code
stringlengths
1
13.8M
patients_keywords <- c('patients', 'individuals', 'subjects', 'biopsies', 'biopsy', 'participant', 'children', 'trial', 'humans', 'women') calculate_score_patients <- function(df, keywords = patients_keywords, case = FALSE, threshold = NULL, indicate = FALSE, discard = FALSE, col.abstract = Abstract) { if(!is.null(threshold) & !is.numeric(threshold)) { stop("'threshold' must be an integer >= 0") } if(indicate == TRUE & is.null(threshold)) { threshold <- 1 } if(discard == TRUE & is.null(threshold)) { threshold <- 1 } df_patient <- df %>% dplyr::mutate(Patient_score = purrr::map_int({{col.abstract}}, ~ calculate_score(string = .x, keywords = keywords, case = case))) if (indicate == TRUE) { df_patient <- df_patient %>% dplyr::mutate(Patient_p = ifelse(Patient_score >= threshold, "Yes", "No")) } if (discard == TRUE) { df_patient <- df_patient %>% dplyr::filter(Patient_score >= threshold) return(df_patient) } else { return(df_patient) } } plot_score_patients <- function(df, keywords = patients_keywords, case = FALSE, bins = NULL, colour = "steelblue3", col.abstract = Abstract, col.pmid = PMID, title = NULL) { if(is.null(title)) { title <- "Patient score distribution" } df_patients <- df %>% dplyr::mutate(Patient_score = purrr::map_int({{col.abstract}}, ~ calculate_score(string = .x, keywords = keywords, case = case))) if (is.null(bins)) { bins <- max(df_patients$Patient_score) - min(df_patients$Patient_score) } df_patients <- df_patients %>% dplyr::select({{col.pmid}}, Patient_score) %>% dplyr::distinct() plot <- ggplot(df_patients, aes(x = Patient_score)) + geom_histogram(bins = bins, fill = colour, center = 0, binwidth = 1) + theme_classic() + xlab("Patient score") + ylab(" ggtitle(title) + scale_x_continuous(expand = c(0,0), breaks = scales::pretty_breaks()) + scale_y_continuous(expand = c(0,0)) return(plot) }
require(igraph) require(spdep) require(fdrtool) require(GOstats) require(locfdr) require(mvtnorm) require(caTools) gene_fdrtest <- function(gene.data){ name <- gene.data$gene_id_all coef_val <- gene.data$t_data z.cent <- coef_val - median(coef_val) fdr_result <- data.frame(fdr = locfdr::locfdr(z.cent, nulltype = 0, plot = 4)$fdr, name) return(fdr_result) } cal_lmi_data <- function(gene_expr, gene_graph){ n_hop_matrix<-function(gene_graph, hop_n){ dis_mat <- igraph::shortest.paths(gene_graph) dis_mat[dis_mat >hop_n] <- 0 dis_mat[dis_mat == hop_n] <- 0.5 return(dis_mat) } dis_mat <- n_hop_matrix(gene_graph, hop_n = 2) listw_obj <- spdep::mat2listw(dis_mat, style = 'W') gene_expr<-t(apply(gene_expr, 1, function(gene_expr)(gene_expr-min(gene_expr))/(max(gene_expr)-min(gene_expr)))) lmi_data <- double() for (i in seq(1,ncol(gene_expr),1)){ lmi<-spdep::localmoran(gene_expr[,i],listw = listw_obj) lmi_data <- cbind(lmi_data,lmi[,1]) } return(lmi_data) } significant_genes <- function(fdr_obj, thres){ sel.entrez <- fdr_obj$name[which(fdr_obj$fdr<thres)] return(sel.entrez) } DNLC_statistics <- function(gene_graph, gene_expr='x', clinic_data='y', confounder_matrix = NULL ,lmi_data = NULL) { if(is.null(confounder_matrix)) confounder_matrix <- rep(1, length(clinic_data)) if(is.null(lmi_data)) { lmi_data = cal_lmi_data(gene_expr, gene_graph) } gene_ids <- igraph::V(gene_graph)$name if(is.null(gene_ids)) gene_ids = seq(1,nrow(gene_expr)) ans = double() for (i in seq(1,nrow(gene_expr),1)) { ans <- cbind(ans, summary(lm(clinic_data~lmi_data[i,]+confounder_matrix))$coef[2,3]) } return(list(gene_id_all=gene_ids, t_data=ans) ) } init_simulation_gene_net <- function( base_correlation = 0.4, change_correlation = 0.8, sample_size = 100, num_gene = 5000, change_gene_num=5) { n_hop_matrix<-function(gene_graph, hop_n){ dis_mat <- igraph::shortest.paths(gene_graph) dis_mat[dis_mat >hop_n] <- 0 dis_mat[dis_mat == hop_n] <- 0.5 return(dis_mat) } netdensity = 1 gene_graph <- igraph::barabasi.game(num_gene, m = netdensity) deg_data <- igraph::degree(gene_graph) simu_sel_gene_list = numeric() neigh_list_3 <- numeric() simu_gene_num = change_gene_num times = 100 while(length(simu_sel_gene_list) < simu_gene_num) { sel_gene <- sample(which(deg_data<= 10 &deg_data >= 5), 1) if(sel_gene %in% neigh_list_3) { times = times - 1 if(times<0) { return(NULL) } next() } simu_sel_gene_list <- c(simu_sel_gene_list, sel_gene) neigh_list_3 <- c(neigh_list_3, unlist(igraph::neighborhood(gene_graph, order = 3, nodes = sel_gene, mode = 'all')) ) } neigh_list <- numeric() for(sel_gene in simu_sel_gene_list) { neigh_list <- c(neigh_list, unlist(igraph::neighborhood(gene_graph, order = 1, nodes = sel_gene, mode = 'all')) ) } gene_code_list <- rnorm(num_gene, mean = 0, sd = 0) for(gid in neigh_list) { gene_code_list[gid] <- 1 } for(gid in simu_sel_gene_list){ gene_code_list[gid] <- 2 } s <- igraph::shortest.paths(gene_graph) s1 <- base_correlation^(s) x <- t(mvtnorm::rmvnorm(n = sample_size, mean = rep(0,num_gene), sigma = s1, method = "chol")) x <- t(apply(x, 1, function(x)(x-min(x))/(max(x)-min(x)))) y <- c(rnorm(sample_size, mean = 0, sd = 0 ), rnorm(sample_size, mean = 1, sd = 0)) dis_mat <- n_hop_matrix(gene_graph = gene_graph, hop_n = 2) listw_obj <- spdep::mat2listw(dis_mat, style = 'W') origin_lmi_data <- double() for (i in seq(1, ncol(x), 1)){ lmi <- spdep::localmoran(x[,i],listw = listw_obj) origin_lmi_data <- cbind(origin_lmi_data, lmi[,1]) } for (i in neigh_list){ for (j in neigh_list){ s1[i,j] <- change_correlation^s[i,j] } } x1 = x x <- t(mvtnorm::rmvnorm(n = sample_size, mean = rep(0,num_gene), sigma = s1, method = "chol")) x <- t(apply(x, 1, function(x)(x-min(x))/(max(x)-min(x)))) y <- c(rnorm(sample_size, mean = 0, sd = 0), rnorm(sample_size, mean = 1, sd = 0)) lmi_data <- double() for (i in seq(1,ncol(x),1)){ lmi <- spdep::localmoran(x[,i], listw = listw_obj) lmi_data <- cbind(lmi_data,lmi[,1]) } lmi_matrix <- cbind(lmi_data, origin_lmi_data) return(list(gene_graph = gene_graph, lmi_matrix = lmi_matrix, patient_matrix = y, neigh_list=neigh_list, gene_expr = cbind(x,x1))) }
gofGetHybrid <- function(result, p_values = NULL, nsets = NULL) { if (!inherits(result, "gofCOP")) { stop( "Please input an object of class 'gofCOP'. Such an object will be returned by functions of this package. If you input an object obtained from 'gof()', then input the result for all copula." ) } if (length(nsets) > 1) { stop("'nsets' has to be a single integer entry.") } res_list <- list() for (j in seq_along(result)) { if (length(result[[j]]) == 7) { tmp <- rownames(result[[j]]$res.tests) index <- which(startsWith(tmp, "hybrid")) if (length(index) > 0) { res_length <- length(tmp[-index]) } else { res_length <- length(tmp) } } else { res_length <- 1 } num_tests <- length(p_values) + res_length if (num_tests <= 1) { stop( "The input should contain information of at least two different tests." ) } if (!is.null(nsets)) { if (nsets < 1 | nsets > num_tests) { stop( "Please set nsets larger or equal than 1 and smaller or equal than the number of single tests. Otherwise hybrid testing is not meaningful." ) } } which_comb <- list() for (i in seq_len(2^num_tests)) { which_comb[[i]] <- which(as.integer(intToBits(i)) == 1) } comb_exist <- which_comb[which(unlist(lapply(which_comb, length)) > 1)] s_res_names <- rownames(result[[j]]$res.tests) s_res_p <- result[[j]]$res.tests[, 1] index <- which(startsWith(s_res_names, "hybrid")) if (length(index) > 0) { s_res_names <- s_res_names[-index] s_res_p <- s_res_p[-index] } s_p_names <- if (!is.null(p_values)) { if (is.null(names(p_values))) { paste0("Test_", LETTERS[1:length(p_values)]) } else { names(p_values) } } else { NULL } s_names <- c(s_res_names, s_p_names) p <- c(s_res_p, p_values) if (!is.null(nsets)) { if (nsets > 1) { index <- which(lapply(comb_exist, FUN = function(x) { length(x) == nsets }) == TRUE) comb_wanted <- comb_exist[index] for (i in seq_along(comb_wanted)) { p <- c(p, min(nsets * min(p[comb_wanted[[i]]]), 1)) } comb_names <- paste("hybrid(", lapply(comb_wanted, paste, collapse = ", "), ")", sep = "") res <- matrix(p, ncol = 1, dimnames = list(c(s_names, comb_names), "p.value")) } else { res <- matrix(p, ncol = 1, dimnames = list(c(s_names), "p.value")) } } else { for (i in seq_along(comb_exist)) { p <- c(p, min(length(comb_exist[[i]]) * min(p[comb_exist[[i]]]), 1)) } comb_names <- paste("hybrid(", lapply(comb_exist, paste, collapse = ", "), ")", sep = "") res <- matrix(p, ncol = 1, dimnames = list(c(s_names, comb_names), "p.value")) } res_list[[j]] <- list( method = "Hybrid test p-values for given single tests.", copula = result[[j]]$copula, margins = result[[j]]$margins, param.margins = result[[j]]$param.margins, theta = result[[j]]$theta, df = result[[j]]$df, res.tests = res ) } names(res_list) <- names(result) return(structure( class = "gofCOP", res_list )) }
test_that("multiplication works", { load(system.file("extdata/meta_data.RData", package = "dataquieR"), envir = environment()) load(system.file("extdata/study_data.RData", package = "dataquieR"), envir = environment()) meta_data[meta_data[[LABEL]] == "EATING_PREFS_0", RECODE] <- "0" meta_data[meta_data[[LABEL]] == "MEAT_CONS_0", RECODE] <- "1| 2|3 | 4 " m_study_data <- util_replace_codes_by_NA(study_data, meta_data)$study_data d_study_data <- util_dichotomize(m_study_data, meta_data) x <- d_study_data[, prep_map_labels(c("EATING_PREFS_0", "MEAT_CONS_0"), from = LABEL, to = VAR_NAMES, meta_data = meta_data)] expect_equal( d_study_data[["v00022"]], ifelse(is.na(m_study_data[["v00022"]]), NA, ifelse(m_study_data[["v00022"]] %in% 0, 0, 1 ) ) ) expect_equal( d_study_data[["v00023"]], ifelse(is.na(m_study_data[["v00023"]]), NA, ifelse(m_study_data[["v00023"]] %in% 1:4, 0, 1 ) ) ) })
Menu.steepest <- function(){ .activeModel <- ActiveModel() degree <- get(.activeModel)$order initializeDialog(window=top, title=gettextRcmdr("Steepest slope analysis")) if (degree==2) typerbVariable <- tclVar("canonical.path") else typerbVariable <- tclVar("steepest") if (tclvalue(typerbVariable)=="steepest") explainVariable <- tclVar("positive values only, separate by blank\nsteps from all xs at 0") else explainVariable <- tclVar("positive values only, separate by blank\none direction from all xs at 0 or\n+/- directions from stationary point") if (degree==2){ typerbFrame <- ttklabelframe(top,text=gettextRcmdr("Where to start steepest slope ?")) midrbButton <- tkradiobutton(typerbFrame, text="steepest slope from all xs at 0",variable=typerbVariable, value="steepest") statrbButton <- tkradiobutton(typerbFrame, text="steepest slope from stationary point",variable=typerbVariable, value="canonical.path") tkgrid(midrbButton, sticky ="w") tkgrid(statrbButton, sticky ="w") } dirrbVariable <- tclVar("ascent") dirrbFrame <- ttklabelframe(top,text=gettextRcmdr("Up or Down ?")) uprbButton <- tkradiobutton(dirrbFrame, text="steepest ascent",variable=dirrbVariable, value="ascent") downrbButton <- tkradiobutton(dirrbFrame, text="steepest descent",variable=dirrbVariable, value="descent") tkgrid(uprbButton, sticky ="w") tkgrid(downrbButton, sticky ="w") if (degree==2) tkgrid(typerbFrame, dirrbFrame, sticky="w") else tkgrid(ttklabel(top, text="Steepest slope starts at all xs at 0"), dirrbFrame, sticky="w") if (!exists(".move.distances", where="RcmdrEnv")) putRcmdr(".move.distances", seq(0,5,0.5)) distVar <- tclVar(paste(.move.distances, collapse=" ")) distEntry <- tkentry(top, width="50", textvariable=distVar) distlab <- ttklabel(top, text="Step widths for steepest directions") distexplain <- ttklabel(top, textvariable=explainVariable) tkgrid(distlab, distEntry,sticky="w") tkgrid(tklabel(top, text="NOTE:"), distexplain,sticky="e") tkgrid.configure(distlab, sticky="e") tkgrid.configure(distexplain, sticky="w") onOK <- function(){ dist <- as.numeric(strsplit(tclvalue(distVar), " ", fixed=TRUE)[[1]]) if (tclvalue(typerbVariable)=="canonical.path") dist <- sort(unique(c(-dist, dist))) command <- paste(tclvalue(typerbVariable), "(",.activeModel,", descent=", tclvalue(dirrbVariable)=="descent", ", dist=c(", paste(dist, collapse=","), "))") hilf <- doItAndPrint(command) if (class(hilf)[1]=="try-error") { errorCondition(window=top,recall=Menu.steepest, message=gettextRcmdr(hilf)) return() } closeDialog(window=top) tkwm.deiconify(CommanderWindow()) tkfocus(CommanderWindow()) } OKCancelHelp(helpSubject="Menu.steepest") tkgrid(buttonsFrame, sticky="w", columnspan=2) dialogSuffix(window=top, rows=2, columns=2) }
f.apply <- function ( FUN=NULL, simplify = TRUE, ... ) { arrFiles<-as.matrix(sort(tk_choose.files())) iLast<-dim(arrFiles)[1] if (iLast<1) return( invisible(tk_messageBox(type="ok", "You should select at least one file!", caption="Problems")) ) sapply(X=arrFiles, FUN=FUN, simplify = simplify, ...)->n.files if(length(n.files)!=iLast) { tk_messageBox(type="ok", "There is some kind of problems!", caption="Problems") return(n.files)} }
rmodd_summary <- function (x, rm = "FALSE", strict= "FALSE", cutoff=80,n=3 ) { z1<-c(mean(x),stats::median(x),length(x),stats::sd(x),stats::sd(x)/mean(x)*100) if(rm=="FALSE"){names(z1)<-c("mean","median","n","sd","cv") return(z1)} if(rm=="TRUE"){ if(z1[5]< cutoff & strict == "FALSE") {names(z1)<-c("mean","median","n","sd","cv") return(z1)} if(z1[5]> cutoff & strict == "FALSE") { Q <- stats::quantile(x,probs=c(0.25,0.75),na.rm=FALSE) iqr <- stats::IQR(x) up <- Q[2]+1.5*iqr low<- Q[1]-1.5*iqr x<- subset(x, (x > low & x < up)) z1<-c(mean(x),stats::median(x),length(x),stats::sd(x),stats::sd(x)/mean(x)*100) names(z1)<-c("mean","median","n","sd","cv") return(z1) } zn<-z1 cycle<-0 while (abs(z1[5])> cutoff & strict == "TRUE") { cycle<-cycle+1 up_P<-1-0.1*cycle low_P<-0.1*cycle temp1<-x[which(!(x> stats::quantile(x,probs=up_P)))] z2<-c(mean(temp1),stats::median(temp1),length(temp1),stats::sd(temp1)/mean(temp1)*100) d2<-abs(zn[2]-z2[2]) temp2<-x[which(!(x < stats::quantile(x,probs=low_P)))] z3<-c(mean(temp2),stats::median(temp2),length(temp2),stats::sd(temp2)/mean(temp2)*100) d3<-abs(zn[2]-z3[2]) if (d2<d3) {out<-which(!(x < stats::quantile(x,probs=low_P) | x >= stats::quantile(x,probs=up_P)))} if(d2>d3){out<-which(!(x <= stats::quantile(x,probs=low_P) | x > stats::quantile(x,probs=up_P)))} if (d2==d3){out<-which(!(x < stats::quantile(x,probs=low_P) | x > stats::quantile(x,probs=up_P)))} x<-x[out] z1new<-c(mean(x),stats::median(x),length(x),stats::sd(x),stats::sd(x)/mean(x)*100) if(z1new[3]<=n){break} z1<-z1new names(z1)<-c("mean","median","n","sd","cv") } return(z1) } }
"target"
context("test-seed-cipher") test_that("Caesar encryption works", { expect_equal(seed_cipher("Veni Vidi Vici.", seed = 64), "BhXQGBQ,QGBQ Q_") test_that("Caesar encryption works", { expect_equal(seed_cipher(c("Veni Vidi Vici.", "Vici. Vidi Veni", "The best way of avenging thyself is not to become like the wrong doer."), seed = 64), c("BhXQGBQ,QGBQ Q_", "BQ Q_GBQ,QGBhXQ", "-0hG+h }) test_that("Caesar deencryption works", { expect_equal(seed_cipher(c("BhXQGBQ,QGBQ Q_", "-0hG+h seed = 64, decrypt = TRUE), c("Veni Vidi Vici.", "The best way of avenging thyself is not to become like the wrong doer.")) }) })
memmodel <- function(i.data, i.seasons = 10, i.type.threshold = 5, i.level.threshold = 0.95, i.tails.threshold = 1, i.type.intensity = 6, i.level.intensity = c(0.40, 0.90, 0.975), i.tails.intensity = 1, i.type.curve = 2, i.level.curve = 0.95, i.type.other = 3, i.level.other = 0.95, i.method = 2, i.param = 2.8, i.centering = -1, i.n.max = -1, i.type.boot = "norm", i.iter.boot = 10000, i.mem.info = T) { if (is.null(dim(i.data))) { memmodel.output <- NULL cat("Incorrect number of dimensions, input must be a data.frame. ") } else if (!(ncol(i.data) > 1)) { memmodel.output <- NULL cat("Incorrect number of dimensions, at least two seasons of data required. ") } else { datos <- i.data[apply(i.data, 2, function(x) sum(x, na.rm = T) > 0)] if (NCOL(datos) == 0) { memmodel.output <- NULL cat("No colums with valid values. ") } else { if (is.matrix(datos)) datos <- as.data.frame(datos) if (is.null(i.seasons)) i.seasons <- NA if (!is.na(i.seasons)) if (i.seasons > 0) datos <- datos[(max((dim(datos)[2]) - i.seasons + 1, 1)):(dim(datos)[2])] datos <- as.data.frame(apply(datos, 2, fill.missing)) semanas <- dim(datos)[1] anios <- NCOL(datos) if (NCOL(datos) < 2) { memmodel.output <- NULL cat("Al least two columns required. ") } else { if (is.na(i.n.max)) { n.max <- max(1, round(30 / anios, 0)) } else { if (i.n.max == -1) { n.max <- max(1, round(30 / anios, 0)) } else if (i.n.max == 0) { n.max <- semanas } else { n.max <- i.n.max } } if (is.null(i.method)) i.method <- 2 if (is.na(i.method)) i.method <- 2 if (is.null(i.param)) i.param <- 2.8 if (is.na(i.param)) i.param <- 2.8 optimo <- apply(datos, 2, memtiming, i.n.values = n.max, i.method = i.method, i.param = i.param) datos.duracion.real <- extraer.datos.optimo.map(optimo) ic.duracion <- iconfianza(as.numeric(datos.duracion.real[1, ]), i.level.other, i.type.other, T, i.type.boot, i.iter.boot, 2) ic.duracion <- rbind(ic.duracion, c(floor(ic.duracion[1]), round(ic.duracion[2]), ceiling(ic.duracion[3]))) ic.porcentaje <- iconfianza(as.numeric(datos.duracion.real[2, ]), i.level.other, i.type.other, T, i.type.boot, i.iter.boot, 2) duracion.media <- ic.duracion[2, 2] if (is.na(i.centering) | i.centering == -1) duracion.centrado <- duracion.media else duracion.centrado <- i.centering semana.inicio <- as.integer(rownames(datos)[1]) gripe <- array(dim = c(7, anios, 3), dimnames = list( "indicators" = c("epidemic start", "epidemic end", "sum of epidemic values", "sum of values", "covered percentage", "sum of pre-epidemic values", "sum of post-epidemic values"), "seasons" = names(datos), "type" = c("real epidemic", "mean length epidemic", "centered length epidemic") )) datos.duracion.media <- extraer.datos.curva.map(optimo, duracion.media) datos.duracion.centrado <- extraer.datos.curva.map(optimo, duracion.centrado) ic.inicio <- iconfianza(as.numeric(datos.duracion.real[4, ]), i.level.other, i.type.other, T, i.type.boot, i.iter.boot, 2) ic.inicio <- rbind(ic.inicio, c(floor(ic.inicio[1]), round(ic.inicio[2]), ceiling(ic.inicio[3]))) ic.inicio <- rbind(ic.inicio, c(semana.absoluta(ic.inicio[2, 1], semana.inicio), semana.absoluta(ic.inicio[2, 2], semana.inicio), semana.absoluta(ic.inicio[2, 3], semana.inicio))) ic.inicio <- ic.inicio[c(2, 3, 1), ] inicio.medio <- ic.inicio[1, 2] ic.inicio.centrado <- iconfianza(as.numeric(datos.duracion.centrado[4, ]), i.level.other, i.type.other, T, i.type.boot, i.iter.boot, 2) ic.inicio.centrado <- rbind(ic.inicio.centrado, c(floor(ic.inicio.centrado[1]), round(ic.inicio.centrado[2]), ceiling(ic.inicio.centrado[3]))) ic.inicio.centrado <- rbind(ic.inicio.centrado, c(semana.absoluta(ic.inicio.centrado[2, 1], semana.inicio), semana.absoluta(ic.inicio.centrado[2, 2], semana.inicio), semana.absoluta(ic.inicio.centrado[2, 3], semana.inicio))) ic.inicio.centrado <- ic.inicio.centrado[c(2, 3, 1), ] inicio.centrado <- ic.inicio.centrado[1, 2] for (j in 1:anios) { gripe[1, j, 1] <- datos.duracion.real[4, j] gripe[2, j, 1] <- datos.duracion.real[5, j] gripe[3, j, 1] <- datos.duracion.real[3, j] gripe[4, j, 1] <- sum(datos[, j], na.rm = TRUE) gripe[5, j, 1] <- datos.duracion.real[2, j] if (gripe[1, j, 1] > 1) gripe[6, j, 1] <- sum(datos[1:(gripe[1, j, 1] - 1), j], na.rm = TRUE) else gripe[6, j, 1] <- 0 if (gripe[2, j, 1] < semanas) gripe[7, j, 1] <- sum(datos[(gripe[2, j, 1] + 1):semanas, j], na.rm = TRUE) else gripe[7, j, 1] <- 0 gripe[1, j, 2] <- datos.duracion.media[4, j] gripe[2, j, 2] <- datos.duracion.media[5, j] gripe[3, j, 2] <- datos.duracion.media[3, j] gripe[4, j, 2] <- sum(datos[, j], na.rm = TRUE) gripe[5, j, 2] <- datos.duracion.media[2, j] if (gripe[1, j, 2] > 1) gripe[6, j, 2] <- sum(datos[1:(gripe[1, j, 2] - 1), j], na.rm = TRUE) else gripe[6, j, 2] <- 0 if (gripe[2, j, 2] < semanas) gripe[7, j, 2] <- sum(datos[(gripe[2, j, 2] + 1):semanas, j], na.rm = TRUE) else gripe[7, j, 2] <- 0 gripe[1, j, 3] <- datos.duracion.centrado[4, j] gripe[2, j, 3] <- datos.duracion.centrado[5, j] gripe[3, j, 3] <- datos.duracion.centrado[3, j] gripe[4, j, 3] <- sum(datos[, j], na.rm = TRUE) gripe[5, j, 3] <- datos.duracion.centrado[2, j] if (gripe[1, j, 3] > 1) gripe[6, j, 3] <- sum(datos[1:(gripe[1, j, 3] - 1), j], na.rm = TRUE) else gripe[6, j, 3] <- 0 if (gripe[2, j, 3] < semanas) gripe[7, j, 3] <- sum(datos[(gripe[2, j, 3] + 1):semanas, j], na.rm = TRUE) else gripe[7, j, 3] <- 0 } indices.temporada <- array(dim = c(semanas, anios, 3), dimnames = list( "weeks" = rownames(datos), "seasons" = names(datos), "type" = c("real epidemic", "mean length epidemic", "centered length epidemic") )) for (j in 1:anios) { indices.temporada[-((datos.duracion.real[4, j]):semanas), j, 1] <- 1 indices.temporada[(datos.duracion.real[4, j]):(datos.duracion.real[5, j]), j, 1] <- 2 indices.temporada[-(1:(datos.duracion.real[5, j])), j, 1] <- 3 indices.temporada[-((datos.duracion.media[4, j]):semanas), j, 2] <- 1 indices.temporada[(datos.duracion.media[4, j]):(datos.duracion.media[5, j]), j, 2] <- 2 indices.temporada[-(1:(datos.duracion.media[5, j])), j, 2] <- 3 indices.temporada[-((datos.duracion.centrado[4, j]):semanas), j, 3] <- 1 indices.temporada[(datos.duracion.centrado[4, j]):(datos.duracion.centrado[5, j]), j, 3] <- 2 indices.temporada[-(1:(datos.duracion.centrado[5, j])), j, 3] <- 3 } longitud.esquema <- semanas + max.fix.na(datos.duracion.centrado[4, ]) - min.fix.na(datos.duracion.centrado[4, ]) inicio.epidemia.esquema <- max.fix.na(datos.duracion.centrado[4, ]) fin.epidemia.esquema <- max.fix.na(datos.duracion.centrado[5, ]) esquema.temporadas <- array(dim = c(longitud.esquema, anios + 2, 3), dimnames = list( "dummy weeks" = as.character(1:longitud.esquema), "seasons" = c(names(datos), "mean season week", "mean season index"), "type" = c("absolute week", "relative week", "values") )) for (j in 1:anios) { diferencia.anual <- inicio.epidemia.esquema - datos.duracion.centrado[4, j] for (i in 1:semanas) { esquema.temporadas[i + diferencia.anual, j, 1] <- i esquema.temporadas[i + diferencia.anual, j, 2] <- semana.absoluta(i, semana.inicio) esquema.temporadas[i + diferencia.anual, j, 3] <- datos[i, j] } } diferencia.global <- inicio.epidemia.esquema - inicio.centrado for (i in 1:semanas) { if ((i + diferencia.global) >= 1 & (i + diferencia.global) <= longitud.esquema) { esquema.temporadas[i + diferencia.global, anios + 1, 1] <- i esquema.temporadas[i + diferencia.global, anios + 1, 2] <- semana.absoluta(i, semana.inicio) esquema.temporadas[i + diferencia.global, anios + 1, 3] <- i } } esquema.temporadas[, anios + 2, ] <- 3 esquema.temporadas[1:(diferencia.global + inicio.medio - 1), anios + 2, ] <- 1 esquema.temporadas[(diferencia.global + inicio.medio):(diferencia.global + inicio.medio + duracion.media - 1), anios + 2, ] <- 2 temporadas.moviles <- esquema.temporadas[, c(1:anios), 3] temporadas.moviles.recortada <- array(dim = c(semanas, anios), dimnames = list( "dummy weeks" = as.character(1:semanas), "seasons" = names(datos) )) for (j in 1:anios) { for (i in 1:semanas) { if ((i + diferencia.global) >= 1 & (i + diferencia.global) <= longitud.esquema) { temporadas.moviles.recortada[i, j] <- temporadas.moviles[i + diferencia.global, j] } else { temporadas.moviles.recortada[i, j] <- NA } } } iy <- is.na(temporadas.moviles.recortada) temporadas.moviles.recortada.no.ceros <- temporadas.moviles.recortada temporadas.moviles.recortada.no.ceros[iy] <- NA curva.tipo <- t(apply(temporadas.moviles.recortada.no.ceros, 1, iconfianza, nivel = i.level.curve, tipo = i.type.curve, ic = T, tipo.boot = i.type.boot, iteraciones.boot = i.iter.boot, colas = 2)) pre.datos <- as.vector(as.matrix(extraer.datos.pre.epi(optimo))) post.datos <- as.vector(as.matrix(extraer.datos.post.epi(optimo))) epi.datos <- as.vector(as.matrix(extraer.datos.epi(optimo))) epi.datos.2 <- as.vector(as.matrix(apply(datos, 2, max.n.valores, n.max = n.max))) pre.post.datos <- rbind(pre.datos, post.datos) pre.d <- pre.datos[!is.na(pre.datos)] post.d <- post.datos[!is.na(post.datos)] epi.d <- epi.datos[!is.na(epi.datos)] epi.d.2 <- epi.datos.2[!is.na(epi.datos.2)] pre.i <- iconfianza(pre.d, nivel = i.level.threshold, tipo = i.type.threshold, ic = T, tipo.boot = i.type.boot, iteraciones.boot = i.iter.boot, colas = i.tails.threshold) post.i <- iconfianza(post.d, nivel = i.level.threshold, tipo = i.type.threshold, ic = T, tipo.boot = i.type.boot, iteraciones.boot = i.iter.boot, colas = i.tails.threshold) epi.intervalos <- numeric() for (niv in i.level.intensity) epi.intervalos <- rbind(epi.intervalos, c(niv, iconfianza(epi.d, nivel = niv, tipo = i.type.intensity, ic = T, colas = i.tails.intensity))) epi.intervalos.2 <- numeric() for (niv in i.level.intensity) epi.intervalos.2 <- rbind(epi.intervalos.2, c(niv, iconfianza(epi.d.2, nivel = niv, tipo = i.type.intensity, ic = T, colas = i.tails.intensity))) pre.post.intervalos <- rbind(pre.i, post.i) memmodel.output <- list( pre.post.intervals = pre.post.intervalos, ci.length = ic.duracion, ci.percent = ic.porcentaje, ci.start = ic.inicio, mean.length = duracion.media, mean.start = inicio.medio, centered.length = duracion.centrado, centered.start = inicio.centrado, moving.epidemics = temporadas.moviles.recortada, epi.intervals = epi.intervalos, epi.intervals.full = epi.intervalos.2, typ.curve = curva.tipo, n.max = n.max, n.seasons = anios, n.weeks = semanas, data = datos, start.week = semana.inicio, epi.data = epi.datos, epi.data.nona = epi.d, epi.data.full = epi.datos.2, epi.data.nona.full = epi.d.2, optimum = optimo, real.length.data = datos.duracion.real, seasons.data = gripe, season.indexes = indices.temporada, season.scheme = esquema.temporadas, seasons.moving = temporadas.moviles, pre.post.data = pre.post.datos, pre.data.nona = pre.d, post.data.nona = post.d, epidemic.thresholds = as.numeric(pre.post.intervalos[, 3]), intensity.thresholds = as.numeric(epi.intervalos[, 4]), param.data = i.data, param.seasons = i.seasons, param.type.threshold = i.type.threshold, param.level.threshold = i.level.threshold, param.tails.threshold = i.tails.threshold, param.type.intensity = i.type.intensity, param.level.intensity = i.level.intensity, param.tails.intensity = i.tails.intensity, param.type.curve = i.type.curve, param.level.curve = i.level.curve, param.type.other = i.type.other, param.level.other = i.level.other, param.method = i.method, param.param = i.param, param.centering = i.centering, param.n.max = i.n.max, param.type.boot = i.type.boot, param.iter.boot = i.iter.boot, param.mem.info = i.mem.info ) memmodel.output$call <- match.call() class(memmodel.output) <- "mem" } } } return(memmodel.output) } print.mem <- function(x, ...) { threshold <- as.data.frame(round(t(x$pre.post.intervals[1:2, 3]), 2)) colnames(threshold) <- c("Pre", "Post") rownames(threshold) <- "Threshold" values <- as.data.frame(round(x$epi.intervals[, 4], 2)) colnames(values) <- "Threshold" rownames(values) <- paste(c("Medium", "High", "Very high"), " (", round(x$epi.intervals[, 1] * 100, 1), "%)", sep = "") cat("Call:\n") print(x$call) cat("\nEpidemic threshold:\n") print(threshold) cat("\nIntensity thresholds:\n") print(values) } summary.mem <- function(object, ...) { threshold <- as.data.frame(round(t(object$pre.post.intervals[1:2, 3]), 2)) colnames(threshold) <- c("Pre", "Post") rownames(threshold) <- "Threshold" values <- as.data.frame(round(object$epi.intervals[, 4], 2)) colnames(values) <- "Threshold" rownames(values) <- paste(c("Medium", "High", "Very high"), " (", round(object$epi.intervals[, 1] * 100, 1), "%)", sep = "") cat("Call:\n", sep = "") print(object$call) cat("\nParameters:\n", sep = "") cat("\t- General:\n", sep = "") cat("\t\t+ Number of seasons restriction: ", if (object$param.seasons == -1 | is.na(object$param.seasons)) "Unrestricted (maximum)" else paste("Restricted to ", object$param.seasons, sep = ""), "\n", sep = "") cat("\t\t+ Number of seasons used: ", object$n.seasons, "\n", sep = "") cat("\t\t+ Seasons used: ", paste(names(object$data), collapse = ", "), "\n", sep = "") cat("\t\t+ Number of weeks: ", object$n.weeks, "\n", sep = "") cat("\t- Confidence intervals:\n", sep = "") cat("\t\t+ Epidemic threshold: ", output.ci(object$param.type.threshold, object$param.level.threshold, object$param.tails.threshold), "\n", sep = "") cat("\t\t+ Intensity: ", output.ci(object$param.type.intensity, object$param.level.intensity, object$param.tails.intensity), "\n", sep = "") cat("\t\t+ Curve: ", output.ci(object$param.type.curve, object$param.level.curve, 2), "\n", sep = "") cat("\t\t+ Others: ", output.ci(object$param.type.other, object$param.level.other, 2), "\n", sep = "") cat("\t- Epidemic timing calculation:\n", sep = "") cat("\t\t+ Method: ", object$param.method, "\n", sep = "") cat("\t\t+ Parameter: ", object$param.param, "\n", sep = "") cat("\t- Epidemic threshold calculation:\n", sep = "") cat("\t\t+ Pre-epidemic values: ", if (is.na(object$param.n.max)) { paste("Optimized: ", object$n.max, sep = "") } else { if (object$param.n.max == -1) paste("Optimized: ", object$n.max, sep = "") else object$n.max }, "\n", sep = "") cat("\t\t+ Tails of CI: ", object$param.tails.threshold, "\n", sep = "") cat("\t- Intensity thresholds calculation:\n", sep = "") cat("\t\t+ Number of values: ", if (is.na(object$param.n.max)) { paste("Optimized: ", object$n.max, sep = "") } else { if (object$param.n.max == -1) paste("Optimized: ", object$n.max, sep = "") else object$n.max }, "\n", sep = "") cat("\t\t+ Tails of CI: ", object$param.tails.intensity, "\n", sep = "") cat("\t\t+ Levels of CI: ", paste0(paste0(c("Medium", "High", "Very high"), ": ", round(object$epi.intervals[, 1] * 100, 1), "%"), collapse = ", "), "\n") cat("\t- Bootstrap (if used):\n", sep = "") cat("\t\t+ Technique: ", if (is.na(object$param.type.boot)) "-" else object$param.type.boot, "\n", sep = "") cat("\t\t+ Bootstrap samples: ", if (is.na(object$param.iter.boot)) "-" else object$param.iter.boot, "\n", sep = "") cat("\nEpidemic description:\n", sep = "") cat("\t- Typical influenza epidemics starts at week ", round(object$ci.start[2, 2], 2), ". ", 100 * object$param.level.other, "% CI: [", round(object$ci.start[2, 1], 2), ",", round(object$ci.start[2, 3], 2), "]\n", sep = "") cat("\t- Typical influenza season lasts ", round(object$ci.length[1, 2], 2), " weeks. ", 100 * object$param.level.other, "% CI: [", round(object$ci.length[1, 1], 2), ",", round(object$ci.length[1, 3], 2), "]\n", sep = "") cat("\t- This optimal ", object$mean.length, " weeks influenza season includes the ", round(object$ci.percent[2], 2), "% of the total sum of rates\n\n", sep = "") cat("\nEpidemic threshold:\n", sep = "") print(threshold) cat("\n\nIntensity thresholds:\n", sep = "") print(values) } plot.mem <- function(x, ...) { opar <- par(mfrow = c(1, 2), mar = c(4, 3, 1, 2) + 0.1, mgp = c(3, 0.5, 0), xpd = T) semanas <- dim(x$data)[1] anios <- dim(x$data)[2] names.seasons <- sub("^.*\\(([^\\)]*)\\)$", "\\1", names(x$data), perl = T) datos.graf <- x$moving.epidemics colnames(datos.graf) <- names(x$data) lab.graf <- (1:semanas) + x$ci.start[2, 2] - x$ci.start[1, 2] lab.graf[lab.graf > 52] <- (lab.graf - 52)[lab.graf > 52] lab.graf[lab.graf < 1] <- (lab.graf + 52)[lab.graf < 1] tipos <- rep(1, anios) anchos <- rep(2, anios) pal <- colorRampPalette(brewer.pal(4, "Spectral")) colores <- pal(anios) otick <- optimal.tickmarks(0, max.fix.na(datos.graf), 10) range.y <- c(otick$range[1], otick$range[2] + otick$by / 2) matplot(1:semanas, datos.graf, type = "l", sub = paste("Weekly incidence rates of the seasons matching their relative position in the model."), lty = tipos, lwd = anchos, col = colores, xlim = c(1, semanas), xlab = "", ylab = "", axes = F, font.main = 2, font.sub = 1, ylim = range.y ) axis(1, at = seq(1, semanas, 1), labels = F, cex.axis = 0.7, col.axis = " axis(1, at = seq(1, semanas, 2), tick = F, labels = as.character(lab.graf)[seq(1, semanas, 2)], cex.axis = 0.7, col.axis = " ) axis(1, at = seq(2, semanas, 2), tick = F, labels = as.character(lab.graf)[seq(2, semanas, 2)], cex.axis = 0.7, line = 0.60, col.axis = " ) mtext(1, text = "Week", line = 2, cex = 0.8, col = " axis(2, at = otick$tickmarks, lwd = 1, cex.axis = 0.6, col.axis = " mtext(2, text = "Weekly rate", line = 1.3, cex = 0.8, col = " if (x$param.mem.info) mtext(4, text = paste("mem R library - Jose E. Lozano - https://github.com/lozalojo/mem", sep = ""), line = 0.75, cex = 0.6, col = " i.temporada <- x$ci.start[1, 2] f.temporada <- x$ci.start[1, 2] + x$mean.length - 1 lines(x = rep(i.temporada - 0.5, 2), y = range.y, col = " lines(x = rep(f.temporada + 0.5, 2), y = range.y, col = " lines(x = c(1, semanas), y = rep(x$epidemic.thresholds[1], 2), col = " ya <- otick$range[2] if ((i.temporada - 1) <= (semanas - f.temporada)) xa <- f.temporada + 1 else xa <- 1 legend( x = xa, y = ya, inset = c(0, 0), xjust = 0, seg.len = 1, legend = names.seasons, bty = "n", lty = tipos, lwd = anchos, col = colores, cex = 0.75, x.intersp = 0.5, y.intersp = 0.6, text.col = " ncol = 1 ) temp1 <- memsurveillance( i.current = data.frame(rates = x$typ.curve[, 2], row.names = rownames(x$data)), i.epidemic.thresholds = x$epidemic.thresholds, i.intensity.thresholds = x$intensity.thresholds, i.mean.length = x$mean.length, i.force.length = T, i.graph.file = F, i.week.report = NA, i.equal = F, i.pos.epidemic = T, i.no.epidemic = F, i.no.intensity = F, i.epidemic.start = x$ci.start[2, 2], i.range.x = as.numeric(c(rownames(x$data)[1], rownames(x$data)[semanas])), i.range.x.53 = F, i.range.y = NA, i.no.labels = F, i.start.end.marks = T ) par(opar) }
softmax_regression <- function(input_model=NA, labels=NA, lambda=NA, max_iterations=NA, no_intercept=FALSE, number_of_classes=NA, test=NA, test_labels=NA, training=NA, verbose=FALSE) { IO_RestoreSettings("Softmax Regression") if (!identical(input_model, NA)) { IO_SetParamSoftmaxRegressionPtr("input_model", input_model) } if (!identical(labels, NA)) { IO_SetParamURow("labels", to_matrix(labels)) } if (!identical(lambda, NA)) { IO_SetParamDouble("lambda", lambda) } if (!identical(max_iterations, NA)) { IO_SetParamInt("max_iterations", max_iterations) } if (!identical(no_intercept, FALSE)) { IO_SetParamBool("no_intercept", no_intercept) } if (!identical(number_of_classes, NA)) { IO_SetParamInt("number_of_classes", number_of_classes) } if (!identical(test, NA)) { IO_SetParamMat("test", to_matrix(test)) } if (!identical(test_labels, NA)) { IO_SetParamURow("test_labels", to_matrix(test_labels)) } if (!identical(training, NA)) { IO_SetParamMat("training", to_matrix(training)) } if (verbose) { IO_EnableVerbose() } else { IO_DisableVerbose() } IO_SetPassed("output_model") IO_SetPassed("predictions") softmax_regression_mlpackMain() output_model <- IO_GetParamSoftmaxRegressionPtr("output_model") attr(output_model, "type") <- "SoftmaxRegression" out <- list( "output_model" = output_model, "predictions" = IO_GetParamURow("predictions") ) IO_ClearSettings() return(out) }
tscsEstimate3D <- function(matrix, newdata, h1, h2, v){ NA_id <- which(is.na(newdata[,4])==TRUE); X <- newdata[,1];Y <- newdata[,2];Z <- newdata[,3]; N <- length(NA_id); A <- matrix(0,N,N); B <- rep(0,N); for (i in 1:N) { XN <- X[NA_id[i]];YN <- Y[NA_id[i]];ZN <- Z[NA_id[i]]; A[i,i] <- 1; B[i] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$intercept; if (!is.na(newdata[which((X==XN - h1)&(Y==YN)&(Z==ZN)),4])) { r1 <- newdata[which((X==XN - h1)&(Y==YN)&(Z==ZN)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta1*r1; } else{ s1 <- which(NA_id==which((X==XN - h1)&(Y==YN)&(Z==ZN))); A[i,s1] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta1*(-1); } if (!is.na(newdata[which((X==XN + h1)&(Y==YN)&(Z==ZN)),4])) { r2 <- newdata[which((X==XN + h1)&(Y==YN)&(Z==ZN)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta2*r2; } else{ s2 <- which(NA_id==which((X==XN + h1)&(Y==YN)&(Z==ZN))); A[i,s2] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta2*(-1); } if (!is.na(newdata[which((X==XN)&(Y==YN - h2)&(Z==ZN)),4])) { r3 <- newdata[which((X==XN)&(Y==YN - h2)&(Z==ZN)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta3*r3; } else{ s3 <- which(NA_id==which((X==XN)&(Y==YN - h2)&(Z==ZN))); A[i,s3] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta3*(-1); } if (!is.na(newdata[which((X==XN)&(Y==YN + h2)&(Z==ZN)),4])) { r4 <- newdata[which((X==XN)&(Y==YN + h2)&(Z==ZN)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta4*r4; } else{ s4 <- which(NA_id==which((X==XN)&(Y==YN + h2)&(Z==ZN))); A[i,s4] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta4*(-1); } if (!is.na(newdata[which((X==XN)&(Y==YN)&(Z==ZN - v)),4])) { r5 <- newdata[which((X==XN)&(Y==YN)&(Z==ZN - v)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta5*r5; } else{ s5 <- which(NA_id==which((X==XN)&(Y==YN)&(Z==ZN - v))); A[i,s5] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta5*(-1); } if (!is.na(newdata[which((X==XN)&(Y==YN)&(Z==ZN + v)),4])) { r6 <- newdata[which((X==XN)&(Y==YN)&(Z==ZN + v)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta6*r6; } else{ s6 <- which(NA_id==which((X==XN)&(Y==YN)&(Z==ZN + v))); A[i,s6] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta6*(-1); } if (!is.na(newdata[which((X==XN + h1)&(Y==YN + h2)&(Z==ZN + v)),4])) { r7 <- newdata[which((X==XN + h1)&(Y==YN + h2)&(Z==ZN + v)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta7*r7; } else{ s7 <- which(NA_id==which((X==XN + h1)&(Y==YN + h2)&(Z==ZN + v))); A[i,s7] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta7*(-1); } if (!is.na(newdata[which((X==XN - h1)&(Y==YN - h2)&(Z==ZN + v)),4])) { r8 <- newdata[which((X==XN - h1)&(Y==YN - h2)&(Z==ZN + v)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta8*r8; } else{ s8 <- which(NA_id==which((X==XN - h1)&(Y==YN - h2)&(Z==ZN + v))); A[i,s8] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta8*(-1); } if (!is.na(newdata[which((X==XN + h1)&(Y==YN - h2)&(Z==ZN + v)),4])) { r9 <- newdata[which((X==XN + h1)&(Y==YN - h2)&(Z==ZN + v)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta9*r9; } else{ s9 <- which(NA_id==which((X==XN + h1)&(Y==YN - h2)&(Z==ZN + v))); A[i,s9] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta9*(-1); } if (!is.na(newdata[which((X==XN - h1)&(Y==YN + h2)&(Z==ZN + v)),4])) { r10 <- newdata[which((X==XN - h1)&(Y==YN + h2)&(Z==ZN + v)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta10*r10; } else{ s10 <- which(NA_id==which((X==XN - h1)&(Y==YN + h2)&(Z==ZN + v))); A[i,s10] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta10*(-1); } if (!is.na(newdata[which((X==XN + h1)&(Y==YN + h2)&(Z==ZN - v)),4])) { r11 <- newdata[which((X==XN + h1)&(Y==YN + h2)&(Z==ZN - v)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta11*r11; } else{ s11 <- which(NA_id==which((X==XN + h1)&(Y==YN + h2)&(Z==ZN - v))); A[i,s11] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta11*(-1); } if (!is.na(newdata[which((X==XN - h1)&(Y==YN - h2)&(Z==ZN - v)),4])) { r12 <- newdata[which((X==XN - h1)&(Y==YN - h2)&(Z==ZN - v)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta12*r12; } else{ s12 <- which(NA_id==which((X==XN - h1)&(Y==YN - h2)&(Z==ZN - v))); A[i,s12] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta12*(-1); } if (!is.na(newdata[which((X==XN + h1)&(Y==YN - h2)&(Z==ZN - v)),4])) { r13 <- newdata[which((X==XN + h1)&(Y==YN - h2)&(Z==ZN - v)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta13*r13; } else{ s13 <- which(NA_id==which((X==XN + h1)&(Y==YN - h2)&(Z==ZN - v))); A[i,s13] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta13*(-1); } if (!is.na(newdata[which((X==XN - h1)&(Y==YN + h2)&(Z==ZN - v)),4])) { r14 <- newdata[which((X==XN - h1)&(Y==YN + h2)&(Z==ZN - v)),4]; B[i] <- B[i] + matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta14*r14; } else{ s14 <- which(NA_id==which((X==XN - h1)&(Y==YN + h2)&(Z==ZN - v))); A[i,s14] <- matrix[which((matrix$X==XN)&(matrix$Y==YN)&(matrix$Z==ZN)),]$beta14*(-1); } } solution <- solve(A,B); estimate <- data.frame(X[NA_id], Y[NA_id], Z[NA_id], solution); names(estimate) <- c(names(newdata)[1], names(newdata)[2], names(newdata)[3], names(newdata)[4]); complete <- newdata; complete[NA_id,4] <- solution; names(complete) <- c(names(newdata)[1], names(newdata)[2], names(newdata)[3], names(newdata)[4]); return(list(estimate = estimate, complete = complete, NA_id = NA_id)); }
