs to be a positive value.") return_value <- 0 if (lambda <= 1) { lnvalue <- log(Re(hypergeo::hypergeo(-D+1, r1+1, -D-r2+2, lambda))) - log(Re(hypergeo::hypergeo(-D, r1, -D-r2+1, lambda))) return_value <- D * lambda * r1 / (r2 + D - 1) * exp(lnvalue) }else{ return_value <- D - mu_cnb(D, r2, r1, 1/lambda) } return_value }
stat_wb_column <- function(mapping = NULL, data = NULL, geom = "rect", w.band = NULL, integral.fun = integrate_xy, chroma.type = "CMF", position = "identity", na.rm = FALSE, show.legend = NA, inherit.aes = TRUE, ...) { ggplot2::layer( stat = StatWbColumn, data = data, mapping = mapping, geom = geom, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list(w.band = w.band, integral.fun = integral.fun, chroma.type = chroma.type, na.rm = na.rm, ...) ) } wb_col_compute_group <- function(data, scales, w.band, integral.fun, chroma.type){ if (length(w.band) == 0) { w.band <- waveband(data[["x"]]) } if (is.any_spct(w.band) || (is.numeric(w.band) && length(stats::na.omit(w.band)) >= 2)) { w.band <- waveband(range(w.band, na.rm = TRUE)) } if (!is.list(w.band) || is.waveband(w.band)) { w.band <- list(w.band) } stopifnot(is.function(integral.fun)) w.band <- trim_wl(w.band, data[["x"]]) integ.df <- data.frame() for (wb in w.band) { if (is.numeric(wb)) { wb <- waveband(wb) } range <- range(wb) mydata <- trim_tails(data[["x"]], data[["y"]], use.hinges = TRUE, low.limit = range[1], high.limit = range[2]) yint.tmp <- integral.fun(mydata[["x"]], mydata[["y"]]) ymean.tmp <- yint.tmp / wl_expanse(wb) wb.color <- photobiology::fast_color_of_wb(wb, chroma.type = chroma.type) integ.df <- rbind(integ.df, data.frame(x = midpoint(mydata[["x"]]), wb.xmin = min(wb), wb.xmax = max(wb), y = ymean.tmp, yzero = 0, wb.ymin = min(data[["y"]]), wb.ymax = max(data[["y"]]), wb.ymean = ymean.tmp, wb.color = wb.color, wb.name = labels(wb)[["label"]], BW.color = black_or_white(wb.color)) ) } integ.df } StatWbColumn <- ggplot2::ggproto("StatWbColumn", ggplot2::Stat, compute_group = wb_col_compute_group, default_aes = ggplot2::aes(xmin = ..wb.xmin.., xmax = ..wb.xmax.., ymax = ..wb.ymean.., ymin = ..yzero.., fill = ..wb.color..), required_aes = c("x", "y") )
plot.phenopix <- function(x, y=NULL, what='all',main=NULL, ...) { attr.retr <- attributes(x) title <- paste0('fit: ', toupper(attr.retr$fit), ' - thresholds: ', toupper(attr.retr$threshold)) plot(x$data,...) if (is.null(main)) title(main=title) else title(main=main) if (what=='all') { if (is.null(x$metrics)) PhenoPlot(x$fit, metrics=NA, add=TRUE) else { PhenoPlot(x$fit, x$metrics, add=TRUE) } } else { if (what=='fitting') PhenoPlot(x$fit, metrics=NA, add=TRUE) if (what=='params') { if (is.null(x$uncertainty.df)) stop('Uncertainty was not estimated. Try what=all') parameters <- as.data.frame(t(extract(x, what='curve.params.uncert'))) true.params <- extract(x, what='curve.params') par(mfrow=c(1, length(parameters)), mar=c(5,0,4,0), oma=c(0,4,0,2)) for (a in 1:length(parameters)) { boxplot(parameters[,a], main=names(parameters)[a],...) abline(h=true.params[a], lwd=2, col='red') } } if (what=='thresholds') { parameters <- extract(x, what='metrics.uncert') par(mfrow=c(1, length(parameters)), mar=c(5,0,4,0), oma=c(0,4,0,2)) for (a in 1:length(parameters)) { boxplot(parameters[,a], main=names(parameters)[a], ...) } } } }
"NYCdata"
knitr::include_graphics("figures/basicPage.png")
add_polygon_layer <- function(deckgl, id = "polygon-layer", data = NULL, properties = list(), ...) { add_layer(deckgl, "PolygonLayer", id, data, properties, ...) }
kids.g <- function(n.kids, p.gene){ ptmp <- sum((p.gene-c(1,0))*c(3,1)) return(sample(1:3, n.kids, replace=TRUE, prob=Pgene(1:3, ptmp))) }
do.rbind <- function (x, idcol = "Name", keep.rownames = FALSE) { .Deprecated("data.table::rbindlist") u <- sapply(x, inherits, "data.frame") if (any(!u)) warning("Dropping non data.frame elements from 'x'.") x <- x[u] if (!length(x)>0) stop("No data.frame objects in 'x'.") n <- names(x) if (is.null(n)) n <- seq_along(x) r <- sapply(x, nrow) i <- rep(n, r) x <- do.call(rbind, x) x <- data.frame(IDS = i, x, stringsAsFactors = FALSE) names(x)[1] <- idcol if (!keep.rownames) rownames(x) <- NULL return(x) }
dot(y, v1) / vlength(v1)^2 lm(strength ~ limestone, data = Concretemod) %>% coef() dot(y, v2) / vlength(v2)^2 lm(strength ~ water, data = Concretemod) %>% coef() dot(y, w1) / vlength(w1)^2 dot(y, w2) / vlength(w2)^2 coef(concrete.lmmod)
survmean <- function(formula, data, adjust = NULL, weights = NULL, breaks=NULL, pophaz = NULL, e1.breaks = NULL, e1.pophaz = pophaz, r = "auto", surv.method = "hazard", subset = NULL, verbose = FALSE) { pt <- proc.time() TF__ <- environment() PF__ <- parent.frame(1L) attr_form <- copy(formula) surv.method <- match.arg(surv.method, c("hazard", "lifetable")) r.e2 <- last.p.e2 <- surv <- survmean_type <- est <- Tstart <- Tstop <- lex.id <- surv.int <- delta <- surv.exp <- obs <- NULL checkLexisData(data, check.breaks = FALSE) checkPophaz(data, pophaz, haz.name = "haz") checkPophaz(data, e1.pophaz, haz.name = "haz") pophaz <- setDT(copy(pophaz)) e1.pophaz <- setDT(copy(e1.pophaz)) if (is.numeric(r) && r < 0L) stop("numeric r must be > 0, e.g. r = 0.95") if (is.character(r)) { if (substr(r, 1, 4) != "auto") { stop("character string r must start with 'auto'; e.g. `auto` and ", "`auto5` are accepted.") } if (r == "auto") r <- "auto1" auto_ints <- regmatches(r, regexec("\\d+", text = r)) auto_ints <- as.integer(auto_ints) r <- "auto" } tscales_all <- attr(data, "time.scales") breaks_old <- attr(data, "breaks") if (!is.null(breaks_old)) checkBreaksList(data, breaks_old) if (is.null(breaks)) breaks <- breaks_old checkBreaksList(data, breaks) if (!is.null(e1.breaks)) checkBreaksList(data, e1.breaks) subset <- substitute(subset) subset <- evalLogicalSubset(data, subset) x <- setDT(data[subset, ]) forceLexisDT(x, breaks = breaks_old, allScales = tscales_all) avoid <- unique(c(names(data), names(x), names(pophaz), names(e1.pophaz))) pophaz_vars <- c(names(pophaz), names(e1.pophaz)) pophaz_vars <- setdiff(pophaz_vars, c(tscales_all, "haz")) pophaz_vars <- intersect(pophaz_vars, names(x)) pophaz_vars_tmp <- makeTempVarName(names = avoid, pre = pophaz_vars) if (!length(pophaz_vars)) { pophaz_vars_tmp <- NULL } else { pophaz_vars_wh <- which(pophaz_vars %in% names(pophaz)) if (sum(pophaz_vars_wh)) { setnames(pophaz, old = pophaz_vars[pophaz_vars_wh], new = pophaz_vars_tmp[pophaz_vars_wh]) } pophaz_vars_wh <- which(pophaz_vars %in% names(e1.pophaz)) if (sum(pophaz_vars_wh)) { setnames(e1.pophaz, old = pophaz_vars[pophaz_vars_wh], new = pophaz_vars_tmp[pophaz_vars_wh]) } x[, (pophaz_vars_tmp) := copy(.SD), .SDcols = pophaz_vars] } adSub <- substitute(adjust) foList <- usePopFormula(formula, adjust = adSub, data = x, enclos = PF__, Surv.response = "either") adjust_vars <- names(foList$adjust) print_vars <- names(foList$print) by_vars <- c(print_vars, adjust_vars) avoid <- unique(c(names(data), names(x), names(pophaz), names(e1.pophaz))) adjust_vars_tmp <- makeTempVarName(names = avoid, pre = adjust_vars) if (!length(adjust_vars)) adjust_vars_tmp <- NULL avoid <- unique(c(names(data), names(x), names(pophaz), names(e1.pophaz))) print_vars_tmp <- makeTempVarName(names = avoid, pre = print_vars) if (!length(print_vars)) print_vars_tmp <- NULL by_vars_tmp <- c(print_vars_tmp, adjust_vars_tmp) lex_vars <- c("lex.id", tscales_all, "lex.dur", "lex.Cst", "lex.Xst") setcolsnull(x, keep = c(lex_vars, pophaz_vars_tmp), soft = FALSE) if (length(adjust_vars) > 0L) x[, (adjust_vars_tmp) := foList$adjust] if (length(print_vars) > 0L) x[, (print_vars_tmp) := foList$print] formula <- paste0(deparse(formula[[2L]]), " ~ ") if (length(c(adjust_vars_tmp, print_vars_tmp)) > 0L) { formula <- paste0(formula, paste0(c(print_vars_tmp, adjust_vars_tmp), collapse = " + ")) } else { formula <- paste0(formula, "1") } formula <- as.formula(formula) tscale_surv <- detectSurvivalTimeScale(lex = x, values = foList$y$time) test_obs <- x[, .