test_that("flash year 2015", { skip_on_cran() year_link <- "https://flashresults.com/2015results.htm" df_test <- flash_year_links(year_link) df_standard <- data.frame( Meet = c( "ParaPan American Games", "AAU Jr. Olympic Games", "Pan American Games", "World University Games", "USATF Outoor Championships", "New Balance High School Nationals", "NCAA Track & Field Championships", "NCAA East Preliminary", "ACC Championships", "Big South Championships", "Virginia Grand Prix", "Duke Twilight", "Atlantic 10 Championships", "Dogwood Classic", "Arkansas Twilight", "Penn Relays", "Virginia Challenge", "Arkansas Combined", "Duke Invitational", "John McDonnell Invitational", "HPU VertKlasse Meeting", "Raleigh Relays", "Arkansas Spring Invitational", "Virginia Cup", "49er Classic", "Wake Forest Open", "NCAA Div I Championships", "USATF Indoor Championships", "ACC Championships", "Arkansas Open", "Atlantic 10 Championships", "Virginia Tech Challenge", "Tyson Invitational", "New Balance Indoor Grand Prix", "Texas A&M Aggie Invitational", "Doc Hale - VT Elite Meet", "Razorback Invitational", "Hokie Invitational", "Texas A&M Quadrangular Meet", "Texas A&M Team Invitational", "Texas A&M 13 Team Invitational", "Virginia Tech Invitational", "Arkansas HS Invitational", "Arkansas -v- Texas", "Texas A&M HS Classic", "Arkansas Invitational", "Reveille Invitational", "Central American & Caribbean Games" ), Meet_Date = c( "August 10-14 2015", "August 1-8 2015", "July 21-25 2015", "July 8-12 2015", "June 25-28 2015", "June 19-21 2015", "June 10-13 2015", "May 28-30 2015", "May 14-16 2015", "May 14-16 2015", "May 8 2015", "May 6-7 2015", "May 2-3 2015", "May 1-2 2015", "May 1 2015", "April 21-25 2015", "April 17-18 2015", "April 15-16 2015", "April 11 2015", "April 10-11 2015", "April 3-4 2015", "March 27-28 2015", "March 27-28 2015", "March 21 2015", "March 19-21 2015", "March 20-21 2015", "March 13-14 2015", "February 27-March 1 2015", "February 26-28 2015", "February 21 2015", "February 21-22 2015", "February 20-21 2015", "February 13-14 2015", "February 7 2015", "February 6-7 2015", "February 6-7 2015", "January 30-31 2015", "January 23-24 2015", "January 24 2015", "January 16-17 2015", "January 16 2015", "January 16-17 2015", "January 17 2015", "January 16 2015", "January 9-10 2015", "January 9 2015", "December 13 2015", "November 24-28 2015" ), Location = c( "CIBC Pan Am Athletics Stadium - Toronto, Canada", "Dick Price Stadium - Norfolk, Virginia", "CIBC Pan Am Athletics Stadium - Toronto, Canada", "Gwangju World Cup Stadium - Gwangju, Korea", "Hayward Field - Eugene, OR", "Aggie Stadium, NC A&T University - Greensboro, NC", "Hayward Field - Eugene, OR", "Hodges Stadium - Jacksonville, FL", "Mike Long Track - Tallahassee, FL", "Dick Vert Stadium - High Point, NC", "Lannigan Field - Charlottesville, VA", "Morris Williams Stadium - Durham, NC", "George Mason Stadium - Fairfax, VA", "Lannigan Field - Charlottesville, VA", "John McDonnell Field - Fayetteville, AR", "Franklin Field - Philadelphia, PA", "Lannigan Field - Charlottesville, VA", "John McDonnell Field - Fayetteville, AR", "Morris Williams Stadium - Durham, NC", "John McDonnell Field - Fayetteville, AR", "Dick Vert Stadium - High Point, NC", "NC State - Raleigh, NC", "John McDonnell Field - Fayetteville, AR", "Lannigan Field - Charlottesville, VA", "Belk Track & Field Center - Charlotte, NC", "Kentner Stadium - Winston-Salem, NC", "Randal Tyson Track Center - Fayetteville, AR", "March 1 - Reggie Lewis Center - Roxbury, MA", "Rector Field House - Blacksburg, VA", "Randal Tyson Track Center - Fayetteville, AR", "Mackal Field House - Kingston, RI", "Rector Field House - Blacksburg, VA", "Randal Tyson Track Center - Fayetteville, AR", "Reggie Lewis Center - Roxbury, MA", "Gilliam Indoor Track Stadium - College Station, TX", "Rector Field House - Blacksburg, VA", "Randal Tyson Track Center - Fayetteville, AR", "Rector Field House - Blacksburg, VA", "Gilliam Indoor Track Stadium - College Station, TX", "Gilliam Indoor Track Stadium - College Station, TX", "Gilliam Indoor Track Stadium - College Station, TX", "Rector Field House - Blacksburg, VA", "Randal Tyson Track Center - Fayetteville, AR", "Randal Tyson Track Center - Fayetteville, AR", "Gilliam Indoor Track Stadium - College Station, TX", "Randal Tyson Track Center - Fayetteville, AR", "Gilliam Indoor Track Stadium - College Station, TX", "Heriberto Jara Corona Stadium - Xalapa, MEX" ), Meet_link = c( "http://results.toronto2015.org/PRS/en/athletics/schedule-and-results.htm", "http://image2.aausports.org/sports/athletics/results/2015/jogames/live/", "http://results.toronto2015.org/IRS/en/athletics/schedule-and-results.htm", "http://www.gwangju2015.com/IRS/eng/zz/engzz_athletics_sport_overview.htm", "https://flashresults.com/2015_Meets/Outdoor/06-25_USATF/", "https://flashresults.com/2015_Meets/Outdoor/06-19_NBHS/", "https://flashresults.com/2015_Meets/Outdoor/06-10_NCAA/", "https://flashresults.com/2015_Meets/Outdoor/05-28_NCAAEast/", "https://flashresults.com/2015_Meets/Outdoor/05-14_ACC/", "https://flashresults.com/2015_Meets/Outdoor/05-14_BigSouth/", "https://flashresults.com/2015_Meets/Outdoor/05-08_UVAGrandPrix/", "https://flashresults.com/2015_Meets/Outdoor/05-06_DukeTwilight/", "https://flashresults.com/2015_Meets/Outdoor/05_02-A10/", "https://flashresults.com/2015_Meets/Outdoor/05-01_Dogwood/", "https://flashresults.com/2015_Meets/Outdoor/05-01_ArkTwilight/", "http://pennrelaysonline.com/Results/schedule.aspx", "https://flashresults.com/2015_Meets/Outdoor/04-17_VirginiaChallenge/", "https://flashresults.com/2015_Meets/Outdoor/04-15-15_ArkCombined/", "https://flashresults.com/2015_Meets/Outdoor/04-11_DukeInvitational/", "https://flashresults.com/2015_Meets/Outdoor/04-10_McDonnell/", "https://flashresults.com/2015_Meets/Outdoor/04-03_VertKlasse/", "https://flashresults.com/2015_Meets/Outdoor/03-27_RaleighRelays/", "https://flashresults.com/2015_Meets/Outdoor/03-27_ArkSpringInv/", "https://flashresults.com/2015_Meets/Outdoor/03-21_VirginiaCup/", "https://flashresults.com/2015_Meets/Outdoor/03-19_49erClassic/", "https://flashresults.com/2015_Meets/Outdoor/03-20_WakeOpen/", "https://flashresults.com/2015_Meets/Indoor/03-13_NCAA/", "https://flashresults.com/2015_Meets/Indoor/02-27_USA/", "https://flashresults.com/2015_Meets/Indoor/02-26_ACC/", "https://flashresults.com/2015_Meets/Indoor/02-21_ArkOpen/", "https://flashresults.com/2015_Meets/Indoor/02-20_A10/", "https://flashresults.com/2015_Meets/Indoor/02-20_VTChallenge/", "https://flashresults.com/2015_Meets/Indoor/02-13_Tyson/", "https://flashresults.com/2015_Meets/Indoor/02-07_NBGP/", "https://flashresults.com/2015_Meets/Indoor/02-06_TamuAggie/", "https://flashresults.com/2015_Meets/Indoor/02-06_VTDocHale/", "http://www.flashresults.com/2015_Meets/Indoor/01-30_Razorback/", "https://flashresults.com/2015_Meets/Indoor/01-23_VTHokie/", "https://flashresults.com/2015_Meets/Indoor/01-24_TamuQuadrangular/", "https://flashresults.com/2015_Meets/Indoor/01-17_TamuTeam/", "https://flashresults.com/2015_Meets/Indoor/01-16_Tamu13Team/", "https://flashresults.com/2015_Meets/Indoor/01-16_VTInvite/", "http://www.flashresults.com/2015_Meets/Indoor/01-17_arkhs/", "http://www.flashresults.com/2015_Meets/Indoor/01-16-ArkTex/", "https://flashresults.com/2015_Meets/Indoor/01-09_TamuHS/", "http://www.flashresults.com/2015_Meets/Indoor/01-09_arktri/", "https://flashresults.com/2015_Meets/Indoor/12-13_Reveille/", "http://info.veracruz2014.mx/info/eng/zz/engzz_athletics_sport_overview.htm" ) ) expect_equivalent(df_standard, df_test) })
choose_ploglik = function(est_nugget, est_par3, est_angle, est_ratio) { if (!est_nugget & !est_par3 & !est_angle & !est_ratio) { pll = ploglik_cmodStd_r_psill } else if (!est_nugget & est_par3 & !est_angle & !est_ratio) { pll = ploglik_cmodStd_r_psill_par3 } else if (!est_nugget & !est_par3 & est_angle & !est_ratio) { pll = ploglik_cmodStd_r_psill_angle } else if (!est_nugget & !est_par3 & !est_angle & est_ratio) { pll = ploglik_cmodStd_r_psill_ratio } else if (!est_nugget & est_par3 & est_angle & !est_ratio) { pll = ploglik_cmodStd_r_psill_angle_par3 } else if (!est_nugget & est_par3 & !est_angle & est_ratio) { pll = ploglik_cmodStd_r_psill_ratio_par3 } else if (!est_nugget & !est_par3 & est_angle & est_ratio) { pll = ploglik_cmodStd_r_psill_angle_ratio } else if (!est_nugget & est_par3 & est_angle & est_ratio) { pll = ploglik_cmodStd_r_psill_angle_ratio_par3 } else if (est_nugget & !est_par3 & !est_angle & !est_ratio) { pll = ploglik_cmodStd_r_lambda } else if (est_nugget & est_par3 & !est_angle & !est_ratio) { pll = ploglik_cmodStd_r_lambda_par3 } else if (est_nugget & !est_par3 & est_angle & !est_ratio) { pll = ploglik_cmodStd_r_lambda_angle } else if (est_nugget & !est_par3 & !est_angle & est_ratio) { pll = ploglik_cmodStd_r_lambda_ratio } else if (est_nugget & est_par3 & est_angle & !est_ratio) { pll = ploglik_cmodStd_r_lambda_angle_par3 } else if (est_nugget & est_par3 & !est_angle & est_ratio) { pll = ploglik_cmodStd_r_lambda_ratio_par3 } else if (est_nugget & !est_par3 & est_angle & est_ratio) { pll = ploglik_cmodStd_r_lambda_angle_ratio } else if (est_nugget & est_par3 & est_angle & est_ratio) { pll = ploglik_cmodStd_r_lambda_angle_ratio_par3 } return(pll) }
download_daily_synop <- function(path = ".", date, ...) { file <- paste0("synop.", date, ".csv") dir.create(file.path(path, "data-raw"), showWarnings = FALSE) utils::download.file(url = file.path(metsyn_url(), file), destfile = file.path(path, "data-raw", paste0("daily_", file)), ...) invisible(NULL) }
observeEvent(input$finalok, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, inputId = "var_freq_quant", choices = names(numdata)) updateSliderInput(session = session, inputId = 'filter_quant', min = min(numdata), max = max(numdata), step = 1, value = c(min(numdata), max(numdata)) ) } else if (ncol(num_data) < 1) { updateSelectInput(session, inputId = "var_freq_quant", choices = '', selected = '') updateSliderInput(session = session, inputId = 'filter_quant', value = '') } else { updateSelectInput(session, 'var_freq_quant', choices = names(num_data), selected = names(num_data)) updateSliderInput(session = session, inputId = 'filter_quant', min = min(num_data), max = max(num_data), step = 1, value = c(min(num_data), max(num_data)) ) } }) observeEvent(input$submit_part_train_per, { num_data <- final_split$train[, sapply(final_split$train, is.numeric)] if (is.null(dim(num_data))) { k <- final_split$train %>% map(is.numeric) %>% unlist() j <- names(which(k == TRUE)) numdata <- tibble::as_data_frame(num_data) colnames(numdata) <- j updateSelectInput(session, inputId = "var_freq_quant", choices = names(numdata)) updateSliderInput(session = session, inputId = 'filter_quant', min = min(numdata), max = max(numdata), step = 1, value = c(min(numdata), max(numdata)) ) } else if (ncol(num_data) < 1) { updateSelectInput(session, inputId = "var_freq_quant", choices = '', selected = '') updateSliderInput(session = session, inputId = 'filter_quant', value = '') } else { updateSelectInput(session, 'var_freq_quant', choices = names(num_data), selected = names(num_data)) updateSliderInput(session = session, inputId = 'filter_quant', min = min(num_data), max = max(num_data), step = 1, value = c(min(num_data), max(num_data)) ) } }) d_freq_quant <- eventReactive(input$submit_fquant, { data <- final_split$train[, input$var_freq_quant] }) observe({ updateSliderInput(session = session, inputId = 'filter_quant', min = min(d_freq_quant()), max = max(d_freq_quant()), step = 1, value = c(min(d_freq_quant()), max(d_freq_quant())) ) }) fil_quant_data <- reactive({ min_data <- input$filter_quant[1] max_data <- input$filter_quant[2] f_data <- d_freq_quant()[d_freq_quant() >= min_data & d_freq_quant() <= max_data] fdata <- as.data.frame(f_data) names(fdata) <- as.character(input$var_freq_quant) fdata }) fquant_out <- eventReactive(input$submit_fquant, { ko <- ds_freq_table(fil_quant_data(), !! sym(as.character(input$var_freq_quant)), input$bins) ko }) f2_title <- eventReactive(input$submit_fquant, { h3('Histogram') }) output$freq2_title <- renderUI({ f2_title() }) output$freq_quant <- renderPrint({ fquant_out() }) output$hist_freq_quant <- renderPlot({ plot(fquant_out()) })
vec_empty <- function(x) { stop_defunct(paste_line( "`vec_empty()` is defunct as of vctrs 0.2.0.", "Please use `vec_is_empty()` instead." )) } vec_type <- function(x) { warn_deprecated(c("`vec_type()` has been renamed to `vec_ptype()`.")) vec_ptype(x) } vec_type_common <- function(..., .ptype = NULL) { warn_deprecated(c("`vec_type_common()` has been renamed to `vec_ptype_common()`.")) vec_ptype_common(..., .ptype = .ptype) } vec_type2 <- function(x, y, ...) { warn_deprecated(c("`vec_type2()` has been renamed to `vec_ptype2()`.")) vec_ptype2(x, y, ...) } vec_as_index <- function(i, n, names = NULL) { signal_soft_deprecated(paste_line( "`vec_as_index()` is deprecated as of vctrs 0.2.2.", "Please use `vec_as_location() instead.`" )) n <- vec_cast(n, integer()) vec_assert(n, integer(), 1L) i <- vec_as_subscript(i) .Call( vctrs_as_location, i = i, n = n, names = names, loc_negative = "invert", loc_oob = "error", loc_zero = "remove", missing = "propagate", arg = NULL ) } vec_repeat <- function(x, each = 1L, times = 1L) { signal_soft_deprecated(paste_line( "`vec_repeat()` is deprecated as of vctrs 0.3.0.", "Please use either `vec_rep()` or `vec_rep_each()` instead." )) vec_assert(each, size = 1L) vec_assert(times, size = 1L) idx <- rep(vec_seq_along(x), times = times, each = each) vec_slice(x, idx) }
expected <- eval(parse(text="FALSE")); test(id=0, code={ argv <- eval(parse(text="list(structure(c(1920, 1920, 1920, 1920, 1920, 1920, 1921, 1921, 1921, 1921), .Tsp = c(1920.5, 1921.25, 12), class = \"ts\"))")); do.call(`is.list`, argv); }, o=expected);
context('fitEmaxB with updated prior') options(mc.cores = parallel::detectCores()) set.seed(12357) doselev<-c(0,5,25,50,100,350) n<-c(78,81,81,81,77,80) n1<-sum(n) n2<-sum(n[1:4]) doselev<-c(doselev,doselev[1:4]) n<-c(n,n[1:4]) e0<-2.465375 ed50<-67.481113 emax<-15.127726 sdy<-8.0 pop<-c(log(ed50),emax,e0) dose<-rep(doselev,n) meanlev<-emaxfun(dose,pop) y<-rnorm(n1+n2,meanlev,sdy) prots<-c(rep(1,n1),rep(2,n2)) prior<-emaxPrior.control(0,30,0,30,dTarget=350,p50=50,sigmalow=.1,sigmaup=30,parmDF=5) mcmc<-mcmc.control(chains=3,warmup=500,iter=3000,seed=53453,propInit=0.15,adapt_delta = .9) testout<-suppressWarnings(fitEmaxB(y,dose,prior=prior,modType=4,prot=prots, mcmc=mcmc,diagnostics=FALSE)) parms<-coef(testout) estimate<-apply(parms,2,mean) se<-sqrt(diag(var(parms))) z<-(estimate-c(pop[1],1,pop[2:3],pop[3]))/se test_that("model parameters agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) }) predout<-predict(testout,dosevec=c(20,80),int=2) poppred<-emaxfun(c(20,80),pop[c(1:3)]) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-e0))/predout$sedif test_that("predictions agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) expect_lt(as.numeric(max(abs(zdif))),2.5) }) test_that("check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=2*sdy/sqrt(70),scale=1)) expect_that(as.numeric(predout$fitdif), equals((poppred-e0),tol=2*sdy/sqrt(70),scale=1)) }) set.seed(12357) doselev<-c(0,5,25,50,100,350) n<-5*c(78,81,81,81,77,80) n1<-sum(n) n2<-sum(n[1:4]) doselev<-c(doselev,doselev[1:4]) n<-c(n,n[1:4]) e0<-2.465375 ed50<-67.481113 emax<-15.127726 sdy<-8.0 pop<-c(log(ed50),emax,e0) dose<-rep(doselev,n) meanlev<-emaxfun(dose,pop) y<-rnorm(n1+n2,meanlev,sdy) prots<-c(rep(1,n1),rep(2,n2)) ymean<-tapply(y,list(dose,prots),mean) ymean<-ymean[!is.na(ymean)] msSat<-(summary(lm(y~factor(dose)))$sigma)^2 protshort<-c(rep(1,6),rep(2,4)) nag<-table(dose,prots) nag<-as.vector(nag[nag>0]) prior<-emaxPrior.control(0,30,0,30,350,50,0.1,30,parmDF=5) mcmc<-mcmc.control(chains=3,warmup=500,iter=3000,seed=53453,propInit=0.15,adapt_delta = .9) suppressWarnings(testout<-fitEmaxB(ymean,doselev,prior=prior,modType=4, prot=protshort,count=nag,msSat=msSat, mcmc=mcmc,diagnostics=FALSE)) parms<-coef(testout) estimate<-apply(parms,2,mean) se<-sqrt(diag(var(parms))) z<-(estimate-c(pop[1],1,pop[2:3],pop[3]))/se test_that("model parameters agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) }) predout<-predict(testout,dosevec=c(20,80),int=2) poppred<-emaxfun(c(20,80),pop[c(1:3)]) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-e0))/predout$sedif test_that("predictions agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) expect_lt(as.numeric(max(abs(zdif))),2.5) }) test_that("check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=2*sdy/sqrt(70),scale=1)) expect_that(as.numeric(predout$fitdif), equals((poppred-e0),tol=2*sdy/sqrt(70),scale=1)) }) set.seed(12357) doselev<-c(0,5,25,50,100,350) n<-10*c(78,81,81,81,77,80) n1<-sum(n) n2<-sum(n[1:4]) doselev<-c(doselev,doselev[1:4]) n<-c(n,n[1:4]) e0<-0 ed50<-67.481113 emax<-15.127726 sdy<-8.0 pop<-c(log(ed50),emax,e0) dose<-rep(doselev,n) meanlev<-emaxfun(dose,pop) y<-rnorm(n1+n2,meanlev,sdy) prots<-c(rep(1,n1),rep(2,n2)) ysub<-y[dose!=0] dsub<-dose[dose!=0] protsub<-prots[dose!=0] prior<-emaxPrior.control(0,30,0,30,350,50,0.1,30,parmDF=5) mcmc<-mcmc.control(chains=3,warmup=500,iter=3000,seed=53453,propInit=0.15,adapt_delta = .9) suppressWarnings(testout<-fitEmaxB(ysub,dsub,prior,modType=3,prot=protsub,pboAdj=TRUE, mcmc=mcmc,diagnostics=FALSE,nproc=3)) parms<-coef(testout) estimate<-apply(parms,2,mean) se<-sqrt(diag(var(parms))) z<-(estimate-pop[1:2])/se test_that("pboadj model parameters agree within 2se",{ expect_lt(as.numeric(max(abs(z))),2.0) }) predout<-predict(testout,dosevec=c(20,80),int=2) poppred<-emaxfun(c(20,80),pop)-emaxfun(0,pop) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-e0))/predout$sedif test_that("pboadj predictions agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) expect_lt(as.numeric(max(abs(zdif))),2.5) }) test_that("pboadj check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=2*sdy/sqrt(700),scale=1)) expect_that(as.numeric(predout$fitdif), equals((poppred-e0),tol=2*sdy/sqrt(70),scale=1)) }) set.seed(12357) doselev<-c(0,5,25,50,100,350) n<-100*c(78,81,81,81,77,80) n1<-sum(n) n2<-sum(n[1:4]) doselev<-c(doselev,doselev[1:4]) n<-c(n,n[1:4]) e0<-0 ed50<-67.481113 emax<-15.127726 sdy<-8.0 pop<-c(log(ed50),emax,e0) dose<-rep(doselev,n) meanlev<-emaxfun(dose,pop) y<-rnorm(n1+n2,meanlev,sdy) prots<-c(rep(1,n1),rep(2,n2)) ysub<-y[dose!=0] dsub<-dose[dose!=0] protsub<-prots[dose!=0] prior<-emaxPrior.control(0,30,0,30,350,50,0.1,30,parmDF=5) mcmc<-mcmc.control(chains=3,warmup=500,iter=3000,seed=53453,propInit=0.15,adapt_delta = .9) ymean<-tapply(ysub,list(dsub,protsub),mean) ymean<-ymean[!is.na(ymean)] msSat<-(summary(lm(y~factor(dose)))$sigma)^2 protshort<-c(rep(1,5),rep(2,3)) nag<-table(dsub,protsub) nag<-as.vector(nag[nag>0]) dlevsub<-doselev[doselev!=0] suppressWarnings(testout<-fitEmaxB(ymean,dlevsub,prior,modType=4,prot=protshort, count=nag,pboAdj=TRUE,msSat=msSat, mcmc=mcmc,diagnostics=FALSE)) parms<-coef(testout) estimate<-apply(parms,2,mean) se<-sqrt(diag(var(parms))) z<-(estimate-c(pop[1],1,pop[2]))/se test_that("pboadj4 model parameters agree within 2se",{ expect_lt(as.numeric(max(abs(z))),2.0) }) predout<-predict(testout,dosevec=c(20,80),int=1,dref=50) poppred<-emaxfun(c(20,80),c(pop[1],1,pop[2],0)) popref<-emaxfun(50,c(pop[1],1,pop[2],0)) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-popref))/predout$sedif test_that("pboadj4 predictions agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) expect_lt(as.numeric(max(abs(zdif))),2.5) }) test_that("pboadj4 check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=2*sdy/sqrt(700),scale=1)) expect_that(as.numeric(predout$fitdif), equals((poppred-popref),tol=2*sdy/sqrt(70),scale=1)) }) set.seed(12357) nsim<-500 doselev<-c(0,5,25,50,100,350) n<-20*c(78,81,81,81,77,80) n1<-sum(n) n2<-sum(n[1:4]) doselev<-c(doselev,doselev[1:4]) n<-c(n,n[1:4]) e0<-2.465375 ed50<-67.481113 emax<-15.127726 sdy<-1 pop<-c(log(ed50),emax,e0) dose<-rep(doselev,n) meanlev<-emaxfun(dose,pop) poppred<-emaxfun(c(20,80),pop) popref<-emaxfun(50,pop) modtype<-4 if(modtype==4){pparm<-c(pop[1],1,pop[2:3]) }else pparm<-pop z<-matrix(numeric(modtype*nsim),ncol=modtype) zabs<-matrix(numeric(nsim*2),ncol=2) zdif<-matrix(numeric(nsim*2),ncol=2) prior<-emaxPrior.control(0,30,0,30,350,50,0.1,30,parmDF=5) mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,propInit=0.15,adapt_delta = .9) estan<-selEstan('mrmodel') for(i in 1:nsim){ y<-rnorm(n1+n2,meanlev,sdy) prots<-c(rep(1,n1),rep(2,n2)) ysum<-tapply(y,dose,mean) nsum<-as.numeric(table(dose)) msSat<-tapply(y,dose,var) msSat<-sum((nsum-1)*msSat)/(sum(nsum)-length(nsum)) ysum<-c(tapply(y[prots==1],dose[prots==1],mean), tapply(y[prots==2],dose[prots==2],mean)) suppressWarnings(testout<-fitEmaxB(ysum,doselev,prior=prior,count=n,modType=modtype, msSat=msSat,mcmc=mcmc,estan=estan,diagnostics=FALSE,nproc = 1)) parms<-coef(testout) estimate<-apply(parms,2,mean) se<-sqrt(diag(var(parms))) z[i,]<-(estimate-pparm)/se predout<-predict(testout,dosevec=c(20,80),int=1,dref=50) zabs[i,]<-(predout$pred-poppred)/predout$se zdif[i,]<-(predout$fitdif-(poppred-popref))/predout$sedif } test_that("grouped data model parameters agree within 2se",{ expect_that(0.05, equals(as.numeric(max(apply(abs(z)>1.96,2,mean))), tolerance=3*sqrt(.05*.95/nsim),scale=1)) }) test_that("predictions agree within 3se",{ expect_that(0.05, equals(as.numeric(max(apply(abs(zabs)>1.96,2,mean))), tolerance=3*sqrt(.05*.95/nsim),scale=1)) }) test_that("dif predictions agree within 2se",{ expect_that(0.05, equals(as.numeric(max(apply(abs(zdif)>1.96,2,mean))), tolerance=2*sqrt(.05*.95/nsim),scale=1)) }) set.seed(12357) modType<-4 dvec1<-c(0,.1,.3,.6,1) dvec2<-c(0,.1,.2,.4,.6,1) nd1<-length(dvec1) nd2<-length(dvec2) n1<-rep(10000,nd1) n2<-rep(10000,nd2) parms<-c(log(0.25),1,1.4,-0.5,-0.85) mlev1<-plogis(emaxfun(dvec1,parms[1:4])) mlev2<-plogis(emaxfun(dvec2,parms[c(1:3,5)])) y1<-rbinom(nd1,n1,mlev1) y2<-rbinom(nd2,n2,mlev2) y<-c(rep(1,nd1),rep(0,nd1),rep(1,nd2),rep(0,nd2)) counts<-c(y1,n1-y1,y2,n2-y2) prots<-c(rep(1,2*nd1),rep(2,2*nd2)) dvec<-c(dvec1,dvec1,dvec2,dvec2) prior<-emaxPrior.control(0,4,0,4,1.0,.5,parmDF=5,binary=TRUE) mcmc<-mcmc.control(chains=3,warmup=500,iter=3000,seed=53453,propInit=0.15,adapt_delta = .9) suppressWarnings(testout<-fitEmaxB(y,dvec,modType=modType, prot=prots, count=counts,binary=TRUE, prior=prior,mcmc=mcmc, diagnostics=FALSE)) pgen<-coef(testout) estimate<-apply(pgen,2,mean) se<-sqrt(diag(var(pgen))) z<-(estimate-parms)/se test_that("model parameters agree within 2se",{ expect_lt(as.numeric(max(abs(z))),2.0) }) predout<-predict(testout,dosevec=c(.25,.75),int=2) poppred<-plogis(emaxfun(c(.25,.75),parms[c(1:3,5)])) popref<-plogis(emaxfun(0,parms[c(1:3,5)])) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-popref))/predout$sedif test_that("predictions agree within 2se",{ expect_lt(as.numeric(max(abs(z))),2.0) expect_lt(as.numeric(max(abs(zdif))),2.0) }) test_that("check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=2*.5/sqrt(10000),scale=1)) }) set.seed(12357) modType<-3 dvec1<-c(0,.1,.3,.6,1) dvec2<-c(0,.1,.2,.4,.6,1) nd1<-length(dvec1) nd2<-length(dvec2) n1<-rep(10000,nd1) n2<-rep(10000,nd2) parms<-c(log(0.25),1,1.4,-0.5,-0.85) mlev1<-plogis(emaxfun(dvec1,parms[1:4])) mlev2<-plogis(emaxfun(dvec2,parms[c(1:3,5)])) y1<-rbinom(nd1,n1,mlev1) y2<-rbinom(nd2,n2,mlev2) y<-c(rep(1,nd1),rep(0,nd1),rep(1,nd2),rep(0,nd2)) counts<-c(y1,n1-y1,y2,n2-y2) prots<-c(rep(1,2*nd1),rep(2,2*nd2)) dvec<-c(dvec1,dvec1,dvec2,dvec2) prior<-emaxPrior.control(0,4,0,4,1.0,0.5,parmDF=5,binary=TRUE) mcmc<-mcmc.control(chains=3,warmup=500,iter=3000,seed=53453,propInit=0.15,adapt_delta = .9) suppressWarnings(testout<-fitEmaxB(y,dvec,modType=modType, prot=prots, count=counts,binary=TRUE, prior=prior,mcmc=mcmc, diagnostics=FALSE)) pgen<-coef(testout) estimate<-apply(pgen,2,mean) se<-sqrt(diag(var(pgen))) z<-(estimate[1:3]-parms[c(1,3,4)])/se[1:3] test_that("model parameters agree within 2se",{ expect_lt(as.numeric(max(abs(z))),2.0) }) predout<-predict(testout,dosevec=c(.25,.75),int=1) poppred<-plogis(emaxfun(c(.25,.75),parms[c(1,3,4)])) popref<-plogis(emaxfun(0,parms[c(1,3,4)])) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-popref))/predout$sedif test_that("predictions agree within 2se",{ expect_lt(as.numeric(max(abs(z))),2.0) expect_lt(as.numeric(max(abs(zdif))),2.0) }) test_that("check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=2*.5/sqrt(10000),scale=1)) }) set.seed(12357) doselev<-c(0,5,25,50,100,350) nd<-length(doselev) n<-10*c(78,81,81,81,77,80) e0<-2.465375 ed50<-67.481113 emax<-15.127726 sdy<-8.0 pop.parm<-c(log(ed50),emax,e0) modType<-4 prior<-emaxPrior.control(0,30,0,30,350,50,0.1,30,parmDF=5) mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,propInit=0.15,adapt_delta = .9) estan<-selEstan('mrmodel') dose<-rep(doselev,n) meanlev<-emaxfun(doselev,pop.parm) meanrep<-emaxfun(dose,pop.parm) clev<-0.9 nsim<-500 covci<-matrix(logical(nsim*nd),ncol=nd) covpi<-matrix(logical(nsim*nd),ncol=nd) covdifci<-matrix(logical(nsim*nd),ncol=nd) covdifpi<-matrix(logical(nsim*nd),ncol=nd) for (i in 1:nsim){ y<-rnorm(sum(n),meanrep,sdy) ymean<-tapply(y,dose,mean) msSat<-(summary(lm(y~factor(dose)))$sigma)^2 suppressWarnings(testout<-fitEmaxB(ymean,doselev,prior=prior,modType=modType,count=n, mcmc=mcmc,msSat=msSat, estan=estan,diagnostics = FALSE,nproc = 1)) if(is.null(testout)){ covci[i,]<-NA covpi[i,]<-NA covdifci[i,]<-NA covdifpi[i,]<-NA }else{ intout<-plot(testout,clev=clev,plot=FALSE)$plotdata covci[i,]<-meanlev>=intout[,'cil'] & meanlev<=intout[,'cih'] y<-rnorm(sum(n),meanrep,sdy) ym<-tapply(y,dose,mean) covpi[i,]<-ym>=intout[,'pil'] & ym<=intout[,'pih'] intout<-plot(testout,clev=clev,plot=FALSE,plotDif=TRUE)$plotdata covdifci[i,]<-meanlev-meanlev[1]>=intout[,'cil'] & meanlev-meanlev[1]<=intout[,'cih'] ym<-ym-ym[1] covdifpi[i,]<-ym>=intout[,'pil'] & ym<=intout[,'pih'] } } test_that("plot.fitEmax CI for continuous data agree within 3se",{ expect_that(clev, equals(as.numeric(max(apply(covci,2,mean,na.rm=TRUE))), tolerance=3*sqrt(.1*.9/nsim),scale=1)) }) test_that("plot.fitEmax PI for continuous data agree within 3se",{ expect_that(clev, equals(as.numeric(max(apply(covpi,2,mean,na.rm=TRUE))), tolerance=3*sqrt(.1*.9/nsim),scale=1)) }) test_that("plot.fitEmax CI DIF for continuous data agree within 3se",{ expect_that(clev, equals(as.numeric(max(apply(covdifci[,-1],2,mean,na.rm=TRUE))), tolerance=3*sqrt(.1*.9/nsim),scale=1)) }) test_that("plot.fitEmax PI DIF for continuous data agree within 3se",{ expect_that(clev, equals(as.numeric(max(apply(covdifpi[,-1],2,mean,na.rm=TRUE))), tolerance=3*sqrt(.1*.9/nsim),scale=1)) }) set.seed(12357) doselev<-c(0,5,25,50,100,350) nd<-length(doselev) n<-10*c(78,81,81,81,77,80) e0<-qlogis(.2) ed50<-67.481113 emax<-qlogis(.95) pop.parm<-c(log(ed50),emax,e0) meanlev<-plogis(emaxfun(doselev,pop.parm)) y01<-c(rep(1,length(meanlev)),rep(0,length(meanlev))) d01<-c(doselev,doselev) clev<-0.9 nsim<-500 covci<-matrix(logical(nsim*nd),ncol=nd) covpi<-matrix(logical(nsim*nd),ncol=nd) covdifci<-matrix(logical(nsim*nd),ncol=nd) covdifpi<-matrix(logical(nsim*nd),ncol=nd) modType<-4 prior<-emaxPrior.control(0,4,0,4,350,50,parmDF=5,binary=TRUE) mcmc<-mcmc.control(chains=1,warmup=500,iter=5000,seed=53453,propInit=0.15,adapt_delta = .9) estan<-selEstan('mrmodel') for (i in 1:nsim){ y<-rbinom(length(n),n,meanlev) n01<-c(y,n-y) suppressWarnings(testout<-fitEmaxB(y01,d01,prior,modType=4, count=n01,diagnostics = FALSE,binary=TRUE,nproc=1)) if(is.null(testout)){ covci[i,]<-NA covpi[i,]<-NA covdifci[i,]<-NA covdifpi[i,]<-NA }else{ intout<-plot(testout,clev=clev,plot=FALSE)$plotdata covci[i,]<-meanlev>=intout[,'cil'] & meanlev<=intout[,'cih'] ypred<-rbinom(length(n),n,meanlev) ym<-ypred/n covpi[i,]<-ym>=intout[,'pil'] & ym<=intout[,'pih'] intout<-plot(testout,clev=clev,plot=FALSE,plotDif=TRUE)$plotdata covdifci[i,]<-meanlev-meanlev[1]>=intout[,'cil'] & meanlev-meanlev[1]<=intout[,'cih'] ym<-ym-ym[1] covdifpi[i,]<-ym>=intout[,'pil'] & ym<=intout[,'pih'] } } test_that("plot.fitEmax CI for binary data agree within 3se",{ expect_that(clev, equals(as.numeric(max(apply(covci,2,mean,na.rm=TRUE))), tolerance=0.04,scale=1)) }) test_that("plot.fitEmax CI for binary data agree within 3se",{ expect_that(clev, equals(as.numeric(min(apply(covci,2,mean,na.rm=TRUE))), tolerance=0.04,scale=1)) }) test_that("plot.fitEmax PI for binary data agree within 3se",{ expect_that(clev, equals(as.numeric(max(apply(covpi,2,mean,na.rm=TRUE))), tolerance=0.04,scale=1)) }) test_that("plot.fitEmax PI for binary data agree within 3se",{ expect_that(clev, equals(as.numeric(min(apply(covpi,2,mean,na.rm=TRUE))), tolerance=0.04,scale=1)) }) test_that("plot.fitEmax CI DIF for binary data agree within 3se",{ expect_that(clev, equals(as.numeric(max(apply(covdifci[,-1],2,mean,na.rm=TRUE))), tolerance=0.04,scale=1)) }) test_that("plot.fitEmax CI DIF for binary data agree within 3se",{ expect_that(clev, equals(as.numeric(min(apply(covdifci[,-1],2,mean,na.rm=TRUE))), tolerance=0.04,scale=1)) }) test_that("plot.fitEmax PI DIF for binary data agree within 3se",{ expect_that(clev, equals(as.numeric(max(apply(covdifpi[,-1],2,mean,na.rm=TRUE))), tolerance=0.04,scale=1)) }) test_that("plot.fitEmax PI DIF for binary data agree within 3se",{ expect_that(clev, equals(as.numeric(min(apply(covdifpi[,-1],2,mean,na.rm=TRUE))), tolerance=0.04,scale=1)) }) set.seed(12357) doselev<-c(0,5,25,50,100,350) n<-c(78,81,81,81,77,80) n1<-sum(n) n2<-sum(n[1:4]) doselev<-c(doselev,doselev[1:4]) n<-c(n,n[1:4]) e0<-2.465375 ed50<-67.481113 emax<-15.127726 sdy<-8.0 x1<-rnorm(n1) x1<-x1-mean(x1) x2<-rnorm(n2) x2<-x2-mean(x2) x<-matrix(c(x1,x2),ncol=1) pop<-c(log(ed50),emax,e0) dose<-rep(doselev,n) bparm<-1 meanlev<-emaxfun(dose,pop) + x%*%bparm y<-rnorm(n1+n2,meanlev,sdy) prots<-c(rep(1,n1),rep(2,n2)) basemu<-0 basevar<-matrix((10*sdy)^2,nrow=1,ncol=1) prior<-emaxPrior.control(0,30,0,30,350,50,0.1,30,parmDF=5,basemu=basemu,basevar=basevar) mcmc<-mcmc.control(chains=3,warmup=500,iter=3000,seed=53453,propInit=0.15,adapt_delta = .9) suppressWarnings(testout<-fitEmaxB(y,dose,prior=prior,modType=4,prot=prots,xbase=x, mcmc=mcmc,diagnostics=FALSE)) parms<-coef(testout) estimate<-apply(parms,2,mean) se<-sqrt(diag(var(parms))) z<-(estimate-c(pop[1],1,pop[2:3],pop[3],bparm))/se test_that("model parameters agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) }) predout<-predict(testout,dosevec=c(20,80),int=2) poppred<-emaxfun(c(20,80),pop[c(1:3)]) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-e0))/predout$sedif test_that("predictions agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) expect_lt(as.numeric(max(abs(zdif))),2.5) }) test_that("check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=2*sdy/sqrt(70),scale=1)) expect_that(as.numeric(predout$fitdif), equals((poppred-e0),tol=2*sdy/sqrt(70),scale=1)) }) set.seed(12357) doselev<-c(0,5,25,50,100,350) n<-c(78,81,81,81,77,80) n1<-sum(n) n2<-sum(n[1:4]) doselev<-c(doselev,doselev[1:4]) n<-c(n,n[1:4]) e0<-2.465375 ed50<-67.481113 emax<-15.127726 sdy<-8.0 x1<-matrix(rnorm(3*n1),ncol=3) x1<-scale(x1,center=TRUE,scale=FALSE) x2<-matrix(rnorm(3*n2),ncol=3) x2<-scale(x2,center=TRUE,scale=FALSE) x<-rbind(x1,x2) pop<-c(log(ed50),emax,e0) dose<-rep(doselev,n) bparm<-c(2,-1,0.5) meanlev<-emaxfun(dose,pop) + x%*%bparm y<-rnorm(n1+n2,meanlev,sdy) prots<-c(rep(1,n1),rep(2,n2)) basemu<-numeric(3) basevar<-diag(3)*(10*sdy)^2 prior<-emaxPrior.control(0,30,0,30,350,50,0.1,30,parmDF=5,basemu=basemu,basevar=basevar) mcmc<-mcmc.control(chains=3,warmup=500,iter=3000,seed=53453,propInit=0.15,adapt_delta = .9) suppressWarnings(testout2<-fitEmaxB(y,dose,prior=prior,modType=4,prot=prots,xbase=x, mcmc=mcmc,diagnostics=FALSE)) parms<-coef(testout2) estimate<-apply(parms,2,mean) se<-sqrt(diag(var(parms))) z<-(estimate-c(pop[1],1,pop[2:3],pop[3],bparm))/se test_that("model parameters agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) }) predout<-predict(testout2,dosevec=c(20,80),int=2) poppred<-emaxfun(c(20,80),pop[c(1:3)]) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-e0))/predout$sedif test_that("predictions agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) expect_lt(as.numeric(max(abs(zdif))),2.5) }) test_that("check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=2*sdy/sqrt(70),scale=1)) expect_that(as.numeric(predout$fitdif), equals((poppred-e0),tol=2*sdy/sqrt(70),scale=1)) }) set.seed(12357) doselev<-c(0,5,25,50,100,350) n<-5*c(78,81,81,81,77,80) ntot<-sum(n) e0<-2.465375 ed50<-67.481113 emax<-15.127726 sdy<-8.0 pop<-c(log(ed50),emax,e0) dose<-rep(doselev,n) meanlev<-emaxfun(dose,pop) x<-matrix(rnorm(2*ntot),ncol=2) x<-scale(x,center=TRUE,scale=FALSE) bparm<-c(2,-1) meanlev<-meanlev + x%*%bparm y<-rnorm(ntot,meanlev,sdy) basemu<-numeric(2) basevar<-diag(2)*(10*sdy)^2 prior<-emaxPrior.control(0,30,0,30,350,50,0.1,30,parmDF=5,basemu=basemu,basevar=basevar) mcmc<-mcmc.control(chains=1,warmup=500,iter=3000,seed=53453,propInit=0.15,adapt_delta = .9) suppressWarnings(testout3<-fitEmaxB(y,dose,prior=prior,modType=3,xbase=x, mcmc=mcmc,diagnostics=FALSE)) parms<-coef(testout3) estimate<-apply(parms,2,mean) se<-sqrt(diag(var(parms))) z<-(estimate-c(pop[1],pop[2:3],bparm))/se test_that("model parameters agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) }) predout<-predict(testout3,dosevec=c(20,80),int=1) poppred<-emaxfun(c(20,80),pop[c(1:3)]) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-e0))/predout$sedif test_that("predictions agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) expect_lt(as.numeric(max(abs(zdif))),2.5) }) test_that("check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=2*sdy/sqrt(70),scale=1)) expect_that(as.numeric(predout$fitdif), equals((poppred-e0),tol=2*sdy/sqrt(70),scale=1)) }) set.seed(12357) doselev<-c(0,5,25,50,100,350) n<-5*c(78,81,81,81,77,80) ntot<-sum(n) e0<- -1.5 ed50<-67.481113 emax<-4.0 pop<-c(log(ed50),emax,e0) dose<-rep(doselev,n) meanlev<-emaxfun(dose,pop) x<-matrix(rnorm(2*ntot),ncol=2) x<-scale(x,center=TRUE,scale=FALSE) bparm<-c(2,-1) meanlev<-plogis(meanlev + x%*%bparm) y<-rbinom(ntot,1,meanlev) basemu<-numeric(2) basevar<-diag(2)*(4)^2 prior<-emaxPrior.control(0,30,0,30,350,50,parmDF=5,basemu=basemu,basevar=basevar,binary=TRUE) mcmc<-mcmc.control(chains=1,warmup=500,iter=3000,seed=53453,propInit=0.15,adapt_delta = .9) suppressWarnings(testout4b<-fitEmaxB(y,dose,prior=prior,modType=4,xbase=x, mcmc=mcmc,diagnostics=FALSE,binary=TRUE)) parms<-coef(testout4b) estimate<-apply(parms,2,mean) se<-sqrt(diag(var(parms))) z<-(estimate-c(pop[1],1,pop[2:3],bparm))/se test_that("model parameters agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) }) predout<-predict(testout4b,dosevec=c(20,80),int=1,xvec=c(0,0)) poppred<-plogis(emaxfun(c(20,80),pop[c(1:3)])) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-plogis(e0)))/predout$sedif test_that("predictions agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) expect_lt(as.numeric(max(abs(zdif))),2.5) }) test_that("check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=0.05,scale=1)) expect_that(as.numeric(predout$fitdif), equals((poppred-plogis(e0)),tol=0.05,scale=1)) }) set.seed(20572) doselev<-c(0,5,25,50,100,350) n<-4*c(78,81,81,81,77,80) ntot<-sum(n) e0<- -1.5 ed50<-67.481113 emax<-4.0 pop<-c(log(ed50),emax,e0) dose<-c(rep(doselev,n/2),rep(doselev,n/2)) prot<-sort(rep(1:2,ntot/2)) meanlev<-emaxfun(dose,pop)+0.5*(prot==2) x1<-matrix(rnorm(ntot),ncol=2) x1<-scale(x1,center=TRUE,scale=FALSE) x2<-matrix(rnorm(ntot),ncol=2) x2<-scale(x2,center=TRUE,scale=FALSE) x<-rbind(x1,x2) bparm<-c(1.,-0.5) meanlev<-plogis(meanlev + x%*%bparm) y<-rbinom(ntot,1,meanlev) basemu<-numeric(2) basevar<-diag(2); basevar[2,1]<-.25; basevar[1,2]<-.25 basevar<-basevar*(4)^2 prior<-emaxPrior.control(0,30,0,30,350,50,parmDF=5,basemu=basemu,basevar=basevar,binary=TRUE) mcmc<-mcmc.control(chains=1,warmup=500,iter=3000,seed=53453,propInit=0.15,adapt_delta = .9) suppressWarnings(testout5b<-fitEmaxB(y,dose,prot=prot,prior=prior,modType=3,xbase=x, mcmc=mcmc,diagnostics=FALSE,binary=TRUE)) parms<-coef(testout5b) estimate<-apply(parms,2,mean) se<-sqrt(diag(var(parms))) z<-(estimate-c(pop[1],pop[c(2:3)],pop[3]+0.5,bparm))/se test_that("model parameters agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) }) predout<-predict(testout5b,dosevec=c(20,80),int=1,xvec=c(0,0)) poppred<-plogis(emaxfun(c(20,80),c(pop[c(1:2)],e0))) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-plogis(e0)))/predout$sedif test_that("predictions agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) expect_lt(as.numeric(max(abs(zdif))),2.5) }) test_that("check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=0.05,scale=1)) expect_that(as.numeric(predout$fitdif), equals((poppred-plogis(e0)),tol=0.05,scale=1)) }) predout<-predict(testout5b,dosevec=c(20,80),int=2,xvec=c(0,0)) poppred<-plogis(emaxfun(c(20,80),c(pop[c(1:2)],e0+0.5))) z<-(predout$pred-poppred)/predout$se zdif<-(predout$fitdif-(poppred-plogis(e0+0.5)))/predout$sedif test_that("predictions agree within 2.5se",{ expect_lt(as.numeric(max(abs(z))),2.5) expect_lt(as.numeric(max(abs(zdif))),2.5) }) test_that("check absolute levels",{ expect_that(as.numeric(predout$pred), equals(poppred,tol=0.05,scale=1)) expect_that(as.numeric(predout$fitdif), equals((poppred-plogis(e0+0.5)),tol=0.05,scale=1)) })