(obs=.N), keyby=eval(TF__$by_vars_tmp)] if (length(by_vars)) setnames(test_obs, by_vars_tmp, by_vars) if (length(weights) && !length(adjust_vars)) { weights <- NULL warning("Replaced weights with NULL due to not supplying variables to ", "adjust by.") } mwDTtest <- makeWeightsDT(test_obs, values = list("obs"), print = print_vars, adjust = adjust_vars, weights = weights, internal.weights.values = "obs") if (length(by_vars)) setnames(test_obs, by_vars, by_vars_tmp) if (is.null(e1.breaks)) { e1.breaks <- copy(breaks[tscale_surv]) addBreaks <- max(e1.breaks[[tscale_surv]]) + c(seq(0,1,1/12), seq(1.2, 1.8, 0.2), 2:19, seq(20, 50, 5)) e1.breaks[[tscale_surv]] <- unique(c(e1.breaks[[tscale_surv]], addBreaks)) checkBreaksList(x, e1.breaks) } if (!tscale_surv %in% names(e1.breaks)) { stop("The survival time scale must be included in the list of breaks ", "to extrapolate by ('e1.breaks').") } if (!all(breaks[[tscale_surv]] %in% e1.breaks[[tscale_surv]])) { stop("The vector of breaks in 'breaks' for the survival time scale MUST", "be a subset of the breaks for the survival time scale in ", "'e1.breaks'. E.g. the former could be 0:10 and the latter 0:100.") } if (verbose) { cat("Time taken by prepping data:", timetaken(pt), "\n") } st <- survtab(formula, data = x, breaks = breaks, pophaz = pophaz, relsurv.method = "e2", surv.type = "surv.rel", surv.method = surv.method) st_keep_vars <- c(by_vars_tmp, "Tstop", "r.e2", "surv.obs") all_names_present( st, st_keep_vars, msg = paste0("Internal error: expected to have variables ", "%%VARS%% after computing observed survivals ", "but didn't. Blame the package maintainer if you ", "see this.") ) setcolsnull(st, keep = st_keep_vars, colorder = TRUE) setDT(st) setkeyv(st, c(by_vars_tmp, "Tstop")) st[, "Tstart" := c(0, Tstop[-.N]), by = eval(by_vars_tmp)] st[, c("r.e2", "surv.obs") := lapply(.SD, function(col) col/c(1, col[-.N])), by = eval(by_vars_tmp), .SDcols = c("r.e2", "surv.obs") ] if (verbose) { cat("Time taken by estimating relative survival curves:", timetaken(pt), "\n") } pt <- proc.time() setkeyv(x, c("lex.id", tscale_surv)) tol <- .Machine$double.eps^0.5 xe <- unique(x, by = key(x))[x[[tscale_surv]] < TF__$tol, ] if (length(breaks) > 1L) { breaks_drop_tmp <- setdiff(names(breaks), tscale_surv) breaks_drop_tmp <- breaks[breaks_drop_tmp] breaks_drop_tmp <- lapply(breaks_drop_tmp, range) expr <- mapply(function(ch, ra) { paste0("between(", ch, ", ", ra[1], ", ", ra[2] - tol, ", incbounds = TRUE)") }, ch = names(breaks_drop_tmp), ra = breaks_drop_tmp, SIMPLIFY = FALSE) expr <- lapply(expr, function(e) eval(parse(text = e), envir = xe)) setDT(expr) expr <- expr[, rowSums(.SD)] == ncol(expr) xe <- xe[expr, ] } xe <- x[lex.id %in% unique(xe[["lex.id"]])] forceLexisDT(xe, breaks = breaks_old, allScales = tscales_all, key = FALSE) e1 <- comp_e1(xe, breaks = e1.breaks, pophaz = e1.pophaz, immortal = TRUE, survScale = tscale_surv, by = by_vars_tmp, id = "lex.id") setnames(e1, tscale_surv, "Tstop") e1[, "Tstart" := c(0, Tstop[-.N]), by = eval(by_vars_tmp)] e1[, "surv.int" := cut(Tstart, breaks = e1.breaks[[tscale_surv]], right = FALSE, labels = FALSE)] e1[, "delta" := Tstop - Tstart] e1[, "surv.exp" := surv.exp/c(1, surv.exp[-.N]), by = eval(by_vars_tmp)] if (verbose) { cat("Time taken by computing overall expected survival curves:", timetaken(pt), "\n") } N_subjects <- xe[!duplicated(lex.id)][, list(obs=.N), keyby=eval(by_vars_tmp) ] pt <- proc.time() st[, "surv.int" := cut(Tstart, breaks = e1.breaks[[tscale_surv]], right = FALSE, labels = FALSE)] x <- merge(e1, st[, .SD, .SDcols = c(by_vars_tmp, "surv.int", "r.e2", "surv.obs")], by = c(by_vars_tmp,"surv.int"), all = TRUE) setkeyv(x, c(by_vars_tmp, "surv.int")) if (is.numeric(r)) { set(x, j = "last.p.e2", value = r^x[["delta"]]) } else { st <- st[, .SD[(.N-TF__$auto_ints+1):.N], by = eval(by_vars_tmp)] st[, "delta" := Tstop - Tstart] st[, "r.e2" := r.e2^(1/delta)] st <- st[, .(last.p.e2 = mean(r.e2)), by = eval(by_vars_tmp)] st[, "last.p.e2" := pmin(1, last.p.e2)] if (verbose) { cat("Using following table of mean RSR estimates", "(scaled to RSRs applicable to a time interval one", "unit of time wide, e.g. one year or one day)", "based on", auto_ints, "interval(s) from the end of the relative", "survival curve by strata: \n") prST <- data.table(st) setnames(prST, c(by_vars_tmp, "last.p.e2"), c(by_vars, "RSR")) print(prST) } if (length(by_vars_tmp)) { x <- merge(x, st, by = by_vars_tmp, all = TRUE) } else { set(x, j = "last.p.e2", value = st$last.p.e2) } x[, "last.p.e2" := last.p.e2^(delta)] x[, "last.p.e2" := pmin(last.p.e2, 1)] } x[is.na(r.e2), "r.e2" := last.p.e2] x[, "surv" := r.e2*surv.exp] setkeyv(x, c(by_vars_tmp, "surv.int")) x[, c("surv", "surv.exp") := lapply(.SD, cumprod), .SDcols = c("surv", "surv.exp"), by = eval(by_vars_tmp)] x2 <- copy(x) x[, "surv.exp" := NULL] x2[, "surv" := NULL] setnames(x2, "surv.exp", "surv") x <- rbind(x, x2) x[, "survmean_type" := rep(c("est", "exp"), each = nrow(x2))] setcolsnull( x, keep = c(by_vars_tmp, "survmean_type", "surv.int", "Tstart", "Tstop", "delta", "surv", "surv.exp"), colorder = TRUE ) mi <- x[, .(surv = round(min(surv),4)*100), keyby = eval(c(by_vars_tmp, "survmean_type"))] if (any(mi$surv > 1)) { warning("One or several of the curves used to compute mean survival times ", "or expected mean survival times was > 1 % at the lowest point. ", "Mean survival estimates may be significantly biased. To avoid ", "this, supply breaks to 'e1.breaks' which make the curves longer ", ", e.g. e1.breaks = list(FUT = 0:150) where time scale FUT ", "is the survival time scale (yours may have a different name).") } mi[, "surv" := paste0(formatC(surv, digits = 2, format = "f"), " %")] mi[, "survmean_type" := factor(survmean_type, c("est", "exp"), c("Observed", "Expected"))] setnames(mi, c("survmean_type", "surv"), c("Obs./Exp. curve", "Lowest value")) if (length(by_vars)) setnames(mi, by_vars_tmp, by_vars) if (verbose) { cat("Lowest points in observed / expected survival curves by strata:\n") print(mi) } setkeyv(x, c(by_vars_tmp, "survmean_type", "Tstop")) sm <- x[, .