Dist_SimuChisq <- function(s,prob,b){ idx <-which(prob==0) if (length(idx)==0){ prob <- prob s <- s }else{ prob <- prob[-idx] s <- s[,-idx] } MyChisqValues<-sapply(as.data.frame(t(s)), function(df){return(chisq.test(df,p=prob,simulate.p.value = T,B=b)$statistic)}) return(as.vector(MyChisqValues)) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(bliss) set.seed(1) param <- list( Q=1, n=100, p=c(50), beta_types=c("smooth"), grids_lim=list(c(0,1))) data <- sim(param) param <- list( iter=1e3, burnin=2e2, K=c(3)) res_bliss<-fit_Bliss(data=data,param=param,verbose=TRUE) str(res_bliss) param$ylim <- range(range(res_bliss$beta_posterior_density[[1]]$grid_beta_t), c(-5,5)) param$cols <- rev(heat.colors(100)) image_Bliss(res_bliss$beta_posterior_density,param,q=1) param$ylim <- range(range(res_bliss$beta_posterior_density[[1]]$grid_beta_t), c(-5,5)) param$cols <- rev(heat.colors(100)) image_Bliss(res_bliss$beta_posterior_density,param,q=1) lines(res_bliss$data$grids[[1]],res_bliss$Bliss_estimate[[1]],type="s",lwd=2) lines(res_bliss$data$grids[[1]],res_bliss$Smooth_estimate[[1]],lty=2) lines(res_bliss$data$grids[[1]],res_bliss$data$betas[[1]],col="purple",lwd=2,type="s") param$ylim <- range(range(res_bliss$beta_posterior_density[[1]]$grid_beta_t), c(-5,5)) param$cols <- rev(heat.colors(100)) image_Bliss(res_bliss$beta_posterior_density,param,q=1) lines_bliss(res_bliss$data$grids[[1]],res_bliss$Bliss_estimate[[1]],lwd=3) lines(res_bliss$data$grids[[1]],res_bliss$Smooth_estimate[[1]],lty=2) lines_bliss(res_bliss$data$grids[[1]],res_bliss$data$betas[[1]],col="purple",lwd=3) plot(res_bliss$alpha[[1]],type="o",xlab="time",ylab="posterior probabilities") plot(res_bliss$alpha[[1]],type="o",xlab="time",ylab="posterior probabilities") abline(h=0.5,col=2,lty=2) for(i in 1:nrow(res_bliss$support_estimate[[1]])){ segments(res_bliss$support_estimate[[1]]$begin[i],0.05, res_bliss$support_estimate[[1]]$end[i],0.05,col="red" ) points(res_bliss$support_estimate[[1]]$begin[i],0.05,col="red",pch="|",lwd=2) points(res_bliss$support_estimate[[1]]$end[i],0.05,col="red",pch="|",lwd=2) } res_bliss$support_estimate[[1]] sessionInfo()
coder.texte <- function( texte, ajouter.images = TRUE, proteger.balises = FALSE, balise.CDATA = TRUE, indentation = 2, fichier.xml ) { if ( length( texte ) > 1 ) { stop( "Le texte pass\u00e9 n'est pas unique.", " Probl\u00e8me de codage ant\u00e9rieur !\n", texte ) } blanc <- paste0( rep( " ", indentation ), collapse = "" ) cat( file = fichier.xml, sep = "", blanc, "<text>", if ( TRUE == balise.CDATA ) "<![CDATA[" ) cat( file = fichier.xml, sep = "", texte ) cat( file = fichier.xml, sep = "", if ( TRUE == balise.CDATA ) "]]>", "</text>\n" ) if ( TRUE == ajouter.images ) { av.images <- grepl( "@@PLUGINFILE@@", fixed = TRUE, texte ) if ( av.images ) { assign( "liste.images", character() , SARP.Moodle.env ) pos.images <- gregexpr( "\"@@PLUGINFILE@@/.*?\"", fixed = FALSE, texte )[[ 1 ]] lg <- attr( pos.images, "match.length" ) lapply( 1:length( lg ), function( i ) { img <- substr( texte, start = pos.images[ i ], stop = pos.images[ i ] + lg[ i ] - 1 ) img <- gsub( ".*/", '', img ) img <- gsub( "\"$", '', img ) cat( file = fichier.xml, sep = "", blanc, coder_image.moodle( img ), "\n" ) } ) } } }
blr_confusion_matrix <- function(model, cutoff = 0.5, data = NULL, ...) UseMethod("blr_confusion_matrix") blr_confusion_matrix.default <- function(model, cutoff = 0.5, data = NULL, ...) { blr_check_model(model) blr_check_values(cutoff, 0, 1) namu <- formula(model)[[2]] if (is.null(data)) { data <- model$model response <- data[[1]] } else { blr_check_data(data) response <- data[[as.character(namu)]] } p_data <- predict(model, newdata = data, type = "response") c_data <- as.factor(as.numeric(p_data > cutoff)) out <- table(Prediction = c_data, Reference = response) a <- out[4] b <- out[2] c <- out[3] d <- out[1] accuracy <- (a + d) / (a + b + c + d) no_inf_rate <- table(response)[[1]] / sum(table(response)) sensitivity <- a / (a + c) specificity <- d / (b + d) prevalence <- (a + c) / (a + b + c + d) detect_rate <- a / (a + b + c + d) detect_prev <- (a + b) / (a + b + c + d) bal_accuracy <- (sensitivity + specificity) / 2 precision <- a / (a + b) recall <- a / (a + c) kappa <- blr_kappa(out) mcnemar_p <- stats::mcnemar.test(out)$p.value ppv <- (sensitivity * prevalence) / ((sensitivity * prevalence) + ((1 - specificity) * (1 - prevalence))) npv <- specificity * (1 - prevalence) / (((1 - sensitivity) * prevalence) + (specificity * (1 - prevalence))) result <- list( accuracy = accuracy, balanced_accuracy = bal_accuracy, conf_matrix = out, detection_prevalence = detect_prev, detection_rate = detect_rate, mcnemar_kappa = kappa, mcnemar_test_p_val = mcnemar_p, negative_predicted_value = npv, no_information_rate = no_inf_rate, positive_predicted_value = ppv, precision = precision, prevalence = prevalence, recall = recall, sensitivity = sensitivity, specificity = specificity) class(result) <- "blr_confusion_matrix" return(result) } print.blr_confusion_matrix <- function(x, ...) { cat('Confusion Matrix and Statistics', '\n\n') print(x$conf_matrix) cat('\n\n') cat(' Accuracy :', format(round(x$accuracy, 4), nsmall = 4), '\n') cat(' No Information Rate :', format(round(x$no_information_rate, 4), nsmall = 4), '\n\n') cat(' Kappa :', format(round(x$mcnemar_kappa, 4), nsmall = 4), '\n\n') cat("McNemars's Test P-Value :", format(round(x$mcnemar_test_p_val, 4), nsmall = 4), '\n\n') cat(' Sensitivity :', format(round(x$sensitivity, 4), nsmall = 4), '\n') cat(' Specificity :', format(round(x$specificity, 4), nsmall = 4), '\n') cat(' Pos Pred Value :', format(round(x$positive_predicted_value, 4), nsmall = 4), '\n') cat(' Neg Pred Value :', format(round(x$negative_predicted_value, 4), nsmall = 4), '\n') cat(' Prevalence :', format(round(x$prevalence, 4), nsmall = 4), '\n') cat(' Detection Rate :', format(round(x$detection_rate, 4), nsmall = 4), '\n') cat(' Detection Prevalence :', format(round(x$detection_prevalence, 4), nsmall = 4), '\n') cat(' Balanced Accuracy :', format(round(x$balanced_accuracy, 4), nsmall = 4), '\n') cat(' Precision :', format(round(x$precision, 4), nsmall = 4), '\n') cat(' Recall :', format(round(x$recall, 4), nsmall = 4), '\n\n') cat(" 'Positive' Class : 1") } blr_kappa <- function(out) { agreement <- sum(diag(out)) / sum(out) expected <- sum(rowSums(out) * colSums(out)) / (sum(out) ^ 2) (agreement - expected) / (1 - expected) }
rank_stability <- function(x, ...) UseMethod("rank_stability")
makeStoppingCondition = function(name, message, stop.fun, code = name, control = list()) { assertString(name, na.ok = FALSE) assertString(message, na.ok = FALSE) assertFunction(stop.fun, args = "envir") assertString(code, na.ok = FALSE) assertList(control) makeS3Obj( name = name, message = message, stop.fun = stop.fun, code = code, control = control, classes = "cma_stopping_condition" ) } shouldStop = function(x, envir) { UseMethod("shouldStop") } shouldStop.cma_stopping_condition = function(x, envir) { return(x$stop.fun(envir)) } checkStoppingConditions = function(stop.ons, envir = parent.frame()) { assertList(stop.ons, min.len = 1L, types = "cma_stopping_condition") stop.msgs = character(0L) codes = character(0L) for (stop.on in stop.ons) { if (shouldStop(stop.on, envir = envir)) { stop.msgs = c(stop.msgs, stop.on$message) codes = c(codes, stop.on$code) break } } return(list(stop.msgs = stop.msgs, codes = codes)) } getDefaultStoppingConditions = function() { return( list( stopOnTolX(), stopOnNoEffectAxis(), stopOnNoEffectCoord(), stopOnCondCov() ) ) }
prune.semforest <- function(object, max.depth=NULL, num.trees=NULL, ...) { if (!is.null(num.trees)) { object$forest <- object$forest[1:num.trees] object$forest.data <- object$forest.data[1:num.trees] } if (!is.null(max.depth)) { object$forest <- lapply(object$forest, prune.semtree, max.depth=max.depth) } return(object); }
skip_if_not_available("dataset") library(dplyr, warn.conflicts = FALSE) csv_dir <- make_temp_dir() tsv_dir <- make_temp_dir() test_that("Setup (putting data in the dirs)", { dir.create(file.path(csv_dir, 5)) dir.create(file.path(csv_dir, 6)) write.csv(df1, file.path(csv_dir, 5, "file1.csv"), row.names = FALSE) write.csv(df2, file.path(csv_dir, 6, "file2.csv"), row.names = FALSE) expect_length(dir(csv_dir, recursive = TRUE), 2) dir.create(file.path(tsv_dir, 5)) dir.create(file.path(tsv_dir, 6)) write.table(df1, file.path(tsv_dir, 5, "file1.tsv"), row.names = FALSE, sep = "\t") write.table(df2, file.path(tsv_dir, 6, "file2.tsv"), row.names = FALSE, sep = "\t") expect_length(dir(tsv_dir, recursive = TRUE), 2) }) test_that("CSV dataset", { ds <- open_dataset(csv_dir, partitioning = "part", format = "csv") expect_r6_class(ds$format, "CsvFileFormat") expect_r6_class(ds$filesystem, "LocalFileSystem") expect_identical(names(ds), c(names(df1), "part")) if (getRversion() >= "4.0.0") { expect_identical(dim(ds), c(20L, 7L)) } expect_equal( ds %>% select(string = chr, integer = int, part) %>% filter(integer > 6 & part == 5) %>% collect() %>% summarize(mean = mean(as.numeric(integer))), df1 %>% select(string = chr, integer = int) %>% filter(integer > 6) %>% summarize(mean = mean(integer)) ) expect_equal( collect(ds) %>% arrange(part) %>% pull(part), c(rep(5, 10), rep(6, 10)) ) }) test_that("CSV scan options", { options <- FragmentScanOptions$create("text") expect_equal(options$type, "csv") options <- FragmentScanOptions$create("csv", null_values = c("mynull"), strings_can_be_null = TRUE ) expect_equal(options$type, "csv") dst_dir <- make_temp_dir() dst_file <- file.path(dst_dir, "data.csv") df <- tibble(chr = c("foo", "mynull")) write.csv(df, dst_file, row.names = FALSE, quote = FALSE) ds <- open_dataset(dst_dir, format = "csv") expect_equal(ds %>% collect(), df) sb <- ds$NewScan() sb$FragmentScanOptions(options) tab <- sb$Finish()$ToTable() expect_equal(as.data.frame(tab), tibble(chr = c("foo", NA))) csv_format <- CsvFileFormat$create( null_values = c("mynull"), strings_can_be_null = TRUE ) ds <- open_dataset(dst_dir, format = csv_format) expect_equal(ds %>% collect(), tibble(chr = c("foo", NA))) df <- tibble(chr = c("foo", "mynull"), chr2 = c("bar", "baz")) write.table(df, dst_file, row.names = FALSE, quote = FALSE, sep = "\t") ds <- open_dataset(dst_dir, format = "csv", delimiter = "\t", null_values = c("mynull"), strings_can_be_null = TRUE ) expect_equal(ds %>% collect(), tibble( chr = c("foo", NA), chr2 = c("bar", "baz") )) expect_equal( ds %>% group_by(chr2) %>% summarize(na = all(is.na(chr))) %>% arrange(chr2) %>% collect(), tibble( chr2 = c("bar", "baz"), na = c(FALSE, TRUE) ) ) }) test_that("compressed CSV dataset", { skip_if_not_available("gzip") dst_dir <- make_temp_dir() dst_file <- file.path(dst_dir, "data.csv.gz") write.csv(df1, gzfile(dst_file), row.names = FALSE, quote = FALSE) format <- FileFormat$create("csv") ds <- open_dataset(dst_dir, format = format) expect_r6_class(ds$format, "CsvFileFormat") expect_r6_class(ds$filesystem, "LocalFileSystem") expect_equal( ds %>% select(string = chr, integer = int) %>% filter(integer > 6 & integer < 11) %>% collect() %>% summarize(mean = mean(integer)), df1 %>% select(string = chr, integer = int) %>% filter(integer > 6) %>% summarize(mean = mean(integer)) ) }) test_that("CSV dataset options", { dst_dir <- make_temp_dir() dst_file <- file.path(dst_dir, "data.csv") df <- tibble(chr = letters[1:10]) write.csv(df, dst_file, row.names = FALSE, quote = FALSE) format <- FileFormat$create("csv", skip_rows = 1) ds <- open_dataset(dst_dir, format = format) expect_equal( ds %>% select(string = a) %>% collect(), df1[-1, ] %>% select(string = chr) ) ds <- open_dataset(dst_dir, format = "csv", column_names = c("foo")) expect_equal( ds %>% select(string = foo) %>% collect(), tibble(string = c(c("chr"), letters[1:10])) ) }) test_that("Other text delimited dataset", { ds1 <- open_dataset(tsv_dir, partitioning = "part", format = "tsv") expect_equal( ds1 %>% select(string = chr, integer = int, part) %>% filter(integer > 6 & part == 5) %>% collect() %>% summarize(mean = mean(as.numeric(integer))), df1 %>% select(string = chr, integer = int) %>% filter(integer > 6) %>% summarize(mean = mean(integer)) ) ds2 <- open_dataset(tsv_dir, partitioning = "part", format = "text", delimiter = "\t") expect_equal( ds2 %>% select(string = chr, integer = int, part) %>% filter(integer > 6 & part == 5) %>% collect() %>% summarize(mean = mean(as.numeric(integer))), df1 %>% select(string = chr, integer = int) %>% filter(integer > 6) %>% summarize(mean = mean(integer)) ) }) test_that("readr parse options", { arrow_opts <- names(formals(CsvParseOptions$create)) readr_opts <- names(formals(readr_to_csv_parse_options)) expect_equal( intersect(arrow_opts, readr_opts), character(0) ) expect_error( open_dataset(tsv_dir, partitioning = "part", delim = "\t", na = "\\N"), "supported" ) expect_error( open_dataset( tsv_dir, partitioning = "part", format = "text", asdfg = "\\" ), "Unrecognized" ) expect_error( open_dataset( tsv_dir, partitioning = "part", format = "text", quote = "\"", quoting = TRUE ), "either" ) expect_error( open_dataset( tsv_dir, partitioning = "part", format = "text", quo = "\"", ), "Ambiguous" ) ds1 <- open_dataset(tsv_dir, partitioning = "part", delim = "\t") expect_equal( ds1 %>% select(string = chr, integer = int, part) %>% filter(integer > 6 & part == 5) %>% collect() %>% summarize(mean = mean(as.numeric(integer))), df1 %>% select(string = chr, integer = int) %>% filter(integer > 6) %>% summarize(mean = mean(integer)) ) }) test_that("Error if no format specified and files are not parquet", { expect_error( open_dataset(csv_dir, partitioning = "part"), "Did you mean to specify a 'format' other than the default (parquet)?", fixed = TRUE ) expect_error( open_dataset(csv_dir, partitioning = "part", format = "parquet"), "Parquet magic bytes not found" ) }) test_that("Column names inferred from schema for headerless CSVs (ARROW-14063)", { headerless_csv_dir <- make_temp_dir() tbl <- df1[, c("int", "dbl")] write.table(tbl, file.path(headerless_csv_dir, "file1.csv"), sep = ",", row.names = FALSE, col.names = FALSE) ds <- open_dataset(headerless_csv_dir, format = "csv", schema = schema(int = int32(), dbl = float64())) expect_equal(ds %>% collect(), tbl) })
is_valid <- function(h3_address = NULL, simple = TRUE) { eval_this <- data.frame(h3_address, stringsAsFactors = FALSE) sesh$assign('evalThis', eval_this) sesh$eval('for (var i = 0; i < evalThis.length; i++) { evalThis[i].h3_valid = h3.h3IsValid(evalThis[i].h3_address); };') if(simple == TRUE) { sesh$get('evalThis')$h3_valid } else { sesh$get('evalThis') } } is_pentagon <- function(h3_address = NULL, simple = TRUE) { if(any(is_valid(h3_address)) == FALSE) { stop('Invalid H3 cell index detected.') } sesh$assign('evalThis', data.frame(h3_address, stringsAsFactors = FALSE)) sesh$eval('for (var i = 0; i < evalThis.length; i++) { evalThis[i].h3_pentagon = h3.h3IsPentagon(evalThis[i].h3_address); };') if(simple == TRUE) { sesh$get('evalThis')$h3_pentagon } else { sesh$get('evalThis') } } is_rc3 <- function(h3_address = NULL, simple = TRUE) { if(any(is_valid(h3_address)) == FALSE) { stop('Invalid H3 cell index detected.') } sesh$assign('evalThis', data.frame(h3_address, stringsAsFactors = FALSE)) sesh$eval('for (var i = 0; i < evalThis.length; i++) { evalThis[i].h3_rc3 = h3.h3IsResClassIII(evalThis[i].h3_address); };') if(simple == TRUE) { sesh$get('evalThis')$h3_rc3 } else { sesh$get('evalThis') } } get_base_cell <- function(h3_address = NULL, simple = TRUE) { if(any(is_valid(h3_address)) == FALSE) { stop('Invalid H3 cell index detected.') } sesh$assign('evalThis', data.frame(h3_address, stringsAsFactors = FALSE)) sesh$eval('for (var i = 0; i < evalThis.length; i++) { evalThis[i].h3_base_cell = h3.h3GetBaseCell(evalThis[i].h3_address); };') if(simple == TRUE) { sesh$get('evalThis')$h3_base_cell } else { sesh$get('evalThis') } } get_faces <- function(h3_address = NULL, simple = TRUE) { if(any(is_valid(h3_address)) == FALSE) { stop('Invalid H3 index detected.') } sesh$assign('evalThis', data.frame(h3_address, stringsAsFactors = FALSE)) sesh$eval('for (var i = 0; i < evalThis.length; i++) { evalThis[i].h3_faces = h3.h3GetFaces(evalThis[i].h3_address); };') if(simple == TRUE) { unlist(sesh$get('evalThis')$h3_faces) } else { sesh$get('evalThis') } } get_pentagons <- function(res = NULL, simple = TRUE) { if(!any(res %in% seq(0, 15))) { stop('Please provide a valid H3 resolution. Allowable values are 0-15 inclusive.') } sesh$assign('evalThis', data.frame(res, stringsAsFactors = FALSE)) sesh$eval('for (var i = 0; i < evalThis.length; i++) { evalThis[i].h3_pentagons = h3.getPentagonIndexes(evalThis[i].res); };') if(simple == TRUE) { sesh$get('evalThis')$h3_pentagons } else { sesh$get('evalThis') } } get_res <- function(h3_address = NULL, simple = TRUE) { if(any(is_valid(h3_address)) == FALSE) { stop('Invalid H3 cell index detected.') } sesh$assign('evalThis', data.frame(h3_address, stringsAsFactors = FALSE)) sesh$eval('for (var i = 0; i < evalThis.length; i++) { evalThis[i].h3_res = h3.h3GetResolution(evalThis[i].h3_address); };') if(simple == TRUE) { sesh$get('evalThis')$h3_res } else { sesh$get('evalThis') } } point_to_h3 <- function(input = NULL, res = NULL, simple = TRUE) { if(!any(res %in% seq(0, 15))) { stop('Please provide a valid H3 resolution. Allowable values are 0-15 inclusive.') } pts <- prep_for_pt2h3(input) eval_this <- data.frame('X' = rep(pts[ , 1], length(res)), 'Y' = rep(pts[ , 2], length(res)), 'h3_res' = rep(res, each = nrow(pts)), stringsAsFactors = FALSE) sesh$assign('evalThis', eval_this, digits = NA) sesh$eval('var h3_address = []; for (var i = 0; i < evalThis.length; i++) { h3_address[i] = h3.geoToH3(evalThis[i].Y, evalThis[i].X, evalThis[i].h3_res); };') addys <- data.frame('n' = seq(nrow(pts)), 'res' = rep(res, each = nrow(pts)), 'h3_address' = sesh$get('h3_address'), stringsAsFactors = FALSE) addys <- tidyr::spread(addys, 'res', 'h3_address') addys$n <- NULL names(addys) <- paste0('h3_resolution_', names(addys)) if (simple == TRUE) { if (length(res) == 1) { unlist(addys, use.names = FALSE) } else { addys } } else { if(inherits(input, 'sf')) { cbind(sf::st_set_geometry(input, NULL), addys) } else if(inherits(input, 'data.frame')) { cbind(input[, c(3:dim(input)[2]), drop = FALSE], addys) } else { addys } } } h3_to_point <- function(h3_address = NULL, simple = TRUE) { if(any(is_valid(h3_address)) == FALSE) { stop('Invalid H3 cell index detected.') } sesh$assign('evalThis', data.frame(h3_address, stringsAsFactors = FALSE)) sesh$eval('for (var i = 0; i < evalThis.length; i++) { evalThis[i].h3_resolution = h3.h3GetResolution(evalThis[i].h3_address); evalThis[i].geometry = h3.h3ToGeo(evalThis[i].h3_address); };') pts <- sesh$get('evalThis') pts$geometry <- lapply(pts$geometry, function(x) { sf::st_point(c(x[2], x[1])) }) pts$geometry <- sf::st_sfc(pts$geometry, crs = 4326) if(simple == TRUE) { pts$geometry } else { sf::st_sf(pts) } } h3_to_polygon <- function(input = NULL, simple = TRUE) { if(inherits(input, 'data.frame')) { h3_address <- as.character(input[[1]]) } else { h3_address <- unlist(input, use.names = FALSE) } if(any(is_valid(h3_address)) == FALSE) { stop('Invalid H3 cell index detected.') } sesh$assign('evalThis', data.frame(h3_address, stringsAsFactors = FALSE), digits = NA) sesh$eval('for (var i = 0; i < evalThis.length; i++) { evalThis[i].h3_resolution = h3.h3GetResolution(evalThis[i].h3_address); evalThis[i].geometry = h3.h3ToGeoBoundary(evalThis[i].h3_address, formatAsGeoJson = true); };') hexes <- sesh$get('evalThis') hexes$geometry <- lapply(hexes$geometry, function(hex) { sf::st_polygon(list(hex)) }) hexes$geometry <- sf::st_sfc(hexes$geometry, crs = 4326) if(simple == TRUE) { hexes$geometry } else { if(inherits(input, 'data.frame')) { sf::st_sf(cbind(input[, c(2:dim(input)[2]), drop = FALSE], hexes), stringsAsFactors = FALSE) } else { sf::st_sf(hexes, stringsAsFactors = FALSE) } } } get_res0 <- function() { sesh$eval('res0 = h3.getRes0Indexes();') sesh$get('res0') }
test_that("metabolites function: the output class is wrong", { expect_true(is.vector(metabolites( reactionList = c( "A[c]", "B[protein]A[m_pro]", "C[r]", "2 5-A[c] + 3 B[c] <=> 5 3D[c] + B[c]" ) ))) }) test_that("metabolites function: the output value is wrong", { expect_equal( object = metabolites( reactionList = c( "A[c]", "B[protein]A[m_pro]", "C[r]", "2 5-A[c] + 3 B[c] <=> 5 3D[c] + B[c]" ), woCompartment = TRUE,uniques = FALSE ), expected = c("A", "B[protein]A", "C", "5-A", "B","3D","B") ) expect_equal( object = metabolites( reactionList = c( "A[c]", "B[protein]A[m_pro]", "C[r]", "2 5-A[c] + 3 B[c] <=> 5 3D[c] + B[c]" ), woCompartment = TRUE,uniques = TRUE ), expected = c("A", "B[protein]A", "C", "5-A", "B","3D") ) expect_equal( object = metabolites( reactionList = c( "A[c]", "B[protein]A[m_pro]", "C[r]", "2 5-A[c] + 3 B[c] <=> 5 3D[c] + B[c]" ), woCompartment = FALSE,uniques = TRUE ), expected = c("A[c]", "B[protein]A[m_pro]", "C[r]", "5-A[c]", "B[c]","3D[c]") ) expect_equal( object = metabolites( reactionList = c( "A[c]", "B[protein]A[m_pro]", "C[r]", "2 5-A[c] + 3 B[c] <=> 5 3D[c] + B[c]" ), woCompartment = FALSE,uniques = FALSE ), expected = c("A[c]", "B[protein]A[m_pro]", "C[r]", "5-A[c]", "B[c]","3D[c]","B[c]") ) })
optimal_control_gradient_descent <- function(alphaStep, armijoBeta, x0, parameters, alpha1, alpha2, measData, constStr, SD, modelFunc, measFunc, modelInput, optW, origAUC, maxIteration, plotEsti, conjGrad, eps, nnStates, verbose) { if (.Platform$OS.type != "windows"){ temp_costate_path <- paste0(tempdir(),'/','costate.R') temp_hidden_input_path <- paste0(tempdir(),'/','stateHiddenInput.R') } else { temp_costate_path <- paste0(tempdir(),'\\','costate.R') temp_hidden_input_path <- paste0(tempdir(),'\\','stateHiddenInput.R') } e <- new.env() source(temp_hidden_input_path, local = e) source(temp_costate_path, local = e) costate <- get('costate', envir = e) hiddenInputState <- get('hiddenInputState', envir = e) startOptW <- optW if (missing(optW)) { optW <- rep(1, length(x0)) } if (missing(plotEsti)) { plotEsti <- FALSE } if (missing(nnStates)) { nnStates <- rep(0, length(x0)) } times <- measData[, 1] N <- 10 * length(times) t0 <- times[1] tf <- utils::tail(times, n = 1) times <- seq(from = t0, to = tf, length.out = N) tInt <- c(t0, tf) measureTimes <- measData[, 1] measureData <- measData[, -1] alphaDynNet <- list(a1 = alpha1, a2 = alpha2) eventTol <- 0.0 resetValue <- 0.0001 RootFunc <- eval(parse(text = createRoot(rootStates = nnStates))) EventFunc <- eval(parse(text = createEvent(tolerance = eventTol, value = resetValue))) if (is.null(SD)) { measureData <- as.matrix(measureData) Q <- matrix(data = rep(1, length(measureData)), ncol = ncol(measureData)) Q = Q / abs(measureData) Q[is.infinite(Q)] = 0 Q[is.na(Q)] = 0 interpQ <- apply(X = Q, MARGIN = 2, FUN = function(t) stats::approx(x = measureTimes, y = t, xout = times)) interpQ = do.call(cbind, lapply(interpQ, FUN = function(t) cbind(t$y))) Q <- interpQ } else { interpSD <- apply(X = SD[,-1], MARGIN = 2, FUN = function(t) stats::approx(x = SD[, 1], y = t, xout = times)) interpSD = do.call(cbind, lapply(interpSD, FUN = function(t) cbind(t$y))) Q <- apply(X = interpSD, MARGIN = 2, FUN = function(t)(1 / t ^ 2) / length(t)) } if (all(is.null(names(x0)))) { names(x0) <- paste0(rep("x", length(x0)), 1:length(x0)) } if (!is.null(modelInput)) { inputInterp <- list() inputInterp <- apply(X = modelInput[, -1, drop = F], MARGIN = 2, FUN = function(x) stats::approxfun(x = modelInput[, 1], y = x, rule = 2, method = 'linear')) } if (grepl("Rtools", Sys.getenv('PATH')) || (.Platform$OS.type != "windows")) { if (!is.null(modelInput)) { inputApprox <- apply(X = modelInput[, -1, drop = F], MARGIN = 2, FUN = function(x) stats::approx(x = modelInput[, 1], y = x, xout = times, rule = 2)) inputApprox = list(cbind(times, inputApprox$u$y)) } else { inputApprox <- list(cbind(times, rep(0, length(times)))) } w <- matrix(rep(0, length(x0) * length(times)), ncol = length(x0)) wSplit <- split(w, rep(1:ncol(w), each = nrow(w))) wList <- lapply(wSplit, FUN = function(x) cbind(times, x)) forcings <- c(inputApprox, wList) if (sum(nnStates) == 0) { solNominal = deSolve::ode(y = x0, times, func = "derivsc", parms = parameters, dllname = "model", initforc = "forcc", forcings = forcings, initfunc = "parmsc") } else { solNominal = deSolve::lsoda(y = x0, times, func = "derivsc", parms = parameters, dllname = "model", initforc = "forcc", forcings = forcings, initfunc = "parmsc", nroot = sum(nnStates), rootfunc = "myroot", events = list(func = EventFunc, root = TRUE)) } } else { if (!is.null(modelInput)) { if (sum(nnStates) == 0) { solNominal <- as.data.frame(deSolve::ode(y = x0, times = times, func = modelFunc, parms = parameters, input = inputInterp)) } else { solNominal <- as.data.frame(deSolve::ode(y = x0, times = times, func = modelFunc, parms = parameters, input = inputInterp, events = list(func = EventFunc, root = TRUE), rootfun = RootFunc)) } } else { if (sum(nnStates) == 0) { solNominal <- as.data.frame(deSolve::ode(y = x0, times = times, func = modelFunc, parms = parameters)) } else { solNominal <- as.data.frame(deSolve::ode(y = x0, times = times, func = modelFunc, parms = parameters, events = list(func = EventFunc, root = TRUE), rootfun = RootFunc)) } } } Tx <- solNominal[, 1] x <- solNominal[, -1, drop = FALSE] w = matrix(rep(0, nrow(x) * ncol(x)), nrow = nrow(x)) colnames(w) <- paste0(rep("w", ncol(w)), 1:ncol(w)) getMeassures <- function(x, measFunc) { if (isTRUE(all.equal(measFunc, function(x) { }))) { message('No meassurement function defined. Assuming all states are observable.') y = x[, -1, drop = FALSE] } else { y = measFunc(x[, -1, drop = FALSE]) } y = as.data.frame(cbind(x[, 1], y)) names(y)[1] <- 't' names(y)[-1] <- paste0(rep("y", ncol(y) - 1), 1:(ncol(y) - 1)) return(y) } getAlphaBacktracking <- function(oldW, W, Q, y, gradStep, J, currIter, alphaDynNet, alphaS, stepBeta, optW, para, tInt, Tp, measFunc, input, measureTimes, nnStates, rootFunc, eventFunc) { iter = 500 alpha = alphaS arrayJ = rep(0, iter) time <- seq(from = tInt[1], to = tInt[2], length.out = 100) solX <- matrix(rep(0, length(time) * (length(optW) + 1)), ncol = length(optW) + 1) Tx <- rep(0, length(time)) x <- matrix(0, length(optW) * length(time), ncol = length(optW)) yHat <- matrix(rep(0, length(measData)), ncol = ncol(measData)) for (i in 1:iter) { flagNext <- FALSE newW = oldW + alpha * gradStep input$w = apply(X = newW, MARGIN = 2, FUN = function(x) stats::approxfun(x = Tp, y = x, method = 'linear', rule = 2)) if (grepl("Rtools", Sys.getenv('PATH')) || (.Platform$OS.type != "windows")) { wSplit <- split(newW, rep(1:ncol(newW), each = nrow(newW))) wList <- lapply(wSplit, FUN = function(x) cbind(times, x)) forcings <- c(inputApprox, wList) tryCatch({ if (sum(nnStates) == 0) { solX <- deSolve::ode(y = x0, times = time, func = "derivsc", parms = parameters, dllname = "model", initforc = "forcc", forcings = forcings, initfunc = "parmsc") } else { solX <- deSolve::lsoda(y = x0, times = time, func = "derivsc", parms = parameters, dllname = "model", initforc = "forcc", forcings = forcings, initfunc = "parmsc", nroot = sum(nnStates), rootfunc = "myroot", events = list(func = eventFunc, root = TRUE)) } }, error = function(cond) { flagNext <<- TRUE }, warning = function(cond) { }, finally = { } ) } else { input$optW = optW tryCatch({ if (sum(nnStates) == 0) { R.utils::captureOutput( solX <- deSolve::ode(y = x0, times = time, func = hiddenInputState, parms = parameters, input = input) ) } else { R.utils::captureOutput( solX <- deSolve::ode(y = x0, times = time, func = hiddenInputState, parms = parameters, input = input, events = list(func = eventFunc, root = TRUE), rootfun = rootFunc)) } }, error = function(cond) { message('Error during calculating the stepsize of the gradient decent:') message('Error while solving the ode system.') message('Try to decrease alphaStep and see if the ode can then be solved.') }, warning = function(cond) { message('Warning while solving the ode system with the deSolve-package:') message('Original error message:') message(cond) }, finally = { } ) } if (flagNext) { next } Tx = solX[, 1] x = solX[, -1, drop = FALSE] yHat = getMeassures(solX, measFunc) if (sum(is.nan(colSums(x))) > 0 || sum(colSums(x)) == 0) { stop('\nThe numerical solution of the ode system failed. See above message.') } input$interpX = apply(X = x, MARGIN = 2, FUN = function(x) stats::approxfun(x = Tx, y = x, rule = 2, method = 'linear')) input$interpyHat = apply(X = yHat[, -1, drop = FALSE], MARGIN = 2, FUN = function(x) stats::approxfun(x = yHat[, 1], y = x, rule = 2, method = 'linear')) arrayJ[i] = costFunction(measureTimes, input, alphaDynNet) if (i > 1 && (arrayJ[i] > arrayJ[i - 1]) && (arrayJ[i] < J[currIter])) { alpha = alphaS * stepBeta ^ (i - 2) break } alpha = alpha * stepBeta } intAlpha1 <- alpha intAlpha2 <- alpha * stepBeta costAlpha1 <- arrayJ[i - 1] costAlpha2 <- arrayJ[i] cubicInterpolMin <- function(alphaA, alphaB, jA, jB, nnStates, rootFunc, eventFunc) { alpha3 <- 0.5 * (alphaA + alphaB) newW = oldW + alpha3 * gradStep if (grepl("Rtools", Sys.getenv('PATH')) || (.Platform$OS.type != "windows")) { wSplit <- split(newW, rep(1:ncol(newW), each = nrow(newW))) wList <- lapply(wSplit, FUN = function(x) cbind(times, x)) forcings <- c(inputApprox, wList) if (sum(nnStates) == 0) { solX <- deSolve::ode(y = x0, time, func = "derivsc", parms = parameters, dllname = "model", initforc = "forcc", forcings = forcings, initfunc = "parmsc") } else { solX <- deSolve::lsoda(y = x0, times = time, func = "derivsc", parms = parameters, dllname = "model", initforc = "forcc", forcings = forcings, initfunc = "parmsc", nroot = sum(nnStates), rootfunc = "myroot", events = list(func = eventFunc, root = TRUE)) } } else { input$optW <- optW input$w <- apply(X = newW, MARGIN = 2, FUN = function(x) stats::approxfun(x = Tp, y = x, method = 'linear', rule = 2)) time <- seq(from = tInt[1], to = tInt[2], length.out = 300) if (sum(nnStates) == 0) { solX <- deSolve::ode(y = x0, times = time, func = hiddenInputState, parms = parameters, input = input) } else { solX <- deSolve::ode(y = x0, times = time, func = hiddenInputState, parms = parameters, input = input, events = list(func = eventFunc, root = TRUE), rootfun = rootFunc) } } Tx <- solX[, 1] x <- solX[, -1, drop = FALSE] yHat <- getMeassures(solX, measFunc) if (sum(is.nan(colSums(x))) > 0) { warning('Numeric Integration failed. Returning last working step.') return(alphaA) } input$interpX <- apply(X = x, MARGIN = 2, FUN = function(x) stats::approxfun(x = Tx, y = x, rule = 2, method = 'linear')) input$interpyHat <- apply(X = yHat[, -1, drop = FALSE], MARGIN = 2, FUN = function(x) stats::approxfun(x = yHat[, 1], y = x, rule = 2, method = 'linear')) j3 = costFunction(measureTimes, input, alphaDynNet) alphaT = alpha3 - (alphaB - alphaA) / 4 * (jB - jA) / (jB - 2 * j3 + jA) if (is.nan(alphaT) || (length(alphaT) == 0)) { return(alphaA) } else { if (alphaT > 0) { alpha = alphaT return(alpha) } else { alpha <- cubicInterpolMin(alphaA = alphaA, alphaB = alpha3, jA = jA, jB = j3, nnStates = nnStates, rootFunc = rootFunc, eventFunc = eventFunc) return(alpha) } } } alphaTemp <- cubicInterpolMin(alphaA = intAlpha1, alphaB = intAlpha2, jA = costAlpha1, jB = costAlpha2, nnStates = nnStates, rootFunc = rootFunc, eventFunc = eventFunc) return(alphaTemp) } showEstimates <- function(measureTimes, AUCs, input, alpha2, J, nomSol, SD) { tPlot <- seq(from = measureTimes[1], to = measureTimes[length(measureTimes)], length.out = 50) oldpar <- par(no.readonly = TRUE) on.exit(par(oldpar)) SD = SD[,-1] y <- sapply(input$interpY, mapply, measureTimes) yhat <- sapply(input$interpyHat, mapply, tPlot) w <- sapply(input$w, mapply, tPlot) yNom <- sapply(nomSol, mapply, tPlot) J <- unlist(J) J = J[J != 0] width = 2 numMeas <- ncol(y) if ((numMeas + 3) %% 3 == 0) { n <- (numMeas + 3) %/% 3 } else { n <- (numMeas + 3) %/% 3 + 1 } m <- 3 par(mfrow = c(n, m), ask = F) barplot(unlist(AUCs[1,]), col = 'red', xlab = 'hidden inputs', main = 'AUC (a.u)') for (i in 1:numMeas) { yLab <- paste0('y', as.character(i)) yMax <- max(max(y[, i]), max(yhat[, i]), max(yNom[, i])) yMin <- min(min(y[, i]), min(yhat[, i]), min(yNom[, i])) if (is.null(SD)) { plot(x = measureTimes, y = y[, i], type = 'p', pch = 20, col = 'black', xlab = 't', ylab = yLab, ylim = c(yMin, yMax), lwd = width) } else { Hmisc::errbar(x = measureTimes, y = y[, i], yplus = y[, i] + SD[, i], yminus = y[, i] - SD[, i], ylab = yLab, xlab = 't', ylim = c(yMin, yMax), add = FALSE) } par(new = T) plot(x = tPlot, y = yhat[, i], type = 'l', col = 'red', xlab = 't', ylab = yLab, ylim = c(yMin, yMax), lwd = width) par(new = T) plot(x = tPlot, y = yNom[, i], type = 'l', col = 'blue', xlab = 't', ylab = yLab, ylim = c(yMin, yMax), lwd = width) } plot(J, type = 'l', xlab = 'iteration', ylab = 'J[w]', lwd = width) matplot(x = tPlot, y = w, type = 'l', col = 'red', xlab = 't', lwd = width) } costFunction <- function(measureTimes, input, alphaDynNet) { y <- sapply(input$interpY, mapply, measureTimes) yhat <- sapply(input$interpyHat, mapply, measureTimes) q <- sapply(input$q, mapply, measureTimes) w <- sapply(input$w, mapply, measureTimes) yCost <- list() for (i in 1:ncol(yhat)) { yCost$Start[[i]] = sum((yhat[1, i] - y[1, i]) * q[1, i] * (yhat[1, i] - y[1, i])) yCost$Middle[[i]] = sum((yhat[, i] - y[, i]) * q[, i] * (yhat[, i] - y[, i])) yCost$End[[i]] = sum((yhat[nrow(yhat), i] - y[nrow(y), i]) * q[nrow(q), i] * (yhat[nrow(yhat), i] - y[nrow(y), i])) } wCost <- list(L1 = 0, L2 = 0) for (i in 1:ncol(w)) { wCost$L1 = wCost$L1 + sum(abs(w[, i])) wCost$L2 = wCost$L2 + sum(abs(w[, i] ^ 2)) } cost = sum(unlist(yCost$Start)) + sum(unlist(yCost$Middle)) + sum(unlist(yCost$End)) + alphaDynNet$a1 * wCost$L1 + alphaDynNet$a2 * wCost$L2 return(cost) } yHat <- getMeassures(solNominal, measFunc) yNominal <- apply(X = yHat[, -1, drop = FALSE], MARGIN = 2, FUN = function(x) stats::approxfun(x = yHat[, 1], y = x, rule = 2, method = 'linear')) createConst <- function(constString, needGrad) { trim <- function(x) gsub(pattern = '\\s', replacement = "", x = x) cont = strsplit(x = trim(constString), split = "==")[[1]][2] eqs <- character(length = length(needGrad)) for (i in 1:length(needGrad)) { str <- paste0('Solve(', trim(constString), ',x', needGrad[i], ')') eqs[i] <- Ryacas::yac_str(str) } eq <- trim(gsub(pattern = 'list\\(||\\)\\)', replacement = "", x = eqs)) eq = gsub(pattern = '==', replacement = '=', x = eq) eq = gsub(pattern = "(x)([0-9]*)", replacement = 'P[,\\2]', x = eq) eq = gsub(pattern = paste0("[*/]*[+-]*", cont), replacement = '', x = eq) return(eq) } evalGrad <- function(constStr, gradM, optW) { gradzero <- which(colSums(gradM) == 0) optCur <- which(optW > 0) nG <- optCur[optCur %in% gradzero] if (length(nG) > 0) { cP <- createConst(constString = constStr, needGrad = nG) } return(cP) } xInterp <- apply(X = x, MARGIN = 2, FUN = function(x) stats::approxfun(x = Tx, y = x, rule = 2, method = 'linear')) yInterp <- apply(X = measData[, -1, drop = FALSE], MARGIN = 2, FUN = function(x) stats::approxfun(x = measData[, 1], y = x, rule = 2, method = 'linear')) yHatInterp <- apply(X = yHat[, -1, drop = FALSE], MARGIN = 2, FUN = function(x) stats::approxfun(x = yHat[, 1], y = x, rule = 2, method = 'linear')) qInterp <- apply(X = Q, MARGIN = 2, FUN = function(x) stats::approxfun(x = times, y = x, rule = 2, method = 'linear')) wInterp <- apply(X = w, MARGIN = 2, FUN = function(x) stats::approxfun(x = Tx, y = x, rule = 2, method = 'linear')) if (is.null(modelInput)) { input <- list(optW = optW, interpX = xInterp, interpY = yInterp, interpyHat = yHatInterp, q = qInterp, w = wInterp) } else { uInterp <- inputInterp input <- list(optW = optW, interpX = xInterp, interpY = yInterp, interpyHat = yHatInterp, q = qInterp, w = wInterp, u = uInterp) } cP <- NULL if (missing(maxIteration)) { maxIter <- 100 } else { maxIter <- maxIteration } J <- rep(0, maxIter) J[1] = costFunction(measureTimes, input, alphaDynNet) if (verbose) { cat('\n') cat(paste0('Cost nominal model J[w]= ', J[1], '\n')) } lT <- rep(0., ncol(x)) timesCostate <- seq(from = tf, to = t0, length.out = N) solCostate <- matrix(rep(0., (length(optW) + 1) * length(timesCostate)), ncol = length(optW) + 1) Tp <- rep(0., length(timesCostate)) P <- matrix(rep(0., length(timesCostate) * length(optW)), ncol = length(optW)) oldW <- matrix(rep(0., length(optW) * length(timesCostate)), ncol = length(optW)) inputState <- list() inputState$optW <- optW solX <- matrix(rep(0., length(optW) * length(times))) alphaS = alphaStep wApprox <- matrix(rep(0., length(times) * 2), ncol = 2) wApprox[, 1] = times for (i in 1:maxIter) { tryCatch({ R.utils::captureOutput( solCostate <- deSolve::ode(y = lT, times = timesCostate, func = costate, parms = parameters, input = input) ) }, error = function(cond) { message('Error while solving the costate equation of the model:') message('Original error message') message(cond) }, warning = function(cond) { message('Warning while solving the costate ode system with the deSolve-package:') message('Original error message:') message(cond) }, finally = { } ) solCostate = solCostate[nrow(solCostate):1,] Tp = solCostate[, 1] P = solCostate[, -1, drop = FALSE] if (!is.null(constStr) && i == 1) { cP = evalGrad(gradM = P, optW = optW, constStr = constStr) } if (!is.null(cP)) { eval(parse(text = cP)) } oldW = w if (conjGrad) { gNeg = P + alpha2 * w if (i == 1) { oldGrad = -gNeg step = gNeg } else { newGrad <- gNeg * (gNeg + oldGrad) newInt <- apply(X = newGrad, MARGIN = 2, FUN = function(x) pracma::trapz(Tp, x)) oldInt <- apply(X = oldGrad, MARGIN = 2, FUN = function(x) pracma::trapz(Tp, x ^ 2)) newInt[is.nan(newInt)] <- 0 oldInt[is.nan(oldInt)] <- 0 betaTest <- sum(newInt) / sum(oldInt) step = gNeg + betaTest * step oldGrad = -gNeg } } else { step = P + alpha2 * w } alpha = getAlphaBacktracking(oldW = oldW, W = w, Q = Q, y = measData, gradStep = step, J = J, currIter = i, alphaDynNet = alphaDynNet, alphaS = alphaS, stepBeta = armijoBeta, optW = optW, para = parameters, tInt = tInt, Tp = Tp, measFunc = measFunc, input = input, measureTimes = measureTimes, nnStates = nnStates, rootFunc = RootFunc, eventFunc = EventFunc) w = oldW + alpha * step if (sum(is.na(colSums(w))) > 0) { warning("WARNING: Numerical solution of the ode system failed.