(survmean = sum(delta*(surv + c(1, surv[-.N]))/2L)), keyby = c(by_vars_tmp, "survmean_type")] sm <- cast_simple(sm, columns = "survmean_type", rows = by_vars_tmp, values = "survmean") setkeyv(sm, by_vars_tmp); setkeyv(N_subjects, by_vars_tmp) sm[, "obs" := N_subjects$obs] sm[, "YPLL" := (exp-est)*obs] sm <- makeWeightsDT(sm, values = list(c("est", "exp", "obs", "YPLL")), print = print_vars_tmp, adjust = adjust_vars_tmp, weights = weights, internal.weights.values = "obs") if (length(adjust_vars)) { vv <- c("est", "exp", "obs", "YPLL") sm[, c("est", "exp") := lapply(.SD, function(col) col*sm$weights), .SDcols = c("est", "exp")] sm <- sm[, lapply(.SD, sum), .SDcols = vv, by = eval(print_vars_tmp)] } if (verbose) { cat("Time taken by final touches:", timetaken(pt), "\n") } if (length(print_vars)) setnames(sm, print_vars_tmp, print_vars) at <- list(call = match.call(), formula = attr_form, print = print_vars, adjust = adjust_vars, tprint = print_vars_tmp, tadjust = adjust_vars_tmp, breaks = breaks, e1.breaks = e1.breaks, survScale = tscale_surv, curves = copy(x)) setattr(sm, "class", c("survmean","data.table", "data.frame")) setattr(sm, "survmean.meta", at) if (!return_DT()) setDFpe(sm) return(sm[]) }
varPercent <- function(level, plotObj){ if (level == 12){ eigenvalues = c(plotObj$evalues$level1, plotObj$evalues$level2) }else{eigenvalues = plotObj$evalues[[level]]} percent <- lapply(eigenvalues, function(i){100*round(i/sum(eigenvalues), 3)}) return(percent) }
library(spData) library(sf) world_df = sf::st_coordinates(world) head(world_df) summary(world_df) world_df_sfh = sfheaders::sf_to_df(world) head(world_df_sfh) world_sfh = sfheaders::sf_multipolygon(world_df_sfh) world_sfh = sfheaders::sf_multipolygon(world_df_sfh, x = "x", y = "y", polygon_id = "", multipolygon_id = "multipolygon_id") length(world$geom) length(world_sfh$geometry) waldo::compare(world$geom[1], world_sfh$geometry[1]) world$geom[1][[1]][[2]] world_sfh$geom[1][[1]][[2]] plot(world$geom[1]) plot(world_sfh$geometry[1]) bench::mark( check = FALSE, sf = sf::st_coordinates(world), sfheaders = sfheaders::sf_to_df(world) ) library(sf) nc = sf::st_read(system.file("./shape/nc.shp", package = "sf")) sfheaders::sf_cast(nc, "LINESTRING") bench::mark(check = FALSE, sf = { sf::st_cast(nc, "POINT") }, sfheaders = { sfheaders::sf_cast(nc, "POINT") } )
plot.idaLm <- function(x, names = TRUE, max_forw = 50, max_plot = 15, order = NULL, lmgON = FALSE, backwardON = FALSE, ...){ if (!requireNamespace("ggplot2", quietly = TRUE)) { stop("ggplot2 is required to plot idaLm objects.") } idaLm <- x if(!("idaLm" %in% class(idaLm))){ stop("Input is not an idaLm object.") } if(is.null(idaLm$CovMat)){ stop("Function needs an idaLm object with a Covariance Matrix") } if(is.numeric(max_forw)){ if(!(max_forw%%1 == 0 && max_forw > 1)){ stop("max_forw must be an integer bigger than 1.") } }else{ stop("max_forw must be numeric.") } if(is.numeric(max_plot)){ if(!(max_plot%%1 == 0 && max_plot > 0)){ stop("max_plot must be an integer bigger than 0.") } }else{ stop("max_plot must be numeric.") } if(!is.logical(names)){ stop("The parameter \"names\" must be logical.") } if(!is.logical(lmgON)){ stop("The parameter \"lmgON\" must be logical.") } if(!is.logical(backwardON)){ stop("The parameter \"backwardON\" must be logical.") } mat <- idaLm$CovMat nrowMat <- nrow(mat) if(rownames(mat)[nrowMat] != "Intercept"){ stop("Plotting a model without intercept is currently not supported.") }else{ n = mat[nrowMat, nrowMat] } card <- idaLm$card colNames <- names(card) if(is.vector(order)){ check <- order %in% colNames if(all(check)){ lastcol <- cumsum(card)[!(colNames %in% order)] + 1 delcard <- card[!(colNames %in% order)] deletecols <- unlist(mapply(FUN = function(x, y){do.call(":",list(x-y+1,x))}, lastcol, delcard)) card <- card[colNames %in% order] mat <- mat[-deletecols, -deletecols] colNames <- names(card) }else{ error <- "Some of the Attributes of the vector are not in the model:" error <- paste(error, paste(order[!check], collapse = ",")) stop(error) } } YTY = mat[1, 1] XTX = mat[-1, -1] XTY = mat[1, -1] nomCols <- names(card)[card > 1] getRelImp <- function(colNames, card, nomCols, numrow, XTX, XTY, YTY, order, lmgON, backwardON){ nrowXTX <- nrow(XTX) mean_y <- XTY[nrowXTX] / numrow Var_y <- YTY - mean_y * mean_y * numrow SXY <- matrix(nrow = 1, ncol = nrowXTX) SXY[1, ] <- XTY - XTX[nrowXTX, ] * mean_y SXY[1, nrowXTX] <- 0 SXY <- SXY / Var_y calc <- function(SXY, XTX, XTY){ coeff <- NULL try({coeff = solve(XTX, XTY)}, silent=T) if(is.null(coeff)) { coeff <- ginv(XTX, tol = 1e-16) %*% XTY } SXY %*% coeff } totalR2 <- calc(SXY, XTX, XTY) if(length(colNames) < 2){ if(is.vector(order)){ res <- data.frame(totalR2) names(res) <- c('Model_Values') rownames(res) <- order }else{ if(backwardON){ res <- data.frame(0) names(res) <- c('Backward_Values') rownames(res) <- colNames }else{ res <- data.frame(totalR2) names(res) <- c('Forward_Values') rownames(res) <- colNames } } if(lmgON){ res2 <- data.frame(res, totalR2, totalR2, totalR2) names(res2) <- c(names(res), 'Usefulness', 'First', 'LMG') }else{ res2 <- data.frame(res, totalR2, totalR2) names(res2) <- c(names(res), 'Usefulness', 'First') } res2 }else{ posofAttr <- list() R2 <- c() First <- c() disposition <- 0 for(i in 1:length(colNames)){ length <- card[colNames[i]]-1 tempPos <- (i+disposition) : (i+disposition+length) posofAttr[[colNames[i]]] <- tempPos lastXTX <- XTX[-tempPos, -tempPos] lastXTY <- XTY[-tempPos] lastSXY <- SXY[1, -tempPos] R2 <- c(R2, calc(lastSXY, lastXTX, lastXTY)) firstXTX <- XTX[c(tempPos, nrowXTX), c(tempPos, nrowXTX)] firstXTY <- XTY[c(tempPos, nrowXTX)] firstSXY <- SXY[1, c(tempPos, nrowXTX)] First <- c(First, calc(firstSXY, firstXTX, firstXTY)) disposition <- disposition + length } names(First) <- colNames Usefulness <- totalR2-R2 names(R2) <- colNames stepbystep <- function(StartingVal, posofAttr, SXY, XTX, XTY, max_forw, direction = "forward"){ tempcolNames <- names(StartingVal) bestpos <- match(max(StartingVal), StartingVal)[1] swap <- tempcolNames[1] tempcolNames[1] <- names(StartingVal)[bestpos] tempcolNames[bestpos] <- swap indices <- posofAttr[[tempcolNames[1]]] if(direction == "forward"){ indices <- c(indices,nrowXTX) } modelval <- StartingVal[bestpos] max_forw <- min(length(tempcolNames), max_forw) for(i in 2:max_forw){ tempvalues <- c() for(j in i:length(tempcolNames)){ tempindices <- indices tempindices <- c(tempindices,posofAttr[[tempcolNames[j]]]) if(direction == "forward"){ tempXTX <- XTX[tempindices, tempindices] tempSXY <- SXY[tempindices] tempXTY <- XTY[tempindices] }else{ tempXTX <- XTX[-tempindices, -tempindices] tempSXY <- SXY[-tempindices] tempXTY <- XTY[-tempindices] } tempvalues <- c(tempvalues, calc(tempSXY, tempXTX, tempXTY)) } names(tempvalues) <- tempcolNames[i:length(tempcolNames)] modelval[i] <- max(tempvalues) bestpos <- match(modelval[i], tempvalues)[1] swap <- tempcolNames[i] tempcolNames[i] <- tempcolNames[i+bestpos-1] tempcolNames[i+bestpos-1] <- swap indices <- c(indices, posofAttr[[tempcolNames[i]]]) } data.frame(tempcolNames[1:max_forw], modelval) } lmg <- function(posofAttr, First, SXY, XTX, XTY){ colNames <- names(First) calc.index <- function(indices,SXY,XTX,XTY){ indices <- c(indices, nrow(XTX)) tempXTX <- XTX[indices, indices] tempSXY <- SXY[indices] tempXTY <- XTY[indices] calc(tempSXY, tempXTX, tempXTY) } NrAttr <- length(colNames) lmgRes <- factorial(NrAttr-1)*First dataold <- t(matrix(1:NrAttr)) valold <- First for(cardsubset in 2:NrAttr){ nrofSets <- choose(NrAttr, cardsubset) valnew <- vector(mode = "integer", length = nrofSets) datanew <- matrix(, ncol = nrofSets, nrow = cardsubset) count <- 0 for(NrPred in 1:NrAttr){ for(NrSubset in 1:ncol(dataold)){ tmpSet <- dataold[, NrSubset] if(!