\n\t This could result out of the observability of the system.\n") break } inputState$wInterp <- apply(X = w, MARGIN = 2, FUN = function(x) stats::approxfun(x = Tp, y = x, method = 'linear', rule = 2)) if (grepl("Rtools", Sys.getenv('PATH')) || (.Platform$OS.type != "windows")) { wSplit <- split(w, rep(1:ncol(w), each = nrow(w))) wList <- lapply(wSplit, FUN = function(x) cbind(times, x)) forcings <- c(inputApprox, wList) tryCatch({ if (sum(nnStates) == 0) { R.utils::captureOutput( solX <- deSolve::ode(y = x0, times, func = "derivsc", parms = parameters, dllname = "model", initforc = "forcc", forcings = forcings, initfunc = "parmsc") ) } else { solX <- deSolve::lsoda(y = x0, times, func = "derivsc", parms = parameters, dllname = "model", initforc = "forcc", forcings = forcings, initfunc = "parmsc", nroot = sum(nnStates), rootfunc = "myroot", events = list(func = EventFunc, root = TRUE)) } }, error = function(cond) { message('Error while solving the ode system of the model with the calculated hidden inputs:') message('Original error message:\n') message(cond) }, warning = function(cond) { message('Warning while solving the ode system with the deSolve-package:') message('Original error message:') message(cond) }, finally = { } ) } else { if (!is.null(modelInput)) { inputState$u <- inputInterp } tryCatch({ if (sum(nnStates) == 0) { R.utils::captureOutput( solX <- deSolve::ode(y = x0, times = times, func = hiddenInputState, parms = parameters, input = inputState) ) } else { R.utils::captureOutput( solX <- deSolve::ode(y = x0, times = times, func = hiddenInputState, parms = parameters, input = inputState, events = list(func = EventFunc, root = TRUE), rootfun = RootFunc) ) } }, error = function(cond) { message('Error while solving the ode system of the model with the calculated hidden inputs:') message('Original error message:\n') message(cond) }, warning = function(cond) { message('Warning while solving the ode system with the deSolve-package:') message('Original error message:') message(cond) }, finally = { } ) } Tx = solX[, 1] x = solX[, -1, drop = FALSE] yHat <- getMeassures(solX, measFunc) input$interpX <- apply(X = x, MARGIN = 2, FUN = function(x) stats::approxfun(x = Tx, y = x, rule = 2, method = 'linear')) input$interpyHat <- apply(X = yHat[, -1, drop = FALSE], MARGIN = 2, FUN = function(x) stats::approxfun(x = yHat[, 1], y = x, rule = 2, method = 'linear')) input$w <- inputState$wInterp J[i + 1] = costFunction(measureTimes, input, alphaDynNet) tAUC <- measureTimes absW <- abs(sapply(input$w, mapply, tAUC)) interpAbsW <- apply(X = absW, MARGIN = 2, FUN = function(x) stats::approxfun(x = tAUC, y = x, rule = 2, method = 'linear')) AUCs <- sapply(X = interpAbsW, FUN = function(x) pracma::trapzfun(f = x, a = t0, b = tf)) if (verbose) { cat(sprintf("Iteration %3d: \t J(w)= %006.4f change J(w): %6.2f%% \t alpha = %10.5f \n", i, J[i + 1], (1 - abs(J[i + 1] / J[i])) * 100, alpha)) } if (plotEsti == TRUE) { showEstimates(measureTimes, AUCs, input, alpha2, J, yNominal, SD) } if ((abs(J[i + 1] / J[i]) > 1 - (eps / 100))) { break } } if (missing(origAUC)) { origAUC <- AUCs } greedySelection <- function(AUC, optW, origAUC) { orderAUCs <- order(-do.call(cbind, as.list(origAUC[1,]))) tempOptW = rep(0, ncol(AUC)) if (sum(unlist(origAUC[1, ])) == sum(unlist(AUC[1, ]))) { tempOptW[orderAUCs[1]] = 1 } else { tempOptW[orderAUCs[1:(sum(optW) + 1)]] = 1 } return(tempOptW) } rmse <- function(measureTimes, input) { y <- sapply(input$interpY, mapply, measureTimes) yhat <- sapply(input$interpyHat, mapply, measureTimes) y = apply(y, MARGIN = 2, FUN = function(X)(X - min(X)) / diff(range(X))) yhat = apply(yhat, MARGIN = 2, FUN = function(X)(X - min(X)) / diff(range(X))) y[is.nan(y)] <- 0 yhat[is.nan(yhat)] <- 0 return((colSums((yhat - y) ^ 2)) / nrow(yhat)) } colnames(yHat) <- append('t', paste0('y', 1:(ncol(yHat) - 1))) results <- list() results$w <- cbind(Tp, w) results$AUC <- do.call(cbind, AUCs[1,]) results$optW <- greedySelection(AUCs, optW, origAUC) results$nomX <- solNominal results$x <- solX results$y <- yHat results$rmse <- rmse(measureTimes, input) lastJ = J[J > 0] lastJ = lastJ[length(lastJ)] results$J <- lastJ results$totalJ <- J return(results) }
NULL dwnorm <- function(x, mean, covariance, log = FALSE) { if (missing(mean)) mean <- 0 n <- if (is.matrix(x)) ncol(x) else length(x) output <- -0.5 * ( n * log(2 * pi) + determinant(covariance, logarithm = TRUE)$modulus + mahalanobis(x, mean, covariance) ) attributes(output) <- NULL if (log) output else exp(output) } rwnorm <- function(n, mean, covariance) { if (missing(mean)) mean <- 0 output <- sweep( as.matrix( .sample_Q(n, covariance@A) + covariance@X %*% .sample_Q(n, covariance@B) ), 1, mean, '+' ) if (n == 1) output[, 1] else t(output) } .sample_Q <- function(n, Q) { z <- matrix(stats::rnorm(n * nrow(Q)), nrow = nrow(Q)) if (is(Q, 'denseMatrix')) { solve(chol(Q), z) } else { chol_Q <- Cholesky(Q, LDL = FALSE) solve(chol_Q, solve( chol_Q, z, system = 'Lt' ), system = 'Pt') } }
test_that("get_vega_version works correctly", { skip_on_cran() vega_vers <- list( vega_lite = "3.0.2", vega = "5.3.2", vega_embed = "4.0.0-rc1" ) expect_identical(get_vega_version("3.0.2"), vega_vers) }) test_that("vega_version() works correctly", { vega_version <- vega_version() expect_identical( names(vega_version), c("widget", "vega_lite", "vega", "vega_embed", "is_locked") ) expect_identical(get_major(c("2.3.0", "3.2")), c("2", "3")) expect_identical(get_major(TRUE), TRUE) expect_identical(get_major("vl5"), "vl5") }) test_that("vega_version_all() works correctly", { vega_version_all <- vega_version_all() expect_identical( names(vega_version_all), c("widget", "vega_lite", "vega", "vega_embed") ) expect_s3_class(vega_version_all, 'data.frame') }) test_that("vega_version_available() works correctly", { vega_version_all <- vega_version_all() vega_version <- vega_version() vega_version_available <- vega_version_available() expect_s3_class(vega_version_available, 'data.frame') is_locked <- vw_env$is_locked vw_lock_set(FALSE) expect_identical( vega_version_all(), vega_version_available() ) vw_lock_set(TRUE) all <- vega_version_all() expect_identical( all[all[["widget"]] == vw_env[["widget"]], ], vega_version_available() ) vw_lock_set(is_locked) }) test_that("get_candidate() works", { exp_ca <- function(result, index, re_msg) { expect_identical(result$index, index) if (is.null(re_msg)) { expect_null(result$message) } else { expect_match(result$message, re_msg) } } exp_ca(get_candidate("5", c("5.2.0", "4.1.7")), 1L, NULL) exp_ca(get_candidate("4", c("5.2.0", "4.1.7")), 2L, NULL) exp_ca(get_candidate("6", c("5.2.0", "4.1.7")), 1L, "maximum") exp_ca(get_candidate("3", c("5.2.0", "4.1.7")), 2L, "minimum") exp_ca(get_candidate("5.21.0", c("5.21.0", "5.17.0")), 1L, NULL) exp_ca(get_candidate("5.01.0", c("5.21.0", "5.17.0")), 1L, NULL) exp_ca(get_candidate("5.22.0", c("5.21.0", "5.17.0")), 1L, NULL) }) test_that("get_widget_string() works", { library("tibble") available <- tribble( ~widget, ~vega_lite, ~vega, "vl5", "5.2.0", "5.21.0", "vl4", "4.1.7", "5.17.0" ) expect_identical(get_widget_string("vega-lite", "5", available), "vl5") expect_identical(get_widget_string("vega", "5", available), "vl5") expect_warning( expect_identical(get_widget_string("vega-lite", "2", available), "vl4"), "minimum" ) expect_warning( expect_identical(get_widget_string("vega-lite", "20", available), "vl5"), "maximum" ) })
pgfthomas <- function(s,params) { k<-s[abs(s)>1] if (length(k)>0) warning("At least one element of the vector s are out of interval [-1,1]") if (length(params)<2) stop("At least one value in params is missing") if (length(params)>2) stop("The length of params is 2") lambda<-params[1] theta<-params[2] if (lambda<=0) stop ("Parameter lambda must be positive") if (theta<=0) stop ("Parameter theta must be positive") exp(lambda*(s*exp(theta*(s-1))-1)) }
initialize.emul <- function(mpars, moutput, par.reg, time.reg, kappa0, zeta0) { m.par <- dim(mpars$par)[1] p.par <- dim(mpars$par)[2] n.par <- dim(moutput$out)[1] nreg <- 1 + sum(par.reg) + sum(time.reg) dmat <- design.mat(mpars, moutput, par.reg, time.reg) Theta.mat <- dmat$Theta.mat t.vec <- moutput$t X.mat.df <- as.data.frame(dmat$X.mat) beta.est <- lm(dmat$Y.mat ~ 0 + ., data=X.mat.df, offset=NULL) beta.vec <- unname(beta.est$coefficients) rho <- 0.9 par.min <- apply(Theta.mat, 2, min) par.max <- apply(Theta.mat, 2, max) phi.vec <- (par.max-par.min)/2 mu.vec <- dmat$X.mat%*%as.matrix(beta.vec) vecC <- dmat$Y.mat - mu.vec Sigma.mats <- sep.cov(Theta.mat, t.vec, rho, kappa0, phi.vec, zeta0) Sigma.theta.Chol.mat <- chol(Sigma.mats$Sigma.theta.mat) Sigma.theta.inv.mat <- chol2inv(Sigma.theta.Chol.mat) init.emul <- list(Theta.mat=Theta.mat, t.vec=t.vec, Y.mat=dmat$Y.mat, X.mat=dmat$X.mat, beta.vec=beta.vec, kappa=kappa0, phi.vec=phi.vec, zeta=zeta0, n=n.par, rho=rho, p=p.par, vecC=vecC, par.reg=par.reg, time.reg=time.reg, Sigma.mats=Sigma.mats, Sigma.theta.inv.mat=Sigma.theta.inv.mat) init.emul }
require(Matrix) work.blk.kriging2 <- function(query,obs,fout,future=T,verbose=T,nmin=0,nmax=Inf,th=c(Inf,Inf)) { tstamp <- matrix(obs[,3],ncol=1) coords <- matrix(obs[,1:2],ncol=2) z <- obs[,4] vfs0 <- get(paste('v',fout$smodel,sep='')) vf0t <- get(paste('v',fout$tmodel,sep='')) Dmat <- dist(coords) Tmat <- dist(tstamp) Gd0 <- with(fout,as.vector(vfs0(Dmat,scoef[1],scoef[2],scoef[3]))) G0t <- with(fout,as.vector(vf0t(Tmat,tcoef[1],tcoef[2],tcoef[3]))) tmp <- Gd0 + G0t - fout$k * Gd0 * G0t chk <- with(fout,(scoef[3]==0) & (tcoef[3]==0)) if(chk){ tmp <- tmp + 1e-5 } fitGamma <- tritomat(tmp,length(z)) work.blk.kriging.nbr <- function(obs,query,nmax,th,fout){ return(0) } s0 <- query[,4] t0 <- query[,3] loc0 <- matrix(query[!duplicated(s0),1:2],ncol=2) s.map <- match(s0,unique(s0)) tstamp0 <- query[!duplicated(t0),3] t.map <- match(t0,unique(t0)) b0 <- query[,5] dmat <- as.matrix(rdist(loc0,coords)) tmat0 <- outer(tstamp0,obs[,3],FUN="-") tmat <- abs(tmat0) gd0 <- with(fout,vfs0(dmat,scoef[1],scoef[2],scoef[3])) g0t <- with(fout,vf0t(tmat,tcoef[1],tcoef[2],tcoef[3])) tmp1 <- rowsum(gd0[s.map,]+g0t[t.map,]-fout$k*gd0[s.map,]*g0t[t.map,],b0) r <- data.frame(table(b0)) fitgamma0 <- t(tmp1/r$Freq) G <- rbind(cbind(fitGamma,1),c(rep(1,ncol(fitGamma)),0)) g <- rbind(fitgamma0,1) lambda <- solve(G,g) tmp <- lambda[-nrow(G),] m <- lambda[nrow(G),] zhat <- crossprod(tmp,z) sigmasq <- m + apply(tmp * fitgamma0,2,sum) sigmasq <- pmax(0,sigmasq) r$krig <- as.vector(zhat) r$se <- sqrt(sigmasq) r }
getGenomeSet <- function(db = "refseq", organisms, reference = FALSE, release = NULL, clean_retrieval = TRUE, gunzip = TRUE, update = FALSE, path = "set_genomes") { message( "Starting genome retrieval of the following genomes: ", paste0(organisms, collapse = ", "), " ..." ) if (!file.exists(path)) { message("Generating folder ", path, " ...") dir.create(path, recursive = TRUE) } if (!file.exists(file.path(path, "documentation"))) dir.create(file.path(path, "documentation")) clean_names <- clean_species_names_helper(list.files(path), gunzip = gunzip) message("\n") if (length(clean_names) > 0) { for (j in seq_len(length(clean_names))) { if (file.exists(file.path(path, clean_names[j]))) { if (!update) { message("The file ", clean_names[j], " seems to exist already in ", path, ".", "The existing file will be retained. Please specify 'update = TRUE' in case you wish to re-load the file.") } if (update) { message("The file ", clean_names[j], " seems to exist already in ", path, ".", "You specified 'update = TRUE', thus the file ", clean_names[j], " will be downloaded again.") unlink(file.path(path, clean_names[j]), force = TRUE) } } } } if (!update && (length(organisms) > 1)) { organisms_short <- tidy_name2(organisms) clean_names_short <- unlist(sapply(clean_names, function(x) unlist(stringr::str_split(x, "[.]")))) organisms_short_setdiff <- as.character(as.vector(dplyr::setdiff(organisms_short, clean_names_short))) if (length(organisms) > 0) { organisms <- organisms[which(organisms_short %in% organisms_short_setdiff)] } } if (length(organisms) > 0) { paths <- vector("character", length(organisms)) message("\n") for (i in seq_len(length(organisms))) { paths[i] <- getGenome(db = db, organism = organisms[i], reference = reference, release = release, path = path) message("\n") } meta_files <- list.files(path) meta_files <- meta_files[stringr::str_detect(meta_files, "doc_")] file.rename(from = file.path(path, meta_files), to = file.path(path, "documentation", meta_files)) doc_tsv_files <- file.path(path,"documentation", meta_files[stringr::str_detect(meta_files, "[.]tsv")]) summary_log <- dplyr::bind_rows(lapply(doc_tsv_files, function(data) { suppressMessages(readr::read_tsv(data)) })) readr::write_excel_csv(summary_log, file.path(path, "documentation", paste0(basename(path), "_summary.csv"))) message("A summary file (which can be used as supplementary information file in publications) containig retrieval information for all species has been stored at '",file.path(path, "documentation", paste0(basename(path), "_summary.csv")),"'.") if (clean_retrieval) { message("\n") message("Cleaning file names for more convenient downstream processing ...") } if (clean_retrieval && gunzip) clean.retrieval(paths, gunzip = TRUE) if (clean_retrieval && !gunzip) clean.retrieval(paths, gunzip = FALSE) new_files <- list.files(path) new_files <- new_files[-which(stringr::str_detect(new_files, "documentation"))] return(file.path(path, new_files)) } else { files <- file.path(path, list.files(path)) files <- files[-which(stringr::str_detect(files, "documentation"))] return(files) } }
predict0 <- function( mod, meig0, x0 = NULL, xgroup0 = NULL, offset0 = NULL, weight0 = NULL, compute_quantile = FALSE ){ if( (class( mod ) !="resf")&(class( mod ) !="esf") ){ stop("Error: Input model must be an output from resf or esf function") } { af <-function(par,y) par[1]+par[2]*y sc <-function(par,y) (y-par[1])/par[2] sa <-function(par,y) sinh(par[1]*asinh(y)-par[2]) bc <-function(par,y, jackup){ yy <- y + ifelse(jackup, abs( par[2] ), 0 ) if(par[1]==0){ res <- log(yy) } else { res <- ( yy^par[1] - 1 ) / par[1] } } sal<-function(par,y, noconst=FALSE){ if(noconst==FALSE){ par[3]+ par[4]*sinh(par[1]*asinh(y)-par[2]) } else { sinh(par[1]*asinh(y)-par[2]) } } d_af<-function(par,y) par[2] d_sc <-function(par,y) 1/par[2] d_sa<-function(par,y) par[1]*cosh(par[1]*asinh(y)-par[2])/sqrt(1+y^2) d_bc<-function(par,y,jackup) (y + ifelse(jackup, abs( par[2] ), 0 ) )^(par[1]-1) d_sal<-function(par,y,noconst=FALSE){ if(noconst==FALSE){ d_af(par=par[3:4],sa(par=par[1:2],y))*d_sa(par=par[1:2],y) } else { d_af(par=c(0, 1),sa(par=par[1:2],y))*d_sa(par=par[1:2],y) } } i_af<-function(par,y) (y-par[1])/par[2] i_sc <-function(par,y) par[1]+par[2]*y i_sa<-function(par,y) sinh(1/par[1]*(asinh(y)+par[2])) i_bc<-function(par,y,jackup){ if(par[1]==0){ exp(y) - ifelse(jackup, abs( par[2] ), 0 ) } else { (par[1]*y + 1)^(1/par[1]) - ifelse(jackup, abs( par[2] ), 0 ) } } i_sal<-function(par,y,noconst=FALSE){ if(noconst==FALSE){ i_sa(par=par[1:2],i_af(par=par[3:4],y)) } else { i_sa(par=par[1:2],i_af(par=c(0, 1),y)) } } d_sal_k <-function(par,y,k=2,noconst_last=TRUE,bc_par=NULL,y_ms=NULL,z_ms,jackup){ d <-1 if( !is.null( bc_par[1] ) ){ d <- d_bc(bc_par,y,jackup=jackup)*d y <- bc(bc_par,y,jackup=jackup) } if(k>0){ d <- d_sc(par=y_ms,y)*d y <- sc(par=y_ms,y) for(kk in 1:k){ nc_dum<-ifelse((noconst_last==TRUE)&(kk==k),TRUE,FALSE) d <-d_sal(par[[kk]],y,noconst=nc_dum)*d y <- sal(par[[kk]],y,noconst=nc_dum) } } d <-d_sc(par=z_ms,y)*d return(d) } i_sal_k <-function(par,y,k=2,noconst_last=TRUE,bc_par=NULL,y_ms=NULL,z_ms, jackup){ y <-i_sc(par=z_ms,y) if(k>0){ for(kk in k:1) { nc_dum<-ifelse((noconst_last==TRUE)&(kk==k),TRUE,FALSE) y <- i_sal(par[[kk]],y,noconst=nc_dum) } } if( !is.null( y_ms ) ){ y <-i_sc(par=y_ms,y) } if( !is.null(bc_par[1]) ){ y <- i_bc(par=bc_par, y, jackup=jackup) } return(y) } sal_k <-function(par,y,k=2,noconst_last=TRUE,bc_par=NULL, jackup){ if( !is.null(bc_par[1]) ){ y <- bc(par=bc_par,y,jackup=jackup) } if( k > 0){ y_ms<- c( mean(y), sd(y) ) y <- sc(par=y_ms,y) for(kk in 1:k) { nc_dum<-ifelse((noconst_last==TRUE)&(kk==k),TRUE,FALSE) y <- sal(par[[kk]],y,noconst=nc_dum) } } else { y_ms<- NULL } z_ms <- c( mean(y), sd(y) ) y <- sc(par=z_ms,y) return(list(y=y,y_ms=y_ms, z_ms=z_ms)) } NLL_sal<-function(par,y,M,Minv,m0,k=2,noconst_last=TRUE,y_nonneg=FALSE,jackup){ n <-length(y) par2<-list(NULL) for(kk in 1:k){ if(noconst_last & (kk==k)){ par[(4*(kk-1)+1)]<- abs( par[(4*(kk-1)+1)] ) par2[[kk]] <- par[(4*(kk-1)+1):(4*(kk-1)+2)] } else { par[(4*(kk-1)+1)]<- abs( par[(4*(kk-1)+1)] ) par[(4*(kk-1)+4)]<- abs( par[(4*(kk-1)+4)] ) par2[[kk]] <- par[(4*(kk-1)+1):(4*(kk-1)+4)] } } if(y_nonneg){ np_b <-length(par) bc_par<-par[(np_b-1):np_b] bc_par[2]<-abs(bc_par[2]) } else { bc_par<-NULL } z0 <- sal_k(par=par2,y=y,k=k,noconst_last=noconst_last,bc_par=bc_par,jackup=jackup) z <- z0$y z_ms<- z0$z_ms y_ms<- z0$y_ms m <- t(m0)%*%z b <- Minv%*%m ee <- sum( z ^ 2 ) - 2 * t( b ) %*% m + t( b ) %*% M %*% b d_abs<-abs( d_sal_k(par=par2,y,k=k,noconst_last=noconst_last,bc_par=bc_par,y_ms=y_ms,z_ms=z_ms,jackup=jackup) ) comp<- sum( log( d_abs ) ) nll <- ee/2 - comp } NLL_sal2<-function(par,y,M,Minv,m0,k=2,noconst_last=TRUE,y_nonneg=FALSE,jackup){ n <-length(y) par2<-list(NULL) for(kk in 1:k){ if(noconst_last & (kk==k)){ par[(4*(kk-1)+1)]<- abs( par[(4*(kk-1)+1)] ) par2[[kk]] <- par[(4*(kk-1)+1):(4*(kk-1)+2)] } else { par[(4*(kk-1)+1)]<- abs( par[(4*(kk-1)+1)] ) par[(4*(kk-1)+4)]<- abs( par[(4*(kk-1)+4)] ) par2[[kk]] <- par[(4*(kk-1)+1):(4*(kk-1)+4)] } } if(y_nonneg){ np_b <-length(par) bc_par<-par[(np_b-1):np_b] bc_par[2]<-abs(bc_par[2]) } else { bc_par<-NULL } z0 <- sal_k(par=par2,y=y,k=k,noconst_last=noconst_last,bc_par=bc_par,jackup=jackup) z <- z0$y z_ms<- z0$z_ms y_ms<- z0$y_ms m <- t(m0)%*%z b <- Minv%*%m ee <- sum( z ^ 2 ) - 2 * t( b ) %*% m + t( b ) %*% M %*% b d_abs<-abs( d_sal_k(par=par2,y,k=k,noconst_last=noconst_last,bc_par=bc_par,y_ms=y_ms,z_ms=z_ms,jackup=jackup) ) comp<- sum( log( d_abs ) ) loglik<- ee/2 - comp return(list(z=z, b=b, loglik=loglik,comp=comp,y_ms=y_ms,z_ms=z_ms)) } NLL_bc <-function(par,y,M,Minv,m0,jackup){ par[2]<-abs(par[2]) z0 <- bc(par=par,y=y,jackup=jackup) z_ms<- c(mean(z0),sd(z0)) z <- (z0-z_ms[1])/z_ms[2] m <- t(m0)%*%z b <- Minv%*%m ee <- sum( z ^ 2 ) - 2 * t( b ) %*% m + t( b ) %*% M %*% b d_abs<-abs( d_bc( par=par,y,jackup=jackup )*d_sc( par=z_ms,y ) ) comp<- sum( log( d_abs ) ) nll <- ee/2 - comp } NLL_bc2<-function(par,y, M, Minv,m0,jackup){ par[2]<-abs(par[2]) z0 <- bc(par=par,y=y,jackup=jackup) z_ms<- c(mean(z0),sd(z0)) z <- (z0-z_ms[1])/z_ms[2] m <- t(m0)%*%z b <- Minv%*%m ee <- sum( z ^ 2 ) - 2 * t( b ) %*% m + t( b ) %*% M %*% b d_abs<-abs( d_bc( par=par,y,jackup=jackup )*d_sc( par=z_ms,y ) ) comp<- sum( log( d_abs ) ) loglik<- ee/2 - comp return(list(z=z, b=b, loglik=loglik,comp=comp,z_ms=z_ms)) } } n <-length(mod$other$coords[,1]) nx <-mod$other$nx eevSqrt <-mod$other$eevSqrt if( mod$other$model == "esf" ){ if( is.null( dim( mod$r ) ) ){ sf_pred <- meig0$sf[ mod$other$sf_id] %*% c( mod$r[,1] ) } else { sf_pred <- meig0$sf[ ,mod$other$sf_id ] %*% c( mod$r[,1] ) } x0 <- as.matrix(x0) b_g0 <- NULL if( is.null( mod$other$x_id ) ){ xb_pred <- c( as.matrix( mod$b[ 1 ] ) ) pred <- xb_pred + sf_pred } else { if( is.null( x0 ) ){ message( " Note: Only spatial component (sf) is interpolated because x0 is missing") pred <- sf_pred } else { if( is.numeric( x0 ) == FALSE ){ mode( x0 ) <- "numeric" } if( length( c(sf_pred)) ==1 ){ xb_pred <- c(1, x0[ ,mod$other$x_id ]) %*% mod$b[, 1 ] } else { xb_pred <- as.matrix( cbind( 1, x0[ ,mod$other$x_id ] ) ) %*% mod$b[, 1 ] } pred <- xb_pred + sf_pred pred <- as.data.frame( cbind( pred, xb_pred, sf_pred ) ) names( pred )<- c( "pred", "xb", "sf_residual" ) } } c_vc <- cse_vc <- ct_vc <- cp_vc <- NULL } else { if( is.null( dim( mod$r ) ) ){ sf_pred <- meig0$sf %*% c( mod$r ) } else { sf_pred <- meig0$sf %*% c( mod$r[, 1 ] ) } n0 <- length( c(sf_pred) ) if( !is.null( x0 )){ if(dim( as.matrix( x0 ) )[2] != length( mod$other$res$other$xf_id )){ stop("x and x0 must have the same number of columns") } X1 <- as.matrix( mod$other$res$other$xconst )[,mod$other$res$other$xf_id] X0 <- as.matrix( as.matrix( x0 )[,mod$other$res$other$xf_id] ) } else { X0<-NULL } XX_0 <- list( NULL ) XX <- NULL nvc <- mod$other$res$other$nvc_xconst if( ( is.logical( nvc[ 1 ] ) ==FALSE )&( !is.null( x0 ) ) ){ X1_nvc<- as.matrix( X1 )[ , nvc ] if( n0 == 1 ){ X0_nvc<- X0[ nvc ] } else { X0_nvc<- as.matrix( X0[ , nvc ] ) } xxfname <- names( as.data.frame( X1 ) )[ nvc ] nnxf <- length( xxfname ) X1 <- as.matrix( X1 ) X1_nvc <- as.matrix( X1_nvc ) np_xx <-apply( X1_nvc,2,function( x ) length( unique( x ))) np_xx <-ifelse( np_xx < mod$other$res$other$nvc_num/0.7, round( np_xx * 0.7 ) ,mod$other$res$other$nvc_num ) np_xx_max <-round( n/nnxf ) - 2 np_xx[ np_xx > np_xx_max ] <-np_xx_max np_xx[ np_xx < 2 ] <- 2 B_c <-list(NULL) for( ii in 1:dim( X1_nvc )[ 2 ] ){ if( np_xx[ ii ] <= 2 ){ B_c[[ii+1]] <- 0 np_xx[[ii]]<- 0 } else { test<-TRUE iiii<-0 while(test){ kkk <- np_xx[ ii ]-iiii knots <-seq(min( X1_nvc[ ,ii ] ),max( X1_nvc[ ,ii ] ),len=kkk+2)[2:(kkk+1)] testt<- try(XX1_00<- ns( X1_nvc[ , ii], knots = knots ), silent=TRUE) test <- class(testt)[1] == "try-error" iiii <- iiii+1 } XX1_0 <- cbind( X1[,ii] , XX1_00) if( n0 == 1 ){ XX0_0 <- c( X0_nvc[ii], predict( XX1_00, newx= X0_nvc[ii]) ) } else { XX0_0 <- cbind( X0_nvc[,ii], predict( XX1_00, newx= X0_nvc[,ii]) ) } if( !is.na( mod$other$res$other$sel_basis_c[[ ii ]][ 1 ] ) ){ XX1_0<- XX1_0[,mod$other$res$other$sel_basis_c[[ii]]] if( n0 == 1){ XX0_0<- XX0_0[mod$other$res$other$sel_basis_c[[ii]]] } else { XX0_0<- XX0_0[,mod$other$res$other$sel_basis_c[[ii]]] } } if( n0 == 1){ for( j in 1:length(XX0_0)){ XX0_0[j]<- ( XX0_0[j] - mean(XX1_0[,j]))/sd(XX1_0[,j]) } } else { for( j in 1:dim(XX0_0)[2]){ XX0_0[,j]<- ( XX0_0[,j] - mean(XX1_0[,j]))/sd(XX1_0[,j]) } } B_c[[ii]] <- XX0_0 } } } if( is.null( mod$other$res$c_vc )|( is.null( x0 ) ) ){ c_vc <- cse_vc <- ct_vc <- cp_vc <- NULL } else { xc_vc <- 0 c_vc <- matrix(0, nrow = n0, ncol = nnxf ) cse_vc<- matrix(0, nrow = n0, ncol = nnxf ) ct_vc <- matrix(0, nrow = n0, ncol = nnxf ) cp_vc <- matrix(0, nrow = n0, ncol = nnxf ) for( i in 1:nnxf ){ evSqrts_c<- mod$other$res$other$evSqrts_c[[ i ]] if(length( evSqrts_c ) == 1) evSqrts_c <- NULL if( length( mod$other$res$other$evSqrts_c[[ i ]] ) <= 1 ){ c_vc[ , i ] <- mod$other$res$other$b_c[[ i ]][ 1 ] cse_vc[ , i ] <- sqrt( mod$other$res$other$b_covs_c[[ i ]] ) ct_vc[ , i ] <- c_vc[ , i ] / cse_vc[ , i ] cp_vc[ , i ] <- 2 - 2 * pt( abs( ct_vc[ , i ] ), df = n - mod$other$res$other$df ) } else { if( n0 == 1 ){ c_vc[ , i ] <- mod$other$res$other$b_c[[ i ]][1] + c(B_c[[ i ]]) %*% c( mod$other$res$other$b_c[[ i ]][ -1 ]) sf2 <- t( B_c[[ i ]] * mod$other$res$other$evSqrts_c[[ i ]] ) } else { c_vc[ , i ] <- mod$other$res$other$b_c[[ i ]][1] + B_c[[ i ]] %*% c( mod$other$res$other$b_c[[ i ]][ -1 ] ) sf2 <- t( t( B_c[[ i ]] ) * mod$other$res$other$evSqrts_c[[ i ]] ) } if( n0 == 1){ x_sf <-t(as.matrix( c( 1, c( sf2 ) ) )) cse_vc[ , i ] <- sqrt( x_sf %*% mod$other$res$other$b_covs_c[[ i ]] %*% t( x_sf ) ) } else { x_sf <- as.matrix( cbind( 1, sf2 ) ) cse_vc[ , i ] <- sqrt( colSums( t( x_sf ) * ( mod$other$res$other$b_covs_c[[ i ]] %*% t( x_sf ) ) ) ) } ct_vc[ , i ] <- c_vc[ , i ] / cse_vc[ , i ] cp_vc[ , i ] <- 2 - 2 * pt( abs( ct_vc[ , i ] ), df = n - mod$other$res$other$df ) } } } if( is.null( mod$b_g )==FALSE ){ if( is.null(xgroup0) ){ message( " Note: Group effects are ignored because xgroup0 is missing") b_g0 <- NULL } else { ng <- length(mod$b_g) xgroup0 <- data.frame( xgroup0 ) b_g0 <- xgroup0 for(ggid in 1:ng){ b_g_sub <- as.data.frame( mod$b_g[[ggid]] ) xg00_0 <- factor( xgroup0[ , ggid ] ) xg00_nam0 <- names( xgroup0 )[ ggid ] xg00_nam <-ifelse( xg00_nam0 == "xgroup0", "xgroup", xg00_nam0 ) xgroup0_nam <- paste( xg00_nam, "_", xg00_0, sep = "" ) xgroup0_dat <- data.frame(id=1:length(xgroup0_nam),xg_nam=xgroup0_nam) xgroup0_dat2 <- merge(xgroup0_dat, b_g_sub, by.x = "xg_nam", by.y = "row.names", all.x = TRUE ) b_g0[,ggid] <- xgroup0_dat2[order(xgroup0_dat2$id), "Estimate" ] } xg_names <- names( xgroup0 ) if( length( xg_names ) == 1 ){ xg_names <- ifelse( xg_names == "xgroup0", "xgroup", paste("xgroup_",xg_names,sep="" ) ) } else { xg_names <- paste( "xgroup_", xg_names, sep = "" ) } names(b_g0) <- xg_names } } else { b_g0 <- NULL } if( is.null( mod$other$x_id ) ){ xb_pred <- c( mod$b$Estimate[1] ) pred <- xb_pred + sf_pred pred <- data.frame( pred = pred, xb = xb_pred, sf_residual = sf_pred ) } else { if( is.null( X0 ) ){ message( " Note: Trend term (xb) is ignored because x0 is missing") pred <- data.frame(pred=NA, sf_residual=sf_pred) } else { if( is.numeric( X0 ) == FALSE ){ mode( X0 ) <- "numeric" } if( is.null( c_vc )){ if( n0 ==1 ){ xb_pred<- c( 1, X0[ mod$other$x_id ]) %*% mod$b[, 1 ] } else { xb_pred<- as.matrix( cbind( 1, X0[ ,mod$other$x_id ] ) ) %*% mod$b[, 1 ] } } else { if( n0 == 1 ){ xb_pred<- sum( X0[ mod$other$x_id ] * c_vc ) + mod$b$Estimate[1] } else { xb_pred<- rowSums( X0[ ,mod$other$x_id ] * c_vc ) + mod$b$Estimate[1] } } pred <- xb_pred + sf_pred pred <- data.frame( pred = pred, xb = xb_pred, sf_residual = sf_pred ) } } if( is.null( b_g0 ) == FALSE ){ pred <- data.frame( pred, b_g0 ) na_b_g0 <- is.na( b_g0 ) if( sum( na_b_g0 ) > 0 ){ b_g0[ na_b_g0 ] <- 0 message( " Note: b_g = 0 is assumed for samples who does not belong to any groups in xgroup") } pred[ ,1 ]<- pred[ ,1 ] + rowSums( b_g0 ) } y0 <- mod$other$y tr_num <- mod$other$tr_num y_nonneg <- mod$other$y_nonneg y_type <- mod$other$y_type tr_par <- mod$tr_par tr_bpar <- mod$tr_bpar$Estimate y_added <- mod$other$y_added jackup <- mod$other$jackup pred0 <- pred[,1] pred_name <-names(pred) noconst_last<-TRUE if( tr_num > 0 ){ z0 <- sal_k(par=tr_par,y=y0,k=tr_num,noconst_last=noconst_last,bc_par=tr_bpar,jackup=jackup) z_ms <- z0$z_ms y_ms <- z0$y_ms pred2 <- i_sal_k(par=tr_par,y=pred0,k=tr_num,noconst_last=noconst_last, bc_par=tr_bpar,y_ms=y_ms,z_ms=z_ms,jackup=jackup) - y_added if( y_nonneg ) pred2[ pred2 < 0 ] <- 0 if( y_type=="count" ){ pred2 <- exp( pred2 ) if( !is.null( mod$other$offset ) ){ if( is.null( offset0 ) ) stop( "offset0 is missing" ) pred2 <- pred2 * offset0 } } pred <- data.frame( pred= pred2, pred_transG=pred0, pred[,-1] ) names(pred)[-c(1:2)]<-pred_name[ -1 ] } else if( y_nonneg ){ z0 <- bc(par=tr_bpar,y=y0,jackup=jackup) pred2 <- i_bc(par=tr_bpar,y=pred0,jackup=jackup) - y_added pred2[ is.nan( pred2 ) ] <- 0 pred2[pred2 < 0 ] <- 0 pred <- data.frame( pred = pred2, pred_transG=pred0, pred[,-1] ) names(pred)[-c(1:2)]<-pred_name[ -1 ] } else if( y_type=="count" ){ pred2 <- exp( pred0 ) if( !is.null( mod$other$offset ) ){ if( is.null( offset0 ) ) stop( "offset0 is missing" ) pred2 <- pred2 * offset0 } pred <- data.frame( pred = pred2, pred_transG=pred0, pred[,-1] ) names(pred)[-c(1:2)] <- pred_name[ -1 ] } res <- pred pq_dat <- NULL if( compute_quantile ==TRUE ){ if( mod$other$y_type == "count" ){ message("Note: 'compute_quantile' is currently not supported for count data") } else { if( mod$other$is_weight ==TRUE ){ if( is.null( weight0 ) ) stop( "Specify weight0 to compute quantile" ) } else { weight0 <- NULL } if( !is.null( mod$other$x_id )&is.null( X0 ) ){ stop( "x0 is required to compute quantile" ) } B_covs<-mod$other$B_covs sig <-mod$other$sig XX <- as.matrix( cbind( 1, X0, meig0$sf ) ) if( !is.null( mod$b_g ) ){ for( ggid in 1:ng ){ skip_id <-which(is.na(mod$b_g[[ggid]][,2])) xg_levels <- mod$other$xg_levels[[ggid]][ -skip_id] Xg <- matrix( 0, nrow =n0, ncol=length( xg_levels ) ) for( ggid2 in 1:length( xg_levels ) ) Xg[ ,ggid2 ][ xgroup0[, ggid ] == xg_levels[ ggid2 ] ]<-1 XX <-cbind(XX, Xg) } } if( !is.null( mod$other$res$other$evSqrts_c[[1]] ) ){ for( i in 1:nnxf ){ evSqrts_n<- mod$other$res$other$evSqrts_c[[ i ]] if( length( evSqrts_n ) == 1 ) evSqrts_n <- NULL if( !is.null( evSqrts_n ) ){ XX<- cbind( XX, X0[ , i ] * B_c[[ i ]] ) } } } if( is.null( weight0 ) ){ weight0 <- 1 } else { weight0 <- weight0*mod$other$w_scale } X3 <- XX X3[,-( 1:nx )]<- t(t(XX[,-( 1:nx )])* eevSqrt[eevSqrt > 0]) pred0_se<- sqrt( colSums( t( sqrt(weight0)*X3 ) * ( B_covs %*% t( sqrt(weight0)*X3 ) ) ) + sig ) pred0_se<- pred0_se/sqrt( weight0 ) if( sum(names( res ) %in% "pred_transG") == 0 ){ res_name<-names( res ) res <- data.frame( res[,1], pred_se = pred0_se, res[,-1] ) names( res ) <- c( res_name[1], "pred_se", res_name[ -1 ] ) } else { res_name<-names( res ) res <- data.frame( res[,1:2], pred_se = pred0_se, res[,-(1:2)]) names( res ) <- c( res_name[1:2], "pred_transG_se", res_name[-(1:2)] ) } pquant <- c(0.01, 0.025, 0.05, seq(0.1,0.9,0.1), 0.95, 0.975, 0.99) pq_dat0 <- NULL for(pq in pquant){ pq_dat0<-cbind(pq_dat0,qnorm(pq,pred0,pred0_se)) } pq_dat0 <- as.data.frame(pq_dat0) names(pq_dat0)<- paste("q",pquant,sep="") if( tr_num > 0 ){ tr_bpar0 <-tr_bpar z0 <- sal_k(par=tr_par,y=y0,k=tr_num,noconst_last=noconst_last, bc_par=tr_bpar0,jackup=jackup) z_ms <- z0$z_ms y_ms <- z0$y_ms pq_dat <- pq_dat0 for(pq in 1:ncol( pq_dat0 ) ){ ptest<-try(pq_pred<- i_sal_k( par=tr_par,y=pq_dat0[,pq],k=tr_num,noconst_last=noconst_last, bc_par=tr_bpar0,y_ms=y_ms,z_ms=z_ms,jackup=jackup ) - y_added ) if(class(ptest)!="try-error"){ pq_dat[,pq] <-pq_pred } else { pq_dat[,pq] <-NA } } } else if( y_nonneg ==TRUE ){ y <- bc(par=tr_bpar,y=y0,jackup=jackup) pred <- i_bc(par=tr_bpar,y=pred0,jackup=jackup) - y_added pred[ is.nan( pred ) ] <- 0 pred[pred < 0 ] <- 0 pq_dat <- pq_dat0 for(pq in 1:ncol(pq_dat0)){ ptest<-try(pq_pred<- i_bc(par=tr_bpar,y=pq_dat0[,pq],jackup=jackup) - y_added) if(class(ptest)!="try-error"){ pq_pred[is.nan(pq_pred)&(pq_dat0[,pq] < 0)]<-0 pq_pred[pq_pred < 0 ] <- 0 pq_dat[,pq] <-pq_pred } else { pq_dat[,pq] <-NA } } } else { pq_dat <- pq_dat0 } } } } result <- list( pred = res, pred_quantile=pq_dat, c_vc = c_vc, cse_vc =cse_vc, ct_vc = ct_vc, cp_vc = cp_vc ) return( result ) }
expected <- eval(parse(text="6L")); test(id=0, code={ argv <- eval(parse(text="list(structure(list(A = c(1, NA, 1), B = c(1.1, NA, 2), C = c(1.1+0i, NA, 3+0i), D = c(NA_integer_, NA_integer_, NA_integer_), E = c(FALSE, NA, TRUE), F = c(\"abc\", NA, \"def\")), .Names = c(\"A\", \"B\", \"C\", \"D\", \"E\", \"F\"), class = \"data.frame\", row.names = c(\"1\", \"2\", \"3\")))")); do.call(`length`, argv); }, o=expected);
moment_empirical_var <- function(model_matrices,N,n_d,n_o) { wt <- model_matrices$wt weight_as_indicator <- is.logical(wt[1]) if (weight_as_indicator) wt <- wt*1 const_global <- model_matrices$constants$global const_intra <- model_matrices$constants$intra const_intra_wt <- wt %|!|% lapply(const_intra, "*", wt) order_keys <- c("D_","O_","I_") X <- compact(model_matrices[order_keys]) wt_odi <- derive_weights_ODI(wt,n_d,n_o)[names(X)] G_wt <- wt %|!|% lapply(model_matrices$G_, "*", wt) alpha_blocks <- const_global %|!|% Reduce("cbind",list( var_block_alpha(wt, N), var_block_alpha_alpha_I(const_intra_wt %||% const_intra), var_block_alpha_beta(X,wt_odi), var_block_alpha_gamma(G_wt %||% model_matrices$G_) )) if (!is.null(alpha_blocks)) rownames(alpha_blocks) <- "(Intercept)" alpha_I_blocks <- const_intra %|!|% Reduce("cbind",list( var_block_alpha_I(const_intra,const_intra_wt), var_block_alpha_I_beta(const_intra_wt %||% const_intra,X), var_block_alpha_I_gamma(const_intra_wt %||% const_intra, model_matrices$G) )) if (!is.null(alpha_I_blocks)) rownames(alpha_I_blocks) <- names(const_intra) beta_blocks <- X %|!|% Reduce("cbind",list( var_block_beta(X,wt_odi,wt), var_block_beta_gamma(X, G_wt %||% model_matrices$G) )) if (!is.null(beta_blocks)) rownames(beta_blocks) <- ulapply(X,"colnames") gamma_block <- model_matrices$G %|!|% var_block_gamma(model_matrices$G, G_wt) if (!is.null(gamma_block)) rownames(gamma_block) <- names(model_matrices$G) combined_blocks <- list(alpha_blocks,alpha_I_blocks,beta_blocks,gamma_block) combined_blocks <- rbind_fill_left(compact(combined_blocks)) combined_blocks <- make_symmetric(combined_blocks) colnames(combined_blocks) <- rownames(combined_blocks) return(combined_blocks) } var_block_alpha <- function(wt,N) { if (is.null(wt)) N else sum(wt) } var_block_alpha_I <- function(const_intra, const_intra_wt) { const_intra %|!|% crossproduct_mat_list(const_intra, const_intra_wt, TRUE) } var_block_beta <- function(X,wt_odi,wt) { od_names <- c("D","O") %p% "_" scalar_weights <- has_equal_elements(c(rapply(wt_odi, length),1)) if (scalar_weights) { cross_prods <- Map("*", lapply(X, "crossprod"), wt_odi) outer_prods <- tcrossprod(colSums(X$D_),colSums(X$O_)) intra_prods <- X$I_ %|!|% lapply(X[od_names], "crossprod", X$I_) } if (!scalar_weights) { cross_prods <- Map("*", X, lapply(wt_odi,"sqrt")) cross_prods <- lapply(cross_prods, "crossprod") outer_prods <- crossprod(X$D_, wt) %*% X$O_ wt_XI <- X$I_ %|!|% wt_odi$I_ * X$I_ intra_prods <- wt_XI %|!|% lapply(X[od_names], "crossprod",wt_XI) } beta_block <- compact(list( "D_" = cbind(cross_prods$D_,outer_prods,intra_prods$D_), "O_" = cbind(cross_prods$O_,intra_prods$O_), "I_" = cbind(cross_prods$I_))) beta_block <- rbind_fill_left(beta_block) beta_block <- as.matrix(forceSymmetric(beta_block, "U")) return(beta_block) } var_block_gamma <- function(G,G_wt) { G %|!|% crossproduct_mat_list(G, G_wt, TRUE) } var_block_alpha_alpha_I <- function(const_intra) { const_intra %|!|% matrix(rapply(const_intra,sum), nrow = 1) } var_block_alpha_beta <- function(X, wt_odi) { if (is.null(X)) return(NULL) scalar_weights <- has_equal_elements(c(rapply(wt_odi, length),1)) if (scalar_weights) { scaled_col_sums <- Map("*", wt_odi, lapply(X, "colSums2mat")) scaled_col_sums <- Reduce("cbind", scaled_col_sums) } if (!scalar_weights) { scaled_col_sums <- Map("%*%", wt_odi, X) scaled_col_sums <- Reduce("cbind", scaled_col_sums) } return(scaled_col_sums) } var_block_alpha_gamma <- function(G) { G %|!|% matrix(rapply(G,sum), nrow = 1) } var_block_alpha_I_beta <- function(const_intra,X) { if (is.null(X) || is.null(const_intra)) return(NULL) result <- Reduce("rbind", lapply(const_intra, "matrix_prod_ODI", X)) return(result) } var_block_alpha_I_gamma <- function(const_intra,G) { if (is.null(G) || is.null(const_intra)) return(NULL) block_alpha_I_gamma <- crossproduct_mat_list(const_intra,G) return(block_alpha_I_gamma) } var_block_beta_gamma <- function(X,G) { if (is.null(X) || is.null(G)) return(NULL) result <- lapply(G, "matrix_prod_ODI", X) result <- Reduce("cbind", lapply(result, "t")) return(result) } moment_empirical_covar <- function(Y, model_matrices) { order_keys <- c("D","O","I") %p% "_" X <- compact(model_matrices[order_keys]) result <- Reduce("c", c( cov_moment_alpha(Y) %T% (1 == model_matrices$constants$global), cov_moment_alpha_I(Y, model_matrices$constants$intra), cov_moment_beta(Y, X), cov_moment_gamma(Y, model_matrices$G) )) return(result) } cov_moment_alpha <- function(Y) { Y %|!|% sum(Y) } cov_moment_alpha_I <- function(Y,const_intra) { if (is.null(const_intra)) return(NULL) block_Y_alpha_I <- sum(diag(Y)) if (length(const_intra) == 1) return(block_Y_alpha_I) block_Y_alpha_I <- c( block_Y_alpha_I, unlist(lapply(const_intra[-1], "hadamard_sum", Y)) ) return(block_Y_alpha_I) } cov_moment_beta <- function(Y, X) { as.vector(matrix_prod_ODI(mat = Y,X = X)) } cov_moment_gamma <- function(Y, G) { G %|!|% unlist(lapply(G,hadamard_sum,Y)) } derive_weights_ODI <- function(wt,n_o,n_d) { if (is.null(wt)) return(list("D_" = n_o, "O_" = n_d, "I_" = 1)) return(list("D_" = rowSums(wt), "O_" = colSums(wt), "I_" = diag(wt))) } matrix_prod_ODI <- function(mat,X) { if (is.null(X) || is.null(mat)) return(NULL) result <- list( X$D_ %|!|% (rowSums(mat) %*% X$D_), X$O_ %|!|% (colSums(mat) %*% X$O_), X$I_ %|!|% (diag(mat) %*% X$I_)) result <- Reduce("cbind", result) return(result) }
turtle_x <- 0 turtle_y <- 0 turtle_direction <- 0 turtle_color <- "white" turtle_drawing <- TRUE turtle_init <- function(width = 100, height = 100, mar = rep(0, 4), bg = "black", ...) { par(mar = mar) par(bg = bg) plot(c(-width, width), c(-height, height), type = "n", xlab = "", ylab = "", axes = FALSE, ...) turtle_x <<- 0 turtle_y <<- 0 turtle_direction <<- 0 } turtle_goto <- function(x, y) { if (turtle_drawing) { segments(turtle_x, turtle_y, x, y, col = turtle_color) } turtle_x <<- x turtle_y <<- y } turtle_pen_up <- function() { turtle_drawing <<- FALSE } turtle_pen_down <- function() { turtle_drawing <<- TRUE } turtle_forward <- function(distance) { x <- turtle_x + distance * cos(turtle_direction * pi/180) y <- turtle_y + distance * sin(turtle_direction * pi/180) turtle_goto(x, y) } turtle_turn_left <- function(degree) { turtle_direction <<- (turtle_direction + degree)%%360 } turtle_turn_right <- function(degree) { turtle_direction <<- (turtle_direction - degree)%%360 } turtle_set_color <- function(col) { turtle_color <<- col } draw_turtle <- function() { turtle_init() turtle_set_color("brown") turtle_forward(50) turtle_turn_left(120) turtle_forward(20) turtle_turn_left(30) turtle_forward(20) turtle_turn_left(30) turtle_forward(40) turtle_turn_left(30) turtle_forward(20) turtle_turn_left(30) turtle_forward(20) turtle_turn_left(120) turtle_forward(50) turtle_set_color("pink") turtle_pen_up() turtle_goto(-20, 0) turtle_pen_down() turtle_turn_right(120) turtle_forward(25) turtle_turn_right(60) turtle_forward(25) turtle_goto(-30, 0) turtle_turn_left(180) turtle_pen_up() turtle_goto(35, 0) turtle_pen_down() turtle_turn_right(90) turtle_forward(20) turtle_turn_right(60) turtle_forward(20) turtle_goto(25, 0) turtle_turn_left(150) turtle_pen_up() turtle_goto(50, 0) turtle_pen_down() turtle_turn_left(30) turtle_forward(30) turtle_turn_left(60) turtle_forward(10) turtle_turn_left(60) turtle_forward(10) turtle_turn_left(30) turtle_forward(10) turtle_goto(45, 10) turtle_pen_up() turtle_goto(-45, 0) turtle_pen_down() turtle_forward(17) turtle_turn_right(170) turtle_forward(19) } draw_turtle()
util_replace_codes_by_NA <- function(study_data, meta_data, split_char = SPLIT_CHAR) { sdf <- study_data mdf <- meta_data stopifnot(is.data.frame(sdf)) stopifnot(is.data.frame(mdf)) label_col <- VAR_NAMES if (!is.null(attr(sdf, "label_col"))) { label_col <- attr(sdf, "label_col") } for (code_name in c(MISSING_LIST, JUMP_LIST)) { if (!(code_name %in% names(mdf)) || all(is.na(mdf[[code_name]]) | trimws(mdf[[code_name]]) == "")) { util_warning( c("Meta data does not provide a filled column", "called %s for replacing codes with NAs."), dQuote(code_name), applicability_problem = TRUE) } } miss <- lapply(setNames(nm = names(sdf)), util_get_code_list, MISSING_LIST, split_char, mdf = mdf, label_col = label_col, warning_if_no_list = FALSE ) jump <- lapply(setNames(nm = names(sdf)), util_get_code_list, JUMP_LIST, split_char, mdf = mdf, label_col = label_col, warning_if_no_list = FALSE ) miss_n <- list() jump_n <- list() miss_n <- lapply( mapply(`%in%`, sdf, miss, SIMPLIFY = FALSE, USE.NAMES = TRUE), sum, na.rm = TRUE) jump_n <- lapply( mapply(`%in%`, sdf, jump, SIMPLIFY = FALSE, USE.NAMES = TRUE), sum, na.rm = TRUE) replace <- function(x, l) { x[x %in% l] <- NA x } environment(replace) <- parent.env(environment()) sdf[] <- mapply(replace, sdf, miss, SIMPLIFY = FALSE) sdf[] <- mapply(replace, sdf, jump, SIMPLIFY = FALSE) attr(sdf, "Codes_to_NA") <- TRUE attr(sdf, "MAPPED") <- attr(study_data, "MAPPED") return(list(study_data = sdf, list_N_MC_replaced = miss_n, list_N_JC_replaced = jump_n)) }
HKG <- function(level){ x <- NULL if(level==1){ x1 <- github.cssegisanddata.covid19(country = "Hong Kong") x2 <- ourworldindata.org(id = "HKG") x <- full_join(x1, x2, by = "date") } return(x) }
set.max.replicates <- function (first = TRUE) { value <- .cur.db@[email protected]$n if (first == TRUE) { cat("Number of (maximum) bootstrap replicates to perform \n") if (is.null(value)) { cat("The current value is NULL...\n") } else { cat("The current number is", value, "...\n") } cat("\nPlease type the new number: ") } ans <- as.numeric(readline()) if (ans == "NULL" || ans == "null") { Recall(first = FALSE) } else { if (ans > 0) { .cur.db@[email protected]$n <- ans c1 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c1) invisible() return() } else { cat("Please enter a numeric value larger than 0 ") Recall(first = FALSE) } } } bootgam.conv.crit1 <- function() { cat("\nType the critical value of the fluctuation ratio\n") cat("you want to use (0 to exit)\n") ans <- readline() if (ans == 0) { return() } if (ans < 1) { cat("The number must be greater than 1\n") Recall() } .cur.db@[email protected]$crit1.conv <- ans c2 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c2) invisible() return() } bootgam.conv.crit2 <- function(skip=F) { if(!skip) { cat("\nType the lowest important relative inclusion frequency\n") cat("or return for the default (0.2):") ans <- readline() if(ans == "") { .cur.db@[email protected]$crit2.liif <- 0.2 } else if(ans < 0 || ans > 1) { cat("The number must be greater than 0 and lower than 1\n") Recall() } else { .cur.db@[email protected]$crit2.liif <- ans } } cat("\nType the lowest absulute joint inclusion frequency\n") cat("or return for the default (25):") ans2 <- readline() if(ans2 == "") { .cur.db@[email protected]$crit2.ljif.conv <- 25 } else if(ans2 < 1) { cat("The number must be greater than 1\n") Recall(skip=T) } else { .cur.db@[email protected]$crit2.ljif.conv <- ans2 } c3 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c3) invisible() return() } specify.start.model <- function () { if (any(is.null(covs <- xvardef("covariates", .cur.db)))) { cat("\nThe current data base has no covariates defined\n") invisible() return() } cat("\nThe following covariates are defined in the current data base:\n") cat(covs, fill = 60) cat("\nType the names of the covariates that should be included in the\n") cat("\nmodel and end with a blank line:\n") st.covs <- scan(what = character()) if(length(st.covs) == 0) { st.covs <- NULL } .cur.db@[email protected]$start.mod <- st.covs c4 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c4) invisible() return() } normalize.median <- function () { if (.cur.db@[email protected]$median.norm == FALSE) { .cur.db@[email protected]$median.norm <- TRUE cat ("\nNormalize to median is now set to ON\n") } else { .cur.db@[email protected]$median.norm <- FALSE cat ("\nNormalize to median is now set to OFF\n") } c5 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c5) invisible() return() } bg.conv.crit2 <- function(skip = FALSE) { if(!skip) { cat("\nType the lowest important relative inclusion frequency\n") cat("or return for the default (0.2):") ans <- readline() if(ans == "") { .cur.db@[email protected]$liif <- 0.2 } else if(ans < 0 || ans > 1) { cat("The number must be greater than 0 and lower than 1\n") Recall() } else { .cur.db@[email protected]$liif <- ans } } cat("\nType the lowest absulute joint inclusion frequency\n") cat("or return for the default (25):") ans2 <- readline() if(ans2 == "") { .cur.db@[email protected]$ljif.conv <- 25 } else if(ans2 < 1) { cat("The number must be greater than 1\n") Recall(skip=T) } else { .cur.db@[email protected]$ljif.conv <- ans2 } c6 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c6) invisible() return() } bg.conv.crit1 <- function() { cat("\nType the critical value of the fluctuation ratio\n") cat("you want to use (0 to exit)\n") ans <- readline() if(ans == 0) { return() } if(ans < 1) { cat("The number must be greater than 1\n") Recall() } .cur.db@[email protected]$conv.value <- ans c7 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c7) invisible() return() } change.conv.alg <- function () { cat("\nSpecify the algorithm for convergence calculations\n") choices <- c("Return to previous menu", "Fluctuation ratio", "Lowest absolute joint inclusion frequency" ) pick <- menu(choices) switch(pick, return(), { .cur.db@[email protected]$algo <- "fluct.ratio" c8 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c8) bg.conv.crit1() }, { .cur.db@[email protected]$algo <- "liif" c9 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c9) bg.conv.crit2() }) Recall() return() } specify.start.check <- function () { cat("\nType the iteration number at which you want to start checking\n") cat("convergence (0 to exit):") ans <- readline() if(ans == 0) { return() } if(ans < 0) { cat("The number must be positive.\n") Recall() } .cur.db@[email protected]$start.check <- ans c10 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c10) invisible() return() } specify.interval <- function () { cat("\nType the interval at which the convergence should be \n") cat("checked (0 to exit):") ans <- readline() if (ans == 0) { return() } if (ans < 0) { cat ("The number must be positive.\n") Recall() } .cur.db@[email protected]$check.interval <- ans c11 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c11) invisible() return() } exclude.individuals <- function () { cat("Please type the ID number of the individuals you want to exclude\n") cat("from the bootgam analysis and finish with a blank line:\n") inds <- scan(what = character()) if(length(inds) == 0) { inds <- NULL } .cur.db@[email protected]$excluded.ids <- inds c12 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c12) invisible() return() } set.seed.number <- function () { cat ("Type a seed number between 1 and 1000 (return to exit):") ans <- readline() if (ans == "") { return() } if (as.numeric(ans) >= 1 && as.numeric(ans) <= 1000) { .cur.db@[email protected]$seed <- ans } else { cat("The number must be between 1 and 1000\n") Recall() } c13 <- call("assign",pos = 1, ".cur.db", .cur.db) eval(c13) } bootgam.settings.menu <- function () { choices <- c("Return to the previous menu ->", "List current bootGAM settings", "Set maximum number of bootstrap replicates", "Change convergence algorithm", "Specify iteration to start check convergence at", "Specify at what interval to check the convergence", "Set seed number", "Exclude individuals", "Specify starting model" ) title = "\nBootGAM SETTINGS MENU\n \\main\\covariate model\\BootGAM\\settings for the BootGAM" pick <- menu(choices, title = title) qx <- 0 switch(pick + 1, qx <- 2, qx <- 1, list.bootgam.settings(eval(as.name(".cur.db"))), set.max.replicates(), change.conv.alg(), specify.start.check(), specify.interval(), set.seed.number(), exclude.individuals(), specify.start.model() ) if (qx == 2) { return(invisible(2)) } else { if (qx == 1) { return(invisible(0)) } else { Recall() } } } list.bootgam.settings <- function (object) { if (exists("object")) { cat(paste("\nThe current run number is ", object@Runno, ".\n\n", sep = "")) if (!any(is.null(object@Prefs@Xvardef$parms))) { cat("\nMaximum number of bootstrap replicates: ", object@[email protected]$n) cat(":", object@[email protected]$n) cat("\nConvergence algorithm to use: ", object@[email protected]$algo) if (object@[email protected]$algo == "fluct.ratio") { cat("\nConvergence criterion: ", object@[email protected]$conv.value) } else { cat("\nLowest importan relative inclusion freq: ", object@[email protected]$liif) cat("\nCritical value (ljif): ", object@[email protected]$ljif.conv) } cat("\nStarting model: ", object@[email protected]$n) } } else { cat("The current run number is", object@Runno, "but no matching database was found.\n") } } bootgam.menu <- function () { choices <- c("Return to previous menu ->", "Run a bootGAM", "Summarize bootGAM", "Plot bootGAM results ->", "Settings for the BootGAM ->", "Settings for the GAM ->") title = "\nBootGAM MENU\n \\main\\covariate model\\BootGAM\n\n*** Note that the bootGAM also uses the settings from the GAM!\n Please go the GAM settings menu to alter these.\n" pick <- menu(choices, title = title) qx <- 0 switch(pick + 1, qx <- 2, qx <- 1, xp.bootgam (eval(as.name(".cur.db")), overwrite = FALSE), bootgam.print(), qx <- bootgam.plot.menu(), qx <- bootgam.settings.menu(), qx <- gam.settings.menu()) if (qx == 2) { return(invisible(2)) } else { if (qx == 1) { return(invisible(0)) } else { Recall() } } } bootgam.plot.menu <- function () { choices <- c("Return to previous menu", "Inclusion frequencies", "Most common 2-covariate combinations", "Distribution of model size", "Inclusion stability - covariates", "Inclusion index of covariates", "Inclusion index of covariates/individuals", "Compare index of covariates/individuals" ) title = "\nBootGAM plot MENU\n \\main\\covariate model\\BootGAM\\Plot" pick <- menu(choices, title = title) qx <- 0 switch(pick + 1, qx <- 2, qx <- 1, print(xp.inc.prob()), print(xp.inc.prob.comb.2()), print(xp.distr.mod.size()), print(xp.inc.stab.cov()), print(xp.incl.index.cov()), print(xp.incl.index.cov.ind()), print(xp.incl.index.cov.comp()) ) if (qx == 2) { return(invisible(2)) } else { if (qx == 1) { return(invisible(0)) } else { Recall() } } } bootscm.plot.menu <- function () { choices <- c("Return to previous menu ->", "Inclusion frequencies", "Most common 2-covariate combinations", "Distribution of model size", "Conditional inclusion index", "Individual inclusion index", "Compare index of covariates/individuals", "Bias parameter estimates (hurricane plot)", "Correlation in parameters covariate effects", "Distribution of dOFV final models", "dOFV versus model size final models", "dAIC versus model size final models", "Trace plots - parameter-covariates", "Trace plots - conditional indices", "Trace plots - indiv. conditional indices") title = "\nBOOTSCM PLOT MENU\n \\main\\covariate model\\BootSCM\\Plot menu\n\n" pick <- menu(choices, title = title) qx <- 0 switch(pick + 1, qx <- 2, qx <- 1, print(xp.inc.prob()), print(xp.inc.prob.comb.2()), print(xp.distr.mod.size()), print(xp.incl.index.cov()), print(xp.incl.index.cov.ind()), print(xp.incl.index.cov.comp()), print(xp.boot.par.est()), print(xp.boot.par.est.corr(ask.covs = TRUE)), print(xp.dofv.plot()), print(xp.dofv.npar.plot()), print(xp.daic.npar.plot()), print(xp.inc.stab.cov()), print(xp.inc.cond.stab.cov()), print(xp.inc.ind.cond.stab.cov())) if (qx == 2) { return(invisible(2)) } else { if (qx == 1) { return(invisible(0)) } else { Recall() } } } bootscm.menu <- function () { choices <- c("Return to previous menu ->", "Import bootSCM data (from PsN folder)", "Summarize bootSCM", "Plot menu" ) title = "\nBOOTSCM MENU\n \\main\\covariate model\\BootSCM\n\nThe BootSCM is implemented in PsN. Xpose can import its output and\ngenerate plots similar to those for the BootGAM\n" pick <- menu(choices, title = title) qx <- 0 switch(pick + 1, qx <- 2, qx <- 1, bootscm.import(), bootgam.print(), qx <- bootscm.plot.menu() ) if (qx == 2) { return(invisible(2)) } else { if (qx == 1) { return(invisible(0)) } else { Recall() } } }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(pdfsearch) file <- system.file('pdf', '1610.00147.pdf', package = 'pdfsearch') result <- keyword_search(file, keyword = c('measurement', 'error'), path = TRUE) head(result) head(result$line_text, n = 2) file <- system.file('pdf', '1610.00147.pdf', package = 'pdfsearch') result <- keyword_search(file, keyword = c('measurement', 'error'), path = TRUE, surround_lines = 1) head(result) head(result$line_text, n = 2) file <- system.file('pdf', '1610.00147.pdf', package = 'pdfsearch') result_hyphen <- keyword_search(file, keyword = c('measurement'), path = TRUE, remove_hyphen = FALSE) result_remove_hyphen <- keyword_search(file, keyword = c('measurement'), path = TRUE, remove_hyphen = TRUE) nrow(result_hyphen) nrow(result_remove_hyphen) token_result <- convert_tokens(file, path = TRUE)[[1]] head(token_result) file <- system.file('pdf', '1501.00450.pdf', package = 'pdfsearch') result <- keyword_search(file, keyword = c('repeated measures', 'mixed effects'), path = TRUE, surround_lines = 1) result directory <- system.file('pdf', package = 'pdfsearch') result <- keyword_directory(directory, keyword = c('repeated measures', 'mixed effects', 'error'), surround_lines = 1, full_names = TRUE) head(result)
Sn_A = function(x,trunc.level){ v = c(2:(trunc.level)) dim0=dim(x) n = dim0[1] d = dim0[2] cA = sum(choose(d,v)) out0 = .C("stats_nonserial", as.double(x), as.integer(n), as.integer(d), as.integer(trunc.level), stats = double(cA), cardA = double(cA), M = double(n*n*cA), Asets = double(d*cA), Sn = double(1), J = double(n*n), PACKAGE = "MixedIndTests" ) }
context("absolute_path_linter") test_that("unquote", { f <- lintr:::unquote expect_equal(f(character()), character()) expect_equal(f("foo"), "foo") expect_equal( f(c("'f", "\"f'", "\"f\""), q="\""), c("'f", "\"f'", "f" )) expect_equal( f(c("\"f\"", "'f'", "`f`", "`'f'`"), q="'"), c("\"f\"", "f", "`f`", "`'f'`")) expect_equal(f("`a\\`b`", q=c("`")), "a`b") x <- c("\"x\"", "\"\\n\"", "\"\\\\\"", "\"\\\\y\"", "\"\\ny\"", "\"\\\\ny\"", "\"\\\\\\ny\"", "\"\\\\\\\\ny\"", "\"'\"", "\"\\\"\"", "\"`\"") y <- c("x", "\n", "\\", "\\y", "\ny", "\\ny", "\\\ny", "\\\\ny", "'", "\"", "`") expect_equal(f(x, q="\""), y) }) test_that("unescape", { f <- lintr:::unescape expect_equal(f(character()), character()) expect_equal(f("n"), "n") x <- c("x", "x\\n", "x\\\\", "x\\\\y", "x\\ny", "x\\\\ny", "x\\\\\\ny", "x\\\\\\\\ny") y <- c("x", "x\n", "x\\", "x\\y", "x\ny", "x\\ny", "x\\\ny", "x\\\\ny") expect_equal(f(x), y) }) test_that("is_root_path", { f <- lintr:::is_root_path x <- character() y <- logical() expect_equal(f(x), y) x <- c( "", "foo", "http://rseek.org/", "./", " /", "/foo", "'/'") y <- c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) expect_equal(f(x), y) x <- c( "/", "//") y <- c(TRUE, FALSE) expect_equal(f(x), y) x <- c( "~", "~/", "~//", "~bob2", "~foo_bar/") y <- c(TRUE, TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) x <- c("c:", "C:\\", "D:/", "C:\\\\", "D://") y <- c(TRUE, TRUE, TRUE, FALSE, FALSE) expect_equal(f(x), y) x <- c("\\\\", "\\\\localhost", "\\\\localhost\\") y <- c( TRUE, TRUE, TRUE) expect_equal(f(x), y) }) test_that("is_absolute_path", { f <- lintr:::is_absolute_path x <- character() y <- logical() expect_equal(f(x), y) x <- c( "/", "//", "/foo", "/foo/") y <- c(TRUE, FALSE, TRUE, TRUE) expect_equal(f(x), y) x <- c( "~", "~/foo", "~/foo/", "~'") y <- c(TRUE, TRUE, TRUE, FALSE) expect_equal(f(x), y) x <- c("c:", "C:\\foo\\", "C:/foo/") y <- c(TRUE, TRUE, TRUE) expect_equal(f(x), y) x <- c("\\\\", "\\\\localhost", "\\\\localhost\\c$", "\\\\localhost\\c$\\foo") y <- c( TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) }) test_that("is_relative_path", { f <- lintr:::is_relative_path x <- character() y <- logical() expect_equal(f(x), y) x <- c( "/", "c:\\", "~/", "foo", "http://rseek.org/", "'./'") y <- c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) expect_equal(f(x), y) x <- c("/foo", "foo/", "foo/bar", "foo//bar", "./foo", "../foo") y <- c( FALSE, TRUE, TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) x <- c("\\\\", "\\foo", "foo\\", "foo\\bar", ".\\foo", "..\\foo", ".", "..", "../") y <- c( FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) }) test_that("is_path", { f <- lintr:::is_path x <- character() y <- logical() expect_equal(f(x), y) x <- c( "", "foo", "http://rseek.org/", "foo\nbar", "'foo/bar'", "'/'") y <- c(FALSE, FALSE, FALSE, FALSE, FALSE, FALSE) expect_equal(f(x), y) x <- c("c:", "..", "foo/bar", "foo\\bar", "~", "\\\\localhost") y <- c(TRUE, TRUE, TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) }) test_that("is_valid_path", { f <- lintr:::is_valid_path x <- character() y <- logical() expect_equal(f(x), y) x <- c("C:/asdf", "C:/asd*f", "a\\s:df", "a\\\nsdf") y <- c( TRUE, FALSE, FALSE, FALSE) expect_equal(f(x), y) x <- c("C:/asdf", "C:/asd*f", "a\\s:df", "a\\\nsdf") y <- c( TRUE, FALSE, FALSE, FALSE) expect_equal(f(x, lax=TRUE), y) x <- c("/asdf", "/asd*f", "/as:df", "/a\nsdf") y <- c( TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) x <- c("/asdf", "/asd*f", "/as:df", "/a\nsdf") y <- c( TRUE, FALSE, FALSE, FALSE) expect_equal(f(x, lax=TRUE), y) }) test_that("is_long_path", { f <- lintr:::is_long_path x <- character() y <- logical() expect_equal(f(x), y) x <- c("foo/", "/foo", "n/a", "Z:\\foo", "foo/bar", "~/foo", "../foo") y <- c( FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE) expect_equal(f(x), y) }) test_that("returns the correct linting", { msg <- rex::escape("Do not use absolute paths.") linter <- absolute_path_linter(lax=FALSE) non_absolute_path_strings <- c( "..", "./blah", encodeString("blah\\file.txt") ) for(path in non_absolute_path_strings) { expect_lint(single_quote(path), NULL, linter) expect_lint(double_quote(path), NULL, linter) } expect_lint("\"'/'\"", NULL, linter) absolute_path_strings <- c( "/", "/blah/file.txt", encodeString("d:\\"), "E:/blah/file.txt", encodeString("\\\\"), encodeString("\\\\server\\path"), "~", "~james.hester/blah/file.txt", encodeString("/a\nsdf"), "/as:df" ) for (path in absolute_path_strings) { expect_lint(single_quote(path), msg, linter) expect_lint(double_quote(path), msg, linter) } linter <- absolute_path_linter(lax=TRUE) unlikely_path_strings <- c( "/", encodeString("/a\nsdf/bar"), "/as:df/bar" ) for (path in unlikely_path_strings) { expect_lint(single_quote(path), NULL, linter) expect_lint(double_quote(path), NULL, linter) } })
mnis_mps_on_date <- function(date1 = Sys.Date(), date2 = NULL, tidy = TRUE, tidy_style = "snake_case") { date1 <- as.Date(date1) if (is.null(date2) == FALSE) { date2 <- as.Date(date2) } if (is.null(date2) == TRUE) { date2 <- date1 } date_vec <- c(date1, date2) query <- paste0(base_url, "members/query/House=Commons|Membership=all|", "commonsmemberbetween=", min(date_vec), "and", max(date_vec), "/") got <- mnis_query(query) mps <- got$Members$Member mps <- tibble::as_tibble(mps) if (.Platform$OS.type == "windows") { mps$MemberFrom <- stringi::stri_trans_general(mps$MemberFrom, "latin-ascii") mps$MemberFrom <- gsub("Ynys MA\U00B4n", "Ynys M\U00F4n", mps$MemberFrom) } if (tidy == TRUE) { mps <- mnis::mnis_tidy(mps, tidy_style) } mps }
feval <- function(file.name,...){ do.call(file.name,list(...)) }
library(hamcrest) assertThat(simplify2array(list(1,2,3)), identicalTo(c(1,2,3)))
str_c. <- function(..., sep = "", collapse = NULL) { paste(..., sep = sep, collapse = collapse) } str_detect. <- function(string, pattern, fixed = FALSE, perl = FALSE) { grepl(pattern, string, fixed = fixed, perl = perl) } str_ends. <- function(string, pattern) { endsWith(string, pattern) } str_extract. <- function(x, pattern, fixed = FALSE, perl = FALSE) { regmatches(x, regexpr(pattern, x, fixed = fixed, perl = perl)) } str_extract_all. <- function(x, pattern, fixed = FALSE, perl = FALSE) { regmatches(x, gregexpr(pattern, x, fixed = fixed, perl = perl)) } str_replace. <- function(string, pattern, replacement, fixed = FALSE, perl = FALSE) { sub(pattern, replacement, string, fixed = fixed, perl = perl) } str_replace_all. <- function(string, pattern, replacement, fixed = FALSE, perl = FALSE) { if (missing(replacement)) { replacement <- unname(pattern) pattern <- names(pattern) } else if (length(pattern) != length(replacement)) { if (length(pattern) > 1 & length(replacement) > 1) { stop("replacement has to have the same length as pattern") } else { if (length(replacement) == 1) { replacement <- rep(replacement, length(pattern)) } else { pattern <- rep(pattern, length(replacement)) } } } for (i in 1:length(pattern)) { string <- gsub(pattern[[i]], replacement[[i]], string, perl = perl, fixed = fixed) } string } str_starts. <- function(string, pattern) { startsWith(string, pattern) }
ctModeltoNumeric <- function(ctmodelobj){ domessage<-FALSE sapply(names(ctmodelobj), function(x){ if(is.matrix(ctmodelobj[[x]])){ m <- ctmodelobj[[x]] if(any(suppressWarnings(is.na(as.numeric(m))))){ domessage <<-TRUE } m[suppressWarnings(is.na(as.numeric(m)))] <- 0 ctmodelobj[[x]] <<- matrix(as.numeric(m),nrow=nrow(m), ncol=ncol(m)) } }) if(domessage) message('Some free parameters in matrices set to zero!') return(ctmodelobj) } ctGenerate<-function(ctmodelobj,n.subjects=100,burnin=0,dtmean=1,logdtsd=0,dtmat=NA, wide=FALSE){ ctmodelobj <- ctModeltoNumeric(ctmodelobj) m <- ctmodelobj fullTpoints<-burnin+m$Tpoints for(si in 1:n.subjects){ if(is.na(dtmat[1])) dtvec<- exp(rnorm(fullTpoints,log(dtmean),logdtsd)) if(!is.na(dtmat[1])) dtvec <- c(rep(1,burnin),dtmat[si,,drop=FALSE]) time=rep(0,fullTpoints) for(t in 2:fullTpoints) time[t] = round(time[t-1] + dtvec[t-1],6) if(m$n.TDpred > 0) { tdpreds <- rbind(matrix(0,nrow=1+(burnin),ncol=m$n.TDpred)[-1,,drop=FALSE], matrix(m$TDPREDMEANS + m$TDPREDVAR %*% rnorm(nrow(m$TDPREDVAR),0,1),ncol=m$n.TDpred)) } sm=m if(any(m$TRAITVAR != 0)) { traits = m$TRAITVAR %*% rnorm(m$n.latent,0,1) sm$CINT = m$CINT + traits sm$T0MEANS = m$T0MEANS + m$T0TRAITEFFECT %*% traits } if(any(m$MANIFESTTRAITVAR != 0)) { sm$MANIFESTMEANS = m$MANIFESTMEANS + m$MANIFESTTRAITVAR %*% rnorm(m$n.manifest,0,1) } if(m$n.TIpred > 0) { tipreds <- m$TIPREDMEANS + m$TIPREDVAR %*% rnorm(m$n.TIpred,0,1) sm$CINT = m$CINT + m$TIPREDEFFECT %*% tipreds } manifests<-matrix(NA,fullTpoints,m$n.manifest) latents<-matrix(NA,fullTpoints,m$n.latent) sdat <- cbind(si,time,manifests, if(m$n.TDpred > 0) tdpreds, if(m$n.TIpred > 0) matrix(tipreds,byrow=TRUE,nrow=fullTpoints,ncol=m$n.TIpred)) colnames(sdat) <- c('id','time',m$manifestNames,m$TDpredNames,m$TIpredNames) sdat <- data.frame(sdat) latents[1,] <- sm$T0MEANS+m$T0VAR %*% rnorm(m$n.latent) Qinf <- fQinf(sm$DRIFT,sm$DIFFUSION) for(i in 2:nrow(latents)){ dtA=expm::expm(sm$DRIFT * (sdat$time[i]-sdat$time[i-1])) latents[i,] <- dtA %*% latents[i-1,] + solve(sm$DRIFT,(dtA - diag(m$n.latent))) %*% sm$CINT + t(chol(fdtQ(Qinf,dtA))) %*% rnorm(m$n.latent) if(m$n.TDpred > 0) latents[i,] <- latents[i,] + sm$TDPREDEFFECT %*% t(as.matrix(sdat[i,m$TDpredNames,drop=FALSE])) } for(i in 1:nrow(sdat)){ sdat[i,m$manifestNames] <- sm$LAMBDA %*% latents[i,] + sm$MANIFESTMEANS + sm$MANIFESTVAR %*% rnorm(m$n.manifest) } sdat=sdat[(burnin+1):fullTpoints,] sdat[,'time'] = sdat[,'time'] - sdat[1,'time'] if(si==1) datalong <- sdat else datalong <- rbind(datalong,sdat) } datalong<-as.matrix(datalong) if(wide==FALSE) return(datalong) else { datawide <- ctLongToWide(datalong = datalong,id = 'id',time = 'time', manifestNames = m$manifestNames, TDpredNames = m$TDpredNames,TIpredNames = m$TIpredNames) datawide <- ctIntervalise(datawide = datawide,Tpoints = m$Tpoints,n.manifest = m$n.manifest,n.TDpred = m$n.TDpred,n.TIpred = m$n.TIpred, manifestNames=m$manifestNames,TDpredNames=m$TDpredNames,TIpredNames=m$TIpredNames) return(datawide) } }
test_propensity_calculation <- function( comp_reac, params, state, sim_time ) { test_propensity_cpp( comp_reac$function_pointers, params, comp_reac$buffer_size, length(comp_reac$reaction_ids), state, sim_time ) }
install_anndata <- function(method = "auto", conda = "auto") { reticulate::py_install("anndata>=0.7.5", method = method, conda = conda) }
lsm_l_para_sd <- function(landscape, directions = 8) { landscape <- landscape_as_list(landscape) result <- lapply(X = landscape, FUN = lsm_l_para_sd_calc, directions = directions) layer <- rep(seq_along(result), vapply(result, nrow, FUN.VALUE = integer(1))) result <- do.call(rbind, result) tibble::add_column(result, layer, .before = TRUE) } lsm_l_para_sd_calc <- function(landscape, directions, resolution = NULL){ para_patch <- lsm_p_para_calc(landscape, directions = directions, resolution = resolution) if (all(is.na(para_patch$value))) { return(tibble::tibble(level = "landscape", class = as.integer(NA), id = as.integer(NA), metric = "para_sd", value = as.double(NA))) } para_sd <- stats::sd(para_patch$value) return(tibble::tibble(level = "landscape", class = as.integer(NA), id = as.integer(NA), metric = "para_sd", value = as.double(para_sd))) }
createMessage <- function(ID, path = NULL, outputData){ pathResult <- .pathTest(path) if(pathResult[1] == FALSE){ stop(pathResult[2]) } if(ID == 0){return("No InputFile In Path")} CSS_Table <- "style='border: 1px solid black; width: 75%;'" CSS_Cells <- "text-align:center; color: black; padding: 5px; border: 1px solid black;" x <- ID TableRows <- nrow(outputData) O1 <- ListModels(path = path, SelectMDL = x) O2 <- knitr::kable( x = cbind(`Model ID`=x, outputData), format = "html", table.attr = CSS_Table) O3 <- kableExtra::row_spec(kable_input = O2, row = 0:TableRows, extra_css = CSS_Cells ) msg <- paste("<h2 style='color:black;'>Model Selected</h2>", paste0(O1, collapse = ""),"<br>", "<h2 style='color:black;'>Model Results</h2>", paste0(O3 , collapse = "") ) return(msg) }
total.dista <- function(x,y,square = FALSE) { .Call(Rfast_total_dista,t(x),t(y),square) }
importSAQN <- function(site = "gla4", year = 2009, pollutant = "all", meta = FALSE, ratified = FALSE, to_narrow = FALSE) { aq_data <- importUKAQ(site = site, year = year, pollutant = pollutant, meta = meta, ratified = ratified, to_narrow = to_narrow, source = "saqn") return(aq_data) }
constellation_as_tibble_list <- function(ct, include_role_playing = FALSE) { UseMethod("constellation_as_tibble_list") } constellation_as_tibble_list.constellation <- function(ct, include_role_playing = FALSE) { tl <- list() names <- c() for (d in seq_along(ct$dimension)) { tl <- c(tl, list(tibble::as_tibble(ct$dimension[[d]]))) names <- c(names, attr(ct$dimension[[d]], "name")) } names(tl) <- names for (s in seq_along(ct$star)) { tl <- star_schema_as_tl(ct$star[[s]], tl, names, include_role_playing) } tl }
partialPlot <- function(x, ...) UseMethod("partialPlot") partialPlot.default <- function(x, ...) stop("partial dependence plot not implemented for this class of objects.\n") partialPlot.RRF <- function (x, pred.data, x.var, which.class, w, plot=TRUE, add=FALSE, n.pt = min(length(unique(pred.data[, xname])), 51), rug = TRUE, xlab=deparse(substitute(x.var)), ylab="", main=paste("Partial Dependence on", deparse(substitute(x.var))), ...) { classRF <- x$type != "regression" if (is.null(x$forest)) stop("The RRF object must contain the forest.\n") x.var <- substitute(x.var) xname <- if (is.character(x.var)) x.var else { if (is.name(x.var)) deparse(x.var) else { eval(x.var) } } xv <- pred.data[, xname] n <- nrow(pred.data) if (missing(w)) w <- rep(1, n) if (classRF) { if (missing(which.class)) { focus <- 1 } else { focus <- charmatch(which.class, colnames(x$votes)) if (is.na(focus)) stop(which.class, "is not one of the class labels.") } } if (is.factor(xv) && !is.ordered(xv)) { x.pt <- levels(xv) y.pt <- numeric(length(x.pt)) for (i in seq(along = x.pt)) { x.data <- pred.data x.data[, xname] <- factor(rep(x.pt[i], n), levels = x.pt) if (classRF) { pr <- predict(x, x.data, type = "prob") y.pt[i] <- weighted.mean(log(ifelse(pr[, focus] > 0, pr[, focus], .Machine$double.eps)) - rowMeans(log(ifelse(pr > 0, pr, .Machine$double.eps))), w, na.rm=TRUE) } else y.pt[i] <- weighted.mean(predict(x, x.data), w, na.rm=TRUE) } if (add) { points(1:length(x.pt), y.pt, type="h", lwd=2, ...) } else { if (plot) barplot(y.pt, width=rep(1, length(y.pt)), col="blue", xlab = xlab, ylab = ylab, main=main, names.arg=x.pt, ...) } } else { if (is.ordered(xv)) xv <- as.numeric(xv) x.pt <- seq(min(xv), max(xv), length = n.pt) y.pt <- numeric(length(x.pt)) for (i in seq(along = x.pt)) { x.data <- pred.data x.data[, xname] <- rep(x.pt[i], n) if (classRF) { pr <- predict(x, x.data, type = "prob") y.pt[i] <- weighted.mean(log(ifelse(pr[, focus] == 0, .Machine$double.eps, pr[, focus])) - rowMeans(log(ifelse(pr == 0, .Machine$double.eps, pr))), w, na.rm=TRUE) } else { y.pt[i] <- weighted.mean(predict(x, x.data), w, na.rm=TRUE) } } if (add) { lines(x.pt, y.pt, ...) } else { if (plot) plot(x.pt, y.pt, type = "l", xlab=xlab, ylab=ylab, main = main, ...) } if (rug && plot) { if (n.pt > 10) { rug(quantile(xv, seq(0.1, 0.9, by = 0.1)), side = 1) } else { rug(unique(xv, side = 1)) } } } invisible(list(x = x.pt, y = y.pt)) }
argonRow <- function(..., center = FALSE) { rowCl <- "row" if (center) rowCl <- paste0(rowCl, " align-items-center justify-content-center") htmltools::tags$div(class = rowCl, ..., htmltools::tags$br()) }
library("NMOF") library("tinytest") sets <- function(x) { ans <- NULL for (i in 1:length(x)) { x1 <- utils::combn(x, i) ans <- c(ans, split(x1, col(x1))) } names(ans) <- NULL ans } test_fun <- function(x) { List1 <- x$c1 Num1 <- x$n1 Num2 <- x$n2 -length(List1) - Num1 - Num2 } ans <- gridSearch(test_fun, levels = list(c1 = sets(letters[1:5]), n1 = 1:5, n2 = 101:105), asList = TRUE, keepNames = TRUE) expect_equal(test_fun(ans$levels[[200]]), ans$values[[200]]) expect_error(ans <- gridSearch(test_fun, levels = list(c1 = sets(letters[1:5]), n1 = 1:5, n2 = 101:105), asList = FALSE, keepNames = TRUE)) testFun <- function(x) x[[1L]] + x[[2L]]^2 res <- gridSearch(fun = testFun, levels = list(1:2, c(2, 3, 5)), asList = TRUE) expect_equal(res$minfun, testFun(list(1, 2))) levels <- list(a = 1:2, b = 1:3) res <- gridSearch(testFun, levels, asList = TRUE) expect_equal(res$minfun, testFun(list(1, 1))) lower <- 1; upper <- 3; npar <- 2 res <- gridSearch(testFun, lower = lower, upper = upper, npar = npar, asList = TRUE) expect_equal(res$minfun, testFun(list(1, 1))) lower <- 1; upper <- 3; npar <- 2; n <- 4 res <- gridSearch(testFun, lower = lower, upper = upper, npar = npar, n = n, asList = TRUE) expect_equal(res$minfun, testFun(list(1, 1))) expect_equal(length(res$levels), n^npar) lower <- 1; upper <- 3; npar <- 5; n <- 5 res <- gridSearch(testFun, lower = lower, upper = upper, npar = npar, n = n, asList = TRUE) expect_equal(res$minfun, testFun(list(1, 1))) expect_equal(length(res$levels), n^npar) lower <- c(1,1); upper <- c(3,3); n <- 4 res <- gridSearch(testFun, lower = lower, upper = upper, n = n, asList = TRUE) expect_equal(res$minfun, testFun(list(1, 1))) expect_equal(length(res$levels), n^length(lower)) lower <- c(1,1); upper <- 3; n <- 4 res <- gridSearch(testFun, lower = lower, upper = upper, n = n) expect_equal(res$minfun, testFun(list(1, 1))) expect_equal(length(res$levels), n^length(lower))
f21hyper <- function (a, b, c, z) { if ((length(a) != 1) | (length(b) != 1) | (length(c) != 1) | (length(z) != 1)) stop("All function arguments need to be scalars") if ((a < 0) | (b < 0) | (c < 0)) stop("Arguments a, b, and c need to be non-negative") if ((z > 1) | (z <= (-1))) stop("Argument z needs to be between -1 and 1") nmx = max(100, 3 * floor(((a + b) * z - c - 1)/(1 - z))) if (nmx > 10000) warning("Power series probably does not converge") serie = 0:nmx return(1 + sum(cumprod((a + serie)/(c + serie) * (b + serie)/(1 + serie) * z))) }
par(ask=TRUE) library(coin) score <- c(40, 57, 45, 55, 58, 57, 64, 55, 62, 65) treatment <- factor(c(rep("A",5), rep("B",5))) mydata <- data.frame(treatment, score) t.test(score~treatment, data=mydata, var.equal=TRUE) oneway_test(score~treatment, data=mydata, distribution="exact") UScrime <- transform(UScrime, So = factor(So)) wilcox_test(Prob ~ So, data=UScrime, distribution="exact") library(multcomp) set.seed(1234) oneway_test(response~trt, data=cholesterol, distribution=approximate(B=9999)) library(coin) library(vcd) Arthritis <- transform(Arthritis, Improved = as.factor(as.numeric(Improved))) set.seed(1234) chisq_test(Treatment~Improved, data=Arthritis, distribution=approximate(B=9999)) states <- as.data.frame(state.x77) set.seed(1234) spearman_test(Illiteracy ~ Murder, data=states, distribution=approximate(B=9999)) library(coin) library(MASS) wilcoxsign_test(U1 ~ U2, data=UScrime, distribution="exact") library(lmPerm) set.seed(1234) fit <- lmp(weight ~ height, data=women, perm="Prob") summary(fit) library(lmPerm) set.seed(1234) fit <- lmp(weight ~ height + I(height^2), data=women, perm="Prob") summary(fit) library(lmPerm) set.seed(1234) states <- as.data.frame(state.x77) fit <- lmp(Murder ~ Population + Illiteracy+Income+Frost,data=states, perm="Prob") summary(fit) library(lmPerm) library(multcomp) set.seed(1234) fit <- lmp(response ~ trt, data=cholesterol, perm="Prob") anova(fit) library(lmPerm) set.seed(1234) fit <- lmp(weight ~ gesttime + dose, data=litter, perm="Prob") anova(fit) library(lmPerm) set.seed(1234) fit <- lmp(len ~ supp*dose, data=ToothGrowth, perm="Prob") anova(fit) rsq <- function(formula, data, indices) { d <- data[indices,] fit <- lm(formula, data=d) return(summary(fit)$r.square) } library(boot) set.seed(1234) results <- boot(data=mtcars, statistic=rsq, R=1000, formula=mpg~wt+disp) print(results) plot(results) boot.ci(results, type=c("perc", "bca")) bs <- function(formula, data, indices) { d <- data[indices,] fit <- lm(formula, data=d) return(coef(fit)) } library(boot) set.seed(1234) results <- boot(data=mtcars, statistic=bs, R=1000, formula=mpg~wt+disp) print(results) plot(results, index=2) boot.ci(results, type="bca", index=2) boot.ci(results, type="bca", index=3)