(NrPred %in% tmpSet)){ newSet <- c(tmpSet, NrPred) temp <- calc.index(unlist(posofAttr[newSet]), SXY, XTX, XTY) if(NrPred > max(tmpSet)){ count <- count + 1 datanew[, count] <- newSet valnew[count] <- temp } lmgRes[NrPred] = lmgRes[NrPred] + factorial(cardsubset-1) * factorial(NrAttr-cardsubset)*(temp-valold[NrSubset]) } } } dataold <- datanew valold <- valnew } lmgRes <- lmgRes/(factorial(NrAttr)) lmgRes <- data.frame(lmgRes) lmgRes } orderfct <- function(order,posofAttr,XTX,XTY,SXY,nrowXTX,First){ orderval <- First[order[1]] indices <- c(posofAttr[[order[1]]], nrowXTX) if(length(order) > 1){ for(i in 2:length(order)){ indices <- c(indices, posofAttr[[order[i]]]) tempXTX <- XTX[indices, indices] tempSXY <- SXY[indices] tempXTY <- XTY[indices] orderval <- c(orderval, calc(tempSXY, tempXTX, tempXTY)) } } names(orderval) <- NULL res <- data.frame(orderval) res } if(is.vector(order)){ res <- as.data.frame(orderfct(order, posofAttr, XTX, XTY, SXY, nrowXTX, First)) names(res) <- c('Model_Values') rownames(res) <- order }else{ if(backwardON){ backward <- stepbystep(R2, posofAttr, SXY, XTX, XTY, max_forw = max_forw, direction = "backward") res <- data.frame(backward[, 2]) names(res) <- c('Backward_Values') rownames(res) <- backward[, 1] }else{ forward <- stepbystep(First, posofAttr, SXY, XTX, XTY, max_forw = max_forw) res <- data.frame(forward[, 2]) names(res) <- c('Forward_Values') rownames(res) <- forward[, 1] } } if(lmgON){ lmgval <- lmg(posofAttr, First, SXY, XTX, XTY) } neworder <- match(rownames(res), names(First)) First <- First[neworder] Usefulness <- Usefulness[neworder] if(lmgON){ lmgval <- lmgval[neworder,] res2 <- data.frame(res, Usefulness, First, lmgval) names(res2) <- c(names(res), 'Usefulness', 'First', 'LMG') }else{ res2 <- data.frame(res, Usefulness, First) names(res2) <- c(names(res), 'Usefulness', 'First') } res2 } } if(lmgON){ if(length(colNames) > 15){ stop("The method recommends to not use LMG for more than 15 Attributes due to runtime.") } } tryCatch({ relImp=getRelImp(colNames, card, nomCols, n, XTX, XTY, YTY, order, lmgON, backwardON) }, error = function(e){stop(e)}) plot3 <- function(relImp, max_plot, names){ reshaped <- relImp ModelVal <- colnames(reshaped)[1] reshaped$Attributes <- rownames(relImp) max_plot <- min(nrow(reshaped), max_plot) reshaped <- reshaped[1:max_plot, ] reshaped <- reshaped[, c('Attributes', 'Usefulness', 'First', ModelVal)] if(!names){ reshaped$Attributes <- as.character(1:nrow(reshaped)) reshaped$Attributes <- factor(reshaped$Attributes, levels = reshaped$Attributes) }else{ reshaped$Attributes <- factor(reshaped$Attributes, levels = reshaped$Attributes) reshaped <- reshaped[1:nrow(reshaped), ] } reshaped <- reshape(reshaped, varying=c( ModelVal, 'First', 'Usefulness'), v.names = c('Explanation'), direction="long") reshaped$time[reshaped$time == 1] <- 'Model_Value' reshaped$time[reshaped$time == 2] <- 'First' reshaped$time[reshaped$time == 3] <- 'Usefulness' reshaped$time <- factor(reshaped$time) png(filename = "RelImpPlot.png") plot1 <- ggplot(reshaped, aes_string(x = 'Attributes', y = 'Explanation', fill = "time", width=0.4)) + scale_x_discrete(expand=c(0.1,0))+ scale_fill_manual(values=c(" breaks=c("Model_Value","First", "Usefulness"), c('Model_Value', 'First', 'Usefulness'))+ geom_bar(stat = "identity", position = "identity")+ guides(fill = guide_legend(reverse = FALSE, title = NULL)) if(names == TRUE){ plot1 <- plot1 + theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) } print(plot1) dev.off() print(plot1) if(!names){ name_df <- as.data.frame(rownames(relImp[1:max_plot, ])) names(name_df) <- c('Attributes') cat("The order of the attributes in the plot is:\n") print(name_df) } } plotlmg <- function(relImp, max_plot, names){ max_plot <- min(max_plot, nrow(relImp)) data <- relImp data$Attributes <- rownames(relImp) data$Explanation <- relImp$LMG data <- data[1:max_plot, ] if(!names){ data$Attributes <- as.character(1:nrow(data)) data$Attributes <- factor(data$Attributes, data$Attributes) }else{ data$Attributes <- factor(data$Attributes, data$Attributes) data <- data[1:nrow(data), ] } png(filename="RelImpPlot.png") plot1 <- ggplot(data, aes_string(x = 'Attributes', y = 'Explanation')) + geom_bar(stat = "identity", fill=" scale_x_discrete(expand=c(0.1,0)) if(names == TRUE){ plot1 <- plot1 + theme(axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) } print(plot1) dev.off() print(plot1) if(!names){ name_df <- as.data.frame(rownames(relImp[1:max_plot, ])) names(name_df) <- c('Attribute') cat("Die Attribute im Plot haben die folgende Reihenfolge:\n") print(name_df) } } relImp[relImp > 1] <- 1 relImp[relImp < 0] <- 0 if(lmgON){ plotlmg(relImp, max_plot, names) }else{ plot3(relImp, max_plot, names) } relImp }
CDP <- function(Q, par, alpha, model=c("DINA", "DINO", "NIDA", "GNIDA", "RRUM")){ natt <- length(Q) model <- match.arg(model) if (model %in% c("DINA", "DINO", "NIDA", "GNIDA")){ par$slip[par$slip == 0] <- 0.001 par$guess[par$guess == 0] <- 0.001 par$slip[par$slip == 1] <- 0.999 par$guess[par$guess == 1] <- 0.999 } if (model == "RRUM"){ par$pi[par$pi == 0] <- 0.001 par$r[par$r == 0] <- 0.001 par$pi[par$pi == 1] <- 0.999 par$r[par$r == 1] <- 0.999 } { if (model == "DINA") { ita <- prod(alpha ^ Q) P <- (1 - par$slip) ^ ita * par$guess ^ (1 - ita) } else if (model == "DINO") { omega <- 1 - prod((1 - alpha) ^ Q) P <- (1 - par$slip) ^ omega * par$guess ^ (1 - omega) } else if (model %in% c("NIDA", "GNIDA")) { P <- prod(((1 - par$slip) ^ alpha * par$guess ^ (1 - alpha)) ^ Q) } else if (model == "RRUM") { P <- par$pi * prod(par$r ^ (Q * (1 - alpha))) } else return(warning("Model specification is not valid.")) } return(P) }
'.gdalwarp' <- function(src,dst=NULL,grid=NULL,resample="near",nodata=NA ,resetGrid=FALSE,opt=NULL,close=FALSE,verbose=0L) { if (is.null(grid)) { if (is.ursa(dst,"grid")) { grid <- dst dst <- NULL } else if (is.ursa(dst)) { grid <- ursa(dst,"grid") dst <- NULL } else grid <- getOption("ursaSessionGrid") } else grid <- ursa_grid(grid) if (!nchar(Sys.which("gdalwarp"))) { withRaster <- requireNamespace("raster",quietly=.isPackageInUse()) if (withRaster) { r1 <- as.Raster(src) session_grid(grid) r2 <- as.Raster(ursa_new(0L)) r3 <- try(raster::resample(r1,r2,method=c("bilinear","ngb")[1])) if (inherits(r3,"try-error")) { if (verbose) message('reprojection is failed') return(src) } } else if (verbose) message(paste("'gdalwarp' is not found; package 'raster' is not found." ,"Reprojection is failed.")) return(src) } if (is.ursa(src)) { removeSrc <- TRUE .src <- src nodata <- ignorevalue(src) src <- .maketmp(ext=".") write_envi(.src,src) } else { removeSrc <- FALSE } inMemory <- is.null(dst) if (inMemory) { dst <- .maketmp(ext="") driver <- "ENVI" } else { driver <- switch(.gsub("^.+(\\.(.+))$","\\2",tolower(basename(dst))) ,tif="GTiff",tiff="GTiff",envi="ENVI",img="HFA",hfa="HFA" ,"ENVI") } if (verbose) print(c(inMemory=inMemory,removeSrc=removeSrc,isNullGrid=is.null(grid))) proj4 <- ursa_crs(grid) if (!nchar(proj4)) { opt <- c(opt,to="SRC_METHOD=NO_GEOTRANSFORM",to="DST_METHOD=NO_GEOTRANSFORM") } if (!("co" %in% names(opt))) { if (driver=="GTiff") opt <- c(opt,co="COMPRESS=DEFLATE",co="PREDICTOR=2",co="TILED=NO") else if (driver=="HFA") { opt <- c(opt,co="COMPRESSED=YES") } } if (is.null(opt)) { optF <- "" } else if (!is.null(names(opt))) { optS <- unlist(opt) optF <- paste(paste0("-",names(optS)," ",.dQuote(unname(optS))),collapse=" ") optF <- gsub("\\s*\"TRUE\"","",optF) optF <- .gsub("\\s\\\"\\\"","",optF) } else optF <- "" if (!("r" %in% names(opt))) { optF <- paste(optF,"-r",resample) } if (is.null(grid)) cmd <- paste("gdalwarp -overwrite -of",driver ,ifelse(is.na(nodata),"",paste("-srcnodata",nodata,"-dstnodata",nodata)) ,ifelse(verbose==0L,"-q","") ,optF,src,dst) else cmd <- with(grid,paste("gdalwarp -overwrite -of",driver ,ifelse(nchar(proj4),paste("-t_srs",.dQuote(proj4)),"") ,"-nosrcalpha" ,"-tr",resx,resy,"-te",minx,miny,maxx,maxy ,ifelse(is.na(nodata),"",paste("-srcnodata",nodata,"-dstnodata",nodata)) ,ifelse(verbose==0L,"-q","") ,optF,src,dst)) if (verbose) message(cmd) if (verbose>1) return(NULL) proj_lib <- Sys.getenv("PROJ_LIB") Sys.setenv(PROJ_LIB=file.path(dirname(dirname(Sys.which("gdalwarp"))),"share/proj")) system(cmd) Sys.setenv(PROJ_LIB=proj_lib) session_grid(NULL) if (inMemory) { ret <- if (driver=="ENVI") read_envi(dst) else read_gdal(dst) } else if (!close) ret <- if (driver=="ENVI") open_envi(dst) else open_gdal(dst) else ret <- NULL if (!is.na(nodata)) { ignorevalue(ret) <- nodata if (inMemory) ret[ret==nodata] <- NA } if (inMemory) { envi_remove(dst) } if (removeSrc) { envi_remove(src) } if (resetGrid) session_grid(ret) ret }
sel_scale_1d_wgs = function(cnMax=6,pscnMax=6,ngrid = 100,nslaves = 50,temp){ tt = exp(-(0:6-1)^2);prior_f = tt%*%t(tt);lprior_f_2d = -log(prior_f)*1e-3 rtt = exp(-(6:0-1)^2);rprior_f = rtt%*%t(rtt);rlprior_f_2d = -log(rprior_f)*1e-3 baf <- temp$baf lrr <- temp$lrr n_baf <- temp$n_baf nrc <- temp$nrc scale_max = mean(exp(lrr))*2 scale_min = mean(exp(lrr))/3 sim_func <- function(ss,ngrid=100,pscnMax=6){ scale = scale_min+ss*(scale_max-scale_min)/ngrid n_seg = length(baf) L_tot_1d = matrix(0,100,n_seg) for(i in which(!is.na(baf))){ L_tot_1d[,i]=calcll_1d_baf(lrr[i],nrc[i],baf[i],n_baf[i],lprior_f_2d*0,rlprior_f_2d*0,scale,6,6)[[1]] } L_sum_1d = apply(L_tot_1d,1,sum) out = min(L_sum_1d) return(out) } ll <- lapply(1:100, sim_func) ll <-unlist(ll) ind = 3:(ngrid-2) id = which(ll[ind]<ll[ind+1]&ll[ind]<ll[ind+2]&ll[ind]<ll[ind-1]&ll[ind]<ll[ind-2])+2 if(length(id)>1){id1 = which.min(ll[id]);id2 = which.min(ll[id[-id1]]);id2 = (id[-id1])[id2];id1 = id[id1];id=c(id1,id2)} scale1d = id*(scale_max-scale_min)/ngrid+scale_min res = list() res$ll = ll res$scale_max = scale_max res$scale_min = scale_min res$scale1d = scale1d return(res) }
manual_scale <- function(aesthetic, values = NULL, breaks = waiver(), ...) { if (is_missing(values)) { values <- NULL } else { force(values) } if (is.vector(values) && is.null(names(values)) && !is.waive(breaks) && !is.null(breaks)) { if (length(breaks) != length(values)) { abort(glue(" Differing number of values and breaks in manual scale. {length(values)} values provided compared to {length(breaks)} breaks. ")) } names(values) <- breaks } pal <- function(n) { if (n > length(values)) { abort(glue("Insufficient values in manual scale. {n} needed but only {length(values)} provided.")) } values } discrete_scale(aesthetic, "manual", pal, breaks = breaks, ...) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(tinyscholar) profile <- tinyscholar("FvNp0NkAAAAJ") str(profile, max.level = 1) tb <- scholar_table(profile) tb$citations tb$publications pl <- scholar_plot(profile) pl$citations pl$publications
PurpleAirQC_hourly_AB_01 <- function( pat = NULL, min_count = 20, returnAllColumns = FALSE ) { MazamaCoreUtils::stopIfNull(pat) MazamaCoreUtils::stopIfNull(min_count) MazamaCoreUtils::stopIfNull(returnAllColumns) countData <- pat %>% pat_aggregate( function(x) { base::length(na.omit(x)) } ) %>% pat_extractData() meanData <- pat %>% pat_aggregate( function(x) { base::mean(x, na.rm = TRUE) } ) %>% pat_extractData() FUN <- function(x) { result <- try({ hourly_ttest <- stats::t.test(x$pm25_A, x$pm25_B, paired = FALSE) tbl <- dplyr::tibble( t_score = as.numeric(hourly_ttest$statistic), p_value = as.numeric(hourly_ttest$p.value), df_value = as.numeric(hourly_ttest$parameter) ) }, silent = TRUE) if ( "try-error" %in% class(result) ) { tbl <- dplyr::tibble( t_score = as.numeric(NA), p_value = as.numeric(NA), df_value = as.numeric(NA) ) } return(tbl) } suppressWarnings({ ttestData <- pat %>% pat_extractData() %>% patData_aggregate(FUN) }) hourlyData <- dplyr::tibble(datetime = meanData$datetime) %>% dplyr::mutate(pm25 = (meanData$pm25_A + meanData$pm25_B) / 2) %>% dplyr::mutate(min_count = pmin(countData$pm25_A, countData$pm25_B, na.rm = TRUE)) %>% dplyr::mutate(mean_diff = abs(meanData$pm25_A - meanData$pm25_B)) %>% dplyr::mutate(pm25 = replace( .data$pm25, which(.data$min_count < min_count), NA) ) %>% dplyr::mutate(pm25 = replace( .data$pm25, which( (ttestData$p_value < 1e-4) & (.data$mean_diff > 10) ), NA) ) %>% dplyr::mutate(pm25 = replace( .data$pm25, which( (.data$pm25 < 100) & (.data$mean_diff > 20) ), NA) ) if ( returnAllColumns ) { hourlyData <- hourlyData %>% dplyr::mutate( pm25_A_count = countData$pm25_A, pm25_B_count = countData$pm25_B, pm25_A_mean = meanData$pm25_A, pm25_B_mean = meanData$pm25_B, p_value = ttestData$p_value ) } else { hourlyData <- hourlyData %>% dplyr::select(.data$datetime, .data$pm25) } return(hourlyData) }
process__exists <- function(pid) { rethrow_call(c_processx__process_exists, pid) }
fun.simu.bias.correct.alt <- function (r, fit.obj) { n.simu <- nrow(r) index.var <- 2:(match("L1", dimnames(r)[[2]]) - 1) r.adj <- data.matrix(r[, index.var]) r.adj.val <- do.call("rbind", lapply(1:n.simu, function(i, r.adj, fit.obj, index.var) t(matrix(as.numeric(r.adj[i, ])) - matrix(fit.obj[[3]][index.var - 1])), r.adj, fit.obj, index.var)) r.adj.val <- colMeans(r.adj.val) mode(r.adj) <- "numeric" r.adj.f <- r.adj - matrix(rep(r.adj.val, n.simu), ncol = ncol(r.adj), byrow = T) return(r.adj.f) }