setClass("ProbitSpatial", slots= list(beta ="numeric", rho ="numeric", lambda ="numeric", coeff ="numeric", loglik ="numeric", formula ="formula", nobs ="integer", nvar ="integer", y ="numeric", X ="matrix", time ="numeric", DGP ="character", method ="character", varcov ="character", W ="Matrix", M ="ANY", iW_CL ="numeric", iW_FL ="numeric", iW_FG ="numeric", reltol ="numeric", prune ="numeric", env ="environment", message ="numeric") ) coef.ProbitSpatial <- function(object,...) { return(object@coeff) } effects_ProbitSpatial <- function(object) { idx1 <- match(c("(Intercept)","Intercept","(intercept)","intercept"),colnames(object@X)) if (any(!is.na(idx1))) { nvar <- object@nvar-1 X <- object@X[,-idx1[!is.na(idx1)]] beta <- object@beta[-idx1[!is.na(idx1)]] } else { nvar <- object@nvar X <- object@X beta <- object@beta } if (object@DGP == "SEM"){ ME <- rep(0,nvar) dfit <- dnorm(fitted(object,type="link")) for (i in 1:nvar){ME[i] <- mean(beta[i]*dfit)} ME <- data.frame(ME,row.names=names(beta)) names(ME) <- c("average marginal effetcs") } else { ME <- matrix(0,nvar,3) dfit <- dnorm(fitted(object,type="link")) D <- Matrix::diag(dfit) iW <- ApproxiW(object@W,object@rho,object@iW_CL) P <- D %*% iW for (i in 1:nvar){ dPdi <- P %*% Matrix::diag(beta[i],object@nobs) ME[i,3] <- (1-object@rho)^-1*mean(dfit)*beta[i] ME[i,1] <- mean(Matrix::diag(dPdi)) ME[i,2] <- ME[i,3]-ME[i,1] } ME <- data.frame(ME,row.names=names(beta)) names(ME) <- c("direct","indirect","total") } return(ME) } fitted.ProbitSpatial<-function(object,type=c("link","response","binary"),cut=0.5,...) { type <- match.arg(type) if (object@DGP %in% c("SAR","SARAR")){ iW <- ApproxiW(object@W,object@rho,object@iW_CL) f <- iW %*% (object@X %*% object@beta) } else { f <- (object@X %*% object@beta) } if (type=="link") {f<-as.numeric(f)} if (type=="response") {f<-pnorm(as.numeric(f))} if (type=="binary") {f<-(pnorm(as.numeric(f)) >= cut)*1} return(f) } names.ProbitSpatial <- function(x,...){return(slotNames(x))} predict.ProbitSpatial <- function(object,X,type=c("link","response","binary"),cut=0.5,oos=FALSE,WSO=NULL,...) { if(oos==FALSE){ if (ncol(X) != object@nvar) {stop("number of columns of X does not match the number of variables of the model")} if (nrow(X) != object@nobs) {stop("number of observations of X does not match the one expected by the model. Consider out-of-sample predictions.")} type <- match.arg(type) if (object@DGP == "SAR"){ iW <- ApproxiW(object@W,object@rho,object@iW_CL) f <- iW %*% (X %*% object@beta)} else { f <- (X %*% object@beta) } if (type=="link") {f<-as.numeric(f)} if (type=="response") {f<-pnorm(as.numeric(f))} if (type=="binary") {f<-(pnorm(as.numeric(f))>=cut)*1} return(f) } else { type <- match.arg(type) if (object@DGP == "SAR"){ n<-dim(WSO)[1] ns<-object@nobs no<-n-ns XSO<-X Q<-Matrix::crossprod(Matrix::Diagonal(n,1)-object@rho * WSO) QOO<-Q[(ns+1):n,(ns+1):n] QOS<-Q[(ns+1):n,1:ns] iW <- ApproxiW(WSO,object@rho,object@iW_CL) f <- iW %*% (XSO %*% object@beta) re<-Matrix::solve(QOO,QOS)%*%(object@y-f[1:ns]) f[(ns+1):n]<-f[(ns+1):n]-re } else {f <- (X %*% object@beta)} if (type=="link") {f<-as.numeric(f)} if (type=="response") {f<-pnorm(as.numeric(f))} if (type=="binary") {f<-(pnorm(as.numeric(f))>=cut)*1} return(f)} } residuals.ProbitSpatial <- function(object,...) { object@y - fitted(object,type="response") } ProbitSpatialFit<-function(formula,data,W,DGP='SAR',method="conditional",varcov="varcov",M=NULL,control=list()){ con <- list(iW_CL=6,iW_FL=0,iW_FG=0,reltol=1e-05,prune=1e-4,silent=TRUE) nmsC <- names(con) con[(namc <- names(control))] <- control if (length(noNms <- namc[!namc %in% nmsC])) warning("unknown names in control: ", paste(noNms, collapse = ", ")) mf <- match.call(expand.dots = FALSE) m <- match(c("formula", "data"), names(mf), 0L) mf <- mf[c(1L, m)] mf$drop.unused.levels <- TRUE mf[[1L]] <- as.name("model.frame") mf <- eval(mf, parent.frame()) mt <- attr(mf, "terms") Y <- model.extract(mf, "response") Y <- as.numeric(Y>0) X <- model.matrix(mt, mf) idx1<-match(c("(Intercept)","Intercept","(intercept)","intercept"),colnames(X)) if (any(!is.na(idx1))) { colnames(X)[idx1[!is.na(idx1)]] <- "(Intercept)"} myenv <- new.env() try(rm(myenv),silent =TRUE) myenv <- new.env() myenv[["appiWCL"]] <- con$iW_CL myenv[["appiWFL"]] <- con$iW_FL myenv[["appiNFG"]] <- con$iW_FG myenv[["eps"]] <- con$prune if(is.null(W) | any(abs(Matrix::rowSums(W)-1)>1e-12)) stop('W must be a valid row normalized spatial weight matrix') if(class(W)=="matrix") W <- Matrix::Matrix(W) myenv[["WW"]] <- W myenv[["MM"]] <- M myenv[["ind"]] <- X myenv[["de"]] <- Y myenv[["reltol"]] <- con$reltol message <- 0 if(varcov=='precision') method_sigma='UP' else method_sigma='UC' if (DGP=="SAR" ){DGP_1='SAR'} if (DGP=="SEM" ){DGP_1='SEM'} if (DGP=="SARAR"){DGP_1='SARAR'} lik <- get(paste('conditional',DGP_1,method_sigma,sep='_')) llik <- get(paste('lik',DGP_1,method_sigma,sep='_')) init_cond <- Sys.time() out <- suppressWarnings(lik(myenv)) fint_cond <- Sys.time() tim_cond <- as.numeric(difftime(fint_cond,init_cond,units='secs')) mycoef_cond <- unlist(out$par) myenv$l_cond <- out$l if (DGP_1 == 'SARAR') {second_place=c("rho","lambda") } else {second_place='rho'} names(mycoef_cond) <- c(colnames(X),second_place) retourcond=1 if(method == "full-lik" && DGP %in% c("SAR","SEM")) { retourcond=0 if (con$prune==0) method_grad <- "FG" else method_grad <- "AG" ggrad <- get(paste('grad',DGP,method_sigma,method_grad,sep='_')) init_FL <- Sys.time() out = optim(mycoef_cond,llik,ggrad,myenv,method = "BFGS",control = list(reltol = myenv$reltol)) fint_FL <- Sys.time() tim_FL <- as.numeric(difftime(fint_FL,init_FL,units='secs')) if(!is.list(out)) { retourcond=1 cat('Convergence failed with Full Maximum Likelihood: try to increase iW_FL and/or decrease prune (in case of approximate gradients) and/or stick to the results of conditional likelihood estimation') message=1 } else { mycoef_FL=unlist(out$par) names(mycoef_FL) <- c(colnames(X),'rho') myenv$l_FL=out$value } } if (retourcond==1){mycoef <- mycoef_cond lhat<-myenv$l_cond} else { mycoef <- mycoef_FL lhat <- myenv$l_FL} k <- ncol(X) beta <- mycoef[1:k] rho <- mycoef[k+1] if (DGP=="SARAR") lambda <- mycoef[k+2] if (con$silent==FALSE){ iW <- ApproxiW(W,rho,con$iW_CL) if (DGP %in% c("SAR","SARAR")) { xstar <- iW %*% X } else {xstar <- X} if (DGP %in% c("SAR","SEM")) { v <- sqrt(Matrix::diag(Matrix::tcrossprod(iW))) } else { iM <- ApproxiW(M,lambda,con$iW_CL) v <- sqrt(Matrix::diag(Matrix::tcrossprod(iW %*% iM))) } xb <- as.numeric(xstar %*% beta)/v p <- pnorm(xb) p[which(p==1)] <- 0.9999 p[which(p==0)] <- 0.0001 g <- (dnorm(xb)^2)/(p * (1 - p)) gmat <- as.matrix((sqrt(g)/v) * xstar) vmat1 <- Matrix::solve(Matrix::crossprod(gmat)) semat1 <- sqrt(Matrix::diag(vmat1)) Beta0 <- coef(glm.fit(X, Y,family=binomial(link='probit'))) if (DGP=="SARAR"){ LR_rho<-2*(llik(c(Beta0,0,lambda),myenv)-lhat) LR_lambda<-2*(llik(c(Beta0,rho,0),myenv)-lhat) LR <- c(LR_rho,LR_lambda) } else { LR <- 2*(llik(c(Beta0,0),myenv)-lhat)} cat("St. dev. of beta conditional on rho and Lik-ratio of rho", "\n") if (DGP=="SARAR") {fin_res<-c(beta,rho,lambda)} else {fin_res<-c(beta,rho)} outmat <- cbind(fin_res, c(semat1,LR*NA), c(beta/semat1,LR), c(2 * (1 - pnorm(abs(beta)/semat1)),pchisq(LR, 1, lower.tail = FALSE))) colnames(outmat) <- c("Estimate", "Std. Error", "z-value", "Pr(>|z|)") if (DGP_1 == 'SARAR') { second_place=c("rho","lambda") } else {second_place='rho'} rownames(outmat) <- c(colnames(X),second_place) } out <- new("ProbitSpatial", beta = mycoef[1:k], rho = mycoef[1+k], lambda = ifelse(DGP=="SARAR",mycoef[2+k],0), coeff = mycoef, loglik = ifelse(retourcond==1,myenv$l_cond,myenv$l_FL), formula = formula, nobs = ncol(W), nvar = k, y = Y, X = X, time = ifelse(retourcond==1,tim_cond,tim_FL), DGP = DGP, method = method, varcov = varcov, W = W, M = M, iW_CL = con$iW_CL, iW_FL = con$iW_FL, iW_FG = con$iW_FG, reltol = con$reltol, prune = con$prune, env = myenv, message = message) return(out) } "_PACKAGE" conditional_SAR_UC <- function(myenv) { logl <- function(rho) { -lik_SAR_UC_conditional(rho,myenv)$l} rho = optimize(logl, lower = -1, upper = 1, tol= myenv$reltol) out <- list(lik_SAR_UC_conditional(rho$minimum,myenv)$beta,rho$minimum) names(out) <- c("beta", "rho") return(list(par=out,l=rho$objective))} conditional_SAR_UP <- function(myenv) { logl <- function(rho) { -lik_SAR_UP_conditional(rho,myenv)$l} rho = optimize(logl, lower = -1, upper = 1, tol= myenv$reltol) out <- list(lik_SAR_UP_conditional(rho$minimum,myenv)$beta,rho$minimum) names(out) <- c("beta", "rho") return(list(par=out,l=rho$objective))} conditional_SEM_UC <- function(myenv) { logl <- function(rho) { -lik_SEM_UC_conditional(rho,myenv)$l} rho = optimize(logl, lower = -1, upper = 1, tol= myenv$reltol) out <- list(lik_SEM_UC_conditional(rho$minimum,myenv)$beta,rho$minimum) names(out) <- c("beta", "rho") return(list(par=out,l=rho$objective))} conditional_SEM_UP <- function(myenv) { logl <- function(rho) { -lik_SEM_UP_conditional(rho,myenv)$l} rho = optimize(logl, lower = -1, upper = 1, tol= myenv$reltol) out <- list(lik_SEM_UP_conditional(rho$minimum,myenv)$beta,rho$minimum) names(out) <- c("beta", "rho") return(list(par=out,l=rho$objective))} conditional_SARAR_UC <- function(myenv) { logl <- function(par) { -lik_SARAR_UC_conditional(par,myenv)$l} inipar<-c(0,0) Ui<-matrix(c(1,0,-1,0,0,1,0,-1),4,2) bvec <- c(-0.99, -0.99, -0.99,-0.99) res<-constrOptim(inipar,logl,NULL,ui=Ui,ci=bvec, control=list(reltol=1e-4)) out<-list(par=c(lik_SARAR_UC_conditional(res$par,myenv)$beta, res$par[1],res$par[2]),res$value) names(out) <- c("par","l") return(out) } conditional_SARAR_UP <- function(myenv) { logl <- function(par) { -lik_SARAR_UP_conditional(par,myenv)$l} inipar<-c(0,0) Ui<-matrix(c(1,0,-1,0,0,1,0,-1),4,2) bvec <- c(-0.99, -0.99, -0.99,-0.99) res<-constrOptim(inipar,logl,NULL,ui=Ui,ci=bvec, control=list(reltol=1e-4)) out<-list(par=c(lik_SARAR_UP_conditional(res$par,myenv)$beta, res$par[1],res$par[2]),res$value) names(out) <- c("par","l") return(out) } generate_W <-function(n,nneigh,seed=123) { set.seed(seed) coord <- cbind(runif(n,0,1),runif(n,0,1)) k=nneigh+1 nb1 <- RANN::nn2(as.matrix(coord), k=k ,treetype = c("bd")) W <- Matrix::sparseMatrix(i=rep(seq_along(rep(k,n)),rep(k,n)),j=t(nb1$nn.idx),x=1/k) diag(W) <- 0 if(class(W)=='matrix') W <- Matrix::Matrix(W) ret <- Matrix::summary(as(W, "dgCMatrix") ) ti <- tapply(ret$x,ret$i,function(x) sum(x,na.rm=TRUE)) ret$x <- as.numeric(ret$x/ti[match(ret$i,as.numeric(names(ti)))]) W <- Matrix::sparseMatrix(i = ret$i, j = ret$j,x= ret$x,dims=dim(W)) Matrix::drop0(W) W } sim_binomial_probit<-function(W,X,beta,rho,model="SAR",M=NULL,lambda=NULL, sigma2=1,ord_iW=6,seed=123){ set.seed(seed) k <- length(beta) n <- dim(W)[1] iW <- ApproxiW(W, rho, ord_iW) if (!is.null(M)){ iM <- ApproxiW(M, lambda, ord_iW) } if (dim(X)[1] != dim(W)[1]) (cat("X and W need to have the same number of rows")) if (dim(X)[2] != length(beta))(cat("the number of columns of X has to equal to the length of beta")) e_sim <- rnorm(n,0,sigma2) if (model=="SAR"){z <- iW%*%(X %*% beta + e_sim)} if (model=="SEM"){z <- (X %*% beta + iW%*%e_sim)} if (model=="SARAR"){z <- iW%*%(X %*% beta + iM%*%e_sim)} Y_sim <- as.double(z >= 0) return(Y_sim) } summary.ProbitSpatial <- function(object,covar=FALSE,...) { cat("-- Univariate conditional estimation of spatial probit --\n\n") cat("Sample size = ", object@nobs,"\n") cat("Number of covariates = ",object@nvar,"\n") cat("DGP = ", object@DGP,"\n") cat("estimation method = ", object@method,"\n") vc<-ifelse(object@varcov=="varcov", "Var-Covar Matrix", "Precision Matrix") cat("Variance covariance = ", vc,"\n" ) if (object@iW_CL>0) {cat("order of approx. of iW in the conditional step = ", object@iW_CL,"\n")} if (object@method=="full-lik"){ if (object@iW_FL>0) {cat("order of approximation of iW in the likelihood function = ", object@iW_FL,"\n")} if (object@iW_FG>0) {cat("order of approximation of iW in the gradient function = ", object@iW_FG,"\n")} if (object@prune>0) {cat("pruning in the gradient functions = ", object@prune,"\n")} } cat("Execution time = ", object@time,"\n\n") cat("-----------------------------------------------\n\n") mod_covar <- ifelse(object@varcov=='varcov',"UC","UP") if (covar == TRUE){ mycoef <- object@coeff lik <- get(paste('lik',object@DGP,mod_covar, sep='_')) H <- numDeriv::hessian(lik,x=mycoef,env=object@env) se <- sqrt(diag(abs(solve(H)))) outmat <- cbind(mycoef, se, mycoef/se, 2 * (1 - pnorm(abs(mycoef)/se))) colnames(outmat) <- c("Estimate", "Std. Error", "z-value", "Pr(>z)") rownames(outmat) <- names(mycoef) cat("Unconditional standard errors with variance-covariance matrix\n\n") } else { lik<-get(paste('conditional',object@DGP,mod_covar, sep='_')) llik<-get(paste('lik',object@DGP, mod_covar,sep='_')) env1 <- object@env Beta0 <- suppressWarnings(coef(glm.fit(object@X,object@y,intercept=FALSE,family=binomial(link='probit')))) if (object@DGP=="SARAR"){ LR_rho=-2*(llik(c(Beta0,0,object@lambda),env1)-object@loglik) LR_lambda=-2*(llik(c(Beta0,object@rho,0),env1)-object@loglik) LR <- c(LR_rho,LR_lambda) } else { LR=-2*(llik(c(Beta0,0),env1)-object@loglik) } LR_beta <- c() for(i in 1:object@nvar){ XX <- env1$ind env1$ind <- as.matrix(XX[,-i]) lc=lik(env1) env1$ind <- as.matrix(XX) LR_beta <- c(LR_beta,-2*(lc$l-object@loglik))} LRtheta <- abs(as.numeric(c(LR_beta,LR))) outmat <- cbind(object@coeff, LRtheta, pchisq(LRtheta, 1, lower.tail = FALSE)) colnames(outmat) <- c("Estimate", "LR test", "Pr(>z)") if(object@DGP=="SARAR"){rownames(outmat)<-c(colnames(object@X),'rho','lambda') } else { rownames(outmat) <- c(colnames(object@X),'rho') } cat("Unconditional standard errors with likelihood-ratio test\n") } print(outmat) cat("\n-----------------------------------------------\n") f<-fitted(object,type="binary") y<-object@y TP <- sum(f==1 & y==1) TN <- sum(f==0 & y==0) FP <- sum(f==1 & y==0) FN <- sum(f==0 & y==1) conf_matrix<-matrix(c(TP,FN,FP,TN),2,2) colnames(conf_matrix) <- c("pred 1","pred 0") rownames(conf_matrix) <- c("true 1","true 0") cat("Confusion Matrix:\n") print(conf_matrix) cat("Accuracy:\t", (TP+TN)/(TP+TN+FP+FN), "\n") cat("Sensitivity:\t", (TP)/(TP+FN), "\t Specificity:\t",(TN)/(FP+TN),"\n") cat("Pos Pred Value:\t", (TP)/(TP+FP), "\t Neg Pred Value:",(TN)/(TN+FN),"\n") } "Katrina" setMethod("$", signature(x = "ProbitSpatial"), function (x, name) { slot(x,name) } )
context("Player Name Lookup") cols <- c( "name_first", "name_last", "name_given", "name_suffix", "name_nick", "birth_year", "mlb_played_first", "key_mlbam", "key_retro", "key_bbref", "key_fangraphs" ) test_that("Player Name Lookup", { skip_on_cran() x <- playername_lookup("kaaihki01") expect_equal(colnames(x), cols) expect_s3_class(x, "data.frame") })
filter_activity_instance <- function(eventlog, activity_instances, reverse) { UseMethod("filter_activity_instance") } filter_activity_instance.eventlog <- function(eventlog, activity_instances = NULL, reverse = FALSE){ if(!reverse) filter(eventlog, (!!activity_instance_id_(eventlog)) %in% activity_instances) else filter(eventlog, !((!!activity_instance_id_(eventlog)) %in% activity_instances)) } filter_activity_instance.grouped_eventlog <- function(eventlog, activity_instances = NULL, reverse = FALSE) { grouped_filter(eventlog, filter_activity_instance, cases, reverse) } ifilter_activity_instance <- function(eventlog) { ui <- miniPage( gadgetTitleBar("Filter Activity Instances"), miniContentPanel( fillRow(flex = c(10,1,8), selectizeInput("selected_cases", label = "Select activity instances:", choices = eventlog %>% pull(!!as.symbol(activity_instance_id(eventlog))) %>% unique, selected = NA, multiple = T), " ", radioButtons("reverse", "Reverse filter: ", choices = c("Yes","No"), selected = "No") ) ) ) server <- function(input, output, session){ observeEvent(input$done, { filtered_log <- filter_activity_instance(eventlog, activity_instances = input$selected_cases, reverse = ifelse(input$reverse == "Yes", T, F)) stopApp(filtered_log) }) } runGadget(ui, server, viewer = dialogViewer("Filter Activity instances", height = 400)) }
promaxQ <- function(R = NULL, urLoadings = NULL, facMethod = "fals", numFactors = NULL, power = 4, standardize = "Kaiser", epsilon = 1e-4, maxItr = 15000, faControl = NULL) { if ( is.null(R) & is.null(urLoadings) ) { stop("Either the 'R' or 'urLoadings' arguments must be specified.") } if ( is.null(urLoadings) & is.null(numFactors) ) { stop("An unrotated factor matrix is not provided, please specify the number of factors to extract to generate this loadings matrix.") } if ( is.null(faControl) ) { cnFA <- list(treatHeywood = TRUE, nStart = 10, maxCommunality = .995, epsilon = 1e-4, communality = "SMC", maxItr = 15000) faControl <- cnFA } if ( is.null(urLoadings) ) { faOut <- faX(R = R, numFactors = numFactors, facMethod = facMethod, faControl = faControl) urLoadings <- faOut$loadings[] } stnd <- faStandardize(method = standardize, lambda = urLoadings) lambda <- stnd$lambda VarimaxOutput <- GPArotation::Varimax(L = lambda, normalize = FALSE, eps = epsilon, maxit = maxItr) convergence <- VarimaxOutput$convergence VarimaxOutput$loadings[] <- stnd$DvInv %*% VarimaxOutput$loadings[] VMaxDisc <- min( VarimaxOutput$Table[, 2] ) VMaxLoadings <- Loadings <- VarimaxOutput$loadings[] signTarget <- sign(Loadings) ObliqueTarg <- abs(Loadings)^power * signTarget TMatrix <- solve( t(Loadings) %*% Loadings ) %*% t(Loadings) %*% ObliqueTarg D2 <- diag( solve( t(TMatrix) %*% TMatrix ) ) Dmat <- diag(sqrt(D2)) rescaledTMatrix <- TMatrix %*% Dmat PromaxLoadings <- Loadings %*% rescaledTMatrix Phi <- solve( t(rescaledTMatrix) %*% rescaledTMatrix ) facOrder <- orderFactors(Lambda = PromaxLoadings, PhiMat = Phi, salient = .25, reflect = TRUE) PromaxLoadings <- facOrder$Lambda Phi <- facOrder$PhiMat list(loadings = PromaxLoadings, vmaxLoadings = VMaxLoadings, rotMatrix = rescaledTMatrix, Phi = Phi, vmaxDiscrepancy = VMaxDisc, convergence = convergence, Table = VarimaxOutput$Table, rotateControl = list(power = power, standardize = standardize, epsilon = epsilon, maxItr = maxItr)) }
MeasErrorRandom <- function(substitute, variance) { if (missing(substitute)) stop("'substitute' in the MeasErrorRandom object is missing") if (!is.vector(substitute)) stop("'substitute' in the MeasErrorRandom object is not a vector") if (any(is.na(substitute)) == TRUE) stop("'substitute' in the MeasErrorRandom object cannot contain missing values") if (!is.numeric(variance)) { stop("'variance' in the MeasErrorRandom object is not numeric") } out <- list(substitute = substitute, variance = variance) input <- c(substitute = as.list(match.call())$substitute) attr(out, "input") <- input attr(out, "call") <- match.call() class(out) <- c("MeasErrorRandom", "list") out }
plotGenomeLabel <- function(chrom, chromstart = NULL, chromend = NULL, assembly = "hg38", fontsize = 10, fontcolor = "black", linecolor = "black", margin = unit(1, "mm"), scale = "bp", commas = TRUE, sequence = TRUE, boxWidth = 0.5, axis = "x", at = NULL, tcl = 0.5, x, y, length, just = c("left", "top"), default.units = "inches", params = NULL, ...) { errorcheck_plotGenomeLabel <- function(scale, ticks, object, axis) { if (!scale %in% c("bp", "Kb", "Mb")) { stop("Invalid \'scale\'. Options are \'bp\', \'Kb\', or \'Mb\'.", call. = FALSE ) } if (!is.null(ticks)) { if (is.null(object$chrom)) { stop("Cannot add tick marks to a genome label of entire ", "genome assembly.", call. = FALSE) } if (range(ticks)[1] < object$chromstart | range(ticks)[2] > object$chromend) { stop("Given tick locations do not fall within ", "the genomic range.", call. = FALSE ) } } if (!axis %in% c("x", "y")) { stop("Invalid \'axis\'. Options are \'x\' or \'y\'.", call. = FALSE) } } genomeLabelInternal <- parseParams( params = params, defaultArgs = formals(eval(match.call()[[1]])), declaredArgs = lapply(match.call()[-1], eval.parent, n = 2), class = "genomeLabelInternal" ) additionalParams <- list(...) if ("space" %in% names(additionalParams)) { genomeLabelInternal$space <- additionalParams$space } genomeLabelInternal$gp <- gpar( fontsize = genomeLabelInternal$fontsize, col = genomeLabelInternal$linecolor, fontcolor = genomeLabelInternal$fontcolor, lineend = "butt" ) genomeLabelInternal$gp <- setGP( gpList = genomeLabelInternal$gp, params = genomeLabelInternal, ... ) genomeLabelInternal$just <- justConversion(genomeLabelInternal$just) genomeLabel <- structure(list( chrom = genomeLabelInternal$chrom, chromstart = genomeLabelInternal$chromstart, chromend = genomeLabelInternal$chromend, assembly = genomeLabelInternal$assembly, x = genomeLabelInternal$x, y = genomeLabelInternal$y, width = NULL, height = NULL, just = genomeLabelInternal$just, grobs = NULL ), class = "genomeLabel") if (is.null(genomeLabel$x)) stop("argument \"x\" is missing, ", "with no default.", call. = FALSE) if (is.null(genomeLabel$y)) stop("argument \"y\" is missing, ", "with no default.", call. = FALSE) if (is.null(genomeLabel$chrom)) stop("argument \"chrom\" is missing, ", "with no default.", call. = FALSE) if (is.null(genomeLabelInternal$length)) { stop("argument \"length\" is missing, ", "with no default.", call. = FALSE ) } if (base::length(genomeLabel$chrom) == 1) { if (is.null(genomeLabel$chromstart)) stop("argument \"chromstart\" ", "is missing, with no ", "default.", call. = FALSE) if (is.null(genomeLabel$chromend)) stop("argument \"chromend\" ", "is missing, with no ", "default.", call. = FALSE) } else { if (is.null(genomeLabelInternal$space)) { genomeLabelInternal$space <- 0.01 } } check_page(error = paste("Cannot plot a genome label without", "a `plotgardener` page.")) errorcheck_plotGenomeLabel( scale = genomeLabelInternal$scale, ticks = genomeLabelInternal$at, object = genomeLabel, axis = genomeLabelInternal$axis ) genomeLabel$assembly <- parseAssembly(assembly = genomeLabel$assembly) genomeLabel$x <- misc_defaultUnits(value = genomeLabel$x, name = "x", default.units = genomeLabelInternal$default.units) genomeLabel$y <- misc_defaultUnits( value = genomeLabel$y, name = "y", default.units = genomeLabelInternal$default.units) genomeLabelInternal$length <- misc_defaultUnits( value = genomeLabelInternal$length, name = "length", default.units = genomeLabelInternal$default.units) genomeLabelInternal$margin <- misc_defaultUnits( value = genomeLabelInternal$margin, name = "margin", default.units = genomeLabelInternal$default.units) genomeLabelInternal$margin <- convertHeight(genomeLabelInternal$margin, unitTo = get("page_units", envir = pgEnv) ) genomeLabelInternal$tgH <- convertHeight(heightDetails(textGrob( label = genomeLabelInternal$scale, x = 0.5, y = 0.5, default.units = "npc", gp = genomeLabelInternal$gp )), unitTo = get("page_units", envir = pgEnv) ) if (!is.null(genomeLabelInternal$at)) { genomeLabelInternal$tick_height <- genomeLabelInternal$tgH * (genomeLabelInternal$tcl) genomeLabelInternal$depth <- convertHeight(genomeLabelInternal$tgH + genomeLabelInternal$tick_height + 0.5 * genomeLabelInternal$tgH + genomeLabelInternal$margin, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) } else { genomeLabelInternal$tick_height <- NULL genomeLabelInternal$depth <- convertHeight(genomeLabelInternal$tgH + genomeLabelInternal$margin, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) } if (base::length(genomeLabel$chrom) == 1){ vp_name <- plotChromGenomeLabel(genomeLabel = genomeLabel, genomeLabelInternal = genomeLabelInternal, ...) } else { vp_name <- plotManhattanGenomeLabel(genomeLabel = genomeLabel, genomeLabelInternal = genomeLabelInternal) } genomeLabel$grobs <- get("genomeLabel_grobs", envir = pgEnv) grid.draw(genomeLabel$grobs) genomeLabel$width <- genomeLabelInternal$length genomeLabel$height <- genomeLabelInternal$depth if (genomeLabelInternal$axis == "y") { genomeLabel$width <- genomeLabelInternal$depth genomeLabel$height <- genomeLabelInternal$length } message("genomeLabel[", vp_name, "]") invisible(genomeLabel) } plotChromGenomeLabel <- function(genomeLabel, genomeLabelInternal, ...){ comma_labels <- function(object, commas, fact, ...) { digits <- list(...)$digits if (is.null(digits)){ if (fact == 1){ digits <- rep(0, 2) } else { digits <- rep(1, 2) } } if (length(digits) == 1){ digits <- rep(digits, 2) } roundedStart <- round(object$chromstart / fact, digits[1]) if ((roundedStart * fact) != object$chromstart) { roundedStart <- paste0("~", roundedStart) warning("Start label is rounded.", call. = FALSE) } roundedEnd <- round(object$chromend / fact, digits[2]) if ((roundedEnd * fact) != object$chromend) { roundedEnd <- paste0("~", roundedEnd) warning("End label is rounded.", call. = FALSE) } if (commas == TRUE) { chromstartlabel <- formatC(roundedStart, format = "f", big.mark = ",", digits = digits[1] ) chromendlabel <- formatC(roundedEnd, format = "f", big.mark = ",", digits = digits[2] ) } else { chromstartlabel <- roundedStart chromendlabel <- roundedEnd } return(list(chromstartlabel, chromendlabel)) } chrom_viewport <- function(object, length, depth, seqType, vp_name, seqHeight, just, axis){ convertedPageCoords <- convert_page(object = structure(list( width = length, height = unit( depth, get("page_units", envir = pgEnv) ), x = object$x, y = object$y ), class = "genomeLabelInternal" )) convertedPageCoords$length <- convertedPageCoords$width convertedPageCoords$depth <- convertedPageCoords$height convertedViewport <- viewport( width = convertedPageCoords$length, height = convertedPageCoords$depth, x = convertedPageCoords$x, y = convertedPageCoords$y, just = just ) if (!is.null(seqType)) { topLeftViewport <- vp_topLeft(viewport = convertedViewport) seq_height <- unit(seqHeight, get("page_units", envir = pgEnv)) vp1 <- viewport( width = convertedPageCoords$width, height = unit(depth, get("page_units", envir = pgEnv)), x = topLeftViewport[[1]], y = topLeftViewport[[2]] - seq_height, just = c("left", "top"), name = paste0(vp_name, "_01"), xscale = c(object$chromstart, object$chromend), yscale = c(0, depth) ) vp2 <- viewport( width = convertedPageCoords$width, height = seq_height, x = topLeftViewport[[1]], y = topLeftViewport[[2]], just = c("left", "top"), name = paste0(vp_name, "_02"), clip = "on", xscale = c(object$chromstart, object$chromend) ) vp <- vpList(vp1, vp2) } else { if (axis == "y") { convertedViewport <- viewport( width = convertedPageCoords$depth, height = convertedPageCoords$length, x = convertedPageCoords$x, y = convertedPageCoords$y, just = just ) bottomRightViewport <- vp_bottomRight(viewport = convertedViewport) vp <- viewport( width = convertedPageCoords$length, height = convertedPageCoords$depth, x = bottomRightViewport[[1]] - convertedPageCoords$depth, y = bottomRightViewport[[2]], just = c("left", "top"), name = vp_name, xscale = c(object$chromstart, object$chromend), yscale = c(0, depth), angle = 90 ) } else { vp <- viewport( width = convertedPageCoords$width, height = convertedPageCoords$height, x = convertedPageCoords$x, y = convertedPageCoords$y, just = just, name = vp_name, xscale = c(object$chromstart, object$chromend), yscale = c(0, depth) ) } } return(vp) } chrom_grobs <- function(ticks, seqType, scale, chromLabel, startLabel, endLabel, object, vp, yaxis) { margin <- convertHeight(object$margin, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) height <- convertHeight(object$depth, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) if (!is.null(seqType)) { assign("genomeLabel_grobs", gTree(), envir = pgEnv) chrom_vp <- vp[[1]] if (!is.null(ticks)) { tgH <- convertHeight(object$tgH, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) tick_height <- convertHeight(object$tick_height, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) x_coords <- ticks y0_coord <- height y1_coords <- rep(height - tick_height, length(ticks)) yLabel <- unit(height - (tick_height + margin), "native") tickGrobs <- segmentsGrob( x0 = x_coords, y0 = rep(y0_coord, length(ticks)), x1 = x_coords, y1 = y1_coords, vp = chrom_vp, gp = object$gp, default.units = "native" ) line <- segmentsGrob( x0 = unit(0, "npc"), x1 = unit(1, "npc"), y0 = y0_coord, y1 = y0_coord, vp = chrom_vp, gp = object$gp, default.units = "native" ) object$gp$col <- object$gp$fontcolor startLab <- textGrob( label = paste(startLabel, scale), x = unit(0, "npc"), y = yLabel, just = c("left", "top"), vp = chrom_vp, gp = object$gp ) endLab <- textGrob( label = paste(endLabel, scale), x = unit(1, "npc"), y = yLabel, just = c("right", "top"), vp = chrom_vp, gp = object$gp ) object$gp$fontface <- "bold" chromLab <- textGrob( label = chromLabel, x = unit(0.5, "npc"), y = yLabel, vp = chrom_vp, gp = object$gp, just = c("center", "top") ) assign("genomeLabel_grobs", setChildren(get("genomeLabel_grobs", envir = pgEnv), children = gList( line, chromLab, startLab, endLab, tickGrobs ) ), envir = pgEnv ) } else { yLabel <- unit(height - margin, "native") line <- segmentsGrob( x0 = unit(0, "npc"), x1 = unit(1, "npc"), y0 = height, y1 = height, vp = chrom_vp, gp = object$gp, default.units = "native" ) object$gp$col <- object$gp$fontcolor startLab <- textGrob( label = paste(startLabel, scale, sep = " "), x = unit(0, "npc"), y = yLabel, vp = chrom_vp, just = c("left", "top"), gp = object$gp ) endLab <- textGrob( label = paste(endLabel, scale, sep = " "), x = unit(1, "npc"), y = yLabel, vp = chrom_vp, just = c("right", "top"), gp = object$gp ) object$gp$fontface <- "bold" chromLab <- textGrob( label = chromLabel, x = unit(0.5, "npc"), y = yLabel, vp = chrom_vp, gp = object$gp, just = c("center", "top") ) assign("genomeLabel_grobs", setChildren(get("genomeLabel_grobs", envir = pgEnv), children = gList( line, chromLab, startLab, endLab ) ), envir = pgEnv ) } } else { assign("genomeLabel_grobs", gTree(vp = vp), envir = pgEnv) if (!is.null(ticks)) { tgH <- convertHeight(object$tgH, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) tick_height <- convertHeight(object$tick_height, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) x_coords <- ticks if (yaxis == TRUE) { y0_coord <- 0 y1_coords <- rep(tick_height, length(ticks)) yLabel <- unit(tick_height + margin, "native") tickGrobs <- segmentsGrob( x0 = x_coords, y0 = rep(y0_coord, length(ticks)), x1 = x_coords, y1 = y1_coords, gp = object$gp, default.units = "native" ) line <- segmentsGrob( x0 = unit(0, "npc"), x1 = unit(1, "npc"), y0 = y0_coord, y1 = y0_coord, gp = object$gp, default.units = "native" ) object$gp$col <- object$gp$fontcolor startLab <- textGrob( label = paste(startLabel, scale), x = unit(0, "npc"), y = yLabel, just = c("left", "bottom"), gp = object$gp ) endLab <- textGrob( label = paste(endLabel, scale), x = unit(1, "npc"), y = yLabel, just = c("right", "bottom"), gp = object$gp ) object$gp$fontface <- "bold" chromLab <- textGrob( label = chromLabel, x = unit(0.5, "npc"), y = yLabel, gp = object$gp, just = c("center", "bottom") ) } else { y0_coord <- height y1_coords <- rep(height - tick_height, length(ticks)) yLabel <- unit(height - (tick_height + margin), "native") tickGrobs <- segmentsGrob( x0 = x_coords, y0 = rep(y0_coord, length(ticks)), x1 = x_coords, y1 = y1_coords, gp = object$gp, default.units = "native" ) line <- segmentsGrob( x0 = unit(0, "npc"), x1 = unit(1, "npc"), y0 = y0_coord, y1 = y0_coord, gp = object$gp, default.units = "native" ) object$gp$col <- object$gp$fontcolor startLab <- textGrob( label = paste(startLabel, scale), x = unit(0, "npc"), y = unit(tgH + 0.25 * tgH, "native"), just = c("left", "top"), gp = object$gp ) endLab <- textGrob( label = paste(endLabel, scale), x = unit(1, "npc"), y = unit(tgH + 0.25 * tgH, "native"), just = c("right", "top"), gp = object$gp ) object$gp$fontface <- "bold" chromLab <- textGrob( label = chromLabel, x = unit(0.5, "npc"), y = unit(tgH + 0.25 * tgH, "native"), gp = object$gp, just = c("center", "top") ) } assign("genomeLabel_grobs", setChildren(get("genomeLabel_grobs", envir = pgEnv), children = gList( line, chromLab, startLab, endLab, tickGrobs ) ), envir = pgEnv ) } else { if (yaxis == TRUE) { yLabel <- unit(margin, "native") line <- segmentsGrob( x0 = unit(0, "npc"), x1 = unit(1, "npc"), y0 = unit(0, "npc"), y1 = unit(0, "npc"), gp = object$gp ) object$gp$col <- object$gp$fontcolor startLab <- textGrob( label = paste(startLabel, scale, sep = " "), x = unit(0, "npc"), y = yLabel, just = c("left", "bottom"), gp = object$gp ) endLab <- textGrob( label = paste(endLabel, scale, sep = " "), x = unit(1, "npc"), y = yLabel, just = c("right", "bottom"), gp = object$gp ) object$gp$fontface <- "bold" chromLab <- textGrob( label = chromLabel, x = unit(0.5, "npc"), y = yLabel, gp = object$gp, just = c("center", "bottom") ) } else { yLabel <- unit(height - margin, "native") line <- segmentsGrob( x0 = unit(0, "npc"), x1 = unit(1, "npc"), y0 = height, y1 = height, gp = object$gp, default.units = "native" ) object$gp$col <- object$gp$fontcolor startLab <- textGrob( label = paste(startLabel, scale, sep = " "), x = unit(0, "npc"), y = yLabel, just = c("left", "top"), gp = object$gp ) endLab <- textGrob( label = paste(endLabel, scale, sep = " "), x = unit(1, "npc"), y = yLabel, just = c("right", "top"), gp = object$gp ) object$gp$fontface <- "bold" chromLab <- textGrob( label = chromLabel, x = unit(0.5, "npc"), y = yLabel, gp = object$gp, just = c("center", "top") ) } assign("genomeLabel_grobs", setChildren(get("genomeLabel_grobs", envir = pgEnv), children = gList( line, chromLab, startLab, endLab ) ), envir = pgEnv ) } } } seq_grobs <- function(object, seqHeight, seqType, assembly, chromLabel, vp, boxWidth, gparParams) { bsgenome <- eval(parse(text = paste0(as.name(object$assembly$BSgenome), "::", as.name(object$assembly$BSgenome)))) sequence <- strsplit(as.character(BSgenome::getSeq( bsgenome, GenomicRanges::GRanges( seqnames = chromLabel, ranges = IRanges::IRanges( start = object$chromstart, end = object$chromend ) ) )), split = "" ) dfSequence <- data.frame( "nucleotide" = unlist(sequence), "pos" = seq(object$chromstart, object$chromend), "col" = "grey" ) invisible(tryCatch(dfSequence[which( dfSequence$nucleotide == "A" ), ]$col <- " error = function(e) {} )) invisible(tryCatch(dfSequence[which( dfSequence$nucleotide == "T" ), ]$col <- " error = function(e) {} )) invisible(tryCatch(dfSequence[which( dfSequence$nucleotide == "G" ), ]$col <- " error = function(e) {} )) invisible(tryCatch(dfSequence[which( dfSequence$nucleotide == "C" ), ]$col <- " error = function(e) {} )) seq_vp <- vp[[2]] if (seqType == "letters") { seqGrobs <- textGrob( label = dfSequence$nucleotide, x = dfSequence$pos, y = unit(0.5, "npc"), just = "center", vp = seq_vp, default.units = "native", gp = gpar( col = dfSequence$col, fontsize = gparParams$gp$fontsize - 2 ) ) } else if (seqType == "boxes") { seqGrobs <- rectGrob( x = dfSequence$pos, y = unit(1, "npc"), width = boxWidth, height = unit( seqHeight - 0.05 * seqHeight, get("page_units", envir = pgEnv) ), just = c("center", "top"), vp = seq_vp, default.units = "native", gp = gpar(col = NA, fill = dfSequence$col) ) } assign("genomeLabel_grobs", addGrob( gTree = get("genomeLabel_grobs", envir = pgEnv), child = seqGrobs ), envir = pgEnv ) } if (genomeLabelInternal$scale == "bp") { fact <- 1 } if (genomeLabelInternal$scale == "Mb") { fact <- 1000000 } if (genomeLabelInternal$scale == "Kb") { fact <- 1000 } commaLabels <- comma_labels( object = genomeLabel, commas = genomeLabelInternal$commas, fact = fact, ... ) chromstartlabel <- commaLabels[[1]] chromendlabel <- commaLabels[[2]] seq_height <- heightDetails(textGrob( label = "A", x = 0.5, y = 0.5, default.units = "npc", gp = gpar(fontsize = genomeLabelInternal$gp$fontsize - 2) )) seq_height <- convertHeight(seq_height + 0.05 * seq_height, unitTo = get("page_units", envir = pgEnv) ) seqType <- NULL if (genomeLabelInternal$sequence == TRUE) { if (genomeLabelInternal$axis == "x") { labelWidth <- convertWidth(genomeLabelInternal$length, unitTo = "inches", valueOnly = TRUE ) bpWidth <- convertWidth(widthDetails(textGrob( label = "A", x = 0.5, y = 0.5, default.units = "npc", gp = gpar(fontsize = genomeLabelInternal$gp$fontsize - 2) )), unitTo = "inches", valueOnly = TRUE ) seqRange <- genomeLabel$chromend - genomeLabel$chromstart seqWidth <- bpWidth * seqRange if (seqWidth <= labelWidth) { seqType <- "letters" } else if (seqWidth / labelWidth <= 9) { seqType <- "boxes" } } } if (!is.null(seqType)) { if (!is.null(genomeLabel$assembly$BSgenome)) { if (!requireNamespace(genomeLabel$assembly$BSgenome, quietly = TRUE)){ bsChecks <- FALSE warning("`", genomeLabel$assembly$BSgenome, "` not available. ", "Sequence information will not be displayed.", call. = FALSE) } else { bsChecks <- TRUE } if (bsChecks == FALSE) { seqType <- NULL } } else { warning("No `BSgenome` package found for the input assembly. ", "Sequence information cannot be displayed.", call. = FALSE) seqType <- NULL } } if (!is.null(seqType)) { seq_height <- convertHeight(seq_height, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) genomeLabelInternal$depth <- unit( genomeLabelInternal$depth + seq_height, get("page_units", envir = pgEnv) ) } else { genomeLabelInternal$depth <- unit( genomeLabelInternal$depth, get("page_units", envir = pgEnv) ) } currentViewports <- current_viewports() vp_name <- paste0( "genomeLabel", base::length(grep( pattern = "genomeLabel", x = currentViewports )) + 1 ) vp <- chrom_viewport( object = genomeLabel, length = genomeLabelInternal$length, depth = genomeLabelInternal$depth, seqType = seqType, seqHeight = seq_height, vp_name = vp_name, just = genomeLabel$just, axis = genomeLabelInternal$axis ) chrom_grobs( ticks = genomeLabelInternal$at, seqType = seqType, scale = genomeLabelInternal$scale, chromLabel = genomeLabel$chrom, startLabel = chromstartlabel, endLabel = chromendlabel, object = genomeLabelInternal, vp = vp, yaxis = (genomeLabelInternal$axis == "y") ) if (!is.null(seqType)) { seq_grobs( object = genomeLabel, seqHeight = seq_height, seqType = seqType, assembly = genomeLabel$assembly, chromLabel = genomeLabel$chrom, vp = vp, boxWidth = genomeLabelInternal$boxWidth, gparParams = genomeLabelInternal ) } return(vp_name) } plotManhattanGenomeLabel <- function(genomeLabel, genomeLabelInternal){ manhattan_viewport <- function(object, length, depth, vp_name, just, axis, space){ convertedPageCoords <- convert_page(object = structure(list( width = length, height = unit( depth, get("page_units", envir = pgEnv) ), x = object$x, y = object$y ), class = "genomeLabelInternal" )) convertedPageCoords$length <- convertedPageCoords$width convertedPageCoords$depth <- convertedPageCoords$height convertedViewport <- viewport( width = convertedPageCoords$length, height = convertedPageCoords$depth, x = convertedPageCoords$x, y = convertedPageCoords$y, just = just ) if (is(object$assembly$TxDb, "TxDb")) { txdbChecks <- TRUE } else { if (!requireNamespace(object$assembly$TxDb, quietly = TRUE)){ txdbChecks <- FALSE warning("`", object$assembly$TxDb, "` not available. Please ", "install to label genome.", call. = FALSE) } else { txdbChecks <- TRUE } } if (txdbChecks == TRUE) { if (is(object$assembly$TxDb, "TxDb")) { tx_db <- object$assembly$TxDb } else { tx_db <- eval(parse(text = paste0(as.name(object$assembly$TxDb), "::", as.name(object$assembly$TxDb)))) } assembly_data <- as.data.frame(setDT(as.data.frame( GenomeInfoDb::seqlengths(tx_db) ), keep.rownames = TRUE )) colnames(assembly_data) <- c("chrom", "length") assembly_data <- assembly_data[which(assembly_data[, "chrom"] %in% object$chrom), ] offsetAssembly <- spaceChroms( assemblyData = assembly_data, space = space ) cumsums <- cumsum(as.numeric(assembly_data[, "length"])) spacer <- cumsums[length(cumsum( as.numeric(assembly_data[, "length"]) ))] * space xscale <- c(0, max(offsetAssembly[, "end"]) + spacer) } else { xscale <- c(0, 1) } if (axis == "y") { convertedViewport <- viewport( width = convertedPageCoords$depth, height = convertedPageCoords$length, x = convertedPageCoords$x, y = convertedPageCoords$y, just = just ) bottomRightViewport <- vp_bottomRight(viewport = convertedViewport) vp <- viewport( width = convertedPageCoords$length, height = convertedPageCoords$depth, x = bottomRightViewport[[1]] - convertedPageCoords$depth, y = bottomRightViewport[[2]], just = c("left", "top"), name = vp_name, xscale = c(object$chromstart, object$chromend), yscale = c(0, depth), angle = 90 ) } else { vp <- viewport( width = convertedPageCoords$width, height = convertedPageCoords$height, x = convertedPageCoords$x, y = convertedPageCoords$y, just = just, name = vp_name, xscale = xscale, yscale = c(0, depth) ) } return(vp) } genome_grobs <- function(object, vp, gp, space) { assign("genomeLabel_grobs", gTree(vp = vp), envir = pgEnv) if (is(object$assembly$TxDb, "TxDb")) { txdbChecks <- TRUE } else { if (!requireNamespace(object$assembly$TxDb, quietly = TRUE)){ txdbChecks <- FALSE } else { txdbChecks <- TRUE } } if (txdbChecks == TRUE) { if (is(object$assembly$TxDb, "TxDb")) { tx_db <- object$assembly$TxDb } else { tx_db <- eval(parse(text = paste0(as.name(object$assembly$TxDb), "::", as.name(object$assembly$TxDb)))) } assembly_data <- as.data.frame(setDT(as.data.frame( GenomeInfoDb::seqlengths(tx_db) ), keep.rownames = TRUE )) colnames(assembly_data) <- c("chrom", "length") assembly_data <- assembly_data[which(assembly_data[, "chrom"] %in% object$chrom), ] offsetAssembly <- spaceChroms( assemblyData = assembly_data, space = space ) chromCenters <- (offsetAssembly[, "start"] + offsetAssembly[, "end"]) / 2 margin <- convertHeight(object$margin, unitTo = get("page_units", envir = pgEnv), valueOnly = TRUE ) line <- segmentsGrob( x0 = unit(0, "npc"), x1 = unit(1, "npc"), y0 = unit(1, "npc"), y1 = unit(1, "npc"), gp = gp ) gp$col <- gp$fontcolor labels <- textGrob( label = gsub("chr", "", offsetAssembly[, 1]), x = chromCenters, y = unit(1, "npc") - unit(margin, "native"), just = c("center", "top"), gp = gp, default.units = "native" ) assign("genomeLabel_grobs", setChildren(get("genomeLabel_grobs", envir = pgEnv), children = gList(line, labels) ), envir = pgEnv ) } } currentViewports <- current_viewports() vp_name <- paste0( "genomeLabel", base::length(grep( pattern = "genomeLabel", x = currentViewports )) + 1 ) vp <- manhattan_viewport( object = genomeLabel, length = genomeLabelInternal$length, depth = genomeLabelInternal$depth, vp_name = vp_name, just = genomeLabel$just, axis = genomeLabelInternal$axis, space = genomeLabelInternal$space ) genome_grobs( object = genomeLabelInternal, vp = vp, gp = genomeLabelInternal$gp, space = genomeLabelInternal$space ) return(vp_name) }