extract_lm <- function(parameter, algorithm, df){ my_lm = lm(as.formula(paste(parameter, "~" ,algorithm)), data =df) R_Squared = summary(my_lm)$r.squared P_Value = summary(my_lm)$coefficients[8] Slope = summary(my_lm)$coefficients[2] Intercept = summary(my_lm)$coefficients[1] tibble::tibble(R_Squared = R_Squared, Slope = Slope, Intercept = Intercept, P_Value = P_Value) } extract_lm_cv <- function(parameter, algorithm, df, train_method = "lm", control_method = "repeatedcv", folds = 3, nrepeats =5){ if (!requireNamespace("caret", quietly = TRUE)) stop("package caret required, please install it first") my_formula = as.formula(paste(parameter, "~" ,algorithm)) caret_model = caret::train(form = my_formula, data = df, method = "lm", na.action = na.exclude, trControl = caret::trainControl(method = "repeatedcv", number = folds, repeats = nrepeats)) my_lm = caret_model$finalModel CV_R_Squared = caret::getTrainPerf(caret_model)[, "TrainRsquared"] RMSE = caret::getTrainPerf(caret_model)[, "TrainRMSE"] MAE = caret::getTrainPerf(caret_model)[, "TrainMAE"] R_Squared = summary(my_lm)$r.squared P_Value = summary(my_lm)$coefficients[8] Slope = summary(my_lm)$coefficients[2] Intercept = summary(my_lm)$coefficients[1] tibble::tibble(R_Squared = R_Squared, Slope = Slope, Intercept = Intercept, P_Value = P_Value, CV_R_Squared = CV_R_Squared, RMSE = RMSE, MAE = MAE) } extract_lm_cv_multi <- function(parameters, algorithms, df, train_method = "lm", control_method = "repeatedcv", folds = 3, nrepeats = 5){ if (!requireNamespace("caret", quietly = TRUE)) stop("package caret required, please install it first") list = list() for (i in seq_along(parameters)) { names(algorithms) <- algorithms %>% purrr::map_chr(., ~ paste0(parameters[[i]], "_",.)) list[[i]] = algorithms %>% purrr::map_dfr(~extract_lm_cv(parameter = parameters[[i]], algorithm = algorithms, df = df, train_method = train_method, control_method = control_method, folds = folds, nrepeats = nrepeats), .id = "Algorithms") } extract_lm_cv_multi_results <- (do.call(rbind, list)) } extract_lm_cv_all <- function(parameters, df, train_method = "lm", control_method = "repeatedcv", folds = 3, nrepeats = 5){ if (!requireNamespace("caret", quietly = TRUE)) stop("package caret required, please install it first") list = list() for (i in seq_along(parameters)) { algorithms = df %>% dplyr::select(which(sapply(., class) == "numeric"), -parameters) %>% names() names(algorithms) <- algorithms %>% purrr::map_chr(., ~ paste0(parameters[[i]], "_", .)) list[[i]] = algorithms %>% purrr::map_dfr(~extract_lm_cv(parameter = parameters[[i]], algorithm = ., df = df, train_method = train_method, control_method = control_method, folds = folds, nrepeats = nrepeats), .id = "Algorithms") } extract_lm_cv_all_results <- (do.call(rbind, list)) }
omegaFreqData <- function( data, interval, omega.int.analytic, pairwise, n.boot = 1e3, parametric = FALSE, callback = function(){}) { p <- ncol(data) n <- nrow(data) file <- lavOneFile(data) colnames(data) <- file$names lam_names <- paste("l", 1:p, sep = "") err_names <- paste("e", 1:p, sep = "") model <- paste0("f1 =~ ") loadings <- paste(paste(lam_names, "*", file$names, sep = ""), collapse = " + ") errors <- paste(paste(file$names, " ~~ ", err_names, "*", file$names, sep = ""), collapse = "\n") sum_loads <- paste("loading :=", paste(lam_names, collapse = " + "), "\n") sum_errs <- paste("error :=", paste(err_names, collapse = " + "), "\n") omega <- "omega := (loading^2) / ((loading^2) + error) \n" mod <- paste(model, loadings, "\n", errors, "\n", sum_loads, sum_errs, omega) if (pairwise) { fit <- fitmodelMis(mod, data) } else { fit <- fitmodel(mod, data) } if (is.null(fit)) { return(list(omega = NA, fit.object = NULL)) } else { params <- lavaan::parameterestimates(fit, level = interval) omega <- params$est[params$lhs == "omega"] if (omega.int.analytic) { om_low <- params$ci.lower[params$lhs == "omega"] om_up <- params$ci.upper[params$lhs == "omega"] om_obj <- NA } else { if (parametric) { if (pairwise) { cc <- cov(data, use = "pairwise.complete.obs") } else { cc <- cov(data) } om_obj <- numeric(n.boot) for (i in 1:n.boot){ boot_data <- MASS::mvrnorm(n, colMeans(data, na.rm = TRUE), cc) fit <- fitmodel(mod, boot_data) callback() if (!is.null(fit)) { params <- lavaan::parameterestimates(fit, level = interval) om_obj[i] <- params$est[params$lhs == "omega"] } else { om_obj[i] <- NA } } if (sum(!is.na(om_obj)) > 1) { om_low <- quantile(om_obj, prob = (1 - interval) / 2, na.rm = TRUE) om_up <- quantile(om_obj, prob = interval + (1 - interval) / 2, na.rm = TRUE) } else { om_low <- NA om_up <- NA om_obj <- NA } } else { om_obj <- numeric(n.boot) for (i in 1:n.boot){ boot_data <- as.matrix(data[sample.int(n, size = n, replace = TRUE), ]) if (pairwise) { fit <- fitmodelMis(mod, boot_data) } else { fit <- fitmodel(mod, boot_data) } callback() if (!is.null(fit)) { params <- lavaan::parameterestimates(fit, level = interval) om_obj[i] <- params$est[params$lhs=="omega"] } else { om_obj[i] <- NA } } if (sum(!is.na(om_obj)) > 1) { om_low <- quantile(om_obj, prob = (1 - interval) / 2, na.rm = TRUE) om_up <- quantile(om_obj, prob = interval + (1 - interval) / 2, na.rm = TRUE) } else { om_low <- NA om_up <- NA om_obj <- NA } } } fit_tmp <- lavaan::fitMeasures(fit) indic <- c(fit_tmp["chisq"], fit_tmp["df"], fit_tmp["pvalue"], fit_tmp["rmsea"], fit_tmp["rmsea.ci.lower"], fit_tmp["rmsea.ci.upper"], fit_tmp["srmr"]) } return(list(omega = omega, omega_lower = om_low, omega_upper = om_up, indices = indic, fit.object = fit, omega_boot = om_obj)) } fitmodel <- function(mod, data) { out <- tryCatch( { lavaan::cfa(mod, data, std.lv = TRUE) }, error = function(cond) { return(NULL) }, warning = function(cond) { return(NULL) }, finally = {} ) return(out) } fitmodelMis <- function(mod, data) { out <- tryCatch( { lavaan::cfa(mod, data, std.lv = TRUE, missing = "ML") }, error = function(cond) { return(NULL) }, warning = function(cond) { return(NULL) }, finally = {} ) return(out) }
get_gene_symbol <- function(wilcoxon_rank_mat_t) { if(is.null(rownames(wilcoxon_rank_mat_t))) { stop("wilcoxon_rank_mat_t must be an object with row names. Currently, rownames == NULL") } the_human <- length(grep("ENSG00", rownames(wilcoxon_rank_mat_t))) the_mouse <- length(grep("ENSMUSG00", rownames(wilcoxon_rank_mat_t))) if((the_mouse == 0 & the_human == 0)[1]) { stop("Matrix is not internal and this function should not be required. gene symbols of genes, bulk matrix, and signature matrix should already match.") } if(the_human >= the_mouse) { theSpecies <- "human" } if(the_mouse > the_human) { theSpecies <- "mouse" } sm <- wilcoxon_rank_mat_t RN = rownames(sm) RN_1 <- sub('(.*)[.](.*)','\\1',RN) if(theSpecies == "human") { RN_2 <- substr(RN_1, 1, nchar(RN_1) - 16) } if(theSpecies == "mouse" ) { RN_2 <- substr(RN_1, 1, nchar(RN_1) - 19) } return(list(rowname = RN_2, species = theSpecies)) }
expect_hms_equal <- function(x, y) { expect_s3_class(x, "hms") expect_s3_class(y, "hms") expect_equal(as.numeric(x), as.numeric(y)) } expect_difftime_equal <- function(x, y) { expect_s3_class(x, "difftime") expect_s3_class(y, "difftime") expect_equal(as.numeric(as_hms(x)), as.numeric(as_hms(y))) }