pscoast <- function(cmd, file=getOption("gmt.file")) { if(is.null(file)) stop("please pass a valid 'file' argument, or run gmt(file=\"myfile\")") owd <- setwd(dirname(file)); on.exit(setwd(owd)) gmt.system(paste("gmt pscoast",cmd), file=file) invisible(NULL) }
iterationPlot <- function(model.fit){ UseMethod("iterationPlot") } iterationPlot.list <- function(model.fit) { history <- model.fit$item.log nitems <- model.fit$nitems ncat <- model.fit$ncat nless <- model.fit$nless ItemNames <- model.fit$ItemNames Maxnphi <- model.fit$Maxnphi PhiNames <- model.fit$PhiNames model.type <- model.fit$model.type phi.log <- model.fit$phi.log ok.models <- c("nominal", "gpcm") "%notin%"<- Negate("%in%") if (model.type %notin% ok.models) { stop("Iteration plot only applies to nominal and gpcm models") } oldpar <- graphics::par(no.readonly = TRUE) on.exit(graphics::par(oldpar)) graphics::par(mfrow=c(1,2)) get.names <- as.data.frame(history[[1]]) lambda.names <- names(get.names[3:(2+nless)]) if (model.type=="nominal") { nu.names <- names(get.names[(2+ncat):(ncat+ncat)]) } else { nu.names <- names(get.names[(1+ncat)]) } histry <- get.names[, lambda.names] lam.min<- min(histry) lam.max <- max(histry) histry <- get.names[, nu.names] nu.min<- min(histry) nu.max <- max(histry) for (item in 2:nitems) { histry <- as.data.frame(history[[item]] ) histry <- histry[2:nrow(histry),] lmin <- min(histry[ , lambda.names]) if (lmin < lam.min){ lam.min <- lmin } lmax <- max(as.matrix(histry[ , lambda.names])) if (lmax > lam.max){ lam.max <- lmax} nmin <- min(as.matrix(histry[ , nu.names])) if (nmin < nu.min) { nu.min <- nmin } nmax <- max(as.matrix(histry[ , nu.names])) if (nmax > nu.max){ nu.max <- nmax } } for (item in 1:nitems) { histry <- as.data.frame(history[[item]] ) histry <- histry[2:nrow(histry),] iter <- seq(1:nrow(histry)) plot(iter, histry[,1] , type='n', main= paste("Lambda: ","item= ", ItemNames[item]), ylab= "Estimated Lambda", xlab= "Iteration", ylim=c(lam.min,lam.max), ) for (j in 1:nless) { graphics::lines(iter, histry[ , lambda.names[j]], lty=j, lwd=2, col=j) } if (model.type == "nominal") { plot(iter, histry[,1] , type='n', main= paste("Nu: ","item= ", ItemNames[item]), ylab= "Estimated Nu", xlab= "Iteration", ylim=c(nu.min, nu.max) ) for (j in 1:nless) { graphics::lines(iter, histry[ , nu.names[j]], lty=j, lwd=2, col=j) } } else { plot(iter, histry[ , nu.names[1]], type='l', lty=1, lwd=2, col=1, main= paste("a: ","item= ", ItemNames[item]), ylab= "Estimated Nu", xlab= "Iteration", ylim=c(nu.min, nu.max) ) } } if (Maxnphi > 1) { phi.log <- as.data.frame(phi.log) iter <- 1:nrow(phi.log) for (p in 1:Maxnphi) { plot(iter[2:length(iter)], phi.log[2:length(iter) , PhiNames[p]] , type="l", lwd=2, main= PhiNames[p], ylim=c(0,1), xlab="Iteration", ylab=expression(paste("Estimated ", phi))) } } }
library(sf) library(spData) u = "https://earthquake.usgs.gov/earthquakes/feed/v1.0/summary/significant_month.geojson" earthquakes = read_sf(u) print(paste0(nrow(earthquakes), " significant earthquakes happened last month")) plot(st_geometry(world), border = "grey") plot(st_geometry(earthquakes), cex = earthquakes$mag, add = TRUE) title(paste0( "Location of significant (mag > 5) Earthquakes in the month to ", Sys.Date(), "\n(circle diameter is proportional to magnitude)" ))
.longtoint <- function(k){ limit = 2000000000 k1 = as.integer(k/limit) k2 = k - k1*limit return(c(k1, k2)) } depth.simplicialVolume <- function(x, data, exact = F, k = 0.05, mah.estimate = "moment", mah.parMcd = 0.75, seed = 0){ if (seed!=0) set.seed(seed) if (!is.matrix(x) && is.vector(x)){ x <- matrix(x, nrow=1) } if (!(is.matrix(data) && is.numeric(data) || is.data.frame(data) && prod(sapply(data, is.numeric))) || ncol(data) < 2){ stop("Argument \"data\" should be a numeric matrix of at least 2-dimensional data") } if (!is.numeric(x)){ stop("Argument \"x\" should be numeric") } if (ncol(x) != ncol(data)){ stop("Dimensions of the arguments \"x\" and \"data\" should coincide") } if (ncol(data) + 1 > nrow(data)){ stop("To few data points") } if (!exact) if (k <= 0) stop("k must be positive") else if (k < 1) k = choose(nrow(data), ncol(data))*k if(toupper(mah.estimate) == "NONE"){ useCov <- 0 covEst <- diag(ncol(data)) } else if(toupper(mah.estimate) == "MOMENT"){ useCov <- 1 covEst <- cov(data) } else if(toupper(mah.estimate) == "MCD"){ useCov <- 2 covEst <- covMcd(data, mah.parMcd)$cov } else {stop("Wrong argument \"mah.estimate\", should be one of \"moment\", \"MCD\", \"none\"")} points <- as.vector(t(data)) objects <- as.vector(t(x)) ds <- .C("OjaDepth", as.double(points), as.double(objects), as.integer(nrow(data)), as.integer(nrow(x)), as.integer(ncol(data)), as.integer(seed), as.integer(exact), as.integer(.longtoint(k)), as.integer(useCov), as.double(as.vector(t(covEst))), depths=double(nrow(x)))$depths return (ds) } depth.space.simplicialVolume <- function(data, cardinalities, exact = F, k = 0.05, mah.estimate = "moment", mah.parMcd = 0.75, seed = 0){ if (!(is.matrix(data) && is.numeric(data) || is.data.frame(data) && prod(sapply(data, is.numeric))) || ncol(data) < 2){ stop("Argument \"data\" should be a numeric matrix of at least 2-dimensional data") } if (!is.vector(cardinalities, mode = "numeric") || is.na(min(cardinalities)) || sum(.is.wholenumber(cardinalities)) != length(cardinalities) || min(cardinalities) <= 0 || sum(cardinalities) != nrow(data)){ stop("Argument \"cardinalities\" should be a vector of cardinalities of the classes in \"data\" ") } if (sum(cardinalities < ncol(data) + 1) != 0){ stop("Not in all classes sufficiently enough objetcs") } if (toupper(mah.estimate) == "NONE"){ useCov <- 0 } else if (toupper(mah.estimate) == "MOMENT"){ useCov <- 1 } else if (toupper(mah.estimate) == "MCD"){ useCov <- 2 } else {stop("Wrong argument \"mah.estimate\", should be one of \"moment\", \"MCD\", \"none\"")} depth.space <- NULL for (i in 1:length(cardinalities)){ pattern <- data[(1 + sum(cardinalities[0:(i - 1)])):sum(cardinalities[1:i]),] pattern.depths <- depth.simplicialVolume(data, pattern, exact, k, mah.estimate, mah.parMcd, seed) depth.space <- cbind(depth.space, pattern.depths, deparse.level = 0) } return (depth.space) }
RCplot <- function(x, r2 = residuals(x, "deviance")^2, alphabet = x$alpha, lab.horiz = k <= 20, do.call = TRUE, cex.axis = if(k <= 20) 1 else if(k <= 40) 0.8 else 0.6, y.fact = if(.Device == "postscript") 1.2 else 0.75, col = "gray70", xlab = "Context", main = NULL, med.pars = list(col = "red", pch = 12, cex= 1.25 * cex.axis), ylim = range(0, r2, finite=TRUE), ...) { namx <- deparse(substitute(x)) if(!is.vlmc(x)) stop("'x' must be a fitted VLMC object") fID <- id2ctxt(predict(x, type="id"), alpha = alphabet) ok <- fID != "NA" fID <- as.factor(fID[ok]) r2 <- r2[ok] tfID <- table(fID) k <- length(tfID) if(is.null(main)) main <- paste(if(!do.call)"VLMC", "Residuals vs. Context") labs <- c(" if(!lab.horiz && missing(ylim)) { op <- par(xaxs = "i"); plot.new(); plot.window(xlim=ylim, ylim=0:1) y0 <- y.fact * max(strwidth(labs, cex=cex.axis)) ylim[1] <- min(ylim[1], - 1.4 * y0) par(op) } op <- par(cex.axis = cex.axis) on.exit(par(op)) rp <- plot(fID, r2, varwidth = TRUE, xlab = xlab, main = main, ylab = paste("residuals(",namx,", \"deviance\") ^ 2", sep=""), ylim = ylim, col = col, las = if(lab.horiz) 0 else 2, ...) abline(h = 0, lty = 3) if(any(i0 <- abs(meds <- rp$stats[3,]) < 1e-3)) do.call("points", c(list(x=which(i0), y= meds[i0]), med.pars)) if(lab.horiz) text(c(.2, 1:k), -.1, labs, xpd=FALSE, cex=cex.axis) else { text(c((par("usr")[1]+1)/2, 1:k), -0.3*y0, labs, xpd=NA, srt = 90, adj = c(1, 0.5), cex=cex.axis) } if(do.call) mtext(deparse(x$call)) invisible(list(k = k, fID = fID, rp = rp)) }
knitr::opts_chunk$set( collapse = TRUE, comment = " ) library(tidyLPA) library(dplyr) pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% single_imputation() %>% estimate_profiles(3) pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% single_imputation() %>% scale() %>% estimate_profiles(3) %>% plot_profiles() pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% single_imputation() %>% estimate_profiles(1:3, variances = c("equal", "varying"), covariances = c("zero", "varying")) %>% compare_solutions(statistics = c("AIC", "BIC")) pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% estimate_profiles(3, variances = "varying", covariances = "varying") m3 <- pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% estimate_profiles(3) get_estimates(m3) pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% scale() %>% estimate_profiles(4) %>% plot_profiles() pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% poms() %>% estimate_profiles(4) %>% plot_profiles() get_data(m3) m4 <- pisaUSA15[1:100, ] %>% select(broad_interest, enjoyment, self_efficacy) %>% single_imputation() %>% estimate_profiles(c(3, 4)) get_data(m4) get_fit(m4)
lsem_group_moderator <- function( data, type, moderator.grid, moderator, residualize, h ) { moderator.grouped <- NULL if (type=="MGM"){ G1 <- length(moderator.grid) moderator.grouped <- data.frame( "min"=moderator.grid[-G1], "max"=moderator.grid[-1] ) moderator.grouped$mid <- rowMeans( moderator.grouped) v1 <- data[, moderator ] v2 <- moderator.grouped$mid[1] for (gg in 2:G1){ v2 <- ifelse( v1 > moderator.grouped$max[gg-1], moderator.grouped$mid[gg], v2 ) } data[,moderator] <- v2 h <- 1E-5 moderator.grid <- moderator.grouped$mid } res <- list( data=data, moderator.grouped=moderator.grouped, residualize=residualize, h=h, moderator.grid=moderator.grid ) return(res) } lsem.group.moderator <- lsem_group_moderator
rm(list=ls());library(tidyverse);library(SEERaBomb) load("~/data/SEER/mrgd/popsae.RData") (p=popsae%>%count(race,sex,age,year,wt=py)%>%rename(py=n)) load("~/data/SEER/mrgd/cancDef.RData") canc$cancer=fct_collapse(canc$cancer,AML=c("AML","AMLti","APL")) secs=c("CML","AML","ALL") (d=canc%>%filter(sex=="Female",cancer%in%c("breast",secs))) pf=seerSet(d,p,Sex="Female") pf=mk2D(pf,secondS=secs) trts=c("rad.chemo","rad.noChemo","noRad.chemo","noRad.noChemo") pf=csd(pf,brkst=c(0,1,2,3,5,10),brksa=c(0,60),trts=trts,firstS="breast") (D=pf$DF%>%filter(ageG=="(0,60]")) D=D%>%mutate(cancer2=fct_relevel(cancer2,"AML")) D$t=D$t+c(0,0.075,0.15) myt=theme(legend.title=element_blank(),legend.margin=margin(0,0,0,0)) myth=theme(legend.direction="horizontal",legend.key.height=unit(.25,'lines')) myth=myt+myth+theme(legend.position=c(.25,.95)) g=ggplot(aes(x=t,y=RR,col=cancer2),data=D)+geom_point()+geom_line()+myth+ labs(x="Years Since Breast Cancer Diagnosis",y="Relative Risk of Leukemia") g=g+facet_grid(rad~chemo)+geom_abline(intercept=1,slope=0) g+geom_errorbar(aes(ymin=rrL,ymax=rrU),width=0.05)+coord_cartesian(ylim=c(0,25)) ggsave("~/Results/tutorial/breast2leu.pdf",width=4,height=2.5)
plotSimmap<-function(tree,colors=NULL,fsize=1.0,ftype="reg",lwd=2, pts=FALSE,node.numbers=FALSE,mar=NULL,add=FALSE,offset=NULL,direction="rightwards", type="phylogram",setEnv=TRUE,part=1.0,xlim=NULL,ylim=NULL,nodes="intermediate", tips=NULL,maxY=NULL,hold=TRUE,split.vertical=FALSE,lend=2,asp=NA,outline=FALSE, plot=TRUE){ if(inherits(tree,"multiPhylo")){ par(ask=TRUE) for(i in 1:length(tree)) plotSimmap(tree[[i]],colors=colors,fsize=fsize, ftype=ftype,lwd=lwd,pts=pts,node.numbers=node.numbers,mar,add,offset, direction,type,setEnv,part,xlim,ylim,nodes,tips,maxY,hold,split.vertical, lend,asp,outline,plot) } else { if(!inherits(tree,"phylo")) stop("tree should be object of class \"phylo\"") if(is.null(tree$maps)) stop("tree should contain mapped states on edges.") ftype<-which(c("off","reg","b","i","bi")==ftype)-1 if(!ftype) fsize=0 if(is.null(colors)){ st<-sort(unique(unlist(sapply(tree$maps,names)))) colors<-palette()[1:length(st)] names(colors)<-st if(length(st)>1){ cat("no colors provided. using the following legend:\n") print(colors) } } tree$tip.label<-gsub("_"," ",tree$tip.label) if(is.null(mar)) mar=rep(0.1,4) if(hold) null<-dev.hold() if(type=="phylogram"){ if(direction%in%c("upwards","downwards")){ if(outline){ fg<-par()$fg par(fg="transparent") black<-colors black[]<-fg updownPhylogram(tree,colors=black,fsize,ftype,lwd=lwd+2,pts, node.numbers,mar,add,offset,direction,setEnv,xlim,ylim,nodes, tips,split.vertical,lend,asp,plot) par(fg=fg) } updownPhylogram(tree,colors,fsize,ftype,lwd,pts,node.numbers,mar, add=if(outline) TRUE else add,offset,direction,setEnv,xlim,ylim,nodes, tips,split.vertical,lend,asp,plot) } else { if(outline){ fg<-par()$fg par(fg="transparent") black<-colors black[]<-fg plotPhylogram(tree,colors=black,fsize,ftype,lwd=lwd+2,pts, node.numbers,mar,add,offset,direction,setEnv,xlim,ylim,nodes, tips,split.vertical,lend,asp,plot) par(fg=fg) } plotPhylogram(tree,colors,fsize,ftype,lwd,pts,node.numbers,mar, add=if(outline) TRUE else add,offset,direction,setEnv,xlim,ylim,nodes, tips,split.vertical,lend,asp,plot) } } else if(type=="fan"){ if(outline){ fg<-par()$fg par(fg="transparent") black<-colors black[]<-fg plotFan(tree,colors=black,fsize,ftype,lwd=lwd+2,mar,add,part,setEnv, xlim,ylim,tips,maxY,lend,plot,offset) par(fg=fg) } plotFan(tree,colors,fsize,ftype,lwd,mar,add=if(outline) TRUE else add,part, setEnv,xlim,ylim,tips,maxY,lend,plot,offset) } else if(type=="cladogram"){ if(outline){ fg<-par()$fg par(fg="transparent") black<-colors black[]<-fg plotCladogram(tree,colors=black,fsize,ftype,lwd=lwd+2,mar,add,offset, direction,xlim,ylim,nodes,tips,lend,asp,plot) par(fg=fg) } plotCladogram(tree,colors,fsize,ftype,lwd,mar,add=if(outline) TRUE else add, offset,direction,xlim,ylim,nodes,tips,lend,asp,plot) } if(hold) null<-dev.flush() } } updownPhylogram<-function(tree,colors,fsize,ftype,lwd,pts,node.numbers,mar, add,offset,direction,setEnv,xlim,ylim,placement,tips,split.vertical,lend, asp,plot){ if(split.vertical&&!setEnv){ cat("split.vertical requires setEnv=TRUE. Setting split.vertical to FALSE.\n") spit.vertical<-FALSE } offsetFudge<-1.37 cw<-reorderSimmap(tree) pw<-reorderSimmap(tree,"postorder") n<-Ntip(cw) m<-cw$Nnode Y<-matrix(NA,m+n,1) if(is.null(tips)) Y[cw$edge[cw$edge[,2]<=n,2]]<-1:n else Y[cw$edge[cw$edge[,2]<=n,2]]<-if(is.null(names(tips))) tips[sapply(1:Ntip(cw),function(x,y) which(y==x),y=cw$edge[cw$edge[,2]<=n,2])] else tips[gsub(" ","_",cw$tip.label)] nodes<-unique(pw$edge[,1]) for(i in 1:m){ if(placement=="intermediate"){ desc<-pw$edge[which(pw$edge[,1]==nodes[i]),2] Y[nodes[i]]<-(min(Y[desc])+max(Y[desc]))/2 } else if(placement=="centered"){ desc<-getDescendants(pw,nodes[i]) desc<-desc[desc<=Ntip(pw)] Y[nodes[i]]<-(min(Y[desc])+max(Y[desc]))/2 } else if(placement=="weighted"){ desc<-pw$edge[which(pw$edge[,1]==nodes[i]),2] n1<-desc[which(Y[desc]==min(Y[desc]))] n2<-desc[which(Y[desc]==max(Y[desc]))] v1<-pw$edge.length[which(pw$edge[,2]==n1)] v2<-pw$edge.length[which(pw$edge[,2]==n2)] Y[nodes[i]]<-((1/v1)*Y[n1]+(1/v2)*Y[n2])/(1/v1+1/v2) } else if(placement=="inner"){ desc<-getDescendants(pw,nodes[i]) desc<-desc[desc<=Ntip(pw)] mm<-which(abs(Y[desc]-median(Y[1:Ntip(pw)]))==min(abs(Y[desc]- median(Y[1:Ntip(pw)])))) if(length(mm>1)) mm<-mm[which(Y[desc][mm]==min(Y[desc][mm]))] Y[nodes[i]]<-Y[desc][mm] } } H<-nodeHeights(cw) par(mar=mar) if(is.null(offset)) offset<-0.2*lwd/3+0.2/3 if(!add) plot.new() if(is.null(ylim)){ pp<-par("pin")[2] sw<-fsize*(max(strwidth(cw$tip.label,units="inches")))+ offsetFudge*fsize*strwidth("W",units="inches") alp<-optimize(function(a,H,sw,pp) (a*1.04*max(H)+sw-pp)^2,H=H,sw=sw,pp=pp, interval=c(0,1e6))$minimum ylim<-if(direction=="downwards") c(min(H)-sw/alp,max(H)) else c(min(H),max(H)+sw/alp) } if(is.null(xlim)) xlim=range(Y) if(direction=="downwards") H<-max(H)-H plot.window(xlim=xlim,ylim=ylim,asp=asp) if(plot){ if(!split.vertical){ for(i in 1:m) lines(Y[cw$edge[which(cw$edge[,1]==nodes[i]),2]], H[which(cw$edge[,1]==nodes[i]),1], col=colors[names(cw$maps[[match(nodes[i], cw$edge[,1])]])[1]],lwd=lwd) } for(i in 1:nrow(cw$edge)){ x<-H[i,1] for(j in 1:length(cw$maps[[i]])){ if(direction=="downwards") lines(c(Y[cw$edge[i,2]],Y[cw$edge[i,2]]),c(x,x-cw$maps[[i]][j]), col=colors[names(cw$maps[[i]])[j]],lwd=lwd,lend=lend) else lines(c(Y[cw$edge[i,2]],Y[cw$edge[i,2]]),c(x,x+cw$maps[[i]][j]), col=colors[names(cw$maps[[i]])[j]],lwd=lwd,lend=lend) if(pts) points(c(Y[cw$edge[i,2]],Y[cw$edge[i,2]]),c(x,x+cw$maps[[i]][j]), pch=20,lwd=(lwd-1)) x<-x+if(direction=="downwards") -cw$maps[[i]][j] else cw$maps[[i]][j] j<-j+1 } } if(node.numbers){ symbols(mean(Y[cw$edge[cw$edge[,1]==(Ntip(cw)+1),2]]), if(direction=="downwards") max(H) else 0, rectangles=matrix(c(1.2*fsize*strwidth(as.character(Ntip(cw)+1)), 1.4*fsize*strheight(as.character(Ntip(cw)+1))),1,2),inches=FALSE, bg="white",add=TRUE) text(mean(Y[cw$edge[cw$edge[,1]==(Ntip(cw)+1),2]]), if(direction=="downwards") max(H) else 0,Ntip(cw)+1, cex=fsize) for(i in 1:nrow(cw$edge)){ x<-H[i,2] if(cw$edge[i,2]>Ntip(cw)){ symbols(Y[cw$edge[i,2]],x, rectangles=matrix(c(1.2*fsize*strwidth(as.character(cw$edge[i,2])), 1.4*fsize*strheight(as.character(cw$edge[i,2]))),1,2),inches=FALSE, bg="white",add=TRUE) text(Y[cw$edge[i,2]],x,cw$edge[i,2],cex=fsize) } } } if(direction=="downwards") pos<-if(par()$usr[3]>par()$usr[4]) 2 else 4 if(direction=="upwards") pos<-if(par()$usr[3]>par()$usr[4]) 2 else 4 for(i in 1:n){ shift<-offset*fsize*strwidth("W")*(diff(par()$usr[3:4])/diff(par()$usr[1:2])) if((direction=="downwards"&&diff(par()$usr[3:4])>0) || (direction=="upwards"&&diff(par()$usr[3:4])<0)) shift<--shift if(ftype){ text(labels=cw$tip.label[i],Y[i], H[which(cw$edge[,2]==i),2]+shift, pos=pos,offset=0,cex=fsize,font=ftype, srt=if(direction=="downwards") 270 else 90) } } } if(setEnv){ PP<-list(type="phylogram",use.edge.length=TRUE,node.pos=1, show.tip.label=if(ftype) TRUE else FALSE,show.node.label=FALSE, font=ftype,cex=fsize,adj=0,srt=0,no.margin=FALSE,label.offset=offset, x.lim=xlim,y.lim=ylim, direction=direction,tip.color="black",Ntip=Ntip(cw),Nnode=cw$Nnode, edge=cw$edge,xx=Y[,1],yy=sapply(1:(Ntip(cw)+cw$Nnode), function(x,y,z) y[match(x,z)],y=H,z=cw$edge)) assign("last_plot.phylo",PP,envir=.PlotPhyloEnv) } if(plot) if(split.vertical) splitEdgeColor(cw,colors,lwd) } plotPhylogram<-function(tree,colors,fsize,ftype,lwd,pts,node.numbers,mar, add,offset,direction,setEnv,xlim,ylim,placement,tips,split.vertical,lend, asp,plot){ if(split.vertical&&!setEnv){ cat("split.vertical requires setEnv=TRUE. Setting split.vertical to FALSE.\n") spit.vertical<-FALSE } offsetFudge<-1.37 cw<-reorderSimmap(tree) pw<-reorderSimmap(tree,"postorder") n<-Ntip(cw) m<-cw$Nnode Y<-matrix(NA,m+n,1) if(is.null(tips)) Y[cw$edge[cw$edge[,2]<=n,2]]<-1:n else Y[cw$edge[cw$edge[,2]<=n,2]]<-if(is.null(names(tips))) tips[sapply(1:Ntip(cw),function(x,y) which(y==x),y=cw$edge[cw$edge[,2]<=n,2])] else tips[gsub(" ","_",cw$tip.label)] nodes<-unique(pw$edge[,1]) for(i in 1:m){ if(placement=="intermediate"){ desc<-pw$edge[which(pw$edge[,1]==nodes[i]),2] Y[nodes[i]]<-(min(Y[desc])+max(Y[desc]))/2 } else if(placement=="centered"){ desc<-getDescendants(pw,nodes[i]) desc<-desc[desc<=Ntip(pw)] Y[nodes[i]]<-(min(Y[desc])+max(Y[desc]))/2 } else if(placement=="weighted"){ desc<-pw$edge[which(pw$edge[,1]==nodes[i]),2] n1<-desc[which(Y[desc]==min(Y[desc]))] n2<-desc[which(Y[desc]==max(Y[desc]))] v1<-pw$edge.length[which(pw$edge[,2]==n1)] v2<-pw$edge.length[which(pw$edge[,2]==n2)] Y[nodes[i]]<-((1/v1)*Y[n1]+(1/v2)*Y[n2])/(1/v1+1/v2) } else if(placement=="inner"){ desc<-getDescendants(pw,nodes[i]) desc<-desc[desc<=Ntip(pw)] mm<-which(abs(Y[desc]-median(Y[1:Ntip(pw)]))==min(abs(Y[desc]- median(Y[1:Ntip(pw)])))) if(length(mm>1)) mm<-mm[which(Y[desc][mm]==min(Y[desc][mm]))] Y[nodes[i]]<-Y[desc][mm] } } H<-nodeHeights(cw) par(mar=mar) if(is.null(offset)) offset<-0.2*lwd/3+0.2/3 if(!add) plot.new() if(is.null(xlim)){ pp<-par("pin")[1] sw<-fsize*(max(strwidth(cw$tip.label,units="inches")))+ offsetFudge*fsize*strwidth("W",units="inches") alp<-optimize(function(a,H,sw,pp) (a*1.04*max(H)+sw-pp)^2,H=H,sw=sw,pp=pp, interval=c(0,1e6))$minimum xlim<-if(direction=="leftwards") c(min(H)-sw/alp,max(H)) else c(min(H),max(H)+sw/alp) } if(is.null(ylim)) ylim=range(Y) if(direction=="leftwards") H<-max(H)-H plot.window(xlim=xlim,ylim=ylim,asp=asp) if(plot){ if(!split.vertical){ for(i in 1:m) lines(H[which(cw$edge[,1]==nodes[i]),1], Y[cw$edge[which(cw$edge[,1]==nodes[i]),2]],col=colors[names(cw$maps[[match(nodes[i], cw$edge[,1])]])[1]],lwd=lwd) } for(i in 1:nrow(cw$edge)){ x<-H[i,1] for(j in 1:length(cw$maps[[i]])){ if(direction=="leftwards") lines(c(x,x-cw$maps[[i]][j]),c(Y[cw$edge[i,2]],Y[cw$edge[i,2]]), col=colors[names(cw$maps[[i]])[j]],lwd=lwd,lend=lend) else lines(c(x,x+cw$maps[[i]][j]),c(Y[cw$edge[i,2]],Y[cw$edge[i,2]]), col=colors[names(cw$maps[[i]])[j]],lwd=lwd,lend=lend) if(pts) points(c(x,x+cw$maps[[i]][j]),c(Y[cw$edge[i,2]],Y[cw$edge[i,2]]), pch=20,lwd=(lwd-1)) x<-x+if(direction=="leftwards") -cw$maps[[i]][j] else cw$maps[[i]][j] j<-j+1 } } if(node.numbers){ symbols(if(direction=="leftwards") max(H) else 0, mean(Y[cw$edge[cw$edge[,1]==(Ntip(cw)+1),2]]), rectangles=matrix(c(1.2*fsize*strwidth(as.character(Ntip(cw)+1)), 1.4*fsize*strheight(as.character(Ntip(cw)+1))),1,2),inches=FALSE, bg="white",add=TRUE) text(if(direction=="leftwards") max(H) else 0, mean(Y[cw$edge[cw$edge[,1]==(Ntip(cw)+1),2]]),Ntip(cw)+1, cex=fsize) for(i in 1:nrow(cw$edge)){ x<-H[i,2] if(cw$edge[i,2]>Ntip(cw)){ symbols(x,Y[cw$edge[i,2]], rectangles=matrix(c(1.2*fsize*strwidth(as.character(cw$edge[i,2])), 1.4*fsize*strheight(as.character(cw$edge[i,2]))),1,2),inches=FALSE, bg="white",add=TRUE) text(x,Y[cw$edge[i,2]],cw$edge[i,2],cex=fsize) } } } if(direction=="leftwards") pos<-if(par()$usr[1]>par()$usr[2]) 4 else 2 if(direction=="rightwards") pos<-if(par()$usr[1]>par()$usr[2]) 2 else 4 for(i in 1:n) if(ftype) text(H[which(cw$edge[,2]==i),2],Y[i],cw$tip.label[i],pos=pos, offset=offset,cex=fsize,font=ftype) } if(setEnv){ PP<-list(type="phylogram",use.edge.length=TRUE,node.pos=1, show.tip.label=if(ftype) TRUE else FALSE,show.node.label=FALSE, font=ftype,cex=fsize,adj=0,srt=0,no.margin=FALSE,label.offset=offset, x.lim=xlim,y.lim=ylim, direction=direction,tip.color="black",Ntip=Ntip(cw),Nnode=cw$Nnode, edge=cw$edge,xx=sapply(1:(Ntip(cw)+cw$Nnode), function(x,y,z) y[match(x,z)],y=H,z=cw$edge),yy=Y[,1]) assign("last_plot.phylo",PP,envir=.PlotPhyloEnv) } if(plot) if(split.vertical) splitEdgeColor(cw,colors,lwd) } plotFan<-function(tree,colors,fsize,ftype,lwd,mar,add,part,setEnv,xlim,ylim,tips,maxY,lend,plot,offset){ if(!plot) cat("plot=FALSE option is not permitted for type=\"fan\". Tree will be plotted.\n") if(is.null(offset)) offset<-1 cw<-reorder(tree) pw<-reorder(tree,"pruningwise") n<-Ntip(cw) m<-cw$Nnode Y<-vector(length=m+n) if(is.null(tips)) tips<-1:n if(part<1.0) Y[cw$edge[cw$edge[,2]<=n,2]]<-0:(n-1) else Y[cw$edge[cw$edge[,2]<=n,2]]<-tips nodes<-unique(pw$edge[,1]) for(i in 1:m){ desc<-pw$edge[which(pw$edge[,1]==nodes[i]),2] Y[nodes[i]]<-(min(Y[desc])+max(Y[desc]))/2 } if(is.null(maxY)) maxY<-max(Y) Y<-setNames(Y/maxY*2*pi,1:(n+m)) Y<-part*cbind(Y[as.character(cw$edge[,2])],Y[as.character(cw$edge[,2])]) R<-nodeHeights(cw) x<-R*cos(Y) y<-R*sin(Y) par(mar=mar) offsetFudge<-1.37 OFFSET<-0 pp<-par("pin")[1] sw<-fsize*(max(strwidth(cw$tip.label,units="inches")))+ offsetFudge*OFFSET*fsize*strwidth("W",units="inches") alp<-optimize(function(a,H,sw,pp) (2*a*1.04*max(H)+2*sw-pp)^2,H=R,sw=sw,pp=pp, interval=c(0,1e6))$minimum if(part<=0.25) x.lim<-y.lim<-c(0,max(R)+sw/alp) else if(part>0.25&&part<=0.5){ x.lim<-c(-max(R)-sw/alp,max(R)+sw/alp) y.lim<-c(0,max(R)+sw/alp) } else x.lim<-y.lim<-c(-max(R)-sw/alp,max(R)+sw/alp) if(is.null(xlim)) xlim<-x.lim if(is.null(ylim)) ylim<-y.lim if(!add) plot.new() plot.window(xlim=xlim,ylim=ylim,asp=1) jj<-which(cw$edge[,1]==(Ntip(cw)+1)) if(length(jj)==2){ m.left<-cumsum(cw$maps[[jj[1]]])/sum(cw$maps[[jj[1]]]) xx.left<-c(x[jj[1],1],x[jj[1],1]+(x[jj[1],2]-x[jj[1],1])*m.left) yy.left<-c(y[jj[1],1],y[jj[1],1]+(y[jj[1],2]-y[jj[1],1])*m.left) m.right<-cumsum(cw$maps[[jj[2]]])/sum(cw$maps[[jj[2]]]) xx.right<-c(x[jj[2],1],x[jj[2],1]+(x[jj[2],2]-x[jj[2],1])*m.right) yy.right<-c(y[jj[2],1],y[jj[2],1]+(y[jj[2],2]-y[jj[2],1])*m.right) xx<-c(xx.left[length(xx.left):1],xx.right[2:length(xx.right)]) yy<-c(yy.left[length(yy.left):1],yy.right[2:length(yy.right)]) col<-colors[c(names(m.left)[length(m.left):1],names(m.right))] segments(xx[2:length(xx)-1],yy[2:length(yy)-1],xx[2:length(xx)],yy[2:length(yy)], col=col,lwd=lwd,lend=lend) } else jj<-NULL for(i in 1:nrow(cw$edge)){ if(i%in%jj==FALSE){ maps<-cumsum(cw$maps[[i]])/sum(cw$maps[[i]]) xx<-c(x[i,1],x[i,1]+(x[i,2]-x[i,1])*maps) yy<-c(y[i,1],y[i,1]+(y[i,2]-y[i,1])*maps) for(i in 1:(length(xx)-1)) lines(xx[i+0:1],yy[i+0:1],col=colors[names(maps)[i]], lwd=lwd,lend=lend) } } for(i in 1:m+n){ r<-R[match(i,cw$edge)] a1<-min(Y[which(cw$edge==i)]) a2<-max(Y[which(cw$edge==i)]) draw.arc(0,0,r,a1,a2,lwd=lwd,col=colors[names(cw$maps[[match(i,cw$edge[,1])]])[1]]) } for(i in 1:n){ ii<-which(cw$edge[,2]==i) aa<-Y[ii,2]/(2*pi)*360 adj<-if(aa>90&&aa<270) c(1,0.25) else c(0,0.25) tt<-if(aa>90&&aa<270) paste(cw$tip.label[i],paste(rep(" ",offset), collapse=""),sep="") else paste(paste(rep(" ",offset),collapse=""), cw$tip.label[i],sep="") aa<-if(aa>90&&aa<270) 180+aa else aa if(ftype) text(x[ii,2],y[ii,2],tt,srt=aa,adj=adj,cex=fsize,font=ftype) } if(setEnv){ PP<-list(type="fan",use.edge.length=TRUE,node.pos=1, show.tip.label=if(ftype) TRUE else FALSE,show.node.label=FALSE, font=ftype,cex=fsize,adj=0,srt=0,no.margin=FALSE,label.offset=offset, x.lim=xlim,y.lim=ylim,direction="rightwards",tip.color="black", Ntip=Ntip(cw),Nnode=cw$Nnode,edge=cw$edge, xx=c(x[sapply(1:n,function(x,y) which(x==y)[1],y=cw$edge[,2]),2],x[1,1], if(m>1) x[sapply(2:m+n,function(x,y) which(x==y)[1],y=cw$edge[,2]),2] else c()), yy=c(y[sapply(1:n,function(x,y) which(x==y)[1],y=cw$edge[,2]),2],y[1,1], if(m>1) y[sapply(2:m+n,function(x,y) which(x==y)[1],y=cw$edge[,2]),2] else c())) assign("last_plot.phylo",PP,envir=.PlotPhyloEnv) } } plotCladogram<-function(tree,colors=NULL,fsize=1.0,ftype="reg",lwd=2,mar=NULL, add=FALSE,offset=NULL,direction="rightwards",xlim=NULL,ylim=NULL, nodes="intermediate",tips=NULL,lend=2,asp=NA,plot=TRUE){ placement<-nodes offsetFudge<-1.37 cw<-reorderSimmap(tree) pw<-reorderSimmap(tree,"postorder") n<-Ntip(cw) m<-cw$Nnode Y<-matrix(NA,m+n,1) if(is.null(tips)) Y[cw$edge[cw$edge[,2]<=n,2]]<-1:n else Y[cw$edge[cw$edge[,2]<=n,2]]<-if(is.null(names(tips))) tips[sapply(1:Ntip(cw),function(x,y) which(y==x),y=cw$edge[cw$edge[,2]<=n,2])] else tips[gsub(" ","_",cw$tip.label)] nodes<-unique(pw$edge[,1]) for(i in 1:m){ if(placement=="intermediate"){ desc<-pw$edge[which(pw$edge[,1]==nodes[i]),2] Y[nodes[i]]<-(min(Y[desc])+max(Y[desc]))/2 } else if(placement=="centered"){ desc<-getDescendants(pw,nodes[i]) desc<-desc[desc<=Ntip(pw)] Y[nodes[i]]<-(min(Y[desc])+max(Y[desc]))/2 } else if(placement=="weighted"){ desc<-pw$edge[which(pw$edge[,1]==nodes[i]),2] n1<-desc[which(Y[desc]==min(Y[desc]))] n2<-desc[which(Y[desc]==max(Y[desc]))] v1<-pw$edge.length[which(pw$edge[,2]==n1)] v2<-pw$edge.length[which(pw$edge[,2]==n2)] Y[nodes[i]]<-((1/v1)*Y[n1]+(1/v2)*Y[n2])/(1/v1+1/v2) } else if(placement=="inner"){ desc<-getDescendants(pw,nodes[i]) desc<-desc[desc<=Ntip(pw)] mm<-which(abs(Y[desc]-median(Y[1:Ntip(pw)]))==min(abs(Y[desc]- median(Y[1:Ntip(pw)])))) if(length(mm>1)) mm<-mm[which(Y[desc][mm]==min(Y[desc][mm]))] Y[nodes[i]]<-Y[desc][mm] } } H<-nodeHeights(cw) par(mar=mar) if(is.null(offset)) offset<-0.2*lwd/3+0.2/3 if(!add) plot.new() if(is.null(xlim)){ pp<-par("pin")[1] sw<-fsize*(max(strwidth(cw$tip.label,units="inches")))+ offsetFudge*fsize*strwidth("W",units="inches") alp<-optimize(function(a,H,sw,pp) (a*1.04*max(H)+sw-pp)^2,H=H,sw=sw,pp=pp, interval=c(0,1e6))$minimum xlim<-if(direction=="leftwards") c(min(H)-sw/alp,max(H)) else c(min(H),max(H)+sw/alp) } if(is.null(ylim)) ylim=range(Y) if(direction=="leftwards") H<-max(H)-H plot.window(xlim=xlim,ylim=ylim,asp=asp) if(plot){ for(i in 1:nrow(cw$edge)){ x<-H[i,1] y<-Y[cw$edge[i,1]] m<-(Y[cw$edge[i,2]]-Y[cw$edge[i,1]])/(H[i,2]-H[i,1]) if(is.finite(m)){ for(j in 1:length(cw$maps[[i]])){ if(direction=="leftwards") lines(c(x,x-cw$maps[[i]][j]),c(y,y-cw$maps[[i]][j]*m), col=colors[names(cw$maps[[i]])[j]],lwd=lwd,lend=lend) else lines(c(x,x+cw$maps[[i]][j]),c(y,y+cw$maps[[i]][j]*m), col=colors[names(cw$maps[[i]])[j]],lwd=lwd,lend=lend) x<-x+if(direction=="leftwards") -cw$maps[[i]][j] else cw$maps[[i]][j] y<-y+if(direction=="leftwards") -m*cw$maps[[i]][j] else m*cw$maps[[i]][j] j<-j+1 } } else { lines(rep(x,2),Y[cw$edge[i,]],col=colors[names(cw$maps[[i]])[1]],lwd=lwd, lend=lend) } } if(direction=="leftwards") pos<-if(par()$usr[1]>par()$usr[2]) 4 else 2 if(direction=="rightwards") pos<-if(par()$usr[1]>par()$usr[2]) 2 else 4 for(i in 1:n) if(ftype) text(H[which(cw$edge[,2]==i),2],Y[i],cw$tip.label[i],pos=pos, offset=offset,cex=fsize,font=ftype) } PP<-list(type="phylogram",use.edge.length=TRUE,node.pos=1, show.tip.label=if(ftype) TRUE else FALSE,show.node.label=FALSE, font=ftype,cex=fsize,adj=0,srt=0,no.margin=FALSE,label.offset=offset, x.lim=xlim,y.lim=ylim, direction=direction,tip.color="black",Ntip=Ntip(cw),Nnode=cw$Nnode, edge=cw$edge,xx=sapply(1:(Ntip(cw)+cw$Nnode), function(x,y,z) y[match(x,z)],y=H,z=cw$edge),yy=Y[,1]) assign("last_plot.phylo",PP,envir=.PlotPhyloEnv) } add.simmap.legend<-function(leg=NULL,colors,prompt=TRUE,vertical=TRUE,...){ if(hasArg(shape)) shape<-list(...)$shape else shape<-"square" if(prompt){ cat("Click where you want to draw the legend\n") x<-unlist(locator(1)) y<-x[2] x<-x[1] } else { if(hasArg(x)) x<-list(...)$x else x<-0 if(hasArg(y)) y<-list(...)$y else y<-0 } if(hasArg(fsize)) fsize<-list(...)$fsize else fsize<-1.0 if(is.null(leg)) leg<-names(colors) h<-fsize*strheight(LETTERS[1]) w<-par()$mfcol[2]*h*abs(diff(par()$usr[1:2])/diff(par()$usr[3:4])) flipped<-par()$usr[1]>par()$usr[2] if(vertical){ y<-y-0:(length(leg)-1)*1.5*h x<-rep(x+w/2,length(y)) text(x + if(flipped) -w else w,y,leg,pos=4,cex=fsize/par()$cex) } else { sp<-abs(fsize*max(strwidth(leg))) x<-x + if(flipped) w/2-0:(length(leg)-1)*1.5*(sp+w) else -w/2+0:(length(leg)-1)*1.5*(sp+w) y<-rep(y+w/2,length(x)) text(x,y,leg,pos=4,cex=fsize/par()$cex) } if(shape=="square") symbols(x,y,squares=rep(w,length(x)),bg=colors,add=TRUE,inches=FALSE) else if(shape=="circle") nulo<-mapply(draw.circle,x=x,y=y,col=colors, MoreArgs=list(nv=200,radius=w/2)) else stop(paste("shape=\"",shape,"\" is not a recognized option.",sep="")) } plotTree<-function(tree,...){ if(hasArg(color)) color<-list(...)$color else color<-NULL if(hasArg(fsize)) fsize<-list(...)$fsize else fsize<-1.0 if(hasArg(ftype)) ftype<-list(...)$ftype else ftype<-"reg" if(hasArg(lwd)) lwd<-list(...)$lwd else lwd<-2 if(hasArg(pts)) pts<-list(...)$pts else pts<-FALSE if(hasArg(node.numbers)) node.numbers<-list(...)$node.numbers else node.numbers<-FALSE if(hasArg(mar)) mar<-list(...)$mar else mar<-NULL if(hasArg(add)) add<-list(...)$add else add<-FALSE if(hasArg(offset)) offset<-list(...)$offset else offset<-NULL if(hasArg(type)) type<-list(...)$type else type<-"phylogram" if(hasArg(direction)) direction<-list(...)$direction else direction<-"rightwards" if(hasArg(setEnv)) setEnv<-list(...)$setEnv else setEnv<-TRUE if(hasArg(part)) part<-list(...)$part else part<-1.0 if(hasArg(xlim)) xlim<-list(...)$xlim else xlim<-NULL if(hasArg(ylim)) ylim<-list(...)$ylim else ylim<-NULL if(hasArg(nodes)) nodes<-list(...)$nodes else nodes<-"intermediate" if(hasArg(tips)) tips<-list(...)$tips else tips<-NULL if(hasArg(maxY)) maxY<-list(...)$maxY else maxY<-NULL if(hasArg(hold)) hold<-list(...)$hold else hold<-TRUE if(hasArg(lend)) lend<-list(...)$lend else lend<-2 if(hasArg(asp)) asp<-list(...)$asp else asp<-NA if(hasArg(plot)) plot<-list(...)$plot else plot<-TRUE if(inherits(tree,"multiPhylo")){ par(ask=TRUE) if(!is.null(color)) names(color)<-"1" for(i in 1:length(tree)) plotTree(tree[[i]],color=color,fsize=fsize,ftype=ftype, lwd=lwd,pts=pts,node.numbers=node.numbers,mar=mar,add=add,offset=offset, direction=direction,type=type,setEnv=setEnv,part=part,xlim=xlim,ylim=ylim, nodes=nodes,tips=tips,maxY=maxY,hold=hold,lend=lend,asp=asp,plot=plot) } else { if(is.null(tree$edge.length)) tree<-compute.brlen(tree) tree$maps<-as.list(tree$edge.length) for(i in 1:length(tree$maps)) names(tree$maps[[i]])<-c("1") if(!is.null(color)) names(color)<-"1" plotSimmap(tree,colors=color,fsize=fsize,ftype=ftype,lwd=lwd,pts=pts, node.numbers=node.numbers,mar=mar,add=add,offset=offset,direction=direction, type=type,setEnv=setEnv,part=part,xlim=xlim,ylim=ylim,nodes=nodes,tips=tips,maxY=maxY, hold=hold,lend=lend,asp=asp,plot=plot) } } plot.simmap<-function(x,...) plotSimmap(x,...) plot.multiSimmap<-function(x,...) plotSimmap(x,...) splitEdgeColor<-function(tree,colors,lwd=2){ obj<-get("last_plot.phylo",envir=.PlotPhyloEnv) for(i in 1:tree$Nnode+Ntip(tree)){ daughters<-tree$edge[which(tree$edge[,1]==i),2] cols<-vector() for(j in 1:length(daughters)){ jj<-which(tree$edge[,2]==daughters[j]) cols[j]<-if(tree$maps[[jj]][1]==0&&length(tree$maps[[jj]])>1) colors[names(tree$maps[[jj]])[2]] else colors[names(tree$maps[[jj]])[1]] } ii<-order(obj$yy[c(i,daughters)]) jj<-order(obj$yy[daughters]) x0<-x1<-rep(obj$xx[i],length(daughters)) y0<-obj$yy[c(i,daughters)][ii][1:length(daughters)] y1<-obj$yy[c(i,daughters)][ii][2:(length(daughters)+1)] cols<-cols[jj] for(j in 1:length(x0)) segments(x0[j],y0[j],x1[j],y1[j],col=cols[j],lwd=lwd,lend=2) } }