test_that("coherence and phase works for single entry", { a <- array(rnorm(100), dim = c(100, 1, 1)) expect_warning(phase(a)) expect_warning(coherence(a)) })
library("stsm") library("numDeriv") y <- log(AirPassengers) pars <- c("var2" = 7, "var3" = 3.5, "var4" = 25) cpar <- c("var1" = 12) nopars <- NULL transP <- NULL bar <- list(type = "1", mu = 0) m <- stsm.model(model = "BSM", y = y, pars = pars, cpar = cpar, nopars = nopars, transPars = transP) get.pars(m) get.cpar(m) get.nopars(m) mcloglik.fd(model = m, barrier = bar) mcloglik.fd(x = m@pars, model = m, barrier = bar) a1 <- mcloglik.fd.deriv(model = m, gradient = TRUE, hessian = TRUE, infomat = TRUE) a1$gradient a1$hessian a2 <- mcloglik.fd.deriv(model = m, gradient = TRUE, hessian = TRUE, infomat = TRUE) a2$gradient a2$hessian length(a1) == length(a2) for (i in seq(along = a1)) print(all.equal(a1[[i]], a2[[i]], check.attributes = FALSE)) g <- grad(func = mcloglik.fd, x = m@pars, model = m, barrier = bar) g h <- hessian(func = mcloglik.fd, x = m@pars, model = m, barrier = bar) h all.equal(a1$gradient, g, check.attributes = FALSE) all.equal(a1$hessian, h, check.attributes = FALSE)
"gcdg_ecu"
simYes.opiClose <- function() { return(NULL) } simYes.opiQueryDevice <- function() { return (list(type="SimNo", isSim=TRUE)) } simYes.opiInitialize <- function(display = NA) { if(simDisplay.setupDisplay(display)) warning("opiInitialize (SimNo): display parameter may not contain 4 numbers.") return(NULL) } simYes.opiSetBackground <- function(col, gridCol) { return (simDisplay.setBackground(col, gridCol)) } simYes.opiPresent <- function(stim, nextStim=NULL) { simDisplay.present(stim$x, stim$y, stim$color, stim$duration, stim$responseWindow) return ( list( err = NULL, seen= TRUE, time= 0 )) }
calculate_roc <- function(M, D, ci = FALSE, alpha = .05){ if(sum(c(is.na(M), is.na(D))) > 0) stop("No missing data allowed") D <- verify_d(D) T.order <- order(M, decreasing=TRUE) TTT <- M[T.order] TPF <- cumsum(D[T.order] == 1) FPF <- cumsum(D[T.order] == 0) dups <- rev(duplicated(rev(TTT))) tp <- c(0, TPF[!dups])/sum(D == 1) fp <- c(0, FPF[!dups])/sum(D == 0) cutoffs <- c(Inf, TTT[!dups]) df <- data.frame(FPF = fp, TPF = tp, c = cutoffs) if(ci){ stopifnot(is.finite(alpha) && alpha < 1 && alpha > 0) alpha.star <- 1 - sqrt(1 - alpha) n0 <- sum(D == 0) n1 <- sum(D == 1) M0 <- M[D == 0] M1 <- M[D == 1] ci_res <- sapply(c, function(x){ FP.L <- stats::qbeta(alpha.star, sum(M0 > x), n0 - sum(M0 > x) + 1) FP.U <- stats::qbeta(1 - alpha.star, sum(M0 > x) + 1, n0 - sum(M0 > x)) TP.L <- stats::qbeta(alpha.star, sum(M1 > x), n1 - sum(M1 > x) + 1) TP.U <- stats::qbeta(1 - alpha.star, sum(M1 > x) + 1, n1 - sum(M1 > x)) c(FP.L, FP.U, TP.L, TP.U) }) ci_res2 <- as.data.frame(t(ci_res)) colnames(ci_res2) <- c("FP.L", "FP.U", "TP.L", "TP.U") df <- cbind(df, ci_res2) } df } calculate_multi_roc <- function(data, M_string, D_string){ out_list <- vector("list", length = length(M_string)) D <- verify_d(data[D_string][,1]) for(i in 1:length(out_list)){ M <- data[M_string[i]][,1] if(sum(c(is.na(M), is.na(D))) > 0) stop("No missing data allowed") T.order <- order(M, decreasing=TRUE) TTT <- M[T.order] TPF <- cumsum(D[T.order] == 1) FPF <- cumsum(D[T.order] == 0) dups <- rev(duplicated(rev(TTT))) tp <- c(0, TPF[!dups])/sum(D == 1) fp <- c(0, FPF[!dups])/sum(D == 0) cutoffs <- c(Inf, TTT[!dups]) df <- data.frame(FPF = fp, TPF = tp, c = cutoffs) out_list[[i]] <- df } out_list } verify_d <- function(D){ if(length(levels(as.factor(D))) > 2) stop("Only labels with 2 classes supported") slev <- sort(levels(as.factor(D))) if(slev[1] == 0 & slev[2] == 1) return(D) warning(paste0("D not labeled 0/1, assuming ", slev[1], " = 0 and ", slev[2], " = 1!")) zero1 <- c(0, 1) names(zero1) <- slev zero1[as.character(D)] } melt_roc <- function(data, d, m, names = NULL){ if(is.null(names)){ names <- colnames(data[, m]) } data.frame(D = rep(data[, d], length(m)), M = do.call(c, data[, m]), name = rep(names, each = nrow(data)), stringsAsFactors = FALSE) } is.discrete <- function(x) { is.factor(x) || is.character(x) || is.logical(x) } calc_auc <- function(ggroc){ lays <- sapply(ggroc$layers, function(g) class(g$geom)[1]) stopifnot("GeomRoc" %in% lays) l1 <- ggplot_build(ggroc)$data[[1]] comp_auc <- function(df){ auc <- 0 for (i in 2:length(df$x)) { auc <- auc + 0.5 * (df$x[i] - df$x[i-1]) * (df$y[i] + df$y[i-1]) } return(data.frame(AUC = auc)) } plyr::ddply(l1, ~ PANEL + group, comp_auc) }
test_that("dg works", { depo <- as.list(gen_GHvalid(1, h = 0)[, c('a', 'b', 'g')]) depo %<>% modifyList(list(n = 250)) %>% do.call('rg', .) %>% list(x = .) %>% modifyList(depo) %>% do.call('dg', .) expect_true(all(depo >= 0)) depo <- gen_GHvalid(100, g = 0, h = 0) depox <- rnorm(100, depo$a, depo$b) expect_equal( with(depo, dg(depox, a, b, g)), with(depo, dnorm(depox, a, b)), tolerance = 1e-7 ) depo <- gen_GHvalid(100, h = 0) depo$g %<>% abs depo$x <- with(depo, mapply(rg, a = a, b = b, g = g, MoreArgs = list(n = 1))) expect_equal( with(depo, dg(depo$x, a, b, g)), with(depo, g / b * dlnorm(1 + g * (depo$x - a) / b, 0, g)), tolerance = 1e-7 ) })
guessDateFormat <- function(x) { x1 <- x if(!inherits(x1[1], "character")) { x1 <- as.character(x1) } x1[x1 == ""] <- NA x1 <- x1[!is.na(x1)] if(length(x1) == 0) return(NA) dateTimes <- do.call(rbind, strsplit(x1, ' ')) for(i in ncol(dateTimes)) { dateTimes[dateTimes[,i] == "NA"] <- NA } timePart <- which(apply(dateTimes, MARGIN=2, FUN=function(i) { any(grepl(":", i)) })) datePart <- setdiff(seq(ncol(dateTimes)), timePart) if(length(timePart) > 1 || length(datePart) != 1) stop("cannot parse your time variable") timeFormat <- NA if(length(timePart)) { hasNoTm <- is.na(dateTimes[,timePart]) ncolons <- max(nchar(gsub("[^:]", "", dateTimes[!hasNoTm,timePart]))) if(ncolons == 1) { timeFormat <- "%H:%M" } else if(ncolons == 2) { timeFormat <- "%H:%M:%S" } else stop("timePart should have 1 or 2 colons") } hasNoDt <- is.na(dateTimes[,datePart]) nonMissDt <- dateTimes[!hasNoDt,datePart] sep <- unique(substr(gsub("[0-9]", "", nonMissDt), 1, 1)) if(length(sep) > 1 && "" %in% sep) { sep <- sep[sep != ''] } if(length(sep) > 1) stop("too many seperators in datePart") dates <- gsub("[^0-9]", "", nonMissDt) dlen <- max(nchar(dates)) dateFormat <- NA dtfrm1 <- paste0("%y", "%m", "%d") dtfrm2 <- paste0("%m", "%d", "%y") dtfrm3 <- paste0("%Y", "%m", "%d") dtfrm4 <- paste0("%m", "%d", "%Y") if(dlen %in% 4:6) { if(sum(is.na(as.Date(dates, format=dtfrm1))) == 0) { dateFormat <- dtfrm1 } else if(sum(is.na(as.Date(dates, format=dtfrm2))) == 0) { dateFormat <- dtfrm2 } else stop("datePart format [four-six characters] is inconsistent") } else if(dlen %in% 7:8) { if(sum(is.na(as.Date(dates, format=dtfrm3))) == 0) { dateFormat <- dtfrm3 } else if(sum(is.na(as.Date(dates, format=dtfrm4))) == 0) { dateFormat <- dtfrm4 } else stop("datePart format [seven-eight characters] is inconsistent") } else { stop(sprintf("datePart has unusual length: %s", dlen)) } dateFormat <- paste(substr(dateFormat, 1, 2), substr(dateFormat, 3, 4), substr(dateFormat, 5, 6), sep = sep) if(is.na(timeFormat)) { format <- dateFormat } else if(timePart == 1) { format <- paste(timeFormat, dateFormat) } else if(timePart == 2) { format <- paste(dateFormat, timeFormat) } else stop("cannot parse your time variable") format } parse_dates <- function(x, tz = getOption('pkdata.tz', '')) { if(inherits(x, "POSIXct")) return(x) res <- rep(NA, length(x)) x[grepl("NA", x)] <- NA fmt <- guessDateFormat(x) if(is.na(fmt)) return(res) fmt <- gsub("[^ymd ]", "", tolower(fmt)) if(grepl(" ", fmt)) { fmt <- sub(" .*$", "_HMS", fmt) x[!grepl(" ", sub('[[:space:]]$', '', x))] <- NA res <- lubridate::parse_date_time(x, orders = fmt, tz = tz, truncated = 2) } else { res <- as.Date(lubridate::parse_date_time(x, orders = fmt, tz = tz)) } res } round_hours <- function(x) { toAdd <- ifelse(lubridate::minute(x) >= 30, lubridate::dhours(1), lubridate::dhours(0)) lubridate::floor_date(x, unit = 'hour') + toAdd }
claim_frequency <- function( I = 40, E = 12000, freq = 0.03, simfun, type = c("r", "p"), ...) { if (!missing(simfun)) { type <- match.arg(type) if (type == "r") { simfun(I, ...) } else if (type == "p") { name_as_chr <- deparse(substitute(simfun)) name_contains_pkg <- grepl("::", name_as_chr) if (name_contains_pkg == TRUE) { pkg <- unlist(strsplit(name_as_chr, split = "::"))[1] fun <- unlist(strsplit(name_as_chr, split = "::"))[2] substr(fun, 1, 1) <- "r" found_r <- exists(fun, where = asNamespace(pkg), mode = "function") } else { fun <- name_as_chr substr(fun, 1, 1) <- "r" found_r <- exists(fun, mode = "function") } if (found_r == TRUE) { rfun <- ifelse(exists("pkg"), getExportedValue(pkg, fun), get(fun)) rfun(I, ...) } else { simulate_cdf(I, simfun, ...) } } } else { stats::rpois(I, E * .pkgenv$time_unit * freq) } } claim_occurrence <- function(frequency_vector) { I <- length(frequency_vector) occurrence_times <- vector("list", I) for (i in 1:I) { occurrence_times[[i]] <- stats::runif(frequency_vector[i], min = i - 1, max = i) } occurrence_times }
compare_check.set<-function(RM_set_1,RM_set_2,DM_set_1,DM_set_2,DM_mesh_1,DM_mesh_2){ dim1<-dim(RM_set_1)[1] dim2<-dim(RM_set_2)[1] SF1<-cSize(DM_set_1)/cSize(RM_set_1) SF2<-cSize(DM_set_2)/cSize(RM_set_2) scale_factor<-(SF1+SF2)/2 RM_set_1_sc<-RM_set_1*scale_factor RM_set_2_sc<-RM_set_2*scale_factor AM_mesh_1<-rotmesh.onto(DM_mesh_1, DM_set_1,RM_set_1_sc, adnormals = FALSE, scale = FALSE, reflection = FALSE) AM_mesh_2<-rotmesh.onto(DM_mesh_2, DM_set_2,RM_set_2_sc, adnormals = FALSE, scale = FALSE, reflection = FALSE) AM_mesh<-mergeMeshes(AM_mesh_1$mesh,AM_mesh_2$mesh) AM_rot<-rotmesh.onto(AM_mesh,rbind(AM_mesh_1$yrot,AM_mesh_2$yrot), rbind(RM_set_1_sc,RM_set_2_sc), adnormals = FALSE, scale = FALSE, reflection = FALSE) check_dist<-abs(sum(projRead(rbind(RM_set_1_sc,RM_set_2_sc),AM_rot$mesh)$quality)) procr_dist<-vegan::procrustes(AM_rot$yrot,rbind(RM_set_1_sc,RM_set_2_sc))$ss eucl_dist<-sum(sqrt(rowSums((AM_rot$yrot-rbind(RM_set_1_sc,RM_set_2_sc))^2))) check_1<-sum(sqrt(rowSums((AM_rot$yrot[1:dim1,]-RM_set_1_sc)^2))) check_2<-sum(sqrt(rowSums((AM_rot$yrot[(dim1+1):(dim1+dim2),]-RM_set_2_sc)^2))) procr_dist_1<-vegan::procrustes(AM_rot$yrot[1:dim1,],RM_set_1_sc)$ss procr_dist_2<-vegan::procrustes(AM_rot$yrot[(dim1+1):(dim1+dim2),],RM_set_2_sc)$ss single_l_1<-sqrt(rowSums((AM_rot$yrot[1:dim1,]-RM_set_1_sc)^2)) single_l_2<-sqrt(rowSums((AM_rot$yrot[(dim1+1):(dim1+dim2),]-RM_set_2_sc)^2)) out<-list("SF1"=SF1,"SF2"=SF2,"RM_set_1_sc"=RM_set_1_sc,"RM_set_2_sc"=RM_set_2_sc, "AM_model"=AM_rot,"dist_from_mesh"=check_dist,"eucl_dist_1"=check_1,"eucl_dist_2"=check_2, "procr_dist"=procr_dist,"procr_dist_1"=procr_dist_1,"procr_dist_2"=procr_dist_2,"eucl_dist"=eucl_dist,"single_l_1"=single_l_1,"single_l_2"=single_l_2) return(out) }
dataset_mnist_digits <- function(ntrain = 60000L, ntest = 10000L, onehot = TRUE) { python_path <- system.file("python", package = "rTorch") tools <- import_from_path("torchtools", path = python_path) tools$data_util$load_mnist(ntrain, ntest, onehot) }
.TuMadrlsGetvar <- function(a, r){ A.loc <- 1/(2*a*dnorm(a)*(a^2 - 15) + (a^4 - 6*a^2 + 15)*(2*pnorm(a)-1)) h1 <- 2*integrate(f = function(x, a0){ x^2*(a0^2-x^2)^4*dnorm(x) }, lower = 0, upper = a, rel.tol = .Machine$double.eps^0.5, a0 = a)$value a.mad <- qnorm(0.75) b.mad <- 1/(4*a.mad*dnorm(a.mad)) return(A.loc^2*h1 + b.mad^2) } .TuMadrlsGetmse <- function(a, r){ A.loc <- 1/(2*a*dnorm(a)*(a^2 - 15) + (a^4 - 6*a^2 + 15)*(2*pnorm(a)-1)) a.mad <- qnorm(0.75) b.mad <- 1/(4*a.mad*dnorm(a.mad)) b.2 <- sqrt(A.loc^2*(16/25/sqrt(5)*a^5)^2 + b.mad^2)^2 return(.TuMadrlsGetvar(a = a) + r^2*b.2) } rlsOptIC.TuMad <- function(r, aUp = 10, delta = 1e-6){ res <- optimize(f = .TuMadrlsGetmse, lower = 1e-4, upper = aUp, tol = delta, r = r) a <- res$minimum A.loc <- 1/(2*a*dnorm(a)*(a^2 - 15) + (a^4 - 6*a^2 + 15)*(2*pnorm(a)-1)) a.mad <- qnorm(0.75) b.mad <- 1/(4*a.mad*dnorm(a.mad)) bias <- sqrt(A.loc^2*(16/25/sqrt(5)*a^5)^2 + b.mad^2) fct1 <- function(x){ A.loc*x*(a^2 - x^2)^2*(abs(x) < a) } body(fct1) <- substitute({ A.loc*x*(a^2 - x^2)^2*(abs(x) < a) }, list(a = a, A.loc = A.loc)) fct2 <- function(x){ b.mad*sign(abs(x) - a.mad) } body(fct2) <- substitute({ b.mad*sign(abs(x) - a.mad) }, list(a.mad = a.mad, b.mad = b.mad)) return(IC(name = "IC of TuMad type", Curve = EuclRandVarList(RealRandVariable(Map = list(fct1, fct2), Domain = Reals())), Risks = list(asMSE = res$objective, asBias = bias, asCov = res$objective - r^2*bias^2), Infos = matrix(c("rlsOptIC.TuMad", "optimally robust IC for TuMad estimators and 'asMSE'", "rlsOptIC.TuMad", paste("where a =", round(a, 3))), ncol=2, byrow = TRUE, dimnames=list(character(0), c("method", "message"))), CallL2Fam = call("NormLocationScaleFamily"))) }
`xport.namestr.header` <- function( nvar ) { .C("fill_namestr_header", nvar = sprintf("%04.4d", as.integer(nvar)), PACKAGE="SASxport" ) .Call("getRawBuffer", PACKAGE="SASxport") }
`dssaveintersect` <- function(...,method='averaging'){ x=list(...) xlo=list(); xhi=list(); n=dim(x[[1]])[1]; m=length(x); tochecklo=numeric() tocheckhi=numeric() for(i in 1:m){ x[[i]]=x[[i]][order(x[[i]][,1]),,drop=FALSE] xlo[[i]]=cbind(x[[i]],cumsum(x[[i]][,3])); tochecklo=c(tochecklo,xlo[[i]][,4]); x[[i]]=x[[i]][order(x[[i]][,2]),,drop=FALSE] xhi[[i]]=cbind(x[[i]],cumsum(x[[i]][,3])); tocheckhi=c(tocheckhi,xhi[[i]][,4]); } old=0 tocheck=c(tochecklo, tocheckhi) tocheck=sort(unique(tocheck)) erg=matrix(NA,length(tocheck),3); for(i in 1:length(tocheck)){ lo=numeric(m); hi=numeric(m); for(j in 1:m){ indlo=min(which(xlo[[j]][,4]+1E-10>=tocheck[i])) lo[j]=xlo[[j]][indlo,1] indhi=min(which(xhi[[j]][,4]+1E-10>=tocheck[i])) hi[j]=xhi[[j]][indhi,2] } erg[i,]=c(max(lo),min(hi),tocheck[i]-old) if(erg[i,1]>erg[i,2]){ if(method=='averaging'){ erg[i,1:2]=c(mean(lo),mean(hi)) }else{ erg[i,1:2]=c(min(lo),max(hi)) } } old=tocheck[i]; } erg=dsstruct(erg) }