cpsurv <- function(time, event, cpmax, intwd, cpmin = 0, censoring = c("random", "type1", "no"), censpoint = NULL, biascorrect = FALSE, parametric = FALSE, B.correct = 49, opt.start = c(0.1, 50), boot.ci = FALSE, B = 999, conf.level = 0.95, norm.riskset = TRUE, seed = NULL, parallel = TRUE, cores = 4L){ if (!is.null(seed)) { if(parallel) RNGkind(kind = "L'Ecuyer-CMRG") set.seed(as.integer(seed)) } is_single_num <- function(x, lower = -Inf, upper = Inf){ if(is.na(x) || !is.numeric(x) || (length(x) != 1)){ stop("Argument '", substitute(x), "' is not a single numeric value.") } if(x < lower) stop("Value for argument '", substitute(x), "' too low.") if(x > upper) stop("Value for argument '", substitute(x), "' too high.") } stopifnot(is.numeric(time), all(sapply(time, function(z) z >= 0)), length(time) >= 1) if(missing(event)) event <- rep.int(1, length(time)) stopifnot(is.numeric(event), length(event) >= 1) if(!all(sapply(event, function(z) z %in% c(0,1)))){ stop("Argument 'event' has to be binary.") } is_single_num(cpmax, lower = 1L) is_single_num(cpmin, lower = 0L, upper = cpmax) if(!is.null(censpoint)) is_single_num(censpoint, lower = 0L, upper = max(time)) is_single_num(B.correct, lower = 1L) is_single_num(B, lower = 1L) is_single_num(conf.level, lower = 0L, upper = 1L) is_single_num(cores, lower = 1L) if(missing(intwd)) intwd <- ceiling(cpmax / 20) is_single_num(intwd, lower = 1L) stopifnot(!is.na(norm.riskset), is.logical(norm.riskset), length(norm.riskset) == 1, !is.na(biascorrect), is.logical(biascorrect), length(biascorrect) == 1, !is.na(parametric), is.logical(parametric), length(parametric) == 1, !is.na(boot.ci), is.logical(boot.ci), length(boot.ci) == 1, !is.na(parallel), is.logical(parallel), length(parallel) == 1) if((cpmax%%intwd) != 0){ cpmax <- cpmax + (cpmax %% intwd) warning("'cpmax' is not a multiple of 'intwd'; cpmax corrected to ", cpmax) } censoring <- match.arg(censoring) if(!identical(length(time), length(event))) stop("Vectors 'time' and 'event' must be of equal length.") if(sum(event[time > cpmax] == 1) == 0){ stop("No events with 'time' > 'cpmax'; ", "choose lower value for 'cpmax'.") } if(!is.vector(opt.start) || !length(opt.start) == 2 || !all(opt.start > 0)){ stop("Invalid 'opt.start' argument. See documentation.") } if(all(event %in% 1)){ censoring <- "no" } if(censoring == "type1" && is.null(censpoint)){ censpoint <- min(time[sapply(seq_along(time), function(i) all(event[time >= time[i]] == 0))]) warning("point for Type I censoring missing; 'censpoint' was set to ", censpoint) } nobs <- length(time) check.integer <- function(x){ x == round(x) } if(all(sapply(time, check.integer))){ times.int <- TRUE } else{ times.int <- FALSE } cp <- cpest(time = time, event = event, intwd = intwd, cpmax = cpmax, cpmin = cpmin, norm.riskset = norm.riskset) changeP <- cp$cp if(biascorrect){ bcresult <- bootbiascorrect(changeP = changeP, time = time, event = event, censoring = censoring, censpoint = censpoint, intwd = intwd, opt.start = opt.start, cpmax = cpmax, cpmin = cpmin, norm.riskset = norm.riskset, B.correct = B.correct, parametric = parametric, times.int = times.int) if(is.na(bcresult$bc)){ if(parametric == TRUE){ warning("Parametric bootstrap bias correction not possible;", "maybe times are not Weibull distributed") } else{ warning("Nonparametric bootstrap bias correction not possible", "(no events above 'cpmax' in simulated data)") } } cp$cp.bc <- bcresult$bc if(parametric){ cp$ml.shape <- bcresult$shape cp$ml.scale <- bcresult$scale } if(bcresult$oob[1] == TRUE){ warning("bias corrected change point out of bounds; it was set to 'cpmin'") } else if(bcresult$oob[2] == TRUE){ warning("bias corrected change point out of bounds; it was set to 'cpmax'") } } if(boot.ci){ bootstrap <- function(x){ boot.out <- NA while(is.na(boot.out)){ samp <- sample(1:nobs, size = nobs, replace=T) cp.tmp <- cpest(time = time[samp], event = event[samp], intwd = intwd, cpmax = cpmax, cpmin = cpmin, norm.riskset = norm.riskset)$cp if(biascorrect){ boot.out <- bootbiascorrect(changeP = cp.tmp, time = time[samp], event = event[samp], censoring = censoring, censpoint = censpoint, intwd = intwd, cpmax = cpmax, cpmin = cpmin, norm.riskset = norm.riskset, B.correct = B.correct, parametric = parametric, times.int = times.int, opt.start = opt.start)$bc } else{ boot.out <- cp.tmp } } boot.out } if(parallel){ if(parallel::detectCores() < cores) cores <- parallel::detectCores() if(.Platform$OS.type != "windows") { cpboot <- parallel::mclapply(1:B, FUN = bootstrap, mc.cores = cores) } else{ cl <- parallel::makePSOCKcluster(rep("localhost", cores)) parallel::clusterExport(cl = cl, varlist = c("bootbiascorrect", "neg.loglik.WeibExp", "cpest", "sim.survdata", "km.sim.survtimes", "nobs", "time", "event", "intwd", "cpmax", "cpmin", "norm.riskset", "censoring", "censpoint", "biascorrect", "B.correct", "parametric", "times.int", "opt.start"), envir = environment()) if(!is.null(seed)) parallel::clusterSetRNGStream(cl) cpboot <- parallel::parLapply(cl, 1:B, fun = bootstrap) parallel::stopCluster(cl) } cpboot <- unlist(cpboot) } else{ cpboot <- vapply(1:B, bootstrap, FUN.VALUE = numeric(1L)) } cp$cp.boot <- cpboot sd_boot <- sd(cpboot) cp$sd <- sd_boot quant <- (1 + c(-conf.level, conf.level))/2 if(biascorrect){ ci.normal <- c(cp$cp.bc - qnorm(quant[2]) * sd_boot, cp$cp.bc + qnorm(quant[2]) * sd_boot) } else{ ci.normal <- c(changeP - qnorm(quant[2]) * sd_boot, changeP + qnorm(quant[2]) * sd_boot) } if(ci.normal[1] < 0){ ci.normal[1] <- 0 warning("lower bound of confidence interval was set to 0") } if(ci.normal[2] > cpmax){ ci.normal[2] <- cpmax warning("upper bound of confidence interval was set to 'cpmax'") } cp$ci.normal <- ci.normal perc <- (B + 1) * quant ptrunc <- trunc(perc) cpsort <- sort(cpboot) percint <- numeric(2L) percint[1] <- ifelse(ptrunc[1] == 0, cpsort[1L], cpsort[ptrunc[1]]) percint[2] <- ifelse(ptrunc[2] == B, cpsort[B], cpsort[ptrunc[2]]) if(ptrunc[1] == 0 || ptrunc[2] == B){ warning("extreme order statistics used as endpoints for percentile interval") } cp$ci.percent <- percint cp$conf.level <- conf.level cp$B <- B } structure(c(cp, list(time = time, event = event, cpmax = cpmax, intwd = intwd, call = match.call())), class = "cpsurv") }
markTime <- function(x,times,nlost,pch,col,...){ mtimeList=lapply(1:length(x),function(i){ who=nlost[[i]]>0 & !is.na(nlost[[i]]) mark.x=times[who] mark.y=x[[i]][who] if (length(col)<length(x)) mcol=col[1] else mcol=col[i] if (length(pch)<length(x)) mpch=pch[1] else mpch=pch[i] points(x=mark.x,y=mark.y,col=mcol,pch=mpch,...) invisible(NULL) }) }
library(rmr) csvtextinputformat = function(line) keyval(NULL, unlist(strsplit(line, "\\,"))) deptdelay = function (input, output) { mapreduce(input = input, output = output, textinputformat = csvtextinputformat, map = function(k, fields) { if (!(identical(fields[[1]], "Year")) & length(fields) == 29) { deptDelay <- fields[[16]] if (!(identical(deptDelay, "NA"))) { keyval(c(fields[[9]], fields[[1]], fields[[2]]), deptDelay) } } }, reduce = function(keySplit, vv) { keyval(keySplit[[2]], c(keySplit[[3]], length(vv), keySplit[[1]], mean(as.numeric(vv)))) }) } from.dfs(deptdelay("/data/airline/", "/dept-delay-month-orig"))
dots_sample_slab_function = function( df, input, limits = NULL, quantiles = NA, orientation = NA, trans = scales::identity_trans(), na.rm = FALSE, ... ) { x = switch(orientation, y = , horizontal = "x", x = , vertical = "y" ) if (is.null(quantiles) || is.na(quantiles)) { input = df[[x]] } else { input = quantile(df[[x]], ppoints(quantiles, a = 1/2), type = 5, na.rm = na.rm) } data.frame( .input = trans$inverse(input), .value = 1, n = length(input) ) } dots_dist_slab_function = function( df, input, quantiles = 100, trans = scales::identity_trans(), ... ) { pmap_dfr_(df, function(dist, ...) { if (is.null(dist) || anyNA(dist)) { return(data.frame(.input = NA, .value = NA)) } args = c( list(ppoints(quantiles, a = 1/2)), args_from_aes(...) ) quantile_fun = distr_quantile(dist) input = do.call(quantile_fun, args) data.frame( .input = input, .value = 1, n = length(input) ) }) } stat_dotsinterval = function( mapping = NULL, data = NULL, geom = "dotsinterval", position = "identity", ..., quantiles = NA, point_interval = median_qi, na.rm = FALSE, show.legend = c(size = FALSE), inherit.aes = TRUE ) { layer( data = data, mapping = mapping, stat = StatDotsinterval, geom = geom, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( quantiles = quantiles, slab_function = dots_sample_slab_function, slab_args = list(), point_interval = point_interval, na.rm = na.rm, ... ) ) } StatDotsinterval = ggproto("StatDotsinterval", StatSlabinterval, extra_params = c( StatSlabinterval$extra_params, "quantiles" ), default_params = defaults(list( quantiles = NA, slab_function = dots_sample_slab_function, point_interval = median_qi ), StatSlabinterval$default_params), setup_params = function(self, data, params) { params = ggproto_parent(StatSlabinterval, self)$setup_params(data, params) params$slab_args = list( quantiles = params$quantiles %||% self$default_params$quantiles ) params } ) stat_dots = function( mapping = NULL, data = NULL, geom = "dots", position = "identity", ..., show.legend = NA, inherit.aes = TRUE ) { layer( data = data, mapping = mapping, stat = StatDots, geom = geom, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( show_point = FALSE, show_interval = FALSE, ... ) ) } StatDots = ggproto("StatDots", StatDotsinterval, default_params = defaults(list( show_point = FALSE, show_interval = FALSE ), StatDotsinterval$default_params) ) StatDots$default_aes$size = NULL stat_dist_dotsinterval = function( mapping = NULL, data = NULL, geom = "dotsinterval", position = "identity", ..., quantiles = 100, na.rm = FALSE, show.legend = c(size = FALSE), inherit.aes = TRUE ) { layer( data = data, mapping = mapping, stat = StatDistDotsinterval, geom = geom, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( quantiles = quantiles, limits_function = NULL, slab_function = dots_dist_slab_function, slab_args = list(), interval_function = dist_interval_function, interval_args = list(), point_interval = NULL, na.rm = na.rm, ... ) ) } StatDistDotsinterval = ggproto("StatDistDotsinterval", StatDistSlabinterval, extra_params = c( StatDistSlabinterval$extra_params, "quantiles" ), default_params = defaults(list( quantiles = 100, limits_function = NULL, slab_function = dots_dist_slab_function, interval_function = dist_interval_function ), StatDistSlabinterval$default_params), setup_params = function(self, data, params) { params = defaults(params, self$default_params) params$flipped_aes = get_flipped_aes(data, params, main_is_orthogonal = FALSE, range_is_orthogonal = TRUE, group_has_equal = TRUE, main_is_optional = TRUE ) params$orientation = get_orientation(params$flipped_aes) params = ggproto_parent(StatSlabinterval, self)$setup_params(data, params) params$slab_args = list( quantiles = params$quantiles %||% self$default_params$quantiles ) params } ) stat_dist_dots = function( mapping = NULL, data = NULL, geom = "dots", position = "identity", ..., show.legend = NA, inherit.aes = TRUE ) { layer( data = data, mapping = mapping, stat = StatDistDots, geom = geom, position = position, show.legend = show.legend, inherit.aes = inherit.aes, params = list( show_point = FALSE, show_interval = FALSE, ... ) ) } StatDistDots = ggproto("StatDistDots", StatDistDotsinterval, default_params = defaults(list( show_point = FALSE, show_interval = FALSE ), StatDistDotsinterval$default_params) ) StatDistDots$default_aes$size = NULL
context("TaskClust") test_that("Basic ops on usarrests task", { task = tsk("usarrests") expect_task(task) expect_task_clust(task) expect_identical(task$target_names, character(0)) }) test_that("0 feature task", { b = as_data_backend(data.table(ids = 1:30)) task = TaskClust$new(id = "zero_feat_task", b) expect_output(print(task)) b = task$backend expect_backend(b) expect_task(task) expect_task_clust(task) expect_data_table(task$data(), ncols = 1L) lrn = lrn("clust.featureless") lrn$param_set$values = list(num_clusters = 3L) p = lrn$train(task)$predict(task) expect_prediction(p) })
norm.vect <- function(vector1) { norm <- sqrt(sum(vector1^2)) return(norm) }
.datatable.aware <- TRUE setnames <- `names<-` setclass <- `class<-` ndots <- function(dots) { any(nzchar(dots)) } is.formula <- function(expr) { inherits(expr, "formula") || (is.call(expr) && .subset2(expr, 1L) == "~") } is.side_effect <- function(expr) { is.formula(expr) && (length(expr) == 2L || length(expr) == 3L && Recall(.subset2(expr, 2L))) }
require(RgoogleMaps) markerdata = read.csv(system.file('extdata', 'Napoleon.csv', package = 'MSG')) boundingbox = qbbox(lon = markerdata[, 'lon'], lat = markerdata[, 'lat']) NPMap = GetMap.bbox(boundingbox$lonR, boundingbox$latR, destfile = tempfile(), maptype = 'map', zoom = 6, size = c(640, 370)) lwd_m = rep(1e-04, nrow(markerdata) - 1) lwd_m[1:5] = (15:11) * 1e-5 color = c(' tmp = c(16, 35, 41, 43, 46) n = 1 PlotOnStaticMap( NPMap, FUN = lines, lon = markerdata$lon[1:2], lat = markerdata$lat[1:2], lwd = lwd_m[1] * markerdata$size[1], col = color[1], verbose = 0 ) for (i in 2:(nrow(markerdata) - 1)) { if (!(i %in% tmp)) { PlotOnStaticMap( NPMap, FUN = lines, lon = markerdata$lon[i:(i + 1)], lat = markerdata$lat[i:(i + 1)], lwd = lwd_m[i] * markerdata$size[i], col = color[n], add = TRUE, verbose = 0 ) } else { n = ifelse(n == 1, 2, 1) } }
test_that('vacuum_cleaner validates input arguments', { expect_warning(vacuum_cleaner(matrix(c('a', 1:3), nrow = 2)), 'argument "x" must be convertable to a numeric matrix') expect_warning(vacuum_cleaner(matrix(1:6, nrow = 2)), 'argument "x" must have at least 3 rows and columns') })
time_windows <- function(r0=NULL, dist_param=NULL, m=NULL, imm_frac=NULL, hosp_rate=NULL, recov_hosp=NULL, icu_rate=NULL, death_rate=NULL, window_length=NULL, start_dates=NULL, end_dates=NULL, daily=NULL) { is.Date <- function(obj) inherits(obj, "Date") if (is.null(r0)) stop("Parameter r0 cannot be omitted.") if (is.null(dist_param)) stop("Parameter dist_param cannot be omitted.") if (is.null(m)) stop("Parameter m cannot be omitted.") if (is.null(imm_frac)) stop("Parameter imm_frac cannot be omitted.") if (class(r0) != "list") { temp_r0 <- r0 r0 <- list() r0[[1]] <- temp_r0 } n_pop <- length(r0) total_windows <- length(r0[[1]]) if (is.null(window_length) && is.null(start_dates) && is.null(daily)) stop("You must provide one of the following options: window_length, start_dates with end_dates, or daily.") if ((!is.null(window_length) && (!is.null(start_dates) || !is.null(end_dates) || !is.null(daily))) || (!is.null(daily) && (!is.null(start_dates) || !is.null(end_dates) || !is.null(window_length))) || (!is.null(start_dates) && (!is.null(window_length) || !is.null(daily)))) { stop("You may provide only one of the following options: window_length, start_dates with end_dates, or daily.") } if (!is.null(start_dates) && is.null(end_dates)) stop("You must provide end_dates with start_dates.") if (is.null(daily) && (!is.null(hosp_rate) || !is.null(recov_hosp) || !is.null(icu_rate) || !is.null(death_rate))) stop("You may only provide hosp_rate, recov_hosp, icu_rate, death_rate when using daily time windows.") if (!all(dist_param >= 0)) stop("Values of dist_param must be greater than or equal to zero.") if (!all(m >= 0)) stop("Values of m must be greater than or equal to zero.") if (!all(imm_frac >= 0)) stop("Values of imm_frac must be greater than zero.") if (!all(imm_frac <= 1)) stop("Values of imm_frac must be less than or equal to one.") if (total_windows != length(dist_param)) stop("Length of R0 does not match length of dist_param.") if (total_windows != length(m)) stop("Length of R0 does not match length of m.") if (total_windows != length(imm_frac)) stop("Length of R0 does not match length of imm_frac.") if (!is.null(window_length) && (total_windows != length(window_length))) stop("Length of R0 does not match length of window_length.") for (this_pop in 1:n_pop) { if (!all(r0[[this_pop]] >= 0)) stop("Values of r0 must be greater than or equal to zero.") if (length(r0[[this_pop]]) != total_windows) {stop("The lengths of R0 in each population must be the same.")} } if (!is.null(start_dates)) { if (!is.Date(start_dates)) stop("Vector start_dates does not contain valid Dates.") if (!is.Date(end_dates)) stop("Vector end_dates does not contain valid Dates.") if (length(start_dates) != length(end_dates)) stop("The lengths of start_dates and end_dates do not match.") if (total_windows != length(start_dates)) stop("Length of R0 does not match the length of start_dates and end_dates.") } if (!is.null(daily)) { if (!is.Date(daily)) stop("Vector daily does not contain valid Dates.") if (total_windows != length(daily)) stop("Length of R0 does not match length of daily.") } if (!is.null(daily)) { for (index in 2:length(daily)) { difference <- as.numeric(daily[index] - daily[index - 1]) if (difference == 0) stop(paste("Daily entry at daily[", index, "] overlaps with the previous entry.")) if (difference > 1) stop(paste("There is a gap between daily[", index, "] and daily[", (index - 1), "].")) if (difference < 0) stop(paste("The entry at daily[", index, "] is not sequential.")) } window_length <- c(rep(1, length(daily))) } if (!is.null(start_dates)) { for (index in 1:length(start_dates)) { if (index > 1) { difference <- as.numeric(start_dates[index] - end_dates[index - 1]) if (difference > 1) stop(paste("There is a gap between start_dates[", index, "] and end_dates[", (index - 1), "].")) if (difference < 1) stop(paste("The entry at start_dates[", index, "] overlaps with the previous entry.")) } window_length <- append(window_length, as.numeric(end_dates[index] - start_dates[index] + 1)) } } checkIfInZeroToOne <- function(parameter, name) { if ((!all(parameter > 0)) || (!all(parameter <= 1))) stop(paste("Error: The values of ", name, " must be within the range (0, 1].")) } checkIfGreaterThanZero <- function(parameter, name) { if (!all(parameter >= 0)) stop(paste0("Error: The value of ", name, " must be greater than or equal to zero.")) if (!all(parameter <= 1)) warning(paste0("Warning: The value of ", name, ", is greater than one and unusual. Are you sure you want this?")) } if (is.null(hosp_rate)) { hosp_rate <- rep(0.175, total_windows) } else { if (total_windows != length(hosp_rate)) stop("Length of R0 does not match length of hosp_rate.") checkIfInZeroToOne(hosp_rate, "hosp_rate") } if (is.null(recov_hosp)) { recov_hosp <- rep(1/7.0, total_windows) } else { if (total_windows != length(recov_hosp)) stop("Length of R0 does not match length of recov_hosp.") checkIfGreaterThanZero(recov_hosp, "recov_hosp") } if (is.null(icu_rate)) { icu_rate <- rep(0.20, total_windows) } else { if (total_windows != length(icu_rate)) stop("Length of R0 does not match length of icu_rate.") checkIfInZeroToOne(icu_rate, "icu_rate") } if (is.null(death_rate)) { death_rate <- rep(0.60, total_windows) } else { if (total_windows != length(death_rate)) stop("Length of R0 does not match length of death_rate.") checkIfInZeroToOne(death_rate, "death_rate") } t_max <- sum(window_length) value <- list(r0 = r0, dist_param = dist_param, m = m, imm_frac = imm_frac, hosp_rate = hosp_rate, recov_hosp = recov_hosp, icu_rate = icu_rate, death_rate = death_rate, window_length = window_length, total_windows = total_windows, t_max = t_max) attr(value, "class") <- "time_windows" value }
meteSAR <- function(spp, abund, row, col, x, y, S0 = NULL, N0 = NULL, Amin, A0, upscale=FALSE, EAR=FALSE) { if(!upscale) { areaInfo <- .findAreas( spp=if(missing(spp)) NULL else spp, abund=if(missing(abund)) NULL else abund, row=if(missing(row)) NULL else row, col=if(missing(col)) NULL else col, x=if(missing(x)) NULL else x, y=if(missing(y)) NULL else y, Amin=if(missing(Amin)) NULL else Amin, A0=if(missing(A0)) NULL else A0) areas <- areaInfo$areas row <- areaInfo$row col <- areaInfo$col nrow <- areaInfo$nrow ncol <- areaInfo$ncol Amin <- areaInfo$Amin A0 <- areaInfo$A0 } if(upscale & EAR) stop('upscaling EAR not currently supported') if(!missing(spp) & !missing(abund)) { S0 <- length(unique(spp)) N0 <- sum(abund) } if(is.null(S0) | is.null(N0)) stop('must provide spp and abund data or state variables S0 and N0') thisESF <- meteESF(S0=S0, N0=N0) if(!missing(spp) & !missing(abund)) { eSAR <- empiricalSAR(spp, abund, row=row, col=col, Amin=Amin, A0=A0, EAR=EAR) } else { eSAR <- NULL } if(upscale) { thrSAR <- upscaleSAR(thisESF, Amin, A0, EAR) } else { thrSAR <- downscaleSAR(thisESF, areas*Amin, A0, EAR) } out <- list(obs=eSAR, pred=thrSAR) class(out) <- 'meteRelat' return(out) } empiricalSAR <- function(spp, abund, row, col, x, y, Amin, A0, EAR=FALSE) { areaInfo <- .findAreas( spp=if(missing(spp)) NULL else spp, abund=if(missing(abund)) NULL else abund, row=if(missing(row)) NULL else row, col=if(missing(col)) NULL else col, x=if(missing(x)) NULL else x, y=if(missing(y)) NULL else y, Amin=if(missing(Amin)) NULL else Amin, A0=if(missing(A0)) NULL else A0) areas <- areaInfo$areas row <- areaInfo$row col <- areaInfo$col nrow <- areaInfo$nrow ncol <- areaInfo$ncol Amin <- areaInfo$Amin A0 <- areaInfo$A0 out <- lapply(areas, function(a) { nspp <- .getSppInGroups(spp, abund, row, col, .getNeighbors(a, nrow, ncol), EAR) data.frame(A=a*Amin, S=nspp) }) out <- do.call(rbind, out) attr(out, 'source') <- 'empirical' attr(out, 'type') <- ifelse(EAR, 'ear', 'sar') class(out) <- 'sar' return(out) } downscaleSAR <- function(x, A, A0, EAR=FALSE) { n0 <- 1:x$state.var['N0'] if(EAR) { piFun <- function(a) .getPin0(n0, a, A0) } else { piFun <- function(a) 1 - .getPi0(n0, a, A0) } getspp <- function(a) { probs <- piFun(a) * with(x, metePhi(n0, La[1], La[2], Z, state.var['S0'], state.var['N0'], ifelse(is.na(state.var['E0']), state.var['N0']*10^3, state.var['E0']))) return(x$state.var['S0'] * sum(probs)) } nspp <- sapply(A, getspp) out <- data.frame(A=A, S=nspp) attr(out, 'source') <- 'theoretical' attr(out, 'type') <- ifelse(EAR, 'ear', 'sar') class(out) <- 'sar' return(out) } upscaleSAR <- function(x, A0, Aup, EAR=FALSE) { Aups <- A0 * 2^(0:ceiling(log(Aup/A0)/log(2))) N0s <- x$state.var['N0'] * 2^(0:ceiling(log(Aup/A0)/log(2))) S0s <- numeric(length(Aups)) S0s[1] <- x$state.var['S0'] termcodes <- numeric(length(Aups)) for(i in 2:length(Aups)) { S0s[i] <- .solveUpscale(S0s[i-1], N0s[i-1]) } out <- data.frame(A=Aups, S=S0s) attr(out, 'source') <- 'theoretical' attr(out, 'type') <- ifelse(EAR, 'ear', 'sar') class(out) <- 'sar' return(out) }
context("get_wq") test_that("get_wq works", { vcr::use_cassette("get_wq_works", { x <- get_wq(station_id = c("FLAB08", "FLAB09"), date_min = "2011-03-01", date_max = "2012-05-01", test_name = "CHLOROPHYLL-A, SALINE") }) expect_is(x, "data.frame") }) vcr::use_cassette("get_wq_fails_well", { test_that("get_wq fails well", { expect_message(get_wq(station_id = c("FLAB08", "FLAB09"), date_min = "1990-03-01", date_max = "1992-05-01", test_name = "CHLOROPHYLL-A, SALINE"), "No data found") expect_message(get_wq(station_id = "ROOK467", date_min = "2012-07-19", date_max = "2016-04-27", test_name = "AMMONIA-N"), "No data found") expect_message(get_wq("FLAB01", "1983-09-14", "1986-09-18", "NITRATE+NITRITE-N", raw = TRUE), "No data found") }) }) vcr::use_cassette("get_wq_nonchar_dates", { test_that("non-character dates are handled", { expect_error(get_wq(station_id = c("FLAB08", "FLAB09"), date_min = 1990-03-01, date_max = 1992-05-01, test_name = "CHLOROPHYLL-A, SALINE"), "Enter dates as quote-wrapped character strings in YYYY-MM-DD format") }) }) vcr::use_cassette("get_wq_mdl_handling", { test_that("mdl_handling inputs are sane", { expect_error(clean_wq(get_wq("FLAB01", "2014-09-14", "2014-09-18", "NITRATE+NITRITE-N", raw = TRUE), mdl_handling = "crazy"), "mdl_handling must be one of 'raw', 'half', or 'full'") }) }) test_that("mdl handling occurs when get_wq raw is TRUE", { vcr::use_cassette("get_mdl_handling_raw", { yes_raw <- get_wq("FLAB01", "2014-09-14", "2014-09-18", "NITRATE+NITRITE-N", raw = TRUE, mdl_handling='half')$Value no_raw <- get_wq("FLAB01", "2014-09-14", "2014-09-18", "NITRATE+NITRITE-N", raw = FALSE, mdl_handling='half')[,2] }) expect_equal(yes_raw, no_raw) }) test_that("multiple stations return correct num of columns", { vcr::use_cassette("get_wq_multiple_stations", { x <- ncol(get_wq(station_id = c("FLAB08","FLAB09"), date_min = "2011-03-01", date_max = "2012-05-01", test_name = "CHLOROPHYLL-A, SALINE")) }) expect_equal(x, 3) })
httpget_tmp <- function(requri){ check.enabled("api.tmp"); prefix <- "x0"; reqhead <- utils::head(requri, 1); reqtail <- utils::tail(requri, -1); if(!length(reqhead)){ res$checkmethod(); res$checktrail(); allfiles <- list.files(ocpu_store(), pattern=paste("^", prefix, sep="")); res$sendlist(allfiles); } if(grepl("::", reqhead, fixed = TRUE)){ parts <- strsplit(reqhead, "::", fixed = TRUE)[[1]] reqhead <- parts[1] reqtail <- c("R", parts[2], reqtail) } sessionpath <- file.path(ocpu_store(), reqhead); res$setcache("tmp"); httpget_session(sessionpath, reqtail); }
get_shot_locs <- function(game_ids) { if(any(is.na(game_ids))) { error("game_ids missing with no default") } n <- length(game_ids) for(i in 1:n) { message(paste("Getting Shots for Game", i, "of", n)) url = paste0('http://www.espn.com/mens-college-basketball/playbyplay?gameId=', game_ids[i]) date <- get_date(game_ids[i]) away_team_name <- stringr::str_replace_all(xml2::read_html(url) %>% rvest::html_nodes(".away h3") %>% rvest::html_text(), "[\r\n\t]" , "") if(length(away_team_name) == 0){ message("No shot location data available for this game.") }else{ away_shot_text <- xml2::read_html(url) %>% rvest::html_nodes(".away-team li") %>% rvest::html_text() away_shot_style <- xml2::read_html(url) %>% rvest::html_nodes(".away-team li") %>% xml2::xml_attr("style") away_color <- gsub("^.*border-color:\\s*|\\s*;.*$", "", away_shot_style[1]) home_team_name <- stringr::str_replace_all(xml2::read_html(url) %>% rvest::html_nodes(".home h3") %>% rvest::html_text(), "[\r\n\t]" , "") home_shot_text <- xml2::read_html(url) %>% rvest::html_nodes(".home-team li") %>% rvest::html_text() home_shot_style <- xml2::read_html(url) %>% rvest::html_nodes(".home-team li") %>% xml2::xml_attr("style") home_color <- gsub("^.*border-color:\\s*|\\s*;.*$", "", home_shot_style[1]) away_df <- data.frame( team_name = away_team_name, shot_text = away_shot_text, shot_style = away_shot_style, color = away_color, stringsAsFactors = F ) home_df <- data.frame( team_name = home_team_name, shot_text = home_shot_text, shot_style = home_shot_style, color = home_color, stringsAsFactors = F ) total_df = rbind(away_df, home_df) total_df <-total_df %>% mutate( "date" = date, "outcome" = ifelse(grepl("made", shot_text), "made", "missed"), "shooter" = stripwhite(gsub("made.*", "", shot_text)), "shooter" = stripwhite(gsub("missed.*", "", shooter)), "assisted" = stripwhite(gsub(".{1}$", "", gsub(".*Assisted by", "", shot_text))), "assisted" = stripwhite(ifelse(grepl("made", assisted) | grepl("missed", assisted), NA, assisted)), "three_pt" = grepl("Three Point", shot_text), "x" = as.numeric(gsub('^.*top:\\s*|\\s*%;.*$', '', total_df$shot_style)) * 0.5, "y" = as.numeric(gsub('^.*left:\\s*|\\s*%;top.*$', '', total_df$shot_style)) * .94 ) %>% select(-shot_style) total_df$game_id <- game_ids[i] if(!exists("total_df_all")) { total_df_all <- total_df }else{ total_df_all <- rbind(total_df_all, total_df) } } } if(!exists("total_df_all")) { return(NULL) } return(total_df_all) }
require(NMOF) resample <- function(x, ...) x[sample.int(length(x), ...)] na <- dim(fundData)[2L] ns <- dim(fundData)[1L] winf <- 0.0 wsup <- 0.05 data <- list(R = t(fundData), RR = crossprod(fundData), na = na, ns = ns, eps = 0.5/100, winf = winf, wsup = wsup) neighbour <- function(w, data){ eps <- runif(1) * data$eps toSell <- w > data$winf toBuy <- w < data$wsup i <- resample(which(toSell), size = 1L) j <- resample(which(toBuy), size = 1L) eps <- min(w[i] - data$winf, data$wsup - w[j], eps) w[i] <- w[i] - eps w[j] <- w[j] + eps w } OF1 <- function(w, data) { Rw <- crossprod(data$R,w) crossprod(Rw) } OF2 <- function(w, data) { aux <- crossprod(data$RR,w) crossprod(w,aux) } w0 <- runif(na); w0 <- w0/sum(w0) algo <- list(x0 = w0, neighbour = neighbour, nS = 2000L, nT = 10L, nD = 5000L, q = 0.20) system.time(res <- TAopt(OF1,algo,data)) 100*sqrt(crossprod(fundData %*% res$xbest)/ns) system.time(res <- TAopt(OF2,algo,data)) 100*sqrt(crossprod(fundData %*% res$xbest)/ns) require(quadprog) covMatrix <- crossprod(fundData) A <- rep(1, na); a <- 1 B <- rbind(-diag(na), diag(na)) b <- rbind(array(-data$wsup, dim = c(na,1)), array( data$winf, dim = c(na,1))) system.time({ result <- solve.QP(Dmat = covMatrix, dvec = rep(0,na), Amat = t(rbind(A,B)), bvec = rbind(a,b), meq = 1) }) wqp <- result$solution 100 * sqrt( crossprod(fundData %*% wqp)/ns ) 100 * sqrt( crossprod(fundData %*% res$xbest)/ns ) min(res$xbest); max(res$xbest); sum(res$xbest) min(wqp); max(wqp); sum(wqp)
library(HH)
"laptop_urry"
MG <- function(units, ame_out, multiple = FALSE, id_only = FALSE, index_only) { if (!missing(index_only)) { stop('Argument `index_only` is defunct and will be removed in a later', 'release; please use `id_only` instead.') } if (multiple && !ame_out$info$replacement) { stop(paste('Multiple matched groups cannot be queried if', ame_out$info$algo, 'was run without replacement.')) } if (any(!(units %in% as.numeric(rownames(ame_out$data))))) { stop('Supplied a unit not in the matched data.') } units <- match(units, rownames(ame_out$data)) if (id_only & !multiple) { return(lapply(ame_out$MGs[units], function(z) { if (is.null(z)) { NULL } else { rownames(ame_out$data)[z] } })) } outcome_name <- ame_out$info$outcome treated_name <- ame_out$info$treatment col_names <- colnames(ame_out$data) cov_inds <- which(!(col_names %in% c(treated_name, outcome_name, 'weight', 'matched', 'MG', 'CATE'))) all_MGs <- vector('list', length(units)) all_MGs <- lapply(all_MGs, function(x) x <- vector('list', 1)) for (i in seq_along(units)) { if (is.null(ame_out$MGs[[units[i]]])) { next } if (!multiple) { MGs_to_return <- units[i] } else { in_MG <- which(vapply(ame_out$MGs, function(x) units[i] %in% x, logical(1))) MGs_to_return <- in_MG[!duplicated(ame_out$MGs[in_MG])] } for (j in seq_along(MGs_to_return)) { if (id_only) { all_MGs[[i]][[j]] <- rownames(ame_out$data)[ame_out$MGs[[MGs_to_return[j]]]] next } MG_all_cols <- ame_out$data[ame_out$MGs[[MGs_to_return[j]]], , drop = FALSE] for (cov_set in ame_out$cov_sets) { matched_on <- setdiff(col_names[cov_inds], cov_set) data <- data.matrix(MG_all_cols[, matched_on, drop = FALSE]) tmp <- colSums(sweep(data, 2, data[1, ]) ^ 2) if (any(is.na(tmp))) { next } if (all(tmp == 0)) { all_MGs[[i]][[j]] <- MG_all_cols[, c(matched_on, treated_name, outcome_name)] break } } } } if (!multiple) { all_MGs <- lapply(all_MGs, `[[`, 1) } return(all_MGs) } CATE <- function(units, ame_out) { if (any(!(units %in% as.numeric(rownames(ame_out$data))))) { stop('Supplied a unit not in the matched data.') } units <- match(units, rownames(ame_out$data)) if (ame_out$info$outcome_type != 'continuous') { stop('CATEs and their variance estimates can only be computed for ', 'continuous outcomes.') } CATE_mat <- matrix(nrow = length(units), ncol = 2, dimnames = list(units, c('Mean', 'Variance'))) Tr <- ame_out$data[[ame_out$info$treatment]] Y <- ame_out$data[[ame_out$info$outcome]] n <- length(Y) for (unit in units) { mg <- ame_out$MGs[[unit]] if (is.null(mg)) { next } control <- mg[Tr[mg] == 0] treated <- mg[Tr[mg] == 1] CATE_mat[as.character(unit), 'Mean'] <- mean(Y[treated]) - mean(Y[control]) CATE_mat[as.character(unit), 'Variance'] <- var(Y[treated]) / length(treated) + var(Y[control]) / length(control) } return(CATE_mat) } ATE <- function(ame_out) { .Deprecated(msg = paste('`ATE` is now deprecated, as ATE, ATT, and ATC mean', 'and variance estimates are now computed in the', '`summary.ame` method')) if (ame_out$info$estimate_CATEs && ame_out$info$outcome_type == 'continuous') { return(mean(ame_out$data$CATE, na.rm = TRUE)) } return(get_average_effects(ame_out)['All', 'Mean']) } ATT <- function(ame_out) { .Deprecated(msg = paste('`ATT` is now deprecated, as ATE, ATT, and ATC mean', 'and variance estimates are now computed in the', '`summary.ame` method')) if (ame_out$info$estimate_CATEs && ame_out$info$outcome_type == 'continuous') { return(mean(ame_out$data$CATE[ame_out$data[[ame_out$info$treatment]] == 1], na.rm = TRUE)) } return(get_average_effects(ame_out)['Treated', 'Mean']) } ATC <- function(ame_out) { .Deprecated(msg = paste('`ATC` is now deprecated, as ATE, ATT, and ATC mean', 'and variance estimates are now computed in the', '`summary.ame` method')) if (ame_out$info$estimate_CATEs && ame_out$info$outcome_type == 'continuous') { return(mean(ame_out$data$CATE[ame_out$data[[ame_out$info$treatment]] == 0], na.rm = TRUE)) } return(get_average_effects(ame_out)['Control', 'Mean']) }
NULL dplyr::vars param_range <- function(prefix, range, vars = NULL) { if (!is.null(vars) && !is.character(vars)) { abort("'vars' must be NULL or a character vector.") } nms <- paste0(prefix, "[", range, "]") param_matches <- match(nms, vars %||% tidyselect::peek_vars()) param_matches[!is.na(param_matches)] } param_glue <- function(pattern, ..., vars = NULL) { if (!is.null(vars) && !is.character(vars)) { abort("'vars' must be NULL or a character vector.") } dots <- as.list(expand.grid(...)) nms <- as.character(glue::glue_data(dots, pattern)) param_matches <- match(nms, vars %||% tidyselect::peek_vars()) param_matches[!is.na(param_matches)] } tidyselect_parameters <- function(complete_pars, pars_list) { helpers <- tidyselect::vars_select_helpers pars_list <- lapply(pars_list, rlang::env_bury, !!! helpers) selected <- tidyselect::vars_select(.vars = complete_pars, !!! pars_list) if (!length(selected)) { abort("No parameters were found matching those names.") } unname(selected) }
covid19Explorer <- function(locn=NULL) { c19Dashboard <- covid19dashboard(locn=locn) ui <- c19Dashboard[[1]] server <- c19Dashboard[[2]] capture.output(shinyApp(ui = ui, server = server)) }
hli <- function(x, check = TRUE, force.hemisphere = c("none", "southern", "northern")) { if (!inherits(x, "RasterLayer")) stop("x must be a RasterLayer object") if(check) { if (is.na(sp::proj4string(x))) stop("Projection must be defined") if (length(grep("longlat", sp::proj4string(x))) <= 0) { geo.prj = "+proj=longlat +datum=WGS84 +no_defs +ellps=WGS84 +towgs84=0,0,0" e <- as(raster::extent(x), "SpatialPolygons") sp::proj4string(e) <- sp::proj4string(x) e <- sp::spTransform(e, geo.prj ) l = sp::coordinates(e)[2] } else { e <- as(raster::extent(x), "SpatialPolygons") l = sp::coordinates(e)[2] } } else { e <- as(raster::extent(x), "SpatialPolygons") l = sp::coordinates(e)[2] } if(l < 0) hemisphere = "southern" else hemisphere = "northern" l = abs(l) * 0.017453293 cl = cos(l) sl = sin(l) tmp1 <- raster::terrain(x, opt="slope", unit="degrees") * 0.017453293 tmp2 <- raster::terrain(x, opt="aspect", unit="degrees") * 0.017453293 if(hemisphere == "northern" | force.hemisphere[1] == "northern"){ message("Using folded aspect equation for Northern hemisphere") tmp3 <- raster::calc(tmp2, fun=function(x) { abs(3.141593 - abs(x - 3.926991)) } ) } else if(hemisphere == "southern" | force.hemisphere[1] == "southern") { message("Using folded aspect equation for Southern hemisphere") tmp3 <- raster::calc(tmp2, fun=function(x) { abs(3.141593 - abs(x - 5.497791)) } ) } tmp4 <- raster::calc(tmp1, fun = cos) tmp5 <- raster::calc(tmp1, fun = sin) tmp6 <- raster::calc(tmp3, fun = cos) tmp7 <- raster::calc(tmp3, fun = sin) h <- exp( -1.467 + 1.582 * cl * tmp4 - 1.5 * tmp6 * tmp5 * sl - 0.262 * sl * tmp5 + 0.607 * tmp7 * tmp5) if(cellStats(h,"max") > 1){ h <- ( h / cellStats(h, "max", asSample=FALSE) ) } return( h ) }
if(!require("GNE"))stop("this test requires package GNE.") dimx <- c(2, 2, 3) grfullob <- function(x, i, j) { x <- x[1:7] if(i == 1) { grad <- 3*(x - 1:7)^2 } if(i == 2) { grad <- 1:7*(x - 1:7)^(0:6) } if(i == 3) { s <- x[5]^2 + x[6]^2 + x[7]^2 - 5 grad <- c(1, 0, 1, 0, 4*x[5]*s, 4*x[6]*s, 4*x[7]*s) } grad[j] } hefullob <- function(x, i, j, k) { x <- x[1:7] if(i == 1) { he <- diag( 6*(x - 1:7) ) } if(i == 2) { he <- diag( c(0, 2, 6, 12, 20, 30, 42)*(x - 1:7)^c(0, 0:5) ) } if(i == 3) { s <- x[5]^2 + x[6]^2 + x[7]^2 he <- rbind(rep(0, 7), rep(0, 7), rep(0, 7), rep(0, 7), c(0, 0, 0, 0, 4*s+8*x[5]^2, 8*x[5]*x[6], 8*x[5]*x[7]), c(0, 0, 0, 0, 8*x[5]*x[6], 4*s+8*x[6]^2, 8*x[6]*x[7]), c(0, 0, 0, 0, 8*x[5]*x[7], 8*x[6]*x[7], 4*s+8*x[7]^2) ) } he[j,k] } dimlam <- c(1, 2, 2) g <- function(x, i) { x <- x[1:7] if(i == 1) res <- sum( x^(1:7) ) -7 if(i == 2) res <- c(sum(x) + prod(x) - 14, 20 - sum(x)) if(i == 3) res <- c(sum(x^2) + 1, 100 - sum(x)) res } grfullg <- function(x, i, j) { x <- x[1:7] if(i == 1) { grad <- (1:7) * x ^ (0:6) } if(i == 2) { grad <- 1 + sapply(1:7, function(i) prod(x[-i])) grad <- cbind(grad, -1) } if(i == 3) { grad <- cbind(2*x, -1) } if(i == 1) res <- grad[j] if(i != 1) res <- grad[j,] as.numeric(res) } hefullg <- function(x, i, j, k) { x <- x[1:7] if(i == 1) { he1 <- diag( c(0, 2, 6, 12, 20, 30, 42) * x ^ c(0, 0, 1:5) ) } if(i == 2) { he1 <- matrix(0, 7, 7) he1[1, -1] <- sapply(2:7, function(i) prod(x[-c(1, i)])) he1[2, -2] <- sapply(c(1, 3:7), function(i) prod(x[-c(2, i)])) he1[3, -3] <- sapply(c(1:2, 4:7), function(i) prod(x[-c(3, i)])) he1[4, -4] <- sapply(c(1:3, 5:7), function(i) prod(x[-c(4, i)])) he1[5, -5] <- sapply(c(1:4, 6:7), function(i) prod(x[-c(5, i)])) he1[6, -6] <- sapply(c(1:5, 7:7), function(i) prod(x[-c(6, i)])) he1[7, -7] <- sapply(1:6, function(i) prod(x[-c(7, i)])) he2 <- matrix(0, 7, 7) } if(i == 3) { he1 <- diag(rep(2, 7)) he2 <- matrix(0, 7, 7) } if(i != 1) return( c(he1[j, k], he2[j, k]) ) else return( he1[j, k] ) } z <- rexp(sum(dimx) + sum(dimlam)) n <- sum(dimx) m <- sum(dimlam) x <- z[1:n] lam <- z[(n+1):(n+m)] resphi <- funSSR(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB) check <- GNE:::funSSRcheck(z, dimx, dimlam, grobj=grfullob, constr=g, grconstr=grfullg, compl=phiFB) cat("\n\n________________________________________\n\n") print(cbind(check, res=as.numeric(resphi))[1:length(x), ]) print(cbind(check, res=as.numeric(resphi))[(length(x)+1):length(z), ]) if(sum(abs(check - resphi)) > .Machine$double.eps^(2/3)) stop("wrong result") resjacphi <- jacSSR(z, dimx, dimlam, heobj=hefullob, constr=g, grconstr=grfullg, heconstr=hefullg, gcompla=GrAphiFB, gcomplb=GrBphiFB) checkjac <- GNE:::jacSSRcheck(z, dimx, dimlam, heobj=hefullob, constr=g, grconstr=grfullg, heconstr=hefullg, gcompla=GrAphiFB, gcomplb=GrBphiFB) cat("\n\n________________________________________\n\n") cat("\n\npart A\n\n") print(resjacphi[1:n, 1:n] - checkjac[1:n, 1:n]) cat("\n\n________________________________________\n\n") cat("\n\npart B\n\n") print(resjacphi[1:n, (n+1):(n+m)] - checkjac[1:n, (n+1):(n+m)]) cat("\n\n________________________________________\n\n") cat("\n\npart C\n\n") print(resjacphi[(n+1):(n+m), 1:n] - checkjac[(n+1):(n+m), 1:n]) cat("\n\n________________________________________\n\n") cat("\n\npart D\n\n") print(resjacphi[(n+1):(n+m), (n+1):(n+m)] - checkjac[(n+1):(n+m), (n+1):(n+m)]) if(sum(abs(checkjac - resjacphi)) > .Machine$double.eps^(2/3)) stop("wrong result")